Ahmad Akra

Computer algebra system

for phones and tablets

Computer Science Tripos, Part 11
Trinity College
April 12, 2012

Proforma

Name: Ahmad Akra

College: Trinity

Project Title: CAS for phones and tablets
Examination: CST, Part II

Year: 2012

Word Count: 10,530

Project Originator: Dr. Arthur C. Norman

Supervisor: Dr. Arthur C. Norman

Original aims of the project

To create a computer algebra system (CAS) for Android devices that:

1.
2.
3.

Surpasses anything available today for Android in terms of algebra.
Displays input and output in natural math notation.

Easy to use on a small touch screen.

To achieve this, the aim was to:

1.
2.

Port the open source algebra system REDUCE to run on Android,
Build on top of it a user interface featuring a math keyboard and
LaTeX-style natural math typesetting, hence hiding the textual nature
of REDUCE.

Work completed

All the requirements for the project were satisfied, in particular:

1.
2.

REDUCE was successfully ported to Android.

A natural math typesetting library for Android was implemented
which was inspired by the math typesetting of LaTeX.

A parser for LaTeX strings was implemented.

A user interface was constructed which takes input through a math
keyboard and displays both input and output formulae in natural math

notation.

Special difficulties

None.

Declaration of originality

I, Ahmad Akra of Trinity College, being a candidate for Part II of the
Computer Science Tripos, hereby declare that this dissertation and the work
described in it are my own work, unaided except as may be specified below,
and that the dissertation does not contain material that has already been

used to any substantial extent for a comparable purpose.

Signed

Date

Contents

Chapter 1 INtrodUCION ..o..vvveiieiiiiiieeeiii e 1
1.1 INtrodUCtION . cccoocceeee e 1
111 THE PIOJECH e 1
1.1.2 What is an algebra system?cccoooiiiiiiiiiiiiie e 1
1.2 The motivation behind this projectcccccoeeeiviiiiiiieeee, 1
1.3 The original ideacoooiiiiiiiiiiiii e 2
1.4 Introducing REDUCE ... 3
1.5 Introducing JLASP ...eeiiiiiiiiiiiii e 3
1.6 MY WOTK oo 4
1.6.1 Porting REDUCE to Android using JLASPccccveeviiiiiiiiiiiiieiiiceeee, 4
1.6.2 Creating the math typesetting libraryccccoiiiiiiiiiii, 4
1.6.3 Building the user interfaceccooooiiiiiiiiiiii e 4
L7 SUIMITIATY +iiiiie ettt e e et e e et e e e 5
Chapter 2 Preparationoooiiiiiiiii e 7
2.1 Eliciting requir€ments...........cooviiiiiiiiiiiiiiii e 7
2.1.1 TATGEE TSETS c oottt 7
2.2 LIBATTIIIIEZ .t 7
2.2.1 Learning REDUCE ... 7
2.2.2 Learning JLASP ...uueviiiiiiiiiiiii e 8
2.2.3 Learning LaTeX ... 9
2.2.4 Learning the Computer Modern fontsccccoccciiiiiiiiiii, 12
2.2.5 Learning about formula fittingccocooiiiiiii 12
2.2.6 Learning Androidccooooiiiiiiiiiiiiiieei e 12
2.3 Designing the architecture............cccooiiiiiiii, 13
2.4 The developmMeEnt PrOCESS.ciiii ittt 14

2.5 SUINIINIATY +.evteeiiiiee e ettt e ettt e e ettt e e e ettt e e e ettt e e e enieeeeeaans 15

Chapter 3 Implementationcoooiiiiiiiiiiiiii e 17

3.1 Porting REDUCE CAS to Androidcccooiiiiiiiiiiiiiiccceece 17
3.1.1 The REDUCE and JLISP SOUICES......cccuvviieeriiiiieeeiiiieeeeeiiieee e 17
3.1.2 Porting JLisp to the Android environment..............cccooeeeviiieiniienninenn. 17

3.2 Implementing the formula boXes.........cccooiiiiiiiiii 18
3.2.1 What are the formula boxes?ccccoiiiiiiiiiiiiiiece 18
3.2.2 The Graphics INErfacecoovviiiiiiiiiiiiieiieeeee e 19
3.2.3 Implementing the base class BOX.....cccuuviiiiiiiiiiiiiiiiiiiicceeeieen 20
3.2.4 The subtypes of Box and one example............ccoooiiiiiiiiiiiiiiniiiicee, 20
3.2.5 The onDraw () methodooiiiiiii e 22

3.3 Implementing the formula-fitting algorithm...................ccoo 23
3.3.1 Step 1: Squash the formulacccoooiiiiii 23
3.3.2 Steps 2-5: Break the formula into multiple linesccccccooviiiieennn. 25
3.3.3 Step 6: Make the font smallerccocoiiiiiiiiiiiiieeee 28

3.4 Implementing the REDUCible classes ..o, 29
3.4.1 What are the REDUCIble classes?cccooviiiiiiiiiiiiiiiiciieeeieeee 29
3.4.2 The function of the REDUCible classes.........ccccceeviiiiiiiiiiiiiiiiiciie 29
3.4.3 Constructing a REDUCIDbIe t1eecoooviiiiiiiiiiiiiiciccce 30
3.4.4 Navigating through the REDUCible treecccoooiiiiiiiiiiii, 30
3.4.5 Translating the REDUCible tree to REDUCE..........c..ccoovviiiiiiiinnnn. 35
3.4.6 Translating the REDUCible tree into a box tree.........ccccceeeeviivvivvnnee..n. 35

3.5 Implementing the LaTeX PaTSErccoooiiiiiiiiiieieeeiiieee e 36

3.6 Building the user interface...........cooviiiiiiiiiiii 36
3.6.1 The math keyboardoooiiiiiiiiiieen 36
3.6.2 The input/output display area..........c.coceevveveviniiiiincniiiiieeeeeee 38

BT SUININATY ..ttt et e ettt e e et e e et ee e e 39

Chapter 4 Evaluation ... 41

4.1 Evaluating the code architecture..........cccccoooiiiiiiiiiiiiiiiieeee 41

4.1.1 Organized COAEooomiiiiiiiiiiiiiii e 41

4.1.2 Independence of Androidooooiiiiiiiiiiiiii e 42

4.1.3 DOCUmMENtAtioN ..o 42
4.2 Evaluating the formula typesetting speedcccccociiiiiiiiiniii, 43
4.2.1 Multiple layouts vs. a single layout..............cooccocci 43
4.2.2 Dynamic programmiig..........cccuuueieeiteeeeiniiiiiieeeeeeee et eeee e e 43
4.3 Beauty of the formula typesettingcccoviiiiiiiiiiiiiiiiee 45
4.3.1 Comparison with LaTeX ..o 45
4.4 Evaluating the algebra capabilities..........cccococciiiiii, 46
4.4.1 REDUCE capabilities.........ccooiiiiiiiiiiiiiiiiiieiiceeeeeee e 46
4.4.2 EXposed features ... 46
4.5 Evaluating the usability.........ccoooiiiiii 46
4.5.1 Wait animation..............ooiiiiiiiiiiie e 47
4.5.2 Undo and 1ed0....cooeeeiiiiiiiiiiii e 47
4.5.3 Touch to navigate featureocccoviiiiiiiiiiee 47
4.5.4 Touch to copy feature..........oooviiiiiiiiiiie e 48
4.5.5 Consistency between REDUCE and the user..........cccccoooiiiiiiininnn. 49
4.5.6 Automatic closing of open bracketscccoooiiiiiiiiiiiiiiii 49
4.5.7 Empty rectangles for empty sequencescoocceeeeiiiiiiiiiiiiiieiiiiieee, 49
4.6 Room for IMPIrOVEIMIEITvvviiiiiieeeieiiiiiiit e e e e e e e e e e e e 50
4.6.1 Keyboard labels............ooiiiiiiie e 50
4.6.2 Remembering the activity state.......ccccooviiiiiiiiiiiii 50
4.7 Product stability and known iSSuesccoovviiiiiiiiiiii 50
A.T.1 TESEINE ottt e 50
4.7.2 The stack SiZe CONCETN.......ccoiiiiiiiiiiiiiiiiiii e 51
4.8 Comparison with existing SOftWareccoooviiiiiiiiiiiie 51
4.8.1 WolframAIphaooiii e 51
4.8.2 MAtNSCTIPt..oviiiiiiiii e 52
4.8.3 Other applicationseiiiiiiiiiiii e 53

A9 SUIMINATY «. .ttt ettt e e ettt e e ettt e e e et e e e enieeeeas 55

Chapter 5 CONCIUSIONSoiiiiiiiiiiiiiiie e 57

5.1 Additional WOTKoooiiiiiiiiiiii e o7
5.2 Final remark ... Y
RELEIENCES ..oiiiiiii e 59
Appendix A The BoX SUDEYPES c.vvveiiiiiiiiiiieeiiee et A-1
AT SYMDOIBOX ..ttt A-1
A2 SPACEBOX. ..oiiiiiiiieieii e A-1
A3 SeqUENCEBOX ..t A-2
A4 FractionNBOX ..oooviiiiiiiieii e A-2
ALD SATTBOX vttt A-3
ALB SCTIPEBOX 1ttt A-4
AT DelIMItErBOXvvieiiiieeiieeee e A-5
A8 MultilineBoxvviiiiiiiiiee e A-5
ALG TaABIEBOX ..ttt A-6
Appendix B Knuth-P1lasscooiiiiiiiiiiee e B-1

Appendix C ApP SCreenshotS........oiiiiiiiiiiiieiiieeeee e C-1

Chapter 1 Introduction

1.1 Introduction

1.1.1 The project

The goal of this project is to build a Computer Algebra System (CAS) for
Android phones and tablets, with an interface that works by touch. The
resulting application should give its user access to the features of an algebra

system on the phone and should resemble a powerful algebra calculator.
1.1.2 What is an algebra system?

Unlike scientific calculators, an algebra system is a computer program that is

capable of performing symbolic [wa- Integratert/(x~3-13}. 1 17
manipulations such as: hroTan[222])]
Cut[d]= {— ﬁ +§Log[—1+x]—gLo-g[l+x+x2]}
e FExpanding Wsl- Plot3D[Sin[y + Sin[3x11. {x. -3. 3}. {¥. -3. 331 7]
e Refactoring P T
. . aA\\\, 2
e Solving equations ‘ﬁ, 4_, “ﬁ =
¢ Differentiation “, c
e Integration 0-15 \\ “&
0 0
e Complex numbers -0-_51 I)E{\'\\ ;’*.A y 'g
e Matrix manipulation \\‘\‘ P
Some algebra systems go beyond
that and provide extra facilities for [2#F - SurfaceGraphics - il

plotting graphs, logic and Figure 1: Mathematica is the archetypal

programining. example of a commercial algebra system

1.2 The motivation behind this project

As a Cambridge university student, I own a Casio calculator fx-991ES' and

use it to help me do my homework. This calculator can perform a wide range

' http://support.casio.com/pdf/004/fx-115ES_991ES_ E.pdf
1

of calculations and algebra for me despite having a modest processor. Also, it
displays input and output in natural math notation despite having a small 31
by 96 pixel screen.

