

PERIPHERAL
DESIGN

HANDBOOK

AUGUST 1981

· ,

Intel Corporation makes no warranty for the use of its products and, assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-1 04.9 (a) (9). Intel Corporation
asSumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Cori>0ration.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP Intelevision MULTIBUS
CREDIT Intellec MUL TIMODULE
i iSBC Plug-A-Bubble
ICE iSBX PROMPT
ICS Library Manager Promware
im MCS RMX
Insite Megachassis UPI
Intel Micromainframe ",Scope

Micromap System 2000

MDS is an ordering code only and is not used as a product name or trademark. MDSGt is a registered trademark of Mohawk
Data Sciences Corporation.

Additiona,l copies of this manual or other Intel literature may be obtained from:

Intel Corporation
l,.iterature Department SV3-3
3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION. 1981 AFN.Q13OOC-1

Table of Contents

CHAPTER 1
Data Sheets

Slave Processors
8041 AH/8041 AH-2/8641 Al8741 A Universal Peripheral Interface 8-Bit Microcomputer. . • 1-1
804218742 Universal Peripheral Interface 8-Bit Microcomputer 1-14
8231 A Arithmetic Processing Unit. .. 1-27
8232 Floating Point Processing Unit .. 1-37
8294 Data Encryption Unit .. '.' 1-49
8295 Dot Matrix Printer Controller. .. 1-60

Memory Controllers
8202A Dynamic RAM Controller. .. 1-69
8203 64K Dynamic RAM Controller ... 1-83
8206 Error Detection and Correction Unit. .. 1-98
8271/8271-6 Programmable Floppy Disk Controller 1-117
8272 Single/Double Density Floppy Disk Controller 1-146

Data Communications
8251A Programmable Communication Interface .. 1-165
8256 Multifunction Universal Asynchronous Receiver-Transmitter (MUART) 1-182
8273,8273-4,8273-8 Programmable HDLC/SDLC Protocol Controller 1-191
8274 Multi-Protocol Serial Controller .. 1-216
8291A GPIB Talker/Listener ... 1-251
8292 GPIB Controller ... 1-280
8293 GPIB Transceiver .. 1-295

Controllers
8253/8253-5 Programmable Interval Timer .. 1-307
8254 Programmable Interval Timer .. 1-318
8255A/8255A-5 Programmable Peripheral Interface 1-333
8275 Programmable CRT Controller ... 1-354
8276 Small System CRT Controller ... 1-378
8279/8279-5 Programmable Keyboard/Display Interface 1-395

CHAPTER 2
Application Notes

Slave Processors
Introduction to the UPI-41ATM . 2-1
An 8741 A/8041 A Digital Cassette Controller. .. 2-45
Using the 8295 Dot Matrix Printer Controller ... 2-77

Memory Controllers
5-Volt Only Dynamic RAM Interface for 8086 Systems 2-110
An Intelligent Data Base System Using the 8272 .. 2-132
Software DeSign and Implementation of Floppy Disk Subsystems 2-172

Data Communications
Using the 8251 Universal Synchronous/Asynchronous ReceiverlTransmitter 2-241
Using the 8273 SDLC/H DLC Protocol Controller .. 2-271
Asynchronous Communication with the 8274 Multiple Protocol Serial Controller 2-317
USing the 8292 GPIB Controller .. 2-356

Controllers
8255A Programmable Peripheral Interface Applications 2-409
A Low Cost CRT Terminal Using the 8275 .. 2-439

APPENDIX
Intel Peripheral Components. A-1

iii

Data Sheets 1

Slave Processors:

•
•
•

•
•

8041 AH/8041 AH-218641 A/8741 A
UNIVERSAL PERIPHERAL INTERFACE

8-BIT MICROCOMPUTER
8041AH-2: 12 MHz • Fully Corwatible with MCS-48 TM,
8041AH: 8 MHz MCS-80 T ,MCS-85 TM, and iAPX-86,88
8-Bit CPU plus ROM, RAM, 1/0, Timer Microprocessor Families
and Clock in a Single Package • Interchangeable ROM and EPROM
One 8-Bit Status and Two Data Versions
Registers for Asynchronous Siave-to-
Master Interface • Expandable 1/0
DMA, Interrupt, or Polled Operation
Supported • RAM Power-Down Capability

1024 x 8 ROMIEPROM, 64 x 8 RAM, • Over 90 Instructions: 70% Single Byte
8-Bit TimerlCounter, 18 Programmable
I/O Pins • Single 5V Supply

The Intel® 8041 AH/8741 A is a general-purpose, programmable interface device designed for use with a variety
of 8-bit microprocessor systems. It contains a low cost microcomputer with program memory, data memory,
8-bit CPU, I/O ports, timer/counter, and clock in a single 40-pin package. Interface registers are included to
enable the UPI device to function as a peripheral controller in MCS-48™, MCS-80™, iAPX-85™, iAPX-86,
iAPX-88, and other 8- or 16-bit systems.

The UPI-41ATM has 1K words of program memory and 64 words of data memory on-chip. To allow full user
flexibility the program memory is available as ROM in the8041AH version or as UV-erasable EPROM in the
8741A version. The 8741A and the 8041AH are fully pin compatible for easy transition from prototype to
production level designs. The 8741A is a one-time programmable (at the.factory) 8741Awhich can be ordered
as the first 25· pieces of a new 8041AH order. The substitution of 8641Asfor 8041AHs allows for very fast
turnaround for initial code verification and evaluation results.

The device has two 8-bit, TTL-compatible I/O ports and two test inputs. Individual port lines can function as
either inputs or outputs under software control. I/O can be expanded with the 8243 device which is directly
compatible and has 16 I/O lines. An 8-bit programmable timer/counter is included in the UPI device for
generating timing sequences or counting external inputs, Additional UPI features include:. single 5V supply,
low power standby mode (in the 8041AH), single-step mode for debug and dual working register banks.

INTERNAL
BUS

......
SYSTeM r

~-¢j~---k~~=========j

INTERFAC. ,,"_

",,-­

""-­Ao---

DATA
MEMORY

REG. BANK 1

Figure 1. Block Diagram

1-1

110
PORT 1

I/O
PORT 2

"ff TlMEN
EVENT COUNTER

XTAL1

XTAL2

P24/08F

P17

PERIPHERAL .. P15
INTI!.RFACE WA P"

SYNC P13

Figure 2. Pin Configuration

8041AH/8041 AH-2/8641 A/8741A

Table 1. Pin Descrlptlol'l

Pin Pin
Symbol No. '!We Name, and FunctIOn SymbOl No. Type Nanie anci Function

TEST 0, 1 I Test Inputs: Input pins which can be SYNC 11 0. Output Clock: o.utput signal which
TEST 1 39 directly tested using conditional occurs once per,UPI-41A instruction

branch instructions. cycle. SYNC can be used, as a 'strobe

Frequency Reference: rEST 1 (T,)
for external circuitry; it is also used to
synchronize single step operation.

also "unctions as the event timer input
(under software control).. TEST 0
(To) is used during PROM program-
ming and verification In the 8741A.

XTAL 1, 2 I InPuts: Inputs for a crystal, LC or an
XTAL2 3 external, timing signal to determine

the internal oscillator freQuency.

Do-!>, 12-19 VC Data Bus: Three-state, bidirectional
(BUS) DATA BUS BUFFER Ilnesulled to

interface ihe UPI-41A microcomputer
to an 8-bit master system data bus. '

P'O-P'7 27-34 VC Port oj: 8-bit, PCRT 1 quasi-bidirec-
tionailio. lines.

RESET 4 I Reset: Input used to reset status flip:
flops and to set the program counter
to zero.

P2O-P27 21-24 1/0. ,Port 2: 8-bit, PCRT 2 quasi-bidirec-
35-38 tional VOlines. The lower 4 tiits (P20-

P23) interface directly to the 8243 1/0.
expander device and contain address

RESET is also used during PROM pro-
" gramming and verification.

SS 5 I :Slngle Step: Single step input usild

and data, information during Po.RT 4-7
access. The upper 4 bits (P24-P27) can
be programmed to ,provide interrupt
Request and DMA Handshake capa-

in the 8741 A in conjunction With the biUty. Software control can configure
SYNC output to step the program P24 as o.utput Buffer Full (o.BF) inter-
through each instruction. rupt, P25 as Input Buffer FilII (IBF)

CS 6 I ~hlp Select: ChipselE!ct Input used
to ,select one UPI-41A microcomputer
out Qf several connected to a common

interrupt, P26 as DMA Request
(ORO), and P27 as DMA ACKnowledge
(DACK).

data bus. PRo.G 25 VC Program: Multifunction pin used as

EA 7 I External Access: External access
input which allows emulation, testing

the program pulse input during
PRCM programming.

and PROMIROM verification. Thill
pin should be tied low if unused.

RD 8 I Read: ,110. read input which enables
the master CPU to read data and
status words from the CUTPUT DATA
BUS BUFFER or status register.

During VC expander access the PRCG
pin acts·as an address/data strobe to
the 8243. This pin should be tied high
if llnused.

Vcc 40 Power: +5V main power supply pin.

Ao 9 I Command/Data Select: Address in-
put used by the master processor to
indicate whether byte transfer is data
(Ao = 0, F, is reset) or command (Ao =

Voo 26 Power: +5V during normal opera-
tion. +25V during programming
operation. Low power standby pin in
RCM version.

1, F,isset). Vss 20 Ground: Circuit ground potential.

WR 10 I Write: VC write input which enables
the master CPU to write data and,com-
mand words to the UPI-41A INPUT
DATA BUS BUFFER.

1-2 AFIHJO'88C

8041 AH/8041 AH-2/8641 A/8741A

UPI·41A™ FEATURES AND
ENHANCEMENTS
1. Two Data Bus Buffers, one for input and one for out­

put. This allows a much cleaner Master/Slave pro·
tocol.

INPUT

BUS
BUFFER

(8)

INTERNAL
DATA BUS

d:F DATA

00-D7 . '-------'

2. 8 Bits of Status

OUTPUT
DATA
BUS

BUFFER
(8)

I~I~I~ ~ ~ ~ ~ ~I
~ ~ ~ ~ ~ ~ ~ ~

ST 4-ST 7 are user definable status bits. These bits are
defined by the "MOV STS, A" single byte, single
cycle instruction. Bits 4-7 of the accumulator are
moved to bits 4-7 of the status register. Bits 0-3 of
the status register are not affected.

MOV STS. A Op Code: 90H

o I 0

DO

3. RD and WR are edge triggered. IBF, OBF, F, and INT
change internally after the trailing edge of RD or WR.

FLAGS AFFECTED

AD orWR

During the time that the host CPU is reading the status
register, the 8041AH is prevented from updating this
register or is 'locked out.'

4. P24 and P25 are port pins or Buffer Flag pins which
can be used to interrupt a master processor. These
pins default to port pins on Reset.

If the "EN FLAGS" instruction has been executed,
P24 becomes the OBF (Output Buffer Full) pin. A "1"
written to P24 enables the OBF pin (the pin outputs
the OBF Status Bit). A "0" written to P24 disables the
OBF pin (the pin remains low). This pin can be used
to indicate that valid data is available from the UPI·
41A (in Output Data Bus Buffer).

If "EN FLAGS" has been executed, P25 becomes the
IBF (Input Buffer Full) pin. A "1" written to P25
enables the IBF pin (the pin outputs the inverse of the
IBF Status Bit). A "0" written to P25 disables the iBJ!

1-3

pin (the pin remains low). This pin can be used to
indicate that the UPI-41A is ready for data.

OBF (INTERRUPT REQUEST)

i8I' (INTERRUPT REQUEST)

DATA BUS BUFFER INTERRUPT CAPABILITY

EN FLAGS Op Cod.: OF5H

DO

5. P26 and P27 are port pins or DMA handshake pins for
use with a DMA controller. These pins default to port
pins on Reset.

If the "EN DMA" instruc;tlqn has been executed, P26
becomes the DRQ (DMA ReQuest) pin. A "1" written
to P26 causes a DMA request (DBQ is activated). DRQ
is deactivated by DACK· RD, DACK· WR, or execution
of the "EN DMA" instruction.

If "EN DMA" has been executed, P27 becomes the
DACK (DMA ACKnowledge) pin. This pin acts as a
chip select input for the Data Bus Buffer registers
during DMA transfers.

DRQ~ DRQn
8041AH/
8741A

DACK~ DACK

DMA HANDSHAKE CAPABILITY

EN DMA Op Code: OE5H

8257

I 1 I 1 I ' I 0 I 0 I 1 I 0 I 1 I
~ ~

8041AH ENHANCEMENTS OVER 8041A

1. The RESET input on the8041AH was changed to in­
clude a 2 stage synchronizer to support reliable reset
operation for 12 MHz operation. .

2. As noted in the status register description, during the
time that the host CPU is relilding the status register, the
8041AH is prevented from updating or is 'locked out.'

3. When EA is enabled on the 8041 A, the program counter
is placed on Port 1 and the lower two bits of Port 2. On
the 8041AH, this information is multiplexed with PORT
DATA (see port timing diagrams at end of this data
sheet).

4. The 8041AH additionally supports single step mode as
described in the pin description section.

AFN-00188C

lme 8041AH/8041AH~218641A/8741A

APPLICATIONS

808&AH

ADDR

CONTROLI===J1fuj

1'0
PERIPHERAL
DEVICES

Figure 3. 8085AH~8041AH Interface

.B041AHtB741A.

DATA BUS

CONTROL BUS

Figure 5. 8041AH~8243 Keyboard Scanner

PROGRAMMING, VEijIFYING, AND
ERASING THE 87~1~ EPROM
Programming Verification'

In brief, the programming process consists of: activating
the program mode, applying an. address, latching the
address, applying data, and applying a programming pulse.
Each word is programmed completely before moving on.to
the next and is followed by a verification step. The follow­
ing is a list of the pins used for programrn'ing ahd a descrip­
tion of their functions:

Pin

XTAL1

Reset

Test 0

EA

BUS

P20-1

VDD
PROG

Function

Clock Input (1 to 6MHz)

Initialization and Address Latching

Selection of Progr~m or Verify Mode

~ctillation of ProgramNerify Modes

Address and Data Input
Data Output During Verify

Address Input

Programming Power Supply

Program Pulse Input

1-4

~

~
iiii iiii

B048H WR WR ... TO
B041AHI PERIPHERAL

PORT CONTROL 2
cs B741A

-To
DEVICES

Ao

BUS DATA BUS 8 DBB -T1

Figure 4. 8048AH~8041AH Interface

Figure 6. B041AH Matrix Printer Interface

WARNING:

An attempt to program a missocketed 8741 A will result in severe
damage to the :part. ·An indication of a properly socketed part is the
appearance of the SYNC clock output. The lack of this clock may
be used to disable the programmer.

The ProgramNerify sequence is:

1. AO'= OV, CS = SV. EA = SV. RESET = OV. TESTO = sV.
VDO = 5V , clock applied or internal oscillator operating,
BUS and PROG floating.

2. Insert 8741A in programming socket

3. TEST 0 = Ov (sel""t program m<J!je) .

4. EA.;= 23V ("ctivate program model) 1

S. Address applied to BUS and P2()'1

6. RESET = Sv (latch address)'

7. Data applied to BUS2

8; . VDD = 25v (programming power)2

9. PROG = Ov followered by.one 50ms pulse to 23v2.

10. VDD = Sv

11 •.. TEST 0 = 5v.'(verify mode)

AFN-OD1B8C

inter 8041 AH/8041 AH·218641 A/8741 A

12. Read and verify data on BUS

13. TEST 0= Ov

14. RESET = Ov and repeat from step 5

15. Programmer should be ilt conditions of step 1 when

8741 A is removed from socket.

NOTE:
1. When verifying ROM, EA = 12V,
2. Not used in verify ROM procedure.

8741A Erasure Characteristics

The erasure characteristics of the 8741A ar!, such that
erasure begins to occur when exposed to light with
wavelengths shorter· than approximately 4000 Ang·
stroms (A). It should be noted that sunlight and certain
types of fluorescent lamps have wavelengths in the
3Ooo-4000A range. Data show that constant exposure to
room level fluorescent lighting could erase the typical

1-5

8741A in approximately 3 years while it would take ap­
proximately one week to cause erasure when exposed
to direct sunlight. If the 8741A is to be exposed to these
types of lighting conditions for extended· periods of
time, opaque labels are available from Intel which
should be placed over the 8741A window to prevent
unintentional erasure.

The recommended erasure procedure for the 8741A is
exposure to shortwave ultraviolet light which has a
wavelength of 2537 A. The integrated dose (i.e., UV inten­
sity x exposure time) for erasure should be a minimum
of 15 w·sec/cm2• The erasure time with this dosage is
approximately 15 to 20 minutes using an ultraviolet
lamp with a 12,000 "W/cm2 power rating. The 8741A
should be placed within one inch of the lamp tubes duro
ing erasure. Some lamps have a filter on their tubes
which shouid be removed before erasure.

AFN-o!Il88C

111'eI 8041AH/8041AH-2/8641A/8741 A

ABSOLUTE MAXIMUM RATINGS*

AmbientTemperature Under Bias O·C to 70·C
Storage Temperature - 6S·C.to + lS0·C
VO,ltage on Any Pin With R!'tspect . ,

to Ground ~O.5V to + 7V
Power Dissipation 1.5 Watt

-NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA =0° to + 700C. Vee = voo = +5V ± 10%)
.

8041AHI
8041AH-2 8641 A/8741 A

Symbol Parameter Min. Max. Min. Max. Units Test CO,nditions

VIL
Input Low Voltage (Except XTAL 1. XTAL2. -0.5 0.8 -0.5 0.8 V
RESET

VILl Input Low Voltage (aXTAL 1. XTAL2.
RESET) -0.5 0.6 -0.5 0.6 V

V,H
Input High Voltage (Except XTAL 1. XTAL2.

2.2 Vee 2.2 Vee RESET

VIHl Input High Voltage (XTAL 1. XTAL2. RESET) 3.8 Vee 3.8 Vee V

VOL Output Low Voltage (DO-~) 0.45 0.45 V IOL = 2.0 rnA

VOll Output Low Voltage (Pl 0P17• P20P27.
Sync) 0.45 0.45 V IOL = 1.6 rnA

VOL2 Output Low Voltage (Prog) 0.45 0.45 V IOL = 1.0 rnA

VOH Output High Voltage (Do-C7) 2.4 2.4 V IOH = -400 /LA

VOHl Output High Voltage (All Other Outputs) 2.4 2.4 V IOH = -50/LA

'lL
Input Leakage Current (To. Tl. RD. WR.

±10 ±10 /LA V55";; VIN ;;" Vee
CS.Ao. EA)

Output Leakage Current (Do-~. High Z V55 + 0.45

loz State) ±10 ±10 /LA ,,;;VOUT ,,;;Vee

'll Low Input Load Current (P1OP17. P20P27) 0.3 0.3 rnA VIL = 0.8V

'Lll Low Input Load Current (RESET. SS) 0.2 0.2 rnA VIL = o.av

100 Voo Supply Current 15 15 rnA Typical = 5 rnA

ICC + Total Supply Current 125 125 rnA Typical = 60 rnA
100

'IH Input Leakage Current 100 100 NA Y,N = Vee

CIN Input Capacitance 10 10 pF

C,io I/O Capacitance 20 20 pF

1-6 AFN.()Ql88C

inter 8041AH/8041AH-2/8641A/8741A

D.C. CHARACTERISTICS-PROGRAMMING (TA = 25°C ± 5°C, Vee = 5V ± 5%, Voo = 25V ± 1V)

Symbol Parameter Min. Max. Unit

VOOH Voo Program Voltage High Level 24.0 260 V

VOOL Voo Voltage Low Level 4.75 5.25 V

VPH PROG Program Voltage High Level 21.5 24.5 V

VPL PROG Voltage Low Level 0.2 V

VEAH EA Program or Verify Voltage High Level 21.5 24.5 V

VEAL EA Voltage Low Level 5.25 V

100 VOD High Voltage Supply Current 30.0 inA

IPROG PROG High Voltage Supply Current 16.0 mA

lEA EA High Voltage Supply Current 1.0 mA

A.C. CHARACTERISTICS (TcC = O°C to +70°C, VSS = O\(VCC = VOO = +5V ±10%)
DBB READ

Test Conditions

8041AH 8041AH·2 8641 A/8741 A
Symbol

tAR

tRA

tRR

tAO

tRO

tOF

tCY

tCY

DBBWRITE

Symbol

tAW

tWA

tww

tow

two

NOTES:
1.CL=150pF.

Parameter

CS, Ao Setup to RD~

CS, Ao Hold After ROt

RD Pulse Width

CS, AO to Data Out Delay

RD! to Data Out Delay

ROt to Data Float Delay

Cycle Time (Except 8741A·8)

Cycle Time (8741A·8)

Parameter

CS, Ao Setup to WR!

CS, AO Hold After
WRt

WR Pulse Width

Data Setup to WRt

Data Hold After WRt

2. 8,12,6 MHz XTALrespectively.
3. 3.6 MHz XTAL.

Min. Max.

0

0

130

130

85

2 15

Min. Max.

0

0

160

130

0

1·7

Min. Max. Min. Max. Units

0 0 ns

0 0 ns

250 ns

130 225 ns[ll

130 225 ns[ll

85 100 ns

1.25 15 2.5 15 ILs[2l

4.17 15 ILS[3l

Min. Max. Min. Max. Units

0 0 ns

0 0 ns

160 250 ns

130 150 ns ..

0 0 ns

AFN-00188C

111'eI 8041AH18041AH-2/8641A/8741A

A.C. CHARACTER'ISTICS PROGRAMMING(T~~25°C :is"c: 'IIcc = 5V ± 5%, Voo'" 25" ±1V)

Symbol ',' Para~eler .. l't1in • '.' l't1aii. Un.il Tesl CondJ.tions

lAW .. Address Selup Time to RESET .1 4tcy

IWA . Address Hold Time Afler RESET 1 4tcy

low D.alain Setup Time to:'PROG 1 4tcy

Iwo Dala in Hold Time After PROG I 4tcy

IPH RESET Hold Time. to Verify. .4tcy.

tvoow Voo·SetupTime to PROGI 4tcy

tVOOH Voo Hold.Ti'me After PROG I 0

tpw Program Pulse. Width .' 50 60 mS ..

trw. Test 0, Setup Time. tor Program Mode 4tcy ..

IWT Test 0 Hold Time After Program Mode 4tcy

100 Tesl 0 10 Dala Oul Delay 4tcy

Iww RESET Pulse Widlh to Latch Address 4tcy

Ir, If Voo and PROG Rise and Fall Times 0.5 2.0 !'s

Icy CPU Operation Cycle Time 5.0 !'s

'IRE' RESET Setup Time Before EA I. ' 4tcy

--Not.: If TEST 0 is ,high, too can be\riggered by RESET 1 .

A.C. CHARACTERISTICS
DMA' ,

8041AH 8041AH·2 8641A/8741A

Symbol . Parameter . Min • Max. Min. Max. Min. 'Max •. Units

IACC DACK to WR or Rp 0 0 0 ns

ICAC RD or WR 10 DACK 0 a 0 ns

IACO DACK to Data Valid 130 , 130 ' 225 ns(1)

tCRQ RD or WR to ORO Cleared 90 90 200 ns

A.C. CHARACTERISTICS
PORT 2 ('tA;;"; COCto +70°C, Vct = +5V ±10%)

8041AH 8041AH·2 8641 Al8741 A
Symbol Parameter Min. Max. Min. Max. Min. Max. Units

tcp
Port Control Setup Before Falling 100 100 110 ns(1)
Edge of PROG

tpc
Port Control Hold After Falling 60 100 ns(2)
Edge of PROG

.tPR· PROG to Time P2 Input Must Be Valid 810 ' ns(1)

tpF Input Data Hold Time 0 150 0 150 0 150 ns(2)

top Output Data Setup time 200 250 . ns(1)

tpo Output Data Hold Time 65 ns(2)

tpp PROG Pulse Width 700 1200 ns

NOTES: 1. CL = 80 pF.

1·8 AFN·OO188C

inter 8041 AH/8041 AH.2/8641 A/8741 A

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4
2.0 2.0

::> TEST POINTS <
0.8 0.8

0..5

CRYSTAL OSCILLATOR MODE

< 1SpF
(lNCLUOES XTAL,
SOCKET, STRAYI

r-----, , ,
...L ,... , , ,

L ____ _

15-25 pF
(INCLUDES SOCKET, I

STRAYI ."..

XTALI

CRYSTAL SERIES RESISTANCE SHOULD BE
<7SQ AT 6 MHz; <180Q AT 3.6 MHz.

LC OSCILLATOR MODE

.!.. .£. ~
45j.1H 20pF 5.2 MHz

120j.lH 20pF 3.2 MHz

ric
.". TC

2

~L
I 3

TYPICAL 8041AH/8741A CURRENT
80mA

SOmA

g
"+ 4DmA

1l

20mA

20" SO·

DRIVING FROM EXTERNAL SOURCE

XTALI

XTAL2

+5V

470Q

»--+ _____ 3~ XTAL2

+5V

470Q

L--_--4-_""""'i2 XTALI

BOTH XTAL 1 AND XTAL2'SHOULD BE ·DRIVEN.
RESISTORS TO Vee ARE NEEDED TO ENSURE V,H = 3.BV
IF TTL CIRCUITRY IS USED.

f" 2nJLC'

C,;.,C+3Cpp
2

Cpp = 5 - 10 pF PIN·TO'PIN
CAPACITANCE

EACH C SHOULD BE APPROXIMATELY 20 pF. INCLUDING STRAY CAPACITANCE.

WAVEFORMS

READ OPERATION-DATA BUS BUFFER REGISTER

BORAO =:)
-tAR-

' ..
}

-1RA-

\ AD

-tRD - _IOF

----.AD

1·9

K (SYSTEM"S
ADDRESS BUS)

(READ CONTROLI

AFN-OOI88C

... ~
WAVEFORMS (Continued)

WRITE OPERATION-DATA BUS BUFFER REGISTER

·~·4 r =~.~
----I-Aw---~----~-W -ID-w-_-~-'-~-IW-A-_~I-_-L------------~ ---------------------IWRITE CONTROLI

DATA BUS DATA \) _OATAVAlIO __ 1V' OATA
{INPUT} MAV CHANGE I'. V\ MAY CHANGE ___ ~_~~ __ -J ~ _____ ~_~ __

COMBINATION PROGRAMNERIFY MODE (EPROM'S ONLy)

EA ": ___ ~';""'.J/
1----,------ PROGRAM --------*~-VERlfY-'--'~If4'---- PROGRAM ---­

,.------..
TESTO

DBO-DB, J--
LAST

ADDRESS

DATA TO BE
PROGRAMMED VALID ---< NEXT AODR C

VALID

NEXT
ADDRESS

Voo +25 ____________ t_v_DD_W ~~_~W_T _____________________ _

+5 trr--t[w ~·I'"1 ~WD
+23-----------

PROG +5----------- ,-__________ '" +0 - ___ J \.. ______ _

1-10 AFN-OOl88C

Intel 8041AH/8041 AH-2/8641 A/8741A

WAVEFORMS (Continued)

VERIFY MODE (ROM/EPROM)

\'--_----J/ \'----
OBO-087

______________ J)(~ _____________ AD_D_R_E_SS_'8_-_91_V_A_lI_D ____________ J)(~ _______________ N_E_X_T_A_DD_R_E_SS_V_A_L_'D __________________ __

NOTES:
1. PAOG MUST FLOAT IF EA IS LON (Le .• ~ 23V). OR IFro ~5V FOR THE 8741A. FOR THE 8041AH PROG MUSTAIJNAYS FLOAT.
2. XTAL1 and XTAL2 DRIVEN BY 3.6 MHz CLOCK WILL GIVE 4.17 "sec ICY. THIS IS ACCEPTABLE FOR 8741Ml PARTS AS WELL AS STANDARD PARTS.
3. /10 MUST BE HELD LON (i.e .• = OV) DURING PAOGRAMNERIFY MODES.
4. TEST 0 MUST BE HELD HIGH.

The 8741A EPROM can be programmed by either of two
Intel products:

1. PROMPT-48 Microcomputer Design Aid, or
2. Universal PROM Programmer (UPP series) peripheral

of the Intellecl> Development System with a UPP-848
Personality Card.

PMA

DATA SUS ----j-+-"l.I,---""""I. ,...-------r--; r----, ,...-----

ORO -----i---I

-teR -

AFN-OOl88C

111'91

WAVEFORMS (Continued)

PORT 2

SYNC

EXPANDER
PORT

OUTPUT

EXPAND·ER
PORT

INPUT

PROG

PORT TIMING DURING EA

SYNC

P'O-17

/

8041AH/8041 AH"2/8641 Al8741 A

POAT 20-3 DATA

PCRT 20_3 DATA

\ / \

X X PORT X PC PORT PC
P20-21 DATA DATA

Mnemonic

ACCUMULATOR

ADD A, Rr
ADD A, @Rr

ADD A, #data
AD DC A, Rr

ADDCA,@Rr

AD DC A, #data

ANLA, Rr
ANLA, @Rr

ANLA, #datP
ORLA, Rr
ORLA,@Rr

ORL,A, #data
XRLA, Rr

XALA,@Rr

XRLA, #data

ON THE RISING EDGE OF SYNC AND EA IS ENABLED. PORT DATA IS VALID AND CAN BE
STROBED. ON THE TRAILING EDGE OF SYNC THE PROGRAM COUNTER CONTENTS ARE
AVAILABLE.

Table 2. UPI™ Instruction Set

Description Bytes Cycles Mnemonic Description

DATA MOVES

Add register to A 1 1 MOVA, Ar Move register to A
Add data memory 1 1 MOVA,@Rr Move data memory
toA to A

Add immediate to A 2 2 MOVA,#data Move immediate
Add register to A 1 1 TOA

with carry MOV ~r,A Move A to register
Add data memory 1 1 MOV@Rr,A Move A to data
to A with carry memory

Add immediate 2 2 MOV Rr, #data Move immediate to
to A with carry

AND register to A 1 1 MOV@Rr,
register

Move immediate to
AND data memory 1 1 #data data memory .
toA MOVA, PSW Move PSW to A

AND immediate to A 2 2 MOVPSW,A MoveAto PSW
OR register to A 1 1 XCHA, Rr Exchange A and
OR data memory 1 1 register
toA XCHA,@Rr Exchange A and

OR immediate to A 2 2 data memory

:

Exclusive OR regis· 1 1 XCHDA,@Rr Exchange digit of A
ter to A and register

Exclusive OR data 1 1
memory to A

MOVPA,@A Move to A from
current page

Exclusive OR imme· 2 2 MOVP3,A,@A Move to A from
diate to A D~!}8 3

.'

1·12

Bytes Cycles

1 1
1 1

2 2

1 1
1 1

2 2

2 2

1 1
1 1
1 1

1 1

1 1

1 2

1 2

8041 AH/8041 AH-2/8641 A/8741 A

Table 2. UPI™ Instruction Set (Continued)

Mnemonic Description Bytes Cycles Mnemonic Description Bytes Cycles

ACCUMULATOR REGISTERS
INCA Increment A 1 1
DECA Decrement A 1 1
CLRA Clear A 1 1
CPLA Complement A 1 1
DAA Decimal Adjust A 1 1
SWAP A Swap nibbles of A 1 1

INC Rr Increment register i 1
INC@Rr Increment data 1 . 1

memory
DEC Rr Decrement register 1 1

SUBROUTINE ..

RLA Rotate A left 1 1 CALL addr Jump to subroutine 2 2
RLCA Rotate A left through 1 1 RET Return 1 2

carry RETR Return and restore 1 2
RRA Rotate A right 1 1 status
RRCA Rotate A right 1 1

through carry FLAGS

INPUT/OUTPUT

INA, Pp Input port toA 1 2
OUTL Pp, A Output A to port 1 2
ANL Pp, #data AND immediate to 2 2

port
ORL Pp, #data OR immediate to 2 2

port

CLRC Clear Carry 1 1
CPLC Complement Carry 1 1
CLR FO Clear Flag 0 1 1
CPL FO Complement Flag 0 1 1
CLRF1 Clear.F1 Flag 1 1
CPL F1 Complement F1 Flag 1 1

BRANCH
IN A, DBB Input DBB to A, 1 1

clear IBF
OUT DBB, A Output A to DBB, 1 1

set OBF
MOV STS, A A.;-A7 to Bits 4-7 of 1 1

Status
MOVD A, Pp Input Expander 1 2

port to A
MOVD Pp, A Output A to 1 2

JMP addr Jump unconditional 2 2
JMPP@A Jump indirect 1 2
DJNZRr, addr Decrement register 2 2

and jump
JC addr Jump on Carry= 1 2 2
JNC addr Jump on Carry=O 2 2
JZ addr JUI11P on A Zero 2 2
JNZ addr Jump on A not Zero 2 2
JTO addr Jump on TO=1 2 2

Expander port
ANLD Pp, A AND A to Expander 1 2

JNTO addr Jump onTO=O 2 2
JT1 addr Jump on T1=1 2 2

port
ORLD Pp, A OR A to E~pander 1 2

JNT1 addr Jump on T1=0 2 2
JFO addr Jumpon FO Flag=1 2 2

port JF1 addr Jump on F1 Flag=1 2 2

TIMER/COUNTER

MOVA, T Read Timer/Counter 1 1

JTF addr. Jump on Timer Flag 2 2
= 1, Clear Flag

JNIBF addr Jump on IBF Flag 2 2
MOVT,A Load Timer/Counter 1 1 =0
STRTT Start Timer 1 1
STRTCNT start Counter 1 1

JOBF addr Jump on OBF Flag 2 2
=1

STOP TCNT Stop Timer/Counter 1 1 JBb addr Jump on Accumula- 2 2
EN TCNTI Enable Timer/ 1 1 tor Bit

Counter Interrupt
DIS TCNTI Disable Timer/ 1 1

Counter Interrupt

CONTROL

EN DMA Enable DMA Hand- 1 1
shake Lines

EN I Enable IBF Interrupt 1 1
DISI Disable IBF Inter- 1 1

rupt
EN FLAGS Enable Master 1 1

Interrupts
SEL RBO Select register 1 1

bank 0
SEL RB1 Select register 1 1

bank 1
NOP No Operation 1 1

H3 AFN-Q0188C

804218742
UNIVERSAL PERIPHERAL INTERFACE

8·BIT,MICROCOMPUTER
• 8042,/8742: 12 MHz.
• Pin, Software and Architecturally

Compatible with 8041A18741A18041AH
• 8·Bit CPU plus ROM, RAM, 1/0, Timer

and CI.ock in a Single Package
• 2048 x'8 ROMIEPROM, 128 x 8 RAM,

8·Bit Timer/Counter, 18 Programmable
1/0 Pins

• One 8·Bit Status and Two Data
Registers for Asynchronous
Slave·to·Master Interface

• DMA, Interrupt, or Polled Operation
Supported

. \

• Fully Compatible with MCS·48™,
MCS·S1™, MCS·80™, MCS·8S™, and
iAPX·86, 88 Microprocessor Families

• Interchangeable ROM and EPROM
Versions

• Expandable 1/0

• RAM Power· Down Ca·pability

• Over 90 Instructions: 70% Single Byte

• Single SV Supply

The Intel 804218742 is a general-purpose Universal Peripheral Interface that allows the designer to grow his own
customized solution for peripheral device controLlt.contains a low-cost microcomputer with 2K of program memory,
128 bytes of data memory,8-bit CPU, I/O ports, 8-bit timer/counter, and clock generator in a single 40-pin package.
Interface registers are included to enable the UPI device to function as a peripheral controller in the MCS-48™,
MCS-5FM, MCS-80™, MCS-85™, iAPX-88, iAPX-86 and other 8-, 16-bit systems.

The 8042/8742 is software, pin, andi1rchitecturally compatible with the 8041AH, 8741A. The 8042/8742 doubles the on­
chip memory space to allow for additional features and performance to be incorporated in upgraded 8041AH/8741A
designs. For new deSigns, the additional memory and performance of the 8042/8742 extends the UPI concept to more
complex motor control tasks, 80-column printers and process control applications as examples.

To allow full user flexibility, the program memory is available as ROM in the 8042 version or as UV-erasab.le EPROM in
the 8742 version. The 8742 and the 8042 are fully pin compatible for easy transition from prototype to production level
designs. The 8642 is a one-time programmable (at the factory) 8742 which can be ordered as the first 25 pieces of a new
8042 order. The substitution· of 8642's for 8042's allows for very fast turnaround for initial code verification and evalua-
tion resu Its. ..

The device has two 8-bit, TTL compatible 110 ports and two test inputs. Individual port lines can function as either
inputs or outputs under software control. 110 can be expanded with the 8243 device which is directly compatible and
has 16110 lines. An 8-bit programmable timer/counter is included in the UPI device for generating timing sequences or
counting external inputs. Addit.ional UPI features include: single 5V supply, low power standby mode (in the 8042),
single-step mode for debug, and dual working register banks.

Figure 1. Block Diagram

1·14

ICTALI, . ..
" ~
" ~ " III ,.

Os" II .. "
'" " '" " '" .

Figure 2. Pin Configuration

Intel 8042/8742

Table 1. Pin Description

Pin Pin
Symbol No. Type Name and Function Symbol No, Type Name and Function

TEST 0, 1 I Test Inputs: Input pins which can be SYNC 11 0 Output Clock: Output signal which
TEST 1 39 directly tested using conditional occurs once per UPI-42 instruction

branch instructions. cycle'. SYNC can be used as a strobe
for external circuitry; it is also used to

Frequency Reference: TEST 1 (Tl) synchronize single step operation.
also functions as the event timer in-
put (under software control). TEST 0
(To) is used during PROM program·
mlng and verification in the 8742.

00.07 12·19 I/O Data Bus: Three-state, bidirectional
(BUS) DATA BUS BUFFER lines used to In-

terface the UPI-42 microcomputer to
an 8-bit master system data bus.

XTAL 1, 2 I Inputs: Inputs for a crystal, LC or an
XTAL 2 3 external timing signal to determine

the internal oscillator frequency.

P1O-PI7 27-34 I/O Port 1: a-bit, PORT 1 quasi-bidirec-
tional I/O lines.

RESET 4 I Reset: Input used to reset status flip-
flops and to set the program counter
to zero.

P2O-P27 21-24 I/O Port 2: 8-bit, PORT 2 quasi-bidirec-
35-38 tional I/O lines. The lower 4 bits (P20-

P23) interface directly to the 8243 I/O
expander device and contain address

RESET is also used during PROM pro-
gramming and verification.

and data information during PORT 4-7
access. The upper 4 bits (P24-P27) can
be programmed to provide interrupt

SS 5 I Single Step: Single step input used Request and oMA Handshake capa-
in conjunction with the SYNC out- bility. Software control can configure
put to step the program through P24 as Output Buffer Full (OBF) inter-
each instruction. rupt, P25 as Input Buffer Full (IB.F)

CS 6 I Chip Select: Chip select input used to
select one UPI microcomputer out of
several connected to a common data

interrupt, P26 as oMA Request
(ORO), and P27 as OMA ACKnowledge
(oACK).

bus. PROG 25 I/O Program: Multifunction pin used as

EA 7 I External Access: External access the program pulse input during

input which allows emulation, testing PROM programming.

and PROM/ROM verification. This
pin should be tied low if unused.

RD a I Read: I/O read input which enables
the master CPU to read data and

During I/O expan!ier access the PROG
pin acts as an address/data strobe to
the 8243. This pin should be tied high
if unused.

status words from the OUTPUT DATA
BUS BUFFER or status register. Vcc 40 Power: +5V main power supply pin.

Ao 9 I Command/Data Select: Address Input
used by the master processor to in-
dicate whether byte transfer Is data
(Ao=O, F1 is reset) or command

Voo 26 Power: + 5V during normal opera-
tion. + 21V during programming
operation. Low power standby pin in
ROM version.

(Ao= 1, F1 is set). Vss 20 Ground: Circuit ground potential.

WR 10 I Write: I/O write input which enables
the master CPU to write data and
command words to the UPI INPUT
DATA BUS BUFFER.

1·15 AFN-OOI88C

111'eI 804218742

UPI·42 FEATURES

1. Two Data Bus Buffers, one for input and'one for out,
put. This allows a much cleaner Master/Slave pro·
tocol.

INPUT df" DATA
. BUS.

. ..SUFFER

00-01 '"----..,-(8)---,

OUT.PUT
DATA
BUS

BUFFER
(8)

2. 8 Bits of Status

INTERNAL
DATA BUS

I~I~I~I~ ~ ~ ~I~I
~ ~ .~ .~ ~ ~ ~ ~

ST 4-ST 7 are user definable status bits. These bits are,
defined by the "MOV STS, A" single byte, single
cycle instruction. Bits 4-7 of. the accumulator are
moved to bits 4-7 of the status register. Bits 0-3 of
the status register are not affected. ' .

MOV STS. A OP Code: 90H

3. RD and WR are edge triggered. IBF, OBF,.F1 and INT
change internally after the trailing edge of RD or WR.

FlAGS AFFECTED

ROorWR

During the time that the host CPU is reading the
status register, the 804218742 is prevented from up·
dating this register or is 'locked out.'

4. P24 and P25 are port pins or Buffer Flag pins which
can be used to interrupt a master processor. These
pins default to port pins on Reset.

If the "EN FLAGS" instruction has been executed,
P24 becomes the OBF (Output Buffer Full) pin. A "1"
written to P24 enables the OBF pin (the pin outputs
the OBF Status Bit). A "0" written to P24 disables the
OBF pin (the pin remains low). This pin can be used
to indicate that valid data is available from the UPI·
41A (in Output Data Bus Buffer).

If "EN FLAGS" has been executed, P25 becomes the
IBF (Input Buffer Full) pin. A "1" written to P25
enables the IBF pin (the pin outputs the inverse of the
IBF Status Bit). A "0" written to P25 disables the ~

1-16

pin (the pin remains lOw). This pin can be used to
indicate that the UPI-42is ready for data.

OBF (INTERRUPT REQUEST)

lBF (INTERRUPT REQUEST)

DATA BUS BUFFER INTERRUPT CAPABILITY

EN FlAGS op Cod.: OF5H

I 1 1 1 1 1 I 1 1 0'1 1 1 0 1 1 I

5. P26 and P27 are port pins or DMA handshake pins for
. use w.ith a DMA controller. These pins default to port
pins on Reset.

If the "EN DMA" instruction has been executed, P26 '
becomes the ORO (DMA ReOuest) pin. A "1" written
to P26 causes a OMA request (ORO is activated). ORO
is deactivated by DACK 'RD, DACK 'WR, or execution
of the "EN DMA" instruction:

If "EN DMA" has been executed, P27 becomes the
DACK (DMA ACKnowledge) pin. This pin acts as a
chip select input for the Data' Bus Buffer registers
during DMAtransfers. .

B041AHJ
8741A

DMA HANDSHAKE CAPABILITY

1 1 1 1 1 1 I 0 I· 0 I. 1 1 0

0,

8257

6. The RESET input on the 804218742 Includes a 2·stage
synchronizer to support reliable reset operation for
12 MHz operation.

7. When EA is enabled on the 804218742, the program
counter is placed on Port 1 and the lower three bits of
Port 2 (MSB= P22, LSB= P1O). On the 8042/8742 this
information is multiplexed with PORT DATA (see port
timing diagrams at end of this data sheet).

8. The 804218742 supports Single step mode as
described in the pin description section.

AFN-D01B8C

804218742

APPLICATIONS

8 1 W TO
PERIPHERAL
DEVICES

-TO

Figure 3. 8085AH·804218742 Interface

088

8042
8742

c--=~-------..
DATA BUS

Figure 5. 804218742·8243 Keyboard Scanner

PROGRAMMING, VERIFYING, AND
ERASING THE 8742 EPROM
Programming Verification

In brief, the programming process consists of: activating
the program mode, applying an address, latching the
address, applying data, and applying a programming pulse.
Each word is programmed completely before moving on to
the next and is followed by a verification step. The follow­
ing is a list of the pins used for programming and a descrip­
tion of their fu nctions:

Pin

XTAL1

Reset

Test 0

EA

BUS

P20-1

Voo
PROG

Function

Clock Input (1 to 12MHzj
Initialization and Address Latching

Selection of Program or Verify Mode

Activation of Program!Verify Modes

Address and Data Input
Data Output During Verify

Address Input

Programming Power Supply

Program Pulse Input

-
iW iW (::!:l

ViR ViR ~ TO 804BH 8042 PERIPHERAL

PORT CONTROL 2
CS 8742

I--To
DEVICES

AD

8US DATA BUS 8 Daa _T,

'---

Figure 4; 8048H·804218742 Interf~ce

Figure 6. 804218742 80·Column Matrix Printer Interface

WARNING

An attempt to program a missocketed 8742 will result in severe damage
to the part. An Indication of a properly socketed part is the appearance
of the SYNC clock output. The lack of this clock may be used to disable
the programmer.

The Program/Verify sequence is:

1·17

1. AO = OV, CS = 5V, EA = 5V, RESET = OV, TESTa = 5V,
VDD :::: 5V , clock applied or internal oscillator operating,

BUS and PROG floating.

2. Insert 8742 in programming socket

3. TEST a = Ov (select program mode)

4. EA = 2W (active program mode)'

5. Address applied to BUS and P2o-22

6. RESET = 5v (latch address)

7. Data applied to BUS"

B. VDD = 2W (programming power)"

9. PROG = OV followed by one 50 ms pulse to 2W"

10. VOO = 5v

11. TEST a = 5v (verify mode)

AFN-DOI8BC

804218742

12. Read and verify data on BUS

13. TEST 0 = Ov

14. RESET = Ov and repeat from step 5

15. Programmer should be at conditions of step 1 when

8742 is removed from socket

'When verifying ROM, EA= 12V.
"Not used in verifying ROM procedure.

8742 Erasure Characteristics

The erasure characteristics of the 8742 are such that
erasure beQins to occur when exposed to light with
wavelengths shorter than approximately 4000 Ang­
stroms (A). It should be noted that sunlight a:nd certain
types of fluorescent lamps have wavelengths in the
30oo-4000A range. Data show that constant exposure to
room level fluorescent lighting could erase the typical
8742 in approximately 3 years while it would t!lke ap-

proximately one week to cause erasure when exposed
to direct sunlight. If the 8742 is to be exposed to these
types of 'ligh~ing conditions for extended periods of
time, opaque labels are available from Intel which
should be placed over the ~74? window to prevent unin­
tentlohalerasure:

The recommended erasure procedure for the 8742 is
exposure to shortwave ultraviolet light which has a
wavelength of 2537 A. The integrated dose (Le., UV inten­
sity x exposure time) for erasure should be a minimum
of 15 w-sec/cm2. The erasure time with this dosage is
approximately 15 to 20 minutes using an ultraviolet
lamp with a 12,000 "W/cm2 power rating. The 8742
should be placed within one inch of the lamp tubes dur­
ing erasure. Some lamps have a filter on their tubes
which should be removed before erasure.

1·18 AFN'()()1B8C

intJ 804218742

ABSOLUTE MAXIMUM RATINGS·

ArnbientTernperature Under Bias O·C to 70·C
StorageTernperature -6S·Cto +lS0·C
Voltage on Any Pin With Respect

to Ground '" -O.SV to + 7V
Power Dissipation 1.5 Watt

'NOTICE: Str~sses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA=O· to + 70·C, Vee=Voo= +sv ± 10%)

8042 874218642

Symbol Parameter Min. Max. Min. Max. Units Notes

VIL input Low Voltage (Except XTAL1, XTAL2, RESEn -0.5 0.8 -0.5 0.8 V

VIL1 Input Low Voltage (XTAL 1, XTAL2, RESEn -0.5 0.6 -0.5 0.6 V

V IH Input High Voltage (Except XTAL1, XTAL2, RESEn 2.2 Vee 2.2 Vee V

VIH1 Input High Voltage (XTAL1, XTAL2, RESEn 3.8 Vee 3.8 Vee V

VOL Output Low Voltage (0 ... 0 7) 0.45 0.45 V IOL=2.0 rnA

VOL1 Output Low Voltage (P1OP17, F'20P27, Sync) 0.45 0.45 V IOL=1.6 rnA

VOL2 Output Low Voltage (PROG) 0.45 0.45 V IOL=1.0 rnA

VOH Output High Voltage (00-07) 2.4 2.4 V .IOH= -400"A

VOH1 Output High Voltage (All Other Outputs) 2.4 2.4 V IOH~ -50"A

IlL Input Leakage Current (To, T 1, RO, WR, CS, Ao, EA) ±10 ±10 ,.A VSS::sVIN2! Vec

loz Output Leakage Current (00-07, High Z State) ±10 ± 10 ,.A Vss+O.45
sVoursVee

ILl Low Input Load Current (Pl0P17, P20 P27) 0.3 0.3 rnA ,vIL=0.8V

ILll Low Input Load Current (RESET, SS) 0.2 0.2 rnA VIL =0.8V

100 Voo Supply Current 15 15 rnA Typical = 5 rnA

lee+ 100 Total Supply Current 125 125 rnA Typical=60 rnA

IIH Input Leakage Current 100 100 ,..A VIN=Vee

CIN Input Capacitance 10 10 pF

CliO 110 Capacitance 20 20 pF

D.C. CHARACTERISTICS-PROGRAMMING (TA=2S·C ±5°C, Vee=5V ±5%, Voo=21V ±1V)
-:

Symbol Parameter Min. Max. Unit Test Conditions

VOOH Voo Program Voltage High Level 20.0 22.0 V

VOOL Voo Voltage Low Level 4.75 5.25 V

VPH PROG Program Voltagp High Level 21.5 24.5 V

VPL PROG Voltage Low Level 0.2 V

VEAH EA Program or Verify Voltage High Level 21.5 24.5 V

VEAL EA Voltage Low Level 5.25 V

100 Voo High Voltage Supply Curreni 30.0 mA

IPROG PROG High Voltage Supply Current 16.0 mA

lEA EA High Voltage Supply Current 1.0 mA

1-19 AFN·OO188C

-... _1" III-e 804218742

A.C. CHARACTERISTICS (TA=O·CtO +70·C, Vss=OV, vcc=voo=+5V ±10%)
DBB READ . . .

.. 8042 864218742

. Symbol Parameter Min • Max. Min.

tAR CS, Ao Setup to RDI 0 0

tRA CS, Ao Hold After ROt 0 0

tRR RD Pulse Width 160 160

tAD CS, Ao to Data Out Delay 130

tRO RDI to Data Out Delay 130
.

tOF ROt to Data Float Delay 85

tCY Cycle Time 1.25 15 1.25

DBBWRITE

Symbol ~arameter Min. Max. Min.

tAW CS,Ao Setup to WRI 0 0

. tWA 9!?,Ao Hold After WAC 0 0

.. tww WR Pull!3Width 160 260

tow Data Setup to WRt 130 150

two Data Hold After VltRt 0 0

NOTES:
1. CL~ 100 pF.
2. 12 MHz XTAL.

Max. Units

ns

ns

ns

130 ns[l}

130 ns[l}

85 ns

15 "S[2}

Max. Units

ns

ns

ns

ns

ns

A.C. CHARACTERISTICS-PROGRAMMING (TA=25·C±5·C, Vcc=5V±5%,Voo=21V±1V)

Symbol Parameter Min. Max. Unit Test Conditions

tAW Address Setup Time to RESET 1 4tcy

tWA· .Address Hold Time After RESET 1 4tcy

.. tDw Data inSelup Time to PROG 1 4tcy

tWD Data in Hold Trme After PROG , 4tcy

tPH RESET Hold Time to Verify 4tcy

tVDDW VOD Setup Time to PROG , 4tcy

tVDDH VDD Hold Time After PROG , 0
tpw Program Pulse Width 50 60 mS
tTW Test 0 Setup Time forP.rogram Mode .. 4tcy

tWT Test 0 Hold TiMe After Program Mode 4tcy

tDO Test 0 to Data Out Delay ... 4tcy
tww· RESET Pulse Width to Latch Address 4tcy

tr • tf VDD and PROG Ri~e and Fall Times 05 2.0 !,s
tCY CPU Operation Cycle Time 5.0 !,s.
tRE RESET Setup Time Before EA 1. 4tcy

--
Nol.: If TEST 0 is high, 'DO can be triggered by RESET L

AFN·OOI88C

inter --804218742

A.C. CHARACTERISTICS DMA

8042 864218742

Symbol Parameter Min. Max. Min. Max. Units

tACC DACK to WR or RD 0 0 ns

tCAC RD or WR to DACK -0 0 ns

tACO DACK to Data Valid 130 130 ns[11

tCRQ RD or WR to ORO Cleared 90 90 ns

NOTE:
1. CL = 150 pF.

A.C. CHARACTERISTICS PORT 2 (TA= O·C to + 70·C, VCC= + 5V ± 10%)

8042 864218742

Symbol Parameter Min. Max. Min. Max. Units

tcp Port Control Setup Before Falling Edge of PROG 100 100 n.s[11

tpc Port Control Hold After Falling Edge of PROG

tpR PROG to Time P2 Input Must Be Valid

tpF Input Data Hold Time

top Output Data Setup Time

tpo Output Data Hold Time

tpp PROG Pulse Width

NOTES:
1. CL=80pF.
2. CL=20 pF.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.4
2.0 2.0 >- TEST POINTS <:
0.8 0.8

0.45

CRYSTAL OSCILLATOR MODE

15 pF
(INCLUDES XTAL,
SOCKET, STRAY)

r----­, , ,
..l.. ..,

I
I
I L ____ _

1S-2SpF
(INCLUDES SOCKET, I

STRAY) -=-

XTAL1

CRYSTAL SERIES RESISTANCE SHOULD BE
<750 AT 12 MHz; <lBOD AT 3.8 MHz.

60 60

650 650

0 150 0 150

200 200

60 60

700 700

TYPICAL 804218742 CURRENT

o
o

BOmA

60 rnA

+. 40mA

1l

20 rnA

20'

DRIVING FROM EXTERNAL SOURCE

+5V

4700

J>-+-----'13 XTAL2

+5V

470Q

'----+----"-l XTALI

nsl21

nsl11

nsl21

nsl11

ns[21

ns

'0'

BOTH XTALI AND XTAL2 SHOULD BE DRIVEN.
RESISTORS TO Vee ARE NEEDED TO ENSURE V,H = 3.8V
IF TTL CIRCUITRY IS USED.

AFN.O()18SC

LC OSCILLATOR MODE

WAVEFORMS

~ £.
45 •• H 20pF

120"H 20pF

804218742

!!Q~
S.2 MHz
3.2 MHz

dC I' -= fC

r--~-----=-j XTALI

'--_-+--_-:;3 XTAL2
Cpp : 5 - 10 pF PIN·TO·PIN
CAPACITANCE

EACH C SHOULD BE APPROXIMATEL Y 20 pF, INCLUDING STRAY CAPACITANCE.

READ OPERATION-DATA BUS BUFFER REGISTER

CS OR Ao

~--------

1---- ' .. ----'--I

RD

-"0-1 ~OF ____ IAO ___ _

~oA~tp~~;---~----·--« -. --- DATA VALID ..-----------

WRITE OPERATION-DATA BUS BUFFER REGISTER

ISVSTEM'S
ADDRESS BUS}

tREAD CONTROl!

J X ISVSTEM'S

os OR Ao _ [~----------------t]'------------ ADDRess BUSI

~".-~ ~~_~-'-.A""_-_""_--------'WR"eCONT.DL1 WR

OATA8US DATA ~ --DATA VAlID_V DATA
MAY CHANGE I1NPUT} MAY CHANGE.I' It'\ ________________ J ~ __________________ ___

1·22 AFN-001BBC

804218742

WAVEFORMS (Continued)

COMBINATION PROGRAMIVERIFY MODE (EPROM'S ONLY)

21V
EA

5.

tTW_
PROGRAM --------~-- VERIFY II~'---- PROGRAM ----

TESTO

tww_

tAW +--1---+ tWA

DBo·DB, J--
LAST

ADDRESS

DATA TO BE
PROGRAMMED VALID

__ -< NEXT ADDR ~
VALID

NEXT
ADDRESS

.. ::.; ___________ ,:J§}f-~-T----------------------
+0 -.JJ 1-1 --_.J - - - -""\. ... -------

VERIFY MODE (ROM/EPROM)
21V

EA 5V--./

DBo·DB, ==r --
NOTES:

ADDRESS
(O-n VALID

ADDRESS (S·10) VALID

\'----~/
NEXT

ADDRESS

\'-----

NEXT ADDRESS VALID

1. PROG MUST FLOAT IF EA IS LOW (J. ••• =21V) OR IF TESTO=5V FOR THE B742. FOR THE S042 PROG MUST ALWAYS FLOAT.

2. Ao MUST BE HELD LOW (I.e •• = OV) DURING PROGRAMNERIFY MODES.
3. TEST 0 MUST BE HELD HIGH.

The 8742 EPROM can be programmed by the following
Intel product:

1. Universal PROM Programmer (UPP series) peripheral
of the Intellec@ Development System with a UPP·S49
Personality Card.

1·23 AFN-(]()lSSC

Intel 8042/8742

WAVEFORMS (Continued)

DMA

- tAce - -ltcAc -
, 1

- tAce - ~ltCAC---
DATA BUS

DRQ

PORT 2

SYNC

EXPANDER
PORT

OUTPUT

EXPANDER
PORT

INPUT

PROG

,.-------..
VALID VALID

-tACD~

J1

PORT 20-3 DATA

peRT 20_3 DATA

PORT TIMING DURING EA

SYNC"

'10.17

P2O•22

I \ I
PORT X DATA X PORT

DATA PC

ON THE RISING EDGE OF SYNC AND EA IS ENABLED, PORT DATA IS VALID AND CAN BE
STROBED. ON THE TRAILING EDGE OF SYNC THE PROGRAM COUNTER CONTENTS ARE
AVAILABLE.

1·24

X
\

PC

AFN-OOl88C

8042187.42

Table 2. UPI™ Instruction Set

Mnemonic Description Bytes Cycles Mnemonic Description Bytes . Cycles

ACCUMULATOR DATA MOVES

ADD A, Rr Add register to A 1 1 MOVA, Rr Move register to A 1 1
ADD A, @Rr Add data memory 1 1 MOVA,@Rr Move data memory 1 1

to A to A
ADD A, #data Add immediate to A 2 2 MOVA, #data Move immediate 2 2
AD DC A, Rr Add register to A 1 1 TOA

with carry MOV Rr, A Move A to register 1 1
AD DC A, @Rr Add data memory 1 1 MOV@Rr,A Move A to data 1 1

to A with carry memory
ADDC A, #data Add immediate 2 2 MOV Rr, #data Move immediatelo 2 2

to A with carry register
ANL A, Rr AND register to A 1 1 MOV@Rr, Move immediate to 2 2
ANLA,@Rr AND data memory 1 1 #data data memory

toA MOVA, PSW Move PSWtoA 1 1
ANLA, #data AND immediate to A 2 2 MOVPSW, A MoveAto PSW 1 1
ORLA, Rr OR register to A 1 1 XCH A, Rr Exchange A and 1 1
ORLA, @Rr OR data memory 1 1 register

toA XCH A,@Rr Exchange A and 1 1
ORLA, #data OR immediate to A 2 2 data memory
XRL A, Rr Exclusive OR regis- 1 1 XCHDA,@Rr Exchange digit of A 1 1

ter to A and register
XRLA,@Rr Exclusive OR data 1 1 MOVPA,@A Move to A from 1 2

memory to A current page
XRL A, #data Exclusive OR imme- 2 2 MOVP3,A,@A Move to A from 1 2

diate to A page 3
INCA Increment A 1 1
DECA Decrement A 1 1

TIMER/COUNTER

CLRA Clear A 1 1 MOVA, T Read Timer/Counter 1 1
CPLA Complement A 1 1
DAA Decimal Adjust A 1 1
SWAP A Swap nibbles of A 1 1
RLA Rotate A left 1 1

MOVT,A Load Timer/Counter 1 1
STRTT Start Timer 1 1
STRTCNT start Counter 1 1
STOP TCNT Stop Timer/Counter 1 1

RLCA Rotate A left through 1 1
carry

RRA Rotate A right 1 1
RRCA Rotate A right 1 1

EN TCNTI Enable Timer/ 1 1
Counter Interrupt

DIS TCNTI Disable Timer/ 1 1
Counter Interrupt

through carry CONTROL
INPUT/OUTPUT ENDMA Enable DMA Hand- 1 1
INA, Pp Input port toA 1 2
OUTL Pp, A Output A to port 1 2
ANL Pp, #data AND immediate to 2 2

port
ORL Pp, #data OR immediate to 2 2

port
INA, DBB Input DBB to A, 1 1

clear IBF

shake Lines
EN I Enable IBF Interrupt 1 1
DISI Disable IBF Inter- 1 1

rupt
EN FLAGS Enable Master 1 1

Interrupts
SEL RBO Select register 1 1

bank 0
OUT DBB, A Output A to DBB, 1 1

set OBF
SEL RBI Se I ect reg iste r 1 1

bank 1
MOVSTS,A A.-A7 to Bits 4-7 of 1 1 NOP No Operation 1 1

Status REGISTERS
MOVDA, Pp Input Expander 1 2

port to A
MOVD Pp, A Output A to 1 2

Expander port
ANLD Pp, A AND A to Expander 1 2

INC Rr Increment register 1 1
INC@Rr Increment data 1 1

memory
DEC Rr Decrement register 1 1

port SUBROUTINE
ORLD Pp,A OR A to Expander 1 2

port
CALLaddr Jump to subroutine 2 2
RET Return 1 2
RETR Return and restore 1 2

status

1-25 AFN-001SSC

804218742

Table 2. UPI'M Instruction Set (Continued)

Mnemonic Description Bytes CVele.

FLAGS ' '

CLRC Clea~ Carry 1 1 .
CPLC Compler'nenfCarry 1 1
CLR FO Clear Flag 0 1 1
CPL FO Complement Flag 0 1 t
CLR F1 Clear F1 Flag 1 1
CPL F1 Complement F1Flag 1 1

BRANCH

JMP addr Jump unconditional 2 2
JMPP@A Jump indirect 1 2
DJNZ Rr, addr Decrement register 2 2

and jump
JC addr Jump on Carry= 1 2 - 2>
JNC addr Jump on Carry=O 2- 2
JZaddr Jump on A Zero 2 2
JNZ addr Jump on A not Zero 2 2
JTO addr Jump on TO=1 2 2
JNTO addr Jump on TO", 0 2 2
JT1 addr Jump on T1=1 2 2
JNT1 addr Jump on T1 =0, 2 2
JFO addr Jump on FO Flag=1 2 2
JF1 addr Jump on F1 Flag= 1 2 2
JTF addr Jump on Timer Flag 2 2

= 1, Clear Flag
JNIBF addr Jump on IBF Flag 2 2,

=0
JOBF addr Jump on OBF Flag 2 2

=1
JBb addr Jump on Accuniula- 2 2

tor Bit

1-26 AFN'()()l88C

inter
8231 A

ARITHMETIC PROCESSING UNIT

• Fixed Point Single and Double • Compatible with MCS·80™ and
Precision (16132 Bit) MCS·85™ Microprocessor Families

• Floating Point Single Precision • Direct Memory Access or
(32 Bit) Programmed 1/0 Data Transfers

• Binary Data Formats • End of Execution Signal
• Add, Subtract, Multiply and Divide

General Purpose 8·Blt Data Bus
Trigonometric and Inverse • • Interface
Trigonometric Functions

Standard 24 Pin Package • Square Roots, Logarithms, •
Exponentiation • + 12 Volt and + 5 Volt Power

• Float to Fixed and Fixed to Float Supplies
Conversions • Advanced N·Channel Silicon Gate

• Stack Oriented Operand Storage HMOS Technology
The Intel<l> 8231AArithmetic Processing Unit (APU) is a monolithic HMOS LSI device that provides high performance fixed
and floating point arithmetic and floating point trigonometric operations. It may be used to enhance the mathematical
capability of a wide variety of processor-oriented systems. Chebyshev polynomials are used in the implementation of the
APU algorithms.

All transfers, including operand, result, status and command information, take place over an 8-bit bidirectional data bus.
Operands are pushed onto an internal stack and commands are issued to perform operations on the data in the stack.
Results are then available to be retrieved from the stack. ..

Transfers to and from the APU may be handled by the associated processor using conventional programmed 1/0, or may be
handled by a direct memory access controller for.improved performance. Upon completion of each command, the APU
issues an end of execution signal that may be used as an interrupt by the CPU to help coordinate program execution.

In January 1981 Intel will be converting from 8231 to 8231A. The 8231A provides enhancements overthe 8231 to allow use
in both asynchronous and synchronous systems.

INTERFACE
CONTROL

Figure 1. Block Diagram

1-27

SYACK 4

SVREQ 5

DO~..x=.{ CI
READY

Figure 2. Pin Configuration

inter

Pin
Symbol No. 'iYpe

Vcc 2

Vee 'i6' .. '.' .

Vss 1

ClK 23.' .1

RESET 22 I

CS 18 I

Ao 21 I

Ao RD

0 1
0 0"
1 1
1 ' 0

RD .20 I ;-

WR 19 I

EACK 3 I

SVACK 4 I

END 24 '0

8231 A

Table 1"pinDescription

,
Name and Function

'Power: +5 Volt power supply.

Power: +12\1011 po~er supply.

'Ground. .' ,. ..

Cloak: An eX!l'Irnal, TTL cOl11patible,
timing source is applied to the ClK pin.

Reset: The aCtive high reset signal pro- .
vides initialization for the chip. RESET
also terminaies 'any operation 'In pro-
gress. RESET clears thEi"status register
and places the 8231A into the idle state.
Stack'contents and corllmand registers
ar,e·not affected (5 clock cycles).

Chip Select: CS is an activ~ .Iow input
signal which selects the 8231A and en-
ables communication with the data bus ...

Address: I,n. conjunction witht!le ,RD
and WR signals, the Ao control line es-
tablishes the type. of' communication
that isto be performed with the 8231 A as
shown·.below:

WR Function

6 Enter data bYte irito stack
1 Read databyte from stack'
0 Enter command
1 Read stl!tus

Read: This active lowinput'indicates
that data or status is to be read from the
8231Aiics is'lo~t .'

Write: This active low input indicates
that data or Ii command is to be written
into the 8231A if CS is low.

End of Execution: This active low input
clears the end of execution output sig-
nal (Eiiil'». If EACK is tied jow, the END
output will be a pulse that is one clock
period wide.

Service Request: This active low input
clears the s.ervice request output
(SVRI;:Q).

End: This active low, open-drain output
indicates'that execution"of the pre-
viously entered command i~ complete. It
can be used as an interrupt request and
is cleared. by EACK, RESET or any read
or write access to the 8231.

1-28

"

Pin
Symbol No. Type Name and Function

.. ..

SVREQ £; 0., Service Request: This /!ctive.high out-
put signal indi,cates tha.t cC)l11mand

I
execution is 'complete and that post
execution' service was requestad .in the·
previous command byte. It is cleared by
SVACK, the next comman,doutput tei the
device,: or by RESET:

READY 17 0 Ready: This activ.ehigh outputjndi-
cates that the 8231 A is able to accept
communication with thedatabtis, When
an llttempt is made to n?ad data, Write
data or to enter a new command while
the 8231A is executing a command,
READY goes low· until execution of the
current command is complete (See
READY Operation, p. 5).

DBO- 8- I/O Data Bus: These eight bidirectional

DB7 15 lines provide for transfer of commands,
status and data between the 8231A and
the CPU. The. 8231 A can drive the data
bus only when CS and RD are low.

COMMAN.D STRUCTURE

Each command ent.E!red into the 8231.A consists of aSingie
8~bit byte having the format illustrated below:' '"

Bits 0-4 select the operation to be performed as shown
in the table. Bits 5-6 select the data format appropriate
to the selected operation. If bit 5 is a 1, a fixed point data
format is specified. If bit 5 is a 0, floating point format is
specified. Bit 6 selects the precision of the data to be
operated upon by fixed point commands only (il bit
5'" 0, bit: 6 must be 0). If bit 6 is a 1, single-precision
(16.,bit) operands are assumed, If bit 6 is a 0, double·
precision (32·bit) operands are indicated. ,Results are
undefined f.or all illegal combinations of bits in the com­
mand byte. Bit 7 indicates owhethera service request is
to be issued after the command is executed, If bit 7 is a
1, the serVice request output (SVREQ)wifl go high at the
conclusion of the command and will remain high until
reset by a loW level on the service ackn'owledge pin
(SVp,CK)or until completion of execution of the suc­
ceeding 'command where service' request .(bit 7) is O.

Each command issued to the 8231A requests post execu­
tion service based upon the state of bit 7 in the command
byte. When bit 7 is a 0, SVREQ remains low.

AFN-01251B

inter 8231 A

Table 2. 32·Blt Floating Point Instructions

Hexll) Stack Contents(2)
Status Flalls(4) Instruction Descrlpllon Alter Execution Code A a C D Affected

ACOS Inverse Cosine of A 0 6 R U U 'U S, Z, E

ASIN Inverse Sine of A 0 5 R U U U S,Z, E

ATAN Inverse Tangent of A 0 7 R B U U S, Z

CHSF Sign Change of A 1 5 R B C 0 S,Z

COS Cosine of A (radians) 0 3 R B U U .S, Z

EXP sA Function 0 A R B U U S, Z, E

FADD Add A and B 1 0 R C 0 U S, Z, E

FDiV Divide B by A 1 3 R C 0 U S, Z, E

FLTD 32-BIt Integer to Floating Point Conversion 1 C R B C U S, Z

FLTS 16-Bit Integer to Floating Point Conversion 1 0 R B C U S, Z

FMUL Multiply A and B 1 2 R C 0 U S; Z, E

FSUB Subtract A from B 1 1 R C 0 U S, Z, E

LOG Common Logarithm (base 10) of A 0 8 R B U U S, Z, E

LN Natural Logarithm of A 0 9 R B U U S,Z, E

POPF Stack Pop 1 8 B C 0 A S, Z

F'TOF Stack Push 1 7 A A B C S,Z

PUPI Push n onto Stack 1 A R A B C S,Z

PWR BA Power Function 0 B R C U U S, Z, E

SIN Sine of A (radians) 0 2 R B U U S,Z

SORT Square Root of A 0 1 R B C U S,Z,E

TAN Tangent of A (radians) 0 4 R B U U S, Z,.E

XCHF Exchange A and B 1 9 B A C .0 S,Z

Table 3. 32·Bit Integer Instructions

Hexll) Stack Contents(2) Status Flags(4)
Instrucllon Descrlpllon Alter Execution Code A a C D Affected

CHSO Sign Change of A 3 4 R B C 0 S,Z,O

DADO Add A and B 2 C R C 0 A S,Z,C,E

DOIV Divide B by A 2 F R C 0 U S,Z, E

DMUL Multiply A and B (R = lower 32-bits) 2 E R C 0 U S,Z,O

DMUU Multiply A and B (R = upper 32-bits) 3 6 R C 0 U S,Z,O

DSUB Subtract A from B 2 0 R C 0 A S,Z,C,O

FIXD Floating Point to Integer Conversion 1 E R B C U S,Z,O

POPD Stack Pop 3 8 B C 0 A S,Z

PTOO Stack Push 3 7 A A B C S, Z

XCHD Exchange A and B 3 9 B A C 0 S,Z

Table 4. 16·Blt Integer Instructions

Hexll) Stack Contents(3) Status Flags(4)
Instrucllon Description Alter Execullon Code

Au AL au aL Cu CL Du DL
Affected

CHSS Change Sign of Au 7 4 R AL Bu BL Cu CL Du DL S,Z,O

FIXS Floating Point to Integer Conversion 1 F R Bu BL Cu CL U U U S,Z,O

POPS Stack Pop 7 8 AL Bu BL Cu CL Du DL Au S, Z

PTOS Stack Push 7 7 Au Au Ai. Bu BL Cu CL Du S,Z

SADD Add Au and AL 6 C R Bu BL Cu CL Du DL Au S,Z,C,E

SDIV Divide AL by Au 6 F R Bu BL Cu CL Du DL U S,Z,E

SMUL Multiply AL by Au (R = lower 16-bits) 6 E R Bu BL Cu CL Du DL U S, Z, E

SMUU Multiply AL by Au (R = upper IS-bits) 7 6 R Bu BL Cu CL Du DL U S,Z,E

SSUB Subtract Au. from AL 6 0 R Bu BL .Cu CL Du DL Au S,Z,C,E

XCHS Exchange Au and AL 7 9 AL Au Bu BL Cu CL Du DL S,Z

NOP No Operation 0 0 Au AL Bu BL Cu CL Du DL

Notes: 1. In the hex code column, SVREO Is a O.
2. The stack initially is composed of four 32-bit numbers (A, B, C, D). A I.s equivalent to Top Of Stack (TOS) and B is Next On Stack (NOS). Upon

completion of a command the stack Is composed of: the result (R); undefined (1I); or the initial contents (A, B, C, or D).
3. The stack Initially Is composed of eight 16-bit numbers (Au, AL, Bu, BL, Cu, CL, Du, OJ. Au is the TOS and AL is NOS. Upon completion of a

command the stack is composed of: the result (R); undefined (U); or the initial contents (Au, AL, Bu, BL, ...).
4. Nomenclature: Sign (S); Zero (Z); Overflow (0); Carry (C); Error Code Field (E).

j·29 AFN-ol251B

·lnteI· 8231A

DATA FORMATS

The 8231Aarithmeticprocessing unit handles operands
In both fixed point and floatln"g point formats. Fixed
point operands may be . represented in either single
(16-bit operands) or double precision (32-bit operands),
and are alw'aysrepresented as binary, two's comple-
ment values'. '

SINGLE PRECISION FIXED POINT FORMAT

I VALUE I
_I I I I I I I I I I I II I I

15 0

DOUBLE PRECISION FIXED POINT FORMAT

I VALUE I
~I III I I I I I II I I 1111 I I III I I I I I I II J
~ 0

The sign (positive or negative) of the pperand is located
in the most· significant bit (MSB). Positive values are
represented by a sign bit of zero (S = 0), Negative values
are represented by the two's complement of the corre­
sponding positive value with a sign bit equal to 1 (S = 1).
The range of values that may be accommodated by each
of these formats Is - 32,768 to + 32,767 for single preci­
sion and - 2,147,483,648 to+ 2, 147,483,647 for double
precision,

Floating pOint binary values are represented in a format
that permits arithmetic to be performed in a fashion
analogous to operations with decimal values expressed
in scientific notation.

In the decimal system, data may be expressed as values
between 0 and 10 times 10 raised to a power that effec­
tively shifts the implied decimal point right or left the
number of places necessary to express the result in con­
ventional form (e.g., 47,572.8). The value-portion of the
data is called the mantissa. The exponent may be either
negative or positive.

The concept of floating point notation has both a gain
and a loss associated with it. The gain is the ability to
represent the significant digits of data with values span­
ning a large dynamic range limiti;ld only by the capacity
of the'exponent field. For example; in decimal notation
if the exponent field is two digits wide, and the mantissa
is five digits, a range of values (positive or negative)
from 1.0000 x 10- 99 to 9.9999 x 10+ 99 can be accom­
modated. The loss is that only the significant digits of
the value can be represented. Thus there is no distinc­
tion in this representation between the values 123451
and 123452, for example, since each would be ex­
pressed as: 1.2345 x 105. The sixth digit has been
discarded. In most applications. where the dynamic
range of values to be represented is large, the loss of
significance, and hence accuracy of results, is a minor
consideration. For greater precision a fixed point format
could be chosen, although with a loss of potential
dynamic range.

The 8231A is a, binary arithmetic processor and requires
thai floating point data be represented by a fractional
mantissa value between .5 and 1 multiplied by 2 raised
to an appropriate power. This is expressed as follows:

value = mantissa x 2exponent

For example, the value 100.5 expressed in this form is
0.1100 1001 x 27. The decimal equivalent of this value
may be computed by summing the components (powers
of two) of the mantissa and then multiplying by the ex'
ponent as shown below:

value = (2- 1 + 2- 2 + 2- 5 + 2- 8) x 27

= 0.5+ 0.25 + 0.03125 + 0.00290625) x 128
= 0.78515625 x 128

= 100.5

FLOATING POINT FORMAT
The format for floating point values in the 8231A is given
below. The mantissa is expressed as a 24-bit (fractional)
value; the exponent is expressed as a two's complement
7-bit value having a range of - 64 to + 63. The most
significant bit is the sign of the mantissa (0 = positive,
1 = negative), for a total of 32 bits. The binary point is
assumed to be to the left of the most significant man­
tissa bit (bit 23). All floating point data values must be
normalized. Bit 23 must be equal to 1, except for the
value zero, which is represented by all zeros.

I EXPONENT 1-· MANTISSA I
~Iil I
~w ~~ 0

The range of values that can be represented in this for­
mat is ± (2.7 x 10- 20 to 9.2 X 10 '8) and zero.

FUNCTIONAL DESCRIPTION

STACK CONTROL

The user interface to the 8231A includes access to an 8
level 16-bit wide data stack. Since single precision fixed
point operands are 16-bits in length, eight such values
may be maintained in the stack. When using double
preCision fixed point or floating point formats four
values may be stored. The stack in these two configura­
tions can be visualized as shown below:

lOS

NOS
-- A2 A1

B2 B1

---16---

1 ..
I

TOS­

NOS-
A' A3 1<2 A1

B' B3 82 81

-32--

Data are written onto the stack, eight bits at a time, in
the order shown (A 1, A2, A3, ...). Data are removed from
the stack in reverse byte order (A4, A3, A2 ...). Data
should. be entered onto the stack In multiples of the
number of bytes appropriate to the chosen data format.

1-30 AFN-01251B

8231A

DATA ENTRY

Data entry is accomplished by bringing the chip select
(CS), the command/data line (Aol, and WR low, as shown
in the timing diagram. The entry of each new data word
"pushes down" the previously entered data and places
the new byte on the top of stack (TOS). Data on the bot­
tom of the stack prior to a stack entry are lost.

DATA REMOVAL

Data are removed from the stack in the 8231A by bringing
chip select (CS), command/data (Aol, and RD low as
shown in the timing diagram. The removal of each data
word redefines TOS so that the next successive byte to
be removed becomes TOS. Data removed from the stack
rotates to the bottom of the stack.

COMMAND ENTRY

After the appropriate number of bytes of data have been
entered onto the stack, a command may be issued to
perform an operation on that data. Commands which re­
quire two operands for execution (e.g., add) operate on
the TOS and NOS values. Single operand commands
operate only on the TOS.

Commands are issued to the 8231A by bringing the chip
select (CS) line low, command data (Aol line high, and
WR line low as indicated by the timing diagram. After a
command is issued, the CPU can continue execution of
its program concurrently with the 8231A command
execution.

COMMAND COMPLETION

The 8231A signals the completion of each command exe­
cution by lowering the End Execution line (END).
Simultaneously, the busy bit in the status register is
cleared and the Service Request bit of the command
register is checked. If it is a "1" the service request out·
put level (SVREQ) is raised. END is cleared on receipt of
an active low End Acknowledge (EACK) pulse. Similarly,
the service request line is cleared by recognition of an
active low Service Acknowledge (SVACK) pulse.

READY OPERATION

An activeJ!igh ready (READY) is provided. This line is
high in its quiescent state and is pulled low by the 8231A
under the following conditions:

1. A previously initiated operation is in progress (device
busy) and Command Entry has been attempted. In
this case, the READY line will be pulled low and re­
main low until completion of the c.urrent command
execution. It will then go high, permitting entry of the
new command.

2. A previously initiated operation is in progress and
stack access has been attempted. In this case, the
READY line will be pulled low, will remain in that
state until execution is complete, and will then be
raised to permit completion of the stack access.

3. The 8231A is not busy, and data removal has been re­
quested. READY will be pulled low for the length of
time necessary to transfer the byte from the top of
stack to the interface latch, and will then go high,
indicatin.g availability of the data.

1-31

4. The 8231 A is not busy, and a data entry has been re­
quested. READY will be pulled low for the length of
time required to ascertain if the preceding data byte,
if any, has been written to the stack. If so READY will
immediately go high. If not, READY will remain low
until the interface latch is free and will then go high.

5. When a status read has been requested, READY will
be pulled low for the length of time necessary to
transfer the status to the interface latch, and will
then be raised to permit completion of the status
read. Status may be read whether or not the 8231A is
busy.

When READY goes low, the APU expects the bus con­
trol signals present at the time to remain stable until
READY goes high.

DEVICE STATUS

Device status is provided by means of an internal status
register whose format is shown below:

I BUSY [SIGN [ZERO t=l ERROR [CODE -[--~I CARRY I

BUSY: Indicates that 8231A is currently executing a com­
mand (1 =Busy)

SIGN: Indicates that the value on the top of stack is
negative (1 = Negative)

ZERO: Indicates that the value on the top of stack is
zero (1 = Value is zero)

ERROR CODE: This field contains an indication of the
validity of the result of the last opera­
tion. The error codes are:

0000 - No error
1000 - Divide by zero
0100 - Square root or log of negative number
1100 - Argument of inverse sine, cosine, or

eX too large
XX10 - Underflow
XX01 - Overflow

CARRY: Previous operation resulted in carry or borrow
from most significant bit. (1 = Carry/Borrow,
0= No Carry/No Borrow.)

If the BUSY bit in the status register is a one, the other
status bits are not defined; if zero, indicating not busy,
the operation is complete and the other status bits are
defined as given above.

READ STATUS

The 8231 A status register can be read by the CPU at any
time (whether an operation is in progress or not) by
bringing the chip select (CS) low, the command/data line
(Ao) high, and lowering RD. The status register is then
gated onto the data bus and may be input by the CPU.

EXECUTION TIMES
Timing for execution of the 8231A command set is con­
tained below. All times are given in terms of clock
cycles. Where substantial variation of execution times

AFN-012S1B

8231A

Is possible, the minimum and maximum values are
quoted; otherwise,typical values are given. Variations
are data dependent.

Total execution. times may require allowances for
operand transfer Into tile APU, command execution, and
result retrlf3val from the ApU. Except for command exe-

cution, these times will be heavily influenced by the
nature of the data, the contro.1 Interface used, the speed
of memory, the CPU used, the priority allotted to DMA
and Interrupt operation.s, the size and number of
operands to be transferred, and the use of chained
calculations, etc.

Table 5_ Command Execution Times

Command Clock Command Clock
Mnemonic Cycles Mnemonic Cycles

SADD 17 FADD 54-368
SSUB 30 FSUB 70-370
SMUL 84-94 FMUL 146-168
SMUU 80-98
SDIV 84-94 FDIV t54-184
DADD 21 SORT 800
DSUB 38 SIN 4464
DMUL 194-210 COS 4118
DMUU 182-218
DDIV 208 TAN 5754
FIXS 92-216 ASIN 7668
FIXD 100-346 ACOS 7734
FLTS 98-186 ATAN 6006
FLTD 98-378 LOG 4474-7132

DERIVED FUNCTION DISCUSSION
Computer approximations of transcendental functions
are often based on some form of polynomial equation,
such as:

(1-1)

The primary shortcoming of an approximation in this
form is that it typically exhibits very large errors when
the magnitude of IXI is large, although the errors are
small when IXI is small. With polynomials in thi.s form,
the error distribution is markedly uneven over any
arbitrary interval.

A set of approximating functions exists that not only
minimizes the maximum error but also provides an even
distrlputlon of errors within the selected data represen­
tation Interval. The"e are known as Chebyshev Poly­
nomials and are are based upon cosine functions. These
functions are defined as follows:

T n(X) = Cos n9; where n = 0,1,2 ...
9=COS-1X

(1-2)

The various terms of the Chebyshev series can be com­
putedas shown below:

To(X) = Cos (0 . 9)= Cos (0) = 1 (1-4)
T f(X) = Cos (Cos -1X) = X (t-5)
T2(X) = Cos 29= 2Cos29-1 = 2COS2(CoS-1X)-1 (1-6)

=2X2_1

Command Clock Command Clock
Mnemonic Cycles Mnemonic Cycles

1-32

LN 4298-6956 POPF 1~
EXP 3794-4878 XCHS 18
PWR 8290-12032 XCHD 26

NOP 4 XCHF 26
CHSS 23 PUPI 16
CHSD 27
CHSF 18

PTOS 16
PTOD 20
PTOF 20
POPS 10
POPD 12

In general, the next term in the Chebyshev series can be
recursively derived from the previous term as follows:

Tn(X) = 2X [Tn-1(X)]- Tn- 2(X); n ~ 2 (1-7)

Common logarithms are computed,by multiplication
of the natural logarithm by the conversion factor
0.43429448 and the error function is therefore the same
as that for natural logarithm. The power function is
realized by combination of natural log and exponential
functions according to the equation:

XV = eyLnx.

The error for the power function is a combination of that
for the logarithm and exponential functions.

Each of the derived functions is an approximation of the
true function. Thus the result of a derived function will
have an error. The absolute error is the difference' be­
tween the function's result and the true result. A more
useful measure of the function's error is relative error
(absolute errorltrue result). This gives a measurement of
the significant digits of algorithm accuracy. For the
d.erlved functions except LN, LOG, and PWR the relative
error is typically 4x 10-7. For PWR the relative error is
the summation of the EXP and LNerrors, 7 x 10-7. For
LN and LOG, the absolute error is 2 x 10 -7.

AFN-012S1B

I . "mer '." .. ",:

APPLICATION INFORMATION

The diagram in Figure 4 shows the interface connec­
tions for the APU with operand transfers handled by an
8237 DMA controller, and CPU coordination handled by
an Interrupt ControUer. The APU·lnterrupts the CPU to
indicate that a command has been completed. When the
performance enhancements provided by the DMA and
Interrupt operations are not required, the APU interface

can be simplifiedasshciwn in Figure 3. The 8231A APU is
designed with a general purpose 8-bit data bus and in­
terfacE! control so that it can be conveniently used with
any general 8-bit processor.

In many systems it will be convenient to use the
microcomputer system clock to drive the APU clock
input. In the case of 8080A systems it would be the
q,2TTL signal. Its cycle time will usually fall inthe range
of 250 ns to 1000 ns, depending on the system speed.

ADDRESS BUS ~
lOR RD Ao CS

CPU

iOW WR
8231A

ARITHMETIC
CLOCK ClK PROCESSOR

READY READY UNIT

....: t ~f
-..;: 7- k.

SYSTEM DATA BUS

"
Figure 3. Minimum Configuration Exalilple

ADDRESS BUS ~

~ 11 11 v

~ 820' J, A8-A15

I
DECODER cs ~O-A~ "AEN" ~.··.ADDRESS

I C>-
.... 1. ' L~TCH

AO-A1S 8237 ADSTB A 'STB 8282
DMA CONTROLLER

HLDA HLDA
080-

"'" ::..

Ii i I~ ~
1; DB' \rr-

HOLD HRD
~

I~ ~ ~ u

CLOCK t r MEMR J\
MEMW

V
iOA

CPU iow . ,. ~

READY

r vee
~

WR RD ~ AD Fu >- I~ ~ I~ ~ : Q

~ INTA INTA
8259A IRO END ~ ~ 8231A

INTERRUPT

r ARITHMETIC
INT INT

CONTROLLER EACK PROCESSOR UNIT

DBO-DB7 080-087 DBO-DB7

~ -" ~ "'" i>-

7 "" 7 """ 7 """
7" ~

SYSTEM DATA BUS

V

Figure 4. High Performance Configuration Example

1-33 AFN-01251B

8231 A

ABSOLUTE MAXIMUM RATlNGS·
Storage Temperature lss·cto + 150·C
Ambient Temperatui'e Under Bias ~ ... O·C to 70·C
Voo with Respect to Vss ;.. 0.5V to + 15:0V
Vee with Respectto Vss .. " '" .. -0.5V to + 7.0V
All Signal. Voltages with Respect

to Vss -0.5V to +7.0V
Power Dissipation•.•................... 2.0W

*NOTiCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. Th18 Is a stress rating only and functiona/opera­
tion of the device at these or any other conditions above
those indicated in. the operational sections of this specifi­
cation is not implied. Exposure. to absolute maximum
rating conditions for extended periods may effect device
reliability.

D.C. AND OPERATING CHARACTERISTICS (TA = O"C to 70·e, Vss = OV, vee = +5V ± 10%,

Voo = +12V ± 10%)

Parameters Description Min. Typ. Max. Units

VOH Output HIGH Voltage 3.7 Volts

VOL Output LOW Voltage 0.4 Volts

VIH Input HIGH Voltage 2.0 Vee Volts

VIL Input LOW vciitage -0.5 0.8 Volts

IlL Input Load Current ±10 pA

loz Data Bus Leakage ±10 pA

Icc Vee Supply Current 50 95 rnA

100 . Voo Supply Current 50 95 rnA

'Co Output Capacitance 8 pF

CI Input CapacLtance 5 pF

CIO I/O Capacitance 10 pF

A.C. TESTING INPUT, OUTPUT WAVEFORM

2.0 2.0

>TESTPOINTS<

0.8 0.8

kC. TESTING: INPUTS ARE DRIVEN AT 3.7V FOR A LOGIC "I" AND 0.4V FOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT2.OV FOR A LOGIC ''1''
AND 0.8V FOR A LOGIC "0:'

1·34

T.st Conditions

IOH= -200pA

IOL=3.2 rnA

Vss :s VIN :s Vee

Vss +0.4 .. VOUT .. Vee

fc = 1.0 MHz, Inputs = OV

AFN-OI251B

inter 8231 A

A.C. CHARACTERISTICS (TA = O"C to 70·C. Vss = OV. vcc = +5V ± 10%. VDD = +12V ± 10%)

READ OPERATION

Symbol P.,.m.r 1131,\·1 1131,\-3 1231,\ Units
Min. Mu. Min. Mu. Min. Mu.

tAR "0. CS Setup to RD 0 0 0 ns

tRA "0. ~ Hold from RD 0 0 0 ns

tRY READY ~ from 1m ~ Delay (Note 2) 150 100 100 ns

tYR READY t to RD t 0 0 0 ns

Data
3.5tCY 3.5 tCY 3.5tCY n8

tRRR READY Pulse Width (Note 3)
+50 +50 +50

Status 1.5tCY 1.5tCY 1.5tCY ns
+50 +50 +50

tROE Data Bus Enable from RD I 50 50 50 ns

tORY Data Valid to READY t 0 0 0 ns

tOF Data Float after RD t 50 200 50 150 50 100 ns

WRITE OPERATION

Symbol Pa .. meter
18231,\ .. 8231,\-3 12310\ Unite

Min. Max. Min. Max. Min. Mu.

tAW "0. CS Setup to WR 0 0
)

0 ns

tWA "0. CS Hold after WR 60 30 25 ns

tWY READY I from WR ~ Delay (Note 2) 150 100 100 ns

tyW READY t toiililit 0 0 0 ns

tRAW READY Pulse Width (Note 4) 50 50 50 ns

tWI Write Inactive Time (Note 4) I Command 4tCY 4tCY 4tCY ns

I Data 5tCY 5tCY 5tcy ns

tow Data Setup to WR 150 ., 100 100 ns

two Data Hold after WR 20 20 20 ns

OTHER TIMINGS

Symbol P ... meter 8231,\·8 1231,\·3 1231,\ Unite
Min. Mu. Min. Mu. Min. Max.

tCY Clock Period 460 5000 320 3300 250 2500 ns

tCPH Clock Pulse High Width 200 140 100 ns

tCPl Clock Pulse Low Width 240 160 ·.120 ns

tEE END Pulse Width (Note 5) 400 300 200 ns

tEAE EACK I to ENfi t Delay 200 175 150 ns

tAA EACK Pulse Width 100 75 50 ns

tSA ~ ~ to SVREQ ~ Delay 300 200 150 ns

tss SVACK Pulse Width 100 75 50 ns

NOTES:
1. ·Typlcal values are for TA=25'C. nominal supply voltages and nominal processing parameters.
2. READY is pulled low for both command and data operations.
3. Minimum valuBS shown BSsume no previously entered command is being executed for the data access. If a previously entered

command is being executed. READY low pulse width is the time to complete execution plus the time shown. Status may be read at any
time without exceeding the time shown.

4. READY low pulse width is less t~an 50 ns when writing into the data port or the control port as long as the duty cycle requirement (tWI) is
observed and no previous commllnd is being executed. tWI may be safely violated as long as the extended tRRW that rasults is
observed. If a previously entered command is being executed. READY low pulse width is the time to complete execution plus the time
shown. These timings refer specifically to the 8231A.

5. Em5 low pulse width is specified for EAa< tied to VSS: Otherwise tEAE applies.

AFM-01251B

WAVEFORMS

READ OPERATION

CLOCK'

READY

DATA
BUS

WRITE OPERATION

INTERRUPT OPERATION

8231~

'. ~ ,

END '. ,'EE-I I

----------~----~--.---'E--~D·~1f-----------------------
EACK

'. "", "'." "., .:::,: '

SVREif "I ... ~~ ..••.......•.•.
..... :>.:. ~}'-""""""' ,. ~.

1<36 AFN-{)1251B

8232
FLOATING POINT PROCESSING UNIT

• Compatible with Proposed IEEE For·
mat and Existing Intel Floating Point
Standard

• Single (32·Bit) and Double (64·Bit)
Precision Capability

• Add, Subtract, Multiply and Divide
Functions

• Stack Oriented Operand Storage

• General Purpose S·Bit Data Bus Inter·
face

• Standard 24·Pln Package

• 12V and 5V Power Supplies

• Compatible with MCS·SOTM, MCS·S5™
and MCS·S6™ Microprocessor Families

• Error Interrupt

• Direct Memory Access or Programmed
110 Data Transfers

• End of Execution Signal

• Advanced N·Channel Silicon Gate
HMOS Technology

The Intel<!> 8232 is a high performance floating·point processor unit (FPU). It provides single precision (32·bit) and
double preCision (54·bit) add, subtract, multiply and divide operations. The 8232's floating point arithmetic is a subset
of the proposed IEEE standard. It can be easily interfaced to enhance the computational capabilities of the host
microprocessor.

The operand, result, status and command information transfers take place over an 8·bit bidirectional data bus. Oper·
ands are pushed onto an internal stack by the host processor and a command is issued to perform an operation on the
data stack. The results of the operation are available to the host processor from the stack.

Information transfers between the 8232 and the host processor can be handled by using programmed 110 or direct
memory access techniques. After completing an operation, the 8232 activates an "end of execution" signal that can
be used to interrupt the host processor.

eLK

READY.

DBO·DB1

END

SVREQ

SVACI(

RESET

ERROR

!1 !2

Figure 1. Block Diagram

1·37

CONTROL ROM
7681116

Figure 2. Pin Configuration

Symbol Pin No. Type

Vee 2

Voo 16

Vss 1

CLK 23 I

.

RESET 22 I

CS 18 I

Ao 21 I

"

8232

Table 1. Pin. Description

Name and Description Symbol Pin No. Type

POWER SUPPLY: + 5V power supply 20

POWER. SUPPLY: +12V power supply

GROUND

CLOCK: An external timing source con·
nected to the CLK input provides the
necessary clocking.

RESET: A HIGH level on this input caUSeS
Initialization. Resellsrmlnates any opera·
tion in progress, and clears the status
register to zero. The internal stack pOinter
is initialized and the contents of the stack
may be affected. After. a reset the END
output, the ERROR output and the SVREQ
output will be LOW. For proper initializa·
tlon, RESET must be HIGH for at least five
CLK periods. ,following stable power
s,upply voltages and stable clock. WR 19

CHIP SELECT: input must be LOW to ac·'
complish any read or write operation to
the 8232.

To perform a write operation, appropriate
data is presented on DBO through DB7
lines, appropriate logic level on the Ao in·
put and the CS input is made LOW. When·
everWRand Ri'i inputs are both HIGH and
CS Is LOW, READY goes LOW. However,
actual writing into the 8232 cannot start
until WR is made LOW, Afte, i~itlating the
write operation by the HIGH to LOW tran·
sition on the WR input, the READY outpul EACK 3

will go HIGH, indicating the write opera·
tion has been acknowledged. The WR in·
putcan go HIGH after READY goes HIGH:

'The data lines, the Ao input and the CS in·
put can change when appropriate hold
time requirements are satisfied. See write
timing diagram for details,

,To perform a read operation an appropriate
logic level is established on the Ao input
and CS Is made LOW. The READY output'
goes LOW because WR and AD inputs are

SVACK 4

HIGH. The read operation does not start!
until the Ri'i input goes LOW, READY will
go HIGH Indicating that read operation is
complete and the required information is
available on the OBO through DB7 lines,
This Information will remain on the data
lines as long as AD is LOW, The AD Input END 24 o
can return HIGH anytime after READY
goes HIGH, The CS input and Ao input can
change anytime after AD returns HIGH.
See read timing diagram for details. If the
CS is tied LOW permanently, READY will
remain LOW until the next 8232 read or
write access.

ADDRESS: The AiJinput together wiih the
Ali and WR inputs determines the type of
transfer to be performed on the data bus
as follows:

Ao RD WR Function

0 1 0 Enter data byte Into stack
0 0 1 Read data byte, from stack
1 1 0 Enter command
1 0 1 Read status

Name and Description

READ: A LOW level on this input is used
to read' information from an Internal
location and gate that Information onto
the data bus. The OS input must be LOW
to accomplish the read operation. The Ao
Input determines what internal location is
to be read. See Ao, CS input' descriptions
and read timing diagram for d,etalls. If the
END output was HIGH,performlng any
read !lperatlon will make the END output
go LOW after the HIGH to LOW transition
of the RD input (assuming OS is LOW). If
the ERROR output was HIGH, performing
a status register read operation will make
the ERROR output LOW. This will happen
after the HIGH to LOW transition of the
m:; Input (assuming ~ is LOW),

, WRITE: A LOW level on this input is used
to transfer I nformation from the data bus
into an internal location, The CS must be
LOW to accomplish the write operation.
Ao determines which internal location Is
to be written, See Ao, OS input descrip·
tions and write timing diagram for details.

If the END output was HIGH, performing
any write operation will make the END
output go LOW after the LOW to HIGH
transition of the WR input (assuming OS is
LOW).

END ACKNOWLEDGE: When LOW,
makes the END output go LOW, As men·
tioned earlier, HIGH on the END output
Signals completion of a command exe·
cution. The,.END signal is derived from an
internal flip·flop which Is clocked at the
completion of a command. This flip·flop is
clocked to the reset state when EACK Is
LOW. Consequently, If EACK is tied LOW,
the END output will be a pulse that is
approximately one CLK period wide.

SERVICE ACKNOWLEDGE: A LOW level
on this input clears SVREQ. If the SVACK
input is permanently tied LOW, It will
conflict with the internal setting of the
SVREQ output Thus, the SVREQ
indication cannot be relied upon if the
SVACK Is tied LOW.

END OF EXECUTION: A HIGH on this
output indicates that execution of the
current command Is complete. This output
will be cleared LOW by actlvaling the
EACK input LOW or performing any read
or write operation or device initialization
using RESET. If EACK Is tied LOW, the
END output will be a pulse (see EAOK
description).

Reading the status register while a com·
mand execution Is in progress Is allowed.
However, any read or write operation
clears the flip·flop that generates the END
output Thus, such continuous reeding
could conflict with internal logic setting of
the END flip·flop at the end of command
execution.

AFN·Ol263C

inter 8232

Table 1. Pin Description (Continued)

Symbol Pin No_ Type

SVREQ 5 o

ERROR 6 o

Name and Description

SERVICE REQUEST: A HIGH on this out·
put indicates completion of a command.
In this sense this output is the same as the
END output. However, the SVREQ output
will go HIGH at the completion of a
command only when the Service Request
Enable bit was set to 1. The SVREQ can be
cleared (i.e., go LOW) by activating the
SVACK input LOW or initializing the
device using the RESET. Also, the SVREQ
will be automatically cleared' after
completion of any command that has the
service request bit as O.

ERROR: Output goes HIGH to indicate that
the current command execution resulted
in an error condition. The error conditions
are: attempt to divide by zero, exponent
overflow and exponent underflow. The
ERROR output Is cleared LOW on a status
register read operation or upon RESET.

The ERROR output is derived from the
error bits in the status register. These
error bits will be updated internally at an
appropriate time during a command exe­
cution. Thus, ERROR outpui going HIGH
may not coincide with the completion of a
command. Reading of the status register
can be performed while a command exe­
cution Is in progress. However, it should
be noted that reading the status register
clears the ERR0R output. Thus, reading
the status register while a command
execution Is In progress may result in an
Internal conflict with the ERROR output.

FUNCTIONAL DESCRIPTION

Major functional units of the 8232 are shown in the
block diagram. The 8232 employs a microprogram con­
trolled stack oriented architecture with 17·bit wide data
paths.

The Arithmetic Unit receives one of its operands from
the Operand Stack_ This stack is an eight word by 17-bit
two port memory with last in-first out (LIFO) attributes_
The second operand to the Arithmetic Unit is supplied
by the internal 17·bit bus. In addition to supplying the
second operand, this bidirectional bus also carries the
results from the output of the Arithmetic Unit when
required. Writing into the Operand Stack takes place

1-39

Symbol Pin No. Type Name and Description

READY 17

DBO- 8-15
DB7

o READY: Output is a handshake signal used
while performing read or write transac­
tions with the 8232. If the WR and RD
inputs are both HIGH, the READY: output
goes LOW with the CS input In anticipa­
tion of a transaction. If WR goes LOW to
Initiate a write transaction with proper
signals established on the' DBO-DB7, Ao
Inputs, the READY. will return HIGH
Indicating that the write operatl,on has
been accomplished. The WR can be made
HIGH after this event. On the other hand, If
a read operation is d,esired, the RD Input Is
made LOW after activating CS LOW and
establishing proper Ao input. (The READY
will go LOW in response to CS going
LOW.) The READY will return HIGH,
Indicating completion of read. The Ri5 can
return HIGH after this event. It should be
noted that a read or write operation can be
Initiated without any regard to whether a
command execution is In progress or not.
Proper device operation Is assured by
obeying the READY output Indication as
described.

I/O DATA Bils: Bidirectional lines are used to
transfer command, status and operand
information between the device and the
host processor. DBO is the least signifi­
cant, and DB7 is the most significant bit
position: HIGH on· a data bus line corre­
sponds to 1 and LOW corresponds to O.

When pushing operands on the stack
using the data bus, the least significant
byte must be pushed first and the most
Significant byte last. When popping the
stack to read the result of an operation,
the most significant byte will be available
on the data bus first and the least Sig­
nificant byte will.be the last. Moreover, for
pushing operands and popping results,
the number of transactions must be equal
to the proper ~umber of bytes appropriate
for the chosen format. Otherwise, the
Interrial byte pOinter will not be aligned
properly. The single precision format
requires 4 bytes and double precision
format requires 8 bytes. .

from this internal 17-bit bus when required. Also cOn­
nected to this bus are the Constant ROM and Working
Registers_ The ROM provides the required constants to
perform the mathematical operations while the Working
Registers provide storage for the intermediate values
during command execution.

Communication between the external world and the
8232 takes place' on eight bidirectional input/output
lines, DBO through DB7 (Data Bus)_ These signals are
gated to the internal 8-bit bus through appropriate inter­
face and buffer circuitry_ Multiplexing facilities exist for
bldinictional communication between the internal eight

AFN-01263C

inter 8232

and 17·bit buses. The Status Register and ,Command
Register are also, located on the 8·blt bus.

The 8232 operations are controlled by the microprogram
contained ,in the Control ROM. The Program Counter
supplles,,the microprogram addresses and can be par·
tlally loaded, from, the Command Register. Associated
with the Program Counter is the Subroutine Stack where
return addresses are held during subroutine calls in the
microprogram. The Microinstruction Register holds the
current mlc'rolnstruction being executed. The register
facilitates pipelined microprogram execution. The
Instruction Decode,logic generates various Internal con·
trol signals needed for the .8232 operation.

The Interface Control logic receives several external in·
puts and provides handshake related outputs to faclll·
tate interfacing the 8232 to microprocessors.

Command For~at
The operation of the 8232 is controlled from the host
processor by, Issuing instructions called commands.
The command format is shown below.

OP CODE

I I I

The command consists of 8 bits; the least significant 7
bits specify the operation to be performed as detailed in
Table 1. The most significant bit Is the Service Request
Enable bit. ThiS bit mustbe a 1 if SVREQis to go HIGH
at the end Of executing a command.

The command's fall into three categories: single pre·
cisi.on arithmetic, double preCision arithmetic and data
manipulation. There ,are four arithmetic operations that
can be performed with single precision (32·bit) or double
preCision (64·bit) floating·point numbers: add, subtract,
multiply and divide. These operations require two oper·
ands. The 8232 assumes that these operands are
located in the internal stack as TOp of Stack (TOS) and
Next on Stack (NOS). The result will always be returned
to the' previous NOS which becomes the new TOS.
Results from an operation are of the same preCision and
format as the operands. The results will be rounded to
preserve the accuracy. The actual data formats and
rounding procedures are described in a later section. In
addition to the arithmetic operations, the 8232 rmple·
ments eight ,data manipulating operations. These
include Changing t,he sign of a double or single
prElcision operand located in TOS, exchanging single
precision operands locat,ed at TOS and NOS, as well as

,pushing and, pppping single or dOUble precision
operands. See also the sections on status register and
operand formats.

The execution times of the commands, are all" data
dependent. Table 3 shows one example of each com·
mand execution time.

Operand Entry
The 8232 commands operate on the operands located at
the TOSand NOS; 'Results are returned to the stack at
NOS and then popped to TOS. The operands required for
the 8232 are one of two formats - single preCision
floating·point (4 bytes) or double precision floating·
point (8 bytes). The result of an operation has the same
format as the operands. In other words, operations
using single precision quantities always result in a
single precision result, while operations involving
double preCision quantities will result in double
precision result.

Operands are always entered into the stack least signifi­
cant byte first and most significant byte last. The follow­
ing procedure must be followed to enter operands into
the stack:

1. The lower significant operand byte is established on
the DBO-DB7 lines.

2. A LOW is established on the Ao input to specify that
data is to be entered into the stack.

3. The CS input is made LOW. Whenever the WR and RD
inputs are HIGH, the READY output will follow the CS
input. Thus, READY output will become LOW.

4. After appropriate set up time (see timing diagrams),
the WFi input is made LOW.

5. Sometime after this event, READY will return HIGH to
indicate that the write operation has been acknowl-
edged. '

6. Any time after the READY output goes HIGH, the WR
input can be made HIGH. The DBO-DB7, Ao and CS
inputs can change after appropriate hold time re­
quirements are satisfied (see timing diagrams).

The above procedure must be repeated until all bytes of'
the operand are pushed into the stack. It should be
noted that for single precision operands 4 bytes should
be pushed and 8 bytes must be pushed for double pre­
cision. Not pushing all the bytes of a quantity will result
in byte pOinter misalignment.

The 8232 stack can accommodate four single precision
quantities or two double precision quantities. Pushing
more quantities than the capacity of the stack will result
In loss of data which is usual with any LIFO stack.

The stack can be visualized as shown below:

ros_
NOS-

A4 1 A3 1 A2 I Al

641B31B21Bl

1 I _L
1 1 I

~32----

:~::I: :; : I : I : I :

1
4

!
A2

B2
Al I t,
Bl +

"'~-'--------,84 -------

1-40 AFN-IJ1263C

8.232

Table 2. 8232 Command Set

Single Precision Instructions

Hex1 Stack Contenis2
Status Flags Instruction Description After Execution Code Affected4

A B C D

SADD Add A and B 01 R C D U S,Z,U,V

SSUB Subtract A from B 02 R C D U S,Z,U,V

SMUl Multiply A by B 03 R C D U S,Z,U,V

SDIV Divide B by A. If A exponent = 0,
then R= B.

04 R C D U S,Z, U,V, D

CHSS Change sign of AS 05 R B C D .S,Z

PTOS Push stacks 06 A* A B C S,Z

POPS Pop stack 07 B C D A S,Z

XCHS Exchange 08 B A C D S,Z

Double Precision Instructions

Hex1 Stack Contents3
Status Flags Instruction Description After Execution Code

A B Affected4

DADD Add A and B 29· R U S,Z,U,V

DSUB Subtract A fromB 2A. R U S,Z,U,V

DMUl Multiply Aby B 2B R U S,Z,U,V

DDIV Divide B by A. If A =0, 2C R U S,Z,U,V,D
: then R= B.

CHSD Change sign of AS 2D R B S,Z

PTOD Push stackS 2E A* A S,Z

POPD Pop stack 2F B A S,Z

ClF! ClR status 00 A B

Nolas:

1. In the',hex code column. SVREQ bit is a 0,

2, The stack initially is composed of four 32-bit numbers (A, B, C, D) .. A is equivalent to Top Of Stack (lOS) and B Is Nexton Stack (NOS)_ Upon com­
pletion of a command the stack is composed of: the result (R); undefined (U); or the Initial contents (A,B,C, or 0),

3, The stack initially is composed of two 6~·bit numbers',(A, B). ~,is equivalent to Top Of Stack (TOS)'andB is Next On Stack (NOS), Upon completion
of a command the stack is composed of: the result (R); undefined (U); or the, initial contents (A, B),

4, Any status bit(s) nol affected are set to 0, Nomenclature: Sign (5); Zero (Z); Exponent Underflow (U); Exponent Overflow (V); Divide Exception (D).

5, If the exponent field of A is z'"o, R or A' will be zero,

AFN-01263C

inter 8232

Table 3. Execution Times

Command TOS NOS Result Clock Periods

SADD 3FBOoooo 3F8000oo 40000000 58
SSUB 3F800000 3F8ooooo 00000000 58
SMUL 40400000 3FCOOOOO 40900000 198
SDIV 3FSOOOOO 40000000 3FoooOOO 228
CHSS 3F80ooo0 - BF800000 10
PlOS 3F80oooo - - 16
POPS 3F800000 - - 14
XCHS 3F800000 40000000 - 26
CHSO 3FFOOOOO QOOOOOOO - BFFooooO 00000000 24
PTOO 3FFOOOOO 00000000 - - 40
POPO 3FFOooOO OOOOOOOO - - 26
CLR 3FFoooOO 00000000 - - 4
DADO 3FFooOOO OAOOOOOO 3FFOOooO 00000000 3FFooOoo OAOOOOOO 578
DSUB 3FFooOOO AooOOOOO 3FFOOooO 00000000 3FFOOOOO AooOOOoo 578
DMUL BFFBOOoo 00000000 3FF800oo 00000000 C0020000 00000000 1748
DDIV BFF80000 00000000 3FFBOOoo 00000000 BFFoooOO 00000000 4560

Note: TOS, NOS and result are In hexadecimal; clock period Is in decimal.

Command Initiation
After properly positioning the required operjinds in.the
stack, a command may be issued.. The procedure for
initiating a command execution is the same' as that
described above for operand entry, except that the AD
input Is HIGH. .' .

An attempt to issue a new command while the current
command execution Is in progress Is allowed. Under
these circumstances, the READY output will not go
HiGH until the current command execution is com­
pleted.

Aemovlng the Aesults

4. Sometime after this, READY will. return HIGH, indi­
cating that tile data Is available on the DBO-DB7
lines. This data will remain on the DBO-DB7 lines as
long as the RD input remains LOW.

5. Any time after READY goes HIGH, the AD input can
return HIGH to complete the transaction.

6. The CS and AD inputs can change after appropriate
hold time requirements are satisfied (see timing dia­
gram).

7. Repeat this procedure until all bytes appropriate for
the precision of the result are popped out.

Reading of the stack does not alter its data; it only ad·
justs the byte pOinter. Note data must be removed in
even byte multiples to avoid a byte pOinter misalign­
ment. If more data is popped than the capacity of the
stack, the internal byte pointer will wrap around and
older data will be read again, consistent with the LIFO

Result from an operation will be available at the TOS.
Results can be transferred from the stack to the data
bus by reading the stack.

When the s~ack is read for results, the most significant
byte is available first and the least significant byte last.

. stack.

A result is always of the same precision as the operands
that produced it. Thus, when tlie resOlt is taken from the
stjick, the total number of bytes popped out should be
appropriate with the precision - single preCision
results are 4 bytes and double precision results are 8
bytes. The following procedure must be used for read·
ing the result from the stack:

1: A LOW is established on the AD input.

2; The ~ input is made LOW. When WR and RD inputs
are both HIGH, .the READY output follows the OS
input, thus READY wlI'l be LOW.

3. After appropriate set LIP time (see timing diagrams),
the RDinput is made LOW.

1·42

Aeading Status Aegister
The 8232 status register can be read without any regard
to whether a command is in progress or not. The only
Implication that has to be considered is the effect this
might have on the END and ERROR outputs discussed
in the Signal descriptions.

The following procedure must be followed to accom­
plish status register reading:

1. Establish HIGH on the AD input.

2. Establish LOW on the CS input. Whenever WR and
m> inputs are HIGH, READY will follow the CS Input.
Thus, READY will go LOW.

3. After appropriate set up time (see timing ciiagram),
AD is made LOW.

AFN.Ql2tI3C

inter 8232

4. Sometime after the HIGH to LOW transition of RD,
READY will become HIGH, indicating that status reg­
ister contents are available on the DBO-DB7 lines.
These lines will contain this Information as long as
FfD is LOW.

5. The AD input can be returned HIGH any time after
READY goes HIGH.

6. The Ao input and CS input can change after satisfying
appropriate hold time requirements (see timing
diagram).

Status Register
The 8232 contains an 8-blt status register with the
following format:

SIGN ZERO
DIVIDE EXPONENT EXPONENT

BUSY
S Z

RESERVED EXCEPTION UNDERFLOW OVERFLOW RESERVED
D U V

All the bits are initialized to zero upon reset. Also,
executing a CLR (Clear Status) command will result in
all zero status register bits. A zero In bit 7 Indicates that
the 8232 Is not busy and a new command may be
Initiated. As soon as a new command is Issued, bit 7
becomes 1 to indicate the device is busy and'remains 1
until the command execution is complete, at which time
it will become O. As soon as a new command is issued,
status register bits 0-6 are cleared to zero. The status
bits will be set as required during the command execu­
tion. Hence, as long as bit 7 is 1, the remainder of the
status register bit indications should not be relied upon
unless the ERROR occurs. The following is a detailed
status bit description.

Bit 0 Reserved.

Bit 1 Exponent overflow (V). When 1, this bit indicates
that the result exponent is more positive than
+ 127 (+ 1023). The exponent is "wrapped" into the
negative exppnent range, skipping the end values.

Bit 2 Exponent Underflow (U). When 1, this bit indicates
that the result exponent is more negative than
- .126 (-1022). The exponent is "wrapped" into the
positive range by the number of underflow bits,
skipping -127 (-1023) and + 128 (+ 1024).

Bit 3 Divide Exception (D). When 1, this bit indicates
that an attempt to divide by zero is made. Cleared
to zero otherwise.

Bit 4 Reserved.

Bit 5 Zero (Z). When 1, this bit indicates that the result
returned to TOS after a command is zero. Cleared
to zero otherwise.

Bit 6 Sign (S). When 1, this bit indicates that the result
returned to TOS is negative. Cleared to zero other­
wise.

1-43

Bit 7 Busy. When 1, this bit indicates the 8232 is in the
process of executing a commanq. It will become
zero after the command execution is complete.

All other status register bits are valid when the Busy bit
is zero.

Data Formats
The 8232 handles floating-point quantities in two differ­
ent formats - single precision and double precision.
These formats are the same as those used by intel In
other products and those proposed by the IEEE Sub­
committee on floating point arithmetic.

The single preCision quantities are 32 bits long, as
shown below:

r IMPLIED BIT

I M

31 30 23 22

Bit 31:

S == Sign of the mantissa. One represents negative and 0
represents positive.

Bits 23-30:

E = These 8 bits represent a biased exponent. The bias
is 27 -1 = 127.

Bits 0-22:

M = 23-bit mantissa. Together with the sign bit, the man-:
tlssa represents a signed fraction in sign-magni­
tude notation. There is an implied 1 beyond the
most significant bit (bit 22) of the mantissa. In other
words, the mantissa is assumed to be a 24-bit nor­
malized quantity and the most significant bit, which
will always be a 1 due to normalization, is implied ..
The 8232 restores this implied bit internally before
performing arithmetic, normalizes the result and
strips the implied bit before returning the results to
the external data bus. The binary point Is between
the Implied bit and bit 22 of the mantissa.

The quantity N represented by the above notation is

rBIAS _ + BINARY POINT

7
N=:=(-l)s 2E-(2 -l)(l.M)

Provided E+O (reserved for 0) or all l's (illegal). The
approximate decimal range for this format Is
±1.17 x 10-38 to ±3.40 x 1()38. The format supports 7
significant decimal digits.

AFN-01263C

A' double .. precisi"on quantity consists of. the mantissa
sign bit, an 11-bitbiased exponent (E), and.a 52-bit man­
tlssa(M)_ The. bias for double precision quantities is
210_1. The double,preciSion format is illustrated below.

, .'. ',",' '. '.: ,"' ",' :>., '.'

+ IMPLIED BIT

I M 'Ill
63 62 52 ·51

Bit 63:,

S = Sign of the mantissa. One represents negative and 0
represents positive.

Bits 52-62:

E = These 11 bits represent a biased exponent. The bias
is 21°_1 = 1023.

Bits 0-51:

M = 52-bit mantissa. Together with the sign bit the man­
tissa represents a signed fraction In sign-magni­
tude notation. There is an implied 1 beyond. the
most significant bit (bit 51) of the mantissa. In :Other
words, the mantissa is assumed to be.a 53-bit nor­
malized quantity and the most significant bit, which
will always be a 1 due to normalization, is implied.
The 8232 restores this implied bit internally before

, p,erforming arithmetic, normaliz~s, the result and
" strips the implied bit before returnlllg the result to

the external data bus. The binary point is between
the implied bit and bit 51 of the mantissa.

The quantity I'! represented by the above~otation is

:i,oj

Provided E'", 0 ,(reserved for 0) or aiL 1s (illegal). The
approximate decimal range is ±2.22 x 10-308 to ±1.80
x 10308• The format· supports 16 significant decimal
digits. .

The following are some examples of ~Thgle.pr~cision
floating point representations:' .' ,. '

Binary
Floating

Decimal S I: M Point

0 0 " 0 0 0000 OOOOH

1 0 127 0 3F80 OOOOH

-1 1 127 0 BF80 OOOOH

255 0 134 .9922 437F OOOOH

n .. ' 0 128 .57Q8 .•. ' 41>49 OFPSH

8232

Rounding
One of the main objectives in choosing the 8232'~liltelJ
IEEE proposed floafingpoint arithmetic, was to provide
maximum accuracy with no anomalies. This meansthat
a mathematically unsophisticated user will not be
"surprised" by some of the results. It is probably
possible for a sophisticated user to obtain reliable
resultsfrol)1 .. almost, any floating point arithmetic.
However,in that case there will be an additional burden
on the software.' , , .

The best example of what might be called the 8232's
"safety factor" is the inclusion of guard bits for
rounding. The absence of guard bits ,leadS to the
problem demonstrated by the following four-bit multi-
plication: ,. ,

.1111 x2°

.1000x21

.01111000x21

Since the last four bits are lost, the normalized result is:

.1110x2°

and the identify function is not valid. In the past this
problem has been avoided (hopefully) by relying ,on
excess pr-ecision.

Instead the 8232 uses a form of rounding knqwna,s
"round to even." There are other types cit ,rQunding
provided for in, the proposed .IEEE standard" but "round
to even," an unbiased roul)ding scheme, is required.
"Round to even" . comes in,to play .when a result is
exactly halfway between two Hoatirig point .numbers. ,In
this, c.ase the' arithmetic produces the "even" number,
the one whose last mantissa bit is zero. The 8232 ,uses
three additional bits-the Guard bit (G), the Rounding
bit (R), and the "Sticky" bit (S)-to do the rounding.
These are bits which hold data shifted out.(right) of the
accumulator. Rounding is carri.ed out by the following
rules, as shown in t~e following figure, after the result is
normalized. '

Bit
,.;;, .

Ii Rule G s
0 0 0 No Round

0 0 1
0 1 0 " ~Ou"d[)pwl1
0 1 1

1 0 0 Round to EvEin

1 0 1
1 1 0 Round Up
1 1 1

1-44 AFN-01263C

APPLICATIONS INFORMATION
The diagram in Figure 3 represents the minimum con­
figuration of an 8232 system. The CPU transfers data to
and from the 8232 Floating Point Processor using the
READY line. The 8232 status is checked using polling by
the CPU.

8232

In a high performance configuration (Figure 4), inter­
rupts are used in place of polling. The interrupts are
generated for an error condition and to signal the end of
execution. Operand transfers are handled by the DMA
controller.

ADDRESS BUS

CPU lOR RD ... CS

lOW WR 8232
FLOATING POINT

CLOCK CLK PROCESSOR

READY READY

~ r::-. -<~.

."'<: 7- "'" 7-
SYSTEM DATA BUS

Figure 3. Minimum Configuration Example

1\
ADDRESS BU~)

~ r 1 v

~ 8205

JOE

AS-A15

I
DECODER CS AD-A7 ADDRESS AEN V

lsTB
LATCH

AO-A15 I p-- 8237 ADSTB

A 8282
OMA CONTROLLER DBO- ". HLDA HLDA

~ ~ ~

~
DB, Iy-r-

....
HOL.D HRC

~ iii iii ~ ~ ~ ~ ~ " "
CLOCK

t r
MEMR ~
MEMW

V
IDA

CPU
lOW

READY

t,
WA AD CS AO ~ ~ ,~ 5l ~ 0 ~ «

JNTA INTA
8259A lAO END ~

INTERRUPT 8232
CONTROLLER IAI ERROR FLOATING POINT

INT INT PROCESSOR

080-DB7 DBO-DB7 EACK OBO-OB7

1
.,;,

" ~
SYSTEM DATA BUS

V

Figure 4. High Performance Configuration Example

1-45 AFN-ol263C

Intel

ABSOLUTE MAXIMUM RATINGS*
Storage Temperature " " -65·C to + 150·C
AmbientTemperature Under Bias O·C to + 70·C
VoDwith Respectto VsS' ~0.5V to +15.0V
Vee with Respect to Vss",•... -0.5V to + 7.0V
All Signal Voltages with Respect

to Vss•.... - 0.5V to + 7.0V
Power Dissipation•................... 2.0W

8232

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions al:!ove
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vss = OV, Vee = +5V ± 10%, VDD = +12V ±10%)

Symbol Parameter . Min. Typ. Mix. Units Test Conditions

VOH Output HIGH Voltage 3.7 V 10H= - 2OOIlA

VOL Output LOW Voltage 0;4 V IOL=3.2mA

VIH Input HIGH Voltage 2.0 Vee V

VIL Input LOW Voltage -'0.5 0.8 V

IlL Input Load Current ±10 IlA Vss <EO; VIN <EO; Vee

loz Data Bus Leakage ±10 ,.A Vss + 0.4 '" VOUT '" Vcc

Icc Vee Supply Current 50 95 mA

100 VDD Supply Current 50 95 mA

Co Output Capacitance 8 pF

CI Input Capacitance 5 pF fe=1.0MHz,lnputs=OV

CIO 110 Capacitance 10 pF

A.C. CHARACTERISTICS (TA=O·C to 70·C, Vss=OV, Vce=+5V± 10%, VDD = +12V± 10%)

READ OPERATION

8232 8232·3 8232·8
Symbol Parameter Unlle

Min. Max. Min. Max. Min. Max.

IAR "0. as Selup 10 RD 0 0 0 ns

IRA . "0, es Hold from RD 0 0 0 ns

IARy READY~ from Ao. CS~ Delay (Nole 2) 100 100 150 ns

tYR READYt 10 Rl5t 0 0 0 ns

Dala 3.5 ICY 3.5 ICY 3.5 ICY ns +50 +50 +50
tRRR READY PulseWidlh (Nole 3)

Stalus 1.5 tCY 1.5 ICY 1.5 tCY ns +50 +50 +50

tROE Dala Bus Enable from ADI 50 50 50 ns

tORY Dala Valid to READYt 0 0 0 ns

tOF Dala Floal atter R15t 20 100 20 150 20 200 ns

1·46 AFN'()1263C

intJ 8232

A.C. CHARACTERISTICS (Continued)

WRITE OPERATION
8232 8232·3 8232·8

SymbOl Parameter Unite
Min. Max. Min. Max. Min. Max.

tAW Ao, CS setup to WR 25 25 25 ns

tWA Ao, CS Hold after WR 30 30 60 ns

tAWY READYI from Ao. CSI Delay (Note 2) 100 100 150 ns

tyW READYt to WAf 0 0 0 ns

tRRW READY Pulse Width tAW tAW tAW ns
+50 +50 +50

tow Data Setup to Wl'it 100 100 150 ns

two Data Hold after WAt 20 20 20 ns

OTHER TIMINGS

8232 8232·3 8232·8
Symbol Parameter Units

Min. Max. Min. Max. Min. Max.

tCY Clock Period 250 2500 320 3300 480 5000 ns

tCPH Clock Pulse HIGH Width 100 140 200 ns

tCPL Clock Pulse LOW Width 120 160 240 ns

tEE END Pulse Width (Note 4) 200 300 400 ns

tEAE EACKlto EN 01 Delay 150 175 200 ns

tAA EACK Pulse Width 50 75 100 ns

tSA SVACKlto SVREQI Delay 100 200 300 ns

tss SVACK Pulse Width 50 75 100 ns

NOTES:

1. Typical values are for T A = 25 'C, nominal supply voltages and nominal processing parameters.

2. READY is pulled low for both command and data operations.

3. Minimum values shown assume no previously entered command Is being executed for the data access: If a previously entered command Is being
executed, READY low pulse width is the time to complete execution plus the lime shown. Status may be read at any time without exceeding the lime
shown.

4. END high pulse width Is specified for EACK tied to Vss. Otherwise tEAE applies.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

3.7
2.0 2.0

>TESTPOINTS<

0.8 0.8
0.4

1·47 AFN·OI263C

WAVEFORMS

READ OPEFlATION

CLOCK

!iii

READY

DATA
BUS

WRITE OPERATION

8~2;

________ ro-__ -,-_-J{fDRYOUTPUT VALID

READY _....;.... __ IA_WY_:::1_.....,~_IRRW~y __ Iy_W_. --;-+-. -.-.------

.. ... B:~ 1~IW-D-----DATA
BUS

INTERRUPT OPERATION

___ 11= lEE ~I'---__ _

END

____________ .. _IE~AE.~1~-1 ,~.---------__
EACK ~

181)\ _____________ -188~ j

SVACR _ ¥

SVREQ ________ --11

AFN-01263C

8294
DATA ENCRYPTION UNIT

• Certified by National Bureau of
Standar.ds

• 10 Bytel8ec Data Conversion Rata

• 64·BII Data Encryption Using 56·Blt
Key

• DMA Interface

• 3 IntaiTupt Outputs to Aid in Loading
and Unloading Data

• 7·Blt User Output Port

• Single 5V ± 10% Power Supply

• Peripherlll 10 Mcs.e&TII, MC&85TII,
MCS-8OTII and MCS048TII Procesaora

• Implements Federal Information
Processing Data Encryption Standard

• Encrypt and Decrypt Modes Available

The IntelGD 8294 Data Encryption Unit (DEU) is a microprocessor peripheral device designed to encrypt and decrypt
64-bit blocks of data using the algorithm specified in the Federal Information Processing Data Encryption Standard.
The DEU operates on 64-bit text words using a 56-bit user-specified key to produce 64-bit cipher words. The operation
is reversible: if the cipher word is operated upon, the original text word is·produced. The algorithm itself is perma­
nently contained in the 8294; however, the 56~bit key is user-defined and maybe changed at any time.

The 56'bit key and 64-bit message data are transferred to and from the 8294 in 8-bit bytes by way of the system data
bus. A DMA interface and three interrupt outputs are available to minimize software overhead associated with data
transfer. Also, by using the DMA interface two or more DEUs may be operated In pa~a.ilel to achieve effective system
conversio.n rates which are virtuaUy any multiple of 80 bytes/second. The 8294 also has a 7-bit TTL compatible output
port for user-specified functions.

Because the 8294 implements "the NBS encryption algorithm it can be used in a variety of Electronic Funds Transfer
applications as well as other electronic banking and data handling applications where data must be encrypted.

VCC

DATA Xl NC
BUS X2 OACK

ORO

NC SRO
cs OAV

NC

Ao
P6

SRa
P5

OAV P4

ceMP P3

PO·P6 DO P2

RESET 01 Pl
SYNC 02 PO

03 VOO

" 04 VCC
x, 05 CCMP

06 NC
+5V--

INTERNAL 07 NC POWER_
GND-

BUS GNO NC

Figure 1. Block Diagram Figure 2. Pin Configuration

1-49

8294

Table 1. PI,! Description

Pin Pin
Symbol No. ~pe Name and.Functlon Symbol No. ~ Name and Function

NC 1 No Connection. NC 39 No Connection.
xi 2 I Crystal: Inputs fo(crystal, .L~C or exter-
X2 3 nal timing signal to determine internal

oscillator frequency.

OACK 38 I DMAAcknowladge: Input signal from
the 8257 OMA Controller acknowledg-
ing that the requested OMA cycle has

RE;SET 4 I Ra .. t: A low signal to this pin resets been granted.
the 8294. ORO 37 0 DMA Reque.t: Output signal to the

NC 5 No Connection: No connection or tied
high.

8257 OMA Controller requesting a OMA
cycle.

CS 6 I Chip Select: A low signal to this pin
enables reading and writing to the 8294.

GNO 7 Ground: This pin must be tied to
ground,

RO 8 I Read: An active low read strobe at this
pin enables the CPU to read data and
status from the internal OEU registers.

SRO 38 0 Service Request: Interrupt to the CPU
indicating that the 8294 is awaiting data
or commands at the input buffer.
SRO=1 implies IBF=O.

OAV 35 0 Output Available: Interrupt to the CPU
indicating that the 8294 has data or
status available in its 'output buffer.
OAV=1 implies OBF=1.

Ao 9 I Addre .. : Address input used by the
CPU to select DEO registers during read
and write operations. .

WR 10 I Write: An active low write strobe at this
pin enables the CPU to sen.d data and
comm.ands to the OEU.

NC 34 No Connection.

P6 33 0 Output Port: User output port lines.
P5 32 Output lines available to the user via a
P4 31 CPU command which can assert sel-
P3 30 ected port lines. These lines have no-
P2 29 thing to do with the encryption function.

SYNC 11 0 Sync: .:tigh frequency (Clock + 15) out- P1 28 At power;on, each line is in·a·1 state.
put. Can be uSiI,d as.!! strobe for external PO 27
circuitry.

Do 12 110 Datai Bus: Three-state, Ili-directional
0, 13 data. bus lines used to transfer data be-
D. 14 tween the CPVilnd the 8294.
03 15
04 16

V~o 26 Power: +5V power input. (+5V±10%)
Low power standby pin.

Vcc 25 Power: Tied high.

CCMP 24 0 Conversion Complete: . Interrupt to the
CPU indicating that the encryption!

05 17
06 18

decryption of an B-byte block is com- ..
plete.

0 7 19 NC 23 No Connection.
GNO 20 Ground: This pin must be tied to NC 22 No Connection.

ground.
NC 21 No Connection.

Vcc 40 Power: +5 volt power input: +5V ±
.100/0.

1-50

intJ 8294

FUNCTIONAL DESCRIPTION
OPERATION

The data conversion sequence Is as follows:

1. A Set Mode command is given, enabling the desired
Interrupt .outputs.

2. An Enter New Key command Is Issued, followed by 8
data inputs which are retained by the DEU for encryp·
tion/decryptlon. Each byte must have odd parity.

3. An Encrypt Data or Decrypt Data command sets the
DEU In the desired mode.

After this, data conversions are made by writing 8 data
bytes and then reading back 8 converted data bytes. Any
of the above commands may be issued between data
conversions to change the basic operation of the DEU;
e.g., a Decrypt Data command could be issued to
change the DEU from 8AClYPt mode to decrypt mode
without ch~nging either the key or the interrupt outputs
enabled.

INTERNAL DEU REGISTERS

Four internal registers are addressable by the master
processor: 2 for input, and 2 for output. The following
table describes how these registers are accessed.

RD WR CS Ao Register

o 0 0 Data Input buffer
o
1
o
X

1
o
1
X

o
o
o
1

o

1
X

Data output buffer
Command input buffer
Status output buffer
Don't care

The functions of each of these registers are described
below.

Data Input Buffer - Data written to this register Is inter­
preted in one of three ways, depending on the preceding
command sequence.

1. Part of a key.
2. Data to be encrypted or decrypted.
3. A DMA block count.

Data Output Buffer - Data read from this register is the
output of the encryption/dec'ryption operation.

Command Input Buffer - Commands to the DEU are
written into this register. (See command summary
below.)

StatuI Output Buffer - DEU status is avaiiable In this
register at all times. It is used by the processor for poll­
driven command and data transfer operations.

STATusaIT: 5 4 3

FUNCTION: X KPE CF

OBF Output Buffer Full; OBF = 1 indicates that output
from the encryption/decryption function is
available in the Data Output Buffer. It Is reset
when the data is read.

1-51

IBF Input Buffer Full; A write to the Data Input Buffer
or to the Command Input Buffer sets I BF = 1. The
DEU resets this flag when It has accepted the
input byte. Nothing should be written when
IBF=1.

DEC Decrypt; Indicates whether the DEU is .in an en·
crypt or a decrypt. mode. DEC = 1 implies. the
decrypt mode. DEC = 0 implies the encrypt
mode.

CF Completion Flag; This flag may be used to Indi­
cate any or all of three events in the data transfer
protocol.

1. It may be used In lieu of a counter In the
processor routine to flag the end of an 8-
byte transfer.

2. It must be used to Indicate the validity of
the KPE flag.

3. It may be used in lieu of the CCMP interrupt
to indicate the completion of a DMA oper­
ation.

KPE Key Parity Error; After a new key has been
entered, the DEU uses this flag In conjunction
with the CF flag to indicate correct or Incorrect
parity.

COMMAND SUMMARY

1 - Enter New Key

OP CODE: 'I 0'11'1-0 'I 0'1 0'1-0 'I 0'1'0 I
MSB LSB

Tnis command is followed by 8 data byte inputs which
are retained in the key buffer (RAM) to be used in
encrypting and decrypting data. These data bytes must
have odd parity represented by the LSB.

2 - Encrypt Data

OP CODE: '10'1-0 1'1'1-1 'I 0'1-0 'I 0""1""'0 I
MSB LSB

This command puts the 8294 Into the encrypt mode.

3 - Decrypt Data

OP CODE: '-10'1 0'1-1 1'-0'1 0'1-0'1 0""'1'0 I
Msa LSB

This cQmmand puts the 8294 into the decrypt mode.

4 - Set MOde

OPCODE: 10 I 0 I 0 I 0 I A I B I C I 01
MSB LSB

where:

A Is the OAV (Output Available) interrupt enable
B Is the SRQ (Service Request) interrupt enable
C is the DMA (Direct Memory Access) transfer enable
o is the CCMP (Conversion Complete) interrupt enable

AFN.Q023OC

inter 8294

This command determines which interrupt outputs will
be enabled. A ",1" in bits A, e, or o will enllblethe OAV,
SRO, or CCMP interrupts resp,e~tively. A "l",in bit C will
allow DMA transfers.' When bit C is set ttie OAV and
SRO interrupts should also be enabled (bits A,B= 1).
Following the command iii whichbitC, the DMA bit, Is
set,the8294 will expect onij data byte to specify the
numbeirr oft &;l;yte; ~tlckato be converted: using DMA.

5 - Write to Output Port "

OP CODE: 11 1 Pe 1 P5 1 P 41 P31~21 P1 1 Po 1
MSB LSB

This command causes the 7 least significant bits of the
command byte to be latched as Qutputdata on the 8294
output port. The Initial output data Is 1111111. Use of
this port is independent of theencryption/decryption
function. ' " ,

PROCESSORIDEU INTERFACE PROTOCOL
ENTERING, ANEW KEY

The timing sequence for entering a new key is shown in
Figure 3. A flowchart showing the CPU soHware to
accommodate this sequence is given in Figure 4.

L
KPE ____________ 'NV_A_Ll_D ____ ~~~.~

Ao-.f1..-LJ-LJ---~------'~.f"L

\VA -, II ~ I"";"EY lJ KEY U U DATA U DATA . DATA
NEW -------,...;" ;, KEY
COMMAND

CHECK~
KPE .

After the Enter NeW Key cdriut.and Is Issued, 8 data
bytes representing the new key are written to the data
input buffer (most significant byte first). After the eighth
byte is accepted by the DEU, CF goes true (CF =1). The
'CF bit goes false again when KPEls valid. The CPU can
then check the KP6flag. If IQ?E,=1, a'parity error has
been detected and the DEUhas not accepted the key.
Eac,hbyte is checked fQr odd parity, where the parity bit
is the LSBof each,byte.

Since the CF bit is used in this protocol to indicate the
validity of the KPE flag, it may not be used to flag ,the
,epd of the 8 byte key entry. CF =1 only as long as KPE ill
tlwalid. Therefore, tt,Je,CPU might not. detect thatCF=,1
and, the key entry is complete before KPE becomes
val,id. Thus, a cqunter stjouldbeused, <is in Figure 4, to
flag the end of the,new key,en~ry.,then, CF is used to
in,dicate a valid KPEflag, '

" NO 1=8?

YES

N~ KT,O?)
'(~S

8

Figure 3. Entering a New Key Figure 4. Flowchart for Entering a New Key

1-52 AFN-00230C

inter 8294

ENCRYPTING OR DECRYPTING DATA

Figure 5 shows the timing sequence for encrypting or
decrypting data. The CPU writes a data bytes to the
DEU's data input buffer for encryption/decryption.· CF
then goes true (CF= 1) to indicate that the DEU'has
accepted the a·byte block. Thus, the CPU may test for
IBF =0 and' CF = t to terminate the input mode, or It
may' use a software counter. When the encryption/·
decryption is complete, the CCMP and OAV interrupts
are asserted and the OBF flag Is set true (OBF= 1). OAV
and OBF are set false again after each of the converted
data bytes is read back by the CPU. The CCMP interrupt
is set false, and remains false, after the first read. After
a bytes have been read back by the CPU, CF goes false
(CF = 0). Thus, the CPU may test for CF = 0 to terminate
the read made. AtlW, 1he CCMP Interrupt may be used to
initiate a service routine which ·performs the next series
of a data reads and a data writes.

ceMP n (IF ENABLED)

.RaLSL Jl (IF ENABLED) _

IBF~_Jl
OAV lLf1_rr (IF ENABLED)

OBF ILf1 rr
OF] I I
iiii lJlJ-Lf
wolJLJ-LJ

-.--
8 DATA WRITES 100 ma - MAXIMUM 8 DATA READS

Figure 5. Encrypting/Decrypting Data

Figure 6 offers two flowcharts outlining the alternative
means of implementing the data conversion protocol.
Either the CF flag or a software counter may be used to
end the read and write modes.

SRQ=l implies IBF=O,OAV=l implies OBF=l. This
allows interrupt routines to do data transfers without
checking status first. However, the.oAV service routine
must detect and flag the· end of a data conversion.

USING SOFlWARE COUNTER

USING CF FLAG

Figure 6. Data Conversion Flowcharts

AFN-0023OC

8294

USING DMA

The timing sequence for data conversions using DMA Is
shown in Figure 7. This sequence can be better
understood when considered in conjunction with the
hardware DMA interface in Figure 8. Note that the use of
the DMA feature requires 3 external AND gates and 2
DMA channels (one for input, one for output). Since the
DEU has only one DMA request pin, the SRO and OAV
outputs are used in conjunction with two of the AND
gates to create separate DMA request outputs for the 2
DMA channels. The third AND g/ite'cofl1lllnes the two
active-low DACK inputs.

ceMP r IF ENABLED) ________________ ---1

CF ---r: r ---l 1"-_____ ---11

SRO UUU--l ... _____
1

DAY Il_~

DMAR -----.ru-UL __ ~
DACK -----u-UU--U-

AD U----U
WA 1f1JUC--lJ

SET DMA
DMA BLOCK a Or.fA READS 8 DMAWRITES
MODE COUNT (n)

REPEATED n TIMES

Figure 7. DMA Sequence

INT-----«l

RD--------=4c1

8257

WR-----1!~....J

Figure 8. DMA Interface

1·54

To Initiate a DMA transfer, the CPU must first initialize
the tWQ DMA channels as shown in the flowchart in
Figure 9. It must then issue a Set Mode command to the
DEU enabling the, OAV, SRO, and DMA outputs. The
CCMP interrupt may be enabled or disabled, depending
on whether that output is desired. Following the Set
Mode comman(j,. there must. be a data byte giving the
number of 8-byte blocks of data (n<256) to be converted.
The. DEU then generates the required number of .DMA
requests to the 2 DMA channels with no further CPU
intervention. When, the requested number. of bloc.ks
has been converted, the DEU will set CF and assert the
CCMP interrupt (If enabled). CCMP then goes false
again with the next write to the DEU (command or data).
Upon completion of the conversion, the DMA mode is
disabled and theDEU returns to the encrypt/decrypt
mode. The enabled Interrupt outputs, however, will
remain enabled until another Set Mode command is
issued.

USING DMA

INITIALIZE DMA READ CHANNEL POINTER

INITIALIZE DMA WRITE CHANNEL POINTER

e

Figure 9. DMA Flowchart

SINGLE BYTE COMMANDS

Figure 10 shows the timing and protocol for single byte
commands. Note that any of the commands is effective
as a pacify command in that they may be entered at any
time, except during a DMA conversion. The DEU IS thus
set to a known state. However, if a command is issued
out of sequence, an additional protocol is required
(Figure 11). The CPU must wait uritil the command is
accepted (IBF = 0). A data read must then be Issued to
clear anything the preceding command· sequence may
have left in the Data Output Buffer.

AFN-OD23OC

8294

CPUfDEU INTERFACES

Figures 12 through 15 illustrate four interface configura­
tions used tn ·theCPUlDEU. datatransf8f8. In all cases
SRQ will be true (if enabled) 8ffd !SF will be false when
the DEU Is readytG accept data on:ommands.

SAO U (IF ENABLED)

IBF n
- u WA

Os U

~
[N.O

IBF=O?

jYES

I COMMAND REGISTER COMMAND I
1

8
Figure 10. Single Byte Commands

PACIFY

COMMAND REGISTER~OOH

READ DATA REGISTER

8
Figure 11. Pacify Protocol

1-55

f~
0,

INTERFACE TO 8086, 6088, Wli -0
8294

~~~~~:o~':sg= Rii _0 DEU 

cs----o 
AD 

Figure 12. Polling Interface 

~--------------------------, 

MASTER 
PROCESSOR 
INTERFACE 

DD·~ 
Di~ 
Rii-

8294 
WR- DEU 

cs-
AD------I 

Figure 13. Single Interrupt Interface 

r INT2 

~l~~ ~ PROCESSOR 0, SRo. 

INTERfACE RD-O 

Wli-o 8284 
DEU 

cs-o 
OAV~ Ao • 

Figure 14. Dual Interrupt Interface 

AFN'()()23OC 



8294 

82570 

INT-----oO 

iiii-------"+ot 
WR-----------4~ __ _J 

DMARO IS FOR MEMORY TO. DEU DATA TRANSFER 
DMARl IS FOR DEU TO MEMORY DATA TRANSFER 
USE OF CCMP IS OPTIONAL 

Figure 15. DMA Interface 

OSCILLATOR AND TIMING CIRCUITS 
The 8294's Internal timing generation Is controlled by a 
self·contained oscillator arid timing circuit. A choice of 
crystal, L·C or external clock can be used to derive the 
basic oscillator frequency. 

The resident timing circuit consists of an oscillator, a 
state counter and a cycle counter as illustrated in Figure 
16. 

SYNC 
I--,-t-0UTPUT 

.(2.5 JoIaec) 

'-----y---' 
INTERNAL TIMING 

Figure 16. Oscillator Configuration 

OSCILLATOR 

The on·board oscillator is a series resonant circuit with 
a frequency range of 1 to 6 MHz. Pins X1 and X2 are 
input and output (respectively) of a high gain amplifier 
stage. A crystal or inductor and capacitator connected 
between X1 and X2 provide the feedback and proper 
phase shift for oscillation. Recommended connections 
for crYstal or.L~C are shown in Figure 17. 

1·56 

,- Xl 
!1-6MHz 

< 15 pF ...L :::b 
SOCKET, STRAy) 8284 

(INCLUDES XTAL. T Te 

L _ 3 X2 

15-25 pF ::!: 
(INCLUDES I 

SOCKET, _ 
STRAy) -

20pF 

rl 2 x, 

-=-
L 8294 

D 3 x2 

-=- 20 pF 

Figure 17. Recommended Crystal 
and L-C Connections 

A recommended range of Inductance and capacitance 
combinations is given below: 

L=120,.H corresponds to 3MHz 
L= 4S,.H corresponds to SMHz 

An external clock signal can also be used as a frequency 
reference to the 8294; however, the levels are not com· 
patible. The signal must be in the 1 MHz-6MHz fre· 
quency range and must be connected to pins X1 and X2 
by buffers with a suitable pull·up resistor to guarantee 
that a logic "1" is above 3.8 volts. The recommended 
connection is s~.own in Figure 18. 

AFN-D0230C 



inter 8294 

+5V 

2 
><~"'-'--"""---1 X1 

+5V 

STANDARD TTL OR 
OPEN COLLECTOR 

8294 

Figure 18. Recommended Connection for External. Clock Signal 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ........ O·C to 70·C 
Storage Temperature ............ - 65·C to + 150·C 
Voltage on Any Pin With 

Respect to Ground ................. ~0.5V to + 7V 

Power Dissipation ........................ 1.5 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause Permaneilt damage to the 
device. This Is a stress rating only and functionalopera­
tion of the device at these or any other conditions above 
those indicated In the operational sections of this specifi­
cation Is not implied. rxpoSure tq ·.absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. AND OPERATING CHARACTERISTICS (TA = o·c to 70·C, vee"" +5V ± 10%,Vss = OV) 

Symbol Parameter Limits Unit Test Conditions 
Min. Typ. Max. 

VIL Input Low Voltage (All -0.5 0.8 V 
Except Xl, X2, RESEl) 

VILI Input Low Voltage (X lo X2, -0.5 0.6 V 
RESEl) 

VIH Input High Voltage (All 2.2 Vee V 
Except Xl, X2, RESEl) 

VIHI Input High Voltage (Xl, X2, 3.8 Vee V 
RESEl) 

VOL Output Low Voltage (Do-D7) 0.45 V IOL=2.0mA 

Vall Output Low Voltage (All 0.45 V IOL= 1.6mA 
Other Outputs) 

VOH Output High Voltage (Do-D7) 2.4 V IOH=-400,..A 
VOHI Output High Voltage (All 2.4 V IOH= -50,..A 

Other Outputs) 

IlL Input Leakage~urrent ±10 ,..A Vss" VIN" Vee 
(RD, WR, CS, A~ 

loz Output Leakage Current ±10 ,..A Vss +0.45 "" VOUT "" Vee . 
(Do-D7' High Z State) .. 

100 Voo Supply Current 5 15 mA 

100+ lee Total Supply Current 60 125 mA 

lu Low Input Load Current 0.5 mA VIL=0.8V 
(Pins 24, 27-38) 

lUI Low Input Load Current 0.2 mA VIL=0.8V 
(RESEl) 

IIH Input High Leakage Current 100 /LA VIN = Vee 
(Pins 24, 27-38) 

CIN Input Capacitance 10 pF 

Cilo I/O Capacitance 20 pF 

:1-57 AFN-00230C 



8294 

A.C. CHARACTERISTICS (TA = IrC to 7lrC. Vcc = VDD = +5V ± 10%. Vss = OV) 

DBB READ 

Symbol Parameter MIn. Max. Unit T .. t ConditIons 

tAR qs, Ao Setup. to AlH 0 ns 

tRA C'S. Ao Hold .After AD t 0 ns 

tRR AD Pulse Width 250 n$ 

tAO CS. Ao to Data. Out Delay 225 ns CL= 150pF 

tRo AD ~ to Data Out Delay 225 ns CL= 150pF 

tOF AD t to Data Float Delay 100 ns 

tCY Cycle Time 2.5 15 ,.,s 6MHz Crystal 

DBBWRITE ~. 

Symbol P.fIrameter MIn. Max. Unit T .. t Conditions 

tAW C'S. Ao Setuplo W'U 0 ns 

tWA CS. Ao Hold After WR t 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WR t 150 ns 

two Data Hold to WFi t 0 ns 

DMA AND INTERRUPT TIMING 

Symbol Parameter Min. Max. Unit Test Conditions 

tACC DACK Setup to Control 0 ns 

tCAC ~ Hold After Control 0 ns 

tACO ~ to Data Valid· 225 ns CL =150 pF 

tCRO Control L.E. to DRQ T.E. 200 ns 

tCI Control T.E. to Interrupt T.E. tcy+500 ns 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

1·58 



8294 

WAVEFORMS 

READ OPERATION-OUTPUT BUFFER REGISTER 

CS ORAo ] 
-IAR--! 

IRR _IRA_ 

K (SYSTEM'S 
ADDRESS BUS) 

iiii \ Y \. (R EADCONTROL) 

-tRD -IDF 

lAD 

DATA BUS ~:1 
(OUTPUT) -----------. -<-<l.-DATAVALlD~_-------""";""";---

WRITE OPERATION-INPUT BUFFER REGISTER 

~ :x (SYSTEM'S 

L··l r"------~' tww-d'H' i,...--IWAJ ___ ADDRESS BUS) 

'---- _ (WRITE CONTROL) 

-tDW -twD 

SORAo 

DATA BUS DATA \I'-DATA VALID~rv DATA 
(INPUT) _--,---.,. __ M:::;A"'Y'-'C:::H"'A::.:N:GE=--___ J /'J ~'_ _____ ..::M"'A~Y=CH:.::A:::N::G:::E.,.._-----

DMA AND INTERRUPT TIMING 

DACK----_ 
tACC-

- tCAe 

AD WR------+--~ 

DRa-------r----+------~ 

I-----IACD-----i 

DATA BUS------r---------_ ....... 

VALID 

OAVsRa------t-----------~......;-----~---~ 

1·59 AFN-00230C 



8~95 
DOT MATRIX PRINTER CONTROLLER 

• Interfaces Dot Matrix Printers 10 
MCS·48™, MCS·80/8S™, MCS·8S™ 
Systems 

• 40 Character Buffer On Chip .. 

• Serial or Parallel CommunicAtion with 
Host 

• DMA Transfer Capability 

• Programmable Character Density (10 or 
12 Chararcters/lnch) 

• Programmable Print I.ntensity 

• Single or Double Width Printing 

• Programmable Multiple Line Feeds 

• 3 Tabulations 

• 2 General Purpose Outputs 

The InteIiII 8295 Dot Matrix Printer Controller provides an interface for microprocessors to the lRC 7040 Series dot 
matrix impact printers. It may also be used as an interface to other similar printers. 

The chip may be used in a serial or parallel communication mode with the host processor. In parallel mo<ie,data 
transfers are based on polUng, interrupts, or OMA. Furthermore, it provides internal buffering of up to 40 characters 
and contains a 7 x 7 matrix character generator accommodating 64 ASCII characters. 

DATA 
BUS 

Wli-_ 
1:1-_ 

DACKISIN--_ 
DAOICri __ 

'fi'E'S'ET--

XTALa 

INTERNAL 
BUS 

Figure 1. Block Diagram 

0., 
a .. 

Figure 2. Pin Configuration 

1·60 



8295 

Table 1. Pin Description 

Pin Pin 
Symbol No. 'TYpe Name and Function Symbol No. 'TYpe Name and Function 

PFEED 1 I Paper Feed: Paper feed input 
switch. 

HOME 39 I Home; Home input switch,used by 
the 8295 to detect that the print head 

XTAL1 2 I Crystal: Inputs for a crystal to set in- is in the home position. 

XTAL2 3 ternal oscillator frequency. For 
proper operation use 6 MHz crystal. 

DACK/SIN 38 I DMA Acknowledge/Serial Input: In 
the parallel mode used as DMA ac-

RESET 4 I Reset: Reset input, active low. After 
reset the 8295 will be set for 12 char-

knowledgment; in the serial mode, 
used as input for data. 

acters/inch single width printing, DRQ/C'fS 37 0 DMA Request/Clear to Send: In the 
solenoid strobe at 320 msec. parallel mode used as DMA request 

NC 5 No Connection: No connection or output pin to indicate to the 8257 that 
tied high. a DMA transfer is requested; in the 

CS 6 I Chip Select: Chip select input used 
to enable the RD and WR inputs ex-
cept during DMA. 

serial mode used ,as clear-to-send 
signal. 

IRa/SER 36 0 Interrupt RequestlSerlal Mode: In 

GND 7 Ground: This pin must be tied to 
ground. 

parallel mode it is an interrupt re-
quest input to the master CPU; in 
serial mode it should be strapped to 

RD 8 I Read: Read input which enables the Vss. 
master CPU to read data and status. 
In the serial mode this pin must be 
tied to Vcc. 

MOT 35 0 Motor: Main motor drive, active low. 

STB 34 0 Solenoid Strobe: Solenoid strobe 

Vcc 9 Power: . +5 volt power input: +5V ± 
10%. 

output. Used to determine duration of 
solenoids activation. 

WR 10 I Write: Write input which enables the 
master CPU to write data and com-
mands to the 8295. In the serial mode 
this pin must be tied to Vss. 

S7 33 0 Solenoid: 'Solenoid drive outputs; 
Ss 32 active low. 
S; 31 
S, 30 
S3 29 

SYNC 11 0 Sync: 2.5 /LS clock output. Can be 52 28 
used as a strobe for external circuitry. S, 27 

Do 12 1/0 Data Bus: Three-state bidirectional Voo 26 Power: +5V power input (+5V ± 
0, 13 data bus buffer lines used to interface 10%). -low power standby pin. 
D. 14 the 8295 to the host processor in the 
03 15 parallel mode. In the serial mode 
0, 16 0 0-02 sets up the baud rate. 
05 17 

Vcc 25 Power: Tied high. 

GP1 24 0 General Purpose: General purpose 
GP2 23 0 output pins. 

0 6 18 
07 19 

TOF 22 I Top of Form: Top of form input, used 
to sense top of form sig nal for type T 

GND 20 Ground: This pin must be tied to printer. 
ground. PFM 21 0 Peper Feed Motor Drive: Paper 

Vce 40 Power: +5 volt power input: +5 ± feed motor drive, active low. 
10%. 

1-61 AFN-002S1C 



inter 8295 

FUNCTIONAL DESCRIPTION 

The 8295 interfaces microcomputers to the LRC 7040 
Series dot matrix impact printers, and to other similar 
printers. It provides Internal buffering of up to 40 char­
acters. Printing begins automatically when the buffer is 
full or when a carriage return character is received. It 
provides a modified 7x7 matrix character generator. The 
character set includes 64 ASCII characters. 

COMMAND SUMMARY 
Hex Code 

00 

01 

02 

03 

04 

05 

06 

07 

08 

Description 

Set GP1. This command brings the GP1 pin 
to a logic high state. After power on it is 
'automatically set high. 

Set GP2. Same as the above but for GP2. 

Clear GP1. Sets GP1 pin to logic low state, 
inverse of command 00. 

Clear GP2. Same as above but for GP2. In­
verse command 01. 

SOftwa're Reset. This is a pacify command. 
Th,is command is not effective immediately 
after commands requiring a parameter, as 
the Reset command will be interpreted as a 
parameter. 

Print 10 characters/in. density. 

Print 12 characterslin. density. 

Print double width characters. This com­
mand prints characters at twice the normal 
width, that is, at either 17 or 20 characters 
per line. 

Enable DMA mode; must be followed by 
two bytes specifying the number of data 
characters to be fetched. Least significant 
byte accepted first. 

PROGRAMMABLE PRINTING OPTIONS 
CHARACTER DENSITY 

The character density is programmable at 10 or 12 char­
acters/inch (32 or 40 characters/line). The 8295 is auto­
matically set to 12 characters/inch at power-up. Invoking 
the Print Double-Width command halves the character 
density (5 or 6 characters/inch). The 10 char/In or 12 
char/in command must be re-issued to cancel the 
Double-Width mode. Different character density modes 
may not be mixed within a single line of printing. 

PRINT INTENSITY 

The intensity of the printed characters is determined by 
the amount of time during which the solenoid is on. This 
on-time is programmable via the Set Strobe-Width com­
mand. A byte following this command sets the solenoid 
on-time according to Table 2. Note that only the three 
least significant bits of this byte are important. 

Communication between the 8295 and the host proc­
essor can be implemented in either a serial or parallel 
mode. The parallel mode allows for character transfers 
into the buffer via DMA cycles. The serial mode features 
selectable data rates from 110 to 4800 baud. 

TlJe 8295 also offers two general purpose output pins 
which can be set or cleared by the host processor. They 
can be used with various printers to implement such 
functions as ribbon color selection,enabling form 
release solenoid, and reverse document feed. 

Hex Code 

09 

OA 

OB 

Tab character. 

Line feed. 

Description 

Multiple Line Feed; must be followed by a 
byte specifying the number of line feeds. 

1·62 

OC 

OD 

OE 

OF 

10 

11 

12 

Top of Form. Enables the line feed output 
until the Top 'of Form input is activated. 

Carriage Return. Signifies end of a line and 
enables the printer to start printing. 

Set Tab #1, followed by tab position byte. 

Set Tab #2, followed by tab position byte. 
Should be greater than Tab #1. 

Set Tab #3, followed by tab position byte. 
Should be greater than Tab #2. 

Print Head Home on Right. On some 
printers the print head home position is on 
the right. This command would enable nor­
malleft to right printing with such printers. 

Set Strobe Width; must be followed by 
strobe width selection byte. This command 
adjusts the duration of the strobe activa­
tion. 

Table 2. Solenoid On-Time 

07-03 D2 01 DO Solenoid On 
(microsec) 

x 0 0 0 200 
x 0 0 1 240 
x 0 1 0 280 
x 0 1 1 320 
x 1 0 0 360 
x 1 0 1 400 
x 1 1 0 440 
x 1 1 1 480 

TABULATIONS 

Up to three tabulation positions may be specified with 
the 8295. The column position of each tabulation is 
selected by issuing the Set Tab commands, each fol-

AFN-00231C 



8295 

lowed by a byte specifying the column. The tab posi· 
tions will then remain valid until new Set Tab commands 
are issued. 

Sending a tab character (09H) will automatically fill the 
character buffer with blanks up to the next tab position. 
The character sent immediately after the tab character 
will thus be stored and printed at that position. 

CPU TO 8295 INTERFACE 
Communication between the CPU and the 8295 may 
take place in either a serial or parallel mode. However, 
the selection of modes is inherent in the system hard­
ware; it is not software programmable. Thus, the two 
modes cannot be mixed in a single 8295 application. 

PARALLEL INTERFACE 

Two internal registers on the 8295 are addressable by 
the CPU: one for input, one for output. The following 
table describes how these registers are accessed. 

100 
o 0 

Register 

Input Data Register 
Output Status Register 

Input Data Register-Data written to this register is 
interpreted in one of two ways, depending on how the 
data is coded. 

1. A command to be executed (OXH or 1XH). 
2. A character to be stored in the character buffer for 

printing (2XH, 3XH, 4XH, or 5XH). See the character 
set, Table 2. 

Output Status Register-8295 status is available in this 
register at all times. 

STATUS BIT: 
FUNCTION: 

PA-Parameter Required; PA = 1 indicates that a com· 
mand requiring a parameter has been received. After the 
necessary parameters have been received by the 8295, 
the PA flag is cleared. 

DE-DMA Enabled; DE = 1 whenever the 8295 is in DMA 
mode. Upon completion of the required DMA transfers, 
the DE flag is cleared. 

IBF-Input Buffer Full; IBF = 1 whenever data is written 
to the Input Data Register. No data should be written to 
the 8295 when I BF = 1. 

A flow chart describing communication with the 8295 is 
shown in Figure 3. 

The interrupt request output (IRQ, Pin 36) is available on 
the 8295 for interrupt driven systems. This output is 
asserted true whenever the 8295 is ready to receive data. 

To improve bus efficiency and CPU overhead, data may 
be transferred from main memory to the 8295 via DMA 
cycles. Sending the Enable DMA command (08H) acti­
ivates the DMA channel of the 8295. This command must 
be followed by two bytes specifying the length of the 
data string to be transferred (least significant byte first). 
The 8295 will then assert the required DMA requests to 

1-63 

the 8257 DMA controller without further CPU interven­
tion. Figure 4 shows a block diagram of the. 8295 in DMA 
mode. 

DONE 

Figure 3. Host to 8295 Protocol Flowchart 

8~7 
DMA 

'----..J\I CONTROLLER 

DACKx 
DRQx 

PFEED 1--------1 
HOMEI----~--_; 

PRINTER 

Figure 4. Parallel System Interface 

Data transferred in the DMA mode may be either com­
mands or characters or a mixture of both. The procedure 
is as follows: . . .. . . 

1. Set up the 8257 DMA controller channel by sending a 
starting address and a block length. 

2. Set up the 8295 by issuing the "Enable DMA" .com­
mand (08H) followed by two bytes specifying the 
block length (least significant byte first). 

The DMA enabled flag (DE) will be true until the 
assigned data transfer is completed. Upon completion 
of the transfer, the flag is cleared and the interrupt re­
quest (IRQ) signal is asserted. The 8295 then returns to 
the ncin·DMA mode of operation. 

AFN-00231C 



inter 8295 

SERIAL INTERFACE 

The 8295 may be hardware programmed to operate In 
a serial mode of communication. By connecting the 
IRQ/SER pin (pin 36) to logic zero, the serial mode Is 
enabled immediately upon power-up. The serial Baud 
rate Is also hardware programmable; by strapping pins 
14,13, and 12 according to:Table 3, the rate is selected. 
CS, RD, and WR must be strapped as shown in Figure 5. 

Table 3. Serial Baud Rate 

Pin 14 Pin13 Pin12 .. Baud Rate 

0 0 0 110 
0 0 1 150 
0 1 0 300 
0 1 1 600 
1 0 0 1200 
1 0 1 2400 
1 1 0 4800 
1 1 1 4800 

The serial data format is shown in Figure 5. The CPU 
should wait for a clear to send signal (CTS) from the 
8295 before sending data. 

SERIAL 
INPUT 

+5 

SIN 

CTS 
SEA 

PFEED 1----,,-----1 
HOME 1-------1 

STOP 
BIT 

Figure 5. Serial Interface to UART (8251A) 

8295 TO PRINTER INTERFACE 

STB 

Sf 

Si 

S5 

54 
828.5 

53 

52 

51 

MOT 

PI'M 

+ 

TO 
SOLENOID 
DRIVERS 

} 
TO MOTOR 
DRIVERS 

Figure 6. 8295 To Printer Solenoid Interface 

OSCILLATOR AND TIMING CIRCUITS 
The 8295's internal timing generation is controlled by a 
self-contained oscillator and timing circuit. A 6 MHz 
crystal is used to derive the basic oscillator frequency. 
The resident timing circuit consists of an oscillator, a 
state counter and a cycle counter as illustrated in Figure 
7 .. The recommended crystal connection is shown in 
Figure 8. 

INTERNAL TIMING 

SYNC 
OUTpUT 
(2.5 ...... ) 

Figure 7. Oscillator Configuration 

2 XTALI 

1-8MHZ~ 8295 

The strobe output signal of the 82~5 determines the 3 -AL2 

duration of the solenoid outputs, which hold the data to A. 
the printer. These solenoid outputs cannot drive the 20 PFI-=-
printer solenoids' directly. They should be buffered 
through solenoid drivers as shown in Figure 6. Recom-
mended solenoid and motor driver circuits may be found 
in the printer manufacturer's interface guide. Figure 8. Recommended Crystal Connection 

\ 
1-64 AFN-00231 C 



inter 8295 

8295 CHARACTER SET 
Hex Code Print Char. Hex Code Print Char. 

20 space 30 0 
21 ! 31 1 
22 32 2 
23 # 33 3 
24 $ 34 4 
25 % 35 5 
26 & 36 6 
27 37 7 
28 38 8 
29 39 9 
2A 3A 
2B + 3B 
2C 3C < 
20 3D 
2E 3E > 
2F 3F ? 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ......... O·C to 70·C 
Stonige Temperature ............... - 65· to + 150·C 
Voltage on Any Pin With . 

Respect to Ground.' .... : ............ -0.5V to +7V 
Power Dissipation ......................... 1.5 Watt 

Hex Code Print Char. Hex Code Print Char. 

40 @ 50 P 
41 A 51 Q 
42 B 52 R 
43 C 53 S 
44 0 54 T 
45 E 55 U 
46 F 56 V 
47 G 57 W 
48 H 58 X 
49 I 59 y 
5A J 5A Z 
4B K 5B [ 
4C L 5C \ 
40 M 50 I 
4E N 5E t 
4F 0 5F 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 

. those indicated in the operational sections of this specifi­
cation is not implied, Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. AND OPERATING CHARACTERISTICS (TA = O°C to 70·C. Vcc = Voo = +5V ± 10%. Vss = OV) 

Symbol Parameter 
Limits 

Unit Test Conditions 
Min. Typ. Max. 

VIL Input Low Voltage (All ~0.5 0.8 V 
Except Xl. X2• RESET) 

VILl Input Low Voltage (Xl. X2 •. -0.5 0.6 V 
RESET) 

VIH Input High Voltage (All 2.2 Vce V 
Except Xl, X2, RESET) 

VIHl Input High Voltage (Xl, X2. 3.8 Vee V 
RESET) 

VOL Output Low Voltage (00- 07) 0.45 V IOL=2.0mA 

VOL1 Output Low Voltage (All 0.45 V IOL= 1.6mA 
Other Outputs) 

VOH Output High Voltage (00-07) 2.4 V IOH= -400jAA 

VOHl Output High Voltage (All 2.4 V IOH= -50/AA 
Other Outputs) 

IlL Input Leakage Current ±10 jAA Vss" VIN .. Vee 
(RD. WR, CS, A(j) 

loz Output Leakage Current :1:10 /AA Vss +0.45'" Your '" Vee 
(00-07• High Z State) 

100 Voo Supply Current 5 15 rnA 

100+ Icc Total Supply Current 60 125 rnA 

III Low Input Load Current 0.5 rnA VIL=0.8V 
(Pins 24, 27-38) 

ILll Low Input Load Current 
(RESET) 

0.2 rnA VIL=0.8V 

IIH Input High Leakage Current 100 /LA VIN = Vee 
(Pins 22. 38) 

CIN Input Capacitance 10 pF 
CILO I/O Capacitance 20 pF 

1·65 AFN-00231C 



8295 

A.C. CHARACTERISTICS (TA = O"C to 70·C, VCC = Voo = +5V ± 100/0, Vss = OV) 

DBBREAD 

Symbol Parameter Min. Max. Unit . Test Conditions 

tAR ~; Ao Setup to AD ~ 0 ns 

iRA es, Ao Hold AfterRD t 0 ns 

tRR FiDPulse Width 250 ns 

1AO CS, Ao to Data Out Delay 225 ns CL= 150 pF 

tRO RD ~ to Data Out Delay 225 ns CL'= 150 pF 

ItOF RD t to Data Float Delay 100 ns 

tCY Cycle Time 2.5 15 I-fS 

DBB WRITE 

Symbol Parameter Min. Max. Unit Test conditions 

tAw OS", Ao S~tupto WR + 0 ns 

tWA OS; Ao HoldAft~r WR t • 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WR t 150 ns 

two Data Hold toWR t 0 ns I· . 

DMA AND INTERRUPT TIMING 

Symbol .. Parameter Min .• Max. Unit Test Conditions· 

tACC DACKSetup-to Control 0 ns 

tCAC DACK Hold After Control 0 ris 

tCRQ WRto DRQCI.ared , 200 ns 

tACO DACK to Data Valid 225 ns CL = 150 pF 

A.C.TESTING IN~UT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.0 

;> TEST· POINTS < 
0.8 

1-66 AF~1C 



inter 8295 

WAVEFORMS 

READ OPERATION-OUTPUT BUFFER REGISTER 

CSORAo ). K 
I---IAA1 • 

IAA -IRA-, 
-lAD 1--10. 

Dfci~T~~~)-____ II-'~ ___ ----__ IA_D __ .... 4-M" ,."'~ __________ --..,;_....; 

WRITE OPERATION-INPUT BUFFER REGISTER 

(SYSTEM'S 
ADDRESS BUS) 

(READ CONTROL) 

tsOR Ao ~ ~/,---___ (SYSTEM'S 
• • ~ ADDRESS BUS) 

----~ -----------------~~ -tAw-II IWW ,I -IWA 

DATA BUS 
(INPUT) 

DATA 
MAY CHANGE 

DMA AND INTERRUPT TIMING 

-lAce ..... 

DRQ 

-IDW~ - IWD 

)-DATAVALlD~K DATA 
MAY CHANGE 

IcAC- -
J 

teRQ 

} 
.... CD 

DATA ~ VALID X BUS ___________________ __ __________________ --J~ ________ __ 

1·67 

\WRITE CONTROL) 

AFN-00231C 



intJ 8295 

WAVEFORMS (Continued) 

PRINTER INTERfACE TIMING 

MOTPR DRIVE \ 
HOME ", 

SOLENDID DATA ) K 
- -SDs - MHH I-

~~ iF . II-
.... 

-PDH- ,SHs-

SOLENOID STROBE 

Pi'rni_,~~ 
PFM ~ 

Symbol ·Pai'ameter Typical 

POH Print delay from 1.8 ms 
home Inactive 

Sos Solenoid data 25,..s 
setup time before 
strobe active 

SHS Solenoid data >1 ms 
hold after strobe 
inactive 

MHA Motor hold time "') 

after home active 
3.2 ms 

Psp PFEED setup time 58 ms 
after PFM active 

PHP PFM hold time 9.75 ms 
after PFEED active 

1.~.68 AFN.(l()231C 



Memory Controllers 



8202A 
DYNAMIC RAM CONTROLLER 

• Provides All Signals Necessary to. Control 
2104A, 2117, or 2118 Dynamic Memories 

• Directly Addresses and Drives Up to 64K 
Bytes Without External Drivers 

• Provides Address Multiplexing and 
Strobes 

• Provides a Refresh Timer and a Refresh 
Counter 

• Refresh Cycles May be Internally or Exter­
nally Requested 

• Provides Transparent Refresh Capability 

• Fully Compatible with Intel I!> 8080A, 
8085A, iAPX 88, and iAPX 86 Family Micro­
processors 

• Decodes CPU Status for Advanced Read 
Capability 

• Provides System Acknowledge and Trans­
fer Acknowledge Signals 

• Internal Clock Capability with the 8202A·1 

The Intel@ 8202A is a DynamiC Ram System Controller designed to provide all signals necessary to use 2104A, 2117, or 
2118 Dynamic RAMs in microcomputer systems. The 8202A provides multiplexed addresses and address strobes, as well 
as refresh/access arbitration. The 8202A-1 supports an internal crystal oscillator. 

AHO-AHa 

ALO-ALS 

REFRESH 
COUNTER 

RD/S,-----! 
Wii------I 
PCS-----! 

REFRQ/ALE ----<>----1 

REFRESH 
TIlER 

COLUMN 
ADDRESS 

MUX 
ROW 

ADDRESS 

MUX 

Bo-----i 

ARBJT~R 

........... 
TIMING 

GENERATOR 

Figure 1. 8202A Block Diagram 

1·69 

RASO 

RAS1 

RAS2 

RAS3 

CAS 

WE 

SACK 

XACK 

AH4 

AH3 

AH, 

AH, 
AHa 

Al<> 

Mo 
AL, 

OUT, 

AL, 

OUT, 

AL3 

OUT3 

AL. 

OUT. 

ALS 

OUTS 

ALe/OP3 

OUT. 
GNO 

Vec 

AHS 

XACK 

WE 

CAS 

RAS3 

B1 / 0P1 

So 

Figure 2. Pin Configuration 



intJ 

Pin 
Symbol No. Type 

ALo s I 
ALl 8 I 
AL2 10 I 
AL3 12 I 
AL4 14 I 
AL5 lS I 
ALS/OP3 18 I 

AHO 5 I 
AHl 4 I 
AH2 3 I 
AH3 2 I 
AH4 1 I 
AH5 39 I 
AHS 38 I 

BO 24 I 
Bl /OP l 25 I 

PCS 33 I 

WR 31 I 

RDISI 32 I 

REFRQI 34 I 
ALE 

OUTO 7 0 
OUTl 9 0 
OUT2 11 0 
OUT3 13 0 
OUT4 15 0 
OUT5 17 0 
OUTS 19 0 

WE 28 0 

CAS 27 0 

8202A 

Table 1. Pin Descriptions 

Name and Function 

Address Low: CPU'address in-
puts used to generate memory 
row address. 
ALS IOP3 used to select 4K 
RAM mode. 

Address High: CPU address in-
puts used to generate memory 
column address. 

Bank Select Inputs: Used to 
gate the appropriate RASO-
RAS3 output for a memory cy-
cle. Bl IOPl option used to se-
lect the Advanced Read Mode. 

Protected Chip Select: Used to 
enable the memory read and 
write inputs. Once a cycle is 
started, it will not abort even if 
PCS goes inactive before cycle 
completion. 

Memory Write Request. 

Memory Read Request: SI 
function used in Advanced Read 
mode selected by OPl (pin 25). 

External Refresh Request: ALE 
function used in Advanced Read 
mode, selected by OP 1 (pin 25). 

Output of the Multiplexer: 
These outputs are designed to 
drive the addresses of the Dy-
namic RAM array. For 4K RAM 
operation, OUTS is designed to 
drive the 2104A CS input. (Note 
that the OUTO-S pins do not re-
quire inverters or drivers for 
proper operation. 

Write Enable: Drives the Write 
Enable inputs of the Dynamic 
RAM array. 

Column Address Strobe: This 
output is used to latch the Col-

I·umn Address into the Dynamic 
RAM array. 

1·70 

Pin 
Symbol No. Type Name and Function 

RASO 21 0 Row Address Strobe: Used to 
RASI 22 0 latch the Row Address into the 
RAS2 23 0 bank of dynamic RAMs, select-
RAS3 2S 0 ed by the 8202A Bank Select 

pins (BO, Bl lOP 1). 

XACK 29 0 Transfer Acknowledge: This 
output is a strobe indicating val-
id data during a read cycle or 
data written during a write cycle. 
XACK can be used to latch valid 
data from the RAM array. 

SACK 30 0 System Acknowledge: This 
output indicates the beginning of 
a memory access cycle. It can 
be used as an advanced trans-
fer acknowledge to eliminate 
wait states. (Note: If a memory 
access request is .made during a 
refresh cycle, SACK is delayed 
until XACK in the memory ac-
cess cycle). 

(XO) OP2 3S 1/0 Oscillator Inputs: These inputs 
(XI) CLK 37 1/0 are designed for a quartz crystal 

to control the frequency of the 
oscillator. If Xo IOP2 is connect-
ed to a 1 Kg resistor pulled to 
+12V then XI ICLK becomes a 
TIL input for an external clock. 

N.C. 35 Reserved for future use. 

VCC 40 Power Supply:+5V. 

GND 20 Ground. 

NOTE: Crystal mode for the 8202A-l only. 

,--.._----.--1 Xo 

I 

CS* 
I 
I 
I 

'KO 
±5% 

6800 
±S% 

CS..L 
T 
I 

.-I 

Cs < 10pF 

FUNDAMENTAL XTAl 

x, 

Figure 3. Crystal Operation for the 8202A·1 

AFN 01838A 



inter 8202A 

Functional Description . Refresh Counter 
The 8202A provides a complete dynamic RAM controller 
for microprocessor systems as well as ~xpansion memory 
boards. All of. the necessarY control.signals are provided 
for 2104A, 2117, and 2118 dynamic RAM's. 

All 8202A timing is generated from a single reference 
clock. This clock is provided via an external oscillator or 
an on chip crystal oscillator. All output signal transitions 
are synchronQus with respect to this clock reference, ex­
cept for the CPU handshake signals SACK and XACK 
(trailing edge). . 

CPU memory. reque~ts normally use the RD and WR in­
puts. The advanced READ mode allows ALE and S 1 to be 
used in place of the RD input. 

Failsafe refresh is provided via an internal refresh timer 
which generates internal refresh requests. Refresh re­
quests can also be generated via the REFRQ input. 

An on-chip synchronizer I arbiter prevents memory and re­
fresh requests from affecting a· cycle in progress. The 
READ, WRITE, and external REFRESH requests may be 
asynchronous to the 8202A clock; on-chip logic will syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending completion of a cycle in 
progress; 

Option Selection 
The 8202A has three strapping options. When OP 1 is se­
lected (16K mode only), pin 32 changes from a RD input to 
an S 1 input, and pin 34 changes from a REFREQ input to 
an ALE input. See "Refresh Cycles' and "Read Cycles" 
for more detail. OP1 is selected by tying pin 25 to +12V 
though a 5.1K ohm resistor. 

When OP2 is selected, by connecting pin 36 to + 12V 
through a 1K ohm resistor, pin 37 changes from a crystal 
input (X1) to the CLK input for an external TTL clock. 

OP3 is selected by connecting Pin 18 to + 12V through a 
5.1K ohm resistor. ,The 8202A will change its internal re­
fresh timer from 12s-row refresh (2118, 2117) to S4-row 
refresh (2104A). 

Refresh Timer 
The refresh timer is used to monitor the time Since the last 
refresh cycle occurred. When the appropriate amount of 
time has elapsed, the refresh timer will request a refresh 
cycle. External refresh requests will reset the refresh tim­
er. 

Description Pin # Normal Function 

Bl/0Pl 25 Bank (RAS) Select 

The refresh counter is used to sequentially refreSh all of 
the memory's rows. The 8-bit counter is incremented after 
every refresh cycle. 

Address Multiplexer 
The address multiplexer takes the address inputs and the 
refresh counter outputs, and gates them onto the address 
outputs at the appropriate time. The address outputs, in 
COnjunction with the RAS and CAS outputs, determine the 
address used by the dynamic RAMs for read, write, and 
refresh cycles. During the first part of a read or write cy­
cle, ALa-AL6 are gated to OUTO-OUTs, then AHO-AHS 
are gated to the address outputs. 

During a refresh cycle, the refresh counter is gated onto 
the address outputs. All refresh cycles are RA8-0nly re­
fresh (CAS inactive, RAS active). 

To minimize buffer delay, the information on the address 
outputs is inverted from that on the address inputs. 

OUT o-OUT S do not need inverters or buffers unless addi­
tional drive is required. 

Synchronizer / Arbiter 
The 8202A has three inputs, REFRQ/ALE (pin 34), RD 
(pin 32) and WR (pin 31). The RD and WR inputs allow an 
external CPU to request a memory read or write cycle, 
respectively. The REFRQ I ALE allows refresh requests to 
be requested external to the 8202A. 

All three of these inputs may be asynchronous with re­
spect to the 8202A's clock. The arbiter will resolve con­
flicts between refresh and memory requests, for both 
pending cycles and cycles in progress. Read and write re­
quests will be given priority over refresh requests. 

System Operation 
The 8202A is always in one of. the following states: 

a) IDLE 
b) TEST Cycle 
c) REFRESH Cycle 
d) READ Cycle 
e) WRITE Cycle 

The 8202A is normally in the IDLE state. Whenever one of 
the other cycles is requested, the 8202A will leave the 
IDLE state to perform the desired cycle. If no other cycles 
are pending, the 8202A will return to the IDLE state. 

Option Function 

Advanced·Read Mode 

XO/OP2 36 Crystal Oscillator (8202A·l) External Oscillator 

AL6/0P3 18 Address Input 64·ROW Refresh 

Figure 4. 8202A Option Selection 

1-71 A,FNOl838A 



inter 8202A 

Test Cycle 
The TEST Cycle is used to check operation of several 
8202A internal functions. TEST cycles are requested by 
activating the RD and WR inputs, independent of PCS. The 
TEST Cycle will reset the refresh address counter and per­
form a WRITE Cycle. The TEST Cycle should not be used 
in normal system operation, since it would affect the dy­
namic RAM refresh. 

Refresh Cycles 
The 8202A has two ways of providing dynamic RAM re­
fresh: 

1) Internal (failsafe) refresh 
2) External (hidden) refresh 

Both types of 8202A refresh cycles activate all of the RAS 
outputs, while CAS, WE, SACK, and XACK remain inac­
tive. 

Internal refresh is generated by the on-chip refresh timer. 
The timer uses the 8202A clock to ensure that refresh of 
all rows of the dynamic RAM occurs every 2 milliseconds. 
If REFRQ is inactive, the refresh timer will request a re­
fresh cycle every 10-16 microseconds. 

External refresh is requested via the REFRQ input (pin 34). 
External refresh co.ntrol is not available when the Ad­
vanced-Read mode is selected. External refresh requests 
are latched, then synchronized to the 8202A clock. 

The arbiter will allow the refresh request to start a refresh 
Cycle only if the 8202A is not in the middle of a cycle. 

Simultaneous memory request and external refresh re­
quest will result in the memory request being honored first. 
This 8202A characteristic can be used to "hide" refresh 
cycles during system operation. A circuit similar to 
Figure 5 can be used to decode the CPU's instruction 
fetch status to generate an external refresh request. The 
refresh request is latched while the 8202A performs the 
instruction fetch; the refresh cycle will start immediately 
after the memory cycle is complet~, even if the Rq input 
has not gone inactive. If the CPU's instruction decode time 
is long enough, the 8202A can complete the refresh'Cycle 
before the next memory request is generated. 

Certain system configurations require complete external 
refresh requests. If external refresh is requested faster 
than the minimum internal refresh timer (tREF), then,: in ef­
fect, all refresh cycles will be caused by the external re­
fresh request, and the internal reftesh timer wil! never 
generate a refresh request. 

so~~ ___ REFRO 

8085A

S1 
8202A 

SACK or 
CAS 

Figure 5. Hidden Refre.sh 

Read Cycles . 
The 8202A can accept two different types of ·memory 
Read requests: 

1) Normel Read, via the RD input 
2) Advanced Read, using the S 1 and ALE inputs 

The user can select the desired Read request configura­
tion via the Bl/0Pl hardware strapping option on pin 25. 

Normal Read Advanced Read 

Pin 25 81 input +12 Y?lt Option 
Pin 32 RD input Slinput 
Pin 34 REFRQ input ALE Ynput 
# RAM banks 4 (RAS 0-3) 2.(RAS 2-3) 
Ext. Refresh Yes No 

Figure 6_ 8202A Read Optlo!'s 

Normal Reads are requested by activating the RD input, 
and keeping it active .until the 8202A responds with an 
XACK pulse. The RD input can go inactiv~ as soon as the 
command hold time (tCHS> is met. 

Advanced Read cycles .are requesteq by pulsing ALE 
while. S t is active; if. S 1 is inactive (IQw) ALE is ignored. 
Advanced Read timing is similiar to Normal Read timing, 
except the falling edge of ALE is ~sed ~s the cycle start 
reference. 

If a Read cycle is requested while a refresh cycle is in 
progress, then the 8202A will set· the internat delllyjKl­
SACK latch. When the Read cycle is eventually started, 
the 8202A will delay the active SACK transition until XACK 
goes active, as shown in the AC timin9 diagrams. This de­
lay was designed to compensate for the CPU's READY 
setup and hold times. The delayed"';SACK latch is cleared 
after every READ cycle. 

Based on system requirements, either SACK or XACK can 
be used to generate the CPU READY signal. XACK will 

AFN01838A 



-m.:...l" I • • -e-: 8202A 

normally be used; if tlie CPU can tolerate an advanced 
READY, then SACK can be used, but only if the CPU can 
tolerate ,the amount of advance provided by SACK. If 
SACK arrives too early to provide the appropriate numper. 
of WAIT states, then either XACK .ora delayed form of 
SACK should be used. 

Write Cycles 
Write cycles are similiar to Normal Read cycles, except 
for the WE output. WE is held inactive for Read cycles, but 
goes active for W~ite cycles. All 82Q~A Write cycles are 
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamic 
RAM output buffers turne~ .off... .... . 

General System Considerations 
All memory requests (Normal Reads, Advanced Reads, 
Writes) are qualified by the F>cs input. PCS should be sta­
ble, either active or inactive, prior to the leading edge of 
RD, WR, or ALE. Systems which use battery backup 
should pulluppCS to pre"ent erroneOus' memory requests, 
and should aiso pullup WR to keep the 8202A out of its 
test nlqctl:!. . .. , .,' 

In order to minimize propagation delay, the 8202A uses an 
inverting addre~s multiplexer without latches. The system 
must provide adequate address setup' and hold times to 
guarantee RAS aild CAS setup aild hold times for the 
RAM. The 8202A tADAC parameter should be used for 
this system calculation: 

The BO-B 1 inputs are similiar to the' address inputs in that 
they are not latched. BOand B1;shOllld not be changed 
dur'ing a memory cycle, since they directly control which 
RAS output is activated. 

The 8202A uses a two-stage synchtonizer for the memory 
request inputs (RD, WR, ALE), and a separate two stage 
synchroniter for the exterilal··refteshinput (REPRO)',' As 
withaily synchronizei', there is always a finite probability 
of metastable states inducing system errors. The 8202A 
synchronizer was designed to have a system error rate 
less than 1 ri1emorycycle every three years based on the 
full operating range of the 8202A 

":;. 

1-73 

A microprocessor system is concerned with the tiine data 
is valid after RD goes low. See Figure.7. In order to calcu­
late memory read access tmes, the dynamic' flAM's A.C: 
specifications must be'examined, 'especially the RA8-ac­
cess time (tRAC) and the CAS.access time (tCAC). Most 
configurations will be CA&:access limited; I.e., the data 
from fhe RAM will· be stabletcc,m'ax (8202A) +tCAC 
(RAM) after a memory read cycle is started. Be sure to 
add any delays (due to buffers, data latches, etc.) to cal-
culate the overall read access time. ' 

Since the 8202A normally performs "early-write" cycles, 
the data must be stable at the RAM data inputs by the time 
CAS goes active, including the RAM's data setup time. If 
the system does not normally' guarantee sufficient write 
data setup, you must either delay the WR input signal or 
delay the 8202A WE output. ' 

Delaying the WR input will delay all 8202A timing, including 
the READY handshake Signals, SACK and XACK, which 
may increase the number of WAIT states generated by the 
CPU. 

If the WE outpUHs externally delayed beyond the C,4;S ac­
tive transition, then the RAM will use the falling edge of· WE 
to strobe the write data into the RAM. This WE transition 
should not occur too late dUring ;the .cAS active transition, 
or else the WE to CAS requirements of the RAM will not be 
met. 

RD~;-' I "--------~I:------' 
!--I l---,---,-IRLOV to I 
I· '1 

DATA _-..,... ___ -«r. ~, ,-.:--.,..'""8-
I :. 
t..--tRAC~ 

.. ~ '1r-
.. I 

I 'CAe I 
'---:l 

CAS -'. ---'-----....'Z i r-
Figure 7. Read Access Time 

AFN 01838A 



8202A 

2118 
DYNAMIC RAM ARRAY 

.r;--------
, r---'" 

BAL 

AS-15 

~ 
ALO-6 OUTO_6 

I'" A~;-6. 
AHO·6 

'. , ' .. ' 

ALE BO-1 

~.' .. 
D'N 

8202A :1 
DO,!-JT 808a 

(16K "MODEj WE 

~ 
WE ". 

ADO-7 CAS CAS :u RD 

=~ RD/S1 RASa r-- RAS 
0lN DOUT 

WR WR 1 ---I: 

Bl, 

RAS, ~ -
--< SACK 

RAS2 .~ AO-. 
RAS3 

.. XACK 

I O'N 

~ 
we' Dour 

CAS Ll r- RAS 
DIN DOUT -
il 

+ ~ AO-. 

D'N 
Dour 

f=: We"' d CAS 
:--,- r-- RAS 

DIN DOUT 

ET. -
BAL 

. 

~ AO-. 

I D'N 

~ 
WE DIN ·1 DII1;oUT 

D'N DOUT ~T 
DOUT 

~~/ 
CAS D'N O'N DOUl 
RAS DOUT 

DOUT 
DIN DOUT 

1 j T T I 
DATA BUS DATA IN 

LATCH \[ 

'---

Figure 8. Typical 8088 System 

1-74 AFN 01838A 



8202A 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ............ O·C to 70·C 
Storage Temperature ................ -65·C to + 150'C 
Voltage On any Pin 

With Respect to Ground ................ -0.5V to +7V4 
Power Dissipation ................ · ............ 1.5 Watts 

'NOTE: $trflsSfiS abovfI thosfI listfld undflr "Absolutfl Maxi­
mum Ratings" may causfl pflrmanflnt damagfl to the device. 
This Is a stress ~ating only and functional operation of the de­
vice at these or any othflr conditions above thosfl indicated in 
the operational sections of this specification ;s no, impiifld. 
Exposure to absolutfl maximum rating conditions for flX-
tflnded pflr/ods may affflct device rfl/iabllity. . 

D.C. CHARACTERISTICS TA '" o·c to 70·C· VCC = 50V ± 10%' GND = OV , 

Symbol Parameter 

Vc Input Clamp Voltage 

ICC Power Supply Current 

IF Forwsrd Input Current 
ClK 
All Other Inputs3 

IR Reverse Input Current3 

Val Output low Voltage 
SACK,XACK 
All Other Outputs 

VOH Output High Voltage 
SACK,XACK 
All Other Outputs 

Vil Input low Voltage 

VIHI Input High Voltage 

VIH2 Option Voltage 

CIN Input Capacitance 

NOTES: 
1.IR=200 mA'torpln 37 (elK) for external clock mode. 
2. For test mode RD & WR must be held at GND. 
3. Except tor pin 36. 
4. 

+12 Yon 1 K 

±10% 

5.1 K 

5.1 K 

Min 

2.4 
2.S 

2.0 

36 OPz 

S20lA 

25 OPI 

18 OP3 

Resistor T~ranc.: ± 5% 

1-75 

Max Unite Teet Conditio". 
-1.0 V IC =.,..5 mA 

,,, 

270 mA :: 

-2.0 mA VF = 0.45V 
-320 p.A VF = 0.45V 

40 p.A VR = Vee (Note 1) 

0.45 V IOL=5mA 
0.45 V IOl=3mA 

Vil 0;= 0.S5V 
V IOH = -1 rnA 
V IOH= -1 mA 

0.8 V VCC = 5.0V (Note 2) 

V VCC = 5.0V 

V (Note 4) 

F=IMHz 
30 pF VBIAS = 2.5V, VCC = 5V 

TA'" 25·C 

AFNOI838A 



8202A 

A.C. CHARACTERISTICS 
TA = o·c to 70·C, VCC = 5V ± 10% 

Measurements made with respect to RASO-RAS3, CAS, WE,OUTO-OUT6 are at 2.4V and 0.8V. All 
other pins are measured at 1.5V. All times are in nsec. 

Symbol Parameter Min Max 

tp Clock Period 40 54 

tPH External Clock High Time 20 

tpL External Clock Low Time-above (» 20 mHz 17 

tpL External Clock Low Time-below «) 20 mHz 20 

tRC Memory Cycle Time 10tp - 30 12tp 

tREF Refresh Time (64 cycles-4K mode) 548tp 576tp 

tREF Refresh Time (128 cycles-16K mode) 264tp 288tp 

tRP RAS Precharge Time 4tp - 30 

tRSH RAS Hold After CAS 5tp - 30 

tASR Address Setup to RAS tp - 30 

tRAH Address Hold From RAS tp - 10 

tASC Address Setup to CAS tp - 30 

tCAH Address Hold from CAS 5tp - 20 

tCAS CAS Pulse Width 5tp - 10 

twcs WE Setup to CAS tp - 40 

tWCH WE Hold After CAS 5tp - 35 

tRS RD, WR, ALE, REFRQ delay from RAS Stp 

tMRP RD, WR setup to RAS 0 

tRMS REFRQ setup to RD, WR 2tp 

tRMP REFRQ setup to RAS 2tp 

tpcs PCS Setup to RD, WR, ALE 20 

tAL S 1 Setup to ALE 15 

tLA S 1 Hold from ALE 30 

tCR RD, WR, ALE to RAS Delay tp + 30 2tp + 70 

tcc RD, WR, ALE to CAS Delay 3tp + 25 4tp + 85 

tsc CMD Setup to Clock 15 

tMRS RD, WR setup to REFRQ 5 

tCA RD, WR, ALE to SACK Delay 2tp + 47 

tcx CAS to XACK Delay 5tp - 25 5tp + 20 

tcs CAS to SACK Delay 5tp - 25 5tp + 40 

tACK XACK to CAS Setup 10 

txw XACK Pulse Width tp - 25 

tCK SACK, XACK turn·off Delay 35 

tKCH CMD Inactive Hold after SACK, XACK 10 

tLL REFRQ Pulse Width 20 

tCHS CMD Hold Time 30 

tRFR REFRQ to RAS Delay 4tp + 100 

tww WR to WE Delay 0 50 

tAD CPU Address Delay 0 40 

1·76 

Notes 

4,5 

3 

3 

3 

3 

3 

8 

5 

5 

2 

2 

1 

2 

2 

7 

6 

8 

3 

AFN 01838A 



WAVEFORMS 
Normal Read or Write Cycle 

Fffi,WR 

Advanced Read Mode 

ALE 

8202A 

.-~~---. 

~~~~~.~--------------~--' 

. tcc
-MAX

...-tCA--""-

1·77 AFN 01838A

WAVEFORMS (cont'd)
Memory Compatibility Timing

8202A

:~~ ~ ________________ V_A_LlD_A_OO __ RE_S_S __________________ ~~ ____________________________ _

-4---- ~~~ -----. "*-~~-.

\
tRSH

I
ICAS

r\ V
I--'ASR- f-IRAH- j+-IASC_ _ICAH_

aUTo-OUT6 ~ ROW ~ COLUMN K

Write Cycle Timing

\ /
\ J

.1
'CIJ~- .. IN

~~c,.~~ --- tww -
\ / I

IWCS IWCH

. ICC
MIN

. ICC
MAX

1·78 AFN 01838A

inter 8202A

WAVEFORMS (cont'd)
Read or Write Followed By External Refresh

iii'i,WR

REFRQ

1----- tAMP ------1 . .-- tRP--"

1------- IRC ------.. 1

I----:.Ii~ -----1\

I_--__ ~~----+~--~-J

External Refresh Followed By Read or Write

RD, \Vii ---~W~'-~+-~~~~:::~-~-~-----~-~-~-------_-~'-I----------------------
-------~

REFRQ

\~

1·79 AFN 01838A

8202A

WAVEFORMS (cont'd)
Clock And System Timing

CLK

RD, WR, ALE

Table 2 8202A Output Test
Loading.

Test Load
Pin

SACK.XACK CL = 30 pF
OUTo-OUTe CL = 1eo pF
RASo-RAS3 CL = eo pF
WE CL = 224 pF
CAS CL = 320 pF

NOTES:
I. tsc is a reference point only. ALE. RD. WR. and REFRQ inputs do

not have to be externally synchronized to 8202A clock.
2. If tRS min and tMRS min are met t~en. tCA. tCR. and tcc are

valid. otherwise ICS is valid.
3. tASR. IRAH. IASC. tCAH. and IRSH depend upon 80-81 and CPU

address,.remainin,9 slable Ihroughoul the memory cycle. The, ad­
dress inpuls are not latched by Ihe 8202A.

4. For back-Io-back refresh cycles. IRC max = 13tp
5. IRC max is valid only if IRMP min is met (READ. WRITE followed

by REFRESH) or IMRP min is mel (REFRESH followed by READ.
WRITE).

6. IRFR is valid only if IRS min and IRMS min are met.
7. txw min applies when RD. WR has already gone high. Otherwise

XACK follows RD. WR. '
8. WE goes high according to tWCHor tWW. whichever occurs

first.

1-80 AFN 01838A

inter 820.~A ..

The typical rising and falling characteristic curves
can be used to determine the effects of capacitive
loading on the A.C. Timing Parameters. Using this

design tool in conjunction with the /timing
waveforms. the designer can .determine typical tim-
ingshifts based on system capacitive load. .

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS

Ur-__ -. +-........ -. ,-.... ~-. ,-........ -,-........ ~~~~~·Il~~~NC~E~:P~F

u~----~~~~ .. ~~--~--__ ~--__ -+ ____ -+ ____ -+ ____ -+ ____ ~

O.OL-........ ~ t-........ ~ ~ ~ ~ ~ ~ ~~ ~

~5n.~ TIME

5.0 r-........ """T +-........ -. ,-........ -. -,-........ -,-........ .;;;~.;;,~~I~"'~;.;.NC;:..;E;;.;:P:c,F

NOTE: TYPICAL CONDITIONS:
Use the Test Load as the base capacitance for estimating timing
shifts for system critical timing parameters.

TA = 25°C
VCC= +5V
tp=50ns

Pins not under test are loaded with Test Load
capacitance.

1·81

inter 8202A

Example: Find the effect on tCR and tcc using 64
2118 Dynamic RAMs configured in 4 banks.

1. Determine the typical RAS and CAS capacitance:
Fromthe data sheet RAS = 4 pF and CAS = 4 pF.
:. RAS load = 64 pF + board capacitance.

CAS load = 256 pF + board capacitance.
Assume 2 pF/in (trace length) for board
capacitance.

1·82

2. From the waveform diagrams, we determine that
the fallinQ. edge timing is needed for tCR and tcc.
Next find the curve that best approximates the
test load; i.e., 68 pF for RAS and 330 pF for CAS.

3. If we use 72 pF for RAS loading, then the tcR
(max.) spec should be increased by about 1 ns.
Similarly if we use 288 pF for CAS, then tcc (min.)
and (max.) should decrease about 1 ns.

8203
·64K DYNAMIC RAM CO.NTROLLEFf

• Provides All Signals Necessary to Control
64K (2164), 16K (2117, 2118) and 4K
(2104A) Dynamic Memories

• Directly Addresses and Drives Up to 64
Devices Without External Drivers

• Provides Address Multiplexing and
Strobes

• Provides a Refresh Timer and a Refresh
Counter

• Provides Refresh/Access Arbitration

• External or Internal Clock Capability

• FUlly· Comp~tible with Intel® 8080A,
808fjA,iAPX 88, and iAPX86 Family Micro­
processors

• Decodes CPU Status for Advanced Read
Capability in 16K mode

• Provides System Acknowledge and Trans­
fer Acknowledge Signals

• Refresh Cycles May be Internally or Exter­
nally Requested (For Transparent Refresh)

• Internal Series Damping Resistors on All
Outputs

The IntelOO 8203 is a Dynamic Ram System Controller designed to provide all signals necessary to use 2164,2118,2117,
or 2104A Dynamic RAMs in microcomputer systems. The 8203 provides multiplexed addresses and address strobes,
refresh logiC, refresh/access arbitration. Refresh cycles can be started internally or externally .

ROW
..

iii'fo-i5ffi'7

Figure 1. 8203 Block Diagram

...... __ TOR

1-83

....
AM,
AM,

Al,
OUT, "',

m ...
"""

ALS/OP3

Figure 2. Pin Configuration

Pin
Symbol No. Type

ALO 6
ALl 8
AL2 10
AL3 12
AL4 14
AL5 16
AL6/0P3 18

AHO 5
AHl 4
AH2 3
AH3 2
AH4 1
AH5 39
AH6 38

BO/AL7 24
Bl/ 0P l/ 25
AH7

PCS 33 I

WR 31 I

RD/Sl 32 I

REFRQ/ 34 I
ALE

aUTO 7 0
OUTl 9 0
OUT2 11 0
OUT3 13 0
OUT4 15 0
OUT5 17 0
OUT6 19 0

WE 28 0

CAS 27 0

8203

Table 1. Pin Descriptions

Name and Function

Address Low: CPU ad!lress in·
puts used to generate memory
row address.
AL6/0P3 used to select 4K
RAM mode.

Address High: CPU address in·
puts used to generE\te memory
column address.

Bank Select Inputs: Used to
gate the appropriate RAS output
for a memory cycle. Bl /OPl op·
tion used to select the Advanced
Read Mode. (Not available in
64K mode.) See Figure 5.
When in 64K RAM Mode, pins 24
E\nd 25 operE\te E\S the AL 7 and
AH7 address inputs.

Protected Chip Select: Used to
enable the memory read and
write inputs. Once a cycle is
started, it will not abort even if
PCS goes inactive before cycle
completion.

Memory Write Request.

Memory Read Request: S 1
function used in Advanced Read
mode selected by OPl (pin 25).

External Refresh Request: ALE
function used in Advanced Read
mode, selected by OPl (pin 25).

Output of· the Multiplexer:
These outputs are· designed to
drive the addresses of the Dy·
namic RAM array. (Note that the
OUTO.7 pins do not require in-
verters or drivers for proper op-
eration.

Write Enable: Drives the Write
Enable inputs of the Dynamic
RAM array.

Column Address Strobe: This
output is used to latch the Col-
umn Address into the Dynamic
RAM array.

1-84

Pin
Symbol No. Type Name and Function

RASO 21 0 Row Address Strobe: Used to
RASl 22 0 latch the Row Address into the
RAS2/ 23 0 bank of dynamic RAMs, select-
OUTt ed by the 8203 Bank Select pins
RAS3/BO 26 I/O (BO, Bl /OP1). In 64K mode,

only RASO and RASl are avai.
able; pin 23 operates as 5iJf7
and pin 26 operates as the BO
bank select input.

XACK 29 0 Transfer Acknowledge: This
output is a strobe indicating val-
id data during a read cycle or
data written during a write cycle.
XACK can be used to latch valid
data from the RAM array.

SACK 30 0 System Acknowledge: This
output indicates the beginning of
a memory access cycle. It can
be used as an advanced trans-
fer acknowledge to eliminate
wait states. (Note: If a memory
access request is made during a
refresh cycle, SACK is delayed
until XACK in the memory ac-

c cess cycle).

XO/OP2 36 I/O Oscillator Inputs: These inputs
Xl/CLK 37 I/O are designed for a quartz crystal

to control the frequency of the
oscillator. If XO/OP2 is directly
pulled up to VCC or if XO/OP2 is
connected to a 1 KO resistor
pulled to + 12V then Xl / CLK be-
comes a TTL input for an exter-
nal clock.

16K/64K 35 I Mode Select: This input selects
16KniOde (2117, 2118) or 64K
mode (2164). Pins 23-26
change function based on thll
mode of operation.

VCC 40 . Power Supply: +5V.

GND 20 Ground.

Functional Description
The 8203 provides a complete dynamic RAM controller for
microprocessor systems as well as expansion memory
boards. All of the necessary control signals are provided
for 2164, 2118, 2117, and 2104A dynamic RAM's.

The 8203 has three modes, one for 4K dynamic RAM's,
one for 16K's and one for 64K's, controlled by pin 35 and
p,n 18.

AFN 00203E

inter 8203

Xo WE
I
I' ~

cs* =
1KO I ±.5% RASO

I X1
1_- C8..L. iilIS1

68O\l T 8203

±5% I RAS2 .J

-:" RAS3

Cs < 10pF XACK

FUNDAMENTAL XTAL SACK

Figure 3. Crystal Operation

All 8203 timing is generated from a single reference clock.
This clock is provided via an external oscillator or an on­
chip crystal oscillator. All output signal transitions'are syn­
chronous with respect to this clock reference, except for
the CPU handshake signals SACK and XACK.

CPU memory requests normally use the AD and WR in'
puts. The Advanced-Read mode allows ALE and S 1 to be
used in place of .the RDinput.

Failsafe refresh is provided via an internal timer which gen­
erates refresh requests. Refresh requests can also be
generated via the REFRQ input.

An on-chip synchronizer I arbiter prevents memory and re­
fresh requests from affecting a cycle in progress. The
READ, WRITE, and external REFRESH requests may be
asynchronous, to the 8203 clock; on-chip logic will syn­
chronize the requests, and the arbiter will decide if the re­
quests should be delayed, pending completion of a cycle in
progress.

16K/64K Option Selection
Pin 35 is a strap input that cOntrols the two 8203 modes.
Figure 4 shows the four pins that are multipl~xed. In 16K
mode (pin 35 tied to Vee or left open), the 8203 has tWo
Bank Select inputs to aelect one of four RAS outputs. In
this mode, the 8203 is exactly compatible with the Intel
8202A Dynamic RAM Controller. In 64K mode (pin 35 tied
to GND), there is only one Bank Select input (pin 26) to
select the two RAS outputs. More than two banks of 84K
dynamic RAM's can be used with external logic,

Other Option Selections
The 8203 has three strapping;aptions. When OP1 is se­
lected (16K IT!9de only), pin 32 cha~ges from a RD input to
an S 1 input, and pin 34 change~ from a REFRQ input to an
ALE input. See "Refresh Cycles· and "Read Cycles· for
more detail. OP1 is selected by tying pin 25 to +12V
through a 5.1K ohm resistor.

When OP2 is aelected, by connecting pin 36 to Vee, pin
37 changes from a crystal input (X1) to the ClK input for
anexternel TIL clock.

OP3 is selected by connecting pin 18 to + 12V through a
5.1K ohm resistor, the 8203 will change its internal refresh
timer from 128-row refresh (2164,2118,2117) to 64-row
refresh (2104A).

Refresh Timer
The refresh timer is used to monitor the time since the last
refresh cycle occurred. When the appropriate amount of
time has elapsed, the refresh timer will request a refresh
cycle. External refresh requests will reset the refresh
timer.

Refresh Counter
The refresh counter is used to sequentially refresh all of
the memory's rows. The 8-bit counter is incremented after
every refresh cycle.

Pin # 16K Function 64K Function

23 RAS2 Address Output (OUT7)
24 Bank Select (BO) Address Input (AL 7)
25 Bank Select (B 1) Address Input (AH7)
26 RAS3 Bank Select (BO)

Figure 4. 16K/64K Mode Selection

Inputs Outputs

BO B1 RASO RAS1 RAS2 RAS3

0 0 0 1 1 1
16K 0 ,1 1 0 1 1
Mode 1 0 1 1 0 1

1 1 1 1 1 0

64K 0 - 0 1 - -
Mode 1 - 1 0 - -

Figure 5. Bank Selection

Description Pin # Normal Function Option Function

B1/0P1 (16Ko~ly)/ AH7 25 Bank (RAS) Select --"- Advanced-Read Mode

XO/OP2 36 Internal (Crystal) Oscillator External Oscillator

AL6/0P3 18 Address Input 64-Row Refresh

Figure 6. 8203 Option Selection

1-85 AFN 00203E

8203

Address Multiplexer
The address multiplexer takes the address inputs and the
refresh counter outputs, and gates them onto the address
outputs at the appropriate time. The address outputs, in
conjunction with the RAS and CAS outputs, determine the
address used by the dynamic RAMs for read, write, and
refresh cycles. During the first part of a read or write cy­
cle, ALO-AL7 are gated to OUTO-OUT7, then AHO-AH7
are gated to the address outputs.

During a fefresh cycle, the refresh counter is gated onto
the address outputs. All refresh cycles are RAS-only re­
fresh (CAS inactive, RAS active).

To minimize buffer delay, the information on the address
outputs is inverted from that on the address inputs.

aUTO-oUT 7 do not need inverters or buffers unless addi­
tional drive is required.

Synchronizer / Arbiter
The 8203 has three inputs, REFRQ / ALE (pin 34), RD (pin
32) and WR (pin 31). The RD and WR inputs allow an ex­
ternal CPU to request a memory read or write cycle, re­
spectively. The REFRQ / ALE allows refresh requests to
be requested external to the 8203.

All three of these inputs may be asynchronous with re­
spect to the 8203's clock. The arbiter will resolve conflicts
between refresh and memory requests, for both pending
cycles and cycles in progress. Read and write requests
will be given priority over refresh requests.

System Operation
The 8203 is always in one of the following states:

a) IDLE
b) TEST Cycle
c) REFRESH Cycle
d) READ Cycle
e) WRITE Cycle

The 8203 is normally in the IDLE state. Whenever one of
the other cycles is requested, the 8203 will leave the IDLE
state to perform the desired cycle. If no other cycles are
pending, the 8203 will return to the IDLE state.

Test Cycle
The TEST Cycle is used to check operation of several
8203 internal functions. TEST cycles are requested by ac­
tivating the PCS, RD and WR inputs. The TEST Cycle will
reset the refresh address counter and perform a WRITE
Cycle. The TEST Cycle should not be used in normal sys­
tem operation, since it would affect the dynamic RAM re­
fresh.

1-86

Refresh Cycles
The 8203 has two ways of providing dynamic RAM
refresh:

1) Internal (failsafe) refresh
2) External (hidden) refresh

Both types of 8203 refresh cycles activate all of the RAS
outputs, while CAS, WE, SACK, and XACK remain
inactive.

Internal refresh is generated by the on-chip refresh timer.
The timer uses the 8203 clock to ensure that refresh of all
rows of the dynamic RAM occurs every 2 milliseconds
(128 cycles) or every 4 milliseconds (256 cycles). If
REFRQ is inactive, the refresh timer will request a refresh
cycle every 10-16 microseconds.

External refresh is requested via the REFRQ input (pin 34).
External refresh control is not available when the Ad­
vanced-Read mode is selected. External refresh requests
are latched, then synchronized to the 8203 clock.

The arbiter will allow the refresh request to start a refresh
cycle only if the 8203 is not in the middle of a cycle.

Simultaneous memory request and external refresh re­
quest will result in the memory request being honored first.
This 8203 characteristic can be used to "hide" refresh cy­
cles during system operation. A circuit similar to Figure 7
can be used to decode the CPU's instruction fetch status
to generate an external refresh request. The refresh re­
quest is latched while the 8203 performs the instruction
fetch; the refresh cycle will start immediately after the
memory cycle is completed, even if the RD input has not
gone inactive. If the CPU's instruction decode tinie is long
enough, the 8203 can complete the refresh cycle before
the next memory request is generated. .

Certain system configurations require complete external
refresh requests. If external refresh is requested faster
than the minimum internal refresh timer (tREF), then, in ef­
fect, all refresh cycles will be caulled by the external re­
fresh request, and the internal refresh tinier will never
generate a refresh request.

SO~ ---- REFRQ

-"
_ SACK or
'----------- CAS

8203

Figure 7 _ Hidden Refresh

AFN 00203E

-nt_I" I •• -e- 8203

Read Cycles
The 8203 can accept two different types ofrhemory Read
requests:

1) Normal Read, via the RD input
2) Advanced Read, using the S1 and ALE inputs (16K

mode only)

The user can select the desired Read request configura­
tion via the B1 /OP1 hardware strapping option on pin 25.

Normal Read Advanced Read

Pin 25 81 input +12 Volt Option
Pin 32 RD input Sl input

" Pin 34 'REFRQ input ALE input
RAM banks 4 (RAS 0.3) 2 (RAS 2-3)
Ext. Refresh Yes No

Figure 8. 8203 Read Options

Normal Re~ds are requested by activating the RD input,
and keeping it active until the 8203 responds with an
XACK pulse. The RD input can go inactive as soon as the
cl'mmand hold time (tCHS) is met.

Advanced Read cycles are requested by pulsing ALE
while Sfis active; if S1 is inactive (low) ALE is ignored.
Advanced Read timing is similiar to Normal Read timing,
except the falling edge of ALE is used as the cycle start
reference.

If a Read cycle is requested while. a refresh cycle is in
progress, then .. the. 8203 will set the internal delayed­
SACK latch .. When the Read cycle is eventually started,
the 8203 will delay the active SACK transition until XACK
goes active, as. shown in ~he AC timing diagrams. This de­
lay was designed to co.rnpensate for the CPU's .READY
setup and hold times. The delayed-SACK latch is cleared
after every READ cycle.

Based on system requirements, either SACK or XACK can
be used to generate the CPU READY signal. XACK will
normally be used; if the CPU can tolerate an advanced
READY, then SACK can be used, but only if the CPU can
tolerate the amount of advance provided by SACK. If
SACK arrives too early to provide the appropriate number
of WAIT states, then either XACK or a delayed form of
SACK should be used.

Write Cycles
Write cycles are similiar to Normal Read cycles, except
for the WE output. WE is held inactive for Read cycles, but
goes active for Write cycles. All 8203 Write cycles are
"early-write" cycles; WE goes active before CAS goes ac­
tive by an amount of time sufficient to keep the dynamic
RAM output buffers turned off.

General System Considerations
All memory requests (Normal Reads, Advanced Reads,
Writes) are qualified by the PCS input. PCS should be sta­
ble, either active· or inactive, prior to the leading edge of
RD, WR, or ALE. Systems which use battery backup
should pullup PCS to prevent erroneous memory requests.

1·87

In order to minimize propagation delay, the 8203 uses an
inverting address multiplexer without latches. The system
must provide adequate address setup and hold times to
guarantee RAS and CAS setup and hold times for the
RAM. The tAD ·AC parameter should be used for this sys­
tem calculation.

The BO-B i' inputs are similiar to the address inputs in that
they are not latched. BO and B1 should not be changed
during a memory cycle, since they directly control which
RAS output is activated.

The 8203 uses a two-stage synchronizer for the memory
request inputs (RD, WR, ALE), and a.separate two stage
synchronizer for. the external refresh input (REFRQ). As
with any synchro.nizer, there is always a finite probability
of metastable states inducing system errors. The 8203
synchronizer was designed to have a system error rate
less than 1 memory cycle .every three years based on the
full operating range of the 8203.

A microprocessor system is concerned when the data is
valid after RD goes low. See Figure 9.10 order to calculate
memory read access times, the dynamic RAM's A.C.
specifications must be examined, espeCially the RAS-ac­
cess time (tRAC) and the CAS-access time (tCAC). Most
configurations will be CAS-access limited; i.e., the data
from the RAM will be stable tcc,max (8203) + tCAC
(RAM).after a memory read cycle is started. Be sure to
add any delays (due to buffers, data latches, etc.) to cal­
culate the overall read access time.

Since the 8203 normally performs "early-write" cycles,
the data must be stable at the RAM data inputs by the time
CAS goes active, including the RAM's data setup time. If
the system dOeS not normally guarantee sufficient write
data setup, you must either delay the WR input signal or
delay the 8203 WE output. '

Delaying the WR input will delay all 8203 timing, including
the READY handshake signals, SACK and XACK, which
may increase the number of WAIT states generated by the
CPU.

If the WE output is externally delayed beyond the CAS ac­
tive transition, then the RAM will use the falling edge of WE
to strobe the write data into the RAM. This WE transition
should not occur too late during the CAS active transition,
or else the WE to CAS requirements of the RAM will not be
met.

AFN 002Q3E

inter 8203

RD~ ;-, ________ "'!', ___ --J

",' ._-__ ltRLOV .. , , ,
DATA------« s-

, ' '-IRAC--l
I I W----"''\ i ;-

I

~
~--------\ i;-

Figure 9. Read Access Time

As-'s AL0-6 OUTO-6

~
-,I A0-6

AHo-6

ALE ,
6068

8203
(16K MODE) WE =: WE

ADO-7 CAS fAS

~ RD/S, RAS. - .AS
.D DIN DoUT

WR WR n
RAS, e---

~
-

~
RAS2 I:>- Ao-s

SACK RAS3
XACK

=: WE
fAS -- RAS
DINDoUT

li
;=:> Ao-O

:::: WE
fAS - -- RAS
DtNDOUT

TT. -
~ Ao-O

- WE

~S~
CAS DIN
RAS Dour DIN Dour

DATA BUS DATA IN /:

T T 1
LATCH \.

_'I

Figure 10. Typical 8088 System

1·88

DIN
DoUT

1

2118
DYNAMIC RAM ARRAY

1.
I

+
+
.. 1..

,IDlN DiN DoUT
DouT

1

-

DIN

DouT

Ll

DIN
I DOUT

:u

DIN

- IT

DIN
DIN DOUT ,..!2."T

DOUT

AFN 00203E

8203

8284A READ MRDC READ

WRITE MWTC WRITE

BHE
MULTIBUS

RDY TYPE
SYSTEM

BUS
B086 I HIGH QVTE

BHEN WRITE
ADRO

I A~R1 A~'.
OTHER 1 ADRF AD'9 1
READY

BHE INPUTS I I 2164

I I 258K
CAS BYTES

I I
00-15 1 I

DATA 00 . DI

I
I ,.
I ,.
I DATA

DATA
I 00-15 LATCH

I
1

1

1

1

1

1

1

I
I
1 CS

:1 WR,
I
I

I I
I I

XACK XACK· XACK

FiSUt.'f1.808~/256K Byte System

1~89 AFN 00203E

8203

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O°C tq 70°C
Storage Temperature -65°C to +150°C
Voltage On any Pin

With Respect to Ground -0.5V to +7V4
Power Dissipation 1.5 Watts

'NOTE: Stresses above those lis,ted iJnder "Absolute Maxi­
mum Ratings" may cause permanent damage.to the device.
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in
the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for ex­
tended periods may affect device reliability.

D.C. CHARACTERISTICS TA = O°C to 70°C; VCC = 50V + 10% (5 OV + 5% for 6203-3)' GND = OV - -
Symbol Parameter

Vc Input Clamp Voltage

ICC Power Supply Current

IF 'Forward'input Current
ClK
All Other Inputs3

IR Reverse Input Current3 ,

VOL Output low Voltage
SACK,XACK
All Other Outputs

VOH Output High Voltage
SACK,XACK
All Other Outputs

Vil Input low Voltage

VIH1 Input High Voltage

VIH2 Option Voltage

CIN Input Capacitance

NOTES:
1. IR= 200 rnA for pin 37 (elK) for external clock mode.
2. For lesl mode RD & WR musl be held al,GND.
3. Except for pin 36 in XTAL mode.
4.

+12 von 5.1KO 25

±10%

S.1KO 18

Rnl.tor Tolerance: ± 5%

OPI

8203

OP3

Min

2.4
2.6

2.0

Max Units Test CondHlons

-1.0 V "IC = -5 rnA

270 rnA

-2.0 rnA VF = 0.45V ,

"':320 p.A VF = 0.45V

40 p.A VR=VCC (Note 1)

0.45 V IOl=5mA 4

0.45 V 10l = 3mA

Vil = 0.65 V
V 10H = -1 rnA
V IOH= -1 rnA

0.8 V VCC = 5.0V (Note 2)

VCC V VCC = 5.0V

VCC V (Note 3)

F =,1 MHz
30 pF VBIAS = 2.5V, VCC = 5V

TA = 25°C

1-90 AFN 00203E

82'03

A.C. CHARACTERISTICS
TA = O·Clo 70·C;";(:c = 5V ± 10% (5.0V ±5% for 8203-3); GND = OV

, ,:,(

Meaaurementa.lIlade wjlhrespecllq RASO~RAS3. 'CAS. WE. OUTo~0iJf6 are al 2.4V and 0.8V.; All
olher pins are measured al 1 6V "" limes 'are in nsec .

Symbol Parameter Min Max Note.

Ip Clock Period 40 54

IpH Exlernal Clock High Time 20

IpL ,. Exlernal Clock;LowTime~above(»20 mHz 17 ",: ".'
IpL Exlernai Clock Low Time-below (::5) 20 mHz 20

IRC Memory Cycle Time IOtp - 30 121p 4.6

IREF Refresh Time (64.cycles-4K mode) 6481p . 576tp

IREF Refresh Time (128 cycles) 2641p 2881p

IRP ~ Precharge Time 41p - 30

IRSH RAS Hold Afler CAS 51p - 30 3

tASR AddressSelup 10 RAS tp - 30 3

tRAH Address Hold From RAS Ip - 10 3

tASC Address Setup to CAS tp - 30 3

teAH Address Hold from CAS 5tp - 20 3

tCAS CAS Pulse Width 5tp - 10

twcs WE Selilpto CAS tp -40

IWCH WE Hold After CAS 5tp - 36 8

tRS RD. WR. ALE. REFRQ delay froinRAS 51p 2.6

tMRP RD. WR selup to RAS 0 5

IRMS . REFRQ setup toRD; WR 2tp 6

IRMP REFRQ setup 10 RAS 2tp 5

tpcs PCS Setup to RD. WR. ALE 20

tAL S 1 Setup to ALE 16

tLA S 1 Hold from ALE 30

tCR RD. WR. ALE to RAS Delay tp + 30 21p + 70 2

ICC RD. WR. ALE 10 CAS Delay 31p + 25 4tp + 85 2

tsc CMD Setup to Clock 15 '1

tMRS FlP, WR setup 10 REFRQ 5 2

ICA RD. WR. ALE 10 SACK Delay 2tp + 47 2

tcx CAS 10 XACK Delay 51p - 25 5tp + 20

ICS CAS to SACK Delay 6tp - 26 5t!> + 40 2

tACK XACK to CAS Setup 10

txw XACK Pulse Width tp - 25 .

tCK SACK. XACK lurn-ofLpitlay 35

tKCH CMD Inactive Hold after SACK. XACK 10

tLL REFRQ Pulse Width 20

tCHS CMD Hold Time 30

tRFR REFRQ to RAS Delay 4tp + 100 6

tww WR 10 WE Delay a 50 8

tAD CPU Address Delay a 40 3

1-91 AFN 00203E

8203

WAVEFORMS
Normal Read or Write Cycle

iiii,WR

Advanced Read Mode

S, _____ { tAL -tLA}--------------

ALE

1·92 AFN 00203E

inter

WAVEFORMS (cont'd)
Memory Compatibility Timing

8203

AL~;~6~ ~~..,.---VALIDADDRESS -t AHO-AH6

-~",.'i- ::'2-

1\
tRSH

'I
I

tCAS

\ I
_tASR __

I-IRAH- !--tASC_ ~tCAH_

}. ROW X COLUMN K

Write Cycle Timing

\ I
\ /

.1

-~~
.--:i~---. - tww -

\ I I
... twcs twCH .

1 tec
MIN

1 tcc
MAX

1·93 AFN 00203E

8203

WAVEFORMS (cont'd)
Read or Write Followed By External Refresh

RD,WR

REFRQ

1+---------tRMp--------~

~-------------t~------------~I

1----:.\1~ ---------1\

I_----~~--------~-----J

External Refresh Followed By Read or Write

RD. Wi!

---.. ~.~-----------------tM-RP-------------------~--I---------------------
REFRQ

......--tLL

tRS --"'1"'---

1+------------ t~ ------------~

1·94 AFN 00203E

intJ

WAVEFORMS (cont'd)
Clock And System Timing

Ct.K

RD, Wli, ALE

Table 2 8203 Output Loading.
All specifications are
for the Test Load un­
less otherwise noted

Pin Test Load

SACK,XACK CL = 30 pF
aUTo-OUT6 CL = 160 pF
RASO-RAS3 CL = 60 pF
WE CL = 224 pF
CAS CL = 320 pF

NOTES:
1. . tsc is a reference point only. ALE, RD, WR, and REFRQ inputs do

not have to be externally synchronized to 8203 clock.
2. If tRS min and tMRS min are met then tCA, tCR, and tcc are valid,

otherwise tcs is valid.
3. tASR, tRAH, tASC, tCAH, and tRSH depend upon 80-81 and CPU

address remaining stable throughout the memory cycle. The ad­
dress inputs are not latched by the 8203.

4. For back-to-back refresh cycles, tRC max = 13tp
5. tRC max Is valid only if tRMP min is met (READ, WRITE followed

by REFRESH) or tMRP min is met (REFRESH followed by READ,
WRITE).

6. tRFR is valid only If tRS min and tRMS min are met.
7. txw min applies when RD, WR has already gone high. Otherwise

X'ACK follows RD, Wit
8. WE goes high according to tWCH or tww, whichever occurs

first.

8203

1-95 AFN 00203E

inter 8203

The typical rising and falling characteristic curves
can be used to determine the effects of capacitive
loading on the A.C. Timing Parameters. Using this

design tool in conjunction with the timing
waveforms, the designer can determine typical tim­
ing shifts based on system capacitive load.

A.C. CHARACTERISTICS FOR DIFFERENT CAPACITIVE LOADS

t.o .---__ -r ___ +-__ ---r_--,....-----r---,....---r----r--..:c=''PT'':::cI~T":::N::::C:.:!:~"

0.1 ~--+_d,~~3111iiii~::.---+_--_1_--_+_--_+---~--_1_--~

o.o~--~---t---~---~--~---~---L----L---~ __ ~ r.-t .. -j TIME

t.o ,-__ -, ___ -t-__ --, ___ -,--__ --, ___ -,--___ ,-__ -r __:C;;.:AP:y.";:.C;:.IT"....:N;.:C.:;.E:'-",'F

NOTE: TYPICAL CONDITIONS:

Use the Test Load as the base capacitance for estimating timing
shifts for system critical timing parameters.

TA = 25'C
Vcc = +5V
1p=50ns

Pins not under test are loaded with Test Load
capacitance.

1-96

8203

"Example:· Find the effect on tCR and tcc using .32
2164 Dynamic RAMs configl..lred in 2 banks.

1. Determine the typical RAS and CAS capacitance:
From the data sheet RAS = 5 pF and CAS = 5 pF.
:. RAS load = 80 pF + board capacitance;

CAS load = 160 pF + board capacitance.
Assum.e.2 pF/in (trace length) for board
capacitarice.

2. From the waveform diagrams, we determine that
the falling edge timing is needed for tCR and tec;

Next find the curve that best approximates the
test load; he., 68 pF for RAS and 330pF. for CAS.

3.· ·If we use 88 pF for RAS loading, then tCR (min.)
spec should be increased by about 1 ns, and tCR
(max.) spec should be increased by about 2 ns.
Similarly itwe use 176pF for CAS, then tee (min.)
should decrease by 3 ns and tcc (max.) should
decrease about 7 ris.

inter
8206

ERROR DETECTION AND CORRECTION UNIT

• Detects and Corrects All Single Bit
Errors

• Detects All Double Bit and Most
Multiple Bit Errors

• 52 ns Maximum for Detection; 67 ns
Maximum for Correction (16 Bit
System)

• Expandable to Handle 80 Bit Memories

• Syndrome Outputs for Error Logging

• Separate Input and Output
Busses-No Timing Strobes Required

• Supports Reads With and Without
Correction, Writes, Partial (Byte)
Writes, and Read-Modify-Writes

• HMOS Technology for Low Power

• 68 Pin Leadless JEDEC Package

• $ingle +5V Supply

The HMOS 8206 Error Detection and Correction Unit is a high-speed device that provides error detection and
correction for memory systems (static and dynamic) requiring high reliability and performance. Each 8206
handles 8 or 16 data bits and up to 8 check bits. 8206's can be cascaded to provide correction and detectionfor
up to 80 bits of data. Other 8206 features include the ability to handle byte writes, memory initialization, and
error logging.

D1o-15

STB-~3=~
CBIISYIo-7

SVO/CBO/PPOO-7 <:=-:::'==1
PPIIP08lNSL --P--->...J

L..---r--...,..:-T

PO""
NSLo-,

11

2 PO""------1 1----.. ERiiOii

...------1 f----_CE

18

18 <

Flgu!'.1. 8206 Block D1allram

1·98

8206

Table 1. iPill ,De~crlptlon

Symbol "';,' J~I"'~No.:' ,11pe ,:, :,.." (:' , ,Nam'.ndFunctlQn' ,', "',"

D10-15 1,68-61: I Datalri:These inputs accept a 16 bit data word from RAM for error detection
59-53 and/or correction.

CBI/SYlo ,':i:,' 5 I ,.: Check,BHs,ln[Syndrome In: In a single 8206 system, orin lhernaster in a multi- ,
CBI/SYI1 6 " I ' 8206 system,'these inputs accept the check bits (6 to 8) fronithe RAM. Ina
CBI/S¥!2 " <1 ·1 lIingle:8206 16 bit system, 'cBI0-5 are used. In slave 8206's these lW'uts accept
CBI/SYI3 8 I the syndrome from the master, wIth the syndromElla~c~ed,by R ,goil"lg low. ,
CBI/SYI,j 9 I
CBI/SYls 10 I
CBI/SYls 11 I
CBI/SYI7 12 I ,,' ", ,; , ", ," ,~, ,: ,

,

DO/WDIo 51 I/O :Data Out/Wrlte Data In: In a read' cycle, data ~ccepted ~10-15 appears at
DO/WDI1 50 I/O these outputs corrected if CRCT is low, or uncorrected if RCT is high. The eM
DO/WDI2 49 I/O, inputs- must be high to erable the output buffe~during the read cycle. In a
DO/WDI3 48 I/O write cycle, data to be written into the RAM is accepted' by these inputs for bGril-
DO/WDI4 471 ::~g putingthElwrite check bits . .!!! a,par:lial-write cycle, th!!»yt!l not to be modifil!d,
DO/WDls 46 aRpearsat eit~~r DOO-7 if BMail! high, or DOS-15 if BM1 is high; for writing to
DO/WDI6 45 I/O the RAM.)!\ft:I'en WZ is active, it causes the 8206 to output all zeros at D00-15,
DO/WDI7 44 I/O ~h the ~¥?per. write check bits on CBO. '
DO/WDIS 42 I/O ',.~ i :",1

,
DO/WDlg 41 I/O
DO/WDI'10 40 I/O
DOIWD'ln 39 I/O " .. :" .. ,

DO/WDI12 38 1/0
DO/WDI13 37 I/O
DO/WDI14 31l I/O
DO/WDI15 35 I/O

SYO/CBO/PP,Oo 23 " 0 Syndrome Out/Check ,Bits Out/Partial Parity Out: In,a single 8206 system, or
SYO/CBO/PP01 24 0 in the master in a multi-8206 system, the syndrome appears at these output!!
SYO/CBO/PP02 25 0 during a read. During a write, the write check bits appear. In slave 8206's the
SYO/CBO/PP03 27 0 partial parity bits used by the master appe,!ll at these outputs. The syndrome is
SYO/CBO/PP04 28 0 I!ltched (during read-modify-writes) by R/W going low.
SYO/CBO/PP05 29 0 t

SYO/CBO/PP06 30 0 '.'.'
SYO/CBO/PP07 31 0

PPlo/POSO 13 I Partial Parity In/Position: In the master in a multi"8206 system, these inputs
PPI1/POS1 14 I accept partial parity bits 0 and 1 from the slaves. In a slave 8206 these inputs in-

fori! n~f: its p()sition within the system (1 to 4). Not used in a single 8206
S¥S m. "

PPI2/NSLo 15 I Partial Parity In/Number of Slaves: In the master in a multi-8206 system, these
PPI3/NSL1 16 I inputs accept partial parity bits 2 ,lnd 3from the slaves. In a multi-8206 system

'" these inputs are used in slave number 1 tQ tell it'the total,nu,mber of slaves in the
, system '(1':to,.:4). Not used' in other slaves or ina single 8206 system.

PPI4/CE 17 I/O Partla,l parity In/Correctable Error: In the master in a multi-8206 system this
pin accepts partial parity. bit 4. It;lshlve number 1 only, or in a sin~ 8206
system, this'pin outputs the correctable error flag. CE is I~tched by R going
low. Not used in other slaves.

PPI5 :'e 18 I Partial Parity In: In the master in'a n1ulti-8206 system these pins accept partial
PPI6 19 I parity bits ~ to 7. The number of, partial parity bits equals the number of check
PPI7 ~O I bits. Not used in single 8206,systems or in slaves. ' "

ERROR 22 0 Error: Thi,s pin outputs the error flag ,in uingle 8206 system or in the master of
:;1 a multi-8206 system. It is latched by R/W going low. Not used in slaves. ,
CRCT 52 I Correct: When low this pin causes data correction d~ring a read or read-

modify-write cycle. When high, it causes error correction to be disabled,
although error checking is still enabled.

STB 2 I Strobe: STB is an input control used to strobe data at the DI inputs and check-
bits at the CBI/SYI inputs. The signal is active high to admit the inputs. The
signals are latched by the high-to-Iow transition of STB.

1·99 AFNO()1966A

inter 8206

Table 1. Pin Description (Continued)

Symbol Pin No. Type Name and Function

BMo 33 I Byte Marks: When high, the Oata Out pins a:re enabled fQ!.! read cycle. When
BM1 32 I low, th.!LPata Out buffers are tristated for a write cycle. BMo controls 000_7,

while BM1 controls 00S-15' In partial (byte) writes, the byte mark input is low
for the new byte to be written.

R/W 21 I Read/Write: When high this pin causes the 8206 to perform detection .and
correction (if CRCT is lOw). When low, it causes the 8206 to generate check bits.
On the high-to-Iow transition the syndrome is latched internally for read-
modify-write cycles.

WZ 34 I Write Zero: When low this input overrides the BMo-1 and R/W inputs to cause
the 8206 to output all zeros at 000-15 with the corresponding check bits at
CBOO_7. Used for memory initialization.

M/S 4 I Master/Slave: Input tells the 8206 whether it is a master (high) or a slave (low).
SEOCU 3 I Single EDC Unit: Input tells the master whether it is operating as a single 8206

(low) or as the master in a multi-8206 system (high). Not used in slaves.

Vee 60 I Power Supply: +5V

VSS 26,43 I Ground

FUNCTIONAL DESCRIPTION

The 8206 Error Detection and Correction Unit
provides greater memory system reliability through
its ability to detect and correct memory errors. It is a
single chip device that can detect and correct all
single bit errors and detect all double bit and some
higher multiple.bit errors. Some other odd multiple
bit errors (e.g., 5 bits in error) are interpreted as
single bit errors, and the CE flag is raised. While
some even multiple bit errors (e.g., 4 bits in error) are
interpreted as no error, moshre detected as double
bit errors. This error handling is a function of the
number of check bits used by the 8206 (see Figure 2)
and the specific Hamming code used. Errors in
check bits are not distinguished from errors in a
word.

For more information on error correction codes, see
Intel Application Notes AP-46 and AP-73.

A single 8206 handles 8 or 16 bits of data, and up to 5
8206's can be cascaded in order to handle data
paths of 80 bits. For a single 8206 8.bit system, the
0IS-15, 00/W0IS-15 and BM1 inputs are grounded.
See the Multi-Chip systems section for information
on 24-80 bit systems.

The 8206 has a "flow through" architecture. It sup·
ports two kinds of error correction architecture: 1)
Flow-through, or correct-always; and2) Parallel, or
check-only. There are two separate 16-pin busses,

DATA WORD BITS CHECK BITS

8 5

16 6

24 6

32 7

40 7

48 8

56 8

64 8

72 8

80 8

Figure 2. Number of Check Bits Used by 8206

one to accept data from the RAM (01) and the other
to deliver corrected data to the system bus (00/
WOI). The logic is entirely combinatorial during a
read cycle. This is in contrast to an architecture with
only one bus, with bidirectional bus .drivers that
must first read the data and then be turned around to
output the corrected data. The latter architecture
typically requires additional hardware (latches
and/or transceivers) and may be slowerih a system
due to timing skews of control signals.

1·100 AFN-Ol966A

intJ 8206

READ CYCLE

With the Rm pin high, data is received from the RAM
outputs into the 01 pins where it is optionally latched
by the STB signal. Check bits are ge[1erated from thEi .
data bits and compared to the check bits read from
the RAM into. the CBI pins. If an error is detected the
ERROR flag is activated and the correctable error
flag .(CE) is used to inform the system whether the
error was correctable or not. With the BM inputs
high, the word appears corrected at the DO pins if
the error was correctable, or unmodified ifthe error
was uncorrectable.

If more than one 8206 is being used, then the check
bits are read by the master. The slaves generate a
partial parity output (PPO) and pass it to the master.
The master 8206 then generates and returns the
syndrome to the slaves (SYO) for correction of the
data.

The 8206 may alternatively be used in a "check­
only" mode with the CRCT pin left high. With the
correction facility turned off, the propagation delay
from memory outputs to 8206 outputs is signifi­
cantly shortened. In this mode the 8206 issues an
ERROR flag to the CPU, which can then perform one
of several options: lengthen the current cycle for
correction, restart the instruction, perform a diag­
nostic routine, etc.

A syndrome word, five to eight bits in length and
containing all necessary information about the exis­
tence and location of an error, is made available to
the system at the SYOO-7 pins. Error logging may be
accomplished by latching the syndrome and the
memory address of the word in error.

WRITE CYCLE

For a fullwrite, in which an entire word is written to
memory, the data is written directly to the RAM,
bypassing the 8206. The same data enters the 8206
through theWol pins where check bits are gener­
ated. The Byte Mark inputs must be low to tristate
the DO drivers. The check bits, 5 to 8 in number, are
then written .to the RAM through the CBO pins for
storage along with the data word. In a multi-chip
system, the master writes the check bits using par­
tial parity information from the. slaves.

In a partial write, part of the data word is overwritten,
and part is retained in memory. This is accomplished
by performing a read-modify-write cycle. The com­
plete old word is read into the 8206 and corrected,

1·101

with the syndrome internally latched by R/W going
low. Only that part ofthe weird not to be modified is
output onto the DO pins, as controlled by the Byte
Mark inputs. That portion of the word to be overwrit­
ten is supplied by the system bus. The 8206 then
calculates check bits for the new word, using the
byte from the previous read and the new byte from
the system bus, and writes them to the memory.

READ-MODIFY-WRITE CYCLES

Upon detection of an error the 8206 may be used to
correct the bit in error in memory. This reduces the
probability of getting multiple-bit errors in sub­
sequent read cycles. This correction is handled by
executing read-modify-write cycles.

The read-modify-write cycle is controlled by the RNV
input. After (during) the read cycle, the system
dynamic RAM controller or CPU examines the 8206
ERROR and CE outputs to determi ne if a correctable
error occurred. If it did, the dynamic RAM controller
or CPU forces R/W low, telling the 8206 to latch the
generated syndrome and drive the corrected check
bits onto the CBO outputs. The corrected data is
available on the DO pins. The DRAM controller then
writes the corrected data and corresponding check
bits into memory.

The 8206 may be used to perform read-modify­
writes in one or two RAM cycles. If it is done in two
cycles, the 8206 latches are used to hold the data
and check bits from the read cycle to be used in the
following write cycle. The Intel 8207 Advanced
Dynamic RAM controller allows read-modify-write
cycles in one memory cycle. See the System
Environment section.

INITIALIZATION

A memory system operating with ECC requires some
form of initialization at system power-up in order to
set valid data and check bit information in memory.
The 8206 supports memory initialization by the write
zero function. By activating the WZ pin, the 8206 will
write a data pattern of zeros and the associated
check bits in the current write cycle. By thus writing
to all memory at power-up, a controller can set
memory to valid data and check bits. Massive mem­
ory failure, as signified by both data and check bits
all ones or zeros, will be detected as an uncorrecta­
ble error.

AFN'()1966A

intJ 8206

MULTI-CHIP SYSTEMS

A single 8206 handles 8 or 16 bits of data and 5 or 6
check bits, respectively. Up to 5 8206's can be cas­
caded for 80 bit memories with 8 check bits.

When cascaded, one 8206 operates as a master, and
all others as slaves. As an example, during a read
cycle in a 32 bit system with one master and one
slave, the slave calculates parity on its portion of the
word-"partial parity"-and presents it to the mas­
ter through the PPO pins. The master combines the
partial parity from the slave with the parity it calcu­
lated from its own portion of the word to generate

3 •. 48 BIT SYSTEM

3b. 64 BIT SYSTEM

3e. 80 BIT SYSTEM

the syndrome. The syndrome is then returned by the
master to the slave for error correction. In systems
with more than one slave the above description con­
tinues to apply, except that the partial parity outputs
of the slaves must be XOR'd externally. Figure 3
shows the necessary external logic for multi-chip
systems. Write and read-modify-write cycles are car­
ried out analogously. See the System Operation sec­
tion for multi-chip wiring diagrams.

