
_..,ANALOG
~DEVICES

A.DSP-2101

" EZ-LAB Manual

You may contact the Digital Signal Processing Division in the following
ways.

• By contacting your local Analog Devices Sales Representative
• For Marketing information, call (617) 461-3881 in Norwood,

Massachusetts, USA
• For Applications Engineering information, call (617) 461-3672 in

Norwood, Massachusetts, USA
• The Norwood office Fax number is (617) 461-3010
• The Norwood office may also be reached by

Telex: 924491
TWX: 710/394-6577
Cables: ANALOG NORWOODMASS

• The DSP Division runs a Bulletin Board Service that can be reached at
300, 1200 or 2400 baud, no parity, 8 bits data, 1 stop bit by dialing:

(617) 461-4258
• By writing to:

Analog Devices
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

ADSP-2101 EZ·LAB™ Manual

© 1990 Analog Devices, Inc.
ALL RIGHTS RESERVED

Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use; nor for any
infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under the patent rights of Analog Devices.

PRINTED IN U.S.A. FIRST EDITION

c·

ADSP-2100 FAMILY MANUALS

ADSP-2100 User's Manual/Architecture
ADSP-2101 User's Manual/ Architecture
ADSP-2111 User's Manual/ Architecture

Literature

Complete descriptions of architecture and system interface.

ADSP-2100 Cross-Software Manual
ADSP-2101 Cross-Software Manual
Complete programmer's references, including optional C compiler.

ADSP-2100 Emulator Manual
ADSP-2101 Emulator Manual
ADSP-2101 EZ-ICE™ Manual
User's manuals for in-circuit Emulators.

ADSP-2100A Evaluation Board Manual
A guide to the Evaluation Board including schematics for prototyping.

ADSP-2101 EZ-LAB™ Manual
A guide to the EZ-LAB demonstration board and programs.

APPLICATIONS INFORMATION

Digital Signal Processing Applications Using the ADSP-2100 Family.
(Formerly the ADSP-2100 Family Applications Handbook, Volumes 1, 2 and 3.)
Topics include arithmetic, filters, FFrs, linear predictive coding, modem
algorithms, graphics, pulse-code modulation, multirate filters, DTMF,
multiprocessing, host interface and sonar.

SPECIFICATIONS INFORMATION

ADSP-2100A/ ADSP-2100 Data Sheet
ADSP-2101 Data Sheet
ADSP-2111 Data Sheet (preliminary)
ADSP-2105 Data Sheet (preliminary)

(

WARRANTY
The ADSP-2101 EZ-LAB™ is warranted against defects in workmanship
and materials under normal use and service for 90 days from the date of
shipment by Analog Devices. This warranty does not extend to any units
which have been subjected to misuse, neglect, accident, or improper
installation or application, or which have been repaired or altered by
others. Analog Devices' sole liability and the Purchaser's sole remedy
under this warranty is limited to repairing or replacing defective products.
The repair or replacement of defective products does not extend the
warranty period. Analog Devices, Inc., shall not be liable for consequential
damages under any circumstances.

r Contents •

(

CHAPTER 1 OVERVIEW

1.1 Introduction .. 1-1
1 .2 Demonstration Board Features ... 1-1

CHAPTER 2 SETTING UP

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

Introduction .. 2-1
Configuring ~-LAB Jumpers .. 2-1

TFS1/IR 1 Connection (JP1) ... 2-4 .
DR1/FI Connection (JP2) .. 2-4
Boot EPROM Enable (JP3) .. 2-4
RFS1/IRQO Connection (JP4) .. 2-5
CODEC Enable (JPS) ... 2-6
CODEC/DX Connection (JP6) .. 2-6
CODEC/FSX Connection (JP7) .. 2-6
IRQ2 Connection (JPS) ... 2-6

Board Switches ... 2-7
Indicator LEDs ... 2-7
Connectors And Jacks .. 2-8

User Interface Connector (J1) .. 2-8
SPORT Connector (J2) ... 2-9
DAC Output Connector (J3) .. 2-1 O
Power Supply Connector (J4) ; .. 2-1 o
Analog Input (PH1) ... 2-10
Analog Output (PH2) .. 2-10

CHAPTER 3 OPERATION

3.1 lntroduction .. 3-1
3.2 Four Channel DAC .. 3-3
3.3 Audio Circuitry ... 3-5
3.4 Boot EPROM ... 3-7
3.4.1 Changing Boot Pages In Software .. 3-7
3.4.2 EZ-LAB Firmware ... 3-13

m

(
iv

Contents

APPENDIX A CALIBRATION

A.1 Introduction ... A-1
A.2 Input Amplifier Calibration ... A-1
A.3 Output Amplifier Calibration .. A-2

APPENDIXB

Schematics

FIGURES

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

INDEX

EZ-LAB Board Layout ... 2-2
EZ-LAB Jumpers ... 2-3
ADSP-2101 Program Memory Map ... 2-5
User Interface Connector J1 ... 2-8
SPORT Connector J2 ... 2-9

Data Memory Map .. .' 3-4
DAC Transfer Example ... 3-4
CODEC Programming Example .. 3-6
Boot EPROM Page Changing Example .. 3-13

(--

(

0 . • Vervlew wm= :· <:.<:::.

1.1 INTRODUCTION
The ADSP-2101 EZ-LAB™ demonstration board is a low cost evaluation
and demonstration system for the ADSP-2101 microcomputer. It allows
you to develop and debug ADSP-2101 software for digital signal
processing applications.

The demonstration board is capable of standalone operation. All you have
to provide is +SVOC, + 12VDC, and -12VDC power supplies.

Your development system should include a PC to make use of the ADSP-
2101 Cross-Software development tools. These tools include several
software modules: system builder, assembler, linker, and PROM splitter.
The cross-software tools are used to create executable ADSP-2101
programs.

This manual assumes that you are already familiar with the architecture of
the ADSP-2101 (described in the ADSP-2101 User's Manual) and its
software development tools (described in the ADSP-2101 Cross-Software
Manual).

1.2 DEMONSTRATION BOARD FEATURES
The following is a summary of EZ-LAB's features:

• ADSP-2101 12.S MHz microcomputer

• Plug-in 12.288 MHz crystal which can be replaced with a crystal of a
different frequency

• 64K by 8-bit boot EPROM (27512) pre-programmed with application
demonstrations (see the release note shipped with the board for
specific listings)

• No external memory board required to run existing programs

1-1

1

1 Overview

1-2

• Processor controlled CODEC (TP3054) connected to SPORTO (Serial
Port O) with input AD741 opamp using a microphone or other high
impedance device connection (Analog Input PHl); output amplifier
with similar connector for a speaker (Analog Output PH2)

• SPORTl configured as interrupts and hardware flags; may be
reconfigured as a serial port via onboard jumper connections

• Both SPORTs available at I/ 0 connector (J2)

• Four channel, double buffered, data memory addressable digital-to­
analog converter (DAC) (Analog Devices AD7225KN)

• Three switches for user control: Interrupt IRQ2, Flag In, and Reset

• FLAG OUT LED, useful for signaling the beginning or end of program
sequences

• POWER LED, indicating presence of +SV

• Board is expandable to full program and data memory capability, with
all pins (except SPORT) on the ADSP-2101 available at the User
Interface expansion connector (Jl); SPORT pins available at J2.

(

c-

Setting Up • 2

2.1 INTRODUCTION
This chapter describes the installation procedures necessary to set up the
ADSP-2101 EZ-LAB™. The first step is to unpack the demonstration board
and associated documentation. The EZ-LAB is packed to prevent damage
during transit. H you find any damage, file a claim with the shipping
agent and notify Analog Devices.

The demonstration board is shipped fully assembled. You should receive
the following items:

• EZ-LAB demonstration board
• This manual (includes schematics, TP5054 CODEC data sheet and

AD7225 DAC data sheet)
• Software release note
• ADSP-2101 DSP Microcomputer data sheet

2.2 CONFIGURING EZ·LAB JUMPERS
There are eight jumper sets on the demonstration board that configure EZ­
LAB operations; these are in two blocks of jumpers. Figure 2.1, on the
following page, shows the layout of the EZ-LAB board indicating jumpers,
switches, potentiometers, and connectors. The jumpers are marked (}Pl
through JPS); each is a two-position jumper (pin 1 to pin 2, or pin 2 to pin
3) with pin 3 being the one closest to the three red switches. Figure 2.2, on
page 2-3, provides a reference for jumper use while Sections 2.2.1 through
2.2.8 provide a detailed description of their use.

You can configure SPORTl on the ADSP-2101 as either a serial port
(through the SPORT connector, J2) or for onboard flag and interrupt use.
To configure it as a serial port, all required jumpers (JPl, JP2, and JP4)
must be properly set.

2-1

c..
::>
C>
c ·-.....
Cl)

en
N

E9

E9

/

\. /

o.-C\IMO
(.) u u u z
c(<(c(c(CJ
0 0 0 0 <C

ANALOG DEVICES, INC.
ADDS2101 EZLAB REV

SER. NO.
E9

U4 [- I

J2 SPORT CONNECTOR
1eeeee1 OUT~~;:MP~

J3 DAC OUTPUT VOLUME ot-@]
~~ © .• U1 U2

r--74F32 g I -AD7225KN 0 I
DAC <J

U3 II.,.
ADS86~~~a:
+Sref

z::> •
c:cO

PH2

~~~~~~us~~~~~~~-
~ I 74AHCT14 9 I 74HCT244 09 us ETC5054 O 

CODEC 

GAIN if 
a: 
w .... 
~ 
a: 
w 
(/) 
:::> 
..­.., 

27512 

EPROM 

us 

T 0 

d 

U10 

U7 JP6 

• • JPS JP7 
12.288 
MHz 1-

CRYSTAL x 

~a:~~~ ..,.., .., .., .., 
_.; I 1-.S i 

........ + • 

o~ 

[j AD741 

INAMP 

R11 U9 
OFFSET 

RN1 
,- H • HH4 

SW1 
IRQ2 

PH1 

OQ 
~~ 
U11 

'S 

! 
"E 
GS 
0 m 
m 
c( _, 
ti -~ 
I! 
:::J 
9 
u.. 

(__) 

N 
I 

N 



Setting Up 2 

3 2 1 

IES1./ Enables external Connects ADSP-2101 TFSl 
JP1 IRQl I interrupt from to TFSl pin on SPORT IRQ1 User Interface connector (f2). 

connector (f 1 ). 

Connect ADSP-2101 
f ii·a-·ii1 JPS 

Enables FLAG ON) push-JP2 111 a u 1 JP1 
DR1/FI DRl to DRl on SPORT ~JP2 button. (Always use a 

connector (f2). jum~r in one of these 
~JP3 positions.) 
L~ • .!' •• '!! J P4 

3 2 1 

Boot 
Disable onboard boot 

Enables boot EPROM, EPROM. (Always use a JP3 EPROM us. jum~r in one of these 
Enable positions.) 

RES1/ 
Enables external Connect ADSP-2101 RFSl 

JP4 IRQO/ interrupt from to RFSl pin on SPORT 
IRQO User Interface connector (f2). 

connector (fl). 

( CODEC enabled, connects 

CODEC 
CODEC disabled, ADSP-2101 SCLKO to 

JPS clock inputs tied CODEC clock inputs. 
Enable high. (Alwm use a jumper in 

one o the positions.) 

t.. 3 2 1 

CODEC/ o:.. Provides serial ~~ No connection. Use for JP6 . . t.. 
DX dl data from CODEC 

o:.. ·~·a o dl external (J2) access of 
DX fin to ADSP- SPORTO. 
210 DROpin. :s -

t.. 3 2 1 Provides receive t.. 3 2 1 

CODEC/ ~~(., frame synchroniza- ~wt.. No connection. Use for 
JP7 FSX II 0 fll;J! tion from ADSP-2101 t.. .~ II 0 dl external (J2) access of 

~· RFSO fiin to CODEC SPORTO. 
:FSXp n. :s .. • 

3 2 1 
• JPS Enables external IRQ2/ 

JPS IRQ2 Enables IRQ2 JP1 interrupt from User 
pushbutton switch. JP2 Interface connector (fl). 

JP3 
JP4 

Figure 2.2 EZ·LAB Jumpers 

(-

2-3 



2 Setting Up 

2-4 

2.2.1 TFS1/IRQ1 CONNECTION {JP1) 
This jumper selects the connection for the TFSl /IRQl pin on the ADSP-
2101 pin FlO. If you jumper pins 1to2, you connect the TFSl/IRQl pin to 
IRQl on the User Interface exRansion connector (Jl pin 9). If you connect 
pins 2 to 3, you connect TFSl /IRQl to TFSl on the SPORT connector (J2 
pin 11); this is one of the jumpers rem,~ed to use SPORTl as a serial port. 
If you make no connection, neither 1 from the User Interface 
expansion connector nor SPORTl is available for use. . 

2.2.2 DR1/FI Connection {JP2) 
This jumper selects the connection for the DRl /Fl pin on the ADSP-2101 
pin El 0. If you jumper pins 1 to 2, you connect the DRl /Fl pin to DRl on 
the SPORT connector (J2 pin 9); this is one of the jumpers required to use 
SPORTl as a serial port. If you connect pins 2 to 3, you connect DRl /Fl to 
the FI (FLAG JN) pushbutton switch through.its debounce circuitry. 
Failure to connect a jumper to JP2 disables both features and leaves DR1 I 
FI floating. 

2.2.3 Boot EPROM Enable (JP3) 
MMAP, pin E2 on the EZ-LAB ADSP-2101, is permanently tied to GND 
(MMAP=O). See Figure 2.3 for the resulting program memory map. 

In this configuration, the ADSP-2101 always boots its 2K by 24-bit word 
internal program memory (OxOOOO - Ox07FF) from EPROM. This occurs at 
reset where page 0, the first page of BK by 8-bit EPROM memory is 
transferred. Booting may also be forced in software when the System 
Control Register's (data memory location Ox3FFF) Boot Force Bit 
(BFORCE) is set to 1, at which point the Boot Page Select (BP AGE) bits in 
the same register select the page (O - 7). 

If JP3 is jumpered in th~ pin 1 to 2 position, the EZ-LAB 27512 EPROM 
(US) is enabled for booting. When the jumper is between pins 2 and 3, the 
EPROM is disabled. Normally the EPROM should be enabled; you should 
only disable the onboard EPROM in order to boot from another EPROM 
available through the expansion connector (Jl). The Boot Memory Select 
(BMS) control pinfrom the ADSP-2101 connects to pin 15 on that 
connector. 

Failure to use a jumper at JP3 leaves the Output Enable (OE) pin (22) on 
the EPROM floating; whenever an EPROM is present, the jumper must be 
used. 

/ 



Setting Up 2 

0000 INTERNAL 
R,.M 

LOADED 
FROM 

EXTERNAL 
BOOT 

MEMORY 07FF 
1-----------1 0800 

EXTERNAL 
MEMORY 

-------------- 3FFF 
MMAP:O 

Figure 2.3 ADSP-2101 Program Memory Map 

2.2.4 RFS1/IRQO Connection (JP4) 
This jumper selects the connection for the RFS1 /iROQ pin on the ADSP-
2101 pin Ell. If you jumper pins 1 to 2, you connect the RFS1 /IRQO pin to 
IRQO on the User Interface expansion connector, Jl pin 7. If you connect 
pins 2 to 3, you connect RFS1 /IRQO to RFS1 on the SPORTs connector, J2 
pin 10; this is one of the jumpers required to use SPORT1 as a serial port. 
If you make no connection, neither IRQO from the User Interface connector 
nor SPORTI is available for use. 

2-5 



2 Setting Up 

2-6 

2.2.5 CODEC Enable (JPS) 
You can disable the TPSOS4 CODEC by jumpering pins 1to2 on JPS; this 
configuration ties MCLKR (pin 8), MCLKX (pin 9), and BCLKX (pin 10) on 
the CODEC high via a resistor to +SVOC. You should only do this to 
ignore the analog features of the board and access SPORTO externally 
instead. 

Jumpering pins 2 to 3 on JPS enables the CODEC by connecting ADSP-
2101 SCLKO to MCLKR, MCLKX, and BCLKX on the CODEC. This jumper 
position allows SCLKO to provide the clock signal required for CODEC 
operation. 

Connect one of the two jumper positions. If there is no connection, pins 8 
through 10 on the CODEC will float. 

2.2.6 CODEC/DX Connection (JP6) 
Jumpering pins 1to2 on JP6 connects the DX pin (11) on the CODEC to 
DRO pin Gl 1 on the ADSP-2101; this provides serial data from CODEC to 
ADSP-2101. Jumpering pins 2 to 3 on JP6 does not make any connection. 
You should only do this to ignore the analog features of the EZ-LAB board 
and instead access SPORTO from off board. 

2.2. 7 CODEC/FSX Connection (JP7) 
Jumpering pins 1 to 2 on JP7 connects RFSO, pin Hl 1 on the ADSP-2101, to 
the FSX pin (12) on the CODEC; this provides receive frame 
synchronization from ADSP-2101 to CODEC. Jumpering pins 2 to 3 on JP7 
does not make any connection. You should only do this to ignore the 
analog features of the EZ-LAB board and instead access SPORTO from off 
board. 

2.2.8 IRQ2 Connection (JPS) 
This jumper selects the connection for the IRQ2 pin on the ADSP-2101 pin 
F2. ·If you jumper pins 1 to 2, you connect IRQ2 to the IRQ2 pushbutton 
switch via its debounce circuitry. If you connect pins 2 to 3, you connect 
the IRQ2 pin to IRQ2 on the User Interface expansion connector, Jl pin 1. 
If you make no connection, IRQ2 is not available for use from either the 
switch or the User Interface expansion connector. 



-·-----------------~~~ 

Setting Up 2 

2.3 BOARD SWITCHES 
There are three pushbutton switches on the board, IRQ2 (SW1), FLAG 
(SW2), and RESET (SW3). The first two require the proper positioning of 
jumpers to connect to the ADSP-2101. 

By jumpering JP2 pins 2 to 3, you connect the FLAG button via its 
debounce circuitry to the DRl/FI (Flag In) pin ElO on the ADSP-2101. Flag 
In is wired as an active low; pressing the button forces the FI pin to 
ground. This allows you to manually trigger the flag, providing an 
"event" while executing software. When JP2 pins 1 to 2 are jumpered, the 
switch is disabled and the DR1 pin (9) on the J2 SPORT connector 
provides this input. 

Jumpering JP8 pins 1to2 connects the IRQ2 pushbutton switch, via its 
debounce circuitry, to the IRQ2 pin F2 on the ADSP-2101. This allows you 
to manually cause this interrupt when executing a program. When JP8 
pins 2 to 3 are jumpered, the switch is disabled and the IRQ2 signal can be 
supplied from the User Interface expansion conn~tor (Jl pin 1). 

The RESET switch is connected across Cl, the capacitor in the RC circuit 
providing the power-on reset to the ADSP-2101. There are no restrictions 
on when the switch can be used, so do not press the switch unless you 
want a complete ADSP-2101 reset. Another independent reset is available 
from the HOST RESET line on the User Interface expansion connector (Jl 
pin 11). 

2.4 INDICATOR LEDS 
There are two LEDs on the EZ-LAB board. One, the POWER +SV 
indicator, is located next to the power supply connector, J4. When this 
indicator is on, the +SVDC used by the ADSP-2101 and digital circuitry is 
present. 

The second LED is the FLAG OUT indicator. This LED is connected via a 
driver to the DTl/FO (Flag Out) pin Fll on the ADSP-2101. It lights when 
the ADSP-2101 asserts the Flag Out signal; this feature is useful for 
signaling the beginning or end of a program sequence. When you 
configure the board to use SPORT1, FLAG OUT also lights when the serial 
data transfer line DT1, the same pin, is asserted. 

2-7 



2 Setting Up 

2-8 

2.5 CONNECTORS AND JACKS 
In addition to the jumpers described above, there are a number of other 
connectors and plugs for external interface. There are four connectors on 
the board 01 - J4). In addition, there are two 1/8" phono jacks (PH1 and 
PH2) for analog input and output. This section defines their purposes. 

2.5.1 User Interface Connector (J1) 
The User Interface expansion connector allows you to expand the 
capabilities of the EZ-LAB board; the pinout for this 60-pin connector is on 
sheet 4 of the schematics. All address (AO -13), data (DO - 23), and control 
(interrupt, memory select, bus, clock, and reset) lines necessary for 
interface with the EZ-LAB ADSP-2101 are brought out on this connector 
(see Figure 2.4). It can be used to interface with additional peripheral 
circuitry, memory components, and/ or development equipment. 

HOST RESET 
M 
BUS 

WR" 
"RD 

ADO 
AD1 
AD2 
AD3 

AD4 
ADS 
AD6 
AD7 
AQ8 

AD9 
AD10 
AD11 
AD12 
AD13 

TIMS 

1 La .. 2 GND 
3 

L.. --
4 

5 -- -- 6 
7 
~ ~ 

8 -9 -- -- 10 
11 -- -- 12 
13 .... -- 14 
15 -- -- 16 

~ ~ 

17 ... -- 18 
19 .... -- 20 GND 

GND _£1 .... -- 22 
23 .... -- 24 
25 - 26 - --27 -- -- 28 
29 .... -- 30 

GND 31 c.. -- 32 
33 La .. 34 
35 :.... -- 36 
37 La .. 38 GND 
39 :.... -- 40 
41 

L.. -- 42 
GND 43 La .. 44 

45 
L.. --

46 
~ -47 -- 48 

49 
L.. --

5j) 
51 

L.. --
52 

53 .... -- 54 
GND 55 -- -- 56 GND 

57 
~ 5_a --GN_Q_ 59 -- -- 60 GND 

..... - !-== 
USER INTERFACE J1 

Figure 2.4 User Interface Connector J1 

_._ 

DO 
01 
02 
D3 
04 
05 
D6 
D7 

D8 
D9 
010 
D11 
012 
D13 
014 
D15 

016 
D17 
D18 
D19 
020 
D21 
D22 
D23 

CLKOUT 



( 

Setting Up 2 

2.5.2 SPORT Connector (J2) 
The SPORT connector allows you access to both serial ports on the ADSP-
2101. 

The signals required for SPORTO are all brought out to this connector. If 
you don't use the CODEC and amplifier sections, you can use and 
monitor this serial port. Two of the SPORTO signals, TFSO and DTO, are 
also connected directly to the CODEC; these signals originate at the 
ADSP-2101 and do not inhibit SPORTO use. Three other signals (SCLKO, 
DRO, and RFSO) interface with the CODEC via the positioning of JPS 
through JP7; you can position the jumpers to isolate these signals and 
disable the CODEC. 

Not all of the SPORT1 signals are brought out directly to the SPORT 
connector; TFS1, DR1, and RFS1 must be connected from the ADSP-2101 
to the SPORT connector via jumpers. When usingfj'ORT1, '?Qu lose the 
use of the Flag In capability as well as access to IR 0 and IR 1 from the 
User Interface expansion connector. JP1 (TFS1), JP2 (DR1), and JP4 (RFSl) 
should be set according to the instructions in Section 2.2 to make SPORT1 
functional. 

J2 
GND 13 GND 

12 SCLK1 
TFS1 11 

RFS1 10 

DR1 9 

DT1 8 

7 

SCLKO 6 

TFSO 5 

RFSO 4 

ORO 3 

OTO 2 

_ SPORT Connector 

(- Figure 2.5 SPORT Connector J2 

2-9 



2 Setting Up 

2-10 

2.5.3 DAC Output Connector (J3) 
J3 provides the 0 to SVOC outputs from the four channel DAC on the EZ­
LAB board. This small five-position screw connector, is located next to J2, 
the SPORT connector. The fifth pin (AGND) provides a common return 
for the four outputs. The operation of the DAC is explained in greater 
detail in the next chapter. 

2.5.4 Power Supply Connector (J4) 
You must supply the power sources to the board, a +SVDC supply 
capable of supplying 0.2A of current, and a + 12VDC and -12VDC power 
supply (common supply return). Power supplies must be OFF when the 
connections are made to the board. 

The +SVDC supply provides power to the ADSP-2101, EPROM, LEDs, 
and associated digital circuitry. The POWER LED next to the power 
supply connector, J4, is lighted whenever the +SVDC is ON. 

The + 12VOC and -12VDC provide power to the input and output 
amplifiers, and the four channel DAC. The supplies are also used to 
generate CODEC +SVOC (+SA) and-SVDC (-SA), and the +SV reference 
voltage (+Sref) for the DAC. 

A small five-position screw connector, J4, is located next to the switches. 
The board is labeled between connector J4 and edge to show you which 
pins to wire. The two closest to the POWER LED are connected to the 
+SVDC and that supply return (GND) respectively; the other three 
positions are used by +12VDC, common power supply return (AGND), 
and-12VDC. 

2.5.5 Analog Input (PH1) 
The PHI jack, ANALOG INPUT, accepts a high impedance input such as 
a microphone. The signal it supplies is amplified through the analog input 
amplifier and processed through a CODEC controlled by .the EZ-LAB 
board's ADSP-2101. You can find the calibration procedures for the analog 
input section of the EZ-LAB board in Appendix A. 

2.5.6 Analog Output (PH2) 
The CODEC also amplifies the signal it receives and sends it to the I.SW 
output amplifier. The amplifier provides enough gain to drive a small 
speaker through the PH2 jack, ANALOG OUTPUT. You can find the 
calibration procedures for the analog output section of the EZ-LAB board 
in Appendix A. 



------ ---·----------· 

Operation • 3 

( 

3.1 INTRODUCTION 
The purpose of this section is to explain, beyond the setup stage, the 
operation of the EZ-LAB™ board. This includes de.tailed descriptions of 
the features detailed briefly in previous chapters. 

You should be aware that the flexibility of the EZ-LAB board allows 
exclusively alternate configurations; these are largely determined by 
jumper positioning, as defined in the previous chapter. The following are 
your choices. 

• You can use the analog capabilities, input and output amplifiers 
and CODEC, through the SPORTO interface from the ADSP-2101. 
The alternative is to have the use of SPORTO through the SPORT 
connector, J2. You make the choice by the way you position JPS 
through JP7. 

5cil3 2 1 
CJI • c.. SPORTO configured 
c.. ·:: ··· • ~ at SPORT connector 
~: .... • (J2). 

~-3 2 ~ ... c.. 
c..:::· ....... ~ 
~ · .. • 

CODEC enabled. 

• You can use the FLAG switch to influence ADSP-2101 processes 
and the FLAG OUT LED to indicate program actions; along with 
that you can trigger iRQO and IRQl through the User Interface 
expansion connector Jl. The alternative is to use SPORTl through 
the SPORT connector, J2. You make the choice by the way you 
position JPl, JP2, and JP4. 

Enables FLAG (IN) 
pushbutton and 
external IRQO I and 
IRQl/ interrupts 
from User Interface 
connector (Jl ). 

Enable SPORTl 
on SPORT 
connector (J2). 

3-1 



3 Operation 

3-2 

• You can enable the onboard boot EPROM or use an external 
EPROM through the User Interface expansion connector, Jl. A 
boot EPROM is required because of the program memory map 
configuration (MMAP=O). JP3 enables or disables the onboard 
EPROM. 

3 2 1 
·u·a·r..·1 JP a 
a c clJP1 
a !-' UIJP2 
• '..:. '..= JP3 

Enables boot EPROM, 
us. 

3 2 1 -------, c a a•JPS 
Ci ll D •JP1 

Disable onboard boot 
EPROM. (Always use 
a jumper in one of 
these positions.) 

• You can select whether the IRQ2 switch is active, manually 
triggering the IRQ2 signal to the ADSP-2101. The alternative is to 
cause the interrupt from the User Interface expansion connector, 
Jl. JPS positioning determines IRQ2 signal origin. 

3 2 1 
• .. ·Jl#~ JPS 
ti o O•JP1 
u a t.i •JP2 Enables IRQ2 
0 0 ti IJP3 pushbutton switch. 
D Q rJIJP4 

3 2 1 

.' ... =~i . .'.'. • JPS 
co c,JP1 
o o t:il JP2 
o o o:JP3 
c-. a 1:1•JP4 

Enables external 
IRQ2/ interrupt from 
User Interface 
connector (Jl). 

There are the four functional blocks on the board, as defined in the EZ­
LAB Block Diagram, sheet 1 of the EZ-LAB schematics in Appendix B: 
Connectors, Misc-Parts, Analog, and Digital. The Connector and Misc­
Parts blocks, sheets 4 and 5, are covered in Sections 2.2 through 2.5 of this 
manual. 

The schematic for the Analog Part block is shown on sheet 3, EZ-LAB 
Analog 1/0 Section. The Analog I/0 Section consists of the DAC and audio 
subsections. These are detailed, both in terms of components and 
programming considerations, in Sections 3.2 and 3.3 respectively. 

Some functional portions of the Digital block are discussed in Chapter 2. 
Most board-specific configuration issues concerning the ADSP-2101 are 
mentioned in Section 2.2; addition information is given in the DAC and 
audio discussions. Other matters related to general operation of the 
ADSP-2101 are left to the ADSP-2101 User's Manual. The boot EPROM and 
its operation is covered in Section 3.4. 1' 



(-

Operation 3 

3.2 FOUR CHANNEL DAC 
EZ-LAB contains a AD7225 four channel DAC. You access the DAC 
control lines through the ADSP-2101 address lines and the OMS pin K7. 
The ADSP-2101 writes data to the DAC data lines (016 - 23). The 023 line 
is inverted to allow the ADSP-2101 program data to use the full range of 
theAD7225. 

The DAC is doubled buffered. When the ADSP-2101 asserts OMS and WR, 
and sets A13 low, the DAC loads data into the register specified by~he 
two lowest address lines (AO - 1). When the ADSP-2101 asserts OM and 
WR, and sets A12 low, the DAC transfers all data in the input latch 
registers to the DAC internal circuitry. These are converted to the values 
at the analog outputs at the J3 connector. 

The analog outputs range from OV (to AGND) to approximately +4.9805 
VDC (255/256 x 5ref); this provides a bit resolution of 19.53 mV (1/256 x 
5ref). The source for the reference voltage provided to the DAC is an 
AD586; the DAC uses the + 12VDC supply for power and to source the 
reference voltage. 

Because of partial address decoding on the board, the DAC 
implementation uses all data memory from OxOOOO through Ox2FFF; it 
does not affect data memory addresses Ox3000 through Ox3FFF, which 
includes the ADSP-2101 internal RAM (Ox3800 through Ox3BFF) and 
internal memory-mapped control registers (Ox3FEF through Ox3FFF). 
Because of DAC setup timing requirements, two wait states are required 
when writing to the DAC; the ADSP-2101 Data Memory Wait State 
Control Register (at address Ox3FFE) must have its OW AIT2 field set to 
two (DWAIT2=2). See Figure 3.1, on the next page, for the complete data 
memory map. 

The program segment, Figure 3.2, (also on the next page) shows the 
process of writing data to all four channels and updating the DAC output. 
You select the register (reg) for each channel; the upper 8of16 bits (023 -
016) are transferred from that ADSP-2101 register to DAC buffer. Since 
only control lines are used to transfer data from all buffers 
simultaneously, you can write the contents of any ADSP-2101 register to 
location Ox2000. 

3-3 



3 Operation 

0000 
UNAVAILABLE 

USED BY DAC DECODE 
OFFF 

DACWRITE 
1000 

(DWAIT2:2) 
1FFF 

DACREAD 
2000 

(DWAIT2:2) 
2FFF 

AVAILABLE 
3000 

DWAIT3 
33FF 

AVAILABLE 
3400 

DWAIT4 37FF 

INTERNAL RAM 3800 

1K 3BFF 
/ ' 

MEMORY MAPPED 
3COO 

REGISTERS 
AND RESERVED 3FFF 

Figure 3.1 Data Memory Map 

DM(Oxl000) =. reg; {load DAC register 0} 
DM(OxlOOl) reg; {load DAC register l} 
DM(Oxl002) = reg; {load DAC register 2} 
DM (0xl003) = reg; {load DAC register 3} 
DM(Ox2000) = any reg; {transfer data} 

Figure 3.2 DAC Transfer Example 

r.f ......... , 

l_j' 

3-4 



{ 

Operation 3 

3.3 AUDIO CIRCUITRY 
The audio circuitry consists of three ICs plus supporting components, two 
I/0 connectors (PHl and PH2), and ADSP-2101 control and interface 
through SPORTO. The three ICs are the input operational amplifier, an 
AD741 (U9) with a maximum gain of 201, a TP5054 serial CODEC (U7), 
and an LM388 1.SW audio power amplifier (U4). 

The PH1 jack, ANALOG INPUT, accepts a microphone or other high 
impedance input. Rl 1 controls the offset and RlO controls the gain. The 
calibration procedures for both this and the output amplifier are in 
Appendix A; you should calibrate the amplifiers before using them. 

The input amplifier's output is processed and amplified again by a factor 
of two in the CODEC; the board's ADSP-2101 controls and receives serial 
data from the CODEC via SPORTO. The CODEC sends the amplified 
signal to the output power amplifier. The gain of the output amplifier can 
be controlled by adjusting the volume control, R3. As part of the amplifier 
calibration procedure in Appendix A, the volume control is set for its 
maximum below the distortion point. The output amplifier provides 
enough gain to the PH2 jack, ANALOG OUTPUT, to drive a small 
speaker. 

The following program, codec_demo, Figure 3.3 (on the following page), 
demonstrates many of the DAC and audio features. The routine begins by 
toggling the FLAG OUT LED. The program then proceeds to the setup 
subroutine where SPORTO is configured and enabled, providing a 2.048 
MHz clock to the CODEC through SCLKO and an interrupt rate of 8 kHz. 
After adjusting the interrupts (which includes prohibiting interrupt 
nesting) and enabling the SPGRTO receiver, it goes into the wait loop. 

Upon receiving a SPORTO Receive Interrupt, the sample routine is 
activated. Microphone data is read by the ADSP-2101 from the CODEC, 
via the SPORTO RXO register, and placed into AXO. The data is sent back to 
the CODEC via the SPORTO TXO register; from there it goes to the output 
amplifier and then to a speaker. 

The data in AXO is also sent out through channel 0 of the DAC to J3, where 
you can display the unfiltered sample on an oscilloscope. 

3-5 



3 Operation 

ADSP-2101 Evaluation Board demonstration of codec filter 

.MODULE/RAM/BOOT=O/ABS=O codec_demo; 

.PORT write_dacO; 

.PORT load_dac; 
{ Interrupt Vectors 

JUMP start; NOP; NOP; 
RTI; NOP; NOP; NOP; 

NOP; 

{Defined at DM OxlOOO 
{Defined at DM Ox2000 

} 

{Reset Vector} 
{IRQ2/ Int} 

RTI; NOP; NOP; NOP; {SPORTO Tr~nsmit Int} 
JUMP sample; NOP; NOP; NOP; {SPORTO Receive Int} 
RTI; NOP; NOP; NOP; {IRQO/ Int} 
RTI; NOP; NOP; NOP; {IRQl/ Int} 
RTI; NOP; MOP; NOP; {Timer Interrupt} 

~~~~~~~<:ode Start--~~---------} 

start: AXO=Ox0038;
DM(Ox3FFF)=AXO; {FI/FO selected, pmwait=O}
NOP;
TOGGLE FLAG_OUT;
CALL setup;

in .ACH
in .ACH

file}
file}

ICNTL=B#Ollll; {disable IRQ nesting, all IRQs edge sensitive}
IMASK=B#001001; {enable SPORTO receiver}

~~~~~~~wait Loop } 
wait: IDLE; {endless loop waiting for interrupts(samples)} 

JUMP wait; 
~~~~~~'Non-Filtered Output----~~-----

sample: AXO=RXO; {read input sample from microphone}
TXO=AXO;
DM(write_dacO)=AXO; {display unfiltered sample on oscilloscope}
DM(load_dac)=AXO;
RTI;

--~~setup Subroutine for Initializing Serial Ports--~-}
{Wait states all 0} setup: AXO=OxOO;

DM(Ox3FFE)=AXO;
AXO=Ox6B27;
DM (0x3FF6) =AXO;
AX0=2;
DM(Ox3FFS)=AX0;
AX0=255;
DM(Ox3FF4)=AX0;

{Int SCLK, RFS req, TFS req, Int RFS}
{Int TFS, MU law, SLEN 8}
{SCLKDIV is 2 generates a 2.048 MHz}
{with a 12.888 MHz crystal}
{RFSDIV for 8 KHz Interrupt Rate}

AXO=Oxl038; {Enable SPORTO}
DM (Ox3FFF) =AXO;
RTS;

.ENDMOD;

3-6
Figure 3.3 CODEC Programming Example

(

Operation 3

3.4 BOOTEPROM
The EZ-LAB ADSP-2101 can boot any page of the boot EPROM, US, into
its internal program memory RAM. The internal program memory stores
2K words of 24-bit width. Booting is enabled because the ADSP-2101
MMAP pin is tied low (MMAP=O); in this configuration internal program
memory is at addresses OxOOOO through Ox07FF. Figure 2.3, on page 2-5,
shows the program memory map for the ADSP-2101 on the EZ-LAB
board.

The boot EPROM supplied with the EZ-LAB is a 64K x S-bit wide 27512.
Each page occupies a separate SK x 8 bit memory space (on SK
boundaries); thus, a boot EPROM of this size holds eight pages of code
and data. Boot memory uses a completely separate memory addressing
space consisting of the 14 address lines and 2 upper data lines for full
decoding, plus the boot memory select (BMS) line for control.

EZ-LAB always boots on reset from page 0, the first page of SK by S-bit
EPROM; this can occur at power-on or from either reset source, the RESET
switch on the board or pin 11 on the User Interface expansion connector
Jl.

3.4.1 Changing Boot Pages In Software
Software forced rebooting from any available page occurs when the Boot
Force bit (BFORCE) in the System Control Register (data memory location
Ox3FFF) is set to 1. At that point, the contents of the Boot Page Select
(BPAGE) bits in that same register select the page number (O- 7).

The following four step process makes ADSP-2101 multiple page system
reboots easy to implement in your programs.

Step 1
Give each code module a boot page identification number. The code in
this module statement resides in boot page O .

. MODULE/BOOT-0/ABS•O Ez_FIRs;

Step2
Use the .INCLUDE directive to include the file nowboot.h, which you must
generate.

.INCLUDE <nowboot.h>; {software reboot aid}

3-7

3

3-8

Operation

This file, shown below, declares System Control Register constants for all
eight pages.

.CONST

.CONST

.CONST

.CONST

.CONST

.CONST

.CONST

.CONST

Step3

nowboot.h
Use these constants to write to DM(Ox3FFF) and force a reboot
of the page indicated.

Now_Boot_Page_O=Ox0218;
Now_Boot_Page_l•Ox0258;
Now_Boot_Page_2=0x0298;
Now_Boot_Page_3•0x0208;
Now_Boot_Page_4•0x0318;
Now_Boot_Page_5=0x0358;
Now_Boot_Page_6•0x0398;
Now_Boot_Page_7=0x0308;

Create the wait_int, boot_next_page code template, below and paste it into
your program. Pressing the FLAG switch causes a FLAGIN interrupt
which forces a reboot.

{**}
wait int:

IF NOT flag_in JUMP boot_next_page;
JUMP wait_int;

boot_next_page:
{<- infinite loop of interrupts

IF NOT flag_in JUMP boot_next_page;
AXO•Now_Boot_Page_l;
DM(Ox3FFF)•AXO;

{ reboot to this page number
{<- reboot occurs here }

{**}

Step4
Edit the above code template to reboot at the desired page number. The
following line modification causes a reboot from page 2 instead of page 1.

AXO•Now_Boot_Page_2; { reboot to this page number }

The following program, Ez_FIRs (Figure 3.4) is an example of a simple
implementation of this reboot procedure.

/

(

(

Operation 3

{ezfirs.dsp
Switch Between Four Different Bandpass FIR Filters
ADSP-2101 EZ-LAB demonstration

input signal from microphone
output to speaker for audio, dac for observation

Move through state machine by pushing IRQ2 button:

state_O: voice input, pass through unfiltered
state_l: voice input, bandpass filter 1 (low freq)
state 2: voice input, bandpass filter 2 (higher freq)
state_3: voice input, bandpass filter 3 (even higher freq)
state 4: voice input, bandpass filter 4 (highest freq)
state 5: noise input, pass through unfiltered
state 6: noise input, bandpass filter 1 (low freq)
state_?: noise input, bandpass filter 2 (higher freq)
state 8: noise input, bandpass filter 3 (even higher freq)
state 9: noise input, bandpass filter 4 (highest freq)
<next push of IRQ2 brings you back to state O>

step 1, t:lw nazt. line boot• to paga 0. }

.MODULE/BOOT=O/ABS•O Ez_FIRs;
{ step 2, include the now.boot. h fil•. }

. INCLUDE <nowboot. h>;

.EXTERNAL CntlReg_inits;

.PORT write_dacO;

.PORT load_dac;

.CONST taps•256;

. VAR/CIRC data [taps] ;

.VAR which_fir;

.VAR voice_or_noise;

.VAR saveI4;

. VAR rndnum;

. VAR/PM/CIRC firl_coefs [taps];

. VAR/PM/CIRC fir2_coefs [taps];

. VAR/PM/CIRC fir3_coefs [taps];

. VAR/PM/CIRC fir4_coefs [taps];

{ software reboot aid }

.!NIT firl_coefs: <firl.dat>;

.!NIT fir2 coefs: <fir2.dat>;

.!NIT

.!NIT
fir3 coefs: <fir3.dat>;
fir4 coefs: <fir4.dat>;