I also happen to own a Galaxy Nexus® smart phone running a 1.2 GHz dual
core processor, and featuring a 1280 by 720 pixel display. The Android OS on
this phone gives me access to over 400,000 apps on the official app store
Google Play. However, despite all these impressive numbers, I am unable to
find a decent algebra system for my Android phone. One, which when
compared to the capabilities of the Casio calculator mentioned earlier will
give a consistent ratio with that of the computational power of modern smart-
phones compared to that of the calculator. This is a problem that requires
some investigation.

The same problem can be observed more clearly if we compare the leading
algebra systems available today for Android to those available for PCs. As |
will illustrate in the evaluation section of this dissertation, there is no algebra
system for Android phones that comes anywhere near the algebra systems
available for PCs (such as Mathematica or Maple) even though modern
Android handsets are nearing the benchmarks for PCs and are certainly on
par with small netbooks. And even though it seems natural that Android
users (and especially students) would like to have an algebra calculator on
their phones to assist them in their daily work.

The aim of this project is to address exactly this problem. This project
introduces a computer algebra system (CAS) for Android phones which is
free, easy to use and, in terms of algebra capabilities, can take advantage of

the power of Android handsets.

1.3 The original idea

The idea behind this project is due to Dr. Arthur C. Norman (my project
supervisor). Dr. Norman identified the problem that the Android platform lacks
a decent CAS. And saw a potential solution to that in the open source
programs REDUCE and JLisp in addition to some effort from a final year
student.

% http://www.google.com /nexus/

1.4 Introducing REDUCE

Reduce (Free (C8L wversion), 30-0Oct-11
1: sgrt(4="2 + 4);

2
2%sgrt(x + 1)

Z2: df(e™(x"2) ,x);

L

Figure 2: A snapshot of the desktop interface of REDUCE running under JLisp

REDUCE’ is a large computer algebra system written in a special dialect of
Lisp called Standard Lisp. It was started by Tony Hearn in 1966, and was
made open source in 2008. Over a period of 40 years, and through the
contributions of many programmers (including Dr. Norman himself) the core
of this algebra system grew to over hundreds of thousands of lines of code,
and came to include a wide range of capabilities in algebra, calculus, matrices,
series expansions, limits and many more. In terms of size and algebra features,
REDUCE is around the same order of magnitude as leading algebra systems
such as Mathematica, Maple and Maixma.

REDUCE can be installed on all major operating systems, and can be
downloaded as source code from SourceForge repositories’.

1.5 Introducing JLisp

The instance of REDUCE in Figure 2 was running under the Lisp system
JLisp. JLisp is an implementation of Standard Lisp written in Java that is
capable of compiling Standard Lisp source files into bytecode, and is also
capable of executing the compiled bytecode.

? http://reduce-algebra.com/
! http://reduce-algebra.svn.sourceforge.net /svnroot /reduce-algebra,/

3

To put it in a different way, is a Lisp interpreter written in Java. It can
compile and execute Lisp within the Java environment. JLisp was originally
created by Dr. Arthur Norman in 1998 to support REDUCE on the PC and
to research the feasibility of the Java language for such a task.

JLisp is crucial for this project since it will help port the REDUCE algebra
system to the Android platform. REDUCE is written in Lisp, which is not
supported on Android. However since JLisp — as described earlier - is Java
code that can execute Lisp code, it can potentially solve the problem in the
most straightforward way. And enable the Lisp source code of REDUCE to
run on the Android JVM.

1.6 My work

My work for this project is to accomplish 3 goals.
1.6.1 Porting REDUCE to Android using JLisp

Although JLisp is Java software, it is not written with Android constraints in
mind. Therefore running JLisp on Android requires some modifications to
JLisp. For example, JLisp uses API that is not available on Android such as
for GUI and for reading files.

1.6.2 Creating the math typesetting library

Which will be used to hide the textual nature of REDUCE under natural
looking mathematics. For example, instead of asking users to input something
as awkward as (1/2)*sqgrt(x”2-1), we ask them to input %\/xz -1

instead and show them equally nice output. The motivation behind the math
typesetting library is the observation that average computer users tend to be
repelled by programs with textual interfaces (such as the command line), even
if the textual interface is easier to use than the equivalent GUI. Any program
with a textual interface is automatically abandoned by a large subset of users

and the aim is to avoid this happening to our application.
1.6.3 Building the user interface

The application interface will feature a math keyboard that can fit on the
phone screen. It also uses the previously mentioned math typesetting library

to show the input and the output in natural math notation.

1.7 Summary

This chapter:
e Introduced the idea of the project and the motivation behind it.
e Introduced two of the key components of the project; REDUCE and
JLisp.
e Described the goals that I have to achieve in order to complete this

project.

D) Android Reduce

Shift2 sqrt

Figure 3: The application interface on Android 4.0 using the Holo theme.
More snapshots can be found in Appendix C

6

Chapter 2 Preparation

2.1 Eliciting requirements

The requirements for this project were specified in the project proposal, under

the section “Success Criterion”:

1. The REDUCE algebra system should be ported to Android.

2. The output of REDUCE should be arranged to be in true math
notation.

3. The input to REDUCE should be possible to enter through a touch UL

2.1.1 Target users

The target users for this application are college students, since they would
find it useful, judging by how many of them own and use algebra calculators,
also because I am a college student myself and therefore most able to
understand their requirements. The design of the application interface will be

tailored towards these target users.

2.2 Learning

Before writing any code T had to spend time researching and learning every
new software package, algorithm or language that I intended to use but have
not used before. Plenty of learning had to be done for this project as will be

demonstrated.
2.2.1 Learning REDUCE

The REDUCE source files were obtained from SourceForge. Time was spent
in learning about the REDUCE algebra system, in particular, about its
algebra capabilities, the semantics and syntax of its input, the nature of its
output and the various flags and control parameters that can be used to alter
its behaviour. This learning took place in preparation for building the touch
interface on top of REDUCE which will hide its textual nature. The
REDUCE User’s Manual [1] proved very useful at this stage.

One convenient feature of the REDUCE algebra system is a flag fancy
which, if set, causes the algebra system to generate all its output in LaTeX

notation.

1: on fancy;

2: sin(pi/4);
latex:\blackS\displaystyle MNfrac{\sgrt{2}}2%
3:

Figure 4: The "on fancy" command switches on the fancy flag which causes REDUCE
to generate all output in LaTeX

This feature is available for exactly the reason that I will use it for; to allow
developers to extend REDUCE’s textual interface and change the output
from text mode into natural math notation. The CSL Lisp system’ (which is
similar to JLisp but implemented in C++ instead of Java) makes use of this

feature and displays output in natural math notation.

S5: int(ws,x): % integrate the result

Im

6: sin{(pi/f4);

i

Figure 5: The interface of REDUCE running under the CSL Lisp system on the PC.
2.2.2 Learning JLisp

JLisp is key to porting REDUCE to Android, as pointed out in section 1.5 in
the introduction.

One thing to consider about JLisp is that it was created in 1998 long before
Android existed. Therefore it is not compatible with Android and it uses API
that is not available on the Android for GUI and reading and writing to files.
For this project T will make JLisp compatible with Android, and to prepare
for that I had to understand JLisp by asking Dr. Norman himself and by

reading his research paper on JLisp [2].

5 http:/ /reduce-algebra.svn.sourceforge.net /svnroot /reduce-algebra/trunk/csl/

8

2.2.3 Learning LaTeX

Even though I never used LaTeX before, this project requires that I learn two
distinct aspects of LaTeX:

1. The LaTeX semantics
This project involves creating a LaTeX parser to parse the output from
REDUCE. Building such a parser requires accurate understanding of the

LaTeX semantics for formulae construction.

LaTeX string Parse tree
Script
x~2 1
- E‘Symbcl {xﬂ E‘Symbcl {lﬂ E‘Symbcl {2_}]
Fraction

\frac{\sqgrt{y}}3

Delimiter (paren)

\left (1-z\right) Sequence

[symbor(1)] [op(-) | [symwol(z)]

Table 1: Examples of LaTeX strings transformed into parse trees

2. How LaTeX typesets formulae
One of the project requirements is to build a math typesetting library. To
build such a library, I had to learn how this was done before so as not to

reinvent the wheel.

Parse tree Fancy formula
Script 2
ESymbr:nl{xﬂ Esj,rmbr:l{lﬂ E‘Symbcl{.?_}] X1

Fraction

“[3

Delimiter (paren)

Sequence (1 _'Z)

[symbor(1)] [op () | [symbol (z)]

Table 2: Examples of how parse trees are typsetted into readible formulae

Since LaTeX formulae are generally considered to be amongst the most
beautiful. T decided to make the output of my math typesetting library as
close as possible to LaTeX typesetting, and to do that I had to learn how
LaTeX typesets formulae by reading the relevant chapters from the TeXbook
[3].

As the learning has revealed, LaTeX treats every formula as a tree of nested

boxes so that each box may contain boxes inside it.

Sqr 3 'Y ~ .
Svibol Box Sqrt Box Script Box

—b+ /b2 — 4ac IZ> 6 = /%~ dac
2a N\

Fraction Rox Sequence Dox

Figure 6: Illustration of how a formula can be treated as a tree of boxes

Every box has a width, a height, an axis, and a depth, where height = axis
+ depth.

_;'L.“Ci:'-

Height 7
Depth

Width

Figure 7: Tllustration of the width, height, axis and depth properties

10

I also learned how every box in the formula is assigned a style. There are 8
different styles in LaTeX:

1. Display
2. Text
3. Script

4. Scriptscript

And a cramped version of every one of these (e.g. cramped script).

The style of a box controls its font size and the internal layout of its contents.
LaTeX allows the user to override the style of a certain box. For example, the
user can override the style to display using the LaTeX command
\displaystyle.

The styles are assigned to boxes according to a fixed set of rules and tables
which I had to learn during the preparation phase and later implement in my

math typesetting library. Here is an example table:

If VX is in style... | Then X is in style...
display cramped display
cramped display cramped display

text cramped text
cramped text cramped text

script cramped script
cramped script cramped script
scriptscript cramped scriptscript
cramped scriptscript | cramped scriptscript

Table 3: showing the relationship between the style of the squareroot box and the style
of its body

The learning also revealed that LaTeX defines for every character, a set of
dimension properties in order to position the character correctly relative to

other characters within a formula. These properties are:

1. Bounding height, which is the height of the character.

2. Axis height, the axis lines of the characters aligned when they are
positioned next to one another in a string.

3. Bounding width: the width of the character.

4. Advancing width: the width which the character occupies when in a
string (notice that advancing width > bounding width)

5. Italic correction: (in the context of formula typesetting) specifies how
much the superscript of this character should be shifted. For example f
has a larger italic correction than a. The superscript of f need to be
shifted to the right to make it look better.

11

Axis height

Bounding height

Advancing width Italic correction

Bounding width
Figure 8: The properties that LaTeX assigns to every character
2.2.4 Learning the Computer Modern fonts

LaTeX typesets a single formula from a family of fonts called the Computer
Modern family. T had to study these fonts and learn how to use them on
Android..

2.2.5 Learning about formula fitting

I researched and gathered ideas on how to approach the problem of math
formulae when they do not fit on the narrow screen. I think the paper by

Michael Downes titled “Breaking Equations” [4] to be quite useful.
2.2.6 Learning Android

Being completely new to Android development and Android all together, I
had to spend some preparation time learning the Android mind set and API.
The online developer guide [5] from Google is an excellent introduction to
Android development. I also learned a lot from a video course on Pluralsight’
titled “Introduction to Android development” [6].

