
Visible Standard Lisp User Manual

Arthur Norman

March 11, 2012

There is a separate larger document that explaims what vslis and how it is
implemented. This merely contains an explanation of how to fetch the sources
and compile them, and a list of the functions that vslthen provides.

1 Fetching and building vsl
You can fetch vslsources using subversion. If you do not have that installed
on your computer already you need to discover how to fetch it. On Linux this
will be easy using a package manager (typically yum on Fedora or apt-get on
Debian or Ubuntu). On Windows if you visit www.cygwin.com you can fetch
their setup program and install their environment – ensuring that you install make,
gcc and subversion, and probably tex.

Then you can go

U=https://reduce-algebra.svn.sourceforge.net
V=$U/svnroot/reduce-algebra/trunk
svn co $V/vsl

which should create a directory called vsl and put a collection of files in it.
The above instructions build up the path at sourceforge to fetch this from
in parts so you only have to type a modest amount on each line. The files you
will fetch amount to about a megabyte, and so should not be a severe strain on
anything.

If you also want to use vsl to build a version of the Reduce algebra system
you should follow up the subversion calls with another call (relying on the variable
$V you set up to point to the subversion repository).

svn co $V/packages

This time you will end up with around 60 Mbytes in a directory called packages.
That is the full set of sources for Reduce. Even though you are not liable to be
able to make use of all of them the easiest recipe involves you fetching everything.

To build vsl and then try it you can then go

1

cd vsl
make
./vsl
(oblist)
(stop 0)

For the build to succeed you will need to have the gcc C compiler installed,
and to rebuild the manual the pdflatex1 command is required. Again you may
need to use a package manager to ensure that they are available.

In the above small example you verify that vslwill run by calling the function
(oblist) to display a list of all vsl’s built-in symbols, then you use (stop
0) to exit from the system.

To try Reduce (see http://reduce-algebra/sourceforge.net for
full information. In particular there is a manual hidden there) you go

make reduce
./vsl

The “make reduce” step builds (much of) Reduce and saves the result in
vsl.img. When you next start vslit reloads that image file. Then you can try
various algebraic examples. One of my favourites is

int(1/(xˆ6-1), x);
in "../packages/alg/alg.tst";

The vsl-hosted Reduce will be significantly slower than other versions and it
certainly has severe limitations because vsl does not provide arbitrary prevision
arithmetic. It is expected that there will be cases where some Reduce facilities try
to use functions that vsl does not provide – and then crashes. It would be helpful
if such cases can be collected and reported at least so that a section can be inserted
here documenting Reduce limitations under vsl.

2 Summary of functions in vsl
!$eof!$ predefined variable

When the read function (or its relatives) detect and end of file condition it
returns this value of this variable. So a code fragment such as (eq (setq
x (read)) !$eof!$)) will read a Lisp expression, store it in a vari-
able called x and test if it was in fact an end of file marker.

1typically instaled for you as part of some broader LATEXpackage such as texlive.

2

!$eol!$ predefined variable
This value of this predefined variable is a newline character, so if you use
readch it may be convenient to compare the result against this. See
blank, lpar and rpar for other character values where it is convenient
to have a name rather than needing to enter the (escaped) character directly.

!*echo variable
When Lisp reads in any input the variable !*echo is inspected. If its value
is non-nil then the characters that are read get echoed to the current Lisp
output stream. This is often useful when reading from a file. But often
if you are accepting input in an interactive manner from the keyboard you
would prefer !*echo to be nil. So vsl arranges that if it is started up
with a file to read specified on its command line it makes echo default to
t, while if no command-line arguments are given it defaults to nil. This
often results in comfortable behaviour, but the user is free to set the variable
explicity at any time to make things fit their needs.

!, marker
See the backquote entry.

!,!@ marker
See the backquote entry.

‘ marker
Lisp input can contain an ordinary Lisp expression preceeded by a back-
quote mark. Within the expression various sub-parts can be marked with
either a comma, or a comma followed by an “at” sign. This notation is com-
monly used when defining Lisp macros. The effect is as if a longer segment
of Lisp had been written to create a structures that is the same shape as the
one given, but with the comma-introduced sub-parts expanded. This may be
shown with an example. The form ‘(a ,b c ,(car d))might behave
like (list ’a b ’c (car d)). The rules for backquote do not guar-
antee exactly what expansion will be generated – just that when it is exe-
cuted it will construct the required structure. In vsl the code will in fact use
many calls to cons rather than the neat use of list shown here. An em-
bedded “,@” within a backquoted expression is expected to stand for a list,
whose values are spliced into the evantual result. This ‘(a ,@(car b)
c) might expand as (append ’(a) (append (car b) ’(c))).
In many some Lisp systems the full expansion is performed while reading
the input. In vsl the reader leaves backquote and comma markers in the
structure it returns, and macros expand those when it is time to execute
them.

