Network Working Group H.Zheng

Internet Draft CEIE,BJTU
Intended status: Experimental C.Qiao
Expires: December 28, 2016 SUNY
K.Chen

Y.Zhao

CEIE,BJTU

June 25, 2016

An Effective Approach to Preventing TCP Incast Throughput Collapse
for Data Center Networks
draft-zheng-tcpincast-00.txt

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

This Internet-Draft will expire on December 27, 2016.
Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

Zheng, et al. Expires December 28, 2016 [Page 1]

Internet-Draft

Preventing TCP Incast Thr. Col. for DCN June 2016

carefully, as they describe your rights and restrictions with
respect to this document.

Abstract

This document presents an effective solution to the known TCP incast
problem in data center networks. The incast problem refers to a
drastic TCP throughput drop when the number of servers synchroni-
cally sending data to the same receiver is too large. Our idea 1is
avoiding packet losses before TCP incast happens. The scheme 1is
limiting the number of concurrent senders such that the link can be
filled as fully as possible but no packet losses. In this document
we examine the condition that the link can be saturated but no
packet losses. Then based on the condition we propose an approach to
estimates the reasonable number of concurrent senders. Our approach
does not modify TCP protocol itself and can thus be applied to any

TCP variant,

and works regardless of the type of data center network

topology and throughput limitation. Analysis and simulation results
show that our approach eliminates the incast problem and noticeably
improves TCP throughput.

Table of Contents

L I e L OGUC T L OM . ettt et et e e e e e e e et et e e eeseeaesaeeneeeneeaeesesae et eeneenenns 3
20 MOGEL. .ottt ettt et e et e e e st e et et et e eete st e s te st e et enaeenresans 4
2.1, TCP TINCASET MOGEL. ..ottt e et e et e et e eaeeeaeeenesenestesaeenaeens 4
2.2. TCP rabbits 1n data CeNT@IS ..ot 5
3. The CONAITION SBNPL..iiiieeeeeeeeeeeeeee et ete e eee et et eeteeseseesteeseesessesaeesteesessesseesessessesaens 6
3.1. Why limit the number of concurrent SendersS......eeeoeeeinns 6
3.2. Assumptions and NOTATIONS ...t 7
3.3. The CONAItion SBNPL ..ottt et eeeeeee et et e et eeseeseeeeeeesessesseseesessene L
4. PerformancCe eVaALlUAT IO ettt ettt eaeeae e e et e et eeaeeae st eeteesesaeens 8
4.1. Simulation CoONEigUTATION. .ottt 8
4.2. Throughput PeIrLOTMANCE ..ottt et e eaeesaeeeae s 9
4.3. The effect of the limitation to the buffer size on
B OUGIDUE ettt e e e e et e et e eaeeeaeseaesetestesatesatenaeeeneeesessesnen 9
4.4. The effect of BDP on throughpPuUl.......eeeeeeeeeeeee e 9
S v RELATEEA WOTK ..ottt ettt e et e e e et et eeeae st e st e s et esaeeeaeeesessesanesatesseesneenseenns 9
0 0 COMCLUS I OIIS .ottt e et e ee e e e e e et et et eesesae s e et eeseeseesesae et esseesesseeasetensensene 11
7. SeCUTrity CONSIAEIaTiONS .o eeesaens 12
8. TANA CONSIAETAELONS ittt ettt et et eueeae et et e et eesesaeeeeeeeeseesesseeneesnenne 12
D RO I OIICES .ottt e e ettt e e e s et e st e st e st e et e e eaeseseste st e sat e st enaeeeaeeeaesaesans 12
10 . ACKNOWILEAGMEINT S ittt ettt et e e e e eae st e st e st e et eeaeeesessesssessesseenaeas 14

Zheng,et al.

Expires December 28, 2016 [Page 2]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

1. Introduction

Data centers are becoming one of hottest topics in both research
communities and IT industry. It is attractive to build data centers
atop standard TCP/IP and Ethernet due to their technological
advantages and economy of scale. Although TCP has been used widely
in the Internet and works well, TCP does not work well in data
center networks. A reported open problem is TCP incast [1-4].