One of the things I had to learn is how to use font files on Android. This was
essential for creating the math typesetting library. I also had to learn how to

build an Android Ul composed of activities’ or screens.

% http://www.pluralsight-training.net/
" http://developer.android.com/guide/topics/fundamentals/activities.html

12

2.3 Designing the architecture

After the learning stage, I laid down a plan for the application architecture.
This plan will be described with references to Figure 8 below. Understanding

this plan will help the reader understand chapter 3 on implementation.

REDUCE

)l\

(6) Translate
to REDUCE

(7) Parse LaTeX {2) REDUCible tree

7T
(3} J
Translate to
| box tree

(4) Box tree {1) User input

(5) Draw on
the screen

\)

User interface

Figure 8: The code architecture plan

I will be building the components between REDUCE and the user interface.
The user types a formula for input (1), as the user types the input, the user is
in reality sending commands for building a structure called the REDUCible
tree (2), this tree is a logical representation for the formula that the user is
typing. While the user is typing the formula and building the REDUCible tree,
this tree is constantly translated into a box tree (3) (4), which can draw itself
on the screen (5), this allows the user to see the input formula while typing it.
After the user finishes typing the formula and taps enter, the formula is
translated to the REDUCE language (6) and sent to REDUCE which
processes it and prints the output in LaTeX. A special parser parses that

13

LaTeX (7) into a box tree (4) which again can draw itself on the screen (5) in

order for the user to see the output.

This clean layered architecture provides separation of concern and allows easy
development of each part separately. For example, the REDUCible tree does
not know anything about the user input and the box tree does not know
anything about the REDUCible tree and so on.

2.4 The development process

During the project development I will aim to follow the agile development
principles published in the agile manifesto in 2001 [7]. The principles relevant
to this project are:

e Deliver working software frequently.

e Working software is the primary measure of progress.

e Continuous attention to technical excellence and good design enhances
agility.

e Simplicity is essential.

To follow the 1st principle above, I employed aspects of the SCRUM model
described in the Book “Agile software development with Scrum” [8]. The
project code was designed to be incremental such that after every development
sprint (2 weeks), the code was in a deliverable state and could be released as a
product. For example, in the first sprint, the core of the math typesetting
library will be completed (which will be a deliverable product on its own), and
in the second sprint, the math typesetting library will be expanded to include
everything needed for the application, again a deliverable product, and so on.

To follow the 2nd principle I was constantly using the application on my phone
in my daily work, to make sure that it is robust and that it works in real life.
And also to help me prioritize the features that need to be added and the bugs
that need to be removed.

The last two principles were followed through care and understanding that
complicated, tightly coupled code and quick “hacks” can only lead to
complications in the long run. Everything should be part of a well thought
plan.

14

2.5 Summary

This chapter:

e Listed the 3 requirements of the project.

e [Explained in detail all the knowledge that had to be learned before
proceeding to the implementation stage.

e Described the layered architecture and the agile model that will be

employed during development.

15

Chapter 3 Implementation

In this chapter I will briefly explain how REDUCE was ported to Android and
then I will describe how the following components of the application were

implemented:

The math typesetting library, aka, the formula boxes.

The formula fitting algorithm that can fit formulae on the small screen.
The REDUCiDble classes.

The LaTeX parser.

And the user interface.

AN e

3.1 Porting REDUCE CAS to Android
3.1.1 The REDUCE and JLisp sources

The REDUCE source files were obtained from SourceForge®. They include the
algebra core of REDUCE which is written in LISP, as well as some lisp
systems to support the core. One lisp system, JLisp?, was of special interest
to this project because it was one that was written in Java.

JLisp is capable of compiling the LISP core of REDUCE into a binary file
reduce. img, and also capable of executing reduce.img with custom input
and output streams. JLisp also features a Swing GUI for input and output.
JLisp is 27K lines of code written with text editors. And for this project, I

modified JLisp so that it can run inside an Android project in Eclipse.
3.1.2 Porting JLisp to the Android environment

JLisp often uses libraries that are not available on Android such as Java
Swing, it also performs actions which are not allowed on Android such as
opening files directly using FileInputStream. All such cases were tracked
down and modified or deleted. In particular:

1. All the Swing code (2K lines) was found and deleted.

® http://reduce-algebra.svn.sourceforge.net/svnroot /reduce-algebra/
? http://reduce-algebra.svn.sourceforge.net /svnroot /reduce-algebra/trunk /jlisp/

17

2. The code that reads the reduce. img file directly was rewritten to use

Android’s AssetManager, like this:

AssetManager mgr = context.getAssets();
final InputStream reduceImgStream = mgr.open("reduce.img");

3.2 Implementing the formula boxes
3.2.1 What are the formula boxes?

In a nutshell, the formula boxes like FractionBox and SgrtBox are the
classes that perform the math typesetting. They comprise the math typesetting
library which is one of the requirements for this project. They work by building

a tree of boxes to represent a formula, for example:

i

SgrtBox (ScriptBox (SymbolBox (“b”) , SymbolBox (“2”)))
Every Box object in the tree is responsible for:

1. Calculating its own dimensions (width, height and axis) based on the
dimensions of its children and providing this information to its parent.

2. Calculating and setting the coordinates of its children based on the
LaTeX layout rules. And also drawing any characters that it may

contain.

This code snippet illustrates how to typeset the fraction % using a tree of boxes:

Box numerator, denominator, fraction;

// step 1: construct the tree of boxes

fraction = new FractionBox(
numerator = new SymbolBox("1"),
denominator = new SymbolBox("2"));

// step 2: pass a Graphics implementation
fraction.setGraphics(new MyGraphics());

// step 3: call “onDraw” on all boxes, parents before children
fraction.onDraw();

numerator.onDraw();

denominator.onDraw();

18

First a tree of boxes is constructed, then an implementation of the Graphics
interface is passed to the tree (section 3.2.2 talks about this in detail). This
interface is used by the boxes to perform the drawing. Then, when the onDraw

method is called on the tree, the formula represented by the tree is typesetted.

Depending on the custom implementation of Graphics in the previous code

example, it may typeset é on anything, for example, a GIF image. My

implementation AndroidGraphics typesets the formula on an Android

layout object and looks like this on the Android screen:

1

2

Figure 9: One half rendered by the formula boxes

3.2.2 The Graphics interface

This interface is used by the boxes to do the drawing. It contains mainly low
level methods that draw characters or lines. Fxample methods in that interface

are:

1. void drawChar(char c, Font font, int fontNumber, float fontSize, float
startX, float startY);

2. void drawlLine(float lineThickness, float startX, float startY, float
stopX, float stopY);

For example, method number 2 above is used by the boxes to draw the fraction

bar, the square root horizontal bar etc...

The Graphics interface is also responsible for supplying size information about

characters. For example:

1. float boundingHeight(char c, Font font, int fontNumber, float fontSize);
2. float advancingWidth(char c, Font font, int fontNumber, float fontSize);
3. float boundingWidth(char c, Font font, int fontNumber, float fontSize);

See section 2.2.3 for an explanation of bounding height, advancing width and

bounding width.

19

3.2.3 Implementing the base class Box

The base class for all the box types is called Box. It is an abstract class and it
contains the information and behaviour that is common to all boxes. It contains

for example:

A field for the font size.
A field for the LaTeX style (display, text, script etc...).

Fields for the box coordinates (explained in section 3.2.5).

Ll e

A reference to the supplied Graphics implementation.

The Box base class also defines abstract methods, leaving their implementation

to the subtypes that inherit from it. For example:

1. width (), height () and axis (), these methods are self-explanatory
(see section 2.3.3).

2. squash () and split (), related to formula fitting (see section 3.3).
3.2.4 The subtypes of Box and one example

Each subtype of Box represents a formula construct, for example
FractionBox represents a fraction with a numerator and a denominator. I
implemented a range of Box subtypes that cover all the basics, these include::
SymbolBox, SpaceBox, SequenceBox, FractionBox, SqrtBox,
DelimiterBox, ScriptBox, MultilineBox and MatrixBox.

In this subsection I take one of the simplest subtypes above, SequenceBox, as
a practical example and work through its implementation. SequenceBox is
one of the most used box types, it can have a variable number of children and
it simply arranges them one after the other in a horizontal sequence such that
their axis lines are aligned. For example, the symbols in this formula:

11 + 2 = 13 are stacked next to one another inside a SequenceBox.
SequenceBox Children

\ /[\ Axis line

Figure 11: SequenceBox, arranges the children in a sequence such that their axis lines
are aligned

20

To implement the SequenceBox, the constructor is implemented first. The
SequenceBox constructor takes a variable number of children as arguments,
stores them in a field and sets their style according to the LaTeX rules. In the
case of the SequenceBox, the style of the children is the same as the style of

their parent.
public class SequenceBox extends Box {

Box[] children = new Box[@]; // child boxes

public SequenceBox(Box... children) {
if(children != null) this.children = children;
setChildrenStyle();

}

@Override
public void setChildrenStyle() {
for(Box box : this.children)
box.setStyle(style); // “style” field is inherited

}
After the constructor, the dimension methods (width, height and axis) are
implemented.
Width
]jkxin
Height

Figure 12: Width, height and axis of a SequenceBox

The width of the SequenceBox is simply the sum of the widths of its
children:

@Override
public float width() {
// the sum of all the widths in the sequence
float width = of;
for(Box box : this.children) {
width += box.width();

}

return width;

}

The axis of a box is defined as the distance between the roof of the box and its
axis line. From Figure 12: Width, height and axis of a SequenceBox, we can see
that the axis of a SequenceBox is equal to the maximum axis of any of its
children (The middle child in the figure):

21

@Override
public float axis() {
// the largest axis of any child
float maxAxis = of;
for(Box box : this.children) {
maxAxis = Math.max(maxAxis, box.axis());

}

return maxAxis;

}

Finally the height of the SequenceBox is the maximum axis of any child +
the maximum depth of any child:
@Override

public float height() {
float maximumAxis = this.axis();

// the largest depth of any child
float maximumDepth = 0;
for(Box box : this.children) {
maximumDepth = Math.max(maximumDepth, box.depth());

}

return maximumAxis + maximumDepth;

}

Other Box subtypes such as ScriptBox have more complicated layout rules
than those of SequenceBox. All the box subtypes are listed and explained in
appendix A.

3.2.5 The onDraw () method

Calling the method onDraw on the box tree triggers a long sequence of
operations. It first calculates the absolute coordinates of every box in the tree,
starting from the root all the way to the leaves. And then draws every box
according to those absolute coordinates. After onDraw returns, there should be
a formula displayed to the user on the screen.

22

3.3 Implementing the formula-fitting algorithm

Since the formulae will be displayed on a phone screen, I devised and
implemented an algorithm to deal with the common situation of having a

formula that does not fit inside the boundaries of the screen.

public static Box fitWithin(Box formula, float maxWidth)

This algorithm takes 2 arguments. One argument is a formula (represented by a
box tree) and the other argument is a maxWidth value. The algorithm

attempts to return a new formula that:

1. Looks as nice as possible.
2. Has the same meaning to a human reader as the original.
3. And has a width which is < maxWidth.

The algorithm tries to slim the formula down in multiple steps, and after every
step, the algorithm checks if the formula width has fallen below the maxWwidth
and if so will stop there and return the result or else it will proceed to the next
step. Every step is more effective than the step before but produces a result
which is less beautiful and less readable. This section will use the formula below
as a running example to illustrate how the implementation of each one of these
steps work, and the reader will see that by the 6™ step, the algorithm is able to
fit this entire formula in less than a centimetre width.

