Network Working Group F. Gont
Internet-Draft SI6 Networks / UTN-FRH
Intended status: Informational I. Arce
Expires: January 27, 2017 Fundacion Sadosky
July 26, 2016
Unfortunate History of Transient Numeric Identifiers
draft-gont-numeric-ids-history-01
Abstract
This document performs an analysis of the security and privacy
implications of different types of "numeric identifiers" used in IETF
protocols, and tries to categorize them based on their
interoperability requirements and the associated failure severity
when such requirements are not met. It describes a number of
algorithms that have been employed in real implementations to meet
such requirements and analyzes their security and privacy properties.
Additionally, it provides advice on possible algorithms that could be
employed to satisfy the interoperability requirements of each
identifier type, while minimizing the security and privacy
implications, thus providing guidance to protocol designers and
protocol implementers. Finally, it provides recommendations for
future protocol specifications regarding the specification of the
aforementioned numeric identifiers.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 27, 2017.
Gont & Arce Expires January 27, 2017 [Page 1]
Internet-Draft Predictable Numeric IDs July 2016
Copyright Notice
Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
This document may not be modified, and derivative works of it may not
be created, and it may not be published except as an Internet-Draft.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 4
3. Threat Model . . . . . . . . . . . . . . . . . . . . . . . . 5
4. IPv4/IPv6 Identification . . . . . . . . . . . . . . . . . . 5
5. TCP Initial Sequence Numbers (ISNs) . . . . . . . . . . . . . 8
6. IPv6 Interface Identifiers (IIDs) . . . . . . . . . . . . . . 9
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
8. Security Considerations . . . . . . . . . . . . . . . . . . . 12
9. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 12
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.1. Normative References . . . . . . . . . . . . . . . . . . 12
10.2. Informative References . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 21
1. Introduction
Network protocols employ a variety of numeric identifiers for
different protocol entities, ranging from DNS Transaction IDs (TxIDs)
to transport protocol numbers (e.g. TCP ports) or IPv6 Interface
Identifiers (IIDs). These identifiers usually have specific
properties that must be satisfied such that they do not result in
negative interoperability implications (e.g. uniqueness during a
specified period of time), and associated failure severities when
such properties are not met, ranging from soft to hard failures.
For more than 30 years, a large number of implementations of the TCP/
IP protocol suite have been subject to a variety of attacks, with
effects ranging from Denial of Service (DoS) or data injection, to
Gont & Arce Expires January 27, 2017 [Page 2]
Internet-Draft Predictable Numeric IDs July 2016
information leakage that could be exploited for pervasive monitoring
[RFC7528]. The root of these issues has been, in many cases, the
poor selection of identifiers in such protocols, usually as a result
of an insufficient or misleading specification. While it is
generally trivial to identify an algorithm that can satisfy the
interoperability requirements for a given identifier, there exists
practical evidence that doing so without negatively affecting the
security and/or privacy properties of the aforementioned protocols is
prone to error.
For example, implementations have been subject to security and/or
privacy issues resulting from:
o Predictable TCP Initial Sequence Numbers (ISNs) (see e.g.
[Morris1985])
o Predictable ephemeral transport protocol numbers (see e.g.
[RFC6056] and [Silbersack2005])
o Predictable IPv4 or IPv6 Fragment Identifiers (see e.g.
[RFC5722], [RFC6274], and [RFC7739])
o Predictable IPv6 IIDs (see e.g. [RFC7721] and [RFC7707])
o Predictable DNS TxIDs
Recent history indicate that when new protocols are standardized or
new protocol implementations are produced, the security and privacy
properties of the associated identifiers tend to be overlooked and
inappropriate algorithms to generate identifier values are either
suggested in the specification or selected by implementers.
This document contains a non-exhaustive timeline of vulnerability
disclosures related to some sample transient numeric identifiers and
other work that has led to advances in this area, with the goal of
illustrating that:
o Vulnerabilities related to how the values for some identifiers are
generated and assigned have affected implementations for an
extremely long period of time.
o Such vulnerabilities, even when addressed for a given protocol
version, were later reintroduced in new versions or new
implementations of the same protocol.
o Standardization efforts that discuss and provide advice in this
area can have a positive effect on protocol specifications and
protocol implementations.
Gont & Arce Expires January 27, 2017 [Page 3]
Internet-Draft Predictable Numeric IDs July 2016
Other related documents ([I-D.gont-numeric-ids-generation] and
[I-D.gont-numeric-ids-sec-considerations]) provide guidance in this
area.