TCP incast, which results in gross under-utilization of 1link
capacity, occurs in synchronized many-to-one communication patterns.
In such a communication pattern, a receiver issues data requests to
multiple senders. The senders respond to the request and return an
amount of data to the receiver. The data from all senders pass
through a bottleneck link in a many-to-one pattern to the receiver.
When the number of synchronized senders increases, throughput
observed at the receiver drops to one or two orders of magnitude
below the link capacity.

Several factors, including high bandwidth and low latency of a data
center network, lead to TCP incast [3]. The barrier synchronized
many-to-one communication pattern triggers multiple servers to
transmit packets to a receiver concurrently, resulting in a
potentially large amount of traffic simultaneously poured into the
network. Due to limited buffer space at the switches, such traffic
can overload the buffer, resulting in packet losses. TCP recovers
from most of packet losses through timeout retransmission. The
timeout duration is at least hundreds of milliseconds, which is
orders of magnitude greater than a typical round trip time in a data
center network. A server that suffers timeout is stalled even though
other servers can use the available bandwidth to complete
transmitting. Due to the synchronized communication, however, the
receiver has to wait for the slowest server that suffers timeout.
During such a waiting period, the bottleneck link may be fully idle.
This results in under-utilization of the link and performance
collapse.

This document addresses the above TCP throughput collapse problem.
We propose an approach to preventing TCP throughput collapse. We
focus on avoiding packet losses before TCP incast happens. The basic
idea is to restrict the number of servers allowed to transmit data
to the receiver at the same time to a reasonable value so as to
avoid TCP incast.

For given limited amount of data required by the receiver, too few

servers send data at a time may not fully utilize the bandwidth on
the link. Too many servers, however due to the limited switch buffer,

Zheng, et al. Expires December 28, 2016 [Page 3]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

simultaneously sending to the receiver will lead to overfilling of
the Dbuffer, resulting 1in TCP timeouts and then TCP incast.
Accordingly the number of servers that are permitted to send data at
the same time should be carefully determined. Our objective is to
find a reasonable wvalue of number of co-existing servers to ensure
that the aggregate Dbandwidth 1is wutilized efficiently but without
packet losses.

Our approach is to calculate the reasonable number of servers
allowed to send data at the same time. In this document, we give the
condition that the bottleneck link can be saturated but no packet
losses (SBNPL). We show that 1f there 1s sufficient amount of
traffic on the bottleneck link while the backlog created at the
switch buffer never exceeds the buffer size, the bottleneck link can
be utilized effectively without losses. Based on this condition, we
then propose an approach to calculating the reasonable number of
concurrent TCP senders. The simulation results and analysis show our
approach noticeably improves throughput performance.The approach is
an application-layer mechanism. It can be a global scheduling
application or an application staggering requests to a limited
number of senders. It also can be implemented on senders, which can
coordinately skew their responses. The advantage of our approaches
is that it does not need to modify TCP protocol or the switch.

The reminder of this document is organized as follows. In section 2,
we describe model discussed in this document, including TCP incast
model and TCP flow characteristics in data center. We examine the
condition that the bottleneck link can be saturated but no packet
losses in section 3. Simulation results for evaluating performance
are presented in section 4. In section 6 we conclude this document
and discuss future works.

2. Model
2.1. TCP Incast Model

TCP incast occurs in synchronized many-to-one communication patterns.
Research works have shown that many applications in data centers use
many-to-one communication pattern [3,5,6]. A simplified model is
originally presented in [1]. It is a distributed storage system, a
file is split into data blocks. Each data block is stripped across N
servers, such that each server stores a chunk of that particular
data block, denoted by Sender Request Unit (SRU). We call the number
of servers across which the file is stripped as stripping width. The
receilver requests servers for that particular block; each server
responds and returns the chunk, i.e., SRU, stored on it. Only after
the receiver has gotten all chunks of the current block, it requests

Zheng, et al. Expires December 28, 2016 [Page 4]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

2

L2,

for the next block. Essentially, this is a Bulk Synchronous Model
(BSP) [7].

