

Graphics

Box

Box

onDraw()

Box















(1/2)*sqrt(x^2-1)

√







fancy

‎

x^2_1

\frac{\sqrt{y}}3

\left(1-z\right)

√

()

\displaystyle

√

≥















reduce.img reduce.img

FileInputStream

 reduce.img

AssetManager

AssetManager mgr = context.getAssets();
final InputStream reduceImgStream = mgr.open("reduce.img");

FractionBox SqrtBox

SqrtBox(ScriptBox(SymbolBox(“b”),SymbolBox(“2”)))

Box

 Box numerator, denominator, fraction;

// step 1: construct the tree of boxes
 fraction = new FractionBox(
 numerator = new SymbolBox("1"),
 denominator = new SymbolBox("2"));

// step 2: pass a Graphics implementation
 fraction.setGraphics(new MyGraphics());

// step 3: call “onDraw” on all boxes, parents before children
 fraction.onDraw();
 numerator.onDraw();
 denominator.onDraw();

Graphics

‎

onDraw

 Graphics

AndroidGraphics

 Graphics

 void drawChar(char c, Font font, int fontNumber, float fontSize, float
startX, float startY);

 void drawLine(float lineThickness, float startX, float startY, float
stopX, float stopY);

 float boundingHeight(char c, Font font, int fontNumber, float fontSize);

 float advancingWidth(char c, Font font, int fontNumber, float fontSize);

 float boundingWidth(char c, Font font, int fontNumber, float fontSize);

‎

 Box

Box

 ‎

 Graphics

Box

 width() height() axis()

‎

 squash() split() ‎

 Box

Box

FractionBox

Box

SymbolBox SpaceBox SequenceBox FractionBox SqrtBox

DelimiterBox ScriptBox MultilineBox MatrixBox

SequenceBox

SequenceBox

 + 2 = SequenceBox

SequenceBox

SequenceBox

SequenceBox

SequenceBox

public class SequenceBox extends Box {

Box[] children = new Box[0]; // child boxes

 public SequenceBox(Box... children) {
 if(children != null) this.children = children;
 setChildrenStyle();
 }

 @Override
 public void setChildrenStyle() {
 for(Box box : this.children)
 box.setStyle(style); // “style” field is inherited
 }

SequenceBox

 @Override
 public float width() {
 // the sum of all the widths in the sequence
 float width = 0f;
 for(Box box : this.children) {
 width += box.width();
 }
 return width;
 }

SequenceBox

 @Override
 public float axis() {

// the largest axis of any child
 float maxAxis = 0f;
 for(Box box : this.children) {
 maxAxis = Math.max(maxAxis, box.axis());
 }
 return maxAxis;

}

SequenceBox

 @Override
 public float height() {
 float maximumAxis = this.axis();

// the largest depth of any child
float maximumDepth = 0;

 for(Box box : this.children) {
 maximumDepth = Math.max(maximumDepth, box.depth());
 }
 return maximumAxis + maximumDepth;
 }

Box ScriptBox

SequenceBox

 onDraw()

onDraw

onDraw

 public static Box fitWithin(Box formula, float maxWidth)

maxWidth

 maxWidth

maxWidth

maxWidth

 float d = box.getSquashingDistance(); // recursive method

squashingFactor d

maxWidth

float squashingingFactor = Math.max(0, 1-((boxWidth-maxWidth) / d));

squashingFactor

squashingFactor

box = box.squash(squashingingFactor);

squashingFactor

Box[] pieces = box.split(Level.easy);

split Box

split

maxWidth

maxWidth

maxWidth

maxValue

(𝑒)/(𝑟)

√ + √ (+)

maxWidth

maxWidth

maxWidth

maxWidth

Sequence(Fraction(Sequence(Symbol(“1”)),Sequence(Symbol(“2”))))

Fraction Symbol

Sequence

Sequence

‎

ExpressionBuilder

 + √ ExpressionBuilder:

 ExpressionBuilder builder = new ExpressionBuilder();

 builder.appendSymbol("1");
 builder.appendSymbol(S.plus);
 builder.appendSqrt();
 builder.appendSymbol(S.x);

builder.moveCursorToTheRight(); // explained in the next subsection

builder

 + √

Sequence Sequence

Sequence

Sequence

Sequence

Symbol Sqrt

 + √

 + √

 Sequence

Sequence

Sequence

 Sequence

Sequence

Sequences

 Sequence Sequence

left right left right Sequence

Sequence

Fraction
10

Sequence

Sequence Sequence

Sequence

Sequence

Sequence

left right

Sequence

Sequence

Sequence

 Sequence

Sequence Sequence

Sequence

Sequence

Sequence

 Sequence

Sequence

Sequence

Symbol

 Sequence Sequence

right != null

Sequence Sequence

Sequence

Sequence Sequence

Sequence Sequence

Sequence

Sequence

 Sequence Sequence

right == null

Sequence

Sequence

 + √

“1+sqrt(x)”

toReduce()