There are several pins used to define whether the
8206 will operate as a master or a slave. Tables 2 and
3 illustrate how these pins are tied.

SLAVE 2

PPO

SLAVE 3

PPO

SLAVE 3 SLAVE 4

PPO PPO

Figure 3. External Logic For Multi-Chip Systems

1·102 AFN·01966A

inter 8206

Table 2. Master/Slave Pin Assignments ,

Pin No. Pin Name Master Slave 1 Slllve 2 Slave 3 Slave 4
4 MIS +5V Gnd Gnd .- Gnd Gnd
3 SEDCU +5V +5V +5V +5V +5V

13 PPlo/POSo PPI Gnd +5V Gnd +5V
14 PPI1/POS1 PPI Gnd Gnd +5V +5V
15 PPI2/NSLo PPI . +5V +5V +5V
16 PPI3/NSL1 PPI . +5V +5V +5V

·See Table 3.

Table 3. NSL Pin Assignments for Slave 1

'Number of Slaves
Pin 1

PPI2/NSLo Gnd
PPI3/NSL1 Gnd

The timing specifications for multi-chip systems
must be calculated to take account of the external
XOR gating in 3, 4, and 5-chip systems. Let tXOR be
the delay for a single external TTL XOR gate. Then
the following equations show how to calculate the
relevant timing parameters for 2-chip (n=O), 3-chip
(n=l), 4-chip (n=2), and 5-chip (n=2) systems:

Data-in to corrected data-out (read cycle) =
TDVSV + TPVSV + TSVOV + ntXOR

Data-in to error flag (read cycle) =
TDVSV + TPVEV + ntXOR

Data-in to correctable error flag (read cycle) =
TDVSV + TPVSV + TSVCV + ntXOR

Write data to check-bits valid (full write cycle) =
TOVOV + TPVSV + ntXOR

Data-in to check-bits valid (read-mod-write cycle) =
TDVSV + TPVSV + TSVOV + TOVOV + TPVSV +

2ntXOR

Data-in to check-bits valid (non-correcting read­
modify-write cycle) ""

TDVOU + TOVOV + TPVSV + ntXOR

HAMMING CODE

The 8206 uses a modified Hamming code which was
optimized for multi-chip EDCU systems. The code is
such that partial parity is computed by all 8206's in

2
+5V
Gnd

3 4

Gnd +5V
+5V +5V

parallel. No 8206 requires more time for propagation
through logic levels than any other one, and hence
no one device becomes a bottleneck in the parity
operation. However, one or two levels of external
TIL XOR gates is required in systems with three to
five chips. The code appears in Table 4. The check
bits are derived from the table by XORing or XNOR­
ing together the bits indicated by 'X's in each row
corresponding to a check bit. For example, check bit
o in the MASTER for data word 1000110101101011
will be "0." It should be noted that the 8206 will
detect the gross-error condition of all lows or all
highs.

Error correction is accomplished by identifying the
bad bit and inverting it. Table 4 can also be used as
an error syndrome table by replacing the 'X's with
'1 'so Each column then represents a different syn­
drome word, and by locating the column corre­
sponding to a particular syndrome the bit to be cor­
rected may be identified. If the syndrome cannot be
located then the error cannot be corrected. For
example" if the syndrome word is 00110111, the bit
to be corrected is bit 5 in the slave one data word (bit
21).

The syndrome decoding is also summarized in Table
5, which can be used for error logging. By finding
the appropriate syndrome word (starting with bit
zero, the least significant bit), the result is either: 1)
no error; 2) an identified (correctable) single bit
error; 3) a double bit error; or 4) a multi-bit uncor­
rectable error.

AFN·01966A

~
~

~
~

Table 4. Modified Hamming Code Check Bit Generation

Check bits are generated byXOR'ing (except forthe CBO and CB1 data bits, which are XNOR'ed in the Master) the data
bits in the rows corresponding to the check bits. Note there are 6 check bits in a 16-bit system, 7 in a 32-bit system, and
8 in 48-or-more-bit systems.

BYTE NUMBER 0 1 OPERATION 2 3 4 5
BIT NUMBER o 1 234 5 6 7 o 1 234 567 o 1 2 3 4 5 c 6 7 o 1 2 3 4 5 6 7 o 1 2 3 4 567 o 1 2 3 4 5 6 7

CBO = x x - x - x x - x - - x - x - - XNOR - x x x - x x - - x x - - x - - x x - x - x x - x - - x - x - -
CB1 = x - x - - x - x _ x c_ X X - X - XNOR x x x - - x - Xc X X - - - - - x x - x - - x - x - x - x x - x -

CHECK CB2", - x x - x - x x - - x - x - - x XOR - x x x - x x x - - x x - - - - - x x - x - x x - - x - x - - x
CB3 = x x x x x - - - x x x - - - - - XOR x x - - x - x x x - - x x - - - x x x x x - - - x x x - - - - -

BITS CB4 = - - - x x x x x - - - - - x x x XOR x x - - x x x x - - - - x - x - - - - x x x x x - - - - - x x x
CB5 = - - - - - - - - x x x x x X x x XOR - - - x x x x x - - - - - x x x X x x x x x x x - - - - - - -
CB6 = - - - - - - - - - - - - - - - XOR - - - - - - - -x x x x x x x x x x x x x x x x - - - - - - - -
CB7 = - - - -, - .. - - - - - - - - _ c_ - XOR - x x x x x x x x

DATA BITS o 0 0 0 0 0, 0 '0 001 1 1 '1 11 1 1 1 1 2 2 2 2 222 2 2 2 3 3 333 3 3 3 3 3 4444444 4
c_ ___ .

o 1 2345-67 890 1 234 5 6 7 8 901 2 3 4 5 6 7 8 9 0 1 2345678 9 o 1 234 5 6 7

16 BIT OR MASTER SLAVE #1 II SLAVE #2

BYTE NUMBER 6 7 8 9 OPERATION
BIT NUMBER o 1 2 345 6 7 o 1 2 3 4 5 6 7 o 1 2 345 6 7 o 1 234 5 6 7

CBO = x -' x - x x - - x - x x- - - x - - x x X '- x x - -xx--x- - XOR
CB1 = -xx---xx x x x - - - x - -xxx-x'xx - - x x - - - - XOR

CHECK CB2 = -xxx-xx- - x x -. - x - - x - - x - x x' - - x x - - x - x XOR
CB3,,;, x - X - - x.x - x x - - x. x - - - x x x x - - x x x .- - x - - - XOR

BITS CB4= - --xxxxx- - - - - x x x - x x - - - x x x x x - - - x - XOR
CB5 = - - - - - - - - x x x x x x x x x - x x x x - x - - - x - - - x XOR
CB6 = x x x x x x x x - - - - - - - - x x - - x x x x - - - - x - x - XOR
CB7 = - - - - - - - - x x x x x x x x - - - - - - - - x x x X x x x x XOR

DATA BITS 4455555 5 555 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
890 1 2 345 67890 1 2 3 4 5 6 7 8 901 2 3 4 567 8 9

SLAVE #3 I I SLAVE #4

l

at
N

i

'l§J
aID
Iiiiil
IF'

~
c::::::J

~
~ :w
~

OE

8206

Table 5. Syndrome Decoding

0 0 1 0
Syndrome 1 0 0 1

Bits 2 0 0 0
7 6 5 4 3 0 0 0
0 0 0 0 N CBO CBl

0 0 0 1 CB4 0
0 0 1 0 CBS 0

0 0 1 1 0 ' 13

0 1 0 0 CB6 0
0 1 0 1 0, 52
0 1 1 0 Cl ' 29

0 1 1 1 30 0

1 0 0 0 CB7 0
1 0 0 1 0 45

1 0 1 0 0 59

1, 0 1 1 63 0
1 1 0 0 0 U

1 1 0 1 78 0
1 1 1 0 U 0
1 ' ' 1 1 1 ,0 U

N = No Error,
CBX;= Error in Check Bit X

X = Error in Data Bit X
o = Double Bit Error

0

0
14

0
55

31

0

0
46

75

0

U

0

0
U

1
1
0
0
0

5

11

0

25
,0'

0
37

43

0

0
62

0

U

U

0

U = Un,correctable Multi-Bit Error

OATAMEMORY
18 BITS

~ 01 00

-(

0 1 0
0 0 1
1 1 1
0 0 0

CB2 0 0

0 6 '7
0 19 :12
15 0 0

0 26 49

51 0 0
,64 0 0

0 38 39

0 77 44

47 0 0
79 0 0

0 U U

U 0 0

0 U U

0 U U

U 0 0

CHECK BITS
7 BITS

01 DO

1 0 1 0 1 'cf 1 0 1
1 '0 0 1 'I 0 0 1 1
1 0 0 0 ,1) 1 1 1 1
0 1 1 1 1 1 1, 1 1
18' CB3 0 0 0 [) 1 2 0

0 0 3 16 0 4 0' 0 17

0 0 8 9 ,0 10 0 0 '67

21 20 0 0 66 0 22 23 0

0 0 46 24 0 27 0 0 50

70 28 [) 0 65 0 53 54 0

69 68 [) 0 32 0 33 34 0
0 0 35 71 0 36 0 0 U

0 0 40 41 0 42 0 0 U

74 72 0 0 lJ 0' , 73 U 0

58 60 0 [) 58 0 U 57 0",
0 0 U U 0 61 0 0 U

U 76 0 0 U 0 U; U 0

0 0 U U 0 U 0 0 U,

0 0 u li 0 U\ 0 0 U

U U 0 0 U 0 U U 0

SYSTEM ENVIRONMENT

The 8206 interface to a typical 32 bit memory system
is illustrated in Figure 4. For larger systems. the
partial par.ity bits from slaves two to four must be

OATAMEMORY
16 BITS

01 00

~
32 BIT
OATA
BUS ¢=i x

C
V
R I-- - r--

r--:- - r--
'---

T li I. '. , T

DOIWOI 01 SYo/CBO CBI ... SY'o-a O~rNOI 01.

PP10-& . PP9o-8 POSo

~~ CIIl:T PPl7

.~' r- CiI1:'f POll

OO~OL { WZ ca'7 V-- WI NSLo f-
LINES 8208 8206 HSLl I-STS MASTER V-- STS SLAVE

R/W Mill T+V tr- RiW MJli I-
mR:O ,PPI5-7

~ l1li0

II
lIMo ~

~l 1liii,
ElIlil!Ii l1li, IY'7

CE MARKS

"., ,.: I
ERROR

+5V

SIGNALS

Figure 4. 32"81t 8206 System Interface

1'105 AFN'()1966A

~OR:ed exfernally, which calls for one level of XOR
gating for three 8206's and two levels for four or five
8206's.· ..

The 8206 is designed for direct connection to the
Intel 8207 Advanced Dynamic RAM Controller, due.
to be sampled in the first quarter of 1982. The 8207
has the ability to perform dual port memory control,

ACKa
1 ACKa

ADDR
------'\ lin CMD/PEA ---.I eD

CMDIPEa CMD/PEa WE - WE
01

.l12li7
MUX ADAC

wz -----...
CLK>---:- CLK PSEN -ADORa

CE := --" ERROR -
DaM

MUX - --v ADDR
A1W -

CMDiPEA - ACKA PSEL

ADDRA

ACKA -

~

aYTE
MARK

DECODER

L---

and Figure 5 illustrates a highly integrated dual port
RAM implementation using the 8206 and 8207. The
8206/8207 combination permits such features as au­
tomatic scrubbing (correcting errors in memory dur­
ing refresh), extending RAS and CAS timings for
Read-Modify-Writes in single memory cycles, and
automatic memory initialization upon reset. To­
gether these two· chips provide a complete dual­
port, error-corrected dynamic RAM subsystem.

DYNAMIC
RAM

32 BITS +
7.CHECK BITS

cal Do/caD

.. h f-

L~

F L L, L ERROR SYO/DI/Cal 01
A1W cao A1W

+5V- STa PPI PPO STa f- +5V

*
8206

.r
8206

CRCT MASTER CRCT SLAVE

wz WZ

aM DOIWDI BM DOIWDI

Q, R
'f~ I -{>o 1I -II

+ U
..:.;.....;.

L..-.;..:,..

.~,

r .RD

STa O~
LATCH

PORTA PORTa

Figure 5. Dual Port RAM Subsystem with 8206/8207 (32-bit bus)

1·106 AFN'()1966A

. inter·· 8206

MEMORY BOARD TESTING '. ''1<

The 8206 lends'itself; to. straightforward"memory
board testing 'with a minimum Ofhar'dwareiover­
head; The following is a descriptionof.foui".C!ommon
test modes and ,their implementation.

Mode O-Read and;write with error correction ..
Implementation: This mode is;the normal
8206 operating mode.

Mode1-Read and write data with error correction
disabled to allow test of data memory.
Implementation: This mode is performed
with CRCT deactivated.

Mode 2-Read and write check bits with error .cor­
rection disabled to. allow test of check bits
memory." .
Implementation: Any pattern may be w.rit­
ten into the check bits memorY by judi­
ciously choosing the proper data word to
generate the desired check bits, through
the use of the 8206 Hamming code. To
read out the check bits it is fi rst: necessary

.050

.),1 to" ~jUithe da.~a metrl0ry wim alL!.~.r~.
. which r:n8Y be done byactil'atin'g WZ,anc;f
incrementing memory addresses with WE
to the check bits memory held inactive.
and then performing ordinary reads. The
qheck bits 't'\(UI the.n :appeardirectly at the
SY() outputs, vvith bits qeo and CB1

, inl!~rted.

M'ode 3-Write data,' without altering or writing
check bits, to allow the storage of bit
combinations to cause error correction
and detection.,

Implementation: This mode is im­
plemented by writing the desired word to
memory with WE to the check bits array

. held inactive.

I'ACKAGE

The 8206 is r:>ackaged in a 68-pin, leadiess JEDEC
type A hermetic chip carrier. Figure 6 illustrates the·
package; and Figute 7is the pinout.

. I . ;, (2.39)

.066

rJ: ~

--l F" .o~"
~; (1.68)

,800
(ao.32)

PIN NO. 18

D·········~······' . ,.980

" .' •..• : '. . . '. . ", caU8)

PIN NO. 1

.980
(24.38)

Flgyre «$! 8206 ".EPEC Type,APackIJge.,.;

1·107

.130
(3.30)

AFN'()l968A

intJ

SVO, [

SY03

SVO, [

SYOo

PIN NO.1 MARK

8206

TOP

;5 c 6" c
~ ~ ~ ~
0 0 0 0
0 0 0 0

I ::1.

I

~ 1 I!I! la I!! ;5
i ii:

: ~:E~CI.I .. ~ .. Q. Q. U

BOTTOM

oJ: -s ;5
~ -o~ ~

o ~ 8
,---------'1 ~ rl---------.

8

r DI,

Vee

r DI,

PIN NO.1 MARK

wz
·BMO

BM1

TVa,

SY03

v ••

J Svo,
SVO,

ERROR

RJW

JPPI,

PPls

Figure 7. 8206 Pinout Diagram

H08 AFN·D1966A

8206

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature -65°C to +1500C
Voltage On Any Pin

With Respect to Ground -0.5V to + 7V
Power Dissipation 2.5 watts

'NOTE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS(TA = OOC to 70°C; Vee = 5.0V ± 10%, Vss= GND)

Symbol Parameter Min. Max. Unit Test Conditions

lee Power Supply Current
-Single 8206 or 230 mA

Slave #1
-Master in Multi-Chip 190 mA

or Slaves #2, 3, 4

VIL
1 Input Low Voltage. -0.5 O.B V

VIH' Input High Voltage 2.0 VCC+ V
0.5V

Output Low Voltage
VOL -DO 0.4 V IOL = BmA

-All Others 0.4 V IOL = 2.0mA

Output High Voltage
VOH -DO, CSO 2.6 V IOH = -2mA

-All Other Outputs 2.4 V IOH = -0.4mA

IOL Output Leakage Current ±10 p.A 0.45V ,,;; VOUT ,,;; Vee

Input Leakage Curr~
III -WDI, PPI, CS16-7, SEDCU 20 p.A

OV ,,;;VIN";; Vee -All Other Inputs 10 p.A

NOTES:
1. SEDeU (pin 3) and MIS (pin 4) are device strapping options and should be tied to Vee or GND. VI H min = Vee -O.5V and VI L max = O.5V.

1·109 AFN.()1966A

intJ 8206·

A.C. CHARACTERISTICS (TA = O"C to 70·C, vee = +5V ± 10%, Vss = OV, CL = 100pF; all times are in nsec.)

Measurements made with respect to STB, R/W, BMO_1 are at 1.5V. All other pins are measured at 2.4V and 0.8V. All
times are in nsec.

Symbol Parameter
8206 8206-8

Min. Max. Min. Max.

TRHEV ~ Valid from R/ll'ilj 25 34

TRHCV CE Valid from R/Wi (Single 8206) 44 59

TRHOV Corrected Data Valid from R/1I'iI i 49 66

TRVSV SYO/CBO/PPO Valid From R/W 42 56

TOVEV ERROR Valid from Data/Check Bits In 52 70

TOVCV CE Valid from Data/Check Bits In 70 94

TOVOV Corrected Data Valid from Data/Check Bits In 67 90
TOVSV SYO/PPOValid from Data/Check Bits In 55 74

TBHOV Corrected Data Access Time 32 43

TOXOX Hold Time from Data/Check Bits In 0 0

TBLOZ Corrected Data Float Delay 5 28 5 38

TSHIV STB High to Data Valid 30 40

TIVSL Data/Check Bits In to STB~ Set-up 0 0

TSLIX Data/Check Bits Iii from STB~ Hold 20 30

TPVEV 'ERROR Valid from Partial Parity In 30 40

TPVOV Corrected Data (Master) from Partial Parity In 56 76

TPVSV Syndrome/Check Bits Out from Partial Parity In 38 51

TSVOV Corrected Data (Slave) Valid from Syndrome 51 69

TSVCV CE Valid from Syndrome (Slave number 1) 48 65

TOVOV Check Bits/Partial Parity Out from Write Data In 59 80

TRHSX Check Bits/Partial Parity Out from R/W, WZ Hold 0 0

TRLSX Syndrome Out from R/W Hold 0 0

TOXOX Hold Time from Write Data In 0 0

TOVRL Syndrome Out to R/W~ Set-up 17 22

TOVRL Data/Check Bits In to R/W Set-up 34 46

TOVOU Uncorrected Data Out from Data In 32 43

TTVOV Corrected Data Out from CORRECT ~ 30 40

TWLOL WZ~ to Zero Out 30 40

TWHOX Zero Out from WZi Hold 0 0

1-110 AFN-Ol966A

8206

WAVEFORMS

READ-16 BIT ONLY

STB =1' ! 't'-+l-....,-;..,....----:...--
':SHI~.'- TIVSL·-----~·I TSLIX .~

!! r i i1: ----
: '.' j-TBHOV-j II

I , I I

c~: t {I' ,.....,------+-l -•. --. -VAL-ID----~>-.:...,: ----"-----
, I I I .'
,_ I TRHOV I _I . '~TBLQZ~

i ! @ ~ ;t'__""___ __ V_A:.:-_· T_DXO_X--I_. ~
-+1/7 - .:: I

SVD ~ff/A! VALID)c,

I . "
: ,- .TDVSV -, , I

~n T::::V . • ~ :

ERROR ~ff//a VALID ~
I ,_. .' TDVEV _: '

: : _ . TDvev_, '

~=5&#~MiA - X=

DO

1·111 AFN-01966A

intJ 8206

WAVEFORMS (Continued)

READ-MASTER/SLAVE

5TB J' I t-----\-I TSHIV

" :
RlW OJ' , j.TIVSL~

I
I : II , ' • TSUX'I-TBLQZ-I

! I I I I
8M 117.: " t,' ---+--j ~,-J I, , '-. ------1---

I' I-TBHQV~ I ,

cg: -~: ~ i VALID I . 1---+---
'.. I , . TRVSii' 'I----TOXQX~ I

::.;~:~:: ===:i ~A l - X"-: -
" I I_TPVQV~ , ,

1 W-4WA - ~
: I I.-TPVSV-j , ,

Syo---;""i >WW~ _ .. x, ,t--!

I I' I I '-" TSV~Y"I I I

OO(SLAVE)_--~Im VALID ~
I I· TPVEV..,. . ,

• TRHEY ., 1

DO (MASTER)

EiiiiOii ---+-': X7/////// /& : VALID, X,--_
,~5VCV.1 ,

I ..,

CE -------.J1'">W//0W &d{ VALID X ______

1-112 AFN·01966A

8206

WAVEFORMS (Continued)

FULL WRITE-16 BIT ONLY

114 .. ---TRVSV--.....,~~1
I

RJW -------"""'"'{ : y
. I '--------II---.J I

.,1.. TRLSX ~ I I TRHSX I , ~
, I

.~. i :
1 ,

:JB~~I' I
I, I

~ ______ ~~I 1 I I

DD/WDI ___ D_AT_A_OU_T _____ H i WRITE DATA IN 1· :
I ---~QVQV ~ Tt;;\
Ii I
I I I

SYO/CBO-'------S-Y-N-----~W///{ CB X SYN

FULL WRITE-MASTER/SLAVE

~I·-------~v~·----~.I

~------~~~ __________ ~ ______ ~XI

III

11·~1

..,.,-_---., I I

'i:
I
I
I t----"--TQVQv---l

________ ~I I I

DOIWDl D"'TAO~T ~ I _____ ~ I WRITE DATA IN

I I

I :

:=: ----------il----....... >05·fz{
------~I~-~ I

VAUD

I I
i'--T •• S. --I I' T_V • I

I I

8volcao--.VN -~XW//$/4

1-113

I
I
~

I
I
I
I
I
I

~:
I I
.t:j

I

1C=
I
I
I

co x=
'''FN-01966A

inter 8206

WAVEFORMS (Continued)

READ MODIFY WRITE-16 BIT ONLY

~J *'---__ TSHI,,_I t---lo----T'V8L---_ .. II •• ---TSL'x-----t .. 1
1 1 1 1

1 1
.. 1 1 I,...· -+1--

~ =f: 't. 1 ,¥ I
I 1

I' I'''' ___ 'TDVRL-L --_ .. I·_TRV8"~ 1 1
1 1 I I 1 1 II

8M I! X "AUD: :: }C
I 1 I!"HS~III
1 I-TaHQ" -.I . . 1,ITBL:j

1 1 1 1 1

c~: -~: ~ i -: i ~--+-: -
1 1 1 1 ·1
• 1 TRHO" "I 1 1

: : • TDVQ" 1 "I TQXQxt-ll-1

I: W&i : i~
I 1 1 I I
I. 1 TRVS" "I t-1 I+-TRLSx I. 1

I I 1 1 1 1

SYo/CBO -----+--: ~,....-r-Z~V....-r-Z~Z&,....;.r:"""":-8YN]0j.........-~'7""t7--CB-X ____
I' 1 I.. I
1 • . TDVS" ... 1 I.--TQVQV .. I

DOIWDI

1-114 AFN-Dl986A

intJ· 8206

WAVEFORMS (Continued)

AEAD MODIFY WAITE-MASTER/SLAVE

RfWJ ~ X
... " '-----..... 1

I f':HS:1
, 1

!
I .. ______ ---:_---:---:-+-:-_....,...,_....,...,~I 1

IX. ,r XI
----+,~.~ ·---:....,...,-:--:-----------~--------~I . 1

~TBHQV~ ~~LQZ-----l

III

J i I-c---'-'"I I I I
. I I' ! ,

STB , , ~~--+'~--+-------ti -----,.-II~
,,, 1 -I"TDVSV---! I" I. ,

01
CII

PPO(8LAYE)

PPI (MASTER)

DOIWDI
(MASTER)

SYO/CBO

" DOIWDI
(SLAVE)

Tl i !"~,: i I
.1. 1 I 1 I 1
1 1 , I 1 I 1
~TRHSV -I, ~TQVRL~TRYSV-I "

-=xz----: fZ ¢ i ! - ~rr-WRITf<t""""E : --------..x !
, 1 ' ,. 1 .,
, I I' I
, r-n-;'SV-, , 1

I I I I 1

1!~~~(~--~i-_~L_'D-+-~2)-
1 I . .
I 1 I. :.TPV.SV_.1 , !+-,TPV~V ---..j .
, " I' ". .~;,

~L///Z(SYN ~ CB

, L-,.. 1
I I TsVQV '4--TQVQV---+J
I I

x-
I I
I ~~2~Z~{~--~-LID------.>-

1·115 AFN-Ol966A

inter 8206

WAVEFORMS (Continued)

NON-CORRECTING READ

cRcT--~~ ~

I '--------' ,

I 1
I ,

~
1 I TTYQY I I" TBLQZ _,
1 '""'I·~--TDVQU--__ II l-
I I i ~TTYQv--.:: r. :

cg: ------if--<{ : : : 1 ! :
I I 1 1 I I
I I 1 1 1 I
I-TBHQV-i 1 1 I 1 1

I 1 1 1 1 1
oomDI------------------------------~~~7-~T~~~-U-NC-D-RR-E~----ED-----~~. ~----CO-R~RE-~-E-D--------~~~U-NC-O-RR-EC-T-ED~~~~ ,

WRITE ZERO

I" TWLQL

\liZ 1

~

-,
1 ,
1

1
I
i-TQVQV1--l

, 1

, 1

1 1

iT,::'VQV.",

y
I

I~WHQ! I
1 1 1

I
1
1
1

1

1

1 . DO------.W //#/ ~ :
1 I

1

k7h
: : .. TRHSX o ,

:~~~:~::) ____________________________ .JX'-__________ W_RI_TE _____________ X ________ :.......,.--, _______)c
I.TPYSv .. 1 1

1

:1
Ir--_{r-

SYO/CBO __________ S_YN ____________ .JX'-_____________________ C_B _____________________ X'---_C_B_~
1:16BITONLY 2: MASTER/SLAVE

1·116 AFN-01966A

827118271·6
PROGRAMMABLE FLOPPY DISK CONTROLLER

• IBM 3740 Soft Sectored Format Compatible

• Programmable Record Lengths

• Multl·Sector Capability

• Maintain Dual Drives with Minimum Software
Overhead Expandable to 4 Drives

• Automatic ReadlWrlte Head Positioning and
Verification

• Internal CRC Generation and Checking

• Programmable Step Rate, Settle·Time, Head
Load Time, Head Unload Index Count

• Fully MCS·ao™ and MC5-as™ Compatible

• Single + 5V Supply

• 4G-Pin Package

The Intell> 8271 Programmable Floppy Disk Controller (FOC) is an LSI component designed to interface one to 4 floppy
disk drives to an 8·bit microcomputer system. Its powerful control functions minimize both hardware and software
overhead normally associated with floppy disk controllers.

REGISTERS

ORO

OACK -----,

INT

RESET

CPU INTERFACE

INTERNAL
DATA BUS

SERIAL
INTERfACE

CONTROllER

1----- WRDATA

NSVNC

j).---- RiiDATA
--- DATA WINDOW

L...'"'1==-_____ PlO!SS

DRIVE
INTERfACE

CONTROLLER

DISK INTERFACE

SELECT 0
SELECT 1
WR ENABLE
LOAD HEAD
SEEK/STEP
DIRECTION
LOW CURRENT
FAULT RESET/OPO

Figure 1. Block Diagram

1·117

FAULT RESET/OPO

SELECT 0

4MHz elK

RESET

READY 1

SELECT 1

OACK

ORO

iffi
WR

INT

DBO

DB'

DB2

DB3

DB.

DBS

DBO

DB7

GND

Vee

lOW CURRENT

LOAD HEAO

DIRECTION

SEEK/STEP

WR ENBLE

INDEX

WR PROTECT

READY 0

TRKO

COUNT/UPI

WR DATA

FAULT

UNSEP DATA

OATAWINDOW

PlOfSS

CS

INSVNC

AI

Ao

Figure 2. Pin Configuration

8271/8271·6

Table 1. Pin Description

Pin Pin
Symbol No. Type Name and Function Symbol No. Type Name and Function

Vcc 40 +5V Supply. Fault Reset/ 1 0 Fault Reset: The optional
OPO fault reset output line is used

GND 20 Ground. to reset an error condition
which is latched by the drive.

Clock 3 I Clock: A square wave clock. I! this line is not used for a
fault reset it can be used as

Reset 4 I Reset: A high signal on the an optional output line. This
reset input forces the 8271 to line is set with the write spe-
an idle state. The 8271 re- cial register command.
mains idle until a command is
issued by the CPU. The out- Write Enable 35 0 Write Enable: This signal
put signals of the drive inter- enables the drive write logic.
face are forced inactive
(LOW). Reset must be active Seek/Step' 36 0 Seek/Step: This multi-
for 10 or more clock cycles. function line is used during

drive seeks.
CS 24 I Chip Select: The. I/O Read

and I/O Write inputs are Direction 37 0 Direction: The direction line
enabled by the chip select specifies the seek direction.
signal. A high level on this pin steps

the R/W head toward the
DB7-DBo 19-12 I/O Data Bus: The Data Bus lines spindle (step-in), a low level

are bidirectional, three-state steps the head away from the
lines (8080 data bus com- spindle (step-out).
patible).

Load Head 38 0 Load Head: The load head
WR 10 I Write: The Write signal is line causes the drive to load

used to signal the control the Read/Write head against
logic that a transfer of data the diskette.
from the data bus to the 8271
is required. Low Current 39 0 Low Current: This line

notifies the drive that track 43
RD 9 I Read: The Read signal is or greater is selected.

used to signal the control
logic that a transfer of data Ready 1, 5 I Ready 1: These two lines in-
from the 8271 to the data bus Ready 0 32 dicate that the specified drive
is required. is ready.

INT 11 0 Interrupt: The interrupt sig- Fault 28 I Fault: This line is used by. the
nal indicates that the /8271 drive to specify a .file unsafe
requires service. condition.

A,-Ao 22-21 I Address Line: These two
lines are CPU Interface Reg-
ister select lines.

Count/OPI 30 I Count/OPI: If the optional
seek/direction/count seek
mode is selected, the count

DRQ 8 0 Data Request: The DMA pin receives pulses to step
request signal is used to re- the Fl/W head to the desi red
quest a transfer of data be- track. Otherwis!t, this line can
tween the 8271 and memory. be used as'an optional input.·

.
DACK 7 I Data Acknowledge: The

DMA acknowledge Signal Write Protect 33 I Write. Protect: This signal
notifies the 8271 that a DMA specifies that the diskette in-
cycle has been granted. For serted is write protected.
non-DMA transfers, this sig-
nal should be driven in the TAKO 31 I Track Zero: This signallndi-
manner of a "Chip Select." cates when the R/W head is

positioned over track zero.
Select 1- 6 0 Selected Drive: These lines
Select 0 2 are used to specify the Index 34 I Index: The index signal gives

selected drive. These lines an indication of the relative
are set by the command byte. position of the diskette.

1-118 AFN·OO223B

intJ 8271/8271·6

Table 1. Pin Descrip~ion (Continued)

Pin
Symbol No. Type Name and Function

PLO/SS 25 I Phaae·Locked Oacillatorl
Single Shot: This pin is used
to specify the type of data
separator used.

Write Data 29 0 Write Data: Composite write
data.

Unseparated 27 I Unaeparated Data: This
Data input is the unseparated data

and clocks.

Data Window 26 I Data Window: This is a data
window established by a
single-shot or phase-locked
oscillator data separator.

INSYNC 23 0 Input Synchronization: This
line is high when 8271 has at-
tained input data synchroni-
zation, by detecting 2 bytes of
zeros followed by an ex-
pected Address Mark. It will
stay high until the end of the
10 or data field.

FUNCTIONAL DESCRIPTION

General
The 8271 Floppy Disk Controller (FoC) interfaces either
two single or one dual floppy drive to an eight bit
microprocessor and is fully compatible with Intel's
new high performance MCS-85 microcomputer system.
With minimum external circuitry, this innovative controller
supports most standard, commonly-available flexible disk
drives including the mini-floppy.

The 8271 FoC supports a comprehensive soft sectored
format which is IBM 3740 compatible and includes
provision for the designating and handling of bad tracks. It
is a high level controller that relieves the CPU (and user! of
many of the control tasks associated with implementing a
floppy disk interface. The FOC supports a variety of high
level instructions which allow the userto store and retrieve
data on a floppy disk without dealing with the low level
details of disk operation.

In addition to the standard .read/write commands, a scan
command is supported. The scan command allows the
user program to specify a data pattern and instructs the
FoC to search for that pattern on a track. Any application
that is required to search the disk for information (such as
point of sale price lookup, disk directory search, etc.!, may
use the scan command to reduce the CPU overhead. Once
the scan operation is initiated, no CPU intervention is
required.

CPU Interface Description
This interface minimizes CPU .involvenient by supporting
a set of high level commands and both oMAan.d non-oMA
type data transfers and by providing hierarchical status
information regarding the result of command execution.

The CPU utilizes th.e control interface (see the Block
diagram) to specify the FoC commands and to determine
the result of an executed command. This interface is
supported by five Registers which are addressed by the
CPU via the A1, Ao; 1115 and WR signals. If an 8080 based
system is used, the Ro and WR signals can be driven by
the 8228's I/OR' and i70W signals. The registers are
defined as follows:

Command Reglater

The CPU loads an appropriate command into the
Command Register which has the following format:

A, Ao 07 06 Os 04 03 02 0, Do

I 0 I 0 I I I I

L------coMMANO OPCOOE

SURFACE/DRIVE

(SELECT O. 11

Parameter Reglater

Accepts parameters of commands that require further
description; up to five parameters may be required,
example:

A1 AD 07 0& 05 04 "03 02 0, Do

I 0 I, I

L-______ EXPECTED PARAMETER

Re.ult Reglater

The Result Register is used to supply the outcome of FoC
command filxecution (such as a good/bad completion) to
the CPU. The standard Result byte format is:

A~ . AD 07 06 Os 04 03 02 0, Do

I 0 I' I 0 to I I I I I 0 I

1·119 AFN-00223B

inter 827118271·6

OB0-7

A,

A.

CPU INTERFACE DISK INTERFACE

SELEeTD
SE!.ECTT
WR ENABLE
LOAD HEAD
SEEK/STEP
DIRECTION
LOW CURRENT

Figure 3. 8271 Block Diagram Showing CPU
Interface Functions

Status Register

Reflects the state of the FOC.

A, Ao 0, 06 Os 04 03 02 0, Do

I 0 I 0 II I I I I 0 I 0 I

11 11 .. __ ,," __
. 1 .. INTERRUPT REQUEST

1 .. RESULT REGISTER FULL

1 = PARAMETER REGISTER FUll

L-_________ l "" COMMAND REGISTER FULL

L------------l '"' COMMAND BUSY

Reset Register

Allows the 8271 to be reset by the program. Reset must
be active for 11 or more chip clocks.

INT (Interrupt Line)

Another element of the control interface is the Interrupt
line (INT). This line is used to signal the CPU that an FOC
operation has been completed. It remains active until the
result register is read.

OMA Operation

The 8271 can transfer data in either OMA or non OMA
mode. The data transfer rate of a floppy disk drive is high
enough (one byte every 32 Ilsec) to justify OMA transfer.
In OMA mode the elements of the OMA interface are:

ORO: OMA Request:
The OMA request signal is used to request a transfer of
data between the 8271 and memory.

OACK: OMA Acknowledge:
The OMA acknowledge signal notifies the 8271 that a OMA
cycle has been granted.

RD, WR: Read, Write
The read and write signals are used to specify the
direction of the data transfer.

OMA transfers require the use cifa'DMAcontroll~r's~ch as
the Intel<!!>82s7. The function of the OMA controller is to
provide sequential addresses and ·timing for the transfer
at a starting address de.termined.by the CPU. Counting of
data block lengths is performed by the FOC.

To request a OMA transfer, the FOC raises ORO. OACK
and RO enable OMA data onto the bus (independently of
CHIPSELECTl. OACK and WR transfer OMA data to the
FOC. If a data transfer request (read .or write) is not
serviced within 31 I'sec, the command is cancelled. a late
OMA status is set, and an interrupt is generated. In OMA
mode, an interrUpt is generated at the c6mpletion of the
data block transfer. .

1·120

When configured to transfer data in non·OMA mode, the
CPU must pass data to the FOC in response to the non·
OMA data requests indicated by the status word. The
data is passed to and from the chip by asserting the
DACK and the RD or WR signals. Chip select should be
inactive (HIGH).

CPU INTERFACE

INTERNAL
CATABUS

SELECT 1
WR ENABLE
LOAD HEAD
SEEKJSTEP
DIRECTION
lOW CURRENT

RESETIOPO

Figure 4. 8271 Block Diagram Showing Disk Interface
Functions

AFN-00223B

inter 82l.1/8271·e

Disk Drive Interface
il"he 8271 disk drive Interface . supports , the hi,gh level
command structure described in the Command Descrip­
tion section. The 8271 maintains the location of bad tracks
and the current track location for two drives. However
witll minor soft~are suppo~"ihis interlaclI 'clm support
four drives by expanding the tv/odri"e select lines (select
0, select 1) with the addition of minirriai support hardware.

The FDC Disk Drive Interface has thefollQwingmajor
functions.

READ FUNCTIONS

Utilize the user supplied data window to obtain the clock
and data patterns from l,he unseparated re,addata. /,' .. '

Establish byt~ synchron'ization,

Compute and verify the I,D and data field 'CRCs.

WRI,TE FUNCTIONS

Encode;CQmposite writ~ data.

Compute the 10 and data field CRCs and append, them to
tl:leir respective fields.

CONTROL; FUNCTIONS

Generate the, programmed s,tep rate, head load 'time, head
settling time, head unload delay, and monitor drive
functions. " '

0'

" DATA ~
"' SEPARATOR .

DATA WINDOW

UNSEPARATED DATA

.. WRITE DATA

:: WRITE ENABLE

:- SEEK/STEP

: DIRECTION .
'"

...
COUNTIOPI

.. LOAD HEAD ..
INQEX

8271
. , DUAL

FLOPPY
FDC TR~CK 0 DISK

DRIVE ... SELECT 0

:: SELECT 1

: ~ ...
W~ITE NU'jTECf

WRITEFAUL'f

.. WRITE FAULT RESETIOPO ..
READY 0

, ,;
READY 1

NOTE: INPUTS TO CHIP MAY REQUIRE RECEIVERS
(AT LEAST PULL UP/DOWN PAIRS).

Figure 5. 8271 Disk Drive Interface

I·

Data Separation

The 8271 needs only a data window'tq separate ttie dat~
from the composite read data as well all to detect missing
clocks in the Address Marks.

The window generation 10$!ic may be implemented using
either a single-shot separator or a phase-locked oscillator.

Single-Shot Separator

The single-sllot separator approach is the lowest cost
sofution.

Th,e FDC samples the value of Data Window,on the leading
edge of Unseparated Data 'and determine!!' whether the
delay from the previous pulse was a half or full bit-cell
(hlghlnput = full bit-cell, low input = half bit-cell).
PLO/SS should be tied to Ground.

Insync Pin

This pin gives an Indication of whether the 8271 is
synchronized\Vit" the Serial data strl;lam during read
operations. Thllll:>ln can ,~e used'iVittl a phase-locked
oscillator, for soft and hard locking.

IHSYNC

FOUND SYNC & 10 MARK
READ ID FIELD BUT
TRACK OR SECTOR
INCORRECT

7
FOUND SYNC I: DATA MARK
NOT'AN 10 MARK

FOUND SYNC I: ID MARK
iO FIELD CORRECT

/
I

FOUND SYNC & DATA MARK
READ OATA SECTOR

UNSEPARATED
DATA

827118271·6

DATA WINDOW
RETRIGGERABLE

SINGLE-SHOT 8271 FDC
2_85J.!s WINDOW*

I XL0/SS

*FOR MINI-FLOPPY DATA WINDOW = 5_7J.!Sec

Figure 6. SIr.gle·Shot Data Separator Block Diagram

UNSEPARATED
DATA

Phase·Locked Oscillator Separator

tos> lOOns

Figure 7. Single.Shot Data Window Timing

The FDC samples the value of Data Window on the leading
edge of Unseparated Data and determines whether the
pulse represents a Clock or Data Pulse_

Insync may be used to provide soft and hard locking
control for the phase-locked oscillator_

PLO/SS should be tied to Vee (+5V)_

UNSEPARATED
DATA

J PLO I DATA W'NDOW _"

I ·l------.,~. --v 8271 FOe

'-------f+-L-_-_-_-_-_-__ -_-_-_-_-_-_--'~mj ! "OISS

IN SYNC· +5V
·OPTIONAL

Figure 8. PLO Data Separator Block Diagram

1-122 AFN-00223B

8271/8271-6

• DATA WINDOW MAY BE 180· OUT OF PHASE IN PLO DATA SEPARATION MODE.

Figure II. PLO Data Window Timing

DI,k Drive Controllnterfaee

The disk drive control interface performs the high level
and programmable .flexible disk .drive operations. It
custom tailors many varied drive performance parameters
such as the step rate, settling time, head load time, and
head unload index count. The following is the description
of the control interface.

Write Enable

The Write Enable controls the read and write functions of Ii
flexible disk drive. When Write Enable is a logical one, it
enables the drive write electronics to pass currenUhrough
the Read/Write head. When Write Enable is a logical zero,
the drive Write circuitry is disabled and. the Read/Wrlte
head detects the magnetic flux transitions recorded on a
diskette. The write current turn-on is as follows.

WRITEDATA. n n n n :.........---l L-J L..., ______ L....J L----

---t I--tWE

WRITE ENABLE I

Figure 10. Write Enable Timing

1·123 AfN.00223B

inter 8271/8271-6

Seek Control

Seek Control is accomplished by Seek/Step, Direction,
and Count pins and can be implemented two ways to
provide maximum flexibility in the subsystem design. One
instance is when the programmed step rate is not equal to
zero. In this case, the 8271 uses the Seek/Step and
Direction pins (the Seek/Step pin becomes a Step pin>.
Programmable Step timing parameters are shown.

The Direction pin is a control level indicating the direction
in which the R/Whead is stepped. Alogic high level on this
line moves the head toward.the spindle (step-in). A logic
low level moves the head away from the spindle (step-out).

Another instance is when the programmable step rate is
equal to zero, in which case the 8271 holds the seek line
high until the appropriate number of user-supplied step
pulses have been counted on the count input pin.

DIRECTION

~
SEEK/STEP

SEEK/STEP I
---J~

I-tos

tps=tos =tso = 1 OJ.lS

STANDARD: lms.;ts.;255ms

MINI·FLOPPY: 2ms'; ts'; 5l0ms

Figure 11. Seek Timing

~ ~,~
n
~ i--tps

--I Ltcs

COUNT - ~---
LAST COUNT

toS=tsO=tcS=10j.ls

tsc ;;.lj.1s

tpc;' 20j.ls

tc ;;.lms

Figure 12. Seek/Step/Count Timing

1-124 AFN-oD223B

8271/8271·6

Head Seek Settling Time'

The 8271 'allows the head settling time to be programmed
from a to 255ms, in increments of 1 ms.

The head ~ettiing time is defined as the interval of time
from completion of the last step to the time when reading
or writing on the diskette is possible (R/W Enable). The
R/W head is assumed loaded.

I~ LAST STEP COMPLETE

*tsw ~ r-
SEEK OR LAST STEP

WRITE/READ ENABLE
___________ 1-- --

STANDARD: 0';;*tsw';;255ms

M.lNI-FLOPPV: 0 .;;*tsw';; 510ms
*R/W HEAD IS ASSUMED LOADED.

Figure 13_ Head Load SeHling Timing

Load Head

When active, load head output pin causes the drive's
read/write head to be loaded on the diskette. When the
head is initially loaded, there is a programmed delay (0 to
60ms in 4ms increments) prior to any read or write
operation. Provision is also made to unload the head
following an operation within a programmed number of
diskette revolutions.

LOAD HEAD ____________ 1

EARLIEST WRITE:' ENABLE
OR INTERNAL READ DATA

tLw-1 r­
____ --1 '

STANDARD: 0.;;tLw';;60ms

MINI--FLOPPV: 0.;; tLW .;; 120ms

Figure 14. Head Load to Read/Write Timing

1·125 AFN.Q0223B

inter 8271/8271·6

Index

The Index input is used to determine "Sector not found"
status and to initiate format track/read 10 commands and
head unload Index and Count operations.

Figure 15. Index Timing

Track 0

This input pin indicates that the diskette is at track O.
During any seek operation, the stepping out of the
actuator ceases when the track 0 pin becomes active.

Select 1, 0

Only one drive may be selected at a time. Th ..
I nput/Output pins that must be externally qualified with
Select 0 and Select 1 are:

Unseparated Data
Data Window
Write Enable
Seek/Step
Count/Optional Input
Load Head
Track 0
Low Current
Write Protect
Write Fault
Fault Reset/Optional Output
Index

When a new set of select bits is specified by a new com·
mand or the FDC finishes the index count before head
unload, the following pins will be set to the 0 state:

Write Enable (35)
Seek/Step (36)
Direction (37)
Load Head (38)
Low Head Current (39)

The select pins will be set to the state specified by the
command or both are set to zero following the index
count before head unload.

Low Current

This output pin is active whenever the physical track
location of the selected drive is greater than 43 .. Generally

this Signal is used to enable compensation for the lower
velocities encountered while recording on the inner
tracks.

Write Protect

The 8271 will not write to a disk wh.en this input pin is
active and will interrupt the CPU if a Write attempt is made.
Operations whictl check Write Protect are aborted if the
Write Protect line is active.

This signal normally originates from a sensor which
detects the presence or absence of the Write Protect
hole in the diskette jacket.

Write Fault and Write Fault Reset

The Write Fault input is normally latched by the drive
and indicates any condition which could endanger data
integrity. The 8271 interrupts the CPU anytime Write
Fault is detected during an operation and immediately
resets the Write Enable, Seek/Step, Direction, and Low
Current signals. The write fault condition can be cleared
by using the write fault reset pin. If the drive being used
does not support write fault, then this pin should be
connected to Vee through a pull·up resistor.

Ready 1, 0

These two pins indi.cate the functional status of the disk
drives. Whenever an operation is attempted on a drive
which is not ready, an interrupt is generated. The inter­
face continually monitors this input during an operation
and if a Not Ready condition occurs, immediately ter­
minates the operation. Note that the 8271 latches the
Not Ready condition and it can only be reset by t.he exe­
cution of a Read Drive Status command. For drives that
do not support a ready Signal, either one can be derived
with a one shot and the index pulse, or the ready inputs
can be grounded and Ready determined through some
software means. .

1-126 AFN-00223B

inter 8271/8211·6

PRINCIPLES OF OPERATION

As an 8080 peripheral device, the 8271 accepts commands
from the CPU, executes them and provides a RESULT
back to the 8080 CPU at the end of command execution.
The communication with the CPU is established by the
activation of OS and RD or WR. The A" Ao inputs select
the appropriate registers on the chip:

DACK CS A1 Ao RD WR Operation

1 0 0 0 0 1 Read Status
1 0 0 0 1 0 Write Command
1 0 0 1 0 1 Read Result
1 0 0 1 1 0 Write Parameter
1 0 1 0 1 0 Write Reset Reg.
0 1 X X 1 0 Write Data
0 1 X X 0 1 Read Data
0 0 X X X X Not Allowed

The FDC operation is composed of the following
sequence of events.

8080 WRITES THE COMMAND AND PARAMETERS INTO
THE 8271 COMMAND AND PARAMETER REGISTERS.

THE 8271 IS ON ITS OWN TO CARRY OUT THE COMMANDS.

THE 8271 SIGNALS THE CPU THAT THE EXECUTION HAS
FINISHED. THE CPU MUST PERFORM A READ OPERATION
OF ONE OR MORE OF THE REGISTERS TO DETERMINE
THE OUTCOME OF THE OPERATION.

START

Figure 16. Passing the Command and Parameters
to the 8271

The Command Phase

The software writes a command to the command register.
As a function of the command issued, from zero to five
parameters are written to the parameter register. Refer to
diagram showing a flow chart of the command phase.
Note that the flow chart shows that a command may not be
issued if the FDC status register indicates that the device
is busy. Issuing a command while another command is in
progress is illegal. The flc IN chart also shows a parameter
buffer full check. The FDC status indicates the state of the
parameter buffer. If a parameter is issued while the
parameter buffer is full, the previous parameter is over
written and lost.

YES

END)

NOTE:

STANDARD RESULT RETURNED CAN BE
DETERMINED BY MASKING OUT THE
DRIYE SELECT BITS OF THE COMMAND
BYTE (BITS 7 AND 6) AND CHECKING
FOR A VALUE OF LESS THAN 2C16 (IF
LESS THAN 2C16. STANDARD RESULT
IS RETURNED).

IMMEDIATE RESULT RETURNED CAN
BE DETERMINED BY ADDITIONALLY
MASKING OUT BITS 5 AND 4 OF THE
COMMAND BYTE AND CHECKING FOR
A VALUE OF C16 OR GREATER (IF C16
OR GREATER, IMMEDIATE RESULT
RETURNED).

Figure 17. Checking for Result Type Following 8271
Command and Parameters .

The Execution Phase

During the execution phase the operation specified
during the command phase is performed. During this
phase, there is no CPU involvement if the system utilizes
DMA for the data transfers. The execution phase of each
command is discussed within the detailed command
descriptions. The following table summarizes many of the
basic execution phase characteristics.

1-127 AFN-00223B

8271/8271·6

EXECUTION PHASE BASIC CHARACTERISTICS

The following table summarizes the various commands
with corresponding execution phase characteristics.

Table 2. Execution Phase Basic Characteristics

2 3 4 5 6 7 8
Deleted Writel Seek Completion

,COMMANDS Data Head Ready Protect Seek Check Result Interrupt

SCAN DATA SKIP LOAD j x YES YES YES YES

SCAN DATA AND XFER LOAD j x YES YES YES YES
DEL DATA
WRITE DATA x LOAD j j YES YES YES YES

WRITE DEL DATA x LOAD j j YES YES YES YES

READ DATA SKIP LOAD j x YES YES YES YES

READ DATA AND XFER LOAD j x YES YES YES YES
DEL DATA
READID x LOAD j x YES NO YES YES

VERIFY DATA AND XFER LOAD j x YES YES YES YES
DEL DATA
FORMAT TRACK x LOAD j j YES NO YES YES

SEEK x LOAD Y x YES NO YES YES

READ DRIVE STATUS x x x NO NO NOTE 5 NO

SPECIFY x x x NO NO NO NO

RESET x UNLOAD x x NO NO NO NO
R SP REGiSTERS. x x x NO NO NOTE 6 NO

W SP REGISTERS x x x No NO NO NO
Note: 1. "x" ~ DON'T CARE 2. "j" ~ check 3. "-" ~ No change 4. "y" - Check a1 end of operation. 5. See "READ DRIVE STATUS" command.

6. See "READ SPECIAL REGISTER" command.

Explanation of the execution phase characteristics table.

1. Deleted Data Processing

If deleted data is encountered during an operation that
is marked skip in the table, the deleted data record is
not transferred into memory, butthe·record is counted.
For example, if the command and parameters specify a
read of five records and one of the records was written
with a deleted data mark, four records are transferred
to memory. The deleted data flag is set in the result
byte. However, if the operation is marked transfer, all
data is transferred to memory regardless of the type of
data mark.

2. Head

The Head column in the table specifies whether the
Read/Write head will be loaded or not. If the table
specifies load, the head is loaded after it is positioned
over the track. The head loaded by a command remains
loaded until the user specified number of index pulses
have occurred.

3. Ready

The Ready column indicates if the ready line (Ready
1, Ready 0) assoc;iated with the selected drive is
checked. A not ready state is latched by the 8271 un·
til the user executes a read status command.

4. Write Protect

The operations that are marked check Write Protect are
immediately aborted if Write Protect line is active atthe
beginning of an operation.

5. Seek

Many of the 8271 commands cause a seek to the
desired track. A current track register is maintained for
each drive or surface.

6. Seek Check

1·128

Operations that perform Seek Check verify' that
selected data in the ID field is correct before the 8271
accesses the data field.

AFN.Q0223B

8271/827t·6

CPU INTERRUPT POLLED INTERRUPT

(START) (START)

. Figure 18_ Geffing the Result

The Result Phase

During the Result Phase, the FOC notifies the CPU of the
outcome of the command execution. This phase may be
initiated by: .,

1. The successful completion of an operation.
2. Ali error detected during an operation.

PROGRAMMING

A1 Ao
0 0
0 1
1 0
1 1

STATUS REGISTER

COMMAND BUSY

COMMAND REG FULL

PARAMETER REG FULL

CS RD

Status Reg
Result Reg

-
-

FDC Status

Bit 7: Command Busy

CS WR

Command Reg
Parameter Reg
Reset Reg

-

The command busy bit is set on writing to the command
register. Whenever the FDC is busy processing a
command, the command busy bit is set to a one. This bit is
set to zero after the command is completed.

Bit 6: Command Full

The command full bit is set on writing to the command
buffer and cleared when the FDC begins processing the
command.
Bit 5: Parameter Full

This bit indicates the state olthe parameter buffer. This bit
is set when a parameter is written to the FOC and reset
after the FDC has accepted the parameter.

Bit 4: Result Full

This bit indicates th~state of the. result buffer.)t is valid
only after Command. EllJsy bit is low. This bit is set whEln
the FOC finishes a command and is reset after the result
byte:fs'readbytheCPU, The data in the result buffer is
valid only after the' FOC has completed a command,
Reading the result buff fir while a command is in progress
yields no useful information. .

Bit 3: Interrupt Request

This bit refl~cts the state of the FOC INT pill. It is set
when FOC requests aUention as a resuft of the comple­
tion of an operation or failure to complete an intended
operation. This bit is cleared by reading the result
register.

Bit 2: Non-DMA Data Request

When the FOC is utilized without a OMA controller, this bit
is used to indicate FOC data requests. Note that in the
non-DMA mode, an interrupt is generated (interrupt
request bit is set) with each data byte written to or read
from the diskette.

Blt8 1 and 0:

Not used (zero returned!'

After reading the Status Register,the CPU then reads thp
Result Register for more information.

THE RESULT REGISTER

This byte format facilitates the use of an address table
to look up error routines and messages. The standard
result byte format is:

OJ 06 05 04 03 02 0, 00

I 0 I

1'1'1; .. ::::-
. . .. CO!'llPLETION TYPE

'---_~------DELETED DATA FOUND

'------------'-- NOT USED = 00

Bits 7 and 6:

Notused (zero returned).

Bit 5:

Deleted Data Found:'Thisbil is set when deleted data is
encountered during a transaction.

Bits 4 and 3: Completion Type

The completion type field provides general iriform'ation
regarding the outcome of an operation.

The. completion type field provides general information
regarding the outcome of !!n operation.

Completion
Type

00
01
10

11

Event

Good Completion - No Error'
SystEim Error -recoverable errors;
operator intervention probably reqUired
for recovery.
Command/Drive Error - either a program
error or drive hardware failure.

'1-129 AFN-00223B

intJ 827118271·6

Bit' 2 and 1: Completion Code It is important to note the hierarchical structure of the
result byte. In very simple systems where only a GO-NO
GO result is required, the user may simply branch on a
zero result (a zero result is a good completion). The next
level of complexity is atthe completion type interface. The
comptetion type supplies enough information so that the
software may distinguish between fatal and non-fatal
errors. If, a completion type 01 occurs, ten retries should
be performed before the error is considered unre­
coverable.

The completion code field provides more detailed
information about the completion type (See Table).

Completion Completion
Type Code

00 00

00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

01
10
11
00
01
10
11
00
01
10
11
00
01
10
11

Definition I

Successful Completionl
Scan Not Met

Scan Met Equal

Scan Met Not Equal

Clock Error

Late DMA

10 Field CRC Error

Data Field CRC Error

Drive Not Ready

Write Protect

Track 00 Not Found

Write Fault

Sector Not Found

Event

Good Completion/
Scan Not Met
Scan Met Equal
Scan Met Not Equal

Clock Error
Late DMA
10 CRC Error
Data CRC Error
Drive Not Ready
Write Protect
Track 0 Not Found
Write Fault

The Completion Type/Completion Code interface sup­
plies the greatest detail about each type of completion.
This interface is used when.detailed information about the
transaction completion is required.

Sector Not Found Bit 0:

Not used (zero returnedl.

Table 3. Completion Code Interpretation

Interpretation

The diskette operation specified was compleied without error. If scan operation
was specified, the pattern scanned was not found on the track addressed.

The data pattern specified with the scan command was found on the track
addressed with the specified comparison, and the equality was met "
The, data pattern specified with the scan command. was found With the'
specified comparison on the track addressed, but the equality was not met

During a diskette read operation, a clock bit was missing (dropped). Note that this
function is disabled when reading any of the 10 address marks (which contain
missing clock pulses). " this error occurs, the operation is terminated immedi-,
ately and an interrupt is generated,

During either a diskette read or write operation, the data chanllel did not respond'
within the allotted time interval to prevent data from being overwritten or lost This
error immediately terminates the operation and generates an interrupt . .

The CRC word (two bytes) derived from the data read in an 10 field did not match
the CRC word written in the 1'0 field when the track was formatted, If this error
occurs, the associated diskette operation is prevented and no data is transferred.

During a diskette read operation, the CRC word derived from the data field read
did not match the data field CRC word previously written. "this error occurs, the
data read f.rom the sector should be considered invalid,

The drive addressed was not ready. This indication is c~,used by any of the
following conditions: .
1. Drive not powered up
2. Diskette not loaded
3, Non-existent drive addressed
4. Drive went not ready during an operation
Note that this completion code is cleared only through an FDC read drive
status command.

A' diskette write operation was specified on a write protected diskette, The
intended write operation is prevented and no data is writt.en on the diskette.

During a seek to track 00 oPeration. the drive failed to provide a track 00
indication after being stepped 255 times,

This error is dependent on the drive supported and indicates that the fault input to
the FDC has been activated by the drive.

Either the sector addressed could not be found within one complete revolution of
the diskette (two index marks encountered) or the track address specified did not
match the track address contained in the 10 field. Note that when the track
address specified and the track address. read do not match, the FDC automatically
increments its track address regi~ter (stepping the drive to the nellt track) and
again compares the track addresses, "the track'addresses still do not match, the
track address register is incremented a second time and another comparison is
madE! before the sector not found completion code is set

1-130 AFN-00223B

827118271-6

INITIALIZATION

RI •• ' Commend

::::: J : I 0 I 0 I 0 f 0 I 0 I 0 I 0 I 0 I ' I
Function: The Reset command emiJ~ates the action of
the reset pin. It is issued by outputting a one followed
by a zero to the Reset register. .

1. The drive control signals are forced low.
2. An in-progress command is aborted.
3. The FOC status register flags are cleared.
4. The FOC enters an idle state until the next command is

issued.
Reset must be active for 10 or more clock cycles.

SPECIFY COMMAND

Many of the interface characteristics of the FOe are
specified by the systems software. Prior to initiating any
drive operation command, the software must execute
the three specify commands. There are two types of
specify commands selectable by the first parameter
issued. .

First Parameter

OOH
10H
18H

Specify Type

Initialization
Load bad Tracks Surface '0'
Load I:!~~ Tracks Surface '1'

The Specify command is used prior .to performing any
diskette operation (including formatting pf a dislletle) to
define the drive's inherent operating characteristics and
also is used following a formatting. operation or
im~tallation of another diskette to define the locations of
bad tracks. Since the 'Specify command only loads
internal registers within th~ 8271 and does not involVE! an
actual diskette operation, command processing is limited
to only Command Phasl;l. r~ote that once the operating
characteristics and baa tracks have been specified for
a given drive and dis:~ette, redefining these values need
only be done if a diskette with ljnique bad tracks is to be
used or if the system is powered down; .. .

Inltllllzitlon:

:

CMO : 0 0 o I 0 I' I ' I o I ' I o I '
PAR 0 , o 1 0 1 01 o l ' 1

,
1 o 1 '

PAR 0 , STEP RATE'"'

PAR : 0 , HEAD SETTLING TIME"

: 0 , INDEX CNT BEFORE I HEAD LOAD TIME"
HEAD UNLOAO'"

PAR

·Note: Mini-floppy parameters are dO!Jbled.

Parameter 0 - OOH= Select Specify Initi.alization.
Parameter 1 - 07-00 = Step Rate (0-255ms in 1 ms steps).
Parameter 2 - b7-00 = Head Settling Time (0-255ms in 1

ms steps). {O - 510ms in 2mssteps} 0 = standard,
{}=;mini .

Parameter 3 - 07-04= Index Count - Specifies the
number of Revolutions (0-14) which are'to occur before
the FOC automatically unloads the R/W head. If15 is
specified, the head remains loaded. .
/'03-00 = Head Load Time. (0-60ms in steps of 4ms).

{0-120ms in 8ms steps} 0 = standard, {}= mini

Load aid Track.

A , A • 0, 0 • Os 0 4 D 3 D , o , ..
CMD : 0 0 o 1 o 1 ., 1 ' 1 o 1'1
PAR 0 , 0 I o I o 1"'1 1/0 I "I
PAR : 0 , 'BAD TRACK NO.1 I

PAR 0 , BAD TRACK NO.2

PAR : 0 , CURRENT TRACK

Parameter 0: 1 OH = Load Surface zero bad tracks
18H = Load Surface one bad track

Parameter· 1: ,

o 1 '
o .10

Bad track address number 1 (Physical Address!.

It is recommended to program both bad tracks and cur·
rent Ir~ck to FFH during initialization;

SEEK COMMAND

The seek command moves the head to the specified track
without loading the head or verifying the track ..

The. seek operation uses the specified bad tracks to
compute the physical traCk address. This feature insures
that the seek operation positions the head over the correct
track.

When a seek to track zero is specified, the FOC steps
the head until the track 00 signal is detected.

If the track 00 signal is not detected within (FF)H steps, a
track 0 not found error status is returned.

A seek to track zero is used to position the read/write head
when the current head position is unknown (such as after
a power up).

PAR:

~~~--------------------~ 

Seek operations are not verified. A subsequent read or 
write operation must be performed to determine if the 
correct track is located. 

READ DRIVE STATUS COMMAND 

This command is used to interrogate the drive status. 
Upon completion the result register will hold the final 
drive status. 

A, A. 0, O. D. D, D; D, 0, D. 

CMD:, 0 I 0 I S~L I S~l I , 0 I , I , 0 I 0 I 
RESULT: EACH BIT INDICATES CURRENT STATE OF INPUT PINS. 

A, A. 

IF A DRtVE NOT READY RESULT IS RETURNED, THE READ STATUS MUST 
BE ISSUED TO CLEAR THE CONDITION. 

• Note the tWD ready bits are zerD latching. TherefDre, to clear the drive 
not ready cDnditiDn, assuming the drive is ready, and to detect it via SDft· 
ware, one must ISllue this command twice. 

1·131 AFN-00223B 



8271/8271·6 

START 

POWER·UP 
ALL DRIVES 

RESET 
INTERFACE 

RESET 
, FDC 

SPECIFY 
DRIVE 

CHARACTERISTICS 

SPECIFY 
BAD TRACKS 

DRIVE 0 

SPECIFY 
BAD TRACKS 

DRIVE t 

seT NON·DMA 
ANDIOR 

SINGLE ACTUATOR 

SEEK TO 
TRACK 0 

ON DRIVE 0 

YES 

SEEK TO 
TRACK 0 

ON DRIVE 1 

Figure 19. Initialization of the 8271 by the User 

ReadlWrlte Special Registers 

This command is used to access special registers within 
the 8271. 

CMD: COMMAND OPCODE 

PAR: 

~~~------------------~ 
Command code:

30H Read Special Register
3AH Write Special Register

For both commands, the first parameter is the register
address; for Write commands a second parameter
specifies data to be written. Only the Read Special
Register command supplies a result.

Table 4. Special Registers

Regl.ter Addre ••
Description In Hex Comment

Scan Sector Number 06 See Scan Description

Scan MSB of Count 14 See Scan Description

Scan LSB of Count 13 See Scan Description

Surface 0 Current Track 12

Surface 1 Current Track lA

Mode Register 17 See Mode Register
Description

Orive Control Ou.tput Port 23 See Drive Output
Port Description

Drive Control I "put Port 22 See Drive Input
Port Description

Surface 0 Bad Track 1 10

Surface 0 Bad Track 2 11

Surface 1 Bad Track 1 18

Surface 1 Bad Track 2 19

Mode Register Write Parameter Format

07 0 6 05 0 4 0 3 O2 0, do

1111101010101~

Bits 6" 7

Must be one.

Bits 5·2

= 0 OMA MODE, = 1 NON OMA

·0 DOUBLE.· 1 SINGLE ACTUATOR

(Not usedl. Must be set to zero.

*Blt 1

Double/Single Actuator: Selects single or double actuator
mode. If the single actuator mode is selected, the FOG
assumes that the physical track location of both disks is
always the same. This mode facilitates control of a drive
which has a single actuator mechanism to move two
heads.

*Blt 0

Data Transfer Mode: This bit selects the data transfer
mode. If this bit is a zero, the FOG operates in the DMA
mode (DMA Request/AGKl. If this bit is a one, the FOG
operates in non-DMA mode. When the FOG is operating in
DMA mode, interrupts are generated at the completion of
commands. If the non-DMA mode is selected, the FOG
generates an interrupt for every data byte transferred.

·Blts 0 and 1 are initialized to zero.

1-132 AFN-0rJ223B

827118271·6

Non·DMA Transfers In DMA Mode

If the user desires, he may retain the use of interrupts
generated upon command completions. This mode is
accomplished by selecting the DMA capability, but
using the DMA REQ/ACK pins as effective INT and CS
signals, respectively.

Drive Control Input Port

Reading this port will give the CPU exactly the data that
the FDC sees at the corresponding pins. Reading this
port will update the drive not ready status, but will ~not
clear the status. (See Read Drive Status Command for
Bit locations.)

Drive Control Output Port Format

I I I I I I I I I

L= WRITE ENABLE

SEEK/STEP

DIRECTION

LOAD HEAD

LOW HEAD CURRENT

WRITE' FAULT RESET/
OPTIONAL OUTPUT

SELECT 0

SELECT 1

Each of these signals correspond to the chip pin of the
same name. On standard-sized drives with write fault
detection logic, bit 5 is set to generate the write fault
reset signal. This signal is used to clear a write fault
indication within the drive. On mini·sized drives, this bit
can be used to turn on or off the drive motor prior to initi­
ating a drive operation. A time delay after turn on may be
necessary for the drive to come up to speed. The regis­
ter must be read prior to writing the register in order to
save the states of the remaining bits. When the register
is subsequently written to modify bit 5, the remaining
bits must be restored to their previous states.

IBM DISKETTE GENERAL FORMAT
INFORMATION
The IBM Flexible Diskette used for data storage and
retrieval is organized into concentric circular paths or
TRACKS. There are 77 tracks on either one or both sides
(surfaces) of the diskette. On double-sided diskettes, the
corresponding top and bottom tracks are referfed to as a
CYLINDER. Each track is further divided into fixed length
sections or SECTORS. The number of sectors per track:'"
26, 15 or 8 - is determined when a track is formatted a'nd is
dependent on the sector length - 128; 256 or 512 bytes
respectively::- specified,.

Ali tracks on' the diskette are referenced to a physical
index mark (a small hole in the diskettel.. Eachtime the
hole passes a photodetector cell (one revolution of the
diskette), an' Index pulse is generated to indicate the
logical beginning of a track. This index pulse is used to
initiate a track formatting operation.

Track Format
Each Diskette Surface is divided into 77 tracks with each
track divided into fixed length sectors. A sector can hold a
whole record or a part of a record.lf the record is shorter
than the sector length, the unused bytes are filled with
binary zeros. If a record is longer than the sector length,
the record is written over as many sectors as its length
requires. The. sector size that provides the most efficient
use of diskette space can be chosen depending upon the
record length required.
Tracks are numbered from 00 (outer-most) to 76 (inner­
most) and are used as follows:

TRACK 00 reserved as System Label Track
TRACKS 01 through 74 used for data
TRACKS 75 and 76 used as alternates .

. Each sectorCOnsists of an ID field (which holds a unique
address for the sector) and a data field.

The ID field is seven bytes long and is written for each
sector when the track is formatted. Each I D field consists
of an IDfield Address Mark, a Cylinder Number byte which
identifies the track number, a Head Number byte which
specifies the head used (top or bottom) to access the
sector, a Record Number byte identifying the sector
number (1 through 26 for 128 byte sectors), an N-byte
specifying the byte length of the sector and two CRC
(Cyclic ~edundancy Check) bytes.

The Gaps separating the index mark and the 10 and data
fields are written on a track when it is formatted. These
gaps provide both an interval for switching the drive elec­
tronics from reading or writing and compensation for rota­
tional speed and other diskette-to-diskette and drive-to­
drive manufacturing tolerances to ensure that data written
on a diskette by one system can be read by another
(diskette interchangeabilityl.

IBM Format Implementation Summary

Track Format

The disk has 77 tracks, numbered physically from 00 to 76,
with track 00 being the outermost track, There are
logically 75 data tracks and two alternate tracks. Any two
tracks may be initialized as bad tracks. The data tracks are
numbered logically in sequence from 00 to 74, skipping
over bad tracks (alternate tracks replace bad tracks).
Note: In IBM format track 00 cannot be a bad track,

Sector Format

Each track is divided into 26, 15, or 8 sectors of 128, 256,
or 512 bytes length respectively. The first sector is
numbered 01, and is physically the first sector after the
physical inde.x mark, The logical sequence of the
remaining sectors may be nonsequential physically. The
location of these is determined at initialization by CPU
software.
Each sector consists of an ID field and a data field, All
fields are separated by gaps. The beginning of each field
is indicated by 6 bytes of (OOlH followed by a one byte
address mark.

Address Marks

Address Marks are unique bit patterns one byte in length
which are used to identify the beginning of ID and Data
fields. Address Mark bytes are unique from all other data

1·133 AFN·00223B

10 Field
A

Last Sector

8271/8271·6

Gap

Index

II .. ,,",01 L Sector 02

I
Gap

Data field
A

128,256. or 512 Bytes

AM2: Data: hex F8 or F8
fB = data field
F 8 = contra I field
(The control field can
begin with a 0 or an F:
o '" deleted record
F = defective record
Clock: hex C7)

Hex 00 for 128 byte per sector format
Hex 01 for 256 byte per sector format
Hex 02 for 512 byte per sector format

Hex 01 through fA for 128 byte per sector format diskette
Hex 01 through OF for 256 byte par sector format diskette
Hex 01 through 08 for 512 byte per sector format diskette

Hex 00 for one·sided diskettes and side 0 of two-sided diskettes
Hex 01 for side 1 of two-sided diskettes

Hex 00 through 4A IDecimal 1 through 74. Cylinders 75 and 76
are used as alternate cylinders.)

AM1: identifies 10 field
Data: hex FE
Clock: hex C7

Figure 20. Track Format

bytes in that certain bit cells do not contain a clock bit (all
other data bytes have clock bits in every bit cell.! There are
four different types of Address Marks used. Each of these
is used to identify different types of fields.

10 Field

MARK C H

Sector 03

R

o
®
CD
<9

Pre-index gap.

Post-index gap.

6 bytes of zeroes.

Cyclic redundancy check.
The check bytes .r.
generated during a wr ite
operation. Thev are used
during a read opa-ation
to verify that data is
read c.Krectly.

® Post-tO gap.

@ Post-data gap.

N CRC

Index Address Mark C Cylinder (Track) Address, 00-74

The Index Address Mark is located at.the beginning of
each track and is a fixed number of bytes in front of the
first record.

10 Address Mark

The ID Address Mark byte is located at the beginning of
each 10 field on the diskette.

Data Address Mark

H = Head Address
R = Record (Sector) Address, 01-26
N = Record (Sector) Length,OO-02
Note: Sector Length = 128 X 2N bytes
CRC = 16 Bit CRC Character (See Below)

Data FIeld

CRC

The Data Address Mark byte is located at the beginning of
each non-deleted Data Field on the diskette.

MARK I DATA. CRC CRC

Deleted Data Address Mark

The Deleted Data Address Mark byte is located at the
beginning of each deleted Data Field on the diskette.

Clock Data
Address Mark Summary Pattern Pattern

Index Address Mark 07 FC
10 Address Mark C7 FE
Data Address Mark C7 FB
Deleted Data Address Mark C7 F8
Bad Track 10 Address Mark C7 FE

Data is 128, 256, or 512 bytes long.

.Note: All marks, data, 10 characters and CRC
characters are recorded and read most
significant bit first.

CRC Character

The 16-bit CRC character is generated using the
~~~er.ator polynominal X16 + X12 + X5 + 1, normally 
initialized to (FF)H. It is generated from all characters 
(except the CRC in the 10 or data field), including the data 
(not the clocks) in the address mark. It 'is recorded and 
read most significant bitfitst. 

1-134 AFN.Q0223B 



8271/8271·6' 

Data Format 

Data is written (general case) in the following manner: 

MISSINQ 
CLOCK CLOCK CLOCK CLOCK 

DATA ''0'' DATA "1" DATA "1" DATA "1" 

TF= FULL BIT TIME= NOMINALLY ..,.. 
T H "'" HALF ~IT TIME= NOMINALLY 214~ 

References 

"The IBM Diskette for Standard Data Interchange," IBM 
Document GA21-9182-0. "System 32," Chapter 8, IBM 
Document GA21-9176-0. 

Bad Track Format 

The Bad Track Format is the same as the good track 
format except that the bad track I D field is initialized as 
follows: 

C = H = R = N = (FFlH 

When formatting, bad track registers should be set to 
FFH for the drlv.e during the formatting, thus specifying 
no bad tracks. Thus, all tracks are left available for for­
matting. 

The track foHowing the bad track(s) should be one 
higher in number than track before the bad track(s). 

Upon completion of the format the bad tracks should be 
set up using the write special register command. The 
8271 will then generate an extra step pulse to cross the 
bad track, locating a new track that now happens to be 
an extra track out. 

Format Track 
Format Command 

CMD: 0 0 S~L I S~L I 1 I o I 0 I 0 J 1 -' 1 

PAR: 0 1 TRACK ADDRESS 

PAR: 0 1 GAP 3 SIZE MINUS 6 

PAR: 0 1 RECORD LENGTH I NO. OF S"ECTORSITRACK 

PAR: 0 1 GAP 5 SIZE MINUS 6 

PAR: 0 1 GAP 1 SIZE MINUS 6 

The format command can be used to initialize a disk track 
compatible with the IBM 3740 format. A Shugart "IBM 
Type" mini-floppy format may also be generated. 

The Format command can be used to initialize a disk­
ette, one track at a time. When format command Is used, 
the program must supply IOfields for each sector on the 
track. During command execution, the supplied ID fields 
(track head sector addresses and the sector length) are 
written sequentially on the diskette. The ID address 
marks originate from the 8271 and are written auto­
matically as the first byte of.each ID field. The CRC char­
acter is written in the last two bytes of the ID fieJd and is 
derived· from the data written in the first five bytes. Dur­
ing the. formatting operation, the data field of each sec­
tor Is filled with data pattern (E5)H' The CRC, derived 
from the data pattern is also appended to the last byte. 

1. The parameter 2 (07 - Os! of the Format command specify 
record length, the bits are coded the same way as in the 
Read Data commands. 

2. The programmable gap sizes (gap 3, gap 5, and gap 1) must 
be programmed such that the 6 bytes of zero (sync) are sub­
tracted from the intended gap size i.e., if gap 1 is Intended 
to be i6 bytes long, programmed length must be 16 - 6 = 10 
bytes (of FFH's). 

Mlnl·Floppy Disk Format 

The mini-floppy disk format differs from the standard 
disk format in the following ways: 

1. Gap 5 and .the Index Address mark have been elimi­
nated. 
2. There are fewer sectors/tracks. 

GAPS 

The following is the. gap size and description summary: 

Gap 1 Program mabie 
Gap 2 17 Bytes 
Gap 3 Programmable 
Gap 4 Variable 
Gap 5 Programmable 

The last six bytes of gaps 1,2,3 and 5 are (OOlH, all other 
bytes in the gaps are (FFlH. The Gap 1,3 and 5 count 
specified by the user are the number of bytes of (FFlH. Gap 
4 is written until the leading edge of the index pulse. If a 
Gap 5 size of zero is specified, the Index Mark is not 
written. 

Gap 1: This gap separates the index ad· 
N bytes FF's dress mark of the index pulse from 
6 bytes O's for sync the first ID mark. It is used to pro· 

tect the first ID field from a write on 
the last physical sector of the cur· 
rent track. 

Gap 2: This gap separates the ID field from 
11 bytes FF's the data mark and field such that 
6 bytes O's for sync during a write only the data field 

will be changed even if the write 
gate turns on early, due to drive 
speed changes. 

Gap 3: This gap separates a data area from 
N bytes FF's the next ID field. It is used so that 
6 bytes O's for sync during drive speed changes the 

Gap 4: 
FF's only 

next ID mark will not be overwritten, 
thus causing loss of data. 

This gap fills out the rest of the disk 
and is used for slack during format· 
tlng. During drive speed variations 
this gap will shrink or grow If the 
disk is re-formatted. 

Gap 5: This gap separates the last sector 
N bytes FF's from the Index Address mark and 
6 bytes O's for sync is used to assure that the index ad-

dress mark is not destroyed by 
writing on the last physical data 
sector on the track. 

The number of FF bytes is programmable for gaps 1,3 
and 5. 

1·135 AFN-00223B 



827118271·6 

INDEX 

C>ATA j j 
FIELD GAP 4 GAPS 11 1 10 1 1 DATA ~ GAP 1 FIELD GAP 2 FIELD I GAP 3 I FII~lD 1 GAP 2 

GAPS 

GAP 1: POST INDEX GAP 

I" 

GAP 2: POST 10 FIELD GAP 

I' 

GAP 3: POST DATA FIELD GAP 

I" 
I 
L 
~ 2-BITS 

GAP 4: FINAL GAP 

I' 

GAP 5: INITIAL GAP 

'" 

~ INDEX ADDRESS MARK 

'I 
SYNC I 

., 
SYNC I 

L WRITE GATE TURN.()N FOR UPDATE OF NEXT 
DATA FIELD. 

'1 
1 SYNC I 

NOTE: THE WRITE GATE TURN·ON SHOULD BE TIMED 
TO WITHIN ± = 1 BIT BY COUNTING THE BYTES 
IN THE GAP UNTIL 1 BYTE BEFORE THE 
TURN-ON, 

WRITE GATE TURN-OFF FROM UPDATE OF PREVIOUS DATA FIELD. 

NOTE: IBM FORMAT REQUIRES AT LEAST 2 BINA~y "," BITS AS A DATA FIELD POSTAMBLE. 

'1 

" 

SYNC I 

Figure 21. Track Format 

1·136 AFN-00223B 



821'1/8271·& 

n, rNH:::CAL 

________ ~. C_·~M='~'~'~' ____ ~~ ____ ~"'~ ________________________________________________________________ _ 

~':OR'I FINAL DATA GAP 
FIELD (GAP4) 

< .::x J ' IIII~. j I=~ I,SECTo:1" ":eI~~ I .. SECTOR 1 GAP ADO.,ESS GAP 1 GAP DATA FIELD 
(GAPS) MARK. (GAP 1) IDFIELD (GAP2) 

DATA SECTOR FIElD, 

I POST I : I POST '·'1 F~~D 10 F~£LD GAP 
(GAP ~ (GAP 21. ' 

SECTOR'2 I·~~I 
DATA FIELD' ~~pD 

(GAPS) 

-I ~ .. 

I HEXFF I (:::~ I I HEXFF I (H~:.I I HEXFF I (:::~ I I· HEX,FF I (::~.I 
40 BYTES 8aYlES HaYlES es".. n BYTES 6 BYTES 11 BYTES 8 BYTES 
(1YI'ICA~ (TYPICAW 

I 
L.... _____ -, 

IA:t~~1 1281C 2" USER DTA BYTES III~~' B~~~2 I 
BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE a BYTE 7 .. 

NUMBER OF BYTES 

NUMBER GAP 1 GAP 2 GAP 3 GAP 5 
OF SECTORS ID FIELD DATA FIELD 

·ONES SYNC ONES SYNC ·ONES' 

26 26 6 7 11 6 131. 27 
15 26 6 7 11 6 259 48 
8 26 6 7 11 6 515 90 
4 26 6 7 11 6 1027 224 
2 26 6 7 11 6 2051 255 
1 26 6' 7 11 6 4099 0 

·Program Specified 

Figure 22. Standard Iliskette Track Format 

~PHVSICAL 
INDEX 
MAR. 

IS~~ I ANAL II~~~ I SECTOR I ~:I~D DATA GAP GAP 1 GAP 
FIELD (GAP 4) (GAP 1) 10 FIELD (GAP 2) 

1 ~ 

SECTOR 1 
DATA FIELD 

I HEXFF I {=:~ I I ~EX FF L::~ I 
18 BYTES 8 BYTES 11 BYTES 8 BYTES 
(TYPICAl) 

I 

I POST I : I POST I. I OATA SECTOR FIELD 
RELD 2 GAP 
(:A~ 3) ID FIELD (GAP 2) 

SECTOR 2 
DATA FIELD 

GAP 4 
SYNC ·ONES SYNC 

6 275 40 6 
6 129 40 6 
6 146 40 6 
6 236 40 6 
6 719 40 6 
0 1007 40 6 

5208 Bytes Per Track 

POST I DATA SECTOR 
FIELD 8 
GAP IDFIElO 

{GAP 3) 

POST ,., I!I!' LAST,. f FIElD SECTOR 
GAP DATA 

(GAP 2) FIELD 

HEX FF I J::~ I 
n BYTES 8 BYTES 

I At&T , 128 II 2n USER DATA BYTES 'B~~1 I 8~21 I Av}r I A~~~:S1 ~De:~ l.:g;:'1 ~~~: I B~~ 1 I 8~ 2 I 
IYTE 1 BYTE 2 IvrEa BYTf 4 BYTE 5 BYTES"' M£ 7 

NUMBER OF BYTES 

NUMBER GAP 1 GAP 2 GAP 3 
OF SECTORS ID FIELD DATA FIELD GAP 4 

·ONES SYNC ONES SYNC ·ONES· SYNC 

18 16 6 7 11 6 131 11 6 24 
10 16 6 7 11 6 259 21 6 30 
5 16 6 7 11 6 515 74 6 88 
2 16 6 7 11 6 1027 255 6 740 

1 16 6 7 11 6 2051 0 0 1028 

·Program Specified 3125 Bytes, Per Track 

Figure 23. Mini-Diskette Track Format 

1-131' AFN-00223B 



inter 827118271·6' 

( START ) 

NO 

TC STOP :~~{ 
DMA ENABLE BITS ..... __ --,-___ ... 

} :~~~ LOAD AND 
..... __ --,-___ ... DMA ENABLE BITS 

Figure 24. User OMA Channel Initialization Flowchart 

Read 10 Command 

CMD: 0 0 S;l I S~l I 0 1 1 1 1 1 o 1 1 1 1 

PAR: 0 1 TRACK ADDR ESS 

PAR: 0 1 o 1°1 0 1 o 1 o 1 0 1 o 1 0 

PAR: 0 1 NUMBER OF 10 FIELDS 

The Read ID command transfers the specified number of 
ID fieldsinto memory (beginni(lg with the first ID field.after 
Index!. The CRC character is checked but not transferred. 

These fields are entered into memory in the order in 
which they are physically located on the disk, with the 
first field being the one starting at the index pulse. 

Data Processing Commands 

All the routine Read/Write commands examine specific 
drive status lines before beginning execution, perform 
an implicit seek to the track address and load the drive's 
read/write head. Regardless of the type of command 
(Le., read, write or verify), the 8271 first reads the 10 
field(s) to verify that the correct track has been located 
(see sector not found completion code} am;! also to 
locate the addressed sector. WhEm 'a transfer is com· 
plete (or cannot be completed), the 82h sets the Inter· 
rupt request bit in the status register and provides an in· 
dication of the outcome of the operation in the result 
register. . . 

If a CRC error is detected during a multisector transfer, 
processing is terminated with the sector in error. The 

. address of the failing sector number can be determined by 
examining the Scan Sector Number register using the 
Read Special Register command. 

Full power ofthe multisector read/write commands can be 
realized by doing OMA transfer using Intel® 8257 DMA 
Controller, For example, in a 128 byte per sector 
multisector write command, the entire data block 
(containing 128 bytes times the number of sectors) can be 
located in a disk memory buffer. Upon completion of the 
command phase, the 8271 begins execution by accessing 
the desired track, verifying the'lD field, and locating the 
data field of the first record to be written. The 8271 then 
DMA-accesses the first sector and starts counting and 
writing one byte at a time until all 128 bytes are written. It 
then locates the data field of the next sector and repeats 
the procedure until all the specified sectors have been 
written. Upon completion of the execution phase the 8271 
enters into the result phase and interrupts the CPU for 
availability of status and completion results. Note that all 
read/write commands, Single or multisector are executed 
without CPU intervention. 

Note, execution of multi·sector operations are faster if 
the sectors are not interleaved. 

128 Byte Single Record Format 

0 D 

0 1 

PAR: 0 1 

Commands 

READ DATA 

si l I S~l I COMMAND OPCODE 

TR,ACK AD DR 0-255 

SECTOR 0-255 

READ DATA AND DELETED DATA 
WRITE DATA 
WRITE DELETED DATA 
VERIFY DATA AND DELETED DATA 

Opcode 

12 
16 
OA 
OE 
1E 

1-138 AFN'()0223B 



8271/8271 ~6 

Variable Length/Multi-Record Fc)rmat 

CMO, 0 0 SEL 1 SEL 1 COMMAND OPCOOE , 0 . 

PAR, 0 , TRACK AOOR 0·255 

PAR: 0 , SECTOR 0·255 

PAR, 0 , LENGTH 1 NO. OF SECTORS 

D7-D5 of Parameter 2 determine the length oUhe disk 
record. 

000 
o 0 1 
010 
011 
100 
101 
1 1 0 
1 1 1 

128 Bytes 
256 Bytes 
512 Bytes 
1024 Bytes 
2048 Bytes 
4096 Bytes 
8192 Bytes 
16,384 Bytes 

Commands 

READ DATA 
READ DATA AND DELETED DATA 
WRITE DATA 
WRITE DELETED DATA 
VERIFY DATA AND DELETED DATA 
SCAN DATA 
SCAN DATA AND DELETED DATA 

Read Commands 

Read Data, Read Data and Deleted Data. 

Function 

Opcode 

13 
17 
OB 
OF 
1F 
00 
04 

The read command transfers dat.a from a specified disk 
record or group of records to memory. The operation of 
this command is outli,ned in execution phase table. 

Write Commands 

Write Data, Write Deleted Data. 

Function 

The write command transfers data from 'memory to a 
specified disk record or group of records. 

Verify Command 

Verify Data and Deleted Data. 

Function 

The verify command is identical to the read data and 
deleted data command except that the data is not 
transferred to memory. This command is used to check 
that a record or a group of records has been written 
correctly by verifying the CRC character. 

Scan Commands 

A A 1 0 o 7 • 
CMO, 0 0 S~L 1 S~L 1 01 o 1 0 lSOAT":!. 0 1 S.OELD 0 

PAR: 0 , TRACK ADOR 0·255 

PAR: 0 , SECTOR 0·255 

PAR, 0 , LENGTH 1 NO, OF SECTORS 

PAR, ,0 " SCAN TYPE 1 STEP SIZE 

PAR, 0 , FIELD LENGTH (KEY) 

Command D2 = 0 Scan Data 
D2 = 1 Scan Data and Deleted Data 

Scan Commands, Scan Data and Scan Data and Deleted 
Data, are used to search a specific data pattern or "key" 
from memory. The 8271 FDC operation during a scan is 
unique in that data is read from memory and from the 
diskette simultaneously. 

During the scan operation, the key is compared 
repetitively (using the 8257 DMA Controller in auto load 
mode) with the data read from the diskette (e.g., an eight 
byte key would be compared with the first eight bytes (1-8), 
read from the diskette, the second eight bytes (9-16), the 
third eight bytes (17-24), etc.!. The. scan operation is 
concluded when the key is located or when the specified 
number of sectors have been Searched without locating 
the key. When concluded, the 8271 FDC requests an 
interrupt. The program must then read the result register 
to determine If the scan was successful (if the key was 
located). If successful, several of the FDC's special 
registers can be examined (read special registers 
command) to determine more specific information 
relating to the scan (i.e., the sector number in which the 
key was located, and the'numberof bytes within the sector 
that were not compared when the key was located), 

The 8271 does not do a sliding scan, it does a fixed 
block linear search. This means the key in memory Is 
compared to an equal length block in a sector; when 
these blocks meet the scan conditions the scan will 
stop. Otherwise, the scan continues until all the sectors 
specified have been searched. 

The following factors regarding key length must be 
considered when establishing a key in memory. 

1. When searching multiple sectors, the length of the key 
must be evenly divisible into the sector length to 
prevent the key from being split at subsequent sector 
boundaries. Since the character FFH is not compared, 
the key in memory cali be paddedto the required length 
using this character. For example, if the actual pattern 
compared on the diskette is twelve characters in length, 
the field length should be sixteen and four bytes of FFH 

1·139 AFN-002238 



intJ 8271 '8271~6 

would be appended to the key. Consequently, the last 
block of sixteen bytes compared within the first sec­
tor would end at the sector boundary and the first 
byte of the next sector would be compared with the 
first byte of the key. Splitting data over sector bound· 
arys will not work properly since the FOC expects the 
start of key at each sector boundary. 

2. Since the first byte of the key is compared with the first 
byte of the sector, when the pattern does not begin with 
the first byte of the sector, the key must be offset using 
the character FF16. For example, if the first byte of a 
nine byte pattern begins on the fifth byte of the sector, 
four bytes of FF16 are prefixed to the key (and three 
bytes of FF16 are appended to the key to meet the 
length requirement) so that the first actual comparison 
begins on the fifth byte. 

The Scan Commands require five parameters: 

Parameter 0, Track Address 

Specifies the track number containing the sectors to be 
scanned. Legal values range from OOH to 4CH (0 to 76) for 
a standard diskette and from OOH to 22H (0 to 34) for a 
mini-sized diskette. 

Parameter 1, Sector Address 

Specifies the first sector to be scanned. The number of 
sectors scanned is specified in parameter 2, and the order 
in which sectors are scanned is specified in parameter 3. 

Parameter 2, Sector Length/Number of Sectors 

The sector length field (bits 7-5) specifies the number of 
data bytes allocated to each sector (see parameter 2, 
routine read and write commands for field interpretation). 
The number of sectors field (bits 4-0) specifies the number 
of sectors to be scanned. The number specified ranges 
from one sector to the physical number of sectors on the 
track. 

Parameter 3 

01-GEO 

Indicate scan type 

Scan for each character within the field 
length (key) equal to the corresponding char­
acter within the disk sector. The scan stops 
after the first equal condition is met. 

Scan for each character within the disk sec­
tor greater than or equal to the correspond­
ing character within the field length (key). 
The scan stops after the first greater than or 
equal condition Is met. 

10-LEO Scan for each character within the disk sec­
tor less than or equal to the corresponding 
character within the field length (key). The 
scan stops after the first less than or equal 
condition is met. 

0 5-00: .Step Size: The Step .Size field speCifies the 
offset to the next sector In a multlsector 
scan. In this case, the next sector address is 
generated by adding the Step Size to the 
current sector address. . 

Parameter 4, Field Length 

Specifies the number of bytes to be compared (length of 
key). While the range of legal values is from 1 to 255, the 
field length specified should be evenly divisible into,the 
sector length to prevent the key from being split at sector 
boundaries, if the multisector scan commands are used. 

Scan Command Results 

More detailed information about the completion of Scan 
Commands may be obtained by executing Read Special 
Register commands. 

Read Special Register 

Parameter 
(Hex) 

Results 

06 

14 

13 

The sector number of the sector in which the 
specified scan data pattern was located. 

MSB Count - The number of 128 byte blocks 
remaining to be compared in the current sector 
when the scan data pattern was located. This 
register is decremented with each 128 byte block 
read. 

LSB Count - The number of bytes remaining to 
be compared in the current sector when the scan 
data pattern is located, This register is initialized 
to 128 and is decremented with each byte 
compared. 

Upon a scan met condition, the equation below can be 
used to determine the last byte In the located pattern. 

Pointer; sector length - «Register 14H)'128 + (Register 13H)) 

1-140 AFN-00223B 



827118271·61 

8~71 Scan Command ,Example 

Assurrie,there are only' 2 records on ,track 0 with the 
follciwing data: 

Record 01: 01 02 03'04 05 06 07 08 000 .... 00 
Record 02: 01 02 AA 55 00 0000 00 ........ 00 

Field 111 Starting # of Completion 
Special Registers 14] 

Command Length Sector # Sectors Key 12] Code l3) R06 R14 R13 Comment 

• SCAN EO 2 1 1 01,02 SME 01 0 1270 Met in first field 

SCAN EO 2 1 1 02,03 SNM X ,X X Nolmet 
SCAN EO 2 1 1 FFI5],05 SNM X X X Not met with don't care 

• SCAN EO 2 1 1 FFI5],06 SME 01 0 1230 Met with don't care 
• SCAN EO 2 1 2 AA,55 SME 02 0 1250 Met in Record 02 

· SCAN EO 2' 2 1 01,02 SME 02 0 1270 Starting sector'" 1 
• SCAN EO 4 1 1 05,06,07,08 SME 01 0 1210 Field, Key length = 4 

• SCAN GEO " 1 1 05,06,07,08 SME 01 0 1210 GEO-SME 

· SCANGEO 4 1 1 05,04,07,08 SMNE 01 0 1210 GEO-SMNE 

· SCAN GEO 4 1 2 00,03,AA,44 16] SNM X X X GEO-SNM 

• SCAN LEO 4 1 1 01,03,FF,04 SMNE 01 0 1250 LEO-SMNE 
• SCAN LEO 4 1 f 01,02,FF,04 SM!: 01 0 1250 LEO-SME 

NOTES: 

Field Length - Each record is partitioned into a number offields equal to the record size divided by the field length. 
Note that the record size should be evenly divisable by the field length to insure proper operation of multi record 
scan, Also, maximum field length = 256 bytes. 

2. Key - The key is a string of bytes located in the user system'memory. The key length should equal the field length. 
By programming the 8257 DMA Controller into the auto load mode, the key will be recursively rea,d in by the chip 
lonce per field!. 

3. Completion Code - Shows how Scan command was met or not met. 
SNM - SCAN Not Met - 0 0 lalso Good Complete) 
SME - SCAN Met Equal - 0 1 
SMNE - SCAN,Met Not Equal - 1 0 

4. Special Registers 
R06 - This register contains the record number where the scan was met. 
R14 - This register contains the MSa count and is decremented every 128 characters. 

R14 = 21 -1 
Length (R) (Initialize at 

(07-05 of PAR 2) Record Size Beginning of,Record) 

000 128 Bytes 0 
001 256 Bytes 1 
010', ' 512 Bytes 3 
011 1024 Bytes 7 
• • • • • • • • • 

R13 - This register contains a modulo 128 LSB count which is initialized to 128 at beginning of each record. This 
count is decremented after each character is compared except for the last character in a pattern match 
situation. 

5. The OFFH character in the key is treated as a don't care character position. 

6. The Scan comparison is done on a byte by byte basis. That is, byte 1 of each field is comparedto byte 1 of the key, 
byte 2 of each field is compared to byte 2 of the key, etc. 

1-141 AFN'()()223B 



inter 8271/8271·6 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under Bias ........ O·C to 70·C' 
Storage Temperature ............. -65·C to + 150·C 
Voltage on Any Pin with 

Respect to Ground ................. - 0.5V to + 7V 
Power Dissipation .......................... 1 Watt 

D.C. CHARACTERISTICS (Vcc= +5.0V ±5% 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

8721 and 8271·8: TA = O·C to 70·C; 8271·6: T A= O·C to 50·C) 

Symbol Parameter Min. Max. Unit Test Conditions 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 (Vcc+ 0.5) V 

YOLO Output Low Voltage (Data Bus) 0.45 V IOL=2.0 mA 

VOLI Output Low Voltage (Interface Pins) 0.5 V IOL=1.6 mA 

VOH Output High Voltage 2.4 V 10H= -220p.A 

IlL Input Load Current ±10 p.A VIN = Vcc to OV 

loz Off·State Output Current ± 10 p.A VOUT= Vcc to OV 

Icc Vcc Supply Current 180 mA 

CAPACITANCE (TA = 25°C; Vcc = GND = OV) 

Symbol Parameter Min. Typ. Max. Unit Test Conditions 

CIN Input Capacitance 10 pF tc=lMHz 

CliO 1/0 Capacitance 20 pF Unmeasured Pins Returned to GND 

NOTE: 1. Ambient temperature under bias for 8271-6 is O·C to 50·C. 

A.C. CHARACTERISTICS (Vcc = +5.0V ±5%) 
(8271 and 8271-8: TA= COC to 70°C; 8271-6: TA= O°C to 50°C) 

READ CYCLE 

Symbol Parameter Min. Max. Unit Test Conditions 

tAC Select Setup to RD 0 ns Note 2 

tCA Select Hold from RD 0 ns Note 2 

tRR RD Pulse Width 250 ns 

tAD Data Delay from Address 250 ns Note 2 

tRO Data Deiay from RD 150 ns CL= 150 pF, Note 2 

tOF Output Float Delay 20 100 ns CL = 20 pF for Minimum; 
150 pF for Maximum 

toc DACK Setup to RD 25 ns 

tco DACK Hold from RD 25 ns 

tKO Data Delay from DACK 250 ns 

1·142 AFN·Q0223B 



intJ 8271/8271-6 

A.C.· CHARACTERISTICS (Continued) 

WRITE CYCLE 

Symbol Parainet.er Min. Max. Unit Test Conditions 

tAC Select Setup to WR 0 ns 

tCA Select Hold from WR 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WR 150 ns 

two Data Hold from WR 0 ns 

toc DACK Setup to WR 25 ns 

tco DACK Hold from WR 25 ns 

DMA 

Parameter Test Conditions 

Request Hold from WR or RD (for Non-Burst Mode) 

OTHER TIMINGS -
8271/8271·6 

Symbol Parameter 
Min. Max • 

Unit Test Conditions 
.. 

t RSTW Reset Pulse Width 10 tCY 

tr Inpul Signal Rise Time 20 ns 

If Inpul Signal Fa" Time 20 ns 

I RSTS Resel 10 Firsl IOWR 2 tCY 

ICY Clock Period 250 

tCl Clock Low Period 110 ns 

tCH Clock High Period 125 ns 

tos Data Window Setup 10 Unseparated Clock and Data 50 ns 

tOH Data Window Hold from Unseparated Clock and Data 0 ns 

NOTES: 
1. All timing measurements are made at the reference voltages unless otherwise specified: Input "1" at 2.0V, "0" at 0.8V 

Output "1" at 2.0V, "0" at 0.8V 
2. tAD, tRO, tAC, and tCA are not concurrent specs. 
3. Standard Floppy: tCy~250 ns ±0.4% Mini-Floppy: tCy~500 ns ±0.4% 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

2.4=X x== 2.0 2.0 . > TE~T POINTS < .. 
0.8 0.8 

0.45 -----:-.----

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

TEST 

Nole 3 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V· FOR A LOGIC "'" AND O.45V FOR 
A LOGIC 0."' TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC' 1" 
AND a.BV FDA A LOGIC' 0 '" C, INCWDES JIG CAPACITANCE 

1-1:43 AF~ 



8271/8271·6 

WAVEFORMS 

READ 

DACK ~ X 
-IDC~ -lcD-I 

)i X 
II 

IAA . -ICA-I 

~ 
-tAC- lAD 

~ 
-IDF=! 

.-- ------------ }--------. lAD . IKD 

DATA BUS 

WRITE 

DACK 

tDC- -teD 

~ X 
I--IAC-~ IWW i":'"ICA-I 

DATA BUS )( ]( 
I IDW IWD---l 

DMA 

rICC~ 
\L. ___ ~~-------------------------------------

----~ .. 
AD OA WR 

~----------------------------------

_--J! DAD 

CHIP CLOCK 

1·144 AFN-00223B 



inter 
WAVEFORMS (Continued) 

READ DATA 

"ICY = 250 ns ""ICY = 500 ns 

F = 16 ICY ±S ICY 
H = SICY ±4ICY 

"STANDARD FLEXIBLE DISK DRIVE TIMING 
""MINI-FLOPPY TIMING 

SINGLE-SHOT DATA SEPARATOR 

UNSEPARATED 
mA 

1·145 

WRITE DATA 

PULSE WIDTH PW = ICY ± 30 ns 
H (HALF BIT CELL) = S ICY 
F (FULL BIT CELL) = 16 ICY 

.. tCY = 250 ns = 0.4% 
250 ns ±30 ns 
2.0~s :t 8 ns 
4.0",s ±16ns 

**tCY = 500 ns ± 0.4% 
500 ns :t30 ns 
4.0",1 ±16 ns 
8.0 lAS :!: 32 ns 

PLO DATA SEPARATOR 

"DATA WINDOW MAY BE 160· OUT OF PHASE 
IN PLO DATA SEPARATION MODE. 

AFN-00223B 



inter 

• 
• 
• 
• 
• 

8272 
SINGLE/DOUBLE DENSITY 

FLOPPY DISK CONTROLLER 

IBM Compatible in Both Single and • Data Transfers in DMA or Non·DMA 
Double Density Recording Formats Mode 

Programmable Data Record Lengths: • Parallel Seek Operations on Up to 
128,256,512, or 1024 Bytes/Sector Four Drives 
Multi·Sector and Multi·Track Transfer 

Compatible with Most Capability • 
Microprocessors IncliJding 808OA, 

Drive Up to 4 Floppy Disks 8085A, 8086 and 8088 
Data Scan Capability - Will Scan a • Single·Phase 8 MHz Clock 
Single Sector or an Entire Cylinder's 
Worth of Data Fields, Comparing on a • Single +5 Volt Power Supply 
Byte by Byte Basis, Data in the 
Processor's Memory with Data Read • Available in 4O·Pin Plastic Dual·in·Line 
from the Diskette Package 

The 8272 is an LSI Floppy Disk Controller (FDC) Chip, which contains the circuitry and control functions for interfacing 
a processor to 4 Floppy Disk Drives. It is capable of supporting either .IBM 3740 single density format (FM), or IBM 
System 34 Double Density format (MFM) including double sided recording; The 8272 provides control signals which 
simplify the design of an external phase locked loop, and write precompensation circuitry. The FDC simplifies and 
handles most of the burdens associated with implementing a Floppy Disk Drive Interface. 

DBo.7 

elK --+­
Vee ~ 

GND _____ 

Figure 1. 8272 Internal Block Diagram 

1-146 

READY 
WRITE PROTECTITWO SIDE 
INDEX 
FAUlTITRACK 0 

DRIVE SELECT 0 
DRIVE SELECT 1 
MFM MODE 

IIWISEEK 
HEAD lOAD 
HEAD SELECT 
lOW CURRENT/DIRECTION 
FAULT RESET/STEP 

DB, 

DB, 

DB, 

DRQ 

INT 

ClK 

lCT/DIR 

WP/TS 

FlT/TRKO 

32 PSo 

Figure 2. Pin Configuration 

AFN'()1259B 



intJ 8272 

Table 1. PIn DescrIption 

Pin Conneo-
Symbol No. Type tlonTo Name and Function 

" , 

'. 
PIn I, Connec· 

Symbol 
. 

No. Type tlon To Name and Function 

RST 1 I p.P '. Res.t:Places FDC in 
, '.' 

Vcc 40 D.C. Power: +5V 
idle state. Resets output 
lines. to FDD to "0" FiW/SEEK 39 0 .FDD Read Write / SEEK: 
(low). When "1" (high) Se8k 

mode selected and 
RD 2 1[11 p.P Read: Control signal 

for transferof data from ... when "0" (low) R,ead/ 
Write mode selectlld. 

FOC to Data Bus, when 
"0" (low). lCTIDIR 38 0 FDD Low Current/Direction: 

lowers Write. cu rrent 
WR 3 1[11 jiP Write: CO.ntrol signal 

for transfer of data to 
on inner tracks in 
Read/Write mod'e, de-

FDC vi.a bata Bus, when termines direction head 
"0" (low). will step in Seek mode. 

CS 4 I .p;p Chip Select,: IC selected FR/STP 37 0 FDD Fault Reset/Step: Re-
wher,L:O" (Io~ allow- sets fault FF in FDD in 
ing RD. and WR .to be ReadlWrite mode, pro-
ehabled. vides step pulses to 

move head to <another 

Ao 5 1[11 p.P· Dat./StatuI'Regllter cylinder in Seek mode. 
Select: Selects Data 
Reg (Ao = 1) or Status HDl 36 0 FDD Head Load: Command 
Reg (Ao = 0) content be which causes read/write 
sent to Data Bus. head in FDD to contact 

diskette. 
DBo-DB7 6-13 1/0111 p.P Dat.SuI: Bidirectional 

'.' . B-BitData Bus. RDY 35 I FDD Ready: Indicates FDD 
t is ready to send or re-

ORO 14 0 DMA Data !)MA Requelt: ceive data. 
DMA Request is being 
made by FDC when WP/TS 34 I FDD Write Protect / Two-
ORO "1." Side: Senses Write Pro-

tect status in Read/ 
DACK 15 I DMA DMA Acknowledge: Write mode, and Two 

DMA cycle is active Side Media in Seek 
when "0" (low) and mode. 
Controller is perform-
ing DMA transfer. FlT/TRKO 33 I FDD FaultlTrack 0: Senses 

FDD fault condition in 
TC 16 I DMA Terminal Count: Indi- Read/Write mode and 

cates the termination of Track 0 condition in 
a DMA transfer when Seek mode. 

; ... "1" (high)[21. 
PS" PSo 31,32 '0 FDD Precompensation (pre-

lOX 1(' I FDD Index: Indicates the shift): Write precom-
beginning of a disk pensation status during 
track. MFMmode. Determines 

early, late, and normal 
INT 18 0 p.P Interrupt: Interrupt Re- times.·· 

quest Generated by 
FDC. WR DATA 30 0 FOD Write Data: Serial clock 

and data bits to FDD. 
ClK 19 I Clock: Single Phase 8 

MHz Squarewave Clock. DS;,I;>So 28,29 0 FDD Drive Select: Selects 
FDD unit. 

GND 20 Ground: D.C. Power 
Return. HDSEl 27 0 FDD Head Select: Head 1 

selected when "1" 

Note 1: Disabled when 68=1. 
(high) Head 0 selected 
when "0" (low). 

Note 2: TC must be activated to terminate the Execution Phase of any command. 

1-147 AF~1259B 



8272 

Table 1. Pin Description (Continued) 

Pin Connec· 
Symbol No. Type tlonTo Name and Function 

MFM 26 0 PLL MFM Mode: MFM mode 
when "1," FM mode 
when "0." 

WE 25 0 FDD Write Enable: Enables 
write data into FDD. 

VCO 24 0 PLL VCO Sync: Inhibits VCO 
in PLL when "0" (low), 
enables VCO when "1." 

RDDATA 23 I FDD Read Data: Read data 
from FDD, containing 
clock and data bits. 

8272 SYSTEM BLOCK DIAGRAM 

CPU I 
~~ 

SYSTEM BUS 

L. ;:... L. r--

""' 7- ""< 7 DATA 

DRO WINDOW -B-r 
RD DATA ) 

WR DATA 

DRIVE ( 8237 OACK 8212 A DMA 
INTERFACE) FDC CONTROLLER INPUT CONTROL 

~ .. 1\ ) OUTPUT CONTROL 
TC Y TERMINAL 

COUNT 

DESCRIPTION 
Hand·shaking signals are provided in the 8272 which 
make DMA operation easy to incorporate with the aid of 
an external DMA Controller chip, such as the 8237. The 
FDC will operate in either DMA or Non-DMA mode. In 
the Non·DMA mode, the FDC generates interrupts to the 
processor for every transfer of a data byte between the 
CPU and the 8272. In the DMA mode, the processor need 
only load a command Into the FDC and all data transfers 
occur under control of the 8272 and DMA controller-. 

There are 15 separate commands which the 8272 will 
execute. Each of these commands require multiple 8·bit 

1-148 

Pin Connec-
Symbol No. Type lion To Name and Function 

DW 22 I PLL Data Window: Gener-
ated by PLL, and used 
to sample data from 
FDD. 

WRCLK 21 I Write Clock: Write data 
rate to FDD FM = 500 
kHz, MFM = 1 MHz, with 
a pulse width of 250 ns 
for both FM and MFM. 

Must be enabled for all 
operations, both Read 
and Write. 

bytes to fully specify the operation which the processor 
wishes the FDC to perform. The following commands 
are available. 

Read Data 
Read I.D 
Read Deleted Data 
Read a Track 
Scan Equal 
Scan High or Equal 
Scan Low or Equal 
Specify 

FEATURES 

Write Data 
Format a Track 
Write Deleted Data 
Seek 
Recalibrate (Restore to 

Track 0) 
Sense Interrupt Status 
Sense Drive Status 

Address mark detection circuitry is internal to the FDC 
which simplifies the phase locked loop and read elec· 
tronics. The track stepping rate, head load time, and 
head unload time may be programmed by the user. The 
8272 offers many additional features such as multiple 
sector transfers in both read and write modes with a 
single command, and full IBM compatibility in both 
single (FM) and double density (MFM) modes. 

8272 REGISTERS - CPU INTERFACE 
The 8272 contains two registers which may be accessed 
by the main system processor; a Status Register and a 
Data Register. The 8·bit Main Status Register contains 
the status information of the FDC, and may be accessed 
at any time. The 8·bit Data Register (actually consists of 
several registers in a stack with only one register pre· 
sented to the data bus at a time), stores data, com­
mands, parameters, and FDD status information. Data 
bytes are read out of, or written into, the Data Register 
in order to program or obtain the results after execution 
of a command. The Status Register may only be read 
and is used to facilitate the transfer of data between the 
processor and 8272. 

AFN-01259B 



inter 8272 

The relationship between the Status/Data registers and 
the signals RD, WR, and Ao is shown below. . 

Ao Ri5 WR FUNCTION 

0 0 1 Read Main Status 
.. Register 

0 1 0 Illegal 

0 0 0 Illegal 

1 0 0 Illegal 

1 0 1 Read from Data Register 

1 1 0 Write into Data Register 

The bits in the Main Status Register are defined as 
follows: 

BIT NUMBER NAME SYMBOL DESCRIPTION 

DBO FDD 0 Busy DOB FOD number 0 Is in the Seek 
moda. 

DB, FOD' Busy D,B FOD number 1 is In the Seek 
mode. 

DB2 FDD 2 Busy D2B FOO number21s In the Seek 
mode. 

OB3 FDD 3 Busy DaB FOD number 3 is in the Seek 
mode. 

DB4 FOC Busy CB A read or write command Is 
in process. 

DB5 Non·DMA mode NOM The FOC Is in the non-DMA 
mode. This bit Is set only 
during the execution phase 
in non·DMA mode. Tran-
sition to "0" state indicates 
execution phase has ended. 

DBS Data Input/Output 010 Indicates direction of data 
transfer between FDe and 
Data Register. If 010= ""'"" 
then transfer is from Data 
Register to the Processor. 
If 010 = "0". then transfer 
Is from the Processor to 
Data Register. 

DB7 Request for ROM Indlcates Data Register Is 
Master ready to send Qr receive 

data to or from the Proc-
essor. Both bits 010 and 
RQM should be used to 
perform the handshaklhg 
functions of "ready" and 
"direction" to the 
processor. 

The 010 and RaM bits in the Status Register Indicate 
when Data is ready and in which direction data will be 
transferred on the Data Bus. 

DATA IN·OUT 
(0101 

REQUEST 
FOR MASTER 

(ROM) 

OUT OF PROCESSOR AND INTO FDC 

I I I 
w.~--~--'ur'~I~~~+-~~-+-+~ 

iiD --+1--1--+-1 +-1 +---. 

I A I 1.1 A 

NOTES: IAl - DATA REGISTER READY TO BE WAIl'Tt;N INTO BY PROCESSOR 

00 - DATA REGISTER NOT READY TO BE WRITTEN INTO BY PROCESSO" 
~ _ DATA REGISTER READY FOR NEXT DATA BYTE TO BE READ BY THE 

PROCESSOR 
[R] - DATA REGISTER NOT READY FOR NEXT DATA BYTE TO BE READ BY 

PROCESSOR 

STATUS REGISTER TIMING 

• I 

The 8272 is capable of executing 15 different com· 
mands. Each command is initiated by a multi·byte 
transfer from the processor, and the result after execu· 
tion of the command may also be a multi·byte transfer 
back to the processor. Because of this multi·byte inter· 
change of information between the 8272 and the proc· 
essor, it is convenient to consider each command as 
consisting of three phases: 

Command Phase: The FDC receives all information 
required to perform a particular 
operation from the processor. 

Execution Phase: The FDC performs the operation it 
was instructed to do. 

Result Phase: After completion of the operation, 
status and other housekeeping in­
formation are made available to 
the processor. 

During Command or Result Phases the Main Status 
Register (described earlier) must be read by the proc· 
essor before each byte of information is written into or 
read from the Data Register. Bits 06 and 07 in the Main 
Status Register must be in a 0 and 1 state, respectively, 
before each byte of the command word may be written 
into the 8272. Many of the commands require multiple 
bytes, and as a result the Main Status Register must be 
read prior to each byte transfer to the 8272. On the other 
hand, during the Result Phase, 06 and 07 in the Main 
Status Register must both be 1's (06= 1 and 07= 1) 
before reading each byte from the Data Register. Note, 
this reading of the Main Status Register before each 
byte transfer to the 8272 is required in only the Com· 
mand and Result Phases, and NOT during the Execution 
Phase. 

During the Execution Phase, the Main Status Register 
need not be read. If the 8272 is in the Non-DMA Mode, 
then the receipt of each data byte (if 8272 is reading data 
from FDD) is indicated by an Interrupt signal on pin 18 
(INT= 1). The generation of a Read signal (AD = 0) will 
reset the Interrupt as well as output the Data onto the 
Data Bus. For example, if the processor cannot handle 
Interrupts fast enough (every 13 /As for MFM mode) then 
it may poll the Main Status Register and then bit 07 
(RaM) functions just like the Interrupt signal. If a Write 

Command is in process then the WR signal performs 
the reset to the Interrupt signal. 

If the 8272 is in the DMA Mode, no Interrupts are gener· 
ated during the Execution Phase. The 8272 generates 
ORa's (DMA Requests) when each byte of data is 
available. The DMA Controller responds to this request 
with both a DACK = 0 (DMA Acknowledge) and a RD = 0 
(Read signal). When the DMA Acknowledge signal goes 
low (DACK = 0) then the DMA Request is reset (ORa = 0). 
If a Write Command has been programmed then a WR 
signal w.ill appear instead of RD. After the Execution 
Phase has been completed (Terminal Gount has 
occurred) then an Interrupt will occur (I NT = 1). This 
signifies the beginning of the Result Phase. When the 
first byte of data is read during the Result Phase, the In· 
terrl,lpt is automatically reset (INT = 0). 

It is important to note that during the Result Phase all 
bytes shown in the Command Table must be read. The 
Read Data Command, for example, has seven bytes of 

1-149 AFN·O'259B 



8272 

data in the Result Phase. All seven bytes must be read in 
order to successfully complete the Read Data Com­
mand. The 8272 will not accept a new command until all 
seven bytes have been read. Other commands may re­
quire fewer bytes to be read during the Result Phase. 

The 8272 contains five Status Registers. The Main 
Status Register mentioned above may be read by the 
processor at any time. The other four Status Registers 
(STO, ST1, ST2, and ST3) are only available during the 
Result Phase, and may be read only after successfully 
completing a command. The particular command which 
has been executed determines how many of the Status 
Registers will be read. 

The bytes of data which are sent to the 8272 to form the 
Command Phase, and are read out of the 8272 in the 
Result Phase, must occur in the order shown in the 
Command Table. That is, the Command Code must be 
sent first and the other bytes sent in the prescribed se­
quence. No foreshortening of the Command or Result 
Phases are allowed. After the last byte of data in the 
Command Phase is sent to the 8272 the Execution 
Phase automatically starts. In a similar fashion, when 

the last byte of data is read out in the Result Phase, the 
command is automatically ended and the 8272 is ready 
for a new command. A command may be aborted by 
simply sending a Terminal Count signal to pin 16 
(TC = 1). This is a convenient means of ensuring that the 
processor may always get the 8272's attention even if 
the disk system hangs up in an abnormal manner. 

POLLING FEATURE OF THE 8272 
After the Specify command has been sent to the 8272, 
the Drive Select Lines DSO and DS1 will automatically 
go into a polling mode. In between commands (and be­
tween step pulses in the SEEK command) the 8272 polls 
all four FDDs looking for a change in the Ready line from 
any of the drives. If the Ready line changes state (usual­
ly due to a door opening or closing) then the 8272 will 
generate an interrupt. When Status Register 0 (STO) is 
read (after Sense Interrupt Status is issued), Not Ready 
(NR) will be indicated. The polling of the Ready line by 
the 8272 occurs continuously between instructions, 
thus notifying the processor which drives are on or off 
line. 

Table 2. 8272 Command Set 

I DATA BUS I DATA BUS 

PHASE RIW 07 Os 05 04 03 02 D1 DO REMARKS PHASE RIW ~ Ds D5 D4 D3 D2 D1 Do REMARKS 

READ DATA WRITE DATA 

Command W MT MFM SK 0 0 1 1 0 Command Codes Command W MT MFM 0 0 0 1 0 1 Command Codes 

W 0 0 0 0 0 HOS 051 OSO W 0 0 0 0 0 HOS OS1 IOSO 

W C Sector 10 information W C Sector 10 information 
W H prior to Command W ------ H prior to Command 
W R execution W R _____ execution 
W N W N 
W EOT W EOT 
W GPl W GPl 
W OTl W 

I 
OTL 

Execution Data transfer Execution Data transfer 
between the FDD between the main-
and main-system system and FDD 

Result R 5TO Status information Result R 5TO Status information 
R 5Tl after Command R 5Tl after Command 
R ST2 execution R ST2 execution 
R C R C 
R H Sector 10 information R H Sector 10 information 
R R after command R R after Command 
R N execution R N execution 

READ DELETED DATA WRITE DELETED DATA 

Command W MT MFM SK 0 1 1 0 0 Command Codes Command W MT MFM 0 0 1 0 0 1 Command Codes 

W 0 0 0 0 0 H05051 050 W 0 0 0 0 0 HDS 051 OSO 

W C Sector 10 information W C Sector ID information 
W H prior to Command W H prior to Command 
W R execution W R execution 
W N W N 
W EOT W EOT _____ 

W GPl W GPL 
W OTl W OTl 

Execution Data transfer Execution Data transfer 
between the FDD between the FDD 
and main-system and main-system 

Result R 5TO Status information Result R STO Status information 
R 5Tl atter Command R 5Tl atter Command 
R ST2 execution R ST2 execution 
R _____ C R C 
R H Sector ID information R H Sector 10 information 
R R after Command R R after Command 
R N execution R N execution 

Note: 1. Symbols used in this table are described at the end of this section. 

2. Ao = 1 for all operations. 
3. X = Don't care, usually made to equal binary O. 

1-150 AFN'()1259B 



inter 8272 

Table 2. 8272 Command Set (Continued) 

I DATA IUS I DATA BUS I 
PHASE - Dr De De D4 Da Dt Dl Do REMARKS PHASE -I~ De De D4 Da Dt Dl Do REMARKS 

READ A TRACK SCAN LOW DR EQUAL 

Command W 0 MFM SK 0 0 0 1 0 COmmand CodeS Command W MT MFM SK 1 1 0' 0 1 Command COdes 
W 0 0 O' 0 0 HOS DBl DSO W 0 0 0 0 0 HDB DBl DSO 

W C Sector 10 Information W C Sector 10 Information 
W H prior to Command W H prior Command 
W R execution W R execution 
W N W N 
W EDT W EDT 
W GPL W GPL 
W DTt' W' STP 

Execution Data transfer Execution Data compared 
betwaan the FDD between the FOD 
and main-system. and maln·system 
FDC read. all 01 
cylinders contents Res~lt R STO Statu, Information 
from Index hole to R STl after Command 
EDT R ST2 eXecution 

R C 
Result R STO Status information R H Sector 10 Information 

R STl after Command R R after Command 
R ST2 execution R N execution 
R C 
R 'H 8ector.lD Information SCAN ,HIOH OR EQUAL 

R R after Command Command W MT MFM SK 1 1 1 0 1 Command COdes 
R N execution 

W 0 0 0 0 0 HDB DBl DSO 
READID W C Sector ID information 

Command W 0 MFM 0 0 1 0 1 0 Commands W H prior Command 
W R execution 

W 0 0 0 0 0 HDB DBl DSO W N 
W EDT 

Execution The first correct 10 W GPL 
Information on the W STP 
Cylinder is stored in 
Data Register Execution Data compared 

between the FDo 
Result R STO Status Information and main-system 

R STl after Command 
R ST2 execution Result R STO Status information 
R C R STl after Command 
R H Sector 10 Information R ST2 execution 
R R during Execution R C 
R N Phase R H Sector 10 information 

R R after Command 
FORMAT A TRACK R N execution 

Command W 0 MFM 0 0 1 1 0 1 Command Codes RECALIIRATE 
W 0 0 0 0 0 HDB DSl DSO 
W N Bytes/Sector 

Command W 0 0 0 0 0 1 1 1 Command Codes 

W SC Sectors/Cylinder W 0 0 0 0 0 0 DBl DSO 
W GPL Gap 3' Execution Head retracted to 
W D Filler Byte Track 0 

Execution FoC formats an SENSE INTERRUPT STATUS 
entire cylinder Command W 0 0 0 0 1 0 0 0 Command Codes 

Result R STO Status Information Result R STO Status Information at 
R STl after Command R PCN the end of each seek 
R ST2 execution operation about the 
R C FDC 
R H In this case, the 10 

SPECIFY R R Information has no 
R N meaning Command W 0 0 0 0 0 0 1 1 Command Codes 

SCAN EQUAL W _ SRT ---.........--- HUT -
W HLT • NO 

Command W MT MFM SK 1 0 0 0 1 Command Codes 
W 0 0 0 0 0 HDS DBl DSO ' SENSE DRIVE STATUS 

W C Sector 10 Information Command W 0 0 0 0 0 1 0 0 Command Codes 
W H prior to Command W 0 0 0 0 0 HDS 051 DSO 
W R execution 

Result R ST3 W N Status information 
W EDT about FDD 
W GPL 

SEEK W STP 
Command W 0 0 0 0 1 1 1 1 Command Codes 

Execution Data compared W 0 0 0 0 0 HDS OS1 DSO 
between the FOD 

W NCN and main-system 

Result R STO Status information Execution Head is positioned 
R STl after Command over proper Cylinder 
R ST2 execution on Diskette 
R C INVALID R H Sector 10 information 
R R after Command Command W ____ Invalid Codes ____ Invalid Command 
R N execution Code. (NoOp - FDC 

goes Into Standby 
State) 

Result R STO ST 0=80, 
(16) 

1·151 AFN-01259B 



inter 8272 

Table 3. Command Mnemonics 
SYMBOL NAME DESCRIPTION 

Ao Addreaa Line 0 AO controls alleetlon of Main Status 
Reglater (AO = 0) or Date Reglater (AO z 1). 

C Cylinder Number C stands for the current selected Cylinder 
track number 0 through 76 of the medium. 

0 Date o stands for the data pattern which Is 
going to be written Into a Sector. 

07-00 Data BUB &-bIt Data Bua whare 07 Is the most 
significant bit. and DO Is the leaat slgnl't.. 
canl bit. 

O6O,DSI Drive Select OS stands for a selected drive number 0 
orl. 

DTL Data Length When N Is defined as 00, DTL stands for 
the data length which users are going to 
read out or write Into the Sector. 

EOT End of Track EOT stands for the final Sector number of 
a Cylinder. 

GPL Gap Length GPL stands for the length of Gap 3 
(spacing between Sectors excluding veo 
Sync Field). 

H Head Address H stands for head number 0 or 1, as 
specified In 10 field. 

HOB Head Select HDS stands for a selected head number 0 
or 1 (H == HDS In all command words). 

HLT Head Load Time HLT stands for the head load time In the 
FDD (2 to 254ms in 2ms Increments). 

HUT Head Unload Time HUT stands for the head unload time after 
a read or write operation has occurred (16 
to 240ms In 16ms Increments). 

MFM FM or MFM Mode If MF Is low, FM mode Is selected and If 
It Is high, MFM mode Is selectad. 

MT Multi·Ttack If MT Is high, a multl·track operation Is to 
be performed (a cylinder under both HDO 
and HD1 will be read or written). 

N Number N stands for the number of data bytes 
written In a sector. 

COMMAND DESCRIPTIONS 
During the Command Phase, the Main Status Register 
must be polled by the CPU before each byte is written 
Into the Data Register. The 010 (086) and ROM (087) 
bits in the Main Status Register must be in the "0" and 
"1" . states respectively, before each byte of the com· 
mand may be written into.the 8272. The beginning of the 
execution phase for any of these commands will cause 
010 and ROM to switch to "1" and "0" states respective. 
Iy. 

READ DATA 

A set of nine (9) byte words are required to place the 
FDC into the Read Data Mode. After the Read Data com· 
mand has been issued the FDC loads the head (if it is in 

SYMBOL NAME DESCRIPTION 

NCN New Cylinder Number NCN stands for a new Cylinder number, 
which's going to be reached as a result 
of the Seek operation. Desired position of 
Head. 

NO Non-DMA Mode NO stands for operation In the Non·DMA 
Mode. 

PCN Present Cylinder PeN stands for the Cylinder number at 
Number the completion 01 SENSE INTERRUPT 

STATUS Command. Position of Head at 
present time. 

R Record R stands for the Sector number, which 
will be read or written. 

R/W Read/W~te R/W stands for either Read (R) or Write 
(W) signal. 

SC Sector SC Indicates the number of Sectors per 
Cylinder. 

SK Skip SK stands for Skip Deleted Data Address 
Mark. 

SAT Step Rate Time SRT stands for the Stepping Rete for the 
FDD (1 to 16 ms in 1 ms increments). The 
same Stepping Rate applies to all drives 
(F=1 ms, E=2 ms, etc.). 

STO Status 0 ST 0-3 stand for one of four registers 
STI Status 1 which store the status information after 
ST2 Status 2 a command has been executed. This 
ST3 Status 3 Information is available during the result 

phase after command execution. These 
registers should not be confused with the 
main status register (selected by AO = 0). 
ST 0-3 may be read only after a command 
has been executed and contain Infonnation 
relevant to that particular command. 

STP During a Scan operation, If STP= 1, the 
data In contiguous sectors Is compared 
byte by byte with data sent from the 
processor (or OMA), and If STP = 2, then 
alternate sectors are read and compared. 

compares with the sector number read off the diskette, 
then the FDC outputs data (from the data field) byte-by· 
byte to the main system via the data bus. 

After completion of the read operation from the current 
sector, the Sector Number is incremented by one, and 
the data from the next sector is read and output on the 
data bus. This continuous read function is called a 
"Multi·Sector Read Operation." The Read Data Com· 
mand may be terminated by the receipt of a Terminal 
Count signal. Upon receipt of this signal, the FDC stops 
outputting data to the processor, but will continue to 
read data from the current sector, check CRC (Cyclic 
Redundancy Count) bytes, and then at the end of the 
sector terminate the Read Data Command. 

the unloaded state), waits the specifleq head settling The amount of data which can be handled with a single 
time (defined in the Specify Command), and begins command to the FDC depends upon MT (multi-track), 
reading 10 Address Marks and 10 fields. When the cur· MFM (MFM/FM), and N (Number of Bytes/Sector). Table 4 
rent sector number ("R") stored in the 10 Register (lOR) below shows the Transfer Capapity. 

Table 4. Transfer Capacity 
MultI-Trick MFMlFM Byte_ctor Mlxlmum Transfer Capacity Final_tor Read 

MT MFM N (Bytea/Sacto~ (Number 01 Sectora) from DI.kaHe 

0 0 00 (128) (26) = 3,328 26 at Side 0 
0 1 01 (256)(26) = 6,656 or 26 at Side 1 

1 0 00 (128) (52)= 6,656 
26 at Side 1 1 1 01 (256) (52) = 13,312 

0 0 01 (256)(15) _ 3,840 15 at Sidell 
0 1 02 (512) (15)= 7,680 or 15 at Side 1 

1 0 01 (256)(30) = 7,680 
15 at Side 1 1 1 02 (512) (30) = 15,380 

0 0 02 (512)(8) = 4,096 8 at Side 0 
0 1 03 (1024)(8) = 8,192 or8 at Side 1 

1 0 02 (512)(16)= 8,192 
8 lit Side 1 1 1 03 (1024) (16)= 16,384 

1·152 AFN-01259B 



intJ 8272 

P,I-,"' " 

The "multi-track" function (MT) allows the FDC to read 
data from both sides of the diskette. For a particular 
cyllnder,data will be transferred starting at Sector 1, 
Side 0 and completing at Sector L, Side 1 (Sector L == last 
sector on the side). Note,this function pertains to only 
one cylinder (the same' track) on each side of the 
diskette. 

When N = 0, then DTL defines the data length which the 
FDC must treat as a sector. If DTL is smaller than the ac­
tual data length in a Sector, the data beyond DTL in the 
Sector, is. not sent to the Data Bus. The FDC reads (inter· 
nally) the complete Sector performing the CRC check; 
and depending upon the manner of command termina· 
tion, may perform a Multi·Sector Read Operation. When 
N is non·zero, then DTL has nO meaning and should be 
set to OFFH. 

At the completion of the Read Data Command, the head 
is not unloaded until after Head Unload Time Interval 
(specified in the Specify Command) has elapsed. If the 
processor issues .another command before the head 
unloads then the head settling time may be saved be. 
tween subsequent reads. This time out is particularly 
valuable when a dis.kelte is copied from one, drive to 
another. 

If the FDC detects the Index Hole twice without finding 
the right sector, (Indicated in "R"), then the FDC sets 
the NO (No Data) flag in Status Register 1 to a 1 (high), 
and terminates the Read Data Command. (Status 
Register 0 al$o has bits 7 and 6 set to 0 and 1 respective­
ly.) 

After reading the 10 and Data Fields in each sector, the 
FDC checks theCRC bytes. If a read;error is detected 
(incorrect CRC in 10 field), the FDC sets the DE.(Data Er· 
ror) flag in Status Register 1 toa 1 (high); and ·if a CRC er· 
ror occurs in the Data Field the FDC also sets the DO 
(Data Error in Data Field) flag in Status Register 2 to a 1 
(high), and terminates the Read Data Command. (Status 
Register 0 also has bits 7 and 6 set to 0 and 1respec· 
tively:) 

If the FDC reads a Deleted Data Address Mark oU the 
diskette, and.the SK bit (bit D5 In the first Command 
Word) is Qot set (SK = 0), then the FDC sets the CM (Con· 
trol Mark) flag in Status Register 2 toa 1 (high), and ter­
minates the Read Data Command, after reading all the 
data in the Sector; If SK= 1, theFDC skips the sector 
with the Deleted Data Address Mark and reads the next 
sector. 

During disk data transfers. between the F.DC and the 
processor, via the data bus, the FDC must be servic.ed 
by the processor every 27 foIs in the FM Mode, and every 
13 foIs in the MFM Mode, or the FDC sets the OR (Over 
Run) flag In Status Register 1 to a 1 (high), and ter· 
minates the Read Data Command. 

If the processor terminates a read (or write) operation in 
the FDC, then the 10 Information in the Result Phase is 
dependent upon the state of the MT bit and EOT byte. 
Table 5 shows the values for C, H, R, and N, when the 
processor terminates the Command. . 

, Tabl. 5. ID Information When Processor 
Terminates Command 

Final Sector Tran.fend to ID Inlo ..... llon II Ralull Ph_. 
MT EDT Prae,I'" . c· H R N 

'lA Sectp',1 to 25 at .Slde 0 
OF Sector 1 to 14 at Side 0 NC NC R+l NC 
08 S~tor.1 to .. 7 at Stde 0 

lA SectOr 26 at Side 0 
OF Sector 15 at Side 0 C+l NC R=OI liC 
08 Sector 8 at Side 0 

0 
lA sector 1 to 25 at Side 1 
OF Sector 1 to 14 at Side' 1 NC NC 'R+l He 
08 Sector 1 to 7 at S:lde 1 

lA Seqtor 26 at Side 1 
OF Sector 15 at Side 1 C+l Ni:: R=OI NC 
08 sect~r·8 at Side 1 

,1A Sector 1 to 25 at Side 0 
OF Sector 1 to 14 at Side 0 NC NC R+l NC 
08 Seclor 1 to 7 at Sid. 0 

lA Sector 26' at Side 0 
OF SSctor 15 at Side 0 NC LSB R=OI .HC 
08 sector 8 at Side 0 

1 
lA Sector 1 to 25 at Side 1 
OF Sector 1 to 14 at Side 1 NC NC R+l NC 
08 Sector 1 to 7 at Side 1 

lA Sector 26 at Side 1 
OF Sector 15 at Side 1 C+l LSB R=OI NC 
08 Septor ~ at Side 1 

Notes: 1. NC (No Change): The same value as the one at the beginning of command 
execution. 

2. LSB (Least SI.gnlflcant Bit): The least significant bit of H Is 
complemented. 

WRITE DATA 

A set of nine (9) bytes are required to set the FDC into 
the Wi"iteData mode. After the Write Data command has 
been issued the FDC loads the head (If It is in the 
unloaded state), waits the specified head settling time 
(defined in the Specify Command), and begins reading 
10 Fields. When the current sector number (lOR"), stored 
in the 10 Register (lOR)' compares with the sector 
number read off the diSkette, then the FDC takes data 
from the processor byte· by-byte via the data bus, and 
outputs it to the FDD. 

After writing data into the current sector, the Sector 
Number stored in "R" is Incremented,by one, and the 
next data field Is written IntO. The FDC continues this 
"Multi;Sector Write Operation;' until the issuance of a 
Terminal. Count Signal. If a Temilnal Count signal is sent 
to the FOC it continues writing into the current sector' to 
complete tile data field. If the Temiinal Count sigl)al is 
received while a .data field is being written then the reo 
mainder of the data field is filled with 00 (zeros)~ . 
The FDCreads the 10 field of each sector and checks 
the CRCbytes. If the FDC detects a read error (incorrect 
CRC) in one of the ID Fields, it sets the DE (Data Error) 
flag of St,atus Register 1 to a 1 (high), and terminates the 
Write Data Command. (Status Register 0 also has bits 7 
and 6 set to 0 and 1 respectively.) 

The Write Command operates In much the same manner 
as the Read Command. The following Items are the 
same; refer to the Read Data Command for details: 

• Transfer Capacity 
• EN (End of Cylinder) Flag 
• NO (No Data) Flag 

.1-.153 AFN.()1259B 



8272 

• Head Unload Time Interval 
• ID Information when the processor terminates com-

mand (see Table 2) 
• Definition of DTLwhen N = 0 and when N+-O 

In the Write Data mode, data transfers between the proc­
essor and FDC must occur every 31 'J.lS In the FM mode, 
and every 15 "'s in the MFM mode. If the time interval 
between data transfers is longer than this then the FDC 
sets the OR (Over Run) flag in Status Register 1 to a 1 
(high), and terminates the Write Data Command. 

WRITE DELETED DATA 

This command is the same as the Write Data Command 
except a Deleted Data Address Mark is written at the 
beginning of the Data Field instead of the normal Data 
Address Mark. 

READ DE.LETEDDATA 

This command is the same as the Read Data Command 
except that when the FDC detects a Data Address Mark 
at the beginning of a Data Field (and SK= 0 (low)), it wi" 
read a" the data in the sector and set the CM flag in 
Status Register 2 to a 1 (high), and then terminate the 
command_ If SK= 1, then the FDC skips the sector with 
the Data Address Mark and reads the next sector. 

READ A TRACK 

This command is similar to READ DATA Command 
except that the entire data field is read continuously 
from each of the sectors of a track. Immediately after 
encountering the INDEX HOLE, the FDC starts reading 
a" data fields on the track as continuous blocks of data. 
If .the FDC finds an error in the ID or DATA CRC check 
bytes, it continues to read c:lata from the track. The FDC 
compares the ID information read from each sector with 
the value stor1ld in the IDR, and sets the ND. flag of 
Status Register t to a 1 (high) If there is no comparison. 
Multi-track or skip operations are not allowed with this 
command. 

This command terminates when EOT number of sectors 
have been read. If the FDC does not find an ID Address 
Mark on the diskette after it encounters the INDEX 
HOLE·for the second time, then it sets the MA (missing 
addr7ss mark) flag in Status Register 1 to a1 (high), and 
terminates the command. (Status Register 0 has bits 7 
and 6 set to 0 and 1 respectively.) 

READID 

The READ ID Command Is used to give the present posi­
tion of the recording head. The FDC stores the values 
from the first ID Field It is able to read. If no proper 10 
Address Mark is found on· the diskette, before' the IN­
DEX HOLE Is encountered for the second time then the 
MA (Missing Address Mark) flag in Status Register 1 is 
set to a 1 (high), and if no.data is found then the ND (No 
Data) flag is also set in Status Register 1 to a 1 (high) 
and the command is terminated. 

FORMAT A TRACK 

The Format Command allows an entire track to be for­
matted. After the INDEX HOLE is detected, Data Is writ­
ten on the Diskette: Gaps, Address Marks,ID·Fields and 
Data Fields, a" per the IBM System 34 (Double Density) 
or System 3740 (Single Density) Format are recorded. 
The particular format which wi" be written is controlled 
by the values programmed into N (number of bytes/sec­
tor),. SC (sectors/cylinder), GPL (Gap Length), and D 
(Data Pattern) which are supplied by the processor dur­
ing the Command phase. T"e Data Field is filled"wlth 
the Byte of data stored In D. The 10 Field for each sector 
is supplied by the processor; that is; four data requests 
pefsector are made by. the FDC for C (Cylinder Number), 
H(Head Number), R (Sector Number) and N(NumbEir of 
Bytes/Sector). This allows the diskette to be formatted 

. with nonsequential sector numbers, if desired: 

After formatting each sector; the processor must send 
new values for C, H, R, and N to the 8272 for each sector 
on the track. The contents of the R register is in­
cremented by one after each sector is. formatted thus 
the R register contains a valOe of R+'1 when it i~ read 
during the Result Phase. This incrementing and format­
ting continues for the whole track until the FDC en­
counters the INDEX HOLE for the second time, where­
upon it terminates the command. 

If a FAULT signal is received from the FDD at the end of 
a write operation, then the FDC sets the EC flag of 

. Status Register 0 to a 1 (high), and terminates the com­
mand after setting bits 7 and 6 of Status Register 0 to 0 
and 1 respectively. Also the loss of a READY signal at 
the beginning of a command execution phase causes 
command termination. 

Table 6 shows the relationship between N, SC, and GPL 
for various sector sizes: 

Table 6_ Sector Size Relationships 
FORMAT SECTOR SIZE N sc· GPL1 GPL2 REMARKS 

128 bytes/Sector 00 lA(16) 07(16) lB(16) IBM Dlsketle 1 
FM Mode 256 01 0~6) OE(16) 2A(16) IBM Diskette 2 

512 02 lB(16) 3A(16) 

1024 bytes/Sector 03 04 - -
FM Mode 2048 04 02 - -

4096 05 01 -
256 01 lA(16) OE(16) 36(16) IBM Diskette 20 
512 02 OFJt16) lB(16) SoIt16) 

MFMMode 
1024 03 35(16) 74(16) IBM Diskette 20 
2048 04 04 - -
4096 05 02 - -
8192 06 01 - -

Note: 1. Suggested values of GPL in Read or Write Commands to avoid splice point 
between data field and 10 field of contiguous sections. 

2. Suggested values of GPL In format command. 

1-154 AFN.Q1259B 



inter 8272 

SCAN COMMANDS 

The SCAN Commands allow data which is being read 
from the diskette to be compared agalnst.data which is 
being supplied from the main . system (Processor In 
NON·DMA mode, and DMA,ControiJer in DMA. mode). 
The FDC.compares the data on a byte-by-byte basis, and 
looks for a sector of data which meets the conditions of 
DFDD = DProcesso.,DFDD" DProcessor, or DFDD ~ DProcessOf' 
Ones· complement arithmetic Is used far comparison 
(F.F = largest number,' 00 = smallest number). After a 
whole sector of data Is compared, If th~,condltlons are 
not met, the sector number Is incremerited (R + STP -
R), and the scan operation is contlnu~~. The scan opera­
tion continues until one of the follownlg conditions oc­
cur; the conditions for scan are met (equal, low, or high), 
the last sector on the track Is reached (EOT), or the ter­
minal coun1slgnal is received. 

If the conditions for scan are met then the FDC sets the 
SH (Scan Hit) flag of Status Register 2 to a 1 (high), and 
terminates the Scan Command, If the conditions for 
scan .are not met between the starting sector (as 
specified by R) and the last sector on the cylinder (EOT), 
then the FOe sets the SN (Scan Not Satisfied) flag of 
Status Reg.ister2 to a 1.(high), and terminates the Scan 
Command. The receipt of a TERMINAL COUNT signal 
from the Processor or DMA Controller during .the scan 
operation will cause the. FDC to complete the 'com­
pa{isan ,of the patiicularbyte which is in process, and 
then to terminate the command. Table 7 shows the 
status of bits SH and SN under various conditions of 
SCAN. 

Table 7~ Sea" Status Codes 
STATUS REGISTER 2 

COMMAND 
BIU~SN BIT3=SH 

COMMENTS 

Scan Equal 
O· 1 DFDD = Dprocessor 
1 0 ' DFDD '" DProc ••• or 

0 1 DFDD == DProcessor 
Scan Low or Equal 0 0 DFDD < Dpr_aaor 

1 0 ' DFDD ~ DProcesaor 

0 1 DFDO:lli DProc8s80r . 
Scan High or Equal 0 0 DFDD > Dproceasor 

1 0 DFDD • DProce •• or 

If the FDC encounters a Deleted Data Address Mark on 
one of the sectors (and SK = 0), then it regards the sec­
tor as the last sector on the cylinder, sets CM (Control 
Mark) flag' 6; Status Register 2 to a 1 (high) and ter­
minates the command. If SK = 1, the FDC skips the sec­
tor with tbe Deleted Address Mark, and reads the. next 
sector. In the second case (SK = 1), the FDC sets the CM 
(Control Mark) flag of Status Register 2 to a 1 (high) in 
order to shoiN that a Deleted Sector had been en­
countered, 

Whf(l.n:either the STP (contiguous sectorsSTP=01, or 
. altElriiate sectors STP = 02 sectors are read) or the NIT 
(Multi-track) are programmed, It Is necessary to 
remember. that the last sector on the. track must be read. 
For example, if STP = 02, MT = 0, the sectors are 
numbered sequentially 1 through 26, and we start the 
Scan Command at 'sector 21; the following will happen. 
Sectors 21, 23, and 25 will be read, then the next sector 
(26) will be skipped and the Index Hole will be en­
cbuntered before theEOT value of 26 can be read. This 
will result In an abnormal terminatlonof·the command. 
If the EOT had been set at 25 or the scanning started at 
sector 20, then the Scan Command would be completed 
in a normal mann~r. 

During thE! Scan Command data is supplied by either the 
processor or DMA Controller for comparison against the 
data read from the diskette. In order to avoid having the 
OR (Over Run) flag set in Status Register 1, it is nec­
essary to have the data available in less than 27 jlS (FM 
Mode) or 13 jls (MFM Mode). If an Overrun occurs the 
FDC terminates the command. 

SEEK 

Thetead/write head within the FDD is moved from 
cylinder to cylinder under control of the Seek Command. 
The FDC compares the PCN (Present Cylinder Number) 
whi,eh is the current head position with the NCN (New 
Cylinder Number), and performs the following operation 
if there is a difference: 

P.CN < NCN: Direction signal to FDD set to a 1 (high), 
and Step Pulses are issued. (Step In.) 
PCN > NCN: Direction signal to FDD set to a a (low), 
and Step Pulses are issued. (Step Out.) 

The rate at which Step Pulses are issued is controlled by 
SRT (Stepping Rate Time) in the SPECIFY Command. 
After each Step Pulse is issued NCN is compared 
against PCN, and when NCN = PCN, thEm the SE (Seek 
End) flag is set in Status Register a to a 1 (high), and the 
command is terminated. 

During the Command Phase of the Seek operation the 
FDC is in the FDC BUSY state, but during the Execution 
Phase it is in the NON BUSY state. While the FDC is in 
the NON BUSY state, another Seek Command may be 
issued, and in this manner parallel seek operations may 

'be done on up to 4 Drives at once. 

. .If an FDD il!! in a NOT READY state at the beginning of 
the command execution phase or during the seek opera­
tion, then the NR (NOT READY) flag Is set in Status 
Register a to a 1 (high), and the command is terminated. 

1-155 AFN'()I259B 



intJ 8272 

RECALIBRATE 

This command causes the read/write head within the 
FOO to retract to the Track 0 position. The FOC clears 
the contents of the PCN counter, and checks the status 
of the Track 0 signal from the FDD. As long as the Track 
o signal is low, the Direction signal remains 1 (high) and 
Step Pulses are issued. When the Track 0 signal goes 
high, the SE (SEEK END) flag in Status Register 0 is set 
to a 1 (high) and the command is terminated. If the Track 
o signal is still low after 77 Step Pulses have been 
Issued, the FDC sets the SE (SEEK END) and EC (EQUIP· 
MENT CHECK) flags of Status Register 0 to both 1s 
(highs), and terminates the command. 

The ability to overlap RECALIBRATE Commands to 
multiple FDDs, and the loss of the READY signal, as 
described in the SEEK Command, also applies to the 
RECALIBRATE Command. 

SENSE INTERRUPT STATUS 

An Interrupt signal is generated by the FDC for one of 
the following reasons: 

1. Upon entering the Result Phase of: 
a. Read Data Command 
b. Read a Track Command 
c. Read ID Command 
d. Read Deleted Data Command 
e. Write Data Command 
f. Format a Cylinder Command 
g. Write Deleted Data Command 
h. Scan Commands 

2. Ready Line of FDD changes state 
3. End of Seek or Recalibrate Command 
4. During Execution Phase in the NON-DMA Mode 

Interrupts caused by reasons 1 and 4 above occur during 
normal command operations and are easily discernible 
by the processor. However, interrupts caused by 
reasons 2 and 3 above may be uniquely identified with 
the aid of the Sense Interrupt Status Command. This 
command when issued resets the interrupt signal and 
via bits 5, 6, and 7 of Status Register 0 identifies the 
cause of the interrupt. 

Table 8. Seek, Interrupt Codes 

SEEK END INTERRUPT CODE 

BIT 5 BIT6 BIT7 CAUSE 

0 1 1 Ready Line changed 
state, either polarity 

1 0 0 Normal Termination 
of Seek or Recalibrate 
Command 

1 1 0 Abnormal Termination of 
Seek or Recalibrate 
Command 

Neither the Seek or Recalibrate Command have a Result 
Phase. Therefore, it is mandatory to use the Sense Inter· 
rupt Status Command after these commands to effec· 
tively terminate them and to provide verification of the 
head position (PCN). 

SPECIFY 

The Specify Command sets the initial values for each of 
the three internal timers. The HUT (Head Unload Time) 
defines the time from the end of the Execution Phase of 
one of the ReadlWrlte Commands to the head unload 
state. This timer is programmable from 16 to 240 ms in 
Increments of 16 ms (01 = 16 ms, 02 = 32 ms .... OF = 
240 ms). The SRT (Step Rate Time) defines the time in· 
terval between adjacent step pulses. This timer is pro· 
grammable from 1 to 16 ms in increments of 1 ms (F = 1 
ms, E=2 ms, D= 3 ms, etc.). The HLT (Head Load Time) 
defines the time between when the Head Load signal 
goes high and when the ReadlWrite operation starts. 
This timer is programmable from 2 to 254 ms in in· 
crements of 2 ms (01 = 2 ms, 02 = 4 ms, 03 = 6 ms .... 
FE=254 ms). 

The time intervals mentioned above are a direct function 
of the clock (CLK on pin 19). Times indicated above are 
for'an 8 MHz clock, if the clock was reduced to 4 MHz 
(mini-floppy application) then all time Intervals are In­
creased by a factor of 2. 

The choice of DMA or NON·DMA operation is made by 
the ND (NON-DMA) bit. When this bit is high (ND = 1) the 
NON-DMA mode is selected, and when ND = 0 the DMA 
mode is selected. 

SENSE DRIVE STATUS 

This command may be used by the processor whenever 
it wishes to obtain the status of the FDDs. Status 
Register 3 contains the Drive Status information. 

INVALID 

If an invalid command is sent to the FDC (a command 
not defined above), then the FDC will terminate the com· 
mand. No interrupt is generated by the 8272 during this 
condition. Bit 6 and bit 7 (DIO and RQM) in the Main 
Status Register are both high ("1 ") indicating to the 
processor that the 8272 is in the Result Phase and the 
contents of Status Register 0 (STO) must be read. When 
the processor reads Status Register 0 it will find a 80H 
indicating an invalid command' was received. 

A Sense Interrupt Status Command must be sent after a 
Seek or Recallbrate interrupt, otherwise the FDC will 
consider the next command to be an Invalid Command. 

In some applications the user may wish to use this com­
mand as a No-Op command, to place the FDC in a stand­
by or no operation state. 

1-156 AFN'()I259B 



inter 8272 

Table 9. Status Registers '. 
, BIT BIT 

NO:1 NAME SYMBOL' 
' DESCRIPTION 

NO. NAME SYMBOL 
DESCRIPTION 

STATUS REGISTER 0 STATUS REGISTER 1 (CONT~ 

0 7 Interrupt IC 07=0 and 06 =0 
Code Normal Termination of Command, 

(Nl), Command was completed and 

0, Not NW During execution of WRITE DAtA, 
Writable WRITE DELETED DATA or Format A 

Cylinder Command, If the FoC 
" properly executed. de,tects,a write protect signal from 

06 07=0 and 06 = 1 the FDo, then this flag is set. 

Abnormal Termination of Com· 
.. 

mand, (Al). Execution of Command 
was stluted, but was not 
successfully completed. 

07= 1 and De=O 
Invalid 'Command Issue, (IC). 
Command which was Issued was 
never started. 

Do ,Missing MA If the,FDC cannot detect the 10 
Address Address Mar,k afier 'encountering the 
Mark 'index hole twice, then this flag is set. 

If the FoC'ca,nnot deteclthe Data 
Address Mark or Deleted 'Data 
Address Mark, this flag is set. Also 
at the same time, the Mo (Missing 
Address Mark in Data Field), of 

07= 1 and De= 1 Status Register 2 is set. 
Abnormal Termination because 
during command execution the STATUS REGISTER 2 

ready signal from FOD changed 
state. 

0 7 Not used, This bll is always 0 (low). 

05 Seek End SE When the FDC completes the 
SEEK Command, this flag is set to 1 

De Control CM During executing the READ DATA or 
Mark SCAN Command, if the FoC 

encounters a Sector which contains 
(high). a Deleted Data Address Mark, this 

0 4 Equipment EC If a faull Signal Is received from the 'flag is set. 

Check FDD, or if the Track 0 Signal fails to 
occur after 77 Step Pulses (Recali· 
brate Command) then this flag is set. 

03 Not Ready NR When the FDD is in the not·ready 
state and a read or write command is 

0 5 Data Error in DO If the FoC detects a CRC error in 
Data Field ihe data fi,eld then this flag is set, 

0 4 Wrong WC This bit is related ';'iththe NO bit, 
Cylinder and when the colitents of C on the 

medium is different from that stored 
issued, this flag is set. If a read or 
'write command Is issued to Side 1 

in the lOR, this flag is set. 

of a single sided drive, then this flag 03 Scan Equal SH During execution, the SCAN 

is set. Hit Co"mmand, if the condition of 

O2 Head HD This flag is used to indicate the 
Address state of the head at Interrupt. 

"equal" is satisfied, this flag is set. 

O2 Scan Not SN During executing the SCAN 

0, Unll Select 1 US 1 These flags are used to indicate a 
Satisfied Command, If the FDC cannot find a 

Sector on the cylinder which meets 

Do Unit Select 0 usa Drive Unit Number at Interrupt the condition, then this flag is set. 

STATUS REGISTER 1 

07 End of EN When the FDC tries to access a 
Cylinder Sector beyond the final Sector of a 

0, Bad BC This bit is related with the NO bit, 
Cylinder and when the content of C on the 

medium is different from that stored 
in the lOR and the content of C is 

Cylinder, this flag is set. FF, then this flag is set. 

06 Not used. This bit Is always 0 (low). Do Missing MD ' When, data Is read from the medium, 

05 Data Erwr, DE When the FDC detects a CRC error 
in either the 10 field or the data field, 

Address if the FDC cannot find a Data 
Mark in Data Address Mark or Deleted Data 

this flag Is set. Field Address Mark, then this flag is set. 

0 4 Over Run OR If the FDC is not serviced by the STATUS REGISTER 3 
main·systems during data transfers, 
within a certain time Interval, this 
flag Is set. 

0 7 Faull FT This bit is used to Indicate the 
status of the Fault signal from the 
FDD, , 

03 Not used. This bit always 0 (low). 

O2 No Data NO During execution of READ DATA, 
06 Write WP This bit is used to indicate the 

Protec,ted status of the Write Protected signal 
WRITE DE,LETED DATA or SCAN from the FDD, 
Command, if the FDC cannot find 

, the Sector specified in the IDR 
Register, this flag is set. 

05 Ready ROY This bit is used to indicate the status 
of the Ready Signal from the FDD. 

,. 
During executing the READ 10 Com-
mand, if .the FDC cannot read the 

0 4 Track 0 T() This bit is used to indicate the status 
of the Track 0 signal from the FDD. 

10 field without an error, then this 
flag Is set 

03 Two Side TS This bll is used to indicate the status 
of the Two Side signal from the FDD. 

During the execution of the READ A 
Cylinder Command, If the starting 

O2 Head HD This bit is used to indicate the status 
Address of Side Select signal to the FDD, 

sector cannot be found, then this 
flag is set. 0, Unll Select 1 US 1 This bit is used to indicate the status 

olthe Unit Select1 signal to the FoD. 

Do Unit Select 0 usa This bit is used to indicate the status 
of the Unit Select 0 signal to the FDD, 

1·157 AFN-O'259B 



8272 

ABSOLUTE MAXIMUM RATINGS* 
Operating Temperature ............ -10·C to + 70·C 
Storage Temperature ............. -40·C to + 125·C 
All Output Voltages ............... -0.5 to + 7 Volts 
All Input Voltages ................. -0.5 to + 7 Volts 
Supply Voltage Vee ............... -0.5 to + 7 Volts 
Power Dissipation .......................... 1 Watt 

NOTICE: Stress above those listed under "Absolute Max­
imum Ratings" may cause permanent damage to the de. 
vice. This is a stress rating only and functional operation of 
the device at these or any other conditions above those 
indicated in the operational sections of this specification 
is not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS (TA = O°Cto +700C, Vee = +5V ± 5%) 

Limits Test 
Symbol Parameter Min. Max. Unit Conditions 

VIL, Input Low Voltage -0.5 0.8 V 

V1H , Input High Voltage 2.0 Vee + 0.5 V 

VIL, (CLK & WR CLK) -0.5 0.65 V 

VIH, (CLK & WR CLK) 2.4 Vee+ 0.5 V 
I---

VOL Output Low Voltage 0.45 'J IOL=2.0 mA 

VOH Output High Voltage 2.4 Vee V IOH= -200j.lA 

Icc Vee Supply Current 150 mA 

IlL 
Input Load Current 10 lolA VIN=Vee 
(All Input Pins) -10 lolA VIN=OV 

ILOH High Level Output 10 j.lA Vour=Vcc 
Leakage Current 

ILOL Low Level Output -10 j.lA Vour= +0.45V 
Leakage Current 

CAPACITANCE (TA = 25°C, fc = 1 MHz, Vee = OV) 

Limits Test 
Symbol Parameter Min. Max. Unit Conditions 

CIN(cI» Clock Input Capacitance 20 pF All Pins Except 

CIN Input Capacitance 10 pF Pin Under Test 
Tied to AC 

Cour Output Capacitance 20 pF Ground 

1-158 AFN.()1259B 



irllE!f 8272 

A.C. CHARACTERISTICS (TA = O"C to 70"C; Vcc = +s.ov ± 51%) 

Symbol P .......... r Min. Mu. Unit Test Conditione 

lev Clock PerioC! 125 ns 

:T Clock High Period- 40 ns Nole4 
RasetWldth 14 lev 

- R.a.tCycIe 

tAR S81&ct setup to Iml 0 ns 

IRA Selecl Hold from m>t 0 ns 

tRR 1m Pulse Width 250 ns 
tRo Oats Delay from Am 200 ns 

tOF Output Float Delay 20 100 ns 

Write Cycle 
lAW Selecl Setup 10 WRI 0 ns 

twA Selecl Hold from WRt 0 ns 

Iww WR Pulse Width 250 ns 
low -- Oats Selup 10 WAf 150 ns 

two Oata HOld from WRt 5 na 

Intsnupta 
tRI INT Delay from m>t ·500 ns 
tWI INT Delay from WA! 500 ns 

DMA 

IRQCY DRQ Cycle Period 13 ~s 

tAKRD ~ltoDRQI 200 ns 
tRDR DROtto Am 800 na 8 MHz clock 
tROW DRQ!toWRI 250 ns 8 MHz clock 
tRDRW DROt to REi! or WR! 12 ~s 8 MHz clock 

FDDlntsrf_ TYpl 

IwCY WCK Cycle Time 20r4 --- - - 'MFM=O NoJ;2-
~ 

WCKHlghTime 
_1J!2_ ---- 350 - - _M~=.1. ___ 

IWCH 250 100 na 
lep Pre-Shlft Delay from WCK! 20 100 ns 

leo WDA Delay from WCK! 20 100 ns 
twoo Write Oats Width tWCH-5D ns 
tWE WE! to WCK! or WEI to WCKI Delay 20 ow ns --- ---- - - --------
twwCY Window Cycle Time 2 

~ 
MFM=O 

_---2_ -------- ~~=..!---
tWRO Window Setup to ROD! 15 ns 

tROW Window Hold from RDDI 15 ns 
tROD ROD Active Time (HIGH) 40 ns 

FDD 
SEEKI 
DIRECTIONJ 
STEP 

tus USa.l Setup to RWISEEK! 12 ~ 
tso RWISEEK Setup to L.CTIDIR 6.8 ~s 

los RW/sEEK Hold from LCT/DIR 30 ~ 
lOST LCT/DIR Setup 10 FRISTEPI 1 ~s 

ISTD LCT/DIR Hold from FRISTEPI 24 ~ 8MHz clock 

tSTU DSa 1 Hold from FRlSlepl 5 ~ 
tsTP STE'P Acllve Time (High) 5 ~ 
tsc STEP Cycle Time 33 ~s Note 3 
tFR FAULT RESET Active Time (High) 8 10 ~s 

tlOX INDEX Pulae Width 625 ~s 

tTC Terminal Count Width 1 lev 

NOTES: 

1. Typical values for TA=25'C and nominal supply voltage. 

2. The former values are used for stsndard floppy and the latter values are used for mlni·floppies. 

3. tsc = 33~s min. is for different drive units. In the case of same unit, Isc can be ranged from 1 ms 10 16ms with 8 MHz clock period, and 2 ms to 32ms 
with 4 MHz clock, under software control. 

4. From 2.0Vtlo +2.0Vl. 

1·159 AFN-01573B 



intJ 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

"=X )C 2.0 2.0 . . > TEST POINTS < 
0.8 0.8 

0.45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A lOGIC "I" AND O.4SV FOR 
A lOGIC "0:' TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A lOGIC "I" 
AND O.BV FOR A lOGIC "0:' 

WAVEFORMS 

PROCESSOR READ OPERATION 

8272 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

~CL~100PF TEST 

-= 
CL ~ 100 pF 
CL INCLUDES JIG CAPACITANCE 

DACK . AO.es'=>f F 
'--~-~-R------~-'~----------------_-_-_-IR-R~~~~~~~~~~~~~~.-I-------IR-. 

1_----IRo------I 

DATA - - - - - - - - - - - -

INT 

1·160 AfN.01259B 



inter 8272 

WAVEFORMS (Continued) 

PROCESSOR WRI'FEOPERATION-

Ao. C$, DACK 

I-----Iww----~ 

low----t 

DATA 

.NT 

DMA OPERATION 

~ ___________ ~v _______ ~ ____ ~ 

ORQ 

I+-------·IRQRW--------J 

WR or RD 
f+----IRQW-----J 

I+----'IRQR------<"'i 

1·161 AFN-Ol259B 



intJ 
WAVEFORMS (Continued) 

CLOCK TIMING 

elK 

FDD WRITE OPERATION 

WRITE ENABLE 
(WE) 

NORMAL 

LATE 

EARLY 

INVALID 

8272 

tcp 

PRESHIFTO PRESHIFT1 

0 0 

0 1 

1 0 

1 1 

1,162 AFN.()1259B 



intJ 
"r~\(EFORMS (Continued) 

SEEK OPERATION 

LCTI 
DIRECTION 

STEP 

FLT RESET 

FAULT RESET 
FAIL UNSAFE RESET 

Iso---+-

8272 

STABLE 

14-----tSTU-----;~ 

I----------!sc----------~ 

INDEl( 

1·163 AJ'N.l)1259B 



inter 8272 

WAVEFORMS (Continued) 

FDD READ OPERATION 

M~~"~ ~ 
/ r'Roo-1 " ------:I .. =======-'W-RD~~~~~~~ 'RO-W -----

READ DATA 
WINDOW 

TERMINAL COUNT 

TC 

t---------twwcv---------+J 

RESET 

RESET 

1-164 AFN-012598 



Data Communications. 



8251 A 
PROGRAMMABLE COMMUNICATION INTERFACE 

• Synchronous and Asynchronous • Asynchronous Baud Rate-DC to 
Operation 19.2K Baud 

• Synchronous 5-8 Bit Characters; • Full-Duplex, Double-Buffered 
Internal or External Character Transmitter and Receiver 
Synchronization; Automatic Sync • Error Detection-Parity, Overrun and 
Insertion Framing 

• Asynchronous 5-8 Bit Characters; • Compatible with an Extended Range 
Clock Rate-1, 16 or 64 Times Baud of Intel Microprocessors 
Rate; Break Character Generation; • 28-Pin DIP Package 
1, 1Y2, or 2 Stop Bits; False Start Bit • All Inputs and Outputs are TTL 
Detection; Automatic Break Detect Compatible 
and Handling • Single +5V Supply • Synchronous Baud Rate-DC to 
64K Baud • Single TTL Clock 

The Intel® 8251A is the enhanced version of the industry standard, Intel 8251 Universal Synchronous/ 
Asynchronous Receiver/Transmitter (USART), designed for data communications with Intel's microprocessor 
families such as MCS-68, 80, 85, and iAPX-86, 88. The 8251 A is used as a peripheral device and is programmed 
by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM 
"bi-sync"). The USARTaccepts data characters from the CPU in parallel format and then converts them intO a 
continuous serial data stream for transmission. Simultaneously, it can receive serial data streams and convert 
them into parallel data characters for the CPU. TheUSARTwili signal the CPU whenever it can accept a new 
character for transmission or whenever it has received a character for the CPU. The CPU can read the 
complete status of the USARTat any time.These include data transmission errors and control signals such as 
SYNDET, TxEMPTY. The chip is fabricated using N-channel silicon gate technology. 

"INTEL CORPORATION. 1981 

/ 
INTERNAL 
DATA BUS 

CONTROL 

Figure 1. Block Diagram 

TxRDY 

RxRDY 

Fhl 

_SYNDET 

1·165 

D, D, 

D3 Do 

R,D Vee 

GND R,C 

D, DTR 

D5 RTS 

D6 OSA 

°7 RESET 

T,C ClK 

WA T,O 

cs TxEMPTY 

C/O CTS 

AD SYNDET/BD 

RxRDY TxRDY 

Figure 2. Pin Configuration 

AFN-{)1~73C 



intJ 8251A 

FEATURES AND ENHANCEMENTS 

The 8251A is an advanced design of th~ industry 
standard USART, the Intel® 8251. The 8251 A 
operates with an extended range of Intel 
microprocessors and maintains, compatibility with 
the 8251. Familiarization, time is minimal because of 
compatibility and involves only knowing the addi­
tional features and enhancements, and reviewing 
the ACand DC specifications of the 8251A. 

The 8251A incorporates all the key features of the 
8251 and has the following additional features and 
enhancements: 

• 8251A has double-buffered data paths with sepa­
rate I/O registers for control,status, Data In, and 
Data Out, which considerably simplifies control 
programming and' minimizes CPU overhead. 

• In asynchronous operations, the Receiver detects 
and handles "break" automatically, relieving the 
CPU of this task. 

• A refined Rx initialization prevents the Regeiver 
from starting when in "break" state, preventing 
unwanted interrupts from a disconnected USART. 

• At the conclusion of a transmission, TxD line will 
always return to the marking state unless SBRK is 
programmed. 

• Tx Enable logic enhancement prevents a Tx Dis­
able command from halting transmission until all 
data previously written has been transmitted. The 
logic also prevents the transmitter from turning 
off in the middle of a word. 

• When External Sync Detect is programmed, Inter­
nal Sync Detect is disabled, and an External Sync 
Detect status is provided via a flip-flop which 
clears itself upon a status read. 

• Possibility of false sync detect is minimized by 
ensuring that if double character sync is program­
med, the characters be contiguously detected and 
also by clearing the Rx register to all ones 
whenever Enter Hunt command is issued in Sync 
mode. 

• As long as the 8251A is not selected, the RD and 
WR do not affect the internal operation of the 
device. 

• The 8251A Status can be read at any time but the 
status update will be inhibited during status read. 

• The 8251A is free from extraneous glitches and 
has enhanced AC and. DC characteristics, provid­
ing higher speed and better operating margins. 

• Synchronous Baud rate from OCto 64K. 

. FUNCTIO~AL DESCRIPTION 

General 

The 8251A is a Universal Synchron.ous/Asynchro­
nous Receiver/Transmitter designed, for a wide 
range of Intel microcomputers such as 8048, 8080, 
8085, 8086 and 8088. I,..ike other I/O devices in a 
microcomputer system, its functional configuration 
is programmed by the system's software for maxi­
mum flexibility. The 8251A can support most serial 
data techniques in lise, including IBM "bi-sync." 

In a communication environment an interface 
device must convert parallel format system data into 
serial format for transmission and convert incoming 
serial format data into parallel system data for recep­
tion. The interface device must also delete or insert 
bits or characters that are functionally unique to the 
communication technique. In essence, the interface 
should appear "transparent" to the CPU,a simple 
input or output of byte-oriented system data. 

Data Bus' Buffer 

, This 3-state, bidirectional, 8-bit buffer is used to in­
terface the 8251A to the system Data Bus. Data is 
transmitted or received by the buffer upon execution 
of INput or OUTput instructions of the CPU. Control 
words, Command words and Status information are 
also transferred through the. Data Bus Buffer. The 
Command Status, Data-In and Data-Out registers 
are separate, 8-bit registers communicating with the 
system bus through the Data Bus Buffer. 

This functional block accepts inputs from the system 
Control bus and generates control signals for overall 
device operation. It contains the Control Word Reg­
ister and Command Word Register that store the 
various control formats for the device functional 
definition. 

RESET (Reset) 

A "high" on this input forces the 8251 A into an "Idle" 
mode. The device will remain at "Idle" until a new set 
of control words is written into the 8251A to program 
its functional definition. Minimum RESET pulse 
width is 6 tey (clock must be running). 

A command reset operation alsoputsthe device into 
the "Idle" state. 

1-166 AFN-Q1573C 



8251 A 

ClK (Clock) 

The ClK input is used to generate internal device 
timing and is normally connected to the Phase 2 
(TTL) output of the Clock Generator. No external 
inputs or outputs are referenced to ClK but the 
frequency of ClK must be greater than 30 times the 
Receiver or Transmitter data bit rates. 

WR (Write) 

A "low" on this input informs the 8251A that the CPU 
is writing data or control words to the 8251A. 

RD (Read) 

A "low" on this input informs the 8251A that the CPU 
is reading data or status information from the 8251 A. 

Figure 3. 8251A Block Diagram Showing Data 
Bus Buffer and Read/Write logic 
Functions 

C/O RD WR cs 
0 0 1 0 B251A DATA - DATA BUS 
0 1 0 0 DATA BUS -B251A DATA 

0 0 STATUS- DATA BUS 
0 0 DATA BUS=> CONTROL 

X 1 0 DATA BUS => 3·STATE 
X X X DATA BUS=> 3·STATE 

C/O (Control/Data) 

This input, in conjunction with the WR and RD in­
puts, informs the 8251A that the word on the Data 
Bus is either a data character, control word or status 
information. 

1 = CONTROUSTATUS; 0 = DATA. 

CS (Chip Select) 

A "low" on this input selects the 8251A. No reading or 
writing will occur unless the device is selected. 
When CS is high, the Data Busis in the float state and 
RD and WR have no effect on the chip. 

Modem Control 

The 8251A has a set of control inputs and outputs 
that can be used to simplify the interface to almost 
any modem. The modem control signals are general 
purpose in nature and can be used for f~(tctions 
other than modem control, if necessary. 

DSR (Data Set Ready) 

The DSR input signal is a general-purpose, 1-bit in­
verting input port. Its condition can be tested by the 
CPU using a Status Reatl operation. The DSR input 
is normally used to test modem conditions such as 
Data Set Ready. 

DTR (Data Terminal Ready) 

The DTR output signal is a general-purpose, 1-bit 
inverting output port. It can be set "low" by pro­
gramming the appropriate bit in the Command In­
struction word. The DTR output signal is normally 
used for modem control such as Data Terminal 
Ready. 

RTS (Request to Send) 

The RTS output signal is a general-purpose, 1-bit 
inverting output port. It can be set "low" by pro­
gramming the appropriate bit in the Command In­
struction word. The RTS output signal is normally 
used for modem control such as Request to Send. 

CTS (Clear to Send) 

A "low" on this input enables the 8251A to transmit 
serial data if the Tx Enable bitin the Command byte 
is set to a "one." If either a Tx -Enable off or CTS off 
condition occurs while the Txis in operation, the Tx 
will transmit all the data in the USART, written prior 
to Tx Disable command before shutting down. 

1-167 AFN-01573C 



8251A 

Transmitter Buffer 

The Transmitter Buffer accepts parallel data from the 
Data Bus Buffer, cONVerts it to a serial bit stream, 
inserts the appropriate characters or bits (based on 
the communication technique) and outputs a Com­
posite serial stream. of data on the TxD output pin on, 
the falling edge 6fTxC. The transmitter will begin 
transmission upon being enabled:if.,CTS = O. The 
TxD line will be held in the marking state immedi­
ately upon a master Reset or when TJ<Enable or CTS 
is off or. the transmitter is empty. 

Transmitter Control 

The Transmitter Control manages all activities asso­
ciated with the transmission of serial data. It accep,ts 
and issues signals both externally and internally to 
accomplish this ,function. 

TxRDY (Transmitter Ready) 

This output signals the CPU that the transmitter is 
r.eady.to accept.a data character. The TxRDY output 
pin c~nb~ used as an .interruptto the system, since it 
is masked by TxEnable; or, for Polled,operation, the 
CPU can check TxRDYusing a Status Read opera­
tion. TxRDY is automatically reset bY,the leading 
edge of WR when a data character is loaded from 
the CPU. 

Note that when using the Polled operation, the 
TxRDY status bitisnot masked hyTxEmible, but will 
only indicat~ the Empty/Full Status ,of the Tx Data 
Input Register. . 

TxE (Transmitter Empty) 

When the 8251A has no characters to send, the 
TxEMPTY output will go "high." It resets upon 
receivingachara6ter'from the CPU if the transmitter 
is enabled. TxEMPTY remains low when the trans­
mitter is disabled even if .it IS actually empty. 
TJtEMPTY can be used to indicate the end ofatrans­
missiorimode, so thattheCPU,iknows" when to 
"turn the line around" in the half-duplex operational 
mode. 

Inthe'Synchr6rio~s mode, a "high" on this output 
indiciltesthat a character has not bee'n loaded and 
the SYNC character or characters are about to beor 
are being transmitted automatically as "fillers." 
TxEMPTYdoes not go low when the SYNC charac­
ters are being shifted' out '. 

Figure 4. 8251A Block Diagram Showing Modem 
and Transmitter Buffer and Control 
Functions 

TxC (Transmitter Clock) 

The Transmitter Clock controls the rate at which the 
character is to be transmitted. In the Synchronous 
transmission mode, the Baud Rate (1x) is equal to 
the TxC frequency. In Asynchronous transmission 
mode, the baud rate'is a fraction of the actual TxC 
frequency. A portion of the mode instruction selects 
this factor; it can be 1, 1/16 or 1/64 the TxC. 

For Example: 

If Baud Rate equals 110 Baud, 
TxC equals 110Hz in the 1 x mode. 
TxC equals 1.72 kHz in the 16x mode. 
TxC equals 7.04 kHz in the 64x mode. 

The falling edge of HC Shifts the serial diUa out of 
the 8251A. ' , '" 

Receiver Buffer 

The Receiver accepts serial data, converts this serial 
input to parallel format, checks for bits or characters 
that are unique to the communication technique 
and sends an "assembled" character to the CPU. 
Serial data is input to RxD pin, and is clocked in on 
the rising edge of RxC. . 

1-168 AFN·01573C 



inter 8251A 

Receiver Control 

This functional block manages all receiver-related 
activities which consists of the following features. 

The RxD initialization circuit prevents the 8251A 
from mistaking an unused input line for an active 
low data line in the "break condition." Before 
starting to receive serial characters on the RxD 
line, a valid "1" must first be detected after a chip 
master Reset. Once this has been determined, a 
search for a valid low (Start bit) is enabled. This 
feature is only active in the asynchronous mode, 
and is only done once for each master Reset. 

The False Start bit detection circuit prevents false 
starts due to a transient noise spike by first detect­
ing the falling edge and then strobing the nominal 
center of the Start bit (RxD = low). 

Parity error detection sets the corresponding 
status bit. 

The Framing Error status bit is set if the Stop bit is 
absent at the end of the data byte (asynchronous 
mode). 

RxRDY (Receiver Ready) 

This output indicates that the 8251A contains a char­
acter that is ready to be input to the CPU. RxRDY can 
be connected to the interrupt structure of the CPU 
or, for polled operation, the CPU can check the con­
dition of RxRDY using a Status Read operation. 

RxEnable, when off, holds RxRDY in the Reset Con­
dition. For Asynchronous mode, to set RxRDY, the 
Receiver must be enabled to sense a Start Bit and a 
complete character must be assembled and trans­
ferred to the Data Output Register. For Synchronous 
mode, to set RxRDY, the Receiver must be enabled 
and a character must finish assembly and be trans­
ferred to the Data Output Register. 

Failure to read the received character from the Rx 
Data Output Register prior to the assembly of the 
next Rx Data character will set overrun condition 
error and the previous character will be written over 
and lost. If the Rx Data is being read by the CPU 
when the internal transfer is occurring, overrun er­
ror will be s.et and the old character will be lost. 

RxC (Receiver Clock) 

The Receiver Clock controls the rate at which the 
character is to be received. In Synchronous Mode, 
the Baud Rate (1x) isequal tothe actual frequencyof 
RxC. In Asynchronous Mode, the Baud Rate is a 
fraction of the actual RxC frequency. A portion of 
the mode instruction selects this factor: "1, 1/16 or 
1/64 the RxC. 

1·169 

For example: 

Baud Rate equals 300 Baud, if 
RxC equals 300 Hz in the 1x mode; 
RxC equals 4800 Hz in the 16x mode; 
RxC equals 19.2 kHz in the 64x mode. 

Baud Rate equals 2400 Baud, if 
RXC equals 2400 Hz in the 1x mode; 
RxC equals 38.4 kHz in the 16x mode; 
RxC equals 153.6 kHz in the 64x mode. 

Data is sampled into the 8251 A on the rising edge of 
RxC. 

NOTE: In most communications systems, the 8251A 
will be handling both the transmission and reception 
operations of a single link. Consequently, the 
Receive and Transmit Baud Rates will be the same. 
Both TxC and RxC will require identical frequencies 
for this operation and can be tied together and con­
nected to a single frequency source (Baud Rate 
Generator) to simplify the interface. 

Figure 5. 8251 A Block Diagram Showing 
Receiver Buffer and COJ'ltrol Functions 

AFN'()1573C 



8251A 

SYNDET (SYNC Detect! 
BRKDET Break Detect) 

This pin is used in Synchronous Mode for SYN" 
DET and may be used as either input or output, 
programmable through the Control Word. It is reset 
to output mode low upon RESET. When used as an 
output (internal Sync mode), the SYNDETpin will go 
"high" to indicate that the 8251A has located the 
SYNC character in the Receive mode. If the 8251A is 
programmed to use double Sync characters (bi­
sync), then SYNDETwili go "high" in the middle of 
the last bit of the second Sync character. SYNDET is 
automatically reset upon a Status Read operation. 

When used as an input (external SYNC detect mode), 
a positive going signal will cause the 8251A to start 
assembling data characters on the rising edge of the 
next RxC. Once in SYNC, the "high"input signal can 
be removed.· When External SYNC Detect is pro­
grammed, Internal SYNC Detect is disabled. 

BREAK (Async Mode Only) 

This output will go high whenever the receiver 
remains low through two consecutive stop bit se­
quences (including the start bits; data bits, and 
parity bits). Break Detect may also be read as a 
Status bit. It is reset only upon a master chip Reset or 
Rx Data returning to a "one" state. 

\ 

I 

\ 

ADDRESS BUS 

A, 

CONTROL BUS 

I/O R I/O W RESET ., 
(TTll 

DATA BUS 

;>. 

8 

7' 
C/O CS D7-00 AD WR REseT ClK 

8251A 

Figure 6. 8251A Interface to 8080 Standard 
System Bus 

\ 

\ 

\ 

DETAILED OPERATION DESCRIPTION 

General 

The complete functional definition of the 8251A is 
programmed by the system's software. A set of con­
trol words must be sent out by the CPU to initialize 
the 8251A to support the desired communications 
format. These control words will program the: BAUD 
RATE, CHARACTER LENGTH, NUMBER OF STOP 
BITS, SYNCHRONOUS or ASYNCHRONOUS OPER­
ATION, EVEN/ODD/OFF PARITY, etc. In the 
Synchronous Mode, options are also provided to 
select either internal or external character 
syn ch ron ization. 

Once programmed, the 8251 A is ready to perform its 
communication functions. The TxRDY output is 
raised "high" to Signal the CPU that the 8251A is 
ready to receive a data character from the CPU. This 
output (TxRDY) is reset automatically when the CPU 
writes a character into the 8251A. On the other hand, 
the 8251A receives serial data from the MODEM or 
I/O device. Upon receiving an entire character, the 
RxRDYoutput is raised "high" to signal the CPU that 
the 8251A has a complete character ready for the 
CPU to fetch. RxRDY is reset automatically upon the 
CPU data read operation. 

The 8251A cannot begin transmission until the Tx 
Enable (Transmitter Enable) bit is set in the Com­
mand Instruction and it has received a ClearTo Send 
(CTS) input. The TxD output will be held in the mark­
ing state upon Reset. 

1-170 

cic", 1 MODE INSTRUCTION 

cic '" 1 SYNC CHARACTER 1 

CID =, SYNC CHARACTER 2 

ctD;: 1 COMMAND INSTRUCTION 

ctD = 0 DA'rA 

ciD" 1 COMMAND INSTRUCTION 

c/o = 0 t 
t--------j 

DATA 

ciD'" 1 COMMAND INSTRUCTION 

} SYNC MODE 
ONLY· 

* The Mcond SYNC character Is skipped n MODE ~on~ .. program­
med tile 8261A to lingle character Intemal SYNC Mode."8Qth SYNC 
characters are skipped If MODE instruction hasprogrammed "'82S1~ to 
ASYNC mode or Extemal SYNC mode. 

Figure 7. Typical Data Block 

AFN-01573C 



inter 8251A 

Programming the 8251A 

Prior to starting data transmission or reception, the 
8251A mus.t be loaded with a set of control words 
generated by the CPU. These control signals define 
the complete functional definition of the 8251A ana 
must immediately follow a Reset operation (internal 
or external). 

The control words are split into two formats: 

1. Mode Instruction 
2. Command Instruction 

Mode Instruction 

This instruction defines the general operational 
characteristics of the 8251 A. It must follow a Reset 
operation (internal or external). Once the Mode In­
struction has been written into the 8251A by the 
CPU, SYNC characters or Command Instructions 
may be written. 

Command Instruction 

This instruction defines a word that is used to control 
the actual operation of the 8251A. 

Both the Mode and Command Instructions must 
conform to a specified sequence for proper device 
operation (see Figure 7). The Mode Instruction must 
be written immediately following a Reset 
operation, prior to using the 8251A for data 
communication. 

All control words written into the 8251A after the 
Mode Instruction will load the Command Instruc­
tion. Command Instructions can be written into the 
8251Aat any time in the data block during the opera­
tion of the 8251A. To return to the Mode Instruction 
format, the master Reset bit in the Command In­
struction word can be set to initiate an internal Reset 
operation which automatically places the 8251A 
back into the Mode Instruction format. Command 
Instructions must follow the Mode Instructions or 
Sync characters. 

Mode Instruction Definition 

The 8251A can be used for either Asynchronous or 
Synchronous data communication. To understand 
how the Mode Instruction defines the functional 
operation of the 8251A, the designer c.an best view 
the device as two separate components, one 
Asynchronous and the other Synchronous, sharing 

1-171 

the same package. The format definition can be 
changed only after a master chip Reset. For explana­
tion purposes the two formats will be isolated. 

NOTE: When parity is enabled it is not considered 
as one of the data bits for the purpose of program­
ming the word length. The actual parity bit received 
on the Rx Data line cannot be read on the Data.Bus. 
Inthe case ofa programmed character length of less 
than 8 bits, the least significant Data Bus bits will 
hold the data; unused bits are "don't care" when 
writing data to the 8251 A, and will be "zeros" when 
reading the data from the 8251A. 

Asynchronous Mode {Transmission} 

Whenever a data character is sent by the CPU the 
8251A automatically adds a Start bit (lOW level) fol­
lowed by the data bits (least significant bit first), and 
the programmed number of Stop bits to each char­
acter.Also, an even or odd Parity bit is inserted prior 
to the Stop bit(s), as defined by the Mode Instruc­
tion. The character is then transmitted as a serial 
data stream on the TxD output. The serial data is 
shifted out on the falling edge ofTxC at a rate equal 
to 1,1/16, or 1/64 that of the TxC, as defined by the 
Mode Instruction. BREAK characters can be contin­
uously sent to the TxD if commanded to do so. 

When no data characters have been loaded into the 
8251A theTxD output reamins "high" (marking) un­
less a Break (continuously low) has been 
programmed. 

I " I ., I EP I PEN Il,ll, I B,I B, I 

~ 
BAUD RATE FACTOR 

0 , 0 , 
0 0 , , 

SYNC (1 X) (16Xj (64Xj 
MODE 

CHARACTER LENGTH 

0 , 0 , 
0 0 , ., 
5 • 7 8 

BITS BITS" BITS BITS 

PARITY ENABLE 
1 = ENABLE 0= OISABLE 

EVEN PARITY GENERATION/CHE 
1 = EVEN 0"'000 

NUMBER OF STOP BITS 

0 , 0 , 
0 0 , , 

INVALID 
, ,~ 2 

BIT BITS BITS 

Figure 8. Mode Instruction Format, 
Asynchronous Mode 

CK 

AFN'()1573C 



inter 8251A 

Asynchronous Mode (Receive) 

The RxD line is normally high. A falling edge on this 
line triggers the beginning of a START bit. The 
validity of this START bit is checked by again strob­
ingthis bit at its nominal center (16Xor 64X mode 
only). If a low is detected again, it is a valid START bit, 
and the bit counter wHistartcounting,The bit coun­
ter thus locates the center of the data bits, the parity 
bit (if it exists) and the stop bits. If parity error oc­
curs, the parity error flag is set. Data and parity bits 
are sampled on the RxD ph' with the rising edge of 
RxC. If a low level is detected as the STOP bit, the 
Framing Error flag will be set. The STOP bit signals 
the end of a character. Note that the receiver re-, 
quires only one stop bit, regardless of the number of 
stop bits programmed. This character is then loaded 
into the parallel I/O buffer of the 8251 A. The RxRDY 
pin is 'raised to signal the CPU that a character is 
ready to be fetched. If a previous character has not 
been fetched by the CPU, the present character 
replac~ itin the I/O buffer, and the OVERRUN Error 
flag is raised (thus the previous character is lost). All 
of the. error flags can be reset by an Error Reset 
Instruction. The occurrence of any of these errors 
will not affect the operation of the 8251A. 

GENERATED 
DO 01---- Ox BY 8251A 

DOES NOT APPEAR 

RECEIVER INPUT DO Dl-~--Dx ON THE DATA BUS 

t t t t 
RxD IL._ST..;.:'_~T--,-G_D_A-!TA BI-'T_S --'-__ -' 

TRANSMISSION FORMAT 

PROGRAMMED 
CHARACTER 

LENGTH 

CPU BYTE (5·8 BITS/CHAR) 

DATA C~+ACTER 
ASSEMBLED SERIAL DATA OUTPUT (TxO) 

STt;-"l 
arrs -L 

8r6;l 
BrrS L· 

STO~ 
'--~-L __ D_AT_A~CH~AR_A_CT_ER __ -'--=~L-~BI~ 

RECEIVE FORMAT 

SERIAL DATA INPUT (RxD) 

DATA CHARACTER sroD 
L-'_...L... __ --II--_-'--:.:.~L.._::.:.jBITS 

CPU BYTE (5-8 BITS/CHAR)* 

,..-----1, 1-1 -----, 
DATA CHARACTER 

'-------41 1-1 ----' 

*NOTE: IF CHARACTER LENGTH IS DEFINED AS 5, 6 OR 7 
BITS THE UNUSED BITS ARE SET TO "ZERO" 

Figure 9. Asynchronous Mode 

Synchronous Mode (Transmission) 

The TxDoutput is continuously high until the CPU 
sends its first character to the 8251 Awhich usually is 
a SYNC character. When. the CTS line goes low, the 
first character is serially transmitted out. All charac­
ters are shifted out onthe falling edge ofTxC. Data is 
shifted out at the same rate as the TxC. 

Once transmission has started, the data stream at 
the TxD output must continue at the TxC rate. If the 
CPU does not provide the 825'1 A with Ii data charac­
ter before the 8251A Transmitter Buffers become 
empty, the SYNC characters (or character if in single 
SYNC character mode) will be automatically in­
serted in the TxD data stream. In this case, the 
TxEMPTY pin is raised high to signal that the 8251A 
is empty and SYNC characters are being sent out. 
TxEMpTY does not go low whE;l'n the SYNC is being 
shifted out (see figure below).The TxEMPTY pin is 
internally reset by a data character being written 
into the 8251 A. 

AUTOMATICALLY INSERTED BY USART 

1\. 
TxD I DATA I DATA I SYNC 1 I SYNC 21 DATA I - - - - -

F.ALLS UPON CPU WRITING A 
T,EMP'TY !~\\ ~\\/CHARACTER TO THE USART 

-~\ 
NOMINAL CENTER OF LAST,BIT 

Synchronous Mode (Receive) 

In this mode, character synchronization can be inter­
nally or externally achieved. If the SYNC mode has 
been programmed, ENTER HUNT command should 
be included in the first command instruction word 
written. Data on the RxD pin is then sampled on 
the riSing edge of RxC. The content onhe Rx buffer 
is compared at every bit boundary with the first 
SYNC character until a match occurs. If the 8251A 
has been programmed for two SYNC. characters, the 
subsequent received character is also compared; 
when both SYNC c.haracters have been detected, 
the USARTends the HUNT mode and is in character 
synchronization. The, SYNDET pin is then set high, 
and is reset automatically' by a STATUS READ. If 
parity is programmed, SYNDETwili not be set until 
the middle of the parity bit instead of the middle of 
the last data bit. 

In the external SYNC mbde, synchronization is 
achieved by applying a high level on the SYNDET 
pin, thus forcing the 8251 A out of the HUNT mode. 
The high level can be removed after one RxC cycle. 
An ENTER HUNT command has no effect in the 
asynchronous mode of operation. 

1·172 AFN-01573C 



intJ 8251A 

Parity error and overrun error are both checked in 
the same way as in the Asynchronous Rx mode. 
Parity is checked when not in Hunt, regardless of 
whether the Receiver is enabled or not. 

0, 0, 0, 0, 0, 0, 0, Do 

II scs I ESDI EP I PEN I L,I L, I 0 I 0 I 

I I 
CHARACTER LENGTH 

0 1 0 1 

0 0 1 1 

5 6 7 8 
BITS BITS BITS BITS 

PARITY ENABLE 
(1 = ENABLE) 
(0 = DISABLE) 

EVEN PARITY GENERATION/CHECK 
1" EVEN 
0=000 

EXTERNAL SYNC DETECT 
1 = SYNDET IS AN INPUT 
0'" Syt.JOET IS AN OUTPUT 

SINGLE CHARACTER SYNC 
1 :: SINGLE SYNC CHARACTER 
0= DOUBLE SYNC CHARACTER 

NOTE: IN EXTERNAL SYNC MODE, PROGRAMMING DOUBLE CHARACTER 
SYNC WILL AFFECT ONLY THE Tx. 

Figure 10. Mode Instruction Format, 
Synchronous Mode 

The CPU can command the receiver to enter the 
HUNT mode if synchronization is lost. This will also 
set all the used character bits in the buffer to a 
"one," thus preventing a possible false SYNDET 
caused by data thathappens to be in the Rx Buffer at 
ENTER HUNT time. Note that the SYNDET F/F is 
reset at each Status Read, regardless of whether 
internal or external SYNC has been programmed. 
This does not cause the 8251A to return to the HUNT 
mode. When in SYNC mode, but not in HUNT, Sync 
Detection is still functional, but only occurs at the 
"known" word boundaries. Thus, if one Status Read 
indicates SYNDET and a second Status Read also 
indicates SYNDET, then the programmed SYNDET 
characters have been received since the previous 
Status Read. (If double character sync has been 
programmed, then both sync characters have been 
contiguously received to gate a SYNDET indication.) 
When external SYNDET mode is selected, internal 
Sync Detect is disabled, and the SYNDET F/F may be 
set at any bit boundary. 

SYNC 
CHAR 1 

RECEIVE FORMAT. 

CPU BYTES (5·8 BITS/CHAR) 

DATA C:'~RACTERS 
ASSEMBLED SERIAL DATA OUTPUT (TxOI 

SYNC 
CHAR 2 DATA CH:,~,...AC_T_EA_S_....J 

SERIAL DATA INPUT (AxD) 

L....:;:;;.:;;..;..-'-..;;;.:;.::.:..:....J.. __ DA_T_A_CH ..... AA~CTERS I ' 
CPU BYTES (5·8 BITS/CHAR) 

Figure 11. Data Format, Synchronous Mode 

COMMAND INSTRUCTION DEFINITION 

Once the functional definition of the 8251A has been 
programmed by the Mode Instruction and the sync 
characters are loaded (if in Sync Mode) then the 
device is ready to be used for data comml,lnication. 
The Command Instruction controls the actual opera­
tion of the' selected format. Functions such as: 
Enable Transmit/Receive, Error Reset and Modem 
Controls are provided by the Command Instruction. 

Once the Mode Instruction has been written into the 
8251A and Sync characters inserted, if necessary, 
then all further "control writes" (C/D = 1) will load a 
Command Instruction. A Reset Operation (internal 
or external) will return the 8251A to the Mode In­
struction format. 

Note: Internal Reset on Power-up 

When power is first applied, the 8251A may come up 
in the Mode, Sync character or Command format. To 
guarantee that the device is in the Command In­
struction format before the Reset command is is­
sued, it is safest to execute the worst-case 
initialization sequence (sync mode with two sync 
characters). Loading three OOHs consecutively into 
the device with C/O = 1 configures sync operation 
and writes two dummy OOH sync characters. An In­
ternal Reset command (40H) may then be issued to 
return the device to the "Idle" state. 

1-173 AFN-01573C 



inter 8251A 

,0, 0, Os 0, 0 3 0, 0, DO 

II EH I IR I RTS I. ER ISBRKI RxE I OTR ITXENI 

Lr TRANSMIT ENABLE I 1'" enable 
0'" disable 

, LI DATA TERMINAL 

I READY 
."hlgh" W!1t fO.ree DTA 
output ~o zero 

I RECEIVE ENABLE· I 1 -= enable I 0 ~ disable 

_I SEND' BREAK 

I 
CHARACTER I' " fqrces TxD "low" 
o '" normal operation 

_I ERROR RESET 

I 11" reset error fla\r-i 
PE, DE, FE 

I REQUEST TO SE~ 

I -I "high" will force RTS 
output to lero 

r INTERNAL RESET . 

I "hI9h" returns 8251A to I Mode Instruction Format 

'I ENTER' HUNT MOD.. I 11'" enable search for Sync 
, Characters 

• (HAS NO EFFECT 
IN ASYN~ MODEl 

Note: ,Error Reset must be performed whenever RxEnable 
a'nd Enter Hunt are programmed. 

Figure 12. Commandl,nstruction Format 

STATUS READ DEFINITION 

In data communication systems it is often necessary 
to examine the "status" of the active device to ascer­
tain if errors have occurred or other conditions that 
require the processor's attention. The 8251A has 
facilities that allow the programmer to "read" the 
status of the device at any time during the func­
tional operation. (Status update is inhibited during 
status read.) 

A normal "read" command is iss,ued by the CPU with 
ciiS = Uoaccomplish this function. 

Some of the bits 'in the Status Read Format have 
identical meanings to external output pins so that 
the 8251Acan be used iii a completely polled or 
interrupt-driven environment. TxRDY is 'an 
exception. 

Note that status update can have a maximum delay 
of 28 clock periods from the actual event affecting 
the status. 

SAME DEFINITIONS AS 1/0 PINS 

PARITY ERROR 
Tne PE flag is set when a panty 
error is detected. It is reset by 
the E R bit of the Command 
Instruction: PE does' Ilot"inhibit 
operation of the 8251 A. 

OVERRUN ERROR 
The DE flag IS set when the CPU 
does not read a character before 
the next one becomes available. 

L...-.- It IS reset by the E R bit of the 
Command Instruction. OE does 
not mhlblt operation of the 8251A 
however, the previously overrun 
character is lost, 

FRAMING ERROR (Async only~ 
The FE flag IS set when a valid 
Stop bit 15 not detected at the 
end of every character. It 15 reset 
by the E R bit of the Command 
Instruction. ·FE does not mhiblt 
the operation of the 8251 A. 

DATA SET READY: Indicates 
that the DSR is at a zero lel/el. 

Note 1: TxRDY status bit has different meanings from the 
TxADY output pin'. The former is not conditioned 
by CTS and TxEN; the latter is conditioned by both 
CTS and TxEN, ' .. 

i.e. TxRDY status bit = DB 'Buffer'Empty 

TxRDY pin out c'DB' BU'fter Empty ·(CTS"O)· 
ITxEN e 1 ) 

Figure 13. Status Read Format 

APPLICATIONS OF THE 8251A 

I 
ADDRESS BUS 

CONTROL BUS 

DATA BUS 

I 

1 
I, 

.. ----, 1 

I 

.·8251·A 

RiD 1-'---11 EIA TO TTL ,I; 1 "ikJPl ,', I .. CONVERT " J 
T,D 1---- (OPT) ~ 

L - - .:...~ "" 1 . .fff:jt.:; .... ::/ :h ,I BAUD RATE' 1 CRT I GEN.ERAJOR. '. TERMINAL 

Figure 14. Asynchronous Serial Interface to CRT 
Terminal, DC-9600, Baud 

1-174 AFN-Q1573C 



inter 8251 A 

ADDRESS BUS 

I 

~I 
CONTROL BUS \ 
I 

DATA BUS 

~~~~ 
RxD

TxD ~VNCHRONOUS

L1
TERMINAL

8251A RiC OR PERIPHERAL

TiC DEVICE

SVNDET

Figure 15. Synchronous Interface to TermInal or
Peripheral Device

\ ADDRESS BUS

I
CONTROL BUS \

I I
\ DATA BUS \

J~~~
RxD -
TxD - ~
[)SR 0_

P!10NE
ASVNC t.:INE

OTA 0---- MODEM INTER·

r----- FACE
8251A CTS 0_

RTS 0----

r RiC ~ BAUD

TXc
RATE

GENERATOR TELEPHONE
LINE

Figure 16. Asynchronous Interface to Telephone
Lines

1-175

SYNC
MODEM

PHONE
LINE

INTER·
FACE

TELEPHONE
LINE

Figure 17. Synchronous Interface to Teleplrone
Lines .

AFN-01573C

8251 A '.:

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature,65°C .to +150°C
Voltage On Any Pin '.

With Respect To Ground -0.5V to + 7V
Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stressrating·only and functional operation
of the device at these or any other conditions above those
indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating con­
ditions for extended periods may affect device reliability.

D.C. CHARACTERISTICS (TA = 0°Ct070°C, Vee = 5.0V ±5%, GNO= OV)

Symbol Parameter Min. Max;.

VIL Input Low Voltage -0.5 0.8

VIH Input High Voltage 2.2 Vee

VOL Output Low Voltage 0.45

VOH Output High Voltage .. 2.4

IOFL Output Float Leakage, ±10

IlL Input Leakage ±10

lee Power Supply Current 100

"

CAPACITANCE (T A = 25°C, Vee = GND = OV).

Symbol Parameter Min. Max.

CIN Input Capacitance 10

Clio I/O Capacitance 20

A.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5.0V ±5%, GND = OV)
Bus Parameters (Note 1)
READ CYCLE

Sy.mbol Parameter Min: Max.

tAR Address Stable Before READ (CS, C/O) 0

tRA Address Hold Time for READ (CS, C/O) 0

tRR READ Pulse Width 250
"

tRo Data Delay from READ 200.

tOF READ to Data Floating 10 100

WRITE CYCLE

Symbol Parameter Min. Max.

tAW Address Stable Before WRITE 0

tWA Address HoldTime for WRITE 0

tww WRITE Pulse Width 250

tow Data Set-Up Time for WRITE 150

two Data Hold Time for WRITE 20

tRY Recovery Ti me Between WRITES 9

Unit Test Conditions

V

V

V IOL = 2.2 mA

V IOL = -400/LA

/LA VOUT. =Vee TO 0.45V

/LA VIN = VceTO·0.45V

rnA All Outputs = High

Unit Test Conditions

pF fc =1MHz

pF Unmeasured pins returned
toGND

Unit Test Conditions

ns Note 2

ns Note 2

ns

ns·· 3, CL = 150.pF

ns

Unit Test Condtlons

ns

ns

ns

ns

ns

tey Note 4

AfN'()l573C

inter 8251A

A.C. CHARACTERISTI~S (Continued)

OTHER TIMINGS

Symbol Parameter

tCY Clock Period

tp Clock High Pulse Width

tp Clock Low Pulse Width

tR. tF Clock Rise and Fall Time

tDTx TxD Delay from Falling Edge of TxC

fTx Transmitter Input Clock Frequency
1x Baud Rate
16x Baud Rate
64x Baud Rate

tTPW Transmitter Input Clock Pulse Width
1x Baud Rate
16x and 64x Baud Rate

tTPD Transmitter Input Clock Pulse Delay
1x Baud Rate
16x and 64x Baud Rate

fRx Receiver Input Clock Frequency
1x Baud Rate
16x Baud Rate
64x Baud Rate

tRPw Receiver Input Clock Pulse Width
1x Baud Rate
16x and 64x Baud Rate

tRPD Receiver Input Clock Pulse Delay
1x Baud Rate
16x and 64x Baud Rate

tTxRDY TxRDY Pin Delay from Center of Last Bit

tTxRDY CLEAR TxRDY t from Leading Edge of WR

tRxRDY RxRDY Pin Delay from Center of Last Bit

tRxRDY CLEAR RxRDY ~ from Leading Edge of RD

tiS Internal SYNDET Delay from Rising
Edge ofRxC

tES Exterl')al~YNDET Set-UpTimllAfter
Rising Edge of RxC

tTxEMPTY TxEMPTY Delay from Center of Last Bit

twc Control Delay from Rising Edge of
WRITE (TxEn, DTR, RTS)

tCR Control to READ Set-Up Time (DSR, CTS)

Min.

320

140

90

DC
DC
DC

... ~

12 ;

J...~.., 1
' .. - ,,,_.

15 i;
3 dl

DC
DC
DC

i'"-«=1
; 12 Ii

" .' ' 1 ii.,.,...-...--,f,
r'~'''',""",,"''''''''1 , I.
I' 15 ~

l
3 e",J

18

20

8

20

1-177

',Max. Unit Test Conditions

1350 ns Notes 5, 6

tCY-go ns

ns

20 ns

1 ILS

64 kHz
310 kHz
615 kHz

tCY
tCY

tCY
tCY

64 kHz
310 kHz
615 kHz

tCY
tCY

tCY
tCY

8 tCY Note 7

400 ns Note 7

26 tCY Note 7

400 ns Note 7

26 tCY Note'7'

!',

tCY Note 7

tCY Note 7

tCY Note 7

tCY Note 7

AFN-D1573C

inter 8251 A

, .

A.C. CHARACTERISTICS (Continued)

NOTES: . "a .'.
1. AC tlmirlJiis~e~ured VOH = 2.0 VOL~F 2.0, VOL'~ 0.8, and with load circuit of Figure 1.
2. Chip Select (es) and Command/Data (C/D) are considered as Addresses.
3. Assumes that Address is valid beftSre RD~' . ..
4. Thisrj!l(lpvery time is for Mode Initialization .only. Write Data is allowed only when TxRDY = 1. RecoveryTime between

Write~for Asynchronous Mode is 8 tCY and for Synchronous Mode is 16 tCY' '.
5. The TxC aild RxC ftequencies have the fOllowing limitations with respect to ClK: For 1 x Baud Rate, fTx or fRx 0;;; 1/(30
tCY):,
FOr l6x and 64x Baud Rate, fTx or fRxo;;;l/(4.5 tCY)'

6. Reset Pulse Width = 6 tCY minirflllm; System Clock must be running during Reset.
7. Status Update can have a maximum delay of 28 clock periods from the event affecting the status.

TYPICAL A OUTPUT DELAY VS. A CAPACITANCE(PF)

+20

+10 /
/ !

>

~
0

/ "SPEC.

/

I-
::> ..
I-
::>
0

" -10

/ -20
-100 -50 +50 +100

.l CAPACITANCE (pFI

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

>OJ:)C 2.0 2.0 > TEST POINTS <
0.8 0.8

0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND 0.45V FOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1"
AND 0.8V FOR A LOGIC "0:'

1·178 AFN-olS73C

8251A

WAVEFORMS

SYSTEM CLOCK INPUT

CLOCK ~

TRANSMITTER CLOCK AND DATA

TiC Ib. MODE)

TiC USxMODEI

Tx DATA

RECEIVER CLOCK AND DATA

Rx DATA

RxC 11x MODEl

RxC 116 MODEl

INTSAMPLING
PULSE

WRITE DATA CYCLE (CPU --'> USARTI

TxRDV

_______ ~DO~N.!T~CA~R~. __ ~~~~~~~----~DO~N~.T~C~A~R.~­DATA IN (D.B.)

c/o

READ DATA CYCLE (CPU ~ USARTI

RxRDY _______ --'1

~ -----------------~
1<-----.f1

DATA OUT (O.B.I _____ ~DA~T~Ac!F~LO:!!A~T--~--+_b~~~~~}-~~~~

cm ________ ~_+-----+_-L----

1-179 AFN-01573C

inter 8251A

WAVEFORMS (Continued)

WRITE CONTROL OR OUTPUT PORT CYCLE (CPU -'> USART)

I~~~E~ ----~--------~--~~--.-. ~t:'~~--~----
Wi --------..r-'ww-I

~ 1,.- lOW - -j'WD

READ CONTROL OR INPUT PORT (CPU +- USART)

DSR, ffi -------- r-----------------------------
INOTE '21 ~_ leR _III . I

_________________ ~ll----IRR----I __ --------

Ad ~r-----fl
-+1 1- 'RD - 1- IDF

DATA OUT -------~----------f_t====t):-----.:.:..-10 .•. 1

CIO _____________ -JJl ~

_____________ ~ IAR I--- - IRA 1;:=
Cs '\<-________________ -Jy--

NOTE #1: Twc INCLUDES THE RESPONSE TIMING OF A CONTROL BYTE.

NOTE #2: TeR INCLUDES THE EFFECT OF eTSON THE TxEN8L CIRCUITRY.

TRANSMITTER CONTROL AND FLAG TIMING (ASYNC MODE)

tTxEMPTY

Tx EMPTY -----1------------------~----------<!

Tx R~:~~ ______ -jJ

CID
WrS8RK

Tx DATA ----.,--------4j'JJ.J.J..xx:rn~.fJ..xx:rn'JJ"'a:.ooJXrf>-------~:"~~~,=_=_=_">--
DATA CHAR 1 DATA CHAR 2 DATA CHAR 3

EXAMPLE FORMAT" 7 BITCHARAcrER WITH PARITY .. 2 STOP BITS.

1·180 AFN-Q1573C

8251A

WAVEFORMS (Continued)

RECEIVER CONTROL AND FLAG TIMING (ASYNC MODE)

."' .. "'n·---------1-II--~-
ISTATusall1 --------=--;;:::=------1~,',~ f'----t----+--l-------+----~'R.ROV '"

---.-~ '-----r-------j~_l_-~r-~r_1---4---

" -----;""" ,-----++--+---H-,
---~-h1 ,--t----t.I1 v

'"

TRANSMITTER CONTROL AND FLAG TIMING (SYNC MODE)

'" --'~ _____ ----J'~

t~----~1TL---------~
r"READY ---+---~-;. r ~ r--1-1+------'-~'1 J

'-----

"wu"", . IL...J ~L- 1'------; i'--' ,

'"",~~,~ ~~IL-j II 1....- 11.----+-----
W, COMMAND

SB~K

EXAMPLE FORMAT' S81T CHARACTER WITH PARITY, 2 SYNC CHARACTERS.

RECEIVER CONTROL AND FLAG TIMING (SYNC MODE)

SYND~T
(PINI NOTE 1

SYNDET IS,BI

OVERRUN
ERROR IS.B)

, 0

-'~::~
-V

DON"T
CARE

'15_ -

SYNC SYNC DATA
CHAR 1 CHAR2 CHARI

.~

(t~,", ~ RdDATA Rd DATA Rd SYNC
CHAR 1 CHARJ CHAR 1

io t hlr->---
DATA

CHAR 2 CHAR 3 CHAR 1 SVNCCHAR2

~~OTE~
tES_ f-

~'------ 1--1"--

,---

Ir -
-- I--f--

RdSTATUS

Rd:,T::~S \.... r--
RdDATA

I\v
OATA \...

1,.---
OATA

DON'TeARE CHAR I CHAR 2 ETC.

, -- " " " • , > J • ~ • \ • 3 • c O '.3 • cOl '34 .. 0' 23' cO \.3' .. 0" 3' -,-x-' - - -- • 01." • ~x' , , .•

R"CLOCK

II I I I I I I I I I I I ~U.J'''~:'G''Sr TTTTT

JUlJ1Jlr
LEXtTHUNTMODE

SET SYNC DEl

NOTE 1 INTERNAL SYNC. 2 SYNC CHARACTERS. SBITS. WITH PAR tTY
NOTE 2 EXTERNAL SYNC. f> BITS. WtlH PARtly

1-181

J1J1
EXtT HUNT MODE 1

SET SYN DET (STATUS BtT)

'HAe,:. f1f BEOINS

SETSYNOET(STATUSBIT)

AFN-01573C

8256
MULTIFUNCTION UNIVERSAL

ASYNCHRONOUS RECEIVER-TRANSMITTER (MUART)

• Programmable Serial Asynchronous
Communications Interface for 5·,6·, 7·,
or 8·Blt Characters, 1, 1112, or 2 Stop
Bits, and Parity Generation

• On· Board Baud Rate Generator
Programmable for 13 Common Baud
Rates up to 19.2K Bits/second, or an
External Baud Clock Maximum of 1 M
Bit/second

• Five 8·Blt Programmable Timer/
Counters; Four Can Be Cascaded to
Two 16-Blt Timer/Counters

• Two 8-Blt Programmable Parallel I/O
Ports; Port 1 Can Be Programmed for
Port 2 Handshake Controls and Event
Counter Inputs

• Eight-Level Priority Interrupt Controller
Programmable for 8085 or iAPX 86,
IAPX 88 Systems and for Fully Nested
Interrupt Capability

• Programmable System Clock to 1)(,
2)(, 3)(, or 5)(1.024 MHz

The Intelll!> 8256 Multifunction Universal Asynchronous Receiver·Transmitter (MUART) combines five com~
monly used functions into a single 40-pin device. It is designed to interface to the 8048, 8085A, iAPX 86, and
iAPX 88 to perform serial communications, parallel I/O, timing, event counting, and priority interrupt func­
tions. All of these functions are fully programmable through nine internal registers. In addition, the five
timer/counters and two parallel I/O ports can be accessed directly by the microprocessor.

ADO-AD4

DB5-DB7

os
R6

WIi
ALE

RESET

iIflA
INT~~~_-..I

Figure 1. MUART Block Diagram

1·182

AD1

ADa

AD3 4

CLK

WR

RxD INT

TxD EXTINT

RiC
TiC
CTS

Figure 2. MUART Pin Configuration

inter

Symbol PIn No. Type

ADO-A04 1-5 110
085-087 6-8

ALE 9 I

lID 10 I

WI'! 11 I

RESET 12 I

CS 13 I

INTA 14 I

INT 15 0

EXTINT 16 I

ClK 17 I

RxC 18 110

AxO 19 I

GNO 20 PS

825.6

Table 1. Pin Description

Name and Function Symbol Pin No. Type

Add .. sS/Oata: Three·state Address/Data Vex; 40 PS
lines which interface with the CPU lower
8·bit address/data bus. The 5·bit address

P17-Pl0 32-39 110

is latched on the failing edge of ALE. In
8048 and 8085 mode, AOO- A03 are used
to select the proper register, while A01-
A04 are used In 8086 and 8088 mode.
The 8·blt bidirectional data bus Is either
written Into or read from the chip
depending on the latched CS and RO or
Wit
AcId.... Latch Enable: Latches the 5

P27-P20 24-31 110

address lines on AOO-A04 and CS on
the failing edge.

Read Control: When this Signal Is low,
the previously selected register is
enabled onto the data bus.

TxO 23 0

Write Control: When this signal Is low,
the value on the data bus Is placed Igto
the previously selected register.

TxC 22 110

Pulse provided by the CPU to Initialize
the system. The MUART remains "idle"
until it is reprogrammed by the CPU.

Chip Select: A low on this signal
enables the MUART. It is latched with
the address on the failing edge of ALE,
and RO and WR have no effect unless
CS was latched low during the ALE
cycle.

Interrupt Acknowledge: If the MUART
has been enabled to respond to Inter·
rupts, it puts an RsT on the bus for the
8085 or a vector for the 8086. The bit in
the interrupt register Is reset when the
Interrupt is placed onto the bus.

CTS 21 I
Interrupt: A high Signals the CPU that
the MUART needs service.

External Interrupt: A high on this pin
signals that an external device requests
service. EXTINT must be held high until
INTA or read Interrupt occurs.

System Clock: This input provides an
accurate timing source for the MUART.
It must be lx, 2x, 3x, or 5x
1.024 M Hz and is used by the baud rate
generator and· real time clocks.

Receive Clock: If baud rate 0 is
selected, this input clocks bits Into RxO
on the riSing edge. If a baud rate from
1-0F16 Is selected, this output will
provide a rising edge at the center of
each received data bit. This output
remains high during slart, stop, and
parity bits.

Receive Datli: Serial data Input from the
modem or terminal to the MUART.
Ground: Power supply and logic ground
reference: ...

1·183

Name and Function·

P_er: +5V POWER supply.

Parall811/0 Port 1: Each pin can be pro­
grammed as an input or an output to
perform general purpose 110 functions
for the CPU under software control. In
addition to general 110, 110 Port 1 can be
programmed to a variety of special
functions for handshake control,
counter Inputs, and special com·
munlcatlons functions.

Pa .. llel UO Port ~ Each nibble (4 bits)
of this port can be either an Input or an
output. Also, this port can be used as Ii
bidirectional 8-bit port using handshake
lines in Port 1.

Transmit Data: This output carries the
serial data to the terminal or modem
from the MUART.

Transmit Clock: If the baud rate is 0,
this Input clocks data out of the trans·
mitter on the falling edge. If a baud rate
of 1 or 2 is selected, this input permits
the user to provide a 32 x or 64 x clock
which is used for the receiver and trans·
mltter. If the baud rate Is 3-0F16, the
Internal transmitter clock Is output. If
1 'h stop bits are selected and
characters are continuously transmit·
ted, the internal baud rate generator will
be reset at the end of the stop bits and
the clock will have a small .posltlve
spike Instead of a half Clock. A hlgh·to­
low transition occurs at the beginning of
each bit and a low·to-hlgh transition at
the center of each bit.

Clear to Send: This Input enables the
serial transmitter. If CTs is low, any
character in the transmitter buffer will
be sent. A Single negative·golng pulse
causes the transmission of a single
previously loaded character out of the
transmitter buffer. If this pulse occurs
when the buffer is empty or during the
transmission of a character up to 0.5 of
the first stop bit, It will.. be· ignored. If a
baud rate from 1-0F16 is selected, CTs
must be low for at least 1132 of a bit, or It
will be Ignored.

AFN-tl1498B

FUNCTIONAL DESCRIPTION
The 8256' Molti-Functlon Universal Asynchronous
Receiver-Transmitter (MUART) combines five commonly
used functions onto a single 40-pin device. The MUART
performs asyh9hronous serial communications, parallel
110, timing, event counting, and interrupt control.

Serial Communications
The serial communications portion of the MUART
contains a full:duplex asynchronous . receiver­
transmitter (UART). A programmable baud rate genera­
tor is included on the MUART to permit a variety of
operating speeds without external components. The
UART can be programmed. by the CPU for a variety of
character sizes, parity generation and detection, error
detection, and start/stop bit handling. The receiver
checks the start and stop bits in the center of the .bit,
and a break halts the reception of data. The transmitter
can send breaks and can,be controlled by an external
enable pin.

Parallel 110
The MUART includes 16 bits of general purpose parallel
110. Eight bits (Port 1) can be individually changed from
Input to output or used for special 110 functions. The
other eight bits (Port 2) can be used as nibbles (4 bits) or
as bytes. These eight bits also include a handshaking
capability using two pins on Port 1.

Counter/Timers
There are five 8-bit counter/timers on the MUART. The
timers can .be programmed to use either a 1 kHz or
16kHz clock generated from the system clock. Four of
the 8-bit counter/timers can be cascaded to two 16-bit
counter/timers; and one of the 8-bit counter/timers can
be reset to its initial value by an external signal.

Interrupts
An eight-level priority interrupt controller can be
configured for fully nested or normal interrupt priority.
Seven of the eight interrupts service functions on the
MUART (counter/timers, UART), and one external Inter­
rupt Is provided which Can be used for a particular
function or for chaining interrupt controllers or more
MUARTs. The MUART will support 8085 and 8086/88
systems with direct interrupt vectoring, or the MUART
can be polled to determine the cause of the interrupt.

8256

Command Register 1 ..

I Lll· LO ISl d l· so I BRKII eml ao86l FRa I
(OR) (OW) .

F,RQ ,...... Timer Frequency Select

This bit selects between two frequencies for the five
timers,1f FRQ= 0, the timer Input frequency is 16kHz
(62.5IAs). If FRQ= 1, the timer input frequency is 1 kHz
(1 ms). The selected clock frequency Is shared by all the
colinter/tlmers enabled for timing; thus, all timers must
run with the same time base.

8086- 8086 ModeEnabl~

This bit selects between 8048/8085 niode arid 8086/8088
mode. In 8085 mode (8086 = 0), AO to A3 are used to
. address the internal registers, and an RST instruction is
generated in response to the first INTA. In 8086 mode
(8086= 1), A1 to A4 are used to address the internal
regi:.>ters, and AO is used as an extra chip select (AO
must equal zero to be enabled). The response to INTA Is
for 8086 interrupts where the first INTA is ignored, and
an interrupt vector (4016 to 47,al is placed on the bus in
response to the second INTA.

BITI - Interrupt on Bit Change

This bit disables the Timer 2 interrupt and enables an
interrupt when a low-to-high transition occurs on pin 7
.of Port 1 (pin 32):

BRKI - Break-In Detect Enable

This bit enables the break-in detect feature. A break-in is
detected when pin··6 of Port 1. (pin 33) is low during the
first stop bit of a transmitted character. This could be
used to detect a break-in condition by connecting the
serial tran.smlssion fine to pin 33. A break-In detect Is
OR-ed with break detect in bit 3 of the Status Register. If
RXC and TiC are used for the seri.al bit rates,break-in
cannot be detected.

SO, Sl - Stop Bit Length

Sl SO Stop Bit Length
0 0 1
0 1 1.5

0 2
0.75

If 0.75 stop bits is selected, CTS becomes edge
sensitive rather than level sensitive. A high-to-Iow tran­
sition of CTS immediately initiates the transmission of
the next character. A high-to-Iow transition will be
ignored if the transmit buffer is empty, or if it occurs
before 0.75 of the first stop bit. It will shorten the stop

1·184 AFN-01498B

inter· 8256

Table 2. 'MUART RegISters

Read Registers "Wrlte Registers
8085 Mode: . AD3 AD2 AD1 ADO
8088 Mode: AD4 AD3 AD2 AD1

L1 I LO I S1 I.so 18RKII 81TliaOBSI FROI 00 0 0 I L1 I LO I· S1 I SO 18RKII 81TI I 80BSI FROI

Command 1

I PEN I EP I C1 I GO 183 I 82 I 81 I 80 I 0 0 0

Command 2

o I RxE I IAE I NIE I 0 IS8R~T8RKI 0 I 0 0

Command 3

I T351 T241 T5C I CT31 CT21 P2C21p2C11 P2coI 0 0

Mode

I P171 P161 P151 P141 P131 P12 I P11 I P10 I 0 0

Port 1 Control

Command 1

I PEN 1 EP I C1 1 CO 1 83 1 82 1 81 1 80 1
Command 2

o I SET I RXEIIAE I NIE IENOls8R~T8R3 RSTI

Command 3

1 1 T351 T241 T5C 1 CT31 CT2 1 P2C21 P2c11 P2col

Mode

o I Pi71 P161 P15 1 P141 P131 P121 P11 I P10 I

Port 1 Control .

I L7 I L6 I L5.I· L4 I L3 I L2 I L 1 I LO I O. o 1 I L7 1 L6 I L51 L4 I L3 1 L2 I L1 LO I
Interrupt Enable Set Interrupts

I 07 I OS I 05 1 04 I b~ I 02 1 01 'I DO I 0
Interrupt Address

o IL7 1 L6 1 Lsi L4 I L3 1 L2 1 L 1 LO I
. Reset Interrupts

1 07 1 06 1 05 1 04 1 03 I 02 I 01 I' DO 1 0 1 I 07 I OS I QS> 1 04 1 03 1 02 1 01 1 DO I
Receiver Buffer . Transmitter Buffer

1~ID6I~I~lool~I~IDOI 1 0 0 0 1~ID6I~I~lool~I~IDOI
Port 1 Port 1

1~losl~I~lool~I~lool 1 0 0 J~ID6I~I~IOOI~I~lool
Port 2' . Port 2.

I 07 I 06 I 05 1 04 103 1 02 1 01 I DO I 1 0 o 1 07 I 06 I·· 05 I 04 I 03 I 02 1 01' 1 00 I
Timer 1 Timer 1 ..

107 I 06 I 05 1 04 I 03 I 02 101 J 00 I 1
.. . Timer 2 .

o 1 I 07 I 06 I 05 I 04 I 031 02101 I DO I
. Timer 2 "

o o 1 07 I OS I 05 I 04 I 03 I 02 1 01 1 PO I
Timer 3' Timer 3

I 07 I 06 I 05 I 04 1 03 1 02 I 01 1 00 I 1 o I 07 I· OS L 05 I 04 1 03 I 02 1 01 I DO I
Timer 4 Timer 4

1 07 1 06 1 05 1 04 1 03 1 02 1 01 1 DO 1 1 o 1 07 I OS I 05 1 ~ 1 03 I 02 1 01 1 DO I
TimerS TImerS

liNT 1 R8F I T8E 1 TRE 1 80 I PE I OE 1 FE I 1 1 1 0 1 RS4 1 RS3 1 RS2 I RS1 I RSO ITME losc I
Status . Modlllcation

1-185 AFN-01498B

inter·· 8256

bit if It occurs after %of the stop bit has been; ~fi'"t. If.
C'i'S is high or low or a IClw-t~~lgh transition occurs, the
transmitter remains Idle.

LO, L 1 - Character Length

L1 LO Character Length
008
o

. 1

1

1

o

Command Register 2

7
6

5

I PEN I EP I C1 I co I B3 I B2 I B1 I so I
(1R) (1W)

BO, B1, 82, 83 - Baud Rate Select

B3 B2 B1 BO Baud Rate Sampling Rate
0 0 0 0 TxC,'RxC 1
0 0 0 TxC/64 64
0 0 1 0 TxC/32 3.2.
0 0 1 1 19200 32
0 0 0 9600 64

0 0 1 4800 64
0 1 0 2400 64
0 1 1 .1 1200 64

0 0 0 600 64

0 0 1 300 64 ..
1 0 1 0 200 64

0 1 150 64

0 0 110 64

0 100 64
0 75 64

50 64

"

If the baud rate is 0, then. both the transmitter and
receiver operate from sEiparate extemal clocks. If the
baud rate is 1 or 2, then both the transmitter and receiver
divide the TxC by 64 or 32, respectively.

CO,C1 - System Clock Divider

C1 CO DIvIder Ratio Syatem Clock Frequency
o 0 5 5.120 MHz

o 3 3.072 MHz

'0

EP - Even Parity

.2 2.048 MHz

1.024MHz

If parity is enabled, then even parity is enabled by a 1
and odd parity is enabled by a O.

PEN - Parity Enable

This enables parity detection and generation. The type
of parity is determined by the EP bit.

Command Register 3

. 'iJ~ET I R~E IIA,E I NIE I ENDlsBR~TBRKI RST I
',' (2R) (2W)

:,:' " ...

Corr/itt\lnd .Reglster 3. is different from the first two
registers. because It has a bit.l:iet/reset capability.
Writlngj~byte with bit 7 high sets. any bits which were
als() high, Writing a byte with bit 7 low resets any bits
'I1(hibh wer~high.lfany bit 0-.6 is low;ho chBnge occurs
to that bit. When Command Register 3 iaread, bits 0, 3;
and 7 will always be zero .

. ~ .'

.'RST :.;....; Reset

If RST is set, the following events occur:

1. Aii bits in the Status Register except bits 4 and 5 are
cleared, and bits 4 and 5 are set.

2. The Interrupt Enable, Interrupt Request, and Interrupt
Service Registers are cleared.

3. The receiver and transmitter are reset. The transmit­
ter goes idle (TxD is high), and the receiver enters
start bit search mode.

4. If Port 2 is programmed for handshake mode, IBF and
OBF are reset high. .

RST does not alter ports, data registers or command
registers, but it halts any operation in progress. RST is
automatically cleared.

T8RK - Transmit Break

This causes the transmitter data to be set low, and it
stays low until TBRK Is cleared. As long as break is
active, data transfer from the Transmitter Buffer ·to the
Transmitter Register will be inhibited.

SBR~ - Single Character Break

Thi~.causes the transmitter data.to be set 10w for one
character including start bit, data bits, parity bit, and
stop bits. SBRK is automatically cleared when time .for
the last data bit has passed. It will· start after the
character in progress completes and will delay the next
data transfer from the Transmitter Buffer to the Trans­
mitter Register until TxD returns to an idle (markil)g)
state. If both TBRK and SBRK are set, break will be sent
as long as TBRK is set, but SBRK will be cleared after
one character time of brea.k. If SBRK is set again, it
remainssetfcir another character. The user can send a
definite number of break cha,!lqtersin this manner by
clearing TBRK after setting SBRK for the last character
time.

END - End of Interrupt

If fully nested Interrupt mode Is selected, this bit resets
the currently served interrupt level In the Interrupt
Service Register. This command must occur at the end
of each interrupt service routine during fully nested

AFMI488B

inter 8256

Interrupt mode. END Is automatically cleared when the
Interrupt Service Register (internal) is cleared. See the
NIE description for more Information on. nested
interrupt serviCing. END is ignored if nested interrupts
are not enabled.

NIE - Nested Interrupt Enable

This bit enables fully nested interrupts. In this mode,
the service routine for a lower priority interrupt can be
interrupted by a request from a higher priority task.

In fully nested interrupt mode, INTA or reading the Inter­
rupt Address Register resets the highest priority Inter­
rupt bit in the Interrupt Register (internal), sets the cor­
responding bit in the Interrupt Service Register
(internal), and resets INT. If an interrupt of higher
priority than the currently served interrupt is requested
or the END bit is set while another interrupt request is
pending, the INT line will go high again. If an Interrupt
service routine is Interrupted by an Interrupt of higher
priority, two or more bits In the Interrupt Se~ice
Register will be set.

If NIEis low, interrupt priority is used only when two
interrupts occur at the same time. INT will be high as
long as the CPU has not responded to all the interrupts
in the Interrupt Register.

IAE - Interrupt Acknowledge Enable

This bit enables an automatic response to INTA. The
particular response Is determined by the 8086 bit in
Command Register 1.

RxE - Receiver Enable

This bit enables the serial receiver. The Receiver Buffer
and all receiver status information will be disabled
except for the break detect status.

SET - Bit Set/Reset

If this bit is high during a write to Command Register 3,
then any bit marked by a high will be set. If this bit is
low, then any bit marked by a high will be cleared.

Mode Register

I T35 I T24 I T5C I CT3 I CT21 P2C21 P2C11 P2CO I
(3R) (3W)

P2C2, P2C1, P2CO - Port 2 Control

Direction
P2C2 P2C1 P2CO Mode Upper Lower

0 0 0 nibble Input Input
0 0 1 nibble input output
0 0 nibble output Input
0 1 1 nibble output output

0 0 byte handshake Input
0 1 byte handshake output

0 DO NOT USE
test

If test mode Is selected and BRG of Port 1 Control
Register is set, then the output from the internal baud
rate generator is placed on pin 4 of Port 1 (pin 35).

CT2, CT3 - Counter/Tlmer Mode

If CT2 or CT3 are high, then counter/timer 2 or 3 respec­
tively is configured as an event counter on pin 2 or 3
respectively of Port 1 (pins 37 or 36). The event counter
decrements the count by one on each low-to-hlgh tran­
sition of the external input. If CT2 or CT3 Is low, then the
respective counter/timer Is configured as a timer and
the Port 1 pins are used for parallel 110.

T5C - Timer 5 Control

If T5C is set, then Timer 5 can be preset and started by
an external signal. Writing to the Timer 5 Register loads
the Timer 5 Save Register and stops the timer. A high-to­
low transition on pin 5 of Port 1 (pin 34) loads the timer
with the saved value and starts the timer. The next high·
to-low transition on pin 5 retriggers the timer by
reloading it with the initial value and continues timing.

When the timer reaches zero it Issues an interrupt
request, disables its interrupt level. and continues
counting. A subsequent high·to·low transition on pin 5
resets Timer 5 to its initial value. For another timer
interrupt, the Timer 5 interrupt enable bit must be set
again.

T35, T24 - Cascade Timers

These two bits cascade Timers 3 and 5 or 2 and 4.
Timers 2 and 3 are the lower bytes, while Timers 4 and 5
are the upper bytes. If T5C is set, then both Timers 3 and
5 can be preset and started by an external pulse. When a
high-to-Iow transition occurs, Timer 5 is preset to its
saved value, but Timer 3 is always preset to all ones. If
either CT2 or CT3 is set, then the corresponding timer
pair Is a 16-bit event counter.

Port 1 Control Register

1~71~61~51~41~31~21~11~ol
(4R) (4W)

Each bit in the Port 1 Control. Register configures the
direction of the corresponding pin. If the bit Is high, the
pin is an output, and if it is low the pin is an Input. Ev.ery
Port 1 pin has another function which Is cOntrolled by
other registers. If that special function Is disabled, the
pin functions as a general 110 pin as specified by this
register. The special functions for each. pin are des·
cribed below.

Port 10, 11 - Ha!1dshake control

If byte handshake control is enabled for Port 2 by the
Mode Register, then Port 10 is programmed as STSiA"CK
handshake control Input and Port 11 is programmed as
IBF/OBF handshake control output.

If byte handshake mode is enabled for output on Port 2,
OBF indicates that a character has been loaded into the

1·187 AFN.()1498B

8256

Port 2 output buffer. When an external device reads the
data, it acknowledges this operation by driving ACK low.
OBF is set low by writing to Port 2. and Is reset high by
ACK.
If byte handshake mode is enabled for Input on Port 2,
S'fB is an' input to the MUART to latch the data into Port
2. After the data is latched, ISFls driven low. iBF Is reset
high when Port 2 is read.

Port 12, 13 - Counter 2,3 Input

If Timer 2 or Timer 3 is programmed as an event counter
by the mode register, then Port 12 or 13 is the counter
input for Event Counter 2 or 3, respectively.

Port 14 - Baud Rate Generator Output Clock

If test mode Is enabled by the Mode Register and
Command Register 2 baud . rate select is greater than 2,
then Port 14 is an output from the internal baud rate
generator.

Port 15 - Timer 5 Trigger

If T5C is set in the Mode Register enabling are­
triggerable timer, then Port 15 is the input which starts
and reloads Timer 5. .

Port 16'- Break·in Detect

If break·ln detect is enabled by. BRKI in Command
Register 1, then this input is used to sense a break·in. If
Port 16 is low while the serial transmitter Is sending the
last stop bit, then a break·in condition is signaled.

Port 17 - Port Interrupt Source

If BITI in Command Register 1 is set, then a low-to·high
transition, on Port 17 generates an Interrupt request on
priority level 1.

Receiver and Transmitter Buffer

1~1~1~1~lool~j~lool
. (7R) (7W) . .

Both the transmitter and the receiver in the MUART are
fully double buffered. The ReCeiver Buffer full flag is
. cleared when the character is read. If the character is
not read before the next character's first stop bit, then
an overrun error is generated. Bytes written' to the

:Transmitter Buffer are held until the Transmitter
Register (internal) is empty. If the Transmitter Register
is- emptY,the byte is transferred Immediately and the
Transmitter Buffer empty flag is set. If a serial character
length is less than 8 bits, then the unused most signifi·
cant bits are set to zaroOna read and are ignored on a
write.

Port 1

I 07 I osl 05 ~ 00 00
(SR) (aW)

Writing to Port 1 sets the data in the Port 1 output latch.
Writing to an input pin does not affect the pin, but the
data is stored and will be output if the direction of the
pin is changed later. If the pin is used as acontroi
Signal, the pin will not be affected, but the data is
stored. Reading Port 1 transfers the data in Port 1 onto
the data bus. Reading an output pin or a control pin puts
the .data .in the output latch (not the control signal) onto
the data bus. . .

Interrupt Enable Register

L7 I LS I L5 I L41 L3 L2 L1 I LO
(5R) (5W _ enable,

SW = disable)

Interrupts are enabled by writing to the Set InterrUpts
Register (5W). Interrupts are disabled by writing to the
Reset Interrupts Register (6W). Each bit set by the Set
Interrupts Register (5W) will enable that level interrupt,
and each bit set in the Reset Interrupts Register (6W)
will disable that level interrupt. The user can determine
which interrupts are enabled by reading the Interrupt
Enable Register (5R).

Priority Source
Highest LO Timer 1

L1 Timer 2 or Port Interrupt
L2 External Interrupt (EXTINT) .
L3 Ti'mer 3 or Timers 3 & 5
L4 Receiver Interrupt
L5 Transmitter Interrupt
LS Timer 4 or Timers 2 & 4

Lowest L7 Timer 5 or
Port 2 Handshaking

Port 2

I 07 I os I 05 I ~ I 03 I 02 I 01 I 00
(9R) (9W)

Writing to Port 2 sets the data in the Port 2 output latch.
Writing to an input pin does not affect the pin, but it
does store the data in the latch. Reading Port 2 puts the
input pins onto the bus or the contents of the output
latch for output pins.

1-'188 AFN-01498B

intJ 8256

Timer 1-5

I 07 I 06 I 05 I 04 I 03 I 02 I 01 I DO
(OA16-OE16 R) (OA16-OE16 W)

Reading Timer N puts the contents of the timer onto the
data bus. If the counter changes while RO is low, the
value on the data bus will not change. If two timers are
cascaded, reading the high order byte will cause the low
order byte to be latched. Reading the low order byte will
unlatch them both. Writing to either timer or de­
cascading them also clears the latch condition. Writing
to a timer sets the starting value of that timer. If two
timers are cascaded, writing to the high order byte
presets the low order byte to all ones. Loading only the
high order byte with a value of X leads to a count of
X' 256 + 255. Timers count down continuously. If the
interrupt is enabled, it occurs when the counter changes
from 1 to O. When the interrupt is set in the Interrupt
Register, interrupts are disabled in the Interrupt Mask
Register.

Status Register

liNT I ReF I TeE I TRE I eo I PE I OE I FE
(OF16 R)

FE - Framing Error, Transmission Mode

If transmission mode is disabled (in Modification Regis­
ter), then FE indicates a framing error. A framing error is
detected during the first stop bit. The error is reset by
reading the Status Register or by a chip reset. A framing
error does not inhibit the loading of the Receiver Buffer.
If RxO remains low, the receiver will assemble the next
character. The false stop bit is treated as the next start
bit, and no high-to-Iow transition on RxO is required to
synchronize the receiver.

If transmission mode is enabled, then this bit is used to
suggest the transmitter was sending. FE will be high if
the transmitter is active during the reception of the
parity bit (or last data bit for no-parity). It is reset if the
transmitter is not active or by a chip reset. The bit is
intended to imply that the received character is from the
transmitter in half-duplex systems.

OE - Overrun Error

If the user does not read the character in the Receiver
Buffer before the next character is received and
transferred to this register, then the OE bit is set. The
OE flag is set during the reception of the first stop bit
and is cleared when the Status Register is read or when
a chip reset occurs.

PE - Parity Error

A parity error is set during the first stop bit and is reset
by reading the Status Register or by a chip reset.

BD - Break Detect, Break-In Detect

If BRKI in Command Register 1 is set to enable break-in
detect, then BO indicates a break-in condition. If Port 16
is low during the transmission of the last stop bit, then
BO will be set near the end of the last stop bit. Break-in
detect can only be detected if the internal baud rate
generator is used. Break-in remains set until the Status
Register is read or the chip is reset.

If BRKI is low, then BO indicates a break condition on
the receiver. BO is set when the first stop bit of a break
is sampled and will remain set until the Status Register
is read or the chip is reset. The receiver will remain idle
until the next high-to-Iow transition on RxO. A detected
break inhibits the loading of the Receiver Buffer.

TRE - Transmitter Register Empty

This status bit indicates that the Transmitter Register is
busy. It is set by a chip reset and when the last stop bit
has left the transmitter. It is reset when a character is
loaded into the Transmitter Register. If CTS is low, the
Transmitter Register will be loaded. during the trans­
mission of the start bit. ,If CTS is high at the end of a
character, TRE will remain high and no character will be
loaded into the Transmitter Register until CTS goes low.
If the transmitter was inactive before a character is
loaded into the Transmitter Buffer, the Transmitter
Register will be empty temporarily while the buffer is
full. However, the data in the buffer will be transferred to
the transmitter register immediately and TRE will be
cleared while TBE is set.

TBE - Transmitter Buffer Empty

TBE indicates the Transmitter Buffer is empty and Is
ready to accept a character. TBE is set by a chip reset or
the transfer of data to the Transmitter Register and is
cleared when a character is written to the transmitter
buffer.

RBF - Receiver Buffer Full

RBF is set when the Receiver Buffer has been loaded
with a new character during the sampling of the first
stop bit. RBF is cleared by reading the receiver buffer or
by a chip reset.

INT - Interrupt Pending

The INT bit reflects the state of the INT pin (pin 15) and
indicates an interrupt is pending in the Interrupt
Register. It is reset by INTA or by reading the Interrupt
Address Register if only one interrupt is pending and by
a chip reset.

FE, OE, PE, RBF, and break detect all generate a level 4
interrupt when the receiver samples the first stop bit.
TRE, TBE, and break-in detect generate a level 5 inter­
rupt. TRE generates an interrupt when TBE is set and
the Transmitter Register finishes transmitting. The

1-189 AFN·01498B

8256

break-in detect interrupt is issued at the same time as of the bit (sample time= 16). The receiver sample time
TBE or TRE. can be modified only if the receiver is not clocked by

AXe.
Modification Riglster

I I RS41 RS31 RS21 RS11 RSO I TMEI Dsel
SampleTlme

0 RS4 RS3 RS2 RS1 RSO=O RSO=1
(OF16 W) 0 1 1 2 1

0 1 0 4 3
DSC - Disable Start Bit Check 0 1 0 1 6 5

DSC disables the receiver's start bit check. In this state 0 1 0 0 8 7
the receiver will not be reset if RxD is not low at the 0 0 1 10 9
center of the start bit. This function is disabled by a chip 0 0 1 0 12 11
reset. 0 0 0 1 14 13

0 0 0 0 16 15
TME - Transmission Mode Enable 18 17

TME enables transmission mode and disables framing 0 20 19
error detection. A chip reset disables transmission 0 1 22 21
mode and enables framing error detection. 1 0 0 24 23

0 1 1 26 25
RSO, RS1, RS2, 'RS3, RS4 - Receiver Sample Time 0 1 0 28 27
The nurnber in RSn alters when the receiver samples 0 0 1 30 29
RxD~ A chip reset sets this value to 0 which is the center 0 0 0 32 31

1-190 AFN.Q1498B

inter

•
•
•

•
•
•

8273,827~4,827~8
PROGRAMMABLE HOLC/SOLC PROTOCOL

CONTROLLER
CCITT X.25 Compatible • Programmable NRZI EncodelDecode

HDLC/SDLC Compatible • Two User Programmable Modem
Full Duplex, Half Duplex, or Loop Control Ports
SDLC Operation • Qigital Phase Locked Loop CloCk
Up to 64K Baud Synchronous Recovery
Transfers I"

• Minimum CPU. Overhead
Automatic FCS (eRC) Generation and
Checking • Fully Compatible with 8048/8080/80851

Up to 9.6K Baud withOn·Board Phase
8088/8086 CPUs

Locked Loop • Single +5V Supply
The Intel@ 8273 Programmable HOLC/SOLC Protocol Controller is a dedicated device designed to support ~he 1501
CCITT's HOLC and IBM's SOLC communication line protocols. It is fully compatible with Intel's new high performance
microcomputer systems such as the MCS-88186™. A frame level command set is achieved by a unique microprogrammed
dual processor chip architecture. The processing capability supported by the 8273 relieves the system CPU of the low
level real-time tasks normally associated with controllers.