Built atop TCP/IP and Gigabit Ethernet, the underlying network is
constructed with high bandwidth (1~10 Gbps, even higher) and low
latency (RTT of 10~100 microseconds). The link connecting the
receiver and the switch is the only bottleneck.

In our model, each sender only opens one TCP connection for
transmission. TCP connections are kept open until the transfer of
the whole file completes, or the receiver does not request any more.
It is because that it is not necessary to open an individual
connection for transferring each data block of the file.

The transfer of a whole file consists of ‘rounds’. A round begins
when the receiver requests for a data block, and ends when the
receiver has gotten all chunks of that block. In any round, each TCP
connection transfers limited amount of data, which equals to the
size of SRU, according to TCP congestion control algorithm.

Consequently the transfer of a SRU in each round can be viewed as a
succession of ‘sub-rounds’. At the beginning of any sub-round, each
TCP sender transmits SEND W packets back-to-back, where SEND W is
the current size of TCP send window. These packets are so-called
‘outstanding packets’, which have been sent but whose ACK's have yet
to be received by the sender. If no packet losses, each outstanding
packet must either be in the buffer queue, or be in the delay pipe
(it is in the pipe from the sender to the receiver or its associated
ACK packet is in the pipe in the other direction). Once all packets
falling within the current send window have been transmitted, no
other packets are sent until the first ACK 1is received for one of
these packets. The reception of this ACK signals the end of the
current sub-round and the beginning of the next sub-round. So the
duration of a sub-round is a RTT. At the beginning of the next sub-
round, a group of NEW SEND W new packets will Dbe sent, where
NEW SEND W is the new size of TCP send window. When all packets
associated to that particular SRU have Dbeen acknowledged, the
transfer of that particular block chunk completes. The next round
starts when the slowest TCP connection completes the transfer of its
corresponding SRU. Note that when the new round begins, the value of
TCP congestion window 1is that of congestion window when the last
round ends.

TCP rabbits in data centers
TCP has unique characteristics in the context of data centers. More

specifically, a TCP flow is generally referred to as either a TCP
mouse 1f it 1s short (so short that it never exits the slow-start

Zheng, et al. Expires December 28, 2016 [Page 5]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

phase), or a TCP elephant if it has a bulk of data to transfer and
lasts very long.

From the discussion above, we observe that the size of a TCP flow is
between a mouse and an elephant. In particular, a TCP flow may enter
both the slow-start phase and the congestion avoidance phase during
data transmission. We call such a TCP flow a “rabbit”.

Note that a rabbit TCP is elusive: it may exit slow start and enter
congestion avoidance in the first round during which the first data
block 1is transmitted (in the case of narrow striping) or in later
rounds during which subsequent data blocks are sent (in the case of
wider striping). While one may use different equations to model a
TCP rabbit’s behaviors in different rounds, or for different widths
of striping, 1t greatly complicates the implementation. Moreover
when there are multiple co-active rabbits, the interaction between
them will make it much harder to model and predict their behaviors.
Our objective is to find an approach that: 1is easy to implement,
works regardless of TCP phase, TCP parameters configuration and
scalability of data center and does not need to modify TCP protocol
itself.

3. The Condition SBNPL

Denote the reasonable number of servers as senders to simultaneously
transmit with m. In this section at first we will explain why
limiting the number of concurrent senders can guarantee throughput
of the receiver. Then we will deduce the condition that the link can
be saturated but no packet losses.

3.1. Why limit the number of concurrent senders

Given stripping width, observe throughput of the receiver varying
the number of concurrent TCP senders, i.e., the value of m. Our
experiment (for a block of 1 MB stripped across 256 servers with
buffer size of 64 KB) shows that throughput firstly increases then
drops with the increasing of m. Because the volume of data sent by a
TCP sender is just limited to 4 KB, when there are few concurrent
TCP senders, the total amount of data transmitted by these senders
is not sufficient to saturate the link, such that throughput of the
receiver is low. With the increasing of the value of m, there are
more concurrent TCP senders pouring data onto the link, and
throughput increases till it reaches a top. When the value of m
becomes larger, the potentially large amounts of traffic contributed
by these m concurrent senders exhausts the buffering capacity of the
link, which leads to packet losses; the throughput falls from the
top instead of rising. We call the top throughput as the optimal

Zheng, et al. Expires December 28, 2016 [Page 6]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

throughput, and the value of m corresponding to the optimal
throughput as the optimal number of concurrent senders.