(listing continues on next page)
3-9

3 Operation

~~~~~~~ector Addresse..-~~~~~~~~­

JUMl> start; RTI; RTI;RTI; {Reset Vector} 
{IRQ2} 

start: 

zero: 

JUMl> newfir; RTI; RTI;RTI; 
RTI; RTI; RTI;RTI; 

JUMl> sample; RTI; RTI;RTI; 
RTI; RTI; RTI;RTI; 
RTI; RTI; RTI;RTI; 
RTI; RTI; RTI;RTI; 

CALL CntlReg_inits; 
IO="data; 
I2="rndnum; 
I4•"firl_coefs; 
IS•"fir2_coefs; 
I6-"fir3_coefs; 
I7•"fir4_coef s; 

MO•l; 
M2•0; 

M4•1; 

SI•O; 
DM(which_fir)•SI; 
DM(voice_or_noise)=SI; 
SI•HU234; 
DM(seed_lsw)•SI; 
DM(seed_msw)=SI; 
CNl'R-taps; 
{DO zero UNTIL CE;} 

{SPORTO TX} 

{SPORTO RX} 

{IRQO} 
{IRQl} 
{Timer} 

{ set up SPORTs, Timer, etc. } 
LO-taps; 
L2•0; 

L4-taps; 
LS-taps; 
L6-taps; 
L7=taps; 

start with no filtering of input signal 
start with voice input, not noise input 

arbitrary seed for random noise generator 

DM(IO,MO)•O; { clear out the filter delay line buffer } 
IF NOT CE JUMP zero; 
ICNTL-BtOOlll; { disable IRQ nesting, all IRQs edge-sensitive 
IMASK•BtlOlOOO; { enable IRQ2 and SPORTO_Rx interrupts } 

{ step 3, UM tha ~ollovinq taaplate. ) 

{****************************************************************************) 
wait int: 

IF NOT flag_in JUMP boot_next_yage; 
JUMP wait_int; {<- infinite loop of interrupts ) 

boot_next_yage: 
IF NOT flag_in JUMP boot_next_yage; 

step 4, pat the next pag91 nmabu' on tha line below. 
AXO•Now_Boot_Page_l; 
DM ( Ox3FFF) =AXO; 

{ reboot to this page number 
{<- reboot occurs here } 

{****************************************************************************} 

3-10 

1" ,_ 

~--j 



<- Operation 3 

sample: AR•DM (voice_ or _noise) ; 
AR•PASS AR; 
IF EQU JUMP voice_input; 

noise_input: 
CALL getrnd; { generate a 16-bit random number in SRl } 
JUMP process_sample; 

voice_input: 
SI•RXO 
SR•ASHIFT SI BY 2 (HI); 

get new sanpl~ from SPORTO (microphone) } 
shift 14 LSBs into MSBs } 

process_sample: 

jump_table: 

DM(IO,MO)•SRl; 
AXl•DM(which_fir); 
AYl-~jump_table; 

AR•AXl+AYl; 
DM(saveI4)-I4; 
I4•AR; 
JUMP (I4); 

JUMP nofilt; 
JUMP firl; 
JUMP fir2; 

JUMP fir3; 
JUMP fir4; 

output: TXO-MRl; 
DM(write_dacO)•MRl 
DM(load_dac)-MRl; 
RTI; 

nofilt: I4•DM(saveI4); 

store sample in data buffer (delay line) } 
{ decide which filter to do } 

{ restore I4 later in filter routines } 

which fir • 0 

which fir "" 1 
which fir = 2 

which fir = 3 
which fir = 4 

filtered output to SPORT (to spkr) } 
latch sanple for dac } 

{ display sample on oscilloscope with dac 

SR-ASHIFT SRl BY -1 (HI); 
MRl•SRl; 

{ save the audience's ears from damage } 

firl: 

JUMP output; 

I4•DM(saveI4); 
CNTR-taps-1; 
MR•O, MXO•DM(IO,MO), MYO=PM(I4,M4); 
{DO firlloop UNTIL CE} 

(listing continues on next page) 
3-11 



3 Operation 

firlloop: MR-MR+MXO*MYO (SS), MXO•DM(IO,MO), MYO•PM(I4,M4); 
IF NOT CE JUMP firlloop; 
MR-MR+MXO*MYO(RND); 

fir2: 

IF MV SAT MR; 
JUMP output; 

I4=DM(saveI4); 
CNTR-taps-1; 
MR-0, MXO•DM(IO,MO), MYO•PM(I5,M4); 
{DO fir2loop UNTIL CE} 

fir2loop: MR-MR+MXO*MYO (SS), MXO•DM(IO,MO), MYO•PM(I5,M4); 

fir3: 

IF NOT CE JUMP fir2loop; 
MR-MR+MXO*MYO(RND); 
IF MV SAT MR; 
JUMP output; 

I4•DM(saveI4); 
CNTR-taps-1; 
MR•O, MXO•DM(IO,MO}, MYO•PM(I6,M4}; 
{DO fir3loop UNTIL CE} 

fir3loop: MR-MR+MXO*MYO(SS}, MXO•DM(IO,MO), MYO•PM(I6,M4); 

fir4: 

IF NOT CE JUMP fir3loop; 
MR-MR+MXO*MYO(RND); 
IF MV SAT MR; 
JUMP output; 

I4=DM(saveI4}; 
CNTR-taps-1; 
MR•O, MXO•DM(IO,MO), MYO•PM(I7,M4); 
{DO fir4loop UNTIL CE} 

fir4loop: MR=MR+MXO*MYO(SS), MXO•DM(IO,MO), MYO•PM(I7,M4); 
IF NOT CE JUMP fir4loopi 
MR-MR+MXO*MYO (RND} ; 
IF MV SAT MR; 
JUMP output; 

newfir: AYO•DM(which_fir); {push into next state of state machine } 
AR•AYO+l; 
DM(which_fir}•AR; 
AYO•S; 
AR•AR-AYO; 
IF NE RTI; 
AR•PASS O; 

3-12 

{ if in state4, qo to stateO, not states } 



( 

( 

Operation 3 

getrnd: 

.ENDMOD; 

DM(which_fir)•AR; 
AR•DM(voice_or_noise); 
AR•NOT AR; { at same time, also toggle voice/noise input } 
DM(voice_or_noise)•AR; 

RTI; 

SRl•DM (seed_ msw) ; 
SRO•DM(seed_lsw); 
MY1•25; Upper half of a } 
MY0=26125; Lower half of a } 
DM(I2,M2)•SR1, MR•SRO*MYl(UU); { a(hi) X x(lo) 
MR•MR+SRl*MYO(UU); { a(hi) X x(lo) + A(lo) X x(hi) } 
SI•MRl; 
MRl•MRO; 
MR2•SI; 
MRO•OxFFFE; { c-32767, left-shifted by 1 
MR•MR+SRO*MYO (UU); { (above) + a (lo) X x (lo) + c 
SR+ASHIFT MR2 BY 15 (HI); 
SR•SR OR LSHIFT MRl BY -1 (HI); { right-shift by -1 } 
SR•SR OR LSHIFT MRO BY -1 (LO); 

DM(seed_msw)-SRl; 
DM{seed_lsw)-SRO; 
RTS; { random 16-bit value in SRl } 

Figure 3.4 Boot EPROM Page Changing Example 

3.4.2 EZ·LAB Rrmware 
EZ-LAB includes a 27512 boot EPROM, U8, preprogrammed with several 
demonstration programs. The ADSP-2101 on the board is capable of 
booting from any of the EPROM's eight pages of firmware. The release 
note that accompanies your EZ-LAB board contains information on the 
current revision of firmware contained in this EPROM. 

To program replacement memory devices (either 27512 or devices with 
the same pinout) use the ADSP-2101 Cross-Software tools to develop your 
program. You can also use a smaller EPROM, such as a 27256, which only 
has four pages of storage. The ADSP-2101 Cross-Software tools include a 
PROM splitter that formats the code for transfer to the boot EPROM via an 
EPROM programmer. 

3-13 



3 Operation 

/(----- ........ , 

~-j 

3-14 



( 

Calibration 

A.1 INTRODUCTION 
The EZ-LAB™ board is equipped with a microphone input amplifier and 
an analog output amplifier. This section details the calibration procedures 
that you should use to adjust the gains (input and output amplifiers) and 
offset (input amplifier). 

For either amplifier calibration you will require the following equipment 
and tools: 

• Signal generator capable of generating 100 mV peak-to-peak (P-P) at 1 
kHz; 

• Oscilloscope with probe; 

• Cable with 1/8" phono plug and appropriate connector to the signal 
generator; 

• Cable with 1/8" phono plug and appropriate connector to the 
oscilloscope; 

• Small screwdriver to adjust the potentiometers on the EZ-LAB board. 

A.2 INPUT AMPLIFIER CALIBRATION 
The EZ-LAB analog input amplifier consists of an AD741 operational 
amplifier (U9) with a maximum gain of 201. It drives another amplifier in 
the CODEC. There are two potentiometer controls for the AD741 that 
require adjustment, R10 (gain) and Rl 1 (offset). 

The input amplifier should always be calibrated before the output 
amplifier, since the input amplifier gain affects the output amplifier 
adjustment. The procedure calls for the following steps. 

• . A 

A-1 



A Calibration 

A-2 

Stepl 
Turn on the EZ-LAB power. 

Step2 
Short the ANALcx; INPUT phono jack on the EZ-LAB board to AGND. 

Step3 
Turn the input amplifier gain potentiometer, RlO, 25 times clockwise for 
maximum gain. 

Step4 
Adjust Rl 1, the offset potentiometer, until the output of the input 
amplifier (U9 pin 6) is OVDC (referenced from AGND). 

Step 5 
Set the signal generator for 100 mV P-P at U9 pin 3, the amplifier input. 

Step 6 
Adjust RlO, the gain potentiometer, for an amplifier output at U9 pin 6 of 
2.SVpeak. 

The input amplifier is now trimmed and ready for use. You may have to 
adjust the gain further to match the level of any other device connected to 
the input jack. Proceed to the adjustment of the output amplifier in the 
next section. 

A.3 OUTPUT AMPLIFIER CALIBRATION 
The EZ-LAB analog output amplifier is an LM388 (U4), a 1.SW audio 
power amplifier. The input to this amplifier comes from the CODEC 
VFRO pin (U7 pin 3). The output amplifier volume is adjusted through R3. 

The procedure for adjusting the output amplifier calls for the following 
steps. 

Step 1 
Adjust the input amplifier if it has not been calibrated. The calibration 
procedure is given in the previous section. 

Step2 
Connect the signal generator to PHl, the ANALOG INPUT phono jack on 
the EZ-LAB board. ff' " 

'-j 



( 

( 

Calibration A 

Step 3 
Set the signal generator frequency to produce a 1 kHz sine wave. Adjust 
the signal generator's amplitude such that the signal at pin 3 of U9 is 100 
mV P-P. Use AGND as the return for the oscilloscope. 

Step 4 
Connect the oscilloscope to PH2, the ANALOG OUTPUT phono jack on 
the EZ-LAB board. 

Step 5 
Use the codec_demo program in boot EPROM shown in Figure 3.3, which 
can be found on page 3-6. While running the demonstration, adjust R3 
until the signal is at its maximum value without distortion or clipping. 
You may need to adjust the volume further to provide a comfortable level 
for an application being run. 

A-3 



A Calibration 

A-4 



(, 

f 

( 

Schematics B B 

8.1 INTRODUCTION 
This section schematics for the EZ-LAB™ board, consisting of five sheets: 

• Sheet 1 
• Sheet 2 
• Sheet 3 
• Sheet4 
• Sheet 5 

Block Diagram 
ADSP-2101 Support Logic 
Analog 1/0 Section 
Connectors · 
Power Connector and Miscellaneous Logic 

B-1 



~' 
,..... ~. 

Schematics B 

4 _____)_ ·-~ 

:::otmErTORS 

DJGITAL PAFT 
BR/ 
~/ 
rn 

~ ~~~·~ RE;;t::T, ----
l!"~'.1 

;,;o 9 

ANALOG 

MISC-PARTS 

[JAC [0 •• 7] 

Ar ro. 
>SA 
_.,A 
.~ I' ___ _ 
t r2v I 
-f2V 

ANALOG l1EV1CES 

Tit 10 

EZ-LAB BLOCK DI!IGEAM 

Docurnpnt_ Nul'·1ber IREV 

Uate: November 24 1989 Sheet of 
L 

Figure B.1 EZ-LAB Block Diagram 



""· 

NC 

P2 

DTl I I I 

IRQl P3 I I 

TFS! 
INT/SER 

IRQO P4 

RFSl 
!NT/SER 

I DACLD/ 

74ACT32 

DACWR/ 
AD13 

74ACT32 

IA 

BOOT EN 

BOOT DIS 

BOOT_EN 

Figure B.2 EZ·LAB ADSP-2101 Support Logic 

DRl 

CLKOUT 

DRl/fl 
DTl/FO 

...., 

GGGG 
NNNN 
DODD MMAP 

TFSl/ IRQ...L_..__ RESET 
RE'Sl/IRQO 
SCLKl 

~ Gll I DRO 
DTO 
TFSO 
RFSO 
SCLKO 

""--KlO RD 

=!± JlMS._ 

1 11~~~~ 
AD 

A Al 
A2 
A3 

A A4 
A5 
A6 

A Al 
AD A8 
A A9 

""Arl AlO 
~Q_ All 
A A12 

AJ3 

::i; 20pF 

U8 

···-~ AO 

II. -----_y;oi<'JC::_-___ JJ.L_J-1 ~~ 
f::~~=tJ ~~ 
l~~=-=-i~'ii~ "'"r:::-=-=-1!-'b-l ~~ Al 

l~~~isf=-=~rfj ~~ AlO 
All 

-;:~m=:;tt:: ~ii 
.-'"-"--_;_J ~i ~ 

27512 

00 
Ol 
02 
03 
04 
05 
06 
07 

UlO 

ADSP.clUl 

IRO'.__ ~ I 74F'l4 '14ACT32 

:--- , ' CBRTl 

DO 
DJ 
D2 
03 
04 
D5 
06 
Dl 
08 
09 

DlO 
DJ l 
Dl2 
Ol3 
Dl4 
DlS 
D16 

·017 
018 
Dl9 
D20 
D21 
022 

v v v 023 
ODD 
DD D 

~[KjE 
0 l l 

CJ 

P7 

Pll 

~ 20p~.,, p12 ?Jl l - :::nro 211 > 

Uu 

111m1 mJ1mm 

74Fl4 

2A3 2Y3 
2A4 2Y4 

lG 
2G 

74HCT241J 

~ . ' 

Schematics B 

U58 

U5A 

.14F14 

Rl 
lOOK 

.:!:.. Cl + 4.?uF 

NC 

NO 

RNl 

Pl VCC 
P:.'. Pl~ 
P3 1'14 
P4 Pl 3 
PS P12 
Pb Pl l 
P 7 PIO 
PB P9 

RE SN ET 

SW3 

0 l 
RESET 7 

ANALOG DEVH'ES L>SP 

Title 

EZ-LAH AUSP21Ul I SUPPORT LOGIC 

Size !Document Number 

Date: April 13, 1990 Sheet 2 of 

REV 



IA 

~ 

INPUT AMPLIFIER SECTION 

PHl C19 

~uF 
ANALOG_ !NP~ --1 

PH2 

ANALOG_~UY! RB 

lOK 

Cl2 

220uf 

Rl3 

lK 

Rl2 

lOOK 

R9 

lK 

1o~:~uF 
R7 

2. 7 

T Cl5 
O.luF 

C14 

.luF T 
AGND 

R6 
!OK 

OFFSET 

RlO 

C13 

47pF 

---l.!.. C9 
ClO =r j 10ut 

O.luF ~ 

200K 

~--.-----------!c-J BYPASS VS 

C7 _!__ J!.. C6 

O.luFY lOuf 

GAIN VOUT 
GND U4 GND 
GND GND 
GND GND 
GAIN BTSTRAP 
- INPUT +INPUT 

LM388DIP 

OUTPUT AMPLIFIER SECTION 

Figure B.3 EZ·LAB Analog 110 Section 

GAIN 

C4 

Cl6 

1.·0uF 

RO 
510 

RS 
510 

VOLUME 

,......., 

R3 

lOK 

Rl5 

!OK 

Rl4 

!OK 

C5 

l .OuF 

Rl6 

lOK 

R2 

!OR 

DAC l 
DAC 2 
DAC 3 
DAC 4 

~' 

Schematics B 

Cl7 

~He" O. luF O. luF 

1 AGND 

GSX v v 
8 c BCLKR 

VFXI- 8 c MCLKR 

U7 
MCLKX 

VFXI+ BCLKX 

VFRO ETC5054 FSR 
OR 

CODEC FSX 
DX 

G TSX 
N 
D 
A JP6 

-:--! 
CODEC IN 

DATA CONVERSION SECTION 

~ 

JJ 

CB rO luF 

" 
VOUTA 

VOU'l'B 

VOUTC 

VOUTD 

VREFA 
VREFB 
VREFC 
VREFO 

v 
087 D 

D 086 
085 
084 
083 
082 
081 

D2 [)80 

Al 

AD7225 
AO 

WR 

LDAC 

DAC7 
o 

7 DACWR/ 

DACLD/ 

AC{O .. 7] 

D [0 .• 131 

ANALOG DEVICES DSP 

Title 

EZ-LAB ANALOG 1/0 SECTION 

Size !Document Number 

Date: November 24, 1989 Sheer_ 

IA 

REV 

3 af 



~ 
' 

::a: ~ 

~ 
llQL 

<HOST R~ 

~ 

~ 

<ill: 

IA 

Figure B.4 EZ-LAB Connectors 

~' 

=:;:: ::::i: 

OST 

~ 

USER INTERFACE 

_____DJO •• 231 

J2 
.µ_k)-, 

~ I UI~ 
~ I io1Q' 

<Jlill I '.? I o 0 

uru::> 

"·"'KlL 

~ 

<JlDiQ: 

~ 

rm:=:: 

~ 

:3: 

Tf 1 _o 
18 
3: 
.l 

4 

If I - 0 
i5 

li: 
EJ 

SPORT_ CONN 

::I 

.~ 
I 

Schematics B 

::I 

·---

~ 

IA 

ANALOG !Jf-~VlCES CSP 

TitlE: 
EZ-;.AB ,:,: it/NE-~-:·oR.S 

Si~e lco,:ument Numht-t R~V 

Dat~: Nuv~ml.Je1 '4, 1-;g;, !st.eel 4 Gf ') I 



~ 

IA 

+5 VOLTS 
DIGITAL GND 
ANALOG GND 
+12 VOLTS 
-12 VOLTS 

NOTES: 

U3 

NC NR 
+VIN NC 
NC VOllT 
GND TRIM 

AD586 

Rl8 

Rl 7 

C26 THRU C33 ARE BYPASS CAPS FOR MISC. LOGIC 
THEY SHOULD BE PLACED AS CLOSE THE POWER PINS 
OF THE MISC. LOGIC AS POSSIBLE 

C20 THRU C25 ARE SUPPLY FlL'::'ER CAPS 
AND SHOULD BE PLACED AS CLOSE TO THE 
POWER CONNECTOR "J4" AS POSSIBLE 

C34 THRU C36 ARE BYPASS CAPS FOR THE ADSP-2101 
THEY ARE TO BE USED IN CONUCTION WITH THE . luF 
CAPS FOR THE ADSP-2101 AND SHOULD BE PLACED 
AS CLOSE TO THE POWER AND GROUND PINS OF THE 
AOSP-2101 SOCKET 

Figure B.5 EZ·LAB Power Connector and Miscellaneous Logic 

~. 

C33 
. luf' 

...-.... 

Schematics 8 

D4 
LED 

POWER LED 

USF 

~ 
74Fl4 

SPARE GATES 

Hl H2 H3 H4 HI 

0 0 0 0 0 
HOLE125 HOLE125 HOLE125 HOLE125 HOLE12'::> 

Ml M2 M3 

0 0 0 
MOIRE MOIRE MOIRE 

ANALOG DEVICES DSP 

Title 

EZ-LAB POWER CONNECTOR I MISC. LOGIC 

Size Document Number REV 

B A 

Date: November 20, 1989 Sheet ; of 5 



A E·H 
AD741 opamp .......................................... 1-2 EPROM (27512) .............................. 1-1, 2-lO 
ADSP-2101 Cross-Software .......... 1-1, 3-13 External EPROM ...................................... 3-2 
ANALOC INPUT .................................... 3-5 FLAG IN switch ........................ 2-4, 3-1, 3-8 
ANALOC OUTPUT ................................ 3-5 FLAG OUT ............................................... 2-7 
Analog features ................................ 2-6, 3-1 FLAG OUT LED ............................... 1-2, 3-1 
Analog 1/0 ............................................... 3-2 Flag In ......................................... 1-2, 2-7, 2-9 
Analog input ............................................ 2-8 FLAGIN interrupt ................................... 3-8 
Analog outputs ........................................ 3-3 Functional blocks ..................................... 3-2 
Application demonstrations .................. 1-1 Gain ......................................... 2-10, 3-5, A-1 

Gain potentiometer ................................ A-2 

B Hardware flags ........................................ 1-2 

( Bit resolution ............................................ 3-3 
Boot EPROM .......................... 3-2, 3-13, A-3 

High impedance input .................. 2-10, 3-5 
HOST RESET ............................................ 2-7 

Boot force bit ............................................ 2-4 
Boot memory select ................................. 2-4 
Boot page select bit .................................. 2-4 .INCLUDE directive ................................ 3-7 
Booting ............................................. 2-4, 3-13 Input amplifier ....................................... 2-10 

Input operational amplifier ................... 3-5 

c Installation procedure ............................. 2-1 

Calibration ................................................ 3-5 Internal program memory .............. 2-4, 3-7 

CODEC (TP3054) .................... 1-2, 2-9, 2-10 
Connectors ................................................ 2-1 

Internal RAM ........................................... 3-3 
Interrupt rate ............................................ 3-5 

Cross-Software ............................... 1-1, 3-13 
Crystal ....................................................... 1-1 

Interrupts .................................................. 1-2 
IRQ2 ................................................ 1-2, 2-7 
IRQ2 switch ....................................... 2-6, 3-2 

D 
DAC (AD7225I<N) ......................... 1-2, 2-lO 
Data memory ........................................... 3-3 
Data memory wait state 
control register ......................................... 3-3 
Del>ounce circuitry ................... 2-4, 2-6, 2-7 

L·M 
LEDs ........................................................ 2-10 
Microphone ..................................... 2-10, 3-5 
MMAP ........................................ 2-4, 3-2, 3-7 
.MODULE directive ................................ 3-7 

Development equipment ........................ 2-8 
DR0 ..................................................... 2-6, 2-9 
DRl ..................................................... 2-7, 2-9 
DTl ............................................................ 2-7 

(-
X-1 



( Index 

O·P 
Offset ................................................. 3-5, A-1 
Offset potentiometer .............................. A-2 
Onboard EPROM .................................... 2-4 
Output amplifier volume ...................... A-2 
Output power amplifier ................ 2-10, 3-5 
Partial address decoding ........................ 3-3 
Peripheral circuitry ................................. 2-8 
Phono jacks ............................................... 2-8 
Potentiometers ................................. 2-1, A-1 
Power supplies ........................................ 1-1 
Power-on ........................................... 2-7, 3-7 
Program memory map ........................... 3-2 
PROM splitter ........................................ 3-13 

R 
RC circuit .................................................. 2-7 
Receive frame synchronization ............. 2-6 
Reference voltage .................................... 3-3 
Release note ............................. 1-1, 2-1, 3-13 
Replacement memory devices ............. 3-13 
RESET ................................................ 1-2, 2-7 
RESET switch ........................................... 3-7 
RFSO ................................................... 2-6, 2-9 
RFSl ........................................................... 2-9 

s 
SCLKO ................................................ 2-6, 2-9 
Serial data ................................................. 2-6 
Software event ......................................... 2-7 
Software forced rebooting ...................... 3-7 
Speaker ............................................ 2-10, 3-5 
SPORT connector ............................. 2-4, 2-5 
SPORTO ............................... 1-2, 2-6, 3-1, 3-5 
SPORTl ................ 1-2, 2-1, 2-4, 2-5, 2-7, 3-1 
Standalone operation .............................. 1-1 
Switches .................................................... 2-1 
System control register ............ 2-4, 3-7, 3-8 

T·W 
TFSl ........................................................... 2-9 
User interface connector ......................... 2-5 
Volume control ........................................ 3-5 
Wait states ................................................ 3-3 

X-2 





pong17.lst Thu Oct 14 18:25:22 1993 27 

1509 ; retlw pOOOOO 
1510 ; retlw pOOOOO 
1511 0099 chand equ $-chbase 
1512 03f9 34e6 retlw p01100 ; ** 
1513 03fa 34e9 retlw plOOlO ; * .. * 
1514 03fb 34e5 retlw plOlOO ; *. * 
1515 03fc 34e2 retlw p01000 ; * ... 
1516 03fd 34f5 retlw p10101 ; *. *. * 
1517 03fe 34e9 retlw p10010 ; * .. * 
1518 03ff 34f6 retlw p01101 : **.* 
1519 ; list 
1520 
1521 end 



Contents • 

CHAPTER 1 OVERVIEW 

1.1 INTRODUCTION ...................................................................................... 1 - 1 
1.1.1 ADSP-2101 Cross-Software System & Manual ............................... 1 - 2 
1.1.2 Development Flow ........................................................................... 1 - 4 
1.2 EXPRESSION HANDLING IN CROSS-SOFTWARE TOOLS ................. 1 - 6 
1.3 CONSTANTS ................................................................................. ; .......... 1 - 6 
1.4 NUMERIC BASES .................................................................................... 1 - 7 
1.5 CHARACTER SET ................................................................................... 1 - 7 
1.6 IDENTIFIERS (SYMBOLS) ....................................................................... 1 - 8 
1. 7 MANUAL NOTATION CONVENTIONS .................................................... 1 - 8 

( CHAPTER 2 SYSTEM BUILDER 

2.1 INTRODUCTION ...................................................................................... 2-1 
2.2 RUNNING THE SYSTEM BUILDER ........................................................ 2- 3 
2.3 LANGUAGE CONVENTIONS .................................................................. 2- 3 
2.4 SYSTEM SPECIFICATION SOURCE FILE EXAMPLE ........................... 2-4 
2.4.1 ADSP-2101 System Specification File ............................................. 2-4 
2.5 SYSTEM BUILDER DIRECTIVES ............................................................ 2 - 6 
2.5.1 .SYSTEM Directive .......................................................................... 2 - 6 
2.5.2 .ENDSYS Directive .......................................................................... 2- 6 
2.5.3 .ADSP2101 Directive ....................................................................... 2 - 6 
2.5.4 .CONST Directive ............................................................................ 2 - 6 
2.5.5 .PORT Directive ............................................................................... 2 - 7 
2.5.6 .MMAP Directive .............................................................................. 2 - 7 
2.5.7 .SEG Directive ................................................................................. 2 - 8 

v 



• 
Vt 

Contents 

CHAPTER 3 ASSEMBLER 

3.1 
3.2 
3.3 
3.3.1 
3.3.1.1 
3.3.1.2 
3.3.1.3 
3.3.1.4 
3.3.1.5 
3.3.1.6 
3.3.1.7 
3.3.1.8 
3.4 
3.4.1 
3.4.2 
3.4.2.1 
3.4.2.2 
3.4.3 
3.5 
3.5.1 
3.6 
3.6.1 
3.6.2 
3.6.3 
3.6.3.1 
3.6.4 
3.6.5 
3.6.6 
3.6.7 
3.6.8 
3.6.8.1 
3.6.8.2 
3.6.8.3 
3.6.8.4 
3.6.9 
3.6.10 
3.6.11 
3.6.12 
3.7 
3.8 

INTRODUCTION ...................................................................................... 3 - 1 
ASSEMBLER MODULES ......................................................................... 3- 3 
RUNNING THE ASSEMBLER .................................................................. 3 - 3 

Assembler Switches ......................................................................... 3 - 3 
-cp Switch ............................................................................... 3 - 4 
-p Switch ................................................................................ 3-4 
-dvariable[=value] Switch ....................................................... 3- 6 
-L Switch ................................................................................. 3- 6 
-m [number] Switch ................................................................ 3 - 6 
-i [number] Switch ................................................................... 3 - 7 
-s Switch ................................................................................. 3- 7 
-c Switch ................................................................................. 3- 7 

LANGUAGE CONVENTIONS .................................................................. 3 - 7 
Binary Constants .............................................................................. 3 - 7 
Symbols ........................................................................................... 3 - 8 

Identifiers ................................................................................. 3 - 8 
Reserved Symbols (Keywords) ............................................... 3 - 8 

Comments ...................................................................................... 3-10 
PROGRAM STRUCTURE ...................................................................... 3 - 10 

Source Code File Restrictions ....................................................... 3 - 1 o 
ASSEMBLER DIRECTIVES ................................................................... 3 - 10 

.MODULE Directive ........................................................................ 3 - 11 

.ENDMOD Directive ....................................................................... 3 - 12 

.VAR Directive ................................................................................ 3-13 
More On Circular Buffers ...................................................... 3 - 15 

.INIT Directive ................................................................................ 3 - 17 

.CONST Directive .......................................................................... 3 - 19 

.PORT Directive ............................................................................. 3 - 19 

.INCLUDE Directive ....................................................................... 3 - 19 
Macros ........................................................................................... 3 - 20 

Macro Definition .................................................................... 3 - 21 
.MACRO Directive ................................................................. 3 - 21 
.END MACRO Directive ......................................................... 3 - 22 
Macro Example ..................................................................... 3 - 23 

.LOCAL Directive ........................................................................... 3 - 23 

.EXTERNAL Directive .................................................................... 3 - 24 

.GLOBAL Directive ......................................................................... 3 - 24 

.ENTRY Directive ........................................................................... 3 - 25 
PROGRAM EXAMPLE ........................................................................... 3 - 25 
LIST FILE FORMAT ............................................................................... 3 - 29 



( 

( 

Contents 

CHAPTER 4 LINKER 

4.1 
4.2 
4.2.1 
4.2.1.1 
4.2.1.2 
4.2.1.3 
4.2.1.4 
4.2.1.5 
4.2.1.6 
4.2.1.7 
4.2.1.8 
4.2.1.9 
4.2.1.10 
4.3 
4.3.1 
4.3.1.1 
4.3.2 
4.4 

INTRODUCTION ...................................................................................... 4 - 1 
RUNNING THE LINKER ........................................................................... 4 - 3 

Linker Switches ................................................................................ 4 - 4 
-a archname & -e target Switches ......................................... 4 -4 
-c Switch & ADIRTH Variable ................................................. 4-5 
-clryrun Switch ........................................................................ 4-5 
-g &-x Switches .................................................................... 4 :--6 
-i file all Switch ...................................................................... 4 - 6 
-lib directories Switch & ADIL Variable ................................... 4-6 
-old Switch .............................................................................. 4 - 7 
-p Switch ................................................................................ 4- 7 
-pmstack Switch ..................................................................... 4 - 7 
-s stack size Switch ............................................................... 4 - 7 

LINKER OPERATION ............................................................................... 4-8 
Memory Allocation ........................................................................... 4-8 

Boot Memory Allocation ........................................................ 4 - 1 O 
Symbol Resolution ......................................................................... 4 - 1 o · 

MAP LISTING FILE ................................................................................ 4 - 11 

CHAPTER 5 SIMULATOR FUNCTIONS 

5.1 
5.2 
5.2.1 
5.2.2 
5.2.3 
5.2.4 
5.2.5 
5.2.5.1 
5.2.5.2 
5.3 
5.3.1 
5.3.2 
5.3.3 
5.3.4 
5.3.4.1 
5.3.4.2 
5.3.4.3 
5.3.5 
5.3.6 

INTRODUCTION ...................................................................................... 5 - 1 
GETTING STARTED ................................................................................ 5-2 

Help Files & ADI DOC Variable ........................................................ 5 - 2 
Simulator Files ................................................................................. 5 - 3 
Invoking The Simulator .................................................................... 5- 3 
Simulator Command Overview ........................................................ 5-5 
Simulator Notation Conventions ...................................................... 5- 6 

Specifying Addresses & Address Ranges ............................... 5- 7 
Simulator Expressions ............................................................ 5- 8 

INTERFACE MANAGEMENT FUNCTIONS ............................................. 5-9 
Opening Windows .......................................................................... 5 - 1 O 
Changing Window Contents From Hex to Decimal ........................ 5 - 11 
Closing Windows ........................................................................... 5 - 11 
Moving From Window To Window ................................................. 5-11 

To Cycle Through All Windows ............................................. 5 - 12 
To Activate A Window By Number ........................................ 5-12 
To Activate The Command Window ...................................... 5 - 12 

Sizing Windows .............................................................................. 5-12 
Moving Windows ............................................................................ 5 -13 

•• 
Vtt 



( 

( 

••• 
Vttt 

Contents 

5.3.7 
5.3.7.1 
5.3.7.2 
5.3.7.3 
5.3.8 
5.3.9 
5.4 
5.4.1 
5.4.2 
5.4.3 
5.4.4 
5.4.5 
5.5 
5.5.1 
5.5.2 
5.5.2.1 
5.5.3 
5.5.4 
5.5.5 
5.5.6 
5.5.7 
5.6 
5.6.1 
5.6.2 
5.6.3 
5.6.4 
5.6.5 
5.6.5.1 
5.6.5.2 
5.6.6 
5.6.7 
5.6.8 
5.6.9 
5.7 
5.7.1 
5.7.2 
5.7.3 
5.7.4 
5.7.4.1 
5.7.4.2 
5.7.4.3 
5.7.4.4 

Rearranging Window Contents ...................................................... 5 - 13 
Deleting Window Fields ......................................................... 5 - 13 
Undeleting Window Fields ..................................................... 5 - 13 
Moving Window Fields .......................................................... 5 - 14 

Command Line Aliases .................................................................. 5-14 
Using Help ..................................................................................... 5-15 

SET-UP FUNCTIONS ............................................................................. 5-16 
Loading A Program ........................................................................ 5 - 16 
Opening & Closing An 110 Port ...................................................... 5 - 17 
Opening A SPORT ......................................................................... 5 - 18 
Simulating External Interrupts ........................................................ 5 - 20 
Other Defaults (Defaults Window) ................................................. 5 - 20 

INSPECTING & ALTERING REGISTERS .............................................. 5-21 
Inspecting A Register ..................................................................... 5 - 22 
Altering A Register ......................................................................... 5-22 

"Undefined" Registers .......................................................... ;5-23 
Registers Window .......................................................................... 5 - 23 
SPORT Register Window .............................................................. 5 - 24 
Status Register Window ............................................. : ................... 5 - 24 
Control Registers Window ............................................................. 5 - 26 
Stack Window ................................................................................ 5 - 26 

INSPECTING & AL TEAING MEMORY .................................................. 5 - 28 
Inspecting A Memory Location ....................................................... 5 - 28 
Tracking ......................................................................................... 5 - 29 
Locating Symbols & Values .......................................................... 5 - 30 
Plotting The Contents Of Memory .................................................. 5- 31 
Altering A Memory Location ........................................................... 5 - 31 

Altering Instructions ............................................................... 5 - 32 
"Undefined" Memory Locations ............................................. 5 - 33 

Program Memory (Code) Window ................................................. 5 - 33 
· Program Memory As Data ............................................................. 5 - 34 

Data Memory .-................................................................................ 5- 35 
Boot Memory .................................................................................. 5 - 36 

CONTROL & DEBUGGING FUNCTIONS .............................................. 5 - 38 
Resetting The Processor: CR and RE ........................................... 5- 38 
Single-Step Execution .................................................................... 5 - 38 
Running & Halting ......................................... ; ................................ 5- 39 
Breaks ............................................................................................ 5 - 40 

Setting Breakpoints & Break Ranges .................................... 5 - 40 
Viewing Breaks ...................... , .............................................. 5 - 40 
Break Expressions & Changes ............................................. 5 - 42 
Deleting Breaks ..................................................................... 5 - 43 



( 

5.7.5 
5.7.5.1 
5.7.5.2 
5.7.5.3 
5.7.5.4 
5.7.6 
5.7.7 
5.7.8 
5.7.8.1 
5.7.8.2 
5.7.8.3 
5.7.8.4 
5.7.9 
5.7.9.1 
5.7.9.2 
5.8 
5.8.1 
5.8.1.1 
5.8.1.2 
5.8.2 
5.9 
5.9.1 
5.9.2 
5.10 

Contents 

Watchpoints & Watch Expressions ................................................ 5-44 
Setting Watchpoints .............................................................. 5-44 
Setting Watch Expressions ................................................... 5 - 44 
Listing Watchpoints and Watch Expressions ........................ 5-45 
Deleting Watchpoints and Watch Expressions ..................... 5 - 45 

The ? Command and Expressions Window ................................... 5 - 45 
Execution History (Trace Window} ................................................. 5 - 46 
Execution Profiling (Profile Window} .............................................. 5-47 

Turning On Profiling .............................................................. 5 - 48 
Setting A Profile Range ......................................................... 5 - 48 
Deleting Profile Ranges ........................................................ 5-49 
Resetting Profiling Data ........................................................ 5 - 50 

Setting Time Bases ........................................................................ 5- 50 
Short Term Count (STC} ....................................................... 5- 50 
Long Term Count (LTC} ........................................................ 5-51 

EXITING & SAVING A SIMULATOR SESSION ..................................... 5-52 
Saving Simulation State ................................................................. 5-52 

What Is Saved ....................................................................... 5 - 53 
What Is Not Saved ................................................................ 5 - 53 

Quitting The Simulator ................................................................... 5-53 
MISCELLANEOUS FEATURES ............................................................. 5-54 

Executing Operating System Commands ...................................... 5-54 
Executing ADSP-2101 Instructions Directly ................................... 5-54 

SUMMARY OF COMMANDS & CONTEXTS ......................................... 5 - 54 

CHAPTER 6 SIMULATOR CONFIGURATIONS 

6.1 INTRODUCTION ...................................................................................... 6 - 1 
6.2 CONFIGURING SCREENS & WINDOWS ............................................... 6-2 
6.2.1 Opening Windows ............................................................................ 6-2 
6.2.2 Selecting, Deleting & Rearranging Fields 111' A Window ................... 6 -4 
6.2.3 Saving A Rearranged Screen '. ......................................................... 6- 7 
6.3 COMMAND ALIASES ............................................................................... 6-8 
6.3.1 Managing Aliased Commands ......................................................... 6 - 9 
6.4 THESTARTUPFILE .............................................................................. 6-10 

• tX 



x 

Contents 

CHAPTER 7 C COMPILER 

7.1 
7.1.1 
7.1.2 
7.1.3 
7.2 
7.2.1 
7.2.2 
7.2.2.1 
7.2.2.2 
7.2.2.3 
7.2.2.4 
7.2.2.5 
7.2.2.6 
7.2.2.7 
7.2.2.8 
7.2.2.9 
7.2.2.10 
7.2.2.11 
7.2.3 
7.2.3.1 
7.2.3.2 
7.2.4 
7.2.5 
7.3 
7.3.1 
7.3.2 
7.3.3 
7.3.4 
7.3.5 
7.3.6 
7.3.7 
7.4 
7.4.1 
7.4.2 
7.5 
7.6 
7.6.1 
7.6.1.1 
7.6.2 
7.7 

ADSP-21 OX C LANGUAGE SYSTEM ...................................................... 7 - 1 
READ ME File ................................................................................... 7 - 3 
C & The ANSI Standard ................................................................... 7 - 3 
Upper and Lower Case Usage ......................................................... 7 - 3 

COMPILING .............................................................................................. 7 - 3 
Filename Usage ............................................................................... 7 - 4 
Invoking The C Compiler ................................................................. 7 - 4 

-a Switch ................................................................................ 7 - 6 
-abs=# Switch ....................................................................... 7 - 6 
-b#[# ... ] Switch ....................................................................... 7 - 6 
-Dvariable [=value] Switch ..................................................... 7 - 7 
-e Switch ................................................................................ 7 - 7 
-gpm Switch ........................................................................... 7 - 7 
-I = path Switch ...................................................................... 7 - 7 
-Lpm & -Lrom Switches .......................................................... 7 - 7 
-m Switch ............................................................................... 7 - 7 
-pmstack Switch ..................................................................... 7 - 8 
-0 & -1 Switches .................................................................... 7 -8 

Preprocessor Commands ................................................................ 7 - 8 
#pragma Directive ................................................................... 7 - 9 
#include Directive .................................................................... 7 - 9 

Linker Requirements ...................................................................... 7 - 1 O 
Run Time Header ........................................................................... 7 - 11 

RUN TIME MODEL ................................................................................. 7-11 
Stack Implementation .................................................................... 7 - 11 
Register Use Limits ........................................................................ 7 - 12 
Interrupts ........................................................................................ 7 - 14 
Data Types .................................................................................... 7-14 
Memory Usage ............................................................................... 7 - 16 
Storage Classes & Modifiers .......................................................... 7 - 16 
Function Calling & Exit ................................................................... 7 - 17 

ASSEMBLY LANGUAGE INTERFACE SUMMARY .............................. 7 - 18 
Checklist of Prerequisites .............................................................. 7 - 18 
Assembly Language Interface Example ........................................ 7 - 19 

LANGUAGE EXTENSIONS .................................................................... 7 - 20 
PROGRAMMING HINTS ................................................................. : ...... 7 - 20 

Location Of Variables ..................................................................... 7 - 20 
Globals in PM vs. Globals in DM ........................................... 7 - 21 

Location of Stack ........................................................................... 7 - 22 
ERROR MESSAGES ............................................................................. 7 - 22 



( 

( 

7.7.1 
7.7.2 
7.7.3 
7.7.4 

Contents 

Corrected Syntax Errors ................................................................ 7 - 24 
User Errors ..................................................................................... 7 - 25 
Compiler Errors .............................................................................. 7 - 25 
Exit Codes ...................................................................................... 7 - 25 

CHAPTER 8 PROM SPLITTER 

8.1 INTRODUCTION ...................................................................................... 8-1 
8.2 RUNNING THE PROM SPLITTER ........................................................... 8 -1 
8.3 PROM SPLITTER OUTPUT ..................................................................... 8-3 

CHAPTER 9 INSTRUCTION SET REFERENCE 

9.1 
9.2 
9.2.1 
9.3 
9.3.1 
9.3.2 
9.3.3 
9.3.4 

OVERVIEW .............................................................................................. 9 - 1 
CYCLE TIME NOTES ............................................................................... 9-2 

ADSP-2101 Extra Cycle Conditions ................................................. 9 - 2 
INSTRUCTION SYNTAX NOTATION ...................................................... 9-3 

Punctuation & Multifunction Instructions .......................................... 9-4 
Syntax Notation Example ................................................................. 9-4 
Status Notation ................................................................................ 9 - 5 
Instruction Word Notation ................................................................ 9 - 5 

ALU Add I Add with Carry ................................................................................. 9 - 7 
Subtract X-Y I Subtract X-Y with Borrow .................................................. 9-8 
Subtract Y-X I Subtract Y-X with Borrow .................................................. 9-9 
AND, OR, Exclusive OR ......................................................................... 9-10 
Pass I Clear ............................................................................................ 9-11 
Negate .............................................................................................. 9-12 
NOT .............................................................................................. 9-13 
Absolute Value ....................................................................................... 9-14 
Increment .............................................................................................. 9 - 15 
Decrement .............................................................................................. 9 - 16 
Divide .............................................................................................. 9-17 

MAC Multiply .............................................................................................. 9 - 19 
Multiply I Accumulate .............................................................................. 9- 21 
Multiply I Subtract ................................................................................... 9 - 23 
Clear .............................................................................................. 9-25 
Transfer MR ............................................................................................ 9-26 
Conditional MR Saturation ...................................................................... 9-27 

. 
Xt 



Contents 

SHIFTER Arithmetic Shift ....................................................................................... 9-28 
Logical Shift ............................................................................................ 9 - 30 
Normalize .................................................. ~ ........................................... 9- 32 
Derive Exponent ..................................................................................... 9 - 34 
Block Exponent Adjust ............................................................................ 9 - 36 
Arithmetic Shift Im mediate ...................................................................... 9 - 38 
Logical Shift Immediate .......................................................................... 9 - 40 

MOVE Register Move ......................................................................................... 9 - 41 
Load Register Immediate ....................................................................... 9 - 43 
Data Memory Read (Direct Address) ..................................................... 9 - 45 
Data Memory Read (Indirect Address) ................................................... 9 - 46 
Program Memory Read (Indirect Address) ............................................. 9 - 47 
Data Memory Write (Direct Address) ...................................................... 9-48 
Data Memory Write (Indirect Address) ................................................... 9 - 49 
Program Memory Write (Indirect Address) ............................................. 9 - 51 

PROGRAM FLOW 
JUMP .............................................................. : ............................... 9-52 
CALL .............................................................................................. 9-53 
JUMP or CALL on Flag In Pin ................................................................. 9 - 54 
Modify Flag Out Pin ................................................................................ 9 - 55 
Return from Subroutine .......................................................................... 9 - 56 
Return from Interrupt ..................................................... ; ........................ 9 - 57 
Do Until .............................................................................................. 9- 58 
IDLE .............................................................................................. 9- 60 

MISC Stack Control .......................................................................................... 9- 61 
Mode Control .......................................................................................... 9 - 63 
Modify Address Register ......................................................................... 9- 65 
NOP .............................................................................................. 9-66 

MULTIFUNCTION 
ALU I MAC I SHIFT operation with Memory Read ................................. 9- 67 
ALU I MAC I SHIFT operation with Data Register Move ........................ 9- 71 
ALU I MAC I SHIFT operation with Memory Write .................................. 9- 74 
Data & Program Memory Read .............................................................. 9 - 78 
ALU I MAC operation with Data & Program Memory Read .................... 9 - 79 

•• XU 



( 

{-

Contents 

APPENDIX A INSTRUCTION CODING 

A.1 OPCODES ............................................................................................... A - 1 
A.2 ABBREVIATION CODING ....................................................................... A-6 

APPENDIX B FILE FORMATS 

B.1 
B.1.1 
B.1.1.1 
B.1.1.2 
B.1.1.3 
B.1.2 
B.1.2.1 
B.1.2.2 
B.1.2.3 
B.2 
B.3 
B.4 
B.4.1 
B.4.2 

DATA FILES (.DAT) ................................................................................. 8-1 
Assembler Buffer Initialization Files ............................................. B - 1 

Integer Data ............................................................................ B - 1 
Non-Integer Data .................................................................... B - 2 
Comments .............................................................................. B - 2 

Simulator Data Files ...................................................................... B-2 
VO Port Data ........................................................................... 8-2 
SPORT Data ........................................................................... B - 3 
Simulated Memory Data ......................................................... 8- 3 

MEMORY IMAGE FILE (.EXE) ................................................................ B- 3 
DEBUG SYMBOL TABLE FILE (.SYM) .................................................. B-5 
PROM IMAGE FILES (.BNU, .BNM, .BNL) .............................................. B- 7 

Intel Format .................................................................................... B - 7 
Motorola Format ............................................................................ B-10 

APPENDIX C HOST-SPECIFIC REQUIREMENTS 

C.1 SYSTEM REQUIREMENTS .................................................................... C-1 
C.2 IBM PC AND COMPATIBLES .................................................................. C-1 
C.3 SUN-3 WORKSTATION .......................................................................... C-2 

APPENDIX D ANSI STANDARD C 

D.1 ANSI DRAFT STANDARD EXCEPTIONS ............................................... D -1 
D .1.1 Features Not Supported & Restrictions ........................................ D - 1 
D.1.2 New Features and Extensions ........................................................ D -1 
D .2 DIFFERENCES BETWEEN HOST VERSIONS ...................................... D - 2 

... 
Xttt 



. 
XtV 

Contents 

APPENDIX E LINKER OPERATION 

E.1 INTRODUCTION ...................................................................................... E -1 
E.2 RE-BOOTING UNDER PROGRAM CONTROL ...................................... E-1 
E.3 SHARED DATA STRUCTURES .............................................................. E -1 
E.3.1 Data Buffers in Program Memory .................................................... E-2 
E.3.2 Data Buffers in Data Memory .......................................................... E -4 
E.4 SHARED SUBROUTINES ....................................................................... E - 5 
E.4.1 Repeating The BOOT Qualifier ....................................................... E-5 
E.4.2 Libraries & -p Switch ....................................................................... E - 5 

APPENDIX F ERROR MESSAGES 

F.1 
F.2 
F.3 
F.4 
F.4.1 
F.4.2 
F.4.3 
F.4.4 
F.4.5 
F.4.6 
F.5 
F.5.1 
F.5.2 
F.5.3 
F.5.4 
F.5.5 
F.5.6 
F.5.7 
F.5.8 
F.5.9 
F.5.10 
F.5.11 

INDEX 

INTRODUCTION ...................................................................................... F-1 
SYSTEM BUILDER ERRORS .................................................................. F - 1 
ASSEMBLER ERRORS ........................................................................... F - 4 
LINKER ERRORS .................................................................................. F - 10 

Operating System Errors ............................................................... F - 11 
Informational Messages ................................................................. F -13 
Memory Allocation Errors .............................................................. F - 13 
Symbol Reference Errors .............................................................. F - 15 
Other Errors ................................................................................... F -16 
Software Errors .............................................................................. F - 17 

SIMULATOR ERRORS .......................................................................... F -18 
General Errors ............................................................................... F -18 
Defaults Errors ............................................................................... F -18 
Expression Errors .......................................................................... F - 19 
Break Errors ................................................................................... F - 19 
Watch Errors .................................................................................. F - 20 
Command Errors ........................................................................... F - 20 
Plot Memory Errors ........................................................................ F - 21 
Port & SPORT Errors ..................................................................... F-21 
Instruction & Program Load Errors ................................................ F -23 
Execution Errors ............................................................................ F-24 
Command Syntax Errors ............................................................... F - 25 

"" ........ " ............................ " ........... " ........ """ ...... "."."" ......... x - 1 



Contents 
( 

FIGURES 

1.1 ADSP-2101 System Development Flow ................................................... 1 - 5 

2.1 System Builder 110 .................................................................................... 2-2 
2.2 Sample System Specification File ............................................................ 2 - 4 

3.1 Assembler 1/0 ........................................................................................... 3 - 2 
3.2 Assembler Program Flow ......................................................................... 3 - 5 
3.3 Circular Buffers ....................................................................................... 3 - 16 
3.4 Macro Example ....................................................................................... 3 - 23 
3.5 Main Routine Example ............................................................................ 3 - 27 
3.6 Interrupt Routine Example ...................................................................... 3 - 28 
3.7 Include File, Constant Initialization ......................................................... 3-28 
3.8 List File Example .................................................................................... 3 - 29 

4.1 Linker 1/0 .................................................................................................. 4 - 2 
4.2 Map Listing File ....................................................................................... 4 - 12 

rf 5.1 
5.2 

Initial Display & Window Commands Menu .............................................. 5 - 2 
Files Used By The Simulator .................................................................... 5 - 4 

5.3 Parts of a Typical Window ...................................................................... 5-1 O 
5.4 1/0 Status Window .................................................................................. 5-19 
5.5 SPORT Status Window .......................................................................... 5-19 
5.6 Defaults Window ..................................................................................... 5 -21 
5.7 Register Window .................................................................................... 5 - 24 
5.8 SPORT Register Window ....................................................................... 5 - 25 
5.9 Status Register Window ......................................................................... 5 - 25 
5.10 Control Registers Window ...................................................................... 5 -26 
5.11 Stack Window ......................................................................................... 5-26 
5.12 Program Memory (Code) Window .......................................................... 5- 34 
5.13 Program Memory Data Window ............................................................. 5- 35 
5.14 Data Memory Window ............................................................................ 5-36 
5.15 Boot Memory Code Window ................................................................... 5- 37 
5.16 Boot Memory Data Window .................................................................... 5- 37 
5.17 Breakpoints Window ............................................................................... 5 - 41 
5.18 Break Expressions Window .................................................................... 5-43 
5.19 Expressions Window .............................................................................. 5-46 
5.20 Trace Window ......................................................................................... 5 - 4 7 
5.21 Profile Window ........................................................................................ 5 - 49 
5.22 Short Term, Long Term and Cumulative Profiling Time Bases .............. 5 - 52 

( 
xv 



(-

( 

(-/ 
• 

XVt 

Contents 

6.1 Main Menu For Configuring Windows ....................................................... 6 - 2 
6.2 Window Selection Submenu (with Register Window selected) ................ 6 - 3 
6.3 Default Register Window Layout .............................................................. 6 - 4 
6.4 Example Register Window with some registers deleted ........................... 6 - 5 
6.5 Example Register Window with registers rearranged ............................... 6 - 6 
6.6 Final Register Window Arrangement ........................................................ 6 - 7 

7.1 C Compiler 110 .......................................................................................... 7-2 
7.2 Stack Implementation in ADSP-2101 Memory Space ............................ 7 - 12 
7.3 Global variable location: data memory vs. program memory ................ 7 - 21 
7.4 Stack location: effect of data memory vs. program memory ................. 7 - 22 

8.1 PROM Splitter 1/0 ..................................................................................... 8- 2 

E.1 STATIC Data Buffers in Boot Memory ..................................................... E-3 
E.2 Sharing STATIC Data Between Multiple Boot Pages .............................. E - 4 
E.3 Library Routines & Multiple Boot Pages ................................................... E - 6 

TABLES 

2.1 ADSP-2101 System Configurations .......................................................... 2- 1 
2.2 System Builder Keywords ......................................................................... 2 - 3 

3.1 Assembler Switches ................................................................................. 3- 3 
3.2 Preprocessor Switch Combinations .......................................................... 3 - 4 
3.3 Assembler-Reserved Symbols/Keywords ................................................. 3 - 9 
3.4 Arguments/Parameters Legally Passed to Macros ................................. 3 - 22 

4.1 Linker Switches ......................................................................................... 4-4 

5.1 Simulator Files .......................................................................................... 5-3 
5.2 Windows Showing Registers .................................................................. 5-22 
5.3 Register Location By Window ....................... , ......................................... 5-27 
5.4 Window Navigation Controls .................................................................. 5 - 55 
5.5 Command Window Commands .............................................................. 5-55 
5.6 Window-Specific Control Key Sequences .............................................. 5- 58 
5.7 Window to Control Key Sequence Cross Reference .............................. 5-59 

7.1 
7.2 
7.3 
7.4 
7.5 

Compiler Switches .................................................................................... 7 - 5 
Reserved/System Registers ................................................................... 7 - 13 
Restricted/Data Registers ....................................................................... 7 - 13 
ADSP-2101 C Compiler Arithmetic Types .............................................. 7 - 14 
C Language Types on ADSP-2100 family .............................................. 7 -15 



'( Overview • 

1.1 INTRODUCTION 
The ADSP-2101 Development System is a complete set of software and 
hardware development tools. The Development System includes the 
Cross-Software system to aid the software design and a real-time 
hardware Emulator to facilitate the debug cycle. 

The Cross-Software system includes six separate programs: System 
Builder, Assembler, Linker, Simulator, PROM Splitter and C Compiler. 
These programs are described in the following section. 

Release 2.0 and later of the Cross-Software system runs on the IBM-PC 
under PC-DOS and on the Sun-3 workstation under Unix (Bsd 4.2). For 
information on host-specific system requirements, refer to Appendix C. 
For information on support for other machine types and operating 
systems, contact Analog Devices, Digital Signal Processing, Marketing 
Division. (See the contact information on the copyright page.) 

This manual is a complete programmer's reference. For information on the 
architecture and system interface of the ADSP-2101, refer to the 
ADSP-2101 User's Manual. 