3

add1 function 1 arg
(add1 n) is merely a shorthand for (plus n 1), in other words it adds
one to its argument. It is often useful when counting. See alse sub1.

and function n args
In vsl and is implemented as a special form. If evaluates its arguments one
at a time, and returns nil if one of them evaluates to nil. If none of them
yield nil its value if the value of the final argument. If you interpret nil
as false and anything else as true then this matches a simple understanding
of the of an operation that could reasonably called and. See also or. A
different way of explaining and would be to give an equivalence: (and a
b c) could be replaced by (if a (if b c nil) nil), with similar
expansion for cases with larger or smaller number of arguments. In vsl
(and) (ie without any arguments) yields t.

append function 2 args
If you have two lists then append can form their concatenation. So (append
’(a b) ’(c d)) yields (a b c d). The result will share structure
with the second argument – a fact that only matters if you later use rplaca
or rplacd. Some other Lisps may permit you to give append more than
two arguments, and will then append all the lists into one, but vsl does not.

apply function 2 args
If you have either the name of a function or a lambda-expression (see lambda
for more explanation) you can call it on a collection of arguments that are
provided in a list. The function apply that does this is really there just be-
cause its capability has to be part of the Lisp interpreter. For instance since
cons takes just two arguments you could invoke it by giving the symbol
cons as apply’s first argument and a list of length two as its second:
(apply ’cons ’(a b)). This would return (a . b). If the first
argument to apply is a macro rather than an ordinary function this can be
used to perform macro expansion. You should not try using apply on a
special form (fsubr).

assoc function 2 args
An association list is a list of pairs, and each pair (cons) is though of
as constisting of a key and a value. assoc searches an association list
looking for a given key. If it find it then it returns the pair that contains it.
Othewise it returns nil. Thus (assoc ’b ’((a . 1) (b . 2)
(c . 3))) will return (b . 2). The test for keys is make using the
equal function.

4

atan special form
The arctangent function, working in radians. See sin and cos.

atom function 1 arg
Any Lisp object that is not a list or a pair – that is to say that could not have
been created by the cons function, is known as an atom. Thus symbols,
numbers, strings and vectors are all atoms. The function atom checks its
argument and returns t (for true) if it is atomic and nil otherwise.

blank predefined variable
A predefined variable whose value is the symbol whose name is a single
space character. One could otherwise refer to that symbol by writing ’! ,
but many people find writing the word blankmakes things clearer because
it does not involve having a significant but non-printing character.

caaar function 1 arg
A range of names of the form cxxxr with the intermediate letters being ei-
ther a or d are provided as functions that are merely combinations of uses
of car and cdr. Thus (caaar x) means just the same as (car (car
(car x))), and (caddr x) means (car (cdr (cdr x))). In
vsl these are provided for up to three intermediate letters.

caadr function 1 arg
See caaar.

caar function 1 arg
See caaar.

cadar function 1 arg
See caaar.

caddr function 1 arg
See caaar. Can be though of as returning the third item in a list.

cadr function 1 arg
See caaar. Can be though of as returning the second item in a list.

car function 1 arg
Data structures in Lisp are made up with the various sorts of atom (symbols,
numbers, strings and so on) as basic elements and with cons cells used to
build them up into potentially large and complicated lists and trees. If you
think of a structure as a list then car extracts its first element (and cdr its
tail). If you think of it as a binary tree then car gets the left part and cdr

5

the right. The basic identity is that (car (cons a b)) = a. See also
cdr.

cdaar function 1 arg
See caaar.

cdadr function 1 arg
See caaar.

cdar function 1 arg
See caaar.

cddar function 1 arg
See caaar.

cdddr function 1 arg
See caaar.

cddr function 1 arg
See caaar.

cdr function 1 arg
(cdr (cons a b)) = b. See car.

char!-code function 1 arg
If you have a symbol or a string denoting a single character then the function
char!-code will return a numeric code for it. The code used in vsl is
ASCII so for instance the code for a blank character is 32, that for the digit
“0” is 46 and a capital “A” is 65. See code!-char for conversion in the
other direction.

close function 1 arg
When an input file has been opened for reading or writing you should use
close it once finished with it. This is especially important for output files
because it could be that some material will remain buffered and so will not
be written until the file is closed. See open.

code!-char function 1 arg
(code!-char 97) would return a symbol whose name is the character
with code 97 (in this case a lower case “a”). Similarly for other codes
typically in the range 0 to 255.

compress function 1 arg
If you have a list of identifiers or strings then compress treats each as

6

standing for its first character and returns the Lisp expression you would get
if ytou read from a document that contained those characters. This would
normally be used when each item in the input list was just a single character.
Because in vsl the compress function is implemented by just involing
read with input redirected from the list you can create symbols, numbers,
strings and even lists this way. See explode.

cond special form
The primitive comditional operator in Lisp is cond. It is a special form (i.e.
it does not evaluate its arguments in the standard way. Its use is as in

(cond
(p1 e1a e1b e1c ...)
(p2 e2a e2b ...)
...

where p1, p2 etc. are predicates, and the sequence of expressions (for in-
stance e1a...) that follow the first one that yields a non-nil value are
computed. The result returned is the final thing that cond evaluates. There
are many examples of uses of cond in the sample code here. Some people
prefer to use if or when instead, but at least historically cond came first.

cons function 2 args
Lisp data is based on lists and trees, and cons is the key function for cre-
ating them. The term cons-cell is used for the object that the function
creates. Such a cell has two componente, is car and its cdr. The appar-
ently strange names for these related to the atchitecture of an early computer
on which Lisp was first developed. If you have a list structure l and an item
a then (cons a l) is a list just one element longer than l was formed
by putting a in front of the original. In Lisp it is much more expensive to
attach a new item to the tail of a list. To do that would typically involve
(append l (list a)) and especially if l was long could be slow. So
in Lisp it is normal to build up lists by succesively addint items to the head
using cons. See also car, cdr and list.

copy function 1 arg
It is normally only necessary (or indeed useful) to make a copy of a Lisp
structure if you are then about to use destructive operations such as rplaca
on the original, but this function is provided in case you do ever need to.

