cellar M. Niedermayer Internet-Draft July 7, 2016 Intended status: Standards Track Expires: January 8, 2017 FF Video Codec 1 draft-niedermayer-cellar-ffv1-00 Abstract This document defines FFV1, a lossless intra-frame video encoding format. FFV1 is designed to efficiently compress video data in a variety of pixel formats. Compared to uncompressed video, FFV1 offers storage compression, frame fixity, and self-description, which makes FFV1 useful as a preservation or intermediate video format. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on January 8, 2017. Copyright Notice Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Niedermayer Expires January 8, 2017 [Page 1] Internet-Draft FFV1 July 2016 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Notation and Conventions . . . . . . . . . . . . . . . . . . 3 2.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . 3 3. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1. Arithmetic operators . . . . . . . . . . . . . . . . . . 4 3.2. Assignment operators . . . . . . . . . . . . . . . . . . 4 3.3. Comparison operators . . . . . . . . . . . . . . . . . . 4 3.4. Mathematical functions . . . . . . . . . . . . . . . . . 5 3.5. Order of operation precedence . . . . . . . . . . . . . . 5 3.6. Range . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.7. Bitstream functions . . . . . . . . . . . . . . . . . . . 5 4. General Description . . . . . . . . . . . . . . . . . . . . . 6 4.1. Border . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.2. Median predictor . . . . . . . . . . . . . . . . . . . . 6 4.3. Context . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.4. Quantization . . . . . . . . . . . . . . . . . . . . . . 7 4.5. Colorspace . . . . . . . . . . . . . . . . . . . . . . . 7 4.5.1. JPEG2000-RCT . . . . . . . . . . . . . . . . . . . . 7 4.6. Coding of the sample difference . . . . . . . . . . . . . 8 4.6.1. Range coding mode . . . . . . . . . . . . . . . . . . 8 4.6.2. Huffman coding mode . . . . . . . . . . . . . . . . . 11 5. Bitstream . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1. Configuration Record . . . . . . . . . . . . . . . . . . 14 5.1.1. In AVI File Format . . . . . . . . . . . . . . . . . 15 5.1.2. In ISO/IEC 14496-12 (MP4 File Format) . . . . . . . . 15 5.1.3. In NUT File Format . . . . . . . . . . . . . . . . . 15 5.2. Frame . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.3. Slice . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.4. Slice Header . . . . . . . . . . . . . . . . . . . . . . 16 5.5. Slice Content . . . . . . . . . . . . . . . . . . . . . . 17 5.6. Line . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.7. Slice Footer . . . . . . . . . . . . . . . . . . . . . . 19 5.8. Parameters . . . . . . . . . . . . . . . . . . . . . . . 19 5.9. Quantization Tables . . . . . . . . . . . . . . . . . . . 24 5.9.1. Restrictions . . . . . . . . . . . . . . . . . . . . 25 6. Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1. Decoder implementation suggestions . . . . . . . . . . . 26 6.1.1. Multi-threading support and independence of slices . 26 7. Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . 26 8. ToDo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 27 9.1. References . . . . . . . . . . . . . . . . . . . . . . . 27 10. Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . 27 11.1. URIs . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 28 Niedermayer Expires January 8, 2017 [Page 2] Internet-Draft FFV1 July 2016 1. Introduction The FFV1 video codec is a simple and efficient lossless intra-frame only codec. The latest version of this document is available at This document assumes familiarity with mathematical and coding concepts such as Range coding and YCbCr colorspaces. 2. Notation and Conventions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [1]. 2.1. Definitions ESC An ESCape symbol to indicate that the symbol to be stored is too large for normal storage and that an alternate storage method. MSB Most Significant Bit, the bit that can cause the largest change in magnitude of the symbol. RCT Reversible Color Transform, a near linear, exactly reversible integer transform that converts between RGB and YCbCr representations of a sample. VLC Variable Length Code. RGB A reference to the method of storing the value of a sample by using three numeric values that represent Red, Green, and Blue. YCbCr A reference to the method of storing the value of a sample by using three numeric values that represent the luminance of the sample (Y) and the chrominance of the sample (Cb and Cr). TBA To Be Announced. Used in reference to the development of future iterations of the FFV1 specification. 3. Conventions Note: the operators and the order of precedence are the same as used in the C programming language Section 9.1. Niedermayer Expires January 8, 2017 [Page 3] Internet-Draft FFV1 July 2016 3.1. Arithmetic operators "a + b" means a plus b. "a - b" means a minus b. "-a" means negation of a. "a \* b" means a multiplied by b. "a / b" means a divided by b. "a & b" means bit-wise "and" of a and b. "a | b" means bit-wise "or" of a and b. "a >> b" means arithmetic right shift of two's complement integer representation of a by b binary digits. "a << b" means arithmetic left shift of two's complement integer representation of a by b binary digits. 