Each release of the Cross-Software is shipped with a Release Note. This 
note describes the current version and provides information on any updates 
to the software. If you return the registration card enclosed with your 
Cross-Software, you will receive a Release Note for each subsequent update 
of the software. · 

1-1 

1 



1 

1-2 

Overview 

1.1.1 ADSP-2101 Cross-Software System & Manual 
This manual describes the Cross-Software system in the following 
chapters: 

• System Builder, Chapter 2 

The System Builder is a software tool to describe the target system. The 
System Specification source file is created, which specifies the amount of 
RAM and ROM available, the allocation of program and data memory and 
any memory mapped 1/0 ports for the target hardware environment. 
High-level constructs are used to simplify this task. 

• Assembler, Chapter 3 

The Assembler assembles source code. It supports the high-level syntax of 
the instruction set and provides flexible macro processing. A C language 
preprocessor handles C directives in source code. Source code may be 
partioned into a defined set of files (modules) and assembled in one pass 

\,___j 

using the "include file" capability. A full range of diagnostics is also /. ·, 
provided. 

• Linker, Chapter 4 

The Linker links separately assembled modules. It searches directories for 
library routines to link in. It maps the linked code and data output to the 
target system hardware, as specified by the System Builder output, and 
can produce multiple boot memory page image files. 

• · Simulator Functions, Chapter 5 

The Simulator performs instruction-level simulation. The user interface is 
both interactive and symbolic, and supports symbolic disassembly. The 
Simulator fully simulates the hardware configuration described by the 
System Builder. It flags illegal operations and provides several displays of 
the internal operations of the ADSP-2101 microcomputer. 

• Custom Simulator Configurations, Chapter 6 

The ADSP-2101 Simulator supports a user-configurable interface of 
windows and commands. This chapter describes how to customize the 
interface for your preferences and how to store and recall screens and 
customized commands. 

;< ., 
\___,.,! 



( 

Overview 1 

• C Compiler, Chapter 7 

The C Compiler supports the proposed ANSI Standard version of the 
popular C programming language. The Compiler produces ADSP-2101 
source code and can directly invoke the Assembler. 

• PROM Splitter, Chapter 8 

The PROM Splitter reads the Linker-output executable file and generates 
PROM burner compatible files in a variety of industry standard formats. 
Boot memory requirements are supported by the PROM Splitter. 

• Instruction Set Reference, Chapter 9 

Chapter 9 provides a reference section for each ADSP-2101 instruction 
group. Running headers in this chapter allow you to look up any 
instruction. 

These chapters are supplemented by several appendices: 

• Appendix A is a complete reference to ADSP-2101 opcodes. 

• Appendix B describes the file format for input and output files used by 
the Cross-Software system. 

• Appendix C lists the hardware and software requirements for the 
computer systems that can host the Cross-Software system and any 
differences between the operation of the Cross-Software on each 
system. 

• Appendix D lists the differences between ADSP-2101 C and the ANSI 
draft standard. · 

• Appendix E details how the Linker handles data and code used on 
multiple boot pf:lges. 

• Appendix F lists and defines all error messages generated by the 
Cross-Software modules. 

1-3 



1 

1-4 

Overview 

1.1.2 Development Flow 
Figure 1.1 shows a flow chart of the ADSP-2101 development cycle. 

The development process begins with the task of defining the target 
system hardware environment. To define the hardware environment, you 
use the System Builder. The System Specification file includes the target 
hardware information. The System Builder reads this file and creates an 
Architecture Description file which passes information about the target 
hardware to the Linker, Simulator, and Emulator. 

You begin code generation by creating assembly source code modules. An 
assembly module is a unit of source code such as a calling program, 
subroutine, data buffer declaration section or any combination. Each 
assembly code module is assembled separately by the Assembler. Several 
modules are then linked together to form an executable program. 

The Linker needs the target hardware information located in the 
Architecture Description file to determine placement of code and data 
fragments. In the assembly modules you have the option to specify each 
code/ data fragment as completely relocatable, relocatable within a 
defined memory segment, or placed at an absolute address. Absolute code 
or data modules are placed at the specified base address, provided the 
specified memory area has the correct attributes. Relocatable objects are 
placed in memory by the Linker. 

Using the Architecture Description file and the Assembler output files, the 
Linker determines the placement of relocatable code and data segments 
(including circular buffers), and places all segments in memory locations 
with the correct attributes (CODE or DATA, RAM or ROM). The Linker 
generates an executable image file, which may be loaded into the 
Simulator and Emulator for debugging. 

The Simulator provides windows that display different aspects of the 
hardware environment. To replicate the target hardware environment, the 
Simulator configures its memory according to the System Builder output, 
and simulates 1/0 ports according to user-entered Simulator commands. 
This simulation provides capabilities to debug the system and analyze 
performance before committing to a hardware prototype. 

After debugging with the Simulator, the Emulator is used in the prototype 
target system to debug hardware, timing, and real-time software 
problems. It provides overlay memory to replace target system off-chip 
memory, including boot memory, if desired. 



( Overview 1 

The PROM Splitter translates the executable memory image file (Linker 
output) into a file that is compatible with a PROM burner. Once you burn 
the ADSP-2101 code into PROM and plug an ADSP-2101 into the target 
board, your prototype is ready to run. 

Define Target 
Hardware 
(System Builder) 

SIMULATE 

START 

LINK 

l 
PROM SPLIT 

+ 
Burn PROMS 

~ 
Prototype Test 

( End 

Assemble __ ..___uleN 

Assemble 
le2 .......... 

Assemble 
Module1 .,___. 

(OpUonally) 

C Llinguage 
Modules 

..... --------.. --... _, 

Repeat As Necessary 

EMULATE 

Repeat As Necessary 

) 
(- Figure 1.1 ADSP-2101 System Development Flow 

1-5 



1 Overview 

1-6 

1.2 EXPRESSION HANDLING IN CROSS-SOFTWARE TOOLS 
The ADSP-2101 Cross-Software tools support general expression 
evaluation in locations where constants are valid. You may in most cases 
use an expression instead of a constant wherever a constant is expected. 

Expressions are composed of numerical constants, symbolic constants, 
and expression operators. The operators are a subset of the arithmetic and 
logical operators of the C programming language (for integer values only). 
In order of precedence, the operators are: 

( ) 

*I % 
+ -
<< >> 
& 
I 
/\ 

Examples: 

left, right parenthesis 
ones complement, unary minus 
multiply, divide, modulus 
addition, subtraction 
bitwise shifts 
bitwise AND 
bitwise OR 
bitwise XOR 

(taps + 16) I 3 mask& Ox55 

The ADSP-2101 Simulator recognizes an additional set of expression 
elements and operators. These are detailed in the "Simulator Expressions" 
section of Chapter 5. 

The most important difference between Assembler expressions and 
Simulator expressions is that memory contents (such as data variables) 
and processor register contents may be used as operands in the Simulator 
only. The Assembler cannot evaluate memory and register values at 
assembly-time; the Simulator, however, has access to the instantaneous 
values of simulated memory and registers. 

1.3 CONSTANTS 
Constants include numeric (or literal) constants and identifiers defined as 
symbolic constants. Symbolic constants can be used anywhere to replace 
numeric constants. The identifier must be declared a constant with the 
.CONST directive; see the discussion under "Assembler Directives" in 
Chapter 3. 



( 

( 

( 

Overview 1 

1.4 NUMERIC BASES 
The numeric bases which may be used in the ADSP-2101 Simulator and in 
source code are hexadecimal, octal, and decimal. They are specified as 
follows: 

For hexadecimal prefix a Ox (zero and x) or H #: 

Ox12FA H#l2FA 

For octal prefix a 0 (zero): 

0777 

For decimal (the default) there is no prefix to denote the base. Sign 
( + or - ) may be specified: 

1024 +1024 -55 

Binary numbers are accepted only by the Assembler in a source code file, 
and may not be used with any of the other Cross-Software tools. Binary 
numbers are specified with the prefix B#: 

B#Ol11010001011111 

1.5 CHARACTER SET 
The ADSP-2101 Cross-Software character set includes the following: 

• Uppercase letters, "A" through "Z" 

• Lowercase letters, "a" through "z" 

• Digits, "O" through "9" 

• The ASCII graphics characters; the printing characters other than 
letters and digits (punctuation, etc.). 

• The ASCII non-graphics: space, tab, carriage return, line feed and form 
feed. (The "newline" character or characters are interpreted correctly as 
per the conventions of the environment in which they occur.) 

1-7 



1 Overview 

1-8 

1.6 IDENTIFIERS (SYMBOLS) 
Symbols are either a user-defined identifier or system-reserved keyword. 
The keywords are listed in Chapter 3, Assembler, in Table 3.3. 

Identifiers consist of a character from the set: 

• Uppercase letters, "A" through "Z" 
• Lowercase letters, "a" through "z" 
• The underscore character "_" 

followed by a sequence of characters from the set: 

• Uppercase letters, "A" through "Z" 
• Lowercase letters, "a" through "z" 
• Digits, "O" through "9" 
• The underscore character"_" 

An identifier may have a maximum of 32 characters. 

The Cross-Software tools can be either case-insensitive, with uppercase 
and lowercase letters treated as the same character, or case-sensitive, with 
differentiation between the two forms. 

1.7 MANUAL NOTATION CONVENTIONS 
This section provides you with a list of notation conventions. 

• With the increasing use of the C Compiler (a case-sensitive 
programming environment) the traditionally case-insensitive 
Assembler and System Builder tools now support case-sensitivity as an 
option. The actual commands used to invoke each tool, BLD21, 
ASM21, LD21, etc., may be entered in upper or lower case on the PC 
but must be lowercase on the Sun. 

• In this manual keywords (reserved symbols) are always shown in 
UPPERCASE, although they may be entered in either upper or lower 
case. Any form of the keyword is reserved. 

• A lowercase word highlighted in italics, such as jumplabel, indicates an 
identifier used as an address label, data variable, etc. or a filename. 



( 

Overview 1 

• Square brackets, [ ] , enclose optional specifications or data buffer 
length (literal usage); when specifying buffer length, the brackets must 
be used in source code. 

• An ellipsis, ... , indicates that the preceding item may be repeated. 

• Carriage return is represented by ''Return" or <er>. (Simulator chapter 
only) 

• A denotes the control, or CNTL, key, as in a key entry sequence: AX 

(Simulator chapter only) 

1-9 



1 Overview 

// 

1-10 



( 

System Builder m 2 

2.1 INTRODUCTION 
The System Builder module of the Cross-Software system is a software 
tool for describing your hardware environment. Each ADSP-2101 system 
can have a unique hardware configuration, and may not require the full 
complement of possible memory. The System Builder output specifies 
your hardware configuration, including memory and I/O ports, in a form 
used by the rest of the Cross-Software system. 

A target system may include: 

Maximum Available 

Data Memory Up to 1 SK words 
(16-bit data, ROM or RAM) (1K on-chip, up to14K off-chip, 1K reserved) 

Program Memory Up to 16K words, mixed code & data 
(24-b it code or data, ROM or RAM) (2K on-chip, up to 14K off-chip) 

Boot Memory Up to 64K bytes, configured as 16K words (24-bit code or data, 
padded to 32-bit word widthr (1 to 8 pages, each containing 2K words) 

Memory-mapped Any number, up to memory limits 
1/0 Ports (Simulator limited by host file system limits) 

Table 2.1 ADSP·2101 System Configurations 
*see Chapter 8, PROM Splitter, for details. 

2-1 



2 System Builder 

2-2 

You specify your hardware configuration in a System Specification source 
(.SYS) file using System Builder directives. The System Builder processes 
the .SYS file and generates the Architecture Description file (.ACH). The 
Architecture Description file is used by the Linker to place relocatable 
segments in memory, by the Simulator to simulate memory 
configurations, and by the Emulator to set up target system memory 
mapping. The System Builder outputs error messages, if any, or a 
summary of the architecture created to the screen. You should use the 
operating system facilities of your computer to capture this output into a 
file if you need to refer to it for debugging or documentation purposes. 

System 
Specification File 

(.SYS) -

SYSTEM BUILDER 

! 
Architecture 
Description 
File (.ACH) 

Figure 2.1 System Builder 110 

Error Messages 
or 

Architecture 
Summary 

(Use Operating System I Pipes To 
Capture Screen Output) 



( 

System Builder 2 

2.2 RUNNING THE SYSTEM BUILDER 
To invoke the System Builder, type: 

BLD21 filename[.ext] [-switch] 

where filename.ext is the system specification source file. The filename 
extension is optional and defaults to .SYS. 

There is one switch for invoking the System Builder. The-c switch makes 
the System Builder case-sensitive. This is provided primarily for 
compatibility with the C Compiler, which is always case-sensitive. 

If the -c switch is not used, the System Builder output is in all uppercase. 
You must use this switch in order to preserve the case of characters as 
they are entered. This is necessary if the Assembler is to be run with its 
case-sensitive switch, as is required when assembling C-compiled code. If 
you refer (in assembly code) to a memory segment declared in the System 
Builder which is in lowercase, and the Assembler is run in case-sensitive 
mode, the segment name will not be recognized unless its case is 
preserved by the System Builder. 

2.3 LANGUAGE CONVENTIONS 
In a System Specification file, symbolic names are assigned to the system 
configuration itself, 1/0 ports, and memory segments. The memory 
segment names may be used in the Assembler; memory segment names 
and memory characteristics are used by the Linker. 

All symbolic names must be unique. A symbolic name is a string of letters, 
digits, and underscores with a letter as the first character. Symbol names 
can be of any length. Only 32 characters are significant. 

System Builder keywords cannot be used as symbolic names. Table 2.2 
lists the System Builder keywords. 

ABS 
ADSP2100 
ADSP2101 
BOOT 

CODE 
CONST 
DATA 
DM 

Table 2.2 System Builder Keywords 

ENDSYS 
MM APO 
MMAPl 
PM 

PORT 
RAM 
ROM 
SEG 

SYSTEM 

2-3 



2 System Builder 

Assembler keywords, listed in Table 3.3, may not be used as symbolic 
names either. The System Builder accepts such symbol definitions without 
flagging an error, however, the Linker does not. 

Numeric constants and general expressions are accepted by the System 
Builder. See Chapter 1 for a description of allowed constants and the 
definition of expressions. For a description of the notation used in this 
manual, refer to the section ''Manual Notation Conventions" in Chapter 1. 

2.4 SYSTEM SPECIFICATION SOURCE FILE EXAMPLE 
Figure 2.2 is an example of a system specification source (.SYS) file for an 
ADSP-2101 system. 

Comment fields are enclosed within braces, { }, and can be inserted 
anywhere in the file. Nested comments are not allowed. 

2.4.1 ADSP-2101 System Specification File 
The System Specification Source file for the ADSP-2101 specifies the 
amount of data, program, and boot memory included in your 
development system. 

The first directive in the file is the .SYSTEM directive. This directive 
assigns. a name fir _system to the hardware description and signals the start 
of the file. · 

The .ADSP2101 statement identifies the processor type, here naming the 
ADSP-2101 microcomputer. This statement is required. The presence of 

.SYSTEM fir_system; 

.ADSP2101; 
{system name) 
{ADSP-2101 system} 
{boot loading enable} .MMAPO; 

.SEG/ROM/BOOT=O boot_mem[2048]; 

.SEG/PM/RAM/ABS=O/CODE/DATA int_pm[2048); 

.SEG/PM/RAM/ABS=2048/CODE/DATA ext_pm[14336]; 

.SEG/DM/RAM/ABS=O/DATA ext_dm[14336); 

.SEG/DM/RAM/ABS=14336/DATA int_dm[1024); 

.ENDSYS; 

Figure 2.2 Sample System Specification File 

2-4 

{boot page one) 
{on-chip program mem} 
{external program mem} 
{external data rnern} 
{on-chip data rnem} 



( 

System Builder 2 

the .MMAP directive or the declaration of boot memory also serves to 
signal the Cross-Software that the system in question is an ADSP-2101 
architecture. If none of these indicators are present, the System Builder 
assumes an ADSP-2100 processor. 

The .MMAPO directive specifies the simulated state of the MMAP pin on 
the ADSP-2101 in this example system. Defining MMAP as 0 indicates that 
boot memory is to be loaded into the chip's internal program memory 
space, beginning at address 0. 

The .SEG directive declares the system's physical memory segments and 
their characteristics. In this example, the segments declared comprise the 
full on-chip and off-chip program and data memory configuration of the 
ADSP-2101. Many applications, however, do not require this much 
memory space. 

Boot_mem identifies a 2K-word space for one page of external boot 
memory. 

lnt_pm declares the 2K-word on-chip program memory space beginning at 
address 0. In the ADSP-2101 this memory can always hold both code and 
data and should be explicitly declared as such as in this example. Ext_pm 
declares a 14K-word space for external program code and data storage 
beginning at address 2048, after the on-chip memory. 

Ext_dm declares a 14K-word space for external data storage beginning at 
address 0. Int_dm declares the lK-word internal data memory space 
beginning at address 14336. This corresponds exactly to the on-chip data 
memory of the ADSP-2101 which is available for general system use. The 
lK of on-chip memory above this is reserved for processor use and should 
not be declared. 

The memory segments can be declared in any order. 

The last statement in a system specification file is the .ENDSYS directive. 
The System Builder stops processing when it encounters the .ENDSYS 
directive. 

2-5 



2 System Builder 

2-6 

2.5 SYSTEM BUILDER DIRECTIVES 
This section describes each System Builder directive and its syntax. 

2.5.1 .SYSTEM Directive 
The .SYSTEM directive must be the first statement in the System 
Specification source file. The identifier name given as its argument is the 
name of the system displayed in the Simulator. 

The .SYSTEM directive has the form: 

.SYSTEM system_name; 

2.5.2 .ENDSYS Directive 
The .ENDSYS directive must be the last statement in the file. The System 
Builder processing terminates at the .ENDSYS directive statement. 

The .ENDSYS directive has the form: 

.ENDSYS; 

2.5.3 .ADSP2101 Directive 
This directive identifies the processor. Its use is mandatory to clearly 
differentiate between ADSP-2100-based and ADSP-2101-based systems. If 
the directive is not present, the Cross-Software system assumes that the 
processor is an ADSP-2100. 

2.5.4 .CONST Directive 
The .CONST directive defines System Builder constants. Once you declare 
a constant, you may use it in place of its numeric value. This symbolic 
constant is recognized only by the System Builder, however the definition 
is not carried over to the Assembler or Simulator. 

The .CONST directive has the form: 

.CONST constant_name =constant or expression, ... ; 

A single .CONST directive may declare one or several constants, 
separated by commas. 

/ \· 

\~ 



(_ 

System Builder 2 

H you wished to define the value 15 for the term taps, for example, the 
directive would be as follows: 

.CONST taps = 15; 

The above example system does not declare any constants. 

2.5.5 .PORT Directive 
The .PORT directive declares a memory-mapped parallel I/0 port. Ports 
can be placed in either data or program memory, and must be declared in 
one or the other. The directive takes the absolute physical address of the 
I/0 port as a modifier, and the symbolic name of the port as an argument. 

The .PORT directive has the form: 

.PORT I qualifier ... port_name; 

There are two required qualifiers: 

PMorDM 
ABS=address 

(in which memory space) 
(absolute address (constant)) 

The port address is specified by a constant; port_name is an identifier. 

For example, 

.PORT/DM/ABS=Ox0400 ad_sample; 

declares a port identified as ad_sample located at absolute data memory 
address 1024 (decimal). Assembler references to this same symbolic name 
are correctly interpreted by the Linker, using the .ACH file information. 

This ADSP-2101 example system does not have any I/O ports declared. 

2.5.6 .MMAP Directive 
The .MMAP directive specifies the state of the MMAP pin on the ADSP-
2101. It has the form .MMAPO (MMAP pin held LO) or .MMAP1 (MMAP 
pin held HI). 

2-7 



2 System Builder 

2-8 

If .MMAPO is used, boot loading takes place and on-chip program 
memory begins at address zero. If .MMAPl is used, no boot loading takes 
place and on-chip program memory is mapped at the top of the program 
memory space. 

When this directive is omitted, the default is to .MMAPO. 

See the ADSP-2101 User's Manual for further information. 

2.5.7 .SEG Directive 
The .SEG directive names a specific section of physical memory in the 
target system, and describes its attributes. In effect, the default memory 
map from the perspective of the System Builder is no memory at all. Until 
you declare and define a memory segment it does not exist. 

The .SEG directive has the form: 

.SEG/qualifier ... seg_name[length]; 

The following qualifiers are mandatory: 

PM or OM or BOOT=O, 1, 2, 3, 4, 5, 6, 7 (in which memory space) 
RAM or ROM (memory type) 

While the following are optional: 

ABS=address 
DATAorCODEorDATA/CODE 

(absolute start address (constant)) 
(what is stored in segment) 

Seg_name is an identifier; length, which must be a constant or expression 
enclosed in brackets, is the number of words in the segment. 

The .SEG directive declares three types of memory segments: program 
memory (PM), data memory (OM) and boot memory (BOOT). Qualifiers 
may specify the absolute start address of the segment, the physical 
memory type (RAM or ROM) and what is stored (DATA and/or CODE). 

PM memory segments can be either CODE only, DATA only, or both 
CODE and DATA (defaults to CODE). For a PM segment that contains 
code and data, both modifiers must be used in the directive statement. The 
processor requires that any data access to PM must be made to sections 



( 

( 

System Builder 2 

with the DATA attribute.Ha system requires that executable code be read 
or written by the processor, these sections should be declared with both 
CODE and DATA attributes. 

DM memory segments must be DATA only. Therefore, the /DATA 
modifier can be omitted. An error is generated if a DM segment is 
assigned the CODE attribute. 

BOOT memory segments may be either ROM- or RAM-type; in most 
systems, however, the boot memory chips are PROM and all BOOT 
segments are specified as ROM-type. Boot memory always defaults to 
both CODE and DATA; the CODE and DATA attributes are unnecessary. 
The BOOT modifier always specifies the page number, for example, 
BOOT=O. A system may have up to 8 boot pages, with page numbers from 
0 to 7. Each page can hold up to 2K words of code and data. The System 
Builder knows how long a page can be and the possible boundaries for 
each page; it ignores the ABS modifier for boot pages. An individual 
declaration must be made for each boot page required. 

Memory segments are assigned symbolic names. In the Assembler you 
may locate individual code modules and data objects (buffers and 
variables) in segments by name. The Assembler accepts the segment 
references; the Linker resolves them using the .ACH file. 

The length of the segment is specified by the bracketed expression, as in 
somedata[1024]. The unit is always words, either 16-bit data or 24-bit 
instructions. This means that data memory segment size in bytes is 2x the 
word count, program memory size in bytes is·3x the word count and boot 
memory size is 4x the word count. The latter reflects the padding of boot 
memory with an extraneous byte per instruction in order to place the 
beginning of every instruction on an even byte boundary. 

The example 

.SEG/BOOT=O/ROM boot_rnern[2048]; 

declares the boot segment, boot_mem, which is physical memory type 
ROM, residing in boot page zero (corresponding automatically to absolute 
address 0). The length of the segment is 2048 words corresponding to one 
page of boot memory. 

2-9 



2 System Builder 

2-10 

The example 

.CONST onchip pm = 2048; 

.SEG/PM/RAM/ABS=O/CODE/DATA int_pm[onchip_pm]; 

declares a program memory segment called int_pm, which is memory 
type RAM at absolute location 0. This segment may hold both code and 
data. The length of the segment is 2048 words. This corresponds to the 
ADSP-2101 on-chip program memory space. 

( ', 

~~ 



(' 

(/ 

Assembler 

3.1 INTRODUCTION 
The ADSP-2101 Assembler translates source code modules into object 
code modules. You create a source code file (.DSP) using the ADSP-2101 
assembly language and define variables, data buffers, and symbolic 
constants using assembler directives. Separately assembled modules are 
linked together to form an executable program. 

Figure 3.1, on the next page, shows the Assembler input and output files. 
The ADSP-2101 Assembler reads the source code file (.DSP) and generates 
four output files with the same root name: an object file (.OBJ), a code file 
(.CDE), an initialization file (.INT), and a list file (.LST). The object file, 
code file and initialization files are passed to the Linker. The object file 
contains information on memory allocation and symbol declarations. The 
code file contains instruction opcodes with unresolved symbols marked. 
The initialization file contains initialization information for data buffers. 
The list file, which is optional, is for documentation. 

Using assembly directives in the source code file, you can include other 
source code files and inform the Linker of initialization data files in the 
assembly process. The Assembler reads these files and processes them 
together with the original source file. There are two preprocessors of the 
Assembler, an ANSI-standard C language module and a standard 
preprocessor. The Assembler also supports a macro capability. 

Check the system requirements in Appendix C, especially if you are 
running an IBM PC version of the Assembler. 

3 

3-1 



3 Assembler 

3-2 

Source Code Fiie 
(.DSP) 

Listing Fiie 
(.LST) 

Figure 3.1 Assembler 1/0 

Include Flle(s) 

ASSEMBLER 

lnlt Fiie 
(.INT) 

Object Fiie 
(.OBJ) 

Code File 
(.COE) 



Assembler 3 

3.2 ASSEMBLER MODULES 
The Assembler consists of three modules: 

C language preprocessor 
standard preprocessor 
core assembler 

actual filename: ASMPP 
actual filename: ASM21 
actual filename: ASM2 

Different combinations of the modules can be run using the Assembler 
switches detailed below. Invocation of the Assembler with no switches 
runs the standard preprocessor and core assembler only. 

3.3 RUNNING THE ASSEMBLER 
To invoke the Assembler from the host system, enter: 

ASM21 filename[.ext] [-switch ... ] 

Filename[.ext] is the source code file. The filename extension is optional 
and defaults to .DSP. Other data and source code files are included in the 
assembly process using the directives .INIT and .INCLUDE (described 
later in this chapter). 

3.3.1 Assembler Switches 
The switches themselves are not case-sensitive, and multiple switches 
must be separated by spaces. The Assembler switches are listed below in 
Table 3.1; some require arguments as shown. To see this list on your 
display, invoke the Assembler with no filename or switches: ASM21. 

Switch 
-cp 
-p 

-dvariable[ =value] 
-1 
-m [number] 

-i [number] 

-s 
-c 

Table 3.1 Assembler Switches 

Result 
Runs C language preprocessor 
Runs standard preprocessor without core 
assembler 
Define variable for C preprocessor 
Creates .LST file 
Macros expanded in .LST file, to depth of 
[number] 
INCLUDE files expanded in .LST file, to depth 
of [number] 
No semantics checking 
Makes the Assembler case-sensitive 

3-3 



3 Assembler 

3-4 

3.3.1.1 -cp Switch 
Using the -cp switch runs the ANSI-standard C language preprocessor. 
This module of the Assembler allows the use of convenient C language 
directives in assembly code, if desired. The C preprocessor should only be 
used if C preprocessor directives or conditional constructs are present in 
the input assembly language file. These types of code are handled by the 
C preprocessor in the same fashion as a C compiler preprocessor. An 
intermediate file, filename.CPP, is deleted if the standard preprocessor runs 
without error.Han error does occur, the standard preprocessor halts 
execution prematurely and preserves the .CPP file. 

3.3.1.2 -p Switch 
The Assembler's standard preprocessor handles INCLUDE files, macro 
expansion, and the replacement of symbolic constants with their values, 
and produces a temporary .APP file which is used by the core assembler. 
Using the -p switch runs the preprocessor, prevents the core assembler 
from running, and preserves the .APP file. The .LST, .INT, .OBJ, and .CDE 
files are not created. 

Note that the preprocessor module actually runs whether or not the -p 
switch is used, the switch merely determines if the core assembler is 
subsequently run, deleting the .APP file. 

H you experience a problem using macros, you can turn on the -p switch 
and examine the .APP file to see if the macro invocations (calls) were 
correctly replaced with the macros' executable code. The .APP file is an 
ASCII file, although it contains some additional directives and control 
information. 

Switch combination 
ASM21 

ASM21-cp 

ASM21-p 

ASM21-cp-p 

Module(s) run 
preprocessor 
core assembler 

C preprocessor 
preprocessor 
core assembler 

preprocessor 

C preprocessor 
preprocessor 

Table 3.2 Preprocessor Switch Combinations 

File(s) preserved 
.INT, .OBJ, .CDE, 
.LST (if-1 switch used) 

.INT, .OBL .CDE, 

. LST (if -1 switch used) 

.APP 

.APP 



( 

( 

c· 

Assembler 3 

Figure 3.2 shows the flow of program control for the Assembler modules. 

"ASM21-cp" 

"ASM21 -p-cp" 

(Deleted by 
Standard 
Preprocessor) 

"ASM21" 

"ASM21-p" 

(Deleted H Core 
Assembler Runs) 

..... • ......... : •• ·.:=···:-·:::-:·:-:;.· ••• ::::::::::::::::-:-:·:··:·:·:=· •• • •• :-::::.·-:-· ... ·:; ••• ;.-.·:-. 

C Preprocessor 

··-=·:·.·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:· .. :·:·:·:·:·:·:·:·:.:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·.·=·:·:·:·:·:·:·:·:·:·=···:·:·:-:-:•.•}y"~::'.=! .• 

:;.;:;:•:;:;:;.;.;:::::;:;.::::;:::::::::::::::::::::::::::::·:::::::·:::;.;.;:;:::::::::::::::·:·:::·:l~ : 

.. 

I 
Standard Preprocessor 

Core Assembler 

( .COE Fiie 

( .OBJ Fiie 

( .INT Fiie 

( .LST Fiie 

Figure 3.2 Assembler Program Flow 

r-
'•. 

::-

) 
) 

) 
) 

3-5 



3 Assembler 

3-6 

3.3.1.3 -dvariable[=value] Switch 
If a variable has been used in a C preprocessor directive in the input 
assembly language file it must be defined for the C preprocessor (which 
handles such directives for the Assembler). The variable can be any 
character string, and can be optionally set to a desired value which may be 
a character string or numerical value. Defining and/ or giving a value to 
the variable allows the C preprocessor to evaluate a conditional statement 
dependent upon it. 

A common use of this is to have a section of debug code written in the 
input file and to make its inclusion conditional. For example, place the 
debug code inside a conditional directive so that the code is assembled 
only if the variable mydebug is defined. The input file contains the 
following: 

#ifdef mydebug 

debug assembly code 

#endif 

The Assembler must now be invoked as follows to assemble the debug 
code: 

ASM21 filename -cp -dmydebug 

3.3.1.4 -L Switch 
The Assembler produces a listing file (.LST) if the-I switch is used. This 
file is described in the section ''List File Format'' later in this chapter. 

3.3.1.5 -m [number] Switch 
The listing file (.LST) does not normally display macros in expanded 
format; the -m switch expands the macros called in the file. Specifying a 
number determines the depth of nested macros to be expanded. For 
example, if number is chosen to be 3, macros invoked within other macros 
to a depth of 3 will be expanded. Choosing number is optional, and the 
default is to infinity (all nested macros expanded to infinite depth). 

Examples: 

-m3 

-m 



( Assembler 3 

3.3.1.6 -i [number] Switch 
Using the -i switch causes the contents of files named with the .INCLUDE 
directive to be shown in the .LST file. Specifying number determines the 
depth of nested INCLUDE files to be shown. Giving a number is optional, 
and the default is to infinity (similar to -m switch). If the -i switch is not 
used, these directives remain in the form .INCLUDE filename. 

3.3.1. 7 -s Switch 
The Assembler generates warning messages when multifunction 
instructions are not in the correct order. When you tum on the-s switch, 
the system does not check for the semantics (order) of a multifunction 
instruction. (In this mode, warning messages are not displayed on the 
screen.) For a description of multifunction instructions, refer to Chapter 9, 
Instruction Set Reference. 

3.3.1.8 -c Switch 
The default operation of the Assembler is to treat upper and lowercase 
letters as identical, as in previous releases. With this switch, the Assembler 
is made case-sensitive (similar to the C language environment); upper and 
lowercase versions of the same letter are treated as different characters. 
The -c switch supports the ADSP-2101 C Compiler. 

3.4 LANGUAGE CONVENTIONS 
This section describes the language conventions specific to the Assembler. 
See Chapter 1 for a complete discussion of general conventions including 
notation used in this manual, usable character set, symbols, identifiers, 
constants and expressions. 

3.4.1 Binary Constants 
Binary numbers are accepted only by the Assembler, and may not be used 
with any of the other Cross-Software tools. Binary numbers are specified 
with the prefix B#: 

B#0111010001011111 

Decimal, octal, and hexadecimal numbers are specified in source code in 
the normal fashion (as shown in Chapter 1). 

3-7 



3 Assembler 

3-8 

3.4.2 Symbols 
Symbols are used in a source code program to represent various items. 
Symbols include identifiers and keywords. 

3.4.2.1 Identifiers 
Identifiers identify and name an assembly module, assembly values, data 
buffers and variables, I/0 ports, macros, address locations and 
subroutines. 

An identifier is a user-defined character string. The string may be of any 
length, but only the first 32 characters are significant. See Chapter 1 for a 
specification of the exact form of identifiers. As the default operation of 
the Assembler is case-insensitive, identifiers may be either upper or lower 
case (unless the-c switch is used). 

The "pointer to"(") and "length of"(%) operators are used with 
identifiers which label data buffers. "buffer _name is evaluated by the 
Assembler as the base address of the buffer, and %buffer _name is evaluated 
as the number of words in the buffer. · / -" 

3.4.2.2 Reserved Symbols (Keywords) 
Symbol names in the source code file must be unique. Assembler-reserved 

. symbols may not be used as identifiers. Because the Assembler is not case 
sensitive, both upper and lower case keywords are reserved. Table 3.3 lists 
the assembler keywords. Some of those listed correspond to ADSP-2101 
features which are not visible to users. Avoid them because their use may 
cause errors. 



---~--------··----·-

( Assembler 3 

ABS DM INCLUDE MRO RTS 
AC DO INIT MR1 RXO 
AF EM ODE JUMP MR2 RX1 
ALT_REG ENA LO MSTAT SAT 
AND END MACRO Ll MV SB 
AR END MOD L2 MXO SEG 
AR_SAT ENTRY L3 MX1 SEGMENT 
ASHIFT EQ L4 MYO SET 
ASTAT EXP LS MY1 SHIFT 
AUX EXP ADJ L6 NAME SI 
AV EXTERNAL L7 NE SR 
AV_LATCH FOREVER LE NEG SRO 
AXO FLAG_IN LOCAL NEWPAGE SR1 
AXl FLAG_OUT LOOP NOP SS 
AYO GE LSHIFT NORM SSTAT 
AYl GLOBAL LT NOT STATIC 
BIT_REV GT MO OR STS 
BM IO Ml PASS SU 

( 
BY 11 M2 PC TEST 
c 12 M3 PM TIMER 
CACHE 13 M4 POP TOGGLE 
CALL I4 MS PORT TOPOFPCSTACK 
CE IS M6 POS TRAP 
CIRC I6 M7 PRI TRUE 
CLR I7 MACRO PUSH TX1 
CLEAR ICTRL MF RAM TXO 
CNTR IDLE M_MODE REG BANK UNTIL 
CONST IF GO_MODE RESET us 
DIS IFC MODIFY RND uu 
DIVS IMA SK MODULE ROM VAR 
DIVQ MR RTI XOR 

Table 3.3 Assembler-Reserved Symbols/Keywords 

3-9 



3 Assembler 

3-10 

3.4.3 Comments 
You mar insert comments anywhere in a source code file, enclosed by 
braces, } . The Assembler treats all comments as "white space" and 
ignores them. 

3.5 PROGRAM STRUCTURE 
The basic unit of an ADSP-2101 program is the module. Modules are 
defined as: 

.MODULE[/ qualifiers] module_name; 

statement; (may be any of • [label:] instruction 
•directive 
• macro invocation) 

.ENDMOD; 

Each element of the module must end with a semicolon. Statements can be 
either an instruction, assembler directive, or macro call. Giving an 
instruction a label is optional. The .MODULE and .ENDMOD directives 
are defined in the section "Assembler Directives." 

Chapter 9, Instruction Set Reference, defines the ADSP-2101 instructions. 
The ''Macros" section in this chapter describes macro definition and 
invocation. 

3.5.1 Source Code File Restrictions 
Individual lines must be no more than 200 characters in length. 

3.6 ASSEMBLER DIRECTIVES 
Assembler directives are instructions that control the assembly process. 
They do not produce opcodes. In the source file, an assembler directive 
statement starts with a period and ends with a semicolon. An assembler 
directive may take modifiers and arguments, as specified in each of the 
following sections. 



(--

( 

Assembler 3 

3.6.1 .MODULE Directive 
The .MODULE directive defines the start of an assembly module and is 
the first statement. The default memory type is assumed to be RAM if not 
specified. The ABS modifier, if present, specifies the start address of the 
code segment. 

The .MODULE directive has the form: 

.MODULE[/ qualifier ... ] module_name; 

Qualifiers consist of any of the following: 

RAM or ROM 
ABS= absolute start address 
BOOT = 0, 1, 2, 3, 4, 5, 6, or 7 
SEG = memory segment name defined in System Builder 

The module qualifiers determine the location of the module in memory. 
Memory type can be specified as RAM or ROM, followed by the start 
address and/ or a physical segment in memory defined in the System 
Builder. (The start address is a constant.) 

There may be up to 8 boot pages of 2K length each. The BOOT qualifier 
can be specified as boot page 0 through 7, and multiple pages may be 
listed for one module (i.e .. MODULE /BOOT=O/BOOT=2). You must use 
this qualifier in order to have your bootable code located in the boot 
PROMs by the Linker and PROM Splitter. The Linker generates memory 
image files for an ADSP-2101 system, and only creates such a file for boot 
memory if this qualifier is used. 

The memory type qualifier does not refer to the boot memory itself; it 
classifies the type of memory from which the code is executed. Boot 
memory merely stores the code until it is booted into the chip. Any 
module which is declared as bootable (with the BOOT qualifier) should in 
most cases be declared in RAM-type memory, because it is executed from 
the chip's internal 2K of program memory, which is RAM. 

The BOOT qualifier also applies to all . VAR data buffer declarations 
within a module- remember that boot memory (and program memory in 
general) can contain both code and data. 

3-11 



3 Assembler 

3-12 

The Assembler does not deal with boot memory as a separate memory 
space. The BOOT qualifiers for modules are passed on to the Linker to be 
acted upon. The crucial concept of a system with boot memory is the 
distinction between what is accomplished when running the Linker 
(locating objects in memory space), and what happens during run-time 
(program execution). 

When you choose specifications and qualifiers for code modules and data 
buffers, these attributes apply to the run-time characteristics of the 
structures. Booted code is run from the ADSP-2101's internal program 
memory, when both the code and processor deal only with run-time 
program and data memory. When configuring the memory map of your 
system, you should think only in terms of program and data memory. 

The example that follows defines the module main_routine, which is 
located at execution-time in RAM at address 0 (on-chip). The code is 
stored on boot page 0 . 

. MODULE/RAM/ABS=O/BOOT=O main_routine; 

The next example defines the module filter _routine, located in a memory 
segment named fir (as defined in a System Builder output .SYS file), which 
is specified as ROM . 

. MODULE/ROM/SEG=fir filter_routine; 

H you use the SEG qualifier and specify an address (ABS =) that is not the 
correct address for that segment, you receive an error message when the 
Linker is run. 

3.6.2 .ENDMOD Directive 
This directive has the form: 

.ENDMOD; 

The .ENDMOD directive is the last statement in a source code file. The 
assembly process terminates when the Assembler reads the .ENDMOD 
directive. 



(~ Assembler 3 

3.6.3 . VAR Directive 
The.VAR directive declares data buffers. You must declare all buffers 
with the directive prior to any use of or reference to them. The default 
declaration ,with no qualifiers or length specified, is a relocatable buffer of 
length one (a variable) in data memory RAM. 

The . VAR directive has the form: 

. VAR[/ qualifier ... ] buffer _name[length], . .. ; 

One.VAR directive can have an unlimited number of declarations, each 
separated by commas, up to the maximum number of characters that can 
be processed. Specification of length is optional, with default to one (a 
single word variable). 

Qualifiers consist of any of the following: 

PMorDM 
RAM or ROM 
CIRC 
ABS= absolute address 
SEG = memory segment name defined in System Builder 
STATIC 

The following is an example variable declaration: 

.VAR/DM/RAM/ABS=OxlOF seed; 

This statement declares a one word variable called seed in data memory 
RAM, at hexadecimal address 10F. 

The following is an example buffer declaration: 

.VAR/PM/RAM/SEG=pmdata coefficients[lOJ; 

Here a buffer is declared in program memory RAM, in a segment called 
pmdata which has been declared in the System Builder. The buffer name is 
coefficients and it has a length of 10. Note that the length, which may be a 
constant or expression, must be placed inside brackets: coefficients[10]. 

3-13 



3 Assembler 

3-14 

In this manual's notation brackets are typically used to indicate a 
specification which is optional. . VAR, .!NIT, and .INCLUDE are the only 
instances of Assembler syntax where brackets or angle brackets are 
required. 

Data buffers are placed in either program memory (PM) or data memory 
(DM), with default to DM. The memory type qualifier specifies the type of 
memory: RAM or ROM. This modifier defaults to RAM for both DM and 
PM. 

The buffer type defaults to linear unless you explicitly specify the circular 
attribute with the /CIRC qualifier. 

The example that follows declares a circular buffer whose length is the 
value of the constant taps . 

• VAR/DM/CIRC data_buffer[taps]; 

The I ABS qualifier specifies the start address of the data buffer. If you 
omit this qualifier, the buffer defaults to a relocatable buffer. 

The /SEG qualifier specifies a segment in memory. If you specify a 
segment in memory and an address and the locations conflict, the Linker 
displays an error message. 

The /STATIC qualifier is given to a data buffer whose contents must be 
preserved during software-controlled rebooting. This qualifier instructs 
the Linker to prevent the buffer from being overwritten by a newly­
booted page. STATIC buffers are placed in memory by the Linker such 
that they are protected from being overwritten in multiple boot page 
systems. For additional information on the /STATIC qualifier and 
multiple boot page systems, refer to Appendix E. 

If the buffer is to be initialized with data, the declaration and initialization 
must occur in the same module. 

The .VAR directive takes an unlimited number of user-defined data 
variables or buffers as arguments, each separated by a comma. When you 
declare variables or buffers together, the Linker places them in contiguous 
memory segments. The length of a circular buffer is the sum of the lengths 
of all buffers declared in the same .VAR statement with the /CIRC 
qualifier. 

/ 



(- Assembler 3 

3.6.3.1 More On Circular Buffers 
Circular buffers (of any length) can only be placed at certain memory 
boundaries, depending on the length of the buffer. Unless you explicitly 
place buffers in memory, the Linker does it for you. Refer to Chapter 4, 
Linker, and the ADSP-2101 User's Manual, under ''Data Structures," for 
additional information. 

The following is an example of one circular buffer of length five (three bits 
required to represent), which would be located by the Linker a,t an 
address that is a multiple of eight (has three LSBs equal to zero): 

.VAR/CIRC aa[5]; 

This example declares one circular buffer: 

.VAR/CIRC aa[5], bb[S], cc[S]; 

Because three buffers are defined in a single .VAR declaration, this 
directive allocates one fifteen word circular buffer in memory. Since 
fifteen requires four bits to represent, the buffer is located at a base 
address which is a multiple of sixteen. The address of aa is the base 
address. The address of bb is the base plus five and the address of cc is the 
base plus ten. The three buffers named (aa, bb, cc) can all be individually 
referenced as simple buffers, but there is only one circular buffer. This is 
shown graphically in part A of Figure 3.3, on the following page. 

The following example uses three separate directive statements to declare 
three separate circular buffers: 

.VAR/CIRC aa[5]; 

.VAR/CIRC bb[S]; 

.VAR/CIRC cc[S]; 

Each of these buffers requires only three bits to represent and each is 
located at a different address which is a multiple of eight. Because you 
declare them separately, they are not necessarily contiguous. Part B of 
Figure 3.3 shows this. 

3-15 



3 Assembler 

buffer address 
(least significant byte) 

xxxxOOOO aa 
xxxxOOOl 
xxxxOOlO 
xxxxOOll 
xxxxOlOO 

xxxx0101 bb 
xxxxOllO 
xxxxOlll 
xxxxlOOO 
xxxxlOOl 

xxxxlOlO CC 
xxxxlOll 
xxxxllOO 
xxxxllOl 
xxxxll l 0 

Figure 3.3A Circular Buffers 

buffer addresses 
(least significant byte) 

xxxxxOOO 
xxxxxOOl 
xxxxx010 
xxxxxOll 
xxxxxlOO 

xxxxxOOO 
xxxxxOOl 
xxxxxOlO 
xxxxxOll 
xxxxxlOO 

xxxxxOOO 
xxxxxOOl 
xxxxxOlO 
xxxxxOll 
xxxxxlOO 

aa 

bb 

cc 

Figure 3.38 Circular Buffers 

0 
0 

The following example creates the structure for a sine/cosine lookup 
table: 

3-16 

.VAR/CIRC sin[256], cos[768]; 

This example declares one circular buffer with a length of 1024, placed at 
an address boundary which is a multiple of 1024 (has ten LSBs equal to 
zero). In a program, you can initialize index registers (I registers) and 
buffer length registers (L registers) with this statement: 

IO = 
LO = 
Il = 
Ll = 

"cos; {" is the "address pointer" operator} 
1024; 
"sin; 
1024; 



( Assembler 3 

The address pointer operator A instructs the Assembler to determine the 
address of the memory label it is used with. In the above example the 
DAG index registers IO and 11 are loaded with the addresses equated to 
cos and sin. 

3.6.4 .INIT Directive 
The .INIT directive initializes a declared variable or all or part of a data 
buffer (in either DM or PM). The buffer is initialized with the value(s) 
listed or those contained in an external file. 

The .INIT directive takes the following form: 

.INIT buffer _name: constant or expression, ... , 

Aother _buffer[offset] or %other _buffer[offset], ... , 

<filename>; 

Any combination of the three forms of initialization values shown above 
may be used, separated by commas. 

An offset from the base address within a buffer may be specified as the 
destination location (or source address, as above): 

.INIT buffer _name[offset]: ... ; offset= constant or expression 

The initialization data is either listed in the .INIT directive statement or 
contained in a data file read by the Linker. Appendix B defines the 
external data file format. You should initialize all variables and buffers in 
the same module in which they are first declared. 

3-17 



3 Assembler 

3-18 

.INITrecognizes the "pointer to"(") and ''length of"(%) operators. 

Examples: 

.!NIT seed: Ox3FFF; 

.INIT seed values: 1,2,3,5,7; 

.INIT lookup_table: "sin; 

.INIT cos: <cosines.dat>; 

.!NIT coefficients[S]: 2; 

Initialize variable seed with a 
constant hex value. 

Initialize the five-word buffer 
seed_values with the listed 
values. 

Set variable lookup_table to 
point to the base address of 
buffer sin. 

Initialize the buffer cos with the 
contents of the external file 
cosines.dat, which is read by the 
Linker. (The use of angle 
brackets here is mandatory.) 

Initialize the sixth element of 
the buffer coefficients with the 
value2 . 

. INIT bufl: 9, 5, 1, <sample .dat>; Initialize buf1 with three 
constants and the contents of 
the file sample.dat. 

Initializing from external files is helpful for setting buffer contents with 
data produced by high-level programs, such as filter coefficient or FFf 
twiddle factor generation routines. If you use external files, you do not 
need to initialize data at assembly time. The Assembler establishes a 
pointer to the external data files, and the data is incorporated when the 
Linker is run. Consequently, when changes are made in external data files, 
re-linking updates the program. There is no need to re-assemble. 

The .INIT directive causes the Linker to initialize buffers with the 
specified data in the (.EXE) memory image file. This file can be used to 
load the initialized buffers in three cases: (1) for any external program or 
data memory which is ROM-type and is burned (by means of the PROM 
Splitter output files), (2) for any internal program memory buffers which 
are booted from boot PROMs, and (3) for debugging with the Simulator 
and Emulator. 



( 

( 

( 

Assembler 3 

3.6.5 .CONST Directive 
The .CONST directive declares symbolic constants. You can use symbolic 
constants wherever you use numeric values. 

The .CONST directive has the form: 

.CONST constant_name = constant or expression, ... ; 

One .CONST directive can have an unlimited number of assignment 
statements, each separated by commas, up to the maximum number of 
characters that can be processed. 

Example: 

.CONST taps=lS, taps_less_one=14; 

This defines two constants, equal to the numeric values shown. 

3.6.6 .PORT Directive 
The .PORT directive declares a memory-mapped 1/0 port in data or 
program memory. The argument for this directive is a symbolic port 
name. The name must be the name of a port declared in the Architecture 
Description file. 

The .PORT directive has the form: 

.PORT port_name; 

When you reference ports, use the GLOBAL attribute in the module where 
you first declare the port and the EXTERNAL attribute in other modules. 
The Linker reads all information about this port from the Architecture 
Description file (.ACH) and resolves all references to it. 

The following example identifies the port ad_sample which has been 
previously declared as a specific memory location in the System Builder: 

.PORT ad_sarnple; 

3.6.7 .INCLUDE Directive 
The .INCLUDE directive is used to include another source file in the file 
being assembled. The Assembler reads the include file when it encounters 
the .INCLUDE statement. The Assembler processes the included file as if 

3-19 



3 Assembler 

3-20 

it were part of the original source file. When the Assembler comes to the 
end-of-file of the included file, it returns to the original source file and 
continues reading and processing. 

The .INCLUDE directive has the form: 

.INCLUDE <filename>; 

Source files specified by the .INCLUDE directive can have .INCLUDE 
statements within them (nesting of include files is limited only by 
memory). 

The .INCLUDE directive supports modular programming. For example, 
in many cases it is useful to develop a library of subroutines or macros 
which are shared between different programs. Rather than rewriting these 
routines for each program, you can incorporate a macro library into the 
source code file using the .INCLUDE directive. 

Example: 

.INCLUDE <macro lib>; 

Here the use of angle brackets is required. 

Another way to place additional source files into the file being assembled 
is to use the #include C preprocessor directive. #Include may be used in 
source code rather than .INCLUDE; however, the Assembler's C 
preprocessor must be invoked in order to handle the directive. 

3.6.8 Macros 
This section defines macros and the .MACRO directive. Macro capability 
simplifies source code development by allowing frequently used 
instruction sequences to be inserted at the point of reference. Using the 
argument passing feature, a macro can be a general-purpose subroutine 
that is shared by different programs. The macro reduces duplication of 
programming effort. 

c 
/'I 

_;/ 



Assembler 3 

3.6.8.1 Macro Definition 
A macro is called by name and allows argument passing. Macro 
definitions have the form: 

.MACRO macro_name(arguments); 

statement; (may be any of • [label:] instruction 
• .LOCAL Oocal directive) 
• directive (all others) 
• macro invocation) 

.ENDMACRO; 

Macro statements can be any legal ADSP-2101 Assembler statement. 

An alternative to using the .MACRO directive to create an assembly code 
macro is the #define C language directive. If #define is used for macro 
definition, the Assembler's C preprocessor must be run in order to process 
the directive. 

3.6.8.2 .MACRO Directive 
The .MACRO directive is the start of a section of code which is to be 
defined as a macro, and includes the macro's name and arguments. It has 
the form: 

.MACRO macro_name(argument, ... ); 

Arguments, which are optional, take the form: %n n=O, 1, 2, ... , 9 

For example: 

.MACRO memory_transf(%0,%1,%2,%3,%4); 

Within the source code of the macro, the arguments are marked by the 
place holder %n, where n is a number assigned between 0 and 9. When the 
macro is called, the %n placeholders are replaced with the actual values 
passed. The number of arguments dedared and the number of parameters 
passed when the macro is called must match. Note that the percentage 
sign is used in this context to identify the place holders, not as a ''length 
of" operator. 

3-21 



3 Assembler 

3-22 

When the macro is called, the parameters passed to the place holders may 
be anything shown in Table 3.4, below. 

Legal Parameter 
constant or expression 
identifier 

"identifier 
%identifier 

Comments 

May include reserved words except 
MACRO, ENDMACRO, CONST and 
INCLUDE. 
""%n" is not allowed within macro 
"%%n" is not allowed within macro 

Table 3.4 Arguments/Parameters Legally Passed to Macros 

The "pointer to" and "length of' operators(" and%) cannot be used with 
argument place holders within the macro. However, a parameter passed 
when the macro is called may use these operators. For example, you could 
invoke the macro read_data(%0) and point to a buffer address with the 
parameter passed: 

read_data(Ainput); 

To avoid duplicate label errors when a macro is referenced multiple times 
within a module, a label in the macro code must be declared a local label 
with the .LOCAL directive; see below. 

Macro nesting is limited only by memory at assemble time. 

3.6.8.3 .ENDMACRO Directive 
The .ENDMACRO directive has the form: 

.ENDMACRO; 

The .ENDMACRO directive terminates a macro definition portion of code. 



(-

c: 

Assembler 3 

3.6.8.4 Macro Example 
A macro example is shown in Figure 3.4. In this example, the macro 
memory _trans/ is a general purpose memory transfer routine which can 
transfer data buffers from one memory area (program or data) to the 
other. This example passes five arguments (%0, %1, %2, %3, %4). PM and 
DM references can be passed. 

{MACRO declaration} 
.MACRO memory_transf(%0,%1,%2,%3,%4); 
.LOCAL transf; 

{pass five arguments} 

I4=%0; 
I5=%1; 
M4=1; 
CNTR=%2; 
DO transf UNTIL CE; 
SI=%3(I4,M4); 

transf: %4(I5,M4)=SI; 
.ENDMACRO; 

{MACRO invocation} 

{set I4 to source start address} 
{set IS to destination start address} 
{set pointer update to single increment} 
{set length of buffer} 
{transfer data} 
{transfer from type %3 memory} 
{transfer to type %4 memory} 

memory_transf(Acoeff_table, Abuffer, buff_length, PM, DM); 

Figure 3.4 Macro Example 

3.6.9 .LOCAL Directive 
The .LOCAL directive has the form: 

.LOCAL local_label, ... 

The .LOCAL directive is used only within a macro definition section of 
code. (See Figure 3.4.) The .LOCAL directive tells the Assembler to create 
a unique label for local_label at each invocation of the macro. This avoids 
duplicate label errors in cases where macros are called multiple times 
within a module. 

The Assembler appends a number to each local label; this can be seen in 
the Simulator, or in the .LST file if macros are expanded. 

Example: 

.LOCAL transf; 

3-23 



3 Assembler 

3-24 

3.6.10 .EXTERNAL Directive 
The .EXTERNAL directive assigns the EXTERNAL attribute to identifiers. 
This attribute is typically given to variables, buffers, ports, and program 
memory labels declared in other assembly modules. Those symbols in 
other modules can only be referenced if they are assigned the EXTERNAL 
attribute in the referencing module and the GLOBAL or ENTRY attribute 
in the module where they are actually declared. 

This directive has the form: 

.EXTERNAL external_symbol, ... ; 

Example: 

.EXTERNAL fir_start; {entry label in different module} 

3.6.11 .GLOBAL Directive 
The .GLOBAL directive assigns the GLOBAL attribute to variables, 
buffers, and ports. Only such identifiers declared (with .VAR or .PORT) as 
global may be referenced in other modules. '", / 

The .GLOBAL directive has the form: 

.GLOBAL internal_symbol, ... ; 

A variable, buffer, or port that is declared within a module can be 
referenced only by that module unless you explicitly specify it as global. 
For program labels which you intend to reference in other modules, you 
should use the .ENTRY directive rather than the .GLOBAL directive. 
Example: 

.GLOBAL seed; 

Other modules are able to refer to global identifiers by declaring those 
symbols as EXTERNAL. 



( 

( 

Assembler 3 

3.6.12 .ENTRY Directive 
The .ENTRY directive assigns the ENTRY attribute to program labels. This 
makes the label visible to other modules for use in subroutine calls or 
inter-module jumps. 

The .ENTRY directive has the form: 

.ENTRY program_label, ... ; 

Example: 

.ENTRY fir_start; {make label visible outside module} 

3.7 PROGRAM EXAMPLE 
Figures 3.5 through 3.7 illustrate a sample source code program, an 
interrupt service subroutine, and an include file for the ADSP-2101. In this 
example the module main_routine is the main program and fir _routine is 
the subroutine. These modules are linked together to form a complete 
program. 

There are six possible interrupt sources for the processor plus the restart 
vector at address 0. Each has four locations associated with it. As 
described in the ADSP-2101 User's Manual, the first 28 addresses in 
program memory contain the restart and interrupt vectors (OxOOOO -
Ox001B). The 29th PM address (Ox001C) holds the first program 
instruction. Since main_routine is declared at absolute address zero, the 
first 28 instructions are placed in the interrupt vector locations. Because 
this example uses only the restart (OxOOOO) vector and SPORTO Receive 
(OxOOOC) interrupt, the remaining instructions are simply returns (RTI). 

The .VAR directive defines two circular buffers in on-chip memory: one in 
data memory RAM used to hold a delay line of samples and one in 
program memory RAM used to store coefficients for the filter. Data_buffer 
and coefficient are declared as GLOBAL buffers in main_routine, while 
fir _routine declares them as EXTERN AL. The address label, fir _start , is 
declared as ENTRY in fir _routine and can be referenced by main_routine, 
which declares it as EXTERNAL. 

This sample program, which is also described in the ADSP-2101 User's 
Manual, implements a FIR filter routine and has several features worth 
noting. After declaring the include file and memory buffers and 

3-25 



3 Assembler 

performing initialization, main_routine jumps to location restarter. Here 
the data and coefficient buffers are cleared and the data memory-mapped 
control registers of the ADSP-2101 are set up. The functions selected 
include SPORTO timing specification, u-law companding, and 8-bit data 
words. SPORTO interrupt is then enabled and the processor loops on the 
IDLE instruction until the interrupt from SPORTO is received. The filter is 
thus interrupt-driven. When the interrupt occurs, program control shifts 