cos function 1 arg
It would be easy to extend the vsl implementation to provide a full set
of mathematical functions, but to keep things small the initial version only

7

provides a few key cases: sin, cos, atan, exp, log and sqrt. Each
of these can be given either an integer or floating point argument but they
always return a floating point result. The trigonometric functions work in
radians rather than degrees.

de special form
To define a new function evaluate (de name arglist body), the spe-
cial form that is provided for this purpose. After you have defined some-
thing you could retrieve the definition you had set up using (getd ’name).

deflist function 2 args
Sometimes when setting up data you need to perform a succession of put
operations all using the same property name. deflist provides a short-
cut so you can write something like

(deflist
’((a A)
(b B)
(c C))

’propname)

and have the same effect as

(put ’a ’propname ’A)
(put ’b ’propname ’B)
(put ’c ’propname ’C)

df special form
df is rather like de except that it allows you to defined a new special form.
A special form must be defined as if it has just one argument, and this will
receive the whole of the “argument” information from any call without any
evaluation having happened. Often the body of a special form will thus wish
to use eval to make evaluation happen. In most Lisp programs it will be
unusual to introduce new special forms. See also dm for an alternative way
(also sometimes controversial) for extending the syntax of Lisp.

difference function 2 args
Subtract one number from another. If either value is floating point the result
will be floating point.

divide function 2 args
Divide one integer from another and return the cons of the quotient and
remainder. The idea behind this function was that when integers are divided

8

it is common to require both quotient and remainder, so having a one func-
tion to return both might be helpful. In Lisp systems that support very high
precision arithmetic this can indeed save time. In vsl you will probably do
as well calling quotient and then remainder.

dm special form
A Lisp Macro is something that when evaluated produces futher executable
Lisp to be its replacement. The special form introduced by dm can defined
a new one. In general it will be sensible to define macros before you define
any functions that use them. Some people believe that extensive use of
macros can make your code harder to read and debug, and so would rather
you did not use them at all.

do macro
A perhaps over-general form of loop can be specified by the do macro or
its close cousin do!*. The structure of aan invocation of it is

(do ((var1 init1 step1)
(var2 init2 step2)
..)
(endtest result ...)
body
...)

and a concrete exammple is

(do ((x 10 (add1 x)))
((greaterp x 20) ’done)
(print (list x (times x x))))

The difference between do and do!* is that the former processes all its
initialisation and update of variables in parallel, while the latter acts se-
quentially. This is similar to the relationship between let and let!*.

do!* macro
See do.

dolist macro
Simple iteration over a lisp can be performed using the dolist macro,
where a typical tiny example might be

(dolist (x ’(1 2 3) ’result) (print x))

9

which prints the numbers 1, 2 and 3 and then returns the value result. In
many cases you will merely omit the result part of the expression and then
dolist will return nil.

dollar predefined variable
A predefined variable whose value is the symbol whose name is a dollar
character. See blank for another similarly predefined name.

dotimes macro
Counting is easy with dotimes. It starts from zero, so

(dotimes (x 5 ’result) (print x))

will print values 0, 1, 2, 3 and 4 before returning result.

eq function 2 args
If you wish to test two Lisp items for absolute identity then eq is the func-
tion to use. If you enter the same spelling for a symbol twice Lisp arranges
that you get the same symbol, but it is possible – even probable – that strings
or large numbers can fail to be eq even if they look the same. Two list struc-
tures are eq only if their top-level cons cells are identical in the sense that
even if you received them via different paths they are the output from the
same call to cons. See equal for a more expensive but perhaps more
generous equality test.

eqcar function 2 args
(excar a b) is like (and (not (atom a)) (eq (car a) b)).

equal function 2 args
Wile eq compares objects for absolute identity, equal compares them to
see if they have the same structure. equal understands how to compare big
and floating point numbers, strings and vectors as well as lists. To illustrate
the difference between the two functions consider

(setq a (cons 1 1000000000))
(setq b (cons 1 1000000000))
(eq a b)
(equal a b)
(eq (cdr a) (cdr b))
(equal (cdr a) (cdr b))

In each case eq returns nil wiile equal will return t. Although you
should not in general rely on eqwhen comparing numbers, in vsl all small

10

numbers are represented in a way that will allow eq to handle them reliably.
If vsl is runing on a 32-bit system the range is -268435456 to 268435455.
If the system had been built for a 64-bit machine it is much larger.

error function 2 args
If a user wants to report that something has gone wrong it can call the
error function. This is given two arguments, and they will be displayed
in any message that is printed. See errorset for information about how
to control the amount of information displayed when an error occurs.

errorset function 3 args
The default situation is that when vsl encounters and error it unwinds from
whatever it was doing and awaits the next item of input from the user. The
function errorset can be used to trap errors so that a program can re-
spond or continue in its own way. It can also control how much diagnostic
output is generated. A call (errorset form msg trace) will eval-
uate the Lisp expression form rather in the way that eval would have. If
there is no error it returns a list of length one whose element is the value that
was computed. If the evaluation of form failed then errorset returns an
atom rather than a list, so its caller can be aware of the situation. The ar-
gument msg can be non-nil to indicate that a short (typically one line)
report is displayed on any error. If trace is non-nil then a report showing
the nesting of function calls will also be shown. If both arguments are nil
then the error and recovery from it should be silent. See eval for a sample
use.