REGISTERS

TEST MODE

FLAG DET

I'tr.
eLK '38 Pii3

OBo':"1
REseT PII2

T,D TxDACK 5 I'B;
TxC RfS

RXDACK PA,

PA,

PA2
DPLL WR co
32X elK

fiTs T\'lD

PB,-4 DBl

ffi
CD

CPU INTERfACE MODEM INTERFACE

Figure 1. Block Diagram Figure 2, Pin Configuration

1-191

inter 8273, 8273·4, 8273·8

A BRIEF DESCRIPTION OF HOLC/SOLC
PROTOCOLS

General
The High Level Data Link Control (HDLC) is a standard
communication link protocol established by International
Standards Organization (ISO); HOLe isth~ discipline
used to implement ISO X.25 packet switching systems.

The Synchronous Data Lir:1k;Control(SDLC) is an IBM
communication link protocol used to implement the
System Network Architecture (SNA). Both the protocols
are bit oriented,cooe independent, .. and .ideal for full
duplex communication.' Some common applications
include terminal to terminal, terminal to CPU, CPU to
CPU, satellite communication, packet switching and other
high speed data links. In systems which requireexpensive
cabling and interconnect hardware, any of the two
protocolscolild be used to simplify interfaCing (by going
serial!, thereby reducing interconnect hardware costs.
Since both the protocols are speed independent, reducing
interconnect hardware could. beco{tle an important
application. .

Netwodr
(nDoth the HDLC and ,SDLe line protocols, according to a ..
pre-assigned hierarchy, a'PRIMARY (Control) STATION
controls the overall network (data link) and issues
commands to the SECONDARY (Slave) STATIONS. The
latter comply with instructions and respond by sending
appropriate RESPONSES. Whenever a transmitting
station must end transmission prematurely it sends an
ABORT character. Upon detecting an abort character, a
receiving station ignores the transmission block called a
FRAME. Time fill between frames can be accomplished by
transmitting either continuous frame preambles called
FLAGS or an abort ch~racter. A time fill within a frame is
not permitted. Whenever a station receives a string of
more that fifteen consecutive ones, the station goes into
an IDLE state.

Frame.

A smgle communication element is called a FRAME which
can be used for both Link Control and data transfer
purposes. The elements of a frame are the beginning eight
bit FLAG (F) consisting.of one zero, six ones, and a zero,
an eight bit ADDRESS FIELD (A), an eight bit CONTROL
FIELD (C), a variable (N-bit) INFORMATION FIELD!Il, a
sixteen bit FRAME CHECK SEQUENCE (FCS), and an
eight bit end FLAG (F), having the same bit pattern as the
beginning flag. In HDLC the Address (A) and Control (C)
bytes are extendable. The HDLC al;ld,the SOLC use three

types of frames; an Information Frame is used to transfer
data, a Supervisory Frame is used for control purposes,

". anc:h Nori~si:iquenced Frame is used for initialization and
. coritrc;il 9f~h~ s~~ndary stations.

Franiebha~li~te'rI.tl~. . j:

An important characteristic of a frame is that its con­
tents are' made code' transparent by use of a zero bit
insertion and deletion techniq'ue, Thus; the user can adopt
any format or code suitable for his system - it may even
be a computer word'iengthol' a "memory dump". The
frame is bit oriented that is, bits, not charact,ers in each
field, have specific meanings. The Frame' Check
Sequence (FCS) is an error dlltectionscheme similar to
the Cyclic Redundancy Checkword (CRC) widely used in
magnetic disk storage devices. The Command and
Response information frames contain sequence numbers
in the control fields ideptifying the sent and received
frames. The sequence numbers are used in Error
RecovE'ry Procedures (ERP) and as implicit acknowledge­
ment of frame communication, enhancing the true full­
duplex nature of the HDLC/SDLCprotocols.

In contrast, BISYNC is basically half"duplex (two way
alternate) because of necessity to transmit immediate
acknowledgement frames. HOLC/SOLC therefore saves
propagation delay times and have a potential of twice the
throughput rate of BISYNC.'

I.t is possible to use,HPLC or SDLC over half duplex lines
but there is a corresporidingloss in throughput because
both are primarily designed for full-duplex communi­
cation. As in any synchronous system, the bit rate is
determined by the clock bits supplied by the modem,
protocols themselves are speed independent.

A byproduct of the use of zero-bit insertion-deletion
technique is the non-return-to-zero invert (NRZI) data
transmission/reception compatibility. The latter allows
HDLC/SOLC protocols to be used with asynchronous
data communication hardware in which the clocks are
derived from the NRZI encoded data.

Reference.
'IBM Synchronous Data Link Control General Information, IBM, GA27-

3093-1, .
Standard Network Access Protocol SpeCification, DATAPAC, Trans­

Canada Telephone System CCGlll
Recommendation X,25, ISO/CCITT March 2, 1976.
IBM 3650 Retail Store system Loop Interface OEM Information, IBM, GA

27-3098-0
Guidebook to Data Communications, Training Manual, Hewlett-Packard

5955-1715
IBM Introd)Jction to Teleprocessing, IBM, GC 20-8095,02
System Network Architecture, Technical bverview, IBM, GA 27-3102
System Network Architecture Forma.t and Protocol, IBM GA 27-3112

OPENING
FLAG (F)

ADDRESS
FIELD (A)

CONTROL
FIELD (C)

INFORMATION
FIELD (I)

FRAME CHECK
SEQUENCE (FCS)

i'CLOSING
FLAG (F)

01111110 8 BITS 8 BITS
VARIABLE LENGTH
(ONL V IN I FRAMES)

Figure, 3. Frame Formet

1-1-92

16 BITS 01111110

AFN-00743B

inter

Pin
Symbol No. ~pe

Vcc 40

GND 20

RESET 4 I

CS 24 I

DB7-DBo 19- I/O
12

WR 10 I

RD 9 I

TxlNT 2 0

RxlNT 11 0

TxDRO 6 0

RxRDO 8 0

TxDACK 5 I

RxDACK 7 I

A,-Ao 22- I
21

TxD 29 0

TxC 28 I

RxD 26 I

RxC 27 I

8273,8273·4,8273·8

Table 1. Pin Description

Name and Function

Power Supply: +5V Supply.

Ground: Ground.

ReBet: A high signal on this pin will
force the 8273 to an idle state. The
8273 will remain idle until a command
is issued by the CPU. The modem
interface output signals are forced
high. Reset must be true for a
minimum of 10 TCY.

Chip Select: The RD and WR inputs
are enabled by the chIp select input.

Data Bus: The Data Bus lines are bi·
directional three-state lines which in-
terface with the system Data Bus.

Write Input: The Write signal is used
to control the transfer of either a
command or data from CPU to the
8273.

Read Input: The Read signal is used
to control the transfer of either a data
byte or a status word from the 8273
to the CPU.

Transmitter Interrupt: The Trans-
mitter interrupt signal indicates that
the transmitter logic requires service.

Receiver Interrupt: The Receiver
interrupt signal indicates that the Re-
ceiver logic requires service.

Transmitter Data Request: Re-
quests a transfer of data between
memory and the 8273 for a transmit
operation.

Receiver DMA Request: Requests a
transfer of data between the 8273 and
memory for a receive operation.

Transmitter DMA Acknowledge:
The Transmitter DMA acknowledge
signal notifies the 8273 that the
TxDMA cycle has been granted.

Receiver DMA Acknowledge: The
Receiver DMA acknowledge signal
notifies the 8273 that the RxDMA
cycle has been' granted. '

Address: These' two lines are CPU
Interface Register Select lines.

Transmitter Data: This line trans-
mits the serial data to the communi-
cation channel.

rransmltter Clock: The transmitter
clock is used to synchronize the
transmit data.

'Receiver Data: This line receives
serial data from the communication
channel.

Receiver Clock: The Receiver Clock,
is used to syi16hronize the receive
data.

Pin
Symbol No. Type Name and Function

32X ClK 25 I 32X Clock: The 32X clock is used to
provide clock recovery when an

, asynchronous modem is used. In
loop configuration the loop station
can run without an,accurate 1X clock
by using the 32XClK in conjunctiol)
with the DPll output. (This pin must
be grounded when not used.)

DPll 23 0 OIgltal Phase Locked Loop: Oigital
Phase locked loop output can be
tied to RxC and/or TxC when 1 X clock,
is not available. DPll is used with
32X ClK.

FLAGDET 1 0 Flag Detect: Flag Detect signals that
a flag (01111110) has been received
by an active receiver.

RTS 35 0 Request to Send: Request to Send
signals that the 8273 is ready to trans-
mit data.

CTS 30 I Clear to Send: Clear to Send signals
that the modem is ready to accept
data from the 8273.

CD 31 I Carrier Detect: Carrier Detect sig-
, nlils that the line transmission has
started and the 8273 may begin to
sample data on Rxe line.

PA.-4 32- I General purposelnpul pOrta: The
34 logic levels on these lines can be

Read by the CPU through ·the Data
Bus Buffer.

PB'-4 36- 0 General purpose output porta: The
39 CPU can write these output lines

through Data Bus Buffer.

ClK 3 I Clock: A square wave TTL clock.

FUNCTIONAL DESCRIPTION
General

The Intel@ 8273 HDLC/SDlC controller is a microcom­
puter peripheral devi!;e which supports the International
Standards Organization (ISO) High Level Data Link
Control (HDLC), and IBM Synchronous Data Link Control
(SOLC) communicationsp,rotocols. This controller
minimizes CPU software by supporting a comprehensive
frame-level instruction set and by hardware implemen­
tation of the low level tasks associated with frame
assembly/disassembly and data integrity. The 8273can be
used in either synchronous or asynchronou$ applications.

In asynchronous applications the data cari be program­
med to be encoded/decoded in NRZI code. The clock is
derived from the NRZI data using a digital phase locked
loop. The data transparency is achieved liy using a zero­
bit insertion/deletion technique. The frames are automati­
cally checked for errors during rec~ption by verifying the
Frame Check Sequence (FCS); the FC~ is automatically
generated and appended before the firial flag in transmit.

1-193 AFN.Q0743B

intJ 8273, 8273-4, 8273·8 ,

The 8273 recognizes and can generate flags (01111110);
Abort. Idle. andGA (EOP) characters.

The 8273 can assume either a primary (contr.ol) or a
secondary (sfave) role. It can therefore be readily
implemented in an SDLC loop configuration as typified by
the IBM 3650 Retail Store System by programming the
8273 into a one-bit delay mode. In such Ii configuration. a
two wire pair can be effectively 'used for data transfer
between controllers and loop stations. The digital phase
locked loop output pin can be used by the loop station
without the. pres,ence of an accurate Tx clock.

CPU Inte~ace . '
The CPU interface is optimized for the MCS-80/85'" bus
with an 8257 DMA controller. However. the interface is
flexible. and allows either DMA or non-DMA data
transfers. interrupt or non-interrupt driven. It further
allows maximum line utilization by prbviding early
interrupt mechanism for buffered (only the information
field can be transferred to memory) Tx command over­
lapping. It also provides separate Rx and Tx interrupt
output chlinnels for efficient operation. The 8273 keeps
the interrupt request active until all the associated
interrupt results have been read.
The CPU utilizes the CPU interface to specify commands
and transfer data.'lt consists of seven registers addressed
via CS. A1. Ao. RD and WR signals and two independent
data registers for receive data and transmit data. A1. Ao are
generally derived from two low order bits of the address'
bus. If an 8080 based CPU is utilized. the RD and WR
signals may be driven by the 8228 IIOR andl/OW. The
table shows the seven register select decoding:

CPU INtERFACE

5PTI
32x'CLK
RTS

PB,-4

.------,'---- AxO

iW:

MODEM INTERFACE

Figure 4;. 8273 Block Dlag~ .. in Showing.CPU
, ,lnte'1ace Functions' ".

''','

A1 ao TxDACK irxiiACK

0 0 1 1
0 0 1 1
0 1 .,1 1
0 1 1 '1
1 0 1 1
1 0 1 1
t. 1 ,1 1
1 1 1 1
X X 0 1
X X 1 0

Register-Description
!;ommand

cs 1m WI! Register

0 1 0 ..comman.d
0 0 1 Status
0 1 :0 Parameter
0 ,0 1 Result
0 1- 0 Reset
0' 0 1 TxlNT Result

)1 1, 0 -
0 ,0 1 RxlNT Result
1 l' 0 Transmit Data
1 0 1 Receive Data

Operations are initiated by writing an appropriate
command in the Command Register. . (.

j;arameter

Parameters of commands that require additional informa­
tion are written to this register.

Result

Contains an immediate result describing an outcome of an
executed command.

Transmit Interrupt Result

Contains the outcome of 8273 transmit operation
(good/badcompletion):

Receive Interrupt Result

Contains the outcome of 8273 receive operation (good/
bad completion). followed by additional results which de­
tail the. r(;lason for interrupt.

Status

The status register reflects the state of the 8273 CPU
Interface.

DMA Data Transfers

The 8273 CPU interface supports two independent data
interfaces: receive data and transmit data, At high data
trans'mission speeds the data transfer rate of the 8273 is
'great enough to justify the use of direct memory access
(DMA) for the data transfers, When the 8273 is configured
in DMA mode. the el.ements of the DMA interfaces are:

TxDRQ: Transmit DMARequest

Requests a transfer of data between memory and the
8273fo r 8' transmit operation.

,TxDACK: Transmit DMA Acknowledge

T(1e fXDACi(signal notifies the'8273 that a transmit DMA
cycie has been granted. It is also, used with WR to transfer
data to the 8273 in non-DMA mode. Note: RD .must not be
asserted whihlTxDACK is active.

RxDRQ: Rec~iveDMA Request

Requests a tr~nsferof data' b~tween the 8273 and mem­
ory for a receive operation.

1-194 AFN-Q0743e

inter 8273, 8273·4, 8273·8

RxDACK: Receive DMA Acknowledge

The RxDACK signal notifies the 8273 that a receive DMA
cycle has been granted. It is also used with RD to read
data from the 8273 in non-DMA mode. Note: WR must not
be asserted while RxDACK is active.

RD, WR: Read, Write '

The RD and WR Signals are used to specify the direction of
the data transfer.

DMA transfers require the use of a DMA controller such as
the Intel 8257. The function of the DMA controller is to
provide sequential addresses and timing for the transfer,
at a starting address determined by the CPU. Counting of
data block lengths is performed by the 8273.

To request a DMA transfer the 8273 raises the appropriate
DMA REQUEST. DMA ACKNOWLEDGE and READ en­
ables DMA data onto the bus (independently of CHIP
SELECT). DMA ACKNOWLEDGE and WRITE transfers
DMA data to the 8273 (independent of CHIP SELECT).

It is also possible to configure the 8273 in the non-DMA
data transfer mode. In this mode the CPU module must
pass data to the 8273 in response to non-DMA data re­
quests indicated by the status word.

Modem Interface

The 8273 Modem interface provides both dedicated and
user defined modem control functions. All the control
signals are active low so that EIA RS-232C inverting
drivers (MC 1488) and inverting receivers (MC 1489) may
be used to interface to standard modems. For asynchro·
nous operation, this interface supports programmable
NRZI data encode/decode, a digital phase locked loop
for efficient clock extraction from NRZI data, and
modem control ports with automatic CTS, CD monitor­
ing and RTS generation. This interface also allows the
8273 to operate in PRE-FRAME SYNC mode in which the
8273 prefixes 16 transitions to a frame to synchronize
idle lines before transmission of the first flag.

It should be noted that all the 8273 port operations deal
with logical values, for instance, bit DO of Port A will be a
one when CTS (Pin 30) is a physical zero (logical one),

Port A - Input Port

During operation, the 8273 interrogates input pins CTS
(Clear to Send) and CD (Carrier Detect). CTS is used to
condition the start of a transmission. If during transmis­
sion CTS is lost the 8273 generates an interrupt. During
reception, if CD ,is lost, the 8273 generates an interrupt.

0,

""
q. 0, 0, 0, 0,

""
I 1 1 I 1 I I

I CTS - CLEAR TO SEND

CD - CARRIER DETeCT

The user defined input bits correspond to the 8273 PA"
PA3 and PA, pins. The 8273 does not interrogate or ma­
nipulate these bits.

REGISTERS

080--7

TltORQ ----,

RxDACK

INTERNAL DATA BUS :--

CPU INTEAFACE

''0
TxC

6Pil.
32'XC'LK
OATs

PB,-4
ill
co
PA.2_4

r-....:..<~"-_ A,O

fbc

MODEM INTERFACE

Figure 5. 8273 Block Diagram Showing Control
Logic Functions

Port B - Output Port

During normal operation, if the CPU sets RTS active, the
8273 will not change this pin; however, ifthe CPU sets RTS
inactive, the 8273 will activate it before each transmission
and deactivate it one byte time after transmission. While
the receiver is active the flag detect pin IS pulsed each time
a flag sequence is detected in the receive data stream.
Following an 8273 reset, all pins of Port Bare setto a high;
inactive level.

I I I
I RTS -- REQUEST TO SEND

USER DEFINED OUTPUT Pitt. PR3. paz. PB,

FLAG DeTECT

The user defined output bits correspond to the state of
PB4-PB1 pins. The 8273 does not interrogate or manipu­
late these bits.

1-195 AFN.lJ07438

intJ 8273, 8273·4, 8273-8

Serial Data Logic

The Serial data is synchronized by the user transmit (TxC)
and receive (RxC) clocks. The leading edge of TxC
generates new transmit data and the trailing edge of RXC
is used to capture receive data. The NRZI encodingF
decoding of the receive and transmit data is program­
mable.

The diagnostic features included in the Serial Data logic
are programmable loop back of data and selectable clock
for the receiver. In the loop-back mode, the data presented
to the TxD pin is internally routed to the receive data input

TxC

\ / \
TxD X X
RiC \ / \

RxD X I X

circuitry in place of the RxD pin, thus allowing a CPU t,o
send a message to, itself to verify operation of the 8273. ,

In the selectable clock diagnostic feature, when the data is
looped back, the receiver may be presented incorrect
sample timing by the external circuitry. The user may
select to substitute the TxC pin for the RxC input on-chip
so that the clock used to generate the loop back data is
used to sample it. Since TxD is generated off the leading
edge of TxC and RxD is sampled on the trailing edge, the
selected clock allows bit synchronism.

/ \ /

X

/ \)
I X I

Figure 6. Transmit/Receive Timing

Asynchronous Mode Interface

Although the 8273 is fully compatible with the HDLC/
SDLC communication line protocols, which are primarily
designe~ for synchronous communication, the 8273 can
also be used in asynchronous applications by using this
interface. The i'nterface employs a digital phase locked
loop (DPLU for clbck recovery from a receive data stream
and programmable NRZI encoding and decoding of data.
The use of NRZI coding with SDLC transmission

guarantees that within a frame, data transitions will occur
at least every five bit ti mes - the longest seq uence of ones
wNch may be transmitted without zero-bit insertion. The
DPLL should be used only when NRZI coding is used
since the NRZI coding will transmit zero sequence as line
transitions. The digital phase locked loop also facilitates
full-duplex and half-duplex asynchronous implemen­
tation with, or without modems.

1·196 AFN-00743B

inter 8273, 8273·4, 8273·8

Digital Phase Locked Loop

In asynchronous applications, the clock is derived from
the receiver data stream by the use of the digital phase
locked loop (DPLU. The DPLL requires a clock input at32
times the required baud rate. The receive data (RxD> is
sampled with this 32X ClK and the 8273 DPll supplies a
sample pulse nominally centered on the RxD bit cells. The
DPll has a built-in "stiffness" which reduces sensitivity to
line noise and bit distortion. This is accomplished by
making phase error adjustments in discrete increments.
Since the nominal pulse is made to occur at 32 counts of
the 32X ClK, these counts are subtracted or added to the
nominal, depending upon which quadrant of the four error
quadrants the data edge occurs in. For example if an RxD
edge is detected in quadrant A 1, it is apparent that the
DPll sample "A" was placed too closeto the trailing edge
of the data cell; sample "8" will then be placed at T =
(T nominal - 2 counts») = 30 counts of the 32X ClK to move
the sample pulse"8" toward the nominal center ofthe next
bit cell. A data edge occuring in quadrant 81 would cause
a smaller adjustment of phase with T = 31 counts of the
32X ClK. Using this technique the DPll pulse will
converge to nominal bit center within 12 data bit times,
worst case, with constant incoming RxD edges.

A method of attaining bit synchronism following a line idle
is to use PRE-FRAME SYNC mode of transmission.

RxD _---IX'--____IX'--____IX'--__ _
DPlL
SAMPLES

j J
oo~.~ I: ., -I· "' J " .1. M :1

ADJUSTMENT -2 -1 +1 +2

Figure 7. DPLL Sample Timing

1-197 AFN.()0743B

8273,· 8273·4, 8273·8

Synchronous Modem - Duplex or Half Duplex Operation

RxC RxC

8273
RxD A

~
RxD

8273
TxC MODEM K MODEM TxC
TxD ./ TxO .,.

32xCLK om: 32xCCK DPLL

r 1 1 l
GND N.C. GND N.C.

Asynchronous Modems - Duplex or Half Duplex Operation

MODEM MODEM

Asynchronous - No Modems - Duplex or Half Duplex

8273 8273

1·198 AFN.()()743A

8273, 8273·4, 8273·8

SOLe Loop

The OPLL simplifies the SOLe loop station implementa­
tion. In this application, each secondary station on a loop
data link is a repeater set in one-bit delay mode. The
signals sent out on the loop by the loop controller (primary
station) are relayed from station to station then, back to
the controller. Any secondary station finding its address in
the A field captures the frame for action at that station. All
received frames are relayed to the next station on the loop.

Loop stations are required to derive bit timing from the
incoming NRZI data stream. The OPLL generates sample
Rx clock timing for reception and uses the same clock to
implement Tx clock timing.

8273
LOOP

CONTROLLER

.-------t TxD RxDt-------,

RxD Rxe ;=xc TxD

8273 8273
LOOP LOOP

TERMINAL TERMINAL
TxO~-~~-----+--~RxD

Figure 8. SDLe Loop Application

1-199 AFN-00743B

inter 8273t8273·4~';8273~8

PRINCIPLES OF OPERATION

The 8273 is an intelligent peripheral controller which
relieves the CPU of many of the rote tasks associated with
constructing and receiving frames. It is fully compatible
with the MCS-80/85'· system bus. As a peripheral device,
it accepts commands from a CPU, executes these
commands and provides an Interrupt and Result bac,k to
the CPU at the end of the execution. The communication
with the CPU is done by activation of CS, RD, WR pins,
while the A1, Ao select the appropriate registers on the
chip as describ~d in the Hardware Description Section.

The 8273 operation is composed of the following
sequence of events:

CPU WRITES COMMAND AND PARAMETERS INTO THE
8273 COMMAND AND PARAMETER REGISTERS,

THE 8273 IS ON ITS OWN TO CARRY OUT THE COMMAND.

THE 8273 SIGNALS THE CPU THAT THE EXECUTION
HAS FINISHED. THE CPU MUST PERFORM A READ'
OPERATION OF ONE OR MORE OF THE REGISTERS.

The Command Phase

During the command phase, the software writes a com­
mand to the command register. The command bytes pro"
vide a general description of the type of operatiQn re­
quested. Many commands require more detailed Infor­
mation about the command. In such a case up to four
parameters are written into the parameter registen The"
flowchart of the command phase indicates that a com­
mand may not be issued if the Status Register indicates
that the device is busy. Similarly if a parameter is issued
when the Parameter Buffer shows full; incorrect operation
will occur.

The 8273 is a duplex device and both transmitter and
receiver may each be executing a command or passing
results at any given time. For this reason separate
interrupt pins are provided. However, the command regis­
ter must be used for one co?,mand sequen~e at a time.

Status Register

The status register contains the status of the 8273 activity.
The description is as follows. '

0, 0. t\; 0 4 '0, : 0, Dj ,0"
I CBSY I CBF I CPBF I CRBF I R.IN,. r T.INT I A.IRA 1 T.IRA I

'Bit 7 CBSY (Command Busy)

Indicates in-progress command, set for CPU poll when
Command Register is full, reset upon ,command phase
completion. It is improper to write a command when CBSY
ls set; it results in incorrect operation.

..... ,

END OF COMMAND PHASE

Figure 9. Command Phase Flowchart

Bit 6 CBF (Command Buffer Full)

Indicates the;! the command register is full, it is reset when
the 8273 accepts the command byte but does not imply
that execution has begun.

i
Bit 5 CPBF (Command Parameter Buffer Full)

CPBF is set When the parameter buffer is full, and is reset
by the 8273 when It accepts the parameter. The CPU may
poll CPBF to determine when additional parameters may
be written.'

Bit 4 CRBF (Command R!lsult Buffer Full)

Indicates that anexecuted·command immediate result is
present in the Result Register. It is set by 8273 and reset
when CPU reads the result.

" .:',

t~200 Affl.OO743B

inter 8273,' 8273·4;·" 8273~8

Bit 3 RxlNT (Receiver Interrupt)

RxlNT indicates that the receiver requires CPU attention.
It is identical to Rxl NT (pin H) and is set by the 8273 either
upon good/bad completion of a specified coinmand or by
Non-DMA data transfer. It is reset. only after the CPU has
read the result byte or has received. a data byte· from fhe
8273 in a Non-DMA data transfer.

Bit 2 TxiNT (Transmitter Interrupt)

The TxlNT indicates that the transmitteuequires CPU
attention. It is identical to TxlNT (pin 21. It is set by 8273
either upon good/bad completion of a specified command
or by Non-DMA data transfer. It is reset only after the CPU
has read the result byte or has transferred transmit data
byte to the 8273 in a Non-DMA transfer.

Bit 1 RxlRA (Receiver Interrupt Result Available)

The RxlRA is set by the 8273 when an interrupt result
byte is placed in the RxlNT register. It is reset after the
CPU has read the RxlNT register.

Bit 0 TxlRA (Transmitter Interrupt Result Available)

The TxlRA is set by the 8273 when an interrupt result
byte is placed in the TxlNT register. It is reset when the
CPU has read the TxlNT register.

0 7

,
I

,

D5 D7 De
1

."~-y{'
.

0 Do received . •

0 01-00 received 0 0

0 Dz-Do received . . 0 0

0 03-00 received 0 . 0

1 04-00 received 0 0

1 05-00 received '. . . 0 0

1 De-DO received . 0 0

o

0 0
0 0

·Partlal B yte Received 0 0

1

D5

0

0

0

0

0

0

0

0

0

The Execution Pha.e '.

Upon accepting the last parameter, the 8273 enters into
the EXecution Phase. The execution phase may consist
of a DMA or other activity, and mayor may not require
CPU intervention. The CPU intervention is eliminated in
this phase if. the system utilizes. DMA for the data trans­
fers, otherwise, for non-DMA data transfers, the. CPU is
interrupted by the 8273 via TxlNT and RxlNT pins, for
each data byte r.equest.

The Re.ult Phase

During the result phase, the 8273 notifies the CPU of the
execution outcome of a command. This phase is initiated'
by:

1. The successful completion of an operation
2. An error d.etected during an operation.

To facilitate quick network software decisions, two types
of execution results are provided:

1. An Immediate Result
2. A Non-Immediate Result

01

I '.

D4 ~ II:! D1 Do R_1v« Interrupt RI.ult Cad. Rx Stetu. Alter INT

0 0 0 0 0 ~1 match or general receive Active

0 0 0 '0 1 A2 mat~h Active

0 0 0 1 1 CAe error Active

0 0 1 0 0 Abort detected Active

0 0 1 0 1 Idle detect Disabled

0 0 1 1 0 EOP detected Disabled

0 0 1 1 1 Frame less than 32 bits Active

0 1 0 0 0 DMA ov.inin detected Disabled

0 1 0 0 1 Memory buffer overflow Disabled

0 1 0 1 0 carrier detect failure Disabled

() 1 0 1 1 Receive Interrupt overrun Disabled

Figure 10. Rx Interrupt Result Byte Format

07 06 Os D. 03 02 01 DO

0 0 0
1 ·1 ,

0, 03 02 0, D.

0 I 1 0 Early tr~nsmit interrupt

Frame transmit complete

1 OMA-underrun

1 1 Clear to Send leTS) error

O· 0 :·Abar:t~l'!lp'-ete

Figure 11. 'IX Interrupt Result Byte Format

AfN.00743B

;"" inter 8273';'827'3-4.8273·8,

Immediate result is provided by the. 82;73 ,for coml!Jands
such as Read Port A and Read Port B which have
i,nformation(Gi'S;CD:, RTS, etc'! that the network
software needs; to ,make quick operational decisions. .

A comm8nd~cti cannot provid&an immEidiateresult will
generate an io18fltlPttosignillthe beginning ofthEiResult
phase: Thelrnrnediate results areprovicted in th'e, Result
Register; all non-immediate results ar& available upon
device interrupt, through Tx Interrupt Result Register
TxllR or Rx Interrupt Result Register Rxl/R. The result
may consist of a one-byte interrupt code indicating the

.. r-'---
NON·DMit.· ,

DATA REQUEst
NON·DMA MODE

USE iiAc1< + iiD OR
Wii TO READ OR .

WRITE DATA

(END.)

YES

MODE .1
I

READ STATUS
REGISTER

NO

READ I/R
REGISTER

condition for the interruptand;.ilreqtltred; one or.'lnore
bytes which detailth,e ,c;ondition .. ,

Tl(and Ril Intitrrupt R~ult Registers
> >," -,:;- " ,

The Resul,t,Registershave a"resultcode, the three high
order bits·D7-Ds of which are'set to 'zero ,for alkbut the
receive command. This commandresOlt contains a'count
that indicates the numb.er of bits recell(ed in the last byte. If
a partial byte is received, the high order bits of the last data
byte are indeterminate. . .

All results .Indicated in the ,command summary. must be
read' during' the,result phase.

----.,
1
1 DMA;

I MODE

1

1

I
1

1

I

READ STATUS
REGISTER

'------)

Figure 12. Result Phase Flowchart---Interrupt Results

1·20.2 AfN.007438

inter
IMMEDIATE RESULTS

8273, 8273·4, 8273·8

AFTER COMMAND PHASE COMPLETION (READ PORT A. PORT B)

READ STATUS
REGISTER

READ RESULT
REGISTER

Figure 13. (Rx Interrupt Service)

1·203 AFN-00743B

8273, 8273·4,.8273·8

DETAILED COMMAND DESCRIPTION

General
The 8273 HOLC/SOLC controller supports a comprehen­
sive set of high level commands which allows the 8273 to
be readily used in full-duplex, half-duplex, synchronous,
asynchronous and SOLC loop configuration, with or
without modems. These frame-level commands minimize
CPU and software overhead. The 8273 has address and
control byte buffers which allow the receive and transmit
commands to be used in buffered or non-buffered modes.

In buffered transmit mode, the 8273 transmits a flag
automatically, reads the Address and Control buffer
registers and transmits the fields, then via OMA, it fetches
the information field. The 8273, having transmitted the
information field, automatically appends the Frame Check
Sequence (FCS) and the end flag. Correspondingly, in
buffered read mode, the Address and Control fields are
stored in their respective buffer registers and only
Information Field is transferred to memory.

In non-buffered transmit mode, the 8273 transmits the
beginning flag automatically, then fetches and transmits
the Address, Control and Information fields from the
memory, appends the FCS character and an end flag. In
the non-buffered receive mode the entire contents of a
frame are sent to memory with the exception of the flags
and FCS.

HDLC ImpiemenlaUQIl
HOLC Address and Control field are extendable. The
extension is selected by setting the low order bit of the
field to be extended to a one, a zero in the low order bit
indicates the last byte of the respective field.

Since Address/Control field extension is normally done
with software to maximize extension flexibility, the 8273
does not create or operate upon contents of the extended
HOLC Address/Control fields. Extended fields are
transparently passed by the 8273 to user as either
interrupt results or data transfer requests. Software must
assemble the fields for transmission and interrogate them
upon reception.

However, the user can take advantage of the powerful
8273 commands to minimize CPU/Software overhead and
simplify buffer management in handling extended fields.
For instance buffered mode can be used to separate the
first two bytes, then interrogate the others from buffer.
Buffered mode is perfect for a two byte address field.

The 8273 when programmed. recognizes protocol
characters unique to HOLC such as Abort, which is a
string of seven or more ones (01111111). Since Abort
character is the same as the GA (EOP) character used in
SOLC Loop applications, Loop Transmit and R~ceive
commands are not recommended to be used in HOLC.
HOLC does not support Loop mode.

Initialization SellReset Commands
These commands are used to manipulate data within the
8273 registers. The Set commands have a single param­
eter which is a mask that corresponds to the bits to be set.
(They perform a logical-OR of the specified register with
the mask provided as a parameter). The Register
commands have a single parameter which is a mask that
has a zero in the bit positions that are to be reset. (They
perform a logical-AND of the specified register with the
mask).

Set One-Bit Delay (CMD Code A4)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

:::.1 : 1 ~ 1 : 1 : 1 : 1 0 1 : 1 : 1 : 1 0 1

When one bit delay is set. 8273 retransmits the received
data stream one bit delayed. This mode is entered at a
receiver character boundary, and should only be used by
Loop Stations.

Reset One-Bit Delay (CMD Code 64)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

:::: 1 : 1 0 1 0 I' I' 1 ~ 1 0 I' 1 ffij
The 8273 stops the one bit delayed retransmission mode.

Set Data Transfer Mode (CMD Code 97)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

:::: 1 : 1 ~ 1 : 1 : 1 : I' 1 : 1 : I : I' I

When the data transfer mode is set, the 8273 will interrupt
when data bytes are required for transmission or are
available from a receive. If a transmit interrupt occurs and
the status indicates that there is no Transmit Result
(TxIRA = 0), the interrupt is a transmit data request. If a
receive interrupt occurs and the status indicates that there
is no receive result (RxIRA = 0), the interrupt is a receive
data request.

Reset Data Transfer Mode (CMD Code 57)

If the Data Transfer Mode is reset, the 8273 data transfers
are performed through the OMA requests without interrupt·
ing the CPU.

1·204 AFN'()()743B

inter 8273, 8273·4, 8273·8

Set Operating Mode (CMO Code 91)

I 11 • FLAG STREAM MODE

1 • PREFRAME SYNC MODE

1 • BUFFERED MODE

1 = EARLY INTERRUPT MODE

1 • EOP INTERRUPT MODE

1 = HOLC MODE

Reset Operating Mode (CMO Code 51)

CMO:

PAR:

Any mode switches set in eMO code 91 can be reset using
this command by placing zeros in the appropriate
positions.

(OS) HOLC Mode
In HOLe mode, a bitsequenceofseven ones(01111111) is
interpreted as an abort character. Otherwise, eight ones
(011111111) signal an abort.

(04) EOP Interrupt Mode

In EOP interrupt mode, an interrupt is generated
whenever an EOP character (01111111) is detected by an
active receiver. This mode is useful forthe implementation
of an SOLe loop controller in detecting the end of a
message stream after a loop poll.

(03) Transmitter Early Interrupt Mode (Tx)

The early interrupt mode is specified to indicate when the
8273 should generate an end of frame interrupt. When set,
an early interrupt is generated when the last data
character has been passed to the 8273. If the user software
responds with another transmit command before the final
flag is sent, the final flag interrupt will not be generated
and a new frame will immediately begin when the current
frame is complete. This permits frames to be separated by
a single flag. If no additional Tx commands are provided, a
final interrupt will follow.

Note: In buffered mode, if a supervisory frame (no Infor­
mation) Transmit command is sent in response to an early
Transmit Interrupt, the 8273 will repeatedly transmit the
same supervisory frame with one flag in between, until a
non-supervisory transmit is issued.

Early transmitter interrupt can be used in buffered mode
by waiting for a transmit complete interrupt instead of
early Transmit Interrupt before issuing a transmit frame
command for a supervisory frame. See Figure 14.

OTHER

TRANSMIT COMPLETION
(OOH) INTERRUPT

OTHER PROCESSING

Figure 14.

If this bit is zero, the interrupt will be generated only after
the final flag has been transmitted.

(02) Buffered Mode

If the buffered mode bit is set to a one, the first two bytes
(normally the address (A) and control (e) fields) of a frame
are buffered bythe8273.lfthis bit is azerothe address and
control fields are passed to and from memory.

(01) Preframe Sync Mode

If this bit is set to a one the 8273 will transmit two charac­
ters before the first flag of a frame.
To guarantee sixteen line transitions, the 8273 sends two
bytes of data (OO)H if NRZI is set or data (55)H if NRZI is not
set.

(00) Flag Stream Mode

If this bit is set to a one, the following table outlines the
operation of the transmitter.

TRANSMITTER STATE ACTION

Idle Send Flags immediately.

Transmit. or Transmit} Send Flags after the

Transparent Active transmission complete

Loop Transmit Active Ignore command.

1 Bit Delay Active Ignore command.

1-205 AFN.Q0743B

inter 8273, 8273.4;8273~8

If this bit is reset to tero the follow!ngtable outlihes the
operation of the transmitter.

TRANsivlli"TER STATE ACTION

IDLE Send Idles on nex(character
. boundary.

Transmit or Transmit· } Send Idles after the transmission
Transparent Active is complete.

Loop Transmit Active Igl\O,e. command.
1 Bit Delay Active Ignore command.

Set Serial I/O Mode (CMO Code AO)

I, '" NRZ1 MODE

1'" TxC RxC

1 '" LOOP BACK TxD __ RxD

Reset Serial I/O Mode (CMD Code 60)
This command allows bits set in CMD code AO to be reset
by placing zeros in the appropriate positions.

(02) Loop Back

If this bit is set to a one, the transmit data is internally routed
to the receive data circuitry. ' '

(01) TxC __ RxC

If this bit is set to a one, the transmit clock is internally.
routed to the receive clock circuitry. It is normally used
with the loop back bit (02).

(DO) NRZI Mode

If this bit is set to a one, NRZI encoding and decoding 6f
transmit and receive data is provided. If this bit is a zero, the
transmit and receive data is treated as a normal positive logic
bit stream.

NRZI encoding specifies that a zero causes a change iii the
polarity of the transmitted signal and a one causes no polarity
change. NRZI is used in all asynchronous operations.
Refer to IBM document GA27-3093 fo'rdetails. '

Reset Device Command

~::: I : I : I 0 I 0 I : I 0 I 0 I : I : I : I
An 8273 reset command is executedbY~l!tPuting a (01)H
followed by (OO)H to the reset regisfer (TMR). See 8273
AC timing characteristics for Res~t POise speCifica-
tions. "

The reset command emulates the action of the reset pin.

1. The modem control signals are forced high (inactive
level). ' '

2. The 8273 status register flags are cleared.
3. Any (;ommands in progress are terminated immedi­

ately ..

4, The 8273,enters an idle state until the next command is
issued.

5. The Serial I/O and Operating Mode registers are set
to zero and OMA data register transfer mode is
selected.

6. The device assumes a non-loop SOLC terminal role.

Receive Commands,

The 8273 supports three receive commands: General
Receive, Selective Receive, and Selective Loop Receive.

General Receive (CMO Code CO)

General receive is a receive mode in which frames are
received regardless of the contents of the address field.

CMD: 0 0 '1'101010101010

PAR: 0 , LEAST SIGNIFICANT BYTE OF THE
·RECEIVE BUFFER LENGTH IBOI

'PAR , 0 , MOST SIGNIFICANT BYTE OF RECEIVE
BUFFER LENGTH IB,I

NOTES:
1. If buffered mode is s'pecified, the RO: R1 receive frame length

(result) is the number of. data bytes received.
2., If non"bpffered' mode is specified, the RO, R1 receive frame

length ~esult), is the number of data bytes received plus two
(the count. includes ,the address and control bytes).

3. The frame check sequence (FCS) is not transferred to
memory.

4. Frames with less than 32 bits between flags are ignored (no
interrupt generated) if the buffered mode is specified.

5. In the non-buffered mode an interru'pt is generated when a
less than 32 bit frame, i,s received, since data transfer requests
have occurred.

6. The B273 receiver is alw'ays disabled when an Idle is received
,a,fter a 'valid' frllme. nie CPU module must issue a receive

, command to re-enable the receiver.
i The intervening ABORT character between' a final flag and an

IDLE does not ~neiatean interrupt.
B.lf an ABORT Character is not preceded by a flag and is fol­

lowed by an IDLE, an interrupt will be generated for the ABORT
" followed by',an IOt:E interrupt one character time later. The

reception of an ABORT will disabl.e the receiver.

Selective Receive (CMO Code C1)

CMO , 0 0" " 1 ' 1 0 1 0 1 0 1 0 1 0 I, ,

, 0 1 LEAST SIGN!FICANT BYTE OF THE
RECEIVE BUFFER lENGTH IBOI

PAR

PAR , 0 1 MOST SIGNIFICANT BYTE OF RECEIVE
BUFFER LENGTH IB'I

0 , 'RECEIVE FRAME ADDRESS MATCH
FIELO ONE '(Af) ,

I:"AR

PAR , 0" , .RECEIVE FRAME ADDRESS MATCH
FIeLD TWO IA~I

1-206 AFN--IXl743B

8273, 8273·4, 8273·8

Selective receive is a receive mode in which frames are
ignored unless the address field matches anyone of two
address fields given to the 8273 as parameters.

When selective receive is used in HOLe the 8273 looks at
the first character, if extended, software must ttien decide
if the message is for this unit.

Selective Loop Receive (CMD Code C2)

CMD , 0 0 'l'lolololol'l~
, 0 0 LEAST SIGNIFICANT BYTe OF THE

RECEIVE BUFFER LENGTH (BO} PAR

PAR , 0 , MOST SIGNIFICANT BYTE OF RECEIVE
BUFFER LENGTH (B')

PAR , 0 , RECEIVE FRAME ADDRESS MATCH
FIELD ONE (A')

, 0 , RECEIVE FRAME ADDRESS MATCH
FIELD TWO (A21

PAR

Selective loop receive operates like selective receive ex­
cept that the transmitter is placed in flag stream mode
automatically after detecting an EOP (01111111) following
a valid received frame. The one bit delay mode is also
reset at the end of a selective loop receive.

Receive Disable (CMD Co~e C5)

Terminates an active receive command Immediately.

Al Ao 07 06 05 04 03 02 0, Do

CMD, I 0 I 0 I ' I ' I 0 I 0 I 0 I ' I 0 I '
PAR: NONE

Transmit Commands

The 8273 supports three transmit commands: Transmit
Frame, Loop Transmit, Transmit Transparent.

Transmit Frame (CMD Code C8)

CMD

PAR

PAR

PAR

PAR

, 0

, 0

, 0

, 0

, 0

0 '1'10101'101010 , LEAST SIGNIFICANT BYTE OF
FRAME LENGTH (LO) , MOST SIGNIFICANT BYTE OF
FRAME LENGTH (Ll)

1 ADDRESS FIELD OF TRANSMIT FRAME (A)

1 CONTROL FIELD'OF TRANSMIT FRAME (C)

Transmits one frame including: initial flag, frame, check
sequence, and the final flag.

If the buffered mode is specified, the LO, L1, frame length
provided as a parameter is the length of the information
field and the address and control fields must be input.

In unbuffered mode the frame length provided must be the
length of the information field plus two and the address
and control fields must be the first two bytes of data. Thus
only the frame length bytes are required as parameters.

Loop Transmit (CMD Code CAl

CMD , 0 0 , 1 ' 1 0 1 0 1 1 1 0 1 1 1 0

, 0 , LEAST SIGNIFICANT BYTE OF
FRAME LENGTH (~O)

PAR

, 0, 1 MOST SIGNIFICANT BYTe OF
FRAME LENGTH (Ll)

PAR

PAR

PAR

, 0 1 ADDRESS FielD OF TRANSMIT FRAME (A)

, 0 1 CONTROL FIELD OF TRANSMIT FRAME (e)

Transmits one frame in the same manner as the transmit
frame command except:

1. If the flag stream mode is not active transmission will
beg'in after a received EOP has been converted to a
flag. '

2. If the flag stream mode is active transmission will
begin at the next flag boundary for' buffered mode or at
the third flag boundary for non-buffered mode.

3. At the end of a loop transmit the one-bit delay mode is
entered and the flag stream mode is reset.

Transmit Transparent (CMD Coded ~9)
Al Ao 07 06 05 04 03 D2 0, Do

CMD , 0 0 1 I ' I 0 I 0 I 1 I 0 I 0 I"
, 0 1 LEAST SIGNIFICANT BYTE OF

FRAME LENGTH (LO) PAR

, 0 1 MOST SIGNIFICANT BYTE OF
FRAME LENGTH (Ll)

PAR

The 8273 will transmit a, block of raw data without
protocol, i.e., no zero bit insertion, flags, or frame check
sequences.

Abort Transmit Commands

An abort command is supported for each type of transmit
command. The abort commands are ignored if a transmit
command is not in progress.

Abort Transmit Frame (CMD Code CC)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

CMO, lot 0 l' I 1 I 0 I 0 I 1 I ' I 0 I 0

PAR: NONE

After an abort character (eight contiguous ones) is trans­
mitted, the transmitter reverts to sending flags or idles as a
function of the flag stream mode specified.

Abort Loop Transmit (CMD Co~e CE)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

CMO, I 0 I 0 I ' I ' I 0 I 0 l' I I] 1 I 0

PAR, NONE

After a flag is transmitted the transm itter reverts to one bit
delay mode. (L _

Abort Transmit Transparent (CMD Code CD)

A, Ao 01 0 6 05 04 03 02 0, Do

CMD, I 0 I 0 I ' 1,1 I 0 I 01 ' 1 1 I 0 I,
PAR, NONE

The transmitter reverts to sending flags or idles as a func-
tion of the flag stream "jade specified. '

AFN-00743B

intJ 8273,~8273·4,8273~8

Modem Control Commands
The modem control COlTil)1ands are used tomanipul,ate the
modem control ports.

When read Port A or 'Port B commands are, executed the
result of the command is. retorn~d in the result register.
The Bit Set Port B command requires'a parameterthat is a
mask that corresponds to the bits to be set. The Bit Reset
Port B command requires a mask.that tUls a zero in the bit
positions that are to be re~et.' .

Read Port A (CMO Code 22)
A, Ao 07 06 06 04" 03 02 0, Do

CMD: I ° I ° I ° I 0 I ' I ° I 0'1 ° I ' I °
PAR: NONE

Read Port B (CMO Code 23)

~ ~ ~ ~ ~ ~ ~ ~.~ ~

CMD: I 0 I ° I ° I ° I ' I ° 10 ° I ' I ' I
PAR: NONE

Set Port B Bits (CMO Code A3)

This command allows user defined Port B pins to be set.

A, ~ 07 Os 0s 04 03 02 0, .00

::::1: 1 1:1:11°1°1°1'1'1
. I RTS - REQUEST TO SEND

USER DEFINED

8273 Command Summary

CCimmand
Parameter Command DeSCription (HEX)

Set One. Bit Delay A4 , Set Mask

Reset One Bit Delay 64 Reset Mask

Set Data Transfer Mode 97 Set Mask

Reset Data Transf&rMode 57 Reset Mask

Set Operilting MOde 91 Set Mask

Reset Operating Mode 51 Reset Mask

Set Serial 1/0 Mode AO Set Mask

Reset Serial I/O Mode 60 Reset Mask

General Receive CO BO,B.1

Selective Receive C1 BO,B1,Al,A2

(Os) Flag Detect

This bit, Can .be used to set the flag detect pin. However, it
will be reset When ~henext flag is detected.

(04-01) User Defined Outputs

These bits correspondto'the state of the PB4-PB, output
pins.

(Do) Request to Send

This is a dedicated 8273 modem control signal, and
reflects the same logical state of RTS pin.

Reset Port B Bits (CMO Code 63)

This command allows Port B user defined bits to be reset.

~:::: \ : I ~ I ~I :\, I ° I ° I ° I' \, I
I RTS - REQUEST TO SEND

USER DEFINED

FLAG OHECT

This command allows Port 8(04-0,) user defined bits to
be reset. These bits correspond to putput Port pins (PB4-
PB1L

Result Completion
Results Port Interrupt

None - No

None - No

None - No

None - No

None - No

None - No

None - No

None e- No

RIC,RO,Rl,(A,C)(2) RXIIR Yes

RIC,RO,R1,(A,C)(2 RXI/R Yes

Selective Loop Receive 02 BO,'Bl~A1,A2 'RIC,RO,Rl,(A,C)(2) RXI/R Yes

~eceive Disable C5 None None - No

Transmit Frame C8 LO,L 1,(A,C)(') TIC TXI/R' Yes

Loop Transmit CA' LO,L 1,(A,C)(') TIC TXI/R Yes

Transmit Transparent .09 LO,L1 TIC TXI/R Yes

Abort Transmit Frame CC None TIC TXI/R Yes

Abort Loop Tnlnsmit CE None TIC' TXI/R Yes

Abort Transmit Transparent CD None TIC TXI/R 'Yes

Read Port A ?2 , , None Port Value Result No

Read Port B 23 None Port Value Result No

Set Port B Bit A3 Sel Mask None - No

Reset Port BBit 63 '~~s~t Mask None - No

NOTES:
t. Issued only when in buffered mode. 1·208 AFN.Q0743B
2. Read as results only in buffered mode.

inter 8273, 8273·'4,8273·8

8273 Command Summary Key

BO - Least significant byte of the receive buffer
length.

B1 - Most significant byte of the receive buffer
length.

LO - Least significant byte of the Tx frame length.
L1 - Most significant byte of the Tx frame length.
A1 - Receive frame address match field one.
A2 - Receive frame address match field two.
A - Address field of received frame. If non-buffered

mode is specified, this result is not provided.
C - Control field of received frame. If non-buffered

mode is specified this result is not provided.
RXI/R - Receive interrupt result register.
TXI/R - Transmit interrupt result register.
RO - Least significant byte of the lehgth of the frame

received.
R1 - Most significant byte of the length of the frame

received.
RIC - Receiver interrupt result code.
TIC - Transmitter interrupt result code.

COMMAND

DATA IN

~ GENERAL
RECEIVE

(Ro, R,I

DMA R~~UESTS . t A t c t I,
DATA INTERRUPTS -----------------.. -----..... - -..... -----------

CPU INTERRUPTS

, j.

NON.BUFF~RED'MODE
FRAME
COMPLETE

------------------------~----------------~--------~

Figure 15. Typical Frame Reception

1-209 AFN-007438

intJ
LAST PARAMETER
OF Tx COMMAND

I 1-2BYTES-I

RTS __ -,l_~ --/1

I CTS ---"""'""'''-----'

INT
--~-----------------~-'~EA~R~L~~--------------~F~IN~A~L---

TxlNT TxlNT

Figure 16a. ~plcal Frame Transmission, Buffered Mode

Ri's __ I_.....JI

CTS -------'
ORO ________ ~ __ ~ __ ~I_A~IC~,~t,~1~t,2~t~~ ______________________ ___

NON·BUFFER MODE

INT
----------------------------------~----------~E~A~R~~~----~--------------~F~IN~A~L----

TxlNT TxlNT

Figure 16b. ~pical Frame Transmission, Non-Buffered Mode

I MEMORIES J
" 1

'I ~STEMBUS ~
~

?'OB0-7
,.t.

?' Ao. A,
!oI'EMR OB0-7
lOW RO
MEMW WR
lOR CS
CS TXINT
HRQ RXINT

~
;,.HACK

~ '" ::.-
RXC

TxORQ RXD
8257 TXC OMA TxDACK TXD CONTROLLER 8273 MODEM

RxDRQ

RxDACK A MODEM CONTROLS ..

"
Figure 17. 8273 System Diagram

.,,:,

Af'N.00743B

inter 8273,8273·4; ·8273·8

ABSOLUTE MAXIMUM RATINGS*

AmbientTemperature Under Bias ooe to 70°C
Storage Temperature :65° e to +150° e
Voltage on Any Pin With
Respectto Ground ,.... -0.5V to +7V

Power Dissipation , 1 Watt

'NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (8273,8273·4,8273·8) (TA=O·C to 70·C, Vcc= +5.0V:l:5%)

Symbol Parameter Min. Max. Unit

Vil Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vcc + 0.5 V

VOL Output Low Voltage 0.45 V

VOH Output High Voltage 2.4 V

III Input Load Current ±10 /lA

loz Off·State Output Current ±10 /lA

Icc Vcc Supply Current 180 mA

CAPACITANCE (8273,8273·4,8273·8) (TA=25°C, Vcc=GND=OV)

Symbol Parameter Min. Typ. Max.

CIN Input Capacitance 10

CliO 1/0 Capacitance 20

A.C. CHARACTERISTICS' (T A = O·C to 70 ·C, Vcc = + 5.0V ± 5%)

CLOCK TIMING (8273)

Symbol Parameter Min. Typ. Max.

tCY Clock 250 :1000

tCl Clock Low 120

tCH Clock High 120

CLOCK TIMING (8273-4)

Symbol Parameter Min. Typ. Max.

tCY Clock 286 2000

tCl Clock Low 135

tCH Clock High 135

CLOCK TIMING (8273-8)

Symbol Parameter Min. Typ. Max.

tCY Clock 330 2000

tCl Clock Low 150

tCH Clock High 150

Test Conditions

10l = 2.0 rnA for Data Bus Pins
10l= 1.0mA for Output Port Pins
10l= 1.6mA for All Other Pins

10H = -200/lA for Data Bus Pins
10H= -100/lA for All Other Pins

VIN = Vcc to OV

VOUT=VCC to OV

.Unlt Test Conditions

pF tc= 1 MHz

pF Unmeasured Pins
Returned to GND

Unit Test Conditions

ns
64K Baud Max

ns Operating Rate
ns

Unit Test Conditions

ns
56K Baud Max

ns Operating Rate
ns

Unit Test Conditions

ns
48K Baud Max

ns Operating Rate
ns

AFN-00743B

inter 8273, 8273·4, 8273-8

A.C. CHARACTERISTICS (8213,8273-4,8273-8) (TA = O"C to 70"C, Vee = +5.0V ±5%)

READ CYCLE

Symbol Parameter . Min. Max. Unit Test Conditions

tAC Select Setup toRD 0 ns Note 2

tCA Select Hold from Jm 0 ns Note 2

tRR RD Pulse Width 250 ns

tAD Data Delay from Address 300 ns Note 2

tRo Data Delay from RD 200 ns CL= 150pF, Note 2

tOF Output Float Delay 20 100 ns CL= 20pF for Minimum;
.\ 150pF for Maximum

toc DACK Setup to RD 25 ns

tco DACK Hold from RD 25 ns

tKo Data Delay from DACK 300 ns

WRITE CYCLE

Symbol Parameter Min. Max. Unit Test Conditions

tAC Select Setup to WR 0 ns

tCA Select Hold from WR 0 ns

tww WR Pulse Width 250 ns

tow Data Setup to WR 150 ns

two Data Hold from WR 0 ns

toc DACK Setup to WR 25 ns

tco DACK Hold from WR 25 ns

DMA

Symbol Paramltter Min. Max. Unit Test Conditions

tCQ
Request Hold from WR or Rl5

200 ns (for Non·Burst Mode)

OTHER TIMING

Symbol Parameter Min. Max. Unit Test Conditions

tRSTW Reset Pulse Width 10 tCY

tr Input Signal Rise Time 20 ns

tf Input Signal Fall Time 20 ns

tRSTS Reset to First IOWR 2 tCY

tCY32 32X Clock Cycle Time 9.7· tCY ns

tCL32 32X Clock Low Time 4· tCY ns

tCH32 32X Clock High Time 4· tCY ns

tOPLL DPLL Output Low 1 . tCY- 50 ns

tOCL Data Clock Low 1 . tCY- 50 ns

tOCH Data Clock High 2· tCY ns

tOCY Data Clock 62.5· tCY ns

tTO Transmit Data Delay 200 ns

tos Data Setup Time 200 ns

tOH Data Hold Time 100 ns

tFLO FLAG DET Output Low 8· tCy:t 50 ns

NOTES:
1. All timing measurements are made at the reference voltages unless otherwise specified: Input "1" at 2.0V, "0" at 0.8V;

Output "1" at 2.0V, "0" at 0.8V .
. 2. tAD, tRO, tAC, and tCA are not concurrent specs.

1·212 AFN-00743B

inter 8273,8273-4,8273-8

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

2.' =>(2.0 2.ox=
0 .• > TEST POINTS < 0 .•

0.45 - -

A,C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND 0.45V FOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A lOGIC 1"
AND a,BV FOR A LOGIC '0."

WAVEFORMS

READ

DACK - 'DC

)

~
~tAC-

DATA BUS -- - r----- -- -
'AD
'.0

WRITE

DACK ~
I

~
I---IAC-~

Ao. A,. CS

DATA BUS X
I

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~Cl=150PF TEST

-=
CL =150pF
CllNCLUDES JIG CAPACITANCE

J..
'CD

J(
'RR II--'CA --1

j
'RO

~
I l--'OF--j

}--------

1 0-
J(

'WW t-- ICA---I

X
lOW :---'WO~

1-213 AFN-007438

inter 8273, 8273·4, 8273·8

WAVEFORMS (Continued)

DMA

0::: _____ I rtca~
\~----~-----------------------------__ I

~OR~ ~~ ____________________________ _

CHIP CLOCK

TRANSMIT

~ \

tOCL ,..1 toCH-~
toCY .

TxD)

-'To-
RECEIVE

)~~------,oC-L--~~~_~-_to_CH_h-----
Rxo----:-"\f~]E~~~-

1·214 AFN-007438

8273, 8273·4, 8273·8

WAVEFORMS (Continued)

DPLLOUTPUT

FLAG DETECT OUTPUT

," ;"

AFN-007438

8274 .'
MULTI-PROTOCOL SERIAL

CONTROLLER (MPSC) . :'f, " :~ " \

.. . ..

• Asynchronous, Byte Synchronous and
Bit Synchrolfous Operation .

• l\VO Independent Full Duplex
Transmitters and Receivers

, • Fully Compatible with 8048, 8051, 8085,
8088,·and 8086 CPU's; 8257 and 8237

'DMA Controllers; and 8089 1/0 Proc.
, • 4 Independent DMA Channels

• Baud Rate: OCto 880K Baud
-Future Selections to 1M Baud

'. Asynchronous:
-5-8 Bit Character; Odd, Even, or No

Parity; '1, 1.5 or2 Stop Bits
.,., ;.;;...Error Detection: Framing, Overrun,

and Parity

• Byte Synchronous:
- Character Synchronization, Int. or Ext.

'." ,-9ne or Two Sync Characters'
- Automatic CRC Generation and

Checking (CRC-16)
- IBM Bisync Compatible

• Bit Synchronous: :.
- SDLC/HDLC Flag Generation and

Recognition
- 8 Bit Address Recognition
- Automatic Zero Bit Insertion and

Deletion
- Automatic CRC Generation and

Checking (CCITT .. 16)
- CCITT X.25 Compatible

The Intel® 8274 Multi-Protocol Series Controller (MPSC) is designed to interface High Speed Communications
Lines using Asynchronous, IBM Bisync, and SOLC/HOLC protocol to Intel microcomputer systems. It can be
interfaced with Intel's MCS-48, -85, -51; iAPX-86, and -88 families, the 8237 OMA Controller, or the 8089 I/O
Processor in polled, interrupt driven, or OMA driven modes of operation.

The MPSC is a 40 pin device fabricated using Intel's High Performance HMOS Technology.

DBO_7

CLK:-___ --,

1Inl!T'--,--_--,

IPO/lXDRQa

IPllRxDRQa

1Iiif----<l

es---~

110------'

WII---_---'

SYSTEM INTERFACE

lXD.

TiCa

CDB

CTS.

SYNDET,.IRfS.

DTRe
RICC.

L..-_____ .r-- RxD•

NETWORK INTERFACE

Figure 1. Block Diagram

1·216

Figure 2, Pin Configuration

intJ 8274

Table 1. Pin Description

Pin Pin
Symbol No. Type Name and Function Symbol No. Type Name and Function

ClK 1 I Clock: System clock, TTL compat· ROYal 11 0 Ready Transmit Data: In mode 0
ible. TxDRQ. this pin is used to synchronize data

transfers for both Receive and
RESET 2 I Re.et: A low signal on this pin will Transmit of Channel B to the con-

force the MPSC to an idle state.
TxD. and TxD. are forced high. The
modem Interface output signals are

trolling processor's READY line
(open collector). In modes 1 and 2
this pin requests a DMA transfer of

forced high. The MPSC will remain data for a transmit operation
idle until the control registers are (Channel A).
initialized. Reset must be true for
one complete ClK cycle. DB7 12 I/O Data ·aus:The Data Bus lines are

bi-directional three state lines
CD. 3 I Carrier Detect (Channel AI: Car·

rier 'Detect (Channel A) signals that
which interface with the system's
Data Bus.

the line transmission has started.
The MPSC will begin to sample data
on the RxD. line if modem enables

DB6 13

DB5 14

are selected. DB4 15

Rxe. 4 I Receiver Clock: The Receiver DB3 16
Clock (Channel B) clocks in data on
the RxD. pin. DB2 17

DBl 18
CD. 5 I Carrier Detect (Channel BI: Car·

rier Detect (Channel B) signals that DBD 19

the line transmission has started. GND . 20 Ground •
The MPSC will begin to sample data
on the RxD. line if modem enables
are selected.

Vee 40 Power: +5V Supply.

CTS. 39 I Ciear To Send (Channel AI: This
signals that the modem Is ready to

CTS. 6 I Clear To Send (Channel BI: Clear accept. data from the MPSC. Clear
To Send (Channel B) signals that To Send will enable Channel B
the modem is ready to accept data transmitter if modem enables are
from the MPSC. Clear To Send will selected, otherwise this pin may be
enable Channel B transmitter if used as a general purpose input.
modem enables are selected,
otherwise this pin may be used as a
general purpose input.

RTS. 38 0 Reque.t To Send (Channel A): Re-
quest To Send (Channel A) is.a gen·
eral purp,oseoutput generally used

TxC. 7 I Transmit Clock (Channel BI:
to signal that Channel A is ready to
send data.

Transmit Clock (Channel B) for
TxD. pin.

TxD. 37 0 Transmit Data (Channe' AI: This
line transmits 'the serial data to thli

TxD. 8 0 Transmit Data (Channel B): This
line transmits the serial data to the

communications channel (Channel
A).

communications channel (Channel TxC. 36 I Tranamltter Clock (Channel A):
B). The transmit!erclock (Channel A)

clocks out, data on the TxD. pi.n.

RxD. 9 I Recelva Data (Channel BI: This line RxC. 35 I ·Recelver Clock (Channel A'): The
receives serial data from the com· receiver clock (Channel A) clocks in
munications channel (Channel B). data on .the RxD.pin.

SYNDETsi 10 I/O Synchronous Detection (Channel
RTS. BI: This pin is used in byte syn-

chronous mode as either an internal

RxD. 34 I Rllcelve Oete (Channel A): This
line receives serial data from the
communications channel (Channel

sync detect (output) or as a means A).

to force external synchronization SYNDI;:T. 33 1/0 Synchronous Oete.ctlon (Channel
(input). In SDlC mode, this pin is an
output indicating Flag detection. In

AI: This pin is used in byte syn·
chronous mode as either an intern'al

asynchronous mode it is a general sync detect (output) or as a means
purpose input (Channel B). Request to force external synchronization

. To Send (Ctlannel B) is a general (input). InSDlC mode, this pin is an
purpose output, generally used to output indicating flag detection. In
signal that Channel B is ready to asynchronous mode it is a general
send data. purpose input (Channel A).

1-217 AFN-01701B

8274

Table 1. Pin Deecr.lptlon (Continued)

Pin
Symbol 'No. Type Name and Function

RDYJ 32 0' Ready: In mode 0 this pin is used'
RxDRQ. to synchronize data transfers for

both receive and transmit of Chan-
·nel A to the controlling processor's'
READY line (open collector). In
modes'l and 2 RxDRO. requests a
DMA transfer of data for a receive
operation for Channel A.

DTR. 31 0' Data Terminal Ready: This pin Is
Data Terminal Ready (Channel A)
which is a general purpose output.

IPO'I 30 0' Interrl/pt Priority Out: In modes 0
TxDRQ. and 1, IPO' is Interrupt Priority O'ut.lt

li·Lsed to establish a hardware
interrupt priority scheme wiih IPI. It
is low only if IPI is low and the con-
trollin!! processor is ~iiI servicing
an Interrupt from this MPSC. In
mode 2, TxDRO. reql'ests a DMA
transfer of data for a transmit opera-
tion for Channel B.

IPV 29 VO' Intertupt Priority II): !In modes 0
RxDRO. and 1, II'I is Interrup" Priority In. A

low on IPI means ·that no higher
priority device is being serviced by
the controlling processor's inter-
rupt service routine. In mode 2,
RxDRQ. requests a DMA transfer of
data for a receive operation for
Channel B.

GENERAL DESCRIPTION

The Int.ej@8274 M\JlticPrO'tocol Serial Controller is a
microc~mp\Jter peripheral device which s\Jpports
Asynchrono\Js(Start/Stop), Byte Synchronous
(Monosync, IBM Bisync), and Bit Synchronous
(ISO's HOLC, 16M's SPLC) protocols. This con­
troller's flexible architecture allows easy implemen­
tation of many variations of these three protocols
with low softwateand hardware overhead.

The Multi-Protocol Serial Controller (MPSC) imple­
. ments two independent serial receiver/transmitter

channels; ,

The MPSC supports several microprocessor inter­
face options; Polled, Wait, Interrupt driven and DMA
driven. The MPSC is designed to support Intel's®
Mcs-a5 and iAPX 86, 88 families.

This data she~t will describe the serial protocol
functions, the microprocessor interface, a detailed
register and command description, general system
operations, specifications, and waveforms.

Pin
Symbol No. Type Name and F~ilCtlon

INT 28 0' Interrupt: The. interrupt Signal in-
dlcate.s that the highest pri.ority·
intenia} interrupt requires service'
(op~n coliector). Priority can be ra-
solved via an external interrupt con-

.' troller or a daisy-chain scheme.

INTA 27 I Interrupt Acknowledge: This IIi-
terrupt Acknowledge allows the.
highest priority interrupting device
to generate an interrupt vector.

DTR. 26 0' Data Terminal Ready (Channel B):
This is a general purpose output.

AD 25 I Address: This line selects Chan-
. nel A or B during data or command

transfers. A low selects Channel A.

A, 24 I Address: This line selects between
·data or command information
transfer. A low means data.

CS 23 I Chip Select: Chip Select enables
RD or WR.

-RD 22 I Read: Read controls a data byte or
status byte transfer from the MPSC
to CPU.

WR 21 I Write: Write controls transfer of
data Or commands to the MPSC.

FUNCTIONAL DESCRIPTION

This section of the data sheet describes how the
Asynchronous and Synchronous protocols are im­
plemented in the MPSC. It describes gerieral con­
siderations, tranSmit operation, and receive opera­
tion for Asyrichronous, Byte Synchronous, and Bit
Synchronous protocols.

ASYNCHRONOUS OPERATIONS

General

For operation in the asynchronous mode, the MPSC
must be initialized with the following information:
character length (WR3;07, 06 and WR5; 06, 05),
clock rate (WR4; 07, 06), number of stop bits (WR4;
03, 02), odd, even or no parity (WR4; 01, 00), inter­
rupt mode (WR1, WR2), and receiver (WR3; 00) or
transmitter (WR5; 03) enable. When loading these
parameters into the MPSC, WR4 information mllst

1-218 AFN-01701B

inter 8274

be written before the WR1, WR3, WRS parameters/
commands. (See Detailed Command Description
Section). . .

For transmission via a modem or RS232C interface,
the Request To Send (RTS) (WRS; 01) and Data Ter­
minal Ready (oTR) (WRS; 07) bits must be set along
with the Transmit Enable bit (WRS; 03). Setting the
Auto Enables (WR3; 05) bit allows the programmer
to send the first character of the message without
waiting for a clear to send (CTS).

Both the Framing Error and Receive Overrun Error
flags are latched and cause an interrupt, i.e., if status
affects vector (WR1 B; 02) is selected, the interrupt
vector indicates .a special Receive condition.

If the External/Status Interrupt bit (WR1; ~O) is
enabled, Break Detect (RRO; 07) and Carrier Detect
(RRO; 03) will cause an interrupt. Reset External/
Status Interrupts (WRO; OS, 04, 03) will clear Break
Detect and Carrier Detect bits if they are set.

A status read after a data read will include error
status for the next word in the buffer. If the Interrupt
on First Character (WR1; 04, 03) is selected, then
data and error status are held until an Error Reset
command (WRO; OS, 04, 03) is given.

If the Interrupt on Every Character Mode bit (WR1;
04, 03) is selected, the interrupt vector is different if
there is an error status in RR1. When the character is
read, the error status bit is set and the Special Re­
ceive Condition vector is returned if Status Affects
vector (WR1 B; 02) is selected.

In a polled environment, the Receive Character
Available bit (RRO; DO) must be monitored so that
the CPU can determine when data is available. The
bit is reset automatically when the data is read.

If the X1 clock mode is selected, the bit synchroniza­
tion must be accomplished externally.

Transmit

The transmit function begins when the Transmit En­
.able bit (WRS; 03) is set. The MPSC automatically
adds the start bit, the programmed parity bit (odd,
even or no parity) and the programmed number of
stop bits (1, 1.5 or 2 bits) to the data character being
transmitted.

The Serial data is shifted out from the Transmit Data
(Txo) output on thefallihg edge of the Transmit
Clock (TxC) input, at a rate programmable to 1,1/16,
1/32nd, or 1/64th of the clock rate supplied to"the
TxC input.

The Txo output is held high when the transmitter has
no data to send, unless, under program control, the
Send Break (WRS; 04) command is issued to. hold
the Txo low.

If the External/STATUS Interrupt bit (WR1; DO) is set,
the status of CD, CTS and SYNoET are monitored,
and, if any changes occurfor a period .oftime greater
than the minimum specified pulse width, an inter­
ruptis generated. CTS is usually monitored using
this interrupt feature.

If the Auto Enables (WR; 05) option is selected the
programmer need not wait for the cts before send­
ing the first character. The MPSC will automatically
wait for the CTS pin to go active before the transmis-
sion begins. .

The Transmit Buffer Empty bit(RRO; 02) is set by the
MPSCwhen the data byte from the buffer is loaded
in the transmit shift register. The data is written to
the MPSC only when the Tx buffer becomes empty to
prevent overwri.ting.

Asynchronous Mode Register Setup

07 06 05 04 03 02 01 00
00 Rx 5 b/char

WR3 01 Rx 7 b/char AUTO 0 0 0 0 Rx
10 Rx 6 b/char ENABLES ENABLE
11 Rx 8 b/char

00 X1 Clock 00 ENABLE SYNC
MODES EVENI

WR4 01 X16 Clock 0 0 01 1 STOP BIT ODD PARITY
10 X32 Clock 10 1V2 STOP BITS PARITY ENABLE
11 X64 Clock 11 2 STOP BITS

00 Tx 5 b/char
WR5 DTR 01 Tx 7 b/char SEND Tx 0 RTS 0

10 Tx 6 b/char BREAK ENABLE
11 Tx 8 b/char

1-219 AFN.o1701B

'inter 8274

Receive

The receive function begins when the Receive En­
able (WR3;00) bit is set. If the Auto Enables (WR3;
05) option is selected, then Carrier Detect (CD) must
also be low. A valid start bit is detected if a low per­
sists for at least 112 bit'time on the Receive Data
(RxO) input.

The data is sampled at mid-bit time, on.the rising
edge of RxC, until the entire character is assembled.
The rece.iver inserts 1's when a character is less than
8 bits. If parity (WR4; 01, ~O) is enabled and the
character is less than 8 bits the parity bit is not
stripped from the .character.

The receiver also stores error status for each of the 3
data characters in the data buffer. When a parity
error is detected, the parity error flag (RR 1; 04) is set
and remains set until it is reset by the Error Reset
command (WRO; 05, 04, 03).

When a character is assembled without a stop bit
beinQ detec~ed, the Framing Error bit (RR1; 06) is
set. The detection of a Framing Error adds an ad­
ditiOnal 1/2 bit time to the character time so the
Framing Error is not interpreted as a new start bit.

If the CPU fails to read a data character while more
than three characters have been received, the Re­
ceive Overrun bit (RR1; 05) .is set. Only the overwrit­
ten character is flagged .with the Receive Overrun
bit When this occurs, the fourth character as~em­
bled replaces the third character in the receive buf­
fers. The Receive Overrun l;lit(RR1; 05) is reset by
the Error Reset command (WRO; OS, 04, 03).

SYNCHRONOUS OPERATION-
MONO SYNC, BI SYNC .

General

The MPSC must be initialized with the following pa­
rameters: odd or eV.en parity (WR4; 01,00), X1 clock
mode (WR4; 07,06), 8- or16~.bit sync character
(WR4; OS, 04), ~RC polynomial (WRS; 02), Trans­
mitter Enable (WRS; 03), interrupt modes (WR1,
WR2), transmit character length (WRS; 06, 05) and
receive character length (WR3; 07,06). WR4 pa­
rameters must be written before WR1, WR3, WRS,
WR6 and WR7.

The data is transmitted on the falling edge of the
Transmit Clock, (TxC) and is received on the rising
edge of Receive Clock (RxC). The X1 clock is used
for both transm it and receive operations for all three
sync modes: Mono, Bi and External.

Transmit Set-Up-Monosync, Bisync

Transmit data is held high after channel reset, or if
the transmitter is not enabled. A break may be pro­
grammed to generate a spacing line that begins as
soon as the Send Break (WRS; 04) bit is set. With the
transmitter fully initialized and enabled, the default
condition is continuous transmission. of the 8- or
16-bit sync character.

Using interrupts for data transfer requires that the
Transmit Interupt/OMA Enable bit (WR1; 01) be set.
An interrupt is generated each time the transmit buf­
fer becomes empty. The interrupt can be satisfied

Synchronous Mode Register Setup-Monosync, Bisync

07 06 05 04 03 02 01 DO
00 Rx 5 b/char ENTER SYNC

WR3 01 Rx 7 b/char AUTO -HUNT RxCRC 0 CHAR Rx
10 Rx 6 b/char ENABLES MODE ENABLE LOAD ENABLE
11 Rx 8 b/char INHIBIT

00 8 bit Sync EVENI
WR4 0 0 01 16 bi~ Sync 0 0 5i5D PARITY

11 Ext Sync PARITY ENABLE

00 Tx 5 b/char 1
WRS DTR 01 Tx 7 b/char .' SEND Tx (SELECTS RTS TxCRC

10 Tx 6 b/char BREAK ENABLE CRC-16) ENABLE
11 Tx 8 b/ch.ar

1-220 AFN·01701B

8274

either by writing another character into the transmit­
ter or by resetting the Transmitter Interrupt/OMA
Pending latch with a Reset Transmitter Interrupt/
OMA Pending Command (WRO; OS, 04, 03). If noth­
ing more is written into the transmitter, there can be
no further Transmit Buffer Empty interrupt, but this
situation does cause a Transmit Underrun condition
(RRO; 06).

Data Transfers using the ROY signal are for software
controlled data transfers such as block moves. ROY
tells the CPU that the MPSC is not ready to accept/
provide data and that the CPU must extend the
output/input cycle. OMA data transfers use the
TxORQ A/B signals which indicate that the transmit
buffer is empty, and that the MPSC is ready to accept
the next data character. If the data character is not
loaded into the MPSC by the time the transmit shift
register is empty, the MPSC enters the Transmit
Underrun condition.

The MPSC has two programmable options for solv­
ing the transmit underrun condition: it can insert
sync characters, or it can send the CRC characters
generated so far, followed by sync characters. Fol­
lowing a chip or channel reset, the Transmit
Underrun/EOM status bit (RRO; 06) is in a set condi­
tion allowing the insertion of sync characters when
there is no data to send. The CRC is not calculated
on these automatically inserted sync characters.
When the CPU detects the end of message, a Reset
Transmit Underrun/EOM command can be issued.
This allows CRC to be sent when the transmitter has
no data to send.

In the case of sync insertion, an interrupt is gener­
ated only after the first automatically inserted sync
character has been loaded in Transmit Shift Regis­
ter. The status indicates the Transmit Underrun/
EOM bit and the Transmit Buffer Empty bit are set.

In the case of CRC insertion, the Transmit
Underrun/EOM bit is set and the Transmit Buffer
Empty bit is reset while CRC is being sent. When
CRC has been completely sent, the Transmit Buffer
Empty status bit is set and an interrupt is generated
to indicate to the CPU that another message can
begin (this interrupt occurs because CRC has been
sent and sync has been loaded into the Tx Shift Reg­
ister). If no more messages are to be sent, the pro­
gram can terminate transmission by resetting RTS,
and disabiling the transmitter (WRS; 03).

Bisync CRC Generation. Setting the Transmit CRC
enable bit (WRS; ~O) .indicates CRC accumulation
when the program sends the first data character to

the MPSC. Although the MPSC automatically
transmits up to two sync characters (16 bit sync), it is
wise to send a few more sync characters ahead of
the message (before enabling Transmit CRC) to
ensure synchronizatio!,) at the receiving end.

The Transmit CRC Enable bit can be changed on the
fly any time in the message to include or exclude a
particular data character from CRC accumulation.
The Transmit CRC Enable bit should be in the de­
sired state when the data character is loaded from
the transmit shift register. To ensure this bit in the
proper state, the Transmit CRC Enable bit must be
issued before sending the data character to the
MPSC.

Transmit Transparent Mode. Transparent mode
(Bisync protocol) operation is made possible by the
ability to change Transmit CRC Enable on the fly and
by the additional capability of inserting 16 bit sync
characters. Exclusion of OLE characters from CRC
calculation can be achieved by disabling CRC calcu­
lation immediately preceding the OLE character
transfer to the MPSC.

In the transmit mode, the transmitter always sends
the programmed number of sync bits (8 or 16) (WR4;
OS, 04). When in the Monosync mode, the transmit­
ter sends from WR6 and the receiver compares
against WR7. One of two CRC polynomials, CRC 16
orSOLC, may be used with synchronous modes: In
the transmit initialization process, the CRC
generator is initialized by setting the Reset Transmit
CRC Generator command (WRO; 07, 06).

The External/Status interrupt (WR1; ~O) mode can
be used to monitor the status of the CTS input as
well as the Transmit Underrun/EOM latch. Option­
ally, the Auto Enable (WR3; 05) feature can be used
to enable the transmitter when CTS is active. The
first data transfer to the MPSC can begin when the
External/Status interrupt occurs (CTS (RRO; 05)
status bit set) following the Transmit Enable com­
mand (WRS; 03).

Receive

After a channel reset, the receiver is in the Hunt
phase, during which the MPSC looks for character
synchronization. The Hunt begins only when the re­
ceiver is enabled and data transfer begins only when
character synchronization has been achieved. If
character synchronization is lost, the hunt phase
can be re-entered by writing the Enter Hunt Phase
(WR3; 04) bit. The assembly of received data con­
tinues until the MPSC is reset or until the receiver is

·1·221 AFN-01701B

inter 8274

disabled (by command or by CD while in the Auto
Enables mode) or until the CPU sets the Enter Hunt
Phase bit. Under' program control, all the leading
sync characters of the message can be inhibited
from loading the receive buffers by setting the Sync
Character Load Inhibit (WR3; 01) bit. After character
synchronization is achieved the assembled charac­
ters are transferred to the receive data FIFO.

Oata may be transferred with or without interrupts.
Transferring data without interrupts is used for a
purely polled operation orfor off-line conditions.
There are three interrupt modes available for data
transfer: Interrupt on First Character Only, Interrupt
on Every Character, and Special Receive Conditions
Interrupt.

Interrupt on First Character Only mode is normally
used to start a polling loop, a block transfer se­
quence using ROY to synchronize the CPU to the in­
coming data rate or a OMA transfer using the RxORQ
signal. The MPSC interrupts on the first ch~racter
and thereafter only interrupts after a Special Re­
ceive Condition is detected. This mode can be
reinitialized using the Enable Interrupt On Next Re­
ceiveCharacter (WRO; 05, 04, 03) command which
allows the next character received to generate an
interrupt. Parity Errors do not cause interrupts, but
End of Frame (SDLC operation) and Receive Over­
run do cause interrupts in this mode. If the external
status interrupts (WR1; DO) are enabled an interrupt
may be generated any time the 0i5 changes state.

Interrupt On Every Character mode generates an
interrupt whenever a character enters the receive

. buffer. Errors and Special Receive Conditions gen­
erate a special vector if the Status Affects Vector
(WR1 8; 02) is selected. Also the Parity Error may be

programmed (WR1; 04, 03) not to generate the spe­
cial vector while in the Interrupt On Every Character
mode.

The Special Receive Condition interrupt call only
occur while in the Receive Interrupt On First Charac­
ter Only or the Interrupt On Every Receive Character
modes. The Special Receive Condition interrupt is
caused by the Receive Overrun (RR1; 05) error con­
dition. The error status reflects an error in the cur~
rent word in the receive buffer, in addition to any
Parity or Overrun errors since the last Error Reset
(WRO; 05, 04, 03). The Receive Overrun and Parity
error status bits are latched and can only be reset by
the Error Reset (WRO; 05, 04, 03) command.

SYNCHRONOUS OPERATION-SOLC

General

Like the other synchronous operations the SOLC
mode must be initialized with the following paramec

ters: SOL,Cmode (WR4; 05,04), SOLC polynomial
(WR5; 02), Request to Send, Oata Terminal Ready,
transmit character length (WRS; 06,05), interrupt
modes (WR1; WR2), Transmit Enable (WR5; 03),
Receive Enable (WR3; 00), Auto Enable (WR3; 05)
and External/Status Interrupt (WR1; 00).WR4
parameters must be written before WR1, WR3,
WR5, WR6 and WR7.

The Interrupt modes for SOLC operation are similar
to those discussed previously in the synchronous
operations section.

Synchronous Mode Register Setup-SOLC/HOLC

07 06 05 04 03 02 01 . DO
00 Rx 5b/char ENTER Rx ADDRESS Rx

WR3 01 Rx 7b/char AUTO HUNT CRC SEARCH 0 ENABLI'O
10 Rx 6b/char ENABLES MODE ENABLE MODE
11 Rx 8b/char

0 0 1 0 0 0 0 0
WR4 (SELECTS SDLCI

HDLC MODE)

0
WRS DTR 00 Tx ,.;;5b/char 0 Tx (SELECTS RTS Tx 01 Tx 7b/char ENABLE SDLCI CRC 10 Tx 6b/char HDLC ENABLE 11 Tx 8b/char CRC)

1-222 AFN·01701B

8274

Transmit

After a channel reset, the MPSC begins sending
SOLC flags.

Following the flags in an, SOLC operation the 8-bit
address field, control fietd and information field may
be sent to the MPSC by the microprocessor. The
MPSC transmits the Frame Check Sequence using
the Transmit Underrun feature. The MPSC automat­
ically inserts a zero after E1very sequence of 5 con­
secutive 1 's except when transm itting Flags or
Aborts.

SOLC"-like protocols do not have provision for fill
characters within a message;,The MPSC therefore
automatically terminates ,an SOLC frame when the
transmit data buffer and output shift register have
no more bits to send. It does this by sending the two
bytes of CRC and then one ,or "nore flag~. This allows
very high-speed transmissions under OMA or CPU
control without requiring the CPU to respond
quickly to the end-of-message situation.

After a reset, the Transmit Underru~/~oMstatJs,blt
is in the set state and prevents the insertion of CRC
characters during the time there is no dat~to,send:
Flag characters are sent. The MPSC begins to send
the frame when data is written into the transmit bLlf­
fer. Between the time the first data byte i~ written,
and the end of the message, the Reset Transmit
Underrun/EOM (WRO; 05, 04, 01) command must
be issued. The Transmit Underrun/EOM status bit
(RRO; 06) is in the reset state at the end of the mes­
sage which automatically sends the CRC
characters.

The MPSC may be programmed to issue a send
Abort command (WRO; 05, 04, 03). This command
causes at least eight 1 's but less than fourteen 1 's to
be sent before the 'line reverts to continuous flags.

Receive

After initialization, theMPSC enters the Hunt phase,
and remains in the Hunt phase until the first Flag is
received. The MPSC never again enters the Hunt
phase unless the microprocessor writes the Enter
Hunt command.

The MPSC can be programmed to receive all frames
or it can be programmed to the Address Search
Mode. In the Address Search Mode, only frames with
addresses that match the value in WR60r the global
address (OFF H) are received by the MPSC. Extended
address recognition must be done by the micropro­
cessor software.

The control and information fields are received as
data.

SOLC/HOLd CRC calculation does not have an 8-bit
delay, since all characters are included in the calcu­
lation, unlike Byte Synchronous Protocols.

Reception of an abort sequence (7 or more 1 's) will
cause the Break/Abort bit (RRO; 07) to be set and will
cause an External/Status interrupt, if enabled. After
the Reset External/Status Interrupts Command has
been issued, a second interrupt will occur at the end
of the abort sequence.

MPSC

Detailed Command Description

GENERAL
The MPSC supports an extremely flexible set of se­
rial and system interface modes.

The system interface to the CPU consists of 8 ports
or buffers:

cs Ao. A, Read Operation Wrlle Operallon

0 0 0 ch. A Data Read Ch. A Data Write
0 0 1 Ch. A Status Read Ch. A Command/Parameter
0" 1 0 Ch, B Data Read Ch. B Data Write
0 1 1 Ch. B Status Read Ch. B Command/Parameter
1 X X High Impedance High Impedance

, O,ata buffers are addressed byAt = 0, and Command
ports are addressed by A" ;,; 1.

Command, parameter, and status information is
held in 22 registers within the MPSC (8 write regis­
ters and 3 read registers for each channel). They are
all accessed via the command ports.

An internal pointer register selects which of the
command or status registers will be read or written
during a command/status access of an MPSC
channel.

1-223 AFN-01701B

COMMAND/STATUS

'POINTER

02 01 00

.1 w : : o : I 1 I 0 0 0 R R R 0

0 0 .'1 w R 1 1 R R

0 0 d w R 2 I I R R 2 I
MSB LSB

.1 w
Read Registers

0 R 3

0 0 -I w R 4

0 -I w R' 5,

0 ·Iw R 6 1

0 0 0 "Iw ' R' 7
1

,Msil LSB

Write Registers

Figure 3. Command/Status Register Architecture (each serial channel)

After reset; the contents of the pointer reg.iste~ are
zero. The first writeto a command register causes
the data to be Ipaded into Write Register 0 (WRO).
The three least significant bits of,WRO'are loaded

1·224

into the Command/Status POinter. The next read
or write operation accesses the read or write reg­
ister selected by the pointer. The pointer is reset
after the read or write operation is completed.

AFN'()17018

inter 8274

COMMAND/STATUS DESCRIPTION
The following command and status bytes are used
during initialization and execution phases of opera­
tion. All Command/Status operations on the two
channels are identical, and independent, except
where noted.

Write Register 0 (WRO):

r=: 08 1 os:D4 : D31 D2 : D1 : :j
JI JI J

rool

o
1

o 1

1

o

NULL CODE

COMMAND/STATUS POINTER

REGISTER POINTER

NULL CODE
SEND ABORT (SDLC)

RESET EXT/STATUS INTERRUPTS
CHANNEL RESET .

ENABLE INTERRUPT ON NEXT R.
CHARACTER

RESET 'IldNT/DMA PENDING

ERROR RESET
END OF INTERRUPT

RESET R. CRC CHEC((ER

RESET 'Ill. CRC GENERATOR
RESET 'Ill UNDERRUN/EOM LATCH

Detailed Register Description

WRO
D2, D1, DO-Command/Status Register Pointer bits
determine which write~register the next byte is to be
written into, orwhich read-register the next byte is to
be read from. After reset, the first byte written into
either channel goes into WRO. Following a read or
write to any register (except WRO) the pointer will
point to WRO. .

D5, D4, D3-Command bits determine which of the
basic seven commands are to be performed.

Command 0

Command 1

Command 2

Command 3

Command 4

Command 5

Command 6

Command 7

D7,D6

00

01

1-225

Null-has no effect.

Send Abort-causes the genera­
tion of eight to thirteen 1 's when
in the SDLC mode.

Reset External/Status Interrupts­
resets the latched status bits of
RRO and re-enables them, allowing
interrupts to occur again.

Channel Reset-resets the Latch­
ed Status bits of RRO, the
interrupt prioritization logic and
all control. registers for the
channel. Four extra system
clock cycles should be allowed
for MPSC reset time before any
additional commands or controls
are written into the channel.

Enable Interrupt on Next Receive
Character-if the Interrupt on
First Receive Character mode is
sele«ted, this command reacti­
vates that mode· after each com­
plete message is received to
prepare the MPSC for the next
message.

Reset Transmitter. Interrupt/DMA
Pending-if The Transmit
Interrup~/DMA Enable mode is
selected, the MPSC automatically
interrupts or requests DMA data
transfer when the transmit buffer
becomes empty. When there are no
more characters to be sent,
issuing this command prevents
further transmitter interrupts or
DMA requests until the next
character has been completely
sent. ,

Error Reset""';;error latches, Pari­
ty and Overr~n errors in RR1 are
reset .

End of Interru pt-resets the
interrupt-in~service latch of the
highest-priority internal device
.under service.

CRC Reset Code

NUll-has no effect.

Reset Receive CRC Checker­
resets the CRC checker to O's. If in
SDLC mode the CRC checker is
initialized to all 1 'so

AFN'()1701B

10

11

8274

Reset Transmit CRC Generator
l....resets th,e CRC generator to
()'!j,lf in SOLC mode the CRC
~enerato(s initialized to all1's.

Reset Tx Underrun/Enclof Message
Latch. " ,

Write Register 1 (WR1):

MSB

ID71 0 ID5I04:D3JD2IDlIDOI

00

~ I EXT INTERRUPT
ENABLE

lXlNTERRUPTI
DMAENAB.LE

1 =VAAIABLE
STATUS AFFECTS VECTOR
VECTOR (CH B ONLy) 0 FIXED
(NULL CODE CH A) VECTOR

,.......-.-...
0 0 RxlNT/DMA DISABLE

0 1 ~INT ON' FIRST CHAR OR SPECIAL
CONDITION

1 0 INT ON ALL Rx CHAR (PARITY AFFECTS
VECTOR) OR SPECIAL CONDITION

1 1 INT ON ALL Rx CIIAR (PARITY DOES
NOT AFFECT VECTOR) OR SPECIAL
CONDITION'

1 = WAIT ON RX. 0 '= WAIT ON lX

MUSTBEZERO

WAIT ENABLE 1 = ENABLE. 0 = DISABLE

External/Status Interrupt Ena91e
-allows interrupt to' occur ~8ithe
resl;llt of transitions on, ~he CO,
CTSor SYNDET -inputs. Also
aUows iqterrupts as the result of a
Break/~blort detection and termi­
nation, or at the beginning of CRe,
or sync;'character transmission:
w~~"HieTransmit U'nderrun/EOM
latch becomes set.

01

02

04,03

o 0

o

o

05

Os
07

Transmitter InterruptfOMAEna-ble
,~allows the MPSC'to interrupt or
.. request a OMA transfer woen the
transmitter buffer b'ecomes empty. ,
Status Affects vector-(WR1, 02
active in channel B only.) If this
bit is not set, then the fixed vector,
progralTlm~din WR2, is returned
from an interrupt acknowledge
sE)queF)ce, If the !;lit is filet then the
vector ,returned from an interrupt
acknowledge is varia-Qle as shown
in the Interrupt Vector Table.

Receive Interrupt Mode

Receive Interrupts/DMA Oisabled

Receive Interrupt on First Charac­
ter Only or Speci~' Condition

Interrupt on All Recei~e Charac­
ters or Special' Conditi,on (Parity
Error is a Special Receive Condi-
tion) " ,

Interrupt on All Receive Charac­
ters or Special Condition (Parity
Error is not a Special Receive
Condition).

Wait on Receive/Transmit-,-when
the following conditions are met
the ROY pin is activated, otherwise
it is held in the High-Z state.
(Conditions: Interrupt Enabled
Mode, Wait Enabled, CS = 0,
AO = 0/1. and At ,F 0). The ROY
pin is pulled low when the trans­
mitter buff~ris full or the receiver
buffer is' empty and it is driven
High when the transmitter buffer is
empty orthe receiver buffer is full.
The ROYA and ROYe may be
wired QR"connected since only
one signal is active at anyone time
while the other is in the High Z
state.

Must be Zero

Wait. Enable-enables the wait
function.

AFN.QI701B

inter

WR2

01, DO

o 0

o 1

o

02

o

Channel A

System Configuration-These
specify the data transfer from
MPSC channels to the CPU, either
interrupt or OMA based.

Channel A and Channel B both use
interrupts

Channel A uses OMA, Channel B
uses interrupt

Channel A and Channel B both
use OMA

Illegal Code

Priority-this bit specifies t.he
relative priorities of the internal
MPSC interrupt/OMA sources.

(Highest) RxA, TxA, RxB, TxB
ExTA, ExTB (Lowest)

(Highest) RxA, RxB, TxA, TxB,
ExTA, ExTB (Lowest)

8274

05,04,03 Interrupt Code~specifies the
behavior of the MPSC when it re­
ceives an interrupt acknowledge
sequence from the CPU. (See Inter­
rupt Vector Mode Table).

o X X Non-vectored interrupts-in­
tended for use with external OMA
CONTROLLER. The Data Bus re­
mains in a high impedence state
during INTA sequences.

o 0

o 1

o

07, 06

8085 Vector Mode 1-intended for
use as the primary MPSC in a daisy
chained priority structure. (See
System Interface section)

8085 Vector Mode 2-intended for
use as any secondary MPSC in a
daisy chained priority structure.
(See System Interface section)

8086/88 Vector Mode-intended
for use as either a primary or
secondary .in a daisy chained
priority structure. (See System
Interface section)

Must be zero.

Write Register 2 (WR2): Channel A

MSB LSB

l 07: 0 J 051 D4l 031021011 DOJ

'---..,--J '---..,--J

0 0 BOTH INTERRUPT

0 1 A DMA, B INT

1 0 BOTHDMA

1 1 ILLEGAL

1 = PRIORITY RxA >RxB >TxA >TxB >EXTA* >EXTB*

o = PRIORITY RxA >TxA ">RxB -"'TxB '>EXTA* >EXTB*

~

0 0 BOBS MODE 1

0 1 BOBS MODE 2

1 O· BOB6iBB MODE

1 1 ILLEGAL

1 ~ VECTORED INTERRUPT

0 NON VECTORED INTERRUPT

MUST BE ZERO

1 PIN 10 ~ SYNDET B

o PIN 10 = RT5 B

'EXTERNAL STATUS INTERRUPT·
ONLY IF EXT INTERRUPT ENABLE (WR1; DO)IS SET

1-227 AFN-01701B

inter 8274

The following table describes the MPSC's response to an interrupt acknowledge sequence:

DS D4 D3 IPI MODe INTA Data Bus

07 DO

0 X X X Non-vectored Any INTA High Impedance

1 0 0 0 85 Mode 1 1st INTA 1 1 0 0 1 1 0 1

2nd INTA V7 V6 V5 V4* V3* V2* V1 VO

3rd INTA 0 0 0 0 0 0 0 0

1 0 0 1 85 Mode 1 1st INTA 1 1 0 0 1 1 0 1

2nd INTA High Impedanc;e
3rd INTA High Impedance

....
1 0 1 0 85 Mode 2 1st INTA High Impedance

2nd INTA High Impedance
3rd INTA High Impedance

1 1 O· 0 86 Mode 1st INTA High Impedance
V7 V6 V5 V4 V3 V2* V1*VO"

1 1 0 1 86 Mode 1st INTA High Impedance
2nd INTA High Impedance

"These bits are variable if the "status affects vector" mode has been programmed, (WR18, p.2).

Interrupt/DMA Mode, Pin Functions, and Priority

Int/OMA
Ch.AWR2 Mode Pin Functions Priority

ROYAl ROYel IPII IPOI
RxORQA TxORQA RxORQe TxORQe

O2 D1 00 CH.A CH. B Pin 32 Pin 11 Pin 29 Pin 30 Highest Lowest

0 0 0 INT INT RxA, TxA, RxB, TxB, EXT A' EXT e
ROYA ROYe iPi IPO

1 0 0 INT INt ~ RxA, RxB, TxA, TxB, EXT Ao EXT B

0 0 1 OMA RxA, TxA (OMA)
--- --- - --'1----------

INT - RxA ,RxB, TxB, EXTA, EXTe(lNT)
RxORQA TxORQA iPi IPO

1 0 1 DMA RxA, TxA (DMA)
.,;.. - - - --

RxA\RxB,TxB, EX':;;, EXT e(n~T) - -INT

0 1 0 DMA DMA RxA., TxA, ~xB, TxB (DMA)

RxDRQA. TxDRQA RxDRQe
RxA ,RxB , EXT A' EXT e (lNT)

TxDRQ e RxA, RxB, TxA, TxB, (DMA)
1 1 0 OMA DMA RxA 1, RxB 1, EXT Ao EXT e (lNT)

lSpecial Receive Condition

1-228 AFN-01701B

inter 8274

Interrupt Vector Mode Table

I
8085 Modes v4 V3 V2

8086/88 Mode V2 V1 Vo Channel Condition

Note 1: Special 0 0 0 B Tx Buffer Empty
Receive Condition= 0 0 1 Ext/Status Change
Parity Error, 0 1 0 FIx Char. AVailable
Rx Overrun Error, 0 1 1 Special Rx Condition'
Framing Error, (Note 1)
End of Frame (SDLC)

1 0 0 A Tx Buffer Empty
1 0 1 Ext/Status Change
1 1 0 Rx Char. Available
1 1 1 Special Rx Condition

(Note 1)

Write Register 2 (WR2): Channel B WR2 CHANNEL B

Mse LSB 07-00 Interrupt vector-This register contains
the value of the interrupt vector placed
on the data bus during interrupt ac­
knowledge sequences.

I~:w:w:":~:~: ~:wl

L-Vector

Write Register 3 (WR3):

MSB LSB

I 07 I 061 051 041 03 I 021 01 I DOl

LRxENABLE

'--SYNC CHAR LOAD INHIBIT

'----ADDR SRCH MODE (SDLC)

'------Rx CRe ENABLE

'--------ENTER HUNT MODE

'----------AUTO ENABLES

o 0 Rx 5 BITS/CHAR

o 1 Rx 7 BITs/CHAR

1 0 Rx 6 BITS/CHAR

1 1 Rx 8 BITs/CHAR

1·229 AFN-01701B

inter 8274

WR3
DO Receiver Enable-A one enables the re­

ceiver to begin. This bit should be set only
after the receiver has been initialized.

01 Sync Character Load Inhibit-A one pre­
vents the receiver from loading sync
characters into the receive buffers.

02

03

04

Address Search Mode-If the SOLC mode
has been selected, the MPSC will re­
ceive all frames unless. this bit is a 1. If this
bit is a 1, the MP$C will receive only frames
with address bytes that match the global
address (OFFH) or the value loaded into
WR6. This bit must be zero in non-SOLC
modes.

Receive CRC Enable-A one in this bit
enables (or re-enables) CRC calculation.
CRC calculation starts with the last charac­
ter placed in the Receiver·FIFO. A zero in
this bit disables, but does not reset, the
Receiver CRC generator.

Enter Hunt Phase-After initialization, the
MPSC automatically enters the Hunt mode.
If synchronization is lost, the Hunt phase
can be re-entered by writing a one to this
bit.

05 Auto Enables-A one written to this bit
causes CO to be automatic enable signal
for the receiver and CTS to be an automatic
enable signal for the transmitter. A zero
written to this bit limits the effect of COand
CTS signals to setting/resetting their corr:e~
sponding bits in the status register (RRO).

P7, 06 Receive Character length

o 0 Receive 5 Data bits/character

o Receive 7 Data bits/character

1 0 Receive 6 Data bits/character

Receive 8 Data bits/character

Write Register 4 (WR4):

WR4
DO

01

1 = EVEN PARITY

o = ODD PARITY

o 0 ENABLE SYNC MODES

o 1 1 STOP BIT

1 0 1.5 STOP BITS

1 1 2 STOP BITS

o 0 BaiT SYNC CHAR

o 1 16BITSYNCCHAR

1 0 SDLClHDLCMODE(DllllllDIFLAG

1 1 EXTERNAL SYNC MODE

o 0 Xl CLOCK

o 1 X18 CLOCK

1 0 X32CLOCK

1 1 X84CLOCK

Parity-a one in this bit causes a parity
bit to be added to the programmed number
of data bits per character for both the
transmitted and received character. If the
MPSCls programmed to receive 8 bits per
character; the parity bit is not transferred

. to ~he microprocessor. With other receiver
character lengths, the parity bit is trans­
ferred to the microprocessor.

Even/Odd Parity-if parity is enabled, a
one in this bit causes the MPSC to transmit

. and expect even parity, and a zero causes
it to send and expect odd parity.

. 03, 02 Stop bits/sync mode

1-230 AFN-ol701B

inter 8274

0 0 Selects synchronous modes.

0 Async mode, 1 stop bit/character

0 Async mode, 1-V2 stop bits/character
1 Async mode, 2 stop bits/character

05,04 Sync mode select

0 0 8 bit sync character

0 16 bit sync character

0 SOLC mode (Flag sync)

External sync mode

07, 06 Clock mode-selects the clock/data rate
multiplier for both the receiver and the
transmitter. 1x mode must be selected for
synchronous modes. If the 1x mode is
selected, bit synchronization must be done
externally.

o 0 Clock rate = Oata rate x

o Clock rate = Oata rate x16

o Clock rate = Oata rate x 32

Clock rate = Oata rate x 64

Write Register S (WRS):

RTS

'--__ SDLe/CRC-16 (CRC MODE)

'------ll< ENABLE

'--_____ SEND BREAK

Tx 5 BITS OR LESS/CHAR

Tx 7 BITS/CHAR

ll< 6 BITS/CHAR

Tx 8 BITS/CHAR

'--_________ DTR

WRS
00 Transmit CRC Enable-a one in this bit

enables the transmitter CRC generator.
The CRC calculation is done when a
character is moved from the transmit
buffer into the shift register. A zero in this
bit disables CRC calculations. If this bit is
not set when a transmitter underrun
occurs, the CRC will not be sent.

1-231

01 Request to Send-a one in this bit forces
the RTS pin active (low) and zero in this bit
forces the R'i'S pin inactive (high).

02

03

04

CRC Select-a one in this bit selects the
CRC -16 polynomial (X16 + X 15 + X2 + 1)
and a zero in this bit selects thl'! CCITI-CRC
polynomial (X 16 + X 15 + X5~ 1).

Transmitter Enable-a zero in this bit
forces a marking state on the transmitter
output. If this bit is set to zero during data
or sync character transmission, the mark­
ing state is entered 'after the character has
been sent. If this bi! is set to zero during
transmission of a CR~ ch'aracter, sync or
flag bits are substituted for the remainder
of the CRC bits.

Send Break-a one in this bit forces the
transmit data low. A one 1" this bit allows
normal transmitter operation.

06, 05 Transmit Character length

o 0 Transmit 5 or less bits/character.

o 1 Transmit 7 bits/character

o Transmit 6 bits/character

Transmit 8 bits/character

Bits to be sent must be right justified least significant
bit first, eg:

07 06 05 04 03 02 01 00

o 0 B5 B4 B3 B2 B1 BO

AFN-01701B

inter 8274

Five or less mode allows transmission of one to five bits per
character, The microprocessor must format the data in
the' following. way:

07 06 05 04 . 03 02 01 DO

1 1 BO Sends one data bit

0 0 0 B1 BO Sends two data bits

0 0 0 B2 B1 BO Sends three data bits

0 0 0 B3 B2 B1 BO Sends four data bits

0 0 0 B4 B3 B2 B1 BO Sends five data bits

07 Data Terminal Ready-when set, this bit
forces the OTR pin active (low). When
reset, this bit forces the OTR pin inactive
(high).

Write Register 6 (WR6): Write Register 7 (WR7):

WR6

MSB LSB

I~~~:~:~:oo:oo:~:ool

Least significant

Sync byte. (Address
In SDLC/HDLC Mode)

07-00 Sync/Address-this register contains the
transmit sync character in Monosync
mode, the low order 8 sync bits in Bisync
mode, or the Addrassbyte in SOLC mode.

WR7

MSB LSB

I~:~:~:~:oo~oo:m:ool

1Mo.t Slgnlflcant

Sync byte (mu.t
be 01111110 In
SDLClHDLC Mode)

07-00 Sync/Flag-this register contains the're­
ceive sync character in Monosync mode,
the high order 8 sync bits in Bisync mode,
or the Flag character (01111110) in SOLC
mode. WR7 is not used in External. Sync
mode.

1-232 AfIII.017018

inter 8274

Re.d RegIster 0 (RRO):

MSI .SB

I~I~I~I~I~I~I~I~I

I

>,

RRO
DO Receive Character Available-this bit is

set when the receive FIFO contains data
and is reset when the FIFO is empty.

01 Interrupt Pending*-This Interrupt-Pend­
ing bit is reset when an EOI command is
issued and there is no other interrupt re­
quest pending at that time.

02 Transmit Buffer Empty-This bit is set
whenever the transmit buffer is empty
except when CRC characters are being
sent in a synchronous mode>. This bit is
reset when the transmit buffer is loaded.
This bit is set after an MPSC reset.

03 9arrier Detect-This bit contains the state
of the CO pin at the time of the last change
of any of the External/Status bits (CD,
CTS, Sync/Hunt, Break/Abprt, or Tx
Underrun/EOM). Any change of state of the
CD pin causes the CD bit to be latched and
causes an External/Status interrupt. This bit
indicates ourrent state of the CD pin im­
mediately following a Reset External/Status
Interrupt command. '>

*In vector mode this bit is set at the falling edge of
the second INTA in an !NTA cycle for >an internal
interrupt request. In non-vector mode, this bit is
set at the falling edge of RO input after pointer 2
is specified. This bit is always zero in Channel B.

Rx CHAR AVAILABLE

Int PENDING (CHA ONLy)

'IX BUfl'ER EMPTY

CARRIER DETECT

SYNClHUIlT

CTS EXTERNAL STATUS
INTERRUPT MODE

'IX UNDERRUNlEOM

BREAK/ABORT

04 Sync/Hunt-In asynchronous modes, the
operation of this !lit is Similar to the CD
status bit, except that Sync/Hunt shows the
state of the SYNOET ~Any High-to­
Low transition on the SYNDET pin sets this
bit, and causes an External/Status inter­
rupt (if enabled). The Reset External/Status
Interrupt command is issued to clear the
interrupt. A Low-to-High transition clears
this bit and sets the External/Status inter­
rupt. When the External/Status interrupt is
set by the change in state of any other in put
or condition, this bit shows the inverted
state of the SYNi5ET pin at time of the
change. This bit must be read immediately
following a Reset External/Status Interrupt
command to read the current state of the
SYNOET input.

In the External Sync mode, the Sync/Hunt
bit operates in a fashion similar to the
Asynchronous modI!, except the Enter
Hunt MOde control bit enables the external
sync detection logic. > When the External
Sync Mode and Enter Hunt Mode bits are
set (for example, when the receiver is
enabled following a reset), the SYNDET
input must be held High by the external
logip until external character synchroniza­
tion is achieved. A High at the SYNOET
input holds the Sync/Hunt status in the
reset condition. >

1-233 AFN-01701B

When external synchronization is
achieved, SYNOET must be driven Low on
the second rising edge of RxC after the
rising edge of RxC on which the last bit of
the sync character was received. In other
words, after the sync pattern is detected,
the external logic must wait for two full
Receive Clock cycles to activate the SYN­
OET input. Once SYNOET is forced Low, it
is good practice to keep it Low until' the
CPU informs the external sync logic that
synchronization has been lost or anew
message is about to start. The High-to-Low
transition of the SYNOET output sets the
Sync/Hunt bit, which sets the External/
Status interru'pt. The CPU must clear the
interrupt by issuing the Reset External/
Status Interrupt Command.' .

When the SYNOET input goes High again,
another External/Status interrupt is gener­
ated that must,also be cieared.,TheEnter
Hunt Mode control bit isset whenever
character synchronization is lost or the end
of message is. detected. In this case, the
MP~G again looks for a High-to-Lowtransi­
tion'on the SYNOET. input and .the opera-

. tion repeats a:s explained prevlo'llsly. This
implies the CPU shoulqalso inform the ex­
ternallogic that character synchronization
has been lost and thatthetytP,SC is waiting
for SYNOET to become active.

1,"1 the MonosyncandBisync. Receive
modes, the Sync/Hunt status bit is initially
set to 1, py t~e En~er ,l1u!1t.~<!e. bit. The
Sync/Hunt .bi.t is rellet when the MPSC es­
tablishes.character,synchroni~ation. The

, High-to-LolIY transition oUh~ SYnc/Hunt bit
caus~ an ,!:xternIlJlStatus i'llterrupt that

.. must be cleared by,the CPU i.ssuing the
Reset External/Statuslnteruptc;i~mmand.
This enables the MPSC to detect the next
transition of other External/Status bits.

When the CPU detects the end of message
or that character'synchronization is lost, it

'sets the Enter Hl:Int MOdEfcontrolbit, which
sets the Sync/Hunt bit to 1. The Low-to­
Hfgt'i'transitidrl'of the SynClft'uilf bit sets the
External/StatUs .Interrupt; whichtnust also
be cleared' by fhe Reset Exterrial/Status
InterrO~ltOdmmand.Note that th'eSYNOET
pin actsas'a.n output in this mode, and
goes low every time a sync pattern is de­
tected hl the data streah1.;' '

05

06

07

In the SOLC mode, tl'l1i Sync/Hunt' bit is
initially set by the Enter Hunt mode bit, or
when the receiver is disabled: In any case: it
is reset toO when the opening flag:01 t he
first frame is cietected by the MPSC. The
External/Status interrupt is also generated,
and should be handled as discussed
preViously:. '

Unlike the Monosync and Bisync modes,
once the Sync/Hunt bit is reset in the SOLC'
mode, it does not need to be set when the
end of message is detected. The MPSC au­
tomatically maintains synchronization.
The only way the Sync/Hunt bit can be set
again is by the Enter Hunt Mode bit, or by
disabling the receiver.

Clear to Send-this bit contains the in­
·varted state of the CTS pin atthetime ofthe

last change of any of the External/Status
bits (CO, CTS, Sync/Hunt, Break/Abort,or

,TxUnderrun/EOM). Any change of state of
,t,he. ffi,pin . causes the CTS bit to be
latchedancl causes an External/Status
interrupt. This bit indicates the inverse of
the ,current state of theCTS"pin Im­
mediatelyfoliowing.a Reset External/
Status Interrupt cQll1mantj. ,

Transmitter Underrun/EndofMessage~
this bit is in a set condition following a reset
(internal of"external). The only command
that e,an reseUhis,bit is the. ResetTransmit
Underry,n/EOM,Latch command (WRO, 06
and 0'7)' When the Transmit Underrun con­
dition occurs, this bit is set, which causes
the External/Statu$,lnterr,upt which must

,be reset byh~suing a Reset External/Status
command (WRO; command, .2).

Bre~t</~b~Jt-':'in the As~nchronous Re­
.ceive ,mode, this bit is setwl1en a Break
s~quence (null character .plus framing
e~ror). is detected in the data . stream. The
External/Status internJpt,if enabled, is set
when break is detected. The interrupt ser­
vice routine must issue the Reset
External/Status h'ltern.!il!c9mmand· (WRO,
Command 2) to the break detection logic
so the Break sequence termination can be
recognized. .,,' '"

; , ,

AFJoI.01701B

8274

SOLC Residue Code Table (I Field Bits in 2 Previous Bytes)

8 bits/char 7 bits/char 6 bits/char 5 bits/char

RR1 Previous 2nd Prevo Previous 2nd Prevo Previous 2nd Pr.ev. Previous 2nd Prev
03,02,01 Byte Byte Byte Byte Byte Byte Byte Byte

1 0

0 1

1 1

0 0

1 0

0 1

1 1

0 0

0 0 3

0 0 4

0 0 5

1 0 6

1 0 7

1 0 8

1 1 8

0 2 8 0

The Break/Abort bit is reset when the ter­
mination of the Break sequence is detected
in the incoming data stream. The termina­
tion of the Break sequence also causes the
External/Status interrupt to be set. The
Reset External/Status Interrupt command
must be issued to enable the break detec­
tion logic to look for the next Break se­
quence. A single extraneous null character
is pres.ent in the receiver after the termina­
tion ofa break; it should be read and
discarded.

In the SOLC Receive mode, this status bit is
set by the detection of an Abort sequence
(seven or more 1 's). The External/Status
interrupt is handled the same way as in the
case of a Break. The Break/Abort bit is not
used in the Synchronous Receive mode.

7

1-235

0 6

0 5

DO All sent-this bit is sot when all charac­
ters have been sent, in asynchronous
modes. It is reset whon charactors aro in
the transmitter, in asynchronous modo!>.
In synchronous modo!), this bit is always
set.

03,02,01 Residue Codos-bit synchronous pro­
tocols allow I-fields that are not an inte­
gral number of characters. Since traris­
fers from the MPSC to the CPU are char­
acter oriented, the resid ue codes
provide the capability of receiving,
leftover bits. Residue bits are right jus­
tified in the last two data bytes received.

D4 Parity Error-If parity is enabled, this bit
is.set for received characters whose par­
ity does not match the programmed
sense (Even/Odd). This bit is latched.
Once an error occurs, it remains set until
the Error Reset command is written.

AFN·01701B

8274

Read Register 1 (RR1): (Special Receive Condition Mode)

05

06

MSB LSB

1 D71 06 1 05 1 D4 1 D3 : D2 : DIlDO 1

'------,,---...1 L ALL SENT

I FIELD BITS I FIELD BITS
,------.--.... PREVIOUS BYTE 2ND PREVIOUS BYTE

·0 0 0

o 0 1

o 1 0

o 1 1 RESIDUE DATA
. 8 BITs/CHAR. MODE

1 0 0

1 0 1

1 1 0

1 1 1

'---------PARITY ERROR

'-----------RxOVERRUN ERROR

'--___________ CRClFRAMINGERROR

'-____________ ENDOF FRAME (SDLClHDLC MODE)

Receive Overrun Error-this bit indi­
cates that the receive FI FO has been
overloaded by the receiver. The last
character in the FIFO is overwritten and
flagged with this error. Once the over­
written character is read, this error con­
dition is latched until reset by the Error
Reset command. If the MPSC is in the
status affects vector mode, the overrun
causes a special Receive Condition
Vector.

CRC/Framing Error-In async modes, a
one in this bit indicates a receive fram-

07

1-236

ingerror. In synchronous modes, a one
in this bit indicates that the calculated
CRC value does not match the last two
bytes received. It can be reset by issuing
an Error Reset command.

End of Frame-this bit i,s valid only in
SOLC mode. A one indicates that a valid
ending flag has been received. This bit is
reset either.by an Error Reset command
or upon reception of the first character
of the next frame.

AFN-01701B

inter 8274

Read Register 2 (RR2):

MBB LSB

1~:w:~:_:.:w:w:~1

L=.:.. Vector Vector Mode (WR1; 02)

RR2 Channel B
07-00 Interrupt vector-contains the interrupt

vector programmed into WR2.lf the status
affects vector mode is selected, it contains
the modified vector. (See WR2) RR2 con­
tains the modified vector for the highest
priority interrupt pending. If no interrupts
are pending, the variable bits in the vector
are set to one.

SYSTEM INTERFACE

General
The MPSC to Microprocessor System interface can
be configured in many flexible ways. The basic inter­
face types are polled, wait, interrupt driven, or direct
memory access driven.

Polled operation is accomplished by repetitively
reading the status of the MPSC, and making deci­
sions based on that status. The MPSC can be polled
at any time.

Wait operation allows slightly faster data throughput
forthe MPSC by manipulating the Ready inputto the
microprocessor. Block Read or Write Operations to
the MPSC are started at will by the microprocessor
and the MPSC deactivates its ROY signal if it is not
yet ready to transmit the new byte, or if reception of
new byte is not completed.

Interrupt driven operation is accomplished via an
internal or external interrupt controller. When the
MPSC requires service, it sends an interrupt request
signal to the microprocessor, which responds with
an interrupt acknowledge Signal. When the internal
or external interrupt controller receives the ac­
knowledge, it vectors the microprocessor to a ser­
vice routine, in which the transaction occurs.

OMA operation is accomplished via an external DMA
controller. When the MPSC needs a data transfer, it
reqLiest a DMA cycle from theDMA controller. The .

. DMA controller then takes control of the bus and
'simultaneously does a read .from the MPSC and a
write to memory or vice-versa.

The following. section describes the many config­
urations of these basic types of system interface
techniques for both serial channels.

Polled Operation:

In the polled mode, the CPU must monitor the de­
sired conditions within the MPSC by reading the ap­
propriate bits in the read registers. All data available,
status, and error conditions are represented by the
appropriate bits in read registers 0 and 1 for chan­
nels A and B.

There are two ways in which the 'software task of
monito.ring the status of the MPSC has been re­
duced. One is the "ORing" of all conditions into the
Interrupt Pending bit. (RRO; D1 channel A only). This
bit is set when the MPSC requires service. allowing
theCPUto monitor one bit instead of four status rllg­
isters. The other is available when the "status­
affects-vector" mode is selected. By reading RR2
Channel B, the CPU can read a vector who's value
will indicate that one or more of group of conditions
has occurred, narrowing the field of possible condi­
tions. See WR2 and RR2 in the Detailed Command
Description section.

Software Flow, Polled Operation

1-237 AFN.o1701A

inter
Hardware Configuration, . poned Operation

l ADDRESS BUS. . .,. II

6 DATA BUS t.
RD

iVA'
'. ~vcc

~
'-- DBO·7 INTA .'

8205 '--- Ao
., L.....;..:;; ":., '. 0'--- A, MPSC

WAIT OPERATION:
Wait Operation is intended to facilitate data trans­
mission or reception using blockmove operations. If
a block of data is to be transmitted, for example, the
CPU can execute a String I/O instruction to.the
MPSC. After writing the first byte, the CPU wiHat-.
tempt to write a second byte nnmediatelyas isthe
case of block move. The MPSC fO.rces.th.EH::tDY­
signal low which inserts wait states inthe CPU's
write cycle until the transmit buf·fer is ready to ac­
cept a new byte. At that time, the RDY signal is high
allowing the CPU to finish the write cycle. The CPU
then .attempts the third write' and the process is'
repeated.

Similar operation can be programmed for the re­
ceiver. During initialization, wait on transmit (WR2;
D5 = 0) or wait on'receive (WR1; 05 = 1) can be
selected.The wait operation can be enabled/
disabled by setting/resetting the Wait Enable Bit
(WR1; 07).

CAUTIQN: ANY CONDITION THAT CAN CAl)$E THE
TRANSMITTER TO STOP (EG, CTS GOES INAC­
TIVE) OR THE RECEIVER TO STOP (EG, RX DATA
STOPS) WILL CAUSE THE M.PSC TO HANG THE
CPU UP IN WAIT STATES UNTIL RESET. EXTREME
CARE SHOULD BE TAKEN W,HEN USING THIS FEA­
TUBE.

INTERRUPT DRIVEN OPERATION:
The MPSC can be programmed into several inter­
rupt modes: Non-Vectored, 8085 v'9ct{)red, and
8088/86 vectored. In both vectored modes, multiple
MPSC's can be daisy-chained.

In the vectored mode, the MPSC responds to an
interrupt acknowledge seq~ence by placing a call
instruction (8085 mode) and interrupt vector (8085

CS
RD

WfI

and 8088/86 mode) on the data bus. In the non­
vectored mode, the !VIPSC does not respond to INTA
sequences and must rely on an external interrupt
controller such as the 8259A.

The MPSC can be programmed to cause an interrupt
due to up to 14 conditions in each channel. The
status of these ihterruptconditiohs is contained in
Read Registers a and 1. These 14 conditions are all
dire'cted to· cause 3 different types of· internal inter­
rupt request for each channel: receive/interrupts,
transmit interrupts and external/status interrupts (if
enabled)."

This results in up to 6 internal interruptrequest
signals. The priority of those signals can be pro­
grammed to one oftwo fixed modes:

Highest Priority ,Lowest Priority

RxA RxB TxA TxB' ExTAEicTB
RxA TxA RxB TxB ExtA ExTB

The interrupt priority resolutJon works differently for
vectored and non-vectored modes.

PRIORITY RESOLUTION: VECTORED MODE
Any interrupt condition Can be accepted internally
to the M PSC at any ti me, unless the M PSC's internal
INTAsigna.1 is active,unless a higher priority inter­
ruptis currently accepted; Or if TJ:5T is inactive (high).
The MPSC's internal·INTkis seton the leading (fail­
ing) edge of the first External INTA pulse and reset
on the trailing (rising) edge of the second External
INTA pulse. 'After an interrupt is accepted internally,
an External INTrequest is generated and the IPO
goes inactive. fi50 and fi51 are used for daisy­
chaining MPSC's together.

AFN.Q1701B

inter 8274

Interrupt Condition Grouping

INTERNAL
INTERRUPT
ACCEPTED

INTERRUPT
(EXTERNAL)

iim.
(EXTERNAL)

INTA
(INTERNAL)

CONDITION MODE

RECEIVE CHARACTER __________ 'I R~~1~::~~~:~~8

~~~~~i~~~:R~U~N~E~R~R~O~R--~r;~~r-1 
FRAMING ERROR=""""=::-_ .... 
END OF FRAME (SDLC ONLY)---.~i!!.IJliIIC~U 

FIRST NON.SYNC CHARACTER (SYNC MDDES) INTERRUPT ON FIRST 
VALID ADDRESS BYTE (SOLe ONLY) RII CHARACTER 

INTERNAL INTERRUPT 
REQUEST 

FIRST DATA CHARACTER~8~~~~~~===~J~~~~~:J 

CDTRANSITION~~~~~~~~~~~~~~~~~~~~~~~~ll~~~~1 CTS TRANSITION EXTERNAU 
SYNC TRANSITION ~ STATUS 
T. UNDERRUN/EOM INTERRUPT 
BREAK/ABORT DETECT _ : • 

TRANSMIT BUFFER EMPTY 

LOWER PRIORITY INTERRUPTS NOT ACCEPTED 

HIGHER 

_.,...f__----NO~~~~~~.r-----..... o\-of----I.:;~~:~~S--
ACCEPTED 

The MPSC's internallNTA is set on the leading (fail­
ing) edge of the first external!NTA pulse, and reset 
on the trailing (rising) edge ot the second external 
INTA pulse. After an interrupf'is accepted internally. 

an external INT request is generated ana jPOgoes 
inactive (high)::1P'O and jj5j are used'to'r daisy­
chaining MPSC's together. 

1·239 AFN.Q1701B 



8274 

In-Service Timing 

INTERNA~ INTERRUPT J. . ACCEPTED .•. . .. .. 

:' '." . , 

INTERRUPT ~ I 
(EXTERNAL) _ \\.. ________________ -.J. 

iNii 
(EXTERNAL) 

INTA 
(INTERNAL) 

IN.SERVICE 
(INTERNAL) 

Each of the six interrupt sources has an associated 
In-Service latch. After priority·hasbeen resolvednhe 

highest priority In-Service latch is set. After the In­
Service latch is set, the i1'ff pin goes inactive (high). 

1-240 AFNoOl701B 



inter 8274 

EOI Command Timing 

INnRNAL INTERRUPT ~ 
ACCEPTED 

jjij 

INTERRUPT \ 
(EXTERNAL) _ / 

rmr 
(EXTERNAL) 

INT" / (INTERNAL) 

wo~ 

/ IN~SERVICE 
~NT!RNAL) 

EOI COMMAND 
(INl1!RNAL) 

Lower priority interrupts are not accepted internally 
while the In-Service latch is set, However, higher 
priority interrupts are accepted internally and anew 
external INT request is generated. ,If tne C,PU re-
sponds with a flew INTAsequence, the MPSC will re­
spond as before, suspending th'e lower priority 
interrupt. 

1·241 

~OO~I1.DIMIDOO~OOW 

MRYIC! 
IIOUTlNE 

.. ' 

" 

'c 
~ 

LOW!" 
PRIORITY 
INTI!RRUPTI 
ACCEPrED 

After the interrupt is serviced,the End-of-Interrupt 
(EOI) command should be written to the MPSC. This 
command will cause an internal pulse that is used to 
reset the In-Service Latchwhieh allows servi,ce for 
lower priority interrupts in, the (iaisy-cnain to re­
sume, provide~ a,new I NTA sequence doe,S not start 
for a higher priority interrupt (higher than the high­
estund~f?se~), lftherej!no interrupt pending in­
ternally, the IPO follows IPI. 

AfK.Ol701B 



inter 8274 

.. :)1 :.; 

Non-Vectored Interrdpt Timing 

,NTERNALINTERFlUPT 
ACCEPTED 

INTERRUPT 
(EXTERNAL) 

Rii 
(EXTERNAL) 

INTERNAL POINTER 
SETTOREG2 

.H-UIJYICE 
(IN'rERNAL). 

EOICOMMAND 
(INTERNAL) 

PRI()RITY RESOLUTION: 
NON-VECTORED MODE 

In non-vectored mode, the MPSC does not respond 
to interrupt acknowledge ·sequences. The ,MPSC 
should be programmed to the Status"Affects-Vector 
mode, and the CPU shoul~tread RR2 (Ch. B) in its 
service routine to deterfhinewhich interrupt re­
quires service. 

II:; ,this cllse, the internal pointer being set to RR2 
pfovidesthesame function as the 'internal INTA 
signal in the vectored mode. It inhibits' acceptance 
ofJiny additional internal interrupts and its leading 
edge starts the interrupt prior!ty re'solution circuit. 
The interrupt priority resolution Is ended by the lead­
ing edge of the read signal used by the CPU to 
retrieve the modified vector. The leading edge of 
read sets the In-Service latch and"forces the external 
INT output inactive (high). ;Ttl.e internal pointer is 
reset to zero after the trailing edge of the read pulse. 

1-242 AFN-01701B 



8274 

Vee 

INT f-o<}~ 
INTA 

CPU 6 
INT INTA 

~ 
IPI IPO 

MPSC 
HIGHEST PRIORITY 

Note that if RR2 is specified but not read, no internal 
interrupts, regardless of priority, are accepted. 

DAISY CHAINING MPSC: 
In the vectored interrupt mode, multi pie MPSC's can 
be daisy-chained on the saine INT, INTA signals. 
These signals, in conjunction with the IPI and lPO 
allow a daisy - chain - like interrupt resolution 
scheme. This scheme can be configured for either 
8085 or 8086/88 based system. 

In either mode, the same hardware configuration is 
called for. The INT request lines are wire-OR'ed to­
gether at the input of a TTL inverter which drives the 
INT pin of the CPU. The INTA signal from the CPU 
drives all of the daisy-chained MPSC's. ' , 

The MPSC drives IPO(lnterrupt Priority Output) in­
active (high) if iPi (Interrupt Priority Input) is inactive 
(high), or if the MPSC has an interrupt pending. 

The IPO ofthe highest priority MPSC i~ connepted to 
the iPf of the next highest priority MPSC, andso on. 

IPI 

6 6 
INT INTA INT INTA 

IPO IPI IPO , 
MPSC MPSC 

LOWEST PRIORITY 
" 

H IPlis active (low), the MPSC knows that all higher 
priority MPSC"s have no interrupts pending. The IPI 
pin of the highest priority MPSC is strapped active 
(low) to ensure that it always has priority over the 
rest. ' 

MPSC's Daisy-chained on an 8088/86 CPU should be 
programmed to the 8088/86 Interrupt mode (WR2; 
D4, D3 (Ch. A). MPSC's Daisy-chained on an 8085 

"CPU should be programmed to 8085 interrupt mode 
1 if it is the highest priority MPSC. In this mode, the 
highest priority MPSC issues the CALL instruction 
during the first INTA cycle, and the interrupting 
MPSC provides the interrupt vector during thefol­
lowing INTA cycles. Lower priority MPSC's should 
be programmed to 8085 interrupt mode 2. 

MPSC's used alone in 8085 systems should be pro­
grammed to 8085 mode 1 interrupt operation. 

1-243 AFN.o1701B 



8274 

DMA Acknowledge Circuit 

DACKo -----, 
~,------., 

DACK, --...... +11-....., 
DACK, -__1>-+-+--iI----,-t 

DMATlming 

Jo--a'----c"----Ao 
1-;:;;-"""7---- A, 

I---L)o---- cs 

AO,A"CS---..... X'-___________ >C 

RD, Wii---'----... \\", ______ .... / 

DMA OPERATION 
Each MPSC can be programmed to utilize. up to four 
DMA channels: Transmit Channel A, Receive Chan­
nel A, Transmit Channel B, Receive Channel B. Each 
DMA Channel has,an associated DMARequest line. 
Acknowledgement of a DMA cycle is done via nor­
mal data read or write cycles. This is accomplished 
by en~ding the DACK signals to generate Ao' A1, 
and CS signals, and multiplexing them with the 
normal Ao, ~, and CS signals. 

PERMUTATIONS 
Channels A and B can be used with different system 
interface modes. In all cases it is impossible to poll 

permutations of interupt, wait, and DAM modes for 
channels A and B. Bits 01, Do of WR2 Ch. A deter­
mine these permutations. 

Permutation 
WR2 Ch. A 

D1 Do Channel A ChannelB 

Wait Wait 
00 Interrupt Interrupt 

Polled Polled 
o 1 DMA Interrupt 

Polled Polled 

1 0 DMA DMA 
Polled Polled 

the MPSC. The following table shows the possible 01, DO = 1, 1 is illegal. 

1-244 AFN·01701 B 



intJ 

8284A 

8274 

DE ~ .... 
A16-A19 .... ___________ _� DI DO A16-A1' 

ALE .... ----------~---_I STB 
~ 

A8-A15 

-
r;:::: DI DO ... , 

f- STB 

8'" 

T- J 00.-00, 1 ~ ..... 8212 STS 
-V DE DI,-DI1 

HOLD ADO.;t:X !--------y-,-r .... -, DQ-D 7 

ADSTBI-------....l 

r 
~ 

-y 8274 

'Ft 

H-+-------------I DB, 
H-+----------I DB, 

1237 ArA, 1-____________ -' 

C§ ---"'»-
(FROM 8205) ..... 

L-------------------------------------------------4RD L-_____________________________________________ -q~ 

1·245 AFN-ol701B 



-n+_I" line-

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature 

8274 

Under Bias ........................ O°C to + 70°C 
Storage Temperature .' 
(Ceramic Package) ..... : ........ -65°(; to + 150°C 
(Plastic Package) .............. -40°C to +125°C 
Voltage On Any Pin With 
Respectto Ground .............. -0.5Vto +7.0V 
Power Dissipation ...... >. ;. ' .... " ......... 1.5W 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to th$ 
device. This is a stress rating only and functional opera­
tion -of the device at these or any other conditions above 
t.h6se indicated in the operational sections of this specifi­
cation is not implied. Exposure to .absolute maximum 
rating conditions for extended periods may affect device 
reliability. ; . 

D.C. CHARACTERISTICS (TA =O°C to 70°C; Vee = +5V ±10%) 

Symbol Parameter Min. Max. Units Test Conditions 

VIL Input Low Voltage -0.5 +0.8 V 

VIH Input High Voltage +2.0 Vee +0.5 V 

VOL Output Low Voltage +0.45 V IOL = 2.0rnA 

VOH Output-High Voltage +2.4 V IOH = -200p.A 

IlL Input Leakage Current +10 p.A VIN = Vee to.OV 

IOL . OutputLeakage Current +10 !LA VOUT=VeetoOV 

IcC Vee Supply Current 180 rnA 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

. Symbol Parameter Min. Max. Units Test Conditions 

CIN Input Capacitance 10 pF fc = 1 MHz; 

COUT Output Capacitance 15 pF Unmeasured 

CI/O Input/Output Capacitance 20 pF pins returned 

to GND 

1·246 AFNo01701B 



inter 8274 

A.C. CHARACTERISTICS (TA ", O°C to 70°C; Vcc = +5V ±10%) 

Symbol Parameter Min. Max. Units Test Conditions' 

ICY ClK Period 250 4000 ns 

'Cl ClK low Time 105 2000 ns 

ICH ClK High Time 105 2000 ns 

'r ClK Rise Time 0 30 ns 

If ClK Fall Time 0 30 ns 

'AR AO, AI Selup 10 ROt 0 ns 

lAD AO, AI 10 Dala Oulpul Dlay 200 ns' CL=150pf 

'RA AO. AI Hold Afler ROt 0 ns 

' RO 
ROt 10 Dala Oulpul Delay 200 ns CL=150 pf 

'RR RD Pulse Widlh 250 ns 

IOF Oulput Float Delay 120 ns 

tAW CS, AO, AI Selup 10 WRt 0 ns 

tWA CS, AO, AI Hold after WRt 0 ns 

tww WR Pulse Width 250 ns 

tow Data Setup to WRt 150 ns 

two Data Hold After WRt 0 ns 

tpi iPf Selup 10 INTAt 0 . ns 

tiP IPI Hold after INTAt 0 ns 

til INTA Pulse Width 250 ns 

'IAPO INTAt 10 IPO Delay 200 ns 

tplPO IPq to IPO Delay 100 ns 

'10 INTAt to Dala Output Deay 200 ns 

'ca AD or WR 10 DROt 150 ns 

:-::- .' 

'RV Recovery Time Between Controls 300 ns 

tcw CS, AO, AI 10 ROY A or ROY B Delay 120 ns 

'OCy . Dala Clock Cycle 400 ns 

tOCl Data Clock low Time 180 ns 

tOCH Data Clo.ck High Time 180 ns 

tTO TxC to TxD Delay 300 ns 

tos RxD Setup to RxCt 0 ns 

IOH RxD Hold after Rxct 140 ns 

tlTO TxC to INT Delay ,," .. ,. 4 6 tcy 

tiRO RxC to INT Delay 7 10 tcy 

tpL CTS, CD, SYNDET Low Time 
,. ~> 200 ns' 

,. 
IpH CTS, CD, SYNDET High Time '200 ns 

t lPO ExternallNTfrom CTS, CD, SYNDET 500 ns 

1·247 AFN-01701B 



intJ 
A.e. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

u~" ")C : ., . > TEST POINTS < '. . 
0.' 0.' 0.45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND 0.45V FOR 
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.OV FOR A LOGIC "1" 
AND O.SV FOR A LOGIC "0." 

WAVEFORMS 

CLOCK CYCLE 

READ CYCLE 

CS.AO,A1 

8274 

A.C. TESTING LOAD CIRCUIT 

DEVICE 
UNDER 

!JCl~150PF TEST 

C. = 150pF 
C. INCWDES JIG CAPACITANCE 

1-248 AF~I701B 



inter 8274 

WAVEFORMS (Continued) 

WRITE CYCLE V 

.,/ t= ... ~=-_tww-=~ ... d< 
DBa-DB7 

INTA CYCLE 

DMA CYCLE 

DRO / 

---" 

ei,AQ,A1 

ii50RWR 

NOTES: 
1. INTA signal acts as RD signal. 
2. IPI signal acts as CS signal. 

1-249 AFN-OI701B 



8274 

WAVEFORMS (Continued) 

READ/WRITE CYCLE (SOFTWARE POLLED MODE) 

C8.AD,Al 

RDOAWR 

1-------�,,------+1 

"-------

TRANSMIT DATA CYCLE 

OTHER TIM~NG "[' Ipc • .J ~ ~ 
'CTS,CD,SViiPE'f ~-------;r r----I'H-----<~ "'~ __ 

1-" ~_,IPD---Q-t.,'__ _____ ....,..,..-
1·250 AFN.()1701B 



inter 
8291 A 

GPIB TALKER/LISTENER 

• Designed to Interface 
Microprocessors (e.g., 8048/49, 8051, 
8080/85,8086/88) to an IEEE Standard 
488 Digital Interface Bus 

• Programmable Data Transfer Rate 

• Complete Source and Acceptor 
Handshake 

• Complete Talker and Listener 
Functions with Extended Addressing 

• Service Request, Parallel Poll, Device 
Clear, Device Trigger, Remote/Local 
Functions 

• Selectable Interrupts 

• On-Chip Primary and Secondary 
Address Recognition 

• Automatic Handling of Addressing and 
Handshake Protocol 

• Provision for Software Implementation 
of Additional Features 

• 1-8 MHz Clock Range 

• 16 Registers (8 Read, 8 Write),2for 
Data Transfer, the Rest for Interface 
Function Control, Status, etc. 

• Directly Interfaces to External 
Non-Inverting Transceivers for 
Connection to the GPIB 

• Provides Three Addressing Modes, 
Allowing the Chip to be Addressed 
Either as a Major or a Minor Talker/ 
Listener with Primary or Secondary 
Addressing 

• DMA Handshake Provision Allows for 
Bus Transfers without CPU 
Intervention 

• Trigger Output Pin 

• On-Chip EOS (End of Sequence) 
Message Recognition Facilitates 
Handling of Multi-Byte Transfers 

The 8291 A is an enhanced version of the 8291 GPIB Talker/Listener designed to interface microprocessors to 
an IEEE Standard 488 Instrumentation Interface Bus. It implements all of the Standard's interface functions 
except for the controller. The controller function can be added with the 8292 GPIB Controller, and the 8293 
GPIB Transceiver performs the electrical interface for Talker/Listener and Talker/Listener/Controller 
configurations. 

/8291A 

I 
I 
I 

8291A I 
GPIB DATA 

INTERFACE 

FUNCTIONS v====~ 

SH 
AH 
TE 
LE 
SR 

AL 
pp 

Figure 1. Block Diagram 

I 
T/RCONTROL 

1·251 

TO NON-INVERTING 

BUS TRANSCEIVERS 

Figure 2. Pin Configuration 



inter 8291A 

8291A FEATURES AND IMPROVEMENTS· 

The 8291A is an improved design of the 8291 GPIB 
Talker/Listener. Most of.the functions are identical to 
the 8291, and the pin . configuration is unchanged. 

The 8291A offers the following improvements to the 
8291 : 

1. EOlis active with the data as a ninth data bit 
rather than as a. control bit. This is to comply 
with some additions to the 19751EEE-488 Stan­
dard incorporated in the 1978 Standard. 

2. The BO interrupt is not asserted until RFD is 
true. If the . Coritro"erass'9rts ATN 
synchronously, the data is guaranteed to be 
transmitted. If the Controller asserts AiN 
asynchronously, the SH (Source Handshake) 
wi" return to SIDS (Source Idle State), and the 
output data wi" be cleared. The, if ATN is 
released while the 8291Ais addressed to talk, a 
nev/SO interrupt wi" be generated. This change 
fixes 8291 problems· which caused data to be 
lost or repeated and a problem with the RQS bit 
(sometimes cannot be asserted while talking). 

3. llOC and HEMC interrupts are setting flipflops 
rather than toggling flipflops in the interrupt 
backup register. This ensures that the CPU 
knows that these state changes have occurred. 
The actual state can be determined by checking 
the llO and REM status bits in the upper nibble 
of the Interrupt Status 2 Register. 

4. DREQ is cleared by DACK (RD + WR). DREQ on 
the 8291 was cleared only by DACK which is not 
compatible with the 8089 I/O Processor. 

5. The INT bit in Interrupt Status 2 Register is du­
plicated in. bit 7 of the Address 0 Register. If 
software polling is used to check for an inter­
rupt, INT in the Address 0 Register should be 
polled rather than the Interrupt Status 2 Regis­
ter. This ensures that no interrupts are lost due 
to asynchronous status reads and interrupts. 

6. The 8291A's Sen.d EOI Auxiliary Command 
works on any byte including the first byte of a 
message. The 8291 did not assett EOI after this 
command for a one byte message nor on two 
consecutive bytes. 

1·252 

7. To avoid confusion between holdoff on DAVver­
sus RFD if a device is readdressed from a talker 
toa listener role or vice-versa during a holdoff, 
the "Holdoff on Source Handshake" has been 
eliminated. Only "Holdoff on Acceptor Hand­
shake" is available. 

8. The rsv local message is cleared automatically 
upon exit from SPAS if (APRS.STRS.SPAS) oc­
curred. The automatic resetting of the bit after 
the serial po" is complete simplifies the service 
req uest software. 

9. The SPASC interrupt on the 8291 has been 
replaced by the SPC (Seriai Po" Complete) in­
terrupt on the 8291A. SPC interrupt is set on exit 
from .SPAS if APRS.STRS.SPAS occurred, indi­
cating that the controller has re.ad the bus status 
byte after the 8291A requested service. The 
SPASC interrupt was ambiguous because a 
controller could enter SPAS and exit SPAS gen­
erating two SPASC interrupts without reading 
the serial poil status byte. The SPC interrupt also 
simplifies the CPU's software by eliminating the 
interrupt when the serial poll is half way done. 

10. The rtl Auxiliary Command in the 8291 has been 
replaced by Set and Clear rtl Commands in· the 
8291A. Using the new commands, the CPU has 
the flexibility to extend the length of local mode 
or leave it as a short pulse as in the 8291. 

11. A holdoff RFD on GET, SDC, and DCl feature 
has been added to prevent additional bus ac­
tivity while the CPU is responding to any of 
these commands. The feature is enabled by a 
new bit (B.) in the Auxiliary Register B. 

12. On the 8291, BO could cease to occur upon IFC 
going false if IFC occurred asynchronously. On 
the 8291A; BO continues to occur after IFC has 
gone false even if it arrived asynchronously. 

13. User's software can distinguish between the 
8291 and the 8291A as follows: 

a) pon (OOH to register 5) 
b) RESET (02H to register 5) 
c) Read Interrupt Status 1 Register. If BO inter­

rupt is set, the device is the 8291. If BO is clear, 
it is t!1e 8291 A. 

This can be used to set a flag in the user's 
software which wi" permit special routines to be 
executed for each device. It could be included 
as part of a normal initialization procedure as 
the fi rst step after a ch i preset. 

AFN-00229B 



inter 8291A 

Table 1. Pin Description 

Symbol 
Pin 

Type Name and Function 
No. 

Symbol 
Pin 

Type Name and Function 
No. 

Do-D, 12-19 I/O Data Bus Port: To be con- RESET 4 I Reset Input: When high, 
nected to microprocessor forces the device into an 
data bus. "idle" (initialization) mode. 

RSo-RS, 21-23 I Register Select: Inputs, to 
be connected to three non-
multiplexed microproces-
sor address bus lines. 
Select which of the 8 inter-

The device will remain at 
"idle" until released by the 
microprocessor, with the 
"Immediate E.xecute pon" 
local message. 

nal read (write) registers DIO,-DIO. 28-35 I/O 8-Bit GPIB Data Port: Used 
will be read from (written for bidirectional data byte 
into) with the execution of transfer between 8291 A 
RD(WR.) and GPIB via non-inverting 

CS 8 I Chip Select: When low, external line transceivers. 

enables reading from or DAV 36 I/O Data Valid: GPIB hand-
writing into the register se- shake control line. Indi-
lected by RSo-RS,. cates the availability and 

RD 9 I Read Strobe: When low 
with CS or DACK low, se-
lected register contents 

valid!!Lof information~ 
the DIO,-DIO. and EOI 
lines. 

are read. NRFD 37 I/O Not Ready for Data: GPIB 

WR 10 I Write Strobe: When low 
with CS or DACK low, data 
is written into the selected 
register. 

handshake control line. In-
dicates the condition of 
readiness of device(s) con-
nected to the bus to accept 
data. 

INT (INT) 11 0 Interrupt Request: To the 
microprocessor, set high 
for request and cleared 
when the appropriate reg-
ister is accessed by the 
CPU. May be software con-
figured to be active low. 

NDAC 38 1/0 Not Data Accepted: GPIB 
handshake control line. In-
dicates the condition of ac-
ceptance of data by the 
device(s) connected to the 
bus. 

DREQ 6 0 DMA Request: Normally 
low, set high to indicate 
byte output or byte input in 
DMA mode; reset by DACK. 

ATN 26 I Attention: GPIB command 
line. Specifies how data on 
DIO lines are to be inter-
preted. 

DACK 7 I DMA Acknowledge: When 
low, resets DREQ and 
selects data in/data out 
register for DMA data 

IFC 24 I Interface Clear: GPIB 
command line .. Places the 
interface functions in a 
known quiescent state. 

'transfer ~ctual transfer SRQ 27 0 Service Request: GPIB 
done by RD/WR pulse). command line. Indicates 

the need for attention and 
Must be high if DMA is not requestsan interruption of 
used. the current sequence of 

TRIG 5 0 Trigger Output: Normally events on the GPIB. 

low; generates a triggering REN 25 I Remote Enable: GPIB 
pulse with 1 ILsec min. command line. Selects (in 
width in response to the conjunction with other 
GET bus command or Trig- messages) remote or local 
ger auxiliary command. control of the device. 

CLOCK 3 I External Clock: Input, EOI 39 I/O End or Identify: GPIB com-
used only for T, delay mand line. Indicates the 
generator. May be any end of a multiple byte 
speed in 1-8 MHz range. transfer sequen~r, in 

conjunction with ATN, ad-
dresses the device during a 
polling sequence. 

1-253 AFN·OO229B 



intJ 8291A 

Table 1. Pin Description (Continued) 

Symbol 
Pin 

'tYpe . Name and Function 
No. 

T/R1 1 0 External Transceivers 
Control Line: Set high to 
indicate output datal 
signals on the 010,-010. 
and DAV lines and input 
signals on the NRFO and 

.. 1, NOAC lines (active source 
handshake). Set low to in-
dicate ~ut.Jl.!ta/signals 
on the 010,-010. and OAV 
lines and output signals on 
the NRFO and NOAC lines 
(active acceptor hand-
shake). 

r - - - -.. DREO 
I DMA 

Symbol 
Pin 

'tYpe Name and Function 
No. 

T/R2 2 0 External Transceivers 
Control Line: Set to indi-
cate output signals on the 
EOi line. Set low to indicate 
expected input signal on 
the EOlline during parallel 
poll. 

Vee 40 P.S. Positive Power Supply: 
(5V ±10%). 

GNO 20 P.S. Circuit Ground Potential. 
NOTE: 
All signals on the 8291A pins are specified with positive logic. 
However, IEEE 488 specifies negative logic on its 16 signal lines. 
Thus, the data is inverted once from 0 0-07 to DIDo-DID, and 
non-inverting bus transceivers should be used. 

I ~g~i,~~~~R ~I __ D_A_CK __ L ____ ~-----.J L _____ ..1 

Figure 3. 8291A System Diagram 

THE GENERAL PURPOSE INTERFACE 
BUS (GPIB) 

The General Purpose Interface Bus (GPIB) is 
defined in the IEEE Standard 488-1978 "Digital In­
terface for Programmable Instrumentation." 
Although a knowledge of this standard is assumed, 
Figure 4 provides the bus structurelor quick refer­
ence. Also, Tables 2 and 3 reference the interface 
state mnemonics and the interface messages 
respectively. Modified state diagrams for the 8291A 
are presented in Appendix A. 

General Description 

The 8291A is a microprocessor-controlled device 
designed to interface microprocessors, e.g., 
8048{49, 8051, 8080{85, 8086{88 to the GPIB. It im­
plements all of the interface functions defined in the 

1-254 

IEEE-488 Standard except for the controller func­
tion. If an implementation of the Standard's Control­
ler is desired, it can be connected with an Intel® 8292 
to form a complete interface. 

The 8291A handles communication between a mi­
croprocessor-controlled device and the GPIB. Its 
capabilities include data tra.nsfer, handshake 
protocol, talker/listener addressing procedures, 
device clearing and triggering, service request, and 
both serial and parallel polling. In most procedures, 
it does not disturb the microprocessor unless a byte 
has arrived (input buffer full) or has to be sent out 
(output buffer empty). 

The 8291A architecture includes 16 registers. Eight 
of these registers may be written into by the micro­
processor. The other eight registers may be read by 
the microprocessor. One each of these read and 

AFN-00229B 



8291A 

write registers is for direct data transfers. The rest of 
the write registers control the various features of the 
chip, while the rest of the read registers provide the 
microprocessoJ with.a monitor of GPIB states, vari­
ous bus conditions, and device conditions. 

GPIB Addressing 

Each device connected to the GPIB must have at 
least one address whereby the controller device in 
charge of the bus can configure it to talk, listen, or 
send status. An 8291A implementation of the GPIB 
offers the user three alternative addressing modes 
for which the device can be initialized for each appli­
cation. The first of these modes allows for the device 
to have two separate pri mary add resses. The second 
mode allows the user to implement a single 
talker/listener with a two byte address (primary ad­
dress + secondary address). The third mode again 
allows for two distinct addresses but in this instance, 
they can each have a ten-bit address (5 low-order 
bits of each of two bytes). However, this mode re­
quires that the secondary addresses be passed to 
the microprocessor for verification. These three 
addressing schemes are described in more detail in 
the discussion of the Address Registers. 

DEVICE A 

ABLE TO 
TALK, LISTEN. 

AND 
CONTROL 

(e.g. calculator) 

DEVICE B 

ABLE TO 
TALK AND 

LISTEN 

(e.g. floppy 
disk) 

DEVICE C 

ONL Y ABLE 
TO LISTEN 

(e.g. sIgnal 
generat~rJ 

DEVICE 0 

ONLY ABLE 
TO TALK 

(e.geouOle,) 

11111 III f 
= DATA BUS 

= 
DATA BYTE 
TRANSFER 
CONTROL 

= 
GENERAL 

INTERFACE 
MANAGEMENT 

= 

-}DlO1 
'-----,-

. 8 

DAV 
NRFO 
NDAC 

lFe 
ATN 
SRO 
REN 
EOI 

Figure 4. Interface Capabilities and Bus Structure 

Table 2. IEEE 488 Interface State Mnemonics 
Mnemonic State Represented Mnemonic State Represented 

ACDS Accept Data State PACS Parallel Poll Addressed to Configure State 
ACRS Acceptor Ready State PPAS Parallel Poll Active State 
AIDS Acceptor Idle State PPIS Parallel Poll Idle State 
ANRS Acceptor Not Ready State 
}l.PRS Affirmative Poll Response State 
AWNS Acceptor Wait for New Cycle State .. 

I-CACS- - ------------------, 
Controller Active State 

: CADS Controller Addressed State 
I CAWS Controller Active Wait State 
I CIDS Controller Idle State 
I CPPS Controller Parallel Poll State 
I CPWS Controller Parallel Poll Wait State 
I CSBS Controller Standby State 
: CSNS Controller Service Not Requested State 
I CSRS Controller Service Requested State 
I CSWS Controller Synchronous Wait State 
I CTRS ~o~t~o~I:_r~:a~s!:r ~t~t~ ______ J L ____ 

PPSS Parallel Poll Standby State 
PUCS Parallel Poll Unaddressed to Configure State 

REMS Remote State 
RWLS Remote With Lockout State 

SACS System Control Active State 
SDYS Source Delay State 
SGNS Source Generate State 
SIAS System Control Interface· Clear Active State 
SIDS Source Idle State 
SIIS System Control Interface Clear Idle State 
SINS System Control Interface Clear Not Active State 
SIWS Source Idle Wait State 
SNAS System Control Not Active State 
SPAS Serial Poll Active State 

DCAS Device Clear Active State 
DCIS Device Clear Idle State 

SPIS $erial Poll Idle State 
SPMS ·Serial Poll Mode State 

DTAS Device Trigger Active State 
DTiS Device Trigger Idle State 

SRAS System Control Remote Enable Active State 
SRIS System Control Remote Enable Idle State 

LACS Listener Active State SRNS System Control Remote Enable Not Active State 
LADS Listener Addressed State SRQS Service· Req uest State 
LIDS Listener Idle State STRS Source Transfer State 
LOCS Local State SWNS SoGrce Wait for New Cycle State 
LPAS Listener Primary Addressed State 
LPIS Listener ~rrmary Idle State 
LWLS Local With Lockout State 

TACS Talker Active State 
TADS Talker Addressed State 
TIDS Talker Idle State 

NPRS Negative Poll Response State TPIS Talker Primary Idle St.ate 

'The Controlier function IS Implemented on the Intel® 8292. 

J-255 AFN-<J0229B 



inter 

NOTE: 

8291A 

Table 3. IEEE' 488 Interface Mesaage Reference Liat 

Mnemonic Message Interface Function(s) 

LOCAL MESSAGES RECEIVED (By Interface Functions) • 

'gts go to standby C 
isl individual status PP 
ion listen only L, LE 
Ipe local poll .enable PP 
nbs hew byte available SH 

pon 
rdy 

'rpp 
'rsc 
rsv 

rtl 
'sic 
'sre 
'tca 
'tcs 
ton 

power on 
ready 
request parallel poll 
request system control 
request service 

retu rn to local 
send interface clear 
send remote enable 
take control asynchronously 
take control synchronously 
talk only 

REMOTE MESSAGES RECEIVED 

ATN Attention 
DAB Data Byte 
DAC Data Accepted 
DAV Data Valid 
DCL Device Clear 

END End 
GET Group Execute Trigger 
GTL Go to Local 
lOY Identify 
IFC I nterfaceClear 

LLO Local Lockout 
MLA My Listen Address 
MSA My Secondary Address 
MTA My Talk Address 
OSA Other Secondary Address 

OTA Other Talk Address 
PCG Primary Command Group 

2PPC Parallel Poll Configure 
2[PPD] Parallel Poll Disable 
2[PPE] Parallel Poll Enable 

'PPRN Parallel Poll Response N 
2ppU Parallel Poll Unconfigure 
REN Remote Enable 
RFD Ready for Data 
RaS Request Service 

[SOC] Select Device Clear 
SPD Serial Poll Disable 
SPE Serial Poll Enable 

'SaR Service Request 
STB Status Byte 

'TCT or [TCT] Take Control 
UNL Unlisten 

SH,AH,T,TE,L,LE,SR,RL,PP,C 
AH 
C 
C 
SR 

RL 
C 
C 
C 
AH,C 
T, TE 

SH,AH,T,TE,L,LE,PP,C 
(Via L, LE) 
SH 
AH 
DC 

(via L, LE) 
DT 
RL 
L,LE,PP 
T,TE,L,LE,C 

RL 
L,LE,RL,T,TE 
TE,LE,RL 
T,TE,L,LE 
TE 

T, TE 
TE,LE,PP 
PP 
PP 
PP 

(via C) 
PP 
RL 
SH 
(via L, LE) 

DC 
T, TE 
T, TE 
(via C) 
(via L, LE) 

C 
L, LE 

1. These messages are handled only by Intel's 8292. 
2. Undefined commands which may be passed to the microprocessor. 

AFN4lO229B 



8291A 

Table 3. (Cont'd) 
IEEE 488 Interface Message Reference List 

Mnemonic Message "Interface Functlon(s) 

REMOTE MESSAGES SENT 

ATN Attention C 
DAB Data Byte (via T. TE) 
DAC Data Accepted AH 
DAV Data Valid SH 
DCl Device Clear (via C) 

END End (via T) 
GET Group Execute Trigger (via C) 
GTl Go to local (via C) 
IDY Identify C 
IFC Interface Clear C 

llO local lockout (via C) 
MlA or [MlA) My Listen Address (via C) 
MSA or [MSA) My Secondary Address (via C) 
MTA or [MTA) My Talk Address (via C) 
OSA Other Secondary Address (via C) 

OTA Other Talk Address (via C) 
PCG Primary Command Group (via C) 
PPC Parallel Poll Configure (via C) 
[PPD) Parallel Poll Disable (via C) 
[PPE) Parallel Poll Enable (via C) 

PPRN Parallel Poll Response N PP 
PPU Parallel Poll Unconfigure (via C) 
REN Remote Enable C 
RFD Ready for Data AH 
ROS Request Service T. TE 

[SDC) Selected Device Clear (via C) 
SPD Serial Poll Disable (via C) 
SPE Serial Poll Enable (via C) 
SRO Service Request SR 
STB Status Byte (via T. TE) 

TCT Take Control (via C) 
UNl Unlisten (via C) 

NOTE: 
3. All Controller messages must be sent via Intel"s 8292. 

8291 A Registers Data Registers 

A bit-by-bit map of the 16 registers on the 8291A is 
presented in Figure 5. A more detailed explanation 
of each of these registers and their functions fol­
lows. The access of these registers by the 
microprocessor is accomplished by using the CS, 
RO, WR, and RSo-RS2 pins. 

Register CS RD WR RSo•RS2 

All Read Registers 0 0 1 CCC 
All Write Registers 0 0 CCC 
High Impedance d d ddd 

I 0 17 1 016 1 015 1 014 1 013 1 012 1 011 1 010 1 

DATA-IN REGISTER. (OR) 

\00710061005100410031002100110001 

DATA-OUT REGISTER (OW) 

The Data-In Register is used to move data from the 
GPIB to the microprocessor or to memory when the 
8291A is addressed to listen. Incoming information 
is separately latched by this register, and its con­
tents are not destroyed by a write to the data-out 

1·257 AFN-00229B 



inteJ 8291A:i 

register. The RFD (Ready for Data) message is,,heI9;; 
false until the byte is removed from the data in regis­
ter, either by the, microprocessor or by DMA. The 
8291A then cOlJlpletes the handshakea:utomatically. 
In RFD holdoff mode (see Auxiliary Register A), the 
handshake is not finished until a command is sent 
telling the 8291A to release the holdoff. In this way, 
the same byte may be read seveal times, or an over 
anxious talker may be held off until all available data 
has been processed. 

When the 8291A is addressed to talk, it uses the 
data-out register to move data onto the GPIB. After 
the BO interrupt is received and a byte is written to 
this register, the 8291A initiates and completes the 
handshake while sending the byte out over the bus. 
In the BO interrupt disable mode, the user should 
wait until BO is active before writing to the register. 
(In the DMA mode, this will happen automatically.) A 
read of the Data-In Register does not destroy the 
information in the Data-Out Register. 

In~errupt Registers 

ICPTIAhrGE~'lgNDI DEC I ERR I BO I BI 
, ~ ,: '.:,' ".:, . . . -' '.," '.:' . 

INTERRUPT STATUS 1 (1R) 

IINTISPASILL01REM I SPC / LLOCIREMC/ADSC I 
INTERRUPT STATUS 2 (2R) 

r CPT IAPT / GEt / END I DEC .1 ERR I BO I BI\ 

INTERRUPT ENABLE 1 (1W) 

o 0 IOMAO IDMAllsPC I LI.~OCIRE'MCIADSC I 
INTI~HRUptf;:NABLE 2 (2W) 

II NTI Drol DLO] ADS-O I AD4-0 I AD3-0j AD2-0j AD1-0 / 

ADDRESS 0 REGISTER 

Figure 5. 8291A Registers 

READ REGISTERS 

017 I, 016 015 014 013 012 011 I 010 

DATA IN 

I CPT I APT GET I ENO I OEC I ERR I BO ',I BI 

INTERRUPT STATUS 1 

INT I SPAS I LLD I REM I SPC I LLOC I REMCj ADSC I 
INTERRUPT STATUS 2 

I 58 SR051 56 I 55 I 54 I 
53 

I 
52 I 51 I 

SERIAL POLL STATUS 

! ton Ion 'EOI I LPA5 I TPA5 I LA "I TA I MJMNI 

ADDRESS STATUS 

I CPT71 CPTli !CPT51 CPT4,\' CPT3'1 CPT2 I. CPT! I CPTO I 

COM~ANDPASST~ROUGH 

liNT OTO OLO I A05.01 A04.01 A03.01 A02.0\ A01.01 

' ADDRESS a 

\ 
x OTl 

I 
OLl.] A05·,I":A04;,\ A03.,\ A02.11 AO,·,1 

ADDRESS 1 

REGISTER SELECT 
CODE 

RS2 Rs1 Rsa 

0 0 I 007 1 006 I 

1 "I CPT ,I APT 

I' Q I 0 I 0 

1 \ 58 I rsv 

WRITE R'EGISTERS, 

0051 004 OQ3 I 002 001 I 000 

DATA OUT 

GET I ENO I' O,Ecl ERR BO I BI 

INTERRUPT ENABLE 1 

DMAO['DMAI] SPC ILLOCI . REMCI ADSC I 
INTERRUPT ENABLE 2 

56 1 55 I 54 1 53 I 52 ' lSI I 
SERIAL POLL MODE 

0 0 I TO I LO 1 0 I 0 I 
0 \0 \ AOM1\AOMO:\ 

ADDRESS MODE 

1 I CNT2\ CN.Tll CNTOI COM4\' CDM~\ COM2I'CDM1\ C;OMol 

AUX MODE 

0 \ ARS I OT DL I A05 1 A04 I A03 IA02 I AOI 

" ADD'RESS 011 

1 \ ~ci I EC6 EC5 IEC4 [, EC3 I EC2 'r eCl I ECO 

EOS 

1·258 AFN-{J0229B 



inter 8291A 

The 8291A can be configured to generate an inter­
rupt to the microprocessor upon the occurrence of 
any of 12 conditions or events on the GPIB. Upon 
receipt of an interrupt, the microprocessor must 
read ,he Interrupt Status Registers to determine 
whic.1 event has occurred, and then execute the 
appropriate service routine (if necessary). Each of 
the 12 interrupt status bits has a matching enable bit 
in the interrupt enable registers. These enable bits 
are used to select the events that will cause the INT 
pin to be asserted. Writing a logic "1" into any of 
these bits enables the corresponding interrupt 
status bits to generate an interrupt. Bits in the Inter­
rupt Status Registers are set regardless of the states 
of the enable bits. The Interrupt Status Registers are 
then cleared upon being read or when a local pon 
(power-on) message is executed. If an event occurs 
while one of the Interrupt Status Registers is being 
read, the event is held until after its register is 
cleared and then placed in the register. 

The mnemonics for each of the bits in these regis­
ters and a brief description of their respective func­
tions appears in Table 4. This tables also indicates 
how each of the interrupt bits is set. 

NOTE: The INT bit in the Address a Register is a duplicate of the 
INT bit in the Interrupt Status 2 Register. It is only a status 
bit. It does not generate interrupts and thus does not have 
a corresponding enable bit. 

The BO and BI interrupts enable the user to perform 
data transfer cycles. BO indicates that a data byte 
should be written to the Data Out Register. It is set by 
TACS . (SWNS + SGNS) . RFD. It is reset when the 
data byte is written, ATN is asserted, or the 8291A 
exits TACS. Data should never be written to the Data 
Out Register before BO is set. Similarly, BI is set 
when an input byte is accepted into the 8291A and 
reset when the microprocessor reads the Data In 
Register. BO and BI are also reset by pon (power-on 
local message) and by a read of the Interrupt 

Table 4. Interrupt Bits 

Indicates Undefined Commands 

Set by (TPAS + LPAS)oSCGoACDSoMODE 3 

Set by DTAS 

Set by (EOS + EOI)oLACS 

Set by DCAS 

Set by TACS.nba.DAC.RFD 

TACSo(SWNS + SGNS) 

Set by LACS.ACDS 

Shows status of the INT pin 

The device has been enabled for a serial poll 

The device is in local lock out state. 
(LWLS+RWLS) 

The device is in a remote state. 
(REMS+RWLS) 

'CPT 
APT 

GET 

END 

DEC 

ERR 

BO 

BI 

INT 

SPAS 

LLO 

REM 

'---

An undefined command has been received. 

A secondary address must be passed through 
to the microprocessor for recognition. 

A group execute trigger has occurred. 

An EOS or EOI message has been received. 

Device Clear Active State has occurred. 

Interface error has occurred; no listeners 
are active. 

A byte should be output. 

A byte has been input. 

I-
These are status only. They will not generate 
interrupts, nor do they have corresponding 
mask bits. 

SPAS ---SPAS if APRS.STRS.SPASwas true SPC Serial Poll Complete interrupt. 

LL6'"'NO LLO LLOC Local lock out change interrupt. --RemotO-ocal REMC Remote/Local change interrupt. 

AddresseOnaddressed ADSC Address status change interrupt.' 

NOTE: 'In ton (talk-only) and Ion (listen-only) modes, no ADSC interrupt is generated. 

1-259 AFN-00229B 



8291A 

Status 1 Register. However, if it is.so desired, data 
transfer cycles may be perforrned without reading 
the InterruptStatus,1 Register if all interrupts except 
for BO or BI are disabled; BO andBI will auto­
matically reset after each byte is transferred. 

If the 8291A is used in the interrupt mode, the 
INT and DREQ pins can be dedicated to data input 
and output interrupts respectively by enabling BI 
and DMAO, provided/hatno other interrupts are 
enabled. This eliminates the need to read the inter­
rupt status registers if a byte is received or 
transmitted. 

The ERR,bit is set to indicate the bus error condition 
when the 8291 A is an active tal ker and tries to send a 
byte to the GPIB, but .there are no active listeners 
(e.g., all devices on the GPIB are in AIDS). The logi­
cal equivalent of (nba . TACS . DAC· RFD) will set 
this bit. 

The DEC bit is set whenever DCAS has occurred. 
The user must define a known state to which all 
device functions will return in DCAS. Typically this 
state will be a power-on state. However, the state of 
the device functions at DCAS is at the designer's 
discretion. It should be noted that DCAS has no 
effect on the interface functions which are returned 
to a known state by the IFC (interface clear) message 
or the pan local message .. 

The END interrupt bit may be used by the micropro­
cessor to detect that a multi-byte transfer has been 
completed. The bit will be set when the 8291A is an 
active listener (LACS) and either EOS (provided the 
End on EOS Received feature is enabled in the Auxil­
iary Register A) or EOI is .received. EOS will generate 
an interrupt when the byte in the Data In Register 
matches the byte in the EOS register. Otherwise the 
interrupt will be generated when a true input is 
detected on EOL 

The GET interrupt bit is used by the microprocessor 
to detect that DTAShas occurred. It is set by the 
8291A when the GET message is received while it is 
addressed to listen. The TRIG output pin of the 
8291A fires when tile GET message is received. 
Thus, the basic operation of device trigger may be 
started without microprocessor software interven­
tion. 

The APT interrupt bit indicates to the processor that 
a secondary address is available in the CPT register 
for validation. This interrupt will only occur if 
Mode 3 addressing is in effect. (Refer to the section 
on addressing.) In Mode 2, secondary addresses will 
be recognized automatically on the 8291 A. They will 
be ignored in Mode 1. 

The CPT interrupt bit flags the occurrence of an 
undefined command and of all secondary com­
mands following an undefined command. The Com­
mand Pass Through feature is enabled by the BO bit 
of Auxiliary Register B. Any message not decoded by 
the 8291 A (not included in the state diagrams in 
Appendix B) becomes an undefined command. Note 
that any addressed command is automatically ig­
nored when the 8291A is not addressed. 

Undefined commands are read by the CPU from the 
Command Pass Through register of the 8291A. This 
register reflects the logic levels present on the data 
lines at the time it is read. If the CPT feature is 
enabled, the 8291A will hold off the handshake until 
this register is read. 

An especially useful feature of the 8291A is its ability 
to generate interrupts from state transitions in the 
interface functions. In particular, the lower 3 bits of 
the Interrupt Status 2 Register, if enabled by the 
corresponding enable bits, will cause an interrupt 
upon changes in the following states as defined in 
the IEEE 488 Standard. 

Bit 0 ADSC change in LIDS or TIDS or MJMN 
Bit 1 REMC change in LOCS or REMS 
Bit 2 LLOC change in LWLS or RWLS 

The upper 4 bits of the Interrupt Status 2 Register 
are available to the processor as status bits. Thus, if 
one of the bits 0-2 generates an interrupt indicating 
a state change has taken place, the corresponding 
status bit (bits 3-5 may be read to determine what 
the new state is. To determine the nature of a change 
in addressed status (bit 0) the Address Status Regis­
ter is available to be read. The SPC interrupt (bit 3 in 
Interrupt Status 2) is set upon exit from SPAS if 
APRS.STRS.SPAS occurred which indicates that the 
GPIB controller has read the bus serial poll status 
byte after the 8291A requested service (asserted 
SRQ). The SPC interrupt occurs once after the con­
troller reads the status byte if service was requested. 

1-260 AFN·Q0229B 



8291 A 

The controller may read the status byte later, and the 
byte will contain the last status the 8291A's CPU 
wrote to the Serial Poll Mode Register, but the SROS 
bit will not be set and no interrupt will be generated. 
Finally, bit 7 monitors the state of the 8291A INT pin. 
Logically, it is an OR of all enabled interrupt status 
bits. One should note that bits 3-6 of the Interrupt 
Status 2 Register do not generate interrupts, but are 
available only to be read as status bits by the proces­
sor. Bit 7 in Interrupt Status 2 is duplicated in Ad­
dress 0 Register, and the latter should be used when 
polling for interrupts to avoid losing one of the inter­
rupts in Interrupt Status 2 Register. 

Bits 4 and 5 (DMAI, DMAO) of the Interrupt Mask 2 
Register are available to enable di rect data transfers 
between memory and the GPIB; DMAI (DMA in) 
enables the DREO (DMA request) pi n of the 8291 A to 
be asserted upon the occurrence of BI. Similarly, 
DMAO (DMA out) enables the DREO pin to be as­
serted upon the occurrence of BO. One might note 
that the DREO pin may be used as asecond interrupt 
output pin, monitoring BI and/or BO and enabled by 
DMAI and DMAO. One should note that the DREO 
pin is not affected by a read of the Interrupt Status.l 
Register. It is reset whenever a byte is written to the 
Data Out Register or read from the Data In Register. 

To ensure that an interrupt status bit will not be 
cleared without being read, and will not remain un­
cleared after being read, the 8291A implements a 
special interrupt handling procedure. When an 
enabled interrupt bit is set in either of the Interrupt 
Status Registers, the input of the registers are 
blocked until the set bit is read and reset by the 
microprocessor. Thus, potential problems arise 
when interrupt status changes while the register is 
being blocked. However, the 8291A stores all new 
interrupts in a temporary register and transfers them 
to the appropriate Interrupt Status Register after the 
interrupt has been reset. This transfer takes place 
only if the corresponding bits were read as zeroes. 

Serial Poll Registers 

I sal SRQS I S6 I S5 I S4 I S3 1 s21 81 1 

SERIAL POLL STATUS (3R) 

S8 I rsv I S6 I S5 ! S4 I S3 I S2 I Sl I 
SERIAL POLL MODE (3W) 

1-261 

The Serial Poll Mode Register determines the status 
byte that the 8291A sends out on the GPIB data lines 
when it receives the SPE (Serial Poll Enable) 
message. Bit 6 of this register is reserved for the rsv 
(request service) local message. Setting this bit to 1 
causes the 8291A to assert its SRO line, indicating its 
need for attention from the controller-in-charge of 
the GPIB. The other bits of this register are available 
for sending status information over the GPIB. 
Sometime after the microprocessor initiates a re­
quest for service by setting bit 6, the controller of the 
GPIB sends the SPE message and then addresses 
the 8291A to talk. At this point, one byte of status is 
returned by the 8291A via the Serial Poll Mode Reg­
ister. After the status byte is read by the controller, 
rsv is automatically cleared by the 8291 A and an SPC 
interrupt is generated. The CPU may request service 
again by writing another byte to the Serial Poll Mode 
Register with the rsv bit set. If the controller per­
forms a serial poll when the rsv bit is clear, the last 
status byte written will be read, but the SRO line will 
not be driven by the 8291A and the SROS bit will be 
clear in the status byte. 

The Serial Poll Status Register is available for read­
ing the st~tus byte in the Serial Poll Mode Register. 
The processor may check the status of a request for 
service by polling bit 6 of this register, which corre­
sponds to SROS (Service Request State). When a 
Serial Poll is conducted and the controller-in­
charge reads the status byte, the SROS bit is 
cleared. The SRO line and the rsv bit are tied 
together. 

Address Registers 

I ton lion I EOII LPASI TPAS I LA I TA I MJMNI 

ADDRESS STATUS (4R) 

liNT I DTO I DLO IAD5-0IAD4-0IAD3-0IAD2-0IAD1-ol 

ADDRESS 0 (6R) 

I X I DTll DL1!AD5-1!AD4-1IAD3-1!AD2-11 AD1·l I 

ADDRESS 1 (7R) 

I TO I LO I 0 I 0 I 0 I 0 I ADMllADMO I 
ADDRESS MODE (4W) 

I ARS I DT I DL I ADS I AD4 I AD3 I AD2 1 ADl I 
ADDRESS 0/1 (6W) 

AFN.Q0229B 



inter 8291A 

The Address Mode Register is used to select one of 
the five modes of addressing available on the 8291 A. 
It determines the way in which the 8291A uses the 
information in the Address Q and Address 1 
Registers. 

-In Mode 1, the contents of the Address 0 Register 
constitute the "Major" talker/listener address while 
the Address 1 Register represents the "Minor" 
talker/listener .address. In applications where only 
one address .is needed, the major ta.lker/listener is 
used, and the minor talker/listener should be dis­
abled. Loading an address via the Address 0/1 Regis­
ter into Address Registers 0 and 1 enables the major 
and minor talkerllistener functions respectively. 

-In Mode 2 the 8291A recognizes two sequential 
address bytes: a primary followed by a secondary. 
Both address bytes must be received in order to 
enable the device to talk or listen. In this manne'r, 
Mode 2 addressing implements the extended talker 
and listener functions as defined inIEEE-488. 

To use Mode 2 addressing the primary address must 
be loaded into the Address 0 Register, and the Sec­
ondary Address is placed in the Address 1 Register. 
With both primary and secondary addresses resid­
ing on chip, the 8291A can handle all addressing 
sequences without processor intervention. 

-In Mode 3, the 8291A handles addressing just as it 
does in Mode 1, except that eacb Major or Minor 
primary address must be followed by a secondary 
address. All secondary addresses must be verified 
by the microprocessor when Mode 3 is used. When 
the 8291A is in TPAS or LPAS (talker/listener primary 
addressed state), and it does not recognize the byte 
on the 010 lines, an APT interrupt is generated (see 
section on Interrupt Registers) and the byte is avail­
able in the CPT (Command Pass-Through) Register. 
As part of its interrupt service routine, the micropro­
cessor must read the CPT Register and write one of 
the following responses to the Auxiliary Mode 
Register: 

1. 07H implies a non-valid secondary address 

2.' OFH implies a valid. secondary address 

Setting the TO bit generates the. local ton (talk­
only) message and sets the 8291A to a talk-only 
mode. This mode allows the device to Operate as a 
talker in an interface system without a controller. 

Setting. the LO bit generates the local Ion (listen­
only) message and sets the 8291A to a listen-only 
mode. This mode allows the devrce.to operate as a 
listener in an interface system without a controller. 
The above bits may also be used by a controller-in­
charge to set itself up for remote command or data 
communication. 

The mode of addressing implemented by the 8291A 
may be selected by writing one ofthe following bytes 
to the Address Mode Register. .. 

Register Contents Mode 

10000000 Enable talk only mode (ton) 
01000000 Enable listen only mode (Ion) 
11000000 The 8291 may talk to itself 
00000001 Mode 1, (Primary-Primary) 
00000010 Mode 2 (Primary-Secondary) 
00000011 Mode 3 (Primary/APT-Primary/APT) 

The Address Status Register contains information 
used by the microprocessor to handle its own 
addressing. This information includes status bits 
that monitor the address state of each talker/ 
listener, "ton" and "Ion" flags which indicate the 
talk and listen only states, and an EOI bit which, 
when set, signifies that the END message came with 
the last data byte. LPAS and TPAS indicate that the 
listener or talker primary address has been received. 
The microprocessor can use these bits when the 
secondary address is passed through to determine 
whether the 8291A is addressed to talk or listen. The 
LA (listener addressed) bit will be set when the 
8291A is in LACS (Listener Active State) or in LADS 
(Listener Addressed State). Similarly, the TA (Talker 
Addressed bit) will be set to indicate TACS or TAOS, 
but also to indicate SPAS (Serial Poll Active State). 
The MJMN bit is used to determine whether the 
information in the other bits applies to the Major or 
Minor talker/listener. It is set to "1" when the Minor 
talker/listener is addressed. It should be noted that 
only one talker/listener may be active at anyone 
time. Thus, the MJMN bit will indicate which, if 
either, of the talker/listeners is addressed or active. 

The Address 0/1 Register is used for specifying the 
device's addresses accordi ng to the format selected 
in the Address Mode Register. Five bit addresses 
may be loaded into the Address 0 and Address 1 
Registers by writing into the Address 0/1 Register. 
The ARS bit is used to select which of these registers 
the other seven bits will be loaded into. The DT and 
DL bits may be used to disable the talker or listener 
function at the address signified by the other five 

1·262 AFN.Q0229B 



8291A 

bits. When Mode 1 addressing is used and only one 
primary address is desired, both the talker and the 
listener should be disabled at the Minor address. 

As an example of how the Address 0/1 Register 
might be used, consider an example where two pri­
mary addresses are needed in the device. The Major 
primary address will be selectable only as a talker 
and the Minor primary address will be selectable 
only as a listener. This configuration of the 8291A is 
formed by the following sequence of writes by the 
microprocessor. 

Operation cs RD WR Data RS2-RSo 

1. Select addressing Mode 1 0 1 0 00000001 100 

2. Load major address into 0 1 0 001AAAAA 110 
Address 0 Register with 
listener function disabled. 

3. Load minor address into 0 1 0 110BBBBB 110 
. Address 1 Register with 

talker function disabled. 

At this point, the addresses AAAAA and BBBBB are 
stored in the Address 0 and Address 1 Registers re­
spectively, and are available to be read by the micro­
processor. Thus, it is not necessary to store any 
address information elsewhere. Also, with the in­
formation stored in the Address 0 and Address 1 
Registers, processor intervention is not required to 
recognize addressing by the controller. Only in 
Mode 3, where. secondary. addresses. are passed 
through, must the processor intervene in the 
addressing sequence. 

The Address 0 Register contains a copy of bit 7 of the 
lriterrupt Status 2 Register (INT). This is to be used 
when polling for interrupts. Software should poll 
register 6 checking for INT (bit 7)to beset. When INT 
is set, the Interrupt Status Register should be read to 
determine which interrupt was received. 

Command Pass Through Register 

\CPT7jCP:r6\ CPTSj CPT4\ CPT3\ CPT2\CPT1\CPTO \ 

COMMAND PASS THROUGH (SR) 

The Command Pass Through Register is used to 
transfer undefined 8-bit remote message codes 
from the GPIB to the microprocessor. When the CPT 
feature is .enabled (bit BO in Auxiliary Register B), 
any message not decoded by the 8291 A becomes an 
undefined command. When Mode 3 addressing is 
used secondary addresses are als0 passed through 

the CPT Register. In either case, the 8291 A will hold­
off the handshake until the microprocessor reads 
this register and issues the VSCMD auxiliary 
command. 

The CPT and APT interrupts flag the availablility of 
undefined commands and secondary addresses in 
the CPT Register. The details of these interrupts are 
explained in the section on Interrupt Registers. 

An added feature of the 8291A is its ability to handle 
undefined secondary commands following unde­
fined primaries. Thus, the number of available 
commands for future IEEE-488 definition is in­
creased; one undefined primary command followed 
by a sequence of as many as 32 secondary com­
mands can be processed. The IEEE-488 Standard 
does not permit users to define their oiNn com­
mands, but upgrades of the standard are thus pro­
vided for. 

The recommended use of the 8291A's undefined 
command capabilities is for a controller-configured 
Parallel Poll. The PPC message is an undefine~p.ri­
mary command typically followed by ppe, an unde­
fined secondary command. For details on this proce­
dure; refer to the section on Paral.lel Poll protocol. 

Auxiliary Mode Register 

ICNT2lcNT1tCNTOIC0M4lc0M3ICOM2ICOM1ICOMOI 

AUX MODE (SW) 

CNTO-2:CONTROL BITS 
COMO-4:COMMAND BITS 

The Auxiliary Mode Register contains a three-bit 
control field and a five-bit command field .. It is u.sed 
for several purposes on the 8291A: 

1. To load "hidden" auxiliary registers on the 
8291A. 

2. To issue commands from themioroprocessor to 
~e~91A. .. 

3. To preset an internal counter used to generate 
T1, delay in the Source Handshake function, as 
defined in II;:EE-488. 

Table S summarizes how these tasks are performed 
with the Auxiliary Mode Register. Note that the three 
control bits determine how the five command bits 
are interpreted. 

1·263 AFN'()0229B 



inter 8291 A 

TableS 

CODE 
CONTROL COMMAND,I COMMAND 

BITS BITS 
000 OCCCC Execute auxiliary command 

CCCC 
001 00000 Preset internal counter to 

match external clock , 
frequency of DODD MHz 
(DODD binary representation 
of 1 to 8 MHz) 

100 00000 Write 00000 into auxiliary 
register/!; 

101 00000 W~ite 00000 into auxiliary 
register B 

011 USP3P2P1 Enable/disable parallel poll 
either in response to remote 
messages (PPC followed by 
PPE or PPO) or as a local 
Ipe message. (Enable if U = 0 
disable if U= 1.) 

AUXILIARY COMMANDS 

Auxiliary commands are executed by the 8291A 
whenever OOOOCCCC is written into the Auxiliary 
Mode Register, where CCCC is the 4-bit command 
code. 

OOOO-immediate Executepon: This command 
resets the 8291A to a power up state (local pon 
message as defined in IEEE-48e). 
The following conditions constitute the power up 
state: 
1. All talkers and listeners are disabled. 
2. No interrupt status bits are set. 
The 8291A is designed to power up in certain states 
as specified in the IEEE-488 state diagrams. Thus, 
the following states are in effect in the power up 
state: 5105, AIDS, TIDS, LIDS, NPRS, LOCS, and 
PPIS. 
The "0000" pon is an immediate execute command 
(a pon pulse). It is also used to rE;llease the "initialize" 
state generated by either an external reset pulse or 
the "0010" Chip Reset command. 

0010-Chip Reset (Initialize): This command has the 
same effect as a pulse applied to the Reset pin. 
(Refer to the section on Reset Procedure.) 

'0011-Finish Handshake :This command finishes a 
handshake 'that was stopped because of a holdoff 
on RFO. (Refer toAuxilia~y Register A.) 

0100-Trigger: A "Group Execute Trigger" is forced 
by this command. It has the same effect as a GET 
command issued by the controller-in-charge of the 
GPIB, but does not cause a GET interrupt. 

0101, 1101-Clear/Set rtl: These commands corre­
spond to the local rtlmessage as defined by the 
IEEE-488. The 8291A will go into local mode when a 
Set rtl Auxiliary Command is received if local 
lockout is riot in effect. The 8291A will exit local 
mode after receiving a Ciear ftl Auxiliary Command 
if the 8291A is addressed to listen. 

0110-Send EOI: The EOIline of the 8291A may be 
asserted with this command. The command causes 
EOI to go true with the next byte transmitted. The 
EOI line is then cleared upon completion of the 
handshake for that byte. 

0111, 1111-Non ValidNalid Secondary Address or 
Command (VSCMD): This command informs the 
8291A that the secondary address received by the 
microprocessor was valid or invalid (0111 = invalid, 
1111 = valid). If Mode 3 addressing is used, the 
processor must field each extended address and 
respond to it, or the GPIB will hang up. Note that the 
COM3 bit is the invalid/valid flag. 

The valid (1111) command is also used to tell the 
8291A to continue from the command-pass­
through-state, or from RFD hold off on GET, SOC 
or DCL.. 

1000-pon: This command puts the 8291A into the 
pon (power on) state and holds it there. It is similar to 
a Chip Reset except none of the' Auxiliary Mode 
Registers are cl,eared. In this state, the 8291A does 
not participate in any bus activity. An, Immediate 
Execute pon releases the 8291A from the pon state 
and permits the device to participate in the bus 
activity again. 

0001, 1001-Parallel Poll Flag (local "ist" message): 
This command sets (1001) or clears (0001) the paral­
lel poll flag. A "1" is sent over the assigned data line 
(PRR = Parallel Poll Response true) only if the paral­
lel poll flag matches the sense bit from the Ipe local 
message (or indirectly from the PPE message). For a 
more complete description of the Parallel Poll 
features and procedures refer to the section on Par­
allel Poll Protocol. 

INTERNAL COUNTER 

The internal counter determines the delay time al­
lowed for the setting of data on the 010 lines. This 
delay time is defined as T, in IEEE-488 and appears 
in the Source Handshake state diagram between the 

1-264 AFN-00229B 



inter 8291 A 

SDYS and STRS. As such, DAV is asserted T, after 
the 010 lines are driven. Consequently, T, is a major 
factor in determining the data transfer rate of the 
8291A .over the GPIB (T, = TWRDV2-TWRD15). 

When open-collector transceivers are used for con­
nection to the GPIB, T, is defined by IEEE-488 to be 
2/Lsec. By writing 00100000 into the Auxiliary Mode 
Register, the counter is preset to match a fe MHz 
clock input, where DODD is the binary representa­
tion of NF [1.;;NF.;;8, NF=(DDDD).]. When NF = fe, a 
2/Lsec T, delay will be generated before each DAV 
asserted. 

T1(/Lsec) = 2f~F + tSYNC , 1.;;NF.;;8 

tSYNC is a synchronization error, greater than zero 
and smaller than the larger of T clock high and T 
clock low. (For a 50% duty cycle clock, tSYNC is less 
than half the clock cycle). 

If it is necessary that T, be different from 2p.Sec, NF 
may be set to a value other than fe. In this manner, 
data transfer rates may be programmed for a given 
system. In small systems, for example, where trans­
fer rates exceeding GPIB specifications are re­
quired, one may set NF<fe and decrease T,. 

When tri-state transceivers are used, IE;EE-488 al­
lows a higher transfer rate (lower T,). Use of the 
8291A with such transceivers is enabled by setting 
B2 in Auxiliary Register B.ln this case, setting NF=fe 
causes a T, delay of 2/Lsec to be generated for the 
first byte transmitted - all subsequent bytes will 
have a delay of 500 nsec. 

T,(High Speed) p,sec = ~: + tSyNe 

Thus, the shortest T, is achieved by setting NF=1 
using an 8 MHz clock with a 50% duty cycle clock 
(tsyNe<63 nsec): 

1 
THHS) = 2x8 + 0.063 = 125 nsec max. 

AUXILIARY REGISTER A 

Auxiliary Register A is a "hidden" 5-bit register 
which is used to enable some of the 8291A features. 
Whenever a 100 A.A3~A,A., byte is written into the 

Auxiliary Register, it is loaded with the data 
A.A3A2A,Ao. Setting the respective bits to "1" 
enables the following features. 

Ao- RFD Holdoff on all Data: If the 8291A is listen­
ing, RFD will not be sent true until the "finish hand­
shake" auxiliary command is issued by the 
microprocessor. The holdoff will be in effect for each 
data byte. . 

A,-RFD Holdoff on End: This feature enables the 
holdoff on EOI or EOS (if enabled). However, no 
holdoff will be in effect on any other data bytes. 

A~End on EOS Received: Whenever the byte in the 
Data In Register matches the byte in the EOS Regis­
ter, the END interrupt bit will be set in the Interrupt 
Status 1 Register. 

A,-Output EOI on EOS Sent: Any occurrence of 
data in the Data Out Register matching the EOS 
Register causes the EOI line to be sent true along 
with the data. 

A.-EOS Binary Compare: Setting this bit causes 
the EOS Register to function as a full 8-bit word. 
When it is not set, the EOS Register is a 7-bit word 
(for ASCII characters). 

If A.,=A,=1, a special "continuous Acceptor Hand­
shake cycling" mode is enabled. This mode should 
be used only in a controller system configuration, 
where both the 8291A and the 8292 are used. It 
provides a continuous cycling through the Acceptor 
Handshake state diagram, requiring no local mes­
sages from the microprocessor; the rdy local mes­
sage is automatically generated when in ANRS. As 
such, the 8291A Acceptor Handshake serves as the 
controller Acceptor Handshake. Th·us, the controller 
cycles through the Acceptor Handshake without de­
laying the data. transfer in progress. When the tcs 
local message is executed, the S291A should be 
taken out of the "continuous AH cycling" mOde, the 
GPIB will hang up in ANRS, and a BI interrupt will be 
generated to indicate that control may be taken: A 
simpler procedure may be used when a "tcs on end 
of block" is executed; the 8291A may stay in "con­
tinuous AH cycling". Upon the end of a block (EOI or 
EOS received), a holdoff is generated, the GPIB 
hangs up in ANRS, and control may be taken. 

1·265 AFN-00229B 



inter ' 8291 A 

AUXILIARY REGISTER B 

Auxiliary Register 8 is a "hidden" 4-bit register 
which is used to enable some of the features of the 
8291A. Whenever a 101 8.83828,80 is written into 
the Auxiliary Mode Register, it is loaded with the 
data 8.838 28,Bo. Setting the'respective bits to "1" 
enables the following features: 

Bo-Enable Undefined Command Pass Through: 
This feature allows any commands not recognized 
by the 8291A to be handled in sonware. If enabled, 
this feature will cause the 8291 A to holdoff the hand­
shake when an undefined command is received.The 
microprocessor must then read the command from 
the Command Pass Through Register and send the 
VSCMD auxiliary command. Until the VSCMDcom­
mandissent, the handshake holdoff will be in effect. 

B,-Send EOI in SPAS: This bit enables EOI to be 
sent with th~ status byte; EOI is sent true in Serial 
Poll Active State. Otherwise, Eoi is sent false in 
SPAS. 

B,-Enable High Speed Data Transfer: This feature 
may be enabled when tri-state external transceivers 
are used. The data transf.er rate is limited by T, delay 
time generated in the Source Handshake function, 
which is defined according to the type of transceiv­
ers used. When the "High Speed"featureis enabled, 
T, = 2 microseconds is generated for the first byte 
transmitted after each true to false transition of ATN. 
For aU subsequent bytes, T, = 500 nanoseconds. 
Refer to the Internal Counter section for an explana­
tion of T,duration as a function of 8 2 and of clock 
fre.quency. 

B3-Enable Active low Interrupt: Setting this bit 
causes the polarity of the INT pin to be reversed, 
providing an OUtput signal compatible with In'tel's 
MCS-48® Family. Interrupt registers are not affected 
by this bit. . 

B.-Enable RFD Holdoff on GETorDEC: Setting this 
bit causes RFD to be held false' until the "VSCMD" 
auxiliary command is written after GET, SOC, and 
DCl commands. This allows the device to hold off 
the bus until it has completed a clear or trigger 
similar to anunrecognizedcommand~ 

PARAllEL pall PROTOCOL 

WritiF\ga011 USP3P2P, into the AU1<iliary Mode Reg­
isterwill enable (U=O) or disable (U=1 )the8291A for 
a parallel poll. When U =0, this command is the "Ipe" 
(local poll enable) local message as def.ined in 
IEEE-488 .. The "S" bit is the. sense in which the 
8291A is enabled; only if the Parallel Poll Flag ("ist" 
local message) matches this bit will the Parallel Poll 
Response,PPRN, be sent true (Response= S + ist). 
ThebitsP3P2P' specify which of the eight data lines 
PPRN will be sent over. Thus, once thf;j 829.1A has 
been configured for Parallel POll, whenever it senses 
both EOI and ATN true, it will automatically compare 
its PP flag with the sense bit and send PPRN true or 
false according to the comparison. 

If a PP2* implementation is desiJed, the "Ipe" and 
"ist" local messages are all that are needed. Typi­
cally, the user will configure, the. 8291A for Parallel 
Poll immediately after initialization. During normal 
operation the microprocessor will set or clear the 
Parallel Poll Flag (ist) according to the device's need 
for service. Consequently the 8291 A will be set up to 
give the proper respOnse tblDY (EOI • ATN) without 
directly involving the microprocessor. 

If a PP1* implementation is desired, the undefined 
command features of the 8291A must be used. In 
PP1, the 8291A is indirectly configured for Parallel 
Poll by the active controller on the GPI8. The se­
quence at the 8291A being enabled or disabled re­
motely is as follows: 

1. The PPC message is received and is loaded intO 
the Command Pass Through Register as an un­
defined command. A CPT Interrupt is sent to the 
microprocessor; the handshake is automatically 
held off. 

2. The microprocessor reads the CPT Register and 
sends VSCMD to the 8291 A, releasing the 
handshake. 

3. Having received an undefined primary com­
mand, the 8291A is set up to receive an undefined 
secondary command (the PPE or PPD message). 
This message is also received into the CPT Regis­
ter, the handshake is held off, and the CPT inter­
rupt is generated. 

NOTE: 'As defined in IEEE Stahdilrd488. 

1-266 AFN-00229B 



inter 8291A 

4. The microprocessor reads the PPE or PPD mes­
. sage and writes the command into the Auxiliary 
Mode Register (bit 7 should be cleared first). Fi­
nally, the microprocessor sends VSCMD and the 
handshake is released. 

End of Sequence (EOS) Register 

IEC71EC61EC51EC41EC31EC21EC11ECO I 
EOS REGISTER 

The EOS Register and its features offer an alterna­
tive to the "Send EOI" auxiliary command. A seven 
or eight bit byte (ASCII or binary) may be placed in 
the register to flag the end of a block or read. The 
type of EOS byte to be used is selected in Auxiliary 
Register bit Av,. 

If the 8291A is a listener, and the "End on EOS 
Received" is enabled with bit A2 , then an END. inter­
rupt is generated in the Interrupt Status 1 Register 
whenever the byte in the Data-In Register matches 
the byte in the EOS Register. 

If the 8291A is a talker, and the "Output EOI on EOS 
Sent" is enabled with bit A.a, then the EOI line is sent 
true with the next byte whenever the contents of the 
Data Out Register match the EOS register. 

Reset Procedure 

The 8291 A is reset to an initialization state either by a 
pulse applied to its Reset pin, or by a reset auxiliary 
command (02H written into the Auxiliary Command 
Register). The following conditions are caused by a 
reset pulse (or local reset command): 

1. A "pan" local message as defined by IEEE-488 is 
held true until the initialization state is released. 

2. The Interrupt Status Registers are cleared (not 
Interrupt Enable Registers). 

3. AUXiliary Registers A and B are cleared. 
4. The Serial Poll Mode Register is cleared. 
5. The Parallel Poll Flag is cleared. 
6. The EOI bit in the Address Status Register is 

cleared. 
7. NF in the Internal Counter is set to 8 MHz. This 

setting causes the longest possible T, delay to be 
generated in the Source Handshake (16p.sec for 
1 MHz clock). 

8. The rdy local message is sent. 

The initialization state Is released by an "im­
mediate execute pon" command (OOH written into 
the Auxiliary Command Register). 

The suggested initialization sequence is: 

1. Apply a reset pulse or send the reset auxiliary 
command. 

2. Set the desired intial conditions by writing into 
the Interrupt Enable, Serial Poll Mode, Address 
Mode, Address 0/1, and EOS Registers. Auxiliary 
Registers A and B, and the internal counter 
should also be initialized. 

3. Send the "immediate execute pan" auxiliary 
command to release the initialization state. 

4. If a PP2 Parallel Poll implementation is to be used 
the "Ipe" local message may be sent, enabling 
the 8291A for a Parallel Poll Response on an 
assigned line. (Refer to the section on Parallel 
Poll Protocol.) 

Using DMA 

The 8291A may be connected to the Intel® 8237 or 
8257 DMA Controllers or the 8089 I/O Processor for 
DMA operation. The 8237 will be used to refer to any 
DMA controller. The DREO pin of the 8291A requests 
a DMA byte transfer from the 8237. It is set by BO or 
BI flip flops, enabled by the DMAO and DMAI bits in 
the Interrupt Enable 2 Register. (After reading, the 
INT1 register BO and BI interrupts will be cleared but 
not BO and BI in DREQ equation.) 

The DACK pin is driven by the 8237 in response to 
the DMA request. When DACK is true (active low) it 
sets CS= RSO= RS1 = RS2=0 such that the RD and 
WR signals sent by the 8237 refer to the Data In and 
Data Out Registers. Also, the DMA request line is 
reset by DACK (RD + WR). 

DMA input sequence: 

1. A data byte is accepted from the GPIB by the 
8291 A. 

2. A BI interrupt is generated and DREO is set. 
3. DACK and RD are driven by the 8237, the contents 

of the Data In Register are transferred to the 
system bus, and DREO is reset. 

4. The 8291A sends RFD true on the GPIB and pro­
ceeds with the Acceptor Handshake protocol. 

DMA output sequence: 

1. A BO interrupt is generated (indicating that a byte 
should be output) and DREO is asserted. 

1·267 AFN.()()229B 



inter 8291 A 

2. DACK and WR are driven by the 8237, a byte is 
transferred from the MCS bus into the Data Out 
Register, and DREQ is reset. 

3. The 8291A sends DAV true on the GPIB and pro-
ceeds with the Source Handshake protocol. 

It should be noted that each time the devi.ce is ad­
dressed (MTA + MLA + ton + Ion), the Address­
Status Register should be read, and the 8237 should 
be initialized accordi ngly. (Refer to the 8237 or 8257 
Data Sheets.) 

APPLICATION BRIEF 

System Configuration 

MICROPROCESSOR BUS CONNECTION 
The 8291A is 8048/49, 8051, 8080/85, and 8086/88 

TO 
MICROPROCESSOR 

INTERFACE 

GPIB TRIGGER OUTPU 

. .-!! 
...!! 
~ 

~ 
-.!! 

17 -
...!! 
...!! 
...!!. 
..E. 
..E. 
-..! 
2 
...!.!!. 
....!.!. 
-2. 
~ 

.....!. 
-2. 

T2 

8291A 
2L-DO 0101 

01 0102 ~ 
30 

02 0103 

03 0104 
31 

04 0105 
32 

05 0106 
33 

06 0107 
34 

07 0108 
35 

RSD OAV 
36 

RSl TIRl 
1 

RS2 ATN 
26 

cs EOI 
39 

AD TlR2 
2 

WR NOAC 
38 

INT NRFO 
37 

CLOCK SRO 
27 

RESET REN 
25 

OREO IFC 
24 

i5ACK 
TRIG 

• = GPIB BUS TRANSCEIVER 

I 

compatible. The three address pins (RSo, RSi, RS2) 

should be connected to the non-multiplexed ad­
dress bus (for example:Aa, Ag , Al0). In caSe of 8080, 
any address lines may be used. If the three, lowest 
address bits are used (Ao, A1 , A2), then they must be 
demultiplexed first. 

EXTERNAL TRANSCEIVERS CONNECTION 
The 8293 GPIB Transceiver interfaces the 8291A di­
rectly to the IEEE-488 bus. The 8291A and two 8293's 
can be configured as a talker/listener (see Figure 6) 
or with the 8292 as a talker/listener/controller (see 
Figure 7). Absolutely no active or passive external 
components are required to comply with the com­
plete IEEE-488 electrical specification. 

25 
0101 

23 
0102 

10 
0103 

9 
0104 

8 
0105 

7 
0106 

6 
0107 

5 
0108 

24 
DAV 

1 
TIRl 

~ ATN 

~ EOI 

3 
EOI 

~ ATN 
1 

TIRl 
2 TIR2 

10 
NOAC 

9 
NRFO 

8 
SRO 

6 
REN 

5 
IFC 

8293 

0101· 

0102· 

0103· 

0104· 

0105· 

0108· 

0107· 

0108· 

DAV· 

OPTA 

OPTB 

MODEl 

8293 
E·OI· 

ATN· 

NOAC· 

NRFO· 

SRO· 

REN· 

IFC· 

OPTA 

OPTB 

MOOEO 

~ 
~ 
~ 
17 
r-
~ 
~ 
~ 
~ 

21 
r-

TO 
IEEE·488 
BUS 

~Vc c 
NO ~G 

..!L .' 
J.!!... 

c!!-
r£. 
r-!!-
e!!-
r!!-
rE-G 

~G 

TO 
IEEE·488 
BUS 

NO 

NO 

Figure 6. 8291 A and 8293 System Configuration 

1·268 AFN·OO229B 



TO 
MICROPROCESSOR 

GPIB 
TRIGGER 
OUTPUT 

TO MICROPROCESSOR 

~ 
r2! 
~ 

15 

16 

17 

18 

19 

21 

22 

23 

9 

10 

4 

6 

7 

8 

3 

11 

5 

.E.. 
c.....!!. 
~ 
~ 

16 

17 

16 

19 

9 

6 

10 

00 

01 

02 

03 

04 

05 

06 

07 

RSO 8H1A 

RSI 

RS2 

iiii 
WR 

RESET 

OREO 

OACK 
-
CS 

CLOCK 

INT 

TRIG 

00 

01 

02 

03 

04 

05 

06 

07 

AO 8292 

iiii 
Wii 

....... 4 RESETtt ...... 

TO I MICROPROCESSOR 

OSCILLATOR 
OUTPUT 

8 Cs 
32 

TCI 
33 

SPI 
35 

OBFI 
36 iBFi 
11 
5 SYNC 

Vee---=- SS 

~X1t 
~1 

X,1 

15-25 pF t r EA 

• = GPIB BUS TRANSCEIVER 
t=SEE 8041A DATA SHEET FOR ALTERNATE 

CRYSTAL CONFIGURATIONS 
tt = CAN CONNECT TO SYSTEM RESET SWITCH, 

SEe 8041A DATA SHEET 

8291A 

0101 
28 25 

0101 

0102 
29 23 iii02 

0103 
30 10 

0103 

0104 
31 9 

0104 

0105 
32 8 

0105 

Di06 33 7 
0106 

0107 
34 6 

0107 

DiOi 35 5 
0108 

T/RI 
1 1 

T/RI 

DAV 
36 24 

OAV 

EOI 
39 3 EDi 

ATN 
26 4 ATN 

SRO 
27 

IFC 
24 

NOAC 
38 

NRFo 37 

T/R2 2 ~ Ai'NO 
REN ~ I- ,2- iFcL 

DAY .E.. r-r-!- TiRl 
4 

ATN 
10 

NOAC 
9 NFiiii 
2 

TlR2 

SRO 
21 8 

SRO 

REN 
38 6 

REN 

IFC 
23 5 iFc 

m;;o 29 23 
ATNO 

COUNT 
39 3 

EOI 

EOl2 
34 7 

EOl2 

ATNI 
22 11 

ATNI 

iFcL 1 25 iFcL 
CiC 31 24 

CIC 

CLTH 
27 21 

CLTH 
24 22 

SYC SYC 

l)e ON SYSTEM 
CONTROLLER 

~OFF SWITCH 

Figure 7. 8291A, 8292, and 8293 System Configuration 

1·269 

0101· 

0102· 

0103· 

0104· 

0105· 

0106· 

0107· 
6293 

0106· 

OAV· 

OPTA 

OPTB 
MODE 3 

NOAC 

NRFO 

SRO· 

REN· 

8293 IFC· 

ATN· 

EOI· 

OPTA 

OPTB 

MODE 2 

.B... 

..1!... 

..1!... 

.lL. 

.1!... 

..!L 
~ 
..!!-

~ 

1L. v 

J!..V 

r!!-
~ 

~ 
r1!-
r!!-
~ 
~ 

TO 
IEEE-486 
BUS 

ec 
ec 

TO 
IEEE-486 
BUS 

r!Lv 
r!!-v 

ss 
ee 

AFN-D0229B 



inter 8291A 

Start':Up Procedures 

The following section describes the steps needed to 
initialize a typical 8291A system implementing a 
talker/listener interface and an 8291N8292 system 
implementing a talker/listener/controller interface. 

.' . 
TALKER!LISTENER SYSTEM 
Assume a general system configuration with the 
following features: (i) Polled system interface; (ii) 
Mode 1 addressing; (iii) same address for talker and 
listener; (iv) ASCII carriage return as the end-of­
sequence (EOS) character; (v) EOI sent true with the 
last byte; and, (vi) 8 MHz clock. 

Initialization. Initialization is accomplished with 
the following steps: 

1. Pulse the RESET input or write 02H to the Auxil- • 
iary Mode Register. 

2. Write OOHto the Interrupt Enable Registers 1 and 
2. This disables interrupt andDMA. 

3. Write 01 Hto the Address Mode Register to select 
Mode 1 addressing. 

4. Write 28H to the Auxiliary Mode Register. This 
loads 8H to the Auxiliary Register A matching the 
8 MHz clock input to the internalT1 delay counter 
to generate the delay meeting the IEEE spec. 

5. Write the talker/listener address to the Address 
0/1 register. The three most significant bits are 
zero. 

6. Write .an ASCII carriage return (ODH) to the EOS 
register. 

7. Write 84H to the Auxiliary Mode Register to allow 
EOI to be sent true when the EOScharacter is 
sent. 

8. Write OOH to the Auxiliary Mode Register. This 
writes thi9 "Immediate Execute pon" message 
and takes the 8291A from the initialization state 
into the idle state. The 8291Awill remain idle unti.l 
the controller initiates some activity by driving 
ATN true;' 

Communication. The local CPU now polls the 
8291A to determine which controUer command has 
been received. 

The controller addresses the 8291A by driving AiN, 
placing MLA (My Listen Address) on the bus and 
driving DAV. If the lower five bits of the MLA message 
match the address programmed into the Address 0/1 
register, the 8291 A is addressed to listen. It would be 
addressed to talk if the controller sent the MTA mes­
sage instead of MLA. 

TheADSC bit in the Interrupt Status 2 Register indi­
cates that the 8291A has been addressed or 
unaddressed. The TA and LA bits in the Address 
Status Register indicate whether the 8291A is talker 
(TA= 1), listener (LA,;" 1), both (TA= LA= 1) or unad-
dressed (TA=LA=O). .. . 

If the 8291A is addressed to listen, the local CPU can 
read the Data-In Register whenever the BI (Byte In) 
interrupt occurs in the Interrupt Status 1 Register. If 
the END bit in the same register is also set, either EOI 
or a data byte matching the pattern in the EOS regis­
ter has been receiv~d. 

In the talker mode; the CPU writes data into the 
Byte-Out Register on BO (Byte Out) true. 

. . TALKER/LISTENER/CONTROLLER SYSTEM 
Combined with the Intel 8292, the 8291 A executes a 
complete IEEE-488-1978 controller function, The 
8291A talks and listens via the data and handshake 
lines (NRFD, NDAC and row). The 8292 controls four 
of the five bus management lines (IFC; SRQ,ATN and 
REN): EOl,the fifth line, is shared. The 8291A drives 
and receives EOI when EOI is used as an end-of­
block indicator. The 8292 drives Em along with ATIii 
cluring a parallel poll command. 

Once again, assume a general system configuration 
with the foUowing features: (i) Polled system inter­
face; (ii) 8292 as the system controller and 

'. controller-in-charge; (iii)ASCIl carriage return (ODH) 
as the EOS identifier; (iv) EOI sent with the last 
character; and, (v) an external buffer (8282) used to 
monitor the TCI line. 

Initialization. In order to send a command across 
the GPIB; the 8292 has to drive ATN, and the 8291A 
has to drive ttie data lines. Both devices therefore 
need initialization. 

To initialize the 8292: 

1. Pulse the RESET input. The 8292 will initiallydrive 
all outputs high. TCI, SPI, OBFI, IBFI and CLTH 
will then go low. The Interrupt Status, Interrupt 
Mask, ,Error Flag, Error Mask and Timeout regis­
ters will be cleared. The interrupt counter will be 
disabled and loaded with 255. The 8292 will then 
monitor the status of theSYC pin. If high, thr, 
8292 will pulse IFC true for at.least 100ILS in com­
pliance with the IEEE-488-1978 standard. It will 
then take control by asserting ATN. 

To initialize the 8291A, the following is necessary: . 

1. Write OOH to Interrupt Enable registers 1 and 2. 
This disables interrupt and DMA. 

1·270 AFN-()0229B 



8291 A 

2. With the 8292 as the controller-in-charge, it is 
impossible to address the 8292 via the GPIB. 
Therefore, the ton or Ion modes of the 8291A must 
be used. To send comands, set the 8291Ain the 
ton mode by writing 80H to the Address Mode 
Register. 

3. Write 26H to the Auxiliary Mode Registerto match 
the T1 data settling time to the 6 MHz clock input. 

4. Write an ASCII carriage return (ODH) to the EOS 
Register. 

5. Write 84H to the Auxiliary Mode Register in order 
to enable "Output EOI on EOS sent" and thus 
send EOI with the last character. 

6. Write OOH~lmmediate Execute pan-to theAux­
iliary Mode Register to put the 8291A in the idle 
state. 

Communication. Since the 8291A is in the ton 
mode, a BO interrupt is generated as soon as the 
immediate Execute pan command is written. The 
CPU writes the command into the Data Out Register, 
and repeats it on BO becoming true for as many 
commands as necessary. ATN remains continuously 

1-271 

true unless the GTSB (Go To Standby) command is 
sent to the 8292. 

ATN has to be false in order to send data rather than 
commands from the controller. To do this, the follow­
ing steps are needed: 

1. Enable the TCI interrupt if not already enabled. 

2. Wait for IBF (Input Buffer Full) in the 8292 Inter­
rupt Status Register to be reset. 

3. Write the GTSB (F6H) command to the8292 Com­
mand Field Register .. 

4. Read the 8282 and wait for TCI to be true. 

5. Write .. the ton (80H) and pan (OOH) command to 
the 8291 A Address Mode Register and Auxiliary 
Mode Registers respectively. 

6. Wait for the BO interrupt to be set in the 8291A. 

7. Write the data to the 8291A Data-Out Register. 

Identically, the user could command the controller 
to listen rather than talk. To do that, write Ion (40H) 
instead of ton into the Address Mode Register. Then 
wait for BI rather than BO to go true. Read the data 
Register. 

AFN·OO229B 



inter 8291 A 

ABSOLUTE MAXIMUM RATINGS 

Ambient Temperature Under Bias .......... O"C to 70"C 
Storage Temperature ................ -S5·Cto +150'C 
Voltage on Any Pin 
With Respect to Ground ................ -0.5V to + 7V 
Power Dissipation ... , ..................... 0.55 watts 

"NOTICE: Stresses ,above those listed under "Absolute Max· 
Imum Ratings," may cause. permanent damage to the device. 
This is a stress rating only and funct/onal operation of the 
device at these or any other condltlons'above those indicated 
In the operational sections of this specification is not implied. 
Exposure to absolute maximum rating conditions for extended 
periods may affect device reliability. 

D.C. CHARACTERISTICS [Vee';' 5V ±10%', TA = O"C to 70"C(CommercialJ] 

. Symbol Parameter Min. Max. Unit Test Conditions 

VIL Input Low Voltage -0.5 0,8 V 

VIH Input High Voltage 2 Vee+0;5 V 

VOL Output Low Voltage 0.45 V IOL=2mA (4mA for TRl pin) 

VOH Output High Voltage 2.4 V IOH =-400IlA (-150I'A forSRO pin) 

VOH-INT Interrupt Output High Voltage 2.4 V IOH=-4OOIlA 

3.5 V IOH=5OI'A 

III:. Input Leakage . 10 I'A VIN=OV toVee 

ILoL Output Leakage Current -10 I'A VouT=0·45V 

ILOH Output Leakage Current 10 I'A VOUT=Vee 

lee Vee Supply Current 120 mA TA=O'C 

A.C. CHARACTERISTICS [Vee = 5V ±10%, TA = O"C to 70"C (Commercial)) 

Symbol Parameter Min. Max. Unit Test Conditions 

tAR Address Stable Before READ 0 nsec 

tRA Address Hold After READ 0 nsec 

tRR READ width 140 nsec 

tAD Address Stable to Data Valid 250 nsec 

tRo REA"1'> to Data Valid 100 nsec 

tROF Data Float After m:Al) 0 SO nsec 

tAW Address Stable Before WRITE 0 nsec' 

tWA Address Hold After WRITE 0 

tww WRITE Width .. 170 nsec 

tow Data Set Up Time to the Trailing 
Edge of WRITE 130 nsec 

two Data Hold Time After WRi"i"E 0 nsec 

tOKDR4 ROt or WR! to DREO! 130 nsec 

tOKDA6 RD! to Valid Data 200 nsec DACK! to RI5! 0 .;;1 .;;50nsec 
(Do~7) 

1-272 AFN.Q0229B 



intJ 8291 A 

WAVEFORMS 

READ 

WRITE 

DMA 

B/RSj =:J 
\" 

tRR 

'AD 

READ: ~ 

...-tAR----' r---'RD--

DATA BUS 
(DATA OUT) 

CS/RSj 

DATA BUS 
(DATA IN) 

:J 

./ 

" 

, 
--'AW-

DATA MAY CHANGE 

DREQ-----/ 

~K--------~ 

~ 

'ww 

.x 

K 
I-'RA-

I 

-+ I--'RDF 

VALID DATA 
il'" 

I< . I-'WA--! 

I--'ow-

~ - 'wo r---

VALID DATA K ;DATA MAY CHANGE 

14-1., __ ,"~F---

RD«WR---~------------------------~ 

1·273 AFN.()Q229B 



intJ 8291A 

A.C. TIMING MEASUREMENT POINTS AND LOAD CON.DITIONS 

INPUT/OUTPu:r 

u=x )C 2.0 2.0 . > TEST POINTS <. , . .. . .. 
0.8 . 0.8 

0.45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND O.4SV FOR 
A LOGIC ··0"· TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC .. , .. 
AND 0.8V FOR A LOGIC ··0 .. · 

GPIB TIMINGSl 

Symbol Parameter 

TEOT132 EOI~ loTR1j 

TEOD16 ~Onlo DIOValid 

TEOT12 EOIttoTR1t 

TATND4 ATNt 10 NDACt 

TATT14 ATNpoTR1~ 

TATT24 ATN~ loTR2! 

TDVND3-C DAV~ to NDAct 

TNDDV1 NDAct to DAVj 

TNRDR1 NRFDj 10 DREQj 

TDVDR3 DAV ~ to OREQj 

TDVND2-C DAVj to NDAC~ 

TDVNR1-C DAVj to NRFDj 

TRDNR3 RDlto NRFDj 

TWRD15 WRj to DIOValid 

TWRE05 WRj to EOI Valid 

Max. 

135 

155 

155 

155 

155 

155 

650 

350 

40.0 

600 

350 

350 

500 

280 

350 

TWRDV2 WRito DAVt 830 + tSyNe 

NOTES: 
1. All GPIB timings are at the·pins of.the 8291A. 

Units 

nsec 

nsec 

nsec .¥," 

nsec 

nsec 

nsec 
. . nsec 

nsec 

nsec 

nsec 

nsec 

nsec 

nsec 

nsec 

nsec 

nsec 

DEVICE 
UNDER 

TEST r CL =150 PF 

Test Conditions 

PPSS. ATN=0.45V 

PPSS. ATN=0.45V 

PPSS. ATN=0.45V 

TACS.AIDS 

TACS.AIDS 

TACS.AIDS 

AH.CACS 

SH.STRS 

SH 

AH. LACS. ATN=2.4V 

AH.LACS 

AH. LACS. rdy=True 

AH. LACS 

SH. TACS. RS=0.4V 

SH.TACS 

High Speed Transfers Enabled. 
NF = fe • tSyNe = 1/2·fe 

2. The last number in the symbol/or any GPIB timing parameter is chosen according to the transition directions of the reference 
signals. The following table describes the numbering scheme. 

tto t 1 

ito t 2 

tto t 3 
tto t 4 
ttoVALID 5 
ttoVALID 6 

··1-274 AFN-00229B 



inter 8291A 

APPENDIX A 

MODIFIED STATE DIAGRAMS 

Figure A-1 presents the interface function state 
diagrams. It is derived from IEEE Std. state dia­
grams, with the following changes: 

A. The 8291A supports the complete set of IEEE-488 
interface functions except for the controller. These 
include: SH1, AH1 , T5, TE5, L3, LE3, SR1, RL 1, PP1, 
DC1, DT1, and CO. 

B. Addressing modes included in T,L state 
diagrams. 

Note that in Mode 3, MSA, OSA are generated only 
after secondary address validity check by themic::ro-
processor (APT interrupt); . 

C. In these modified state diagrams, the IEEE-488-
1978 convention of negative (low true) logic is 
followed. This should not be confused with the Intel 
pin- and signal-naming convention based on posi­
tive logic. Thus, while the state diagrams below car­
ry low true logic, the signals described elsewhere in 
this data sheet are consistent with Intel notation and 
are based on positive logic. 

poo 

ATN + PI 
(WITHIN t2J 

F1 = lACS + SPAS 

Convention 
Level Logic IEEE-488 Intel 

0 T DAV DAV 
1 F DAV DAV 
0 T NDAC NDAC 
1 F NDAC NDAC 
0 T NRFD NRFD 
1 F NRFD NRFD 

Consider the condition when the Not-Ready-For­
Data Signal (pin 37) is active. Intel indicates this 
active low signal with the symbol NRFD (VOUTS;VOL for 
AH; V'NS;V'L for SH). The IEEE-488-1978 Standard, in 
its state diagrams, indicates the active state of this 
signal (True condition) with NRFD. 

D. All remote multiline messages decoded are con­
ditioned by ACDS. The multiplication by ACDS is not 
drawn to simplify the diagrams. 

E. The symbol 

indicates: 

1. When event X occurs, the function returns to 
state S. 

2. X overrides any other transition condition in 
the function. 

. Statement 2 simplifies the diagram, avoiding the 
explicit use of X to condition all transitions from S to 
other states. 

r----' 
I I 
I SH I 
I I L ____ .J 

DAV 

Figure A-1.. 8291A .State Diagrams (Continued next page) 

1-275 AFN·Q0229B 



intJ 

pon---+I 

pon---~ 

pon ----t 

IFe 
(WITHIN t4) 

F2 = ATN + LACS + LAOS 

F3'" ATN + rdy 
T3··T3·m·APT 

pon---..-/ 

IFC 
(WITHIN t4) 

F4 = OTA' (OSA' TPAS' MSA· LPAS)' 

MOi5Ei , MLA· MODE 1 

8291 A 

r------, 
I I 
I AH I 
I I 
L ____ J 

-THIS TRANSITION WILL NEVER 
OCCUR UNDER NORMAL OPERATION. 

tTOELAY IS ABOUT 300 NS 
FOR DEBOUNCING DAV. 

J-----1~ END IF (EOI + EOS) RECEIVED 

EOI IF DAB - EOS 

RQS IN STB 

pon---~ 

r-----, 
I I 
I TE I 
I I 
L ____ J 

STB AND RQS AVAILABLE 
TOSH 

r-----' 
I I 
I SRO I 
I I 
L ____ J 

SPAS 

Figure A-1. 8291A State Diagrams (Continued next page) 

1·276 AFN-00229B 



inter 

oon---+I 

IFe (WITHIN t4) 

F6 = Del + SDC· LADS 

8291A 

r-----, 
I I 
I LEI 
I I 
L ____ J 

ATN 
(WITHIN t2) 

oon---~ 

F5'" (MlA· MODE 1 + LPAS· MSA· MODE 1) 

oon---~ 

"'lOY = ATN • EOI 

r----' 
I I 
I DC I 
I I L ____ J 

Figure A·1. 8291A State Diagrams 

1·277 

r-----, 
I I 
I pp 2 I 
I I 
L ____ J 

lOY'" 
IWITHIN's1 

r----l 
I I 
I R l I 
I I L ____ J 

r----l 
I I 
I DT I 
I I L ____ .J 

AFN-00229B 



intet" 8291A 

APPENDIX B 

Table B-1. IEEE 488 Time Values 

Time Value 
Identifier' Function (Applies to) Description Value 

T1 SH Settling Time for Multiline Messages 2: 2p.s' 

t2 LC,iC,SH,AH,T,L Response to A TN s 200ns 

T3 AH Interface Message Accept Time' > O' 

t4 T,TE,L,LE,C,CE Response to IFC or REN False < 100p.s 

ts PP Response to ATN+EOI s 200ns 

T6 C Parallel Poll Execution Time 2: 2p.s 
T7 C Controller Delay to Allow Current Talker 2: 500 ns 

to see A TN Message 

Ta C Length of IFC or REN False > 100p.s 

T9 C Delay for EOls 2: 1.5p.S6 

NOTES: 
'Time values specified by a lower case t indicate the maximum time allowed to make a state transition. Time values specified by an 
upper case T indicate the minimum time that a function must remain in. a state before exiting. 

21f three-state drivers are used on the 010, DAV, and EOI Ii nes, T, may be: 
1. 2: 11oons. 
2. Or 2: 700 ns if it is known that within the controller ATN is driven by a three-state driver. 
3. Or 2: 500ns for all subsequent bytes following the first sent after each false transition of ATN (the first byte must be sent in accord­

ance with (1) or (2). 
4. Or 2: 350ns for all subsequent bytes following the first sent after each false transition of ATN under conditions specified in Section 

5.2.3 and warning note. See IEEE Standard 488. 

'Time required for interface functions to accept, not necessarily respond to interface messages. 

'Implementation dependent. 
'Delay required for EOI, NDAC, and NRFD signal lines to indicate valid states. 

62: 600 ns for three-state drivers. 

1-278 AFN-00229B 



inter 8291A 

APPENDIXC 
THE THREE-WIRE HANDSHAKE 

TWRDIS 

H 
I VALID I NOTVALID I VALID 

~Tl .. 

!+--TNDDV1_t-TDVNR1-+ 
t-T1 -J 

I--TWRDV2-.J 

-'t\ -,f-- £ 
-"I-TRDNR3_ 

..., 

!-TDYND3_ F1 -,f-

DREQ(SH) 
~ 

Jf 
!-+TDVDR3 

DREQ(AH) 

...,~ 

'""" 

Figure C-1. 3-Wire Handshake Timing at 8291A 

1·279 AFN-00229B 



8292 
GPIB CONTROLLER 

• Complete IEEE Standard 488 Controller 
Function 

• Interface 'Clear (IFC) Sending Capability 
Allows Seizure of Bus Control and/or 
Initialization of the Bus 

• Responds to Service Requests (SRQ) 

• Sends Remote Enable (REN), Allowing 
Instruments to Switch to Remote 
Control 

• Complete Implementation of Transfer 
Control Protocol 

• Synchronous Control Seizure Prevents 
the Destruction of Any Data 
Transmission In Progress 

• Connects with the 8291 to Form a 
Complete IEEE Standard 488 Interface 
Talker/Listener/Controller 

The 8292 GPIB Controller is a microprocessor-controlled chip designed to function with the 8291 GPIB Talker/Listener 
to implement the full IEEE Standard 488 controller function, Including transfer control protocol. The 8292 is a pre­
programmed Intel~ 8041A. 

DREQ 

T/R2 

Tiii1 

8291 
GPIB 

TALKERI 
LISTENER 

GENERAL PURPOSE INTERFACE BUS 

8292 
GPIB 

CONTROLLER 

Figure 1. 8291, 8292 Block Diagram 

1-280 

VCC 

Cs 
GND 

Iifi 
Au 

Wli 
SYNC 

DO 

D1 

D2 

D3 
D4 

D5 

De 
D7 

Vss 

Vcc 
COUNT 

REN 

DAV 

IBFI 

OBFI 

EOI 

SPI 

TCI 

CIC 

NC 

ATNO 

NC 

CLTH 

VCC 

NC 

SYC 

IFC 

A'fNi 
IRQ 

Figure 2. Pin Configuration 



intJ 8292 

, Ta'ble1. ,Pin Description 

Pin Pin 
Symbol No. lYpe Name and Function Sy~bol No. lYpe Name and Fllnctlon 

IFCL 1 I IFC Rllcelved (LatChed): The 8292 Vee 5,26,.40 P.S. Voltage: +5V supply input ±100/0. 
monitOrs the IFC Line (whim not 
system controller) through this pin. 

X" X2 2,3 I Crystal Inputs: Inputli for a crystal, 

COUNT' 39 I Event Count: ' When enabled by the 
proper command the internal 
counter will count external events 

LC or an external timing signal to through this pin. High to lowt,ransi" 
determine the internal oscillator tion will increment the internal 
frequency. counter by one. The pin is sampled 

RESET 4 I Reset: Used to inUializethe chip to 
a ~nown state during power on. 

CS 6 I Chip Select Input: Used to select 
the 8292 from Other devices on the 

once per three internal instruction 
cycles (7.5I-'Sec sample period 
when using 5 MHz XTAL). It can be 
used for byte counting when con-
nected to NDAC, or for block count-

common data.bus. ing when connected to the EO!. 

RD 8 I Read Enable: Allows the' master REN 38 0 Remote Enable: The Remote En-' 
CPU to read from the 8292. able bus signal selects remote or 

Ao 9 I Address Line: Used to select be-
tween the data bus and the status 

local control of the device on the' 
, bus. A GPIB bus n'illriagement'line, 

I 'register during read operations and as defined by IEEE Std. 488-1978. 
to distinguish between data and 
commands writtl;ln into the 8292 

DAV 37 I/O Data Valid: Used during parallel 
poll to force the 8291 to accept the 

during write operat\ons. parallel poll status bits. It is also 
WR 10 I Write Eneble: Allows the master used durin9 the tos procedure. 

CPU to write ~ the 8292. IBFI 36 0 Input Buffer Not Full: Used to 
SYNC 11 0 Sync: 8041A instfUction cycle syn-

chronization signal; it is an output 
clock with a frequency of XTAL "'" 
15. 

interrupt tne central processor 
while the input buffer of the 8292 is 
empty. This ;feature is enabled and 
disabled by .. the interrupt mask 

Do-Dr 12-19 I/O Data: 8 bidirectional lines used for 
communication between the cen-

register. 

OBFI 35 0 Output Buffer Full: Used as an 

tral processor and the 8292's data 
bus buffers and status reg,ister. 

Vss 7,20 P.S. Ground: Circuit ground potential. 

,SRQ 21 ,I Service Request: One of the IEEE 

interrupt to the central processor 
while the output buffer olthe 8292 is 
full. The feature can be enabled and 
disabled by the interrupt mask 
register. 

control lines. Sampled by the 8292 
when it is controller in charge. If 
true, SPI interrupt to the master will 
be generated. 

E012 34 I/O End Or.ldentlfy: One of the GPIB 
management lines, as, defined by 
IEEE Std. 488-197~.;Used with;ATN 
as Identify Messageduring parallel 

ATNI 22 I 'Attention In:. Used by the 8292 to poll. 
'monitor the GPIB ATN control line. It 
is used during the transfer. control' 
procedure. 

SPI 33 0 Special Interrupt: Used as an iriter-
rupt on events not initiated by the 
central procesSor. 

IFC 23 1/0 Interface Clear: One of the GPIB 
management lines, as defined by 
IEEE Std. 488-1978, places all de-
vice~ in a kriown quiescent state. 

TCI 32 0 Task Complete Interrupt: Interrupt 
to the control processor used to in-
dicate that the task requested was 
completed by the 8292 and the in-, 

SYC 24 I System Conroller: Monitors the formation requested is ready in the 
system controller switch. data bus buffer. 

CLTH 27 0 ClearLetch: UsedtoclearthelFCR CIC, 31 0 .Controller In Charge: Controls the 
latch afte, being recognized by: the 
8292. Usually low (except after 

I ~/R Input of the SRO bus trans-, 
ceiver. 'It can also be used to indi-

hardware R~, it will be pulsed 
high when IFCR is recognized by 

cate that the 8292 is in charge of the 
GPIB bus. 

the 8292. " 

ATNO 29 0 Attention Out: Controls the ATN 
control 'line of the bus through ex-
ternal logic for tcs and tca proce- . 
dures. (ATN is a GPIB controlline, as . 
defined by IEEE Std. 488-1978.) , ... ~. 

1·281 AFN-00741 0 



8292 

FUNCTIONAL DESCRIPTION 
The 8292 is an Intel 8041A which has been programmed 
as a'GPIB Controller interface element. It is used with 
the 8291 GPIB Talker/Listener and two 8293 GPIB Trans­
ceivers to fotma.lComplete IEEI;;488 Bus Interface for a 
microprocessor. Tile electrical interface Is performed by 
the transceivers, data. transfer Is done by the talkerl 
listener; al'ldcontrolbf the bus is done by. the 8292. 
Figure 3 is a typical'. controller interface using Integs 
GPIB peripherals. 

TO 
PROCESSOR 

BUS 

GPIB 

GPIB 

Figure 3. Talke~/Listener/Controller Configuration 

Int.U"~,Status Register 

! SYC! ERR ! SRQ ! EV x IFCR IBF OBF 

~ ~ 

The. 8292 can be cQnfig.ured to Interrupt the mlcroproo.-
. essor·on·one of severIlJ.condltlons. Upon receipt of the 
Interrupt the. microprocessor must read the 8292 
Interrupt status . register to .. determine which event 
caused the Jpterrupt, aod then the appropriate subrou­
tine can be performed . .The il"!terrupt status register Is 
read with Ao high. With the exception of OBF and IBF, 
these interrupts are enabled or disabled by the SPI 
interrupt mask.OBFand.IBF have their own bits In the 
interrupt mask (OBFI and IBFI). 

OBF Output Buffer Full. Abyte Is waiting to be read by 
the microprocessor. This flag is cleared when the 
output data bus .. buffer is read. 

IBF Input Buffer Full. The byte previously written by 
the microprocessor has not been read yet by the 
8292. If another byte is written to the 8292 before 
this flag clears, data will be lost. IBF Is cleared 
when the 8292 reads the data byte. 

IFeR Interlace Clear Received. The GPIB system 
controller has set IFC. The 8292 has become idle 
and Is no longer in charge of the bus. The flag Is 
cleared when the lACK command is issued. 

EV Event COunter Interrupt. The requested number 
of blocks or data bytes has been transferred. The 
EVinterrupt flag is cleared by the lACK 
command. 

SRQ Service Request. Notifies the 8292 that a service 
request (SRQ) message has been received. It is 
cleared by the lACK command. 

ERR Error occurred. The type of error can be deter­
mined by reading the error status register. This 
interrupt flag is cleared by the JACK command. 

The internal RAM In the 8041A is used as a special SYC System Controller Switch Change. Notifies the 
purpose. register bank for the 8292. Most of these processor that .the state of the system controller 
registers (except for the interrupt flag) can be accessed switch has changed. The actual state is con-
through commands to the ~292. Table 2 identifies the tained in the GPIB Status Register. This flag is 
registers used by the 8292 a'nd how they are accessed. cleared by the lACK command. 

Table 2_ 8292 Registers 

READ FROM .8292 . WRITE TO 8292 

INTERRUPT STATUS. AO INTERRUPT MASK AO 

'SYC 
I 

ERR I SRQ 
I 

EV 
I 

·x IIFCR I IBF OBF I 
I 

1 SPI TCI SYC I OBFI 
I 

IBFI 
I 

0 I SRQ I 0 

07 Do 07 Do 
ERROR FLAG ERROR MASK 

I 
X I x I USER I X 

I 
x I TO~T31 TOUT21 TOUTll o· 

I 
0 

I 
0 I USER I 0 I 0 I TOUT31 TOUT21TOUTli 

CONTROLLER STATUS COMMAND FIELD 

I CSBS I CA X I x I SYeS I IFe REN SRQ I o· I 1 
I 

1 I 1 I OP I C 
I 

C 
I 

C I C 

GPIB (BUS) STATUS EVENT CO~NTER 

REN OAV EOI I X I SYC I IFC I ANTI SRQ I o· I 0 I 0 I 0 I 0 I 0 I 0 I o. I 0 o· 

EVENT COUNTER STATUS TIMEOUT 

I 
0 

I 
0 

I 
0 

I 
0 

I 
0 

I 
01 0 

I 
0 

I 
o· 

I 
0 I 0 

I 
',0 I 0 I o I 

0 I 0 I 0 I o· 

TIME OUT STATUS 

I 0 I 0 I 0 I D I 0 I 0 I D I 0 I o· Note: These registers are accessed by a special utility command, 
see page 6. 

1-282 AFN-007410 



8292 

Interrupt Mask Register 

I I SPI I TCI I SYC OBFI IBFI SRa 

The Interrupt Mask Register is used to enable features 
and to mask the SPI and TCI interrupts: The flags in the 
Interrupt Status Register will be active even when 
masked out. The Interrupt Mask Register Is written 
when Ao is low and reset by the RINM command. When 
the register is read, D, and D7are undefined. An Inter­
tupt Is enabled by setting the corresponding register bit. 

SRQ Enable interrupts on SRO received. 

IBFI Enable interrupts on input buffer empty. 

OBFI Enable Interrupts on output buffer full. 

SYC Enable interrupts <)0 a change In the system 
controller switch. ' 

TCI Enable interrupts on the task completed. 

SPI Enable Interrupts on special events. 

NOTE: The event counter Is enabled by the GSEC 
command, the error interrupt is enabled by the errOr 
mask register, and IFC cannot be masked (It will always 
cause an interrupt). ' 

Controller Status Register 

ICSBSI CAl x I x ISYCS IFC REN SRa 

The Controller Status Register is used to determine the 
status of the controller function. This ~eglster is 
accessed by the RCST command. 

SRQ Service Request line active (CSRS). 

REN Sending Remote Enable. 

IFC Sending or receiving interface ,clear. 

SYCS System Controller Switch Status (SACS). 

CA Controller Active (CACS + CAWS + CSWS). 

CSBS Controller Stand-by State (CSBS, CA)= (0,0) -
Controller Idle 

GPIB Bus Status Register 

I REN I DAV I EOI I x svc IFC ATNI I, SRa 

,Do 
This register contains ~PIB bus status information. It 
can be used by, the microprocessor to monitor and 
manage the bus. The GPIBBus Register can 'be read 
using the RBST command. 

Each of these status bits reflect the current status of 
the corresponding pin on the 8292: 

SRQ Service Request 

ATNI Attention In 

IFC Interface Clear 

SYC System Controller Switch 

EOI EndorldEmtify , 

DAY Data Valid 

REN Remote Enable 

Event Counter Register 

The Event Counter Register contains the initial value for 
the event counter. The counter can count pulses on pin 
39 <if the 8292 (COUNT). It can be connected to EOI or 
NDAC to count blocks or bytes respectively during 
standby state. A count of zero equals 256. This register 
cannot be read, an,d, Is written using the WEVC 
command. 

Event Counter Status Register 

This register contains the current value!n' the event 
counter. The event counter counts back from the initial 
value stored In the Event Counter Register to zero and 
then generates an Event Counter Interrupt. This register 
cannot be written and can be read' using a REVC 
command. 

Time Out Register 

TheTlme Out Register is used to storEi thelirnEiused for 
the time out error function. See the Individual tlmeouts 
(T9UT1, 2, ~) to determine the units of, this counter. This 
Time Out Register cannot be read, apd, it is written with 
the WTOUT command. 

Time Oui Status Register 

This register contains the current valu~ ,ri' the time out 
counter. The time out counter decreinE!nls' from the 
original value stored In, the Time Out Register. When 
zero is reached, the appropriate error interrupt is gen­
erated. If the register is read while none of the time out 
functions a're active, the register will contain the last 
value reached the last time a function was active. The 
Time Out Status Register cannot be written, and it Is 
read with the RTOUT command. ' 

Error Flag Register 

I x I x I USER I x I x I TOUT3 I TOUT2 ItOUT1 

~ Do 

Four errors are flagged by the 8292 with a bit i,n the Error 
Flag Register. Each of thelie erro(S'CanbEimasked' by 
the Error Mask Reglster •• TheError i=lag;Register cannot 
be written, and It is read by the lACK commandwher. the 
error flag in the Interrupt;Status Re~ister, J,s set.,' 

TOUT1' Time Out Error'1 Occurs wherl,the current con-
troller has not stopped sending ATN after 
receivl ng the TGT message for the time period 
specified by the Time Out Register. Each count 
in the Time Out 'Register is at least 1800 tCY' 
After flagging the error, the,8292 will remain in a 
loop trying to take, c,ontrol until, the current 
controller stops sending ATN OJ a neW com­
mand.is written I;ly th,e microproCessor_ If a new 
command is written, the 8292 will return to the 
loop after executing It. 

1-283 AFN-00741D 



8292 

TOUT2 Time Out Error 2 occurs when the transmission 
between tlie addressed talker and listener has 
not started for the time period specified by the 

. TimeOut Register. Each count In the Time Out 
Register is at least 45 tCY' This feature is only 
enabled when the. controller is In the CSBS 
state.· .' 

TOUT3' Time OIJt'Error3 occurs when the handshake 
signals are stuck and the 8~2 Is not succeed· 
ing in taking control synchronously for the time 
period specifiedQY ~heTim&Out Register.,Each 
count In the Time Out Register is at least 1800 
tcV.The 8292 will continue checking ATNI until 
It Qecomes true or a new command. is received. 
After performing the new command, .the 8292 
will return to the ATNI checking loop. 

USER User error occurs when request to assert IFC or 
REN. was received and the 8292 was not the 
system controller. 

E.rror ,,!ask Register 

o 0·1 USER o I TOUT31 TOUT21 TOUT, I 
0-; 

The Error Mask Register Is used to mask the interrupt 
from a particular type Of error. Each type ·of error inter· 
rupt Is enabled by setting the corresponding bit in the 
Error Mask Reglster.Thls register can be read. with the 
RERM command and written with Ao low. 

Command Register 

I ' y c c c c 

Qommand's. are perfOrrTledbY the 8292 whenever a byte 
is written with Ao high. There are two categories of 
commands disting,ulshed by the OPbit (bit 4). The .first 
category Is the operation command (OP = 1). These 
commands Initiate some action on the interface bus. 
The second category is the utility cC!lmmands (OP = 0). 
These commands are .used to ald' the communication 
between the processor and the 8292. 

OPERATION COMMANDS 
Operation 'commands Initiate some action on the GPIB 
Interface bus. It Is using these commands that the 
controlfu'nctions such as polling, taking and passing 
control, and system controller functions are performed. 
A TCI interrupt Is generated upon successful comple­
tion of each of these functions. 

FO - SPCNI. """" Stop COU.nter Interrupts 

This command disables the internal counter interrupt so 
ihat the 8292 will stop interrupting the master on event 
counter underflows. However, the counter will continue 
counting and its contentscanstiO be used. 

F1 - GIDL - Go To Idle 

This command is used. during the transfer of control 
procedure while transferring control to anC!lther con­
troller. The 8292 will respond to this command only if It 
Is In the active state. ATNO wilJgohigh, and CIC will be 
high so that this 8292 will no longer be driving the ATN 
line on the GPIB interface bus. 

F2 - RST - Reset 

This command has the same effect as asserting tlie 
external reset on the 8292. For details, refer to the reset 
procedure described . later. 

F3 - RSTI - Reset Interrupts 

This command resets any pending interrupts and clears 
the error flags. The 8292 will not returrito any loop It was 
in (such as from the time out Interrupts). 

F4 - GSEC - Go To Standby, Enable Counting 

The function causes ATNO to go high and the counter 
will be enabled . .lf the 8292 was not the active controller, 
this command will exit immediately .. If the 8292 is the 
active controller, the counter will be loaded with the 
value stored in the Event Counter Register, and the 
internal interrupt will be enabled so that when the 
counter reaches zero, the SPI interrupt will. be gener· 
ated. SPI will be generated every 256 counts thereafter 
until the controller exits the standby state or the SPCNI 
command is written. An initial count of 256 (zero in the 
Event Counter Register) will be used if the WEVC 
command is not executed. If the data transmission does 
not start, a TOUT2 error will be generated. 

F5 - EXPP - Execute Parallel Poll 

This.command initiates a parallel poll by asserting ATN 
and EOI (lOY message) true. The 8291 should be 
previously configured as a listener. Upon detection of 
OAV true, the 8291 enters ACOS and latches the parallel 
poll response (PPR) byte into its data ill register. The 
master will be interrupted by the 8291 BI interrupt when 
the PPR byte Is available. No interrupts except the IBFI 
will be generated by the 6292. The 8292 will respond to 
this .command only when It is the active'controller. 

F6 - GTSB - Go To Standby 

If the 8292 is the active controller, ATNO will go high 
then TCI will be generated. If the data transmission does 
not start, a TOUT2errorwili .be generated. 

F7 - SLOC - Set Local Mode 

If the 8292 is the system controller; then REN will be 
asserted false for at least 1oo,..sec. If it is not the 
system controller, the User Error. bit will .be set in the 
Error Flag Register. 

FS- SREM - Set Interface To Remote Control 

This command will set REN true If this 8292 is the 
system controller. If not, the User Error bit will be set In 
the Error Flag Register. 

1-284 AFN-0074,0 



inter 8292 

F9 - ABORT - Abort All Operation, Clear Interface 

This command will cause IFC to be asserted true for at 
least 100,.sec if this 8292 is the system controller. If it is 
in CIOS, it will take control over the bus (see the TCNTR 
command). 

FA - TCNTR - Take Control 

The transfer 6f control procedure is coordinated by the 
master with the 8291 and 8292. When the master 
receives a TCT message from the 8291, it should issue 
the TCNTR command to the 8292. The following events 
occur to take control: 

1. The 8292 checks to see if it is in CIOS, and if not, it 
exits. 

2. Then ATNI is checked until it becomes high. If the 
current controller does not release ATN for the time 
specified by the Time Out Register, then a TOUT1 
error is generated. The 8292 will return to this loop 
after an error or any command except the RST and 
RSTI commands. 

3. After the current controller releases ATN, the 8292 
will assert ATNO and CIC low. 

4. Finally, the TCI interrupt is generated to inform the 
master that it is in control of the bus. 

FC - TCASY - Take Control Asynchronously 

TCAS transfers the 8292 from CSBS to CACS indepen­
dent of the handshake lines. If a bus hangup is detected 
(by an error flag), this command will force the 8292 to 
take control (asserting ATN) even if the AH function is 
not in ANRS (Acceptor Not Ready State). This command 
should be used very carefully since it may cause the 
loss of a data byte. Normally, control should be taken 
synchronously. After checking the controller function 
for being in the CSBS (else it will exit immediately), 
ATNO will go low, and a TCI interrupt will be generated. 

FD - TCSY - Take Control Synchronously 

There are two different procedures used to transfer the 
8292 from CSBS to CACS depending on the state of the 
8291 in the system. If the 8291 is in "continuous AH 
cycling" mode (Aux. Reg. AO=A1=1), then the 
following procedure should be followed: 

1. The master microprocessor stops the continuous AH 
cycling mode in the 8291; 

2. The master reads the 8291 Interrupt Status 1 
Register; 

3. If the END bit is set, the master sends the TCSY 
command to the 8292; 

4. If the END bit was not set, the master reads the 8291 
Data In Register and then waits for another BI 
interrupt from the 8291. When it occurs, the master 
sends the 8292 the TCSY command. 

If the 8291 is not in AH cycling mode, 'then the master 
just waits fora BI interrupt and, then sends the TCSY 
command. After the TCSY command has been issued, 
the 8292 checks for CSBS. If CSBS, then .it exits the 
routine. Otherwise, it then checks the DAV bit in the 
GPIB status. When DAV becomes false, the 8292 will 

wait for at least 1.5 ,.sec. (110) and then ATNO will go 
low. If DAV does not go low, a TOUT3 error will be 
generated. 

FE - STCNI - Start Counter Interrupts 

This command enables the internal counter interrupt. 
The counter is enabled by the GSEC command. 

UTILITY COMMANDS 
All these commands are either Read or Write to regis­
ters in the 8292. Upon completion of Read commands, 
the TCI (Task Completed Interrupt) will be generated. 
Note that writing to the Error Mask Register and the 
Interrupt Mask Register are done directly. 

E1 - WTOUT - Write To Time Out Register 

The byte written to the data bus buffer (with Ao= 0) 
following this command will determine the time used 
for the time out function. Since this function is imple­
mented in software, this will not be an accurate time 
measurement. This feature is enable or disable by the 
Error Mask Register. No interrupts except for the IBFI 
will be generated upon completion. 

E2 - WEVC - Write To Event Counter 

The byte written to the data bus buffer (with Ao= 0) 
following this command will be loaded into the Event 
Counter Register and the Event Counter Status for byte 
counting or EOI counting. Only IBFI will indicate 
completion of this command. 

E3 - REVC - Read Event Counter Status 

This command transfers the contents .of the Event 
Counter into the data bus buffer. A TCI is generated 
when the data is available in the data bus buffer. 

E4 - RERF - Read Error Flag Register 

This command transfers the contents of the Error Flag 
Register into the data bus buffer. A TCI is generated 
when the data is available. 

E5 - RINM - Read Interrupt Mask Register 

This command transfers the contents of the Interrupt 
Mask Register into the data bus buffer. This register is 
available to the processor so that it does not need to 
store this information elsewhere. A TCI is generated 
when the data is available in the data bus buffer. 

E6 -:- RCST - Read Controller Status Register 

This command transfers the contents of the Controller 
Status Register Into the data bus buffer and aTClll'lter­
rupt is. generated. 

E7 - RBST - Read GPIB Bus Sta.tus Register 

This command transfers the contents of the GPIB Bus 
Status Register into the data bus buffer, and a TCI 
interrupt is generated when the data is available. 

1-285 AFN-00741D 



8292 

E9..-; RlOUT "';;"Read Time Out Status Register 

This command transfers the contents cif the Time Out 
Status Register into the data bus buffer, and a TCI 
interrupt Is generated when the data Is available. 

EA ..;.; RERM --Read Error .Mask Register 

This command transfers the contents of the Error Mask 
Register to the data bus buffer so that the processor 
does not need to store this information elsewhere. A TCI 
interrupt is generated when the data Is available. 

Interrupt Acknowledge 

I fiVC ERR SRQ EV, IFCR 

Each named bit in an Interrupt Acknowledge (lACK) 
corresponds to a flag in the Interrupt Status Register. 
When the 8292 receives this command, It will clear the 
SPI and the, corresponding bits in the Interrupt Status 
Register . .If not all the bits were cleared; ,then the SPI will 
be set true again. If the error flag is not acknowledged 
by the lACK command, then the Error Flag Register will 
be transferred to the data bus buffer, and a TCI will be 
generated. 

NOTE: XXXX1X11 is an undefined operation or utility 
command, so no conflict exists' between the lACK 
operation and utility commands;. 

SYSTEM OPERATION' 
8292 To Master Processor Interface 

Communication betWeen the 8292 and the Master 
Processor can be either interrupt based communication 
or based upon polling the interrupt status register in 
predetermined Intervals. 

Interrupt Based Communication 

Four different interrupts are available from the 8292: 

OBFI Output Buffer Full Interrupt 
IBFI Input Buffer Not Full Interrupt 
TCI Task Completed Interrupt 
SPI Special Interrupt 

Each of the Interrupts is enabled'or disabled by a bit in 
the Interrupt mask register. Since OBFI and IBFI are 
directly connected to the OBF and IBF flags, the master 
can write a new command to the Input data bus buffer 
as soon as the previous command has been read. 

The TCI interrupt is iJ~eful when the master Is sending 
cOmmands to the 8292. The pending TCI will be cleared 
with each new command written to the 8292. Commands 
sent to the 8292 can be divided into two maJor,groups: 

1. Commands that require response back from the 8292 
to the master,e:g., reading register. 

:\!; Commands that initiate some action or enable 
, features but do not require response back'from the 
8292, e;g., enable data bus buffer Interrupts. 

With the first group, theTCilnterrupt will be used to 
indicate that the required response Is ready In the data 
bus,bufter and the master may ,continue and'read,lt. 
With the second QroUP, the interrupt will be used to 
indicate completion of the required task, sot!1at the 
master may send new commands. 

The SPI should be used when immediate information or 
special events is required (see, the Interrupt Status 
Register). 

('Polling Status" Based Communication 

When interrupt based communication Is not desired, all 
interrupts can be masked by the interrupt mask register. 
The communication with the 8292 is based, upon 
sequential poll of the interrupt status register. By 
testing the OBF and IBF flags, the data bus buffer 
status is determined while special, events are deter­
mined by testing the other bits. 

Receiving IFC 

The IFC pulse defined by the IEEE-488 standard is at 
least 100 IAsec. In this time, all operation on the bus 
should be aborted. Most important, the current control­
ler (the one that is in charge at that time) should ,stop 
sending ATN or EOI. Thus, IFC must externally gate CIC 
(controller in charge) and ATNO to ensure that this 
occurs. 

Reset and Power Up Procedure 

After the 8292 has been reset either by the external res,et 
pin, the device being powered on, or a ,RST command, 
the following sequential events will take place: 

1. All outputs to the GPIB interface will go high (SR'O", 
ATNI, T'FC, SYC, CLTH, ATNO, CIC, TCI, SPI, ro, 
OBFI, TEI'FT, DAV, REV). 

2. The four interrupt outputs (TCI, SPI, OBFI, IBFI) and 
CLTH output will go low. 

3. The following registers will be cleared: 
Interrupt Status 
I nterrupt Mask 
Error Flag 
Error Mask 
Time Out 
Event Counter (= 256), Counter is disabled. 

4. If the 8292 is the system controller, an ABORT 
command will be executed, the 8292 will become the 
controller in charge, and it will enter the CACS state. 

If it is not the system controller, it will remain In 
CIOS. 

System Configuration 

The 8291 and 8292 must be interfaced to an IEEE-488 
bus meeting a variety of specifications including drive 
capability and loading characteristics. To Interface the 
8291 and the 8292 without the 8293's, several, external 
gates are required, using a configuration similar to that 
used in Figure 5. 

1-286 AFN-007410 



inter 8292 

GPIB 
TRANSCEIVERS 

r------'~~~--------~N~O~TE~l~----------_t------------~ 30 EOI 

PROCESSOR BUS 

INTERRUPT WR RD RST CLK ADD DATA DMA 

l-

t-
l-

I-- r-
>-- r-

l-
I--

I-

I--

I t DRE~l 
~DAcK 

-~---"DATA 

1----1 .. 1 RSo 

1----1 .. 1 RS, 

1----1 .. 1 RS, 

1--_~lcLOCK 

I---~IRESET 

t---~IRD 

I---~IWR 

1----iiNT 

Cs 

I 

I 
NOTE 2 (J 3b ATN 

3c NDAC 

3d NRFD 

~7 
r--t---+--iL. 20 ATN 

l-
I-

'-----.II DATA 
r . 

01--------<.-1 Ao 

oI----------ICS 

'--4---------------~IRD 

CLTH 

'-----+ .. -_ -_ -_ -_ -_ -_ -_ -_ -_ -_-_ -.:-.:-_ -_ • .:IW:E'R~ET . !-,S:;.P.;..I _-' 

NOTES: 
1. CONNECT TO NDAC FOR 

BYTE COUNT OR TO EOI 
FOR BLOCK COUNT. 

;------ix, a 
T 

i 
x, 

;------iEA 
~ 

8292 

SYC 

T, ... ;CO=U:;.N:.:T------' 

-

2. GATE ENSURES OPEN; 
COLLECTOR OPERATION 
DURING PARALLEL POLL. 

T'--_-ISs 
Tol • ..::IF"'C"'L---------------' 

1.-_---' 
SYSTEM ON 

4.7K 

CONTROLLER ....... -0--"----' 
SWITCH 

Figure ·4; 8291' and 8292 System Configuration 

1~287 

1d EOI 

18 IFe 

=W; 
1c SRQ 

AFN-007410 



inter 

TO 
MICROPROCESSOR 

GPI 
- -TRIG'GE 

S 
R 

q~TPU T 

TO MICROPROCESSOR 

~ 
~ 
~ 

15 

16 

17 

18 

19 

21 

22 

23 

9 

10 

4 

6 

7 

8 

3 

11 

5 

I' 

...!l. 
L...1! 
~ 

-----1!. 
18 

17 

18 

19 

9 

8, 
IO 

DO 

Ot 

02 

03 

04 

05 

06 

07 

RSO 8291 

RSI 

RS2 

iiii 
WR 

RESET 

OREO 

DAcK 
Cs 
'CLOCK 

INT 

TRIG 

DO 

01 

02 

03 

04 

05 

D6 

07 

1.0 82,92_ 

iiii 
Wi! ..... 4 
RESETll .... 

TO 
MICROPROCESSOR 

OSCILLATO 
OUTPU 

I 
R 
T 

6 

32 

33 

3S 
38 

11 

vcc--2. 

~ CJ 

cs 
TCI 

SPI 

OSFI 

iBFi 
SYNC 

SS 

X,I 

..:::;=- 1 -X,1 

15-25 pF ± ~ EA 

• =.GPIS SUS TRANSCEIVER 
I=SEE 8041A DATA SHEET FOR ALTERNATE 

,CRYSTAL CONFIGURATIONS 
11 = CAN CONNECT TO SYSTEM RESET SWITCH, 

SEE 8041A DATA SHEET 

8292 , <. 

, 
0101 

28 25 
0101 

0102 
29 23 

0102 

0103 
30 10 

0103 

0104 
31 9 

0104 
32 8 

0105 01'15 

0106 
33 ,7 

0106 

Dl07 
34 6 

0107 

0108 
35 5 

0108 

Tlii1 
1 1 

TIRI 

OAV 
36 24 

OAV 
39 

EOI 
3 

EOI 

ATN 
26 4 

ATN 

SRO 
27 

IFC 
24 

NOAC 
38 

NRFO 
37 

TIR2 
2 ~ ATNO 

REN ~ t- ,2 IFCL 

,', 

OAV rE. t-r-!. TIRI 
4 

ATN 
10 

NOAC 
9 iiIl'iiii 
2 

TIR2 

SRO 
21 8 SRci 

REN 
38 6 REN 

IFC 
23 5 

IFe 

'ATNli 29 23 
ATNO 

COUNT 
39 3 

-EOI 

EOl2 
34 7 

EOl2 

ATNI 
22 11 

ATNI 

1 
IFCL 

25 
IFCL 

CIC 
31 -24 

CIC 

CLTH 
27 21 

CLTH 
24 22 

SYC SYC UC ON SYSTEM 
CONTROLLER 

,SWITCH 

Figure 5. 8291,8292, and 8293 System Configuration 

1-288 

0101· 

0102· 

0103· 

0104· 

0105· 

0108· 

0107· 
8293 

0108· 

DAV· 

OPTA 

OPTS 
MODE 3 _ 

NOAC 

NRFO 

SRO· 

REN· 

8293 IFe· 

ATN· 

EOI· 

OPTA 

OPTS 

MODE 2 

~ 
t-l!-
r!!-
tE-
rJ!--
rJ!-
r!!-
r!!-

r!!-

fl!-v 
~v 

r!!-
~ 

r!!-
r!!-
r!!-
r!!-
~ 

TO 
IEEE-488 
BUS 

cc 
cc 

TO 
IEEE-488 
SUS 

fl!-vs 
~v cc 

AFN-00741D 



intJ 8.292 

ABSOLUTE MAXIMUM RATINGS* 
Ambient Temperature Under Bias ......... O·C to 70·C 
Storage Temperature ............. -65·C to +150·C 
Voltage on Any Pin With Respect 

to Ground ........................... 0.5V to + 7V 
Power Dissipation ......................... 1.5 Watt 

'NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational.sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may'affeci. device 
reliability. 

D.C. CHARACTERISTICS (TA = O"C t9 70"C, Vss = OV: 8292, Vee = ±5V ±10%) 

Symbol Parameter Min. Max. Unit 

Vill Input Low Voltage (All Except Xl, X2, RESEn -0.5 0.8 V 

VIL2 Input LoW Voltage (Xl, X2, RESEn -0.5 0.6 V 

VIHl Input High Voltage (All Except Xl, X2, RESEn 2.2 Vee V 

VIH2 Input High Voltage (Xl, X2, RESEn 3.8 Vee V 

VOll Output Low Voltage (00-07) 0.45 V 

VOL2 Output Low Voltage (All Other Outputs) 0.45 V 

VOHl Output High Voltage (00-07) 2.4 V 

VOH2 Output High V61tage (All Other Outputs) 2.4 V 

III Input Leakage Current (COUNT, IFCL, RD, WR, CS, AciJ ±10 ... ~ 

loz Output Leakage Current (00-07, High Z State) ±10 

Ii..ll Low Input Load Current (Pins 21-24, 27-38) 0.5 ' 

Ill2 Low Input Load Current (RESEn 0.2 

lee Total Supply Current 125 

IIH Input High Leakage Current (Pins 21-24, 27-38) 100 

CIN Input Capacitance 10 

CliO 1/0 Capacitance 20 

A.C. CHARACTERISliCS (TA = O·C to 70"C, Vss = OV: 8292, Vee = +5V ±10%) 

DBBREAD 

Symbol Parameter Min. Max. 

tAR CS, Ao Setup to RD. 0 

tRA CS, Ao Hold After ROt 0 

tRR RD Pulse Width 250 

tAD CS, Ao to Data Out Delay 225 

tRO RD. to Data Out Delay. 225 

tOF ROt to Data Float Delay 100 

tey Cycle Time 2.5 15 

DBBWRITE 

Symbol Parameter Min. Max. 

tAW CS, Ao Setup to WR. 0 

tWA CS, Ao Hold After WRt 0 

tww WR Pulse Width 250 

tow Data Setup to WRt 150 

two Data Hold After WR. 0 

1·289 

~ 

mA 

mA 

mA 

/LA 

pF 

pF 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

"'S 

Unit 

ns 

ns 

ns 

ns 

ns 

Test Conditions 

IOl=2.0 rnA 

IOl=1.6 mA 

IOH= -400 ",A 

IOH=-50~ 

Vss" VIN" Vee 

Vss + 0.45" VIN" Vee 

Vll=0.8V 

Vll = 0.8V 

Typical = 65 mA 

"'N= Vee 

Test Conditions . 

Cl = 150 pF 

Cl=150pF 

Test Conditions 

AFN-007410 



8292 

[13] COMMAND TIMINGS' :::i, ,. 

Execution 
Code ·Name TI!!IiI'i IBFIt TCP! SPI ' A'I'Nl5 "tC iJiC' RION EOi DAY C9m.men" 
El WTOUT ',,~63 '24 

'. 
E2 WEVC:' 63 '" 24 

E3 REVC 7f '. 24 51 
E4 RERF, 67 24 47, 

E5 RINM 69 24 49 
E6 ReST 97 24 '77 

E7 RBST : 92 24 72 

E6 
, 

E9 RTOUT 69 24 49 .. 
EA RERM 69 24 ,49 
FO sPot·jf " 53 24 Count Stops After 39 
Fl . GIOL 66 24 .. 7q· 161 161 
F2 RST 94 24 152" , Not System Controller 
F2 RST 214 24 192 152 1179· 1174 1101 System Controller 
F3 RSTI 61 24" .' 
F4 GSEC 125 24 107 198 

, 

F5 EXPP 75 24 
153 155 
159 157 

F6 GTSB 118 24 100 191 
F7 SLOC 73 24 55 146 
F8 SREM 91 '24 73 164 
F9 ABORT 155 24 133 1120 m5 142 
FA TCNTR 108 24 66 171 168 
FC TCAS 92 24 67 155 
FD TCSY 115 24 91 160 ' 

FE STCNI 59 24 Starts Count After 43 
PIN RESET 29 - 17 17 Not System Controller 
X IACtS. 116 - 173 

198 '. If Interrupt Pending 

Notas: 
1. All times are multlples'of tCY from the 8041 A command Interrupt. 
2. TCI clears after 7 tCY on all commands. 
3. I Indicates a leveltransilion from low to high, I Indicates a high to low transition. 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

2.4 -Y2,O 2,0V-
~O.B > TEST POINTS < O.B~ 

0,45 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC":1" AND 0.45V FOR 
A LOGIC '0.' TIMING MEASUREMENTS ARE MADE AT 2,QV FOR ~ LOGIC '" 
AND 0.8V FOR A LOGIC '0.' ' 

A.C. TESTING LOAD CIRCUIT 

DEVICE 

~CL 
UNDER 

TEST 

.. 

CL INCLUDES JIG CAPACITANCE 

AFN.QC741D 



intJ 8292 

CLOCK DRIVER CIRCUITS 

CRYSTAL OSCILLATOR MODE 

r------~ , 
I 1·6 mHz 

< 15 pF I 

(INCLUDES XTAL,...L = 
SOCKET, STRAY) T .~ 

~_____ 3 

15-25 pF 
(INCLUDES SOCKET, I 

STRAY) -=-

XTAl1 

XTAL2 

CRYSTAL SERIES RESISTANCE SHOULD BE 
<75Q AT 6 MHz; <180Q AT 3.6 MHz. 

LC OSCILLATOR MODE 
~ -.£.. 
45 flH 20 pF 

120 ... H 20pF :i.2MHz 2 

riC L 
-=- C 

DRIVING FROM EXTERNAL SOURCE 

XTAl1 

+5V 

470Q 

1<>---+------"-l XTAL1 

+ 5V 

470Q 

'----~--_1 XTAL2 

BOTH XTAL1 AND XTAL2 SHOULD BE· DRIVEN. 
RESISTORS TO VCC ARE NEEDEDIO ENSURE VIH = 3.8V 
IF TTL CIRCUITRY IS USED. 

I 
f;::: 2rn/1C' 

C,=~+3Cpp 
2 

5.2MHtIj 

3 XTAl2 
Cpp ::: 5 -10 pF PIN-TO-PIN 
CAPACITANCE 

EACH C SHOULD BE APPROXIMATElY 20 pF. INCLUDING STRAY CAPACITANCE. 

WAVEFORMS 

READ OPERATION-DATA BUS BUFFER REGISTER 

CS OR Ao 
(SYSTEM'S 

ADDRESS BUS) 

iiii 
(READ CONTROL) 

=:) 
-tAR-

---- ... 
\ 

K 
-- IRA--

} 
t~v 

I 

"\ 
_tRD_ -tOF-

-IAD_ 

DATA BUS _________ i ... ---DA-T-A-VA-U-D------!>--------__ 

(OUTPUT) ~ ~ 

WRITE OPERATION - DATA BUS BUFFER REGISTER 

CsORA0=i f (SYSTEM'S ADDRESS BUS) _________________ ~ ~ _________ ~ __ 

- .. -~ ~,~-~~"""'--""'.~'--WR 
(WRITE CONTROL) 

DATA BUS DATA \i DATA VALID V DATA 
(INPUT) ___ ",;M",;A,;,;Y_C;,;H,;;,A",;N",;G",;E ___ ....J/'!1o-_______ ~I'\'-----M",;A;,;Y;"";;,CH",;A,,,;N,;,;G;,;E;",... ____ _ 

1·291 AFN·()()7410 



inter 8292 

APPENDIX mabie Instrumentation, IEEE Std. 488·1978. This docu; 

The following tables and state diagrams were taken 
from the IEEE Standard Digital Interface for Program· 

ment is the official standard for the GPIB bus and can be 
purchased from IEEE, 345 East 47th St.I New York, NY 
10017. . . 

ii'CA~ 
(WITHIN I<) 

Messages 

pon = power on 
rsc = request system control 
rpp = request parallel poll 
gts = go to standby 
tca = take control asynchronously 
tcs = take control synchronously 
sic = send interface clear 
sre = send remote enable 

IFC = interface clear 
A TN = attention 
TCT = take control 

• T10 > 1.5 joIsec 
t THE·MICROPROCESSOR MUST WAIT FOR THE ao 

INTERRUPT BEFORE WRITING THE GTSB OR GSEe 
CO.MMANDS TO ENSURE THAT (I!TIIllA~ 
IS TRUE. 

C MNEMONICS 

CIDS 
CADS 
CTRS 
CACS 
CPWS 
CPPS 

CSBS 
CSHS 
CAWS 
CSWS 
CSRS 
CSNS 
SNAS 
SACS 
SRIS 
SRNS 
SRAS 
SIIS 
SINS 
SIAS 

(ACDS) 

(ANRS) 

I nterface States 

= controller id Ie state 
= controller addressed state 
= controller transfer state 
= controller active state 
= controller parallel poll wait state 
= controller parallel poll state 

= controller standby state 
= controller standby hold state 
= controller active wait state 
= controller synchronous wait state 
= controller service requested state 
= controller service not requested state 
= system control not active state 
= system control active state 
= system control remote enable idle state 
= system control remote enable not active state 
= system control remote enable active state 
= system control interface clear idle state 
= system control interface clear not active state 
= system control interface clear active state 

= accept data state (AH function) 

= acceptor not ready state (AH function) 

(SDYS) = source delay state (SH function) 

(STRS) = source transfer state (SH function) 

(TADS) = talker addressed state (T function) 

SRO 

Q 
CY~ 

FlgureA.1. C State. Diagram 

1·292 

roc 

._ 0 SACS 

~ 

AFN·OO7410 



inter 8292 

REMOTE MESSAGE CODING 

Bus Signal Llne(s) and Coding That 
Asserts the True Value of the Message 

e 
T L 0 0 NN 
Y A I I DRO A E SIR 
P S 0 0 AFA TOR F E 

Mnemonic Message Name E S 8 7 6 5 432 1 VDe N I Q e N 

ACG Addressed Command Group M AC Y 0 0 0 X X X X XXX X X X X 
ATN Attention U UC XXXXXXXX XXX 1 X X X X 
DAB Data Byte (Notes 1, 9) M DD D D D D D D D D XXX OXXXX 

8 7 6 5 4 3 2 1 
DAC Data Accepted U HS XXXXXXXX XXO X X X X X 
DAV Data Valid U HS XXXXXXXX 1XX X X X X X 
DCL Device Clear M UC Y 0 0 1 0 1 0 0 XXX 1 X X X X 
END End U ST XXXXXXXX XXX 0.1 X X X 
EOS End of Stri ng (Notes 2, 9) M DD E E E E E E E E XXX o X X X X 

8 7 6 5 4 3 2 1 
GET Group Execute Trigger M AC Y 0 0 0 1 000 XXX 1 X X X X 
GTL Go to Local M AC Y 0 0 0 0 0 0 1 XXX 1 X X X X 
IDY Identify U UC XXXXXXXX XXX X 1 X X X 
IFC Interface Clear U UC XXXXXXXX XXX X X X 1 X 
LAG Listen Address Group M AD Y 0 1 X X X X X XXX 1 X X X X 
LLO Local Lock Out M UC Y 0 0 1 000 1 XXX 1 X X X X 
MLA My Listen Address (Note 3) M AD Y 0 1 L L L L L XXX 1 X X X X 

5 4 3 2 1 
MTA My, Talk Address (Note 4) M AD Y OTT TT T XXX X XX X 

54321 
MSA My Secondary Address (Note 5) M SE Y S S S S S XXX X X XX 

54321 
NUL Null Byte M DD 0 0 o 0 0 0 0 0 XXX X X X X X 
OSA Other Secondary Address M SE (OSA = SCG A MSA) 
OTA Other Talk Address M AD (OTA = TAG A MTA) 
PCG Primary Command Group M (PCG = ACG v UCG v LAG v TAG) 
PPC Parallel Poll Configure M AC Y o 0 0 0 1 0 1 XXX 1 X X X X 
PPE Parallel Poll Enable (Note 6) M SE Y 1 1 0 S P P P XXX 1 X X X X 

321 
PPD Parallel Poll Disable (Note 7) M SE Y 1 D D D D XXX X X X X 

432 1 
PPR1 Parallel Poll Response 1 U ST X X X X X X X 1 XXX X X X 
PPR2 Parallel Poll Response 2 U ST XXXXXX1X XXX X X X 
PPR3 Parallel Poll Response 3 U ST X X X X X 1 X X XXX X X X 
PPR4 Parallel Poll Response 4 (Note 10) U ST X X X X 1 X X X XXX X X X 
PPR5 Parallel Poll Response 5 U ST X X X 1 X X X X XXX X X X 
PPR6 Parallel Poll Response 6 U ST X X 1 X X X X X XXX X X X 
PPR7 Parallel Poll Response 7 U ST X 1 X X X X X X XXX X X X 
PPR8 Parallel Poll Response 8 U ST 1 X X X X X X X XXX 1 X X X 
PPU Parallel Poll Unconfigure M UC Y 0 0 1 0 1 0 1 XXX 1 X X X X 
REN Remote Enable U UC XXXXXXXX XXX X X X X 1 
RFD Ready for Data U HS XXXXXXXX XOX X X X X X 
ROS Request Service (Note 9) U ST X 1 X X X X X X XXX o X X X X 
SCG Secondary Command Group M SE Y11XXXXX XXX 1 X X X X 
SDC Selected Device Clear M AC Y 0 0 0 0 1 0 0 XXX 1 X X X X 
SPD Serial Poll Disable M UC Y 0 0 1 1 001 XXX 1 X X X X 
SPE Serial Poll Enable M UC Y 0 0 1 1 000 XXX 1 X X X X 
SRO Service Request U ST XXXXXXXX XXX X X 1 X X 
STB Status Byte (Notes 8, 9) M ST S X S SS S S S XXX o X X X X 

8 65432 1 
TCT Take Control M AC Y 0 0 0 1 001 XXX X X X X 
TAG Talk Address Group M AD Y 1 0 X X X X X XXX X X X X 
UCG Universal Command Group M UC Y 0 0 1 X X X X XXX XXXX 
UNL Unlisten M AD Y0111111 XXX X X X X 
UNT Untalk (Note 11) M AD Y1011111 XXX X X X X 

The 1/0 coding on ATN when sent concurrent with multiline messages has been added to this revision for Interpre-
tive convenience. 

1-293 AFN.(J()741 0 



intJ 8292 

NOTES: 

1. 01-:08 specify the d~.;ic~dependent data bits. 
2. E1-Ea specify the device dependent code used to indicate the EOS message. 
3. ,L 1-1",5 speclfyt~e device dependent bits 'of the device's listen address. 
4. Tl-T5 specify the devicEidependent bits of the device's talk address ... 
5. 51-55 specify the device dependent bits of the device's secondary address. 
6. 5 specifies the sense of. the PPR. 

. Response;::: 5 EF> 1st 

P1-P3 specify the PPR mes~age to be serit when,~ parallel poll is executed. 

P3 P2 P1 . PPR Message 
o 0 0 PPR1 

PPR8 

7 ... 01-04 specifydon't·care bits that shall not be decoded by the receiving device. It is recommended that all zeroes 
be sent. 

8. 51-56,.58 specify the device dependent status; (0107 is used for the RQ5 message.) 
9. The source of the message on the ATN line Is always the C function, whereas the messages on the 010 and EOI 

. lines ·are enabled by the T function.' . 
10. ,The SOl!rce of the. messages on the ATN and. EOllines Is always the C function, whereas the source of .the 

. messages on the 010 lines is always the PP function. 
11 .. This code.is provided for sySt~m use, see 6.3; 

"'£, 

",:e. 

AFN-D07410 



8293 
GPIB TRANSCEIVER 

• Nine Open·collector or Three·state 
Line Drivers 

• 48 mA Sink Current Capability on 
Each Line Driver 

• Nine Schmitt·type Line Receivers 

• High Capacitance Load Drive 
Capability 

• Single 5V Power Supply 

• 28·Pin Package 

• Low Power HMOS Design 

• On·chip Decoder for Mode 
Configuration 

• Power Up/Power Down Protection to 
Prevent Disrupting the IEEE Bus 

• Connects with the 8291A and 8292 to 
Form an IEEE Standard 488 Interface 
Talker/Listener/Controller with no 
Additional C~mponents 

• Only Two 8293's Required per GPIB 
Interface 

• On·Chip IEEE·488 Bus Terminations 

The Intel® 8293 GPIB Transceiver is a high-current, non-inverting buffer chip designed to interface the 8291A GPIB 
Talker/Listener, or the 8291 N8292 GPIBTalker/Listener/Controlier combination, to the IEEE Standard 488-1978Instrumen­
tation Interface Bus. Each GPIB interface would contain two 8293 Bus Transceivers. In addition, the 8293 can also be used 
as a general-purpose bus driver. 

MICROPROCESSOR SYSTEM BUS 

r--- --.. IlAl:R 
I DMA DREQ I CONTROLLER I'-'='-i 
I (OPTIONAL) I L ______ I 

T/R 2 

T/R1 

8291A 
GPIB 

TALKER! 
LISTENER 

GENERAL PURPOSE INTERFACE BUS 

8292 
GPIB 

CONTROLLER 

Figure 1. 8291A, 8292, 8293 Block Diagram Figure 2. Pin Configuration 

1-295 



8293 

Table 1. Pin Description 

Symbol Pin No. 'JYpe Name and Function I.,:" 
BUS1· 12, 13, I/O GPIB Lines, GPIB Side: These are' , 

the IEEE·488· " bus: interfaoe 
driver/receivers, :dr TTL.comPatlble 
inputs on the 8;!91A18292 side, 
depending on the mode used. Their 
use is programmed by the two mode 
select pins, OPTA and OPTB. 

BUS9 15-19, 
21,22 

DATA1- 5-11, I/O GPIB.:l.lnMI 8291A/92$lde:These 
DATAl 0 23-25 are Ihe phis ~ b!l ~ol)nected t9 the 

8291 A and 8292 tei i nteriace with the 
GPIB. Their use II! programmed by 

. the two mode SEllect,pihs;OPTA 'and 
OPTB.AII these pills'weTTL compa-
tible. .. . ... 

T/R;1 

T/R2 2 

I ,1l'anamlt .Reclllive t~ This pill con­
. trois the directionfqr NDAC,' NRFD, 

rJAIiJ, lind 0/01-0108. Inpllt is TTL 
'. pompatible. ' .' 

I 1l'anlllll~Receive 2:. This'pin con­
trols the direction for EOL I'nput is 
TTL compatible. 

·lJymbol 
,EQj 

~r 

ATN 

OPTA 
OPTB 

Vee 

GND 
~. 

Pin No. Type 'Name and Function 

3 I/O End Or Identify: This pin indicates 
.. the end of a multiple byte transfer or, 

') , 
" in conjunction with ATN, addresses 

the device during a polling se-
quence. It connects to the 8291 A and 
is switched between transmit and 
receive byT/R"2. This pin is TTL com-
patible. 

o '. 0, ..... 4 b Attention: This pin is .used bY.tlie 
8291A to monitor thErGPIB ATN 'con-
Irol line. It specifies how data on the 

, . L' 
010 Hn"s·'.isto,be il'lterpreted. This 
output is TTL compatible. 

27 I Mode SeleCt: These two pins are to 
26 control the function of the 82jl3. A 

iruthiable of how they program tlie 
various modes is in Table 2. 

28 P.S~ .' VOltage: Positive power supply (5V 
± 10%). 

14,20 P.S. Ground: Circuit ground. 

Table 2. 8293 Mode Selection Pin Mapping 

IEEElmplem,ent!ltlon. Name 
" 

Pin Name Pin 1110. Mode 0 Mode 1 , Mode 2 " Mode 3 

OPTA 27 0 1 0 1 
OPTB 26 0 0 1 1 

OATA1 5 iFC OIOS iFC OIOS 
BUS1 12 IFC· OIOS~., IFC·' OIOS· 
OATA2 6 REN 0107 REN 0107 
BUS2 13 REN· 0107· REN" 0107· 
OATA3 7 NC Dl06' EOl2 0106 
BUS3 15 EOI· 0106· EOI· ... Di06· 
OATA4 S SRQ 0105 SRCi 0105 
BUS4 16 SRQ· 0105· SRQ· 0105· 
OATA5 9 NRFO 0104 

., 
NRFO' 0104 

BUS5 17 NRFO· 0104· NRFO· 0104· 
OATA6 10 NOAC 0103 NDAC ' 0103 
BUS6 1S NOAC· 0103· NDAC· 0103· 
OATA7 11 T/Ffl01 NC ATNI ATNO 
OATAS 23 T/R102 0102 A'fiiR5 DlO2 
BUS7 19 ATN· 0102· ATN* 0102· 
OATA9 24 GI01 OAV CIC. OAV 
BUSS 21 G101· OAV· CLTH OAV· 
OATA10 25 GI02 0101 IFCL 0101 
BUS9 22 G102· 0101· SYC 0101· 

T/R1 1 T/R1 T/R1 T/R1 TlFh 
T/R2 2 T/R2 NC T/R2 IFCL 
EOI 3 EOI EOI ,. EOT EOi 
ATN 4 ATN ATN ,. ATN Afiij 

"Note: These pll11! are the.IEEE-488 bus non-inverting driver/receivers. They Include all the bus .terrnl.natlonsrequlred by the Standard and may be 
connected directly io the GPIB bus connector. ... . . 

1·296 AFN-00825C 



8293 

GENERAL DESCRIPTION' 
The 8293 is a bidirectional transceiver. It was designed to 
interface the Intel 8291A GPIB Talker/Listener and the 
Intel"" 8292 GPIB Controller to the IEEE Standar<:l.488c1978 
Instrumentation Bus .(also referred to as the GPIB). The 
Intel GPIB Transceiver meets or exceeds all of the elec­
trical specifications defined in the IEEE Standard 488-
1978, Section 3.3-3.5, including the bus termination 
specifications. 

The 8293 can be hardware programmed to one of four 
modes of'operation. These modes allow the 8293 to be 
configured to support both a Talker/Listener/Controller 
environment and a Talker/Listener environment. In addi­
tion, the 8293 can be used as a general-purpose, three­
state (push~pull) or open-collector bus transceiver with 
nine receiver/drivers. Two modes each are used to support 
a Talker/Listener .(see Figure 3) and a Talker/listener/Con­
troller environment (see Figure 4). Mode 1 is used in 
general-purpose environments. 

8281A 

TO 
PROCESSOR 

BUS ,,'-__ .... 

Figure 3_ Talker/Liste.ner Configuration 

TO 
PROCES:~: L... __ ..1 r---y1L.:':::::::":"'.l\Jr-V1 

GPIB 

Figure 4_ Talker/Listener/Controller Configuration 

1-297 

MODEO 

OPTA 

OPTB 

GIO, f24""'"-------I 
THREE 

I-S,.,T."A.!.!TE..,O:<!N",L,,-Y~ GIO,' 
21 

TlftlO, 1-'1.:..1 ____ --' 
THREE 

GIO, 1'25=-___ ---1 STATE ONLY Gla,' 

Tlillo, 1"23:::..-____ ...1 
22 

iF(: ... 5=--___ --1 I--"IN",P,,"UT,-,O~N!!L,,"Y...,.-,i IFC' 
12 

REN 1-'------1 I--::.:IN"-,PU::..:T....:O,,,N:=.LY,---! REN' 
13 

Alii ... 4 ____ --1 I--::.:IN,,",PU::..:T,-,O.,;N::L Y,---! ATN' 
19 

SRO 1'8'--___ ---1 
OPEN COL 

OUTPUT ONLY 
16 

SRO' 

Eoi 1-'------1 
"THREE 

I-S,.,T."A.!.!TE..,O:<!N",L,,-Y...,.-,i EOI' 
15 

TI1I2 F---~----' 

NRFD ... 9=--___ --1 .-====="-1 NRFD' 

NDAC 1-1c=.O ___ --i-l 1-"===="-1 NDAC' 
18 

TIII1 I-'-D-o----+---' 

TIC 1 =THREE STATE 
D= OPEN COLLECTOR 

SIR 1 = SEND TO GPIB 
0 .. RECEiVE FROM GPIB 

::....J = +5V 

.0 =ov 
'= IEEE·488 BUS NON·INVERTING DRIVER/RECEIVER 

FigureS, Talker/Listener Control Configuration 

Table 3, Mode 0 Pin Description 

Pin 
Symbol No. Type Name and Function 

T/R1 1 I TranBmlt Receive 1 Direction control 
for NDAC and NRFD.' If T/R1 is high, then 
NDAC' and NRFD~ are receiving. InpuUs 
TTL compatible. 

~ 10 I/O Not Data Accepted: Processor GPIB 
bus handshake control line; used to in-
dicate the condition of acceptance of 
data IlV device(s). It is TTL compatible. 

NDAC' 18 I/O Not" Data "Accepted: IEEE GPIB bus 
handshake control line. When an input, 
it is a TTL compatible Schmitt-trigger .. 
When an output, it is an open-collector 
driver with 48 mA sinking capability. 

NRFD 9 I/O Not Ready For Data: Processor GPIB 
handshake control line; used to indicate 
the condition of readiness of device(s) 
to accept data. This pin is TTL compati-
ble. 

AFN-OOB25C 



8293 

Tabte 3_Mode 0 Pin Description (Continued) " , ,~. 

,.- ," " "' j ,', 

,Pili" 
SymbQ) No; ~e Name and Function 

.l!ln I' ., ".J 

Symbol "0. ~pe Name and Function 

NRFD" 17, I/O Nqt Ready F4r Data: IEEE:~P.l.B bus 
: 

, handshake control line. When an input, 
I.FC" ,0.1,2 I Interface Clear: ·IEEE GPIB bus control 

.line .. This input IS.a TTL compatible 
l it isa. TTL compatible Schmitt-trigger. h'; Schmitt-trigger.· . 

When an output, it is an 0pE!n-coliector 
driver with a 48 mA current sinking 
capability. 

T/R2 2 I Trail_mit Receive 2: Di,rectlon control 
for EOI. IfT/R2'is high, EOI" is sending. 
Input is TTL compatible. 

TIRIOI 11 I Transmit ReeelveOaneral 10: Dirac" 
T/RI02 23 I tion control for the two spare trans-

ceivers. These pins are TTL compatible. 

GI01 24 I/O oe~raIIO: This is tl\e .TTL side. of the 
GI02 25 I/O two spare .transceivers. These ,pins are 

TTL compatible. 
EOI ·3 I/O End Or Identity: Processor GPIB bus 

control line; is used bya talker to indi-
cate the end of a multiple byte transfer. 
This pin is TTL compatible. 

G101" 21 I/O General 10: These are. spare three-
G102" 2¥ .. I/O state (push-pull) drivers/Schmitt-.trigger 

receivers. The drivers can sink 48 mAo 

EOI" 15 1/0 End Or Identity: IEEE GPIB bus control 
line;'is used by a talker to indicate the 
end of a multiple byte transfer. This pin is MOOEr 

II three-state (push-pull) driver capable 
of sinking 48 mA and a TTL compatible 
receilier with hysteresis. 

SRO 8 I Se."ice ~equest: Processor GPIB bus 
" ·controllil).8; used by a device to indicate i5AV 24 

the need~or service and to request an 
; interruption of the current sequence of 

events on the GPIB. It is a TTL compati-
;: ble input. .. 

T/ill 
·1 

010, 
25 22 

D101* 

'SRO" 16 0 Service Request: IEEE GPIB bus con-
trol line; it· is an open collector driver 
capable of sinking 48 mAo ilili2 23 19 

0102-

REN 6 0 Remote Enable: Processor GPIB bus 
control line; used by a controller (in con- DiOi io 18 

0103-

junction with' other messages) to select 

I' between two alternate sou rces of device 

I···· programming' data (remote or local con- . DRl4 
9' 17 

0104-

trol). This output is TTL compatible. 

REN" 13 I Remote Enable: IEEE GPIB bus control 
line. This input. is a TTL compatible 

i)iOs 16 0105-

Sohmitt'trigger. .' 

ATN 4 0 Attention: Processor GPIB bus control mllii 
15 

0106-

line; used by the 8291 to determine how 
data oil the 010 signal lines are to be 
interpreted, This is. a TTL compatible lii07 13 0107· 

output. 

ATN" 19 I Attention: IEEE GPIB bus control line; 
this input is a TTL compatible Schmitt-
trigger. 

mtI8 
12 0108-

'IFC .' 5 0 Interface Clea~: Processor GPIB bus EOi 

.. 
control line;. used by a .controller to 
place the interface system,into a known 
quiescent state: It is a TTL compatible 
output. Figure 6_ Talker/Llstener Data Configuration 

1-298 AFN000825C 



Table 4. Mode 1 Pin Description 

Pin 
Symbol No. Type Neme and Function 

T/R1 1 I Trensmlt Receive 1: Controls the di-
rection for OAV and the '010 lines. If 
T!R1 is high, then all these lines are 
sending information to the IEEE GPIB 
lines. This input is TTL compatible. 

EOI 3, I End Of Sequence And Attention: 
A'fiij 4 I Processor GPIB control lines. These 

two control signals are ANOed to-
gether to determine whether all the 
transceivers in the 8293 are three-
state (push-pull) or open-collector. 
When both signals are low (true), 
then the controller is performing a 
parallel poll and the transceivers are 
all open·collector. These inputs are 
TTL compatible. 

OAV 24 I/O Data Valid: Processor GPIB bus 
handshake control line; used to indi-
cate the condition (availability and 
validity) of information on the 010 
lines. It is TTL compatible. 

OAV' 21 I/O Deta Valid: IEEE GPIB bus hand-
shake control line. When an, input, it 
is a TTL compatible Schmitt-trigger. 
When OAV' isan output, itcansink48 
mAo 

0101- 25,23, I/O Data Input/Output: Processor GPIB 
i5i08 10, 9, bus data lines; used to carry message 

8, 7, and data bytes in a bit~parallel byte-
6; 5 serial form controlled by the three 

handshake signals. These lines are 
TTL compatible. 

0101'- 22,19, I/O Data Input/Output: IEEE GPIB bus 
0108' 18,17, data lines. They are TTL compatible 

16,15, Schmitt-triggers when used for in-
13, 12 put and can sink 48 mA when used for 

output. See ATN and EOI descrip-
tion for output mode. 

8293 

1-299 

MODE. 

NDAC 

fml'Ij 

T/A1 

fI'{j 

SYC 

iiER 

SRQ 

ATm 
m 

"Elm 
lITm) 

Em 

TIl!. 

NOTE: FUNCTION OF ATN TRANSCEIVER 

SIR = LOW 
Affi1=ATN' 
AT1iI = ATN' 
ATN"=INPUT 
AfiiiO = INPUT 

27 OPTA 

'6 OPTB 

18 
NDAC' 

17 NRFD" 

1. 
IFC' 

13 
REN' 

16 
SRO' 

19 ATN* 

15 EOI' 

Figure 7. Talker/Listener/Controller Control 
Configuration . 

AFN-00825C 



inter 

Pin 
Symbol No. Type 

T/R1 1 I 

NDAC 10 I/O 

NDAC' 18 I/O 

NRFD 9 I/O 

NRFD' 17 I/O 

SYC' 22 I 

REN 6 I/O 

REN' 13 I/O 

IFC 5 I/O 

IFC' 12 I/O 

CIC 24 I 

8293 

Table 5. Mode 2 Pin Description 

Name and Function 

Transmit Receive 1: Direction control 
for NDAC and NRFD.lfT/R1 is high, then 
NDAC and NRFD are receiving. Input is 
TTL compatible. 

Not Data Accepted: Processor GPIB 
bus handshake control line; used to in-
dicate the condition of acceptance of 
data by device(s). This pin is TTL com-
patible. 

Not Data Accepted: IEEE GPIB bus 
handshake control line. It is a TTL com-
patible Schmitt-trigger when used for 
input and an open-collector driver with a 
48 rnA current sink capability when used 
for output. 

Not Ready For Data: Processor GPIB 
bus handshake control line; used to in-
dicate the condition of readiness of de-
vice(s) to accept data. This pin is TTL 
compatible. 

Not Ready For Data: IEEE GPIB bus 
handshake control line. It is a TTL com-
patible Schmitt-trigger when used for 
input'and an open-collector driver with a 
48 rnA current sink capability when used 
for output. 

System Controller: Used to monitor the 
system controller switch and control the 
direction for IFC and REN. This pin is a 
TTL compatible input. 

Remote Enable: Processor GPIB con-
trol line; used by the active controller 
(in conjunction with other messages) 
to'select between two alternate sources 
of device programming data (remote or 
local contrOl). This pin is TTL com-
patible. 

Remote Enable: IE,EE GPIB bus control 
line. When used as an input, this is a TTL 
compatible Schmitt-trigger. When an 
output, it is a three-state driver with a48 
rnA current sinking capability. 

Interface Clear: Processor GPIB bus 
control line; used by the active con-
troller to place the interface system into 
a known quiescent state. This pin is TTL 
compatible. 

Interface Clear: IEEE GPIB control 
line. This is a TTL compatible Schmitt-
trigger when used for input and a three-
state driver capable of sinking 48 rnA 
current when used for output. 

Controller In Charge: Used to control 
the direction of the SRO and to indicate 
that the 8292 is in charge of the bus. CiC 
is a TTL compatible input. 

Pin 
Symbol No. Type Name and Function 

CLTH1 21 I Clear Latch: Used to, clear the IFC Re-
ceived latch after it has been recognized 
by the 8292. Normally low (except after a 
hardware reset). It will be pulsed high 
when IFC Received is recognized by the 
8292. This input is TTL compatible. 

IFCL 25 0 IFC Received Latch: The 8292 moni-
tors the IFC line when it is not the active 
controller through this pin. 

SRO 8 I/O Service Request: Processor GPIB con-
trolline; indicates the need for attention I 
and r!lquests the active controlier 
to interrupt the current sequence of 
events on the GPIB bus. This pin is TTL 
compatible. 

SRO' 16 I/O Service Request: IEEE GPIB bus con-
trolline. When used as an input, this pin 
is a TTL compatible Schmitt-trigger. 
When used as an output, it 'is an open-
collector driver with a 48 rnA current 
sinking capabiiity. 

T/R2 2 I Transmit Receive 2: Controls the di-
rection for EOI. This input is TTL com-
patible: 

ATNO 23 I Attention Out: Processor GPIB bus 
control line; used by the 8292 for ATN 
control of the IEEE bus during "take 
control synchronously" operations. A 
low on this input causes ATN to be as-
serted if CIC indicates thatthis8292 is in 
charge. ATNO is a TTL compatible input. 

ATNI 11 0 Attention In: Processor GPIB bus con-
trolline; used by the 8292 to monitor the 
ATN line. This output is TTL compatible. 

ATN 4 0 Attention: Processor GPIB bus control 
line; used by the 8292 to monitor the ATN 
line. This output is TTL compatible. 

ATN' 19 I/O Attention: IEEE GPIB bus control line; 
used by a controller to specify how data 
on the DID signal lines are to be Inter-
preted and which devices must respond 
to data. When used as an output, this pin 
is a three-state driver capable of sinking 
48 rnA current. As an input, it is a TTL 
compatible Schmitt-trigger. 

EOl2 7 I/O End Or Ident"y 2: Processor GPIB bus 
control line; used in conjunction with 
ATN by the active controller (the 8292) to 
execute a polling sequence. This pin is 
TTL compatible. 

EOI 3 I/O End Or Identify: Processor GPIB bus 
control line; used by a talker to indicate 
the end of a multiple byte transfer se-
quence. This pin is TTL compatible. 

NOTES: 
1. VIL3 is guaranteed at 1.lVonthese inputsto accommodate the 

high curreni-sourcing capability of these pins during a low 
input in Mode 2. 

1-300 AFN.()()82SC 



inter 
Table 5. Mode 2 Pin Description (Continued) 

Pin 
Symbol No. lYpe Name and Function 

EOI" 15 I/O End Or Identify: IEEE GPIB bus control 
line; used by a talker to indicate the end 
of a multiple byte transfer sequence or, 
by a controller in conjunction with ATN, 
to execute a polling sequence. When an 
output, this pin can sink 48 mA current. 
,When an input, it is a TTL compatible 
Schmitt-trigger. 

ATIIO OPTA 

i1'Cl. OPTB 

OAV 
21 

OAV· 

T/ih 

DlO, 
25 22 

DlOI· 

0102 
23 19 

0102· 

DlO, 
10 18 

0103· 

010. 
17 

0104· 

010, 
16 0105· 

rno; 7 15 
0106' 

0107 
13 

0107· 

DIOa 
12 

OIOS' 

ATN 

Figure 8. Talker/Listener/Controller Data 
Configuration 

8293 

1-301 

Table 6. Mode 3 Pin Description 

Pin 
Symbol No. lYpe Name and Function 

T/R1 1 I Transmit Receive 1: Controls the di-
rection for OAV and the 010 lines. If 
T/R1 is high, then all these lines are 
sending information tothe IEEE GPIB 
lines. This input is TTL compatible. 

EOI 3 I End Of Sequence and Attention: 
ATN 4 I Processor GPIB control lines. These 

two control lines are ANOed together 
to determine whether all the trans-
ceivers in the 8293 are push-pull or 
open-collector. When both signals 
are low (true), then the controller is 
performing a parallel poll and the 
transceivers are all open-collector. 
These inputs are TTL compatible. 

ATNO 11 I Attention Out: Processor GPIB con-
trol line; used by the 8292 during 
"take control synchronously" opera-
tions. This pin is TTL compatible. 

IFCL 2 I Interface Clear Latched: Used to 
make OAV received after the system 
controller asserts IFe. This input is 
TTL compatible. 

OAV 24 I/O Data Valid: Processor GPIB hand-
shake control line; used to indicate 
the condition (availability and 
validity) of information on the 010 
signals. This pin is TTL compatible. 

OAV" 21 I/O Data Valid: IEEE GPIB handshake 
control line. When an input, this pin is 
a TTL compatible Schmitt-trigger. 
When OAV" is an output, it can sink 48 
mAo 

0101- 25,23, I/O Data Input/Output: Processor GPIB 
0108 10, 9, bus data lines; used to carry message 

8, 7, and data bytes in a bit-parallel byte-
6, 5 serial from controlled by the three 

handshake signals. These lines are 
TTL compatible. 

0101" 122,19, I/O Data Input/Output: IEEE GPIB bus 

otOe" I" ", data lines. They are TTL compatible 
16,15, Schmitt-triggers when used for input 
13,12 and can sink 48 mA when used for 

output. 

AFN-00825C 



inter 

TO 
MICROPROCESSOR 

INTERFACE 

.~ 

....!! 

...!! 
~ 
..11!. 
...!!. 
..11!. 
....!! 
~ 
~ 

[-E. 
2 
2 
...!!!., 

,....!! 
-2. 
-i 
--..! 

,..2. 
GPla TRIGGER OUTP UT2 

8293 

25 
,0101 

23 
0102 , 10 im53 ' 

9 iii04 
8 

0105 
1I2II1A 

Di01 .1L.. 7 
0106 DO 

01 0102 .1!...- 6 
0107 

DI03 
30 5 

0108 02 

03 Di04 31 24 
DAV 

0105 
32 1 

T/Rl D4 

05 DiOi 33 ~ ATN 

06 0107 
34 ~ EOI 

07 i5iOi 35 

RSD fiAV 36 

RSl Tllh 1 

RS2 ATN: 
26; 

cs EOi 39 ,3 
EOI 

iiii T/R2 
2 4 IA'fN 

WR NDAC 38 1 T/Al 

INT NRFO 
37 2 T/R2 

CLOCK SRa 
27 10 

NDAC 

RESET !lIN 25 9 iii'IiFo 
OREa iFC 

24 8 SiiQ 

OACK 
6 iiEN, 

TRIG 
5 

lFC 

, =,QPIB BUS TRANSCEIVER 

Figure 9. 8291A and 8293 System Configuration 

1·302 

8293 ," 

0101' 

0102' 

0103' 

0104' 

0105' 

0106' 

0107' 

0108' 

DAV' 

OPTA 

OPTB 

MODEl 

8293 
EOI' 

ATN' 

NDAC' 

NRFO' 

SRa' 

REN' 

IFC' 

OPTA 

OPTa 

MOOED 

~ 
~ 
r!!-
~ 
r!!-
~ 
~, 
~ 
~ 
tE-
~ 

..!!. 

.1!... 

.!!.. 
JL 
..!!-
..!!.. 
JL 
.E-
.1!.. 

,TO 
IEEE-488 
BUS 

Vee 

GND 

TO 
IEEE-488 
BUS 

GND 

GND 

AFN-0D825C 



inter 

TO 
MICROPROCESSOR 

GPI 
TRIGGE 
OUTPU 

TO 
MICROPROCESSOR 

B 
R 
T 

! 
OSCILLATO 

OUTPU 
R 
T 

TO MICROPROCESSOR 

~ 
..!! 
~ 

15 

16 

17 

18 

19 

21 

22 

23 

9 

10 

4 

6 

7 

8 

3 

11 

5 

..E.. 
--...E.. 
~ 
~ 

16 

17 

18 

19 

9 

8 

10 

L-t> -6 

32 

33 

35 

36 

11 

VCc~ 

~ 
~1 

15.25 PF± r 
• = GPIB BUS TRANSCEIVER 

DO 

01 

02 

03 

04 

05 

06 

07 

RSO 

RSI 

RS2 

AD 
WR 

RESET 

DREO 

ilAcK 
CS 
CLOCK 

INT 

TRIG 

DO 

01 

02 

03 
0_ 

05 

06 

07 

AO 

iiii 
Wi! 
RESET" 

CS 
TCI 

SPI 

OBFI 

IBFI 

SYNC 

SS 
X,, 
X,, 
EA 

'= SEE 8041A DATA SHEET FOR ALTERNATE 
CRYSTAL CONFIGURATIONS ,,= CAN CONNECT TO SYSTEM RESET SWITCH, 
SEE 8041A DATA SHEET 

8'81A 

8292 

8293 

0101 
28 25 

0101 

0102 
29 2a 

0102 

0103 
30 10 

0103 

0104 
31 9 

0104 

0105 
3. 8 

0105 

0106 
33 7 

0106 

0107 
34 6 

0107 

0108 
35 5 

0108 

Tiiil 
1 1 

T/ih 

'DAV 
36 24 DAY 

EOI 
39 3 EOi 

ATN 
26 4 

ATN 

SRO 
27 

IFC 
24 

NDAC 
38 

NRFD 
37 

T/R2 
2 -1.!. ATNO 

REN ~ 2- IFCL 

DAV ~ --.!. TiR1 
4 

ATN 
10 

NDAC 
9 IiiFRii 
2 

T/R2 

SRO 
21 8 

SRO 

REN 
38 6 liEN 

IFC 
.3 5 

IFC 
29 23 -'-ATNO ATN9, 
39 3 

EOI COUNT 

EOl2 
3_ 7 

EOI. 

ATNI 
22 11 

ATNI 

IFCL 
1 25 

IFCL 

CIC 
31 2_ 

CIC 

CLTH 
27 21 

CLTH 

SYC 
24 22 

SYC 

l)C ON SYSTEM 
CONTROLLER 

SWITCH 

Figure 10. 8~~1A, 8292, and 8293 System Configuration 

1-303 

0101-

0102· 

0103· 

0104· 

0105· 

lii06· 

0107· 
8293 

0108· 

DAV· 

OPTA 

OPTB 
MODE 3 

NDAC 

NRFD 

SRO· 

REN" 
8293 IFC· 

,ATN· 

EOI· 

OPTA 

OPTB 

MODE2 

~ 
f1!-
r!!-
l!-
.1!... 
.!L 
JL 

rE-

1.2.. 

TO 
IEEE·488 
BUS 

.E.... Vc 

3!..v 

..!!... 
l!-

..!!... 

.!!.: 
11-
..!!.. 
..!!.. 

cc 

TO 
EEE·488 

BUS 
I 

~VS 
~Vc c 

AFN-D0S25C 



ABSOLUTE MAXIMUM RATINGS* 
Ambient.Temperature Under Bias •.•...••• 0·C.t070·C 
Storage Temperature ............. - 65·C to + 150·C 
Voltage on any Pin with 

Respect to Ground ................. -1.0V to + 7V 
Power Dissipation .......................... 1 Watt 

'NOTICE: 
1. Stresse~ above those listed um1er "Absolute Maximum 
Ratings" mayc<l!lse permanent damage to the device. 

This is a stress rating only and functional operation of the 
device at these or any other conditions above those indi­
cated in the aperational sections otthis specification is 
not implied. Exposure to absolute maximum rating condi­
tiol1s for extenc(ed periods may affect device reliability. 
2. All devices are guaranteed to operate within the 
minimum and maximum parameter limits specifiedbelow. 
Typical parameters however are not tested and are not 
guaranteed. Established statistically, they indicate the 

, performance level expected. in a typical device at room. 
temperature (TA = 2S0C) and Vee = Sv. 

D.C. CHARACTERISTICS (TA = O"Ct070°C vee'" 50V +10% GND=OV) -

Sym~ol Parameter 
'. Limits 

Units Test Conditions 
Min_ Typ. Max. 

VIl1 Input Low Voltage (GPIB Bus Pins) 0.8 V 

VIL2 Input Low Voltage (Option Pins) -0.1 0,1 V 

. VIL3 
1 I nput Low Voltage (All Others) 0.8 V 

VIH1 Input High Voltage (GPIB: Bus Pins) 2.0 Vee V 

VIH2 Input High Voltage,(Option Pins) .4.5 . Vee V 

VIH3 Input High voltage (All Others) 2.0 Vee V 

VIH4 Receiver Input HysteresiS 400 mV 

VOl1 Output Low Voltage (GPIB Bus Pins) 0,5 V IOL = 48 mA 

VOL2 Output Low Voltage (All Others) 0 .. 5 V IOl = 16 mA 

VOH1 Output High Voltage (GPIB Bus Pins) 2.4 V IOH = -5.2 mA 

VOH2 Output High Voltage (All Others) 2.4 V IOH = -800 pA. 

. ..' High to Low 0.8 
. VIT Receiver Input Threshold Low to High 2.0 V 

Ile • Input Load Current (GPIB Pins) See Bus Load Line Diagram Vee = 5.0V ± 5% 

IlL Input Leakage Current (All Qthers) 10 pA. 0.45 ,,;VIN .,;Vee 

Ipo Bus Power Down Leakage Current 40 pA. 0.45V .,; Veus .,; 2.7V 

ICC Power Supply Cunent 110 175 mA 

NOTES: 
1. VIL3 = 1.1V max on pins 21 and 22 in Mode 2 for the 8293-10. 

CAPACITANCE 

Symbol Parameter Min_ Typ. Max. Units Test Conditions 

CI01 1/0 Capacitance (GPIBSide) 50 80 pF VIN =Vee 

CI02 1/0 Capacitance (System Side) 35 50 pF VIN "'Vee 

CITR Input Capacitance (T/R1, T/R2) 7 10 pF VIN =Vee 

1-304 AFN·00825C 



intJ 8293 

A.C. CHARACTERISTICS (TA = O"C to 70"C, Vee = 5.0V ±10%, GND = OV) 

Symbol Parameter 

tp1 Transmitter Propagation Delay (All Lines) 

tp2 Receiver Propagation Delay (EOI, ATN and Handshake Lines) 

tp3 Receiver Propagation Delay (All Other Lines) 

tPHZ1 Transmitter Disable Delay (High to 3-State) 

tPZH1 Transmitter Enable Delay (3-state to High) 

tpLZ1 Transmitter Disable Delay (Low to 3-State) 

tpZL1 Transmitter Enable Delay (3-State to Low) 

tpHZ2 Receiver Disable Delay (High to 3-State) 

tpZH2 Receiver Enable Delay (3-State to High) 

tpLZ2 Receiver Disable Delay (Low to 3-State) 

tpZL2 Receiver Enable Delay (3-State to Low) 

tMS Mode Switch Delay 

A.C. TESTING INPUT, OUTPUT WAVEFORM 
A.C. TESTING LOAD CIRCUIT 
FOR PROPAGATION DELAYS 

INPUT/OUTPUT 

DEVICE 

Max. 

30 

50 

60 

40 

40 

.40 

40 

40 

40 

40 

40 

10 

'1~L~150PF 
UNDER 

TEST 

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC ,,'" AND 0.4SV FOR 
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1" 
AND O.BV FOR A LOGIC "0." 

1.305 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ILS 

AFN·00825C 



8293 

WAVEFORMS 

3.OV;,.......:;.. _______ ~----""""\ 

tRISE = tFALL :s; 5 ns 
D.UTY CY<;~~ ~ 50% 

INPUT 

.0V----.1 

DUTPUT 
(TRANSMITTER PRDP. DELAY) 

FIGURE 11 LOAD 

OUTPUT 
(RECEIVER PROP. DELAY) 

FIGURE 12 LOAD 

OUTPUT 
(TRANSMITTER ENABLE DELAY 

WITH INPUT HIGH) 
FIGURE 13 LOAD 

OUTPUT 
(TRANSMITTER ENABLE DELAY 

WITH INPUT LOW) 
FIGURE 13 LOAD 

OUTPUT 
(RECEIVER ENABLE DELAY 

WITH INPUT HIGH) 
FIGURE 14 LOAD 

OUTPUT 
(RECEIVER ENABLE DELAY 

WITH INPUT LOW) 
FIGURE 14 LOAD 

VOH 

Vz ~ 1.0V 

Vz ~ 1.13V 

VOL 

VOH 

OV 

5V 

VOL 

"DELAYS ARE REFERENCED AGAINST PERCENTAGE OF FINAL OUTPUT WHEREVER 3-STATE OUTPUTS ARE INVOLVED BECAUSE THE RISE AND FALL TIMES DEPEND 
ON THE EXTERNAL PULL-UP AND PULL-DOWN LOADS. . 

BUS LOAD LINE 

Vous. BUS VOLTAGE (VOLTS) 

1-306 

TYPICAL RECEIVER HYSTERESIS 
CHARACTERISTICS 

5.0 ...--...---"r---.---.---.--...,.---r----, 

~ 4.01---f-VCC-5.0V 
~ TA=25"C 

w 
" 3.0 1--+---j--f--+--+--HI-+--1 
~ 
g 
~ 2.0 1--+---j--f--+--+--~~+--1 

~ 
~ 1.0 