2. Terminology
Identifier:
A data object in a protocol specification that can be used to
definitely distinguish a protocol object (a datagram, network
interface, transport protocol endpoint, session, etc) from all
other objects of the same type, in a given context. Identifiers
are usually defined as a series of bits and represented using
integer values. We note that different identifiers may have
additional requirements or properties depending on their specific
use in a protocol. We use the term "identifier" as a generic term
to refer to any data object in a protocol specification that
satisfies the identification property stated above.
Failure Severity:
The consequences of a failure to comply with the interoperability
requirements of a given identifier. Severity considers the worst
potential consequence of a failure, determined by the system
damage and/or time lost to repair the failure. In this document
we define two types of failure severity: "soft" and "hard".
Hard Failure:
A hard failure is a non-recoverable condition in which a protocol
does not operate in the prescribed manner or it operates with
excessive degradation of service. For example, an established TCP
connection that is aborted due to an error condition constitutes,
from the point of view of the transport protocol, a hard failure,
since it enters a state from which normal operation cannot be
recovered.
Soft Failure:
A soft failure is a recoverable condition in which a protocol does
not operate in the prescribed manner but normal operation can be
resumed automatically in a short period of time. For example, a
simple packet-loss event that is subsequently recovered with a
retransmission can be considered a soft failure.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
Gont & Arce Expires January 27, 2017 [Page 4]
Internet-Draft Predictable Numeric IDs July 2016
3. Threat Model
Throughout this document, we assume an attacker does not have
physical or logical device to the device(s) being attacked. We
assume the attacker can simply send any traffic to the target
devices, to e.g. sample identifiers employed by such devices.
4. IPv4/IPv6 Identification
This section presents the timeline of the Identification field both
for IPv4 and for IPv6. The reason for presenting both cases in the
same section is so that it becomes evident that, while the
Identification value serves the same purpose in both IPv4 and IPv6,
the work and research done for the IPv4 case did not affect the IPv6
specifications or implementations.
The IPv4 Identification value is specified in [RFC0791], which
specifies the interoperability requirements for the Identification
field: the sender must choose the Identification field to be unique
for a given source address, destination address, and protocol for the
time the datagram (or any fragment of it) could be alive in the
internet. It suggests that a node may keep "a table of Identifiers,
one entry for each destination it has communicated with in the last
maximum packet lifetime for the internet", and suggests that "since
the Identifier field allows 65,536 different values, some host may be
able to simply use unique identifiers independent of destination".
The above may be read as a suggestion to employ per-destination or
global counters for the generation of Identification values. While
[RFC0791] does not suggest any flawed algorithm for the generation of
Identification values, it misses a discussion of the security and
privacy implications of employing predictable. This has resulted in
virtually all IP4 implementations generating predictable fragment
Identification values by means of a global counter, at least at some
point during the lifetime of such implementations.
The IPv6 Identification is specified in [RFC2460]. It serves the
same purpose as its IPv4 counterpart, with the only difference
residing in the length of the corresponding field, and that while the
IPv4 Identification field is part of the base IPv4 header, in the
IPv6 case it is part of the Fragment header (which may or may not be
present in an IPv6 packet). [RFC2460] states, in Section 4.5, that
the Identification must be different than that of any other
fragmented packet sent recently (within the maximum likely lifetime
of a packet) with the same Source Address and Destination Address.
Subsequently, it notes that this requirement can be met by means of a
wrap-around 32-bit counter that is incremented each time a packet
must be fragmented, and that it is an implementation choice whether
to use a global or a per-destination counter. Thus, the
Gont & Arce Expires January 27, 2017 [Page 5]
Internet-Draft Predictable Numeric IDs July 2016
implementation of the IPv6 Identification is similar to that of the
IPv4 case, with the only difference that in the IPv6 case the
suggestions to use simple counters is more explicit.
September 1981:
[RFC0791] specifies the interoperability requirements for IPv4
Identification value, but does not specify any requirements in the
area of security and privacy.
December 1998:
[Sanfilippo1998a] finds that predictable IPv4 Identification
values (generated by most popular implementations) can be
leveraged to count the number of packets sent by a target node.
[Sanfilippo1998b] explains how to leverage the same vulnerability
to implement a port-scanning technique known as dumb/idle scan. A
tool that implements this attack is publicly released.
December 1998:
[RFC2460] suggests that a global counter be used to generate the
IPv6 Identification value.
November 1999:
[Sanfilippo1999] discusses how to leverage predictable IPv4
Identification to uncover the rules of a number of firewalls.
November 1999:
[Bellovin2002] explains how the IPv4 Identification field can be
exploited to count the number of systems behind a NAT.
