pyspark.ml.functions.
vector_to_array
Converts a column of MLlib sparse/dense vectors into a column of dense arrays.
New in version 3.0.0.
pyspark.sql.Column
Input column
The data type of the output array. Valid values: “float64” or “float32”.
The converted column of dense arrays.
Examples
>>> from pyspark.ml.linalg import Vectors >>> from pyspark.ml.functions import vector_to_array >>> from pyspark.mllib.linalg import Vectors as OldVectors >>> df = spark.createDataFrame([ ... (Vectors.dense(1.0, 2.0, 3.0), OldVectors.dense(10.0, 20.0, 30.0)), ... (Vectors.sparse(3, [(0, 2.0), (2, 3.0)]), ... OldVectors.sparse(3, [(0, 20.0), (2, 30.0)]))], ... ["vec", "oldVec"]) >>> df1 = df.select(vector_to_array("vec").alias("vec"), ... vector_to_array("oldVec").alias("oldVec")) >>> df1.collect() [Row(vec=[1.0, 2.0, 3.0], oldVec=[10.0, 20.0, 30.0]), Row(vec=[2.0, 0.0, 3.0], oldVec=[20.0, 0.0, 30.0])] >>> df2 = df.select(vector_to_array("vec", "float32").alias("vec"), ... vector_to_array("oldVec", "float32").alias("oldVec")) >>> df2.collect() [Row(vec=[1.0, 2.0, 3.0], oldVec=[10.0, 20.0, 30.0]), Row(vec=[2.0, 0.0, 3.0], oldVec=[20.0, 0.0, 30.0])] >>> df1.schema.fields [StructField(vec,ArrayType(DoubleType,false),false), StructField(oldVec,ArrayType(DoubleType,false),false)] >>> df2.schema.fields [StructField(vec,ArrayType(FloatType,false),false), StructField(oldVec,ArrayType(FloatType,false),false)]