~~~~~~~~ o L-_-L_~L-_~_-L_~ __ ~_-L_~ 
o 0.5 1.0 1.5 2.0

VI. INPUT VOLTAGE (VOLTS)

AFN-00825C

Controllers

• t-.I@
In~

~', ' ,! :

8253/8253·5 ..
PROGRAMMABLE INTERVAL TIMER

• MCS·85™ Compatible 8253·5 • Count Binary or BCD

• 3 Independent 16·Blt Counters
• Single + 5V Supply

• DC t02 MHz

• Programmable Counter Modes • 24·Pin Dual In· Line Package

The Intel'" 8253 is a programmable counter/timer chip designed for use as an Intel microcomputer peripheral. It uses
nMOS technology with a single +5V supply and is packaged in a 24-pln plastic DIP.

It is organized as 3 independent 16-bit counters, each with a count rate of up to 2 MHz. All modes of operation are soft­
ware programmable.

AD
WR-

Ao

A,

CS

DATA
BUS

BUFFER

READ!
WRITE
LOGIC

CONTROL
WORD

REGISTER

INTERNAL BUS /

COUNTER
;2

Figure 1. Block Diagram

CLKO

GATE 0

OUT a

elK 1 Vee

GATE 1
iVA

AD
OUT1

O2

eLK 2

GATE 2

OU12 GND OUT 1

Figure 2. Pin Configuration

1·307

intJ 8253/8253·5

FUNCTIONAL DESCRIPTION
General
The 8253 is a programmable interval timer/counter
specifically designed for use with the Intel'· Micro­
computer systems. 'its function is that of a general
purpose, multi-timing element that can be treated as an
array of I/O ports in the system software.

The 8253 solves one of the most common problems in any
microcomputer system, the generation of accurate time
delays under software control. Instead of setting up timing
loops in systems software, the programmer configures the
8253 to match his requirements, initializes one of the
counters of the 8253 with the desired quantity, then upon
command the 8253 will count out the delay' and interrupt
the CPU when it has completed its tasks. It is easy to see
that the software overhead is minimal and that multiple
delays can easily be maintained by assignment of priority
levels.

Other counter/timer functions that are non-delay in
nature but also common to most microcomputers can be
implemented with the 8253.

• Programmable Rate Generator
• Event Counter
• Binary Rate Multiplier
• Real Time Clock
• Digital One-Shot
• Complex Motor Controller

Data Bus Buffer

This 3-state, bi-directional, 8-bit buffer is used to interface
the 8253 to the system data bus. Data is transmitted or
received by the buffer upon execution of INput or OUTput
CPU instructions. The Data Bus Buffer has three basic
functions.

1. Programming the MODES of the 8253.
2. Loading the count registers.
3. Reading the count values.

ReadlWrite Logic

The ReadIWrite Logic accepts inputs from the system bus
and in turn generates control signals for overall device
operation. It is enabled or disabled by CS so that no
operation can occur to change the function unless the
device has been selected by the system logic.

RD (Read)
A "low" on this input informs the 8253 that the CPU is
inputting data in the form of a counters value.

WR (Write)
A "low" on this input informs the 8253 that the CPU is
outputting data in the form of mode information or loading
counters.

1-308

AO,A1
These inputs are normally connected to the address bus.
Their function is to select one of the three counters to be
operated on and to address the control word register for
mode selection.

CS (Chip Select)
A "low" on this input enables the 8253. No reading or
writing will occur unless the device is selected. The CS
input has no effect upon the actual operation of the
counters.

Figure 3. Block Diagram Showing Data Bus Buffer and
Read/Write Logic Functions

CS RD WR A, Ao
0 1 0 0 0 Load Counter No. 0

0 1 0 0 1 Load Counter No.1

0 1 0 1 0 Load Counter No.2

0 1 0 1 1 Write Mode Word

0 0 1 0 0 Read Counter No. 0

0 0 1 0 1 Read Counter No.1

0 0 1 1 0 Read Counter No.2

0 0 1 1 1 No·Operation 3-State

1 X X X X Disable 3-State

0 1 1 X X No·Operation 3-State

AFN·OO745B

intJ 825318253·5

Control Word Reglater
The Control Word Register is selected when AO, A 1 are 11.
It then·acceptsinformation from the data bus buffer and
stores it in.a register. The information stored in this
register controls the operational MODE of each counter,
selection of binary or BCD counting and}he loading of
each count register. ..

the Control Word Register can only be written into; no
read operation of its contents is available.

Counter #0, Counter #1, Counter #2
These three functional blocks are identical in operation so
only a single Counter will be described. Each Counter
consists of a single, 16-bit, pre-settable, DOWN counter.
The counter can operate in either binary or BCD and its

. input, gate and output are configured by the selection of
MODES stored in the Control Word Register.

The counters are fully independent and each can have
separate Mode configuration and counting operation,
binary or BCD. Also, there are special features in the
control word that handle the loading of the count value so
that software overhead can be minimized for these
functions.

The reading of the contents of each .counter is available to
the programmer with simple READ operations for event
counting applications and special commands and logic
are included in the 8253 so that the contents of each
counter can be read "on the fly" without having to inhibit
.the clock input.

8253 SYSTEM INTERFACE
The 8253 is a component of the Intel'· Midrocomputer
Systems and interfaces in the same manner as all other
peripherals of the family. It is treated by the systems
software as an array of peripheral I/O ports; three are
counters and the fourth is a control register for MODE
programming.

Basically, the select inputs AO, A1 connect to the AO, A1 .
address bus signals of the CPU. The CS can be derived
directly from the address bus using a linear select method.
Or it can be connected to the output of a decoder, such as
an Intel@> 8205 for larger systems.

Ali
WR

Ao
A,

cs

.1

~

1·309

.~EADI
WRITE
LQGIC

INTERNAL BUS

Figure 4. Block Dlag~am Showing .Control Word
Register and Counte.r Functions

ADDRESS BUS 1,6)

A, Ao

CONTROL BUS

IIOR I/OW

DATA BUS I~'

:J
A,.' Ao cs 0 0.°7 RD WR

8253
COUNTER COUNTER COUNTER

0 , 2
I t

lOUT GATE elK I lOUT GATE'eL.:K'
I

lOUT GATE elK I

1 r r 1 r r 1 r 1
Figure 5. 8253 System Interface

I

")

AFI'IoOO746B

inter 8253'8253~5

OPERATIONAL DESCRIPTION

General
The complete functional definition of the 8253 is
programmed by the systems software. A set of control
words must be sent out by the CPU to initialize each
counter of the 8253 with the desired MODE and quantity
information.· Prior to initialization, the MODE, count, and
output of all counters is undefined. These control words
program the MODE, Loading sequence and selection of
binary or BCD counting. .

M - MODE:

M2 Ml MO

0 0 a Mode a
a a 1 Mode 1

X 1 a Mode 2

X 1 1 Mode 3

1 a a Mode 4

1 a 1 Mode 5

Once programmed, the 8253 is ready to perform whatever BCD:
timing tasks it is assigned to accomplish.

The actual counting operation of each counter is
completely independent and additional logic is provided
on-chip so that the usual problems associated with
efficient monitoring and management of external,
asynchronous events or rates to the microcomputer

. system have been eliminated.

Programming the 8253
All of the MODES for each counter are programmed by the
systems software by simple lID operations.

Each counter of the 8253 is individually programmed by
writing a control word into the Control Word Register.
(AO,Al = 11)

Control Word Format

0, Do

SCl sca RLl RLa I M21 Ml Ma BCD

Definition of Control

SC - Select Counter:

SCl SCO

a a Select Counter a
a 1 Select Counter 1

1 a Select Counter 2

1 1 Illegal

RL - Read/Load:

RLl RLO

a a Counter Latching operation (see
READIWRITE Procedure Section)

1 a Read/Load most significant byte only.

a 1 Read/Load least significant byte only.

1 1 Read/Load least significant byte first,
then most significant byte.

a Binary Counter la-bits

Binary Coded Decimal (BCD) Counter
(4 Decades)

Counter' Loading

The count register is not loaded I,IIHil the count value is
written (one or two bytes, depending on the mode
selected by the RL bits), followed by a rising edge and a
falling edge of the clock. Any read of the counter prior to
that falling clock edge may yield invalid data.

MODE Definition .

MODE 0: Interrupt on Terminal Count. The output will
be initially low 'after the .. mode set operatio,n. After the
count is loaded into the selected~ount register, the out·
put will,remain low and t,he count~r will count: When ter·
minal count is reached the output will go high and reo
main high until the selected count register is reloaded
with the mode or a new count is loaded. The counter
continues to decrement after terminal count has been
reached.

Rewriting's counter register during counting results in
the following:

(1) Write 1st byte stops the current counting.
(2) Write 2nd byte starts the new count.

MODE 1: Programmable One·Shot. The output will go
Iowan the count following the rising edge of the gate in·
put.

The output will go high on the terminal count. If a new
count value is loaded while the output.is low it will not
affect the duration of the one·shot pulse until the sue·
ceeding trigger. The current count can be read at any
time without affecting the one· shot pulse.

The one·shot is retriggerable, hence the output will reo
main low for the ful·1 count after any rising edge of the
gate input.

1-310 AFN-00745B

inter 826~~253.6··'

MODE 2: Rale Oeneralor. Divide by N counter. The out·
put will be low for one period of the input 'clocK The
period from one output pulse to the next equals th!l
number of Input counts in the count register. If the
count register is reloaded between output pulses the
present period will not be affected, but the subsequent
period will reflect the new value.'

The gate input, when low, will fOrce the output high.
When the gate Input goes high, the counter wHi start
from the initial count. Thus, the gate input can be used
to Synchronize the counter.

When this mode is set, the output will remain high until
after the count register Is loaded. The output then ello '
also be. synchronized by software.

If the count regi~1er: Is ",,(Q~ded betwe.n ,output pl,llses;
counting will continue from the new value. The count
will be inhibited while the gate Input is low; Reloading
the counter register will restart counting beginning' ",iith
the new number.

MODE 5:H.rdwart Triggered Strobe; Thecoilnter will
start countlng'after the rising edge of the trigger input
arid will go low for one clock j)eriod when the terrtllnal
count is reach&d~ The counter is r'etriggerable. The out·
put will not go low unti.1 the full count after the rising
edge of any trigger.

.' ,

' .. '

Low
Status Or Going

MODE 3: Square Wave Rate Generalor.Si milar to MODE
2 except that the output will remain high until one half
the count has been completed (for even numbers) and
go low for the other half of the count. This is accom·
plished by decrementing the counter by two on the fall·
ing edge of each clock pulse. When the counter reache,s
terminal count, the state of the output is changed and
the counter is reloaded 'with the full count and the whole
process is repeated.

~ Modes ': Low Ri$lng High

If the count is odd and ttle output is high, the first clock
pulse (after the count is loaded) decrements the,count
by 1. Subsequent clock pulses decremerit the clock by
2. After timeout, the output goes low and the full count ,
is reloaded. The first clock pulse (following the reload)
deCrements the' counter by 3. Subsequent' clock pulses
decrement the count by 2 until timeout; Then the whole
process fs repeated. In this way, if the count is odd, the
output will be high for(N + 1)/2 counts and low for
(N~ 1)/2 counts.' , ..

MODE 4: Software Triggered Strobe. After the mode is
set, the output will be high. When the count is loaded,
the counter will begin counting. On terminal count, the
output will go low for one input clock period, then will
go high again. . .

1-311

0 Disables -- : Enables
counting counting

1 -- 1) Initiates --
counting

2) Re~els·o~tput

after nex~ e:1ock

2 1) Di~ables
1) Reloads

counting
counter

Enables
2) Sets output

2) Initiates
counting

immediately
COUl)tlng" high

3 1) Disables " :
counHng Initiates Enabl&s

2) Sets output counting counting
immediately
high

4 Disables -- Enables
counting 'counting

5 -- Initiates --
counting

Figure 6.· Gilte Pin Operations Summary

AFN-007458

inter 825318253-5

MODE 0: Interrupt on Terminal Count MODE 3: Square Wave Generator

CLOCK CLOCK

I I

WR"n~
I I

OUTPUT In = 41

4 3 2 1 0
OUTPUT (INTERRUPT) ! I OUTPUT In = SI

In=41 I-o-t-n---\
I I
I I

WRm~
I I

GATE------------~:L____Jr-+:--------
5 4 3 2 1

OUTPUT (INTERRUPTI
(m=5) '-..-.J

A
A+B= m

MODE 1: Programmable One·Shot MODE 4: Software Triggered Strobe

CLOCK

Wlin~

TRIGGER ~
4 3 2 1

~L-~~~ __ r-----------OUTPUT

MODE 2: Rate Generator

LOADn~~---------------------

GATE ---------~~r------------
OUTPUT

_______ ~4~~---4~~3~-2--1~a
U-

MODE 5: Hardware Triggered Strobe

CLOCK

GATE ---l,.----------
4 3 2 1 0

OUTPUT In' 41 W,.-----------

GATE~
4343210

OUTPUT In = 41 W,.-------

Figure 7. 8253 Timing Diagrams

1-312 AFN-00745B

intJ 825318263·5

8253 READ/WRITE PROq~DU~E
Write Operati~ns

, , ., ", '"

The systems software, must program each counter of the
8253 With the,mode and ,quantity desired. The program­
mer must write out to the 8253 a MODE control word and
the programmed number of count register bytes (lor 2)
prior to actually using the selected counter.

The actual order of the programming is quite flexible.
Writing out of the MODE control word can be in any
sequence of counter selection, e.g., counter #0 does not
have to be first or counter #2 last. Each counter's MODE
control word register has a separate address so that its
loading is completely sequence independent. (SCO, SC1)

The loading of the Count Register with the actual count
value, however, must be done in exactly the sequence
programmed in the MODEcoJltwl word (RLO, RL 1): This
loading of the counter's count register is still sequence
independent like the, MODE col"!lrol word loading, but
when a selected count register is tei be loaded it must be
loaded with the number of bytes programmed in the
MODE control y.tord (HLO, RL,l), The one or two bytes to
be loadediri the count register do not have'to follow the
associated MODE control word. They can be programmed
at anytime following the, MODE control word loading as
long as the correct number of bytes is loaeled in order.

All counters are down counters. Thus, the value loaded
into thecollnt registe'" will aCtually be decremented.
Loading all zeroes into a count register will result in the
maximum count (2'6 for Binary or 10'for BCD). In MODE 0
the new count will not restart until the load has been
completed. It will accept one of two bytes depending on
how the MODE control words (RLO; RL 1) are program­
med. Then proceed with the restart operation,

II!IODr:.Cont~ol Word
CoUnter II

LSB
Count Register byte-

Counter n

MSB
Co U nt Reg ister byte

Counter n

Note: Format shown is a simple exampiii 'of loading the 8253 and
does not imply that it is th" only format that, can be us~.

Figure 8~ Programming Format

A1 AO

No.1
MODE Control Word

1 1
Counter °

, MODE Control Word
1 1

Counter 1
No. 2

MODE Control Word
1 1

Counter 2
No. 3

LSB
Count Register Byte

° 1
Counter 1

No.4

Count Register Byte
0 1

MSB Counter 1 No. 5

LSB
Cou nt Reg ister Byte

1 0
Counter 2

No.6

MSB.,
Count Register Byte

1 0
Counter 2

No. 7

LSB
Count Register Byte

0 0
Counter ° No.8

MSB
Count' Register Byte

° 0
Counter ° No.9

Note: The exclusive addresses of each counter's count register make
the task of programming the 8253'a very simple matter, and
maximum effective use of the device will result if this feature
is fullY,utilized.

Figure 9. Alternate Programming Formats

AFN-00745B

inter 8253/8253-5

Read Operations
In most counter applications it becomes necessary to read
the value of the count in progress and make a
computational decision based 'on this quantity. Event
counters are probably the most common application that
uses this function. The 8253 contains logic that will allow
the programmer to easily read the contents of any of the
three counters without disturbing the actual count in
progress.

There are two methods that the programmer can use to
read the value of the counters. The first method involves
the use of simple 1/0 read operations of the selected
counter. By controlling the AO, A 1 inputs to the 8253 the
programmer can select the counter to be read (remember
that no read operation of the mode registeris allowed AO,
Al-ll). The only requirement with this method is that in
order to assure a stable count reading the actual operation
of the selected counter must Qg inhibited either by
controlling the Gate input or by external logic that inhibits
the clock input. The contents of the counter selected will
be available as follows:

first 1/0 Read contains the least significant byte (lSB).

second 1/0 Read contains the most significant byte
(MSB).

Due to the internal logic of the 8253 it is absolutely
necessary to complete the entire reading procedure. If two
bytes are programmed to be read then two bytes must be
read before any loading WR command can be sent to the
same counter.

3MHz
ClK ~2

8085

Read Operation Chart

Al AO RD

0 0 0 Read Counter No, 0

0 1 0 Read ·Counter No.1

1 0 0 Read Counter No.2

1 1 0 Illegal

Reading While Counting

In order for the programmer to read the contents of any
counter without effecting or disturbing the counting
operation the 8253 has special internal logic that can be
accessed using simple WR commands to the MODE
register. Basically, when the programmer wishes to read
the contents of a selected counter "on the fly" he loads the
MODE register with a special code which latches the
present count value into a storage register so that its
contents contain an accurate. stable quantity. The
programmer then issues a normal read command to the
selected counter and the contents of the latched register is
available.

MODE Register for Latching Count

AO, Al 11

DO

x

se 1 ,seo - specify counter to be latched.·

05.04 - 00 designates counter'latching operation.

X - don't care.

The same limitation applies to this mode of reading the
counter as the previous method. That is, it is mandatory
to complete the entire read operation as programmed.
This command has no effect on the counter's mode.

·1.5MHz
ClK

8253-5

'If an 8085 clock output is to drive an 8253-5 clock input, it must be reduced to 2 MHz or less.

Figure 10. MCS-S5™ Clock Interface-

1-314 AFN-00745B

intJ 825318253·5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O"Cto 70°C
Storage Temperature , -650 C to +150" C
Voltage 0.n Any Pin

With Respectto Ground -0.5 Vto +7 V
Power Dissipation .. 1 Watt

'NOTICE: Stresses .above those listed under "Absolute
Maximum Ratings" m/lY cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections .of this
specification is not impliecJ. Exposure to absolute maxi­
mum rating conditions for extended periods may affect
device reliability.

D.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = sv ±10%)

Symbol Parameter Min. Max. Unit Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.2 Vee+·5V V

VOL Output Low Voltage 0.45 V Note 1

VOH Output High Voltage 2.4 V Note 2

IlL Input Load Current ±10 I1A VIN = Vec to OV

IOFL Output Float Lea kage ±10 I1A VOUT = Vee to OV

Icc Vec SUpply Current 140 mA

CAPACITANCE (TA == 2S0 C. Vee = GND = OV)

Symbol Parameter Min. Typ. Max. Unit Test Conditions

CIN Input Capacitance 10 pF fc = 1 MHz

CliO I/O Capacitance 20 pF Unmeasured pins returned to Vss

A.C. CHARACTERISTICS (TA = O°C to 70°C. Vee = S.OV ±5%. GND = OV)

Bus Parameters (Note 3)

READ CYCLE

8253 8253-5

Symbol Parameter Min. Max. Min. Max. Unit

tAR Address Stable Before READ 50 30 ns

tRA Address Hold Time for READ 5 5 ns

tRR READ Pulse Width 400 300 ns

tRO Data Delay From READ[4) 300 200 ns

tOF READ to Data Floating 25 125 25 100 ns
._-----

tRV Recovery Time Between READ
1 1 and Any Other Control Signal j./S

1·315 AFN.(I()745B

inter 8253/8253·5

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

Symbol Parameter

tAW Address Stable Before WR IT E

tWA Address Hold Ti me for WR IT E

tww WR ITE Pulse Width

tow Data Set Up Time for WR ITE

two Data Hold Time for WR ITE

tRY Recovery Time Between WRITE
and Any Other Control Signal

CLOCK AND GATE TIMING

Symbol Parameter

telK Clock Per iod

tPWH High Pulse Width

tPWl Low Pulse Width

tGW Gate Width High

tGL Gate Width Low

tGS Gate Set Up Time to CLKt

tGH Gate Hold Time After CLKt

too Output Delay From CLKH4]

tOOG Output Delay From Gate,j, [4]

NOTES:
1. IOL = 2.2 mA.
2. IOH = -400 pA
3. AC timings measured at VOH 2.2, VOL = 0.8.
4. CL = 150pF.

A.C. TESTING INPUT, OUTPUT WAVEFORM

"=X)C 2.0 2.0 > TEST POINTS <
0.8 0.8

0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND OASV FOR
A LOGIC 0 TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1'
AND 0 BV FOR A LOGIC '0."

1-316

8253 8253-5

Min. Max. Min. Max.

50 30

30 30

400 300

300 250

40 30

1 1

8253 8253-5

Min. Max. Min. Max.

380 de 380 de

230 230

150 150

150 150

100 100

100/ 100

50 50

400 400

300 300

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER ICl TEST

':'

CL INCLUDES JIG CAPACITANCE

Unit

ns

ns

ns

ns

ns

p.s

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

AF~745B

inter 8253/8253·5

WAVEFORMS

WRITE TIMING READ TIMING

Ao-l' CS __ '1" _______ -+~'-----

DATA BUS
-----------'.~+---~--~,~-

CLOCK AND GATE TIMING

1-317 AFN-D0745B

8254
Programmable Interval Timer

• Compatible with Most Micro­
processors Including 8080A, 8085A,
iAPX 88 and iAPX 86

• Three Independent 16-bit Counters

• Handles Inputs from DC to 5 MHz
(10M Hz for 8254-2)

• Six Programmable Counter Modes

• Status Read-Back Command

• Binary or BCD Counting

• Single +5V Supply

• Uses HMOS Technology

The Intel® 8254 is a counter/timer device designed to solve the common timing control probJems in microcomputer
system design. It provides three independent 16-bit counters, each capable of handling clock inputs up to 10 MHz. All
modes are software programmable.

The 8254 uses HMOS technology and comes in a 24-pin plastic or CERDIP package.

07-DO

aUTO

D7 Vee

D, WR

Ds RD
elK 1

CS
GATE 1

. ~3 A,

OUT 1 Ao
D, ClK 2

ClK 1

GATE 1
GATE 2 OUT 1

OUT2

Figure 1. 8254 Block Diagram Figure 2. Pin Configuration .

1-318

inter 8254

Table 1~ Pin Description

Symbol Pin No. Type Name and Function

07.00 1-8 VO Data: BI·dlrectlonal three state data bus
lines, conneC1ed to system data bus.

ClKO 9 I Clock 0: Clock Input of Counter O.

OUT 0 10 0 OulpulO: Outputof Counter o.
GATE 0 11 I Gale 0: Gate Input of Counter O.

GNO 12 Ground: Power supply connection.

FUNCTIONAL DESCRIPTION

General

The 8254 is a programmable interval timer/counter de­
signed for uSe with Intel microcomputer systems. It is a
general purpose, multi-timing element that can be treated
as an ami.y of I/O ports in the system software.

The 8254 solves one of the most common problems in
any microcomputer system, the generation of accurate
time delays under software control. Instead of setting
up timing loops in software, the programmer configures
the 8254 to match his requirements and programs one of
the counters for the desired delay. After the desired
delay, the 8254 will interrupt the CPU. Software over·
head is minimal and variable length delays can easily be
accommodated.

Some of the other counter/timer functions common to
microcomputers which can be implemented with the
8254 are:

• Real time clock
• Event counter
• Digital one-shot
• Programmable rate generator
• Square wave generator
• Binary rate multiplier
• Complex waveform generator
• Complex motor controller

Symbol Pin No. Type

Vcc 24

WR 23 I

RO 22 I

CS 21 I

A1,Ao 20·19 I

ClK2 18 I

OUT 2 17 0

GATE 2 16 I

ClK 1 15 I

GATE 1 14 I

OUTI 13 0

Block Diagram
DATA BUS BUFFER

Name and Function

P_er: +5V power supply connection.

Write Control: This input is low during CPU
write operations.

Read Control: This Input Is low during 'CPU
read operations.

Chip $fleel: A low on this Input enables the
8254 to respond to RO and WR signals. RO
and WR are ignored otherwise.

Address: Used to select one of the three
Counters or the Control Word Register for
read or write operations. Normally con·
nected to the system address bus.

AI Ao Selects

0 0 Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Control Word Register

Clock 2: Clock input of Counter 2.

Oul 2: Output of Counter 2.

Gate 2: Gate input of Counter 2.

Clock I: Clock input of Counter 1.

Gale I: Gate input of Counter 1.

Oull: Output of Counter I.

This 3·state, bi·directional, 8-bit buffer is used to inter­
face the 8254 to the system bus (see Figure 3).

1-319

CLKO

GATED

OUT a

OUT1

OUT2

Figure 3. Block Diagram Showing Data Bus Butter and
ReadlWrlte LogiC Functions

AFN-G0217D

intJ 8254

READIWRITE lOGIC

The ReadlWrite logic accepts inputs from the system
bus and generates control signals for the other func·
tlonal blocks of the 8254. A, and Ao select one of the
three counters or the Control Word Register to be read
from/written into. A "low" on the RD input tells the 8254
that the CPU is reading one of the counters. A "low" on
the WR input tells the 8254 that the CPU is writing either
a Control Word or an initial count. Both RD and WR are
qualified by CS; RD and WR are ignored unless the 8254
has been selected by holding CS low.

CONTROL WORD REGISTER

The Control Word Register (see Figure 4) is selected by
the ReadlWrite logic when A"Ao= 11. If the CPU then
does a write operation to the 8254, the data is stored in
the Control Word Register and is interpreted as a Con·
trol Word used to define the operation of the Counters.

The Control Word Register can only be written to; status
information is available with the Read·Back Command.

Figure 4. Block Diagram Showing Control Word
Registar and Counter Functions

COUNTER 0, COUNTER 1, COUNTER 2

These three functional blocks are identical in operation,
I!O only a single Counter will be described. The internal
block diagram of a single counter is shown in Figure 5.

The Counters are fully independent. Each Counter may
operate in a different Mode.

The Control Word Register is shown in the figure; it is
not part of the Counter itself, but its contents determine
how the Counter operates.

Figure 5. Internal Block Diagram of a Counter

The status register, shown in the Figure, when latched,
contains the current contents of the Control Word
Register and status of the output and null count flag.
(See detailed explanation of the Read·Back command.)

The actual counter is labelled CE (for "Counting Ele·
ment"). It is a 16-bit presettable synchronous down
counter.

OlM and Oll are two 8-bit latches. Ol stands for "Out·
put Latch"; the subscripts Mand. l stand for "Most sig·
nificant byte" and "least significant byte" respectively.
Both are normally referred to as one unit and called just
OL. These latches normally "follow" the CE, but if a
suitable Counter latch Command is sent to the 8254,
the latches "latch" the present count until read by the
CPU and then return to "following" the CEo One latch at
a time is enabled by the counter's Control logiC to drive
the Internal bus. This is how the 16-bit Counter com·
municates over the 8·blt internal bus. Note that the CE
itself cannot be read; whenever you read the count, it is
the Ol that is being read.

Similarly, there are two 8-bit registers called CRM and
CRl (for "Count Register"). Both are normally referred to
as one unit and called just CR. When a new count is writ·
ten to the Counter, the count is stored in the CR and
later transferred to the CEo The Control logic allows one
register at a time to be loaded from the internal bus.
Both bytes are transferred to the CE simultaneously.
CRM and CRL are cleared when the Counter is pro­
grammed. In this way, if the Counter has been pro­
grammed for one byte counts (either most significant
byte only or least significant byte only) the other byte
will be zerO. Note that the CE cannot be written into;
whenever a count is written, it is written into the CR.

The Control logic is also shown In the diagram. ClK n,
GATE n, and OUT n are all connected to the outside
world through the Control logic.

1-320 AFN.()()217D

8254

8254 SYSTEM INTERFACE

The 8254 is a component of the Intel Microcomputer Sys­
tems and interfaces iri the sarrie manner as all other pe­
ripherals ofthe family. It is treated b¥ the sys.tems software,
as an array of peripheral 1/0 ports; three are counters and
the fourth is a control register for MODE programming.

Basically, the select inputs Ao, A1 connect to the Ao, A1
address bus signals of the CPU. The CS can be derived
directly from the address bus·usi.nga linear select method.
Or it can be connected to the output of a decoder"such as
an Intel 8205 for larger systems. .

Figure 6; 8254 System Interface

OPERATIONAL DESCRIPTION

General
After power-up, the state of tM 8254 is. undefined. The
Mode, countvahie, and output' of all Counters are
undefined. .

How each Counter operates is .determined when it is
programmed.' Each Coun.ter must be programmed
before it can be used. Unused counters need not be pro­
grammed.

Programming the 8254 '
Counters are programmed by writing 'a Control Word
and then an initial count.

All Control Words are written into the Control Word
Register, which.is selected when Al.Ao= 11. the Con­
trol Word itself specifies which Counter is being pro­
grammed.

By contrast, initial counts are written into the Counters,
riot the Control Word Register. The Al.AO inputs are
used to select the Counter to be wiitten into. The format
of the initial daunt is determined by the Control Word
used.

Control Word Format

Al,Ao= 11 CS=O RD= 1 WR=O

SCl I SCO I RW1 I RWO I M2 M1 Mol BCD I
SC - Select Counter: M - MODE:

seD M2 Ml MO

0 0 Select Cpunter 0 0 0 0 Mode a

0 1 Select Coun.ter 1 a 0 1 Mode 1

1 0 Select Counter 2 X 1 0 MOde 2

1 1
Read-Back Command
(Se~ Read Operations)

.'

X 1 1 Mode.3

1 a 0 Mode 4

RW ~'ReadlWrlt8: 1 0 1 Mode 5

RW1 RWD

0 a Counter l,atch Command (see Read
Operations) BCD:

0 1 R<;>adlWrite least significant byte orily. Binary cOunter l6-blts
1. O. ReadlWrite most si9.nificant byt.'" only:

1 t; Read/Writeleli.sl significant byte first,
then m,osl significanl byte ..

NOTE: DON'T CARE BITS (X) SHOULD BE 0 TO INSURE
.... CO!llPJlT\BILITY WITH fUTURE INTEL PRODUCTS •.

. Figure 7. Control Word Format

1-.321 AfN-002170

inter 8254

Write Operations
The programming procedure for the 8254 is very flexible.
Only two conventions need to be remembered:

1) For each Counter, the Control Word must be written
before the initial count is written.

2) The initial count must follow the count format
specified in the Control Word (least Significant byte
only, most significant byte only, or least significant
byte and then most significant byte).

Since the Control Word Register and the three Counters
have separate addresses (selected by the Al,Ao inputs),
and each Control Word specifies the Counter it applies
to (SCO,SCl bits), no special instruction sequence is re-

A1 Ao

Control Word - Counter 0 1 1
LSB of count - Counter 0 0 0
MSB of count - Counter 0 0 0
Control Word - Counter 1 1 1
LSB of count - Counter 1 0 1
MSB of count - Counter 1 0 1
Control Word - Counter 2 1 1
LSB of count - Counter 2 1 0
MSB of count - Counter 2 1 0

A1 Ao

Control Word - Counter 0 1 1
Control Word - Counter 1 1 1
Control Word - Counter 2 1 1
LSB of count - Counter 2 1 0
LSB of count - Counter 1 0 1
LSB of count - Counter 0 0 0
MSB of count - Counter 0 0 0
MSB of count - Counter 1 0 1
MSB of count - Counter 2 1 0

quired. Any programming sequence that follows the
conventions above is acceptable.

A new initial count may be written to a Counter at any
time without affecting the Counter's programmed Mode
in any way. Counting will be affected as described In the
Mode definitions. The new count must follow the pro­
grammed count format.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies: A program
must not transfer control between writing the first and
second byte to another routine which also writes into
that same Counter. Otherwise, the Counter will be
loaded with an incorrect count.

A1 Ao

Control Word - Counter 2 1 1
Control Word - Counter 1 1 1
Control Word - Counter 0 1 1
LSB of count - Counter 2 1 0
MSB of count - Counter 2 1 0
LSB of count - Counter 1 0 1
MSB of count - Counter 1 0 1
LSB of count - Counter 0 0 0
MSB of count - Counter 0 0 0

A1 Ao

Control Word - Counter 1 1 1
Control Word - Counter 0 1 1
LSB of count - Counter 1 0 1
Control Word - Counter 2 1 1
LSB of count - Counter 0 0 0
MSB of count - Counter 1 0 1
LSB of count - Counter 2 1 0
MSB of count - Counter 0 0 0
MSB of count - Counter 2 1 0

NOTE: IN ALL FOUR EXAMPLES, ALL COUNTERS ARE PROGRAMMED TO READlWRITE TWO·BYTE COUNTS.

THESE ARE ONLY FOUR OF MANY POSSIBLE PROGRAMMING SEQUENCEs.

Figure 8. A Few Possible Programming Sequences

Read Operations
It is often desirable to read the value of a Counter
without disturbing the count in progress. This is easily
done in the 8254.

There are three possible methods for reading the
Counters. The first is through the Read-Back command,

which is explained later. The second is a simple read
operation of the Counter, which Is selected with the
Al,Ao inputs. The only requirement is that the CLK Input
of the selected Counter must be inhibited by using
either the GATE input or external logic. Otherwise, the
count may be in process of changing when it is read, giv­
ing an undefined result.

1-322 AFN.Q0217D

inter 8254

COUNTER LATCH COMMAND

The other method involves a special software command
called the "Counter Latch Command". Like a Control
Word, this command is written to the Control Word
Register, which is selected when A1.Ao= 11. Also like a
Control Word, the SCO;SC1 bits select one of the three
Counters, but two other bits, 05 and 04, distinguish this
command from a Control Word.

A1,Ao=11j CS=Oj RD=1j WR=O

D7 D6 D5 D4 D3 D2 D1 Do

I SC1 I SCO I 0 I 0 I X I X I X I xl
SC1,SCO - specify counter to be latched

SCl SCO Counter

0 0 0
0 1 1
1 0 2
1 1 Read·Back Command

05,04 - 00 designates Counter Latch Command

X - don't care

NOTE: DON'T CARE BITS (Xl SHOULD BE 0 TO INSURE
COMPATIBILITY WITH FUTURE INTEL PRODUCTS.

Figure 9. Counter Latching Command Format

The selected Counter's output latch (OL) latches the
count at the time the Counter Latch Command is re­
ceived. This count is held in the latch until it is read by
the CPU (or until the Counter is reprogrammed). The
count is then unlatched automatically and the OL
returns to "following" the counting element (CE). This
allows reading the contents of the Counters "on the fly"
without affecting counting in progress. Multiple
Counter Latch Commands may be used to latch more
than one Counter. Each latched Counter's OL holds its
count until it is read. Counter Latch Commands do not
affect the programmed Mode of the Counter in any way.

If a Counter is latched and then, some time later, latch­
ed again before the count is read, the second Counter
Latch Command is ignored. The count read will be the
count at the time the first Counter Latch Command was
issued.

With either method, the count must be read according
to the programmed format; specifically, if the Counter is
programmed for two byte counts, two bytes must be
read. The two bytes do not have to be read one right
after the other; read or write or programming operations
of other Counters may be inserted between them.

Another feature of the 8254 is that reads and writes of
the same Counter may be interleaved; for example, if the
Counter is programmed for two byte counts, the follow­
ing sequence is valid.

1. Read least significant byte.
2. Write new least significant byte.
3. Read most significant byte.
4. Write new most significant byte.

If a Counter is programmed to read/write two-byte
counts, the following precaution applies: A program
must not transfer control between reading the first and
second byte to another routine which also reads from
that same Counter. Otherwise, an incorrect count will be
read.

READ-BACK COMMAND

The read-back command allows the user to check the
count value, programmed Mode, and current state of the
OUT pin and Null Count flag of the selected counter(s).

The command is wrilten into the Control Word Register
and has the format shown in Figure 10. The command
applies to the counters selected by selting their corre­
sponding bits 03,02,01 =1.

AD. A1 =11 cs=o Rli=1 W!i=o

05: 0 = LATCH COUNT OF SELECTED COUNTER(S)
D.: 0 = LATCH STATUS OF SELECTED COUNTER(S)

D:!: 1 = SELECT COUNTER 2
02: 1 = SELECT COUNTER 1
01: 1 = SELECT COUNTER 0
Do: RESERVED FOR FUTURE EXPANSION; MUST BE 0

Figure 10. Read·Back Command Format

The read-back command may be used to latch multiple
counter output latches (OL) by setting the COUNT bit
05=0 and selecting the desired counter(s). This single
command is functionally equivalent to several counter
latch commands, one for each counter latched. Each
counter's .Iatched count is held until it is read (or the
counter is reprogrammed). That counter is automatically
unlatched when read, but other counters remain latched
until they are read. If multiple count read-back commands
are issued to the same counter without reading the count,
all but the first are ignored; i.e., the count which will be
read is the count at the time the first read-back command
was issued.

The read-back command may also be used to latch
status information of selected counter(s) by selling
STATUS bit 04 = O. Status must be latched to be read;
status of a counter is accessed by a read from that
counter.

1-323 AFN-oD217D

inter 8254

The counter status format is shown in Figure 11. Bits 05
through DO contain the counter's programmed Mode ex·
actly as written in the last Mode Control Word. OUTPUT
bit 07 contains the current state of the OUT pin. This
allows the user to monitor the counter's output via soft·
ware, possibly eliminating some hardware from a
system.

D7 D8 Os D4 03

D71=OUTPINIS1
0= OUT PIN ISO

111

De ~ ::; ~:tNT~~LABLE FOR READING

110 BCD

D5-Do COUNTER PROGRAMMED MODE (SEE FIGURE 7)

Figure 11. Status Byte

NULL COUNT bit 06 indicates when the last count writ·
ten to the counter register (CR) has been loaded into the
counting element (CE). The exact time this happens de­
pends on the Mode of the counter and is described in
the Mode Definitions, but until the count is loaded into
the counting element (CE), it can't be read from the
counter. If the count is latched or read before this time,
the count value will not reflect the new count just writ·
ten. The operation of Null Count is shown in Figure 12.

THIS ACTION: CAUSES:
A. WRITE TO THE CONTROL WOAD REGISTER:[I] NULL COUNT-1

8. WRITE TO THE COUNT REGISTER (CRll21 NULL COUNT-l

C. NEW COUNT IS LOADED INTO CE (CII-+CE); NULL COUNT=O

[1) ONLY THE COUNTER SPECIFIED BY THE CONlROL WORD WILL HAVE
ITS NULL COUNT SET TO 1. NULL COUNT BITS OF OTHER COUNTERS
ARE UNAFFECTED.

[2] IF THE COUNTER IS PROGRAMMED FOR TWD-BYTE COUNTS (LEAST
SIGNIFICANT BYTE THEN MOST SIGNIFICANT BYTE) NULL COUNT
GOES TO 1 WHEN THE SECOND BYTE IS WRITTEN.

Figure 12. Null Count Operation

If multiple status latch operations of the counter(s) are
performed without reading the status, all but the first
are ignored; i.e., the status that will be read is the status
of the counter at the time the first status read·back com·
mand was issued.

Both count and status of the selected counter(s) may be
latched simultaneously by setting both COUNT and
STATUS bits 05,04=0. This is functionally the same as
issuing two separate read-back commands at once, and
the above discussions apply here also. Specifically, if mul­
tiple count and/or status read-back commands are issued
to the same counter(s) without any intervening reads, all
but the first are ignored. This is illustrated in Figure 13.

Description Result
Command

D7 D6 Ds 04 D3 02 D1 Do

1 1 0 0 0 0 1 0 Read back count and status of Count and status latched
Counter 0 for Counter 0

1 1 1 0 0 1 0 0 Read back status of Counter 1 Status latched for Counter 1

1 1 1 0 1 1 0 0 Read back status of Counters 2, 1 Status latched for Counter
2, but not Cou nter 1

1 1 0 1 1 0 0 0 Read back count of Counter 2 Count latched for Counter 2

1 1 0 0 0 1 0 0 Read back count and status of Count latched for Counter 1,
Counter 1 but not status

1 1 1 0 0 0 1 0 Read back status of Counter 1 Command ignored, status
alreadv latched for Counter 1

Figure 13. Read·Back Command Example

1·324 AFN-002170

8254

If both count and status ofa counter are latched, the
first read operation of that counter will return latched
status, regardless of which was latched first. The next
one or two reads. (depending on whether the counter is'
programmed for one ()r two type c;oums) return Iiltched
count.Subsequent reads' return unlatched count.

".'
CS RD WR .. A1 Ao

0 1 0 '0 0 Write into Counter 0

0 1 0 0 1 Write Into Counter 1

0 1 O· 1 . 0 Write Into Counter 2

0 1 0 1 1 Write Control Word

0 0 1 0 0 Read from Counter 0

0 0 1 O· 1 Read from Counter 1

0 0 1 1 ','0 Read from Counter 2

0 0 1 1 1 No-Operation (3-8tate)

1 X X X X No-Operation (3-8tate)

0 1 1 X X No-Operation (3-8tate)

Figure 14_ ReadlWrite Operations Summary

Mode Definitions

1) Writing the first byte disables counting. OUT is set
low irtfmediately (no clock pulse required)

2) Writing the second byte allows the hew count to be
loaded on the next CLKpulse.

This allows .the counting sequence to be synchronized
by software. Again, OUT does not go high until N + 1
CLK pulses after the new count of N is written.

If an initial count is written while GATE = 0, it will still be
loaded oli the next ClK pulse. When GATE goes high,
OUT will go high N ClK pulses later; no ClKpulse is
needed to load the Counter as this has already been
done.

CW=10 'LSB=4

~~r---------~~~--

ClK

GATE -----------------

OUT ~'--__ ___' __ ----'

ININININI I'~I~'

CW=10 LSB .. 3
ft~r---';"";""-----'--

ClK

The following are defined for use in describing the GATE

operation of the 8254;

ClK pulse: a rising edge, then a falling edge, in that
order, of a Counter's CLK input.

trigger: a rising edge of a Counter's GATE input.
Counter loading: the transfer of a count from the CR

to theCE (refer to the "Functional
Description")

MODE 0: INTERRUPT ON TERMINAL COUNT

Mode 0 Is. tYpically. used for event counting. After the
Control Word is written, OUT is initially low, and will re­
main low until the Counter reaches zero. OUT then goes
high and remains high until a new count or a new. Mode
o Control Word is writtE!n, into the Counter.

GATE = 1 enables counting; GATE = O' disabies count­
ing. GATE has no effect on OUT.

After the Control Word and initial count are written .toa
Counter, the initial count will be loaded on the next ClK
pulse. This ClK pulse does not decrement the count, so
for an initial count of N, OUT does not go high until N + 1
ClK pulses after the initial count is written.

If a new count is written to the Counter, it will be loaded
on the next ClK pulse and counting will continue from
the new count. If a tWO-byte count is written, the follow­
ing happens:

1-325

OUT :=--IL. ______________ ----Ir-
I ~ I ~~ I

WlI

ClK

GATE

OUT =='L. ________________ r-
I N I N I. N I· N I .~ .. ~ I ~ I ~= I

NOTE: THE FOllOWING CONVENT.IONS APPLY TO ALL MODE TIMING DIAGRAMS:
1. COUNTERS ARE PROGRAMMED FOR BINARY (NOT BCD) COUNTING AND FOR

READINGlWRITINO LEAST SIGNIFICANT BYTE (LSB) ONLY.
2. THE COUNTER IS AL~AYS SELECTED (CI' ALWAYS LOW).
3. CW STANDS FOR "CONTROL WORD"; CW= 10 MEANS A CONTROL WORD OF 10,

HEX IS WRITTEN TO THE COUNTER.
4. LSB STANDS FOR "LEAST SIGNIFICANT BYTE" OF COUNT.
5. NUMBERS BELOW DIAQRAMS ARE COUNT VALUES.

THE LOWER NUMBER IS THE LEAST SIGNIFICANT BYTE.
THE UPPER NUMBER IS THE MOST SIGNIFICANT BYTE. SINCE THE COUNTER
IS PROGRAMMED TO READ/WRITE LSB ONLY, THE MOST SIGfIIIFICANT BYTE
CANNOT BE READ.
N STANDS FOR AN UNDEFINED COUNT.
VERTICAL LINES SHOW TRANSITIONS BETWEEN COUNT VALUES.

Figure 15_ Mode 0

AFN-()()2170

8254

MODE 1: HARDWARE RETRIGGERABLE ONE·SHOT

OUT will be initially high. OUT will go low on the ClK
pulse following a trigger to begin the one-shot pulse,
and will remain low until the Counter reaches zero. OUT
will then go high and remain high until the ClK pulse
after the next trigger.

After writing the Control Word and initial count, the
Counter is armed. A trigger results in loading the
Counter and setting OUT low on the next ClK pulse,
thus starting the one-shot pulse. An initial count of N
will result in a one-shot pulse N ClK cycles in duration.
The one-shot is retriggerable, hence OUT will remain
low for N ClK pulses after any trigger. The one-shot
pulse can be repeated without rewriting the same count,
into the counter. GATE has no effect on OUT.

If a new count is written to the Counter during a one­
shot pulse, the current one-shot is not affected unless
the Counter is retriggered. In that case, the Counter is
loaded with the new count and the one-shot pulse con­
tinues until the new count expires.

cw=,. lSB=3,--__________ _

WR L.JL..J
ClK

GATE ------in---------~n-----

OUT

CW::::12 LSB=3

~ ~r,-------------------

elK

GATE -------;n ----In-:---:-------

OUT =.i \L--'-______ ~r
I N I N I N I N I N I g I I gl'

.. Wi!
elK

I N I N I N I N I N I ~ I ~ I ~ I ~~ I ~~ I~
Figure 16. Mode 1

MODE 2: RATE GENERATOR

This Mode functions like a divide-by-N coOnter. It is
typiclaly used to generate a Real Time Clock interrupt.
OUT will initially be high. When the initial count has
decremented to 1, OUT goes low for one ClK pulse. OUT
then goes high again, the Counter reloads the initial
count and the process is repeated. M'Ode 2is periodic;
the same sequence is repeated indefinitely. For an in­
itial count of N, the sequence repeats every N ClK
cycles.

GATE= 1 enables counting; GATE = 0 disables count­
ing. If GATE goes low during an output pulse, OUT is set
high immediately. A trigger reloads the Counter with the
initial count on the next ClK pulse; OUT goes low N
ClK pulses after the trigger. Thus the GATE input can
be used to synchronize the Counter.

After writing a Control Word and initial count, the
Counter will be loaded on the next ClK pulse. OUT goes
low N ClK Pulses after the initial count is written. This
allows the Counter to be synchronized by software also.

CW=14 LSB=3

Wi!L.JL..J~~-------

ClK

GATE ----------------

OUT

I ~ I
CW=,. lSB=3,--_________ _

Wi! L.JL..J
ClK

GATE LJ
OUT,~ U-

I N I N I N I N I I U ~I I ~ I ~ I ~ I

ClK

GATE --~-----'--,.......-------

OUT =-=.J

Figure 17. Mode 2

0'

•

1-326 AFN-Q0217D

inter. 8254

Writing a new count while counting does not affect the
current counting sequence. If a trigger Is received after
writing a new count but before the end of the current
period, the Counter Will be loaded with the new count on
the next CLK pulse and counting will continue from the
new count. Otherwise, the new count will.be loaded at
the end of the current counting cycle.

MODE 3: SQUARE WAVE MODE

Mode 3 Is typically used for Baud rate generation. Mode
3is similar to Mode 2 except for the duty cycle of OUT.
OUT wili initially be high. When half the Initial count has
expired, OUT goes low for the remainder of the count.
Mode 3 Is periodic; the sequence above is repeated In·
definitely. An initial count of N results in a square wave
with a period of N. CLK cycles,

GATE = 1 enables counting; GATE = 0 disables coun·
ting. If GATE goes low while OUT Is low, OUT is set high
Immediately; no CLK pulse is required. A trigger reloads
the Counter with the initial count on the next CLK pulse.
Thus the GATE Input can be used to synchronize the
Counter.

After writing a Control Word and Initial count, the
Counter will be loaded on the next CLK pulse, This
allows the Counter to be synchronized by software also.

Writing a new count while counting does not affect the
current counting sequence. If a trigger is received after
writing a new count but before th~ end of the current
half-cycle of the square wave, the Counter will be loaded
with the new count on the next CLK pulse and counting
will continue from the new count. Otherwise, the new
count will be loaded at the end of the current half-cycle.

Mode 3 is Implemented as follows:

Even counts: OUT is initially high. The Initial count Is
loaded on one CLK pulse and then is decremented by
two on succeeding CLK pulses. When the count expires
O!JT changes value and the Counter is reloaded with the
initial count. The above process is repeated indefinitely.

Odd counts: OUT is initially high. The initial count
minus one (an even number) Is loaded on one CLK pulse
and then is decremented by two on succeedlngCLK
pulses. One CLK pulse after the count expires, OUT
goes low and the Counter Is reloaded with the initial
count minus one. Succeeding CLK pulses decrement
the count by two. When the count expires, OUT goes
high again and the Counter is relo!lded with the initial
count minus one. The above process is repeated in·
definitely. So for odd counts; OUT will be high for
(N + 1)12 counts and-low for (N - 1)/2 counts.

CW.11 LIB_. WIILJUr------------
eLK

.ATE -----------------

OUT

CW ... 11 L811_5~------------WIILFLJ
eLK

.ATE -----------------

OUT

CW .. 18 LSB=4r-___________ _

WIILJU
eLK

QATE

OUT

Figure 18. Mode 3

MODE 4: SOFTWARE TRIGGERED STROBE

OUT will be initially high. When the initial count expires,
OUT will go low for one CLK pulse and then go high
again. The counting sequence is "triggered" by writing
the Initial count.

GATE=1 enables counting; GATE=O disables count·
ing. GATE has no effect on OUT.

After writing a Control Word and initial count, the
Counter will be loaded on the next CLK pulse. This CLK
pulse does not decrement the count, so for an initial
count of N, OUT does not strobe low until N + 1 CLK
pulses after the Initial count is written.

If a new count is written c!uring counting, it will be load·
ed on the next CLK pulse and counting will continue
from the new count. If a two-byte count is written, the
following happens:

1) Writing the first byte has no effect on counting.
2) Writing the second byte allows the new count to be

loaded on the next CLK pulse.

This allows the sequence to be "retrlggered" by soft­
ware. OUT strobes low· N + 1 CLK pulses after the new
count of N is written:

1-327 AFN-00217D

intJ

CW=,8 lS8=3;.-_________ _

WII~

ClK

GATE

OUT~ U
O/O/FF/FF/FF/
10 FFFEFD

CW.'. lS8=3r-_________ _

W1i~

ClK

GATE ______1

OUT~ L1
° I ° I FF / 1 0 FF

WR

ClK

GATE -----------------

OUT~ L1
/ N / N / N / N / ~ / ~ I ~ / ~ / ~ / g / ~~ /

Figure 19. Mode 4

MODE 5: HARDWARE TRIGGERED STROBE
(RETRIGGERABLE)

OUT will initially be high. Counting is triggered by a ris·
ing edge of GATE. When the initial count has expired,
OUT will go low for one ClK pulse and then go high
again.

After writing the Control Word and initial count, the
counter will not be loaded until the ClK pulse after a
trigger. This ClK pulse does not decrement the count,
so for an initial count of N, OUT does not strobe low un·
til N + 1 ClK pulses after a trigger.

A trigger results in the Counter being loaded with the in·
itial count on the next ClK pulse. The counting se·
quence is retriggerable. OUT will not strobe low for
N + 1 ClK pulses after any trigger. GATE has no effect
on OUT.

If a new count is written during counting, the curent
counting sequence will not be affected. If a trigger oc·
curs after tlie new count is written but before the cur­
rent count expires, the Counter will be loaded with the
new count on the next ClK pulse and counting will con­
tinue from there.

8254

1-328

CW=1A lSB=3
WI! ~r---------

elK

GATE -------1 rr--------ln==:

OUT

INININININI

CW=1A LSB=3

WI! ~-----------

elK

GATE - - - ----- -1rc.J.l\ --- ---- - -- --

OUT~ L1
° I ° I FF I 1 0 FF

elK

GATE --------m----:-:-----"\n-----

OUT ==.i u
I N I N I N I N I N I ~ I ~ I ~ I ~ I ~~ I ~~ I

Figure 20. Mode 5

Signal Low
Status OrGolng Rising High
Modes Low

0 Disables -- Enables
counting counting

1 -- I) Initiates --
counting

2) Resets output
after next clock

2 1) Disables
counting Initiates Enables

2) Sets output counting counting
immediately
high

3 1) Disables
counting Initiates Enables

2) Sets output counting counting
immediately
high

4 Disables -- Enables
counting counting

5 -- Initiates --
counting

Figure 21. Gate Pin Operations Summary

AFN.()()217D

Mode Min Max'
Count. Count

0 1 0

1 1 0

2 2 0

3 2 0

4 1 0

5 1 O.

NOTE: 0 IS'EQUIVA~ENT TO 218 FOR BINARY COUNTING AND 104 FOR
BCD COUNTING.

Figure .22. Minimum and Maximum Initial Counts

Operation Common to All Modes

PROGRAMMING

When a Control Word is written to a Counter, all Control
logic is immediately reset and OUT goes to a known
initial state; no ClK pulses are required for this.

8254

GATE

The GATE input is always sampled on the rising edge of
ClK. In Modes 0, 2, 3, and 4 the GATE input is level
sensitive,and the logic .. Ievel is sampled on the rising
edge of ClK. In Modes 1,2,3, and 5 the GATE input Is
rising-edge sensitive. In these. Modes, a rising edge of
GATE (trigger) sets an edge-sensitive flip-flop in the
Counter. This flip-flop is then sampled on the next rising
edge of ClK; the flip-flop is reset immediately after it is
sampled. In this way, a trigger will be detected no matter
when It occurs-a high logic level does not have to be
maintained until the next rising edge of ClK. Note that
in Modes 2 and 3, the GATE input is both edge- and level­
sensitive.

COUNTER

New counts are loaded and Counters are decremented
on the falling edge of ClK.

The largest possible initial count is 0; this is equivalent
to 216 for binary counting and 104 for BCD counting.

The Counter does not stop when it reaches zero. In
Modes 0, 1,4, and 5 the Counter "wraps around" to the
highest count, either FFFF hex for binary counting or
9999 for BCD counting, and continues counting. Modes
2 and 3 are periodic; the Counter reloads itself with the
initial count and continues counting from there.

1-329 AFN.()()217D

8254

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O·C to 70·C

Storage Temperature -65·C to + 150·C

Voltage on Any Pin with
Respect to Ground -0.5V to + 7V

Power Dissipation 1 Watt

'NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to Absolute Maximum
Rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA=O·C to 70·C, Vcc=5V± 10%)

Symbol Parameter Min. Max.

V,L Input Low Voltage -0.5 0.8

V,H Input High Voltage 2.0 Vcc+ 0.5V

VOL Output Low Voltage 0.45

VOH Output High Voltage 2.4

I,L Input Load Current ±10

IOFL Output Float Leakage ±10

Icc Vcc Supply Current 140

CAPACITANCE (TA=25·C, Vcc=GND=OV)

Symbol Parameter Min. Max.

C,N Input Capacitance 10

CliO 1/0 Capacitance 20

A.C. CHARACTERISTICS (TA=O·C to 70·C, Vcc=5V± 10%, GND=OV)

Bus Parameters (Note 1)

READ CYCLE

Symbol Parameter

tAR Address Stable Belore RDl-

tSR CS Stable Before RDl-

tRA Address Hold Time After Ri)t

tRR RlJ Pulse Width

tRO Data Delay from RDl-[2]

tOF ROt to Data Floating

tRY Command Recovery Time

Note 1: AC timings measured at VOH = 2.0V, VOL = O.BV.
Note 2: Test Conditions: CL = 150 pF.·

8254

Min. Max.

30

0

0

150

120

5 90

200

1-330

Units Test Conditions

V

V

V IOL=2.0 mA

V IOH= -400,..A

,..A V,N = Vcc to OV

,..A VOUT= Vcc to OV

mA

Units Test Conditions

pF le= 1 MHz

pF Unmeasured pins
returned to V ss

8254·2

Min. Max. Unit

25 ns

0 ns

0 ns

95 ns

70 ns

5 65 ns

95 ns

AFN-00217D

8254

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

8254 8254-2

Symbol Parameter Min. Max. Min. Max.

tAW Address Stable Before WR! 0 0

tsw CS Stable Before WR! 0 0

tWA Address Hold Time WRt 0 0

tww WR Pulse Width 150 95

tow Data Setup Time Before WRt 100 95

two Data Hold Time After iJVi!{t 0 0

tRV Command Recovery Time 200 95

CLOCK AND GATE (TA=O·C to 70·C, Vcc=5V± 10%, GND=OV)

8254 8254-2

Symbol Parameter Min. Max. Min. Max.

tCLK Clock Period 200 DC 100 DC

tpWH
1 High Pulse Width 60 30

tpWL Low Pulse Width 60 40

tR Clock Rise Time 100 100

tF Clock Fall Time 100 100

tGW Gate Width High 50 50

tQL Gate Width Low 50 50

tGS
1 Gate Setup Time to CLKt 50 40

tQH Gate Hold Time After ClKt 50 50

too Output Delay from ClK! 150 100

tOOG Output Delay from Gate! 120 90

NOTES:
1. If the gate input is used asynchronously tpWH = 50 ns, tGS = 50 ns for 8254-2.

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

.. ~)C 2.0 2.0 > TEST POINTS <
0.8 0.8

0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND 0.45V FOR
A LOGIC "0:' TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC '"1""
AND 0.8V FOR A LOGIC "0."

1·331

DEVICE
UNDER

!JCL= 150pF
TEST

CL = 150 pF .
CL INCWDES JIG CAPACITANCE

Unit

ns

ns

ns

ns

ns

ns

ns

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

AFN-00217D

intJ 8254

WAVEFORMS

WRITE

Ao_,

CS

DATA BUS

READ
Ao·,

~--tARI-----<~

CS

DATA BUS ----- - - --""'---

I RECOVERY

CLOCK AND GATE

ClK

GATEG

OUTPUT 0 ____________ -+ __ J~-------J

1·332 AFN-00217D

8255A18255A·5
PROGRAMMABLE PERIPHERAL INTERFACE

• MCS·85™ Compatible 8255A·5

• 24 Programmable 1/0 Pins

• Completely TTL Compatible

• Fully Compatible with Intel® Micro·
processor Families

• Improved Timing Characteristics

• Direct Bit SetlReset Capability Easing
Control Application Interface

• 40·Pin Dual In· Line Package

• Reduces System Package Count

• Improved DC Driving Capability

The Intel<l> 8255A is a general purpose programmable 1/0 device deSigned for use with Intel<l> microprocessors. It has
241/0 pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. In the first
mode (MODE 0), each group of 121/0 pins may be programmed in sets of 4 to be input or output. In MODE 1, the second
mode, each group may be programmed to have 8 lines of Input or output. Of the remaining 4 pins, 3 are used for hand­
shaking and Interrupt control signals. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines for a bidirectional bus, and 5 lines, borrowing one from the other group, for handshaking .

.. ..

..

..,...{_+5V
SUPPLIES _Q'"

CI----'

Figure 1. 8255A Block Diagram Figure 2. Pin Configuration

1-333

inter 8255A18255A·5

8255A FUNCTIONAL DESCRIPTION (RD)

General

The 8255A is a programmab.le peripheral interface (PPI)
device designed for use in Intel® microcomputer
systems. Its function is that of a general purpose 1/0
component to interface peripheral equipment to the
microcomputer system bus. The functional configura­
tion of the 8255A is programmed by the system software
so that normally no external logic is necessary to inter­
face peripheral devices or structures.

Data Bus Buffer

This 3-state bidirectional8·bit buffer is used to interface
the 8255A to the system data bus. Data is transmitted or
received by the buffer upon execution of input or output
instructions by the CPU. Control words and status infor­
mation are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal
and external transfers of both Data and Control or Status
words. It accepts inputs from the CPU Address and COn­
trol busses and in turn, issues commands to both of the
Control Groups.

(CS)

Chip Select. A "low" on this input pin enables the com­
muniction between the 8255A and the CPU.

I-·'v POWER
SUPPLIES -~GNG

G,

"'----

ReaeL A "low" on this input pin enables the 8255A to
send the data or status information to the CPU on the
data bus. In essence, it allows the CPU to "read from"
the 8255A.

(WR)
Write. A "low" on this input pin enables the CPU to write
data or control words into the 8255A.

(Ao and Ad
Port Select 0 and Port Select 1, These input signals, in
conjunction with the RD and WR inputs, control the
selection of one of the three ports or the control word
registers. They are normally connected to the least
significant bits of the address bus (Ao and AI)'

8255A BASIC OPERATION
Al AO RD WR cs INPUT OPERATION (READ)

0 0 0 1 0 PORT A => DATA BUS
0 1 0 1 0 PORT B => DATA BUS
1 0 0 1 0 PORT C=> DATA BUS

OUTPUT OPERATION
(WRITE)

0 0 1 0 0 DATA BUS=> PORT A
0 1 1 0 0 DATA BUS => PORT B
1 0 1 0 0 DATA BUS => PORT C
1 1 1 0 0 DATA BUS => CONTROL

DISABLE FUNCTION

X X X X 1 DATA BUS => 3-STATE
1 1 0 1 0 ILLEGAL CONDITION

X X 1 1 0 DATA BUS => 3-STATE

Figure 3. 8255A Block Diagram Showing Data Bus Buffer and ReadlWrite Control Logic Functions

1-334 AFN'()()744B

inter 8255A18255A·5

(RESET)

Reset A "high on this input clears ,the control register
and all ports (A, C, C) are set to the input mode.

Group A and Group B Controls
The functional configuration of each port is program·
med by the systems software. In essence, the CPU "out·
puts" a control word to the 8255A. The control word con·
tains information such as "mode", "bit set", "bit reset",
etc., that initializes the functional configuration of the
8255A.

Each of the Control blocks (Group A and Group B) accepts
"commands" from the ReadIWrite ContrC!1 Logic, receives
"control words" from the internal data bus and issues the
proper commands to its associated ports.

Control Group A - Port A and Port C upper (C7-C4)
Control Group B - Port B and Port Clower (C3-CO)

The Control Word Register can Only be written into. No
Read operation of the Control Word Register is allowed.

POWER {--+"
SUPPl..IES -_G~

Ports A, B, and C

The 8255A contains three 8·bit ports (A, B, and C). All
can be configured in a wide variety of functional charac·
teristics by the system software but each has, its own
speci!ll features or "personality" to further enhance the
power.andflexibility of the 8255A.

Port A. One 8·bit data output latch/buffer and one 8-bit
data input latch.

Port B. One 8·bit data input/output latch/buffer and one
8·bit data input buffer.

Port C. One 8·bit data output latch/buffer and one 8·bit
data input buffer (no latch for input). This port can be
qivided into two 4·bit ports under the mode control.
Each 4·bit port contains a 4·bit latch and it can be used
for the control signal outputs and status signal inputs in
conjunction with ports A and B.

PIN CONFIGURATION

'" PA7-PAo

0,

0,

'" PC7-PC4

'.0

'" PC3-PCO

PIN NAMES

u, Do DATA BUS lBI·DIRECTIONAl)
RESH RESET INPUT
cs CHIP SELECT
RD READ INPUT

WR WRITE INPUT
AO,A1 PORT ADDRESS

PA7·PAO PORT A (BIT)

PB7·PBO PORT R 'BIT!

PC7·PCO PORT C (BIT)

Vee +5 VOLTS

GND 'VOLTS

Figure 4. 8225A Block Diagram Showing Group A and
Group B Control Functions

1-335 AFN-oD744B

8255A18255A·5

8255A OPERATIONAL DESCRIPTION

Mode Selection

There are three basic modes of operation that can be select­
ed by the system software:

Mode 0 - Basic Input/Output
Mode 1 - Strobed Input/Output
Mode 2 - Bi-Directional Bus

When the reset input goes "high" all ports will be set to
the input mode (i.e., all 24 lines will be in the high im­
pedance state). After the reset is removed the 8255A can
remain in the input mode with no additional initialization
required. During the execution of the system program
any of the other modes may be selected using a single
output instruction. This allows a single 8255A to service
a variety of peripheral devices with a simple software
maintenance routine.

The modes for Port A and Port B can be separately defined,
while Port C is divided into two portions as required by the
Port A and Port B definitions. All of th~_~Jli~ers. in­
cluding the status flip-flops, will be reset whenever the
mode is charigea:-MOdes"miiy-6iicombinedso"t"hiittlieTr
fun~tional d~fi;;ition can be "tailored" to almost any I/O
structure. For instance; Group B can be programmed in
Mode 0 to monitor simple switch closings or display compu­
tational results, Group A could be programmed in Mode 1
to monitor a keyboard or tape reader on an interrupt-driven
basis.

MOOED

ADDRESS BUS

CONTROL BUS

Figure 5. Basic Mode Definitions
and Bus Interface

CONTROL WORD

I 0, I D6 D, I D41 D31 D2 I D, I Do I
L~

/ GROUPB \
PORT C (LOWERI - 1'" INPUT
0= OUTPUT

PORTB
L-----. 1'" INPUT

O=QUTPUT

MODE SELECTION
0= MODE 0
1 = MODE 1

/ GROUP A \
PORT C (UPPERI
1 = INPUT
0= OUTPUT

PORTA
1==INPUT
0= OUTPUT

MODE SELECTION
00= MODE 0
01 = MODE 1
1X= MODE 2

MODE SET FLAG
1 = ACTIVE

Figure 6. Mode Definition Format

The mode definitions and possible mode combinations
may seem confusing at first but after a cursory review of
the complete device operation a simple, logical 1/0 ap­
proach will surface. The design of the 8255A has taken
into account things such as efficient PC board layout,
control signal definition vs PC layout and complete
functional flexibility to support almost any peripheral
device with no external logic. Such design represents
the maximum use of the available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a
single OUTput instruction. This feature reduces software
requiren;lents in Control-based applications.

1-336 AFN-00744B

intJ 8255A/8255A~S

CONTROL WORD

I~I~I~I~I~I~I~I~I
I I I L["'E'_' I x . X x, ,. SET

I O· RESET
DON'T
CARE

BIT SELECT

01234567
0101010180
001100118,
00001H11s.1

BIT SET/RESET FLAG
O"'ACTIVE

Figure 7. Bit Set/Reset Format

Operating Modes

MODE 0 (BasiC Input/Output). This functional configura­
tion provides sirnple input and output operations for
each of the three ports. No "handshaking" is required,
data is simply written to or reaci from a specified port.

.
, . ~r

~IR---':""""

INPUT

t==,'AR-
CS.A1.AO

---------- .(

MODE 0 (Basic Input)

~ r-

'AW

CS,Al.AO

OUTPUT

MODE 0 (Basic Output)

When Port C is being used as status/control for Port A or B.
these bits can be set or reset by using the 'Sit Set/Reset op·
eration just as if they were data output pOrts.

Interrupt Control Functions
When the 8255A is programmed to operate in mode 1 or
mode 2, control signals are provided that can be used as
interrupt request inputs to the CPU. The interrupt reo
quest signals, generated from port C, can be inhibited or
enabled by setting or resetting ,the associated INTE flip·
flop, using the bit set/reset function of port C.

This function allows the Programmer to disallow or allow a
specific I/O device to interrupt the CPU without affecting
any other device in the interrupt structure.

INTEflip-flop definition:

(BIT -SET)-INTEis SET - Interrupt enable
(BIT-RESET) - INTE is RESET:- Interrupt disable

Note: All Mask flip-flops are automatically reset during
mode selection and device Reset.

Mode o Basic Functional Definitions:
.,. Two 8-bit ports and two 4,bit ports.
• Any port can 'be input or output.
• Outputs are latched.
• Inputs are not latched.
• 16 different Input/Output configurations are possible

in this Mode.

'RR .
---; ~

r-'HR-:I

-tRA~1

'RO . 'OF .

'wW

7
~

\---'ow 'wo----l

twA

~

'wB--ooj

1-337 AFN-00744B

inter 8255A18255A·5

MODE 0 Port Definition

A B GROUP A GROUPB

04 03 01 00 PORTA
PORTC PORTC

(UPPER)
PORTB

(LOWER)

0 0 0 0 OUTPUT OUTPUT 0 OUTPUT OUTPUT

0 0 0 1 OUTPUT OUTPUT 1 OUTPUT INPUT

0 0 1 0 OUTPUT OUTPUT 2 INPUT OUTPUT

0 0 1 1 OUTPUT OUTPUT 3 INPUT INPUT

0 1 0 0 OUTPUT INPUT 4 OUTPUT OUTPUT

0 1 0 1 OUTPUT INPUT 5 OUTPUT INPUT

0 1 1 0 OUTPUT INPUT 6 INPUT OUTPUT

0 1 1 1 OUTPUT INPUT 7 INPUT INPUT

1 0 0 0 INPUT OUTPUT 8 OUTPUT OUTPUT

1 0 0 1 INPUT OUTPUT 9 OUTPUT INPUT

1 0 1 0 INPUT OUTPUT 10 INPUT OUTPUT

1 0 1 1 INPUT OUTPUT 11 INPUT INPUT

1 1 0 0 INPUT INPUT 12 OUTPUT OUTPUT

1 1 0 1 INPUT INPUT 13 OUTPUT INPUT

1 1 1 0 INPUT INPUT 14 INPUT OUTPUT

1 1 1 1 INPUT INPUT 15 INPUT INPUT

MODE 0 Configurations

CONTROL WORD #0 CONTROL WORD #2

0, 0, 0, 0, 0, O2 0, D. 0, 0, 0, 0, 0, O2 0, D.

1,10101010101 o I 0 I 1,10101010101, I 0 I
A

8 PA,-PAo A
8

PA,-PAo

8255A 8255A

" PC7-PC4 " PC7-PC4 c{ c{ °7-°0 °7-DO

" " PC3-PCO PC,-Pe.

B
8

Pa,-PB. B
8 Pa,-PB.

CONTROL WORD #1 CONTROL WORD #3

0, 0, 0, D. 0, O2 0, D. 0, 0, 0, D. 0, O2 0, D.

1,1010101010101,1 1,10101010101, I, I
A

8
PA,-PAo A

8
PA,-PAo

8255A 8255A

" PC7-PC4 " pc,-PC. c{ c{ °7-°0 °7-°0 •
. . ," Pe,-PCo " PC,-PCo I

B 8
PB7-PBo B

8
Pa,-PBo

1·338 AFN-00744B

inter 8255A18255A·5

CONTROL WORD #4 CONTROL WORD #8

0, D. Os D. 0 3 O2 0, DO 0, D. D. D. 0 3 O2 0, DO

I, I 0 I 0 I 0 I, I 0 I o I 0 I I, I 0 I 0 I, I 0 I 0 I o I 0 I
A

8
PA,.PA, A . (8

PA,·PA, ,
8255A 8255A

4 pc,.PC, 4 PC7,PC4

C{ c{ °7.0 0 • . °7-0 0 • .
4 pc,·pco

4
pel-peU

8
B PS,.PBo B

8
PB7·PSo

CONTROL WORD #5 CONTROL WORD #9

0, D. D. D. 0 3 O2 0, DO 0, D. 0 5 D. 0 3 O2 0, DO

I , I 0 I 0 I 0 I , I 0 I o I, I I, I 0 I 0 I, I 0 I 0 I o I, I
A

8
PA,.PA, A . (8

PA,·PA, ,
8255A 8255A

4 pc,·pc,
4

PC7-PC4

c{ c{ °7"DiJ • . °7-0 0 • .
4 4 Pe3-peO Pe3-peO

B
8

PS,.P"O B
8

PB7·PBu

CONTROL WORD #6 CONTROL WORD #10

0, 0, D. D. 0 3 O2 0, DO 0, D. 0, 0, 0 3 O2 0, DO

I, I 0 I 0 I 0 I, 1 0 1
, I 0 I I, I 0 I 0 I, I 0 I 0 I , I 0 I

8 A
8

A PA7·pAo PA7·PAo

8255A 8255A

4 4
pc,.pc.

c{

PC7-PC4

c{ °7-0 0 °7-0 0

4
,

pc,.pco pel-PeO

B
8

P~-PBo B . (8
PB7·PSO ,

CONTROL WORD #7 CONTROL WORD #11

0, D. 0, D. 0 3 O2 0, DO 0, D. 0, D. 0, O2 0, DO

I, I 0 I 0 I 0 I, l 0 I,
1'1

I, I 0 I 0 I, I 0 I 0 I , I, I
A

8
PA,.PA, A

8
PA,.PA,

8255A 8255A ,
PC7·PC4

,
PC7·PC4

c{ c{ °7-00 °7-0 0 . (' pel-peO
,

pe3-pcO j

B
8

PS,·PBo B
8

PB,.P"o

1·339 AFN-oD744B

8255A18255A·5

CONTROL WORD #12

• A

8i!55A

c{ . i "
•

8
B

CONTROL WORD #13

07 0 6 05 04 03 02 0, DO

I 1 1 1 1 1 1 1 I
A

8

B255A

• c{
•

8
8

P..,·P8.

Operating Modes

MODE 1 (Strobed Input/Output). This functional con·
figuration provides a means for transferring I/O data to
or from a specified port in conjunction with strobes or
"handshaking" signals. In mode 1, port A and Port B use
the lines on port C to generate or accept these "hand­
shaking" signals.

1·340

CONTROL WORD #14

A •
B255A

c{ . i ' .
4

8
B p..,·pSo

CONTROL WORD #15

~ 0 6 Os 04 03 02 0, DO

I 1 1 1 1 1 11 11 I
A

8

B2&5A
4 . . c{ •

8 •

Mode 1 Basic Functional Definitions:

• Two Groups (Group A and Group B)
• Each group contains one 8-bit data port and one 4-bit

control/data port.
• The 8-bit data port can be either input or output.

Both inputs and outputs are latched.
• The 4-bit port is used for control and status of the

8-bit data port.

AFN-oQ744B

inter 8255A18255A~5

Input Control Signal Definition

STB (Strobe Input). A "low" on this input loads data into
the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been
loaded into the input latch; in essence, an acknowledgement
ISF is set by STS input being low and is reset by the rising
edge of the R 0 input.

INTR (Interrupt Request)

A "high" on this output can be used to interrupt the CPU
when an input device is requesting service. I NTR is set by
the STS is a "one", ISF is a "one" and INTE is a "one".
It is reset by the falling edge of RD. This procedure allows
an input device to request service from the CPU by simply
strobi ng its data into the port.

INTE A

Controlled by bit set/reset of PC 4.

INTES

Controlled by bit set/reset of PC2.

_tST -

\

IBF

_'SlBj)
tSIT

INTR

If

~}

-',H-I
~7

MODE 1 (PORT A)

MODE 1 (PORT B)

Figure 8. MODE 1 Input

I_'.,B __)
" .. /

V /

INPUT FROM
PERIPHERAL --- ---------------------. 'PS .

Figure 9. MODE 1 (Strobed Input)

1·341 AFN.(II)744B

inter 8255A18255A·5

Output Control Signal Definition

OBF (Output Buffer Full F/F). The OBF output will go
"low" to indicate that the CPU has written data out to
the specified port. The OBF F/F will be set by the rising
edge of the WR input and reset by ACK Input being low.

ACK (Acknowledge Input). A "low" on this input informs
the 8255A that the data from port A or port B has been ac·
cepted. In essence, a response from the peripheral
device indicating that it has received the data output by
the CPU.

INTR (Interrupt Request). A "high" on this output can be
used to interrupt the CPU when an output device has ac·
cepted data transmitted by the CPU. INTR is set when
ACK is a "one", OBF is a "one" and INTE is a "one". It is
reset by the falling edge of WR.

INTEA

Controlled by bit setlreset of PCs.

INTE B

Controlled by bit set/reset of PC2.

CONTROL WORD

CONTROL WORD

MODE 1 (PORT A)

r-- ..,
I INTE I
I A I __ J

p",·pAc 8

PCs - ACKA

MODE 1 (PORT B)

PC, OBFB

INTRB

Figure 10. MODE 1 Output

INTR

......-......-tAK

OUTPUT

Figure 11. Mode 1 (Strobed Output)

1·342 AFN·OO744B

inter 8255A18255A·5

Combinations of MODE 1

Port A and Port B can be individually defined as input or
output in Mode 1 to support a wide variety of strobed I/O
applications.

PA,·pAo

PC, STB.

Pes IBFA

PC, INTRA

2

PA,·pAo 8

PCa_ACKA

pc •. , --f-- I/O I/O

pe,·pBo 8

~C,

PC2 -ACKa

PORT A - (STROBED INPUT)
PORT B - (STROBED OUTPUT)

INTRa

PORT A - (STROBED OUTPUT)
PORT B - (STROBED INPUTI

1BFa

INTRa

Figure 12. Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus 1/0). This functional
configuration provides a means for communicating with
a peripheral device or structure on a single 8-bit bus for
both transmitting and receiving data (bidirectional bus
110). "Handshaking" signals are provided to maintain
proper bus flow discipline in a similar manner to MODE
1. Interrupt generation and enable/disable functions are
also available.

MODE 2 Basic Functional Definitions:
• Used in Gro!,!p A ~.
• One 8-bit, bi-directional bus Port (Port A) and a 5-bit

cQntrol Port (Port C).
• Both inputs and outputs ;ire latched.
• The 5-bit control port (Port C) is used for control

and status for the 8-bit, bi'directional bus port (Port
A).

Bidirectional Bus 1/0 Control Signal Definition

INTR (Interrupt Request). A high on this output can be
used to interrupt the CPU for both input or output opera­
tions.

Output Operations

OBF (Output Buffer Ful). The OBF output will go "low"
to indicate that the CPU has written data out to port A.

ACK (Acknowledge). A "low" ali this input enables the
tri-state output buffer of port A to send out the data.
Otherwise, the output buffer will be in the high im­
pedance state.

INTE 1 (The INTE Flip·Flop Associated with OBF). Can·
trolled by bit set/reset of PCB'

Input Operations

STB (Strobe Input)

STB (Strobe Input). A "low" on this input loads data into
the input latch. .

IBF (Input Buffer Full F/F). A "high" on this output in·
dicates that data has been loaded into the input latch.

INTE 2 (The INTE Fllp·Flop Associated with IBF). Can·
trolled by bit set/reset of PC4•

1-343 AFN-Q0744B

intJ

INTR

CONTROL WORD

pc, ..
1'" INPUT
O-OUTPUT

L----PORTB
I-INPUT
0= OUTPUT

8255A18255A·5

'------- GROUP B MODE
0- MODE 0
I-MODEl

Figure 13. MODE Control Word

DATA FROM A-cpu TO 8255A

'--<r-'~

I----INTRA

PC71----OBF A

r--l
INJE I pc. STBA

L __ J

pc. IBFA

3

pc, .. +--f- I/O

Figure 14. MODE 2

-tAK -

------------------~--------------~~ ~r----~-----------

IBF

PERIPHERAL _________ _
BUS

Figure 15. MODE 2 (Bidirectional)

NOTE: Any sequence where WR occurs before ACK and STB occurS before RD is permissible.
(lNTR = IBF· MASK. ~B· AD +OBF· MASK· ACK. WR l

1,344

DirAFROM
8255A TO 1080

AFN-00744B

. 8255A/8255A·S

MODE 2 AND MODE 0 (INPUT)

CONTROL WORD

~ 06 D5 04 D3 02 D;~l?o

1111~ol=JI
PC2~
1 = INPUT
O=QUTPUT

PC3 j--i,---- INTRA

'-""---08F.

.-,...---'BF.

1--t'--1f0

MODE 2 AND MODE 1 (OUTPUT)

PC, OBFA

CONTROL WORD
PC. ACKA

PC, STB.

PC, (BFA

PB7·PBO

PC, OBFs

iiii---01 PC. ACKs

WR-,.,--_01 PC, INTRB

MODE2 AND MODE o (OUT,I1UT)

CONTROL WD.RD

07 06 E?5 °4" -03 02 0, DO

1111@<Wolojol
, PC2.(1

1'" INPUT
0= OUTPUT

'-""---INTRA

po,'-""--- OBF.

PC • .-,...--- IBFA

MODE 2 AND MODE 1 (INPUT)

PC3 .-,...--- INTRA

PC, OBFA

CONTROL'WORD
pc. ACKA

PC, STBA

PC, .BFA

PB7·PBo

RD--~~ PC, .-,...--_ IBFB

WR_ PC, .-,...--_ INTRa

Figure 16. MODE Y4 Combinations

1·345 AFN-00744B

inter 8255A18255A.5

Mode Definition Summary

MODE 0 MODE 1 MODE 2
IN OUT IN

PAO IN OUT IN
PA1 IN OUT IN
PA2 IN OUT IN
PA3 IN OUT IN
PA.j IN OUT IN
PA5 IN OUT IN
PAs IN OUT IN
PA7 IN OUT IN

PBO IN OUT IN
PB1 IN OUT IN
PB2 IN OUT IN
PB3 IN OUT IN
PB4 IN OUT IN
PB5 IN OUT IN
PBa IN OUT IN
PB7 IN OUT IN

PCo IN OUT INTRB
. pe1 IN OUT IBFB
P~ IN OUT STBB
PC3 IN OUT INTRA
PC4 IN OUT STBA
PC5 IN OUT IBFA
pea IN OUT I/O
PC7 IN OUT I/O

Special Mode Combination Considerations

There are several combinations of modes when not all of the
bits in Port C are used for control or status. The remaining
bits can be used as follows:

If Programmed as Inputs-
All input lines can be accessed during a normal Port C
read.

If Programmed as Outputs-
Bits in C upper (PCr PC4) must be individually accessed
using the bit set/reset function.

Bits in Clower (PC3'PCO) can be accessed using the bit
set/reset function or accessed as a threesome by writing
into Port C.

Source Current Capability on Port B and Port C

Any set of eight output butters, selected randomly from
Ports Band C can source 1mA at 1.5 volts. Th'is feature
allows the 8255 to directiy drive Darlington type drivers
and high-voltage displays that require such source current.

Reading Port C Status
In Mode 0, Port C transfers data to or from the peripheral
device. When the 8255 is programmed to function in Modes
1 or 2, Port C generates or accepts "hand·shaking'~signals
with the peripheral'device. Reading the, contents of Port C

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

OUT
OUT
OUT
OUT
OUT
OUT
OUT
OUT

INTRB
OBFB
ACKB
INTRA

I/O
I/O

ACKA
OBFA

GROUPAONLY .. ~ .. ~ .. .---.. ~ .. ~ --.. .-
--
--
--
--
--
--,
--
--

I/O
I/O
I/O

INTRA
STBA
I BFA

ACKA
OBFA

MODE 0
OR MODE 1
ONLY

allows the programmer to test or verify the "status" of each
peripheral device and change the program flow accordingly.

There is no special instruction to read the status informa­
tion from Port C. A normal read operation of Port C is
executed to perform this function.

INPUT CONFIGURATION

OUTPUT CONFIGURATION

Figure 17. MODE 1 Status Word Format

D7 0 6 Os 04 °3. I;l'z 0, Do

I OBF. IINTE, IIBF. IINTE,I'INTR.[X])<JXI

, I ",!
GROUP A ___________ GROUP B

(DEFINED BY MODE 0 OR MODE 1 SELECTION)

Figure 18. MODE 2 Status Word Format

1-346 AFN.(J()744B

intJ 8255A18255A·5

APPLlCATI·ONS OF THE 8255A

The 8255A Is a very powerful· .tool for Interfacing
peripheral equipment to the microcomputer system. It
represents the optimum use of available pins and Is flex·
Ible enough to interface almost any 1/0 device without
the need for additional external logic.

Each peripheral device in a microcomputer system
usually has a "service routine" associated with it. The
routine manages the software interface between the
device and the CPU. The functional definition of the
8255A is programmed by the 110 service routine and
becomes an extension of the system software. By ex·
amifllng the 1/0 devices interface characteristics for
both data transfer and timing, and matching this infor·
mation to the examples and tables in the detailed opera·
tional description, a control word can easily be devel·
oped to initialize the 8255A to exactly "fit" the applica­
tion. Figures 19 through 25 present a few examples of
typical applications of the 8255A.

INTERRUPT
REQUEST

PC, rp ..
PA,

PA,

PA,

PA,

MODE' PAs
(OUTPUT) PAa

......

MODEl
10UTPUT)

INTERRUPT
REQUEST

!'Co

PPI,

PC,

PC,

PC,;

PC,

PBD

PB,
PB,

PB,

PB,

PBs
PB,

PB,

PC,

PC,

CONTROL LOGIC. AND, DRIVERS

HIGH-SPEED
PRINTER

HAMMER
RELAYS

Figure 19. Printer Interface

1·347

INtERRUpt
REQUE

51,

PC,

82&6A

MDDEl
(INPUT)

MODE'
lOUTPUTI

PAg

PA,

PA,

PAl

PA,

PAs

PAs

PA,

PC,

,-PCs

r-
PB.
PB,

PB.

PB_
PB,

PBs

PB.
PB7

PC.1

PC,

pc.

pc. LPC7

UPT~ INTERR
REQUE51

R.
R,

R. FULLY

R_ DECODED
KEYBOARD

R,

Rs
SHIFT

CONTROL

51ROBE

ACK

Ba
B,

BURROUGHS a. SELF·SCAN
B_ DISPLAY

B,

a.
BACKSPACE

CLEAR

DATA READY

ACK

BLANKING

CANCEL WORD

Figure 20. Keyboard and Display Interface

INTERRUPT
"EO UEST'~'

PC, IP
" PA,

PA,

MODE 'l PA,
(INPUT) PA ..

, PAs

...... I PAS

I: l PC
s

PC,

PC,

PBD

PB,

Ps,

MODE 0 PB,
(lNPUr) PB,

PBs

PB,

PB,

"0
",
",
", FULLY

DECODED

", KEYBOARD

".
SHIFT

CONTROL

STROBe

ACKNOWLEDGE

BUSY LT

YESTlY

--..,,-
--..,,------..,,----------".......

- - '1:>--

I--

l-
I-

f-
I-

I-

f-
I-

TERMINAL
ADDRESS

Figure 21. Keyboard and Terminal Address
. Interface .

AFN.Q0744B

intJ 8255A18255A·5

P", LSB

PA,
po,
PA,

PA,

MODE 0 PA, -~
(OUTPUT) PA, 12·BtT

PA, D·A f---.-CONVERTER
ANALOG OUTPUT

PC, (DAe)

PC,

... SA
PC,

PC, MSB

r STB DATA

PC, OUTPUT EN

BIT
SET/RESET

PC, SAMPLE EN

PC, STB

rps. LSB

PB, 8·BIT
A·D

PB, CONVERTER - ANALOG INPUT

MODE 0 PB, fADe)

(INPUT) PB,

ps.
PBs

PB, MSB

Figure 22. Digital to Analog, Analog to Digital

INTERRUPT
REO UEST"i

PC,

MODE 1
(OUTPUT)

... SA

MODE 0
(OUTPUT)

P",

PA,

PA,

PA,

PA,

PAs

PAs

PA,

PC,

PC,

PC,

PC,

PC,

PC,

Pc,

PB,

PB,

PB,

pa,
PB,

Po,

PBs

PB,

R,

R, CRT CONTROLLER

R, • CHARACTER GEN.

R, • REFRESH BUFFER

R, • CURSOR CONTROL

R,

SHIFT

CONTROL

DATA READY

ACK

BLANKED

BLACK!WHITE

ROWSTB

COLUMN STB

CURSOR H/V STB

}-~~~~ ADDRESS
H&V

Figure 24. Basic Floppy Disc Interface

REQUEST
INTERRUPTi

PC, PA, 0,

PA, 0,

PA2 0,

PA, 0, FLOPPY DISK

Plio 0,
CONTROLLER

AND DRIVE
PA, 0,

MODE2 PA, 0,

PA, 0,

PC, DATA STB

PC, ACK (IN)

PC, DATA READY

PC, ACK (OUT) .. _
PC, TRACK "0" SENSOR

PC, SYNC READY

PC, INDEX

r
ENGAGE HEAD

PB, FORWARD/REV.

PB2. READ ENABLE

MODE 0 PB3 WRITE ENABLE

(OUTPUT) PB4 DISC SELECT

PB, ENABLE CRe

PBS TEST

PB, BUSY LT

Figure 23. Basic CRT Controller Interface

REQUEST
INTERRUPTi

PC, PA, -- R,

PA, R,

PA, 1----- R, 8 LEVEL
PAPER

PA, R, TAPE

PA, R, READER

MODE 1
PA, R,

(INPUT)
PA, R,

PA, R,

PC, STB

PC, ACK

PC, STOP/GO MACHINE TOOL

{'C'
START/STOP

MODE 0
(INPUT) PCl LIMIT SENSOR (HNI

PC, OUTOF FLUID

f
CHANGE TOOL

PB, LEFT/RIGHT

PB, UP/DOWN

MODE 0 PBl HOR. STEP STROBE

(OUTPUTI PB4 VERT. STEP STROBE

PB, SLEWISTEP

PB, FLUID.ENABLE

PB, EMERGENCY STOP

Figure 25. Machine Tool Controller Interface

1·348 AFN-00744B

intJ 8255A18255A-5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bias O°C to 70°C
Storage Temperature• , .. -65°C to +150°C
Voltage on Any Pin

With Re.spect to Ground -0.5V to +7V
Power Dissipation 1 Watt

"NOTICE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera~
tion of the device at these or any other conditions above
those IndIcated in the operational sections of this specifi­
cation is. not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = O·C to 700C, Vee = +5V ± 5%, GND = OV)

Symbol Parameter Min. Max. Unit Test Conditions

VIL Input Low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee V

VOL (DBI Output Low Voltage (Data Busl 0.45 V IOL = 2,5mA

VodPERI Output L()w Voltage (Peripheral Port) 0.45 V IOL = 1.7mA

VOH(DBI Output High Voltage (Data Busl 2.4 V IOH = -400J.[A

VOH(PERI Output High Voltage (Peripheral Portl 2.4 V IOH = -200J.[A

IOARllJ Darlington Drive Current -1.0 -4.0 mA R EXT = 750n.; VEXT= 1.5V

lee Power Su pply Current 120 mA

IlL Input Load Current ±10 p.A VIN = Vee to OV

IOFL Output Float Leakage ±10 p.A VOUT = Vee to OV

NOTE:
1. Available on any 8 pins from Port Band C.

CAPACITANCE (TA = 25·C, Vee = GNO = OV)

Symbol. Parameter Min. Typ. Max. Unit Test Conditions

CIN Input Capacitance 10 pF fc = lMHz

CliO I/O Capacitance 20 pF Unmeasured pins returnedto GND

A.C. CHARACTERISTICS (TA = ooc to 700C, Vee =. +5V ± 5%, GND = OV)

Bus Parameters
READ

8255A 8255A-5

Symbol Paramete, Min. Max. Min. Max. Unit

tAR
,

Address Stable Before READ 0 0 ns

tRA Address Stable After READ 0 0 ns

tRR READ Pulse Width 300 300 ns

tRO Data Valid From REAOllJ 250 200 ns

tOF Data Float After READ 10 150 10 100 ns

tRv Time Between R,EADs andJor WR ITEs 850 850 ns

1-349 AFN-00744B

inter 8255A18255A·5

A.C. CHARACTERISTICS (Continued)
WRITE

Symbol Parameter

tAW Address Stable Before WR ITE

tWA Address Stable After WR ITE

tww WRITE Pulse Width

tow Data Valid to WR ITE (T. E.)

two Data Valid After WR ITE

OTHER TIMINGS

Symbol Parameter

tWB WR = 1 to Output(1)

tlR Peripheral Data Before RD

tHR Per i phera I Data After R D

tAK ACK Pulse Width

tST STB Pulse Width

tps Per. Data Before T.E. of STB

tpH Per. Data After T.E. of STB

tAO ACK = 0 to Output(1)

tKO ACK = 1 to Output Float

tWOB WR = 1 to OBF = 011)

tAOB ACK = 0 to OBF = 1(1)

tSIB STB = 0 to IBF = 1 (1)

tRIB RD = 1 to IBF = 011)

tRIT RD = Oto INTR = 011)

tSIT STB = 1 to INTR = 1(1)

tAIT ACK= 1 to INTR = 1(1)

tWIT WR = 0 to INTR = 0]1·3)

NOTES:
1. Test Conditions: 8255A: CL = 100pF; 8255A·5: CL = 150pF.

8255A

Min.

0

20

400

100

30

8255A

Min.

0

0

300

500

0

180

20

8255A·5

Max. Min. Max.

0

20

300

100

30

8255A·5

Max. Min. Max.

350 350

0

0

300

500

0

180

300 300

250 20 250

650 650

350 350

300 300

300 300

400 400

300 300

350 350

450 450

2. Period of Reset pulse must be at least 50"s during or after power on. Subsequent Reset pulse can be 500 ns min.
3. INTRt may occur as early as WFU.

A.C. TESTING INPUT, OUTPUT WAVEFORM A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT

DEVICE

2.4
2.0 2.0 > TEST POINTS <

UNDER i CL~100pF V
TEST

O.B O.B -= 0.45

Unit

ns

ns

ns

ns

ns

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

-0 VExr·

A.G. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC"1" AND O.45V FOR
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC "1"
AND O.BV FOR A LOGIC '0."'

·VEXT IS SET AT VARIOUS VOLTAGES DURING TESTING TO GUARANTEE THE
SPECIFICATION.

1·.350 AFN-00744B

intJ 8255A18255A·5

WAVEFORMS

MODE 0 (BASIC INPUT)

. 'RR .
-[- -c~

J
r--tIR~ I+-tHR~1

INPUT

I::::=..'AR- - tRA-----:1
CS.Al.AO

--------. - --
'RO . tCF .

MODE 0 (BASIC OUTPUT)

two

°7·°0
-----~::::::~~~:W:::::::::t----J ·i-----twA-----+'

CS.Al.AO

OUTPUT

1·351 AFN-Q07448

inter 8255A18255A·5

WAVEFORMS (Continued)

MODE 1 (STROBED INPUT)

_tST -

IBF

INTR

INPUT FROM
PERIPHERAL ---

I

,
~ _'''8j)

'PS

MODE 1 (STROBED OUTPUT)

,
~

tNTR

OUTPUT

If
1

tSIT tJ 1_.R10 __ >
~7 /

If /

I--'PH-:I
---~-----------------.

11\ I -'AOB

~~} ~/?
tWIT- - /J'/

·AIT--------'AK

H-two

1-352 AFN-00744B

inter

WAVEFORMS (Continued)

MODE 2 (BIDIRECTIONAL)
DATA FROM A 8080 TO 8255

'--........ '---J

INTR

-tAK ---______ ~_e_-------~ /--1,----+------

~tST_

--------------------~ ,---~~------~-----------------

IBF

PERIPHERAL _________ _

BUS

DATA FROM
PERIPHERAL TO 8255

NOTE: Any sequence where WR occurs before ACK and STB occur. before RD is permissible.
ONTR = IBF • MASK' STB • RD + OBF • MASK· ACK • WR)

WRITE TIMING READ TIMING

Ao-•• CS __ J1 _________ -+~,'----- AO- 1'CS===X;

I
1-

DATA FROM
8255 TO 8080

q~TA BVS
--------~J~_+~~--~r'-~-

.-1 ~ ~'---tRA -
M-----------~

--~ ~tDF

1·353 AFN-00744B

8275
PROGRAMMABLE CRT CONTROLLER

• Programmable Screen and Character
Format

• 6 Independent Visual Field Attributes

• 11 Visual Character Attributes
(Graphic Capability)

• Cursor Control (4 Types)

• Light Pen Detection and· Registers

• Fully MCS·SO™ and MCS·SS™
Compatible

• Dual Row Buffers

• Programmable DMA Burst Mode

• Single + SV Supply

• 40·Pin Package

The Intell!> 8275 Programmable CRT Controller is a single chip device to interface CRT raster scan displays with
Intell!> microcomputer systems. Its primary function is to refresh the display by buffering the information from main
memory and keeping track of the display position of the screen. The flexibility deSigned into the 8275 will allow simple
interface to almost any raster scan CRT display with a minimum of external hardware and software overhead.

CCLK

LC3 vcc
LC2 'LAo
LC, LA,

OB0-7 CCO_6 LCO LTEN
ORO RVV

DACK VSP
HRTC GPA,
VRTC GPAo

iffi HLGT
ORO LCo_3

WR IRO

DACK LPEN CCLK

IRO DBO CC6
DB, CC5

iiD
DB2 CC4

LAO-l
DB3 CC3

Wll DB4 CC2 HRTe

AO
VRTC DB5 CC,
HLGT
RVV DB6 cCo LTEN
VSP DB7 cs

cs GPAo_,
AO GND

LPEN

Figure 1. Block Diagram Figure 2. Pin Configuration

1·354

inter 8275

Table 1. Pin Descriptions

Pin
Symbol No. Type Nanie and Function

PI,!-
Type Symbol No. Name and Function

LC3 1 0 Line Count: Outputfrom the line count- Vcc 40 +5V Power Supply.
LC2 2' er which is used to address the charac-
LC, 3 ter generator for the line positions on the
LCo 4 screen.

LAo 39 0 Line Attribute Codes: These attribute
LA, 38 codes have to be decoded externally by

the dot/timing logic to generate the
ORO 5 0 DMA Request: Output signal to the horizontal ~nd vertical line combina-

8257 DMA controller requesting a DMA tions for the graphic displays specified
cycle. by the character attribute codes.

DACK 6 I DMA Acknowledge: ,Input signal from LTEN 37 0 Light Enable:, Output signal used to
the 8257 DMA controller acknowledging , enable the video signal to the CRT. This
that the requested DMA cycle has been output is active at the programmed
granted. underline,cursor position, and at posi-

HRTC 7 0 Horizontal Retrace: Output signal tions specified by attribute codes.

which is active during the programmed RW, 36 0 Reverse Video: Output signal used to
horizontal retrace interval. During this indicate the CRT circuitry to reverse the
period the VSP output is high and the video signal. This output is active at the

, L TEN output is low. cursor position if a reverse video block

VRTC 8 0., Vertical Retrace: Output signal which
is active during the ,programmed
vertical retrace interval. During this

cursor is programmed or at the posi-
tions specified by the field attribute
codes.

period the VSP output is high and the VSP 35 0 Video Suppression: Output signal
L TEN output is low. used to blank the video signal to the

RD 9 I Read Input: A control signal to read CRT. This output is active:

registers. -during the horizontal and vertical re-

WR 10 I WrHe Input: A control signal to write
commands into the control registers or
write data into the row buffers during a
DMAcycle.

trace intervals.
-at the top and bottom lines of rows if

underline is programmed to be num-
ber 8 or greater.

LPEN 11 I Light Pen: Input signal from the CRT
system signifying that a light pen signal
has been detected.

-when an end of row or end of screen
code is detected.

-when a DMA underrun occurs.

DBo 12 I/O BI-Directional Three-State Data Bus
DB, 13 Lines: The outputs are enabled during
DB2 14 a read of the C or P ports.
DB3 15
DB, 16
DBs 17
DBs 18

-at regular intervals (1/16 frame fre-
quency for cursor, 1132 frame fre-
quency for character and field attri-
butes)-to create blinking displays as
specified by cursor, character attri-
bute, or field attribute programming.

GPA, 34 0 General Purpose Attribute Codes:
DB7 19 GPAo 33 Outputs which are enabled by the gen-

Ground 20 ,Ground.
eral purpose field attribute codes.

HLGT 32 0 Highlight: Output signal used to inten-
sify the display at particular positions on
the screen as specified by the character
attribute codes or field attribute codes.

IRO 31 0 Interrupt Request.

CCLK 30 I Character Clock (tromdot/timing logic).

CCs 29 0 Character Codes: Output from the
CCs 28 row buffers used for character selection
CC. 27 in the character generator.
CC3 26
CC2 25
CC, 24
CCo 23

CS 22 I Chip Select: The read and write are en-
abled by CS.

Ao 21 I Port Address: A high input on Ao
selects the "C" port or command regis-
ters and a low input selects the "P"
port or parameter registers.

1-355 AFN-00224B

inter 8275

FUNCTIONAL DESCRIPTION

Data Bus Buffer

This 3-state, bidirectional, 8-bit buffer is used to interface
the 8275 to the system Data Bus.

This functional block accepts inputs from the System Con­
trol Bus and generates control signals for overall device
operation. It contains the Command, Parameter, and Status
Registers that store the various control formats for the
device functional definition.

AO OPERATION REGISTER

0 Read PREG

0 Write PREG

1 Read SREG

1 Write CREG

RD (Read)
A "low" on this input informs the 8275 that the CPU is
reading data or status information from the 8275.

WR (Write)

CCL.

C"o_6

ORO LCO_3

DACK

IRO

AD

Wii LAO_1

HRTe
VRTe·
HLGT
RVV
LTEN

~--.J vsp
GPAO-l

LPEN

A "low" on this input informs the 8275 that the CPU is
writing data or control words to the 8275. Figure 3. 8275 Block Diagram Showing Data Bus

CS (Chip Select)
A "low" on this input selects the 8275. No reading or writ·
ing will occur unless the device is selected. When CS is high,
the Data 8us in the float state and RD and WR will have no
effect on the chip.

DRQ (DMA Request)

A "high" on this output informs the DMA Controller that
the 8275 desires a DMA transfer.

DACK (DMA Acknowledge)
A "low" on this input informs the 8275 that a DMA cycle
is in progress.

IRQ (Interrupt Request)

A "high" on this output informs the CPU that the 8275
desires interrupt service.

1·356

Ao RD

0 0
0 1
1 0
1
X 1
X X

Buffer and ReadlWrlte Functions

WR CS

1 0 Write 8275 Parameter
0 0 Read 8275 Parameter
1 0 Write 8275 Command
0 0 Read 8275 Status
1 0 Three-State
X Three-state

AFN-00224B

8275

Character Counter

'The Charac~l!r CQuntl!r is a programmable counter that is
used to det.ermin~ the,number of characters to be displayed
per row and the, lengt~ ohhe horizontal retrace interval. It
is driven by the CCLK,,(Character Clock) input, which
should be a derivative of the external dot clock.

Line Counter ' '

The Line Cou'~ter i~:a"~rogrammable counter that is used to
determine the .nurnber of .horizontal' Jines (Sweeps) per
character row. ;Its outputs are used, to address the external
.character gene(8tor ROM.

'Aow Counter

The Row Counter is a programmable counter that is used to
determine the number of character rows t'o 'be displayed per
frame and len'gth of the vertical retrace interval.

Light Pen Aeglsters

The Light Pen Registers are two registers that store the con­
tents of the character counter and ,the row counter when­
ever there is a rising ed~, on the LPEN (Light Pen) input.

,Note: Software ~!1rrection is required, '

Aaster Timing and Video Controls

The Raster Timi~~.cir~u;i~/~Qntrols th~.timin~' of the
HRTC (Horizontal' R~trace) and VRTC (Vertical Retrace)
outputs. The Video Control circuitry controls the genera­
tion of LA0-1 (Line Attribute), HGL T (Highlight), RVV
(Reverse Video), L TEN (LightEnahle),VSP (Video Sup­
press), and'GPA0-1 (General'Purpose Attribute) outputs.

Row Buffers

The Row Buffers are two 80 character buffers. They are
filled from the microcompu~~r system memory with, the
character codes to be displayed. While one ·row buffer is
displaying a row of characters, the other is being filled with
the next row of characters.

0110-7

ORQ ___ ~

DACK--'--­

IRQ

CClK

CCO-6

LCO_3

LA0--1

HRTe
VRTe
HLGT
RVV
LTEN
vs.
GPA0-1 "

LPEN

Figure 4. 8275 Block Diagram ShowingCoJnter
, 'andRes,llsterFunctions

FIFOs

There are two 16 character FI FOs in th~ 8275. 'They are
used to provide extra row buffer length in the Transpa'rent
Attribute Mode (see Detailed Operation section).

Buffer InpuUOutpul Controllers

The Buffer I nput/Output Controllers decode the characters
being placed in the row buffers . .If the character is a charac·
ter attribute, field attribute, or speCial code, these con­
trollers control the appropriate action. (Examples: An
"End of Screen-Stop DMA" special code will cause the
Buffer Input Contn;>IIer to stop further DMA requests. A
"Highlight" field attribute will cause the Buffer, Output
Controller to activate the HGL T output.)

1.·357 AFN-002248

8275

SYSTEM OPERATION

The 8275 is programmable to a large number of different
display formats. It provides raster timing, display row buf­
fering, visual attribute decoding, cursor timing, and light
pen detection.

It is designed to interface with the 8257 OMA Controller
and standard character generator ROMs for dot matrix
decoding. Dot level timing must be provided by external
circuitry.

MEMORIES

U
\ SYSTEM BUS (

DBO_7
I'ifE"MR AO
lOW DBO_7
MEMW WR
iOR RD
CS CS
HRO IRO
HACK

ORO LCO_3
8257

CHARAcTER
VIDEO SIGNAL

DMA
CONTROLLER DACK GENERATOR

8275 CCO-6
HORIZONTAL SYNC

CRT DOT

CONTROLLER TIMING VERTICAL SYNC
AND CCLK

INTERFACE
INTENSITY

VIDEO CONTROLS

Figure 5. 8275 Systems Block Diagram Showing SystemsOj)eratlon

1·358 AFN.00224B

8275

General Systems Operational Description

The 8275' provides a "window" into the microcomputer
system memory.

The number of lines per character row, the underline posi­
tion, and blanking of top and bottom lines are program­
mable. (Se!! ,Programming Section.)

Display characters are retrieved from memory and dis·
played on a row by row basis. The 8275 has two row buf·
fers. While one row buffer is being used for display, the
other is being filled with the next row of characters to be
displayed. The number of display characters per row and
the number of character rows per frame are software pro·
grammable, providing easy interface to most CRT displays.
(See Programming Section.)

The 8275 provides special Control Codes which can be used
to minimize' DMA or software oyerhead. It also provides
Visual Attribute Codes to cause special action or ,symbols
on the screen without the use of the character generator
(see Visual Attributes Section).

The 8275 ,also controls raster timing. This is done by gen­
erating Horizontal Retrace (H RTC) and Vertical Retrace
(VRTC) signals. The timing of these signals is program­
mable.

The 8275 requests DMA to fill the row buffer that is not
being used for display. DMA burst length and spacing is
programmable. (See Programming Section.)

The 8275 can generate a cursor. Cursor location and format
are programm~ble. (See Programming Section.)

The 8275 has a light pen input and registers. The light pen
input is used to load the registers. Light pen registers can be

The 8275 displays character rows one line at a time. read on command. (See Programming Section.) ,

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Charaetar Character Character Charaetar

~-------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

First Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character -'-.----------00 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000.00 •• 000'00.0000000000000.000.00.0,00.00.000.0

Second Line of a Character Ro,'"

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Charaetar - ~-----.;.......--..

00 •••• 000.0000.00 ••••• 000000000 0000 ••• 000.000.0
0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0
'0.0000.00'0000.00.0000000000000.000.00.000.00.000.0

Third Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Charaetar Character -------- .~-­oa. ••• ooo.oooo.oo ••••• ooooooooo •••• oooo ••• ooo.ooo.o

a.oooo.oo •• ooo.OO.ooooooooooooo.ooo.oo.ooo.oo.ooo.o
0.0000.00.0_00.00.0000000000000.000.00.000.00.000.0
0.0000.00.0000.00 •••• 0000000000 •••• 000.000.00.0.0.0
o.oooo.od.oo.o.oo.ooooooooooooo.o.oooo.ooo.oo.o.o.o
o.qooo.oo.OOO •• oo.ooooooooooooo.oo.ooo.ooo.oo.o.o.o
Oq •••• ooo.oooo.oo ••••• ooooooooo.oo.oooo ••• oooo.o.oo

Seventh Line of a Cheraeter Row

Figure 6. Display of a Character Row

1-359 AFN.Q0224B

8275

Display Row Buffering
Before the start of a frame, the 8275 requests DMA and
one row buffer is filled with characters.

CCLK

CCO_6

ORO LCO_3

DACK

IRa

Rii

WR LAO_l

HRTC

AO
VRTC
HLGT
RW
LTEN
VS.

C!! GPAO_l

LPEN

Figure 7. First Row Buffer Filled

When the first horizontal sweep is started, character codes
are output to the character generator from the row buffer
just filled. Simultaneously, DMA begins filling the other
row buffer with the next row of characters.

080_7

DRa ____ ~

AO-

CCLK

CCO_6

LCO_3

LAO_l

HRTC
VRle
HLGT
RW
LTEN
vs.
GPAO_l

LPEN

Figure 8. Second Buffer Filled, First Row
Displayed

After all the lines of the character row are scanned, the
roles of the two row buffers are reversed and the same
procedure is followed for the next row.

ORO

DACK

IRa

Rii

WR

AO

cs

CCLK

CCO_6

LCO_3

LAO_l

HRTe
VRTe
HLGT
RW
LTEN
vs.
GPAO_l

LPEN

Figure 9. First Buffer Filled with Third Row
Second Row Displayed '

This is repeated until all of the character rows are dis·
played.

1-360 AFN-00224B

inter 8275

Display Format

Screen Format

The 8275 can 'be programmed to generate from 1 to 80
characters per row, and from 1 to 64 rows per frame.

123456789 80
2
3
4
5
6
7
8
9

64

Figure 10. Screen Format

The 8275 can also be programmed to blank alternate rows.
In this mode, the first row is displayed, the second blanked,
the third displayed, etc. DMA is'not requested for the
blanked rows.

123456789 80

2

3,

4

5

64

Figure 11. Blank Alternate Rows Mode

aow Format

The 8275 is designed to hold the line count stable while
outputting the appropriate character codes during each
horizontal sweep. The line' count is incremented during
horizontal retrace' al1d the whole row of character codes are
oUtput again during the next sweep. This is continued until
the whole character row is displayed.

The number of lines (horizontal sweeps) 'per character row
is program mabie from 1 to 16.

The output of the line counter can be programmed to be in
one of two modes.

In mode 0, the output of the line counter is the same as the
line number. .

In mode 1, the line counter is offset by one from the line
number.

Note: In mode 1, while the first line (line number 0) is being dis­
played, the last count is output by the line counter (see
examples).

Line Line
Line Counter Counter

Number Mode a Model

0 0 0 0 0 0 0 0 0 0 0000 1111
1 0 0 0 0 • 0 0 0 0 0001 0000
2 0 0 0 • 0 • 0 0 0 0010 0001
3 0 0 • 0 0 0 • 0 0 0011 0010
4 0 • 0 0 0 0 0 .. 0 0100 0011
5 0 • 0 0 0 0 0 • 0 0101 0100
6 0 • • • • • • • 0 0110 0101
7 0 • 0 0 0 0 0 • 0 0111 0110
8 0 • 0 0 0 0 0 • 0 1000 0111
9 0 • 0 0 0 0 0 • .0 1001 1000

10 0 0 0 0 0 0 0 0 0 10,1 Q 1 Q 01
11 0 0 0 0 0 0 0 0 0 1011 1010
12 0 0 0 0 0 0 0 0 0 1100 1011
13 0 0 0 0 0 0 0 0 0 1101 1100
14 0 0 0 0 0 0 0 0 0 1 110 1 101
15 0 0 0 0 0 0 0 0 0 1111 1110

Figure 12. Example of a 16-Line Format

Line Line
Line Counter Counter

Number Mode 0 Mode 1

0 0 0 0 0 0 0 0 0000 1001
1 0 0 0 • 0 0 0 0001 0000
2 0 0 • 0 • 0 0 0010 0001
3 .0 • 0 0 0 • 0 0011 0010
4 0 • 0 0 0 • 0 0100 0011
5 0 • • • • • 0 0101 0100
6 0 • 0 0 0 • 0 01 (0 0101
7 0 • 0 0 0 • 0 0111 0110
8 0 0 0 0 0 0 0 1000' 0111
9 0 0 0 0 0 0 0 100 i 1000

Figure 13. Example of a 10-Line Format

Mode 0 is useful for character generators that leave address
zero blank and start at address 1. Mode 1 is useful for char­
acter generators which start at address zero.

1-361 AFN-00224B

intef 8275

Underline placement is also programmable (from line num­
ber·O to 15l- This is independent of the line counter mode_

If the line number of the underline is greater than 7 (line
number MSB = 1), then the top and bottom lines will be
blanked_

Line Line
Line Counter Counter

Number Mode a Model

a 0 0 0 0 0 0 0 0 0 0000 1011
1 0 0 0 0 • 0 0 0 0 0001 0000
2 0 0 0 • 0 • 0 0 0 o.Q 1 0 0001
3 0 0 • 0 0 o .• 0 0 0011 0010
4 0 • 0 0 0 0 0 • 0 0100 0011
5 0 • 0 0 0 0 ,0 • 0 0101 0100
6 0 • • • • • .. • 0 0110 0101
7 0 • 0 0 0 0 0 • 0 0111 0110
B 0 • .0, .0 0;.0 o .• 0 ,000 0111
9 0 • 0 0 0 0 0 • 0 1001 1000

10 • • • • • • • • • 1010 1001
11 0 0 0 0 0 0 0 0 0 1011 1010

Top and Bottom
Lines are Blanked

Figure 14. Underline In Line Number 10

'If the line number of the underline is less than or equal to 7.
(line number MSB =0), then the top and bottom lines will
not be blanked.

Line
Number

0 0

1 d

2 0

3 0

4 0

5 0

6 0

7 •

0 0 • 0 0 0

0 • 0 • D 0

• 0 0 0 • 0

• 0 0 0 • 0

• • • • • 0

• 0 0 0 • 0

• 0 0 o • 0

• • • • • •
Top and Bottom
Lines are not Blanked

Line Line
Counter Counter
Mode a Model

0000 0111
0'001 0000
0010 0001
0011 0010
0100 0011
0101 0100
0110 0101
0111 0110

Figure 15. Underline In Line Number 7

If the line number of the underline is greater than the maxi­
mum number of lines, the underline will not appear.

Blanking is accomplished by the VSP (Video Suppression)
signal. Underline is accomplished by the L TEN (Light
Enable) signal.

1-362

Dot Format

Dot width and character width are dependent upon the
external timing and control circuitry.

Dot level timing circuitry should be designed to accept the
parallel output of the character generato,r and shift it out
serially at the rate required by the CRT display.

VIDEO

Figure 16~ Typical Dot Level Block Diagram

Dot width is a function of dot clock freqLJenc¥.

Character width is a function of the character generator
width.

Horizontal character spacing' is a function of the shift
register length.
Note: Video control and timing signals must be synchronized with

the video signal due to the character generator access delay.

AFN-00224B

8275

Raster Timing
The character counter is driven by the character clock input
(CCLK). It coUnts out the characters being displayed
(programmable from 1 to 80). It then causes the line
counter to increment, and it 'Starts counting out the hori­
zontal retrace. interval (programmable from 2 to 32). This
is constantly repeated.

CCLK

HRTe

LC1).3

PROGRAMMABLE 1 TO 80 CCLKS

PRESENT LINE COUNT ________________ J

Figure 17. Line Timing

NEXT
LINE COUNT

The line counter is driven by the character counter. It is
used to generate the line address outputs (LCO_3) for the
character generator. After it counts all of the lines in a
character row (programmable from 1 to 16). it increments
the row counter, and starts over again. (See Character For­
mat Section for detailed description of Line Counter
functions.)

The row counter is an internal counter driven by the line
counter. It controls the functions of the row buffers and
counts the number of character rows displayed.

INTERNAL
ROWCOUNTI;:R

ONE CHARACTER .ROW . .

• PROGRAMMABLE 1 TO 16
LINE COUNTS

Figure 18. Row Timing

After the row counter counts all of the rows in a frame
(programmable from 1 to 64), it starts counting out the
vertical retrace interval (programmable from 1 to 4).

ONE FRAME' ,

ROWI~~~~:~~xxxt/Xj:x_
FIRST LAST FIRST LAST

DISPLAY DISPLAY RETRACE RETRACe
ROW ROW ROW ROW

VRTC~~'-
\ .. ,

T T
PROGRAMMABLE PROGRAMMABLE

1 TO B4 ROW COUNTS 1 TO 4 ROW COUNTS

Figure 19. Frame Timing

The Video Suppression Output (VSP) is active during
horizontal and vertical retrace intervals.

Dot level timing circuitry must synchronize these outputs
with the vidllo signal to the CRT Display.

1-363 AFN-00224B

inter 8275

DMATlming

The 8275 can be programmed to request burst DMA trans­
fers of 1 to 8 characters. The interval between bursts is also
programmable (from 0 to 55 character clock periods ±1).
This allows the user to tailor his DMA overhead to fit his
system needs.

The first DMA request of the frame occurs one row time
before the end of vertical retrace. DMA requests continue
as programmed, until the row buffer is filled. If the row
buffer is filled in the middle of a burst, the 8275 terminates
the burst and resets the burst counter. No more DMA
requests will occur until the beginning of the next row.
At that time, DMA requests are activated as programmed
until the other buffer is filled.

The first DMA request for a row will start at the first char­
acter clock of the preceding row. If the burst mode is used,
the first DMA request may occur a number of character
clocks later. This number is equal to the programmed burst
space.

If, for any reason, there is a DMA underrun, a flag in the
status word will be set.

INTERNAL
,OW

COUNTER
LAST RETRAce ROW ~ FIRST DISPlAV ROW

wffi w ~

i~ i~~
g~ ~:~

~
0",

ROW BUFFER
FILLED

\~---

Figure 20. DMA Timing

The DMA controller is typically initialized for the next
frame at the end of the current frame.

Interrupt Timing

The 8275 can be programmed to generate an interrupt
request at the end of each frame. This can be used to
reinitialize the DMA controller. If the 8275 interrupt
enable flag is set, an interrupt request will occur at the
beginning of the last display row.

INTERNAL~
ROW

COUNTER

VRTC ~1---e--..1

IRQ

Figure 21. Beginning of Interrupt Request

I RO will go inactive after the status register is read.

IRQ }

RD~~}-
Figure 22. End of Interrupt Request

A reset command will also cause I RO to go inactive, but
this is not recommended during normal service.

Another method of reinitializing the DMA controller is to
have the DMA controller itself interrupt on terminal count.
With this method, the 8275 interrupt enable flag should not
be set.

Note: Upon power-up, the 8275 Interrupt Enable Flag may be set.
As a result, the user's cold start routine should write a reset
command to the 8275 before system interrupts are enabled.

1-364 AFN-00224B

VISUAL ATTRIBUTES AND SPECIAL
CODES

8275

Character Attribute Codes

The characters processed by the 8275 are 8-bit quantities.
The character code outputs provIde the character generator
with 7 bits of address. The Most Significant Bit is the extra
bit and it is used to determine if it is a normal display
character (MSB = 0), or if it is a Visual Attribute or Special
Code (MSB = 1).

Character attribute codes are codes that can be used to gen­
erate graphics symbols without, the use' of a character
generator. This, is accomplished by selectively aclivating the
Line Attribute outputs (LAo-1), the Video Suppression
output (VSPI. and the Light Enable output. The dot level
timing circuitry can use these signals to generate the proper
symbols.

Character attributes can be programmed to blink or be
highlighted individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is equal
to the screen refresh frequency divided by 32. Highlighting
is accomplished by activating the Highlight output (HGL T).

There are two types of Visual Attribute Codes. They are
Character Attributes and Field Attributes.

"

8275

~
00

0,
CHARACTER

~ GENERATOR

t----' ~~~ 03

0,

~~~~z. RIGHT -...;.. -
CHAR. GEN. ___ ---I l' 

ENABLE -.....1 ::::: 

.... ::::. 
:::: 
~ --L--.... 

Character Attributes 

MSB LSB 
1 1 .::.C-..::.C,...::.C-..::.C B H 

I' I L HIGHLIGHT 
BLINK 

L-;"':':' ___ CHARACTER ATTRIBUTE CODE 

>-->----'-' 

>----= ->-
-U-
>-----

DOT CLOCK 

SHIFT 
REGISTER 

.... - f'")----- -------- -f) ~~ETr) (n) rt:=-l'H-ORIZ'LE---LFTHALF~OUIT~_ 
LA, f-- -h....-___ 'r1-4 ____ 14--++,...J1l L-!> ...... >---\----r ....... _-r--....... 

T ..... I v ~ =L.)-VIDEO 

LAo r--- PIPELINE I : VSP 

VS' f-- 1--"---------------------1 
LTEN r--- 1-______ --'-____________ --_.11 SYNCHF:I~ J-2L,,!,!TEO!!N __ ...J 
HGLT t--- 1-_____________________ -1-1 NIZATION II------_HIGHL.IGHT 

---" '---

Figure 23. Typical Character Attribute Logic 

1-365 AFN-00224B 



inter 8275 

Table 2. Character Attributes 
Character attributes were designed to produce the following graphics: 

CHARACTER ATTRIBUTE 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

DESCRIPTION 

Top Left Corner 

Top Right Corner 

Bottom Left Corner 

Bottom Right Corner 

Top Intersect 

Right Intersect 

Left Intersect 

Bottom Intersect 

Horizontal Line 

Vertical Line 

Crossed Lines 

Not Recommended * 

Special Codes 

Illegal 

Illegal 

Illegal 

*Character Attribute Code 1011 is not recommended for 
normal operation. Since none of the attribute outputs are 
active, the character Generator will not be disabled, and 
an indeterminate character will be generated. 

Character Attribute Codes 1101, 1110, and 1111 are illegal. 

Blinking is active when B: 1. 

Highlight is active when H = 1. 

1·366 AFN-oG2248 



inter 8275 

Special Code. 

Four special codes are avaIlable to help reduce memory, 
software, or DMAoverhead. 

Special Control Character 

MSB 
1 1 1 1 

LSB 
DOS S 

S S 

a 0 
a 1 

o 

~SPECIAL CONTROL CODE 

FUNCTION 

End of Row 

End of Row·Stop DMA 
End of Screen 

End of Screen'Stop DMA 

The End of Row Code (00) activates VSP and holds it to 
the end of the line. 

The End of Row-Stop DMA Code (01) causes the DMA 
Control Logic to stop DMA for the rest of the row when it 
is written into the Row Buffer. It affects the display in the 
Saple way as the End of Row Code (00). 

The End of Screen Code (1 0) activates VSP and holds it to 
the end of the frame. 

The End of Screen-Stop DMA Code (1 n causes the QMA 
Control Logic to stop DMA for the rest of the frame when 
it is written into the Row Buffer. It affects the display in 
the same way as the End of Screen Code (10). 

If the Stop DMA feature is not used, all characters after an 
End of Row character are ignored, except for the End of 
Screen character, which operates normally. All characters 
after an End of Screen character are ignored. 

Note: If a Stop DMA character is not' tlie last character in a burst or 
row, DMA is not stopped 'until after the next character is 
read. In this situation, a dummy character must be placed in' 
memory after the Stop DMA character. 

Field Attribute. 

The field attributes are control codes which affect the 
visual characteristics for a field of characters, starting at the 

character following the code up to, and including, the 
character which precedes the next field attribute code, or 
up to the end of the frame. The field attributes are reset 
during the vertical retrace interval. ' 

There are six field attributes: 

1. Blink - Characters following the code are caused 
to blink by activating the Video Suppression out­
put (VSP). The blink frequency is' equal to the 
screen refresh frequency divid,ed by 32. 

2. Highlight - Characters following the code are 
caused to be highlighted by activating the High­
light output (HG L T). 

3. Reverse Video - Characters following the code are 
caused to appear with reverse video by activating 
the Reverse Video output (RVV). 

4. Underline - Characters following the code are 
caused to be underlined by activating the Light 
Enable output (L TEN). 

5,6. Genera/Purpose - There are two additional 8275 
outputs which act as general purpose, independ­
ently programmable field attributes. GPA0-1 are 
active high outputs. 

Field Attribute Code 

MSB LSB 
10liRGGBH 

II T Il.....-- HIGHLIGHT 
L, ---BLINK 

" 

L: ---__ GENERAL PURPOSE 
L. -'------- REVERSE VIDEO 

L--------UNDERLINE' 

H = 1 FOR HIGHLIGHTING 
B = 1 FOR BLINKING 
R = 1 FOR REVERSE VIDEO 
U = 1 FOR UNDERLINE 

GG = GPA1, GPAo 

*More than one attribute can be enabled at the same time. 

1-367 

If the blinking and reverse video attributes are enabled 
simultaneously, only the reversed characters will blink. 

AFN-00224B 



inter 8275 

The 8275 can be programmed to provide visible or invisible 
field attribute characters. 

If the 8275 is programmed in the visible field attribute 
mode, all field attributes will occupy a position on the 
screen. They will appear as blanks caused by activation of 
the Video Suppression output (VSP). The chosen visual 
attributes are activated after this blanked character. 

ABC D E F G H I J K L M 
NOPORSTUV 

1 234 5 6 7 8 9 

Figure 24. Example of the Visible Field Attribute 
Mode (Underline Attribute) 

If the 8275 is programmed in the invisible field attribute 
mode, the 8275 FIFO is activated. 

080_7 

ORO_-----, 

DACK 

IRO 

CCLK 

CCO_6 

LCO_3 

LAO-l 

HRTC 
VRre 
HLGT 
RVV 
LTEN 
VSP 

GPAo_l 

LPEN 

Figure 25. Block Diagram Showing FIFO 
Activation 

Each row buffer has a corresponding FIFO. These FIFO!; 
are 16 characters by 7 bits in size. 

When a field attribute is placed in the row buffer during 
DMA, the buffer input controller recognizes it and places 
the next character in the proper FIFO. 

When a field attribute is placed in the Buffer Output Con· 
troller during display, it causes the controller to immedi­
ately put a character from the FIFO on the Character Code 
outputs (CCO-6). The chosen Visual Attributes are also 
activated. 

Since the FIFO is 16 characters long, no more than 16 field 
attribute characters may be used per line in this mode. 
If more are used, a bit in the status word is set and the first 
characters in the FIFO are written over and lost. 

Note: Since the FIFO is 7 bits wide, the MSB of any characters put 
in it are stripped off. Therefore, a Visual Attribute or Special 
Code must not immediately follow a field attribute code. If 
this situation does occur, the Visual, Attribute .. or, Special 
Code will be treated as a normal display character. ' ' 

ABC D E .,F G H.I J K L M 
NOPORSTUV 

1 234 5 6 7 8 9 

Figure 26. Example of the Invisible Field Attribute 
Mode (Underline Attribute) 

Field and Character Attribute Interaction 

Character Attribute Symbols are affected by the Reverse 
Video (RVV) and General Purpose (GPAO-l) field attri­
butes. They are not affected by Underline, Blink or High­
light field attributes; however, these characteristics can be 
programmed individually for Character Attribute Symbols. 

1·368 AFN-00224B 



inter 8275 

Cursor Timing 
The cursor location is determined by a cursor row register 
and a character position register which are loaded by com­
mand to the controller. The cursor can be programmed to 
appear on the display as: 

1. a blinking underline 
2. a blinking reverse video block 
3.· a non-blinking.underline 
4. a non-blinking reverse video block 

The cursor blinking frequency is equal to the screen refresh 
frequency divided by 16. 

If a non-blinking reverse video cursor appears in a non­
blinking reverse video field; the cursor will appear as a 
normal video block. 

If a non-blinking underline cursor..appears in a non-blinking 
underline field. the cursor will not be visible. 

Light Pen Detection 
A light pen consists of a micro switch and a tiny light 
sensor. When the light pen is pressed against the CRT screen. 
the micro switch enables the light sensor. When the raster 
sweep reaches the light sensor, it triggers the light pen 
output. 

If the output of the light pen is presented to the 8275 
LPEN input, the row and character position coordinates are 
stored in a pair of registers. These registers can be read on 
command. A bit in the status word is set, indicating that 
the light pen signal was detected. The LPEN input must be 
a 0 to 1 transition for proper operation. 

Note: Due to internal and external delays, the character position 
coordinate will be off by at least three character positions. 
This has to be corrected in software. 

Device Programming 
The 8275 has two programming registers, the Command 
Register (CREG) and the Parameter Register (PREG). It 
also has·a Status Register (SREG).,The Command Register 
can only be written into and the Status Registers can only 
be read from.· They are addressed as follows: 

AO OPERATION REGISTER 

0 Read PREG 

0 Write PREG 

" Read SREG , Write. CREG 

The 8275 expects to receive a command and' a sequence 
of 0 to 4 parameters, depending on the command. If the 
,proper number of parameter bytes are not received before 
another command is given, a status flag is set, indicating an 
improper command. 

Instruction Set 

The 8275 instruction set consists of 8 commands. 

COMMAND 

Reset 
Start Display 

Stop Display 
Read Light Pen 

Load Cursor 
Enable Interrupt 
Disable Interrupt 

Preset Counters 

NO. OF PARAMETER BYTES 

4 
o 
o 
2 
2 
o 
o 
o 

In addition, the status of the 8275 (SREG) can be read by 
the CPU at any time. 

1-369 AFN-00224B 



inter 8275 

1. Reset Command: 
DATA BUS 

OPERATION AO DESCRIPTION MSB LSB 

Command Write 1 Reset Command 0 0 0 0 0 0 0 0 

Write 0 
Screen Comp S H H H H H H H 

Byte 1 

Write 0 Screen Cemp V V R R R R R R Byte 2 
Parameters 

Write 0 Screen Camp U U U U L L L L 
Byte 3 

Write 0 Screen Camp M F C C Z Z Z Z Byte 4 

Action - After the reset command is written, DMA reo 
quests stop, 8275 interrupts are disabled, and the VSP 
output is used to blank the screen. HRTC and VRTC con· 
tinue to run. HRTC and VRTC timing are random on 
power-up. 

As parameter~ are written, the screen composition is 
defined. 

Parameter - S Spaced Rows 

S FUNCTIONS 

o Normal Rows 

Spaced Rows 

Parameter - HHHHHHH Horizontal Characters/Row 

NO. OF CHARACTERS 
H H H H H H H PER ROW 

0 0 0 0 0 0 0 1 
0 0 0 0 0 0 2 
0 0 0 0 0 0 3 

0 0 80 
0 0 0 0 0 Undefined 

1 1 1 1 1 1 Undefined 

Parameter - VV Vertical Retrace Row Count 

V V NO. OF ROW COUNTS PER VRTC 

o 0 1 
o 2 

o 3 
4 

Parameter - RRRRRR Vertical Rows/Frame 
R R R R R R NO. OF ROWS/FRAME 

0 0 0 0 0 0 1 

0 0 0 0 0 1 2 

0 0 0 0 0 3 

1 1 1 1 1 1 64 

Parameter - UUUU Underline Placement 

LINE NUMBER OF 
U U U U UNDERLINE 

0 0 0 0 1 
0 0 0 1 2 
0 0 0 3 

1 1 1 16 

Parameter - LLLL Number of Lines per Character Row 
L L L L NO. OF LINES/ROW 

0 0 0 0 1 

0 0 0 2 
0 0 0 3 

1 1 16 

Parameter - M Line Counter Mode 

M LINE COUNTER MODE 

o Mode 0 (Non·Offsed 
Mode 1 (Offset by 1 Cou nt) 

Parameter - F 
F 

o 

Parameter - CC 
C C 

o 0 
o 

o 

Field Attribute Mode 
FIELD ATTRIBUTE MODE 

Transparent 
Non-Transparent 

Cursor Format 
CURSOR FORMAT 

Blinking reverse video block 

Blinking underline 
Nonblinking reverse video block 

Nonblinking underling 

Parameter - ZZZZ Horizontal Retrace Count 
NO. OF CHARACTER 

Z Z Z Z COUNTS PER HRTC 

0 0 0 0 2 
0 0 0 1 4 

0 0 0 6 

1 1 1 32 

Nota: uuuu MSB determines blanking of top and bottom lines 
(1 = blanked, 0 = not blanked). 

1·370 AFN-00224B 



inter 8275 

2. Start Display Command: 

DATA-BUS 
OPERATION AO DESCRIPTION MSB LSB 

Command Write 1 Start Display 0 0 1 S 5 5 B B 

No parameters 

SSS BURST SPACE CODE 

NO. OF CHARACTER CLOCKS 
S S S BETWEEN DMA REQUESTS 

0 0 0 0 
0 0 1 7 

0 0 15 

0 1 1 23 
0 0 31 

0 1 39 
0 47 

55 

BB BURST COUNT CODE 

NO. OF DMA CYCLES PER 
B B BURST 

0 0 1 
0 1 2 
1 0 4 

8 

Action - 8275 interrupts are enabled, DMA requests begin, 
video is enabled, Interrupt Enable and Video Enable status 
flags are set. 

3. Stop Display Command: 

iOPERATION AO I DESCRIPTION 
DATA BUS 

MsB LsB 

Command I Write 1 I Stop Display 0 1 0 0 0 0 0 0 

No parameters I 
Action - Disables video, interrupts remain enabled, HRTC 
and VRTC continue to run, Video Enable status flag is 
reset, and the "Start Display" command must be given to 
re-enable the display. 

4. Read Light Pen Command 

DATA BUS 
OPERATION AO DESCRIPTION MSB LSB 

Command Write 1 Read Light Pen 0 1 1 0 0 0 0 0 

Parameters 
Read 0 Char. Number (Char. Position in Row) 

Read 0 Row Number (Row Number) 

Action - The 8275 is conditioned to supply the contents 
of the light pen pOSition registers in the next two read 
cycles of the parameter register. Status flags' are not af­
fected. 

Nota: Software correction of light pen position is required. 

5. Load Cursor Position: 

DATA BUS 
OPERATION AO DESCRIPTION MSB LSB 

Command Write 1 Load Cursor 1 0 0 0 0 0 0 0 

Parameters 
Write 0 Char. Number (Char. Position ,in Row) 

Write 0 Row Number (Row Numbed 

Action - The 8275 is conditioned to place the next two 
parameter bytes into the cursor position registers. Status 
flags not affected. 

6. E'mible Interrupt Command: 

[OPERATION 
DATA BUS 

AO DESCRIPTION MSB LSB 

Command I Write 1 Enable Interrupt 1 0 1 0 0 0 0 0 

No parameters 

Action - The interrupt enable status flag is set and inter­
rupts are enabled. 

7. Disable Interrupt Command: 

I OPERATION 
DATA BUS 

AO DESCRIPTION MSB LSB 

command.l Write 1 Disable Interrupt 1 1 0 0 0 0 0 0 

No parameters 

Action - Interrupts are disabled and the interrupt enable 
status flag is reset. 

8. Preset Counters Command: 

[OPERATION 
DATA BUS 

AO DESCRIPTION MSB LSB 

Command I Write 1 Preset Counters 1 1 1 0 0 0 0 0 

No parameters 

, 

Action - The internal timing counters are preset, corre­
sponding to a screen display position at the top left corner. 
Two character clocks are required for this operahon. The 
counters will remain in th is state until any other command 
is given. 

This command is useful for system debug and synchroniza­
tion of clustered CRT displays on a single CPU. 

1·371 AFN-002248 



inter 8275 

Status Flags 
DATA BUS 

MSB LSB 

Command OlE 11'1 LP leVE OU FO 

IE - (Interrupt Enable) Set or reset by command. It 
enables vertical retrace interrupt. It is auto­
matically set by a "Start Display" command 
and reset with the "Reset" command. 

I R - (Interrupt Request) This flag is set at the begin­
ning of display of the last row of the frame if 
the interrupt enable flag is set. It is reset after 
a status read operation. 

LP - This flag is set when the light pen input (LPEN) 
is activated and the light pen registers have been 
loaded. This flag is automatically reset after a 
status read. 

1-372 

IC - (Improper Command) This flag is set when a 
command paramete'r string is too long or too 
short. The flag is automatically reset after a 
status read. 

VE - (Video Enable) This flag indicates that video 
operation of the CRT is enabled. This flag is 
set on a "Start Display" command, and reset 
on a "Stop Display" or "Reset" command. 

DU - (DMA Underrun) This flag is set whenever a 
data underrun occurs during DMA transfers. 
Upon detection of DU, the DMA operation is 
stopped and the screen is blanked until after 
the vertical retrace interval. This flag is reset 
after a status read. 

FO - (FIFO Overrun) This flag is set whenever the 
FIFO is overrun. It is reset on a status read. 

AFN-IJ0224B 



inter 8275 

ABSOLUTE MAXIMUM RATINGS* 

Ambient Temperature Under' Bias ......... o°c to 70°C 
Storage Temperature. : ............ -65°Cto +150°C 
Voltage On Any Pin 

With Respect to Ground ............ -0.5V to +7V 
Power Dis'sipation .......... ' ............. 1 Watt 

"NOTICE: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
devic.e, This is.a stress rating only and functional opera­
tion of the device at these 0; any other conditions above 
those indicated in the operationalssctionsof this specifi-
cation is not implied. . 

D.C. CHARACTERISTICS (TA = O°C to 70°C, Vee = 5V ±5%) 

Symbol Parameter Min. Max. Units Test Conditions 

V,L Input Low Voltage. -0.5 0.8 V 

V,H Input High Voltage 2.0 Vcc+0.5V V 

VOL Output Low Voltage 0.45 V loC= 2.2mA 

VOH Output High Voltage 2.4 V IOH = -400p.A 

I,L Input Load Current ±10 p.A Y,N = Vce to OV 

IOFL Output Float Leakage ±10 p.A VOUT = Vec to OV 

ICC Vec Supply Current 160 mA 

CAPACITANCE (TA = 25°C, Vee = GND = OV) 

Symbol Parameter Min. Max. Units Test Conditions 

C'N Input Capacitance 10 pF fc= 1 MHz 

CliO I/O Capacitance 20 pF Unmeasured pins returned to VSS. 

A.C. CHARACTERISTICS (TA= O°C to 70°C, Vee = 5.0V ±5%, GND = OV) 

Bus Parameters 

READ CYCLE 

Symbol Parameter Min. Max. Units Test Conditions 
tAR Address Stable Before READ 0 ns 

tRA Address Hold Time for READ 0 ns 

tRR READ Pulse Width 250 ns 

tRO Data Delay from READ 200 ns CL - 150 pF 

tOF READ to Data Floating. 20 100 ns CL min. - 20 pF; CL max. - 150 pF 

WRITE CYCLE 

Symbol Parameter Min. Max. Units Test Conditions 

tAW Address Stable Before WR ITE 0 ns 

tWA Address Hold Time for WR ITE 0 ns 

tww WR ITE Pulse Width 250 ns 

tow Data Setup Time for WR ITE 150 ns 

two Data Hold Time for WR ITE 0 ns 

CLOCK TIMING 

Symbol Parameter Min. Max. Units Test Conditions 

tCLK Clock Period 480 ns 

tKH Clock High 240 ns 

tKL Clock Low 160 ns 

tKR Clock Rise 5 30 ns 

tKF Clock Fall 5 30 ns 

1-373 AFN-oG224B 



inter 
A.C. CHARACTERISTICS (Continued) 
OTHER TIMING 

Symbol Parameter 

tcc Character Code Output Delay 

tHR Horizontal Retrace Output Delay 

tLc Line Count Output Delay 

tAT Control/Attribute Output Delay 

tVR Vertical Retrace Output Delay 

tRI IROt from RDt 

two DRat from WRt 

tRo DRat from WRt 

tLR DACK,j, to WRt 

tRL WRt to DACKt 

tPR LPEN Rise 

tpH LPEN Hold 

A.C. TESTING INPUT, OUTPUT WAVEFORM 

INPUT/OUTPUT 

Min. 

0 

0 

100 

2.4J: x= 22 2~ 

0.8 > TEST POINTS < 0.8 

0.45 - -

A.G. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" AND O.45V FOR 
A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 2.2V FOR A LOGIC' 1 
AND O.BV FOR A LOGIC "0 " 

WAVEFORMS 
TYPICAL DOT LEVEL TIMING 

EXT DOT elK 

CClK· lL-_____ ....J 

CCO_6 FIRST CHARACTER CODE 

~RaMACCESS 

8275 

Max. Units Test Conditions 

150 ns CL = 50 pF 

200 ns CL = 50 pF 

400 ns CL = 50 pF 
275 ns CL = 50 pF 
275 ns CL = 50 pF 
250 ns CL = 50 pF 

250 ns CL = 50 pF 

200 ns CL = 50 pF 

ns 

ns 

50 ns 
ns 

A.C. TESTING LOAD CIRCUIT 

DEVICE ICL UNDER 
TEST 

SEfOND.CHARACTER CODE 

CHARACTER --------"""'Ir-------------"""' r---------
GENERATOR FIRST CHARACTER SECOND CHARACTER 

OUTPUT ________ .J \. ____________ ....J '-________ _ 

ATTRIBUTES 
& CONTROLS 

VIDEO 
(FROM SHIFT 

REGISTER) 

ATTRIBUTES 
& CONTROLS 

(FROM 
SYNCHRONIZER) 

FIRST CHARA:CTER . 

ATTRIBUTES & CONTROLS FOR FIRST CHAR. 

"CClK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8275. 

SECOND CHARACTER 

ATTRIBUTES & CONTROLS 
FOR 2ND CHAR. 

I 
i L-__________________________ ~ _ __.:.. __________ ... .J 

1·374 AFN-00224B 



intJ 8275 

WAVEFORMS (Continued) 

LINE TIMING 

CCLK ..•.. \.Jl-.I\-I 
cCa_6 

HRTe 

tetLC 
. 

LCO_3 -+ ____ P_R_ES_E_NT_Ll_N_E_CO_U_N_T ___ -I \-________________ f-NEXT LINE COUNT· 

VIDEO 
CONTROLS 

AND ATTRIBUTES· 

ROW TIMING 

CClK 

HRTe 

LCO_3 

r-v X I,: )( r--P.---J '------\,1-, --'---
*LAo-l. VSP, LTEN, HGlT, RVV, GPAo-l 

i-----PROGRAMMABLE FROM 1 TO 16 LlNES----+I 

INTERNAL·---'-"--""" r------------\\------""" 
ROW P~ESENT ROW 

. ··COUNTER ____ J 1'"------------1 \-_____ .J 

FRAME TIMIN.G 

CCLK 

"INTERNAL 
ROW 

COUNTER 

" VRTe 

1-375 

~ST 
RETRACE 

ROW 

AFN-IIill!24B 



inter 8275 

WAVEFORMS (Continued) 

INTERRUPT TIMING 

\ 
CCLK 

CCo-e LAST RETRACE X FIRST RETRACE 
____ ~CH~A~RA~cr __ ER ____ ~~---C~H~A~RA~cr~E~R---

LCo-3 FIRST LINE COUNT 

i\'---__ 
HRTe 

IRQ 

INTERNAL ---------+--------

OOU~::-------~-~-D-,S~P-LA-~-R-:-~t-,-R---------_-_ 

DMATIMING 

CCLK 

---ltKQt-----. 

DRQ J \~ ____ __ 

LPEN __ ~jJ __ 

1·376 AFN-Q02248 



8275 

WAVEFORMS (Continued) 

WRITE TIMING READ TIMING 

INVALID AO.CS ~_,--_V_AL_'D.,--__ 

~tAR 

INVALID 

CLOCK TIMING 

CCLK 

tKF 

1-377 AFN-Q0224B 



inter 
'8276 

SMALL SYSTEM CRT CONTROLI..I:R 

• Programmable Screen and Character 
Format " 

• 6 Independent Visual Field Attributes 

• Cursor C,ontrol (4 Types) 

• MCS-51®, MCS-85~, iAPX 86, and 
iAPX 88 Compatible 

• Dual Row Buffers 

• Single +5V Supply 

• 40-Pin Package 

The Intel 8276 Small System CRT Controller is a Single chip devic;e intended to interface CRT raster scan dis­
plays with Intel microcomputers in minimum device-count systems. Its primary function is to refresh the dis­
play by buffering character information from main memory and keeping track of. the display position of the 
screen. The flexibility designed into the 8276 will allow simple,interface to almos~,~oyraster scan CRT display 
with a minimum system IC count. 

, 1·378 



inter 8276 

Table 1. Pin Descriptions 

Pin 
Symbol No. Type Namil and Function 

Pin 
Symbol No. Type Nama and Function 

LC3 1 0 Line count. Output from the line count- Vee 40 +5V power supply. 
LC:z 2 er which is used to address the charac-
LC, 3 ter generat,or for the line, positions on 
LCo 4 the screen: ' 

NC 39 No connection. 

NC " 38 No connection. 

LTEN 37 0 Light enable. Output signafused to 
BRDY 5 0 Buffer ready. Output signal indicating enable the video signal to the CRT. This 

that a Row Buffer Is ready for loading of output Is active at the programmed 
character data. underline cursor position, and at posi-

tions specified by attribute codes. 

BS 6 I Buffer select. Input Signal enabling 
WR for character data into the Row 

RW 36 0 Reverse video. Output signal used to 
activate the CRT circuitry to reverse the 

Buffers. video signal. This output is active at the 
cursor position if a reverse videO block 

HRTC 7 0 Horizontal retrace. Output Signal 
which is active during the programmed 
horiz,ontal retrace i':1terval. During this 
periOd the VSP output is high and the 

cursor is programmed or at the posi-
tions speCified by the field attribute 
codes. 

VSP 35 0 Video suppression. Output signal 
.. L TEN output is low . used to blank the video signal to the 

ORT. This output is active: 

VRTC 8 0 Vefllcal retrllce. Output signal which' 
is active during the programmed verti-
cal retrace interval. During this period 
the VSP output is high and the L TEN 
output is low. 

- during the horizontal and vertical re-
trace intervals. 

- at the top and bottom lines of rows if 
underline is programmed to be num-
ber 8 or greater. 

- when an end of row or end of screen 

RI5 9 I Read input. A control signal to read 
registers. 

code is detected. 
- when a Row Buffer underrun occurs. 
- at regular intervals (1/16 frame fre-

WR 10 I Write Input. A control Signal to write 
quency for cursor, 1132 frame fre-
quency for attributes)-to create 

commands inl.o the control registers or blinking displays as specified by 
write data into the row buffers. cursor or field attribute programming. 

NC 11 No connection. GPA, 34 0 General purpose attribute codes.-

DBo 12 I/O 'Bidirectional data bus. Three-state 
GPAo 33 Outpu~s which are enabled by the gen-

eral purpose field attribute codes. 
DB, 13 lines. The outputs are enabled during Ii 
DB2 14 read of th,e Oor P ports. 
DB3 15 
DB4 16 
DBs 17 

HLGT 32 0 Highlight. Output signal used to inten-
Sify the display atparticular positions 
on the screen as specified by the field 
attribute codes. 

DB6 18 INT 31 0 Interrupt output. 
DB7 19 OCLK 30 I Character clock (from dot/timing 

logic). 

Ground 20 Ground. 006 29 0 Character codes. Output from the 
OOs 28 row buffers used for character selec-
OC4 ' 27 tion in' the character generator. 
003 26 
CO2 25 
CO, 24 
CCo 23 

CS 22 I Chip select. Enables RD of status or 
WR of Command or parameters. 

01 P 21 I Port addre ... A high input on this pin 
selects the "0" port or command regis-
ters and a low input selects the "P" port 
or parameter registers. 

I I 

1-379 AFN·OO224B 



intJ 8276 

FUNCTIONAL DESCRIPTION 

Data Bus Buffer 

This 3-state, bidirectional, 8-bit buffer is used to 
interface the 8276 to the system Data Bus. 

This functional block accepts inputs from the Sys­
tem Control Bus and generates control signals for 
overall device operation. It contains the Command, 
Parameter, and Status Registers that store the vari­
ous control formats for the device functional 
definition. 

C/P OPERATION REGISTER 

0 Read RESERVED 

0 Write PARAMETER 

1 Read STATUS 

1 Write COMMAND 

RD (READ) 
A "low" on this input informs the 8276 that the CPU 
is reading status information from the 8276. 

WR (WRITE) 
A "low" on this input informs the 8276 that the CPU 
is writing data or control words to the 8276. 

CS (CHIP SELECT) 
A "low" on this input selects the 8276 for RD or WR 
of Commands, Status, and Parameters. 

BRDY (BUFFER READY) 
A "high" on this output indicates that the 8276 is 
ready to receive character data. 

BS (BUFFER SELECT) 
A "low" on this input enables WR of character data 
to the 8276 row buffers. 

INT (INTERRUPT) 
A "high" on this output informs the CPU that the 
8276 needs interrupt service. 

C/P RD WR CS as 
0 0 1 0 1 Reserved 
0 1 0 0 1 Write 8276 Parameter 
1 0 1 0 1 Read 8276 Status 
1 1 0 0 1 Write 8276 Command 
X 1 0 1 0 Write 8276 Row Buffer 
X 1 1 X X High Impedance 
X X X 1 1 High Impedance 

Character Counter 

The Character Counter is a programmable counter 
that is used to determine the number of characters 
to be displayed per row and the length of the hori­
zontal retrace interval. It is driven by the CCLK 
(Character Clock) input, which should be derived 
from the external dot clock. 

Line Counter 

The Line Counter is a programmable. counter that is 
used to determine the number of horizontal lines 
(Raster Scans) per character row. Its outputs are 
used to address the external character generator. 

Row Counter 

The Row Counter is a programmable counter that is 
used to determine the number of character rows to 
be displayed per frame and length of the vertical re­
trace interval. 

Raster Timing and Video Controls 

The Raster Timing circuitry controls the timing of 
the HRTC (Horizontal Retrace) and VRTC (Vertical 
Retrace) outputs. The Video Control circuitry con­
trols the generation of HGL T (Highlight), RVV (Re­
verse Video), LTEN (Light Enable), VSP (Video Sup­
press), and GPAO- 1 (General Purpose Attribute) 
outputs. 

Row Buffers 

The Row Buffers are two 80-character buffers. They 
are filled from the microcomputer system memory 
with the character codes to be displayed. While one 
row buffer is displaying a row of characters, the 
other is being filled with the next row of characters. 

Buffer Input/Output Controllers 

The Buffer Input/Output Controllers decode the 
characters being placed in the row buffers. If the 
character is a field attribute or special code, they 
control the appropriate action. (Example: A "High­
light" field attribute will cause the Buffer Output 
Controller to activate the HGL T output.) 

1·380 AFN-00224B 



8276 

SYSTEM OPERATION 

The 8276 is programmable to a large number of dif­
ferent display formats. It provides raster timing, dis­
play row buffering; visual attribute decoding and 
cursor timing. 

It is designed to interface with standard character 
generators for dot matrix decoding. Dot level timing 
must be provided by external circuitry. 

.General Systems Operational Description 

Display characters. are retrieved from memory and 
displayed on a row-by-row basis. The 8276 has two 
row buffers. While one row buffer is being used for 
display, the other is being filled with the next row of 
characters to be displayed. The number of display 
characters per row and the number of character 
rows per frame are software programmable, provid­
ing easy interface to most CRT displays. (See Pro­
grammingSection.) 

INT BRDY 
LCO-3 

The 8276 uses BRDY to request character data to fi II 
the row buffer that is not being used for display. 

The 8276 displays character rows one scan line at a 
time. The number of scan lines per character row, 
the underline position, and blanking of top and bot­
tom lines are programmable. (See Programming 
Section.) 

The 8276 provides special Control Codes which can 
be used to minimize overhead. It also provides Vis­
ual Attribute Codes to cause special action on the 
screen without the use of the character generator. 
(See Visual Attributes Section.) 

The 8276 also controls raster timing. This is done by 
generating Horizontal Retrac:e (HRTC) and Vertical 
Retrace (VRTC) signals. The timing of these signals 
is also programmable. 

The 8276 can generate a cursor. Cursor location and 
format are programmable. (See Programming 
Section.) 

VIDEO SIGNAL 

808e CHARACTER 
MICRO. ceo_s r GENERATOR HIGH PROCESSOR BS (ROM OR HORIZONTAL SYNC 

SPEED 

I 8276 
RAM) DOT 

CRT TIMING 
Ci CONTROLLER LOGIC VERTICAL SYNC AND 

I CCLK INTERFACE 

TO CRT 

I I 8205 
INTENSITY • DECODER 

VIDEO CONTROLS 

... l! 11 
SYSTEM BUS 

~r "'" ~ "'" ~ 

7- 7-

8253-5 8251A 
PROGRAMI 8255A-S 

COUNTER! DISPLAY KEYBOARD 
TIMER USART MEMORY CONTROLLER 

j t 
SERIA! 

~t 
COMMUNICATIONS KEYBOARD I STATUS I CHANNEL 

Figure 3. CRT System Block Diagram 

AFN-002246 



inter 8276 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character ---------------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

First Lina of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Charaetar Character Character Character Character Character Character 

------------------~ 00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 
0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0 

Second Line of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character ---------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0 
0.0000_00_0000.00_0000000000000_000.00.000.00.000.0 

Third Line of a Character Row 

1st 2nd 3rd 4th 5th 6th 7th 
Character Character Character Character Character Character Character ------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0 

0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0 
0.0000.00.0.00.00.0000000000000.000.00.000.00.000.0 
0.0000.00.0000.00···.0000000000 •••• 000.000.00.0.0.0 
0.0000.00.00.0.00.0000000000000.0.0000.000.00.0.0.0 
0.0000.00.000 •• 00.0000000000000.00.000.000.00.0.0.0 
00 •••• 000.0000.00 ••••• 000000000.00.0000 ••• 0000.0.00 

Seventh Line of a Character Row 

Figure 4. Display Of A Character Row 

Display Row Buffering 

Before the start of a frame, the 8276 uses BRDY and 
BS to fill one row buffer with characters. 

When the first horizontal sweep is started, character 
codes are outputto the character generator from the 
row buffer just filled. Simultaneously, the other row 
buffer is filled with the next row of characters. 

After all the lines of the character row are scanned, 
the buffers are swapped and the same procedure is 
followed for the next row. 

This process is repeated until all of the character 
rows are displayed. 

Row Buffering allows the CPU access to the display 
memory at all times except during Buffer Loading 
(about 25%). This compares favorably to alternative 
approaches which restrict CPU access to the display 
memory to occur only during horizontal and vertical 
retrace intervals (80% of the bus time is used to re­
fresh the display.) Figure 5. First Row Buffer Filled 

CCO- 6 

AFN-00224B 



Intel 8276 

Dlo-, ~rDatAT,.A'-iE~--ISI~~. 
BUFFER 

Figure 6. Second Row Buffer Filled, First Row 
Displayed 

DIIo_'~r4D~AT~A~~~~~~. CCo- e 
BUFFER 

Figure 7. First Row Buffer Filled With Third Row, 
Second Row Displayed 

Display Format 

SCREEN FORMAT 
The 8276 can be programmed to generate from 1 to 
80 characters per row, and from 1 to 64 rows per 
frame. 

123456789. 
2 

........... 80 

3 
4 
5 
6 
7 
8 
9 

64 

Figure 8. Screen Format 

The 8276 can also be programmed to blank alternate 
rows. In this mode, the first row is displayed, the 
second blanked, the third displayed, etc. Display 
data is not requested for the blanked rows. 

123456789 ................ 80 

·2 

3 

4 

5 

64 

Figure 9. Bla.nk Alternate Rows Mode 

ROW FORMAT ... ... 
The 8276 is designed to hold the line count stable 
while outputting the apprqpriate character codes 
during each horizontal sweep. The line count is in­
crementedduring horizontal retrace and the whole 
row of character codes are output again during the 
next~w.eep. This is continued until the entire char-
acter row is displayed. .. 

The number of lines (horizontal sweeps) per charac­
ter row is programmable fro'm1 to 16. 

The output of the'line counter can be programmed 
to be ·in cine of two modes. 

In mode 0, the output of the line counter is the same 
as the line number. 

1,383 AFN·OO224B 



8276 

In mode 1, the line counter is offset by one from the 
line number. 

Note: In mode 1, while the first line (line number 0) is being dis­
played, the last count is output by the. line counter (see 
examples). 

Line Line 
Line Counter Counter 

Number Mode 0 . Mode 1 

00000000000000 1111 
o 0 0 0 • 0 0 0 0 0001 0000 

2000.0.00000100001 
3 0 0.000.0000110010 
40.00000.001000011 
50.00000.001010100 
60 ••••••• 001100101 

0.00000.001110110 
80.00000.010000111 
9 

10 
11 
12 
13 
14 
15 

o • 000 0 0 • 0 ·1001 
000000000 1010 
0000000001011 
0000000001100 
0000000001101 
0000000001110 
0000000001111 

1000 
1001 
1010 
1011 
1100 
1101 
1110 

Figure 10. Example of a 16-Line Format 

Line 
Number 

o 

2 
3 
4 
5 
6 
7 
8 
9 

o 0 DOD 0 0 

o 0 0 • 0 0 0 

00.0.00 

o • 0 0 0 • 0 

o • 0 DO. 0 
o • • • • • 0 

o • 0 0 0 • 0 

o • 0 00. 0 
000 0 000 
o 0 0 0 0 0 0 

Line Line 
Counter Counter 
Mode 0 Mode 1 

0000 
0001 
0010 
001 1 
01.00 
0101 
0110 
0111 
1000 
1001 

1001 
0000 
0001 
0010 
001 1 
0100 
0101 
0110 
0111 
1000 

Figure 11. Example of a 10-.Line Format 

Mode 0 is useful for character generators that leave 
address zero blank and start at address 1. Mode 1 is 
useful for character generators which start at 
address zero. 

Underline placement is also programmable (from 
line number 0 to 15). This is independent of the line 
counter mode~ 

1-384 

If the line number of the underline is greater than 7 
(Ii ne number MSB = 1), then the top and bottom 
lines will be blanked. 

Line 
Number 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Line Line 
Counter Counter 
Mode 0 Mode '1 

o 0 0 0 0 0 0 0 0 0000 
o 0 0 0 • 0 0 0 0 000.1 
000.0.0000010 
00.000.000011 
0.00000.00100 
O. 000 00. 0 0101 
0 ••••••• 00110 
0.00000.00111 
o • 0 0 0 0 0 • 0 1000 
0.00000.01001 
• • • • • • • •• 1010 
o 0 0 0 0 0 0 0 0 1011 

Top and Bottom 
Lines are Blanked 

1011 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
01 1 1 
1000 
1001 
1010 

Figure 12. Underline in Line Number 10 

If the line number of the underline is less than or 
equal to 7 (line number MSB = 0), then the top and 
bottom lines will not be blanked. 

Line 
Number 

o 
1 
2 
3 
4 
5 
6 
7 

o 0 0 • 000 

00.0.00 
o • 0 0 0 • 0 
o • 0 0 0 • 0 

o • • • • • 0 

o • 0 0 0 • 0 
0.000.0 

• • • • • • • 
Top and Bottom 
Lines are not Blanked 

Line Line 
Counter Counter 
Mode 0 Mode 1 

00000111 
0001 0000 
0010 OOQl 
0011 0010 
0100· 0011 
0101 0100 
0110 0101 
0111 0110 

Figure 13. Underline in Line Number 7 

If the linenumber of the underline is greater than the 
maximum number of lines, the underline will not ap­
pear. 

Blanking is accomplished by the VSP (Video Sup­
pression) signal. Underline is accomplished by the 
L TEN (Light Enable) signal. 

AFN·OO224B 



8276 

DOT FORMAT 
Dot width and character width are dependent upon 
the external timing and control circuitry. 

Dot level timing circuitry should be designed to ac­
cept the parallel output of the character generator 
and shift it out serially atthe rate required by the CRT 
display. 

VIDEO 

VSPJ--ILS:::VN~C:HR~O~NI~ZE~Rj------' 

Figure 14. Typical Dot Level Block Diagram 

Dot width is a function of dot clock frequency. 

Character width is a function of the character 
generator. width. 

Horizontai character spacing is a function of the 
shift register length. 

Note: Vide!;>. control and timing signals mustbe synchronized 
with the video signal due to the character generator ac­
cess delay. 

Raster Timing 

The character counter is driven by the character 
clock input (CCLK). It counts outthe characters 
being displayed (programmable from 1 to 80). It then 
causes the line counter to increment, and it starts 
counting out the horizontal retrace interval (pro­
grammable from 2 to 32). This process is constantly 
repeated. 

CCLK 

HRTe 

PROGRAMMABLE 1 TO 80 CCLKS 

PRESENT LINE COUNT LCO•3 

~~--~--------~ 

Jl 

NEXT 
LINE COUNT 

The line counter is driven by the character counter. It 
is used to generate the line address outputs (LCO-3) 
for the character generator. After it counts all of the 
lines in a character row (programmable from 1.to 
16),itincrements the row counter;;and starts over 
again. (See Character Format Section for detailed 
description of Line Counter functions.) 

The row counter is an internal counter driven by the 
line counter. It controls the functions of the row buf­
fers and counts the number of character rows 
displayed. 

9N~",,:HAR~CTER ROW , , 

HRTo ---UUVU-

LCO·3 

INTERNAL 
ROW COUNTER 

PAOGRAMMXBLE f TO 16 
LINE COUNTS 

Figure 16. Row Timing 

After the row counter counts all of the rows in a 
frame (programmable from 1 to 64), it starts count­
ing out the vertical retrace interval (programmable 
from 1 to 4). 

ONE FRAME . 

·VRTC~~~ 
.. • .. .~ I 

P·ROGRAMMABLE PROGRAMMABLE 
1 TO·64 ROW COUNTS 1 TO 4 ROW COUNTS 

Figure ·17. Frame Timing 

The Video Suppression Output (VSP) is active dur­
ing horizontal and vertical retrace intervals. 

Dot level timing. circuitry must synchronize these 
Figure 15. Line Timing outputs with the video signal to the CRT Display. 

1,385 AFN-00224B 



8276 

Interrupt Timing 

The 8276 can be programmed to generate an inter­
rupt request at the end of each frame. If the 8276 
interrupt enable flag is set, an interrupt request will 
occur at the beginning of tlie last display row. 

INTERNAL~ 
ROW 

COUNTER 
LAST FIRST 

DISPLAY RETRACE 
ROW ROW 

VRTC ~\--_~_..J 

INT __ -...J~"----
Figure 18. Beginning of Interrupt 

INT will go inactive after the status register is read. 

Figure 19. End of Interrupt 

A reset command will also cause INT to go inactive, 
but this is not recommended during normal service. 

Note: Upon power-up, the 8276 Interrupt Enable Flag may be set. 
As a result, the user's cold start routine should write a reset 
command to the 8276 before system interrupts are 
enabled. 

VISUAL ATTRIBUTES 
AND SPECIAL CODES 

The characters processed by the 8276 are 8-bit 
quantities. The character code outputs provide the 
character generator with 7 bits of address. The Most 
Significant Bit is the extra bit and it is used to deter­
mine if it is a normal display character (MSB = 0), or 
if it is a Field Attribute or Special Code (MSB = 1). 

Special Codes 

Four special codes are available to help reduce bus 
usage. 

SPECIAL CONTROL CHARACTER 

MSB 

1 1 1 1 

LSB 

o 0 S S 
~ SPECIAL CONTROL CODE 

S S FUNCTION 

o 0 End of Row 
o 1 End of Row-Stop Buffer Loading 

o End of Screen 
End of Screen-Stop Buffer Loading 

The End of Row Code (00) activates VSP and holds it 
to the end of the line. 

The End of Row-Stop Buffer Loading (BRDY) Code 
(01) causes the Buffer Loading Control Logic to stop 
buffer loading for the rest of the row upon being 
written into the Row Buffer. It affects the display in 
the same way as the End of Row Code (00). 

The End of Screen Code (10) activates VSP and 
holds it to the end of the frame. 

The End of Screen-Stop Buffer Loading (BRDY) 
Code (11) causes the Row Buffer Control Logic to 
stop buffer loading for the rest of the frame upon 
being written. It affects the display in the same way 
as the End of Screen Code (10). 

If the Stop Buffer Loading feature is not used, all 
characters after an End of Row character are ig­
nored, except for the End of Screen character, 
which operates normally. All characters after an End 
of Screen character are ignored. 

Note: If a Stop Buffer Loading is not the last character in a row, : 
Buffer Loading is not stopped until aiterthe next character 
is read. In-this situation, a dummy character must be 
placed in memory aiterthe Stop BufferLoading character. 

Field Attributes 

The field attributes are control codes which affect 
the visual characteristics for a field of characters, 
starting at the character following the code up to, 
and including, the character which precedes the 
next field attribute code, or up to the end of the 
frame. The field attributes are reset during the verti­
cal retrace interval. 

1·386 AFN·OO224B 



8276 

The 8276 can be programmed to provide visible field 
attribute characters; all field attribute codes will oc­
cupy a position on the screen. These codes.will ap­
pear as blanks caused by activation of the Video 
Suppression output (VSP). The chosen visual attri-

. butes are activated after this blanked character. 

There are six field attributes: 

1. Blink-Characters following the code are 
caused to blink by activating the Video Sup­
pression output (VSP). The blink frequency is 
equal to the screen refresh frequency·divided 
by 32. 

2. Highlight-Characters following the code are 
caused to be highlighted by activating the High­
light output (HGL T). 

3. Reverse Video-Characters following the code 
are caused to appear with reverse video by ac­
tivating the Reverse Video output (RVV). 

4. Underline-Characters following the code are 
caused to be underlined by activating the Light 
Enable output (L TEN). 

5,6. General Purpose-There are two additional 
8276 outputs which act as general purpose, in­
dependently programmable field attributes. 
GPAo-1 are active high outputs. 

ABC D E F G H I J K L M 
NOPQRSTUV 

1 2 3 4 5 6 7 B 9 

Figure 20 •. Example of a Visible Field Attribute 
(Underline Attribute) 

FIELD ATTRIBUTE CODE 

MSB 
1 0 

LSB 

U R G G B H 

I 
., TILl ---- HIGHLIGHT 

• L.._. -L~---------'--------~~~:':RALPURPOSE 
. . REVERSE VIDEO 
'----------- UNDERLINE 

H = 1 FOR HIGHLIGHTING 
B = 1 FOR BLINKING 
R = 1 FOR REVERSE VIDEO 
U = 1 FOR UNDERLINE 

GG = GPAh GPAo 

Note: More than one attribute can be enabled at the sarna time. 
If the blinking and reverse video attributes are enabled 
simultaneously, only the reversed characters will blink. 

Cursor Timing 

The cursor location is determined by a cursor row 
register and a character position register which are 
loaded by command to the controller. The cursor 
can be programmed to appear on the display as: 

1. a blinking underline 
2. a blinking reverse video block 
3. a non-blinking underline 
4. a non-blinking reverse video block 

The cursor blinking frequency is equal to the screen 
refresh frequency divided by 16. 

If a non-blinking reverse video cursor appears in a 
non-blinking reverse video field, the cursor will ap­
pear as a normal video block. 

If a non-blinking underline cursor appears in a non­
blinking underline field, the cursor will not be 
visible. 

Device Programming 

The 8276 has two programming registers, the Com­
mand Register and the Parameter Register. It also 
has a Status Register. The Command Register can 
only be written into and the Status Register can only 
be read from. They are addressed as follows: 

1·387 

.. 

C/P OPERATION REGISTER 

0 Read Reserved 

0 Write Parameter 

1 Read Status 

1 Write Command 

The 8276 expects to receive a command and a sequ­
ence of 0 to 4 parameters, depending on the com­
mand. If the proper number of parameter bytes are 
not received before another command is given,.a 
status flag is set, indicating an improper command. 

AFN-00224B 



intJ 8276 

Instruction Set 

The 8276 instruction set consists of 7 commands. 

COMMAND NO. OF PARAMETER BYTES 

Reset 
Start Display 
Stop Display 
Load Cursor 
Enable Interrupt 
Disable Interrupt 
Preset Counters 

4 
o 
o 
2 
o 
o 
o 

In addition, the status of the 8276 can be read by the 
CPU at any time. 

1. RESET COMMAND 
DATA BUS 

DPERATION CJP DESCRIPTION MSB LSB 

Command Write 1 Reset Command 00000000 

Write 0 
Screen Camp SHHHHHHH Byte 1 

Write 0 Screen Comp VVRRRRRR 
Byte 2 

Parameters 
Screen Comp 

Write 0 Byte 3 
UUUULLLL 

Write 0 Screen Comp M1CCZZZZ Byte 4 

Action-After the reset command is written, BRDY 
goes inactive, 8276 interrupts are disabled, and the 
VSP output is used to blank the screen. HRTC and 
VRTC continue to run. HRTC and VRTC timing are 
random on power-up 

As parameters are written, the screen composition is 
defined. 

Parameter-S Spaced Rows 

S FUNCTIONS 

o Normal Rows 

1 Spaced Rows 

Parameter-HHHHHHH 
Horizontal Characters/Row 

NO. OF CHARACTIORS 
H H H H H H H PER ROW 

0 o 0 0 0 0 0 1 
0 o 0 0 0 0 1 2 
0 o 0 0 0 1 0 3 

0 0 1 1 1 1 80 
0 1 0 0 0 0 Undefined 

1 1 1 1 1 1 Undefined 

1'388 

Parameter-VV Vertical Retrace Row Count 

V V NO. OF ROW COUNTS PER VRTC 

o 0 1 
o 1 2 
1 0 3 
1 1 4 

Parameter-RRRRRR Vertical Rows/Frame 

R R R R R R NO. OF ROWS/FRAME 

o 0 0 0 0 0 1 
o 0 000 1 2 
o 0 0 0 1 0 3 

111111 64 

Parameter-UUUU Underline Placement 

U U U U 
o 0 0 0 
000 1 
001 0 

1 1 

LINE NUMBER OF 
UNDERLINE 

1 
2 
3 

16 

Parameter-LLLL Number of Lines 
per Character Row 

L L L L NO. OF LINES/ROW 

000 0 
o 0 0 1 
001 0 

1 1 

1 
2 
3 

16 

Parameter-M Line Counter Mode 

M LINE COUNTER MODE 

o Mode 0 (Non-Offset) 
1 Mode 1 (Offset by 1 Count) 

Parameter-CC Cursor Format 

C C 

o 0 

CURSOR FORMAT 

Blinking reverse video block 
Blinking underline o 1 

1 0 
1 1 

Non-blinking reverse video block 
Non-blinking underline 

AFN·OO224B 



827.5' 

Patameter-zlZZ Horizontal Retrace .C.ount·· 

'c . NOiOF.'CHARACTEI\ 
z z Z Z COUNTS PER HRTC 

o 0 0 0 2 
o 0 0 1 4 
00106 

1 1 1 

Note: u~uu MSe determine~ blanking of top and D~ttom lines 
(1 = blanked, 0 = not blanked). . . , 

2. START DISPLAY COMMAND 
DATA BUS 

MSB . . LSB 

00100000 

Action...:....S276' intertuptssre enabled, BRDY goes 
active, videois·enabllitd, Interrupt Enable and Video 
Enable status flags are set.' . 

3. STOP DISPLAY COMMAND 
DATA BUS 

MSB LSB 

01000000 

Action __ Di~ables )I.ideo, in~~rrupts remain~nabled, 
HRTC and VRTC continuetq rU.n, Video Enable 
status flag is reset, and the "Start Display" com­
mand must be given to reenablethe display. 

4. LOAD CURSOR POSITION. 
DATA BUS 

OPERATION CIP DESCRIPTION MSB LSB 

Command Write Load Cursor 1 00 0 0 0 0 0 

Parameters 
'Write" ... '-'0 Chin. Number (Char. Position In Row) 
Write 0 Row Number (Row Number) 

Actlon.....:The8276is·coriditioned topllicethe next 
two parameter bytes into. the cursor position regis-
ters. Status flag notaffe~ted:. - .. 

5. ENABLE INTERRUPT COMMAND 
. DATA BUS I 

MSB LSB 1 

Command I W'ri't8' :':\ 1 Enable Interrupt 1010'00'001 

No parameters f. ',' I 

Actlon-Theint~rr,lIptenable fiag i$ set and inter­
rupts are enabled. 

6. DISABLE INTERRUPT COMMAND. '. 

. ...1 OPERATION I· C/p DESCRIPTION 
DATA BUS I 

MSB LSB· 

Disable Interrupt 1 1 0 0 0 0 0 0"1 

I 

Action-Interrupts are disabled and the interrupt 
enable status flag is reset. 

7. PRESET COUNTERS COMMAND 

Action-The internal timing counters are preset, 
correspondi ng to a screen display position at thetop 
left corner. Two character clocks are required for 
this operation. The counters will remain in this state 
until any other command is given. 

This command is useful for system debug and syn­
chronization of clustered CRT displays on a single 
CpU. 

Stat\Js Flags 

DATA BUS 
MSB LSB 

o IE·IR X Ie VE BU X 

IE - (Interrupt Enable) Set or reset by command. 
Itenables vertical.retrace interrupt. It is auto­
matically set by a "Start Display" command 
and reset with the "Reset" command. 

,'j. 

IR - (Interrupt Request) This flag is set at the be­
ginning of display of the last row of the frame 
if the interrupt enable flag is set. It is reset 
after a status read operation. 

IC - (Improper Command) This flag is set when a 
command parameter string is too long or too 
short. The flag is automatically reset after a 
sta!u$ read, 

VE - (Video Enable) This flag indicates that~ideo 
operation of the CRT is enabled. This flag is 
set on a "Start Display" command, and reset 
on a "Stop Display" or "Reset" command. 

BU - (Buffer Underrun) This flag is set whenever a 
Row Buffer is not filled with character data in 
time for a buffer swap required by the display. 
Upon activation of this bit, buffer loading 
ceases, and the screen is blanked until after 
the vertical retrace interval. 

1·389 AFN-00224B 



8276 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias .... ooe to 70°C 
Storage Temperature .......... -65°C to +150oe 
Voltage On Any Pin 

With Respect to Ground ........ -O.5V to + 7V 
Power Dissipation ....................... 1 Watt 

"NOTICE: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent damage to' the device. This 
is a stress rating only and functional operation of the device at 
these or any other conditions above those indicated in the opera­
tional sections of this specification is not implied. 

D.C. CHARACTERISTICS (TA = O°C to 70°C; Vee = 5V ±5%) 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

VIL Input Low Voltage -0.5 0.8 V 

VIH Input High Voltage 2.0 Vee + 0.5V V 

VOL Output Low Voltage 0.45 V IOL = 2.2 mA 

VOH Output High Voltage 2.4 V IOH = -400 p,A 

IlL Input Load Current ±10 /LA VIN = Vee to OV 

IOFL Output Float Leakage ±10 p.A VOUT = Vee toO.45V 

lee Vee Supply Current 160 mA 

CAPACITANCE (TA = 25°C; Vee = GND = OV) 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

CIN Input Capacitance 10 pF fe = 1 MHz 

CliO I/O Capacitance 20 pF Unmeasured pins returned to VSS. 

1-390 AFN·OO224B 



inter 8276 

A.C. CHARACTERISTICS (TA= o·c to 70·C; vcc = 5.0V ±5%; GND = OV) 

Bus Parameters (Note 1) 

READ CYCLE 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

tAR Address Stable Before READ 0 ns 

tRA Address Hold Time for READ 0 ns 

tRR READ Pulse Width 250 ns 

tRD Data Delay from READ 200 ns CL = 150pF 

tOF READ to Data Floating 20 100 ns 

WRITE CYCLE 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

tAW Address Stable Before WRITE 0 ns 

tWA Address Hold Time for WRITE 0 ns 

tww WRITE Pulse Width 250 ns 

tow Data Setup Time for WRITE 150 ns 

two Data Hold Time for WRITE 0 ns 

CLOCK TIMING 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

tCLK Clock Period 480 ns 

tKH Clock High 240 ns 

tKL Clock Low 160 ns 

tKR Clock Rise 5 30 ns 

tKF Clock Fall 5 30 ns 

Note 1: AC timings measured at VOH = 2.0. VOL = 0.8. VIH = 2.4. VIL = 0.45. 

OTHER TIMING 

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

tec Character Code Output Delay 150 ns CL = 50 pF 

tHR Horizontal Retrace Output Delay 200 ns CL = 50 pF 

tLC Line Count Output Delay 400 ns CL = 50 pF 

tAT Control/Attribute Output Delay 275 ns CL = 50 pF 

tVR Vertical Retrace Output Delay 275 ns CL = 50 pF 

tRI INT ~ from ROt 250 ns CL = 50 pF 

tWQ BRDYt from WRt 250 ns CL = 50 pF 

tRQ BRDY t from WRt 200 ns CL = 50 pF 

tLR BSt to WRt 0 ns 

tRL WRf to BSt 0 ns 

1·391 AFN·OO224B 



intJ 8276 

WAVEFORMS 

Typical Dot Level Timing 

Line Timing 

EXT DOT elK 

CCLK·l 

'--------' 

CCO_6 FIRST CHARACTER CODE SECOND CHARACTER COOE 

I~ ___ :--__ ...J '----------' 

r-ROM ACCESS--

CHARACTER ---------\Ir-------------~ ,.-----------
GENERATOR FIRST CHARACTER OUTPUT ________ .-.J 

ATTRIBUTES 
81 CONTROLS 

VIDEO 
(FROM SHIFT 

REGISTERI 

ATTRIBUTES 
&: CONTROLS 

(FROM 
SYNCHRONIZERI 

SHIFT REGISTER SETUP--

FIRST CHARACTER 

ATTRIBUTES & CONTROLS FOR FIRST CHAR. 

·CCLK IS A MULTIPLE OF THE DOT CLOCK AND AN INPUT TO THE 8276. 

SECOND CHARACTER 

SECOND CHARACTER 

A TTAIBUTES &: CONTROLS 
FOR 2ND CHAR. 

~ ____ ~~ ______ tt_ILC __ 

LCO_J PRESENT LINE COUNT ~EXT LINE COUNT 

VIDEO 
CONTROLS 

AND ATTRIBUTES .. 

VSP, LTEN, HGLT. RVV, GPAO_1 

1-392 AFN-00224B 



8276 

Row Timing 

CCtK' 

HRTe 

LCO_3 

i----PAOGRAMMABLE FROM 1 TO 16 LINES----+j 

INTERNAL -----d-------------\\------""'.L---­
ROW PRESENT ROW 

COUNTER ----J1~----------_I \-_____ -' 

Frame Timing 

Interrupt Timing 

CClK 

CCLK 

INTERNAL 
ROW 

COUNTER 

VRTe· 

\ 

FIRST RETRACE 
CHARACTER 

ce0-6 LAST RETRACE I X 
CHARACTER 

-----+'~---

FIRST LIN,E COUNT 

1\'--_-
HRTe 

INTERNAL 

COUN~:: ______ LA_~-T-O-'S+"-A-~-R-:-'-.~~~R~~~~~~~~ 

1-393 

~AST 
RETRACE 

ROW 

~p J \ 

cs~ / 
AD 

l,~ \ 

INT 

...• 

AFN-002246 



inter 8276 

Timing for Buffer Loading 

CCLK 

-J'KQt 

BRDY J------------\I.. __ ~ 

Write Timing 

INVALID 

DBo-7 INVALID INVALID 

Clock Timing 

CCLK 

'KF 

Read Timing 

CIP,Ci --Y __ V_ALID __ 

-=:r'AR 

Input and Output Waveforms for A.C. Tests 

1·394 

FOR A.C. TESTING. INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC "1" 
AND 0.45V FDR A LOGIC "0." TIMING MEASUREMENTS FOR INPUT 
AND OUTPUT SIGNALS ARE MADE AT 2.0V FOR A LOGIC "1" AND 
O.BV FOR A LOGIC "0." 

AFN-00224B 



inter 
8279/8279·5 

PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE 

• MCS·85™ Compatible 8279·5 

• Simultaneous Keyboard Display 
Operations 

• Scanned Keyboard Mode 

• Scanned Sensor Mode 

• Strobed Input Entry Mode 

• 8·Character Keyboard FIFO 

• 2·Key Lockout or N·Key Rollover with 
Contact Debounce 

• Dual 8- or 16·Numerlcal Display 

• Single 16·Character Display 

• Right or Left Entry 16·Byte Display 
RAM 

• Mode Programmable from CPU 

• Programmable Scan Timing 

• Interrupt Output on Key Entry 

The Intel~ 8279 is a general purpose programmable keyboard and display 1/0 interface device designed for use with 
Intel~ microprocessors. The keyboard portion can provide a scanned interface to a 64·contact key matrix. The 
keyboard portion will also interface to an array of sensors or a strobed interface keyboard, such as the hall effect and 
ferrite variety. Key depressions can be 2·key lockout or N·key rollover. Keyboard entries are debounced and strobed in 
an 8·character FIFO. If more than 8 characters are entered, overrun status is set. Key entries set the interrupt output 
line to the CPU. 

The display portion provides a scanned display interface for LED, incandescent, and other popular display 
technologies. Both numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279 
has 16X8 display RAM which can be organized Into dual 16X4. The RAM can be loaded or interrogated by the CPU. Both 
right entry, calculator and left entry typewriter display formats are possible. Bath read and write of the display RAM 
can be done with auto·increment of the display RAM address. 

~'"'~, 1 

l 

IRQ 

RD 

ViR 

~ 

AO 

RESET 

elK 

Vss 

Vee 

Rla.1 

SHIFT 1---- - KEV DATA 

CNTLlSTB • 

Sl"" 

OUT Ao_a 

OUTSO-3 

SCAN 

DISPLAY 
DATA 

Figure 1. Logic Symbol Figure 2. Pin Configuration 

1·395 



8279/8279·5 

HARDWARE DESCRIPTION 
The 8279 is packaged in a 40 pin DIP. The following is 
a functional description of each pin. 

Table 1. Pin Descriptions 

Pin 
Symbol No. Name and Function 

DBo-DB7 8 Bi-directional data bus: All data 
and commands between the CPU 
and the 8279 are transmitted on 
these lines. 

Cl.K 1 Clock: Clock from system used to 
generate internal timing. 

RESET 1 Reset: A high signal on this pin re-
sets the 8279. After being reset the 
8279 is placed in the following 
mode: 
1) 16 8-bit character display 

-left entry. 
2) Encoded scan keyboard-2 

key lockout. 
Along with this the program clock 
prescaler is set to 31. 

CS 1 Chip Select: A low on this pin en-
ables the interface functions to 
receive or transmit. 

Ao 1 Buffer Address: A high on this 
line indicates the signals in or out 
are interpreted as a command or 
status. A low indicates that they 
are data. 

RD,WR 2 Input/Output Read and Write: 
These signals enable the data 
buffers to either send data to the 
external bus or receive it from the 
external bus. 

IRQ 1 Interrupt Request: In a key-
board mode, the interrupt line is 
high when there is data in the 
FIFO/Sensor RAM. The interrupt 
line goes low with each FIFO/ 
Sensor RAM read and returns 
high if there is still information in 
the RAM. In a sensor mode, the 
interrupt line goes high whenever 
a change in a sensor is detected. 

Vss , Vcc 2 Ground and power supply pins. 

SLo-SL3 4 Scan Lines: Scan lines which are 
used to scan the key switch or 
sensor matrix and the display 
digits. These lines can be either 
encoded (1 of 16) or decoded (1 
of 4). 

RLo-RL7 8 Return Line: Return line inputs 
which are connected to the scan 
lines through the keys or sensor 
switches. They have active internal 
pullups to keep them high until a 
switch closure pulls one low. They 
also serve as an 8-bit input in the 
Strobed Input mode. 

1·396 

Pin 
Symbol No. Name and Function 

SHIFT 1 Shift: The shift input status is 
stored along with the key position 
on key closu re in the Scanned Key-
board modes. It has an active in-
ternal pullup to keep it high until a 
switch closure pulls it low. 

CNTLlSTB 1 Control/Strobed Input Mode: For 
keyboard modes this line is used 
as a control input and stored like 
status on a key closure. The line 
is also the strobe line that enters 
the data into the FIFO in the 
Strobed Input mode. 

(Rising Edge). It has an active in-
ternal pullup to keep it high until 
a switch closure pulls it low. 

OUT Ao-OUT A3 4 Outputs: These two ports are the 
OUT Bo-OUT B3 4 outputs for the 16 x 4 display re-

fresh registers. The data from 
these outputs is synchronized to 
the scan lines (SLo-SL3) for multi-
plexed digit displays. The two 4 
bit ports may be blanked inde-
pendently. These two ports may 
also be considered as one 8-bit 
port. 

BD 1 Blank Display: This output is 
used to blank the display during 
digit switching or by a display 
blanking command. 

FUNCTIONAL DESCRIPTION 

Since data input and display are an integral part of many 
microprocessor designs, the system designer needs an 
interface that can control these functions without placing 
a large load on the CPU. The 8279 provides this function 
for 8-bit microprocessors. 

The 8279 has two se<;lions: keyboard and display. The 
keyboard section can irit'erface to regular typewriter style 
keyboards or random toggle or thumb switches. The 
display section drives alphanumeric displays or a bank of 
indicator lights. Thus the CPU is relieved from scanning 
the keyboard or refreshing the display. 

The 8279 is designed to directly connect to the 
microprocessor bus. The CPU can program all operating 
modes for the 8279. These modes include: 

AFN-00742B 



8279/8279-5 

Input Modes 

- Scanned Keyboard - with encoded (8 x 8 key 
keyboard) or decoded (4 x 8 key keyboard) scan lines. 
A key depression generates a 6-bitencoding of key 
position. Position and shift and control status are 
stored in the FIFO. Keys are automatically debounced 
with 2·key lockout or N-key rollover. 

- Scanned Sensor Matrix - with encoded (8 x 8 matrix 
switches) or decoded (4 x 8 matrix switches) scan lines. 
Key status (open or closed) stored in RAM addressable 
by CPU. 

- Strobed Input - Data on return lines during control 
line strobe is transferred to FIFO. 

Output Modes 
• 8 or 16 character multiplexed displays that can be or-

ganized as dual 4-bit or single S·bit (Bo= Do, A3= D7)' 

- Right entry or left entry display formats. 

Other features of the 8279 include: 

- Mode programming from the CPU. 

- Clock Prescaler 

- I nterrupt output to. signal CPU when there is keyboard 
or sensor data available. 

- An 8 byte FIFO to store keyboard information. 

- 16 byte internal Display RAM for display refresh. This 
RAM can also be read by the CPU. 

eLK RESET DBO-7 

PRINCIPLES OF OPERATION 

The following is a descripti.on ofthe major elements ofthe 
8279 Programmable Keyboard/Display interface device. 

. Refer to the block diagram in Figure 3. 

1/0 Control and Data Buffers 

The 1/0 control section uses the CS, Ao, RD and WR lines 
to control data flow to and from the various internal 
registers arid buffers. All data flow to and from the 8279 is 
enabled by CS. The character of the information, given or 
desired by the CPU, is identified by Ao. A logiC one 
means the information is a command or status. A logic 
zero means the information is data. RD and WR determine 
the direction of data flow through the Data Buffers. The 
Data Buffers are bi-directional buffers that connect the 
internal bus to the external bus. When the chip is not 
selected (CS = 1), the devices are in a high impedance 
state. The drivers input during WR-CS and output during 
RD -CS. 

Control and Timing Registers and Timing Control 

These registers store.lhe keyboard and display modes and 
other operating conditions programmed by the CPU. The 
modes are programmed by presenting the proper 
command on the data lines with Ao = 1 and then sending 
a WR. The command is latched on the rising edge of WR. 

RO WR CS IRO 

16 Ie 8 
DISPLAY 

RAM 

CONTROL AND 
TIMING 

REGISTERS 
KEYBOARD 
oeBOUNCE 

AND 
CONTROL 

OUT A0-3 OUT 80-3 

TIMING 
AND 

CONTROL 

Figure 3. Internal Block Diagram 
1-397 AFN-00742B 



inter 8279/8279·5 

The command is then decoded and the appropriate 
function is set. The timing control contains the basic 
timing counter chain. The first counter is a + N prescaler 
that can be programmed to yield an internal frequency 
of 100 kHz which gives a 5.1 ms keyboard scan time and 
a 10.3 ms debounce time. The other counters divide 
down the basic internal frequency to provide the proper 
key scan, row scan, keyboard matrix scan, and display 
scan times. 

Scan Counter 
The scan counter has two modes. In the encoded mode, 
the counter provides a binary count that must be 
externally decoded to provide the scan lines for the 
keyboard and display. In the decoded mode, the scan 
counter decodes the least significant 2 bits and provides a 
decoded 1 of 4 scan. Note than when the keyboard is in 
decoded scan, so is the display. This means that only the 
first 4 characters in the Display RAM are displayed. 

In the encoded mode, the scan lines are active high 
outputs. In the decoded mode, the scan lines are active 
low outputs. 

Return Buffers and Keyboard Debounce 
and Control 
The 8 return lines are buffered and latched by the Return 
Buffers. I n the keyboard mode, these lines are scanned, 
looking for key closures in that row. If the debounce 
circuit detects a closed switch, it waits about 10 msec to 
check if the switch remains closed. If it does, the address 
of the switch in the matrix plus the status of SHIFT and 
CONTROL are transferred to the FIFO. In the scanned 
Sensor Matrix modes, the contents of the return lines is 
directly transferred to the corresponding row of the 
Sensor RAM (FIFO) each key scan time. In Strobed Input 
mode, the contents of the return lines are transferred to 
the FIFO on the rising edge of the CNTLlSTB line pulse. 

FIFO/Sensor RAM and Status 
This block is a dual function 8 x 8 RAM. In Keyboard or 
Strobed Input modes, it is a FIFO. Each new'entry is 
written into successive RAM positions and each is then 
read in order of entry. FIFO status keeps track of the 
number of characters in the FIFO and whether it is full or 
empty. Too many reads or writes will be recognized as an 
error. The status can be read by an RD with CS low and 
Ao high. The status logic also provides an IRO signal 
when the FIFO is not empty. In Scanned Sensor Matrix 
mode, the memory is a Sensor RAM. Each row of the 
Sensor RAM is loaded with the status of the correspond­
ing row of sensor in the sensor matrix. In thi$ (!'lode, IRO is 
high if a change in a sensor is detected. ' 

Display Address Registers and Display RAM 
The Display Address Registers hold the address of the 
word currently being written or read by the CPU and the' 
two 4-bit nibbles being displayed. The read/write 
addresses are programmed by CPU command. They also 
can be set to auto increment after each read or write. The 
Display RAM can be directly read by the CPU after the 
correct mode and address is set. The addresses for the A 
and B nibbles are automatically updated by the 8279 to 
match data entry by the CPU. The A and B nibbles can be 
entered independently or as one word, according to the 
mode that is set by the CPU. Data entry to the display can 
be set to either left or right entry. See Interface 
Considerations for details. 

SOFTWARE OPERATION 

8279 commands 
The following commands program the 8279 operating 
modes. The commands are sent on the Data Bus with CS 
low and Ao high and are loaded to the 8279 on the rising 
edge of WR. 

Keyboard/Display Mode Set 

MSB LSB 

Code: 101010ioiolKIKIKI 

Where DO is the Display Mode and KKK is the Keyboard 
Mode. 

DO 
o 0 8 8-bit character display - Left entry 

o 1 16 8-bit character display - Left entry" 

o 8 8-bit character display - Right entry 

16 8-bit character display - Right entry 

For description of right and left entry, see Interface 
Considerations. Note that when decoded scan is set in 
keyboard mode, the display is reduced to 4 characters 
indeP!lrJdent of display mode set. 

KKK 
0 0 0 Encoded Scan Keyboard - 2 Key Lockout" 

0 0 1 Decoded Scan Keyboard- 2-Key Lockout 

0 1 0 Encoded Scan Keyboard - N-Key Rollover 

0 1 1 Decoded Scan Keyboard - N-Key Rollover 

0 0 Encoded Scan Sensor Matrix 

0 1 Decoded Scan Sensor Matrix 

0 Strobed Input, Encoded Display Scan 

Strobed Input, Decoded Display Scan 

Program Clock 

Code: I 0 1 0 11 I pip 1 pip 1 P I 

All timing and multiplexing signals for the 8279 are 
generated by an Internal prescaler. This prescaler 
divides the external clock (pin 3) by a programmable 
integer. Bits PPPPP determine the value of this integer 
which ranges from 2 to 31. Choosing a divisor that yields 
100 kHz will give the specified scan and debounce 
times. For instance, if Pin 3 of the 8279 is being clocked 
by a 2 MHz Signal, PPPPP should be set to "0100 to 
divide the clock by 20 to yield the proper 100 kHz operat­
ing frequency. 

Read FIFO/Sensor RAM 

Code: 1 0 11 I (' 1 All X I A I AI AI X= Don't Care 

The CPU sets up the 8279 for a read of the FIFO/Sensor 
RAM by first writing this command. In the Scan Key-

"Default after reset. 

AFN-00742B 



inter 8279/8279·5' 

board Mode, the Auto-Increment flag (AI) and the RAM 
address bits (AAA) are irrelevanfThe 8279willaut6mati'­
cally drive the data bus for each subsequent Je~Q,(Ao =0). 
in the same sequence in which the data first entered the 
FIFO. All subsequent reads will be from tlie FIFO until 
anothet COmrTulntfis issued. ' 

In the Sensor Matrix Mode, the RAM address bits AAA 
select one of the 8 rows of the Senspr RAM. If the AI flag 
is set (AI = 1), each succes!:lNe read ~ill be frorri'the sLib~ 
sequent row of the sensor RAM. 

Read Display RAM 

Code: 1,0 11 11 1 AliA I A 1 A, 1 A 1 

The CPU sets up the 8279 for a read of the Display RAM 
by first writing this command. The address bits AAAA 
select one of the 16 rows of the Display RAM. If the AI 
flag is set (AI = 1), this row address will be incremented 
after each following read or write to the Display RAM. 
Since the same counter is used for both reading ~nd 
writing, this command sets the next read or write 
address and the sense of the Auto-Increment mode for 
both operatipns. 

Write Display RAM 

Code: 11 1 0 1 0 1 AliA 1 A I A 1 A 1 
The CPU sets up the 8279 for a write to the Display RAM 
by first writing this command: After writing the com­
mand with Ao= 1, all subsequent writes with Ao= 0 will 
be to the Display RAM., The addressing and Auto­
Increment functions are identical to those for the Read 
Display RAM. However, this command does not affect 
the source of subsequent Data Reads; the CPU will read 
from whichever RAM, (Display or FIFO/Sensor) which 
was last specified. If, indeed, the Display RAM was last 
specified, the Write Display RAM will, nevertheless, 
change the next Read location. 

Display Write Inhibit/Blanking 

f!.,B A .B 

C.ode: 

The l'vAJoBit.s can be .used to·mask nibble A and nibbie B 
in applications requiring separate 4-bit display·ports. By 
setting the lW flag .(IW=I} for one of the,ports, the port 
becomes marked,so that' entries to the Display RAM 
from the CPU do not affect that port. Thus, if each nibble 
is input to.a BCD decoder, !tie CPU may write a digit to 
the ·Display RAM without affecting the other digit being 
displaYlld. It is important to note that bit B(}corresponds 
to bit Do on the CPU bus, and that bit A3 corresponds to 
bit D7• ',I 

If the user wishes. to biank,thedispJay, the B~ flags are 
available for each nibble. The last Clear command issued 
determinlls the code to be used as a "blank." This code 
defaults to ,all zeros after "a reset .. Note that both, ,BL 
flags must be set to blank a display formatted with a 
single 8-bit port. 

Clear" 

Code, 

The 90 bits . are available in ,this command to ,clear all 
rows of the Display RAM to a selectable blanking code 
as JoUows: 

r~ ': ' A" ,~o. IX ~ 000" "'''I 
1 0 AS = Hex 20 (0010 0000> 

1 1 All Ones 

Enable clear display when = 1 (or by CA = 1) 

During the time the' Display RAM is being cleared (",160 ,..s), 
it may not be written to. Th.e most Significant bit of the 
FIFO stat'us word is s6t during this time, When, the Dis­
play RAM becomes available again, it automatically 
resets. 

lithe CF bit is asserted (CF = 1), the FIFO status is 
cleared and the interrupt output line is reset. Also, the 
Sensor RAM pointer ,is s,!;!t tp/0"l"0. 

CA, theGlear AU bit,has the combined effect of Co and 
CF; it uses the Co,clearjng code on the Display RAM and, 
also clei'lrs FIFO st\ltus. Furthermore, it resynchroni;zes 
the iotemal timing chain. 

End Interrupt/Error Mode Set 

Code: 

For the sensor matrix modes this 'command lowers the 
IRQ line and enables further writing into RAM. (The IRQ 
line would have been raised upon the detection of a 
change in a sensor value. Thiswould have also inhit)ited 
further writing into the RAM until reset). 

For the N-key rollover mode - if the E.bit is programmed 
to "1" the chip will operate in the speCial Error mode. (For 
further details, see Interface Considerations Section.) 

Status Word 
The status word contains the FIFO 'status,error, and 
display unavailable sigrials. Th~word is read by ttie CPU 
··.vh~n Au. is high.and C~tand RD sra low: Saa ,lrjterface 
consi<;lerations for mciredetail on status word. 

Data Read 

Data is read when 11.0, CSarid'RD'are all low. The source 
of the data is specifiedby the: Read FIFO or Read Display 
commands. The trailing,edge of .AD will cause the address 
of the. RAM being read to be incremented if the Auto­
Incremenf flag is set FIFO reads always increment (if no 
error occurs) independent of AI. 

Data Write 
Data that is wtitten with' Ao, CS and WR .Iow is always 
written to the Oispiay RAM. The address is specified by the 
"latest Read Display or Write DispJay commancj,: ALito~ , 
Incrementing on'the rising edgeOf,WR occurs if'AI set by 
the latest display command. 

1.-399 AFN-Q0742B 



8279/8279~S 

INTERFACE CONSIDERATIONS 
Scanned Keyboard Mode, 2·Key LOckout 
There are three possible combinations of conditions 
that can occur during debounce scanning. When a key is 
depressed, the debounce logic is set. Other depressed 
keys are looked for during the next 'two scans. If none 
are encountered, it is a single key depression and the 
key position is entered into the FIFO along with the 
status of CNTL and SHIFT lines. If the FIFO was empty, 
IRQ will be set to signal the CPU that there is an entry in 
the FIFO. If the FIFO was full, the key will not be entered 
and the error flag will be set. If another closed switch is 
encountered, no entry to the FIFO can occur. If all. other 
keys are released before this one, then it will be entered 
to the FIFO. If this key is released before any other, it 
will be entirely ignored. A key is entered to the FIFO 
only once per depression, no matter how many keys 
were pressed along with it or in what order they were 
released. If two keys are depressed within the debounce 
cycle, it is a simultaneous depression, Neither key will 
be recognized until .one key remains depressed alone. 
The last key will be treate~ as a single key depression. 

Scanned Keyboard Mode, N·Key Rollover 
With N-key Rollover each key depression is treated 
independently from all others. When a key is depressed. 
the debounce circuit waits 2 keyboard scans and then 
checks to see if the key is still down. If it is. the key is 
entered into the FIFO. Any number of keys can be 
depressed and another can be recognized and entered 
into the FIFO. If a simultaneous depression occurs. the 
keys are recognized and entered according to the order 
the keyboard scan found them. 

Scanned Keyboard - Special Error Modes 
For N-key rollover mode the uSer can program a special 
error mode. This is done by the "End Interrupt/Error Mode 
Set" command. The debounce cycle and key-validity 
check are as in normal N-key mode. If during a single 
debounce cycle. two keys arelound depressed. this is 
considered a simultaneous multiple depression. and sets 
an error Ilag. This flag will prevent any further writing into 
the FIFO and will set interrupt (if not yet set). The error flag 
could be read in this mode by reading the FIFO STATUS 
word. (See "FIFO STATUS" for further details.) The error 
flag is reset by sending the normal CLEAR command with 
CF = 1. 

Sensor Matrix Mode 
In Sensor Matrix mode. the debounce logic is inhibited. 
The status of the sensor switch is inputted directly to the 
Sensor RAM. In this way the Sensor RAM keeps an image 
of the state of the switches in the sensor matrix. Although 
debouncing is not provided. this mode has the advantage 
that the CPU knows how long the sensor was closed and 
when it was released. A keyboard mode can only indicate 
a validated closure. To make the software easier. the 
designer should functionally group the sensors by row 
since this is the format in which the CPU will read them. 
The IRQ line goes high il'any sensoI'value change is 
detected at the endof a sensor matrix scan. The IRQ line is 
cleared by the Ii rst data read operation if the Auto-

1·400 

Increment· flag is set to zero. or' by the End Interrupt 
command if the Auto-Increment flag is set to one. 

Note: Multiple changes in the matrix Addressed by (SLo-3 
= 0> may cause multiple interrupts. (SLo = 0 in the Decoded 
Mode). Reset may cause the 8279to see multiple changes. 

Data Format 
In the Scanned Keyboard mode, the character entered 
into the FIFO corresponds to the position of the switch 
in the keyboard plus the status of the CNTL and SHIFT 
lines (non· Inverted). GNTL is the MSB of the character 
and SHIFT is the next most significant bit. The next 
three bits are from the scan counter and indicate the 
row the key was found. in. The last three bits are from the 
column counter and i.ndicate to which return line the key 
was connected. 

MSB LSB 

.. SCANNED KEYBOARD DATA FORMAT 

In' Sensor Matrix mode. the' data on the return lines is 
entered directly in the row of the Sensor RAM that 
corresponds to the row in the matrix being scanned. 
Therefore. each switch postion maps directiy to a Sensor 
RAM position. The SHIFT and CNTL inpLits are ignored in 
this mode. Note that switches are not necessarily the only 
thing that can be connected to the return lines in this 
mode. Any logic that can be triggered by the scan lines 
can enter data to the return line inputs. Eight multiplexed 
input ports could be tied to the return lines and scanned by 
the 8279. 

MSB LSB 

In Strobed Input mode. the data is also entered tothe FIFO 
from the return lines. The data is entered by the rising 
edge of a CNTL/STB line pulse.' Data can come from 
another encoded keyboard or simple switch matrix. The 
return lines can also be used as ageneral purpose strobed 
input. 

MSB LSB 

I. RL71 RL61 RL51 RL41RI.3IRI.:iIRL,I, RLa' t 

Display 
Left Entry 

Left Entry mode is the simplest display format in thaI each' 
display pOSition directly corresponds to a byte (or nibble) 
in the Display RAM. Address 0 in the RAM.is the left-most 
display character and address 1 S (or address, 7 in 8 
character display) is .the right most display character. 
Entering characters from pOSition zero causes the display 
to fill from the left. The 17th (9th) .character is entered back 
in the left most position.and filling again proceeds from 
there. 

AFN·OO742B 



InTel 8279/8279·5 

1St eniry 
., 

o 1 1415 

2nd entry [TJ = = = = ITI 
o 1 14 15 

16th entry [~E[ = ==EE1 
o 1 14 15 

17th entry @TIl = = = = EEl 
o 1 14 15 

16th entry @E[= == = E!I 

Right Entry 

LEFT ENTRY MODE 
(AUTO INCREMENT) 

Right entry is the method used by most e.J,ectronic 
calculators. The first entry is placed in the right most 
display character. The next entry is also placed in the right 
most character after the display is shifted left one 
character. The left most character is .shifted off the end 
and is. lost. 

1st entry 

2nd entry 

17th entry 

16th entry 

1 2 14 15 O-Display 

rn= = = = I I 11 I =:~ess 
2 3 15 0 1 

ITJ= = = = I [1121 

23 15 0 1 

l2EI= = = 1161171181 

RIGHT ENTRY MODE 
(AUTO INCREMENT) 

Note thai now Ihe dispiay position and register address do 
not correspond. Consequently, entering a character to an 
arbitrary position in the Auto Increment mode may have 
unexpected results. Entry starting at Display RAM address 
o with sequential entry is recommended. 

Auto Increment 

In the Left Entry mode, Auto Incrementing causes the 
address where the CPU will next write to be incremented 
by one and the character appears in the next location. 
With non-Auto Incrementing the entry is both to the same 
RAM address and display position. Entry to an arbitrary 
address in the Auto Increment mode has no undesirable 
side effects and the result is predictable: 

1-401 

2 3 4 5 6 7 __ Display 

1st entry' I 'I I I I' I I =:d~ess 
o 1 234 567 

2nd entry 11121 11I11 

01234567 

~~~~~ 11 12 I I I I II I 
Enter next at Location 5 Auto Increment

o 12 34 5 6 7

3rd entry I i 12 I I I 13 I I I
(j 1 2 34 5 6 7

4th entry 11 12 II I I 3 14 1 1

LEFT ENTRY MODE
(AUTO INCREMENT)

In the Right Entry mode, Auto Incrementing and non
Incrementing have the same effect as in the Left Entry
except if the address sequence is interrupted:

1 2 3 4 5 6 7 O--Display

1st entry 1 II I I I 11 I =:d~ess

Command
10010101

4th entry

2 345 6 7 0 1

2345670 1

11 121 ,
Enter next at Location "5 Auto Increment

3 4 567 0 1 2

4 5 670 1 2 3

13141 11 121 I 1

RIGHT ENTRY MODE
(AUTO INCREMENT)

Starting at an arbitrary location operates as shown below:

Command
10010101

ht entry

,2nd entry

6th entry

9th entry

o 1 2 3 4 5 6 7 ~ Display

1 I I I· I I I I I =~~ess
Enter next at Location 5. Auto increment

1 2 3 4 5 6 7 .0

11 I
2 3 4 5 67 0 1

1 I I 11 121 I 1
14151617181112131

15161718191213141

RIGHT ENTRY MODE
(AUTO INCREMENT)

AFN.oo742B

8279/8279·5

Entry appears to be from the initial entry pOint.

