ANALOG
DEVICES

ADSP-2101

Cross-Software
Manual

Programming
Reference

You may contact the Digital Signal Processing Division in the following
ways:

« By contacting your local Analog Devices Sales Representative
* For Marketing information, call (617) 461-3881 in Norwood,
Massachusetts, USA
» For Applications Engineering information, call (617) 461-3672 in
Norwood, Massachusetts, USA
» The Norwood office Fax number is (617) 461-3010
» The Norwood office may also be reached by
Telex: 924491
TWX: 710/394-6577
Cables: ANALOGNORWOODMASS
« The DSP Division runs a Bulletin Board Service that can be reached
at 300, 1200, or 2400 baud, no parity, 8 bits data, 1 stop bit by dialing:
(617) 461-4258
« By writing to:
Analog Devices
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

ADSP-2101 Cross-Software Manual

©1989 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other
rights of third parties which may result from its use. No license is granted by implication or other-
wise under the patent rights of Analog Devices.

PRINTED IN USA FIRST EDITION

Literature

ADSP-2101 MANUALS

ADSP-2101 User’s Manual/Architecture (preliminary)
Complete description of architecture and system interface.

ADSP-2101 Cross-Software Manual
Complete programmer’s reference including C compiler.

APPLICATIONS INFORMATION

ADSP-2100 Family Applications Handbook, Volume 1
Topics include arithmetic, filters, FFTs, LPC, modem algorithms.

ADSP-2100 Family Applications Handbook, Volume 2
Topics include graphics, pulse-code modulation, multirate filters, DTMF.

ADSP-2100 Family Applications Handbook, Volume 3

Topics include optimized and 2D FFTs, memory interface, multiproces-
sing, host interface, sonar beamforming.

SPECIFICATIONS INFORMATION

ADSP-2101 Data Sheet (preliminary)

S—

S

Contents

CHAPTER 1 OVERVIEW

1.1 INTRODUCTION ..ottt 1-1
111 ADSP-2101 Cross-Software System & Manualc.cocovevcrerrrinne. 1-2
1.1.2 Development FIOW ..o 1-4
1.2 EXPRESSION HANDLING IN CROSS-SOFTWARE TOOLS 1-6
1.3 CONSTANTS ...ttt st 1-6
1.4 NUMERIC BASES ... ssaneens 1-7
15 CHARACTER SET ..ottt esiss s s ssesnee 1-7
1.6 IDENTIFIERS (SYMBOLS).......ocveiirineiniiecnerscresieenseee e 1-8
1.7 MANUAL NOTATION CONVENTIONSovorirereneseieneeceeee 1-8

CHAPTER 2 SYSTEM BUILDER

2.1 INTRODUCGTION ...ttt 2-1
2.2 RUNNING THE SYSTEM BUILDERccooiviviveeeccee e 2-3
2.3 LANGUAGE CONVENTIONS ..ot 2-3
2.4 SYSTEM SPECIFICATION SOURCE FILE EXAMPLEcccoooeviviie. 2-4
241 ADSP-2101 System Specification Fileccocovverinensineninnnn. 2-4
2.5 SYSTEM BUILDER DIRECTIVEScoooooiieeeteeeeetccee et 2-6
251 SYSTEM DIrCLIVE ...t 2-6
252 ENDSYS DIrECHIVEoooveeeieeceeeeeeee e et 2-6
253 ADSP2101 DIrECHIVE ...ttt 2-6
254 LCONST DIFBCHIVEeoveveeeeecee ettt 2-6
255 PORT DIFBCHVE ...ttt 2-7
2.5.6 MMAP DIr€CHVE ..t 2-7
257 SEG DIFECHVE ...ttt 2-8

(]

CHAPTER 3 ASSEMBLER

INTRODUCTION ..ottt 3-1
ASSEMBLER MODULES ..ottt 3-3
RUNNING THE ASSEMBLER ..ottt 3-3
ASSEMDIBT SWIHCNES ...ttt 3-3

—CP SWICH ..o 3-4

P SWIECH o 3-4
—dvariable[=valug] SWItChcccoovrerrurirrerreer e 3-6

L SWHCH .t 3-6

—m [NUMDBEr] SWItCH ..., 3-6

=i [NUMDBEI] SWILCHcvvi e 3-7

L 1Lt VTR 3-7

—C SWIHCN ...t 3-7
LANGUAGE CONVENTIONS ..ot 3-7
Binary CONSIANTSciiriic it 3-7
SYMDOIS o 3-8
1AENETIBIS ... 3-8

Reserved Symbols (Keywords)ccoocneeeininecrninennns 3-8
COMMENES ...ttt ettt e 3-10
PROGRAM STRUCTUREcoovieteeeeeiere ettt seseen s 3-10
Source Code File ReStriCtioNSc.ccoevveiveeececeeeeee e 3-10
ASSEMBLER DIRECTIVESoveeeeeee e s 3-10
MODULE DIr€CHVE ...ttt 3-11
ENDMOD DiIrECHVE ..o 3-12
VAR DITECHVE ..ottt 3-13
More On Circular BUFFErSccoeveveeievieieciceeeeeeeeeee e 3-15

ANIT DIFCHIVE ..ottt 3-17
LCONST DIFECHVE ...ttt 3-19
PORT DIrECHVE ..ottt 3-19
ANCLUDE DIrCHVE ...ttt 3-19
MECIOS ..ottt ettt et s 3-20
Macro DEfINItIONovoveieiecee e 3-21

MACRO DIr€CHVE ..o 3-21
ENDMACRO Dir€CHVEeeeeeeereeeereeeeeeeeeeeeeeeen 3-22

MaCro EXaMPIEccovvreeiirirese s 3-28

LOCAL DIFECHVE ...ttt s 3-23
EXTERNAL DIr€CHVE ...t 3-24
.GLOBAL DIrCHIVEoeererrereries ettt 3-24
ENTRY DIr€CHVE ...ttt 3-25
PROGRAM EXAMPLE ..ot 3-25
LIST FILE FORMAT ..ottt 3-29

CHAPTER 4 LINKER

4.1 INTRODUCTION ..ottt 4-1
42 RUNNING THE LINKER ..ot enas 4-3
421 LIiNKEr SWItCHESvvvvevvceciieiteie et 4-4
42141 —a archname & —e target SWItches ..o, 4-4
4212 —C Switch & ADIRTH Variable ... 4-5
4213 =Aryrun SWICH ... 4-5
4214 =0 & X SWItCNES ..voovrceee e 4-6
4215 =i file_all SWICN ..o 4-6
4216 -lib directories Switch & ADIL Variablecccccvvenirnenn. 4-6
4217 =0l SWItCH ... 4-7
42.1.8 P SWILCH (oo 4-7
4219 —PMSEACK SWILCHoooec s 4-7
42.1.10 =S StaCk _Siz€ SWICN ... 4-7
4.3 LINKER OPERATIONcouiiriirnirie et eseesee s snssessarsnesss 4-8
431 Memory AlIOCAHON ..o 4-8
43141 Boot Memory AlloCation ... 4-10
432 SYmDOl RESOIULION ... 4-10
4.4 MAP LISTING FILE ..ot nineen 4-11
CHAPTER 5 SIMULATOR FUNCTIONS

5.1 INTRODUCTION ..ottt easstsesee s sssssesssssesssesesesensne 5-1
5.2 GETTING STARTED ..ottt et 5-2
5.2.1 Help Files & ADIDOC Variablecccrveemeerreremrieennieinecneencsnenees 5-2
522 SIMUIBLOT FHIES ... s 5-3
523 Invoking The SIMUIALOTc..ccvvviiiiicicec s 5-3
524 Simulator Command OVEIVIEWcccorririeririeninneneeremsieienenens 5-5
525 Simulator Notation Conventionscccorriionerneeeienens 5-6
5.2.5.1 Specifying Addresses & Address Ranges ... 5-7
5252 Simulator EXPressionscceeereneniecincencenessensenns 5-8
5.3 INTERFACE MANAGEMENT FUNCTIONS ..o, 5-9
531 Opening WINAOWScoovvrveiriiincien e eesceeneas 5-10
532 Changing Window Contents From Hex to Decimal..........c...co....... 5-11
533 Closing WINGOWSc.ooviiiriiiireieeseesiseseese e 5-11
534 Moving From Window To WINAOWcccoreeninnenencinineenn, 5-11
53.41 To Cycle Through All WinOWSccoreveeevimncninirneicnne, 5-12
5.3.4.2 To Activate A Window By Number ..., 5-12
5343 To Activate The Command Window.............cocvureernnerccenns 5-12
535 SIZING WINAOWS ...t 5-12
53.6 MOVING WINAOWSoovmreeicirircsere e 5-13

Vil

vili

537
5.3.7.1
53.7.2
53.7.3
538
539

5.4.1
542
543
5.4.4
545
55
5.5.1
55.2.1
5.5.3
5.5.4
555
5.5.6
55.7

56.1
56.2
5.6.3
56.4
5.6.5
5.6.5.1
56.5.2
56.6
56.7
5.6.8
56.9

5.7.1
5.7.2
573
5.7.4
5.7.41
5.7.42
5743
5.7.4.4

Rearranging Window COntentsccoc.ecenncninemnecncrenennas 5-13

Deleting WIndow Fields...........cocvrvievcinncrirnineninsersees 5-13
Undeleting Window Fields ..., 5-13
Moving Window Fieldsccviernineernninncrenens 5-14
Command LiNe AlIBSESc.cvvvverrrieieieie sttt 5-14
USING HEID .ot 5-15
SET-UP FUNCTIONS ..ot eseesnsssse s 5-16
Loading A Program ... 5-16
Opening & Closing An /O POrt ..o, 5-17
Opening A SPORTovveiee et 5-18
Simulating External INterruptsccocovvevneinneise e, 5-20
Other Defaults (Defaults WIndow)c.ccvcrererivnnneicnernenen. 5-20
INSPECTING & ALTERING REGISTERS.vvvrveicrrrcernrcneinsenenns 5-21
INSPECting A REGISIEN ..o 5-22
AItering A REGISIEN ...ttt 5-22
“Undefined” REGISIErScvueuriereereereiccnrieieeceseeiecenes 5-283
RegiSters WINAOWc.ccreirirrireeneieriersenesesssi s, 5-23
SPORT Register WINAOWcoveververeneriirceiesneee e 5-24
Status Register WIiNAOWocurreinrierrinenresiecseesecsneeeene. 5-24
Control Registers Windowc.ccvenennieennreenescneee 5-26
StACK WINAOW ..o 5-26
INSPECTING & ALTERING MEMORYccoviiiiriecmineiincrecirieeens 5-28
Inspecting A Memory LOCHON ..o 5-28
TEACKING -.eveeeereereirese ettt ettt sasns 5-29
Locating Symbols & Values ... 5-30
Plotting The Contents Of MEMOIYcoovevvvirneneicrincciniene 5-31
Altering A Memory Location
AItEring INSTUCHONS ...cooveen s
“Undefined” Memory LOCationscccenrrrienineencninnnenn, 5-33
Program Memory (Code) WINAOWcoevmrneurvrrccnierncniciennennens 5-33
Program Memory AS Data ..o 5-34
Data MEMOTYcvucvcreieier ettt 5-35
BOOE MEMOTY ..o e 5-36
CONTROL & DEBUGGING FUNCTIONS.........coveeirereineicesienervennnes 5-38
Resetting The Processor: CRand RE ..., 5-38
Single-Step EXECULION.........ccericereiie i, 5-38
RUNNING & HAMtING ..o 5-39
BrEAKSvvivrereeeie et 5-40
Setting Breakpoints & Break Ranges............cccccvccnnencnnn. 5-40
Viewing Braaks ..o 5-40
Break Expressions & Changesccccvmvcneeecvvonnninens 5-42
Deleting Breakscvvvevueeiiernireneneisee e 5-43

5.7.5 Watchpoints & Watch EXpressionsccvereevcieenrinsioneenncenens 5-44

5.7.51 Setting Watchpoints ... 5-44
5.75.2 Setting Watch EXPreSsionscoceeerierieeennereennseeseennns 5-44
5753 Listing Watchpoints and Watch Expressionsc.cccceeee.. 5-45
5.7.5.4 Deleting Watchpoints and Watch Expressions 5-45
5.76 The ? Command and Expressions Window ..., 5-45
5.7.7 Execution History (Trace Window).........cccocvcveineenennniencrinnn. 5-46
5.7.8 Execution Profiling (Profile WINOw)ccccvvrmnenciinineien. 5-47
5.7.8.1 Turning On Profilingccovevccninerneniccrennnscenenne . 5-48
5782 Setting A Profile Rangecccveverivininennnncnsneinennee 5-48
5783 Deleting Profile RaNGEScccvcvmrrrnernirrencenersersereinenes 5-49
5.7.8.4 Resetting Profiling Datacccvvcmncenincreneriiene 5-50
579 Setting TIME BASESveuvreereereeeres et eeescene s sessesses 5-50
5.7.91 Short Term Count (STC) ... 5-50
5792 Long Term Count (LTC)vevvvreercrerrrrneeeeceeseee s 5-51
5.8 EXITING & SAVING A SIMULATOR SESSIONccovcnerereineinrinenenn. 5-52
5.8.1 Saving SImUILoN StAtecovvererrereeireree s 5-52
58.1.1 WAL IS SAVET ..ot 5-53
58.1.2 What IS Not SAVEQcocermeiecececr e 5-53
58.2 QUIttinG The SIMUIALOTuevveeee e 5-53
5.9 MISCELLANEQUS FEATURESc.oovcnirveiicinineeeseireeeesessenssinens 5-54
5.9.1 Executing Operating System Commandscocouerrrreurernrerneenn. 5-54
5.9.2 Executing ADSP-2101 Instructions Directlycccocrvrmrnirnennn. 5-54
5.10 SUMMARY OF COMMANDS & CONTEXTScvvrvernermncrrerseerenienens 5-54

CHAPTER 6 SIMULATOR CONFIGURATIONS

6.1 INTRODUCTION ..ottt essenes 6-1
6.2 CONFIGURING SCREENS & WINDOWScc.ccvcvmimmmrinerenieceriecenes 6-2
6.2.1 Opening WINAOWScuuveiviiiieiiesieeieeseeiseeneiseeesseesscsssioe s 6-2
6.2.2 Selecting, Deleting & Rearranging Fields In A Window 6-4
6.2.3 Saving A Rearranged SCreeNccocerieinionreeireiessssseesereeenns 6-7
6.3 COMMAND ALIASESoomeriiriirernineserecicnnsecsnessee e 6-8
6.3.1 Managing Aliased COMMANGScocccurinenmnenreeenscnneeen e 6-9
6.4 THE STARTUP FILE ...t sssseenssineenn 6-10

ix

CHAPTER 7 C COMPILER

7.1 ADSP-210X C LANGUAGE SYSTEMcovimimirireennrireecseieeee e 7-1
7144 README FlB ... et nessesse s sssneees 7-3
71.2 C & The ANSIStandardcoeeeirerrenrrereeneirnreeesneseseesssasees 7-3
713 Upper and Lower Case USAgE...........cueremmrnrnrers e 7-3
7.2 COMPILINGcvoivriecreeiene st sssssss e 7-3
7.2.1 FIlename USAQEverereececeneiein it sssesssnnees 7-4
722 Invoking The C COMPIIEc..cvvmieriririerice s 7-4
7.2.21 8 SWICH oo 7-6
7222 —abS = # SWILCH ..ot 7-6
7223 —DH[H..] SWILCH .o 7-6
7224 —Dvariabie [=vaiue] SWICN ... 7-7
7225 =€ SWILCH oo e 7-7
7.22.6 —GPM SWILCH oottt 7-7
72.2.7 1 = Path SWILCH ..o 7-7
7228 —LPM & —LIOM SWItCRES ... 7-7
7229 N SWICH s 7-7
7.2.2.10 —PMSEACK SWICH ...t e 7-8
7.2.2.11 =0 & =1 SWILCHEScvecerrrr e 7-8
723 Preprocessor COMMENGSc.evccureeevemnemrieerserineessereseesenerserees 7-8
7.2.3.1 #pragma DIreCHIVE ..ot 7-9
7232 HINCIUAE DIFECHVE ... 7-9
724 Linker REQUIrEMENESc.vvireircreieierseirecensses e 7-10
725 Run Time HEAdEr ..o 7-11
7.3 RUN TIME MODEL......ccotniniirirecneensinetseriscensesesssssisssissesesssssessssens 7-11
7.3.1 Stack Implementation ... 7-1
732 Register Use LIMItS..........cevcviniiercrnee e 7-12
733 INEEITUPES 1. v

734 Data Types............

7.35 Memory Usage

736 Storage Classes & MOGIfIErS..........ccccvrrererrrnreneeneineeseiesecinees 7-16
737 Function Calling & EXit.........ccurimeereerrnrirneineinssessseseee e seseesnens 7-17
7.4 ASSEMBLY LANGUAGE INTERFACE SUMMARYccccovvnervevvinnns 7-18
7.4 Checklist of PrerequIsitesccoeiueireercecneniinsssessesesins 7-18
742 Assembly Language Interface Exampleccoovvrveeinirecrnien 7-19
75 LANGUAGE EXTENSIONS.......cooontrimninmineenineinesesseesscessissire s 7-20
76 PROGRAMMING HINTSooririireieie et esesssssssssesnens 7-20
7.6.1 Location Of Variablesc.eeuriiiirerceeeieneneiesenerssenese e 7-20
7.6.1.1 Globals in PM vs. Globals in DMccccveivinncveiennennns 7-21
76.2 LOCatioN Of STACKcvvverceciceren e 7-22

7.7 ERROR MESSAGEScoiirenririieceenscseeecessessnsss s 7-22

7.7.1 Corrected SYntax Errors ... 7-24

772 USBI BITOIS ...ttt 7-25
773 COMPIIEE EITOTS ... 7-25
7.7.4 EXIt COUBS ...t 7-25

CHAPTER 8 PROM SPLITTER

8.1 INTRODUCTION ... 8-1
8.2 RUNNING THE PROM SPLITTERcc.vivvirriicnncneenrsenecesiincee, 8-1
8.3 PROM SPLITTER QUTPUToooiiicieiecerercin e 8-3

CHAPTER 9 INSTRUCTION SET REFERENCE

9.1 OVERVIEW .ottt ettt 9-1
9.2 CYCLE TIME NOTES ...ttt 9-2
9.21 ADSP-2101 Extra Cycle Conditions...............ocovrernerneinerieinirneienns 9-2
9.3 INSTRUCTION SYNTAX NOTATION ..o 9-3
9.3.1 Punctuation & Multifunction InStructionsccccceeevevecc e, 9-4
9.3.2 Syntax Notation EXample ..o 9-4
9.3.3 Status NOtAtiONcovercecececce e 9-5
9.34 Instruction Word NOTAtIONc.cveeiveveiieeeeee e e 9-5
ALU Add / Add With CarTY ..o 9-7
Subtract X-Y / Subtract X-Y with BOrrowcccceeevvvvviieeceeers, 9-8
Subtract Y-X/ Subtract Y-X with BOrmowccccceevvvvveeverereeeecean, 9-9
AND, OR, EXCIUSIVE OR ...ttt 9-10
PSS / ClEAT ...ttt 9-11
NEJAIE e 9-12
NOT e 9-13
ADSOIUIE VUG ...t 9-14
INCIEMEBNL ...ttt 9-15
DBCIEMENL ...ttt et s en et er et 9-16
DIVIBE e 9-17
MAC MUIDIY st 9-19
MUltiply / ACCUMUIALEeveeerec e 9-21
MUIIPLY / SUBEFACE ... 9-23
LA ettt et en s 9-25
TraNSTEr MR ...ttt nnenas 9-26
Conditional MR Saturationccceceeeeeeieiee e 9-27

x1i

Xii

SHIFTER Arithmetic Shiftcoceerireeecercnese e 9-28
LOGICAl Shift ... s 9-30
NOIMANZE ..voeoe et e 9-32
Derive EXPONENTcvieiieiiciicriire et 9-34
Block EXponent AQJUSEc..vveieieeerireieenieeenee e seessssssssessessssss s 9-36
Arithmetic Shift IMMEdIALEcreveieerirircrcirnee s 9-38
Logical Shift IMMEAIALecovvvvirverirrree e 9-40
MOVE REGISIEr MOVE ...t
Load Register IMMediate ..o
Data Memory Read (Direct AdGreSS)cvveemiveecneerrinirerierninenieieneens
Data Memory Read (Indirect Address)
Program Memory Read (IndireCt AGOTESS) ..vvvvvvevernrnccecccisieiens 9-47
Data Memory Write (Direct AAAress)covuvcereeneeriermnmeneneeeeceens 9-48
Data Memory Write (Indirect ADAress)coocvcreerirnernernenneneenincenne 9-49
Program Memory Write (Indirect AdAress)cccovvcnmreivncnenininnens 9-51
PROGRAM FLOW
JUMP et 9-52
CALL ettt s 9-53
JUMP or CALL on Flag In Pin ..o 9-54
Modify Flag OUt Pin ...t eeeses e 9-55
Return from SUDIOULING ..o e 9-56
Return from INEITUPE ..o 9-57
DO UNtE e 9-58
IDLE ettt 9-60
MISC Stack Control
Mode Control
Modify Address REQISIEN...........c.evuceeeeeieieieeeie e 9-65
NP et 9-66
MULTIFUNCTION
ALU /MAC / SHIFT operation with Memory Readcc.ccovvevrvirennnne, 9-67
ALU /MAC / SHIFT operation with Data Register Moveccccovune.. 9-71
ALU /MAC / SHIFT operation with Memory Write...........c.covrnneerineas 9-74
Data & Program Memory Readcccvererrereinemnicneeeersrnessceneesnenns 9-78
ALU / MAC operation with Data & Program Memory Read 9-79

-

APPENDIX A INSTRUCTION CODING

AA OPCODES ...ttt A-1
A2 ABBREVIATION CODINGcooviiicinircsincnrscr e A-6

APPENDIX B FILE FORMATS

B.1 DATA FILES ((DAT) oottt B-1
B.1.1 Assembler Buffer Initialization FileScocooeeeiieiieiceieeee B-1
B.1.1.1 INtEGEr DAt ... B-1
B.1.1.2 Non-Integer Datac.coovvrevrriiricsee e B-2
B.1.1.3 COMMENIS ..ottt et B-2
B.1.2 Simulator Data FileScvcvceiieeieeecceeee e B-2
B.1.2.1 VO POM DALA ...t B-2
B.1.2.2 SPORT Data ..ot B-3
B.1.23 Simulated Memory Dataccocoeeiverininreeceses s B-3
B.2 MEMORY IMAGE FILE (.EXE) ..ot B-3
B.3 DEBUG SYMBOL TABLE FILE ((SYM) ..o, B-5
B.4 PROM IMAGE FILES (.BNU, .BNM, .BNL)c.ccovcviiiiiniiieecicreiriin B-7
B.4.1 INtEl FOrMAL ...t B-7
B.4.2 Motorola FOrmatc.oevevevieeeeeeeeeeee e B-10

APPENDIX C HOST-SPECIFIC REQUIREMENTS

CA1 SYSTEM REQUIREMENTSccooiirriierieceie e C-1
C.2 IBM PC AND COMPATIBLEScooiii e, C-1
C3 SUN-3 WORKSTATIONcooiriicieiinrenierie e C-2

APPENDIX D ANSI STANDARD C

DA ANSI DRAFT STANDARD EXCEPTIONScoovoieceeeeeee e D-1
D.11 Features Not Supported & Restrictionscooeevvriviicniivninnnns D-1
D12 New Features and EXtenSionsccocevveeeicereicieieee e D-1
D2 DIFFERENCES BETWEEN HOST VERSIONSccccooovvvvevivi D-2

X111

X1

APPENDIX E LINKER OPERATION

E.1 INTRODUCTION ...ttt ssnes E-1
E2 RE-BOOTING UNDER PROGRAM CONTROLc.coovvrurieriereineinernees E-1
E.3 SHARED DATA STRUCTUREScoovirrineinenscneenss e E-1
E.3.1 Data Buffers in Program Memoryccccvvmrenincerneenernnceneenneenn, E-2
E3.2 Data Buffers in Data MEMOIYoccvvievcncvernininncnceieninenns E-4
E.4 SHARED SUBROUTINES ...t E-5
E.4.1 Repeating The BOOT QUAIfIErcccvveviiieceierccrecirceeei E-5
E4.2 Libraries & —=p SWItCh ..o E-5

F.1 INTRODUCTION ...coooiriiiiiinniiresenete et F-1
F.2 SYSTEM BUILDER ERRORS ..ot F-1
F.3 ASSEMBLER ERRORS ..o senenns F-4
F.4 LINKER ERRORS ..ottt seessssnns F-10
F.4.1 Operating SyStem EITOrS ..o ceeseneieceees F-11
F.4.2 Informational MESSAQESvcrrerirrcrrieeeciser e F-13
F.4.3 Memory Allocation EfTors ... F-13
F.4.4 Symbol Reference Erfors ..o F-15
F.4.5 ONBE EITOIS ..ottt F-16
F.4.6 SOfWAE EITOTS ... F-17
F.5 SIMULATOR ERRORS ..ot F-18
F.5.1 GENEIAI EITOIS ..ottt nes F-18
F.5.2 Defaults ErrOrs ...t F-18
F.5.3 EXPrESSION EITOTS ...ttt sttt et ensen s F-19
F.5.4 Break Efrors ... e F-19
F.5.5 WLCH EITOFS ...ttt s nes F-20
F.5.6 ComMANA EITOMS ...coviirvriniieeenee et F-20
F.5.7 PIOt MEMOTY EITOIS ..o F-21
F.5.8 Port & SPORT EITOISccvueicicerinceceireiseieesseinssesesesssssesssssesens F-21
F.5.9 Instruction & Program Load Erforsccoricncrnenrniriinennns F-23
F.5.10 EXECULION EFTOFS ..o F-24
F.5.11 Command Syntax Errors ... F-25

FIGURES

1.1

ADSP-2101 System Development FIOWcooovrierirnieeniees 1-5
System BUIIAEr VO ... 2-2
Sample System Specification Fileccovirrieneniiinninieerencnes 2-4
ASSEMDIET /O ... s 3-2
Assembler Program FIOW ..o 3-5
Circular BUFIEIScuceecrce e e 3-16
MaCrO EXAMPIE ...t 3-23
Main Routing EXamPplec.covviuivirnneiecne s 3-27
Interrupt Routing EXamPIEcovviviiniriniciee e 3-28
Include File, Constant Initializationcccoveeoervenonieescene 3-28
List File EXAMPIE ... 3-29
LINKET VO ..ottt 4-2
Map LISHNG FlE ...t 4-12
Initial Display & Window Commands Menucccccoenvevrernriernnnnne. 5-2
Files Used By The SImUIRLOTc..coviivcreerceee e 5-4
Parts of @ Typical WiNOWc.ccouvirinrininrnsne e 5-10
170 Status WINAOWc..coreimiiiireieiier e 5-19
SPORT Status WINAOWc..coierrmierniirereenceenneiseeeiseeseseneens 5-19
Defaults WINAOW ..o s 5-21
Register WINAOW........c...ciicriiriieceen e 5-24
SPORT Register WINAOW ..o 5-25
Status Register WINdOWcccoviiiieeieiecces s 5-25
Control Registers WINAOWc..covriureernrenrenirrnnriseee e esessseesscenees 5-26
SEACK WINAOW ..ot 5-26
Program Memory (Code) WINAOWccoovieiniminnnennncneies 5-34
Program Memory Data WiNAOWccoceeerneininsneneiseescneees 5-35
Data MemOory WINAOWcviiririineiecnineieesiseie e 5-36
Boot Memory Code WINAOWcveuieinirninineieniscneenere s 5-37
Boot Memory Data WINAOWc.cceeriiiirnneceecc e 5-37
Breakpoints WIRAOWcc.ocueueimcenecrnininennneeeecnere s 5-41
Break Expressions WINGOW ... cencencescneenees 5-43
EXPressions WINAOWcceoveiriicecineiecseie e sessseenes 5-46
Trace Window

Profile Window
Short Term, Long Term and Cumulative Profiling Time Bases 5-52

X0

xvi

TABLES

2.1
22

Main Menu For Configuring WINAOWSccoevrermernceeierninernnnenenes 6-2
Window Selection Submenu (with Register Window selected) 6-3
Default Register WIndow Layoutc.cvcncnninmnnnniecnees 6-4
Example Register Window with some registers deleted.............cccovvenen. 6-5
Example Register Window with registers rearrangedc.ccccveevcvernees 6-6
Final Register Window Arrangementcc.vreerermeeeeremneersiriennererennens 6-7
C COMPIET 1O .ot 7-2
Stack Implementation in ADSP-2101 Memory Spaceccccovurureennn: 7-12
Global variable location: data memory vs. program memoty 7-21
Stack location: effect of data memory vs. program memory 7-22
PROM SPHIET O et 8-2
STATIC Data Buffers in Boot MEMOTYccoeeureveneionimirciciirecinenns E-3
Sharing STATIC Data Between Multiple Boot Pages.............cccvneevrcennne E-4
Library Routines & Multiple Boot Pagesccccvueienenenrernernenerneenns E-6
ADSP-2101 System Configurations...........coeeeeerereecrmnnieeencensmeencerenenenne. 2-1
System Builder KEYWOIdS ..o neseseeesseens 2-3
ASSEMDIEr SWITCHESovvniiercrieine et 3-3
Preprocessor Switch Combinationscovvevrereeirinnineineiecineeenns 3-4
Assembler-Reserved Symbols/Keywords.............ccccveereenencnciniceinns 3-9
Arguments/Parameters Legally Passed to Macroscccoovcvrvernns 3-22
LINKEr SWICNESeoceceeiiiseie ettt ssennes 4-4
SIMUIAION FIIES ... 5-3
Windows Showing REGISTETScveuerrrinrerrirereneinerereeeseeseceenines 5-22
Register Location By WINAOWcc.coveierminrnecencesecrincrenenns 5-27
Window Navigation CONtrolScoeurrrmurririnirirecneneescesessessensnnennns 5-55
Command WIndow COMMANASccereerermimmnmmrenriniincennieienieiseeennns 5-55
Window-Specific Control Key SEqUENCESccovuevvereeeenrerecrecesnninienenns 5-58
Window to Control Key Sequence Cross Referencecocvcvenies 5-59
Compiler SWIICNESc..cvirieceecrree e s
Reserved/System Registers

Restricted/Data REGISENScviuevircencre e
ADSP-2101 C Compiler Arithmetic TYPES ...t 7-14
C Language Types on ADSP-2100 familycccocvvvrerernrninneeineinenns 7-15

Overview

1.1 INTRODUCTION

The ADSP-2101 Development System is a complete set of software and
hardware development tools. The Development System includes the
Cross-Software system to aid the software design and a real-time
hardware Emulator to facilitate the debug cycle.

The Cross-Software system includes six separate programs: System
Builder, Assembler, Linker, Simulator, PROM Splitter and C Compiler.
These programs are described in the following section.

Release 2.0 and later of the Cross-Software system runs on the IBM-PC
under PC-DOS and on the Sun-3 workstation under Unix (Bsd 4.2). For
information on host-specific system requirements, refer to Appendix C.
For information on support for other machine types and operating
systems, contact Analog Devices, Digital Signal Processing, Marketing
Division. (See the contact information on the copyright page.)

This manual is a complete programmer’s reference. For information on the
architecture and system interface of the ADSP-2101, refer to the
ADSP-2101 User’s Manual.

Each release of the Cross-Software is shipped with a Release Note. This
note describes the current version and provides information on any updates
to the software. If you return the registration card enclosed with your
Cross-Software, you will receive a Release Note for each subsequent update
of the software.

1.1.1 ADSP-2101 Cross-Software System & Manual

This manual describes the Cross-Software system in the following
chapters:

¢ System Builder, Chapter 2

The System Builder is a software tool to describe the target system. The
System Specification source file is created, which specifies the amount of
RAM and ROM available, the allocation of program and data memory and
any memory mapped I/O ports for the target hardware environment.
High-level constructs are used to simplify this task.

* Assembler, Chapter 3

The Assembler assembles source code. It supports the high-level syntax of
the instruction set and provides flexible macro processing. A C language
preprocessor handles C directives in source code. Source code may be
partioned into a defined set of files (modules) and assembled in one pass
using the “include file” capability. A full range of diagnostics is also
provided.

e Linker, Chapter 4

The Linker links separately assembled modules. It searches directories for
library routines to link in. It maps the linked code and data output to the
target system hardware, as specified by the System Builder output, and
can produce multiple boot memory page image files.

¢ Simulator Functions, Chapter 5

The Simulator performs instruction-level simulation. The user interface is
both interactive and symbolic, and supports symbolic disassembly. The
Simulator fully simulates the hardware configuration described by the
System Builder. It flags illegal operations and provides several displays of
the internal operations of the ADSP-2101 microcomputer.

¢ Custom Simulator Configurations, Chapter 6

The ADSP-2101 Simulator supports a user-configurable interface of
windows and commands. This chapter describes how to customize the
interface for your preferences and how to store and recall screens and
customized commands.

-

I

¢ C Compiler, Chapter 7

The C Compiler supports the proposed ANSI Standard version of the
popular C programming language. The Compiler produces ADSP-2101
source code and can directly invoke the Assembler.

¢ PROM Splitter, Chapter 8

The PROM Splitter reads the Linker-output executable file and generates
PROM burner compatible files in a variety of industry standard formats.
Boot memory requirements are supported by the PROM Splitter.

¢ Instruction Set Reference, Chapter 9

Chapter 9 provides a reference section for each ADSP-2101 instruction
group. Running headers in this chapter allow you to look up any
instruction.

These chapters are supplemented by several appendices:
* Appendix A is a complete reference to ADSP-2101 opcodes.

¢ Appendix B describes the file format for input and output files used by
the Cross-Software system.

¢ Appendix C lists the hardware and software requirements for the
computer systems that can host the Cross-Software system and any
differences between the operation of the Cross-Software on each
system.

¢ Appendix D lists the differences between ADSP-2101 C and the ANSI
draft standard.

* Appendix E details how the Linker handles data and code used on
multiple boot pages.

* Appendix F lists and defines all error messages generated by the
Cross-Software modules.

1-3

1.1.2 Development Flow
Figure 1.1 shows a flow chart of the ADSP-2101 development cycle.

The development process begins with the task of defining the target
system hardware environment. To define the hardware environment, you
use the System Builder. The System Specification file includes the target
hardware information. The System Builder reads this file and creates an
Architecture Description file which passes information about the target
hardware to the Linker, Simulator, and Emulator.

You begin code generation by creating assembly source code modules. An
assembly module is a unit of source code such as a calling program,
subroutine, data buffer declaration section or any combination. Each
assembly code module is assembled separately by the Assembler. Several
modules are then linked together to form an executable program.

The Linker needs the target hardware information located in the
Architecture Description file to determine placement of code and data
fragments. In the assembly modules you have the option to specify each
code/data fragment as completely relocatable, relocatable within a
defined memory segment, or placed at an absolute address. Absolute code
or data modules are placed at the specified base address, provided the
specified memory area has the correct attributes. Relocatable objects are
placed in memory by the Linker.

Using the Architecture Description file and the Assembler output files, the
Linker determines the placement of relocatable code and data segments
(including circular buffers), and places all segments in memory locations
with the correct attributes (CODE or DATA, RAM or ROM). The Linker
generates an executable image file, which may be loaded into the
Simulator and Emulator for debugging.

The Simulator provides windows that display different aspects of the
hardware environment. To replicate the target hardware environment, the
Simulator configures its memory according to the System Builder output,
and simulates 1/O ports according to user-entered Simulator commands.
This simulation provides capabilities to debug the system and analyze
performance before committing to a hardware prototype.

After debugging with the Simulator, the Emulator is used in the prototype
target system to debug hardware, timing, and real-time software
problems. It provides overlay memory to replace target system off-chip
memory, including boot memory, if desired.

The PROM Splitter translates the executable memory image file (Linker
output) into a file that is compatible with a PROM burner. Once you burn
the ADSP-2101 code into PROM and plug an ADSP-2101 into the target
board, your prototype is ready to run.

START

(Optionally)
|Assemb|e sttty
ule N
Define Target Assemble C Language
le 2 Modul
Hsardtw areB ild Assemble odules
(System Builder) Module 1
| ______________ |
]
LINK
¢ | ‘ Repeat As Necessary
SIMULATE EMULATE
PROM SPLIT
Repeat As Necessary
Burn PROMS
Prototype Test

v

Figure 1.1 ADSP-2101 System Development Flow

1-5

1-6

1.2 EXPRESSION HANDLING IN CROSS-SOFTWARE TOOLS

The ADSP-2101 Cross-Software tools support general expression
evaluation in locations where constants are valid. You may in most cases
use an expression instead of a constant wherever a constant is expected.

Expressions are composed of numerical constants, symbolic constants,
and expression operators. The operators are a subset of the arithmetic and

logical operators of the C programming language (for integer values only).

In order of precedence, the operators are:

) left, right parenthesis

~ = ones complement, unary minus
% multiply, divide, modulus

+ — addition, subtraction

<< >> bitwise shifts

& bitwise AND

I bitwise OR

N bitwise XOR

Examples:

(taps +16) / 3 mask & 0x55

The ADSP-2101 Simulator recognizes an additional set of expression
elements and operators. These are detailed in the “Simulator Expressions”
section of Chapter 5.

The most important difference between Assembler expressions and
Simulator expressions is that memory contents (such as data variables)
and processor register contents may be used as operands in the Simulator
only. The Assembler cannot evaluate memory and register values at
assembly-time; the Simulator, however, has access to the instantaneous
values of simulated memory and registers.

1.3 CONSTANTS

Constants include numeric (or literal) constants and identifiers defined as
symbolic constants. Symbolic constants can be used anywhere to replace
numeric constants. The identifier must be declared a constant with the
.CONST directive; see the discussion under “Assembler Directives” in
Chapter 3.

T

Ty

1.4 NUMERIC BASES

The numeric bases which may be used in the ADSP-2101 Simulator and in
source code are hexadecimal, octal, and decimal. They are specified as
follows:

For hexadecimal prefix a Ox (zero and x) or H#:

0x12FA H#12FA

For octal prefix a 0 (zero):

0777

For decimal (the default) there is no prefix to denote the base. Sign
(+ or —) may be specified:

1024 +1024 -55
Binary numbers are accepted only by the Assembler in a source code file,
and may not be used with any of the other Cross-Software tools. Binary

numbers are specified with the prefix B#:

B#0111010001011111

1.5 CHARACTER SET
The ADSP-2101 Cross-Software character set includes the following:

e Uppercase letters, “A” through “Z”
¢ Lowercase letters, “a” through “z”
¢ Digits, “0” through “9”

® The ASCII graphics characters; the printing characters other than
letters and digits (punctuation, etc.).

* The ASCII non-graphics: space, tab, carriage return, line feed and form
feed. (The “newline” character or characters are interpreted correctly as
per the conventions of the environment in which they occur.)

1-8

Overview

1.6 IDENTIFIERS (SYMBOLS)

Symbols are either a user-defined identifier or system-reserved keyword.
The keywords are listed in Chapter 3, Assembler, in Table 3.3.

Identifiers consist of a character from the set:

* Uppercase letters, “A” through “Z”
* Lowercase letters, “a” through “z”
* The underscore character “_"

followed by a sequence of characters from the set:

Uppercase letters, “A” through “Z”
Lowercase letters, “a” through “z”
Digits, “0” through “9”
The underscore character

"o

An identifier may have a maximum of 32 characters.

The Cross-Software tools can be either case-insensitive, with uppercase
and lowercase letters treated as the same character, or case-sensitive, with
differentiation between the two forms.

1.7 MANUAL NOTATION CONVENTIONS

This section provides you with a list of notation conventions.

* With the increasing use of the C Compiler (a case-sensitive
programming environment) the traditionally case-insensitive
Assembler and System Builder tools now support case-sensitivity as an
option. The actual commands used to invoke each tool, BLD21,
ASM21, LD21, etc., may be entered in upper or lower case on the PC
but must be lowercase on the Sun.

¢ In this manual keywords (reserved symbols) are always shown in
UPPERCASE, although they may be entered in either upper or lower
case. Any form of the keyword is reserved.

¢ Alowercase word highlighted in italics, such as jumplabel, indicates an
identifier used as an address label, data variable, etc. or a filename.

Square brackets, [1, enclose optional specifications or data buffer

length (literal usage); when specifying buffer length, the brackets must
be used in source code.

An ellipsis, ..., indicates that the preceding item may be repeated.

Carriage return is represented by “Return” or <cr>. (Simulator chapter
only)

A denotes the control, or CNTL, key, as in a key entry sequence: X
(Simulator chapter only)

System Builder

2.1 INTRODUCTION

The System Builder module of the Cross-Software system is a software
tool for describing your hardware environment. Each ADSP-2101 system
can have a unique hardware configuration, and may not require the full
complement of possible memory. The System Builder output specifies
your hardware configuration, including memory and I/O ports, in a form
used by the rest of the Cross-Software system.

A target system may include:

Maximum Available

Data Memory Up to 15K words
(16-bit data, ROM or RAM) (1K on-chip, up to14K off-chip, 1K reserved)
Program Memory Up to 16K words, mixed code & data
(24-bit code or data, ROM or RAM) (2K on-chip, up to 14K off-chip)
Boot Memory

Up to 64K bytes, configured as 16K words

(24-bit code or data, (1 to 8 pages, each containing 2K words)

padded to 32-bit word width}

Memory-mapped Any number, up to memory limits
I/0 Ports (Simulator limited by host file system limits)

Table 2.1 ADSP-2101 System Configurations
*see Chapter 8, PROM Splitter, for details.

You specify your hardware configuration in a System Specification source
(.SYS) file using System Builder directives. The System Builder processes
the .SYS file and generates the Architecture Description file (ACH). The
Architecture Description file is used by the Linker to place relocatable
segments in memory, by the Simulator to simulate memory
configurations, and by the Emulator to set up target system memory
mapping. The System Builder outputs error messages, if any, or a
summary of the architecture created to the screen. You should use the
operating system facilities of your computer to capture this output into a
file if you need to refer to it for debugging or documentation purposes.

System
Specification File
(.SYS)

SYSTEM BUILDER

Architecture Error Mgfsages

Description .

File ((ACH) Architecture
Summary

NN N

(Use Operating System / Pipes To
Capture Screen Output)

Figure 2.1 System Builder 1/0

22 RUNNING THE SYSTEM BUILDER
To invoke the System Builder, type:

BLD21 filenamel .ext] [-switch]

where filename.ext is the system specification source file. The filename
extension is optional and defaults to .SYS.

There is one switch for invoking the System Builder. The —c switch makes
the System Builder case-sensitive. This is provided primarily for
compatibility with the C Compiler, which is always case-sensitive.

If the —c switch is not used, the System Builder output is in all uppercase.
You must use this switch in order to preserve the case of characters as
they are entered. This is necessary if the Assembler is to be run with its
case-sensitive switch, as is required when assembling C-compiled code. If
you refer (in assembly code) to a memory segment declared in the System
Builder which is in lowercase, and the Assembler is run in case-sensitive
mode, the segment name will not be recognized unless its case is
preserved by the System Builder.

23 LANGUAGE CONVENTIONS

In a System Specification file, symbolic names are assigned to the system
configuration itself, I/O ports, and memory segments. The memory
segment names may be used in the Assembler; memory segment names
and memory characteristics are used by the Linker.

All symbolic names must be unique. A symbolic name is a string of letters,
digits, and underscores with a letter as the first character. Symbol names
can be of any length. Only 32 characters are significant.

System Builder keywords cannot be used as symbolic names. Table 2.2
lists the System Builder keywords.

ABS CODE ENDSYS PORT SYSTEM
ADSP2100 CONST MMAPO RAM

ADSP2101 DATA MMAP1 ROM

BOOT DM PM SEG

Table 2.2 System Builder Keywords

Assembler keywords, listed in Table 3.3, may not be used as symbolic
names either. The System Builder accepts such symbol definitions without
flagging an error, however, the Linker does not.

Numeric constants and general expressions are accepted by the System
Builder. See Chapter 1 for a description of allowed constants and the
definition of expressions. For a description of the notation used in this
manual, refer to the section “Manual Notation Conventions” in Chapter 1.

2.4 SYSTEM SPECIFICATION SOURCE FILE EXAMPLE
Figure 2.2 is an example of a system specification source {.SYS

ADSP-2101 system.

) file for an

Comment fields are enclosed within braces, { }, and can be inserted
anywhere in the file. Nested comments are not allowed.

24.1 ADSP-2101 System Specification File

The System Specification Source file for the ADSP-2101 specifies the
amount of data, program, and boot memory included in your
development system.

The first directive in the file is the .SYSTEM directive. This directive
assigns a name fir_system to the hardware description and signals the start
of the file.

The .ADSP2101 statement identifies the processor type, here naming the
ADSP-2101 microcomputer. This statement is required. The presence of

.SYSTEM fir_ system; {system name}
.ADSP2101; {ADSP-2101 system}
.MMAPO; {boot loading enable}
.SEG/ROM/BOOT=0 boot mem[2048]; {boot page one}
.SEG/PM/RAM/ABS=0/CODE/DATA int pm([2048]; {on-chip program mem}
.SEG/PM/RAM/ABS=2048/CODE/DATA ext pm[14336]; {external program mem}
.SEG/DM/RAM/ABS=0/DATA ext dm([14336]; {external data mem}
.SEG/DM/RAM/ABS=14336/DATA int_dm[1024]; {on-chip data mem}
.ENDSYS;

Figure 2.2 Sample System Specification File

the MMAP directive or the declaration of boot memory also serves to
signal the Cross-Software that the system in question is an ADSP-2101
architecture. If none of these indicators are present, the System Builder
assumes an ADSP-2100 processor.

The MMAPO directive specifies the simulated state of the MMAP pin on
the ADSP-2101 in this example system. Defining MMAP as 0 indicates that
boot memory is to be loaded into the chip’s internal program memory
space, beginning at address 0.

The .SEG directive declares the system’s physical memory segments and
their characteristics. In this example, the segments declared comprise the
full on-chip and off-chip program and data memory configuration of the
ADSP-2101. Many applications, however, do not require this much
memory space.

Boot_mem identifies a 2K-word space for one page of external boot
memory.