to the subroutine by jumping to location fir _start. 

All further activity takes place in the interrupt service routine, Figure 3.6. 
After the return from interrupt, execution resumes at the WAIT loop. 

{ADSP-2101 FIR Filter program 
Serial port 0 used for I/O 
Internally generated serial clock 
12.288 MHz clock rate gives 8000 Hz sampling rate} 

.MODULE/RAM/ABS=O/BOOT=O main routine; {program loaded from BOOT EPROM, MMAP=O) 

.INCLUDE <const.h>; -

.VAR/DM/RAM/ABS=Ox3800/CIRC data buffer[taps]; {data values} 

.VAR/PM/RAM/CIRC coefficient[taps]; 

.GLOBAL data buffer, coefficient; 

.EXTERNAL fir start; 

.INIT coefficient: <coeff .dat>; {initialize coeffs from external file} 

restarter: 

{code starts here) 
{load interrupt vector addresses) 

JUMP restarter; nop; nop; nop; 
RTI; nop; nop; nop; 
RTI; nop; nop; nop; 
JUMP fir_start; nop; nop; nop; 
RTI; nop; nop; nop; 
RTI; nop; nop; nop; 
RTI; nop; nop; nop; 

{initializations) 

LO 
L4 
MO 
M4 
IO 
I4 

3-26 

%data buffer; 
%coefficient; 
l; 
1; 
"data buffer; 
"coefficient; 

{restart interrupt} 
{sampling interrupt IRQ2} 
{SPORTO transmit int} 
{SPORTO receive int} 
{SPORTl transmit int} 
{SPORTl receive int) 
{TIMER interrupt} 

{setup circular buffer length) 
{setup circular buffer length) 
{modify=l for increment 
through buffers) 
{point to data start) 
{point to coeff start} 



( 

( 

Assembler 3 

CNTR = %data buffer; 
DO clear buffer UNTIL CE; 

{setup loop counter} 

clear buffer: DM(IO,MO)=O; {clear data buffer} 

WAIT: 

.ENDMOD; 

Il = Ox3FEF; 

DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM ( Il, MO)= 191; 
DM(Il,M0)=0x0003; 
DM(Il,M0)=0x69B7; 

DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,MO)=OxOOOO; 
DM(Il,M0)=0x7000; 

DM(Il,MO)=OxlOOO; 

ICNTL 
IMASK 

IDLE; 

OxOO; 
Ox0018; 

JUMP WAIT; 

Figure 3.5 Main Routine Example 

{point to last DM control register for 
initialization) 
{SPORTl AUTOBUFF disabled} 
{SPORTl timing not used} 
{SPORTl timing not used} 
{SPORTl CNTL disabled} 
{SPORTO AUTOBUFF disabled} 
{divide by 192 for 8KHz} 
{generate l.536MHz serial elk} 
{multichannel disabled} 
{int. gen serial clock} 
{receive frame sync required} 
{receive width 0) 
{transmit frame sync required) 
{transmit width OJ 
{int transmit frame sync enabled} 
{int receive frame sync enabled} 
{u-law companding} 
{8 bit words} 
{transmit multichannels} 

{receive multichannels} 

{timer not used, cleared} 

{external DM wait states} 
{Ox3400 - Ox37FF 7 waits) 
{all else 0 waits} 
{SPORTO enabled} 
{boot page 0, 0 PM waits} 
{0 boot waits) 

{enable SPORTO interrupt only} 

{wait for interrupt} 

3-27 



3 Assembler 

.MODULE/RAM/BOOT=O fir routine; 

.INCLUDE <const.h>; -
{relocatable interrupt service routine module) 
{include constant declarations) 

.ENTRY fir start; {make label visible 

.EXTERNAL data buffer, coefficient; 
outside module) 

{make global buffers visible to module) 

FIR START: 

CONVOLUTION: 

.ENDMOD; 

- {code) 

CNTR = taps-1; 
SI = RXO; 
DM(IO,MO) = SI; 
MR=O, MYO=PM(I4,M4), 

{N-1 passes within DO loop) 
{read from SPORTO} 
{transfer data to buffer) 

MXO=DM(IO,MO); 
{set up multiplier for loop) 

DO CONVOLUTION UNTIL CE; {CE = counter expired} 
MR=MR+MXO*MYO(SS), MYO=PM(I4,M4), MXO=DM(IO,MO); 

MR=MR+MXO*MYO(RND); 
IF MV SAT MR; 
TXO = MRl; 
RTI; 

{MAC these, fetch next) 

{Nth pass with rounding} 
{saturate if overflowed) 
{write to sport 0 transmit) 
{return from interrupt) 

Figure 3.6 Interrupt Routine Example 

.CONST taps= 15; 

Figure 3.7 Include File, Constant Initialization 

3-28 



( 

Assembler 3 

3.8 LIST FILE FORMAT 
The List file (.I.ST) allows you to interpret the result of the assembly 
process. A fragment of a sample list file for the ADSP-2101 is shown in 
Figure 3.8. 

The following information is found in the list file: 

addr 

inst 

source line 

instruction/ directive 

The first column specifies offset from module 
base address in program memory. 

The second column contains the hexadecimal 
representation of the instruction loaded at that 
address (opcode). An appended "u" indicates 
that the opcode contains an undefined field. 

The source file line number read by the 
Assembler is listed in the third column. 

This field contains the source code, either 
Assembler directive or assembly language 
instruction. 

Analog Devices Inc. 
C:\210l_System\fir2101.app 
addr inst source line 

ADSP-210X Assembler Version 2.00 
Mon Oct 9 11:04:39 1989 Page 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

.MODULE/RAM/BOOT=O FIR_ROUTINE; 

.include "const.h"; 

.ENTRY FIR_START; 

.EXTERNAL DATA_BUFFER, COEFFICIENT; 

{code} 

FIR_START: CNTR = 14; 
SI = RXO; 

{relocatable interrupt 
service routine module} 

{include constant declarations} 
{make label visible outside 
module} 

{make global buffers visible 
to module) 

{N-1 passes within DO loop} 
{read from SPORTO} 
{transfer data to buffer) 

0000 3COOES 10 
0001 OD0388 11 
0002 680080 12 
0003 E89800 13 

DM(IO,MO) = SI; 
MR=O, MYO=PM(I4,M4), MXO=DM (I 0, MO) ; 

14 {set up multiplier for loop) 

Figure 3.8 List File Example 

3-29 



3 Assembler 

' ' ,.___/ 

\ 

3-30 

------------------ ·~-



Linker 

4.1 INTRODUCTION 
The ADSP-2101 Linker generates a complete executable program by 
linking together program modules which were assembled separately. It 
can search libraries, which are simply subdirectories, for subroutines to 
link. The output of the Linker is used by the Emulator, Simulator and 
PROM Splitter. Figure 4.1, on the following page, shows the files read and 
created by the Linker. 

As shown in the previous chapter, the Assembler processes each source 
code module separately, producing an Object file (.OBP, a Code file 
(.CDE) and an Initialization file (.INT), which contains information on the 
assembled code, source level declarations and initialization information. 
Initialization data files (.DAT) are created separately. Changes in 
initialization data only require relinking. 

The Assembler output files (one set for each module to be linked), 
together with initialization data files and the Architecture Description file 
are used by the Linker. The Linker expects to find an Architecture 
Description file with the default name 210x.ACH unless you alter this 
name with a switch; the files to be linked must be specified in the 
invocation command or located in libraries to be searched. 

The Linker creates one complete executable code file by resolving external 
references and assigning addresses to relocatable code and data spaces. 

The Linker can generate three files. The Memory Image file (.EXE) is 
always created, and contains the actual program memory, data memory, 
and boot memory images after the linkage. This file is used by the 
Simulator and Emulator, and is also passed to the PROM Splitter to 
prepare a data file for a PROM burner. It has the default name 210x.EXE 
which can also be changed with a switch. 

The optional map listing file (.MAP) assists you in interpreting the result 
of the linkage. This file is discussed in more detail later in this chapter. 

• . 4 

4-1 



4 Linker 

4-2 

The optional debug symbol table file (.SYM) lists all symbols encountered 
by the Linker, their absolute values and their scope of reference. This file 
is used by the Simulator and Emulator. 

"\ 
tnlt Flle(s) 

(.INT) 

\.. 

r ' Code Flle(s) 
(.COE) 

\. 

/' ' Object Flle(s) 
(.OBJ) 

""'\ 

Buffer lnlt Flle(s) 
(.DAT) 

\. 

/ ' Architecture 
Description 
File (.ACH) 

\.. 

r r ,, ,, T 

LINKER I 
/' ""'\ 

Map Ustlng Fiie 
(.MAP) l 

\.. /' "\ 
PMIDM/BM 

,, 
Memory Image 

Fiie (.EXE) / "\ 
Debug Symbol 

Table 
Fiie (.SYM) 

\.. 

Figure 4.1 Linker 1/0 



( 

Linker 4 

The Linker can link together an unlimited number of modules and 
initialization data files. The initialization data files (.DATI are not 
explicitly named in the invocation line because they are specified (with the 
.INIT directive) in the source code files. The data files are incorporated by 
the Linker. When changes are made in the data files, simply relink the 
modules to incorporate the new data file. 

4.2 RUNNING THE LINKER 
To invoke the Linker from the host system, the command form is: 

LD21 file1 [file2 ... ] [-switch ... ] 

or 

LD21 -i file_all [-switch ... ] 

The -i switch causes the Linker to read the file file_all for a list of files to 
link. The file containing the list of files to link must be a simple text file 
with one pathname/file per line. 

In the first form, you explicitly name all the files to be linked (separated by 
spaces). In both forms, the filename(s) must identify the Assembler output 
files (.COE, .OBJ and .INTI without any extension. Modules to link are 
searched for in the current directory or in the pathname specified in the 
command line. · 

4-3 



4 Linker 

4-4 

4.2.1 Linker Switches 
The switch component of the invocation command can have any of the 
Linker switches (separated by spaces). The Linker switches are listed 
below in Table 4.1; some require arguments as shown. To see this list on 
your display, invoke the Linker with no files or switches: LD21. 

Switch 
-aarchname 

-c 

-dryrun 

-e target 

-g 

-ifile_all 
-lib directory; ... 

-old 
-p 

-pmstack 

-s stack_size 

-x 

Table 4.1 Linker Switches 

Result 
Use archname.ACH Architecture Description 
file instead of default 210x.ACH 
Linker creates "top of RAM" symbol to locate 
the stack; this symbol is used by programs 
generated with the ADSP-2101 C Compiler 
(See Chapter 7) 
Linker does not generate an .EXE file; quick 
test to check for link errors 
Output files named target.EXE, instead of 
default 210x.EXE 
Linker generates a debugger symbol table, 
.SYM file 
Links all files listed in text file file_all 
Directories listed are added to those found in 
ADIL environment setting for locating 
libraries; multiple directories are separated by 
commas in Unix systems or by semicolons in 
PC-DOS systems 
Not used (ADSP-2100 feature) 
Library subroutines are assigned to the boot 
pages that call them 
Used with -c switch; moves "top of RAM" 
symbol to program memory 
Used with-c switch; specify a maximum size 
for stack 
Linker generates a .MAP file 

4.2. 1.1 -a archname & ~ target Switches 
These switches control the names of the files read and written by the 
Linker. The-a switch sets a new name for the Architecture Description file 
(read by the Linker), which defaults to 210x.ACH. The -e switch sets the 
name of the output files which otherwise default to 210x.EXE, 210x.SYM, 
and 210x.MAP. 



(-

( 

Linker 4 

4.2.1.2 -c Switch & ADIRTH Variable 
This switch and environment variable are provided to support the linking 
of code modules generated by the ADSP-2101 C Compiler. You must 
invoke the Linker with the-c switch to link modules generated by the C 
Compiler. Using the switch causes two things to happen. First, the Llnker 
creates the artificial symbol 

____ top_ of _ram (four leading underscores) 

which is assigned the value of the highest available address in data 
memory (or program memory, see the discussion of the -pmstack switch 
below). Second, the Linker searches for and links in the C run time header, 
which is an assembly language file (filename run_hdr) provided with the 
Cross-Software System. The ____ top_ of_ ram symbol is used by the 
run time header to locate and initialize the stack. See Chapter 7, C 
Compiler, for more information about the stack. 

The environment variable ADIRTH must be equated to a pathname 
identifying the directory which contains the run time header. This path is 
searched by the Linker; the run time header must be located and linked 
because it is used when running compiled C code. The pathname is a 
function of your operating system, and is determined by where you store 
the run_hdr file. 

To define the ADIRTH environment variable, execute a statement similar 
to the following examples, using the actual pathname for your system. 
The final slash must be present; do not include extra spaces. 

IBM-PC Example: 
SET ADIRlli=\root\subdir\subdir\ 

Unix (Sun) Example: 
setenv ADIRTif "/root/subdir /INCLUDE/" 

4.2.1.3 -dryrun Switch 
This switch causes the Llnker not to produce the .EXE output file. It is 
provided so that you can check for the presence of any Linker error 
messages. 

4-5 



4 Linker 

4-6 

4.2.1.4 -g & -x Switches 
These switches control the output of optional files. The -g switch causes 
the Linker to output the debug symbol table file, .SYM, which is not. 
norm.ally produced. The -x switch causes the Linker to produce the load 
map file, .MAP, also not normally produced. If the main filename has not 
changed since a previous linking operation, the previous .SYM and .MAP 
files are overwritten. 

4.2.1.5 -i file_ all Switch 
This switch is used when the argument file contains a list of files to link. 
The Linker reads filenames from the text file, listing them one to a line, 
and locates the files to be linked. 

4.2.1.6 -lib directories Switch & ADIL Variable 
There are two paths the Linker searches for libraries of subroutines to link: 
one path specified by the ADIL environment variable and any list~d in the 
directory; ... argument of the -lib switch. 

The search pattern to find the subroutine files to link can be set using the 
ADIL environment variable. ADIL must be set to a pathname in your 
operating system leading to the subdirectory where the libraries are 
located. The Linker first searches the path specified by ADIL. 

To define the ADIL environment variable, execute a statement similar to 
the following examples, using the actual pathnames for your system. 
Semi-colons separate individual search paths. The final slash must be 
present. Do not include extra spaces. 

IBM-PC Example: 
SET ADIL=\root\subdir\subdir\;\root\nextsubdir\nextsubdir\; 

Unix (Sun) Example: 
setenv ADIL" /root/subdir/INCLUDE/;/root/nextsub/INCLVDE/;" 

The maximum number of directories that can be specified with ADIL is 
twenty. If ADIL has not been defined in the system environment and there 
is no -lib directories switch, the search terminates. · 

The second search path comes from the -lib switch itself. Here you specify 
a set of directories to search in the command line invoking the Linker. 
These are searched after ADIL has been searched. A convenient tool to use 



( 

( 

Linker 4 

in conjunction with the -lib switch is the DOS symbol for the current 
directory (the period). When invoked in the following fashion, 

LD21 file1 file2 ... -lib. 

the Linker searches the entire current directory for subroutines to link. 

4.2.1. 7 -old Switch 
This switch is an ADSP-2100 feature and should not be used with an 
ADSP-2101 system. · 

4.2.1.8 - p Switch 
The -p switch is used when linking a program with library subroutines 
which are called on more than one page of boot memory. In such multiple 
boot page systems, a copy of a subroutine must be located on each page 
that calls it. This switch causes the Linker to place copies of subroutines on 
the boot pages where they are called. 

The necessary set of subroutines is linked and incorporated into the boot 
memory portion of the .EXE file. When a page of code is booted under 
software control (during program execution), it then includes all the 
subroutines it uses. If the -p switch is not used, the Linker links the 
library routines but does not attach their memory images to specific boot 
pages. 

Refer to Appendix E for further information on implementing multiple 
boot systems. 

4.2.1.9 -pmstack Switch 
This switch causes the top of RAM symbol and stack created by the run 
time header to be located in program memory. Without this switch, the 
stack is located in data memory by default. If your C program was 
compiled with the-pmstack switch for the C Compiler, it must also be 
linked with the -pmstack switch for the Linker. 

4.2.1.10 -s stack_size Switch 
Normally the stack (for compiled C code) has no limit on its size; it is 
allowed to grow larger (toward lower addresses) whenever new values 
are pushed onto it. By using the -s switch and specifying a number for 
stack_size, however, you can place a limit on how large the stack is allowed 
to grow. Stack_size must be an integer, and is evaluated by the Linker in 
units of words. 

4-7 



4 Linker 

4-8 

When this switch is used, the Linker creates the artificial symbol 

____ top_ of_ ram (four leading underscores) 

which is given the following address value: 

____ top_of_ram = ____ top_of_ram - stack size 

This symbol is used by the run time header to define and maintain the 
stack. 

4.3 LINKER OPERATION 
The Linker combines separately assembled source code modules and 
initialization data files into one executable program, using the hardware 
environment model specified in the Architecture Description file. The two 
main tasks are the allocation of memory and the resolution of symbols. 

4.3.1 Memory Allocation 
The Linker reads information from each code module and data buffer 
regarding the characteristics of the memory in which it is to be stored. 
Each module may list its memory attributes as RAM or ROM, and may 
specify an absolute start address (ABS= address), segment name (SEG= 
name) or boot page number (BOOT= page#). Data buffers are declared 
with the.VAR directive and may list their qualifiers as PM, DM, RAM, 
ROM, or CIRC and may also specify ABS or SEG. The Linker also receives 
information defining the target hardware system and available memory 
from the Architecture Description file (.ACH) produced by the System 
Builder. 

The Linker assimilates this information and places the modules and 
buffers in memory by means of the memory image file (.EXE). A module 
or buffer must be placed in a portion of memory with the correct 
attributes. If no start address is chosen for an object, it is relocatable. The 
Linker decides upon a location for all such objects, with a bias toward 
placement in internal memory if possible. 

There are three possible means of specifying a code module or data 
buffer's location in memory: (1) giving an absolute start address (ABS), 
with or without a segment name, (2) naming a System Builder-defined 
segment (SEG) in which to place the structure, or (3) listing neither. The 
first specification defines a non-relocatable object; the second is an object 



( 

( 

Linker 4 

which is relocatable within the named segment only; the third is an object 
which is completely relocatable. 

The Linker places objects in memory in the following sequence. 

1. Place all data buffers and modules with the ABS=address modifier 
(non-relocatable). 

2. Place data buffers with the CIRC and SEG=name modifiers 
(relocatable within named segment). 

3. Place all non-circular data buffers and modules with the SEG=name 
modifier (relocatable within named segment). 

4. Place data buffers with the CIRC modifier (completely relocatable). 

5. Place all remaining non-circular data buffers and modules 
(completely relocatable)., 

While non-circular, or linear, data buffers have no special placement 
constraints, circular buffers are handled differently. The Linker places 
circular buffers at 2n modular boundaries (2, 4, 8, 16, etc.) corresponding to 
the buffer length. If a circular buffer has a length of 16, for example, it is 
placed at a base address which is a multiple of 16. If a circular buffer has a 
length of 13, it is similarly placed at the start of a 16-location block. See the 
discussion of circular buffers in Chapter 3, Assembler, for further 
information. 

Circular buffer placement by the ADSP-2101 Linker is identical to that 
performed by the ADSP-2100 Linker except for the case where buffer 
length is equal to 2n. The 2101 Linker places two separate 2n-word circular 
buffers one right after the other in contiguous 2n-word blocks. The 2100 
Linker places two such buffers in memory with an unused 2n-word block 
between them. 

For example, the ADSP-2101 places two 1024-word circular buffers in 
contiguous blocks (address LSBs 0-1023 and 1024-2047). The ADSP-2100 
places the two buffers with an unused 1024-word block between them 
(address LSBs 0-1023 and 2048-3071). 

4-9 



4 Linker 

4-10 

4.3.1.1 Boot Memory Allocation 
A distinctive feature of memory allocation in an ADSP-2101 system is the 
use of boot memory. Any code module declared with the BOOT qualifier 
is placed in the boot memory space by the Linker. One or more boot page 
numbers are chosen for each bootable module. Each boot page can store a 
total of 2K words of code and data. 

Boot memory should be thought of as a place to store your program until 
it is run. The crucial concept of a system with boot memory is the 
difference between what is accomplished when running the Linker 
(locating objects in memory space), and what happens during run-time 
(program execution). 

When you choose specifications and qualifiers for code modules and data 
buffers, these attributes apply to the run-time characteristics of the 
structures. Booted code is run from the 2101's internal program memory, 
when both the code and processor deal only with run-time program and 
data memory. Thus when configuring the memory map of your system, 
you too should think only in terms of program and data memory. 

The Assembler does not deal with boot memory as a separate memory 
space. It is the Linker which handles the logical interfacing of boot storage 
to run-time program memory. For systems with multiple boot pages, the 
Linker can handle placement of library subroutines and data buffers 
shared between pages. This is specified by means of the Linker's -p switch 
and the Assembler's STATIC buffer qualifier. See Appendix E. 

4.3.2 Symbol Resolution 
Any symbol (address label or data buffer) declared within a module can 
be used only by that module unless the .ENTRY or .GLOBAL directives 
~re used. These directives expand the scope of reference of the symbols 
beyond the local module. For each symbol declared as .EXTERNAL, the 
.Linker searches all other modules for occurrences of these symbols in an 
.ENTRY or .GLOBAL declaration. If this search fails, or if the search 
produces multiple matches, the Linker issues an error message. Once the 
allocation of memory segments is complete and all external references are 
resolved, the Linker assigns values to all symbols. 

In resolving the symbols, the Linker creates a Debug Symbol Table (.SYM) 
file, which contains a list of all symbols encountered. The file gives 
information on which symbols can be referenced by each module. This file 
is used by the Simulator and Emulator to provide symbolic debugging. 
Appendix B describes this file in detail. 



(- Linker 4 

4.4 MAP LISTING FILE 
The Map Listing file is generated to help you interpret the Linker result . 

. The file provides information on: 

• Symbols 

A cross-reference listing of all symbols encountered, arranged by module. 
For each module a list is shown of the symbols referenced in that module, 
with the following information for each symbol: its absolute address, its 
length, the type of symbol (module, variable, or label) , and the type of 
memory (PM, DM, or BM). 

• Memory segments 

A map of physical memory segments declared for the system with the 
absolute address, length, and attributes of each. The information here 
reflects the content of the Architecture Description file. 

• Boot memory & Run-time program memory 

An address map of modules and data structures on each boot page, and 
the corresponding map of booted code in internal program memory 
(''bootable run-time program memory"). Information on PROM byte 
addresses and boot PROM sizes required is also provided. 

• Fixed vs. Dynamic memory 

Maps of fixed program memory, dynamic data memory, and fixed data 
memory. These maps include address, length, and attribute specifications. 

• Error messages 

Linker error messages (see Appendix F). 

• Libraries 

A list of libraries searched and used. 

A sample Map Listing file is shown in Fig. 4.2, on the next page. 

4-11 



4 Linker 
ADSP-210x Linker, version 2.00, copyright Analog Devices, Inc. 
final (final.exe) mapped according to FIR_SYSTEM (sysb2101.ach) 

xref for module: MAIN ROUTINE boot memory page(s) 0, 

MAIN ROUTINE 
DATA-BUFFER 
COEFFICIENT 
RESTARTER 
CLEAR BUFFER 
WAIT -

pm 0:0000 [003B] 
dm 0:3800 [OOOF] 
pm 0:0040 [OOOF] 
pm O:OOlC 

module(global) 
variable(global) 
variable(global) 
label 

pm 0:0024 label 
pm 0:0039 

FIR START 0: 004F (0000) 
label 
extern(FIR_ROUTINE) 

boot memory page(s) 0, xref for module: FIR ROUTINE 

FIR ROUTINE 
FIR-START 

pm 0:004F [OOOA] module(global) 
pm 0:004F label 

CONVOLUTION pm 0:0054 label 
COEFFICIENT 0:0040 [OOOF] extern(MAIN ROUTINE) 
DATA BUFFER 0:3800 [OOOF) extern(MAIN=ROUTINE) 

210x memory per FIR SYSTEM (sysb2101. ach) : 

internal 2101 pm ram mapped to 0000 - 0800 (auto booted at reset) 
internal 2101 dm ram mapped to 3800 - 3BFF 
0000 - 07FF [ 2048.) external bm rom code BOOT MEM 
0000 - 07FF [ 2048.) internal pm ram data/code-INT PM 
0800 - 3FFF [ 14336.) external pm ram data/code EXT=PM 
3800 3BFF [ 1024.) internal dm ram data INT DM 
0000 - 37FF [ 14336.) external dm ram data EXT-DM 

boot memory and bootable run time program memory map: 

boot page 0 (auto boot) 
bm:0000-003A (x8rom:0000-00EB) pm:0000-003A (59.) 

bm:0040-004E (x8rom:Ol00-013B) pm:0040-004E [15.) 

bm:004F-0058 (x8rom:013C-0163) pm:004F-0058 (10.) 

ram module MAIN ROUTINE of 
MAIN ROUTINE 
ram circ variable COEFFICIENT of 
MAIN ROUTINE 
ram module FIR ROUTINE of 
FIR ROUTINE 

8k of boot memory rom space required for this bootable run time map. 
Most convenient boot memory rom size is 8k bytes (64k bits). 

fixed program memory map: 

fixed program memory rom: 0. 
fixed program memory ram: 0. 

dynamic data memory map: 

boot page O 
3800 - 380E [15.] ram circ variable DATA BUFFER of MAIN ROUTINE 

fixed data memory map: 

fixed data memory rom: 0. 
fixed data memory ram: 0. 

210Xlnk: final, 210x memory use: 
program memory rom: O.; program memory ram: O.; 
data memory rom: 0.; data memory ram: 0. 

4-12 
Figure 4.2 Map Listing File 



( 

(' 

Simulator Functions • 5 

5.1 INTRODUCTION 
The ADSP-2101 Simulator is an interactive window-oriented software tool 
for instruction level simulation and debugging of your program. The 
Simulator configures itself according to your target system architecture as 
defined in the Architecture Description file (.ACH). This allows it to flag 
illegal operations such as reading from non-existent memory. Using the 
symbol table created by the Linker, the Simulator is able to provide a fully 
symbolic environment for simulation and debugging. 

Briefly, the Simulator provides the following functions: 

• Instruction level simulation of booting and execution 
• Simulation of ports and SPORTs using host data files 
• Simulation of internal and external interrupts 
• Complete assembly and disassembly of the ADSP-2101 instruction set 
• Multiple break conditions including break at address, break on 

condition, break on expression and break on address ranges 
• Full view of all processor registers and the ability to direct! y change 

any register's contents interactively 
• Profiling usage of portions of code during execution 

Upon first booting the Simulator, you see the command window display 
as shown on the next page. From this window you open, configure and 
use all other features of the Simulator. Typing AW (control-w) displays a 
menu of window commands including, for example, OPEN, which in turn 
displays a submenu of windows to be opened. 

You can customize the contents and layout of many windows, the 
arrangement of multiple windows on the screen and the command strings 
used to invoke various Simulator functions. All customized settings can be 
stored in an external file and invoked automatically upon startup. For 
details, consult the next chapter, Custom Simulator Configurations. 

5-1 



Cursor 
~ 

5 Simulator Functions 

f'"~ 
Move 
Size Window Commands Menu (open with control-W) 
Close 
Hide 

Command Window (Always Open) 

/ 
0 COMMAND 

> 
> 
> 
> 
> 

Aw Window corranands AX# Go to window# AZ Go to next window I 

5-2 

--------- Informational Display 

Figure 5.1 Initial Display & Window Commands Menu 

5.2 GETIING STARTED 
To get started with the Simulator, you need to prepare your linked 
program, install all Simulator program files and invoke the Simulator with 
the proper command line arguments. 

5.2.1 Help Files & ADIDOC Variable 
In order for the Simulator help files to be accessible, the following 
condition must be met: 

• The path (subdirectories, etc.) to the help files (.DOC) must be 
identified by the environment variable ADIOOC. 

See the section "Using Help" later in this chapter for instructions on how 
to set ADIDOC. Complete installation instructions can be found in the 
Release Note included with each shipment of the Cross-Software system. 



( Simulator Functions 5 

5.2.2 Simulator Files 
The Simulator uses a variety of files, illustrated in Figure 5.2, on the 
following page and listed in Table 5.1 below. 

File Description 

Required User Files 
Linked executable ADSP-2101 program 
Architecture Description file 

Optional User Files 
Symbol Table file 
Data files for 1/0 ports and SPORTs 

Required Simulator Files 
Simulator program 
Help files 
only) 

Optional Simulator Startup Files 
Initial window configuration 
Startup scripts 
Example startup 

Simulator-Created Files 
Temporary cache storage 

Table 5.1 Simulator Files 

5.2.3 Invoking The Simulator 
The Simulator invocation command is: 

sim2101 [-a archname] [-w window] [-s scripts] 

Extension or name 

.EXE 

.ACH 

.SYM 

.DAT (optional extension) 

SIM2101.EXE 
.DOC (required for Help 

DD.WIN 
STARTUP 
EXAMPLE 

BOOT.CAC 
BOOTE.CAC 

If you have not given your Architecture Description file a unique name, 
filename 210x.ACH is assumed and need not be specified. If you have 
renamed the file, however, you must list this name as archname with the 
optional -a switch. The extension .ACH is assumed for this filename and 
need not be included. This Architecture Description file must have been 
used to link your program; the Simulator configures itself according to 
this target architecture. The Architecture Description is also displayed in 
the defaults window, as shown in that section of this chapter. 

5-3 



\.. 

5 Simulator Functions 

Architecture 
Description 
Fiie (.ACH) 

Simulator 
Configuration Flies 
(Optional) 

STARTUP Script 
Fiie 

\.. 

1J 

PM/OM Memory 
Image Fiie 

(.EXE) 

/ ' 
Debug Symbol 

DD.WIN Display File 

Table Simulator State Fiie 

,, 

Fiie (.SYM) 

.. 
! 

SIMULATOR 

Simulator State Fiie 

VO Port & SPORT 
Data Flies (.DAT) 

.WIN Flies (Display 
Configurations) 

1/0 Port & SPORT 
Data Flies (.DAT) 

~::".§-· .•.·.·.·.·.·.•.•.·.·.•.•.·.·.• ·.· ·•••••·••·· ·•••·· .·.·.• · .. •. ·::·:· 

Figure 5.2 Files Used By The Simulator 

5-4 



( 

Simulator Functions 5 

The optional -w switch identifies a .WIN file containing a stored windows 
configuration which is loaded as the initial display when the Simulator is 
first booted (see "Saving A Rearranged Screen" in Chapter 6 for 
instructions on how to create this file). H this switch is omitted, the 
Simulator looks for a file named DD.WIN; this is the default for the 
startup screen. The Simulator automatically writes the file DD.WIN when 
exiting; it always contains the last screen/window display configuration. 
If this default display file is not found at startup, the screen looks like 
Figure 5.1. 

The optional -s switch identifies a file containing Simulator commands to 
be executed automatically upon startup. H this switch is omitted, the 
Simulator looks for a file named STARTUP; this is the default name for the 
script file. · 

The script, or batch, file is a text file containing Simulator commands. 
Typically it would contain command aliases you have defined. It could 
also contain commands for loading a program into the Simulator, 
configuring 1/0 ports and the like. This file can be created with any 
editor. A sample startup file named EXAMPLE is provided with the 
Cross-Software package; the file contains an extensive set of aliased 
commands, and is intended for use only after the basic Simulator concepts 
have been mastered. See Chapter 6 for further information. 

The Simulator creates two temporary files to store the contents of any boot 
memory of the system being simulated. These files are named BOOT.CAC 
and BOOTE.CAC. The files are normally purged upon quitting the 
Simulator; if, however, the Simulator program aborts prematurely for any 
reason, these files remain on your hard disk. They are of no use and can be 
deleted. 

5.2.4 Simulator Command Overview 
The Simulator generally provides multiple methods for achieving a given 
result. For example, there are two different methods for setting 
breakpoints in program memory. Consequently, it makes sense to think of 
the Simulator's functions rather than command structure. 

The functional capabilities of the Simulator are described in detail in the 
rest of this chapter. They have been grouped into these broad classes: 

• Interface management functions 

These functions include the opening and closing of windows, changing 
the size and position of windows, and changing the appearance of a 

5-5 



5 Simulator Functions 

5-6 

window (removing or adding items to the window and rearranging the 
items displayed within the window's space). Additional functions 
described under this heading include navigating from window to 
window. Saving specific window configurations is possible and is 
described in the next chapter. Aliasing commands is another aspect of 
interface management. 

• Set-up functions 

These include loading the program to be simulated, opening I/0 ports 
and associating data files with 1/0 ports and SPORTs for the purposes of 
simulating input and output data streams. Also included is the 
configuring of simulated interrupts. 

• Register inspection & change functions 

These functions allow you to view the contents of all the registers in the 
processor and, in most cases, to change their contents directly if desired. 
Several windows are dedicated to register displays. 

• Memory inspection & change functions 

These functions include simple display of the various memory spaces (as 
either data or code), saving the contents of memory to files for later 
analysis and plotting the contents of data memory. 

• Simulator control & debugging functions 

Control functions include starting and stopping the execution of your 
program and resetting the simulated processor. Debugging functions 
include setting breakpoints, break conditions and watchpoints. The 
Simulator supports a wide variety of break expressions for debugging 
purposes. 

5.2.5 Simulator Notation Conventions 
The Simulator understands a slightly different set of notation conventions 
than the Assembler, System Builder, etc. Most importantly, memory 
addresses and contents are specified differently. Remember also that the 
Simulator is a generally case-insensitive environment; uppercase and 
lowercase are used in the manual to highlight important terms for the 
reader but need not be entered this way. The exception to this convention 
is address labels (see below). 



··( 

( 

Simulator Functions 5 

5.2.5.1 Specifying Addresses & Address Ranges 
Addresses must be one of the following: 

• A symbol. Using the symbol table, the Simulator determines the actual 
address specified by the symbolic reference. See also the discussion of 
boot memory labels versus program memory labels below. Address 
labels are case-sensitive in the Simulator. 

• The memory specifiers PM[addr], DM[addr], or BOOT[addr], where 
the address is a symbol, constant, or expression. PM denotes program 
memory, treated as code or data, DM denotes data memory, and 
BOOT denotes boot memory. There is no difference in addressing 
between program memory code and program memory data. 

This form of address specification can be confusing; DM[addr] can be 
interpreted as either the address itself or the contents of that address. 
The guideline to follow is that DM[addr] is seen as an address when 
used to specify an address in a Simulator command, but DM[addr] 
implies the data contained at that address when evaluated in an 
expression (see "Simulator Expressions," below). 

• A constant. The address space context is determined implicitly. For 
example, using a constant when prompted for an address while the 
program memory window is the active window is understood as an 
address in program memory. 

An address range may be specified, using the address possibilities above, 
as either 

start, end 

where both terms are addresses as above, separated by a comma, or 

start I length 

where the first term is an address and the second term is a constant 
specifying how many memory locations are included in the range. The 
terms must be separated by the slash mark as shown. 

5-7 



5 Simulator Functions 

5-8 

An example of the first form is 

pm[OxlO], pm[Ox18] 

while an example of the second form is 

pm[OxlO] I Ox8 

In ADSP-2101 programs with boot pages, labels are shown in boot 
memory displays in their standard form, such as 

RESTARTER 

but once booted into on-chip program memory (via a simulated reset or 
software boot) all such labels receive a prefix denoting their boot page of 
origin, as in 

BOOTO RESTARTER 

Both labels resolve to the same 14-bit address. See the discussion in the 
section ''Locating Symbols & Values," later in this chapter. 

5.2.5.2 Simulator Expressions 
General expressions may be used in place of constants in Simulator 
commands. Expression handling for the other ADSP-2101 Cross Software 
Tools is detailed in Chapter 1. For the System Builder and Assembler, the 
arithmetic and logical operators available for use in expressions are a 
subset of the C language operators. In the Simulator, however, the 
complete set of C operators is usable. For the Simulator, the following 
operators are added to those listed in Chapter 1 : 

< > <= >= 
== != 
&& 
I I 

logical NOT 
relational operators 
is equal, is not equal 
logical AND 
logical OR 



( Simulator Functions 5 

In order of precedence, the complete set of operators available for use in 
the Simulator now becomes: 

( ) left, right parenthesis 
! - - logical NOT, ones complement, unary minus 
. I % multiply, divide, modulus 
+ - addition, subtraction 
<< >> bitwise shifts 
< > <= >= relational operators 
-- != is equal, is not equal 
& bitwise AND 
I bitwise OR 
" bitwise XOR 
&& logical AND 
I I logical OR 

Another feature of Simulator expressions is that memory contents, such as 
data variables, and register contents may be used as operands. See the 
section "Registers Window" and Figure 5.7 for the available registers. 
Remember, though, that this is possible in the Simulator only. (The 
Assembler cannot evaluate memory and register values at assembly-time.) 

Examples: 

AXO&&AXl DM[coeff] == Ox0035 (DM[taps + 16]. AR)- 3 

5.3 INTERFACE MANAGEMENT FUNCTIONS 
The Simulator, as of Release 2.0 and after, supports a user-configurable 
interface. Detailed examples of how to configure the interface and how to 
store and recall these configurations are given in the following chapter. 

, This section gives a terse description of the basic functions. 

(Note:" denotes the control, or CNTL, key.) 

Figure 5.3, on the next page, shows the parts of a typical window. 

5-9 



5 Simulator Functions 

This comer Is "anchored" 
when resizing the window. 

Window number Window name 

/ ~ 
Indicates Hexadeclmal or Declmal 

1 REG (REG_PRI, HEX) 

axO uuuu ar uuuu iO uuuu mo uuuu 10 uuuu astat 00 
axl uuuu af uuuu i1 uuuu ml uuuu 11 uuuu ms tat 00 
ayO uuuu i2 uuuu m2 uuuu 12 uuuu sstat 55 
ayl uuuu i3 uuuu m3 uuuu 13 uuuu 

mxO uuuu mrO uuuu i4 uuuu m4 uuuu 14 uuuu ireq 000 
mxl uuuu mrl uuuu i5 uuuu m5 uuuu 15 uuuu imask 00 
myO uuuu mr2 uu i6 uuuu m6 uuuu 16 uuuu icntl uu 
myl uuuu mf uuuu i7 uuuu rn7 uuuu 17 uuuu 

si uuuu srO uuuu pc 0000 cntr uuuu 
This corner is moved 
when resizing the 
window. 

uu 
se uu srl 
Sb UU 

cycle 00000000 

5-10 

uuuu 

irq2 00000000 drn addr 0000 pm_addr~ 
Figure 5.3 Parts of a Typical Window 

5.3.1 Opening Windows 
You can open any window from any context with the following sequence: 

1. Key "W to display the main menu (as shown in Figure 5.1). 

2. Select OPEN, the default selection, by pressing Return. 

3. A submenu of window selections appears; choose the window you 
wish to open. You may move the cursor down the list and then press 
Return or you may type the letter corresponding to the desired 
window, e.g. "d" for the register window. Pressing the ESC key exits 
the submenu without making a selection.· · 



( 

( 

Simulator Functions 5 

4. The default version of the window opens in the upper left corner of the 
screen and becomes the active window. Open windows are numbered; 
the newly opened window is given the next available number. 

5.3.2 Changing Window Contents From Hex to Decimal 
You may also change the numeric base of the contents of many windows 
from decimal to hexadecimal and back. All windows that can be changed 
in this way show the DEC or HEX notation in the title of the window. 
When the window is active, "E toggles back and forth between these two 
choices. 

The exception to this capability is that program memory (PM) addresses 
are always displayed in hexadecimal; data memory (OM) and program 
memory data (PMD) addresses can be toggled between DEC and HEX 
display. 

5.3.3 Closing Windows 
You cannot close the command window; it must remain open while the 
Simulator is running. Also, you can only close the active window. To close 
the active window, take these steps: 

1. Key "W to display the main menu (as shown in Figure 5.1). 

2. Select CLOSE from the menu by typing the letter "c" or by moving the 
cursor down with the arrow key and pressing Return when CLOSE is 
selected. Pressing the ESC key exits the menu without closing a 
window. 

3. The active window disappears from the display. 

5.3.4 Moving From Window To Window 
Regardless of the number of windows open (or visible) there is a single 
cursor. The window containing the cursor is the active window. On IBM 
PCs with color displays the border of the active window is a different 
color than inactive windows. 

At startup the command window is the active window. To move through 
a group of open windows you may use any of the following procedures. 
The active window always lies on top of other windows in the event that 
windows overlap. 

5-11 



5 Simulator Functions 

5-12 

5.3.4.1 To Cycle Through All Windows 
Keying "Z activates the next window in the numbered sequence. Thus, 
"Z moves you from the command window (always window zero) to 
window one, then window two, then window three and so on back to 
zero. 

5.3.4.2 To Activate A Window By Number 
Keying "X, following by the window number and Return, directly 
activates the specified window. For example the sequence 

"X3 (Return) 

activates window number three. A maximum of ten windows may be 
open at any time; they are numbered from 0 to 9. 

5.3.4.3 To Activate The Command Window 
Keying "X (Return) activates the command window directly. This is 
identical to keying "XO (Return). 

5.3.5 Sizing Windows 
The upper left corner of each window is anchored. The window is resized 
by moving the lower right corner of the window relative to the anchored 
comer. 

A window must be active to be resized. To resize the active window, 
follow these steps: 

1. Key "W to display the main menu (as shown in Figure 5.1). 

2. Select SIZE from the menu by typing the letter "s" or by moving the 
cursor down with the arrow key and pressing Return when SIZE is 
selected. Pressing the ESC key exits the menu without making a 
selection. 

3. Reposition the lower right corner using the arrow keys. The window 
border moves one character or line space at a time as you press the 
arrow key. Press Return when the window reaches the desired size. 
Alternatively, you may quickly size the window a chosen number(#) 
of spaces by typing: #arrow key (Return is not necessary). For 
example, the following entry resizes a window by 4 line spaces 
upward: 4i. 



( Simulator Functions 5 

5.3.6 Moving Windows 
A window must be active to be moved. To move the active window, take 
these steps: 

1. Key "W to display the main menu. 

2. Select MOVE from the menu by typing the letter "m" or by moving the 
cursor down with the arrow key and pressing Return when MOVE is 
selected. Pressing the ESC key exits the menu without making a 
selection. 

3. The window's contents temporarily disappear, indicating that you 
may move the window. 

4. Move the window using the arrow keys. The window moves one 
character or line space at a time as you press the arrow key. Press 
Return when the window reaches the desired location. The window's 
contents redisplay after Return. Alternatively, you may quickly move 
the window a chosen number(#) of spaces by typing: #arrow key 
(Return is not necessary). For example, the following entry moves a 
window to the left by 3 characters : 3f- . 

5.3.7 Rearranging Window Contents 
You may rearrange the contents of active windows that have individual 
fields, like the register window. You may also delete individual fields 
from the window, and restore them later. See Table 5.2 for a list of 
windows which display processor registers in this way. Chapter 6 gives a 
detailed example of these procedures. 

5.3. 7.1 Deleting Window Fields 
The procedure for deleting a field in an active window is: 

1. Select the field by moving the cursor onto it. 

2. Key "D. 

3. The field disappears from the display. 

5.3. 7.2 Undeleting Window Fields 
The procedure for restoring a deleted field from an active window is: 

1. Move the cursor to a blank location in the window; this is where the 
undeleted field will appear. 

5-13 



5 Simulator Functions 

5-14 

2. Key AU. A menu of deleted fields for that window appears. 

3. Select the desired field by moving the cursor down the list then press 
Return. 

4. The deleted field reappears in the window at the current location of 
the cursor. 

5.3. 7.3 Moving Window Fields 
The procedure for moving a field around in the active window is: 

1. Select the field by moving the cursor onto it. 

2. Key Ay to toggle on this function. 

3. Move the field, using the arrow keys, until it reaches the desired 
location. 

4. To toggle off this function, key Ay again or hit Return. 

Saving specific window configurations is possible and is described in the 
next chapter. 

5.3.8 Command Line Aliases 
Aliasing commands - substituting a more desirable mnemonic for the 
Simulator's native command set-is another powerful feature. The 
aliasing must be done from the comm.and window and follows the syntax 

>j mystring 'command' 

where J is the Simulator aliasing command, mystring is the new alias being 
defined and 'command' is any legal Simulator command enclosed in 
single quotation marks.Up to ten arguments may be passed to aliased 
commands using $1, $2 etc. For example the Simulator command to write 
the value 40 into data memory location hexadecimal 2FF is 

>e dm[Ox2ff] 40 

which can be aliased to resemble the SEIDM command of earlier 
Simulator releases (before Release 2.0) by entering this command 

>j setdm 'e dm[$1] $2' 



( Simulator Functions 5 

Now the command 

>setdrn Ox2FF 40 

is executed as 

>e drn[Ox2FF] 40 

If a filename is part of the command to be aliased, the filename itself must 
be enclosed in double quotes, as in: 

>j loadpgm 'l "calc"' 

It is also possible to list and save lists of aliased commands for use in a 
startup batch file. Details are given in the following chapter, Custom 
Simulator Configurations. 

5.3.9 Using Help 
The ADSP-2101 Simulator provides a basic help system with individual 
topics; there are no nested topics. To use the help first open the help 
window. You may wish to resize and relocate the help window for 
optimal reading. 

This window displays an initial text introducing the help system: If the 
window is blank, this means that the Simulator cannot locate the help files 
on your computer. A warning message is given, saying that you must set 
an environment variable, ADIOOC, to identify the pathname of the 
directory containing the .DOC files used by the help system. For example, 
on an IBM PC with your Simulator in the subdirectory C: \DSPTOOLS 
and the help files in a subdirectory of that named \DOC, you would 
execute the following DOS command to set this variable. 

> SET ADIDOC=C: \DSPTOOLS \DOC\ Remember, this is a DOS command, 
not a Simulator command 

There are two navigational tools for reading help. First, within a given 
help text, you may use the arrow and PgUp and PgDn keys (or their 
equivalents on your keyboard) to scroll the contents of the current help 
text up and down for reading. 

Second, you may key AG (the go to command) in the help window to 
specify another help text and topic. You are prompted for the name of a 

{ topic. The list of topic names is given in the first help text that appears. 

5-15 



5 Simulator Functions 

5-16 

This initial help.text is called ''Help" and can be recalled by typing that 
name (and Return) at the AG prompt. (The "Help" text is also returned to 
if the AG command is given incorrectly.) 

The list of help texts will change as new versions of the Simulator are 
released, so no definitive list is given here. In general, however, there is a 
help text corresponding to every command window command. For 
example, the breakpoint command B is described in a help text named "B'' 
and so on. A list of the help topics other than Simulator commands is 
shown below. All the help files are simple text files. You may print them 
out to read:if desired and even add your own help topics as you 
customize the interface of your Simulator. 

The non-command help files are: 

HELP 
BASES 
COMMANDS 
EDITOR 
ADDR 
RANGE 
EXPR 

main help 
numeric bases 
list of commands with brief definitions 
command line editor 
address format 
address range format 
expression format 

5.4 SET·UP FUNCTIONS 
These include loading the program to be simulated, opening 1/0 ports 
and associating data files with 1/0 ports and SPORTs for the purposes of 
simulating input and output data streams. Also included is the 
configuring of simulated interrupts and some housekeeping operations. 

These actions are accomplished by issuing commands in the command 
window. Multiple commands may be given on one line, separated by 
semicolons, as in 

> L 'filename' ; J symbol 'command' ; D address 

5.4.1 Loading A Program 
The L command, given in the command window, loads the linked ADSP-
2101 .EXE file and implicitly loads the corresponding .SYM file if it is 
present in the same directory. The syntax is simply 

> L 'filename' 



< Simulator Functions 5 

( 

where filename is the main filename of your .EXE file, enclosed in single 
quotation marks. You need not append the .EXE extension; it is added by 
the Simulator. If the symbol table file cannot be found, a message reports 
this but the simulation can still be run. Without the .SYM file, however, 
labels and variable names do not appear, only addresses. 

As a further check on program correctness, it is possible to load the boot 
PROM image file produced by the PROM Splitter. There should be no 
difference in the contents of the boot code and boot data windows 
whether loaded from the .EXE file or from the PROM Splitter ouq)ut 
.BNMfile. 

The syntax of the LR command ('load ROM') is 

> LR 'filename' 

where filename is the name of the boot image file produced by the PROM 
Splitter. It is not necessary to use the .BNM extension of this filename. You 
must use the Motorola S record format for this purpose. 

5.4.2 Opening & Closing An 1/0 Port 
Parallel I/O Ports in data or program memory which have been defined in 
the System Builder (and .ACH file) must be explicitly opened in order to 
simulate them. Opening means that you associate them with data files. 
The data files serve as the source for simulated input and/ or as the 
destination for simulated output. The data files may later be analyzed, 
graphed etc. to assess the processing of your algorithm. 

Ports are opened from the command window. The command is 

> O address [>'outfile.ext'] [<'infile.ext'] 

where address is a standard address specifier or symbolic port name, outfile 
is the pathname of a file to write output data to and infile is the name of a 
file to read simulated inputs from. Files may be specified in either order, 
always in single quotes; you must give the full filenames including 
extensions, if any. Giving both an input and an output file opens a 
bidirectional port. Giving just an input or an output file opens an input­
only or output-only port. 

Data files for 1/0 port data follow the .DAT format described in Appendix 
B, File Formats, at the end of this manual. 

5-17 



5 Simulator Functions 

5-18 

Giving the 0 command with no file arguments closes the port at the 
specified address. 

The 1/0 status window, an example of which is shown in Figure 5.4, 
displays the opened ports and the files associated to provide simulated 
data flow. When a port is opened, a ''P'' is displayed to the left of the 
port's address in either the data memory or program memory window. 

5.4.3 Opening A SPORT 
SPORTs (serial ports) must be explicitly opened in order to simulate them. 
Opening means that you associate them with data files. The data files 
serve as the source for simulated serial input and/ or the destination for 
simulated output. The data files may later be analyzed, graphed etc. to 
assess the processing of your algorithm. 

SPORTs are opened from the command window with the command 

> P 0 or 1 [>'outfile.ext'] [<'infile.ext'] 

where the digit 0or1 identifies which of the processor's two SPORTs is , ___ / 
being opened, outfile is the pathname of a file to write simulated output to 
and infile is the pathname of a file to read simulated input from. Files may 
be specified in either order, each in single quotes; you must give the full 
filenames including extensions, if any. Listing both an input and an 
output file opens a SPORT for both sending and receiving. Listing just an 
input or an output file creates a send-only or receive-only configuration. 

The data files for SPORT simulation must contain only ones and zeros to 
simulate the serial bit stream, and carriage returns (which are ignored). 
This .DAT format for SPORT data files is completely described in 
Appendix B, File Formats. 

Giving the P command with no file arguments closes the numbered 
SPORT. Also, if you open a SPORT and later give the chip reset command 
(causing a re-boot of on-chip program memory), the SPORT is closed. The 
best procedure to follow is to do the boot load first and then open any 
SPORTs needed. 

The SPORT status window, shown in Figure 5.5, displays the open/ closed 
status of serial ports and the files associated with the simulated data flow. 

SPORT operation in the Simulator has one limitation: externally-generated 
serial control signals cannot be simulated. The serial clock (SCLK), 



Simulator Functions 5 

1 I/O STAT (HEX) 

0 ad_port < adport.dat 

1 d.m[0002] > out.dat 

0 COMMAND 

> 0 ad_port < 'ad_port.dat' 

> o d.m[2] > 'out.dat' 

AW Window commands AX# Go to window# AZ Go to next window I 

( Figure 5.4 1/0 Status Window 

(-

1 SPORT STAT (HEX) 

0 < serin.dat > serout.dat 
1 

0 COMMAND 

> p 0 > 'serout.dat' <'serin.dat' 
Reading from file serin.dat 
> 

"W Window commands AX# Go to window# AZ Go to next window I 

Figure 5.5 SPORT Status Window 

5-19 



5 Simulator Functions 

5-20 

transmit frame sync (TFS), and receive frame sync (RFS) signals must be 
internally-generated in order for simulated serial data flow to occur 
properly. Internal generation of SCLI< is chosen by setting the ISCLI< bit to 
1 in the appropriate SPORT Control Register. Internal generation of TFS 
and RFS is chosen by setting the ITFS and IRFS bits to 1. 

5.4.4 Simulating External Interrupts 
Depending on the configuration of SPORTI, the ADSP-2101 may have one 
or three external interrupt pins. Internal in~rrupts, such as timer or 
SPORT interrupts, are simulated directly by the operation of those 
features. External interrupts can be simulated with a selected time interval 
of occurrence. From the command window, give the command 

>I 0,1,or 2 mincycles maxcycles 

where choosing 0, 1, or 2 identifies processor interrupts IRQO, iRQI or 
IRQ2, and mincycles and maxcycles are numbers of instruction cycles. The 
selected interrupt is generated randomly within a time range at least 
mincycles and no more than maxcycles from the last interrupt. For example, 
the command 

> I 2 320 420 

turns on IRQ2 and generates this interrupt at a random time, once every 
320 to 420 instruction cycles. 

To halt the interrupt, repeat the command with no cycle arguments or 
with cycle arguments equal to zero. 

5.4.5 Other Defaults (Defaults Window) 
There are a number of miscellaneous defaults for the operation of the 
Simulator. These can be changed in the defaults window. The defaults 
window also displays the contents of the Architecture Description file. A 
sample of this window is shown in Figure 5.6. 

When the window is first opened, the cursor is positioned on the "O" by 
profile enable. Typing a 1 enables profiling, as described in the section 
"Execution Profiling", later in this chapter. Enabling echo makes the 
Simulator echo every valid instruction in the command window as it is 
fetched while single-stepping through a program. Beep enable turns on 
the bell or beep of your computer or terminal. It sounds for each error or 
breakpoint. Screen update is the number of instruction cycles simulated 



(- Simulator Functions 5 

1 DEFAULTS (HEX) 

profile enable 
echo enable 
beep enable 
screen update 
search paths 

0 
0 
0 
sooo cycles 1- Current directory 
I ~~=~---------1r Is always searched. .-
c:\dsp2101\ 

Architecture File fir_system.ach Contents 

bm 0000 
pm 0000 

07ff 0000 07ff 
07ff INT RAM INT PM 

Figure 5.6 Defaults Window 

ROM BOOT MEM 

( . before the screen is updated during continuous execution (see the 
discussion of the G command in "Control & Debugging Functions."). 

Search paths are shown for any file to be read and are in addition to 
ADIDOC and the other environment variables. The dot (.) is the DOS 
symbol for the current directory; this is always one of the default search 
options. 

The contents of the Architecture Description file a!e shown at the bottom 
of this window; you may need to scroll the window to see the complete 
architecture. 

5.5 INSPECTING & ALTERING REGISTERS 
You may view the contents of all registers in the processor and, in most 
cases, change their contents directly. The windows listed in Table 5.2 
below are dedicated to register displays. The following sections show the 
default format of each window displaying registers and identify those 
registers. For debugging convenience, the Simulator also displays stacks 
and memory-mapped control registers in several windows, using the 
mnemonics given in the ADSP-2101 User's Manual. 

5-21 



5 Simulator Functions 

5-22 

Winduw 
Register 
SPORT 

Status registers 

Control registers 

Stael< 

Contents 
Named registers 
Named registers and memory-mapped control 
registers, shown by mnemonic 
Individual bits identified from the MSTAT, 
SSTAT, IMASK and ICNTI.. 
Memory-mapped registers only; those 
controlling wait states, timer values, SPORT 
enables and boot configuration 
Complete contents of count, loop, status and 
PC stacl<s 

Table 5.2 Windows Showing Registers 

Table 5.3, at the end of this section, summarizes the Simulator window 
location of each processor register. 

5.5.1 Inspecting A Register 
You may inspect the contents of a register in two ways. First, you may 
display the window containing that register and simply read its value 
from the screen. Second, regardless of whether or not the register's 
window is displayed or open, you may query the register's value in the 
command window with the question mark command (see the section 
''The ? Command and Expressions Window"). For example, the command 

> ? axO 

invokes a response such as 

axO = Ox002c 

5.5.2 Altering A Register 
You may alter the contents of a register directly in two ways. (The 
execution of your program, of course, also alters the contents of registers.) 
First, you may display the window containing that register and make it 
the active window. Move the cursor to the register field (the cursor 
positioned over the name of register) and type the new value. When you 
press Return, the new value replaces the old value. 

When you directly type over a register in the window displaying the 
register, you may notice that the command window echoes the command 
equivalent of the direct change. This is the second method for changing a 

.. ,_./ 



(--

( 

Simulator Functions 5 

register. From the command window you can change any register 
(whether displayed or not) with the command 

> R register expression 

where register is the name of a processor register and expression is the 
value to be loaded into the register. 

Since changing the value in a register is such a frequent operation, an 
alternative form of this command is also provided. This form consists of 
the register name, and equal sign and the new value, as in 

> axO = Ox002c 

5.5.2.1 "Undefined" Registers 
Uninitialized registers are denoted by "uuuu." The Simulator flags 
reading undefined registers as an error. You may wish to reset a register 
back to an uninitialized state. The U command, given in the command 
window, accomplishes this; you need only specify the register. For 
example, to undefine the ALU result register, the command is 

> u arO 

5.5.3 Registers Window 