Sqrt

public class Sqrt extends WrapperExpression {

// The body of the square root
private Sequence body;

 @Override
 protected String toReduce() {
 return String.format("sqrt(%s)", body.toReduce());
 }

toDrawable()

public class Sqrt extends WrapperExpression {

// The body of the square root
private Sequence body;

 @Override
 public Box toDrawable() {
 return new SqrtBox(body.toDrawable());
 }

 + √ toDrawable()

 String lineOfTeX = "\\frac{x^2}\\mathrm{12}";
 TexParser parser = new TexParser(lineOfTeX);
 Box boxTree = parser.parse();

LinearLayout
13

LinearLayout InputView

OutputView

InputView

OutputView AndroidGraphics













Box

Box

C.java

Box

Graphics

Box

Box

Graphics

Box

Graphics

Box

javadoc.exe

width()

fib

fib(n) = fib(n-1) * fib(n-2),

width()

SequenceBox

@Override
public float width() {

 float width = 0f;
 for(Box box : this.children) {
 width += box.width();
 }
 return width;
}

protected float width =
 Float.NEGATIVE_INFINITY;

@Override
public float width() {
 if(optimize && width >= 0)
 return width;

 width = 0f;
 for(Box box : this.children) {
 width += box.width();
 }
 return width;
}

forget()

forget()

optimize

22

 √

log (tan() +

2

 =
log (tan() +)

2
 + √

{𝑢 =
log (tan() +)

2
, 𝑣 = + √ }

























‎

‎‎

‎

“sin(x"

 (

 ()

“sin(x)/cos(x)”

Sequence SpaceBox

borderVisible

𝜋

‎

∫ . 𝑑

stackSize

public Thread (ThreadGroup group, Runnable runnable, String threadName, long stackSize)

stackSize

stackSize a stack size for the new Thread. This has a highly platform-dependent

interpretation. It may even be ignored completely.

http://developer.android.com/reference/java/lang/ThreadGroup.html
http://developer.android.com/reference/java/lang/Runnable.html
http://developer.android.com/reference/java/lang/String.html















‎

 Box

Box

FractionBox

FractionBox

SqrtBox

ScriptBox

ScriptBox

DelimiterBox

DelimiterBox

MultilineBox

TableBox TableBox

DelimiterBox

“uuu xx yy zzzzz”

|uuu xx| (0 empty spaces)

|yy | (4 empty spaces)

|zzzzz | (1 empty space)

|uuu | (3 empty spaces)

|xx yy | (1 empty space)

|zzzzz | (1 empty space)

𝑂(𝑛)

 pieces

 maxWidth

maxWidth

maxWidth

MultlineBox

SequenceBox

𝑂(𝑛) 𝑐(𝑖, 𝑗)

𝑖 𝑗

𝑐(𝑖, 𝑗) = (𝑚𝑎𝑥𝑊𝑖𝑑𝑡ℎ − ∑𝑝𝑖𝑒𝑐𝑒𝑠[𝑘]. 𝑤𝑖𝑑𝑡ℎ()

)

𝑖 𝑗 maxWidth

𝑐(𝑖, 𝑗) = ∞. 𝑓(𝑝𝑖𝑒𝑐𝑒 𝑐𝑜𝑢𝑛𝑡)

𝑓(𝑛) = {
𝑐(1, 𝑛) 𝑖𝑓 𝑐(1, 𝑛) < ∞

min

(𝑓(𝑚) + 𝑐(𝑚 + 1, 𝑛)) 𝑖𝑓 𝑐(1, 𝑛) = ∞

𝑂(𝑝) 𝑝

sum cost minCost sum[i,j]

𝑖 to piece 𝑗

private static Box knuthPlass(Box[] pieces, float maxWidth) {

 int pieceCount = pieces.length;
 if(pieceCount == 1) return pieces[0];

 // calculate 'sum' in O(n^2)
 float[][] sum = new float[pieceCount][pieceCount];
 for(int i=0; i<pieceCount; i++) {
 sum[i][i] = pieces[i].width();
 for(int j=i+1; j<pieceCount; j++) {
 sum[i][j] = sum[i][j-1] + pieces[j].width();
 }
 }