Int_pm declares the 2K-word on-chip program memory space beginning at
address 0. In the ADSP-2101 this memory can always hold both code and
data and should be explicitly declared as such as in this example. Ext_pm
declares a 14K-word space for external program code and data storage
beginning at address 2048, after the on-chip memory.

Ext_dm declares a 14K-word space for external data storage beginning at
address 0. Int_dm declares the 1K-word internal data memory space
beginning at address 14336. This corresponds exactly to the on-chip data
memory of the ADSP-2101 which is available for general system use. The
1K of on-chip memory above this is reserved for processor use and should
not be declared.

The memory segments can be declared in any order.
The last statement in a system specification file is the ENDSYS directive.

The System Builder stops processing when it encounters the ENDSYS
directive.

2-5

2-6

2.5 SYSTEM BUILDER DIRECTIVES

This section describes each System Builder directive and its syntax.

2.5.1 .SYSTEM Directive

The .SYSTEM directive must be the first statement in the System
Specification source file. The identifier name given as its argument is the
name of the system displayed in the Simulator.

The .SYSTEM directive has the form:
SYSTEM systerm_name;

2.5.2 .ENDSYS Directive

The .ENDSYS directive must be the last statement in the file. The System
Builder processing terminates at the ENDSYS directive statement.

The .ENDSYS directive has the form:
.ENDSYS;
25.3 .ADSP2101 Directive

This directive identifies the processor. Its use is mandatory to clearly

differentiate between ADSP-2100-based and ADSP-2101-based systems. If

the directive is not present, the Cross-Software system assumes that the
processor is an ADSP-2100.

2.5.4 .CONST Directive

The .CONST directive defines System Builder constants. Once you declare

a constant, you may use it in place of its numeric value. This symbolic

constant is recognized only by the System Builder, however the definition

is not carried over to the Assembler or Simulator. -
The .CONST directive has the form:
.CONST constant_name = constant or expression, ... ;

A single .CONST directive may declare one or several constants,
separated by commas.

If you wished to define the value 15 for the term taps, for example, the
directive would be as follows:

.CONST taps = 15;
The above example system does not declare any constants.

25.5 .PORT Directive

The .PORT directive declares a memory-mapped parallel I/O port. Ports
can be placed in either data or program memory, and must be declared in
one or the other. The directive takes the absolute physical address of the

I/0 port as a modifier, and the symbolic name of the port as an argument.

The .PORT directive has the form:
PORT/qualifier ... port_name;
There are two required qualifiers:

PM or DM (in which memory space)
ABS=address (absolute address (constant))

The port address is specified by a constant; port_name is an identifier.

For example,

.PORT/DM/ABS=0x0400 ad sample;

declares a port identified as ad_sample located at absolute data memory
address 1024 (decimal). Assembler references to this same symbolic name
are correctly interpreted by the Linker, using the .ACH file information.

This ADSP-2101 example system does not have any I/O ports declared.

256 .MMAP Directive

The .MMAP directive specifies the state of the MMAP pin on the ADSP-
2101. It has the form .MMAPO (MMAP pin held LO) or MMAP1 (MMAP
pin held HI).

2

2-8

System Builder

If MMAPO is used, boot loading takes place and on-chip program
memory begins at address zero. If MMAP1 is used, no boot loading takes
place and on-chip program memory is mapped at the top of the program
memory space.

When this directive is omitted, the default is to . MMAPO.
See the ADSP-2101 User’s Manual for further information.

25.7 .SEG Directive

The .SEG directive names a specific section of physical memory in the
Lasmsnt gerotasmn s A Facmwllann St srtltlit o Tow €0 o ol o 3 0o T
Lalr gt 5SySicill, allui UtsLIIVEDS IS dtll 1DULES. 111 €11CCL, UIC ucliaull lllClllUly
map from the perspective of the System Builder is no memory at all. Until
you declare and define a memory segment it does not exist.

The .SEG directive has the form:
SEG/qualifier ... seg_name[length];
The following qualifiers are mandatory:

PM or DM or BOOT=0, 1,2, 3,4,5,6,7 (in which memory space)
RAM or ROM (memory type)

While the following are optional:

ABS=address (absolute start address (constant))
DATA or CODE or DATA/CODE (what is stored in segment)

Seg_name is an identifier; length, which must be a constant or expression
enclosed in brackets, is the number of words in the segment.

The .SEG directive declares three types of memory segments: program -
memory (PM), data memory (DM) and boot memory (BOOT). Qualifiers

may specify the absolute start address of the segment, the physical

memory type (RAM or ROM) and what is stored (DATA and/or CODE).

PM memory segments can be either CODE only, DATA only, or both
CODE and DATA (defaults to CODE). For a PM segment that contains
code and data, both modifiers must be used in the directive statement. The
processor requires that any data access to PM must be made to sections

with the DATA attribute. If a system requires that executable code be read
or written by the processor, these sections should be declared with both
CODE and DATA attributes.

DM memory segments must be DATA only. Therefore, the /DATA
modifier can be omitted. An error is generated if a DM segment is
assigned the CODE attribute.

BOOT memory segments may be either ROM- or RAM-type; in most
systems, however, the boot memory chips are PROM and all BOOT
segments are specified as ROM-type. Boot memory always defaults to
both CODE and DATA; the CODE and DATA attributes are unnecessary.
The BOOT modifier always specifies the page number, for example,
BOOT=0. A system may have up to 8 boot pages, with page numbers from
0 to 7. Each page can hold up to 2K words of code and data. The System
Builder knows how long a page can be and the possible boundaries for
each page; it ignores the ABS modifier for boot pages. An individual
declaration must be made for each boot page required.

Memory segments are assigned symbolic names. In the Assembler you
may locate individual code modules and data objects (buffers and
variables) in segments by name. The Assembler accepts the segment
references; the Linker resolves them using the .ACH file.

The length of the segment is specified by the bracketed expression, as in
somedata[1024]. The unit is always words, either 16-bit data or 24-bit
instructions. This means that data memory segment size in bytes is 2x the
word count, program memory size in bytes is 3x the word count and boot
memory size is 4x the word count. The latter reflects the padding of boot
memory with an extraneous byte per instruction in order to place the
beginning of every instruction on an even byte boundary.

The example

.SEG/BOOT=0/ROM boot mem[2048];

declares the boot segment, boot_mem, which is physical memory type
ROM, residing in boot page zero (corresponding automatically to absolute

address 0). The length of the segment is 2048 words corresponding to one
page of boot memory.

2-9

2

2-10

System Builder

The example

.CONST onchip pm = 2048;
.SEG/PM/RAM/ABS=0/CODE/DATA int pm[onchip pm];

declares a program memory segment called int_pm, which is memory
type RAM at absolute location 0. This segment may hold both code and
data. The length of the segment is 2048 words. This corresponds to the
ADSP-2101 on-chip program memory space.

£

Assembler

3.1 INTRODUCTION

The ADSP-2101 Assembler translates source code modules into object
code modules. You create a source code file (DSP) using the ADSP-2101
assembly language and define variables, data buffers, and symbolic
constants using assembler directives. Separately assembled modules are
linked together to form an executable program.

Figure 3.1, on the next page, shows the Assembler input and output files.
The ADSP-2101 Assembler reads the source code file (DSP) and generates
four output files with the same root name: an object file (\OB]), a code file
(.CDE), an initialization file (INT), and a list file (.LST). The object file,
code file and initialization files are passed to the Linker. The object file
contains information on memory allocation and symbol declarations. The
code file contains instruction opcodes with unresolved symbols marked.
The initialization file contains initialization information for data buffers.
The list file, which is optional, is for documentation.

Using assembly directives in the source code file, you can include other
source code files and inform the Linker of initialization data files in the
assembly process. The Assembler reads these files and processes them
together with the original source file. There are two preprocessors of the
Assembler, an ANSI-standard C language module and a standard
preprocessor. The Assembler also supports a macro capability.

Check the system requirements in Appendix C, especially if you are
running an IBM PC version of the Assemb]er.

3 Assembler

Source Code File
(.DSP)

Include File(s)

ASSEMBLER

v

Listing File
(.LST)

Init File
(INT)

v

Object File
(.0BJ)

v

Code File
(-CDE)

Figure 3.1 Assembler 1/O

Assembler 3

3.2 ASSEMBLER MODULES

The Assembler consists of three modules:

C language preprocessor actual filename: ASMPP
standard preprocessor actual filename: ASM21
core assembler actual filename: ASM2

Different combinations of the modules can be run using the Assembler
switches detailed below. Invocation of the Assembler with no switches
runs the standard preprocessor and core assembler only.

3.3 RUNNING THE ASSEMBLER

To invoke the Assembler from the host system, enter:
ASM21 filename] .ext] [-switch ...]

Filenamel.ext] is the source code file. The filename extension is optional
and defaults to .DSP. Other data and source code files are included in the
assembly process using the directives .INIT and .INCLUDE (described
later in this chapter).

3.3.1 Assembler Switches

The switches themselves are not case-sensitive, and multiple switches
must be separated by spaces. The Assembler switches are listed below in
Table 3.1; some require arguments as shown. To see this list on your
display, invoke the Assembler with no filename or switches: ASM21.

Switch Result

—-cp Runs C language preprocessor

-p Runs standard preprocessor without core
assembler

—duvariable[=value] Define variable for C preprocessor

-1 Creates .LST file

—-m [number] Macros expanded in .LST file, to depth of
[number]

-1 [number] INCLUDE files expanded in .LST file, to depth
of [number]

-5 No semantics checking

—C Makes the Assembler case-sensitive

Table 3.1 Assembler Switches

3-3

3.3.1.1 —cp Switch

Using the —cp switch runs the ANSI-standard C language preprocessor.
This module of the Assembler allows the use of convenient C language
directives in assembly code, if desired. The C preprocessor should only be
used if C preprocessor directives or conditional constructs are present in
the input assembly language file. These types of code are handled by the
C preprocessor in the same fashion as a C compiler preprocessor. An
intermediate file, filename.CPP, is deleted if the standard preprocessor runs
without error. If an error does occur, the standard preprocessor halts
execution prematurely and preserves the .CPP file.

3312 -pSwitch

The Assembler’s standard preprocessor handles INCLUDE files, macro
expansion, and the replacement of symbolic constants with their values,
and produces a temporary .APP file which is used by the core assembler.
Using the —p switch runs the preprocessor, prevents the core assembler
from running, and preserves the .APP file. The .LST, .INT, .OBJ, and .CDE
files are not created.

Note that the preprocessor module actually runs whether or not the —p
switch is used, the switch merely determines if the core assembler is
subsequently run, deleting the .APP file.

If you experience a problem using macros, you can turn on the —p switch
and examine the .APP file to see if the macro invocations (calls) were
correctly replaced with the macros’ executable code. The .APP file is an
ASCII file, although it contains some additional directives and control
information.

Switch combination Module(s) run File(s) preserved
ASM21 preprocessor INT, .OB]J, .CDE,
core assembler .LST (if -1 switch used)
ASM21 —cp C preprocessor INT, .OB]J, .CDE,
preprocessor .LST (if -1 switch used)
core assembler
ASM21 —p preprocessor .APP
ASM21 —cp -p C preprocessor .APP
preprocessor

Table 3.2 Preprocessor Switch Combinations

Figure 3.2 shows the flow of program control for the Assembler modules.

“ASM21 —cp”

“ASM21 —p —cp”

(Deleted by
Standard

C Preprocessor

Preprocessor)

“ASM21”

“ASM21 —p”

(Deleted if Core
Assembler Runs)

Figure 3.2 Assembler Program Flow

—_—

Standard Preprocessor

Core Assembler

.CDE File

.OBJ File

.INT File

.LST File

3-6

Assembler

3.3.1.3 -dvariable[=value] Switch

If a variable has been used in a C preprocessor directive in the input
assembly language file it must be defined for the C preprocessor (which
handles such directives for the Assembler). The variable can be any
character string, and can be optionally set to a desired value which may be
a character string or numerical value. Defining and/or giving a value to =
the variable allows the C preprocessor to evaluate a conditional statement
dependent upon it.

A common use of this is to have a section of debug code written in the
input file and to make its inclusion conditional. For example, place the

id conditinnal divactivo en that tha ~ndns ig aggom
Aok“g r-nr‘o IPS‘Me a LUVLALMMALAVILIUL MiLaCLuI vy ouv I.llul. LIl LVUuLC 10 “DGLLIIUL\,\A

only if the variable mydebug is defined. The input file contains the
following:

#ifdef mydebug
aégug assembly code
#en'd.i'f
Thj Assembler must now be invoked as follows to assemble the debug
code:

ASM21 filename —cp —dmydebug

3.3.1.4 - Switch

The Assembler produces a listing file (.LST) if the I switch is used. This
file is described in the section “List File Format” later in this chapter.

3.3.1.5 -m [number] Switch

The listing file (.LST) does not normally display macros in expanded
format; the -m switch expands the macros called in the file. Specifying a
number determines the depth of nested macros to be expanded. For
example, if number is chosen to be 3, macros invoked within other macros
to a depth of 3 will be expanded. Choosing number is optional, and the
default is to infinity (all nested macros expanded to infinite depth).

Examples:
-m 3 -

—-m

Ras i o

3.3.1.6 i [number] Switch

Using the —i switch causes the contents of files named with the INCLUDE
directive to be shown in the .LST file. Specifying number determines the
depth of nested INCLUDE files to be shown. Giving a number is optional,
and the default is to infinity (similar to —m switch). If the —i switch is not
used, these directives remain in the form .INCLUDE filename.

3.3.1.7 -s Switch

The Assembler generates warning messages when multifunction
instructions are not in the correct order. When you turn on the —s switch,
the system does not check for the semantics (order) of a multifunction
instruction. (In this mode, warning messages are not displayed on the
screen.) For a description of multifunction instructions, refer to Chapter 9,
Instruction Set Reference.

3.3.1.8 -c Switch

The default operation of the Assembler is to treat upper and lowercase
letters as identical, as in previous releases. With this switch, the Assembler
is made case-sensitive (similar to the C language environment); upper and
lowercase versions of the same letter are treated as different characters.
The —c switch supports the ADSP-2101 C Compiler.

34 LANGUAGE CONVENTIONS

This section describes the language conventions specific to the Assembler.
See Chapter 1 for a complete discussion of general conventions including
notation used in this manual, usable character set, symbols, identifiers,
constants and expressions.

3.4.1 Binary Constants

Binary numbers are accepted only by the Assembler, and may not be used
with any of the other Cross-Software tools. Binary numbers are specified
with the prefix B#:

B#0111010001011111

Decimal, octal, and hexadecimal numbers are specified in source code in
the normal fashion (as shown in Chapter 1).

3-8

ler

342 Symbols

Symbols are used in a source code program to represent various items.
Symbols include identifiers and keywords.

3.4.2.1 Identifiers

Identifiers identify and name an assembly module, assembly values, data
buffers and variables, [/O ports, macros, address locations and
subroutines.

An identifier is a user-defined character string. The string may be of any
length, but only the first 32 characters are significant. See Chapter 1 for a
P e D) O P o P B B o N B N I o Oy B e o
OPCLLLI\.QLIUI[U1 UI€ ©Aall (011 U1 IUCIILLICLDS. AD UIC uciaull Ul)t’lduUll (OJ§
the Assembler is case-insensitive, identifiers may be either upper or lower
case (unless the —c switch is used).

The “pointer to” (*) and “length of” (%) operators are used with
identifiers which label data buffers. "buffer_name is evaluated by the
Assembler as the base address of the buffer, and %buffer_name is evaluated
as the number of words in the buffer.

3.4.22 Reserved Symbols (Keywords)

Symbol names in the source code file must be unique. Assembler-reserved
symbols may not be used as identifiers. Because the Assembler is not case
sensitive, both upper and lower case keywords are reserved. Table 3.3 lists
the assembler keywords. Some of those listed correspond to ADSP-2101
features which are not visible to users. Avoid them because their use may
cause errors.

ABS DM

AC DO

AF EMODE
ALT REG ENA

AND ENDMACRO
AR ENDMOD
AR SAT ENTRY
ASHIFT EQ

ASTAT EXP

AUX EXPAD]J
AV EXTERNAL
AV LATCH FOREVER
AXO0 FLAG_IN
AX1 FLAG_OUT
AY0 GE

AY1 GLOBAL
BIT REV GT

BM 10

BY Il

C 2

CACHE 3

CALL 4

CE 15

CIRC 16

CLR 7

CLEAR ICTRL
CNTR IDLE
CONST IF

DIS IFC

DIVS IMASK
DIVQ

INCLUDE MRO
INIT MR1
JUMP MR2
L0 MSTAT
L1 MV

L2 MX0
L3 MX1
L4 MY0
L5 MY1
L6 NAME
L7 NE

LE NEG
LOCAL NEWPAGE
LOOP NOP
LSHIFT NORM
LT NOT
MO OR

M1 PASS
M2 PC

M3 PM
M4 POP
M5 PORT
M6 POS
M7 PRI
MACRO PUSH
MF RAM

M_MODE REGBANK

GO_MODE RESET
MODIFY RND
MODULE ROM
MR RTI

Table 3.3 Assembler-Reserved Symbols/Keywords

RTS
RX0
RX1
SAT

SB

SEG
SEGMENT
SET
SHIFT
SI

SR

SRO

SR1

SS
SSTAT
STATIC
STS

SU
TEST
TIMER
TOGGLE
TOPOFPCSTACK
TRAP
TRUE
TX1
TXO0
UNTIL
UsS

UuU
VAR
XOR

3-9

3-10

343 Comments

You may insert comments anywhere in a source code file, enclosed by
braces, { }. The Assembler treats all comments as “white space” and
ignores them.

35 PROGRAM STRUCTURE

The basic unit of an ADSP-2101 program is the module. Modules are
defined as:

.MODULEI/ qualifiers] module_name;

statement; (may be any of e [label:] instruction
e directive
® macro invocation)

.ENDMOD;

Each element of the module must end with a semicolon. Statements can be
either an instruction, assembler directive, or macro call. Giving an
instruction a label is optional. The MODULE and .ENDMOD directives
are defined in the section “Assembler Directives.”

Chapter 9, Instruction Set Reference, defines the ADSP-2101 instructions.
The “Macros” section in this chapter describes macro definition and
invocation.

3.5.1 Source Code File Restrictions
Individual lines must be no more than 200 characters in length.

3.6 ASSEMBLER DIRECTIVES

Assembler directives are instructions that control the assembly process.

They do not produce opcodes. In the source file, an assembler directive

statement starts with a period and ends with a semicolon. An assembler
directive may take modifiers and arguments, as specified in each of the

following sections.

!

r

3.6.1 .MODULE Directive

The MODULE directive defines the start of an assembly module and is
the first statement. The default memory type is assumed to be RAM if not
specified. The ABS modifier, if present, specifies the start address of the
code segment.

The MODULE directive has the form:
MODULEI/qualifier ...] module_name;
Qualifiers consist of any of the following:

RAM or ROM

ABS = absolute start address
BOOT=0,1,2,3,4,5,6,0or7

SEG = memory segment name defined in System Builder

The module qualifiers determine the location of the module in memory.
Memory type can be specified as RAM or ROM, followed by the start
address and/or a physical segment in memory defined in the System
Builder. (The start address is a constant.)

There may be up to 8 boot pages of 2K length each. The BOOT qualifier
can be specified as boot page 0 through 7, and multiple pages may be
listed for one module (i.e.. MODULE /BOOT=0/BOOT=2). You must use
this qualifier in order to have your bootable code located in the boot
PROMs by the Linker and PROM Splitter. The Linker generates memory
image files for an ADSP-2101 system, and only creates such a file for boot
memory if this qualifier is used.

The memory type qualifier does not refer to the boot memory itself; it
classifies the type of memory from which the code is executed. Boot
memory merely stores the code until it is booted into the chip. Any
module which is declared as bootable (with the BOOT qualifier) should in
most cases be declared in RAM-type memory, because it is executed from
the chip’s internal 2K of program memory, which is RAM.

The BOOT qualifier also applies to all .VAR data buffer declarations
within a module- remember that boot memory (and program memory in
general) can contain both code and data.

3-11

3-12

The Assembler does not deal with boot memory as a separate memory
space. The BOOT qualifiers for modules are passed on to the Linker to be
acted upon. The crucial concept of a system with boot memory is the
distinction between what is accomplished when running the Linker
(locating objects in memory space), and what happens during run-time
(program execution).

When you choose specifications and qualifiers for code modules and data
buffers, these attributes apply to the run-time characteristics of the
structures. Booted code is run from the ADSP-2101’s internal program

memory, when both the code and processor deal only with run-time
program and data memory. When configuring the memory map of your

€l CONLISHIAE e I

system, you should think only in terms of program and data memory.

The example that follows defines the module main_routine, which is
located at execution-time in RAM at address 0 (on-chip). The code is
stored on boot page 0.

.MODULE/RAM/ABS=0/BO0OT=0 main routine;

The next example defines the module filter_routine, located in a memory
segment named fir (as defined in a System Builder output .SYS file), which
is specified as ROM.

.MODULE/ROM/SEG=fir filter routine;

If you use the SEG qualifier and specify an address (ABS =) that is not the
correct address for that segment, you receive an error message when the
Linker is run.

3.6.2 .ENDMOD Directive

This directive has the form:
.ENDMOD;
The .ENDMOD directive is the last statement in a source code file. The

assembly process terminates when the Assembler reads the ENDMOD
directive.

F

363 .VAR Directive

The .VAR directive declares data buffers. You must declare all buffers
with the directive prior to any use of or reference to them. The default
declaration ,with no qualifiers or length specified, is a relocatable buffer of
length one (a variable) in data memory RAM.

The .VAR directive has the form:
.VARI/qualifier ...] buffer_namellengthl], ... ;

One .VAR directive can have an unlimited number of declarations, each
separated by commas, up to the maximum number of characters that can
be processed. Specification of length is optional, with default to one (a
single word variable).

Qualifiers consist of any of the following:

PM or DM

RAM or ROM

CIRC

ABS = absolute address

SEG = memory segment name defined in System Builder
STATIC

The following is an example variable declaration:
.VAR/DM/RAM/ABS=0x10F seed;

This statement declares a one word variable called seed in data memory
RAM, at hexadecimal address 10F.

The following is an example buffer declaration:
.VAR/PM/RAM/SEG=pmdata coefficients[10];

Here a buffer is declared in program memory RAM, in a segment called
pmdata which has been declared in the System Builder. The buffer name is

coefficients and it has a length of 10. Note that the length, which may be a
constant or expression, must be placed inside brackets: coefficients[10].

3-13

3

3-14

Assembler

In this manual’s notation brackets are typically used to indicate a)
specification which is optional. .VAR, .INIT, and .INCLUDE are the only |
instances of Assembler syntax where brackets or angle brackets are -
required.

Data buffers are placed in either program memory (PM) or data memory
(DM), with default to DM. The memory type qualifier specifies the type of
memory: RAM or ROM. This modifier defaults to RAM for both DM and
PM.

The buffer type defaults to linear unless you explicitly specify the circular
attribute with the /CIRC qualifier.

The example that follows declares a circular buffer whose length is the
value of the constant taps.

.VAR/DM/CIRC data buffer([taps];

The /ABS qualifier specifies the start address of the data buffer. If you
omit this qualifier, the buffer defaults to a relocatable buffer.

The /SEG qualifier specifies a segment in memory. If you specify a
segment in memory and an address and the locations conflict, the Linker
displays an error message.

The /STATIC qualifier is given to a data buffer whose contents must be
preserved during software-controlled rebooting. This qualifier instructs
the Linker to prevent the buffer from being overwritten by a newly-
booted page. STATIC buffers are placed in memory by the Linker such
that they are protected from being overwritten in multiple boot page
systems. For additional information on the /STATIC qualifier and
multiple boot page systems, refer to Appendix E. r

If the buffer is to be initialized with data, the declaration and initialization
must occur in the same module.

The .VAR directive takes an unlimited number of user-defined data

variables or buffers as arguments, each separated by a comma. When you

declare variables or buffers together, the Linker places them in contiguous [
memory segments. The length of a circular buffer is the sum of the lengths -
of all buffers declared in the same .VAR statement with the /CIRC

qualifier. r

3.6.3.1 More On Circular Buffers

Circular buffers (of any length) can only be placed at certain memory
boundaries, depending on the length of the buffer. Unless you explicitly
place buffers in memory, the Linker does it for you. Refer to Chapter 4,
Linker, and the ADSP-2101 User’s Manual, under “Data Structures,” for
additional information.

The following is an example of one circular buffer of length five (three bits
required to represent), which would be located by the Linker at an
address that is a multiple of eight (has three LSBs equal to zero):

.VAR/CIRC aal[5];
This example declares one circular buffer:
.VAR/CIRC aal[5], bb[5], cc[5];

Because three buffers are defined in a single .VAR declaration, this
directive allocates one fifteen word circular buffer in memory. Since
fifteen requires four bits to represent, the buffer is located at a base
address which is a multiple of sixteen. The address of aa is the base
address. The address of bb is the base plus five and the address of cc is the
base plus ten. The three buffers named (aa, bb, cc) can all be individually
referenced as simple buffers, but there is only one circular buffer. This is
shown graphically in part A of Figure 3.3, on the following page.

The following example uses three separate directive statements to declare
three separate circular buffers:

.VAR/CIRC aal5];
.VAR/CIRC bb[5];
.VAR/CIRC cc[5];

Each of these buffers requires only three bits to represent and each is
located at a different address which is a multiple of eight. Because you
declare them separately, they are not necessarily contiguous. Part B of
Figure 3.3 shows this.

3-15

3 Assel

buffer address buffer addresses

(least significant byte)

xxxx0000

(least significant byte)

xxxxx000
xxxx0001 xxxxx001
xxxx0010 xxxxx010
xxxx0011 xxxxx011
xxxx0100 xxxxx100
xxxx0101 bb
xxxx0110
xxxx0111
XXXX}??? xxxxx000 /’-5\
AARARARLUUL xxxxx001 *
xxxxx010
zzii}g%? cc xxxxx011
1100 xxxxx100 \\-’)
xxxx1101
xxxx1110
xxxxx000 CC
xxxxx001
xxxxx010
xxxXxx011
xxxxx100 _’)
Figure 3.3A Circular Buffers Figure 3.3B Circular Buffers

3-16

The following example creates the structure for a sine/cosine lookup
table:

.VAR/CIRC sin[256], cos[768];

This example declares one circular buffer with a length of 1024, placed at
an address boundary which is a multiple of 1024 (has ten LSBs equal to
zero). In a program, you can initialize index registers (I registers) and
buffer length registers (L registers) with this statement:

I0 = ~“cos; {” is the "address pointer" operator}
L0 = 1024;
I1 = ~sin;
Ll = 1024;

o

The address pointer operator ” instructs the Assembler to determine the
address of the memory label it is used with. In the above example the
DAG index registers I0 and I1 are loaded with the addresses equated to
cos and sin.

3.6.4 .INIT Directive

The INIT directive initializes a declared variable or all or part of a data
buffer (in either DM or PM). The buffer is initialized with the value(s)
listed or those contained in an external file.

The INIT directive takes the following form:

INIT buffer_name: constant or expression, ...,
Nother_buffer[offset] or %other_buffer[offset], ...,
<filename>;

Any combination of the three forms of initialization values shown above
may be used, separated by commas.

An offset from the base address within a buffer may be specified as the
destination location (or source address, as above):

NIT buffer_nameloffset]: ... ; offset= constant or expression
The initialization data is either listed in the .INIT directive statement or
contained in a data file read by the Linker. Appendix B defines the

external data file format. You should initialize all variables and buffers in
the same module in which they are first declared.

3-17

3 Assem

3-18

ler

INIT recognizes the “pointer to” (*) and “length of” (%) operators.
Examples:

.INIT seed: Ox3FFF; Initialize variable seed with a
constant hex value.

.INIT seed values: 1,2,3,5,7; Initialize the five-word buffer
seed_values with the listed
values.

.INIT lookup table: “sin; Set variable lookup_table to
point to the base address of
buffer sin.

.INIT cos: <cosines.dat>; Initialize the buffer cos with the
contents of the external file
cosines.dat, which is read by the
Linker. (The use of angle
brackets here is mandatory.)

.INIT coefficients[5]: 2; Initialize the sixth element of
the buffer coefficients with the
value 2.

JINIT bufl: 9,5,1,<sample.dat>; Initialize bufl with three
constants and the contents of
the file sample.dat.

Initializing from external files is helpful for setting buffer contents with
data produced by high-level programs, such as filter coefficient or FFT
twiddle factor generation routines. If you use external files, you do not
need to initialize data at assembly time. The Assembler establishes a
pointer to the external data files, and the data is incorporated when the
Linker is run. Consequently, when changes are made in external data files,
re-linking updates the program. There is no need to re-assemble.

The .INIT directive causes the Linker to initialize buffers with the
specified data in the (EXE) memory image file. This file can be used to
load the initialized buffers in three cases: (1) for any external program or
data memory which is ROM-type and is burned (by means of the PROM
Splitter output files), (2) for any internal program memory buffers which
are booted from boot PROMs, and (3) for debugging with the Simulator
and Emulator.

£

3.6.5 .CONST Directive

The .CONST directive declares symbolic constants. You can use symbolic
constants wherever you use numeric values.

The .CONST directive has the form:
.CONST constant_name = constant or expression, ... ;

One .CONST directive can have an unlimited number of assignment
statements, each separated by commas, up to the maximum number of
characters that can be processed.

Example:
.CONST taps=15, taps_less one=14;
This defines two constants, equal to the numeric values shown.

3.6.6 .PORT Directive

The .PORT directive declares a memory-mapped I/O port in data or

_program memory. The argument for this directive is a symbolic port
name. The name must be the name of a port declared in the Architecture
Description file.

The .PORT directive has the form:
PORT port_name;

When you reference ports, use the GLOBAL attribute in the module where
you first declare the port and the EXTERNAL attribute in other modules.
The Linker reads all information about this port from the Architecture
Description file ((ACH) and resolves all references to it.

The following example identifies the port ad_sample which has been
previously declared as a specific memory location in the System Builder:

.PORT ad sample;

3.6.7 .INCLUDE Directive

The INCLUDE directive is used to include another source file in the file
being assembled. The Assembler reads the include file when it encounters
the INCLUDE statement. The Assembler processes the included file as if

3-19

Assembler

it were part of the original source file. When the Assembler comes to the
end-of-file of the included file, it returns to the original source file and
continues reading and processing.

The INCLUDE directive has the form:
INCLUDE <filename>;

Source files specified by the INCLUDE directive can have INCLUDE
statements within them (nesting of include files is limited only by
memory).

The INCLUDE directive supports modular programming. For example,
in many cases it is useful to develop a library of subroutines or macros

which are shared between different programs. Rather than rewriting these
routines for each program, you can incorporate a macro library into the

source code file using the INCLUDE directive.

Example:
.INCLUDE <macro_ lib>;
Here the use of angle brackets is required.

Another way to place additional source files into the file being assembled
is to use the #include C preprocessor directive. #Include may be used in
source code rather than .INCLUDE; however, the Assembler’s C
preprocessor must be invoked in order to handle the directive.

3.6.8 Macros -

This section defines macros and the MACRO directive. Macro capability
simplifies source code development by allowing frequently used

instruction sequences to be inserted at the point of reference. Using the -
argument passing feature, a macro can be a general-purpose subroutine

that is shared by different programs. The macro reduces duplication of
programming effort. L

3.6.8.1 Macro Definition

A macro is called by name and allows argument passing. Macro
definitions have the form:

MACRO macro_name(arguments);

statement; (may be any of e [label:] instruction
e LOCAL (local directive)
e directive (all others)
® macro invocation)

.ENDMACRO;
Macro statements can be any legal ADSP-2101 Assembler statement.

An alternative to using the MACRO directive to create an assembly code
macro is the #define C language directive. If #define is used for macro
definition, the Assembler’s C preprocessor must be run in order to process
the directive.

3.6.8.2 .MACRO Directive

The MACRO directive is the start of a section of code which is to be
defined as a macro, and includes the macro’s name and arguments. It has
the form:

.MACRO macro_name(argument, ...);

Arguments, which are optional, take the form: %on n=0,1,2,..,9
For example:

.MACRO memory transf (%0,%1,%2,%3,%4);

Within the source code of the macro, the arguments are marked by the
place holder %n, where n is a number assigned between 0 and 9. When the
macro is called, the %n placeholders are replaced with the actual values
passed. The number of arguments declared and the number of parameters
passed when the macro is called must match. Note that the percentage
sign is used in this context to identify the place holders, not as a “length
of” operator.

3-21

3-22

Assembler

When the macro is called, the parameters passed to the place holders may
be anything shown in Table 3.4, below.

Legal Parameter Comments

constant or expression

identifier May include reserved words except
MACRO, ENDMACRO, CONST and
INCLUDE.

Nidentifier “~%n” is not allowed within macro

%identifier “%%n" is not allowed within macro

Table 3.4 Arguments/Parameters Legally Passed to Macros

The “pointer to” and “length of” operators (* and %) cannot be used with
argument place holders within the macro. However, a parameter passed
when the macro is called may use these operators. For example, you could
invoke the macro read_data(%0) and point to a buffer address with the
parameter passed:

read data(“input) ;

To avoid duplicate label errors when a macro is referenced multiple times
within a module, a label in the macro code must be declared a local label
with the .LOCAL directive; see below.

Macro nesting is limited only by memory at assemble time.

3.6.8.3 .ENDMACRO Directive
The . ENDMACRO directive has the form:

.ENDMACRO;

The .ENDMACRO directive terminates a macro definition portion of code.

3.6.8.4 Macro Example

A macro example is shown in Figure 3.4. In this example, the macro
memory_transf is a general purpose memory transfer routine which can
transfer data buffers from one memory area (program or data) to the
other. This example passes five arguments (%0, %1, %2, %3, %4). PM and
DM references can be passed.

{MACRO declaration}

.MACRO memory transf (%0,%1,%2,%3,%4); {pass five arguments}
.LOCAL transf;
I4=%0; {set I4 to source start address}
I15=%1; {set I5 to destination start address}
M4=1; {set pointer update to single increment}
CNTR=%2; {set length of buffer}
DO transf UNTIL CE; ({transfer data}
SI=%3(I4,M4); {transfer from type %3 memory}
transf: %4 (I5,M4)=SI; {transfer to type %4 memory}
.ENDMACRO;

{MACRO invocation}
memory transf (“coeff table, “buffer, buff length, PM, DM);

Figure 3.4 Macro Example

3.6.9 .LOCAL Directive
The .LOCAL directive has the form:

.LOCAL local_label, ... ;

The .LOCAL directive is used only within a macro definition section of
code. (See Figure 3.4.) The .LOCAL directive tells the Assembler to create
a unique label for local_label at each invocation of the macro. This avoids
duplicate label errors in cases where macros are called multiple times
within a module.

The Assembler appends a number to each local label; this can be seen in
the Simulator, or in the .LST file if macros are expanded.

Example:

.LOCAL transf;

3-24

3.6.10 .EXTERNAL Directive

The .EXTERNAL directive assigns the EXTERNAL attribute to identifiers.
This attribute is typically given to variables, buffers, ports, and program
memory labels declared in other assembly modules. Those symbols in
other modules can only be referenced if they are assigned the EXTERNAL
attribute in the referencing module and the GLOBAL or ENTRY attribute
in the module where they are actually declared.

This directive has the form:

.EXTERNAL external_symbol, ... ;

Example:

.EXTERNAL fir start; {entry label in different module}

3.6.11 .GLOBAL Directive

The .GLOBAL directive assigns the GLOBAL attribute to variables,
buffers, and ports. Only such identifiers declared (with .VAR or .PORT) as
global may be referenced in other modules.

The .GLOBAL directive has the form:
.GLOBAL internal_symbol, ... ;

A variable, buffer, or port that is declared within a module can be
referenced only by that module unless you explicitly specify it as global.
For program labels which you intend to reference in other modules, you
should use the .ENTRY directive rather than the GLOBAL directive.
Example:

.GLOBAL seed;

Other modules are able to refer to global identifiers by declaring those
symbols as EXTERNAL.

3.6.12 .ENTRY Directive

The .ENTRY directive assigns the ENTRY attribute to program labels. This
makes the label visible to other modules for use in subroutine calls or
inter-module jumps.

The .ENTRY directive has the form:
ENTRY program_label, ... ;
Example:

.ENTRY fir start; {make label visible outside module}

3.7 PROGRAM EXAMPLE

Figures 3.5 through 3.7 illustrate a sample source code program, an
interrupt service subroutine, and an include file for the ADSP-2101. In this
example the module main_routine is the main program and fir_routine is
the subroutine. These modules are linked together to form a complete
program.

There are six possible interrupt sources for the processor plus the restart
vector at address 0. Each has four locations associated with it. As
described in the ADSP-2101 User’s Manual, the first 28 addresses in
program memory contain the restart and interrupt vectors (0x0000 —
0x001B). The 29th PM address (0x001C) holds the first program
instruction. Since main_routine is declared at absolute address zero, the
first 28 instructions are placed in the interrupt vector locations. Because
this example uses only the restart (0x0000) vector and SPORT0 Receive
(0x000C) interrupt, the remaining instructions are simply returns (RTI).

The .VAR directive defines two circular buffers in on-chip memory: one in
data memory RAM used to hold a delay line of samples and one in
program memory RAM used to store coefficients for the filter. Data_buffer
and coefficient are declared as GLOBAL buffers in main_routine, while
fir_routine declares them as EXTERNAL. The address label, fir_start , is
declared as ENTRY in fir_routine and can be referenced by main_routine,
which declares it as EXTERNAL.

This sample program, which is also described in the ADSP-2101 User’s
Manual, implements a FIR filter routine and has several features worth
noting. After declaring the include file and memory buffers and

3 Assembler

performing initialization, main_routine jumps to location restarter. Here
the data and coefficient buffers are cleared and the data memory-mapped
control registers of the ADSP-2101 are set up. The functions selected
include SPORTO timing specification, u-law companding, and 8-bit data
words. SPORTO interrupt is then enabled and the processor loops on the
IDLE instruction until the interrupt from SPORTO is received. The filter is
thus interrupt-driven. When the interrupt occurs, program control shifts
to the subroutine by jumping to location fir_start.

All further activity takes place in the interrupt service routine, Figure 3.6.
After the return from interrupt, execution resumes at the WAIT loop.

{ADSP-2101 FIR Filter program

Serial port 0 used for I/0

Internally generated serial clock

12.288 MHz clock rate gives 8000 Hz sampling rate}

.MODULE/RAM/ABS=0/BO0T=0 main routine; {program loaded from BOOT EPROM, MMAP=0}

. INCLUDE <const.h>;

.VAR/DM/RAM/ABS=0x3800/CIRC data buffer[taps]; {data values}

.VAR/PM/RAM/CIRC coefficient [taps];

.GLOBAL data_buffer, coefficient;

.EXTERNAL fir start;

.INIT coefficient: <coeff.dat>; {initialize coeffs from external file}
{code starts here}
{load interrupt vector addresses}

JUMP restarter; nop; nop; nop; {restart interrupt}

RTI; nop; nop; nop; {sampling interrupt IRQ2}
RTI; nop; nop; nop; {SPORTO transmit int}
JUMpP fir start; nop; nop; nop; {SPORTO receive int}

RTI; nop; nop; nop; {SPORT1 transmit int}
RTI; nop; nop; nop; {SPORT1 receive int}

RTI; nop; nop; nop; {TIMER interrupt}

{initializations}

restarter: L0 = %data_buffer; {setup circular buffer length}
L4 = %$coefficient; {setup circular buffer length}
MO = 1; {modify=1 for increment
M4 = 1; through buffers}
10 = ~data_buffer; {point to data start}
14 = "“coefficient; {point to coeff start}

3-26

CNTR = %data buffer;

Assembler

{setup loop counter}

DO clear buffer UNTIL CE;

clear_buffer: DM(IO,MO0)=0;
I1 = Ox3FEF;

DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=191;

DM(I1,M0)=0x0003;
DM(I1,M0)=0x69B7;

DM(I1,M0)=0x0000;
DM (I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM (I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x0000;
DM(I1,M0)=0x7000;

DM(I1,M0)=0x1000;

ICNTL = 0x00;

IMASK = 0x0018;
WAIT: IDLE;

JUMP WAIT;

.ENDMOD;

Figure 3.5 Main Routine Example

{clear data buffer}

3

{point to last DM control register for

initialization}

{SPORT1 AUTOBUFF disabled}
{SPORT1 timing not used}

{SPORT1 timing not used}

{SPORT1 CNTL disabled}

{SPORTO AUTOBUFF disabled}
{divide by 192 for 8KHz}
{generate 1.536MHz serial clk}
{multichannel disabled}

{int. gen serial clock}

{receive frame sync required}
{receive width 0}

{transmit frame sync required}
{transmit width 0}

{int transmit frame sync enabled}
{int receive frame sync enabled}
{u-law companding}

{8 bit words}

{transmit multichannels}

{receive multichannels}

{timer not used, cleared}
{external DM wait states}
{0x3400 - O0x37FF 7 waits}

{all else 0 waits}

{SPORTO0 enabled}

{boot page 0, 0 PM waits}

{0 boot waits}

{enable SPORTO interrupt only}

{wait for interrupt}

3-27

.MODULE/RAM/BOOT=0 fir_ routine; {relocatable interrupt service routine module}
.INCLUDE <const.h>; {include constant declarations}
.ENTRY fir start; {make label visible outside module}
.EXTERNAL data buffer, coefficient; {make global buffers visible to module}
{code}
FIR START: CNTR = taps-1; {N-1 passes within DO loop}
SI = RXO0; {read from SPORTO}
DM(IO,M0) = SI; {transfer data to buffer}

MR=0, MYO=PM(I4,M4), MX0=DM(IO,MO);
{set up multiplier for loop}

DO CONVOLUTION UNTIL CE; {CE = counter expired}
CONVOLUTION: MR=MR+MX0*MYO (SS), MYO=PM(I4,M4), MXO=DM(IO,MO)
{MAC these, fetch next}
MR=MR+MX0*MYO (RND) ; {Nth pass with rounding}
IF MV SAT MR; {saturate if overflowed}
TX0 = MR1; {write to sport 0 transmit}
RTI; {return from interrupt}

.ENDMOD;

Figure 3.6 Interrupt Routine Example

.CONST taps = 15;

Figure 3.7 Include File, Constant Initialization

3-28

3

3.8

LIST FILE FORMAT

The List file (.LST) allows you to interpret the result of the assembly
process. A fragment of a sample list file for the ADSP-2101 is shown in
Figure 3.8.

The following information is found in the list file:

addr

inst

source line

instruction/directive

The first column specifies offset from module
base address in program memory.

The second column contains the hexadecimal
representation of the instruction loaded at that
address (opcode). An appended “u” indicates
that the opcode contains an undefined field.

The source file line number read by the
Assembler is listed in the third column.

This field contains the source code, either
Assembler directive or assembly language
instruction.

ADSP-210X Assembler Version 2.00

Analog Devices Inc.
C:\2101_System\fir2101.app

addr inst source line
1 -MODULE/RAM/BOOT=0 FIR ROUTINE;
2
3 .include “const.h”;
4 .ENTRY FIR_START;
5
6 .EXTERNAL DATA BUFFER, COEFFICIENT;
7
8 {code}
9
0000 3CO0ES 10 FIR START: CNTR = 14;
0001 0DO388 11 SI = RXO0;
0002 680080 12 DM(IO,M0) = SI;
0003 E89800 13 MR=0, MYO=PM(I4,M4),
14

Figure 3.8 List File Example

Mon Oct 9 11:04:39 1989

Page 1

{relocatable interrupt

service routine module}
{include constant declarations}
{make label visible outside
module}

{make global buffers visible
to module}

{N-1 passes within DO loop}
{read from SPORTO}
{transfer data to buffer}

MX0=DM (I0,M0) ;

{set up multiplier for loop}

3-29

e

Linker

4.1 INTRODUCTION

The ADSP-2101 Linker generates a complete executable program by
linking together program modules which were assembled separately. It
can search libraries, which are simply subdirectories, for subroutines to
link. The output of the Linker is used by the Emulator, Simulator and
PROM Splitter. Figure 4.1, on the following page, shows the files read and
created by the Linker.

As shown in the previous chapter, the Assembler processes each source
code module separately, producing an Object file ((OBJ), a Code file
(.CDE) and an Initialization file (.INT), which contains information on the
assembled code, source level declarations and initialization information.
Initialization data files (DAT) are created separately. Changes in
initialization data only require relinking.

The Assembler output files (one set for each module to be linked),
together with initialization data files and the Architecture Description file
are used by the Linker. The Linker expects to find an Architecture
Description file with the default name 210x.ACH unless you alter this
name with a switch; the files to be linked must be specified in the
invocation command or located in libraries to be searched.

The Linker creates one complete executable code file by resolving external
references and assigning addresses to relocatable code and data spaces.

The Linker can generate three files. The Memory Image file (EXE) is
always created, and contains the actual program memory, data memory,
and boot memory images after the linkage. This file is used by the
Simulator and Emulator, and is also passed to the PROM Splitter to
prepare a data file for a PROM burner. It has the default name 210x.EXE
which can also be changed with a switch.

The optional map listing file (MAP) assists you in interpreting the result
of the linkage. This file is discussed in more detail later in this chapter.

The optional debug symbol table file (SYM) lists all symbols encountered
by the Linker, their absolute values and their scope of reference. This file
is used by the Simulator and Emulator.

Init File(s)
(.INT)

Code File(s)
(.CDE)

Object File(s)
(.0BJ)

Buffer Init File(s)
(.DAT)

Architecture
Description
File (.(ACH)

LINKER

Map Listing File
(.MAP)

PM/DM/BM
Memory Image
File (.EXE)

Debug Symbol
Table
File (SYM)

Figure 4.1 Linker /O

3

1

The Linker can link together an unlimited number of modules and
initialization data files. The initialization data files (DAT) are not
explicitly named in the invocation line because they are specified (with the
INIT directive) in the source code files. The data files are incorporated by
the Linker. When changes are made in the data files, simply relink the
modules to incorporate the new data file.

4.2 RUNNING THE LINKER

To invoke the Linker from the host system, the command form is:
LD21 filel [file2 ...] [-switch ...]

or

LD21 i file_all [-switch ...]

The —i switch causes the Linker to read the file file_all for a list of files to
link. The file containing the list of files to link must be a simple text file
with one pathname/file per line.

