DataFrame.
to_parquet
Write the DataFrame out as a Parquet file or directory.
Path to write to.
Python write mode, default ‘w’.
Note
mode can accept the strings for Spark writing mode. Such as ‘append’, ‘overwrite’, ‘ignore’, ‘error’, ‘errorifexists’.
‘append’ (equivalent to ‘a’): Append the new data to existing data.
‘overwrite’ (equivalent to ‘w’): Overwrite existing data.
‘ignore’: Silently ignore this operation if data already exists.
‘error’ or ‘errorifexists’: Throw an exception if data already exists.
Names of partitioning columns
Compression codec to use when saving to file. If None is set, it uses the value specified in spark.sql.parquet.compression.codec.
Column names to be used in Spark to represent pandas-on-Spark’s index. The index name in pandas-on-Spark is ignored. By default the index is always lost.
All other options passed directly into Spark’s data source.
See also
read_parquet
DataFrame.to_delta
DataFrame.to_table
DataFrame.to_spark_io
Notes
pandas API on Spark writes Parquet files into the directory, path, and writes multiple part files in the directory unlike pandas. pandas API on Spark respects HDFS’s property such as ‘fs.default.name’.
Examples
>>> df = ps.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3
>>> df.to_parquet('%s/to_parquet/foo.parquet' % path, partition_cols='date')
>>> df.to_parquet( ... '%s/to_parquet/foo.parquet' % path, ... mode = 'overwrite', ... partition_cols=['date', 'country'])