eval function 1 arg
An approximation to how Lisp interacts with the user is

(while t
(errorset ’(print (eval (read))) t t))

where eval takes whatever form was read and evaluates it. The eval
function (and its relative apply) can be used anywhere in Lisp code where
a data structure needs to be interpreted as a bit of Lisp code and obeyed.

exp special form
The exponential function. See log.

expand function 2 args
In some Lisp implementations it would be useful (for instance for effi-
ciency) to transform some uses of functions taking an indefinite number

11

of arguments (for instance plus) into sequences of calls to versions tak-
ing just two arguments. The expand function is intended to help with
this. Its first argument is a list of expressions, the second a (two argument)
function to be used to combine them. For instance (expand ’(a b c)
’plus2) will yield (plus2 a (plus2 b c)). This could be useful
if plus were to have been implemented as a macro expanding to multi-
ple uses of plus2 rather than as a special form, and if vsl provided the
two-argument function concerned (which at present it does not!).

explode function 1 arg
Any Lisp item can be processes as by prin but with the resulting se-
quence of characters being collected as a list rather than being printed di-
rectly. explode does this, while explodec behaves like princ. So
(explode ’("a" . 3))will be (!(!" a !" ! !. ! !3
!)). explode can be useful to find the sequence of letters making up the
name of a symbol (or just to make it possible to see how many there are).

explodec function 1 arg
See explode

expr symbol
The function getd can retrieve the function definition (if any) associated
with a symbol. The value returned is (type . value) where the
type is one of the symbols expr, subr, fexpr, fsubr or macrp.
The case expr indicates that the function is a normal-style function that
has been defined in Lisp. The value information following it in the result
of getd is the Lisp structure representing it. fexpr is for special forms
defined in Lisp (using df. subr and fsubr and ordinary and special
functions that have been defined at a lower level than Lisp (in other words
things that form part ofthe vsl kernel). macro marks a macro as defined
using dm. With the default vsl image (getd ’caar) returns (expr
lambda (x) (car (car x))).

f predefined variable
f is a variable pre-set to have the value nil. This exists because at one
stage people tended to want to use t for true and f for false. In most cases
it will be safer to use nil directly if that is what you mean, and attempts
to use f as a definitive denotation of false cause trouble when you try using
the name as an ordinary variable, as in (de fff (a b c d e f g)
...).

fexpr symbol
See expr.

12

fix function 1 arg
If you have a floating point number and want convert it to an integer you
can use the function fix. It truncates the value towards zero while doing
the conversion.

fixp function 1 arg
The predicate fixp tests if its argument is an integer, and if it is it returns
t. See also numberp and floatp. You are permitted to test any Lisp
object using fixp and note that (fixp 2.0) will be nil because 2.0 is
a floating point number even if its value is an integer.

float function 1 arg
Converts from an integer to a floating point number.

floatp function 1 arg
Test if an object is a floating point number. See fixp.

fsubr symbol
See expr.

gensym function 0 args
Sometime in a Lisp program you need a new sybol. One that is certain
not to clash with any others you may have used already. (gensym) will
create a fresh symbol for you. Such symbols should be though of as being
anonymous. In vsl they do not even have a name unless and until you print
them. At that stage a name will be allocated, and it will be of one from the
sequence g001, g002,. . . . However if you type in the characters g001
that will not refer to the generated symbol that was displayed that way –
you will get an ordinary symbol that you may confuse with the gensym but
that Lisp will not.

geq function 2 args
This is a predicate that returns t if its first argument is greater than or equal
to its second. Both arguments must be numbers. See leq, greaterp and
lessp.

get function 2 args
Every symbol has a property-list, which can be retrieved directly using
plist. The main functions for saving and retrieving information on prop-
erty lists are put and get. After you have gone (put ’name ’tag
’value) a call (get ’name ’tag)will return value. See also remprop.
An extended version of the library could define functions flag, flagp

13

and remflag to store flags rather then more general properties, but vsl
only supplies the basics.

getd function 1 arg
See expr.

gethash function 2 args
If h is a hash table then (gethash ’key h) retrieves the value stored
in it under the indicated key by some previous call to (puthash ’key
h ’value). See mkhash, puthash and remhash.

getv function 2 args
If tx v is a vector then (getv v n) returns the nth element ot if. See
mkvect, putv and upbv.

go special form
See prog.

greaterp function 2 args
(greaterp x y) is true if x and y are numbers with x larger then y.
See geq, lessp and leq.

if macro
The fundamental conditional form in Lisp is cons, but for convenience the
macros if amd when are supplied. if takes two or three arguments. The
first is a predicate – the condition that is to be tested. The next is the value
to return, while the last is the result required if the condition is false and
defaults to nil. when also takes a predicate, but all its further arguments
are things to be obeyed in sequence if the condition holds. Thus (when p
a b c) behaves like (if p (progn a b c) nil).

input symbol
See open.

lambda symbol
Some people will believe that lambda is the key symbol standing for the
essence of Lisp. Others view it as a slight curiosity mostly of interest to
obsessive specialists. It introduces a notation for a function that does not re-
quire that the function be given a name. This is inspired by Alonzo Chruch’s
λ-calculus. The denotation of a function is a list with lambda as its first
element, then a list of its formal parameters, and finally a sequence of val-
ues that are to be evaluated when the function is invoked. So (lambda
(x) (plus x 1)) is a function that adds one to its argument. If you

14

try writing lambda expressions with bodies that refer to variables other than
their formal arguments then you will need to read and understand the secion
of this book that discusses deep and shallow binding strategies in an imple-
mentation of Lisp. This issue in fact arises with named functions defined
using de as well.