In the first form, you explicitly name all the files to be linked (separated by
spaces). In both forms, the filename(s) must identify the Assembler output
files (.CDE, .OBJ and .INT) without any extension. Modules to link are
searched for in the current directory or in the pathname specified in the
command line.

4-3

421 Linker Switches

The switch component of the invocation command can have any of the
Linker switches (separated by spaces). The Linker switches are listed
below in Table 4.1; some require arguments as shown. To see this list on
your display, invoke the Linker with no files or switches: LD21.

Switch
—a archname

—C

—dryrun
—e target
—8

i file_all

-lib directory; ...

-old
P
—pmstack

—s stack_size

=X

Table 4.1 Linker Switches

Result

Use archname.ACH Architecture Description
file instead of default 210x.ACH

Linker creates “top of RAM” symbol to locate
the stack; this symbol is used by programs
generated with the ADSP-2101 C Compiler
(See Chapter 7)

Linker does not generate an .EXE file; quick
test to check for link errors

Output files named target. EXE, instead of
default 210x.EXE

Linker generates a debugger symbol table,
SYM file

Links all files listed in text file file_all
Directories listed are added to those found in
ADIL environment setting for locating
libraries; multiple directories are separated by
commas in Unix systems or by semicolons in
PC-DOS systems

Not used (ADSP-2100 feature)

Library subroutines are assigned to the boot
pages that call them

Used with —c switch; moves “top of RAM”
symbol to program memory

Used with —c switch; specify a maximum size
for stack

Linker generates a .MAP file

4.2.1.1 -aarchname & —e target Switches

These switches control the names of the files read and written by the
Linker. The —a switch sets a new name for the Architecture Description file
(read by the Linker), which defaults to 210x.ACH. The —e switch sets the
name of the output files which otherwise default to 210x.EXE, 210x.5YM,

and 210x.MAP.

4.2.1.2 -c Switch & ADIRTH Variable

This switch and environment variable are provided to support the linking
of code modules generated by the ADSP-2101 C Compiler. You must
invoke the Linker with the —c switch to link modules generated by the C
Compiler. Using the switch causes two things to happen. First, the Linker
creates the artificial symbol

___top_of ram (four leading underscores)

which is assigned the value of the highest available address in data
memory (or program memory, see the discussion of the -pmstack switch
below). Second, the Linker searches for and links in the C run time header,
which is an assembly language file (filename run_hdr) provided with the
Cross-Software System. The ~ top of ram symbol is used by the
run time header to locate and initialize the stack. See Chapter 7, C
Compiler, for more information about the stack.

The environment variable ADIRTH must be equated to a pathname
identifying the directory which contains the run time header. This path is
searched by the Linker; the run time header must be located and linked
because it is used when running compiled C code. The pathname is a
function of your operating system, and is determined by where you store
the run_hdr file.

To define the ADIRTH environment variable, execute a statement similar
to the following examples, using the actual pathname for your system.
The final slash must be present; do not include extra spaces.

IBM-PC Example:
SET ADIRTH=\root\subdir\subdir\

Unix (Sun) Example:
setenv ADIRTH “/root /subdir /INCLUDE/”

4.2.1.3 -dryrun Switch

This switch causes the Linker not to produce the .EXE output file. It is
provided so that you can check for the presence of any Linker error
messages.

4-6

4.2.1.4 -g & —x Switches

These switches control the output of optional files. The —g switch causes
the Linker to output the debug symbol table file, SYM, which is not
normally produced. The —x switch causes the Linker to produce the load
map file, MAP, also not normally produced. If the main filename has not
changed since a previous linking operation, the previous .5YM and .MAP
files are overwritten.

4.2.1.5 -ifile_all Switch

This switch is used when the argument file contains a list of files to link.
The Linker reads filenames from the text file, listing them one to a line,
and locates the files to be linked.

4.2.1.6 -lib directories Switch & ADIL Variable

There are two paths the Linker searches for libraries of subroutines to link:
one path specified by the ADIL environment variable and any listed in the
directory; ... argument of the -lib switch.

The search pattern to find the subroutine files to link can be set using the
ADIL environment variable. ADIL must be set to a pathname in your
operating system leading to the subdirectory where the libraries are
located. The Linker first searches the path specified by ADIL.

To define the ADIL environment variable, execute a statement similar to
the following examples, using the actual pathnames for your system.
Semi-colons separate individual search paths. The final slash must be
present. Do not include extra spaces.

IBM-PC Example:
SET ADIL=\root\subdir\subdir\;\root \nextsubdir\nextsubdir\;

Unix (Sun) Example:
setenv ADIL “/root/subdir/INCLUDE/;/root /nextsub/INCLUDE/;”

The maximum number of directories that can be specified with ADIL is
twenty. If ADIL has not been defined in the system environment and there
is no -lib directories switch, the search terminates.

The second search path comes from the -lib switch itself. Here you specify
a set of directories to search in the command line invoking the Linker.
These are searched after ADIL has been searched. A convenient tool to use

in conjunction with the -lib switch is the DOS symbol for the current
directory (the period). When invoked in the following fashion,

LD21 filel file2 ... -lib .
the Linker searches the entire current directory for subroutines to link.

4.2.1.7 -old Switch

This switch is an ADSP-2100 feature and should not be used with an
ADSP-2101 system.

4.2.1.8 -p Switch

The —p switch is used when linking a program with library subroutines
which are called on more than one page of boot memory. In such multiple
boot page systems, a copy of a subroutine must be located on each page
that calls it. This switch causes the Linker to place copies of subroutines on
the boot pages where they are called.

The necessary set of subroutines is linked and incorporated into the boot
memory portion of the .EXE file. When a page of code is booted under
software control (during program execution), it then includes all the
subroutines it uses. If the —p switch is not used, the Linker links the
library routines but does not attach their memory images to specific boot

pages.

Refer to Appendix E for further information on implementing multiple
boot systems.

4.2.1.9 -pmstack Switch

This switch causes the top of RAM symbol and stack created by the run
time header to be located in program memory. Without this switch, the
stack is located in data memory by default. If your C program was
compiled with the —pmstack switch for the C Compiler, it must also be
linked with the —pmstack switch for the Linker.

4.2.1.10 -s stack_size Switch

Normally the stack (for compiled C code) has no limit on its size; it is
allowed to grow larger (toward lower addresses) whenever new values
are pushed onto it. By using the —s switch and specifying a number for
stack_size, however, you can place a limit on how large the stack is allowed
to grow. Stack_size must be an integer, and is evaluated by the Linker in
units of words.

4-8

Linker

When this switch is used, the Linker creates the artificial symbol

_top_of ram (fourleading underscores)

which is given the following address value:

___top of ram = top of ram - stack size
This symbol is used by the run time header to define and maintain the
stack.

4.3 LINKER OPERATION

The Linker combines separately assembled source code modules and
initialization data files into one executable program, using the hardware
environment model specified in the Architecture Description file. The two
main tasks are the allocation of memory and the resolution of symbols.

43.1 Memory Allocation

The Linker reads information from each code module and data buffer
regarding the characteristics of the memory in which it is to be stored.
Each module may list its memory attributes as RAM or ROM, and may
specify an absolute start address (ABS= address), segment name (SEG=
name) or boot page number (BOOT= page#). Data buffers are declared
with the VAR directive and may list their qualifiers as PM, DM, RAM,
ROM, or CIRC and may also specify ABS or SEG. The Linker also receives
information defining the target hardware system and available memory
from the Architecture Description file (ACH) produced by the System
Builder.

The Linker assimilates this information and places the modules and
buffers in memory by means of the memory image file (EXE). A module
or buffer must be placed in a portion of memory with the correct
attributes. If no start address is chosen for an object, it is relocatable. The
Linker decides upon a location for all such objects, with a bias toward
placement in internal memory if possible.

There are three possible means of specifying a code module or data
buffer’s location in memory: (1) giving an absolute start address (ABS),
with or without a segment name, (2) naming a System Builder-defined
segment (SEG) in which to place the structure, or (3) listing neither. The
first specification defines a non-relocatable object; the second is an object

Lt 3

which is relocatable within the named segment only; the third is an object
which is completely relocatable.

The Linker places objects in memory in the following sequence.

1. Place all data buffers and modules with the ABS=address modifier
(non-relocatable).

2. Place data buffers with the CIRC and SEG=name modifiers
(relocatable within named segment).

3. Place all non-circular data buffers and modules with the SEG=name
modifier (relocatable within named segment).

4. Place data buffers with the CIRC modifier (completely relocatable).

5. Place all remaining non-circular data buffers and modules
(completely relocatable).

While non-circular, or linear, data buffers have no special placement
constraints, circular buffers are handled differently. The Linker places
circular buffers at 2" modular boundaries (2, 4, 8, 16, etc.) corresponding to
the buffer length. If a circular buffer has a length of 16, for example, it is
placed at a base address which is a multiple of 16. If a circular buffer has a
length of 13, it is similarly placed at the start of a 16-location block. See the
discussion of circular buffers in Chapter 3, Assembler, for further
information.

Circular buffer placement by the ADSP-2101 Linker is identical to that
performed by the ADSP-2100 Linker except for the case where buffer
length is equal to 2". The 2101 Linker places two separate 2"-word circular
buffers one right after the other in contiguous 2"-word blocks. The 2100
Linker places two such buffers in memory with an unused 2"-word block
between them.

For example, the ADSP-2101 places two 1024-word circular buffers in
contiguous blocks (address LSBs 0-1023 and 1024-2047). The ADSP-2100
places the two buffers with an unused 1024-word block between them
(address LSBs 0-1023 and 2048-3071).

4-9

4-10

Linker

4.3.1.1 Boot Memory Allocation

A distinctive feature of memory allocation in an ADSP-2101 system is the
use of boot memory. Any code module declared with the BOOT qualifier
is placed in the boot memory space by the Linker. One or more boot page
numbers are chosen for each bootable module. Each boot page can store a
total of 2K words of code and data.

Boot memory should be thought of as a place to store your program until
it is run. The crucial concept of a system with boot memory is the
difference between what is accomplished when running the Linker
(locating objects in memory space), and what happens during run-time

(v orars avacih

i)
\Prograin exXecuuony.

When you choose specifications and qualifiers for code modules and data
buffers, these attributes apply to the run-time characteristics of the
structures. Booted code is run from the 2101’s internal program memory,
when both the code and processor deal only with run-time program and
data memory. Thus when configuring the memory map of your system,
you too should think only in terms of program and data memory.

The Assembler does not deal with boot memory as a separate memory
space. It is the Linker which handles the logical interfacing of boot storage
to run-time program memory. For systems with multiple boot pages, the
Linker can handle placement of library subroutines and data buffers
shared between pages. This is specified by means of the Linker’s —p switch
and the Assembler’s STATIC buffer qualifier. See Appendix E.

432 Symbol Resolution

Any symbol (address label or data buffer) declared within a module can
be used only by that module unless the .ENTRY or .GLOBAL directives
are used. These directives expand the scope of reference of the symbols
beyond the local module. For each symbol declared as .EXTERNAL, the
Linker searches all other modules for occurrences of these symbols in an
.ENTRY or .GLOBAL declaration. If this search fails, or if the search
produces multiple matches, the Linker issues an error message. Once the
allocation of memory segments is complete and all external references are
resolved, the Linker assigns values to all symbols.

In resolving the symbols, the Linker creates a Debug Symbol Table (.SYM)
file, which contains a list of all symbols encountered. The file gives
information on which symbols can be referenced by each module. This file
is used by the Simulator and Emulator to provide symbolic debugging.
Appendix B describes this file in detail.

o

4.4 MAP LISTING FILE

The Map Listing file is generated to help you interpret the Linker result.
The file provides information on:

¢ Symbols

A cross-reference listing of all symbols encountered, arranged by module.
For each module a list is shown of the symbols referenced in that module,
with the following information for each symbol: its absolute address, its
length, the type of symbol (module, variable, or label) , and the type of
memory (PM, DM, or BM).

* Memory segments

A map of physical memory segments declared for the system with the
absolute address, length, and attributes of each. The information here
reflects the content of the Architecture Description file.

¢ Boot memory & Run-time program memory

An address map of modules and data structures on each boot page, and
the corresponding map of booted code in internal program memory
(“bootable run-time program memory”). Information on PROM byte
addresses and boot PROM sizes required is also provided.

¢ Fixed vs. Dynamic memory

Maps of fixed program memory, dynamic data memory, and fixed data

memory. These maps include address, length, and attribute specifications.

¢ Error messages

Linker error messages (see Appendix F).
* Libraries

A list of libraries searched and used.

A sample Map Listing file is shown in Fig. 4.2, on the next page.

4-1

4 Linker f

ADSP-210x Linker, version 2.00, copyright Analog Devices, Inc. o
final (final.exe) mapped according to FIR SYSTEM (sysb210l.ach)

xref for module: MAIN ROUTINE boot memory page(s) O, ;
MAIN_ROUTINE pm 0:0000 [003B] module (global) =
DATA BUFFER dm 0:3800 [000F] variable (global)
COEFFICIENT pm 0:0040 [000F] variable (global) -~
RESTARTER pm 0:001C label !
CLEAR BUFFER pm 0:0024 label -
WAIT pm 0:0039 label
FIR START 0:004F [0000] extern(FIR_ROUTINE)

xref for module: FIR ROUTINE boot memory page(s) 0,
FIR ROUTINE pm 0:004F [000A] module (global)
FIR START pm 0:004F label
CONVOLUTION pm 0:0054 label
COEFFICIENT 0:0040 [O00F) extern (MAIN_ ROUTINE) e
DATA BUFFER 0:3800 [000F] extern (MAIN_ ROUTINE)

210x memory pér FIR SYSTEM (sysb210l.ach):

internal 2101 pm ram mapped to 0000 - 0800 (auto booted at reset)
internal 2101 dm ram mapped to 3800 - 3BFF

0000 - O7FF [2048.] external bm rom code BOOT MEM

0000 - O07FF [2048. internal pm ram data/code INT_PM

0800 - 3FFF [14336.] external pm ram data/code EXT PM e
3800 - 3BFF [1024.] internal dm ram data INT DM

0000 - 37FF [14336.] external dm ram data EXT_DM

[—

boot memory and bootable run time program memory map: b

boot page 0 (auto boot)

bm:0000-003A (x8rom:0000-00EB) pm:0000-003A [59.] ram module MAIN ROUTINE of
MAIN ROUTINE

bm:0040~-004E (x8rom:0100-013B) pm:0040-004E [15.] ram circ variable COEFFICIENT of
MAIN_ ROUTINE

bm:004F-0058 (x8rom:013C-0163) pm:004F-0058 [10.] ram module FIR ROUTINE of

FIR _ROUTINE

8k of boot memory rom space required for this bootable run time map.
Most convenient boot memory rom size is 8k bytes (64k bits).

fixed program memory map: "

fixed program memory rom: 0. .
fixed program memory ram: 0.

dynamic data memory map:

boot page 0 i

3800 - 380E [15.] ram circ variable DATA BUFFER of MAIN ROUTINE

fixed data memory map: T
fixed data memory rom: 0. =
fixed data memory ram: 0.

210X1nk: final, 210x memory use: F

program memory rom: 0.; program memory ram: 0.; e
data memory rom: 0.; data memory ram: Q.

Figure 4.2 Map Listing File)
4-12 !

Simulator Functions

5.1 INTRODUCTION

The ADSP-2101 Simulator is an interactive window-oriented software tool
for instruction level simulation and debugging of your program. The
Simulator configures itself according to your target system architecture as
defined in the Architecture Description file ((ACH). This allows it to flag
illegal operations such as reading from non-existent memory. Using the
symbol table created by the Linker, the Simulator is able to provide a fully
symbolic environment for simulation and debugging.

Briefly, the Simulator provides the following functions:

Instruction level simulation of booting and execution

Simulation of ports and SPORTs using host data files

Simulation of internal and external interrupts

Complete assembly and disassembly of the ADSP-2101 instruction set

Multiple break conditions including break at address, break on

condition, break on expression and break on address ranges

¢ Full view of all processor registers and the ability to directly change
any register’s contents interactively

¢ Profiling usage of portions of code during execution

Upon first booting the Simulator, you see the command window display
as shown on the next page. From this window you open, configure and
use all other features of the Simulator. Typing W (control-w) displays a
menu of window commands including, for example, OPEN, which in turn
displays a submenu of windows to be opened.

You can customize the contents and layout of many windows, the
arrangement of multiple windows on the screen and the command strings
used to invoke various Simulator functions. All customized settings can be
stored in an external file and invoked automatically upon startup. For
details, consult the next chapter, Custom Simulator Configurations.

Cursor

Move
Size — Window Commands Menu (open with control-W)
Close
Hide

Command Window (Always Open)

vV V.V V V

W Window commands *X# Go to window# ~Z Go to next window |

\ Informational Display

Figure 5.1 Initial Display & Window Commands Menu

5.2 GETTING STARTED

To get started with the Simulator, you need to prepare your linked
program, install all Simulator program files and invoke the Simulator with
the proper command line arguments.

5.2.1 Help Files & ADIDOC Variable

In order for the Simulator help files to be accessible, the following -
condition must be met: 1

* The path (subdirectories, etc.) to the help files (DOC) must be
identified by the environment variable ADIDOC. ‘

See the section “Using Help” later in this chapter for instructions on how
to set ADIDOC. Complete installation instructions can be found in the V
Release Note included with each shipment of the Cross-Software system. L

5.2.2 Simulator Files

The Simulator uses a variety of files, illustrated in Figure 5.2, on the
following page and listed in Table 5.1 below.

File Description Extension or name

Required User Files

Linked executable ADSP-2101 program .EXE

Architecture Description file ACH

Optional User Files

Symbol Table file SYM

Data files for I/O ports and SPORTs .DAT (optional extension)

Required Simulator Files

Simulator program SIM2101.EXE

Help files .DOC (required for Help

only)

Optional Simulator Startup Files

Initial window configuration DD.WIN

Startup scripts STARTUP

Example startup EXAMPLE

Simulator-Created Files

Temporary cache storage BOOT.CAC
BOOTE.CAC

Table 5.1 Simulator Files

5.2.3 Invoking The Simulator

The Simulator invocation command is:
sim2101 [-a archname] [-w window] [-s scripts]

If you have not given your Architecture Description file a unique name,
filename 210x.ACH is assumed and need not be specified. If you have
renamed the file, however, you must list this name as archname with the
optional —a switch. The extension .ACH is assumed for this filename and
need not be included. This Architecture Description file must have been
used to link your program; the Simulator configures itself according to
this target architecture. The Architecture Description is also displayed in
the defaults window, as shown in that section of this chapter.

Simulator
Configuration Files
Architecture (Optional)
Description
File (.ACH) STARTUP Script
File
PM/DM Memory DD.WIN Display File
Image File

(EXE)

4 N\
Debug Symbol
Table
File (.SYM)

[Simulator State File]

/0 Port & SPORT
Data Files (.DAT)

SIMULATOR

Command Input

&
l i \ Information Display
. . .WIN Files (Display
[Slmulator State File j [Configurations)
1/0 Port & SPORT
Data Files (.DAT)

Figure 5.2 Files Used By The Simulator

o 1

A

lecase]

sy

L]

The optional —w switch identifies a .WIN file containing a stored windows
configuration which is loaded as the initial display when the Simulator is
first booted (see “Saving A Rearranged Screen” in Chapter 6 for
instructions on how to create this file). If this switch is omitted, the
Simulator looks for a file named DD.WIN; this is the default for the
startup screen. The Simulator automatically writes the file DD.WIN when
exiting; it always contains the last screen/window display configuration.
If this default display file is not found at startup, the screen looks like
Figure 5.1.

The optional —s switch identifies a file containing Simulator commands to
be executed automatically upon startup. If this switch is omitted, the
Simulator looks for a file named STARTUP; this is the default name for the
script file.

The script, or batch, file is a text file containing Simulator commands.
Typically it would contain command aliases you have defined. It could
also contain commands for loading a program into the Simulator,
configuring I/O ports and the like. This file can be created with any
editor. A sample startup file named EXAMPLE is provided with the
Cross-Software package; the file contains an extensive set of aliased
commands, and is intended for use only after the basic Simulator concepts
have been mastered. See Chapter 6 for further information.

The Simulator creates two temporary files to store the contents of any boot
memory of the system being simulated. These files are named BOOT.CAC
and BOOTE.CAC. The files are normally purged upon quitting the
Simulator; if, however, the Simulator program aborts prematurely for any
reason, these files remain on your hard disk. They are of no use and can be
deleted.

524 Simulator Command Overview

The Simulator generally provides multiple methods for achieving a given
result. For example, there are two different methods for setting
breakpoints in program memory. Consequently, it makes sense to think of
the Simulator’s functions rather than command structure.

The functional capabilities of the Simulator are described in detail in the
rest of this chapter. They have been grouped into these broad classes:

¢ Interface management functions

These functions include the opening and closing of windows, changing
the size and position of windows, and changing the appearance of a

5

Simulator Functions

window (removing or adding items to the window and rearranging the
items displayed within the window’s space). Additional functions
described under this heading include navigating from window to
window. Saving specific window configurations is possible and is
described in the next chapter. Aliasing commands is another aspect of
interface management.

¢ Set-up functions

These include loading the program to be simulated, opening I/O ports
and associating data files with I/O ports and SPORTSs for the purposes of
simulating input and output data streams. Also included is the
configuring of simulated interrupts.

* Register inspection & change functions

These functions allow you to view the contents of all the registers in the
processor and, in most cases, to change their contents directly if desired.
Several windows are dedicated to register displays.

¢ Memory inspection & change functions

These functions include simple display of the various memory spaces (as
either data or code), saving the contents of memory to files for later
analysis and plotting the contents of data memory.

¢ Simulator control & debugging functions

Control functions include starting and stopping the execution of your
program and resetting the simulated processor. Debugging functions
include setting breakpoints, break conditions and watchpoints. The
Simulator supports a wide variety of break expressions for debugging
purposes.

5.2.5 Simulator Notation Conventions

The Simulator understands a slightly different set of notation conventions
than the Assembler, System Builder, etc. Most importantly, memory
addresses and contents are specified differently. Remember also that the
Simulator is a generally case-insensitive environment; uppercase and
lowercase are used in the manual to highlight important terms for the
reader but need not be entered this way. The exception to this convention
is address labels (see below).

5.2.5.1 Specifying Addresses & Address Ranges

Addresses must be one of the following;:

A symbol. Using the symbol table, the Simulator determines the actual
address specified by the symbolic reference. See also the discussion of
boot memory labels versus program memory labels below. Address
labels are case-sensitive in the Simulator.

The memory specifiers PM[addr], DM[addr], or BOOT[addr], where
the address is a symbol, constant, or expression. PM denotes program
memory, treated as code or data, DM denotes data memory, and
BOOT denotes boot memory. There is no difference in addressing
between program memory code and program memory data.

This form of address specification can be confusing; DM[addr] can be
interpreted as either the address itself or the contents of that address.
The guideline to follow is that DM[addr] is seen as an address when
used to specify an address in a Simulator command, but DM[addr]
implies the data contained at that address when evaluated in an
expression (see “Simulator Expressions,” below).

A constant. The address space context is determined implicitly. For

example, using a constant when prompted for an address while the

program memory window is the active window is understood as an
address in program memory.

An address range may be specified, using the address possibilities above,
as either

start, end

where both terms are addresses as above, separated by a comma, or

start [length

where the first term is an address and the second term is a constant
specifying how many memory locations are included in the range. The
terms must be separated by the slash mark as shown.

5 Simulator Functions

An example of the first form is
pm[0x10], pm[0x18]

while an example of the second form is
pm[0x10] / 0x8

In ADSP-2101 programs with boot pages, labels are shown in boot
memory displays in their standard form, such as

but once booted into on-chip program memory (via a simulated reset or
software boot) all such labels receive a prefix denoting their boot page of
origin, as in

BOOTO_RESTARTER

Both labels resolve to the same 14-bit address. See the discussion in the
section “Locating Symbols & Values,” later in this chapter.

5.2.5.2 Simulator Expressions

General expressions may be used in place of constants in Simulator
commands. Expression handling for the other ADSP-2101 Cross Software
Tools is detailed in Chapter 1. For the System Builder and Assembler, the
arithmetic and logical operators available for use in expressions are a
subset of the C language operators. In the Simulator, however, the
complete set of C operators is usable. For the Simulator, the following
operators are added to those listed in Chapter 1 :

! logical NOT

< > <= >= relational operators
== l= is equal, is not equal
&& logical AND

I logical OR

&

In order of precedence, the complete set of operators available for use in
the Simulator now becomes:

() left, right parenthesis

I~ = logical NOT, ones complement, unary minus
./ % multiply, divide, modulus

+ - addition, subtraction

<< >> bitwise shifts

< > <= >= relational operators
== I= is equal, is not equal

& bitwise AND
| bitwise OR
N bitwise XOR
&é& logical AND
[logical OR

Another feature of Simulator expressions is that memory contents, such as
data variables, and register contents may be used as operands. See the
section “Registers Window” and Figure 5.7 for the available registers.
Remember, though, that this is possible in the Simulator only. (The
Assembler cannot evaluate memory and register values at assembly-time.)

Examples:

AX0 && AX1 DM][coeff] == 0x0035 (DM[taps + 16] ., AR) -3

53 INTERFACE MANAGEMENT FUNCTIONS

The Simulator, as of Release 2.0 and after, supports a user-configurable
interface. Detailed examples of how to configure the interface and how to
store and recall these configurations are given in the following chapter.
This section gives a terse description of the basic functions.

(Note: » denotes the control, or CNTL, key.)

Figure 5.3, on the next page, shows the parts of a typical window.

This corner is “anchored”
when resizing the window.

Window humber

/

— 1

ax0
axl
ay0
ayl

mx0
mx1
my0
myl

se
sb

REG™ (REG_PRI, HEX)

uuuu ar
uuuu af
uuuu

uuuu

uuuu mr0
uuuu nrl
uuuu mr2
uuuu mf
uuuu sr0
uu srl
uu

cycle 00000000

Window name

Indicates Hexadecimal or Decimal

uuuu i0 uuuu m0 uuuu 10 uuuu astat 00

uuuu il uuuu ml uuuu 11 uuuu mstat 00
i2 uuuu m2 uuuu 12 uuuu sstat 55
i3 uuuu m3 uuuu 13 uuuu

uuuu i4 uuuu né4 uuuu 14 uuuu ireq 000

uuuu i5 uuuu 5 uuuu 15 uuuu imask 00

uu i6 uuuu moé uuuu 16 uuuu icntl uu

uuuu i7 uuuu m7 uuuu 17 uuuu

This corner is moved
uuuu pc 0000 SIS when resizing the
uuuu

window.

irg2 00000000 dm addr 0000 pm_addr 0000

5-10

Figure 5.3 Parts of a Typical Window

5.3.1 Opening Windows

You can open any window from any context with the following sequence:

1. Key "W to display the main menu (as shown in Figure 5.1).
2. Select OPEN, the default selection, by pressing Return.

3. A submenu of window selections appears; choose the window you
wish to open. You may move the cursor down the list and then press
Return or you may type the letter corresponding to the desired
window, e.g. “d” for the register window. Pressing the ESC key exits
the submenu without making a selection.

3

[

4. The default version of the window opens in the upper left corner of the
screen and becomes the active window. Open windows are numbered;
the newly opened window is given the next available number.

5.32 Changing Window Contents From Hex to Decimal

You may also change the numeric base of the contents of many windows
from decimal to hexadecimal and back. All windows that can be changed
in this way show the DEC or HEX notation in the title of the window.
When the window is active, “E toggles back and forth between these two
choices.

The exception to this capability is that program memory (PM) addresses
are always displayed in hexadecimal; data memory (DM) and program
memory data (PMD) addresses can be toggled between DEC and HEX
display.

5.3.3 Closing Windows

You cannot close the command window; it must remain open while the
Simulator is running. Also, you can only close the active window. To close
the active window, take these steps:

1. Key "W to display the main menu (as shown in Figure 5.1).

2. Select CLOSE from the menu by typing the letter “c” or by moving the
cursor down with the arrow key and pressing Return when CLOSE is
selected. Pressing the ESC key exits the menu without closing a
window.

3. The active window disappears from the display.

5.34 Moving From Window To Window

Regardless of the number of windows open (or visible) there is a single
cursor. The window containing the cursor is the active window. On IBM
PCs with color displays the border of the active window is a different
color than inactive windows.

At startup the command window is the active window. To move through
a group of open windows you may use any of the following procedures.
The active window always lies on top of other windows in the event that
windows overlap.

5-11

5-12

)r Functions

5.3.4.1 To Cycle Through All Windows

Keying *Z activates the next window in the numbered sequence. Thus,

AZ moves you from the command window (always window zero) to
window one, then window two, then window three and so on back to
Zero.

5.3.4.2 To Activate A Window By Number

Keying "X, following by the window number and Return, directly
activates the specified window. For example the sequence

AX3 (Return)

activates window number three. A maximum of ten windows may be
open at any time; they are numbered from 0 to 9.

5.34.3 To Activate The Command Window

Keying "X (Return) activates the command window directly. This is
identical to keying ~X0 (Return).

5.3.5 Sizing Windows

The upper left corner of each window is anchored. The window is resized
by moving the lower right corner of the window relative to the anchored

corner.

A window must be active to be resized. To resize the active window,
follow these steps:

1. Key AW to display the main menu (as shown in Figure 5.1).

2. Select SIZE from the menu by typing the letter “s” or by moving the
cursor down with the arrow key and pressing Return when SIZE is
selected. Pressing the ESC key exits the menu without making a
selection.

3. Reposition the lower right corner using the arrow keys. The window
border moves one character or line space at a time as you press the
arrow key. Press Return when the window reaches the desired size.
Alternatively, you may quickly size the window a chosen number (#)
of spaces by typing: #arrow key (Return is not necessary). For
example, the following entry resizes a window by 4 line spaces
upward: 47

[P

5.3.6 Moving Windows
A window must be active to be moved. To move the active window, take
these steps:

1. Key "W to display the main menu.

2. Select MOVE from the menu by typing the letter “m” or by moving the
cursor down with the arrow key and pressing Return when MOVE is
selected. Pressing the ESC key exits the menu without making a
selection.

3. The window’s contents temporarily disappear, indicating that you
may move the window.

4. Move the window using the arrow keys. The window moves one
character or line space at a time as you press the arrow key. Press
Return when the window reaches the desired location. The window’s
contents redisplay after Return. Alternatively, you may quickly move
the window a chosen number (#) of spaces by typing: #arrow key
(Return is not necessary). For example, the following entry moves a
window to the left by 3 characters : 3¢ .

5.3.7 Rearranging Window Contents

You may rearrange the contents of active windows that have individual
fields, like the register window. You may also delete individual fields
from the window, and restore them later. See Table 5.2 for a list of
windows which display processor registers in this way. Chapter 6 gives a
detailed example of these procedures.

5.3.7.1 Deleting Window Fields

The procedure for deleting a field in an active window is:
1. Select the field by moving the cursor onto it.

2. Key "D.

3. The field disappears from the display.

5.3.7.2 Undeleting Window Fields

The procedure for restoring a deleted field from an active window is:

1. Move the cursor to a blank location in the window; this is where the
undeleted field will appear.

5-13

5-14

Key AU. A menu of deleted fields for that window appears.

Select the desired field by moving the cursor down the list then press
Return.

The deleted field reappears in the window at the current location of
the cursor.

5.3.7.3 Moving Window Fields

The procedure for moving a field around in the active window is:

1.
2.

3.

4.

Select the field by moving the cursor onto it.
Key MY to toggle on this function.

Move the field, using the arrow keys, until it reaches the desired
location.

To toggle off this function, key "Y again or hit Return.

Saving specific window configurations is possible and is described in the
next chapter.

5.3.8 Command Line Aliases
Aliasing commands — substituting a more desirable mnemonic for the
Simulator’s native command set — is another powerful feature. The

aliasing must be done from the command window and follows the syntax

>3 mystring 'command'

where J is the Simulator aliasing command, mystring is the new alias being

defined and ‘command’ is any legal Simulator command enclosed in
single quotation marks.Up to ten arguments may be passed to aliased

commands using $1, $2 etc. For example the Simulator command to write

the value 40 into data memory location hexadecimal 2FF is

>e dm[0x2ff] 40

which can be aliased to resemble the SETDM command of earlier
Simulator releases (before Release 2.0) by entering this command

>j setdm 'e dm[S$1] $2°

Now the command
>setdm Ox2FF 40
is executed as

>e dm[0x2FF] 40

If a filename is part of the command to be aliased, the filename itself must
be enclosed in double quotes, as in:

>3 loadpgm 'l "calc™'

It is also possible to list and save lists of aliased commands for use in a
startup batch file. Details are given in the following chapter, Custom
Simulator Configurations.

5.3.9 Using Help

The ADSP-2101 Simulator provides a basic help system with individual
topics; there are no nested topics. To use the help first open the help
window. You may wish to resize and relocate the help window for
optimal reading.

This window displays an initial text introducing the help system. If the
window is blank, this means that the Simulator cannot locate the help files
on your computer. A warning message is given, saying that you must set
an environment variable, ADIDOC, to identify the pathname of the
directory containing the .DOC files used by the help system. For example,
on an IBM PC with your Simulator in the subdirectory C:\DSPTOOLS
and the help files in a subdirectory of that named \DOC, you would
execute the following DOS command to set this variable.

> SET ADIDOC=C:\DSPTOOLS\DOC\ Remember, this isa DOS command,
not a Simulator command

There are two navigational tools for reading help. First, within a given
help text, you may use the arrow and PgUp and PgDn keys (or their
equivalents on your keyboard) to scroll the contents of the current help
text up and down for reading.

Second, you may key "G (the go to command) in the help window to
specify another help text and topic. You are prompted for the name of a
topic. The list of topic names is given in the first help text that appears.

5-15

5-16

mulator Functions

This initial help text is called “Help” and can be recalled by typing that
name (and Return) at the *G prompt. (The “Help” text is also returned to
if the *G command is given incorrectly.)

The list of help texts will change as new versions of the Simulator are
released, so no definitive list is given here. In general, however, there is a
help text corresponding to every command window command. For
example, the breakpoint command B is described in a help text named “B”
and so on. A list of the help topics other than Simulator commands is
shown below. All the help files are simple text files. You may print them
out to read if desired and even add your own help topics as you
customize the interface of your Simulator.

The non-command help files are:

HELP main help

BASES numeric bases

COMMANDS list of commands with brief definitions
EDITOR command line editor

ADDR address format

RANGE address range format

EXPR expression format

5.4 SET-UP FUNCTIONS

These include loading the program to be simulated, opening I/O ports
and associating data files with I/O ports and SPORTs for the purposes of
simulating input and output data streams. Also included is the
configuring of simulated interrupts and some housekeeping operations.

These actions are accomplished by issuing commands in the command
window. Multiple commands may be given on one line, separated by
semicolons, as in

> L 'filename' ; J symbol 'command' ; D address

541 Loading A Program

The L command, given in the command window, loads the linked ADSP-
2101 .EXE file and implicitly loads the corresponding .SYM file if it is
present in the same directory. The syntax is simply

> L 'filename'

where filename is the main filename of your .EXE file, enclosed in single
quotation marks. You need not append the .EXE extension; it is added by
the Simulator. If the symbol table file cannot be found, a message reports
this but the simulation can still be run. Without the .SYM file, however,
labels and variable names do not appear, only addresses.

As a further check on program correctness, it is possible to load the boot
PROM image file produced by the PROM Splitter. There should be no
difference in the contents of the boot code and boot data windows
whether loaded from the .EXE file or from the PROM Splitter output
.BNM file.

The syntax of the LR command (‘load ROM’) is
> LR 'filename'

where filename is the name of the boot image file produced by the PROM
Splitter. It is not necessary to use the .BNM extension of this filename. You
must use the Motorola S record format for this purpose.

54.2 Opening & Closing An I/O Port

Parallel I/O Ports in data or program memory which have been defined in
the System Builder (and .ACH file) must be explicitly opened in order to
simulate them. Opening means that you associate them with data files.
The data files serve as the source for simulated input and/or as the
destination for simulated output. The data files may later be analyzed,
graphed etc. to assess the processing of your algorithm.

Ports are opened from the command window. The command is
> O address [>'outfile.ext'] [<'infile.ext']

where address is a standard address specifier or symbolic port name, outfile
is the pathname of a file to write output data to and infile is the name of a
file to read simulated inputs from. Files may be specified in either order,
always in single quotes; you must give the full filenames including
extensions, if any. Giving both an input and an output file opens a
bidirectional port. Giving just an input or an output file opens an input-
only or output-only port.

Data files for I/O port data follow the .DAT format described in Appendix
B, File Formats, at the end of this manual.

5-17

5-18

Giving the O command with no file arguments closes the port at the
specified address.

The 1/0 status window, an example of which is shown in Figure 5.4,
displays the opened ports and the files associated to provide simulated
data flow. When a port is opened, a “P” is displayed to the left of the
port’s address in either the data memory or program memory window.

5.4.3 Opening A SPORT

SPORTs (serial ports) must be explicitly opened in order to simulate them.
Opening means that you associate them with data files. The data files
serve as the source for simulated serial input and/or the destination for
simulated output. The data files may later be analyzed, graphed etc. to
assess the processing of your algorithm.

SPORTs are opened from the command window with the command
> P 0 or 1 [>'outfile.ext'] [<'infile.ext')

where the digit 0 or 1 identifies which of the processor’s two SPORTs is
being opened, outfile is the pathname of a file to write simulated output to
and infile is the pathname of a file to read simulated input from. Files may
be specified in either order, each in single quotes; you must give the full
filenames including extensions, if any. Listing both an input and an
output file opens a SPORT for both sending and receiving. Listing just an
input or an output file creates a send-only or receive-only configuration.

The data files for SPORT simulation must contain only ones and zeros to
simulate the serial bit stream, and carriage returns (which are ignored).
This .DAT format for SPORT data files is completely described in
Appendix B, File Formats.

Giving the P command with no file arguments closes the numbered
SPORT. Also, if you open a SPORT and later give the chip reset command
(causing a re-boot of on-chip program memory), the SPORT is closed. The
best procedure to follow is to do the boot load first and then open any
SPORTSs needed.

The SPORT status window, shown in Figure 5.5, displays the open/closed
status of serial ports and the files associated with the simulated data flow.

SPORT operation in the Simulator has one limitation: externally-generated
serial control signals cannot be simulated. The serial clock (SCLK),

—— 1 I/O0 STAT (HEX)

0 ad_port < adport.dat

1 dm[0002] > out.dat

0 COMMAND

> 0 ad port < ‘ad port.dat’

> O dm[2] > ‘out.dat’

“W Window commands “X# Go to window# ~Z Go to next window

Figure 5.4 1/O Status Window

—— 1 SPORT STAT (HEX)

0 < serin.dat > serout.dat

0 COMMAND

> p 0 > 'serout.dat' <'serin.dat'
Reading from file serin.dat
>

“W Window commands ~X# Go to window# ~Z Go to next window

Figure 5.5 SPORT Status Window

transmit frame sync (TFS), and receive frame sync (RFS) signals must be
internally-generated in order for simulated serial data flow to occur
properly. Internal generation of SCLK is chosen by setting the ISCLK bit to
1in the appropriate SPORT Control Register. Internal generation of TFS
and RFS is chosen by setting the ITFS and IRFS bits to 1.

54.4 Simulating External Interrupts

Depending on the configuration of SPORT1, the ADSP-2101 may have one
or three external interrupt pins. Internal interrupts, such as timer or
SPORT interrupts, are simulated directly by the operation of those
features. External interrupts can be simulated with a selected time interval
of occurrence. From the command window, give the command

> 1 0,1,0or 2 mincycles maxcycles

where choosing 0, 1, or 2 identifies processor interrupts IRQO, IRQ1 or
IRQ2, and mincycles and maxcycles are numbers of instruction cycles. The
selected interrupt is generated randomly within a time range at least
mincycles and no more than maxcycles from the last interrupt. For example,
the command

> I 2 320 420

turns on IRQ2 and generates this interrupt at a random time, once every
320 to 420 instruction cycles.

To halt the interrupt, repeat the command with no cycle arguments or
with cycle arguments equal to zero.

545 Other Defaults (Defaults Window)

There are a number of miscellaneous defaults for the operation of the
Simulator. These can be changed in the defaults window. The defaults
window also displays the contents of the Architecture Description file. A
sample of this window is shown in Figure 5.6.

When the window is first opened, the cursor is positioned on the “0” by
profile enable. Typing a 1 enables profiling, as described in the section
“Execution Profiling”, later in this chapter. Enabling echo makes the
Simulator echo every valid instruction in the command window as it is
fetched while single-stepping through a program. Beep enable turns on
the bell or beep of your computer or terminal. It sounds for each error or
breakpoint. Screen update is the number of instruction cycles simulated

— 1 DEFAULTS (HEX)

profile enable 0
echo enable 0
beep enable 0
screen update 5
search paths |

000 cycles i|_ Current directory

——— | isalways searched.
P

c:\dsp2101\

Architecture File fir system.ach Contents

bm 0000 07ff 0000 O7ff ROM BOOT_MEM
pm 0000 07ff INT RAM INT PM

Figure 5.6 Defaults Window

before the screen is updated during continuous execution (see the
discussion of the G command in “Control & Debugging Functions.”).

Search paths are shown for any file to be read and are in addition to
ADIDOC and the other environment variables. The dot (.) is the DOS
symbol for the current directory; this is always one of the default search
options.

The contents of the Architecture Description file are shown at the bottom
of this window; you may need to scroll the window to see the complete
architecture.

5.5 INSPECTING & ALTERING REGISTERS

You may view the contents of all registers in the processor and, in most
cases, change their contents directly. The windows listed in Table 5.2
below are dedicated to register displays. The following sections show the
default format of each window displaying registers and identify those
registers. For debugging convenience, the Simulator also displays stacks
and memory-mapped control registers in several windows, using the
mnemonics given in the ADSP-2101 User’s Manual.

ulator Functions

Window Contents

Register Named registers

SPORT Named registers and memory-mapped control
registers, shown by mnemonic

Status registers Individual bits identified from the MSTAT,
SSTAT, IMASK and ICNTL

Control registers Memory-mapped registers only; those

controlling wait states, timer values, SPORT
enables and boot confiouration

e allcel © Vllliguuiauiuit

Stack Complete contents of count, loop, status and
PC stacks

Table 5.2 Windows Showing Registers

Table 5.3, at the end of this section, summarizes the Simulator window
location of each processor register.

5.5.1 Inspecting A Register

You may inspect the contents of a register in two ways. First, you may
display the window containing that register and simply read its value
from the screen. Second, regardless of whether or not the register’s
window is displayed or open, you may query the register’s value in the
command window with the question mark command (see the section
“The ? Command and Expressions Window”). For example, the command

> 2 ax0
invokes a response such as

ax0 = 0x002c

5,52 Altering A Register

You may alter the contents of a register directly in two ways. (The
execution of your program, of course, also alters the contents of registers.)
First, you may display the window containing that register and make it
the active window. Move the cursor to the register field (the cursor
positioned over the name of register) and type the new value. When you
press Return, the new value replaces the old value.

When you directly type over a register in the window displaying the
register, you may notice that the command window echoes the command
equivalent of the direct change. This is the second method for changing a

i“

register. From the command window you can change any register
(whether displayed or not) with the command

> R register expression

where register is the name of a processor register and expression is the
value to be loaded into the register.

Since changing the value in a register is such a frequent operation, an
alternative form of this command is also provided. This form consists of
the register name, and equal sign and the new value, as in

> ax0 = 0x002c

5.5.2.1 “Undefined” Registers

Uninitialized registers are denoted by “uuuu.” The Simulator flags
reading undefined registers as an error. You may wish to reset a register
back to an uninitialized state. The U command, given in the command
window, accomplishes this; you need only specify the register. For
example, to undefine the ALU result register, the command is

> u ar0

5.5.3 Registers Window

The register window is shown in Figure 5.7, on the following page. It
contains all the computational unit registers, the DAG registers and the
values of most status registers in the processor, as shown plus the
following information:

pc program counter

cycle execution cycle counter; reset only upon chip reset (or
manually)

irq2 external interrupt request counter

dm_addr data memory address

pm_addr program memory address

These values can be used in break, watch, or general expressions.

ALU registers DAG registers Status registers

— 1 REG (REG_PRI, HEX)

ax0 uuuu ar uuuu i0 uuuu m0 uuuu 10 uuuu astat 00
axl uuuu af uuuu il uuuu ml uuuu 11 uuuu mstat 00
ay0 uuuu i2 uuuu m2 uuuu 12 uuuu sstat 55
ayl uuuu i3 uuuu m3 uuuu 13 uuuu

mx0 uuuu mr0 uuuu i4 uuuu m4 uuuu 14 uuuu ireq 000
mxl uuuu mrl uuuu i5 uuuu m5 uuuu 15 uuuu imask 00
my0 uuuu mr2 uu ie6 uuuu me6 uuuu 16 uuuu icntl uu
myl uuuu mf uuuu i7 uuuu m7 uuuu 17 uuuu

si uuuu pc 0000 cntr uuuu px uu
se uuuu
sb

cycle 00000000

irg2 00000000 dm _addr 0000 pm_addr 0000

Shifter registers MAC registers

Figure 5.7 Register Window

5.5.4 SPORT Register Window

The SPORT register window is shown in Figure 5.8. It contains the SPORT
data and control registers. The SPORT status window (discussed under
“Set-up” earlier in this chapter) shows the open/closed status of SPORTS
and the simulated serial data files.

5.5.5 Status Register Window

Figure 5.9 shows the status registers window. Note that this window
shows certain selected bits in the MSTAT, SSTAT, IMASK and ICNTL
registers while the register window itself (Figure 5.7) shows each complete
status register as a single value.