The register window is shown in Figure 5.7, on the following page. It 
contains all the computational unit registers, the DAG registers and the 
values of most status registers in the processor, as shown plus the 
following information: 

pc 
cycle 

irq2 
dm_addr 
pm_addr 

program counter 
execution cycle counter; reset only upon chip reset (or 
manually) 
external interrupt request counter 
data memory address 
program memory address 

These values can be used in break, watch, or general expressions. 

5-23 



5 Simulator Functions 

ALU registers DAG registers Status reg lsters 

1 REG (REG_PRI, HEX) 

axO uuuu ar uuuu iO uuuu mo uuuu 10 uuuu as tat 00 
axl 
ayO 
ayl 

mxO 
mxl 
myO 
myl 

si 
se 
sb 

cycle 

Shifter registers 

uuuu af uuuu il uuuu ml uuuu 11 uuuu ms tat 00 
uuuu i2 uuuu m2 uuuu 12 uuuu sstat 55 
uuuu i3 uuuu m3 uuuu 13 uuuu 

uuuu mrO uuuu i4 uuuu m4 uuuu 14 uuuu ireq 000 
uuuu mrl uuuu i5 uuuu m5 uuuu 15 uuuu imask 00 
uuuu mr2 uu i6 uuuu m6 uuuu 16 uuuu icntl uu 
uuuu mf uuuu i7 uuuu m7 uuuu 17 uuuu 

srO uuuu pc 0000 cntr uuuu px uu 
uu srl uuuu 
uu 

00000000 irq2 00000000 dm addr 0000 pm_addr 0000 

MAC registers 

Figure 5.7 Register Window 

5.5.4 SPORT Register Window 
The SPORT register window is shown in Figure 5.8. It contains the SPORT 
data and control registers. The SPORT status window (discussed under 
"Set-up" earlier in this chapter) shows the open/ closed status of SPORTS 
and the simulated serial data files. 

5.5.5 Status Register Window 
Figure 5.9 shows the status registers window. Note that this window 
shows certain selected bits in the MSTAT, SSTAT, IMASK and ICNTL 
registers while the register window itself (Figure 5.7) shows each complete 
status register as a single value. 

The bits displayed are status/ control bits for the primary program flow 
operations. Most of these can be toggled directly in the window in order 
to quickly enable or disable the associated function. Some of the listed bits 

\. 

"'-.., ___ .. / 

are read-only status bits; these should not be changed by the user. \ 

5-24 



(~ 

( 

Simulator Functions 5 

1 SPORT (HEX) 

slenO 0 dtypeO 
irf sO 1 rfsrO 
itfsO 0 .tfsrO 
sclkdivO uuuu 
rbufO 0 riregO 
tbufQ 0 tiregO 

slenl 0 dytpel 
irfsl 0 rfsrl 
itfsl 0 tf srl 
sclkdivl uuuu 
rbuf 1 0 riregl 
tbufl 0 tiregl 
me rel uuuu 
mcreO uuuu 
rxO uuuu 
rxl uuuu 

1 STATUS (HEX) 

pc_empty 0 
pc_overflow 0 
count_ernpty 1 
count overflow 0 
status_ernpty 1 
status ovr 0 
loop_empty 0 
loop_overflow 0 
data bank sel 0 
bit_reverse 0 
alu overflow 0 
ar sat 0 
into sens 0 
intl sens 0 
int2_sens 0 
int3_sens 0 
into enable 0 
intl_enable 0 
int2_enable 0 
int3_enable 0 
int_nesting_mode 0 

0 isclkO 0 rnceO 0 
0 rfswO 0 invtfsO 0 
0 tf swO 0 invtfsl 0 

rfsdivO uuuu 
u rrnregO u 
u trnregO u rncfd 0 

0 isclkl 0 
0 rfswl 0 invrfsO 0 
0 tfswl 0 invrfsl 0 

rfsdivl uuuu 
u rrnregl u 
u trnregl u 

mctel uuuu 
rncteO uuuu 
txO uuuu 
txl uuuu 

Figure 5.8 
SPORT Register Window 

Figure 5.9 
Status Register Window 

5-25 



5 Simulator Functions 

5.5.6 Control Registers Window 
Figure 5.10 shows the control registers window. This window shows the 
contents of the individual fields of the first five 16-bit memory-mapped 
processor control registers (from DM[Ox3FFF] to DM[Ox3FFB] inclusive). 

1 CONT REG (HEX) 

bf 0 
bpage 0 
bwait 3 

speO 0 
spel 0 
scnf l 1 

dwaitO 7 
dwaitl 7 
dwait2 7 

dwait3 
dwait4 
pwait 

7 
7 
7 

tscale 
tperiod 
tcount 

uu 
uuuu 
uuuu 

Figure 5.10 Control Registers Window 

5-26 

5.5. 7 Stack Window 
The stack window, shown in Figure 5.11, shows the four stacks in the \, _/ 
program sequencer: CNTR stack, LOOP stack, STA nJS stack, and PC 
stack. The top line of each stack display is the top of the stack. The four 
LSBs of the loop stack are the termination code; the 14 MSBs are the return 
address. 

1 STACK (HEX) 

cntr loop status pc stack 
uuuu 0024e uuuuuu 0024 uuuu 
uuuu uuuuu uuuuuu uuuu uuuu 
uuuu uuuuu uuuuuu uuuu uuuu 
uuuu uuuuu uuuuuu uuuu uuuu 

uuuuuu uuuu uuuu 
uuuuuu uuuu uuuu 
uuuuuu uuuu uuuu 

uuuu uuuu 

Figure 5.11 Stack Window 



-----·- ---------

( 

For this register ... 
AXO 
AX1 
AYO 
AY1 
AR 
AF 
MXO 
MX1 
MYO 
MYl 
MRO 
MR1 
MR2 
MF 
SI 
SE 
SRO 
SR1 
SB 
PC 
PX 
I0-7 
M0-7 
L0-7 
AST AT 
MSTAT 
SSTAT 
IMASK 
ICNTL 
IREG 
CNTR 
CNTR_NO_PUSH 
RXO 
TXO 
RX1 
TXl 
Memory-mapped 
Control Registers 

Simulator Functions 5 

Look in this window 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register, Flag 
Register, Bits 0-3 in Status 
Register, Status 
Register, Status 
Register, 
Register 
Register 
(same contents as CNTR) 
SPORT 
SPORT 
SPORT 
SPORT 

Control Registers, SPORT 

Table 5.3 Register Location By Window 

5-27 



5 Simulator Functions 

5-28 

5.6 INSPECTING & ALTERING MEMORY 
This section describes the methods for viewing and altering specific 
locations in any of the ADSP-2101's memory spaces. These functions 
include simple display of the various memory spaces (as either data or 
code), entering new values and saving the contents of memory to files for 
later analysis. 

These actions are accomplished by issuing commands in the command 
window. Multiple commands may be given on one line, separated by 
semicolons, as in 

> L 'filename'; J symbol 'command' ; D address 

5.6.1 Inspecting A Memory Location 
There are two methods for inspecting a location in memory. First, you 
may open the appropriate memory window and make desired location 
visible in the window. Second, you may directly query any location or 
range from the command window. 

For the first method, once you have opened the desired memory window, 
you can change the range of memory addresses and contents displayed in 
several ways as listed below. 

• Paging I memory window is active window 

The arrow and PgUp and PgDn keys (PC keyboard) and their 
equivalents on other computers cause the memory window to scroll. 

• Go To Address I memory window is active window 

Keying AG interactively prompts you (in the memory window itself) to 
enter an address. The address must be entered without the pm[ ], dm[ 
], or boot[ ] notation. When you press Return the first line of the 
window displays this address. 

• Go To Address I command window is active window 

If you use the AG method from within an active memory window, you 
may note the command window echoing a command. This command 
(K), issued in the command window, alters what is displayed in an 
open window without making the window active. The form of this 
command is 

> K windownum address 



( Simulator Functions 5 

where windownum is the number of the window and address is the 
memory location to be displayed. Again, the address given must be the 
constant or symbol only. In other words, you must enter 

> K 1 25 correct 

rather than 

> K 1 PM[25] incorrect 

The result of this command is like the "G method above; the specified 
address is brought into view in the window. 

The second method displays the memory contents directly in the 
command window; the memory window does not have to be open or 
visible. The command has the form 

> D address or range [ > 'filename'] 

f where address or range identify a location or range of locations in memory. 
The default action is to display this location (or range) in the command 
window. If the optional file redirection is given, the contents of memory 
are written to the file instead of the screen. This can be used for saving the 
state of arrays in data memory or other memory ranges. The format of this 
file is described in Appendix B, File Formats. 

5.6.2 Tracking 
Tracking enables you to view the code and data accessed when a program 
is run with the single step (S) or go (G) commands. When tracking is 
enabled in the program memory window, the window will automatically 
scroll through the code being executed to follow the processor's program 
counter. If tracking is turned on in the data memory window, any data 
memory locations accessed are scrolled into view in that window. 
Tracking is enabled/ disabled by giving the command 

> T window# 

where window# is the number of the program memory, data memory, or 
program memory data windows. 

Tracking can also be toggled in the active window with the control key 
sequence "T. 

5-29 



5 Simulator Functions 

5-30 

5.6.3 Locating Symbols & Values 
The cross-reference command, X, given in the command window, locates 
symbols. The general form of the command is 

> X symbol 

where symbol is any symbol you believe is defined in your program. For 
example, to find the label REST ARTER, the command (and its response) 
would be 

> x RESTARTER 
RESTARTER= boot[OxOOlc] 

Remember that labels are case-sensitive in the Simulator. If you enter 
restarter when the actual label is REST ARTER it cannot be found. 

The find command, F, finds numeric values in a given memory range. The 
numeric value may also be an opcode. In addition, for ease of use, the F 
command accepts source versions of commands and assembles them. The f 

syntax of the F ("find") command is 

> F address expression 

where address is any valid address or address range specifier and 
expression is any valid expression including instructions and simple 
numeric values. Because this command is actually searching for an exact 
numeric match, it does not do partial matching. For example, to locate the 
instruction 

jump RESTARTER; 

you cannot give the F command as 

> f pm[0]/100 jump Incomplete specification of expression! 

The F command is not a word processing command. To obtain the correct 
answer, you must give the complete instruction (the semicolon is optional) 
including the specific label in a case-sensitive form, as in: 

> f pm[0]/100 jump RESTARTER 



( 

( 

Simulator Functions 5 

When the expression is found, the location is displayed: 

pm[0019) 00035f jump RESTARTER 

The best way to locate a symbol, then, is to use the X command. It is case­
sensitive and can discriminate between data, program and boot memory 
when it searches for a symbol. The best way to find a data value or specific 
opcode is to use the F command (which does not discriminate between 
program and boot memory). 

5.6.4 Plotting The Contents Of Memory 
An additional and useful way to i~spect memory is with the PL or plot 
command. This allows you to plot up to 640 points on the screen. The 
syntax of PL is 

> PL range decimation 

where range is an address range and decimation is an integer value (or 
expression) indicating which memory locations to select for graphing. 
Each graphed point corresponds to a single 16-bit data value. For data that 
is interleaved for example, you would select every other word with 

>PL dm[OxlOO)/Oxff 2 

The screen clears and the graph is displayed. Pressing Return returns you 
to the previous display. 

Since no more than 640 points total can be graphed, the length of the 
range divided by the decimation factor must not exceed 640. 

5.6.5 Altering A Memory Location 
You may alter the contents of memory directly in two ways, although 
there are some differences between program and data memory. First, you 
may display the window containing that memory and make it the active 
window. Position the cursor on the address to be changed and type the 
new contents. When you press Return, the new value replaces the old 
contents. 

If you are entering a new value for data memory that value is a number. If 
you are entering a new value in the program memory (code) window that 
value is an instruction. But, if you are entering a new value in the program 
memory data windm\~, that value is a number, including an opcode. 

5-31 



5 Simulator Functions 

5-32 

When you directly type over a data memory location, you may notice that 
the command window echoes the command equivalent of the direct 
change. This is the second method. From the command window you can 
change the numeric contents of any address in memory (whether 
displayed or not) with the command 

> E address expression 

where address is the address or address range to be altered and expression 
is the value to be written into the specified portion of memory. For 
example, to write a zero into the range of data memory from address 200 
to address 300, the command is 

> E dm[200J/100 0 

Likewise, to write the opcode for NOP (which is all zeroes) into program 
memory location two, the command is 

> E pm[2] 0 

You may also enter the contents of a file into a memory range with a 
variation of the E command. Its syntax is 

> E start address <'filename' 

where start_address is any address in memory and filename is the name of a 
file to be read from. This file must be in the data file format (.DAT) 
described in Appendix B. The range of memory written is determined by 
the size of the file; the file is read until end of file is reached. If the file is 
too large, unpredictable results may occur. 

5.6.5.1 Altering Instructions 
The command equivalent for directly typing an instruction is the A 
(assemble) command whose syntax is 

> A address instruction 

where address specifies a location in program memory and instruction is a 
valid ADSP-2101 instruction (not opcode). The terminal semicolon in the 
instruction is optional; the Simulator correctly assembles the instruction 
regardless of whether or not the semicolon is entered. (See also the 
discussion of the V command under ''Miscellaneous Features" at the end 
of this chapter.) 



( 

Simulator Functions 5 

For example, to alter program memory at location two to the NOP 
instruction (as shown numerically above) you would type 

> A pm[2] nop 

Any change is immediately displayed in the pertinent memory window, if 
open. 

5.6.5.2 "Undefined" Memory Locations 
Uninitialized memory locations are denoted by the word "undefined." 
The Simulator flags operations such as reading undefined memory as 
errors. You may wish to reset portions of memory back to an uninitialized 
state. The U command, given in the command window, accomplishes this. 
You must specify the address (individual address or address range). For 
example, to undefine the first sixteen data memory addresses, the 
command is 

> U dm[OxOJ I 16 

5.6.6 Program Memory (Code) Window 
The program memory window shows program memory as code with fully 
symbolic disassembly. The default arrangement of this window cannot be 
altered and appears (after loading a program) as in Figure 5.12, on the 
next page. To the left of each address is a two-letter code which indicates 
the following: 

I/X internal/ external memory 
A/0 RAM/ROM 

When an I/0 port is opened in program memory, a ''P'' is displayed with 
the I/X, A/0 code at the port's address. 

Address labels are shown in the disassembled code. Labels which 
originate in boot memory code have the boot page number appended to 
them. An example of this is the BOOTO_RESTARTER symbol shown in 
Figure 5.12, on the next page. 

The contents of the processor's internal program memory will change 
when a new page of boot code is loaded. 

5-33 



5 Simulator Functions 

Internal/External, RAM/ROM Disassembled code with symbolic operands 

L 
7 

(TOFF I HEX) .---+- 1 PM 

IA > pm[OOOO] jump BOOTO_RESTARTER · 
IA pm[OOOl] nop 
IA pm[0002] nop 
IA pm[0003] nop 
IA pm[0004] rti 
IA pm[0005] nop 
IA pm[0006] nop 
IA pm[0007] nop 
IA pm[0008] rti 
IA pJ[0009] nop 

T 
Program memory addresses 

0 COMMAND 

> l 'final' 
loading final.exe .. . 
loading final.sym .. . 
> er 
Boot cycles = 1156 Boot page 0 

"W Window commands "X# Go to window# "Z Go to next window I 

Figure 5.12 Program Memory (Code) Window . 

5-34 

5.6. 7 Program Memory As Data 
The program memory data window shows program memory as numeric 
data. This consists of either opcodes for code segments in program 
memory or actual numeric values for data segments in program memory. 
The only way to view opcodes is to open this window. The default 
configuration of this window, which cannot be changed, is shown in 
Figure 5.13. To the left of each address is a two-letter code which indicates 
the following: 

I/X 
A/O 

internal/ external memory 
RAM/ROM 



( 

Simulator Functions 5 

1 PMD (TOFF,HEX) 

Internal/External IA > pm[OOOO] 
Program memory 
addresses 

RAM/ROM IA pm[0001] 
IA pm[0002] 
IA pm[0003] 000000 
IA pm[0004] OaOOlf 
IA pm[OOOSJ 000000 
IA pm[0006] 000000 
IA pm[0007] 000000 
IA pm [ 0008] OaOOlf 
IA pm[0009] 000000 Numeric contents, 

opcodes or data 

Figure 5.13 Program Memory Data Window 

5.6.8 Data Memory 
The data memory window shows the numeric contents of data memory 
and any symbols defined for data structures. The default configuration of 
this window, which cannot be changed, is shown in Figure 5.14, on the 
next page. To the left of each address is a two or three-character code 
which indicates the following: 

I/X 
A/O 
0, 1, 2, 3, or 4 

internal/ external memory 
RAM/ROM 
wait state zones 0-4 of external DM 

When an I/0 port is opened in data memory, a ''P" is displayed with the 
I/X, A/0 code at the port's address. 

External data memory is divided into five address zones for purposes of 
wait state programming. Where external memory is displayed in the data 
memory window, the zone number is shown. The numbers represent the 
zones for DWAITO through DWAIT4; these wait states are selected in the 
Data Memory Wait State Control Register, located at DM[Ox3FFE]. Refer 
to the ADSP-2101 User's Manual, under "Data Memory Interface," for 
further information. 

5-35 



5 Simulator Functions 

Internal/External 
RAM/ROM 

1 DM (TOFF I HEX) Data buffer names 

IA > dm[3800] uuuu: DATA BUFFER 
IA dm[3801] uuuu 
IA dm[3802] uuuu 
IA dm[3803] uuuu 
IA dm[3804] uuuu 
IA dm[3805] uuuu 
IA dm[3806] uuuu 
IA dm[3807] uuuu 
IA dm[3808] uuuu 
IA dm[3809] ·uuuu 

Data memory addresses Data contents 

COMMAND ====================~ 

K 1 DATA BUFFER 

AW Window commands AX# Go to window# AZ Go to next window I 

5-36 

Figure 5.14 Data Memory Window 

5.6.9 Boot Memory 
Like program memory, boot memory may be viewed in two ways, each 
through its own window. Boot memory code (Figure 5.15) shows 
disassembled source code by address in boot memory while boot memory 
data (Figure 5.16) shows opcodes and numeric data values. In both cases 
the address shown is a (24-bit) word address. The entire 16K length of 
boot memory is contained in the windows, from page 0 up to page 7. The 
Simulator does not support byte addressing in boot memory directly, nor 
does it show the extra bytes added to pad each instruction or data word 
for PROM alignment purposes. Byte addresses are determined only by the 
PROM Splitter. 



( 

Simulator Functions 5 

Boot page number 

t:: 1 BOOT CODE (HEX) 

0 boot[OOOO] jump BOOTO_RESTARTER 
0 boot[OOOl] nop 
0 boot[0002] nop 
0 boot[0003] nop 
0 boot [0004) rti 
0 boot[OOOS] nop 
0 boot[0006] nop 
0 boot[0007] nop 
0 boot[0008J rti 
0 boot[0009] n~ 

\ 
Disassembled code Boot memory 

addresses with symbolic operands 

Figure 5.15 Boot Memory Code Window 

000000 
OaOOlf 

Boot page number 

~----flf-A-A-fHHT---+lf--~~~ Boot memory 
000000 
000000 
OaOOlf 
000000 

Figure 5.16 Boot Memory Data Window 

addresses 

Numeric contents, 
opcodes or data 

5-37 



5 Simulator Functions 

5-38 

5.7 CONTROL & DEBUGGING FUNCTIONS 
Control functions include starting and stopping the execution of your 
program and resetting the simulated processor. Debugging functions 
include setting breakpoints, break conditions and watchpoints. Any 
expression can be quickly evaluated in the expressions window. The trace 
window provides a history of external bus activity. Profiling (via the 
profile window) is a tool for analyzing the time spent executing various 
parts of your program. 

Remember that multiple commands may be given on one line, separated 
by semicolons, as in 

> L 'filename' ; J symbol 'command' ; D address 

5.7.1 Resetting The Processor: CR and RE 
There are two command window commands for resetting the processor: 
CR and RE. 

CR, which stands for chip reset, simulates a hardware reset of the 
processor. It is the same as pulling the RESET line low in a hardware 
system. All clocks, registers and stacks become reset or undefined. The 
state of on-chip memory is undefined. (While in some cases you may see 
values in on-chip memory "surviving" a reset, this is not guaranteed to be 
the case.) Finally, boot page zero is booted into the processor if MMAP 
equals 0 in the Architecture Description file, and the PC is set to the restart 
vector at address 0. Execution does not actually begin in the Simulator, 
although it would in hardware. 

RE, which stands for reset, performs a subset of the functions of CR. It 
omits the boot loading sequence, but otherwise resets the processor. On­
chip memory remains intact. 

5.7.2 Single-Step Execution 
The S command, given in the command window, steps the processor 
through one or more instructions. Execution always begins at the current 
program counter value. 



( 

'(. 
' 

Simulator Functions 5 

For example, the command 

> s 10 

executes the next ten instructions, while 

> s 

executes only the next instruction. Execution can always be interrupted by 
pressing any key. H echoing is enabled (in the defaults window), the next 
instruction is shown in the command window as you step through your 
program. 

5.7.3 Running & Halting 
The G command with no arguments, as in 

> G 

starts the simulated processor running from the current PC value for an 
unlimited number of instructions. The Simulator halts only for the 
following events: 

• You press any key to interrupt execution 
• A simulation error occurs 
• A breakpoint is reached or a break change or expression becomes true. 

The G command can also be given an address (constant, expression, or 
label) to stop at; execution continues until that address is reached as in 

> G fir halt 

The command RUNFAST is a slightly different version of the G command. 
RUNFAST also causes the Simulator to run, but will not stop when a key 
is pressed- only on a break reached or an error. Care must be taken when 
using this command, though, since the Simulator does not stop if a break 
is not reached. 

5-39 



5 Simulator Functions 

5-40 

5.7.4 Breaks 
Breaks halt execution. Breaks include breakpoints, break expressions, 
break changes, and break ranges. A breakpoint is a location in program 
memory where execution halts. In the program memory (code) window 
breakpoint locations are marked with a B in the first column. Break 
expressions, changes, and ranges are defined in the following sections. 

5. 7.4.1 Setting Breakpoints & Break Ranges 
There are two ways to set breakpoints. From the command window, you 
may identify the program memory location in the command 

> B address 

where address is any valid program memory address expression, such as 

> B pm[OxOOlA] 

which sets a breakpoint at location hexadecimal OOlA. A running 
simulation halts when this instruction is fetched, but before it is executed. 

From the program memory (code) window, you can set a breakpoint at 
the instruction marked by the cursor by keying AB. The command 
window echoes this action with the command as above. 

Break ranges cause execution to stop when a selected range of program 
memory is accessed by the processor. An instruction fetch from any 
address within the range will cause the break to occur. A break range is 
set with the following command: 

> BR range 

5.7.4.2 Viewing Breaks 
Instructions selected as breakpoints are marked with the B indicator in the 
first column of the program memory window. There are two ways to 
recall the complete list of breakpoints, beyond what can be viewed 
directly in the program memory window. 

You may view a list of current breakpoints, break expressions, break 
changes, and break ranges in the command window by giving the B 

' I "-.__/ 

rt ' 
~/ 



( 

( 

( 

Simulator Configurations • 6 

6.1 INTRODUCTION 
The previous chapter describes the functions of the Simulator. This 
chapter describes how to customize the "look and feel" of the 
Simulator for your everyday needs. 

With the release of version 2.0X (and after) the Simulator provides 
a customizable user interface. You can change and store the 
following items: 

• The location of individual fields within windows 
• The location and organization of windows on the screen 
• The names used to invoke commands and the required order of 

arguments 
• Any sequence of commands (including aliased commands) 

The best way to tailor the Simulator to your requirements is to 
begin using it and build up custom screens and commands as you 
go. At some point, perhaps as soon as a few hours after you begin, 
you can organize all the custom screens and commands in to a 
clean set of external files. Thereafter, you can invoke the Simulator 
with the appropriate startup file identified and the Simulator 
appears automatically in your desired configuration. 

The Simulator uses two types of external configuration files: 
displays and scripts. Display files (file extension .WIN) store the 
look and layout of a particular set of windows, one to a file. Each 
display can be stored and then recalled, in the desired 
configuration, with a simple command. Scripts (default filename is 
STARTUP) are text files of command window inputs typically 
storing command aliases you create. 

6-1 



6 Simulator Configurations 

As shipped to you, the Simulator package includes a sample 
STARTUP file (named EXAMPLE) and a number of sample 
display windows (.WIN files). Rename EXAMPLE to STARTUP to 
automatically invoke it or name it explicitly (with the -s switch) 
when you start the Simulator. 

6.2 CONFIGURING SCREENS & WINDOWS 
The tools for configuring an individual window are briefly 
described in the previous chapter. This section spells them out in 
greater detail with an example. 

(Note: " denotes the control, or CNTL, key.) 

6.2.1 Opening Windows 

Cursor 

Windows are opened by keying "W to display the menu shown in 
Figure 6.1 and selecting OPEN by typing the letter "O'' or pressing 
Return (since OPEN is the default selection on this menu). 

l 
\Q.m 
Move 
Size 
Close 
Hide 

> 
> 
> 
> 
> 

-- Window Commands Menu (open with control-W) 

~ Command Window (Always Open) 

0 COMMAND 

AW Window commands AX# Go to window# AZ Go to next window t 

~ lnformatlonal Dlsplay 

Figure 6.1 Main Menu For Configuring Windows 

6-2 

((- ''", 
I 

~-/ 



( 

( 

( 

Simulator Configurations 6 

Doing this displays the window selection submenu shown in 
Figure 6.2. Select the desired window; our example uses the 
register window. You select the register window by moving the 
cursor down with the arrow keys and pressing Return or by 
keying the menu letter (''D"). 

Cursor 

A program memory 
B data memory 
C program memory data 

register 
E stack 
F cross reference 
G flag 
H break points 
I break expression 
J expression 
K sport register : 
L sport status 
M status register 
N I/O status 
O control register 
P help 
Q trace 
R profile 
S defaults 
T NEXT PAGE 

> 

Window choices 

AW Window commands AX# Go to window# AZ Go to next window I 

Figure 6.2 Window Selection Submenu (with Register Window selected) 

6-3 



6 Simulator Configurations 

Figure 6.3 shows the default register window layout. This is the 
starting point for rearranging the fields of this window. 

1 REG (REG_PRI, HEX) 

axO uuuu ar uuuu iO uuuu rnO uuuu 10 uuuu a stat 00 
axl uuuu af uuuu il uuuu ml uuuu 11 uuuu mstat 00 
ayO uuuu i2 uuuu m2 uuuu 12 uuuu sstat 55 
ayl uuuu i3 uuuu m3 uuuu 13 uuuu 

mxO uuuu mrO uuuu i4 uuuu m4 uuuu 14 uuuu ireq 000 
mxl uuuu mrl uuuu i5 uuuu m5 uuuu 15 uuuu irnask 00 
rnyO uuuu mr2 uu i6 uuuu rn6 uuuu 16 uuuu icntl uu 
rnyl uuuu rnf uuuu i7 uuuu m7 uuuu 17 uuuu 

si uuuu srO uuuu pc 0000 cntr uuuu px uu 
se uu srl uuuu 
sb uu 

cycle 00000000 irq2 00000000 dm addr 0000 prn_addr 0000 

6-4 

Figure 6.3 Default Register Window Layout 

6.2.2 Selecting, Deleting & Rearranging Fields In A Window 
Note that only the windows displaying individual fields, like the 
register window, can be rearranged. The internal layout of 
memory windows and informational windows (like the 
breakpoints window) cannot be altered. 

In the program example used in this manual there are some 
registers in the processor which are never used. For example, only 
the SI register in the Shifter is used (as a temporary holding 
register for signal data) and none of the ALU registers are used. 
Likewise, only some of the DAG registers are used. For the 
purposes of illustration we are going to delete unused registers 
from our display and rearrange the remaining registers for 
compactness. 



( 

( 

Simulator Configurations 6 

The first step is to make the register window the active window, if 
it is not already. Key "Z until it becomes the active window or key 
"X and the number of the register window followed by Return. 
The cursor appears in the active window. 

Move the cursor with the arrow keys until it is over the SE field, 
one of the fields to be deleted.· Key "D to delete this field and it 
disappears from the display. Now move the cursor and delete the 
SB, SRO, and SRl registers in the same way. You can go on to 
delete all of the ALU registers and the unneeded DAG registers: 12, 
13 and 15-7, Ml-3 and MS-7, and Ll-3 and LS-7. After these 
deletions, the register window looks like Figure 6.4. 

1 REG (REG_PRI,HEX) 

mxO uuuu mrO uuuu 
mxl uuuu mrl uuuu 
myO uuuu mr2 uu 
myl uuuu mf uuuu 

si uuuu 

cycle 00000000 irq2 

iO uuuu 
il uuuu 

i4 uuuu 

pc 0000 

00000000 

mo uuuu 

m4 uuuu 

cntr uuuu 

dm addr 

Figure 6.4 Example Register. Window with some registers deleted 

10 uuuu 

14 uuuu 

0000 

astat 
mstat 
sstat 

ireq 
imask 
icntl 

px uu 

00 
00 
55 

000 
00 
55 

pm_addr 0000 

6-5 

.... '• 



1 

mxO 
mxl 
rnyO 
rnyl 

si 

cycle 
irq2 

6 Simulator Configurations 

If you accidentally delete a register, it can easily be restored 
("undeleted"). Move the cursor to a blank spot in the window and 
key "U. A menu drops down that lists all the deleted registers. 
Move the cursor along the menu and press Return to restore any 
register. Press ESC to abort the operation. Note that the contents of 
the deleted registers are also displayed. If a deleted register has a 
value other than undefined, the value is visible in this menu. 

Now we can rearrange our pruned-down set of registers for a 
more compact display. Move the cursor to the MXO register field. 
To move any field you select it for moving with "Y, move it using 
the arrow keys, and deselect it with another "Y or Return. Move 
the MXO field up to the top line of the window this way. 

Repeating this procedure we could rearrange all the fields of this 
register window example until the entire window looked like 
Figure 6.5. 

REG (REG_PRI,HEX) 

uuuu rnrO uuuu iO uuuu rnO uuuu 10 uuuu as tat 
uuuu rnrl uuuu il uuuu rnstat 
uuuu rnr2 uu i4 uuuu rn4 uuuu 14 uuuu sstat 
uuuu rnf uuuu 

uuuu ireq 000 irnask 00 icntl uu px uu 

00000000 pc 0000 cntr uuuu pm_addr 0000 
00000000 dm addr 0000 

Figure 6.5 Example Register Window with registers rearranged 

6-6 

00 
00 
55 



( 

Simulator Configurations 6 

Now you can resize the window outline, bringing up the bottom 
edge to make that space on the screen available for other windows. 
Key "W to display the main menu and select SIZE from it. As you 
press the Up arrow, the lower edge of the window moves up on 
the screen. Press Return to end the sizing operation. The final 
version of this window might look like Figure 6.6. 

1 REG (REG_PRI, HEX) 

mxO uuuu mrO uuuu iO uuuu mo uuuu 10 uuuu 
mxl uuuu mrl uuuu il uuuu 
myO uuuu mr2 uu i4 uuuu m4 uuuu 14 uuuu 
myl uuuu mf uuuu 

si uuuu ireq 000 imask 00 icntl uu 

cycle 00000000 pc 0000 cntr uuuu pm_addr 
irq2 00000000 dm_addr 

Figure 6.6 Final Register Window Arrangement 

6.2.3 Saving A Rearranged Screen 
If you change the display without saving your custom register 
window, all the work of creating it is lost. To save a new screen 
configuration with a desired set of windows opened, resized, and 
internally reconfigured, you must store the screen in a file. The 
Simulator token Y stands for the display and the greater than and 
less than symbols are directional pipes. The display files are given 
the default file extension .WIN. To save the current display (such 
as our example in Figure 6.6) enter this command in the command 
window: 

> y >'rnyscreen' 

This stores the current display configuration in the file 
MYSCREEN.WIN in the default directory. 

a stat 
mstat 
sstat 

px uu 

0000 
0000 

6-7 

00 
00 
55 



6 Simulator Configurations 

6-8 

You may recall this or any other display configuration with the 
command 

> y <'filename' 

where filename is the main filename of a screen/ windows file. 

Note that the .WIN file stores the complete display, not just the 
contents of one window. You must create the complete 
constellation of windows you want and then store the entire 
display. Loading the Simulator display· from a .WIN file 
overwrites the complete screen, not just part of it. 

When you quit the Simulator, the last screen configuration is saved 
to the file DD.WIN, which becomes the default display the next 
time you startup. If this display is the only one you want, there is 
no need to use the -w window switch or the Y command. If several 
different custom screens are desired, then you should save each 
one and use the -w switch to load the startup screen and the Y 
command to recall others. 

6.3 COMMAND ALIASES 
A command alias is a character string (plus any required 
arguments) which replaces one of the Simulator's native 
commands. The J command creates the alias. The syntax of this 
command is 

> j alias 'command' 

where alias is a symbol which will subsequently stand for the 
Simulator command enclosed in single quotation marks. 
Arguments are passed using a dollar sign token as in $1, $2, etc. 

For example, to create a special command to set the PC, you could 
type: 

> j setpc 'r pc $1' 

Then, to set the PC to point at address four, you could enter: 

> setpc Ox4 



Simulator Configurations 6 

Note that when you enter and execute this aliased command, the 
command window echoes both what you type and then the 
"unaliased" version of the command. This feature can be used to 
double-check your alias and to correct errors in arguments. 

You can create a command that calls up a previously saved display 
configuration. If the file MYSCREEN.WIN contains a customized 
arrangement of the register, program memory, program memory 
data, and data memory windows, along with a small command 
window, it can be recalled by giving the command: 

> y <'myscreen' 

This may be inconvenient to type each time you want this display, 
especially because the"<" symbol requires the Shift key on most 
keyboards. You can alias this command with the new command 
string "VIEW" by entering the following: 

> j view 'y <"myscreen"' 

Note that the filename, myscreen, is enclosed with double quotes; 
nested quotation marks must be double, inside single. 

6.3.1 Managing Aliased Commands 
The J command, given with no arguments, lists all currently 
defined aliases in the command window. This is useful for 
managing command aliases as they become more numerous. 
Aliases are listed in the command window in the form 

symbol = command 

where symbol is the name you assigned as the alias and command is 
the actual command executed by the alias. 

The JD command deletes an alias. The form of this command is 

> JD symbol 

where symbol is a currently defined alias name. The alias is deleted 
from the list. 

6-9 



6 Simulator Configurations 

You may also pipe the list of currently defined aliases to a file for 
reference and editing with the command: 

> J >'filename' 

The contents of the text file created by this operation are actual J 
commands, like those executed to create the alias, such as: 

j setpc 'r pc $1' 
j view 'y <"myscreen"' 

This file can be directly read back into the command window, 
using the redirection operator, as in 

> <'filename' 

which takes the contents of the named file as keyboard input to the 
command window until the end of the file is reached. This file can 
be also incorporated in a startup file, as described in the next 
section. / ·" 

6-10 

6.4 THE STARTUP FILE 
The Simulator is a highly flexible tool. By designing custom 
display configurations and aliasing both built-in Simulator 
commands and additional Simulator commands you can create the 
debugging environment that best serves your purposes. 

Embedding this all in the STARTUP file allows you to combine 
initialization, housekeeping, customized displays, and commands 
into one reconfigured Simulator. 

The sample startup file EX.AMPLE contains a large set of aliased 
commands. Examine the contents of this file to determine if you 
want to use any or all of the commands. You may choose to import 
all of the file's contents into the Simulator; to do this, rename 
EX.AMPLE to STARTUP to automatically invoke it or name it 
explicitly (with the -s switch) when you start the Simulator. 

'" 

:< ...... 

<:i.._.J 



( 

Simulator Configurations 6 

Here are some lines out of a possible STARTUP file with a 
comment about each function performed. (Comments are not 
permitted in the actual STARTUP file.) 

Line in STARTUP 

j reg 'y <"wreg"' 

j help 'y <"whelp"' 

j setdm 'e dm[$2]/$3 $1' 

1 'main' 

p 0 >'serout' <'serin' 

Function 

The new command string REG now 
calls up the predefined display stored in 
the file WREG.WIN. 

The new command string HELP now 
calls up the predefined display stored in 
the file WHELP.WIN. 

The new command SETDM (similar to 
earlier releases of the ADSP-2100 
Simulator) accepts arguments in a 
different order. Instead of 

e dm[start]/length value 

you now enter: 

setdrn value start length 

This is an initialization command, 
loading your default program 
(MAIN.EXE) and symbol table 
(MAIN.SYM) files. 

This is another initialization command, 
opening data files used to simulate/ 
capture the 1/0 of serial port zero. 

There is almost no limit to what can be accomplished via a 
STARTUP batch file. You can create specialized keyboard scripts 
files that actually execute and test your programs. The ADSP-2101 
Simulator strives to deliver a tool-rich environment which can be 
configured to support many different requirements. 

6-11 



6 Simulator Configurations 

6-12 



( 

C Compiler • 7 

7.1 ADSP·210X C LANGUAGE SYSTEM 
The ADSP-210X C language system allows programmers familiar with the 
C programming language to write and compile C programs to be run on 
the ADSP-2100 family of processors. C programs can be written, compiled 
and executed without extensive knowledge of the ADSP-2101 architecture. 
However, because of the unique architecture of the ADSP-2100 family, C 
programmers must understand various limitations detailed in this chapter 
in order to interface C to ADSP-2101 code and to optimize the output of 
the C Compiler. Nevertheless, the ability to program in C means that 
working ADSP-2101 systems can be created with fewer development 
resources. The C Compiler supports inline assembly code, conditional 
compilation, include files, and conforms to the draft ANSI standard except 
as noted in this chapter. Differences from the standard are summarized in 
AppendixD. 

The ADSP-210X C language system consists of two primary modules, the 
preprocessor and the Compiler. The preprocessor reads directives 
beginning with the pound sign ( #) and takes the actions necessary to 
resolve them. The simplest example is the #include directive. The 
preprocessor opens and inserts the contents of the requested include files, 
removing the #include directive from its output file. 

The Compiler reads the output of the preprocessor and produces ADSP-
2101 source code, as shown in Figure 7.1, on the next page. This source 
code is then assembled with the ADSP-2101 Assembler and is later linked 
with the ADSP-2101 Linker. (The Linker is not automatically invoked.) 
The ADSP-210X C language system must be used with Cross-Software 
Modules of Release 2.0 or after. Errors will occur if you try to assemble the 
output of the C Compiler with previous releases of the Assembler. 

7-1 



7 C Compiler 

C Source Code File 
(.c) 

lf-p switch 
used, bypass 
preprocessor 

Include Flle(s) 

C Preprocessor 

- (Normally deleted) 

CCOMPILER 

- (Normally deleted) 

7-2 

ASSEMBLER 

The Assembler List file (.LST) will 
contain C source in comment lines 

if an interlist merge file was requested. 

Figure 7 .1 C Compiler 1/0 

I 



C Compiler 7 

7.1.1 README File 
The C Compiler is accompanied by a README file on the delivery media. 
You should consult this file for supplemental information about the files 
supplied, known bugs and other recent information for use and 
installation. 

7 .1.2 C & The ANSI Standard 
At the time of this publication, there is an ANSI draft standard, X3J11, 
under consideration for the C programming language. The C language 
system conforms to the ANSI draft standard except as noted explicitly in 
this manual. Appendix D summarizes all exceptions. Any references to 
"standard C" are references to this draft standard. You may request a 
copy of the ANSI draft standard from ANSI. See Appendix D for the 
address. 

This chapter is not a description of or reference document for the C 
programming language. For additional information about C you may 
want to consult the two books listed below. There are many other books 
available on the subject as well. 

Harbison and Steele, C: A Reference Manual. Prentice-Hall, 1987. 

Kernighan and Ritchie, The C Programming Language. Prentice-Hall, 1978. 

7.1.3 Upper and Lower Case Usage 
The ADSP-2101 Assembler and its source code is traditionally case­
insensitive: upper and lower case versions of names and reserved words 
are treated identically. The C language, however, as practiced and as 
defined in the draft standard, is a case-sensitive environment. A 
lowercase identifier is not the same as an uppercase identifier. The 
Assembler's -c switch toggles the Assembler's interpretation of upper and 
lower case symbols. The default is case-insensitive, like previous versions 
of the Assembler. The Assembler must be made case-sensitive (with the 
-c switch) when assembling C-generated programs. 

This must be done in order to link together code modules originally 
written in C with modules written in assembly language. 

7.2 COMPILING 
The C Compiler processes standard ASCII text files only. Do not use 
editors that produce files with special characters or formatting commands. 

7-3 



7 C Compiler 

7-4 

7.2.1 Filename Usage 
The C language system may create several files. In the default operation, 
the output name is based on the main name of your input file. This can be 
changed when the Compiler is invoked (see below). The usage of these 
files is shown in Figure 7.1 at the beginning of the chapter; the naming 
conventions are summarized here. 

Input C source filename: 
filename 

Compiler looks for: 
filename.c 
filename.c filename.c 

filename.ext filename.ext (exactly as given) 

File 
preprocessed C source* 
ADSP-2101 source*+ 
List file+ 

Module producing it 
Cpreprocessor 
CCompiler 
ADSP-2101 Assembler 

Extension appended 
.po 
.dsp 
.1st 

* Normally deleted by C Compiler, can be preserved with switch 
t Contains C source in listing if requested, otherwise standard listing 

7.2.2 Invoking The C Compiler 
The Compiler is invoked by entering the name of the executable Compiler 
file with the name of your source file and any desired switches as 
arguments. The brackets below indicate that switches and outfile are 
optional. 

cc2101 infile [-switch ... ] [outfile] 

Typically, all switches can be omitted: 

cc2101 test.c 

The output files are normally given the same file name as the input file. By 
giving a second file name when the Compiler is invoked (shown above as 
outfile) the output file(s) use this name, instead of the input file name. 
Switches may come anywhere after "cc2101." 

If you invoke the Compiler with no arguments at all, it displays a brief 
summary of the switches as explained below. 

There be any number of switches from the group shown in Table 7.1. 
Switches that are not self-explanatory are detailed in the following 
sections. Note that the Compiler can generate a ROMable system. 



( C Compiler 7 

Switch Result Default 
-a Do not invoke Assembler Assembler invoked 

-abs=# Specifies absolute memory location Location determined by Linker 

-b#[# ... ] Specifies boot page(s) destination No boot page information generated in 
assembly module 

-crom Code placed in ROM Code in RAM 

-Dvar[ =value] Define a variable name for macros No such definition 

-e Call FP emulation routines Inline code 

-gpm Force all globals into PM Data memory (DM), or as specified in 
initial declaration statement 

-I=path Specifies search path for include Current directory & ADII path 

( -lpm String literals & switch tables in PM Placed in DM 

-lrom String literals & switch tables in ROM String literals in RAM 

-m Produce a merged listing file and 
request Assembler .LST file 

No merged listing file created 

-p Do not invoke preprocessor Preprocessor invoked 

-pp Invoke preprocessor only Compiler also invoked 

-pmstack Stack in program memory (PM) StackinDM 

-w Suppress warning messages Display warning messages 

-0 Save preprocessor output file Delete this file 

-1 Save Compiler output .DSP file Delete this file 

Table 7.1 Compiler Switches 

7-5 



7 C Compiler 

7-6 

1.2.2.1 -a Switch 
The C Compiler normally invokes the Assembler directly. This switch 
cancels that invocation. When the C Compiler does call the Assembler, it 
uses a specific set of Assembler switches (listed below). If you are going to 
run the Assembler manually, it is important to use the exact same 
switches. A complete list of Assembler switches is shown in Chapter 3 of 
this manual. Here are the Assembler switches used by the C Compiler: 

Assembler switch 
-c 

-s 

-r 

Meaning 
Forces the Assembler to be case sensitive; always 
set by Compiler. 

No semantics checking on parallel instructions as 
described below. This switch is always set by the C 
Compiler, and must be manually set if you later 
attempt to assemble code generated by the C 
Compiler. 

Assembler deletes the assembly source code .DSP 
file (unless the Compiler's -1 switch is set). 

The semantics checking of parallel instructions must always be relaxed. 
Certain of the emulation routines use parallel instruction forms that are 
flagged as semantically incorrect by earlier versions of the Assembler. See 
the discussion under "Multifunction Instructions" in the Instruction Set 
Reference chapter of this manual. 

7.2.2.2 -abs = # Switch 
This switch assigns a C-style constant to be used as an absolute memory 
location for module placement in program memory. 

7.2.2.3 -b#[# ... ] Switch 
This switch results in assembly code declaring the code module's boot 
page(s) destination. The information will be used by the Linker to create 
boot page images. 

Multiple boot pages can be specified by adding on numbers. For example, 
to specify a destination of boot page zero, the switch would be 

cc2101 in file -bO 



( 

( 

C Compiler 7 

and to specify destinations of boot pages zero, one, and two for the 
resulting module, the switch would look like this: 

cc2101 infile -b012 

7.2.2.4 -Dvariable [=value] Switch 
The -Dvariable[ =value] switch allows you to define a variable name for the 
preprocessor to use (such as in conditional compilation). You may 
optionally assign it a value. 

7.2.2.5 -e Switch 
A library of basic floating-point emulation routines is provided with the 
Compiler. The default is to compile these routines by inserting the ADSP-
2101 source from the library directly into the output of the Compiler. This 
switch causes the Compiler to generate a CALL to these routines, which 
then terminate with a RTS (Return from Subroutine). 

Inline code results in a larger program while calling subroutines requires 
some additional overhead and results in somewhat lower performance. 
Note, however, that some routines are so large (e.g. floating-point 
division) that they are never placed inline, regardless of this switch. 

7.2.2.6 -gpm Switch 
This switch forces all globals into program memory. It overrides any 
storage classes-modifiers used in the declaration of globals. 

7.2.2. 7 -I= path Switch 
This switch provides an additional way to specify a search path for 
include files (in addition to the ADII variable). The directories specified by 
-I are searched before those specified by ADil. 

7.2.2.B -lpm & -lrom Switches 
These switches control the placement of string literals and the tables 
created for and used by the "switch" and "fastswitch" statements. 
Normally, these are placed in data memory, assumed to be RAM. You can 
switch either of these to store string literals and switch tables in program 
memory and/ or in ROM. 

7.2.2.9 -m Switch 
For debugging and learning purposes, the Compiler produces a merged 
listing file (in the .DSP file) when this switch is used. In this file each C 

7-7 



7 C Compiler 

7-8 

source statement appears as a comment followed directly by the ADSP-
2101 source it generates. An example fragment of a merged listing file is 
shown below. If the -m switch is used, the .DSP file (if not deleted) 
contains these comments and the Assembler passes them through, as it 
does any comments, into the Assembler output .I.ST file (which is 
generated by the Compiler's using the Assembler -1 switch). For example: 

i=3; /* c source line*/ 
si=3; /* ADSP-2101 source line*/ 
dm(i ) =si; /* ADSP-2101 source line*/ 
j=k+l; I* c source line*/ 
a:x:O=drn (k ) i /* ADSP-2101 source line*/ -ayO=l; /* ADSP-2101 source line*/ 
ar=axO+ayO; /* ADSP-2101 source line*/ 
drn ( j_) =ar; /* ADSP-2101 source line*/ 

7.2.2.1 o -pmstsck Switch 
This controls the placement of the stack created for and used by the C 
environment. If the stack is in program memory, you must invoke the 
Linker with its -pmstack switch. The Linker switch is discussed in the 
Linker Chapter, Chapter 4. 

Please refer to the discussion later in this chapter about the stack 
implementation for a complete discussion of the tradeoffs involved in 
stack location. 

7.2.2.11 -0 & -1 Switches 
These switches, which use the numerals zero and one, prevent the 
deletion of intermediate files produced by the preprocessor and Compiler. 
This may be useful for debugging. 

The -0 swi'tch results in the file filename.pa being left in place by the 
preprocessor. 

The-1 switch results in the file filename.dsp being left in place by the 
Compiler. Files with the .DSP extension are ADSP-2101 source code for 
input to the Assembler. You may wish to inspect this file before 
assembling it. If you intend to optimize the output of the C Compiler, you 
must have this file. 

7.2.3 Preprocessor Commands 
The C preprocessor supports the complete ANSI draft standard set of 
options. Two directives with implementation-specific aspects are 
described here. 



( 

C Compiler 7 

7.2.3.1 #pragma Directive 
The #pragma directive is used in the C system. This is an implementation­
dependent directive which is used in our implementation for passing 
inline assembly code. Inline code may be necessary for sections of your 
program that require features not directly supported in C, such as 
interrupt handling, the use of circular buffers, or optimization of certain 
computations. This directive must be used as shown below: 

#pragma ADSP2100 (Toggles on/ off processing of inline code) 

For a complete example, see the section "Assembly Language Interface" in 
this chapter. Here is a simple example: 

int someval = 8; 
foo {) 
{ 

#pragma ADSP2100 
SE= DM(someval_); 
#pragma ADSP2100 
} 

(ADSP-2101 assembly code) 

The preprocessor simply passes unchanged the text between the two 
directives on to the Compiler. The Compiler, in turn, removes the 
directive lines and passes the source code directly into its output file with 
no checking. The preprocessor need not be invoked to use the #pragma 
directive. 

This example also shows the ADSP-2101 source code naming convention 
used by the C Compiler. An identifier used in C source appears in ADSP-
2101 source with an underscore appended: someval becomes someval_. 

7.2.3.2 #include Directive 
Files may also be included by specifying a pathname when the Compiler 
is invoked, using the !=pathname switch. 

The include function operates just as in other C environments. The search 
path for the files to include can be set using the ADII environment 
variable (which is a function of your computer's operating system, not the 
C Compiler). The Compiler first searches in the current directory; if the 
files cannot be located there, the path specified by ADii is searched. (For 
include directives using the form filename, the current directory is not 
searched.) 

7-9 



7 C Compiler 

7-10 

To define the ADII environment variable, execute a statement similar to 
the following examples, substituting the actual pathnames for your 
system where the dummy names are shown in italics below. The 
semicolon separates individual search paths. The final slash must be 
present. Do not include extra spaces. 

IBM-PC Example: 
SET ADil=\root\subdir\subdir\;\root\nextsubdir\nextsubdir\; 

Unix (Sun) Example: 
setenv ADII "/root/subdir/INCLUDE/;/root/nextsub/INCLUDE/;" 

The maximum number of directories that can be specified with ADII is 
twenty. If ADII has not been defined in the system environment, the 
search terminates immediately after searching the current directory. 

7.2.4 Linker Requirements 
The Linker has a number of features controlled by command line switches 
given when the Linker is invoked. Complete information is given in 
Chapter 4 of this manual. Here we specify only the Linker switches that 
must be used with modules generated via the C Compiler. 

The Linker -c switch must be used, and causes two things to happen. 
First, the Linker creates the artificial symbol 

____ top_ of_ ram (four leading underscores) 

which is assigned the value of the highest available address in data 
memory (or program memory, see the discussion of the -pmstack switch 
below). Second, the Linker searches for and links in the C run time header, 
which is an assembly language file (filename run_hdr) provided with the 
Cross-Software System. The ____ top_ of_ ram symbol is used by the 
run time header to locate and initialize the stack. 

The environment variable ADIRTH must be equated to a pathname 
identifying the directory which contains the run time header. This path is 
searched by the Linker; the run time header must be located and linked 
because it is used when running compiled C code. The pathname is a 
function of your operating system, and is determined by where you store 
the run_hdr file. 

The Linker-pmstack switch, used in conjunction with the-c switch, 
forces the ____ top_ of_ ram symbol into program memory. So, if you 



( 

( 

C Compiler 7 

use the -pmstack switch with the C Compiler, you must use the -pmstack 
switch with the Llnker as well. 

7 .2.5 Run Time Header 
The C system includes the source file, run_hdr.dsp, and the assembled 
module, run_hdr.obj. You must link this object file with your other 
modules to create a working system. (Refer to the previous section 
''Linker Requirements.") 

The run time header sets up the registers used to control the stack and 
calls the main routine in your program. It is loaded at absolute address 
zero and includes interrupt service routine calls. You should examine the 
file for detailed information about what it does. This routine may be 
altered as needed. 

7 .3 RUN TIME MODEL 
The C language run time model is a stack-oriented machine, using the 
stack for parameter passing and local and temporary storage. The ADSP-
2101 is a dual memory processor, with two data address generators 
(DAGs). DAG2 is used for stack addressing because it can address both 
program and data memory. DAG2 includes the length (L), index (I) and 
modify (M) registers four through seven, e.g. 14-17. Specific register usage 
is given below. 

You need to understand how the C Compiler maps C onto the ADSP-2101 
architecture in order to create assembly language routines that interface to 
Cprograms. 

The stack may be located in either program or data memory space. 
Because of certain constraints in the ADSP-2100 family architecture, 
locating the stack in data memory is usually more efficient. See the 
section on "Programming Hints" below. 

7 .3.1 Stack Implementation 
The stack is implemented as a 16-bit wide push down structure, growing 
from high memory. There is a special variable identifying the top of 
memory which is evaluated by the Linker. (Remember, you must use 
Linker release 2.0 or later with the C Compiler.) 

The default is to locate the stack in data memory unless program memory 
is specified with a Compiler switch (-pmstack). The Linker extracts the 
top of memory address from the .ACH Architecture Description file 
created by the System Builder module of the Cross-Software. 

7-11 



7 C Compiler 

frame pointer (m4) 

stack pointer (14) 

7-12 

The stack is managed by a frame pointer and a stack pointer. Figure 7.2 
shows the configuration of the stack during a typical call. The discussion 
of reserved registers, below, describes the use of the stack and frame 
pointer registers. Because the registers in the DAGs are 14-bit registers, the 
largest object size that can be put on the stack is 8K words. 

High Memory High Memory 

p1 p1 

pO pO 
previous frame pointer previous frame pointer 

localO localO 

local1 local1 
local2 local2 

pO' 
frame pointer (m4) previous' frame pointer 

localO' 

stack pointer (14) 

A B 

Figure 7.2 Stack Implementation in ADSP-2101 Memory Space 

7 .3.2 Register Use Limits 
There are two types of register use limits. One group of registers is used 
by any code created by the C Compiler and must be restored exactly by 
any assembly language operations. These are reserved/system registers as 
listed below in Table 7.2. The second group consists of registers that might 
be used by C code to store data values. These restricted/data registers may 
be used by assembly language routines and may be restored selectively, 
based on a careful study of the register usage in the calling or context code 
module. They are listed in Table 7.3. 



( 
C Compiler 7 

Reserved/system register 
M4 
MS, Ml 
M7,M3 
M2 
LO-L7 

14 
M6, MO, SI, SE 

Use 
frame pointer 
must contain + 1 
must contain -1 
must be zero 
must be zero; circular buffers not 
supported in C. 
stack pointer 
used as scratchpad registers 

Table 7.2 Reserved/System Registers 

Restricted/data registers 
AYO,AYl,AR 
MXO,MXl,MYO,MYl 
MRO,MRl 
SRO, SRl 
10-13, 15, 17 

Use 
data storage 
data storage 
data storage 
data storage 
data storage 

{ Table 7 .3 Restricted/Data Registers 

The C language does not support the concept of circular buffers. If your 
inline code or assembly language routine uses circular buffers you must 
set them up, use them, and reset the L registers to zero before returning to 
c. 
In general, you must save and restore any registers from either group if 
you use that register. In practice, you must save and restore any register 
from the reserved/ system group and you may determine (by examining a 
merged listing file) which registers from the restricted/ data group are 
used by earlier routines. 

DAG register usage in the code generated by C programs is quite different 
from the ADSP-2101 source code environment. This is because all I 
registers are automatically post-modified by the M register with which 
they are used. In C-generated code, M4 always contains the current frame 
pointer value and 14 contains the stack pointer value. 

Because the I registers are post-modified, an I register is not used as the 
frame pointer. Instead, M4 is used. Available I registers (15-17) are set up 
with an offset value from the frame pointer to access parameters and local 
variables on the stack. Consequently, the frame pointer register usage is 
virtually the opposite of the standard ADSP-2101 use. The M4 register 

7-13 



7 C Compiler 

7-14 

contains an address value and the Ix register contains the offset or modify 
value. This allows the M4 value to remain unchanged by the built-in post­
modify operation. 

Stack pointer maintenance uses I and M registers in a more conventional 
style. 14 always points to the next available location on the stack, again due 
to the post-modify behavior of the ADSP-2101 DAGs. MS is used 
exclusively to increment the stack pointer by one, which is equivalent to 
popping one value (the stack grows down from high memory). M7 is 
used to decrement the stack pointer address, equivalent to pushing. 

M6 is used in a variety of situations, primarily in conjunction with 
popping multiple locations off the stack. If, for example, there were ten 
local variables on the stack to be popped upon return, the M6 register 
would be loaded with the value ten and paired with the 14 register to 
modify it by this amount in a single instruction. 

7 .3.3 Interrupts 
Interrupts are not directly supported in the C environment. They 
must be handled via the #pragma ADSP2100 directive and hand coded. 
The run time header contains a default definition (just a return from 
interrupt, RTI, instruction) which you may change to conform to your 
interrupt structure; for example, calling a C function. 

7.3.4 Data Types 
The ADSP-2101 is a 16-bit machine with provisions for certain 32-bit 
operations. The arithmetic types supported directly are listed below. 
Note that fract is not a standard C type. All other data types are mapped 
onto these types. 

Name 
int 
long int 
unsigned int 
unsigned long int 
fract 
float 

Description 
16-bit twos complement value 
32-bit twos complement value 