.
2 st
‘

e .
E+ — | 9(z) = -V2y(z) + m?y(z)
r

Figure 11: A running example for formula fitting, this figure and all the following

figures of this formula were captured from the real application

3.3.1 Step 1: Squash the formula

Unnecessary margins

A
r) -|—‘m:

Figure 14: These margins can be removed to make the formula smaller

23

Many formulae contain empty horizontal margins and spaces that are put there
only for aesthetic purposes. If the formula is only slightly wider than
maxWidth, it may be sufficient to squash those empty margins. The algorithm
first asks the box tree (i.e. the formula): How much margin in total, d, can you
afford to lose?

float d = box.getSquashingDistance(); // recursive method

Then the algorithm calculates a value between 0 and 1 called the
squashingFactor which is the fraction of d that should remain, in order

for the formula to have a width of exactly maxWwidth.

float squashingingFactor = Math.max(0, 1-((boxWidth-maxWidth) / d));

Here is a visualization to help understand the previous line of code:

boxWidtl
maxWidth

o

. 7 :
Formula Mm‘ginﬁ T

|
[}

Margins to remove

Figure 12: A diagram to help understand how squashingFactor is calculated

After the squashingFactor is calculated, it is passed to the formula and the
formula multiplies each one of its margins by this value.

box = box.squash(squashingingFactor);

Here is the result if the margins are completely removed (squashingFactor
= 0):

2
2 —_

E+e7 (@) =—V2(z) +m2(z)

Figure 16: The example formula after removing all the margins

24

3.3.2 Steps 2-5: Break the formula into multiple lines

If removing margins is not enough to fit the formula, the algorithm proceeds to
the next 4 steps: breaking the formula into multiple lines with 4 increasing
levels of aggression (These will be explained shortly). The algorithm uses 4
levels of aggression: easy, medium, hard and nightmare. In order to break
the formula into lines, the algorithm splits the formula first into the smallest
possible pieces or words. Then, it arranges those pieces in multiple lines using

a word-wrap algorithm.

Box[] pieces = box.split(Level.easy);

The method split is recursive and every subtype of Box has a special
implementation of split. This method performs the splitting into pieces.

Splitting the boxes into pieces depends on the specified level of aggression:

1. Level easy: the boxes are only split around operators and relation symbols
that are top level and outside any brackets, fractions or square roots. In our

running example, the formula is split into five pieces as illustrated below:

9\ 2

e P ‘ '
B+— | $(@)=-V2$(@)+m>y()

Figure 17: Splitting in level easy

Notice that no splitting occurs around the + operator inside the brackets. This
level of aggression will be sufficient as long as maxWidth is larger than the
width of the widest piece (the leftmost piece in the example). The algorithm
takes those five pieces and arranges them into multiple lines using a word-wrap

algorithm. So 2 lines if maxWidth was spacious enough:

s') 2

2
E4+— | ¢¥(x)=
,‘,‘.
—Vglz,.-b(x)—{—772.2'1_,.-'9(:1:)

Figure 18: When level easy is sufficient to fit the formula

25

Or more lines if maxWidth was smaller:
62 :
E4+— | (=)
Ir'.

=—V*)()

+m*y(x)

Figure 19: When maxValue is smaller but level easy is still sufficient to fit the formula

2. Level medium: is similar to easy but splits inside brackets too, making 7

pieces in total:

9\ 2

BH— | v(=)

— V(@) +m*y(z)

Figure 20: splitting in level medium

And then applying the word wrap algorithm yields:

E+

2
62

= ()

e 2
=—V*¢Y(z)
2
+m“y ()
Figure 21: formula fitting when level medium is sufficient to fit the formula

26

The result is less appealing than level easy. But the reward is that the formula

can fit inside a smaller width.

2
3. Level hard turns fractions 67 into slashes (e2)/(r), expands square roots
Vx + 1 into v (x + 1) and then splits inside those too. It turns out that in
the example formula, level hard is not an improvement over level medium as

there are still 7 pieces, and one of them has become wider:

(ErHe?/ r)*Y(z)=— V3 p(z)+m>Y(z)

Figure 22: Splitting in level hard

4. Level nightmare, splits around every symbol, which for the example

formula makes 22 pieces

(Ere?/|r) 2ro(e)=—V 2ri()+-m ()

Figure 23: Splitting in level nightmare

Given unrealistically small maxWidth values, the result would look like this:
2
(E+e*/

&

r)“Y(x

)=V

Y(z)+
2,/

m=(x)

Figure 13: formula fitting under a very small maxWidth

27

Figure 14: formula fitting under an unrealistically small maxWidth (the picture is

cropped)

The word-wrap algorithm that arranges the pieces into lines is called Knuth-

Plass and is explained in detail in appendix B.
3.3.3 Step 6: Make the font smaller

It is unlikely that the formula fitting algorithm will reach this step, but if all
the previous steps fail to fit the formula within maxWidth, the last resort is to

28

reduce the font size until either the formula fits or the minimum specified font
size for the boxes is reached. For our running example, see Figure 26 below, the
whole formula now fits in less than a centimeter width, as promised.

¥
m=

Figure 26: The example formula after all fitting techniques were exhausted (The picture

is cropped)

3.4 Implementing the REDUCIible classes
3.4.1 What are the REDUCible classes?

A tree of REDUCIible classes is a representation of an algebraic expression, for

example:

Sequence (Fraction (Sequence (Symbol (“1”)), Sequence (Symbol (“2”))))

Represents a fraction of %, where Fraction and Symbol are REDUCible
classes. The REDUCible tree has the property that the root is a Sequence
object and every other level will be composed solely of Sequence objects in

order to support navigation. Section 3.4.4 will explain this in detail.

The difference between a REDUCible tree and a box tree is that the
REDUCible tree represents the meaning of a formula while a box tree

represents just the visual shape of a formula.
3.4.2 The function of the REDUCible classes

When the user inputs a formula through the screen keyboard, the user is in
reality building a REDUCible tree behind the scene. When the user navigates
the pointer around the formula using the left and right arrows, the user is in
reality navigating through the REDUCible tree. Every time the user changes
the formula by hitting a key, the REDUCible tree is translated into a box

tree and this new box tree is drawn on the screen in the place of the old one so

29

that the changes are reflected to the user. When the user finishes typing the
formula and taps enter, the REDUCible tree is translated to a string in the
REDUCE language and sent to REDUCE for processing (hence the name
REDUCible). Therefore, REDUCible trees should support all the following:

Easy construction.
Navigation.

Translation to box trees.
Translation to REDUCE.

Ll

3.4.3 Constructing a REDUCible tree

I implemented a class called ExpressionBuilder which provides methods
for constructing a REDUCible tree. Most buttons on the interface keyboard are
hooked to methods in an instance of this class. The following code
demonstrates how to build 1 + v/x using the ExpressionBuilder:
ExpressionBuilder builder = new ExpressionBuilder();
builder.appendSymbol("1");
builder.appendSymbol(S.plus);
builder.appendSqrt();

builder.appendSymbol(S.x);
builder.moveCursorToTheRight(); // explained in the next subsection

After this code, builder holds internally a REDUCible tree representing
1 + +/x, and storing the position of the cursor at the far right.

14/l

Figure 27: The REDUCible tree constructed by the code above

3.4.4 Navigating through the REDUCible tree

The most important aspect of a REDUCible tree is that it was designed to
support left and right navigation to random locations in the tree and
insertion of items at those random locations. An essential building block of a
REDUCible tree is the so-called Sequence. A Sequence is an object that
stores a list of REDUCible objects inside it. Each one of these REDUCible
objects can either be a leaf, or a node storing a collection of more Sequence
objects and so forth. Therefore, the REDUCible tree has the property that
the root of the tree is a Sequence object, and then the levels of the tree

30

alternate between being composed solely of Sequence objects and being
composed of REDUCible objects such as Symbol and Sgrt.

fecelfieljiee

O REDUCible object

Sequence object

Figure 16: General structure of a REDUCible tree

The following figure is the REDUCible tree representation of 1 + /x

(DO (H— sazt
[

Symbol _——— Symbol

Figure 29: The REDUCible tree representation of 1 + Vx

31

The reason behind this structure is that it makes navigation easy. In order to

support navigation:

1.

Every Sequence in the tree stores an integer value ranging between 0
and n where n is the number of children in that Sequence. This value
represents the cursor position in the Sequence, so every Sequence
has one cursor and n+1 cursor positions.

eI
-
Cursor positions i®|

Figure 30: All the cursor positions in the REDUCible tree

Only one Sequence in the REDUCible tree holds the focus. The
cursor of that Sequence is the only visible cursor and the cursors of
all other Sequences are hidden.

Every Sequence object stores a reference to two other Sequence
objects called 1left and right. left and right are the Sequence
objects that take over the navigation when the cursor hits the left end
and right end respectively of the Sequence object which is referencing
them. For example in a Fraction'?, the numerator Sequence
references the denominator Sequence as its right Sequence so that
when the user finishes typing the numerator and clicks the right arrow
button, the focus goes to the denominator Sequence. Also the
opposite is true, the denominator Sequence references the numerator
as its left Sequence. The root Sequence of any REDUCible tree
always has a null 1eft and a null right.

' Another REDUCible object

32

Figure 17: Showing the left and right references in red

The navigation algorithm moves the curser to the left or to the right; the
algorithm is symmetrical in both directions. To navigate the cursor one
position to the right say, the algorithm asks the Sequence that is holding
the focus (I will call it this Sequence) to navigate to the right. This

Sequence runs one of the following cases:

1. If the cursor is not at the rightmost of this Sequence and the
REDUCible object after the cursor is not a leaf (Contains more
Sequence objects), then this Sequence marks itself as a parent, loses
the focus, and gives the focus to the first Sequence in that
REDUCible object.

In the figure below, the Sequence on the top initially holds the focus, the
red bar I is the visible cursor. The Sequence at the top marks itself as

parent and gives the focus to the Sequence at the.

OO . O
[L)
©) I©

2. If the cursor is not at the rightmost of this Sequence and the
REDUCible object after the cursor is a leaf, then move the cursor of

this Sequence one position to the right.

In the figure below, the Sequence at the bottom holds the focus and its
cursor is followed by a Symbol object which is a leaf. Therefore the cursor is

simply moved to the right.

33

OOIV) OOV
»]
© ©

3. If the cursor is at the rightmost of this Sequence, and this Sequence
is not the root of the REDUCible tree (right != null) then this
Sequence loses the focus and the right Sequence gains the focus, if
the right Sequence is marked as parent then also unmark it and

move its cursor one position to the right.

In the figure below, the bottom Sequence refers to the Sequence above as
its right Sequence. Since the cursor of the Sequence below cannot move
any further to the right, the focus is handed to the Sequence above. Since

the Sequence above is parent, it moves its cursor one position to the right.

006G OO)
D)]

) G

4. TIf the cursor is at the rightmost of this Sequence, and this Sequence
is the root of the REDUCible tree (right == null), then do nothing

and the focus remains with this Sequence.