The bits displayed are status/control bits for the primary program flow
operations. Most of these can be toggled directly in the window in order
to quickly enable or disable the associated function. Some of the listed bits
are read-only status bits; these should not be changed by the user.

ey

— 1 SPORT (HEX)
slen0 0 dtype0
irfs0 1 rfsr0
itfs0 0 tfsr0
sclkdiv0 uuuu
rbuf0 0 rireg0
tbufo 0 tiregO
slenl 0 dytpel
irfsl 0 rfsrl
itfsl 0 tfsrl
sclkdivl uuuu
rbufl 0 riregl
tbufl 0 tiregl
mcrel uuuu
mcre(0 uuuu
rx0 uuuu
rxl uuuu

0 isclk0 0 mcel 0
0 rfswl 0 invtfs0 0
0 tfswl 0 invtfsl 0
rfsdiv0 uuuu
u rmreg0 u
u tmreg0 u mcfd 0
0 isclkl 0
0 rfswl 0 invrfs0 0
0 tfswl 0 invrfsl 0
rfsdivl uuuu
u rmregl u
u tmregl u
mctel uuuu
mctel uuuu
tx0 uuuu
tx1l uuuu

— 1 STATUS (HEX)

pc_empty O
pc_overflow 0O
count empty 1
count _overflow 0
status_empty 1
status_ovr 0
loop empty O
loop overflow 0
data bank_sel 0
bit reverse 0
alu overflow 0
ar_sat 0
int0_sens
intl sens
int2 sens
int3 sens
int0_enable
intl enable
int2 enable
int3 enable
int nesting mode 0

o O O O

o O O O

Figure 5.8

SPORT Register Window
Figure 5.9
Status Register Window

5.5.6 Control Registers Window
Figure 5.10 shows the control registers window. This window shows the
contents of the individual fields of the first five 16-bit memory-mapped

processor control registers (from DM[0x3FFF] to DM[0x3FFB] inclusive).

1 CONT REG (HEX)
r_;f 0 spe0 0 dwait0
bpage 0 spel 0 dwaitl
bwait 3 scnfl 1 dwait2

dwait3 7 tscale
dwait4 7 tperiod
pwait 7 tcount

uuuu
uuuu

Figure 5.10 Control Registers Window

5.5.7 Stack Window

The stack window, shown in Figure 5.11, shows the four stacks in the
program sequencer: CNTR stack, LOOP stack, STATUS stack, and PC

stack. The top line of each stack display is the top of the stack. The four
LSBs of the loop stack are the termination code; the 14 MSBs are the return

address.
— 1 STACK (HEX)
cntr loop status
uuuu 0024e uuuuuu
uuuu uuuuu uuuuuu
uuuu uuuuu uuuuuu
uuuu uuuuu uuuuuu
uuuuuu
uuuuuu
uuuuuu

pc stack

0024 uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu

Figure 5.11 Stack Window

For this register ... Look in this window

AX0 Register

AX1 Register

AY0 Register

AY1 Register

AR Register

AF Register

MXO0 Register

MX1 Register

MY0 Register

MY1 Register

MRO Register

MR1 Register

MR2 Register

MF Register

SI Register

SE Register

SRO Register

SR1 Register

SB Register

PC Register

PX Register

10-7 Register

MO-7 Register

L0-7 Register
ASTAT Register, Flag
MSTAT Register, Bits 0-3 in Status
SSTAT Register, Status
IMASK Register, Status
ICNTL Register,

IREG Register

CNTR Register
CNTR_NO PUSH (same contents as CNTR)
RX0 SPORT

TXO0 SPORT

RX1 SPORT

X1 SPORT
Memory-mapped

Control Registers Control Registers, SPORT

Table 5.3 Register Location By Window

5 Simulator Functions

5.6 INSPECTING & ALTERING MEMORY

This section describes the methods for viewing and altering specific
locations in any of the ADSP-2101's memory spaces. These functions
include simple display of the various memory spaces (as either data or
code), entering new values and saving the contents of memory to files for
later analysis.

These actions are accomplished by issuing commands in the command
window. Multiple commands may be given on one line, separated by
semicolons, as in

> 1L 'filename' ; J symbol 'command' ; D address

5.6.1 Inspecting A Memory Location

There are two methods for inspecting a location in memory. First, you
may open the appropriate memory window and make desired location
visible in the window. Second, you may directly query any location or
range from the command window.

For the first method, once you have opened the desired memory window,
you can change the range of memory addresses and contents displayed in
several ways as listed below.

¢ Paging / memory window is active window

The arrow and PgUp and PgDn keys (PC keyboard) and their
equivalents on other computers cause the memory window to scroll.

¢ Go To Address / memory window is active window

Keying ~G interactively prompts you (in the memory window itself) to
enter an address. The address must be entered without the pm[], dm][
I, or boot|] notation. When you press Return the first line of the
window displays this address.

e Go To Address / command window is active window

If you use the *G method from within an active memory window, you
may note the command window echoing a command. This command
(K), issued in the command window, alters what is displayed in an
open window without making the window active. The form of this
command is

> K windownum address

Simulator Functions

where windownum is the number of the window and address is the
memory location to be displayed. Again, the address given must be the
constant or symbol only. In other words, you must enter

> K 1 25 correct
rather than
> K 1 PM[25] incorrect

The result of this command is like the *G method above; the specified
address is brought into view in the window.

The second method displays the memory contents directly in the
command window; the memory window does not have to be open or
visible. The command has the form

> D address or range [> 'filename']

where address or range identify a location or range of locations in memory.
The default action is to display this location (or range) in the command
window. If the optional file redirection is given, the contents of memory
are written to the file instead of the screen. This can be used for saving the
state of arrays in data memory or other memory ranges. The format of this
file is described in Appendix B, File Formats.

5.6.2 Tracking

Tracking enables you to view the code and data accessed when a program
is run with the single step (S) or go (G) commands. When tracking is
enabled in the program memory window, the window will automatically
scroll through the code being executed to follow the processor’s program
counter. If tracking is turned on in the data memory window, any data
memory locations accessed are scrolled into view in that window.
Tracking is enabled /disabled by giving the command

> T window#

where window# is the number of the program memory, data memory, or
program memory data windows.

Tracking can also be toggled in the active window with the control key
sequence "T.

5

5

Simulator Functions

5.6.3 Locating Symbols & Values

The cross-reference command, X, given in the command window, locates
symbols. The general form of the command is

> X symbol

where symbol is any symbol you believe is defined in your program. For
example, to find the label RESTARTER, the command (and its response)

would be

> x RESTARTER
RESTARTER = boot [0x001c]

Remember that labels are case-sensitive in the Simulator. If you enter
restarter when the actual label is RESTARTER it cannot be found.

The find command, F, finds numeric values in a given memory range. The
numeric value may also be an opcode. In addition, for ease of use, the F
command accepts source versions of commands and assembles them. The
syntax of the F (“find”) command is

> F address expression

where address is any valid address or address range specifier and
expression is any valid expression including instructions and simple
numeric values. Because this command is actually searching for an exact
numeric match, it does not do partial matching. For example, to locate the
instruction

jump RESTARTER;

you cannot give the F command as

> £ pm[0]/100 jump Incomplete specification of expression!

The F command is not a word processing command. To obtain the correct
answer, you must give the complete instruction (the semicolon is optional)

including the specific label in a case-sensitive form, as in:

> f pm[0]/100 jump RESTARTER

ulator Functions

When the expression is found, the location is displayed:
pm[0019] 00035f Jjump RESTARTER

The best way to locate a symbol, then, is to use the X command. It is case-
sensitive and can discriminate between data, program and boot memory
when it searches for a symbol. The best way to find a data value or specific
opcode is to use the F command (which does not discriminate between
program and boot memory).

5.6.4 Plotting The Contents Of Memory

An additional and useful way to inspect memory is with the PL or plot
command. This allows you to plot up to 640 points on the screen. The
syntax of PL is

> PL range decimation

where range is an address range and decimation is an integer value (or
expression) indicating which memory locations to select for graphing.
Each graphed point corresponds to a single 16-bit data value. For data that
is interleaved for example, you would select every other word with

> PL dm[0x100]/0xff 2

The screen clears and the graph is displayed. Pressing Return returns you
to the previous display.

Since no more than 640 points total can be graphed, the length of the
range divided by the decimation factor must not exceed 640.

56.5 Altering A Memory Location

You may alter the contents of memory directly in two ways, although
there are some differences between program and data memory. First, you
may display the window containing that memory and make it the active
window. Position the cursor on the address to be changed and type the
new contents. When you press Return, the new value replaces the old
contents.

If you are entering a new value for data memory that value is a number. If
you are entering a new value in the program memory (code) window that
value is an instruction. But, if you are entering a new value in the program
memory data window, that value is a number, including an opcode.

5-31

5 Simulator Functions

5-32

When you directly type over a data memory location, you may notice that
the command window echoes the command equivalent of the direct
change. This is the second method. From the command window you can
change the numeric contents of any address in memory (whether
displayed or not) with the command

> E address expression

where address is the address or address range to be altered and expression
is the value to be written into the specified portion of memory. For
example, to write a zero into the range of data memory from address 200
to address 300, the command is

> E dm[200]/100 0O

Likewise, to write the opcode for NOP (which is all zeroes) into program
memory location two, the command is

> E pm[2] O

You may also enter the contents of a file into a memory range with a
variation of the E command. Its syntax is

> E start address <'filename'

where start_address is any address in memory and filename is the name of a
file to be read from. This file must be in the data file format (DAT)
described in Appendix B. The range of memory written is determined by
the size of the file; the file is read until end of file is reached. If the file is
too large, unpredictable results may occur.

5.6.5.1 Altering Instructions

The command equivalent for directly typing an instruction is the A
(assemble) command whose syntax is

> A address instruction

where address specifies a location in program memory and instruction is a
valid ADSP-2101 instruction (not opcode). The terminal semicolon in the
instruction is optional; the Simulator correctly assembles the instruction
regardless of whether or not the semicolon is entered. (See also the
discussion of the V command under “Miscellaneous Features” at the end
of this chapter.)

Simulator Functions 5

For example, to alter program memory at location two to the NOP
instruction (as shown numerically above) you would type

> A pm[2] nop

Any change is immediately displayed in the pertinent memory window, if
open.

5.6.5.2 “Undefined” Memory Locations

Uninitialized memory locations are denoted by the word “undefined.”
The Simulator flags operations such as reading undefined memory as
errors. You may wish to reset portions of memory back to an uninitialized
state. The U command, given in the command window, accomplishes this.
You must specify the address (individual address or address range). For
example, to undefine the first sixteen data memory addresses, the
command is

> U dm[0x0] / 16

5.6.6 Program Memory (Code) Window

The program memory window shows program memory as code with fully
symbolic disassembly. The default arrangement of this window cannot be
altered and appears (after loading a program) as in Figure 5.12, on the
next page. To the left of each address is a two-letter code which indicates
the following:

I/X internal /external memory
A/O RAM/ROM

When an I/O port is opened in program memory , a “P” is displayed with
the I/X, A/O code at the port’s address.

Address labels are shown in the disassembled code. Labels which
originate in boot memory code have the boot page number appended to
them. An example of this is the BOOT0_RESTARTER symbol shown in
Figure 5.12, on the next page. :

The contents of the processor’s internal program memory will change
when a new page of boot code is loaded.

5-33

Internal/External, RAM/ROM Disassembled code with symbolic operands

1 PM (TOFF, HEX)

IA > pm[0000] Jjump BOOTO_RESTARTER

IA prm[0001] nop

IA rm [0002] nop

IA pm[0003] nop

IA pm[0004] rti

IA pm [0005] nop

IA rm[0006] nop

IA pm[0007] nop

1A pm[0008] rti

IA pm(0009] nop

Program memory addresses

0 COMMAND

> 1 'final'

> cr

loading final.exe...
loading final.sym...

Boot cycles = 1156 Boot page = 0

“W Window commands

~“X# Go to window# ~“Z Go to next window |

Figure 5.12 Program Memory (Code) Window

5-34

5.6.7 Program Memory As Data

The program memory data window shows program memory as numeric
data. This consists of either opcodes for code segments in program
memory or actual numeric values for data segments in program memory.
The only way to view opcodes is to open this window. The default
configuration of this window, which cannot be changed, is shown in
Figure 5.13. To the left of each address is a two-letter code which indicates
the following:

I/X internal/external memory
A/O RAM/ROM

[—— 1 PMD (TOFF,HEX) =—/]
Program memory
Internal/External ————— - 1A > [0000] 1801cf |~ addresses
RAM/ROM IA [0001] /wg/
IA pm 0002] 00000
IA pm[0003] 000000
IA m[0004] 0a001f
IA m({0005] 000000
IA m[0006]) 000000
IA m[0007] 000000
IA m[0008] 0a001f
m m (0009 000000 Numeric contents,

opcodes or data
Figure 5.13 Program Memory Data Window

5.6.8 Data Memory

The data memory window shows the numeric contents of data memory
and any symbols defined for data structures. The default configuration of
this window, which cannot be changed, is shown in Figure 5.14, on the
next page. To the left of each address is a two or three-character code
which indicates the following;:

1/X internal/external memory
A/O RAM/ROM
0,1,2,3,0r4 wait state zones 0-4 of external DM

When an I/0O port is opened in data memory , a “P” is displayed with the
I/X, A/O code at the port’s address.

External data memory is divided into five address zones for purposes of
wait state programming. Where external memory is displayed in the data
memory window, the zone number is shown. The numbers represent the
zones for DWAITO through DWAIT4; these wait states are selected in the
Data Memory Wait State Control Register, located at DM[Ox3FFE]. Refer
to the ADSP-2101 User’s Manual, under “Data Memory Interface,” for
further information.

5 Simulator Functions

Internal/External

RAM/ROM
%ﬁ 1 DM (TOFF, HEX) Data buffer names

IA > dm[3800] uuuu: DATA BUFFER
IA dm[3801] uuuu
IA dm[3802] uuuu
IA dm[3803] uuuu
IA dm[3804] uuuu
IA dm 38051 uuuun
Ia dm[3806] uuuu
IA dm[3807] uuuu
IA dm[3808] uuuu
IA dm|[3809] uuuu

Data memory addresses Data contents

0 COMMAND

\

> K 1 DATA BUFFER

\Y4

“W Window commands “X# Go to window# ~“Z Go to next window |

5-36

Figure 5.14 Data Memory Window

5.6.9 Boot Memory

Like program memory, boot memory may be viewed in two ways, each
through its own window. Boot memory code (Figure 5.15) shows
disassembled source code by address in boot memory while boot memory
data (Figure 5.16) shows opcodes and numeric data values. In both cases
the address shown is a (24-bit) word address. The entire 16K length of
boot memory is contained in the windows, from page 0 up to page 7. The
Simulator does not support byte addressing in boot memory directly, nor
does it show the extra bytes added to pad each instruction or data word
for PROM alignment purposes. Byte addresses are determined only by the
PROM Splitter.

Simulator Functions 5

Boot page number

1 BOOT CODE (HEX)

0 boot [0000] jump BOOTO RESTARTER
0 boot[0001] nop

0 boot [0002] nop

0 boot[0003] nop

0 boot [0004] rti

0 boot[0005] nop

0 boot[0006] nop

0 boot [0007] nop

0 boot [0008] rti

0 boot [0009] nop

Boot memory Disassembled code
addresses with symbolic operands

Figure 5.15 Boot Memory Code Window

[1 BOOT DATA (HEX) —]
0 boot [0000] 18 [l
0 boot 000000
0" boot [0002] 000000
0 boot [0003] 000000
0 boot [0004] 0a001f

anno

- Boot page number

0 boot[0005] Sasasasacas;
0 boot[0006] 000000
0 boot[0007] 000000
0 boot[0008] 0a001f
0 boot[0009] 000000

Boot memory
addresses

Numeric contents,

opcodes or data

Figure 5.16 Boot Memory Data Window

5-37

5-38

5.7 CONTROL & DEBUGGING FUNCTIONS

Control functions include starting and stopping the execution of your
program and resetting the simulated processor. Debugging functions
include setting breakpoints, break conditions and watchpoints. Any
expression can be quickly evaluated in the expressions window. The trace
window provides a history of external bus activity. Profiling (via the
profile window) is a tool for analyzing the time spent executing various
parts of your program.

Remember that multiple commands may be given on one line, separated
by semicolons, as in

> L '"filename' ; J symbol 'command' ; D address

5.7.1 Resetting The Processor: CR and RE

There are two command window commands for resetting the processor:
CR and RE.

CR, which stands for chip reset, simulates a hardware reset of the
processor. It is the same as pulling the RESET line low in a hardware
system. All clocks, registers and stacks become reset or undefined. The
state of on-chip memory is undefined. (While in some cases you may see
values in on-chip memory “surviving” a reset, this is not guaranteed to be
the case.) Finally, boot page zero is booted into the processor if MMAP
equals 0 in the Architecture Description file, and the PC is set to the restart
vector at address 0. Execution does not actually begin in the Simulator,
although it would in hardware.

RE, which stands for reset, performs a subset of the functions of CR. It
omits the boot loading sequence, but otherwise resets the processor. On-
chip memory remains intact.

5.7.2 Single-Step Execution

The S command, given in the command window, steps the processor
through one or more instructions. Execution always begins at the current
program counter value.

For example, the command

> 5 10

executes the next ten instructions, while

> S

executes only the next instruction. Execution can always be interrupted by
pressing any key. If echoing is enabled (in the defaults window), the next
instruction is shown in the command window as you step through your

program.

5.7.3 Running & Halting

The G command with no arguments, as in

> G

starts the simulated processor running from the current PC value for an
unlimited number of instructions. The Simulator halts only for the
following events:

* You press any key to interrupt execution

* A simulation error occurs

* A breakpoint is reached or a break change or expression becomes true.

The G command can also be given an address (constant, expression, or
label) to stop at; execution continues until that address is reached as in

> G fir halt

The command RUNFAST is a slightly different version of the G command.

RUNFAST also causes the Simulator to run, but will not stop when a key
is pressed— only on a break reached or an error. Care must be taken when
using this command, though, since the Simulator does not stop if a break
is not reached.

5

Simulator Functions

5.74 Breaks

Breaks halt execution. Breaks include breakpoints, break expressions,
break changes, and break ranges. A breakpoint is a location in program
memory where execution halts. In the program memory (code) window
breakpoint locations are marked with a B in the first column. Break
expressions, changes, and ranges are defined in the following sections.

5.7.4.1 Setting Breakpoints & Break Ranges -
There are two ways to set breakpoints. From the command window, you
may identify the program memory location in the command

> B address
where address is any valid program memory address expression, such as
> B pm[0x001A]

which sets a breakpoint at location hexadecimal 001A. A running
simulation halts when this instruction is fetched, but before it is executed.

From the program memory (code) window, you can set a breakpoint at
the instruction marked by the cursor by keying *B. The command
window echoes this action with the command as above.

Break ranges cause execution to stop when a selected range of program
memory is accessed by the processor. An instruction fetch from any
address within the range will cause the break to occur. A break range is
set with the following command:

> BR range

5.74.2 Viewing Breaks

Instructions selected as breakpeints are marked with the B indicator in the
first column-of the program memory window. There are two ways to
recall the complete list of breakpoints, beyond what can be viewed
directly in the program memory window.

You may view a list of current breakpoints, break expressions, break [
changes, and break ranges in the command window by giving the B \

Simulator Functions 5

command with no arguments. The breaks are listed in the command
window. For example, if only breakpoints are defined you might see

> B

[20] pm[00lal
[21] pm[0032]
[22] pm[002c]

An alternative is to open the breakpoints window, which displays the list
of breakpoints, as shown in Figure 5.17. Note that in both the breakpoints
window and command window lists the numbering on the left reflects the
order in which breakpoints were declared. The numbers are assigned
from 20 to 39; thus you may have a total of 20 breakpoints defined at one

time.

Breakpoint humber

1 BREAK (HEX)
(_;;0] pm[0026] ——]

Breakpoint address

—— 2 PM
IA pm([00le]
IA pm[001f]
IA pm[0020]
IA pm[0021]
IA pm[0022]
IA pm[0023]
IA >pm[0024]
IA pm[0025]
IAB pm[0026]
IA pm[0027]

(TOFF, HEX)

m0 = 0x0001

m4 = 0x0001
10 = 0x3800
i4 = 0x0040

cntr = 0x000f

do BOOTO_CLEAR BUFFER
BOOTO_CLEAR BUFFER:dm
11 = Ox3fef

dm(il,m0) = 0x0000
dm(il,m0) = 0x0000

0 COMMAND

>
> b pm[0x0026]
>

“W Window commands

Figure 5.17 Breakpoints Window

“X# Go to window#

“B” denotes breakpoint at that address

~“Z Go to next window

5.7.4.3 Break Expressions & Changes

In addition to breakpoints, the Simulator can break on the state of
expressions. (Refer to the section “Simulator Expressions” in this chapter.)
It can break whenever a break expression is not equal to (logical) zero and
it can break whenever the value of an expression changes. The nature of
the expression itself is the same for both.

For example, you may wish to break execution whenever the expression

AX0 > 3

is true. As long as the AX0 register contains a value less than or equal to
three, the expression is false (logical zero). When AXO0 is loaded with a
larger value, however, the expression becomes true (logical non-zero).

Such a break expression is entered with the BE command in the command
window as

> BE AXO > 3

The BC (“break on change”) command, on the other hand, enters a break
expression and halts execution upon any change in the value of the
expression. An expression can be as simple as a single register, as in the
command

> BC AXO

which halts upon every change in the AX0 register, or it can be more
complex. All register names, address locations and constants may be used
with the full set of operators to create the expression.

The break expressions window shows the current list of break expressions
and break changes, along with their current value. It is opened like any
window. If you had executed both of the examples just above, the window
might appear as shown in Figure 5.18.

Numbering of break expressions in this window runs from 0 to 19, again
limiting the user to 20 expressions at one time.

A

3 BREAK EXP (DEC) ——

il

[0] be ax0 > 3 1
[1] bc ax0 = 4369 Current value of break expressions

r—— 0 COMMAND

BE AX0 > 3

BC AX0

VvV V V VvV

Window commands “X# Go to window# ~“Z Go to next window

Figure 5.18 Break Expressions Window

5.7.4.4 Deleting Breaks

There is a single command for deleting breakpoints, break expressions,
break changes, and break ranges. From the command window, enter

> BD address

where address is an address expression for a program memory location
currently selected as a breakpoint or break range.

For break expressions and changes, use the break numbers shown in the
break expressions window, as in

> BD 5

Another way to delete breakpoints is to use the AR control key sequence
in the program memory window; this is analogous to keying "B to set a
breakpoint. The cursor must be positioned at the breakpoint to be deleted
when "R is keyed.

5

Simulator Functions

5.7.5 Watchpoints & Watch Expressions

Breaks halt execution, while “watches” display a message but do not halt
execution. Watchpoints are memory locations; whenever they are read or
written a message and the location’s value are displayed in the command
window. A watchpoint can also be set over a range of addresses. A watch
expression is identical to a break change except that execution does not
halt.

5.7.5.1 Setting Watchpoints

The W command, given in the command window, identifies an address or
address range as a watchpoint. The general form is

> W address

where address is an address or address range specifier. For example, to set
a watchpoint on data memory location 0x003F, the command is

> w dm[0x3f]
A maximum of 25 watchpoints may be active simultaneously.

5.7.5.2 Selting Watch Expressions

The WE command, given in the command window, defines a watch
expression, which acts like a break change without halting execution. The
command form is

> WE expression

where expression is any valid expression. (Refer to the description of
“Simulator Expressions” in this chapter). For example, to watch the ALU
carry bit (AC) you would give the command

> we ac

After giving this command, any change in the AC bit is reported in the
command window. To watch the sum of the carry and overflow bits you
could give the command

> we ac + av

which would display a message whenever the sum of these bits changed.

A maximum of 25 watch expressions may be active simultaneously.

Simulator Functions 5

5.7.5.3 Listing Watchpoints and Watch Expressions

The W command, given in the command window with no arguments, lists
all watchpoints and watch expressions along with their assigned numbers.
You must know these numbers to delete them.

5.7.5.4 Deleting Watchpoints and Watch Expressions

The WD command, given in the command window, deletes the
watchpoint or watch expression whose number is given as the argument.
The general form is

> WD watchnum

where watchnum is a number identifying a current watchpoint or watch
expression. For example, the command

> wd 0
deletes watchpoint zero.

5.76 The ? Command and Expressions Window

The ? command is a general purpose debugging tool which evaluates any
valid expression. (Refer to the section “Simulator Expressions” in this
chapter). The current value of the specified expression is shown on the
command line when the ? command is given in the command window.
For example, if the AXO0 register contains the value 512 and data memory
location 55 holds the value 128, then the following entry:

> ? ax0 + dm[55]
returns this in the command window:
ax0 + dm[55] = 640

In this example, DMI[55] is evaluated to be the data contained at address
55 (128) rather than the address itself (55). This illustrates the difference in
how this type of specification is interpreted by the Simulator. If used in an
expression which must evaluate to a numerical value, DM[addr] denotes
the contents of the location. If listed where an address is expected in a
Simulator command, DM[addr] denotes the address itself.

The expressions window, which is opened in the normal manner, can be
used to display and evaluate expressions as other debugging actions are

— 2 EXP

(DEC)

Simulator Functions

performed. The ?+ command adds an expression to the window, while the
?— command deletes one. These commands take the following form:

> 2+ expression (add expression to expressions window)
> 2= ¢ (delete expression # from expressions window)
Expressions added to this window are numbered from 0 to 9; you may

have a total of 10 active at any time. Figure 5.19 gives an example of the
expressions window.

[0] ax0*100 = 436900 Current value of expressions

0 COMMAND

>

> ?+ ax0%100

>

W Window commands “X# Go to window# ~Z Go to next window |

5-46

Figure 5.19 Expressions Window

5.7.7 Execution History (Trace Window)

The trace window allows you to capture a history of processor activity
during program execution. You must set up tracing before running some
portion of code. Open the trace window and key *S. You are prompted for
the number of lines of code to record (trace). A “line” is required to record
one cycle of execution history. Enter any reasonable number (memory
limits on a PC may restrict this) and press Return. If you do not choose a
number of lines, the default value of 10 will be used.

You can now execute code with the S or G commands. As execution
proceeds the trace history shows the value of the PC, the instruction

executed, and any data bus activity. Once the specified number of cycles/
lines have been filled up, the oldest lines are deleted as new lines are
recorded.

Figure 5.20 shows a trace window. There are four fields of information
displayed for each instruction in the window. From left to right, these are:
program counter value, disassembled code (instructions) with address
labels, data memory read or write performed, and program memory data
read or write performed.

— 1 TRACE (HEX)

0000 jump BOOTO_ RESTARTER
00lc BOOTO RESTARTER:10 = 0x000f
001d 14 = 0x000f

001le m0 = 0x0001
001f m4 = 0x0001
0020 i0 = 0x3800

0021 i4 = 0x0040
0022 cntr = 0x000f
0023 do BOOTO CLEAR BUFFER until ce

>0024 BOOTO CLEAR BUFFER:dm(i0,m0) = Wr of 0000 at 0000
\
PC contents Instruction executed, Data bus activity

address labels

Figure 5.20 Trace Window

5.7.8 Execution Profiling (Profile Window)

The profile window and profiling commands allow you to analyze the
execution patterns of your program. You specify sections of code to be
monitored and the list of profiled ranges plus the execution profile itself is
displayed in the profile window. The form of the profile window is
similar to the ADSP-2101 Emulator.

The fundamental profiling information this window displays is the time
spent executing different ranges in your program. This information is
expressed in percentages. For any given time base (see below),
percentages are given for each address range you have identified and for
“other,” which is all other code outside the defined ranges.

5

5-48

Simulator Functions

The profiling activity uses three time bases: short term, long term and
cumulative. You choose the number of instruction (execution) cycles in the
short term and long term time bases; the cumulative total includes all
execution cycles since you last reset the profile count information. The
cycle history moves forward in time one cycle at a time. In other words,
any time base of, say, 10 cycles, is always based on the most recent 10
cycles.

5.7.8.1 Turning On Profiling

Profiling does not operate until it is enabled in the defaults window. Open
the defaults window and type a 1 into the profile enable field. (See the
discussion and illustration of the defaults window in the “Set-Up” portion
of this chapter.)

5.7.8.2 Setting A Profile Range

The PA command, given in the command window, adds or replaces a
range of code to the profile list. The ranges in the list are identified by
number. The general form of the command is

> PA range# address

where rangei# is a number identifying the range and address is an address
or range of addresses in program memory. For example, to define profile
range number one as the addresses of the interrupt vector table in the
ADSP-2101, the command would be

> pa 1 pm[0x0], pm[Oxlb]

You may also enter a range directly into the profile window. Simply
position the cursor at a line in the list and type in the addresses as they
appear in Figure 5.21.

The profile ranges are numbered from 1 to 22; you may define a total of 19
to add to the list.

In addition to the ranges you define, there are always three other items in
the profile list (see Figure 5.21): other, idle, and extra cycles. The “other”
line collects data on all code outside the defined range(s).“Idle” shows the
profile data for all processor IDLE instructions executed. “Extra cycles”
displays the profile data for any extra cycles executed due to memory wait
states or multi-cycle instructions.

Simulator Functions 5

[—— 1 PROFILE (DEC)

Short Term Count Long Term Count
STC 5 LTC 2

0% 25% 50% 75% 100% : LA [cum I
——————————————————— e e]
1) 00035 00051 |
2) 00052 00053 [|
3)

4) other -

5) idle | 0.0% 0.0%
6) extra cycle - 0.0% 0.0%
7)

0 COMMAND

> pa 1 pm[35], pm[51]
>
> pa 2 pm[52], pm[53]

“W Window commands *X# Go to window# ~2Z Go to next window |

Figure 5.21 Profile Window

5.7.8.3 Deleting Profile Ranges

The PD command, given in the command window, deletes a single profile
range by number. Its form is just

> PD range#

The range may also be removed from the list by deleting the addresses
directly in the profile window.

5-50

The PC command, “profile clear”, deletes all ranges and associated data. It
takes no arguments and its form is

> PC

5.7.8.4 Resetting Profiling Data

The PR command, given in the command window, clears all profiling data
but leaves the current definition of ranges undisturbed.

5.7.9 Setting Time Bases

The profiling operation captures information about the amount of time
spent executing the specified ranges of your program, and the amount of
time spent executing the rest of your program (the “other” data). The basic
mechanism for showing this information is a breakdown of the percent of
execution time spent in each profile range. Figure 5.21 shows a typical
profile window with two ranges defined.

The profiler expresses this information in two different counting periods
and a cumulative total. The total is always active. The rightmost column
labeled Cum shows the cumulative average: the percent time spent in
each range since you last reset the accumulated data. The area under the
percentage signs (0%, 25%, 50%, etc.) displays a simple histogram of the
same information.

5.7.9.1 Short Term Count (STC)

The smaller counting range is the short term count. This parameter defines
how many execution cycles to look back at, starting at the present point in
time. The PP (“set profile parameter”) command, given in the command
window, sets the number of cycles to include in the short term count. The
syntax of the PP command is

> PP STC num cycles

where STC identifies the short term cycle count and num_cycles is some
chosen number of cycles. For example, the command

> pp stc 10

sets the short term count to 10 cycles. This means that the short term
averages (seen in the profile window under the “STA ! column) reflect
the percent of execution time spent in each address range during the last
10 cycles, that is, the last short term count interval.

£ 3

I et

The short term count can be set directly in the profile window by
positioning the cursor next to the “STC” and typing in the desired value.
To move the cursor to top portion of the window, key a *T. (*T toggles
the cursor between the profile parameters and the profile range list.)

5.7.9.2 Long Term Count (LTC)

The other counting range is the long term count, which is a multiple of the
short term count. The profile parameter command also sets this value with
the form

> PP LTC num shortcounts

where LTC identifies the long term count and num_shortcounts is the
number of short term count intervals to include in the long term average.
To set LTC to 3, for example, you would give the command

> pp ltc 3

The long term average percentages are displayed under the column
heading “LTA #” in the profile window.

The long term count may also be set directly in the profile window by
positioning the cursor next to the “LTC” and typing in the desired value.
To move the cursor to top portion of the window, key a T. (*T toggles
the cursor between the profile parameters and the profile range list.)

Note again that the long term count is a multiple of short term counts. In
other words, a short term count of 10 cycles identifies the number of
cycles over which to produce the short term average percentages. A long
term count value of 3 identifies the number of (10-cycle) intervals over
which to produce the long term average percentages. Thus, in this
example, the short term average looks back at the last 10 cycles, while the
long term average looks back at the last 30 cycles (see Figure 5.22, on the
next page).

The profiling mechanism counts all cycles including cycles spent
executing the IDLE instruction and extra cycles required when the
processor must perform two off-chip memory fetches or when the
processor is executing wait states for slow memory access.

t = profile data
reset

unct

Execution Time
(cycles)

t = LTC * STC

COUNT

~%LoNG TERM
t = STC COUNT (#stc’s)

SHORT TERM
t=0 COUNT (cycles)

Figure 5.22 Short Term, Long Term and Cumulative Profiling Time Bases

5.8 EXITING & SAVING A SIMULATOR SESSION

You can quit the Simulator and, if you wish, save the state of the
simulation to continue working from the point you leave off. You can also
save selected ranges of memory as detailed earlier in this chapter in
“Inspecting A Memory Location.”

Note that the display configuration when you quit is written to the file
DD.WIN and is automatically loaded as the default display when the
Simulator is restarted. If you want a specific starting display each time the
Simulator is restarted (other than the last configuration saved), you must
use the —w switch with the filename of your preferred configuration when
invoking the Simulator.

5.8.1 Saving Simulation State

In addition to the D command, described under inspecting memory in this
chapter, the Z token, which represents the state of the Simulator, may be
written to a file or read from a file using the > and < operators as pipes.
For example, to write the current state of the Simulator to the file coffebrk,
the command is

> z >'coffebrk'

]

)

o

Simulator Function:

Note that the filename is enclosed in single quotation marks. Similarly, to
restore the state of the Simulator after rebooting, resetting or performing
any other operations, you would read it back with the command

> z <'coffebrk'

which restores the Simulator to the previous state.

5.8.1.1 WhatIs Saved

The following items are saved when the state of the Simulator is saved:

contents of all registers

contents of all memories

defaults as listed in the defaults window
symbols

breakpoints

5.8.1.2 WhatIs Not Saved

As of release 2.01X, the items listed below are not saved and must be
recreated when the saved state is restored.:

all general, break, and watch expressions

aliases not stored in a startup file

profile address ranges and data

file pointers to data files used to simulate SPORT and I/O port activity

5.8.2 Quitting The Simulator

Quitting (with or without saving anything) is very simple. From the
command window give the command

e o o o

> Q

A double-check window appears asking you to confirm. Keying *Q while
working in any window will quit the Simulator in the same fashion.

To bypass the double-check window, type the full command
> QUIT

and the Simulator exits without further interaction.

r Functio!

5.9 MISCELLANEOUS FEATURES

The Simulator has several useful capabilities that do not map directly into
the breakdown of functions. These capabilities are described here.

5.9.1 Executing Operating System Commands

You can temporarily suspend the Simulator and exit to the operating
system of your computer with the SH (“shell”) command. Because the
Simulator requires a large amount of memory, you may not be able to
execute any oiher programs from the operating system prompt on a PC.
You should be able to rename files, copy files and inspect directories with
no difficulty. When you are done, typing EXIT returns you to the
Simulator. No values in the simulation are changed by this operation.
For this command to work properly on the PC, your COMMAND.COM
(DOS) file must be in the current or top-level directory, or a PATH
statement must be defined leading to the directory in which it is
contained.

5.9.2 Executing ADSP-2101 Instructions Directly

In addition to the on-line assembly of instructions intended to patch a
program loaded in memory, you can enter and execute any ADSP-2101
instruction directly without loading it into program memory or otherwise
disturbing the contents of your program. This is accomplished with the V
command, given in the command window. The general form is

> V instruction

where instruction is any valid ADSP-2101 instruction, with or without a"
terminal semicolon. For example, to move the contents of register AY0 to
register AX0, you would enter

> v AX0 = AYO0;

5,10 SUMMARY OF COMMANDS & CONTEXTS

Table 5.4 below lists the keys and control key sequences which allow you
to navigate between different windows or within the active window.
These keystrokes can be used in any window. Table 5.5 lists all the
commands that are entered in the command window. Table 5.6 defines the
control key sequences used only in particular windows. Table 5.7 provides
a cross reference to show which of these control key sequences can be
used in which windows.

5

~

B

Multiple commands may be given on one line in the command window,
separated by semicolons, as in

> L 'filename' ; J symbol 'command' ; D address

"W display main menu of window configuration actions
ESC exit a menu without making a selection
NZ move to next (consecutively numbered) window
AX# (Return) move to window number #
("X (Return) or *X0 (Return) moves to command
window)
Arrow keys, scroll through text in a window
PgUp, PgDn

Table 5.4 Window Navigation Controls
A addr instr assemble instruction at address

B list breakpoints, break expressions, and
break change expressions

B addr set breakpoint at address

BC expr set break change expression

BD addr or number delete breakpoint, break range, break
change or break expression

BE expr set break expression

BR range set break for address range

CR chip reset with boot page 0 load

D addr or range [>'file'] dump (display) contents of memory

E addr or range expr enter value of expression into memory

Eaddr <'file' load memory from file

F range expr find value of expression in range

G [addr] start program execution

5 Simulator Functions

I int# min max

J symbol ‘command’
J

] >'file'

1D symbol

K window# addr

L file'
LR file

O addr [<'file'] [>'file']
O addr
P SPORT# [<'file'] [>'file']

PA range# addr, addr

PC

PD range#

PL range decimation

PP STC or LTC #cycles
PR

Q

QUIT

cause periodic interrupt
alias a command string
list aliases

dump aliases to file
delete alias

display address (constant or symbol only)
in window#

load program into memory

load boot PROM image file into boot
memory

openl/O portataddr and assign /O files
close I/O port at addr

open serial port# 0 or 1 and assign I/0
files

add or replace an address range in the
profile window

clear all profile ranges and data

delete range# in profile window

plot memory

set profile parameter

reset profile data; retain defined ranges

quit Simulator, with verification from
user

quit Simulator, without user verification

[

R reg expr
RE
RUNFAST

S [number]
SH
T window#

U addr or range or reg

V instr
W addr or range
w

WD number
WE expr

X symbol
Y [>'file'] [<'file']

Z [>'file'] [<'file']
? expr
2+ expr

?— number

set register equal to value of expression

reset chip without boot page load

start program execution, no halt on key
hit

single step program execution
temporarily exit to operating system
toggle tracking on/off in window#

undefine contents of an address, range, or
register

assemble and execute instruction
set watch point

list all watch points and watch
expressions

delete watch point# or watch expression#
define watch expression

give address of symbol

save/restore display configuration (see
“Saving A Rearranged Screen” in Chapter
6)

save/restore Simulator state

evaluate expression

add expression to expressions window

delete expression# from expressions
window

Table 5.5 Command Window Commands

5 Simulator Functions

B

R

D
U
Y

"E

"G
S
AT
"Q

set breakpoint at cursor location in program memory window

reset (delete) breakpoint at cursor location in program memory
window

delete field in active window
undelete (restore) field in active window
move field in active window

toggle numeric display of (active) window contents between HEX
and DEC

go to (prompted for address to be displayed)
choose how many lines (instructions) to trace in trace window
toggle tracking on/off in active window*

quit Simulator

Table 5.6 Window-Specific Control Key Sequences

* 7T toggles between display of primary and secondary register banks in
the register window. ~T moves the cursor between profile parameters and
profile ranges in the profile window. When the cursor is positioned at the
profile parameters, the parameters (STC and LTC) may be set by typing in
the desired values. The PP command is echoed in the command window.

T

Control Keys

/\B /\R /\D /\U /\Y /\E N

9

AS | AT

A

@)

data mem

program mem vV | Vv

program mem data

ANANAN

boot code

ANAVE VA NAN

W | boot data

cross reference

1 | register

flag

ANEEEA NI NEE NI AN

stack

d | status register

1/0 status

o | SPORT register

AN

SPORT status

SIS SINISR
ANEEASERANA VA NAN
ANEERNEERA VA VA VA N

W | control register

AV

break expressions

breakpoints

expressions

profile

/*

trace

ANA VAN

default

ANA YA VA YA VA VA NI N0 VA NA VA VA VA NA VA VA VA SR NAN

ANANEEA VAN

help

Table 5.7 Window to Control Key Sequence Cross Reference

* AT toggles between display of primary and secondary register banks in
the register window. AT moves the cursor between profile parameters and
profile ranges in the profile window. When the cursor is positioned at the
profile parameters, the parameters (STC and LTC) may be set by typing in
the desired values. The PP command is echoed in the command window.

Simulator Functions

Simulator Configurations

6.1 INTRODUCTION

The previous chapter describes the functions of the Simulator. This
chapter describes how to customize the “look and feel” of the
Simulator for your everyday needs.

With the release of version 2.0X (and after) the Simulator provides
a customizable user interface. You can change and store the
following items:

The location of individual fields within windows
The location and organization of windows on the screen
The names used to invoke commands and the required order of
arguments
* Any sequence of commands (including aliased commands)

The best way to tailor the Simulator to your requirements is to
begin using it and build up custom screens and commands as you
go. At some point, perhaps as soon as a few hours after you begin,
you can organize all the custom screens and commands into a
clean set of external files. Thereafter, you can invoke the Simulator
with the appropriate startup file identified and the Simulator
appears automatically in your desired configuration.

The Simulator uses two types of external configuration files:
displays and scripts. Display files (file extension .WIN) store the
look and layout of a particular set of windows, one to a file. Each
display can be stored and then recalled, in the desired
configuration, with a simple command. Scripts (default filename is
STARTUP) are text files of command window inputs typically
storing command aliases you create.

As shipped to you, the Simulator package includes a sample
STARTUP file (named EXAMPLE) and a number of sample
display windows ((WIN files). Rename EXAMPLE to STARTUP to
automatically invoke it or name it explicitly (with the —s switch)
when you start the Simulator.

6.2 CONFIGURING SCREENS & WINDOWS

The tools for configuring an individual window are briefly
described in the previous chapter. This section spells them out in
greater detail with an example.

(Note: * denotes the conirol, or CNTL, key.)

6.2.1 Opening Windows

Windows are opened by keying "W to display the menu shown in
Figure 6.1 and selecting OPEN by typing the letter “O” or pressing
Return (since OPEN is the default selection on this menu).

Cursor
k®pen |
Move
Size —— Window Commands Menu (open with control-W)
Close
Hide
/ Command Window (Aiways Open)
0 COMMAND
>
>
>
>
>
“W Window commands *X# Go to window# ~“Z Go to next window

6-2

\ Informational Display

Figure 6.1 Main Menu For Configuring Windows

Ty

Doing this displays the window selection submenu shown in
Figure 6.2. Select the desired window; our example uses the
register window. You select the register window by moving the
cursor down with the arrow keys and pressing Return or by
keying the menu letter (“D”).

Cursor

\

-y

program memory
data memory

program memory data
stack

cross reference
flag

break points Window choices
break expression
expression

sport register
sport status
status register
I/0 status
control register
help

trace

profile

defaults

NEXT PAGE

HOWOYWOZRERGHIOEWHEHDOD P

W Window commands *X# Go to window# ~“Z Go to next window

Figure 6.2 Window Selection Submenu (with Register Window selected)

6-3

ax0
axl
ayO0
ayl

mx0
mx1
my 0
myl

si
se
sb

cycle 00000000

REG

uuuu
uuuu
uuuu
uuuu

uuuu
uuuu
uuuu
uuuu

uuuu
uu
uu

S

ulator Configurations

Figure 6.3 shows the default register window layout. This is the
starting point for rearranging the fields of this window.

(REG_PRI, HEX)

ar uuuu
af uuuu

mr0 uuuu
mrl uuuu
mr2 uu

mf uuuu

sr0 uuuu
srl uuuu

i0
i1
i2
i3

i4
i5
i6
i7

uuuu
uuuu
uuuu
uuuu

1un
waua

uuuu

_uuuu

uuuu

0000

irg2 00000000

cntr

uuuu

10
11
12
13

14
15
16
17

dm_addr 0000

uuuu
uuuu
uuuu
uuuu

uuuu
uuuu
uuuu
uuuu

astat
mstat
sstat

ireq
imask
icntl

px uu

000
00
uu

pm_addr 0000

Figure 6.3 Default Register Window Layout

6.2.2 Selecting, Deleting & Rearranging Fields In A Window
Note that only the windows displaying individual fields, like the
register window, can be rearranged. The internal layout of
memory windows and informational windows (like the

breakpoints window) cannot be altered.

In the program example used in this manual there are some

registers in the processor which are never used. For example, only

the SI register in the Shifter is used (as a temporary holding
register for signal data) and none of the ALU registers are used.
Likewise, only some of the DAG registers are used. For the
purposes of illustration we are going to delete unused registers
from our display and rearrange the remaining registers for
compactness.

The first step is to make the register window the active window, if
it is not already. Key *Z until it becomes the active window or key
X and the number of the register window followed by Return.
The cursor appears in the active window.

Move the cursor with the arrow keys until it is over the SE field,
one of the fields to be deleted. Key "D to delete this field and it
disappears from the display. Now move the cursor and delete the
SB, SRO, and SR1 registers in the same way. You can go on to
delete all of the ALU registers and the unneeded DAG registers: 12,
I3 and 15-7, M1-3 and Mb5-7, and L1-3 and L5-7. After these
deletions, the register window looks like Figure 6.4.

—— 1 REG (REG_PRI, HEX)

i0 uuuu m0 uuuu 10 uuuu
il uuuu

mx0 uuuu mr0 uuuu i4 uuuu m4 uuuu 14 uuuu
mxl uuuu mrl uuuu

myO uuuu mr2 uu

myl uuuu mf uuuu

si uuuu pc 0000 cntr uuuu

cycle 00000000 irg2 00000000 dm_addr 0000

astat
mstat
sstat

ireqg
imask
icntl

px uu

00
00
55

000
00
55

pm_addr 0000

Figure 6.4 Example Register Window with some registers deleted

If you accidentally delete a register, it can easily be restored
(“undeleted”). Move the cursor to a blank spot in the window and
key AU. A menu drops down that lists all the deleted registers.
Move the cursor along the menu and press Return to restore any
register. Press ESC to abort the operation. Note that the contents of
the deleted registers are also displayed. If a deleted register has a
value other than undefined, the value is visible in this menu.

Now we can rearrange our pruned-down set of registers for a
more compact display. Move the cursor to the MX0 register field.
To move any field you select it for moving with Y, move it using
the arrow keys, and deselect it with another Y or Return. Move
the MXO0 field up to the top line of the window this way.

Repeating this procedure we could rearrange all the fields of this
register window example until the entire window looked like

Figure 6.5.