 // calculate 'cost' in O(n^2) using 'sum'
 float[][] cost = new float[pieceCount][pieceCount];
 for(int i=0; i<pieceCount; i++) {
 for(int j=i; j<pieceCount; j++) {
 float diff = maxWidth - sum[i][j];
 if(diff < 0) // if words don't fit on the line
 cost[i][j] = Float.POSITIVE_INFINITY;
 // else cost is the square of the difference between
 // the width of the pieces and the width of the line
 else cost[i][j] = diff * diff;
 }
 }

 // calculate 'minCost' and 'pointer' in O(n^2) using 'cost'
 float[] minCost = new float[pieceCount];
 int[] pointer = new int[pieceCount];
 minCost[0] = cost[0][0];
 pointer[0] = 0;
 for(int j=1; j<minCost.length; j++) {
 if(cost[0][j] < Float.POSITIVE_INFINITY) {
 minCost[j] = cost[0][j];
 pointer[j] = 0;
 } else {
 float minJcost = Float.POSITIVE_INFINITY;
 int minK = -1;
 for(int k=j-1; k>=0; k--) {
 float kCost = minCost[k] + cost[k+1][j];
 if(kCost < minJcost) {
 minJcost = kCost;
 minK = k;
 }
 }
 minCost[j] = minJcost;
 pointer[j] = minK+1;
 }
 }

 // extract the lines using 'pointer' and arrange each group

// pieces representing a line inside a SequenceBox
 LinkedList<Box> lines = new LinkedList<Box>();
 int index = pieceCount-1;
 while(index>=0) {
 Box[] lineParts = subArray(pieces, pointer[index], index);
 SequenceBox line = new SequenceBox(lineParts);
 lines.addFirst(line);
 index = pointer[index]-1;
 }

 // finally: arrange the lines nicely inside a MultilineBox object.
 Box[] linesArray = lines.toArray(new Box[0]);

MultilineBox result = new MultilineBox(linesArray,
/* and other arguments */);

 return result;
}

Ahmad Akra
Trinity College

aa582

Computer Science Part II Project Proposal

Computer Algebra System for Phones and Tablets

21-Oct-2011

Project Supervisor:
Dr. Arthur Norman

Director of Studies:
Dr. Arthur Norman

Overseers:
Prof. Frank Stajano + Dr. Robert Mullins

Resources Form:
Submitted with this proposal

1

Introduction

A scan of the android app store reveals a variety of apps that perform algebra calculations.
But most of them have limitations in the form they accept input, or the way they display output.
And all of them have very little capabilities in the level of algebra complexity they can manage.
Despite how powerful modern smart phones have become, algebra systems available for PC
such as Mathematica or Maple still offer a lot more than similar systems available for Android.

The idea of this project is to bring the power of Reduce - an open source CAS written in
Lisp and popular amongst mathematicians and scientists - to the Android platform, build an
extensible and user friendly UI that interfaces to Reduce’s functionality main core and display
the formulae in a form closer to the real mathematical notation instead of text. I would like here
to mention MathBot for the iPad as a feasibility demonstration.

There is a long history of interest in this sort of work, and the 1971 article by William Martin
(Computer input/output of mathematical expressions) is perhaps where it all started. Regarding
the formulae-on-small-screen problem, the TI algebraic calculators provide a reference point
and background. The work done in this project will be evaluated both in terms of the extent to
which it actually works and by comparing its capabilities with existing PC and Android software
that works in the same general area, see the success criterion section for details.

Resources

As will be demonstrated in the next paragraph, most resources required for this project can be
arranged without intervention from the computer lab.

This project is intended to run on the Android platform. And, as usual, all development will be
on a computer running the Android SDK and Eclipse with the ADT plug-in (all which is free
software). I will use my laptop for development. The majority of testing will be done on an
Android emulator also running on the same computer. One such emulator is provided by the
ADT plug-in mentioned above. I will occasionally need a real Android device for demonstration
and deployment testing but That is not expected to be a problem since I know many people in
our class who are happy to run the project on their Android phones and tablets once it is stable.
Dr. Norman has an Android tablet and he said that he will be happy to test my project on it.

From the computer lab, I will only require an extra 2GB of space on the PWF to backup the
Reduce code. This is included in resources form which was submitted alongside this proposal.