If the number of concurrent TCP senders exactly equals to the
optimal value, the receiver can obtain optimal throughput. The
simulation result also shows that even if the number of concurrent
senders 1is not optimal, there exists a value range of m where the
receiver obtains good throughput performance. By “good” throughput
performance, we mean the receiver achieves 98 percent or above of
the optimal throughput. Hence we view those values of m within this
range as reasonable number of concurrent senders. It may be hard to
find the exact optimal value of m such that the receiver achieves
optimal throughput, while find the reasonable value of m is more
feasible. In order to find the reasonable value of m, we deduce the
condition SBNPL in later subsection.

3.2. Assumptions and notations

Ignoring the time that it takes to read data from disks or caches,
once each sender receives a request from the receiver, it responds
and returns its corresponding chunk. Thus at the beginning of any
sub-round, all senders simultaneously inject data to the network.
Because TCP connections are synchronized, an assumption also adopted
in [8], they share both the buffer and the bottleneck link bandwidth
quite equitably. That is, each TCP connection shares the buffer and
the link bandwidth with B/m and C/m, respectively, where B is the
buffer size and C is the bandwidth of the bottleneck link.

Assume that both TCP send and receive socket buffer sizes are large
enough that TCP send window SEND W is limited by its congestion
window CON W, i.e., SEND W = CON W. All links have same bandwidth C,
and propagating delay d. The switch has buffer capacity B, and
manages queue with Drop Tail algorithm.

3.3. The condition SBNPL

It is enough to analyze the transfer in a round, since for any round
the data block’s size is same and the block is transferred according
to TCP congestion control algorithm. It is worth noting that at the
beginning of a round the TCP send window size is the one when the
last round ends.

Due to synchronization, the windows evolutions of all TCP
connections are synchronized, at any sub-round the total amount of
data poured onto the bottleneck,M, is merely the sum of amount of
data contributed by each connection at the current time, that is
SUM M.

Zheng, et al. Expires December 28, 2016 [Page 7]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

As mentioned above, if measured in units of packets, these M/P
outstanding packets, where P is the size of a packet, must either be
in the buffer queue, or be in the delay pipe, assuming no packet
losses. If M is not less than the bandwidth delay product of the
bottleneck, the bottleneck can be saturated. When these m TCP
connections share the bottleneck, each connection’s bandwidth delay
product equals to its share of the link bandwidth times RTT time
that it traverses the bottleneck. Because they are synchronized,
each connection’s share of the bottleneck is equitable, (i.e., which
is C/m), and the RTTs are similar, so the total bandwidth delay
product is the sum of m connections’ bandwidth delay product, which
equals to the bottleneck bandwidth times the average RTT,

i.e.,C*RTT AVR [9]. Ignoring the transmission time on the link
between senders (or the receiver) and the switch, and processing
time on the switch and/or the senders and the receiver, RTT AVR 1is
four times of the propagating delay of the bottleneck.

In literature[10] it showed that when there is only one TCP
connection on the bottleneck link, the link can be saturated but no
packet losses, at each time as long as the amount of data poured
onto the link satisfies the condition C*RTT AVR=M=C*RTT AVR+B. A
simple extending of this condition to a version where m concurrent
synchronized TCP connections share the link is

C*RTT AVR=SUM M=C*RTT AVR+B. However, for TCP incast problem, this
condition does not hold because of highly bursty traffic. At the
beginning of a round, for each TCP connection it is possible that
its window has increased enough large that SEND W packets are
transmitted in back-to-back manner, resulting in flash crowd at the
buffer. Such a traffic burstiness can lead to a backlog created at
the buffer even when M<JC*RTT AVR, and packet losses can happen even
when M<C*RTT AVR+B.