— 1 REG (REG_PRI, HEX)
mx0 uuuu mr0 uuuu i0 uuuu m0 uuuu 10 uuuu astat 00
mxl uuuu nrl uuuu i1 uuuu mstat 00
my0 uuuu mr2 uu i4 uuuu m4 uuuu 14 uuuu sstat 55
myl uuuu mf uuuu
si uuuu ireq 000 imask 00 icntl uu pxXx uu
cycle 00000000 pc 0000 cntr uuuu pm_addr 0000
irg2 00000000 dm_addr 0000

Figure 6.5 Example Register Window with registers rearranged

6-6

T

Ty

Now you can resize the window outline, bringing up the bottom
edge to make that space on the screen available for other windows.
Key "W to display the main menu and select SIZE from it. As you
press the Up arrow, the lower edge of the window moves up on
the screen. Press Return to end the sizing operation. The final
version of this window might look like Figure 6.6.

— 1 REG (REG_PRI, HEX)
mx0 uuuu mr0 uuuu i0 uuuu m0 uuuu 10 uuuu astat 00
mxl uuuu mrl uuuu i1 uuuu mstat 00
myO uuuu mr2 uu i4 uuuu m4 uuuu 14 uuuu sstat 55
myl uuuu mf uuuu
si uuuu ireq 000 imask 00 icntl uu px uu
cycle 00000000 pc 0000 cntr uuuu pm_addr 0000
irg2 00000000 dm_addr 0000

Figure 6.6 Final Register Window Arrangement

6.2.3 Saving A Rearranged Screen

If you change the display without saving your custom register
window, all the work of creating it is lost. To save a new screen
configuration with a desired set of windows opened, resized, and
internally reconfigured, you must store the screen in a file. The
Simulator token Y stands for the display and the greater than and
less than symbols are directional pipes. The display files are given
the default file extension .WIN. To save the current display (such
as our example in Figure 6.6) enter this command in the command
window:

> y >'myscreen'

This stores the current display configuration in the file
MYSCREEN.WIN in the default directory.

6-8

You may recall this or any other display configuration with the
command

> y <'filename'
where filename is the main filename of a screen/windows file.

Note that the .WIN file stores the complete display, not just the
contents of one window. You must create the complete
constellation of windows you want and then store the entire
display. Loading the Simulator display from a .WIN file
overwrites the complete screen, not just part of it.

When you quit the Simulator, the last screen configuration is saved
to the file DD.WIN, which becomes the default display the next
time you startup. If this display is the only one you want, there is
no need to use the -w window switch or the Y command. If several
different custom screens are desired, then you should save each
one and use the —w switch to load the startup screen and the Y
command to recall others.

6.3 COMMAND ALIASES

A command alias is a character string (plus any required
arguments) which replaces one of the Simulator’s native
commands. The] command creates the alias. The syntax of this
command is

> j alias 'command'
where alias is a symbol which will subsequently stand for the
Simulator command enclosed in single quotation marks.

Arguments are passed using a dollar sign token as in $1, $2, etc.

For example, to create a special command to set the PC, you could
type:

> j setpc 'r pc $1'
Then, to set the PC to point at address four, you could enter:

> setpc 0x4

£

Note that when you enter and execute this aliased command, the
command window echoes both what you type and then the
“unaliased” version of the command. This feature can be used to
double-check your alias and to correct errors in arguments.

You can create a command that calls up a previously saved display
configuration. If the file MYSCREEN.WIN contains a customized
arrangement of the register, program memory, program memory
data, and data memory windows, along with a small command
window, it can be recalled by giving the command:

> y <'myscreen'

This may be inconvenient to type each time you want this display,
especially because the “<” symbol requires the Shift key on most
keyboards. You can alias this command with the new command
string “VIEW” by entering the following:

> j view 'y <"myscreen"'

Note that the filename, myscreen, is enclosed with double quotes;
nested quotation marks must be double, inside single.

6.3.1 Managing Aliased Commands

The] command, given with no arguments, lists all currently
defined aliases in the command window. This is useful for
managing command aliases as they become more numerous.
Alijases are listed in the command window in the form
symbol = command

where symbol is the name you assigned as the alias and command is
the actual command executed by the alias.

The JD command deletes an alias. The form of this command is
> JD symbol

where symbol is a currently defined alias name. The alias is deleted
from the list.

6-9

6-10

You may also pipe the list of currently defined aliases to a file for
reference and editing with the command:

> J >'filename'

The contents of the text file created by this operation are actual J
commands, like those executed to create the alias, such as:

J setpc 'r pc $1°
7 view 'y <"myscreen"'

This file can be directly read back into the command window,
using the redirection operator, as in

> <'filename'

which takes the contents of the named file as keyboard input to the
command window until the end of the file is reached. This file can
be also incorporated in a startup file, as described in the next
section.

6.4 THE STARTUP FILE

The Simulator is a highly flexible tool. By designing custom
display configurations and aliasing both built-in Simulator
commands and additional Simulator commands you can create the
debugging environment that best serves your purposes.

Embedding this all in the STARTUP file allows you to combine
initialization, housekeeping, customized displays, and commands
into one reconfigured Simulator.

The sample startup file EXAMPLE contains a large set of aliased
commands. Examine the contents of this file to determine if you
want to use any or all of the commands. You may choose to import
all of the file’s contents into the Simulator; to do this, rename
EXAMPLE to STARTUP to automatically invoke it or name it
explicitly (with the —s switch) when you start the Simulator.

-

Here are some lines out of a possible STARTUP file with a
comment about each function performed. (Comments are not
permitted in the actual STARTUP file.)

Line in STARTUP

j reg 'y <"wreg"'

J help 'y <"whelp"'

J setdm 'e dm[$2]/$3 S$1°

1 'main’

p 0 >'serout' <'serin'

Function

The new command string REG now
calls up the predefined display stored in
the file WREG.WIN.

The new command string HELP now
calls up the predefined display stored in
the file WHELP.WIN.

The new command SETDM (similar to
earlier releases of the ADSP-2100
Simulator) accepts arguments in a
different order. Instead of

e dm[start]/length value

you now enter:

setdm value start length

This is an initialization command,
loading your default program
(MAIN.EXE) and symbol table
(MAIN.SYM) files.

This is another initialization command,

opening data files used to simulate/
capture the I/O of serial port zero.

There is almost no limit to what can be accomplished via a
STARTUP batch file. You can create specialized keyboard scripts
files that actually execute and test your programs. The ADSP-2101
Simulator strives to deliver a tool-rich environment which can be
configured to support many different requirements.

6-11

-

)

C Compiler

741 ADSP-210X C LANGUAGE SYSTEM

The ADSP-210X C language system allows programmers familiar with the
C programming language to write and compile C programs to be run on
the ADSP-2100 family of processors. C programs can be written, compiled
and executed without extensive knowledge of the ADSP-2101 architecture.
However, because of the unique architecture of the ADSP-2100 family, C
programmers must understand various limitations detailed in this chapter
in order to interface C to ADSP-2101 code and to optimize the output of
the C Compiler. Nevertheless, the ability to program in C means that
working ADSP-2101 systems can be created with fewer development
resources. The C Compiler supports inline assembly code, conditional
compilation, include files, and conforms to the draft ANSI standard except
as noted in this chapter. Differences from the standard are summarized in
Appendix D.

The ADSP-210X C language system consists of two primary modules, the
preprocessor and the Compiler. The preprocessor reads directives
beginning with the pound sign (#) and takes the actions necessary to
resolve them. The simplest example is the #include directive. The
preprocessor opens and inserts the contents of the requested include files,
removing the #include directive from its output file.

The Compiler reads the output of the preprocessor and produces ADSP-
2101 source code, as shown in Figure 7.1, on the next page. This source
code is then assembled with the ADSP-2101 Assembler and is later linked
with the ADSP-2101 Linker. (The Linker is not automatically invoked.)
The ADSP-210X C language system must be used with Cross-Software
Modules of Release 2.0 or after. Errors will occur if you try to assemble the
output of the C Compiler with previous releases of the Assembler.

Include File(s)

C Source Code File
(.c)

C Preprocessor

if —p switch
used, bypass
preprocessor

(Normally deleted)

C COMPILER

(Normally deleted)

ASSEMBLER I

The Assembler List file (.LST) will
contain C source in comment lines
if an interlist merge file was requested.

Figure 7.1 C Compiler I/O

7.1.1 README File

The C Compiler is accompanied by a README file on the delivery media.
You should consult this file for supplemental information about the files
supplied, known bugs and other recent information for use and
installation.

71.2 C & The ANSI Standard

At the time of this publication, there is an ANSI draft standard, X3J11,
under consideration for the C programming language. The C language
system conforms to the ANSI draft standard except as noted explicitly in
this manual. Appendix D summarizes all exceptions. Any references to
“standard C” are references to this draft standard. You may request a
copy of the ANSI draft standard from ANSI. See Appendix D for the
address.

This chapter is not a description of or reference document for the C
programming language. For additional information about C you may
want to consult the two books listed below. There are many other books
available on the subject as well.

Harbison and Steele, C: A Reference Manual. Prentice-Hall, 1987.
Kernighan and Ritchie, The C Programming Language. Prentice-Hall, 1978.

7.1.3 Upper and Lower Case Usage

The ADSP-2101 Assembler and its source code is traditionally case-
insensitive: upper and lower case versions of names and reserved words
are treated identically. The C language, however, as practiced and as
defined in the draft standard, is a case-sensitive environment. A
lowercase identifier is not the same as an uppercase identifier. The
Assembler’s —c switch toggles the Assembler’s interpretation of upper and
lower case symbols. The default is case-insensitive, like previous versions
of the Assembler. The Assembler must be made case-sensitive (with the
—c switch) when assembling C-generated programs.

This must be done in order to link together code modules originally
written in C with modules written in assembly language.

7.2 COMPILING

The C Compiler processes standard ASCII text files only. Do not use
editors that produce files with special characters or formatting commands.

7 C Compiler

7.21 Filename Usage

The C language system may create several files. In the default operation,
the output name is based on the main name of your input file. This can be
changed when the Compiler is invoked (see below). The usage of these
files is shown in Figure 7.1 at the beginning of the chapter; the naming
conventions are summarized here.

Input C source filename: Compiler looks for:

filename filename.c

filename.c filename.c

filename.ext filename.ext (exactly as given)

File Module producing it Extension appended
preprocessed C source* C preprocessor .p0

ADSP-2101 source*t C Compiler dsp

List filet ADSP-2101 Assembler .Ist

*

Normally deleted by C Compiler, can be preserved with switch
t Contains C source in listing if requested, otherwise standard listing

7.22 Invoking The C Compiler

The Compiler is invoked by entering the name of the executable Compiler
file with the name of your source file and any desired switches as
arguments. The brackets below indicate that switches and outfile are
optional.

cc2101 infile [-switch ...] [outfile]
Typically, all switches can be omitted:
cc2101 test.c

The output files are normally given the same file name as the input file. By
giving a second file name when the Compiler is invoked (shown above as
outfile) the output file(s) use this name, instead of the input file name.
Switches may come anywhere after “cc2101.”

If you invoke the Compiler with no arguments at all, it displays a brief
summary of the switches as explained below.

There be any number of switches from the group shown in Table 7.1.
Switches that are not self-explanatory are detailed in the following
sections. Note that the Compiler can generate a ROMable system.

[——]

Switch
-a

—abs=#

—b#[#...]

—crom
—Duvar[=value]
—e

—gpm

—I=path
-lpm

—Irom

—pmstack
-w
-0

-1

Result
Do not invoke Assembler

Specifies absolute memory location

Specifies boot page(s) destination

Code placed in ROM
Define a variable name for macros
Call FP emulation routines

Force all globals into PM

Specifies search path for include
String literals & switch tables in PM
String literals & switch tables in ROM

Produce a merged listing file and
request Assembler .LST file

Do not invoke preprocessor
Invoke preprocessor only

Stack in program memory (PM)
Suppress warning messages
Save preprocessor output file

Save Compiler output .DSP file

Table 7.1 Compiler Switches

Default
Assembler invoked

Location determined by Linker

No boot page information generated in
assembly module

Code in RAM
No such definition
Inline code

Data memory (DM), or as specified in
initial declaration statement

Current directory & ADII path
Placed in DM
String literals in RAM

No merged listing file created

Preprocessor invoked
Compiler also invoked
Stack in DM

Display warning messages
Delete this file

Delete this file

7-6

7.2.2.1 -a Switch

The C Compiler normally invokes the Assembler directly. This switch
cancels that invocation. When the C Compiler does call the Assembler, it
uses a specific set of Assembler switches (listed below). If you are going to
run the Assembler manually, it is important to use the exact same
switches. A complete list of Assembler switches is shown in Chapter 3 of
this manual. Here are the Assembler switches used by the C Compiler:

Assembler switch Meaning

—c Forces the Assembler to be case sensitive; always
set by Compiler.

-5 No semantics checking on parallel instructions as

described below. This switch is always set by the C
Compiler, and must be manually set if you later
attempt to assemble code generated by the C
Compiler.

-1 Assembler deletes the assembly source code .DSP
file (unless the Compiler’s —1 switch is set).

The semantics checking of parallel instructions must always be relaxed.
Certain of the emulation routines use parallel instruction forms that are
flagged as semantically incorrect by earlier versions of the Assembler. See
the discussion under “Multifunction Instructions” in the Instruction Set
Reference chapter of this manual.

7.2.2.2 -abs =# Switch

This switch assigns a C-style constant to be used as an absolute memory
location for module placement in program memory.

7.2.2.3 -bi[4..] Switch

This switch results in assembly code declaring the code module’s boot
page(s) destination. The information will be used by the Linker to create
boot page images.

Multiple boot pages can be specified by adding on numbers. For example,
to specify a destination of boot page zero, the switch would be

¢c2101 infile -b0

=

—

|

I

1

]

and to specify destinations of boot pages zero, one, and two for the
resulting module, the switch would look like this:

cc2101 infile -b012
7.2.24 -Dvariable [=value] Switch

The —Duariable]=value] switch allows you to define a variable name for the
preprocessor to use (such as in conditional compilation). You may
optionally assign it a value.

7.2.2.5 -e Switch

Alibrary of basic floating-point emulation routines is provided with the
Compiler. The default is to compile these routines by inserting the ADSP-
2101 source from the library directly into the output of the Compiler. This
switch causes the Compiler to generate a CALL to these routines, which
then terminate with a RTS (Return from Subroutine).

Inline code results in a larger program while calling subroutines requires
some additional overhead and results in somewhat lower performance.
Note, however, that some routines are so large (e.g. floating-point
division) that they are never placed inline, regardless of this switch.

7.2.2.6 -gpm Switch

This switch forces all globals into program memory. It overrides any
storage classes modifiers used in the declaration of globals.

7.2.2.7 -l = path Switch

This switch provides an additional way to specify a search path for
include files (in addition to the ADII variable). The directories specified by
-1 are searched before those specified by ADIL

7.22.8 -lpm & -Irom Switches

These switches control the placement of string literals and the tables
created for and used by the “switch” and “fastswitch” statements.
Normally, these are placed in data memory, assumed to be RAM. You can
switch either of these to store string literals and switch tables in program
memory and/or in ROM.

7.2.2.9 -m Switch

For debugging and learning purposes, the Compiler produces a merged
listing file (in the .DSP file) when this switch is used. In this file each C

7

C Compiler

source statement appears as a comment followed directly by the ADSP-
2101 source it generates. An example fragment of a merged listing file is
shown below. If the -m switch is used, the .DSP file (if not deleted)
contains these comments and the Assembler passes them through, as it
does any comments, into the Assembler output .LST file (which is
generated by the Compiler’s using the Assembler -1 switch). For example:

! 1=3; /* C source line*/
si=3; /* ADSP-2101 source line*/
dm(i)=si; /* ADSP-2101 source line*/

og=k+1; /* C source line*/
ax0=dm(k_); /* ADSP-2101 source line*/
ay0=1; /* ADSP-2101 source line*/
ar=ax0+ay0; /* ADSP-2101 source line*/
dm(j_)=ar; /* ADSP-2101 source line*/

7.2.2.10 -pmstack Switch
This controls the placement of the stack created for and used by the C
environment. If the stack is in program memory, you must invoke the
Linker with its —-pmstack switch. The Linker switch is discussed in the
Linker Chapter, Chapter 4.

Please refer to the discussion later in this chapter about the stack
implementation for a complete discussion of the tradeoffs involved in
stack location.

7.2.2.11 -0 & -1 Switches

These switches, which use the numerals zero and one, prevent the

deletion of intermediate files produced by the preprocessor and Compiler.

This may be useful for debugging.

The -0 switch results in the file filename.p0 being left in place by the
preprocessor.

The -1 switch results in the file filename.dsp being left in place by the
Compiler. Files with the .DSP extension are ADSP-2101 source code for
input to the Assembler. You may wish to inspect this file before
assembling it. If you intend to optimize the output of the C Compiler, you
must have this file.

723 Preprocessor Commands

The C preprocessor supports the complete ANSI draft standard set of
options. Two directives with implementation-specific aspects are
described here.

/Y

f—

7.2.3.1 #pragma Directive

The #pragma directive is used in the C system. This is an implementation-
dependent directive which is used in our implementation for passing
inline assembly code. Inline code may be necessary for sections of your
program that require features not directly supported in C, such as
interrupt handling, the use of circular buffers, or optimization of certain
computations. This directive must be used as shown below:

#pragma ADSP2100 (Toggles on/ off processing of inline code)

For a complete example, see the section “Assembly Language Interface” in
this chapter. Here is a simple example:

int someval = 8;

foo ()

{

#pragma ADSP2100

SE = DM(someval); (ADSP-2101 assembly code)
#pragma ADSP2100

}

The preprocessor simply passes unchanged the text between the two
directives on to the Compiler. The Compiler, in turn, removes the
directive lines and passes the source code directly into its output file with
no checking. The preprocessor need not be invoked to use the #pragma
directive.

This example also shows the ADSP-2101 source code naming convention
used by the C Compiler. An identifier used in C source appears in ADSP-
2101 source with an underscore appended: someval becomes someval _.

7.2.3.2 #include Directive

Files may also be included by specifying a pathname when the Compiler
is invoked, using the I=pathname switch.

The include function operates just as in other C environments. The search
path for the files to include can be set using the ADII environment
variable (which is a function of your computer’s operating system, not the
C Compiler). The Compiler first searches in the current directory; if the
files cannot be located there, the path specified by ADII is searched. (For
include directives using the form filename, the current directory is not
searched.)

7-9

7-10

Compiler

To define the ADII environment variable, execute a statement similar to
the following examples, substituting the actual pathnames for your
system where the dummy names are shown in italics below. The
semicolon separates individual search paths. The final slash must be
present. Do not include extra spaces.

IBM-PC Example:
SET ADII=\root\subdir\subdir\;\root \nextsubdir\nextsubdir\;

Unix (Sun) Example:
setenv ADII “/root/subdir /INCLUDE/;/root/nextsub/INCLUDE/;”

The maximum number of directories that can be specified with ADII is
twenty. If ADII has not been defined in the system environment, the
search terminates immediately after searching the current directory.

7.24 Linker Requirements

The Linker has a number of features controlled by command line switches

given when the Linker is invoked. Complete information is given in
Chapter 4 of this manual. Here we specify only the Linker switches that
must be used with modules generated via the C Compiler.

The Linker —c switch must be used, and causes two things to happen.
First, the Linker creates the artificial symbol

_top of ram (fourleading underscores)

which is assigned the value of the highest available address in data
memory (or program memory, see the discussion of the -pmstack switch

below). Second, the Linker searches for and links in the C run time header,

which is an assembly language file (filename run_hdr) provided with the
Cross-Software System. The ~~ top of ram symbol is used by the
run time header to locate and initialize the stack.

The environment variable ADIRTH must be equated to a pathname
identifying the directory which contains the run time header. This path is
searched by the Linker; the run time header must be located and linked
because it is used when running compiled C code. The pathname is a
function of your operating system, and is determined by where you store
the run_hdr file.

The Linker —-pmstack switch, used in conjunction with the —c switch,
forcesthe ~ top of ram symbolinto program memory. So, if you

=

f

.

-

-

[—"

use the —pmstack switch with the C Compiler, you must use the —-pmstack
switch with the Linker as well.

7.25 Run Time Header

The C system includes the source file, run_hdr.dsp, and the assembled
module, run_hdr.obj. You must link this object file with your other
modules to create a working system. (Refer to the previous section
“Linker Requirements.”)

The run time header sets up the registers used to control the stack and
calls the main routine in your program. It is loaded at absolute address
zero and includes interrupt service routine calls. You should examine the
file for detailed information about what it does. This routine may be
altered as needed.

73 RUN TIME MODEL

The C language run time model is a stack-oriented machine, using the
stack for parameter passing and local and temporary storage. The ADSP-
2101 is a dual memory processor, with two data address generators
(DAGs). DAG2 is used for stack addressing because it can address both
program and data memory. DAG2 includes the length (L), index (I) and
modify (M) registers four through seven, e.g. 14-17. Specific register usage
is given below.

You need to understand how the C Compiler maps C onto the ADSP-2101
architecture in order to create assembly language routines that interface to
C programs.

The stack may be located in either program or data memory space.
Because of certain constraints in the ADSP-2100 family architecture,
locating the stack in data memory is usually more efficient. See the
section on “Programming Hints” below.

7.3.1 Stack Implementation

The stack is implemented as a 16-bit wide push down structure, growing
from high memory. There is a special variable identifying the top of
memory which is evaluated by the Linker. (Remember, you must use
Linker release 2.0 or later with the C Compiler.)

The default is to locate the stack in data memory unless program memory
is specified with a Compiler switch (-pmstack). The Linker extracts the
top of memory address from the .ACH Architecture Description file
created by the System Builder module of the Cross-Software.

7-11

The stack is managed by a frame pointer and a stack pointer. Figure 7.2
shows the configuration of the stack during a typical call. The discussion
of reserved registers, below, describes the use of the stack and frame
pointer registers. Because the registers in the DAGs are 14-bit registers, the
largest object size that can be put on the stack is 8K words.

High Memory righ Niemory
pt pt
po p0
frame pointer (md) ——»{ previous frame pointer previous frame pointer
local0 local0
locali localt
local2 local2
stack pointer (14) p0'
frame pointer (m4) ——{ previous' frame pointer
local0’

7-12

stack pointer (14)

A

Figure 7.2 Stack Implementation in ADSP-2101 Memory Space

7.3.2 Register Use Limits

There are two types of register use limits. One group of registers is used
by any code created by the C Compiler and must be restored exactly by
any assembly language operations. These are reserved/system registers as
listed below in Table 7.2. The second group consists of registers that might
be used by C code to store data values. These restricted/data registers may
be used by assembly language routines and may be restored selectively,
based on a careful study of the register usage in the calling or context code
module. They are listed in Table 7.3.

=

e

Reserved/system register Use

M4 frame pointer

M5, M1 must contain +1

M7, M3 must contain -1

M2 must be zero

LO-L7 must be zero; circular buffers not
supported in C.

14 stack pointer

M6, MO, SI, SE used as scratchpad registers

Table 7.2 Reserved/System Registers

Restricted/data registers Use

AYO0, AY1, AR data storage
MX0, MX1, MY0, MY1 data storage
MRO, MR1 data storage
SRO, SR1 data storage
10-13, 15, 17 data storage

Table 7.3 Restricted/Data Registers

The C language does not support the concept of circular buffers. If your
inline code or assembly language routine uses circular buffers you must
set them up, use them, and reset the L registers to zero before returning to

C.

In general, you must save and restore any registers from either group if
you use that register. In practice, you must save and restore any register
from the reserved/system group and you may determine (by examining a
merged listing file) which registers from the restricted /data group are
used by earlier routines.

DAG register usage in the code generated by C programs is quite different
from the ADSP-2101 source code environment. This is because all I
registers are automatically post-modified by the M register with which
they are used. In C-generated code, M4 always contains the current frame
pointer value and 14 contains the stack pointer value.

Because the I registers are post-modified, an I register is not used as the
frame pointer. Instead, M4 is used. Available I registers (I5-17) are set up
with an offset value from the frame pointer to access parameters and local
variables on the stack. Consequently, the frame pointer register usage is
virtually the opposite of the standard ADSP-2101 use. The M4 register

7-14

contains an address value and the Ix register contains the offset or modify
value. This allows the M4 value to remain unchanged by the built-in post-
modify operation.

Stack pointer maintenance uses I and M registers in a more conventional
style. I4 always points to the next available location on the stack, again due
to the post-modify behavior of the ADSP-2101 DAGs. M5 is used
exclusively to increment the stack pointer by one, which is equivalent to
popping one value (the stack grows down from high memory). M7 is
used to decrement the stack pointer address, equivalent to pushing.

M6 is used in a variety of situations, primarily in conjunction with
popping muitipie locations off the stack. If, for example, there were ten
local variables on the stack to be popped upon return, the M6 register
would be loaded with the value ten and paired with the 14 register to
modify it by this amount in a single instruction.

7.3.3 Interrupts

Interrupts are not directly supported in the C environment. They

must be handled via the #pragma ADSP2100 directive and hand coded.
The run time header contains a default definition (just a return from
interrupt, RTI, instruction) which you may change to conform to your
interrupt structure; for example, calling a C function.

7.34 Data Types

The ADSP-2101 is a 16-bit machine with provisions for certain 32-bit
operations. The arithmetic types supported directly are listed below.
Note that fract is not a standard C type. All other data types are mapped
onto these types.

Name Description

int 16-bit twos complement value
long int 32-bit twos complement value
unsigned int 16-bit unsigned value

unsigned long int 32-bit unsigned value

fract 16-bit fractional value (1.15 format)
float 32-bit real

Table 7.4 ADSP-2101 C Compiler Arithmetic Types
The ADSP-2101 fractional type is described in the ADSP-2101 User’s

Manual. Briefly, it is a fixed point number with 15 bits of significance
whose range is always between 1. If you assign a fract value to a float you

get a true floating-point value in the same range. You cannot convert
values between fract and integer types. All operations that are valid for
float are valid for fract. Whenever float and fract are mixed in expressions,
all fract are converted to float before evaluation.

The floating-point type, which is not a “native” data type for the
processor, consists of a 16-bit mantissa and 16-bit exponent. The mantissa
must be a twos complement fractional value. The exponent must be a twos
complement integer value. The floating point value is equal to:

mantissa x 2°P. All floating point numbers must be fully normalized; there
must be no sign-bit extension.

Decimal Exponent (hex) Mantissa (hex)
1.0 0001 4000
3.0 0002 6000
3.25 0002 6800
0.0 0000* 0000
-2.0 0001 8000

* Exponent of zero should be zero; in some instances the Compiler may

pass zero floats with non-zero exponents.

The next table lists all of the standard C language arithmetic and data
types, and shows which ADSP-2101 type is used to represent them.

Name Underlying Type
int int

long int long int

short int int

unsigned int unsigned int
unsigned long int unsigned long int
char int

unsigned char unsigned int
float float

double float

long double float

fract fract

unsigned fract fract

long fract fract

unsigned long fract fract

short fract fract

Table 7.5 C Language Types on ADSP-2100 family

7-15

7 C Compiler

7-16

7.3.5 Memory Usage

Sixteen-bit values, obviously, require one word of ADSP-2101 storage
whether on the stack or not. Thirty-two-bit values require two words and
are stored with the LSW in lower memory and the the MSW in higher
memory.

For example, in a global scope, the C statement:
long 1 = 52;
produces the ADSP-2101 source:

.VAR/RAM/DM 1 [2]; Note the use of the underscore
.GLOBAL 1 ;
JINIT 1 : 52,0;

When a 32-bit quantity is pushed onto the stack, its MSW is pushed first,
followed by its LSW. Since the stack grows from high memory, the storage
order on the stack is the same as for the global variable.

Floating-point numbers are stored with the mantissa in low memory and
the exponent in high memory. When pushed onto the stack, the exponent
is pushed first, followed by the mantissa, resulting in the same memory
relationship as for a global variable.

7.3.6 Storage Classes & Modifiers

The Compiler supports all standard storage classes, types and modifiers:

Classes Types Modifiers
auto all, including void const
extern volatile
register plus these extensions:
static pm
typedef dm
ram
rom

Register variables are implemented as specified in the standard, namely as
hints about processor register use. Specific register use is not guaranteed.
The modifiers pm, dm, rom, and ram are provided to identify the storage
location as either program or data memory and either ROM or RAM. In
practice, only the pm and the rom modifiers are needed, since variables not

on the stack are located in data memory by default and data memory is
RAM by default. For example

int pm 1i;
defines an integer, i, located in program memory and
const int rom pm ii;

defines a constant, i, to be located in program memory ROM. Note that
the const modifier makes it a constant, not the rom modifier.

The —gpm switch (if given when the Compiler is invoked) takes
precedence over the modifiers above. .

7.3.7 Function Calling & Exit

When a function is called, the following sequence of events takes place:

Calling Function’s Responsibility:

1. The arguments are pushed onto the stack in reverse order. The last
argument is pushed first and the first argument in the list is the last
one pushed onto the stack.

2. Call the function.

3. Modify the stack pointer to remove the arguments from the stack.

4. Pick up returned value (if any) from AX0 or AX0,AX1 registers. (see
below)

At step 2, above, control is passed to the called function. Here is the
sequence of events within the called function:

Called Function’s Responsibility:
1. Push old frame pointer onto the stack.
2. Create local variables on the stack for use during function execution

3. Save reserved/system registers and any restricted /data registers that
will be used.

7-17

7-18

4. Execute the function’s computation, reading arguments from the stack
as needed. Store the result in the appropriate (AX0, AX1) register.

5. Restore all saved registers.

6. Release stack space used by locals during execution and restore
previous frame pointer.

7. Return control to calling function.

When a function returns, its values (as distinct from any changes in its
calling arguments) should be in ALU registers as shown below.

Type of Value Returned Register Used

All 16-bit values AXO

32-bit integers AXO for LSW
AX1 for MSW

floating-point AXO0 for exponent

AX1 for mantissa

74 ASSEMBLY LANGUAGE INTERFACE SUMMARY

With an understanding of the restrictions discussed in this chapter and an
understanding of the ADSP-2101 instruction set, writing assembly
language routines that are called from C programs is not difficult.

741 Checklist of Prerequisites

The material in this chapter details all of things you need to understand to
successfully interface an assembly language routine to a C program. Here
is a checklist of the things you should know:

Topic Where Is It Covered?
Register Restrictions 732

Stack Usage 731, 732&735
Passing Parameters 7.3.7

Function Entry & Exit 73.7

Returning Values 737

o

74.2 Assembly Language Interface Example

The example shows how a simple function in ADSP-2101 source code is
defined to properly interface to the C environment.

int i, 3,k;
main ()
{

k=add (i, 3);

add (x,v)

{

#pragma ADSP2100

{ Function add (x,y)

}

{ int x,y; }

{ }

{ Returns: z=x+y; }
dm(i4,m7)=ay0; { save registers }

dm(i4,m7)=ar;

i6=1; { get first parameter }
modify (16, m4) ;

ax0=dm(i6,m5) ; { m5=1, 16 points to 2nd parameter }
ayO0=dm (16, mb) ; { get second parameter }

ar=ax0+ay0; { perform addition }

ax0O=ar; { return 16-bit values in ax0 }
i6=-1;

modify (16, m4);
ayO0=dm (i6,m7) ; { restore registers }
ar=dm(i6,m7) ;

#pragma ADSP2100
}

7-19

75 LANGUAGE EXTENSIONS

In addition to the pm, dm, ram, and rom modifiers, ADSP-210X C provides
one new keyword: fastswitch.

Fastswitch is syntactically identical to the switch statement. Semantically,
however, fastswitch assumes that there is no default case. It is the
programmer’s responsibility to ensure that all possible cases are explicitly
provided for. Fastswitch exists because it makes use of the DO UNTIL
looping capability of processor, while the normal switch statement cannot.
In many instances, the use of fastswitch will result in significantly better
performance.

Note that use of fastswitch may be dangerous; if you miss a possible case,
your program may become stuck in a loop or create some other error. The
tables created for both switch and fastswitch can be optionally stored in
program memory or ROM; see the section on Compiler switches in this
chapter.

7.6 PROGRAMMING HINTS

Because of the inherent conflicts between the nature of a high-level
language like C and the specialized architecture of processors like the
ADSP-2101, a number of hints for programming approaches are given in
this section as an aid to using the C language system.

7.6.1 Location Of Variables

There are some restrictions on the location of pointers and the objects
pointed to. Also, the way in which you declare variables in your C
program has performance implications for the assembly code produced.

Pointers and the objects they point to must be in the same memory space
(program or data). If they are not, you must explicitly cast the pointer
every time it is used to point to something in the other memory space.

]

E

e

7.6.1.1 Globals in PM vs. Globals in DM

Static/global variables are located at fixed addresses in memory.
However, accessing data memory is usually more efficient than accessing
program memory because the ADSP-2101 cannot perform an immediate
value write to program memory. Consequently, global variables declared
with the pm modifier incur an overhead compared to variables located in
data memory.

The example shows two versions of C source, one with default global
placement in data memory and the other with explicit pm placement,
followed by the assembly code produced by each.

C Source, Global Variable ADSP-2101 Source, Global Variable
in Data Memory in Data Memory
int 1i; SI=3;
m(); DM (i_)=SI;
{
i=3;
}
C Source, Global Variable ADSP-2101 Source, Global Variable
in Program Memory in Program Memory
int pm 1i; I5 = "1 ; {point to label/address}
m(); SI=3; {load immediate to register}
{ PM(I5, M6)=SI; {write to pm}
i=3;

}

Figure 7.3 Global variable location: data memory vs. program memory

7-22

7.6.2 Location of Stack

ADSP-2101 processors cannot write an immediate value to program
memory. Immediate values must be loaded into a register before they can
be written to program memory. Consequently, locating the stack in
program memory incurs an overhead penalty of at least one additional
instruction cycle for each stack access.

The example shows the assembly source operations required to set up the

function call in each memory.

C Source, Function Call
foo(l, 2, 3);

ADSP-2101 Source, ADSP-2101 Source,
Stack in Data Memory Stack in Program Memory
DM (I4,M7)=3; AX0=3;
DM (I4,M7)=2; PM(I4,M7)=AX0;
DM(I4,M7)=1; AX0=2;
CALL foo; PM(I4,M7)=AX0;
AX0=1;
PM(I4,M7)=AX0;
CALL foo;

Figure 7.4 Stack location: effect of data memory vs. program memory

1.7 ERROR MESSAGES

The Compiler produces error messages of three basic types: preprocessing
errors, corrected syntax errors, and user errors. Assembler errors may
occur as well if the Assembler is automatically invoked. The Compiler can
also produce a message about Compiler errors, although you should
never see such an error in practice.

Preprocessor errors have the format:

%PPERROR pp error number line number filename
< error message ——>

PP error number is the preprocessor error number. Line number is the
source code line number where the error occurred. Filename is the name of
the file being compiled. The next line shows the actual error message. If

any preprocessor errors occur, the Compiler itself is not run. Here is an
example of a preprocessor error report:

$PPERROR [1] 1line 23 filename.c
Argument count error

The rest of the error messages take the following form:
%CC - filename, line number: error type

line of code where error was detected
" error message

Filename is the name of the file in which the error occurred. Line number
specifies the line where the error was detected by the Compiler. Error type
is one of the following:

Corrected Syntax Error
User Error
Compiler Error

The next line displayed is the actual line of C source code where the error
is detected. The last line contains a pointer showing where the error is
located in the line of code, and, following that, the specific error message
itself.

For example, if you fail to type a semicolon at the end of line 7 of your
source code, you would see an error such as:

%CC - dsp sys.c, line 8: Corrected Syntax Error

——————— Inserted ;

(The missing semicolon is not actually detected until the beginning of the
following line.)

7 C Compiler

If you attempt to use a variable which has not been declared, an error such
as the following is reported:

%CC - dsp_sys.c, line 14: User Error

—————————— k not defined in this scope

7.7.1 Corrected Syntax Errors

The Compiler has the capability to detect and correct most syntax errors,
allowing the program to compile properly. It does not, however, make the
corrections in your C source code file. You should take note of the errors
and make the corrections in the source file yourself.

A syntax error is one in which the C source does not conform to ANSI
draft standard C. However, the Compiler does not support, look for, or
warn about any “old” style C syntax. For example the C statement

as it did in older versions of the language. It simply means that the
variable x is assigned the value -8.

Because of the free form nature of the C language, syntax errors may not
be detected until after the line on which they occur. For example,

1 while (i) {

2 J=1i+7;

3 p=i+p*2;

4 foo (2,3,4)

5 1}

gives rise to the error report:

$CC - filename.c, line 5: Corrected Syntax Error

____________ Inserted ;

Ty

In fact, the error is on line four, where the semicolon was left off.

If the syntax error or errors are too extensive to be corrected by the
Compiler, a user error is reported and compiling is aborted.

7.7.2 User Errors

User errors flag improper usage of various kinds. Even with proper syntax
it is possible to misuse a variable, use an undefined variable or violate the
language in some other way. The error messages appearing in user errors
are typically self-explanatory.

7.7.3 Compiler Errors

If you see this type of message, the Compiler has detected an internal
error. Please make a note of the message displayed and contact Analog
Devices Digital Signal Processing Division, Applications Engineering
Group. See the copyright page of this manual for information on
contacting Analog Devices.

7.74 Exit Codes

The Compiler returns an exit code to the operating system when it
terminates. This code can be examined to determine whether or not to
continue processing, such as when a batch file is used to automatically
invoke the Assembler or Linker after compilation.

Three exit codes are defined for the C Compiler:

Exit Code Meaning

0 No errors encountered

1 Errors encountered

4 Corrected syntax errors occurred

PROM Splitter

8.1 INTRODUCTION

The ADSP-2101 PROM Splitter extracts the address information and the
contents of the ROM portion of the Memory Image file (EXE) and formats
the extracted images for uploading to PROM burners.

The PROM Splitter creates output files for program, data, and boot
memory. Three usable files are created for PM to organize the PROMs in
word addresses corresponding to three-byte instructions. Two usable files
are created for DM to organize any data PROMs in terms of two-byte data
words. One usable file is created for BM, which is physically byte-wide
(although organized internally in vertical groups of four bytes per word
address).

Both program and data memory can also be optionally output as a single
stream of bytes for vertical rather than horizontal grouping of words in
the PROMs. The PROM Splitter can format the PROM image files in
Motorola S Record and Intel Hex Record. For one-byte wide files the
Motorola S2 format is supported.

8.2 RUNNING THE PROM SPLITTER
To invoke the PROM Splitter from the host system, the command form is:

SPL21 imagefile outfile —format -mem_area

Imagefile is the main file name of the memory image file output of the
Linker. The .EXE extension is always appended; therefore, the file must
have this extension or the PROM Splitter cannot find it.

Outfile is the main file name of the PROM image files. Different names
should be used for the program, data, and boot memory files to avoid

accidentally overwriting the previous run.

There are two software switches: -format and -mem_area.

8 PROM Splitter

Memory
Image File
(.EXE)

PROM SPLITTER

Output may be any one of:

—PM switch, 3 —DM switch, 2 —BM switch, 1
usable files: usable files: usable file:

Program
Memory
Output

(.BNU)

Program
Memory

Output
(.BNM)

Program
Memory
Output
(.BNL)

Figure 8.1 PROM Splitter /0

"u" format switch,
single stream file:

Program
or Data
Memory
Output
(.BNM)

—Format specifies the outfile PROM image record format and can be —s for
Motorola S Record or i for Intel Hex Record. For program and data
memory only, the format may also be ~us, ~us2 or —ui for a single byte
stream output file, as explained below. If no format is specified with this
switch, the default is to Intel Hex.

—Mem_area is set to be either —-pm for program memory, -dm for data
memory, or —bm for boot memory, and specifies which memory space the
PROM image files generated are for. To create the PROM image files for
each, run the PROM Splitter three times, specifying -pm, -dm, and -bm
once each, as in:

SPL21 fir_sys pmburn —i —pm

SPL21 fir_sys dmburn —i —~dm

SPL21 fir_sys bootburn —i -bm

Again, remember that different outfile names must be specified for the
—-pm, ~dm, and -bm runs. Otherwise the output files from one run may be
overwritten by the output of successive runs.

As many ADSP-2101 systems do not use any PROM-based program or
data memory, the PROM Splitter is usually run only to create image files
for boot memory PROMs. Thus the only invocation command needed in
most cases is of the form:

SPL21 fir_sys bootburn —bm

(Format defaults to —i, Intel Hex Record).

8.3 PROM SPLITTER OUTPUT

The PROM Splitter generates three PROM image files when the —pm is set.

These PROM image files take outfile as their root name and use the . BNU
extension for the upper byte file, . BNM for the middle byte file, and .BNL
for the lower byte file. When the —dm switch is set, the PROM Splitter
generates two usable PROM image files. These files take outfile as their
root name and use the .BNM extension for the upper byte file and .BNL
for the lower byte file. The .BNU file is created but should be discarded.

When the —-bm switch is set, one usable PROM image file is created which
contains all pages of boot memory, and which is named outfile. BNM. The

8-3

.BNU and .BNL files are created but can be deleted. Boot memory is
always byte-wide and its contents are organized in vertical groups of four
bytes (one word). The byte stream output from the PROM Splitter is
arranged in such groups, with each group being filled from high-order
byte to low-order byte of the word. The high-order byte is located at the
lowest byte address of the four-byte group.

The 32-bit words of boot memory consist of a 24-bit instruction padded
with an extraneous fourth byte (OxFF); these pad bytes are ignored except
for the first one of each page. The pad byte of the first word of each page
is the page length for that page of boot memory. This page length is
calculated by the PROM Splitter and inserted into the boot memory image
file at these locations. For page 0 this value is located at PROM byte
address 0x0003.

Number of 24-bit instructions
Page length = -1
8

(The number of instructions must be rounded up to a multiple of eight.)

For example, a page length of zero indicates eight instruction words,
residing in thirty-two sequential bytes. The maximum page length value
of 255 indicates 2048 instruction words. (See the ADSP-2101 User’s Manual
for more information on memory interfacing.)

Each boot page must contain a number of words which is a multiple of
eight; the PROM Splitter adds extraneous words (OXFFFFFFFF) to the end
of the page to assure this. For example, if a page has only 4 instructions, 4
extraneous words are added by the PROM Splitter.

The PROM Splitter can also generate a single image file for the u formats.
This is possible only for program and data memory (not boot memory).
The byte stream output from the PROM Splitter is arranged with the most
significant byte for each location preceding the less significant byte(s),
from the lower address to the higher address. The 24-bit words in
program memory require a sequence of three bytes (1,2, 3,1, 2, 3, etc.),
while the 16-bit words of data memory require a sequence of two bytes
(1, 2,1, 2, etc.). Absolute address information is lost in this format.

To create the byte-wide u format image, prefix a “u” to the format
specified. The format switch now becomes —us, —us2 or —ui for Motorola S,
Motorola 52 and Intel formats, respectively. The PROM image file takes
outfile as its root name and .BNM as the extension.

Instruction Set Reference

9.1 OVERVIEW

This chapter is a complete reference for the instruction set of the ADSP-
2101 microcomputer. It is organized by instruction group and, within each
group, by individual instruction. The groups and individual instructions

are in this order:

ALU
Add / Add with Carry
Subtract X-Y / Subtract X-Y with Borrow
Subtract Y-X / Subtract Y-X with Borrow
AND, OR, Exclusive OR
Pass / Clear
Negate
NOT
Absolute Value
Increment
Decrement
Divide
MAC
Multiply
Multiply / Accumulate
Multiply / Subtract
Clear
Transfer MR
Conditional MR Saturation
SHIFTER
Arithmetic Shift
Logical Shift
Normalize
Derive Exponent
Block Exponent Adjust
Arithmetic Shift Immediate

Logical Shift Immediate

MOVE

Register Move

Load Register Inmediate

Data Memory Read (Direct Address)

Data Memory Read (Indirect Address)
Program Memory Read (Indirect Address)
Data Memory Write (Direct Address)

Data Memory Write (Indirect Address)
Program Memory Write (Indirect Address)

PROGRAM FLOW

JUMP

CALL

JUMP or CALL on Flag In Pin
Modify Flag Out Pin

Return from Subroutine
Return from Interrupt

Do Until

IDLE

MISC

Stack Control

Mode Control

Modify Address Register
NOP

MULTIFUNCTION

ALU/MAC/SHIFT operation with Memory Read
ALU/MAC/SHIFT operation with Data Register Move
ALU/MAC/SHIFT operation with Memory Write

Data & Program Memory Read

ALU/MAC operation w/ Data & Program Memory Read

A page heading identifies the instruction group and individual instruction

name.

Instruction Set Reference

9.2 CYCLE TIME NOTES

All ADSP-2101 instructions can execute in a single clock period. (The term
cycle is used to denote both instruction and clock cycle for the ADSP-2101
for this reason.) Consequently, there is no cycle time information given in
the description of any individual instruction. There are, however, some
conditions under which an instruction cannot be completed in a single
cycle, or an extra cycle is inserted between instructions.

9.2.1 ADSP-2101 Extra Cycle Conditions

There are two conditions that require one or more extra clock cycles to
complete an instruction for the ADSP-2101: external memory wait states
and multiple off-chip memory accesses.

Memory wait states are programmable, as described in the ADSP-2101
User’s Manual. From one to seven extra clock cycles may be added to any
external data or program memory access.

Because the address and data buses are multiplexed off-chip, the ADSP-
2101 can execute one off-chip memory access per instruction with no
penalty (other than any wait states inserted, as above). When multiple
accesses of off-chip memory are required for one instruction, extra cycles
are required. For example, to fetch both an instruction and a data memory
value from off-chip requires one extra cycle.

While the two cases described above require extra clock cycles during the
execution of an instruction, two other processor operations cause the
insertion of extra cycles between instructions. The two operations are the
autobuffering feature of serial communications and interrupt handling.

If the autobuffering feature of serial communications is being used to
transfer individual data words to or from data memory, then one memory
access (requiring 1-8 clock cycles) is “stolen” for each transfer. The timing
of this transfer is a function of the rate of serial communication, and is not
under direct program control. The stolen memory access occurs only
between complete instructions, never between multiple cycles required to
complete an instruction. For example, the serial communications
controller waits until a data memory access with wait states is complete
before “stealing” the cycle(s) it needs.

When an interrupt occurs during the execution of an instruction, the
instruction is not completed. A NOP cycle is inserted instead, and the

address of the aborted instruction is stored as the return address for the
main program. This NOP, which is followed by a jump to the interrupt-
handling routine, is the extra cycle in this case.