In the figure below, the focused cursor cannot move any further to the right,

and there is no right Sequence to hand the focus to. So nothing happens.

nul% null null null

OO) OO)
© Gl

34

The four cases of the navigation algorithm would appear like this to the user:

1+ [0 [1+e | @ | 1+ | o | 1+/]| @ | 1+/z]

Figure 32: The navigation algorithm at work as the user navigates to the right 4 times
3.4.5 Translating the REDUCible tree to REDUCE

The REDUCible tree is at the end a representation of the user’s input. When
the user finishes typing the input and taps the enter button, this tree is
translated to the input language of REDUCE and sent to REDUCE for
processing. For example The REDUCible tree of 1++/x is translated to
“l+sgrt(x)”.

Every REDUCible class implements a recursive method called toReduce ()
which returns the REDUCE representation of that object. Here is the

implementation in Sqrt:
public class Sqrt extends WrapperExpression {

// The body of the square root
private Sequence body;

@Override
protected String toReduce() {

return String.format("sqrt(%s)", body.toReduce());
}

3.4.6 Translating the REDUCible tree into a box tree

While the user is typing and constructing the REDUCible tree, the user
should be able to actually see the thing being typed. This is done by
translating the REDUCible tree into a box tree and displaying the box tree to
the user every time the user changes the tree. REDUCible classes implement
a method toDrawable () which does that:

public class Sqrt extends WrapperExpression {

// The body of the square root
private Sequence body;

@Override
public Box toDrawable() {
return new SqrtBox(body.toDrawable());

}

35

After constructing the REDUCible tree of 1 + Vx, calling toDrawable () on

the root converts the tree recursively into a box tree that looks to the user

14/

like the figure below.

3.5 Implementing the LaTeX parser

After REDUCE processes the input, it returns the result in the form of a
LaTeX string. I implemented a parser that can parse the LaTeX into a tree of
boxes, to make it possible to display the result to the user:

String 1lineOfTeX = "\\frac{x*2}\\mathrm{12}";

TexParser parser = new TexParser(lineOfTeX);
Box boxTree = parser.parse();

To implement this parser I received permission from Dr. Arthur Norman to
take his C++ implementation of a LaTeX parser (which he wrote in 2004 as
part of the CSL LISP system'') and translate that into Java. This changed the
task of implementing a LaTeX parser into a task of understanding and
translating 3K lines of C++ into Java. C++ has some features that were tricky
to translate such as pointers to functions and bit fields, there were also
problems springing up from the fact that Dr. Norman’s parser is designed to

generate parse trees that are radically different from my box trees.

3.6 Building the user interface

The interface of my application is just a single Android screen (called
Activity"” in the Android terminology). The screen is vertically divided into

two areas

1. The math keyboard area which has a fixed height.
2. The input/output display area which occupies the remainder of the

screen.

3.6.1 The math keyboard

" http://reduce-algebra.svn.sourceforge.net /svnroot /reduce-algebra/trunk/csl/
2 http://developer.android.com/guide/topics/fundamentals/activities.html

36

Figure 18: The math keyboard of the app

Given the small area of the phone screen, I can only fit 45 buttons (5 by 9) on
the keyboard if the buttons are not to become too small. However the
application has over 80 buttons, and should take into account that the
number of buttons may increase in the future. To fit that many buttons, the

keyboard is divided into three areas: fixed, variable and control areas.

Control Variable Fixed

The fixed area occupies 5 by 5 cells of the keyboard grid and contains 22 of the
most commonly used buttons. This area does not change at any time. The
variable area on the other hand contains several grids of 5 by 3 buttons
stacked one on top of the other and only one grid is visible at any given
time. The buttons in the control area control which grid is visible in the

variable area.

For example this is what happens when the button labelled Var is clicked:
37

Figure 34: Tapping the Var button

This arrangement allows up to 97 buttons + 5 control buttons to fit in the

keyboard area.

3.6.2 The input/output display area

[tan(z/y)*.dz

tan| — |y —x
Y

mll}n#y(ans)

Figure 19: The input/output display area

This area of the screen displays the input and output to the user. It is occupied
by an Android LinearLayout®®, which is an object that can display a vertical

'* http://developer.android.com/reference/android /widget /LinearLayout.html
38

list of things. The LinearLayout displays an alternation of InputvView and
OutputView which are two custom layout objects that I implemented for the
purpose of displaying input and output to the user. Inside every InputView

and every OutputView is an AndroidGraphics object displaying a single

formula.
- . -
[tan(z/y)~ .d;z:‘ InputView
Androlderaphics tan| — |y — x| OutputView
Y
LinearLayout — lim (‘c‘l-llS) InputView
rT—r Y

—TY OutputView

|[| InputView

Figure 20: Labeling all the layouts in the input/output display area

See appendix C, for more screenshots of the user interface.

3.7 Summary

This chapter:

e Briefly explained how REDUCE was ported to Android

e [Explained the implementation of the math typesetting library (i.e. the
box trees).

e Described how the formula fitting algorithm works.

e Explained in detail the concept of the REDUCible trees and how they
support construction, navigation and how they are translated into box
trees or into the REDUCE language.

e Mentioned briefly how the LaTeX parser was created.

e Described the layout of the user interface.

39

Chapter 4 Evaluation

In this chapter, I will demonstrate that my work was not only successful in
satisfying all the requirements, but that it was high in quality both from a

programmer’s and from a user’s point of view.

4.1 Evaluating the code architecture

4.1.1 Organized code

The source code of this application (more than 11K lines + the modified JLisp)
is organized in 7 Java packages and around 70 source files. The DRY principle
was applied and every piece of code that is used in several places was moved to
a commonly accessible place (typically a base class) and used from there. For
example the base class Box contains over 500 lines of code that are used by the
15 Box subtypes. Also things that are related together are grouped together in
one file. For example, there are over 100 LaTeX constants associated with the
formula layout rules. These constants determine things like the minimum
distance between the numerator and the fraction bar or the default height
between the superscript and the base axis lines etc. All these constants are

grouped together in one file C. java.

public static final fleat minimum_font_size = 14.0080f;
public static final fleat box over box_margin_factor = 08.7580f;
public static final fleat bar thickness_factor = 00.e480ef;
public static final fleat minimum_display_sqrt_top margin_factor = 08.3080ef;
public static final fleat minimum_nondisplay sqrt_top_margin_factor = 0e.1leeef;
public static final fleat minimum_display_sqrt_bottom_margin_factor = 09.e00ef;
public static final fleat minimum _nondisplay sqrt_bottom margin_factor = 98.e800T;
public static final fleat sgrt_bar_nondisplay_thinning_factor = 08.3eeef;
public static final float script _box right_margin = 08.8580ef;
public static final fleat overunder script_base_margin_factor = 08.1886f;
public static final fleat base_superscript_margin_factor = 08.9580f;
public static final fleoat superscript_axis_display elevation_factor = 09.6580f;
public static final fleat superscript_axis_text elevation_factor = B88.5525F;
public static final float superscript_axis_cramped_elevation_factor = 08.4756f;
public static final fleat minimum_superscript_elevation_factor = 08.15808f;
public static final fleat maximum_bracket_shortfall_factor = 08.158ef;
public static final fleat normal_display superscriptAxis_baseAxis_distance_factor = 88.3380ef;
public static final float maximum_display_superscriptfloor baseAxis_distance_factor = 0e.1leeef;
public static final float maximum_display_superscriptAxis_baseRoof_distance factor = 08.1e8ef;
public static final fleat normal_display subscriptAxis baselxis_distance factor = 88.3100f;
public static final fleoat maximum_display subscriptRoof baseAxis_distance_ factor = 08.1eeef;
public static final fleoat maximum_display subscriptAxis_baseFloor_distance factor = 0e.1leeef;
public static final fleat minimum display subscript superscript _margin_factor = 08.1080ef;
public static final fleat normal_text_superscriptAxis_baseAxis_distance_factor = 88.3725f;
public static final fleoat maximum_text_superscriptFloor baseAxis_distance_factor = 09.1e8ef;
public static final fleat maximum text superscriptAxis baseRoof distance factor = 98.leeef;

| e F 1_.£1 Y I+ 'y L N | a s A - da cd £, £ QR 12790 F

Figure 37: All the LaTeX constants live together in one source file

41

4.1.2 Independence of Android

The Box classes do not reference anything that is specific to Android. They
do all the drawing through the methods of the interface Graphics. The
interface implementation in turn calls the GUI API of Android to show the
drawing to the user. The Box classes perform all the calculations and the
drawing completely unaware which platform they are running on and how the
drawing actually happens. The behaviour can therefore be easily changed
without changing a single line of code in the Box classes, only by re-
implementing the interface Graphics.

To illustrate how this is useful, suppose we want to add a feature to allow the
user to email the formula as a GIF image. This would require that the Box
objects draw themselves to a GIF instead of an Android layout object. All
that is required to do this is implement the interface Graphics to draw to a

GIF instead and inject the new implementation in the Box object.
4.1.3 Documentation

Every important method has been commented with Javadoc, in the
expectation that another programmer may wish to reuse the code in the
future. There are around 1500 lines of Javadoc comments, and these can be

exported into an HI'ML document using the javadoc.exe tool.

| »

All Classes Overview Package @ Use Tree Deprecated Index Help
Packages

PrevClass MNextClass Frames Mo Frames
ukac.cam.aasg2 N " ||| summary: Nested | Field | Constr | Method Detail: Field | Constr | Methed
uk.ac.cam.aag82.interactivity
uk.ac.cam.aa582 reduce uk.ac.cam.aas82 structures. boxes
uk.ac.cam.aas82.structures.boxes B
uk.ac.cam.aas82.structures.reducible Class Box
uk.ac.cam.aa582 structures.tex -
uk.ac.cam.aa582.structures.boxes o Javalang.Object B .

uk.ac.cam.aa582 structures.boxes.OnDrawlistener

Interfaces uk.ac.cam.aag82.structures.boxes.Box

All Implemented Interfaces:

ra,

G,

java.lang.lterable=Box=, OnTouchHandler=Graphics=

m

OnTou

Direct Known Subclasses:

Classes

DielimiterBox, FractionBox, MultilineBox, ScriptBox, SequenceBox,
Box SpaceBox, SgriBox, SymbolBox, TableBox, WrapperBox
BoxlUtil
p | 4
Cm.ex. public abstract class Box
DelimiterBox
Fr?’.il:’[i:ll{ij extends OnDrawlistener
IntegralBox implements CnTouchHandler<Graphics>, java.lang.Iter
targjgpira{orgqx bolB The base class for all the boxes, every formula can be defined as a
r--1artg"B peralorsymoolsox large box which recursively contains small sub-formulae or smaller
HatrixEox boxes. The purpose of the boxes is to draw the formula on the screen.

MultilineBox

=t dicd

This idea is inspired from the TEX type-setting system. Motable

Figure 38: This HTML generated using the Javadoc tool contains all the Javadoc
comments that annotate the code

42

4.2 Evaluating the formula typesetting speed

Box trees are very performance critical. Every time the user hits a key and
changes something in the input formula, a new box tree is generated and
rendered on the screen quickly so that the user can see the change. According
to an influential paper by Robert Miller [9] this visual update should take place
within 100ms of the click for a seamless user experience. This level of

performance was indeed achieved after incorporating two major optimizations.
4.2.1 Multiple layouts vs. a single layout

The first optimization was aimed at lowering memory consumption when
drawing the boxes on the screen. Originally the code used to create an Android
layout object for every box in the tree. The problem with this approach is that
Android layout objects occupy too much memory causing the application used
to run out of stack when it attempted to render a tree of boxes only around 10
levels deep. So the code was changed to create only one layout object for the
entire tree. But every box is allocated a sub area from that layout object
rather than a whole layout object for itself. Changing the code took less than 2
hours thanks to the code organization and maintainability. After this change
my evaluation code was able to create and draw random trees of boxes up to
100 levels deep.