2

Starting Point

My project supervisor Dr. Norman has some existing Java code (~27K lines) which is an
interpreter on top of Reduce1, however it has not been written with the constraints of Android in
mind. At present it provides a strictly text-mode interface where users type in commands and
the results are displayed as "ASCII art" with fixed-width characters on the screen to give an
approximation to mathematical notation.

I am familiar with the Java language, but completely new to Android development. I will be
spending some time at the beginning to learn the Android mindset and development tools.

Project Structure

The project will be composed of

1 - A library for algebra manipulations. Dr. Norman’s code will be used for this after it is ported
to the Android platform. His code gives access to many of the features provided by Reduce
CAS, such as solving polynomial equations and matrix multiplication.

2 - An extensible library for mathematical typography display. This should allow a formula like:

(1/2) * sqrt(x^2 - 1)

to be displayed closer to the real mathematical notation:

3 - An Android UI that interfaces with the previous two libraries.

1 The source code for the Java interpreter and all the associated Reduce Lisp files are available on
SourceForge and can be acquired by running the following shell command:
svn co http://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra reduce-
algebra

3

Success Criterion

This project is expected to be challenging, many of its challenges result from the nature of smart
phones and tablets and the fact that they have small screens that work by touch, some of these
challenges appear to not have been seriously addressed before, The main success criteria for
this project will be:

A - Porting Dr. Norman’s code to Android. This will demonstrate an important programming
skill which is the ability to read, modify and reuse existing code written by other programmers.
Amongst other things, this will require mastery of the Java programming language.

B - Arranging that the output is displayed in a form that is closer to genuine mathematical
typography than plain text mode. This will demonstrate problem solving skills when it comes to
layouting the formulae on the small screen.

C - Building an extensible and user friendly input interface for Android devices. This will
demonstrate several skills:

1. The ability to quickly grasp a new development platform (I am new to Android
development).

2. The ability to structure the project and follow the best programming practices that allow
extensibility and testability of an Android UI project.

3. And the ability to construct the interface such that it is usable and comfortable to look at.
Within the scope of a Part II project it is not likely to be feasible to complete a careful
assessment of the HCI issues involved, and so the code implemented will be built with flexibility
in mind as a technology demonstration and prototype. There will obviously be scope for many
extensions, added features and refinements - for instance: scrolling, zooming, editing of existing
input and export of results. But the key success criteria will be the ability to demonstrate
success against the three objectives listed above.

As part of the evaluation, the outcome of this project will be compared to existing software in the
Android app store:
(1) Algebra Calculator Pro from MJH Mobile DEV.
(2) Algebraic Calculator by Tarcin.
(3) MathScript Calculator from The Think Tanks
In particular, apps 1 and 2 will be compared to this project in terms of how many different
algebra problems they can solve. App 3 is a very powerful algebra app and will be compared
to this project in terms of the convenience of its input system and the elegance of its displayed
output.

4

Schedule and Milestones

21st October - 15th November
1 - Become familiar with the Android development mindset and tools.
2 - Establish a backup plan.
3 - Research and identify some existing CAS software that will be used as a reference to
improve and compare against during development.

Milestone: Create simple Android project that takes textual input and produces textual output
and run it on a real Android device.

16th November - 31st December
1 - Obtain and install Dr. Norman’s algebra library on my laptop.
2 - Understand the library and identify regions of the code that will need rewriting to run on the
Android platform.
3 - Move the code to an Android project, and run it.

Milestone: Create a very simple interface that takes textual input through a dialog box and
displays textual output.

1st January - 29th February
Temporarily ignore the algebra library. And develop an extensible math display library that
can display a basic range of formulae in mathematical notation. An example to illustrate the
problems that will be tackled here is the problem of where to break the formulae when it doesn’t
fit on a small screen.

Milestone: Use the math display library to display (on an Android screen) a range of simple
formulae constructed by hand.

1st March - 7th March
Milestone: Use the math display library to display simple output generated from Dr. Norman’s
algebra library.

8th March - 15th April
1 - Finalize the general UI design of the application
2 - Finalize the design of the input system which is a custom keyboard of symbols and
operators. These will be organized in a tree structure such that only the most commonly used
symbols and operators are visible and the rest can be reached through sub-menus. The system
keyboard is only used for inputting multi-character names.
3 - Build the UI on the Android platform.

Milestone: Connect the input system to the Algebra library and arrange the UI to display
formulae using the math display library created earlier. At this point the project should be in the
beta stage.

5

16th April - 30th April
1 - Review the code for the last time.
2 - Perform final debugging and testing.

1st May - 3rd May
Evaluate the project.

4th May - 18th May
Write and submit the dissertation.

6