4. Performance evaluation
4.1. Simulation Configuration

We use network simulator NS-2 [1l]to run simulation experiments, and
leverage the NS-2 source code provided in [1,3] for our performance
evaluation. Inspired by distributed storage and bulk block transfers
in parallel processing applications such as MapReduce, we use the
workload that is described in Section 2. Especially the data block
size 1s fixed; it was thought to be representative of communication
patterns in popular distributed storage systems [3,4].

The performance metric is throughput over the bottleneck link, given
by the total bytes received by the receiver divided by the finishing
time of the last sender. We explore throughput by varying parameters,
such as the number of servers, switch buffer size, data blocks size

Zheng, et al. Expires December 28, 2016 [Page 8]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

and bandwidth delay product. As the number of servers increases,
each server would transmit a decreasing chunk block, for the size of
SRU is 1/n MB, where n is the number of servers. We vary the value
of n from 4 till the value where the size of SRU is 2 KB, which is
of representative of minor chunk of data. Data block sizes are 1MB
and 4MB, respectively, and BDP varies from 12.5 to 25. We run 100
times simulation experiments, each simulation run 20 seconds. The
throughput is averaged over 100 experiments.

4.2. Throughput performance

We fix the size of data blocks 1IMB. The simulation result shows that
our proposed approach improves incast throughput notice.

4.3. The effect of the limitation to the buffer size on throughput

We redo simulation experiments varying the buffer size B , given
network bandwidth delay product of 12 KB. We consider three cases:
B>=C*RTT AVR and B<C*RTT AVR-S

The simulation result shows that our proposed approach can make sure
the link utilized as fully as possible without packet losses. It is
because sufficient enough data are poured onto the link. As long as
B is not less than the bandwidth delay product, the utilization of
the link can be 50% above.

4.4. The effect of BDP on throughput

The relation of bandwidth delay product to TCP throughput is well-
known in the literature, such as [12,13]. We do simulation
experiments varying bandwidth delay product, given the buffer size
of 64 KB. The calculation of m with the improved approach is
independent on network bandwidth delay product. The simulation
result shows when bandwidth delay product increases, RTT increases
and throughput decreases due to TCP itself congestion control
mechanism. Nonethe-less, our approach improves incast throughput
noticeably; the utilization of the bottleneck link is 70% above even
when bandwidth delay product is higher.

5. Related Work

The 1idea of restricting the number of co-active servers (i.e.,
servers that send data simultaneously to the receiver) is originally
suggested in [14]. However the authors did not give any clue on how
to determine the wvalue of the number of co-active servers. In [15],
the authors proposed an approach to calculating this value. However,
the assumption was that TCP always works in the slow-start phase and
never enters congestion avoidance. Our work use a more realistic

Zheng, et al. Expires December 28, 2016 [Page 9]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

assumption: TCP does enter both phases. It will be shown that it
brings more challenges for the calculating in next section.

The idea of avoiding packet 1losses so as to prevent throughput
collapse due to incast is also used in ICTCP proposed in [16]. The
difference Dbetween our work and ICTCP is that our approach works
without requiring any changes made to TCP protocols while ICTCP
modifies TCP receiver to avoid incast congestion.The authors of
[18]provided an admission control to TCP senders in order to limit
the number of concurrent senders. However, their scheme requests the
switch can report the network situation.

DCTCP in [5] tries to improve TCP throughput based on the idea of
reducing the switch buffer occupation. It achieves the goal by using
marking scheme at switches and modifying TCP congestion control
algorithm to react the marking scheme. Work [3] lowered TCP’s
retransmission timeout value to dimprove TCP throughput, however,
most systems lack the fine-grained TCP timer required for such a low
RTO. Work [1] studied whether the TCP wvariants, such as TCP SACK and
TCP New Reno, and further improvements to TCP loss recovery, such as
Limited Transmit, can prevent the incast problem.

Some algorithms, such as Quantized Congestion Notification (QCN)
[20]and Fair Quantized Congestion Notification (FOCN) [21]are
developed to provide congestion control at the switch or Ethernet
layer 1in data center networks. It has Dbeen shown that QCN can
effectively control link rates very rapidly in datacenter networks.
However, it performs poorly when TCP incast occurs. FQCN, as an
enhanced QCN, improve fairness of multiple flows sharing the 1link
capacity.