9.3 INSTRUCTION SYNTAX NOTATION

The following notation is used in the syntax discussions:

Square Brackets []

Parallel Lines | |

CAPITAL LETTERS

parameters

<exp>

<data>

<addr>

Anything within square brackets is an optional part
of the instruction statement.

Lists of parameters enclosed by parallel vertical
lines require the choice of one parameter from
among the operands listed. If the parallel lines are
within brackets, then that operand is optional for
that instruction.

denote a literal in the program statement. These are
instruction words, register names and operand
selections to be coded as shown.

are shown in small letters and denote an operand
in the instruction for which there are numerous
choices. For example, the parameter yop might have
as its choices in the actual instruction: MY0, MY1 or
MF. These choices are shown for each instruction.

in Shift Immediate instructions, stands for any
constant, used as the exponent or shift value.

stands for any constant or an identifier referenced
by the ‘%’ and ‘" operators.

denotes an immediate value of an address to be
coded in the instruction. “Addr” may be either an
immediate value or a LABEL. Immediate values
may be expressed in binary, octal, hexadecimal or
decimal format. If no explicit format designator is
used, the default is decimal.

immediate values may be any constant in any of the formats shown in
Appendix E, examples below. Decimal is the
default format.

binary B#10110101010 (prefix B#)
octal 017747 (prefix 0)
hexadecimal 0x7F4B or H#7F4B (prefix Ox
or H#)
decimal 1949 (no prefix)

9.3.1 Punctuation & Multifunction Instructions

All instructions terminate with a semicolon. A comma separates the
clauses of a multifunction instruction but does not terminate it. For

example, the statements below in Example A create one instruction

(defined to execute in one instruction cycle). Example B creates two
instructions, requiring two separate instruction cycles.

Example A, One multifunction instruction:

AX0 = DM(IO, MO), (comma)
AYO = PM(I4, M4);

Example B, Two separate instructions:

AX0 = DM(IO, MO); (semicolon)
AYO = PM(I4, M4);

9.3.2 Syntax Notation Example

Here is an example of one instruction, the ALU Add/Add with Carry
instruction:

[IFcond] | AR|=xop + yop ;
AF C
yop +C

Below this is a list of the permissible conds, xops and yops. The conditional
clause is enclosed in square brackets indicating that it is optional.

The destination register for the add operation must be either AR or AF.
They are within vertical parallel lines, and one of them must be chosen
since there are no brackets (which would signal an optional operand).

Similarly, the yop term may consist of a Y operand, the carry bit literal, or
the sum of both. One of the three expressions must be used.

9.3.3 Status Notation

The following notation is used in the discussion of the effect each
instruction has on the status word(s):

* An asterisk indicates a bit in the status word that is changed by
the execution of this instruction.

- A dash indicates that this bit is not affected by the instruction.

Oor1 Indicates that a bit is unconditionally cleared or set by the
instruction.

For example, the status word ASTAT is shown below:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- - - - 0 - -

In this example, the MV bit is affected. It may be set or cleared. An
explanation of the conditions leading to each outcome always follows this
chart.

The AV bit is always cleared in this example.

All other bits are unaffected.

For a complete definition of the status register bits, refer to ADSP-2101
~ User’'s Manual.

9.3.4 Instruction Word Notation

At the end of each individual instruction definition, the 24-bit format of
the assembled opcode is shown. In general, this section uses the same
parameter identifiers, such as yop, as the instruction syntax itself.

Oand 1 denote specific bits in the instruction word

| vertical bars are separators between fields or bits, and are added
only for clarity.

9-6

iction Set Reference

Here is an example of the instruction word format for the ALU instruction
Add / Add with Carry:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 10
0 0 1 0 olz] aw | vop | xop [0 00 0] comp

This is followed by an explanation of the meaning of each parameter. Z,
for example, selects the destination register (AR or AF). AMF denotes the
ALU or MAC function. A list of the two different opcodes for Add and
Add with Carry follow this section. Finally, the terms Yop, Xop and COND
have the same meaning as in the higher level syntax of the instruction.

Appendix A is a listing of opcodes for each instruction type. This
appendix also defines the bit patterns of each parameter field.

ALU
ADD / ADD with CARRY

Syntax: [IFcond] | AR | =xo +vo ;
y | AF l P l + }é P
+yop +C

Permissible xops ~ Permissible yops Permissible conds
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MRO AF GT POS MV

SR1 GE AV NOT MV

SRO LT NOT AV NOT CE
Example: IFEQ AR = AX0 + AY0 + C;

Description: Test the optional condition and, if true, perform the
specified addition. If false then perform a no-operation. Omitting the
condition performs the addition unconditionally. The addition operation
adds the first source operand to the second source operand along with the
ALU carry bit, AC, (if designated by the “+C” notation), using binary
addition. The result is stored in the destination location. The operands are
contained in the data registers specified in the instruction.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
—_ —_ —_ - * *

* *

AZ Set if the result equals zero. Cleared otherwise.

AN Set if the result is negative. Cleared otherwise.

AV Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0010012L AMF JYOpIXop |oooo COND

AMF specifies the ALU or MAC operation, in this case:
AMF = 10010 for xop + yop + C operation
AMF = 10011 for xop + yop
Note that xop + C is a special case of xop + yop + C with yop =0

Z: Destination register Yop: Y operand
Xop: Xoperand COND: condition

9

ALU
SUBTRACT X-Y / SUBTRACT X-Y with BORROW

Syntax: [IF cond] I AR ' = xop - yop ;
AF —-yop + C-1

Permissible xops ~ Permissible yops Permissible conds
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MRO AF GT POS MV

SR1 GE AV NOT MV

SRO LT NOT AV NOT CE
Example: IF GE AR = AX0 - AY0;

Description: Test the oplional condition and, if true, then perform the
specified subtraction. If the condition is not true then perform a no-
operation. Omitting the condition performs the subtraction
unconditionally. The subtraction operation subtracts the second source
operand from the first source operand, and optionally adds the ALU
Carry bit (AC) minus 1 (H#0001), and stores the result in the destination
location. The (C-1) quantity effectively implements a borrow capability for

multiprecision subtractions. The operands are contained in the data
registers specified in the instruction.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- - - - * * *

*

AZ Set if the result equals zero. Cleared otherwise.

AN Set if the result is negative. Cleared otherwise.

AV Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC operation, Instruction type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543210

00100;z| AMF {Yop1Xop 10000[COND

AMF specifies the ALU or MAC operation. In this case,
AMEF = 10110 for xop - yop + C - 1 operation.
AMEF = 10111 for xop - yop operation.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

ALU
SUBTRACT Y-X/ SUBTRACT Y-X with BORROW

Syntax: [IF cond] ' AR ‘ = yop - X0 ;
y AF yop xog +C-1
Permissible xops ~ Permissible yops Permissible conds
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MRO AF GT POS MV
SR1 GE AV NOT MV
SRO LT NOT AV NOT CE
Example: IFGT AR=AY0-AX0+C-1;

Description: Test the optional condition and, if true, then perform the
specified subtraction. If the condition is not true then perform a no-
operation. Omitting the condition performs the subtraction
unconditionally. The subtraction operation subtracts the second source
operand from the first source operand, optionally adds the ALU Carry bit
(AC) minus 1 (H#0001), and stores the result in the destination location.
The (C-1) quantity effectively implements a borrow capability for
multiprecision subtractions. The operands are contained in the data
registers specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN A

* *

AZ Set if the result equals zero. Cleared otherwise.

AN Set if the result is negative. Cleared otherwise.

AV Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
00 1 0 oTzf AMF onpl Xop]0000 COND

AMEF specifies the ALU or MAC operation. In this case,
AMEF = 11010 for yop - xop + C - 1 operation.
AMF = 11001 for yop - xop operation.

Z: Destination register Yop: Y operand
Xop: Xoperand COND: condition

9

9-10

ALU
AND, OR, XOR

Syntax: [IF cond] ‘ AR| = xop | AND yop ;
AF OR
XOR

Permissible xops ~ Permissible yops Permissible conds
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MRO AF GT POS MV

SR1 GF AV NOT MV

SRO LT NOT AV NOTCE
Example: AR = AX0 XOR AYO0;

Description: Test the optional condition and if true, then perform the
specified bitwise logical operation (logical AND, Inclusive OR, or

EXCLUSIVE OR). If the condition is not true then perform a no-operation.

Omitting the condition performs the logical operation unconditionally.
The operands are contained in the data registers specified in the
instruction.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN Az
- — _— — 0 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Always cleared.

AC Always cleared.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 0 1 0 o}z} AMF 'Yop}xOp ’oooo' COND

AMF specifies the ALU or MAC operation. In this case,
AMF = 11100 for AND operation.
AMF = 11101 for OR operation.
AMF =11110 for XOR operation.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

[

}

o E

|

e

ALU
PASS / CLEAR

Syntax: [IFcond] | AR ’ = PASS | xop l ;
| AF yop |

Permissible xops ~ Permissible yops Permissible conds
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MRO AF GT POS MV

SR1 0,1 GE AV NOT MV

SRO LT NOT AV NOT CE
Example: IF GE AR = PASS AY(;

Description: Test the optional condition and if true, pass the source
operand unmodified through the ALU block and store in the destination
location. If the condition is not true perform a no-operation. Omitting the
condition performs the PASS unconditionally. The source operand is
contained in the data registers specified in the instruction.

The PASS instruction performs the transfer to the AR register and affects
the status flag; this instruction is different from a register move operation
which does not affect any status flags. PASS 0 is the best method of
clearing AR; it can also be done in a multifunction instruction in
conjunction with memory reads and writes. The 1 argument is H#0001.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
_— _ — — 0 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Always cleared.
AC Always cleared.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 0 100}2‘ AMF ‘Yop[Xop loooo(COND

AMF specifies the ALU or MAC operation. In this case,

AMF = 10000 for PASS yop operation.

AMF = 10011 for PASS xop operation.
Note that PASS xop is a special case of xop + yop, with yop specified as 0.
Z: Destination register Yop: Y operand
Xop: X operand COND: condition

9

9-11

9-12

ALU
NEGATE

Syntax: [IF cond] AR | = - | xop | ;
AF yop

Permissible xops ~ Permissible yops Permissible conds
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MRO AF GT POS MV

SR1 GE AV NOT MV

SRO LT NOT AV NOTCE
Example: IF LT AR =-AY(;

Description: Test the optional condition and if true, then NEGATE the
source operand and store in the destination location. If the condition is not
true then perform a no-operation. Omitting the condition performs the
NEGATE operation unconditionally. The source operand is contained in
the data register specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ

—_ —_ 0 * *
AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.

AV Set if operand = H#8000. Cleared otherwise.
AC Always cleared.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
00 1 0 olz[AMF {YopLXop JooooJ COND

AMF specifies the ALU or MAC operation. In this case,
AMEF = 10101 for - yop operation.
AMF = 11001 for - xop operation
Note that —xop is a special case of yop —xop, with yop specified to be 0.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

PR

[

&

[

[a—
{, 1

—

ALU
NOT

Syntax: [IFcond] ' AR 1 = NOT xop | ;
AF yop

Permissible xops ~ Permissible yops Permissible conds
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MRO AF GT POS MV

SR1 0 GE AV NOT MV

SRO LT NOT AV NOT CE
Example: IF NE AF = NOT AX0;

Description: Test the optional condition and if true, then perform the
logical complement (ones complement) of the source operand and store in
the destination location. If the condition is not true then perform a no-
operation. Omitting the condition performs the complement operation
unconditionally. The source operand is contained in the data register
specified in the instruction.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
—_ — — — 0 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Always cleared.
AC Always cleared.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
00100}2‘ AMF 'Yop'Xop 10000‘ COND

AMEF specifies the ALU or MAC operation. In this case,
AMF = 10100 for NOT yop operation.
AMEF = 11011 for NOT xop operation.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

9-13

9-14

ALU
ABSOLUTE VALUE

Syntax: [IF cond] ‘ AR = ABS xop ;
AF

Permissible xops ~ Permissible conds

AX0O MR2 EQ LE AC

AX1 MR1 NE NEG NOT AC

AR MRO GT POS MV
SR1 GE AV NOT MV
SRO LT NOTAV NOT CE

Example: IF NEG AF = ABS AX0;

Description: Test the optional condition and, if true, then take the
absolute value of the source operand and store in the destination location.
If the condition is not true then perform a no-operation. Omitting the
condition performs the absolute value operation unconditionally. The
source operand is contained in the data register specified in the
instruction.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- — - * O * * *

AZ Set if the result equals zero. Cleared otherwise.

AN Set if xop is H#8000. Cleared otherwise.

AV Set if xop is H#8000. Cleared otherwise.

AC Always cleared.

AS Set if the source operand is negative. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
00100‘z) AMF }oo‘xOpJooooj COND

AMF specifies the ALU or MAC operation. In this case,
AMF = 11111 for ABS xop operation.

Z: Destination register
Xop: Xoperand COND: condition

ALU
INCREMENT

Syntax: [IF cond] l AR l =yop+1;
AF

Permissible yops ~ Permissible conds
AY0 EQ LE AC
AY1 NE NEG NOT AC
AF GT POS MV

GE AV NOT MV

LT NOTAV NOT CE
Example: IF GT AF=AF+1;

Description: Test the optional condition and if true, then increment the
source operand by H#0001 and store in the destination location. If the
condition is not true then perform a no-operation. Omitting the condition
performs the increment operation unconditionally. The source operand is
contained in the data register specified in the instruction. This operation
enables setting AR or AF to + 1 by selecting yop = 0.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN A
_ —_ — — * *

* *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 0 1 0 0fz] AMF | vop | xop [0 0 0 0] comn

AMF specifies the ALU or MAC operation. In this case,
AMF = 10001 for yop + 1 operation.
Note that the xop field is ignored for the increment operation.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

9

9-15

9-16

ALU
DECREMENT

Syntax: [IF cond] ' AR l =yop-1;
AF

Permissible yops ~ Permissible conds
AYO0 EQ LE AC
AY1 NE NEG NOT AC
AF GT POS MV

GE AV NOT MV

LT NOTAV NOT CE
Example: IF EQ AR=AY1-1;

Description: Test the optional condition and if true, then decrement the
source operand by H#0001 and store in the destination location. If the
condition is not true then perform a no-operation.Omitting the condition
performs the decrement operation unconditionally. The source operand is
contained in the data register specified in the instruction. This operation
enables setting AR or AF to -1 by selecting yop = 0.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
S5S MV AQ AS AC AV AN AZ
_ — — *

* * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1 0
0 0 1 0 0|z’ AMF 'Yopj Xop {ooool COND

AMF specifies the ALU or MAC operation. In this case,
AMEF = 11000 for yop — 1 operation.
Note that the xop field is ignored for the decrement operation.

Z: Destination register Yop: Y operand
Xop: Xoperand COND: condition

ALU
DIVIDE

Syntax: DIVS yop, xop ;

DIVQ xop ;
Permissible xops ~ Permissible yops
AX0 MR2 AY1
AX1 MR1 AF
AR MRO
SR1
SRO

Description: These instructions implement yop / xop. There are two
divide primitives, DIVS and DIVQ. A single precision divide, with a 32-bit
numerator and a 16-bit denominator, yielding a 16-bit quotient, executes
in 16 cycles. Higher precision divides are also possible.

The division can be either signed or unsigned, but both the numerator and
denominator must be the same; both signed or unsigned. The programmer
sets up the divide by sorting the upper half of the numerator in any
permissible yop (AY1 or AF), the lower half of the numerator in AY0, and
the denominator in any permissible xop. The divide operation is then
executed with the divide primitives, DIVS and DIVQ. Repeated execution
of DIVQ implements a non-restoring conditional add-subtract division
algorithm. At the conclusion of the divide operation the quotient will be in
AYO.

To implement a signed divide, first execute the DIVS instruction once,
which computes the sign of the quotient. Then execute the DIVQ
instruction for as many times as there are bits remaining in the quotient
(e.g., for a signed, single-precision divide, execute DIVS once and DIVQ 15
times).

To implement an unsigned divide, first place the upper half of the
numerator in AF, then initialize the AQ bit to zero by manually clearing it
in the Arithmetic Status Register, ASTAT. This indicates that the sign of
the quotient is positive. Then execute the DIVQ instruction for as many
times as there are bits in the quotient (e.g., for an unsigned single-
precision divide, execute DIVQ 16 times).

The quotient bit generated on each execution of DIVS and DIVQ is the AQ
bit which is written to the ASTAT register at the end of each cycle. The
final remainder produced by this algorithm (and left over in the AF
register) is not valid and must be corrected if it is needed. For more
information, consult Appendix B, “Division Exceptions,” in your User’s
Manual.

9-17

9-18

ALU
DIVIDE

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN Az

* *

AQ Loaded with the bit value equal to the AQ bit computed on each
cycle from execution of the DIVS or DIVQ instruction.

AC These bits may change during execution of DIVS or DIVQ
instruction;

AV however, the bit values are meaningless and should be ignored.

AN

AZ

Instruction Format:
DIVQ, Instruction Type 23:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
0000011100010}xOp|00

o |w;m

DIVS, Instruction Type 24:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
00000110000Yop]xOp]ooooo

Xop: X operand Yop: Y operand

MAC
MULTIPLY

Syntax: [IFcond] | MR ' = xop *yop | (SS) ;
MF (SU)

(Us)

(UL)

(RND)
Permissible xops Permissible yops Permissible conds
MXO0 AR MY0 EQ LE AC
MX1 SR1 MY1 NE NEG NOT AC
MR2 SRO MF GT POS MV
MRI1 GE AV NOT MV
MRO LT NOTAV NOTCE
Example: IF EQ MR = MX0 * MF (UU);

Description: Test the optional condition and, if true, then multiply the

two source operands and store in the destination location. If the condition
is not true perform a no-operation. Omitting the condition performs the
multiplication unconditionally. The operands are contained in the data
registers specified in the instruction. When MF is the destination operand,
only bits 31-16 of the product are stored in MF.

The data format selection field following the two operands specifies
whether each respective operand is in Signed (S) or Unsigned (U) format.
The xop is specified first and yop is second. There is no default; one of the
data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
rounds the result to the most significant 24 bits (or rounds bits 31-16 to 16
bits if there is no overflow from the multiply), and stores the result in the
destination location. The two multiplication operands xop and yop are
considered to be in twos complement format. All rounding is unbiased.
For a discussion of unbiased rounding, see “Rounding Mode” in the
“Multiplier / Accumulator” section of the ADSP-2101 User’s Manual.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
— * -_— — pa— —

MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

9-19

9-20

MAC

MULTIPLY

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

0

AMF

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
0

0O 0 1 0 0‘ Z' { Yop ’ Xop ‘O 0

4321
OTCOND

AMF: Specifies the ALU or MAC Operation. In this case,

AMF

00100
00101
00110

nnNn
00111

00001

Z:
Xop:

FUNCTION
xop * yop
xop * yop
xop * yop
xop * yop
xop * yop

Data Format

(C5))
(SU)
(Us)
(UU)
(RND)

Destination register

X operand

X-Operand

Signed
Signed
Unsigned
Unsigned
Signed

Yop:
COND:

Y-Operand
Signed
Unsigned
Signed
Unsigned
Signed

Y operand
condition

MAC
MULTIPLY / ACCUMULATE

Syntax: [[Fcond] | MR 1 =MR + xop * yop | (SS) ;
MF (SU)
(US)
(UU)
(RND)
Permissible xops Permissible yops Permissible conds
MX0 AR MYO0 EQ LE AC
MX1 SR1 MY1 NE NEG NOT AC
MR2 SRO MF GT POS MV
MR1 GE AV NOT MV
MRO LT NOTAV NOTCE
Example: IF GE MR = MR + MX0 * MY1 (SS) ;

Description: Test the (()iptional condition and, if true, then multiply the
two source operands, add the product to the present contents of the MR
register, and store the result in the destination location. If the condition is
not true then perform a no-operation. Omitting the condition performs the
multiply / accumulate unconditionally. The operands are contained in the
data registers specified in the instruction. When MF is the destination
operand, only bits 31-16 of the 40-bit result are stored in MF.

The data format selection field to the right of the two operands specifies
whether each respective operand is in signed (S) or unsigned (U) format.
The X operand is specified first and Y operand is second. There is no
default. A data format must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
adds the product to the current contents of the MR register, rounds the
result to the most significant 24 bits (or rounds bits 31-16 to the nearest 16
bits if there is no overflow from the multiply /accumulate), and stores the
result in the destination location. The two multiplication operands xop and
yop are considered to be in signed twos complement format. All rounding
is unbiased. For a discussion of unbiased rounding, see “Rounding Mode”
in the “Multiplier/ Accumulator” section of the ADSP-2101 User’s Manual.

MAC

MULTIPLY / ACCUMULATE
Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

S MV AQ AS AC AV AN AZ
MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
0 0 1 0 oLz’ AMF ‘YopJXop Joooo‘comn

AMEF: Specifies the ALU or MAC Operation. In this case,
AMF FUNCTION Data Format ~ X-Operand Y-Operand

01000 MR+xop*yop (SS) Signed Signed
01001 MR+xop*yop (SU) Signed Unsigned
01010 MR+xop*yop (US) Unsigned Signed
01011 MR+xop*yop (UU) Unsigned Unsigned
00010 MR+xop*yop (RND) Signed Signed

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

9-22

MAC
MULTIPLY / SUBTRACT

Syntax: [IF cond] ‘ MR 1 =MR -xop * yop | (SS) ;
MF (SU)
(Us)
(9]8)]
(RND)
Permissible xops Permissible yops Permissible conds
MX0 AR MYO0 EQ LE AC
MX1 SR1 MY1 NE NEG NOT AC
MR2 SRO MF GT POS MV
MR1 GE AV NOT MV
MRO LT NOT AV NOTCE
Example: IF LT MR = MR - MX1 * MYO0 (SU) ;

Description: Test the optional condition and, if true, then multiply the
two source operands, subtract the product from the present contents of
the MR register, and store the result in the destination location. If the
condition is not true perform a no-operation. Omitting the condition
performs the multiply /subtract unconditionally. The operands are
contained in the data registers specified in the instruction. When MF is the
destination operand, only bits 16-31 of the 40-bit result are stored in MF.

The data format selection field to the right of the two operands specifies
whether each respective operand is in signed (S) or unsigned (U) format.
The X operand is specified first and Y operand is second. There is no
default; a data format must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
subtracts the product from the current contents of the MR register, rounds
the result to the most significant 24 bits (or rounds bits 31-16 to 16 bits if
there is no overflow from the multiply /accumulate), and stores the result
in the destination location. The two multiplication operands xop and yop
are considered to be in signed twos complement format. All rounding is
unbiased. For a discussion of unbiased rounding, see “Rounding Mode”
in the “Multiplier/ Accumulator” section of the ADSP-2101 User’s Manual.

MAC
O muLTIPLY / SUBTRACT

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0 |
SS MV AQ AS AC AV AN AZ
— * — — — —

MV Set on MAC overflow (if any of the upper 9 bits of MR are
not all one or zero). Cleared otherwise.

H | = '
Instruction Format:

Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 1% 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0 ;
0 0 1 0 olzi AMF TYop‘Xop loooo}COND
AMEF: Specifies the ALU or MAC Operation. In this case, [
AMF FUNCTION Data Format X-Operand Y-Operand
01100 MR~-xop * yop (55) Signed Signed
01101 MR-—xop *yop (SU) Signed Unsigned
01110 MR-xop *yop (Us) Unsigned Signed
01111 MR-xop *yop uu) Unsigned Unsigned -
00011 MR-xop *yop (RND) Signed Signed L
Z: Destination register Yop: Y operand
Xop: X operand COND: condition

9-24 L

MAC
CLEAR

Syntax: [IF cond | ' MR 1 =0;
MF
Permissible conds
EQ NE GT GE LT
LE NEG POS AV NOT AV

AC NOT AC MV NOTMV NOTCE

Example: IFGTMR =0;

Description: Test the optional condition and, if true, then set the
specified register to zero. If the condition is not true perform a no-
operation. Omitting the condition performs the clear unconditionally. The
entire 40-bit MR or 16-bit MF register is cleared to zero.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
— 0o - - - - - -

MV Always cleared.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 10
001oo‘z| AMF kll’OOO'OOOO’COND

AMF: Specifies the ALU or MAC Operation. In this case,
AMF = 00100 for clear operation.

Z: Destination register COND: condition

9-26

MAC
TRANSFER MR

Syntax: [IFcond] | MR i = MR [(RND)] ;
MF

Permissible conds

EQ NE GT GE LT

LE NEG POS AV NOT AV

AC NOT AC MV NOTMV NOTCE

Example: IF EQ MF = MR (RND);

Description: Test the optional condition and, if true, then perform the
MR transfer according to the description below. If the condition is not true
then perform a no-operation. Omitting the condition performs the transfer
unconditionally.

This transfer operation actually performs a multiply /accumulate,
specifying yop = 0 as a multiplicand and adding the zero product to the
contents of MR. The MR register may be optionally rounded at the
boundary between bits 15 and 16 of the result by specifying the RND
option. If MF is specified as the destination, bits 31-16 of the result are
stored in MF. If MR is the destination, the entire 40-bit result is stored in
MR.

Status Generated:

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
_ * — _ — —

MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

43210
OlCOND

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
OOlOOJZJ AMF Jll‘Xop Iooo

AMEF: Specifies the ALU or MAC Operation. In this case,
AMF = 01000 designates MR + xop*yop (SS). The yop is selected to be
zero; xop is ignored.

VA Destination register
Xop: X operand COND: condition

1

—

Y

N aunbmn)

MAC
CONDITIONAL MR SATURATION

Syntax: "IFMV SAT MR ;

Description: Test the MV (MAC Overflow) bit in the Arithmetic Status
Register (ASTAT), and if set, then saturate the lower-order 32 bits of the
40-bit MR register; if the MV is not set then perform a no-operation.

Saturation of MR is executed with this instruction for one cycle only; MAC
saturation is not a continuous mode that is enabled or disabled. The
saturation instruction is intended to be used at the completion of a series
of multiply /accumulate operations so that temporary overflows do not
cause the accumulator to saturate.

The saturation result depends on the state of MV and on the sign of MR
(the MSB of MR2). The possible results after execution of the saturation
instruction are shown in the table below.

MV MSBof MR2 MR contents after saturation

No change
No change
00000000 0111111111171111 1111111111111111
11111111 1000000000000000 0000000000000000

— OO
—OoO=0oO

Status Generated: No status bits affected.

Instruction Format:
Saturate MR operation, Instruction Type 25:

23 22 21 20 19 18 17 16 15 14 13 12 11 1
o 0 o0 0 0 1 0 1 0 O 0 0 O

09876543210
000000O0O0COOO

9-28

SHIFTER

ARITHMETIC SHIFT
Syntax: [I[Fcond] SR = [SR OR] ASHIFT xop HD | ;
(LO)

Permissible xops Permissible conds
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SRO MRI1 GT POS MV

MRO GE AV NOT MV

LT NOT AV NOT CE

Example: IF LT SR = SR OR ASHIFT SI (LO);

Description: Test the otptional condition and, if true, then perform the
designated arithmetic shift. If the condition is not true then perform a no-
operation. Omitting the condition performs the shift unconditionally. The
operation arithmetically shifts the bits of the operand by the amount and
direction specified in the Shift Code from the SE register. Positive Shift
Codes cause a left shift (upshift) and negative Codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For ASHIFT with a positive Shift Code (i.e. positive value in SE), the
operand is shifted left; with a negative Shift Code (i.e. negative value in
SE), the operand is shifted right. The number of positions shifted is the
count in the Shift Code. The 32-bit output field is sign-extended to the left
(the MSB of the input is replicated to the left), and the output is zero-filled
from the right. Bits shifted out of the high order bit in the 32-bit
destination field (SR,) are dropped. Bits shifted out of the low order bit in
the destination field (SR) are dropped.

To shift a double precision number, the same Shift Code is used for both
halves of the number. On the first cycle, the upper half of the number is
shifted using the HI and PASS options; then on the second cycle, the lower
half of the number is shifted using the LO and OR options.

Status Generated: None affected.

SHIFTER
ARITHMETIC SHIFT

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543210
0000111001 SF [xOp ‘oooo'com)

SF Shifter Function
0100 ASHIFT (HI, PASS)
0101 ASHIFT (HI, OR)
0110 ASHIFT (LO, PASS)
0111 ASHIFT (LO, OR)

Xop: shifter operand COND: condition

9-30

SHIFTER
LOGICAL SHIFT

7

Syntax: [IFcond] SR = [SR OR] LSHIFT xop ' (HD

(LO)
Permissible xops Permissible conds
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SRO MR1 GT POS MV
MRO GE AV NOT MV

LT NOTAV NOTCE
Example: IF GE SR = LSHIFT SI (HD) ;

Description: Test the optional condition and, if true, then perform the
designated logical shift. If the condition is not true then perform a no-
operation. Omitting the condition performs the shift unconditionally. The
operation logically shifts the bits of the operand by the amount and
direction specified in the Shift Code from the SE register. Positive Shift
Codes cause a left shift (upshift) and negative Codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For LSHIFT with a positive Shift Code, the operand is shifted left; the
numbers of positions shifted is the count in the Shift Code. The 32-bit
output field is zero-filled from the right. Bits shifted out of the high order
bit in the 32-bit destination field (SR31) are dropped.

For LSHIFT with a negative Shift Code, the operand is shifted right; the
number of positions shifted is the count in the Shift Code. The 32-bit
output field is zero-filled from the left. Bits shifted out of the low order bit
in the destination field (SR0) are dropped.

To shift a double precision number, the same Shift Code is used for both
halves of the number. On the first cycle, the upper half of the number is
shifted using the HI and PASS options; then on the second cycle, the lower
half of the number is shifted using the LO and OR options.

Status Generated: None affected.

Instruction Format:

Conditional Shift Operation, Instruction Type 16:

SHIFTER

LOGICAL SHIFT

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543210

000011100]

1Xop '0 00 o‘ COND

SF

0000
0001
0010
0011

Shifter Function
LSHIFT (HI, PASS)
LSHIFT (HI, OR)
LSHIFT (LO, PASS)
LSHIFT (LO, OR)

Xop: shifter operand

9-32

SHIFTER
NORMALIZE

Syntax: [IFcond] SR = [SR OR] NORM xop l HD | ;
(LO)
Permissible xops Permissible conds
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SRO MR1 GT POS MV
MRO GE AV NOT MV

LT NOTAV NOTCE
Example: SR = NORM SI (H) ;

Description: Test the optional condition and, it true, then perform the
designated normalization. If the condition is not true then perform a no-
operation. Omitting the condition performs the normalize
unconditionally. The operation arithmetically shifts the input operand to
eliminate all but one of the sign bits. The amount of the shift comes from
the SE register. The SE register may be loaded with the proper Shift Code
to eliminate the redundant sign bits by using the Derive Exponent
instruction; the Shift Code loaded will be the negative of the quantity: (the
number of sign bits minus one).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option. When the LO reference is selected, the 32-bit output field is zero-
filled to the left. Bits shifted out of the high order bit in the 32-bit
destination field (SR,) are dropped.

The 32-bit output field is zero-filled from the right. If the exponent of an
overflowed ALU result was derived with the HIX modifier, the 32-bit
output field is filled from left with the ALU Carry (AC) bit in the
Arithmetic Status Register (ASTAT) during a NORM(HI) operation. In this
case (SE = 1 from the exponent detection on the overflowed ALU value) a
downshift occurs.

To normalize a double precision number, the same Shift Code is used for
both halves of the number. On the first cycle, the upper half of the number
is shifted using the HI and PASS options; then on the second cycle, the
lower half of the number is shifted using the LO and OR options.

Status Generated: None affected.

1

[ou

SHIFTER
NORMALIZE

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 76 54 3 2 1 0
000011100' SF WXop ‘ooooicom

SF Shifter Function
1000 NORM (HI, PASS)
1001 NORM (HI, OR)
1010 NORM (LO, PASS)
1011 NORM (LO, OR)

Xop: shifter operand COND: condition

9-33

SHIFTER
9 DERIVE EXPONENT

Syntax: [IFcond] SE = EXP xop i HI) | ;

(LO)

(HIX)
Permissible xops Permissible conds
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SRO MRI1 GT POS MV

MRO GE AV NOT MV

LT NOTAV NOTCE
Example: IF GT SE = EXP MR1 (HI) ;

Description: Test the optional condition and, if true, perform the
designated exponent operation. If the condition is not true then perform a
no-operation. Omitting the condition performs the exponent operation
unconditionally.

The EXP operation derives the effective exponent of the input operand to
prepare for the normalization operation (NORM). EXP supplies the source
operand to the exponent detector, which generates a Shift Code from the
number of leading sign bits in the input operand. The Shift Code, stored in
SE at the completion of the EXP operation, is the effective exponent of the
input value. The Shift Code depends on which exponent detector mode is
used (HI, HIX, LO).

In the HI mode, the input is interpreted as a single precision signed
number, or as the upper half of a double precision signed number. The
exponent detector counts the number of leading sign bits in the source
operand and stores the resulting Shift Code in SE. The Shift Code will
equal the negative of the number of redundant sign bits in the input.

In the HIX mode, the input is interpreted as the result of an add or
subtract which may have overflowed. HIX is intended to handle shifting
and normalization of results from ALU operations. The HIX mode
examines the ALU Overflow bit (AV) in the Arithmetic Status Register: if
AV is set, then the effective exponent of the input is +1 (indicating that an
ALU overflow occurred before the EXP operation), and +1 is stored in SE.
If AV is not set, then HIX performs exactly the same operations as the HI
mode.

9-34

SHIFTER
DERIVE EXPONENT

In the LO mode, the input is interpreted as the lower half of a double
precision number. In performing the EXP operation on a double precision
number, the higher half of the number must first be processed with EXP in
the HI or HIX mode, and then the lower half can be processed with EXP in
the LO mode. If the upper half contained a non-sign bit, then the correct
Shift Code was generated in the HI or HIX operation and that is the code
that is stored in SE. If, however, the upper half was all sign bits, then EXP
in the LO mode totals the number of leading sign bits in the double
precision word and stores the resulting Shift Code in SE.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ

SS Set by the MSB of the input for an EXP operation in the HI
or HIX mode with AV = 0. Set by the MSB inverted in the
HIX mode with AV = 1. Not affected by operations in the
LO mode.

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 210

00 0 0 1 1 1 0 0 SF ’Xop ‘oooo‘com)
SF Shifter Function
1100 EXP(HD
1101 EXP (HIX)
1110 EXP(LO)
Xop: shifter operand COND: condition

9-35

9-36

SHIFTER
BLOCK EXPONENT ADJUST

Syntax: [IFcond] SB = EXPADJ xop ;
Permissible xops Permissible conds
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SRO MR1 GT POS MV
MRO GE AV NOT MV

LT NOT AV NOT CE
Example: IF GT SB = EXPAD] SI ;

Description: Test the optional condition and, if true, perform the
designaied exponent operation. If the condition is not true then perform a
no-operation. Omitting the condition performs the exponent operation
unconditionally. The Block Exponent Adjust operation, when performed
on a series of numbers, derives the effective exponent of the number
largest in magnitude. This exponent can then be associated with all of the
numbers in a block floating point representation.

The Block Exponent Adjust circuitry applies the input operand to the
exponent detector to derive its effective exponent. The input must be a
signed twos complement number. The exponent detector operates in HI
mode (see the EXP instruction, above).

At the start of a block, the SB register should be initialized to -16 to set SB
to its minimum value. On each execution of the EXPAD]J instruction, the
effective exponent of each operand is compared to the current contents of
the SB register. If the new exponent is greater than the current SB value, it
is written to the SB register, updating it. Therefore, at the end of the block,
the SB register will contain the largest exponent found. EXPAD]J is only an
inspection operation; no actual shifting takes place since the true exponent
is not known until all the numbers in the block have been checked.
However, the numbers can be shifted at a later time after the true
exponent has been derived.

Extended (overflowed) numbers and the lower halves of double precision

numbers can not be processed with the Block Exponent Adjust instruction.

Status Generated: Not affected.

SHIFTER
BLOCK EXPONENT ADJUST

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543210

000 0 0 1 1 1 0 0 SF IXOp |oooo COND
SF=1111.
Xop: shifter operand COND: condition

9-37

9-38

SHIFTER
ARITHMETIC SHIFT IMMEDIATE

s

Syntax: SR = [SR OR] ASHIFT xop BY <exp> I (HD

(LO)
Permissible xops <exp>
SI MRO Any constant
SR1 MR1
SRO MR2
AR
Example: SR = SR OR ASHIFT SR0 BY 3 (LO);

Description: Arithmetically shift the bits of the operand by thc amount
and direction specified by the constant in the exponent field. Positive Shift
Codes cause a left shift (upshift) and negative Codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For ASHIFT with a positive Shift Code (i.e. positive value in SE), the
operand is shifted left; with a negative Shift Code (i.e. negative value in
SE), the operand is shifted right. The 32-bit output field is sign-extended
to the left (the MSB of the input is replicated to the left), and the output is
zero-filled from the right. Bits shifted out of the high order bit in the 32-bit
destination field (SR,) are dropped. Bits shifted out of the low order bit in
the destination field (SR) are dropped.

To shift a double precision number, the same Shift Code is used for both

parts of the number. On the first cycle, the upper half is shifted using the
HI and PASS options. Next the lower half is shifted using the LO and OR
options.

Status Generated: None affected.

[—l

SHIFTER
ARITHMETIC SHIFT IMMEDIATE

Instruction Format:
Shift Immediate Operation, Instruction Type 15:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
000011110' SF 'xOp4 <data>

SF Shifter Function
0100 ASHIFT (HI, PASS)
0101 ASHIFT (HI, OR)
0110 ASHIFT (LO, PASS)
0111 ASHIFT (LO, OR)

Xop: Shifter Operand <data>: 8-bit signed shift value

9-39

9-40

SHIFTER
LOGICAL SHIFT IMMEDIATE

7

Syntax: SR = [SR OR] LSHIFT xop BY <exp> l (HD

(LO)
Permissible xops <exp>
SI MRO Any constant
SR1 MR1
SRO MR2
AR
Exampie: SR = LSHIFT SR1 BY -6 (HI) ;
Description: %\Cally shifts the bits of the operand by the amount and
direction specified by the constant in the exponent field. Positive Shift

Codes cause a left Shlft (upshift) and negative Codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For LSHIFT with a positive value, the operand is shifted left; the numbers
of positions shifted is the count in the shift value. The 32-bit output field is
zero-filled to the left and from the right. Bits shifted out of the high order
bit in the 32-bit destination field (SR,) are dropped.

For LSHIFT with a negative value, the operand is shifted right; the
number of positions shifted is the count in the shift value. The 32-bit
output field is zero-filled from the left and to the right. Bits shifted out of
the low order bit are dropped.

Status Generated: None affected.

Instruction Format:
Shift Inmediate Operation, Instruction Type 15:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
000011110! SF 1xOp| <data>

SF Shifter Function
0000 LSHIFT (HI, PASS)
0001 LSHIFT (HI, OR)
0010 LSHIFT (LO, PASS)
0011 LSHIFT (LO, OR)

Xop: Shifter Operand <data>: 8-bit signed shift value

fen}

]

MOVE
REGISTER MOVE

Syntax: reg = reg ;
Permissible registers
AX0 MX0 SI SB CNTR
AX1 MX1 SE PX OWRCNTR (write only)
AY0 MY0 SRI1 ASTAT RX0
AY1 MY1 SRO MSTAT RX1
AR MR2 10-I7 SSTAT (read only) TX0
MR1 MO-M7 IMASK TX1
MRO LO-L7 ICNTL IFC (write only)
Example: 7= AR;

Description: Move the contents of the source to the destination
location. The contents of the source are always right-justified in the
destination location after the move.

When transferring a smaller register to a larger register (e.g., an 8-bit
register to a 16-bit register), the value stored in the destination is either
sign-extended to the left if the source is a signed value, or zero-filled to the
left if the source is an unsigned value. The unsigned registers which
(when used as the source) cause the value stored in the destination to be
zero-filled to the left are: 10 through 17, LO through L7, CNTR, PX, ASTAT,
MSTAT, SSTAT, IMASK, and ICNTL. All other registers cause sign-
extension to the left.

When transferring a larger register to a smaller register (e.g., a 16-bit
register to a 14-bit register), the value stored in the destination is right-
justified (bit O maps to bit 0) and the higher-order bits are dropped.

Note that whenever MR1 is loaded with data, it is sign-extended into
MR2.

Status Generated: None affected.

MOVE
REGISTER MOVE

Instruction Format:

Internal Data Move, Instruction Type 17:

23 22 21 20 1918 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1 0

o0 0 0 1 1 0 1 0 0 0 O

DST
RGP

SRC
RGP

DEST
REG

SOURCE
REG

C RGP (Source Register Group) and SOURCE REG (Source Register)
select the source register according to the Register

Appendix A).

Qoloct

STCiClL

H A dlonn
ion Table (see

DST RGP (Destination Register Group) and DEST REG (Destination

Register) select the destination register according to the Register Selection

Table (see Appendix A).

MOVE
LOAD REGISTER IMMEDIATE

Syntax: reg = <data> ;

data: <constant>
‘%’ <identifier>
‘N <identifier>

Permissible registers
dregs (16-bit data load) regs (maximum 14-bit data load)

AXO0 MX0 SI SB CNTR
AX1 MX1 SE PX OWRCNTR (write only)
AYO0 MYO0 SR1 ASTAT RX0
AY1 MY1 SRO MSTAT RX1
AR MR2 IMASK X0
MR1 ICNTL X1
MRO 10-17 IFC (write only)
MO-M7
LO-L7
Example: 10 = Adata_buffer;

LO=%data_buffer;

Description: Move the data value specified to the destination location.
The data may be a constant, or any identifier referenced with the “length
of” (%) or “pointer to” () operators. The data value is contained in the
instruction word, with 16 bits for data register loads and up to 14 bits for
other register loads. The value is always right-justified in the destination
location after the load (bit 0 maps to bit 0). When a value of length less
than the length of the destination is moved, it is sign-extended to the left
to fill the destination width.

Note that whenever MR1 is loaded with data, it is sign-extended into
MR2.

The RX and TX registers may be loaded with a maximum of 14 bits of
data, although the registers themselves are 16 bits wide.

Status Generated: None affected.

9

9-43

9-44

MOVE
LOAD REGISTER IMMEDIATE

Instruction Format :
Load Data Register Immediate, Instruction Type 6:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
01001 DATA DREG

DATA contains the immediate value to be loaded into the Data Register
destination location. The data is right-justified in the fieid, so the value
loaded into an N-bit destination register is contained in the lower-order N
bits of the DATA field.

DREG selects the destination Data Register for the immediate data value.

One of the 16 Data Regislers is selected according to the Register Selection

Table (see Appendix A).

Load Non-Data Register Inmediate Instruction Type 7:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 0 1 11 RGP DATA REG

DATA contains the immediate value to be loaded into the Non-Data
Register destination location. The data is right-justified in the field, so the
value loaded into an N-bit destination register is contained in the lower-
order N bits of the DATA field.

RGP (Register Group) and REG (Register) select the destination register
according to the Register Selection Table (see Appendix A).

[S—

MOVE
DATA MEMORY READ (Direct Address)

Syntax: reg = DM (<addr>) ;

Permissible registers

AX0 MX0 SI SB CNTR

AX1 MX1 SE PX OWRCNTR (write only)
AY0 MY0 SRl ASTAT RX0

AY1 MY1 SRO MSTAT RX1

AR MR2 1017 TX0

MR1 MO-M7 IMASK TX1
MRO L0-L7 ICNTL IFC (write only)

Example: SI = DM(ad_port0);

Description: The Read instruction moves the contents of the data
memory location to the destination register. The addressing mode is direct
addressing (designated by an immediate address value or by a label). The
data memory address is stored directly in the instruction word as a full 14-
bit field. The contents of the source are always right-justified in the
destination register after the read (bit 0 maps to bit 0).

Status Generated: None affected.

Instruction Format:
Data Memory Read (Direct Address), Instruction Type 3:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1 0
1 0 0 o] rep | ADDR | REG

ADDR contains the direct address to the source location in Data Memory.

RGP (Register Group) and REG (Register) select the destination register
according to the Register Selection Table (see Appendix A).

9

MOVE
DATA MEMORY READ (Indirect Address)

Syniax: dreg = DM (

Mé
M7
Permissible dregs
AXO0 MX0 SI
AX1 MX1 SE
AYO0 MYO0 SR1
AY1 MY1 SRO
AR MR2
MR1
MRO
Example: AY0 = DM (I3, M1);

Description: The Data Memory Read Indirect instruction moves the
contents of the data memory location to the destination register. The
addressing mode is register indirect with post-modify. The contents of the
source are always right-justified in the destination register after the read
(bit 0 maps to bit 0).

Status Generated: None affected.

Instruction Format:
ALU / MAC Operation with Data Memory Read, Instruction Type 4:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
Oll’GtOO‘ AMF OOOOO'DREGII‘M

AMEF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Read. In this case, AMF = 00000, indicating a No-
Op for the ALU / MAC function.

DREG selects the destination Data Register . One of the 16 Data Registers
is selected according to the Register Selection Table (see Appendix A).

G specifies which Data Address Generator the I and M registers are
selected from. These registers must be from the same DAG as separated
by the gray bar above. I specifies the indirect address pointer (I register).
M specifies the modify register (M register).

MOVE
PROGRAM MEMORY READ (Indirect Address)

Syntax: dreg =PM(| 14|, | M4 |);

15 M5
I6 M6
17 M7
Permissible dregs
AX0 MXO0 SI
AX1 MX1 SE
AY0 MY0 SR1
AY1 MY1 SRO
AR MR2
MRI1
MRO
Example: MX1 = PM (I6, M5);

Description: The Program Memory Read Indirect instruction moves the
contents of the program memory location to the destination register. The
addressing mode is register indirect with post-modify. The 16 most
significant bits of the Program Memory Data bus (PMD23-8) are loaded
into the destination register, with bit PMD8lining up with bit O of the
destination register (right-justification). If the destination register is less
than 16 bits wide, the most significant bits are dropped. Bits PMD7-0 are
always loaded into the PX register. You may ignore these bits or read
them out on a subsequent cycle.