S H_ (D)
20 @)
S0 (D)
Z S () _
D0 iy (@)=C

;.D:D{DJ:

Figure 39: A tree only this deep used to crash the app before it was optimized
4.2.2 Dynamic programming

The second optimization was aimed at speeding up the calculation of the boxes’
dimensions before they are drawn. Many of the methods that calculate
dimensions such as width () take no arguments. These methods recursively
traverse the box tree making multiple calls to themselves each level of the tree'

which makes the procedure exponential in cost, and the drawing very slow.

" This is reminiscent of the implementation of the fib method, which calls itself twice on every
level: fib(n) = fib(n-1) * fib(n-2), and hence takes exponential time.

43

To improve speed, I used the ideas of dynamic programming and traded a lot
computational cost for a little memory cost. For every method that takes 0
arguments, I added a field with the same name as the method such that the
method is only executed once, and its result is stored in that field. Next time
the method is called, it simply returns the stored value in the field without

having to recalculate everything. Take for example, the width () method in

SequenceBox:
Original Optimized
protected float width =
Float.NEGATIVE INFINITY;
@Override @Override

public float width() {

float width = of;

for(Box box : this.children) {
width += box.width();

}

return width;

public float width() {
if(optimize && width >= 0)
return width;

width = of;

for(Box box : this.children) {
width += box.width();

}

return width;

There is a method forget () which is used to clear all the optimization fields
when the box width changes. However, box trees are meant to be mostly
immutable and so calls to forget () happen only once or twice in the lifetime
of a box tree. I optimized 50 methods in the project, and added a global

Boolean field optimize to switch between optimized and not optimized.

Time to draw
Formula
Not optimized Optimized

22 <Ims <Ims

y2\/x 6ms 2ms
2

log(tangx) +1 700ms 6ms
log(t Z+1

;= og(an(ZX) +1) _ yz + \/} 3,000ms 10ms
log(tan(x)? + 1

{u _ 8((2)),v =y2 4 \/E} 29,000ms 12ms

The measurements above were performed by evaluation code on a Galaxy

Nexus handset, there is up to 15ms variance in the numbers, but the differences

44

are so large that this inaccuracy is irrelevant. It is evident now that the

drawing time after the optimization is well below the 100ms benchmark.

4.3 Beauty of the formula typesetting

Beauty is in the eye of the beholder, but this section attempts to assess the
quality of the formulae drawn by the math typesetting library.

4.3.1 Comparison with LaTeX

There is a general consensus that the formulae rendered by LaTeX are very
beautiful and close to perfection. If one types “most beautiful math
typesetting” into the Google search engine, one will discover that half of the
top 20 results are related to LaTeX. Therefore, I tried as much as possible to
approximate LaTeX in my math typesetting library. This gives us a
straightforward way of evaluating the “beauty” of the math typesetting simply
by comparing it side by side with that of LaTeX:

Math typesetting library LaTeX
2 2
xr X
tan| —) +1 tan | — | + 1
Y Y
1 (z—w)? 1 (z—p)*

fo)= e o)= e

b b
T = v.dt T = f v.dt
L (1
—b+ Vb® — dac —b+ Vb2 — dac
€Tr = Tr =

2a 2a

Without the labels, it is difficult to tell which formulae were made by LaTeX.

45

4.4 Evaluating the algebra capabilities
4.4.1 REDUCE capabilities

The algebra features of this application are provided by the REDUCE algebra
system'. This system has grown over more than 40 years and became very
sophisticated to such an extent that it is difficult to list all the functionality
that it can provide. All this functionality is at the disposable of our application,

but only part of it was exposed to the user.
4.4.2 Exposed features

In order not to overwhelm the developer or the user, only a basic subset of the
REDUCE features was exposed. It includes:

e Simple arithmetic (+ - * /)

e Simplification of expressions

e Expression factorization

e Numerous functions (trig, hyperbolic, log, factorial etc...)
e Complex numbers

e Differentiation and integration.

e Big sum and big product

e Limits

e Variable initialization (m := 2)

e Manipulation of polynomial equations

e Solving simultaneous and polynomial equations

e Matrices

Adding more features to this list is easy as they are already available from
REDUCE, in most cases it is only a matter of adding another button, adding
another REDUCible class and connecting the two in an event handler. The list
of features that I have exposed already surpasses the features of all algebra

apps available for Android except for one, as described later in Section 4.8

4.5 Evaluating the usability

It was mentioned in the project proposal that HCI testing will not be feasible.
So evaluating the app usability will be done by listing some of the features that

were not part of the specifications but were implemented to improve usability.

' http://reduce-algebra.com/
46

4.5.1 Wait animation

Figure 24: A small animated circle appears when REDUCE is processing user input

REDUCE can take up to a few seconds to process certain types of inputs (such
as integration with limits). During that time, a wait animation is displayed to

reassure the user that the input is being processed.

4.5.2 Undo and redo

Figure 25: The application keyboard, with the undo and redo buttons highlighted

The undo button gives the opportunity for the user to backtrack when
something unexpected happens. The application maintains an undo stack
where all the actions of the user are recorded, each action alongside its inverse.
When the user taps undo, the last action is popped from the undo stack, its
inverse is executed and then the action is put in the redo stack.

4.5.3 Touch to navigate feature

To navigate the cursor around the formula, the normal way is to use the left
and right buttons in the keyboard. I also implemented a shortcut for navigation
which is to touch the formula where you want the cursor to go. I implemented
this feature unaware how many users expect it naturally to be available. Of all

the people who used this app for the first time and, while typing a formula,
47

reached a point where they needed to move the cursor to a certain position,
most of them touched that position with confidence that this will work, and
continued typing their input.

—b+vb2—4ac |:>

2al

O <Y
—b+vVb?—4dacg —b+vVbad_-4ac
2¢

2a

Figure 26: Touching a formula navigates the cursor to the touched location

4.5.4 Touch to copy feature

cos(3m/2)+25—
cos(3pi/2) + 25 —
(1) ***** \lissing operator

cos(3m/2)+25—

(2) LD [G

Figure 27: (1) the user mistyped the formula (2) but it can be fixed without having to
retype it

48

Another useful feature allows the user to touch a previous formula to copy it
down to the next input area. This is useful when the user entered the first
formula incorrectly because it allows the user to copy the faulty formula and fix

it rather than having to retype it again.
4.5.5 Consistency between REDUCE and the user

The user and REDUCE are interacting with each other through the interface of
this application, this interface is therefore responsible for maintaining a
consistent view between the two which is not trivial. For example when the
user inputs “acos(z)”, the user really means “z multiplied by cos(z)”. It would
be a surprise to the user if REDUCE responded: “would you like to declare
xcos as a new function?”. To avoid such surprises, the translation from the
REDUCIible tree to the REDUCE language (See subsection 3.4.5) was made
more intelligent to know where to explicitly insert a multiplication sign so that
REDUCE is consistent with the user. Another example is when the user inputs
“zl + 3”7, and finds that the answer is “z; + 3” because REDUCE treats every
number following a variable name as a subscript of that name. So again to
maintain a consistent view, the translation from the REDUCible tree to the
box tree (see subsection 3.4.6) was made more intelligent to display “al + 3”

correctly as “z; + 37
4.5.6 Automatic closing of open brackets

REDUCE does not accept input with unclosed brackets, such as “sin (x". So
the translation to REDUCE closes any open brackets. For example if the user
sin(x
cos(x)

this: “sin (x) /cos (x)”.

enters , the translation inserts the missing bracket in the right place like

4.5.7 Empty rectangles for empty sequences

]; [.d] F

49

An empty Sequence object is translated to a SpaceBox with the
borderVisible field set to true. This appears to the user as a little empty

rectangle which acts as a reminder that something should go in this place.

4.6 Room for improvement
4.6.1 Keyboard labels

The buttons of the keyboard are currently labelled in text. This can be
improved by labelling them with icons showing real mathematics instead (e.g. @
instead of pi). However preparing hundreds of icons and changing the buttons is
very time consuming even though not technically difficult.

4.6.2 Remembering the activity state

When the user navigates from one screen (or activity in Android terminology)
to another, all the screens that the user visits are stored in memory so that
when the user returns back to a previous screen, it is found intact. But
occasionally Android decides to kill one of the activities in memory, in which
case when the user returns to that screen, the screen is restarted. Android
mandates that in this case any activity should be able to recall the state at
which the user left it last time and reconstruct itself exactly the way it was.
This is currently not implemented for the main screen of this project because
the underlying state is very complicated, the state must remember the internal
workings of JLisp and REDUCE themselves, and this problem could not be
addressed within the project time frame. At the moment, if Android kills and
then restarts the application it will simply start from scratch and previous

input is not preserved.

4.7 Product stability and known issues

4.7.1 Testing

Most of the code T wrote for the application (such as the math typesetting
library) is GUI centric, and is therefore difficult to unit test automatically. But
the fact that the application runs on my Galaxy Nexus gave me the idea of
testing it in real life by using it in my daily work as mentioned in section 2.4 . I

was able to discover and fix a large number of nontrivial bugs.

50

The final version of the application was verified to work on the following

Android devices, by trying a number of algebra calculations.

1. Galaxy Nexus (Android 4.0)
2. Galaxy Tab (Android 2.3)
3. HTC Desire (Android 2.3)

4.7.2 The stack size concern

There are 2 threads running in this application:

1. The main thread that manages the UL
2. The REDUCE thread which is running REDUCE in the background.

REDUCE in particular consumes plenty of stack. The reason is that tail
recursion is very common in the sources of REDUCE, in the hope that the
LISP system running REDUCE optimizes tail recursion. JLisp does not do it
because tail calls are impossible in Java at the JVM level. The amount of stack
that is consumed by REDUCE is tolerable on the PC but not on Android.
Every thread on Android is only allocated 8KB of stack which is not enough for
REDUCE. For example, sending | 12 x.dx for input caused the application to
crash. To solve this problem, Android allows me to change the stack size of

spawned threads using a constructor parameter stackSize.

public Thread (ThreadGroup group, Runnable runnable, String threadName, long stackSize)

I used this parameter to specify a stack size of 20MB. And it solved the
problem on all Android devices that were used for testing this. The

documentation of stackSize however, remains worrying:

stackSize a stack size for the new Thread. This has a highly platform-dependent
interpretation. It may even be ignored completely.

4.8 Comparison with existing software

In this section, I compare our application with the best algebra applications

available on Google Play.

4.8.1 WolframAlpha

WolframAlpha comes from the same developers of

Mathematica. This android app is marketed as a

knowledge engine. It answers questions not only in

o1

http://developer.android.com/reference/java/lang/ThreadGroup.html
http://developer.android.com/reference/java/lang/Runnable.html
http://developer.android.com/reference/java/lang/String.html

algebra (which is the main focus here), but also in an extravagantly large
number of topics. Over 250 of these topics are listed in the app’s description
page'®! The algebra capabilities of WolframAlpha are without doubt much more
than what our application exposes. And even comparable to what is delivered
by REDUCE itself. However, my application surpasses WolframAlpha in 2
ways:

1. The WolframAlpha app is only a client, and the actual knowledge engine
is a web service. So an Internet connection is required to use it. My
application on the other hand runs entirely on the Android device.