December 2003:
[Zalewski2003] explains a technique to perform TCP data injection
attack based on predictable IPv4 identification values which
requires less effort than TCP injection attacks performed with
bare TCP packets.
November 2005:
[Silbersack2005] discusses shortcoming in a number of techniques
to mitigate predictable IPv4 Identification values.
October 2007:
[Klein2007] describes a weakness in the pseudo random number
generator (PRNG) in use for the generation of the IP
Identification by a number of operating systems.
June 2011:
[Gont2011] describes how to perform idle scan attacks in IPv6.
November 2011:
Gont & Arce Expires January 27, 2017 [Page 6]
Internet-Draft Predictable Numeric IDs July 2016
Linux mitigates predictable IPv6 Identification values
[RedHat2011] [SUSE2011] [Ubuntu2011].
December 2011:
[draft-gont-6man-predictable-fragment-id-00] describes the
security implications of predictable IPv6 Identification values,
and possible mitigations. This document is published on the
Standards Track, meaning to formally update [RFC2460], to
introduce security and privacy requirements on IPv6 Identification
values.
May 2012:
[Gont2012] notes that some major IPv6 implementations still employ
predictable IPv6 Identification values.
March 2013:
The 6man WG adopts [I-D.gont-6man-predictable-fragment-id], but
changes the track to "BCP" (while still formally updating
[RFC2460]), publishing the resulting document as
[draft-ietf-6man-predictable-fragment-id-00].
June 2013:
A patch that implements IPv6-based idle-scan in nmap is submitted
[Morbitzer2013].
December 2014:
The 6man WG changes the status of the aforementioned IETF Internet
Draft to "Informational" and publishes it as
[draft-ietf-6man-predictable-fragment-id-02]. As a result, it no
longer formally updates [RFC2460].
June 2015:
[draft-ietf-6man-predictable-fragment-id-08] notes that some
popular host and router implementations still employ predictable
IPv6 Identification values.
February 2016:
[RFC7739] (based on [I-D.ietf-6man-predictable-fragment-id])
analyzes the security and privacy implications of predictable IPv6
Identification values, and provides guidance for selecting an
algorithm to generate such values. However, being published on
the Informational track, it does not formally update [RFC2460].
June 2016:
[I-D.ietf-6man-rfc2460bis], revision of [RFC2460], removes the
suggestion from RFC2460 to employ a global counter for the
generation of IPv6 Identification values, but does not specify any
Gont & Arce Expires January 27, 2017 [Page 7]
Internet-Draft Predictable Numeric IDs July 2016
security and privacy requirements for the IPv6 Identification
value.
5. TCP Initial Sequence Numbers (ISNs)
[RFC0793] suggests that the choice of the ISN of a connection is not
arbitrary, but aims to reduce the chances of a stale segment from
being accepted by a new incarnation of a previous connection.
[RFC0793] suggests the use of a global 32-bit ISN generator that is
incremented by 1 roughly every 4 microseconds. However, as a matter
of fact, protection against stale segments from a previous
incarnation of the connection is enforced by preventing the creation
of a new incarnation of a previous connection before 2*MSL have
passed since a segment corresponding to the old incarnation was last
seen (where "MSL" is the "Maximum Segment Lifetime" [RFC0793]). This
is accomplished by the TIME-WAIT state and TCP's "quiet time" concept
(see Appendix B of [RFC1323]). Based on the assumption that ISNs are
monotonically increasing across connections, many stacks (e.g.,
4.2BSD-derived) use the ISN of an incoming SYN segment to perform
"heuristics" that enable the creation of a new incarnation of a
connection while the previous incarnation is still in the TIME-WAIT
state (see p. 945 of [Wright1994]). This avoids an interoperability
problem that may arise when a node establishes connections to a
specific TCP end-point at a high rate [Silbersack2005].
In the case of TCP, the interoperability requirements for the ISNs
are probably not clearly spelled out as one would expect.
Furthermore, the suggestion of employing a global counter in
[RFC0793] leads to negative security and privacy implications.
September 1981:
[RFC0793], suggests the use of a global 32-bit ISN generator,
whose lower bit is incremented roughly every 4 microseconds.
However, such an ISN generator makes it trivial to predict the ISN
that a TCP will use for new connections, thus allowing a variety
of attacks against TCP.
February 1985:
[Morris1985] was the first to describe how to exploit predictable
TCP ISNs for forging TCP connections that could then be leveraged
for trust relationship exploitation.
April 1989:
[Bellovin1989] discussed the security implications of predictable
ISNs (along with a range of other protocol-based vulnerabilities).