8/16 Character Display Formats

If the display mode is set to an 8 character display, the on
duty-cycle is double what it would be for a 16 character
display (e.g., 5.1 ms scan time for 8 characters vs. 10.3 ms
for 16 characters with 100 kHz internal frequency).

G. FIFO Status

FIFO status is used in the Keyboard and Strobed Input
modes to indicate the number of characters in the FIFO
and to indicate whether an error has occurred. There are
two types of errors possible: overrun and underrun.
Overrun occurs when the entry of another character into a
full FIFO is attempted. Underrun occurs when the CPU
tries to read an empty FIFO.

The FIFO status word also has a bit to indicate that the
Display RAM was unavailable because a Clear Display or
Clear All command had not completed its clearing
operation.

INT SHIFT CNTL
INT

8-BIT DATA BUS
MICRO· DATA 8/ °0_7 PROCESSOR BUS

SYSTEM

CONTROLS {

AD
lOR

WR 8219
lOW

RESET
RESET

cs
CS ADDRESS {

BUS Ao
Ao

ClK

In a Sensor Matrix mode, a bit is set in the FIFO status
word to indicate that at least one sensor closure indica·
tion is contained in the Sensor RAM.

In Special Error Mode the SJE bit is showing the error
flag and serves as an indication to whether a simultane·
ous multiple closure error has occurred.

FIFO STATUS WOAD

,FIFO Full

SHIFT KEYBOARD
MATRIX

CONTROL

8/ 8 COLUMNS

RETURN
LINES 8 ROWS

0
~8

RO_7

voo 3· 8 DECODER 1 vssh. ~ OV 3 lSB'

So., 4/

SCAN LINES
t4

4 -16 DECODER

CLOCK CLK BO_3 AO_3
iii)

BLANK V 16

I LMISPlAY
, 7

ADDRESSES
(DECODEDI

DISPLAY

4 CHARACTERS
DATA

/
DISPLAY

'00 nol drive the keyboard decoder with the MSB of the scan lines.

Figure 4. System Block Diagram

1·402 AFN·OO742B

8279/8279-5

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature•. . 0° C to 70° C

Storage Temperature _65° C to 1250 C
Voltage on any Pin with

Respect to Ground•......... -0.5V to +7V
Power Dissipation•...... 1 Watt

'NOTlCE: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS [TA = ooe to 70oe, Vss = Vee = +5V ± 5%, Vee = +5V ±10% (8279-5)]

Symbol Parameter Min. Max.

VILl Input Low Voltage for -0.5 1.4
Return Lines

VIL2 Input Low Vciltage for All Others -0.5 0.8

VIHl Input High Voltage for 2.2

Return Lines

VIH2 Input High Voltage for All Others 2.0

VOL Output Low Voltage 0.45

VOH1 Output High Voltage on Interrupt 3.5
Line

VOH2 Other Outputs 2.4

IILl Input Current on Shift, Control and +10
Return Li nes -100

IIL2 Input Leakage Current on All Others ±10

IOFL Output Float Leakage ±10

Icc Power Supply Current 120

CAPACITANCE
Symbol Parameter Typ. Max.

elN Input Capacitance .5 10

COUT Output Capacitance 10 20

A.C. CHARACTERISTICS [TA = ooe to 700C, Vss = OV, (Note 3)]

Bus Parameters

READ CYCLE

8279

Symbol Parameter !\!lin. Max.·

tAR Address. Stable Before READ 50

tRA Address Hold Time for READ 5

tRR READ Pu Ise Width 420

tRO [4] Data Delay from REAP 300

tAO [4] Address to Data Valid 450

tOF READ to Data Floating 10 100

tRCY Read Cycle Ti me 1

1-403

Unit Test Conditions

V

V

V

V

V Note 1

V Note 2

J.lA VIN = Vee
J.lA VIN = OV

J.lA VIN = Vee to OV

J.lA VOUT = Vcc to OV

mA

Unit Test Conditions

pF VIN = Vee

pF VOUT - Vee

8279-5

Min. Max. Unit

0 ns

0 ns

250 ns

150 ns

250 ns

10 100 ns

1 J.ls

AFN·OO742B

intJ 8279/8279·5

A.C. CHARACTERISTICS (Continued)

WRITE CYCLE

8279 8279·5

Symbol Parameter Min. Max. Min. Max. Unit

tAW Address Stable Before WRITE 50 0 ns

tWA Address Hold Time for WR ITE 20 0 ns

tww WR ITE Pulse Width 400 250 ns

tow Data Set Up Time for WR ITE 300 150 ns

two Data Hold Time for WR ITE 40 0 ns

tWCY Write Cycle Time 1 1 I'S

OTHER TIMINGS

8279 8279·5

I Symbol Parameter Min. Max. Min. Max. Unit

t.pw Clock Pulse Width 230 120 nsec

tCY Clock Period 500 320 nsec

Keyboard Scan Time 5.1 msec Digit-on Time 480 posec
Keyboard Debounce Time 10.3 msec
Key Scan Time 80 posec

Blanking Time 160 posee
Internal Clock Cycle[S] 10 posee

Display Scan Time 10.3 msec

NOTES:
1. 8279, IOL = 1.6mA; 8279-5, IOL = 2.2mA.
2. 8279, IOH = -l00I'-A; 8279-5, IOH = -400I'-A.
3. 8279, Vcc = +5V ±50/0; 8279-5, Vcc = +5V ±10'Y0.
4. 8279, CL = 100pF; 8279-5, CL = 150pF.
5. The Prescaler should be programmed to provide a 101'-8 internal clock cycle.

A.C. TESTING INPUT, OUTPUT WAVEFORM

INPUT/OUTPUT

u=x x= 2.0 2.0 > TEST POINTS <
0.8 0.8

0.45

A.C. TESTING: INPUTS ARE DRIVEN AT 2.4V FOR A LOGIC .. , .. AND 0.45V FOR
A lOGIC "0," TIMING MEASUREMENTS ARE MADE AT 2.0V FOR A LOGIC 'T'
AND O.BV FOR A LOGIC "0."

A.C. TESTING LOAD CIRCUIT

DEVICE
UNDER

~CL~120PF TEST

CL = 120pF
CL INCWDES JIG CAPACITANCE

1-404 AFN·OO742B

8279/8279·5:

WAVEFORMS

READ OPERATION

. : , ~.

{SYSTEM'S AO,a
1'------------------~ "-______________ ADDRESSBUS)

-+--tAR --+-'I~'>----------'-

..--tOF

1 ---tAo---...... 1

DATA BUS

(OUTPUT) ~~~~~~~~~~~~~ __ ...;.. _______ ~~~~~~~~~~~~~

WRITE OPERATION

~--------------~~-

DATA BUS DATA 'V -DATA VALID~ V DATA
IINPUT) _____ M_A_Y_CH_A_N_G_E ___ J'" - '. -f\ ______ M_A_Y_CH_A_N_G_E ____ _

CLOCK INPUT

{READ CONTROL)

(SYSTEM'S
'ADDR ESS BUS)

{WRITE CONTROL)

AFN-00742B

8279/8279-5

WAVEFORMS (Continued)

SCAN

ENCODED
SCAN

DECODED
SCAN

DISPLAY

s,

"

'2

"

'2

s,

s,

"

AO-A3
ACTIVE HIGH

80-B3
ACTIVE HIGH

RLo-RL7

u u u
u u u

u u u
u u u

1--------640~S= 84tcY,-------i

A(D)

B{O)

~~----4~~s-----~

NOTE: SHOWN IS ENCODED SCAN LEFT ENTRY

PRESCALER PROGRAMMED FOR IN­
TERNAL FREQUENCY - 100 kHz SO
tCY = 10p,S

r-------------------~

A(')

*BLANK CODE IS EITHER ALL
O's OR ALL 1'8 OR 20 HEX

B(l)

$2"83 ARE NOT SHOWN BUT THEY ARE SIMPLY 81 DIVIDED BY 2 AND 4

1-406

L

L
L

Lf

AFN-00742B

Application Notes

Slave Processors

Introduction to Contents

the UPI-41ATM INTRODUCTION 2-2

UPI-41 VS. UPI-41A 2-2

UPI/MASTER PROTOCOL 2-3

EXAMPLE APPLICATIONS 2-9

B-Digit Multiplexed LED Display 2-10
Sensor Matrix Controller 2-15
Combination I/O Device 2-19

DEBUG TECHNIQUES 2-27

CONCLUSION 2-30

APPENDIX A 2-31

AFN-01536A
2-1

APPLICATIONS

INTRODUCTION TO THE UPI-41ATM

Introduction

Since the introduction in 1974 of the second genera­
tion of microprocessors, such as the 8080, a wide
range of peripheral interface devices have appeared.
At first, these devices solved application problems of
a general nature; i.e., parallel interface (8255), serial
interface (8251), timing (8253), interrupt control
(8259). However, as the speed and density of LSI
technology increased, more and more intelligence
was incorporated into the peripheral devices. This
allowed more specific application problems to be
solved, such as floppy disk control (8271), CRT con­
trol (8275), and data link control (8273). The advan­
tage to the system designer of this increased
peripheral device intelligence is that many of the pe­
ripheral control tasks are now handled externally to
the main processor in the peripheral hardware
rather than internally in the main processor soft­
ware. This reduced main processor overhead results
in increased system throughput and reduced soft­
ware complexity.

In spite of the number of peripheral devices avail­
able, the pervasiveness of the microprocessor has
been such that there is still a large number of periph­
eral control applications not yet satisfied by dedi­
cated LSI. Complicating this problem is the fact that
new applications are emerging faster than the manu­
facturers can react in developing new, dedicated pe­
ripheral controllers. To address this problem, a new
microcomputer-based Universal Peripheral Inter­
face (UPI-41A) device was developed.

In essence, the UPI-41A acts as a slave processor to
the main system CPU. The UPI contains its own
prOCessor, memory, and I/O, and is completely user
programmable; that is, the entire peripheral control
algorithm can be programmed locally in the UPI, in­
stead oftaxing the master processor's main memory.
This distributed processing concept allows the UPI
to handle the real-time tasks such as encoding key­
boards, controlling printers, or multiplexing dis­
plays, while the main processor is handling non-real­
time dependent tasks such as buffer management or
arithmetic. The UPI relies on the master only for
initialization, ele~entary commands, and data
transfers. This technique results in an overall in­
crease in system efficiency since both processors­
the master CPU and the slave. UPI -are working in
parallel.

This application note presents three UPI-41A appli­
cations which are roughly divided into two groups:
applications whose complexity and UPIcode space

requirements allow them to either starid alone or be
incorporated as just one task in a "multi-tasking"
UP I, and applications which are complete UPI ap­
plications in themselves. Applications in the first
group are a simple LED display and sensor matrix
controllers. A combination serial/parallel/ I/O de­
vice is an application in the second group. Each ap­
plication illustrates different UPI configurations
and features. However, before the application de­
tails are presented, a section on the UPI/master pro­
tocol requirements is included. These protocol
requirements are kfilY to UPI software development.
For convenience, the UPI block diagram is repro­
duced in Figure 1 and the instruction set summary
in Table 1.

UPI-41 VS. UPI-41A

The UPI-41A is an enhanced version of the UPI-41.
It incorporates several architectural features not
found on the "non-A" device:

• Separate Data In and Data Out data bus buf­
fer registers

• User-definable STATUS register bits
• Programmable master interrupts for the OBF

and IBF flags
• Programmable DMA interface to external

DMA controller.

The separate Data In (DBBIN) and Data Out
(DBBOUT) registers greatly simplify the master/
UPI protocol compated to the UPI-41. The master
need only check IBF before writing to DBBIN and
OBF before reading DBBOUT. No data bus buffer
lock-out is required.

The most significant nibble ofthe STATUS register,
undefined in the UPI-41, is user-definable in UPI-
41A. It may be loaded directly from the most signifi­
cant nibble of the Accumulator (MOV STS,A).
These extra four STATUS bits are useful for trans­
ferring additional status information to the master.
This application note uses this feature extensively.

A new instructiol)., EN FLAGS, allows OBF and IBF
to be reflected on PORT 2 BIT 4 and PORT 2 BIT 5
respectively. This feature enables intfili'rupt-driven
data 'transfers when these pins are interrupt sources
to th.e master. ..

By eXfill:uting an EN DMA instruction PORT 2 BIT
6 b.ecomes a DRQ (DMA.Rfilquest) output and
PORT 2 BIT 7 becomes DACK (DMA Acknowl­
fildge). Setting DRQ requests a DMA cycle to. an ex­
ternal DMA controller. When the cycle is gran~
the DMA controller returns DACK plus either RD
(Read) or WR (Write). DACK automatically. forces

AFNo()1536A

APPLICATIONS

{

,1023

PAGE 3

, 76al-_____ ~

·-f 5121-_____ --1 .. ~·r
i~: I------~

LoeA TlON 7 - TIMER
1-______ -"l.t--~:J~~~~TH~~iTORS

PAGE a

LoeA TlON 3 - ISF

I-_____ ~ .. -~i~~:~ ~~~~TORS

7J615[4[31211[0 -~=~1X~CJi1~S
ADDRESS

Figure 1A. Program Memory Map

CS and AO low internally and clears DRQ. This se­
lects the appro~te data buffer register (DBBOUT
for DACK and RD, DBBIN for DACK and WR) for
the DMA transfer.

Like the "non-A", the UPI-41A is available in both
~OM (B041A) and EPROM (8741A) Program Mem­
ory versions. This application note deals exclusively
with the UPI-41A since the applications use the "A"s
enhanced features.

UPI/MASTER PROTOCOL
As in 'most closely coupled multiprocessor systems,
the various processors communicate via a shared re­
source. This' shared resource is typically specific lo­
cations in RAM or in registers through which status
and data are passed. In the case of a master proces­
sor and a UPI-41A, the shared resource is 3 separate,
master-addressable; registers internal to the UPI.
These registers are the status register (STATUS),
the Data Bus Buffer Input register (DBBIN), arid
the Data Bus Output register (DBBOUT). [Data
Bus Buffer direction is relative to the UPI]. To illus­
trate this register interface, consider the B085A/UPI
system in Figure 2. '

63r---------,

,USER RAM
32 X a

~r-----------1
BANK 1

WORKING
REGISTERS

axe

8 LEVEL 5T ACK
OR

, USER RAM
'16 X8

BANKO
WORKING

REGISTERS
axe

::':-':-_-ft1_-=-::::
O~ __ ~R~O ______ ~

,~
DIRECTLY

ADDRESSABLE
WHEN BANK 1
IS SIaECTED

.-J
ADDRESSED
INDIRECTLY
THROUGH
R1 OR RO

(RO' OR RI')

DIRECTLY
ADDRESSABLE
WHEN BANK 0
IS SELECTED

I

Figure 1B. Data Memory Map

Looking into the' UPI from the 8085A, the B085A
sees only the three registers mentioned above. If the
8085A wishes to issue a command to the UPI, it does
so by writing the command to the DBBIN register
according to the decoding of Table 2. Data for the
UPI is also passed via the DBBIN register. (The UPI
differentiates commands and data by examining the
AO pin. Just how this is done is covered shortly.)
Data from the U:PI for the B085A is passed in the
DBBOUT register. The 8085A may interrogate the
UPI's status by reading the UPI's STATUS register.
Four bits of the STATUS register act as flags and
are' used to handshake "data and commands into and
out of the UPl. The STATUS register format is
shown in Figure 3.

BIT 0 is OSF (Output Buffer Full). This flag indi­
cates to the master when the UPI has placed data in
the DBBOtJT register. OBF is set when theUPI
writes to DBBbuT and is reset when the master
reads DBBOUT. The master finds meaningful data
in the DBBOUT register only when OBF is set.

The Input Buffer Full (IBF) flag is BIT l. The UPI
uses this flag as an indicator that the master has
written to the DBBIN register. The master uses IBF

AFNO()I536A

APPLICATIONS

'"

00-

'" D,

MASTlitR
SYSTEM

INTERFACE
W-
OO
OS

"

CRYSTAL JxTALI

~f~ rTAL2

{

'00 --_ PROM PROGRAM SUPPLY

POWER Vee --_ +5 SUPPLY

Vss --_ GROUND

INTERNAL
.US

DATA
MEMORY

R~~I~:T
RANDOM
ACCESS
MEMORY

0/0
PORT 1

0/0
PORT 2

PQRT4·7
EXPANOER
INTERFACE

8-8IT
TIMEA!

EVENT COUNTER

P10-

'"

PERIPHERAL
INTERFACE

Figure 1C. UPI-41 A Block Diagram

to indicate when the UPI has accepted a particular
command or data byte. The master should examine
IBF before outputting anything to the UPI. IBF is
set when the master writes to DBBIN and is reset
when the UPI reads DBBIN. The master must wait
until IBF=O before writing new data or commands
to DBBIN. Conversely, the UPI must ensure IBF=l
before reading DBBIN.

The third STATUS register bit is FO (FLAG 0). This
is a general purpose flag that the UPI can set; reset,
and test. It is typically used to indicate a UPI error
or busy condition to the master.

FLAG 1 (Fl) is the final dedicated STATUS bit.
Like FO the UPI can set, reset, and test this flag.
However, in addition, Fl reflects the state of the AO
pin whenever the master writes to the DBBIN regis­
ter. The UPI uses this flag to delineate between mas­
ter command and data writes to DBBIN.

The remaining four STATUS register bits are user
definable. Typical uses of these bits are as status in-

2-4

B085

I DBBOUT I

Figure 2. Register Interface

dicators for individual tasks in a multitasking UPI
or as UPI generated interrupt status. These bits find
a wide variety of uses in the upcoming applications.

Looking into the 8085A from the UPI, the UPI sees
the two DBB registers plus the IBF, OBF, and Fl
flags. The UPI can write from its accumulator to
DBBOUT or read DBBIN into the accumulator.
The UPI cannot read OBF, IBF, or Fl directly, but
these flags may be tested using conditional jump

AF~'536A

APPLICATIONS

Table 1. Instruction Set Summary

Mnemonic Description Bytes Cycles

Accumulator

ADDA,Rr Add register to A 1 1
ADDA,@Rr Add data memory to A 1 1
ADDA,#data Add immediate to A 2 2
ADDCA,Rr Add register to A with carry 1 1
ADDCA@Rr Add data memory toA with carry 1 1
ADDC A,#data Add immed. to A with carry 2 2
ANLa,Rr AND register to A 1 1
ANLA,@Rr AND data memory to A 1 1
ANLA,#data AND immediate to A 2 2
ORLA,Rr OR register to A 1 1
ORLA@Rr OR data memory to A 1 1
ORLA,#data OR immediate to A 2 2
XRLA,Rr Exclusive OR registar to A 1 1
XRLA,@Rr Exclusive OR data memory to A 1 1
XRLA,#data Exclusive OR immediate to A 2 2
INCA IncrementA 1 1
DEC A Decrement A 1 1
CLRA Clear A 1 1
CPLA Complement A 1 1
DAA Decimal Adjust A 1 1
SWAP A Swap digits of A 1 1
RLA Rotate A left 1 1
RLCA Rotate A left through carry 1 1
RRA Rotate A right 1 1
RRCA Rotate A right through carry 1 1

Input/Output

INA,P Input port to A 1 2
OUTL~p,A Output A to port 1 2
ANL Pp,#data AND immediate to port 2 2
ORLP~#data OR immediate to port 2 2
INA,D B Input DBB to A, clear IBF 1 1
OUTDBB,A Output A to DBB, set OBF 1 1
MOVSTS,A A4·A7 to Bits 4·7 of Status 1 1
MOVDA,PX Input Expander port to A 1 2
MOVDPp, Output A to Expander port 1 2
ANLDPp,A AND A to Expander port 1 2
ORLDPp,A OR A to Expander port 1 2

Data Moves

MOVA,Rr Move register to A 1 1
MOVA;@Rr Move data meD\ory to A 1 1
MOVA,#data Move immediate to A 2 2
MOVRr,A Move A to register 1 1
MOV@Rr.A Move A to data memory 1 1
MOV Rr,#data Move immediate to register 2 2
MOV @Rr,#data Move immediate to data memory 2 2
MOVA,PSW Move PSW to A 1 1
MOVPSW.A. MoveAtoPSW 1 1
XCHA,Rr Exchange A and register 1 1
XCHA,@Rr Exchange A and data memory 1 1
XCHDA@Rr Exchange digit of A and register 1 1
MOVPA,@A Move to A from current page 1 2
MOVP3, A,@A Move. to A from page 3 2

Table 2. Register Decoding

cs AQ AD WR REGISTER

0 0 0 1 READDBBOUT
0 1 0 1 READ STATUS
0 0 1 0 WRITE DBBIN (DATA)
0 1 1 0 WRITE DBBIN (COM-

MAND)

1 X X X NO ACTION

2·5

Mnemonic Description Bytes Cycles

Timer/Counter

MOVA,T Read Timer/Counter 1 1
MOVT,A Load Timer/Counter 1 1
STRTT Start Timer 1 1
STRTCNT Start Counter 1 1
STOPTCNT Stop Timer/Counter- 1 1
EN TCNTI Enable Timer/Counter Interrupt 1 1
DIS TCNTI Disable Timer/Counter Interrupt 1 1

Control

ENDMA Enable DMA Handshake Lines 1 1
ENI Enable IBF Interrupt 1 1
DIS I Disable IBF Interrupt 1 1
EN FLAGS Enable Master Interrupts 1 1
SELRBO Select register bank 0 1 1
SELRBI Select register bank 1 1 1
NOP No Operation 1 1

Registers

INCRr Increment register 1 1
INC@Rr Increment data memory 1 1
DECRr Decrement register 1 1

Subroutine

CALLaddr Jump to subroutine 2 2
RET Return 1 2
RETR Return and restore status 1 2

Flags

CLRC Clear Carry 1 1
CPLC Complement Carry 1 1
CLRFO Clear Flag 0 1 1
CPLFO Complement Flag 0 1 1
CLRFl Clear Fl Flag 1 1
CPLFl Complement Fl Flag 1 1

Brancb

JMPADDR Jump unconditional 2 2
JMPP@A Jump indirect 1 2
DJNZR,addr Decrement register and skip 2 2
JC addr Jump on Carry=l 2 2
JNC addr Jump on Carry=O 2 2
JZ addr Jump on A Zero 2 2
JNZaddr Jump on A not Zero 2 2
JTO addr Jump on TO=l 2 2
JNTOaddr Jump on TO=O 2 2
JTl addr Jump on Tl=l 2 2
JNTl addr Jump on Tl=O 2 2
JFO addr Jump on FO Flag=l 2 2
JFl addr Jump on Fl Flag=l 2 2
JTF addr Jump on Timer Flag=l,Clear Flag 2 2
JNIBFaddr Jump on IBF Flag=O 2 2
JOBF addr Jump on OBF Flag=l 2 2
.Bu T "'addr Jum- on Accumulator Bit .. 2 2

L\i-.L...;j-I .L.T. :.L...i-\-'-'T-\-,-,r-,-·.I..-'r' OaF _ oaaOUT FULL 1716i51 43 11~
IBF - DHBIN FULL

'----- FO - FLAG 0
'------- Fl - FLAG 1

'----------~ USER DEFINED

5T ATUS REGISTER

Figure 3. Status Register Format

AF~l536A

APPLICATIONS

instructions. The UPI should make sure that OBF is
reset before writing new data into DBBOUT to en­
sure that the master has read previous DBBOUT
data. IBF should also be tested before reading
DBBIN since DBBIN data is valid only when IBF is
set. As was mentioned earlier, the UPI uses Fl to dif­
ferentiate between command and data contents in
DBBIN when IBF is set. The UPI may also write the
upper 4-bits of its accumulator to the upper 4-bits of
the STATUS register. These bits are thus user
definable.

The UPI can test the flags at any time during its in­
ternal program execution. It essentially "polls" the
STATUS register for changes. If faster response is
needed to master commands and data, the UPI's in­
ternal interrupt structure can be used. If IBF inter­
rupts are enabled, a master write to DBBIN (either
command or data) sets IBF which generates an in­
ternal CALL to location 03H in program memory. At
this point, working register contents can be saved
using bank switching, the accumulator saved in a
spare working register, and the DBBIN register read
and serviced. The interrupt logic for the IBF inter­
rupt is shown in Figure 4. A few observations con­
cerning this logic are appropriate. Note that if the
master writes to DBBIN while the UPI is still servic­
ing the last IBF interrupt (a RETR instruction has
not been executed), the IBF Interrupt Pending line

is made high which causes a new CALL to 03H as
soon as the first RETR is executed. No EN I (Enable
Interrupt) instruction is needed to rearm the inter­
rupt logic as is needed in an 8OBO or B085A system;
the RETR performs this function. Also note that ex­
ecuting a DIS I to disable further IBF interrupts
does not clear a pending interrupt. Only a CALL to
location 03H or RESET clears a pending IBF inter­
rupt.

Keeping in mind that the actual master/UPI proto­
col is dependent on the application, probably the
best way to illustrate correct protocol is by example.
Let's consider using the UPI as a simple parallel I/O
device. (This is a trivial application but it embodies
all of the important protocol considerations.) Since
the UPI may be either interrupt or non-interrupt
driven internally, both cases are considered.

Let's take the easiest configuration first; using the
UPI PORT 1 as an 8-bit output port. From the UPI's
point-of-view, this is an input-only application since
all that is required is that the UPI input data from
the master. Once the master writes data to the UPI,
the UPI reads the DBBIN register and transfers the
data to PORT 1. No testing for commands versus
data is needed since the UPI "knows" it only per­
forms one task-no commands are needed.

5 0 ----,
FORCE
INTERRUPT
CALL

EN TCNTI
EXECUTED

RESET
OISTeNTI

EXECUTED

TIMER
INTERRUPT

ENABLE

WR
cs

RESET
IBF INTERRUPT

CALL EXECUTED

REseT
DIS I

EXECUTED

+ 5V

EN I
EXECUTED

TIMER
INTERRUPT
REQUEST

a

IBF INTERRtJPT
ENABLE

LAST CYCLE
OF INSTRUCTION

RESET

RETR EXECUTED

Figure 4. UPI-41 A Interrupt Structure

2-6

INTERRUPT
IN PROGRESS

AFN.()1536A

APPLICATIONS

Non-interrupt driven' UPI software is shown in Fig"
ure5A while, Figure 5B shows interrupt based soft­
ware. For Figure '5A, the UPIsimply waits untiUt
sees IBF go high indicating the master has written a
data byte to DBBIN. The UPI then reads bBBIN,
transferS it to PORT 1; and returns to waiting for the
next data; Fot the interrupt-driven UPI,Figure 5B,
once the EN I instruction is executed, the UPI shn­
ply waits for the IBF interrupt before handling the
data. The UPI could handle other tasks during this
Waiting Hme. When the master writes the da:ta,to
DBBIN, an IBF interrupt is generated which per­
forms a CALL to location 03R. At this point the UPI
reads DBBIN (no testing of IBF is needed since all,
IBF interrupt implies that IBF is set), transfers the
data to PORT 1, a,nd executes all, RETR which re­
turns program flow to the,mairi program.

Software fer·,the~aster B085A is in<;luded in Figure
5C. Tlteonly requir,ement for the master to output
data to the:UPI is that it check the UPI to be sure
the previous data had been, taken before writing new
data. To accomplililh this the master simply reads the
STATUS register looking for IBF=Obefore writing
the next data.

; UPIINPUT ONLY EXAMPLE-PORT 1 USED AS OUTPUT PORT
UPI POLLS IBF FOR DATA

RESET: JNIBF
IN
OUTL

, ,JMP

RESET
A,DBB
Pl,A
RESET

; WAIT ON IBF FOR INPUT
; INPUT THERE, so READ IT
; TRANSFER DATA TO PORT 1
; GO WAIT FOR NEXT DATA

Figure SA_ , ,Sihgle Output Port Example-Polling

; UPIINPUT ONLY EXAMPLE-PORT 1 USED AS OUTPUT PORT
DATA INPUT IS INTERRUPT-DRIVEN ,ON IBF

RESET: EN I
JMP RESET+l

IBFINT: IN A,DBB
OUTL Pl.A
RETR

'; 'ENABLE IBF INTERRUPTS
;"LOOP WAITING FOR INPUT
; READ DATA FROM DBBIN
; TRAN,SFER DATA TO PORT 1
; RETURN WITH RESTORE

Figure 58. Single Output Port Example-Interrupt

; 8085 SOFTWARE FOR UPIINPUT-ONL Y EXAMPLE
OAT A FOR OUTPUT IS PASSED IN REG. C

UPIOUT: IN STATUS
ANI IBF
JNZ • UPIOUT
MOV A,C
OUT DBBIN
RET

; READ UPI STATUS
; LOOK AT IBF
; WAIT FOR IBF=O
; GET DATA FROM C
; OUTPUT DATA TO DBBIN
; DONE. RETURN

Figure SC. BOBSA Code for Single Output Port Ex­
ample

Figure 6A illustrates the case where UPI PORT 2 is
used as all, a-bit input port. This configuration is
termed UPI output-only as the master does not
write (input) to the UPI but simply reads either the
STATUS Or the DBBOUT registers. In this example
only the OBF flag is used. OBF signals the master
that the UPI has placed new port data in DBBOUT.
The UPI loops testing OBF. When OBF is clear, the
master has read the previous data and UPI then
reads its input port (PORT 2) and places this data in
DBBOUT. It then waits on OBF until the master
reads DBBOUT before reading the input port again.
When the master wishes to read the input port data,
Figure'6B, it simply checks for OBF being set in the
STATUS register before reading DBBOUT. While
this technique illustrates proper protocol, it should
be' noted that it is not meant to be a good method of
using the UPI as all, input port since the master
would never get the newest status of the port.

; UPI OUTPUT ONL Y EXAMPLE~PORT 2 USED AS INPUT PORT
PORT DATA IS AVAILABLE IN DB BOUT

RESET: JOBF RESET
IN A,P2
OUT DBB.A
JMP RESET

; LOOP IF OBF= 1 (DATA NOT READ)
; DBBOUT CLEAR. READ PORT
; TRANSFER PORT DATA TO DBBOUT
; WAIT FOR MASTER TO READ DATA

Figure 6A. Single Input Port Example

; 808'5 SOFTWARE FOR UPI OUTPUT -'ONLY EXAMPLE
INPUT DATA RETURNED IN REG, A

UPIIN: IN
ANI
'JZ
IN
RET

STATUS'
OBF
UPIIN
DBBOUT

; READ UPI STATUS
; LOOK AT OBF, ,
; WAIT UNTIL OBF= f
; READ DBEiOUT
; RETURN WITH DATA IN A

'Figure 68. BOSSA Single Input Port Code

The above examples can easily becombined. Figure
7 shows UPI software to use PORT 1 as all, output
port si~ultaneously with PORT 2 as all, input port.
The program starts with the UPI checking IBF to
see if the master has written data destined for the
output port into DBBIN. If IBF is set, the UPI reads
DBBIN and transfers the data to the output port
(PORT 1). IfIBF is not set or once the data is trans­
ferred to the output port if it was, OBF is tested. If
OBF is reset (indicating the master has read
DBBOUT), the input port (PORT 2) is read and
transferred to DBBOUT. If OBF is set, the master
has yet torElad DBBOUT so the program just loops
ij:a<:k to test IBF.

The master software is identical to the separate
input/output examples; the master mUst test IBF

AFN-Ol536A

APPLICATIONS

; UPIINPUT 10UTPUT EXAMPLE-PORT 10UTPUT, PORT 2 INPUT

RESET:

OUT1:

JNIBF
IN
OUTL
JOBF
IN
OUT
JMP

OUTl
A, DBB
Pl, A
RESET
A, P2
DBB, A
RESET

; IF IBF=O, DO OUTPUT
; IF IBF= 1, READ DBBIN
; TRANSFER DATA TO PORT 1
; IF OBF=l, GO TEST IBF
; IF OBF=O, READ PORT 2
; TRANSFER PORT DATA TO DBBOUT
; GO CHECK FOR INPUT

Figure 7. Combination Output/Input Port Example

and OBF before writing output port data into
DBBIN or before reading input port from DBBOUT
respectively.

In all of the three examples above, the UPI treats
information from the master solely as data. There.
has been no need to check if DBBIN information is a
command rather than data since the applications do
not require commands. But what if both PORTs 1
and 2 were used as output ports? The UPI needs to
know into which port to put the data. Let's use a
command to select which port.

Recall that both commands and data pass through
DBBIN. The state of the AO pin at the time of the
write to DBBIN is used to distinguish commands
from data. By convention, DBBIN writes with AO=O
are for data, and those with AO=1 are commands.
When DBBIN is written into, Fl (FLAG 1) is set to,
the state of AO. The UPI tests Fl to determine if the
information in the DBBIN regIster is data or
command. '

For the case of two output ports, let's assume that
the master selects the desired port with a command
prior to writing the data. (We could just use Fl as a
port select but that would not illustrate the subtle
differences between commands and data). Let's de­
fine the port select commands such that BIT 1 = 1 if
the next data is for PORT 1 (Write PORT 1=0000
0010) and BIT 2=1 if the next data is for PORT 2
(Write PORT 2=0000 0100). (The number of the set
bit selects the port.) Any other bits are ignored. This
assignment is completely arbitrary; we could use any
command structure, but this one has the advantage
of being simple.

Note that the UPI must "remember" from DBBIN
write to write which port has been selected. Let's use
FO (FLAG 0) for this purpose. If a Write PORT 1
command is received, FO is reset. If the command is
Write PORT 2, FO is set. When the UPI finds data in
DBBIN, FO is interrogated and the data is loaded
into the previously selected port. The UPI software
is shown in Figure 8A. '

2-8

: UPI DUAL OUTPUT PORT EXAMPLE-BOTH PORT 1 ANP 2 OUTPUTS
COMMAND SELECTS DESIRED PORT

RESET:

PORT2:

CMD:

PT1:

PT2:

WRITE PORT 1-0000 0010 (02H)
WRITE PORT 2-0000 0100 (04H)

FLAG a USED TO REMEMBER WHICH PORT WAS SELECTED
BY LAST COMMAND.

JNIBF RESET ; WAIT FOR MASTER INPUT
IN A, DBB ; READ INPUT
JFl CMD ; IF F 1 = 1, COMMAND INPUT
JFO PORT2 ; INPUT IS DATA, TEST Fa
OUTL Pl,A ; FO=O, SO OUTPUT TO PORT 1
JMP RESET ; WAIT FOR NEXT INPUT
OUTL P2,A ; FO=l, SO OUTPUT TO PORT2
JMP RESET ; WAIT FOR NEXT INPUT"
JBl PTl ; TE.ST COf:,lMAND BIJS (BIT 1)
JB2 PT2 .: TEST BIT 2 .
JMP RESET ; NEITHeR BiT SET, WAIT FOR INPUT
CLR Fa ; PORT 1 SELECTED, CLEAR Fa
JMP RESET ; WAIT FOR INPUT
CLR Fa ; PORT 2 SELECTED, SET Fa
CPL Fa
JMP RESET ; WAITFOR INPUT

Figure SA. Dual Output Port Example

Initially, the UPI simply waits until IBF is set indi­
cating the master has written into DBBIN. Once
IBF is set, DBBIN is read and Fl is tested for a com­
mand. If Fl =1, the DBBIN byte is a command. As­
suming a command, BIT 1 is tested' to . see if the
command selected PORT 1. If SO, FO is cleared and
the program returns to wait for the data; If BIT 1 =0,
BIT 2 is tested. If BIT 2 is set, PORT 2 is selected so
FO is set. The program then l1)OPS back waiting for
the next master input. This input is the desired port
data. If BIT 2 was not set; FO is not changed and no
action is taken.

When IBF=1 is again detected, the input is again
tested for command or data. Since it is necessarily
data, DBBIN is read and FO is tested to determine
which port was previously selected. The data is then
output to that port, following which the program:
waits for the next input. Note that since FO still se­
lects the previous port, the next input could be more'
data for that port. The port selection command
could be thought of as a port selectt1ip~flop control;
once a selection is made,. data may be repeatedly
written to that port until the other port is. selected.
Master software, Figure 8B,simply must check IBF
before writing either a command or da1;a tQ bBBIN.
Otherwise, the master software is straightforward.

For the sake of completeness, UPI software for im­
plementing two input ports is given in Figure 9. This
case is simpler than the dual output case since the
UPI can assume that all writes to DBBIN are port
selection commands so no command/data testing is
required. Once the Port Read command is input, the
selected portis read and the port data is placed in
DBBOUT. Note that in this clise FO is used as a UPI

AFN-ol536A

APPLICATIONS

error indicator. If the master happened to issue an
invalid command(a command without either BIT 1
or 2 set), FO is set to notify the master that the UPI
did not know how to interpret the command. FO is
also set if the master commanded a port read before
it had read DBBOUT from the previous command.
The UPI simply ,tests OBF just prior to loading
DBBOUT and if OBF=I, FO is set to indicate the
error.

All of the above examples are, in themselves, rather
trivial applications of the UPI although they could
easily be incorporated as one of several tasks in a
UPI handling multiple small tasks. We. have covered
them primarily to introduce the UPI concept and to
illustrate some master/UPI protocol. Before moving
on to more realistic UPI.applications, let's discuss
two UPI features that do not directly relate to the
master/UPI protocol but greatly enhance the UPI's
transfer capability.

In addition to the OBF and IBF bits in the STATUS
register, these flags can also be made available di­
rectly oil. two port pins, These port pins can then be
used as interrupt sources to the master. By execut­
ing an EN FLAGS instruction, PORT 2 pin 4 re­
flects the condition of OBF and PORT 2 pin 5
reflects the inverted condition of IBF (IBF). These
dedicated outputs can then be enabled or disabled
via their respective port bit values; Le.,: P24 refli;cts
OBF as long as. an instrllction is executed whiqh sets
P24 (i.e, ORLP2,#10H). The same action applies to
the IBF output except P25 is used. Thus P24 may
serve as a DATA AVAILABLE interrupt output.
Likewise for f25 as a READY-TO-ACCEPT-DATA
interrupt. This greatly si~plifies interrupt-driven
master-slave. data transfers." -

• e ,-I.

; 8085 SOFTWARE FOR DUAL OUTPUT PORT EXAMPLE
THIS ROUTINE WRITES DATA IN REG. C TO PORT 1
(SAME· ROUTINE FOR PORT 2:'-JUST CHANGE'.POMMAND)

PORT1: IN STATUS ; READ UPI STATUS
ANI IBF ; LOOK AT IBF
JNZ PORT 1 ; WAIT UNTIL IBF=O
MVI A,00000010B ; LOAD WRITE PORn CMD
'OUT UPICMD ; OUTPUT TO UPI COMMAND PORT

Pl: IN· STATUS ; READ UPI STATUS AGAIN
. ANI IBF .; LOOK AT IBF ",
-·JNZ P'1 ; WAIT UNTIL COMMAND ACCEPTED
MOV A:C . ; GET DATA FROM C
OUT DBBIN ; OUTPUT TO DBBIN
RET ; DONE, RETURN

Figure 8B. 8085~Dual Output Port Example Code

The UPI also supports a DMA transfer interface. If
an ENDMAinstruction is executed, PORT 2 pin 6
becomes aDMA Request (DRQ) output and P27 be-·
comes a high impedance .DMA Acknowledge

2-9

; UPI DUAL INPUT PORT EXAMPLE-BOTH PORT 1 AND 2 INPUTS
COMMAND SELECTS WHICH PORT IS TO BE READ
FLAG 0 USED AS ERROR FLAG

RESET: JNIBF
CLR
IN
.JBl
JB2

ERROR: CPL
JMP

PT1: IN
JOBF
OUT
JMP

PT2: IN
JOBF
OUT
JMP

RESET
FO
A, DBB
PTI
PT2
FO
RESET
A, Pl
ERROR
DBB, A
RESET
A, P2
ERROR
DBB, A
RESET

; WAIT FOR INPUT
; CLEAR ERROR FLAG
; READ INPUT (COMMAND)
; TEST BIT 1 (PORT 1)
; TEST BIT 2 (PORT 2)
; ERROR-COMPLEMENT FO
; WAIT FOR INPUT"·
; READ PORT 1
; TEST OBF BEFORE LOADING DBBOUT
; LOAD PORT 1 DATA INTO DBBOUT
; WAIT FOR INPUT
; READ PORT 2
; TEST OBF BEFORE LOADING DB BOUT
; LOAD PORT 2 DATA INTO DBBOUT
; WAIT FOR INPUT

Figure 9. Dual Input Port Example

(DACK) input. Any instruction which would nor­
mallyset P26 now sets D~ DRQ is cleared when
DACK is low and either RD or WR is low. When
DACK is low, CS and AO are forced low internally
which allows data bus transfers between DBBOUT
or DBBIN to occur, depending upon whether WR or
RD is true. Of course, the function requires the use
of an external DMA controller.

Now that wehave discussed the aspects of the UPI
protocol and data transfer interfaces, let's. move on
to the actual applications.

EXAMPLE APPLICATIONS

Each of the following three sections presents the
hardware and software details of a UPI application.
Each application utilizes one of the protocols men­
tioned in the last section. The first example is a sim­
ple 8-digit LED display controller. This application
requires only that the UPI perform input operations
from the DBBIN; DBBOUT is not used. The reverse
is true for the second· application: a sensor matrix
controller. The final application involves both
DBBOUT and DBBIN operations: a combination
serial/parallel I/O device.

The core master processor system with which these
applications were developed is the iSBC 80/30 single
board computer. This board provides an especially
convenient UPI environment since it contains a
dedicated socket specifically interfaced for the UPI-
4IA. The SO/30 uses the 8085A as the master proces­
sor. The I/O and peripheral complement on the
SO/30 include 12 vectored priority interrupts (8 on
an 8259 Programmable Interrupt Controller and.4
on the 8085A itself), an.8253 Programmable Interval
Timer supplying three I6-bit programmable timers
(one is dedicated as a programmable baud rate gen­
erator), a high speed serial channel provided by a
8251 Programmable USART, and 24 parallel I/O

AFN-ol536A

APPLICATIONS

lines implemented with an 8255A Programmable
Parallel Interface. The memory complement con­
tains 16K bytes of RAM using 211716K bit Dynamic
RAMs and the 8202 Dynamic RAM Controller, and
up to 8K bytes of ROM/EPROM with sockets com­
patible with 2716, 2758, or 2332 devices. The 80/30's
RAM uses a dual port architecture. That is, the
memory can be considered a global system resource,
accessible from the on-board 8085A as well as from
remote CPUs and· other devices via the
MULTIBUS. The 80/30 contains MULTIBUS con­
trollogic which allows up to 16 80/30s or other bus
masters to share the same system bus. (More de­
tailed information on the iSBC 80/30 and other
iSBC products may be found in the latest Intel
Systems Data Catalog.)

A block diagram of the iSBC 80/30 is shown in Fig­
ure 10. Details of the UPI interface are shown in Fig­
ure 11. This interface decodes the UPI registers in
the following format:

Register

Read STATUS
Write DBBIN (command)

Read DBBOUT (data)
Write DBBIN (data)

Operations

INE5H
OUTE5H
INE4H

OUTE4H

a-Digit Multiplexed LED Display
The traditional method of interfacing an LED dis­
play with a microprocessor is to use a data latch
along with a BDC-to-7-segment decoder for each
digit of the display. Thus two ICs, seven current
limiting resistors, and about 45 connections are re­
quired for each digit. These requirements are, of
course, multiplied by the total number of digits de­
sired. The obvious disadvantages of this method are
high parts count and high power dissipation since
each digit is "ON" continuously. Instead, a scheme
of time multiplexing the display can be used to de­
crease both parts count and power dissipation.

Display multiplexing basically involves connecting
the same segment (a, b, c, d, e, f, or g) of each digit in
parallel and driving the common digit element (an­
ode or cathode) of each digit separately. This is
shown schematically in Figure 12. The various digits
of the display are not all on at once; rather, only one
digit at a time is energized. As each digit is ener·
gized, the appropriate segments for that digit are
turned on. Each digit is enabled in this way, in se­
quence, at a rate fast enough to ensure that each
digit appears to be "ON" continuously. This implies
that the display must be "refreshed" at periodic in­
tervals to keep the digits flicker-free. If the CPU had
to handle this task, it would have to suspend normal

2-10

processing, go update the display, and then return to
its normal flow. This extra burden is ideally handled
by a UPI. The master CPU could simply give charac­
ters to the UPI and let the UPI do the actual seg­
ment decoding, display multiplexing, and
refreshing.

As an example of this technique, Figure 13 shows the
UPI controlling an 8-digit LED display. All digit
segments are connected in parallel and are driven
through segment drivers by the UPI PORT 1. The
lower 3 bits of PORT 2 are inputs to a 3-to-8 decoder
which selects an individual digit through a digit
driver. A fourth PORT 2 line is used as a decoder
enable input. The remaining PORT 2 lines plus the
TEST 0 and TEST 1 inputs are available for other
tasks.

Internally, the UPI uses the counter/timer in the in­
terval timer mode to define the interval between dis­
play refreshes. Once the timer is loaded with the
desired interval and started, the UPI is free to han­
dle other tasks. It is only when a timer overflow in­
terrupt occurs that the UPI handles the short
display multiplexing routine. The display multiplex­
ing can be considered a background task which is en­
tirely interrupt-driven. The amount of time spent
multiplexing is such that thereis ample time to han­
dle a non-timer task in the UPI foreground. (We'll
discuss this timing shortly.)

When a timer interrupt occurs, the UPI turns off all
digits via the decoder enable. The next digit's seg­
ment contents are retrieved from the internal data
memory and output via PORT 1 to the segment
drivers. Finally, the next digit's location is placed on
PORT 2 (P20-P22) and the decoder enabled. This
displays the digit's segment information until the
next interrupt. The timer is then restarted for the
next interval. This process continues repeatedly for
each digit in sequence.

As a prelude to discussing the UPI software, let's ex­
amine the internal data memory structure used in
this application, Figure 14. This application requires
only 14 of the 64 total data memory locations .. The
top eight locations are dedicated to the Display
Map; one location for each digit. These locations
contain the segment and decimal point information
for each character. Just how characters are loaded
into this section of memory is covered shortly. Regis­
ter R7 of Register Bank 1 is used as the temporary
Accumulator store during the interrupt service
routines. Register R3 stores the digitnumber.ofthe
next digit to be displayed. R2 isa temporary storage
register for characters during input routine. Ro is

AFN-01538A

APPLICATIONS

16K X 8
RAM
2117

RS232C
,COMPATIBLE

DEVICE

POWER FAIL
INTERRUPT

4 INTERRUPT
REQUEST LINES .

USER DESIGNATED
PERIPHERALS

42 PROGRAMMABLE
, PARALLEL I/O LINES

2 INTERRUPT
REOUEST LINES

8 INTERRUPT
REQUEST LINES

TWO
PROGRAM­

MABLE
TIMERS

MULTIBUSTM

Figure 10. iSBC 80/30 Block Diagram

the offset pointer pointing to the Display Map loca­
tion of the next digit. That makes 12 locations so far.
The remaining two locations are the two stack loca­
tions required to store the return address plus status
during the timer and input interrupt service
routines. The remaining unused locations, all of
Register Bank 0, 14 bytes of stack, 4 in Register
Bank 1, and 24 general purpose RAM locations, are
all available for use by any foreground task.

The UPI software consists of only three short
routines. One, INlT, is used strictly during
initialization. DISPLA is the multiplexing routine
called at a timer interrupt. INPUT is the character
input handler called at an IBF interrupt. The flow

2-11

charts for these routines are shown in Figures 14A
through 14C.

INIT initializes the UPI by simply turning off all
segment and digit drivers, filling the Display Map
with blank characters, loading and starting the
timer, and enabling both timer and IBF interrupts.
Although the flow chart shows the program looping
at this point, it is here that the code for any fore­
ground task is inserted. The only restrictions on this
foreground task are that it not use I/O lines dedi­
cated to the display and that it not require dedicated
use of the timer. It could share the timer if precau­
tions are taken to ensure that the display will still be
refreshed at the requited interval.

AFN'()l536A

APPLICATIONS

+.v

VDD
P1. iOW WR

iOii RD
P11

RESET RESET
P12

A2 A. 01 CS
P13

A3 A1
PORT 1

P1'

A. A2
8205 P1' .. As E1

As A7 E2
P1. .. As E3 P17

T.
TESTO

31 Ti
+5V TEST 1

32

55
8041A 0 EVENT CLOCK (8253)
8741A 3~IR5-232

EA ~CHANNEL
45
0 80851NTA

P2~
OlIO- DO-

DB7 07
P21

P22

P23

+SV +SV
PORT 2

P2'
62. 620

P2S

5.5296 XTAL 1
P26

MH,

P27
XTAL2

VSS

Figure 11. UPllnterface on iSBC 80/30

+ 5V

Figure 12. LED Multiplexing

AFN.o1536A

2-12

as
AD

WR

PORT 21
.AO

0 ..
0 c c z ~ ~ -I DATA

~ en
en

8041AI
8741A

PORT 1:

+ 5V

1

0

6

ci

APPLICATIONS

00

01'

02

03

07

SEGMENT
DRIVERS

6

Figure 13. UPI Controlled 8-Digit LED Display

63

31

24
23

8
7

o

DISPLAY MAP
S.x 8

USER RAM
24 x 8

(NOT USED)

ACCUMULATOR STORE

NOT USED

NOT USED

NDTUSED

DIGIT COUNTER

TEMPORARY STORE

NOT USED

DISPLAY MAP POINTER

STACK
16 X 8

UNUSED
8x8

R7

R6

RS

R4 .REGISTER

R3
BANK' 1

R2

R1

RO

REGISTER
BANK 0

Figure 14. LED Display Controller Data Memory
Allocation .

FILL DISPLAV MAP WITH
BLANK CHARACTERS

CLEAR DIGIT COUNTER

LOAD AND START
TIMER

ENABLE TIMER AND
IBF INTERRUPTS

WAIT LOOP OR
FOREGROUND TASK CODE

Flgur~,14A. INIT Routine Flow

2-13

DIGIT
DRIVERS

AF~l538A

APPLICATIONS

INPUT

SWITCH TO R81
SAVE ACCUMUlATOR

READ AND SAVE DB8tN

ISOLATE DIGIT SELECT

UPDATE DISPLAY MAP POINTER
TO SELECTED DIGIT LOCATION

RESTORE ACCUMULATOR

RETURN

Figure 14B. INPUT Routine Flow

The INPUT routine handles the character input. It
is called when an IBF interrupt occurs. After the
usual swapping of register banks and saving of the
accumulator, DBBIN is read and stored in register
R2. DBBIN contains the Display Data Word. The
format for this word, Figure 15, has two fields: Digit
Select and Character Select. The Digit Select field
selects the digit number into which the character
from the Character Select field is placed. Notice that
the character set is not limited strictly to numerics,
some alphanumeric capability is provided. Once
DBBIN is read, the offset for the selected digit is
computed and placed in the Display Map Pointer
Ro. Next the segment information for the selected
character is found through a look-up table starting
in page 3 of the program memory. This segment in­
formation is then stored at the location pointed at by
the Display Map Pointer. If the Character Select
field specified a decimal point, the segment cohe­
sponding to the decimal point· is ANDed into· the
present segment information for that digit.' After the
accumulator is restored, execution is retutned to the
main program.

The DISPLA routine simply implements the
multiplexing actions described earlier. It is called
whenever a timer interrupt occurs. After sa~g pre"

2-14

DISPLA

SWITCH TO RBl
SAVE ACCUMULATOR

TURN OFF ALL DtG'T
DRIVERS

UPDATE DISPLAY
MAP POINTER

GET SEGMENT INFO
FROM OI$PLA V ",AP

OUTPUT TO SEGMENT
DRIVERS.

TURN ON DIGIT
DRIVER

LOAD AND START TIMER

RESTORE ACCUMULATOR

RETURN

FlgLlre14C. DISPLA Routine Flow

interrupt status by switching register banks and
storing the Accumulator, all digit drivers are turned
off. The Display Map Pointer is then updated using
the Current Digit Register to point at that digit's
segment information in the Display Map. This infor­
m!ltion is output to .PORT 1; the segment drivers.
The number of the current digit, R3, is then sent to
the digit select decoder aria the decoderis enabled.
This turns on the current digit. The digit counter is
incremented and tested to see if all eight digits !:lave
ooEm refreshed. If so, the digit countE!r is reset to.
zero. I£not, nothing is done. Finally, tl;le. timer is
loaded and restarted, the Accumulator is restored,
and the routine returns execution to the main pro­
gram. Thus DISPLA refreshes one digit each time it
is CALLed by the timer interrupt. The digit remains
on until the next time DISPLA is executed.

The UPI software listing is included as Appendix
Al. Appendix.A2 shows the 8085A test routine. used.

AFN~l538A

APPLICA nONS

DISPLAY DATA WORD

11161514131211101

'IIIIII

DIGIT SELECT

7 5 6 DIGIT

0 0 0
Ii 0 1 2,
0 1 0

~ 1 1 4
1 O. 0

0 L 6,

1 0 .' ,7

1 1 8

CHARACTER SELI;CT

4 3 2 1'0 CHAR

0 o. 0" 0 0
0 0 '0 ,0 ... 1
0 0 0 1 '0

0 0 0 1 1

0 0 1 0 0

0"0 1 O. 1

0 0 J 1 0

0 0 1 "1 1

0 1 0 0 it·
"

0 1 I) 0 1

b" 1 ... ,,0·, 1· .. ·0,

0 1 0 1 1.

0 1. ··1 ,0 0

0 1. 1 0 i
0 1 1 o·
0 "1: 1 1

."

·1 0 0 0 0

1 0 0 O. 1.
,1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

0 1 1 0
'0 1 1 1 ' '.

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 l' 0 1 ,.1
1) 1 0 O.

'1 1 1 0 1
:, "1 1 1. 0

1 1 .. ,,1. 1

o· ...

2

i

"R

' r

F

0

':I"

blank:

,':

Figur.15., LED Di8PlayCon~~o"e"Pi8p'aYData
Word Format .

to display the contents ora display buffer on the dis"
play. TheS085A. software takes care of the display
digit riuhibeHng. Since the application is input-only
for the UPI,'the only protocol required is that the
niastermust test IBF before'writing a Display Data:'
Wordint6DBBIN. ., ,

On the iSBC SO/30, the UPI frequency is at 5.5296
MHz/l'D'obtain,a flioker"free display, the whole dis~
play must be refreshed at a ratedf 50 Hz or greater;

2-15

If we assume a 50 Hz refresh rate and an S-digit dis­
play, this means the DISPLA routine must be
CALLed 50X80r 400 times/sec. This transfers, using
the timer intetval of87 /lS at 5.5296 MHz, to a timer
count of 227. (Recall from the UPI-4iA User's Man­
ual that the timer is an "S-hit up-counter".) Hence
the TIME eq1,lateof 227D. in the UPI listing. Obvi­
ously, different frequency sources or.display lengths
would require that this'equate be modified.

With the UPI running at5..5296 MHz, the instruc­
tion cycle time is 2.713 /ll:!; The DISPLA routine re­
quires 28 instruction cycles, therefore, the routine
executes in 76 /lB. Since DISPLA is CALLed 400
times/sec, the total time spent refreshing the display
during one second is then 30 ms or 3 %of the total
UPI time" This leaves 97.0 % for any foreground
tasks that, could be added.

While the basic UP! software is useful just as it
stands, there are several enhancements that could be
incorporated depending on the application. Auto-in­
crementing of the digit location could be added to.
the input routine to alleviate the need for the master
to keep track of digit numbers. This could be (op­
tionally) eitlier right-handed'or left-handed entry a
la TI or HP calculators. The character set could be
easily modified by simply changing the lookup table.
The display could be expanded to 16 digits at the
expense of one additional PORT 2 digit select line,
the replacement of the 3·to-8 decoder with a 4-to-16
decoder, and 8 more Display'Maplocations.

Now lee~move" on to a slightly mOre complex appli­
<i,ation that. is UP! output-only-a sensor matrix
controller. . .

Sensor ~~trjx CohtroliEU
Quite . often a microprocessor system is called upon
to,l'ead the status of a large number of simple SPST
swit<;,hes or sensors. This is especially true in a proc­
ess, o~indl,lstria.l control enviromn,ent. Alarm sys~
te.ms.are also good examples of systems with a large
sensor population. If the number.of sensors is small;
itlPight be reasonable .to dedica.te a single input port
pi,l'l for ea<;h.$ensor., However, as the numbe.rof.sen­
sors increase, this technique becomes ,very wastefuL
Abetter arrangement is to configure the sensors in a
matrix organization like that shown in Figure 16.
This arrangement of 16 sensors requires only 4 input
and 4 output lines; half the number needed if dedi­
cated . .inputs' were used;' The line saving becomes
even 'more substantial' as the number :of sensors
increases~: ,

AFN.()I536A

APPLICATIONS

In Figure 16, the basic operation of the matrix in­
volves scanning individual row select lines in se­
quence while. reading the column return lines. The
state of any particular sensor can then be deter­
mined by decoding the row and column information.
The typical configuration pulls up the column re­
turn lines and the selected row is held low. De­
selected rows are held high. Thus a return line re­
mains high for an open sensor on the selected row
and is pulled low for a closed sensor. Diode isolation
is used to prevent a phantom closure which would
occur when a sensor is closed. on a selected row and
there are two or more closures on a deselected row.
Germanium diodes are used to provide greater noise
margin at the return line input.

ROW
SELECT

LINES'

2 + v 1 + v O+v

Figure 16, 4x4 Sensor Matrix

-y

FIFO NOT
EMPTY

OBF

DO-
07

cs
-
RD

WA

AO

P24

P2S

If the main processor was required to control such a
matrix it would periodically have to output at the
row port and then read the colum:r;J. return port. The
processor would need to maintain in memory a map
of the previous state of the matrix. A comparison of
the new return information to the old information
would then be made to determine whether a sensor
change had occurred. Any changes would be pro­
cessed as needed. A row counter and matrix map
pointer also require maintenance each scan. Since in
most applications sensors change very slowly com­
pared to most processing actions, the processor
probably would scan the rows only periodically with
other tasks being processed between scans.

Rather than require the processor to handle the
rather mundane tasks of scanning, comparing, and
decoding the matrix, why not use a dedicated pro­
cessor? The UPI is perfect.

Figure 17 shows a UPI configuration for controlling
up to 128 sensors arranged in a 16X8 matrix. The 4-
to-16 line decoder is used as the row selectqr to save
port pins and provides the expansion to 128 sensors
over the maximum of 64 sensors if the port had been
used directly. It also helps increase the port drive ca­
pability. The column return lines go directly into
PORT 1. Features of this design include complete
matrix management. As the UPI scans the matrix it
compares its present status to the previous scan. If
any change is detected, the location of the change is
decoded and loaded, along with the sensor's present
state, into DBBOUT. This byte is called a Change
Word. The Master processor has only to read one
byte to determine the status and coordinate of a
changed sensor. If the master had not read a pre­
vious Change Word in DBBOUT (OBF=I) before a
new sensor change is detected, the new Change

PORT 1 8 RETURN LINES

8041AI
8741A 74154

P23 - D ..

P22 '-- C 1S~ 16 x 8
1 16 SENSOR

P21 c-- B

G: \

MATRIX

P20 t--- A
G1

.~ .~ SELECT LINES

Figure 17. 128 Sensor Matrix Controller

AF~1536A

2-16

APPLICATIONS

Word is loaded into an internal FIFO. This FIFO
buffers up to 40 changes before it fills. The status of
the FIFO and OBF is. made available to the master
either by polling the UPI STATUS register, Figure
18A, or. as interrupt sources on port pins P24 and
P25 respectively, Figure 17. The FIFO NOT EMP­
TY pin and bit are true as long as there ,are changes
not yet read in th~. FIFO. As long as the FIFO is not
empty, the UPI monitors OBF and loads new
Change Words from the FIFO into DBBOUT. Thus,
the UPI provides complete FIFO management.

OBF - CHANGE WORD READY (P25)

IBF
'-'-~~-- F1

L..---__ FO

'------- FIFO NOT EMPTY (P24)
'-------,----- NOT USED

Figure 18A. Sensor Matrix Status Register Format

OBaOUT REGISTER - CHANGE WORD

716151413121,101

11~'~'t::I' ~I~~I ~I~I~ SENSOR COORDINATE

L:---------- S~N~~~JJ:ciE
1 =OPEN

Figure 188. Sensor Matrix Change Word Format

Internally, the matrix' scanning software is pro­
grammed to run as a foreground task. This allows
the timer/counter to be used by any background task
although the hardware configuration leaves only 2
inputs (TEST 0 and TEST 1) plus 2 I/O port pins
available. Also, to add a background task, the FIFO
would have to be made smaller to accommodate the
needed register and data memory space. (It would be
possible however to turn the table here and make the
scanning software timer/counter interrupt-driven
where the timer times the scan interval.)

The data memory organization for this application is
shown in Figure 19. The upper 16 bytes form the
Matrix Map and store the senso.r states from the
previous scan; one bit for each sensor. The Change
Word FIFO occupies the next 40 locations. (The top
and bottom addresses of this FIFO are treated as
equate variables in' the program so that the FIFO
size m~y easily be changed to accommodate the reg­
ister needs of other tasks.) Register Ro serves as a
pointer into the matrix map area for comparisons

and updates of the sensor status.Rl is a .general
FIFO pointer, The FIFO is implemelltedas a circu­
larbuffer with In and Out pointer registers which
are stored in R4 and R5 respectively. These registers
are moved into FIFO pointer R1for actual transfers
into or out of the FIFO. R2is the Row Select
COlj.nter. It stores the number of the row being
scanned.

63

48
47

MATRIX MAP
16 x 8

FIFO
40 X 8

COMPARE RE$Ul T

CHANGE WORO STORE

.. FIFO OUT

FIFO IN

COLUMN. COUNTER

SCAN ROW SELECT

FIFO POINTER

MATRIX MAP POINTER

R7

R6

R5

R4

R3

R2

R1

RO

Figure 19. Sensor Matrix Data Memory Map

Register Ra is the Column Counter. This counter is
normally set to OOH;however, when a change is de­
tected somewhere in a particular row, it is used to
inspect each sensor status bit individually for a
change. When a changed counter sensor bitis found,
the Row Select Counter and Column Coimter are
combined to give the sensor's matrix coordinate.
This coordinate is temporarily stored in the Change
Word Store, register R6. Register R7 is the Compare
Result. As each row is scanned, the return informa­
tion is Exc1usive-OR'd with the return information
from,the previous scan of that row. The result of this
operation is stored in R7. If R7 is zero, there have
been no changes on that row. A non-zero result indi­
cates at least one changed sensor.

2·17

The basic program operation is shown in the flow
chart of Figure 20. At RESET, the software ini­
tializeS the working registers, the ports, and clears
the STATUS register. To get a starting point from
which to perform the sensor comparisons, the cur­
rent status of the matrix is read and stored in the
Matrix Map. At this point, the UPI begins looking
for changed sensors starting with the first row.

AF~1536A

APPLICATIONS

INITIALIZATION

SCAN AND
COMPARE

CHANGE WORD
ENCODING

FIFODBBOUT
MANAGEMENT

Figure 20. Sensor Matrix Controller Flow Chart

2-18

Before delving further into the flow, let's pause to
describe the general format of the operation. The
UPI scans the matrix one row at a time. If no
changes are detected on a particular row, the UPI
simply moves to the next row after checking the sta­
tus of DBBOUT and the FIFO. If a change is de­
tected, the UPI must check each bit (sensor) within
the row to determine the actual sensor location.
(More than one sensor on the scanned row could
have changed.) Rather than test all 8 bits of the row
before check.ing the DBBOUT and FIFO status
again, the UPI performs the status check in between
each of the bit tests. This ensures the fastest re­
sponse to the" master reading previous Change
Words from DBBOUT and the FIFO.

With this general overview in mind, let's go first
thru the flow chart assuming we are scanning a row
where no changes have occurred. Starting at the
Scan-and-Comparesection, the UPI first checks if
the entire matrix has been scanned. If it has, the var­
ious pointers are reset. If not, the address of the
next row is placed on PORTs 20thru 23. This selects
the desired row. The state of the row is then read
on PORT 1; the column return lines. This present
state is compared to the previous state by retriev­
ing the. previous state from the matrix map and
performing an Exclusive-OR with the present state.
Since we are assuming that no change has occurred,
the result is zero. No coordinate decoding is needed
and the flow branches to the FIFO-DBBOUT Man­
agement section.

The FIFO-DBBOUT Management section simply
maintains the FIFO and loads DBBOUT whenever
Change Words are present in the FIFO and
DBBOUT is clear (OBF=O). The section first tests if
the FIFO is full. (If we assume our "no-change" row
is the first row scanned, the FIFO obviously would
not be full.) If it is, the UPI waits until OBF=O, at
which point the .next Change Word is retrieved from
the FIFO and placed in DBBOUT. This "unfills" the
FIFO making room for more Change Words. At this
point, the Column Counter, R3, is checked. For rows
with no changes, the Column Counter is always zero
so the test simply falls through. (We cover the case
for changes shortly.) Now the FIFO is tested for be­
ing empty. If it is, there is no sense in any further
tests so the flow simply goes back up to scan the next
row. If the FIFO is not empty, DBBOUT is tested
again through OBF. If a Change Word is in
DBBOUT waiting for the master to read it,nothing
can be done and the flow likewise bran(:hes up for
the next row. However, if the DBBOUT is free and
remembering that the previous test showed that the
FIFO was not empty, DBBOUT is loaded with the
next Change Word and the last two conditional tests
repeat.

AFN-Ol536A

APPLICATIONS

Now let,~s assume the next row contains several
changed sensors. Like before, the row is selected, the
return lines ,read, and the sensor status. compared to
the previous scan. Since changes have ,occurred, the
Exclusive • .oRresult is now non-zero .. Any l's in the
result reflect the positions of the changed sensors.
This nonczero result is stored in the Compare Result
register, R7. At this point, the Column Counter is
preset to S. To determine the changed sensors' loca­
tions, the Compare Result register is shifted bit-by­
bit to the left while decrementing the Column
Counter. Mter each shift; BIT 7 of the result is test­
ed. If it.is a one, a changed sensor has' been' found.
The Column Counter then reflected the sensor's ma­
trix column position while the. Scan Row Select reg­
ister holds it row position. These registers are then
combined in R6, the Change WordStore, to form the
sensor's matrix coordinate section of the Change
Word. The Sth bit of the Change Word Store is cod­
ed with the sensor's present state (Figure IS). This
bYte forms the complete Change Word. It is loaded
into the next available FIF.o position. If BIT 7 of the
Compare'Resuit had been zero, that particular sen­
sor had not changed and the coordinate decoding is
not performed.

In between each~hift; test, and coordinate encode (if
necessary), the FIF.o-DBB.oUT Management is
performed. It is the Column Counter test within this
section that routes the flow back up to the Change
Word Encoding section if the entire Compare Result
(row) has not been shifted and tested.

The FIFO is implemented as a circular buffer with
IN and .oUT pointers (R4 and R5 respectively). The
operations 'of the FIF.o is best understood using an
example, Figure 21, This series of figures show how
theFIF.o, DBB.oUT, arid .oBF interact as changes
are detected and Change Words are l,"ead by the m~s­
ter. The letters correspond to sequential Change
Words beiftg foaded into the FIF.o. N()te that the fig­
ures ehOw, only a 4XS FIFO however, the principles
are the same in the 40XS FIF.o.

Figure' 21A shows the condition where no Change
Words have been loaded into the FIF.o or DBB.oUT.
In Figure 21B a change, "A", has been detected, de­
coded, and loaded into the FIF.o at the location
equal to the value' of the FIF.oclN pointer. The
FIF.o-OUT pointer is reset to the bottom, of the
FIF.o since it had reached the FIF.o top. Now that a
Cpange Word is in the FIF.o, .oBF is checked to see
if DBBOUT is empty. Because .oBF=O, DBB.oUT is
empty and ,the C~ange Word is loaded from the
FIFO location pointed at by theFIF.o-.oUT pointer.
This is shown in Figure 21C. LoadingDBB.oUT
automatically sets .oBF . .oBF remains set until the

master reads DBB.oUT. Figures 21D and 21E show
two more Change Words loaded into the FIF.o. In
Figure 21F the first Change. Word is finally read by
the master resetting .oBF.Thisallows the next
Change Word to be loaded into DBB.oUT. Note that
each time theFIF.o is loaded, the FIF.o-INpointer
increments. Each time DBB.oUT is read the FIF.o­
.oUT pointer increments unless there are no more
Change Words in the FIFO. Both pointers wrap­
around to the bottom once they reach the FIF.o top.
The remaining figures show more Change Words be­
ing loaded into the FIF.o. When the entire FIF.o fills
and DBB.oUT can not be loaded (.oBF=l), scanning
stops until the master reads DBBOUT making room
for more Change Words.

As was mentioned earlier, two interrupt outputs to
the master are available: Change Word Ready (P25,
.oBF) and FIF.o N.oT EMPTY (P24). The Change
Word Ready interrupt simply reflects .oBF and is
handled automatically by'the UPI since an EN
FLAGS instruction is executed during initialization.
The FIF.o N.oT EMPTY interrupt is generated and.
cleared as appropriate, each pass through the FIF.o
management code. " '

No debouncing is provided although it could be
added. Rather, the scan time is left as an equate
variable so that it could be varied to account for both
debounce time and expected sensor change rates ..
The minimum scan time for this application is
2msec when using a 6MHz clock. Since the matrix
controller is coded as a foreground task, scan time
simply uses a software delay loop.

2-19

The UPI software is included as Appendix BL Ap­
pendix B2 is SOS5A test software which builds a
Change Word buffer starting at BUFSRT. This soft­
ware simply polls the STATUS register looking for
Change Word Ready to go true. DBB.oUT is then
read and loaded into the buffer. Now let's move on to
an application which combines both the foreground
and background concepts. '

Combination 1/ 0 Device
The final UPI application was designed especially to
add additional serial and parallel 1/.0 ports to the
iSBC SO/30. This UPI simulates a full-duplex UART
(Universal Asynchronous ReceiVer/Transmitter)
combined with an S-bit paraUell/.o port. Features of
the UART include: software selectable baud rates
(110, 300, 600, or 1200 baud), dOl.lble buffering for
both the transmitter and receiver,. and receiver test-·
ing for false start bit, framing, and overrun errors.
For parallel 1/.0, one S-bit port is programmable for
either input or output. The output.port is statically'
latched and the input port is sampled.

AFN.()l536A

APPLICATIONS

AI
OUT

c:J
OBF

DBBOUT

BI

c:J
OBF

0 OUT

OaaOUT

C)

[J
OBF

--

FIFO
FIFO EMPTY

A

I--

f--

FIFO
CHANGE A DETECTED

I--

IN

IN

IN o OUT --
DBBQUT FIFO

01

[J
OBF

D
OaSOUT

EI

[J
OBF

DBBOUT

CHANGE A LOADED INTO DBBOUT,
FIFO EMPTY

OUT

OUT

-
B

--
FIFO

CHANGE B DETECTED

-
C

-- B

FIFO
CHANGE C DETECTED

IN

IN

FI

I--

8 c

OBF
OUT ---- B

0
DBBOUT

(MASTER READS
FIFO

CHANGE A
FINALl Y READ

GI

HI

JI

DBBOUT)

[J OUT

OBF

0
DBBOUT

[] OUT

OBF

L:]
DBBOUT

D OUT

OBF

L:]
DBBOUT

D OUT

oaaOUT

f--

-- C

FIFO
CHANGE B LOADED

INTO DBBOUT

0

- c

I--
FIFO

CHANGE 0 DETECTED

0

---- C

-
E

FIFO
CHANGE E DETECTED

0

--+ C -
F

E

FIFO

CHANGE F DETECTED. FIFO FULL.
SCANNING STOPPED UNTil B IS READ

Figure 21A-J. FIFO Operation Example

2-20

IN

IN

IN

IN

IN

AfN-tl1536A

APPLICATIONS

Figure 22 shows the interface of this combination
I/O device to the dedicated UPI socket on the iSBC
80/30. The only external requirement is a 76.8 kHz
source which serves as the baud rate standard. The
internal baud rates are generated as multiples of this
external clock. This clock is obtained from one of the
8253 counters. Otherwise, an RS-232 driver and re­
ceiver already available for UPI use in serial I/O ap­
plications. Sockets are also provided for termination
of the parallel port.

g
z
o
u

PARAllEL PORT

TxD

TICK SAMPLE

EXT CLOCK(76.8 KHz)
FROM 8253

Figure 22. Combination 1/0 Device

There are three commands for this application.
Their format is shown in Figure 23. The CON­
FIGURE command specifies the serial baud rate
and the parallel I/O direction. Normally this com­
mand is issued once during system initialization.
The I/O command causes a parallel I/O operation to
be performed. If the parallel port direction is out,
the UPI expects the data byte immediately following
an I/O command to be. data for the output port. If
the port is in the input direction, an I/O command
causes the port to be read and the data placed in
DBBOUT. The RESET ERROR command resets
the serial receiver error bits in the STATUS register.

COMMAND FORMAT

A COP A-12OD BAUD SELECT

000

o

8- 600 BUAC SELECT
c- 300 BAUD SELECT
"0- 110 BAUD SELECT
P-PARAlLElI/Q DIRECTION

O-INPUT
1-0UTPUT

o 1/0 COMMAND

o RESET ERROR COMMAND

Figure 23. Combination 1/0 Command Format

The STATUS register format is shown in Figure 24.
Looking at each bit, BIT 0 (OBF) is the DATA
AVAILABLE flag. It is set whenever the UPI places
data into DBBOUT. Since the data may come from

2-21

either the receiver or the parallel input port, the FO
and Fl flags (BITs 2 and 3) code the source. Thus,
when the master finds OBF set, it must decode FO
and Fl to determine the source.

STATUS FORMAT

OBF -OAT A AVAILABLE
IBF-BUSY

L~=~==:Fl NOT USED
'-------- Tx INTERRUPT

'---------- FRAMING ERROR
L-_________ OVERRUN ERROR

FO F 1 OPERATION (SF = 1)

NO OPERATION

PARALLEL L C·DATA
SERIAL I, 0 DATA
COMMAND ERROR

Figure 24. STATUS Register Format

BIT 1 (IBF) functions as a busy bit. When IBF is set,
no writes to DBBIN are allowed. BIT 5 is the TxINT
(Transmitter Interrupt) bit. It is asserted whenever
the transmitter buffer register is empty. The master
uses this bit to determine when the transmitter is
ready to accept a data character.

BITS 6 and 7 are receiver error flags. The framing
error flag, BIT 6, is set whenever a character is re­
ceived with an invalid stop bit. BIT 7, overrun error,
is set if a character is received before the master has
read a previous character. If an overrun occurs, the
previous character is overwritten and lost. Once an
error occurs, the error flag remains set until reset by
a RESET ERROR command. A set error flag does
not inhibit receiver operation however.

Figure 25 shows the port pin definition for this ap­
plication. PORT 1 is the parallel I/O port. The
UART uses PORT 2 and the Test inputs. P20 is the
transmitter data out pin. It is set for a mark and re­
set for a space. P23 is a transmitter interrupt output.
This pin has the same timing as the TxINT bit in the
STATUS register. It is normally used in interrupt­
driven systems to interrupt the master processor
when the transmitter is ready to accept a new data
character.

The OBF flag is brought out on P24 as a master in­
terrupt when data is available in DBBOUT. P26 is a
diagnostic pin which pulses at four times the se­
lected baud rate. (More about this pin later.) The re­
ceiver data input uses the TEST 0 input. One of the
PORT 2 pins could have been used, however, the

AFN-01536A

APPLICATIONS

PORT PIN DEFINITION

PORT BIT FUNCTION

0-7 PARALLEL I/O

Tx Data
NOT USED

NOT USED
Tx INTERRUPT
OBF INTERRUPT
NOT USeD

NOT USED (TICK SAMPLE)

NOT USED

TO Rx DATA

T1 EXTERNAL CLOCK (76.8 kHz)

Figure 25. Combination 1/0 Port Definition

software can test the TEST 0 in one instruction
without first reading a port.

The TEST 1 input is the baud rate external source.
The UART divides this input to determine the tim­
ing needed for the selected baud rate. The input is a
non-synchronous 76.8 kHz source.

Internally, when the CONFIGURE command is re­
ceived and the selected baud rate is determined, the
internal timer/counter is loaded with a baud rate
constant and started in the event counter mode.
Timer/counter interrupts are then enabled. The
baud rate constant is selected to provide a counter
interrupt at four times the desired baud rate. At
each interrupt, both the transmitter and receiver are
handled. Between interrupts, any new commands
and data are recognized and executed.

As a prelude to discussing the flow charts, Figure 26
shows the register definition. Register Bank 0 serves
the UART receiver and parallel I/O while Register
Bank 1 _handles the UART transmitter and com­
mands. Looking at RBO first, R3 is the receiver sta­
tus register, RxSTS. Reflected in the bits of this
register is the current receiver status in sequential
order. Figure 27 shows this bit definition. BIT 0 is
the Rx flag. It is set whenever a possible start bit is
received. BIT 1 signifies that the start bit is good
and character construction should begin with the
next received bit. BIT 1 is the Good Start flag. BIT 2
is the Byte Finished flag. When all data bits of a
character are received, this flag is set. When all the
bits, data and stop bits are received, the assembled
character is loaded into the holding register (R4 in
Figure 27) BIT 3, the Data Ready flag, is set. The
foreground routine which looks for commands and
data continuously, looks at this bit to determine
when the receiver has received a character. BITS 4
andS signify any error conditions for a particular
character.

2-22

63
USER RAM

32 (NOT USED)

31 AC TEMP. STORE R7

30 COMM.AND STORE R6

29 Tx STATUS - TxSTS R5

28 Tx BUFFER R4 REGISTER

27 Tx SERIALIZER
BANK 1

R3

26 Tx TICK COUNTER R2

25 BAUD RATE CONSTANT R1

24 NOT USED RO

23 STACK
(ONE LEVEL USED)

STATUS STORE R7

Rx OESJ:RIALIZER R6

Rx TICK COUNTER R5

Rx HOLDING R4 REGISTER

Rx STATUS-RxSTS
BANK a

R3

NOT USED R2

NOT USED R1

NOT USeD RO

L-______________________ -----J

Figure 26. Combination 1/0 Register Map

-765~ 1;' RxSTS FORMAT

Rx FLAG-POSSIBLE START BIT
START FLAG-GOOD START BIT

'-----ByTE FINISHED FLAG

L~====:::DATA READY FLAG
FRAMING ERROR

'---------OVERRRUN ERROR
'----~-----. I 0 DIRECTION

'-------_____ I 0 FLAG

Figure 27. RxSTS Register

The parallel I/O port software uses BITS 6 and 7.
BIT 6 codes the I/O direction specified by the last
CONFIGURE command. BIT 7 is set whenever an
I/O command is received. The foreground routine
tests this bit to determine when an I/O operation has
been requested by the master;

As was mentioned, R4 is the receiver holding regis­
ter. Assembled characters are held in this register
until the foreground routine finds DBBOUT free, at
which time the data is transferred from R4 to
DBBOUT. RS is the receiver tick counter. Recall
that counter interrupts occur at four times the baud
rate. Therefore, once a start bit is found, the receiver
only needs to look at the data every four interrrupts
or tick counts. RS holds the current tick count.

R6 is the receiver de-serializing register. Data char­
acters are assembled in this register. R6 is preset to
SOH when a good'start bit is received. As each bit is

AFN-01536A

APPLICATIONS

sampled every four timer ticks, they are rotated into
the leftmost bit of R6. The software knows. the char­
acterassembly is complete when tpe original preset
bit rotates into the carry.· . >

An image of the upper 4 bits of the STATUS register
is stored in R7. These bits are the TxINT, Framing
and Overrun bits. This image is needed since the
UPI may load the upper 4 STATUS register bits
from its accumulator; however, it cannot read STA­
TUS directly.

In Register Bank 1 (Figure 26), Rl holds the baud
rate constant which is found from decoding the baud
rate select bits of the CONFIGURE command. The
counter is reloaded with this constant every timer
tick. Like the receiver, the transmitter only needs to
update the transmitter output every four ticks. R2
holds the transmitter tick count. The value of R2 de­
termines which portion of the data is being trans­
mitted; start bit, data bits, or stop bit. The transmit
serializer is Ra. Ra holds the data character as each
character bit is transmitted.

R4 is the transmitter holding register. It provides
the double buffering for the transmitter. While
transmitting one character, it is possible toload the
next character into R4 via DBBIN. The TxINT bit
in STATUS and pin on PORT 2 reflect the "full­
ness" of R4. If the holding register is empty, the in­
terrupt bit and pin are set. They are reset when the
master writes a new data byte for the transmitter
into DBBIN. The transmitter status register
(TxSTS) is R5. Like RxSTS,TxSTS contains flag
bits which indicate the current state of the transmit­
ter. This flag bit format is shown in Figure 28.

TxSTS BIT 0 is the Tx flag. It is set whenever the
transmitter is transmitting a character. It is set from
the beginning of the start bit until the end of the
stop bit. BIT 1 is the Tx request flag. This bit is set
by the foreground routine when it transfers a new
character from DBBIN to the Tx holding register,
R4. The transmitter software uses this flag to tell if
new data is available. It is reset when the transmitter
transfers the character from the holding register to
the serializer.

TxSTS FORMAT

Figure 28. TxSTS Register

BIT 2 is the pipelined Tx data bit. The transmitter
uses a pipelining technique which sets up the next
output level in BIT 2 after processing the current
timer tick. The output level is always changed at the
same point after a timer tick interrupt. This tech­
nique ensures that no bit timing distortion results
from different length processing paths through the
receiver and transmitter routines.

BIT a of TxSTS is the Start Bit flag. It is set by the
transmitter when the start bit space is set up in the
pipelined data bit. This allows the transmitter to
differentiate between the start bit and the data bits
on following timer ticks ..

The flow charts for this application are shown in
Figures 29A-F. At reset, the INIT routine is exe­
cuted which initializes the registers and port pins.
After initialization, IBF and OBF are tested in
MNLOOP. These flags are tested continually in this
loop. If IBF is set, Fl is tested for command or data
and execution is transferred to the appropriate rou­
tine (CMD or DATA). If IBF=O, OBF is checked. If
OBF==O (DBBOUT is free), the Rx data ready and
I/O flags in RxSTS are tested. If Rx data ready is set,
the received data is retrieved from the Rx holding
register and transferred to DBBOUT. Any error
flags associated with that data are also transferred to
STATUS. If the I/O flag is set and the I/O direction
is input, PORT 1 is read and the data transferred to
DBBOUT. In either case, FO and Fl are set to indi­
cate the data source.

If IBF is set by a command write to DBBIN, CMD
reads the command and decodes the desired oper­
ation. If an I/O operlltion is specified, the I/O flag is
set to indicate to the MNLOOP and DATA routines
that an I/O operation is to be performed. If the com­
mand is a CONFIGURE command, the constant for
the selected baud rate is loaded into both Baud Rate
Constant register and the timer/counter. The timer/
counter is started in the event counter mode and
timer/counter interrupts are enabled. In addition,
the I/O port is initialized to alil's ifthe I/O direction
bit specifies an input port. If the command is a RE­
SET ERROR command, the two error flags in STA­
TUS are cleared.

If the IBF flag is set by a data write, the DATA rou­
tine reads DBBIN and places the data in the appro­
priate place. If the I/O flag is set, the data is for the
output port so the port is loaded. If the I/O flllg is
reset, the data is for the UART transmitter .. Data for
the transmitter resets the TxINT bit and pin plus
sets the Tx request flag in TxSTS. The data is trans­
ferred to the Tx holding register, R4.

AFN-{)1536A

2-23

APPLICATIONS

Figure 29A.

Once a CONFIGURE command is received and the
counter started, timer/counter interrupts start oc­
curring at four times the selected baud rate. These
interrupts cause a vector to the TIMINT routine,
Figure 29D. A 76.'8 kHz counter input provides a
13.02 /LS counter resolution. Since it requires several
UPI instruction cycles to reload the counter, the
counter is set to two counts less than the desired
baud rate and the counter is reloaded in TIMINT
synchronous with the second low-going transition
after the interrupt .. Once the counter is reloaded, an
output port (P26) is toggled to give an external indi-

SET FRAMING
ERROR IN STATUS

OUTPUT

INIT Flow Chart

2-24

cation of internal counter interval. This is a helpful
diagnostic feature. After the tick sample output, the
pipelined transmitter data in TxSTS is output to the
TxD pin. Although this occurs every timer tick, the
pipelined data is changed only every fourth tick.

The receiver is now handled, Figure 29E. The Rx
flag in RxSTS is exainined to· see if the receiver is
currently in the process of receiving a character. If it
is not, the RxD input is tested for a space condition
which might indicate a possible start bit. If the input
is a mark, no start bit is possible and execution

AFN'()l536A

APPLICA TrONS

Figure 29B. CMD Flow Chart

branches to the transmitter flow, XMIT. If the input
is a space, the Rx flag is set before proceeding with
XMIT~ ..

If the Rx flag is found set when entering ReV, the
receiver is in the process of receiving a character. If
so, the start bit flag is then tested to determine if a
good start bit was received. The Rx tick co~nter is
initialized to 4 and the Rx deserializer is set to SOH.
A mark indicates a bad start bit; the Rx flag is reset
to abort the reception.

If the start bit flag is set, the program is somewhere
in the middle of the received character. Since the
data should be sampled every fourth timer tick, the
tick counter is decremented and tested for zero. If
non-zero no sample is needed and execution contin­
ues with XMIT. If.zero, the tick counterisreset to
four. Now.the byte finished flag is tested to . deter­
mine if the data sample is a data or stop bit. If reset,
the sample is a data bit .. The sample is done and the
new bit rotated into the Rx deserializer. If this rotate Figure 29C. Data Flow Chart

2-25
AFN-Ql536A

APPLICATIONS

Figure 290. TIMINT Flow Chart

sets the carry, that data bit was the last so the byte
finished flag is set. If the carry is reset, the data bit is
not the last so execution simply continues with
XMIT.

Had the byte finished flag been set, this sample is for
the stop bit. The RxD input is tested and if a space,
the framing error flag is set. Otherwise, it is reset.
Next, the Rx data ready flag is tested. If it is set, the
master has not read the previous character so the
overrun error flag is set. Then the Rx data ready flag .
is set and the received data character is transferred
into the Rx holding register. The Rx, start bit, and
byte finished flags are reset to get ready for the next
character.

Execution of the transmitter routine, XMIT, follows
the receiver, Figure 29F. The transmitter starts by
checking the start bit flag in TxSTS. Recall that the
actual transmit data is output at the beginning of
the timer routine. The start bit flag indicates wheth­
er the current timer tick interrupt started the start
bit. If it is set, the pipelined data output earlier in
the routine was the start of the start bit so the flag is
reset and the Tx tick counter is initialized. Nothing
else is done this timer tick so the routine returns to
the foreground.

2-26

If the start bit flag is reset, the Tx tick counter is
incremented and tested. The test is performed mod­
ulo 4. If the counter mod 4 is not zero, it has not been
four ticks since the transmitter was handled last so
the routine simply returns. If the counter mod 4 is
zero, it is time to handle the transmitter and the Tx
flag is tested.

The Tx flag indicates whether the transmitter is ac­
tive. If the transmitter is inactive, no character is
currently being transmitted so the Tx request flag is
tested to see if a new character is waiting in the Tx
buffer. If no character is waiting (Tx request
flag=O), the Tx interrupt pin and bit are set before
returning to the foreground. If there is a character
waiting, it is retrieved from the buffer and placed in
the Tx serializer. The Tx request flag is reset while
the Tx and start bit flags are set. A space is placed in
the Tx pipelined data bit so a start bit will be output
on the next tick. Since the Tx buffer is now empty,
the Tx interrupt bit and pin are set to indicate the
availability of the buffer to the master. The routine
then returns to the foreground.

If the tick counter mod 4 is zero and the Tx flag in­
dicates the transmitter is in the middle of a charac­
ter, the tick counter is checked to see what transmit­
ter operation is needed. If the counter is 28H (40D),
all data bits plus the stop bits are complete. The
character is therefore done and the Tx flag is reset. If
the counter is 24H (36D), the data bits are complete
and the next output should be a mark for the stop bit
so a mark is.loaded into the Tx pipelined data bit.

If neither of the above conditions are met for the
counter, the transmitter is some place in the data
field, so the next data bit is rotated out of the Tx
serializer into the pipelined data bit. The next tick
outputs this bit.

At this point the program execution is returned to
the foreground.

That completes the discussion of the combination
I/O device flow charts; The UPI software listing is
shown in Appendix Cl. Appendix C2 is example
B085A driver software.

Several observations concerning the drivers are ap­
propriate. Notice that since the receiver and input
port of the UPI use the OBF flag and interrupt out­
put, the interrupt and flag are cleared when the mas­
ter reads DBBOUT. This is not true for the
transmitter. There is always some time after a mas­
ter write of new transmitter data before the trans­
mitter bit and pin are cleared. Thus in an interrupt­
driven system, edge-sensitive interrupts should be

AFN.o1536A

APPLICATIONS

(Rev·

Figure 29E.

used. For polled-systems, the software must wait
after writing new data for IBF=O before re-examin­
ing the Tx interrupt flag in STATUS.

Notice that this application uses none of the user
data memory above Register Bank 1 and only 361
bytes of program memory. This leaves the door open
for many improvements. Improvements that come
to mind are increased buffering of the transmit or
received data, modem control pins, and parallel port
handshaking inputs.

This completes our. discussion of specific UPI appli­
cations. Before concluding, let's.look briefly at two
debug techniques used during the development of

)

)

RCV Flow Chart

2-27

these applications that you might find useful in your
own designs.

DEBUG TECHNIQUES
Since the UPI is essentially a single-chip microcom­
puter, the classical data, address, and control buses
are not available to the outside world during normal
operation. This fact normally makes debugging a
UPI design difficult; however, certain "tricks" can be
included in the UPI software to ease this task.

If a UPI is handling multiple tasks, it is usually
easier to code and debug each task individually. This
is fairly standard procedure. Since each task usually
utilizes only a subset of the total number of I/O pins,

AFN-01536A

APPLICATIONS

(.... __;;X;,;MI_T __ oJ) .

(RETR)

Figure 29F. XMIT Flow Chart

coding only one task leaves some I/O pins free. Port
output instructions· can then be added in the task
code being debugged which toggle these unused pins
to determine which section of task code is being ex­
ecuted at any particular time. The task can also be
made to "wait" at various points by using an extra
pin as an input and adding code to loop until a par­
ticular input condition is met.

One example of using an extra pin as an output is
included in the combination serial/parallel device
code. During initial development the receiver was
not receiving characters correctly. Since this could
be caused by incorrect sampling, three lines of code
were added to toggle BIT 6 of PORT 2 at each tick of
the sample clock. This code is at lines 184 and 185 of
the listing. Thus by looking at the location of the tick

2-28

sample pulse with respect to the received bit, the
UPI sampling interval can be observed. The tick
sample time was incorrect and the code was modi"
fied accordingly. Similar techniques could be ap­
plied at other locations in the program.

The EPROM version of the UPI (8741A) also con­
tains another feature to aid in debug: the capability
to single step thru a program. The user may step
thru the programinstruction-by-instruction. The
address of the next instruction to be fetched is avail­
able on PORT 1 and the lower 2 bits of PORT 2. Fig­
ure 30 shows the timing used in the discussion below.
When the single step input, SS, is brought low, the
internal processor responds by stopping during the
fetch portion of the next instruction. This. action is
acknowledged by the processor raising the SYNC

AFN-Q1536A

APPLICATIONS

fi: ~\._..;...._/ ____ -(:~?-:_~_t~_:_:J r--,

PORTS X PORT DATA VALID X ADDRESS ~: x:::
I. tX~1J~iINo._.+I'_--STOPPEO-+ACTIVE_
rlNSTRUCTION

Figure 30. Single Step Timing

output. The address of the instruction to be fetched
is then placed on the port pins. This state may be
held indefinitely. To step to the next instruction, SS
is raised high, which causes SYNC to go low, which is
then used to return SS low. This allows the processor
to advance to the next instruction. If SS is left high,
the processor .continues to execute at normal speed
until SS goes low.

To preserve port functionality, port data is valid
while SYNC is low. Figure 31 shows the external cir~
cuitry required to implement single step while pre­
serving port functionality. S1 is the RUN/STOP
switch. When in the RUN: position, the 7474'is held
preset so SS is high and the UPI executes normally.
When switched to STOP, the preset is removed and

+5

+5 51

~
RUN -".1

:~

o P

the next low-going transition of SYNC causes the
7474 to clear, lowering SS. While sync is low, the
port data is valid and the current instruction is ex­
ecuting. Low SYNC is also used to enable the tri­
state buffers when the ports are used as inputs.
When execution is complete, SYNC goes high. This
transition latches the valid port data in the:
74LS374s. SYNC going high also signifies that the
address' of the next instruction will appear on the
port pins. This state can be held indefinitely with
the address data displayed on the LEDs.

When the S2 is depresseq., the 7474 is set which
causes SS to go high. This allows the processor to
fetch and execute the instruction whose address was
displayed. SYNC going low during execution, clears

74LS374

....-.,..-----120 2Q

10 lQ

7474

Qt----Iss P21 80 8Q
LATCHED
PORT
DATA

7400

C

7407

. 8041AI
8741A

i---'-+-O---ISYNC

'.

• 10F 10 PORT
• LINES

t-,.....---''----'---Il0

7407 --z...
+5

. Figur. 31. Single Step External Circuitry

2·29

.74LS374

lQ

~1538A

APPLICATIONS

the 7474 lowering SS. Thus the processor again stops
when execution is complete and the next fetch is
started.

All UPI functions continue to operate while single
stepping (the processor is actually executing NOPs
internally while stopped). Both IBF and timer/
counter interrupts can be serviced. The only change
is that the interval timer is pre scaled on single
stepped instructions and, of course, will not indicate
the correct intervals in real time. The total number
of instruction which would have been executed dur­
ing a given interval is the same however.

The single step circuitry can be used to step through
a complete program; however, this might be a time­
consuming job if the program is long or if only a por­
tion is to be examined. The circuitry could easily be
modified to incorporate the output toggling tech­
nique to determine when to run and stop. If you
would like to step thru a particular section of code,

2-30

an extra port pin could replace switch S1. Extra
instructions would then be added to lower the port
when entering the code section and raise the port
when exiting the section. The program would then
stop when that section of code is reached allowing it
to be stepped through. At the end of the section, the
program would execute at normal speed.

CONCLUSION
Well, that's it. Machine readable (floppy disk or pa­
per tape) source listings of UPI software for these
applications are available in Insite, the Intel library
of user-donated programs. Also available in Insite
are the source listings for some of Intel's pre-pro­
grammed UPI products.

For information about Insite, write to:
Insite
Intel Corp.
3065 Bowers Ave.
Santa Clara, Ca 95051

AFN-D1536A

APPENDIX A

2-31 AFN-Ql536A

APPLICATIONS

: Fl: ASM4B : F'3. LED PR INT (LP') NOOBJECT

ISIS-I I MCS--48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE

LOC OB.! LINE

1
2
3
4
5

" 7
8
9

10
11
12
13
14
15
10
17
18
19
20
21
22
23
24
25
20
27
28
29
30
31
32
33
34
35

$MOD41A

SOURCE STATEMENT

UPI-41A a-DIGIT LED DISPLAY CONTROLLER

; THIS PROGRAM USES THE UPI-41A AS A LEO DISPLAY· CONTROLLER
j WHICH SCANS AND REFRESHES EIGHT SEVEN-SEGMENT LED DISPLAYS.
j THE CHARACTERS ARE DEFINED BY INPUT FROM A MASTER CPU IN THE
j FORM OF ONE EIGHT BIT WORD PER DIGIT-CHARACTER SELECTION.

j ***
; REGISTER DEFINITIONS:

REGISTER RBI RBO

RO DISPLAY MAP POINTER NOT USED
Rl NOT USED NOT USED
R2 DATA WORD AND CHARACTER STORAGE NOT USED
R3 DIGIT COUNTER NOT USED
R4 NOT USED NOT USED
R5 NOT USED NOT USED
Ro NOT USED NOT USED
R7 ACCUMULATOR STORAGE NOT USED

; **
; PORT PIN DEFINITIONS:

P IN PORT 1 FUNCTION PORT 2 FUNCTION

PO-7 SEGMENT DRIVER CONT~OL DIGiT DRIVER CONTROL

.EJECT

2c32
AFN.()1536A

APPLICATIONS

ISIS-II MCS-4BfUPI-41 MACRO ASSEMBLER. Y3.0 PAQE

LOC DB.! LINE SOURCE STATEMENT

36 ; **
37 ,DISPLAY DATA WORD BIT DEFINITION:
36 ,BIT FUNCTION
39
40 , 0-4
41 5-7
42
43 i CHARACTER SELECT:
44
45
46
47
4B
49
50
51 ,
52
53
54
55 ,
56
57
56
59
60
61
62
63 ,
64 ,
65
66
67
66
69 ,
70 ,
71
72
73
74
75 ,
76 ,
77
78 ; DIGIT
79 ,
60
61
B2,
63
64
65 ,
66
67

D4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1

SELECT:
D7
0
0
0
0
1
1
1
1

D3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

D6
0
0
1
1
0
0
1
1

CHARACTER BELECT
DIQIT SELECT

D2 Dl DO CHARACTER
0 0 0 0
0 0 1 1
0 1 0 2

'0 1 1 3
1 0 0 4
I' 0 1 5
1 1 0 6
1 1 1 7
0 0 0 6
0 0 1 9
0 1 0 A
0 1 1 B
1 0 0 C
1 0 1 D
1 1 0 E
1 1 1 F
0 0 0
0 0 1 Q
0 1 0 H
0 1 1 I
1 0 0 .!
1 0 1 L
1 1 0 N
1 1 1 0
0 0 0 P
0 0 1 R
0 1 0 T
0 1 1 U
1 0 0 Y
1 0 1
1 1 0 f
1 1 1 "BLANK"

D5 DIgIT NUMBER
0 1
1 2
0 3
1 4
0 5
1 6
0 7
1 6

Be ; ***
B9 $E.!ECT

2-33
AFN'()1536A

APPLICATIONS

ISIS-II MCS-411/UPI-41 MACRO ASSEMBLER. Y3.0 PAGE

LOC OB..I

FFFI

0000
0000 0409
0002 00
0003 0436
000' 00
0006 00
0007 0410

0009 0'
OOOA SAOS
OOOC BB3B
OOOE 23FF
0010 AO
0011 IS
0012 FB
0013 B20E
0015 BBOO
0017 23Fl
0019 62
001A "
001B 2'
001C Oll

LINE SOURCE STATEMENT

90 ; ***
91 I EGUATES
92 I THE FOLLOWING CODE DESIGNATES "TIME" AS A YARIABLE. THIS
93 I AD.JUSTS THE AMOUNT OF CYCLES THE TIMER COUNTS BEFORE
94 I A TIMER INTERRUPT OCCURS AND REFRESHES THE DISPLAY. APPROXIMATELY
9') 50 TIMES PER SECOND.
96 TIME EGU -OFH I TIMER YALUE 2. lIMSEC
97 J ***. __ .it._**** ____ • __ _
9B I INTERRUPT BRANCHING
99 I THIS PORTION OF MEMORY IS DEDICATED FOR USE OF RESET AND

100 I INTERRUPT BRANCHINg. WHEN THE INTERRUPTS ARE ENABLED THE
101 ,CODE AT THE FOLLOWING DESIGNATED SPOTS ARE EXECUTED WHEN A
102 j RESET OR A INTERRUPT OCCURS.
103 OR9 0
104 ..IMP START j RESET
10' NOP
106 ..IMP INPUT j IBF INTERRUPT
107 NOP
lOB NOP ,
109 ..IMP DISPLA ,TIMER INTERRUPT

110 ,,**************.**-****
111 , INITIALIZATION
112 I THE FOLLOWINg CODE BETS UP THE UPI-41 AND DISPLAY HARDWARE
113 ,INTO OPERATIONAL FORMAT. THE DISPLAY IS TURNED OFF. THE DISPLAY
114 ,MAP IS FILLED WITH "SLANK" CHARACTERS. THE TIMER SET AND THE
115 I INTERRUPTS ARE ENABLED.
116 i

117 START: SEL
liB ORL
119 MOV
120 BLKMAP: MOV
121 MOV
122 INC
123 MOV
124 ..IB5
125 MOV
126 MOV
127 MOY
12S STRT
129 EN
130 EN

RBI
P2, .OSH
RO •• 3BH
A. tlOFFH
@RO,A
RO
A.RO
BLKMAP
R3 •• OOH
A •• TIME
T.A
T
TCNTI
I

,
) TURN DIgiT DRIYERS OFF
,DISPLAY MAP POINTER. BOTTOM OF DISPLAY MAP
I FF-="BLANKIO
,BLANK TO DISPLAY MAP
I INCREMENT DISPLAY MAP POINTER
) DISPLAY MAP POINTER TO ACCUMULATOR
I BLANK DISPLAY MAP TILL FILLED
j SET DIIIIT .COUNTER TO 0
I TIMER VALUE
,LOAD TIMER
) START TIMER
I ENABLE TIMER INTERRUPT
I ENABLE IBF INTERRUPT

131
132
133
134
1311
136
137

; **
J USER PROGRAM
I A USERS PROgRAM WOULD INITIALIZE AT THIS POINT. THE FOLLOWINg
I CODE I S UNO CONCLUDED WITH
j SYNC CHARACTERS (OAAH)' A CHECKSUM SYTE IMMEDIATELY PRECEEDS THE
; FINAL SYNC. WHEN READING, THE CONTROLLE_** ___ *_* ___ * ___ ****_* __ * _____ ** ___ **
.E..IECT

2-34
AFN.(J1536A

APPLICATIONS

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER} va.o PAGE 4

LOC OBJ

001D D~
001E AF
001F BAOB
0021 FB
0022 433B
0024 AB
0020 FO
0026 39
0027 FB
002B 3A
0029 IB
002A D307
002C 9630
002E BBOO
0030 23Fl
0032 62
0033 :1:1
0034 FF
003:1 93

LINE SOURCE STATEMENT

138 1'**************'***********'*************"********************************
139 DISPLAY ROUTINE
140 ; THIS PORTION OF. THIS PRDGRAM IS AN INTERRUPT ROUTINE WHICH IS
141 ; ACTED UPON WHEN THE TIMER COUNT IS COMPLETED. THE ROUTINE UPDATES
142 ; ONE· DX,SPLAY. DIGIT FROM THE. D1SPLAY MAP PER INTERRUPT SEOUENTIALLY.
143 I THUS EIGHT TIMER INTERRUPTS WILL HAVE REFRESHED· THE ENTIRE DISPLAY.
144 ; REGISTER BANK I IS SELECTED AND THE ACCUMULATOR IS SAVED UPON
14~ ; ENTERING THE ROUTINE. ONCE THE DISPLAY HAS BEEN REFRESHED THE TIMER
146 ; IS RESET AND THE ACCUMULATOR AND PRE-INTERRUPT REGISTER BANK IS RESTORED.
147 I

14B DISPLA: SEL RBI I REgISTER BANK 1
149 MOV R7. A ; SAVE ACCUMULATOR
150 ORL P2.1I0BH ; TURN DIGIT DRIVERS OFF
1:11 MOV A. R3 ; DIGlTCOUNTER TO ACCUMULATOR
152 ORL A.1I3BH ; "OR" TO GET DISPLAY MAP ADDRESS
153 MOV RO. A ; DISPLAY MAP POINTER
154 MOV A. eRa ; GET CHARACTER FROM DISPLAY MAP
155 OUTL Pl. A ; OUTPUT CHARACTER TO SEgMENT DRIVERS
156 MOV A. R3 ; DIGIT COUNTER VALUE TO ACCUMULATOR
107 OUTL P2. A ; OUTPUT TO DIGIT DR IVERS
15B INC R3 ; INCREMENT DIG IT COUNTER
1:19 XRL A.1I07H I CHECK IF AT LAST DIGIT
160 .JNZ SETIME I RESET TIMER IN NOT LAST DIGIT
161 MOV R3. tlOOH I RESET DIGIT COUNTER
162 SETIME: MOV A •• TIME ,TIMER VALUE
163 MOV T, A ; LOAD TIMER
164 STRT T ,START TIMER
165 MOV A. R7 ,RESTORE ACCUMULATOR
166 RETR ,RETURN

167 ; ***.***
16B *E.JECT

2-3.5
AFN'()l53BA

APPLICATIONS

1515-1 I MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 PAGE

LOC DB ...

0036 D5
0037 AF
0038 22
0039 AA
003A 47
003B 77
003C 5307
003E 4338
0040 AS
0041 FA
0042 531F
0044 E3
0045 AA
0046 D37F
0048 C64E
004A FA
004B AO
004C 04~1
004E FA
004F 50
0050 AO
0051 FF
0052 93

LINE SOURCE STATEMENT

169

1 70 ***
171 INPUT CHARACTER AND DIGIT ROUTINE
172 THIS PORTION OF THE PROGRAM IS AN INTERRUPT ROUTINE WHICH
173 IS ACTED UPON WHEN THE IDF BIT IS SET. THE ROUTINE GETS THE
174 DISPLAY DATA WORD FROM THE DBB AND DEFINES BOTH THE DIGIT AND
175 THE CHARACTER TO BE DISPLAYED. THIS IS DONE BY MEANS OF A
176 CHARACTER LOOP-UP TABLE AND A DISPLAY MAP FOR DIGIT AND CHARACTER
177 LOCATION. SPECIAL CONSIDERATION IS TAKEN FOR A DECIMAL POINT WHICH IS
178 SIMPLY ADDED TO THE EXISTING CHARACTER IN THE DISPLAY MAP. REGISTER
179 BANK 1 IS SELECTED AND THE ACCUMULATOR IS SAVED UPON ENTERING
180 THE ROUTINE. ONCE THE DATA WORD HAS BEEN FULLY DEFINED THE ACCUMULATOR
181 AND THE PRE-INTERRUPT REGISTER BANK IS RESTORED.
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

NPUT: SEL RBl ; REGISTER BANK 1
MOV R7. A ; SAVE ACCUMULATOR
IN A.DBD ; GET DATA
MOV R2. A ; SAVE DATA WORD
SWAP A ; DEFINE DIGIT LOCATION
RR A
ANL A. lI07H
ORL A •• 38H
MOV RO. A ; DIGIT LOCATION IN DIGIT POINTER
MOV A. R2 1 SAVED DATA WORD TO ACCUMULATOR
ANL A. ,"FH ; DEFINE CHARACTER LOOK-UP-TABLE LOC.
MOVP3 A.@A ; GET CHARACTER
MOV R2. A ; SAVE CHARACTER
XRL A •• 7FH ; IS CHARACTER DEC IMAL POINT
..JZ DPOINT
MOV A. R2 ; SAVED CHARACTER TO ACCUMULATOR
MOV @:RQ.A ; CHARACTER TO DISPLAY MAP
..JMP RETURN

DPOINT: MOV A. R2 ; SAVED CHARACTER TO ACCUMULATOR
ANL A. !!RO ; "AND" WITH OLD CHARACTER
MOV C!RQ. A ; BACK TO DISPLAY MAP

RETURN: MOV A. R7 ; RESTORE ACCUMULATOR
RETR

1 **
$E..JECT

2-36
AFN-Ql536A

APPLICATIONS

ISIS-II MCS-4S/UPI-41 MACRO ASSEMBLER. V3.0 PAQE 6

LOC DB,) LINE SOURCE STATEMENT

20S ; **:1' 20., LOOK-UP TABLE
OliO • THIS LOOK-UP TABLE· ORIgINATES IN PAgE 3 OF THE UPI-41 PROgRAM
211 • MEMORY. IT IS USED TO DEFINE THE CORRECT LEVEL OF EACH SEGMENT
212 • AND DECIMAL- POINT' FOR A SELECTED CHARACTER FROM THE INPUT ROUTINE.
213 ,INVERSE LOGIC IS USED BECAUSE OF THE SPECIFIC DRIVER CIRCUITRY. THUS
214 ,A I ON A GIVEN SEGMENT MEANS IT IS OFF AND A 0 MEANS IT IS ON.
215
216 ; *******SEQMENTS********

0300 217 ORg 300H ,DP G F E D C B A
0300 CO 21B CHO: DB DCOH .1 I 0 0 0 0·0 0
0301 F., 219 CHI: DB OF9H .1 I 1 1 1 0 0 1
0302 A4 220 CH2: DB OA4H .1 0 1 0 0 1 0 0
0303 BO 221 CH3: DB OBOH • I 0 I 1 0 0 0 0
0304.,,, 222 CH4: DB .,.,H .1 0 0 1 I 0 0 1
0305 92 223 CH5: DB 92H .1 0 0 I 0 0 I 0
0306 82 224 CHII: DB B2H .1 0 0 0 0 0 1 0
0307 FB 225 CH7: DB OFBH .1 I I I I 0 0 0
030B 80 226 CHe: DB BOH ,I 0 0 0 0 0 0 0
0309 9B 227 CH.,: DB 9BH .1 0 0 I I 0 0 0
030A BB 22B CHA: DB BBH .1 0 0 0 I 0 0 0
030B B3 229 CHB: DB B3H ,I 0 0 0 0 0 I I
030C C6 230 CHC: DB OC6H .1 I 0 0 0 I I 0
030D AI 231 CHD: DB OAIH .1 0 I 0 0 0 0 I
030E B6 232 CHE: DB B6H .1 0 0 0 0 I I 0
030F BE 233 CHF: DB BEH .1 0 0 0 I I I 0
0310 7F 234 CHDP: DB 7FH .0 I I I I I I I
0311 COl 235 CHII: DB OC2H .1 I 0 0 0 0 I 0
0312 B9 236 CHH: DB B9H .1 0 0 0 I 0 0 I
0313 FB 237 CHI: DB OFBH .1 I I I I 0 I I
0314 EI 23B CH,): DB OEIH ,I I I 0 0 0 0 I
0315 C7 239 CHL: DB OC7H .1 I 0 0 0 I I I
0316 AB 240 CHN: DB OABH .1 0 I 0 I 0 I I
0317 A3 241 CHO: DB ·OA3H· ,1 0 I 0 0 0 I 1
031B BC 242 CHP: DB 8CH" .1 0 0 0 I I 0 0
0319 AF 243 CHR: DB OAFH .1 0 I 0 I I I I
031A B7 244 CHT: DB B7H .1 0 0 0 0 I I I
0318 Cl 245 CHU: DB OCIH .1 I 0 0 0 0 0
031C 91 246 CHY: DB 91H .1 0 0 I 0 0 0
031D BF 247 CHDASH: DB OBFH .1 0 I I I 1 I
031E FD 24B CHAPOS: DB OFDH .1 I I I I 0
031F FF 249 BLANK: DB OFFH .1 I I I I I

250 ; **
251 END

USER SYMBOLS
BLANK 031F BLKMAP OOOE CHO 0300 CHI 0301 CH2 0302 CH3 0303 CH4 0304 CH5 0305
CH6 0306 CH7 0307 CHB 030B CHI' 0309 CHA 030A CHAPOS 031E CHB 030B CHC 030C
CHD 030D CHDASH 031D CHDP 0310 CHE 030E CHF 030F CHG 0311 CHH 0312 CHI 0313
CH') 0314 CHL 0315 CHN 0316 CHO 0317 CHP 031B CHR 0319 CHT 031A CHU 031B
CHY 031C DISPLA OOID DPOINT 004E INPUT 0036 RETURN 0051 SETIME 0030 START 0009 TIME FFFI

ASSEMBLY COMPLETE. NO ERRORS

AFN-Ol536A

2-37

APPLICATIONS

'FI:ASM4B :F3:SENSOR NOOB~ECT PRINTC:LP:)

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE

LOC DB'" L.INE:

1 SMOD41A
2
3

SOURCE STATEM~NT

******************.***************************
* UPI-41A SENSOR MATRIX CONTROLLER *

4 ,
5

**

b
7
B

" 10
II
12

THIS PROGRAM USES THE UPI-4IA AS A SENSOR MATRIX CONTROLLER.
, IT HAS MONITORING CAPABILITIES OF UP TO 12B SE~~ORS. THE COORDINATE
,AND SENSOR STATUS OF EACH DETECTED CHANGE IS AVAILABLE TO THE MASTER
,MICROPROCESSOR IN A SINGLE BYTE. A 40XB FIFO QUEUE IS PROVIDED FOR
,DATA BUFFERING. BOTH HARDWARE DR POLLED INTERRUPT METHODS CAN BE USED
,TD NOTIFY THE MASTER OF A DETECTED SENSOR CHANGE.

13 ,.*****************.*.******************.*******************************
14
15 ,REGISTER DEFINITIONS:
Ib , REGISTER
17
IB
I"
20
21
22 ,
23
24
25
2b

RO
RI
R2
R3
R4
R5
Rb
R7

RBO

MATRIX MAP POINTER
FIFO POINTER
SCAN ROW SELECT
COLUMN COUNTER
FIFO-IN
FIFO-OUT
CHANGE WORD
COMPARE

RBI

NOT
NOT
NOT
NOT
NOT
NOT
NOT
NOT

USED
USED
USED
USED
USED
USED
USED
USED

27
2B
2"
30

J**.*************.**** ,
,PORT PIN DEFINITIONS:

31 ,PIN
32,---
33 ,PO-7
34 ,
35
3b ,
37

PORT 1 FUNCTI ON

COLUMN LINE INPUTS

PIN

PO-3
P4
P5
Pb-7

PORT 2 FUNCTION

ROW SELECT OUTPUTS
FIFO NOT EMPTY INTERRUPT
OBF INTERRUPT
NOT USED

38 i**.**************
3"
40 SE~ECT

2-38
AFN-Gl536A

APP-LIOATIONS

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 2

LOC OBJ

OOOF
OOOB
002F

LINE SOURCE STATEMENT

41 ;***
42
43 .CHANGE WORD BIT DEFINITION:
44
4~

46
47
4B
49

BIT

·00-6
07

FUNCTION

. SENSOR COORDINATE
. SENSOR 'STATUS

. ·~O j'"***********"************'****************-******"".'*"****.*******************
"51. ;
52 .STAT.US· REGISTER BIT DEF I'NIl'I ON:
53 "
~4

55
56
~7

~B

59
60 J

61 ;***
62
63
64
65
66
67
69
69
70
71

EQUATES

• THE FOLLOWING CODE DESIGNATES THREE VARIABLES. SCANTM.FIFOBA
,AND FIFOTA. ·SCANTM ADJUSTS THE LENGTH 'OF A DELAY··BETWEEN
,SCANNING SWiTCH. THIS SIMULATES' DEBOUNCE FUNCTIONS. FIFOBA
, IS THE BOTTOM ADDRESS OF THE FIFO. 'FIFOTA IS THE: TOP ADDRESS
,OF THE FIFO. THIS MAKES IT POSSIBLE'TO HAVE A FIFO 3 TO 40
,BYTES IN LENGTH.

72 i***
73
74 SCANTM EQU
7~ FIFOBA EQU'
76 FIFOTA EQU
77
7B .EJECT

'.:.".

OFH
OSH

'2FH

,SCAN TIME ADJUST
,FIFO BOTTOM ADDRESS
,FIFO TOP ADDRESS

2-39
AFN-ol536A

APPLICATIONS

ISIS-I I MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 3

LOC OBJ

0000
0000' BB3F
0002 BAOF
0004 BCOS
0006 B02F
OOOB B9FF
aODA 2300
OOOC 90
0000 FA
OOOE 3A
OOOF 09
0010 AO
DOli FA
0012 C61B
0014 CB
0015 CA
0016 0400
OOIB BAlD
OOIA FA
0018 3A
ODIC F~

LINE SOURCE STATEMENT

79 j***
BO
BI I.NITIALIZATION
B2
83 • THE PROGRAM STARTS AT THE FOLLOWING CODE UPON RESET. WITHIN
B4 • TH'IS INITIALIZATION SECTION THE REGISTERS THAT MAINTAIN THE MATRIX
.B5 • MAP. FIFO AND ROW SCANNING' ARE SET UP. PORT I IS SET HIGH FOR USE
B6·.AS AN INPUT PORT FOR THE COLUMN STATUS. BIT 4 OF STATUS REGISTER 15
B7 • WRITTEN TO CONVEY A FIFOEMPTV CONDITION. THE INITIAL COLUMN STATUS

. BB .OF ALL THE ROWS IN THE SENSOR MATRIX IS THEN READ INTO THE MATRIX
B9.MAP .. ONCE THE MATRIX MAP IS FILLED THE OBF INTERRUPT (PORT 2-4) 15
90' • ENABLED,
91 j

~2 i **'**'**************""************************************-*-_ ***-**---
93

ORG 94
. 9~ INITMX: MOV

96
97
9B
99

MOV
MOV
MOV
ORL

100 MOV
101 MOV
102 FILLMX: MOV
103 OUTL
104 IN
105 MOV
106, MOV
107 JZ
lOB' DEC
109 DEC
110 ..JMP
III OBFINT MOV
112 MOV
113 OUTL
1'14 EN
115
116 SEJECT

o
,RO(*3FH
R2.tlOFH
R4.tlFIFOBA
R~,"FIFOTA

Pl.tlOFFH
'A ... OOH
6-TS.A
Pi.R2
P2.A
A,-,Pt
<!lRO.A
A,R2
OBFINT
RO
R2
FILLMX
R2 •• 10H
A.R2
P2. A
FLAGS

; MATRIX MAP POINTER REGISTER. TOP A'DORESS
• SCAN ROW 'SELECT REGISTER. TOP, ROW
.FIFO INPUT ADDRESS REGISTER. BOTTOM OF FIFO
.FIFO OUTPUT ADDRESS REGISTER. TOP OF FIFO
• INITIALIZE PORT 1 HIGH FOR INPUTS
; INITIALIZE STATUS REGISTER. F'[FO EMPTY
• WRITE TO STATUS REGISTER. BITS 4-7
• SCAN ROW SELECT TO ACCUMULATOR
,OUTPUT SCAN ROW SELECT TO PORT 2
• INPUT COLUMN STATUS PORT I
• LOAD MATRIX·MAP WITH COLUMN STATUS
• CHECK S~ANROW SELECT REGISTER VALUE FOR 0
j IF 0 ENABLE OBF INTERRUPT
• DECREMENT TO NEXT MATRIX MAP ADDRESS

DECREMENT TO's"CAN NEX1' ROW
FILL NEXT MATRIX MAP ADDRESS
BIT 4 HIGH IN ROW SCAN SELECT REGISTER
ROW SCAN SELECT VALUE TO ACCUMULATOR
INITIALIZE PORT 2. nIT 4 FOR "EN FLAGS"
ENABLE onF INTERRUPT PORT 2. BIT 4

2-40
AFN-ol536A

APPLICATIONS

ISIS-II MCS-4B/UPI-41 ~ACRO ASSEMBLER, V3.0 PAGE 4

LOC OB.J

0010 FA
OOIE :)30F
0020 C626
000101 CB
0023 CA
0024 042C
0026 BB3F
0028 FA
0029 430F
002B AA
002C FA
0020 3A
002E BBOF
0030 EB30
0032 09
00:1:1 20
0034 DO
00:15 AF
00:16 C669

LINE SOURCE STATEI1ENT,

117 j*.*** •• ****.** •• ***.************~*******.******.**************.******.
118 j

119
120
121
1201
123
124
12:1
126
127
128
129
130
131
132
133
134
13:1

SCAN AND COMPARE

I TI;«; FOLLOWING CODE IS THE SCAN AND CCI1PARE 8ECTION OF THE PRCQRAM.
i UPON ENTERING THIS SECTION A CHECK IS MADE TO SEE IF THE ENTIRE MATRIX
,HAS BEEN SCANNED. IF SO THE REGISTERS THAT MAINTAIN THE MATR·IX MAP AND ROW
I SCANNING ARE RESET TO THE BEGINNING OF THE SENSOR MATRIX. IF THE ENTIRE
,MATRIX HASNT BEEN SCANNED THE REGISTERS INCREI1ENT TO SCAN THE NEXT ROW.
,FROM THIS POINT ON THE ROW SCAN SELECT REGISTER IS USED FOR T~O FUNCTIONS.
,BITS 0-3 FOR SCANNING AND BITS 4 AND :I FOR THE EXTERN~ INTERRUPTS. THUSLY
IALL USAOE OF THE REGISTERS IS DONE BY LOOIC~LY MASKING IT SO A9 TO ONLY
,AFFECT THE FUNCTION DESIRED. ONCE THE REGISTERS ARE RESET. ONE ROW OF THE
i SENSOR MATR IX IS SCANNED. A DELAY IS EXECUTED TO AD.JUST FOR SCAN TIME
,(DEBOUNCE). A BYTE OF COLUMN STATUS IS THEN READ INTO THE MATRIX MAP.
,AT THE TIME THE NEW COLUI1N STATUS IS COMPARED TO THE OLD. THE RESULT'IS
,STORED IN THE COI1PARE REGISTER. THE PROGRAM IS THEN ROUTED ACCORDING TO
,WHETHER OR NOTA CHANGE WAS DETECTED.

136 ; .**41'*.***********.***.****** 137
138 AD.JREO: MOV
139 ANL
140 .JZ
141 DEC
142 DEC
143 .JMp
144 RSETRO: MOV
14:1 MOV
146 ORL
147 MOV
148 SCANMX: MOV
149 OUTL
1:10 MOV
1:11 DELAY2: D.JNZ