3.2. Assignment operators "a = b" means a is assigned b. "a++" is equivalent to a = a + 1. "a-" is equivalent to a = a - 1. "a += b" is equivalent to a = a + b. "a -= b" is equivalent to a = a - b. 3.3. Comparison operators "a > b" means a is greater than b. "a >= b" means a is greater than or equal to b. "a < b" means a is less than b. "a <= b" means a is less than or equal b. "a == b" means a is equal to b. "a != b" means a is not equalto b. Niedermayer Expires January 8, 2017 [Page 4] Internet-Draft FFV1 July 2016 "a && b" means boolean logical "and" of a and b. "a || b" means boolean logical "or" of a and b. "!a" means boolean logical "not". "a ? b : c" if a is true, then b, otherwise c. 3.4. Mathematical functions $\lfloor a \rfloor$ the largest integer less than or equal to a $\lceil a \rceil$ the smallest integer greater than or equal to a 3.5. Order of operation precedence When order of precedence is not indicated explicitly by use of parentheses, operations are evaluated in the following order (from top to bottom, operations of same precedence being evaluated from left to right). This order of operations is based on the order of operations used in Standard C. a++, a- !a, -a a * b, a / b, a % b a + b, a - b a << b, a >> b a < b, a <= b, a > b, a >= b a == b, a != b a & b a | b a && b a || b a ? b : c a = b, a += b, a -= b 3.6. Range "a...b" means any value starting from a to b, inclusive. 3.7. Bitstream functions "remaining_bits_in_bitstream( )" means the count of remaining bits after the current position in the bitstream. It is computed from the NumBytes value multiplied by 8 minus the count of bits already read by the bitstream parser. Niedermayer Expires January 8, 2017 [Page 5] Internet-Draft FFV1 July 2016 "byte_aligned( )" means "remaining_bits_in_bitstream( )" is a multiple of 8. \pagebreak 4. General Description Each frame is split in 1 to 4 planes (Y, Cb, Cr, Alpha). In the case of the normal YCbCr colorspace the Y plane is coded first followed by the Cb and Cr planes, if an Alpha/transparency plane exists, it is coded last. In the case of the JPEG2000-RCT colorspace the lines are interleaved to improve caching efficiency since it is most likely that the RCT will immediately be converted to RGB during decoding; the interleaved coding order is also Y, Cb, Cr, Alpha. Samples within a plane are coded in raster scan order (left->right, top->bottom). Each sample is predicted by the median predictor from samples in the same plane and the difference is stored see Section 4.6. 4.1. Border For the purpose of the predictior and context, samples above the coded slice are assumed to be 0; samples to the right of the coded slice are identical to the closest left sample; samples to the left of the coded slice are identical to the top right sample (if there is one), otherwise 0. +---+---+---+---+---+---+---+---+ | 0 | 0 | | 0 | 0 | 0 | | 0 | | 0 | 0 | | 0 | 0 | 0 | | 0 | | | | | | | | | | | 0 | 0 | | a | b | c | | c | | 0 | a | | d | | e | | e | | 0 | d | | f | g | h | | h | +---+---+---+---+---+---+---+---+ 4.2. Median predictor median(left, top, left + top - diag) left, top, diag are the left, top and left-top samples Note, this is also used in Section 9.1. Niedermayer Expires January 8, 2017 [Page 6] Internet-Draft FFV1 July 2016 4.3. Context +---+----+---+----+ | | | T | | | | tl | t | tr | | L | l | X | | +---+----+---+----+ The quantized sample differences L-l, l-tl, tl-t, t-T, t-tr are used as context: $context=Q_{0}[l-tl]+\left|Q_{0}\right|(Q_{1}[tl-t]+\left|Q_{1}\right |(Q_{2}[t-tr]+\left|Q_{2}\right|(Q_{3}[L-l]+\left|Q_{3}\right|Q_{4}[T -t])))$ If the context is smaller than 0 then -context is used and the difference between the sample and its predicted value is encoded with a flipped sign. 4.4. Quantization There are 5 quantization tables for the 5 sample differences, both the number of quantization steps and their distribution are stored in the bitstream. Each quantization table has exactly 256 entries, and the 8 least significant bits of the sample difference are used as index: $Q_{i}[a-b]=Table_{i}[(a-b)&255]$ 4.5. Colorspace 4.5.1. JPEG2000-RCT $Cb=b-g$ $Cr=r-g$ $Y=g+(Cb+Cr)>>2$ $g=Y-(Cb+Cr)>>2$ $r=Cr+g$ $b=Cb+g$ Section 9.1 Niedermayer Expires January 8, 2017 [Page 7] Internet-Draft FFV1 July 2016 4.6. Coding of the sample difference Instead of coding the n+1 bits of the sample difference with Huffman-, or Range coding (or n+2 bits, in the case of RCT), only the n (or n+1) least significant bits are used, since this is sufficient to recover the original sample. In the equation below, the term "bits" represents bits_per_raw_sample+1 for RCT or bits_per_raw_sample otherwise: $coder_input=\left[\left(sample_difference+2^{bits- 1}\right)&\left(2^{bits}-1\right)\right]-2^{bits-1}$ 4.6.1. Range coding mode Early experimental versions of FFV1 used the CABAC Arithmetic coder from Section 9.1 but due to the uncertain patent/royality situation, as well as its slightly worse performance, CABAC was replaced by a Range coder based on an algorithm defined by _G. Nigel N. Martin_ in 1979 Section 9.1. 