February 1995:
Gont & Arce Expires January 27, 2017 [Page 8]
Internet-Draft Predictable Numeric IDs July 2016
[Shimomura1995] reported a real-world exploitation of the attack
described in 1985 (ten years before) in [Morris1985].
May 1996:
[RFC1948] was the first IETF effort, authored by Steven Bellovin,
to address predictable TCP ISNs. The same concept specified in
this document for TCP ISNs was later proposed for TCP ephemeral
ports [RFC6056], TCP Timestamps, and eventually even IPv6
Interface Identifiers [RFC7217].
March 2001:
[Zalewski2001] provides a detailed analysis of statistical
weaknesses in some ISN generators, and includes a survey of the
algorithms in use by popular TCP implementations.
May 2001:
Vulnerability advisories [CERT2001] [USCERT2001] are released
regarding statistical weaknesses in some ISN generators, affecting
popular TCP/IP implementations.
March 2002:
[Zalewski2002] updates and complements [Zalewski2001]. It
concludes that "while some vendors [...] reacted promptly and
tested their solutions properly, many still either ignored the
issue and never evaluated their implementations, or implemented a
flawed solution that apparently was not tested using a known
approach" [Zalewski2002].
February 2012:
[RFC6528], after 27 years of Morris' original work [Morris1985],
formally updates [RFC0793] to mitigate predictable TCP ISNs.
August 2014:
[I-D.eddy-rfc793bis-04], the upcoming revision of the core TCP
protocol specification, incorporates the algorithm specified in
[RFC6528] as the recommended algorithm for TCP ISN generation.
6. IPv6 Interface Identifiers (IIDs)
IPv6 Interface Identifiers can be generated in multiple ways: SLAAC
[RFC4862], DHCPv6 [RFC3315], and manual configuration. This section
focuses on Interface Identifiers resulting from SLAAC.
The Interface Identifier of stable (traditional) IPv6 addresses
resulting from SLAAC have traditionally resulted in the underlying
link-layer address being embedded in the IID. IPv6 addresses
resulting from SLAAC are currently required to employ Modified EUI-64
format identifiers, which essentially embed the underlying link-layer
Gont & Arce Expires January 27, 2017 [Page 9]
Internet-Draft Predictable Numeric IDs July 2016
address of the corresponding network interface. At the time,
employing the underlying link-layer address for the IID was seen as a
convenient way to obtain a unique address. However, recent awareness
about the security and privacy implications of this approach, and
thus ongoing work [I-D.ietf-6man-default-iids] at the IETF is in the
process of addressing this problem.
January 1997:
[RFC2073] specifies the syntax of IPv6 global addresses (referred
to as "An IPv6 Provider-Based Unicast Address Format" at the
time), consistent with the IPv6 addressing architecture specified
in [RFC1884]. Hosts are recommended to "generate addresses using
link-specific addresses as Interface ID such as 48 bit IEEE-802
MAC addresses".
July 1998:
[RFC2374] specifies "An IPv6 Aggregatable Global Unicast Address
Format" (obsoleting [RFC2373]) changing the size of the Interface
ID to 64 bits, and specifies that that IIDs must be constructed in
IEEE EUI-64 format. How such identifiers are constructed becomes
specified in the appropriate "IPv6 over " specification such
as "IPv6 over Ethernet".
January 2001:
[RFC3041] recognizes the problem of network activity correlation,
and specifies temporary addresses. Temporary addresses are to be
used along with stable addresses.
August 2003:
[RFC3587] obsoletes [RFC2374], making the TLA/NLA structure
historic. The syntax and recommendations for the traditional
stable IIDs remain unchanged, though.
February 2006:
[RFC4291] is published as the latest "IP Version 6 Addressing
Architecture", requiring the IIDs of the traditional (stable)
autoconfigured addresses to employ the Modified EUI-64 format.
The details of constructing such interface identifiers are defined
in the appropriate "IPv6 over " specifications.
March 2008:
[RFC5157] provides hints regarding how patterns in IPv6 addresses
could be leveraged for the purpose of address scanning.
December 2011:
[draft-gont-6man-stable-privacy-addresses-00] notes that the
traditional scheme for generating stable addresses allows for
address scanning, and also does not prevent active node tracking.
Gont & Arce Expires January 27, 2017 [Page 10]
Internet-Draft Predictable Numeric IDs July 2016
It also specifies an alternative algorithm meant to replace IIDs
based on Modified EUI-64 format identifiers.