A,.OFH
RSETRG
RO
R2
SCANMX
RO •• 3FH
A.R2
A •• OFH
R2.A
A,Ri!
POI. A

SCAN ROW SELECT TO ACCUMULATOR
CHECK FOR 0 SCAN VALUE ONLY. NOT INTERRUPT
IF 0 RESET REGISTERS'
DECREI1ENT MATRIX MAP POINTER
DECREMENT sCAN ROW SELECT
SCAN MATRIX
RESET MATRIX MAP POINTER REGISTER. TOP ADDRESS
SCAN ROW SELECT TO ACCUI1ULATOR
RESET SCAN ROW SELECT.NO INTERRUPT CHANGE
SCAN , ROW SELECT REGISTER
SC~N ROW 'SELECT .tP ACCUI1ULATOR
OUT~UT SCA,,!'~OW SELECT TO PORT 2
~~~A ~ELAY';!"IJ~ 'i,OUTpUT" SCAN TI ME, 

1:12 IN 
1:13 XCH 
1:14 XRL 

R3 •• SCANT'" 
R3.DELAY2 
A. PI 
A.tlRO 
A, .R.O 

,R7.A 
CHFFUL 

I~UT COLUMN STATUS FRCI1 PORT I TO ACCUMULATOR 
STORE NEW COLUMN STATUS SAVE OLD IN ACCUMULATOR 
COMPARE OLD,'w!I''rH NEioI COLUMN STATUS 
SAVE COMpARE"RESULT ,IN COMPARE REGISTER 
IF THE SAME. CHECK IF FiFO IS FULL 

155 MOV 
1:16 .JZ 
1:17 
158 .E.JECT 

AF~lS38A 

2-41 



APPLICATIONS 

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 PAGE 

LOC OB'" 

003B BB08 
003A CB 
003B FO 
003C 77 
0030 AO 
003E FF 
003F 77 
0040 AF 
0041 F24:1 
0043 0469 
004:1 FA 
0046 :l30F 
0048 E7 
0049 E7 
004A E7 
004B 4B 

004C AE 
0040 FO 
004E ~380 
00:10 4E 
00~1 AE 

LINE 

1:19 
160 
161 
162 
163 
164 
16:1 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
18:1 
186 
IB7 
188 
189 
190 
191 
192 
193 
194 
19:1 
196 
197 
198 

SOURCE STATEMENT 

; ********************************************* ... ******************.******** 
CHANGE WORD ENCODING 

; THE FOLLOWING CODE IS THE CHANGE WORD ENCODING SECTION. THIS 
;SECTION IS ONLY EXECUTED IF.A CHANGE WAS DETECTED. THE COLUMN COUNTER 
; IS SET AND DECREMENTED TO DESIGNATE EACH OF THE 8 COLUMNS. THE COMPARE 
;REGISTER IS LOOKED.AT ONE BIT AT A TIME TO FIND THE EXACT LOCATION OF 
; THE CHANGE(S). WHEN A CHANGE IS FOUND IT IS ENCODED BY GIVING IT A 
; COORDINATE FOR ITS· LOCATION. THIS IS DONE BY COMBINING THE PRESENT VALUE 
; IN THE ROW SCAN SELECT REGISTER AND THE COLUMN COUNTER. THE ACTUAL STATUS 
;OF THAT SENSOR IS ESTABLISHED BY LOOKING AT THE CORRESPONDING BYTE IN 
JTHE MATRIX MAP. THIS STATUS IS COMBINED WITH THE COORDINATE TO ESTABLISH 
; THE CHANGE WORD. THE CHANGE WORD IS THEN STORED IN THE CHANGE WORD REGISTER 

.*********************.***********************************.*.*****~*** 

MOV 
RRLOOK: DEC 

MOV 
RR 
MOV 
MOV 
RR 
MOV 
"'B7 
"'MP 

ENCODE: MOV 
ANL 
RL 
RL 
RL 
ORL 

MOV 
MOV 
AN.L 
ORL 
MOV 

R3 •• 08H 
R3 
A.IIRO 
A 
I!RO.A 
A.R7 
A 
R7.A 
ENCODE 
CHFFUL 
A.R2 
A .• OFH 
A 
A 
A 
A.R3 

R6.A 
A.(!RO 
A •• 80H 
A.R6 
R6.A 

SET COLUMN COUNTER REGISTER TO 8 
DECREMENT COLUMN COUNTER 
COLUMN STATUS TO ACCUMULATOR 
ROTATE COLUMN STATUS RIGHT 
ROTATED COLUMN STATUS BACK TO MATRIX MAP 
COMPARE REGISTER VALUE TO ACCUMULATOR 
ROTATE COMPARE VALUE RIGHT 
ROTATED COMPARE VALUE TO COMPARE REGISTER 
TEST BIT 7 IF CHANGE DETECTED ENCODE CHANGE WORD 
IF NO CHANGE IS DETECTED CHECK FOR FIFO FULL 
SCAN ROW SELECT TO ACCUMULATOR OOOOXXXX 
ROTATE ONLY SCAN VALUE 
ROTATE LEFT OOOXXXXO 
ROTATE LEFT OOXXXXOO 
ROTATE LEFT OXXXXOOO 
ESTABLISH MATRIX COORDINANT OXXXXXXX 
(OR)_COLUMN COUNTER VALUE WITH ACCUMULATOR 
SAVE COORDINANT IN CHANGE WORD REGISTER 
COLUMN STATUS FROM MATRIX MAP TO ACCUMULATOR 
o ALL BITS BUT BIT 7 
(OR) SENSOR STATUS WITH COORDINATE FOR COMPLETED CHANGE WORD 
SAVE CHANGE WORD xxxxxxxx 

199 SE"'ECT 

AFN'()l536A 
2-42 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3,O PAGE 6 

LOC OB-J 

00'2 FC 
00,3 A9 
00'4' FE 
0055 Al 
00'6 2310 
OO'B ~o 
0059 8A20 
005B FA 
OO'C 4320 
005E AA 
005F 232F 
0061 DC 
0062 C667 
0064 lC 
006' 0469 
0067 SCOB 
0069 FC 
006A DO 
006B 9670 
0060 8660 
006F 232F 
0071 DO 
0072 C677 
0074 lD 
0075 0479 
0077 aDOB 
0079 FD 
007A A9 
007B Fl 
007C 02 
0070 FB 
007E 963A 
OOBO 230B 

LINE 

200 
'201 
202 
203 
204 
20' 
206 
207 
208 
209 
210 
211 
212 
21"3 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
22' 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 

SOURCE STATEMENT 

;. **"***-*********************'****************************************** 
FIFO-DBBOilT I'IANAGEMENT 

,THE FOLLOWING CODE IS THE FIFO-DBBOUT MANAGEMENT SECTION OF THE 
,PROGRAM, THIS SECTION TAKES AN ENCODED' CHANGE WORD AND LOADS IT INTO 
,THE FIFO, THE FIFO NOT EMPTY INTERRUPT IS THEN SET AND THE FIFO-IN 
,POINTER GETS UPDATED, A FIFO FULL' CONDITION' IS THEN CHECKED FOR AND 
,ROUTED ACCORDINGLY: IF BOTH THE FIFO 'AND OBF HAVE CHANGE WORDS'THE 
,PROGRAM LOCKS UP UNTIL THIS HAS CHANGED, ' IF THE FIFO ISN! FULL' COLUMN 
;COUNTER= O. FIFO EMPTY AND'OBF'CONDITIONS ARE CHECKED, THE FIFO-OUT 
,POINTER IS SET AND'DBBOUT IS LOADED IF THE FIFO ISNT EMPTY AND OBF ISNT 
,SET: IF Tius ISNT THE 'SITUATION. PROGRAM FLOW IS ROUTED BACK TO THE 
;'THE SCAN AND COMPARE SECTION TO 'SCAN THE NEXT ROW, 

i********************************************************************* 

LOADFF: MOV 
MOV 
MOV 
MOV 

STATNE: MOV 
MOV 

INTRHI' ORL 
MOV 
'ORL 
MOV 

AD-JFIN: MOV 
XRL 
-JZ 
INC 
-JMP 

RSFFIN: MOV 
CHFFUL: MOV 

XRL 
-JNZ 

CHOBF1: -JOBF 
AD-JFOT: MOV 

XRL 
-JZ 
INC 
-JMP 

RSFFOT' MOV 
LOADDD: MOV 

MOV 
MOV 
OUT 

CHCNTR: MOV 
-JNZ 

CHFFEM: MOV 

SE-JECT 

A. R4 
RI. A 
A. R6 
@Rl.A 
A.ttl0H 
5TS, A 
P2.4I20H 
A,R2 
A,4I20H 
R2.A 
A.4IFIFOTA 
AI R4 
RSFFIN 
R4 
CHFFUL 
R4,lIFIFosA 
A.R4 
A. R5 
CHCNTR 
CHOBFI 
A.IIFIFOTA 
A.RS 
RSFFOT 
R' 
LOADDO 
R5,lIFIFOBA 
A.R' 
RL A 
A,@Rl 
DBB.A 
A. R3 
RRLOOK 
A.ttFIFDBA 

,FIFO INPUT ADDRESS TO ACCUMULATOR 
,FIFO POINTER USED FOR INPUT' 
,CHANGE WORD TO ACCUMULATOR 
,LOAD FIFO AT FIFO INPUT ADDRESS 
iBIT 4 FOR FIFO NOT EMPTY 
,WRITE TO STATUS REGISTER. FIFO NOT EMPTY 
,FIFO NOT EMPTY INTERRUPT PORT 2-5 HIGH 
,ROW SCAN SELECT TO ACCUMULATOR 
,SAVE INTERRUPT. NO CHANGE TO SCAN VALUE 
,ROW SCAN SELECT REGISTER 
,FIFO TOP ADDRESS TO ACCUMULATOR 
,COMPARE WITH CURRENT FIFO INPUT ADDRESS 
, IF THE SAME RESET FIFO INPUT REGISTER 
,NEXT FIFO INPUT ADDRESS 
,CHECK FIFO FULL 
,RESET FIFO INPUT REGISTER. BOTTOM OF FIFO 
,FIFO INPUT ADDRESS TO ACCUMULATOR 
,COMPARE INPUT WITH OUTPUT FIFO ADDRESS 
, IF NOT SAME CHECK COLUMN COUNTER VALUE 
, IF OBF IS 1 THEN CHECK OOF 
,FIFO TOP ADDRESS TO ACCUMULATOR 
,COMPARE TOP TO OUTPUT FIFO ADDRESS 
j IF THE SAME RESET FIFO OUTPUT REGISTER 
,NExT FIFO OUTPUT ADDRESS 
,LOAD DoaDUT 
,RESET FIFO OUTPUT ADDRESS TO OOTTOM OF FIFO 
,OUTPUT FIFO ADDRESS TO ACCUMULATOR 
,FIFO POINTER USED FOR OUTPUT 
,CHANGE WORD TO ACCUMULATOR 

CHANGE WORD TO DaaOUT 
COLUMN COUNTER TO ACCUMULATOR 
IF NOT 0 FINISH CHANGE WORD ENCODING 
FIFO OOTTOM ADDRESS TO ACCUMULATOR 

2-43 
AFN-Q1536A 



APPLICATIONS 

1515-1 I MCS-48/UPI-41 MACRO ASSEMBLER. V3 0 

Lac ODJ LINE SOURCE STATEMENT 

00B2 DC 
0083 C6BC 
00B5 FC 
00B6 07 
00B7 DO 
OOBB C691 
OOBA 049C 
OOBC 232F 
OOBE DO 
OOBF 969C 
0091 2300 
0093 90 
0094 9ADF 
0096 FA 
0097 S3DF 
0099 AA 
aocrA 0410 
009C B61D 
009E 046F 

USER SYMBOLS 
AD,JFEM ooec 
CHOBF2 009C 
INTRLO 0094 
SCANMX 002C 

252 
2~3 

254 
255 

XRL 
JZ 
MOV 
DEC 

2~6 XRL 
257 JZ 
258 ...IMP 
259 ADJFEM" MOV 
260 XRL 
261 JNZ 
262 STATMT: MOV 
263 MOV 
264 INTRLO: ANL 
26~ MOV 
266 ANL 
267 MOV 
2bB ...IMP 
269 CHOBF2: JOBF 
270 JMP 
271 
272 END 

AD,JFIN 005F AD,JFOT 
DELAY2 0030 ENCODE 
LOADOB 0079 LOADFF 
SCANTM OOOF STATMT 

ASSEMBLY COMPLETE. NO ERRORS 

A,R4 
ADJFEM 
A,R4 
A 
A, RS 
STATMT 
CHOBF2 
A,.FIFOTA 
A,RS 
CHOBF2 
A •• OOH 
STS,A 
P2,tlODFH 
A. R2 
A,tlODFH 
R2.A 
ADJREG 
ADJREG 
ADJFOT 

006F AD,JREG 
0045 FIFOBA 
0052 OBFINT 
0091 STATNE 

OOID 
oooe 
oOle 
0056 

PAGE 

; COMPARE FIFO INPUT ADDRESS WITH FIFO BOTTOM ADD 
, IF THE SAME. ADJUST TO CHECK FOR FIFO EMPTY 
.FIFO INPUT ADDRESS TO ACCUMULATOR 
; DECREMENT FIFO INPUT ADDRESS IN ACCUMULATOR 
,COMPARE INPUT TO OUTPUT FIFO ADDRESSES 

IF SAME. WRITE STATUS REGISTER FOR FIFO EMPTY 
CHECK OBF 
FIFO TOP ADDRESS TO ACCUMULATOR 
COMPARE TOP TO OUTPUT FIFO ADDRESS 
IF NOT SAME THEN FIFO IS NOT EMPTY, CHECK OBF 
CLEAR BIT 0 FOR FIFO EMPTY 
WRITE TO STATUS REGISTER 
FIFO EMPTY, INTERRUPT PORT 2-~ LOW 
SCAN ROW SELECT TO ACCUMULATOR 
SAVE INTERRUPT, NO CHANGE TO SCAN VALUE 
SCAN ROW SELECT REGISTER 
ADJUST REGISTERS 
IF OBF=I THEN ADJUST REGISTERS 
ADJUST FIFO OUT ADDRESS TO LOAD DBBOUT 

CHCNTR 007D CHFFEM ooeo CHFFUL 
FIFOTA 002F FILLMX OOOD INITMX 
RRLOOK 003A RSETRG 0026 RSFFIN 

0069 
0000 
0067 

CHOBFI 
INTRH1 
RSFFOT 

AFNoOl536A 
2·44 

006D 
0059 
0077 



An 8741 A/8041 A Digital 
Cassette Controller 

Contents 

INTRODUCTION 

THE CM-600 MINI-DEK<B> 

.RECORDING FORMAT 

tHE UPI-41ATM CONTROLLER 

THE HARDWARE INTERFACE 

THE CONTROLLER SOFTWARE 

Write Command 
Read Operation 
Skip Operation 
Rewind Operation 
Abort Operation 

WRAPPING IT UP 

APPENDIX 

2·45 

2-46 

2-47 

2-47 

2-48 

2-50 

2-52 
2-54 
2-56 
2-59 
2-60 
2-60 

2-60 

2-62 



APPLICATIONS 

INTRODUCTION 

The microcomputer system designer requiring a 
low-cost. non-volatile storage medium has a difficult 
choice. His options have been either relatively 
expensive. as with floppy discs and bubble memories. 
or non-transportable. like battery backed-up RAMs. 
The full-sized digital cassette option was open but 
many times it too was too expensive for the applica­
tion. Filling this void of low-cost storage is the 
recently developed digital mini-cassette. These 
mini-cassettes are similar to. but not compatible 
with. dictation cassettes. The mini-cassette trans­
ports are inexpensive (well under $100 in quantity). 
small (less than 25 cu. in.). low-power (one watt). 
and their storage capacity is a respectable 200K 
bytes of unformatted data on a 100-foot tape. These 
characteristics make the mini-cassette perfect for 
applications ranging from remote datalogging to 
program storage for hobbyist systems. 

The only problem associated with mini-cassette 
drives is controlling them. While these drives are 
relatively easy to interface to a microcomputer 
system. via a parallel I/O port. they can quickly 
overburden a CPU if other concurrent or critical 
real-time I/O is required. The cleanest and probably 

the least expensive solution in terms of development 
cost is to use a dedicated single-chip controller. 
However. a quick search through the literature 
turns up no controllers compatible with these new 
transports. What to do? Enter the UPI-41A family 
of Universal Peripheral Interfaces. 

The UPI-41A family is a group of two user­
programmable slave microcomputers plus a com­
panion I/O expander. The 8741A is the "flag-chip" 
of the line. It is a complete microcomputer with 
1024 bytes of EPROM program memory. 64 bytes of 
RAM data memory. 16 individually programmable 
I/O lines. an 8-bit event counter and timer. and a 
complete slave peripheral interface with two inter­
rupts and Direct Memory Access (DMA) control. 
The 8041A is the masked ROM. pin compatible 
version of the 8741A. Figure 2 shows a block 
diagram common to both parts. The 8243 I/O port 
expander completes the family. Each 8243 provides 
16 programmable I/O lines. 

Using the UPI concept. the designer can develop a 
custom peripheral control processor for his par­
ticular I/O problem. The designer simply develops 
his peripheral control algorithm using the UPI-41A 
assembly language and programs the EPROM of 

Figure 1. Comparison of Mini-Cassette and Floppy Disk Transports and Media. 

2-46 AFN-Q1342A 



APPLIOATIONS 

SYSTEM BUS PERIPHERAL BUS 

Figure 2. 8741 Al8041 A Block Diagram 

the 874'1!i(;V ~i1a!He has aslngle-dhipdedicated 
controlter.Testing rn~y. bec'accon1pn~hed using 
ejther:a:nlCE-~41A,or theSingl(j~st~pI:tl0de of the 
874IA .. UPI-41Aperiphetal iilterface~,,~re being 
used to control printers;keybOlirdS:. di~plays. custom 
serial ihterfaces. and oatlj.eneryriiiori,jmits. Of 
course, theUp,I familyi*perfecrfor developing. a 
dedicated controller for digitalmiriiccassette tran­
sports:' To'iliustratethis llPp,)ic&tibrif{il- the UPI 
familyJers con~h;lerthe job",af c.ontrolling the 
Braemar,CM.-600 M1nH?ek®.' , . 

THE CM~800;M'INI-DEK®' 
'".' i • ," . -

the transport occupies only 22.5 cubic inches 
(3"x3"x2.5"). 

All I/O for the CM-600 is TTL-compatible and can 
be divided into three groups: motor control. data 
control. and cassette status. The motor group con­
trols are GO/STOP. F AST/SLOW.and FORWARD/ . 
REVERSE. The data controls are READ/WRITE. 
DATA IN. and DATA OUT. The remaining 
group of outputs give the tran~prifr~JlJa,tUS: GLEAR 
LEADER. CASSETTE PREo~EN'OE;,F'ILE,PRO­
TECT. and SIDE SENSOR..These slg.na/s; shown 
schematically in figure 3 and'tabJe .I.give'the pin 
definition of the CM-600 16-pinJ!Oconn~ctOr. . . . 

RECORDING FORMAr<i;r 
The Braemar bM::60Qi8rei:lresentativ~,,~f digital 
mini-cassette transpofts.{tili'asingle-h'ead. single­
motor transport whIch operates entirely frol;l)',:J, 
single 5-volt power supply. Its powerrequittl,werits/ ,The CM-600 does not provide either encoding or ' 
i.ncluding the Illotor.lire 200mafor reador;writ€ . <decoding of the recorded data; that task is left for 
and 700ma forrewipo:/l);lpes .speeds are 3 ihC:hes'th~pei'ipheral interface. A multitude ofencoding 
per second (IPS)'.;1;l,urinffr;ead,orwrite.,5 IE'Sf~st, ,techniques frqm which the user may choose are 
forward. and 15 IPS rewind,Wlththesespeeii$i'nd,,;, ···av~i!~ble.· In this single-chip dedicated controller 
a maximum recordingd(:m.sity of 800 bitsper.inch . application. a "self-clocking" phase encoding scheme 
(BPI). the maximum data rate is ~400bi'tsper similar to that used in floppy discs was chosen. This . 
&ecPI1d(BAUP}. The data capacity using both sides . scheme specifies that a logic "0" is .. a bit cell with no 
of a 100-foot tape is i200K bytes. On topofthisi transitiDn: aceli. with a· trans.ition is a logic "1." 

AFN'()1342A 



APPLICATIONS 

Table 1. CM-GOO 1/0 Pin Definition 

Pin 1/0 Function 
1 - Index pin-not used 
2 - Signal ground 
3 0 Cassette side (O-side B, I-side A) 
4 I Data input (O-space, I-mark) 
5 0 Cassette presence (O-cassette, I-no 

cassette) 
6 I Read/Write (O-read, I-write) 
7 0 File protect (O-tab present, I-tab 

removed) 
8 - +5v motor power 
9 - Power ground 

10 - Chassis ground 
11 I Direction (O-forward, I-rewind) 
12 I Speed (O-fast, I-slow) 
13 0 Data output (O-space, I-mark) 
14 0 Clear leader (O-clear leader, I-off 

clear leader) 
15 I Motion (O-go, I-stop) 
16 - +5v logic power 

INPUTS BLOCK DIAGRAM OUTPUTS 

POWER----+-'5V MOTOR 
'5V LOGIC P 

TAPE DIREC 
TAPE MOTIO 
TAPE,SPEED 
SELECT REA 
DATA INPUT 
POWER GRO 
SIGNAL GRO 
CHASSIS GR 

OWER • 
TION (I WD/REW) ... 
N (STOP/GO)----.. 
(FAST/SLOW)----. 
D/WRITE~ 

• 
UNO .. 
UNO • 
QUNO • 

BRAEMAR 
CM·60Q'· 
DIGITAL 

MiNI CASSETTE 
TRANSPORT 

=: 
=: -

CASSETTE sIDe 
FILE PROTECT 
CASSETTE PRESENCE 
CLEAR LEADER 
DATA OUTPUT 

Figure 3. Braemar CM-GOO'· Block Diagram 

Figure 4 illustrates the encoding of the character 
3AH assuming the previous data ended with the 
data line high. (The least significant bit is sent 
first.) Notice that there is always a "clocking" 
transition at the beginning of each cell. Decoding is 
simply a matter of triggering on this "clocking" 
transition, waiting 3/4 of a bit cell time, and 
determining whether a mid-cell transition has 
occurred. Cells with no mid-cell transitions are data 
D's; cells with transitions are data l's. This encoding 
technique has all the benefits of Manchester encod­
ingwith the added advantage thatthe encoded data 
may be "decoded by eyehall:"long cells are always 
O's, short cells are always I's. 

Besides the encoding scheme, the data format is also 
up to the user. This controller uses a variable byte 
length, checksum protected block format. Every 
block starts and ends with a SYNC character 

2·48 

Figure 4. Modified Phase Encoding of 
Character 3A Hex 

(AAH), and the character immediately preceeding 
the last SYNC is the checksum. The checksum is 
capable of catching2 bit errors. The number of data 
characters w.ithin a block is limited to 64K bytes. 
Blocks are separated by an Inter-Record Gap (IRG). 
The IRG is of such a length that the transport can 
stop and start within an IRG, as illustrated in the 
data block timing, figure 5. Braemar specifies a 
maximum start or .stop time. of 150ms for the' 
transport; thus the controller USeS 450ms for the 
IRG. This gives plenty of margin for controlling the 
transport and also for detecting IRGs while skipping 
blocks. 

THE UPI-.41A CONTROLLER 

The goal of the UPI software design for this applica­
tion was to make the UPI-41A microcomputer into 
an intelligent cassette control processor. The host 
processor (8086, 8088, 8085A, etc.) simply issues a 
high-level command such as READ-a-block or 
WRITE-a-block. The 8741A accepts the command, 
performs the requested operation, and returns to 
the host system a result code telling the outcome of 
the operation, ego Good-Completion, Sync Erro'r, 
etc. Table 2 shows the command and result code 
repertoire. The 8741A completely manages all the 
data transfers for reading and ·writing. 

As an example, consider the WRITE-a-block com­
mand. When this command is issued, the UPI-41A ' 
expects a 16-bit number from the host telling'how 
many data bytes to write (up to 64K bytes per 
block). Once this number is supplied in the form of 
two bytes, the host is free to per·form other tasks; a 
bit in the UPI's STATUS register or an interrupt 
output will notify the host when a data transfer is 
required. The 8741A then checks the transport's 
status to be sure that a cassette is present and not 
file protected. If either is false, a result code is 

AFN·Ol342A 



APPLICATIONS 

f.ooI41------BLOCK WRITE OPERATlON---'---J.1 

I SYNC I DATA ~\ 
1-450MS-1 

I CHECKSUM I SYNC I I SYNC I DATA 

'START TRANSPORT 

1-450MS ...... 1 

'STOP TRANSPORT 

Figure 5. IRG/Block Timing Diagram (not to scale) 

Table 2. Controller Command/Result Code Set 

Command Result 
Read (OlH) Good-Completion (DOH) 

Buffer Overrun Error (41H) 
Bad Synchl Error (42H) 
Bad Synch2 Error (43H) 
Checksum Error (44H) . 
Command Error (45H) 
End of Tape Error (46H) 

Rewind (04H) Good-Completion (OOH) 
Skip (03H) Good-Completion (OOH) 

End of Tape Error (47H) 
Beginning of Tape Error (48H) 

Write (02H) Good-Completion (OOH) 
Buffer Underrun Error (81H) 
Command Error (82H) 
End of Tape Error (83H) 

returned to the host; otherwise the transport is 
started. After the peripheral controller checks to 
make sure that the tape is off the clear leader and 
past the hole in the tape, it writes a 450ms IRG, a 
SYNC character, the block of data, the checksum" 
and the final SYNC character. (The tape has a clear 
leader at both ends and a small hole 6 inches from 
the end of each leader.) The data transfers from the 
host to the UPI -4,lA slave microcomputer are double 
buffered. The controller requests only the desired 
number of data bytes by keeping track of the count 
internally. 

If nothing unusual happened. such as finding clear 
leader while writing. it returns a Good-Completion 
result code to the host. If clear leader was encoun­
tered.the transport is stopped immediately and an 
End-of-Tape result code is returned to the host. 
Another possible error would be if the host is late in 
supplying data. If this occurs. the controller writes 

2·49 

an IRG. stops the drive. and returns the appropriate 
Data-Underrun result code. 

The READ-a-block command also provides error 
checking. Once this command is issued by the host. 
the controller checks for cassette presence. If 
present, it starts the transport. The data output 
from. the transport is then examined and decoded 
continuously. If the first character is not a SYNC. 
that's an error and the controller returns a Bad­
First-SYNC result code (42H) after advancing to 
the next IRG. If the SYNC is good. the succeeding 
characters are read into an on-chip 30 character 
circular buffer. This continues until an IRG is 
encountered. When this occurs. the transport is 
stopped. The controller then tests that the last 
character. If it is a SYNC. the controller then 
compares the accumulated internal checksum to 
the block's checksum. the second to the last character 
of the block. If they match. a Good-Completion 
result code (OOH) is returned to the host. If either 
test is bad. the appropriate error result code is 
returned. The READ command also checks for the 
End-of-Tape (EOT) clear leader and returns the 
appropriate error result code if it isfound before the 
read operation is complete. 

The 30 character circular buffer allows the host up 
to 30 character times of response time before the 
host must collect the data. All data transfers take 
place thru the UPI-41A Data BU;; Buffer Output 
register (DBBOUT). The controller continually 
monitors the status of this register and moves 
characters from the circular buffer to the register 
whenever it is empty. . 

The SKIP-n-blocks command allows the host to skip 
the transport forward or backward up to 127 
blocks. Once the command is issued. the controller 
expects one data byte specifying the number of 

AFN-01342A 



APPLICATIONS 

blocks to skip. The most significant bit of this byte 
selects the direction of the skip (O=forward. 
l=reverse). SKIP is a dual-speed operation in the 
forward direction. If the number of blocks to skip is 
greater than 8, the controller uses fast-forward (5 
IPS) until it is within 8 blocks of the desired 
location. Once within 8 blocks. the controller 
switches to the normal read speed (3 IPS) to allow 
accurate placement of the tape. The reverse skip 
uses only the rewind speed (15 IPS). Like the READ· 
and WRITE commands, SKIP also checks for EOT 
and beginning-of-tape (BOT) depending upon the 
tape's direction. An error result code is returned if 
either is encountered before the number of blocks 
skipped is complete. 

The REWIND command simply rewinds the tape to 
the BOT clear leader. The ABORT command allows 
the termination of any operation in progress, except 
a REWIND. All commands, including ABORT, 
always leave the tape positioned on an IRG. 

THE HARDWARE INTERFACE 

There's hardly any hardware design effort required 
for the controller and transport interface in figure 
6. Since the CM-600 is TTL compatible. it connects 

1 8741A 
8041A 

CLOC~ XTAL1 

2l XTAL2 

VCC 
VDD 
ss v 

!:S 
1m TEST1 
WI! 
AO PlO 

P11 

OO~D7 
P12 
P13 
P14 
P15 

OBF P24 P16 

mF P25 P,. 

RESET EA 
VSS 

P21 

~ 

...J 

-I> 

directly to the I/O ports oftheUPI controller. If the 
two are separated (Le. on different PC cards), it is 
recommended that TTL buffers be provided.) The 
only external circuitry needed is an LED driver for 
the DRIVE ACTIVE status indicator. 

The 8741A-to-host interface is equally straightfor­
ward. It has a standard asynchronous peripheral 
interface: 8 data lines (Du-D7). read (RD). write 
(WR). register select (AO). and chip select (CS). 
Thus it connects directly to an 8086. 8088. 8085A. 
8080, or 8048 bus structure. Two interrupt outputs 
are provided for data transfer requests if the 
particular system is interrupt-driven. DMA transfer 
capability is also available. The clock input can be 
driven from a crystal directly or with the system 
clock (6MHz max). The UPI-41A clock may be 
asynchronous with respect to other clocks within 
the system. 

This application was developed on an Intel iSBC 
80/30 single board computer. The iSBC 80/30 is 
controlled by an 8085A microprocessor, contains 
16K byws of dual-ported dynamic RAM and up to 
8K bytes of either EPROM or ROM. Its I/O com ple­
ment consists of an 8255A Programmable Parallel 
Interface. an 8251A Programmable Communica-

CM·SOO 

MOTOR POWER 
L LOGIC POWER 

DATA OUT 

DIRECTION 
MOTION 
SPEED 
READ/WRITE 
CLEAR LEADER 
FILE PROTECT 
PRESeNCE 

DATA IN 

1: :~~~~~~~ 
-::!:- . 5V L CHASSIS GND 

- i;VE 

ACTIVE 

Figure 6. Controller/Transport System Schematic 

2-50 AFN·01342A 



APPLICATIONS 

tions Interface. an 8253 Programmable Interval 
Timer. and -an 8259A Programmable Interrupt 
Controller. The iSBC 80/30 is especially convenient 
for UPI develoPment since itcontaint3 an uncom­
mitted socket dedicated to either an 8041A or 
8741A. complete with b~ffering for its I/O ports. 
The iSBC 80/30to 8741A interface is reflected .in 
figure 8. (Optionally, an iSBC 569 Digital Controller 
board could;be used. The iSBC 569 board contains 
three uncommitted UPI sockets with an interface 
similar to that in figure 8.) 

Looking at thehosHo-controller interface. the host 
sees the 8741A as three registers .in the host's I/O 
address space: the data register. the command 
register. and the status register. The decoding of 
these registers is shown in figure 7. All data and 
commands for the controller are written into the 
Data Bus Buffer Inputregister (DBBIN). The state 
of the register select input. AO. determines whether 
a command or.data: is written. (Writes with AO set 
to 1 are commands by convention.) All data and 
resulit3 from the controller are read by the host from 
the Data Bus Buffer Output register (DBBOUT). 

CS RO WR AO Register 

o 0 I 0 DBBOUT 
o 0 I I STATUS 
o 0 0 DBBIN (DATA) 
o 0 I DBBIN (COMMAND) 
I X X NONE 

Figure 7. 8741A/8041A Interface Register 
Decoding 

STATUS 

OBF-OUTPUT BUFFER FULL 
IBF-INPUT BUFFER FULL 
FO-FlAGO 

'----- F'-FLAG , 

L~~==== DR!VE ACTIVE FilE PROTECT 
CASSETTE PRESENCE 

'-------BUSY 

The Status register contains flags which give the 
host the status of various operations withinthe·con­
troller. Itsformat is givenin figure 8. The. Input 
Buffer Full (IBF) and Output· Buffer .Full (OBF) 
flags show the Status of the DBBIN and DBBOUT 
registers respectively. IBF indicates when the 
DB BIN register contains data written by the host, 
The host may write to DBBIN only when IBI<' is O. 
Likewise. the host may read DBBOUT only when 
OBF is set to a 1. These bits are handled aut.oma­
tically by theUPI74IAinternal hardware. FLAG Q 
(Fi) and FLAG I (F1) are general purpose flags 
used internally by the controller which have no 
meaning externally. 

The remaining four bits are user-definable. For this 
application they are DRIVE ACTIVE. FILE PRO­
TECT. CASSETTE PRESENCE. and BUSY flags. 
The FILE PROTECTal)d CASSETTE PRESENCE 
flags reflect the state ofthe corresponding I/O lines 
from the transport. DRIVE ACTIVE is set whenever 
the transport motor is on and the controller is 
performing an operation. The BUSY flag indicates 
whether the contents of the DB BOUT register is 
data or a result code. TheBUSY flag is set whenever 
a command is issued by the host and accepted by the 
controller. As long as BUSY is set. any character 
found in DBBOUT is a result code. Thus whenever 
the host finds OBF set. it should test the BUSY flag 
to determine whether the character is data or a 
result code. 

Notice the OBF and IBF are available as interrupt 
outputs to the host processor, figure 6. These outputs 
are self-clearing, that is, OBF is set automatically 
upon the controller loading DBBOUT and cleared 
automatically by the host reading DBBOUT. Like­
wise IBF is cleared to a 0 by the host writing into 
DB BIN: set to a I when the controller reads DBBIN 
into the accumulator . 

. The flow charts of figure 9 show the flow of sample 
host software assuming a polling software interface 
between the host and the controller. The WRITE 
command requires two additional count bytes which 
form the I6-bit byte count. These extra bytes are 
"handshaked" into the controller using the IBF flag 
in the STATUS register. Once these bytes are' 
written. the host writes data in response to IBF 
being cleared. This continues until the host finds 
OBF set indicating that the operation is complete 
and reads the result code from DBBOUT. No 
testing of BUSY is needed since only the result code 
appears in the DBBOUT register. 

The READ command does require that BUSY be 
Figure 8. Status Register Bit Definition tested. Once the READ command is written into the 

2·51 AFN.Q'342A 



APPLICATIONS 

Figure 9. Host CPU Flow Charts for Commands When Polling is Used 

controller, the host must test BUSY whenever OBF 
is set to determine whether the contents of DBBOUT 
is data from the tape or the result code. 

The SKIP command requires the skip count byte. 
This byte is written into DB BIN after IBF has been 
cleared following the command. The host then waits 
until OBF is set indicating the operation is complete 
and the result code is waiting in DBBOUT. The 
REWIND and ABORT commands only require 
that the host test OBF. Once set, the result code is 
ready in DBBOUT. 

2-52 

The flow charts for an interrupt-driven system are 
simplified since no testing of 0 BF or IBF is required. 
The mere fact that an interrupt occurred implies 
that the corresponding bit in the STATUS REGIS­
TER is set or cleared. 

THE CONTROLLER SOFTWARE 

The internal UPI-41A software can be divided 
roughly into the various commands. (This software 
is discussed as flow charts. The actual program 
listing is included in Appendix A.) A command 

AFN'()1342A 



APPLICATIONS 

recognizer simply waits for a command input by the 
host and then branches to the appropriate command 
routine. The command routine executes until the 
entire operation is complete and then branches 
back to the command recognizer. Since only one 
command routine is executing at anyone time, the 
working registers change function based upon which 
command is active. Figure 10 shows the register 
function and identifying name for each command. 
Notice that while most registers have completely 
different meanings depending upon the command, 
some registers retain their meaning over all com­
mands. All registers were assigned names based on 
their function to aid programming and to make the 
listing easier to read. 

The READ and WRITE commands utilize the 
internal timer and event counter for all bit timing. 
This timer provides an internal interrupt on over­
flow. Thus these commands can be thought of as 
containing both foreground and background (inter­
ruptservice routine) tasks. These tasks communicate 
via general purpose registers assigned the function 
of internal status registers: WSTAT and RSTAT 
for the WRITE and READ commands respectively. 
The bit definition for these internal status registers 
is shown in figure 11. We will refer to these bits as 
the command routines are discussed. 

WRITE COMMAND 

• REGISTER BANK 0 

RO CNTL5B BYTE COUNT LSB 
R1 CNTMSB BYTE COUNT MSB 
R2 CMPSAV COMMAND SAVE 
R3 CHKSUM CHECKSUM 

R4 TEMP1 
RS 
R6 
R7 STAT 

ACCUMULATOR 
TEMPORARY STORAGE 

I SOFTWARE DELAY 
COUNTERS 

IMAGE OF UPPER 
4-BITS OF STATUS 

• REGISTER BANK 1 

RO 
R1 
R2 RESULT 
R3 WSTAT 
R4 BITCNT 
RS SERIAL 
R6 T~MPO 
R7 ASAVE 

I NOT USED 

RESULT CODE STORAGE 
WRITE STATUS 
BIT COUNTER 
SERIALIZER 
TEMPORARY STORAGE 
ACCUMULATOR 
STORAGE 

Figure 10A. Register D.efinition for WRITE 

2-53 

READ/SKIP/REWIND COMMANDS 

• REGISTER BANK 0 

RO LBOUT BUFFER OUTPUT POINTER 
R1 LBRDY BUFFER READY POINTER 
R2 NOT USED 
R3 CHKSUM CHECKSUM ACCUMULATOR 
R4 BLKCNT BLOCK COUNTER FOR SKIP 

. RS BLKTIM COUNTER TO TIME IRG DURING SKIP 
R6 BLKSAV BACKUP FOR BLKTIM 
R7 STAT IMAGE OF UPPER 4-BITS OF STATUS 

• REGISTER BANK 1 

RO LBIN BUFFER INPUT POINTER 
R1 IRGCNT COUNTER TO TIME IRG DURING. READ 
R2 RESULT RESULT CODE STORAGE 
R3 RSTAT READ STATUS REGISTER 
R4 BITCNT BIT COUNTER 
RS DESERL DE-SERIALIZER 
R6 RDATA READ DATA HOLDING REGISTER 
R7 ASAVE ACCUMULATOR STORAGE 

Figure 10B. Register Definition for READ, 
SKIP, and REWIND 

RSTAT 

RDYFLG-OATA READY FLAG 
SNBFlG-SYNC NEXT BYTE FLAG 
SRTFlG-START FLAG 

L"':::===:'RGFLG-IRG FOUND FLAG 
NOT USED 

'--____ -'-EOTFLG_EOT FLAG 

L~======:BOTFlG-BOT FLAG 
WRFLG-REAO/WRITE FLAG 

WSTAT 

CKSFLG-CHECKSUM FLAG 
SYNFlG-SVNC FLAG 
WROFLG-WRITE DONE FLAG 

'------NOT USED 
'------- EOTFLG-EOT FLAG 

L~======:BOTFLG-BOT FLAG 
WRFLG-READ/WRITE FLAG 

Figure 11. READ and WRITE Internal Status 
Register Bit Definitions 

AFN-Q1342A 



APPLICATION$ 

WRITE COMMAND 

Let's look at the WRITE command routine first, 
figure 12. As was meritioned earlier, the WRITE 
requires two additional data bytes before it can be 
processed. Once the command recognizer branches 
to the WRITE routine, the routine waits on IBF 
until these bytes are written by the host. These 
count bytes are stored in the CNTLSB and CNTMSB 
(Count Least and Most Significant Byte) registers. 
These two registers are concatenated to form the 
16-bit byte count. At this point, the routine tests the 

transport status lines, CASSETTE PRESENCE 
and FILE PROTECT. If there is no cassette present 
or the tape is write protected, the routine exits 
immedilj.tely after resetting BUSY and loading 
DB BOUT with the appropriate error result code 
Assuming the transporj; status is correct, the other 
registers required by the routine are initialized: the 
bit counting register (BITCNT) is set to 8; the 
checksum accumulator (CHKSUM) is cleared; the 
data holding register (SERIAL) is loaded with the 
first SYNC character. The internal timer counter is 
then loaded with a value which will cause an 
internal timer interrupt in one half of a bit-cell 
time, but not actiYILted. 

Next, the EOT flag in WSTAT is examined to see if 
we are trying to write while at the end of the tape. 
(EOTFLG is set to 1 if EOT was encountered during 
the last operation.) If an error occurred, the routine 
exits after resetting BUSY and loading DBBOUT 
with the EOT-while-write result error code (83H) 
via the result storage register, RESULT. Assuming 
EOTFLG is not set, the DRIVE ACTIVE flag in the 
Status register is set and the transport is started. 
The BOT flag (BOTFLG) in WSTAT is then tested 
to see if we are at the beginning of the tape.) If 
BOTFLG is 0, the routine writes a 450ms IRG using 
a software delay loop. If BOTFLG is I, the routine 
waits until the clear leader and hole in the tape are 
passed before starting the IRG. WSTAT is then 
loaded with80H. This resets EOTFLGand BOTFLG 
and sets the write and read flag, WRFLG. WRFLG 
tells the interrupt routines that a write operation is 
active. As we shall see, the interrupt routine tells 
the foreground task that the write operation is 
complete by resetting WRFLG. At this point the 
routine starts the timer and enters a loopcontinually 
testing WRFLG. IfWRFLG is I, the routine simply 
loops. 

Now let's look at the write routine that does all the 
work: the write timer. interrupt service routine. 
When the timer interrupt occurs half a bit-cell time 
later, an automatic vector to the INT. routine· is 
performed (location 07H in program memory). INT 
test WRFLG to see whether it's a read or write 
operation in progress and branches accordingly~ 
Since we are talking about a write operation, the 
branch is to the WRINT routine, figure 13.WRINT 
first reloads the timer to provide the timing for the 
next half cell (the timer continues to run). The F 0 is 
used to define whether this particular interrupt is 
for the first or the second half of the bit cell. The 
phase encoding algorithm used specifies that the 
beginning of a bit must always have a transition. If 

Figure 12. WRITE Command Flow Chart Fo is reset, the data output to the transport is simply 

2·54 ~134211 



APPLrCAl'lONS 

. Figure 13. WR~NT ....... Write Timer Interrupt Rputine FlowChart 

complemented providing the transition .. If set, the 
interriIpt is at the mid-cell position. If the data.bit is. 
a 1, complement the data output; otherwise;·do not 
chlinge it. Fo is complemented every interrupt. . 

The CLEAR LEADER input from the transport is 
also tested on every'interrupt. Ifitwasencountered, 
the transport is stopped, the EOT.FLG in WSTAT is 
set, WRiFLG is reset • .and RESULT is loaded with 
the EOT.while-write error, result code (83H). 
WRINT returns to the main write loop. 

2·55 

The data contained in the SERIAL register is 
shifted out bit-by-bit at every other timer interrupt· 
(those interupts with F 0 set to a l)'until the BITCNT 
register indicates that all 8 bits·have been shifted 
out. When this occurs, a 16cQit decrement operation 
on the CNTMSB and £NTLSB registers is per­
formed. If the result is non-zero,the routine transfers 
the next data byte from DBBINto SERIAL. If the 
nost is late in geting the next byte into DBBIN, a 
WritecUnderrun error (8IH) occurs. Like the other 
error;CQnditions, WRFLG, inWSTAT is reset and 

AFN'()l342A 



APPLICATIONS 

the W ri te-U nderrun error resul t code is .loaded in to 
the resul t holding register, RE S ULT, before return­

. ing to the main write loop. If the data is ready in 
DBBIN, it is transferred to SERIAL and added to 
the accumulating checksum. The routine then re-

• turns to the write main foreground task. (Remember 
: that the foreground task is doing nothing more than 
testing WRFLG.) 

'If the decrement result is zero, all data transfers are' 
complete. The accumulated checksum value is 
loaded into Serial and the Checksum flag, CKSFLG, 
is set in WSTAT before exiting the interrupt 
routine. This causes the checksum value to be 
written onto the tape. Sixteen timer interrupts later 
the checksum is complete; it is now time to write the 
final SYNC. CKSFLG is reset, a SYNC character is 
loaded into SERIAL, and the SYNC flag(SYNFLG), 
is set in WSTAT. Sixteen more timer interrupts 
later the SYNC is written to the tape and the block· 
is almost finished. One more interrupt is needed to 
finish the last bit. The write done flag (WRDFLG) is 
set to indicate that this is the last interruptJortbis 
. block. WRDFLG is detected as being set to a 1 on the 
next interrupt and the transport is stopped. WRFLG 
in WSTAT is reset and the Good-Completion result 
code is loaded into the RESULT register before 
exiting to the foreground task. 

All this occurs while the foreground task is testing 
WRFLG. When WRFLG is cleared, the foreground 
task "knows" that the background task is finished; 
BUSY is reset and the result code stored in RESULT 
is loaded into DBBOUT: Theprogr~rri then returns .' 
to the command recognizer. 

READ OPERATION 

In the case of the read command, figure 14,the 
RSTAT register provides the communication be-­
tween the foreground and background tasks. Tbe 
read command routine starts O].lt by initializing the 
registers it requires: the checks1,1m accumulator, 
CHKSUUM, is cleared; pointers for the circular 
buffer, DBIN, LBRDY,and LBOUT are set to the 
start of the buffer; and the bit couriter, BITCNT, is 
.set to 8. 

The circular buffer has three pointers: LBIN to 
'point to the next free buffer location, LBOUT to 
point to the next location from which to retrieve 
data, and LDRTDY to trail LBIN by two locations. 
,LBRDY trails LBIN to ensure that the host does not 
get the received checksum or last SYNC bytes as 
data. The buffer is empty whenever LDRDY equals 
LBOUT. The buffer is full whenever LBOUT minus 
1 equals LBIN. Data is placed in the jJ~ff.(lr by 

loading it into the location pointed at by LBIN and 
then LBIN is incremented. Data is removed from 
the buffer at the location pointed at by LBOUT and 
the LBOUT is incrementd by one. The data memory 
locations 20H thru 3FH form the circular buffer. 
Any pointer increment or decrement operation 
limits the pointers to this range. (If a pointer at3FH 
is incremented, the result wraps around to 20H.) 

Once the registers have been initialized, the timer is 
loaded, but not started, with a value that corresponds 
to 3/4 of a bit-cell time. Next, the EOT test is 
performed on the EOTFLG in RST AT. The routine 
exits with an EOT-while-read error result code if an 
attempt to read is made while at EOT. If not, the 
transport is started and the BOTFLG is tested to see 
if it must move past the clear leader and hole. Once 

·past the clear leader and hole, if necessary, the 
SYNC-Next-Byte flag (SNBFLG), and the Start 
flag(SRTFLG), are set in RSTAT. SNBFLG informs 
the software that the next received byte should be a 
SYNC. SRTFLG prevents LBRDY from being, 
incremented prematurely . 

As soon as a transition from mark (1) to space (0) is 
detected, the timer is started. The routine enters a 
loop which tests the data ready flag (RDYFLG), the 
IRG found flag (IRGFLG), and the EOT detected 
flag (EOTFLG) in RSTAT. These flags are set by 
the background ,task to communicate with the 
foreground. RDYFLG is set when a character has 
been assembled and is waiting in the holding. 
register, RDATA. IRGFLG is se't when an' IRG has 
been found by the background task. EOTFLG has 
the same meaning as with the write command; the 
clear leader at the end of the tape has been found. 

If none of these flags ·are set, the foreground then 
looks at the circular buffer to see if it contains any; 
data to output to the host. The buffer contains data 
when LBIN does not equal LBOUT. If these pointers 
are equal, the buffer is empty and the foreground 
task just continues to loop. If they are not equal,­
there is some data left in the buffer. OBF is tested to' 
seeif DB BOUT is free to accept more data. If it is 
free, the character pointed at by LBOUT is trans­
fere!! tQDBBOUT and LBOUT is incremented to 
the next location. If bBBOUT still contains pre­
viously loaded data(OBF set), the foreground con-, 
tinues to test the flags in RSTAT. 

When the foreground task finds RDYFLG set, data 
is available in RDATA. Before transfering this data' 
into the buffer, itfirst compares LBIN and LBOUT. 
If LBOUT is one less than LBIN, the buffer is full, 
and no more data can be loaded. This is an error 
condition;, the read ;operation is aborted and the 

AFN·01342A 



APPLICATIONS 

Figure 14. READ Command Routine Flow Chart 

2·.57 AFN-Ol342A 



APPLICATIONS 

transport is moved to the next IRG using the SKIP 
routine discussed below. Once at the next IRG, 
BUSY is reset and the Read-Overrun error result 
code (41H) is placed in DBBOUT. This terminates 
the read operation and the routine branches back to 
the command recognizer. 

If the buffer is not full, the data is transfered from 
RDATA to the location pointed to by LBIN. LBIN is 
incremented and the RDYFLG in RSTAT is reset. 
LBRDY is also incremented if LBIN has been 
incremented twice already. (SRTFLG set prevents 
LBRDY from being incremented. SRTFLG is reset 
when LBIN is incremented to the second buffer 
position.) This ensures that LBRDY will point to the 
last data byte once an IRG is detected. The data is 
also added to the accumulated checksum, CHKSUM. 
The foreground then goes back to test the RST A T 
flags. When IRGFLG is found set, the background 
task has found an IRG and stopped the transport. 
This indicates that the block read is complete. Since 
the IRG occurs after the checksum and final SYNC 
characters, these two bytes are in the circular 
buffer. To test them the foreground task then 
decrements LBIN to point at the final SYNC and 
checks if it is a SYN C character. If not, a Bad -Sync2 
error result code (43H) is placed in RESULT and 
the routine branches to the read exit routine. If it is 
okay, a SYNC is removed from the accumulated 
checksum. LBIN is decremented again to point to 
the received checksum. Since this character is also 
in the accumulated checksum, it is subtracted out. 
Now the accumulated checksum reflects only the 
received data so it is compared with the received 
checksum. If they are equal, the data is presumed 
good and a Good-Completion result code (DOH) is 
loaded into result. If not, an error has occured and 
the RESULT is loaded with the Bad-Checksum 
result code (44H). 

Although the actual read operation is complete with 
respect to the transport, there may still be data 
remaining in the buffer of the controller. The read 
exit routine loops testing LBOUT and LBRDY and 
transfering data from the buffer into DB BOUT 
until the buffer is empty. Once the buffer is empty, 
BUSY is reset and the result code is transferred 
from RESULT to DBBOUT, completing the read 
operation. 

The timer interrupt routine, RDINT, for the read 
operation is shown in figure 15. The phase decoding 
algorithm specifies that the timer start at the 
beginning transition ofthe bit cell. It waits for 3/4 of 
a bit cell before sampling the data input. If the data 
input is the same as immediately after the beginning 
transition, the data bit is a O. If it is.different, the 

2-58 

data bit is a 1. The timer interrupt routine compares 
the present state of the data input to the state 
immediately following the beginning transition. F 0 
stores this value and shifts it into the de-serializing 
register (DESERL). Once 8 bits have been accumu­
lated, the RDYFLG is set to inform the foreground 
that a character is complete. This character is then 
transfered from DESERL to the holding register, 
RDATA. 

After the interrupt routine has sampled and shifted 
in the bit, it looks for the beginning transition of the 

Figure 15. RDINT -Read Timer Interrupt 
Routine Flow Chart 

AfN.Ol342A 



APPLICATIONS 

next bit cell. While looking for this transition, it 
keeps track of time be decrementing a counter 
called IRGCNT. If this counter reaches zero, no 
transition has occured within a certain amount of 
time (this application used two bit cell times); this is 
defined as the beginning of an IRG. When an IRG is 
found, the transport is stopped and the IRGFLG is 
set in RSTAT before exiting the interrupt service 
routine. If a transition is found before the counter 
times out, the routine exits setting Fo to the data 
input state after the transition. Fo is used for 
storing the state while in the foreground. As in the 
write operation, the CLEAR LEADER input is also 

tested every interrupt. If an EOT is found, EOTFLG 
is set and the transport is stopped. 

SKIP OPERATION 

The same technique for finding IRGs is used in the 
SKIP command routine. The SKIP command, figure 
16, causes the transport to skip forward or reverse a 
specified number of IRGs. The number of IRGs to 
skip is indicated by the byte following the SKIP 
command byte acceptance (i.e. BUSY has been set 
and IBF is 0). The SKIP command routine waits, 
looping on IBF, until the IRG skip count is loaded by 

Figure 16. SKIP Command Routine Flow Chart 

2-59 AFN.()1342A 



APPLICATIONS 

the host. Then it is transferred from DBBIN to the 
skip count register, BLKCNT. The usual EaT and 
BOT tests are performed to ensure it doesn't skip 
forward when at EaT or reverse when at BOT. The 
transport is then started in the direction indicated 
by bit 7 of the BLKCNT value. (This bit is masked 
off after the initial direction test.) 

For reverse skips, the skipping subroutine, SKIPER, 
is called. It advances the transport to the next IRG 
using the IRGCNT technique described above. 
When SKIPER returns, BLKCNT is decremented 
and tested for zero. If non-zero, SKIPER is called 
repeatedly until BLKCNT is zero. Once zero, the 
transport is stopped and BUSY is reset. DBBOUT 
is loaded with a Good-Completion result code (OOR). 

When doing forward skips, the software takes 
advantage of the fact that the transport can recog­
nize IRGs during fast forward. If the BLKCNT is 
greater than 8, fast forward is selected instead of 
slow and SKIPER is called. (The IRGCNT value is 
modified to take into account the faster tape speed.) 
When SKIPER returns, BLKCNT is decremented 
and tested both for being less than 8 or equal to zero. 
Once BLKCNT is less than 8, the slow speed is 
selected. Once BLKCNT reaches 0, the operation is 
terminated like the reverse skips. The transport is 
stopped and BUSY is cleared. DB BOUT is loaded 
with a Good-Completion result code. 

As with both READ and WRITE commands, the 
clear leader test is made periodically to ensure that 
no skips are made past the end or beginning of the 
tape. The appropriate error result code is issued if 
CLEAR LEADER is found set. RSTAT is loaded 
with the appropriate EOTFLG bit set. 

REWIND OPERATION 

The REWIND command routine, figure 17, simply 
sets the transport to fast rewind and loops until 
clear leader is found for greater than 50ms. (The 
hole at the ends of the tape is guaranteed not to 
cause the clear leader input to be active for more 
than 50ms.) Once the tape's clear leader is found; 
the transport is stopped; BUSY is reset. A Good­
Completion result code is loaded into DBBOUT. 
Also, since the transport is now at the BOT, the 
BOTFLG is RSTAT is set. 

ABORT OPERATION 

The final command is the ABORT command. It 
does not have a separate flow chart of its own. All 
other commands monitor IBF periodically during 

SELECT REWIND. FAST 

DBBOUT = GOOD·COMPLETION 

Figure 17. REWIND Command 
Routine Flow Chart 

their execution. If a command is found, the command 
is compared to the ABORT command code. If it is 
found, the routine in execution is stopped and 
BUSY is reset. The Abort-Complete result code is 
placed in DBBOUT. The aborted routine does 
ensure that it exits gracefully. An aborted READ or 
SKIP advances to the next IRG before stopping; 
WRITE records an IRG before stopping. 

WRAPPING IT UP 

The program listing follows in Appendix A. For 
more information on the UPI-41A family, see the 

AFN.{Il342A 



APPLICATIONS 

referenced manuals on the cover of this application 
note. For those readers who would like to use or 
modify this program but don't want to type in 
nearly lK bytes of code, source files are available 
through the Intel User's Library, IN SITE. (Contact 
your local Intel sales office for information on 
INSITE.) A sample of other UPI-41A programs 
available thru the IN SITE library are: 

2-61 

Seiko printer controlIer 
Olivetti printer controlIer 
LRC printer controlIer (8295) 
Sensor Jlllitrix controIler . 
LED display controlIer 
Combination serial/paralIel I/O 
Programmable keyboard/display controlIer 
GPIB controlIer (8292) 

AFN-01342A 



APPLICATIONS 

APPENDIX 

2·62 AFN-D1342A 



APPLICATIONS 

ASM48 :Fl·DIGCAS.ASM NOOBJECT PRINT(:LP:) 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3 0 
DIGITAL CASSETTE CONTROLLER REV 1 0 - 26 MARCH 80 

LOC OBJ 

0000 
0001 
0002 
0003 
0004 

0007 

0002 
0003 
0004 
0005 
0006 
0007 

0000 
0001 

0004 
0005 
0006 

0000 
0001 

0003 

0005 
0006 

LINE SOURCE STATEMENT 

1 SMACROFILE MOD41A TITLE( 'DIGITAL CASSETTE CONTROLLER REV 1. 0 - 26 MARCH 80') 
2 

3 i ***************************************************************'11-******* 
4 
'5 i UPI-41A DIGITAL CASSETTE CONTROLLER FOR THE 8RAEMAR eM-'bOO 
6 
7 ; ***************************.11-**********-11 ************-11-******************* 
8 
9 , THIS UPI-41A BASED PROGRAM CONTROLS A BRAEMAR eM-600 MINI-CASSETTE 

10 ,THE PROGRAM ALLOWS THE HOST CPU TO SIMPLY ISSUE COMMANDS SPECIFYING 
11 ,READ-A-BLOCK, WRITE-A-BLOCK. SKIP FORWARD OR REVERSE N BLOCKS, 
12 ; REWIND, AND ABORT THE UPI-41A HANDLES ALL DATA REQUESTS AND MONITORS 
13 ; THE CASSETTE DRIVE FOR ERRORS; EG WRITING TO THE END-OF-TAPE, ETC. 
14 ; EACH COMMAND SETS THE CONTROLLER IN THE BUSY CONDITIONS. ONCE" THE 
15 ; OPERATION IS COMPLETE, THE UPI--41A RESETS IT'S BUSY FLAG AND LOADS THE 
16 ;OUTPUT DATA BUFFER WITH A RESULT BYTE WHICH INDICATES THE RESULT 
17 ; OF THE REQUESTS OPERATION THE COMMANDS AND RESULT CODES ARE SHOWN 
18 ; IN THE SYSTEMS EQUATES. 
19 
20 ; THE CONTROLLER USES A MODIFIED PHASE ENCODING WHERE DATA 0'5 ARE LONG 
21 ; (FULL BIT TIME) CELLS AND DATA 1 'S HAVE TRANSITIONS AT THE MID-BIT CEL.L 
22 ; POSITlON. WHEN WRITING. ALL BLOCKS ARE PREFACED AND CONCLUDED WITH 
23 ; SYNC CHARACTERS (OAAH) A CHECKSUM BYTE IMMEDIATELY PRECEEDS THE 
2.1! ; FINAL SYNC WHEN READINC, THE CONTROLLER TESTS THE VALIDITY OF 
25 ; BOTH SYNC CHARACTERS AND THE CHECKSUM 
26 ,INTER-RECORD GAPS (IRG) ARE WRITTEN WITH ALL MARK (DATA OUT =-. 1). 
27 
28 ; THE WRITE-·A-BLOCK OPERATION IS DOUBLE BUFFERED WHILE THE READ-A-BLOCK 
29 ,OPERATION USES A 3D-CHARACTER CIRCULAR BUFFER TO MINIMIZE CPU 
30 ; RESPONSE TIME REQUIREI1ENTS 
31 
32 $EJECT 

33 i ***************************************************************.11-******* 
34 
35 ; REGISTER EOUATES - THE WRITE AND READ/SKIP OPERATIONS ARE DISTINCT 

;~ : ~~~=~~~~E I~H~A~~M~p~~!~i~~\/ .. ~~~~.:a~E~:+I~~ ~~~~ ~~~F~~~~~R~~~ISTER 
38 ; LABELS FOR CLAR I TY 
39 

40 ; *********************************************************************** 
41 
42 WRITE - RBO 
43 
44 CNTLSB 
45 CNTMSB 
46 CMDSAV 
47 CHKSUM 
48 TEMP1 
49 
50 
51 STAT 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

RESULT 
WSTAT 
BITeNT 
SERIAL 
TEMPO 
ASAVE 

EQU RO 
EQU Rl 
EQU R2 
EQU R3 
EQU R4 

R5 
R6 

EQU R7 

WRITE - RDl 

RO 
RI 

EGU R2 
EGU R3 
EGU R4 
EGU R5 
EGU R6 
EGU R7 

; BYTE COUNTER LSB 
; BYTE COUNTER MSB 
; COMMAND SAVER 
; CHECKSUM REG I STER 
; TEMPORARY STORAGE 

DELAY REGISTER 
DELAY REGISTER 

j STS IMAGE 

NOT USf:-.D 
NOT USED 

; RESUL T STORAGE 
; WRITE STATUS REGISTER 
; WRITE BIT COUNTER 
i wRITE ·SERIALIZER 
; TEMPORARY STORAGE 
; ACCUMULATOR SAVE 

64 ; *********************************************************************** 
65 
66 READ/SKIP - RBO 
67 ---------------
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

LBOUT 
LBRDY 

; CHKSUM 
BLKCNT 
BLKTIM 
BLKSAV 
; STAT 

79 LBIN 
80 IRGCNT 
81 ; RESULT 
82 RSTA" 
83 j BITCNT 
84 DESERL 
85 RDATA 
86 ; ASAVE 
87 

EGU RO 
EGU RI 

R2 
EGU R3 
EGU R4 
EGU R~, 
EGU R6 " EGU R7 

READ/SKIP - RBI 
---------------
EGU RO 
EGU RI 
EGU R2 
EGU R3 
EGU R4 
EGU R5 
EGU R6 
EQU R7 

; NEXT BYTE OUTPUT POINTER 
; NEXT BYTE AVAILABLE POINTER 

NOT USFD 
CHECKSUM REGISTER (SAME FOR 
BLOCK COUNTER FOR SKIP 
BLOCK IRG TIMER FOR SKIP 
BLOCK IRG TIMER SAVE 
STS IMAGE (SAME FOR WRITE) 

NEXT BYTE INPUT POINTER 
IRG TICM. TIMER 

WRITE) 

RESULT STORAGE (SAME FOR WR I TE) 
READ STATUS REGISTER 
READ BIT COUNTER (SAME FOR WR I TE) 
READ DE-SERIALIZER 
READ DATA BUFFER 
ACCUMULATOR SAVE (SAME FOR WRITE) 

AFN-01342A 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 
DIGITAL CASSETTE CONTROLLER REV 1. 0 - 26 MARCH 80 

LOC OBJ LINE SOURCE STATEMENT 

88 ; *************************'********************************************** B9 
90 ; STATUS REGISTER BIT DEFINITIONS: 
91 ; THE MAJOR OPERATIONS. WRITE AND READ, USE THE TIMER TO DETERMINE 
92 ; ALL BIT-CELL TIMING AND TO PERFORM THE SERIAL-TO-PARALLEL CONVERSIONS. 
93 j THE TIMER INTERRUPT SERVICE AND MAIN ROUTINES COMMUNICATE VIA 
94 ; GENERAL PURPOSE REGISTERS USED AS STATUS REGISTERS. 
95 
96 i STAT IS THE BTB REGISTER IMAGE SINCE THE UPl CAN'T READ BTB DIRECTLY. 
97 j (ONLY THE HIGH ORDER 4-BITS OF STAT ARE USED. ) 
98 ; THE LOWER 4-BITS ARE NOT ·USER-DEFINABLE. 
99 

100 
101 
102 
103 
10. 
105 
lOb 
107 
lOB 
109 
110 
III 
112 
113 

j ***********************************************"************************ 
j WSTAT - WRITE STATUS REGISTER 

WSTATO 
I 
2 

CHECKSUM FLAG (CKSFLG) - CHECKSUM BYTE BEING SENT 
SYNC FLAG (SYNFLG) - FINAL SYNC BYTE BEING SENT 
WRITE DONE FLAG (WRDFLG) - FINAL SYNC IS BEING SENT 

3 NOT USED 
4 NOT USED 

(ENSURES LAST BIT IS COMPLET!::) 

5 END OF TAPE FLAG (EOTFLG) - EOT WAS FOUND. TAPE IS NOW AT EDT 
6 BEGINNING OF TAPE FLAG (BOTFLG) - BOT WAS FOUND. TAPE IS NOW AT BOT 
7 WRITE/READ FLAG (WRFLG) - WRITE OR READ OPERATION IS ACTIVE 

114 j RSTAT - READ STATUS REGISTER 
115 
lib 
117 
liB 
119; 
120 
121 
122 
123 
124 
125 

RBTATO 
I 
2 

DATA READY FLAG (RDYFLG) - NEXT BYTE IS READY IN RDA"TA 
SYNC NEXT BY'TE FLAG (SNBFLGl -"NEXT BYTE SHOULD BE A SYNC 
START FLAG (SRTFLG) - BEGINNING OF READ. DON'T INC, LBRDY 

UNTIL LBIN==22 
3 IRG FOUND FLAG (IRGFLG) - IRG WAS FOUND BY TIMER INT"ERRUPT ROUTINE 
4 NOT USED 
5 END OF' "TAPE "FLAG (EOTFLG)" - EDT WAS FOUND. TAPE IS NOW AT EDT 
6 BEGINNING OF TAPE FLAG (BOTFLGf - BOT WAS FOUND. TAPE IS NOW AT BOT 
7 WRI"TE/READ FLAG (WRFLAG) - WRITE OR READ OPERATION IS ACTIVE 

126 i STAT - STS IMAGE 
127 
12B 
129 
130 
131 
132 
133 
134 
135 
13b 

STATO OaF - OUTPUT BUFFER FULL 
1 IBF - INPUT BUFFER FULL 
2 FO - GENERAL PURPOSE FLAG <USED INTERNALL.Y) 
3 Fl - COMMAND/DATA A...AG 
4 DRIVE ACTIVE - MOTOR ON 
5 FILE PROTECT - DRIVE "STATUS 
6 CASSETTE PRESENCE - DR IVE STATUS 
7 BUSY - CONTROLLER PERFORMING OPERATION 

137 .EJECT 

138 i *********************************************************************** 139 
140 i PORT DEFINITION" 
141 
142 
1.3 
14. 
145 
14b ,.7 
I.B ,.9 
150 
151 
152 
153 
15' 
'"5 
15b 

'"7 
'"8 
159 
IbO 
Ibl 
Ib2 
Ib3 
lb. 

J ******"***********"****************************************************** 
j PORTI0 - DIRECTION (O-FORWARD. 1-REWIND) 

11 - MOTION (O-GO. I-STOP) 
12 - SPEED (O-FAS1, I-SLOW) 
13 - READ/WRITE (O-READ. I-WRITE) 
14 - CLEAR LEADER (O-OFF LEAOE:R. i-ON LEADER) 
15 - FILE PROTECT (O-TAB PRESENT. 1-NO TAB 
16 - PRESENCE (O-TAPE IN WITH ODOR CLOSED. I-NO TAPE) 
17 - NOT USED 

j PORT20 -
21 -
22 -
23 -
2. -
25 -
2b -
27 -

DATA OUT TO CASSETTE (O-SPACE, I-MARK) 
DRIVE ACTIVE LED (O-ON, I-OFF) 
NOT USED 
NOT USED 
OBF INTERRUPT OUTPUT 
IBF I INTERRUPT ()UTPUT " 
NOT USED 
NOT USED 

; TESTI - DATA IN FROM CASSETTE 

SEJECT 

.2-64 
AFN-Ol342A 



APPLICATIONS 

ISIS-II I1CS-4B/UI'I-41 I1ACRO ASSEI1BL.ER. V3.0 
DIGITAL. CASSETTE CONTROL.L.ER REV 1. 0 - 2o!. MARCH BO 

L.OC OB.J 

0001 
0002 
0004 
0020 
0040 
OOBO 
oooe 
FFFC 

0001 
OOFE 
0002 
OOFO 
0004 
OOFB 
0008 
OOF7 
0001 
OOFE 
0002 
OOFD 

0001 
0002 
0004 
OOOB 
OOOB 
FFFA 

ooeo 
0010 
0040 
0020 

0001 
0000 
0002 
0003 
0004 

0081 
0082 
0083 

0041 
0042 
0043 
0044 
0045 
004o!. 
0047 
0048 

OOM 
0033 
0020 
0020 

0005 
0001 
0002 
0004 
0003 
0000 

LINE SOURCE STATEMENT 

16'5 S *********:*********:****:~*************.*****."*******.********************* 
166 
167 J SYSTEM E(lUATES: 
168 
169 I **********~***********~************************************************ 
170 I 

171 ; WRITE SYSTEM EGUATES: 
172 
173 CKSFl.G EGU 01H 
174 SYNFL.G EGU 02H 
17~ WRDFLQ EGU 04H 
17o!. EOTFLG EGU 20H 
177 BOTFLQ EGU 40H 
178 WRFLG EGU BOH 
179 WRCNT EGU OBH 
IBO WRTIM EOU -4H 
IBI 
IB2 ; PqRT EGUATES: 
IB3 

~¢WiND IB4 EGU OIH 
185 FORWD EGU OFEH 
186 STP EOU 02H 
187 SRT EOU OFDH 
IB8 SLOW EQU 04H 
IB9 FAST EGU OFBH 
190 WR EOU OBH 
191 RD EGU OF7H 
192 DOHI EGU 01H 
193 DOLOW E"U OFEH 
194 DAOFF EOU 02H 
195 DAON EGU OFDH 
196 
197 ; READ SYSTEM EQUATES: 
198 ; 
199 ROYFLG EGU 01H 
200 SNBFLQ EOU 02H 
201 STRFLG EOU 04H 
202 IRGFLG E"U OBH 
203 RDCNT E"U OBH 
204 RDTIM EOU -6H 
205 
2Oo!. ; aTS REG I STER EOUATES: 
207; 
208 BUSY EGU 80H 
209 DRACT E"U 10H 
210 TAPIN EGU 40H 
211 FILPRT EGU 20H 
212 $E.JECT 

213 ; GENERAL RESULT CODES 
214 
215 ABTCMP 
216 GOOD 
217 CHOERR 
218 NTAPE 
219 
220 

NWR 

.EGU 
EOU 
EGU 
EOU 
EOU 

OIH 
OOH 
02H 
03H 
04H 

221 ; WRITE RESULT CODES 
222 
223 UNDERW EGU 
224 WCMDER EGU 
225 EOTERR EQU 
226 

BIH 
82H 
B3H 

227 ; READ RESULT CODES 
22B 
229 OVER UN EOU 
230 SYNC 1 EOU 
231 SYNC2 EGU 
232 BADCHS EGU 
233 RCMDER EGU 
234 REOTER EOU 
235 SKPEOT EQU 
236 SKPBOT EQU 
237 
238 ; MIse EQUATES: 
239 
240 SYNe EGU 
2441 SLWIRG EGU 
242 FASIRG EGU 
243 RWDIRG EGU 
244 I 

245 ; COMMANDS 
246 
247 ABORT EGU 
24B RDCMD EOU 
249 WReMD EGU 
250 RWCMD EGU 
251 SKCMD E"U 
252 RESCMD EOU 
253 
254 $E.JECT 

41H 
42H 
43H 
44H 
45H 
46H 
47H 
48H 

OAAH 
510 
32D 
32D 

05H 
OIH 
02H 
04H 
03H 
OOH 

; CHECKSUM FL.AG IN WRITE STATUS 
I SYNC FLAO IN WRITE STATUS 
j WRITE DONE·, fLAG IN WRITE STATUS 
; EDT FLAG 
; BOT FLAG 
i READ/WRITE FLAG IN WRITE STATUS 
; WRITE BIT CONSTANT 
; WR ITE TI MER CONSTANT 

i DIRECTION MASKS 

; START /STOP MASKS 

; SPEED MASKS 

; WRITE/READ MAS,""S 

• DATA OUTPUT TO DR IVE MASKS 

i DRIVE ACTIVE LED MASKS 

; DATA READY FLAG IN READ STATUS 
; SYNC NEXT BYTE FLAG IN READ STATUS 
; START INC READY POINTER 'FLAG IN READ STATUS 
; IRG FOUND FLAG IN READ STATUS 

: ; READ T I MER CONSTANT 
I READ BIT CONSTANT 

; BUSY BIT 
; DRIVE ACTIVE BIT 
; TAPE IN DRIVE. BIT 
; FILE PROTECT BIT 

; ABORT COMPLETE CODE 
I 0000 RESULT CODE 
; COMMAND ERROR CODE 
; NO TAPE ERROR CODE 
; FILE PROTECT ERROR CODE 

I UNDER RUN ERROR CODE 
; COMMAND/DATA ERROR CODE 
; EDT: ERROR CODE 

I UNDER RUN CODe FOR 'BUFFER 
; BAD SYNC I ERROR CODE 
; BAD SYNC 2 ERROR CODE 
; BAD CHECKSUM ERROR CODE 
; COMMAND/DATA ERROR CODE 
; EDT AT READ ERROR CODE 
; EDT AT SKIP ERROR CODE 
; BOT AT RSKIP ERROR CODE 

; SYNC BYTE 
; SLOW IRQ COUNT CONSTANT '- NO TRANSITION IN 2 BIT. -r:JMES 
; FAST IRG COUNT CONSTANT 
; REWIND IRG COUNT FOR SKIP 

; ABORT COMMAND 
j READ FROM TAPE COMMAND 
J WRITE TO TAPE COMMAND 
; REWIND COMMAND 
; SKIP BLOCK COMMAND 
; RESET COMMAND 

2·65 AFN-01342A 



APPLICATIONS 

ISIS-II MCS-49/UPI-41 MACRO ASSEMBLER. V3.0 
DIQITAL CASSETTE CONTROLLER REV 1.0 - 26 MARCH BO 

LOC DB,) 

0000 0409 

0007 

0007 6400 

0009 27 
OOOA B5 
OOOD C5 
OOOC AF 
OOOD 90 
OOOE D5 
OOOF AD 
0010 B906 
0012 99F6 
0014 BA02 
0016 F5 

0017 C5 
0018 D61F 
aOIA 7623 
OOIC 22 
0010 0417 
OOIF 14AD 
0021 0417 

0023 FF 
0024 43BO 
0026 AF 
0027 90 
002B 22 
0029 AA 
002A BC06 
002C FA 
002D 17 
002E DC 
002F C63A 
0031 EC2C 

0033 :54C4 
0035 2302 
0037 02 
003B 0417 

003A FA 
003B 033E 
003D B3 

003E 44 
003F 46 
0040 4B 
0041 4A 
0042 4C 
0043 4. 

0044 044E 
0046 2400 
004B 0455 
004A 4414 
004C 4494 

004E 54C4 
0050 2301 
0052 02 
0053 0400 

LINE SOURCE STATEMENT 

255 ; ***** •• **************************************** •• ********************** 
256 
257 i START OF PROGRAM - JUMPS FOR COLD START (RESET> AND TIMER INTERRUPTS 
25B 

2'" 
260 

; ******** ••••• ********************** ... *********************************** 
261 RESET: JMP 
262 
263 
264 
265 
266 

ORG 

TII'1INT. JMP 

BEGIN ; JUMP OVER TIMER VECTOR LOCATION 

7H ; TIMER INTERRUPT VECTOR LOCATION 

INT I JUMP TO TIMER INTERRUPT SERVICE ROUTINE 

267 
26B 

; ************************.************* •• ************* •• *.************** 
269 
270 
271 

i PROGRAM START - INITIALIZE STATUS REGISTERS. DRIVE OUTPUTS. AND 
i WAIT FOR A COMMAND, 

272 j *********************************************************************** 
273 
274 
275 
276 
277 
27B 
279 
2BO 
2BI 
2B2 
2B3 
2B4 
2B5 

BEGIN CLR 
CLR 
SEL 
MOV 
MOV 
SEL 
MOV 
ORL 
ANL 
ORL 
EN 

A 
FO 
RBO 

i INITIALIZE THINGS 

STAT. A ; CLEAR STS IMAGE 
STS. A i CLEAR STS 

::~AT' A ;'CLEAR STATUS 
Pl, .STP OR SLOW; STOP DRIVE AND SELECT SLOW FOR STARTERS 
Pl, #FORWO AND RD; SEL.ECT FORWARD AND READ 
Pi?. #DAOFF j TURN OFF DRIVE ACTIVE LED 
FLAGS i ENABLE FLAG INTERRUPT OUTPUTS 

266 J C,OMMAND RECOGNIZER MAIN LOOP 
2B7 
2BB BL 
2B9 
290 
291 
292 
293 B2: 
294 
295 

SEL 
.JNIBF 
JFI 
IN 
.IMP 
CALL 
.IMP 

RBO 
B2 
CHDIN 
A,DBB 
81 
STSUP 
BI 

1 COMMAND PROCESSING IN RBO 
; TEST IF IBF INPUT 
i YES THERE IS AN INPUT, SO TEST IF ITS A 
; NOPE. ITS DATA SO IGNORE IT 
j \lUST GO BACK TO TEST IBF 
; NO INPUT. UPDATE STS ,WITH DRIVE STATUS 
; GO BACK TO TEST IBF' 

296 j *******************~*************************************************** 
297 

COMMAND 

298 j COMMAND PROCESSOR' - TESTS VALIDITY OF INPUT AND BRANCHES TO THE APPROPRIATE 
299 i ROUTINE. ILLEGAL COMMANDS ARE FLAGGED AS COMMAND ERRORS. 
300 

301 ; *********************************************:tt************************** 
302 
303 CMDIN: MOV 
304 ORL 
305 
306 
307 
30B 
309 
310 CMDINI' 
311 
312 
313 
314 
315 
316 

MOV 
MOV 
IN 
MOV 
MOV 
MOV 
INC 
XRL 
JZ 
O\lNZ 

317 CMDIN3, CALL 
31S MOV 
319 OUT 
320 JMP 
321 
322 CMDIN2: MOV 
323 ADD 
324 JMPP 
325 i COMMAND JUMP 
326 i 

327 CHOJMP' DB 
328 DB 
329 DB 
330 DB 
331 DB 
332 DB 
333 
334 ARTJMP: 
335 RESJMP: .IMP 
336 REDJMP: .IMP 
337 WRT .IMP: .IMP 
338 SKPJMP' JMP 
339 REWJMP: .IMP 
340 J 

341 ; IT'5 A ABORT 
342 i 

343 RESCOM: CALL 
344 MOV 
345 OUT 
346 .IMP 
347 ; 
348 SE.JECT 

A. STAT 
A, .,BUSY 
STAT. A 
STS, A 
A.DBB 
CMDSAV. A 
TEMPI. _6H 
A. CMDSAV 
A 
A, TEMPI 
CMDIN2 
TEMPt, CMDINl 

NDRACT 
A, _CMOERR 
DBB. A 
BI· 

i GET STS IMAGE 
j SET BUSY FOR ALL COMMAND INPUTS 
i RESTORE IMAGE 
; UPDATE aTS 
i READ COMMAND FROM DBBIN 
; SAVE I T IN CMDSAV 
i INITIALIZE ILLEGAL COMMAND COUNTER 
; GET COMMAND FROM CHDSAV 

i TEST IF VALID 
i YES, INDIRECT .JUMP TO IT 
; NO MATCH YET. TRY AgAIN 
i NO MATCH, COMMAND ERROR 

; RESET DRACT AND BUSY (DRACT WAS NEVI;R SET) 
I COMMAND ERROR CODE 
i OUTPUT ERROR CODE 
; GO BACK TO TEST FOR IBF 

A, CHOSAV ; IT'$ A GOOD COMMAND. GET IT FROM CMDSAV 
A. _ (LOW CMDJMP) j ADD OFFSET 
@A J INDIRECT .JUMP TO THE COMMAND ROUTINE l'HRU TABLE. 

TABLE 

(LOW RES.JMP) 
(LOW REO\lMP) 
(LOW WRT.JMP) 
(LOW SKP \lMP ) 
(LOW REW\lMP) 
(LOW ARTJMP) 

RESCOM 
READ 
WRITE 
SKIP 
REWND 

COMMAND WHILE IN COMMAND RECOGNIZER LOOP 

NDRACT 
A. #ABTCMP 
DBB, A 
RESET 

RESET BUSY AND DRACT (DRACT NEVER WAS $ET) 
GET ABORT COMPLETE CODE 
OUTPUT IT 
GO STAR T OVER 

AFN-01342A 



APPLICATION5 

1815-1 I MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 
DIQITAL CASSETTE CONTROLLER REV 1,0 - 26 MARCH .,BO 

L.OC DB,,} 

0055 C5 
0056 85 
0057 b5 
005B 35 
0059 1659 
0058 0658 
005D 22 
COSE 7633 
0060 AS 
0061 0661 
0063 22 
0064 7633 
0066 A9 
0067 Fe 
0068 17 
0069 AS 
D06A 9660 
CObC 19 
006D 09 
006E 02C5 
0070 82C5 

0072 BBOO 
0074 D5 
0075 BeDS 
0077 BDAA 
0079 23FC 
007B 62 
007C FB 
007D B2A9 
007F C:5 
0080 '54BC 
00B2 D5 
00B3 B90E 
00B5 99FC 
00B7 FS 
0088 37 
0089 D2BD 
OOBB 54DC. 
0090 BB90 
OOBF C5 
0090 14Cl 
0092 14CI 
0094 14Cl 
0096 55 
0097 25 

0098 C5 
00Q9 14AD 
009B D5 
009C FB 
0090 F299 

009F C:5 
OOAO 54C4 
OOA2 D5 
DOA3 FA 
OOA4 02 
OOA:5 14C1 

OOA7 0417 

OQA9BAB3 
OOAB 049F 

LINE SOURCE STATEMENT 

34", ; **************"!'"********t!"*****************************"!f:*************,"***, 
350 
351 i WR~TE TO TAPE ROUTINE 
352 

353 i *********************"""************:'"************************************ 354 
355 WRITE: 
356 
357' 
358 
3~9 CLRTF: 
360 WRI: 
361 
362 
363 
364 
36' 
366 
367 
36B 
369 
370 
371 
372 
373 
374 
375 
376 
377 
379 
379 
390 
3BI 
382 
383 
394 
3B5 
3B6 
397 
39B 
3B9 
390 
391 
392 
393 
394 
395 
396 
397 
399 
399 
400 

WR2: 

NINMSB: 

WR3: 

SEL 
CLR 
STOP 
DIS 
~TF 
JNIBF 
IN 
.JFl 
MOV 
JNIBF 
IN 
~FI 
MOV 
MOV 
INC 
MOV 
~NZ 

INC 
IN 
~B6 

~B5 

MOV 
SEL 
MOV 
MOV 
MOV 
MOV 
MOV 
~B5 

SEL 
CALL 
SEL 
ORL 
ANL 
MOV 
CPL 
~06 

CALL 
MOV 
SEL 
CALL 
CALL 
CALL 
STRT 
EN 

RBO 
FO 
TCNT 
TeNTI 
CLRTF' 
WRI 
A.OBB 
CMDIN3 
CNTL.SS. A 
WR2 
A. DBB 
CMDIN3 
CNTMSB. A 
A, CNTLSB 
A 
CNTLSB. A 
NINMSB 
CNTMSB 
A. PI 
DRIVER 
DRIVER 

CHKSUM •• DOH 
RBI 
B ITCNT. *WRCNT 
SER IAL •• SYNC 
A ... WRTIM 
T. A 
A. WSTAT 
WEOTER 
RBO 
DRACTS 
RBI 

; CLEAR INT COUNT FLAQ 
; BE SURE THAT THE TIMER IS STOPPED 
; DISABLE TIMER INTS ' 
; BE SURE THAT' THE TIMER FLAG IS CLEARED 
; WAIT FOR' BYTE COUNT LSB 
; READ COUNT !,..SB FROM OBB IN 
; TEST IF 'COMMAND - ERROR 
; IT'S DATA SO STORE IT AWAY 
; WAIT FOR BYTE COUNT MBB 
,READ COUNT MSS FROM'DOBIN 
; TEST I F COMMAND - ERROR 
; IT'S DATA SO STORE IT AWAY 
; GET COUNT LSB 
; INC IT TO ACCOUNT FOR SYNC 
; SAVE IT 
; NO OVERFLOW. DON'T INC COUNT MSD 
; OVERFLOW, SO INC COUNT MBa 
; GET DRIVE STATUS 
; TEST IF NO TAPE 
; TEST. IF FILE PROTECTED 
; ExiT WITH ERROR IF EITHER 
; CLEAR CHECKSUM REG I STER 

; INITIALIZE WRITE BIT COUNTER 
; LOAD SYNC INTO SERIAL FOR 1ST BYTE 
,GET WRITE TIMER CONSTANT .< 1/2 CELL TIME) 
;"LOAD TIMER BUT DON'T START IT yeT 
,GET WR ITE STATUS 
; IF EOTFLG SET. STILL AT END OF TAPE - ERROR 

; NOT AT EDT so SET DRIVE ACTIVE AND CONTINUE 

PI, *,WR OR SLOW OR SlP ; SETUP PORT FOR SLOW WR I TE 
PI •• SRT AND FOR'WD .START DRIVE IN FORWARD 
A, WSTAT i GET WRITE STATUS AGAIN 
A ,COMP FOR 0 TEST 
WR3 ; TEST BOTFLG - WR I TE OVER HOLE=" 
PASHOL j GET OFF CLEAR LEADER AND PAST 
WSTAT, .SOH ; SETUP WRITE STATUS WITH WRFLG 
RBO 

IF SET 
HOLE IN TAPE 
SET ' 

DEL150 
DEL150 
DELISO 
T 
TCNTI 

; WAIT 450 MS IRG BEFORE: WRITING DATA 

• START TIMER 
i ENABLE TIMER INTERRUPTS 

401 
402 i TIMER INTERRUPT ROUTINE DOES ALL THE WORK so WAIT UNTIL IT RESETS WRFLG 
403 
404 WR4" 
405 
406 
407 
408 
409 

SEL 
CALL 
SEL 
MOV 
~1!7 

RBO 
STSUP 
RBI 
A, WSTAT 

"'WR4 

; UPDATE STS WHILE WAITING 

i GET WR ITE SlATUS 
; TEST IF WRITE DONE (WRFLG RESET) 

410" ; WRFLG IS RESET SO WRITE OPERATION MUST BE COMPLETE - OUTPUT RESULT 
411 
412 WR5: 
413 
414 
415 
416 
417 
418 
419 
420 

SEL 
CALL 
SEL 
MOV 
OUT 
CALL 

~MP 

RBO 
NDRACT 
RBI 
A. RESULT 
DBB. A 
DEL1~O 

01 

; RESET DRACT AND BUSY 

,GET RESULT CODE 
; OUTPUT IT 
; WAIT FOR DRIVE TO STOP 
; FULLY BEFORE ACCEPT I NG NEW COMMAND 
; DONE. RETURN TO COMMAND RECOGNIZER LOOP 

421 ; lAPE IS AT EDT WHEN WRITE COMMAND ISSUED - EXIT WITH ERROR 
422 
423 WEOTER: MOV RESULT .lIEOTERR ,EDT ERROR RESULT CODE 
424 ..IMP WR5 ; GO RESET BUSY ANO OUTPUT RESULT 
425 
426 .EJECT 

2-67 AFN-ll1342A 



APPLICATIONS 

1515-1 I MCS-48/UPI-41 MACRO ASSEMBLER, V3.0 
DIGITAL CASSETTE CONTROLLER REV 1. 0 - 26 MARCH 80 

LOC OBJ 

DOAD FF 
DOAE 4360 
0080 AF 
0081 09 
0082 439F 
OOI34 5F 
00B5 AF 
00136 90 
00B7 83 

OOB8 8D24 
GODA BEFF 
DOBe EEDC 
OOBE EDBA 
oDeD 83 

DOC 1 BD6C 
OOC3 04BA 

00C5 C5 
00C6 54C4 
00C8 09 
00C9 D2DO 
00C8 2304 
OOCD 02 
DaCE 0417 
DODO 2303 
OOD2 04CO 

OOD4 C5 
0005 BC01 
0007 8033 
00D9 8E33 
0008 5400 
DODD F6Fl 
OODF 8902 
OOEl BA02 
00E3 06E7 
OOE5 04F8 
00E7 86E3 
00E9 C5 
OOEA 54C4 
OOEe 05 
ODED FA 
OOEE 02 
DOEF 0417 

OOF! 05 
OOF2 BA46 
OOF4 8820 
OQF6 04DF 

OOFS 22 
OOF9 D305 
OOFS 96E7 
OOFD 044E 

LINE SOURCE STATEMENT 

427 ; *********************************************************************** 
428 
429 i srs UPDATE SUBROUTINE - UPDATES THE CASSETTE PRESENCE AND FILE PROTECT 
430 ; BIT IN 5T5 (ENTER AND EXIT IN RBO) 
431 

432 ; ******************************I!-**'I!-**************************.11-********** 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 

STSUP MOV 
ORL 
MOV 
IN 
ORL 
ANL 
MOV 
MOV 
RET 

A, STAT 
A,#TAPIN OR 
STAT, A 
A, Pi 
A, #NOTnAPIN 
A, STAT 
STAT,A 
STS, A 

; GET STS IMAGE 
FILPRT ; SET BOTH PRESENCE AND FILE PROTECT 

; RESTORE IMAGE 
; READ INPUT 

OR FILPRT) ; SET BITS TO CORRECT STATE 

I RESTORE IMAGE 
; UPDATE STS 

444 ; ***************************************************************.11-******* 
445 
446 I DELAY RDUTINES- ENTE"R/EXIT IN RBO 
447 

448 I '**************************-Il'******************************************** 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 

DEL50 
DELl 
DEL2 

DELiSO 

MOV 
MOV 
DJNZ 
DJNZ 
RET 

MOV 
JMP 

RS, #36D ,50MS DELAY ROUTINE 
R6, #OFFH 
R6,DEL2 
RS, DELl 

R5, #1080 ; 150MS DELAY ROUTINE 
DELI 

459 ,*** 1<**********************.****.1<***** ****** *** N ** '**.********** ,******'J(-**** 
460 
461 ,DRIVE ERROR EXIT .- NO TAPE OR FILE IS PROTECTED FOR WRITE 
462 

463 ; *********************************'11-************************************* 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 

DR I VER 

DRi' 

NT 

BEL 
CALL 
IN 
JB6 
MOV 
OUT 
JMP 
MOV 
~)MP 

RBO 
NDRACT ; RESET DRACT AND BUSY 
A, P 1 : ~~~ i~ I ~~p~T i ~U~HERE NT 
A, #NWR , TAPE IS THERE SO ERROR MUST BE FILE PROTECT 
DBB, A ; OUTPUT ERROR CODE 
Bl ,RETURN TO COMMAND LOOP 
A, #NTAPE ; NO TAPE ERROR 
DRI 

47S ; '11-********************************************************************** 
476 
477 ; READ ERROR WI1H ADVANCE TO IRG BEFORE £nOPPING DRIVE. 
478 ; WAIT FOR OBF TO BE FREE BEFORE RESETTING BUSY "THEN OUTPUT RESULT 
479 ; RDERR3 LABEL IS EXIT POINT FOR OTHER ROUTINES NEEDING TO WAIT FOR 
480 j OBF TO BE FREE BEFORE OUTPUTTING RESULT 
481 ; ROUTINE EXITS IN RBO. 
482 

483 ; *********************************************************************** 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
'01 
502 
503 
504 
505 
506 
'07 
508 
509 
510 
511 
512 
513 

RDERR 

RDERR3 

RDERR4' 

RDERR~' 

RDERR2 

RDERR6 

$EJECT 

SEL 
MOV 
MOV 
MOV 
CALL 
JC 
ORL 
ORL 
JNIBF 
JMP 
JOI3F 
BEL 
CALL 
SEL 
MOV 
OUT 
JMP 

SEL 
MOV 
MOV 
JMP 

IN 
XRL 
JNZ 
JMP 

RBO 
BLKCNT, #lH 
BLKTIM, #SLWIRG 
BLKSAV, #SLWIRG 
SKIPER 
RDERR2 
Pl, #STP 
P2, #DAOFF 
RDERRS 
RDERR6 
RDERR4 
RBO 
NDRACT 
RBI 
A, RESUL T 
DBB, A 
Bl 

RBI 
RESUL T, #REDTE.R 
RSTAT, #EOTFLG 
RDERR3 

A,DBB 
A, #ABORT 
RDERR5 
RESCOM 

j SET SKIP COUNTER TO ADVANCE TO NEXT IRG 
; SETUP IRG COUNTER 

, DO SKIP TO NEXT IRG 
; TEST IF EDT FOUND 
; STOP DR I VE WHEN DONE 
; TURN OFF DRIVE ACTIVE LED 
; TEST IBF WHILE WAITING FOR 011F-

; IBF SET - GO TEST INPUT 
; TEST oaF, LOOP IF 1, CONTINUE IF 0 

; RESET DRACT AND BUSY 

; GET RESULT 
; OUTPUT RESULT 
; GO BACK TO COMMAND LOOP 

,EaT FOUND WHILE SKIPPING 
; RESET RESULT VALUE TO EOT ERROR 
; SET EOTFLG IN RSTAT 
j GO OUTPUT NEW RESIJL T 

, READ INPUT 
i TEST IF ABORT 
, IGNORE IT IF NOT 
i IT'S AN ABORT, GO RESET 

2-68 AFN-Ol342A 



APPLICATIONS 

IS19-11 I'1CS-4B/UPI-41 MACRO ASSEMBLER. '13.0 
DIQITAL CASSETTE CONTRDLLER REV I. 0 - 26,!'IARCH BO 

LOC DB,,} 

0100 

0100 C5 
0101 6~ 
0102 3~ 
0103 1603 
0105 BS 
0106 2320 
0108 A8 
0109 A9 
010A BBOO 
010C D5 
OIOD A8 
010E BC08 
0110 09 
0111 D24F 
0113 C~ 
0114 54BC 
0116 23FA 
011862 
011925 
alIA 05 
OilS FB 
OIIC 024B 
QllE 8904 
0120 99F4 
0122 37 
0123 D227 
0125 54DC 
0127 B806 
0129 14CI 

012B 462B 
012D 5620 
012F 55 

0130 05 
0131 D635 
0133 2405 
0135 FB 
0136 1251 
0138 7291 
013A 824B 

013C C~ 
013D F9 
Ol3E De 
013F C630 

0141 8630 
0143 FO 
0144 02 
0145 FB 
0146 54CC 
0148 AS 
0149 2430 

0148 BA46 
014D 04DF 

014F 04C5 

0151 5:JFE 
0153 AB 
0154 3282 
0156 C5 
0157 FB 
0158 05 
0159 54D3 
0158 D8 
OISC 9662 
015E BA41 
0160 04D4 
0162 FE 
0163 C5 
0164 68 
0165 AB 
016b D5 

LINE SOURCE STATEMENT 

514 
515 

ORQ 100H 

516 ,******"*~******tt*~.**ttf**~**'f**********:******************************* 
517 ; 
518 ; READ FROM TAPE ROUTINE 
519 
~20 ; *********************************************************************** 
521 
522 READ: 
~23 

524. . 
525 RCLRTF: 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
~36 

537 
538 
~3" 
MO 
541 
~42 
543 
544 
545 
546 
547 
548 
549 RD1: 
550 
551 
552 RDIA· 
553 RD2: 
554 
555 ; 

SEL 
STeip 
DIS 
,JTF 
CLR 
MOV 
MOV 
MOV 
MOV 
SEL 
MOV 
I'IOV 
IN 
,JBb 
SEL 
CALL 
MOV 
MOV 
EN 
SEL 
MOV 
,J05 
ORL 
ANL 
CPL 
,J06 
CALL 
MOV 
CALL 

,JNTI 
JTI 
STRT 

RBO 
TCNT 
TCNTI . 
RCLRTF 
FO 
A. *20H 
LBOUT. A 
LBRDY. A 
CHKSUM, .OOH 
RBI 
LBIN,A 
BITCNT, .RDCNT 
A, pi 
DR IV..} 
RBO 
DR ACTS 
A, .ROTIM 
T, A 
TCNTI 
RBI 

J BE SURE THE T I MER I S STOPPED 
; D I SABLE TIMER I NTS 
; BE SURE THE TIMER FLAG IS CLE·ARED 
; CLEAR LAST DATA FLAG 
,GET POINTER START LOCATION 
; INITIALIZE LBOUT 
; JNITIAL.IZ,E LBRDY 
; CI,EAR CHECKSUM LOCATION 

j INITIALIZE LBIN 
.; IN.ITIALIZE READ .BIT COUNTER 
; READ DRIVE STATUS 
; TEST IF TAPE IS THERE TO .READ 

; SET DRJVE ACTIVE 
i GET READ TIMER CONSTANT (3/4 CELL TIME) 
I L.OAD TIMER BUT DON'T START IT YET 
; ENABLE TIMER INTERRUPTS 

A. RSTAT l GET READ STATUS 
REOT ; TEST IF AT EDT - ERROR IF SO 
PI, .SLOW ; SELECT SLOW 
Pi. "RD AND FQRWD AND SRT ; START DRIVE. FORWARD AND READ 
A ; COMP A FOR 0 TEST rSTILL HAVE RSTAT> 
RD! i TEST. FOR AT BOT, IF NOT .JUST LOOK FOR MARK 
PASHOL ; IF BOT. WAIT UNITL PAST CLEAR LEADER AND HOLE 
RSTAT. tt06H j SETUP READ STATUS - SNBFLG AND STRFLG SET' 
DELl50 ; LET DRIVE START UP 

RD1A 
RD2 
T 

; AND WAIT OVER WRITE STOP LOCATION 
; WA IT FOR MARK 
; WAIT FOR TRANSITION TO SPACE 
; START TIMER 

55b ; LOOP 
557 ; 

START - LOOK FO'R READ STATUS FLAGS BEING SET BY TIMER INTERRUPT RDU'fINE 

558 RD3: 
559 
560 
561 RD4: 
~b2 
5b3 
5b4 
565 

SEL 
..}NIBF 
JMP 
MOV 
JBO 
JB3 
,JB5 

RBI 
RD4 
RDIBF 
A. RSTAT 
GETDAT 
IRGFND 
REOT 

; TEST FOR IBF EVEN 'WHEN READING 
; INPUT, DURINQ READ - GO TEST IT 
; GET READ STATUS 
; TEST DATA READY FLAG (RDYFLG) 
; TEST IRG FLAG (IRGFLG) 
; EDT FOUND DURING ~EAD (EOTF:LG SET) - ERROR 

566 ; NOTHING FROM TIMER IN":ERRUPT ROUTINE SO GO HANDLE C,IRCULAR BUFFER-
5b7 
56S 
5b9 
570 
571 
572 
573 
574 
575 
57b 
577 
579 
~7" 

SEL 
MOV 
XRL 
JZ 

JOBF 
MOV 
OUT 
MOV 
CALL 
MOV 
JMP 

RBO 
A, LBRDY 
A. LBOUT 
RD3 

RD3 
A.l!LBOUT 
DBB. A 
A, LBO\lT 
BUMP IT 
L,OUT, A 
RD3 

; GET READY POI NTER 
; COMPARE TO OUT POINTER 
; EMPTY IF THE SAME SO ,JUST LOOP 
; NOT EMPTY 90 SEE IF NEXT BYTE CAN 
; TEST DBBDUT - FULL, LOOP 
; DBBOUT FREE - GET OAT A 
; OUTPUT IT 
; GET OUT POINTER 
; BUMP POINTER 
; RETURN IT 
iLDOP 

BE OUTPUT 

580 
591 
582 
593 
584 

; TAPE AT EOT WHEN READ COI'II'IAND ISSUED - ERROR 

REOT: 

58' 

MOV 
JMP 

RESULT •• REOTER 
RDERR3 

; EDT AT READ ERROR CODE 
; EXIT 

58b ; OUT OF PAGE JUMP FOR DRIVE ERROR 
587 
599 DRIVJ: JMP DRIVER 
599 
590 I TIMER ROUTINE FLAGGED DATA IS READY 
591 ; 
~"2 GETDAT: ANL 
593 MOV 
~94 JBl 
595 SEL 
59b MOV 
597 SEL 
'99 
599 
bOO 
601 

CALL 
XRL 
JNZ 
MOV 

602 ""MP 
b03 NOFULL: MOV 
604 SEL 
bO~ ADD 
bOb MOV 
b07 SEL. 

A •• NOT RDYFLG 
RSTAT, A 
SNBTST 
RBO 
A, LBOUT 
RBI 
DUMPIT 
A. LBIN 
NOfULL 
RE8UL T, _OVERUN 
RDERR 
A. RDATA 
RBO 
A, CHKSUM 
CHKSUI'1, A 
RBI 

j RESET DATA READY FLAG (RDYFLQ) 
; RESTORE .READ STATUS 
j TEST IF DATA SHOULD BE SYNC (SNBFLG SET) 
; NO, TRY TO PUT IN BUFFER 
; GET OUT POINTER 

; DUMP IT FOR FULL TEST 
; COMPARE IT TO tN POIl\~TER 
i IF NOT SAME, THEN' BUFFER ISN'T FUl.L 
; BUFFER I S FULL SO OVERRUN ERROR CODE 
;GO EXIT FROM ERROR. SKIP TO NEXT IRG 
; BUFFER ISN'T FULL so GET DATA FROM HOLDING 

; ADD 1 T TO CHECKSUM 
; RESTORE CHECKSUM 

2·69 AFN'()1342A 



APPLICATIONS 

ISIS-I I MCS-48/UPI-41 MACRO ASSEMBLER, V3.0 
DIGITAL CASSETTE CONTROLLER REV 1.0 - 26 MARCH 80 

LOC OBJ 

0167 FE 
0168 AO 
0169 FB 
DlbA 54CC 
ClbC AS 
0160 FB 
016E 5277 

0170 C5 
0171 F9 
0172 54CC 
0174 A9 
0175 2430 

0177 Fe 
0178 D322 
Ol7A 9630 
017e FB 
0170 53FB 
017F AS 
01BO 2430 

0182 FE 
0183 D3AA 
0185 C6BB 
0187 BA42 
0189 0404 
01813 FB 
Dlec 53FD 
018E AB 
OIBF 2430 

0191 C5 
0192 FF 
0193 53EF 
0195 AF 
0196 90 
0197 8A02 
0199 05 
019A F8 
0198 5403 
0190 AS 
019E FO 
019F D3AA 
OtAI 968A 
01A3 Fe 
OlA'4 5403 

CIAb AS 
OIA? C5 
DIAB FB 
01A9 0356 
OIAE AB 
DIAe 05 
DIAD FO 
OIAE C5 
OlAF 37 
01BO 17 
01Bl 68 
0182 05 
0lB3 DO 
0184 968E 
0186 BACO 
01B8 24CO 
OIBA BA43 
OIBC 04DF 
01BE BA44 

Oleo C5 
OlCl Fe 
01C2 09 
01C3 96C7 
OlCS 04DF 
01C7 D6CB 
01C9 24D5 
Olca B6C7 
01CD FO 
01CE 02 
01CF F8 
0100 54CC 
0102 A8 
0103 24CO 

LINE SOURCE STATEMENT 

MOV 
MOV 
MOV 
CALL 
MOV 
MOV 
JB2 

SEL 
MOV 
CALL 
MOV 
JMP 

A. RDATA 
@LBIN.A 
A. LBIN 
BUMPIT 
LBIN. A 
A, RSTAl 
unST 

RBO 
A, LORDY 
BUMPIT 
LBRDY. A 
RD3 

; GE'T DATA AGAIN 
; PUT IT IN BUFFER 
; GET IN POINTER 
; BUMP IT 
; RETURN IT 
i GET READ STATUS 
i TEST IF LBRDY SHOULD BE 
; BUMPED TOO (SRTFLG RESET) 

; SRTFLG 15 RESET 50 GET LBRDY 
i BUMP IT 
j RETURN IT 
i GO BACK TO LOOK FOR DATA 

608 
60q 
610 
611 
612 
613 
614 
615 
616 
617 
618 
61q 
620 
621 
622 
623 

• START FLAG IS SET -- SEE IF LBIN HAS ADVANCED FAR ENOUGH TO START INC LBROY 

624 LOTST, MOV 
625 XRL 
626 JNZ 
627 MOV 
628 ANL 
629 MOV 
630 JMP 
631 

A. LBIN 
A, #22H 
RD3 
A. RSTAT 
A. #NOT STRFLG 
RSTAT.A 
RD3 

632 ,DATA SHOULD BE SYNC - TEST IT 
633 
634 SNB TST' MOV 
635 XRL 
636 JZ 
637 MOV 
638 JMP 
639 RSND, MOV 
640 ANl 
641 MOV 
642 JMP 
643 

A. RDATA 
A. #SYNC 
RSND 
RESUL T •• SYNC 1 
RDERR 
A. RSTAT 
A •• NOT SNBFLG 
RSTAT, A 
RD3 

; GET IN POINTER 
i TEST IF READY POINTER SHOULD BE BUMPED 
i NO. GO BACK FOR DATA 
j YES. GET READ STATUS 
i RESET START FLAG 
i RESTORE STATUS 
i GO BACK TO LOOK FOR DATA 

i GET DATA 
i COMPARE TO SYNC 
• IT' S A SYNC. RESET SNBFLG 
j IT'S NOT A SYNC, BAD FIRST SYNC ERROR CODE 
• EXIT READ ERROR. ADVANCE TO NEXT IRG 
; SYNC TEST IS OK, GET READ STATUS 
; RESET SND FLAG 
; RESTORE STATUS 
i GO BACK TO LOOK FOR DATA 

644 • IRG FOUND TEST FOR SYNC. CORRECT AND" TEST CHECKSUM 
64' 
646 IRGFND SEL 
647 MOV 
648 ANL 
649 MOV 
650 MOV 
651 ORL 
652 SEL 
653 MOV 
654 CALL 
655 MOV 
656 MOV 
657 XRL 
658 JNZ 
659 MOV 
660 CALL 
661 
662 
663 
664 
665 
666 
667 
668 
66q 
670 
671 
672 
673 
674 
675 
676 
677 
678 IRGFI 

CKSER' 

MOV 
SEL 
MOV 
ADD 
MOV 
SEL 
MOV 
SEL 
CPL 
INC 
ADD 
SEL 
XRL 
JNZ 
MOV 
JMP 
MOV 

JMP 
MOV 

RBO 
A. STAT 
A. #NOT DRACT 
STAT. A 
sTS. A 
P2. #DAOFF 
RBI 
A. LBIN 
DUMPlT 
LBIN, A 
A, @LBIN 
A. #SYNC 
IRGFl 
A. LBIN 
DUMPIT 

LBIN. A 
RBO 
A. CHKSUM 
A. #56H 
CHKSUM, A 
RB I 
A.@LBIN 
RBO 
A 
A 
A, CHKSUM 
RBI 
A.@LBIN 
CKSER 
RESUL T •• GOOD 
BUFFER 
RESUL T •• SYNC2 

RDERR3 
RESUL T •• BADCHS 

i GET STS IMAGE 
i RESET DRIVE ACTIVE 
; RESTORE IMAGE 
i UPDATE STS 
i TURN OFF DRIVE ACTIVE LED 

; GEl IN POINTER 
; DEC IT TO POINT AT LAST DATA. ALIAS SYNC 
i RETURN IT 
• GET LAST DATA 
; COMPARE TO SYNC 
j NOT EG:UAL - ERROR 
; GET POINTER AGAIN 
i DEC IT TO POINT AT 2ND 
j TO LAST DATA. ALIAS CHECKSUM 
j RE'TURN IT 

j GET ACCUMULATED CHECKSUM 
i SUBTRACT OUT SYNC 
i RESTORE CHECKSUM 

; GEl RECEIVED CHECKSUM 

;SUBTRACT IT OUT - MAKE IT MINUS 

; SUBTRACT FROM ACC CHECKSUM 

j COMPARE RESULT TO RECEIVED 
i NOT EGUAL. THEN CHECKSUM ERROR 
i EGUAL. THEN GOOD RESULT 
; GO FINISH OFF BUFFER BEFORE OUTPUTTING RESULT 
; 2ND SYNC ERROR CODE 

; EXIT 
i BAD CHECKSUM ERROR CODE BUT STILL FINISH BUFFER 

6n 
680 
681 
682 
683 
684 
685 
686 
687 
688 
68q 
690 
6ql 
6q2 
6q3 
6q4 
6q5 
6q6 
6q7 
6qe 

• DONE WITH READ - LET BUFFER EMPTY BEFORE OUTPUTTING RESULT 

BUFFER 

BUF1: 

BUF2 

SEL 
MOV 
XRL 
JNZ 
JMP 
JNIBF 
JMP 
JOBF 
MOV 
OUT 
MOV 
CALL 
MOV 
JMP 

RBO 
A, LBOUT 
A, LBRDY 
BUFl 
ROERR3 
BUF2 
RDIBF 
aUFi 
A. (!LBOUT 
DBB. A 
A. LBOUT 
BUMPIT 
LBOUT. A 
BUFFER 

GET OUT POINTER 
COMPARE TO READY POINTER 
NOT EMPTY YET SO GO TEST OBF 
BUFFER IS EMPTY - GO OUTPUT RESULT 
TEST FOR INPUT 
IF INPUT. GO TEST IT 
TEST OBF 
OBF FREE, GET DATA FROM BUFFE:.R 
OUTPUT IT 
GET OUT POINTER 
BUMP IT TO POINT AT NEXT DATA 
RETURN IT' 
GO TEST I T DONE 

699 ; IBF FOUND DURING READ OPERATION - TEST IF ABORT. IGNORE IF NOT 
700 

2-70 AFN-01342A 



APPLICATIONS 

ISIS-I I MCS-4S/UPI-41 MACRO ASSEMBLER. V3.0 
DIQITAL CASSETTE CONTROLLER REV 1. 0 - 26 MARCH 80 

LOC OB~ 

01D~ 22 
0106 70DA 
0108 2430 
OIDA 030:5 
OlOC 9630 
OIDE BAOI 
OlEO 04D4 

0200 

0200 97 
0201 09 
0202 9212 
0204 4600 
0206 Shoe 
0208 FE 
0209 AD 
020A 4400 
020C 09 
0200 9212 
020F ED06 
0211 83 
0212 A7 
0213 83 

0214 0614 
0216 7692 
0218 85 
0219 54BC 
0218 8904 
0210 22 
021E AC 
021F F262 

0221 05 
0222· FB 
0223 8278 
0225 99F4 
0227 C5 
0228 37 
0229 022D 
022B 54DC 
0220 14Cl 
022F 9644 
0231 FC 
0232 03FB 
0234 F63E 
0236 aD33 
023B BE33 
023A 8904 
023C 4444 
023E 8020 
0240 BE20 
0242 99FB 
0244 ,648 
0246 09 
0247 9278 
0249 4444 
0248 D64F 
0240 4487 
024F 5400 
0251 F67S 
02~3 EC2D 
0255 B65E 
0257 05' 
0258 BADO 
025A BBOO 
025C 04DF 

025E 1488 
0260 4457 

LINE SOURCE STATEMENT 

701 RDIBF: IN 
70~ JFI 
703 .JMP 
704 ABTST: XRL 
705 ..JNZ 
706 ABTST1: MOV 
707 ..JMP 
70B 
709 $E.JECT 

710 
711 

ORG 

A.DBB 
ABTST 
RD3 
A, "ABORT 
RD3 
RESULT. *AIHCMP 
RDERR 

200H 

; READ DBBIN 
; TEST FOR COMMAND 
; MUST BE DATA. IGNORE IT 
; COMPARE TO ABORT COMMAND 
; NOT EQUAL. IGNORE IT 
j IT I'S AN ABORT, ABORT COMPLETE RESULT CODE 
; EXIT LIKE IT WAS AN ERROR. ADVANCE TO IRG 

712 ; ***************~*******"!'************.********************************** 
713 
714 ; SIo\lPER !$UBROUTINE - ADVANCES TO NEXT IRQ BASED ON DIRECTION AND 
715 ; SPEED PASSED IN BLKTIM. 
716 ; CARRY=O. NO EDT ENCOUNTERED, CARRY=1, EDT ENCOUNTERED 
717 ; ENTER AND EXU IN RBO 
71B 

719 ; ************************************************-11:*****~**************** 
720 
7~1 SKIPER: CLR 
722 
723 
724 
725 
726 
727 

IN 
JB4 
JNTl 

SKIPR1: .JT1 
MOV 
MOV 

728 .JMP 
729 SKIPR2: IN 
730 JB4 
731 D.JNZ 
732 
733 SKIPR3: 
734 
735 

RET 
CPL 
RET 

C 
A. PI 
SKIPR3 
SKIPER 
SKIPR2 
A. BLKSAV 
aLKTIM. A 
SKIPER 
A. PI 
SKIPR3 
BLKTIM. SKIPRl 

; CLEAR EDT INTERNAL FLAG 
; READ DRIVE ST,ATl,IS 
; TEST FOR CLEAR LEADER 
; NO CLEAR LEADER. WAIT UNTIL INPUT IS HIGH 
; WHILE INPUT IS HIGH. DEC BLKTIM COUNTER 
; INPUT WENT LOW. RESET BLKTIM COUNTER 

; GO WAIT. UNTIL INPUT IS HIGH AGAIN 
j READ DR IVE STATUS 
j TEST CLEAR LEADER - ERROR I F TRUE 
j INPUT STILL HIGH. DEC BLKTIM COUNTER 
; RETURN WHEN AT IRG 
,~ET CARRY TO SHOW EDT 
; RETURN 

736 ; *********************.******************** ... ********************it:******** 
737 
738 
739 
740 
741 

j SKIP COMMAND ROUTINE - NEXT DATA BYTE IS NUMBER OF IRG'S TO SKIP 

j *********************************************************************** 
742 
743 
744 
745 
746 
747 
748 
749 
750 

SKIP: JNIBF 
JFl 
CLR 
CALL 
ORL 
IN 
MOV 
JB7 

751 
752 

j FORWARD SKIP 

753 
754 
755 
756 
757 
75B 
759 
760 SKIP1: 
761 
762 
763 
764 
765 
766 
767 
768 
769 

SKIP.;!: 
SKIP3: 

770 SKIP4: 
771 
772 
773 SKIPb: 
774 
775 
776 
777 SKIP7: 
77B 
779 SKIPI2, 
7BO 
781 
782 
7B3 
784 
785 
786 
787 

SKIPI4: 

SEL 
MOV 
JB5 
ANL 
SEL 
CPL 
Ja6 
CALL 
CALL 
~FO 

MOV 
ADD 
~C 

MOV 
MOV 
ORL 
JMP 
MOV 
MOV 
A.NL 
JNT1 
IN 
JB4 
~MP 

JNIBF 
~MP 

CALL 
JC 
D.JNZ 
JFO 
SEL 
MOV 
MOV 
JMP 

SKIP 
CMOIN') 
FO 
DRACTS 
Pl •• SLOW 
A. DBB 
BLKCNT. A 
RSKIP 

RBI 

; WAIT FOR SKIP COUNT INPUT 
j TEST IF COMMAND INSTEAD· - EXIT IF YES 
j CLEAR DIRECTION FLAG - DEFAULT FORWARn 
j GO SET DRIVE ACTIVE 
; STA~T OUT SLOW 
,REAP SKIP. COUNT INPUT 
j SAVE IT IN BLOCK COUNTER 
j IF BIT 7 SET. IT '5 A RE.VERSE SKIP 

A. RSTAT j QET READ STATUS 
SKIPS ; STATUS SAYS WE'RE AT EDT - FXIT WITH ERROR 
Pl. #FORWD AND SRT AND RD ; IT'S GO - FORWARD 
RBO 
II 
SKIP2 
PASHOL 
DEL150 
SKIP6 
A. BLKCNl 
A •• -8H 
SKIP4 
BLKTIM, *SLWIRG 
BLKSAV. #SLWIRG 
Pl •• SLOW 
SKIP6 
BLKTIM. #FASIRG 
BLKSAV. *F AS I RG 
Pl •• FAST 
SKIP7 
A. P1 
SKIPS 
SKIP6 
SKIP12 
SKIPl1 
SKIPER 
SKIPS 
BLKCNT, SKIP2 
SKIP13 
RBI 
RESUL T, .. GOOD 
RSTAT. _OOH 
RDERR3 

,COMP A. FOR 0 TEST 
,WE'RE NOT AT BOT SO .JUST DO SKIP 
; AT BOT SO GET PAST CLEAR LEADER AND HOLE 
,WAIT OUT JUNK ~T BEGINNING OF EACH BLOCK 
j DON'T WORRY ABOUT FAST OR SLOW WHEN REVERSE 
; GET BLOCK COUNT 
; SEE IF COUNT IS >8 
; YES. USE FAST IRG TIMING 
j COUNT IS <:8, USE SLOW IRG TIMING 

; SELECT SLOW 
; GO DO SKIP 
; COUNT IS >8. USE FAST IRQ TIMING 

j SELEC'T FAST 
; WAIT FOR SPACE TO START IRG 
; READ DR IVE STATUS 
I TEST CLEAR LEADER - EX I T IF 
; CONTINUE TO WAIT FOR SPACE 
; TEST IBF WHIL.E SKIPPING 
j IBF SET. GO TEST IT 
j DO SKIP TO IRG 
; TEST I F EDT OR BOT FOUND 
; DO IT, FOR ALL BLOCK COUNT 
; DELAY ·A LITTLE IF REVERSE 

; GOOD RESULT 
J CLEAR READ STATUS 
,USE READ EXIT TO COMPLETE 

FIND 

FOUND 

7BB 
789 

; REVERSE SKIP DELAY WHEN BLOCK COUNT EXPIRED 

790 SKIP13: CALL 
791 JMP 
792· i 

DEL~O 
SKIP14 

2-71 AFN-01342A 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 
DIGITAL CASSETTE CONTROLLER REV I. 0 - 2b MARCH 80 

LOC OBJ 

0262 .. 5 
0263 ~37F 
0265 AC 
0266 B020 
0268 BE20 
Q26A 05 
0268 FB 
026C 0278 
026E 8901 
0270 99F~ 
0272 C5 
0273 37 
0274 8220 
0276 442B 

0278 05 
0279 8681 
0278 BA47 
0270 BB20 
027F 040F 
0281 BA48 
0283 BB40 
0285 04DF 

0287 22 
0288 D30~ 
02BA 964F 
028C 8902 
028E 8A02 
02 .. 0 24DE 

0292 0433 

02 .. 4 D5 
0295 FB 
0296 D2B8 
02 .. 8 C5 
0299 54BC 
0298 99F3 
02 .. 0 8901 
02 .. F 99FD 
02AI 1488 
02A3 0 .. 
02A4 .. 2AS 
02A6 44Al 
02AB 14B9 
02AA 0 .. 
02AB "12AF 
02AD 44Al 
02AF 8906 
0281 .... FE 
0203 1488 
02B5 05 
02B6 0840 
02B9 BAOO 
02BA 04DF 

LINE SOURCE STATEMENT 

7 .. 3 j REVERSE SKIP IS DESIRED - SETUP DRIVE AND DIRECTION FL.AG 
7"4 
7"~ RS~IP' CPL FO j SET DIRECTION FLAG 
7"6 ANL A. tt7FH j MASK OFF DIRECTION 
7 .. 7 MOV BLKCNT, A j RESTORE BLKCNT 
7"S MDV BLKTIM, ttRWDIRG ; SET REWIND BLOCK TIMER 
7 .... MOV BLKSAV, .. RWDIRG 
SOO SEL RBI 
SOl MOV A. RSTAT ; GET READ STATUS 
802 JB6 SKIPS ; AT BOT SO EXIT WITH ERROR 
803 ORL PI, .. REWIND j SELECT REVERSE 
804 ANL Pi. .SRT AND RD j START DRIVE 
805 SEL RBO 
80b CPL A j COMP A FOR 0 TEST 
807 JB5 SKIP2 ; NOT AT EDT SO JUST DO BK I P 
808 JMP SKIP1 ; AT EaT so WAIT PAST CLEAR LEADER 
80 .. 
810 ; CLEAR LEADER FOUND DUR I NG SKIP OR TAPE ALREADY AT EDT OR BOT 
811 
812 SKIPS: SEL RBI 
813 JFO SKIP9 ; TEST DIRECTION 
BI4 MDV RESUL T. ttSKPEOT ; IT '5 FORWARD sa IT'S EOT 
815 MOV RSTAT •• EOTFLG ; SET EOT FLAG 
BIb JMP RDERR3 ,GO EXIT 
817 SKIP9: MOV RESUL T. ttSKPBOT ; IT'S REVERSE SO IT'S BOT 
818 MOV RSTAT •• 80TFLG ; SET BOT FLAG 
81 .. JMP RDERR3 • GO EXIT 
820 

.IBF FOUND SET DURING SKIP - TEST INPUT 

SKIPll: IN A.DBB ; READ INPUT 
XRL A, .ABORT • TEST IF ABORT 
JNZ SKIPl2 j IGNORE IT IF NOT 
ORL P 1. .STP ,STOP DRIVE 
ORL P2. ttDAOFF ; TURN OFF DRIVE ACTIVE LED 
JMP ABTSTl iYES - EXIT WITH RESULT 

821 
822· 
823 
B24 
825 
82b 
827 
828 
82 .. 
830 
831 
832 
833 

; OUT OF PAGE .JUMP FOR CMDIN 

CMDIN.J: JMP CMDIN3 

AND HOLE 

834 j *********************************************************************** 
835 
83b ; REWIND COMMAND - STOP WHEN CLEAR LEADER IS FOUND FDR )OSOMS 
837 
838 • *********************************************************************** 
83" 
840 REWND: SEL RBI 
841 MOV A, RSTAT • GET READ STATUS 
842 JBb REWND4 i TEST I F ALREADY AT BOT - EXIT IF YES 
843 SEL RBO 
B44 CALL DRACTS i SET DRIVE ACTIVE 
845 ANL P1. .RD AND FAST ; SELECT RD AND FAST 
84b ORL PI. .REWIND ; SELECT REWIND 
847 ANL Pl •• SRT j START DR IVE 
848 REWND1: CALL DEL 50 ; WAIT 50MS 
84 .. IN A. P1 j READ DR IVE STATUS 
S50 JB4 REWND2 • TEST CLEAR LEADER 
851 JMP REWNDl i NO CLEAR LEADER - WAIT 
952 REWND2: CALL DEL50 • WAIT 50MS AGAIN 
853 IN A, PI J READ DRIVE STATUS AGAIN 
854 JB4 REWND3 i AT END IF CLEAR LEADER STILL. SET 
855 JMP REWNDI • OTHERW I SE I T WAS .JUST HOLE 
856 REWND3: ORL Pl,.STP OR SLOW j STOP DR IVE. SELECT SLOW 
857 ANL Pl •• FORWD • SELEC T FORWARD 
859 CALL DEL50 • WAIT 50M5 FOR DR IVE RESET 
85 .. SEL RBI 
8bO MOV RSTAT. *BOTFLG AND (NOT EOTFLG) ; SET UP READ STATuS 
861 REWND4: MOV RESUL T I ttGOOD ; GOOD RESULT 
8b2 JMP RDERR3 J GO OUTPUT RESULT 
8b3 
864 $E.JECT 

2-72 AFN-Ol342A 



APPLICATION5 

1915-ll MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 
DIGITAL CASSETTE CONTROLLER REV 1. 0 - 26 MARCH 80 

Loe CB.) 

02BC FF 
02DD 4310 
02DF AF 
02CO 90 
02CI 9AFD 
02C3 83 

02C4 FF 
02C5 536F 
02C7 AF 
02C8 90 
02C9 SA02 
02CD 83 

02CC 17 
02CD D2DO 
02CF 83 
0200 2320 
02D2 83 

02D3 07 
02D. 37 
02D~ B2D9 
02D7 37 
02D8 83 
02D9 233F 
020B 83 

02DC 09 
02DO 92DC 
02DF 09 
02EO 37 
02E1 92DF 
02E3 09 
02E4 92E3 
02E6 83 

LINE SOURCE STATEMENT 

865 ; ***************************:'1'******************************************* 
866 
867 ;DRIVE ACTIVE STATUS SUBROUTINE - ENTER/EXIT IN RBO , 
868 • DRIVE ACTIVE BIT IN STATUS IS SET AND DRIVE ACTIVE LED IS TURNED ON 
869 

870 ; ****************************************************************""****** 871 
872 
873 
874 
875 
876 
877 
878 

DRACTS: MOV 
ORL 
MOV 
MOV 
ANL 
RET 

A, STAT ; GET STS IMAGE 
A, *DRACT ; SET PRIVE ACTIVE BIT 
STAT. A ; RESTORE IMAGE 
STB.A ; UPDATE STS 
P2, *OAON ; TURN ON DRIVE ACTIVE LEO 

; RF.1URN 

879 ,*************************************************************"********** 
880 
881 ; DRIVE INACTIVE STATUS SUBROUTINE - ENTER/EXIT IN RBO 
882 ; BOTH DRIVE ACTIVE AND BUSY B.ITS IN. STATUS ARE .RESET, .DRIVE ACTIVE LED IS OFF 
883 

884 ; ****************************************************************"'******. 
8B5 
88b NDRACT: MOV 
887 ANL 
888 MOV 
889 MOV 
890 ORL 
891 RET 
892 

A, STAT 
A •• NOT <BUSY 
STAT, A 
5T9, A 
P2, #DAOFF 

; GET STS I MAGE . 
OR DRACT) ; RESET DRACT AND BUSY 

J RESTORE IMAGE 
; UPDATE STS 
; TURN OFF DRIVE ACTIVE LED 

893 J *********************************************************************** 
894 
895 ; BUMPIT - POINTER MANAGEMENT - VALUE IN A IS INCREMENTED AND TESTED 
~96 J FOR OVERFLOW. IF OVERFLOW OCCURS, SET A TO BOTTOM OF BUFFER. 
897 

898 ; ***********************************iI"*********************************** 
899 
900 BUMP IT: INC 
901 .J06 
902 RET 
903 OVFLOW: MOV 

RET 

SE.JECT 

A 
OVFLOW 

A, *20H 

; INC A 
; TEST FOR OVERFLOW 
; NO OVERFLOW, RET 
J OVERFLOW SO RESET A 
; RETURN 904 

905 
906 
907 
908 
909 
910 
911 
912 
913 
914 
915 

; ***************************************4******************************* 
; OUMPIT - POINTER MANAGEMENT - VALUE IN A IS DECREMENTED AND TESTED 
; FOR UNDERFLOW. IF UNDERFLOW OCCURS. SET A TO TOP OF BUFFER. 

j *********************************************************************** 
DUMPIT: DEC 

CPL 
·916 .JB:5 
917 CPL 
918 RET 
91 9 UNFLOW: MOV 
920 RET 
921 

A 
A 
UNFLOW 
A 

I DEC A 

; TEST IF UNDERFLOW 
I NO, COMP BACK 
; RETURN 
I UNO£RFLOW SO RESET A 
j RETURN 

922 j *******************************':11-,"********************~***************** 
923 
924 j SUBROUTINE TO GET PAST HOLE IN TAPE 
925 

926 ; *********************************************************************** 
927 
928 PASHOL: 
929 
930 PAS1: 
931 
932 
933 PAS2: 
934 
93. 
936 
937 $EJECT 

IN 
JB4 
IN 
CPL 
JB4 
IN 
JB4 
RET 

A"PI 
PASHOL 
A, PI 
A 
PAS1 

'A"PI 
PAS2 

READ DRIVE STATUS 
WAIT UNTIL OFF CLEAR LEADER 
READ DRIVE STATUS AGAIN 
COMP A FOR o TEST 
WAIT UNTIL. HOL.E 
~EAO DRIVE STATUS 
WAIT UNTIL PAST HO.LE 
RETURN 

2-73 AFN-{)1342A 



APPLICATIONS 

ISIS-II MCS-4B/UPI-41 MACRO ASSEMBLER. V3.0 
DICITAL CASSETTE CONTROLLER REV 1.0 - 26 MARCH 80 

LOC DB.) 

0300 

0300 D5 
0301 AF 
0302 FB 
0303 F25E 

0305 97 
0306 500e 
0308 8612 
030A 6416 
030C B616 
030E A'J 
030F 95 
0310 6416 
0312 A7 
0313 95 
0314 6416 

0316 FD 
0317 67 
0318 AD 
0319 EC22 
031B AE 
C3lC BCDS 
031E FB 
03lF 4301 
0321 AB 
0322 65 
0323 23FA 
0325 62 
0326 B933 
0328 09 
0329 9254 
032B 564E 
032D 8650 
032F E928 
0331 8902 
0333 SA02 
0335 FB 
0336 4308 
0338 AD 

0339 C7 
033A 5307 
033C 07 
0330 E7 
033E 17 
033F 0308 
0341 A9 
0342 Fl 
0343 8649 
0345 53DF 
0347 6448 
0349 4320 
0348 Al 
034C FF 
034D 93 

034E D62F 
0350 95 
0351 55 
0352 6439 

0354 FB 
0355 4320 
0357 AD 
0358 8902 
035A BAD2 
035C 6439 

LINE SOURCE STATEMENT 

938 ORG 300H 
939 

940 ; ************************************************************************ 
941 
942 ; TIMER INTERRUPT ROUTINES - FIRST DECIDE IF IT'S READ OR WRITE 
943 

944 ; ************************************************************************ 
945 
946 INT: 
947 
948 
949 
950 
951 

SEL 
MOV 
MOV 
J57 

RBI 
ASAVE. A 
A. RSTAT 
WRINT 

; SAVE ACCUMULATOR 
i GET CURRENT STATUS REGISTER 
; IF RD/WR FLAG SET. IT'S A WRITE 
,OTHERWISE. IT'S A READ 

952 
953 

; *********************************************************************** 
; READ INTERRUPT ROUTINE 954 

955 
956 
957 

; *********************************·It************************************* 
958 
959 
960 
961 

RDINT; 

962 ROIl: 
963 
964 
965 
966 
967 
968 

RDI2: 

969 RDI3: 
970 SHIFIN: 
971 
972 
973 
974 
975 
976 
977 
978 
979 RDl4 
980 
981 
982 
983 RDI7: 
984 
985 
986 
987 RpI8: 
988 
989 
990 
991 
992 
993 

CLR 
JTI 
JFO 
JMP 
JFO 
CPL 
CPL 
JMP 
CPL 
CPL 
JMP 

MOV 
RRC 
MOV 
DJNZ 
MOV 
MOV 
MOV 
ORL 
MOV 
STOP 
MOV 
MOV 
MOV 
IN 
JB4 
JT1 
JFO 
DJNZ 
ORL 
ORL 
MOV 
ORL 
MOV 

C 
ROIl 
RDI2 
SHIFIN 
RDI3 
C 
FO 
SHIFIN 
C 
FO 
SHIFIN 

A. DESERL 
A 
DESERL. A 
BITCNT. RDI4 
RDATA. A 
B ITCNT •• RDCNT 
A. RSTAT 
A. ttRDYFLG 
RSTAT. A 
TCNT 
A. #ROTII"! 
T.A 
IRGCNT •• SLWIRG 
A.PI 
RDI9 
RDI5 
RDI6 
IRGCNT. RDI7 
Pl .• STP 
P2.4tOAOFF 
A. RSTAT 
A. *IRGFLG 
RSTAT. A 

,CLEAR SH I FTER 
i TEST INPUT 
; INPUT=Q, TEST LAST 
; INPUT=Q, LAST=O, SHIFT IN 0 
i INPUT=!. TEST LAST 
i INPUT=I. LAST=O. SHIFT IN 1 
i SET FO TO CURRENT VALUE OF DATA IN 

; INPU1=O, LAST=1. SHIFT IN 1 
; SET FQ TO CURRENT VALUE OF DATA IN 

; INPUT=1, LAST=1, SHIFT IN 0 
i GET CURRENT VALUE OF DATA BYTE 
; SHIFT IN NEW BIT 
i RESTORE DESERIALIZER 
; TEST I F BYTE DONE 
i IT'S DONE. BUFFER IT IN RDATA 
; RESET BIT COUNTER 
; GET READ STATUS 
; SET DATA READY FLAG 
; RESTORE STATUS 
,STOP COUNTER 
i GET TIMER CONSTANT (3/4 CELL TIME) 
i LOAD TIMER 
,LOAD IRG COUNT (READ USES SLOW SPEED> 
,READ DR IVE STATUS 
,TEST IF CLEAR LEADER FOUND - ERROR 
,TEST I NPUT LOOK I NC FOR EDGE 
i INPUT=O. TEST LAST 
; INPUT/LAST SAME. DEC IRG COUNT 
i COUNT EXPIRED. AT IRQ, STOP DRIVE 
; TURN OFF DRIVE ACTIVE LED 
i GET READ STATUS 
,SET IRG FOUND FLAG 
; RESTORE STATUS 

994 
995 
996 
997 
998 

i INTERRUPT EXIT ROUTINE - UPDATES FO IN STACK TO PRESERVE IT OVER RETR 

999 
1000 
1001 
1002 
1003 
1004 
1005 
1006 

INTEXT: 

1007 EXITl: 
1008 EXIT2: 
1009 
1010 
1011 i 

1012 RDI5: 
1013 RDI6; 
1014 
1015 
1016 , 
1017 RDI9: 
1018 
1019 
1020 
1021 
1022 
1023 
1024 .. EJECT 

MOV 
ANL 
DEC 
RL 
INC 
ADD 
MOV 
MOV 
JFO 
ANL 
JMP 
ORL 
MOV 
MOV 
RETR 

JFO 
CPL 
STRT 
JMP 

MOV 
ORL 
MOV 
ORL 
ORL 
JMP 

A. PSW 
A, #07H 
A 
A 
A 
A •• 08H 
IRGCNT. A 
A.@IRGCNT 
EXITI 
A.4IODFH 
EXIT2 
A. tt20H 
@IRGCNT. A 
A. ASAVE 

RDI8 
FO 
T 
INTEXT 

A. RSTAT 
A.4IEOTFLG 
RSTAT. A 
PI.4ISTP 
P2. ttDAOFF 
INTEXT 

GET CURRENT PSW FOR STACK POINTER 
LOOK AT STACK POINTER ONLY 
TRYING TO GET PSW ON TOP OF BTACt< 
2 BYTES PER STACK ENTRY 
POINT AT PSW ENTRY 
ADD OFFSET FOR PO INTER 
LOAD POINTER - USE IRGCNT REGISTER 
GET psw 
TEST FO TO SEE WHAT TO SET FO TO 
FO=O THEREFORE RESET IT 

FO== 1 THEREFORE SET IT 
RESTORE STACK 
RECOVER A 
RETURN WITH RESTORE 

INPUT-t, TEST LAST. SAME 
FINALLY DIFFERENT. SET FO TO CURRENT ] NPUT 
START TIMER 
EXIT 

GET READ STATUS 
SET EDT FLAG 
RESTORE STATUS 
EDT SO STOP DR I VE 
TURN OFF DR IVE ACTIVE LED 
EXIT 

2-74 AFN-01342A 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 MACRO ASSEMBLER. V3.0 
DIGITAL CASSETTE CONTROLLER REV 1. 0 - 26 "ARCH 80 

LOC DB,) 

035E 23FC 
0360 62 
0361 8672 
0363 OA 
0364 126A 
0366 BAOI 
036B 646C 
036A 9AFE 
036C 95 
0360 09 
036E 92DC 
0370 6439 

0372 FB 
0373 :)2BA 
0375 FD 
0376 67 
0377 AD 
0378 EbB3 
037A OA 
0378 12Bl 
0370 BAOI 
037F 6483 
0381 9AFE 
03B3 B5 
0384 EC39 
03B6 Becs 
03BB FB 
03B9 12AA 
038B 32B3 
03BO C5 

03SE EB94 
0390 F9 
0391 CbAI 
0393 C9 
0394 DbCA 

0396 22 
0397 AC 
0398 7bCF 
039A 6S 
0399 AS 
039C FC 
0390 05 
039E AD 
039F 6439 

03A1 FB 
03A2 05 
03A3 AD 
03A4 Fa 
03A5 4301 
03A7 AS 
03AB 6439 

03AA 53FE 
03AC 4302 
03AE AB 
03AF BDM 
03Bl 6439 

03B3 53FD 
03B5 4304 
0387 AS 
0388 6439 

LINE SOURCE STATEMENT 

1025 ; *********************************************************************** 1026 
1027 ; WRITE INTERRUPT ROUTINE 
1028 

1029 ; *********************************************************************** 
1030 
1031 WRINT: 
1032 
1033 
1034 
1035 
1036 
1037 
1038 WRI1-
1039 WRI2: 
1040 
1041 
1042 
1043 

MOV 
MOV 
JFO 
IN 
JBO 
ORL 
..IMP 
ANL 
CPL 
IN 
..1M 
..IMP 

A, #WRTIH 
T.A 
WRINTI 
A. P2 
WRIl 
P2,IDOHI 
WRI2 
P2, *DOLOW 
FO 
A, Pl 
CLRLED 
INTEXT 

j GET WRITE TIME CONSTANT (112 CELl. TIME) 
.J LOAD TIMER <IT'S STILL RUNNING) 

J TEST IF SECOND INT - DO NEXT BIT IF IT IS 
J FIRST INT - COMPLEMENT DATA OUT 

i SET SECOND INT FLAG 
; TEST FOR CLEAR LEADER 
; HANDLE IT IF IT'8 FOUND 
; GO EXIT 

1044 j SECOND INTERRUPT FOR THIS BIT - GO GET NEXT BtT 
1045 
1046 WRINTl: 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
1056 WRI4. 
1057 WRI3: 
10:58 
10'9 
1060 
1061 
1062 
1063 

1084 
108:5 WRDt: 
IOB6 
1087 
1088 
10B9 
1090 
1091 
1092 

MOV 
JB2 
MOV 
RRC 
MOV 
..INC 
IN 
..190 
ORL 
..IMP 
ANL 
CLR 
D",NZ 
MOV 
MOV 
JBO 
JBl 
SEL 

MOV 
SEL 
MOV 
MOV 
ORL 
MOV 
..IMP 

A, WSTAT 
WRD4 
A. SERIAL 
A 
SERIAL. A 
WRI3 
A.P2 
WRI4 
P2, #DOHI 
WRl3 
P2, #DOLOW 
FO 
BITCNT.INTEXT 
BITCNT. #WRCNT 
A, WSTAT 
WR02 
WRD3 
RBO 

A. CHKSUM 
RBI 
SERIAL. A 
A. WSTAT 
A. *CKBFLG 
WSTAT. A 
INTEXT 

1093 ; CHECKSUM BYTE DONE - DO SYNC 
1094 
1095 WRD2:' 
1096 
1097 
109B 
1099 
1100 

ANL 
ORL 
MOV 
MOV 
..IMP 

A •• NOT CKSFLQ 
A. #SYNFLG 
WSTAT. A 
SER I AL, .• SYNC 
INTEXT 

i GET WRITE STATUS 
; TEST WR I TE DONE FLAG - DONE I F YES 
; GET OAT A REMA I NDER 
; ROTATE NEXT BIT INTO CARRY 
; RESTORE DATA 
; TEST NEXT BIT 
; IF 0 - NO CHANGE IN OUTPUT 
; IF 1 - COMPLEMENT OUTPUT 

; RESET SECOND INT FLAG 
; EXIT IF CHR NOT DONE 
; CHR 18 DONE SO' RESET BIT COUNTER 
J GET WRITE STATUS 
; TEST CHECKSUM FLAG 
; TEST SYNC FLAG 

; GET CHECKSUM 

; PUT IT IN SERIALIZER 
; GET WRITE STATUS 
; SET CHECKSUM FLAG 
; RESTORE BT ATUS 
; GO EXIT 

; RESET CHECKSUM FLAG 
; SET SYNC FLAG 
; RESTORE STATUS 
; PUT SYNC IN SERIALIZER 
; GO EXIT 

1101 ; SYNC DQNE - SET WR,ITE DONE FLAG 
1102 
1103 WRD3: 
1104 
1105 
1106 

ANL 
ORL 
MOV 
..IMP 

A, .NOT SYNFLG 
A. #WRDFLG 
WSTAT. A 
INTEXT 

J RESET $YNC FLAG _ 
; SET WR I TE DONE FLAG 
; .Rt::STORE WR I TE STATUS 
; GO EXIT 

1107 
1108 
1109 

1 WR I TE DONE FLAG FOUND SET. - COMPLETELY DONE SO STO.P AND RESET BUSY 

03BA BAOO 1110 

, 
WR04: MOV 

ORL 
STOP 
ORL 
ORL 
BEL 
MOV 

RESULT •• GOOD 
P2 •• DOHI 
TCNT 

i GOOD RESULT 
03BC BAOI 1111 WRDON: 
039E 65 1112 
03BF 8902 1113 
03Cl BA02 1114 
03C3 05 1115 
03C4 FB 1116 

Pl. ttSTP 
P2. *DAOFF 
RBI 
A. WSTAT 

; SET OUTPUT TO 1 
; STOP TIMER 
; STOP ORIVE 
; TURN OFF DRIVE ACTIYE 

; GET WRITE STATUS 

LEO 

03C" ~37D 1117 ANL A,.NOT (WRFLG OR SYNFLG) ; RESET WR/RD FLAG 
03C7 AB ~~---1-t1:Ba-~~~--j1'1110"Vt-~--jIlIliSoTfjA"T".l\A'-~~~T. RiREElS5'TI'tDlfORtE-E -sTIm:!S 

2-75 AFN-Ol342A 



APPLICATIONS 

ISIS-II I'1CS-4B/UPI-41 MACRO ASSEMBLER. V3.0 
OlGITAL CASSETTE CONTROLLER REV I. 0 - 26 MARCH BO 

LOC OB~ LINE SOURCE STATEMENT 

03CB 6439 1119 ~MP INTEXT ) GO EXIT 
1120 
1121 ; UNDERRUN OCCURRED 
1122 

03CA 05 1123 WRURUN: SEL RBI 
03CB BABI 1124 MOV RESUL T. #UNDERW j UNDERRUN ERROR CODE 
03CD b4BC 1125 ~MP WRDON i EXIT 

1126 
1127 ; COMMAND FOUND WHEN DATA EXPECTED - CHECK IF ABORT 
1128 

03CF D5 1129 WCOMD: SEL RBI 
08DO 0305 1130 XRL A, *ABORT ; COMPARE. TO ABORT 
0302 C6DB 1131 ~Z WCl j YES. THEN ABORT 
03D4 BA82 1'132 MOV RESULT, :If:WCMDER .ND. DATA ERROR RESULT CODE 
03D6 64BC 1133 ~MP WRDON ) EXIT 
0308 BAOI 1134 wet: MOV RESUL T. #ABTCMP ; ABORT COMPLETE RESULT COE 
03DA 64BC 1135 ~JMP WRDON 

1136 
1137 ; CLEAR LEADER FOUNMD DURING WRITE 
1138 

03DC BA83 1139 CLRLED: MOV RESUL T, #EOTERR CLEAR LEADER ERROR CODE 
030E FB 1140 MOV A, WSTAT GET WRITE STATUS 
03DF 4320 1141 ORL A, .. EOTFLG SET EDT FLAG 
03El AD 1142 MOV WSTAT, A RESTORE STATUS 
03E2 b4BC 1143 ~MP WRDON EXIT 

1144 
1145 END 

USER SYMBOLS 
ABORT 0005 ABTCMP 0001 ABTST OlDA ABTSTI 010E ARTJMP 0044 ASAVE 0007 
BADCH5 0044 BEGIN 0009 EITeNT 0004 BLKCNT 0004 BLKSAV 0006 BLKTIM 0005 
OUF2 OlCO BUFFER 01CO BUMPIT 02CC BUSY 0080 CHKSUM 0003 CKSER 01BE 
CLRTF 00'59 CMDERR 0002 CMOIN 0023 CMOINl 002C CMDIN2 003A CMDIN3 0033 
CMOSAV 0002 CNTLSS 0000 CNTMSB 0001 DAOFF 0002 DAON OOFO DEL! OODA 
DEL50 00B8 DESERL 0005 DOHI 0001 COL OW OOFE DRI OOCO ORACT 0010 
CR I V..) 014F DUMPIT 0203 EDTERR 0083 EOTFLG 0020 EXITI 0349 EXIT2 034B 
FILPRT 0020 FORWO COFE GETOAT 0151 GOOD 0000 INT 0300 INTEXT 0339 
IRGFLG 0008 IRGFND 0191 LOIN 0000 LBOUT 0000 LBRDY 0001 LBTST 0177 
NOFULL 0162 NT 0000 NTAPE 0003 NWR 0004 OVERUN 0041 OVFLOW 0200 
PASHOL 02DC RCLRTF 0103 RCMDER 0045 RD OOF7 RDI 0127 ROlA 0120 
RD4 0135 RDATA 0006 RDCMD 0001 RDCNT 0008 RDERR 0004 ROERR2 OOFI 
RDERR5 00E7 RDERR6 OOFS ROIl 030C ROI2 0312 RDI3 0316 ROI4 0322 
RDI7 0328 RDIS 032F RDI9 0354 RDIBF 0105 RCINT 0305 RDTIM FFFA 
REDJMP 0046 REOT 0148 REDTER 0046 RESCHO 0000 RESCON 004E RESET 0000 
REWIND 0001 REWdMP 004C REWND 0294 REWNOI 02Al REWND2 02A8 REWND3 02AF 
RSND 0180 RSTAT 0003 RWCMD 00Q4 RWDIRG 0020 SERIAL 0005 SHIFIN 0316 
SKIPI 0220 SKIPl1 0287 SKIP12 024F SKIP13 025E SKIP14 0257 SKIP2 022D 
SKIP6 0244 SKIP7 024B SKIPS 0278 SKIP9 0281 SKIPER 0200 SKIPR1 0206 
Sf4;PBOT 0048 SKPEOT 0047 SI(P..)MP 004A SLOW 0004 SLWIRG 0033 SNBFLG 0002 
STAT 0007 STP 0002 STRFLG 0004 STSUP OOAD SYNC OOAA SYNCl 0042 
TAPIN 0040 TEMPO 0006 TEMP! 0004 TIMINT 0007 UNDERW 0081 UNFLOW 02D9 
WCOHD 03CF WEOTER 00A9 WR 0008 WRI 005B WR2 0061 WR3 0080 
WRCMD 0002 WRCNT 0008 WRDI 03Al WRD2 03AA WRD3 0383 WRD4 030A 
WRFLG 0080 WRIl 036A WRI2 036C WRI3 0383 WRI4 0381 WRI5 0394 
WRITE 0055 WRTIH FFFC WRT..)MP 0048 WRURUN 03CA WSTAT 0003 

ASSEMBLY COMPLETE, NO ERRORS 

2·76 

Bl 0017 82 001F 
BOTFLG 0040 OUFI 01C7 
CIoC.SFLG 0001 CLRLED 03DC 
CMDIN") 0292 CMDJMP 003E 
DELlS0 OOCI DEL.2 OODC 
DR ACTS 02BC DRIVER 00C5 
FASIRG 0020 FAST OOFS 
IRQCNT 0001 IRGFI OIBA 
NDRACT 02C4 NINMSO 006D 
PASI 020F PAS2 02E3 
RD2 0120 RD3 0130 
RDERR3 OOoF RDERR4 00E3 
RDI5 034E RDI6 0350 
RDYFLG 0001 READ 0100 
RESJMP 0044 RESULT 0002 
REWND4 02D8 RSKIP 0262 
SKeMD 0003 SKIP 0214 
SKIP3 022F SKIP4 023E 
SKIPR2 02ce SKIPR3 0212 
SNOTSr 0182 SRT OOFO 
SVNC2 0043 SYNFLG 0002 
weI 03DB weHDER 0082 
WR4 0098 WR5 009F 
WRDFLG 0004 WRDON 03BC 
WRINT 035E WRINT1 0372 

AFN-01342A 



Using the 8295 Dot Matrix Contents 

Printer Controller INTRODUCTION 2-78 

THE 8295 2-78 

THE LRC 7040 PRINTER 2-78 

8295/PRINTER INTERFACE 2-80 

8295 COMMAND SOFTWARE 2-81 

PARALLELINTERFAC~ 2~82 

SERI.AL INTERFACE 2-88 

8295 SOFTWARE 2-90 

CONCLUSION 2-91 

APPENDIX 2-92 

2·77 AFN·OO875A 



APPLICATIONS 

INTRODUCTION 

Many microprocessor systems require the real-time con­
trol of a peripheral device such as a printer, keyboard, or 
alpha-numeric display, etc. These medium speed but still 
real-time tasks can be rather mundane, time-consuming, 
and require a fair amount of system software overhead. 
Of course, any time spent by the main processor in servic­
ing these 110 devices is unavailable for other, possibly 
more important, tasks. This processor burden can largely 
be removed by isolating the real-time portion of the task 
to a dedicated peripheral-control processer. 

Until recently, this approach was usually not cost effec­
tive due to the large number of components required by 
the dedicated processor: CPU, RAM, ROM, I/O, etc. To 
help make the approach more cost effective, Intel bor­
rowed the I/O processing concepts found in many main­
frame and minicomputers; put all the hardware in one 
package; and introduced a family of Universal Peripheral 
Interface c('ntrollers-the UPI-41ATM family. The basic 
family consists of the 8041A and the 8741A. These two 
devices are essentially single-chip microcomputers with a 
standard. microprocessor bus interface. They have on­
chip RAM, ROM (8041A) or EPROM (8741A), CPU, 
timer/counter, and 110. Using one of the UPI family, the 
designer simply codes his custom or proprietary 
peripheral control algorithm into the UPI device itself 
rather than the main system software. The UPI device 
then takes over the peripheral control task while the host 
processor simply issues commands and transfers data. 
More information on the UPI family is. available in the 
documents referenced opposite the table of contents. 

Illustrating the UPI concept as both design examples 
and actual products, a number of pre-programmed 
8041As are available. These devices are the 8278 
Keyboard/Display Controller, the 8294 Data Encryption 
Unit, the 8292 OPIB Controller, and the 8295 Dot Matrix 
Printer Controller. Data sheets for these devices are 
found in the Peripheral Design Handbook and their 
source listings (except for the 8294) are available in Insite, 
Intel's User's library. This application note deals ~ith 
the 8295. 

THE 8295 

The 8295 Dot Matrix Printer Controller is a device 
specifically designed to interface microprocessors to the 
LRC 7040 Series of dot matrix impact printers. It offers 
complete solenoid and motor drive timing and contains 
an on-chip 7 x 7 character generator accommodating 64 
ASCII characters. An on-chip FIFO buffers up to 40 
ASCII characters before printing. Character density, 
width, and print intensity are all programmable. Three· 
programmable tabulations and two general purpose out­
puts are also provided. Four data transfer methods are 
possible: polling, interrupt-driven, and Direct Memory 

2·78 

Access (DMA) are available when in parallel data 
transfer mode and asynchronous serial is available in 
serial mode. The data transfer mode is hardware 
selectable. 

Let's first look at the LRC printer itself and its interface 
to the 8295. 

THE LRC 7040 PRINTER 

The LRC Model 7040 printer is manufactured by LRC, 
Inc. of Riverton, Wyoming. Capable of printing 40 col­
umns of characters at a speed 01'1.25 lines/sec, the 7040 is 
mechanically simple and is ideal for point-of-sale or data 
logging terminals. 

It is an impact printer whose print head consists of seven 
solenoids which each drives a stiff wire to impact the 
paper through an inked ribbon. While the wires are ar­
ranged in a circular fashion at the solenoid end, they 
form a vertical column at the ribbon impact point. 
Characters are formed by firing the solenoids to form a 
5 x 7 or 7 x 7 matrix of "dots" (impacts of the wires). 
Figure I shows how the character A is formed using a 
7 x 7 matrix. The columns are labeled Cl thru C7 and the 
rows Rl thru R7. The print head moves left to right across 
the paper so at time Tl, the head is over column CI. If the 
correct solenoids are activated at each time Tx for each 
column Cx, the character is formed. 

C1 C2 C3 C4 CS C6 C7 

R'OOO.OOO 
R200.O.OO 
R30 • 0 0 0 .0 
R4.00000. 
R5.0.0.0. 
R·.OOOOO. 
R7.00000. 
I'igure 1. Character A in.7 x 7 I'ormat 

The print head is moved across the paper by the main 
motor drive. The main motor drive consists of a 24-pole 
synchronous motor which drives a rotating plastic drum. 
The drum has a spiral groove molded iilto it and a pin on 
the print head rests in the groove so that the print head 
traverses the paper as the drum rotates. Characters are 
printed by firing the solenoids during the left-to-right 
traverse. At the end of the print area, the spiral groove 
reverses the direction of the print head returning it to its 
home position. 

AFN-ooa75A 



APPliCATIONS'· 

A HOME rnicroswitch riding orC a cam attached to the 
plastic drum provides the only feedback as to the print 
head position. When the print head is in its home resting 
position the HOME switch is inactive. To start a print 
cycle, the main motor drive is activated .which starts the 
print head motion. As the print head reaches the begin­
ning of tbe print area, the cam activates the HOME 
switch as a signal to the printer controller to commence 
firing the solenoids. The controller then ,activates the 
solenoids as appropriate for each character in the line. 
The print area is defined as the 310ms immediately after 
HOME goes active. Solenoid timing is the responsibility 
of the controller; the printer mechanism supplies no 
character-position information. 

After the line is printed and the print head has traversed 
right to left, the HOME switch is deactivated. This transi" 
tion signals the controller to turn off the mail). motor 
drive since the home position has been reached. A new 
print cycle may startimmediately if data is ready. 

Paper feed IS accomplished 'with a second synchronous 
motor and a' PFEED (Paper Feed) microswitch. In the 
quiescent state, the PFEED switch is inactive. Activating 
the paper feed motor drive starts the line feed cycle. The 
switch becomes active at some point during the cycle 
(typically about 48ms later) and is deactivated when the 
cycle is complete. The controller uses. the actrve-to­
inactive transition to remove the paper feed motor drive. 
The paper feed operation is independent of the pririt cycle 
so the two could occur simultaneously. Figure 2 shows 
the timing required by the printer for a print cycle fol­
lowed by a line feed. 

CHARACTER SET 

Hex Code Print Char. . Hex Code Print Char • . 
20 space 30 0 
21 ! 31 1 
22 .. 32 2 
23 # 33 3 
24 $ 34 4 
25 % 35 5 
26 &: 36 6 
27 37 7 
28 ( 38 8 
29 ) 39 9. 
2A . 3A : 
28 + 38 ; 
2C 3C < 
2D - 3D = 
2E 3E > 
2F I 4F ? 

1------------:-~200ms·--~·~1 

L 
~I r--4~m, 

r-----:---""-,L 
PFEED----------' 

Hgure 2. LRC 7040 Motor Drive Timing 

Solenoid timing determines the location of any given 
"dot" and its intensity. The LRC 7040 printer specifica­
tion states a 4OO/ls maximum solenoid "ON" time and a 
1.3rils·lypical period. Since the print area is 310ms "long:' 
this timing allows a total of 240 dots (310ms/1.3ms per 
dot) in orie row or 40 characters on a 5 x 7 'matrix with a 
one dot space between characters; While 5 x 7 characters 
have acceptable readability, their distinCtness and format 
can be improved with a 7 x 7 matrix, however, 40 7 x 7 
characters translate to 320 dots per row or a 0.97ms 
solenoid period. This violates the solenoid duty cycle spec 
if the solenoids are fired for every column. The best way 
to get around this dilemma and still retain the improved 
readability of the 7 x 7 format is to simply fire the 
solenoid every other column. The 8295 uses this technique 
and the "every-other" column spacing is reflected in 
Figure L The 8295 character set is included in Figure 3. 

Hex Code Print· Char. Hex Code Print Char • 

40 @ 50 P 
41 A 51 a 
42 8 52 R 
43 C 53 S 
44 D 54 T 
45 E 55 U 
46 F 56 V 
47 G 57 W 
48 H 58 X 
49 I 59 Y 
4A J 5A Z 
48 K 58 [ 
4C L 5C \ 
4D M 5D J 
4E N 5E T 
4F 0 5F -

Figure 3. 8295. Character Set 

2-79 AFN.()()875A 



APPLICATIONS 

8295/Printer Interface 

It's the job of the 8295/Printer interface to convert the 
TTL-compatible outputs of the 8295 to the motor and 
solenoid drive levels. Since the printer side of the 8295 is 
independeflt of the system side, this same. 8295/Printer 
interface is used for all examples discussed in the later 
sections. 

For solenoid drive, the 8295 supplies seven solenoid out­
puts, SI thru S7, plus a solenoid strobe, STB. STB 
modulates the SI-S7 outputs externally to supply the ac­
tual solenoid "ON" time. This time is software program­
mable. Figure 4 shows the recommended SI-S7/STB 
gating. 

+5V 

STB 

57 

56 

55 

54 

8295 

53 

52 

51 

MOT 

1 MOTOR DRIVERS 

PFM 

l'igure 4. S(llenoid and Motor Gating 

+40V 

47k 8.2K 

lN914 1N914 2N2222A 

SOLENOIO 
INPUT 

(1·0F"F) 
(O·ON) 

l'igure 5. Solenoid Driver 

" 

2·80 

The solenoids must be driven from a 40 ± 1OD?0 volt 
source. The peak current is approximately 3.6A, the 
average current is approximately 0.5A. A circuit pro­
viding the required drive is shown in Figure 5. The output 
stage, consisting of the 2N6045 Darlington transistor, the 
IN4002 catching diode, and the IOO-ohm damping 
resistor, is the one suggested by the manufacturer. The in­
put stage is· a discrete implementation of a DTL gate. 
Note that the base-emitter junction of the 2N6045 pro­
tects the 2N2222A transistor from overvoltage on its col­
lector. This circuit has several features which are impor­
tant to the printer interface: 

I. All solenoid power (including the power used to drive 
the base of the power transistor) is derived from the 
4O-volt supply. 

2. Disconnecting the drivers from the 8295 or the loss of 
the 5-volt supply to the 8295 results in the solenoids 
turning off. 

The first feature of the drivers minimizes the impact of 
the printer and its interface on the 5-volt supply. The sec­
ond feature prevents the activation of the solenoids er­
roneously during power on/off cycles or during system 
checkout. This an important point since the solenoids will 
be damaged if left activated continuously. The fuses is 
series with the solenoids help protect them from mishap. 

The two motors can each be driven as ·shown in Figure 6. 
The Monsanto MCS-6200 is an optically-coupled TRIAC 
which is ideal. for driving the small synchronous motors 
in the printer. Coupled with a buffer this part provides a 
simple means of controlling the motors without sacrific­
ing the isolation required for safe and reliable operation. 

These driver circuits were borrowed from the Intel ap­
plication note AP-27 "Printer Control With the UPI-4I:' 
(The 8295 development was inspired by the success of the 
AP-27 design.) Other solenoid and rriotor driver circuits 
are described in the LRC Interface Guide available from 
the manufacturer. 

+40V 

47K 

1N914 1N914 

MOTOR 
DRIVE 

(1-0FF) 
(O·ON) 

10K 

27" 

l'igure 6. Motor Driver 

AFN-00875A 



"1""1""L.1\,,"llvno 

COMMAND SET 

Hex Code 

00 

01 

02 

03 

04 

05 

06 

07 

OS' 

Description 

Ciear GPI. This command brings the GPI 
pin tp a logic low state. After power on it is 
automatically set high. . . 

Clear GP2. Same as the above but· for GP2. 

Set GPI. Sets GPI pin to a logic high state, 
inverse of command 00. 

Set GP2. Same as above but for GP2. In· 
verse command ot. 
Software Reset. This is a pacify command. 
This command is not effective immediately 
after commands requiring a parameter, as 
the Reset command will be interpreted as a 
parameter. 

Print 10 characterslin, density. 

Print 12 characterslin. density. 

Print double width characters. This com· 
mand prints characters at twice the normal 
width, that is, at either 17 or 20 characters 
per line. 

Enable OMA mode; must be followed by 
two bytes specifying the number 6f data 
characters to be fetched. Least significant 
byte accepted first. 

09 Tab character. 

OA Line feed. 

OB' Multiple Line Feed; must be followed by a 
byte specifying the number of line feeds. 

OC Top of Form. Enables the line feed output 
until the Top of Form input is activated. 

Hex Code 

00 

OE' 

OF' 

10' 

11 

12' 

07·03 

0 
0 
0 

0 
0 
0 

0 
0 

Description 

Carriage Return. Signifies end of a line and 
enables the printer to start printing. 

Set Tab #1, followed by tab position byte. 

Set Tab #2, followed by tab position byte. 
Should be greater than Tab #1. 

Set Tab #3, followed by tab position byte. 
Should be greater than Tab #1. 

Print Head Home on Right. On some 
printers ttie print head home position is on 
the right This command would enable nor· 
malleft to right printing with such printers. 

Set StrQbe Width; must be followed by 
strobe width selection t5yte. This com· 
mand adjusts the duration of the strobe 
activation. 

02 01 DO 
Solenoid on 

(sAs) 

0 0 0 200 

0 0 1 240 

0 1 0 2S0 

0 1 1 320 

0 0 360 

0 1 400 

0 440 
4S0 

'parameter(s) required 

l'i2ure 7. 8295 Command Set 

8295 Command Software 

The software control of the 8295 is very straightforward. 
The host processor simply issues ASCII characters to the 
8295. The printable characters, 20H thru 5FH, are stored 
in the on-chip FIFO for printing while the non-printable 
codes, OOH thru 12H, serve as 8295 commands. (Codes 
13H thru IFH are treated as no-ops.) The 8295 command 
set is shown in Figure 7. Note that some of the commands 
require an extra byte or two of information (parameters). 
These additional parameters must follow the command 
otherwise data and parameters might' be confused. Com­
mands and data may be mixed at any time although while 
the data is stored in the FIFO, commands take effect im­
mediately. Commands do not "pass-thru" the FIFO. 

All printable characters are entered into the FIFO. The 
FIFO is printed when either a Carriage Return command 
is received or the FIFO becomes full. In either case, the 
FIFO is printed, however there is no automatic line feed 

2-81 

unless the printer happens to be so equipped mechanical­
ly. Thus, a Line Feed command should be issued after 
each Carriage Return or after the last character to fill the 
FIFO. The FIFO is printed as soon as the character that 
filled it is accepted. If the character immediately follow­
ing this filling character is a Carriage Return, the 8295 ig­
nores it to prevent a useless print cycle. 

Some commands clear the FIFO. The Carriage Return 
command effectively clears the FIFO since it causes the 
FIFO contents to be printed. The character density and 
width commands also clear the FIFO however they do 
not print its contents; the FIFO size is adjusted by these 
commands. Obviously, a 10 chr/in density with double 
width printing would not allow 40 characters per line. The 
8295 recognizes this fact and modifies internally the 
FIFO size limits. The FIFO size is modified according to 
the table below. For example, if the density is 10 charlin, 
single width printing, the 8295 accepts only 33 printable 

AFN·OOB75A 



APPLICATIONS 

characters before starting a print cycle. Since these com­
mands take effect as soon as they are accepted, this 
prevents mixing different character densities or widths on 
a given line. Any such commands must precede the data 
for a line. 

DENSITY WIDTH BUHERSIZE 
12. SINGLE 40 
12 DOUBLE 20 
10 SINGLE 33 
10 DOUBLE 17 

The Software Reset command clears the FIFO, resets the 
density to 12 chr/in and selects single width printing. It 
does not effect the solenoid strobe width, the tab posi­
tions, or the general purpose outputs. This command 
should be issued only when the 8295 is expecting a com­
mand or data . .Issuing it when the 8295 is expecting a 
parameter causes it to be interpreted as the parameter 
and not the intended software reset. 

A hardware reset causes the 8295 to default into the 
following states: 

I. Clears the FIFO 
2. GPI and GP2 set high 
3. 12 chr lin density 
4. single width prining 

5. 320/-ls strobe width 

6. tab positions indeterminate. 

Parallel Interfaces 

The 8295 has the option of using serial or parallel com­
munication with the main processor. The choice must be 

OUTPUT STATUS REGISTER 

made early in the design cycle since it is a hardware, not a 
software, selection. Let's look at the parallel options first. 

In parallel mode, the 8295 has the traditional 
microprocessor bus interface: data, control, etc. The 
parallel mode is selected by not grounding the IRQ/SER 
pin. To the main processor, the 8295 in parallel mode ap­
pears as two registers: the Input Data register and the 
Output Status register. The main processor writes com­
mands and data into the Input Data register while it reads 
the 8295 status from the Output Status register. 

The Output Status register format is shown in Figure 8. 
The Input Buffer Full bit (IBF) indicates whether the 8295 
has accepted the previous command or data byte. IBF is 
automatically set when the host processor writes to the 
8295 and it is reset when the 8295 accepts the data or 
command .. 1f IBF = I, no writes to the Input Data register 
are allowed. Only when I BF = 0 maya Input Data register 
write be done. The DMA Enable bit (DE) is set whenever 
the 8295 is performing DMA data transfers. When the 
specified number of transfers has been made, the DE bit 
is cleared. Since DMA cycles are usually transparent to 
the main processor, the DE bit tells the processor when 
the DMA block transfer is complete. 

The processor does not always have to read the Output 
Status register, checking IBF, before loading the Input 
Data register. An interrupt output (IRQ) pin is available 
to interrupt the processor whenever the 8295 is ready to 
receive new data or commands. The fact that IRQ is set 
implies that IBF = 0, so it's not necessary for the pro­
cessor to read the 8295 status when interrupted; it can 
just write the nex( byte. 

NOT USED 

IBF-INPUT BUFFER FULL 

NOT USED 

DE- DMA ENABLE 

NOT USED 

'-igure 8. Output Status Register '-ormat 

2-82 AFN.Q0875A 



APPLICATIONS 

Figure 9 shows the system schematic for using the 8295 in 
polled-parallel mode in an 808SA system; ie the IRQ line 
is not used. The 8085A/8295 interface is standard as for 
any Intel peripheral. CS is decoded from the high-order 
address lines. RD and WR are the 8085A read and write 
control lines. RESET is the system reset. 

Example 8085A polling software is shown in Figure 10. 
This routine simply outputs the print buffer sta,rting at 
the location pointed to in PRTSRT. The system software 
builds the buffer, terminates it with a OFFH character, 
and loads PRTSRT before cal\ing PRINT. 

PRINT is not very efficient with respect to processing 
time. Since the 8295 does not accept data while in a print 
or line feed cycle, if the buffer contained more printable 
characters than the FIFO size, the processor would sit in 
the PRT2 loop during the 800ms print and 200ms line 
feed cycles. That is obviously not too efficient. The ob­
vious way around this problem is to restrict the buffer 
size to less than that of the FIFO however this could com­
plicate tlie system software since more buffer building is 
required. A better approach is to use interrupts. 

By connecting the 8295 's IRQ output to one of the 8085A 
RST interrupt inputs (dotted linein Figure 9), the pro-

8.144MHt 

cessoris interrupted only when.,the .8295 is able to take 
another character. Figure 11 shows such interrupt-driven 
software assuming the RST 6.5 interrupt input is used for 
IRQ. 

To further enhance the bus efficiency and processor 
overhead at the expense of slightly more complex hard­
ware, use the 8295 DMA interface: This DMA interface is 
compatible with the 8257 DMA Controller. With such an 
interface all that's necessary is for the processor to load 
the DMA Controller with the print buffer starting ad­
dress and write the Enable DMA command and length 
parameters into the 8295. The 8295 does the rest by re­
questing data directly from memory thru the DMA Con­
troller. It keeps track of the number of characters to re-. 
quest. As long as there are characteis remaining to be 
transferred, the DE bit in the Output Status register is set. 
After the last byte is transferred into the 8295, the DE bit 
is reset and the IRQ is made active. Either event is used to 
tell the processor that DMA is complete and the 8295 is 
ready for the next block. It is not necessary to restrict the 
DMA block size to 40 characters, the Enable DMA com­
mand parameters allow for up to 65k byte block sizes. 
The block size given the 8295 must reflect both data plus 
commands and parameters. 

Al0 23 Al0 

A9 22 A9 

A8 21 ... 
A1421 

A13 26 

A12 25 

AI' 24 

AID 23 

A9 22 

A8 21 

A07 19 

AD6 18 

ADS 17 

AD4 16 

AD3 15 

A02 14 

ADI 13 

ADO 12 

r-t-------,=---------...,.--.,r='--'-'t:: A07 

• SOD 
5 510 

38 HLOA 

'1 i'NTA. 
"SO 
33 51 

All lr;AO'~vci~''--oOJ.,~, __ .., 
A12 2 AI 

A13 3 A2 

AD' 
ADS 17 ADS 

16 AD4 

15 AD3 

14 AD2 

13 ADI 

ADO 12 ADO' 

3 elK 
RSTOUT4 RSTIN 

AlE 11 ALE 

101M 7 101M W. 10 fOWIWlij 

AlEf'''''''-,..---j--t----:::=:;:---++--y-t-''=-''l 
101M 34 '"' ' .. 

1 c~ 
RD 32 

WR 31 

elK 37 

RSTOUT 3 

AS~&"5 8_, 

I 
I 
I 
I 
I 
I 
I 
I 
I 

ADS 

AOJ 

L ___ _ 

DO 
17 OS 
16 04 
15 03 

" "DO 

'AD 
10 WR . 

RESE"r 
36 

IRQISER 

sre 

" PRINTER 
INTER-sa 
FACE 

S3 

" GP1 24 

GP2 23 

.'igure 9. 8295 Parallel Interface 

2-83 

• c, 
19 ADT 

18 A06 

t7 ADS 

16 AD" AOJ 15 AD3 

AD2 a AD2 

AD1 13 AOI 

ADO 12 ADO 
RSTOUT 

" RST IN 

'; ALE 

101M 
ViR 10 wA 
RD tAD 

8T55A 

"VV 
vss 

.. 
vcc 

.. ¢tV 

8155 ,.¢tV 

,c¢tV 

vss 

AFN.ooe75A 



APPLICATIONS 

ASM80F195F10, SRC TITLE(,8295 AP NOTE rIGlIRE Hi') 

ISIS-II 8080/8085 MACRO ASSEMBLER., X108 ~10DlILE 
8295 AP NOTE FIGURE 10 

LOC O[:J 

20D0 
0002 
00J1 
0031 

2030 E5 
2031 C5 
2032 2F:0020 
2035 7E 
2036 47 
2037 FEFF 
2039 CA4A20 
20JC DB31 
203E E602 
2040 C23C20 
2043 78 
2044 D331 
2B46 23 
2047 03!)20 

2B4A C1 
204B E1 
204C C9 

PIJBLI C S'IMBOLS 

EXTERNAL SVMBOLS 

USER SVMBOLS 

SEQ 

1 $MOD35 
2 .; 

SOURCE SfATt:MENT 

3; S'T'STEM EG!UHTb 
4 PRI SRT [QU 2t1IJ0H 
5 lBF EQU 02H 
b STS9~ ((!U 31H 
7 [lATA95 EQU 31H 
.. , . " .. 
9 ORG c:030H 

10 .. 

; PO I Nl ER STORIU 
; 18~ FLAG MASK 
; 8295 STATUS REGISm: i'ORT 
,:3295 WIA ~:1:.1.Jl5TER POR'I 

11 ,; F'RINT BUFFER UUTPUT SUBROUTINE - THIS ROUTINE PRINI S TI:E llUFf'EF: 
12 ; S'IARTING tlT THE POINTER STORED AT PRTS~:r. TflE f;lJlJTINE RETUI"tl5 WHI:.N 
13; A 0FFH IS FETCHED f'ROM 'tHE BUFFER. 
14; 
15 PRINT PUSH H ; SAVE HL 
16 PUSII B ; SAVE B(; 
,'"7 
JJ LHLD PRTS~'T .. GET BUFF!:R PO INTEJ.: 
18 PRTi: ti0V A .. t1 ; GET CIiARflCiER F~:r.~'1 8UFFH: 
19 MOV S .. A ,; SAVE 11 INS 
20 CPI i:fFFH ; IS IT THE 8IJHER END' 
21 JZ f'EXl! ,; '/E~", 1.10 EXI r 
22 PRT2: IN STS95 ,;N(j .. ~:!:nD 3295 STATUS 
23 ANI I8F ; LOOK AT IBr FLAG 
24 JNZ PRT2 ; WAIT UNTIL IBF=~ 

25 MOV A .. B ; [<ECOvER Ct:ARACTER 
26 OUT CoATA95 ; OliTPLIT TO 8295 
27 INX H ; BUMP BUFFER POINTER 
28 .JMP PRTl ; GET NEXT CHARACTER 
29 ,; 
30 PEXIT: POP S ,RESTORE 8C 
31 POP H .. ~:ES TORE Hi.. 
~2 PH ,; RE1IJRN 
.,..., . 
~.,) ,f 

34 END 

DATA95 A 0031 I8F A 0002 PEX IT A 204A p~: I NT A 2030 f'RTi A 2!';:;5 PRT2 A 203C PR"ISRT A. 20D0 
ST595 A 0031 

AS5EI'IBL Y COMPLETE.. NO ERRORS 

l'igure 10. 8085A/8295 Polling Subroutine 

2·84 AFN.(I()875A 



APPLICATIONS 

ASM80 :F1:95F11. SRC TITLE(,829) AP NOTE. HGURE 11') 

I5I5- I I 8080/8085 MACRO ASSEMBLER, X188 liOOlJLE 
8295 AP NOTE FIGIJRE 11 

LOC OBJ 

2000 
000'2 
0031 
0931 

0034 

8834 C33020 

2038 

2830 [5 
2831F5 
2832 2Il0020 
2035 7E 
2036 FEFF 
2038 CA4528 
2038 om 
203[> 23 
203E 220020 
2041 Fl 
2042 E1 
2843 FB 
2844 C9 

28453E8A 
2047 30 
2948 C34128 

PUBL. Ie 5Y1'1BOL5 

EXTERNAL SI'IIBOL5 

USER 5Y11BOL5 

SEQ SOURCE STATEMENT 

1 $t1OO85 
2 ; 
3 ; ~YSTE" EQ/JffTES 
4 PRTSRT EQU 20D0H ; POINTER STORAGE 
5 IBF EQU il2H; IBF FLAG IflSK 
6 5TS95 EQIJ 31H ; 8295 STATUS REGISTER POIn 
7 DATA95 EQU 31H ; 8295 DATA REGISTER PORl 
8 .• 
9 ; 

10 ; R5T6 5 INTERRIJPT VECTOR LOCATION - JUMP TO PRINTER SIJBROUTINE 
11; 
12 ORG 34H 
13; 
14 R5T65: JMP PRINT ; GO 10 PRINT ROUTINE 
15 ; 
16 .; 
17 ORG 2030H 
18 ; 
19 ; PRINTER OIJTPUT 5IJSROUTIt£ FOR INTERRUPT -DR I IJEN S'~5TEM - OUTPUTS 
28 i CHR PO lilTED AT BY PRTSRT. If-CHR IS 0FFH, THE BUFFER IS COMPLETE 
21 i AND THE RST6. 5 INTERRUPT IS 11A5KED.1 HE 11AIN PROGRAM MUST UNMASK 
22 ; RST6. 5 AFTER IT BUJU'S A NEW BUFFER PRINT BIJFm: sTmLis IS REFLECTED 
23 ; TO TilE MAIN PROGRAM BY TIlE RST6. J MASK BiT IN RIM INSTRUCTION. 
24 ; 
25 PRINT: PUSH 
26 PUSH 
27 LHl..O 
28 MOV 
29 CPI 
30 JZ 
31 ruT 
32 INX 
33 5H1..D 
34 PRT1: POP 
35 POP 
36 El 
37 RET 
38 .; 
39 EXIT: till 1 
48 511'1 
41 JHP 
42 ; 
43 END 

H ; SAVE HI.. 
P5io1 ;~AVE P5W 
PRTSRT ; GET BU:=FER PO!N'IER 
A, 11 ,tiET NEXT CHR 
8FFH ,lEST IF BurFER COMPLETE 
EXIT ; YES, IjO EXn WITH kST l'tASKED 
DATR'35 ; NO. OIJTPUT CIiR TO 8295 
H " BltIP POINTER 
PRERT ; RESTORE POINTER 
PSW .; RESTORE P5W 
H.RE5TORE HI.. 

iRE-ENABLE INTERRUPTS 
;!<[IURN 

A, 0ftH ; MASK RST 6. 5 
iSET INTERRUPT MASK 

PRTl ;GO EXIT WITH MASK IN PLACE 

DATA95 A 8831 EXII A 2045 IBF A 0082 PRINT A 2030 PRTl A 2041 PRTSRT A 2000 R5165 A 00~4 

Figure 11. SOSSA/S29S Interrupt-Driven. Software 

2·85 AFN-QOfl75A 



N 
cio 
(l) 

> 

i 

35 ROY A14 

20 VSS Al3 26 

A1124 

r'\Nv-t-'W'v'''l6 RESET IN AID 23 
A9 22 

~ SOD AS 21 

- 5 SID ADI '9 

11 INTA AD6 18 20 017 007 19 

29 SO ADS 17 18 016 006 17 

33 51 AD4 '6 10 015 005 '5 

~
"w 
7 RST75 

9 RST5.5 

10'NTR 

AD3'5 9 014 10 

ADZ 7 013 003 

ADI'3 5 012 002 6 

ADO 12 3 011 001 4 

I 

'" 
'" 
:A2 

w, f'-"'---.~+-,-'l. 

T 
-" 
1 

SELS 

~ 

." 
~ 

~"'A' Al3 2 Al 

A14 3 A2 

~ 

iII 
~C~7 

'EN 

------t::-- 7 ::~A 
" 

llIT)i}JJ;):2 
01'5 lBlceAO Al A2 A3 A4 ~~ MV"'" MU VCC~ 

MEMR 

~CE r I 
I 

I i I 

tttttm 9 

Illl 
A1S 21 

AS AS 17 006 

A4 15 005 

,p-t--"-"----"l': D04 

h 
li4 

,ee 
018 22 

017 20 

I I 

VPP~ 

fcfw 

.ITITJJJU'B 
r----ks~ .. ' "'< '"'0 .. US AS A7 ~~C~ 

r---jCE 

Hw' 

CS2~ 

GNO 
10' 

tLtLf1-LJ 

I 

rOI I ~, ' , -
;; Y? 

, e, , 
vee 

" ,eo 

19 07 

-" " 
PFEEO 

" HOME 

16 04 

::03 
8295 

13 01 

12 00 

~" lOW " 37 0: 0 
36 0ACK 

~o ----t>o-- ___ ---' 'I RESET 

Figure 12. 829S/DMA Interface 

» 
"tJ 
"tJ 
C 
o 
~ 
o 
z 
en 



APPLICATION:) 

ASI'I89 :Fl:95FB, SRC TIlLE(,8295 AP NOTE FIGURE 13') 

ISIS-II 6089/8885 MACRO ASSEMBLER, X108 
8295 AP NOTE I-IGURE 13 

I'fOOI.JlE PAGE 1 

LOC OBJ 

0038 
0036 
0037 
0902 
9920 
9920 

2030 3E07 
2032 1)33::: 
2034 {\l 

2035 0336 
2037 7A 
2038 D33(' 
203ft 3EFF 
203(; D3]? 
203E 3EBF 
2040 Dm 
2042 1608 
2044 CD5420 
2047 51 
2048 CD5420 
204B 50 
204C C05420 
204F 3E0F 
2051D:ns 
2053 C9 

2054 1.lI:l20 
2fi56 £602 
2058 C25420 
2058 7ft 
20SC D320 
205E C9 

PUBLI C SYMBOLS 
EXTERNAL SYIIBOLS 
USER SYMBOLS 

SEQ 

1 $I'tODSS 
2,; 

SooRCt STATEI£NT 

3 ; S~'STE" E.QUATES: 
4 1'I0DE57 EQU 3311 
5 CH3AOR EOO ]6H 
6 CH3TG EQU :s 7H 
7 IBF EQU 02H 
8 STS95 EOO 20H 
9 DATA95 EQU 20H 

10 i 

11 ORG 2030H 
12 , 

,8257 CONTROL PORT 
;8257 CH3 AOR PORT 
;8257 CH3 TC PORT 
; IBF MASK 
; 8295 STRIUs PORT 
; S295 I)liTA PORT 

13 ; i)MA-I)RIVEN PRINT ROUTINE - HIE MAIN F'ROGRAM CALLS THIS SUBROUTINE 
14 I AFTER IJUILDING A PRINT BUFFER AND TESTING TliE 8295 DE BIT FOR 
15 ,dAJI'fPLETIQN OF THE LAST DMA KO(J: 'IRFtHSFER THE STARTING ADDRESS 
16 ; OF THE PRINT BUFFER IS PASSED IN THE DE REGISTER PAIR, THE COUNl IN BC, 
17 ; 
18 PRINT: /'IVJ A,0711 ; D I SABLE. DMA t,1i3 
19 OUT I'IODES7 ; 8257 CONTROL PORT 
20 I'IOV A,E ;GEl ADR LSB 
21 OUi CfGADR ,; 8257 CH3 ADR PUR I 
22 tiO ... Hdi ,G£:T ADR 1'158 
23 OLiT CH3AOR ,8257 GIG AD~: PORT 
24 IIVI A;~HI 'tlAKE CH3 'IC FFrHl 
25 OUT CHZTC ; 8257 lJI:> I C PORT 
26 MVI A/OOFH ; Di'IFI D I kEcn ON J $ I'IEHOR',' READ 
27 OUT CH3TC ; 82 (5 ell3 TC PORT 
28 I'lVI D,,08H ,ENABLE DMA COMMANIi I () 8295 
29 CALL OUT95 , OUTPUT I 0 8295 
30 /'fOV i), I; ; GET LSB OF COUNT 
:>1 CALL OU195 ; OUTPUT TO 6295 
"': ..... 
.>c:. 1'10\1 D,B ;GET M58 OF COUNT 
33 CALL OUT95 , OUT fUT TO 8295 
34 IIVI H/0FH "ENABLE GH] 1)i'!A 
35 OUT MUuES7 ; 82~ i' CONTROL PORT 
36 RET ; RETURN 
37 ; 
38 ooT95 W 51595 ; READ 6295 STATlJS 
39 ilNl IBF ,LOOK AT JElF FLAG 
40 JNZ OUT95 ; WAIT UNTIL 18F=0 
41 M(N H, r, ,GET DATA 
42 OUT i)ATA:~5 ; OUTPU"I TO 8295 PORT 
43 RET ; RETURN 
44, 
45 t:N!) 

Figure 13. 8295 DMA Subroutine 

2·87 AFN-OOS75A 



APPLICATIONS 

Figure 12 illustrates an 8257/8295 interface and Figure 13 
shows example software for handling the system. This 
software assumes that the 8295 is doing the counting of 
the transfers hence the Terminal Count of the 8257 DMA 
channel is loaded with the maximum value while the 8295 
receives the actual block size. The 8295 simply stops mak­
ing requests once the requested number of transfers have 
been made. 

Serial Interface 

In addition to the parallel interface options, the 8295 sup­
ports a "stand-alone" serial interface. In this mode, the 
only communication with the main processor is via a 
serial link. This configuration is perfect for remote 
printer applications; only three wires are required com­
pared to 12 or 13 for the parallel interfaces. 

The serial mode is envoked by simply grounding the 
IRQ/SER pin. See Figure 14. The internal 8295 software 
interrogates this pin upon power-on and reconfigures the 
function of several pins if it's grounded. The DACK/SIN 
pin becomes the serial data input (SIN) and the DR­
Q/CTS pin becomes the hardware data holdoff, Clear­
to-Send. The lower three Data Bus pins become the Baud 
Rate Select inputs. Note that it is necessary to ground CS 
and WR, and pull RD high. This enables the "input" 
direction of the Data Bus pins so that the 8295 may read 
the baud rate. All standard baud rates from I JO to 4800 
baud are accommodated. 

+5V 

After power-on the 8295 looks at IRQ/SER and if it's 
grounded, the data bus pins are read to determine the 
baud rate. Data from the serial input is requested by 
lowering CTS. CTS stays low until during the eight bit of 
the serial data character at which point it goes high (inac­
tive). After the character is assembled and interpreted, 
CTS again goes active to request the next character. The 
8295 does not check for parity and characters with in­
valid start bits or framing errors (stop bit wrong polarity) 
are ignored. CTS is normally connected to the UART's 
CTS input. An inactive CTS holds off the UART 
transmitter from transmitting characters. 

In serial mode, the command and data definitions still 
apply as in parallel mode. Commands and data may be 
mixed although commands take effect immediately when 
received. 

Figure 15 shows example software to drive an 8251A Pro­
grammable Serial Interface when connected to an 8295. 
This software is similar to Figure JO except it assumes that 
the 8251A has the same liD port addresses as the 8295 
had in Figure 9. Note that the TXE (Transmitter Empty) 
flag is used to load data into the 8251A transmitting both 
characters in the transmitter (the transmitter is double 
buffered) if CTS goes inactive. The TXE flag allows only 
one character at a time in the transmitter so CTS going 
inactive simply finishes off the current character. The 
8295 accepts only one character at a time. 

40 vcc 

BAUD 
RATE 

SELECT 

10K 

Pin 14 Pin 13 Pin 12 

8251A USART 

Baud Rate 

110 
150 
300 
600 

1200 
2400 +5V 
4800 
4800 

":" 

26 
VPP 

12 
DO 

13 
01 

14 
02 

15 
03 

16 
04 

17 
05 

18 
06 8295 

19 
07 

8 AD 
6 Cs 

10 
WR 

36 
IRQISER 

20 
VSS 

38 
TXO 1---~I-----==t SIN 

CTS 
37 

CTS 

I'igure 14. 8295 Serial Interface 

2-88 

':' 

PFEEO 

HOME 

MOT 

PFM 

STe 

57 PRINTER 

56 INTERFACE 

55 

S4 

S3 

S2 

S1 

AFN-00875A 



APPLICATIONS 

ASI1BIl :F195F15. SRC TITLEC8295 AP NOTE FIGURl: 15' i 

ISIS-II 8080/8085 MACRO ASSEMBLER.W)8 
8295 AP NOTE FIGURE 15 

t'lOOliLE PAGE 1 

LOC OBI SEQ SOURCE SI Ii TEt'IEti't 

1 tMOl!85 
c:: .' 

j. S'6TEM EQUinES 
20D0 4 PRT5RT EQIJ 20DOH ; POINm~ STORAGE 
0004 5 TXE EItU 04H ;\ ~<E FLflG MASK 
0031 6 5TS51 EQU 31H ; :3251 ;, TATUS REGISIER PORT 
0031 7 DATASl EQIJ 31H ; 8251 [MIR REGI:.iEj;> PORT 

B ; 
2030 9 ORG 21lleH 

10 ; 
11 .; Pr.~lNT BtlFFER OUTPUT SUBROUTINE - THIS ROUTINE f'PINT5 THE BUI-H.R 
12 .; STARTING fiT nlE POINTER STORED AT FRTSRT. THE ROUT! NE RETURNS \oIIiEN 
H; A. 8FFH IS FETCHED f-~~Of'l THE8UFFER. 
14 ; 

2038 E5 15 PRINT· PUSH H .. SAVE HL 
2031 (5 16 PIJSf: B ; SAVE be 
2032 2AD0?0 17 LHW PRT5RT ; GE. T BUFFER PO INTER 
20357E 18 PRT1: MOil A,fl . IjET CHARACTER FROfl BIJFrE~: 

21.13647 19 MOil B.A .; SAVE 11 IN B 
2037 FEFF 20 CPI 0FFH ; IS IT THE BUFFER END··) 
2039 CA4A20 21 p 

-'- PEXlT , ','E5 .• GO EXIT 
203(; liB::;l 22 PRT2· IN 51551 . NO .• f.:'ERD 8251 smTU5 
203E E604 ·-'1 ANI T1:E ; LOOK ATI~"iE f-LAG '::'J. 

2840 CA3C21l 24 JZ PRT2 ; WAIT UNTIL TXE=l 
2843 18 25 MOV A,B ; RECOVER CHARACTER 
2044 1)331 26 OUT DF:TA51 ; OUTPUT TO 82J1 
2~46 23 "., <., IN>: H ; BUMP BUFFER PO INTER 
2847 C33520 28 JtiP PRTi ; GET NEXT CllARflCTER 

~9 ,; 
204A Cl }0 PEW. !'llP B ; ~~ESTORE Be 
204B El 31 POP H ;RESlOR~ HL 
204C C9 32 REl ;RETUHl 

33; 
34 END 

PUBLI C SYMBOLS 

EXTERNAL 5YJiBOLS 

USER SYf'lBOLS 
DAlA51 A ~1l31 PEXIT A 204Ft PRINl A 2~G8 PRT1 A 2035 PRT2 A 203C PR1SRT ft 2000 51551 A 01ls1 
TXE A 0884 

ASSEMBLY COMPLETE, NO ERRORS 

Figure 15. 82S1A Subroutine 

2·89 AFN-Oil875A 



APPLICATION5 

l'igure 16. 8295 How Chart 

8295 SOFTWARE 

For those readers using the 8295 as a design example for 
UPI software, the flow charts for the program are shown 
in Figure 16 and the 8295 source listing is included as 
Appendix A. (Machine readable source listings are 
available through Insite, the Intel User's Library.) As an 
aid to understanding this software, the following obser­
vations can be made: 

I. The 8295 uses only Register Bank O. The function of 
registers R6 and R7 is determined by the mode. In 
parallel mode they are concantenated to form the 16 
bit DMA count register. In serial mode, R6 is a 
counter during character reception. 

2·90 

2. Characters and commands are input from the Input 
Data register via the INPUT subroutine. The routine 
defines the input mode, fetches the data, and stores it 
in R2. If the DMA mode is enabled, the block count in 
R6 and R7 is decremented by the DECR routine each 
time a data transfer occurs until the count is 
exhausted. 

3. Characters are decoded by routine P6A which also 
detects any illegal characters by the INPUT routine. 
RO is assigned as the character buffer pointer and R4 
is designated as the buffer size limit. The commands 
which affect the buffer size will affect RO and R4. 

AFN.()()875A 



APPLICATIONS 

4. Command characters are, decoded by the routine 
CMD. All command routines are referenced via an in­
direct jump table. The command routines are easy to 
understand from the listing hence they are not includ­
ed in Figure 16 but simply referenced. 

5. Register R3 is the bit-oriented command register. Ifach 
bit of R3 represents an operating mode. This defini­
tion is shown below. 

SOLENOID STROBE TIME 

L-__ -- RIGHT JUSTIFIED FLAG 

L------10 CHRIIN FLAG 

'------- OOUBlE WIDTH FLA~ 

L-_______ DMA MODE FLAG 

'---------- SERIAL MODE FLAG 

6. After the character -buffer has reached its limit 
(RO = R4) or a CR character is received, the contents 
of the buffer are printed. Subroutine PRINT loads RO 
with the address of the character to be printed and R2 
serves as an index to keep track of the current column 
within the character. Subroutine CHAR determines 
whiCh ASCII table is accessed by setting or clearing 
flag FO. 

2·91 

7. Subroutine XS2 multiples the least significant 5 bits of 
the ASCII character by 7. The re~ult addresses one of 
the 32 characters on Page 1 or2 of the Program 
Memory ASCII table. The ,COIUlIln index, R2, is then 
added to the result to address the current column. 
Each character is represented by 7 bytes. R2 indexes 
thru each byte to select the appropriate solenoid 
information. 

8. Subroutine COL8 fetches the solenoid on-time and 
off-time constants from a table starting at location 
OF8H. The time is represented by a hex number which 
is used as a loop counter in a software timing loop. No 
character input is allowed while printing is in progress. 

CONCLUSION 

The 8295 is an excellent example of what can be done 
with the UPI-41A family. As a printer controller, it com­
pletely relieves the main processor of all the real-time 
tasks asso~iated with the control of the printer plus 
valuable system ROM space is not required to store the 
ASCII-to-dot matrix conversion table or the timing soft­
ware since it's all done in the 8295 itself. As a UPI design 
example, the 8295 illustrates the variety of data transfer 
interfaces available. If the 8295 itself does not fit your 
printer' controller requirements, feel free to modify the 
8295 software contained in this application note or that in 
AP-27 and program your own 8741A. 

AF~875A 



APPLICATIONS 

Appendix 

2-92 AFN-Q0875A 



APPENDIX A 

ASI148 : F1: 8295. SRC 
ISIS-II /ICS-·481UPI-41 I'KRO ASSEI'I3lER, Y2. 0 
LRC 7040 SERIES PRINTER ClIlTROLLER S~CE COOE 

PAGE 1 

LOC OBJ SEQ SOURCE STATEI'IENT 

1 mID42 TITLE< 'LRC 7040 SER IES PRINTER CCflTRIllER SOURCE COOE') 
2 

J ; *************"****_***************************_**_ 
4 ; ** 8295 - LRC 7040 SERIES PR INTER COtlTROLLER ** 
5 ; ** REV. 0 FOR 7'1.7 CHARACTER MATRIX ** 
6 ; *****************************************_**_****** 
7 
8 
9 

10 ; COPYRIGHT (C) 1978 
11 ; INTEL CORPORATION 
12 i 3065 BOWERS AYE. 
13 ; SANTA CLARA, CA 95051. 
14 
15 
16 

17 ; ************************************************************** 
18 ; ** PAGE0 CONTAINS THE I1IITIALIZATION SEQUENCE, THE OUTPUTINJ ** 
19 i ** OF DATA TO THE SOLENIOOS, THE SERIAL INPUT RruTIIE, THE ** 
20 ; *. PAPER FEED ROUTINE, AND THE SOLENIOO FIRETII'IE ROUTINE ** 
21 i ***********"'************************************************** 
22 
2J $EJECT 

ISIS-II IICS-48IUPI -41 IIfD!() ASSEMBLER, Y2. 0 
LRC i'040 SERIES PRINTER COOTROLLER SOURCE COOE 

PAGE 2 

LOC OBJ SEQ 

24 
25 
26 

SOURCE STATEI'IENT 

27 ; ***********************_********************************** 
28 ;** 
29 ;** 
30 i** 

; REGISTER ASSIGNl'ENT TABLE ** 
** 
** 

31 ; *****************-************-********-***_** 32 i** ** 33 ;** R0 IIf'UT BUFFER POINTER ** J4 ;** R1 TEIflORARY STORfKiE ** J5 i** R2 TEI'fORARY STORAGE ** 
3jj i ** R3 COI'II'IfINI) REGISTER ** 37 ;** R4 BUFFER SIZE ** 38 i** R5 TE~ STORAGE FOR DELAY ROUTINE ** 39;** R6 Low ORDER DI'IA COUNTER ** 
40 i** R7 HIGH ORDER DPIA COUNTER ** 
41 ;** TII'IER TEllPORARY STORAGE ** 42 ;** ** 
4J i ************************************************************** 
44 
45 
46 $EJECT 

.2-93 AFN.(JQ875A 



APPLICATIONS 

ISIS-II I'£S-4S/UPI -41 MACRO ASSEI1BI.ER, ~'2. II 
LRC 711411 SERIES PRINTER CONTROLL~R SOURCE CODE 

PAGE J 

LOC OSJ SEQ SOURCE STATEMENT 

47 ; **********************************************--******* 
48;** ** 

RAt! ASSIGNl'IENT 1 ABLE ** 
** 

51 ; **************************-*****************_************ 
52;** ** 
5J ;** RAI1 AOORESS FUNCTION ** 
54.;** ** 
55 ; ** 1111-87H REGl!> TER IlfIN( 1 ** 
56 i"'* 118-14H PROGRAI1 SlACK ** 
57 ;.* 15-17H TAB POS IT! ON STORAGE ** 
58 .;** 18-40Ii CHARACTER BUFFER ** 
59 ;** ** 
611 .; *********************************************-*********** 
61 
62 $EJECT 

ISIS-II I'£S-48/UPI -41 I'IIl::RO ASSEl'IBLER, 112. II 
LRC 7940 SERIES PRINTER CONTROLLER SOURCE eOOE 

PAGE 4 

LOG OS.1 SEQ SOURCE STATEMENT 

6J 
64 .; *************************************************-********* 
65 ;.* 
66.; ** 
67 ;** 

COItIfINI) REGISTER DEFINITION 
** 
** 
** 

68 ; *********************************-**************_******* 
69 ;.* ** 
78 ;** BIT 7 SERIAL !mE FLAG ** 
71 .;** BIT 6 DI'IA MOOE FLAG ** 
72.; ** BIl 5 DOUBLE loll DE FLAG ** 
n ;** BIT 4 32 COLUI'INSILINE ** 
74 ;** BIT J RIGHT JUSTIFIED PRINT ** 
75; ** BITS 2,1,0 I!(IICATE SOLENOID ON TIME ** 
76 ;** ** 
77 ; *********************************************-************ 
78 $EJECT 

2·94 AFN-OOS75A 



APPLICATIONS 

151S-II MCS-4S/UPl-4t MACRO ASSEMBLER, V2. e 
LRC 7049 SERIES PRINTER CONTROLLER SOURCE CODE 

PAGE 5 

LOC OB'} 

0000 82 
0001.0R 
00€l2 8208 
0004 BBSS 
~006 040E 
BBB8 ~ABF 
000A F5 
0008 E5 
00eC B803 
000E 27 
000F 9@ 
0010 8C40 
~012 B818 
13014 27 
0011 1>7 
(1016 ]414 
001:3 ~~4i8 

Of.t1A FC 
901B l)8 
'301C 9Clf 

tl~lE FE: 
<J0fF C8 
~\020 7224 
tl022 B818 
(1€124 3AEF 
0026 4626 
0tt28 2340 
002A 54FS 
002C Bna6 
002~ FE: 

0031 BAfJ0 
0m? F0 
0054 85 
00",5 B238 
0037 95 
0038 54E0 
0lGA A9 
0~GB FB 
ease ti23F 
0a3E 95 
003F F9 
0040 1478 
0042 FB 
0043 7240 
0045 2306 
004? vA 
0048 11l 
0049 9633 
004B 0452 
004D 27 

SEQ SOURCE STATEMENT . 

(9 
80 
81 

ORG 

82 nm· OliT 
8i IN 
84 
35 
86 
8l PARR 
88 
89 
9fJ 

91 CLI~1 

.IB5 
MOV 
JMP 
ANL 
EN 
EN 

CLR 
92 ~10\.l 

93 CLEF:F- MOV 
~~4 AGA IN . MOV 

000H 

DBB, A ; SET OBF 
R, P2. CHECK SERIRL STRflP 
PARA 
R3.. #83f!; SET SERIAL tilT IN CM[) 
CLPl 
P2, tl0BFH 

D~1il 
g #(fsH 
A ; CL~AR DMA BUS\, FLAG 
5TS, A. 
R4 .. #4HH ; INITIALIZE I:IUFFEP 
PH. #iSH .lNlTIr:LfZE l'OlNTER 

95 CLI( A '~:[SET S mel:: HI SAVE TABS 
96 r10V P5W. il ; 'oTAG" = (1. tlLL FLAGS = 13 
97 DECO CPoLL I NPi.:T 
9:~ CALL ~'6R ; f<ECOC'E DiiiA 
99 

100 
101 

He F'PINT MO'II 
11)4 DEC 
1135 .lEC 
106 t'10'/ 
107' ON .. ANL 
108 NHOflE· .TNT! 
11)9 
110 
111 /rER 
112 
it? 
114 
11~ CHAR: 
116 
117 
118 

MOV 
cru 
MOil 
t1011 
..fBi 
1'10\1 
MOil 
CU: 
.lB5 
CPL 

119 PAGE CALL 
1213 MOV 
121 Mall 
122 JB5 
123 CPL 
124 NOTS: MOil 
125 CALL 
126 MaY 
12l JB3 
128 MOil 
12~) XRL 
B0 INC 
til .JNZ 
1]2 JMP 
133 RJP: CLR 

A, p: 
f.'tl. LOCA'iE LAST CHRACTER INPUT IF R. J. 
ON; CHECK FOR R I(;HT .JUSl. 
Re .. #i8H; PP WT Fr.:OM HIE ORIGIN 
P2 .. #0[rH ; TURN DRIVE M01IJR ON 
NHOME ; WAIT FOR HOt'lE S~HTCH 
Ft, #413H , STALL 
WAIT 
R2. 1I@6H, I.'J .. I))L INDEi': 
A .. R:s· CflECK FOR R'} 
tHA'" ; R J TRUE 
R2 .• #00H. INDEX FOR NORM. PRIN', IN!] 
R .. @R0. FETCH CHARACTER 
F0; hi DETERMINES I>IIIICfl CHARHCTER TABLE 
PAGE 
F0 
i':S2, FETCH COL FROM' fRE 
Ri. A 
fI, R3, CHECK FOR D. 1>1. 

NOTS 
~ll; FB INDICATES D. W MOOE 
A.. R1 
FIRE; PRIN·, COL 
A, R3 .; CHECK R.J 
RJP 
A .• 1I136H 
A, R2 
R2 
WAR; f'RINl NEXT COL 
L5TCOL 
A ; CflECK RJ. FII<E COLS. IN REVERSE ORDER 

2-95 AFN.()()875A 



APPLICAT.IONS 

ISIS-II I'ICS-481UPI-41 1'tACR0 ASSEl'lltER, Y2.:0 POOE 6 
LRC 7040 SERIES PRINTER CONTROllER ~CECOOE 

LOC OBJ SEQ ~CE STATEMENT 

004E DA 134 XRL A,R2 
004F CA 135 DEC R2 
0050 9633 136 JNZ CHAR 
0052 B656 137 LSTCOL: JF0 A4 
0054 1480 138 CALL COL8 
0056 237F 139 A4: I'IOY A,17FH ; CLEAR STB & DATA PINS 
0058 39 140 OUTL Pl,A 
0059 2319 141 MOV A,ll9H 
005B 54F8 142 CALL WAIT 
905D FB 143 !'lOY A,R3 
005E 7264 144 JB3 RJ2 
0060 FC 145 1'1011 A,R4 
0061 18 146 INC R9 ; INCR POINTER 
0062 0467 147 JMP CK 
0064 2317 148 RJ2: 1'10Y A,117H 
0066 C8 149 DEC R0 ; DECR POINTER 
0067 D8 150 CK XRL A,R0 
0068 962C 151 JNZ XFER .' I<EWRN FOR tlEXT CHAR. 
006A 566A 152 HOI1E: JT1 HOI'IE ; SENSE HOI'IE LOW? 
006C 2320 153 1'1011 A,I20H ; STALL 
006E 54FS 154 CALL WAIT 
13070 BA10 155 ORL P2, UIlH ; STOP DRIVE MOTOR 
9972 9412 156 JMP AGfHN ,NEXT LWE 

157 
0074 FB 158 DI'1AIN' I!OV A,R3 ,EXIT IF SERI AL I'IODE 
0075 F27A 159 ..JB? SERROR ; SER I AL CMD EI<ROR 
B077 D677 160 INBUF: JtHBF INBUF ; WAIT FOR DIIA PARAI'tS. 
0079 22 161 IN A,DBB 
007A 93 162 SERROR: RETR 

161 
164 
165 

007B B67F 166 FIRE: JF9 SGLE' 
007D 99 167 IN A,Pi ; t·. W. AN() PREIlIOUS COL. 
007E 59 168 ANL A,Rl 
007F 39 169 5GL.E: OUTL P1,A ; OUTPUT. TO SOL. 
0080 FB 179 COL8' I'IOY AJR3 ; A GETS ON TIME 
0081 43F8 171 ORL A,19F8H 
0983 A3 172 MOIIP it@A 
0084 530F 173 ANL' A, #0FH 
0986 8988 114 ORL Pl, 188H ; STROBE SOLENO I DS ' 
0088 54F13 175 CALL WAIT 
008A 997F 1('6 AlII.. pl,'7FH, D lSABlE SOL. STROBE 
008C FB F~ ,( i'IOV A,R3 ; A GET OFf TIME 
008D 43F8 178 ORL A, I8FSH 
008F A3 179 I'IOYP A"~A 
0090 47 180 SWAP A 
0091 530F 181 ANL A,I!lFH 
0993 2B 182 XCH A,R3 ;" 

0094 9299 18] JB4 C19 
0096 2B 184 XCH H,R3 
0097 949C 185 JMP CON 
0099 2B 186 C10 XCH A,R3 
009A 0396 lS;' A!)D A, .96H ; INCREASE BIAS FOR. lOCI I 
009C B6A3 lSS CON. JF0 SING ; SKIP· IF 5INGU 

:1~96 AFN-00875A 



APPLICATIONS 

ISIS-II I'ICS-48Ilf'I-41 I'IACRO ASSEI1BlER, Y2.~. " 
I.RC 71148. SERIES PRINTER COOROLLER SOI.Ja ewE 

PAGE 7 

LOC (EJ 

II89E 9314 
99A9 29 
9IIA1 39 
99fI2 29 
99A344FS 

99115 9ABF 
!l1IA7 9ft 
09AS F2A7 
99AA B999 
89AC BR99 
99AE !l9 
9IlAF 74E9 
0981 IlA 
99B2 F2A7 
0084 BEe3 
0986 EEB6 
998S EACE 
09BA 8A49 
OOBC BE06 
98BE EEBE 
09C9 74E9 
99(;2 74E0 
89C4 IlA 
09C5 "37 
00C6 F2A7 
90C8 F9 
8ec9 F7 
99CA 537F 
9IlCC All 
II8CD 93 

09CE 74E9 
IJIlI)9 74E9 
89D2 BE93 
0004 EEt>4 
89D6 90 
991)7 8fI 
99D85389 
99DA 49 
89DB 67 
eeDCA9 
9000 9488 

890F 9AFE 
09E1 B99fI 
89E3 2388 
99E5 54FS 

SEQ SIUCE sTAT-ElENT 

189 ROO A, 114H ; ROO 7 TO OFFTII'IE IF D. W. 
199 XCH A, R1 ; SAVE PREVIOUS COL. 
191 OUTL Pi,A ; SAVE PREVIOUS COL. 
192 XCH A,R! 
193 5100' JI'IP WAIT 
194 
195 

196 ; ********-************_*************************** 
197; SERIAL ROUTINE, ASSEItIlES TfE DESIRED DATA FROM l"HE 
198; SERIAL INPUT IN) PLACE THE DATA IN THE ACCUltJl..ATOR. 

199 ; *-************************************************** 
2118 
291 CTS: 
282 ONE 
293 
204 
295 
296 
287 
288 
289 
210 
211 LZ: 
212 CONT: 
213 
214 
215 10114: 
216 
217 
218 
219 
229 
221 
222 
223 
224 
225 
226 
227 

ANI. 
IN 
JB7 
roy 
/'IO't' 
IN 
CALL 
IN 
JB7 
t1O\I 
DJNZ 
().JNZ 
ORL 
MOV 
D.JNZ 
CALL 
CALL 
IN 
CPL 
JB7 
rov 
FLC 
ANL 
MOIl 
RETR 

228 LOAD: CALL 
229 CIl.:L 
n0 PlOY 
231 L1: D.JNZ 
232 10' 
233 IN . 
234 ANL 
235 ORL 
236 RRC 
237 PlOY 
238 Jr:p 
239 
249 PF: ANI. 
241 PlOY 
242 P3C I10Y 
243 CfLL 

P2, .9BFH , ; REQUEST ICTS 
A, P2 ; LOOP UNTIL SIART BIT FOI.R{) 
ONE 
RL 19 ; RESET TEI'IP REG 
R2,'09H ; SET INDEX 

,BIAS 
; WAIT 1/2 CYCLE 
• CHECK FOR START BIT 
.; WROI¥.l 'START BIl 

Rb,193H 
R6~LZ 
R2. LOAD; LOfiI THE EIGHT BITS 
P2, .41lH ; DISABLE ICTS 
R6.106H ;BIAS 
Rb,1I14 ; WAIT 
H&IT 
HBIT 
A,P2 
A 
ONE 
A.R1 

; CHECK STOP BIT 
.;lI/RONG STOP BIT 

A 
A.I7FH 
R2,A 

HB IT ; DELAY 1 CYCLE 
HBIT 
R6.193H 
R6.l1 

A .• P2 ; INPUT SERIAL BIT 
A, 189H ; MASK BIT 
A. R1; AOO PREVIOUS BITS 
A 
R1. A 
CONT ; FINISH JOB 

P2. I0FEH 
RLI0AH 
A,1988H 
!flIT 

; PF I'IOTORON 

AFN-ClO875A 



APPLICATIONS 

ISIS-II 1tCS-481lfI-41 I'R:RO ASSEI1BlER, V2.0 MlE 8 
lRC 7940 SER IEs PRINTER C(flTROLLER 5ttIRCE CODE 

LOC O8J SEQ ~CE sTATEIlENT 

89E7 E9E3 244 DJNZ Ri,P3C 
99E9 F8 245 ITS: I'IOV A,RQ ; DELAY C(flTftfT =8UFF POINTER (1811 TO 49t\) 

OOEA 26EA 246 IT1: JNT8 IT1 
99EC 54F8 247 CALL WAIT ; DELAY =11't5 TO 2. 5IIS 
01*.£ 36E9 248 JTO ITO 
OOF0 23F3 249 J1OIr' fl, 19F3H ; STALL 
OOF2 54FS 258 CALL WAlT 
OOF4 BAlll 2'51 ORL. P2, 191H ; PF I'IOTOR OFF 
09F6 93 252 P3F' RETR 

2'53 
OOF8 254 ORG 8FSH ; SOL ON TIlE. CONSTANTS 
88F8 D4 255 DB 9D4H ; 2900S ON TIlE 
OOF9 C5 2'56 DB 8C5H ;248 
OOFA B6 2'57 DB 9B6H ;288 
00FE A7 258 DB 8A7H ;320 ; DEFfUT 
eeFC 98 2'59 DB 98H ;360 
eeFD 89 260 DB 89H ;488 
00FE 7A 261 DB 7AH ,448 
00FF 68 262 DB 6BH ·488 

263 
264 

265 ,***********************************_***'I!**************** 
266; PAGE 1 INPUTS, DECODES, AI{) EXECUTES W1I'IfIN)S AND DflTR 

267 : ****************"'****************************************** 
268 

0tt)0 269 ORG 100I-I 
8109 88 270 HOP 
8101 85 271 DB (Sot ANI) 0FFH) ; AODRESS FOR SET OUTPUT 1 
0182 92 272 DB (S02 AND IlFFH) ;502 
819::> BS 273 DB (Rot AND 0FFH) :ROl 
9194 B8 274 DB (R02 FVI() 9FFH) ;R02 
0185 BE 275 DB (RESET AND 0FFH) ; RESET 
0196 A8 276 [)B (B32 FIND 0FFH) ;832 
9197 E4 277 DB (B40 ANI) 9FFH) ;B40 
9108 EA 278 DB (lIUCf AN{) 0FFH) ,[)f.I)E 
0109 C9 279 DB (SDMA AN{) IIFFH) .: SDI'IA 
IlU1A All 280 DB (SSOL AN{) 9FFH) ; SSOL 
0198 sa 281 roe (SLF At-.'O 9FFH) ;SLF 
010C 81 282 DB (MLF AND 9FFH) ;/!IF 
0100 84 283 DB (TOF AM) 9FFH) i TOF 
018E DE 284 DB (CR AND 9FFH) iCR 
019F 72 28S r!ll (T1 AND 9FFH) ;T! 
8119 72 286 DB <T2 AM) 9FFH) , T2 
0111 72 287 DB m AtI) 0FFH) in 
9112 F9 288 DB (RJ AI{) 9FFH) ,RJ 
8113 All 289 DB (SSOL AlID 9FFH) i SSOL 

290 
291 
292 

9114 FB 293 INPUT: MOV A, R3 
0115 F226 294 .IB? 'r'1'IE 
9117 37 295 CPL A 
0118 D21C 296 JB6 I«JDECR 
911A 8A48 297 ORL P2, I49t\ i SET DRQ FOR DI'fI 
911e D61C 298 NODEGR: JNIBF I«JDECR i SHARED BV PARALLEL & DMA 

All mnemonics copyrighted @ Intel Corporation 1976. 
2·98 AFN.()(J875A 



KrrL.U.,KIIUnllo:J 

1Sl!>-1l I1CS- 48/lfl-41 IflCRO ASSEMBlER.. \/2 0 PAGE 9 
LRC 7048 5ER I ES PR INTI:f< CONTROLLER SOURCE CODE 

LOC OBJ SEQ SOURCE STATEMarr 

8m 22 299 IN A, DBB 
811F 537F 300 AtlL A, tl7FH 
11121 Aft 301 MOil R2,A 
!!122 3462 302 CALL DEeR i DtC DMA COUNT FOR DMfl & PARALLEL 
0124 FA 303 MOV ft,R2 i DRTA S"IORED IN A & R2 
0125 93 304 RETR i kEl & RESTORE FLHGS 
1.!126 04f15 305 \'ME: JMP C1:: .; SERIAL LISE SlRIAL INI'UI ROUTiNE 

306 
0128 NED 307 P6A: CALL Sf'CR .; CHECK FOR SPECIAL CASE CR 
012A D24E 308 JB6 CHECK5 
012C B250 309 JB5 DflTA .; CHECK FOR VAL W CHAR. 
012E D309 31B XRL A, tl09H .;"IAE: 7 

0130 9656 311 nlZ CI'ID ; COMMAND 
0132 8915 312 TRB: MOV R1· 815H; [:1 GETS TIlBU) 
!!134 BA03 m MOI,I P2.·lI03H 
0136 ~1 314 P6BB: MOil A,@R1 i CHECK TRB 
0137 F24D 315 JB7 TERROl~' ; LI M IT mB TO [:~lfi)( 

8139 D24D 316 JB6 T[RROR 
913B 37 317 CPL A 
!!13C 17 318 INC A 
0130 68 3B Af'D Ii .. f,:O 
IlEE Fl 328 MO\l A .. @Rl ; A GET TAB LOe. 
013F E645 321 me P6AA ; ~ IND WHICH TAB 
0141 19 :522 HlC ~:1 

8142 EA36 323 DJNZ 1<:2 .. PCBS 
8144 Fe 324 SPRL' 1'10'1 A,R4 .; E;,CEEV ALL TAB, FILL IN [;LflNKS 
8145 Aft :S25 f'6Af1: MO'I R2, A 
0146 8028 126 RTflB MO\I r~R0, #20H 
11148 18 327 INC REI 
8149 ~A 328 MOil Ii .. R2 
014A DB 329 XRL tl.RO ; FILL ltl l;LANKS 
e14B 9646 33!J JIlZ ~:TA3 

014D 93 :m TERR@. RETR 
152 

!!14E B255 ::m CHECKS: SB5 SEHD 
9159 FA 334 DATA' MOl! A,R2 
0151 AS 135 MOil @Re .. A 
0152 18 336 INC R0 
0153 54ED 'P"' -"" CALL PEON i SET SPECIAL FLftG FOR LAST DATA CHARACTER 
0155 93 338 SEND: I<ETR 

:.m 
0156 B914 340 CMD: MO\I 1<1,114H i Rl EQ INDEX 
8158 FA 341 P7C: MO\l A,R2 ; A GETS CI'II) 
0159 17 342 INC A 
81SA D9 343 XRL A .. Rl 
01SS C660 344 ']Z FOUND ;MA1CH .,) 

015D E958 345 DJNZ Rl, P7C 
1l15F 93 346 RETR 

347 
1.1160 F9 348 rOIJND: MO\I H,R1 
8161 B3 349 JMPP @A ; JIJMP INDIRE.CT TO CMD ROUTINE 

350 
8162 FE 351 DECR: MOil A,R6 
8163 9679 352 JNZ LARS ; DEC R6, R7 AS REG. PAIR, RET ON 0 
8165 4F 353 ORL A,R7 

2·99 AFN.()()875A 



APPLICATIONS 

ISIS-II 1'IC5-48/UPI-41 MACRO A5SEI'IBLER, 112. ~ PAGE 10 
,,...,- ... c' 0 , ...... ~=R _ ".\::.:= 

LOC OBJ 

8166 966F 
0168 2B 
8169 53BF 
816B 2B 
016C 98 
01611 3A20 
016F CF 
B17B CE 
B171 93 

13172 17 
13173 5303 
€I175 8315 
8177 62 
13178 3414 
e17A 0318 
a1ie A9 
81i'D 42 
91lE 29 
am A1 
e189 93 

8181 85 
8182 248A 

9184 97 
9185 A7 
8186 248A 

e1Ba 85 
9189 95 
91aA F69C 
@18C 8693 
018E 3414 
9190 AA 
0191 C69B 
9193 14DF 
8195 F69C 
0197 B69B 
9199 EA9~ 
919B 93 
019C 0A 
il19D 3293 
019F 93 

81M ~414 
01A2 2B 

SEQ 

~54 

355 
356 
157 
358 
359 
360 NR5T· 
361 LAPS: 
]62 
36Z 
364 

SOURCE STnTEI'IENT 

JNZ NRST 
XCH A, ~~1 
RNL R, *0BFH 
XCH A.R} 
MOV 5TS, A 
ORL P2, 1I2OH ; ENHBl' !rJTF.~'UPT p rt~ 

DEC R7 
rH R6 
RETR 

]65 ,***"'*************************** 
366, CO/1I'IAN(l LOOK LIP TABLE. 

~67 .i H*****~*************"'********* 
368 
369 
]70 Ti· . A = AOOP OF eM[) JIJMP IN Ct1() 1 ABLE 
:m T2 ,A=F·l0RIl 
372 T3' INC A , A=0 .. 1, OR 2H 
373 ANI.. A,1I03fl ,MASK SIGNIFICANT BI15 
374 ADD A.U'5H : ACC'LIM " 15.16. OR 17H - (RAI't LOCATIONS FOR TABS) 
375 STAB: MOil T.A ,TEHP STORAGE FOR TAB 
376 CALL INPUT 
377 AOD R·I1SH 
378 MOl! PLA 
379 MOl! A, T 
:lse XCH A,Rl 
381 tiD.,. @Rl,A 
3B2 PETP 
383 
384 MLF: CLR Fe , ru TIPLE LINE FEE{'! 
335 JMP LF 
386 
387TCf: CLR C , TOP OF FORM 
:i88 CPL ( 

389 Jt1P LF , LFU1F 
398 
391 SLF: CLR Fa ,SINGLE LINE FEEl) 
:m CPL Fa 
393 LF. .Ie P12B ; LFUTOF 
394 JFe Pl2R , 5INI'.llE LF 
395 CALL INPUT 
396 HOV R2,A 
397 JZ P12C 
398 P12A: CALL PF 
399 Je P12B 
400 JFa P12C 
491 DJNZ R2, P12A ; DEeR • Cf LINES 
492 P12C: RETF 
403 P12B: IN A,P2 
404 JB1 Pl2R 
405 RETR 
496 
497 SSOl: CALL INPUT ;FETCH SOL. ~ TII1E 
498 XCH A,R3 

2·100 
AFN~75A 



At"t"LI\';AIIUN~ 

ISIS-II I'IC5-481UPI -41 HRO ASSEMBlER, V2. 8 
LRC 7848 SERIES PRINTER CONTROLLER SOURCE COllE 

p~ 11 

LOC OBJ 

81A] 53F8 
81AS 68 
81A6 28 
81A7 93 

81A8 FB 
81A9 4318 
81AB 53DF 
81ft() III 
81AE Be39 
8180 9412 

91B2 8A84 
8184 93 

8185 8A08 
91B7 93 

91BS 9AFB 
81BA 93 

9188 9AF7 
8181) 93 

!llBE 89FF 
81CIl 23BF 
91C2 JA 
8m FB 
81C4 5387 
81C6 AS 
81C7 Il48E 
81C9 1474 
fl1CB AE 
81CC 1474 
81CE 9fII)f' 

81D8 AF 
91Dl 4E 
81D2 C662 
81D4 3462 
8106 2B 
81D7 4349 
8109 28 
81DA 2319 
81DC 911 
8100 93 

81DE 42 
81DF D39D 
81E1 9644 
81E3 93 

81E4 FB 
81E553CF 
81E7 AB 

SEQ SOIJRCE STRTEMENT 

489 fN.. 
41!l ROO 
411 XCH 
412 RETR 
413 
414 B]2: r10V 
415 ORL 
416 fH. 
417 1'101/ 
418 1'1011 
419 JMP 
420 
421 502: OR!. 
422 RETR 
423 
424 501: ORL 
425 RETR 
426 
427 R02: fH. 
428 RETR 
429 
439 R01' ANI.. 
m RETR 
432 
433 RESET: OR!. 
434 mJ\I 
435 OUTl 
436 I'IOV 
437 ANI.. 
438 1IO't' 
439 Jff' 
449 SDI'IA: CAlL 
441 I'IOY 
442 CAlL 
443 ANI. 
444 I'IO't' 
445 ORL 
446 JZ 
447 CALL 
448 XCH 
449 ORL 
459 XCH 
451 I'IO't' 
452 IIOV 
453 RETR 
454 
455 CR: I'lO\l 
456 XRL 
457 JHi 
458 RETR 
459 
460 
461 B49: IIOV 
462 AN.. 
463 II(}\.; 

A.·I9FSH ; CLEAR PREY. SOL. TIME 
IU3 
A,R3 

A, R3 ; 32 CIflRACTER BIFFER 
A,11911 
A, lI8DFH 
R3,A 
R4,139H ; 33 CHAR. ILINE 
AGAIN 

P2 .. 184H ; SET G02 

P2, 198H ; SET 001 

P2..I9FBH .; RESET 002 

; RESET GOl 

Pl .. I8FFH ; RESET PORT 1 
A,I0BFH 
P2, A ; RESET PORT 2 
A, R3 ; RESET CI1I) EXCEPT FOR SERIAL & SOL 
A,I87H 
Rl·R 
CLR1 ; CLEfR ST5 & RESET STRCt< 
DtlAirl 
R6, A; LOAD Dr1A COUNTERS 
DIIfIIN 
P2.. iOOFH ; CLEAR INT PIN 
R7, A 
A,R6 
DECR 
DECR 
A,R3 
A, I49H ; SET DI'IA FLAG 
A,JG 
A, 11911; SET FLAG FOR TELL I*)5T Dt1A Oil 
STS, A 

A, T ; CHECK BIflX+1 FLAG 
A,IIlDH ;.IF BUFF PRINTED ftUTO, NO CR. 
5PRL . 

fI, R3 ; 49 ClflRACTER BUFFER 

2·101 AFN-00875A 



APPLICATIONS 

ISIS-II IICS-48/UPI -41 I1ACRO ASSEm..ER, V2. 9 
LRC 7849 SERIES PRINTER CONTROlLER SOURCE CODE 

MlE 12 

LOC OSJ 

91E8 9418 

91EA 2329 
91EC 4B 
91ED fIB 
81EE 8818 
91F9 FC 
91F1 ()2F6 
91F:! BC2A 
01F5 93 
91F6 BC2C 
91F8 93 

91F9 FB 
91FA 4308 
91FC fIB 
91FD93 

93E9 

93E9 22 
03~1 43F8 
93E3 A3 
93E4 AE 
03E5 BF93 
93E? EFE7 
93E9 EEE5 
93EB 0A 
93EC 93 

93ED LliOO 
93EF 96F5 
93F1 34DE 
93F3 BFfFF 
93F5 FA 
93F6 62 
!BF793 

93F8 

93F8 B2 
93F9 84 
93FA 49 
93FB 1F 
93FC BE 
93FD 96 
93fE 92 

SEQ SOlEE STATEI'IENT 

464 JI1P 
465 
466 
467 
468 OWI)E' I10Y 
469 ORL 
479 !'lOY 
471 MOY 
472 I'IOY 
473186 
474 1'1011 
475 RETIi' 
476 X9. MOIl 
477 Ii'ElIi' 
478 

CLEAR 

A, 12911 .: DOOBlE WIDE PRINT mlDE 
A, R3 .' SET OW BIT 
R3,A 
Re, '1SH; CLEAR BlfFER POINTER 
A,R4 
X9 
R4, .2AH .: 32 CHAR. BlfFER 

R4,'2CH .: 49 C~ BlfFER 

479 Ii'J: 
489 

I10Y A, R3 .' SET RJ BIT IN Cit) 
ORL A.I9SH 

481 I'IOV Ri.· A 
482 RETR 
483 
484 
485 

486 ; ***************************************************** 
487.: HBIT SliBR. AN) TIE DATA CONSTANTS ARE IN PAGE 3 

488 .: *****************************"'*"'****"'**************** 489 
490 
491 
492 HalT' IN 
493 ORl 
494 I!OYP 
495 1'1011 
496 LOOP!' MOV 
497 LOOf'2' DlIIZ 
498 DJNZ 
499 IN 
~.oo RETR 
591 
592 SPCP XRl 
503 JNZ 
504 CfU 
595 1'1011 
506 XCR. HOY 
507 I'IOV 
508 RETP 
509 
5Hl 
511 
512 
513 
514 
515 
516 
517 
518 

ORO 

DB 
DB 
DB 
DB 
DB 
DB 
DB 

A, DBB ; CHECK 1)88 FOR Bt.flD RATE 
A, .9F8H 
A .. (iA 
R6.A 
1i'7,193H ; 25lIS PER LOOP PAIR 
R7, LOOP2 
R6, LOOP1 
R,P2 

A, 19DH ; CHECK CR FLAG, EXIT IF TRUE 
XCR 
CR 
R2, I9FFH .: 00 NOT EXfClm' fP TIW::: 
A,R2 
T,A 

3FSH 

9B2H .: 119 BAIJD 
084H ,159 
49H .:189 
1FH ; 600 
9EH ; 1299 
96H ; 2499 
92H ; 4899 

2-102 AFN-00875A 



APPLlC'ATtONS 

ISIS-II I'ICS-4S/UPI-41 I1ACRO ASSEI1BLER, V2. e. 
LRC 7848 SERIES PRINTER' CONTROLLER SOliRCE CODE. 

Pf¥.iE ·11 

LOC OBJ 

93FF 92 

92E9 
02E0 S31F 
92E2 A9 
92£3 E7 
92E4 E7 
92ES 69 
92E6 69 
92E7 69 
02E8 6A 
92E9 B6FS 
92EB E3 
92EC 83 
02ED FC 
92EE D8 
92EF 96F4 
92Ft 2300 
92F3 62 . 
92F4 93 

92F5 A3 
92F6 85 
02F7 83 
92F8 BD06 
92FA EDFA 
92FC 07 
92FD96F8 
02FF 93 

0200 

9208 41 
9201 3F 
0292 62 
9283 3F 
9204 62 
9285 3F 
9286 43 

0287 79 
9298 6F 

SEll 

'519 
520 

50lIRCE STATEMENT 

02H ;4800 

'521 ; ** ***********************************"'******************** 
522; OTHEF! THAN CHAR TABlE, WAIT ANI) lI52 ROIJTINES EXISTIN PAGE2 

523 ; **********"'******************************************.***** 
524 
525 
526 XS~' 
527 
528 
529 
53!! 
531 
532 
533 
534 
535 
536 
537 PEON 
538 
539 
540 
541 
542 FSPFI:.· 
543 
544 
545 PAGE3: 
546 
547 
548 WAIT: 
549 COO: 
550 
551 
552 
553 
554 
555 

ORG 
At!. 
MOil 
RL 
RL 
ADD 
ADD 
ADD 
Ar'D 
.IF!! 
MOVP] 
RET 
I'IOV 
XRL 
.INZ 
MOil 
,MOil 
RETR 

I1O\IP 
ClR 
RET 
MOil 
DJNZ 
DEC 
JNZ 
RETR 

~!!H 

. Jl·UFH ;.FIND.& OOJI.I5T .I:,HARACTER IND~X 
rl1,A ;l1l1LTlPL't' INDEX BV ? 
A 
A 
A,Rl 
fI,Rl 
R,R1 
A,R2 . ADD COUJI1N ItIDEX TO CHARACTER INDEX 
PAf'£3 
A .• @A 

A, R4 ; SET SPEC! AL CR FL AG I F LAS 1 CHAR IS DATA 
A,R!! 
F5PA 
A .• lIooH 
T.A 

A,@A 
F0 

R5, i06H 
R5, COO. 40lIS PER COliNT OF ACC 
A, 
WAIT 

556 ; ************************************.*******. 
55?; CHARACTER TABLE IN PAGE <: 
5SS; l'ISB IS IGNORED. DATfl INVEFTED 
559; SEE E),'AMPLE (A) 

560. ,. *~"'***************************************** 
561 
562 ORG 290H 
563 
'564 DB 41H ;~ 

565 DB 3FH 
566 DB 62H 
567 DB 3FH 
568 DB 62H 
569 PH 3FH 
579 DB. 43H 
571 
572 DB 7011 ;A ---**** 
573 DB 6FH ---*----

2-103 AFN-00875A 



APPLICATIONS 

ISIS-II MCS-48/UPI-41 I1ACRO ASSEI'6..ER, Y2. II PAGE 14 1515-1 I MCS-48/IJPI -41I'1ACRO ASSEMBLER, ~'2. 0 PACiE 15 
LI<:C 7040 SERIES PRINTER CONTROLLER SOIEE CODE LRC 7040 SER I ES PR INTER CONTROLl ER SOURCE CODE 

LOG ooJ SEQ SOIJRCE STATEt1ENT LOC OBJ SEQ 50lJRCESTATEI'IENT 

8209 58 574 DB 5BH --*---*- 6239 7F 629 llB 7FH ;H 
020A 3F 575 DB SFH -*------ 023A 77 6313 DB 77H 
8208 5B 576 DB 5BH --*---*- 023B IF 651 DB 7FH 
020C 6F 577 DB 6FH ---*--- 823C 77 632 DB 77H 
020D 70 578 DB i'0H ----**** 9230 7F m DB 7FH 

579 023E 99 634 r>fJ OOH 
020£ 3E 589 DB JEH ;B 635 
020F 41 581 DB 41H 02JF 7F 636 DB 7FH ;1 
9210 ~'E 582 DB 3EH 9240 3E 637 DB 3EH 
9211 77 583 DB 77H 0241 7F 638 DB 7FH 
8212 3E 584 rIB 3EH 0242 00 639 DB OOH 
0211 7? 535 DB 77H 8243 ?F 649 DB lFH 
0214 49 5S6 DB 49H 0244 3E 641 DB 3EH 

587 8245 IF 642 DB lFH 
0215 41 58e DB 41H ;e 643 
!.l216 3E 589 DB 3EH 9246 (1) 644 DB 7DH , J 
0217 7F 59!.l DB lFH 9247 7E 645 DB 7EH 
0218 :SE 591 DB 3EH 8248 IF 646 DB lFH 
0219 7F 592 DB 7FH 9249 7E 647 DB IEH 
021A 3E 593 DB ]EH 924A IF 648 DE lFH 
8218 51) 594 DB 5DH 8248 IE 649 r'B IEH 

595 924C 81 650 DB 01H 
021C :.lE 596 DB ]EH .;1) 651 
021D 41 59;' DB 41H 824D 00 6'52 DB OOH ,K 
821E :SE 59(l DB ~'EH 924E 7F 653 DB 7FH 
021F 7F 599 DB lFH 924F 6F 654 DB 6FH 
0229 3E 6tl0 DB 3EH 8250 77 655 DB nH 
0221 7F 601 DE: 7FH 8251 58 656 DB SBH 
0222 41 602 [)B 41H 8252 70 657 DB 7DH 

601 8253 3E 658 DB 3EH 
0223 fltl 604 DB OOH ;E 659 
0224 7F 695 DB 7FH 8254 00 660 DB 09H 
922'5 36 606 DB 36H 8255 7F 661 DB lFH 
JU~26 7F .607 DB 7FH 9.:"56 7E 662 DB IEH ;L 
0227 ~6 60S DB 36H 8257 ?F 663 !lB 7FH 
0228 IF 609 DB 7FH 02'58 IE 664 DB 7EH 
€t22:~ 3E 619 rlE! 3EH 9259 7F 665 DB 7FH 

611 92SA IE 666 DB 7EH 
il22A 00 .612 DB OOH ,F 667 
0228 7F 61:> DB 7FH 9258 49 668 DB 49H .• M 
922(: 37 614 DB 37H 825C 3F 669 DB 3FH 
822D 7F 615 DB 7FH 82SO SF 678 DB SFH 
e22E 3;' 616 DB 37H 825E 67 671 rIB 67H 
1122F 7F 617 DB 7FH 02SF SF 672 I)B 5tH 
0250 Sf 618 DEi 3FH 0260 SF 673 DB 3tH 

61:'i 8261 49 674 DB 49H 
8231 41 62!! DB 41H ;G 675 
0232 3E 621 DB 3EH 8262 20 676 DB 28H 
9233 7F 622 DB iffl 8263 SF 677 DB SFH iN" . 
0234 :<E 623 DB 3EH 8264 6F 678 DB 6FH 
0235 78 624 DB 700 8265 77 679 DB 77H 
8236 3E 625 DB 3EH 8266 78 680 DB 7BH 
8237 59 626 DB 59H 8267 7D 681 DB 7DH 

627 8268 82 682 DB 82H 
8238 00 628 DB 80H 683 

2·104 AFN-00875A 



APPLICATIONS 

1515-II. 1'ICS-4f31UPI-41 I'IACRO AS5ERER.. 112. e PAGE 16 ISIS-II IICS-4811.PI-41 I'IflCRO ASSEl'IBLER. 112. e PAGE 17 
LRC 7848 SERIES PRINTER CONTROLLER SOURCE CODE LRC 7t!40 ~RIES PRINTER CONTROLLER SOURCE CODE 

LOC OBJ SEQ SOURCE· STATEMENl LOC 08J SEQ ~ STATEI'ENT 

8269 41 684 DB 41H ;1) 739 
826A 3E 685 DB 3EH 829A 07 748 DB 07H ,1/ 
8268 7F 686 DB 7FH 829B 7B 741 DB 7BH 
826C 3E 687 DB 3EH 829C 7D ;'42 DB 7DH 
11261) 7F 688 DB 7FH 829D 7E 743 DB i'EH 
826E 3E 689 DB 3EH 829E 7D 744 DB 7DH 
826F 41 698 pB 41H 829F 7B 745 DB i'~ 

691 0200 ll7 746 DB 07H 
8278 ee 692 DB 80H 747 
8271 7F 693 DB 7FH ;P 02Al 81 748 DB 01H 
8272 37 694 D'S 37H 02A2 7E 749 DB 7EH 
0273 7F 695 DB 7FH 02A3 (1) 750 DB 7DH 
8274 37 696 £lEi 37H 92A4 73 751 DB 73H 
8275 7F 697 DB 7FH 02A5 I'D (52 r..a 7DH 
8276 4F 698 lIB 4FH 82A6 7E 753 DB 7EH ;101 

699 82A7 91 754 DB !J1H 
8277 41 700 DB 41H ;Q 7')5 
8278 3E 791 DB 3EH 02AS 3E 756 DB 3EH 'X 
8279 7F 782 DB 7FH 92A9 50 757 DB SDH 
827A 3F 703 DB 3FH 82M 6B i'58 DB 6BH 
8278 7A 784 DB 7AH 92AB 'i? 759 DB 77H 
927C 3D 705 DB 3DH 02AC 6B 760 DB 6BH 
827D 42 700 DB 42H 02AO 51) 761 DB ~H 

(07 82AE 3E 762 DB 3EH 
827E 00 798 DB IlBH ;R. 763 
827F 7F 709 DB 7FH 82AF JF 764 DB 3FH ·v 
0289 37 710 DB ~?~ 8280 SF 765 DB SFH 
8281 7F 711 DB 7FH 0261 6F 766 DB 6FH 
8282 :n 712 DB 33H 92B2 78 ~67 r,B 70H 
8283 7D 713 DB 7DH 0283 6F 768 DB 6FH 
8284 4E 714 DB 4EH 9284 SF 769 DB SFH 

715 9285 3F 770 DB 3FH 
8285 4D 716 DB 4DH .. £0 771 
8286 J6 717 DB 36H 02B6 3E 772 DB 3EH 
8287 7F 718 DB i'FH 82B7 70 m DB 7DH ,2 
82883l! 719 DB 36H 02B8 3A 774 foB 3AH 
02~9 7F 720 DB 7FH 82B9 77 775 DS 77H 
Il28A 36 721 DB 36H 02BA 2E 776 DB 2EH 
8288 59 722 DB 5911 1l2BB SF 777 DB SFH 

723 82BC 3£ 779 I)B 3EH 
828C 3F 724 DB 3FH 779 
11281) 7F 725 DB 7FH 9281) 80 .30 DB OOH ;[ 

928E 3F 726 DB SFH 02BE 7f ;'81 DB 7FH 
Il28F 49 727 DB 40H iT 92BF 3E 732 DB 3EH 
Il299 3F 728 DB 3FH 92C9 7F 7$3 DB 7FH 
8291 7F 729 DB 7fH 92C1 3E 784 DB 3EH 
9292 SF 730 DB 3FH 92C2 7F 785 DB 7FH 

731 1l2C3 7f 786 DB ;>FH 
8293 !!1 732 DB 91H .,U ?S7 
8294 7E 733 DB 7EH 02C4 3F 783 00 3FH ;\ 

8295 7F 734 DB 7FH 82C5 SF 789 DB 5FH 
8296 7E 735 DB 7EH 1k"C6 6F 798 DB 6FH 
8297 7F 7J6 DB 7FH 92C7 77 791 DB 77H 
029S'i'E 737 DB 7EH 02C8 7B 792 DB 7BH 
8299 91 738 DB 01H 92C9 7D m 00 7DH 

2·105 AFN-00875A 



APPLICATIONS 

ISIS-II MCs-4S1UPI-41 I'IACRO ASSEMDLER, V2. 8 PAGE 18 ISIS-II MCS ·48/UPI -41 MACRO ASSEMBLER, 112. 8 PAGE 19 
LRG 7040 SERIES PRINTER CONTROLLER SOURCE COOE LRC 7040 SERIES PRINTER CONTROLLER SOURCE CODE 

LOC OBJ SEQ. SOURCE STATEMENT LOG OBJ SEQ SOURCE STATEI'ENT 

82CA 7E 794 DB 7EH 0311 IF 849 DB 7FH 
195 8312 9F 859 DC IlFH 

82CB 7F 796 DB 7FH ; 1 0:m IF 851 DB 7FH 
82CC 7F 797 DB 7FII 0]14 IF 852 DB 7FH 
82CD 3E 798 D3 3EH 853 
82CE 7F 799 DB 7FH 0315 68 854 DB 6BH dl 
82CF 3£ 800 DE: 3EIl 0316 7F 855 DB 7FH 
82D0 7F 801 D[J 7FH 0317 90 856 DB 00H 
02Dl 1.11.1 802 DB 09H 0318 7F 857 DB 7F1l 

803 9319 00 8SS DB 99H 
82D2 77 804 DB 77H 031A ?F 359 DB lFH 
0203 6F 805 DC 6FH 03113 68 860 DB 6BH 
0204 SF 806 DB ~H 861 
92D5 20 807 00 29H 031C 4D 862 DE 4DH ;$ 

82D6 SF 808 DB SFH lmD 36 863 DB 36H 
92D7 6F 809 DB 6FH 0311::: IF 864 DB lFH 
82D8 77 810 DB 77H f.l31F 90 865 DB 99H 

811 !l320 7F 866 DB 7FH 
92D9 7E 812 DB 7Ef: ;- 0321 36 86"1 Dil :S6H 
02DA iF 8B DB 7FH 0322 59 868 00 59H 
82DB 7E 814 DB i'EH 869 
02DC IF 815 [lB 7FH 9323 8E 870 DB 9EH ,i;, 
020D 7[ 816 DB ?EH 0324 70 871 DB 7DH 
02DE 7F 817 DB 7Ff! 0325 98 872 DB 9BH 
92DF 7E 818 C-B 7[H 9326 77 87s DB 77H 

819 0327 68 874 DB 6SH 
820 0328 SF 875 DB SFH 
321 0329 38 876 DB 38H 

822 ; ************************************* 877 
823 ; CHAR. TABLE ON PAGE} 932A 49 878 DB 49H ;& 
824; MSB IS IGNORED, DATA WI/ERTED 1mB 36 879 DB 36H 
825 ; SEE EXAMPLE (A) IN PAm:: 2 OF ROM 932C 7F 880 DB 7FH 

826 ; **~*********~*******************~'*1'*'. 032D 37 881 00 37H 
827 832E SA 882 DB SAH 

fBoo 828 ORG 300H 032F 7D 883 D[J 7DH 
829 8:53972 884 DB 72H 

0300 f'F 830 DB 7FH ; BLANK a8S 
0301 7F 831 Dr. lFIl 0331 7F 886 DB 7FI: ., , 
i33027F 832 DB 7Ft! 0332 7F 887 DB lFH 
93B3 i'F 8-" s~ \)r; lFH 9333 7F 888 DB i'FH 
9304 7F 834 DB 7Ff! BIN 0F 889 DB 0FH 
0305 7F 835 DS lFH 0335 7F 890 \)B 7FH 
0306 7F 836 DB /FH 8336 7F 891 DB 7FH 

837 8337 7F 892 DB inl 
0397 7F 838 DB 7FH i! 893 
9308 7F 839 DB lFH 9338 7F 894 DB 7FH 
0309 7r 840 DB 7FH 9:m 63 895 DB 63H ;( 

930A 02 841 DS 02H 033A 50 896 DB 5DH 
930B 7F 842 DB 7FI: mB 3[ 897 DB 3EH 
IHOC 7F 843 DB 7FH 833C 7F 898 DB 7FH 
9300 7F 844 DB If'H 0330 7F 899 DB 7FH 

845 mE IF ,90tl DB 7FH 
030E IF 846 DB 7FH 901 
030F 7F 847 DB 7FH 933F 7F 902 DB 7FH ; ) 

9319 0F 848 DB 9FH 9349 7F 903 DB 7FH 

2-106 AFN-00875/\ 



APPLICATIONS 

ISIS-I I .MCS-4B/UPI -41 I'IAGRO ASSERBLER, V2. e PAGE 20 1515-II MCS-4B/UPl-41 MACRO ASSEI'IBlER, V2.0 PAGE 21 
LRC 7040 SERIES PldNTER CONTROLLE~ SOURCE CODE L~:C 7040 SERIES PRINTER CONTROLLER SOURCE CODE 

LOC OBJ SEQ SOURCE STATEMENT LOC OBJ SEll SOURCE STATEMENT 

B341 lr 904 DE: 7FH 0371 7F 959 DB 7FH 
B342 JE 905 DB 3EH 0372 3A 969 DB 3AH 
0343 5D 906 DB 5DfJ 0373 77 961 DB 77H 
0344 63 907 D8 63H fB74 2E 962 DB 2EH 
B345 7~ 908 DB 7FH 0375 7F 963 DB 7FH 

909 0:576 41 964 D8 41H 
B346 17 9113 DB 77H .; * 965 
0347 50 911 DB 5DH 0177 7F 966 DB 7FH ;1 
0348 bEl 912 DB 6Bf: 0378 5E 967 DB 5EH 
13349 14 913 DB 14H fB797F 968 DB 7FH 
B34A 6B 914 DB 6BH 037A 00 969 DB OOH 
IE4B 5D 915 DB SDH 1mB 7F 970 rJ8 7FH 
034C 77 916 DB 77H £G7C 7E 971 riB 7EH 

917 ~mD 7F 9'" -, " fJ8 7FH 
B34r! 77 91:3 DB 77H ;+ (P~ 

-I ~ 

034E 7F 919 [i8 7FH Rs7E 5C 974 riB 5CH ." u,. 
B34F 77 920 DB 77H 0~7F 38 9?5 DB 3BH 
0350 49 921 DB 49H 13:\30 7E 976 (lB 7EH 
~l351 77 g'")") - '-'- riB ?7H fG81 37 977 riB 37H 
B352 7F 923 DB ?FH €G82 7E 978 DB 7EH 
0353 77 924 DB 77H 03"83 ]7 979 DB 37H 

925 3334 4E 980 rJ8 4EH 
3354 7F 926 D8 7FII .... 981 
IES5 iF q .... .., 

_i!.( DB 7rH liG85 3D 982 D8 ~'DH .~ 

.' ~ 

0~56 7F 923 DB 7FH 1338~ 7~ 981 DB 7EH 
@357 7E 929 DB 7EH 03B7 'F 984 DB 2FH 
13358 79 9]0 DB 79H 13388 ,( 985 DB iEH 
0359 7F 9]1 D8 7FH 0389 2F 986 DB 2FH 
1B5A 7F 912 DI3 ;'FH BiSA 56 <l87 DB 56H 

9]3 e38B 39 9133 DB 39H 
335B IB 934 DB iBH 989 
K,5C iF 935 DB 7fH a3K 7B 990 r,B iBH ;4 

035D 713 916 r,8 iBH ~E8D 7? 991 DB 77H 
IE5E 7r 937 DB 7FH tUBE 6B 9'32 DB 6BH 
e35F i8 9:58 DI3 71311 038F 5F 99] r!8 5FH 
0360 iT 939 DE; iFH 0390 20 994 r,8 20H 
0361 78 940 r'8 7BH 0391 iF 995 DB 7FH 

941 IE9278 996 DC iBH 
8362 7F 942 D8 iFH 997 
B363 7F 943 DB 7FH 039] 00 993 [)B O(lH .;5 
B364 7F 944 1)8 iFH 0:594 7E 999 DB 7EH 
0365 iE 945 D8 iEH 0395 2F 1000 DB 2FH 
B366 iF 946 DB 7fH 0396 7E 10el DB 7EH 
1;)367 7F 947 DB 7FH 0397 3F 11302 liB 3FH 
0368 7F 948 DB 7Ff! 3398 6E 1003 r'B 6EH 

949 0399 31 1004 DB 31H 
B369 7E 95'3 r!B iEH .' l 1005 
036A 7r! 951 DB 7(lH es9A 79 1006 DB 79H ;6 
836B 78 952 DB 7BH 0398 "16 H.l07 DB 76H 
036C 77 953 DB 7lH 039( 6F 1008 DB 6FH 
036D 6F 954 DB 6~H 0390 56 11309 fiB 56H 
iB6E 5F 955 DB 5FH 019E iF 11310 C>B 3FH 
IB6F 3F 956 DB 3FH 039F 76 11311 DB 76H 

957 0300 79 1~312 DB 79H 

13370 41 958 DB 4HI ;0 1~13 

2-107 AFN-OOS75A 



APPLICATIONS 

ISIS-II t1CS-43!UPI-41 MACRO ASS[~IBLER, V2.0' PAGE 22 ISIS-II I'ICS-48/UPI-41 /'1flCRO ASSEMBLER, V2.9 fW..E 23 
LRC ?!l49 SErIES PRINTER CONTROLLER SOURCE CODE LRC 7e4!l SERIES PRINTER CONTROlLER SOURCE CODE 

LOC os; SEQ 50U~:CE S TATEt1ENT LOC OBJ SEQ SOURCE STATEMEtH 

93Al 3F H114 DB 3FH .-, .. , 1869 
03A2 IF lfl15 DB IFf! 93D2 7F 1979 DB 7FH .; :> 
e:SA3 38 1016 DB 18H 9303 7F 1071 DB 7FH 
03A4 i7 lBl? DB 77H 9304 3E iB72 DB 3EH 
03A5 2F 1'.318 DB 2FH 9305 50 1973 DB 5DH 
B3A6 5F 1019 DB 5FH 9306 6B 1074 DB 6BH 
03A? 3F 1020 DB 3FH 9307 77 Hl75 DB l7H 

1821 9308 7F 1976 DB 7Ft! 
03A8 49 1~122 DB 49H ... , 

" 'J 1077 . 
03A9 16 1025 C'B 36H 9309 7F 1978 DB 7FH ;? 
03AA 7F 1024 DB 7Ffl 93DA SF 1979 DB 5FH 
eiAB 36 1025 [iB 36H 93D8 3F 1080 DB 3FH 
eiAC 7F 102f. DB ifH 030C 7A 1981 DB 7AH 
03AD :;6 1027 [IS 3:6H 9:roo 37 1982 DB 37H 
~GAE 49 1928 DB 49H 93DE 4F 1083 DB 4FI: 

1029 03DF iF 1084 DB 7FH 
fEAF 4F 10?-0 DB 4FH .; 9 19B5 
0:mfl 37 1031 DB 37H 1086 END 
03Bl 7F 1032 DB /FH 
0]82 36 leIs DB lGH 
9]B3 iD 1034 [IB 7[M 
13384 38 1035 DB :mH 
B~B5 47 1036 DB 47H 

1037 
0]86 7F 101:8 DB 7Hl 
iEB? if 10~9 DB 7FH 
03B8 if HWl DB iFf! 
03139 GIl 1(141 DB 6BH 
0]BA 7F 1042 [iB 7FH 
13388 7F H14:; DB 7FII 
03BC 7F 1044 DB 7FH 

11345 
03ElD 7F 1046 ll[) 7FH .'.' 

03BE 7F H147 D8 ill: 
83BF 7E lB48 liB 71:H 
tGC9 69 11349 [18 69H 
03Cl 7F 1050 D8 7FH 
03C2 7F 1051 DB lFH 
03C3 7F 1052 DB ?FH 

1053 
03C4 7F 1954 [)B ?FH .i <: 
03G5 77 1055 D8 77H 
03C6 68 1056 DB 6GH 
03C7 51) 105;:' DB 5DH 
93C8 3E 1058 DB 3~H 

a3C9 7F 1059 DB 7FH 
03CA 71' H360 DB ?FH 

1061 
03CB 613 1062 DB 6BH ;= 
03CC 7F 1063 DB i'FH 
93CD 68 lfl64 DB 6BH 
B3CE 7F 1065 DB 7FH 
B3CF 6B 1966 DB 6BH 
9300 7F 1967 DB 7FH 
9301 6B 1068 DB 6BH 

2-108 AFN-00875A 



APPUCATIONS 

'" 
USER S't'1'lBOl5 
A4 e056 AGAIN 0812 832 81AS B40 01E4 ' C18 8899 CHAR 88:n Cl£CK5 8l4E CK 9867 
CLEAR 9018 CLR1" 888E 00. " 8156 C!LS 0088 CON 989C C~T 08B8 COtIX 92FA CR 81DE 
CTS 08A5 DATA 8158 DECO 8816 DECR 8162 DMAIN 9874 DIllE 81EA FIRE 9878 FOf.H) 9160 
FSPA 92F4 HBIT 83E8 HOI'IE 006A INelf 01377 nm 9898 INPUT 9114 IHI 98E9 IT1 99EA 
L1 88I).j LARS 8178 LF !llSA LOOD OOCE; L0Cf1 83E5 LOOP2 83E7 LSTCOL IlII52 LZ 08B6 
I'IlF 8181 IfM ,0826 IUl£CR 811C MOTS 98JF hR5T 916F ON 01124 01£ 08A7 P12A 9193 
P12B 8l9C " P12C !l19B P3C 98E3 PJF 88F6 P6A 8128 P6AA 9145 f'6B8 8136 P7C 8158 
PAGE 0838 PAGE3 !l2F5 PARA 0888 PEON 82ED' PF 98DF PRINT !l81E RESET !llBE RJ 81F9 
RJ2 8864 RJP ,!l84D R01 elBa R02 8188 RTAB 8146 SDI'IfI 81C9 SEND 9155 SERROR 987A 
SGLE 897F ' SING 881\3 SLF 9188 501 0185 502 8182 SPCR B3ED 5PRI. 9144 5501. ,81A1l 
STAB 9177 T1 8172 T2 8172 n 9172 TAB 8132 TERROR 814D Tfl' 8184 W14 88BE 
WAIT 92F8 X0 81F6 XCR 0JF5 XFER 992C X52 82E0 YI'E 9126 

A5SEI'IBL Y coo.m, HO ERRORS 

2·109 AFN.Q0875A 



Memory Controllers 



5-Volt Only Oynami9' '\",. 
RAM Interface 

for 8086 Systems 

NOTE: 

Cont~llts, 

WHY DYNAMIC MEMORIES? 

TYPES OF DYNAMIC MEMORY SYSTEMS 

2-111 

2-111 

8086 SYSTEM CONFIGURATION REVIEW 2-111 

Quick Review of 8086 Family Bus Timing 2-111 
8202 Read Cycle Timing 2-111 
Read Access Time (Min Mode) 2-112 
Read Acce'SsTirne(Max Mode) . 2-113 
Read Access Time (Alternate Configuration) 2-113 
8202 Write Cycle Timing 2-114 
Write Cycle Timing (Min Mode) 2-116 
Write Cycle Timing (Max Mode) 2-116 
Write Cycle Timing (Alternate Configuration) 2-116 
Handling 8-Bit Write Cycles in 16-Bit Systems 2-117 
Multibus Byte Swap 2-117 
PCS Generation 2-117 
Ready Handshake Signals (SACK and XACK) 2-117 
Refresh Considerations 2-118 
References 2-119 

APPENDIX 1 2-120 

APPENDIX 2 2-122 

APPENDIX 3 2-128 

Refer to the updated application note AP-97A "5-Volt Only Dynamic RAM Interface for 8086 Systems", January 1982, 
for the latest product information. 

2-110 AFN-01458A 



APPLICATIONS 

WHY DYNAMIC MEMORIES? 

Dynamic RAM offers a four-to-one size advantage over 
their static RAM counterparts in medium to large size 
memory systems. In a typical 8086 system with 128K 
bytes of memory, you would need over 256 IC's and 300 
square inches of PC board for a static memory array. 
The same memory array could be implemented with 68 
IC's and 80 square inches of PC board if dynamic 
RAMs are used. 

Besides this obvious size advantage, dynamic RAM de­
signs offer a substantial power dissipation advantage. 
For example, the 2142 static RAM requires O.lmW/bit 
operating power, while the 2118 dynamic RAM requires 
only 0.01 mW/bit. 

In the following sections we will show how to construct 
a complete dynamic memory interface for your 8086, 
8088, and 8089 systems, using the 8202 dynamic RAM 
Controller and the 2118 5-volt only dynamic RAMs. 

TYPES OF DYNAMIC MEMORY SYSTEMS 

Dynamic memory systems can be divided into two cate­
gories: I) those that use distributed (or asynchronous) 
refresh and 2) those that use hidden (or synchronous) 
refresh. Each type has advantages over the other type; 
your choice will depend on your system requirements. 

In a distributed refresh system the memory controller 
periodically requests a refresh cycle, typically every 
10-16 microseconds. Since the refresh request is asyn­
chronous to the CPU's request for the memory, the 
memory controller must have logic to arbitrate the re-. 
quests. Once a cycle starts, the arbiter must let that cycie 
complete before starting a pending cycle. The memory 
controller should also have circuitry which can force the 
CPU to add WAIT state if a memory cycle is requested 
while a refresh cycle is in progress. 

Hidden refresh designs use circuitry to monitor the CPU 
status lines, and request a refresh cycle when the CPU is 
not performing a bus cycle with the dynamic RAM. For 
example, a hidden refresh cycle can overlap an instruc­
tion fetch from ROM. If the hidden refresh cycles are 
performed frequently enough, the dynamic memory is 
always ready when the CPU requests a memory cycle, 
and no WAIT states are'required due to arbitration. 

Some memory systems use a combination of asyn­
chronous and hidden refresh. For example, many real 
time systems allow a processor to enter a HALT state 
(which stops program execution) while waiting for an 
interrupt. During this time, the hidden refresh circuitry 
is inactive, and the asynchronous refresh logic inserts 
the necessary refresh requests. The Intel 8202 Dynamic 
Memory Controller provides a complete memory inter­
face for your dynamic RAM. It can be used in synchro­
nous and asynchronous refresh systems, and provides 
automatic switching between these two modes. 

2-111 

8086 SYSTEM CONFIGURATION REVIEW 

Quick Review of 8086 Family Bus Timing 

There are three basic 8086 family system configurations: 
I) Minimum Mode 
2) Maximum Mode 
3) Alternate Configuration 

The 8086 has a MN/MX input which can be strapped 
high to select Min Mode, and grounded to select Max 
Mode. The MN/MX input changes the function of 
several other 8086 pins based on how it is strapped. 

In the Min Mode, the CPU generates the RD and WR 
outputs directly. The Max Mode uses an 8288 to gener­
ate the 8202 RD and WR signals from the CPU status 
lines. Refer to the "8086 Family Users Manual" for 
more details. 

The Alternate Configuration uses several TTL gates and 
flip-flops and the CPU status outputs to generate the 
8202 RD and WR signals. The Alternate Configuration 
can be used when the CPU is strapped in either the Min 
Mode or the Max Mode. Each of the three basic system 
configurations can be used with data buffers for addi­
tional drive capability. 

Regardless of the system configuration, each 8086 fami­
ly bus cycle consists of four clock cycles, if no WAIT 
states are required. WAIT states can be used to extend 
the basic bus cycle, and thus allow the use of slower 
memories. 

We will see in the following sections that the Min Mode 
will offer the lowest chip count, the Max Mode will of­
fer better performance, while the Alternate Configura­
tion will offl:r higher performance at the expense of 
several TTL packages. 

8202 Read Cycle Timing 

The 8202 uses its clock to sample the (asynchronous) 
READ requests generated by the CPU. Whert the RD 
input is sense<! active, the 8202 will generate a RAS 
strobe and CAS strobe as shown in Figure 1. The RAM 
uses RAS and CAS to latch the CPU address and read 
the desired location onto the RAM data output pin. The 
8202 also generates an XACK strobe which is used to 
latch the RAM data for the CPU, as shown in Figure 2. 
(See "READY HANDSHAKE SIGNALS" for further 
uses of XACK.) 

We can determine the amount of time it takes, to 
generate valid READ data by calculating the delay from 
RD~ to CAS~, and add this~ith the RAM's CAS acces~/ 
time (tCAc) and the latch's prop~gatiori delay. In other 
words, .. 

tRLDV = tcc, MAX, (8202) + tCAC (2118) 
+ tpHL (74LS373) 

AFN 01458A 



•• lr-'::::::::::::-IR-Ac---------------, ---~-... -<-",";! -~---'/ 
VALID DATA 

f4---- ICAC -----1~ 

I~"O----- Icc -------I ....., ___ .... I-"o------.,,------IRLDV--------+-I 

Figure 1. Read Cycle Timing 

Figure 2. Basic Memory Architecture 

Since the tcc parameter is a function of the 8202's 
operating frequency, we can minimize tRLDv by running 
the 8202 at the highest possible frequency. We can .a1so 
reduce tRLDV by choosing a.RAM with a faster CAS ac­
cess time. Table 1 shows the minimum tRLDV for the 
various RAMs, based on the maximum 8202 frequency 
forthat RAM. I£System constraints force you to choose 
a slower8202 operating frequency, then your tRLDV will 
increase, which may slow down your CPU. 

Table 1. 8202 System Timing 

RAM TYPE tRAe tCAe tRLDY' teA' IALXA' ICC,MIN,,2 'MAX 

2118-3 100 55 280 80 445 125 25.00 

2118·4 120 65 290 80 445 125 25.00 

2118-7 150 80 31. 81 456 128 24.24 

2117·2 150 100 325 80 445 125 25.00 

2111·3 2.0 13. 351 80 449 126 24.69 

2117·4 250 18. 407 65 496 136 22.22 

~ n .. e nsec nsec nsec nsec n.ec MH, 

1. ASSUMES 8202 OPERATED AT 'MAli_ 
2. ADD Ip + 60 nl.e TO DERIVE tcc, MAX. 

Read Access Time (Min Mode) 

In order to operate with no.WAIT states, our memory 
system shown in Figure 3 must guarantee valid. READ 
data within: 

tRLDV· ~ 2 tCLcL (CPU)- tCLRL. MIN (CPU) 

- tDVCL. MIN (CPU) 

Table 2 lists these times for various CPUs, operating at 
5 MHz and 8 MHz. If your system has any additional 
buffers for the RD, WR, or data lines, you must sub­
tract their propagation delay from the tRLDV values in 
Table 1 to derive .your system access requirements. 

2·112 AFN 01458A 



APPUCATIONS 

CPU 

Figure 3. Unbuffered Min Mode Configuration 

Now we merely have to compare our system require­
ments from Table 2 with the memory access times in 
Table 1 to see if our RAM speed selection and 8202 
operating frequency will work in our system with no 
WAIT states. If our system requirement is too fast for 
our first choice memory configuration, we will have to 
choose either a faster RAM, or add WAIT states. 

If you choose to run with WAIT states, you can multi­
ply the CPU clock period by the number of WAIT 
states, and add this number to the tRLDV values in Table 
2 to derive your new CPU access requirements. For ex­
ample, a 5 MHz 8086 Min Mode configuration with no 
WAIT states requires a read access time of 205 nano­
seconds, while the same configuration would need an 
access time of only 405 nanoseconds if we operate with 
one WAIT state. If we examine Table 1, we see that 
there is no RAM configuration which can run without 
WAIT states in a 5 MHz 8086 configuration; but we can 
use any 2118 speed selection if we operate with one 
WAIT state. 

Table 2. Read Cycle Access Requirements 

MIN MODE MAX MODE 

8088·2 8088 8088 8086·2 .... 8088 808. 

'CPu 'MHz 5MHz 5MHz 8 MHz SMHz 5MHz 5MHz 

tRLDV 130 205 20S ,.S 33S 33S 33S 

IALDV, 209 345 34S 20. 34S 34S 41S 

Read Access Time (Max Mode) 

Figure 4 illustrates the standard unbuffered Max Mode 
configuration. In order to run with no WAIT states, we 
need to guarantee a READ access time of 

tRLDV= z"tCLCL (CPU)-tCLML, MAX (8288) 
- tDVCL, MIN (CPU) 

These times are listed in Table 2 for the various CPUs, 
operating at 5 MHz and 8 MHz. If your system has buf­
fers on the RD, WR, or data lines, you must subtract 
their propagation delay from the tRLDV values in Table 2. 

2-113 

Figure 4. Unbuffered Max Mode Configuration 

If we compare the Max Mode tRLDV requirements in 
Table 2 with the Min Mode requirements, we notice that 
the Max Mode can run with a memory configuration 
that is 130 nsec slower than the memory required for an 
equivalent Min Mode configuration! In fact, all 5 MHz 
Max Mode CPU configurations can operate with no 
WAIT states in any of the 2118 memory configurations. 
Even the 8 MHz 8086-2 configuration can operate with 
all but one RAM configuration (2117-4) with only one 
WAIT state. This illustrates the advantage of using the 
M~ Mode and the 8288 to generate the RD signal for 
the 8202 when compared with the lower chip count Min 
Mode. 

READ Access Time (Alternate Configuration) 

We can reduce our memory speed requirement even fur­
ther by using the Alternate Configuration shown in 
Figure 5. This circuit uses the CPU status information 
to generate 8202 RD and WR commands which start 
earlier in the memory cycle than either the Min Mode or 
the Max Mode. As previously stated, the Alternate Con­
figuration can be used when the CPU is strapped in 
either the Min Mode or the Max Mode. 

{
51 (DT/ii) 

FROM 
CPU A"'lEOo-_...r-........ 

+5 

t:>-----<:t RD 

'----.---d XACK 

+5 

8202 

IO-~I-~WR 

~CS pcs 

Figure 5. Alternate Configuration 

AFN 01458A 



AP"pLICATIONS 

The access requirement for the Alternate Configuration 
i~ 

tRLDVI = 2 tCLCL (CPU) + tCHCL, MIN (CPU) 
- tCHLL, MAX (CPU) - tCVCL, MIN (CPU) 
- tpHL (74S74) 

Tabi~2lists these times for various CPUs operating at 5 
MH;Z and 8 MHz. Note that in every configuration ex­
cept one (8086-2 Max Mode Alternate Configuration), 
the memory READ access requirement is reduced. 
Hence, we can use slower memories when we use the 
Alternate· Configuration in all· but this one configura­
tion. In general, the Alternate Configuration offers a 
significant advantage over .the standard Min Mode, but 
little advantage over thest(Uldard Max Mode for READ 
cycles.· . 

82Q2 Write. Cycle Timing 

8202 WRITE cycles have timing similar to READ 
cycles, except the WE line is pulsed for the WRITE cy­
cle; alfother signal times are the same as a READ cycle. 

There are three types of dynamic RAM Write cYl;le~: 
a) Early Write 

'b) Late Write 
c) Read-Modify-Write (RMW) 

If WH precedes CAS ~ by at ·least twcs, then the cycle is 
an early-write cycle, and the RAM data output will re­
main in its high-impedance state for the duration of the 
cycle. If WE~ occurs later, then the data output can 
leave its high-impedance state, and must be isolated 
from the CPU data bus via the .RAM data latch used for 
READ cycles. 

The dynamic RAM uses the WE and CAS signals to 
strobe the WRITE data into the RAl'yt. IfWE~ precedes 
CAS~, as shown in Figure 6, then the data setup and 
hold times are measured relative to CAS~, and. the cycle 
is. called an "early-WRITE" cycle. If the CPU starts a 
WRITE cycle by driving WR active, and does not let 
WR go inactive until CASt, then the 8202 will always 
perform an early-WRITE cycle. 

The following three sections will illustrate 8202 WRITE 
cycles for Min Mode, Max Mode, and Alternate Con-

EARLY WRITE CYCLE 

m~.· r-. \'--. ___ ---.,.----'1 

\ _____ ---'r 
I_twcs+ tWCH-I .a r 

LATE WRITE CYCLE 

\ 
READ.MODIFY.WRITE CYCLE 

Figure 6. Write Cycle Timing· 

2·114 AFN 01458A 



APPLICATIONS 

figurations. In most cases, we will use the 8202 early­
WRITE configuration. However, in some cases, we will 
use a late-WRITE or READ-modify-WRITE 8202 con­
figuration to prevent the RAM from storing the wrong 
information from the CPU's multiplexed address/data 
bus. In each case, we will examine the early-WRITE 
configuration first to see if the WRITE cycle will have 
adequate data setup and hold time for the RAM. 

The tWLOV data setup times for the various CPU con­
figurations are listed in Table 3. In order to use the 
early-WRITE configuration of the 8202, we must 
guarantee: 

tWLDV, MIN (CPU) + tee, MIN (8202)= 
tos, MIN (RAM) (Equation 1) 

If this condition is not met by our system, we will have 
to either 
1) Delay the 8202 WR signal, which will cause CAS ~ to 

occur later in the bus cycle; or 
2) Disconnect the 8202 WE signal from the RAM, and 

generate a delayed WE, that goes active after the 
WRITE data becomes valid, but not so late in the cy­
cle that the RAM's teWL parameter is violated. 

The first alternative can be accomplished using the cir­
cuits shown in Figure 7. Both of these circuits will in­
crease the tWLOV, MIN values listed in Table 3 by an 
amount of time based on the CPU clock. 

Figure 8 illustrates a method of generating a delayed 
WE for the RAM using the 8288 MWTC signal, while 
starting the WRITE cycle with the 8288 AMWC signal. 
This circuit has the advantage of allowing the 8202 to 
respond with SACK~ early enough to prevent any 
WAIT states in certain configurations. For this reason, 
the second alternative (Figure 8) is more favorable over 
the first configuration. 

Wii OR 
AMWC 

CPU 
p-----qWR 

ClK 8202 

a) 

Wii OR 
AMWC 

CPU 
ClK 

8202 

b) 

SO 
8288 8202 

CPU 
51 

MWTC p..-----OI WR 

SO 

c) 

Figure 7. Generating a Delayed WR lor 8202 

~--<JIWR 

CPU 
8202 RAM 

MNIMX 
WE 

Figure 8. Using AMWC and MWTC lor WRITE Cycles 

Table 3. Data Setup and Hold Times lor Write Cycles 

8086·2 8086·2 8086·2 8086 8086 8086 
MAX MODE' MIN MODE ALT. CDNF. MAX MODE' MIN MODE ALT. CONF. 

8MHz 8MHz 8 MHz 5 MHz 5 MHz 5 MHz 

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

I tWLDV _50' 25' -50 60 -45 60 -1001 25' -100 100 -70 85 

I tOHADV 265 265 265 420 420 420 

8088 8088 8088 8089 8089 
MAX MODE' MIN MODE ALT. CDNF. MAX MODE' ALT. CONF. 

5 MHz 5 MHz 5 MHz 5 MHz SMHz 

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

I tWLDV _1001 20' -100 100 -70 85 -1001 25' -70 85 

I tOHAOV 420 420 420 420 420 

1 ASSUMES iMWC USED. ADD t CLCL IF MWTC USED. 

2·115 AFN 01458A 



APP.LICATIONS 

We also need to check the system data hold times for 
each of the configurations to insure that the RAM's 
data hold time (tOH) is met. Table .3 lists the tOHAOV 
(data hold after data valid) times for each of the various 
CPU configurations. In order to meet the RAM's data 
hold time, we must guarantee: 

tOHAOV, MIN ~ tWLOV, MAX + tee, MAX 
+ tOH, MAX (Equation 2) 

If this condition is not met, you will have to either insert 
WAIT states to extend the tOHAOV, MAX values, or 
generate your WE .. transition earlier in the bus cycle. 
The latter can be performed by using one of the alterna­
tives listed above, provided the RAM's data setup time 
is still met. 

WRITE Cycle Timing (Min Mode) 

If we examine tee, MIN for various 8202 clock fre­
quencies, we find that tee ~ 125 nsec. Comparing this 
result with Table 3, we see that the condition required 
by Equation I is always met for the unbuffered Min 
Mode configuration, but just barely. For example, sup­
pose we had a· 5 MHz 8086 Min Mode system using 
2118-3's (tos';' 0 nsec) with a 25 MHz 8202; Equation I 
becomes: 

tWLDV, MIN + [(tpH+2tp+25)-tosl 
= -100+ [(20+80+25)-0] 
=25 nsec 

Therefore, we would have 25 nsec of data setup margin, 
so we can use the 8202 early-WRITE configuration. 

Suppose our configuration had a data bus buffer as 
shown in Figure 9a. We would have to subtract the 
propagation delay of this buffer from Equation I; if this 
delay is greater than 25 nanoseconds, then we cannot 
use the 8202 early-WRITE configuration. 

WR P---------1I--Q WR 

CPU 8202 

DATA 
XAC-:!Ep------a 

Figure 9a. Buffered Min Mode Configuration 

Next, we need to examine our system to insure the 
RAM's data hold time is met. For the same system con­
figUration, we can solve Equation 2: 

tOHAOV, MIN ~ tWLOV, MAX + tee, MAX+tOH 
. = 100+ (tPH + 3tp+ 85)+ 25 

=350 nsec 

Examining Table 3, we see that Equation 2 is satisfied 
with 70 nsec of margin. If we added any data buffers to 
our system, this margin would increase; if we buffer the 
8202 WR input, this margin will decrease. 

Write Cycle Timing (Max Mode) 

Let's see if we can get an 8 MHz 8086-2 Max Mode 
system to operate with 2118-4's in a 25 MHz 8202 early­
WRITE configuration as shown in Figure 9b. Solving 
equation I, we find: 

tWLDV + [(tpH + 2tp + 25) - tos]- tIVOV (8286) 
= - 50+ [(20+80+25)-0]- 35 
=40 nsec 

so we see we can use the early-WRITE configuration. 
Had we chosen a 5 MHz 8086 Max Mode configuration, 
we see from· Table 3 that tWLDv would decrease by 50 
nanoseconds, which means we would not have adequate 
data set-up time. 

. CPU 

Figure 9b. Buffered Max Mode Configuration 

Write Cycle Timing (Alternate Configuration) 

In general, the Alternate Configuration offers little ad­
vantage over the standard Min Mode or Max Mode, ex­
cept in the earlier generation of the READY acknowl­
edge signals, SACK and XACK. In some cases, using 
the Alternate Configuration will force you to generate a 
delayed WE signal, since the 8202 WR signal goes active 
earlier in the bus cycle for the Alternate Configuration 
than it does for either the Min Mode or the Max Mode. 
So, unless you need to speed up your READY signal to 
reduce unnec~ssary WAIT states for WRITE cycles, the 
Alternate Configuration for WRITE cycles may not of­
fer any performance advantage for your system. 

2-116 AFN 01458A 



APPLICATIONS 

Handling 8·Bit Write Cycles in 16·Blt Systems 

Systems which perform 8·bit WRITE cycles in a 16-bit 
memory array require a slight modification of the WE 
control described previously. The memory must be 
broken into two 8-bit arrays with separate WE control, 
as shown in Figure 10. 

CPU signals AO and BHEN determine the type of bus 
cycle to be performed. If AO=O, then the even byte is 
transferred on ADO-7; if BHEN is active, then the odd 
byte is transferred on AD8-ADlS. A word transfer is 
performed when AO = 0 and BHEN is active. 

I 

RAM 
RAM HIGH 

LOW BYTE 

BYTE 

WE 
WE 

WE 

AD 
I ., '-

.-"'j -BHEN 

Figure 10. 8116·Blt Write Cycle Control 

Multibus Byte Swap 

To permit compatibility with existing 8-bit CPU boards, 
the Multibus specification requires all byte transfers to 
occur on the 8 least significant data lines (DA TO­
DAT7). Figure II illustrates how to handle 8-bit and 
16-bit bus cycles in a Multibus environment. 

BHEN 

AD 

AEN -,---+---+ 

Figure 11. Multlbus Byte Swap 

Although Multibus uses the signals BHEN and AO, their 
meaning is slightly different than the CPU pin defini­
tions. If BHEN is inactive, then the bus cycle is always 8 
bits, and always uses DATO-DAT7; if BHEN is active, 
then the cycle is always 16-bits, and AO=O. 

The High Byte Buffer and the Low Byte Buffer are en­
abled for all word transfers, and for all byte transfers to 
an eVe!! ~4dress. The Swap Byte Buffer is enabled only 
for byte transfers to an odd address. 

This control logic will allow a 16-bit memory board to 
be compatible with both 8-bit CPU boards and 16-bit 
CPU boards. 

PCS Generation 

In order to start a memory cycle, the 8202 requires its 
PCS input, as well as m or WR, to be active. Once a 
memory cycle is started, the 8202 will corilplete it, even 
if Pes goes inactive. This feature can be used for 
battery-backup RAM designs. If you have a battery 
backed up design, RD, WR and Pes should be pulled 
up to the battery supply. . 

Normal decoding of the processor address bus can be 
used to generate PCS. Since combinational logic (or 
even a bipolar PROM) is typically:''u'sed to generate 
JiCS"; you must examine your system timing to make 
sure Pes is stable before RD or WR goes active. If your 
decoding time is greater than the address set-up to com­
mand time, then twp'things can happen: 
1) Your memory dy~le will not start Ilntil PCS goes ac­

tive. 
2) You may cause the 8202 to Start an unwanted cycle 

due to a de~oaer glitc~. .. ' 

Remember, your decoding time Isthe ~ount of time it 
takes to ensure that only one device is selected, and that 
all other devices are deselected. Your decoder outputs 
may change after an address transition, and will only be 
stable after the decoding time has expired. 

Ready Handshake Signals (SACK and XACK) 

If olir dynamic memory system was always available 
when the CPU requested a memory cycle, then we could 
generate ourRAMRDY signal as shown in.Figure 13; if 
our RAM required no WAIT states, we could tie the 
REA:DY line high, assuming the 1/0 and the rest of the 
memory (e.g., PROM) did not need any WAIT states. 

in systems which use asynchronous refresh, we cannot 
lise these methods of READY generation, since extra 
ViI AlT· states are needed when a memory cycle is re­
questec\while refresh is in progress. This CPU holdoff 
can be performed using t~.j: 8202 XACK and SACK 
signals. ' 

~. is a Multibus compatible acknowledge hand­
shake signal, since it only goes active after READ data 
is valid, and after WRITE data has been latched. XACK 

2·117 AFN 01458A 



APPLICATIONS 

CPU 
8086.8088 

MN/1i.lJ1 

; ~ , 

ADDRESS 
LATCHES 

M/iO 1----------'-1 

RD~-------~-~RD 

WR~--~------~WR ' 

Figure 12a. 8202 PCSGeneration - Minimum Mode 

CPU 
8086, 8088. 8089 ADDRESS 

LATCHES 

ALE 

8202 

Figure 12b. 8202 PCS Generation'-.MaximumMode, 

can be connected to the CPU's Ready input through an 
inyerter. 

Since m~st CPUs sample READY 1-2 clocks ahead of 
the time they sample data, XACK may cause more 
WAIT states thari you really ileed;if your system has 
sufficient time between the' READY sample and the 
data sample, SACK can: be used. 

2-118 

~---~--~---~---qRD 

WR---+-~---_-~---qWR 

~----1 REFRQ 

8202 

READY------o( 

PCS----------4-----01 pcs 

Figure 13. RAM ROY Generation (Transparent Refresh) 

If a memory cycle is requested while the 8202 is idle, 
SACK will occur 200-320 nanoseconds before data is 
valid. If the time between the CPU's first READY sam- , 
pie point and the first data sample point is greater than 
the difference in READ access time (either tRLDV or 
tRLDVIo depending on your configuration) and the tCA, 
MAX time for your 8202 configuration, then SACK can 
be used to generate the CPU's READY signal. Other­
wise, a delayed form of SACK (or XACK) should be 
used to generate the READY signal. 

Refresh Considerations 

The 8202 has an internal timer which generates refresh 
requests every 12-16 microseconds, unless it is reset by 
an external refresh request. Thus, if the 8202 REFRQ is 
pulsed faster than 12 microseconds, we can reduce, or 
even eliminate, the amount of refresh interference with 
memory cycles. If, for any reason, our REFRQ signal 
fails to generate a pulse frequently enough, then the in­
ternal refresh timer will take over. 

The standard hiddeil refresh circuit shown in Figure 13 
can be used to eliminate all refresh interference in 
808SA systems if the following condition is met: 

4T (B08SA) ~ tCR, MAX (8202)+2tRC, MAX (8202) 

where T is the CPU clock period. Remember, the 8202 
internal refresh timer will automatically insert refresh 
requests if the CPU goes idle for extended periods of 
time (sucb as bursts of DMA cycles, or 'entering the 
HALT state). . 

Since the 8086 and 8088 pre-fetch instructions, the hid­
den refresh method shown in Figure 13 is not asqseful 
as it is for 808SA systems. The 8086 Family CPUs will 

AFN 01458A 



APPLICATIONS 

elK 

I 
I--IDVCL -'1 J VALlOOATA 

':FC ROY 

Figure 14. 8086 Family Data and READY Sample Points 

have to use the 8202 internal refresh, and suffer the 
3-70/0 performance degradation due to refresh in­
terference. In reality, the performance degradation will 
be even less since the instruction queue is normally full, 
and there is iess chance of refresh interference than in an 
808SA system. 

2-119 

References 

Intel Component Data Catalog 
InteiPeripheral Design Handbook 
Intel 8202 Data Sheet 
Intel Memory Design Handbook 
Intel 8086 Family User's Manual 

AFN 01458A 



APPLICATIONS 

APPENDIX 1 

2·120 AFN 01458A 



N 
.:. 
~ 

> 
"T1 
Z 

~ 

~ 
> 

12V 16K 

Vee 

DIN 

WE 

RAS 

AO 

A2 

A1 

VDD 

PIN FUNCTION EVOLUTION 

5V 16K 5V 64K 

VSS N/C VSS N/C VSS 

CAS DIN CAS DIN CAS 

DO WE DO WE DO 

A6 RAS A6 RAS A6 

A3 AO A3 AO A3 

A4 A2 A4 A2 A4 

AS A1 AS A1 AS 

VCC VDD N/C VDD A7 

5V 256K 

A8 VSS 

DIN CAS 
l> 

WE DO ""0 
""0 

RAS A6 C 
0 

AO A3 ~ 
A2 A4 0 
A1 AS Z en 

VDD A7 

THE FUTURE? 



APPLICATIONS 

APPENDIX 2 

2·122 AFN 01458A 



~ 
I\) 
Co) 

> 
~ 
o 

~ 

2118/2164 MEMORY SYSTEM DESIGN 

fJlJ UI 1111 ., 1111 .,' 

0.1 AI!l 
AJ U AJ" 

"m:: !'~~'!'! ,,."" ~ ; 

w'~: wi r ~i} ::Ul ;~~ ~;\ 
o,.UI AI 

j_ Jld~i"llnlllll"1 ~ DIN"H.! 

81];'01 

,,.,,,;: .~.;.~ 
wi Z;$ ::UT ~~ J ::UT ~~ ~! = O'N"l! 

~.~' '~?J' '1~ 11 

1 J ,5 

1 FDAS,"",UCITY211IANOJlSZUOlVICU 
CO"PR'S'NGDAUIl'SIIlG1IDIIIlAA[ 
NOTILlUSTRAT£D 

I I.OI~TEAton(CTlDNSIORWDATAU 
AIIDAUATAUUlll5rfD~TAJlI' 

y 

{ ~"r' 
I! "SN9 .. 

; I 

~ 
.. 

," 1,A, 
".J 
~: :: u" Ol~ 

'- :~. 
II-leu w, 

EL: ... 
~"" 

[II . Iilllllih '';" _. 
1~ 0, 

"!!U!>I n 11 A! ,~ 

":~ Dour 
• liAS 

1$ CAS WE 

~ ... , 
Z •••• ~ 

II !\ 

" 

:::::~:: 'I L 

.. ,,:~ 111-'"'' 
! ! 
~ i 

oou,'" 

WI,--l 

l> 
'1J 
'1J 
!: 
o 
~ 
o z 
en 



, 

r 

APPLICATIONS 

211812164 MEMORY SYSTEM DESIGN 

MEMORY SYSTEM COMPONENT PLACEMENT 

n - n 
SERIES ADDRESS SERIES 

MK II a R.S- BUFFERS RES· 64KxB 
ISTORS ISTDRS 

211812164 U U 211812184 
MEMORY MEMORY 
ARRAY ARRAY 

-

I AASICAS I BUFFERS 

l~~ ~ I/O 

AOQRESS TIMING 
LOGIC GENERATOR 

P.C.S. LA YOUT - PITFALLS 

• CONTROL LOGIC NOT CENTRALIZED 

• LONG SIGNAL TRACES 
RINGING 

.... PROPAGATION DELAY (:: 2nslft) 

CONTROL 
.LOGIC 

• NON·OPTIMAL ADDRESS/CONTROL LINE LAYOUT 

P.C;S. LA YOUT - PITFALLS 

.. 

UNACCEpTABLE ADDRESS LINE ROUTING (SERPENTINE) 

ADDRESS LINE LAYOUT 
8 DEVICES 

TOTAL LENGTH OF LINE ~ 20" 

2·124 

r 

AFN 01458A 



r 

APPLICATIONS 

POWER DISTRIBUTION 

UNACCEPTABLE GRIDDING 

FORMULAS! 

Zo = TRANSMISSION LINE IMPEOANCE 

. /~ 
SO 

l= INDUCTANCEI 
UNIT LENGTH 

C = CAPACITANCEI 
UNIT LENGTH 

EQUIVALENT TRANSMISSION LINE CIRCUIT 

L 

zo~ 

2·125 AFN 01458A 



r 

~ 
., 

.' 

"" 

APPLICATION.S 

CONNECTING TWO LINES IN PARALLEL 

STEP 1 

STEP 2 

• STILL TWO SIDED CARD 

.,..,.., 
L 

cf Zo· 

.L 

cf 
/f'5' ANOZo'''' 2 ",-- -:-Zo 

iC 2 C 2 

THe. MORE YOU CONNECT -
THE LOWER THE EFFECTIVE IMPEDANCE 

GRIDDING VSS (GND) 

• TWO SIDED CARD 

- VERTICAL TRACES ON COMPONENT SIDE 
- HORIZONTAL TRACES ON SOLDER SIDE 

• MAINGROUND BUS OR INTERCONNECTION TO TTl 
CONTROL, ADDRESS, DATA BUFFERS 

GRIDDING VOO (+ 5V) AND Vss (GND) 

COMPONENT 
SIDE 

VDD(+5V) BUS 

VSS (GND) BUS 

• LOWER POWER AND GROUND DISTAIBUTION IMPEDANCE 
REDUCES CROSSTALK TO SIGNAL TRACES. I /7 = SOLDER I ~:~~ vv SIDE • IMPEDANCE BETWEEN POWER AND GROUND REDUCED 
BECAUSE TRACES ARE ABOVE EACH OTHER 

2-126 

."", 

~ 

AFN 01458A 



~/ DECOUPLING 
CAPAC ITO 

0 

APPLICATIONS 

DECOUPLING 2118's 

D . :~~R~-~~~~RH~~1~ ~~~~~~~~~N~~~~~~CN~~~~C~G~~ENT 
REQUIREMENTS 

• ADD 1-47 l,fO TANTALUM CAPACITOR FOR UP TO 64_2118's 

CJ 6~pR:61~~~I;H CHARGE IN THE HIGH FREQUENCY 0.1 i'to 

2118/2164 MEMORY ARRAY 
P.C.B. LAYOUT 

POWER/GROUND GRID & DECOUPLING 
o 4 6 - • -. -- I - r-; fV ~ :-1'0 ~o ~o r- CO...!! to..!! to . ~ 0 'ClIO '110 'II .. .. ..:!o '. 10 01'1 )11"0 

fati ~f'ai k to to 4 I:~ I' 1AF'. h h b ro. 

I:h R ~ 
.r--. oro oro o. 01. olot-' ; r.~ 0,. 

.P - - [l1li ~ 
~ h ~ ~ 

"""'" h h ~ I· I! to I! '0 r:t !'O-I' t. to\.! tG::! -
C ~ R R- C"""'- ~ """'" b -~ R :\ ;OR • 

Vss (GNDI GRID ,/ I: ---- 1--\ ~ PIlI""""' 1i'ij ~-\ "" r. ,0 - - - - • 
.'~ 

10 ----

k """'" ' 
;,. 

""""" =='- t--. 
:0 ~'O 1±4I'O '0 to ~ 

10 'II .... .. ... !~ b ti ~/ 
8 I: ----~ ;liR, ... ;8 ~ ''0 ;.II ~ ~ 

::::: R ~ ~ I: ~ ~ 1-1 """"" ~~ R liii R 
l1li - -

Voo (+ 5VI GRID 

lor--. \a fiR h h h b h ...... 
/ ~ro fGfCI tc f4', 

Ie Ie to 1"0 fGl'O tG~ ~ 

A I:~ h ;8 h f1;8 5: 8~ ~R b 1.0-
r/ 

I:h 8 r// 

~h R fC;i R r/ 

fC1 f4I 

11 II 

CAS CD 
WEco 
RAS 0 
AOCD 
A1CD 
A2CD 
AJCD 
A4CD 
A 5CD 
A6CD 
A 7CD (FOR 64KI 

AOAB 
A1A8 

'" 2AB 
'" JAB 
"'4"'B 
"'5A8 
"'6AB 
'" 7AB (FOR 64KI 
ill A 

Voo (+ 5VI 
Vss (GNDI 

NOTE: MEMORY DEVICE SPACING IS 0.4" ONE TO ONE 

2-127 AFN 01458A 



APPLICATIONS 

APPENDIX 3 

2-128 AFN 01458A 



r 

r 

r 

APPLICATIONS 

POWER CONSIDERATIONS 
AND DECOUPLING 

DETERMINING 2118 POWER 
REQUIREMENTS 

• NORMAL OPERATING CURRENT 

• STANDBY CURRENT 

• REFRESH CURRENT 

• OPERATING CURRENT 2118 SYSTEM 
1000 = (100, x KI + IDDLO 

WHERE 
- K = NUMBER OF ACTIVE (RECEIVING BOTH HAS & CAS) DEVICES IN 

THE SYSTEM 
- 1002. VDD SUPPLY CURRENT, OPEAAT1NQ 

2118·2=29 mA (MAX) 
2118·3 = 25 rnA (MAX) 
2118-4=22 mA (MAX) 
2118-7=22 mA (MAX) 

- IDDLO = 2118 OUTPUT LOAD CURRENT 
I LEAKAGE CURRENTS + nL LOAD INPUT CURRENT 
2118 OUTPUT LEAKAGE IILOI = 10 lolA 
748240 INPUT CURRENT IlL = - 400 /AA 

2·129 AFN 01458A 



r 

r 

APPLICATIONS 

• STANDBY CURRENT 2118 SYSTEM 

loos = 1001 X M 

WHERE 
- M = NUMBER ON INACtIVE (RECEIVING CAS ONl V) DEVICES IN THE 

SYSTEM 

- 1001 "'VOO SUPPLY CURRENT, STANDBY. 
2118= 3 mA (MAX) 

• REFRESH CURRENT 2118 SYSTEM 

100, =(100, x N) (~) (128) 

WHERE 
- N ",TOTAL NUMBER OF DEVICES IN THE SYSTEM 

N=M+K 

- IOD3=VOD SUPPLY CURRENT, RAS-ONLY CYCLE 
2118-2=24 mA 
2118-3=20 mA 
2118-4=18 mA 
2118-7= 18 mA 

- IRAS= RAS PULSE WIDTH IN NANOSECONDS DURING THE REFRESH 
CYCLE 

- tREF=TIME BETWEEN REFRESH IN MILLISECONDS 

• TOTAL Voo SUPPLY CURRENT 2118 SYSTEM 

I"DDT = 1000 + loos + IOOA 

• TOTAL Voo POWER 

POI>r = Voo xlol>r 

WHERE 

VDD = S.SV TO GET ABSOLUTE MAXIMUM S:YSTEM POWER 

2·130 AFN 01458A 



APPLICATIONS 

• ACTUAL POWER CALCULATION FOR A 64K x 16 BIT 
2118-4 MEMORY ARRAY: 

N = NUMBER OF 2118-4 IN THE SYSTEM =64 
M= NUMBER OF STANDBY 2118-4 IN THE SYSTEM =48 
K = NUMBER OF ACTIVE 2118-4 IN THE SYSTEM", 16 

tRAS=140 ns 
tREF=2 ms 

IODo=(22 rnA) (16)+-(4)(10 ... A)+400 fJ.A 
::: 352 rnA + 0.440 rnA = 352.4 rnA 

ID05=(3 rnA) (48)= 144 rnA 

IODR =(18 rnA) (64) C:':n~S) (128) 

= 10.3 mA 

IDDr::352.4 mA+ 144 mA+ 10.3 rnA 

03 [~21~17~_2~~'00~,~'~3~2 m~A~ PDDT-8.4 WATTS 

2·131 AFN 01458A 



APPLICATIONS 

An Intelligent 
Data Base System 

Using the 8272 

Contents 

INTRODUCTION 

The Floppy Disk 
The Floppy Disk Drive 

SUBSYSTEM OVERVIEW 

ControUer Electronics 
Drive Electronics 
ControUer/Drive Interface 
Processor/Memory Interface 

DISK FORMAT 

Data Recording Techniques 
Sectors 
Tracks 
Sector Interleaving 

2-133 

2-135 

2-136 

THE 8272 FLEXIBLE DISKETIE CONTROLLER 2-139 

Floppy Disk Commands 
Interface Registers 
Command/Result Phases 
Execution Phase 
Multi-sector and Multi-track Transfers 
Drive Status Polling 
Command Details 

THE DATA SEPARATOR 

Single Density 
Double Density 
Phase-Locked Loop DeSign 
Initialization 
Floppy Disk Data 
Startup 
PLL Synchronization 

2-154 

AN INTELLIGENT DISKETIE DATA BASE SYSTEM 2-158 

Processor and Memory 
Serial 110 
DMA 
Disk Drive Interface 

SPECIAL CONSIDERATIONS 

APPENDIX 

Schematics 
Power Distribution 

2-132 

2-161 

2-163 



APPLICATIONS 

1. INTRODUCTION 

Most microcomputer systems in use today require low­
cost, high-density removable magnetic media for informa­
tion storage. In the area ofremovable media, a designer's 
choice is limited to magnetic tapes and floppy disks 
(flexible diskettes), both of which offer non-volatile 
data storage. The choice between these two technologies 
is relatively straight-forward for a given application. 
Since disk drives are designed to permit random access to 
stored information, they are significantly faster than 
tape units. For example, locating information on a disk 
requires less ~han a second, while tape movement (even at 
the fastest rewind or fast-forward speed) often re­
quires several minutes. This random access ability per­
mits the use of floppy disks in on-line storage applica­
tions (where information must be located, read, and 
modified/updated in real-time under program or 
operator control). Tapes, on the other hand, are ideally 
suited to archival or back-up storage due to their large 
storage capacities (more than 10 million bytes of data 
can be archived on a cartridge tape). 

A sophisticated controller is required to capitalize on 
the abilities of the disk storage unit. In the past, disk 
controller designs have required upwards of 150 ICs. 
Today, the single-chip 8272 Floppy Disk Controller 
(FDC) plus approximately 30 support devices can handle 
up to four million bytes of on-line data storage on four 
floppy disk drives. 

The Floppy Disk 

A floppy disk is a circular piece of thin plastic material 
covered with a magnetic coating and enclosed in a pro­
tective jacket (Figure 1). The circular piece of plastic 
revolves at a fixed speed (approximately 360 rpm) within 
its jacket in much the same manner that a record revolves 
at a fixed speed on a stereo turntable. Disks are 
manufactured in a variety of configurations for various 
storage capacities. Two standard physical disk sizes are 
commonly used. The 8-inch disk (8 inches square) is the 
larger of the two sizes; the smaller size (5-114 inches 
square) is often referred to as a mini-floppy. Single­
sided disks can record information on only one side of the 
disk, while double-sided disks increase the storage 
capacity by recording on both sides. In addition, disks are 
classified as single-density or double-density. Double­
density disks use a modified recording method to store 
twice as much information in the same disk area as can be 
stored on a single-density disk. Table 1 lists storage 
capacities for standard floppy disk media. 

A magnetic head assembly (in contact with the disk) 
writes information onto the disk surface and subse­
quently reads the data back. Tbis head assembly can 
move from the outside edge of the disk toward the 
center in fixed increments. Once the head assembly is 

2-133 

EJ 
• INDEX HOLE 

0 
I 

WRITE PROTECT NOTCH.-/' 

Figure 1. A Floppy Diskette 

positioned at one of these fixed positions, the head can 
read or write information in a circular path as the disk 
revolves beneath the head assembly. This method 
divides the surface into a fixed number of cylinders (as 
shown in Figure 2). There are normally 77 cylinders on a 
standard disk. Once the head assembly is positioned at a 
given cylinder, data may be read or written on either 
side of the disk: The appropriate side of the disk is 
selected by the read/write head address (zero or one). 
Of course, a single-sided disk can only use head zero. 
The combination of cylinder address and head address 
uniquely specifies a single circular track on the disk. The 
physical beginning of a track is located by means of a 
small hole (physical index mark) punched through the 
plastic near the center of the disk. This hole is optically 
sensed by the drive on every revolution of the disk. 

Table 1: Formatted Disk Capacities 

Single·Density 
Format 

Byte/Sector 128 256 512 1024 
Sectors/Track 26 15 8 4 
Tracks/Disk 77 77 77 77 

Bytes/Disk 256,256 295,680 315,392 315,392 

Double·Density 
Format 

Bytes/Sector 128 256 512 1024 
Sectors/Track 52 30 16 8 
Tracks/Disk 77 77 77 77 

Bytes/Disk 512,512 591,360 630,784 630,784 

AFN 01795A 



APPLICATIONS 

Each track is subdivided into a number of sectors (see 
detailed discussion in section 3). Sectors are generally 
128, 256, 512, or 1024 data bytes in length .. This track 
sectoring· may be accomplished· by one of two tech­
niques: hard sectoring or soft sectoring. Hard sectored 
disks divide each track into a maximum of 32 sectors. 
The beginning of each sector is indicated by a sector 
hole punched in the disk plastic. Soft sectoring, the IBM 
standard method, allows software selection of sector 
sizes. With this technique, each data sector is preceded 
by a unique sector ideIitifier that is read/written by the 
disk controller. 

A floppy disk may also contain a write protect notch 
punched at the edge of the outer jacket of the disk. This 
notch is detected by the drive and passed to the con­
troller as a write protect signal. 

The Floppy Disk Drive 

The floppy disk drive is an electromechanical device 
that records data: on, or reads data from, the surface of 
a floppy disk. The disk drive contains head control elec­
tronics that move the head assembly one increment 
(step) forward (toward the center of the disk) or 
backward (toward the. edge of the disk). Since the 
recording head must1:>e in contact with the disk material 
in order to read or write information, the disk drive also 
contains head-load electronics. Normally the read/write 
head is unloaded until it is necessary to read or write in­
formation on the floppy disk. Onc.e the head assembly 
has been positioned over the correct track on the disk, 
the head is loaded (brought into contact with the disk). 
This sequence prevents excessive disk wear. A small 
time penalty is paid when the head is loaded. Approx­
imately thirty to fifty milliseconds are needed before 
data may be reliably read from, or written to, the disk. 
This time is \mown as the head load time. If desired, the 
head may be moved from cylinder to cylinder while 
loaded. In this manner, only a small time interval (head 
settling time) is required before data may be read from 
the new cylinder. The head settling time is often shorter 
than the head load time. Typically, disk drives also con­
tain drive select logic that allows more than one physical 
drive to be connected to the same interface cable (from 
the controller). By means of a jumper on the drive, the 
drive number may be selected by the OEM or end user. 
The drive is enabled only when selected; when not 
selected, all control signals on the cable are ignored. 

Finally, the drive provides additional signals to the 
system controller regarding the status of the drive and 
disk. These signals include: 

Drive Ready - Signals the system that the drive door 
is closed and that a floppy disk is inserted into the 
drive. 

Track Zero - Indicates that the head assembly is 
located over the outermost track of the disk. 
This signal may be used for calibration of the disk 
drive at system initialization and after an error con­
dition. 

Write Protect - Indicates that the floppy disk loaded 
into the drive is write protected. 

Dual Sided - Indicates that the floppy disk in the 
drive is dual-sided. 

Write Fault - Indicates that an error occurred during 
a recording operation. 

Index - Informs the system that the physical index 
mark of the floppy disk (signifying the start of a data 
track) has been sensed. 

CURRENT TRACK 

Figure 2. Concentric Cylinders on a Floppy Diskette 

2·134 AFN 01795A 



APPLICATIONS 

2. SUBSYSTEM OVERVIEW 

A disk subsystem consists of the following functional 
electronic units: 

1. Disk Controller Electronics 

2. Disk Drive Electronics 

3. Controller/Disk Interface (cables, drivers, termina-
tors) 

4. Controller/Microprocessor System Interface 

The operation of these functional units is discussed in 
the following paragraphs. 

Controller Electronics 

The disk controller is responsible for converting high­
level disk commands (normally issued by software ex­
ecuting on the system processor) into disk drive com­
mands. This function includes: 

I. Disk Drive Selection - Disk controllers typically 
manage the operations of multiple floppy disk 
drives. This controller function permits the system 
processor to specify which drive is to be used in a 
particular operation. 

2. Track Selection - The controller issues a timed se­
quence of step pulses to move the head from its cur­
rent location to the proper disk cylinder from which 
data is to be read or to which data is to be written. 
The controller. stores the current cylinder number 
and computes the stepping distance from the current 
cylinder to the specified cylinder. The controller also 
manages the head select signal to select the correct 
side of the floppy disk. 

3. Sector Selection - The controller monitors the 
data on a track until the requested sector is sensed. 

4. Head Loading - The disk controller determines 
the times at which the head assembly is to be brought 
in contact with the disk surface in order to read or 
write data. The controller is also responsible for 
waiting until the head has settled before ,reading or 
writing information. Often the controller maintains 
the head loaded condition for up to 16 disk revolu­
tions (approximately 2 seconds) after a read or write 
operation has been completed. This feature elimi­
nates the head load time during periods of heavy disk 
I/O activity. 

5. Data Separation - The actual signal recorded on a 
floppy disk is a combination of timing information 
(clock) and data. The serial READ DATA input 
(from the disk drive) must be converted into two sig­
nal streams: clock and data. (The READ DATA in­
put operates at 250K bits/second for single-density 
disks and 500K bits/second for double-density 

disks.) The serial data must also be assembled into 
8-bit bytes for transfer to system memory. A byte 
must be assembled and transferred every 32 
microseconds for single-density disks and every 16 
microseconds for double-density. 

6. Error Checking - Information recorded on a flop­
py disk is subject to both hard and soft errors. Haid 
(permanent) errors are caused by media defects. Soft 
errors, on the other hand, are temporary errors 
caused by electromagnetic noise or mechanical inter­
ference. Disk controllers use a standard error check­
ing technique known as a Cyclic Redundancy Check 
(CRC). As data is written to a disk, a 16-bit CRC 
character is computed and also stored on the disk. 
When the data is subsequently read, the CRC charac­
ter allows the controller to detect data errors. Typi­
cally, when CRC errors are detected, the controlling 
software retries the failed operation (attempting to 
recover from a soft error). If data cannot reliably be 
read or written after a number of retTies, the system 
software normally reports the error to the operator. 
Multiple CRC errors normally indicate unrecover" 
able media error on the current disk track. Subse­
quent recovery attempts must be defined by the sys­
tem designers and tailored to meet system interfacing 
requirements. 

Today, single-chip digital LSI floppy disk controllers 
such as the 8272 perform all the above functions with 
the exception of data separation. A data separation cir­
cuit (a combination of digital and analog electronics) 
synchronizes itself to the actual. data rate of the disk 
drive. This data rate varies from drive to drive (due to 
mechanical factors such as motor tolerances) and varies 
from disk to disk (due to temperature effects). In order 
to operate reliably with both single- and double-density 
storage, the data separation circuit must be based on 
phase-locked loop (PLL) technology. The phase-locked 
loop data separation logic is described in section 5. The 
separation logic, after synchronizing with the data 
stream, supplies a data window to the LSI disk con­
troller. This window differentiates data information 
from clock information within the serial stream. The 
controller uses this window to reconstruct the data 
previously recorded on the floppy disk. 

2·135 

Drive Electronics 

Each floppy disk drive contains digital electronic cir­
cuits that translate TTL-compatible command signals 
into electromechanical operations (such as drive selec­
tion and head movement/loading) and that· sense and 
report disk or drive status to the controller (e.g., drive 
ready, write fault, and write protect). In addition, the 
drive electronics contain analog components to sense, 
amplify, and shape data pulses read from, or written to, 
the floppy disk surface by the read/write head. 

AFN 01795A 



APPLICATIONS 

Controller/Drive Interface 

The controllerldrive interface consists of high-current 
line drivers, Schmitt triggered input gates, and flat or 
twisted pair cable(s) to connect the disk drive electronics 
to the controller electronics. Each interface signal line is 
resistively terminated at the end of the cable farthest 
from the line drivers. Eight-inch drives may be directly 
interfaced by means of 50-conductor' flat cable. 
Generally, cable lengths should be less than ten feet in 
order to maintain noise immunity. 

Normally ,provisions are made for up to four disk 
drives to share the same interface cable. The controller 
may operate as many cable assemblies as practical. LSI 
floppy, disk controllers typically operate one to four 
drives on a single cable. 

Processor/Memory Interface 

The disk controller must interface to the system proc­
essor and, memory for two distinct purposes. First, the 
processor' must specify disk control and command 
paramete~sto the controller. These parameters include 
the selection of the recording density and specification 
or disk formatting information (discussed in section 3). 
In addition to disk parameter specification, the proc­
essor must also send commands (e.g., read, write, seek, 
and scan) to the controller. These commanduequire the 
specification of the command code, drive number, 
cylinder address, sector address, and head address~ 

Most LSI controllers receive cOmmands and parameters 
by means of processor 1/0 instructions. 

In addition to this 1/0 interface, the controller must 
also be designed for high-speed data transfer between 
memory and the disk drive. Two implementation 
methods may be used to coordinate this data transfer. 
The lowest-cost method requires direct processor in­
tervention in the transfer. With this method, the con- , 
troller issues an interrupt to the processor for each data 
transfer. (An equivalent method allows the processor to 
poll an interrupt flag in the controller status word.) In 
the case of a disk write operation, the processor writes a 
data byte (to be encoded into the serial output stream) 
to the disk controller following the receipt of each con­
troller interrupt. During a disk read operation, the proc­
essor reads a data byte (previously assembled from the 
input data stream) from the controller after each inter­
rupt. The processor must transfer a data byte from the 
controller to memory or transfer a data byte from 
memory to the disk controller within 16, or 32 
microseconds after each interrupt (double-density and 
single-density response times, respectively). 

If the system processor must service a variety of other 
interrupt sources, this interrupt method may not be 
practical, especially in double-density systems. In this 
case, the disk controller may be interfaced to a, Direct 

Memory Access (DMA) controller. When the disk con­
troller requires the transfer of a data byte, it simply ac­
tivates 'the DMA request line. The DMA controller in­
terfaces to the processor and, in response to the disk 
controller's request, gains control of the memory inter­
face for a short period of time-long enough to transfer 
the requested data byte to/from memory. See section 6 
for a detailed OMA interface description. 

3. DISK FORMAT 

New floppy disks must be written with a fixed format by 
the controller before these disks may be used to' store 
data. Formatting is a method of taking raw media and 