last function 1 arg
If you have a list then last can return the final element in it. Recall that
the first item in a list can be extracted using car, and note that last is
goig to be slower, so where possible arrange what you do so that you access
the start of your lists more often than their ends.

lastcar function 1 arg
This function is just like last except that if last is called on an empty
list if reports an error, while lastcar merely returns nil.

leftshift function 2 args
Take an integer value, treat it as a bit-pattern and shift that leftwards by the
specified amount. Return the result as an integer. Generally (leftshift
x n) has the same effect as multiplying x by 2n. See rightshift.

length function 1 arg
This function returns the length of a list. If its argument is nil it returns 0.

leq function 2 args
A test for “less than or equal”. See geq, greaterp and lessp.

lessp function 2 args
A test for “less then”. See geq, greaterp and leq.

let macro
Sometimes it is convenient to introduce a new name for some result you
have just computed and are about to use. The let macro provides a way to
do this. So as an example where four temporary values are being introduced,
consider

(let ((u (plus x y))
(v (difference x y))
(xx (times x x))
(yy (times y y)))

(list (difference xx yy)
(times u v)))

In really old fashioned Lisp this would have been achieved using prog as
in

15

(prog (u v xx yy)
(setq u (plus x y))
(setq v (difference x y))
...
(return (list (difference xx yy) ...)))

and yet another scheme would use an explicit lambda-expression

((lambda (u v xx yy)
(list (difference xx yy) (times u v)))

(plus x y)
(difference x y)
(times x x)
(times y y))

Of all these the version using let is liable to be the clearest and neatest. Ac-
tually the versions using prog and lambda can have different behaviours
sometimes. let and lambda introduce all their new variable simultane-
ously, and so the definition given for a later one can not depend on an earlier
one. let!* is like let but introduces one variable at a time so that subse-
quent ones can depend on it, and that is closer to how the naive use of prog
would work. Thus

(let!* ((x2 (times x x))
(x4 (times x2 x2))
(x8 (times x4 x4)))

(times x x4 x8))

returns the thirteenth power of x, while if let had been used rather than
let!* you would have received an error message about x2 being unde-
fined that arose when it was used to define x4.

let!* macro
ASee let.

lispsystem!* predefined variable
It is sometimes useful to allow Lisp code to adapt based on knowing some-
thing about the particular Lisp implementation it is running on. In Standard
Lisp (and hence vsl) environment information is provided in a predefined
variables called lispsystem!*. In vsl the only information put there
is a symbol vsl to identify the Lisp system in use. But it would be easy
to extent the code in vsl.c to put in whatever extra information about the
host computer anybody felt might be relevant.

16

list special form
The fundamental function for building Lisp data-structures is cons, but
by convention a list is a chain of cons cells ending with nil. Created
in the fundamental manner a list of length 4 might be built using (cons
’a (cons ’b (cons c (cons ’d nil)))). That is correct but
clumsy!. The special form list accepts an arbitrary number of arguments
and forms a list out of them: (list ’a ’b ’c ’d). It will therefore
be common to use one call to list in place of multiple uses of cons
whenever possible.

list!* special form
The structures created using list are always automatically provided with
a nil termination. Sometimes a list-like structure is wanted with some
other end. This may arise for instance when putting multiple items onto
the front of an existing list. The function list!* can achieve this, and
taking an example that puts 4 items ahead of the termination, the long-
winded form (cons ’a (cons ’b (cons c (cons ’d ’e))))
could be replaced by the much more concise (list!* ’a ’b ’c ’d
’e). As a special case list!* with just two arguments degenerates to
being exactly the same as cons.

log special form
The (natural) logarithm of a value. See exp.

logand special form
If integers in Lisp are represented in binary form (and for those who want
the full story, negative values in two’s complement) then a number can be
thought of as a string of bits. logand takes an arbitrary number of integers
and performs an logical “and” operation on each bit position, so that a “1”
is present in the output only all of the inputs have a “1” in that position. The
result is returned as an integer. See also logor, lognot and logxor for
operations, and leftshift and rightshift for re-aligning bits.

lognot function 1 arg
See logand. This function negates each bit.

logor special form
See logand. This function yields a “1” when any input has a “1” in that
place.

logxor special form
See logand. This yields a “1” if an odd number of inputs have a “1” in the
cooresponding place, and is “exclusive or”.

17

lpar predefined variable
A predefined symbol whose value is the symbole whose name is a left paren-
thesis. See also rpar.

macro symbol
See expr.

map function 2 args
There are a number of functions whose names begin with map. These take
two arguments, on a list and the second a function. Each of them traverses
the list calling the given function for each position on it. map, maplist
and mapcon each pass first the original list and then each succesive tail of
it. mapc, mapcar and mapcan pass the successive items in the list.

In each case the three variants do different things with the results returned
by the function. map and mapc ignore it and in the end just return nil.
This is only useful if the function that is provided has side-effects. For
instance it might print something. maplist and mapcar build a new list
out of the results, and so theior overall result is a list the same length as the
input one. Finally mapcon and mapcan expect the function to return nil
or some list, and they use nconc to concatenate all those lists.

Many people find mapc is the most useful, but then that the dotimes
macro (which achieves a similar effect) is easier to use: compare

(setq a ’(1 2 3 4))
(mapc a ’(lambda (x) (print (times x x))))
(dolist (x a) (print (times x x)))

which achieve similar effects.

mapc function 2 args
See map.

mapcan function 2 args
See map.

mapcar function 2 args
See map.

mapcon function 2 args
See map.

maplist function 2 args
See map.