2. WolframAlpha shows the output, but not the input, in true math
notation. While my application shows both the output and the input in
true math notation.

4.8.2 MathScript

il & 7:35

e v
ENIE RN
et e jutoernd
— i —

MathScript is described by its creators as:

“The first application to bring comprehensive mathematics to Android,
and to our knowledge, it is the only such application available”

' http://play.google.com/store/apps/details?id=com.wolfram.android.alpha
02

And this description is correct; no other application on Google Play offers
algebra capabilities similar to what MathScript can do, with the exception of
WolframAlpha. But it was mentioned that WolframAlpha is a web service and
not running on Android. To compare MathScript with my application:

1. MathScript’s algebra capabilities are listed on the app’s website [10] and
they surpass what our application currently exposes.

2. MathScript’s algebra capabilities are less than what is available from
REDUCE. With the exception of the graph plotting feature, which
REDUCE does not have since graph plotting is not generally considered
an algebra feature even though it is nice to have.

3. The interface of MathScript is more colourful than the interface of my
application. Clearly the creators spent more effort on graphics design.

4. MathScript uses natural math notation for both the input and the

output as does my application.
4.8.3 Other applications

All other app available on Google Play can only perform simple algebra, less
than what is exposed by my application, and much less of course than what is

available from REDUCE. This subsection mentions 3 applications:

1. Algebra Calculator Pro

Exponents

Quadratic Equations
Cubic Equations

This application is available for free, and it can do a small range of Algebra.

But it takes input in text fields.

2. Algebraic Calculator

Algebraic Calculator

y=axA2+bx+c

Algebraic Calculator

Y2-Y1)/(X2-X1)

7 Cordinates (X, y)
Point 2 Coordinates (X, y)

Solve!

Large Font

ype: Perfect Square
Equation: Y =1.0X + 2.0
Roots:
0.0
0.0

This application is very similar to Algebra Calculator Pro.

3. Mathlab Graphing calculator

- ([0 2][3 4]]+[[5 6][7 8]l]=

B R s

Success! Now you are ready to

travel through the App Galaxy.

273*3/2-cbrt(8)+cos(1/2)
x1+x2=1

This app shows output (but not input) in true math notation. It is more

specialized in graph plotting and does not have extensive algebra.

o4

4.9 Summary

This chapter:

Evaluated the code architecture and maintainability.

Measured the responsiveness of the application.

Measured the elegance of the math typesetting by comparing it with that
of LaTeX.

Enumerated the algebra features that were exposed through the app
interface, and hinted to how much more is provided from REDUCE.
Mentioned some of the Ul features that were added to improve the user
experience.

Mentioned some of the problems that time did not permit to solve.

And finally compared our application with other algebra software
available from Google Play.

99

Chapter 5 Conclusions

In conclusion, the project was well planned, the implementation process was
streamlined and all the requirements were satisfied with a high quality
product. I extended my knowledge into many new areas and I quite enjoyed
writing the code, especially for the math typesetting library (As described in
section 3.2). The fact that this application offered something new to the
Android platform was a very important motivation.

5.1 Additional work

In the future, the following work would need to be added to improve the

application:

1. Expose more of the features of REDUCE such as programming and

Taylor series expansions.

2. TImproved the graphic design of the interface to make it more
appealing, and label the keyboard buttons with true math symbols
instead of text.

3. Add a preferences activity to allow the user to specify the font size and

theme etc.

4. Provide our application with an intent filter. This will make it
available to other applications on the phone that need its powerful

algebra capabilities.

5.2 Final remark

The application created for this project uses the open source JLisp and
REDUCE, and therefore must remain open source. The application is
available for free on Google Play under the name “Android REDUCE”, and
the source code will be published on SourceForge.com for other developers to

build over the foundation of my work.

o7

References

[1] Anthony C. Hearn. (2004, February) REDUCE Computer Algebra System.
[Online]. www.reduce-algebra.com/docs/reduce.pdf

[2] Arthur C. Norman, "Further Evaluation of Java for symbolic computation,’
in ACM symposium on Symbolic and Algebraic Computation, 2000, pp. 258-
265.

[3] Donald E. Knuth, The TeXbook.: Addison-Wesley, 1984.
[4] Michael Downes, "Breaking equations," in TUGboat, Providence, 1997.
[5] Google. The Developer's Guide. [Online]. developer.android.com/guide/

[6] John Sonmez. (2011, April) Introduction to Android Development. Video.
[Online]. www.pluralsight-training.net/microsoft/Courses

[7] Martin Fowler and Others. (2001, February) Manifesto for Agile Software
Development. [Online|. agilemanifesto.org

[8] Ken Schwaber, Agile software development with Scrum. Upper Saddle River,
NJ: Prentice Hall, 2002.

[9] Robert B. Miller, "Response time in man-computer conversational
transactions," in AFIPS Fuall Joint Computer Conference Vol. 33, 1968, pp.
267-277.

[10] The Think Tanks. MathScript: The complete math solution for Android
Mobiles. [Online]. http://www.touchthinktanks.com

59

60

Appendix A The Box subtypes

In this appendix I list all the Box subtypes. And describe each one of them
briefly.

A.1 SymbolBox

1

This box simply displays a string of characters. The height of the box is the
bounding height of that string, and the width of the box is the advancing
width of the string.

Children: None.

Style of children: Does not have children.

A.2 SpaceBox

This box is just an empty space with a specified width and height. The axis
height is exactly one half the height of the box.

Children: None.

Style of children: Does not have children.

A-1

A.3 SequenceBox

This box arranges its children in a sequence such that their axes align. The axis

line of this box is the same as the aligned axis lines of its children.
Children: 0 or more children.

Style of children: The style of the children is the same as the style of the

parent.

A.4 FractionBox

——
This box arranges its 2 children, numerator and denominator, vertically and
draws a horizontal line between them. The distance between the numerator’s
axis line and the fraction bar is a default distance unless the depth of the
numerator is too big that margin between it and the fraction bar becomes less
than a certain minimum in which case the numerator is positioned according to
that minimum. Same applies for the denominator. The box adds a small margin

to the left and to the right of the fraction. And the axis line of the

FractionBox is aligned with the fraction bar.

Children: 2 children, numerator and denominator.

A-2

Style of children:

FractionBox

Numerator

Denominator

Display

Text

Cramped text

Cramped display

Cramped text

Cramped text

Text

Script

Cramped script

Cramped text

Cramped script

Cramped script

Script

Script script

Cramped script script

Cramped script

Cramped script script

Cramped script script

Script script

Script script

Cramped script script

Cramped script script

Cramped script script

Cramped script script

A.5 SqrtBox

Y

This box surrounds the body with a square root sign. There are several square

root signs of various sizes, and this box picks the smallest sign that can
surround the body. If the body is too large, the sign can be made arbitrarily
large by building a tower of vertical segments. The axis line of the SqrtBox is
aligned with the axis line of the body inside it.

Children: One child, called body.

Style of children:

SqgrtBox

body

Display

Cramped display

Cramped display

Cramped display

Text

Cramped text

Cramped text

Cramped text

Script

Cramped script

Cramped script

Cramped script

Script script

Cramped script script

Cramped script script

Cramped script script

A.6 ScriptBox

This single box can position both the superscript and the subscript of a single
base such that they are not too high, too low or overlapping with each other.

The superscript is placed at the minimum elevation that satisfies the following:

1. The axis line of superscript should be at least X, above the axis line of
base.

2. The axis line of superscript should be at most Y, below the roof of base.

3. The superscript floor should be at most Z, below the axis line of base.

4. The superscript and subscript should be at least a margin M apart.

The constants X, Y,, Z, and M are suitably chosen to make the result resemble
that of LaTeX. The subscript has similar rules (In the other direction) and
another set of constants X,, Y, and Z,. The axis line of the ScriptBox is the

same as that of its base.

Children: 3 children: base, superscript, and subscript. Either superscript or

subscript may be omitted bringing the number of children down to 2.

Style of children:

ScriptBox

Base

Superscript

Subscript

Display

Display

Script

Cramped script

Cramped display

Cramped display

Cramped script

Cramped script

Text

Text

Script

Cramped script

Cramped text

Cramped text

Cramped script

Cramped script

Script

Script

Script script

Cramped script

script

Cramped script

Cramped script

Cramped script

script

Cramped script

script

Script script

Script script

Script script

Cramped script
script

Cramped script

script

Cramped script

script

Cramped script

script

Cramped script
script

A4

A.7 DelimiterBox

([1\

-

Surrounds its child with delimiters (parenthesis, square brackets, curly brackets
or absolute value bars). The delimiters are positioned such that the axis line of
the child goes through the centre of the delimiters. The size of the delimiters is
chosen such that the delimiters completely surround the child except for a small
shortfall distance (example in the figure above). The delimiters can be made
arbitrarily large for this purpose. The axis line of the DelimiterBox is
aligned with that of its child.

Children: One child, named body.

Style of children: The style of the child “body” is the same as the style of the

parent DelimiterBox.

A.8 MultilineBox

Arranges all the children one on top of the other, with a specified margin
between them, and an option to align them to the left, to the right or centre
them. The width of the MultilineBox is the width of its widest child. And
the axis height is exactly half the height.

Children: 0 or more children.

Style of children: Same style as their parent.
A-5

A.9 TableBox

g]
W=

—

This box arranges its children in a 2 dimensional grid, such that the width of
each column is the width of the widest child in that column, and the height of
each row is the height of the tallest child in that row. There is a fixed margin
between every two adjacent rows and every two adjacent columns. The axis
height of the TableBox is exactly half its height. Wrapping the TableBox

inside a DelimiterBox should look like a matrix.
Children: 0 or more children.

Style of children: Same style as their parent.

Appendix B Knuth-Plass

I explained in section 3.3 that the fitting algorithm uses a word wrap
algorithm to arrange the pieces into lines. The simplest word wrap algorithms
puts as many pieces as possible in the first line and then as many pieces as
possible in the second line etc... This minimizes the sum of the empty spaces in
each line. Algorithms like this are cheap and simple to implement but do not
look very good. For example, it can fit “uuu xx yy zzzzz” in a line width

of 6 as follows (assuming that each sequence of letters is a piece):

[uuu xx| (0 empty spaces)
lyy | (4 empty spaces)
|zzzzz | (1 empty space)

The sum of the empty spaces is 0+4+1 = 5 which is the minimum possible
value. On the other hand I implemented a better algorithm called Knuth-
Plass which is the algorithm used in LaTeX. This algorithm minimizes the
sum of the squares of the empty spaces in each line producing a more

pleasing result. For example applying knuth-plass on the previous example:

| uuu | (3 empty spaces)
Ixx yy | (1 empty space)
|zzzzz | (1 empty space)

The sum of the squares is 9+1+1 = 11, which is the minimum possible value.
The simple implementation of Knuth-Plass has a cost exponential in the
number of pieces, but it can be implemented in 0(n?) time and space using

dynamic programming,.
Knuth-Plass takes 2 arguments

1. An array of boxes or pieces, each piece has a known width.

2. maxWidth, which is the maximum width of the lines.

Assuming of course that the width of the widest piece is < maxWidth, and
that the sum of the widths of the pieces is > maxWidth. The algorithm returns
a MultlineBox object, with each line in that object containing a group of

those pieces stacked side by side in a SequenceBox.