November 2012:
The 6man WG adopts [I-D.gont-6man-stable-privacy-addresses] as a
working group item (as
[draft-ietf-6man-stable-privacy-addresses-00]). However, the
specified algorithm no longer formally replaces the Modified
EUI-64 format identifiers.
February 2013:
An address-scanning tool (scan6 of [IPv6-Toolkit]) that leverages
IPv6 address patterns is released [Gont2013].
July 2013:
[I-D.cooper-6man-ipv6-address-generation-privacy] elaborates on
the security and privacy implications on all known algorithms for
generating IPv6 IIDs.
January 2014:
The 6man wg publishes [draft-ietf-6man-default-iids-00]
("Recommendation on Stable IPv6 Interface Identifiers"),
recommending [I-D.ietf-6man-stable-privacy-addresses] for the
generation of stable addresses.
April 2014:
[RFC7217] is published, specifying "A Method for Generating
Semantically Opaque Interface Identifiers with IPv6 Stateless
Address Autoconfiguration (SLAAC)" as an alternative to (but *not*
replacement of) Modified EUI-64 format IIDs.
March 2016:
[RFC7707] (formerly [I-D.gont-opsec-ipv6-host-scanning] and later
[I-D.ietf-opsec-ipv6-host-scanning]), about "Network
Reconnaissance in IPv6 Networks", is published.
March 2016:
[RFC7721] (formerly
[I-D.cooper-6man-ipv6-address-generation-privacy] and later
[I-D.ietf-6man-ipv6-address-generation-privacy]), about "Security
and Privacy Considerations for IPv6 Address Generation
Mechanisms", is published.
May 2016:
[draft-gont-6man-non-stable-iids-00] is published, with the goal
of specifying requirements for non-stable addresses, and updating
[RFC4941] such that use of only temporary addresses is allowed.
Gont & Arce Expires January 27, 2017 [Page 11]
Internet-Draft Predictable Numeric IDs July 2016
May 2016:
[draft-gont-6man-address-usage-recommendations-00] is published,
providing an analysis of how different aspects on an address (from
stability to usage mode) affect their corresponding security and
privacy implications, and meaning to eventually provide advice in
this area.
7. IANA Considerations
There are no IANA registries within this document. The RFC-Editor
can remove this section before publication of this document as an
RFC.
8. Security Considerations
The entire document is about the security and privacy implications of
transient numeric identifiers.
9. Acknowledgements
The authors would like to thank (in alphabetical order) Steven
Bellovin, Dave Crocker, Joseph Lorenzo Hall, Christian Huitema, Gre
Norcie, and Martin Thomson, for providing valuable comments on
[I-D.gont-predictable-numeric-ids], on which this document is based.
Section 5 of this document borrows text from [RFC7528], authored by
Fernando Gont and Steven Bellovin.
10. References
10.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.
[RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,
.
[RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
2012, .
[RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
DOI 10.17487/RFC0791, September 1981,
.
Gont & Arce Expires January 27, 2017 [Page 12]
Internet-Draft Predictable Numeric IDs July 2016
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
December 1998, .
[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomness Requirements for Security", BCP 106, RFC 4086,
DOI 10.17487/RFC4086, June 2005,
.
[RFC5722] Krishnan, S., "Handling of Overlapping IPv6 Fragments",
RFC 5722, DOI 10.17487/RFC5722, December 2009,
.
[RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
RFC 6151, DOI 10.17487/RFC6151, March 2011,
.
[RFC7217] Gont, F., "A Method for Generating Semantically Opaque
Interface Identifiers with IPv6 Stateless Address
Autoconfiguration (SLAAC)", RFC 7217,
DOI 10.17487/RFC7217, April 2014,
.
[RFC3041] Narten, T. and R. Draves, "Privacy Extensions for
Stateless Address Autoconfiguration in IPv6", RFC 3041,
DOI 10.17487/RFC3041, January 2001,
.
[RFC2073] Rekhter, Y., Lothberg, P., Hinden, R., Deering, S., and J.
Postel, "An IPv6 Provider-Based Unicast Address Format",
RFC 2073, DOI 10.17487/RFC2073, January 1997,
.
[RFC2374] Hinden, R., O'Dell, M., and S. Deering, "An IPv6
Aggregatable Global Unicast Address Format", RFC 2374,
DOI 10.17487/RFC2374, July 1998,
.
[RFC3587] Hinden, R., Deering, S., and E. Nordmark, "IPv6 Global
Unicast Address Format", RFC 3587, DOI 10.17487/RFC3587,
August 2003, .