18

minus function 1 arg
Negates a number.

minusp function 1 arg
Tests if a value is a negative number. Note that in vsl it is legal to call
minus with an argument that is not even a number, in which case it will
return nil to indicate that it is not negative, but in many other Lisp dialects
you should only give minusp numeric input.

mkhash function 1 arg
The hash-table capability built into vsl uses (mkhash n) to create a ta-
ble, puthash to insert data and gethash to retrieve it. remhash can
remove data. The argument to mkhash is used to control the size of the ta-
ble, and might reasonable by chosen to be a fifth or a tenth of the number of
keys you expect to store. Searches within hash tables are based on eq-style
identity and are expected to be faster than various alternative (if simpler)
schemes that could be considered.

mkvect function 1 arg
In vsl a call (mkvect n) creates a vector where subsequent uses of
putv and getv can use index values in the range from 0 to n. This results
in the vector having n + 1 elements. A whole vector counts as an atom in
Lisp, not as a list. If v is a vector then (upbv v) returns its upper bound
– the largest subscript legal for use with it.

nconc function 2 args
Given two lists, nconc concatenates them using a rplacd on the final
cell of the first list. This avoids some extra storage allocation that append
would have had to make, but overwrites part of the first list, and unless used
with sensitivity that can cause trouble.

neq function 2 args
(neq a b) yields exactly the same result as (not (equal a b)).

nil predefined variable
The symbol nil is used in Lisp to denote an empty list, or to mark the end
of a non-empty one. It is used to mean false, with anything non-nil being
treated as true. The value of nil is nil. In some Lisp systems (but not this
one or its close relatives) it is arranged that car and cdr may accept nil
as an argument and yield nil. Here you are not allowed to do that so (cdr
nil) will report an error just as (cdr ’any other atom) would.

19

not function 1 arg
When a value is being thought of as a truth-value the function not can be
used to invert it. Because false is represented by nil it turns out that not
behaves identically to null.

null function 1 arg
Tests if its argument is nil. Often used to detect when a list is empty.

numberp function 1 arg
Returns t if its argument is a number. See also fixp and floatp that
check for specific sub-categories of numbers.

oblist function 0 args
The term “object list” is historically used in Lisp to refer to the symbol table
that keeps track of all the identifiers that are in use. Its purpose is to arrange
that every time you enter the same sequence of characters you get the same
symbol back. The function (oblist) returns a list of all symbols in this
table. This table of symbols important to Lisp was started by taking the
output from oblist and sorting and formatting it. The number of symbols
in the object list gives some idea of the size of the Lisp implementation.
With vsl there are a couple of hundred symbols known before you start
adding more. With the C and the Java coded implementations of Standard
Lisp used with the Reduce algebra system there are around four times as
many.

onep function 1 arg
Test it its argument is 1 or 1.0. See zerop.

open function 2 args
To access data in a file you first open the file. A file can be opened ei-
ther for reading or writing, as in (open "input.dat" ’input) or
(open "newfile.out", ’output). In each case open returns an
object that can be passed to rds or wrs to select that stream for use. When
finished with any file that has bene open should be tidied up by handing
its descriptor to the close function. As well as providing access to files,
open can be used to launch another program, with Lisp output to the asso-
ciated stream made available to that program as its standard input. This is
done using the construction (open "programname" ’pipe).

or special form
See and.

output symbol
See open.

20

pipe symbol
See open.

plist function 1 arg
Every symbol has a property-list and the plist function returns it. Nor-
mally this will only be used as a matter of interest, since put and get are
the proper functions for storing and retrieving information from property
lists.

plus special form
Adds an arbitrary number of values. If any one of them is floating point the
result will be floating point.

preserve function 0 or 1 arg
If you call preserve a copy of the current status of everything in your
Lisp world is written to a file called vsl.img. When vsl next starts it
reloads this file (unless the -z command line option is used). This capability
can be used to build an image file containing all the definitions and settings
that make up a program so that when vsl is started they are all immediately
available.

prettyprint function 1 arg
The ordinary print functions in vsl fit as much on a line as they can. In
contrast prettyprint attempts to make its output more human-readable
by indenting everything in a systematic manner. Su of you want to print out
some Lisp code in a format where it is easier to read it may be useful.

prin function 1 arg
The family of print functions supplied with vsl consists of prin, princ,
print and printc. The basic behaviour of each is that they print their
argument to the current output stream. The versions with a “c” omit any
escape marks, and when printing strings do not print quote marks, and so
the output is perhaps nice for a human reader but could not be presented
back to Lisp. The ones without a “c” insert escapes (exclamation marks) in
names that include characters other than letters and digits, and do put quote
marks around strings. The versions with a “t” terminate the output line
after displaying their argument, so that a sequence of calls to prin display
all the values on one line, while print puts each Lisp form on a separate
line. See terpri and wrs.

princ function 1 arg
See prin.