Different from those existing works which either improve TCP
protocol itself or are done at the Ethernet level, work [22]proposed
a control protocol that is customized for the datacenter environment.
The proposed uses explicit rate control to apportion bandwidth
according to flow deadlines, motivated by the soft real-time nature
of large scale web applications in today’s datacenters.

Manish Jain et al. reported the condition that a bulk TCP transfer
can saturate a bottleneck link but no packet losses [23]. Although
their work can be extended to a version for many TCP transfer on a
bottleneck link, in our work barrier synchronized many-to-one
communication pattern in incast brings about differences and
challenges for deriving the condition SBNPL in three aspects. First,
in our work each TCP connection just has limited amount of data to
transmit. Yet, a “bulk” TCP transfer in existing works has infinite
data to send. Second, in our incast model TCP enters both the slow-

Zheng, et al. Expires December 28, 2016 [Page 10]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

start and congestion avoidance phases, while existing works assumed
TCP works either in congestion avoidance [21,24] or slow-start phase
[21,15]. Because of the barrier synchronized transfer, the
successive data blocks transmissions are related: when the transfer
of a particular data block begins, TCP stays at which phase, slow-
start or congestion avoidance, not only depends on the last data
block transmission but also the number of senders. Third, our
objective is to determine how many TCP transfers can simultaneously
exist on the bottleneck link so as to utilize the link as fully as
possible; the objective of [21] is to determine TCP socket buffer
size so that the TCP transfer receives its maximum feasible
throughput.

The effect of the buffer on throughput, and the relations of
bandwidth delay product and TCP congestion control algorithm to
sizing the buffer are well-known in the networking literature.
References [25,26] described the rule-of-thumb and square-root rule
for determining the size of the buffer, respectively. Both of them
come from a desire to keep a congested link, that is, there are
packet losses on the link, as busy as possible. Different from these
existing works, in this document we discuss sizing the buffer
assuming no packet losses on the link.

6. Conclusions

By restricting the number of concurrent TCP senders that
simultaneously transmit on the bottleneck is an effective method to
avoid packet losses, thus TCP timeouts. This method eliminates the
root cause of incast throughput collapse. However, it needs
carefulness to find the condition that the bottleneck can be
saturated but no packet losses when there are many TCP senders co-
active on the bottleneck. Considering traffic burstiness and the
delay pipe buffering ability, we examine this condition, and
calculate the reasonable number of concurrent senders. Our approach
is simple and easy to implement, and improve throughput performance.

It is hard to find the exact optimal number of concurrent TCP
senders such that the bottleneck link is fully utilized. In the
future works, we will devote ourselves to analyzing the possibility
of finding the optimal number of concurrent TCP senders, and to
finding it if it exists. We also will extend our work for more
complicated data center networks, where the path from receiver to
servers traverses multiple Ethernet switches, or there are multiple
receivers on a single switch or multiple switches sending requests
to a shared subset of servers.

Zheng,et al. Expires December 28, 2016 [Page 11]

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

7. Security Considerations

This document makes no changes to the underlying security of TCP. No
new security issues are raised within this document.

8. IANA Considerations

This document includes no request to INNA. Existing IANA registries
for TCP parameters are sufficient.

9. References

[1] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson and S. Seshan, “Measurement and analysis
of TCP throughput collapse in cluster-based storage systems,”
FAST 08, Feb. 2008, San Jose, CA.

[2] D. Nagle, D. Serenyi and A. Matthews, “The panasas activescale
storage cluster: delivering scalable high bandwidth storage”,
Proc. the 2004 ACM/IEEE conference on Supercomputing,
Washington DC, USA, 2004.

[3] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G.R. Ganger, G. A. Gibson and B. Mueller, “Safe and
effective fine-grained TCP retransmissions for data center
communication”, SIGCOMM'09, August 17-21, 2009, Barcelona,
Spain.