[RFC1884] Hinden, R., Ed. and S. Deering, Ed., "IP Version 6
Addressing Architecture", RFC 1884, DOI 10.17487/RFC1884,
December 1995, .
Gont & Arce Expires January 27, 2017 [Page 13]
Internet-Draft Predictable Numeric IDs July 2016
[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, DOI 10.17487/RFC4291, February
2006, .
[RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
Extensions for Stateless Address Autoconfiguration in
IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
.
[RFC2373] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 2373, DOI 10.17487/RFC2373, July 1998,
.
[RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
Address Autoconfiguration", RFC 4862,
DOI 10.17487/RFC4862, September 2007,
.
[RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
C., and M. Carney, "Dynamic Host Configuration Protocol
for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
2003, .
[RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
for High Performance", RFC 1323, DOI 10.17487/RFC1323, May
1992, .
10.2. Informative References
[RFC5157] Chown, T., "IPv6 Implications for Network Scanning",
RFC 5157, DOI 10.17487/RFC5157, March 2008,
.
[I-D.gont-opsec-ipv6-host-scanning]
Gont, F. and T. Chown, "Network Reconnaissance in IPv6
Networks", draft-gont-opsec-ipv6-host-scanning-02 (work in
progress), October 2012.
[I-D.ietf-opsec-ipv6-host-scanning]
Gont, F. and T. Chown, "Network Reconnaissance in IPv6
Networks", draft-ietf-opsec-ipv6-host-scanning-08 (work in
progress), August 2015.
[I-D.gont-6man-stable-privacy-addresses]
Gont, F., "A method for Generating Stable Privacy-Enhanced
Addresses with IPv6 Stateless Address Autoconfiguration
(SLAAC)", draft-gont-6man-stable-privacy-addresses-01
(work in progress), March 2012.
Gont & Arce Expires January 27, 2017 [Page 14]
Internet-Draft Predictable Numeric IDs July 2016
[I-D.ietf-6man-stable-privacy-addresses]
Gont, F., "A Method for Generating Semantically Opaque
Interface Identifiers with IPv6 Stateless Address
Autoconfiguration (SLAAC)", draft-ietf-6man-stable-
privacy-addresses-17 (work in progress), January 2014.
[I-D.cooper-6man-ipv6-address-generation-privacy]
Cooper, A., Gont, F., and D. Thaler, "Privacy
Considerations for IPv6 Address Generation Mechanisms",
draft-cooper-6man-ipv6-address-generation-privacy-00 (work
in progress), July 2013.
[I-D.ietf-6man-ipv6-address-generation-privacy]
Cooper, A., Gont, F., and D. Thaler, "Privacy
Considerations for IPv6 Address Generation Mechanisms",
draft-ietf-6man-ipv6-address-generation-privacy-08 (work
in progress), September 2015.
[Gont2013]
Gont, F., "Beta release of the SI6 Network's IPv6 Toolkit
(help wanted!)", Message posted to the IPv6 Hackers
mailing-list Message-ID:
<51184548.3030105@si6networks.com>, 1995,
.
[IPv6-Toolkit]
SI6 Networks, "SI6 Networks' IPv6 Toolkit",
.
[draft-gont-6man-stable-privacy-addresses-00]
Gont, F., "A method for Generating Stable Privacy-Enhanced
Addresses with IPv6 Stateless Address Autoconfiguration
(SLAAC)", draft-gont-6man-stable-privacy-addresses-00
(work in progress), December 2011.
[draft-ietf-6man-stable-privacy-addresses-00]
Gont, F., "A method for Generating Stable Privacy-Enhanced
Addresses with IPv6 Stateless Address Autoconfiguration
(SLAAC)", draft-ietf-6man-stable-privacy-addresses-00
(work in progress), May 2012.
[draft-gont-6man-address-usage-recommendations-00]
Gont, F. and W. Liu, "IPv6 Address Usage Recommendations",
draft-gont-6man-address-usage-recommendations-00 (work in
progress), May 2016.
Gont & Arce Expires January 27, 2017 [Page 15]
Internet-Draft Predictable Numeric IDs July 2016
[draft-gont-6man-non-stable-iids-00]
Gont, F. and W. Liu, "Recommendation on Non-Stable IPv6
Interface Identifiers", draft-gont-6man-non-stable-iids-00
(work in progress), May 2016.
[draft-ietf-6man-default-iids-00]
Gont, F., Cooper, A., Thaler, D., and W. Liu,
"Recommendation on Stable IPv6 Interface Identifiers",
draft-ietf-6man-default-iids-00 (work in progress), July
2014.