21

print function 1 arg
See prin.

printc function 1 arg
See prin.

prog special form
prog feels like an archaic feature inherited from the early days of Lisp, amd
provides a range of capabilities. Firstly it itroduces some local variables,
then it allows for the sequential execution of a sequence of Lisp forms, with
a labels and a go statement to provide control. Finally a prog block only
returns a non-nil value if the return function is called within it to provide
one. Here is an illustration of the use of these to compute and print some
Fibonacci numbers and then return the symbol finished

(prog (a b n c)
(setq a 0 b 1 n 0)

top(when (greaterp n 10) (return ’finished))
(setq c b b (print (plus a b)) a c n (add1 n))
(go top))

progn special form
There are a number of contexts in Lisp where you can write a sequence of
expressions and these are evaluated in turn with the result of the final one as
the overall result. progn can provide this capability in any other situation
where it is useful.

psetq macro
See tx setq, but psetq arranges to evaluate all the new values before up-
dating any of the variables. A typical use of it would be to exchange the
values in two variables, as in (psetq a b b a).

put function 3 args
See get and deflist.

puthash function 3 args
See mkhash, gethash and remhash.

putv function 3 args
See mkvect and getvec.

quote special form
Normally each sub-part of a Lisp program will be evaluated – that is to say
treated as program not data. The special form quote protects its argument

22

from evaluation and so is used when you wish to specify data. This is so
common and so important that Lisp provides special syntax for it. A Lisp
expression preceeded by a single quote mark ’ is expanded into an appli-
cation of the quote function. Thus ’(a b c) means exactly the sane as
(quote (a b c)).

quotient function 2 args
Form the quotient of two numeric arguments.

rassoc function 2 args
rassoc is just like assoc except that it looks for a match against the
second component of one of the pairs in a list rather than the first. So it is a
sort of reversed-assoc. Thus (rassoc 2 ’((a . 1) (b . 2)
(c . 3))) returns (b . 2).

rdf function 1 arg
rdf reads and interprets all the Lisp code in the file whose name it is given
as an argument.

rds function 1 arg
To read data from a file you first open the file (using open) then select it
as the current input stream using rds. A call to rds returns the previously
selected input stream, and very often you will want to save that so you
can restore it later. A reasonably complete (and slightly cautious) example
would be

(let* ((instream (open "filename" ’input))
(oldstream (rds instream)))

(errorset ’(process (read)) t t)
(rds oldstream)
(close instream))

This shows saving the existing input stream and restoring it at the end. It
uses errorset to ensure that this happens even if processing the input
from the file fails.

read function 0 args
This reads a full Lisp object from the current input stream (which is by
default from the keyboard, but can be changed using rds). The item can be
a symbol, a number, a string or a list. It can also start with a quote mark or
backquote. The function read is the one that is normally used when Lisp
wants to grab input from the user, so the standard Lisp top level behaviour
is as if it were obeying (while t (print (eval (read)))). If
read finds the end of an input file it returns !eof !.

23

readch function 0 args
This reads a single character, returning a Lisp symbol that has that character
as its name. If readch finds the end of an input file it returns !eof !.

readline function 0 args
This reads a whole line and returns a symbol made up from the characters
found. If readlione finds the end of an input file it returns !eof !.

remainder function 2 args
This divides a pair of integers and returns the remainder.

remhash function 2 args
(remhash ’key table) removes a hash table entry previously inserted
by puthash.

remprop function 2 args
(remprop ’symbol ’indicator) removes a property previously set
up using put.

return function 1 arg
This is used with prog.

reverse function 1 arg
The ordinary function for reversing a list.

reversip function 1 arg
A function that reverses a list in a way that re-uses the existing cons-cells
so as to avoid any need to allocate fresh ones. This necessarily destroys the
input list by overwriting parts of it (using rplacd) so should only be used
when you are certain that nobody else needs that list.

rightshift function 2 args
See logand and friends. This shifts the bits in a number right, and at least
for positive values (rightshift a n) has the same effect as dividing
a by 2n.

rpar predefined variable
A predefined symbol whose value is the symbole whose name is a right
parenthesis. See also lpar.

rplaca function 2 args
If you have a cons-cell you can use rplaca to replace the car field,
rplacd to replace the cdr field or rplacw to replace both. In each case
the result of the function is the cons cell that has been updated. Use of

24

these functions can corrupt existing structures and create cyclic ones that
lead to all sorts of trouble, and so they should only be used when there is a
compelling reason to need a side-effect.

rplacd function 2 args
See rplaca.

rplacw function 2 args
See rplaca.

sassoc function 3 args
Here we have another variant on assoc. In fact sassoc is like assoc
except that it has an extra argument, and if the key it is looking for is not
found in the association list rather then returning a simple value nil it
returns the result from calling that final argument as a function with no
arguments. While this has a long history of being part of Lisp I suspect that
very few people use it these days.

set function 2 args
This behaves like setq except that rather than being a special form it takes
exactly two arguments, and treats the first as the name of a variable and the
second as a value to store into that variable. It is not very common to need
to make the name of a variable that you are assigning to a computed value
in this manner.

setq special form
When you have a Lisp variable you can change its value using setq. In
fact setq allows you to make several updates, one after another, in one
call. Its arguments alternate between being variable names and expressions
to compute values to set them to. So for instance (setq a 1 b 2) sets
a to 1 and b to 2. See psetq for a variant that does all the assignments in
parallel.

sin function 1 arg
This is the usual trigonometic function, accepting its argument in radianc.
See cos and sqrt.

spaces function 1 arg
(spaces n) prints n blanks.

sqrt function 1 arg
Computes the square root of a number, returning the result as a floating
point value whether the input was floating or an integer.