16-bit unsigned value 
32-bit unsigned value 
16-bit fractional value (1.15 format) 
32-bit real 

Table 7.4 ADSP-2101 C Compiler Arithmetic Types 

The ADSP-2101 fractional type is described in the ADSP-:2101 User's 
Manual. Briefly, it is a fixed point number with 15 bits of significance 
whose range is always between ±1. If you assign a fract value to a fl.oat you 

/ 

,.·<··., 
I , 
~oj 



( 
C Compiler 7 

get a true floating-point value in the same range. You cannot convert 
values between fract and integer types. All operations that are valid for 
float are valid for fract. Whenever float and fract are mixed in expressions, 
all fract are converted to float before evaluation. 

The floating-point type, which is not a "native" data type for the 
processor, consists of a 16-bit mantissa and 16-bit exponent. The mantissa 
must be a twos complement fractional value. The exponent must be a twos 
complement integer value. The floating point value is equal to: 
mantissa x 2exp. All floating point numbers must be fully normalized; there 
must be no sign-bit extension. 

Decimal 
1.0 
3.0 
3.25 
0.0 
-2.0 

Exponent (hex) 
0001 
0002 
0002 
0000* 
0001 

Mantissa (hex) 
4000 
6000 
6800 
0000 
8000 

* Exponent of zero should be zero; in some instances the Compiler may 
pass zero floats with non-zero exponents. 

The next table lists all of the standard C language arithmetic and data 
types, and shows which ADSP-2101 type is used to represent them. 

Name 
int 
long int 
short int 
unsigned int 
unsigned long int 
char 
unsigned char 
float 
double 
long double 
fr act 
unsigned fract 
long fract 
unsigned long fract 
short fract 

Underlying Type 
int 
long int 
int 
unsigned int 
unsigned long int 
int 
unsigned int 
float 
float 
float 
fr act 
fr act 
fr act 
fr act 
fr act 

Table 7.5 C Language Types on ADSP-2100 family 

7-15 



7 C Compiler 

7-16 

7.3.5 Memory Usage 
Sixteen-bit values, obviously, require one word of ADSP-2101 storage 
whether on the stack or not. Thirty-two-bit values require two words and 
are stored with the LSW in lower memory and the the MSW in higher 
memory. 

For example, in a global scope, the C statement: 

long 1 = 52; 

produces the ADSP-2101 source: 

• VAR/RAM/DM l _ [ 2] ; 
.GLOBAL 1 ; 
.INIT l_: 52, 0; 

Note the use of the underscore 

When a 32-bit quantity is pushed onto the stack, its MSW is pushed first, 
followed by its LSW. Since the stack grows from high memory, the storage 
order on the stack is the same as for the global variable. 

Floating-point numbers are stored with the mantissa in low memory and 
the exponent in high memory. When pushed onto the stack, the exponent 
is pushed first, followed by the mantissa, resulting in the same memory 
relationship as for a global variable. 

7.3.6 Storage Classes & Modifiers 
The Compiler supports all standard storage classes, types and modifiers: 

Classes 
auto 
extern 
register 
static 
typedef 

Types 
all, including void 

Modifiers 
const 
volatile 
plus these extensions: 
pm 
dm 
ram 
rom 

Register variables are implemented as specified in the standard, namely as 
hints about processor register use. Specific register use is not guaranteed. 
The modifiers pm, dm, rom, and ram are provided to identify the storage 
location as either program or data memory and either ROM or RAM. In 
practice, only the pm and the rom modifiers are needed, since variables not 



( 
C Compiler 7 

on the stack are located in data memory by default and data memory is 
RAM by default. For example 

int pm i; 

defines an integer, i, located in program memory and 

const int rom pm ii; 

defines a constant, ii, to be located in program memory ROM. Note that 
the const modifier makes it a constant, not the rom modifier. 

The -gpm switch (if given when the Compiler is invoked) takes 
precedence over the modifiers above. 

7.3.7 Function Calling & Exit 
When a function is called, the following sequence of events takes place: 

Calling Function's Responsibility: 

1. The arguments are pushed onto the stack in reverse order. The last 
argument is pushed first and the first argument in the list is the last 
one pushed onto the stack. 

2. Call the function. 

3. Modify the stack pointer to remove the arguments from the stack. 

4. Pick up returned value (if any) from AXO or AXO,AXl registers. (see 
below) 

At step 2, above, control is passed to the called function. Here is the 
sequence of events within the called function: 

Called Function's Responsibility: 

1. Push old frame pointer onto the stack. 

2. Create local variables on the stack for use during function execution 

3. Save reserved/system registers and any restricted/data registers that 
will be used. 

7-17 



7 C Compiler 

7-18 

4. Execute the function's computation, reading arguments from the stack 
as needed. Store the result in the appropriate (AXO, AXl) register. 

5. Restore all saved registers. 

6. Release stack space used by locals during execution and restore 
previous frame pointer. 

7. Return control to calling function. 

When a function returns, its values (as distinct from any changes in its 
calling arguments) should be in ALU registers as shown below. 

Type of Value Returned 
All 16-bit values 

32-bit integers 

floating-point 

Register Used 
AXO 

AXOforLSW 
AXl for MSW 

AXO for exponent 
AXl for mantissa 

7.4 ASSEMBLY LANGUAGE INTERFACE SUMMARY 
With an understanding of the restrictions discussed in this chapter and an 
understanding of the ADSP-2101 instruction set, writing assembly 
language routines that are called from C programs is not difficult. 

7.4.1 Checklist of Prerequisites 
The material in this chapter details all of things you need to understand to 
successfully interface an assembly language routine to a C program. Here 
is a checklist of the things you should know: 

Topic 
Register Restrictions 
Stack Usage 
Passing Parameters 
Function Entry & Exit 
Returning Values 

Where Is It Covered? 
7.3.2 
7.3.1, 7.3.2 & 7.3.5 
7.3.7 
7.3.7 
7.3.7 



( 

c: 

C Compiler 7 

7.4.2 Assembly Language Interface Example 
The example shows how a simple function in ADSP-2101 source code is 
defined to properly interface to the C environment. 

int i,j,k; 
main() 
{ 

add(x,y) 
{ 

#pragma ADSP2100 

{ Function add (x,y) -
int x,y; 

Returns: z=x+y; 

dm(i4,m7)=ay0; 
dm(i4,m7)=ar; 

i6=1; 
modify (i6,m4); 
ax0=dm(i6,m5); 

ayO=dm(i6,m5); 
ar=axO+ayO; 
axO=ar; 

i6=-1; 

modify(i6, m4); 
ay0=dm(i6,m7); 
ar=dm(i6,m7); 

#pragma ADSP2100 
} 

save registers } 

get first parameter } 

mS=l, i6 points to 2nd parameter } 

get second parameter 
perform addition } 
return 16-bit values in axO } 

{ restore registers } 

7-19 



7 C Compiler 

7·-20 

7.5 LANGUAGE EXTENSIONS 
In addition to the pm, dm, ram, and rom modifiers, ADSP-210X C provides 
one new keyword: fastswitch. 

Fastswitch is syntactically identical to the switch statement. Semantically, 
however, fastswitch assumes that there is no default case. It is the 
programmer's responsibility to ensure that all possible cases are explicitly 
provided for. Fastswitch exists because it makes use of the 00 UNTIL 
looping capability of processor, while the normal switch statement cannot. 
In many instances, the use of fastswitch will result in significantly better 
performance. 

Note that use of fastswitch may be dangerous; if you miss a possible case, 
your program may become stuck in a loop or create some other error. The 
tables created for both switch and fastswitch can be optionally stored in 
program memory or ROM; see the section on Compiler switches in this 
chapter. 

7.6 PROGRAMMING HINTS 
Because of the inherent conflicts between the nature of a high-level 
language like C and the specialized architecture of processors like the 
ADSP-2101, a number of hints for programming approaches are given in 
this section as an aid to using the C language system. 

7 .6.1 Location Of Variables 
There are some restrictions on the location of pointers and the objects 
pointed to. Also, the way in which you declare variables in your C 
program has performance implications for the assembly code produced. 

Pointers and the objects they point to must be in the same memory space 
(program or data). If they are not, you must explicitly cast the pointer 
every time it is used to point to something in the other memory space. 



( 

C Compiler 7 

7.6.1.1 Globals in PM vs. Globals in DM 
Static/ global variables are located at fixed addresses in memory. 
However, accessing data memory is usually more efficient than accessing 
program memory because the ADSP-2101 cannot perform an immediate 
value write to program memory. Consequently, global variables declared 
with the pm modifier incur an overhead compared to variables located in 
data memory. 

The example shows two versions of C source, one with default global 
placement in data memory and the other with explicit pm placement, 
followed by the assembly code produced by each. 

C Source, Global Variable 
in Data Memory 
int i; 
m ( ) ; 
{ 

i=3; 

ADSP-2101 Source, Global Variable 
in Data Memory 
SI=3; 
DM(i_)=SI; 

ADSP-2101 Source, Global Variable 
in Program Memory 

C Source, Global Variable 
in Program Memory 
int pm i; 
m ( ) ; 

. { 

IS = "i_; 
SI=3; 
PM(IS, M6)=SI; 

{point to label/address} 
{load immediate to register} 
{write to pm} 

i=3; 

Figure 7.3 Global variable location: data memory vs. program memory 

7-21 



7 C Compiler 

7-22 

7.6.2 Location of Stack 
ADSP-2101 processors cannot write an immediate value to program 
memory. Immediate values must be loaded into a register before they can 
be written to program memory. Consequently, locating the stack in 
program memory incurs an overhead penalty of at least one additional 
instruction cycle for each stack access. 

The example shows the assembly source operations required to set up the 
function call in each memory. 

C Source, Function Call 
foo(l, 2, 3); 

ADSP-2101 Source, 
Stack in Data Memory 
DM ( I4 I M7) =3; 
DM(I4,M7) =2; 
DM ( I4, M7) =1; 
CALL foo; 

ADSP-2101 Source, 
Stack in Program Memory 
AX0=3; 
PM ( I4 I M7) =AXO; 
AX0=2; 
PM (I 4, M7) =AXO; 
AXO=l; 
PM(I4,M7) =AXO; 
CALL foo; 

Figure 7.4 Stack location: effect of data memory vs. program memory 

7.7 ERROR MESSAGES 
The Compiler produces error messages of three basic types: preprocessing 
errors, corrected syntax errors, and user errors. Assembler errors may 
occur as well if the Assembler is automatically invoked. The Compiler can 
also produce a message about Compiler errors, although you should 
never see such an error in practice. 

Preprocessor errors have the format: 

%PPERROR pp error number line number filename 
<-- error message --> 

PP error number is the preprocessor error number. Line number is the 
source code line number where the error occurred. Filename is the name of 
the file being compiled. The next line shows the actual error message. If 

/ •." 



( 

(-

C Compiler 7 

any preprocessor errors occur, the Compiler itself is not run. Here is an 
example of a preprocessor error report: 

%PPERROR [1] line 23 filename.c 
Argument count error 

The rest of the error messages take the following form: 

%CC - filename, line number: error type 

line of code where error was detected 
---------"----- error message 

Filename is the name of the file in which the error occurred. Line number 
specifies the line where the error was detected by the Compiler. Error type 
is one of the following: 

Corrected Syntax Error 
User Error 
Compiler Error 

The next line displayed is the actual line of C source code where the error 
is detected. The last line contains a pointer showing where the error is 
located in the line of code, and, following that, the specific error message 
itself. 

For example, if you fail to type a semicolon at the end of line 7 of your 
source code, you would see an error such as: 

%CC - dsp_sys.c, line 8: Corrected Syntax Error 

p = 9; ____ A___ Inserted ; 

(The missing semicolon is not actually detected until the beginning of the 
following line.) 

7-23 



7 C Compiler 

7-24 

If you attempt to use a variable which has not been declared, an error such 
as the following is reported: 

%CC - dsp_sys.c, line 14: User Error 

k = 2; _______ A___ k not defined in this scope 

7.7.1 Corrected Syntax Errors 
The Compiler has the capability to detect and correct most syntax errors, 
allowing the program to compile properly. It does not, however, make the 
corrections in your C source code file. You should take note of the errors 
and make the corrections in the source file yourself. 

A syntax error is one in which the C source does not conform to ANSI 
draft standard C. However, the Compiler does not support, look for, or 
warn about any "old" style C syntax. For example the C statement 

x =- 8; 

does not mean 

x = x - 8; 

as it did in older versions of the language. It simply means that the 
variable x is assigned the value -8. 

Because of the free form nature of the C language, syntax errors may not 
be detected until after the line on which they occur. For example, 

1 while (i} { 
2 j=i+j; 
3 p=i+p*2; 
4 foo(2,3,4} 
5 

gives rise to the error report: 

%CC - filename.c, line 5: Corrected Syntax Error 

---------"'--- Inserted ; 



( 
C Compiler 7 

In fact, the error is on line four, where the semiC<?lon was left off. 

If the syntax error or errors are too extensive to be corrected by the 
Compiler, a user error is reported and compiling is aborted. 

7.7.2 User Errors 
User errors flag improper usage of various kinds. Even with proper syntax 
it is possible to misuse a variable, use an undefined variable or violate the 
language in some other way. The error messages appearing in user errors 
are typically self-explanatory. 

7.7.3 Compiler Errors 
If you see this type of message, the Compiler has detected an internal 
error. Please make a note of the message displayed and contact Analog 
Devices Digital Signal Processing Division, Applications Engineering 
Group. See the copyright page of this manual for information on 
contacting Analog Devices. 

7.7.4 Exit Codes 
The Compiler returns an exit code to the operating system when it 
terminates. This code can be examined to determine whether or not to 
continue processing, such as when a batch file is used to automatically 
invoke the Assembler or Linker after compilation. 

Three exit codes are defined for the C Compiler: 

Exit Code 
0 
1 
4 

Meaning 
No errors encountered 
Errors encountered 
Corrected syntax errors occurred 

7-25 



7 c Compiler 

7-26 



( 

PROM Splitter B 8 

8.1 INTRODUCTION 
The ADSP-2101 PROM Splitter extracts the address information and the 
contents of the ROM portion of the Memory Image file (.EXE) and formats 
the extracted images for uploading to PROM burners. · 

The PROM Splitter creates output files for program, data, and boot 
memory. Three usable files are created for PM to organize the PROMs in 
word addresses corresponding to three-byte instructions. Two usable files 
are created for DM to organize any data PROMs in terms of two-byte data 
words. One usable file is created for BM, which is physically byte-wide 
(although organized internally in vertical groups of four bytes per word 
address). 

Both program and data memory can also be optionally output as a single 
stream of bytes for vertical rather than horizontal grouping of words in 
the PROMs. The PROM Splitter can format the PROM image files in 
Motorola S Record and Intel Hex Record. For one-byte wide files the 
Motorola 52 format is supported. 

8.2 RUNNING THE PROM SPLITIER 
To invoke the PROM Splitter from the host system, the command form is: 

SPL21 imagefile outfile -format -mem_area 

Imagefile is the main file name of the memory image file output of the 
Linker. The .EXE extension is always appended; therefore, the file must 
have this extension or the PROM Splitter cannot find it. 

Outfile is the main file name of the PROM image files. Different names 
should be used for the program, data, and boot memory files to avoid 
accidentally overwriting the previous run. 

There are two software switches: -format and-mem_area. 

8-1 



8 PROM Splitter 

-PM switch, 3 
usable files: 

Program 
Memory 
Output 
(.BNU) 

Program 
Memory 
Output 
(.BNM) 

Program 
Memory 
Output 
(.BNL) 

8-2 

Memory 
Image Fiie 

(.EXE) 

PROM SPLITTER 

Output may be any one of: 

-DM switch, 2 
usable flles: 

Data 
Memory 
Output 
(.BNL) 

Figure 8.1 PROM Splitter 1/0 

-BM switch, 1 
usable file: 

Boot 
Memory 
Output 
(.BNM) 

"u" format switch, 
single stream file: 

Program 
or Data 
Memory 
Output 
(.BNM) 



(-

( 

PROM Splitter 8 

-Format specifies the outfile PROM image record format and can be -s for 
Motorola S Record or -i for Intel Hex Record. For program and data 
memory only, the format may also be -us, -us2 or -ui for a single byte 
stream output file, as explained below. If no format is specified with this 
switch, the default is to Intel Hex. 

-Mem_area is set to be either -pm for program memory, -dm for data 
memory, or -bm for boot memory, and specifies which memory space the 
PROM image files generated are for. To create the PROM image files for 
each, run the PROM Splitter three times, specifying -pm, -dm, and -bm 

· once each, as in: 

SPL21 fir _sys pmburn -i -pm 

SPL21 fir _sys dmburn -i -dm 

SPL21 fir _sys bootburn -i -bm 

Again, remember that different outfile names must be specified for the 
-pm, -dm, and -bm runs. Otherwise the output files from one run may be 
overwritten by the output of successive runs. 

As many ADSP-2101 systems do not use any PROM-based program or 
data memory, the PROM Splitter is usually run only to create image files 
for boot memory PROMs. Thus the only invocation command needed in 
most cases is of the form: 

SPL21 fir _sys bootburn -bm 

(Format defaults to-i, Intel Hex Record). 

8.3 PROM SPLITTER OUTPUT 
The PROM Splitter generates three PROM image files when the -pm is set. 
These PROM image files take outfile as their root name and use the .BNU 
extension for the upper byte file, . BNM for the middle byte file, and . BNL 
for the lower byte file. When the-dm switch is set, the PROM Splitter 
generates two usable PROM image files. These files take outfile as their 
root name and use the .BNM extension for the upper byte file and .BNL 
for the lower byte file. The .BNU file is created but should be discarded. 

When the -bm switch is set, one usable PROM image file is created which 
contains all pages of boot memory, and which is named outfile.BNM. The 

8-3 



8 PROM Splitter 

8-4 

.BNU and .BNL files are created but can be deleted. Boot memory is 
always byte-wide and its contents are organized in vertical groups of four 
bytes (one word). The byte stream output from the PROM Splitter is 
arranged in such groups, with each group being filled from high-order 
byte to low-order byte of the word. The high-order byte is located at the 
lowest byte address of the four-byte group. 

The 32-bit words of boot memory consist of a 24-bit instruction padded 
with an extraneous fourth byte (OxFF); these pad bytes are ignored except 
for the first one of each page. The pad byte of the first word of each page 
is the page length for that page of boot memory. This page length is 
calculated by the PROM Splitter and inserted into the boot memory image 
file at these locations. For page 0 this value is located at PROM byte 
address Ox0003. 

Number of 24-bit instructions 
Page length = -1 

8 

(The number of instructions must be rounded up to a multiple of eight.) 

For example, a page length of zero indicates eight instruction words, 
residing in thirty-two sequential bytes. The maximum page length value 
of 255 indicates 2048 instruction words. (See the ADSP-2101 User's Manual 
for more information on memory interfacing.) 

Each boot page must contain a number of words which is a multiple of 
eight; the PROM Splitter adds extraneous words (OxFFFFFFFF) to the end 
of the page to assure this. For example, if a page has only 4 instructions, 4 
extraneou,s words are added by the PROM Splitter. 

The PROM Splitter can also generate a single image file for the u formats. 
This is possible only for program and data memory (not boot memory). 
The byte stream output from the PROM Splitter is arranged with the most 
significant byte for each location preceding the less significant byte(s), 
from the lower address to the higher address. The 24-bit words in 
program memory require a sequence of three bytes (1, 2, 3, 1, 2, 3, etc.), 
while the 16-bit words of data memory require a sequence of two bytes 
(1, 2, l, 2, etc.). Absolute address information is lost in this format. 

To create the byte-wide u format image, prefix a "u" to the format 
specified. The format switch now becomes -us, -us2 or-ui for Motorola S, 
Motorola 52 and Intel formats, respectively. The PROM image file takes 
outfile as its root name and .BNM as the extension. 



( 

( 

Instruction Set Reference • . 

9.1 OVERVIEW 
This chapter is a complete reference for the instruction set of the ADSP-
2101 microcomputer. It is organized by instruction group and, within each 
group, by individual instruction. The groups and individual instructions 
are in this order: 

ALU 
Add I Add with Carry 
Subtract X-Y I Subtract X-Y with Borrow 
Subtract Y-X I Subtract Y-X with Borrow 
AND, OR, Exclusive OR 
Pass I Clear 
Negate 
NOT 
Absolute Value 
Increment 
Decrement 
Divide 

MAC 
Multiply 
Multiply I Accumulate 
Multiply I Subtract 
Clear 
Transfer MR 
Conditional MR Saturation 

SHIFTER 
Arithmetic Shift 
Logical Shift 
Normalize 
Derive Exponent 

MOVE 
Register Move 
Load Register Immediate 
Data Memory Read (Direct Address) 
Data Memory Read (Indirect Address) 
Program Memory Read (Indirect Address) 
Data Memory Write (Direct Address) 
Data Memory Write (Indirect Address) 
Program Memory Write (Indirect Address) 

PROGRAM FLOW 
JUMP 
CALL 
JUMP or CALL on Flag In Pin 
Modify Flag Out Pin 
Return from Subroutine 
Return from Interrupt 
Do Until 
IDLE 

MISC 
Stack Control 
Mode Control 
Modify Address Register 
NOP 

MULTIFUNCTION 

9 

Block Exponent Adjust 
Arithmetic Shift Immediate 
Logical Shift Immediate 

ALU/MAC/SHIFT operation with Memory Read 
ALU/MAC/SHIFT operation with Data Register Move 
ALU/MAC/SHIFT operation with Memory Write 
Data & Program Memory Read 
ALU /MAC operation w I Data & Program Memory Read 

A page heading identifies the instruction group and individual instruction 
name. 

9-1 



9 Instruction Set Reference 

9-2 

9.2 CYCLE TIME NOTES 
All ADSP-2101 instructions can execute in a single clock period. (The term 
cycle is used to denote both instruction and clock cycle for the ADSP-2101 
for this reason.) Consequently, there is no cycle time information given in 
the description of any individual instruction. There are, however, some 
conditions under which an instruction cannot be completed in a single 
cycle, or an extra cycle is inserted between instructions. 

9.2.1 ADSP-2101 Extra Cycle Conditions 
There are two conditions that require one or more extra clock cycles to 
complete an instruction for the ADSP-2101: external memory wait states 
and multiple off-chip memory accesses. 

Memory wait states are programmable, as described in the ADSP-2101 
User's Manual. From one to seven extra clock cycles may be added to any 
external data or program memory access. 

Because the address and data buses are multiplexed off-chip, the ADSP-
2101 can execute one off-chip memory access per instruction with no 
penalty (other than any wait states inserted, as above). When multiple 
accesses of off-chip memory are required for one instruction, extra cycles 
are required. For example, to fetch both an instruction and a data memory 
value from off-chip requires one extra cycle. 

While the two cases described above require extra clock cycles during the 
execution of an instruction, two other processor operations cause the 
insertion of extra cycles between instructions. The two operations are the 
autobuffering feature of serial communications and interrupt handling. 

If the autobuffering feature of serial communications is being used to 
transfer individual data words to or from data memory, then one memory 
access (requiring 1-8 clock cycles) is "stolen" for each transfer. The timing 
of this transfer is a function of the rate of serial communication, and is not 
under direct program control. The stolen memory access occurs only 
between complete instructions, never between multiple cycles required to 
complete an instruction. For example, the serial communications 
controller waits until a data memory access with wait states is complete 
before "stealing" the cycle(s) it needs. 

When an interrupt occurs during the execution of an instruction, the 
instruction is not completed. A NOP cycle is inserted instead, and the 



( 

Instruction Set Reference 9 

address of the aborted instruction is stored as the return address for the 
main program. This NOP, which is followed by a jump to the interrupt­
handling routine, is the extra cycle in this case. 

9.3 INSTRUCTION SYNTAX NOTATION 
The following notation is used in the syntax discussions: 

Square Brackets [] 

Parallel Lines I 

Anything within square brackets is an optional part 
of the instruction statement. 

Lists of parameters enclosed by parallel vertical 
lines require the choice of one parameter from 
among the operands listed. If the parallel lines are 
within brackets, then that operand is optional for 
that instruction. 

CAPITAL LETfERS denote a literal in the program statement. These are 
instruction words, register names and operand 
selections to be coded as shown. 

parameters 

<exp> 

<data> 

<addr> 

are shown in small letters and denote an operand 
in the instruction for which there are numerous 
choices. For example, the parameter yap might have 
as its choices in the actual instruction: MYO, MYl or 
MF. These choices are shown for each instruction. 

in Shift Immediate instructions, stands for any 
constant, used as the exponent or shift value. 

stands for any constant or an identifier referenced 
by the '%' and '/\/ operators. 

denotes an immediate value of an address to be 
coded in the instruction. "Addr" may be either an 
immediate value or a LABEL. Immediate values 
may be expressed in binary, octal, hexadecimal or 
decimal format. If no explicit format designator is 
used, the default is decimal. 

9-3 



9 Instruction Set Reference 

9-4 

immediate values may be any constant in any of the formats shown in 
Appendix E, examples below. Decimal is the 
default format. 

binary 
octal 
hexadecimal 

decimal 

B#10110101010 
017747 
Ox7F4B or H#7F4B 

1949 

9.3.1 Punctuation & Multifunction Instructions 

(prefix B#) 
(prefix 0) 
(prefix Ox 
orH#) 
(no prefix) 

All instructions terminate with a semicolon. A comma separates the 
clauses of a multifunction instruction but does not terminate it. For 
example, the statements below in Example A create one instruction 
(defined to execute in one instruction cycle). Example B creates two 
instructions, requiring two separate instruction cycles. 

Example A, One multifunction instruction: 

AXO = DM(IO, MO), 
AYO= PM(I4, M4); 

Example B, Two separate instructions: 

AXO = DM(IO, MO); 
AYO= PM(I4, M4); 

9.3.2 Syntax Notation Example 

(comma) 

(semicolon) 

Here is an example of one instruction, the ALU Add/ Add with Carry 
instruction: 

[ IF cond ] AR = xop + 
AF 

yop 
c 
yop+C 

Below this is a list of the permissible conds, xops and yops. The conditional 
clause is enclosed in square brackets indicating that it is optional. 

The destination register for the add operation must be either AR or AF. 
They are within vertical parallel lines, and one of them must be chosen 
since there are no brackets (which would signal an optional operand). 



( 

( 

Instruction Set Reference 9 

Similarly, the yap term may consist of a Y operand, the carry bit literal, or 
the sum of both. One of the three expressions must be used. 

9.3.3 Status Notation 
The following notation is used in the discussion of the effect each 
instruction has on the status word(s): 

An asterisk indicates a bit in the status word that is changed by 
the execution of this instruction. 

A dash indicates that this bit is not affected by the instruction. 

0 or 1 Indicates that a bit is unconditionally cleared or set by the 
instruction. 

For example, the status word AST AT is shown below: 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

• 0 

In this example, the MV bit is affected. It may be set or cleared. An 
explanation of the conditions leading to each outcome always follows this 
chart. 

The AV bit is always cleared in this example. 

All other bits are unaffected. 

For a complete definition of the status register bits, refer to ADSP-2101 
User's Manual. 

9.3.4 Instruction Word Notation 
At the end of each individual instruction definition, the 24-bit format of 
the assembled opcode is shown. In general, this section uses the same 
parameter identifiers, such as yap, as the instruction syntax itself. 

0 and 1 denote specific bits in the instruction word 

vertical bars are separators between fields or bits, and are added 
only for clarity. 

9-5 



9 Instruction Set Reference 

9-6 

Here is an example of the instruction word format for the ALU instruction 
Add I Add with Carry: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0 J z J AMF J Yop J Xop J 0 0 0 0 J COND 

This is followed by an explanation of the meaning of each parameter. Z, 
for example, selects the destination register (AR or AF). AMF denotes the 
ALU or MAC function. A list of the two different opcodes for Add and 
Add with Carry follow this section. Finally, the terms Yop, Xop and COND 
have the same meaning as in the higher level syntax of the instruction. 

Appendix A is a listing of opcodes for each instruction type. This 
appendix also defines the bit patterns of each parameter field. 



( 

( 

ALU 
ADD I ADD with CARRY 

Syntax: [ IF cond ] I ~ I = xop +yop 
+C 
+yop+C 

Permissible xops 
AXO MR2 
AXl MRl 
AR MRO 

SRl 
SRO 

Example: 

Permissible yaps 
AYO 
AYl 
AF 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

IF EQ AR = AXO + A YO + C; 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and, if true, ~rform the 
specified addition. H false then perform a no-operation. Omitting the 
condition performs the addition unconditionally. The addition operation 
adds the first source operand to the second source operand along with the 
ALU carry bit, AC, (if designated by the "+C" notation), using binary 
addition. The result is stored in the destination location. The operands are 
contained in the data registers specified in the instruction. 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
* * * * 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Set if an arithmetic overflow occurs. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5~4 3 2 1 0 
0 0 1 0 0 l Z l AMF ] Y op ] Xop ] 0 0 0 0] COND 

AMF specifies the ALU or MAC operation, in this case: 
AMF= 10010 for xop + yop + C operation 
AMF = 10011 for xop + yop 

Note that xop + C is a special case of xop + yop + C with yop = 0 

Z: 
)\op: 

Destination register 
Xoperand 

Yop: Y operand 
COND: condition 

9 

9-7 



9 

9-8 

ALU 
SUBTRACT X·Y I SUBTRACT X·Y with BORROW 

Syntax: [ IF cond ] 11~ j = xop I -yop I 
-yop+C-1 

Permissible xops 
AXO MR2 
AXl MRl 
AR MRO 

SRl 
SRO 

Example: 

Permissible yops 
AYO 
AYl 
AF 

IF GE AR = AXO - A YO; 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and, if true, then perform the 
specified subtraction. If the condition is not true then perform a no­
operation. Omitting the condition performs the subtraction 
unconditionally. The subtraction operation subtracts the second source 
operand from the first source operand, and optionally adds the ALU 
Carry bit (AC) minus 1 (H#OOOl), and stores the result in the destination 
location. The (C-1) quantity effectively implements a borrow capability for 
multiprecision subtractions. The operands are contained in the data 
registers specified in the instruction. 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
* * * * 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Set if an arithmetic overflow occurs. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 

Instruction Format: 
Conditional ALU/MAC operation, Instruction type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 O O [ z J AMF J Yop l Xop l O O 0 O l COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 10110 for xop - yop + C - 1 operation. 
AMF = 10111 for xop - yop operation. 

Z: 
Xop: 

Destination register 
X operand 

Yop: Y operand 
COND: condition 



( 

ALU 
SUBTRACT Y·X I SUBTRACT Y·X with BORROW 

Syntax: [ IF cond ] I AR I = yop - I xop I 
AF xop+C-1 

Permissible xops 
AXO MR2 
AX1 MR1 
AR MRO 

SR1 
SRO 

Example: 

Permissible yops 
AYO 
AY1 
AF 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

IF GT AR = AYO - AXO + C - 1; 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and, if true, then perform the 
specified subtraction. If tne condition is not true then perform a no­
operation. Omitting the condition performs the subtraction 
unconditionally. The subtraction operation subtracts the second source 
operand from the first source operand, optionally adds the ALU Carry bit 
(AC) minus 1 (H#0001), and stores the result in the destination location. 
The (C-1) quantity effectively implements a borrow capability for 
multiprecision subtractions. The operands are contained in the data 
registers specified in the instruction. 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Set if an arithmetic overflow occurs. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0 T z T AMF l Yop } Xop }O 0 0 O I COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 11010 for yop - xop + C -1 operation. 
AMF= 11001 for yop - xop operation. 

Z: 
Xop: 

Destination register 
Xoperand 

Yop: Y operand 
COND: condition 

9 

9-9 



9 

9-10 

ALU 
AND, OR, XOR 

Syntax: [IF cond] 
\ ~~ j = xop AND 

OR 
XOR 

Permissible xops 
AXO MR2 
AX1 MR1 
AR MRO 

SR1 
SRO 

Example: 

Permissible yops 
AYO 
AY1 
AF 

AR= AXO XOR A YO; 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

yop 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and if true, then perform the 
specified bitwise logical operation (logical AND, Inclusive OR, or 
EXCLUSIVE OR). If the condition is not true then perform a no-operation. 
Omitting the condition performs the logical operation unconditionally. 
The operands are contained in the data registers specified in the 
instruction. 

Status Generated: 
ASTAT: 7 6 5 4 

SS MV AQ AS 
3 2 1 0 
AC AV AN AZ 
0 0 * * 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Always cleared. 
AC Always cleared. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0 l Z 1 AMF ] Yop ] Xop l 0 0 0 o[ COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 11100 for AND operation. 
AMF= 11101 for OR operation. 

AMF= 11110 for XOR operation. 

Z: 
Xop: 

Destination register 
Xoperand 

Yop: Y operand 
COND: condition 



(-

(~-

' . 

ALU g 
PASS/ CLEAR 

Syntax: [IF cond] \~\ = PASS I xop I 
yop 

Permissible xops Permissible yops Permissible conds 
AXO MR2 AYO EQ LE AC 
AXl MRl AYl NE NEG NOT AC 
AR MRO AF GT POS MV 

SRl 0, 1 GE AV NOTMV 
SRO LT NOT AV NOT CE 

Example: IF GE AR = PASS A YO; 

Description: Test the optional condition and if true, pass the source 
operand unmodified through the ALU block and store in the destination 
location. If the condition is not true perform a no-operation. Omitting the 
condition performs the PASS unconditionally. The source operand is 
contained in the data registers specified in the instruction. 

The PASS instruction performs the transfer to the AR register and affects 
the status flag; this instruction is different from a register move operation 
which does not affect any status flags. PASS 0 is the best method of 
clearing AR; it can also be done in a multifunction instruction in 
conjunction with memory reads and writes. The 1 argument is H#OOOl. 

Status Generated: 
ASTAT: 7 6 5 4 3 

SS MV AQ AS AC 
0 

2 1 0 
AV AN AZ 
0 * * 

AZ Set if the result equals zero. Cleared otherwise. 
AN_ Set if the result is negative. Cleared otherwise. 
AV Always cleared. 
AC Always cleared. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0] Z] AMF 1 Yop 1 Xop 10 0 0 01 COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 10000 for PASS yop operation. 
AMF = 10011 for PASS xop operation. 

Note that PASS xop is a special case of xop + yop, with yop specified as 0. 
Z: Destination register Yop: Y operand 
Xop: X operand COND: condition 

9-11 



9 

9-12 

ALU 
NEGATE 

Syntax: [ IF cond ] I ~~ I = - I ~~~ I ; 

Permissible xops 
AXO MR2 
AXl MRl 
AR MRO 

SRl 
SRO 

Example: 

Permissible yops 
AYO 
AYl 
AF 

IF LT AR =-AYO; 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and if true, then NEGATE the 
source operand and store in the destination location. If the condition is not 
true then perform a no-operation. Omitting the condition performs the 
NEGATE operation unconditionally. The source operand is contained in 
the data register specified in the instruction. 

Status Generated: 
ASTAT: 7 6 5 4 3 

SS MV AQ AS AC 
0 

2 1 0 
AV AN AZ 
... ... ... 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Set if operand = H#SOOO. Cleared otherwise. 
AC Always cleared. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0] z J AMF 1 Yop ] Xop ] 0 0 0 0] COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 10101 for-yop operation. 
AMF= 11001 for - xop operation 

Note that -xop is a special case of yop-xop, with yop specified to be 0. 

Z: 
Xop: 

Destination register 
Xoperand 

Yop: Y operand 
COND: condition 



( 

( 

Syntax: I ~~I = NOT I xop I ; 
yop 

[IF cond] 

Permissible xops 
AXO MR2 
AX1 MR1 
AR MRO 

SR1 
SRO 

Example: 

Permissible yops 
AYO 
AY1 
AF 
0 

IF NE AF = NOT AXO; 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

ALU 
NOT 

Description: Test the optional condition and if true, then perform the 
logical complement (ones complement) of the source operand and store in 
the destination location. If the condition is not true then perform a no­
operation. Omitting the condition performs the complement operation 
unconditionally. The source operand is contained in the data register 
specified in the instruction. 

Status Generated: 
ASTAT: 7 6 5 4 

SS MV AQ AS 
3 2 1 0 
AC AV AN AZ 
0 0 * * 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Always cleared. 
AC Always cleared. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 01 z l AMF l Yop 1 Xop ] 0 0 0 0] COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 10100 for NOT yop operation. 
AMF= 11011 for NOT xop operation. 

Z: 
Xop: 

Destination register 
Xoperand 

Yop: Y operand 
COND: condition 

9 

9-13 



9 

9-14 

ALU 
ABSOLUTE VALUE 

Syntax: [ IF cond ] I ~ I 

Permissible xops 
AXO MR2 
AXl MRl 
AR MRO 

SRl 
SRO 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOTAV 

= ABS xop 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Example: IF NEG AF = ABS AXO ; 

Description: Test the optional condition and, if true, then take the 
absolute value of the source operand and store in the destination location. 
If the condition is not true then perform a no-operation. Omitting the 
condition performs the absolute value operation unconditionally. The 
source operand is contained in the data register specified in the 
instruction. 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
... 0 ... ... ... 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if xop is H#8000. Cleared otherwise. 
AV Set if xop is H#8000. Cleared otherwise. 
AC Always cleared. 
AS Set if the source operand is negative. Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 I z J AMF J 0 0 J Xop J 0 0 0 OJ COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 11111 for ABS xop operation. 

Z: 
Xop: 

Destination register 
Xoperand COND: condition 



(_/ 

Syntax: [ IF cond ] \ ~~ j = yop + 1 ; 

Permissible yops 
AYO 
AY1 
AF 

Example: 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOTAV 

IF GT AF = AF + 1; 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

ALU 9 
INCREMENT 

Description: Test the optional condition and if true, then increment the 
source operand by H#0001 and store in the destination location. If the 
condition is not true then perform a no-operation. Omitting the condition 
performs the increment operation unconditionally. The source operand is 
contained in the data register specified in the instruction. This operation 
enables setting AR or AF to + 1 by selecting yop = 0. 

( Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
* * * * 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Set if an overflow is generated. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 

0 0 1 0 0 l z J AMF J Yop J Xop J 0 0 0 0 J COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 10001 for yop + 1 operation. 

Note that the xop field is ignored for the increment operation. 

Z: 
Xop: 

Destination register 
Xoperand 

Yop: Y operand 
COND: condition 

9-15 



9 

9-16 

ALU 
DECREMENT 

Syntax: [ IF cond ] I ~ I = yop - 1 ; 

Permissible yops 
AYO 
AYl 
AF 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOTAV 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Example: IF EQ AR = A Yl - 1 ; 

Description: Test the optional condition and if true, then decrement the 
source operand by H#OOOl and store in the destination location. If the 
condition is not true then perform a no-operation.Omitting the condition 
performs the decrement operation unconditionally. The source operand is 
contained in the data register specified in the instruction. This operation 
enables setting AR or AF to -1 by selecting yop = 0. 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
* * * * 

AZ Set if the result equals zero. Cleared otherwise. 
AN Set if the result is negative. Cleared otherwise. 
AV Set if an overflow is generated. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 01 z l AMF l Yop 1 Xop 10 0 0 0] COND 

AMF specifies the ALU or MAC operation. In this case, 
AMF= 11000 for yop-1 operation. 

Note that the xop field is ignored for the decrement operation. 

Z: 
Xop: 

Destination register 
Xoperand 

Yop: Y operand 
COND: condition 

(' 
I I 
\__ / I 



( 

ALU 9 
DIVIDE 

Syntax: DIVS yop , xop ; 
DIVQ xop; 

Permissible xaps 
AXO MR2 
AX1 MR1 
AR MRO 

SR1 
SRO 

Permissible yaps 
AY1 
AF 

Description: These instructions implement yap I xap. There are two 
divide primitives, DIVS and DIVQ. A single precision divide, with a 32-bit 
numerator and a 16-bit denominator, yielding a 16-bit quotient, executes 
in 16 cycles. Higher precision divides are also possible. 

The division can be either signed or unsigned, but both the numerator and 
denominator must be the same; both signed or unsigned. The programmer 
sets up the divide by sorting the upper half of the numerator in any 
permissible yap (AY1 or AF), the lower half of the numerator in AYO, and 
the denominator in any permissible xap. The divide operation is then 
executed with the divide primitives, DIVS and DIVQ. Repeated execution 
of DIVQ implements a non-restoring conditional add-subtract division 
algorithm. At the conclusion of the divide operation the quotient will be in 
AYO. 

To implement a signed divide, first execute the DIVS instruction once, 
which computes the sign of the quotient. Then execute the DIVQ 
instruction for as many times as there are bits remaining in the quotient 
(e.g., for a signed, single-precision divide, execute DIVS once and DIVQ 15 
times). 

To implement an unsigned divide, first place the upper half of the 
numerator in AF, then initialize the AQ bit to zero by manually clearing it 
in the Arithmetic Status Register, ASTAT. This indicates that the sign of 
the quotient is positive. Then execute the DIVQ instruction for as many 
times as there are bits in the quotient (e.g., for an unsigned single­
precision divide, execute DIVQ 16 times). 

The quotient bit generated on each execution of DIVS and DIVQ is the AQ 
bit which is written to the ASTAT register at the end of each cycle. The 
final remainder produced by this algorithm (and left over in the AF 
register) is not valid and must be corrected if it is needed. For more 
information, consult Appendix B, "Division Exceptions," in your User's 
Manual. 

9-17 



9 

9-18 

ALU 
DIVIDE 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ .. 
AQ Loaded with the bit value equal to the AQ bit computed on each 

cycle from execution of the DIVS or DIVQ instruction. 

AC These bits may change during execution of DIVS or DIVQ 
instruction; 

AV however, the bit values are meaningless and should be ignored. 
AN 
AZ 

Instruction Format: 
DIVQ, Instruction Type 23: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
o o o o o 1 1 1 o o o 1 ol xop Jo o o o o o o o 

DIVS, Instruction Type 24: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 1 6 5 4 3 2 1 0 
O O O O O 1 1 o o o o Yop l Xop lo o o o o o o o 

Xop: Xoperand Yop: Yoperand 



( 

( 

Syntax: 

Permissible xops 
MXO AR 
MXl SRl 
MR2 SRO 
MRl 
MRO 

Example: 

[IF cond] MR 
MF 

Permissible yaps 
MYO 
MYl 
MF 

= xop *yop 

MAC 
MULTIPLY 

(SS) 
(SU) 
(US) 
(UU) 
(RND) 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

IF EQ MR= MXO *MF (UU); 

Description: Test the optional condition and, if true, then multiply the 
two source operands and store in the destination location. If the condition 
is not true perform a no-operation. Omitting the condition performs the 
multiplication unconditionally. The operands are contained in the data 
registers specified in the instruction. When MF is the destination operand, 
only bits 31-16 of the product are stored in MF. 

The data format selection field following the two operands specifies 
whether each respective operand is in Signed (S) or Unsigned (U) format. 
The xop is specified first and yop is second. There is no default; one of the 
data formats must be specified. 

If RND (Round) is specified, the MAC multiplies the two source operands, 
rounds the result to the most significant 24 bits (or rounds bits 31-16 to 16 
bits if there is no overflow from the multiply), and stores the result in the 
destination location. The two multiplication operands xop and yop are 
considered to be in twos complement format. All rounding is unbiased. 
For a discussion of unbiased rounding, see "Rounding Mode" in the 
''Multiplier I Accumulator" section of the ADSP-2101 User's Manual. 

Status Generated: 
ASTAT: 

MV 

7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

* 

Set on MAC overflow (if any of upper 9 bits of MR are not 
all one or zero). Cleared otherwise. 

9 

9-19 



9 

9-20 

MAC 
MULTIPLY 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 J z J AMF J Yop J Xop I 0 0 0 0 J COND 

AMF: Specifies the ALU or MAC Operation. In this case, 

AMF FUNCTION Data Format X-Operand ¥-Operand 
00100 xop * yop (SS) Signed Signed 
00101 xop * yop (SU) Signed Unsigned 
00110 xop *yop (US) Unsigned Signed 
00111 xop * yop (UU) Unsigned Unsigned 
00001 xop * yop (RND) Signed Signed 

Z: Destination register Yop: Yoperand 
Xop: Xoperand COND: condition 



( 
MAC g 

MULTIPLY I ACCUMULATE 

Syntax: [IF cond] 1:1 =MR+ xop * yop (SS) 
(SU) 
(US) 
(UU) 
(RND) 

Permissible xops Permissi~le yops Permissible conds 
MXO AR MYO EQ LE AC 
MXl SRl MYl NE NEG NOT AC 
MR2 SRO MF GT POS MV 
MRl GE AV NOTMV 
MRO LT NOT AV NOT CE 

Example: IFGE MR =MR +MXO*MYl (SS); 

Description: Test the optional condition and, if true, then multiply the 
two source operands, adcf the product to the present contents of tlie MR 
register, and store the result in the destination location. If the condition is 
not true then perform a no-operation. Omitting the condition performs the 
multiply I accumulate unconditionally. The operands are contained in the 
data registers specified in the instruction. When MF is the destination 
operand, only bits 31-16 of the 40-bit result are stored in MF. 

The data format selection field to the right of the two operands specifies 
whether each respective operand is in signed (S) or unsigned (U) format. 
The X operand is specified first and Y operand is second. There is no 
default. A data format must be specified. 

If RND (Round) is specified, the MAC multiplies the two source operands, 
adds the product to the current contents of the MR register, rounds the 
result to the most significant 24 bits (or rounds bits 31-16 to the nearest 16 
bits if there is no overflow from the multiply /accumulate), and stores the 
result in the destination location. The two multiplication operands xop and 
yop are considered to be in signed twos complement format. All rounding 
is unbiased. For a discussion of unbiased rounding, see "Rounding Mode" 
in the "Multiplier I Accumulator" section of the ADSP-2101 User's Manual. 

9-21 



9 

9-22 

MAC 
MULTIPLY I ACCUMULATE 

Status Generated: 
AST AT: 

MV 

7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ .. 
Set on MAC overflow (if any of upper 9 bits of MR are not 
all one or zero). Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0] z] AMF J Yop J Xop ] 0 0 0 0 I COND 

AMF: Specifies the ALU or MAC Operation. In this case, 

AMF FUNCTION Data Format X-Operand ¥-Operand 
01000 MR+xop *yop (SS) Signed Signed 
01001 MR+xop *yop (SU) Signed Unsigned 
01010 MR+xop *yop (US) Unsigned Signed 
01011 MR+xop*yop (UU) Unsigned Unsigned 
00010 MR+xop *yop (RND) Signed Signed 

Z: Destination register Yop: Yoperand 
Xop: Xoperand COND: condition 



( 

Syntax: 

Permissible xops 
MXO AR 
MXl SRl 
MR2 SRO 
MRl 
MRO 

Example: 

MAC 
MULTIPLY I SUBTRACT 

[ IF cond ] I ~~ I = MR - xop * yop (SS) 
(SU) 
(US) 
(UU) 
(RND) 

Permissible yops 
MYO 
MYl 
MF 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

IF LT MR= MR-MXl *MYO (SU); 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and, if true, then multiply the 
two source operands, subtract the product from the present contents of 
the MR register, and store the result in the destination location. If the 
condition is not true perform a no-operation. Omitting the condition 
performs the multiply I subtract unconditionally. The operands are 
contained in the data registers specified in the instruction. When MF is the 
destination operand, only bits 16-31 of the 40-bit result are stored in MF. 

The data format selection field to the right of the two operands specifies 
whether each respective operand is in signed (S) or unsigned (U) format. 
The X operand is specified first and Y operand is second. There is no 
default; a data format must be specified. 

If RND (Round) is specified, the MAC multiplies the two source operands, 
subtracts the product from the current contents of the MR register, rounds 
the result to the most significant 24 bits (or rounds bits 31-16 to 16 bits if 
there is no overflow from the multiply/accumulate), and stores the result 
in the destination location. The two multiplication operands xop and yop 
are considered to be in signed twos complement format. All rounding is 
unbiased. For a discussion of unbiased rounding, see "Rounding Mode" 
in the "Multiplier I Accumulator" section of the ADSP-2101 User's Manual. 

9 

9-23 



9 

9-24 

MAC 
MULTIPLY I SUBTRACT 

Status Generated: 
AST AT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
* 

MV Set on MAC overflow (if any of the upper 9 bits of MR are 
not all one or zero). Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0 J z] AMF ] Yop J Xop J 0 0 0 0] COND 

AMF: Specifies the ALU or MAC Operation. In this case, 

AMF FUNCTION Data Format X-Operand ¥-Operand 
01100 MR-xop *yop (SS) Signed Signed 
01101 MR-xop *yop (SU) Signed Unsigned 
01110 MR-xop*yop (US) Unsigned Signed 
01111 MR-xop*yop (UU) Unsigned Unsigned 
00011 MR-xop*yop (RND) Signed Signed 

Z: Destination register Yop: Yoperand 
Xop: X operand COND: condition 



:( 

( 

MAC 9 
CLEAR 

Syntax: [IF cond] 

Permissible conds 
EQ NE 
LE NEG 
AC NOT AC 

GT 
POS 
MV 

Example: IF GT MR= O; 

= 0 ; 

GE 
AV 
NOTMV 

LT 
NOT AV 
NOT CE 

Description: Test the optional condition and, if true, then set the 
specified register to zero. If the condition is not true perform a no­
operation. Omitting the condition performs the clear unconditionally. The 
entire 40-bit MR or 16-bit MF register is cleared to zero. 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
0 

MV Always cleared. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 0 l Z l AMF ] 1 1 ] 0 0 0] 0 0 0 0] COND 

AMF: Specifies the ALU or MAC Operation. In this case, 
AMF= 00100 for clear operation. 

Z: Destination register COND: condition 

9-25 



9 

9-26 

MAC 
TRANSFER MR 

Syntax: [IF cond] = MR [ (RND) ] ; 

Permissible conds 
EQ NE 
LE NEG 
AC NOT AC 

GT GE 
POS AV 
MV NOTMV 

Example: IF EQ MF= MR (RND); 

LT 
NOT AV 
NOT CE 

Description: Test the optional condition and, if true, then perform the 
MR transfer according to the description below. If the condition is not true 
then perform a no-operation. Omitting the condition performs the transfer 
unconditionally. 

This transfer operation actually performs a multiply I accumulate, 
specifying yop = 0 as a multiplicand and adding the zero product to the 
contents of MR. The MR register may be optionally rounded at the 
boundary between bits 15 and 16 of the result by specifying the RND 
option. H MF is specified as the destination, bits 31-16 of the result are \ , 
stored in MF. If MR is the destination, the entire 40-bit result is stored in 
MR. 

Status Generated: 
ASTAT: 

MV 

7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

... 

Set on MAC overflow (if any of upper 9 bits of MR are not 
all one or zero). Cleared otherwise. 

Instruction Format: 
Conditional ALU /MAC Operation, Instruction Type 9: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 0 0 J z J AMF J 1 1 J Xop J 0 0 0 OJ COND 

AMF: Specifies the ALU or MAC Operation. In this case, 
AMF= 01000 designates MR+ xop*yop (SS). The yop is selected to be 

zero;xopisignored. 

Z: 
Xop: 

Destination register 
Xoperand COND: condition 

/,,;~- ·~.\ 

:, I 

'-..,j 



(_ 

( 

(~) 

MAC 9 
CONDITIONAL MR SATURATION 

Syntax: IFMVSATMR; 

Description: Test the MV (MAC Overflow) bit in the Arithmetic Status 
Register (ASTAT), and if set, then saturate the lower-order 32 bits of the 
40-bit MR register; if the MV is not set then perform a no-operation. 

Saturation of MR is executed with this instruction for one cycle only; MAC 
saturation is not a continuous mode that is enabled or disabled. The 
saturation instruction is intended to be used at the completion of a series 
of multiply I accumulate operations so that temporary overflows do not 
cause the accumulator to saturate. 

The saturation result depends on the state of MV and on the sign of MR 
(the MSB of MR2). The possible results after execution of the saturation 
instruction are shown in the table below. 

MV MSB of MR2 MR contents after saturation 

0 
0 
1 
1 

0 
1 
0 
1 

No change 
No change 
00000000 0111111111111111 1111111111111111 
11111111 1000000000000000 0000000000000000 

Status Generated: No status bits affected. 

Instruction Format: 
Saturate MR operation, Instruction Type 25: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9-27 



9 

9-28 

SHIFTER 
ARITHMETIC SHIFT 

Syntax: [ IF cond ) SR = [SR OR] ASIDFT xop 

Permissible xops 
SI AR 
SR1 MR2 
SRO MR1 

MRO 

Permissible conds 
EQ LE 
NE NEG 
GT POS 
GE AV 
LT NOT AV 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Example: IF LT SR = SR OR ASIDFT SI (LO); 

I 
CHI) I 
(LO) I 

Description: Test the optional condition and, if true, then perform the 
designated arithmetic shift. If the condition is not true then perform a no­
operation. Omitting the condition performs the shift unconditionally. The 
operation arithmetically shifts the bits of the operand by the amount and 
direction specified in the Shift Code from the SE register. Positive Shift 
Codes cause a left shift (upshift) and negative Codes cause a right shift 
( downshift). · 

The shift may be referenced to the upper half of the output field (HI 
option) or to the lower half (LO option). The shift output may be logically 
ORed with the present contents of the SR register by selecting the SR OR 
option. 

For ASHIFT with a positive Shift Code (i.e. positive value in SE), the 
operand is shifted left; with a negative Shift Code (i.e. negative value in 
SE), the operand is shifted right. The number of positions shifted is the 
count in the Shift Code. The 32-bit output field is sign-extended to the left 
(the MSB of the input is replicated to the left), and the output is zero-filled 
from the right. Bits shifted out of the high order bit in the 32-bit 
destination field (SR.) are dropped. Bits shifted out of the low order bit in 
the destination field (SR.) are dropped. 

To shift a double precision number, the same Shift Code is used for both 
halves of the number. On the first cycle, the upper half of the number is 
shifted using the HI and PASS options; then on the second cycle, the lower 
half of the number is shifted using the LO and OR options. 

Status Generated: None affected. 



( 

( 

Instruction Format: 

SHIFTER 
ARITHMETIC SHIFT 

Conditional Shift Operation, Instruction Type 16: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 1 O 0 I SF J Xop J 0 0 0 0 J COND 

SF Shifter Function 
0 1 0 0 ASHIFI' (HI, PASS) 
0 1 0 1 ASHIFI' (HI, OR) 
0 1 1 0 ASHIFf (LO, PASS) 
0 1 1 1 ASHIFf (LO, OR) 

Xop: shifter operand COND: condition 

9 

9-29 



9 

9-30 

SHIFTER 
LOGICAL SHIFT 

Syntax: [IF cond] SR = [SR OR] LSHIFf xop I (HI) \; 
(LO) 

Permissible xops Permissible conds 
SI AR EQ LE 
SR1 MR2 NE NEG 
SRO MR1 GT POS 

MRO GE AV 
LT NOT AV 

Example: IF GE SR = LSHIFT SI (HI) ; 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and, if true, then perform the 
designated logical shift. If the condition is not true then perform a no­
operation. Omitting the condition performs the shift unconditionally. The 
operation logically shifts the bits of the operand by the amount and 
direction specified in the Shift Code from the SE register. Positive Shift 
Codes cause a left shift (upshift) and negative Codes cause a right shift 
( downshift). 

The shift may be referenced to the upper half of the output field (HI 
option) or to the lower half (LO option). The shift output may be logically 
ORed with the present contents of the SR register by selecting the SR OR 
option. 

For LSHIFT with a positive Shift Code, the operand is shifted left; the 
numbers of positions shifted is the count in the Shift Code. The 32-bit 
output field is zero-filled from the right. Bits shifted out of the high order 
bit in the 32-bit destination field (SR31) are dropped. 

For LSHIFT with a negative Shift Code, the operand is shifted right; the 
number of positions shifted is the count in the Shift Code. The 32-bit 
output field is zero-filled from the left. Bits shifted out of the low order bit 
in the destination field (SRO) are dropped. 

To shift a double precision number, the same Shift Code is used for both 
halves of the number. On the first cycle, the upper half of the number is 
shifted using the HI and PASS options; then on the second cycle, the lower 
half of the number is shifted using the LO and OR options. 

Status Generated: None affected. 



Instruction Format: 

SHIFTER 
LOGICAL SHIFT 

Conditional Shift Operation, Instruction Type 16: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o o o o 1 1 1 o o I SF I xop Io o o o I COND 

SF Shifter Function 
0 0 0 0 LSl-llFT (l-ll, PASS) 
0 0 0 1 LSl-llFT (l-ll, OR) 
0 0 1 0 LSl-llFT (LO I p ASS) 
0 0 1 1 LSl-llFT (LO I OR) 

Xop: shifter operand COND: condition 

9 

9-31 



9 

9-32 

SHIFTER 
NORMALIZE 

Syntax: [ IF cond ] SR = [SR OR] NORM xop 

Permissible xops Permissible conds 
SI AR EQ LE 
SRl MR2 NE NEG 
SRO MRl GT POS 

MRO GE AV 
LT NOT AV 

Example: SR = NORM SI (ffi) ; 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

(ffi) 
(LO) 

Description: Test the optional condition and, if true; then perform the 
designated normalization. If the condition is not true then perform a no­
operation. Omitting the condition performs the normalize 
unconditionally. The operation arithmetically shifts the input operand to 
eliminate all but one of the sign bits. The amount of the shift comes from 
the SE register. The SE register may be loaded with the proper Shift Code 
to eliminate the redundant sign bits by using the Derive Exponent 
instruction; the Shift Code loaded will be the negative of the quantity: (the 
number of sign bits minus one). 

The shift may be referenced to the upper half of the output field (HI 
option) or to the lower half (LO option). The shift output may be logically 
ORed with the present contents of the SR register by selecting the SR OR 
option. When the LO reference is selected, the 32-bit output field is zero­
filled to the left. Bits shifted out of the high order bit in the 32-bit 
destination field (5~1) are dropped. 

The 32-bit output field is zero-filled from the right. If the exponent of an 
overflowed ALU result was derived with the HIX modifier, the 32-bit 
output field is filled from left with the ALU Carry (AC) bit in the 
Arithmetic Status Register (ASTAT) during a NORM(ffi) operation. In this 
case (SE= 1 from the exponent detection on the overflowed ALU value) a 
downshift occurs. 

To normalize a double precision number, the same Shift Code is used for 
both halves of the number. On the first cycle, the upper half of the number 
is shifted using the HI and PASS options; then on the second cycle, the 
lower half of the number is shifted using the LO and OR options. 

Status Generated: None affected. 



{ 

( 

(-

SHIFTER 9 
NORMALIZE 

Instruction Format: 
Conditional Shift Operation, Instruction Type 16: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