[RFC6274] Gont, F., "Security Assessment of the Internet Protocol
Version 4", RFC 6274, DOI 10.17487/RFC6274, July 2011,
.
[RFC7528] Higgs, P. and J. Piesing, "A Uniform Resource Name (URN)
Namespace for the Hybrid Broadcast Broadband TV (HbbTV)
Association", RFC 7528, DOI 10.17487/RFC7528, April 2015,
.
[RFC1948] Bellovin, S., "Defending Against Sequence Number Attacks",
RFC 1948, DOI 10.17487/RFC1948, May 1996,
.
[Wright1994]
Wright, G. and W. Stevens, "TCP/IP Illustrated, Volume 2:
The Implementation", Addison-Wesley, 1994.
[CPNI-TCP]
Gont, F., "Security Assessment of the Transmission Control
Protocol (TCP)", United Kingdom's Centre for the
Protection of National Infrastructure (CPNI) Technical
Report, 2009, .
[Zalewski2001]
Zalewski, M., "Strange Attractors and TCP/IP Sequence
Number Analysis", 2001,
.
[Zalewski2002]
Zalewski, M., "Strange Attractors and TCP/IP Sequence
Number Analysis - One Year Later", 2001,
.
Gont & Arce Expires January 27, 2017 [Page 16]
Internet-Draft Predictable Numeric IDs July 2016
[Bellovin1989]
Bellovin, S., "Security Problems in the TCP/IP Protocol
Suite", Computer Communications Review, vol. 19, no. 2,
pp. 32-48, 1989, .
[Joncheray1995]
Joncheray, L., "A Simple Active Attack Against TCP", Proc.
Fifth Usenix UNIX Security Symposium, 1995.
[Morris1985]
Morris, R., "A Weakness in the 4.2BSD UNIX TCP/IP
Software", CSTR 117, AT&T Bell Laboratories, Murray Hill,
NJ, 1985, .
[USCERT2001]
US-CERT, , "US-CERT Vulnerability Note VU#498440: Multiple
TCP/IP implementations may use statistically predictable
initial sequence numbers", 2001,
.
[CERT2001]
CERT, , "CERT Advisory CA-2001-09: Statistical Weaknesses
in TCP/IP Initial Sequence Numbers", 2001,
.
[Shimomura1995]
Shimomura, T., "Technical details of the attack described
by Markoff in NYT", Message posted in USENET's
comp.security.misc newsgroup Message-ID:
<3g5gkl$5j1@ariel.sdsc.edu>, 1995,
.
[I-D.eddy-rfc793bis-04]
Eddy, W., "Transmission Control Protocol Specification",
draft-eddy-rfc793bis-04 (work in progress), August 2014.
[RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
Protocol Port Randomization", BCP 156, RFC 6056,
DOI 10.17487/RFC6056, January 2011,
.
[RFC1035] Mockapetris, P., "Domain names - implementation and
specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
November 1987, .
Gont & Arce Expires January 27, 2017 [Page 17]
Internet-Draft Predictable Numeric IDs July 2016
[RFC7739] Gont, F., "Security Implications of Predictable Fragment
Identification Values", RFC 7739, DOI 10.17487/RFC7739,
February 2016, .
[RFC4963] Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
Errors at High Data Rates", RFC 4963,
DOI 10.17487/RFC4963, July 2007,
.
[Bellovin2002]
Bellovin, S., "A Technique for Counting NATted Hosts",
IMW'02 Nov. 6-8, 2002, Marseille, France, 2002.
[Fyodor2004]
Fyodor, , "Idle scanning and related IP ID games", 2004,
.
[Sanfilippo1998a]
Sanfilippo, S., "about the ip header id", Post to Bugtraq
mailing-list, Mon Dec 14 1998,
.
[Sanfilippo1998b]
Sanfilippo, S., "Idle scan", Post to Bugtraq mailing-list,
1998, .
[Sanfilippo1999]
Sanfilippo, S., "more ip id", Post to Bugtraq mailing-
list, 1999,
.
[Morbitzer2013]
Morbitzer, M., "[PATCH] TCP Idle Scan in IPv6", Message
posted to the nmap-dev mailing-list, 2013,
.
[Silbersack2005]
Silbersack, M., "Improving TCP/IP security through
randomization without sacrificing interoperability",
EuroBSDCon 2005 Conference, 2005,
.
[Zalewski2003]
Zalewski, M., "A new TCP/IP blind data injection
technique?", 2003,
.
Gont & Arce Expires January 27, 2017 [Page 18]
Internet-Draft Predictable Numeric IDs July 2016
[Klein2007]
Klein, A., "OpenBSD DNS Cache Poisoning and Multiple O/S
Predictable IP ID Vulnerability", 2007,
.