25

stop function 1 arg
To quit Lisp you can call stop giving it an argument that is used as a return
code from the system. This quits Lisp instantly and unconditionally and so
should be used with some consideration.

stringp function 1 arg
Tests if its argument is a string. See atom, numberp and symbolp.

sub1 function 1 arg
Subtracts one from its argument.

subr symbol
See expr.

subst function 3 args
If you have a list or set of nested lists then (subst a b c) replaces
every item in c that is equal to b with an a. In other words “substitute a for
b in c”. This only scans its input down to the level of atoms, so for instance
vectors and hash tables do not have their components or contents looked at.

symbolp function 1 arg
Test if an onject is a symbol.

t predefined variable
In Lisp the symbol nil is used for false. If there is no better non-nil value
to be used for true then t is used, and the symbol t starts off as a variable
that has itself as its value.

tab predefined variable
A symbol whose initial value is a tab character. See blank.

terpri function 0 args
This TERminates the PRInt Line. It is equivalent to (princ !eol!).

time function 0 args
If you wish to measure the amount of CPU time that some calculation takes
then you can use (time) to read a timer both before and after. The differ-
ence between the two values will be the processor time used, measured in
milliseconds.

times special form
Multiplies all of its arguments together.

26

trace function 1 arg
If you go (trace ’(f1 f2 ...)) then each of the functions f1,. . . is
marked for tracing. When this has happened vsl prints messages each time
the function concerned is called and each time it returns a result. This can
be a great help when your code is misbehaving: you trace a suitable set
of key functions and try some test examples. The extra output may be bulky
but with luck will allow you to understand exactly what is happening. When
fimished you can call (untrace ’(f1 f2 ...)) to restore things to
their normal state.

upbv function 1 arg
Given a vector, upbv returns the highest legal subscript that can be used
with it. See mkvect, putv and getv.

untrace function 1 arg
See trace.

vectorp function 1 arg
Tests if an object is a vector. See mkvect.

vsl symbol in lispsystem!*
A predefined variable lispsystem!* has items in it that can give in-
formation about the Lisp system that is in use. Here the only information
provided is the symbol vsl which (obviously) identifies the Lisp version.

while macro
while is a macro that is provided with a predicate and then a sequence of
expressions to be evaluated repeatedly for so long as the predicate yields
something non-nil.

(let ((n 1))
(while (lessp n 1000000)

(printc (list n "is too small"))
(setq n (times 3 n)))

n)

would return the first power of three that is at least a million, prionting
reports on its progress.

wrs function 1 arg
If you need to direct output to somewhere other than the terminal (for in-
stance to a file or pipe) then you can use wrs to select the relevant stream
as the one to print to. wrs returns the previously selected stream, and often

27

you will wish to save that so you can restore it later. See open, rds and
close.

zerop function 1 arg
Tests to see if its argument is 0 or 0.0. See onep.

28

Index
!*echo, 3
!$eof!$, 2
!$eol!$, 3
, (comma), 3
,@ (comma-at), 3
‘ (backquote), 3

add1, 4
and, 4
append, 4
apply, 4
assoc, 4
atan, 4
atom, 5

blank, 5

caaar, 5
caadr, 5
caar, 5
cadar, 5
caddr, 5
cadr, 5
car, 5
cdaar, 6
cdadr, 6
cdar, 6
cddar, 6
cdddr, 6
cddr, 6
cdr, 6
char!-code, 6
close, 6
code!-char, 6
compress, 6
cond, 7
cons, 7
copy, 7
cos, 7

de, 8
deflist, 8
df, 8
difference, 8
divide, 8
dm, 9
do, 9
do!*, 9
dolist, 9
dollar, 10
dotimes, 10

eq, 10
eqcar, 10
equal, 10
error, 11
errorset, 11
eval, 11
exp, 11
expand, 11
explode, 12
explodec, 12
expr, 12

f, 12
fexpr, 12
fix, 13
fixp, 13
float, 13
floatp, 13
fsubr, 13

gensym, 13
geq, 13
get, 13
getd, 14
gethash, 14
getv, 14
go, 14

29

greaterp, 14

if, 14
input, 14

lambda, 14
last, 15
lastcar, 15
leftshift, 15
length, 15
leq, 15
lessp, 15
let, 15
let!*, 16
lispsystem!*, 16
list, 17
list!*, 17
log, 17
logand, 17
lognot, 17
logor, 17
logxor, 17
lpar, 18

macro, 18
map, 18
mapc, 18
mapcan, 18
mapcar, 18
mapcon, 18
maplist, 18
minus, 19
minusp, 19
mkhash, 19
mkvect, 19

nconc, 19
neq, 19
nil, 19
not, 19
null, 20
numberp, 20

oblist, 20
onep, 20
open, 20
or, 20
output, 20

pipe, 21
plist, 21
plus, 21
preserve, 21
prettyprint, 21
prin, 21
princ, 21
print, 22
printc, 22
prog, 22
progn, 22
psetq, 22
put, 22
puthash, 22
putv, 22

quote, 22
quotient, 23

rassoc, 23
rdf, 23
rds, 23
read, 23
readch, 24
readline, 24
remainder, 24
remhash, 24
remprop, 24
replacw, 25
return, 24
reverse, 24
reversip, 24
rightshift, 24
rpar, 24
rplaca, 24
rplacd, 25

30

sassoc, 25
set, 25
setq, 25
sin, 25
spaces, 25
sqrt, 25
stop, 26
stringp, 26
sub1, 26
subr, 26
subst, 26
symbolp, 26

t, 26
tab, 26
terpri, 26
time, 26
times, 26
trace, 27

untrace, 27
upbv, 27

vectorp, 27
vsl, 27

while, 27
wrs, 27

zerop, 28

31