4.6.1.1. Range binary values To encode binary digits efficiently a Range coder is used. $C_{i}$ is the i-th Context. $B_{i}$ is the i-th byte of the bytestream. $b_{i}$ is the i-th Range coded binary value, $S_{0,i}$ is the i-th initial state, which is 128. The length of the bytestream encoding n binary symbols is $j_{n}$ bytes. $r_{i}=\left\lfloor \frac{R_{i}S_{i,C_{i}}}{2^{8}}\right\rfloor$ $\begin{array}{ccccccccc} S_{i+1,C_{i}}=zero_state_{S_{i,C_{i}}} & \wedge & l_{i}=L_{i} & \wedge & t_{i}=R_{i}-r_{i} & \Longleftarrow & b_{i}=0 & \Longleftrightarrow & L_{i} =one_state_{S_{i,C_{i}}} & \wedge & l_{i}=L_{i}-R_{i}+r_{i} & \wedge & t_{i}=r_{i} & \Longleftarrow & b_{i}=1 & \Longleftrightarrow & L_{i}\geq R_{i}-r_{i} \end{array}$ $\begin{array}{ccc} S_{i+1,k}=S_{i,k} & \Longleftarrow & C_{i}\neq k \end{array}$ $\begin{array}{ccccccc} R_{i+1}=2^{8}t_{i} & \wedge & L_{i+1}=2^{8}l_{i}+B_{j_{i}} & \wedge & j_{i+1}=j_{i}+1 & \Longleftarrow & t_{i}<2^{8} R_{i+1}=t_{i} & \wedge & L_{i+1}=l_{i} & \wedge & j_{i+1}=j_{i} & \Longleftarrow & t_{i}\geq2^{8} \end{array}$ Niedermayer Expires January 8, 2017 [Page 8] Internet-Draft FFV1 July 2016 $R_{0}=65280$ $L_{0}=2^{8}B_{0}+B_{1}$ $j_{0}=2$ 4.6.1.2. Range non binary values To encode scalar integers it would be possible to encode each bit separately and use the past bits as context. However that would mean 255 contexts per 8-bit symbol which is not only a waste of memory but also requires more past data to reach a reasonably good estimate of the probabilities. Alternatively assuming a Laplacian distribution and only dealing with its variance and mean (as in Huffman coding) would also be possible, however, for maximum flexibility and simplicity, the chosen method uses a single symbol to encode if a number is 0 and if not encodes the number using its exponent, mantissa and sign. The exact contexts used are best described by the following code, followed by some comments. void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed) { int i; put_rac(c, state+0, !v); if (v) { int a= ABS(v); int e= log2(a); for (i=0; i=0; i--) put_rac(c, state+22+MIN(i,9), (a>>i)&1); //22..31 if (is_signed) put_rac(c, state+11 + MIN(e, 10), v < 0); //11..21 } } 4.6.1.3. Initial values for the context model At keyframes all Range coder state variables are set to their initial state. Niedermayer Expires January 8, 2017 [Page 9] Internet-Draft FFV1 July 2016 4.6.1.4. State transition table $one_state_{i}=default_state_transition_{i}+state_transition_delta_{i }$ $zero_state_{i}=256-one_state_{256-i}$ 4.6.1.5. default_state_transition 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111,112,113,114,114,115,116,117,118, 119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,133, 134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149, 150,151,152,152,153,154,155,156,157,158,159,160,161,162,163,164, 165,166,167,168,169,170,171,171,172,173,174,175,176,177,178,179, 180,181,182,183,184,185,186,187,188,189,190,190,191,192,194,194, 195,196,197,198,199,200,201,202,202,204,205,206,207,208,209,209, 210,211,212,213,215,215,216,217,218,219,220,220,222,223,224,225, 226,227,227,229,229,230,231,232,234,234,235,236,237,238,239,240, 241,242,243,244,245,246,247,248,248, 0, 0, 0, 0, 0, 0, 0, 4.6.1.6. alternative state transition table The alternative state transition table has been build using iterative minimization of frame sizes and generally performs better than the default. To use it, the coder_type has to be set to 2 and the difference to the default has to be stored in the parameters. The Niedermayer Expires January 8, 2017 [Page 10] Internet-Draft FFV1 July 2016 reference implemenation of FFV1 in FFmpeg uses this table by default at the time of this writing when Range coding is used. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49, 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39, 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52, 53, 74, 55, 57, 58, 58, 74, 60,101, 61, 62, 84, 66, 66, 68, 69, 87, 82, 71, 97, 73, 73, 82, 75,111, 77, 94, 78, 87, 81, 83, 97, 85, 83, 94, 86, 99, 89, 90, 99,111, 92, 93,134, 95, 98,105, 98, 105,110,102,108,102,118,103,106,106,113,109,112,114,112,116,125, 115,116,117,117,126,119,125,121,121,123,145,124,126,131,127,129, 165,130,132,138,133,135,145,136,137,139,146,141,143,142,144,148, 147,155,151,149,151,150,152,157,153,154,156,168,158,162,161,160, 172,163,169,164,166,184,167,170,177,174,171,173,182,176,180,178, 175,189,179,181,186,183,192,185,200,187,191,188,190,197,193,196, 197,194,195,196,198,202,199,201,210,203,207,204,205,206,208,214, 209,211,221,212,213,215,224,216,217,218,219,220,222,228,223,225, 226,224,227,229,240,230,231,232,233,234,235,236,238,239,237,242, 241,243,242,244,245,246,247,248,249,250,251,252,252,253,254,255, 4.6.2. Huffman coding mode This coding mode uses golomb rice