[Gont2011]
Gont, F., "Hacking IPv6 Networks (training course)", Hack
In Paris 2011 Conference Paris, France, June 2011.
[RedHat2011]
RedHat, , "RedHat Security Advisory RHSA-2011:1465-1:
Important: kernel security and bug fix update", 2011,
.
[Ubuntu2011]
Ubuntu, , "Ubuntu: USN-1253-1: Linux kernel
vulnerabilities", 2011,
.
[SUSE2011]
SUSE, , "SUSE Security Announcement: Linux kernel security
update (SUSE-SA:2011:046)", 2011,
.
[Gont2012]
Gont, F., "Recent Advances in IPv6 Security", BSDCan 2012
Conference Ottawa, Canada. May 11-12, 2012, May 2012.
[I-D.gont-6man-predictable-fragment-id]
Gont, F., "Security Implications of Predictable Fragment
Identification Values", draft-gont-6man-predictable-
fragment-id-03 (work in progress), January 2013.
[I-D.ietf-6man-predictable-fragment-id]
Gont, F., "Security Implications of Predictable Fragment
Identification Values", draft-ietf-6man-predictable-
fragment-id-10 (work in progress), October 2015.
[draft-ietf-6man-predictable-fragment-id-02]
Gont, F., "Security Implications of Predictable Fragment
Identification Values", draft-ietf-6man-predictable-
fragment-id-02 (work in progress), December 2014.
Gont & Arce Expires January 27, 2017 [Page 19]
Internet-Draft Predictable Numeric IDs July 2016
[draft-gont-6man-predictable-fragment-id-00]
Gont, F., "Security Implications of Predictable Fragment
Identification Values", draft-gont-6man-predictable-
fragment-id-00 (work in progress), December 2011.
[draft-ietf-6man-predictable-fragment-id-00]
Gont, F., "Security Implications of Predictable Fragment
Identification Values", draft-ietf-6man-predictable-
fragment-id-00 (work in progress), March 2013.
[draft-ietf-6man-predictable-fragment-id-08]
Gont, F., "Security Implications of Predictable Fragment
Identification Values", draft-ietf-6man-predictable-
fragment-id-08 (work in progress), June 2015.
[I-D.ietf-6man-default-iids]
Gont, F., Cooper, A., Thaler, D., and S. (Will),
"Recommendation on Stable IPv6 Interface Identifiers",
draft-ietf-6man-default-iids-13 (work in progress), July
2016.
[RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
Considerations for IPv6 Address Generation Mechanisms",
RFC 7721, DOI 10.17487/RFC7721, March 2016,
.
[RFC7707] Gont, F. and T. Chown, "Network Reconnaissance in IPv6
Networks", RFC 7707, DOI 10.17487/RFC7707, March 2016,
.
[I-D.gont-predictable-numeric-ids]
Gont, F. and I. Arce, "Security and Privacy Implications
of Numeric Identifiers Employed in Network Protocols",
draft-gont-predictable-numeric-ids-00 (work in progress),
February 2016.
[I-D.gont-numeric-ids-sec-considerations]
Gont, F. and I. Arce, "Security Considerations for
Transient Numeric Identifiers Employed in Network
Protocols", draft-gont-numeric-ids-sec-considerations-00
(work in progress), June 2016.
[I-D.gont-numeric-ids-generation]
Gont, F. and I. Arce, "On the Generation of Transient
Numeric Identifiers", draft-gont-numeric-ids-generation-00
(work in progress), July 2016.
Gont & Arce Expires January 27, 2017 [Page 20]
Internet-Draft Predictable Numeric IDs July 2016
[I-D.ietf-6man-rfc2460bis]
Deering, D. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", draft-ietf-6man-rfc2460bis-05 (work
in progress), June 2016.
Authors' Addresses
Fernando Gont
SI6 Networks / UTN-FRH
Evaristo Carriego 2644
Haedo, Provincia de Buenos Aires 1706
Argentina
Phone: +54 11 4650 8472
Email: fgont@si6networks.com
URI: http://www.si6networks.com
Ivan Arce
Fundacion Dr. Manuel Sadosky
Av. Cordoba 744 Piso 5 Oficina I
Ciudad Autonoma de Buenos Aires, Buenos Aires C1054AAT
Argentina
Phone: +54 11 4328 5164
Email: stic@fundacionsadosky.org.ar
URI: http://www.fundacionsadosky.org.ar
Gont & Arce Expires January 27, 2017 [Page 21]