Status Generated: None affected

Instruction Format:
ALU / MAC Operation with Program Memory Read, Instruction Type 5:

2322212019181716151413121110987654 210
0101007 AMF [o OOOTDREGT [

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Read. In this case, AMF = 00000, indicating a No-
Op for the ALU / MAC function

DREG selects the destination Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

I specifies the indirect address pointer (I register). M specifies the modify
register (M register).

9-47

9-48

MOVE
DATA MEMORY WRITE (Direct Address)

Syntax: DM (<addr>) = reg ;

Permissible registers

AXO0 MX0 Sl SB CNTR
AX1 MX1 SE PX RX0
AY0 MY0O SR1 ASTAT RX1
AY1 MY1 SRO MSTAT X0
AR MRz 10-17 SSTAT (read only) X1

MR1 MO-M7 IMASK
MRO LO-L7 ICNTL

Example: DM (cntl_port0) = AR;

Description: Moves the contents of the source register to the data
memory location specified in the instruction word. The addressing mode
is direct addressing (designated by an immediate address value or by a
label). The data memory address is stored directly in the instruction word
as a full 14-bit field. Whenever a register less than 16 bits in length is
written to memory, the value written is either sign-extended to the left if
the source is a signed value, or zero-filled to the left if the source is an
unsigned value. The unsigned registers which are zero-filled to the left
are: 10 through I7, LO through L7, CNTR, PX, ASTAT, MSTAT, SSTAT,
IMASK, and ICNTL. All other registers are sign-extended to the left.

The contents of the source are always right-justified in the destination
location after the write (bit 0 maps to bit 0).

Status Generated: None affected.

Instruction Format:
Data Memory Read (Direct Address), Instruction Type 3:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
1 0 0 1[RGP} ADDR REG

ADDR contains the direct address of the destination location in Data
Memory.

RGP (Register Group) and REG (Register) select the destination register
according to the Register Selection Table (see Appendix A).

MOVE
DATA MEMORY WRITE (Indirect Address)

Syntax: DM (

data: <constant>
‘%’ <identifier>
‘N <identifier>

Permissible dregs

AXO0 MX0 SI
AX1 MX1 SE
AY0 MYO0 SR1
AY1 MY1 SRO
AR MR2
MR1
MRO
Example: DM (12, M0) = MR1;

Description: The Data Memory Write Indirect instruction moves the
contents of the source to the data memory location specified in the
instruction word. The immediate data may be a constant, or any identifier
referenced with the “length of” (%) or “pointer to” (*) operators.

The addressing mode is register indirect with post-modify. When a
register of less than 16 bits is written to memory, the value written is sign-
extended to form a 16-bit value. The contents of the source are always
right-justified in the destination location after the write (bit 0 maps to bit

0).

Status Generated: None affected.

9

9-49

9-50

MOVE
DATA MEMORY WRITE (Indirect Address)

Instruction Format:
ALU / MAC Operation with Data Memory Write, Instruction Type 4:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 5 4 3 210

Oll'G‘l o| AMF looooo}oREG‘Iha

AT e

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543 210

101'@' Data)I]M

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Write. In this case, AMF = 00000, indicating a No-
Op for the ALU / MAC function.

Data represents the actual 16-bit value.

DREG selects the source Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

G specifies which Data Address Generator the I and M registers are
selected from. These registers must be from the same DAG as separated
by the gray bar in the Syntax description above. I specifies the indirect
address pointer (I register). M specifies the modify register (M register).

a0

MOVE 9
PROGRAM MEMORY WRITE (Indirect Address)

Syntax: PM (4 |, M4 |) = dreg;

I5 M5
I6 M6
17 M7

Permissible dregs

AX0 MXO0 SI
AX1 MX1 SE
AY0 MY0 SR1
AY1 MY1 SRO

AR MR2
MR1
MRO

Example: PM (16, M5) = AR;

Description: The Program Memory Write Indirect instruction moves
the contents of the source to the program memory location specified in the
instruction word. The addressing mode is register indirect with post-
modify. The 16 most significant bits of the Program Memory Data bus
(PMD23-8) are loaded from the source register, with bit PMD8 aligned
with bit 0 of the source register (right justification). The 8 least significant
bits of the Program Memory Data bus (PMD?7-0) are loaded from the PX
register. Whenever a source register of length less than 16 bits is written to
memory, the value written is sign-extended to form a 16-bit value.

Status Generated: None affected.
Instruction Format:

ALU / MAC Operation with Program Memory Write, Instruction Type 5
(see Appendix A), as shown below:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1 0
01011ﬂ AMF ’ooooﬂDREGJI}M

AMF specifies the ALU or MAC operation to be performed in parallel
with the Program Memory Write. In this case, AMF = 00000, indicating a
No-Op for the ALU / MAC function.

DREG selects the source Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

I specifies the indirect address pointer (I register). M specifies the modify
register (M register).

9 - 51

PROGRAM FLOW
JUMP

Syntax: [IF cond 1 JUMP 14) ;
(I5)
ae)
17)
<addr>

Permissible conds

EQ NE GT GE LT

LE NEG POS AV NOT AV
AC NOTAC MV NOTMV NOTCE

Example: IF NOT CE JUMP top_loop;

Description: Test the optional condition and, if true, then perform the
specified jump. If the condition is not true then perform a no-operation.
Omitting the condition performs the jump unconditionally. The JUMP
instruction causes program execution to continue at the effective address
specified by the instruction. The addressing modes available for the JUMP
instruction are direct or register indirect.

If JUMP is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled. Consult your User’s Manual.

For direct addressing (using an immediate address value or a label), the
program address is stored directly in the instruction word as a full 14-bit
field. For register indirect jumps, the selected I register provides the
address; it is not post-modified in this case.

Status Generated: None affected.

Instruction Field:
Conditional JUMP Direct Instruction Type 10:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
00 0 1 1 OW ADDR ’COND

Conditional JUMP Indirect Instruction Type 19:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
oo00101loooooooo}z{oo$como

I specifies the I register (Indirect Address Pointer).

ADDR: immediate jump address COND: condition

PROGRAM FLOW
CALL

Syntax: [IF cond | CALL 14) ;
(15)
(16)
a7)
<addr>

Permissible conds

EQ NE GT GE LT

LE NEG POS AV NOT AV
AC NOTAC MV NOT MV NOT CE

Example: IF AV CALL scale_down;

Description: Test the optional condition and, if true, then perform the
specified call. If the condition is not true then perform a no-operation.
Omitting the condition performs the call unconditionally. The CALL
instruction is intended for calling subroutines. CALL pushes the PC stack
with the return address and causes program execution to continue at the
effective address specified by the instruction. The addressing modes
available for the CALL instruction are direct or register indirect.

If CALL is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled. Consult your User’s Manual.

For direct addressing (using an immediate address value or a label), the
program address is stored directly in the instruction word as a full 14-bit
tield. For register indirect jumps, the selected I register provides the
address; it is not post-modified in this case.

Status Generated: None affected.

Instruction Field:
Conditional JUMP Direct Instruction Type 10:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
o 0 0o 1 1 1J ADDR lCOND

Conditional JUMP Indirect Instruction Type 19:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000010‘1100000000JIJ01] COND

I specifies the I register (Indirect Address Pointer).
ADDR: immediate jump address COND: condition

9

PROGRAM FLOW
JUMP or CALL ON FLAG IN PIN

Syntax: IF FLAG IN <addr> | ;
NOT FLAG_IN CALL
Example: IF FLAG_IN JUMP service_proc_three;

Description: Test the condition of the FI pin of the ADSP-2101 and, if

set to one, perform the specified jump or call. If Fl is zero then perform a
no-operation. Omitting the flag in condition reduces the instruction to a

standard ADSP-2101 JUMP or CALL instruction.

The JUMP instruction causes program execution to continue at the

address specified by the instruction. The addressing mode for the JUMP
on FI must be direct.

The CALL instruction is intended for calling subroutines. CALL pushes
the PC stack with the return address and causes program execution to
continue at the address specified by the instruction. The addressing mode
for the CALL on FI must be direct.

If JUMP or CALL is the last instruction inside a DO UNTIL loop, you
must ensure that the loop stacks are properly handled. Consult your
User’s Manual.

For direct addressing (using an immediate address value or a label), the
program address is stored directly in the instruction word as a full 14-bit
tield.

Status Generated: None affected.

Instruction Field:
Conditional JUMP or CALL on Flag In Direct Instruction Type 27:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 54 32 1 0

0000 0 0 1 1 Address | addr|FIc|s
12 LSBs 2 MSBs
S specifies JUMP (0) or CALL (1) FIC: Latched state of FI pin

A

| =amt

—

T

.

U

PROGRAM FLOW
MODIFY FLAG OUT PIN

Syntax: [IF cond] SET FLAG OUT;
RESET
TOGGLE

Example: IF MV RESET FLAG_OUT;

Description: Evaluate the optional condition and if true, set to one,
reset to zero, or toggle the state of the FO pin of the ADSP-2101. Otherwise
perform a no-operation and continue with the next instruction. Omitting
the condition performs the operation unconditionally. Although this
instruction does not directly alter the flow of your program, it is provided
to signal external devices.

Status Generated: None affected.

Instruction Field:
Flag Out Mode Control Instruction Type 28:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
OOOOOOlOOOOOOOOOOO}FO'COND

FO: Operation to perform on FO pin COND: Condition code

9

9-56

PROGRAM FLOW
RTS

Syntax: [IFcond 1 RTS ;

Permissible conds

EQ NE GT GE LT

LE NEG POS AV NOT AV
AC NOTAC MV NOTMV NOTCE

Example: IFLE RTS ;

Descripiion: ‘lest the optional condition and, if true, then perform the
specified return. If the condition is not true then perform a no-operation.
Omitting the condition performs the return unconditionally. RTS executes
a program rcturn from a subroutine. The address on top of the PC stack is
popped and is used as the return address. The PC stack is the only stack
popped.

If RTS is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled. Consult the User’'s Manual.

Status Generated: None affected.

Instruction Field:
Conditional Return, Instruction Type 20:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 210

6o 0 o 0 1 0 1 0 0O 0 O 0 0 00O0OOCOO COND

COND: condition

£

|

B

I o

| m—

o

[—

o

o

I —1

PROGRAM FLOW
RTI

Syntax: [IF cond] RTI ;

Permissible conds

EQ NE GT GE LT

LE NEG POS AV NOT AV
AC NOTAC MV NOTMV NOTCE

Example: IF MV RTI ;

Description: Test the optional condition and, if true, then perform the
specified return. If the condition is not true then perform a no-operation.
Omitting the condition performs the return unconditionally. RTI executes
a program return from an interrupt service routine. The address on top of
the PC stack is popped and is used as the return address. The value on top
of the status stack is also popped, and is loaded into the arithmetic status
(ASTAT), mode status (MSTAT) and the interrupt mask (IMASK)
registers.

If RTI is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled. Consult the User’s Manual.

Status Generated: None affected.

Instruction Field:
Conditional Return, Instruction Type 20:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3210
oo 0 0 1 0 1 0 0O O0OC O O 0O 0O0O0OO0OO0OO0OOT1| conD

COND: condition

9

9-58

PROGRAM FLOW
DO UNTIL

Syntax: DO <addr> [UNTIL term] ;

Permissible terms

EQ NE GT GE LT FOREVER
LE NEG POS AV NOT AV

AC NOTAC MV NOTMV CE

Example: DO loop_label UNTIL CE ;

Description: DO UNTIL sets up looping circuitry for zero-overhead
looping. The program loop begins at the program instruction immediately
following the DO instruction, ends at the address designated in the
instruction and repeats execution until the specified condition is met (if a
condition is specified) or repeats in an infinite loop (if no condition is
specified). The condition is tested during execution of the last instruction
in the loop, the status having been generated upon completion of the
previous instruction. The address (<addr>) of the last instruction in the
loop is stored directly in the instruction word.

When the DO instruction is executed, the address of the last instruction is
pushed onto the loop stack along with the termination condition and the
current program counter value plus 1 is pushed onto the PC stack.

Any nesting of DO loops continues the process of pushing the loop and
PC stacks, up to the limit of the loop stack size (4 levels of loop nesting) or
of the PC stack size (16 levels for subroutines plus interrupts plus loops).
With either or both the loop or PC stacks full, a further attempt to perform
the DO instruction will set the appropriate stack overflow bit and will
perform a no-operation.

Status Generated:

ASTAT: Not affected.

SSTAT: 7 6 5 4 3 2 1 0
LSO LSE SSO SSE CSO CSE PSO PSE
* 0 - - - = 0

LSO Loop Stack Overflow: set if the loop stack overflows;
otherwise not affected.

LSE Loop Stack Empty: always cleared (indicating loop stack not
empty).

PSO
PSE

PROGRAM FLOW
DO UNTIL

PC Stack Overflow: set if the PC stack overflows; otherwise

not affected.

PC Stack Empty: always cleared (indicating PC stack not

empty).

Instruction Format:

Do Until, Instruction Type 11:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543210

0 0

0101'

Addr ‘ TERM

ADDR specifies the address of the last instruction in the loop. In the
Instruction Syntax, this field may be a program label or an immediate
address value.

TERM specifies the termination condition, as shown below.

COND
0000
0001
0010
0011
0100

= e e e e O
R E RO 00O
IR OO R R OO
—HOR O, O, O

Syntax
NE
EQ

FOREVER

Condition Tested

Not Equal to Zero

Equal Zero

Less Than or Equal to Zero
Greater Than Zero

Greater Than or Equal to Zero
Less Than Zero

Not ALU Overflow

ALU Overflow

Not ALU Carry

ALU Carry

X Input Sign Positive
XInput Sign Negative

Not MAC Overflow

MAC Overflow

Counter Expired

Always-

9-59

9-60

PROGRAM FLOW
IDLE

Syntax: IDLE ;

Description: On an ADSP-2101 processor, IDLE loops indefinitely in a
low-power state, waiting for interrupts. When an interrupt occurs it is
serviced and execution continues with the instruction following IDLE.
Typically this next instruction will be a JUMP back to IDLE, implementing
a low-power standby loop. (Note the restrictions on JUMP as the last
instruction in a DO UNTIL loop, detailed under the JUMP instruction
earlier in this section.)

The serial port autobuffering operation continues during IDLE.
: None affected.

Instruction Field:
Idle Instruction Type 31:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

5
0

3 2 0
00 0

765 4 1
6 o0 o 0 o0 0 1 0 1 0 0O 0 0 00O0OO0CO0OO0CO 0

S

MISC
STACK CONTROL

Syntax: [1 PUSH, STS] [,POP CNTR] [, POP PC] [,POP LOOP];
POP

Example: POP CNTR, POP PC, POP LOOP;

Description: Stack Control pushes or pops the designated stack(s). The
entire instruction executes in one cycle regardless of how many stacks are
specified.

The PUSH STS (Push Status Stack) instruction increments the status stack
pointer by one to point to the next available status stack location; and
pushes the arithmetic status (ASTAT), mode status (MSTAT), and
interrupt mask register (IMASK) onto the processor’s status stack. Note
that the PUSH STS operation is executed automatically whenever an
interrupt service routine is entered.

Any POP pops the value on the top of the designated stack and
decrements the same stack pointer to point to the next lowest location in
the stack. POP STS causes the arithmetic status (ASTAT), mode status
(MSTAT), and interrupt mask (IMASK) to be popped into these same
registers. This also happens automatically whenever a return from
interrupt (RTI) is executed.

POP CNTR causes the counter stack to be popped into the down counter.
When the loop stack or PC stack is popped (with POP LOOP or POP PC,
respectively), the information is lost. Returning from an interrupt (RTI)
also pops the PC counter automatically.

9

9-61

MISC
STACK CONTROL

Status Generated:
SSTAT: 7 6 5 4 3 2 1 0
LSO LSE SSO SSE CSO CSE PSO PSE
* * * *

*

PSE PC Stack Empty: cleared if a pop results in an empty
program counter stack; set otherwise.

CSE Counter Stack Empty: cleared if a pop results in an empty
counter stack; set otherwise.

SSE Staius Stack Empty: for PUSH S1S, this bit is always cleared
(indicating status stack not empty). For POP STS, SSE is
cleared if the pop results in an empty status stack; set
otherwise.

550 Status Stack Overflow: for PUSH STS set if the status stack
overflows; otherwise not affected.

LSE Loop Stack Empty: cleared if a pop results in an empty loop

stack; set otherwise.

Note that once any Stack Overflow occurs, the corresponding stack
overflow bit is set in SSTAT, and this bit stays set indicating there has
been loss of information. Once set, the stack overflow bit can only be
cleared by resetting the processor.

Instruction Format:
Stack Control, Instruction Type 26:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1 0
00 000 1 00 00 0O 000000O0O ;PptLple}Spp
Pp: PC Stack Control Lp: Loop Stack Control

Cp: Counter Stack Control Spp: Status Stack Control

MISC
MODE CONTROL

Syntax: 1 ENA BIT REV [,...1;
DIS AV_LATCH

AR SAT

SEC_REG

G_MODE

M_MODE

TIMER

Example: ENA AR_SAT, ENA M_MODE;

Description: Enables (ENA) or disables (DIS) the designated processor
mode. The corresponding mode status bit in the mode status register
(MSTAT) is set for ENAble mode and cleared for DISable mode. At
RESET, MSTAT is set to zero, meaning that all modes are disabled. Any
number of modes can be changed in one cycle with this instruction. Each
ENA or DIS clause must be separated by a comma from the next.

MSTAT Bits:

0 SEC_REG Alternate Register Data Bank

1 BIT REV Bit-Reverse Mode on Address Generator #1
2 AV_LATCH ALU Overflow Status Latch Mode

3 AR _SAT ALU AR Register Saturation Mode

4 M_MODE MAC Result Placement Mode

5 TIMER Timer Enable

6 G_MODE Enables GO Mode

The data register bank select bit (SEC_REG) determines which set of data
registers is currently active (0 = primary, 1 = secondary).

The bit-reverse mode bit (BIT REV), when set to 1, causes addresses
generated by Data Address Generator #1 to be output in bit reversed
order.

The ALU overflow latch mode bit (AV_LATCH), when set to 1, causes the
AV bit in the arithmetic status register to stay set once an ALU overflow
occurs. In this mode, if an ALU overflow occurs, the AV bit will be set and
will remain set even if subsequent ALU operations do not generate
overflows. The AV bit can only be cleared by writing a zero into it directly
over the DMD bus.

9

9-64

MISC
MODE CONTROL

The AR saturation mode bit, (AR_SAT), when set to 1, causes the AR
register to saturate if an ALU operation causes an overflow, as described
in the ALU section of this document. L

The ADSP-2101 MAC result placement mode (M_MODE) determines
whether or not the left shift is made between the multiplier product and
the MR register.

decreimenting logic. Ciearing it haits the timer.

The “Go” mode allows the ADSP-2101 to continue executing instructions
during a bus grant. In the microprocessor ADSP-2100 access to external
memory was essential for fetching instructions and/or data. In the
microcomputer ADSP-2101 this is often not true. The Go mode allows the
processor to run; only if an external memory access is required does the
processor halt, waiting for the bus to be released.

Instruction Format:
Mode Control, Instruction Type 18:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0 -
OOOOllOO‘TIjMM‘ASlOLTBRTSR;GM[OO L

TI: Timer Enable MM: Multiplier Placement
AS: AR Saturation Mode Control ~ OL: ALU Overflow Latch Mode :
BR: Bit Reverse Mode Control Control “
GM: Go Mode SR: Secondary Register Bank

Mode

MISC
MODIFY ADDRESS REGISTER

Syntax: MODIFY (

Example: MODIFY (11, M1);

Description: Add the selected M register (Mn) to the selected I register
(Im), then process the modified address through the modulus logic with
buffer length as determined by the L register corresponding to the
selected I register (Lm), and store the resulting address pointer calculation
in the selected I register. The I register is modified as if an indexed
memory address were taking place, but no actual memory data transfer
occurs.

The selection of the I and M registers is constrained to registers within the
same Data Address Generator: selection of 10-I3 in Data Address
Generator #1 constrains selection of the M registers to MO-M3. Similarly,
selection of 14-17 constrains the M registers to M4-M7.

Status Generated: None affected.

Instruction Format:
Modify Address Register, Instruction Type 21:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
oooo1oo1ooooooooooojG|I{M

G specifies which Data Address Generator is selected. The I and M
registers specified must be from the same DAG, separated by the gray bar
above. I specifies the I register (depends on which DAG is selected by the
G bit). M specifies the M register (depends on which DAG is selected by
the G bit).

9-66

MISC
NOP

Syntax: NOP ;

Description: No operation occurs for one cycle. Execution continues
with the instruction following the NOP instruction.

Status Generated: None affected.

Instruction Format:
No operation, Instruction Type 30 (see Appendix A), as shown below:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

76543210
6 0 o0 o0 0 0 0 0 0O 0O O O O 0OO0OOOOOCOOOOO

——y

MULTIFUNCTION
COMPUTATION with MEMORY READ

Syntax: 1<ALU> , dreg= | DM() |
<MAC>
<SHIFT>
PM (4|, | M4)
5 M5
16 M6
17 M7
Permissible dregs
AXO0 MXO0 SI
AX1 MX1 SE
AYO0 MYO0 SRO
AY1 MY1 SR1
AR MRO
MR1
MR2

Description: Perform the designated arithmetic operation and data
transfer. The read operation moves the contents of the source to the
destination register. The addressing mode when combining an arithmetic
operation with a memory read is register indirect with post-modify. The
contents of the source are always right-justified in the destination register.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Inmediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (computation first, memory read second) is intended to imply this.
In fact, you may code this instruction with the order of clauses reversed.
The Assembler produces a warning, but the results are identical at the
opcode level. If you turn off semantics checking in the Assembler (-s
switch) the warning is not issued.

9

9-68

ULTIFUNCTION
COMPUTATION with

Because of the read-first, write-second characteristic of the processor,
using the same register as source in one clause and a destination in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle. Using
the same register as a destination in both clauses, however, produces an
indeterminate result and should not be done. The Assembler issues a
warning unless semantics checking is turned off. Regardless of whether or
not the warning is produced, however, this practice is not supported.

For example,
(1) AR = AX0 + AY0, AX0 = DM (10, M0);

is a legal version of this multifunction instruction and is not flagged by the
Assembler. Reversing the order of clauses, as in

(2) AX0 =DM (10, M0) , AR = AX0 + AYO0;

results in an Assembler warning, but assembles and executes exactly as
the first form of the instruction. Note that reading example (2) from left to
right may suggest that the data memory value is loaded into AX0 and
then used in the computation, all in the same cycle. In fact, this is not
possible. The left-to-right logic of example (1) suggests the operation of
the instruction more closely. Regardless of the apparent logic of reading
the instruction from left to right, the read-first, write-second operation of
the processor determines what actually happens.

The following, therefore, is illegal and not supported, even though
Assembler semantics checking produces only a warning;:

(3) AR =AX0 + AY0, AR = DM (10, MO0); Illegal!

MULTIFUNCTION
COMPUTATION with MEMORY READ

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
S MV AQ AS AC AV AN A
- - - * * *

* *

AZ Set if result equals zero. Cleared otherwise.

AN Set if result is negative. Cleared otherwise.

AV Set if an overflow is generated. Cleared otherwise.

AC Set if a carry is generated. Cleared otherwise.

AS Affected only when executing the Absolute Value operation
(ABS). Set if the source operand is negative.

<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- * - - - - - -

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
* - - - -

SS Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

9-69

9-70

MULTIFUNCTION
COMPUTATION with MEMORY READ

Instruction Format:
ALU/MAC operation with Data Memory Read, Instruction Type 4:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 76 543210

0 1 ll Gi O) Z' AMF ‘ Yop } Xop ! Dreg ’ I ‘ M

ALU/MAC operation with Program Memory Read, Instruction Type 5:

23 22 21 20 19]18

T

17 16 15 14 13 12 11 10 98 76 543210
i -

0o o0 1 Oi Zi AME | Yop i Xop | breg | I | M
Shift operation with Data Memory Read, Instruction Type 12:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 543210

0001001‘(;‘0\ SF‘Xop[Dreg‘I{M

Shift operation with Program Memory Read, Instruction Type 13:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6543210

0 0 010 0 0 1 O' SF ‘ Xop ‘ Dreg } I J M
Z: Result register Dreg: Destination register
SF: Shifter operation AMF: ALU/MAC operation
Yop: Y operand Xop: X operand
G: Data Address Generator I: Indirect address
M: Modify register register

MULTIFUNCTION
COMPUTATION with REGISTER to REGISTER MOVE

Syntax: . <ALU> , dreg= dreg ;
<MAC>
<SHIFT>

Permissible dregs

AXO0 MXO0 SI

AX1 MX1 SE

AY0 MYO0 SRO

AY1 MY1 SR1

AR MRO

MR1
MR2

Description: Perform the designated arithmetic operation and data
transfer. The contents of the source are always right-justified in the
destination register after the read.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Inmediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (computation first, register transfer second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
reversed. The Assembler produces a warning, but the results are identical
at the opcode level. If you turn off semantics checking in the Assembler
(—s switch) the warning is not issued.

Because of the read-first, write-second characteristic of the processor,
using the same register as source in one clause and a destination in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle. Using
the same register as a destination in both clauses, however, produces an
indeterminate result and should not be done. The Assembler issues a
warning unless semantics checking is turned off. Regardless of whether or
not the warning is produced, however, this practice is not supported.

9

MULTIFUNCTION
COMPUTATION with REGISTER to REGISTER MOVE

For example,
(1) AR = AX0 + AY0, AX0 = MR1;

is a legal version of this multifunction instruction and is not flagged by the
Assembler. Reversing the order of clauses, as in

(2) AX0=MR1, AR =AX0 + AY(;

results in an Assembler warning, but assembles and executes exactly as
the first form of the instruction. Note that reading example (2) from left to
right may suggest that the MR1 register value is loaded into AX0 and then
AX0 is used in the computation, all in the same cycle. In fact, this is not
possible. The left-to-right logic of example (1) suggests the operation of
the instruction more closely. Regardless of the apparent logic of reading
the instruction from left to right, the read-first, write-second operation of
the processor determines what actually happens.

The following, therefore, is illegal and not supported, even though
Assembler semantics checking produces only a warning:

(3) AR=AX0 + AY0, AR = MR1; Illegal!

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN A
- - - * * *

* *

AZ Set if result equals zero. Cleared otherwise.

AN Set if result is negative. Cleared otherwise.

AV Set if an overflow is generated. Cleared otherwise.

AC Set if a carry is generated. Cleared otherwise.

AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

MULTIFUNCTION
COMPUTATION with REGISTER to REGISTER MOVE

<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
I - - - -

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
* L - - - - - -

SS Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

Instruction Format:
ALU/MAC operation with Data Register Move, Instruction Type 8:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 210
0 0 1 0 1 2z| AMF Yop Xop ' Dreg Dreg
destination source

Shift operation with Data Register Move, Instruction Type 14:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3210

o o0 0 1 0 o0/ 0 0 O SF Xop i Dreg Dreg
destination source
Z: Result register Dreg: Destination register
SF: Shifter operation AMEF: ALU/MAC operation
Yop: Y operand Xop: X operand

9-74

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

Syntax: DM (<ALU>
<MAC>

<SHIFT>

=dreg,

4

PM (

Permissible dregs

AX0 MX0 SI
AX1 MX1 SE
AYO0 MYO0 SRO
AY1 MY1 SR1
AR MRO

MR1

MR2

Description: Perform the designated arithmetic operation and data
transfer. The write operation moves the contents of the source to the
specified memory location. The addressing mode when combining an
arithmetic operation with a memory write is register indirect with post-
modify. The contents of the source are always right-justified in the
destination register.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Inmediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (memory write first, computation second) is intended to imply
this. In fact, you may code this instruction with the order of clauses

reversed. The Assembler produces a warning, but the results are identical

at the opcode level. If you turn off semantics checking in the Assembler
(-s switch) the warning is not issued.

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

Because of the read-first, write-second characteristic of the processor,
using the same register as destination in one clause and a source in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle.

For example,
(1) DM (I0, M0) = AR, AR = AX0 + AY0;

is a legal version of this multifunction instruction and is not flagged by the
Assembler. Reversing the order of clauses, as in

(2) AR = AX0 + AY0, DM (I0, M0) = AR;

results in an Assembler warning, but assembles and executes exactly as
the first form of the instruction. Note that reading example (2) from left to
right may suggest that the result of the computation in AR is then written
to memory, all in the same cycle. In fact, this is not possible. The left-to-
right logic of example (1) suggests the operation of the instruction more
closely. Regardless of the apparent logic of reading the instruction from
left to right, the read-first, write-second operation of the processor
determines what actually happens.

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
S MV AQ AS AC AV AN A
_ _ _ * * *

* *

AZ Set if result equals zero. Cleared otherwise.

AN Set if result is negative. Cleared otherwise.

AV Set if an overflow is generated. Cleared otherwise.

AC Set if a carry is generated. Cleared otherwise.

AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

9-76

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT: 7 6 5 4 3 2 1 0
S5 MV AQ AS AC AV AN AZ
* - - - - - - -

SS Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

Instruction Format:
ALU/MAC operation with Data Memory Write, Instruction Type 4:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 210
OlliGlllZ{AMF }Yop'Xop.Dreg'IJM

ALU/MAC operation with Program Memory Write, Instruction Type 5:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 65 43210
OlOlllZ]AMF IYopJXopJDreg'I‘M

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

Shift operation with Data Memory Write, Instruction Type 12:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543210
0001001‘G‘lk SFlXoplDreg'I}M

Shift operation with Program Memory Write, Instruction Type 13:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 10

000100011{ SF|Xop‘Dreg'I'M
Z: Result register Dreg: Destination register
SF: Shifter operation AMEF: ALU/MAC operation
Yop: Y operand Xop: X operand
I: Indirect address register M: Modify register
G: Data Address Generator; I & M registers must be from the same

DAG, as separated by the gray bar in the Syntax description.

9-77

9-78

MULTIFUNCTION
DATA & PROGRAM MEMORY READ

Syntax:

AXO | =DM (|10, |MO|), | AYO | =PM (| 14|, | M4]);
AX1 I M1 AY1 15 M5
MX0 2 M2 MY0 16 M6
MX1 3 M3 MY1 17 M7

Description: Perform the designated memory reads, one from data
memory and one from program memory. Each read operation moves the
contents of the memery location o the deslinaiion register. For this double
data fetch, the destinations for data memory reads are the X registers in
the ALU and the MAC, and the destinations for program memory reads
are the Y registers. The addressing mode for this memory read is indirect
with post-modify. The contents of the source are always right-justified in
the destination register.

For information on extra cycle conditions, refer to the Instruction Set
Overview at the beginning of this chapter.

Status Generated: No status bits are affected.

Instruction Format:
ALU/MAC with Data & Program Memory Read, Instruction Type 1:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 43210
1 1| PD DD AMF 0 0 0O0O0| PM| PM| DM| DM
I M I M

AMF specifies the ALU or MAC function. In this case, AMF = 00000,
designating a no-operation for the ALU or MAC function.

PD: Program Destination register =~ DD: Data Destination register
AMEF: ALU/MAC operation I Indirect address register
M: Modify register

MULTIFUNCTION
ALU / MAC with DATA & PROGRAM MEMORY READ

Syntax:

<ALU> |, |AX0 |= DM (| 10|,|MO|), |AYO| =PM (| 14|, |M4|);

<MAC>| |AX1 11| M1 |AY1 5| |M5
MX0 2 |M2| MYO 16| | M6
MX1 B3] M3 IMY1 71 M7

Description: This instruction combines an ALU or a MAC operation
with a data memory read and a program memory read. The read
operations move the contents of the memory location to the destination
register. For this double data fetch, the destinations for data memory
reads are the X registers in the ALU and the MAC, and the destinations
for program memory reads are the Y registers. The addressing mode is
register indirect with post-modify. The contents of the source are always
right-justified in the destination register after the read.

The computation must be unconditional. All ALU and MAC operations
are permitted except the DIVS and DIVQ instructions. The results of the
computation must be written into the R register of the computational unit;
ALU results to AR, MAC results to MR.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (computation first, memory reads second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
altered. The Assembler produces a warning, but the results are identical at
the opcode level. If you turn off semantics checking in the Assembler (-s
switch) the warning is not issued.

The same data register may be used as a source for the arithmetic
operation and as a destination for the memory read. The register supplies
the value present at the beginning of the cycle and is written with the
value from memory at the end of the cycle.

9-80

MULTIFUNCTION
ALU / MAC with DATA & PROGRAM MEMORY READ

For example,
(1) MR=MR+MX0*MY0(UU), MX0=DM(10, M0), MY0=PM(14,M4);

is a legal version of this multifunction instruction and is not flagged by the
Assembler. Changing the order of clauses, as in

{2) MX0=DM(i0, M0), MY0=PM(14,M4), MR=MR+MX0*MY0(UU);

results in an Assembier warning, but assembles and executes exactly as
the first form of the instruction. Note that reading example (2) from left to
right may suggest that the data memory value is loaded into MX0 and
MY0 and subsequently used in the computation, all in the same cycle. In
fact, this is not possible. The left-to-right logic of example (1) suggests the
operation of the instruction more closely. Regardless of the apparent logic
of reading the instruction from left to right, the read-first, write-second

operation of the processor determines what actually happens.

Status Generated: All status bits are affected in the same way as for the
single operation version of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN A
- - - * * %

* *

AZ Set if result equals zero. Cleared otherwise.

AN Set if result is negative. Cleared otherwise.

AV Set if an overflow is generated. Cleared otherwise.

AC Set if a carry is generated. Cleared otherwise.

AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.
<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
I - - - -

MV Set if the accumulated product overflows the lower-order 32-
bits of the MR register. Cleared otherwise.

i —

-1

MULTIFUNCTION
ALU/MAC with DATA & PROGRAM MEMORY READ

Instruction Format:
ALU/MAC with Data and Program Memory Read, Instruction Type 1:

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 10
1 1| PD DD AMF Yop Xop PM| PM| DM| DM
I M I M

PD: Program Destination register =~ DD: Data Destination register
AMF: ALU/MAC operation M: Modify register

Yop: Y operand Xop: X operand

L: Indirect address register

9-81

=

[—]

Lo

[E—

[

L4

Instruction Coding

- A1 OPCODES

Here is a summary of the complete instruction set of the ADSP-2101.
Following the list of types and codes shown immediately below is a key to
the abbreviations used. Any instruction codes not shown are reserved for
future use.

Type 1: ALU / MAC with Data & Program Memory Read

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 543210
11 PD DD AMF Yop Xop pPM| PM| DM| DM
I M I M

Type 2: Data Memory Write (Immediate Data)

. | 23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
101‘G| DATA |1'M

Type 3: Read /Write Data Memory (Immediate Address)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
1 0 0| D] RGP| ADDR | REG

- Type 4: ALU / MAC with Data Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 1 1[GTDFZ| AMF | vop | xOp{DREG TI!M

)

Type 5: ALU / MAC with Program Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
= OlO|l|D|Zl AMF 1Yop|Xop|DREG|I|M

Type 6: Load Data Register Immediate

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

4 3210

0 1

0 o]

DREG

Type 7: Load Non-Data Register Inmediate

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 & 5

0 0 1 li RGP | REG
Type 8: ALU / MAC with Internal Data Register Move

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0

0 0 1 0 1| z AMF Yop Xop Dest Source

DREG DREG

Type 9: Conditional ALU / MAC

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1 0

0o 0 1 0 of z] AMF 1Yop|XopLOOOO! COND
Type 10: Conditional Jump (Immediate Address)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0

0 0 0 1 1] s] ADDR COND
Type 11: Do Until
123 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0

0O 0 o0 1 0 11 ADDR COND
Type 12: Shift with Data Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0

0001001[G’D|

SF 1 Xop] DREG

[r]m

[“a—

oY

Type 13:

Shift with Program Memory Read / Write

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 0 1 0 0 0 1]p] sf | Xop | DREG | 1] M
Type 14: Shift with Internal Data Register Move
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 0 1 0 0 0 0 O SF Xop Dest Source
REG REG
Type 15: Shift Immediate
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 76 54 3 2 1 0
0 0 0 01 1 1 1 0] Sf | xop | exponent
Type 16: Conditional Shift
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 o 0 1 1 1 0 0] Sf | xop [0 00 0] comn
Type 17: Internal Data Move
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 5 4 3 2 1 0
o 06 0 0 1 1 0 1 0 0 0 0| DST |SRC| Dest Source
RGP | RGP | REG REG
Type 18: Mode Control
23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 00 01 1 0 of vt | m| as | o] BR| sr| am[o 0

Explanation of these codes can be found together alphabetically under “Mode Control” in

the next section.

A Instruction Codi

Type 19: Conditional Jump (Indirect Address)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0000101100000000|IIO|SJCOND
Type 20: Conditional Return

| 23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 i 0
0 0 0 0 1 01 00 0 0 0 0 00000 O0[T| cow
Type 21: Modify Address Register

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
© 0 0 01 00 100000 000000/6/1]|M
Type 22: Reserved

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
0O 0 0 0 1 0 0 0 x x x X X X X
Type 23: DivQ

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
0 0 0 0 01 1 1 0 0 0 1 0/Xp (00000000
Type 24: DIVS

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 54 3 2 1 0
OOOOOllOOOOIYOp]XOp_IOOOOO 00
Type 25: Saturate MR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 98 7 6 54 3 2 1 0
00 0 00O 1 0 1 00 0 0O 0000000000O02O

Instruction Codin

Type 26: Stack Control
23 22 21 20 19 18 17 16 15 14 13 12 11 10 654 3 2 10
0 0 00 1 0 0 0 0 0 0 0 O OO’PP}LP’CP’SPP
Type 27: Call or Jump on Flag In
23 22 21 20 19 18 17 16 15 14 13 12 11 10 654 32 1 0
0 0 0 0 0 0 1 1] Address |addr|FIc|s
T
12 LSBs 2 MSBs
Type 28: Flag Out Mode Control
h 23 22 21 20 19 18 17 16 15 14 13 12 11 10 6543210
- 00 00 00 1 00000 0 0 oo]Fo[COND
Type 29: Reserved
- 23 22 21 20 19 18 17 16 15 14 13 12 11 10 6543210
0o 0 O O 0 0 0 1 x x X X X X X X X X X X X
Type 30: No Operation
23 22 21 20 19 18 17 16 15 14 13 12 11 10 6543210
0 0 00 0 0 0 0 0 0 0 0 0 000000
Type 31: Idle
23 22 21 20 19 18 17 16 15 14 13 12 11 10 54321
0O 0 00 00O 1 0 1 0 0 0 0 0 0000000

ABBREVIATION CODING

A2

ALU / MAC Function codes

AMF

No operation

00O0O0O

MAC Function codes

=0

Clear wheny

o~ N o~

—

—_—— e - T T T o T T

XY

00001
00010

MR+X*Y

MR- X * Y
X*Y

00100

MR +X*Y

01000
01001
01010

MR+ X*Y

MR+X™Y

MR +X*Y

01011
01100
01101

MR-X*Y

MR-X*Y

MR-X*Y

01110
01111

MR-X*Y

ALU Function codes

=0

Clear wheny

Y

10000
10001

Y +1

X+Y+C
X+Y

10010
10011
10100
10101
10110
10111

=0

Xwheny

NOTY
-Y

X-Y+C-1
X-Y
Y-1

11000
11001
11010

=0

-Xwheny

Y-X

Y-X+C-1

A-6

11011 NOTX
11100 XANDY
11101 XORY
11110 XXORY
11111 ABSX

COND Status Condition codes

Equal

Not equal

Greater than

Less than or equal
Less than

Greater than or equal
ALU Overflow

NOT ALU Overflow
ALU Carry

Not ALU Carry

X input sign negative
X input sign positive
MAC Overflow

Not MAC Overflow
Not counter expired
Always

el el el e e el e el ol oo RN o]
P PR PR OO O0OO0OFRr R RFEREOOOO
HF R, OORFR,RKFEF OO RF OOKFHE OO
P O, O OF O O O Ok O

CcP Counter Stack Pop codes
0 No change
1 Pop
D Memory Access Direction codes

0 Read
1 Write

EQ

NE

GT

LE

LT

GE

AV

NOT AV
AC

NOT AC
NEG
POS

MV

NOT MV
NOT CE
FOREVER

A Instruction Coding

DD

DREG

FIC

Double Data Fetch Data Memory Destination codes

00 AX0
01 AX1
10 MXO0
11 MX1
Data Register codes
0000 AX0
0001 AX1
0010 MX0
0011 MX1
0100 AY0
0101 AY1
0110 MY0
0111 MY1
1000 Sl
1001 SE
1010 AR
1011 MRO
1100 MR1
1101 MR2
1110 SRO
1111 SR1
FI condition code

1 latched Fl is 1 FLAG_IN
0 latched Flis 0 NOT FLAG_IN

FO

LP

Instruction Cod

Mode Control codes for Flag Out pin

FO: Set, reset, or toggle the output Flag.
00 No change

01 Toggle

10 Reset

11 Set

Data Address Generator codes

0 DAG1

1 DAG2

Index Register codes

G= 0 1

00 10 14

01 I 15

10 12 16

11 13 17

Loop Stack Pop codes

0 No Change

1 Pop

Modify Register codes

G= 0 1

00 MO M4
01 M1 M5
10 M2 M6
11 M3 M7

Mode Control codes

SR: Secondary register bank
BR: Bit-reverse mode
oL ALU overflow latch mode
AS: AR register saturate mode
MM: Alternate Multiplier placement mode
GM: GOMode; enable means go if possible
T Timer enable
00 No change
01 No change
10 Deactivate
11 Activate
PD Double Data Fetch Program Memory Destination codes
00 AY0
01 AY1
10 MY0
11 MY1
PP PC Stack Pop codes
0 No Change
1 Pop

A-10

-

REG

SF

Register codes
RGP = 00

AX0
AX1
MX0
MX1
AY0
AY1
MYO
MY1
S
SE
AR
MRo
MR1
MR2
SR0
SR1

R R R R R R R R0 00000
R R R R OO0 O0O0ORRFERREOO OO
R R OO R OORREOORRFEOO
H O ORFR ORFRORFR OFOFRFRO RO

Jump Type codes

0 Jump
1 Call

Shifter Function codes

LSHIFT
LSHIFT
LSHIFT
LSHIFT
ASHIFT
ASHIFT
ASHIFT
ASHIFT
NORM

= o O O O o o oo
ORrRr P RFRP P OO OO
O P OOk = OO
O OF OF O F O

10 11

14 ASTAT

15 MSTAT

16 SSTAT

17 IMASK

M4 ICNTL

M5 CNTR

M6 SB

M7 PX

L4 RX0

L5 X0

L6 RX1

L7 ™1

- IFC (write only)
- OWRCNTR (write only)

(HI, PASS)
(HI, OR)
(LO, PASS)
(LO, OR)
(HI, PASS)
(HI, OR)
(LO, PASS)
(LO, OR)
(HI, PASS)

A-11

A Instruction Coding

A-12

1001 NORM (HI, OR)
1010 NORM (LO, PASS)
1011 NORM (LO, OR)
1100 EXP (HI)
1101 EXP (HIX)
1110 EXP (LO)
1111 Derive Block Exponent
Status Stack Push/Pop cades

00 No change

01 No change

10 Push

11 Pop

Return Type codes

0 Return from Subroutine

1 Return from Interrupt

X Operand codes

000 X0 (S for shifter)

001 X1 (invalid for shifter)
010 AR

011 MRO

100 MR1

101 MR2

110 SR0

111 SR1

Y Operand codes

00 Y0

01 Y1

10 F (feedback register)
11 zero

ALU/MAC Result Register codes

0 Result register
1 Feedback register

[

I

—

File Formats

B1 DATAFILES (.DAT)

The .DAT file format is used for data buffer initialization in source code,
simulated parallel and serial port data flow, and saving or loading
simulated memory. The format is generally the same for all uses, with
some restrictions as detailed in this section. The .DAT extension is a DOS
convention only and is not required by the Linker or Simulator.

These files contain text only: the characters for hexadecimal, decimal, and
binary data. Any standard text editor can be used to create the files.

B.1.1 Assembler Buffer Initialization Files

The .INIT Assembler directive names an external file from which to
initialize a data buffer. This file is created by the user and specified in
source code with the .INIT directive. The data file should be located in the
directory from which the Linker is invoked, or the path specifying the
directory which does contain the file must be given in the .INIT directive.
The Linker reads this file and loads the buffers via the .EXE memory
image file. The file can be of any length.

B.1.1.1 Integer Data

The standard format of this file is a single four- or six-character
hexadecimal number per line of input (carriage returns are ignored). If a
file for DM contains six characters per line, however, the four most
significant digits of each number are used and the other two are ignored.

Files for PM are typically six characters per line. If a line in the file
contains only four characters, the number is left-justified and zero-filled to
the right.

For example, if your data file contained these lines:

002222
2222
220001
2211

The contents if loaded in DM would be:

0022
2222
2200
2211

ho 1 ~ Ao Ty 13 L .
e contents if loaded in PM would be:

(zero-filled)
{zero-filled)

B.1.1.2 Non-Integer Data

Buffer initialization files can contain decimal numbers with fractional
components. These non-integer (or floating point) values are treated by
the Linker as integers; the fractional component is ignored (not rounded).
For example, the data value

5.862
is loaded in memory as
5

B.1.1.3 Comments

Comments can be entered on each line in a buffer initialization file,
anywhere to the right of the data. The comments do not need to be
enclosed in brackets; anything other than data is ignored by the Linker.

B.1.2 Simulator Data Files

The Simulator requires external files to simulate input and output data for
memory-mapped I/O ports, to simulate receive and transmit data for
serial ports, and to store or load simulated processor memory with the D
and E commands.

B.1.2.1 1/O Port Data

You must create this file to provide input data to parallel ports in DM or
PM. The file format is one four-character hexadecimal number per line for
DM-mapped ports, and one six-character hexadecimal number for PM-
mapped ports. Carriage returns are ignored by the Simulator.

If data is written out to the port, the Simulator opens a file to store the
output data.

B.1.2.2 SPORT Data

A file must also be created to provide simulated (receive) serial data to the
serial ports. The input file must consist entirely of ones, zeros, and
carriage returns. A single line in the file may have any number of ones
and zeros; carriage returns may be used to terminate each line and make
the file more readable. The Simulator reads the ASCII characters and
ignores carriage returns.

The Simulator opens a file to store output (transmit) data.