[4] Y.Chen, R.Grith, J.Liu, A.D.Joseph, and R.H. Katz.
Understanding TCP incast throughput collapse in data center
rnetworks. In Proc. Workshop: Research on Enterprise
Networking, Barcelona, Spain,Aug.2009.

[5] M.Alizadeh, A.Greenberg, D.A.Maltz, J.Padhye, P.Patel,
B.Prabhakar, S.Sengupta, andM.Sridharan. Data Center TCP
(DCTCP) . Proceedings of ACM SIGCOMM, 2010.

[6] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R.
Chaiken. The Nature of Datacenter Traffic: Measurements &
Analysis. In ACM IMC 2009, Nov 4-6, 2009, Chicago, USA

[7] BSP Website. (2012). Available: http://www.bsp-worldwide.org

[8] Jiao Zhang, Fengyuan Ren and Chuang Lin, “Modeling and
Understanding TCP Incast 1in Data Center Networks,” Proc.
IEEE INFOCOM 2011, July, pp.1377-1385, doi:
10.1109/INFCOM.2011.5934923.

Zheng,et al. Expires December 28, 2016 [Page 12]

http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=0A281D24572B5ABE0D4DF02A2FCA5277?cid=5806429
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=0A281D24572B5ABE0D4DF02A2FCA5277?cid=5806429
http://dx.doi.org/10.1109/INFCOM.2011.5934923

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

[9] S. Shenker, L. Zhang, D. Clark, “some observation on the
dynamics of a congestion control algorithm,” ACM Computer
Communications Review, vol. 20, 1990, pp. 30-39.

[10] Manish Jain , Ravi S. Prasad and Constantinos Dovrolis, “The
TCP Bandwidth-Delay Product revisited: network buffering,
cross traffic, and socket buffer auto-sizing,” CERCS Technical
Reports, 2003.

[11] The network simulator 2, http://www.isi.edu/nsnam/ns.

[12] S. Shalunov and B. Teitelbaum, “ Bulk TCP Use and Performance
on Internet2,” 2002. Also see:
http://netflow.internet2.edu/weekly/.

[13] D. Katabi, M. Handley and C. Rohrs, “Congestion Control for
High Bandwidth Delay Product Networks,” Proc. ACM SIGCOMM 2002.

[14] E. Keevat, V. Vasudevan, A. Phanishayee, D. G. Andersen, G.R.
Ganger, G. A. Gibson and S. Seshan, “On application-level
approaches to avoiding TCP throughput collapse in cluster-
based storage systems”, Supercomputing 07, Nov. 10-16, 2007,
Reno, NV.

[15] Yongxiang Zhao, Changjia Chen, “A scheme to solve TCP
transmission problem in data center”, 2010 Cross-Strait
Conference on Information Science and Technology, CSCIST 2010,
July 9-11, 2010, Qinghuang Dao, China.

[16] H. Wu, Z. Feng, C. Guo and Y. Zhang, ICTCP: Incast congestion
control for tcp in data center networks. In ACM CoNext 2010,
Nov 30 - Dec 3, 2010 Philadelphia, USA

[18] Adrian Tam, Kang Xi, Yang Xu, H. Jonathan Chao, “Preventing
TCP Incast Throughput Collapse at the Initiation, Continuation,
and Termination”, Proc. IEEE/ACM International Workshop on
Quality of Service (IWQOS 2012), Coimbra, Portugal, June, 2012.

[20] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan,
B. Prabhakar, and M. Seaman, “Data Center Transport Mechanisms:
Congestion Control Theory and IEEE Standardization,” Proc. the
46th Annual Allerton Conference, Illinois, USA, Sep. 2008, pp.
1270-1277.

[21] Yan Zhang, and Nirwan Ansari, “On mitigating TCP Incast in
Data Center Networks,” Proc. IEEE INFOCOM 2011, Shanghai,
China, July. 2011, pp. 51-55.