adding the necessary information to permit the con­
troller to read and write data without error. All format­
ting is performed by the disk controller on a track-by­
track basis under the direction of the system processor. 
Generally; a track may be formatted at any time. 
However, since formatting "initializes" a complete disk 
track, all previously written data is lost (after a format 
operation). A format operation is normally used only 
when initializing new floppy disks. Since soft-sectoring 
in such a predominant formatting technique (due to 
IBM's influence), the following discussion will limit 
itself to soft-sectored formats. 

Data Recording Techniques, 

Two standard data recording techniques are used to 
combine clock and data information for storage on a 
floppy disk. The single-density technique is referred to 
as FM encoding. In FM encoding (see Figure 3), a dou­
ble frequency encoding technique is used that inserts a 
data bit between two adjacent clock bits. (The presence 
of a data bit represents a binary "one" while the 
absence of a data bit represents a binary "zero.") The 
two adjacent clock bits are referred to as a bit cell, and 
except for unique field identifiers, all clock bits written 
on the disk are binary "ones." In FM encoding, each 
data bit is written at the center of the bit cell and the 
clock bits are written at the leading edge of the bit cell. 

The encoding used for double-density recording is 
termed MFM encoding (for "Modified FM"). In MFM 
encoding (Figure 3) the data bits are again written at the 
center of the bit cell. However, a clock bit is written at 
the leading edge of the bit cell only if no data bit was 
written in the previous bit cell and no data bit will' be 
written in the present bit cell. 

Sectors 

Soft-sectored floppy disks divide each track into a 
number of data sectors. Typically, sector sizes of 128, 
256, 512, or 1024 data bytes are permitted. The sector 
size is specified when the track is initially formatted by 
the controller. Table 1 lists the single- and double-

2·136 AFN 01795A 



APPLICATIONS 

density data storage capacities for each of the four sec­
tor sizes. Each sector within a track is composed of the 
following four fields (illustrated in Figure 4): 

1. Sector ID Field - This field, consisting of seven 
bytes, is written only when the track is formatted. 
The ID field provides the sector identification that is 
used by the controller when a sector must be read or 
written. The first byte of the field is the ID address 
mark, a unique coding that specifies the beginning of 
the ID field. The second, third, and fourth bytes are 
the cylinder, head, and sector addresses, respective­
ly, and the fifth byte is the sector length code. The 
last two bytes are the 16-bit eRe character for the 
ID field. During formatting, the controller supplies 
the address mark. The cylinder, head, and sector ad­
dresses and the sector length code are supplied to the 
controller by the processor software. The eRe 
character is derived by the controller from the data in 
the first five bytes. 

2. Post ID Field Gap - The post ID field gap (gap 2) 
is written initially when the track is formatted. Dur­
ing subsequent write operations, the drive's write cir­
cuitry is enabled within the gap and the trailing bytes 
of the gap are rewritten each time the sector is up­
dated (written). During subsequent read operations, 
the trailing bytes of the gap are used to synchronize 
the data separator logic with the upcoming data 
field. 

3. Data Field - The length (number of data bytes) of 
the data field is determined by software when the 
track is formatted. The first byte of the data field is 
the data address mark, a unique coding that specifies 

DATA 

FM 

MFM 

J l-II- DATA 
~CLDCK 

the beginning of the data field. When a sector is to be 
deleted, (e.g., a hard error on the disk), a deleted 
data address mark is written in place of the data ad­
dress mark. The last two bytes of the data field com­
prise the eRe character. 

4. Post Data Field Gap - The post data field gap 
(gap 3) is written when the track is formatted and 
separates the preceding data field from tbenext 
physical ID field on the track. Note that a post data 
field gap is not written following the last physical 
sector on a track. The gap itself contains a program­
selectable number of bytes. Following a sector 'up­
date (write) operation, the drive's write logic is 
disabled during the gap. The actual size of gap 3 is 
determined by the maximum number of data bits 
that can be recorded on a track, the number of sec­
tors per track and the total sector size (data plus 
overhead information). The gap size must be ad­
justed so that it is large enough to contain the discon­
tinuity generated on the floppy disk when the write 
current is turned on or off (at the start or completiQn 
of a disk write operation) and to contain a syn­
chronization field for the upcoming ID field (of the 
next sector). On the other hand, the gaps must be 
small enough so that the total number of data bits re­
quired on the track (sectors plus gaps) is less than the 
maximum number of data bits that can be recorded 
on the track. The gap size must be specified for all 
read, write, and format operations. The gap size 
used during disk reads and writes must be smaller 
than the size used to format the disk to avoid the 
splice points between contiguous physical sectors. 
Suggested gap sizes are listed in Table 9. 

1 I 1 o I 0 I 0 

NOTE THAT THE FM BIT CELL IS TWICE THE SIZE OF THE MFM BIT CELL. THUS, THE 
FM TIME SCALE IN THIS FIGURE IS 4 "slBIT WHILE THE MFM TIME SCAL.E IS 2 "sl81T 

Figure 3. FM and MFM Encoding 

2·137 AFN 01795A 



APPLICATIONS 

Tracks 

The overall format for a trackis illustrated in Figure 4. 
Each track consists Qf the following fields: 

1. Pre-Index Gap - The pre-index gap (gapS) is writ­
,'ten'only when the track is formatted. 

2. Index Address Mark - The index 'address mark 
consiSts of a unique code that indicates the, beginning 
of a data track. One index mark is written on each 
track when the track is formatted. 

3. Post Index Gap - The post index gap (gap 1) is 
usCd during disk read and write operations to syn-

nPHYSICAL 
, INDEX 

MARK 
----'---' 

f~ FINAL PRE· 
INDEX 

POST 
SECTOR INDEX INDEX 

DATA GAP 
GAP ADDRESS GAP 

,FIELD (GAP 4) 
(GAP 5) MARK 

(GAP') 

, 
1 

chronize the data separator logic with the data to be 
read from the ID field (of the first sector). The post 
index gap is written only when the disk is formatted. 

4. Sectors - The sector infermation (discussed above) 
is repeated once for each sector on the track. 

S. FinalGap - The final gap (gap4) is written when 
the track is formatted and extends from the last 
physical data field on the track to the physical index 
mark. The length of this gap is dependent on the 
number of bytes per sector specified, the lengths of 
the program-selectable gaps specified, and the drive 
speed. ' 

SECTOR 
POST 10 
'FIELD SECTOR. • GAP DATA FIELD 

10 FIELD (GAP 2) 

HEXFF SYNC I SYNC (HEX 00) HEX FF (HEX 00) 

I 

DATA 

I CRC I CRC ADDRESS '28 x 2" USER DATA BYTeS BYTE. BYTE 2 MARK 

/I I 

POST POST 
DATA SECTOR 

POST ID DATA SECTOR 
POST ID ~~/ FIELD FIELD SECTOR 2 FIELD 3 

FIELD j SECTOR 
2 GAP DATA FIELD GAP DATA GAP GAP ID FIELD ID FIELD (GAP 2) (GAP 2) ~ FIELD (GAP 3) (GAP 3) 

I I 
., I 

I SYNC HEX FF (HEX 00) I SYNC HEX FF (HEX 00) 

ID 
TRACK I HEAD I SECTOR I SECTOR I CRC I CRC I ADDRESS 

MARK ADDRESS ADDRESS ADDRess LENGTH BYTE. BYTE 2 

BYTE. BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7 

Figure 4. Standard Floppy Diskette Track Format (From SBe 204 Manual) 

2·138 AFN 01795A 



APPLICATIONS 

Sector Interleaving 

The initial formatting of a floppy disk determines where 
sectors are located within a track. It is not necessary to 
allocate sectors sequentially around the track (i.e., 
1,2,3, ... ,26). In fact, is is often advantageous to place 
the sectors on the track in a non-sequential order. Se­
quential sector ordering optimizes sector access times 
during multi-sector transfers (e.g., when a program is 
loaded) by pe~mitting the number of sectors specified 
(up to an entire track) to be transferred within a single 
revolution of the disk. A technique known as sector in­
terleaving optimizes access times when, although sectors 
are accessed sequentially, a small amount of processing 
must be performed between sector reads/writes. For ex­
ample, an editing program performing a text search 
reads sectors sequentially, and after each sector is read, 
performs a software search. If a match is not found, the 
software issues a read request for the next sector. Since 
the floppy disk continues to rotate during the time that 
the software executes, the next physical sector is already 
passing under the read/write head when the read request 
is issued, and the processor must wait for another com­
plete revolution of the disk (approximately 166 
milliseconds) before the data may actually be input. 
With interleaving, the sectors are not stored sequentially 
on a track; rather, each sector is physically removed 
from the previous sector by some number (known as the 
interleave factor) of physical sectors as shown in Figure 
5. This method of sector allocation provides the proc­
essor additional execution time between sectors on the 
disk. For example, with a 26 sector/track format an in­
terleave factor of 2 provides 6.4 milliseconds of ~roces­
sing time between sequential 128 byte sector accesses. 

Figure 5. Interleaved Sector Allocation Within a nack 

To calculate the. correct interleave factor, the maximum 
processor time beJ:ween sector operations must be divid­
ed by the time required for a complete sector to pass 
under the disk read/write head. After determining· the 
interleave factor, the correct sector numbers are passed 
to the disk controller (in the exact order that they are to 
physically appear on the. track) during the execution of a 
format operation. 

4. THE 8272 FLEXIBLE DISKETTE 
CONTROLLER 

The 8272 is a single-chip LSI Floppy Disk Controller 
(FDC) that contains the circuitry necessary to imple­
ment both single-and double-density floppy disk storage 
subsystems (with up to four dual-sided disk drives per 
FDC). The 8272 supports the IBM 3740 single-density 
recording format (FM) and the IBM System 34 double­
density recording format (MFM). With the 8272, less 
than 30 ICs are needed to implement a complete disk 
subsystem. The 8272 accepts and executes high-level 
disk commands such as format track, seek, read sector, 
write sector, and read track. All data synchronization 
and error checking is automatically performed by the 
FDC to ensure reliable data storage and subsequent 
retrieval. External logic is required only for the genera­
tion of the FDC master clock and write clock (see Sec­
tion 6) and for data separation (Section 5). The FDC 
provides signals that control the startup and base fre­
quency selection of the data separator. These signals 
greatly ease the design of a phase-locked loop data 
separator. 

In addition to the data separator interface signals, the 
8272 also provides the necessary signals to interface to 
microprocessor systems with or without Direct Memory 
Access (DMA) capabilities. In order to interface to a 
large number of commercially available floppy disk 
drives, the FDC permits software specification of the 
track stepping rate, the head load time, and the head 
unload time. 

The pin configuration and internal block diagram of the 
8272 is shown in Figure 6. Table 2 contains a description 
for each FDC interface pin. 

Floppy Disk Commands 

The 8272 executes fifteen high-level disk interface 
commands: 
Specify 
Sense Drive Status 
Sense Interrupt Status 
Seek 
Recalibrate 
Format Track 
Read Data 
Read Deleted Data 

Write Data 
Write Deleted Data 
Read Track 
Read ID 
Scan Equal 
Scan High or Equal 
Scan Low or Equal 

AFN 01795A 



APPLICATIONS 

Each command is initiated by a multicbyte transfer from' 
the processor to the FOC (the transferred bytes contain 
command and parameter information). After complete 
command specification, the FOCautomaticaily ex­
ecutesthecommand. The command result data (after 
execution of the command) may require' a mUlti-byte 
transfer of status~informationbackto the'processor. It 
is convenient to consider each FOC command 'as Coli­
sisting of the following three phases: 

COMMANO PHASE: The executing program 
transfers to the FOC all the 
information required to per­
form a particular disk opera­
tion. The 8272 automatically 
enters the command phase 
after RESET and following 
the completion of the result 
phase (if' any) of a previous 
command. ' 

Yee DBo., DATA BUS 

RW/sEEK 
BUFFER 

LCT/DIR 

FR/STF 

HDL 

RDY 

DB, WPITS 

DB. FLT/TRKO 

PSo 

PS, 

WR DATA 

DSo 

DB, DS, 

DRQ HDSEL 

DACK MFM , 

TC WE 

IDX Yee 
INT RD DATA 

CLK DW 
es 

GND WRCLK 
CLK,~ 

Vee ---.. 
'GNO_ 

EXECUTION PHASE: The FOC performs the 
operation as instructed. The 
'execution phase 'is entered 
immediately after the last 

, command parameter is writ­
ten' to the FOC in the 
preceding command phase. 
The execution phase normal­
ly ends when the last data 
byte is transferred to/from 
the disk (signalled by the TC 
input to theFOC) or when an 
error occurs. 

RESULT PHASE: After completion ,of the disk 
operation, status and other 
housekeeping information 
are made available to the 
processor. After the proc­
essor reads this information, 
the FOC reenters, the com-

,mand phase and is ready to 
accept another command. 

READY 
WRITE PROTECTITWO SIDE 
INDEX 
FAULTITRACK P 

DRIVE SELECT 0 
DRIVE SE(Ect 1 
MFM MODE 

lIW/sEEK 
HEAD LOAD 
HEAD SELECT 
LOW CURRENT/DIRECnON 
FAULT RESET/STEP 

Figure 6. 8272 Pin Configuration and ,Internal Block Diagram 

2·140 AFN 01795A 



APPLICATIONS 

Table 2. 8272 FDe Pin Description 

Number Pin I/O To/From DeSCription 
Symbol 

1 RST I uP Reset. Active-high signal that piaces the FDC in the "idle" state and all 
disk drive output signals are forced inactive Oow). This input must be 
held active during power on reset while the RD and WR inputs are active. 

2 RD I· uP Read. Active-low control signal that enables data transfer from the FOC 
to the data bus. 

3 WR I· uP Write. Active-low control signal that enables data transfer from the data 
bus into the FDC. 

4 CS I uP Chip Select. Active-low control signal that selects the FOC. No reading or 
writing will occur unless the FOC is selected. 

5 Ao I" uP Address. Selects the Data Register or Main Status Register for input/out-
put in conjunction with the RD and WR inputs. (See Table 3.) 

6-13 DBa-DB, lIO· uP Data Bus. Bidirectional three-state 8-bit data bus. 

14 DRQ 0 DMA DMA Request. Active-high output that indicates an FOC request for 
DMA services. 

15 DACK I DMA DMA Acknowledge. Active-low control signal indicating that the re-
quested DMA transfer is in progress. 

16 TC I DMA Terminal Count. Active-high signal that causes the termination of a com-
mand. Normally, the terminal count input is directly connected to the 
TCIEOP output from the DMA controller, signalling that the DMA 
transfer has. been completed. In a non-DMA environment, the processor 
must count data transfers and supply a TC signal to the FDC. 

17 lOX I Drive Index. Indicates detection of the physical index mark (the beginning of a 
track) on the selected disk drive. 

18 INT 0 uP Interrupt Request. Active-high signal indicating an 8272 interrupt service 
request. 

19 CLK I Clock. Signal phase 8 MHz clock (50070 duty cycle). 

20 GND Ground. DC power return. 

21 WRCLK I Write Clock. 500 kHz (FM) or 1 MHz (MFM) write clock with a constant 
pulse width of 250 ns (for both FM and MFM recording). The write clock 
must be present at all times. 

22 DW I PLL Data Window. Data sample signal from the phase-locked loop indicating 
that the FDC should sample input data from the disk drive. 

23 RDDATA I Drive Read Data. FDC input data from the selected disk drive. 

24 VCO 0 PLL VCO Sync. Active-high output that enables the phase-locked loop to 
synchronize with the input data from the disk drive. 

25 WE 0 Drive Write Enable. Active-high output that enables the disk drive write gate. 

26 MFM 0 PLL MFM Mode. Active-high output used by extemallogic to enable the 
MFM double-density recording mode. When the MFM output is low, 
single-density FM recording is indicated. 

27 HDSEL 0 Drive Head Select. Selects head 0 or head I on a dual-sided disk. 

28,29 DS],DSo 0 Drive Drive Select. Selects one of four disk drives. 

30 WRDATA 0 Drive Write Data. Serial data stream (combiniltion of clock and data bits) to be 
written on the disk. 

31,32 PS],PSo 0 Drive Precompensation (pre-shift) Control. Write precompensation output con-
trol during MFM mode. Specifies early, late, and normal timing signals. 
See the discussion in Section 5. 

2-141 AFN 01795A 



APPLleAIIUN::i 

Table 2. 8272 FDC Pin Description (ccmtinued) 

Number Pin 110 ToIl;'rom . Del\cription 
Symbol 

33 FLT/T~O I Drive Fault/Track O. Senses the disk drive fault condition in the Read/Write 
mod~ and the Track 0 condition in the S~ek mode. . . 

34 WP/TS ' I Drive Write Protect/Two-Sided. Senses the disk write protect status in the 
Read/Write m04e and the dual-sided media status in the Seek mode. 

35 ROY I Drive Ready. Senses the disk drive ready status, 

36 HI)L 0 Drive Head Load. Loads the disk drive read/write head. (The head is placed in 
contact with the disk.) 

37 FR/STP 0 Drive Fault Reset/Step. Resets the fault flip-flop in the disk drive when 
. operating in .the Read/Write mode. Provides head step pulses (to move 

the head from one cylinder to another cylinder) in the Seek mode. 

38 LCT/DIR 0 Drive Low Current/Direction. Signals that the recording head has been position-
ed over the inner cylinders (44-77) of the floppy disk in the Read/Write 
mode. (The write current must be lowered when recording on the phys-
ically shorter inner cylinders of the disk. Most drives do not track the ac-
tual head position and require that the FOC supply this signal.) Deter-
mines the hel,ld step direction in the Seek mode. In the Seek mode, a high 
level on this pin steps the read/write head toward.the spindle (step-in); a 
low level steps the head away from the spindle (step-out). 

39 RW(~EEK 0, Drive Read, Write/Seek Mode. selector. A high level selects the Seek mode; a 
low level seie~ts the Read/Write mode. 

40 Vee + 5V DC Power. 

·Disabled when es is high. 

Interface Registers 

To support information transfer between the FDC and 
the system processor, the 8272 contains two 8-bit 
registers: the Main Status Register and the. Data 
Register. The Main Status Register(read only) contains 
FDC status information and may be accessed· at any 
time. The Main Status Register (Table 4) provides the 
system processor with the status of each disk drive, the 
status of the FPC, and the status of the processor inter­
face. The,Data Register,(read/write) stores data, com­
mands, parameters, and disk drive status information. 
The Data Register is .. used to program the FDC during 
the command phase and to obtain result information 
after completion of FDC operations. Data is read from, 
or written to, the FPC registers by the combination of 
the AO, RD, WR, and CS signals, as described in 

In addition to the· Main Status Register, the FOC con­
tains four additional status registers (STD, STl, ST2, 
and ST3). These registers are only available during the 
result phase of a command. 

Table 3. FDC ReadlWrlte Interface 

CS Ao RD WR Function 

0 0 0 1 Read Main Status Register 
0 0 1 0 Illegal 
0 0 0 0 Illegal 
0 1 0 0 Illegal 
.0 1 0 1 Read from Data Register 
0 1 1 0 Write into Data Register 
1 X X X Data Bus is tl).ree-stated . Table 3. 

2·142 AFN 01795A 



APPLICATIONS 

Table 4. Main Status Register Bit Definitions 

Bit Symbol Description 
Number 

0 DoB Disk Drive 0 Busy. Disk Drive 0 is 
in the Seek mode. 

I DIB Disk Drive I Busy. Disk Drive I is 
in the Seek mode. 

2 D2B Disk Drive 2 Busy. Disk Drive 2 is 
in the Seek mode. 

3 D3B Disk Drive 3 Busy. Disk Drive 3 is 
in the Seek mode. 

4 CB FDC Busy. A read or write com-
mand is in process. 

5 NOM Non-DMA Mode. The FDC is in 
the non-DMA mode when this bit is 
high. This bit is set only during the 
execution phase of commands in 
the non-DMA mode. Transition to 
a low level indicates that the exe-
cution phase has ended. 

6 DlO Data Input/Output. Indicates the 
direction of a data transfer between 
the FDC and the Data Register. 
When DIO is high, data is read 
from the Data Register by the proc-
essor; when 010 is low, data is 
written from the processor to the 
Data Register. 

7 RQM Request for Master. Indicates that 
the Data Register is ready to send 
data to, or receive data from, the 
processor. 

Command/Result Phases 

Table 5 lists the 8272 command set. For each of the fif­
teen commands, command and result phase data 
transfers are listed. A list of abbreviations used in the 
table is given in Table 6, and the contents of the result 
status registers (STO-ST3) are illustrated in Table 7. 

The bytes of data which are sent to the 8272 during the 
command phase, and are read out of the 8272 in the 
result phase, must occur in the order shown in Table 5. 
That is, the command code must be sent first and the 
other bytes sent in the prescribed sequence. All bytes of 
the command and result phases must be read/written as 
described. After the last byte of data in the command 
phase is sent to the 8272 the execution phase 
automatically starts. In a similar fashion, when the last 
byte of data is read from the 8272 in the result phase, 

the command is automatically ended and the 8272 is 
ready for a new command. A command may be aborted 
by simply raising the terminal count signal (pin 16). This 
is a convenient means of ensuring that the 'processor 
may always gain control of the 8272 (even if the disk 
system hangs up in an abnormal manner). 

It is important to note that during the result phase all 
bytes shown in Table 5 must be read. The Read Data 
command, for example, has seven bytes of data in the 
result phase. All seven bytes must be read in order to 
successfully complete the Read Data command. The 
8272 will not accept a new command until all seven 
bytes have been read. The number of command and 
result bytes varies from command-to-command. 

In order to read data from, or write data to, the Data 
Register during the command and result phases, the 
system processor must examine the Main Status Register 
to determine if the Data Register is available. The DIO 
(bit 6) and RQM (bit 7) flags in the Main Status Register 
must be low and high, respectively, before each byte of 
the command word may be written into the 8272. Many 
of the commands require multiple bytes, and as a result, 
the Main Status Register must be read prior to each byte 
transfer to the 8272. To read status bytes during the 
result phase, DIO and RQM in the Main Status Register 
must both be high. Note, checking the Main Status 
Register in this manner before each byte transfer 
to/from the 8272 is required only in the command and 
result phases, and is NOT required during the execution 
phase. 

Execution Phase 

All data transfers to (or from) the floppy drive occur 
during the execution phase. The 8272 has two primary 
modes of operation for data transfers (selected by 
the specify command): 

1. DMA mode 

2. non-DMA mode 

In the DMA mode, DRQ (DMA Request) is activated 
for each transfer request. The DMA controller responds 
to DRQ with DACK (DMA Acknowledge) and RD (for 
read commands) or WR (for write commands). DRQ is 
reset by the FDC during the transfer. INT is activated 
after the last data transfer, indicating the completion of 
the execution phase, and the beginning of the result 
phase. In the DMA mode, the terminal count 
(TC/EOP) output of the DMA controller should be 
connected to the 8272 TC input to properly terminate 
disk data transfer commands. 

2-143 AFN 01795A 



APPLICATIONS 

Table 5. 8272 Command Set 
DATA BUS DATA BUS 

PHASE RlWI 07 08 Os 04 03 02 0, DO I REMARKS PHASE RIW 07 08 05 °4 03 °2 0, DO REMARKS 

READ DATA 
" 

READ A TRACK 

Command W MT MFM SK 0 0 1 1 0 Command Codes Command W 0 MFM SK 0 0 0 1 0 Command Codes 

W 0 0 0 0 0 HDS DS1 DSO W 0 0 0 0 '0 HDS DS1 DSO 

W C Sector ID information W C Sector 10 information 
W 

H ______ 
prior: to Command W H prior to Command 

W R e)(ecution W R execution 
W N W N 
W EOT W EOT 
W GPL W GPL 
W DTL W DTL 

Execution Data transfer Data transfer 

between the FDD 
Execution between the FDD 

and the main-system and the main-system. 
Foe reads the 

Result R STO Status information complete track 
R ST, after Command contents from the 
R ST 2 execution physical Index 
R C mark: to EOT 
R H Sector 10 information 
R R after command Result R STO Status information 
R N execution R ST, after Command 

R ST2 execution 
READ DELETED DATA R C 

Command W MT MFM SK 0 , 1 0 0 Command Codes R H _____ Sector In information 

0 0 
R R after Command 

W 0 0 0 HDS OS, DSO R N execution 
W ______ C Sector 10 information 
W H prior to COmmand READ 10 
W R execution Command W 0 MFM 0 0 1 0 , 0 Command Codes 
W N 
W EC' W 0 0 0 0 0 HDS DS1 DSO 

If>! GPL 
W DTL ----- Execution The first correct 10 

Execution Data transfer 
information on the 
track is stored in 

between the FDo Data Register 
and the main-system 

Result R STO Status information Result R STO Status information 
R ST 1 after Command R _____ ST1 after Command 
R ST2 execution R ST 2 execution 
R C R C 
R H Sector 10 information R H Sector 10 information 
R R after Command R R during Execution 
R N execution R N Phase 

WRITE DATA FORMAT A TRACK 

Command W MT MFM 0 0 0 , 0 1 Command Codes Command W 0 MFM 0 0 1 1 0 1 Command Codes 

W 0 0 0 0 0 HDS DS1 DSO W 0 0 0 0 0 HDS DS1 DSO 

W C Sector 10 information W N~ _____ Bytes/Sector 
W H prior to Command W SC SectorslTrack 
W R execution W GPL Gap 3 
W N W 0 ______ Filter Byte 
W EOT 
W GPL Execution FOC formats an 
W ______ DTL entire track 

Execution Data transfer Result R STO Status information 
between the main· R ST1 ______ after Command 
system and the FOo R ST2 _____ execution 

Result A STO Status information R C 

R ST, after Command R H In this case, the 10 

R ST2 _ ell.ecution R R information has no 
R C R N meaning 
R H Sector 10 information SCAN EQUAL 
R R after Command 
R N execution Command W MT MFM SK , 0 0 0 , Command Codes 

WRITE DELETED DATA W 0 0 0 0 0 HDS OS, DSO 

Command W MT MFM 0 0 , 0 0 , Command Codes 
W C Sector 10 information 
W H prior to Command 

W 0 0 0 0 0 HDS DSl DSO W R execution 
W C Sector 10 information W N 
W H prior to Command W EOT_, ___ 

W R execution W GPL _____ 

W N W STP __ , ___ 

W ______ EDT 

W GPL Execution Data compared 
W DTL. between the FOD 

Execution Data transfer 
and the main·system 

between the Foo Result R STO Status information 
and the main-system R ST, after Command 

Result, R STO Status information R ST2 execution 

R ST, after Command R C 

R ST2 execution R _____ H Sector 10 information 

R C ______ R ______ R after Command 

R H Sector 10 information A N execution 

R R after Command 
R N execution 

Note: 1. AO:: 1 for all operatIons. 

2-144 AFN 01795A 



APPLICATIONS 

Table 5. Command Set (Continued) 
r------r--.-�------~D~AT~A~B~U~S~-------r-----------,r------r--'I--------~D~AT~A~B~u~s~-------r-----------, 

PHASE PHASE 

SCAN LOW OR EQUAL RECALIBRATE 

~-- -------.----I--------r--r--MT MFM SK 1 0 0 Command Codes Command W 0 

_-O--O-_-~-_-_-. ~ ~~:DS_:_:S: ~~~~~~~~~:~~mation Execution ~_ 0 ___ _ 

o DSl DSO 
Command Codes 

Head retracted to 
Track 0 

_______ N ____ ._._. __ .. _ SENSE INTERRUPT STATUS 
______ EOT ___________ C-o-m·-m-a-ndCT-W:c-,--:----c-----:--,--:--.,---,---,-:C,-o-m-m-a-ndc-::C-od-:-e-s.---1 
_____ GPL ___ . __ 
_____ STP Result R 5T 0 ~____ Status information at 

_____ STO ____ _ 
______ ST 1 ____ _ 
_____ ST2 ____ ._ 
_____ C ___ : ____ _ 

Data compared 
between the FDD 
and the main-system 

Status information 
after Com mand 
execution 

A C the end of each seek 

SPECIFY 

operation about the 
FDC,. 

c_om_m_nand 1_ :www __ J==::."='--.::::.===========~~~c_o_m_m_a_nd_C=-Od_._S_---I _~~ - SP:LT --·+--------- HUT .. "NO Timer Settings 

SENSE DRIVE STATUS ______ ~ _____ ~_ ~~~~o~~~~~~~mation 

I ____ --1~~L:-=-=-=-=-=-=-=-=-=-=-=_':N~= --= -= -= -= -= -= -= -=-=--~~ execution t- --~------

-W- ';;--0-0-0 -0- --;----rC-om-m-an-d---"C-od-es--l Command 

Symbol 

C 

D 

DSO,DSI 

DTL 

SCAN HIGH OR EQUAL 

MT MFM SK 

o 0 0 0 HDS DS1 DSO 
______ C _____ _ 
______ . H .. __________ _ 

======'E~T------______ GPL ____ ---
_____ STP ___ - __ 

Command Codes 

Sector 10 information 
prior Command 
execution 

Data compared 
between the FOD 
and the main-system 

______ 5T 0 ~____ Status information 
____ 5T 1 ______ after Command 
_____ ST 2 ______ execution 

WOO HDS DSl DSO 
Result 

Command 

Execution 

W 

W 

W 

_____ ST3 ____ _ 

SEEK 

______ C 

1 

HDS DSl DSO 

Status information 
about the FOD 

Command Codes 

Head is positioned 
over proper Cylinder 
on Diskette 

r------"L-~------------------~-L----------4 

Command W 

INVALID 

_____ Invalid Codes ___ -__ Invalid Command 
Codes (NoOp - FDC 
goes into Standby 
State) 

------- C Result A ______ STO ST 0=80 
______ H Sector ID information 
______ R _____ after Command 

(16) 

N execution 

Table 6. Command/Result Parameter Abbreviations 

Description Symbol Description 

Cylinder Address. The currently selected EOT End of Track. The final sector number of the 
cylinder address (0 to 76) on the disk. current track. 

Data Pattern. The pattern to be written in GPL Gap Length. The gap 3 size. (Gap 3 is the 
each sector data field during formatting. space between sectors excluding the VCO syn-

Disk Drive Select. chronization field as defined in section 3.) 

DSI DSO H Head Address. Selected head: 0 or I (disk side 
0 0 Drive 0 o or I, respectively) as encoded in the sector 
0 I Drive I ID field. 
I 0 Drive 2 HLT Head Load Time. Defines the time interval 
I I Drive 3 that the FOe waits after loading the head 

Special Sector Size. During the execution of before initiating a read or write operation. 
disk read/write commands, this parameter is Programmable from 2 to 254 milliseconds (in 
used to temporarily alter the effective disk sec- 'increments of 2 ms). 
tor size. By setting N to zero, DTL may be HUT Head Unload Time. Defines the time interval 
used to specify a sector size from I to 256 from the end of the execution phase (of a read 
bytes in length. If the actual sector (on the or write command) until the head is unloaded. 
diskette) is larger than DTL specifies, the re- Programmable from 16 to 240 milliseconds (in 
mainder of the actual sector is -not passed to increments of 16 ms). 
the system during read commands; during write 
commands, the remainder of the actual sector MFM MFM/FM Mode Selector. Selects MFM 

is written with all-zeroes bytes. DTL should double-density recording mode when high, FM 

be set to FF hexadecimal when N is not zero. single-density mode when low. 

2-145 AFN 01795A 



APPLICATIONS 

Table 6. Command/Result Parameter Abbreviations (continued) 

SYmbol " Description Symbol Description 

MT Multi-Track Selector. When set, this flag SK Skip Flag. When this flag is set, sectors con-
selects the multi-track operating mode. In this taining deleted data address marks will auto-
mode (used only with dual-sided disks), the matically be skipped during the execution of 
FOe treats a complete cylinder (under both multi-sector Read Data or Scan commands. In 
read/write head 0 and read/write head 1) as a the same manner, a sector containing a data 
single track. The FDC operates as if this address mark will automatically be skipped 
expanded track started at the first sector under during the execution of a multi-sector Read 
head 0 and ended at the last sector under head Deleted Data command. 
1. With this flag set (high), a multi-sector read 

SRT Step Rate Interval. Defines the time interval 
opeation will automaticallY continue to the between step pulses issued by the FDC (track-
first sector under head 1 when the FOC 
finishes ',operating on the last sector under head 

to-track access time). Programmable from 1 to 

O. 
16 milliseconds (in increments of 1 ms). 

N Sector Size. The number of data bytes within a 
STO Status Register 0-3. Registers within the FDC 

sector. (See Table 9.) 
STl that store status information after a command 
ST2 has been executed. This status information is 

ND Non-DMA Mode Fiag. When set (high), this ST3 available to the processor during the Result 
flag indicates that the FDC is to operate in the Phase after command execution. These 
non.DMA mode. In this mode, the processor registers may only be read after a command 
is interrupted for each data transfer. When has been executed (in the exact order shown in 
low, theFDC interfaces to a DMA controller Table S for each command). These registers 
by means of the DRQ and DACK signals. should not be confused with the Main Status 

R Sector Address. Specifies the sector number to Register. 

be read or written. In multi-sector transfers, STP Scan Sector Increment. During Scan opera· 
this parameter specifies the sector number of tions, this parameter is added to the current 
the first sector to be read or written. sector number in order to determine the next 

SC Number of Sectors per Track. Specifies the sector to be scanned. 

number of sectors per track to be initialized by 
the Format Track command. 

Table 7. 'Status Register Definitions 

Bit Symbol Description 
Number 

StatuS Register 0 

7,6 IC Interrupt Code. 

00 - Normal termination of command. The specified command was properly executed and 
completed without error. 

01 - Abnormal termination of command. Command execution was started but could not be 
successfully completed, 

10- Invalid cOip,mand. The requested command could not be executed. 
11 - Abnormal'termination. During command execution, the disk drive ready signal 

changed state. 

S SE Seek End. This flag is set (high) when the FDC has completed the Seek command and the' 
read/write head is positioned over the correct cylinder. 

4 EC Equipment Check Error. This flag is set (high) if a fault signal is received from the disk drive 
'or if the track 0 signal fails to become active after 77 step pulses (Recallbratecommand). 

3 NR Not Ready Error. This flag is set if a read or write command is issued and either the drive is 
not ready or the command specifies side 1 (head I) of a single·sided disk. 

2 H Head Address. The head address at the time of the interrupt. 

1,0 DS1,DSO Drive Select. The number of the drive selected at the time of the interrupt. ' 

2-146 AFN 01795A 



APPLICATIONS 

Table 7. Status Register Definitions (continued) 

Bit Symbol Description 
Number 

Status Register 1 

7 EN End of Track Error. This flag is set if the FDe attempts to access a sector beyond the fmal 
sector of the track. 

6 Not used. This bit is always low. 

5 DE Data Error. Set when the FDe detects a eRe error in either the ID field or the data field of a 
sector. 

4 OR Overrun Error. Set (during data transfers) if the FDe does not receive DMA or processor serv-
ice within the specified time interval. 

3 Not used. This bit is always low. 

2 ND Sector Not Found Error. This flag is set by any of the following conditions. 
a) The FDe cannot locate the sector specified in the Read Data, Read Deleted Data, or Scan 

command. 
b) The FDe cannot locate the starting sector specified in the Read Track command. 
c) The FDe cannot read the ID field without error during a Read ID command. 

1 NW Write Protect Error. This flag is set if the FDe detects a write protect signal from the disk 
drive during the execution of a Write Data, Write Deleted Data, or Format Track command. 

0 MA Missing Address Mark Error. This flag is set by either of the following conditions: 
a) The FDe cannot detect the ID address mark on the specified track (after two occurrences 

of the physical index mark). 
b) The FDe cannot detect the data address mark or deleted data address mark on the 

specified track. (See also the MD bit of Status Register 2.) 

Status Register 2 

7 Not used. This bit is always low. 

6 CM Control Mark. This flag is set when the FDC encounters one of the following conditions: 
a) A deleted data address mark during the execution of a Read Data or Scan command. 
b) A data address mark during the execution of a Read Deleted Data command. 

5 DD Data Error. Set (high) when the FOC detects a CRe error in a sector data field. This flag is 
not set when a CRe error is detected in the ID field. 

4 WC Cylinder Address Error. Set when the cylinder address from the disk sector ID field is different 
from the current cylinder address maintained within the FDC. 

3 SH Scan Hit. Set during the execution of the Scan command if the scan condition is satisfied. 

2 SN Scan Not Satisfied. Set during execution of the Scan command if the FDC cannot locate a sec-
tor on the specified cylinder that satisfies the scan condition. 

1 BC Bad Track Error. Set when the cylinder address from the disk sector ID field is FF hexadecimal 
and this cylinder address is different from the current cylinder address maintained within the 
FDC. This all "ones" cylinder number indicates a bad track (one containing hard errors) ac-
cording to the IBM soft-sectored format specifications. 

0 MD Missing Data Address Mark Error. Set if the FDC cannot detect a data address mark or 
deleted data address mark on the specified track. 

2·147 AFN 01795A 



APPLICATIONS 

Table 7. Status Register Definitions (continued) 

Bit Symbol Description 
Number 

Status RegIster 3 

7 Ff Fault. This flag indicates the status of the fault signal from the selected disk drive. 

6 WP Write Protected. This flag indicates the status of the write protect signal from the selected disk 
drive. 

S ROY Ready. This flag indicates the status of the ready signal from the selected disk drive. 

4 TO Track o. This flag indicates the status of the track 0 signal from the selected disk drive. 

3 TS Two-Sided. This flag indicates the status of the two-sided signal from the selected disk drive. 

2 H Head Address. This flag indicates the status of the side select signal for the currently selected 
disk drive. 

I,D DSI,DSO Drive Select. Indicates the currently selected disk drive number. 

In the non-DMA mode, transfer requests are indicated 
by activation of both the INT output signal and the 
RQM flag (bit 7) in the Main Status Register. INT can 
be used for interrupt-driven systems and RQM can be 
used for polled systems. The system processor must re­
spond to the transfer request by reading data from (ac­
tivating RD), or writing data to (activating WR), the 
FDC. This response removes the transfer request (INT 
and RQM are set inactive). After completing the last 
transfer, the 8272 activates the INT output to indicate 
the beginning of the result phase. In the non-DMA 
mode, the processor must activate the TC signal to the 
FDC (normally by means of an I/O port) after the 
transfer request for the last data byte has been received 
(by the processor) and before the appropriate data byte 
has been read from (or written to) the FDC. 

In either mode of operation (DMA or non-DMA), the 
execution phase ends when a terminal count signal is 
sensed or when the last sector on a track (the EOT 
parameter-Table 5) has been read or written. In addi­
tion, if the disk drive is in a "not ready" state at the 
beginning of the execution phase, the "not ready" flag 
(bit 3 in Status Register 0) is set (high) and the command 
is terminated. 

If a fault signal is received from the disk drive .at the end 
of a write operation (Write Data, Write Deleted Data, 
or Format), the FDC sets the "equipment check" flag 
(bit 4 in Status Register 0), and terminates the command 
after setting the interrupt code (bits 7 and 6 of Status 
Register 0) to "01" (bit 7 low, bit 6 high). 

Multi-sector and Multi-track Transfers 

During disk read/write transfers (Read Data, Write 
Data, Read Deleted Data, and Write Deleted Data), the 
FDC will continue to transfer data from sequential sec­
tors until the TC input is sensed. In the DMA mode, the 

TC input is normally connected to the TC/EOP (ter­
minal count) output of the DMA controller. In the non­
DMA mode, the processor directly controls the FDC TC 
input as previously described. Once the TC input is 
received, the FDC stops requesting data transfers (from 
the system processor or DMA controller). The FDC, 
however, continues to read data from, or write data to, 
the floppy disk until the end of the current disk sector. 
During a disk read operation, the data read from the 
disk (after reception of the TC input) is discarded, but 
the data CRC is checked for errors; during a disk.write 
operation, the remainder of the sector is filled with all­
zero bytes. 

If the TC signal is not received before the last byte of the 
current sector has been transferred to/from the system, 
the FDC increments the sector number by one and ini­
tiates a read or write command for this new disk sector. 

The FDC is also designed to operate in a multi-track 
mode for dual-sided disks. In the multi-track m:>de 
(specified by means of the MT flag in the command 
byte-Table 5) the FDC will automatically increment 
the head address (from 0 to 1) when the last sector (on 
the track under head 0) has been read or written. 
Reading or writing is then continued on the first sector 
(sector 1) of head 1. 

Drive Status Polling 

After the power-on reset, the 8272 automatically enters 
a drive status polling mode. If a change in drive status is 
detected (all drives are assumed to be "not ready" at 
power-on), an interrupt is generated. The 8272 con­
tinues this status polling between command executions 
(and between step pulses in the Seek command). In this 
manner, the 8272 automatically notifies the system 
processor when a floppy disk is inserted, removed, or 
changed by the operator. 

2·148 AFN 01795A 



APPLICATIONS 

Command Details 

During the command phase, the Main Status Register 
must be polled by the CPU before each byte is written 
into the Data Register. The DIO (bit 6) and RQM (bit 7) 
flags in the Main Status Register must be low and high, 
respectively, before each byte of the command may be 
written into the 8272. The beginning of the execuilon 
phase for any of these commands will cause DID to be 
set high and RQM to be set low. 

The following paragraphs describe the fifteen FDC 
commands in detail. 

Specify 

The Specify command is used prior to performing' any 
disk operations (including the formatting of a new disk) 
to define drive/FDC operating characteristics. The 
Specify command parameters set the values for three in­
ternal timers: 

1. Head Load Time (HLT) - This seven-bit value 
defines the time interval that the FDC waits after 
loading the head before initiating a read or write 
operation. This timer is programmable from 2 to 254 
milliseconds in increments of 2 ms. 

2. Head Unload Time (HUT) - This four-bit value 
defines the time from the end of the execution phase 
(of a read or write command) until the head is 
unloaded. This timer is programmable from 16 to 
240 milliseconds in increments of 16 ms. If the proc­
essor issues another command before the head 
unloads, the head will remain loaded and the head 
load wait will be eliminated. 

3. Step Rate Time (SRT) - This four-bit value defines 
the time interval between step pulses issued by the 
FDC (track-to-track access time). This'timer is pro­
grammable from 1 to 16 milliseconds in increments 
of 1 ms. 

The time intervals mentioned above are a direct func­
tion of the FDC clock (CLK on pin 19). Times indicated 
above are for an 8 MHz clock. 

The Specify command also indicates the choice of DMA 
or non-DMA operation (by means of the ND bit). When 
this bit is high the non-DMA mode is selected; when ND 
is low, the DMA mode is selected. 

Sense Drive Status 

This command may be used by the processor whenever 
it wishes to obtain the status of the disk drives. Status 
Register 3 (returned during the result phase) contains 
the drive status information as described in Table 7. 

Sense Interrupt Status 

An interrupt signal is generated by the FDC when one or 
more of the following events occurs: 

1. The FDC enters the result phase for: 
a. Read Data command 
b. Read Track command 
c. Read ID command 
d. Read Deleted Data command 
e. Write Data command 
f. Format Track command 
g. Write Deleted Data command 
h. Scan commands 

2. The ready signal from one of the disk drives changes 
state. 

3. A Seek or Recalibrate command completes opera­
tion. 

4. The FDC requires a data transfer during the execu-
tion phase of a command in the non-DMA mode. 

Interrupts caused by reasons (1) and (4) above occur 
during no~mal command operations and are easily 
discernible by the processor. However, interrupts 
caused by reasons (2) and (3) above are uniquely iden­
tified with the aid of the Sense Interrupt Status com­
mand. This command, when issued, resets the interrupt 
signal and by means of bits 5, 6, and 7 of Status Register 
o (returned during the result phase) identifies the cause 
of the interrupt (see Table 8). 

Table 8. Interrupt Codes 

Seek End Interrupt Code Cause 
Bit S Bit 6 Bit 7 

0 1 1 Ready Line changed 
state, either polarity 

1 0 0 Normal Termination 
of Seek. or RecaJibrate 
Command 

I I 0 Abnormal Termination 
of Seek or Recalibrate 
Command 

Neither the Seek nor the Recalibrate command has a 
result phase. Therefore, it is mandatory to use the Sense 
Interrupt Status Command after these commands to 
effectively terminate: them and to provide verification of 
the disk head position. 

2·149 AFN 01795A 



APPLICATIONS 

When an interrupt is received by the processor, the FPC 
busy flag (bit 4) and the non-DMA flag (bit 5) mllY be 
used to distinguish the above interrupt ,causes: 

bit 5 

o 
o 

bit 4 

o 
1 
1 

Asynchronousevent-(2) or (3) above 
Result phase-(l) above 
Data transfer required-(4) above, 

A single interrupt request to the processor may, in fact, 
be caused by more than one of the aboYe events. The 
processor should continue to issue Sense 'Interrupt 
Status commands (and~ervice the resulting conditioris) 
until an invalid commanci'c:ode is received. In this man­
ner, all "hidden" interrupts are serviced. 

Seek 

The Seek command causes the drive's read/write head 
to be positioned over the specified cylinder. TheF.DC, 
determines the difference ,between the current cylinder 
address and the desired (specified) address, and issues 
the appropriate number of step pulses. If the desired 
cylinder address is larger than the current address;'the 
direction signal (LCT/DIR; pili" 38) is set high (step-in); 
the direction signal is set low (step-mit) if the deSired 
cylinder address is less than' the current address. No 
head movement occurs (no:step pulses 'are issued) if the 
desired cylinder is the same as the currentcylin.der~ , 

The rate at which step pulses are issued is controlled by 
the step rate time (SRT) in the Specify command. After 
each step pulse is issued, the desired cylinder address is 
compared against the current cylinder address. When 
the cylinder addresses are equal, the "seek end" flag 
(bit 5 in Status Register 0) is set (high) and the command 
is terminated. If the disk drive becomes "not re~dy" 
during the seek operation, the ','not ready" flag (in 
Status Register 0) is set (high) and the command is ter­
minated. 

During the command phase of the Seek operation the 
FDC is in the FDC busy state, but during the execution 
phase it is in the non-busy state. While the FDC is in the 
non-busy state; another Seek command may be issued. 
In this manner parallel seek operations may be in opera­
tion on up to four floppy disk drives at once. The Main 
Status Register contains a flag for each drive (Table 4) 
that indicates whether the associated drive is currently 
operating in the seek mode. When a drive has completed 
a seek operation, the FOC generates an interrupt. In 
response to this interrupt, the system software must' 
issue a Sense Interrupt Status command. Ouringthe 
resultphaseof this command, Status Register 0 (con­
taining the drive number in bits 0 and 1) is read by the, 

, ' 

processor. 

Recalibrate 

This command causes the read/write head of the disk 
drive to retract to, the track 0 position. The FOC clears 
the contents of its internal cylinder counter, and checks 
the status of the track 0 signal from the disk drive. As 
long as the tr~ck 0 signal is low, the direction signal re­
mains high and step pulses are issued. When the track 0 
signal goes high, the seek end flag (in Status Register 0) 
is set (high) and the command is terminated. If the track 
o signal is stil1low after 77 step pulses have been issued, 
the seek erid and equipment check' flags (in Status 
Register 0) are both set and the Recalibrate command is 
terminated. 

Recalibrate commands for multiple drives can be 
overlapped in the same manner that Seek commands are 
overlapped. 

Format Track 

The Format Track command formats or "initializes" a 
track on Ii floppy disk by writing the ID field, gaps, and 
address marks [or each sector. Before issuing the For­
mat command, the Seek command must be used to posi­
tion the read/write head overthe correct cylinder. In ad­
dition, a table of ID field values (cylinder, head, and 
sector a(idresses, and sector length code) must be 
prepared before the command is execute,d. During com­
mand execution, the FDC accesses the table and, using 
the values supplied, writes each sector on the track. The 
ID field address mark originates: from the FDC and is 
written automatically as the first byte of each sector's 
ID field. The cylinder, head, !lnd sector addresses are 
taken, in order, from the table., The ID field CRC 
character (derived from the data written in the first five 
bytes) is written as the last two bytes of the ID field. 
Gaps are written automatically by the FDC, with the 
length of the vanable gap determined by one of the For­
mat command parameters. 

The data field address mark is generated by the FDC 
and is written automatically as the first byte of the data 
field. The data pattern specified in the command phase 
is written into each data byte of each sector. A CRC 
character is derived from the data address mark and the 
data written in the sector's data field. The two CRC 
bytes are appended to the last data byte. 

The formatting of a track ,begins at the physical index 
mark. As previously mentioned, the order of sector 
assignment is taken directly from the formatting table. 
Four entries are required for each sector: a cylinder ad­
dress, a head address, a sector address, and a sector 
length code. The cylinder address iri the ID field shOUld 
be equal to the cylinder address of the track currently 
being formatted. 

AFN 01795A 



APPLICATIONS 

The sector addresses must be unique (no two equal). 
The order of the sector entries in the table is the se­
quence in which sector numbers appear on the track 
when it is formatted. The number of entry sets 
(cylinder, head, and sector address and sector length 
code) must equal the number of sectors allocated to the 
track (specified in the command phase). 

Since the sector address is supplied, in order, for each 
sector, tracks can be formatted sequentially (the first 
sector following the index mark is assigned sector ad­
dress I, the adjacent sector is assigned sector address 2, 
and so on) or sector numbers can be interleaved (see sec­
tion 3) on a track. 

Table 9 lists recommended gap sizes and sectors/track 
for various sector sizes. . 

Read Data 

Nine (9) bytes are required to complete tbe comma,nd 
phase specification for the Read Data command. Dur­
ing the execution phase, the FDe loads the head (ifit is 
in the unloaded state), waits thespepfied head load. time 
(defined in the Specify command), and begins re;;tding 
ID address marks and ID fields. When the requested 
sector address compares with the sector address read 
from. the disk, the FDe outputs data (from the data 
field) byte-by-byte to the system. The Read Data com­
mand automatically operates in the multi-sector mode 
described earlier. In addition, multi-track operation 
may be specified by means of the MT command flag 
(Table 5). The amount of data that can be transferred 
with a single command to the FDe depends on the 
.multi-track flag, the recording density flag, and the 
number of bytes per sector. 

During the execution of read and write commands, the 
special sector size parameter (DTL) is used to tem­
porarily alter the effective disk.sector size. By setting the 
sector size code (N) to zero, DTL may be used to specify 
a sector size from· I to 256 bytes in length. If the actual 
sector (on the disk) is larger than DTL specifies, only 
the number of bytes specified by the DTL parameter are 

passed to the system; the remainder of the actual disk 
sector is not transferred (although the data is checked 
for eRe errors). Multi-sector read operations are per­
formed in the same manner as they are when the sector 
size code is non-zero. (The N and DTL parameters are 
always present in the command sequence. DTL should 
be set to FF hexadecimal when N is not zero.) 

If the FDe detects the physical index mark twice 
without finding the requested sector, the FDe sets the 
"sector not found error" flag (bit 2 in Status Register 1) 
and terminates the Read Data command. The interrupt 
code (bits 7 and 6 of Status Re$ister 0) IS set to "01." 
Note that the FDe searches for each sector in a multi­
sector operation. Therefore, a "sector not found" error 
may occur after successful transfer of one or more 
preceding sectors. This error could occur if a particular 
sector number was not included when the track was first 
formatted or if'a hard error on the disk has invalidated a 
sector ID field. 

After reading the ID field and data field in each sector, 
the FDe .checks the eRe bytes. If a read error is detect­
ed (incorrect eRe in the ID field), the FDe sets the 
"data error"flag in Status Register 1; if a eRe error 

. occuts in: the data field, the FDe sets the "dati error" 
flag in Status Register 2. In either error condition, the 
FOe terminates the Read Data command. The interrupt 
code (bits 7 and 6 in Status Register 0) is set to "01." 

If the FDe reads a deleted data address mark from the 
disk, and the skip flag (specified during the command 
phase) is not set, the FDe sets the "control mark" flag 
(bit 6 in Status Regisier 2) and terminates the Read Data 
command (after reading all the data in the sector). If the 
skip flag is set, the FDe skips the sector with the deleted 
data address mark and reads the next sector. Thus, the 
skip flag may be used to cause the FDe to ignore deleted 
data sectors during a multi-sector read operation. 

During disk data transfers between the FDe and the 
system, the FDe must be serviced by the system (proc­
essor or DMA controller) every 27 /-IS in the FM mode, 
and every 13 /-IS in the MFM mo~e. If the FDe is not 

Table 9. Sector Size Relationships 

N SC GPL1 GPL2 

Format Sector Size Sector Size Sectorsl Gap 3 Gap 3 Remarks 
Code Track Length Length 

128 bytes/Sector 00 IA(l6) . 07(16) iB(16) IBM Diskette I 
FM.Mode 256 01 OF(16) OE(16) 2A(l6) IBM Diskette 2 

5i2 02 08 IB(16) 3A(l6) 

256 01 IA(l6) OE(l6) 36(16) IBM I;>iskette 2D 
MFMMode 512 02 OF(16) IB(16) 54(16) 

1024 '. 03 08 35(16) 74(16) IBM Diskette .2D , 

Note.: 1. Suggested values of GPL in Read or Write commands to avoid splice point between daia field and ID W,ld of contiguous sectors. 

2. Suggested values of GPL in Format command. 

. 2·151 AFN 01795A 



APPLICATIONS 

serviced within this interval, the "overrun error" flag 
(bit 4 in Status Register 1) is set and the Read Data com­
mand is terminated. 

If the processor terminates a read (or write) operation in 
the FDC, the ID information in the result phase is 
dependent upon the state of the multi-track flag and end 
of track byte. Table 11 shows the values for C, H, R, 
and N, when the processor terminates the command. 

Write Data 

Nine· (9) bytes are required to complete the command 
phase specification for the Write Data command. Dur­
ing the execution phase the FOC loads tbe head (if it is 
in the unloaded state), waits the specified head load time 
(defined by the Specify command), and b!!gins reading 
sector ID fields. Whcen the requested sector address 
compares with the sector address read from the disk, the 
FDC reads data from the processor one byte at a .time 
via the data bus and outputs the data to the data field of 
that sector. The CRC iscomptited on this data and two 
CRC bytes are written at the end of the data field. 

The FDC reads theID field of each sector and checks 
the CRC bytes. If the FDC detects a read error (incor­
rect CRC) in one of the ID fields, it sets the "data 
error" flag (bit 5 in Status Register 1) and terminates the 
Write Data command. The interrupt code (bits 7 and 6 
in Status Register 0) is set to "01." 

The Write Data .command operates in much the same 
manner as. the Read Data command. The following 
items are tbe same; refer to the Read Data command for 
details: 

• Multi-sector and Multi-track operation 
• Data transfer capacity 
• '''End of track error" flag 
• "Sector not found error" flag 
• "Data error" flag 
• Head unload time interval· 
• ID information when the processor terminates the 

command (see Table 11) 
• Definition of DTL when N = 0 and when N*"O 

During the Write Data execution phase, data transfers 
between the processor and FDC must occur every 31 /.Is 
in the FM mode, and every 15 /.IS in the MFM mode. If 
the time interval between data transfers is longer than 
this, the FDC sets the "overrun error" flag (bit 4 in Sta­
tus Register 1) and terminates. the Write Data command. 

Read Deleted Data 

This command operates in almost the same manner as 
the Read Data command operates. The only difference 
involves the treatment of the data address mark and the 

skip flag. When the FDCdetects a data address mark at 
the beginning of a data field (and the skip flag is not 
set), the FDC reads all the data in the sector, sets the 
"control mark" flag (bit 6 in Status Register 2), and ter­
minates the command. If the skip flag is set, the FDC 
skips the sector with the data address mark and con­
tinues reading at the next sector. Thus, the skip flag may 
be used to cause the FDC to read only deleted data sec­
tors during a multi-sector read operation. 

Write Deleted Data 

This command operates in the same manner as the 
Write Data command operates except that a deleted 
data address mark is written at the beginning of the data 
field instead of the normal data address mark. This 
command is used to mark a bad sector (containing a 
hard error) on the floppy disk. 

·Read Track 

The Read Track command is similar to the Read Data 
comman.dexcept that the entire data field is read con­
tinuously from each <if the sectors of a track. Im­
mediately after encountering the physical index mark, 
the FDC starts reading all data fields on the track as 
continuous blocks of data. If the FDC finds an error in 
the ID field or data field CRC check bytes, it continues 
to read data from the track. The FDC compares the ID 
information read from each sector with the values 
shecified during the command phase. If the specified ID 
field information is not found on the track, the "sector 
not found error" flag (in Status Register 1) is set. Multi­
track and skip operations are not allowed with this 
command. 

This command terminates when the last sector on the 
track has been read. (The number of sectors on the track 
is specified by the end of track parameter byte during 
the command phase.) If the FDC does not find an ID 
address mark on the disk after it encounters the physical 
index mark for the second time, it sets the "missing ad­
dress mark error" flag (bit 0 in Status Register 1) and 
terminates the command. The interrupt code (bits 7 and 
6 of Status Register 0) is set to "01." 

Read ID 

The Read ID command transfers (reads) the first correct 
ID field from the current disk track (following the 
physical index mark) to the processor. If no correct ID 
address mark is found on the track, the "missing ad­
dress mark error" flag is set (bit 0 in Status Register 1). 
If no data mark is found on the track, the "sector not 
found error" flag is also set (bit 2 in Status Register 1). 
Either error condition causes the command to be 
terminated. 

2·152 AFN 01795A 



APPLICATIONS 

Scan Commands 

The Scan commands allow the data being read from the 
disk to be compared against data supplied by the system 
(by the processor in non-DMA mode, and by the DMA 
controller in DMA mode). The FDe compares the data 
on a byte-by-byte basis, and searches for a sector of 
data that meets the conditions of "disk data equal to 
system data", "disk data less than or equal to system 
data", or "disk data greater than or equal to system 
data". Simple binary (ones complement) arithmetic is 
used for comparison (FF = largest number, 00 = smallest 
number). If, after a complete sector of data is com­
pared, the conditions are not met, the sector number is 
incremented by the scan sector increment (specified in 
the command phase), and the scan operation is con­
tinued. The scan operation continues until one of the 
following conditions occurs; the conditions for scan are 
met (equal, low, or high), the last sector on the track is 
reached, or the terminal count signal is received. 

If the conditions for scan are met, the FDe sets the 
"scan hit" flag (bit 3 in Status Register 2) and ter­
minates the Scan command. If the conditions for scan 

are not met between the starting sector and the last sec­
tor on the track (specified in the command phase), the 
FDe sets the "scan not satisfied" flag (bit 2 in Status 
Register 2) and terminates the Scan com!lland. The re­
ceipt of a terminal count signal from the processor or 
DMA controller during the scan operation will cause the 
FDe to complete the comparison of the particular byte 
which is in process, and to terminate the command. 
Table 10 shows the status of the "scan hit" and "scan 

Table 10. Scan Status Codes 

Command 
Status Register 2 Comments 

Bit 2=SN Bit 3=SH 

Scan Equal 0 1 D FDO = Dprocessor 
1 0 DFDD* Dprocessor 

Scan Low 0 I D FDO = Dprocessor 

or Equal 0 0 DFDO< Dprocessor 
I 0 DFD01; Dprocessor 

Scan High 0 1 D FDO = Dprocessor 

or Equal 0 0 DFOO> Dprocessor 
I 0 DFDO~ Dprocessor 

Table 11 10 Information When Processor Terminates Command 

Final Sector Transferred 

MT EOT to 10 Information at Result Phase 
Processor C 

IA Sector I to 25 at Side 0 
OF Sector I to 14 at Side 0 NC 
08 Sector I to 7 at Side 0 

IA Sector 26 at Side 0 
OF Sector IS at Side 0 C+I 

0 08 Sector 8 at Side 0 

IA Sector I to 25 at Side I 
OF Sector 1 to 14 at Side I NC 
08 Sector I to 7 at Side I 

IA Sector 26 at Side I 
OF Sector IS at Side I C+I 
08 Sector 8 at Side I 

IA Sector I to 25 at Side 0 
OF Sector 1 to 14 at Side 0 NC 
08 Sector I t9 7 at Side 0 

IA Sector 26 at Side 0 
OF Sector 15 at Side 0 NC 

1 08 Sector 8 at Side 0 

lA Sector 1 to 25 at Side I 
OF Sector 1 to 14 at Side 1 NC 
08 Sector 1 to 7 at Side 1 

lA Sector 26 at Side I 
OF Sector 15 at Side 1 C+l 
08 Sector 8 at Side 1 

Notes: 1. NC (No Change): The same value as the one at the beginning of command executIOn. 
2. LSB (Least Significant Bit): The least significant bit of H is complemented. 

2-153 

H R 

NC R+I 

NC R=OI 

NC R+I 

NC R=OI 

NC R+l 

LSB R=OI 

NC R+l 

LSB R=OI 

N 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

NC 

AFN 01795A 



APPLICAT.IONS 

not satisfied" flags under various scan termination 
conditions. 

If the FDC encounters a deleted data address mark in 
one of the sectors and the skip flag is low, it regards the 
sector as the last sector on the cylinder , sets the "control 
mark" flag (bit 6 in Status Register 2) and terminates 
the command. If the skip flag is high, the FDC skips the 
sector with the deleted address mark, and reads the next 
sector. In this case, the FDC also sets the "control 
mark" flag (bit 6 in Status Register 2) in order to show 
that a deleted sector had .been encountered. 

NOTE: During scan command execution, the last sector 
on the track must be read for the command to 
terminate properly. For example, if the scan 
sector increment is set to 2, the end of track 
parameter is set to 26, and the scan begins at 
sector 21, sectors 21, 23, and 25 will be 
scanned. The next sector, 27 will not be found 
on the track and an abnormal command ter­
mination will occur. The command would be 
completed in a normal manner if either a) the 
scan had started at sector 20 or b) the end of 
track parameter had been set to 25. 

During the Scan command, data is supplied by the proc­
essor or DMA controller for comparison against the 
data read from the disk. In order to avoid having the 
"overrun error" flag set (bit 4 in Status Register 1); it is 
necessary to have the data available in less than 27 p.s 
(FM Mode) or 13 p.s (MFM Mode). If an overrun error 
occurs, theFDC terminates the command. 

Invalid Commands 

If an invalid (undefined) command is sent to the FDC, 
the FDC will terminate the command. No interrupt is 
generated by the 8272 during this condition. Bit 6 and 
bit 7 (DIO and RQM) in the Main Status Register are 
both set indicating to the processor that the 8272 is in 
the result phase and the contents of Status Register 0 
must be read. When the processor reads Status Register 
o it will find an 80H code indicating that an invalid com­
mand was received. 

A Sense Interrupt Status command must be sent after a 
Seek or Recalibrate interrupt; otherwise the FDC will 
consider the next command to be an invalid command. 
Also, when the last "hidden" interrupt has been ser­
viced, further Sense Interrupt Status commands will 
result in invalid command codes. 

In some applications the user may wish to use this com­
mand as a No-Op command to place the FDC in a 
stand-by or no operation state. 

5. THE DATA SEPARATOR 

As briefly discussed in section 2, LSI disk controllers 
such as the 8272 require external circuitry to generate a 
data window signal. This signal is used within the FDC 
to isolate the data bits contained within the READ 
DATA input signal from the disk drive. (The disk 
READ DATA signal is a composite signal constructed 
from both clock and data information.) After isolating 
the data bits from this input signal, the FDC assembles 
the data bits into 8-bit bytes for transfer to the system 
processor or memory. 

Single Density 

In single-density (FM) recording (Figure 3 ), the bit cell 
is 4 microseconds wide. Each bit cell contains a clock bit 
at the leading edge of the cell. The data bit (if present) is 
always located at the center of the cell. The job of data 
separation is relatively straightforward for single­
density; simply generate a data window 2 p.s wide start­
ing 1 jJ.s after each clock bit. Since every cell has a clock 
bit, a fixed window reference is available for every data 
bit and because the window is 2 p's wide, a slightly 
shifted data bit will still remain within the data window. 

A single-density data separator with these specifications 
may be easily generated using a digital or analog one­
shot triggered by the clock bit. 

Double·Density 

Double-density (MFM) bit cells are reduced to 2 p.s (in 
order to double the disk data storage capacity). Clock 
bits are inserted into the data stream only if data bits are 
not present in both the current and preceding bit cells 
(Figure 3). The data bit (if present) still occurs at the 
center of the bit cell and the clock bit (if present) still oc­
curs at the leading edge of the bit cell. 

MFM data separation has two problems. First, only 
some bit cells contain a clock bit. In this manner, MFM 
encoding loses the fixed bit cell reference pulse present 
in FM encoding. Second, the bit cell for MFM is one­
half the size of the bit cell for FM. This shorter bit cell 
means that MFM cannot tolerate as large a playback 
data-shift (as FM can tolerate) without errors. 

Since most playback data-shift is predictable, the FDC 
can precompensate the write data stream so that 
data/clock pulses will be correctly positioned for subse­
quent playback. This function is completely controlled 
by the FDC and is only required for MFM recording. 
During write operations, the FDC specifies an early, 
normal, or late.bit positioning. This timing information 
is specified with respect to the FDC write clock. Early 
and late timing is typically 125 ns to 250 ns before or 
after the write. clock transition (depending on disk drive 
requirements). 

2-154 AFN 01795A 



APPl.lCATIONS 

The data separator circuitry for double-density record­
ing must continuously analyze the total READ DATA 
stream, synchronizing its operation (window genera­
tion) with the actual clock/data bits of the data stream. 
The data separation circuit must track the disk input 
data frequency very closely-unpredictable bit shifts 
leave less than 50 ns margin to the window edges. 

Phase· Locked Loop 
Only an analog phase-locked loop (PLL) can provide 
the reliability required for a double-density data separa­
tion circuit. (A phase-locked loop is an electronic circuit 
that constantly analyzes the frequency of an input signal 
and locks another oscillator to that frequency.) Using 
analog PLL techniques, a data separator can be de­
signed with ± 1 ns resolution (this would require a 100 
MHi:clock in a digital phase-locked loop). The analog 
PLL determines the clock and data bit positions by 
sampling each bit in the serial data stream. The phase 
relationship between a data bit and the PLL generated 
data window is constantly fed back to adjust the posi­
tion of the data window, enabling the PLL to track in­
put data frequency changes, and thereby reliably read 
previously recorded data from a floppy disk. 

PLL Design 
A block diagram of the phase-locked loop described in 
this application note is shown in Figure 7. Basically, the 
phase-locked loop operates by comparing the frequency 
of the input data, (from the disk drive) against the fre­
quency of a local oscillator. The difference of these fre­
quencies is used to increase or decrease the frequency of 
the local oscillator in order to bring its frequency closer 
to that of the input. The PLL synchronizes the local 
oscillator to the frequency of the input during the all 
"zeroes" synchronization field on the floppy disk (im­
mediately preceding both the ID field and the data 
field). 

The PLL consists of nine lCs and is located on page 3 of 
the schematics in the Appendix. The 8272 VCO output 
essentially turns the PLL circuitry on and off. When the 
PLL is off, it "idles" at its center frequency. The VCO 
output turns the PLL on only when valid data is'being 
received from the disk drive. The VCO turns the PLL 
on after the read/write head has been loaded and the 
head load time has elapsed. The PLL is turned off in the 
gap between the ID field and the data field and in the 
gap after the data field (before the next sector lD field). 
The GPL parameter in the FDC read and write com­
mands specifies the elapsed time (n~mber of data bytes) 
that the PLL is turned offin order to blank out discon­
tinuities that appear in the gaps when the write current is 
turned on and off. The PLL operates with either MFM 
or FM input data. The MFM output from the FDC con­
trols the PLL operation frequency. 

The PLL consists of six functional blocks as follows: 

1. Pulse Shaping - A 96LS02 senses a READ DATA 
pulse and provides a clean output signal to the FDC 
and to the PLL Phase Comparator and Frequency 
Discriminator circuitry. 

2. Phase Comparator - The phase difference be­
tween the PLL oscillator and the READ DATA input 
is compared. Pump up (PU) and pump down (PD) 
error signals are derived from this phase difference 
and output to the filter. If there is no phase dif­
ference between the PLL oscillator and the READ 
DATA input, the PU and PD pulse widths are equal. 
If the READ DATA pulse occurs early, the PU dura­
tion is shorter than the PD duration. If the data pulse 
occurs late, the PU duration is longer than the PD 
duration. 

3. Filter - This analog circuit filters the PU and PD 
pulses into an error voltage. This error voltage is buf­
fered by an LM358 operational amplifier. 

r-------------------i ... ~~A~D~~TA 

READ DATA 
(FROM DISKETTE DRIVE) 

FREQUENCY 
DISCRIMINATOR 

VCO(FROM FDC) -----------1 
MFM (FROM FDC) -----------1 

START 
LOGIC 

IDLE CLAMP 

Figure 7. Phase· Locked Loop Data Separator 

2-155 

DATA WINDOW 
(TO FDC) 

AFN 01795A 



APPLICATIONS 

4. PLL Oscillator - This oscillator is composed of a 
74LS393, 74LS74, and 96LS02. The oscillator fre­
quency is controlled by the error voltage output by 
the filter. This oscillator also. generates the data win­
dow signal to the FDC. 

S •. Frequency Discriminator - This logic tracks the 
READ DATA input ·from the disk drive and 
discriminates between the synchronization gap for 
FM recording (250 KHz) and the gap for MFM 
recording (500 KHz). Synchronization gaps im­
mediately precede address marks. 

6. Start Logic ~ The function of this logic is to clamp 
the PLL oscillator to its center frequency (2 MHz) 
until the FOC VCO signal is enabled and a valid data 
pattern is sensed by the frequency discriminator. The 
start logic (consisting of a 74LS393 and 74LS74) en­
sures that the PLL oscillator is started with zero 
phase error. 

PLL Adjustments 

The PLL must be initially adjusted to operate at its 
center frequency with the VCO output off and the ad­
justment jumper removed. The 5K trimpot should be 
adjusted until the frequency at the test point (Q output 
of the 96LS02) is 2 MHz. The jumper should then be 
replaced for normal operation. 

PLL Design Details 

The following. paragraphs describe the operational and 
design details of the phase-locked loop data separator il-

lustrated in the appendix. Note that the analog section is 
operated from a separately filtered +5V supply. 

Initialization' 
As long as the 8272 maintains a low veo signal, the 
data seParator logic is "turned ofr'. In this state, the 
PLL oscillator (96LS02) is not oscillating and therefore 
the 2XBR signal is constantly low. In addition, the 
pump up (PU) and pump down (PO) signalS are inactive 
(PU low and PO high), the CNT8 signal is inactive 
(low), and the filter input voltage is held at 2.5 volts by 
two IMohm resistors between ground and +5 volts. 

Floppy Disk Data 
The data separator frequency discriminator, the input 
pulse shaping circuitry, and the start logic are always 
enabled and respond to rising edges of the READ DATA 
signal. The rising edge of every data bit from the disk 
drive triggers two pulse shaping one-shots. The first 
pulse shaper generates a stable and well-defined 200 ns 
read data puls~ for input to the 8272 and other portions 
of the data separator logic. The second one-shot 
generates a 2.5 /LS data pulse that is used for input data 
frequency discrimination. 

The frequency discriminator operates as illustrated in 
Figure 8. The 2F output signal is active (high) during 
reception of valid MFM (double-density) sync fields on 
the disk while the IF signal is active (high) during recep­
tion of valid FM (single-density) sync fields. A 
multiplexer (controlled by the 8272 MFM signal) selects 
the appropriate IF or 2F signal depending on the pro­
grammed mode. 

(a) FM OPERATION: ONE·SHOT TIMES OUT BETWEEN CLOCK PULSES 

FREQ DISC -_, __ 

2F LOW, IF HIGH DURING SYNC DATA INPUT (FM) 

MFM READ DATA 

FREQ DISC~ 
~ 2F HIGH,IF LOW DURING SYNC DATA INPUT (MFM) _ ..... . • • 

x= FREQUENCY DISCRIMINATOR SAMPLE POINTS TO GENERATE IF AND 2F SIGNALS 

Figure 8. Inpilt Data Frequency Discrimination 

2·156 AFN 01795A 



APPLICATIONS 

Startup 

The data separator is designed to require reception of 
eight valid sync bits (one sync byte) before enabling the 
PLL oscillator and attempting to synchronize with the 
input data stream (see Figure 9). This delay ensures that 
the PLL will not erroneously synchronize outside a valid 
sync field in the data stream if the YCO signal is enabled 
slightly early. The sync bit counter is asynchronously 
reset by the CNTEN signal when valid sync data is not 
being received by the drive. 

REAOOATA 

FREQOISe 

2F~ U 
1F ~'___----' 

Once the YCO signal is active and eight sync bits have 
been counted, the CNT8 signal is enabled. This signal 
turns on the PLL oscillator. Note that this oscillator 
starts synchronously with the rising edge of the disk in­
put data (because CNT8 is synchronous with the data 
rising edge) and the oscillator also starts at its center fre­
quency of 2 MHz (because the LM348 filter input is held 
at its center voltage of approximately 2.5 volts). This 
frequency is divided by two and four to generate the 
2XBR signal (1 MHz for MFM and 500 KHz for FM). 

Yeo -
eNT8----------------------------------------------------~ 

PLeLK ______________________________________________________ ~ 

FlJ1J1JlI ~BR ______________________________________________________ ~ 

poeLR ________________________________________________________ ~ 

pueLR------------------------------------------------------------,U 

____________________________________________________ ~n'__~n'__ ___ 
pu 

PO --------------------------------------,U LI 
-------------------~~ ow 

Figure 9. Typical Data Separator Startup Timing Diagram 

2-157 AFN 01795A 



APPLICATIONS 

PLL Synchronization 

At thjs point, the PLL is enabled and begin!> to syn­
chronize with the input data stream. :This synchroniza­
tion is accomplished very simply in the following man-, 
ner. The pump up (PU) signal is enabled on the rising 
edge of the READ DATA from, the disk drive. (When 
the PLL is synchronized with the data stream, this point 
will occur at the same time as the falling edge of the 
2XBR signal as shown in Figure 9). The PU signal is 
turned off and the PD signal is activated on the next ris­
ing edge of the 2XBR clock. With this scheme, the dif­
ference between PU active time and the PD active time 
is equal to the difference between the input bit rate and 
the PLL clock rate. Thus, if PU is turned on longer than 
PD is on, the input bit rate is faster than the PLL clock. 

As long as PU and PD are both inactive, no charge is 
transferred to or from the' LM358 input holding 
capacitor, and the PLL output frequency is maintained 
(the LM358 operational amplifier has a very high input 
impedance). Whenever PU is turned on, current flows 
from the + 5 volt supply through a 20K resistor into the 
holding capacitor. When the PD signal is turned on, 
current flows from the holding capacitor to ground 
through a 20K resistor. In this manner, both the pump 
up and pump down charging rates are balanced. 

The change in capacitor charge (and therefore voltage) 
after a complete PU/PD cycle is proportional to the dif­
ference between the PU and PD pulse widths and is also 
proportional to the frequency difference between the in­
coming data stream and the PLL oscillator. As the 
capacitor voltage is raised (PU active longer than PD), 
the PLL oscillator time constant (RC of the 96LS02) is 
modified by the filter output (LM358) to raise the 
oscillator frequency. As the capacitor voltage is lowered 
(PD active longer than PD), the oscillator frequency is 
lowered. If both frequencies are equal, the voltage on 
the holding capacitor does not change, and the PLL 
oscillator frequency remains constant. 

6. AN INTELLIGENT DISKETTE 
DATA BASE SYSTEM 

The system described in this application note is designed 
to function as an intelligent data base controller. The 
schematics for this data base unit are presented in Ap­
pendix A; a block diagram of the unit is illustrated in 
Figure 10. As designed, the unit can access over four 

, million bytes of mass storage on four floppy disk drives 
(using a single 8272 FDC); the system can easily be ex­
panded to fourFDC devices (and 16 megabytes of on­
line disk stor<tge). Three serial data links are also includ­
ed.These data links may be used by CRT terminals or 
other microprocessor systems to access the data base. 

Processor and Memory 

'A high'-performance ~088 eight-bit microprocessor 
(operating at 5 MHz with no wait states) controls system 
operation. The 8088 was selected because of its memory 
addressing' 'capabilities and its sophisticated string 
handling instructions. These features improve the speed 
of data base search oper'ations. In addition, these 
capabilities allow the system to be easily upgraded with 
additional memory, disk drives, and if required, a bub­
ble memory or winchester disk unit. 

The schematics for the basic design provide 8K bytes of 
2732A high-speed EPROM program storage and 8K 
bytes of disk directory and file buffer RAM. This 
memory can easily be expanded to I megabyte for 
performance upgrades. 

An 8259A Programmable Interrupt Controller (PIC) is 
also included in the design to field interrupts from both 
the serial port and the FDC. This interrupt controlle,r 
provides a large degree of programming flexibility for 
the implementation of data base functions in an asyn­
chronous, demand driven environment. The PIC allows 
the system to accumulate asynchronous data base re­
quests from all serial 1/0 ports while previously 
specified data base operations are currently in progress. 
This feature is made possible by the ability of the 8251A 
RXRDY signal to cause a processor interrupt. After 
receiving this interrupt, the processor can temporarily 
halt work on existing requests and enter the incoming 
information into a data base request buffer. Once the 
information has been entered into the buffer, the system 
can resume its previous processing. 

In addition, the PIC permits some portions of data base 
requests to be processed in parallel. For example, once a 
disk record has been loaded into a memory buffer, a 
memory search can proceed in parallel with the loading 
of the next record. After the FDC completes the record 
transfer, the memory search will be interrupted and the 
processor can begin another disk transfer before resum­
ing the memory search. 

The bus structure of the system is split into three func­
tional buffered units. A 20-bit address from the proc­
essor is latched by three-state transparent 74LS373 
devices. When the processor is in control of the address 
and data busses, these devices are output enabled to the 
system buffered address bus. All 1/0 devices are placed 
directly on the local data bus. Finally, the memory data 
bus is isolated from the local data bus by an 8286 octal 
transceiver. The direction of this transceiver is deter­
mined by the Memory Read signal, while its output 
enable is activated by a Memory Read or Memory Write 
command. 

2-158 AFN 01795A 



I 
CLOCK 

GENERATOR 
(8284) 

APPUCATIONS 

~ADDRESS~ ,I 
2O·aPr ADDRESS BUS 

rTROM 
(2~:3)hl LATCH 2732A 

~ r--
~ PROCESSOR 8-BIT LOCAL DATA BUS r-

fR 

~ (8088) r- S1 
1/0 AND CS DATA BUS 

110 AND MEMORY COMMANDS MEMORY TRANSCEIVER 

INTA r- ADDRESS RD,WR,CS (8286) 

INT r- DECODE 
r-

HOLD t HLDA ~ tt tt ft 

DMA 

~ I ADDRESS1= '----------)1 LATCHI 
BUFFER -

"" " ~~~ 
"" " a:: a: a:: RD,WR,C.S 

I·BIT LOCAL DATA BU.rS'-___ ~-__, 

H-f---J-Jj l. 
CONTROLLER 1).------- f---

(8237·2) ..--- I---
I-----

.--t...;.....:::....::::..., 
FLEXIBLE DISKE"E 'CONTROLLER !-----iM PROGRAMMA&LEj.- SERIAL'1I0'PORTS!::= 

DATA CIONTNETRRROULPLETR j.- (82S1A USARTO) ,....----, 

DRO t DACK t 
BAUD 
RATE 

GENERATOR 
(8253 PIT) (8272 FDC) I ':INDO,W

1 (82SIA PIC) f4- j.-
~TT~~ ~--~~ 1 [;EAD :;,~~MFM PHASE Itt L L 

I L~~rLS~:~ 
I ~:;:. '---,R x D 

~ T.xD,. I PL-_ READY L--__ Rx 0' " 
INDEX 
WRITE PROTECT 

TWO SIDED 

RECEIVERS 

FAULT 
TRACK 0 

READ DATA 

DRIVERS 

DRIVE SELECT 
DIRECTION 

STEP 
WRITE GATE 
FAULT RESET 

LOW CURRENT 
SIDE SELECT 
HEAD LOAD 
WRITE DATA 

~, . 

Figure 10. Intelligent Data Base Block Diagram 

I 

1 

" 

AFN 01795A 



APPLICATIONS 

Se;taiI/O 

The three RS-232-C compatible serial I/O ports operate 
at softwarC'-programmable baud rates to 19.2K. Each 
I/O port is controlled by an 8251AUSART (Universal 
Synchronous/Asynchronous Receiver/Transmitter). 
Each USART is individually programmable for opera­
tion in many synchronous and asynchronous serial data 
transmission formats (includini IBM Bi-sync). In 
operation, USAR:r error detection circuits can check 
for parity, data overrun, and framing errors. An 8253 
Programmable Interval Timer is employed to generate 
the baud rates for the serial I/O ports. 

The. Transmitter Ready and Receiver Ready output 
signals of the 8251As are routed to the interrupt inputs 
of the 8259A interrupt controller. These signals inter­
rupt processor execution when a data byte is received by 
a UsART and also when the USART is ready to accept 
another data byte for transmission. 

DMA 
The 8272 FDC interfaces to system memory by means of 
an 8237-2, high-speed DMA ~ntroller. Transfers be­
tween the disk controller and memory also operate with 
no wait states when 2114-3 (150ns) or faster static RAM 
is used. In operation; the 8272 presents a DMA request 

. to the 8237 for every byte of data to be transferred. This 
request causes the 8273 to present a HOLD request to 
the 8088. As soon as the 8088 is able to relinquish 
data/address bus control, the processor signals a HOLD 
acknowledge to the 8237. The 8237 then assumes con­
trol over the data and address busses. After latching the 
address for .the DMA transfer, the 8237 generates 
simultaneous I/O Read and Memory Write commands 
(for a disk read) or simultaneous 110 Write and 
Memory Read commands (for a disk write). At the same 
time, the 8272 is selected as the I/O device by means of 
the OMA acknowledge signal from the 8lB7. After this 
single byte has been transferred between the FDC and 
memory, the DMA controller releases the data/address 
busses to ihe 8088 by deactivating the HOLD request. In 
a short period of time (13 I£S for double~density and 27 
I£S for single-density) the FDC requests a subsequent 
data transfer. This transfer occurs in exactly the same 
manner as the previous transfer. After all data transfers 
have been completed (specified lly:, the word count pro­
grammed into the 8237 before the FDC operation was 
initiated), the 8237 signals a terminal count (EOP pin). 
This terminal couni signal informs the 8272 that the 
data transfer is complete. Upon reception of this ter­
minal count signal, the 8272 halts DMA requests and 
initiates an "operation complete" interrupt. 

Since the system is designed for 2O-bit addressing, a 
four-bit DMA-address latch is included as a processor 

addressable 110 port. The processor writes the upper 
four DMA address bits before a data transfer. When the 
DMA controller assumes bus control, the contents of 
this latch are output enabled on the upper four bits of 
the address bus. The only restriction in the use of this 
address latch is that a single disk read or write transfer 
cannot cross a 64K memory boundary. 

Disk Drive Interface 

The 8272 FDC may be interfaced to a maximum offour 
eight-inch floppy disk drives. Both single- and double­
density drives are accommodated using the data separa­
tion circuit described in section 5. In addition, single- or 
dual~sided disk drives may be used. The 8272 is driven 
by an 8 MHz crystal controller clock produced by an 
8224 clock generator. 

Drive select signals are decoded by means of a 74LS139 
from the DSO, OSI outputs of the FOC. The fault reset, 
step; low current, and direction outputs to the disk 
drives are generated from the FR/STEP, LCT/DlR, 
and RW/SEEK FOC output signals by means of a 
74LS24!):;.The other half of the 74LS240 functions as an 
input ritultiplexer for the disk write protect, two-sided, 
f~ult, and track zero. status signals. These signals are 
multiplexed into. the WP/TS and FLT/TRKO inputs to 
the 8272. 

The 8~72 write clock (WR CLK) is generated by a ring 
counter/multiplexer combination. The write clock fre­
quency. is I MHz for MFM recording and 500 KHz for 
PM recording (selected by the MFM output of the 
8272). The pulse width is a constant 250 ns. The write 
clock is constantly generated and input to the FDC (dur­
ing both read and write operations). The FOC write 
enable output (WE) is transmitted directly to the write 
gate disk drive input. 

Write data to the disk drive is preshifted (according to 
the PSO, PSI FOC outputs) by the combination of a 
74LSI75 four-bit latch and a 74LSI53 multiplexer. The 
amount of preshift is completely controlled within the 
8272 FDC. Three ~ases are possible: the data may be 
written one clock cycle early, one clock cycle late, or 
witlt no preshift. Thedata preshift circuit is activated by 
the FDC only in the double-density mode. The preshift 
is required to cancel predictable playback data shifts 
when recorded data is later read from the floppy disk. 

A single 50-conductor flat cable connects the board to 
the floppy disk dri\!es. FDC outputs are driven by 7438 
open collector high-current line-drivers. These drivers 
are.resistively terminated on the last disk drive by means 
of ~ 150 ohm resistor to +5V. The line receivers are 7414 
Sci1mitt triggered inverters with 150 ohm pull-up 
resistors on board. 

2·160 AFN 01795A 



APPLICATIONS 

7. SPECIAL CONSIDERATIONS 

This section contains a quick review of key features and 
issues, most of which have been mentioned in other sec­
tions of this application note. Before designing with the 
8272 FDC, it is advisable that the information in this 
section be completely understood. 

1. Multi-Sector Transfers 
The 8272 always operates in a multi-sector transfer 
mode. The 8272 continues to transfer data until the TC 
input is activated. In a DMA configuration, the TC in­
put of the 8272 must always be connected to the 
EOP/TC output of the DMA controller. When multiple 
DMA channels are used on a single DMA controller, 
EOP must be gated with the select signal for the proper 
FDC. If the TC signal is not gated, a terminal count on 
another channel will abort FDC operation. 

In a processor driven configuration with no DMA con­
troller, the system must count the transfers and supply a 
TC signal to the FDC. In a DMA environment, ORing a 
programmable TC with. the TC from the DMA con­
troller is a convenient means of ensuring that the proc­
essor may always gain control of the FDC (even if the 
diskette system hangs up in an abnormal manner). 

2. Processor Command/Result Phase Interface 
In the command phase, the processor must write the ex­
act number of parameters in the exact order shown in 
Table 5. During the result phase, the processor must 
read the complete result status. For example, the For­
mat Track command requires six command bytes and 
presents seven result bytes. The 8272 will not accept a 
new command until all result bytes are read. Note that 
the number of command and result bytes varies from 
command-to-command.Command and result phases 
cannot be shortened. 

During both the command and result phases, the Main 
Status Register must be read by the processor before 
each byte of information is read from, or written to, the 
FDC Data Register. Before each command byte is writ­
ten, 010 (bit 6) must be low (indicating a data transfer 
from the processor) and RQM (bit 7) must be high (in­
dicating that the FDC is ready for data). During the 
result phase, 010 must be high (indicating a· data 
transfer to the processor) and RQM must also be high 
(indicating that data is ready for the processor). 

NOTE: After the 8272 receives a command byte, the 
RQM flag may remain set for 12 microseconds 
(with an 8 MHz clock). Software should not at­
tempt to read the Main Status Register before 
this time interval has elapsed; otherwise, the 
software will erroneously assume that the FDC 
is ready to accept the next byte. 

3. Sector Sizes 
The 8272 does not support 128 byte sectors in the MFM 
(double-density) mode. 

4. Write Clock 
The FDC Write Clock input (WR eLK) must be present 
at all times. ' 

5. Reset 
The FDC Reset input (RST) must be held active during 
power-on reset while the RD and WR inputs Ilre active. 
If the reset input becomes inactive while RD and WR 
are still active, the 8272 enters the test mode. Once ac­
tivated, the test mode can only be deactivated by a 
power-down condition. 

6. Drive Status 
The 8272 constantly polls (starting after the power-on 
reset) all drives for changes in the drive ready status. At 
power-on, the FDC assumes that all drives are not 
ready. If a drive application requires that the ready line 
be strapped active, the FDC will generate an interrupt 
immediately after power is applied. 

7. Gap Length 
Only the gap 3 size is software programmable. All other 
gap sizes are fixed. In addition, different gap 3 sizes 
must be specified in format, read, write, and scan com­
mands. Refer to Section 3 and Table 9 for gap, size 
recommendations. 

8. Seek Command 
The drive busy flag in the Main Status Register remains 
set after a Seek command is issued until the Sense Inter­
rupt Status command is issued (following reception of 
the seek complete interrupt). 

The FDe does not perform implied seeks. Before issu­
ing data read or write commands, the. read/write' head 
must be positioned over the correct cylinder. If the head 
is not positioned correctly, a cylinder address error is 
generated. 

After issuing a step pulse, the 8272 resumes drive status 
polling. For correct stepper operation in this mode, the 
stepper mqtor must be constantly enabled~ (Most drivles 
provide a jumper to pennit the stepper .motor to be con-
stantly enabled.) , , 

9. Step Rate 
The 8272 can emit a step pulse that is one millisecond 
faster than the rate programmed by the SRT parameter 
in the Specify command. This action may cause subse­
quent sector not found errors. The step rate time should 
be programmed to be 1 ms longer than the step rate time 
required by the drive. 

10. Cable Length 
A cable length of less than 10 feet is recommended for 
drive interfacing. 

2-161 AFN 01795A 



APPLICATIONS 

11. Scan Commands 
The current 8272 has several problems when using the 
scan commands. These commands should notbe used at 
this time. 

12. Interrupts . 
When the processor receives an interrupt from the FDC, 
the FDC may be reporting one of two distinct events: 

a) The beginning of the result phase of a previously re­
. quested read, write, or scan command. 

b) An. asynchronous event such as a seek/recalibrate 
completiqn, . an attention, an abnormal cqmmand 
termination, or an invalid command. 

These two cases are distinguished by the FDC busy flag 
. (bit 4) in the Main Status Register. If the FDC busy flag 
is high, the interrupt is of type (a). If the FDC busy flag 
is low, the interrupt was .caused by an asynchronous 
event (b). 

A sirigle interrupt from the FDC may signal more than 
one of the above events. After receiving an interrupt, 
the processor must continue to issue Sense Interrupt 
Status commands (and service the resulting conditions) 
until an invalid command code is received. In this man­
ner, all ~'hidden" interrupts are ferreted out and 
serviced. 

13. Skip Flag (SK) 
The skip flag is used during the execution of Read Data, 
Read Deleted Data, Read Track, and various Scan com­
mands. This flag permits the FDC to skip unwanted sec­
tors on a disk track. 

When performing a Read Data, Read Track, or Scan 
command, a high SK flag indicates that the FDC is to 
skip over (not transfer) any sector containing a deleted 

. data address mark. A low SK flag indicates that the 
FDC is to terminate· the command (after reading all the 
data in the sector) when a deleted data address mark is 
encountered. 

When performing a Read Deleted Data command, a 
high SK flag indicates that sectors containing normal 
data address marks are to be skipped. Note that this is 
just the opposite situation from that described in the last 
paragraph. When a data address mark is encountered 
during·a Read Deleted Data command (and the SK flag 

is low), the FDC terminates the command after reading 
all the data in the sector. 

14. Bad Track Maintenance 
The 8272 does not internally maintain bad track infor­
qlation. The maintenance of this information must be 
performed by system software. As an example of typical 
bad track operation, assume that a media test deter­
mines that track 31 and track 66 of a given floppy disk 
are bad. When the disk is formatted for use, the system 
software formats physical track 0 as logical cylinder 0 
(C = 0 in the command phase parameters), physical 
track 1 as logical track 1 (C = 1), and so on, until 
physical track 30 is formatted as logical cylinder 30 
(C = 30). Physical track 31 is bad.and should be format­
ted as logical cylinder FF (indicating a bad track). Next, 
physical track 32 is formatted as logical cylinder 31,and 
so on, until physical track 67 is formatted as logical 
cylinder 64. Next, bad physical track 66 is formatted as 
logical cylinder FF (another bad track marker), and 
physical track 67 is formatted as logical cylinder 65. 
This formatting continues until the last physical track 
(77) is formatted as logical cylinder 75. Normally, after 
this formatting is complete, the bad track information is 
stored in a prespecified area on the floppy disk(typical­
ly in a sector on track 0) so that the system will be able 
to recreate the bad track information when the disk is 
removed from the drive and reinserted at some later 
time. 

To illustrate how the system software performs a 
transfer operation disk with bad tracks, assume that the 
disk drive head is positioned at track 0 and the disk 
described above is loaded into the drive. If a command 
to read track 36 is issued by an application program, the 
system software translates this read command into a 
seek to physical track 37 (since there is one bad track 
between 0 and 36, namely 31) followed· by a read of 
logical cylinder 36. Thus, the cylinder parameter C is set 
to 37 for the Seek command and 36 for the Read Sector 
command. 

15. Head ,"oad versus.Head Settle Times 
The 8272 does not permit separate specification of the 
head load time and .the head settle time. When the 
Specify command is issued for a given disk drive, the 
proper value for the HLT parameter is the maximum of 
the head load time and the head settle time. 

2-162 AFN 01795A 



APPLICATIONS 
. J 

APPENDIX 

2-163 AFN 01795A 



APPLICATIONS 

Power Distribution 

Part Ref Deslg +5 GND +12 -12 

8088 A2 40 1,20 
8224 16 9,16 8 
8237-2 A6 31 20 
8251A A9,B9,C9 26 4 
8253-5 AIO 24 12 
8259A BIO 28 14 
8272 010 40 20 
8284 Al 18 9 
8286 B6,F4 20 10 

2114 FI,F2,OI,02,HI,H2,I1,I2 18 9 
2732A 01,02 24 12 

74LSOO E1 14 7 
74LS04 B2,E6,E8,F8 14 7 
74LS27 E2,ES 14 7 
74LS32 B1 14 7 
74LS74 A4,05,H6 14 7 
74LS138 F3 16 8 
74LS139 EIO 16 8 
74LS153 13 16 8 
74LS1S7 F6 16 8 
74LSI64 FS 14 7 
74LS173 03 16 8 
74LS17S G4 16 8 
74LS240 010 20 10 
74LS257 03 16 8 
74LS367 C3,E9 16 8 
74LS373 B4,C4,D4,C6 20 10 
74LS393 IS,F7 14 7 

74S08 E4 14 7 
74S138 D6,E3 16 8 

7414 H7 14 7 
7438 H8,H9,H1O 14 7 

1488 H3 7 14 1 
1489 H4 14 7 

96LS02 07 16 8 
96LS02 G6 16 8 

LM3S8 HS 8 4 

2·164 AFN 01795A 



APPLICATIONS 

REFERENCES 
1. Intel, "8272 Single/Double Density Floppy Disk 

Controller Data Sheet," Intel Corporation, 1980. 

2. Intel, iSBC 208 Hardware Reference Manual, 
Manual Order No. 143078, Intel Corporation, 
1980. 

3. Intel, iSBC 204 Flexible D~kette Controller Hard­
ware Reference Manual, Manual Order 
No. 9800568A, Intel Corporation, 1978. 

4. Shugart, SA800/80l Diskette Storage Drive OEM 
Manual, Part No. 50574, Shugart Associates, 1977. 

5. Shugart, SA800/80l Diskette Storage Drive Theory 
of Operations, Part No. 50664, Shugart Associates, 
1977. 

6. Shugart, SA800 Series Diskette Storage Drive 
Double Density Design Guide, Part No. 39000, 
Shugart Associates, 1977. 

7. Shugart, "Application Notes for Shugart Dual 
VFO," Part No. 39101, Shugart Associates, 1980. 

8. Pertec, "Soft-sector Formatting for PERTEC Flex­
ible Disk Drives," Pertec Application Note, 1977. 

9. Austin Lesea and Rodnay Zaks, "Floppy-disc Con­
troller Design Must Begin With the Basics," EDN, 
May 20, 1978. 

10. John Hoeppner and Larry Wall, "Encoding/ 
Decoding Techniques Double Floppy Disc Capa­
city," Computer Design, Feb 1980. 

11. John Zarrella, System Architecture, Mirocomputer 
Applications, 1980. 

2·165 AFN 01795A 



in¥ 
" 

, , , " 
--'"t 

" !.2 , 14.7451 MHz 3, 4 
+5V " 

,rO~rpF 
'f5V 

~1J2 ~ 

t~14~ 
!" '," ~ 

l.SOot 8 ~8 
18 17 10K ;::. Xi XI 33 MINIfi 

2, .. 
~:~ 10, ' 21 'RESET 

,A18 36 8 Dr 01 8 
RElET 'A18 18 7 D~ LS373 02 8 AX18 1 ' REI 8 

,18 CLK 

1 I'F~ 
CLK A17 37 4 Dl D4 

01 5 AX17 

AI READY 5 22 READY ~Al.18 ,,3bo 
00 2 AXt8 11 

''=" 'A15 31t 18 D7 , 
07 18 AXIS AXIS 18.,.....1~ 

07 ' 
',8284 A142 17 

DO ,,08 18 AX14 18 Q8 

+ 

2 A13 3 14 D5 Q8 5 AXla 15 as 
PCLK 

A124 13 D4 ' 04 12 AX12 ill 04 10K. ,4 FtC: 

f=1 
'LS373 

sV' ROYI " All 5 8 '03 C4, 03 8 AXtl 8 03 
LS37: 

,..! C,SYNC C. 
RDY2 Al08 7 

02 8 AXl0 
• 02 ,02 

AS 7 '4 
01 5 AXe 5 01 AENI AEN2 Dl 

13 71 
AS' 3' DO 

. 2 AXe AXe 200 00 

AD7 8 18 D7 07 18 AX:1 ---" 
AD8 10 17 DO _08 18 AXe AX7 12~ 

PCLK 

'::' AD5 11 14 D5 as 15 AXe 13 88 

AD412 13 D4 LS373 04 12 AX4 14 B5 

ADa 13 8 D3 
B4 

03 8 AX3 15 B4 8288 

AD214 7 
02 8 AX2 18 B3 

88 
D2 

AD1 15 4 
Dl 01 5 AXI 17 B2 

ADO 18 3 
DOG OE 00 2 AXO I. Bl 

111 

AXO 18 BO T 
LS187 1 

ALE 25 4 ..... 5 11 

HLDA 30 
..... cs 

5 
HOLD 31 a D 2 

LS74 -8088 A4 
AI 

3 .---CLR PR 
1'( 4 

INTR 18 
24 

IMTA 

10K 
(2 PLCS) 

+5V 

10K (3 PLCS) 
lK 

101M 28 
LS~~ 

~1 ca 

1 15 

32 2 SEL OE +5V 10K 
l00,H RD 

L 
lA (3 PLCS) 

..J'¥'v-n +5VA 

f 
~ lB ~~n 4.7'F~ tOol.FAlR 

NMI ,...! fA 

~ f-! 2B LS257 
11 D3 lY 4 

WR 3A 
zy7 

~ 
3B 

IY 8 ~ 4A 
4Y 12 

.1.11 
+5V 13 4B 

+5V ..... 

2·166 



APPLICATIONS 

------------------------------------------------------------------------------------RaET 

110 PORTS 

-1! OX-8237·2 
RESET IX - DMA UPPER ADDRESS 

-1! CLK 2X - 8263 

---.! 

f1 
ax - 8272 AEN DREOI 

17 4X- 8261A'1 

---.! 
DREQ2 

ADSTB 18 6X- 8251A'2 
DREQ3 

ex- 8251A13 

-.!! DB7 7X-826IA 

-.!! 
~ 

8237-2 --!! AS 
......!!. 
-H. CS 

11 

.....J! 
DREoo 18 

-1! DBO 25 
DACKO 

--!! 

T 
A7 

--!! 10K' 

--!! ~ 38 11 10 
......!!. EOP 

~S04 2 ~ lOW 

~ 
4 

MW 
....E. lOR ~ 
--.E. AO MR pL 

-2- HLDA 

~ HRO READY 

8 

I 
+5V~ 

. 10K 

ADO lAO M 80 18 
ADI 2 AI Bl 18 
AD2 3 A2 B217 
ADa 4 'A3 8288 B3 18 
AD4 5 A4 F4 B4 15 
ADS 8AS B5. 14 
ADB 7 AS: B8 13 

AD7 8 A7 T OE B7 12 

" 11'( 1'( 
, 

~1, 
E4 LS08 

LS387 I-
(4 PLCS) 13 12' 

10· ..... 8 C3 

.... 8"":7 

4 ...... 5 ..... 

..... 2 ..... 3. 

'1.1 

AXe 3 
C Y1~ 

AX5 2 
B Y8 I 

AX4 1 
A 10 

Y5 

SI38 Y4 
11 

DB 12 
Y3 

• 01 
13 foa Y2 
14 

Yl 

Y01 
02A 

lr---
AXO 27AO CS IRO 18 

ADO 11 DO IRI 11 

10 Dl 1R2 20 
I 21 

D2 IR3 
8 

D3 IR4 22 
7 D4 IRS 

23 

8 D5 826IA IR8 24 
5 Bl0 ~ DB IR7 

AD7 4 D7 WR 
2 

RD 
3 

17 INT 
28 

INTA 

I 
61 

DO ~ DO 00 3 AX18 

Dl' ~ Dl 01 4 AX17 

D2 ~ 
, LSI73 '5 AX18 

D2 .03 Q2 
D3 ~ D3 03 8 AXIl 

D4 

D5 N ' 02 01 

DB 

2r 

'(8 

D7 

, 
I " 

2·167 

., 

C8513 

C8511 

C8511 

CS72 

cssa 

DREQ72 

DACK72 

INm 

INT511R 

INT511T 

INT512R 

INT&I27 

INT513R 

INT&I3T 

EOP 

AXO·AX11 

ADO·AD7 

I 

AFN 01795A 



ADO-AD7 

em 
RESET 

RIR 
llIW 

Dl).D7 

IfIIIW 
IiW 
IIIf 

AX12 

AXIl 

AX14 

AXl, 

AXl, 

AX17 

AXI. 
AXI. 

I 

Ii 

41 E1' • 
Z-
11 El' a 

--; 
(2 PLCS) 

1 r;--';; ~ Fe 

2. ~~ FI 
a c p.!.3 FA 

, SI38 12 F. 
8 Gl ,13 ~. FC 

~~FD • G2B 
~ 

4 Y1 
7 FF 

GaA 

P~ESS 
DECODE 

ADD • 
AD1 7 

go 

i • BAUDRATED~ 

, ADa & BAUD RArE -4 GENERATOR 4IDD 
,AD4 24DD 

l21li lIDO 1 
ADS II AID IDD I 

ADI iD7 
IDO I 
110 11 

AD7 1 110 II 

+&V B GATE2 
lK GATEI 

U 
GATED 

R CUC2 
11 

CLK' DurO 
10 

• CLKQ OUT1 
13 I 

AXI l1li AI' 0UT2 
17 I 

AXD 1. AO I .,:s RDWR 

~jaan 

AXD 

• 8 

~ .€ LIIlI32 
(2 PLC8I 

• 

,1,18 l1li1,. l1li 
AXIl ,21 A~IE E CE DE 

AXl0 II 

AX8 22 
00 1 00 

n AXe 10 Dl 

AX7 "I 11 D2 
27_ 2732A 

AXe 2 D1 D2 13 Da 

AXI a 14 D4 

AX4 4 II .DS 

AXa I I' DI 

AX2 • D717 D7 

AXI 7 

AXD 8 
AD FEDDD FFOOD 

PROGRAM 
MEMORY 

2·168 



ADO %7 DO 
ADI 28 

AD2 

AD3 2 

AD4 S 

ADS 8 

AD8 8251A 
AD7 

07 
A9 

21 
RESET 

13 
RD 

10 
WR 

12 
AU 

20 

1 
,532 

Bl 
B 4~ 

YO 
IS 

14 

I ..... 8 5 13 

'''LS04 
02B 

12 

E8 SI38 11 
F3 

E2 8 I 10 
01 

9 
LS27 

3 C Y7 
7 

2 B 
1 A 

"""--

8251A 
BI 

APPLICATIONS 

8251A 
C8 

SERIAL 
PORTS 

~----~1H:~~-----------nD3 

~--------------------~~r------RXOI 

~---t-rlr--------1r1H~~----~-----n~ 

L-------~-i~~------------------------~Ct~-----RX02 

14B8 

L-__ ~ __ +_+_----------+_+_----------~~H~3~---------------TXOI 
I H4 10 

L----------t-t------------~~----------------------~~~-----RXDI 
I 1418 

SO 

SI 

S2 

sa 
54 

S5 

S8 

S7 

* 330PF 
L.... ___________________________________ INT513R 

L-__________ ~ __________ .,,_------------- INT513T 

L-------------------------------------------------INT512R 

10 
WE 

15 
A9 

AX8 18 

AX7 17 

AX8 1 2114 ARRAY D4 11 
AX! 2 12 

AX4 3 13 

AX3 4 DO 14 
Fl 01 HI 11 

An 7 

AXI 8 

AXO SAO 
AX9 15 AI 
AX8 II 

F2 02 H2 12 
AX7 17 

AX8 1 D4 11 
AXS 2 12 

AM 3 ; 13 

AX3 4 I I I § i I § 14 

An 7 
is is ;;;;DO 

AXI I 

AXO SAO 

~ WE 

8 JSB J: J: J: J: J,B JaB SI S2 S3 54 55 sa 87 

2-169 

07 

De 

05 

04 

D3 

02 

01 

DO 

--INT512T 

--INT511R 

--INTIllT 

DATA 
MEMORY 

AFN 01795A 



I1teI 
" .' 

~ HDL 38 
13 11 

~3 I ADO-AD1 12 H. - LS04 (PLCI) 2-
~ 4 E8 , ...... 2 

~ YO 
ADO I 28 

3 8 LS138 
6 ...... 4 .... 

Do DS1 ...... 5 ..... I 
1-

AD1 7 
DSO 2S Z A E10 I 

'13...- " D1 
AD2 I 1 7 13h 12 .... 

~ I 
D2 .(L..!! .... 12 AD3 . 

10 
D' 10_ I " 

AD4 
HOSEL 27 ~ D4 

1 7438 . I 7438 (4 PLCI) ADS 11 4.7K (4 PLCS) 
12 

D5 +5V 3 
ADS HI 

13 
DS 112 LSlW) 2 AD7 1 
D7 37 2---- 18 , .... 2 H8 • 1 RESET FRiSTEP 1A1 1Y1 RESET l!! I I ...... 4 ...... 

.- 4...-iOii 
2 1A1 IV1 RD 

r1i 
11 .... I ...... I ~ 3 1A1 1Y2 lOW WR 38 7 ..... ...... 

4 LCTIDIR 2A2 2Y2 ~11 12CS CS ,. ...... ,. 
I • 010 HI 

AKO AO U;387 

~ 
12 

DRE072 
14 

ORO AWlSEEK 
38 ..... LS04 (4 PLCI) '10...- I 

"~" 
E8 

~ DACK72 
15 

DACK " ..... 10 

INT72 
18' 

INT E8 ...... LS04 7438 (4 PI 

EOP 
11 

TC 7438 
LS387 

~I 25 14 ..... 13 HI 
1272 WE 

11 

1- LSOS (2 PLCS) E8 
+IV 1 

.1 E4 
a 

32 
1224 I PSO 

fX1VDD ~ 12 ,. 31 5 E4 
OSC CLK PS1 

'-'I ·'-4 4M,Hz 

. 3 
10 pF 1!.! RESIN' 010 14· 5 

~ ~--04 .D 

~3D 2 14 

30 a-A 

+5:1 

WRDATA 5 2D 40 15 4 
1C2 

150 7414 (2 PLCS) 
r-;:s;n LS 10 I 1Y 7 

(2PLCI) H7 175 30 1CO , ..... 2 as 00" 
4MHz • 7 5 1el 

READ~P.H ...... 3 .... 4 
RDY 13 CLR20 

3 lea 17 
lOX 15 T INDEX..!!!.. .... f'G 13 CLR 

~: f 112 LS240 12 .". 'LS153 
(' PLCS) 010 .". 

WiIiTEPAoT 144 Ir-- ,. 34 ., 
lA3' 1Y3~ WPfTS WRCLK 

TWoSiiiED 1-;0 fo 11 I 
DW 

22 
2A3 2Ya 

FAULT rt 8 1A4 1Y4 tii 28 
MFM 

'iiiACKo f-4i" 17 2A4 2Y4 3 33 
FLTlTAKO -- '--- 2' 

RDDATA 

+5V .H.7J 
3. 121 .. l' 

24 0 1 

VCO r-: 98LS02 13 00 11 1 MHz 

4_ 07 
LS393 

~ R +.V 
CLR Q1 

.10 500 ,kHz 

T " I'"""""s ,. 3 
~1a 

__ 27! ..JI zoOpF 

~I 
2 1A 

l· 
+5Y ,. ,. 

LS1 

0 2F S 2a 
07 10 

2 D LS I 
7414 

,0 
FRED 1F S 2A 

12 8ILS02 3 74 0 
s ..... I - DISC r-

~r 
ST READ DATA 48 

';;; -l R 1 05 ,,- To ':: 
LS04 

, ...... 2 

r. 

2-170 



LS27 (3 PlCS) 
A OA~----------~~~=-o 

OB,-:-------=C"L_ 

~ ~~I>~--~ 
ODL-~--... -

L5184 QEr1_0-.. __ "---_ 
11 

OF 
QG 12 

APPLICATIONS 

F5 
1~~==~==!J~~::~----------------~1043B QH ~3 LS32 LS157 9 

11 3V 
L---________________________ -'-'I3A F8 

DSELD '-::- DRIVEIE[I!C'f6 
DSEL1 ,!!-

~ 
DRIVE IE[eT; 

DSEL2 

~ DRIVE SELECT2 
DSEL3 

~ DRIVE SELECn 
DIR 

34 DIRECTION SEl 
STEP ru STEP 
WHGT ~ ViiiiTEOATE 
FRES 

0- r.- FAULT RESET 
lCT '2 
SSEl 

0- r,.- lDWCURRENT 

0- iii5EiEi:iCi 
HDl 

0- r.. HEAiITOAD 
'-

r-----------------------------------------------------------------------iM WRITEDMA 

+5V 

1K 

+5VA 
+SVA 

20K 
1M 

--fi 

10K 

SETUP 
ADJUSTMENT 

2-171 

10K 

2MHzNOM 

ECT 

AFN 01795A 



Software Design and 
Implementatio ... of 

.' ' .. Floppy Disk 
Subsystems 

Contents 

1. INTRODUCTION 

The Physical Interface Level 
The Logical Interface Level 
The File System Interface Level 
Scope of this Note 

2. DISK I/O TECHNIQUES 

FDC Data Transfer Interface 
Overlapped Operations 
Buffers 

2-174 

2-179 

3. THE 8272 FLOPPY DISK CONTROLLER 2-185 

Floppy Disk Commands 
Interface Registers 
Command/Result Phases 
Execution Phase 
Multi-sector and MUlti-track 
Transfers 
Drive Status Polling 
Command Details 
Invalid Commands 

4. 8272 PHYSICAL INTERFACE 
SOFTWARE 

INITIALlZE$DRIVERS 
EXECUTE$DOCB 
FDCINT 
OUTPUT$CONTROLS$TO$DMA 
OUTPUT$COMMAND$TO$FDC 
INPUT$RESULT$FROM$FDC 
OUTPUT$BYTE$TO$FDC 
INPUT$BYTE$FROM$FDC 
FDC$READY$FOR$COMMAND 
FDC$READY$FOR$RESULT 
OPERATION$CLEAN$UP 
Modifications for 
Polling Operation 

5~ 8272 LOGICAL INTERFACE 
SOFTWARE 

SPECIFY , 
RECALIBRATE 
sEek 
FORMAT 
WRITE 
READ 
Coping With Errors 

2·172 

2-197 

2-204 

A~l949A 



Contents (Co,ntinued) 

6. FILE SYSTEMS 

File Allocation 
The Intel File System 
Disk File System Functions 

7. KEY 8272 SOFTWARE 
INTERFACING CONSIDERATIONS 

REFERENCES 

APPENDIX A-8272 FDC 
DEVICE DRIVER SOFTWARE 

APPENDIX 8-8272 FDC 
EXERCISER PROGRAM 

APPENDIX C-8272 DRIVER FLOWCHARTS 

2-173 

2-207 

2-212 

2-215 

2-216 

2-225 

2-232 

AFN-OI949A 



APPLICATIONS 

,- . \ .-; 

1. '.' Introduction 

Pisk; interface software is a major eon·tributor to the efficient and reliable 
operation of a floppy disk subsystem. This software must be a well-designed 
compromise between the needs of the application software modules and the 
capabilities of the floppy disk'controller (FDC). In an effort to meet these 
requirements, the implementation of disk interface software is often divided 
into several levels of abstraction. The pUrpose of this application note is 
to define these softwcn:e. in1::'erface .ievEiis and describe the design and imple­
ntent'ation of a modular"and flexiblesofttiiare driver for the 8272 FDC. This 
note is a companion to AP-1l6 ,n An Intellj,ge.nt Data Base System Using the 
8272." 

The physical Interface Level 

T.he software interface level~losE{$t to the Foe hardware is referred to as the 
physical interface level. At this level,' interface modules (often called disk 
drivers or diskh~n4~ers) comm).1nicate ~irec~l,y with the FOC device. Disk drivers 
accept floppy disk dommands frOl'il other 'software modules, control and monitor the 
FDC execution of the commands, and finally return operational status information 
(at command termination) to the requesting modules. 

In order to perform these functions, the drivers must support the bit/byte level 
Foe interface for status and data transfers. In addition, the drivers must field, 
classify, and service a variety of Foe interrupts. 

The Logical Interface Level 

System and application software modules often specify disk operation parameters 
that are not directly compatible with the FDC device. This software incompati­
bility is typically caused by one of the following: 

1. The change from an existing Foe to a functionally equivalent 
design. Replacing a TTL based controller with an LSI device is 
an example of a change that may result in software incompati­
bilities. 

2. The upgrade of an existing Foe subsystem to a higher capability 
design. An expansion from a single-sided, single-density sys­
tem to a dual-sided, double-density system to increase data 
storage capacity is an example of such a system change. 

3. The abstraction of the disk software interface to avoid redun­
dancy. Many Foe parameters (in particular the density, gap 
size, number of sectors per track and number of bytes per 
sector) are fixed for a floppy disk (after formatting). In 
fact, in many systems these parameters are never changed during 
the life of the system. 

AFN.ol949A 



APPLICATIONS 

4. The requirement to support a software interface that is inde­
pendent of the type of disk attached to the system. In this 
case, a system generated ("logical") disk address (drive, head, 
cylinder, and sector numbers) must be mapped into a physical 
floppy disk address. For example, to switch between single­
and dual-sided disks, it may be easier and more cost-effective 
for the software to treat the dual-sided disk as containing 
twice as many sectors per track (52) rather than as having two 
sides. with this technique, accesses to sectors 1 through 26 
are mapped onto head 0 while accesses to sectors 27 through 52 
are mapped onto head 1. 

5. The necessity of supporting a bad track map. Since bad tracks 
depend on the disk media, the bad track mapping varies from 
disk to disk. In general, the system and application software 
should not be concerned with calculating bad track parameters. 
Instead, these software modules should refer to cylinders 
logically (0 through 76). The logical interface level pro­
cedures must map these cylinders into physical cylinder posi­
tions in order to avoid the bad tracks. 

The key to logical interface software design is the mapping of the "logical disk 
interface" (as seen by the application software) into the "physical disk inter­
face" (as implemented by the floppy disk drivers). This logical to physical 
mapping is tightly coupled to system software design and the mapping serves to 
isolate both applications and system software from the peculiarities of the FDC 
device. Typical logical interface procedures are described in Table 1. 

The File System Interface Level 

The file system typically comprises the highest level of disk interface software 
used by application programs. The file system is designed to treat the disk as 
a collection of named data areas (known as files). These files are cataloged in 
the disk directory. File system interface software permits the creation of new 
files and the deletion of existing files under software control. When a file is 
created, its name and disk address are entered into the directory~ when a file is 
deleted, its name is removed from the directory. Application software requests 
the use of a file by executing an OPEN function. Once opened, a file is 
normally reserved for use by the requesting program or task and the file cannot 
be reopened by other tasks. When a task no longer needs to use an open file, 
the task closes the file, releasing it for use by other tasks. 

Most file systems also support a set of file attributes that can be specified 
for each file. File attributes may be used to protect files (e.g., the WRITE 
PROTECT attribute ensures that an existing file cannot accidentally be over­
written) and to supply system configuration information (e.g., a FORMAT attri­
bute may specify that a file should automatically be created on a new disk 
when the disk is formatted). 

At the file system interface level, application programs need not be explicitly 
aware of disk storage allocation techniques, block sizes, or file coding strate­
gies. Only a "file name" must be presented in order to open, read or write, 
and subsequently close a file. Typical file system functions are listed in 
Table 2. 

2-175 AFN-D1949A 



APPLICATIONS 

~able 1: Examples of Logical Interface Procedures 

Name Description 

FORMAT DISK 

RECALIBRATE 

SEEK 

READ STATUS 

READ SECTOR 

WRITE SEcTOR 

Controls physical disk formatting for all tracks on a disk. 
Formattillg adds FDC recognized cylinder, head, and sector 
addresses as well as address marks and data synchronization 
fields (gaps) to the floppy disk media. 

Moves the disk read/write head to track 0 (at the outside 
edge of the disk). 

Moves the disk read/write head to a specified logical 
cylinder. The logical and physical cylinder numbers may 
be different if bad track mapping is used. 

Indicates the status of the floppy disk drive and media. One 
important use of this procedure is to determine whether a 
floppy disk is dual-sided. 

Reads one. or more.ct:lll\p1ete sectors starting at a specified 
disk address (drive, head, cylinder, and sector). 

writes one or more complete sectors starting at a specified 
disk address (drive, head, cylinder, and sector). 

2·176 AFN·01949A 



APPLICATIONS 

Table 2: Disk File System Functions 

Name Description 

OPEN 

CLOSE 

READ 

WRITE 

CREATE 

DELETE 

RENAME 

ATTRIBUTE 

LOAD 

INITDISK 

prepare a file for processing. If the file is to be opened for 
input and the file name is not found in the directory, an error 
is generated. If the file is opened for output and the file name 
is not found in the directory, the file is automatically created. 

Terminate processing of an open file. 

Transfer data from an open file to memory. The READ function is 
often designed to buffer one or more sectors of data from the disk 
drive and supply this data to the requesting program, as required. 

Transfer data from memory to an open file. The WRITE function is 
often designed to buffer data from. the application program until 
enough data is available to fill a disk sector. 

Initialize a file and enter its name and attributes into the 
file directory. 

Remove a file from the directory and release its storage space. 

Change the name of a file in the directory. 

Change the attributes of a file. 

Read a file of executable code into memory. 

Initialize a disk by formatting the media and establishing the 
directory file, the bit map file, and other system files. 

2·177 AFN-01949A 



APPLICATIONS 

Scope of this Rote 

This application note directly addresses the logical and physical interface 
levelS. A complete 8272 driver (including interrupt service software) is 
listed in Appendix A. In addition, examples of recalibrate, seek, format, 
read, and write logical interface level procedures are included as part of 
the exerciser program found in Appendix B. Wherever possible, specific 
hardware configuration dependencies are parametized to provide maximum flexi­
bility without requiring major software changes. 

2-178 Af*01949A 



APPLICATIONS 

2. Disk I/O ~echniques 

One of the most important software aspects of disk interfacing is the fixed sector 
size. (Sector sizes are fixed when the disk is formatted.) Individual bytes of 
disk storage cannot be read/written~ instead, complete sectors must be trans­
ferred between the floppy disk and system memory. 

Selection of the appropriate sector size involves a tradeoff between memory 
size, disk storage efficiency, and disk transfer efficiency. Basically, the 
following factors must be weighed: 

1. Memory size. The larger the sector size, the larger the memory 
area that must be reserved for use during disk I/O transfers. 
For example, a lK byte disk sector size requires that at least 
one lK memory block be reserved for disk I/O. 

2. Disk Storage efficiency. Both very large and very small sectors 
can waste disk storage space as follows. In disk file systems, 
space must be allocated somewhere on the disk to link the sectors 
of each file together. If most files are composed of many small 
sectors, a large amount of linkage overhead information is re­
quired. At the other extreme, when most files are smaller than a 
single disk sector, a large amount of space is wasted at the 
end of each sector. 

3. Disk transfer efficiency. A file composed of a few large sectors 
can be transferred to/from memory more efficiently (faster and 
with less overhead) than a file composed of many small sectors. 

Balancing these considerations requires knowledge of the intended system appli­
cations. Typically, for general purpose systems, sector sizes from 128 bytes 
to lK bytes are used. For compatibility between single-density and double­
density recording with the 8272 floppy disk controller, 256 byte sectors or 512 
byte sectors are most useful. 

FDC Data ~ransfer Interface 

Three distinct software interface techniques may be used to interface system mem­
ory to the FDC device during sector data transfers: 

1. DMA - In a DMA implementation, the software is only required 
to set up the DMA controller memory address and transfer count, 
and to initiate the data transfer. The DMA controller hardware 
handshakes with the processor/system bus in order to perform 
each data transfer. 

2. Interrupt Driven - The FDC generates an interrupt when a data 
byte is ready to be transferred to memory, or when a data byte 
is needed from memory. It is the software's responsibility to 
perform appropriate memory reads/writes in order to transfer 
data from/to the FDC upon receipt of the interrupt. 

3. Polling - Software responsibilities in the polling mode are 
identical to the responsibilities in the interrupt driven mode. 
The polling mode, however, is used when interrupt service over­
head (context switching) is too large to support the disk data 

2-179 AFN-01949A 



APPLICATIONS 

rate. In this mode, the software determines when to transfer 
data by continually polling a data request status flag in the 
FDC status.register. 

The DMA mode has the advantage of permitting the processor to continue executing 
instructions while a disk transfer is in progress. (This capability is especially 
useful in multiprogramming,environments when the operating system is designed to 
permit other tasks to execute while a program is waiting for I/O.) Modes 2 and 
3 are often combined and described as non-DMA operating modes. Non-DMA modes 
have the advantage of significantly lower system cost, but are often perform-
ance limited for double-density systems (where data bytes must be transferred 
to/from the Foe every 16 microseconds). 

Overlapped Operations 

Some Foe devices support simultaneous disk operations 'on more than one disk 
drive. Normally seek and recalibrate operations can be overlapped in this 
manner. Since seek operations on most floppy drives are extremely slow, this 
mode of operation can often be used by the system'software to reduce overall 
disk access times. 

Buffers 

The buffer concept is an extremely important element in advanced disk I/O 
strategies. A buffer is nothing more than a memory area containing the same 
amount of data as a disk sector cont~ins. Generally, when an application pro­
gram requests data from a disk, the system software allocates a buffer (memory 
area) and transfers the data from the appropriate disk sector into the buffer. 
The address of the buffer is then returned to the application software. In the 
same manner, after the application program has filled a buffer for output, 
the buffer address is passed to the system software, which writes data from the 
buffer into a disk sector. In multitasking systems, multiple buffers may be 
allocated from a buffer pool. In these systems, the disk controller is often 
requested to read ahead and fill additional data buffers while the application 
software is processing a previous buffer. Using this technique, system software 
attempts to fill buffers before they are needed by the application programs, 
thereby eliminating program waits during' I/O transfers •. Figure 1 illustrates 
the use of multiple buffers in a ring configuration. 

2·180 AFN-Q1949A 



DISK 
DRIVE 

APPLICATIONS 

BUFFER 1114 
EMPTY 

BUFFER 1111 
BEING 
FILLED 

DISK 
SUBSYSTEM 

BUFFER 1113 
EMPTY 

BUFFER 1112 
EMPTY 

DATA FLOW FROM DISK 
INTO BUFFER 

a) The first disk read request by the application software causes the disk subsystem to begin filling 
the first empty buffer. The application software must wait until the buffer is filled before it may 
continue execution. 

AfN.OI948A 

Figure 1. Using Multiple Memory Buffers for Disk 1/0 

AfN.OI948A 



AP.PL.ICAtIONS 

BUFFER #1 
BEING 

EMPTIED 

BUFFER #4 
EMPTY 

BUFFER #3 
EMPTY 

BUFFER #2 ./ 

~K~~ ~~------~ 

DISK 
SUBSYSTEM 

DATA FLOW FROM DISK 
INTO BUFFER 

b) After the first buffer is filled, the disk system continues to transfer disk data into the next buffer 
while the application software begins operating on the first full buffer. 

AFN-cll949A 
"'.".: 

Figure 1. Using Multiple Memory Buffers for Disk I/O (Continued) 

2-t82 , AfN.Ol949A 



BUFFER #2 
FULL 

BUFFER #3 
FULL 

APPLICATIONS 

APPLICATION 
SOFTWARE 

BUFFER #4 
FULL 

t 
SUFFER #1 

BEING 
EMPTIED 

DISK 
SUBSYSTEM 

NO DISK TRANSFER 
ACTIVE 

c) When all empty buffers have been filled, disk activity is stopped until the application software 
releases one or more buffers for reuse. . 

AFN-Q1949A 

Figure 1. Using Multiple Memory Buffers for Disk 1/0 (Continued) 

2·183 A~949A 



DISK 
DRIVE 

BUFFER #3 
FULL 

BUFFER #4 
FULL 

APPLICATIONS 

APPLICATION 
SOFTWARE 

BUFFER #2 
BEING 

EMPTIED 

BUFFER #1 
BEING 
FILLED 

DATA FLOW FROM 
DISK INTO BUFFER 

DISK 
SUBSYSTEM 

d) When the applicationsofMareJeleases a.buffer (for reuse), the disk subsystem begins a disk 
sector read to refill the buffer. This strategy attempts to anticipate application software needs by 
maintaining a sufficient number of full data buffers in order to minimize data transfer delays. If 
disk data is already in merriory when the application software requests it, no disk transfer delays 
are incurred. 

AFN-01949A 

Figure 1. Using Multiple Memory Buffers for Disk 1/0 (Continued) 

AFN-01949A 



APPLICATIONS 

3. THE 8272 FLOPPY DISK CONTROLLER 

The 8272 is a sing~e-chip LSI Floppy Disk Controller (FDC) that implements both 
single- and double-density floppy disk storage subsystems (with up to four 
dual-sided disk drives per FCC). The 8272 supports the IBM 3740 single-density 
recording format (FM) and the IBM System 34 double-density recording format 
(MFM). The 8272 accepts and executes high-level disk commands such as format 
track, seek, read sector, and write sector. All data synchronization and error 
checking is automatically performed by the FDC to ensure reliable data storage 
and subsequent retrieval. The 8272 interfaces to microprocessor systems with 
or without Direct Memory Access (DMA) capabilities and also interfaces to a 
large number of commercially available floppy disk drives. 

Floppy Disk Commands 

The 8272 executes fifteen high-level disk interface commands: 

Specify 
Sense Drive Status 
Sense Interrupt Status 
Seek 
Recalibrate 
Format Track 
Read Data 
Read Deleted Data 

Write Data 
Write Deleted Data 
Read Track 
Read ID 
Scan Equal 
Scan High or Equal 
Scan Low or Equal 

Each command is initiated bY,a multi-byte transfer from the driver software 
to the FCC (the transferred bytes contain command and parameter information). 
After complete command specification, the FDC automatically executes the 
command. The command result data (after execution of the command) may require a 
multi-byte transfer of status information back to the driver. It is con­
venient to consider each FCC command as consisting of the following three phases: 

Command Phase: The driver transfers to the FDC all the information 
required to perform a particular disk operation. The 
8272 automatically enters the command phase after 
RESET and following the completion of the result 
phase (if any) of a previous command. 

Execution Phase: The FDC performs the operation as instructed. The 
execution phase is entered immediately after the 
last command parameter is written to the FCC in the 
preceding command phase. The execution phase 
normally ends when the last data byte is transferred 
to/from the disk or when an error occurs. 

Result Phase: After completion of the disk operation, status and 
other hous.ekeeping information are made avail-
able to the driver software. After this information is 
read, the FDC reenters the command phase and is ready 
to accept another command. 

2-185 AFN'()1949A 



APPLICATIONS 

Interface Registers 

TO support informat.ion transfer between the FDC and the system software, the 
8272 contains two 8-bit registers: the Main Status Register and the Data 
Register. The Main Status Register (read only) contains FDC status information 
and may be accessed at any time. The Main Status Register (Table· 3) provides 
the system processor with the status of each disk drive, the status of the 
FDC, and the status of the processor interface. The Data Register (read/write) 
stores data, commands, parameters, and disk drive status information. The Data 
Register is used to program the FDC during the command phase and to obtain 
result information after completion of FDC operations. 

In addition to the Main Status Register, the FDC contains four additional 
status registers (STO, STl, ST2, and ST3). These registers are only available 
during the result phase of a command. 

Command/Result Phases 

Table 4 lists the 8272 command set. For each of the fifteen commands, command 
and result phase data transfers are listed. A list of abbreviations used in 
the table is given in Table 5, and the contents of the result status registers 
(STO-ST3) are illustrated in Table 6. 

The bytes of data which are sent to the 8272 by the drivers during the command 
phase, and are read out of the 8272 in the result phase, must occur in the order 
shown in Table 4. That is, the command code must be sent first and the other 
bytes sent in the prescribed sequence. All bytes of the command and result 
phases must be read/written as described. After the last byte of data in the 
command phase is sent to the 8272 the execution phase automatically starts. In 
a similar fashion, when the last byte of data is read from the 8272 in the 
result phase, the result phase is automatically ended and the 8272 reenters the 
command phase. 

It is important to note that during the result phase all bytes shown in Table 4 
must be read. The Read Data command, for example, has seven bytes of data in the 
result phase. All seven bytes must be read in order to successfully complete 
the Read Data command. The 8272 will not accept a new command until all seven 
bytes have been read. The number of command and result bytes varies from 
command-to-command. 

In order to read data from, or write data to, the Data Register during the 
command and result phases, the software driver must examine the Main status 
Register to determine if the Data Register is available. The DIO (bit 6) and 
RQM (bit 7) flags in the Main status Register must be low and high, respective­
ly, before each byte of the command word may be .written into the 8272. Many of 
the commands require multiple bytes, and as a result, the Main status Register 
must be read prior to each byte transfer to the 8212. TO read status bytes 
during the result phase, DIO and RQM in the Main status Register must both be 
high. Note, checking the Main Status Register in this manner before each byte 
transfer to/froin the 8272 is required only in the· command and resillt phases, 
and is NOT required during the execution phase~ 

2-186 AFN-0194SA 



BIT SYMBOL 
NUMBER 

0 DOB 

1 D1B 

2 D2B 

3 D3B 

4 CB 

5 NDM 

6 DIO 

7 RQM 

APPLICATIONS 

Table 3: Main status Register Bit Definitions 

DESCRIPTION 

Disk Drive 0 Busy. Disk Drive 0 is seeking. 

Disk Drive 1 BUSY· Disk Drive 1 is seeking. 

Disk Drive 2 Busy. Disk Drive 2 is seeking. 

Disk Drive 3 BUSY· Disk Drive 3 is seeking. 

FDC BuSY. A read or write command is in progress. 

Non-DMA Mode. The FDC is in the non-DMA mode when this flag is 
set (1). This flag is set only during the execution phase of 
commands in the non-DMA mode. Transition of this flag to a 
zero (0) indicates that the execution phase has ended. 

Data Input/Output. Indicates the direction of a 
between the FDC and the Data Register. When DIO 
is read from the Data Register by the processorl 
reset (0), data is written from the processor to 

data transfer 
is set (1), data 
when DIO is 

the Data Register. 

Request for Master. When set (1), this flag indicates that 
the Data Register is ready to send data to, or receive data 
from, the processor. 

2-187 AFN-01949A 



APPLICATIONS 

Table 4: 8272 Command Set 

I DATA BUS I. DATA BUS 

PHASE RIW 07 08 05 04 03 02 01 DO I REMARKS PHASE RIW ~ 08 05 04 03 Dz 01 Do REMARKS 

READ DATA READ A TRACK 

Command W MT MFM SK 0 0 I I 0 Command Codes Command W 0 MFM SK 0 0 0 1 a Command Codes 
W a a 0 0 a HOS OSI OSO W a 0 a a a ,HOS OS1 osa 
w C Sector 10 informatJon W C sector 10 information 
W H prior to Command W H prior to Command 
W R execution W R execution 
W N W N 
W EDT W EDT 
W GPL W GPL 
W OTL W OTL 

Execution bata transfer Data transfer 

between the FOD 
Execution between the FOO 

and the main-system and the main-system. 
FOC reads the 

Result R STO Status information complete track 
R ST I after Command contents from the 
R ST2 execution physical Index 
R C mark to EOT 
R H Sector 10 information 
R A after command Result R STO Status information 
R N execution R STI after Command 

R ST2 execution 
READ OELET,EO DATA R ______ C 

Command W MT MFM SK 0 I I 0 0 Command Codes R H _____ Sector 10 information 

0 0 0 HOS OS1 OSO 
R R aUer Command 

W 0 0 R N execution 
W C Sector 10 information 

READ 10 W H prior to Command 
W R execution Command W 0 MFM 0 0 I 0 I 0 Command Codes 
W N 
W ECI W 0 0 0 0 0 HOS OSI OSO 
W GPL ______ 

W OTL Execution The first correct 10 

Execution Data transfer 
Information on the 
track is stored in 

between the FOO Data Register and the main-system 

Result R STO Status information Result R STO Status information 
R ST I after Command R STI after Command 
R ST2 executlpn R STi execution 
R C R C 
R H Sector 10 information R H Sector 10 information 
R R after Command R R during Execution 
R N execution R N Phase 

WRITE DATA FORMAT A TRACK 

Command W MT MFM 0 0 0 1 0 I Command Codes Command W 0 MFM 0 0 1 1 0 1 Command Codes 

W 0 0 0 0 0 HOS OS1 OSO W 0 0 0 0 0 HOS OSI OSO 

W C Sector 10 information W N Bytes/Sector 
W H prior to Command W SC SectorsfTrack 
W R execution W GPL Gap 3 
W N W 0 Filter Byte 
W EDT 
W GPL Execution FOC formats an 
W OTL entire track 

Execution Data transfer Result R STO Status inlormatlon 
between the main- R STI after Command 
system and the FOD R ST2 execution 

Result R STO Status information R C 
R STI after Command R H In this case, the 10 
R ST2 execution R R Information has no 
R C R N meaning 
R H Sector 10 information SCAN EQUAL 
R R after Command 
R N execution Command W MT MFM SK I 0 0 0 I Command Codes 

WRITE DELETED DATA W 0 0 0 0 0 HOS OS1 DSO 

Command W MT MFM 0 0 1 0 0 1 Command Codes 
W C Sector 10 information 
W H prIor to Command 

W 0 0 0 0 0 HOS OSI DSO W R execution 
W C Sector 10 information W N 
W H prior to Command W EDT 
W R execution W GPL 
W N W STP 
W EDT 
W GPL Execution Data compared 
W OTL between the FoD 

Execution Data transfer 
and the main-system 

between the FOO Result R STO Status information 
and the main.-system R ST I after Command 

Result R STO Status information R ST2 execution 

R STI after Command R C 

R ST2 execution R H Sector 10 Information 

R C R R after Command 

R H Sector 10 Information R N execution 

R R atter Command 
R N execution 

Note: 1. AO = 1 for all operations. 

2·188 A~I94IIA 



APPLICATIONS 

DATA BUS I DATA BUS 

PHASE RIW D7 DB D5 D4 D3 D2 D, DO REMARKS PHASE RIW D7 DB D5 D4 D3 D2 D, DO REMARKS 

SCAN LOW OR EQUAL RECALIBRATE 

Command W MT MFM SK 1 1 0 0 1 Command Codes Command W 0 0 0 0 0 1 1 1 Command Codes 
W 0 0 0 0 0 HDS DSI DSO W 0 0 0 0 0 0 DSI DSO 
W C Sector Ie information Execution Head retracted to 
W H prior Command Track 0 
W __ ~~_~~R execution 
W N SENSE INTERRUPT STATUS 
W EOT 

0 0 W GPL Command W 0 0 1 0 0 0 Command Codes 

W STP Result R ____ ~ STO Status information at 
R C the end of each seek 

Execution Data compared operation about the 
between the FDD FDC 
and the main-system 

SPECIFY 

Result R STO Status information Command W 0 0 0 0 0 0 1 1 Command Codes 
R ST 1 after Command 
R ST 2 execution W _SPT __ ~ .. _HUT - Timer Settings W HLT • NO R C 

~-~ 

R H Sector 10 information SENSE DRIVE STATUS 
R R atter Command 
R N execution Command W 0 0 0 0 0 1 0 0 Command Codes 

SCAN HIGH OR EQUAL W 0 0 0 0 0 HDS DSI DSO 

Result R ST 3 Status information 
Command W MT MFM SK 1 1 1 0 1 Command Codes about the FDD 

W 0 0 0 0 0 HDS DS1 DSO 
SEEK 

W C Sector 10 information 
W H_~ ____ prior Command Command W 0 0 0 0 1 1 1 1 Command Codes 
W R execution W 0 0 0 0 0 HDS DS1 DSO 
W N 

W C W EOT 
W GPL 

Execution Head is positioned W STP 
over proper Cylinder 

EXecution Data compared on Diskette 

between the FDD INVALID 
and the main-system 

Command W ____ Invalid Codes ____ Invalid Command 
Result R STO Status information Codes (NoOp - FOC 

A ST 1 atter Command goes into Standby 
R ST2 execution State) 
R C Result R STO ST 0= 80 
R H Sector ID information (16) 
R R after Command 
R N execution 

2-189 AFN-Q1949A 



SYMBOL 

C 

D 

APPLICATIONS 

'l'able·S: COIUIand/Result Paraaeter Abbreviations 

DESCRIPTION 

Cylinder Address. The currently selected cylinder address (0 to 16) on 
the disk. 

Data Pattern. The pattern to be written in each sector data field during 
formatting. 

DSO,DS1 Disk Drive Select. 

DS1 DSO 
0 0 Drive 0 
0 1 Drive 1 
1 0 Drive 2 
1 1 Drive 3 

DTL Special Sector Size. During the execution of disk read/write commands, 
this parameter is used to temporarily alter the effective disk sector 
size. By setting N to zero, DTL may be used to specify a sector size 
from 1 to 256 bytes in length. If the actual sector (on the disk) 
is larger than D'l'L specifies, the remainder of the actual sector is not 
passed to the system during read commands; during write commands, the 
remainder of the actual sector is written with all-zeroes bytes. DTL 
should be set to FF hexadecimal when N is not zero. 

EOT End of Track. The final sector number of the current track. 

GPL Gap Length. The gap 3 size. (Gap 3 is the space between sectors.) 

H Head Address. Selected head: 0 or 1 (disk side 0 or 1, respectively) 
as encoded in the sector ID field. 

HLT Head Load Time. Defines the time interval that the FCC waits after 
loading the head before initiating a read or write operation. program­
mable from 2 to 254 milliseconds (in increments of 2 ms). 

HUT Head Unload Time. Defines the time interval from the end of the exe­
cution phase (of a read or write command) until the head is unloaded. 
programmable from 16 to 240 milliseconds (in increments of 16 ms). 

MFM MFM/FM Mode Selector. Selects MFM double-density recording mode when 
high, FM single-density mode when low. 

MT Multi-Track Selector. When set, this flag selects the multi-track 
operating mode. In this mode (used only with dual-sided disks), 

N 

the FCC treats a complete cylinder (under both read/write head 0 and 
read/write head 1) as a single track. The FCC operates as if this 
expanded track started at the first sector under head 0 and ended at the 
last sector under head 1. with this flag set (high), a multi-sector 
read operation will automatically continue to the first sector under 
head 1 when the FCC finishes operating on the last sector under head O. 

Sector Size Code. The number of data bytes within a sector. 

2-190 AFN.()l949A 



ND 

APPLICATIONS 

Non-DMA Mode Flag. When set (1), this flag indicates that the FDC 
is to operate in the non-DMAmode. In this mode, the processor 
participates in each data transfer (by means of an interrupt or by 
polling the RQM flag in the Main status Register). When reset (0), 
the FCC interfaces to a DMA controller. 

R Sector Address. Specifies the sector 'number to be read or written. In 
multi-sector transfers, this parameter specifies the sector number of 
the first sector to be read or written. 

SC Number of Sectors per Track. Specifies the number of sectors per track 
to be initialized by the Format Track command. 

SK Skip Flag. When .thisflag is set, sectors containing deleted data 
address marks will automatically be skipped during the execution of 
mUlti-sector Read Data or Scan commands. In the same manner, a sector 
containing a data address mark will automatically be skipped during 
the execution of a mUlti-sector Read Deleted Data command. 

SRT Step Rate Interval. Defines the time interval between step pulses 
issued by the FDC (track-to~track access time). programmable·,· from: 
1 to 16 milliseconds (in increments of 1 ms) • 

STO Status Register 0-3. Registers within the FDC that store status infor-
STI mation after a command has been executed. This status information is 
ST2 available to the processor during the Result Phase after command exe-
ST3 cution. These registers may only be read after a command has been 

executed (in the exact order shown in Table 4 for each command). 
These registers should not be confused with the Main Status Register. 

STP Scan Sector Increment. During Scan operations, 'this parameter is 
added to the current sector number, in order to determine the next 
sector to be scanned. 

2-191 AFN-01949A 



APPLICATIONS 

~able 6i status Register Definitions 

status Register 0 

BIT 
NuMBER 

7,6 

5 

4 

3 

SYMBOL 

IC 

SE 

NR 

DESCRIPTION 

Inter~upt Code. 

00 - Normal termination of command. The specified command was 
properly executed and completed without error. 

01 - Abnormal termination of command. Command execution was 
started but could not be successfully completed. 

10 - Invalid command. The requested command could riot be executed. 

11 - Abnormal termination. During command execution, the disk 
drive ready signal changed state. 

Seek End. This flag is set (1) when the FDC has completed the 
Seek command and the read/write head is positioned over the 
correct cylinder. 

Equipment Check Error. This flag is set (1) if a·fault signal 
is received from the disk drive or if the track 0 signal is 
not received from the disk drive after 77 step pulses 
(Recalibrate command). 

Not Ready Error. This flag is set if a read or write command is 
issued and either the drive is not ready or the .command specifies 
side 1 (head 1) of a single-sided disk. 

2 H Head Address. The head address at the time of the interrupt. 

1,0 DS1,DSO Drive Select. The number of the drive selected at the time of 
the interrupt. 

status Register 1 

BIT SYMBOL 
NUMBER 

7 EN 

6 

5 DE 

4 OR 

DESCRIPTION 

End of Track Error. This flag is set if the FDC attempts to 
access a sector beyond the final sector of the track. 

Undefined 

Data Error. Set when the FDC detects a CRC error in either the 
the 10 field or the data field of a sector. 

Overrun Error. Set (during data transfers) if the FDC does not 
receive DMA or processor service within the specified time 
interval. 

2·192 AFN-01949A 



3 

2 ND 

1 NW 

o MA 

APPLICATIONS 

Undefined 

Sector Not Found Error. This flag is set by any of the follow­
ing conditions. 

a) The FDC cannot locate the sector specified in the Read 
Data, Read Deleted Data, or Scan command. 

b) The FDC cannot locate the starting sector specified in 
the Read Track command. 

c) The FDC cannot read the ID field without error during 
a Read ID command. 

Write Protect Error. This flag is set if the FDC detects a 
write protect signal from the disk drive during the execution 
of a Write Data, Write Deleted Data, or Format Track command. 

Missing Address Mark Error. This flag is set by either of the 
following conditions: 

a) The FDC cannot detect the ID address mark on the specified 
track (after two rotations of the disk). 

b) The FDC cannot detect the data address mark or deleted data 
address mark on the specified track. (See also the MD bit 
of Status Register 2.) 

status Register 2 

BIT SYMBOL 
NUMBER 

7 

6 CM 

5 DD 

4 WC 

3 SH 

2 SN 

DESCRIPTION 

Undefined 

Control Mark. This flag is set when the FDC encounters one of 
the following conditions: 

a) A deleted data address mark during the execution of a Read 
Data or Scan command. 

b) A data address mark during the execution of a Read Deleted 
Data command. 

Data Error. Set (1) when the FDC detects a CRC error in a 
sector data field. This flag is not set when a CRC error is 
detected in the ID field. 

Cylinder Address Error. Set when the cylinder address from the 
disk sector ID field is different from the current cylinder 
address maintained within the FDC. 

Scan Hit. Set during the execution of the Scan command 
if the scan condition is satisfied. 

Scan Not Satisfied. Set during execution of the Scan command 
if the FDC cannot locate a sector on the specified cylinder 
that satisfies the scan condition. 

2-193 AFN-Dl949A 



1 BC 

o MD 

APPUCATIONS 

Bad Track Error. set when the cylinder address from the disk 
sector ID field is FF hexadecimal and this cylinder address is 
different from the current cylinder address maintained within 
the FDC. This all "ones" cylinder number indicates a bad track 
(one containing hard errors) according to the IBM soft-sectored 
format specifications. . 

Missing Data Address Mark Error. Set if the FDC cannot detect 
a data address mark or deleted data address mark on the speci­
fied track. 

Status Register 3 

BIT SYMBOL 
NUMBER 

7 FT 

6 WP 

5 RDY 

4 TO 

3 TS 

2 H 

DESCRIPTION 

Fault. This flag indicates the status of the fault signal from 
the selected disk drive. 

Write Protected. This flag indicates the status of the write 
protect signal from the selected disk drive. 

Ready. This flag indicates the status of the ready signal from 
the selected disk drive. 

Track O. This flag indicates the status of the track 0 signal 
from the selected disk drive. 

TWo-Sided. This flag indicates the status of the two-sided 
signal from the selected disk drive. 

Head Address. This flag indicates the status of the side select 
signal for the currently selected disk drive. 

1,0 DS1,DSO Drive Select. Indicates the currently selected disk drive 
number. 

2·194 AFN'()1949A 



APPLICATIONS 

Execution Phase 

All data transfers to (or from) the floppy drive occur during the execution 
phase. The 8272 has two primary modes of operation for data transfers 
(selected by the specify command): 

1) DMA mode 
2) non-DMA mode 

In the DMA mode, execution phase data transfers are handled by the DMA con-
troller hardware (invisible to the driver software). The driver software, however, 
must set all appropriate DMA controller registers prior to the beginning of the 
disk operation. An interrupt is generated by the 8272 after the last.data 
transfer, indicating the completion of the execution phase, and the beginning of 
the result phase. 

In the non-DMA mode, transfer requests are indicated by generation of an interrupt 
and by activation of the RQM flag (bit 7 in the Main status Register). The 
interrupt signal can be used for interrupt-driven systems and RQM can be used for 
polled systems. The driver software must respond to the transfer request by 
reading data from, or writing data to, the FDC. After completing the last 
transfer., the 8272 generates an interrupt to indicate the beginning of the 
result phase. In the non-DMA mode, the processor must activate the "terminal 
count" (TC) signal to the FOC (normally by means of an I/O port) after the 
transfer request for the last data byte has been received (by the driver) and 
before the appropriate data byte has been read from (or written to) the FDC. 

In either mode of operation (DMA or non-DMA), the execution phase ends when a 
"terminal count" signal is sensed by the FOC, when the last sector on a track 
(the EOT parameter - Table 4) has been read or written, or when an error 
occurs. 

Multi-sector and Multi-track Transfers 

During disk read/write transfers (Read Data, Write Data, Read Deleted Data, 
and Write Deleted Data), the FOC will continue to transfer data from sequential 
sectors until the TC input is sensed. In the DMA mode, the TC input is normally 
set by the DMA controller. In the non-DMA mode, the processor directly controls 
the FDC TC input as previously described. Once the TC input is received, the FDC 
stops requesting data transfers (from the system software or DMAcontroller). 
The FDC, however, continues to read data from, or write data to, the floppy disk 
until the end of the current disk sector. During a disk read operation, the data 
read from the disk (after reception of the TC input) is discarded, but the data 
CRC is checked for errors: during a disk write operation, the remainder of the 
sector is filled with all-zero bytes. 

If the TC signal is not received before the last byte of the current sector has 
been transferred to/from the system, the FOC increments the sector number by one 
and initiates a read or write command for this new disk sector. 

2-195 AFN-01949A 



APPLICATIONS 

The FCC is also designed to operate in a multi-track mode for dual-sided 
disks. In the multi-track mode (specified by means of the MT flag in the 
caamand byte - Table 4) the FCC will automatically increment the head address 
(from 0 to 1) when the last sector (on the track under head 0) has been read or 
written. Reading or writing is then continued on the first sector (sector 1) 
of head 1. 

Drive status polling 

After the power-on reset, the 8272 automatically enters a drive status 
polling mode. If a change in drive status is detected (all drives are assumed 
to be "not ready" at power-on), an interrupt is generated. The 8272 continues 
this status polling between caamand executions {and between step pulses in the 
Seek command). In this manner, the .8272 automatically notifies the system 
software whenever a floppy disk is inserted, removed, or changed by the operator. 

Comaand Details 

During the command phase, the Main Status Register must be polled by the drive.r 
software before each byte is written into the Data Register. The DIO (bit 6) and 
RQM (bit 7) flags in the Main Status Register must be low and high, respectively, 
before each byte of the command may be written into the 8272. The beginning 
of the execution phase for any of these commands will cause DIO to be set high 
and RQM to be set low. 

Operation of the FOC commands.is described in detail in Application Note AP-116, 
"An Intelligent Data Base System Using the 8272." 

Invalid Comaands 

If an invalid (undefined) command is sent to the FCC, the FDC will terminate 
the command. No interrupt is generated by the 8272 during this condition. 
Bit 6 and bit 7 (DIO and RQM) in the Main Stat.us Register are both set indi­
cating to the processor that the 8272 is in the result phase and the contents 
of status Register 0 must be read. When the processor reads Status Register 
o it will find an 80H code indicating that an invalid command was received. 
The driver software in Appendix B checks each requested command and will not 
issue an invalid command to the 8272. 

A Sense Interrupt Status command must be sent after a Seek or. Recalibrate 
interrupt1 otherwise the FDC will consider the next command to be an invalid 
command. Also, when the last "hidden" interrupt has been serviced, further 
Sense Interrupt Status caamand.s will result in invalid command codes. 

2-196 AFN-01949A 



APPLICATIONS 

4. 8272 Physical Interface Software 

PL/M software driver listings for the 8272 FOC are contained in Appendix A. 
These drivers have been designed to operate in a DNA environment (as described 
in Application Note AP-116, "An Intelligent Data Base System Using the 8272"). 
In the following paragraphs, each driver procedure is described. (A description 
of the driver data base variables is given in Table 7.) In addition, the modi­
fications necessary to reconfigure the drivers for operation in a polled envir­
onment are discussed. 

IRITIALIZE$DRIVERS 

This initialization procedure must be called before any FOC operations are 
attempted. This module initializes the ORIVE$READY, DRIVE$STATUS$CHANGE, 
OPERATION$IN$PROGRESS, and OPERATION$COMPLETE arrays as well as the 
GLOBAL$ORIVE$NO variable. 

EXECUTE$DOCB 

This procedure contains the main 8272 driver control software and handles the 
execution of a complete FOe command. EXECUTE$DOCB is called with two parame­
ters: a) a pointer to a disk operation control block and b) a pointer to a· 
result status byte. The format of the disk operation control block is illus­
trated in Figure 2 and the result status codes are described in Table 8. 

Before starting the command phase for the specified disk operation, the command 
is checked fo~ validity and to determine whether the FOe is busy. (For an over­
lapped operation, if the FDC BUSY flag is set - in the Main Status Register -
the commahd cannot be started~ non-overlapped operations cannot be started if 
the FCC BUSY flag is set, if any drive is in the process of seeking/recalibrating, 
or if an operation is currently in progress on the specified drive.) 

After these checks are made, interrupts are disabled in order to set the 
OPERATION$IN$PROGRESS flag, reset the OPERATION$COMPLETE flag, load a pointer 
to the current operation control block into the OPERATION$DOCB$PTR array and 
set GLOBAL$ORIVE$NO (if a non-overlapped operation is to be started). 

At this point, parameters from the operation control block are output to the 
DNA controller and the FOC command phase is initiated. After completion of .the 
command phase, a test is made to determine the type of result phase required 
for the current operation. If no result phase is needed, control is immediate­
ly returned to the calling program. If an immediate result phase is required, 
the result bytes are input from the FOe. Otherwise, the CPU waits until the 
OPERATION$COMPLETE flag is set (by the interrupt service procedure). 

Finally, if an error is detected in the result status code (from the FOC), an 
FCC operation error is reported to the calling program. 

2·197 AFN-01949A 



APPLICATIONS 

Table 7: Driver Data Base 

NAME . DESCRIPT·ION 

DRIVE$READY A public array containing the current "ready" 
status of each drive. 

DRlVE$STATUS$CHANGE A public .array containing a flag for each 
drive. The appropriate flag is set when­
ever the ready status of a drive changes. 

OPERATION$DOCB$PTR An internal array of pointers to .the 
operation control block currently in 
progress for each drive. 

OPERATION$IN$PROGRESSAn internal array used by the driver pro­
cedures to determine if a disk operation 
is in progress on a given drive. 

OPERATION$COMPLETE An internal array used by the driver pro­
cedures to determine when the execution 
phase of a disk operation is· complete. 

GLOBAL$DRlVE$NO 

VALID$COMMAND 

COMMAND$LENGTH 

DRlVE$NO$PRESENT 

OVERLAP$OPERATION 

NO$RESULT 

IMMED$RESULT 

POSSIBLE$ERROR 

A data byte that records the current drive 
number for non-ov.erlapped disk operations. 

A constant flag array that indicates 
whether a specified FCC command code is 
valid • 

. A constant byte array specifying the number 
of command/parameter bytes to be trans­
ferred to the FDC during the command phase. 

A constant flag array that indicates whether 
a drive numbeL is encoded into an FCC· caiunand. 

A constant flag array that indicates whether 
an FCC command can be overlapped with other 
commands. 

A constant flag array that is used to deter­
mine when an FCC operation does not have a 
result phase. 

A constant flag array that indica·testhatart 
FDC operation has a result phase beginning 
illllllediately after the command phase is 
complete. 

A constant flag array that. indicates if an 
FDC operation should be checked for an 
error status indication during the result 
phase. 

2·198 AFN-01949A 



Address 
Offset 

o 

1 

3 

4 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

APPLICATIONS 

Disk Operation 
Control Block (DOCB) 

DMA$OP 

DMA$ADDR 

DMA$ADDR$EXT 

DMA$COUNT 

DISK$COMMAND(O) 

DISK$COMMAND (1) 

DISK$COMMAND(2) 

DISK$COMMAND(3) 

DISK$COMMAND(4) 

DISK$COMMAND (5) 

DISK$COMMAND (6) 

DISK$COMMAND(7) 

DISK$COMMAND(8) 

DISK$RESULT(O) 

DISK$RESULT(l) 

DISK$RESULT(2) 

DISK$RESULT(3) 

DISK$RESULT(4) 

DISK$RESULT(5) 

DISK$RESULT(6) 

MISC 

Figure 2. Disk Operation Control Block (DOCB) Format 

I 

I 

AFN-01949A 

AFN-01949A 



Code 

o 

1 

2 

3 

4 

5 

APPLICATIONS 

'l'able 8: EXBCU'l'B$DOCB Return Status Codes 

Description 

No errors. The specified operation was completed without error. 

FDCbusy. The requested operation cannot be started. This error 
occurs if an attempt is made to start an operation before the 
previous operation is completed. 

FDC error. An error was detected by the FDC during the execution 
phase of a disk operation. Additional error information is con­
tained in the result data portion of the disk operation control 
block (DOCB.DISK$RESULT) as described in the 8272 data sheet. 
This error occurs whenever the 8272 reports an execution phase 
error (e.g., missing address mark) • 

8272 command interface error. An 8272 interfacing error was de­
tected during the command phase. This error occurs when the command 
phase of a disk operation cannot be successfully completed (e.g., 
incorrect setting of the 010 flag in the Main status Register). 

8272 result interface error. An 8272 interfacing error was detected 
during the result phase. This error occurs when the result phase 
of a disk operation cannot be successfully completed (e.g., incorrect 
setting of the 010 flag in the Main status Register). 

Invalid FDC Command. 

2-200 AFN-Ol949A 



APPLICATIONS 

FDCIR'l' 

This procedure performs all interrupt processing for the 8272 interface drivers. 
Basically, two types of interrupts are generated by the 8272: (a) an interrupt 
that signals the end of a command execution phase and the beginning of the re­
sult phase and (b) an interrupt that signals the completion of an overlapped 
operation or the occurrence of an unexpected event (e.g., change in the drive 
"ready" status). 

An interrupt of type (a) is indicated when the FOC BUSY flag is set (in the 
Main Status Register). When a type (a) interrupt is sensed, the result bytes 
are read from the 8272 and placed in the result portion of the disk operation 
control block, the appropriateOPERATION$COMPLETE flag is set, and the OPERA­
TION$IN$PROGRESS flag is reset. 

When an interrupt of type (b) is indicated (FDC not busy), a sense interrupt 
status command is issued (to the FDC). The upper two bits of the result status 
register (Status Register Zero - STO) are used to determine the cause of the 
interrupt. The following four cases are possible: 

1) Operation Complete. An overlapped operation is complete. The 
drive number is found in the lower two bits of STO. The STO data 
is transferred to the active operation control block, the OPERA­
TION$COMPLETE flag is set, and the OPERATION$IN$PROGRESS flag is 
reset. 

2) Abnormal Termination. A disk operation has abnormally terminated. 
The drive number is found in the lower two bits of STO. The STO 
data is transferred to the active control block, the OPERATION$COM­
PLETE flag is set, and the OPERATION$IN$PROGRESS flag is reset. 

3) Invalid Command. The execution of an invalid command (i.e., a 
sense interrupt command with no interrupt pending) has been attempt­
ed. This interrupt signals the successful completion of all interrupt 
processing. 

4) Drive Status Change. A change has occurred in the "ready" status 
of a disk drive. The drive number is found in the lower two bits 
of STO. The ORIVE$READY flag for this disk drive is set to the 
new drive "ready" status and the DRIVE$STATUS$CHANGE flag for the 
drive is also set. In addition, if a command is currently in 
progress, the STO data is transferred to the active control block, 
the OPERATION$COMPLETE flag is set, and the OPERATION$IN$PROGRESS 
flag is reset. 

After processing a type (b) interrupt, additional sense interrupt status commands 
must be issued and processed until an "invalid command" result is returned from 
the FDC. This action guarantees that all "hidden" interrupts are serviced. 

In addition to the major driver procedures described above, a number of support 
procedures are required. These support routines are briefly described in the 
following paragraphs. 

2·201 AFN-!J1949A 



APPLICATIONS 

OUTPUT$CONTROLS$TO$DMA 

This procedure outputs the DMA mode, the DMA address,and the DMA word count 
to the 8237 DMA controller. In addiUon, the"upper four bits of the 20-bit 
DMA address are output to the address extensionlatch~ Finally, the disk OMA 
channel is started. 

OUTPUT$COMMAND$TO$PDC 

This software module outputs a complete disk command to the 8272 FDC. The 
number of required command/parameter bytes is found in the COMMANO$LENGTH table. 
The appropriate bytes are output one at a time (by calls to OUTPUT$BYTE$TO$FDCj. 
from the command portion of the disk operation control block. 

INPUT$RBSULT$PROM$PDC 

This procedure is used to read result phase status·information from the disk 
controller. At most, seven bytes are read. In order to read each byte, a call 
is made to INPUT$BYTE$FROM$FDC. When the last byte has been read, a check is 
made to insure that the FDC is no longer busy. 

OUTPUT$BYTE$TO$PDC 

This software is used to output a single command/parameter byte to theFDC. 
This procedure waits until the FDC is ready for a command byte and then out­
puts the byte to the FOC data port. 

INPUT$BYTE$PROM$PDC 

This procedure inputs a single result byte from the FOC. The software waits 
until the FOC is ready to transfer a result byte and then reads the byte from 
the FDC da.ta port. 

PDC$RBADY$POR$COMMAND 

This procedure assures that the FOC is ready to accept a command/parameter byte 
by performing the following thr.ee steps. First, a small time interval (more 
than 20 microseconds) is inserted to assure that the RQM flag has time to become 
valid (after the last byte transfer). Second, the master request flag (RQM) is 
polled until it is activated by the FDC. Finally, the 010 flag is checked to 
ensure that it is properly set for FDC input (from the processor). 

PDC$RBADY$POR$RBSULT 

The operation of this procedure is similar to the FDC$READY$FOR$COMMAND with 
the following exception. If the FDC BUSY flag (in the Main Status Register) 
is not set, the result phase is complete and no more data is available from 
the FOC. Otherwise, the procedure waits for the RQM flag and checks the 010 
flag for FDC output (to the processor). 

2·202 AFN-Ol949A 



APPLICATIONS 

OPERA~IOR$CLBAH$UP 

This procedure is called after the execution of a disk operation that has no 
result phase. OPERATION$CLEAN$UP resets the OPERATION$IN$PROGRESS flag and the 
GLOBAL$DRIVE$NO variable if appropriate. This procedure is also called to clean 
up after some disk operation errors. 

Modifications for Polling Operation 

To operate in the polling mode, the following modifications should be ,made to 
the previous routines: 

1. The OUTPUT$CONTROLS$TO$DMA routine should be deleted. 

2. In EXECUTE$DOCB, immediately prior to WAIT$FOR$OP$COMPLETE, a 
polling loop should be inserted into the code. The loop should 
test the RQM flag (in the Main Status Register). When RQM is 
set, a data byte should be written to, or read from, the 8272. 
The buffer address may be computed from the base address con­
tained in DOCB.DMA$ADDR and DOCB.DMA$ADDR$EXT. After the correct 
number of bytes have been transferred, an operation complete 
interrupt will be issued by the FOC. During data transfer in 
the non-DMA mode, the NON-DMA MODE flag (bit 5 of the Main Status 
Register) will be set. This flag will remain set for the complete 
execution phase. When the transfer is finished, the NON-DMA MODE 
flag is reset and the result phase interrupt is issued by the FOC. 

2-203 AFN-01949A 



APPLICATIONS' 

5. 8272 Logical Interface Software 

AppendixB of this Application Note contains';a PL/M'listing of an exerciser 
program for the 8272 drivers. This program illustrates the design of logical 
interface level' procedu'res ,to specify disk" parameters,recalibrate a drive," 
seek to a cylinder, format a disk, read data, and write data.' 

The exerciser program is written to operate a standard single-sided sn floppy 
disk drive in either the single- or double-density recording mode. Only the 
eight parameters listed in Table 9 must be specified. All other parameters 
are derived from theseS basic variables. 

Each of these logical interface procedures is described in the following para­
graphs (refer to the listing in Appendix B). 

SPECIFY 

This procedure sets the FDC signal timing so that the FDC will interface 
correctly to the attached disk drive. The SPECIFY procedure requires four 
parameters, the'step rate (SRT) , head load 'time (HLT) , head unload time (HUT), 
and the non-DMA mode flag (ND). This procedure builds a disk operation control 
block (SPECI1!'Y$DOCB) and passes the control block to the Foe driver module 
(EXECUTE$DOCB) for execution. (Note carefully the canputation required to 
transform the step rate (SRT) into the correct S272 parameter byte.) 

RECALIBRATE 

This procedure causes the floppy disk read/write head to retract to track O. 
The RECALlBRATE procedure requires only one parameter - the drive number on 
which the recalibrate operation is to be performed. This procedure builds a 
disk operation control block (RECALl BRATE $DOCB) and passes the control block 
to the FDC driver for execution. 

SEEK 

This procedure causes the disk read/write head (on the selected drive) to move 
to the desired cylinder position. The SEEK procedure is called with three 
parameters: drive number (DRV) , head/side number (BD), and cylinder number 
(CYL). This software module builds a disk operation control block (SEEK$DOCB) 
that is executed by the FDC driver. 

FORMAT 

The FORMAT procedure is designed to initialize a canplete floppy disk so that 
sectors can subsequently be read and written by system and application programs. 
Three parameters must be supplied to this procedure: the drive number (DRV), 
the recording density (DENS), and the interleave factor (INTLVE). The FORMAT 
procedure generates a data block (FMTBLK) and a disk operation control block 
(FORMAT$DOCB) for each track on the floppy disk (normally 77). 

2·204 AFN-01849A 



APPLICATIONS 

Table 9: Basic Disk Parameters 

Name Description 

DENSITY 

FILLER$BYTE 

TRACKS$PER$DISK 

BYTES$PER$SECTOR 

INTERLEAVE 

STEP$RATE 

HEAD$LOAD$TIME 

HEAD $UNLOAD$TlME 

The recording mode (FM or MFM). 

The data byte to be written in all sectors during 
formatting. 

The number of cylinders on the floppy disk. 

The number of bytes in each disk sector. The 
exerciser accepts 128, 256, and 512 in FM mode, 
and 256, 512, and 1024 in MFM mode. 

The sector interleave factor for each disk track. 

The disk drive step rate (1-16 milliseconds). 

The disk drive head load time (2-254 milliseconds). 

The head unload time (16-240 milliseconds). 

2·205 AFN-01949A 



APPI,.ICATIONS 

The format data block specifies the f.our sectqr ID field parameters (cylinder, 
head,_sect,o~t,and bytes per$ector) for each sector on the track. The sector 

,numbers need not be sequential: the, i,nterleave factor (INTLVE parameter) is used 
tO,compute the logical to physical sector mapping. 

After both the format data' biock and the operation control block are generated 
for agivenGYlin~er, control is passed to the 8272 drivers for execution • 

. After "the format operation is complete, a SEEK tp., the next cylinder is per­
formed, a new format table is generated, and another track formatting operation 
is executed by the" drivers •. This track formatting continues until all, tracks 

,on the diskette are' 'formatted~' 

'In s~e sistema, bad tra,cks, must also be specified when a disk is formatted. For 
these systems, the e]!:ist;,j.Jlg FoRMAT procedure should be modified to format 
bad tracks with a cylinder number of tiFFH. 

WRITE 

The. WRl;'rE procedure transfers a complete sect.orof. data to the disk drive. Five 
:parameters must be supplied to this software module: the drive number (DRV) , 
.the cylinder number (CYJ;.) , th.e head/side number (HO), the sector number (SEC) 
.and the recording density' (DENS). This procedure generates a disk operation 
control block (WRlTE$DOCB) from these parameters and passes the control block to 
the 8272 driver for execution. When control returns to the calling program, the 
data has been transferred to disk. 

READ 

This procedure is identical to the WRITE procedure except the direction of data 
transfer is reversed. The READ procedure transfers a sector of data from the 
floppy disk to system memory. 

Coping With Errors 

In actual practice all logical disk interface routines would contain error 
processing mechanisms. (Errors have been ignored for the sake of simplicity 
in the exerciser programs listed in Appendix B.) A typical error recovery 
technique consists of a two-stag.e procedure. First, when an error is detected, 
a recalibrate operation is performed followed by a retry of the failed operation. 
This procedure forces the drive to seek directly to the requested cylinder (low­
ering the probability of a seek error) and attempts to perform the requested 
operation an additional time. Soft (temporary) errors caused by mechanical or 
electrical interference do not normally recur during the retry operation: hard 
errors (caused by media or drive failures), on the other hand, will continue 
to occur during retry operations. If, after a number of retries (approximately 
lO), the operation continues to fail, an error message is displayed to the sys­
tem operator. This error message lists the drive number, type of operation, 
and failure status (from the FDC). It is the operator's responsibility to take 
additional action as required. 

2·206 AFN-D1949A 



APPLICATIONS 

6. Fi1e Systems 

The file system provides the disk I/O interface level most familiar to users 
of interactive microcomputer and minicomputer systems. In a file system, all 
data is stored in named disk areas called files. The user and applications 
programs need not be concerned with the exact location of a file on the disk - the 
disk file system automatically determines the file location from the file name. 
Files may be created, read, written, modified, and finally deleted (destroyed) 
when they are no longer needed. Each floppy disk typically contains a directory 
that lists all the files existing on the disk. A directory entry for a file 
contains information such as file name, file size, and the disk address (track 
and sector) of the beginning of the file. 

Fi1e A110cation 

File storage is actually allocated on the disk (by the file system) in fixed 
size areas called blocks. Normally a block is the same size as a disk sector. 
Files are created by finding and reserving enough unused blocks to contain the 
data in the file. Two file allocation methods are currently in widespread use. 
The first method allocates blocks (for a file) from a sequential pool of unused 
blocks. Thus, a file is always contained in a set of sequential blocks on the 
disk. Unfortunately, as files are created, updated, and deleted, these free­
block pools become fragmented (separated from one another). When this fragmen­
tation occurs, it often becomes impossible for the file system to create a file 
even though there is a sufficient number of free blocks on the disk. At this 
point, special programs must be run to "squeeze" or compact the disk, in order 
to re-create a single contiguous free-block pool. 

The second file allocation method uses a more flexible technique in which indi­
vidual data blocks may be located anywhere on the disk (with no restrictions). 
With this technique, a file directory entry contains the disk address of a file 
pointer block rather than the disk address of the first data block of the file. 
This file pointer block contains pointers (disk addresses) for each data block 
in the file. For example, the first pointer in the file pointer block contains 
the track and sector address of the first data block in the file, the second 
pointer contains the disk address of the second data block, etc. 

In practice, pointer blocks are usually the same size as data blocks. Therefore, 
some files will require multiple pointer blocks. To accommodate this require­
ment without loss of flexibility, pointer blocks are linked together, that is, 
each pointer block contains the disk address of the following pointer block. 
The last pointer block of the file is signalled by an illegal disk address 
(e.g., track 0, sector 0 or track OFFH, sector OFFH). 

2-207 AFN-Ol949A 



AP'pLlCATIONS 

The Intel Pile System 

The Intel file system (described in detail in the RMX-80 Users Guide) uses 
the second disk file allocation method (previously discussed). In order to 
lower the system overhead involved in finding free data blocks, the Intel file 
system incorporates a free space management data structure known as a bit map. 
Each disk sector is represented by a single bit in the bit map. If a bit in the 
bit map is set to 1, the corresponding disk sector has been allocated. A zero 
in the .. bit map indicates that the corresponding sector is free. Wi th 'this 
technique, the process of allocating or freeing a sector is accomplished by 
simply altering the bit map. 

File names consist of a basic file name (up to six characters) and a file ex­
tension (up to three characters). The basic file name and the file extension 
are separated by a period (.). Examples of valid file names are: DRIV72.0BJ, 
XX.TMP, and FILE.es. In addition, four file attributes are supported (see 
Figure 3 for attribute definitions). 

The bit map and the file directory are placed on prespecified disk tracks 
(reserved for system use) beginning at track zero. 

Disk Pile system punctions 

Table 2 illustrates the typical functions implemented by a disk file system. 
As an example, the disk directory function (OIR) lists disk file informatiqn on 
the console display terminal. Figure 3 details the contents of a display entry 
in the Intel file system. The PL/M procedure outlined in Figure 4 illustrates 
a disk directory algorithm that displays the file name, the file attributes, 
and the file size (in blocks) for each file in the directory. 

2-208 AFN-01949A 



APPLICATIONS 

O· INVISIBLE 
I-SYSTEM 
2 - WRITE-PROTECT 

'-----I !:} (RESERVED) 

6-
7 ~ FORMAT 

AFN-oI949A 

Directory Bntry 

Presence is a flag that can contain one of three values: 

OOOH - The file associated with this entry is present on the disk. 

07FH - No file is associated with this entrY1 the content of the rest 
of the entry is undefined. The first entry with its flag set 
to 07FH marks the current logical end of the directory and 
directory searches stop at. this entry. 

OFFH - The file named in this entry once existed on the disk but is 
currently deleted. The next file added to the directory will 
be placed in the first entry marked OFFH. This flag cannot, 
therefore, be used to (reliably) find a file that has been 
deleted. A value of OFFH should be thought of as simply marking 
an open directory entry. 

File Name is a string of up to 6 non-blank ASCII characters specifying 
name of the file associated with the directory entry. If the file name 
shorter than six characters, the remaining bytes contain binary zeros. 
ample, the name ALPHA would be stored as: 414C50484l00H. 

the 
is 
For ex-

Bxtension is a string of up to 3 non-blank ASCII characters that specifies an 
extension to the file name. Extensions often identify the type of data in the 
file such as OBJ (object module), or PLM (PL/M source module). As with the 
file name, unused positions in the extension field are filled with binary zeros. 

Figure 3. Intel Directory Entry Format 

2·209 AFN-oI949A 



APPLICATIONS 

Attributes are bits that identify certain characteristics of the file. A 1 
bit indicates that the file has the attribute, while a 0 bit means that the file 
does not have the attribute. The bit positions and their corresponding attri­
butes are listed below (bit 0 is the low-order or rightmost bit, bit 7 is the 
leftmost bit): 

0: Invisible. Fiies with this attribute are not listed by the 
ISIS-II DIR command unless the I switch is used. All system 
files are invisible. 

1: System. Files with this attribute are copied to the disk in 
drive 1 when the S switch is specified with the ISIS-II FORMAT 
command. 

2: Write-Protect. Files with this attribute cannot be opened for 
output or update, nor can they be deleted or renamed. 

3-6: These positions are reserved for future use. 

7: Format. Files with this attribute are treated as though they 
are write-protected. In addition, these files are created on 
a new diskette when the ISIS-II FORMAT command is issued. The 
system files all have the FORMAT attribute and it should not 
be given to any other files. 

BOP Count contains the number of the last byte in the last data block of 
the file. If the value of this field is 080H, for example, the last byte in 
the file is byte number 128 in the last data block (the last block is full). 

NUmber of Data Blocks is an address variable that indicates the number of 
data blocks currently used by the file. ISIS-II and the RMX/80 Disk File 
system both maintain a counter called LENGTH that is the current number of 
bytes in the file. This is calculated as: 

«NUMBER OF DATA BLOCKS - 1) x 128 + EOF COUNT. 

Header Block pointer is the address of the file's header block. The high 
byte of the field is the sector number and the low byte is the track number. 
The system "finds" a disk file by searching the directory for the name and then 
using the header block pointer to seek to the beginning of the file. 

Figure 3. Intel Directory Entry Format (Continued) 

2-2 to AFN-01949A 



dir: procedure (drv,dens) 
declare drv 

dens 
sector 
i 
dir$ptr 
dir$entry 

size (5) 

invisible$flag 
system$flag 
protected$flag 
format$flag 

APPLICATIONS 

public; 
byte, 
byte, 
byte, 
byte, 
byte, 
based rdbptr structure (presence byte, 
file$name(6) byte,extension(3) byte, 
attribute byte~eof$count byte, 
data$blocks address,header$ptr address), 
byte, 

literally ~l~, 
literally ~2~, 
literally ~4~, 
literally ~80H~; 

/* The disk directory starts at cylinder 1, sector 2 */ 
call seek(drv,l,O); 
do sector=2 to 26; 

call read(drv,l,O,sector,dens); 
do dir$ptr=O to 112 by 4; 

if dir$entry.presence=7FH then return; 
if dir$entry.presence=O 

then do; 
do i=O to 5; call co(dir$entry.file$name(i»; end; 
call co(period); 
do i=O to 2; call co(dir$entry.extension(i»; end; 
do i=O to 4; call co(space); end; 
call convert$to$decimai(@size,dir$entry.data$blocks); 
do i=O to 4; call co(size(i»; end; 
If (dir$entry.attribute and invisible$flag) <> 0 then call co(~I~); 
If (dir$entry.attribute and system$flag) <> 0 then call co(~S~); 
If (dir$entry.attribute and protected$flag) <> 0 then call co(~W~); 
If (dir$entry.attribure and format$flag) <> 0 then call cO(~F~); 

end; 
end; 

end; 

end dir; 

Figure 4. Sample PUM Directory Procedure 

2·211 

AFN-01949A 

AFN-01949A 



APPLICATlONS 

7. Key 8272 Software Interfacing Considerations 

This section contains a quick review of Key 8272 Software design features and 
issues. (Most items have been mentioned in other sections 'of this application 
note.) Before designing 8272 software drivers, it is advisable that the infor­
mation in this section be thoroughly understood. 

1. Non-DMA Data Transfers 

In systems that operate without aDMA controller (in the polled or 
interrupt driven mode), the system software is responsible for counting 
data transfers to/from the 8272 and generating a TCsignal to the FDC 
when the transfer is complete. 

2. Processor Command/Result Phase Interface 

In the command phase, the driver software must write the exact number of parameters 
in the exact order shown in Table 5. During the result phase, the driver 
must read the complete result status. For example, the Format Track command 
requires six command bytes and presents seven result bytes. The 8272 will npt 
accept a new command until all result bytes are read. Note that the number of 
command and result bytes varies from command-to-command. Command and result 
pbases cannot be sbortened. 

During both the command and result' phases, the Main Status Register must be read 
by the driver before each byte of information is reaq from, or written to, 
the FDC Data Register. Before each command byte is written, 010 (bit 6) 
must be low (indicating a data transfer from the processor) and RQM (bit 7) 
must be high (indicating that the FDC is ready for data). ,During the result 
phase, 010 must be high (indicating a data transfer to the processor) and RQM 
must also be high (indicating that data is 'ready for the processor). 

Note: After the 8272 receives a command byte, the RQM flag may remain set for 
approximately 16 microseconds (with an 8 MHz clock). The driver should not 
attempt to read the Main Status Register before this time interval has, 
elapsedi otherwise, the driver may erroneously assume that the FDC is 
ready to accept the next byte. 

3. Sector Sizes 

The 8272 does not support 128 byte sectors in the MFM (double-density) mode. 

4. Drive Status Changes 

The 8272 constantly polls all drives for changes in the drive ready status. 
This polling begins immediately following RESET. An interrupt is generated 
every time the FDC senses a change in the drive ready status. After reset, 
the FCC assumes that all drives are "not ready". If a drive is ready 
immediately after reset, the 8272 generates a drive status change interrupt. 

2,212 AFN.()1949A 



APPLICATIONS· 

5. Seek Commands 

The 8272 FDC does not perform implied seeks. Before issuing a data read 
or write command, the read/write head must be positioned over the correct 
cylinder by means of an explicit seek camnand. If the head is no't posit­
ioned correctly, a cylinder address error is generated. 

6. Interrupt Processing 

When the processor receives an interrupt fran the FDC, the FDC may be re­
porting one of two distinct events: 

a) The beginning of the result phase of a previously requested 
read, write, or scan command. 

b) An asynchronous event such as a seek/recalibrate completion, 
an attention, an abnormal command ter~ination, or an invalid 
command. 

These two cases are distinguished by the FDC BUSY flag (bit 4) in the Main 
Status Register. If the FOe BUSY flag is high, the interrupt is of type (a). 
If the FDC BUSY flag is low, the interrQPt was caused by an asynchronous 
event (b). 

A single interrupt fram the FDC may signal more than one of the above events. 
After receiving an interrupt, the processor must continue to issue Sense 
Interrupt Status commands (and service the resulting conditions) until an 
invalid command code is received. In this manner, all "hidden" interrupts are 
ferreted out and serviced. 

7. Skip Flag (SK) 

The skip flag is used during ~he execution of Read Data, Read Deleted Data, 
Read Track, and various Scan cOmmands. This flag permits the FDC to skip 
unwanted sectors on a disk track. 

When performing a Read Data, ~ead Track, or Scan command, a high SK flag indi­
cates that the FDC is to skip 'over (not transfer) any sector containing a 
deleted data address mark. A low SK flag indicates that the FDC is to termi­
nate the command (after reading all the data in the sector) when a deleted 
data address mark is encountered. 

When performing a Read Deleted Data command, a high SK flag indicates that 
sectors containing normal data add~ess mark~ are to be skipped. Note that 
this is just the opposite situation from that described in the last paragraph. 
When a data address mark is encountered during a Read Deleted Data command (and 
the SK flag is low), the FDC terminates the command after reading all the data 
in the sector. 

2·213 AFN-olll49A 



8. Bad Track Maintenance 

The 8272 does~9t i~~e+nally mai l1tain,badtrack.in£ormation. The maintenance 
of this inf~rli!a~ion must be pe,~fo~ed by,syst~ software. . As an example, of 
typical bad ~iiilcko'perati61'),asslDlle~tha~a mediCi.test determines that track 
31 and track 66 of agiverifloppy disk,are bad. When the .di$k is forIl\atted 
for use, the system software formats physical track 0 as logical cylinder 
o (C=O in the command phase parameters), physical track 1 as logical track 1 
(C"l), and so on, until physical track 30 is formatted as logical cylinder 
30 (C=30). Physcia1 track 31 is bad and should be formatted as logical' 
cylindE!r FF (indicating. a bad track). Next, phys.ica1 track.32 is formatted 
as logical cylinder 31, and soon, until physical .tr.a.ck 65 is formatted as 
1bgicCi1 cylinder 64. Next, bad physical track 66 is formatted as logical 
cylinder FF (an!?tAer bad track marker),andpAysica1, track ,:67 is fOrmatted 
as logical cylinder 65.' This forniatting continues I,lntil. the last physical 
track (77) is formatted as logical cylinder 75 •. Normally, after this formatting 
is complete, thE! bad tr;ack informa~ion is sto.red in a prespecifieda.r:ea on the 
floppy disk (typically in a sector on track 0) so that the system will be able 
to recreate the bad track inforinationwhen the disk is removed from the drive 
and reinserted at some later time. 

, 

, . . . 

To illustrate how the system sof.tware performs a transfer. operation on a disk 
with badtr:acks, assume that the dis~. drive he.ad is pbsitionedat track O. and 
the disk described above' is loaded into the drive. Ifa command to read track 
36 is issued by an application program, the system software translates this 
read command into,. a seek to pl:!ysica1 track 37 (since there is qne bad track 
between 0 and 36:,nallll:!ly 31) follOwed by a readof logical, cylinder 36. 
Thus, the cyLinder'paranieter C is set. to 37for'theseek command ;:md 36 for 
the Read se~torcommand. ....... " . . . , . , . 

2-214 AFN.()l949A 



APPLICATIONS 

REFEREIICES 

1. Intel, "8272 Single/Double Density Floppy Disk Controller Data Sheet," 
Intel Corporation, 1980. 

2. Intel, "An Intelligent Data Base System Using the 8272," Intel Application 
Note, AP-116, 1981. 

3. Intel, iSBC 208 Hardware Reference Manual, Manual Order No. 143078, 
Intel Corporation, 1980. 

4. Intel, RMX/80 User's Guide, Manual Order No. 9800522, Intel 
Corporation, 1978 

5. Brinch Hansen, P., Operating System principles, prentice-Hall, Inc., 
New Jersey, 1973. 

6. Flores, I., Computer Software: programming Systems for Digital Computers, 
prentice-Hall, Inc., New Jersey, 1965. 

7. Knuth, D. E., Fundamental Algorithms, Addison-Wesley publishing Company, 
Massachusetts, 1975. 

..,' 

8. Shaw, A. C., The Logical Design of' Operating Systems, prentice-Hall, Inc., 
New Jersey,. 1974. 

9. Watson, R. W., Time Sharing System Design Concepts, McGraw-Hill, Inc., 
New York, 1970. 

10. Zarrella, J., Operating Systems: Concepts and principles, Microcomputer 
Applications, California, 1979. 

2-215 AFN-lll949A 



APPLICATIONS 

APPENDIX A 
8272 FDC DEVICE DRIVER SOFTWARE 

2·216 AFN-Q1949A 



APPLICATIONS 

PL/M-B6 COMPILER B272 FLOPPY DISK CONTROLLER DEVICE DRIVERS 

ISIS-II PL/M-B6 Vl.2 COMPILATION OF MODULE DRIVERS 
OBJECT MODULE PLACED IN :Fl:driv72.0BJ 
COMPILER INVOKED BY: plmB6 :Fl:driv72.pB6 DEBUG 

1 

$title('B272 floppy disk controller device drivers') 
$nointvector 
$optimize (2) 
$large 

drivers: do; 

declare 
1* floppy disk port 
fdc$status$port 
fdc$data$port 

definitions */ 
li ter ally '30H', 
literally '31H'; 

1* B272 status port *1 
1* B272 data port *1 

1 declare 

1 

1* floppy disk commands *1 
sense$int$status literally 'OBH'; 

declare 
/* interrupt definitions */ 
fdc$int$level literally '33'; 

declare 
/* return status and 
error 
ok 
complete 
false 
true 
error$in 
propagate$error 

stat$ok 
stat$busy 
stat$error 
stat$cornrnand$error 
stat$result$error 
stat$invalid 

error codes */ 
literally '0', 
literally "'1", 
li terally '3', 
literally "0", 
literally '1', 
literally "'not~, 
literally ~return 

literally "'0"', 
li terally ~ 1'" , 
lite"ally '" 2'" , 
literally "'3"', 
literally "'4"', 
li terally '5' ; 

1* fdc interrupt level *1 

error , 

1* fde operation completed without errors */ 
/* fde is husy, operation cannot be started */ 
/* fde operation error */ 
/* fde not ready for command phase */ 
1* fde not ready for r~sult phase */ 
1* invalid idc command *1 

6 1 declare 

B 

10 

1 

1* masks *1 
busy$mask li terally 
DIO$mask literally 
RQM$mask literally 
seek$mask li terallv 
result$error$mask literally 
result$drive$mask literally 
result$ready$mask literally 

declare 
1* drive numbers *1 
max$no$drives literally 
fdc$general literally 

rleclare 
/* miscellaneous control */ 
any$drive$seeking literally 
command$code literally 
DIO$set$for$input literally 
DIO$set$for$output literally 
extract$drive$no literally 
fdc$busy literally 
nO$fde$error literally 

wait$for$op$complete 
wait$for$RQM 

literally 
literally 

'lOH', 
'40H', 
'SOH', 
'OFH' , 
'OCOH' , 
"'03H"', 
'OBH' ; 

'" 3'" , 
'4'; 

'«input(fdc$status$port) and seek$mask) <> 0)', 
'(docb.disk$command(O) and IFH)', . 
, «input (fde$sta.tus$port) and DIO$mask) =0)' , 
'«input(fdc$status$port) and DIO$mask)<>O)', 
'(docb.disk$command(l) and 03H)', 
'«input(fdc$status$port) and bUsy$mask) <> 0)', 
'possible$error(command$code) and «docb.disk$result(O) 

and result$error$mask) = 0)', 
~do while not operation$complete(drive$no); end#, 
'do while (input(fdc$status$port) and RQM$mask) = 0; end;'; 

1 declare 

1 

1* structures *1 
dpcb$type literally 1* disk operation control block *1 

$eject 
declare 

'(dma$op byte,dma$addr word, dma$addr$ext byte,dma$count word, 
disk$command(9) byte,disk$result(7) byte,mise byte)'; 

dr ive$status$change (4) b~ite public, 
drive$ready(4) byte public; 

1* when set - indicates that drve status changed *1 
1* current status of drives *1 

2·217 AFN.()1949A 



11 

12 

13 

14 

15 
16 
17 
18 
19 
20 

21 
22 
23 

24 

25 

26 

27 

30 

32 

33 

34 

35 

36 

1 

2 
3 
3 
3 
3 
3 

2 

1 

2 

1 

APPLICATIONS 

declare 
operation$in$progress(5) byte, 
operation$comp1ete(5) byte, 
operation$docb$ptr(5) pointer, 
interrupt$docb structure docb$type, 
global$drive$no byte; 

/* internal flags for operation with multiple drives *, 
j' fde execution phase completed ./ 
1* pointers for operations in progress */ 
/* temporary docb for interrupt processing ./ 
/. drive number of non~overlapped operation 

in progress - if any ./ 

declare 
1* internal vectors that contain command operational information */ 
no$resu1t(32) byte /* no result phase to command ./ 
data{O,O,O,l,O,O,O,O,O,O,O,O,O,O,O,O~O,O,O,O,O,O,O,O,O ,0,0,0,0,0,0,0), 

immed$resul t (32). byte /. immediate result phase for command • / 
data(O,O,O,O,l,O,O,O,l,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0), 

over1ap$operation(32) byte /. command permits overlapped operation of drvies .; 
data(O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,l,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0), 

drive$no$present(32) byte /* drive number present in command information ./ 
data(O,O,l,O,"l,l,l,l,O,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,0,1,0,0,0,1,0,0), 

possible$error(32) byte /. determines if command can return with an error ./ 
data(O,O,l,O,O,l,l,l,l,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,.0,0,0,1,0,0), 

command$length(32) byte /* contains number of command bytes for each command *, 
data(O,O,9,3,2,9,9,2,1,9,2,O,9,6,0,3,0,9,0,0,0,0,0,0,0,9,0,0,0,9,0,0), 

valid$command(32) byte /. flags invalid command codes ./ 
data(O,O,l,l,l,l,l,l,l,l,l,O,l,l,O,l,O,l,O,O,O,O,O,O,O,1,0,0,0,1,0,0); 

$eject 

1**** initialization for the 8272 fde driver software. This procedure must 
be called prior to execution of any driver software. ****1 

initialize$drivers: procedure publicJ 
/. initialize 8272 drivers ./ 

declare drv$no byte; 

do drv$no=O to max$no$drives; 
drive$ready(drv$no)=fa1se; 
drive$status$change(drv$no)=fa1se; 
operation$in$progress (drv$no) =fa1se; 
operation$comp1ete(drv$no)=fa1se; 

end; 

operation$in$progress (fdc$genera1) =fa1se; 
operation$complete(fdc$genera1)=fa1se; 
globa1$drive$no=0; 

end initialize$drivers; 

/ •••• wait until the 8272 fdc is ready to receive command/parameter bytes 
in the command phase. The 8272 is ready to receive command bytes 
when the ROM flag is high and the 010 flag is low. • •• */ 

fdc$ready$for$command: procedure bvLe; 

1* wait for valid flag settings in status register *1 
call time (1); 

/* wait for "master request" flag */ 
wait$for$ROM; 

/. check data direction flag ./ 
if OIO$set$for$input 

then return ok; 
else return erro~; 

end fdc$ready$for$c.ommand; 

/ •••• wait untii the 827~ fdc is ready to return data bytes in the result 
phase. The 8272 is ready to return a result byte when the ROM and 010 
flags are both high. The busy flag in the main status register will 
remain set until the last data byte of the result phase has been read 
by the processor. ***~/ 

fdc$ready$for$resu1t: procedure byte; 

1* wait for valid settings in status register */ 
call time (1) ; 

/. result phase has ended when the 8272 busy f1ag.is reset */ 
if not fdc.$busy 

then return complete; 

2·218 AFN-Ol949A 



3B 

41 

43 

44 

45 
46 

47 

49 

50 
51 

52 
53 
54 

55 
56 

5B 

~O 

61 
62 

63 
64 
65 

66 

67 

69 
70 

1 
2 
2 

APPLICATIONS 

/* wait for "master request" flag */ 
wait$for$RQM; 

/. check data direction flag ./ 
if OIO$set$for$output 

then return okt 
else return error; 

end fdc$ready$for$result; 

/ •••• output a single command/parameter byte to the B272 fdc. The "data$byte" 
parameter is the byte to be output to the fdc. • ••• / 

output$byte$to$fdc: procedure (data$byte) byte; 
declare data$byte byte; 

1* check to see if fde is ready for command */ 
if not fdc$ready$for$command 

then propagate$error; 

output (fdc$data$port) =data$byte; 

return ok; 
end output$byte$to$fdc; 

/**** input a single result byte from the 8272 fdc. The "data$byte$ptr" 
parameter is a pointer to the memory location that is to contain 
the input byte. • ••• / 

input$byte$from$fdc: procedure (data$byte$ptr) byte; 
declare data$byte$ptr pointer; 
declare 

data$byte based data$byte$ptr byte, 
status byte; 

/. check to see if fdc is ready ./ 
status=fdc$ready$for$result; 
if ~rror$in status 

then propagate$erroI; 

/. check for result phaSe complete ./ 
if status=complete 

then return complete; 

data$byte=input(fdc$data$port); 
return ok; 

end input$byte$from$fdc; 

$eject 

1**** output the dma mode, the dma address, and the dma word count to the 
B237 dma controller. Also output the high order four bits of the 
address to the address extension latch. Finally, start the disk 
dma channel. The "docb$ptr" parameter is a pointer to the appropriate 
disk operation control block. ****/ 

output$controls$to$dma: procedure(docb$ptr); 
declare docb$ptr pointer; 
declare docb based nocb$ptr structure docbtype; 

declare 
/* dma port definitions */ 
dma$upper$addr$port literally'lOH', 
dma$disk$addr$port literally'OOH', 
dma$disk$word$count literally ~OlH~, 

/. upper 4 bits of current address ./ 
/. current address port ./ 

dma$command$port literally'OBH', 
dma$mode$port literally'OBH', 
dma$mask$sr$port literally'OAH', 
dma$clear$ff$port literally'OeH', 
dma$master$clear$port literally 'OOH', 
dma$mask$port literally 'OFH' " 

dma$disk$chan$start 
dma$extended$write 
dma$single$transfer 

if docb.dma$op < 3 
then do; 

literally 'OOH', 
literally'shl(l,S)', 
literally'shl(1,6)'; 

/* word count port */ 
/. command port ./ 
/. mode port ./ 
/. mask set/reset port ./ 
/. clear first/last flip-flop port ./ 
/. dma master clear port ./ 
/. parallel mask set port'/ 

/. dma mask to start disk channel ./ 
/. extended write flag ./ 
/. single transfer flag ./ 

/. set dma mode and clear first/last flip-flop ./ 
output (dma$mode$port) =shl (docb.dma$op, 2) or 40H; 
output (dma$clear$ff$port) =0; 

2·219 AFN.()1949A 



71 
72 
73 

74 
75 

76 
77 

78 

79 
80 

81 

82 

83 
84 

89 

90 
91 
92 

93 
94 
95 

96 

97 
98 
99 

104 

109 
110 

III 
112 

114 
115 

116 
117 

118 
119 

3 
3 
3 

1 
2 

2 
2 
2 

1 
2 
2 

2 
3 
3 

1 
2 

2 
2 

APPLICATIONS 

/* set dma address */ 
output(dma$disk$addr$port)~low(docb.dma$addr)r 
output(dma$disk$addr$port)~high(docb.dma$addr)r 
output(dma$upper$addr$port)~docb.dma$addr$extr 

/* output disk transfer word count to dma controller */ 
output(dma$disk$word$count)~low(docb.dma$count)r 
output(dma$disk$word$count)~high(docb.dma$count)r 

/. start dma channel 0 for fdc ./ 
output(dma$mask$sr$port)~dma$disk$chan$startr 

end; 

end output$controls$to$dmar 

/** •• output a high-level disk command to the 8272 fdc. The number of bytes 
required for each command is contained in the "command$length" table. 
The "docb$ptr" parameter is a pointer to the appropriate disk operation 
control block. ****/ 

output$command$to$fdc: procedure (docb$ptr) byter 
declare docb$ptr pointerr 

declare 
docb based docb$ptr structure docb$type, 
cmd$byte$no byter 

/* output all command bytes to the fdc ./ 
do cmd$byte$no~O to command$length(command$code)-lr 

if error$in output$byte$to$fdc(docb.disk$command(cmd$byte$no» 
then do; enable; propagate$error; end; 

end; 

enable; 
return ok; 

end output$command$to$fdcr 

/ •• ** input the result data from the 8272 fdc during the result phase (after 
command execution). The "docb$ptr" parameter is a poi.nter to the 
appropriate disk operation control block. .***/ 

input$result$from$fdc: procedure (docb$ptr) byter 
declare docb$ptr pointer; 
declare 

docb based docb$ptr structure docb$type, 
result$byte$no byte, 
temp byte, 
status byte, 

disable; 

do result$byte$no~O to 7r 
status~input$byte$from$fdc(@temp)r 
if error$in status 

then do; enable; propagate$error; end; 
if status~complete 

then do; enable; return ok; end; 
docb.disk$result(result$byte$no)~tempr 

end; 

enable; 
if fdc$busy 

then return error; 
else return ok; 

end input$result$from$fdcr 

; •••• cleans up aft.er the execution of a disk operation that h.as no result 
phase. The procedure is also used after. some disk operation errors. 
"drv" is the drive number, and "ee" is the command code for the 
disk operation. ****/ 

operation$cJean$up: procedure (drv ,cc) r 
declare (drv,cc) byter 

disable; 
operation$in$progress(drv)~falser 

2·220 



120 

122 

123 

124 

125 
126 

127 

132 

134 

135 

140 

145 
146 

152 

153 
154 

155 

157 

158 
159 

161 
162 
163 
164 

165 

167 
168 
169 
170 

2 

2 
2 

2 
2 

2 

3 
3 
3 
3 

2 

3 
3 
3 
3 

APPLICATIONS 

if not over1ap$operation(cc) 
then globa1$drive$no=01 

enable; 

end operation$c1ean$uP1 

$eject 

/**** execute the disk operation control block specified by the pointer 
parameter "docb$ptr"a The "status$ptr" parameter is a pointer to 
a byte variable that is to contain the status of the requested 
operation when it has been completed. Six status conditions are 
possible on return: 

o The specified operation was completed without error. 
1 The fdc is busy and the requested operation cannot be started. 
2 Fdc error (further information is contained in the result 

storage portion of the disk operation control block - as 
described in the 8272 data sheet). 

3 Transfer error during output of the command bytes to the fde. 
4 Transfer error during input of the result bytes from the fdc. 
5 Invalid fdc command. ****/ 

execute$docb: procedure (docb$ptr,status$ptr) pub1ic1 
/* execute a disk operation control block */ 

declare docb$ptr pointer, status$ptr pointer; 
declare 

docb based docb$ptr structure docb$type, 
status based status$ptr byte, 
drive$no byte; 

/* check command validity */ 
if not va1id$command(command$code) 

then do; status=stat$invalid; return; end; 

1* determine if command has a drive number field - if not, set the drive 
number for a geQeral fdc command *1 

if drive$no$present(command$code) 
then drive$no=extract$drive$no: 
else drive$no=fdc$general: 

/* an overlapped operation can not be performed if the fdc is busy */ 
if over1ap$operation(command$code) and fdc$busy 

then do: status=stat$busy; return; end; 

1* for a non-overlapped operation, check fdc busy or any drive seeking *1 
if not overlap$operation(command$code) and (fdc$busy or any$drive$seeking) 

then do; s~atus=stat$busy; return; end; 

1* check for drive operation in progress - if none, set flag and start operation *1 
disable; 
if operation$in$progress(drive$no) 

then do; enable; status=stat$busy; return; end; 
else operation$in$progress(drive$no)=true1 

1* at this point, an fdc operation is about to begin, so: 
1. reset the operation complete flag 
2. set the docb pointer for the current operation 
3. if this is not an overlapped operation, set the global drive 

number for the subsequent result phase interrupt. *1 
operation$comp1ete(drive$no)=01 
operation$docb$ptr(drive$no)=docb$ptr 1 

if not over1ap$operation(command$code) 
then globa1$drive$no=drive$no+11 

enable; 

call output$contro1s$to$dma(docb$ptr) 1 
if error$in output$command$to$fdc(docb$ptr) 

then do; 
call operation$clean$up(drive$no,command$code) ; 
status=stat$command$error; 
return; 

end; 

1* return immediately if the command has no result phase or completion interrupt - specify *1 
if no$result(command$code) 

then do; 
call operation$c1ean$up(drive$no,command$code) 1 
status=stat$ok1 
return; 

end; 

2·221 AFN·01949A 



171 

173 

175 
176 
177 
178 
179 
180 
181 
183 

188 

189 

191 

192 

193 
194 
195 

196 

198 
199 
202 
203 
204 
205 

206 

2 

4 
4 
4 
4 
3 
2 
3 
3 

2 

1 
2 
2 

2 

3 
3 
3 
3 
3 
3 

2 

APPLICATIONS 

if immed$result(command$code) 
then do; 

if error$in input$result$from$fdc(docb$ptr) 
then do; 

calloperation$clean$up(drive$no,command$code); 
status=stat$result$erroI; 
return; 

end; 
end; 
else do; 

wait$for$op$complete; 
if docb.misc = error 

then "do; status=stat$result$error; return; end; 
end: 

if no$fdc$error 
then status=stat$ok; 
else status=stat$error; 

end execute$docb; 

$eject 

/ •••• copy disk command results from the interrupt control block to the 
currently active disk operation control block if a disk operation is 
in progress. ****/ 

copy$int$result: procedure(drv); 
declare drv byte; 
declare 

i byte, 
docb$ptr pOinter, 
docb based docb$ptr structure docb$type; 

if operation$in$progress(drv) 
then do; 

docb$ptr=operation$docb$ptr(drv) ; 
do i=l to 6; docb.disk$result(i)=interrupt$doc!>.disk$result(i); end; 
docb.misc=oki 
operation$in$progress(drv)=false; 
operation$complete(drv)=true; 

end; 

end copy$int$result; 

/ •••• interrupt processing for 8272 fdc drive,rs. Basically, two types of 
interrupts are generated by the 8272: (a) when the execution phase of 
an operation has been completed, an interrupt is generated" to signal 
the beginning of the result phase (the fdc busy flag is set 
when this interrupt is received), and (b) when an overlapped operation 
is completed or an unexpected interrupt is received (the fdc busy flag 
is not set when this interrupt is received). 

When interrupt type (a) is received, the result bytes from the operation 
are read from the 8272 and the operation complete flag is set. 

Wben an interrupt of type (b) is received, the interrupt result code is 
examined to determine which of the following four ,actions are indicated: 

1. An overlapped option (recalibrate or seek) has been completed. The 
result data is read from the 8272 and placed in the currently active 
disk operation control block. 

2. An abnormal termination of an operation has occurred. The result 
data is read and placed in the currently active disk operatiQn 
control block. 

3. The execution of an invalid command has been attempted. This 
signals the successful completion of all interrupt processing. 

4. The ready status of a drive has changed. The "drive$ready' and 
"drive$ready$status" change tables are updated. If an operation 
is currently in progress on the affected drive, t~e result data 
is placed in the currently active disk. operation control block. 

After an interrupt is processed, additional sense interrupt status commands 
must be issued and processed until an invalid command result is returned 
from the fdc. This action guarantees that all "hidden" interrupts 
are serviced. ****1 

2·222 AFN-01949A 



207 
208 

209 

210 

211 

213 

215 
216 

218 
219 
220 
221 
222 
223 

224 
225 
226 

227 
229 

231 

232 
233 
234 
235 

236 
237 
238 
239 

240 

241 
242 
243 
244 
245 

247 
248 
249 
250 
251 

252 
253 

254 

1 
2 

2 

2 

3 

4 
4 
4 
4 
4 
3 

2 
3 
3 

4 
4 

4 

5 
6 
6 
6 

5 
6 
6 
6 

5 
6 
6 
6 
6 

6 
6 
5 
4 
3 

2 
2 

1 

APPLICATIONS 

fdcint: procedure public interrupt fdc$int$leve11 
declare 

invalid byte, 
drive$no byte, 
docb$ptr pointer, 
docb based docb$ptr structure docb$type1 

declare 
/* interrupt port definitions */ 
ocw2 literally'70H', 
nseoi literally'shl(1,5)'1 

declare 
/* miscellaneous flags */ 
result$code literally 'shr(interrupt$docb.disk$result(O) and result$error$mask,6)', 
result$drive$ready literally '«interrupt$docb.disk$result(O) and result$ready$mask) = 0)', 
extract$result$drive$no literally '(interrupt$docb.disk$result(O) and result$drive$mask)', 
end$of$interrupt literally 'output(ocw2)=nseoi'1 

/* if the fdc is busy when an interrupt is received, then the result 
phase of the previous non-overlapped operation has begun */ 

if fdc$busy 
then do; 

1* process interrupt if operation in progress */ 
if global$drive$no <> 0 

then do~ 
docb$ptr=operation$docb$ptr(global$drive$no-l)1 
if error$in input$result$from$fdc(docb$ptr) 

then docb.misc=error; 
else docb.misc=ok: 

operation$in$progress (global$drive$no-l) =false1 
operation$complete(global$drive$no-I)=true 1 
global$drive$no=01 

end: 
end; 

/* if the fdc is not busy, then either an overlapped operation has been 
completed or an unexpected interrupt has occurred (e.g., drive status 
change) */ 

else do: 
invalid=false: 
do while not invalid; 

1* perform a Sense interrupt status operation - if errors are detected, 
in the actual fde interface, interrupt processing is discontinued */ 

if error$in output$byte$to$fdc(sense$int$status) then go to ignore1 
if error$in input$result$from$fdc(@interrupt$docb) then go to ignore1 

do case result$code: 

/* case 0 - operation complete */ 
d01 

drive$no=extract$result$drive$n01 
call copy$int$result(drive$no)1 

end; 

/* case 1 - abnormal termination */ 

do; 
drive$no=extract$result$drive$n0 1 
call copy$int$result(drive$no)1 

end: 

/* case 2 - invalid command */ 
invalid=true: 

1* case 3 - drive ready change *1 
d01 

drive$no=extract$result$drive$n01 
call copy$int$result(drive$no)1 
drive$status$change(drive$no)=true 1 
if result$drive$ready 

then drive$ready(drive$no)=true1 
else drive$ready(drive$no)=false1 

end: 
end; 

end; 
end; 

ignore: end$of$interrupt1 
end fdcinti 

end drivers; 

AFN-Ol949A 



MODULE INFORMATION. 
CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
564 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

06158 
00008 
00508 
00328 

15570 
00 

800 
500 

APPLICATIONS 

2·224 AFN-01949A 



APPLICATIONS 

APPENDIX B 
8272 FDC EXERCISER PROGRAM 

2·225 AFN-Oll149A 



APPLICATIONS 

PL/M-86 COMPILER 8272 FLOPPY DISK DRIVER EXERCISE PROGRAM 

ISIS-II PL/M-86 Vl.2 COMPILATION OF MODULE RUN72 
OBJECT MODULE PLACED IN :Fl:run72.0BJ 
COMPILER,INVOKED BY: plm86 :Fl:run72.p86 DEBUG 

1 

2 

3 

4 

6 

1 

1 

1 

1 

1 

$title ('8272 floppy disk driver exercise program') 
$nointvector 
$optimize (2) 

, $large 
run72: do, 

declare 
docb$type literally /* disk operation control block */ 

, (dma$op byte,dma$addr word,dma$addr$ext byte,dma$count word, 
disk$command(9) byte,disk$result(7) byte,misc byte)'; 

declare 
/* 8272 fdc commands */ 
fm 
mfm 
dma$mode 
non$dma$mode 
recalibrate$command 
specifY$command 
read$command 
write$command 
format$command 
seek$command 

declare 
dma$verify 
dma$read 
dma$write 
dma$noop 

declare 

literally 'D', 
11 terally , l' , 
litera11y'D', 
11 tera11y , l' , 
literally'7', 
literally '3', 
literally"'6", 
literally'5', 
literally 'DDH', 
literally 'DFH'; 

Ii terally .. 0'" , 
li terally , l' , 
literally ',2;", 
literally '3~'1 

/* disk operation 
format$docb 
seek$docb 
reca1ibrate$docb 
specify$docb 
read$docb 
write$docb 

control blocks */ 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type, 
structure docb$type; 

declare 
step$rate 
head$1oad$time 
head$un1oad$time 
filler$byte 
operation$status 
interleave 
format$gap 
read$write$gap 
index 
drive 
density 
multitrack 
sector 
cylinder 
head /* disk drive head */ 
tracks$per$disk 
sectors$per$track 
bytes$per$sector$code 
bytes$per$sector 

byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
word; /* number of bytes in a sector on the disk */ 

7 1 

8 1 

declare 
/* read and write 
fmtb1k (lD4) 
wrbuf(lD24) 
rdbuf(lD24) 

declare 

buffers */ 
byte 
byte 
byte 

public, 
public, 
public; 

/* disk format initialization tables */ 
sec$trk$table(3) byte data(26,l5,8), 
fmt$gap$table(8) byte data(lBH,2AH,3AH,D,D,36H,54H,74H), 
rd$wr$gap$table(8) byte data(D7H,DEH,lBH,D,D,DEH,lBH,35H) I 

2·226 Af'N.Ol948A 



9 

10 
11 
12 

13 
14 

15 
16 

17 
18 
19 
20 
21 

22 

23 
24 

25 
26 
27 
28 

29 

30 
31 

32 
33 
34 
35 
36 

37 

38 

39 
40 

41 
42 

43 

46 

47 
48 

1 

1 
2 
2 

1 
2 

1 
2 

2 
2 
2 
2 
2 

1 
2 

2 
2 
2 
2 
2 

1 

2 
2 

2 
2 

3 
4 

declare 
1* external pointer 
rdbptr (2) 
wrbptr (2) 
fbptr (2) 
intptr (2) 
intvec(80H) 

APPLICATIONS 

tables and interrupt vector *1 
word external, 
word external, 
word external, 
word external~ 
word external; 

execute$docb: procedure (docb$ptr,status$ptr) external; 
declare docb$ptr pointer, status$ptr pointer; 

end execute$docb; 

initialize$drivers: procedure external; 
end initialize$drivers; 

$eject 

/**** specify step rate ("srt"), head load time ("hIt"), head unload time ("hut"), 
and dma or non-dma operation (lind"). ****1 

specify: procedure(srt,hlt,hut,nd); 
declare (srt,hlt,hut,nd) byte; 

specify$docb.dma$op=dma$noop; 
specify$docb.disk$command(O)=specify$command; 
specify$docb.disk$command(l)=shl((not srt)+l,4) or shr(hut,4); 
specify$docb.disk$command(2)=(hlt and OFEH) or (nd and 1); 
call execute$docb (@specify$docb,@operation$status) ; 

end specify: 

/***. recalibrate disk drive 
8272 automatically steps out until the track 0 signal is activated 
by the disk drive. ****/ 

recalibrate: procedure (drv) ; 
declare dry byte; 

recalibrate$docb.dma$op=dma$noop; 
recalibrate$docb.disk$command (0) =recalibrate$command; 
recalibrate$docb.disk$command(l)=drv; 
call execute$docb(@recalibrate$docb,@operation$status); 

end recalibrate.; 

/**** seek drive "drv", head (side) "hd h to cylinder "cy1". 

seek: procedure(drv,cyl,hd); 
declare (drv,cyl,hd) byte; 

seek$docb.dma$op=dma$noop; 
seek$docb.disk$command(O)=seek$command; 
seek$docb.disk$command(l)=drv or shl(hd,2); 
seek$docb.disk$command(2)=cyl; 
call execute$docb(@seek$docb,@operation$status); 

end seek; 

****/ 

/***. format a complete side ("head") of a single floppy disk in drive "drv". The density, 
(single or double) is specified by flag "dens". ****/ 

format: procedure(drv,dens,intlve); 
/* format disk */ 

declare (drv,dens,intlve) byte; 
declare physical$sector byte; 

call recalibrate(drv); 
do cylinder=O to tracks$per$disk-l; 

/* set sector numbers in format block to zero before computing interleave */ 

do physical$sector=l to sectors$per$track; fmtblk((physical$sector-l) *4+2)=0; end; 
/* physical sector 1 equals logical sector 1 */ 
physical$sector=l; 

/* assign interleaved sectors */ 
do sector=l to sectors$per$track; 

index= (physical$sector-l) *4; 

2·227 AfNo01949A 



49 4 

53 4 
54 4 
55 4 
56 4 

57 4 
58 4 

60 4 

61 3 

62 3 
63 3 
64 3 
65 3 
66 3 
67 3 
68 3 
69 3 
70 3 
71 3 
72 3 
73 3 

74 2 

75 1 
76 2 

77 2 
78 2 
79 2 
80 2 
81 2 
82 2 
83 2 
84 2 
85 2 
86 2 
87 2 
88 2 
89 2 

91 2 
92 2 

93 2 

94 1 
95 2 

96 2 
97 2 
98 2 
99 2 

100 2 
101 2 
102 2 
103 2 
104 2 
105 2 
106 2 
107 2 

APPLICATIONS 

/* change sector and index if sector has already been assigned */ 
do while fmtblk(index+2) <> 0, index=index+4,'physical$sector"physical$sector+l, end, 

/* set cylinder, head, sector, arid size code for current seoto,r 'irito table */ 
fmtblk(index)=cylinder, 
fmtblk(index+1)=head, 
fmtblk(index+2)-sector, 
fmtblk(index+3)-bytes$per$sector$code, 

/* update physical sector number by interleave */ 
physical$sector-physical$sector+intlve, 
if physical$sector > sectors$per$track 

then physical$sector=physical$sector-sectors$per$track, 
endJ 

/* seek to next cylinder */ 
call seek (drv,cylinder,head) , 

/* set up format contro,l block * / 
forma t$'docb. dma$op-dma$wr i te, 
format$docb.dma$addr=fbptr(O)+shl(fbptr(l) ,4), 
format$docb.dma$addr$ext=O, 
format$docb.dma$count=sectors$per$track*4-l, 
format$docb.disk$command(O)=format$command or shl(dens,6) , 
format$docb.disk$command(l)=drvor sh1(head,2), 
format$docb.disk$command (2) =bytes$per$sector$code'" 
format$docb.disk$command(3)=sectors$per$track, 
format$docb.disk$command(4)=format$gap, 
format$docb.disk$command(5)=fi11er$byte, 
call execute$docb(@format$docb,@operation$statusl, 

end, 

end format, 

1*· •• write sector "sec" on drive "drv· at 'head tlhd" and cylinder "cy1". The 
disk recording density is specified by the ·dens· flag. Data is expected to be 
in the global write buffer (·wrbuf"). ****/ 

write: procedure(drv,cyl,hd,sec,dens), 
declare (drv,cyl,hd,sec,dens) byte, 

write$docb.dma$op-dma$write, 
write$docb.dma$addr=wrbptr(0)+shl(wrbptr(1),4), 
write$docb.dma$addr$ext-O, 
write$docb.dma$count=bytes$per$sector-l, 
wr ite$docb.d!sk$command (0) =write$command or sh1 (dens, 6) or 'shl (multitrack, 7) , 
write$docb.disk$command(l)-drv or shl(hd,2), 
write$docb.disk$command(2)~cyl, 

write$docb.disk$command(3)-hd, 
write$docb.disk$command(4)=sec, 
write$docb.disk$command (5) =bytes$per$sector$code" 
write$docb.disk$command (6) =sectors$per$track, 
write$docb.disk$command (7) =read$write$gap, 
if bytes$per$sector$code = 0 

then write$docb.disk$command(8)=bytes$per$sector, 
else write$docb.disk$command(8)=OFFH, 

call execute$docb(@write$docb,@operation$status), 

end write, 

1**** r,ead sector ·sec· on, drive "drY· at head "hd" and cylinder "cyl". The 
disk recording, density is defined by the "dens" flag. Data is read into 
the global read buffer ("rdbuf"). ****1 

read: procedure(drv,cyl,hd,sec,dens), 
declare (drv,cyl,hd,sec,dens) byte, 

read$docb.dma$op=dma$read, 
read$docb.dma$addr=rdbptr(0)+shl(rdbptr(1),4), 
read$docb.dma$addr$ext=O, 

, read,$docb.dma$count=bytes$per$sector-l, 
read$docb.disk$command(O)=read$command or shl(dens,6) or shl(multitrack,7) , 

'read$docb.disk$command(l)-drvor shl(hd,2), 
read$docb.disk$command(2)-cyl, 
read$docb.disk$command(3)=hd, 
read$docb.disk$command(4)=sec, 
read$docb.disk$command(5)-bytes$per$secto~$code, 
read$docb.disk$command(6)=sectors$per$track, 
read$docb.disk$command(7)=read$write$gap, 

2·228 AFN-OI949A 



108 

110 
111 

112 

113 
114 

115 

116 
117 

118 

119 
120 
121 
122 
123 
124 
125 
126 
127 

128 
129 
130 
131 
132 
133 
134 
135 
136 

2 

2 
2 

2 

1 
2 

2 

2 
2 

2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

APPLICATIONS 

if bytes$per$sector$code = 0 
then read$docb.disk$command(8)=bytes$per$sector: 
else read$docb.disk$command(8)=OFFH: 

call execute$docb(@read$docb,@operation$status): 

end readJ 

$eject 

/**** initialize system by setting up 8237 dma controller and 82S9A interrupt 
controller. ****/ 

initialize$system: procedure; 
declare 

/* I/O ports */ 
dma$disk$addr$port 
dma$disk$word$count$port 
dma$command$port 
dma$mode$port 
dma$mask$sr$port 
dma$clear$ff$port 
dma$master$clear$port 
dma$mask$port 
dma$cl$addr$port 
dma$cl$word$count$port 
dma$c2$addr$port 
dma$c2$word$count$port 
dma$c3$addr$port 
dma$c3$word$count$port 
icwl 
icw2 
icw4 
oewl 
ocw2 
oew3 

declare 

literally 
literally 
literally 
li terally 
literally 
literally 
literally 
li terally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 
literally 

/* mise masks and literals */ 

'OOH', 
'OlH' , 
'08H', 
'OBH' , 
"'OAH"', 
'OCH', 
'·ODH' , 
"'OFH' , 
'02H', 
'03H', 
"'04H"", 
'OSH', 
'06H', 
'07H', 
""OH"", 
'7lH' , 
"1H"', 
'71ft' , 
'70H' 
"OH"; 

/* current address port */ 
/* word count port */ 
/* command port */ 
/* mode port */ 
/* mask set/reset port */ 
/* clear first/last flip-flop 
/* dma master clear port */ 
/* parallel mask set portAl 

dma$extended$write literally'shl(l,S)', /* extended write flag */ 
/* single transfer flag */ dma$single$transfer literally'shl(l,6)', 

dma$disk$mode li tera11y '40H', 
dma$cl$mode literally'4lH', 
dma$c2$mode literally'42H', 
dma$c3$mode literally'43H', 
mode$8088 literally '1', 
interrupt$base literally'20H', 
single$controller literally'shl(l,l)', 
level$sensitive literally'shl(l,3)', 
control$word$4$required literally '1', 
base$icwl literally'lOH', 
mask$all literally'OFFH', 
disk$interrupt$mask literally '1': 

output (dma$master$clear$port) =0: 
output (dma$mode$port)=dma$extended$write: 

/* set all dma registers to valid values */ 
output (dma$mask$port) =mask$all: 

/* set all addresses to zero */ 
output (dma$clear$ff$port) =0: 
output (dma$disk$addr$port) =0: 
output (dma$disk$addr$port) =0: 
output (dma$cl$addr$port) =0: 
output (dma$cl$addr$port) =0: 
output (dma$c2$addr$port) =0: 
output (dma$c2$addr$port) =0: 
output (dma$c3$addr$port) =0: 
output (dma$c3$addr$port) =0: 

/* set all word counts to valid values */ 
output (dma$clear$ff$port) =0: 
output (dma$disk$word$count$port) =1: 
output (dma$disk$word$count$port) =11 
output (dma$cl$word$count$port) =1: 
output (dma$cl$word$count$port) =1: 
output (dma$c2$word$count$port) =1: 
output (dma$c2$word$count$port) =1: 
output (dma$c3$word$count$port) =1; 
output (dma$c3.$word$count$port) =1: 

·2·229 

/* master reset */ 
/* set dma command mode */ 

/* mask all channels */ 

/* reset first/last flip-flop */ 

/* reset first/last flip-flop */ 

port */ 

AFN-Ol949A 



137 2 
138 2 
139 2 
140 2 

141 2 
142 2 
143 2 
144 2 

145 2 
146 2 

147 2 

148 1 

149 

150 1 
151 1 
152 1 
153 1 
154 1 
155 1 
156 1 
157 1 
158 1 
159 1 

160 1 
161 1 
162 2 

167 2 
168 2 

169 1 

170 1 
171 1 

172 1 
173 1 

174 1 
175 1 

176 1 

177 1 

178 1 
179 2 

181 

182 1 

183 1 
184 2 
185 3 
186 3 

187 

APPUCAlIONS 

1* initialize all dma channel modes *1 
output (dma$mode$port) =dma$disk$mode: 
output (dma$mode$port)=dma$c1$mode: ' 
output (dma$mode$port)=dma$c2$model 
output (dma$mode$port) =dma$c3$mode, 

1* initialize 8259A interrupt controller *1 
output(icwl)=sing1e$contro11er or 1eve1$sensitive or control$word4$required or base$icw11 

1*' set 80,88 interrupt mode */' 
output (icw2)=interrupt$base, 
Qutput(icw4)=mode$80BB, 
output(ocwl)=not disk$interrupt$mask, 1* mask all interrupts except disk *1 

1* initialize interrupt vector for fdc *1 
intvec(40H)=intptr(0), 
intvec (41H) =intptr (1) I 

end in'i~ialize$systeml 

$eject 

;****' main', progr'am: first format· disk, '(all tracks on side ,{head) O. Then 
read e'ach 'sector on every track of 'the disk forever. ****1 

declare drive$ready(4) byte external I 

1* disable until interrupt vector setup and initialization complete *1 
disable; 

1* set initial floppy disk parameters *( 
density=mfm, 
head=O, 
multitrack=O, 

1* double-density *1 
'1* single sided *1 

. 1* no multitrack operation *1 
1* for format *1 
1* normal floppy disk drive *1 
1* 1024 bytes in each sector *1 
1* set track interleave factor *1 

fi ller $ byte= 5 5H I 
tracks$per$disk=77, 
bytes$per$sector=1024I 
interleave=6; 
step$rate=ll, 
head$10ad$time=40, 
head$unload$time='240 I 

1* 10ms for SA800 plus 1 for uncertainty *1 
1* 40ms head load for" SA800 *1 
1* keep head loaded 11810ng as possible *1 

1* derive dependent parameters from those ,above */ 
bytes$per$sector$code=shr (bytes$per$sector, 7):, 
do index=O to 3, 

if (bytes$per$sector$code and 1) <> 0 
then dOl bytes$per$sector$code,=indexl go to donebc, end, 
else bytes$per$sector$code=!lhr (bytes$per,$sector$code ,1) I 

end; 

donebc: 
sectors$per$track=sec$trk$table(bytes$per$sector$code-density) I 
format$gap=fmt$gap$table (shl (denSi t'y, 2) +bytes$per$sector$code) I 
read$wr ite$gap=rd$wr$gap$table (shl (densi ty, 2) +bytes$per$Sector$code),1 

1* initialize system and ~rivers *1 
call ini tialize$system, 
call initialize$drivers; 

/* reenable interrupts· and give 8272 a chance ,to report on dr,ive· status 
before proceeding *1 

enable; 
,call time (10) I 

1* specify disk drive parameters *1 
call specify (step$rate, head$load$time ,head$unload$,time' ,dma$mode),l 

drive=Oi 

1* wait until drive ready *1 
do while 1: 

if drive$ready(drive) 
then go to start: 

start: 
call format(drive,density,interleave): 

do while 1: 
do cylinder=O to tracks$per$disk-l: 

call seek (drive ,cylinder ,head) I 
do sector=l to sectors$per$track: 

1* set up write buffer *1 

1* run Sin91e .. disk dr.iv!, #0 *1 

do index=O to bytes$per$sector-l: wrbuf(index)~index+sector+cylinder: end: 

'2·230 AFN-01949A 



190 
191 

192 

194 
195 
196 

197 

4 
4 

4 
3 
2 

1 

AP?LlCATIONS 

call write(drive,cylinder,head,sector,densitY)J 
call read(drive,cylinder,head,sector,density)1 

/* check read buffer against write buffer */ 
if cmpw(@wrbuf,@rdbuf,shr(bytes$per$sector,l)) <> OFFFFH 

then halt; 
end; 

end; 
end; 

end run72; 

MODULE INFORMATION: 
CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
412 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0570H 
OOOOH 
0907H 
0022H 

1392D 
OD 

2311D 
34D 

2·231 AFNo01949A 



APPLICATIONS 

APPENDI~C 
8272 DRIVER FLOWCHARTS 

2-232 AfN.01949A 



RETURN 

APPLICATIONS 

2·233 

RESET 
-DRIVE$READY 
-DRIVESSTATUS$CHANOE 
-DPERATIONSINSPROGRESS 
-OPERATION$COMPLETE 

RETURN 
ERROR 

) 

RETURN 

AFN-OI949A 



( RETURN 
ERROR 

APPLICATIONS 

~ __ ~~R~ET~U~R~N~ __ --,). _ COMPLETE . 

A~'949A 



APPLICATIONS 

YES 

2·235 AFN.()1949A 



RETURN 
ERROR 

YES 

AP·PLlCATIONS· 

2·236 

( RETURN ) 
'--_..;;.ER .... RO .... R_-J 



NO 

APPLICATIONS 

RETURN 
INVALID STATUS 