To solve the problem in 0(n?), we define a cost function c(i,j), which

computes the cost of a line containing all the pieces from i to j :

B-1

2

j
c(i,j) = | maxWidth — Zpieces[k].width()
k=i

There is however a special case to this. If the value inside the brackets is
negative (which means that the pieces from i to j cannot fit in maxWidth)
then the cost c(i,j) = oo. The cost of the optimal solution f(piece count) can

be defined recursively:

c(1,m) if c(1,n) < o
fin = {12‘)2r<‘n(f (m)+cm+1m) ife(ln)=oo

This recursive function can be implemented in 0(p?) time and space where p is
the total count of the pieces. This is done by creating 2-dimensional arrays:
sum, cost and minCost such that sum[i, j] is the sum of the widths from

piece i to piece j, and so on.

Here T present the complete code of my implementation:

private static Box knuthPlass(Box[] pieces, float maxWidth) {

int pieceCount = pieces.length;
if(pieceCount == 1) return pieces[9];

// calculate 'sum' in 0(n"2)
float[][] sum = new float[pieceCount][pieceCount];
for(int i=0; i<pieceCount; i++) {
sum[i][i] = pieces[i].width();
for(int j=i+1; j<pieceCount; j++) {
sum[i][j] = sum[i][j-1] + pieces[j].width();
}
}

// calculate 'cost' in O(n”*2) using 'sum’

float[][] cost = new float[pieceCount][pieceCount];

for(int i=0; i<pieceCount; i++) {

for(int j=i; j<pieceCount; j++) {
float diff = maxwWidth - sum[i][j];
if(diff < @) // if words don't fit on the line
cost[i][j] = Float.POSITIVE_ INFINITY;

// else cost is the square of the difference between
// the width of the pieces and the width of the line
else cost[i][]j] = diff * diff;

B-2

// calculate 'minCost' and 'pointer' in 0(n”2) using 'cost'’
float[] minCost = new float[pieceCount];
int[] pointer = new int[pieceCount];
minCost[@] = cost[@][0];
pointer[0] = ©O;
for(int j=1; j<minCost.length; j++) {
if(cost[@][j] < Float.POSITIVE INFINITY) {
minCost[j] = cost[@][]];
pointer[j] = ©;

} else {
float minJcost = Float.POSITIVE INFINITY;
int minK = -1;

for(int k=j-1; k>=0; k--) {
float kCost = minCost[k] + cost[k+1][j];
if(kCost < minJcost) {
minJcost = kCost;
minK = k;
}
}

minCost[j] = minJcost;
pointer[j] = minK+1;

}

// extract the lines using 'pointer' and arrange each group
// pieces representing a line inside a SequenceBox
LinkedList<Box> lines = new LinkedList<Box>();
int index = pieceCount-1;
while(index>=0) {
Box[] lineParts = subArray(pieces, pointer[index], index);
SequenceBox line = new SequenceBox(lineParts);
lines.addFirst(line);
index = pointer[index]-1;

}

// finally: arrange the lines nicely inside a MultilineBox object.
Box[] linesArray = lines.toArray(new Box[90]);
MultilineBox result = new MultilineBox(linesArray,

/* and other arguments */);

return result;

B-3

Appendix C App screenshots

2

Patiance while the Algebra Engine
Is Loading...

The application splash screen

C-1

__ Android Reduce

ans—+2+/(3)atan((22—1)/(1/(3)))—In(z
2 241)4+2In(z+1)

2x—1
2\/§arctan(f/g)+

2z2—1 ‘
2\/§arctan _log(z?—z+1)—
(Fo7) st

log(2%—2+1)+2log(x+1)+2log(z+1)

Shift2 sqrt

This snapshot demonstrates the importance of the formula fitting algorithm

C-2

el
Android Reduce

(x+y+2)°
2 +2xy+ 222+ y? + 2yz + 22
ans”
ri 4z y+4x® 2462y +122° y 2+
6z 22 +Axy+12xy? 2+ 12y 2°+

4mz'3+y4+4y3z'+6y2z'2+4yz'3+z'4

The application interface running on versions of Android older than 4.0

C-3

__ Android Reduce

solve {4x+y=3, zy—2x=-2} for {z,

y}{{x_\/ﬁﬂ —\/ﬁ+5} | {w

g T
—/33+1 V3345
- 5 T

Shift2 sqrt

C-4

L Android Reduce

1 2 -1
my = (21 —1 0)

0 1 =2
1 2 -1
my: = (22’ -1 0)
0 ¢ —2
det(m)
4(2:+ 1)

Shift2 sqrt

C-5

C-6

Computer Science Part Il Project Proposal

Ahmad Akra
Trinity College
aab82

Computer Algebra System for Phones and Tablets

Project Supervisor:
Dr. Arthur Norman

Director of Studies:
Dr. Arthur Norman

Overseers:
Prof. Frank Stajano + Dr. Robert Mullins

Resources Form:
Submitted with this proposal

21-Oct-2011

Introduction

A scan of the android app store reveals a variety of apps that perform algebra calculations.
But most of them have limitations in the form they accept input, or the way they display output.
And all of them have very little capabilities in the level of algebra complexity they can manage.
Despite how powerful modern smart phones have become, algebra systems available for PC
such as Mathematica or Maple still offer a lot more than similar systems available for Android.

The idea of this project is to bring the power of Reduce - an open source CAS written in

Lisp and popular amongst mathematicians and scientists - to the Android platform, build an
extensible and user friendly Ul that interfaces to Reduce’s functionality main core and display
the formulae in a form closer to the real mathematical notation instead of text. | would like here
to mention MathBot for the iPad as a feasibility demonstration.

There is a long history of interest in this sort of work, and the 1971 article by William Martin
(Computer input/output of mathematical expressions) is perhaps where it all started. Regarding
the formulae-on-small-screen problem, the Tl algebraic calculators provide a reference point
and background. The work done in this project will be evaluated both in terms of the extent to
which it actually works and by comparing its capabilities with existing PC and Android software
that works in the same general area, see the success criterion section for details.

Resources

As will be demonstrated in the next paragraph, most resources required for this project can be
arranged without intervention from the computer lab.

This project is intended to run on the Android platform. And, as usual, all development will be
on a computer running the Android SDK and Eclipse with the ADT plug-in (all which is free
software). | will use my laptop for development. The majority of testing will be done on an
Android emulator also running on the same computer. One such emulator is provided by the
ADT plug-in mentioned above. | will occasionally need a real Android device for demonstration
and deployment testing but That is not expected to be a problem since | know many people in
our class who are happy to run the project on their Android phones and tablets once it is stable.
Dr. Norman has an Android tablet and he said that he will be happy to test my project on it.

From the computer lab, | will only require an extra 2GB of space on the PWF to backup the
Reduce code. This is included in resources form which was submitted alongside this proposal.

Starting Point

My project supervisor Dr. Norman has some existing Java code (~27K lines) which is an
interpreter on top of Reduce', however it has not been written with the constraints of Android in
mind. At present it provides a strictly text-mode interface where users type in commands and
the results are displayed as "ASCII art" with fixed-width characters on the screen to give an
approximation to mathematical notation.

| am familiar with the Java language, but completely new to Android development. | will be
spending some time at the beginning to learn the Android mindset and development tools.

Project Structure
The project will be composed of

1 - Allibrary for algebra manipulations. Dr. Norman’s code will be used for this after it is ported
to the Android platform. His code gives access to many of the features provided by Reduce
CAS, such as solving polynomial equations and matrix multiplication.

2 - An extensible library for mathematical typography display. This should allow a formula like:
(1/2) * sqrt(x*2 - 1)

to be displayed closer to the real mathematical notation:

L/a_
21;’1. 1

3 - An Android Ul that interfaces with the previous two libraries.

{1} Algebra

(3) Ul d::,\/{) (2) Math Display

1 The source code for the Java interpreter and all the associated Reduce Lisp files are available on
SourceForge and can be acquired by running the following shell command:

svn co http://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra reduce-
algebra

Success Criterion

This project is expected to be challenging, many of its challenges result from the nature of smart
phones and tablets and the fact that they have small screens that work by touch, some of these
challenges appear to not have been seriously addressed before, The main success criteria for
this project will be:

A - Porting Dr. Norman’s code to Android. This will demonstrate an important programming
skill which is the ability to read, modify and reuse existing code written by other programmers.
Amongst other things, this will require mastery of the Java programming language.

B - Arranging that the output is displayed in a form that is closer to genuine mathematical
typography than plain text mode. This will demonstrate problem solving skills when it comes to
layouting the formulae on the small screen.

C - Building an extensible and user friendly input interface for Android devices. This will
demonstrate several skills:

1. The ability to quickly grasp a new development platform (I am new to Android
development).
2. The ability to structure the project and follow the best programming practices that allow
extensibility and testability of an Android Ul project.
3. And the ability to construct the interface such that it is usable and comfortable to look at.
Within the scope of a Part Il project it is not likely to be feasible to complete a careful

assessment of the HCI issues involved, and so the code implemented will be built with flexibility
in mind as a technology demonstration and prototype. There will obviously be scope for many
extensions, added features and refinements - for instance: scrolling, zooming, editing of existing
input and export of results. But the key success criteria will be the ability to demonstrate
success against the three objectives listed above.

As part of the evaluation, the outcome of this project will be compared to existing software in the
Android app store:

(1) Algebra Calculator Pro from MJH Mobile DEV.

(2) Algebraic Calculator by Tarcin.

(3) MathScript Calculator from The Think Tanks

In particular, apps 1 and 2 will be compared to this project in terms of how many different
algebra problems they can solve. App 3 is a very powerful algebra app and will be compared

to this project in terms of the convenience of its input system and the elegance of its displayed
output.

Schedule and Milestones

21st October - 15th November
1 - Become familiar with the Android development mindset and tools.
2 - Establish a backup plan.

3 - Research and identify some existing CAS software that will be used as a reference to
improve and compare against during development.

Milestone: Create simple Android project that takes textual input and produces textual output
and run it on a real Android device.

16th November - 31st December

1 - Obtain and install Dr. Norman’s algebra library on my laptop.

2 - Understand the library and identify regions of the code that will need rewriting to run on the
Android platform.

3 - Move the code to an Android project, and run it.

Milestone: Create a very simple interface that takes textual input through a dialog box and
displays textual output.

1st January - 29th February

Temporarily ignore the algebra library. And develop an extensible math display library that

can display a basic range of formulae in mathematical notation. An example to illustrate the
problems that will be tackled here is the problem of where to break the formulae when it doesn’t
fit on a small screen.

Milestone: Use the math display library to display (on an Android screen) a range of simple
formulae constructed by hand.

1st March - 7th March

Milestone: Use the math display library to display simple output generated from Dr. Norman’s
algebra library.

8th March - 15th April

1 - Finalize the general Ul design of the application

2 - Finalize the design of the input system which is a custom keyboard of symbols and
operators. These will be organized in a tree structure such that only the most commonly used
symbols and operators are visible and the rest can be reached through sub-menus. The system
keyboard is only used for inputting multi-character names.

3 - Build the Ul on the Android platform.

Milestone: Connect the input system to the Algebra library and arrange the Ul to display
formulae using the math display library created earlier. At this point the project should be in the
beta stage.

16th April - 30th April
1 - Review the code for the last time.
2 - Perform final debugging and testing.

1st May - 3rd May
Evaluate the project.

4th May - 18th May
Write and submit the dissertation.