[22] Christo Wilson, Hitesh Ballani, Thomas Karagiannis and Ant
Rowtron, "“Better Never than Late: Meeting Deadlines in

Zheng, et al. Expires December 28, 2016 [Page 13]

http://smartech.gatech.edu/handle/1853/79
http://smartech.gatech.edu/handle/1853/79
http://www.isi.edu/nsnam/ns
http://dl.acm.org/author_page.cfm?id=81416593396&coll=DL&dl=ACM&trk=0&cfid=92349210&cftoken=55270575
http://dl.acm.org/author_page.cfm?id=81100036310&coll=DL&dl=ACM&trk=0&cfid=92349210&cftoken=55270575
http://dl.acm.org/author_page.cfm?id=81100081610&coll=DL&dl=ACM&trk=0&cfid=92349210&cftoken=55270575
http://dl.acm.org/author_page.cfm?id=81442593006&coll=DL&dl=ACM&trk=0&cfid=92349210&cftoken=55270575
http://dl.acm.org/author_page.cfm?id=81442593006&coll=DL&dl=ACM&trk=0&cfid=92349210&cftoken=55270575

Internet-Draft Preventing TCP Incast Thr. Col. for DCN June 2016

7

Datacenter Networks,”
2011, pp. 50-61.

[23] Manish Jain , Ravi S. Prasad and Constantinos Dovrolis, “The
TCP Bandwidth-Delay Product revisited: network buffering,
cross traffic, and socket buffer auto-sizing,” CERCS Technical
Reports, 2003.

Proc. ACM SIGCOMM 2011, New York, USA,

[24] Jiao Zhang, Fengyuan Ren and Chuang Lin, “Modeling and
Understanding TCP Incast 1in Data Center Networks,” Proc.
IEEE INFOCOM 2011, July, pp.1377-1385, doi:
10.1109/INFCOM.2011.5934923.

[25] C. Villamizar and C. Song, “High performance tcp in ansnet,”
ACM Computer Communications Review, vol. 24, pp. 45-60, 1994.

7

[26] G. Appenzeller, I. Keslassy and N. McKeown, “Sizing router
buffers,” ACM SIGCOMM Computer Communication Review, vol. 34,
Oct. 2004, doi:10.1145/1030194.1015499.

10. Acknowledgments

We thank the research group lead by Professor David Andersen
(Carnegie Mellon University) for sharing the NS-2 simulation codes
and in particular, Amar Phanishayee (Carnegie Mellon University) for
help with understanding these codes. We also thank Professor
Yongxiang Zhao and Professor Changjia Chen of Beijing Jiaotong
University for feedback and support. Discussing with Professor
Hongfang Yu (University of Electronic Science and Technology of
China) and Bingli Guo (Beijing University of Posts and
Telecommunications) also help our work.

This document was prepared using 2-Word-v2.0.template.dot.

Zheng,et al. Expires December 28, 2016 [Page 14]

http://smartech.gatech.edu/handle/1853/79
http://smartech.gatech.edu/handle/1853/79
http://dx.doi.org/10.1109/INFCOM.2011.5934923
http://dx.doi.org/10.1145/1030194.1015499

Internet-Draft

Zheng,et al.

Authors’ Addresses

Hongyun Zheng

CEIE, BJTU

Beijing,China

Email: hyzheng@bjtu.edu.cn

Chunming Qiao

SUNY

Buffalo,NY,U.S.A

Email: giao@computer.org

Kai Chen

CEIE, BJTU

Beijing,China

FEmail: 10120063@bjtu.edu.cn

Yongxiang Zhao

CEIE, BJTU

Beijing,China

Email: yxzhao@bjtu.edu.cn

Preventing TCP Incast Thr.

Expires December 28,

Col.

2016

for DCN

June 2016

[Page 15]

mailto:hyzheng@bjtu.edu.cn
mailto:qiao@computer.org
mailto:10120063@bjtu.edu.cn
mailto:yxzhao@bjtu.edu.cn

	Introduction
	Model
	TCP Incast Model
	TCP rabbits in data centers

	The Condition SBNPL
	Why limit the number of concurrent senders
	Assumptions and notations
	The condition SBNPL

	Performance evaluation
	Simulation Configuration
	Throughput performance
	The effect of the limitation to the buffer size on
	The effect of BDP on throughput

	Related Work
	Conclusions
	Security Considerations
	IANA Considerations
	References
	Acknowledgments