codes. The VLC code is split into 2 parts, the prefix stores the most significant bits, the suffix stores the k least significant bits or stores the whole number in the ESC case. The end of the bitstream (of the frame) is filled with 0-bits so that the bitstream contains a multiple of 8 bits. 4.6.2.1. Prefix Niedermayer Expires January 8, 2017 [Page 11] Internet-Draft FFV1 July 2016 +----------------+-------+ | bits | value | +----------------+-------+ | 1 | 0 | | 01 | 1 | | ... | ... | | 0000 0000 0001 | 11 | | 0000 0000 0000 | ESC | +----------------+-------+ 4.6.2.2. Suffix +-------+-----------------------------------------------------------+ | non | the k least significant bits MSB first | | ESC | | | ESC | the value - 11, in MSB first order, ESC may only be used | | | if the value cannot be coded as non ESC | +-------+-----------------------------------------------------------+ 4.6.2.3. Examples +-----+-------------------------+-------+ | k | bits | value | +-----+-------------------------+-------+ | 0 | "1" | 0 | | 0 | "001" | 2 | | 2 | "1 00" | 0 | | 2 | "1 10" | 2 | | 2 | "01 01" | 5 | | any | "000000000000 10000000" | 139 | +-----+-------------------------+-------+ 4.6.2.4. Run mode Run mode is entered when the context is 0, and left as soon as a non-0 difference is found, the level is identical to the predicted one, the run and the first different level is coded. 4.6.2.5. Run length coding The run value is encoded in 2 parts, the prefix part stores the more significant part of the run as well as adjusting the run_index which determines the number of bits in the less significant part of the run. The 2nd part of the value stores the less significant part of the run as it is. The run_index is reset for each plane and slice to 0. Niedermayer Expires January 8, 2017 [Page 12] Internet-Draft FFV1 July 2016 log2_run[41]={ 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23, 24, }; if (run_count == 0 && run_mode == 1) { if (get_bits1()) { run_count = 1 << log2_run[run_index]; if (x + run_count <= w) run_index++; } else { if (log2_run[run_index]) run_count = get_bits(log2_run[run_index]); else run_count = 0; if (run_index) run_index--; run_mode = 2; } } The log2_run function is also used within Section 9.1. 4.6.2.6. Level coding Level coding is identical to the normal difference coding with the exception that the 0 value is removed as it cannot occur: if(diff>0) diff--; encode(diff); Note, this is different from JPEG-LS, which doesn't use prediction in run mode and uses a different encoding and context model for the last difference On a small set of test samples the use of prediction slightly improved the compression rate. 5. Bitstream Niedermayer Expires January 8, 2017 [Page 13] Internet-Draft FFV1 July 2016 +--------+----------------------------------------------------------+ | Symbol | Defintion | +--------+----------------------------------------------------------+ | u(n) | unsigned big endian integer using n bits | | sg | Golomb Rice coded signed scalar symbol coded with the | | | method described in Section 4.6.2 | | br | Range coded boolean (1-bit) symbol with the method | | | described in Section 4.6.1.1 | | ur | Range coded unsigned scalar symbol coded with the method | | | described in Section 4.6.1.2 | | sr | Range coded signed scalar symbol coded with the method | | | described in Section 4.6.1.2 | +--------+----------------------------------------------------------+ The same context which is initialized to 128 is used for all fields in the header. The following MUST be provided by external means during initialization of the decoder: "frame_pixel_width" is defined as frame width in pixels. "frame_pixel_height" is defined as frame height in pixels. Default values at the decoder initialization phase: "ConfigurationRecordIsPresent" is set to 0. 5.1. Configuration Record In the case of a bitstream with version >= 3, a configuration record is stored in the underlying container, at the track header level. It contains the parameters used for all frames. The size of the configuration record, NumBytes, is supplied by the underlying container. "c ConfigurationRecord( NumBytes ) { ConfigurationRecordIsPresent = 1 Parameters( ) while( remaining_bits_in_bitstream( ) > 32 ) reserved_for_future_use // u(1) configuration_record_crc_parity // u(32)"` "reserved_for_future_use" has semantics that are reserved for future use. Encoders conforming to this version of this specification SHALL NOT write this value. Decoders conforming to this version of this specification SHALL ignore its value. "configuration_record_crc_parity" 32 bits that are choosen so that the configuration record as a whole has a crc remainder of 0. This Niedermayer Expires January 8, 2017 [Page 14] Internet-Draft FFV1 July 2016 is equivalent to storing the crc remainder in the 32-bit parity. The CRC generator polynom used is the standard IEEE CRC polynom (0x104C11DB7) with initial value 0. This configuration record can be placed in any file format supporting configuration records, fitting as much as possible with how the file format uses to store configuration records. The configuration record storage place and NumBytes are currently defined and supported by this version of this specification for the following container formats: 5.1.1. In AVI File Format The Configuration Record extends the stream format chunk ("AVI ", "hdlr", "strl", "strf") with the ConfigurationRecord bistream. See Section 9.1 for more information about chunks. "NumBytes" is defined as the size, in bytes, of the strf chunk indicated in the chunk header minus the size of the stream format structure. 