O O O 0 1 1 1 0 0 J SF } Xop J 0 0 0 0} COND 

SF Shifter Function 
100 0 NORM (1-ll, PASS) 
1001 NORM (1-ll,OR) 
101 0 NORM (LO, PASS) 
1 0 1 1 NORM (LO, OR) 

Xop: shifter operand COND: condition 

9-33 



9 

9-34 

SHIFTER 
DERIVE EXPONENT 

Syntax: [ IF cond ] SE = EXP xop (HI) 
(LO) 
(HIX) 

Permissible xops Permissible conds 
SI AR EQ LE 
SRl MR2 NE NEG 
SRO MRl GT POS 

MRO GE AV 
LT NOT AV 

Example: IF GT SE = EXP MRl (HI) j 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and, if true, perform the 
designated exponent operation. If the condition is not true then perform a 
no-operation. Omitting the condition performs the exponent operation 
unconditionally. 

The EXP operation derives the effective exponent of the input operand to 
prepare for the normalization operation (NORM). EXP supplies the source 
operand to the exponent detector, which generates a Shift Code from the 
number of leading sign bits in the input operand. The Shift Code, stored in 
SE at the completion of the EXP operation, is the effective exponent of the 
input value. The Shift Code depends on which exponent detector mode is 
used (HI, HIX, LO). 

In the HI mode, the input is interpreted as a single precision signed 
number, or as the upper half of a double precision signed number. The 
exponent detector counts the number of leading sign bits in th~ source 
operand and stores the resulting Shift Code in SE. The Shift Code will 
equal the negative of the number of redundant sign bits in the input. 

In the HIX mode, the input is interpreted as the result of an add or 
subtract which may have overflowed. HIX is intended to handle shifting 
and normalization of results from ALU operations. The HIX mode 
examines the ALU Overflow bit (AV) in the Arithmetic Status Register: if 
AV is set, then the effective exponent of the input is + 1 (indicating that an 
ALU overflow occurred before the EXP operation), and +1 is stored in SE. 
If AV is not set, then HIX performs exactly the same operations as the HI 
mode. 



( 

( 

SHIFTER 9 
DERIVE EXPONENT 

In the LO mode, the input is interpreted as the lower half of a double 
precision number. In performing the EXP operation on a double precision 
number, the higher half of the number must first be processed with EXP in 
the ill or HIX mode, and then the lower half can be processed with EXP in 
the LO mode. If the upper half contained a non-sign bit, then the correct 
Shift Code was generated in the HI or illX operation and that is the code 
that is stored in SE. If, however, the upper half was all sign bits, then EXP 
in the LO mode totals the number of leading sign bits in the double 
precision word and stores the resulting Shift Code in SE. 

Status Generated: 
ASTAT: 7 6 5 4 3 2 1 0 

SS MV AQ AS AC AV AN AZ 
"' 

SS Set by the MSB of the input for an EXP operation in the ill 
or illX mode with AV = 0. Set by the MSB inverted in the 
HIX mode with AV= 1. Not affected by operations in the 
LO mode. 

Instruction Format: 
Conditional Shift Operation, Instruction Type 16: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 1 1 0 o} SF J Xop Jo 0 0 01 COND 

SF Shifter Function 
1100 EXP (HI) 
1101 EXP (HIX) 
111 0 EXP (LO) 

Xop: shifter operand COND: condition 

9-35 



9 

9-36 

SHIFTER 
BLOCK EXPONENT ADJUST 

Syntax: [ IF cond ] SB = EXP ADJ xop ; 

Permissible xops Permissible conds 
SI AR EQ LE 
SRl MR2 NE NEG 
SRO MRl GT POS 

MRO GE AV 
LT NOT AV 

Example: IF GT SB= EXPADJ SI ; 

AC 
NOT AC 
MV 
NOTMV 
NOT CE 

Description: Test the optional condition and, if true, perform the 
designated, exponent operation. If the condition is not true then perform a 
no-operation. Omitting the condition performs the exponent operation 
unconditionally. The Block Exponent Adjust operation, when performed 
on a series of numbers, derives the effective exponent of the number 
largest in magnitude. This exponent can then be associated with all of the 
numbers in a block floating point representation. 

The Block Exponent Adjust circuitry applies the input operand to the 
exponent detector to derive its effective exponent. The input must be a 
signed twos complement number. The exponent detector operates in HI 
mode (see the EXP instruction, above). 

At the start of a block, the SB register should be initialized to -16 to set SB 
to its minimum value. On each execution of the EXP ADJ instruction, the 
effective exponent of each operand is compared to the current contents of 
the SB register. If the new exponent is greater than the current SB value, it 
is written to the SB register, updating it. Therefore, at the end of the block, 
the SB register will contain the largest exponent found. EXPADJ is only an 
inspection operation; no actual shifting takes place since the true exponent 
is not known until all the numbers in the block have been checked. 
However, the numbers can be shifted at a later time after the true 
exponent has been derived. 

Extended (overflowed) numbers and the lower halves of double precision 
numbers can not be processed with the Block Exponent Adjust instruction. 

Status Generated: Not affected. 



( 

---· ----·-··---~-

SHIFTER 9 
BLOCK EXPONENT ADJUST 

Instruction Format: 
Conditional Shift Operation, Instruction Type 16: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 1 0 oJ SF l Xop Jo 0 0 ol COND 

SF= 1111. 

Xop: shifter operand COND: condition 

9-37 



9 

9-38 

SHIFTER 
ARITHMETIC SHIFT IMMEDIATE 

Syntax: SR = [SR OR] ASHIFI' xop BY <exp> 

Permissible xops <exp> 
SI MRO Any constant 
SR1 MR1 
SRO MR2 
AR 

Example: SR= SR OR ASHIFI' SRO BY 3 (LO); 

CHI) I; 
(LO) 

Description: Arithmetically shift the bits of the operand b)' the amount 
and direction specified by the constant in the exponent field. Positive Shift 
Codes cause a left shift (upshift) and negative Codes cause a right shift 
( downshift). 

The shift may be referenced to the upper half of the output field (HI 
option) or to the lower half (LO option). The shift output may be logically 
ORed with the present contents of the SR register by selecting the SR OR 
option. 

For ASHIFI' with a positive Shift Code (i.e. positive value in SE), the 
operand is shifted left; with a negative Shift Code (i.e. negative value in 
SE), the operand is shifted right. The 32-bit output field is sign-extended 
to the left (the MSB of the input is replicated to the left), and the output is 
zero-filled from the right. Bits shifted out of the high order bit in the 32-bit 
destination field (SR,,) are dropped. Bits shifted out of the low order bit in 
the destination field (SR.) are dropped. 

To shift a double precision number, the same Shift Code is used for both 
parts of the number. On the first cycle, the upper half is shifted using the 
HI and PASS options. Next the lower half is shifted using the LO and OR 
options. 

Status Generated: None affected. 



( 

( 

(: 

Instruction Format: 

SHIFTER 
ARITHMETIC SHIFT IMMEDIATE 

Shift Immediate Operation, Instruction Type 15: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 ~ 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 1 1 oI SF I Xop I <data> 

SF Shifter Function 
0 1 0 0 ASHIFT (ID, PASS) 
0 1 0 1 ASHIFT (HI, OR) 
011 0 ASHIFT (LO, PASS) 
0 1 1 1 ASHIFT (LO, OR) 

Xop: Shifter Operand <data>: 8-bit signed shift value 

9 

9-39 



9 

9-40 

SHIFTER 
LOGICAL SHIFT IMMEDIATE 

Syntax: SR = [SR OR] LSIDFT xop BY <exp> 

Permissible xops <exp> 
SI MRO Any constant 
SR1 MR1 
SRO MR2 
AR 

Example: SR = LSHIFT SR1 BY - 6 (HI) ; 

(HI) I; 
(LO) 

Description: Logically shifts the bits of the operand by the amount and 
direction specified by the constant in the exponent field. Positive Shift 
Codes cause a left shift (upshift) and negative Codes cause a right shift 
( downshift). 

The shift may be referenced to the upper half of the output field (HI 
option) or to the lower half {LO option). The shift output may be logically 
ORed with the present contents of the SR register by selecting the SR OR 
option. / 

For LSHIFT with a positive value, the operand is shifted left; the numbers 
of positions shifted is the count in the shift value. The 32-bit output field is 
zero-filled to the left and from the right. Bits shifted out of the high order 
bit in the 32-bit destination field (SR,,) are dropped. 

For LSHIFT with a negative value, the operand is shifted right; the 
number of positions shifted is the count in the shift value. The 32-bit 
output field is zero-filled from the left and to the right. Bits shifted out of 
the low order bit are dropped. 

Status Generated: None affected. 

Instruction Format: 
Shift Immediate Operation, Instruction Type 15: 

23 22 21 20 19 18 17 16 15 14 

0 0 0 0 1 1 1 1 01 

SF Shifter Function 
0 0 0 0 LSHIFT (HI, PASS) 
0 0 0 1 LSHIFT (HI, OR) 
0 0 1 0 LSHIFT (LO I p ASS) 
0 0 1 1 LSHIFT (LO I OR) 

Xop: Shifter Operand 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

SF J Xop J <data> 

<data>: s.:.bit signed shift value \, ___ -"./ 



( 

( 

MOVE 9 
REGISTER MOVE 

Syntax: reg = reg ; 

Permissible registers 
AXO MXO SI SB CNTR 
AXl MXl SE PX OWRCNTR (write only) 
AYO MYO SRl AST AT RXO 
AYl MYl SRO MSTAT RXl 
AR MR2 I0-17 SSTAT (read only) TXO 

MRl MO-M7 !MASK TXl 
MRO LO-L7 ICNTL IFC (write only) 

Example: I7=AR; 

Description: Move the contents of the source to the destination 
location. The contents of the source are always right-justified in the 
destination location after the move. 

When transferring a smaller register to a larger register (e.g., an 8-bit 
register to a 16-bit register), the value stored in the destination is either 
sign-extended to the left if the source is a signed value, or zero-filled to the 
left if the source is an unsigned value. The unsigned registers which 
(when used as the source) cause the value stored in the destination to be 
zero-filled to the left are: IO through 17, LO through L7, CNTR, PX, ASTAT, 
MSTAT, SSTAT, !MASK, and ICNTL. All other registers cause sign­
extension to the left. 

When transferring a larger register to a smaller register (e.g., a 16-bit 
register to a 14-bit register), the value stored in the destination is right­
justified (bit 0 maps to bit O) and the higher-order bits are dropped. 

Note that whenever MR1 is loaded with data, it is sign-extended into 
MR2. 

Status Generated: None affected. 

9-41 



9 

9-42 

MOVE 
REGISTER MOVE 

Instruction Format: 
Internal Data Move, Instruction Type 17: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 1 0 1 0 0 0 0 DST SRC DEST SOURCE 

RGP RGP REG REG 

SRC RGP (Source Register Group) and SOURCE REG (Source Register) 
select the source register according to the Register Selection Table (see 
Appendix A). 

DST RGP (Destination Register Group) and DEST REG (Destination 
Register) select the destination register according to the Register Selection 
Table (see Appendix A). 



MOVE g 
LOAD REGISTER IMMEDIATE 

Syntax: reg = <data> ; 

data: <constant> 
'%' <identifier> 
'"' <identifier> 

Permissible registers 
dregs (16-bit data load) regs (maximum 14-bit data load) 

AXO MXO SI SB 
AXl MXl SE PX 
AYO MYO SRl ASTAT 
AYl MYl SRO MSTAT 
AR MR2 IMASK 

MRl ICNTL 
MRO I0-17 
MO-M7 
LO-L7 

( · Example: IO = Adata buffer· 
L0=%data-=_buffe;; 

CNTR 
OWRCNTR (write only ) 
RXO 
RXl 
TXO 
TXl 
IFC (write only ) 

Description: Move the data value specified to the destination location. 
The data may be a constant, or any identifier referenced with the "length 
of"(%) or "pointer to"(") operators. The data value is contained in the 
instruction word, with 16 bits for data register loads and up to 14 bits for 
other register loads. The value is always right-justified in the destination 
location after the load (bit 0 maps to bit 0). When a value of length less 
than the length of the destination is moved, it is sign-extended to the left 
to fill the destination width. 

Note that whenever MRl is loaded with data, it is sign-extended into 
MR2. 

The RX and TX registers may be loaded with a maximum of 14 bits of 
data, although the registers themselves are 16 bits wide. 

Status Generated: None affected. 

9-43 



9 

9-44 

MOVE 
LOAD REGISTER IMMEDIATE 

Instruction Format : 
Load Data Register Immediate, Instruction Type 6: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 1 0 01 DATA 1 DREG 

DATA contains the immediate value to be loaded into the Data Register 
destination location. The data is right-justified in the field, so the value 
loaded into an N-bit destination register is contained in the lower-order N 
bits of the DATA field. 

DREG selects the destination Data Register for the immediate data value. 
One of the 16 Data Registers is selected according to the Register Selection 
Table (see Appendix A). 

Load Non-Data Register Immediate Instruction Type 7: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 11 RGP DATA I REG 

DATA contains the immediate value to be loaded into the Non-Data 
Register destination location. The data is right-justified in the field, so the 
value loaded into an N-bit destination register is contained in the lower­
order N bits of the DATA field. 

RGP (Register Group) and REG (Register) select the destination register 
according to the Register Selection Table (see Appendix A) .. 

\ 
"--~/ 



( 

( 

MOVE 
DATA MEMORY READ (Direct Address) 

Syntax: reg = DM ( <addr> ) ; 

Permissible registers 
AXO MXO SI 
AXl MXl SE 
AYO MYO SR1 
AYl MY1 SRO 
AR MR2 I0-17 

MR1 MO-M7 
MRO LO-L7 

SB 
PX 
AST AT 
MSTAT 

IMASK 
ICNTL 

Example: SI = DM( ad_portO ); 

CNTR 
OWRCNTR (write only) 
RXO 
RXl 
TXO 
TXl 
IFC (write only) 

Description: The Read instruction moves the contents of the data 
memory location to the destination register. The addressing mode is direct 
addressing (designated by an immediate address value or by a label). The 
data memory address is stored directly in the instruction word as a full 14-
bit field. The contents of the source are always right-justified in the 
destination register after the read (bit 0 maps to bit 0). 

Status Generated: None affected. 

Instruction Format: 
Data Memory Read (Direct Address), Instruction Type 3: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

i o o oI RGP I ADDR I REG 

ADDR contains the direct address to the source location in Data Memory. 

RGP (Register Group) and REG (Register) select the destination register 
according to the Register Selection Table (see Appendix A). 

9 

9-45 



9 

9-46 

MOVE 
DATA MEMORY READ (Indirect Address) 

Syntax: dreg= DM( 

Permissible dregs 
AXO MXO SI 
AXl MXl SE 
AYO MYO SRl 
AYl MYl SRO 
AR MR2 

MRl 
MRO 

IO I MO 
11 Ml 
I2 M2 
I3 M3 

I4 M4 
IS MS 
I6 M6 
I7 M7 

Example: AYO = DM (I3, Ml); 

) ; 

Description: The Data Memory Read Indirect instruction moves the 
contents of the data memory location to the destination register. The 
addressing mode is register indirect with post-modify. The contents of the 
source are always right-justified in the destination register after the read 
(bit 0 maps to bit 0). 

Status Generated: None affected. 

Instruction Format: 
ALU I MAC Operation with Data Memory Read, Instruction Type 4: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 11 Gj 0 oj AMF l 0 0 0 0 oj DREG l I l M 

AMF specifies the ALU or MAC operation to be performed in parallel 
with the Data Memory Read. In this case, AMF= 00000, indicating a No­
Op for the ALU I MAC function. 

DREG selects the destination Data Register . One of the 16 Data Registers 
is selected according to the Register Selection Table (see Appendix A). 

G specifies which Data Address Generator the I and M registers are 
selected from. These registers must be from the same DAG as separated 
by the gray bar above. I specifies the indirect address pointer (I register). 
M specifies the modify register (M register). 

\"'-. _/ 

(' '', 

i 
~___,' 



( 

( 

MOVE 9 
PROGRAM MEMORY READ (Indirect Address) 

Syntax: dreg =PM ( 

Permissible dregs 
AXO MXO SI 
AXl MXl SE 
AYO MYO SRl 
AYl MYl SRO 
AR MR2 

MRl 
MRO 

I4 
IS 
I6 
I7 

Example: MXl = PM (I6, MS); 

M4 ) ; 
MS 
M6 
M7 

Description: The Program Memory Read Indirect instruction moves the 
contents of the program memory location to the destination registe~. The 
addressing mode is register indirect with post-modify. The 16 most 
significant bits of the Program Memory Data bus (PMD23-8) are loaded 
into the destination register, with bit PMD8lining up with bit 0 of the 
destination register (right-justification). If the destination register is less 
than 16 bits wide, the most significant bits are dropped. Bits PMD7-0 are 
always loaded into the PX register. You may ignore these bits or read 
them out on a subsequent cycle. 

Status Generated: None affected 

Instruction Format: 
ALU I MAC Operation with Program Memory Read, Instruction Type S: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 0 0] AMF ] 0 0 0 0 o] DREG 1 I ] M 

AMF specifies the ALU or MAC operation to be performed in parallel 
with the Data Memory Read. In this case, AMF= 00000, indicating a No­
Op for the ALU I MAC function 

DREG selects the destination Data Register. One of the 16 Data Registers is 
selected according to the Register Selection Table (see Appendix A). 

I specifies the indirect address pointer (I register). M specifies the modify 
register (M register). 

9-47 



9 

9-48 

MOVE 
DATA MEMORY WRITE (Direct Address) 

Syntax: DM ( <addr> ) = reg 

Permissible registers 
AXO MXO SI 
AXl MXl SE 
AYO MYO SRl 
AYl MYl SRO 
AR MR2 I0-17 

MRl MO-M7 
MRO LO-L7 

SB 
PX 
AST AT 
MSTAT 
SSTAT (read only) 
!MASK 
ICNTL 

Example: DM (cntl_portO ) = AR; 

CNTR 
RXO 
RXl 
TXO 
TXl 

Description: Moves the contents of the source register to the data 
memory location specified in the instruction word. The addressing mode 
is direct addressing (designated by an immediate address value or by a 
label). The data memory address is stored directly in the instruction word 
as a full 14-bit field. Whenever a register less than 16 bits in length is 
written to memory, the value written is either sign-extended to the left if 
the source is a signed value, or zero-filled to the left if the source is an 
unsigned value. The unsigned registers which are zero-filled to the left 
are: IO through 17, LO through L7, CNTR, PX, ASTAT, MSTAT, SSTAT, 
!MASK, and ICNTL. All other registers are sign-extended to the left. 

The contents of the source are always right-justified in the destination 
location after the write (bit 0 maps to bit O). 

Status Generated: None affected. 

Instruction Format: 
Data Memory Read (Direct Address), Instruction Type 3: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 0 0 11 RGP l ADDR l REG 

ADDR contains the direct address of the destination location in Data 
Memory. 

RGP (Register Group) and REG (~egister) select the destination register 
according to the Register Selection Table (see Appendix A). 



( 

:'( 

MOVE 
DATA MEMORY WRITE (Indirect Address) 

Syntax: DM( IO MO ) = dreg 
11 Ml <data> 
12 M2 
13 M3 

14 M4 
15 MS 
16 M6 
17 M7 

data: <constant> 
'%' <identifier> 
'"' <identifier> 

Permissible dregs 
AXO MXO SI 
AXl MXl SE 
AYO MYO SRl 
AYl MYl SRO 
AR MR2 

MRl 
MRO 

Example: DM (12, MO) = MRl; 

Description: The Data Memory Write Indirect instruction moves the 
contents of the source to the data memory location specified in the 
instruction word. The immediate data may be a constant, or any identifier 
referenced with the "length of"(%) or "pointer to" (A) operators. 

The addressing mode is register indirect with post-modify. When a 
register of less than 16 bits is written to memory, the value written is sign­
extended to form a 16-bit value. The contents of the source are always 
right-justified in the destination location after the write (bit 0 maps to bit 
0). 

Status Generated: None affected. 

9 

9-49 



9 . MOVE 
DATA MEMORY WRITE (Indirect Address) 

9-50 

Instruction Format: 
ALU I MAC Operation with Data Memory Write, Instruction Type 4: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 11 G 1 1 0 I AMF J 0 0 0 0 0 J DREG ] I ] M 

Data Memory Write, Immediate Data, Instruction Type 2: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 11 Gj Data 1 I 1 M 

AMF specifies the ALU or MAC operation to be performed in parallel 
with the Data Memory Write. In this case, AMF= 00000, indicating a No­
Op for the ALU I MAC function. 

Data represents the actual 16-bit value. 

DREG selects the source Data Register. One of the 16 Data Registers is 
selected according to the Register Selection Table (see Appendix A). 

G specifies which Data Address Generator the I and M registers are 
selected from. These registers must be from the same DAG as separated 
by the gray bar in the Syntax description above. I specifies the indirect 
address pointer (I register). M specifies the modify register (M register). 



( 

:( 

MOVE 
PROGRAM MEMORY WRITE {Indirect Address) 

Syntax: PM( 

Permissible dregs 
AXO MXO SI 
AX1 MX1 SE 

I4 
IS 
I6 
I7 

AYO MYO SR1 
AY1 MY1 SRO 
AR MR2 

MR1 
MRO 

M4 ) =dreg; 
MS 
M6 
M7 

Example: PM (I6, MS)= AR; 

Description: The Program Memory Write Indirect instruction moves 
the contents of the source to the program memory location specified in the 
instruction word. The addressing mode is register indirect with post­
modify. The 16 most significant bits of the Program Memory Data bus 
(PMD23-8) are loaded from the source register, with bit PMD8 aligned 
with bit 0 of the source register (right justification). The 8 least significant 
bits of the Program Memory Data bus (PMD7-0) are loaded from the PX 
register. Whenever a source register of length less than 16 bits is written to 
memory, the value written is sign-extended to form a 16-bit value. 

Status Generated: None affected. 

Instruction Format: 
ALU I MAC Operation with Program Memory Write, Instruction Type S 
(see Appendix A), as shown below: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o 1 o 1 1 oJ AMF J o o o o ol DREG Jr JM 

AMF specifies the ALU or MAC operation to be performed in parallel 
with the Program Memory Write. In this case, AMF= 00000, indicating a 
No-Op for the ALU I MAC function. 

DREG selects the source Data Register. One of the 16 Data Registers is 
selected according to the Register Selection Table (see Appendix A). 

I specifies the indirect address pointer (I register). M specifies the modify 
( register (M register). 

9 

9-51 



9 . PROGRAM FLOW 
JUMP 

9-52 

Syntax: [ IF cond ] JUMP 

Permissible conds 
EQ NE 
LE NEG 
AC NOTAC 

GT 
POS 
MV 

GE 
AV 
NOTMV 

(14) 
(IS) 
(16) 
(17) 
<addr> 

LT 
NOT AV 
NOT CE 

Example: IF NOT CE JUMP top_loop; 

. 
I 

Description: Test the optional condition and, if true, then perform the 
specified jump. If the condition is not true then perform a no-operation. 
Omitting the condition performs the jump unconditionally. The JUMP 
instruction causes program execution to continue at the effective address 
specified by the instruction. The addressing modes available for the JUMP 
instruction are direct or register indirect. 

If JUMP is the last instruction inside a DO UNTIL loop, you must ensure 
that the loop stacks are properly handled. Consult your User's Manual. 

For direct addressing (using an immediate address value or a label), the 
program address is stored directly in the instruction word as a full 14-bit 
field. For register indirect jumps, the selected I register provides the 
address; it is not post-modified in this case. 

Status Generated: None affected. 

Instruction Field: 
Conditional JUMP Direct Instruction Type 10: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 1 01 ADDR ] COND 

Conditional JUMP Indirect Instruction Type 19: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0. 1 0 1 1 0 0 0 0 0 0 0 0] I I 0 0 l COND 

I specifies the I register (Indirect Address Pointer). 

ADDR: immediate jump address COND: condition 



( 

( 

Syntax: [ IF cond ] CALL 

Permissible conds 
EQ NE 
LE NEG 
AC NOTAC 

GT 
POS 
MV 

GE 
AV 
NOTMV 

Example: IF AV CALLscale_down; 

(I4) 
(IS) 
(I6) 
(17) 
<addr> 

LT 
NOT AV 
NOT CE 

PROGRAM FLOW 9 
CALL 

Description: Test the optional condition and, if true, then perform the 
specified call. If the condition is not true then perform a no-operation. 
Omitting the condition performs the call unconditionally. The CALL 
instruction is intended for calling subroutines. CALL pushes the PC stack 
with the return address and causes program execution to continue at the 
effective address specified by the instruction. The addressing modes 
available for the CALL instruction are direct or register indirect. 

If CALL is the last instruction inside a DO UNTIL loop, you must ensure 
that the loop stacks are properly handled. Consult your User's Manual. 

For direct addressing (using an immediate address value or a label), the 
program address is stored directly in the instruction word as a full 14-bit 
field. For register indirect jumps, the selected I register provides the 
address; it is not post-modified in this case. 

Status Generated: None affected. 

Instruction Field: 
Conditional JUMP Direct Instruction Type 10: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 1 11 ADDR 1 COND 

Conditional JUMP Indirect Instruction Type 19: 

23 22 21 20 19 18 17 L6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 0 l 1 1 0 0 0 0 0 0 0 01 I l 0 11 COND 

I specifies the I register (Indirect Address Pointer). 

(--. ADDR: immediate jump address COND: condition 

9-53 



9 

9-54 

PROGRAM FLOW 
JUMP or CALL ON FLAG IN PIN 

• Syntax: FLAG IN I 
NOT FLAG_IN 

I <addr> I l~I IF 

Example: IF FLAG_IN JUMP service_proc_three; 

Description: Test the condition of the FI pin of the ADSP-2101 and, if 
set to one, perform the specified jump or call. H FI is zero then perform a 
no-operation. Omitting the flag in condition reduces the instruction to a 
standard ADSP-2101 JUMP or CALL instruction. 

The JUMP instruction causes program execution to continue at the 
address specified by the instruction. The addressing mode for the JUMP 
on FI must be direct. 

The CALL instruction is intended for calling subroutines. CALL pushes 
the PC stack with the return address and causes program execution to 
continue at the address specified by the instruction. The addr.essing mode 
for the CALL on FI must be direct. 

If JUMP or CALL is the last instruction inside a DO UNTIL loop, you 
must ensure that the loop stacks are properly handled. Consult your 
User's Manual. 

For direct addressing (using an immediate address value or a label), the 
program address is stored directly in the instruction word as a full 14-bit 
field. 

Status Generated: None affected. 

Instruction Field: 
Conditional JUMP or CALL on Flag In Direct Instruction Type 27: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 11 A~dress j Addr l FICj S 

~ \ 
12 LSBs 2 MSBs 

S specifies JUMP (O) or CALL (1) FIC: Latched state of FI pin 



PROGRAM FLOW 9 
MODIFY FLAG OUT PIN 

Syntax: 

Example: 

[IF cond] SET 
RESET 
TOGGLE 

IF MV RESET FLAG_ OUT; 

FLAG_OUT; 

Description: Evaluate the optional condition and if true, set to one, 
reset to zero, or toggle the state of the FO pin of the ADSP-2101. Otherwise 
perform a no-operation and continue with the next instruction. Omitting 
the condition performs the operation unconditionally. Although this 
instruction does not directly alter the flow of your program, it is provided 
to signal external devices. 

Status Generated: None affected. 

Instruction Field: 
Flag Out Mode Control Instruction Type 28: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
o o o o o o i o o o o o o o o o o o} FoI coND 

FO: Operation to perform on FO pin COND: Condition code 

9-55 



9 

9-56 

PROGRAM FLOW 
RTS 

Syntax: [ IF cond ] RTS 

Permissible conds 
EQ NE GT 
LE NEG POS 
AC NOTAC MV 

Example: IFLE RTS; 

GE 
AV 
NOTMV 

LT 
NOT AV 
NOT CE 

Description: Test the optional condition and, if true, then perform the 
specified return. If the condition is not true then perform a no-operation. 
Omitting the condition performs the return unconditionally. RTS executes 
a program return from a subroutine. The address on top of the PC stack is 
popped and is used as the return address. The PC stack is the only stack 
popped. 

If RTS is the last instruction inside a DO UNTIL loop, you must ensure 
that the loop stacks are properly handled. Consult the User's Manual. 

Status Generated: None affected. 

Instruction Field: 
Conditional Return, Instruction Type 20: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 oJ COND 

COND: condition 



( 

( 

Syntax: [ IF cond ] RTI 

Permissible conds 
EQ NE 
LE NEG 
AC NOTAC 

Example: 

GT 
POS 
MV 

GE 
AV 
NOTMV 

IF MV RTI; 

LT 
NOT AV 
NOT CE 

PROGRAM FLOW 
RTI 

Description: Test the optional condition and, if true, then perform the 
specified return. If the condition is not true then perform a no-operation. 
Omitting the condition performs the return unconditionally. RTI executes 
a program return from an interrupt service routine. The address on top of 
the PC stack is popped and is used as the return address. The value on top 
of the status stack is also popped, and is loaded into the arithmetic status 
(ASTAT), mode status (MSTAT) and the interrupt mask (IMASK) 
registers. 

If RTI is the last instruction inside a DO UNTIL loop, you must ensure 
that the loop stacks are properly handled. Consult the User's Manual. 

Status Generated: None affected. 

Instruction Field: 
Conditional Return, Instruction Type 20: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 11 COND 

COND: condition 

9 

9-57 



9 

9-58 

PROGRAM FLOW 
DO UNTIL 

Syntax: DO <addr> [UNTIL term] ; 

Permissible terms 
EQ NE GT 

POS 
MV 

GE LT FOREVER 
LE NEG 
AC NOTAC 

AV 
NOTMV 

NOT AV 
CE 

Example: DO loop _label UNTIL CE ; 

Description: DO UNTIL sets up looping circuitry for zero-overhead 
looping. The program loop begins at tlie program instruction immediately 
following the DO instruction, ends at the address designated in the 
instruction and repeats execution until the specified condition is met (if a 
condition is specified) or repeats in an infinite loop (if no condition is 
specified). The condition is tested during execution of the last instruction 
in the loop, the status having been generated upon completion of the 
previous instruction. The address ( <addr>) of the last instruction in the 
loop is stored directly in the instruction word. 

When the DO instruction is executed, the address of the last instruction is 
pushed onto the loop stack along with the termination condition and the 
current program counter value plus 1 is pushed onto the PC stack. 

Any nesting of DO loops continues the process of pushing the loop and 
PC stacks, up to the limit of the loop stack size (4 levels of loop nesting) or 
of the PC stack size (16 levels for subroutines plus interrupts plus loops). 
With either or both the loop or PC stacks full, a further attempt to perform 
the DO instruction will set the appropriate stack overflow bit and will 
perform a no-operation. 

Status Generated: 
ASTAT: Not affected. 

SSTAT: 

LSO 

LSE 

7 6 5 4 3 2 1 0 
LSO LSE SSO SSE CSO CSE PSO PSE 
* 0 * 0 

Loop Stack Overflow: set if the loop stack overflows; 
otherwise not affected. 
Loop Stack Empty: always cleared (indicating loop stack not 
empty). 

_ _,/' 



( 

( 

PROGRAM FLOW 9 
DO UNTIL 

PSO PC Stael< Overflow: set if the PC stack overflows; otherwise 
not affected. 

PSE PC Stael< Empty: always cleared (indicating PC stacl< not 
empty). 

Instruction Format: 
Do Until, Instruction Type 11: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 0 11 Addr l TERM 

ADDR specifies the address of the last instruction in the loop. In the 
Instruction Syntax, this field may be a program label or an immediate 
address value. 

TERM specifies the termination condition, as shown below. 

COND 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
111 0 
1 1 1 1 

Syntax 
NE 
EQ 
LE 
GT 
GE 
LT 
NOT AV 
AV 
NOT AC 
AC 
POS 
NEG 
NOTMV 
MV 
CE 
FOREVER 

Condition Tested 
Not Equal to Zero 
Equal Zero 
Less Than or Equal to Zero 
Greater Than Zero 
Greater Than or Equal to Zero 
Less Than Zero 
Not ALU Overflow 
ALU Overflow 
Not ALU Carry 
ALU Carry 
X Input Sign Positive 
X Input Sign Negative 
Not MAC Overflow 
MAC Overflow 
Counter Expired 
Always 

9-59 



9 

9-60 

PROGRAM FLOW 
IDLE 

Syntax: IDLE; 

Description: On an ADSP-2101 processor, IDLE loops indefinitely in a 
· low-power state, waiting for interrupts. When an interrupt occurs it is 
serviced and execution continues with the instruction following IDLE. 
Typically this next instruction will be a JUMP back to IDLE, implementing 
a low-power standby loop. (Note the restrictions on JUMP as the last 
instruction in a DO UNTIL loop, detailed under the JUMP instruction 
earlier in this section.) 

The serial port autobuffering operation continues during IDLE. 

Status Generated: None affected. 

Instruction Field: 
Idle Instruction Type 31: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 
0 0 0 0 0 0 l 0 l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ·~ 



( 

( 

MISC g 
STACK CONTROL 

Syntax: [ J ~~HJ STS] [,POP CNTR] [,POP PC] [,POP LOOP]; 

Example: POP CNTR, POP PC, POP LOOP; 

Description: Stack Control pushes or pops the designated stack(s). The 
entire instruction executes in one cycle regardless of how many stacks are 
specified. 

The PUSH STS (Push Status Stack) instruction increments the status stack 
pointer by one to point to the next available status stack location; and 
pushes the arithmetic status (ASTAT), mode status (MSTAT), and 
interrupt mask register (!MASK) onto the processor's status stack. Note 
that the PUSH STS operation is executed automatically whenever an 
interrupt service routine is entered. 

Any POP pops the value on the top of the designated stack and 
decrements the same stack pointer to point to the next lowest location in 
the stack. POP STS causes the arithmetic status (ASTAT), mode status 
(MSTATI, and interrupt mask (IMASK) to be popped into these same 
registers. This also happens automatically whenever a return from 
interrupt (RTI) is executed. 

POP CNTR causes the counter stack to be popped into the down counter. 
When the loop stack or PC stack is popped (with POP LOOP or POP PC, 
respectively), the information is lost. Returning from an interrupt (RTI) 
also pops the PC counter automatically. 

9-61 



9 

9-62 

MISC 
STACK CONTROL 

Status Generated: 
SSTAT: 7 6 5 4 3 2 1 0 

LSO LSE SSO SSE CSO CSE PSO PSE .. .. .. .. 
PSE PC Stack Empty: cleared if a pop results in an empty 

program counter stack; set otherwise. 
CSE Counter Stack Empty: cleared if a pop results in an empty 

counter stack; set otherwise. 
SSE Status Stack Empty: for PUSH STS, this bit is always cleared 

(indicating status stack not empty). For POP STS, SSE is 
cleared if the pop results in an empty status stack; set 
otherwise. 

SSO Status Stack Overflow: for PUSH STS set if the status stack 
overflows; otherwise not affected. 

LSE Loop Stack Empty: cleared if a pop results in an empty loop 
stack; set otherwise. 

Note that once any Stack Overflow occurs, the corresponding stack 
overflow bit is set in SSTAT, and this bit stays set indicating there has 
been loss of information. Once set, the stack overflow bit can only be 
cleared by resetting the processor. 

Instruction Format: 
Stack Control, Instruction Type 26: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
o o o o o 1 o o o o o o o o o o o o o lPpILp}cpJspp 

Pp: 
Cp: 

PC Stack Control 
Counter Stack Control 

Lp: Loop Stack Control 
Spp: Status Stack Control 



( 

Syntax: I ENA I 
DIS 

BIT REV 
AV=LATCH 
AR_SAT 
SEC_REG 
G_MODE 
M_MODE 
TIMER 

MISC 
MODE CONTROL 

[, ... ] 

Example: ENA AR_SAT, ENA M_MODE; 

Description: Enables (ENA) or disables (DIS) the designated processor 
mode. The corresponding mode status bit in the mode status register 
(MSTAT) is set for ENAble mode and cleared for DISable mode. At 
RESET, MSTATis set to zero, meaning that all modes are disabled. Any 
number of modes can be changed in one cycle with this instruction. Each 
ENA or DIS clause must be separated by a comma from the next. 

MSTATBits: 

0 
1 
2 
3 
4 
5 
6 

SEC_REG 
BIT_REV 
AV_LATCH 
AR_SAT 
M_MODE 
TIMER 
G_MODE 

Alternate Register Data Bank 
Bit-Reverse Mode on Address Generator #1 
ALU Overflow Status Latch Mode 
ALU AR Register Saturation Mode 
MAC Result Placement Mode 
Timer Enable 
Enables GO Mode 

The data register bank select bit (SEC_REG) determines which set of data 
registers is currently active ( 0 = primary, 1 = secondary). 

The bit-reverse mode bit (BIT_REV), when set to 1, causes addresses 
generated by Data Address Generator #1 to be output in bit reversed 
order. 

The ALU overflow latch mode bit (AV _LATCH), when set to 1, causes the 
AV bit in the arithmetic status register to stay set once an ALU overflow 
occurs. In this mode, if an ALU overflow occurs, the AV bit will be set and 
will remain set even if subsequent ALU operations do not generate 
overflows. The AV bit can only be cleared by writing a zero into it directly 
over the DMD bus. 

9 

9-63 



9 

9-64 

MISC 
MODE CONTROL 

The AR saturation mode bit, (AR_SAT), when set to 1, causes the AR 
register to saturate if an ALU operation causes an overflow, as described 
in the ALU section of this document. 

The ADSP-2101 MAC result placement mode (M_MODE) determines 
whether or not the left shift is made between the multiplier product and 
the MR register. · 

Setting the timer enable bit on the ADSP-2101 starts the timer 
decrementing logic. Clearing it halts the timer. 

The "Go" mode allows the ADSP-2101 to continue executing instructions 
during a bus grant. In the microprocessor ADSP-2100 access to external 
memory was essential for fetching instructions and/ or data. In the 
microcomputer ADSP-2101 this is often not true. The Go mode allows the 
processor to run; only if an external memory access is required does the 
processor halt, waiting for the bus to be released. 

Instruction Format: 
Mode Control, Instruction Type 18: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 0 l TI l MM l AS l OLl BR l SR l GM l 0 0 

TI: 
AS: 
BR: 
GM: 

Timer Enable 
AR Saturation Mode Control 
Bit Reverse Mode Control 
Go Mode 

MM: Multiplier Placement 
OL: ALU Overflow Latch Mode 

Control 
SR: Secondary Register Bank 

Mode 



( 

MISC 
MODIFY ADDRESS REGISTER 

Syntax: 

Example: 

MODIFY ( IO 
11 
12 
13 

MO 
M1 
M2 
M3 

14 M4 
15 MS 
16 M6 
17 M7 

MODIFY (11, M1); 

) ; 

Description: Add the selected M register (Mn) to the selected I register 
(Im), then process the modified address through the modulus logic with 
buffer length as determined by the L register corresponding to the 
selected I register (Lm), and store the resulting address pointer calculation 
in the selected I register. The I register is modified as if an indexed 
memory address were taking place, but no actual memory data transfer 
occurs. 

The selection of the I and M registers is constrained to registers within the 
same Data Address Generator: selection of I0-13 in Data Address 
Generator #1 constrains selection of the M registers to MO-M3. Similarly, 
selection of 14-17 constrains the M registers to M4-M7. 

Status Generated: None affected. 

Instruction Format: 
Modify Address Register, Instruction Type 21: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 ol G 1 I 1 M 

G specifies which Data Address Generator is selected. The I and M 
registers specified must be from the same DAG, separated by the gray bar 
above. I specifies the I register (depends on which DAG is selected by the 
G bit). M specifies the M register (depends on which DAG is selected by 
the G bit). 

9 

9-65 



9 

9-66 

MISC 
NOP 

Syntax: NOP; 

Description: No operation occurs for one cycle. Execution continues 
with the instruction following the NOP instruction. 

Status Generated: None affected. 

Instruction Format: 
No operation, Instruction Type 30 (see Appendix A), as shown below: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 



( 

( 

MULTIFUNCTION 
COMPUTATION with MEMORY READ 

Syntax: <ALU> , dreg = DM ( IO 
11 
12 
13 

MO 
Ml 
M2 
M3 

) 
<MAC> 
<SHIFT> 

Permissible dregs 
AXO MXO 
AXl MXl 
AYO MYO 
AYl MYl 
AR MRO 

MRl 
MR2 

SI 
SE 
SRO 
SRl 

PM( 

14 M4 
15 MS 
16 M6 
17 M7 

14 
15 
16 
17 

M4 
MS 
M6 
M7 

) 

Description: Perform the designated arithmetic operation and data 
transfer. The read operation moves the contents of tne source to the 
destination register. The addressing mode when combining an arithmetic 
operation with a memory read is register indirect with post-modify. The 
contents of the source are always right-justified in the destination register. 

The computation must be unconditional. All ALU, MAC and Shifter 
operations are permitted except Shift Immediate and ALU DIVS and 
DIVQ instructions. 

The fundamental principle governing multifunction instructions is that 
registers (and memory) are read at the beginning of the processor cycle 
and written at the end of the cycle. The normal left-to-right order of 
clauses (computation first, memory read second) is intended to imply this. 
In fact, you may code this instruction with the order of clauses reversed. 
The Assembler produces a warning, but the results are identical at the 
opcode level. If you turn off semantics checking in the Assembler (-s 
switch) the warning is not issued. 

9 

9-67 



9 

9-68 

MULTIFUNCTION 
COMPUTATION with MEMORY READ 

Because of the read-first, write-second characteristic of the processor, 
using the same register as source in one clause and a destination in the 
other is legal. The register supplies the value present at the beginning of 
the cycle and is written with the new value at the end of the cycle. Using 
the same register as a destination in both clauses, however, produces an 
indeterminate 'result and should not be done. The Assembler issues a 
warning unless semantics checking is turned off. Regardless of whether or 
not the warning is produced, however, this practice is not supported. 

For example, 

(1) AR = AXO + A YO, AXO = DM (IO, MO); 

is a legal version of this multifunction instruction and is not flagged by the 
Assembler. Reversing the order of clauses, as in 

(2) AXO = DM (IO, MO) I AR= AXO +AYO; 

results in an Assembler warning, but assembles and executes exactly as 
the first form of the instruction. Note that reading example (2) from left to 
right may suggest that the data memory value is loaded into AXO and 
then used in the computation, all in the same cycle. In fact, this is not 
possible. The left-to-right logic of example (1) suggests the operation of 
the instruction more closely. Regardless of the apparent logic of reading 
the instruction from left to right, the read-first, write-second operation of 
the processor determines what actually happens. 

The following, therefore, is illegal and not supported, even though 
Assembler semantics checking produces only a warning: 

(3) AR= AXO + A YO, AR= DM (IO, MO); Illegal! 



( 
MULTIFUNCTION 

COMPUTATION with MEMORY READ 

Status Generated: All status bits are affected in the same way as for the 
single function versions of the selected arithmetic operation. 

<ALU> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

AZ Set if result equals zero. Cleared otherwise. 
AN Set if result is negative. Cleared otherwise. 
AV Set if an overflow is generated. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 
AS Affected only when executing the Absolute Value operation 

(ABS). Set if the source operand is negative. 
<MAC> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ .. 

MV Set if the accumulated product overflows the lower-order 32 
bits of the MR register. Cleared otherwise. 

<SHIFT> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ .. 

SS Affected only when executing the EXP operation; set if the 
source operand is negative. Cleared if the number is 
positive. 

g· 

9-69 



9 

9-70 

MULTIFUNCTION 
COMPUTATION with MEMORY READ 

Instruction Format: 
ALU /MAC operation with Data Memory Read, Instruction Type 4: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 J G J 0 J z J AMF I Yop I Xop I Dreg I I I M 

ALU /MAC operation with Program Memory Read, Instruction Type 5: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 oj Z l AMF l Yop l Xop l Dreg l I l M 

Shift operation with Data Memory Read, Instruction Type 12: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 0 11 G l 0 l SF l Xop l Dreg l I l M 

Shift operation with Program Memory Read, Instruction Type 13: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

O 0 0 1 0 0 0 1 0 I SF I Xop I Dreg I I I M 

Z: 
SF: 
Yop: 
G: 
M: 

Result register 
Shifter operation 
Yoperand 
Data Address Generator 

. Modify register 

Dreg: 
AMF: 
Xop: 
I: 

Destination register 
ALU /MAC operation 
Xoperand 
Indirect address 
register 

/ " /• \ 



( 
MULTIFUNCTION 9 

COMPUTATION with REGISTER to REGISTER MOVE 

Syntax: <ALU> 
<MAC> 
<SffiFT> 

Permissible dregs 
AXO MXO SI 
AXI MXI SE 
AYO MYO SRO 
AYI MYI SRI 
AR MRO 

MRI 
MR2 

, dreg = dreg ; 

Description: Perform the designated arithmetic operation and data 
transfer. The contents of the source are always right-justified in the 
destination register after the read. 

The computation must be unconditional. All ALU, MAC and Shifter 
operations are permitted except Shift Immediate and ALU DIVS and 
DIVQ instructions. 

The fundamental principle governing multifunction instructions is that 
registers (and memory) are read at the beginning of the processor cycle 
and written at the end of the cycle. The normal left-to-right order of 
clauses (computation first, register transfer second) is intended to imply 
this. In fact, you may code this instruction with the order of clauses 
reversed. The Assembler produces a warning, but the results are identical 
at the opcode level. If you turn off semantics checking in the Assembler 
(-s switch) the warning is not issued. 

Because of the read-first, write-second characteristic of the processor, 
using the same register as source in one clause and a destination in the 
other is legal. The register supplies the value present at the beginning of 
the cycle and is written with the new value at the end of the cycle. Using 
the same register as a destination in both clauses, however, produces an 
indeterminate result and should not be done. The Assembler issues a 
warning unless semantics checking is turned off. Regardless of whether or 
not the warning is produced, however, this practice is not supported. 

9-71 



9 

9-72 

MULTIFUNCTION 
COMPUTATION with REGISTER to REGISTER MOVE 

For example, 

(1) AR= AXO + A YO, AXO = MR1; 

is a legal version of this multifunction instruction and is not flagged by the 
Assembler. Reversing the order of clauses, as in 

(2) AXO = MR1, AR = AXO + A YO; 

results in an Assembler warning, but assembles and executes exactly as 
the first form of the instruction. Note that reading example (2) from left to 
right may suggest that the MR1 register value is loaded into AXO and then 
AXO is used in the computation, all in the same cycle. In fact, this is not 
possible. The left-to-right logic of example (1) suggests the operation of 
the instruction more closely. Regardless of the apparent logic of reading 
the instruction from left to right, the read-first, write-second operation of 
the processor determines what actually happens. 

The following, therefore, is illegal and not supported, even though 
Assembler semantics checking produces only a warning: 

(3) AR= AXO + A YO, AR = MR1; Illegal! 

Status Generated: All status bits are affected in the same way as for the 
single function versions of the selected arithmetic operation. 

<ALU> operation 

ASTAT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

* * * * * 

AZ Set if result equals zero. Cleared otherwise. 
AN Set if result is negative. Cleared otherwise. 
AV Set if an overflow is generated. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 
AS Affected only when executing the Absolute Value operation 

(ABS). Set if the source operand is negative. 



( 

MULTIFUNCTION 
COMPUTATION with REGISTER to REGISTER MOVE 

<MAC> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ .. 

MV Set if the accumulated product overflows the lower-order 32 
bits of the MR register. Cleared otherwise. 

<SffiFT> operation 

ASTAT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ .. 

SS Affected only when executing the EXP operation; set if the 
source operand is negative. Cleared if the number is 
positive. 

Instruction Format: 
ALU /MAC operation with Data Register Move, Instruction Type 8: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 1 0 1 z AMF Yop Xop 1 Dreg Dreg 

destination source 

Shift operation with Data Register Move, Instruction Type 14: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 01 0 0 0 1 SF 1 Xop 1 Dreg J Dreg 
destination source 

Z: 
SF: 
Yop: 

Result register 
Shifter operation 
Yoperand 

Dreg: 
AMF: 
Xop: 

Destination register 
ALU /MAC operation 
Xoperand 

9 

9-73 



9 

9-74 

MULTIFUNCTION 
COMPUTATION with MEMORY WRITE 

Syntax: DM( 

PM( 

Permissible dregs 
AXO MXO 
AXl MXl 
AYO MYO 
AYl MYl 
AR MRO 

MRl 
MR2 

IO MO ) =dreg, 
I1 Ml 
I2 M2 
I3 M3 

I4 M4 
IS MS 
I6 M6 
I7 M7 

I4 ' M4 ) 
IS MS 
I6 M6 
I7 M7 

SI 
SE 
SRO 
SRl 

<ALU> 
<MAC> 
<SHIFT> 

Description: Perform the designated arithmetic operation and data 
transfer. The write operation moves the contents of fhe source to the 
specified memory location. The addressing mode when combining an 
arithmetic operation with a memory write is register indirect with post­
modify. The contents of the source are always right-justified in the 
destination register. 

The computation must be unconditional. All ALU, MAC and Shifter 
operations are permitted except Shift Immediate and ALU DIVS and 
DIVQ instructions. 

The fundamental principle governing multifunction instructions is that 
registers (and memory) are read at the beginning of the processor cycle 
and written at the end of the cycle. The normal left-to-right order of 
clauses (memory write first, computation second) is intended to imply 
this. In fact, you may code this instruction with the order of clauses 
reversed. The Assembler produces a warning, but the results are identical 
at the opcode level. If you turn off semantics checking in the Assembler 
(-s switch) the warning is not issued. 



( 
MULTIFUNCTION 9 

COMPUTATION with MEMORY WRITE 

Because of the read-first, write-second characteristic of the processor, 
using the same register as destination in one clause and a source in the 
other is legal. The register supplies the value present at the beginning of 
the cycle and is written with the new value at the end of the cycle. 

For example, 

(1) DM (IO, MO) =AR, AR = AXO + A YO; 
\ 

is a legal version of this multifunction instruction and is not flagged by the 
Assembler. Reversing the order of clauses, as in 

(2) AR = AXO + A YO, DM (IO, MO) = AR; 

results in an Assembler warning, but assembles and executes exactly as 
the first form of the instruction. Note that reading example (2) from left to 
right may suggest that the result of the computation in AR is then written 
to memory, all in the same cycle. In fact, this is not possible. The left-to­
right logic of example (1) suggests the operation of the instruction more 
closely. Regardless of the appar~t logic of reading the instruction from 
left to right, the read-first, write-second operation of the processor 
determines what actually happens. 

Status Generated: All status bits are affected in the same way as for the 
single function versions of the selected arithmetic operation. 

<ALU> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

AZ Set if result equals zero. Cleared otherwise. 
AN Set if result is negative. Cleared otherwise. 
AV Set if an overflow is generated. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 
AS Affected only when executing the Absolute Value operation 

(ABS). Set if the source operand is negative. 

9-75 



9 

9-76 

MULTIFUNCTION 
COMPUTATION with MEMORY WRITE 

<MAC> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

It 

MV Set if the accumulated product overflows the lower-order 32 
bits of the MR register. Cleared otherwise. 

<SHIFT> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 
It 

SS Affected only when executing the EXP operation; set if the 
source operand is negative. Cleared if the number is 
positive. 

Instruction Format: 
ALU /MAC operation with Data Memory Write, Instruction Type 4: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 J G J 1 J z J AMF J Yop J Xop J Dreg J I I M 

ALU /MAC operation with Program Memory Write, Instruction Type 5: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 1 J z J AMF J Yop J Xop } Dreg J I J M 



' i' 

( 

MULTIFUNCTION 
COMPUTATION with MEMORY WRITE 

Shift operation with Data Memory Write, Instruction Type 12: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

O O O 1 O O 11 G 11 J SF J Xop J Dreg J I J M 

Shift operation with Program Memory Write, Instruction Type 13: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 0 0 1 11 SF j Xop l Dreg l I l M 

Z: Result register Dreg: Destination register 
SF: Shifter operation AMF: ALU /MAC operation 
Yop: Y operand Xop: X operand 
I: Indirect address register M: Modify register 
G: Data Address Generator; I & M registers must be from the same 

DAG, as separated by the gray bar in the Syntax description. 

9 

9-77 



9 

9-78 

MULTIFUNCTION 
DATA & PROGRAM MEMORY READ 

Syntax: 

AXO = DM ( IO ' MO ) ' AYO =PM ( 14 ' M4 ) ; 
AX1 11 M1 AY1 15 MS 
MXO 12 M2 MYO 16 M6 
MX1 13 M3 MY1 17 M7 

Description: Perform the designated memory reads, one from data 
memory and one from program memory. Each read operation moves the 
contents of the memory location to the destination register. For this double 
data fetch, the destinations for data memory reads are the X registers in 
the ALU and the MAC, and the destinations for program memory reads 
are the Y registers. The addressing mode for this memory read is indirect 
with post-modify. The contents of the source are always right-justified in 
the destination register. 

For information on extra cycle conditions, refer to the Instruction Set 
Overview at the beginning of this chapter. 

Status Generated: No status bits are affected. 

Instruction Format: 
ALU/MAC with Data & Program Memory Read, Instruction Type 1: 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 PD DD AMF 0 0 0 0 0 PM PM DM DM 

I M I M 

AMF specifies the ALU or MAC function. In this case, AMF = 00000, 
designating a no-operation for the ALU or MAC function. 

PD: Program Destination register DD: Data Destination register 
AMF: ALU /MAC operation I: Indirect address register 
M: Modify register 



( 

MULTIFUNCTION 
ALU I MAC with DATA & PROGRAM MEMORY READ 

Syntax: 

<ALU> I AXO =.DM ( IO I MO ) I AYO =PM ( 14 I M4 ) ; 
<MAC> AXl 11 Ml AYl 15 MS 

MXO I2 M2 MYO 16 M6 
MXl 13 M3 MYl 17 . M7 

Description: This instruction combines an ALU or a MAC o~ration 
with a data memory read and a program memory read. The read 
operations move the contents of the memory location to the destination 
register. For this double data fetch, the destinations for data memory 
reads are the X registers in the ALU and the MAC, and the destinations 
for program memory reads are the Y registers. The addressing mode is 
register indirect with post-modify. The contents of the source are always 
right-justified in the destination register after the read. 

The computation must be unconditional. All ALU and MAC operations 
are permitted except the DIVS and DIVQ instructions. The results of the 
computation must be written into the R register of the computational unit; 
ALU results to AR, MAC results to MR. 

The fundamental principle governing multifunction instructions is that 
registers (and memory) are read at the beginning of the processor cycle 
and written at the end of the cycle. The normal left-to-right order of 
clauses (computation first, memory reads second) is intended to imply 
this. In fact, you may code this instruction with the order of clauses 
altered. The Assembler produces a warning, but the results are identical at 
the opcode level. If you turn off semantics checking in the Assembler (-s 
switch) the warning is not issued. 

The same data register may be used as a source for the arithmetic 
operation and as a destination for the memory read. The register supplies 
the value present at the beginning of the cycle and is written with the 
value from memory at the end of the cycle. 

9 

9-79 



9 

9-80 

MULTIFUNCTION 
ALU I MAC with DATA & PROGRAM MEMORY READ 

For example, 

(1) MR=MR+MXO*MYO(UU), MXO=DM(IO, MO), MYO=PM(I4,M4); 

is a legal version of this multifunction instruction and is not flagged by the 
Assembler. Changing the order of clauses, as in 

(2) MXO=DM(IO, MO), MYO=PM(I4,M4), MR=MR+MXO*MYO(UU); 

results in an Assembler warning, but assembles and executes exactly as 
the first form of the instruction. Note that reading example (2) from left to 
right may suggest that the data memory value is loaded into MXO and 
MYO and subsequently used in the computation, all in the same cycle. In 
fact, this is not possible. The left-to-right logic of example (1) suggests the 
operation of the instruction more closely. Regardless of the apparent logic 
of reading the instruction from left to right, the read-first, write-second 
operation of the processor determines what actually happens. 

Status Generated: All status bits are affected in the same way as for the 
single operation version of the selected arithmetic operation. 

<ALU> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

* * * * * 

AZ Set if result equals zero. Cleared otherwise. 
AN Set if result is negative. Cleared otherwise. 
AV Set if an overflow is generated. Cleared otherwise. 
AC Set if a carry is generated. Cleared otherwise. 
AS Affected only when executing the Absolute Value operation 

(ABS). Set if the source operand is negative. 

<MAC> operation 

AST AT: 7 6 5 4 3 2 1 0 
SS MV AQ AS AC AV AN AZ 

... 

MV Set if the accumulated product overflows the lower-order 32-
bits of the MR register. Cleared otherwise. 



( 

( 

MULTIFUNCTION 
ALU I MAC with DATA & PROGRAM MEMORY READ 

Instruction Format: 
ALU /MAC with Data and Program Memory Read, Instruction Type 1: 

23 22 21 20 19 18 17 16 15 14 13 
1 1 

PD: 
AMF: 
Yop: 
I: 

PD DD AMF 

Program Destination register 
ALU /MAC operation 
Yoperand 
Indirect address register 

12 11 10 9 8 7 6 5 4 3 2 1 0 
Yop Xop PM PM DM DM 

I M I M 

DD: Data Destination register 
M: Modify register 
Xop: X operand 

9 

9-81 



9 Instruction Set Ref ere nee 

,...._,\ 

9-82 



( Instruction Coding • A 

A.1 OPCODES 
Here is a summary of the complete instruction set of the ADSP-2101. 
Following the list of types and codes shown immediately below is a key to 
the abbreviations used. Any instruction codes not shown are reserved for 
future use. 

Type 1 : ALU I MAC with Data & Program Memory Read 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
1 1 PD DD AMF Yop Xop PM PM DM DM 

I M I M 

Type 2: Data Memory Write (Immediate Data) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 lj Gl DATA I I T M 

Type 3: Read /Write Data Memory (Immediate Address) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 0 0] D] RGP ] ADDR l REG 

Type 4: ALU I MAC with Data Memory Read I Write 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 l] Gj Dj zj AMF l Yop 1 Xop 1 DREG l I 1 M 

Type 5: ALU I MAC with Program Memory Read I Write 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

O 1 o] lj Dl zl AMF J Yop ] Xop 1 DREG 1 I J M 

A-1 



A Instruction Coding 

Type 6: Load Data Register Immediate 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 l 0 
0 l 0 o} DATA l DREG 

Type 7: Load Non-Data Register Immediate 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 1 1 I RGP I DATA l REG 

Type 8: ALU I MAC with Internal Data Register Move 

23 22 21 20 19 18 17 16 15 14 13 12 ll 10 9 8 7 6 5 4 3 2 l 0 

o o 1 O l} z 1 AMF l Yop 1 Xop l ~:~ 1 ~:~ce 
Type 9: Conditional ALU I MAC 

23 22 21 20 19 18 17 16 15 14 13 12 ll 10 9 8 7 6 5 4 3 2 1 0 

o o 1 o oJ z} AMF } Yop } xop Jo o o ol COND 

Type 10: Conditional Jump (Immediate Address) 

23 22 21 20 19 18 17 16 15 14 13 12 ll 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 11 s I ADDR l COND 

Type 11: Do Until 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 0 lj ADDR l COND 

Type 12: Shift with Data Memory Read I Write 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 0 0 l}Gjoj SF l Xop l DREG l I l M 

A-2 



( 

( 

( .. 

Instruction Coding A 

Type 13: Shift with Program Memory Read I Write 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 0 0 1 JD l SF I Xop I DREG I I J M 

Type 14: Shift with Internal Data Register Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 1 0 0 0 0 QI SF I Xop I Dest I Source 

REG REG 

Type 15: Shift Immediate 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 1 1 1 oJ SF I Xop 1 exponent 

Type 16: Conditional Shift 

23 22 21 20 19 18 l7 16 15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 
0 0 0 0 1 1 1 0 oj SF l Xop l 0 0 0 oJ COND 

Type 17: Internal Data Move 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0 
0 0 0 0 1 1 0 1 0 0 0 0 I DST I SRCI Dest l Source 

, RGP RGP REG REG 

Type 18: Mode Control 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

o o o o 1 1 o o I Tr J MM J As J oL J BR J sR J GM Jo o 

Explanation of these codes can be found together alphabetically under "Mode Control" in 
the next section. 

A-3 



A Instruction Coding 

Type 19: Conditional Jump (Indirect Address) 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 I I I 0 I s I COND 

Type 20: Conditional Return 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 oJ TI coND 