B.1.2.3 Simulated Memory Data

Portions of PM or DM can be saved to or loaded from an external file by
the Simulator with the use of the D (dump memory) and E (enter
memory) commands. The file format for data to be loaded with the E
command is the same as that for I/O port data, described above; four-
character hex numbers for DM and six-character numbers for PM. The
files saved to with the D command are useful for intermediate storage of
simulated PM or DM contents to be reloaded by the Simulator later or
input to other software applications.

B.2 MEMORY IMAGE FILE (.EXE)

The PM/DM/BM Memory Image File is created by the Linker. This file
contains the memory images of the system that the user has created using
the development system. Memory images include assembled and
resolved opcodes and initialized data buffers. The Memory Image File is
used to upload executable code to the ADSP-2101 Simulator, Emulator
and PROM Splitter.

The first three characters of this file are “<ESC> <ESC> i”. These
characters tell the Emulator that the following code is upload information
for PM, DM, and BM.

Each “kernel” of information that can be uploaded into a particular area of
memory is headed by one of the following: @PA, @PO, @DA, @DO, @BO.
The P indicates program memory; D indicates data memory; B indicates
boot memory; O indicates ROM; A indicates RAM.

File Formats

Following this header is a four-character hexadecimal address where
upload starts. Only areas of memory that need to be loaded will have
kernels associated with them. Following this is the series of words to be
uploaded sequentially from the start address. These words are six
characters for PM and BM, and four characters for DM, all hexadecimal.

Each kernel is terminated by #nnnnnn..., which is a dummy value
separating kerneis. Kernels can occur in any order.

This file is closed by “<ESC> <ESC> 0” to tell the Emulator that the
upload is complete. <ESC> sequences are ignored by the Simulator and
the PROM Splitter.

An example .EXE Image File is shown below:

<ESC> <ESC>1
@PO

0004

1CO07F

1CO5BF

OAOOOF
#123123123123
@DA

0000

2D40

0000
#123123123123
@BO

0000

03242A

025B26

01921¢C
#123123123123
@PO

6000

TFFFFF

TFFD88

80009E
#123123123123
@BO

0800

0AQQOF

FD88TF

ey

025B26
#123123123123
@DA

0182

0040
#123123123123
@DA

0183

0000
#123123123123
<ESC> <ESC>o

Notice that the boot memory words in this file are only 24 bits wide,
instead of 32 bits wide as in the boot memory PROMS. The Linker does
not generate 32-bit boot memory words; this is done by the PROM Splitter
(which reads the .EXE file).

Acccordingly, the boot memory addresses in the .EXE file are word
addresses, not PROM byte addresses. These word addresses are similar to
program memory addresses; each address locates a 24-bit word of code or
data.

The Linker views boot memory as an array of words, of length 16K, and
divided into 8 pages of 2K each. The page number is embedded in the
@BO address: 0000 is the start of page 0, 0800 is the start of page 1, 1000 is
the start of page 2, etc.. To obtain the page number, divide the hex address
by 2K and drop the remainder.

B.3 DEBUG SYMBOL TABLE FILE (.SYM)

The Debug Symbol Table File (SYM) is created by the Linker. It lists all of
the symbols and associated addresses encountered by the Linker. A
separate list is generated for each module which includes all symbols that
can be referenced by that module.

The first three characters of this file are “<ESC> <ESC> d”. These
characters tell the Emulator that the following code is the Debug Symbol
information.

The “m directive” is used to specify the source code module which is the
scope of a set of symbols. The “m directive” takes the form

_mmodulename addr

where modulename is the name of the module and addr is the module base
address, in hexadecimal. A p, d, or b# is appended to indicate placement
in PM, DM, or BM. The boot page number is listed following the b, as in
I/bO/I .

On lines following this directive are the symbols which can be referenced
within the context of the named module. With each symbol is the
associated hex address and an indication of the memory to which it
belongs (d p, or b#). AZZ77 in the address field indicates that the
address for that symbol was never resolved (noi all symbols have memory
addresses associated with them).

The file is closed by “<ESC> <IE5C> 0” io tell the Emulator that the Debug
Symbol File transmission is complete. <ESC> sequences are ignored by
the Simulator.

The following is an example of a Debug Symbol Table File for a single
module in program memory which is not booted:

<ESC> <ESC>d

_mFFT 0004p

REAL OUTPUT 1000d
IMAGINARY OUTPUT 2000d
MAGN 0100d

SIN COEF 6000p
COS_COEF 6080p

FFT START 0020p
BUTTERFLY LOOP 0033p
GROUP_LOOP 0037p
STAGE LOOP 0040p
<ESC> <ESC>o

The following example shows the .SYM file for this manual’s example
program (see Chapter 3, Assembler), consisting of two modules on boot

page 0:

<ESC> <ESC>d

_mFIR ROUTINE 000FbO
FIR START 000FbO
CONVOLUTION 0014b0
COEFFICIENT 0000b0
DATA BUFFER 3800d

_mMATN_ROUTINE 001900

DATA BUFFER 3800d
COEFFICIENT 0000bO
RESTARTER 0035b0
CLEAR BUFFER 003Db0
WAIT 0052b0

FIR START 000FbO
<ESC> <ESC>o

B.4 PROM IMAGE FILES (.BNU, .BNM, .BNL)

PROM Image files are generated by the ADSP-2101 PROM Splitter. They
are uploaded to a PROM burner to program the appropriate PROMs. One
file is needed for each PROM chip to be programmed. The format of the
files depends on the options specified in the PROM Splitter invocation
command line. See Chapter 8.

There are three types of image files generated by the PROM Splitter: .BNU
for the upper bytes of the 24-bit words, .BNM for the middle bytes, and
.BNL for the lower bytes.

The files created can be in either Intel Hex I format or Motorola S format.
An overview of these formats is given in the following sections.

B.4.1 Intel Format

The example files below show the Intel format for a program memory file
(middle byte), a program memory single stream file, and a boot page
memory file. Each line of the file is a data record with the exception of the
last line, which is the end of file record. Larger files contain additional
data records.

Program Memory .BNM sample file:

:0A0004003C40343434261422260850 data record
:00000401FB end of file record

This file format is obtained by using the —pm and —i switches; the file
contains the middle byte of program memory words. The records are

organized into the following fields:

:0A0004003C40343434261422260850

0004

00
3C

:00000401FB
00
0004

01
FB

:1E0000003C005540008034000034001434000826180F1400C222E00F26300208000F36

:00001F01E0

08

50

start character

byte count in this record
address of the first data byte in this
record)
record type (00)

first data byte

last data byte

checksum: Twos complement
negation of binary summation
(least significant 8 bits) of
preceding bytes, including byte
count, address and data bytes.

start character

byte count (zero in this record)
address of the first byte in this
record

record type (01 in this record)
checksum

Program Memory .BNM Single Stream file:

data record
end of file
record

This file format is obtained by using the -pm and —ui switches; the file
contains all three bytes of program memory words. The fields are the
same. Note that every third data byte (shown in bold) corresponds to the

middle byte example above.

Boot Memory .BNM sample file:

:200000001111000A000100FF001100FF011100FF111100FF100000FF110000FF111000FF33
:20002000000000FF000100FF110000FF111000FF000100FF001100FF011100FF3CO0ESFF50
:200040000D0388FF680080FFE89800FF14014EFFE90000FF20400FFF050000FFODOCIOCFF33
:200060000A001FFF18035FFF000000FF000000FF000000FFOAOOLIFFFO00000FF000000FFBC
:20008000000000FFO0AOO0LIFFFO000000FF000000FFO00000FF1800FFFFO00000FF000000FF28
:2000A000000000FFOAOO0LIFFFO00000FF000000FFO00000FFOAOOLIFFFO00000FFO00000FFF6
:2000C000000000FFOACOLIFFFO00000FF000000FF000000FF3400F8FF3800F8FF340014FF58
:2000E000380014FF378000FF380000FF3CO0FS5FF1403DEFFAQO00OOFF37FEF1IFFAQO0004FF3D
:20010000A00004FFAO00004FFAQO0004FFACOO004FFAOOBF4FFAQ0034FFAG69274FFAO0004FF 94
:20012000A00004FFAO0004FFAOO0004FFAQOO004FFAOOO04FFAOO004FFATO0004FFALO004FFOF
:2000A0003C0004FF3C0183FF028000FF18052FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFES
:00000001FF

data record
data record
data record
data record
data record
data record
data record
data record
data record
data record
data record
end of file
record

This file format is obtained by using the —-bm and —i switches; the file
contains the four bytes of boot memory words. The records have the same
fields as specified above with the following additions:

* Every fourth data byte is a pad byte (FF) inserted to produce the 32-bit
word width.

* The pad byte of the first data word (0A), at PROM byte address
0x0003, is the page length for this boot page. This byte is shown in bold
above.

¢ Pad bytes are added to the last data record to make the number of
words on the page a multiple of 8.

B-10

B.4.2

Motorola Format

The Motorola standard is quite similar. The following example shows an

S-style .BNM file consisting of the middle byte of program memory. Each
line of the file is a data record with the exception of the last line, which is
the end of file record. Larger files contain additional data records.

Program Memory .BNM sample file:

510D00043C4034343426142226084C

ISR AVICAOLVAVIDS TS

data record
end of file record

This file format is obtained by using the —-pm and —s switches. The records

AYrO NATPOANITA St~

are organized into the following fieids:

S10D00043C4034343426142226084C

S1
0D
0004

3C

08
4C

S903000DEF
S9
03
000D

EF

start character

byte count in this record

address of the first byte in this
record

first data byte

last data byte

checksum: One’s complement of
binary summation (least significant
8 bits) of preceding bytes, including
byte count, address and data bytes.

start character

byte count in this record
address of the first byte in this
record

checksum

The Motorola format may also be used to create a single-stream file
containing all three bytes of program memory; this is the 52 format. See
the Chapter “PROM Splitter,” for the complete set of options.

Host-Specific Requirements

C.1 SYSTEM REQUIREMENTS

This appendix details the requirements (hardware and software) and
restrictions for each of the environments in which you can operate the
ADSP-2101 Cross-Software.

C2 IBM PC AND COMPATIBLES

The Cross-Software for IBM PCs executes on all PC models. You must
have a hard disk and it is recommended that you use at least an AT-class
model. Installation of the Cross-Software on a PC requires the following;:

e PC-DOS 3.0 or later
¢ 640KB memory

¢ The directive “FILES=25" in your CONFIG.SYS (configuration boot)
file. This file must be in the root directory of the startup disk.

In addition, for graphics output when using the PL (plot memory)
command in the Simulator, you must have:

* A color display system: IBM CGA, EGA, or VGA-type. Monochrome
and Hercules-type displays will not work.

There are several operating restrictions that result from memory
limitations on the PC:

* The size of the source file processed by the the Assembler may be
limited by memory.

¢ The number and size of modules and number of symbols that can be
handled by the Linker is limited by memory.

¢ Do not run any memory-resident programs like Sidekick or ProKey
while you are using the Cross-Software.

C3 SUN-3 WORKSTATION

The Sun-3 Cross-Software must be run under a version of Unix supporting
virtual memory.

e

ANSI Standard C

D.1 ANSI DRAFT STANDARD EXCEPTIONS

You can obtain a copy of the draft standard by writing to the Computer
and Business Equipment Manufacturers Association at:

CBEMA

Suite 500

311 First Street N.W.
Washington, DC 20001-2178

The ADSP-21XX C Compiler and Preprocessor adhere to the current ANSI
draft standard (X3]11) except as noted below.

D.1.1 Features Not Supported & Restrictions

1. Static and global variables are not automatically initialized to zero. The
initial value of such variables is undefined.

2. Passing structures in a function call

3. Returning structures from a function call

4. Objects cannot exceed 8K bytes in size

5. Floating-point does not meet the precision specified
D.1.2 New Features and Extensions

1. The fastswitch keyword.

2. The fract numeric type.

3. The storage class modifiers pm, dm, ram and rom.

D.2 DIFFERENCES BETWEEN HOST VERSIONS

There are no specific differences in the ADSP-21XX C Compiler, although
there may be differences in other Cross-Software modules’ performance
that affects the assembly or linking of code generated by the C Compiler.
See also Appendix C.

[

Linker Operation

EA INTRODUCTION

The ADSP-2101 boot memory space may contain up to eight individual
boot pages. Software selection of the next page to be booted and software-
forced booting, described in the Memory Interface chapter of the ADSP-
2101 User’s Manual, allow the processor to be rebooted under program
control. This allows an application to be implemented in multiple boot
pages, with execution branching from one page to another. This
branching, of course, takes the form of software reboots.

This appendix will only be of interest to you if your application requires
multiple boot pages of ADSP-2101 code.

E.2 RE-BOOTING UNDER PROGRAM CONTROL

Programs requiring multiple boot pages have the following characteristics
and operation:

1. They boot first from page zero.

2. Atsome point in their execution they set the boot page select field (of
the System Control Register) to select the next page needed.

3. With the next boot page selected, a software boot is forced by setting
the boot force bit, loading that page into on-chip program memory.
On-chip data memory is unchanged.

The memory-mapped control register System Control Register, located at
internal data memory address 3FFF Hex, contains the BPAGE select field
and BFORCE bit. This register must be written to under program control
when re-booting is necessary.

E.3 SHARED DATA STRUCTURES

In order for data buffers to be shared by different boot pages, precautions
must be taken to prevent the overwriting of the data when a new page is

E

Linker Operation

booted. The STATIC qualifier, when used in a .VAR buffer declaration,
instructs the Linker to prevent the buffer from being overwritten during a

software re-boot. The Linker accomplishes this by different means for PM
data buffers and for DM data buffers.

E.3.1 Data Buffers in Program Memory

Data buffers located in program memory are either relocatable or non-
relocatabie, depending on whether or not they are declared at a specific
base address (with the ABS qualifier). If vou wish tc share a biifier
between multiple boot pages, you may take one of two approaches. The
first is to make the buffer relocatable by omitting the ABS specification
and declaring the buffer as STATIC, allowing the Linker to perform the
task for you. Alternatively, you may place the buffer yourself with the
ABS qualifier; however, you must ensure that the buffer is never
overwritten in on-chip PM during a re-boot.

To use the STATIC qualifier to create a data buffer to be shared, declare
the buffer in the following manner in source code on boot page 0:

.VAR /PM/STATIC/ etc. buffer_namellength];
.GLOBAL buffer_name

If you were to declare a buffer called dat1, for example, boot page 0 would
be as shown in Figure E.1. Notice that the Linker places dat1 at the top of
the 2K-long page. If the buffer contents are not initialized, the page length
to be loaded extends only as far as the source code on the page.

Suppose that dat1 is to be shared by boot pages 0, 1, and 2. It must be
declared as above on page 0, and given the GLOBAL attribute so that it
may referenced in other code modules on all three pages. These modules
which require access to the buffer must use the . EXTERNAL directive in
order to be able to reference it:

.EXTERNAL dat1;

If dat1 is initialized on page 0, the memory images of pages 0, 1, and 2
would be as shown in Figure E.2, on page E-4. Because initialization data
is contained in the buffer on page 0, the page length to be loaded is the full
2K. The Linker places filler bytes (FF Hex) in the region between the end
of code and the start of the buffer.

Now suppose that execution of the source code on page 0 modifies the
data in the buffer dat1; the new data must be passed to page 1 unaltered.

Boot Page 0
address 0

—
B
Q
(]
g

Buffer dat1 declared, but not Q

initialized, in code on Boot Page 0 ¥

<<

STATIC buffer is placed at
the top of memory by the Linker

dat1 (STATIC)

address 2047

Figure E.1 STATIC Data Buffers in Boot Memory

When page 1 is booted, the buffer is not overwritten in on-chip PM because
loading occurs only up to the page length. Booting of page 2 also leaves the
buffer’s contents undisturbed, as can be seen from its page length.

The Linker always places STATIC bulffers at the top of memory on a boot

page. If the code on the page is too long and overlaps the buffer space, a
Linker error message is generated.

The alternative to using the STATIC qualifier to create a shared data
buffer is to place the buffer in boot memory yourself with the ABS buffer
address specification. The address must be chosen such that it is higher in
memory than the largest boot page (page length). In this case you are
doing the job of the Linker- placing the data buffer in memory and
assuring that it is never overwritten during a boot page load.

if code on Booi Page 0 initiaiizes
the buffer dat1, the Linker will

V
place FF hex bytes in this region, —

and place initialization
data in the buffer

——
dat1 (STATIC) X / dat1 (STATIC) dat1 (STATIC)

ti

Boot Page 0 Boot Page 1 Boot Page 2
address 0 — —
-
)
Q
o
o
3
Q
5
B
: ®
s g
[
a)
S

2

address 2047

Figure E.2 Sharing STATIC Data Between Multiple Boot Pages

E.3.2 Data Buffers in Data Memory

In order to share a data buffer in data memory between multiple boot
pages, the buffer must be relocatable, GLOBAL, and STATIC. To assure
that the buffer data is preserved during software re-boots, the Linker
follows the same procedure for the boot pages as it does when linking
multiple code modules. See the Memory Allocation section in Chapter 4.
In this case the Linker must scan over all boot pages and place any non-
relocatable buffers before placing the STATIC buffer at a location where it
will not be overwritten by any other page’s data structure.

Again you may do the job of the Linker by omitting the STATIC qualifier
and placing the data buffers of all boot pages in data memory. This task
requires an exact determination of the complete layout of data memory
which may prove difficult; allowing the Linker to do the work for you is
usually easier.

|

T

E.4 SHARED SUBROUTINES

Any source code to be shared between multiple boot pages must actually
be located on each of the pages. There are two ways to accomplish this: by
repeating the BOOT=n qualifer in the module declaration, or by creating
libraries and using the Linker’s —p switch.

E.4.1 Repeating The BOOT Qualifier

If you write subroutine code modules, a copy of the module must be
placed on each boot page which calls it. One way to accomplish this is by
repeating the BOOT=n qualifier for each page necessary in the subroutine
module declaration, as in:

.MODULE/RAM/BOOT=0/BOOT=1/BOOT=2 calc_routine;
.ENTRY start_calc;

In this case, the Linker now places a copy of the module calc_routine on
boot pages 0, 1, and 2. Remember that the address label for the start of the
subroutine code (start_calc in this example) must be declared as an ENTRY
point in order to be visible to other code modules on the same page. These
modules which call the subroutine must declare the entry point as
EXTERNAL.

E.4.2 Libraries & —p Switch

If you have a large number of subroutines written for your ADSP-2101
system, it may be desirable to place the files in a directory of library
routines. See the discussion of the the Linker -lib directory switch & ADIL
variable in Chapter 4. Library routines are also used by the C Compiler
when assembling C-generated source code.

When linking your complete system program, use the —p switch. The
Linker inserts a copy of any subroutine called on a boot page into the
memory image file for that page. Figure E.3, on the next page, illustrates
the results of this process. To find the library of subroutines, the Linker
searches directories specified by the —lib switch and ADIL variable.

Boot Page Two

Boot Page One

CALL fp_mult

Boot Page Zero CALL fp_mult

fp_mult
brary subroutine

fp_mult
CALL fp_mult Pt

llibrary subroutine

fp_mult
library subroutine

When the Linker —p switch is used,
library subroutines are placed

on the boot pages which have

a CALL instruction naming them

Figure E.3 Library Routines & Multiple Boot Pages

[—1

Error Messages

F.1 INTRODUCTION

This appendix lists and provides a definition of all error messages
generated by the ADSP-2101 Cross-Software modules other than the C
Compiler. A listing is included for the System Builder, Assembler, Linker,
and Simulator. The PROM Splitter displays no error messages. See
Chapter 7 for a description of C Compiler error messages.

F.2 SYSTEM BUILDER ERRORS

The System Builder generates messages for syntax errors and system
architecture definition errors. Syntax errors are errors in usage of the
System Builder directives in the input file. Architecture definition errors
are primarily errors in memory configuration, and may be either fatal or
non-fatal. Error sources should be corrected in the input file.

Error message Explanation

Boot memory segment crosses 16K~ Memory boundary limit exceeded
boundary

BOOT page must be on a 2K word Boot page segments do not accept

boundary the ABS modifier; the first address
of a boot page is always equal to the
boot page number * 2048

BOOT page cannot exceed 2K word ~ Boot page segment declared with

page size length greater than 2048

Code/data- 24 required bits in Info only: 24-bit word width in PM

memory width

Data memory segment exceeds 16K~ Memory boundary limit exceeded
boundary

Data memory segment overlaps
reserved space

Divide by zero in expression

DM segment can have DATA
attribute only

DM segment cannot exceed physical
address b3ttt

Expecting a constant at symbol

PPy o |
Syulbul

Expecting ‘ABS’ at symbol symbol

Expecting an identifier at symbol
symbol

Expecting ‘CONST’, “ADSP2100’,
‘ADSP2101’, ‘PORT’, ‘SEG’,
‘ENDSYS’, or 'MMAP’ at symbol
symbol

Expecting segment modifier at
symbol symbol

Expecting ‘SYSTEM’ at symbol
symbol

Expecting *." at symbol symbol
Expecting ‘]” at symbol symbol

Expecting ‘=" at symbol symbol

Expecting ‘/” at symbol symbol

No segment may be declared in
upper 1K of data memory

Arithmetic error

Segment declared in data memory
may not have the CODE qualifier

Segment declared in data memory
address beyond Ox3FFF

Numeric constant required in place
of the named symbol

System-reserved keyword ‘ABS’
required in place of the named
symbol

User-defined identifier required in
place of the named symbol

System-reserved keyword required
in place of the named symbol

Segment qualifier required in place
of the named symbol

*SYSTEM’ must be the first text
read by the System Builder

‘” required in place of the named
symbol

‘] required in place of the named
symbol

‘=" required in place of the named
symbol

‘/’ required in place of the named
symbol

Expecting ‘;" at symbol symbol
FATAL ERROR: Boundary error
occurred

FATAL ERROR: Impossible PM
configuration

FATAL ERROR: Overlap occurred

FATAL ERROR: Unable to open
filename for reading

NOTICE: ? no PM found
Ports are not allowed in boot
memory

Problem mallocing enough memory

Program memory segment crosses
16K boundary

Trying to redeclare symbol symbol

Warning: Absolute address
specified for boot page will be
ignored.Segment address will be
boot page * 2K

Warning: Missing semicolon after
ENDSYS directive

‘7 required in place of the named
symbol

Memory boundary limit exceeded

Program memory configuration not
allowed

Two or more declared segments
overlap

System Builder cannot find .SYS file
or cannot create . ACH; 1) the path/
filename specified is incorrect or
not allowed, 2) file does not exist, or
3) operating system condition

No program memory segment was
declared

I/O ports may only be placed in
data or program memory

Not enough memory is available on
host computer for System Builder
to continue running

Program memory may not exceed
16K

The named symbol is declared
twice in the input file

Boot page segments do not accept
the ABS modifier;

the first address of a boot page is
always equal to the boot page
number * 2048

Semicolon must always terminate
an instruction or directive

Error Messages

You must specify memory segment
address

You must specify memory segment
area

type

F.3 ASSEMBLER ERRORS

Error message

Boot page out of range
Divide by zero in expression
Do labels cannot be external
Do loop terminates do loop at
symbol symbol

Dreg of data memory access must
be one of: AX0, AX1, MX0, MX1

Dreg of program memory access
must be one of: AY0, AY1, MYO,
MY1

Expecting a condition at symbol
symbol

Expecting a constant at symbol
symbol

Expecting a data format at symbol
symbol

ABS qualifier was omitted in a
segment declaration

PM, DM, or BOOT qualifier was
omitted in a segment
declaration

ROM or RAM qualifier was omitted

in a segment

Anciarakian
MLULAUL ULIVULL

Explanation
Page number specified is invalid
Arithmetic error

DO loop cannot reference an
external label

A DO instruction may not be the last
instruction of a DO loop

Incorrect data register used in
instruction

Incorrect data register used in
instruction

Instruction condition code required
in place of the named symbol

Numeric constant required in place
of the named symbol

‘UU’, ‘SU’, “US’, or “SS’ required in

place of the named symbol (in an
instruction)

Expecting an identifier at symbol
symbol

Expecting an index register at

symbol symbol

Expecting an integer at symbol
symbol

Expecting AR as the destination of
the alu operation

Expecting ‘AV’, "AC’, ‘MV’ or ‘CE’
at symbol symbol

Expecting ‘AX0’, "AX1’, 'MXU0’, or
‘MX1’ for DM read

Expecting ‘AY(’, ‘AY1’, 'MY(', or
‘MY1’ for PM read

Expecting binary operator at symbol

symbol

Expecting ‘C’ at symbol symbol

Expecting ‘DM’ at symbol symbol

Expecting ‘/ENA’ or ‘DIS’ at symbol
symbol

Expecting ‘EXP” at symbol symbol

User-defined identifier required in
place of the named symbol

Index register required in place of
the named symbol (in an
instruction)

Immediate integer operand required
in place of the named symbol (in an
instruction)

AR required in instruction

Instruction condition code required
in place of the named symbol

‘AX0’, ‘AXT, 'MX0’, or ‘MXT’
required in instruction

‘AY0, 'AYT, 'MY(', or ' MYT’
required in instruction

Logical (not bitwise) expression
operator required in place of the
named symbol

‘C’ (carry bit) required in place of
the named symbol (in an
instruction)

‘DM’ required in place of the named
symbol (in an instruction);
immediate addresses must be in
data memory

‘ENA’ or ‘DIS’ required in place of
the named symbol (in an
instruction)

"EXP’ required in place of the
named symbol (in an instruction)

Expecting ‘EXPAD]’ at symbol
symbol

Expecting ‘HI’, ‘LO’, or "HIX" at
symbol symbol

Expecting "HI" or ‘LO” at symbol
symbol

Expecting ‘10", “11’, ‘I2’, or ‘13’ for
DM index register

Expecting ‘107, ‘11", 12", or ‘I3 at
symbol symbol

Expecting ‘14’, ‘15, ‘16, or ‘17’ at
symbol symbol

Expecting ‘M0’, '‘M1’, ‘M2’, or ‘M3’
at symbol symbol
Expecting ‘M4’, ‘M5, ‘Mé’, or ‘M7’
at symbol symbol

Expecting MODULE directive at
symbol symbol

Expecting MODULE qualifier at
symbol symbol

Expecting MR as the destination of
the mac operation

Expecting ‘MR’ at symbol symbol

Expecting ‘OR’ at symbol symbol

"EXPAD]’ required in place of the
named symbol (in an instruction)

‘HI’, 'LO’, or ‘HIX’ required in place
of the named symbol (in an
instruction)

‘HI’ or 'LO’ required in place of the
named symbol (in an instruction)

‘10, ‘117, ‘12, or ‘13’ required in
instruction

‘107, “I1”, “I12’, or ‘I3’ required in place
of the named symbol (in an
instruction)

‘14’, 15, ‘16, or ‘17’ required in place
of the named symbol (in an
instruction)

MO0O-M3 must be used if I0-I3 are
used (in an instruction)

‘M4, ‘M5, ‘M6’, or ‘M7’ required in
place of the named symbol (in an
instruction)

The MODULE directive must be the
first statement in any file which the
Assembler reads

MODULE qualifier required in place
of the named symbol

MR required in instruction
‘MR’ required in place of the named
symbol (in an instruction)

‘OR’ required in place of the named
symbol (in an instruction)

Expecting ‘PM’ at symbol symbol

Expecting ‘PUSH’ or ‘POP” at
symbol symbol

Expecting ‘RND’ at symbol symbol

Expecting segment name at symbol

Expecting shift operand at symbol
symbol

Expecting ‘STS’ at symbol symbol
Expecting VAR qualifier at symbol
symbol

Expecting ‘1" at symbol symbol
Expecting ‘0’ at symbol symbol
Expecting ‘0" or ‘1" at symbol symbol
Expecting ‘' at symbol symbol

Expecting ‘~ at symbol symbol

Expecting ' at symbol symbol

‘PM’ required in place of the named
symbol (in an instruction)

‘PUSH’ or ‘POP’ required in place of
the named symbol (in an
instruction)

‘RND’ required in place of the
named symbol (in an instruction)

Segment name required in place of
the named symbol (in an
instruction)

Shift operand required in place of
the named symbol (in an
instruction)

‘STS’ required in place of the named
symbol (in an instruction)

VAR qualifier required in place of
the named symbol

‘1" required in place of the named
symbol (in an instruction)

‘0’ required in place of the named
symbol (in an instruction)

‘0" or ‘1’ required in place of the
named symbol (in an instruction)

‘]’ required in place of the named
symbol

‘~’ (subtract) required in place of the
named symbol (in an instruction)

" (multiply) required in place of the
named symbol (in an instruction)

Expecting ‘(" at symbol symbol

Expecting ‘,” at symbol symbol

Expecting ‘=" at symbol symbol

Expecting ‘)" at symbol symbol

Expecting *" at symbol symbol

Expecting ;" at symbol symbol

FATAL ERROR: unable to open
filename for reading

FATAL ERROR: unable to open
filename for writing

Illegal address operand symbol

Illegal address specified

Illegal data specified

Illegal do until term at symbol
symbol

lllegal do until not term at symbol
symbol

‘(' required in place of the named
symbol (in an instruction)

‘, required in place of the named
symbol (in an instruction)

‘=" required in place of the named
symbol (in an instruction)

‘)’ required in place of the named
symbol (in an instruction)

’ required in place of the named
symbol (in an instruction)

‘7 required in place of the named
symbol (in an instruction)

Assembler cannot find the named
input file; 1) the path/filename
specified is incorrect, or 2) file does
not exist

Assembler cannot create the named
file due to an operating system
condition, such as a bad filename or
full disk

Immediate operand required in
place of the named symbol (in an
instruction)

Address is in un-declared memory
or is invalid

Data is invalid

DO UNTIL instruction has an illegal
termination condition

DO UNTIL NOT instruction has an
illegal termination condition

RN s

s |

. 22 PSR NS

Illegal exponent symbol

[legal INIT value symbol
Illegal length specified

Illegal length operator usage

Illegal lhs ‘item’

Illegal mode operand symbol

Illegal multi-function

Illegal offset specified

Illegal operand symbol

Illegal rhs ‘“item’

Illegal stack operand symbol

Illegal yop symbol

Illegal xop symbol

Multiple do’s to the same address

symbol

Exponent is out of range (in an
immediate shift instruction)

Buffer initialization value is invalid
Buffer length is invalid

‘%’ (length of) operator incorrectly
used

Item named is invalid when located
to the left of equal sign (in an
instruction)

Mode operand required in place of
the named symbol (in an
instruction)

Incorrect instruction syntax used
(illegal operands included)

Buffer address offset is invalid

Instruction operand required in
place of the named symbol

Item named is invalid when located
to the right of equal sign (in an
instruction)

Stack operand required in place of
the named symbol (in an
instruction)

Instruction yop required in place of
the named symbol

Instruction xop required in place of
the named symbol

Illegal do loop

Error Messages F

F-9

F-10

Must use DAGO for data memory
access

Problem mallocing enough memory

Result register contention

Trying to redeclare symbol
as a buffer

Trying to redeclare symbol as an
external

Trying to redeclare symbol as a label
Trying to redeclare symbol as a port

Undefined do addr: address

Undefined symbol: symbol

Warning: Illegal register access
inferred

F.4 LINKER ERRORS

Incorrect data address generator
used in instruction

Memory allocation limit or
restriction reached

Two or more operations executed in
the same cycle use the same resuit
register

Named symbol is declared twice

Named symbol is declared twice

Named symbol is declared twice
Named symbol is declared twice

Address specified in non-existent
memory

Named symbol is not declared
properly

Incorrect register usage

The Linker generates error messages, warning messages, and
informational messages. Some errors allow the Linker to continue running
in order to detect additional problems, but fatal errors halt the linking
process. Both error types are reported to the display, as well as a limited
number of warning and informational messages. Error sources must be

corrected.

Several categories of Linker errors are detected. The most common
messages point out memory allocation and symbol reference problems.
These errors can result from insufficient memory declarations, improper

absolute address specifications, undefined symbol references, etc. Other
messages result from operating system conditions or software failures
during execution of either the Assembler or Linker.

Words shown below in italics are error message arguments, and specify
the particular item involved with an error condition.

F.4.1 Operating System Errors

Error Message

Assembler detected errors in
module modulename

Can’t create executable file filename
Can’t create list file filename

Can’t create symbol file filename

Can’t create temporary name

Explanation

Assembly errors are flagged in the
specified module; source code must
be corrected and re-assembled

Linker cannot create .EXE file due to
an operating system condition, such
as a bad filename or full disk

Linker cannot create .MAP file due
to an operating system condition,
such as a bad filename or full disk

Linker cannot create .SYM file due
to an operating system condition,
such as a bad filename or full disk

Linker is unable to complete the
directory search: when searching a
directory for files to link, the Linker
must create a temporary file
containing a list of the directory’s
contents; this error is seen when
insufficient memory is available for
the file on the host computer or if
the list is not found

F-11

F-12

Can’t open architecture file filename

Can't open buffer init file filename

Can’t open code file filename

Can’t open input list file filename

Can’t open library file filename

Can’t open temp file filename

Errno: # Can’t execute MSDOS
command: command

Fail on fseek: filename

Failed request to alloc more
memory

ssages

Linker can’t find .ACH file; 1)
default filename 210x not found,
and no alternative specified with the
—a switch, 2) the path/filename
specified with —a switch is incorrect,
or 3) file does not exist

Linker cannot find buffer
initialization file; 1) the path/
tilename specified (in .INIT
Assembler directive) is incorrect, or
2) file does not exist

Linker cannot find the named .OBJ
file to link; 1) the path/filename
specified is incorrect, or 2) file does
not exist

Text file named in —i switch is not
found; 1) the path/filename
specified is incorrect, or 2) file does
not exist

Linker cannot find the named .OB]J
file to link; 1) the search path/
directories specified (with ADIL
environment variable or —lib switch)
are incorrect, or 2) file does not exist

Linker cannot find temporary file it
created during directory search

Linker has given a DOS command
which is not correctly executed;
DOS error number listed is returned
to Linker

Linker is unable to complete a file or
directory search

Not enough memory is available on
host computer for Linker to
continue running

F.4.2 Informational Messages

Error message

Library (ies) searched: directory, ...

Trying to open library directory
Using library director

F.4.3 Memory Allocation Errors

Error message

(Warning) Bootable module
modulename has been located at
external address address

Can’t place symbol of module
modulename

/ at address address

/ contention at address

Explanation

Linker is searching the listed
directories for files to link

Linker is looking for the named
directory

Linker is processing files from the
named directory

Explanation

The module named is declared on a
page of boot memory; however, not
enough memory is available

on the page to store this module,
and the Linker has been forced to
place it in off-chip memory (i.e. too
much code and/or data has been
declared on the boot page)
(WARNING ONLY)

The data buffer or code module
named by symbol

cannot be placed in memory
(specific reasons to follow)

Object is declared at absolute
address specified (with ABS
qualifier), but cannot be placed there

Two objects have been declared at
the same absolute address (with
ABS qualifier), or overlap each other
at the specified address

F-13

/ for boot page page#

/ no appropriate pm,dm ram
available

=
5

availa

/ not enough pm,dm rom,ram left

/ (Warning) placement forced to be

external

/ requires # words of pm,dm rom,ra

/ requires # words of pm,dm rom,ra
from a segment named segname

/ symbol of module modulename,

Object is to be placed in boot
memory on page number listed

Object to be placed is declared in
PM RAM or DM RAM,; this memory
type does not exist in architecture
Object to be placed is declared in
PM ROM or DM ROM,; this memory

type does not exisi i architecture

Not enough of the specified
memory type is available to
complete placement of object

Object declared in internal DM or
PM; Linker placing object in external
DM or PM, however, due to
shortage of on-chip memory space
(WARNING ONLY)

Relocatable object has length (in
words) shown, and is declared in
memory type specified
(INFORMATION ONLY)

Object is relocatable within named
segment, has length (in words)
shown, and is declared in memory
type specified INFORMATION
ONLY)

Symbol specifies the data buffer or
code module being placed
(INFORMATION ONLY)

e

F.4.4 Symbol Reference Errors

Error message

Global buffername declared in
modules modulename and
modulename (maybe others)

Module name modulename
duplicated

Symbol of module modulename
not linked

Symbol of modulename is bootable
but ref'd as if not

Symbol of modulename is not part
of boot page page#

Symbol of modulename ref'd in
modulename is not part of
boot page page#

Usage of symbol in module
modulename implies it is in pm,dm, it
is not

Explanation

A global buffer should only be
declared in one module to prevent
conflicting usage

Two or more modules to be linked
have the same name; a unique name
must be given to each

The data buffer or address label
listed is declared as .EXTERNAL in
this module, but is not declared as
.GLOBAL or .ENTRY in another
module

The buffer or module named is
stored in boot memory; a non-
bootable program has referenced or
called the bootable object, which
may not have been booted yet

The buffer or subroutine (module)
named is referenced on the boot
page specified, but a copy is not
located on the page (see Appendix
E)

The global buffer or address label
named by symbol is referenced (in
the second module named) on the
boot page specified, but a copy is
not located on the page (see
Appendix E)

The object named is declared in PM
or DM,; it is referenced in the code
module named as if to be found in
the other memory space

F-15

F-16

Usage of symbol in module
modulename is inconsistant with
declaration

F.4.5 Other Errors

Error message

Boot image created (# kbytes) is
larger than specified boot memory
(# kbytes

(Warning) Initialization data for
buffername in module modulename is
longer than buffer

Link errors

No boot memory for generated
boota images found in sysname
(filename)

Offset on buffername in module
modulename forces address out of
range

Sources too large filename

filename too big— breakup sources

The buffer name or address label
shown is misused in code; for
example, using a variable name as
an entry point

Explanation

The boot memory portion of .EXE
file contains more bytes than the
boot memory space (defined in

.ACH file) can hold

Initialization file contains more data
than can be loaded into buffer
(WARNING ONLY)

Generic message displayed if any
errors are detected

Linker has processed modules
which have the BOOT qualifier;
however, no boot memory is
declared in .ACH file

An access of buffername is attempted
with an offset added to the buffer
base address; the offset is too large,
and address(es) to be accessed does
not exist

The named .OBJ file is too large for
Linker to handle; the assembly
source code file must be divided
into smaller size files and re-
assembled Note: This error will
rarely be seen for the ADSP-2101
Linker

Same as above

i

[

F4.6 Software Errors

These errors indicate that either the Linker or Assembler is not operating
properly. When a software failure is detected, the Linker aborts execution
and specifies one of three error conditions. The initial message is always

seen first.

If you see these messages, contact the Applications Engineering Group at
Analog Devices, Digital Signal Processing Division. See the copyright
page of this manual for telephone numbers to use.

Error message

Calling broken software

Can't find symbol of module
modulename in symbol table (it
should be there!)

New module search fail

Opcode with bad unresolved field

Explanation

Initial message; software failure
detected in Linker or Assembler

Linker has allocated memory for
symbol (buffer, module, or address
label) without error,and added
symbol to the symbol table; when the
Linker subsequently tries to assign
an address, however, the symbol is
not present in the symbol table
(Linker failure)

Same as above error condition, but
is generated only for module names
not found in symbol table (Linker
failure)

Opcode generation mechanism of
the Assembler is not operating
correctly (Assembler failure)

F-17

F-18

F.5 SIMULATOR ERRORS

F.5.1 General Errors

Error message

Bad filename for redirect

Cannot open Help files

Expecting an integer

Files must be single quoted

Invalid command

Unable to open any more windows

F.5.2 Defaults Errors

Error message

Can’t add any more paths

Can’t change architecture
information

Can’t replace current directory

Unable to replace path

Explanation

File not found for command
window input in redirect command:

/IAA/

L oY PYry
< Talriaiiic

ADIDOC environment variable not
set correctly or help files not present

Non-integer value given

Any file named in a command must
be in single quotes

Incorrect syntax used in a command
window command

Maximum of 10 windows open at
one time

Explanation

The total number/size of search
paths allowed is limited (list shown
in defaults window)

Information is for display only
Current directory is always

searched

Search path to be added is too large

F.5.3 Expression Errors

Error message
Divide by zero in expression
Expression table full

Invalid expression
Unable to delete expression

F5.4 Break Errors

Error message

Break in PM only

Invalid address

Invalid break address

Invalid break expression number

Invalid break specification

Invalid range

Explanation

Arithmetic error
Maximum of 10 expressions allowed

Invalid operator or operand used in
expression command: ? or 7+

Expression number given does not
exist

Explanation

Breakpoints and break ranges may
not be set in boot or data memory

Address given in set breakpoint
command is in undeclared memory
segment: B addr

No break is set at address (label)
given or break number given does
not exist in break delete command:
BD addr or number

Break expression number given in
break delete command does not
exist

Break number given is not an
integer or address (label) given is
undefined in break delete
command: BD addr or number

Range given in set break range

command is in undeclared memory
segment: BR range

F-19

F Error Messages

Only integer shifts are allowed in

break expressions

F5.5 Watch Errors

Error message

Unable to delete watchnoint

Watch expr table full

Watchpoint table full

F5.6 Command Errors

Error message

Invalid alias to delete

Invalid interrupt number

Invalid range specification

Not a valid register

Non-integer used in bitwise shift

Explanation

T\Tn v.,,\z.,.L
NG watchpoint or watc h exnression

exists for number given in watch
delete command: WD number

Maximum of 25 watch expressions
allowed

Maximum of 25 watchpoints
allowed

Explanation

Symbol given in delete alias

command does not exist in alias list:

JD symbol

Interrupt number must be 0, 1, or 2
in interrupt command: I int# min
max

Range given in dump memory
command is in undeclared memory
segment: D addr or range

Register named in load register
command must be a processor or
Simulator-defined register: R reg
expr :

e

F.5.7 Plot Memory Errors

Error message

Invalid ending DM address

Invalid ending PM address

Invalid increment value

Invalid plot size (max 640)

Invalid starting DM address

Invalid starting PM address

PLT FNC_WRN: undefined data
contained in plot range

F.5.8 Port & SPORT Errors

Error message

Encountered end of SPORT 0 input
file

Encountered end of SPORT 1 input
file

Explanation

Address given in plot memory
command is in undeclared memory
segment

Address given in plot memory
command is in undeclared memory
segment

Decimation value must be a positive
integer in plot memory command:
PL range decimation

Range length/decimation must be
less than or equal to 640 for plot
memory command

Address given in plot memory
command is in undeclared memory
segment

Address given in plot memory
command is in undeclared memory
segment

Location(s) in memory range to be
plotted not loaded with data;
warning only- Simulator will
attempt to create plot

Explanation

Execution halted when no further
data available; warning only

Execution halted when no further
data available; warning only

Mult error: frame sync came too
early

Mult Receive enable register
undefined

Muit Transmit enable register
undefined

No input file for SPORT 0

No input file for SPORT 1

No output file for SPORT 0

No output file for SPORT 1

Not a valid serial port

Ports allowed only in DM or PM

Problem writing SPORT 0 output
file

RFSDIV value too low in
multichannel mode

Both words of Multichannel Word
Enable processor control register
must be loaded

Both words of Multichannel Word
FEnable processor control register
must be loaded

No serial data received during
program execution; data input file
must be assigned in serial port
command: P SPORT# <'file’

No serial data received during
program execution; data input file
must be assigned in serial port
command: P SPORT# <‘file’

Unable to transmit serial data
during execution; data output file
must be assigned in serial port
command: P SPORT# >file’

Unable to transmit serial data
during execution; data output file
must be assigned in serial port
command: P SPORT# >file’

Number given in open serial port
command must be 0 or 1: P
SPORT#

I/0O ports may not be located in boot

memory

Execution halted; operating system
unable to write serial transmit data
to file

|

Problem writing SPORT 1 output
file

Unable to open any more /0 ports

F.5.9

Error message
Bad instruction

Can’t find instr in DM

Unable to assemble into DM

Writing RAM segment to ROM in
DM

Writing RAM segment to ROM in
PM

Writing ROM segment to RAM in
DM

Writing ROM segment to RAM in
PM

Execution halted; operating system
unable to write serial transmit data
to file

Maximum of 25 I/O ports allowed

Instruction & Program Load Errors

Explanation
Not valid ADSP-2101 instruction

Instructions may only be searched
for in program and boot memory
with the find command: F range
expr

Instructions may only be loaded
into program or boot memory with
the assemble command: A addr instr

Warning only; pertains to load
program or load rom command: L
file’, LR ‘file’

Warning only; pertains to load
program or load rom command: L
file’, LR “file’

Warning only; pertains to load
program or load rom command: L
file’, LR “file’

Warning only; pertains to load
program or load rom command: L
“file’, LR “file’

F-24

F.5.10 Execution Errors

Error message
Can’t set SSTAT register

Error: Mreg is greater than L reg

PC stack empty when POP occurred

SE undefined used in shift operation
Tried to read from non-existent
memory

Tried to read from reserved memory

Tried to write to non-existent
memory

Tried to write to reserved memory

Tried to write to ROM

Undefined instruction executed

Undefined registers used in shifter

Undefined used in ALU operation

Explanation
Stack status register is read-only

Modify value must be less than
length of circular buffer

No return address on PC stack
when RTI or RTS instruction
executed

Shifter exponent register is not
loaded for shift instruction

Source of read instruction executed
is in undeclared memory segment

Only reads from processor control
registers are allowed in upper 1K of
data memory

Destination of write instruction
executed is in undeclared memory
segment

Only writes to processor control
registers are allowed in upper 1K of
data memory

Destination of write instruction
executed is in ROM

Program memory location accessed
is not loaded

Data register is not loaded for shift
instruction

Input register is not loaded for add
or subtract instruction

—

A

L

Undefined used in DAG
Undefined used in MAC operation

Undefined used in timer

F.5.11 Command Syntax Errors

Error message

Usage: A address instruction
Usage: I min max

Usage: J symbol command
Usage: K win line

Usage: O addr [<file] [>file]
Usage: P # [<file] [>file]
Usage: PA line # start end
Usage: PC

Usage: PD line #

Usage: PL range increment
Usage: PP parameter value
Usage: PR

Usage: U (address | range | register)

Usage: X symbol
Usage: Y [<file] [>file]
Usage: Z [<file] [>file]

Either L, I, or M register is not
loaded prior to memory access

Input register is not loaded for
multiply instruction

All three timer registers must be set:

TCOUNT, TPERIOD, TSCALE

Explanation

Command entered incorrectly

N

ANALOG
DEVICES

Analog Devices

Digital Signal Processing Division
One Technology Way

PO. Box 9106

Norwood, MA 02062-9106

(617) 329-4700

E1344b-0.7-9/90