5.1.2. In ISO/IEC 14496-12 (MP4 File Format) The Configuration Record extends the sample description box ("moov", "trak", "mdia", "minf", "stbl", "stsd") with a "glbl" box which contains the ConfigurationRecord bitstream. See Section 9.1 for more information about boxes. "NumBytes" is defined as the size, in bytes, of the "glbl" box indicated in the box header minus the size of the box header. 5.1.3. In NUT File Format The codec_specific_data element (in "stream_header" packet) contains the ConfigurationRecord bitstream. See Section 9.1 for more information about elements. "NumBytes" is defined as the size, in bytes, of the codec_specific_data element as indicated in the "length" field of codec_specific_data 5.2. Frame A frame consists of the keyframe field, parameters (if version <=1), and a sequence of independent slices. | | |---------------------------------------------------|---:| |Frame ( ) { |type| | keyframe | br| | if( keyframe && Niedermayer Expires January 8, 2017 [Page 15] Internet-Draft FFV1 July 2016 !ConfigurationRecordIsPresent )| | | Parameters( ) | | | while ( remaining_bits_in_bitstream() ) | | | Slice( ) | | |} | | 5.3. Slice | | |------------------------------------------------------------|:-- ----| |Slice( ) { | type | | if( version >= 3 ) | | | SliceHeader( ) | | | SliceContent( ) | | | if ( coder_type == 0 ) | | | while ( !byte_aligned() ) | | | padding | u(1) | | if( version >= 3 ) | | | SliceFooter( ) | | |} | | "padding" specifies a bit without any significance and used only for byte alignment. MUST be 0. 5.4. Slice Header +------------------------------------------------+------+ | SliceHeader( ) { | type | | slice_x | ur | | slice_y | ur | | slice_width - 1 | ur | | slice_height - 1 | ur | | for( i = 0; i < quant_table_index_count; i++ ) | | | quant_table_index [ i ] | ur | | picture_structure | ur | | sar_num | ur | | sar_den | ur | | if( version >= 4 ) { | | | reset_contexts | br | | slice_coding_mode | ur | | } | | | } | | +------------------------------------------------+------+ "slice_x" indicates the x position on the slice raster formed by num_h_slices. Inferred to be 0 if not present. "slice_y" indicates the y position on the slice raster formed by num_v_slices. Inferred to be 0 if not present. "slice_width" indicates the width on the slice raster formed by num_h_slices. Inferred to be 1 if not present. "slice_height" indicates the height on the slice raster formed by num_v_slices. Inferred to be 1 if not present. Niedermayer Expires January 8, 2017 [Page 16] Internet-Draft FFV1 July 2016 "quant_table_index_count" is defined as 1 + ( ( chroma_planes || version <= 3 ) ? 1 : 0 ) + ( alpha_plane ? 1 : 0 ). "quant_table_index" indicates the index to select the quantization table set and the initial states for the slice. Inferred to be 0 if not present. "picture_structure" specifies the picture structure. Inferred to be 0 if not present. +-------+-------------------------+ | value | picure structure used | +-------+-------------------------+ | 0 | unknown | | 1 | top field first | | 2 | bottom field first | | 3 | progressive | | Other | reserved for future use | +-------+-------------------------+ "sar_num" specifies the sample aspect ratio numerator. Inferred to be 0 if not present. MUST be 0 if sample aspect ratio is unknown. "sar_den" specifies the sample aspect ratio numerator. Inferred to be 0 if not present. MUST be 0 if sample aspect ratio is unknown. "reset_contexts" indicates if slice contexts must be reset. Inferred to be 0 if not present. "slice_coding_mode" indicates the slice coding mode. Inferred to be 0 if not present. +-------+----------------------------+ | value | slice coding mode | +-------+----------------------------+ | 0 | normal Range Coding or VLC | | 1 | raw PCM | | Other | reserved for future use | +-------+----------------------------+ 5.5. Slice Content | | |--------------------------------------------------------------|: ------| |SliceContent( ) { | type | | if( colorspace_type == 0) { | | | for( p = 0; p < primary_color_count; p++ ) { | | | for( y = 0; y < plane_pixel_height[ p ]; y++ ) | | | Line( p, y ) | | | } else if( colorspace_type == 1 ) { | | | for( y = 0; y < Niedermayer Expires January 8, 2017 [Page 17] Internet-Draft FFV1 July 2016 slice_pixel_height; y++ ) | | | for( p = 0; p < primary_color_count; p++ ) { | | | Line( p, y ) | | | } | | |} | | "primary_color_count" is defined as 1 + ( chroma_planes ? 2 : 0 ) + ( alpha_plane ? 