Type 21: Modify Address Register 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 ol GI r J M 

Type 22: Reserved 

2--3_ 22 21 20 19 18 17 16 15 14 13_ 12 11 10 9...a_7_6_5 4--3_2 1 0 
0 0 0 0 1 0 0 0 x x x x x x x x x x x x x x x x 

Type 23: DIVQ 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 1 1 1 0 0 0 1 oI Xop Io o 0 0 0 0 0 0 

Type 24: . DIVS 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 1 1 0 0 0 0 l Yop l Xop Jo 0 0 0 0 0 0 0 

Type 25: Saturate MR 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A-4 



Instruction Coding A 

Type 26: Stack Control 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 01 PPj LPl CPI SPP 

Type 27: Call or Jump on Flag In 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 1 1} Address lAddrl FICl S 
\ \ 
12 LSBs 2 MSBs 

Type 28: Flag Out Mode Control 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 oJFo I COND 

( Type 29: Reserved 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 1 x x x x x x x x x x x x x x x x 

Type 30: No Operation 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Type 31: Idle 

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

( 
A-5 



A Instruction Coding 

A.2 ABBREVIATION CODING 

AMF ALU I MAC Function codes 

0 0 0 0 0 No operation 

MAC Function codes 

0 0 0 0 1 X*Y (RND) 
0 0 0 1 0 MR+X*Y (RND) 
0 0 0 1 1 MR-X*Y (RND) 
0 0 1 0 0 X*Y (SS) Clear when y = O 
0 0 1 0 1 X*Y (SU) 
0 0 1 1 0 X*Y (US) 
0 0 1 1 1 X*Y (UU) 
0 1 0 0 0 MR+X*Y (SS) 

/' --, 

0 1 0 0 1 MR+X*Y (SU) 
0 1 0 1 0 MR+X*Y (US) 
0 1 0 1 1 MR+X*Y (UU) 
0 1 1 0 0 MR-X*Y (SS) 
0 1 1 0 1 MR-X*Y (SU) 
0 1 1 1 0 MR-X*Y (US) 
0 1 1 1 1 MR-X*Y (UU) 

ALU Function codes 

1 0 0 0 0 y Clear when y = O 
1 0 0 0 1 Y+1 
1 0 0 1 0 X+Y+C 
1 0 0 1 1 X+Y X when y = O 
1 0 1 0 0 NOTY 
1 0 1 0 1 -Y 
1 0 1 1 0 X-Y+C-1 
1 0 1 1 1 X-Y 
1 1 0 0 0 Y-1 
1 1 0 0 1 Y-X -Xwhen Y= O 
1 1 0 1 0 Y-X+C-1 

/ " 
\ 
~j 

A-6 



( 

Instruction Coding A 

1 1 0 1 1 
1 1 1 0 0 
1 1 1 0 1 
1 1 1 1 0 
1 1 1 1 1 

NOTX 
XANDY 
XORY 
XXORY 
ABSX 

COND Status Condition codes 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

Equal 
Not equal 
Greater than 
Less than or equal 
Less than 
Greater than or equal 
ALU Overflow 
NOT ALU Overflow 
ALU Carry 
Not ALU Carry 
X input sign negative 
X input sign positive 
MAC Overflow 
Not MAC Overflow 
Not counter expired 
Always 

CP Counter Stack Pop codes 

0 
1 

No change 
Pop 

D Memory Access Direction codes 

0 
1 

Read 
Write 

EQ 
NE 
GT 
LE 
LT 
GE 
AV 
NOT AV 
AC 
NOT AC 
NEG 
POS 
MV 
NOTMV 
NOT CE 
FOREVER 

A-7 



A Instruction Coding 

DD Double Data Fetch Data Memory Destination codes 

0 o AXO 
o 1 AX1 
1 o MXO 
1 1 MX1 

DREG Data Register codes 

0 0 0 0 AXO 
0 0 0 1 AX1 
0 0 1 0 MXO 
0 0 1 1 MX1 
0 1 0 0 AYO 
0 1 0 1 AY1 
0 1 1 0 MYO 
0 1 1 1 MY1 <. ____ / 

1 0 0 0 SI 
1 0 0 1 SE 
1 0 1 0 AR 
1 0 1 1 MRO 
1 1 0 0 MR1 
1 1 0 1 MR2 
1 1 1 0 SRO 
1 1 1 1 SR1 

FIC Fl condition code 

1 latched Fl is 1 FLAG_IN 
0 latched Fl is o NOT FLAG_IN 

A-8 



Instruction Coding A 

FO Mode Control codes for Flag Out pin 

FO: Set, reset, or toggle the output Flag. 

0 0 No change 
0 1 Toggle 
1 0 Reset 
1 1 Set 

G Data Address Generator codes 

0 DAG1 
1 DAG2 

Index Register codes 

( 
G= 0 1 

0 0 10 14 
0 1 11 15 
1 0 12 16 
1 1 13 17 

LP Loop Stack Pop codes 

0 No Change 
1 Pop 

M Modify Register codes 

G= 0 1 
0 0 MO M4 
0 1 M1 MS 
1 0 M2 M6 
1 1 M3 M7 

A-9 



A Instruction Coding 

A-10 

Mode Control codes 

SR: Secondary register bank 
BR: Bit-reverse mode 
OL: ALU overflow latch mode 
AS: AR register saturate mode 
MM: Alternate Multiplier placement mode 
GM: GOMode; enable means go if possible 
Tl: Timer enable 

o o No change 
o 1 No change 
1 o Deactivate 
1 1 Activate 

PD Double Data Fetch Program Memory Destination codes 

o o AYO 
o 1 AY1 
1 O MYO 
1 1 MY1 

PP PC Stack Pop codes 

0 
1 

No Change 
Pop 



( Instruction Coding A 

REG Register codes 

RGP= 00 01 10 11 

0 0 0 0 AXO 10 14 ASTAT 
0 0 0 1 AX1 11 15 MSTAT 
0 0 1 0 MXO 12 IS SSTAT 
0 0 1 1 MX1 13 17 IMASK 
0 1 0 0 AYO MO M4 ICNTL 
0 1 0 1 AY1 M1 M5 CNTR 
0 1 1 0 MYO M2 MS SB 
0 1 1 1 MY1 I M3 M7 PX 
1 0 0 0 SI LO L4 RXO 
1 0 0 1 SE L1 L5 TXO 
1 0 1 0 AR L2 LS RX1 
1 0 1 1 MRO L3 L7 TX1 

( 
1 1 0 0 MR1 IFC (write only) 
1 1 0 1 MR2 OWRCNTR (write only) 
1 1 1 0 SRO 
1 1 1 1 SR1 

s Jump Type codes 

0 Jump 
1 Call 

SF Shifter Function codes 

0 0 0 0 LSHIFT (HI, PASS) 
0 0 0 1 LSHIFT (HI, OR) 
0 0 1 0 LSHIFT (LO, PASS) 
0 0 1 1 LSHIFT (LO, OR) 
0 1 0 0 ASH I FT (HI, PASS) 
0 1 0 1 ASH I FT (Hl,OR) 
0 1 1 0 ASH I FT (LO, PASS) 
0 1 1 1 ASH I FT (LO, OR) 
1 0 0 0 NORM (HI, PASS) 

(-

A-11 



A Instruction Coding 

1 0 0 1 NORM (HI, OR) 
1 0 1 0 NORM (LO, PASS) 
1 0 1 1 NORM (LO, OR) 
1 1 0 0 EXP (HI) 
1 1 0 1 EXP (HIX) 
1 1 1 0 EXP (LO) 
1 1 1 1 Derive Block Exponent 

SPP Status Stack Push/Pop codes 

0 0 No change 
0 1 No change 
1 0 Push 
1 1 Pop 

T Return Type codes 

0 Return from Subroutine 
1 Return from Interrupt 

x X Operand codes 

0 0 0 XO (SI for shifter) 
0 0 1 X1 (invalid for shifter) 
0 1 0 AR 
0 1 1 MRO 
1 0 0 MR1 
1 0 1 MR2 
1 1 0 SRO 
1 1 1 SR1 

y Y Operand codes 

0 0 YO 
0 1 Y1 
1 0 F (feedback register) 
1 1 zero 

z ALU/MAC Result Register codes 

0 Result register 
1 Feedback register ,,.-- " ~, 

' \ 

A-12 



File Formats • B 

8.1 DATA FILES (.DAT) 
The .DAT file format is used for data buffer initialization in source code, 
simulated parallel and serial port data flow, and saving or loading 
simulated memory. The format is generally the same for all uses, with 
some restrictions as detailed in this section. The .DAT extension is a 005 
convention only and is not required by the Linker or Simulator. 

These files contain text only: the characters for hexadecimal, decimal, and 
binary data. Any standard text editor can be used to create the files. 

B.1.1 Assembler Buffer Initialization Files 
The .INIT Assembler directive-names an external file from which to 
initialize a data buffer. This file is created by the user and specified in 
source code with the .INIT directive. The data file should be located in the 
directory from which the Linker is invoked, or the path specifying the 
directory which does contain the file must be given in the .INIT directive. 
The Linker reads this file and loads the buffers via the .EXE memory 
image file. The file can be of any length. 

B.1.1.1 Integer Data 
The standard format of this file is a single four- or six-character 
hexadecimal number per line of input (carriage returns are ignored). If a 
file for DM contains six characters per line, however, the four most 
significant digits of each number are used and the other two are ignored. 

Files for PM are typically six characters per line. If a line in the file 
contains only four characters, the number is left-justified and zero-filled to 
the right. 

For example, if your data file contained these lines: 

002222 
2222 
220001 
2211 

B-1 



B File Formats 

8-2 

The contents if loaded in OM would be: 

0022 
2222 
2200 
2211 

The contents if loaded in PM would be: 

002222 
222200 
220001 
221100· 

(zero-filled) 

(zero-filled) 

8.1.1.2 Non-Integer Data 
Buffer initialization files can contain decimal numbers with fractional 
components. These non-integer (or floating point) values are treated by 
the Linker as integers; the fractional component is ignored (not rounded). 
For example, the data value 

5.862 

is loaded in memory as 

5 

8.1.1.3 Comments 
Comments can be entered on each line in a buffer initialization file, 
anywhere to the right of the data. The comments do not need to be 
enclosed in brackets; anything other than data is ignored by the Linker. 

B.1.2 Simulator Data Files 
The Simulator requires external files to simulate input and output data for 
memory-mapped 1/0 ports, to simulate receive and transmit data for 
serial ports, and to store or load simulated processor memory with the D 
and E commands. 

8.1.2.1 110 Port Data 
You must create this file to provide input data to parallel ports in DM or 
PM. The file format is one four-character hexadecimal number per line for 
DM-mapped ports, and one six-character hexadecimal number for PM­
mapped ports. Carriage returns are ignored by the Simulator. 

/ 



( 

( 

File Formats B 

If data is written out to the port, the Simulator opens a file to store the 
output data. 

8.1.2.2 SPORT Data 
A file must also be created to provide simulated (receive) serial data to the 
serial ports. The input file must consist entirely of ones, zeros, and 
carriage returns. A single line in the file may have any number of ones 
and zeros; carriage returns may be used to terminate each line and make 
the file more readable. The Simulator reads the ASCII characters and 
ignores carriage returns. 

The Simulator opens a file to store output (transmit) data. 

8.1.2.3 Simulated Memory Data 
Portions of PM or DM can be saved to or loaded from an external file by 
the Simulator with the use of the D (dump memory) and E (enter 
memory) commands. The file format for data to be loaded with the E 
command is the same as that for 1/0 port data, described above; four­
character hex numbers for OM and six-character numbers for PM. The 
files saved to with the D command are useful for intermediate storage of 
simulated PM or DM contents to be reloaded by the Simulator later or 
input to other software applications. 

8.2 MEMORY IMAGE FILE (.EXE) 
The PM/DM/BM Memory Image File is created by the Linker. This file 
contains the memory images of the system that the user has created using 
the development system. Memory images include assembled and 
resolved opcodes and initialized data buffers. The Memory Image File is 
used to upload executable code to the ADSP-2101 Simulator, Emulator 
and PROM Splitter. 

The first three characters of this file are "<ESC> <ESC> i". These 
characters tell the Emulator that the following code is upload information 
for PM, DM, and BM. 

Each "kernel" of information that can be uploaded into a particular area of 
memory is headed by one of the following: @PA,@PO,@DA,@DO,@BO. 
The P indicates program memory; D indicates data memory; B indicates 
boot memory; 0 indicates ROM; A indicates RAM. 

B-3 



B File .Formats 

8-4 

Following this header is a four-character hexadecimal address where 
upload starts. Only areas of memory that need to be loaded will have 
kernels associated with them. Following this is the series of words to be 
uploaded sequentially from the start address. These words are six 
characters for PM and BM, and four characters for DM, all hexadecimal. 

Each kernel is terminated by #nnnnnn ... , which is a dummy value 
separating kernels. Kernels can occur in any order. 

This file is closed by "<ESC> <ESC> o" to tell the Emulator that the 
upload is complete. <ESC> sequences are ignored by the Simulator and 
the PROM Splitter. 

An example .EXE Image File is shown below: 

<ESC> <ESC>i 
@PO 
0004 
1C007F 
lCOSBF 
OAOOOF 
#123123123123 
@DA 
0000 
2D40 
0000 
#123123123123 
@BO 
0000 
03242A 
025B26 
01921C 
#123123123123 
@PO 
6000 
7FFFFF 
7FFD88 
80009E 
#123123123123 
@BO 
0800 
OAOOOF 
FD887F 



( 

.(•.· I 

' 

025B26 
#123123123123 
@DA 
0182 
0040 
#123123123123 
@DA 
0183 
0000 
#123123123123 
<ESC> <ESC>o 

File Formats B 

Notice that the boot memory words in this file are only 24 bits wide, 
instead of 32 bits wide as in the boot memory PROMS. The Linker does 
not generate 32-bit boot memory words; this is done by the PROM Splitter 
(which reads the .EXE file). 

Acccordingly, the boot memory addresses in the .EXE file are word 
addresses, not PROM byte addresses. These word addresses are similar to 
program memory addresses; each address locates a 24-bit word of code or 
data. 

The Linker views boot memory as an array of words, of length 16K, and 
divided into 8 pages of 2K each. The page number is embedded in the 
@BO address: 0000 is the start of page 0, 0800 is the start of page 1, 1000 is 
the start of page 2, etc .. To obtain the page number, divide the hex address 
by 2K and drop the remainder. 

B.3 DEBUG SYMBOL TABLE FILE (.SYM) 
The Debug Symbol Table File (.SYM) is created by the Linker. It lists all of 
the symbols and associated addresses encountered by the Linker. A 
separate list is generated for each module which includes all symbols that 
can be referenced by that module. 

The first three characters of this file are "<ESC> <ESC> d". These 
characters tell the Emulator that the following code is the Debug Symbol 
information. 

The "m directive" is used to specify the source code module which is the 
scope of a set of symbols. The "m directive" takes the form 

( _mmodulename addr 

8-5 



B File Formats 

8-6 

where modulename is the name of the module and addr is the module base 
address, in hexadecimal. A p, d, orb# is appended to indicate placement 
in PM, OM, or BM. The boot page number is listed following the b, as in 
''bO". 

On lines following this directive are the symbols which can be referenced 
within the context of the named module. With each symbol is the 
associated hex address and an indication of the memory to which it 
belongs (d, p, orb#). A Z:Z.Z:Z. in the address field indicates that the 
address for that symbol was never resolved (not all symbols have memory 
addresses associated with them). 

The file is closed by "<ESC> <ESC> o" to tell the Emulator that the Debug 
Symbol File transmission is complete. <ESC> sequences are ignored by 
the Simulator. 

The following is an example of a Debug Symbol Table File for a single 
module in program memory which is not booted: 

<ESC> <ESC>d 
_mFFT 0004p 
REAL OUTPUT lOOOd 
IMAGINARY OUTPUT 2000d 
MAGN OlOOd 
SIN_COEF 6000p 
COS_COEF 6080p 
FFT_START 0020p 
BUTTERFLY_LOOP 0033p 
GROUP_LOOP 0037p 
STAGE_LOOP 0040p 
<ESC> <ESC>o 

The following example shows the .SYM file for this manual's example 
program (see Chapter 3, Assembler), consisting of two modules on boot 
page 0: 

<ESC> <ESC>d 
mFIR ROUTINE OOOFbO - -

FIR START OOOFbO 
CONVOLUTION 0014b0 
COEFFICIENT OOOObO 
DATA BUFFER 3800d 

mMAIN ROUTINE 0019b0 ,/- "-, 



( 

l ---
/ 

File Formats B 

DATA BUFFER 3800d 
COEFFICIENT OOOObO 
RESTARTER 0035b0 
CLEAR BUFFER 003Db0 
WAIT 0052b0 
FIR START OOOFbO 
<ESC> <ESC>o 

B.4 PROM IMAGE FILES (.BNU, .BNM, .BNL) 
PROM Image files are generated by the ADSP-2101 PROM Splitter. They 
are uploaded to a PROM burner to program the appropriate PROMs. One 
file is needed for each PROM chip to be programmed. The format of the 
files depends on the options specified in the PROM Splitter invocation 
command line. See Chapter 8. 

There are three types of image files generated by the PROM Splitter: .BNU 
for the upper bytes of the 24-bit words, . BNM for the middle bytes, and 
. BNL for the lower bytes. 

The files created can be in either Intel Hex I format or Motorola S format. 
An overview of these formats is given in the following sections. 

B.4.1 Intel Format 
The example files below show the Intel format for a program memory file 
(middle byte), a program memory single stream file, and a boot page 
memory file. Each line of the file is a data record with the exception of the 
last line, which is the end of file record. Larger files contain additional 
data records. 

Program Memory .BNM sample file: 

:OA0004003C403434342614222608SO datarecord 
: ooooo40lFB end of file record 

8-7 



B File Formats 

This file format is obtained by using the -pm and -i switches; the file 
contains the middle byte of program memory words. The records are 
organized into the following fields: 

:OA0004003C40343434261422260850 

OA 
0004 

00 
3C 

:00000401FB 

00 
0004 

01 
FB 

start character 
byte count in this record 
address of the first data byte in this 
record 
record type (00) 
first data byte 

o a last data byte 
so checksum: Twos complement 

negation of binary summation 
(least significant 8 bits) of 
preceding bytes, including byte 
count, address and data bytes. 

start character 
byte count (zero in this record) 
address of the first byte in this 
record 
record type (01 in this record) 
checksum 

Program Memory .BNM Single Stream file: 

:1E0000003C005540008034000034001434000826180F1400C222E00F26300208000F36 
:OOOOlFOlEO 

data record 
end of file 
record 

8-8 

This file format is obtained by using the -pm and -ui switches; the file 
contains all three bytes of program memory words. The fields are the 
same. Note that every third data byte (shown in bold) corresponds to the 
middle byte example above. 



( 

( 

File Formats B 

Boot Memory .BNM sample file: 

:200000001111000A000100FF001100FF011100FF111100FF100000FF110000FF111000FF33 datarecord 
:20002000000000FF000100FF110000FF111000FF000100FF001100FF011100FF3COOE5FF50 datarecord 
:200040000D0388FF680080FFE89800FF14014EFFE90000FF20400FFF050000FFODOC9CFF33 datarecord 
:200060000A001FFF18035FFFOOOOOOFF000000FF000000FFOA001FFFOOOOOOFFOOOOOOFFBC datarecord 
:20008000000000FFOA001FFFOOOOOOFF000000FFOOOOOOFF1800FFFFOOOOOOFFOOOOOOFF28 datarecord 
:2000A000000000FFOA001FFFOOOOOOFF000000FFOOOOOOFFOA001FFFOOOOOOFFOOOOOOFFF6 datarecord 
:2000C000000000FFOA001FFFOOOOOOFFOOOOOOFFOOOOOOFF3400F8FF3800F8FF340014FF5B datarecord 
:2000E000380014FF378000FF380000FF3COOF5FF1403DEFFA00000FF37FEF1FFA00004FF3D datarecord 
:20010000A00004FFA00004FFA00004FFA00004FFA00BF4FFA00034FFA69274FFA00004FF94 datarecord 
:20012000A00004FFA00004FFA00004FFA00004FFA00004FFA00004FFA70004FFA10004FF9F datarecord 
:2000A0003C0004FF3C0183FF028000FF18052FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5 datarecord 
: OOOOOOOlFF end of file 

record 

This file format is obtained by using the-bm and -i switches; the file 
contains the four bytes of boot memory words. The records have the same 
fields as specified above with the following additions: 

• Every fourth data byte is a pad byte (FF) inserted to produce the 32-bit 
word width. 

• The pad byte of the first data word (OA), at PROM byte address 
Ox0003, is the page length for this boot page. This byte is shown in bold 
above. 

• Pad bytes are added to the last data record to make the number of 
words on the page a multiple of 8. 

B-9 



B File Formats 

8-10 

B.4.2 Motorola Format 
The Motorola standard is quite similar. The following example shows an 
S-style . BNM file consisting of the middle byte of program memory. Each 
line of the file is a data record with the exception of the last line, which is 
the end of file record. Larger files contain additional data records. 

Program Memory .BNM sample file: 

SlOD00043C4034343426142226084C 
S903000DEF 

data record 
end of file record 

This file format is obtained by using the -pm and -s switches. The records 
are organized into the following fields: 

Sl0D00043C4034343426142226084C 

Sl 
OD 

0004 

3C 

S903000DEF 

59 
03 

OOOD 

EF 

08 
4C 

start character 
byte count in this record 
address of the first byte in this ,,,, " 
record 
first data byte 
last data byte 
checksum: One's complement of 
binary summation (least significant 
8 bits) of preceding bytes, including 
byte count, address and data bytes. 

start character 
byte count in this record 
address of the first byte in this 
record 
checksum 

The Motorola format may also be used to create a single-stream file 
containing all three bytes of program memory; this is the 52 format. See 
the Chapter "PROM Splitter," for the complete set of options. 



c Host-Specific Requirements 

C.1 SYSTEM REQUIREMENTS 
This appendix details the requirements (hardware and software) and 
restrictions for each of the environments in which you can operate the 
ADSP-2101 Cross-Software. 

C.2 IBM PC AND COMPATIBLES 
The Cross-Software for IBM PCs executes on all PC models. You must 
have a hard disk and it is recommended that you use at least an AT-class 
model. Installation of the Cross-Software on a PC requires the following: 

• PC-DOS 3.0 or later 

• 640KB memory 

• The directive "FILES=25" in your CONFIG.SYS (configuration boot) 
file. This file must be in the root directory of the startup disk. 

In addition, for graphics output when using the PL (plot memory) 
command in the Simulator, you must have: 

• A color display system: IBM CGA, EGA, or VGA-type. Monochrome 
and Hercules-type displays will not work. 

There are several operating restrictions that result from memory 
limitations on the PC: 

• The size of the source file processed by the the Assembler may be 
limited by memory. 

• The number and size of modules and number of symbols that can be 
handled by the Linker is limited by memory. 

• Do not run any memory-resident programs like Sidekick or ProKey 
while you are using the Cross-Software. 

. • c 

C-1 



C Host-Specific Requirements/ 

C-2 

C.3 SUN-3 WORKSTATION 
The Sun-3 Cross-Software must be run under a version of Unix supporting 
virtual memory. 



( 

( 

ANSI Standard C • D 

D.1 ANSI DRAFT STANDARD EXCEPTIONS 
You can obtain a copy of the draft standard by writing to the Computer 
and Business Equipment Manufacturers Association at: 

CB EMA 
Suite 500 
311 First Street N.W. 
Washington, DC 20001-2178 

The ADSP-2l:XX C Compiler and Preprocessor adhere to the current ANSI 
draft standard (X3Jl 1) except as noted below. 

D.1.1 Features Not Supported & Restrictions 

1. Static and global variables are not automatically initialized to zero. The 
initial value of such variables is undefined. 

2. Passing structures in a function call 

3. Returning structures from a function call 

4. Objects cannot exceed BK bytes in size 

5. Floating-point does not meet the precision specified 

D.1.2 New Features and Extensions 

1. The fastswitch keyword. 

2. The fract numeric type. 

3. The storage class modifiers pm, dm, ram and rom. 

D-1 



D ANSI Standard C 

D-2 

D.2 DIFFERENCES BETWEEN HOST VERSIONS 
There are no specific differences in the ADSP-21XX C Compiler, although 
there may be differences in other Cross-Software modules' performance 
that affects the assembly or linking of code generated by the C Compiler. 
See also Appendix C. 



( 

'.( 

( 

Linker Operation • E 

E.1 INTRODUCTION 
The ADSP-2101 boot memory space may contain up to eight individual 
boot pages. Software selection of the next page to be booted and software­
forced booting, described in the Memory Interface chapter of the ADSP-
2101 User's Manual, allow the processor to be rebooted under program 
control. This allows an application to be implemented in multiple boot 
pages, with execution branching from one page to another. This 
branching, of course, takes the form of software reboots. 

This appendix will only be of interest to you if your application requires 
multiple boot pages of ADSP-2101 code. 

E.2 RE-BOOTING UNDER PROGRAM CONTROL 
Programs requiring multiple boot pages have the following characteristics 
and operation: 

1. They boot first from page zero. 

2. At some point in their execution they set the boot page select field (of 
the System Control Register) to select the next page needed. 

3. With the next boot page selected, a software boot is forced by setting 
the boot force bit, loading that page into on-chip program memory. 
On-chip data memory is unchanged. 

The memory-mapped control register System Control Register, located at 
internal data memory address 3FFF Hex, contains the BP AGE select field 
and BFORCE bit. This register must be written to under program control 
when re-booting is necessary. 

E.3 SHARED DATA STRUCTURES 
In order for data buffers to be shared by different boot pages, precautions 
must be taken to prevent the overwriting of the data when a new page is 

E-1 



E Linker Operation 

E-2 

booted. The STA TIC qualifier, when used in a . VAR buffer declaration, 
instructs the Linker to prevent the buffer from being overwritten during a 
software re-boot. The Linker accomplishes this by different means for PM 
data buffers and for DM data buffers. 

E.3.1 Data Buffers in Program Memory 
Data buffers located in program memory are either relocatable or non­
relocatable, depending on whether or not they are declared at a specific 
base address (with the ABS qualifier). If you wish to share a buffer 
between mwtiple boot pages, you may take one of two approaches. The 
first is to make the buffer relocatable by omitting the ABS specification 
and de<;:laring the buffer as STA TIC, allowing the Linker to perform the 
task for you. Alternatively, you may place the buffer yourself with the 
ABS qualifier; however, you must ensure that the buffer is never 
overwritten in on-chip PM during a re-boot. 

To use the STATIC qualifier to create a data buffer to be shared, declare 
the buffer in the following manner in source code on boot page 0: 

.VAR /PM/STATIC/ etc. buffer_name[length]; 

.GLOBAL buffer _name 

If you were to declare a buffer called dat1, for example, boot page 0 would 
be as shown in Figure E.1. Notice that the Linker places dat1 at the top of 
the 2K-long page. If the buffer contents are not initialized, the page length 
to be loaded extends only as far as the source code on the page. 

Suppose that dat1 is to be shared by boot pages 0, 1, and 2. It must be 
declared as above on page 0, and given the GLOBAL attribute so that it 
may referenced in other code modules on all three pages. These modules 
which require access to the buffer must use the .EXTERNAL directive in 
order to be able to reference it: 

.EXTERNAL dat1; 

If dat1 is initialized on page 0, the memory images of pages 0, 1, and 2 
would be as shown in Figure E.2, on page E-4. Because initialization data 
is contained in the buffer on page 0, the page length to be loaded is the full 
2K The Linker places filler bytes (FF Hex) in the region between the end 
of code and the start of the buffer. . 

Now suppose that execution of the source code on page 0 modifies the 
data in the buffer dat1; the new data must be passed to page 1 unaltered. 



( 

1( 

( 

Linker Operation E 

address O 

Buffer dat1 declared, but not 
initialized, in code on Boot Page O 

ST A TIC buffer is placed at 
the top of memory by the Linker 

address 2047 

Figure E.1 STATIC Data Buffers in Boot Memory 

Boot Page O 

dat1 (STATIC) 

i 
CQ 
CD 

! 
CQ -:r 

When page 1 is booted, the buffer is not overwritten in on-chip PM because 
loading occurs only up to the page length. Booting of page 2 also leaves the 
buffer's contents undisturbed, as can be seen from its page length. 

The Linker always places STATIC buffers at the top of memory on a boot 
page. If the code on the page is too long and overlaps the buffer space, a 
Linker error message is generated. 

The alternative to using the STATIC qualifier to create a shared data 
buffer is to place the buffer in boot memory yourself with the ABS buffer 
address specification. The address must be chosen such that it is higher in 
memory than the largest boot page (page length). In this case you are 
doing the job of the Linker- placing the data buffer in memory and 
assuring that it is never overwritten during a boot page load. 

E-3 



E Linker Operation 

Boot Page 0 Boot Page 1 Boot Page 2 
address O 

If code on Boot Page 0 lnltlallzes 
the buffer dat1 , the Unker wlll 
place FF hex bytes In this region, 

and place lnltlallzatlon 
data In the buffer 

E-4 

dat1 (STATIC) dat1 (STATIC) 

address 2047 

Figure E.2 Sharing STATIC Data Between Muhiple Boot Pages 

E.3.2 Data Buffers in Data Memory 
In order to share a data buffer in data memory between multiple boot 
pages, the buffer must be relocatable, GLOBAL, and STA TIC. To assure 
that the buffer data is preserved during software re-boots, the Linker 
follows the same procedure for the boot pages as it does when linking 
multiple code modules. See the Memory Allocation section in Chapter 4. 
In this case the Linker must scan over all boot pages and place any non­
relocatable buffers before placing the STATIC buffer at a location where it 
will not be overwritten by any other page's data structure. 

Again you may do the job of the Linker by omitting the STA TIC qualifier 
and placing the data buffers of all boot pages in data memory. This task 
requires an exact determination of the complete layout of data memory 
which may prove difficult; allowing the Linker to do the work for you is 
usually easier. 



(. Linker Operation E 

E.4 SHARED SUBROUTINES 
Any source code to be shared between multiple boot pages must actually 
be located on each of the pages. There are two ways to accomplish this: by 
repeating the BOOT=n qualifer in the module declaration, or by creating 
libraries and using the Linker'·s -p switch. 

E.4.1 Repeating The BOOT Qualifier 
If you write subroutine code modules, a copy of the module must be 
placed on each boot page which calls it. One way to accomplish this is by 
repeating the BOOT=n qualifier for each page necessary in the subroutine 
module declaration, as in: 

.MODULE/RAM/BOOT=O/BOOT=1/BOOT=2 calc_routine; 

.ENTRY start_calc; 

In this case, the Linker now places a copy of the module calc_routine on 
boot pages 0, 1, and 2. Remember that the address label for the start of the 
subroutine code (start_calc in this example) must be declared as an ENTRY 
point in order to be visible to other code modules on the same page. These 
modules which call the subroutine must declare the entry point as 
EXTERNAL. 

E.4.2 Libraries & -p Switch 
If you have a large number of subroutines written for your ADSP-2101 
system, it may be desirable to place the files in a directory of library 
routines. See the discussion of the the Linker-lib directory switch & ADIL 
variable in Chapter 4. Library routines are also used by the C Compiler 
when assembling C-generated source code. 

When linking your complete system program, use the -p switch. The 
Linker inserts a copy of any subroutine called on a boot page into the 
memory image file for that page. Figure E.3, on the next page, illustrates 
the results of this process. To find the library of subroutines, the Linker 
searches directories specified by the -lib switch and ADIL variable. 

E-5 



E Linker Operation 

E-6 

Boot Page Zero 

fp_mult 
library subroutine 

Boot Page One 

Boot Page Two 

fp_mult 
library subroutine 

When the Linker -p switch is used, 
library subroutines are placed 
on the boot pages which have 
a CALL instruction naming them 

Figure E.3 Library Routines & Multiple Boot Pages 



( 
Error Messages • F 

F.1 INTRODUCTION 
This appendix lists and provides a definition of all error messages 
generated by the ADSP-2101 Cross-Software modules other than the C 
Compiler. A listing is included for the System Builder, Assembler, Linker, 
and Simulator. The PROM Splitter displays no error messages. See 
Chapter 7 for a description of C Compiler error messages. 

F.2 SYSTEM BUILDER ERRORS 
The System Builder generates messages for syntax errors and system 
architecture definition errors. Syntax errors are errors in usage of the 
System Builder directives in the input file. Architecture definition errors 
are primarily errors in memory configuration, and may be either fatal or 
non-fatal. Error sources should be corrected in the input file. 

Error message 

Boot memory segment crosses 16K 
boundary 

BOOT page must be on a 2K word 
boundary 

BOOT page cannot exceed 2K word 
page size 

Code/ data- 24 required bits in 
memory width 

Data memory segment exceeds 16K 
boundary 

Explanation 

Memory boundary limit exceeded 

Boot page segments do not accept 
the ABS modifier; the first address 
of a boot page is always equal to the 
boot page number "' 2048 

Boot page segment declared with 
length greater than 2048 

Info only: 24-bit word width in PM 

Memory boundary limit exceeded 

F-1 



F Error Messages 

Data memory segment overlaps No segment may be declared in 
reserved space upper lK of data memory 

Divide by zero in expression Arithmetic error 

OM segment can have DATA Segment declared in data memory 
attribute only may not have the CODE qualifier 

OM segment cannot exceed physical Segment declared in data memory 
address h #3fff address beyond Ox3FFF 

Expecting a constant at symbol Numeric constant required in place 
symbol of the named symbol 

Expecting 'ABS' at symbol symbol System-reserved keyword 'ABS' 
required in place of the named 
symbol 

Expecting an identifier at symbol User-defined identifier required in 
symbol place of the named symbol 

I 
I 

Expecting 'CONST', 'ADSP2100', System-reserved keyword required 
'ADSP2101', 'PORT', 'SEG', in place of the named symbol 
'ENDSYS', or 'MMAP' at symbol 
symbol 

Expecting segment modifier at Segment qualifier required in place 
symbol symbol of the named symbol 

Expecting 'SYSTEM' at symbol '.SYSTEM' must be the first text 
symbol read by the System Builder 

Expecting'.' at symbol symbol '.' required in place of the named 
symbol 

Expecting ']' at symbol symbol ']' required in place of the named 
symbol 

Expecting'=' at symbol symbol '='required in place of the named 
symbol 

Expecting'/' at symbol symbol 'I' required in place of the named 
symbol 

/ 

F-2 \~,,, 



Error Messages F 

Expecting';' at symbol symbol ';' required in place of the named 
symbol 

FATAL ERROR: Boundary error Memory boundary limit exceeded 
occurred 

FATAL ERROR: Impossible PM Program memory configuration not 
configuration allowed 

FATAL ERROR: Overlap occurred Two or more declared segments 
overlap 

FATAL ERROR: Unable to open System Builder cannot find .SYS file 
filename for reading or cannot create .ACH; 1) the path/ 

filename specified is incorrect or 
not allowed, 2) file does not exist, or 
3) operating system condition 

NOTICE: ? no PM found No program memory segment was 

,- declared 

Ports are not allowed in boot I/0 ports may only be placed in 
memory data or program memory 

Problem mallocing enough memory Not enough memory is available on 
host computer for System Builder 
to continue running 

Program memory segment crosses Program memory may not exceed 
16K boundary 16K 

Trying to redeclare symbol symbol The named symbol is declared 
twice in the input file 

Warning: Absolute address Boot page segments do not accept 
specified for boot page will be the ABS modifier; 
ignored.Segment address will be . the first address of a boot page is 
boot page * 2K always equal to the boot page 

number * 2048 

Warning: Missing semicolon after Semicolon must always terminate 
ENDSYS directive an instruction or directive 

(~-
F-3 



F Error Messages 

F-4 

You must specify memory segment 
address 

You must specify memory segment 
area 

You must specify memory segment 
type 

F.3 ASSEMBLER ERRORS 

Error message 

Boot page out of range 

Divide by zero in expression 

Do labels cannot be external 

Do loop terminates do loop at 
symbol symbol 

Dreg of data memory access must 
be one of: AXO, AX1, MXO, MX1 

Dreg of program memory access 
must be one of: A YO, A Yl, MYO, 
MY1 

Expecting a condition at symbol 
symbol 

Expecting a constant at symbol 
symbol 

Expecting a data format at symbol 
symbol 

ABS qualifier was omitted in a 
segment declaration 

PM, OM, or BOOT qualifier was 
omitted in a segment 
declaration 

ROM or RAM qualifier was omitted 
inasegment 
declaration 

Explanation 

Page number specified is invalid 

Arithmetic error 

DO loop cannot reference an 
external label 

A DO instruction may not be the last 
instruction of a DO loop 

Incorrect data register used in 
instruction 

Incorrect data register used in 
instruction 

Instruction condition code required 
in place of the named symbol 

Numeric constant required in place 
of the named symbol 

'UU', 'SU', 'US', or 'SS' required in 
place of the named symbol (in an 
instruction) 



( 
Error Messages F 

Expecting an identifier at symbol User-defined identifier required in 
symbol place of the named symbol 

Expecting an index register at Index register required in place of 
symbol symbol the named symbol (in an 

instruction) 

Expecting an integer at symbol Immediate integer operand required 
symbol in place of the named symbol (in an 

instruction) 

Expecting AR as the destination of AR required in instruction 
the alu operation 

Expecting 'AV', 'AC', 'MV' or 'CE' Instruction condition code required 
at symbol symbol in place of the named symbol 

Expecting 'AXO', 'AX1 ', 'MXO', or 'AXO', 'AX1', 'MXO', or 'MX1' 
'MX1' for DM read required in instruction 

( Expecting 'A YO', 'A Yl ', 'MYO', or 'AYO', 'AY1', 'MYO', or 'MYl' 
'MYl' for PM read required in instruction 

Expecting binary operator at symbol Logical (not bitwise) expression 
symbol operator required in place of the 

named symbol 

Expecting 'C' at symbol symbol 'C' (carry bit) required in place of 
the named symbol (in an 
instruction) 

Expecting 'DM' at symbol symbol 'DM' required in place of the named 
symbol (in an instruction); 
immediate addresses must be in 
data memory 

Expecting 'ENA' or 'DIS' at symbol 
symbol 

'ENA' or 'DIS' required in place of 
the named symbol (in an 
instruction) 

Expecting 'EXP' at symbol symbol 'EXP' required in place of the 
named symbol (in an instruction) 

(~~-
F-5 



F Error Messages 

F-6 

Expecting 'EXP ADJ' at symbol 
symbol 

Expecting 'HI', 'LO', or 'HIX' at 
symbol symbol 

Expecting 'HI' or 'LO' at symbol 
~ymbol 

Expecting 'IO', '11', '12', or '13' for 
DM index register 

Expecting 'IO', 'Il', '12', or '13' at 
symbol symbol 

Expecting '14', 'IS', '16', or '17' at 
symbol symbol 

Expecting 'MO', 'Ml', 'M2', or 'M3' 
at symbol symbol 

Expecting 'M4', 'MS', 'M6', or 'M7' 
at symbol symbol 

Expecting MODULE directive at 
symbol symbol 

Expecting MODULE qualifier at 
symbol symbol 

Expecting MR as the destination of 
the mac operation 

Expecting 'MR' at symbol symbol 

Expecting 'OR' at symbol symbol 

'EXP ADJ' required in place of the 
named symbol (in an instruction) 

'HI', 'LO', or 'HIX' required in place 
of the named symbol (in an 
instruction) 

'HI' or 'LO' required in place of the 
named symbol (in an instruction) 

10', 11 ', '12', or '13' required in 
instruction 

10', 'll ', '12', or 13' required in place 
of the named symbol (in an 
instruction) 

'14', '15', '16', or '17' required in place 
of the named symbol (in an 
instruction) / · 

MO-M3 must be used if I0-13 are 
used (in an instruction) 

'M4', 'MS', 'M6', or 'M7' required in 
place of the named symbol (in an 
instruction) 

The MODULE directive must be the 
first statement in any file which the 
Assembler reads 

MODULE qualifier required in place 
of the named symbol 

MR required in instruction 

'MR' required in place of the named 
symbol (in an instruction) 

'OR' required in place of the named 
symbol (in an instruction) 



( 
Error Messages F 

Expecting 'PM' at symbol symbol 'PM' required in place of the named 
symbol (in an instruction) 

Expecting 'PUSH' or 'POP' at 'PUSH' or 'POP' required in place of 
symbol symbol the named symbol (in an 

instruction) 

Expecting 'RND' at symbol symbol 'RND' required in place of the 
named symbol (in an instruction) 

Expecting segment name at symbol Segment name required in place of 
the named symbol (in an 
instruction) 

Expecting shift operand at symbol Shift operand required in place of 
symbol the named symbol (in an 

instruction) 

Expecting 'STS' at symbol symbol 'STS' required in place of the named 

« symbol (in an instruction) 

Expecting VAR qualifier at symbol VAR qualifier required in place of 
symbol the named symbol 

Expecting '1' at symbol symbol '1' required in place of the named 
symbol (in an instruction) 

Expecting 'O' at symbol symbol 'O' required in place of the named 
symbol (in an instruction) 

Expecting 'O' or '1' at symbol symbol 'O' or '1' required in place of the 
named symbol (in an instruction) 

Expecting ']' at symbol symbol ']' required in place of the named 
symbol 

Expecting'-' at symbol symbol '-'(subtract) required in place of the 
named symbol (in an instruction) 

Expecting '*' at symbol symbol '*' (multiply) required in place of the 
named symbol (in an instruction) 

(-
F-7 



F Error Messages 

F-8 

Expecting '(' at symbol symbol 

Expecting',' at symbol symbol 

Expecting '=' at symbol symbol 

Expecting ')' at symbol symbol 

Expecting ':' at symbol symbol 

Expecting';' at symbol symbol 

FATAL ERROR: unable to open 
filename for reading 

FATAL ERROR: unable to open 
filename for writing 

Illegal address operand symbol 

Illegal address specified 

Illegal data specified 

Illegal do until term at symbol 
symbol 

Illegal do until not term at symbol 
symbol 

'(' required in place of the named 
symbol (in an instruction) 

',' required in place of the named 
symbol (in an instruction) 

'=' required in place of the named 
symbol (in an instruction) 

')' required in place of the named 
symbol (in an instruction) 

':' required in place of the named 
symbol (in an instruction) 

';' required in place of the named 
symbol (in an instruction) 

Assembler cannot find the named 
input file; 1) the path/ filename / 
specified is incorrect, or 2) file does ~ /, 
not exist 

Assembler cannot create the named 
file due to an operating system 
condition, such as a bad filename or 
full disk 

Immediate operand required in 
place of the named symbol (in an 
instruction) 

Address is in un-declared memory 
or is invalid 

Data is invalid 

DO UNTIL instruction has an illegal 
termination condition 

DO UNTIL NOT instruction has an 
illegal termination condition 



( 
Error Messages F 

illegal exponent symbol Exponent is out of range (in an 
immediate shift instruction) 

illegal INIT value symbol Buffer initialization value is invalid 

illegal length specified Buffer length is invalid 

Illegal length operator usage '%' (length of) operator incorrectly 
used 

Illegal lhs 'item' Item named is invalid when located 
to the left of equal sign (in an 
instruction) 

Illegal mode operand symbol Mode operand required in place of 
the named symbol (in an 
instruction) 

Illegal multi-function Incorrect instruction syntax used 

' 
(illegal operands included) 

Illegal offset specified Buffer address offset is invalid 

Illegal operand symbol Instruction operand required in 
place of the named symbol 

Illegal rhs 'item' Item named is invalid when located 
to the right of equal sign (in an 
instruction) 

Illegal stack operand symbol Stack operand required in place of 
the named symbol (in an 
instruction) 

Illegal yop symbol Instruction yop required in place of 
the named symbol 

Illegal xop symbol Instruction xop required in place of 
the named symbol 

Multiple do's to the same address Illegal do loop 
symbol 

( 
F-9 



F Error Messages 

F-10 

Must use DAGO for data memory 
access 

Incorrect data address generator 
used in instruction 

Problem mallocing enough memory Memory allocation limit or 
restriction reached 

Result register contention 

Trying to redeclare symbol 
as a buffer 

i 

Trying to redeclare symbol as an 
external 

Two or more operations executed in 
the same cycle use the same result 
register 

Named symbol is declared twice 

Named symbol is declared twice 

Trying to redeclare symbol as a label Named symbol is declared twice 

Trying to redeclare symbol as a port Named symbol is declared twice 

Undefined do addr: address 

Undefined symbol: symbol 

Warning: Illegal register access 
inferred 

F.4 LINKER ERRORS 

Address specified in non-existent 
memory 

Named symbol is not declared 
properly 

Incorrect register usage 

The Linker generates error messages, warning messages, and 
informational messages. Some errors allow the Linker to continue running 
in order to detect additional problems, but fatal errors halt the linking 
process. Both error types are reported to the display, as well as a limited 
number of warning and informational messages. Error sources must be 
corrected. 

Several categories of Linker errors are detected. The most common 
messages point out memory allocation and symbol reference problems. 
These errors can result from insufficient memory declarations, improper 



( 

-------~-

Error Messages F 

absolute address specifications, undefined symbol references, etc. Other 
messages result from operating system conditions or software failures 
during execution of either the Assembler or linker. 

Words shown below in italics are error message arguments, and specify 
the particular item involved with an error condition. 

F.4.1 Operating System Errors 

Error Message 

Assembler detected errors in 
module modulename 

Explanation 

Assembly errors are flagged in the 
specified module; source code must 
be corrected and re-assembled 

Can't create executable file filename Linker cannot create .EXE file due to 
an operating system condition, such 
as a bad filename or full disk 

Can't create list file filename 

Can't create symbol file filename 

Can't create temporary name 

Linker cannot create .MAP file due 
to an operating system condition, 
such as a bad filename or full disk 

Linker cannot create .SYM file due 
to an operating system condition, 
such as a bad filename or full disk 

Linker is unable to complete the 
directory search: when searching a 
directory for files to link, the Linker 
must create a temporary file 
containing a list of the directory's 
contents; this error is seen when 
insufficient memory is available for 
the file on the host computer or if 
the list is not found 

F-11 



F Error Messages 

Can't open architecture file filename Linker can't find .ACH file; 1) 
default filename 210x not found, 
and no alternative specified with the 
-a switch, 2) the path/filename 
specified with -a switch is incorrect, 
or 3) file does not exist · 

Can't open buffer init file filename Linker cannot find buffer 
initialization file; 1) the path/ 
filename specified (in .INIT 
Assembler directive) is incorrect, or 
2) file does not exist 

Can't open code file filename Linker cannot find the named .OBJ 
file to link; 1) the path/filename 
specified is incorrect, or 2) file does 
not exist 

Can't open input list file filename Text file named in -i switch is not 
found; 1) the path/filename / '·-

specified is incorrect, or 2) file does ./ 

not exist 

Can't open library file filename Linker cannot find the named .OBJ 
file to link; 1) the search path/ 
directories specified (with ADIL 
environment variable or -lib switch) 
are incorrect, or 2) file does not exist 

Can't open temp file filename Linker cannot find temporary file it 
created during directory search 

Errno: # Can't execute MSOOS Linker has given a DOS command 
command: command which is not correctly executed; 

DOS error number listed is returned 
to Linker 

Fail on fseek: filename Linker is unable to complete a file or 
directory search 

Failed request to alloc more Not enough memory is available on 
memory host computer for Linker to 

continue running 
/--"\ 
' 

F-12 



( 
Error Messages F 

F.4.2 Informational Messages 

Error message 

Library (ies) searched: directory, ... 

Trying to open library directory 

Using library director 

F.4.3 Memory Allocation Errors 

Error message 

(Warning) Bootable module 
modulename has been located at 
external address address 

Can't place symbol of module 
modulename 

I at address address 

I contention at address 

Explanation 

Linker is searching the listed 
directories for files to link 

Linker is looking for the named 
directory 

Linker is processing files from the 
named directory 

Explanation 

The module named is declared on a 
page of boot memory; however, not 
enough memory is available 
on the page to store this module, 
and the Linker has been forced to 
place it in off-chip memory (i.e. too 
much code and/or data has been 
declared on the boot page) 
(WARNING ONLY) 

The data buffer or code module 
named by symbol 
cannot be placed in memory 
(specific reasons to follow) 

Object is declared at absolute 
address specified (with ABS 
qualifier), but cannot be placed there 

Two objects have been declared at 
the same absolute address (with 
ABS qualifier), or overlap each other 
at the specified address 

F-13 



F Error Messages 

F-14 

I for boot page page# 

I no appropriate pm,dm ram 
available 

I no appropriate pm,dm rom 
available 

I not enough pm,dm rom,ram left 

I (Warning) placement forced to be 
external 

I requires # words of pm,dm rom,ra 

I requires # words of pm,dm rom,ra 
from a segment named segname 

I symbol of module modulename, 

Object is to be placed in boot 
memory on page number listed 

Object to be placed is declared in 
PM RAM or OM RAM; this memory 
type does not exist in architecture 

Object to be placed is declared in 
PM ROM or OM ROM; this memory 
type does not exist in architecture 

Not enough of the specified 
memory type is available to 
complete placement of object 

Object declared in internal DM or 
PM; Linker placing object in external 
DM or PM, however, due to 
shortage of on-chip memory space 
(WARNING ONLY) 

Relocatable object has length (in 
words) shown, and is declared in 
memory type specified 
(INFORMATION ONLY) 

Object is relocatable within named 
segment, has length (in words) 
shown, and is declared in memory 
type specified (INFORMATION 
ONLY) 

Symbol specifies the data buffer or 
code module being placed 
(INFORMATION ONLY) 



( 

( 

Error Messages F 

F.4.4 Symbol Reference Errors 

Error message 

Global buffername declared in 
modules modulename and 
modulename (maybe others) 

Module name modulename 
duplicated 

Symbol of module modulename 
not linked 

Symbol of modulename is bootable 
but ref' d as if not 

Symbol of modulename is not part 
of boot page page# 

Symbol of modulename ref' d in 
modulename is not part of 
boot page page# 

Usage of symbol in module 
modulename implies it is in pm,dm, it 
is not 

Explanation 

A global buffer should only be 
declared in one module to prevent 
conflicting usage 

Two or more modules to be linked 
have the same name; a unique name 
must be given to each 

The data buffer or address label 
listed is declared as .EXTERNAL in 
this module, but is not declared as 
.GLOBAL or .ENTRY in another 
module 

The buffer or module named is 
stored in boot memory; a non­
bootable program has referenced or 
called the bootable object, which 
may not have been booted yet 

The buffer or subroutine (module) 
named is referenced on the boot 
page specified, but a copy is not 
located on the page (see Appendix 
E) 

The global buffer or address label 
named by symbol is referenced (in 
the second module named) on the 
boot page specified, but a copy is 
not located on the page (see 
Appendix E) 

The object named is declared in PM 
or DM; it is referenced in the code 
module named as if to be found in 
the other memory space 

F-15 



F Error Messages 

Usage of symbol in module The buffer name or address label 
modulename is inconsistant with shown is misused in code; for 
declaration example, using a variable name as 

an entry point 

F.4.5 Other Errors 

Error message Explanation 

Boot image created ( # kbytes) is The boot memory portion of .EXE 
larger than specified boot memory file contains more bytes than the 
(# kbytes) boot memory space (defined in 

.ACH file) can hold 

(Warning) Initialization data for Initialization file contains more data 
buffername in module modulename is than can be loaded into buffer 
longer than buffer (WARNING ONLY) 

Link errors Generic message displayed if any / 

errors are detected 
' '· / 

No boot memory for generated Linker has processed modules 
boota images found in sysname which have the BOOT qualifier; 
(filename) however, no boot memory is 

declared in .ACH file 

Offset on buffername in module An access of buffername is attempted 
modulename forces address out of with an offset added to the buffer 
range base address; the offset is too large, 

and address(es) to be accessed does 
not exist 

Sources too large filename The named .OBJ file is too large for 
Linker to handle; the assembly 
source code file must be divided 
into smaller size files and re-
assembled Note: This error will 
rarely be seen for the ADSP-2101 
Linker 

filename too big- breakup sources Same as above 

.. " 

F-16 



(-

( 

Error Messages F 

F.4.6 Software Errors 
These errors indicate that either the Linker or Assembler is not operating 
properly. When a software failure is detected, the Linker aborts execution 
and specifies one of three error conditions. The initial message is always 
seen first. 

H you see these messages, contact the Applications Engineering Group at 
Analog Devices, Digital Signal Processing Division. See the copyright 
page of this manual for telephone numbers to use. 

Error message 

Calling broken software 

Can't find symbol of module 
modulename in symbol table (it 
should be there!) 

New module search fail 

Opcode with bad unresolved field 

Explanation 

Initial message; software failure 
detected in Linker or Assembler 

Linker has allocated memory for 
symbol (buffer, module, or address 
label) without error,and added 
symbol to the symbol table; when the 
Linker subsequently tries to assign 
an address, however, the symbol is 
not present in the symbol table 
(Linker failure) 

Same as above error condition, but 
is generated only for module names 
not found in symbol table (Linker 
failure) 

Opcode generation mechanism of 
the Assembler is not operating 
correctly (Assembler failure) 

F-17 



F Error Messages 

F-18 

F.5 SIMULATOR ERRORS 

F.5.1 General Errors 

Error message 

Bad filename for redirect 

Cannot open Help files 

Expecting an integer 

Files must be single quoted 

Invalid command 

Unable to open any more windows 

F.5.2 Defaults Errors 

Error message 

Can't add any more paths 

Can't change architecture 
information 

Can't replace current directory 

Unable to replace path 

Explanation 

File not found for command 
window input in redirect command: 
<'filename' 

ADIDOC environment variable not 
set correctly or help files not present 

Non-integer value given 

Any file named in a command must 
be in single quotes 

Incorrect syntax used in a command 
window command 

Maximum of 10 windows open at 
one time 

Explanation 

The total number I size of search 
paths allowed is limited (list shown 
in defaults window) 

Information is for display only 

Current directory is always 
searched 

Search path to be added is too large 



F.5.3 Expression Errors 

Error message 

Divide by zero in expression 

Expression table full 

Invalid expression 

Unable to delete expression 

F.5.4 Break Errors 

Error message 

Break in PM only 

Invalid address 

Invalid break address 

Invalid break expression number 

Invalid break specification 

Invalid range 

Error Messages F 

Explanation 

Arithmetic error 

Maximum of 10 expressions allowed 

Invalid operator or operand used in 
expression command: ? or ? + 

Expression number given does not 
exist 

Explanation 

Breakpoints and break ranges may 
not be set in boot or data memory 

Address given in set breakpoint 
command is in undeclared memory 
segment: B addr 

No break is set at address (label) 
given or break number given does 
not exist in break delete command: 
BD addr or number 

Break expression number given in 
break delete command does not 
exist 

Break number given is not an 
integer or address (label) given is 
undefined in break delete 
command: BD addr or number 

Range given in set break range 
command is in undeclared memory 
segment: BR range 

F-19 



F Error Messages 

F-20 

Only integer shifts are allowed in 
break expressions 

F.5.5 Watch Errors 

Error message 

Unable to delete watchpoint 

Watch expr table full 

Watchpoint table full 

F.5.6 Command Errors 

Error message 

Invalid alias to delete 

Invalid interrupt number 

Invalid range specification 

Not a valid register 

Non-integer used in bitwise shift 

Explanation 

No watchpoint or watch expression 
exists for number given in watch 
delete command: WD number 

Maximum of 25 watch expressions 
allowed 

Maximum of 25 watchpoints 
allowed 

Explanation 

Symbol given in delete alias 
command does not exist in alias list: 
JD symbol 

Interrupt number must be 0, 1, or 2 
in interrupt command: I int# min 
max 

Range given in dump memory 
command is in undeclared memory 
segment: D addr or range 

Register named in load register 
command must be a processor or 
Simulator-defined register: R reg 
expr 



f- Error Messages F 

F.5.7 Plot Memory Errors 

Error message 

Invalid ending DM address 

Invalid ending PM address 

Invalid increment value 

Invalid plot size (max 640) 

Invalid starting DM address 

Invalid starting PM address 

PLT_FNC_WRN: undefined data 
contained in plot range 

F.5.8 Port & SPORT Errors 

Error message 

Encountered end of SPORT 0 input 
file 

Encountered end of SPORT 1 input 
file 

Explanation 

Address given in plot memory 
command is in undeclared memory 
segment 

Address given in plot memory 
command is in undeclared memory 
segment 

Decimation value must be a positive 
integer in plot memory command: 
PL range decimation 

Range length/decimation must be 
less than or equal to 640 for plot 
memory command 

Address given in plot memory 
command is in undeclared memory 
segment 

Address given in plot memory 
command is in undeclared memory 
segment 

Location(s) in memory range to be 
plotted not loaded with data; 
warning only- Simulator will 
attempt to create plot 

Explanation 

Execution halted when no further 
data available; warning only 

Execution halted when no further 
data available; warning only 

F-21 



F Error Messages 

F-22 

Mult error: frame sync came too 
early 

Mult Receive enable register 
undefined 

Mult Transmit enable register 
undefined 

No input file for SPORT 0 

No input file for SPORT 1 

No output file for SPORT 0 

No output file for SPORT 1 

Not a valid serial port 

Ports allowed only in DM or PM 

Problem writing SPORT 0 output 
file 

RFSDIV value too low in 
multichannel mode 

Both words of Multichannel Word 
Enable processor control register 
must be loaded 

Both words of :MUitichannel Word 
Enable processor control register 
must be loaded 

No serial data received during 
program execution; data input file 
must be assigned in serial port 
command: P SPORT# <'file' 

No serial data received during 
program execution; data input file 
must be assigned in serial port 
command: P SPORT# <'file' 

Unable to transmit serial data 
during execution; data output file 
must be assigned in serial port 
command: P SPORT# >file' 

Unable to transmit serial data 
during execution; data output file 
must be assigned in serial port 
command: P SPORT# >file' 

Number given in open serial port 
command must be 0 or 1: P 
SPORT# 

I/0 ports may not be located in boot 
memory 

Execution halted; operating system 
unable to write serial transmit data 
to file 



(-

( 

c-

Error Messages F 

Problem writing SPORT 1 output 
file 

Execution halted; operating system 
unable to write serial transmit data 
to file 

Unable to open any more 1/0 ports Maximum of 251/0 ports allowed 

F.5.9 Instruction & Program Load Errors 

Error message 

Bad instruction 

Can't find instr in DM 

Unable to assemble into DM 

Writing RAM segment to ROM in 
DM 

Writing RAM segment to ROM in 
PM 

Writing ROM segment to RAM in 
DM 

Writing ROM segment to RAM in 
PM 

Explanation 

Not valid ADSP-2101 instruction 

Instructions may only be searched 
for in program and boot memory 
with the find command: F range 
ex pr 

Instructions may only be loaded 
into program or boot memory with 
the assemble command: A addr instr 

Warning only; pertains to load 
program or load rom command: L 
'file', LR 'file' 

Warning only; pertains to load 
program or load rom command: L 
'file', LR 'file' 

Warning only; pertains to load 
program or load rom command: L 
'file', LR 'file' 

Warning only; pertains to load 
program or load rom command: L 
'file', LR 'file' 

F-23 



F Error Messages 

F-24 

F.5.1 O Execution Errors 

Error message 

Can't set SSTAT register 

Error: M reg is greater than L reg 

Explanation 

Stack status register is read-only 

Modify value must be less than 
length of circular buffer 

PC stack empty when POP occurred No return address on PC stack 
when RTI or RTS instruction 
executed 

SE undefined used in shift operation Shifter exponent register is not 
loaded for shift instruction 

Tried to read from non-existent 
memory 

Source of read instruction executed 
is in undeclared memory segment 

Tried to read from reserved memory Only reads from processor control 
registers are allowed in upper lK of 
data memory 

Tried to write to non-existent 
memory 

Tried to write to reserved memory 

Tried to write to ROM 

Undefined instruction executed 

Undefined registers used in shifter 

Undefined used in ALU operation 

Destination of write instruction 
executed is in undeclared memory 
segment 

Only writes to processor control 
registers are allowed in upper lK of 
data memory 

Destination of write instruction 
executed is in ROM 

Program memory location accessed 
is not loaded 

Data register is not loaded for shift 
instruction 

Input register is not loaded for add 
or subtract instruction 



( 

(', 

Error Messages F 

Undefined used in DAG 

Undefined used in MAC operation 

Undefined used in timer 

F.5.11 Command Syntax Errors 

Error message 

Either L, I, or M register is not 
loaded prior to memory access 

Input register is not loaded for 
multiply instruction 

All three timer registers must be set: 
TCOUNT, TPERIOD, TSCALE 

Explanation 

Usage: A address instruction Command entered incorrectly 
Usage: I min max 
Usage: J symbol command 
Usage: K win line 
Usage: 0 addr [<file] [>file] 
Usage: P # [<file] [>file] 
Usage: PA line# start end 
Usage: PC 
Usage: PD line # 
Usage: PL range increment 
Usage: PP parameter value 
Usage: PR 
Usage: U (address I range I register) 

Usage: X symbol 
Usage: Y [<file] [>file] 
Usage: Z [<file] [>file] 

F-25 



F Error Messages 

F-26 

/ 
i 

'1..,,~ ,. 

/·----......, 

( \I 

\, ...' v 