1 : 0 ). "plane_pixel_height[ p ]" is the height in pixels of plane p of the slice. plane_pixel_height[ 0 ] and plane_pixel_height[ 1 + ( chroma_planes ? 2 : 0 ) ] value is slice_pixel_height if chroma_planes is set to 1, plane_pixel_height[ 1 ] and plane_pixel_height[ 2 ] value is $\lceil slice_pixel_height / v_chroma_subsample \rceil$ "slice_pixel_height" is the height in pixels of the slice. Its value is $\lfloor ( slice_y + slice_height ) * slice_pixel_height / num_v_slices \rfloor - slice_pixel_y$ "slice_pixel_y" is the slice vertical position in pixels. Its value is $\lfloor slice_y * frame_pixel_height / num_v_slices \rfloor$ 5.6. Line | | |--------------------------------------------------------------|: ------| |Line( p, y ) { | type | | if( colorspace_type == 0) { | | | for( x = 0; x < plane_pixel_width[ p ]; x++ ) | | | Pixel( p, y, x ) | | | } else if( colorspace_type == 1 ) { | | | for( x = 0; x < slice_pixel_width; x++ ) | | | Pixel( p, y, x ) | | | } | | |} | | "plane_pixel_width[ p ]" is the width in pixels of plane p of the slice. plane_pixel_width[ 0 ] and plane_pixel_width[ 1 + ( chroma_planes ? 2 : 0 ) ] value is slice_pixel_width if chroma_planes is set to 1, plane_pixel_width[ 1 ] and plane_pixel_width[ 2 ] value is $\lceil slice_pixel_width / v_chroma_subsample \rceil$ "slice_pixel_width" is the width in pixels of the slice. Its value is $\lfloor ( slice_x + slice_width ) * slice_pixel_width / num_h_slices \rfloor - slice_pixel_x$ "slice_pixel_x" is the slice horizontal position in pixels. Its value is $\lfloor slice_x * frame_pixel_width / num_h_slices \rfloor$ Niedermayer Expires January 8, 2017 [Page 18] Internet-Draft FFV1 July 2016 5.7. Slice Footer Note: slice footer is always byte aligned. | | |------------------------------------------------------------|:-- ----| |SliceFooter( ) { | type | | slice_size | u(24) | | if( ec ) { | | | error_status | u(8) | | slice_crc_parity | u(32) | | } | | |} | | "slice_size" indicates the size of the slice in bytes. Note: this allows finding the start of slices before previous slices have been fully decoded. And allows this way parallel decoding as well as error resilience. "error_status" specifies the error status. +-------+--------------------------------------+ | value | error status | +-------+--------------------------------------+ | 0 | no error | | 1 | slice contains a correctable error | | 2 | slice contains a uncorrectable error | | Other | reserved for future use | +-------+--------------------------------------+ "slice_crc_parity" 32 bits that are choosen so that the slice as a whole has a crc remainder of 0. This is equivalent to storing the crc remainder in the 32-bit parity. The CRC generator polynom used is the standard IEEE CRC polynom (0x104C11DB7) with initial value 0. 5.8. Parameters Niedermayer Expires January 8, 2017 [Page 19] Internet-Draft FFV1 July 2016 +--------------------------------------------+------+ | Parameters( ) { | type | | version | ur | | if( version >= 3 ) | | | micro_version | ur | | coder_type | ur | | if( coder_type > 1 ) | | | for( i = 1; i < 256; i++ ) | | | state_transition_delta[ i ] | sr | | colorspace_type | ur | | if( version >= 1 ) | | | bits_per_raw_sample | ur | | chroma_planes | br | | log2( h_chroma_subsample ) | ur | | log2( v_chroma_subsample ) | ur | | alpha_plane | br | | if( version >= 3 ) { | | | num_h_slices - 1 | ur | | num_v_slices - 1 | ur | | quant_table_count | ur | | } | | | for( i = 0; i < quant_table_count; i++ ) | | | QuantizationTable( i ) | | | if( version >= 3 ) { | | | for( i = 0; i < quant_table_count; i++ ) { | | | states_coded | br | | if( states_coded ) | | | for( j = 0; j < context_count[ i ]; j++ ) | | | for( k = 0; k < CONTEXT_SIZE; k++ ) | | | initial_state_delta[ i ][ j ][ k ] | sr | | } | | | ec | ur | | intra | ur | | } | | | } | | +--------------------------------------------+------+ "version" specifies the version of the bitstream. Each version is incompatible with others versions: decoders SHOULD reject a file due to unknown version. Decoders SHOULD reject a file with version =< 1 && ConfigurationRecordIsPresent == 1. Decoders SHOULD reject a file with version >= 3 && ConfigurationRecordIsPresent == 0. Niedermayer Expires January 8, 2017 [Page 20] Internet-Draft FFV1 July 2016 +-------+-------------------------+ | value | version | +-------+-------------------------+ | 0 | FFV1 version 0 | | 1 | FFV1 version 1 | | 2 | reserved* | | 3 | FFV1 version 3 | | Other | reserved for future use | +-------+-------------------------+ * Version 2 was never enabled in the encoder thus version 2 files SHOULD NOT exist, and this document does not describe them to keep the text simpler. "micro_version" specifies the micro-version of the bitstream. After a version is considered stable (a micro-version value is assigned to be the first stable variant of a specific version), each new micro- version after this first stable variant is compatible with the previous micro-version: decoders SHOULD NOT reject a file due to an unknown micro-version equal or above the micro-version considered as stable. Meaning of micro_version for version 3: +-------+-------------------------+ | value | micro_version | +-------+-------------------------+ | 0...3 | reserved* | | 4 | first stable variant | | Other | reserved for future use | +-------+-------------------------+ * were development versions which may be incompatible with the stable variants. Meaning of micro_version for version 4 (note: at the time of writting of this specification, version 4 is not considered stable so the first stable version value is to be annonced in the future): +---------+-------------------------+ | value | micro_version | +---------+-------------------------+ | 0...TBA | reserved* | | TBA | first stable variant | | Other | reserved for future use | +---------+-------------------------+ Niedermayer Expires January 8, 2017 [Page 21] Internet-Draft FFV1 July 2016 * were development versions which may be incompatible with the stable variants. "coder_type" specifies the coder used +-------+-------------------------------------------------+ | value | coder used | +-------+-------------------------------------------------+ | 0 | Golomb Rice | | 1 | Range Coder with default state transition table | | 2 | Range Coder with custom state transition table | | Other | reserved for future use | +-------+-------------------------------------------------+ "state_transition_delta" specifies the Range coder custom state transition table. If state_transition_delta is not present in the bitstream, all Range coder custom state transition table elements are assumed to be 0. "colorspace_type" specifies the color space. +-------+-------------------------+ | value | color space used | +-------+-------------------------+ | 0 | YCbCr | | 1 | JPEG 2000 RCT | | Other | reserved for future use | +-------+-------------------------+ "chroma_planes" indicates if chroma (color) planes are present. +-------+-------------------------------+ | value | color space used | +-------+-------------------------------+ | 0 | chroma planes are not present | | 1 | chroma planes are present | +-------+-------------------------------+ "bits_per_raw_sample" indicates the number of bits for each luma and chroma sample. Inferred to be 8 if not present. +-------+-------------------------------------------------+ | value | bits for each luma and chroma sample | +-------+-------------------------------------------------+ | 0 | reserved* | | Other | the actual bits for each luma and chroma sample | +-------+-------------------------------------------------+ Niedermayer Expires January 8, 2017 [Page 22] Internet-Draft FFV1 July 2016 * Encoders MUST NOT store bits_per_raw_sample = 0 Decoders SHOULD accept and interpret bits_per_raw_sample = 0 as 8. "h_chroma_subsample" indicates the subsample factor between luma and chroma width ($chroma_width=2^{-log2_h_chroma_subsample}luma_width$) "v_chroma_subsample" indicates the subsample factor between luma and chroma height ($chroma_height=2^{-log2_v_chroma_subsample}luma_height$) alpha_plane indicates if a transparency plane is present. +-------+-----------------------------------+ | value | color space used | +-------+-----------------------------------+ | 0 | transparency plane is not present | | 1 | transparency plane is present | +-------+-----------------------------------+ "num_h_slices" indicates the number of horizontal elements of the slice raster. Inferred to be 1 if not present. "num_v_slices" indicates the number of vertical elements of the slice raster. Inferred to be 1 if not present. "quant_table_count" indicates the number of quantization table sets. Inferred to be 1 if not present. "states_coded" indicates if the respective quantization table set has the initial states coded. Inferred to be 0 if not present. +-------+-----------------------------------------------------------+ | value | initial states | +-------+-----------------------------------------------------------+ | 0 | initial states are not present and are assumed to be all | | | 128 | | 1 | initial states are present | +-------+-----------------------------------------------------------+ "initial_state_delta" [ i ][ j ][ k ] indicates the initial Range coder state, it is encoded using k as context index and pred = j ? initial_states[ i ][j - 1][ k ] : 128 initial_state[ i ][ j ][ k ] = ( pred + initial_state_delta[ i ][ j ][ k ] ) & 255 "ec" indicates the error detection/correction type. Niedermayer Expires January 8, 2017 [Page 23] Internet-Draft FFV1 July 2016 +-------+-------------------------------------------+ | value | error detection/correction type | +-------+-------------------------------------------+ | 0 | 32bit CRC on the global header | | 1 | 32bit CRC per slice and the global header | | Other | reserved for future use | +-------+-------------------------------------------+ "intra" indicates the relationship between frames. Inferred to be 0 if not present. +-------+-----------------------------------------------------------+ | value | relationship | +-------+-----------------------------------------------------------+ | 0 | frames are independent or dependent (key and non key | | | frames) | | 1 | frames are independent (key frames only) | | Other | reserved for future use | +-------+-----------------------------------------------------------+ 5.9. Quantization Tables The quantization tables are stored by storing the number of equal entries -1 of the first half of the table using the method described in Section 4.6.1.2. The second half doesn't need to be stored as it is identical to the first with flipped sign. example: Table: 0 0 1 1 1 1 2 2-2-2-2-1-1-1-1 0 Stored values: 1, 3, 1 +---------------------------------------------+ | QuantizationTable( i ) { | | scale = 1 | | for( j = 0; j < MAX_CONTEXT_INPUTS; j++ ) { | | QuantizationTablePerContext( i, j, scale ) | | scale *= 2 * len_count[ i ][ j ] - 1 | | } | | context_count[ i ] = ( scale + 1 ) / 2 | +---------------------------------------------+ MAX_CONTEXT_INPUTS is 5. Niedermayer Expires January 8, 2017 [Page 24] Internet-Draft FFV1 July 2016 +------------------------------------------------------------+------+ | QuantizationTablePerContext(i, j, scale) { | type | | v = 0 | | | for( k = 0; k < 128; ) { | | | len - 1 | sr | | for( a = 0; a < len; a++ ) { | | | quant_tables[ i ][ j ][ k ] = scale* v | | | k++ | | | } | | | v++ | | | } | | | for( k = 1; k < 128; k++ ) { | | | quant_tables[ i ][ j ][ 256 - k ] = -quant_tables[ i ][ j | | | ][ k ] | | | } | | | quant_tables[ i ][ j ][ 128 ] = -quant_tables[ i ][ j ][ | | | 127 ] | | | len_count[ i ][ j ] = v | | | } | | +------------------------------------------------------------+------+ "quant_tables" indicates the quantification table values. "context_count" indicates the count of contexts. 5.9.1. Restrictions To ensure that fast multithreaded decoding is possible, starting version 3 and if frame_pixel_width * frame_pixel_height is more than 101376, slice_width * slice_height MUST be less or equal to num_h_slices * num_v_slices / 4. Note: 101376 is the frame size in pixels of a 352x288 frame also known as CIF ("Common Intermediate Format") frame size format. For each frame, each position in the slice raster MUST be filled by one and only one slice of the frame (no missing slice position, no slice overlapping). For each Frame with keyframe value of 0, each slice MUST have the same value of slice_x, slice_y, slice_width, slice_height as a slice in the previous frame, except if reset_contexts is 1. 6. Appendixes Niedermayer Expires January 8, 2017 [Page 25] Internet-Draft FFV1 July 2016 6.1. Decoder implementation suggestions 6.1.1. Multi-threading support and independence of slices The bitstream is parsable in two ways: in sequential order as described in this document or with the pre-analysis of the footer of each slice. Each slice footer contains a slice_size field so the boundary of each slice is computable without having to parse the slice content. That allows multi-threading as well as independence of slice content (a bitstream error in a slice header or slice content has no impact on the decoding of the other slices). After having checked keyframe field, a decoder SHOULD parse slice_size fields, from slice_size of the last slice at the end of the frame up to slice_size of the first slice at the beginning of the frame, before parsing slices, in order to have slices boundaries. A decoder MAY fallback on sequential order e.g. in case of corrupted frame (frame size unknown, slice_size of slices not coherant...) or if there is no possibility of seek into the stream. Architecture overwiew of slices in a frame: +-----------------------------------------------------------------+ | first slice header | | first slice content | | first slice footer | | --------------------------------------------------------------- | | second slice header | | second slice content | | second slice footer | | --------------------------------------------------------------- | | ... | | --------------------------------------------------------------- | | last slice header | | last slice content | | last slice footer | +-----------------------------------------------------------------+ 7. Changelog See 8. ToDo o mean,k estimation for the golomb rice codes Niedermayer Expires January 8, 2017 [Page 26] Internet-Draft FFV1 July 2016 9. Bibliography 9.1. References RFC 2119 - Key words for use in RFCs to Indicate Requirement Levels ISO/IEC 9899 - Programming languages - C JPEG-LS FCD 14495 H.264 Draft HuffYuv FFmpeg JPEG2000 Range encoding: an algorithm for removing redundancy from a digitised message. Presented by G. Nigel N. Martin at the Video & Data Recording Conference, IBM UK Scientific Center held in Southampton July 24-27 1979. AVI RIFF File Format Information technology Coding of audio-visual objects Part 12: ISO base media file format NUT Open Container Format 10. Copyright Copyright 2003-2013 Michael Niedermayer This text can be used under the GNU Free Documentation License or GNU General Public License. See . 11. References 11.1. URIs [1] https://tools.ietf.org/html/rfc2119 Niedermayer Expires January 8, 2017 [Page 27] Internet-Draft FFV1 July 2016 Author's Address Michael Niedermayer Niedermayer Expires January 8, 2017 [Page 28]