~~~------~~IC RETURN ) 
~ , __ ~B~U~SY~S~T~A~TU~S~-,

C RETURN)
~~~------~~ , _____ B_US_Y_S_T_A_T_U_S __ ... 

ENABLE INTERRUPTS 

2·237 

C RETURN ) 
• , __ ~B~U~S~Y~S~T~A~TU~S~-J 

AFN-OI94SA 



RESULT PHASE OF 
PREVIOUS COMMAND 

YES 

RESET OPERATION$IN$PROGRESS 
SET OPERATIONSCOMPLETE 
RESET GLOBAL$ORllI.E~!'IO 

APPUICATIONS 

ASYNCHRONOUS 
INTERRUPT 

2-238 

CALL COPY$INT$RESULT 
TO PUT OPERATION 

RESULT INFORMATION 
INTO THE DOCB 

CAL.L eOPYSINT$RESULT 
TO PUT OPERATION 

RESULT INFORMATION 
INTO THE DOCS 

AFN-01949A 



APPLICATIONS 

RESET OPERATIONSIN$PROGRESS FLAG 
SET OPERATION$COMPLETE FLAG 

( RETURN ) 

2-239 



RETURN 
RESULT ERROR STATUS 

NO 

YES 

NO 

C ~ETURN ) 
'-------' 

2-240 AFN-Ol949A 



Data Communications 

.... , 



Using the 8251 Contents 

Universal Synchronous/ INTRODUCTION 2-242 

Asynchronous COMMUNICATION FORMATS 2-242 

ReceiverfTransmitter BLOCK DIAGRAM 2·243 

Receiver 
Transmitter 
Modem Control 
1/0 Control 

INTERFACE SIGNALS 2-245 

CPU-Related Signals 
Device-Related Signals 

MODE SELECTION 2-248 

PROCESSOR DATA LINK 2-251 

CONCLUSION 2-257 

APPENDIX 2-269 

8251 Design Hints 

2·241 AFN-0060OA 



APPLICATIONS 

INTRODUCTION 

The Intel 825 I is a Universal Synchronous/Asyn­
chronous Receiver/Transmitter (USART) which is 
capable of operating with a wide variety of serial 
communication formats. Since many peripheral 
devices are available with serial interfaces, the 825 I 
can be used to interface a microcomputer to a 
broad spectrum of peripherals, as well as to a serial 
communications channel. The 825 I is part of the 
MCS-80™ Microprocessor Family, and as such it is 
capable of interfacing to the 8080 system with a 
minimum of external hardware. 

This application note describes the 825 I as a com­
ponent and then explains its use in sample applica­
tions via several examples. A specific use of the 
825 I to facilitate communication between two 
MCS-80 . systems is discussed in detail from both 
the hardware and software viewpoints. The first 
two sections of this application note describe the 
825 I first from a functional standpoint and then 
on a detailed level. The function of each input and 
output pin is fully defined. The next section de­
scribes the various operating modes and how they 
can be selected, and finaJly, a sample design is dis­
cussed using the 825 I as a data link between the 
MCS-80 systems. 

COMMUNICATION FORMATS 

Serial communications, either on a data link or 
with a local peripheral, occurs in one of two basic 
formats; asynchronous or synchronous. These for­
mats are similar in that they both require framing 
information to be added to the data to enable 
proper detection of the character at the receiving 
end. The major difference between the two for­
mats is that the asynchronous format requires 
framing information to be added to each character, 
while the synchronous format adds framing infor­
mation to blocks of data, or messages. Since the 
synchronous format is more efficient than the 
asynchronous format but requires more complex 
decoding, it is typically found on high-speed data 
links, while the asynchronous format is used on 
lower speed lines. 

The asynchronous format starts with the basic data 
bits to be transmitted and adds a "START" bit to 
the front of them and one or more "STOP" bits 
behind them as they are transmitted. The START 
bit is a logical zero, or SPACE, and is defined as 
the positive voltage level by RS-232-C. The STOP 
bit is a logical one, or MARK, and is defined as the 
negative voltage level by RS-232-C. In current loop 
applications current flow normally indicates a 
MARK and lack of current a SPACE. The START 
bit .tells the receiver to start assembling a character 
and allows the receiver to sYl1chronize itself with 
the transmitter. Since this synchronIzation only 

2-242 

has to last for the duration of the character (the 
next character will contain a new START bit), this 
method works quite well assuming a properly 
designed receiver. One or more STOP bits are 
added to the end of the character to ensure that 
the START bit of the next character will cause a 
transition on the communication line and to give 
the receiver time to "catch up" with the transmit­
ter if its basic clock happens to be running slightly 
slower than that of the transmitter. If, on the other 
hand, the receiver clock happens to be running 
slightly faster than the transmitter clock, the re­
ceiver will perceive gaps between characters but 
will still correctly decode the data. Because of this 
tolerance to minor frequency deviations, it is not 
necessary that the transmitter and receiver clocks 
be locked to the identical frequency for successful 
asynchronous communication. 

The synchronous format, instead of adding bits to 
each character, groups characters into records and 
adds framing characters to the record. The framing 
characters are generally known as SYN characters 
and are used by the receiver to determine where 
the character boundaries are in a string of bits. 
Since synchronization must be held over a fairly 
long stream of data, bit synchronization is nor­
mally either extracted from the communication 
channel by the modem or supplied from an ex­
ternal source. 

An example of the synchronous and asynchronous 
formats is shown in Figure 1. The synchronous 
format shown is fairly typical in that it requires 
two SYN characters at the start of the message. 
The asynchronous format, also typical, requires a 
START bit preceding each character and a single 
STOP bit following it. In both cases, two 8-bit 
characters are to be transmitted. In the asynchro­
nous mode lO*n bits are used to transmit n charac­
ters and in the synchronous mode 8N + 16 bits are 
used. For the example shown the asynchronous 
mode is actually more efficient, using 20 bits 
versus 32. To transmit a thousand characters in the 
asynchronous mode, however, takes 10,000 bits 
versus 8,016 for the synchronous format mode. 
For long messages the synchronous format be­
comes much more efficient than the asynchronous 
format; the crossover point for the examples 
shown in Figure 1 is eight characters, for which 
both formats require 80 bits. 

In addition to the differences in format between 
synchronous and asynchronous communication, 
there are differences with regards to the type of 
modems that can be used. Asynchronous modems 
typically employ FSK (Frequency Shift Keying) 
techniques which simply generate one audio tone 
for a MARK and another for a SPACE. The receiv­
ing modem detects these tones on the telephone 

AFN-00600A 



~PPLICATIO~S 

:.. __ 'J~ IL.L.L.....JI'-LI -l1.....JL-'---1.I .. 1 I I I I ( 
STOP !;lIT ! \'--'--'-..J.......J'--'---'-.L....J.-,! START ~IT 

DATA 

DATA . ,DATA 

START BIT STOP BfT' 

ASYNCHR9NOUS' 

SVN 
CI:"IAR#2 

SVN 
CHAR #1 

Figure 1. Transmission Formats 

line, converts them to logical signals, and presents 
them to the receiving terminal. Since the modem 
itself is not concerned with the transmission speed, 
it can handle baud rates from zero to its maximum 
speed. Synchronous modems, in contrast to asyn­
chronous modems, supply timing information to 
the terminal and require data to be presented to 
them in synchronism with this timing information., 
Synchronous modems, because of this extra clock­
ing, are on:Iy capable of operating at certain preset 
baud rates. The receiving modem, which has an 
oscillator running at the same frequency as the 
transmitting modem, phase locks its clock to that 
of the transmitter and' interprets changes of phase 
as data. 
In some cases it is desirable to operate in a hybrid 
mode which involves transmitting data with the 
asynchronous format using a synchronous modem. 
This occurs when an increase in operating speed is 
required without a change in the basic protocol of 
the system. This hybrid technique is known as 
isosynchronous and involves the generation of the 
start and stop bits associated with the asynchro­
nous format, while still using the modem clock for 
bit sy~chronization. 

The 825 I USART has been designed to meet a 
broad spectrum of requirements in the synchro-, 
nous, asynchronous, and isosynchronous modes, In 
the synchronous mode the 825 I operates with 5, 
6, 7, or 8-bit characters. Even or odd pari,ty can be 
optionally appended and checked. Synchronization 
can be achieved either externally via added hard­
ware or internally via SYN character detection. 
SYN detection can be based on one or two charac­
ters which mayor may not be the same. The single' 
or double SYN characters are inserted into the 
data sire am automatically if the software fails to 
supply data in time. The automatic generation of 
SYNcharacters is required to prevent the loss of 
synchronization. In the asynchronous mode the' 
8251 operates with the same data and parity struc­
tures as it does in the synchronous mode. Inaddi­
tion to appending a START bit to this data,the 

2,243 

8251 appends I, I Y2, or 2 STOP bits. Proper fram­
ing is checked by the receiver and a status flag set 
if an error occurs. In the asynchronous mode the 
USART can be programmed to accept clock rates 
of 16 or 64 times the' required baud rate. Isosyn­
chronous operation is a special Case of asynchro­
nous with the multiplier rate programmed as one 
instead of 16 or 64: Note that X I operation is only 
valid if the clocks of the receiver and transmitter 
are syilchronized. 

The 8251 tJSART can transmit the three formats 
in half or full duplex mode and is double-buffered 
internally (i.e., the software has a complete charac­
ter time to respond to a ,service request). Although 
the 8251 supports basic data set control signals 
(e.g., DTRand RTS), it does not fully support the 
signaling described in EIA-RS-232-C. Examples of 
unsupported signals are Carriyr Detect (CF), Ring 
rndicator (CE), and the secondary channel signals~ 
In some cases an additional port will be required to 
implement these signals. The 8251 also does not 
interface to the' voltage levels required by EIA­
RS-232cC; drivers and receivers must be added to 
accomplish this interface. 

BLOCK DIAGRAM 

A block diagram of the 8251 is shown in Figure 2. 
As can be seen' in' the' figure, the 825 I consists of 
five major' sections whiCh communicate with each 
other on an internal data bus. The five sections are 
the receiver, transmitter, modem control, read/ 
wt:itecontrol. and, I/O Buffer. In order to facilitate 
dis,cussion, the I/O Buffer has been shown broken 
do~n 'into ,its three major subsections: the status 
buffer, the transmit'da,ta/command buffer, and the 
receive data buffer.: 

Receiver 

The receiver accepts serial data on the RxD pin and 
converts it to parallel data according to the appro­
priate format. When the 8251 is in the asynchro­
nous modeartd it' is 'ready to accept a character 



APPLICATI9t4@ 

RECEIVER 
(CONTROL) 

1---- TxO 

1---_ TxRDV 

1--_ TxE 

1---- TXc 

1--_ RxRDV 

1---_ SYNDEr 

1---- "xC 

RECEIVER 1--__ RxD 

'----L __ ~IS~-P~} __ J 

Figure 2. 8251 Block Diagram 

(Le., it is not in the process of receiving a charac­
ter), it looks for a low level on the RxD line. When 
it sees the low level, it assumes that it is a START 
bit and enables an internal counter. At a count 
equivalent to one-half of a bit time, the RxD line is 
sampled again. If the line is still low, a valid 
START bit has probably been received and the 
8251 proceeds to assemble the character. If the 
RxD line is high when it is sampled, then either a 
noise pulse has occurred on the line or the receiver 
has become enabled in the middle of the transmis­
sion of a character. In either case the receiver 
aborts its operation and prepares itself to accept a 
new character. After the successful reception of a 
START bit the 8251 clocks in the data, parity, and 
STOP bits, and then transfers the data on the 
internal data bus to the receive data register. When 
operating with less than 8 bits, the characters are 
right-justified. The RxRDY signal is asserted to 
indicate that a character is available. 

In the synchronous mode the receiver simply 
clocks in the specified number of data bits and 
transfers them to the receiver buffer register, 
setting RxRDY. Since the receiver blindly groups 
data bits into characters, there must be a means of 
synchronizing the receiver to the transmitter so 
that the proper character boundaries are main­
tained in the serial data stream. This synchroniza­
tion is achieved in the HUNT mode. 

In the HUNT mode the 8251 shifts in data on the 

2·244 

RxD line one bit at a time. After each bit is re­
ceived, the receiver register is compared to a regis­
ter holding the SYN character (program loaded). 
If the two registers are not equal, the 8251 shifts in 
another bit and repeats the comparison. When the 
registers compare as equal, the 8251 ends the 
HUNT mode and raises the SYNDET line to indi­
cate that it has achieved synchronization. If the 
USART has been programmed to operate with two 
SYN characters the process is as described above, 
except that two contiguous characters from the 
line must compare to the two stored SYN charac­
ters before synchronization is declared. Parity is 
not checked. If the USART has been programmed 
to accept external synchronization, the SYNDET 
pin is used as an input to synchronize the receiver. 
The timing necessary to do this is discussed in the 
SIGNALS section of this note. The USART enters 
the HUNT mode when it is initialized into the 
synchronous mode or when it is commanded to do 
so by the command instruction. Before the receiver 
is operated, it must be enabled by the RxE bit (D2) 
of the command instructions. If this bit is not set 
the receiver will not assert the RxRDY bit. 

Transmitter 

The transmitter accepts parallel data from the 
processor, adds the appropriate framing informa­
tion, serializes it, and transmits it on the TxD pin. 
In the asynchronous mode the transmitter always 

AFN.QI)600A 



APPLICATIONS 

adds a START bit; depending on how the, unit is 
programmed, it also adds an optional even Of odd 
parity bit, and either I, I Vz, or 2 STOP bits. In the 
synchronous mode no extra bits (other than patity, 
if enable) are generated by the transmitter unless 
the computer fails to send a character to the 
USART. If the USART is ready to transmit a char­
acter and a new character has not been supplied,by 
the computer, the USART will transmit a SYN 
character. This is necessary since synchronous 
communications, unlike asynchronous communica­
tions, does not allow gaps between ,characters. If 
the USART is operating in the dual SYN mode, 
both SYN characters will be transmitted before the 
message can be resumed., The USART will not 
generate SYN characters:until the spftware,hassup­
plied at least one character; i.e., the YSART will 
fill 'holes' in the transmission but will not initiate 
transmission itself. The SYN characters which are 
to be transmitted by theUSART are specified by 
the software during the initialization procedure. In 
either the synchronous or asynchronous modes, 
transmission is inhibited until TxEnable and the 
CTS input are asserted. 

An additional feature of the transmitter is the abil­
ity to transmit, a BREAK. A BREAK is a penod of 
continuous SPACE on the communication line and 
is used in full duplex communication, to interrupt 
the transmitting terminal. The 8251 USART will 
transmit a BREAK condition ,as long as bit 3 
(SBRK) of the command re~ister is set. 

Modem Control 

Th~;modem control section provides for the,gener­
ation of RTS and the reception of CTS. In addi­
tion, a general purpose output and a gerwtal pur­
pose input are provided, The output is' labeled 
DTR and the input is labeled DSR. ,DTRcan be 
asserted, by setting bit 2 of the command instruc­
tion; DSR can be sensed as bit 7 ~f the status 
register. Although the uSART itself attaches no 
special significance, to "these signals, DTR (Data 
Terminal Re;tdy) is normally assigned to the 
modern, indicating that, the terminal is ready to 
communicate and DSR (DataSet Ready) is a, signal 
from the modern indicating that it is xeady for 
communications. 

1/0 Control 

The Read/Write Control Logic decodes control 
signals on the' 8080 control bus into signals which 
gate data on and off the USART's internal bus, and 
controls the external I/O bus (DBo-DB7). The 
truth table for these operations is as follows: 

If neither READ or WRITE is a Zero; then the 
USARTwill not perform 'an I/O function. READ; 

CE C/O READ WRITE Function 

0 0 0 1 CPU Reads Data from 
USART , 

0 1 0 1 CPU Reads Status from 
USART 

0 0 1 0 CPU Writes Data to 
USART 

'Q 1 1 0 CPU Writes Command to 
USART 

1 X X X USART Bus Floating 
(NO-OP) 

and WRITE being a zero at the same time is an 
illegal state with, undefined results. The Read/ 
Write Control Logic contains synchronization cir­
cuits 'so that the READ and WRITE pulses can 
occur at any time with respect to the clock inputs 
t6 the USART. 

, The I/O buffer contains the STATUS buffer, the 
RECEIVE DATA buffet and the XMIT DATA/ 
CMD buffer' as shown in Figure 2. Note that al­
though there are two registers which store data for 
transfer to' the CPU (STATUS and RECEIVE 
DATA), there is only one register which stores data 
being transfem:d to the USART. The sharing ,of 
the input register for both transmit data and com­
mands makes it important to' ensure that the 
USART does not have data stored in this register 
before sending a command to the device. The 
TxRDY signal~anbe monitored to accomplish, 
this. Neither data nor commands should be trans­
ferred to the USART if TxRDY is low. Failure to 
perform this check can result in erroneous data 
being transmItted. 

,2-245 

INTERFACE SIGNALS 

The interface signals of the 8251 USART can be 
broken down into two groups - a CPU-related 
group and, a device-related group. The CPU-related 
signals have been designed to optimize the attach­
ment of the .8251 to a, MCS-80™ system. The 
device-related signals are: intended to interface a 
modem or like ,device. Since many peripherals 
(TTY, CRT, etc.) can be obtained with a modem­
like interface, the, USART has a broad range oJ 
applications which do not include a modem. Note 
that aIthough the USART provides a logical inter­
face to' an EIA-RS-232 device, it does not provide 
EIA compatible' drive, and this must be' added via 
circuitry external to the 8251. As an example of a 
peripheral interface application and to aid in 
understanding the signal descriptions which follow, 
Figure 3 shows asystem configured to interface 
with a TTY or CRT. 

AFN-()()6()()A 



APPLICATIONS 

I'~ .. 

~~ "', ~'" ~ 
'" .. _----------' 

~ ~~~ N 

!- "."~" :b !-~~:cr~~~,' 
"0 ~ ~~o~\'5i 

:':::l ~ ~ ~ ~ .., '" lQ --------,------- --111 

'. "" ,~i~;ll 

--, 

2-246 AFN-ooeooA 



CPU-Related Signals 
Vee (26) I 
GND (4) 

CLK (20) 

RESET (21) 

DB7-DBO I/O 
(8,7,6,5,2, I, 
28,27) 

CS (11) 

C/D (12) 

'RD (13) 

APPLICATIONS 

+5 Volt Supply 

+5 Volt Common 
,,' . t:y·. , 
The CLK input generates m-
ternal device timing. No ex­
ternal input~: or outputs are 
referenced t"8 CLK, but the 
frequency of CLK must be 
greater than 30' times the 
Receiver or Transmitter 
clock inputs for synchronous 
mode or 4.5 times the clock 
inputs for an asynchronous 
mode. An additiorial con­
straint is imposed by the 
electrical specifications (ref. 
Appendix B) which require 
the period of CLK be be­
tween 0.42 /lsec and 1.35 
/lsec. The CLK input can 
generally be connected to the 
PhaSe 2 (TTL) output of the 
8224 clock generator. 

A high on this input per­
forms a master reset on the 
8251. The device returns to 
the idle mode and will re­
main there until reinitUH,ized 
with the appropriat~ t6ntrol 
words. 
The DB signals form a three­
state bus which can be con­
nected to the CPU data bus. 
Control, status, and data are 
transferred on this bus. Note 
that the CPU always remains 
in control of the bus and all 
transfers are initiated by it. 
Chip Select. A low pn this 
input eriables communica­
tion between the USART 
and the CPU. Chip Select 
should go low when the 
USART is being addressed by 
the CPU. 

Control/Data. During a read 
operation this pin selects 
either status or data to be in­
put to. the CPU (high=status, 
low=data). During a write 
operation this pin causes the 
USART to interpret the data 
on the bus as a command if it 
is high or as data if it is low. 
A low on this input causes 
the USART to gate either 

WR (10) 

TxRDY (15) 

TxE (I 8) 

RxRDY (14) 

2·247 

o 

o 

o 

status or data onto. the data 
bus. 
A low on this input causes 
the USART to accept data 
on the data bus as either a 
command or as a data char­
acter. 
Transmitter Ready. This out­
put signals the CPU that the, 
USART is ready to accept a 
data character or command. 
It can be used as an interrupt 
to the system or, for polled 
operation, the CPU can 
check TxRDY using the 
status read operation. Note, 
however, that while the 
TxRDY status bit will be as­
serted whenever the XMIT 
DATA/CMD buffer is empty, 
the TxRDY output will be 
asserted only if the buffer is 
empty and the USART is en­
abled to transmit (Le., CTS is 
low and TxEN is high). 
TxRDY will be reset when, 
the USART receives a charac­
ter from the program. 
Transmitter Empty. A high 
output on this line indicates 
that the parallel to serial 
converter in the transmitter 
is empty. In 'the synchronous 
mode, if the CPU has failed 
to load a new character in 
time, TxE will go high mo­
mentarily as SYN characters 
are loaded into the trans~ 

mitter to fiil the gap in trans­
mission. 
Transmitter Ready. This out­
put goes high to indicate that 
the 8251 has received a char­
acter on its serial input and is 
ready to transfer it to the 
CPU. Although the receiver 
runs continuously, RxRDY 
will only be asserted if the 
RxE (Receive Enable) bit in 
the command register has 
been set. RxRDY can be con­
nected to the interrupt struc­
ture or, for polled operation, 
the CPU can check the condi­
tion of RxRDY using a status 
read operation. RxRDY will 
be reset when the character is 
read by the CPU. 

AFN-006OOA 



APPLICATIONS 

SYNDET (16) I/O Synch Detect. This line is used 
in the synchronous mode only. 
It can be either an input or 
output, depending on whether 
the initialization program sets 
the USART for external or in­
ternal synchronization. SYN­
DET is reset to a zero by RE­
SET. When in the internal 
synchronization mode, the 
USART uses SYNDET as an 
output to indicate that the 
device has detected the re­
quired SYN character(s). A 
high output indicates' syn­
chronization has been achiev­
ed. If the USART is pro­
grammed to operate with 
double SYN characters, SYN­
DET will go high in the mid­
dle of the last bit of the 
second SYN character. SYN­
DET will be reset by a status 
read operation. When in the 
external synchronization mode 
a positive-going input on the 
SYNDET line will cause the 
8251 to start assembling 
characters on the next falling 
edge of RxC. The high input 
should be maintained at least 
for one RxC cycle following 
this edge. 

Device-Related Signals 

DTR (24) 0 Data Terminal Ready. This is a 

DSR (22) 

RTS (23) 

general purpose output signal 
which can be set low by pro­
gramming a 'I' in command 
instruction bit 1. This signal 
allows additional device con­
trol. 

Data Set Ready. This is a gen­
eral purpose input signal. The 
status of this signal can be 
tested by the CPU through a 
status read. This pin can be 
used to test device status and 
is read as bit 7 of the status 
register. 

o Request to Send. This is a gen­
eral purpose output signal 
equivalent to DTR. RTS is 
normally used to request that 
the modem prepare itself to 
transmit (Le., establish car­
rier) .. RTS can be asserted 

2-248 

CTS (17) 

RxC (25) 

RxD (3) 

TxC (9) 

TxD (19) 

(brought low) by setting bit 5 
in the command instruction. 
Clear to Send. A low on this 
input enables the USART to 
transmit data. CTS is normally 
generated by the modem in re­
sponse to a RTS. 

Receiver Clock. This clock 
controls the data rate of char­
acters to be received by the 
USART. In the synchronous 
mode RxC is equivalent to the 
baud rate, and is supplied by 
the modem. In asynchronous 
mode RxC is I, 16, or 64 
times the baud rate. The clock 
division is preselected by the 
mode control instruction. 
Data is sampled by the USART 
on the rising edge of RxC. 

Receiver Data. Characters are 
received serially on this pin 
and assembled into parallel 
characters. RxD is high true 
(Le:, High = MARK or ONE). 

Transmitter Clock. This clock 
controls the rate at which 
characters are transmitted by 
the USART. The relationship 
between clock rate and baud 
rate is the same as for RxC. 
Data is shifted out of the 
USART on the falling edge of 
TxC. 

o Transmit Data. Parallel charac­
ters sent by the CPU are trans­
mitted serially by the USAR T 
on this line. TxD is high true 
(Le., High = MARK or ONE). 

MODE SELECTION 

The 8251 USART is capable of operating in a num­
ber of modes (e.g., synchronous or asynchronous). 
In order to keep the hardware as flexible .as possi­
ble(both at the chip and end product level), these 
operating modes are selected via aseries of control 
outputs to the USART. These mode control out­
puts must occur between the time the USART is 
reset and the time it is utilized for data transfer. 
Since the USART needs this information to struc~ 
ture its internal logic it is essential tocompletethe 
initialization before any attempts are made at data 
transfer (including reading status). 

A flowchart of the initialization process appears in 
Figure 4. The first operation which must occur 
following a reset is the loading of the mode control 

AFN.()OOOQA 



APPLICATIONS 

SYSTEM RESET 
IN",TIALIZATION 

Figure 4. Initialization Flowchart 

register. The mode control register is loaded by the 
first control output (CrO=I, RD=I, WR=O, cg=O) 
following a reset. The format of the mode control 
instruction is shown in Figure 5. The instruction 
can be considered as four 2-bit fields. The first 
2-bit field (D 1 Do) determines whether the USAR T 
is to operate in the synchronous (00) or asynchro­
nous mode. In the asynchronous mode this field 
also controls the clock scaling factor. As an exam­
ple, if Dl and Do are both ones, the RxC and TxC 
will be divided by 64 to establish the baud rate. 
The second field, D3-D2, determines the number 
of data bits in the character and the third, Ds-D4, 
controls parity generation. Note that the parity bit 
(if enabled) is added to the data bits and is not 
considered as part of them when setting up the 
character length. As an example, standard ASCII 
transmission, which is seven data bits plus even 
parity, would be specified as: 

x X I I I 0 XX 

~~ ~~ L ~~" .. ,-" 
00 ~SYNMODE 

, 01 ... ASYNX1 
10 "ASYN X16 , 11 =-ASVN X64 

CHARACTER LENGTH 

00,..581T8 
01 =-0 BITS 
10"781T8 
11.".8 BITS 

PARITY CONTROL 

X 0"'> NO PARITY 
01 .. ODD PARITY 
1 1 .. EVEN PARITY 

FRAMING CONTROL 

SVN NO-:ASYN CO, 00*001 00 =-NOTVALID 
? 01,..1STOPSIT 

1 0 ,.. 1~ STOP BITS 
11 ... 2STOPBITS 

YES 
(0, DO'" 0) SVN CONTROL 

X 0 INTERNAL SVN 
X 1 EXTERNAL SVN 
o X DOUBLE SYN CHAR 
1 X SINGLE SVN CHAR 

Figure 5. Mode I nstruction Format 

The last field, D7-D6, hilS two meanings, depend­
ing on whether operation is to be in the synchro­
nous or asynchronous mode. For the asynchronous 
mode (Le., Dl Do '* 00), it controls the number of 
STO,P bits. to be transmitted with the character. 
Since the receiver will always operate with only 
one STOP bit, D7 and D6 only control the trans­
mitter. In the synchronous mode (Dl Do = 00), 
this field controls the synchronizing process. Note 
that the choice of single or double SYN characters 
is independent of the choice of internal or external 
synchronization. This is because even though the 
receiver may operate with external synchronization 
logic, the transmitter must still know whether to 
send one or twoSYN characters should the CPU 
fail to supply a character in time. 
Following the loading of the mode instruction the 
appropriate SYN character (or characters) must be 
loaded if synchronous mode has been specified. 
The SYN character(s) are loaded by the same con­
trol output instruction used to load the mode in­
struction. The USART determines from the mode 
instruction whether no, one, or two SYN charac­
ters are required and uses the control output to 
load SYN characters until the required number are 
loaded. 
At completion of the load of SYN characters (or 
after the mode instruction in the asynchronous 
mode), a command character is issued to the 
USART. The command instruction controls the 
operation of the USART within the basic frame­
work established by the mode instruction. The 
format of the command·· instruction is shown in 

AFN-ooeooA 



APPLICATIONS 

Figure 6. Note that if, as an example, the USART 
is waiting for a SYN character load and instead is 
issued an internal reset command, it will accept the 
command as a SYN character instead of resetting. 
This situation, which should only occur if two 
independent programs control the USART, can be 
avoided by outputting three all zero characters as 
commands before issuing the internal reset com­
mand. The USART indicates its state in a status 
register which can be read under program control. 
The format of the status register read is shown in 
Figure 7. 

'TRANSMIT ENABLE 
1- ENABLE 
D-DISABLE 

DATA TERMINAL 
READY 

"HIGH" WILL FORCE 
DTR OUTPUT TO ZERO 

RECEIVE ENABLE 
'-----1 , = ENABLE RxRDV 

0 .. DISABLE RxRDY 

SEND BREAK 

'-------ICH1~:g~~~STxD "LOW" 
0- 'NORMAL OPERATION 

eRROR RESET '-______ -1 , .. RESET ALL eRROR 
FLAGS (PE, OE, FlU 

REQUEST TO SEND 

'----------~I ii'f.'~~;~~:g~~~o 

INTERNAL RESET 
"HIGH" RETURNS 8251 
TO MODE INSTRUCTION 
FORMAT 

ENTER HUNT MODe 

When operating the receiver it is important to real­
ize that RxE (bit 2 of the command instruction) 
only inhibits the assertion of RxRDY; it does not 
inhibit the actual reception of characters. Because 
the receiver is constantly running, it is possible for 
it to contain extraneous data when it is enabled. 
To avoid problems this data should be read from 
the USART and discarded. The read should be 
done immediately following the setting of Receive 
Enable in the asynchronous mode, and following 
the setting of Enter Hunt in the synchronous 
mode. It is not necessary to wait for RxRDY be­
fore executing the dummy read. '--____________ 1 1" ENABLE SEARCH FOR 

D5 

I OSR I SYNDET I FE 

L I 

SVN CHARACTERS 

Figure 6. Command Instruction Format 

D3 D, DO 

I OE PE 

I 
T,E I R,RDY I T,RDY I 

I 1 1 1 
j 

PARITY eRROR 
THE PE FLAT IS SET WHEN 
A PARITY ERROR IS DE-
TECTED. IT IS RESET BY 
THE ER BIT OF THE COM· 
MAND INSTRUCTION. PE 
DOES NOT INHIBIT OPER· 
ATION OF THE 8261. 

OVERRUN ERROR 
THE DE FLAG IS SET WHEN 
THE CPU DOES NOT READ A 
CHARACTER BEFORE THE 
NEXT ONE BECOMES AVAil· 

L.... ABLE. IT IS RESET BV THE 
ER BIT Of THE COMMAND 
INSTRUCTION. OE DOES 
NOT INHIBIT OPERATION OF 
THE 8261; HOWEVER, THE 
PREVIOUSLY OVERRUN 
CHARACTER IS LOST' 

FRAMING ERROR (ASYNC 
ONLY) 
THE FE FLAG IS SET WHEN 
A VALID STOP 81T IS NOT 
DETECTED AT THE END OF 
EVERY CHARACTER. IT IS 
RESET BY THE ER BIT OF 
THE COMMAND INSTRUC· 
TION. FE DOES NOT INHIBIT 
THE OPERATION OF THE 8251. 

Figure 7. Status Register Format 

2·250 

SAME DEFINITIONS 
AS I/O PINS EXCEPT 
THAT TxRDY IS NOT 
CONDITIONED BY 
TxENOR eTf. 

AFN.QOIIOOA 



APPL:ICATIONS 

PROCESSOR DATA LINK 
The ability to ch:mge the bperatingmode of the 
USART by software makes the 82·51 'an ideal 
device to·use to implement a serial communication 
link. A terminal initially configured with a simple 
asynchronous protocol can be upgraded to a Syn­
chronous protocol such as IBM Binary Synchro­
nous Communication by a software only upgrade. 
In order to demonstrate the use of the 8251 
USART, the remainder of this document will 
describe the implementation of an interrupt-driven, 
full duplex com;munication link on the Intel 
MDSTM system. With minor modifications, the 
program developed could be used on the Intel 
SBC-80/10™ OEM card, thus implementing a data 
link between· the two systems. Such a facility can 
be used to down-load programs, run diagnostics, 
andtnaintain common data bases in multiprocessor 
systems. 

The factors which must be considered in the design 
of such a link include the desired transmission rate 
and format; the error checking requirements, the 
desirability of full duplex operation, and the phys­
ical implementation of the link. The basic require­
ment Of the system described here is that it allow 
an Intel SBC-80/10 OEM card to be loaded from 
an MDS development system, either locally or on 
the switcl}ed telephone network. An additional 
constraint is that the modem used on the switched' 
network be readily available and inexpensive. 
These requirements led to the choice of a modem, 
such as the Bell 103A to implement the link. These 
modems, which support full duplex communica­
tion at up to 300 baud, are readily available from a 
number of sources at reasonable cost. These 
modems are also available in acoustically coupled 
versions which do not require permanent installa­
tion on the telephone network. Interface to the 
103A modem is accomplished with nine wires:. 
Protective Ground, Signal Ground, Transmitted 
Data, Received Data, Clear to Send, Data Set 
Ready, Data Terminal Ready, Carrier Detector, 
and Ringing Indicator. . 

The utilization of the interface signals to the· 
modem is as follows: 

Protective Protective Ground is used to bond 
Ground the chassis ground of the modem to 

that of the terminal. 

Signal 
Ground 

Transmitted 
Data 

Signal Ground provides a .common· 
ground reference between. the mo­
dem and the terminal. 

Transmitted Data is used to transfer 
serial data from the terminal to the. 
modem. 

Rece.ived 
Data 

Clear to . 
Send· 

Data Set 
Ready 

Data 
Terminal 
Ready." 
Carrier 
Detector 

Ringing 
Indicator 

Received Data is used to transfer 
serial data, from .. the modem to the 
ter;minaL 
Clear to Send indicates that the 

. modem has estal:Hisheda connec-
tiori with' a remote modemand·is 
ready to transmit data. 

DataSet Ready indicates that the 
modem is. connected to the tele­
phone line, and is in the data mode. 
Data Terminal Ready is a signal 
from the. terminal which permits 
the modem to enter the data mode. 

Carrier Detector is identical to 
Clear to Send in the 103 modem 
and will not be. ,used in this inter­
face. 
Ringing Indicator indicates that the 
modem is receiving a ringing signal 
. from the· telephone systein. This 
sigilal will not be used in the inter­
face, since it is possible for the 
terminal to assert Data Terminal 
Ready whenever it is ready fot the 
modem to "answer the telephone". 
The modem uses Data Set Ready to 
indicate that it has answered the 
call. 

A block diagram showing the connections between 
the. MDS and the SBC-80/10 through the modems 
is shown in Figure 8. Figure 9 shows the portion of 
the MDS monitor board devoted to the USARTs 
and Figure 10 shows the equivalent section of the 
SBC-80/10 board. Note that several signals on the 
MDS to not have the proper EIA defined voltage 

.' levels, and for this reason the adapter shown in 
Figure 11 was added to the MDS. The 390 pF 
capacitor was added to the 1488 driver to bring the 

· rise time within EIA imposed limits of 30 volts/ 
/lsec. In Figure 7 the signal labels within the MDS 
and SBC-80/10 blocks correspond to the labels on 
the schematics, the signal labels within the modem 
blocks correspond to EIA conventions, and the 
signal labels on the wires between the blocks are 

· abbreviations for the English language names of the 
signals. 

. As an example of how the USART clocks can be 
generated, circuits A27, A16, and A15 of Figure 9 
form' a divider of the ose signal. The ose signal 
has a frequency of 18.432 MHz and is generated by 
the 8224 which generates system timing for the 
8080A. The 18.432 MHz signal results in a state 
time of 488 ns versus the normal 500 ns for the 

2-251 

· 8080A., (This does not violate 8080A specifica­
tions;) The 18.432 MHz signal can be divided by 



APPLICATIONS 

--------l 

I 

CRT USA.RT RTS! 

CRTTx DATA 

CRT Rx DATA! 

CRT oTRI 

CRT DSR/ 

CRTSIG GND 

'CRT'INTERFACE 

I 
_____ ~ __ .J 

CB 

BA 

BB 

CD 

CC 

COM 
AB AB 

MODEM MODEM 

,--------
I 

CT. 
REO TO SEND 

RECEIVE DATA 

TRANSMITTED DATA 

DATASET ROV 

DATA TERM'L ROY 

COM 
GND 

'CRT' INTERFACE 

I 
L __ SB.:2..0· _____ 

Figure 8. System Block Diagram 

j 
~CTS 

~DSR 

~DTR 
J ~pF 

Figure 9. EIA Adapter 

30 and then 64 to give a 9600 baud communica­
tion standard. The 9600 baud signal can be further 
divided to give 4800, 2400, 1200, 600, and 300 
baud signals. The 1200 baud signal can be divided 
by II to give a 109.1 baud signal which is within 
I % of the 110 baud standard signal rate. Note that 
because of constraints on the CLK input 9600 
baud operation is not possible in the X64 mode. 
The divide by 64 can be accomplished by dividing 
by 4 with a counter and then 16 within the 
USART. 

In order to keep the system as general purpose as 
possible, it was decided to transmit 8-bit data char­
acters with an appended odd parity bit. Having a 
full 8-bit byte available for .data enables the trans­
mission of codes such as ASCII (which is 7-level 
with an additional parity bit). to be transmitted 
and received transparently in the system. Also, of 
course, it allows 8-bit bytes from the 8080A mem­
ory to be transferred in one transmission character. 
If error checking beyond the parity check is re­
quired, it could be added to the data record to be 
transmitted in the form of redundant check charac­
ters. 

2·252 

Before the software design of the system could be 
undertaken, it was necessary to decide whether 
service requests from the USART would be han­
dled on a polled or interrupt driven mode. Polled 
operation normally results in more compact code 
but it requires that whatever programs are running 
concurrently with a transmission or reception must 
periodically either check the status of the USART 
or call a routine that does. Since it was not possible 
to determine what program might be running dur­
inga receive or transmit operation, it was decided 
to operate in an interrupt driven mode. 

The program which operates the 8251 must be 
instructed as to· what data it should transmit or 
receive from some other program resident in the 
8080 system. To facilitate the discussion of the 
operation of the software, the following definitions 
will be made: 

USRUN is the program which controls the 
operation of the 8251. 

USER is a program which utilizes USRUN in 
order to effect a data transmission. 

USER passes commands and parameters to 
USRUN by means of the control block shown in 
Figure 12. The first byte of the block contains the 
command which USER wants USRUN to execute. 
Valid contents of this byte are "c" which causes 
USRUN to initialize itself and the 8251, "R" 
which causes the execution of the data input (or 
READ) operation, and "w" which causes a data 
output (WRITE) operation. The second byte of the 
control block is used by USRUN to inform USER 
of the status of the requested operation. The third 
and fourth bytes specify the starting address of a 
buffer set up by USER which contains the data for 
a transmit operation or which will be used by 
US RUN to store received data. The fifth and sixth 
bytes are concatenated to form a positive binary 

AFN.()()6(1()A 



~ 

I 

~ A~O~I ;~;; :..,,:"'oz£§. 
I, . oaa. OI!I 

~ ("WoRm! C!.!!. '( Pe-50 

{
C.'" 

'ZI>L t: . 4 

AD~e 

iZa!. O~C 

Q.Wt&51"'~ ~~ I I' ":' 

I 

~=~;<='5· 9' ~ T ___ me DATA: : .. j ;=-
fit CL~ /bAT.~M'LRPY 4 • 

I' [> '. I Rf..Q TO 9£NO ~ L~. 
I,.,....l 

... 0 

.5V 

"TTV T)It 

if. .. ,,-_~~_I'-LJ~; j ... V~ ~:=;:~"":'" 
M I , ~~m~ III I II ... -. , .~ •. nn"'ET 

DATA CARRIER RET 

tNT!:)11 ~ II r ",\- ~ 
~-t - IIJ-".. 

~ -I2V~ ~: ~:O"t RET 

~.ID"'" 'I 
\ I ~Z(TTL.:). 

'&"'Y!T 
I' At:>w.CO 

Figure 10, SBe 80/10 Serial I/O 

:.. 
"U 
;2 
~. 
~ o 
z en 



N 
N 
~ 

I 

~3)~~~il~S 
CRr , ... ') L 200 ,I( 16 '1. 

uSA.R:r" (:5) 110 X I&Ha, 

~c.u:/~~ 

-36 

"3"Z.£.lf"T~\!OV/_ 
""f"2A1 eSTPTPolJi/ ,'P 

:Hiov ~"' ... 'vv ( .. ) ceT USART' R~I 
~'f'T2;1I:f:J'(/~1 

.!lil... PT~IWP IWT! 3ZM 
'Z .~ ZD Ci!T uSART CT5/ e.~t:. LWP/ 

!iZ'-LOAT ., 1:111.'" ~!fl ~1'232. ~CRTs.laG~'t:)z. \,..Pit>.C.t<./ ~ e 1:1-.' l:. ..... Tl<c;. T~t> '!I +SV JUMPER CONFIGURATIONS I CeT'5.LGGUD L JI I <t ,..... • .sf; 
I 1 ~ oa~~: Alto ':" : I ~ ~ ~- 4 1)1!.!>~'Z.SI eLl. z C.Ii:TR)I,r»rrA/ . --f~ 7T 

'!"'ZQ.b .!o , ~a ClITo CD.~K ~I!o +'SV ,: '~~S.T L.i"TOUTJ 

• ~ ~ CRT z.Wz.u.a lC.'Z.lI. C.1:.1 i : ~ I..PTCTL.j .3 .. ~"""'!o"1 _ ~ P ..... T <21 If. elf:> I ,.. ...-____ [!!] ~ "I:)'li!~ l:.t>I '1 C2T DSJe/ TZtu 'CI'\TI,iI I 'Z.; 3 
I ig~~~U - I,~ ~T/ ~ i I S "1 

~n""r .~ +l2V~(RTCL<AR ~OA~' 
• ~ .... , .. ~ 4 ~ '-,-"- '.' :';~-.".I 

.".."> C~"/ -,;zs.cP><T' ~ 
~ ~'TCU '"~/ \ 11\1\11111\11111 . \1 I??' ~""iCTL.1 

~D"'T5 
"' 

TT'i Ar::N'r-ce{ 
ZZ§!i 

PTP FOIt. 

~ Pi!=' AOV 

~ 

t 
3Z&l UH2T OUT I 11111" 111111" 1 ... "0.0 ••••• ".0 ""II -¥P= ~ 

:Ia C~\tJTI 
'!Zlu. D", Z. 

SZ1tl DA.T3 

~ 'ii!\~ ~TTV 'T)(DATA 

~"' Q TTY TX DATA R.ET 
'W 

lZ.k.§. TTY i:t.J.! "' ~~~~~-----iTIOlz TTY~D~CT~ 
"""'iZ£lLPTbAT/~ 

LIJ:tT/' ~ ..... """1''-''''_''''~"'~-----

PeoM WET nAT 'PL.'5/ 
-, 
."" 

DAT~/1Z9. ~ 
'CI'.Trt-, 
DATIJ~ ~ 
CIIITtj 

SVSII!:ST ~ 
S""5eST/·~ 

HJ.TIAL..L"'~ I 

JI "'i"Zru.C/o1~DSTlt.a ~-
14 6~~i~f ~'PeohlWJ:.Tb"'T'" . .,AI ""'3' .JeD 

1b§. f"'ltot-ot #rI'Dl:IoII5i"\-CTL ~I\I 9 1 

j) ~ '~, yv.6 nil TTY -e')C DAT '"iZ&A ?COM .... ~ LOW ' .... , !o 100 

.. "'Iev RI4- ~ Ll'>T ST .... TI £'id •• ~1 
~TTY Rlt C¥Io.T RET AA_ " - r-;;;;-

41..n... . IIII:! ~l 1 VV I : ~>K. " . . ~~"' TTV O'~1 
<ru m __ , 11J4Jlr ~~_I~~~, .... ". \..PT STt'\TIj ~ ~.l!Q "Ii'ts;eo·:n ~ 

PI 

P~M'E.DSTKT"I 

I~ Jl 

i1 ,"leON! '2.t:> OA"T/ 

,1" 1"Zs§. 'PeoM1O!:CSTATUS I"'~ 
\~A l"~\.ITI __ _ 

~ P~OM'l:DtlA.TIt. ---~ 
~ PteoM SIGirG""D I 

P20M e.IGoG\Jt)~ 

>:Zru. ".T TTV '"PI· -v =W-<j I . L..r 
'"S"ZD.! 't!.~TTTV,oo.rrl -:-

~a, TTV OUT I'!.JT/ ~ 

Figure 11. MDS Monitor Module 

J> 

" " C 
0 

~ 
0 z en 



APPLICATIONS 

number which specifies how many bytes of data 
USER wants transferred. The seventh and eighth 
bytes are concatenated and used by USRUN to 

'count the number of bytes that have been trans­
ferred. When the required number of characters 
have been transferred, or if USRUN terminates a 
READ or WRITE due to an abnormal condition, 
then USRUN calls a subroutine at an address de­
fined by the ninth and tenth bytes of the com­
mand block. This subroutine, which is provided by 
USER, must determine the state of the process and 
then take appropriate action. 

Since US RUN must be capable of operation in a 
full duplex mode (Le., be able to receive and trans­
mit simultaneously), it keeps the address of two 
control blocks; one for a READ operation and one 
for a WRITE. The address of the controlling com­
mand block is kept in RAM locations labeled 
RCBA for the READ operation and TCBA for the 
WRITE operation. If RCBA (Receive Control 
Block Address) or TCBA (Transmit Control Block 
Address) is zero, it indicates that the corresponding 
operation is in an idle status. 

Flowcharts of USRUN appear in Figure 13 and the 
listings appear in Figure 14. The first section of the 
flowcharts (Figures 13.1 and 13.2) consists of two 
subroutines which are used as convenient tools for 
operating on the control blocks. These routines are 
labeled LOADA and CLEAN. LOADA is entered 
with the address of a control block in registers H 
and L. Upon return registers D and E have been set 
equal to the address in, the buffer which is the 
target of the next data transfer (Le., D,E = BAD+ 
CCT); and CCT (transferred byte count) has then 
been incremented. In addition, the B register is set 
to zero if the number of bytes that have been 
transferred is equal to the number requested (Le., 
CCT = RCT). CLEAN, the second routihe, is also 
entered with the address of a command block in 
the Hand. L registers. In addition, the Accumulator 
holds the status which will be pla¢ed in the 
STATUS byte of the command block. bn,exit the 
STATUS byte has been Updated and the address of 
the completion routine has been placed in Hand L. 

Upon interrupt, control of the MCS-80 system is 
transferred to VECTOR (Figure 13.3). Vector is a 
program which saves the state of tne system, gets 
the status of the USART and jumps to the RISR 
(Receive Interrupt Service Routine) or the TISR 
(Transmit Interrupt Service Routine), depending 
on which of the two ready flags is active. If neither 
ready flag is active, VECTOR restores the status of 
the running program, enables interrupts, and re­
turns. (Interrupts are automatically disabled by the 
hardware upon an interrupt.) This exit from VEC­
TOR, which is labeled VOUT, is used from other 

2·255 

CQMMAND 

STATUS 

BAD LOW 

BAD HIGH 

ReT LOW 

RCTHIGH 
CCTLOW 

CCTHIGH 

eRA. LOW 

eRA HIGH 

I THESE TWO BVTES FORM 
THE BUFFER ADDRESS 

I THESE TWO BVTES INDICATE 
THE NUMBER OF aYTES TO 
BE TRANSFERREO 

) 
THESE TWO BYTES INDICATE 
THE NUMBER OF BYTES THAT 
HAVE BEEN TRANSFERRED 

) 
THESE TWO BYTES FORM 
THE ADDRESS OF A sua. 
ROUT'iNE TO BE CALLeD 
WHEN THE OPERATION 
IS TERMINATED 

Figure 12. Control Block 

Figure 13.1. LOADA Subroutine 

Figure 13.2. CLEAN Subroutine 



APPLICATIONS 

• NT 

Figure 13.3. Interrupt Entry 

Figure 13.4. Transmit Interrupt Service Routine 

2-256 

portions of USRUN if return from the interrupt 
mode is required . 

In addition to handling normal data transfers, 
TISR (Figure 13.4) checks a location in memory 
named TCMD in order to determine if the receive 
program wishes to send a command to the USART. 
Since the transmit data and command must share a 
buffer within the USART, any command output 
must occur when TxRDY is asserted. If TCMD is 
zero, TISR proceeds with the data transfer. If 
TCMD is non-zero, TISR calls TUTE (Transmit 
Utility, Figure 13.5) which, depending on the value 

Figure 13.5. Transmit Utility Routine 



APpLICATIONS 

in'TCMD, turns6rfthe receiver,turns on the re­
ceiver, or clears error conditions;' Note that the 
error flags (parity, framing, and overrun) are al­
ways cleared by the software when the receiver is 
first enabled. 

The flowchart' Of'the RISR is shown in Figure 
13.6. Note that in addition to terminating when­
'ever the required number of characters have been 
received,the RISR also terminates if one of the 
error flags becomes set or if the received character 
matches a character found in a table pointed to by 
the label ETAB.This tabie, 'which starts .at ETAB 
and continues until an all "ones" entry is found, 
can be used by USER to define special characters, 
such as EOT (End Of Transmission), which will ter­
minate a READ operation. The remainder of Fig­
ure 13 (13.7) shows the decoding of the commands 
to USRUN. The listings also include a test USER 
which exercises USRUN. This program sets up a 
256-byte transmit buffer and transfers it to a simi­
lar input buffer by means Of a local loop. When 
both the READ and WRITE operations are com­
plete, the test USER checks to insure that the two 
buffers are identical. If the buffers differ, the MDS 
monitor is called; if the data is correct, the test is 
repeated. 

CONCLUSION 
The 8251 USART has been described both as a 
device and as a .component in a system. Since not 
only modems but also many peripheral devices 
have a serial interface, the 8251 is an extremely 
useful component in a microcomputer system. A 
particular advantage of the device is that it is capa­
ble of operating in various modes without requir­
inghardware modifications to the system of which 
it is a part. As with any complex subsystem, how­
ever, the 8251 USART must be carefully applied 
so that it can be utilized to full advantage in the 
overall system. It is hoped that this application 
note. will aid in the deSigner in the application of 
the 8251 USART. As a further aid to the applica­
tion of the 8251, the appendix of this document 
includes a list Of design hints based on past experi-
ence with the 8251. ' 

Figure 13.6. Receive Interrupt Service Routine 

2·257 AFNoOO6OOA 



APPLICATIONS 

NO 

Figure 13.7. URUN Command Decode 

2·258 AFN-006OOA 



ApPLICATIONS 

Figure 14. Program Listing 

.* •••• , 

SYSTEM ORIGIN STATEMENT 
j 
•••••• , 

4000 ORG 4000H 

•••••• , 

DATA STORAGE FOR TEST USER 
j 
•••••• , 

4000 BUFIN: DS 100H jINPUT BUFFER 
4100 BUFOUT: DS 100H jOUTPUT BUFFER 
4200 5200 RBLOCK: DB 'R' ,OOH jRECEIVE CONTROL BLOCK 
4202 0040 RBAD: DW BUFIN 
4204 FFOO RRCT: DW OFFH 
4206 0000 RCCT: DW OOH 
4208 1742, "RCRA: DW RCR 
420A 5700 T'BLOCK: DB 'w' ,'OOH ;TRANSMITCONTROL BLOCK 
420C 0041 'rBAD: DW BUFOUT' 
420E FFOO TRCT: DW OFF!! 
4210 0000 TCCT: DW OOH 
4212 2742 TCRA: DW TCR 
4214 4300 GBLOCK: DB 'c' ,OOH 
4216 00 FLAG: DB OOH 

•••••• , 

j. COMPLETION ROUTINES 
j 
•••••• , 

4217 AF RCR: XRA A jCLEAR A 
4218 323B42 STA RCBA jTURN OFF RECEIVE 
421B 323C42 STA RCBA+l 
421E 3A1642 LDA FLAG jGET FLAG 
4221 E60F ANI OFH jCLEAR UPPER FOUR BITS 
4223 321642 STA FLAG jRESTORE FLAG 
4226 C9 RET 
4227 AF TCR: XRA A jCLEAR A 
4228 323942 STA TCBA jTURN OFF TRANSMIT 
422B 323A42 STA TCBA+l 
422E 3A1642 LDA FLAG jGET FLAG 
4231 E6FO ANI OFOH jCLEAR LOWER FOUR BITS 
4233 32,1642 STA FLAG jRESTORE FLAG 
4236 C9 RET ;THEN RETURN 

2·259 



00F5 
00F5 
00F4 
00F4 
0000 
OOFF 
0001 

4237 
4238 
4239 
423B 
423D 

00 
00 
0000 
0000 
FF 

.***** , 

, 
.***** , 

USTAT 
USCMD 
USDAI 
USDAO 
GSTAT 
BSTAT 
CEND 

.***** , 

j 
.***** , 

LCMD: 
TCMD: 
TCBA: 
RCBA: 
MTAB: 

APPLICATIONS 

SYSTEM EQUATES 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

OF5H 
OF5H 
OF4H 
OF4H 
OOH 
OFFH 
01H 

jUSART STATUS ADDRESS 
jUSART CMD ADDRESS 
jUSART DATA INPUT ADDRESS 
jUSART DATA OUTPUT ADDRESS 
JGOOD STATUS 
jBAD STATUS 

SYSTEM DATA TABLE 

DB OOH jCURRENT OPERATING COMMAND 
DB OOH jIF NON ZERO A COMMAND TO BE 
DW OOH jADDRESS OF XMIT CBLOCK 
DW OOH jADDRESS OF RECEIVE CBLOCK 
DB OFFH jEND CHARACTER TABLE 

2·260 

SENT 



423E 
423F 
4240 
4241 
4242 
4243 
4244 
4245 
4246 
4247 
4248 
4249 
424A 
424B 
424C 
424D 
424E 
424F 
4250 
4251 
4252 
4253 
4254 
4255 
4256 
4257 
4258 
4259 
425A 

23 
23 
5E 
23 
56 
23 
23 
23 
4E 
23 
46 
EB 
09 
EB 
03 
70 
2B 
71 
OB 
2B 
7E 
90 
47 
CO 
2B 
7E 
91 
47 
C9 

.***** , 

j 
.***** , 

LOADA: 

APPLICATIONS 

LOAD ADDRESS ROUTINE 
LOADA IS ENTERED WITH THE ADDRESS OF A CONTROL 
BLOCK IN H,L. ON EXIT D,E CONTAINS THE ADDRESS 
WHICH IS THE TARGET OF THE NEXT DATA TRANSFER (BAD+CCNT) 
AND B HAS BEEN SET TO ZERO IF THE REQUESTED NUMBER OF 
TRANSFERS HAS BEEN ACCOMPLISHED. CCNT IS INCREMENTED 
AFTER THE TARGET ADDRESS HAS BEEN CALCULATED. 

INX H jD,E GETS BUFFER ADDRESS 
INX H 
MOV E,M 
INX H 
MOV D,M jDONE 
INX H jB,C GETS COMPLETED COUNT (CCNT) 
INX H 
INX H 
!-I 0 V C,M 
INx H 
MOV B,M jDONE 
XCHG jD,E GETS BAD+CCNT 
DAD B 
XCHG jDONE 
INX B JCCNT GETS INCREMENTED 
MOV M,B 
DCX H 
MOV 11, C jDONE 
DCX B JDOES OLD CCNT=RCNT? 
DCX H 
MOV A,M 
SUB B 
MOV B,A 
RNZ JNO-RETURN WITH B NOT ZERO 
DCX H 
MOV A,M 
SUB C 
MOV B,A 
RET jRETURN WITH B=O IF RCNT=CCNT 

AFN-006OOA 



425B 5D 
425C 54 
425D 23 
425E 77 
425F 010700 
4262 09 
4263 7E 
4264 23 
4265 66 
4266 6F 
4267 C9 

4268 F5 
4269 C5 
426A D5 
426B E5 
426c DBF5 
426E DBFA 
4270 OF 
4271 OF 
4272 DA8842 
4275 07 
4276 07 
4277 DAD442 
427A 3EFC 
427C D3F 3 
427E E1 
427F D1 
4280 C 1 
4281 3E20 
4283 D3FD 
4286 FB 
4287 C9 

.***** , 

j 
.***** , 

CLEAN: 

.***** , 

, 
.***** , 

APPLICATIONS 

CLEAN-UP ROUTINE 
CLEAN IS ENTERED WITH THE ADDRESS OF A CONTROL 
BLOCK IN H,L AND A NEW STATUS TO BE 
ENTERED INTO IT IN A. ON EXIT THE ADDRESS OF THE 
CONTROL BLOCK IS IN D,E; THE STATUS OF THE BLOCK 
HAS BEEN UPDATED; AND THE ADDRESS OF THE COMPLETION 
ROUTINE IS IN H,L. 

BOV E,L jSAVE THE ADRESS OF THE COMMAND 
MOV D,H 
INX H jPOINT AT STATUS 
MOV M,A JSET STATUS EQUAL TO A 
LXI B,7 JSET INDEX TO SEVEN 
DAD B jPOINT AT COMPLETION ADDRESS 
MOV A,M jGET LOWER ADDRESS 
INX H jPOINT AT UPPER ADDRESS 
MOV H,M j H GETS HIGH ADDRESS BYTE 
MOV L,A jL GETS LOW ADDRESS BYTE 
RET 

INTERUPT VECTOR ROUTINE 
VECTOR SAVES THE STATUS OF THE RUNNING PROGRAM 
THEN READS THE STATUS OF THE USART TO DETERMINE 
IF A RECEIVE OR TRANSMIT INTERUPT OCCURRED. 

BLOCK 

VECTOR THEN CALLS THE APPROPRIATE SERVICE ROUTINE. 
IF NEITHER .INTERUPTS OCCURRED THEN VECTOR RESTORES 
THE STATUS OF THE RUNNING PROGAM. THE SERVICE 
ROUTINES USE THE EXIT CODE, LABLED VOUT, TO EFFECT 
THEIR EXIT FROM INTERUPT MODE. 

VECTOR: PUSH PSW jPUSH STATUS INTO THE STACK 

VOUT: 

PUSH B 
PUSH D 
PUSH H 
IN 
IN 
RRC 
RRC 
JC 
RLC 
RLC 
JC 
MVI 
OUT 
POP 
POP 
POP 
MVI 
OUT 
EI 
RET 

USTAT 
OFAH 

RISR 

TISR 
A,OFCH 
OF3H 
H 
D 
B 
A,20H 
OFDH 

;GET USART ADDRESS 
jMDS-GET MONITOR CARD INT. STATUS 
jROTATE TWO PLACES 
JSO THAT CARRY=RXRDY 
jIF RXRDY GO TO SERVICE ROUTINE 
jIF NOT ROTATE BACK 
jLEAVING TXRDY IN CARRY 
jIF TXRDY THEN GO TO SERVICE ROUTINE 
jMDS-CLEAR OTHER LEVEL THREE INTERUPTS 
jMDS 
jELSE EXIT FROM INTERUPT MODE 

jMDS-RESTORE CURRENT LEVEL 
jMDS 
jENABLE INTERUPTS 

2·262 AFN-006OOA 



4288 2A3B42 
428B 3E82 
428D D3F3 
428F 2C 
4290 2D 
4291 C29942 
4294 24 
4295 25 
4296 CA7E42 
4299 CD3E42 
429C DBF4 
429E 12 
429F 4F 
42AO DBF5 
42A2 E638 
42A4 C2B942 
42A7 04 
42A8 05 
42A9 C2BE42 
42AC 3EOO 
42AE 217E42 
42B 1 E5 
42B2 2A3B42 
42B5 CD5B42 
42B8 E9 

42B9 3EFF 
42BB C3AE42 
42BE 213D42 
42C 1 7E 
42C2 FEFF 
42C4 CA7E42 
42C7 B9 
42C8 CACF42 
42CB 23 
42CC C3C142 
42CF 3E01 
42D1 C3AE42 

•••••• , 

APPLICATIONS 

RECEIVE INTERUPT SERVICE ROUTINE; 
RISR. PROCESSES A RECEIVE INTERUPT 
AT THE END OF RECEIVE THE USER SUPPLIED 
COMPLETION ROUTINE IS CALLED AND THEN AN 
EXIT IS TAKEN THROUGH VOUT OF THE 

; VECTOR 
•••••• , 

RISR: 

RISRB: 

RISRA: 

RISRE: 

EXCHAR: 
EXA: 

PEND: 

LHLD 
MVI 
OUT 
INll 
DCR 
JNZ 
INR 
DCR 
JZ 
CALL 
IN 
STAX 
MOV 
IN 
ANI 
JNZ 
INR 
DCR 
JNZ 
MVI 
LXI 
PUSH 
LHLD 
CALL 
PCHL 

MVI 
JMP 
LXI 
MOV 
CPI 
JZ 
CMP 
JZ 
INX 
JMP 
MVI 
JMP 

RCBA 
A,82H 
OF3H 
L 
L 
RISRB 
H 
H 
VOUT 
LOADA 
USDAI 
D 
C,A 
USTAT 
3BH 
RISRE 
B 
B 
EXCHAR 
A,GSTAT 
H,VOUT 
H 
RCBA 
CLEAN 

A,BSTAT 
RISRA 
H,MTAB 
A,M 
OFFH 
VOUT 
C 
PEND 
H. 
EXA 
A,CEND 
RISRA 

;MDS-CLEAR RECEIVE INTERUPT 
;MDS 

;READY-SET UP ADDRESS 
;GET INPUT DATA 
;AND PUT IN THE BUFFER 
;SAVE INPUT DATA IN C 
;GET STATUS AGAIN 
;MASK FOR ERROR FIELD 
;NOT ZERO-TAKE ERROR EXIT 
;B WAS 00 IF DONE 

;1'10T DONE-EXIT 
;A GETS GOOD STATUS 
;GET RETURN ADDRESS 
;AND PUSH IT INTO THE STACK 
;POINT H,L AT THE CMD BLOCK 
;CALL CLEANUP ROUTINE 
;EFFECTIVELY CALLS COMPLETION ROUTINE 
;RETURN IS TO VOUT BECAUSE OF PUSH H 
;A GETS BAD STATUS 
;OTHERWISE EXIT IS NORMAL 
;TEST CHARACTER AGAINST EXIT TABLE 

;END OF TABLE 

;MATCH-TERMINATE READ 

2~263· 



42D4 3A3B42 
42D7 B7 
42DB C40443 
42DB 3EBl 
42DD D3F3 
42DF 2A3942 
42E2 2C 
42E3 2D 
42E4 C2EC42 
42E7 24 
42EB 25 
42E9 CA7E42 
42EC CD3E42 
42EF 1 A 
42FO D3F4 
42F2 04 
42F3 05 
42F4 C27E42 
42F7 217E42 
42FA E5 
42FB 3EOO 
42FD 2A3942 
4300 CD5B42 
4303 E9 

4304 FEOl 
4306 CA2443 
4309 FE02 
430B CA1443 
430E FE03 
4310 CA1C43 
4313 C9 
4314 3A3742 
4317 F604 
4319 323742 
431C 3A3742 
431F F610 
4321 D3F5 
4323 C9 
4324 3A3742 
4327 E6FB 
4329 323742 
432C C32143 

•••••• , 

; 
•••••• , 

TISR: 

TISRA: 

TUTE: 

TUTE2: 

TUTE3: 

TUTE4: 

TUTEl : 

APPLICATIONS 

TRANSMIT INTERUPT SERVICE ROUTINE 
TISR PROCCESSES TRANSMITTER INTERUPTS 
WHEN THE END OF A TRANSMISSION IS 
DETECTED THE USER SUPPLIED COMPLETION 
ROUTINE IS CALLED AND THEN AN EXIT IS 
TAKEN THROUGH VOUT OF VECTOR 

LDA 
ORA 
CNZ 
MVI 
OUT 
LHLD 
INR 
DCR 
JNZ 
INR 
DCR 
JZ 
CALL 
LDAX 
OUT 
INR 
DCR 
JNZ. 
LXI 
PUSH 
MVI 
LHLD 
CALL 
PCHL 

C PI 
JZ 
CPI 
JZ 
CPI 
JZ 
RET 
LDA 
ORI 
STA 
LDA 
ORI 
OUT 
RET 
LDA 
ANI 
STA 
JMP 

TCMD 
A 
TUTE 
A,OB1H 
OF3H 
TCBA 
L 
L 
TISRA 
H 
H 
VOUT 
LOADA 
D 
USDAO 
B 
B 
VOUT 
H,VOUT 
H 
A,GSTAT 
TCBA 
CLEAN 

01 
TUTEl 
02 
TUTE2 
03 
TUTE3 

LCMD 
04 
LCMD 
LCMD 
10H 
USCMD 

LCMD 
OFBH 
LCMD 
TUTE4 

;GET POTENTIAL COMMAND 
;DESIGNATE ON IT 
;DO UTILITY COMMAND 
;MDS-CLEAR XMIT INTERUPTS 
;MDS 

;MAKE SURE HAVE VALID CONTROL BLOCK 

;GOOD 

;NON VALID BLOCK (H,L=O) 
;SET UP ADDRESS 
;GET DATA FROM BUFFER 
;AND OUTPUT IT 
;B WAS 00 IF DONE 

;NOT DONE-EXIT FROM SERVICE ROUTINE 
;SET UP RETURN ADDRESS 
;AND PUSH IT INTO THE STACK 
;A GETS GOOD STATUS 
;POINT H,L AT COMMAND BLOCK 
;CALL CLEANUP ROUTINE 
;CALL COMPLETION ROUTINE 
;RETURN WILL BE TO VOUT 
;RECEIVER OFF 

;RECEIVER ON 

;CLEAR ERRORS 

2-264 AFN-006OOA 



432F 1A 
4330 FE43 
4332 CA4043 
4335 FE52 
4337 CA5D43 
433A FE57 
433C CA9D43 
433 F C9 
4340 F3 
4341 AF 
4342 D3F5 
4344 D3F5 
4346 D3F5 
4348 3E 40 
434A D3F5 
434C 3E5E 

434E D3F5 
4350 AF 
4351 213942 
4354 77 
4355 23 
4356 77 
4357 23 
4358 77 
4359 23 
435A 77 
435 B FB 
435 C C9 

435D 213B42 
4360 7E 
4361 B7 
4362 C26B43 
4365 23 
4366 7E 
4367 B7 
4368 CA7743 
436B.3EFE 
436D 217643 
4370 E5 
4371 EB 
4372 CD5B42 
4375 E9 
4376 C9 

4377 EB 
4378 223B42 
437B 3A3742 
437E F616 
4380 323742 
4383 OF 

APPLICATIONS 

USART COMMAND BLOCK INTERPRETER 
USBUN IS CALLED BY USER ~ITH THE ADDRESS 
OF THE COMMAND BLOCK IN H,L. USRUN EXAMINES 
THE BLOCK AND INTIALIZES THE REQUESTED OPERATION 

i 
.1111111111 , 

USRUN: LDAX 
CPI 
JZ 
CPI 
JZ 
CPI 
JZ 
RET 

UCLEAR: DI 
XRA 
OUT 
OUT 
OUT 
MVI 
OUT 
MVI 

OUT 
XRA 
LXI 
MOV 
INX 
MOV 
INX 
MOV 
INX 
MOV 
EI 
RET 

UREAD: LXI 
MOV 
ORA 
JNZ 
INX 
MOV 
ORA 
JZ 

UROUT: MVI 
LXI 
PUSH 
XCHG 
CALL 
PCHL 

URDB: RET 

URDA: XCHG 
SHLD 
LDA 
ORI 
STA 
RRC 

D 
'c' 
OCLEAR 
'R' 
UREAD 
'w' 
UWRITE 

A 
USCMD 
USCMD 
USCMD 
A,40H 
USCMD 
A,05EH 

USCMD 
A 
H,TCBA 
~l, A 
H 
M,A 
H 
M,A 
If 
M,A 

H,RCBA 
A,M 
A 
UROUT 
H 
A,M 
A 
URDA 
A,OFEH 
H,URDB 
H 

CLEAN 

RCBA 
LCMD 
16H 
LCMD 

iGET THE CMD FROM THE BLOCK 
iIS IT A CLEAR COMMAND? 
iYES GO TO CLEAR ROUTINE 
iIS IT A READ COMMAND? 
iYES-GO TO READ ROUTINE 
iIS IT A WRITE COMMAND? 
iGO TO WRITE ROUTINE 
iNOT A GOOD COMMAND-RETURN 
iDISABLE INTERUPTS 
iCLEAR A 
iOUTPUT THREE TIMES TO ENSURE 
iTHAT THE USART IS IN A KNOWN STATE 

iCODE TO RESET USART 
iOOTPUT ON CMD CHANNEL 
iCE IMPLIES ASYN MODE (X16) 

8 DATA BITS 
ODD PARITY 
1 STOP BIT 

iOUTPUT ON CMD CHANNEL 
iCLEAR A, SET ZERO 
iCLEAR TCBA AND RCBA 

jENABLE INTERUPTS 
iAND RETURN TO USER 

i 
iCHECK READ IDLE 

jREAD IS IDLE-PROCEDE 
iALREADY RUNNING~ERROR STATUS 
iSET UP RETURN ADDRESS 
iPUSH IT INTO STACK 
iH GETS COMMAND BLOCK ADDRESS 
iCALL CLEANUP ROUTINE 
iEFFECTIVELY CALLS END ROUTINE 
iRETURN TO USER 

iH GETS COMMAND BLOCK ADDRESS 
iRCBA GETS COMMAND BLOCK ADDRESS 
jGET LAST COMMAND 
jSET RXE AND DTR AND RESET ERRORS 
jANDRETURN TO MEMORY 
jSET CARRY EQUAL TO TXE 

2·265 AFN-OOeOOA 



AP·PLICATIONS 

4384 D28C43 JNC URDC 
4387 3E02 MVI A,2 
4389 323842 STA TCMD 
438c 07 URDC: RLC 
438D D3F5 OUT USCMD jOUTPUT CMD 
438F DBF4 IN USDAI jCLEAR USART OF LEFT OVER CHARACTERS 
4391 DBF4 IN USDAI 
4393 3E82 MVI A,82H jMDS-CLEAR RECEIVE INTERUPT 
4395 D3F3 OUT OF3H jMDS 
4397 3EF6 MVI A,OF6H jMDS-ENABLE LEVEL THREE 
4399 D3FC OUT OFCH jMDS 
439B FB EI jENABLE INTERUPTS 
439C C9 RET jRETURN TO USER 

439D 213942 UWRITE: LXI H,TCBA jCHECK WRITE IDLE 
43AO 7E MOV A,M 
43A1 B7 ORA A 
43A2 C26B43 JNZ UROUT jBUSY-EXIT 
43A5 23 INX H 
43A6 7E MOV A,M 
43A7 C26B43 JNZ UROUT jBUSY-EXIT 
43AA EB XCHG jOK-H GETS COI~MAND BLOCK ADDRESS 
43AB 223942 SHLD TCBA jTCBA GETS COMMAND BLOCK ADDRESS 
43AE 3A3742 LDA LCMD jGET LAST COMMAND 
43B1 F623 ORI 023H ;SET RTS,DTR, AND TXEN 
43B3 323742 STA LCMD 
43B6 D3F5 OUT USCMD 
43B8 3EF6 MVI A,OF6H jMDS-ENABLE LEVEL THREE INTERUPTS 
43BA D3FC OUT OFCH jMDS 
43BC FB EI jENABLE SYSTEM INTERUPTS 
43BD C9 RET jAND RETURN 

2·266 AFN-006OOA 



APPliCATIONS 

••••• 
USER IS A TEST PROGRAM WH:ICH EXERCISES USRUN 

.Ii ••• 

43BE 3EC3 USER: MVI A,OC3H ;MDS-SET INTERUPT VECTOR 
43CO 321800 STA 018H 
43C3 216842 LXI H,VECTOR 
43C6 221900 ·SHLD 019H 
43C9 3E43 MVI A, 'c' ;SET GENERAL BLOCK TO A 'c' 
43CB 111442 LXI D,GBLOCK 
43CE 12 STAX D 
43CF CD2F43 CALL USRUN 
43D2 210040 LXI H,BUFIN ;CLEAR INPUT BUFFER 
43D5 AF XRA A 
43D6 77 MOV M,A 
43D7 2C INR L 
43D8 C2D643 JNZ $-2 
43DB 210041 LXI H,BUFOUT ;INITIALIZE OUTPUT BUFFER 
43DE 75 MOV M,L 
43DF 2C INR L 
43EO C2DE43 JNZ $-2 
43E3 65 MOV H,L ;REINTIALIZE CONTROL BLOCKS 
43E4 2E52 MVI L, 'R' 
43E6 220042 SHLD RBLOCK 
43E9 2E57 MVI L, 'w' 
43EB 220A42 SHLD TBLOCK 
43EE 6C MOV L, H· 
43EF 220642 SHLD RCCT 
43F2 221042 SHLD TCCT 
43F5 110042 LXI D,RBLOCK ;START READ 
43F8 CD2F43 CALL USRUN 
43FB 110A42 LXI D,TBLOCK ;START WRITE 
43FE CD2F43 CALL USRUN 
4401 3EFF MVI A,OFFH ;LOOP WAITING COMPLETION 
4403 32.1642 STA FLAG ;FLAG WILL BE SET BY COMPLETION ROUTINES 
4406 3A1642 LDA FLAG 
4409 B7 ORA A 
440A C20644 JNZ $-4 
440D 210040 LXI H,BUFIN ;TEST INPUT BUFFER=OUTPUT BUFFER 
4410 7E COMLP: MOV A,M 
4411 24 INR H 
4412 BE CMP M 
4413 C21E44 JNZ COMER 
4416 25 DCR H 
4417 2C INR L 
4418 C21044 JNZ COMLP 
441B C3BE43 JMP USER ;GOOD COMPARE-REPEAT TEST 
441E C7 COMER: RST 0 ;ERROR-R~TURN TO MONITOR 

0000 END 

"'1' 2-267 



APPLICATIONS 

BSTAT OOFF BUFIN 4000 BUFOU 4100 CEND 0001 
CLEAN 425B COMER 441E COMLP 4410 EXA 42Cl 
EXCHA 42BE FLAG 4216 GBLOC 4214 GSTAT 0000 
LCMD 4237 LOADA 423E MTAB 423D PEND 42CF 
RBAD 4202 RBLOC 4200 RCBA 423B RCCT 4206 
RCR 4217 RCRA 4208 RISR 4288 RISRA 42AE 
R ISRB 4299 RISRE 42B9 RRCT 4204 TBAD 420C 
TBLOC 420A TCBA 4239 TCCT 4210 TCMD 4238 
TCR 4227 TCRA 4212 TISR 42D4 TISRA 42EC 
TRCT 420E TUTE 4304 TUTEl 4324 TUTE2 4314 
TUTE3 431C TUTE4 4321 UCLEA 4340 URDA 4377 
URDB 4376 URDC 438C UREAD 435D UROUT 436B 
USCMD OOF5 USDAI OOF4 USDAO OOF4 USER 43BE 
U SRUN 432F USTAT 00F5 UWRIT 439D VECTO 4268 
VOUT 427E 

2-268 



APPLICATIONS 

APPENDIX A 

8251 DESIGN HINTS 

I. Output of a command to the USART destroys 
the integrity of a transmission in progress if 
timed incorrectly. 

Sending a command into the USART will over­
write any character which is stored in the buffer 
waiting for transfer to the parallel-to-serial con­
verter in the device. This can be avoided by 
waiting for TxRDY to be asserted before send­
ing a command if transmission is taking place. 
Due to the internal structure of the USART, it is 
also possible to disturb the transmission if a 
command is sent while a SYN character is being 
generated by the device. (The USART generates 
a SYN if the software fails to respond to 
TxRDY.) If this occurrence is possible in a sys­
tem, commands should be transferred only when 
a positive-going edge is detected on the TxRDY 
line. 

2. RxE only acts as a mask to RxRDY; it does not 
control the operation of the receiver. 

When the receiver is enabled, it is possible for it 
to already contain one or two characters. These 
characters should be read and discarded when 
the RxE bit is first set. Because of these extrane­
ous characters the proper sequence for gaining 
synchronization is as follows: 

1. Disable interrupts 

2. Issue a command to enter hunt mode, clear 
errors, and enable the receiver (EH,ER,RxE= 
I) 

3. Read USART data (it is not necessary to 
check status) 

4. Enable interrupts 

The first RxRDY that occurs after the above 
sequence will indicate that the SYN character or 

2-269 

characters have been detected and the next char­
acter has been assembled and is ready to be read. 

3. Loss of CTS or dropping TxEnable will immedi~ 
.. ately clamp the serial output line. 

. TxEnable and RTS should remain asserted until 
the transmission is complete. Note that this im­
plies that not only has the USART completed 
the transfer of all bits of the last character, but 
also that they have cleared the modem. A delay 
of 1 msec following a proper occurrence of 
TxEmpty is usually sufficient (see item 4). An 
additional problem can occur in the synchro­
nous mode because the loss of TxEnable clamps 
the data in at a SPACE instead of the normal 
MARK. This problem, which does not occur in 
the asynchronous mode, can be corrected by an 
external gate combining RTS and the serial out­
put data. 

4. Extraneous transitions can occur on TxEmpty 
while data (including USART generated SYNs) 
is transferred to the parallel-to-serial converter. 

This situation can be avoided by ensuring that 
TxEmpty occurs during several consecutive 
status reads before assuming that the transmitter 
is truly in the empty state. 

5. A BREAK (Le., long space) detected by the 
receiver results in a string of characters which 
have framing errors. 

If reception is to be continued after a BREAK, 
care must be taken to ensure that valid data is 
being received; special care must be taken with 
the last character perceived during a BREAK, 
since its value, including any framing error asso­
ciated with it, is indeterminate. 

AFN.Q06OOA 



2·270 



Using the 8273 Contents 

SOLC/HOLC INTRODUCTION 2-272 

Protocol Controller SDLC/HDLC OVERVIEW 2-272 

BASIC 8273 OPERATION 2-275 

HARDWARE ASPECTS OF THE 8273 2-275 

CPU Interface 
Modem Interface' 

SOFTWARE ASPECTS OF THE 8273 2-281 

Command Phase Software 
Execution Phase Software 
Result Phase Software 

8273 COMMAND DESCRIPTION 2-284 

Initialization/Configuration Commands 
Operating Mode Register 
Serial I/O Mode Register 
Data Transfer Mode Register 
One Bit Delay Register 

Receive Commands 
General Receive 
Selective Receive 
Selective Loop Receive 
Receive Disable 

Transmit Commands 
Transmit Frame 
Loop Transmit 
Transmit Transparent 

Abort Commands 
Reset Commands 
Modem Control Commands 

HDLC CONSIDERATIONS 2-289 

LOOP CONFIGURATION 2-290 

APPLICATION EXAMPLE 2-294 

CONCLUSION 2-299 

APPENDIX 2-300 

" 

2-271 AFN-00611A 



APPLICATIONS 

INTRODUCTION 

The Intel 8273 is a Oata Communications Protocol Con­
troller designed for use in systems utilizing either SOLC 
or HOLC (Synchronous or High-Level Oata Link Control) 
protocols. In addition to the usual features such as full 
duplex operation, automatic Frame Check Sequence 
generation and checking, automatic zero bit insertion 
and deletion, and TTL compatibility found on other 
single component SOLC controllers; the 8273 features a 
frame level command structure, a digital phase locked 
loop, SOLC loop operation, and diagnostics. 

The frame level command structure is made possible by 
the 8273's unique internal dual processor architecture. 
A high-speed bit processor handles the serial data 
manipulations and character recognition. A byte pro­
cessor implements the frame level commands. These 
dual processors allow the 8273 to control the necessary 
byte-by-byte operation of the data channel with a 
minimum of CPU (Central Processing Unit) intervention. 
For the user this means the CPU has time to take on 
additional tasks. Tt:!e digital phase locked loop (OPLL) 
provides a means of clock recovery from the received 
data stream on-chip. This feature, along with the frame 
level commands, makes SOLC loop operation extremely 
simple and flexible. Oiagnostics in the form of both data 
and clock loopback are available to, simp.lify board 
debug and link testing. The 8273 is a dedicated function 
peripheral in the MCS-80/85 Microcomputer family and 
as such, it interfaces to the 8080/8085 system with a 
minimum of external hardware. 

This application note explains the 8273 as a component 
and shows its use in a generalized loop configuration 
and a typical 8085 system. The 8085 system was used to 
verify the SOLC operation of the 8273 on an actual ISM 
SOLC data communications link. 

The first section of this application note presents an 
overview of the SOLC/HOLC protocols. It is fairly tutorial 
in nature and may be skipped by the more knowledge­
able reader. The second section describes the 8273 from 
a functional standpoint with explanation of the block 
diagram. The software aspects of the 8273, including 
command examples, are discussed in the third section. 
The fourth and fifth sections discuss a loop SDLC con­
figuration and the 8085 system respectively. 

SDLC/HDLC OVERVIEW 

SDLC is a protocol for managing the flow of information 
on a data communications link. In other words, SOLC 
can be thought of as an envelope - addressed, 
stamped, and containing an s.a.s.e. - in which informa­
tion is transferred from location to location on a data 
communications link. (Please note that while SOLC is 
dis,cussed specifically, all comments also apply to 
HDLGexcept where noted.) The link may be either point­
to-point or multi-point, with the pOint-to-point configura­
tion being either switched or nonswitched. The informa­
tion flow may use either full or half duplex exchanges. 
With this many configuratiqns supported, itis difficult 
to find a synchronous data communications application 
where SOI,.C would not be appropriate. 

Aside from supporting a large number of configurations, 
SOLC offers the potential of a 2 x Increase in through­
put over the presently most prevalent protocol: Si-Sync. 
This performance increase is primarilyduetotwocharRc­
teristics of SOLC: full duplex operation and the implied 
acknowledgement of transferred information. The per­
formance increase due to full duplex operation is fairly 
obvious since, in SOLC, both stations can communicate 
simultaneously. Si-Sync supports only half-duplex (two­
way alternate) communication. The increase from im­
plied acknowledgement arises from the fact that a sta­
tion using SDLC may acknowledge previously received 
information while transmitting different information. Up' 
to 7 messages may be outstanding before an acknowl­
edgement Is required. These messages may be acknowl­
edged as a block rather than singly. In Si-Sync, acknowl­
edgements are unique messages that may not 'be 
included with messages containing information, and, 
each information message requires a separate acknowl­
edgement. Thus the line efficiency of SOLC is superior 
to Si-Sync. On a higher level, the potential of a 2 x 
increase in performance means lower cost per unit of 
information transferred. Notice that the increase is not 
due to higher data link speeds (SOLC,is actually speed 
independent), but simply through better line utilization. 

Getting down to the more salient characteristics of 
SOLC; the basic unit of information on an SOLC link is 
that of the frame. The frame format is shown in Figure 1. 
Five fields comprise each frame: flag, address,control, 
information, and frame check sequence. The flag fields 
(F) form the boundary of the frame and all other fields 
are positionally related to one of the two flags. All 
frames start with an opening flag and end with a closing 
flag. Flags are used for frame synchronization. They 
also may serve as time-fill characters between frames. 
(There are no intraframe time-fill characters in SOLC as 
there are in Si-Sync.) The opening flag serves as a refer­
en'ce point for the address (A) and control (C) fields. The 
frame check sequence (FCS) is referenced from the 
closing flag. All flags have the binary configuration 
01111110 (7EH). 

SOLC is a bit-oriented protocol, that is, the receiving 
station must be able to recognize a flag (or any other 
special character) at any time, not just on an 8-bit 
boundary. This, of course, implies tha,t a frame may be 
N-bits in length. (The vast majority of applications tend 
to use frames which are multiples of 8 bits long, 
however.) 

FRAME 
CHECK 

OPENING ADDRESS CONTROL INFORMATION SEQUENCE CLOSING 
FLAG FIELD (AI FIELD (e) FIELD III (FeS) FI,.AO 

Figure 1. SDLe Frame Format 

2-272 AFN-00611A 



A~~LI~AIIUN;:) 

The facUhat the flag has a unique binary pattern would 
seem tollmit the contents of the frame s.lnce a flag pat­
tern might imldvertently occur within the trame. This 
would cause the receiver te;> think the closing flag was 
received,invalidating the frame. SOLC handles this 
situation through a technique called zero bit insertion. 
This techniques specifies that within a frame a binary 0 
be inserted by the transmitter after any succession of 
five cClI'ltiguous binary 1 s. Thus, no pattern of 01111110 
is ev,er transmitted by chance. On the receiving end, 
after the opening flag is detected, the receiver removes 
any 0 following 5 consecutive 1s. The inserted and 
deleted ,Os are not counted for error determination. 

Before discussing the address field, an explanation of 
the roles of an SOLCstation is in order. SOLC specifies 
two types of stations: primary and secondary. The 
primary is the cohtrol station for the data link and thus 
has responsibility of the overall network. There is only 
one predetermined primary station,all other stations on 
the link assume the secondary station rofe. In general, a 
secondary station speaks only when spoken to. In other 
words, the primary polls the secondaries for responses. 
In order to specify a specific secondary, each secondary 
is assigned a unique 8-bit address. It is this address that 
15 used lri the frame's address field. . 

When the primary transmits a frame to a specific sec-, 
ondary, the address field contains the secondary's ad­
dress. When responding, the secondary uses its own 
add.ress in the.address field. The primary is never iden­
tified. This ensures that the primary knows which of 
many secondaries is responding since the primary may 
have many messages outstanding at various secondary 
stations. In addition to the specific secondary address, 
an address common to all secondaries may be used for 
various purposes. (An all 1 s address field is usually used 
for this "All Parties" address.) Eventhoughthe primary 
may use this common address, the secondaries are ex· . 
pected to respond witli their unique address. The 
address field is always the first 8 bits following' the 
opening flag. ' 

The 8 bits following the addreSS field form the control 
field. The control field embodies the link-level control of 
SOLC. A detailedexplariation of the commands and 
responses contalned.in this field is beyond the scope of 
this application note. Suffice it to say that It is in the 
cOntrol field that the irriplied acknowledgement is car· 
ried out through the use of frame sequence numbers. 
None of the currently available SOLC single chip con· 
trollers utilize the control field. They simply pass it to 
the processor for analysis. Aeaders wishing a more 
detailed explanation of the control field, or of SOLC in 
general, should consult the IBM documents referenced 
on the front page overleaf. 

In some types of frames, an information field follows 
the control field. Frames used strictly for link manage­
ment mayor may not contain one. When an information 
field is used, it is unrestricted in both content and 
length. This code' transparency is made possible 
because of the zero bit insertion mentioned earlier and 
the bit·oriented nature of SOLC. Even main memory core 
dumps may be transmitted because of this capability. 
This feature is unique to bit-oriented protocols. Like the 

control field, the information field is not interpreted by 
the SOLC device; it. is merely transferred to and from 
memory to be operated on and interpreted by the 
processor. 

The final fi·eld is the frame check sequence (FCS). The 
FCS is the 16 bits immediately preceding the closing 
flag. This 16·bit field is used for error detection through 
a Cyclic Aedundancy Checkword (CAC). The 16-bit 
transmitted CAC, is the complement of the remainder 
'obtained when the A, C, and I fields are "divided" by a 
generating polynomial. The. receiver accumulates the A, 
C, and I fields and also the FCS into its internal CAC 
register. At the closing flag, this register contains ,one 
particular number for an error-Iree reception. If this 
number is not obtained, the frame was received in error 
and should be discarded. Discarding the frame causes 
the station to not update its frame sequence numbering. 
This results in a retransmission after the station sends 
an acknowledgement from previous frames. [Unlike all 
other fields,the FCS is transmitted MSB (Most Signifi­
cant Bit) first. The A, C, and I fields are transmitted LSB 
(Least Significant Bit) first.] The details of how the FCS 
is generated and checked is beyond the scope of this 
application note and since all single component SOLC 
controllers handle this function automaticlilly, it is 
usually sufficient to know only that an error has or has 
riot occurred. The IBM documents contain more detailed 
information for those readers desiring/t. 

The closing flag terminates the frame. When the closing 
flag is received, the receiver knows that the preceding 
16. bits constitute the FCS and that any bits between the 
control field and the FCS constitute the information 
field. 

SOLC does not support an interframe time-fill character 
such as the SYN character in Bi-Sync. If an· unusual con­
dition occurs while transmitting, such .as data is not 
available in time from memory or CTS (Clear-to·Send) is 
lost from the modem, the transmitter aborts the frame 
by sending an Abort character to notify the receiver to 
invalidate the frame. The Abort character consists of 
eight contiguous 1 s sent without zero bit insertion. In­
traframe time-fill consists of either flags, Abort charac-
ters, or any combination of the two. . 

While the Abort character protects the receiver from 
transmitted errors, errors Introduced by the transmis­
sion medium are discovered at the receiver through the 
FCS check and a check for invalid frames. Invalid 
frames are those.which are not bounded by flags or are 
too short, that is, less than 32 bits between flags. All In­
valid frames are ignored by the receiver. 

Although SOLC is a synchronous protocol, it provides 
an optional feature that allows its use on baSically asyn­
chronous data links - NAZI (Non-Aeturn·to-Zero­
Inverted) coding. NAZI coding specifies that the signal 
condition does not change for transmitting a binary 1, 
while a binary 0 causes a change of state. Figure 2 illus­
trates NAZI coding compared to the normal NRZ. NAZI 
coding guarantees that an active line will have a transi· 
tion at least every 5-bit times; long strings of zeroes 
cause a transition every bit time, while long strings of 1 s 
are broken up by zero bit Insertion. Since asynchronous 

2-273 AFN.Q0611A 



APPLICATIONS 

operation requires that the receiver sampling clock be 
derived from the received data, NRZI encoding plus zero 
bit insertion make the design of clock recovery circuitry 
easier. 

All of the previous discussion has applied to SOLC on 
either point·to·point or multi·point data networks, SOLC 
(but not HOLC) also includes specification for a loop 
configuration. Figure 3 compares these three configura· 
tions. IBM uses this loop configuration in Its 3650 Retail 
Store System. It consists of a single loop controller sta· 
tion with one or more down·loop secondary stations. 
Communications on a loop rely on the secondary sta· 
tions repeating a received message down loop with a 
delay of one bit time. The reason for the one bit delay 
will be evident shortly. 

DATA 1 1 

BIT SAMPLE Ill!!!!!!! 
NRZ 

NRZI 

Figure 2. NRZI vs NRZ Encoding 

POINT·TO-POINT 

MULTI·POINT 

Loop operation defines a new special character: the 
EOP (End·of·PolI) character which consists of a 0 fol· 
lowed by 7 contiguous, non·zero bit inserted, ones. After 
the loop controller transmits a message, it idles the line 
(sends all 1 s). The final zero of the closing flag plus the 
first 7 1s of the idle form an EOP character. While 
repeating, the secondaries monitor their incoming line 
for an EOP character. When an EOP is detected, the 
secondary checks to see if it has a message to transmit. 
If it does, it changes the seventh 1 to a 0 (the one bit 
delay allows time for this) and repeats the modified EOP 
(now alias flag). After this flag is transmitted, the sec· 
ondary terminates its repeater function and inserts its 
message (with multiple preceding flags if necessary). 
After the closing flag, the secondary resumes its one bit 
delay repeater function. Notice that the final zero of the 
secondary's closing flag plus the repeated 1s from the 
controller form an EOP for the next down·loop sec· 
ondary, allowing it to insert a message if it desires. 

One might wonder if the secondary missed any meso 
sages from the controller while it was inserting its own 
message. It does not. Loop operation is basically half· 
duplex. The controller waits until it receives an EOP 
before it transmits its next message. The controller's 
reception of the EOP signifies that the original message 
has propagated around the loop followed by any meso 
sages inserted by the secondaries. Notice that second· 
aries cannot communicate with one another directly, all 
secondary·to·secondary communication takes place by 
way of the controller. 

LOOP 

Figure 3. Network Configurations 

2·274 AFN-00611A 



APPLICATIONS 

Loop protocol does not utilize the normal, Aport charac­
ter. Instead, an ,abort is accomplished by simply trans­
mitting a flag character. Down loop, the receiver sees 
the abort as a frame which is either too short(il the 
abort occurred early in the frame) or one with anFCS 
error. Either results in a discarded frame. For more 
details on loop operation, please refer to the "IBM 
elocuments referenced earlier. 

Another protocol very similar to SOLCiNhich the 8273 
supports is HOLC (High-Level Data Link Control). There 
are only three baslc differences between the tiNo: HOLe 
offers extended address and' control fields, and the 
HLOC Aborlcharacter is 7 contiguous 1s as opposed to 
SOLC's 8 contiguous 1 s. 

Extended addressing, beyond the 256 unique ad,dresses 
possible with SOLC, is provided by using the address 
field's least significant bit as the extended addre,ss 
modifier. The receiver examines this bit to determine if 
the octet should be interpreted as the final address 
octet. As long as the bit is 0, the octet that contains it is 
considered an extended address. The first time the bit is 
a 1, the receiver interprets that octet as the final address 
octet. Thus the address 'field may be extended to any 
number of octets. Extended addressing is illustrated in 
Figure 4a. 

A similar technique is used to extend the control fiel,d 
although the extension is limited to only one extra con­
trol octet. Figure 4b i\.lustrates control field extension. 

Those readers not yet asleep may have noticed th'e simi-' 
larity between the SOLC loop EOP character (aD follow­
ed by 7 1s) and the HOLC Abort (7 1S). This possible in­
compatibility is neatly handled by the HOLC protocol 
not specifying a loop configuration. 

This completes our brief discussion of the SOLC/HOLC 
protocols. Now let us turn to the 8273 in particular and 
discuss its hardware aspects through an explanation of 
the block diagram and generalized system schematics. 

FIRST BtT TRANSMITTED (LSB FIRSn 

A. HOle ADORESS FIELD EXTENSION 

Figure 4a 

C EXTENSION BIT (1 MAX) 

FLAG I A I i C11 C2111 1'2 I FCS11 FCS21 FLAG 

B. HOLe CONTROL FIELD EXTENSION 

Figure 4b 

BASIC 8273 OPERATION 

Ii will be helpful fOr thef6lfowing discus'sions to have 
some ielea of the basic operation' of the 8273. Each 
operation, whether it is a frame transmission, reception 
or port, read, etc., is comprised ,of three phases: the 
Command, Execution, and Result phases. Figure 5 
shows the sequence of these phases. As an illustration 
of this, sequence, let us IQok at the transmit operation. 

Figure 5. 8273 Operational Phases 

When the CPU decides it is time to transmit a frame, the 
Command phase is entered by the CPU issuing a Trans­
mit Frame command to the 8273. It is not sufficient to 
just instruct the 8273 to transmit. The frame level com­
mand structure sometimes requires more information 
such as frame length and address and control field con­
tent, Once this additional information is supplied, the 
Command phase is complete and the Execution phase 
is entered. It is during the Execution phase that the 
actual operation, in this case a frame transmission, 
takes place. The 8273 transmits the opening flag, A and 
C fields,' the specified number of I field bytes, inserts 
the FCS, and Closes with the closing flag. Once the clos­
ing flag is transmitted, the 8273 leaves the Execution 
phase and begins the Result phase. During the Result 
phase the 8273 notifies the CPU of the outcome of the 
command by supplying interrupt results. In this case, 
the results would be either that the frame is compiete or 
that some error condition causes the transmission to be 
aborted. Once the CPU (e'ads all of the results (there is 
only oriefor the Transmit Frame command), the Result 
phase andc6nsequentlytheope'ration, is complete. 
Now that we have a general feeling for the operation of 
the 8273, let us discuss the 8273 in detail. 

HARDWARE ASPECTS OF THE 8273 

The 8273 block diagram is shown in Figure 6. It consists 
of two major interfaces: the CPU module interface and 
the modem Interface. Let's discuss each' interface 
separately. , 

2-27,5 AFN-00611A 



APPLICATIONS 

REGISTERS 

TxllR 

RxllR 

TEST MODE 

D80-7 

TxDRO 

TxDACK 

RxDRQ 

RxDACK 

. 

. 
iiD---+or 
iiiii---+or 
CS---+of 
Ao----I 
Al----1 

COMMAND 

PARAMETER 

STATUS 

RESULT 

DATA 
TRANSFER 

LOGIC 

READI 
WRITEI 

CONTROL 
LOGIC 

RESET-------' 

OCLK--------' 
TxlNT ______ --' 

RxlNT ---------' 

CPU MODULE INTERFACE 

INTERNAL 
DATA BUS 

,---------+ FLAG DETECT 

,---------CD 
,--------CTS 

.-------+RTS 

DATA 
TIMING 
LOGIC 

P-----TxC 

1----+TxD 

P----+RxC 

1-----RxD 

'------- DPLL 

'---------3~CLK 

MODEM INTERFACE 

Figure 6. 8273 Black Diagram 

CPU Interface 

The CPU interface consists of four major blocks: Con­
trol/Read/Write logic (C/R/W), internal registers, data 
transfer logic, and data bus buffers. 

The CPU module utilizes the C/RIW logic to issue com­
mands to the 8273. Once the 8273 receives a command 
and executes it, it returns the results (good/bad comple· 
tion) of the command by way of the C/RIW logic. The 
C/RIW logic is supported by seven registers which are 
addressed via the Ao, A1, RD, and WR Signals, in addi­
tion to CS. The Ao and Al signals are generally derived 
from the two low order bits of the CPU module address 
bus while RD and WR are the normal 110 Read and Write 
signals found on the system control bus. Figure 7 
shows the address of each register using the C/R/W 
logic. The function of each register is defined as 
follows: 

ADDRESS INPUTS CONTROL INPUTS 

A1 Ao CS·RD CS.WR 

0 0 STATUS COMMAND 
0 1 RESULT PARAMETE:R 
1 0 TxllR TEST MODE 
1 1 Rxl/R -

Figure 7. 8273 Register Selection 

2·276 

Command - 8273 operations are initiated by writing 
the appropriate command byte into this register. 

Parameter - Many commands require more informa­
tion than found in the command itself. This addi· 
tional information is provided by way of the paramo 
eter register. 

Immediate Result (Result) - The completion infor­
mation (results) for commands which execute im· 
mediately are provided in this register. 

Transmit Interrupt Result (TxIlR) - Results of 
transmit operations are passed to the CPU in this 
register. 

Receiver Interrl!pt Result (RxIIR) - Receive opera­
tion results are passed to the CPU via this register. 

Status - The general status of the 8273 is provided 
in this register. The Status register supplies the 
handshaking necessary during various phases 6f the 
8273 operation. 

Test Mode - This register provides a software reset 
function for the 8273. 

The commands, parameters, and. bit definition of these 
registers are discussed in the following software sec­
tion. Notice that there are not specific transmit or 
receive data registers. This feature is explained in the 
data transfer logic discussion. 

AFN-00611A 



APPLICATIONS 

The final elements of the C/RIW logic are the interrupt 
lines (RxINT and TxINT). These lines notify the CPU 
module that either the transmitter or the receiver re­
quires service; i.e., results should be read from the 
appropriate interrupt result register or a data'transfer is 
required. The interrupt request remains acti"e until all 
the associated interrupt results have beer! read or the 
data transfer is performed. Though using the interrupt 
l.ines relieves the CPU module of the task of'polling the 
8273 to check if service is needed, the state of each 
interrupt line is reflected by a bit in the Status register 
and non-interrupt driven operation is possible by exam­
ing the contents of these bits periodically. 

The 8273 supports two independent data interfaces 
through the data transfer logic; receive data and trans­
mit data. These interfaces are programmable for either 
DMA or non-DMA data transfers. While the choice of the 
configuration is up to the system designer, it is based 
on the intended maximum data rate of the communica­
tions channel. Figure 8 illustrates the transfer rate of 
data bytes that are acquired by the 8273 based on link 
data rate. Full-duplex data rates above 9600 baud usu­
ally require DMA. Slower speeds mayor may not require 
DMA depending on the task load and interrupt response 
time of the processor. ' 

Figure 9 shows the 8273 in a typiciil DMA environment. 
Notice that a separate DMA controller, in this case the 
Intel 8257, is required. The DMA controller supplies the 
timing and addresses for the data transfers while the 
8273 manages the requesting of transfers and the actual 
counting of the data block lengths. In this case, 
elements of the data transfer interface are: 

TxDRQ: Transmit DMA Request - Asserted by the 
8273, this line requests a DMA transfer from memory 
to the 8273 for transmit. 

TxDACK: Transmit DMA Acknowledge - Returned 
by the 8257 in response to TxDRQ, ,this line notifies 
the 8273 that a request has been granted, and pro­
vides access to the transmitter. data register. 

RxDRQ: Receiver DMA Request - Asserted by the 
8273, it requests a DMA transfer from the 8273 to 
memory for a receive operation. 

TxDACK: Receiver DMA Acknowledge - Returned by 
the 8257, it notifies the 8273 that a receive DMA cycle 
has been granted, and provides access to the 
receiver data register. 

AD: R,ead ~ Supplied by the 8257 to indicate data is 
to be read from the 8273 and placed in memory. 

WR: Write - Supplied by the 8257 to ,indicate data is 
to be written to the 8273 from memory. 

To request a DMA transfer the 8273 raises the appropri­
ate DMA request line; let us assume it is a transmitter 
request (TxDRQ). Once the 8257 obtains control of the 
system bus by way of its HOLD and HLDA (hold 
acknowledge) lines, it notifies the 8273 that TxDRQ has 
been granted by returning TxDACK and WR. The 
TxDACK and WR signals transfer data to the 827,3 for a 
transmit, independent of the 8273 chip select pin (CS). A 
similar sequence of events occurs for receiver requests. 
This "hard select" of data into the transmitter or out of 

the receiver alleviates the need for the normal transmit 
and receive data registers addressed by a combination 
of address lines, CS, and WR or RD. Competitive 
devices that do not have this "hard 'select" feature re­
quire the use,of an external multipiexer to supply the 
correct inputs for register selection during DMA. (Do not 
forget that the SDLC controller sees both the addresses 
and control signals supplied by the DMA controller dur­
ing DMA cycles.) Let us look at typical frame transmit 
and frame receive sequences to better see how the 8273 
truly manages the DMA data transfer. 

Before a frame can be transmitted, the DMA controller is 
supplied, by the CPU, the starting address for the 
desired information field. The 8273 is then commanded 
to transmit a frame. (Just how this is done is covered 
later during our software discussion.) After the com­
mand, but before transmission begins, the 8273 needs a 
little more information (parameters). Four parameters 
are required for the transmit frame command: the ad­
dress field byte, the control field byte, and two bytes 
which are the least significant and most Significant 
bytes of the information field byte length. Once all four 
parameters are loaded, the 8273 makes RTS (Request-to­
Send) active and waits for CTS (Clear-to-Send) to go ac­
tive. Once CTS is active, the 8273 starts the frame trans­
mission, While the 8273 is transmitting the opening flag, 
address field, and control field; it starts making trans­
mitter DMA requests. These requests continue at char­
acter (byte) boundaries until the pre-loaded number of 
bytes of information field have been transmitted. At this 
point the requests stop, the FCS and closing flag are 
transmitted, and the TxlNT line is raised, Signaling the 
CPU that the frame transmission is complete. Notice 
that after the initial command and parameter loading, 
absolutely no CPU intervention was required (since 
DMA is used for data transfers) until the entire frame 
was transmitted. Now let's look at a frame reception. 

SOms 

8m, 

seclbyle 

800,,5 

80,,5 

1K 10K 100K 

BAUD RATE (bps) 

Figure 8. , Byte Transfer Rat,e vs Baud !late 

DRQ1 r'·'-RD 
IDR 

B~S , 

WR 
lOW 

07-00 

~ ~DATABUS 
Figura 9. DMA, Interrupt-Driven System 

2-277 AFN-00611A 



APPLICATIONS 

The receiver operation is very similar. Like the initial 
transmit sequence, the DMA controller is loaded with a 
starting address for a receiver data buffer and the 8273 
is commanded to receive. Unlike the transmitter, there 
are two different receive commands: General Receive, 
where all received frames are transferred to memory, 
arid Selective Receive, where only frames having an ad­
dress field matching one of two preprogrammed 8273 
address fields are transferred to memory. Let's assume 
for now that we want to general receive. After the 
receive command, two parameters are required before 
the receiver becomes active: the least significant and 
most significant bytes of the receiver buffer length. 
Once these bytes are loaded, the receiver is active and 
the CPU may return to other tasks. The next frame 
appearing at the receiver input is transferred to memory 
using receiver DMA requests. When the closing flag is 
received, the 8273 checks the FCS and raises its RxlNT 
line. The CPU can then read the results which ind.icate if 
the frame was error-free or not. (If the received frame 
had been longef than the pre-loaded buffer length, the 
CPU would have been notified of that occurrence earlier 
with a receiver error interrupt. The command description 
section contains a complete list of error conditions.) 
Like the transmit example, after the initial command, 
the CPU is free for other tasks until a frame is com­
pletely received. These examples have illustrated the 
8273's management of both the receiver and transmitter 
DMA channels. 

It is possible to use the DMA data transfer interface in a 
non-DMA interrupt-driven environment. In this case, 4 in­
terrupt levels are used: one each for TxlNT and RxINT, 
and one each for TxDRO and RxDRO. This configuration 
is shown in Figure 10. This configuration offers the 
advantages that no DMA controller is required and data 
requests are still separated from result (completion) re­
quests. The disadvantages of the configuration are that 
4 interrupt levels are required and that the CPU must ac­
tually supply the data transfers. This, of course, reduces 
the maximum data rate compared to the configuration 
based strictly on DMA. This system could use an Intel 
8259 8-level Priority Interrupt Controller to supply a vec­
tored CALL (subroutine) address based on requests on 
its inputs. The 8273 transmitter and receiver make data 
requests by raising the respective DRO line. The CPU is 
interrupted by the 8259 and vectored to a data transfer 
routine. This routine either writes (for transmit) or reads 
(for receive) the 8273 using the respective TxDACK or 
RxDACK line. As in the case above, the DACK lines 
serve as "hard" chip selects into and out of the 8273. 
(TxDACK + WR writes data into the 8273 for transmit. 
RxDACK + RDreads data from the 8273 for receive.) 
The CPU is notified of operation completion and results 
by way of TxlNT and RxlNT lines. USing the 8273, and 
the 8259, in this way, provides a very effective, yet sim­
ple, interrupt-driven interface. 

Figure 11 illustrates a system very similar to that 
described above. This system utilizes the 8273 in a non­
DMA data transfer mode as opposed to the two DMA ap­
proaches shown in Figures 9 and 10_ In the non-DMA 
case, data transfer requests are made on the TxlNT and 
RxlNT lines. The DRO lines are not used. Data transfer 
requests are separated from result requests by a bit in 

the Status register. Thus, in response to an interrupt, 
the CPU reads the Status register and branches to either 
a resu It or a data transfer routi ne based on the status of 
one bit. As before, data transfers are made via using the 
DACK lines as chip selects to the transmitter and 
receiver data registers. 

Figure 10. Interrupt-Based DMA System 

roo
--

'OR 
BUS 

RO 

'OW 
WR 

CS AD Al D7-DO 

~ ~DATABUS 
Figure 11. Non-DMA Interrupl-Drlven System 

Figure 12 illustrates the simplest system of all. This 
system utilizes polling for all data transfers and results. 
Since the interrupt pins are reflected in bits in the 
Status register, the software can read the Status 
register periodically looking for one of these to be set. If 
it finds an INT bit set, the appropriate Result Available 
bit is examined to determine if the "interrupt" is a data 
transfer or completion result. If a data trilnsfer is called 
for, the DACK line is used to enter or read the data from 
the 8273. If the interrupt is a completion result, the ap­
propriate result register is read to determine the good/ 
bad completion of the operation. 

The actual selection of either DMA or non-DMA modes 
is controlled by a command issued during initialization. 
This command is covered in detail during the software 
discussion_ 

2-278 AFN-OOS11A 



APPLICATIONS 

The final block of the CPU module interface is the Data 
Bus Buffer. This block supplies the irl-state, bidirec­
. tional data bus interface to allow communication to and 
from the 8273. 

Modem Interface 

As the name implies, the modem interface is the modem 
side of the 8273. It consists of two major blocks: the 
modem control block and the serial data timing block. 

The modem control block provides both dedicated and 
user-defined modem control functions. All signals sup· 
ported by this interface are active low so that EIA 
inverting drivers (MC1488) and inverting receivers 
(MC1489) may be used to interface to standard modems. 

Port A is a modem control input port. Its representation 
on the data bus is shown in Figure 13. Bits Do and 0, 
have dedicated functions. Do reflects the logical state of 
the CTS (Clear·to·Send) pin. [If CTS is active (low), Do is a 
1.J This signal is used to condition the start of a trans· 
mission. The· 8273 waits until CTS is active before it 
starts transmitting a frame. While transmitting, if CTS 
goes inactive, the frame is aborted and the CPU is inter· 
rupted. When the CPU reads the interrupt result, a CTS 
failure is indicated. 

0, reflects the logical state of the CD (Carrier Detect) 
pin. CD is used to condition the start of a frame recep­
tion. CD must be active in time for a frame's address 
field. If CD is lost (goes inactive) while receiving a frame, 
an interrupt is generated with a CD failure result. CD 
may go inactive between frames. 

Bits 02 thru D4 reflect the logical state of the PA2 thru 
PA4 pins respectively. These inputs are user defined. 
The 8273 does not interrogate or manipulate these bits. 
Bits 05, D6,and D7 are not used and each is read as a 1 
for a Read Port A command. . 

Port B is a modem control output port. Its data bus 
representation is shown in Figure 14. As in Port A, the 
bit values represent the logical condition of the pins. Do 
and 05 are dedicated function outputs. Do represents 
the R'fS (Request-to-Send) pin. RfS is normally used to 
notify the modem that the 8273 wishes to transmit. This 
function is .handled automatically by the 8273. If RfS is 
inactive (pin is high) when the 8273 is commanded to 
transmit, the 8273 makes it active and then waits for 
CTS before transmitting the frame. One byte time after 
the end of the frame, the 8273 returns RTS to its inactive 
state. However, if RTS was active when a transmit com­
mand is issued, the 8273 leaves it active when the frame 
is complete. 

Bit D5 reflects the state of the Flag Detect pin. This pin 
is activated whenever an active receiver sees a flag 
character. This funCtion is useful to activate a timer for 
line activity timeout purposes .. 

Bits D1 thru D4 provide four user-defined outputs. Pins 
PB, thru PB4 reflect the logical state of these bits. The 
8273 does not interrogate or manipulate these bits. D6 
and 0 7 are not used. In addition to being able to output 
to Port B, Port B maybe read using a Read Port B com­
mand. All Modem control output pins are forced high on 

reset. (All commands mentioned in this section are 
covered In detail later.) . 

The final block to be covered is the serial diita timing 
block. This block contains two sections: th.e serial data 
logic and the digital phase locked loop (DPLL). 

Elements of the serial data logic section are the data 
pins, Tx'D (transmit data output) and RxD (receive data 
input), and the respective data clocks, TxC and RxC. The 
transmit and receive data is synchronized by the TxC 
and RiC clocks. Figure 15 shows the timing for these 
signals. The leading edge (negative transition) of TxC 
generates new transmit data and the trailing edge 
(positive transition) of RxC is used to capture the 
receive data. 

It is possible to reconfigure this section under program 
control to perform diagnostic functions; both data and 
clock loopback are available. In data loopback mode, the 
TxD pin is internally routed to the RxD pin: This allows 
simple board checkout since the CPU can send an SDLC 
message to itself. (Note that transmitted data will still 
appear on the TxD pin.) 

NC Ne Ne Ne 

TxlNT ~xINT TxDRQ RxDRQ 

TxOACK RD 
8273 

RIIOACK WR 

07-00 

'OR 
'DW 

_CONTROL 
. BUS 

~~., ... 
Figure 12. Polled System 

Figure 13. Pori A (Input) Bit Definition 

1 I II II II LII_~_. _ ~rl RE:::TD::,:::DOUTPUTS 

PB4 , 

flAG DETECT ' 

Figure 14. Pori B (Output) Bit Definition 

2-279 AFN.0Q611A 



APPLICATIONS 

When data loopback is utilized, the receiver may be 
presented incorrect sample timing (RxC) by the external 
circuitry .. Clock loopback overcomes this problem by 
allowing the internal routing of TxC and RxC. Thus. the 
same 'clock used to transmit the data is used to receive 
it-Examination of Figure 15 shows that this method en­
sures bit synchronism. The final element of the serial 
data logic is the Digital Phase locked loop. 

The DPll provides a means of clock recovery from the 
received data stream. This feature allows the 8273 to in­
terface without external synchronizing logic to low cost 
asynchronous modems (modems which do not supply 
clocks). It also makes the problem of clock timing in 
loop configurations trivial. 

To use the DPll, a clock at 32 times the required baud 
rate must be supplied to the 32x ClK pin. This clock 
provides the interval that the DPll samples the received 
data. The DPll uses the 32 x clock .and the received 
data to generate a pulse at the DPll output pin. This 
DPll pulse is positioned at the nominal center of the 
received data bit cell. Thus the DPll output may be 
wired to RxC and/or TxC to supply the data timing. The 
exact position of the pulse is varied depending on the 
line noise and bit distortion of the received data_ The ad­
justment of the DPll position is determined according 
to the rules outlined in Figure 16. 

Adjustments to the sample phase of DPll with respect 
to the received data is made in discrete increments. 
Referring to Figure 16, following the occurrence of 
DPll pulse A, the DPll counts 32 x ClK pulses and ex­
amines the received data for a data edge. Should no 
edge be detected in 32 pulses, the DPll positions the 
next DPll pulse (8) at 32 clock pulses from pulse A. 
Since no new phase information is contained in the data 
stream, the sample phase is assumed to be at nominal 
1 x baud 'rate. Now assume a data edge occurs after 

i5J5[[ pulse 8. The distance from B to the next pulse C is 
influenced according to w.hich quadrant (A" 8" 82, or 
A2) the data edge falls in. (Each quadrant represents 8 
32 x ClK times.) For example, if the edge is detected in 
quadrant A" it is apparent that pulse 8 was too close to 
the data edge and the time to'the next pulse must be 
shortened. The adjustment for quadrant A, is specified 
as - 2. Thus, the next DPiI pulse, pulse C, is posi­
tioned 32- 2 or 30 32 x ClK pulses following DPll 
pulse 8. This adjustment moves pulse C closer to the 
nominal bit center of the next received data cell. A data 
edge occurring in quadrant 82 would have caused the 
adjustment to be small, namely 32 + 1 or 33 32 x ClK 
pulses. Using this technique, tlie DPll pulse converges 
to the nominal bit center within 12 daia transitions, 
worse case - 4-bit times adjusting through quadrant A, 
or A2 and 8-bit times adjusting through B, or 8 2, 

Figure 15. Transmit/Receive Timing 

1 ________ ~1~8~IT~T~IM~E ________ ~ 

RxD 

A 

x 
NO TRANSITION 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 

1----------32 CLOCKS -------,.---~I 1----+---- 30 CLOCKS --""h~--I 

8 

I 
1 

I 
I 
I 

1_. -----1-----33 CLOCKS ----l-------_ 
i I 

C-2 

1 I 

:-. -----1-----32 ~LOCKS ---+-------11 r:::AL 1 1 U ~ 'W,"" .. 

1 1 I 
I I I 

QUADRANT I A1 81 I 82 A2 I 
ADJUSTMENt I -2 -1 I +1 +2 I 

Figure 16. DPLL Ph,se Adjustments 

AFN-00611A 



APPLICATIONS 

When the receive data stream goes idle after 15 ones, 
DPLL pulses are generated at 32 pulse intervals of the 
32x CLK. This feature allows the DPLLpulses to be 
used as both transmitter and receiver clocks. 

In order to guarantee sufficient transitions of the reo 
ceived data to enable the DPLL to lock, NRZI enc~ding 
of the data is recommended. This ensures that, within a 
frame, data transitions occur at least every five bit times 
- the longest sequence oi 1s which may be t'ran,smltted 
with zero bit insertion. It is also recommended that 
frames following a line idle be transmitted with pre­
frame sync characters which prOvide a minimum of 12 
trans.ilions. This ensures that the DPLL is generating 
DPLLpulses at the nominal bit centers in time for the 
opening flag. (Two OOH characters' meet this require­
ment by supplying 16 transitions with NRZI encoding. 
The 8273 contains a mode which supplies such a pre­
frame sync.) 

Figure 17 illustrates 8273 clock configurations using 
either synchronous or asynchronous modems. Notice 
how the DPLL output is used for both TxC and RxC in 
the asynchronous case. This feature eliminates the 
need for external clock generation logic where low cost) 
asynchronous modems are used and also allows direct 
connection of 8273s for the ultimate in low cost data 
links. The configuration for loop applications is dis­
cussed in a following section. 

This completes our discussion of the hardware aspects 
of the 8273. Its software aspects are now discussed. 

SOFTWARE ASPECTS OF THE 8273 

The software aspects of the 8273 involve the communi­
cation of both commands from the CPU to the 8273 and 
the return of results «;>f those commands from the 8273 

":" NC 

to the CPU. Due to the internal processor architecture of 
the 8273, this CPU-8273 communication Is basically a 
form of interprocessor ,communication. Such communi' 
cation usually requires a form of protocol of its own. 
This protocol is implemented through use· of handshak­
ingsupplied in the 8273 Status register. The bit defil'li­
tion olthis register is shown in Figure 18. 

CBSY: Command Busy':" CBSY indicates when the 
8273 isin the command phase. CBSY is set when the 
CPU writes a command into the Command register, 
starting the Command phase. It is reset when the last 
parameter is deposited in the Parameter register and 
accepted by the 8273, completing the Command 
phase. 

CBF: Command Bufff#r Full - When set, this bit in­
dicates that a byte is present in the Command 
register. This bit is normally not used. 

CPBF: Command Paramf#tf#r Buffer Full - This bit in­
dicates that the Parameter register contains a 
parameter. It is set when the CPU deposits a 
parameter in the Parameter register. It is reset when 
the 8273 accepts the parameter. 

CRBF: Command Result Buffer Full - This bit is set 
when the 8273 places a result from an immediate 
type command in the Result register. It is reset when 
the CPU reads the result from the Result register. 

RxINT: Rf#ceiver Intf#rrupt - The state of the RxlNT 
pin is reflected by this bit. RxlNT is set by the 8273 
whenever the receiver needs servicing. RxlNT is reset 
when the CPU reads the results or performs the data 
transfer. 

TxINT: Transmitter Interrupt - This bit is identical to 
RxlNT except action is initiated based on transmitter 
interrupt sources. 

SYNCHRONOUS MODEM INTERFACE 

32X 
CLOCK 

ASYNCHRONOUS MODEM INTERFACE 

Figure 17. Serial Dala Timing Conllgurallon 

AFN-00611A 



APPLICATIONS 

RxIRA: Receiver Interrupt Result Available - RxlRA 
is set when the 8273 places an interrupt result byte 
into the Rxl/R register. RxlRA is reset when the CPU 
reads the Rxl/R register. 

TxIRA: Transmitter Interrupt Result Available -
TxlRA is the corresponding Result Available bit for 
the transmitter. It is set when the 8273 places an in­
terrupt result byte in the Txl/R register and reset 
when the CPU reads the register. 

The significance of each of these bits will be evident 
shortly. Since the software requirements of each 
8273 phase are essentially independent, each phase 
is covered separately. 

TxlRA - TllNT RESUL.T AVAILABLE 

RltlRA - RJCINT RESULT AVAILABLE 
L... ___ TKINT - Tx INTERRUPT 

L... _____ RxlNT _ RlI INTERRUPT 

---CRSF - COMMAND RESULT 
- BUFFER FULL 

L... _______ CPBF _ COMMAND PARAMETER 

BUFFER FULL 
L... ________ CBF _ COMMAND BUFFER FULL 

L... __________ easy - COMMAND BUSY 

Figure 18. Status Register Format 

Command Phase Software· 

Recalling the Command phase description in an earlier 
section, the CPU starts the Command phase by writing a 
command byte into the 8273 Command register. If fur­
ther information about the command is required by the 
8273, the CPU writes this information into the Parameter 
register. Figure 19 is a flowchart of the Command 
phase. Notice that the CBSY and CPBF bits of the 
Status register are used to handshake the command 
and parameter bytes. Also note that the chart shows 
that a command may not be issued if the Status register 
indicates the 8273 is busy (CBSY = f). If a command is 
issued while CBSY = 1, the original command is over­
written and lost. (Remember that CBSY signifies the 
command phase is in progress and not the actual execu­
tion of the command.) The flowchart also includes a 
Parameter buffer full check. The CPU must wait until 
CPBF = 0 before writing a parameter to the Parameter 
register. If a parameter is issued while CPBF = 1, the 
previous parameter is overwritten and lost. An example 
of command output assembly language software is pro­
vided in Figure 20a. This software assumes that a com­
mand buffer exists in memory. The buffer is pOinted at 
by the HL register. Figure 20b shows the command buf­
fer structure. 

The 8273 is a full duplex device, i.e., both the transmitter 
and receiver may be executing commands or passing in­
terrupt results at any given time. (Separate Rx and Tx in­
terrupt pins and result registers are provided for this 
reason.) However, there is only one Command register. 
Thus, the Command register must be used for only one 
command sequence at a time and the transmitter and 
receiver may never be simultaneously in a command 

phase. A detailed description of the commands and 
their parameters is presented in a following section. 

Figure 19. Command Phase Flowchart 

,FUNCTION: COMMAND DISPATCHER 
; INPUTS: HL - COMMAND BUFFER ADDRESS 
; OUTPUTS: NONE 
,CALLS: NONE 
; DESTROY'S: A,8,H·,L,F/F'S 
,DESCRIPTION: CMDOUT ISSUES THE COMMAND + PARAMETERS 
,IN THE COMMAND BUFFER POINTED AT BY HL , 
CMDOUT: LXI 

MOV 
INX 

CMDl: IN 
RLC 
JC 
MOV 
OUT 

CMD2: MOV 
ANA 
RZ 
INX 
OCR 

CMDl: IN 
ANI 
JNZ 
MOV 
OUT 
JMP 

H,CMDBUF;POINT HL AT BUFFER 
B,M ; 1ST ENTRY IS PAR. COUNT 
H ; POINT AT COMMAND BYTE 
STAT71 ,READ 827J STATUS 
", ROTATE CBSY INTO CARRY 
CMDl ,WAIT UNTIL CBsY-e 
A,M ,MOVE COMMAND BYTE TO A 
COMM7J ,PUT COMMAND IN COMMAND REG 
A,B ;GET PARAMETER COUNT 
A ; TEST IF ZERO 
,I~ e THEN DONE 
H ,NOT DONE, SO POINT AT NEXT PAR 
B ,DEC PARAMETER COUNT 
STAT7J ,READ 827J STATUS 
CPSF :TEST CPBF BIT 
CMDl ,WAIT UNTIL CPSF IS, e 
A,M ;GET PARAMETER FROM BUFFER 
PARM71 ,OUTPUT PAR TO PARAMETER REG 
CMD2 ,CHECK IF MORE PARAMETERS 

Figure 2OA. Command Phase Sof.lware 

2-282 AFN.ooellA 



APPLICATION$ 

+4 PARAMETER 3 

+3 PARAMETER 2 

+2 PARAMETER 1 

+1 COMMAND 

CMDBUF: PARAMETER COUNT -HL 

Fillure 2OB. Command Buffe, FornUIt 

Execution Phase Software 

During the Execution phase, the operation specified by 
the Command phase is performed. If the system utilizes 
DMA for data transfers, there is no CPU involvement 
during this phase, so no software is required. If non­
DMA data transfers are used, either interrupts or polling 
is used to signal a data transfer request. 

For interrupt-driven transfers the 8273 raises the appro­
priate INT pin. When responding to the interrupt, the 
CPU must determine whether itisa data transfer re­
quest or an interrupt signaling that an operation is com­
plete and re.sults are available. The CPU determines the 
cause by reading the Status register and interrogating 
the associated IRA (Interrupt Result Available) bit (Tx­
IRA for TxlNT and RxlRA for RxINT). If the IRA = 0, the in­
terrupt Is a data transfer request. If the IRA = 1, an 
operation is complete and the associated Interrupt 
Result register must be read to determine the comple­
tion status (good/bad/etc.). A software interrupt handler 
implementing the above sequence i.s. presented as part 
of the Result phase software. 

When polling is used to determine when data transfers 
are required, the polling routine reads the Status 
register looking for one of the INT bllsto be set. When a 
set INT bit Is found, the corresponding IRA bit is ex­
amined. Like in the interrupt-driven case, if the IRA = 0, a 
data transfer isrequired.lfIRA= 1, an operation is com­
plete and the Interrupt Result register needs to be read. 
Again, example polling software Is presented in the next 
section. 

Result Phase Software 

During the Result phase the 8273 notifies the CPU of the 
outcome of a command. The Resul.! phase is initiated by 
either a successful completion of an operation or an er· 
ror detected during execution. Some commands such 
as reading or writing the 110 ports provide immediate 
results, that is, there is essentially no delay from the 
issuing of thecoml1'land and when the result is avail­
able. Other commands such as frame transmit take 
time to complete .so their result is not available im­
mediately. Separate result registers are provided to 
distinguish these: two types of commands and to avoid 
interrupt handling for simple results. 

Immediate results are provided in the Result register. 
Validity of il'lformation in this register is indicated to the 
CPU by way of the CRBF bit in the Status register. When 
the CPU completes the Command phase of an im­
mediate command, it polls the Status register waiting 
until CRBF = 1. When thisqccurs, the CPU maY,read the 

Result register, tq: obtain the immediate result.The 
Result register provides only the .results from immedi­
ate commands. ' . 

Example software for handling immediate results is 
shown in Figure 21" The routine returns with the result 
in theac,cumul~tor. The CPU then uses ihe result as is 
appropriate; . 

All non'immediate commands deal with either the 'trans­
milter or receiver. ResiJltsfrom these commands are 
provided in the Txl/R (Transmit Interrupt Result) and 
RxllR (Receive Interrupt Result) registers respectively. 
Results In these registers are conveyed to the CPU by 
the TxlRA and RxlRA bits of the Status register. Results 
of non-immediate commands consist of one byte result 
interrupt code Indicating the condition for the interrupt 
and, if required, one or more bytes supplying additional 
information. The interrupt codes and the meaning of the 
additional results are covered following the detailed 
command description. 

Non-immediate results are passed to the CPU in 
response to either interrupts or polling of the Status 
register. Figure 22 illustrates an interrupt-driven result 
handler. (Please note that all of the software presented 
in this application note is not optimized for either speed 
or cod~ efficiency, They are provided as a guide and to 
illustrate concepts'.) This handler provides for interrupt­
driven data transfers as was promised in the last sec­
tion. Users employing DMA-ba.sed transfers do not need 
the lines where the IRA bit is tested for zero. (These 
lines are denoted by an asterisk in the comments col­
umn.) Note that the INT bills used to determine when all' 
results have been read. All results must be read. Other­
wise, the INT bit (and p,i.n)will remain high and further in­
terrupts may be ~issed. These routines place the 
results in Ii result buffer pOinted at by RCRBUF and 
TxRBUF. 

A typical result handler for systems utilizing polling is 
shown in Figure 23. Data transfers are also handled by 
this routine. This routine utilizes the routines of Figure 
22 to handle the results. 

At this pOint, the reader shouid have a good conceptual 
feel about how the 8273 operates. It is now time for the 
particulars of each command to be discussed. 

; FUNCTION: IMDRLT 
; INPU'l'S: NONE . 
,OU't_U1'S, HBSULT REGISUR IN A 
; CALLS: .t-40N.~ 
;'DES'l'RUYS: A,F/F'S 
:DI::SCklPTION: IMIJRLT IS CALLED AF'l'ER A CKOOUT FOR AN 
; IMMi:.LIATE CCJMMAt>,jIJ TO READ 'l'HE RESULT REGISTER , 
lMCRL1', IN 

ANl 
JZ 
IN 
hI:.'!' 

STATH 
CkB,' 
IMDRL'l' 
RLSL 71 
iKE-TURN 

,.l<"At> 6271 STATUS 
,TeST U' RESULT REG HADY 
;"hAlT IF CRSF=0 . 
; RE.AD ~h:.SULT REGISTER 

Fillure 21. lnimedl~te Result Handler 

2-283 AFN-00611A . 



APPLICATIONS 

,FUNCTION: RXI - INTERRUPT DRIVEN RESULT/DATA HANDLER 
r INfUTS; HeRBUF, RCVPNT 
r CALLS: NONE 
,0u'rpUTS: . RCRBUF, RCVPNT 
;DESTROYS: NOTHING 
,DESCRIPTION: RXI IS ENTERED AT A RECEIVER INTERRUPT. 
,THE INTERRUPT IS TESTED FOR DATA TRANSFER (IRA-0) 
,OR RESULT (IRA-l). FOR DATA TRANSFER, THE DATA IS 
,PLACED IN A BUFFER AT RCVPNT. RESULTS ARE PLACED IN 
,A BUFFER AT RCRBUF. 
,A FLAG (RXFLAG) IS SET IF THE INTERRUPT WAS A RESULT. 
,(DATA TRANSFER INSTRUCTIONS ARE DENOTED BY (*) AND 
,MAYBE ELIMINATED BY USERS USING DMA. , 
RX!: 

RXI2: 

RXI4: 

RXI3: 

PUSH 
PUSH 
PUSH 
IN 
ANI 
JZ 
LHLD 
IN 
ANI 
JZ 
IN 
ANI 
JZ 
IN 
MOV 
INX 
SHW 
JMP 
SHLD 
IN 
MOV 
INX 
JMP 
MVI 
STA 
POP 
POP 
POP 
EI 
RE1' 

H 
PSW 
B 
STAT71 
RXIRA 
RXI2 
RCRBUF 
STAT71 
RXINT 
RXI4 
STAT73 
RXIRA 
RXIl 
RXIR71 
M,A 
H 
RC~BUF' 

RXIl 
RCVPNT 
RCVDAT 
M,A 
H 
RXn 
A,01H 
RXFLAG 
B 
PSW 
H 
;E/.'oIABLE 
;DONE 

,SAVE HL 
;SAVE PSW 
,SAVE B 
, (*) READ 8273 STA1'US 
; (*) Ti::ST IRA Bl'l' 

(*) IF 0, DA'l'A TRANSFEl< Nl:.EDEO 
;GE'r RESUL'l' BUFFEk POIN'l'I::R 
IREAD 827, S'l'A'l'US AGAlCoi 
;TEST lNT BI'l' 
I IF 0, 'l'Hf.N CoONE 
J READ 8211 S'l'ATUS AGAIN 
;TEST IRA AGAIN 
;LOOP UN'l'IL RE:SULT IS READY 
; READY, READ RXI/R 
;STORE RESULT Illi BUFFER 
,BUMP RESULT POIN'rER 
; RESTORE BUFFER POIN'!'ER 
;GO BACK TO SEE IF MORE; 

(*) Gf.'r DATA BUFFER POINTER 
, (*) READ DA1'A VIA RXDACK 
; (*) 51'ORE .DATA IN BUFFEl( 
; (*) BUMP DATA POINTER 
; (*) DONE 
;5ET RX FLAG TO SHOw COMPLE'l'ION 
; COMPLETION 
;RESTORE Be 
; RESTORE PSW 
;RESTORf.; HL 
INTERRllPT.f) 

: FUNC1'IuN: 1"XI - Il'IITLHRUP'l' DRIVEN RE:SULT/DATA HANDLER 
; INPU1'S: 'l"XkBUF, 'l'XPNT, 1'XFLAG 
,OUTPU'l'S: TXRBUF, TXPNT, TXFLAG 
; CALL~: NONE. 
; D~STkOYS: NOTHING 
;1Jf:.SCRIPTION: TXI IS ENTt:RED A1' A TRANSMI'l'TER INTERRUPT. 
,1_£ I'1'ERRUPT IS US'I'ED BY WAY OF 1'riE IRA BIT TO SEE 
; If" A DATA 1'RANSFE;R OR RESULT COMPLE'rION HAS OCCURED. 
; FOR DATA 'l'RANSFERS (IAA=0 J, THE OA'I'A IS OBTAINED FROM 
;A BUf'Fl:.k LOCATION POINTED AT BY TXPN'l'. FOR COMPLETION, 
; (IRA=I), TriE RESULTS ARE READ AND PLACED A1' A RESULT 
; BUFft.R POIL\lTED AT BY TXRBUF, AND THE TXFLAG IS SET 
iTO INLICA'l"E TU THE MAll'll PROGRAM 1'HAT A OPERATION IS 
;COMPLI;;TE.. TX OPERATIONS HAVE ONLY ONE RESULT. 
i DA'l'A TRANSFER INSTRUCTIONS ARE DENOTED BY (*). THESE 
;foIAYiH:, REMOV.l:.C BY US.l:.RS USING CMA. 

'l'XI: 

1'XIl : 

TXI2: 

PUSH H ,SAVE HL 
PUSii PSO; :SAVE PSW 
I. STAT71 , (*) RE.AD 8271 STATUS 
ANI TXIRA , (*) TEST TXIRA BIT 
JZ TXI2 , (*) IF 0, DATA TRANSFER 
IN 1'XIR7] iI, THEN READ TXIR 
LHLu TXR8UF ; GET RESULT BUFFER POINTER 
MOV M,A ,STORE RESUL1' IN BUFFER 
INX H : BUMP RESULT POINTER 
SHLD TXRBUF ,RESTORE RESULT POINTER 
MVI A,0IH • SET TXFLAG TO SHOW COMPLETION 
S'I'A TXFLAG ,SET FLAG 
POP PSW ~ RESTORE PSW 
POP H ;RESTORE HL 
F.I ;ENABLE INTERRUPTS 
RET ,DONE 
LHLD TXPNT (*) GET DATA POINTER 
MOV A,M (*) GET DATA FROM BUFFER 
OUT TXDATA (*) OUTPUT TO 8273 VIA TXDACK 
INX H (*j BUMP DATA POINTER 
SHLD TXPNT .(*) RESTORE POINTER 
JMP TXIl (*) RETURN AFTER RESTORE 

Figure 22. Interrupt· Driven Result Handlers 
with Non-DMA Data Transfers 

,FUNCTION: POLOP 
; INPUTS: NONE 
,OUTPUTS: c=e (NO STATUS), =1 (RX COMPLETION), 
, -2 (TX COMPLETION), -1 (BOTH) 
;CALLS: TXI, RXI 
;DESTROYS: S,C 
,D~SCRIP1'ION: POLOP IS CALLED TO POLL THE 8271 FOR 
; DATA TRANSFERS AND COMPLETION RESULTS. THE 
,ROU1'INE5 TXI AND RXI ARE USED FOR THE ACTUAL 
,~RANSF£RS AND BUFFER WORK. POLOP RETURNS 
;ThE S'l'AT!JS OF THEIR ACT10N. , 
POLui': pust:! PSW ;SAVE PSW 

MVI C,00H ;CLEAR C 
POLOpl : I. STAT71 ; READ 8271 STATUS 

ANI IN'l' ,ARE TXINT OR RXINT SET? 
JZ PEXI'!' :NO, EXIT 
IN STA1'71 ,READ 8271 STATUS 
ANI RXINT ;TBST RX INT 
JNZ RXIC :YES, GO SERVICE RX 
CALL TXI iMUST BE TX, GO SERVICE IT 
LOA TXFLAG ;GE1' TX FLAG 
CPI 01H ;WAS IT A COMPLE.TION? (01) 
JNZ PEXIT ;NO, SO JUST EXIT 
INR C ;Y~S, UPDATE C 
INR C 
JMP POLOPI ;TRY AGAIN 

.kXIC: CALL RXI JGO SERVICE RX 
LOA RXFLAG ,GET RX FLAG 
CPI elH ;wAS IT A COMPLE1'ION? (01) 
JNZ PEXIT ;NO, SO JUST EXIT 
INR C ; YES, UPDATE C 
JMP POLOPl ;TRY AGAIN , 

PEXIT: POP PSW ; RhS1'ORE. PSW 
Ri::1' ; RETURN ~ITH COMP. STATUS I~ C 

Figure 23. Polling Result Handler 

8273 COMMAND DESCRIPTION 

In this section, each command is discussed in detail. In 
order to shorten the notation, please refer to the com­
mand key in Table 1. The 8273 utilizes five different 
command types: Initialization/Configuration, Receive, 
Transmit, Reset, and Modem Control. 

Initialization/Configuration Commands 

The Initialization/Configuration commands manipulate 
registers internal to the 8273 that define the various 
operating modes. These commands either set or reset 
specified bits in the registers depending on the type of 
command. One parameter is required. Set commands 
perform a logical OR operation of the parameter (mask) 
and the internal register. This mask. contains 1s where 
register bits are to be set. A 0 in the mask causes no 
change in the corresponding register bit. Reset com­
mands perform a logical AND operation of the param­
eter (mask) and the internal register, i.e., the mask is 0 to 
reset a register bit and a 1 to cause no change. Before 
presenting the commands, the register bit definitions 
are discussed. 

B o, B1 

Ro, R1 
La, L1 
A1, A2 
RIC 
TIC 
A 
C 

2·284 

TABLE 1. COMMAND SUMMARY KEY 

LSB AND MSB OF RECEIVE BUFFER LENGTH 
LSB AND MSB OF RECEIVED FRAME LENGTH 
LSB AND MSB OF TRANSMIT FRAME LENGTH 
MATCH ADDRESSES FOR SELECTIVE RECEIVE 
RECEIVER INTERRUPT RESULT CODE 
TRANSMITTER INTERRUPT RESULT CODE 
ADDRESS FIELD OF RECEIVED FRAME 
CONTROL FIELD OF RECEIVED FRAME 

AFN-00611A 



APPLICATIONS 

Operating Mode Register (Figure 24) 

07-06: Not Used - These bits must not be manipu­
lated by any command; i.e., 0 7-06 must beil for 
the Set command and 1 for the Reset command. 

HDLC Abort - When this bit is set, the 8273 will 
interrupt when 7 1s (HOLC Abort) are received 
by an active receiver. When reset, an SOLC 
Abort (8 1s) will cause an interrupt 

FLAT STREAM MODE· 

PREFRAME SYNC MODE 

lJ=~~~~~.BUFFEAED MODE ·EARL Y Tx INTERRUPT ENABLE 

EOP INTERRUPT ENABLE 

HDle ABORT ENABLE 
'------____ NOT USED - DO NOT CHANGE 

Figure 24. Operating Mode Register EOP Interrupt - Reception of an EOP character 
(0 followed by 7 1s) will cause the 8273 to inter­
rupt the CPU when this bit is set. Loop con­
troller stations use this mode as a signal that a 
polling frame has completed the loop. No EOP 
interrupt is generated when this bit is reset. 

Serial I/O Mode Register (Figilre 25) 

0 1: 

Do: 

Early Tx Interrupt - This bit specifies when the 
transmitter should generate an end of frame in­
terrupt. If this bit is set, an interrupt is gener· 
ated when the last data character has been 
passed to the 8273. If the user software issues 
another transmit command within two byte 
times, the final flag interrupt does not occur and 
the new frame is transmitted with only one flag 
of separation. If this restriction is not met, more 
than one flag will separate the frames and a 
frame. complete interrupt is generated after the 
closing flag. If the bitis reset,only the frame 
complete interrupt occurs. This bit, when set, 
allows a single flag to separate consecu~ive 
frames. 

Buffered Address and Control - When set, the 
address and control fields of received frames 
are buffered in the 8273 and passed to the CPU 
as results after a received frame interrupt (they 
are not transferred to memoriwith the informa· 
tion field). On transmit, the A and C fields are 
passed to the 8273 as parameters. This mode 
simplifies buffer management. When this bit is 
reset, the A and C fields are passed to and from 
memory as the first two data transfers. 

Preframe Sync - When set, the8273 prefaces 
each transmitted frame with two characters 
before the opening flag. These two characters 
provide 16 transitions to allow synchronization 
of the opposing receiver. To guarantee 16 tran­
sitions, the two characters are 55H-55H for non­
NRZI mode (see Seriill 110 Register description) 
or OOH-OOH for NRZI mode. When reset, no 
preframe characters are transmitted. 

Flag Stream - When set, .the transmitter will 
start sending flag characters as soon as it is 
idle; i.e., immediately if idle when the command 
is issued or after a transmi.ssion if the transmit­
ter is active when this bit is set. When reset, the 
transmitter starts sending Idle characters on 
the next character boundary if idle already, or at 
the end of a transmission if active. 

2-285 

0r03: Not Used.- These bits must be 0 for the Set 
command and 1 for the Reset command. 

O2: Data Loopback- When set, transmitted data 
(TxO) is internally routed to the receive data cir· 
cuitry. When reset, TxO and RxO are indepen· 
dent. 

0 1: Clock Loopback - When set, TxC is internally 
routed to RxC. When reset, the clocks are inde­
pendent. 

Do: NRZI (Non-Return to Zero Inverted) -When set, 
the 8273 assumes the received data is NRZI en­
coded, and NRZI encodes the transmitted data. 
When reset, the received and transmitted data 
are treated as a normal positive logic bit stream. 

Data Transfer Mode Register (Figure 26) 

07-D1: Not Used - These bits must be 0 for the Set 
command and 1 tOr the Reset command. 

Do: Interrupt Data Transfer - When set, the 8273 
will interrupt the CPU when data transfers are 
required (the corresponding IRA Status register 
bit will be 0 to signify a data transfer interrupt 
rather than a Result phase interrupt). When 
reset,8273 data transfers are performed through 
OMA requests on the ORQpins without inter­
rupting the CPU. 

. NRZIMOOE f¥'~¥l¥' . I c!:: 
I CLOCK LOOPBACK 

DATA lOOPBACK 

: NOT US'O - 00 NOT CHANGE 

Figure 25. 5erlal·1I0 Mode Register 

~ INTERRUPT DATA TRANSFERS 

NOT USED - DO NOT CHANGE 

Figure 26. Data Transfer Mode Register 

AFN.(J()611A 



APPLICATIONS 

One Bit Delay Register (Figure 27) 

Dr: One Bit Delay - When set, the 8273 retransmits 
the received data stream one bit delayed. This 
mode is entered and exited at a received char· 
acter boundary. When reset, the transmitted and 
received data are independent. This mode is 
utilized for loop operation and is discussed in a 
later section. 

0 6-00: Not Used - These bits must be 0 for the Set 
command and 1 for the Reset command. 

I I>(I¥¥¥I¥?¥ 
I L ______ NOT USED - DO NOT CHANGE 

L. ----------ONE BIT DELAY ENABLE 

Figure 27. One Bit Delay Mode Register 

Figure 28 shows the Set and Reset 'cOmmands associ· 
ated with the above registers. The mask which sets or 
resets the desired bits is treated as a single parameter. 
These commands do not interrupt nor provide results 
during the Result phase. After reset, the 8273 defaults to 
all of these bits reset. . 

REGISTER COMMAND 
HEX 

PARAMETER 
CODE 

ONE BIT DELAY MODE 
SET A4 SET MASK 

RESET 64 RESET MASK 

DATA TRANSFER MODE 
SET 97 SET MASK 

RESET 57 RESET MASK 

OPERATING MODE 
SET 91 SET MASK· 

RESET 51 RESET MASK 

SERIAL'l/O MODE 
seT AD SET MASK 

RESET 60 RESET MASK 

Figure 28. Initialization/Configuration Command Summary 

Receive Commands 

The. 8273 supports three receive commands plus a 
receiver disable function. 

General Receive 

When commanded to General Receive, the'8273 passes 
all frames either to memory (DMA mode) or to the CPU 
(non-OM A mode) regardless of the contents of the 
frame's address field. This command is used for primary 
and loop controller stations. Two parameters are re­
quired: Bo and B1. These parameters are the LSB and 
MSB of the receiver buffer size. Giving the 8273 this 
extra information· alleviates the CPU of ·the burden of 
checking for buffer overflow. The 8273 will interrupt the 
CPU if the received frame attempts to overfill the 
allotted buffer space. 

2-286 

Selective Receive 

In Selective Receive, two additional parameters besides 
Bo and Bl are required: Al and A2. These parameters are 
two address match bytes. When commanded to Selec­
tive Receive, the 8273 passes to memory or the CPU 
only those frames having an address field matching 
either Al or A2. This command is usually used for sec­
ondary stations with Al being the secondary address 
and A2 is the "All Parties" address. If only one match 
byte is needed, Al and A2 should be equal. As in General 
Receive, the 8273 counts the incoming data bytes and 
interrupts the CPU if Bo, Bl is exceeded. 

Selective Loop Receive 

This command is very similar in operation to Selective 
Receive except that One Bit Delay mode must be set and 
that the loop is captured by placing transmitter in Flag 
Stream mode automatically after an EOP character is 
detected following a selectively received frame. The 
details of using the 8273 in loop configurations is 
discussed in a later section so please hold questions 
until then. 

The handling of interrupt result!' is common among the 
three commands. When a frame is received without 
error, i.e., the FCS is correct and CD (Carrier Detect) was 
active throughout the frame or no attempt was made to 
overfill the buffer; the 8273 interrupts the CPU following 
the closing flag to pass the completion results. These 
results, in order, are the receiver interrupt result code 
(RIC), and the byte length of the information field of the 
received frame (Ro, R1). If Buffered mode is selected, the 
address and control fields are passed as two additional 
results. If Buffered mode is not selected, the address 
and control fields are passed as the first two data 
transfers and Ro, Rl reflect the information field length 
plus two. . 

Receive Disabie 

The receiver may also be disabled using the Receive 
Disable. command. This command terminates any 
receive operation immediately. No parameters are re­
quired and no results are returned. 

The details for the Receive command are shown in 
Figure 29. The interrupt result. code key is shown in 
Figure 30. Some explanation of these result codes is 
appropriate. 

The interrupt result code is the first byte passed to the 
CPU in the RxllR register during the Result phase. Bits 
0 4-00 define the cause of the receiver interrupt. Since 
each result code has specific implications, they are 
discussed separately below. 

COMMAND 
HEX PARAM· RESULTS" 

CODE ETERS Rxl/R 

GENERAL RECEIVE CO BO, Bl RIC, RO, Rl, A, C 

SELECTIVE RECEIVE Cl Bo, Bl, AI, A2 RIC,'RO, Rl, A, C 

SELECTIVE LOOP RECEIVE C2 BO, Bl,Al,A2 RIC, Ro, Rl, A, C 

DISABLE RECEIVER C5 NONE NONE 

"A AND C ARE PASSED AS RESULTS ONLY IN BUFFERED MODE. 

Figure 29. Receiver Command Summary 

AFN-Q0611A 



APPLICATIONS 

illc RxSTATUS 
07-00 RECEIVER INTERRUPT RESULT CODE AFTER INT 

0 00000 Al MATCH OR GENERAL RECEIVE ACTIVE 
0 00001 A2 MATCH ACTIVE 

000 00011 CRC ERROR ACTiVE 

000 00100 ABORT DETECTED ACTIVE 

000 00101 IDLE DETECTED DISABLED 

00000110 EOP DETECTED DISABLED 

000 00111 FRAME < 32 BITS ACTIVE 

000 01000 DMA OVERRUN DISABLED 

000 01001 MEMORY BUFFER OVERFLOW DISABLED 

000 01010 CARRIER DETECT FAILURE DISABLED 

000 01011 RECEIVER INTERRUPT OVERRUN DISABLED 

007-05 PARTIAL BYTE RECEIVED 

111 ALL 8 BITS OF LAST BYTE 

000 DO 
100 01-00 
010 02-00 
110 Os-DO 
001 040-0 
101 OS-DO ' 
011 D6-DO 

Figure 30. Receiver Interrupt Result Codes (RIC) 

The first two resll.lt codes result from the error-free 
reception of a frame. If the frame is received correctly 
after a General R.eceive command, the first result is 
returned. If either Selective Receive command was used 
(normal or loop), a match with A1 generates the first 
resuJ! code and a match with A2 generates the second. 
In either case, the receiver remains active after the inter­
rupt; however, the internal buffer size counters are not 
reset. That is, iJ the receive command indicated 100 
bytes were allocated to the receive buffer (Bo, B1) and an 
80-byte frame was received correctly, the maximum next 
frame' size that could be received without recomman­
ding the receiver (resetting Bo and B1) is 20 bytes. Thus, 
it is common practice to recommand the receiver after 
each frame reception. DMA and/or memory painters are 
usually updated at this time. (Note that users who do 
not wish to take advantage of the 8273's buffer manage­
ment features may simply use Bo, B1 ,,; OFFH for each 
receive command. Then frames of 65K bytes may be 
received without buffer overflow errors.) 

The third result code is a CRC error. This indicates that 
a frame was received.fn the correct form;ft (flags, etc:); 
however, the received FCS did not check with the inter­
nally generated FCS. The frame should be discarded. 
The receiver remains active. (Do not forget that even 
though an error condition has been detected, all frame 
information up until that error has either been trans­
ferred to memory or passed to the CPU. This informa­
tion should be invalidated. This applies to all receiver 
error conditions.) Note thatthe FCS, either transmitted or 
received, is never available to the CPU. 

The Abort Detect result occurs whenever the receiver 
sees either an SDLC (815) or an HDLC (71s), depending 
on the Operating Mode register. However, the interven­
ingAbort character between a closing flag and an Idle 
does not generate an interrupt. If an Abort character 
(seen by an active receiver within a frame) is not pre­
ceded by a flag and is followed by an Idle, an interrupt 
will be generated for the Abort, followed by an Idle inter-

rupt one character time later. The Idle Detect result oc­
curs whenever 15 consecutive 1s ate received. After the 
Abort Detect Interrupt, the receiver remains active. After 
the Idle Detect Interrupt, the receiver is disabled and 
must be recommanded before further frames may be 
received. 

If the EOP Interrupt bit is set In the Operating Mode 
register, the EOP Detect resultis returned whenever an 
EOP character is received. The receiver Is disabled, so 
the Idle following the EOP does not generate an Idle 
Detect interrupt. 

The minimum number of bits in a valid frame between 
the flags is 32. Fewer than 32 bits indicates an error. If 
Buffered mode is selected, such frames are ignored, i.e., 
no data transfers or interrupts are generated. In non­
Buffered mode, a < 32-bit frame generates an interrupt 
with the < 32-bit Frame result since data transfers may 
already have disturbed the 8257 or interrupt handler. The 
receiver remains active. 

The DMA Overrun result results from the DMA controller 
being too slow in extracting data from the 8273, i.e., the 
RxDACK signal is not returned before the next received 
byte is ready for transfer. The receiver is disabled if this 
error condition occurs. 

The Memory Buffer Overflow result occurs when the 
number of ,received bytes exceeds the receiver buffer 
li'lngth supplied by the Bo and B1 parameters in the 
receive command. The receiver is disabled. 

The Carrier Detect Failure result occurs when the CD 
piri goes high (inactive) during reception of a frame. The 
CDpih is used to qualify reception and must be active 
by the time the address field starts to be. received. If CD 
is lost during the frame, a CD Failure interrupt is 
generated and the receiver is disabled. No interrupt is 
generated if CD goes inactive between frames. 

If a condition occurs requiring an interrupt be generated 
before the CPU has finished reading the previous inter­
rupt results, the second interrupt is generated after the 
current Result phase is complete (the RxlNT pin and 
status bit go low then high). However, the interrupt 
result for this sedSHd interrupt will be a Receive Inter­
rupt Overrun. The actual cause of the second interrupt is 
lost. One case where this may occur is at the end of a 
received frame where the line goes Idle. The 8273 
generates a receiV~ frame interrupt after the closing 
flag and then 15-bit limes later, generates an Idle Detect 
interrupt. If the interrupt service routine is slow. in 
reading the first Interrupt's results, the internal RxllR 
register still contains result information when the Idle 
Detect interrupt occurs. Rather than wiping out the 
previous results, the 8273 adds a Receive Interrupt Over­
run result as an extra result. If the system's interrupt 
structure Is such that the second interrupt is not 
acknowledged (Intert/JPts are still disabled from the first 
interrupt), the Receive Interrupt Overrun result is read as 
an extra result, after those from the first interrupt. If the 
second interrupt is serviced, the Receive Interrupt Over­
run Is returned as a single result. (Note that the INT pins 
supply the necessary transitions to sLipport a Program-

2·287 AF~llA 



APPLICATIONS 

mabie Interrupt Controller such as the Intel 8259. Each 
interrupt generates a positive-going edg.e on the appro­
priate INT pin and the high level is held until the inter­
rupt is completely serviced.) In general, it is possible to 
have interrupts occurring at one character time inter­
vals. Thus the interrupt handling software must have at 
least that much response and service time. 

The occurrence of Receive Interrupt Overruns is an in­
dication of marginal software design; the system's inter­
rupt response and servicing time is not sufficient for the 
data rates being attempted. It is advisable to configure 
the interrupt handling software to simply read the inter­
rupt results, place them into a buffer, and clear the inter­
rupt as quickly as possible. The software can then ex­
amine the buffer for new results at its leisure, and take 
appropriate action. This can easily be accomplished by 
using a result buffer flag that indicates when new 
results are available. The interrupt handler sets the flag 
and the main program resets it once the results are 
retrieved. 

Both SOLC and HOLC allow frames which are of arbi­
trary length (>32 bits). The 8273 handles this N-bit 
reception. through the high order bits (07-05) of the 
result code. These bits code the number of valid re­
ceived bits in the last received information field byte. 
This coding is shown in Figure 30. The high order bits of 
the received partial btye are indeterminate. [The ad-

. dress, control, and information fields are transmitted 
least significant bit (Aa) first. The FCS is complemented 
and transmitted most significant bit first.] 

Transmit Commands 

The 8273 transmitter is supported by three Transmit 
commands and three corresponding Abort commands. 

Transmit Frame 

The Transmit Frame command simply transmits a 
frame. Four parameters are required when Buffered 
mode is selected and two when it is not. In either case, 
the first two parameters are the least and the most 
significant bytes of the desired frame length (La, L1). In 
Buffered mode, La and 1-1 equal the length in bytes of 
the desired information field, while inthe non·Buffered 
mode, La and L1 must be specified as the information 
field length plus two. (La and L1 specify the number of 
data transfers to be performed.) In Buffered mode, the 
address and control fields are presented to the transmit­
ter M the third and fourth parameters respectively. In 
non· Buffered mode, the A and C fields must be passed 
as the first two data transfers. 

When the Transmit Frame command is issued, t.he 8273 
makes RTS (Request-to-Send) active (pin low) if it was 
not already. It then waits until CTS (Clear-to·Send) goes 
active (pin low) before starting the frame. If the Preframe 
Sync bit in theOperting Mode register is set, the trans­
mitter prefaces two characters (16 transitions) before 
the opening flag. If the Flag Stream bit is set in the 
Operating Mode register, the frame (including Preframe 
Sync if selected) is started on a flag boundary. Other­
wise the frame starts on a character boundary. 

At the end of the frame, the transmitter Interrupts the 
CPU (the interrupt results are discussed shortly) and 
returns to either Idle or Flag Stream, depending on the 
Flag Stream bit of the Operating Mode register. If RTS 
was active before the transmit command, the 8273 does 
not change it. If .it was inactive, the 8273 will deactivate 
it within one character time. 

Loop Transmit 

Loop Transmit is similar to Frame Transmit (the param­
eter definition is the same). But since it deals with loop 
configurations, One Bit Delay mode must be selected. 

If the transmitter is not in Flag Stream mode when this 
command is issued, the transmitter waits until after fA 
received EOP character has been converted to a flag 
(this is done automatically) before transmitting. (The 
one bit delay is, of course, suspended during transmit.) 
If the transmitter is already in 'Flag Stream mode as a 
result of a selectively received frame during a Selective 
Loop Receive command, transmission will begin at the 
next flag boundary for Buffered mode or at the third flag 
boundary for non-Buffered mode. This discrepancy is to 
allow time for enough data transfers to occur to fill up 
the internal transmit buffer. At the end of a Loop Trans­
mit, the One Bit Delay mode is re·entered and the flag 
stream mode is reset. More detailed loop operation is 
covered later. 

Transmit Transparent 

The Transmit Transparent command enables the 8273 to 
transmit a block of raw data. This data is without SOLC 
protocol, I.e., no zero bit insertion, flags, or FCS. Thus It 
is possible to construct and transmit a Bi-Sync message 
for front-end processor switching or to construct and 
transmit an SOLC message with incorrect FCS fordiag­
nostic purposes. Only the La and L1 parameters are used 
since there are not fields In this mode. (the 8273 does 
not support a Receive Transparent command.) 

Abort Commands 

Each of the above transmit commands has an associ­
ated Abort command. The Abort Frame Transmit com­
mand causes the transmitter to send eight contiguous 
ones (no zero bit insertion) immediately and then revert 
to either idle or flag streaming based on the Flag Stream 
bit. (The 8 1s as an Abort character Is compatible with 
both SOLC and HOLC.) 

For Loop Transmit, the Abort Loop Transmit command 
causes the transmitter to send one flag and then revert 
to one bitdeiay;Loop protocol depends upon FCS 
errors to detect aborted frames. 

The Abort Transmit Transparent simply causes the 
transmitter to revert to either idles or flags as a function 
of the Flag Stream mode specified. 

The Abort commands require no parameters, however, 
they do generate an interrupt and return a result when 
complete. 

A summary of the Transmit commands Is shown in 
Figure 31. Figure 32 shows the various transmit Inter­
rupt result codes. As in the receiver operation, the 
transmitter generates interrupts based on either good 

2-288 AFN..Q0611A 



APPLICATIONS 

completion of an operation or an error condition to start 
the Rl3sult phase. 

The Early Transmit Interrupt result .occurs after the last 
data transfer to the 8273 if the Early Transmit Interrupt 
bit is senn' the Operating Mode register. If the 8273 is 
commanded to transmit again' within two character 
times, a single flag will separate the frames. (Buffered 
mode must be used for a single flag to separate the 
frames. If non-Buffered mode is selected; three flags 
will separate the frames~) If this time constraint is not 
met, another interrupt is generated and multiple flags or 
idles will separate the frames. The second interrupt is 
the normal Frame Transmit Complete interrupt. The 
Frame Transmit Complete result oCcurs at the closing 
flag to signify a good completion. 

The OMA Underrun result is analogous to the OMA Over­
run result in the receiver. SinceSOLC does not support 
tntraframe time fill, ,if- the OMAcontrolier or CPU does 
not supply the data in time, the frame must be aborted. 
The action taken by the transmitter on this error is auto­
matic. It aborts the frame just as if an Abort command 
had been iSSUed,. 

Clear·to-Send Error result is generated if CTS goes inac­
tive during a frame transmission. The frame is aborted 
a:s·,~bove.' " 

The' Abort Complete result is self-explanatory. Please 
note however that no Abort Complete interrupt is 
generated when an automatic abort occurs. The next 
command type consists of only one command. 

COMMAND 
HEX 

PARAMETERS· 
RESULTS 

CODE Txl/R 

·TRANSMIT FRAME " C8 Lo. L1. A, C TIC 
ABORT ' CC NONE TIC 

lOOP TRANSMIT CA' LO, L1, A, C· TIC 
ABORT CE NONE TIC " 
TRANSMIT TRANSPARENT CO LO, L1 TIC 
ABORT CD NONE TIC 

·A AND C ARE PASSED AS PARAMETERS IN BUFFERED MODE ONLY. 

Figure 31,':Tran$mitter Command Summary 

TIC Tx STATUS 
, 07-00 TRANSMI-TTER INTERRUPT RESULT CODE AFTER INT 

00001100 EARLY Tx INTERRUPT ACTIVE 

000 01101 FRAME Tx COMPLETE IDLE OR FLAGS 

000 01110 DMA UNDERRUN ABORT 

00001111 CLEAR TO SEND ERROR ABORT 

000 10000 ABORTCOMPLE'TE IDLE OR FLAGS 

Figure 32. Trensmif1er Interrupt Result Codes 

Reset Command 

The Reset command provides a software reset function 
for the 8273. It is a special case and does not utilize the 
normal command interface. The reset facility is ptovided 
in the Test Mode register. The 8273 is reset by simply 
outputting a 01 H followed by a OOH to the Test Mode 
register. Writing the 01 foll,owed. by the 00 mimicks the 
aotionrequired by the ,hardware reset. Since the 82('3 re­
quires time to process the reset interna!ly, a\. least 10 
cyclas of the, !2ICLK clock must occur between the 

writing of the 01 and the 00. The action taken is, the 
same as if a h<lrdware reset is performed, namely: 

',' 1. The modem control outputs are forced high 
inactive). ' 

2. The 8273 Status register is cleared. 

3. Any commands in progress cease. 

4. The.8273 enters an idle state until, the, next com-
mand is issued. ' " . 

Modem Control Commands 

The modem control ports were discussed earlier in the 
Hardware section. The commands used to manipulate 
these ports are shown in Figure 33. The Read Port A and 
Read Port, B commands are immediate. The bit defini­
tion for the returned byte is shown in Figures 13 and 14. 
Do not forget that the ret,urned value represents the 
logical condition of the pin, i.e., pin active (low), = bit 
set. ' 

PORT COMMAND 
HEX 

PARAMETER 
ReG 

CODE RESULT 

A INPUT READ 22 NONE PORT VALUE 

READ 23 NONE PORT VALUE 

BOUTPUT SET A3 SET MASK NONE 

RESET 63 RESET MASK NONE 

Figure 33. Modem Control Command Summary 

The Set and Reset Port B commands are similar to the 
Initialization commands in that they use a mask paramo 
eter which defines the bits to be changed. Set Port B 
utilizes a logical OR mask and Reset Port B uses a 
logical AND mask. Setting a bit makes the pin active 
(low). Resetting the bit deactivates the pin (high). 

To help clarify the' numerous timing relationships that 
occur and their consequences, Figures 34 and 35 are 
provided as an illustration of several typical sequences. 
It is suggested that the reader go over these diagrams 
and re-readthe appropriate part of the previous sections 
if necessary. 

HLDC CONSIDERATIONS 

The 8273 supports HOLC as well as SOLC. Let's discuss 
how the 8273 handles the three basic HOLC/SOLC dif­
ferences: extended addreSSing, extended,control; 'and 
the 7 1 s Abort character. 

Recalling Figure 4A, HOLC supports an address field 0.1 
indefinite Jength.The aGtual amount of extension used 
is determined by the least significant bit of the charac­
ters immediately following the opening flag. If the LSB 
is 0, more address field bytes follow. If the LSB is 1, this 
byte is the final address field byte. Software must be 
used to determine this ext'ension. 

If non-Buffered mode is used, the A, C, and I fields are in 
memory. The software must examine,the Jnitialcharac· 
ters to .find the extent of the address field. If Buffered 
mode is used, the characters corresponding to· the 
SOLC A and C fields are transferred to the CPU as inter­
rupt results. Buffered mode assumes the two characters 
following the opening ,flag are tobe.transferred as',inter­
rupt results regardless of content or, meaning. (The 8273 

2-289 AFN-00611 A 



APPLICATIONS 

does not know whether it is being used in an SOLC or an 
HOLC environment.) In SOLC, these characters are 
necessarily the A and C field bytes, however in HOLC, 
their meaning may change depending on the amount of 
extension used. The software must recognize this and 
examine the transferred results as possible address 
field extensions. 

Frames may still be selectively received as is needed for 
secondary stations. The Selective Receive command is 
still used. This command qualifies a frame reception on 
the first byte following the opening flag matching either 
of the A1 or A2 match byte parameters. While this does 
not allow qualification over the complete range of HOLC 
addresses, it does perform a qualification on the first 
address byte. The remaining address field bytes, if any, 
are then examined via software to completely qualify 
the frame. 

Once the extent of the address field is found, the follow­
ing bytes form the control field. The same LSB test used 
for the address field is applied to these bytes to deter­
mine the control field extension, up to two bytes maxi­
mum. The remaining frame bytes in memory represent 
the information field. 

The Abort character difference is handled in the 
Operating Mode register. If the HOLC Abort Enable bit is 
set, the reception of seven contiguous ones by an active 
receiver will generate an Abort Oetect interrupt rather 
than eight ones. (Note that both the HDLC Abort Enable 
bit and the EOP Interrupt bit must not be set simultane­
ously.) 

Now let's move on to the SOLC loop configuration 
discussion. 

CARRIER DETECT ~ 

RxD 

Rx COMMAND I 

LOOP CONFIGURATION 

Aside from use in the normal data link applications, the 
8273 is extremely attractive in loop configuration due to 
the special frame-level loop commands and the Oigital 
Phase Locked Loop. Toward this end, this section 
details the hardware and software considerations when 
using the 8273 in a loop application. 

The loop configuration offers a simple, low-cost solu­
tion for systems with multiple stations within a small 
physical location, I.e., retail stores and banks. There are 
two primary reasons to consider a loop configuration. 
The interconnect cost is lower for a loop over a multi­
point configuration since only one twisted pair or fiber 
optic cable is used. (The loop configuration does not 
support the passing of distinct clock signals from sta­
tion to station.) In addition, loop stations do not need 
the intelligence of a multi-point station since the loop 
protocal is simpler. The most difficult aspects of loop 
station design are clock recovery and implementation of 
one bit delay (both are handled neatly by the 8273). 

Figure 36 illustrates a typical loop configuration with 
one controller and two down-loop secondaries. Each 
station must deriv.e its own data timing from the 
received data stream. Recalling our earlier discussion of 
the OPLL notice that TxC and Rxe clocks are provided 
by the O'PLL output. The only clock required in the 
secondaries is a simple, non-synchronized clock at 32 
times the desired baud rate. The controller requires both 
32 x and 1 x clocks. (The 1 x is usually implemented by 
dividing the 32 x clock with a S-bit divider. However, 
there is no synchronism requirement between these 
clocks so any convenient implementation may be used.) 

\~-

I A Ic 111 
OR ~~~:~N~~~~~~~~---------------~, -1-7-, --.:....:.----------

NON·BUFFERED I FRAME I POSSIBLE 
MODE COMPLETE IDLE INT 

IN~~:~~~i~-----------------------~~~~--~~ 

A. ERROR· FREE FRAME RECEPTION 

CARRIER DETECT ~ \\\\\\\\\\\\ 
RxD 

Rx COMMAND I CD 
CD 

FAILURE IN~~:~~~i~ _______ .....!.....:..:FA::::IL::U:::R::.E....:....1 ......:_.:........:..........:._:....-...;...-'-__ -'-____ _ 

B. CARRIER DETECT FAILURE DURING FRAME RECEPTION 

Figure 34:' Sample Recel •• r Timing Diagrams 

2·290 AFN-00611A 



TxD 

RTS~ 
.CTS----------~ 

APPLICATIONS 

L 
L 

tA tc tl1 tl2 
DR1~~:fN~~~~~=~~----------~,---i--~i-·----~--~--------------------------~--------~---

NON·BUFFERED t 

IN~~:~~~~~-------------M-O-D-E------------------~--------------------~-F-R-AM--E_C_O_M_P_LE __ TE 
A. ERROR·FREE FRAME TRANSMISSION 

1ST FRAME 
Tx COMMAND I 

TxD 

RTS~ 

2ND FRAME 
I I I II I 
+++++. 

CTS~ t t t 
OR1~~:fN~:~~~=~~-------------------11----------------------------------1-1---·--12 ___________ . 

t EARLY Tx 
IN~~::~~~~----------------------------~----------------------------------------

B. DIAGRAM SHOWING Tx COMMAND QUEING AND EARLY Tx INTERRUPT 
(SINGLE FLAG BETWEEN FRAMES) BUFFERED MODE IS ASSUMED. 

Tx COMMA~D I 

CTS------.... 

L 

OR1~~:fN~:~~~=~~--~------~t-A----~t-C----t~I-1--~t~I-2--~t-13------____________________ __ 

t · CTS 

IN~~::~~~----~----------------------------------~O~R~A~~~~R~O~R~--------------
C. CTS FAILURE (OR OTHER ERROR) DURING TRANSMISSION ERROR 

INTERRUPT 

Figura 35. Sample Transmitter Timing Diagrams 

2-291 AFN.()(J611A 



APPLICATIONS 

1 _LOOP 
OSCILLATOR 

OR 
DIVIDER 

RxD RxC TxC TxD 

8273 8273 
LOOP TxD I--jf-+----I RxD LOOP 

TERMINAL TERMINAL 

TxC RxC 

Figure 36. SOLC Loop Application 

A quick review of loop protocol is appropriate. All com­
munication on the loop is controlled by the loop con­
troller. When the controller wishes to allow the sec­
ondaries to transmit, it sends a polling frame (the con­
trol field contains a poll code) followed by an EOP (End­
of-Poll) character. The secondaries use the EOP 
character to capture the loop and insert a response 
frame as will be discussed shortly. 

The secondaries normally operate in the repeater mode, 
retransmitting received data with one bit time of delay. 
All received frames are repeated. The secondary uses 
the one bit time of delay to capture the loop. 

When the loop is idle (no frames), the controller trans­
mits continuous flag characters. This keeps transitions 
on the loop for the sake of down·loop phase locked 
loops. When the controller has a non-polling frame to 
transmit, it simply transmits the frame and continues to 
send flags. The non-polling frame is then repeated 
around the loop and the controller receives it to signify a 
complete traversal of the loop. At the particular second­
ary addressed by the frame, the data is transferred to 
memory while being repeated. Other secondaries simply 
repeat it. 

If the controller wants to poll the secondaries, it 
transmits a polling frame followed by all1s (no zero bit 
insertion). The final zero of the closing frame plus the 
first seven 1s form an EOP. While repeating, the secon­
daries monitor their incoming line for an EOP. When an 
EOP is received, the secondary checks if it has any 
response for the controller. If not, it simply continues 
repeating. If the secondary has a response, it changes 
the seventh EOP one into a zero (the one bit time of 
delay allows time for this) and repeats it, forming a flag 
for the down-loop stations. After this flag is transmitted, 

the secondary terminates its repeater function and in­
serts its response frame (with multiple preceding flags 
if necessary). After the closing flag of the response, the 
secondary re-enters its repeater function, repeating the 
up·loop controller 1s. Notice that the final zero of the 
response's closing flag plus the repeated 1s from the 
controller form a new EOP for the next down-loop 
secondary. This new' EOP allows the next secondary to 
insert a response if it desires. This gives each secon­
dary a chance to respond. 

Back at the controller, after the polling frame has been 
transmitted and the continuous 1s started, the con­
troller waits until it receives an EOP. Receiving an EOP 
signifies to the controller that the original frame has 
propagated around the loop followed by any responses 
inserted by the secondaries. At this point, the controller 
may either send flags to idle the loop or transmit the 
next frame. Let's assume that the loop is implemented 
completely with the 8273s and describe the command 
flows for a typical controller and secondary. 

The loop controller is initialized with commands which 
specify that the NRZI, Preframe Sync, Flag Stream, and 
EOP Interrupt modes are set. Thus, the controller en· 
codes and decodes all data using NRZI format. Preframe 
Sync mode specifies that all transmitted frames be 
prefaced with 16 line transitions. This ensures that the 
minimum of 12 transitions needed by the DPLLs to lock 
after an all1s line have occurred by the time the second· 
ary sees a frame's opening flag. Selting the Flag Stream 
mode starts ,the transmitter sending flags which idles 
the loop. And the EOP Interrupt mode specifies that the 
controller processor will be interrupted whenever the 
active receiver sees an EOP, indicating the completion 
of a poll cycle. 

: . 
When the controller wishes to transmit a non-polling 
frame, it simply executes a Frame Transmit command. 
Since the Flag Stream mode is set, no EOP is formed 
after the closing flag. When a polling frame is to be 
transmitted, a General Receive command is executed 
first. This enables the receiver and allows reception of 
all incoming frames; namely, the original polling frame 
plus any response frames inserted by the secondaries. 
After the General Receive command, the frame is trans­
mitted with a Frame Transmit command. When the 
frame is complete, a transmitter interrupt is generated. 
The loop controller processor uses this interrupt to 
reset Flag Stream mode. This causes the transmitter to 
start sending all 1s. An EOP is formed by the last flag 
and the first 7 1s. This completes the loop controller 
transmit sequence. 

At any time following the start of the polling frame 
transmiss,ion . the loop controller receiver will start 
receiving frames. (The exact time difference depends, of 
course, on the number of down-loop secondaries due to 
each inserting one bit time of delay.) The first received 
frame is simply the original polling frame. However, any 
additional frames are those inserted by the secondaries. 
The loop controller processor knows all frames have 
been received when it sees an EOP Interrupt. This inter­
rupt is generated by the 8273 since the EOP Interrupt 
mode was set during initialization. At this point, the 
transmitter may be commanded either to enter Flag 

2-292 AFN-00611A 



APPLICATIONS 

Stream mode, idling the loop, or to transmit the next 
frame. A flbwchartof the above sequence is shown in­
Figure 37; 

The secondaries are initialized with the NRZI and One 
Bit Delay modes set. This puts the 8273 into the repeater 
mode with the tral1smitterrepeating the received ,data 
with one bit time of delay. Since a-loop station cannot 
transmit until i.t sees and EOP character, any tran,smit 
command is queued until an EOP is. received. Thus 
whenever the secondary wishes to transmit a response, 
a Loop Transmit command is issued. The 8273 then 
waits until it receives an EOP. At this pOint, the receiver 
changes the EOP into a flag, repeats it; resets One 'Bit 
Delay mode stopping the repeater function, and sets the 
transmitter into' Flag Stream mods. This captures the 
loop. The transmitter now inserts its message. At the 
closing flag, Flag Stream mode is reset, and One Bit 
Delay mode is sel, returning the 8273 to repeater func­
tion and forming an EOP for the next down·loop station. 
These actions happen automatically after a Loop 
Transmit command is issued .. 

INITIALIZE -
SET NRZI, FLAG STREAM 
PREFRAME SYNC. EOP 
INTERRUPT MODES 

MUST BE 
ERROR -
DO RECOVERY 
PROCEDURE 

o DENOTES COMMAND 

c:=:) DENOTES INTERRUPT CODE 

Figure 37. Loop Controller Flowchart 

SET FLAG 
STREAM 
MODE 

PROCESS 
RECEIVED 
FRAMES 

When the secondary wants its receiver enabled, a Selec­
tive Loop Receive command is issued. The receiver then 
looks for a frame having a match in the Address field. 
Once such a ·frame Is received, repeated, and trans­
ferred to memory, the secondary's proces~oris inter­
rupted with the appropriate Match interrupt result and 
the.8273 continues with the repeater function unti I an 
EOP is received, at which point the lOOp is captured as 
above. The processor should use the interrupt to deter­
mine if it has a message for the controller. If it does, it 
simply issues a Loop Transmit command and things 
progress as above. If the processor has no message, the 
software must reset the Flag Stream mode bit in the 
Operating Mode register. This will inhibit the 8273 from 
capturing the loop at the EOP. (The-match frame and the 
EOP may be separated in time by several frames de­
pending on how many up-loop stations inserted mes­
sages of their own.) If the timing is such that the 
receiver has already captured the loop when. the Flag 
Stream mode bit is reset, the mode is exited on a flag 
boundary and the frame just appears to have extra clos· 
ing flags before the EOP. Notice that the 8273 handles 
the queuing of the transmit commands and the setting 
and resetting of the mode bits automatically. Figure 38 
illustrates the major pOints of the secondary command 
sequence. 

INITIALIZE -
SET NAZI. ONE 
BIT DELAY'MODES 

o DENOTES COMMANDS 

c=:; DENOTES INTERRUPT CODES 

Figure 38. Loop Secondary Flowchart 

AFN-ootIllA 



APPLICATIONS 

When an off-line secondary wishes to come on-line, it 
must do so in a manner which does not disturb data on 
the loop_ Figure 39 shows a typical hardware interface_ 
The line labeled Port could be one of the 8273 Port Bout­
puts and is assumed to be high (1) initially_ Thus up-loop 
data is simply passed down-loop with no delay; how­
ever, the receiver may still monitor data on the loop_ To 
come on-line, the secondary is initialized with only the 
EOP Interrupt mode set. The up-loop data is then moni­
tored until an EOP occurs_ At this pOint, the secondary's 
CPU is interrupted with an EOP interrupt. This .signals 
the CPU to set One Bit Delay mode in the 8273 and then 
to set Port low (active). These actions switch the sec­
ondary's one bit delay into the loop. Since after the EOP 
only 1s are traversing the loop, no loop disturbance oc­
curs. The secondary now waits for the next EOP, cap­
tures the loop, and inserts a "new on-line" message. 
This signals the controller that a new secondary exists 
and must be acknowledged. After the secondary re­
ceives its acknowledgement, the normal command flow 
is used. 

It is hopefully evident from the above discussion that 
the 8273 offers a very simple and easy to implement 
solution for designing loop stations whether they are 
controllers or down-loop secondaries. 

R'DI-----"T"-----UP.LOOP DATA 

8273 
DOWN·LOOP DATA 

T'DI---+---f~ 

PORT I-----<-J:>O---' 

Figure 39. Loop Interface 

APPLICATION EXAMPLE 

This section describes the hardware and software of the 
8273/8085 system used to verify the 8273 implementa­
tion of SDLC on an actual IBM SDLC Link. This IBM link 
was gratefully volunteered by Raytheon Data Systems in 
Norwood, Mass. and I wish to thank them for their 
generous cooperation. The IBM system consisted of a 
370 Mainframe, a 3705 Communications Processor, and 
a 3271 Terminal Controller. A Comlink II Modem sup­
plied the modem interface and all communications took 
place at 4800 baud. In addition to observing correct 
responses, a Spectron D601 B Datascope was used to 
verify the data exchanges. A block diagram of the 
system is shown in Figure 40. The actual verification 
was accomplished by the 8273 system receiving and 
responding to polls from the 3705. This method was 
used on both pOint-to-point and multi-point configura­
tions. No attempt was made to implement any higher 
protocol software over that of the pOll and poll re­
sponses since such software would not affect the veri­
fication of the 8273 implementation. As testimony to the 
ease of use of the 8273, the system worked on the first 
try. 

2-294 

'" MAINFRAME 
"05 

COMM. 
PROCESSOR 

Figure 40. Raytheon Block Diagram 

An SDK-85 (System Design Kit) was used as the core 
8085 system. This system provides up to 4K bytes of 
ROM/EPROM, 512 bytes of RAM, 76 I/O pins, plus two 
timers as provided in two 8755 Combination EPROM/I/O 
devices and two 8155 Combination RAM/I/O/Timer 
devices. In addition, 5 interrupt inputs are supplied on 
the 8085. The address, data, and control buses are buf­
fered by the 8212 and 8216 latches and bidirectional bus 
drivers. Although it was not used in this application, an 
8279 Display Driver/Keyboard Encoder is included to in­
terface the on-board display and keyboard. A block 
diagram of the SDK-85 is shown in Figure 41. The 8273 
and associated circuitry was constructed on the ample 
wire-wrap area provided for the user. 

The example 8273/8085 system is interrupt-driven and 
uses DMA for all data transfers supervised by an 8257 
DMA Control!er. A 2400 baud asynchronous line, imple­
mented with an 8251A USART, provides communication 
between the software and the user. 8253 Programmable 
Interval Timer is used to supply the baud rate clocks for 
the 8251A and 8273. (The 8273 baud rate clocks were 
used only during initial system debug. In actual opera­
tion, the modem supplied these clocks via the RS-232 in­
terface.) Two 2142 1Kx4 RAMs provided 512 bytes of 
transmitter and 512 bytes of receiver buffer memory. 
(Command and result buffers, plus miscellaneous 
variables are stored in the 8155s.) The RS-232 interface 
utilized MC1488 and MC1489 RS-232 drivers and 
receivers. The schematic of the system is shown in 
Figure 42. 

One detail to note is the DMA and interrupt structure of 
the transmit and receive channels. In both cases, the 
receiver is always given the higher priority (8257 DMA 
channel 0 has priority over the remaining channels and 
the 8085 RST 7.5 interrupt input has priority over the 
RST 6.5 input.) Although the choice is arbitrary, this 
technique minimizes the chance that received data 
could be lost due to other processor or DMA com­
mitments. 

Also note that only one 8205 Decoder is used for both 
the peripherals' and the memorys' Chip Selects. This 
was done to eliminate separate memory and I/O 
decoders since it was known beforehand that neither 
address space would be completely filled. 

The 4 MHz crystal and 8224 Clock Generator were used 
only to verify that the 8273 operates correctly at that 
maximum spec speed. In a normal system, the 3.072 
MHz clock from the 8085 would be sufficient. (This fact 
was verified during initial checkout.) 

AFN-ootl11A 



ADDRESS 
DECODER 

! 

ROMIIOII36&) 
EPAOMIIO (1715) 

APPLICATIONS 

i 

RAMIIOICOUNTER I KEYBOARD DISPLAY 

I ADDRESS DATA 

'~r FIELD FIELD 

! I r/l.E:.I:=:. Ei E:' /;/ I~:.I 
I 

SDK.a5 KEYBOARD LAYOUT 

"'" INTA 

~SI~~~E tiD ~ ~ A Iii 
I '" SUBST EXAM 4 5 6 7 

I MEM REG SPH '~L PCH pel I i 

~?ll';; ~nl {Fn" ~'ND.. ~C, , , ~ ~ i ir=>[~~~):::A 
rD1 I rU- ,,;;-, rU~--' =j~ 

'N'~::~;: "" I L"" i I .... J ,I "" J ,.L.L-.. -,,~~ r::-, 
,.,..r:""I:-:-"'-I~! T > : : < > : : • , L __ ~ 

-= I 1 11 1 1 {~:JJ r=-
~ I I I I I r----, 

DRi:C==~~j::=~=l===-'::~~j:===~:::=:i=====~'::~===j::=~)I~ 8212 I I I I I I L __ .J 
I I I I I 
I L I I I 
I I I I I 

7 I I ~ I 7 I I , r---, 
NTAOL[====:::j===+======+======:j:==========~==J 3~1I216 !~CONTROL BUS I L __ .J~BUS 

I 
I I I I 

r - - - -, OPTIONAL A PLACE HAS BEEN PROVIDED ON THE PC BOARO FOil THE DEVICE 8UTT"E L ___ .J DEVICE IS NOT INCLUDED. 

Figure 41. SDK-85 Functional Block Diagram 

"' 
. MEMA 

'OR .. 
,. . MEMW 

'Wi! " " 
iOW .. 

101M 

SDK-35 
ous 

21 RESET 

20 Oell(' &au, Rae 25 

,., I 
RaO 13 lDCRT 

L--.:':,Tf",-..J 

Figure 42. 82731SDK·85 System 

2·295 AF~"A 



APPLICATIONS 

The software consists of the normal monitor program 
supplied with the SDK-85 and a program to input com­
mands to the 8273 and to display results. The SDK-85 
monitor allows the user to read and write on·board RAM, 
start execution at any memory location, to single-step 
through a program, and to examine any of the 8085's in­
ternal registers. The monitor drives either the on-board 
keyboard/LED display or a serial TTY interface. This 
monitor was modified slightly in order to use the 8251A 
with a 2400 baud CRT as opposed to the 110 baud nor­
mally used. The 8273 program implements monitor-like 
user interface. 8273 commands are entered by a two­
character code followed by any parameter'S required by 
that command. When 8273 interrupts occur, the source 
of the interrupt is displayed along with any results 
associated with it. To gain a flavor of how the user/pro­
gram interface operates, a sample output is shown in 
Figure 43. The 8273 program prompt character is a "- " 
and user inputs are underlined. 

The "SO 05" implements the Set Operating Mode com­
mand with a parameter of 05H. This sets the Buffer and 
Flag Stream modes. "5501" sets the 8273 in NRZI mode 
using the Set Serial I/O Mode command. The next com­
mand specifies General Receiver with a receiver buffer 
size of 0100H bytes(Bo = 00, B, = 01). The "TF" com­
mand causes the 8273 to transmit a frame containing an 
address field of C2H and control field of 11H. The infor­
mation field is 001122. The "TF" command has a special 
format. The Lo and L, parameters are computed from the 
number of information field bytes entered. 

After the TF command is entered, the 8273 transmits the 
frame (assuming that the modem protocol is observed). 
After the closing flag, the 8273 interrupts the 8085. The 
8085 reads the interrupt results and places them in a 
buffer. The software examines this buffer for new 
results and if new results exist, the source of the inter­
rupt is displayed along with the results. 

In this example, the ODH result indicates a Frame Com­
plete interrupt. There is only one result for a transmitter 
interrupt, the interrupt's trailing zero results were in­
cluded to simplify programming. 

The next event is a frame reception. The interrupt 
results are displayed in the order read from the 8273. 
The EOH indicates a General Receive Interrupt with the 
last byte of the information field received on an 8-bit 
boundary. The 03 00 (Ro, R,) results show that there are 
3H bytes of information field received. The remaining 
two results indicate that the received frame had a C2H 
address field and a 34H control field. The 3 bytes of in­
formation field are displayed on the next line. 

8273 MONITOR Vl.2 

JQ...Qi 
- 5501 
-~ 
- TFC211 001122 

TxlNT - 00 00 00 00 00 

RxlNT - EO 03 00 C2 34 
FF EE 00 

Figure 43. Sample 8273 Monitor I/O 

2-296 

Figures 44 through 51 show the flowcharts used for the 
8273 program development. The actual program listing 
is included as Appendix A. Figure 44 is the main status 
poll loop. After all devices are initialized and a prompt 
character displayed, a loop is entered at LOOPIT. This 
loop checks for a change of status in the result buffer or 
if a keyboard character has been received by the 8251 or 
if a poll frame has been received. If any of these condi­
tions are met, the program branches to the appropriate 
routine. Otherwise, the loop is traversed again. 
The result buffer is implemented as a 255-byte circular 
buffer with two pointers: CNADR and LDADR. CNADR is 
the console pointer. It points to the next result to be 
displayed LDADR is the load pointer. It points to the 
next empty position in the buffer into which the inter­
rupt handler places the next result. The s.ame buffer Is 
used for both transmitter and receiver results. LOOPIT 
examines these pOinters to detect when CNADR is not 
equal to LDADR indicating that the buffer contains 
results which have not been displayed. When this oc­
curs, the program branches to the DISPLY routine. 

DISPLY determines the source of the undisplayed 
results by testing the first result. This first result is 
necessarily the interrupt result code. If this result is 
OCH or greater, the result is from a transmitter interrupt. 
Otherwise It is from a receiver source. The source of the 
result code is then displayed on the console along with 
the next four results from the buffer. If the source was a 
transmitter interrupt, the routine merely repoints the 
pointer CNADR and returns to LOOPIT. For a receiver 
source, the receiver data buffer is displayed in addition 
to the receiver interrupt results before returning to 
LOOPIT. 

START----I 

CMOREC ----I 1--_,-_-' 

LOOPIT ---+J--I 

Figure 44. Main Statu. Poll Loop 

AFN-00611A 



APPLICATIONS 

READ AND DISPLAY 
,REMAINI,NG 
RESULTS 

READ AND DISPLAY 
REMAINING 
RESULTS 

Figure 45. DISPL Y Subroutine -------

Figure 48. GETCMD Subroutin" 

2·297 

Figure 47. TF Subroutine 

Figure 48. TxPOL Subroutine 

PARAMETER #2 

PARAMETER #1 

COMMAND 

B _I /I OF PARAMETERS I 

Figure 49. CO.MM'Subroutlne with' Command Bulter Format 

AFN-00611A 



APPLICATIONS 

CHECK IF RESULTS 
WILL FILL RESULT 
BUFFER 

READ RESULTS 
AND PLACE IN 
RESULT BUFFER 

EXIT TO 
MONITOR 

Figure 50. Txl (Transmitter Interrupt) Routine 

If the result buffer pOinters indicate an empty buffer, the 
8251A is polled for a keyboard character. If the 8251 has 
a character, GETCMD is called. There the character is 
read and checked if legal. Illegal characters simply 
cause a reprompt. Legal characters indicate the start of 
a command input. Most commands are organized as two 
characters signifying the command action; I.e., GR -
General Receive. The software recognizes the two char­
acter command code and takes the appropriate action. 
For non-Transmit type commands, the hex equivalent of 
the command is placed in the C register and the number 
of parameters associated with that command is placed 
in the B register. The program then branches to the 
COMM routine. 

The COMM routine builds the command buffer by 
reading the required number of parameters from the 
keyboard and placing them at the buffer pOinted at by 
CMDBUF. The routine at COMM2 then issues this com­
mand buffer to the 8273. 

If a Transmit type command is specified, the command 
buffer is set up similarly to the the COMM routine; 
however, since the information field data is entered 
from the keyboard, an intermediate routine, TF, is 
called. TF loads the transmit data buffer pOinted at by 
TxBUF. It counts the number of data bytes entered and 
loads this number into the command buffer as Lo, 
Ll . The command is then issued to the 8273 by jumping 
to CMDOUT. 

One command does not directly result in a command be· 
ing issued to the 8273. This command, Z, operates a 
software flip-flop which selects whether the software 
will respond automatically to received polling frames. If 

the Poll-Response mode is selected, the prompt 
character is changed to a '+ '. If a frame is received 
which contains a prearranged poll control field, the 
memory location POLIN is made nonzero by the receiver 
interrupt handler. LOOPIT examines this location and if 
it is nonzero, causes a branch to the TxPOL routine. The 
TxPOL routine clears POLIN, sets a pointer to a special 
command buffer at CMDBUF1, arid issues.the·command 
by way of the COMM2 entry in the COMM routine. The 
special command buffer contains the appropriate 
response frame for the poll frame received. These ac­
tions only occur when the Z command has changed the 
prompt to a '+ '. If the prompt is normal '-', poll ing. 
frames are displayed as normal frames and no response 
is transmitted. The Poll-Response mode was used dur­
ing the IBM tests. 

CHECK IF RESULTS 
WILL FILL RESULT 
BUFFER 

READ RESULTS AND 
PLACE IN RESULT 
BUFFER 

~EXITTO 
~ -MONITOR 

Figure 51. Rxl (Recevler Interrupt) Routine 

2-298 AFN.Q0611A 



APPLIUA-IIU_N::i 

The final two software routines are the transmitter and 
receiver, interrupt handlers. The transmit interrupt 
handler, Txl, simply saves the registers on the stack and 
checks if loading the result buffer will fill it. If the result 
buffer will overfill, the program is exited and control is 
passed to the SDK-85 monitor. If not, the results are 
read. from the TxllR register and placed in the result buf' 
fer at LDADR. The DMA pOinters are then reset, the 
registers restored, and interrupts enabled. Execution 
then returns to the pre-interrupt location. 

The receiver Interrupt handler, Rxl, is only slightly more 
complex. As in Txl, the registers are saved and the 
possibility of overfilling the result buffer is examined. If 
the result buffer is not· full, the results are read from 
RxllR and piaCed1n the buffei'. At this poinfthe prompt 
character is examined to see if the Poll-Response mode 
is selected. If so, the control field is compared with two 
possible polling control fields. If there is a match, the 

speCial command buffer is loaded and the poll indicator, 
POLIN, is made nonzero. If no match occurred, no action 
is taken: Finally, the receiver DMA buffer pOinters are 
reset, the processor status restored, and interrupts are 
enabled. The RET instruction returns execution to the 
pre-interrupt location. 

This completes the discussion of the 8273/8085 system 
design. -

CONCLUSION 

This application note has covered the 8273 in some 
detail. The simple and low cost loop configuration was 
exploreQ. And an 8273/8085 system was presented as a 
sample design illustrating the DMA/interrupt-driven in­
terface. It is hoped that the major features of the 8273, 
namely the frame-level command structure and the 
Digital Phase Locked Loop, have been shown to be a 
valuable asset in an SDLe system design. 

2,-299. AFN.Q0611A 



APPLICATIONS 

APPENDIX 

2-300 AFN-00611A 



APPLICATIONS 

APPENDIX A 

ASI'IS0 : Fi: RA'r'Tn. SRC 

ISI5-II 0089/8085 I1ACRO ASSEI'IBLER, X100 t100ULE PAGE 1 

LOC OBJ 

!lOO9 

SEQ SOURCE STATEMENT 

1 $OOPAGING t1OO85 NOCONl) 
2 TRUE EOO OOH 
3 ; 
4 TRUE1 EOO OOH 
5 ; 
6DEM EOO OOH 
7 ; 
8 i 

9 i 

; 99 FOR RA'r'THEON 
;FF FOR SELF-TEST 
; 99 FOR NORt1AL RESPONSE 
i FF FOR LOOP RESPONSE 
i 99 FOR NO DOO 
i FF FOR DEMO 

19 ; GENERAL 8273 MONITOR WITH RAYTHEON POLL MODE ADDED 
11; 
17 i 

18 ; 
19 ; COI'II'IANI) SUPPORTED ARE:Rs ., RESET 'SERIAL 1/0 !'lODE 
29 ; SS - SET SERIAL 1/0 t100E 
21 ; RO - RESET OPERATING HODE 
22 ; SO - SET OPERATING I'IOOE 
23 i RD - RECEIVER D IgABLE 
24 ; GR - GENERAL RECEIVE 
25 i SR - SELECTIYE RECEIVE 
26 ; TF - TRANSI'IIT FRAI1E 
27 ; AF - ABORT FRAI'IE 
28 ; SP - SET PORT B 
29 ; RP - RESET PORT B 
39 ; RB - RESET lINE BIT DELAY (PAR = 7F) 

31 ; 58 - SET ONE BIT DELAY (PAR = 89) 
32 ; SL - SELECTIVE LOOP RECEIVE 
:n ; TL - TRANSI'IIT LOOP 
34 ; Z - CHANGE ItODES FLIP IFLOP 
lSi 

49; 
41 ; NOTE: 'SET' COI'IIfH)5 1I1PLEHENT LOGICAL 'OR' FUNCTIONS 
42 ; 'RESET' CO/IR[IS II'IPLEI'IENT LOGICAL 'AND' FUNCTIONS 
43 ; 

44 ; *-**********************-***************-~**-* 
45 ; 
46 ; BUFFERED MODE PlUST BE SELECTED WHEN SELECTIVE RECEIVE IS USED. 
47 ; 
48 ; COIltlAND FORIflT IS: 'COItfANI) (2 L TRS), 'PAR. 11' 'PAR. 12' ETC. 
49 ; 
59 i THE TRANSI'IIT FRAI1E COItRID FORI'IfIT IS: 'TF' 'A"C' 'BUFFER CONTENTS'. 
51 i NO LENGTH COUNT IS NEEDED. BUFFER CONTENTS IS Eta[) WITH A CR. 
52; 
53 ; *-********-***********-* ••••••••• **************-******---
54; 
55 i POLLED IIOOE: WHEN POLLED MODE IS SELECTED (DEI«lTED BY A '+' PROI'IPT>, IF 

2·301 ~1" 



APPLICATIONS 

56! A SNRM-P OR RR(8H IS RECEIVED, A RESPONSE FRAI£ OF NSA-F 
57 i OR RR(9)-F IS TRANSHITTED. OTHER COHI1fINDS OPERATE NORI1ALLY. 
62 i 
6l i*************************************************************************** 
64! 
65 ; am EQUATES 
66 ; 

8998 67 STAm EQU 98H ; STATUS REGISTER 
0090 68 COtlH7l EQl1 98H iCOMKAND REGISTER 
8991 69 PARI17l EQU 91H ;PARAHETER REGISTER 
0091 78 RESL73 EQU 91H ; RESULT REGISTER 
8892 71 TXIR7l EQU 92H ; TX INTERRUPT RESUI.. T REGISTER 
009l 72 RXIR7l EQl1 9lH ; RX INTERRUPT RESUI.. T REGISTER 
8892 7l TE5T7l EQU 92H iTEST MODE REGISTER 
8828 74 CPBF EQU 20H ; PARAMETER BUFFER FULL BIT 
8884 75 TXINT EQU 04H ; TX INTERRUPT BIT IN STATUS REGISTER 
0888 76 RXINT EQU 8SH ; RX INTERRUPT BIT IN STATUS REGISTER 
8801 7( TXIRA EQU 81H i TX INT RESULT AYAILABLE BIT 
0082 78 RXIRA EQU 82H iRX INT RESULT AVAILABLE BIT 

79i 
S0 i 825l EQUATES 
81 ; 

8898 82 HOOE5l EQU 9BH ; 825l HOOE IolORI) REGISTER 
009C 8l CNT05l EQU 9CH ; COUNTER 9 REGISTER 
889D 84 CNT15l EQU 9I)H ; COUNTER 1 REGISTER 
009E 85 CNT25l EQU 9EH ; COUNTER 2 REGISTER 
088C 86 COBR EQU 008CH ; CONSOLE 8AU() RATE (2488) 
8916 87 "OCNT0 EQU l6H ; HOOE FOR COUNTER 8 
89B6 88 I1OCNT2 EQU 8B6H ; I10DE FOR COUNTER 2 
2917 89 LKBR1 EQU 2817H i 827l BfIUI) RATE LS8 ADR 
2818 98 LKBR2 EQlI 291SH ; 827l BAIJ) RATE I15B ADR 

91 ; 
92 ; BAUI) RATE TABLE: BAUI) RATE LKBR1 LKBR2 
9l; ********* ***** ***** 94; 9699 2E 88 
95; 4888 5C 89 
96; 2488 B9 88 
97 ; 1299 72 91 
98; 688 E5 82 
99; 189 C9 85 

188 ; 
101; 
182 ; 8257 EQUATES 
18l; 

90A8 194 11OOE57 EQU 8A8H ; 8257 I100E PORT 
88A9 185 CH9ADR EQU 0A9H ; CH9 (RX) ADR REGISTER 
98A1 196 CH9TC EQU 8A1H ; CHe TERlUNAI.. COUNT REGISTER 
98A2 197 CH1Af)R EQU IlA2H ; CH1 (IX) ADR REGISTER 
98Al 198 CHiTC EQU BAlH ; CHi TERI'IINAL COUNT REGISTER 
98A8 199 STAT57 EQU 8A8H j STATUS REGISTER 
8289 119 RXBlF EQU 8288H j RX BlFFER START ADDRESS 
8999 111 TXBUF EQU 8989H j TX BlFFER START ADDRESS 
Il962 112 ()R()I1A EQU 62H j DISABLE RX ()IfA CIfH£l., IX STILL ~ 
41FF ill RXTC EQU 41FFH j TERI1IIR. COUNT AND I10DE FOR RX CHfH£I. 
886l 114 ENDI1A EQU 6lH ; EtfIBLE BOTH IX fiNI) RX CIM£LS-EXT. lilt TX 5T(p 

8961 115 DTDI1A EQU 61H jDISABLE TX DI1A CIRfEL RX STILL ON 
81FF 116 mc EQIJ 81FFH j TERI1INAI.. COUNT fIND IIOOE FOR TX CHfN£I.. 

117 i 

2-302 -,'/\ 



APPLICATIONS 

118 .; 825111 EQUATES 
119 ; 

0089 120 CNTL51 EQIJ S9H ; CONTROL WORD REGISTER 
0089 121 STATS1 EQIJ 89H ; STATUS REGISTER 
0088 122 nID51 EQU 88H ; f,>( DATA REGISTER 
0088 123 RXD51 EQU asH ; RX DATA REGISTER 
00CE 124 MDES1 EQU 0CEH ; !'lODE 16X, 2 STOP, NO PARITY 
0027 125 CM051 EQU 27H ; Cot1I'lAND, ENABLE TX&RX 
0002 126RD'r' EQU 02H ;RXRDY BIT 

127 ; 
12S ; !'IONITOR SUBROUTINE EQUATES 
129 ; 

061F 130 GETCH EQIJ 061FH i GET CHR FROI'I KEYBOARD, ASCII IN CH 
05F8 131 ECHO EQIJ 05FSH,. ; ECHO CHR TO DISPLA'r' 
07SE 13211ALOO EQU 075EH i CHECK IF IIAUD DIGIT, CARRY SET IF IIAUD 
05BB 133 CNIIBN EQU 05BBH iCONllERTS ASCII TO HEX 
05EB 134 CRLF EQU 05EBH ; DISPLAY CR, fENCE LF TOO 
06C7 135 NI'IOUT EQU 06C7H j CONYERT BYTE TO 2 ASCII CHR fill) DISPLAY 

136 ; 
137 j MISC EQUATES 
B8 ; 

2OC0 139 STKSRT EQU 20CBH ; STACK START 
0003 140 CHTLC EQU 03H iCNTL-G·EQUIYALENT 
0008 141 !'IONTOR EQU 0008H i MONITOR 
2000 142 CMDBUF EQU 200BH i START OF COItIAND BUFFER 
2020 143 CMOBF1 EQU 2020H ; POLL /'lODE SPECIAL TX COIfIfIND BUFFER 
000D 144 CR EQU 0DH ; ASCII CR 
000A 145 LF EQU 0AH ; ASCII LF 
2004 146 RST75 EQU 2004H ; RST7 .. 5 JUMP ADDRESS 
20CE 147 RST65 EQIJ 20CEH ; RST6. 5 JUI1P rooRESS 
2010 148 LDAM EQU 201BH ; RESULT BUFFER LOAD POINTER STORAGE 
2013 149 CNADR EQU 2013H ; RESULT BUFFER CONSOLE POINTER STORAGE 
2800 150 RESBUF EQU 2809H ; RESULT BUFFER START - 255 BYTES 
0093 151 SNRI1P EQIJ 93H ; SNRI'I-P CONTROl. CODE 
0011 152 RR0P EQU 11H ; RR(0)-P CONTROL CODE 
0073 153 NSAF EQIJ 73H iNSA-F CONTROL CODE 
0011 154 RR0F EQU 11H ; RR(0H CONTROL CODE 
2015 155 PRMPT EQU 2015H ; PRMPT STORAGE 
2016 156 POLIN EQU 2016H i P<LL /'lODE SELECTION INDICATOR 
2027 157 DEI'IODE EQU 2027H i DEI'IO I'IODE INDICATOR 

161 i 

162 i ***************************-_************************************ 
163 ; 
164 i RAI'I STORAGE DEF INITIONS : 
165 i LOC DEF 
166 i 

167 ; 2900-200F COI1I1AND BUFFER 
168 i 2010-2011 RESIl. T BUFFER LOAD POINTER 
169 i 2013-2014 RESULT BUFFER CONSOLE POINTER 
170 ; 2015 PROI'IPT CHARACTER STORAGE 
171 i 2016 POLL I'IlDE INHCATOR 
172 i 2017 BAlJI) RATE LSB FOR SELF-TEST 
173 ; 2018 BAUO RATE tISB FOR SELF-TEST 
1i)7 i 2019 SPARE 
179 i 2020-2926 RESPONSE COI'II1fIW BUFFER FOR POLL IfODE 
180 ; 2S00-2SFF RESULT BUFFER 
181; 
182 ; *****************-****************.*********** , ........... _ .... ,_. 

2-303 AfN.OO811A 



APPLICATIONS 

18l; 
184 ; PROGRAM STRRT 
185 ; 
186 ; INITIALIZE 8253, 8257, 8251A, AND RESET 8271 
187 ; ALSO SET NORMAL ~10DE, AND PRINT SIGNON MESSAGE 
188 ; 

esee 189 ORG 808H 
1913 

00013 31ce20 191 START: LXI SP,STKSRT ; INITIALIZE SP 
0803 3E36 192 MVI A,MOCNTe ; 8253 MODE SET 
IlOO5 D39B 193 OUT MODE53 ; 8253 MODE PORT 
0007 3A17211 194 LDA LKBR1 -' GET 8273 BAUD RATE L58 
08I1A D39C 195 OUT CNT053 ; USING COUNTER II AS BAUD RATE GEN 
000c 3A18211 196 LDA LKBR2 ; GET 82n BUAD RATE 1158 
e811F D39C 197 OUT CNT053 ; COUNTER 0 
0811 CD1AIlB 198 CALL RXDMA ; INITIALIZE 8257 RX DMA CHANNEL 
0814 CD351lB 199 CALL TXDMA ; INITIALIZE 8257 r~ DMA CHANNEL 
0817 SE01 2811 HIlI A,0iH ; OUTPUT 1 FOLLOWED BY A 9 
11819 D392 201 OUT TESTn -' TO TEST I10DE REGISTER 
13818 3EOO 282 M\lI A,OOH -' TO RESET THE 82n 
0810 D392 203 OUT TESTn 
08iF 3E2D 204 M\lI A,I'-/ .; NORMAL MODE PROMPT CHR 
0821 321528 205 STR PRMPT .' PUT IN STORAGE 
08243EOO 206 MVI A,1l8H ; TX pou. RESPONSE INDICATOR 
0826 .321628 287 STA POLIN ;0 MEANS NO SPECIAL TX 
0829 3227213 288 STA DEMODE ; CLEAR DE/'IO MODE 
082C 21R30C 212 LXI H, SIGNON ; SIGNON MESSAGE ADR 
082F CD920C 213 CALL T'r'MSG ; DISPLAY SIGNON 

214; 
215 -' MONITOR USES JUMPS IN RAM TO DIRECT INTERRUPTS 
216 ; 

0832 210420 217 LXI H,RST75 -' RST7. 5 JUMP LOCATION USED BY MONITOR 
0835 1l1000c 218 LXI B,RXI ; ADDRESS OF RX INT ROUTINE 
0838 36C3 219 I1VI 1'1.·0C3H ; LOAD 'JtoP' OPCOOE 
083A 23 2211 INX H ; INC POINTER 
083B 71 221 /'IOV M,C -' LOAD RXI LSB 
IlB3C 23 222 INX H ; INC POINTER 
08ID 79 223 PIOV I'I,B i LOAD RXI 1'158 
08SE 21CE2Il 224 LXI H..RST65 ; RST6. 5 JUMP LOCATION USED BY I'IOHITOR 
0841 01CEIlC 225 LXI B, TXI ;ADDRESS OF TX INT ROUTINE 
Il844 36C3 226 I'1VI It IlClH ; LOAD 'J/'1P' OPCOOE 
0846 23 227 INX H ; INC POINTER 
084771 228 PlOY ftC ; LOAD TXI LSB 
0S48 23 229 INX H -' INC POINTER 
084970 230 PlOY I'LB i LOAD TXI I'ISB 
0S4A 3E18 231 /1VI A,18H ; GET SET TO RESET I/fTERRUPTS 
1lB4C 30 232 S1I'1 ; RESET INTERRUPTS 
IlB4D FB 233 EI ; ENABLE· INTERRUPTS 

234; 
235 ; INITIALIZE BUFFER POINTER 
236; 
237 i 

1lB4E 210028 238 LXI H..RESBUF ; SET RESULT BlfFER POINTERS 
8851221320 239 SIU em ; RESLl T CONSOLE POINTER 
0B54 221028 249 SHlD I.DIlDR ; RESLl T LOll) POINTER 

241 ; 
242 ; MIN PROGRAII LOOP - CI£CKS FOR CIflNGE IN RESULT POINTERS., USART STATUS. 
24l; OR POLL STATUS 

2-304 AFN-00811A 



At't'LIl,;AIIUN::i 

244 ; 
8SS? CDEB85 245 CI1DREC: CALL CRLF ; DISPLAY CR 
985A JA1520 246 LDA PRHPT ; GET CURRENT PROI'1PT CHR 
0851) 4F 247 MOil C,A ,MOVE TO C 
085E CDF895 248 CALL ECHO ;DISPLAY IT 
08612A1329 249 LOOPIT: LHLD CNADR ; GET CONSOLE POINTER 
9864 7D 259 MOil A,L ; SAVE POINTER LSB 
98652A1920 251 LHLD LDADR ; GET LOAD POINTER 
8S68 lID 252 .. CMP L ;SAME L5B? 
0869 C2390A 253 JNZ DISP'f i NO, RESlLTS NEED DISPLAYING 
086C 0889 259 IN STAT51 ; YES, CHECK KEYBOARD 
986E E692 260 ANI ROY iCI-R RECEIVED? 
0879 C27D8S 261 JNZ GETCH!) ; I1U5T BE CHR SO GO GET IT 
8S73 JA1629 262 LDA POLIN ; GET POLL I1OI)E STATUS 
8S76 A7 263 . ANA A ;IS IT 9? 
8S77 . C24C09 264 JNZ TXPOL ; NO, THEN POLL OCCURRED 
8S7A C36108 265 JMP LooPIT ; YES, TRY AGAIN 

266; 
267 ; 
268 ; COMMAND RECOGNIZER ROUTINE 
269 ; 
270 ; 

8S7D CD1F06 271 GETCH!): CALL GETCH iGET CHR 
esse CDF895 272 CALL ECHO iECHO IT 
8S83 79 273 MOil ftC ; SETUP FOR COI'IPARE 
0884 FE52 274 CPI 'R' ,R? 
0886 CAAF8S 275. JZ RDWN iGET MORE 
8S89 FE53 276 CPI '5' ;S? 
9888 CAD78S 277 JZ SDWN iGETMORE 
9S8E FE47 27S CPI 'G' ;01 
8S99 CAFF8S 279 JZ GOWN ; GET MORE 
8S93 FE54 289 CPI 'T' iT? 
8S95 CA9E99 281 JZ TOWN i GET MORE 
9898 FE41 282 CPI 'A' iA? 
8S9A CA2299 283 JZ AD/oIN ; GET MORE 
0891) FE5A 284 CPI 'Z' iZ? 
089F CA3199 285 JZ CMOOE ; YES, GO CHANGE MODE 
98A2 FE03 299 CPI CNTLC iCNTL-C? 
8SA4 CA8S90 291 JZ I10NTDR ; EXIT TO tIONITDR 
08A7 SElf 292 ILLEG: MYI C, '?' ;PRINT ? 
98A9 CDF895 293 CALL ECHO ;DISPLAY IT 
98RC C3578S 294 JI1P Cl'lDREC ; LOOP FOR COI'IIIAND 

295 
9SAF CD1F06 296 RDWN: CIU GETCH i GET NEXT CHR 
9882 CDF895 297 CALL ECHO ;ECHO IT 
9885 79 29S I'IOY A,C ; SETUP FOR COt1PARE 
9886 FE4F 299 CPI '0' iO? 
98B8 CA5D99 399 JZ ROCI'ID iRO·COI'II'IfIII) 

988B FE53 381 CPI '5' is? 
98BD CA6799 382 JZ RSOO ;RS CIJII'IANI) 
~FE44 E CPI 'D' ;D? 
9SC2 CA7199 394 JZ RDOO ; RD CIJtlANl) 
98C5 FE58 385 CPI 'P' ;P? 
9SC7 CfID899 396 JZ RPCIt) ; RP COItIfN) 

I:I8CA FE52 387 CPI 'R' ;R? 
98CC CfI9998 398 JZ STIRT iSTART OYER 
98CF FE42 399 CPI 'B' ;B? 
118D1 CA7B99 319 JZ RBCIII) iRB COItRI) 

2·305 AfN.OOI11A 



APPLICATIONS 

081)4 C1A798 111 JI1P ILLEG i ILLEGAL TRY AGAIN 
312 

981)7 C01F06 313 SOWN: CALL GETCH i GET NEXT CHR 
080A COF895 114 CALL ECHO i ECHO IT 
0800 78 liS HOY A,B ; SETUP FOR COI'IPflRE 
981)( FE4F 116 CPI '0' iO? 
98E8 CAA689 117 JZ SOCI'ID i SO COtII'IANI) 
08E3 FE51 318 CPI '5' is? 
08E5 CAB089 319 JZ SSCIID i SS CIltIfH) 
98E8FE52 320 CPI 'R' iR? 
98EA CABA89 321 JZ SRCI'ID i SR COtII'f1NI) 

98E0 FE50 322 CPI 'P' ;P? 
08EF CAE289 323 JZ SPCHD iSPCOItIANI) 
98F2 FE42 324 CPI 'B' iB? 
98F4 CA8589 325 JZ SBCIID iSBCOItIANI) 
88F7 FE4C 326 CPI 'L' iL? 
98F9 CA8F89 327 JZ 5LC1'ID iSLCOHI'IAND 
98FC C3A798 328 JIiP ILLEG i ILLEGAL TRY AGAIN 

329 
08FF C01F06 338 GDWN: CALL GETCH i GET NEXT CHR 
0982 COF885 331 CALL ECHO iECHO IT 
8985 78 312 HOV fLB ; SETUP FOR COIfIfIRE 
8906 fE52 m CPI 'R' iR? 
8908 CAC409 334 JZ GRCI1D i GR COI'IItAND 
098B C3A798 335 JI1P ILLEG i ILLEGAL, TRY AGAIN 

336 
898E CD1F06 337 TOWN: CALL GETCH i GET NEXT CIR 
8911 CDFees 338 CALL ECHO iECHO IT 
8914 78 339 I'IOV A,B i SETUP FOR COI1PARE 
8915 FE46 340 CPI 'F' iF? 
8917 CAEC09 341 JZ TFCII) iTFCIJII'IANI) 
891A FE4C 342 CPI 'L' iL? 
891C CA9909 343 JZ TLClt) i TL COIt1AND 
891FC3A798 344 JI1P ILLEG i ILLEGAL TRY AGAIN 

345 
8922 CD1F86 346 ROlIN: CALL GETCH i GET NEXT CHR 
8925 CDF805 347 CALL ECHO iECHO IT 
8928 78 348 I'IOV A,B i SETUP FOR COI'ffIRE 
0929 FE46 349 CPI 'F' iF? 
892B CACE89 358 JZ AFCI'ID ;AFCOItIANI) 
892E C3A788 351 JI1P ILLEG i ILLeR, TRY AGAIN 

352 ; 
353 i RESET PCll IIODE RESmISE - CIIlNGE PRMT CHR AS INDICATOR 
354 i 

8911 F3 355 CfIOOE: DI i DISABlE INTERRUPTS 
8932 3A1528 356 LOA PRItPT i GET CURRENT PRMT 
8935 FE2D 357 CPI '-' i NORI1AL IIODE? 
0937 C24309 358 JHZ sw i NO, CHANGE IT 
093A 3E2B 359 !lVI II, '+' i NEW PROI'IPT 
893C 321528 368 STA PRltPT i STORE NEW PROI'IPT 
093F FB 365 EI i ENABLE INTERRUPTS 
0948 C35788 366 JIIP CII>REC i RETURN TO LO!P 
8943 !E2D 367 SW: IIYI II, I_I i NEW PRlJfT CIR 
0945321528 368 STA PRItPT iSTORE IT 
8948 FB 369 EI i ENABLE INTERRUPTS 
8949 C35788 378 JItP OI>REC i RE1l.IRN TO LIXF 

371 i 

372 i 

2·306 AfN.OO811A 



094C 3E00 
894E 321620 
9951216198 
8954 E5 
0955 0684 
0957 212020 
995A C3FF0A 

995[) 0601 
995F 1lE51 
0961 CDE50A 
0964 C35798 

09670601 
0969 1lE60 
9968 CDE59A 
996E C35798 

9971 9699 
9973 BEC5 
9975 CDE59A 
9978 C35798 

9978 9601 
9971> 0E64 
997F CDE59A 
8982 C35798 

0985 9691 
99879EA4 
9989 CDE59A 
898C C35798 

APPLICATI.ONS 

373 ; TRANSttIT ANSWER TO POLL SETUP 
374 ; 
382 Tl(p0i..: IIYI 
384 STA 

A,98H 
POLIN· 
H,LOOPIT 
H 

.. ; CLEAR. POLL INDICATOR 
; INDICATOR AM 

385 . LXI 
386 PUSH 
387 IIYI 
388 LXI 
389 .ntP 
399 ; 
391 i 

392 ; 

B, Il4H 
It CI1DBF1 
COI1H2 

393 ; COI'1IIAND 1I1PLEI'IENTING ROUTINES 
394 ; 
395; 
396 ; RO - RESET OPERATING l'/OOE 
397; 
398 ROCHD: MYI 
399 I'IYI 
400 CALL 
401 .ntP 
492 i 

B,91H 
C,51H 
COrti 
Cl'lDREC 

. i SETUP STf!CK FOR COIftIN) OUTPUT 
; PUT RETURN TO Cl'lDREC ON SM:K 
i GET I OF PARAI1ETERS REAI>Y 
; POINT TO SPECIfL BlfFER . 
; JUI'IP TO Cm1fINI) OUTPUTER 

; I OF PARAI'IETERS 
;CmtAND 
; GET PARMTERS AND ISSUE COI'IIfINI) 

. ; GET NEXT COItIANI) 

483 ; R5 - RESET SERIAL 1/0 I10DE COItfANI) 
484. ; 
495 RSaII): IIVI 
406 PlYI 
487 CALL 
488 JI1P 
489 ; 
419 ; RD - RECEIVER DISABLE COItIANI) 

411 ; 
412 ROCItI): IIYI 
413 IIYI 
414 CALL 
415 JMI' 
416 ; 

B,99H 
C,9C5H 
COI'II 
OIDREC 

; I OF PARAI'IETERS 
i COIIIfINI) 

; GET PARAllETERS fIN) ISSUE COIftH) 
; GET NEXT COIIfINI) 

j I OF PARft1ETERS 
; COtIIfANI) 

; ISSUE COI'II'IAN) 
; GET NEXT C\JNN) 

417 i RB - RESET ONE BIT DELAY COI'IfIN[) 
418 ; 
419 RBCII): PlYI 
429 IIYI 
421 CfLL 
422 .ntP 
423 j 

B,91H 
C,64H 
COlt! 
CI'I)REC 

424 ; 58 - SET Off: BIT DElAY COItIfIN) 

425 ; 
426 SBCiID: PlYI B,81M 
427 PlYI ~9A4H 
428 CALL COllI 
429 JI1P CI'IlREC 
439 ; 

. ; I OF PfIRAI'IETERS 
jcatlfH) 

; GET PARAIIETER AND ISSUE OHRI) 

j GET i£XT catIfIN) 

j I OF PllRAllETERS 
; COI'IIffII) 

i GET PfIRfIIETER fIN) ISSUE COIRI) 

; GET NEXT C€ItRI) 

..... 431 ; 51. - SElECTIVE LOOP RECEIVE ctIiPtFN) 

432 ; 
433 51.CI'I>: PlYI ; I OF PfIRAI£TERES 
434 PlYI ;rotRI). . 

435 CALL ;GET PiRIE'I'ERS l1li) lSSIE.CIJMI) 
436 JI'IP ; GET NEXT CIJMI) . 
437 ; 
438 ; TL - TRfINStIIT LIXf COIRI) 

2·307 



APPLICATIONS 

439 ; 
i!999 218829 449 TLCI'ID: LXI H,CI1DBUF ; SET COHI1AN) BUFFER PO INTER 
999C 9692 441 MYI B,92H ; LOAD PARAMETER COUNTER 
999E 36CA 442 I1VI M,9CAH ; LOAD COI1I1AND INTO BUFFER 
99A9 219229 443 LXI H,CHDBUF+2 ; POINT AT ADR AND CNTL POSITIONS 
99A3 ClF699 444 JMP TFCMD1 ; FINISH OFF COMMAND IN TF ROUTINE 

445 ; 
446 ; 50 - SET OPERATING tIODE COMMAND 
447 ; 

99A6 0691 448 SOCII[): I'IVI B,91H ; I OF PARAMETERS 
99A89m 449 111/1 C,91H ; COI'I/'IANi 
99AA CDE59A 459 CALL CO"" i GET PARAIfETER AND ISSUE COItIANI) 
99AD C35798 451 JMP CmoREC ; GET NEXT COI'II'IANI) 

452 ; 
453 iSS - SET SERIAL I/O COItfANI) 
454 ; 

9989 9691 455 S5CI'ID: !'IVI B,91H ; I OF PARAMETERS 
9982 9EA9 456 PlY! C,9A9H ; COMMAND 
9984 CDE59A 457 CALL COPtPl ; GET PARAMETER AND ISSUE COIIMANO 
9987C35798 458 JI1P CI1DREC ; GET NEXT COMI'IAND 

459 ; 
469 ; SR - SELECT! YE RECElYE COItI'IfH) 

461; 
99BA 9694 462 SRCI'II): I'IVI B,94H ; I OF PARAltETERS 
99BC 9EC1 463 I'IVI C,9C1H ; COI'II'IANI) 
99BE CDE59A 464 CALL COI1foI i GET PARAI'IETERS AN[) ISSUE COI9IflN[) 
99C1 C35798 465 JI1P CI1DREC ; GET NEXT COItIANI) 

466 i 

467 i ~ - GENERAL RECEIYE COHfoIAN) 
468 i 

99C4 9692 469 GRCI1D: 11111 8,9211 i t«l PARAI'IETERS 
99C69EC9 479 MYI C,9CIlH ; COI'IIAII) 
99C8 CDE59A 471 CALL COMPI ; ISSUE COI'IIIANI) 
99CB C35798 472 JMP CI1DREC i GET NEXT COItIANI) 

473 ; 
474 i AF - ABORT FRAI'IE COMf'IANI) 
475 ; 

99CE 9609 476 AFCI1D: 11111 B,89H ; NO PARAI£TERS 
991)9 IECC 477 MYI C,9CCH ; CCft1AII) 

99D2 CDE58A 478 CfU COMPI ; ISSUE C(IftIII) 

99D5 C35788 479 JI1P Cl'lDREC ; GET NEXT Cl»tIfN) 

489 ; 
481 ; RP - RESET PORT CmtfN) 
482 ; 

991)8 Il691 483 RPCtID: MYI B,91H ; I OF PflRAl'ETERS 
99DA 1E63 484 PlYI C,6JH ; COIItANI) 

99DC CDE58fI 485 CALL COl'll! ; GET PARfIETER IN) ISSIE COIIIfIN) 

99DF C35798 486 JI1P CI'IOREC ; GET I£XT COII1AII) 

487 ; 
488 ; SP - SET PlRT cotIfN) 

489 ; 
99E2 Il691 499 SPCI1D: I1YI B,91H ; I OF PfI1fII£TERS 
99E4 1lEA3 491 11111 C,1lAJIf ;CO/IRI) 

99E6 CDE59A 492 CfLL COllI! ; GET PARAI£TER fIND ISSlE C!IIftf) 

.9 C35788 493 JI1P CI1DREC ; GET NEX COIIRI) 

4!H; 
495 ; TF - TRfINSfIIT FRAtE COIIM) 

496 ; 

2-308 AFN-00811A 



APPLICATIONS 

e9EC 210029 497 TFOlD: LXI H, CIIDIlI.F i SET COItfAND BUFFER POINTER 
09EF 8602 498 ItVI B,Q2H ; LOAD PARAI£TER COUNTER 
09F116CB 499 ""'I H,0CBH i LOAD COJtIANI) INTO BUFFER 
991=3 219220 see LXI II, CItDBLIF+2 i POINT AT ADR AN> CNTL POSITIONS 
99F6 7B . 501 TFCI'I)1: HOY A,B i TEST PARAIETER· COUNT 
99F7 A7 502 ANA A .; IS IT 0? 
09FB CAe78A 583 12 TBUFL i YES, LOAD TX DATA BUFFER 
99FB CDAD9A 594 CALL PAIUN iGET ~TER 
09FE DAA798 595 JC ILLEG i ILLEGAL CHR RETURNED 
8A0123 586 INX H i III: COI1I'IAND BUFFER POINTER 
8A02 95 597 OCR B ; DEC PARfli'lETER COUNTER 
8A03 77 50S HOY /'LA i LOAD PARAlETER INTO CMlAND BUFFER 
8A04 ClF699 599 JI1P TFCHD1 iGETNEXTPARAI'IETER 

519 
9A07219BB0 511 TBUFL: LXI II, TXBUF i LOAD TX DATA BUFFER POINTER 
9A0A 910090 512 LXI B,980IlH i CLEAR BC - BYTE COUNTER 
9A0D C5 513 TBlfL1: PUSH B i SAVE BYTE COUNTER 
9A9E CDAD9A 514 CALL PARIN i GET DATA. ALIAS PARAHETER 
9A11 DA1B9A· 515 JC ENOCHK i HAYSE END IF ILLEGAl... 
9A14 77 516 HOY H,A iLOAD DATA BYTE INTO BUFFER 
9A15 23 517 INX H i INC BUFFER POINTER 
9A16 C1 518 POP B i RESTORE BYTE COUNTER 
9A1793 519 INX B i INC BYTE COUNTER 
9A1B C3900A 529 JI1P TBUFL1 i GET NEXT DATA 
9A1B FEIlD 521 ENDCHK: CPI CR i RETURNED ILLEGR. CHR CR? 
9A1D CA249A 522 12 TBUFFL i YES, THEN TX BUFFER FULL 
9A29 C1 523 POP B i RESTORE B TO SflIIE STACK 
9A21C3A798 524 JI1P ILLEG i ILLEGR. CHR 
9A24 C1 525 TBUFFL: POP B i RESTORE BYTE COUNTER 
9A25210120 526 LXI H,CHDBUF+1 i POINT INTO COI1HAND BUFFER 
9A2B 71 527 HOY H,C i STORE BYTE COUNT LSB 
9A2923 528 INX H i INC POINTER 
9A2A 70 529 HOY H,B i STORE BYTE COUNT HSB 
IIA2B 9694 539 I'IVI B,\l4H i LOAD PARAHETER COUNT INTO B 
9A2D ID68A 531 LXI II, TFRET i GET RETtRN fIDR FOR THIS ROUTINE 
9A30 C5 532 PUSH B iPUSH OOCE 
8AJ1 E3 m XTHL i PUT RETURN ON STACK 
8A32 C5 534 PUSH B ; PUSH IT SO CHDOUT CAN USE IT 
9A33 C3FB9A 5J5 JHP CI'IDOUT i ISSUE COI'IHfIN) 

9A36 C35798 516 TFRET: JHP CHDREC i GET NEXT CMIfIN) 
537 i 

53S i 

539 iROUTIlE TO DISPLAY RESllT IN RESULT BUFFER lIEN LOAD AN) CONSOLE 
549 i POINTERS ARE DIFFERENT. 
541; 
542 i 

9A391695 543 DISPY: HYI D,85H ;D IS RESULT COlMER 
9A3B 2A1329 544 LHLD r.tfIDR i GET CONSOLE POINTER 
9A3E E5 545 PUSH H i SAVE IT 
8A3F 7E 546 HOY A.H i GET RES\..l T IC 
IlA48 E61F 547 ANI 1FH i LIHIT TO RES\.l T COOE 
9A42 FEIlC 54S CPI IlCH ; TEST IF RX OR TX SlUCE 
9A44 DfI620A 549 JC Rl(!DC ; CARRY, THEN RX 5W!CE 
9A4721C39C 558 TXSORC: LXI II, TXIIISG ; TX INT IIESSfIGE 
9A4A CD92K 551 CfLL TYIISG iDISPLAY IT 
9fI4I) E1 552 DISPY2: POP H ; RESTtr!E CH(lE POINTER 
9A4E 7E 553 D ISPY1: lIlY A." iGET RESULT 
9A4F CDC7116 554 CfLL tftIUT i CIJNERT AND DISPLAY 

2-309 AfN.OOIllA 



APPLICATIONS. 

8A52 0E20 555 I'IVI CI' I ;SP CHR 
0fl54 CDF895 556 CALL ECHO ; DISPLAY IT 
0A57 2C 557 INR L ,; INC BUFFER POI NTER 
0fl58 15 558 DCR D ; DEC RESULT COUNTER 
8A59 C24E8A 559 JNZ DISPY1 ; NOT DONE 
0fl5C 221320 568 SHLD CNADR i UPDATE CONSOLE POINTER 
9A5F C3570S 561 JMP CI'IDREC i RETURN TO LOOP 

562 ; 
563 ; 
564 ; RECEIVER SOURCE - DISPLAY RESUI. TS ANI) RECE't'IE BUFFER CONTENTS 
565 ; 
566 ; 

8A62 21B89C 567 RXSORC: LXI H,RXIHSG ; RX INT MESSAGE AOR 
8A65 CD920C 56S CALL T~ ; DISPLAY I'IESSAGE 
8A68 El 569 POP H ; RESTORE COIIS(lE POINTER 
8A69 7E 579 RXS1: HOV A,I'! ; RETRIE't'E RESUI. T FRIl1 BUFFER 
0A6A CDC706 571 CALL NI'IOUT ,CONVERT ANI) DISPLAY IT 
8A6D 9E20 572 1M CJI I , ; ASCII SP 
0A6F CDF895 57J CALL ECHO ;DISPLAY IT 
0A72 2C 574 INR L ,INC CONSOLE POINTER 
8A7J 15 575 DCR D ,DEC RESULT COUNTER 
8A74 7A 576 I'IOV A,D ,GET SET TO TEST COUNTER 
0A75 FE94 577 CPI 84M ;IS THE RESUI. T RIl? 
8A77 CAA28A 578 JZ RePT ; YES, GO SAVE IT 
8A?A FE93 579 CPI 9lH i IS THE RESULT R1? 
0A7C CAA78A 588 JZ RiPT ; YES, GO SAVE IT 
9A7F A7 581 RXS2: ANA A ,TEST RESUI.. T COUNTER 
8A89C2690A 582 JHZ RXS1 ,NOT DONE YET, GET NEXT RESULT 
8A83221329 583 SHLD CNAOR ,DONE, SO UPDATE CONSOLE POINTER 
9A86 CDEB85 584 CALL CRLF ; DISPLAY CR 
9A89210082 585 LXI H,RXBUF ,POINT AT RX BLfFER 
8ASC Cl 586 POP B ,RETRIE't'E RECEIVED COI.M' 
8A8D 78 587 RXSl: I10Y A,B ,IS COONT 0? 
8A8EBl 588 ORA C 
8ASF CA5798 589 JZ CI1DREC ,YES, GO BACK TO LOOP 
0A92 7E 599 I'IOV A,I'! ,NO, GET CHR 
0A93 C5 591 PUSH B ,SAVE ac 
0A94 CDC706 592 CALL NI'IOOT ,CCIlYERT AND DISPLAY CHR 
0A979E29 593 I'fIIl C}' I' ,ASCII SP 
9A99 CDF895 594 CALL ECHO ; DISPLAY IT TO SEPARATE DATA 
8A9C e1 595 POP B ; RESTORE Be 
8A9D 98 596 DCX a ,DEC COUNT 
8A9E 21 597 INX H ,INC POINTER 
9A9F Cl8D9A 598 JI'IP RXSl ,GET!£XT OR 

599 
1lAA2 4E 689 RePT: I'IOV e,1'! ,GET R9 FOR RESUI. T BtFFER 
IlAAl co 691 PUSH a ,SAVE IT 
0AA4 el7F9A 692 JI'IP RXS2 ,RETURN 

603 
1lAA7 C1 604 RiPT: POP a ,GET R9 
9AA8 46 695 !tOY a,1'! ,GET R1 FOR RESlI. T BIFFER 
IlAA9 co 6e6 PUSH a ' ,SAVE IT 
ilAAA Cl7F0A 607 JI'IP RXS2 

698 i 

609 ; 
619, 
611 i PARAI1ETER llAlT - PARAl£TER REMNED IN E REGISTER 
612 , 

2-310 _IIA 



APPLICATIONS. 

613 ; 
9AAD C5 614PARIN: PUSH B ;SfI\IE Be 
8AAE 1691 615 I1YI D,91H i SET CHR COUNTER 
0fIB8 CD1F96 616 CAlL GETCH iGET CHR 
0ABJ CDF805 617 CALL ECHO ;ECHO IT 
R6 79 618 i'IOY ItC ;PUT CHR IN A 
0AB7 FE20 619 CPI I I iSP? 
0AB9 C2EeeA 629 JHZ PARIN1 i NO, ILLEGAL, TRY AGAIN 
9ABC CD1F06 621 PARINJ: CALL GETCH i GET CHR OF PARAl'lETER 
9ABF CDFs95 622 CALL ECHO ;ECHO IT 
0AC2 CD5E97 623 CALL YfII..DG iIS IT A YALID CHR? 
0AC5 D2EOOA 624 JNC PARIN1 ; NO, TRY AGAIN 
9ACS CDBB05 625 CALL CNYBN ; Ctlft'ERT IT TO HEX 
0ACB 4F 626 I10Y C,A ; SfI\IE IT IN C 
0ACC 7A 627 HOY ltD i GET CHR COUNTER 
8flCD A7 628 ANA A ;IS IT 0? 
0ACE CADC0A 629 JZ PARIN2 i 'r'ES, DONE WITH THIS PARfII1ETER 
0AD115 639 DCR D i DEC CHR COUNTER 
0AD2 AF 631 XRA A i CLEAR CARRY 
0ADJ 79 632 I'IOY A,C i RECOVER 1ST CHR 
0AI)4 17 m RAL iROTATE LEFT 4 PLACES 
0AD5 17 6J4 RAL 
0AD6 17 6J5 RAL 
0AD7 17 636 RAL 
0ADS SF 6J7 I'tOY E,A i SAVE IT IN E 
0AD9 CJBC0A 63B JI'IP PARIN3 i GET NEXT CHR 
0A0C 79 6J9 PARIN2: I'IOY ItC ;2ND CHR IN A 
0ADD B3 640 ORA E i COI'tBINE BOTH C!lRS 
0ADE C1 641 POP B iRESTORE Be 
0ADF C9 642 RET i RETURN TO CALLING PROGRAI't 
H9 79 64J PARIN1: HOY A,C ; PUT ILLEGAL CHR IN A 
0AE1 37 644 STC i SET CARRY AS ILLEGfL STATUS 
0AE2 C1 645 POP B iRESTORE Be 
0AEJ C9 646 RET ; RETURN TO tAu. ING PROGRAI't 

647 ; 
648 ; 
649 ; JUI'IP HERE IF BlfFER FULL 
650 ; 

0flE4 CF 651BlfFUL:D8 0CFH i EXIT TO IQUTOR 
652 ; 
65J ; 
654 ; COItIfANI) DISPATCHER 
655 ; 
656 i 

8AE5 210020 657 CM: LXI H, CI'IDBUF i SET POINTER 
H8 C5 658 PUSH B ; SAVE BC 
9AE971 659 lIlY PLC j LOfI) CMIAND INTO BlFFER 
0flEA 78 66e CttIt1: HOY A,B i CI£CK PARAI'tETER COUNTER 
HB R7 661 1M A ;IS IT 0? 
0fEC CAFB0R 662 jz C(!I)OOT j YES, GO ISSlE QJIRf) 
8AEF CDAD8fI 66J CALL PARIN i GET PARAllETER 
8AF2 DflA708 664 JC ILLEG j ILLEGAL CHR RETlRNED 
0AF5 23 665 INX H i INC BUFFER POINTER 
W605 666 OCR B i DEC PARfII£TER crurrER 
0AF7 77 667 lIlY !'I,A i PfRfIETER TO BlFFER 
&8 C3EfIIlfI 668 JI'P COItI1 i GET I£XT PARfIIIETER 
0AFB 218828 669 CII>OOT: LXI H,CtIlBlf i REPaINT POINTER 
IIAFE C1 678 POP B i REST(IIE PftRfII£TER CWfT 

2-311 AFIf.OO811A 



APPLICATIONS 

eAFF 0090 671 COItI2: IN STAT73 ; READ 8273 STATUS 
0881 117 672 RLC ; ROTATE CBSY INTO CARRY 
0882 DAFFIIA 67J JC COIt12 ; WAIT FOR OK 
IIBII5 7E 674 t10V A,I'! i OK, 110VE COI'MN) INTO A 
IIB86 D398 675 OUT cOI'IIn i OUTPUT COI'fI1AND 
118118 78 676 PARi: t10V A,B i GET PARAI1ETER CIXJNT 
IIBII9 A7 677 ANA A i IS IT II? 
IIBIIA C8 678 RZ i YES, DONE, RETURN 
0BIIB 23 679 INX H i INC COI1I1ANI) BUFFER POINTER 
0B8C 115 6811 OCR B ; DEC PARAMETER COUNT 
IIB0I) DB98 681 PAR2: IN STAm ; READ STATUS 
IIBIIF E629 682 ANI CPBF iIS CPBF BIT SET? 
1IB11 C211D98 683 JNZ PAR2· i WAIT TIL ITS II 
1IB14 7E 684 I'IOV A,I'! ; OK, GET PARAMETER FROI'I BUFFER 
0815 D391 685 OUT PARI'f73 i OUTPUT PARAI1ETER 
1IB17 CJII80B 686 JI1P PAR1 i GET NEXT PARAI1ETER 

687.: 
688 ; 
689 ; INITIALIZE ANI) ENABLE RX Df'IA CHANNEL 
699 i 

691 i 
1181A 3E62 692RXD11f1 : I1VI A, DRDI1A i DISABLE RX Df'IA CHANNEL 
081CDJA8 693 OUT I1OOE57 ; 8257 IIOOE PORT 
1IB1E 8181182 694 LXI B,RXBUF ; RX BUFFER START fllORESS 
1lB21 79 695 t10V A,C ; RX BUFFER LSB 
1IB22 D3AII 696 OUT CHIIADR ; CHI! ADR PORT 
9824 78 697 t10V A,B ; RX BUFFER i'l58 
IIB25 DJA9 698 OUT CH9ADR i CH0 AOR PORT 
1IB27 81FF41 699 LXI B,RXTC ,i RX CH TEERMINAL COUNT 
8B2A 79 780 IIOY A,C ; RX TERtlINfL COUNT L58 
1IB2B D3A1 781 OUT CH9TC i CHI! TC PORT 
IlB2D 78 782 . I10Y A,B ; RX TmtIlR.. COUNT I1SB 
IIB2E D3A1 783 OUT CH8TC ;CH0 TC Pmrr 
11839 3£63 784 I1YI A, EN)t(A ; ENABLE DIfI WORD 
8832 D3A8 785 OUT I1OOE57 ; 8257 I10DE PORT 
8834 C9 7116 RET iRETURN 

. 787; 
788 ; 
789 ;INITIALIZE IN) EtfIIl.E TX DI1A CHANIEL 
719 ; 
711 ; 

11835 3£61 712 TXDI!A: 11\11 A, DTDIfI ;DISABLE TX DIfI CIRHL. 
8837 D3A8 713 OUT I1OOE57 ; 8257 IIOOE PORT 
1IB3~ 1118889 714 LXI B, TXBlf i TX BUFFER START ADDRESS 
8B3C 79 715 I10Y A,C ; TX BUFFER LSB 
1IB3D D3A2 716 OUT CH1ADR . i CHi fIlR PORT 
IIB3F 78 717 I10Y A,B ; TX BUFFER 1158 
IIB48 D3A2 718 OUT CHifllR ; CHi ADR PORT 
11842 81FF81 719 TXDtIfI1: LXI B,mc ; TX CH TERtlIIR. COUNT 
11845 79 728 I10Y A,C ; TX TERIIIIR. CWIT LSB 
8846 DID 721 OUT CHiTC ; CHi TC ~T 
IIB48 78 722 I10Y A,B ; TX TERIIlfR.. CWfT I1SB 
8849 DID 723 «IT CHiTe ;CHi TC PORT 
IlB4B 3£63 724 MYI A, EII>I1A ; EtfIIl.E DIIA NCRI) 

11840 DJA9 725 OUT I1OOE57 i 8257 IIIDE PORT 
8B4F C9 726 RET iRET\JRN 

721 ; 
728 ; 

2·312 AfN.«l811A 



.APPLICATIONS 

729 ; INERRUPT PROCESSING SECTION 
i'38 ; 
731 ORG 1lC89H 
712 ; 
73L 
734 ; RECEIVER INTERRlfT - RST 7. 5 (LOC 301) 
735 ; 

8C09 E5 736 RXI: PUSH H ;SAYE HL 
0C91 F5 737 PUSH PSIoI i SAVE psw. 
1lC1l2 C5 738 PUSH B iSAVE Be 
Ol OS 739 PUSH D ; SAVE DE 
IlC84 lE62 748 ItVI A, DRDI'IfI ; DISABLE RX DI1A 
IlCIl6 DlAS 741 OUT 11OOE57 i 8257 !lODE PORT 
IlCIl8 lEiS 742 I1YI 1t18H ; RESET RST7. 5 FIF 
IlCIlfI 1Il 743 51" 
IlCIlB 1684 744 "YI D, Il4H ; D IS RESULT COlMER 
IICIlD 2A11l21l 745 LHI.D LDfI>R ; GET LOll) POINTER 
1lC11l E5 746 PUSH H iSAVE IT 
1lC11 E5 747 PUSH H i SAVE IT AGAIN 
1IC12 45 748 HOY B,L ;5AYE LSB 
1lC1l 2A1l2ll 749 LHLD CNADR i GET CONSOLE POINTER 
1lC16 84 758 RXI1: INR B ; BltIP LeftD POINTER LSB 
8C1778 751 HOY ItB ; GET SET TO TEST 
IlC1S BD 752 CIF L ; LOflD=C(J5{)lE? 
8C19 CAE4IlfI 75l JZ BlFFUL j YES, BUFFER FULL 
IlC1C 15 754 OCR D ; DEC COUNTER 
IlC1D C2161lC 755 JNZ RXI1 ; NOT DOJ£, TRY fKlAIN 
IlC2Il 1685 756 ltVi D,1lSH ; RESET ro.JNTER 
0C22 E1 757 POP H ; RESTORE LOAD POINTER 
IlC2l DB9Il 758 RXI2: IN STAID ; READ STATUS 
IlC25 E6Il8 759 ANI RXINT ; TEST RX INT BIT 
1lC27 CA3!l1lC 768 JZ RXll i 1)(1£, 00 FINISH UP 
1lC2A DB9Il 761 IN STAm ; READ STATUS fKlAIN 
1lC2C E6Il2 762 ANI RXlRA ; IS RESULT RER>Y? 
IlC2E CA2lIlC 763 JZ RXI2 ; NO. TEST fKlAIN 
IlCl1 DB9l 764 IN RXIR7l i YES, READ RE511T 
IlCll 77 765 IIOY tt.A i STORE IN BUFFER 
IlCl4 2C 766 INR L i INC BUFFER POINTER 
1lC35 15 767 OCR D iDEe CWfTER 
IlCl6 C12l1lC 768 JI'P RXI2 ; GET IUE RE5UL TS 
IlCl9 7A 769 RXll: HOY ltD ; GET SET TO TEST 
IlClA A7 77Il ANA A ; ALL RE5UL TS? 
IlClB CA451lC 771 JZ RXI4 ; YES. 50 FINISH UP 
IlClE l6IlIl 772 l1li1 tt.1lilH i NO. LIR 8 TIL 1)(1£ 

IlC48 2C m INR L ; BUI'IP POINTER 
1lC4115 774 OCR D i DEe COUNTER 
1lC42 C3l91lC 775 JIll RXIl ;00 fKlAIN 
1lC45221821l 776 RXI4: SI4.J) LDAIlR ; UPDATE LOll) POINTER 
IlC48 3A1528 m LOA PRI'IPT ; lET HOOE ItI> ICAl'lJ! 
IlC48 FE2D 778 CPI '-' ; t«eR. IIOOE? 
IlC4D CA85IlC m JZ RXI6 i YES. CLEAN UP BEFIH: RET\.IIN 

788 j 

781; PW. I100E 50 CHECK COORO. BYTE 
782 ; IF COORO.. IS A pw.,. SET UP SPECIAL TX C!XfRI) BUFFER 
783; AND RET\.IIN WITH PW. 1M) lCAl'lJ! tIlT 8 
784 ; 

IlC58 E1 785 p(p H ; GET PREVIOUS LIR ADR POINTER 
8C5d. 7E 786 HOY A.ft ; GET IC BYTE FRttI BlFFER 

2·313 AFN-GI811A 



APPLICATIONS. 

9C52 E61E 787 ANI 1EH i LOOK AT GOOD FRAME BITS 
0C54 C2890C 700 JHZ RXI5 i IF NOT 0, INTERRUPT WASN'T FROI'I A GOOD FRAPE 
0C57 2C 789 INR L i BYPASS R0 fIN) Rl IN BUFFER 
0CSS 2C 790 INR L 
OC592C 791 INR L 
0C5A 56 792 MOY D,M i GET ADR BYTE AND SAVE IT IN D 
0C5B 2C m INR L 
ecsc 7E 794 HOY A,1i ; GET CNTL BYTE FROM BUFFER 
9C5D FE93 795 CPI SNRtIP i WAS IT SNRI1-P? 
OCSF CA6C9C 796 12 U i YES, GO SET RESPONSE 
OC62 FE11 797 CPI RR0P i WAS IT RR(0)-P? 
OC64 C2890C 798 JNZ RXI5 i YES, GO SET RESPONSE, OTIERWISE RETURN 
9C67 1E11 799 MYI E.RR0F iRR(0)-P SO SET RESPONSE TO RR(IlH 
OC69 C36E9C S00 JMP TXRET ; GO FINISH LOADING SPECIAL BUFFER 
0C6C 1E73 801 U: MVI E,NSAF i ~ SO SET RESPONSE TO NSfI-F 
OC6E 212020 882 TXRET: LXI H,Cl1DBFl i SPECIAL BUFFER ADR 
0C71 36C8 806 MVI tt IlC8H i LOAD TX FRAItE CMIfINI) 
OC73 23 ses INX H ; INC POINTER 
9C74 3600 899 MYI ttOOH iL0=0 
OC76 23 B10 INX H i INC POINTER 
9C77 3600 Bl1 MYI ttOOH iLl=0 
OC7923 B12 INX H i INC POINTER 
OC7A 72 813 HOY ttl) i LOAD ReV[) ADR BYTE 
OC7B 23 814 INX H ; INC POINTER 
9C7C 73 815 HOY tLE i LOAD RESPONSE CNTL BYTE 
OC7D 3E01 B16 "VI A,01H ; SET POLL INDICAT~ NOT 0 
9C7F 321620 B17 STA POI,.IN i LOAD POLL IN) lCATOR 
1lC82 C3B9OC 81B JMP RXI5 iRET\JRN 

819 
1lC85 E1 820 RXI6: POP H ; CLEAN lP STACK IF NOR/R. IIOOE 
0CB6C3B90C 821 JIIP RXI5 i RETURN 

822 
1lCB9 CD1A9B B23 RXI5: CALL RXDIIA ) RESET DI'IfI CIfINNEl. 
lICBC D1 B24 POP I) ; RESTORE REGISTERS 
OCSD Cl B25 POP B 
0CSE Fl B26 POP PSW 
IlC8F E1 827 POP H 
0C98 FB 82B EI i ENABLE INTERRUPTS 
IlC91 C9 B29 RET iRETURN 

B38 i 

831 ; 
Bll i ItESSAGE TYPER - ASSU1ES I£SSAGE STARTS AT HL 
833 i 
834 i 

0C92 C5 BJ5 TYKSG: PUSH B iSAYE Be 
0C937E 836 'MISG2: IIOY It" iGET ASCII ~ 
0C94 23 837 INX H i INC POINTER 
0C95 FEFF 838 CPI 8FFH iSTIP? 
8C97 CAA10C 839 12 TYI1SG1 i YES. GET SET F~ EKIT 
IlC9A 4F 848 I10Y CA ;SET UP F~ I)ISPLAY 
8C9B CDF885 841 CALL ECHO i I) ISPLAY CHR 
8C9E C3938C 842 JIIP TYMSG2 i GET NEXT CHR 
8CA1 Cl 843 TWISG1: POP B iREST~ Be 
8CA2 C9 844 RET iRETURN 

845 i 
846 i 
847 i SI.. I'ESSAGE 
848 i 

2·314 AfN.OO811A 



APPLICATIONS. 

0CA3 0D 849 SIGIDl: DB CR, '8273 I1ONITOR 111. 1', CR, 9FFH 
8CA4383237n 
OCAS 29404F4E 
0CfIC 49544FS2 
OCB0 20285631 
9CB4 2E31 
OCB6 00 
OCB7 FF 

859 i 
851 i 
8S2 ; 
SS3 i RECEIVER INTERRUPT I'IESSAGES 
SS4 i 

.8SSi 
0C880D 856. RXIIISG: DB CR.. 'RX INT - ',9FFH 
0CB9 S2S82949 
OCBD 4ES42020 
OCC1 28 
8CC2 FF 

8S? i 
8SS i TRANSIIITTER INTERRUPT I'IESSAGES 
SS9 i 

OCC3 lID S68TXIIISG: DB CR.. 'TX INT - ',eFFH 
0CC4 S4SS2049 
OCCS 4ES4202D. 
0CCC 20 
0CCD FF 

861 i 
S62 i 
S63 i TRANSIIITTER INTERRUPT ROUTINE 
S64 i 

OCCE ES S6S TXI: PUSH H iSAYE HI. 
8CCF FS S66 PUSH PSW iSAYE PSW 
ecoo CS 867. PUSH B iSAYE BC 
01 OS S6S PUSH 0 iSAVE DE 
02 3E61 S69 !lVI A,O~ i O;JSABlE TX DIIfI 
IlCD4 03A8 878 OUT PIODES7 i 82S7 I'KlDE PORT 
8CD6 1684 871 IIYI O,84H iSET CMTER 
IICD8 2A1820 872 I.tIJ) LDADR i GET lOll) POINTER 
ecDB ES 873 PUSH H iSAVE IT 
eeoc 4S 874 !lOY B,l i SAVE LSB IN B 
IlCDD 2A1328 875 . lHLD ctfIDR i'GETmEOL.E POINTER 
ecE884 876 TXI1: IIf! B i INC POINTER 
IlC£1 78 S77 !lOY A,B i GET SET TO TEST 
8CE2 BD 878 ClIP l i lOll)=CtWSOLE? 
8CE3 CAE48A 879 12 BtFFlI. i YES, BlFFER Flll 
8CE615 888 OCR 0 i I«h TEST NEXT LOCATION 
ICE7 C2E1lIlC 881 JNZ TXI1 j TRY fKiflIN 
8CEA E1 .882 POP H j RESTORE lR POINTER 
8CEB DB92 883 IN TXIR73 j ReI) RESULT 
8CED 77 8S4 IIOY. pt,A j STORE IN BlFFER 
8CEE 2C 88S III! l j IIIR POINTER 
8CEF 3688 8S6 !lVI pt,1l8H j EXTRARESll. T SPOTS • 
8CF12C 887 IIf! l 
9CF2 3688 888 !lVI pt,1l8H 
1O"42C 889 INR l 
ICF5 3ti88 898 IIYI pt,1l8H 
1D"72C 891 INR l 

2·315 AfN.(1Q111A 



. APPLICATIONS 

8CF8 J680 892 IIVI ",09H 
OCFA 2C 893 INR L 
BCFB 221020 894 5HLD L.DADR iUPDATE LOAD POINTER 
BCFE CD350B 899 CALL TXOOA .; RESET DI1A CHANNEL 
1ID81 D1 900 POP D iRESTORE DE 
0002 C1 901 POP B .; RESTORE BC 
0003 F1 902 POP PSW ; RESTORE PSW 
0D84 E1 903 POP H ; RESTORE HL 
IID85 FB 984 EI i ENABLE INTERRUPTS 
IlOO6 C9 905 RET iRETURN 

906 ; 
907 ; 
952 i 

953 ; 
954 END 

PUBLIC S'mBOLS 

EXTERIR. SYI1BOlS 

USER S'rmOLS 
ADWN A 11922 AFOO A 1l9CE BliFFUI.. A 1lAE4 CHIlfI)R A IlIlAIl CHIlTC A IlIlA1 CH1ADR A Il8A2 CH1TC A !lIlA3 
0051 A 1lIl27 OOBF1 A 2Il2Il CIllBUF A 2899 ~OOUT A 9AFB CIIDREC A 11857 CIIODE A 9931 ctft)R A 2M3 
CHTIl53 A 0Il9C CNT153 A 9Il9I) 00253 A IlIl9E CNTl51 A Il989 CNTlC A 0983 CNYBN A Il5BB COBR A 9IlIIC 
COPt! A IlAE5 CMI1 A IlfIEfI CIl9I2 II IlAFF COPIt7JII IlIl9Il CPBF II 992Il CR II IJ9IlI) CRLF A Il5EB 
~ A EIIl9Il DEIfOOE A 2927 DISPY A IlAJ9 DISPY1 A IlA4E DISPY2 A 8A4I) DRDIIA A IlIl62 DTDI'IA A 1lIl61 
ECHO A W8 ENOCHK A IlA1B EN>fIA A IlIl6J GDIIN A I!8FF GETCH A 1l61f GETOO A 8870 GRCfI) A 1l9C4 
ILLEG A 1l8A7 LDfII)R II 2819 LF A 99IlA LKBR1 II 2917 LKBR2 A 2818 LOIJlIT A 9861 II>CNTIl A 9IlJ6 
Pl)CNT2 A Il8B6 ~1 A 9IlCE I'IOOE5J A 9Il9B IIOOE57 A IlIlAIl IIONTOR A 9Il88 NPIlUT A 1l6C7 NSfF A 1lIl7J 
PARi II 9BIl8 PAR2 II 9B8I) PARIN A IlAfII) PARIN1 A 9AEIl PARIN2 A IlADC PARINJ A IlfIIC PARtI7J A IlIl91 
POLIN A 2816 PRIIPT II 2915 RaPT A 9AA2 R1PT A 1lAA7 RllCIID A 997B ROCft!I) A 9971 RDIIl AIlSAF 
RDY A IlIlIl2 RESBlf" A 28IlIl RESL 7J A IlIl91 ROCI1I) A 9.95D RPOO A Il9D8 RR8F A .9911 RR9P A 1lIl11 
RSCIID A 11967 RST65 A 2IlCE RST75 A 291)4 RXBlf A 829Il Rl<D51 A Il988 RXDI1A II IlIl1A RXI II IlCIlIl 
RXI1 II 1lC16 RXI2 A 9C23 RXIJ A 1lCJ9 RXI4 A 9C45 RXI5 A BC89 RXI6 A IJC85 RXIItSG A 1m! 
RXINT A 9Il88 RXIRn A 9Il93 RXIRA A IlIlIl2 RXS1 II 1lA69 RXS2 A IlfI7F RXSJ A IlA8I) RX5(J(C A 8A62 
RXTC A 41fF SBCI1D A Il985 SDWN A 1l8I)7 SIGNON A 9CA3 SLCI'ID A Il98F steP II 9Il93 SOCII) A 99A6 
SPCJt) II Il9E2 SRCJt) II Il9IIA SSCI'II) A 99B9 START II 98Il9 STIIT51 A 9Il89 STIIT57 A IlIlA8 STArn A IlIl9Il 
STKSRT A 29C1l SW A 11943 T1 A IlC6C TBIJFFL A 9A24 TBUFL A 1lA97 TBlfU A IlfIIlI) ~ A Il99E 
TESm A 9992 TFCI'I) II 99EC TFCI!D1 II 1l9F6 mET II 9AJ6 TLOO A Il999 TRUE A 9Il9Il TRia A 9Il9Il 
Tl<BUF II 8098 0051 A 9Il88 TXDIfI A 9BJ5 TXllIfI1 A 9942 TXI A IlCCE TXI1 A 1lCE9 TXIItSG A 1lCC3 
TXINT II 9Il84 TXIRn II Il892 TXIRA A 9Il81 TXPOI.. A Il94C TXRET II IlC6E TXSORC A 1lA47 me 118ifF 
TYIISG II K92 TYItSG1 II· 9CA1 TYtISG2 II 1lC93 YALDG II 1l75E 

RSSEJIIL Y CORETE, N) EROS 

2·316 AfN.OO811A 



Asynchronous COIIIlIJnication 
wi th the 8274 Mul ti pl e 
Protocol Serial Controller 

Contents 

INTRODUCTION 
Communication Functions 
System Interface 
Scope 

SERIAL ASYNCHRONOUS DATA LINKS 
Characters 
Framing 
Timing 
Parity 
Communication Modes 
Break Condition 

MPSC SYSTEM INTERFACE 
Hardware Environment 
Operational Interface 
Reset 

2-317 

Externa'/Status Latches 
Error Reporting 
Transmitter/Receiver 
Ini tial ization 
Polled Operation 
Interrupt Driven Operation 
Interrupt Configurations 
Interrupt Sources/Priorities 
Interrupt Initialization 
Interrupt Servi ce Routines 

DATA LINK INTERFACE 
Serial Data Interface 
Data Clocking 
Modern Control 

APPENDIX A 
Conrnand/Status Details 
Per Async 
Communication 

APPENDIX B 
MPSC Polled Transmit/Receive 
Character Routines 

APPENDIX C·· 
InterrUpt Driven 
Transrni t/Receive 
Software 

APPENDIX D 
Appl ication Exampl e 
Using SDK-86 

2-318 

2-319 

2-321 

2-328 

2-329 

2-336 

2-340 

2-342 

AFN: 01995A 



APPLICATIONS 

ASYNCHRONOUS COMMUNICATION 

WITH THE 8274 

MULTI-PROTOCOL SERIAL CONTROLLER 

1. Introducti on 

The 8274 Mul ti -protocol serial controll er 
(MPSC) is a sophisticated dual-channel 
cOl!ll1Un i ca ti ons con troll er th at interfaces· 
mi croprocessor systems to hi gh-speed ser­
ial data 1 inks (at speeds to 880K bits per 
second) using synchronous or~synchronous 
protocols.: The 8274 interfaces easily to 
most common ~icroprocessors (e.g., 8048, 
8051,8085,8086, amd 8088), to DMA con­
troll ers such as the 8237 and 8257, and to 
the 8089 I/O processor. Both MPSe co~­
munication channels are co~pletely 
independent and can operate in a 
full-duplex com~unication ~de 
(s irrul taneous data transmi ss ion and 
reception. 

Comrrun i ca ti on Functi ons 

The 82}4 performs many com~unications 
oriented functi ons, i ncl udi ng: 

Converting data bytes from a mi cro­
processor system into a serial bit 
strea~ for transmission over the data 
1 ink to a recelving system. 

Receiving serial bit strea~s and recon­
verting the data into parallel data 
bytes that can easily be processed by 
the microprocessor syste~. 

Performing error checking during data 
transfers. Error checking fUnctions 
include co~puting/transmitting error 
codes (such as parity bits or CRe 
bytes) and using these codes to check 
the validity of received data. 

Operating independently Of the syster.J 
processor in a manner designed to 
reduce the syste~ overhead involved in' 
data transfers. 

System Interface 

The MPSe sys tem interface is extremel y 
f1 exibl e, supporting the fo" owing data 
trans fer modes: 

1. Poll ed Mode. The system processor 
periodically reads (polls) an 8274 . 
status register to determine when a 

2-318 

character has been received, when a 
character is needed for transmission, 
and when transmission errors are 
detected. 

2. Interrupt t-bde. The MPSe interrupts 
the system processor when a character 
has been received, when a character is 
needed for transmission, and ~A1en 
transmi ss ion errors are detected. 

3. llMA Mode. The MPSC au toma ti call y re­
quests data transfers from system 
~emory for both transmi t and receive 
functions by means of two DMA request 
si gnals per serial channel. These llMA 
request signals may be directly inter­
faced to an 8237 or 8257 DMA controll er 
or to an 8089 I/O processor. 

4. WAIT Mode. The MPSC ready signa' is 
used to synchronize processor data 
transfers by forcing the processor to 
enter wait states until the 8274 is 
ready for another data byte. This 
feature enables the 8274 to interface 
directly to an 8086 or 8088 processor 
by means of string I/O instructions for 
very high speed data links. 

Scope 

This appl ication note describes the use of 
the 8274 in asynchronous communication 
modes. Asynchronous communication is typi­
call y used to trans fer da ta to/from vi deo 
display terminals, modems, printers, and 
other low-to-medilim speed peri pheral de­
vices. Use of the 8274 in both interrupt 
driven and poned system environments is 
described. Use of the OMA and WAIT modes 
are not described s inceth-ese modes are em­
ployed mainly in synchronous communication 
syste~s where extremely hi gh data rates are 
common. Programming examples are written 
in PL/M--86 (Appendix B and Appendix C). 
PL/M-86 is executed by the iAPX-86 and 
iAPX-88 processor families. In addition, 
PL/M-86 is very similar to PL/M-80 
(executed by the ~'CS-80 and MCS-85 pro­
cessor fa~ilies). In addition, Appendix D 
describes a simple application examp~e 
us ing an SDK-86 in an iAPX-86/88 
environment. 

AFN: 01995A 



APPLICATIONS 

2. Serial Asynchronous Data Links 

A serial asynchronous interface is a method 
of data transmission in which the receiving 
and transmitting syste~s need not be syn­
chronized. Instead of transmitting clock­
ing information with the dCJta, locally 
generated clock s (16, 32 br 64 times as 
fast as the data transmission rate) are 
used by the transmitting and receiving $Ys­
tems. When a character of information is 
sent by the transmitting system, the char­
acter data is framed (preceded and fol­
lowed) by special START and STOP bits. 
This framing information permits the re­
ceiving system to temporarily synchronize 
with the data transmission. (Refer to 
Figure 1 during the following discussion of 
asynchronous data transmission.) 

TIME---+ 
I r I I I I I I I I I I I I I I I I I 

_1_ 0 1 1 0 0 1 0 1 0 1-1-

DATA LINK IDLE START m 
(MARKING) air ~ 

PARITY CHARACTER (UPPER CASE S53H) 

o 1 0 1 0 0 1 1 

Figure 1. Transmission of a 7·Bit ASCII Character with Even 
Parity 

Normally the data 1 ink is in an i dl e or 
marking state, continuously transmitting a 
"mark II (binary 1 ). When a character is to 
be sent,the character data bits are im­
mediately preceded by a "space" (binary 0 
START bit). The mark-to-space transition 
informs the receiving system that a char­
acter of information will immediately f01-
low the start bit. Figure 1 illustrates 
the transmission of a 7-bit ASCII character 
(upper case 5) with even parity. Note that 
the character is transmitted immediately. 
foll owing the .start bit. Data bi ts wi thin 
the character. are transmitted from least-
si gni fi cant to most-si gni ficant. The 
parity bit is transmitted immediately fol­
lowing the character data bits and the STOP 
framing bit (binary 1) signifies the end of 
the ch ara c ter . 

Asynchronous interfaces are often used with 
human interface devi ces such as CRT Ikey­
bOCJrd units where the time between data 
transmissions is extremely variable. 

Characters 

I n asynchronous mode characters may vary in 
length from five to eight bits. The char­
acter length depends on the coding method 
used. For exampl e, five-bit characters are 
used when transmitting Baudot Code, seven­
bit characters are required for ASCII data, 
and eight-bit characters are needed for 
EBCDIC and binary data. To transmit mes­
sages composed of multiple characters, each 
character is framed and transmi tted 
separately (Figure 2). . . 

This framing method ensures that the re­
ceiving system can easily synchronize with 
the start and stop bits of each character, 

2·319 

preventing receiver synchronization er­
rors. In addition, this synchronization 
method makes both transmitting and receiv­
ing systems insensitive to possible time 
delays between character transmissions. 

i !i 

~ ~ 
1+---1 
CHARACTER 

HI 

VARIABLE DELAY BETWEEN 
CHARACTERS 

i r;fi 
~ ei 
~ cnti; 

i !i .. :. 
.. e '" Ii; 

I I I I I 
CHARACTER CHARACTER 

12 '3 
CHARACTER .. 

~ Ii :. .. 
~ ~ 
I ., 
CHARACTER .. 

Figure 2. Multiple Character Transmission 

Framing 

Character framing is accomplished by the 
START and STOP bi ts described previously. 
When the START bit transition (mark to 
space) is detected, the receiving system 
assumes that a character of data will fol­
low. In order to test this assumption (and 
i sol ate noi se pulses on the da ta 1 ink), the 
receiving system wai ts one-hal f bi t time 
and sampl es the data link aga in. If the 
link has returned to the marking state, 
noise is assumed, and the receiver waits 
for another START bit tranSition. 

When a val id START bit is detected, the re­
ce iver sampl es the data 1 ink for each bi t 
of the follOWing character. Character data 
bits and the parity bit (if required) are 
sampled at their nominal centers until all 
required characters are received, Immedi­
ately follOWing the data bits, the receiver 

AFN: 01995A 



APPLICATIONS 

sar.lples the data link for the STOP bit, 
indicating the end of the character. Most 
syster.1S perr.lit specification of 1 , 1 1/2, 
or 2 stop bits. 

Timing 

The transr.1itter and receiver in an asyn­
chronous data 1 ink arrangement are clocked 
independently .. Normally, each clock is 
generated locally and the cl,ocks are not 
synchronized, In fact, each clock may be a 
sl i ghtly di fferent frequency. (In prac-
ti ce, the frequency di fference shoul d not 
exceed a few percent. If the transmitter 
and receiver clock rates vary substantial­
ly, errors will occur because da ta bi ts may 
be incorrectly identified as START or STOP 
framing bits.) These clocks are designed 
to operate at 16, 32, or 64 times the com­
r.1unications data rate. These clock speeds 
allow the receiving device to correctly 
sample the incoming bit stream. 

Serial interface data rates are measured in 
bits/second. The term baud is used to 
specify the nurrber of times per secondtha t 
the transmitted signal level can change 
states. In general, the baud is not equal 
to the b it rate. Only when the transmi tted 
signal has two states (electrical levels) 
is the baud rate equal to the bit rate. 
Most point-to-point serial data 1 inks use 
RS-232-C, RS-422, or RS-423 electrical 
interfaces. These specifications call for 
two electrical Signal levels (the baud is 
equal to the bi t rate). Modem interfaces, 
h<Mever, may often have di ffering b it and 
baud rates. 

While there are generally no 1 ir.1itations on 
the data transmission rates used in an 
asynchronous data 1 ink, a 1 imi ted set of 
rates has been standardized to promote 
equipment interconnection. These rates 
vary from 75 bi ts per second to 38,400 bi ts 
per second. Table 1 illustrates typical 

Table 1. Communication Data Rates and Associated 
Transmitter/Receiver Clock Rates 

Data Rate (bits/second) Clock Rate (kHz) 

X16 X32 X64 

75 1.2 2.4 4.8 
150 2.4 4.8 9.6 
300 4.8 9.6 19.2 
600 9.6 19.2 38.4 

1200 19.2 38.4 76.8 
2400 38.4 76.8 153.6 
4800 76.8 153.6 307.2 
9600 153.6 307.2 614.2 

19200 307.2 614.4 -
38400 614.4 - -

2·320 

asynchronous da ta ra tes and the assoc i a te d 
clock frequencies required for the trans­
r.litter and receiver circuits. 

Parity 

In order to detect transmission errors, a 
parity bit may be added to the character 
data as it is transferred over the data 
link. The parity bit is set or cleared to 
make the total nurrber of "one" bits in the 
character even (even parity) or odd (odd 
parity). For example, the letter "A" is 
represented by the seven-bi tASCI I code 
1000001 (41H). The transmitted data code 
(with parity) for this character contains 
eight bits; 01000001 (41H) for even parity 
and 11000001 (OC1H) for odd parity. Note 
that a singl e bit error changes the parity 
of the received character and is therefore 
easily detected. The 8274 supports both 
odd and even parity checking as well as a 
pari ty di sab 1 e mode to support binary da ta 
transfers. 

Communication Modes 

Serial data transmission between two de­
vices can occur in one of three modes. In 
the simplex transmission mode, a data link 
can transmit data in one direction only. 
In the hal f-dupl ex mode, the data 1 ink can 
transmit data in both directions, but not 
simultaneously. In the full-duplex mode 
(the most conrnon), the data link can trans­
mit data in both directions simultaneous­
ly. The 8274 directly supports the full­
dupl ex mode and will interface to s impl ex 
and half-duplex communication data 1 inks 
with appropriate software controls. 

Break Condition 

Asynchronous data 1 inks often incl ude a 
special sequence known as a break condi­
tion. A break condition is initiated when 
the transmitting device forces the data 
1 ink to a spacing state (binary 0) for an 
extended length of time (typically 150 mil­
l iseconds). Many terminals contain keys to 
initiate a break sequence. Under software 
control, the 8274 can initiate a break 
sequence when transmitting data and detect 
a break sequence when receiving data. 

AFN: 01995A 



APPLICATIONS 

3. MPSC System Interface 

Hardware Environment 

The 8274 MPSC interfaces to the system pro­
cessor over an 8-bit data bus. Each serial 
I/O channel responds to two I/O or memory 
addresses as shown in Table 2. In addition, 
the MPSC supports vectored and daisy­
chained interrupts. 

Table 2: 8274 Addressing. The 8274 may b.e 
confi gured for memory mapped or I/O mapped 
operati on. 

CS A, A, Read Operation Write Opera.tlon 

o. Ch. A Oats Read Ch. A Data Write , Ch. A Status Read Ch. A Command/Parameter 
0 Ch. B Data Read Ch. B Data Write , Ch. B Status Read Ch. B Oommand/Parameter 
X High Impedence High Impedence 

~ ADDRESS BUS 

I. 
A DATA BUS 

iii! 
WlI 

r--

a) Polled Configuration 

Vee 

CPU 

'--

,P' 
MPSC 

HIGHEST PRIORITY 

b) Daisy-chained Interrupt 
Confi gurati on 

8205 

.,..., 

The 8274/processor hardware interface can 
be confi gured in a flexibl e manner, depend­
ing on the operati ng mode selected -­
polled, interrupt driven, DMA, or WAIT. 
Fi gure 3 ill us trates typi ca 1 MPSC con­
figurations for use with an 8088 micro­
processor in the. polled and interrupt 
driven modes. 

All serial-to-parallel conversion, par­
allel-to-serial conversion, and parity 
checking required during asynchronous 
serial I/O operation is automatically 
performed by the MPSC. 

~ 

I, 

L ~vee 
p '-- DBO-7 INTA 

P '--- A, 
p~A, 

CS 
RD 

WR 

MPSC 

MPSC 

'PO,IO---'-....(1,p, ,POp----

MP$C 
LOWEST PRIORITY 

Fi gure 3: 8274 Hardware Interface for 
Po" ed and Interrupt Driven Environments AFN: 01995A 

2-321 



APPLICATIONS 

Operational Interface 

Command, parameter, and status information 
is stored in 22 registers wi thin the MPSC 
(8 writable registers and 3 readable regis­
ters for each channel). These registers 
are all accessed by means of the com­
mand/status ports for each channel. An 
internal po inter regi s ter sel ects wh i ch of 

COMMANO/STATUS 

[ 

POINTER 

02 01 00 

_I w : R : 0 : : 0 

_I w R 

~I w R 

~I w R 

~I w R 

~ I w R 

_I w R 

~I w R 

MSa 

1 

Write Registers 

I 

the command or status registers will be 
written or read during a command/status 
access of an MPSC channel. Fi gure 4 dia­
grams the command/status register architec­
ture for each serial channel. In the fol­
lowing discussion, the writable registers 
will be referred to asWROthrough WR7 and 
the readable registers win be referred to 
as RRO through RR2. 

, 
1 1 R R 

1 1 R R 

I I R R I 
Msa LSB 

Read Registers 

I 
LSB 

Figure 4: Command/Status Register Architecture (each serial channel) 

The least significant three bits of WRO are 
autor.Jati cally loaded into the pointer .reg­
ister every time WRO is written. After 
reset, WRO is set to zero so that the first 
write to a command register causes the data 
to be loaded into WRO (thereby setting the 
pointer register). After WRO is written, 
the following read or wri te accesses the 

2-322 

register sel ected by the pointer. The 
pointer is reset after the read or wri te 
operation is comp' eted. In this manner, 
reading or writing an arbi trary MPSC chan­
nel register requires two I/O accesses. 
The first access is always a write com­
mand. This write command is used to set 
the pointer register. The second access is 

AFN: 01995A 



APPLICATIONS 

either a read or awritecor.111llnd; the 
pointer registeri"'(previously set) Will 
ensure that the correct internal register 
is read or written. After this second 
access, the pointer registerls automati­
cally reset. Note that wri ting WROand 
ream n,g RRO does-not require presetti ng of 
the pointer' register. 

During initialization and normal MPSC oper­
ation, various registers are read and/or 
written by the system processor. These 
actions are discussed in detail in the fol­
lowing paragraphs. Note that WR6 and WR7 
are not used in the asynchronous communica­
tion modes. 

Reset 

When the 8274 RESET 1 ine is activated, both 
MPSC channels enter the idle state. The 
serial output 1 ines are forced to the mark­
ing sta te (hi gh) and the modem interface 
signals (RTS, DTR) are forced high. In 
addition, the pointer reg.ister is set to 
zero. 

External/Status Latches 

The MPSC continuously moni tors the state of 
four external/status conditions: 
1. CTS - cl ear to send input pin. 
2. CD - carrier detect input pin. 
3. SYNDET - sync detect input pin. This 

p,i n may be used as a general purpose 
input in the asynchronous communication 
mode. 

4. BREAK - a break condition (series of ... , 
space bi ts on the receiver input pin). 

A change of state in any of these monitored 
conditi ons will cause the associated sta tus 

. bit 1.n RRO (Appendix A) to be latched (and 
optionally cause an interrupt). 

Error Reporti ng 

Three error condi ti ons may be encountered 
during data rece.ption in the asynchronous 
mode: . 

1. Parity. If parity bits are computed 
and transmitted with each character and 
the MPSC isset.to check parity (bit 0 
in WR4 is set) ,a paritY.error will 
occur whenever .the nurrber of "1" bits 
within the, character (including the 
parity bit) does. not match the odd/even 
setting of the parity check .flag (bit 1 
in WR4). . . 

2. Framing. A framing error will occur if 
a stop bit is not detected illl1lE!diately 
following the parity bit (if parity 
checking is enabled) or illl1lE!diately 
following the most-significant data bit 
(if parity checking is not enabled). 

3. Overrun. lfan input character ha.s 
been asser:tlled but the receiver buffers 
are full (because the previousl y re­
ceived characters have not been read by 
the sys tern process or), an overrun error 
will occur. When an overrun error 
occurs, the input character that has 
just been received will overwrite the 
immedia tely preceding character. 

Transmitter/Receiver Initialization 

In order to operate in the asynchronous 
mode, each MPSC channel must be initial ized 
wi th the foll owing informa ti on: 

2·323 

1. Clock Rate; This parameter is spec­
ified by bits 6 and 7 of WR4. The 
clock rate may be set to 16, 32, or 64 
times the data 1 ink bit rate. (See 
Appendix A for WR4details.) 

2. Nurrber of Stop Bits. This parameter is 
speci fi ed by bits 2 an d 3 of WR4. The 
nurrber of stop bi ts may be set to 1 , 1 
1/2, or 2. (See Appendi x A for WR4 
details. ) 

3. Parity Selection. Parity may be set 
for odd, even, or no parity by bits 0 
and 1 of WR4. (See Appendi xA for ~JR4 
details). 

4. Receiver Character Length. This para­
meter sets the 1 ength of received ch ar-
acters to 5, 6, 7, or 8 bits.. This 
parameter is speci fied by bi ts 6 and 7 
of WR3. (See Appendix A for WR3 
details. ) 

5. Receiver Enable. The serial channel 
re'ceiver operation may be enabled or 
disabled by setting or clearing bit 0 
of WR3. (See Appendix A for WR3 
deta.i1s.) 

6. Transmitter Character Length. This 
parameter sets the 1 ength of trans­
mitted characters to 5,6, 7,or'8 
bits. This parameter is specified by 
bi t.s 5 and 6 of WR5. (See Appendi x A 
for WR5 detail s. ) Characters of 1 ess 
than ~. bi ts in 1 ength may be trans­
mitted by. setti n9 .thetransmi tted 
length to fiVe bits (set bits 5 and 6 
of WR5 to 1). 

AFN: 01995A 



APPLICATIONS 

1 
1 
1 
1 
0 

The MPSC then determines the actual 
null'ber of bi ts to be transmi tted from 
the character data byte. The bits to 
be transrnitted must be ri ght justified 
in the data byte, the next three bits 
must be set to 0 and all remaining bi ts 
must be set to 1. The following table 
illustrates the data formats for trans­
mission of 1 to 5 bits of data: 

Null'ber of 
D7 D6 D5 D4 D3 D2 Dl DO Bi ts Transmi tted 

(Character Length) 
1 1 1 0 0 0 c 1 
1 1 0 0 0 c c 2 
1 0 0 0 c c c 3 
0 0 0 c c c c 4 
0 0 c c c c c 5 

7. Transmitter Enable. The serial channel 
transmitter operation may be enabled or 
disabled by setting or clearing bit 3 
of WR5. (See Appendix A for WR5 
details.) 

For data transmission via a modern or 
RS-232-C interface, the foll <7IIing infor­
mation must also be specified: -

1. Request to Send/Data Terminal Ready. 
/lust be set to indicate status of data 
terminal equipment. Request to send is 
con troll ed by bit 1 of WR5 and data 
terminal ready is controlled by bit 7. 
(See Appendix A for WR5 details.) 

2. Auto Enable. May be set to allow the 
~'PSC to automtically enable the channel 
transrnitter when the clear to send sig­
nal is active and to automatically 
enabl e the receiver when the carri er 
detect signal is active. Auto Enable 
is controlled by bit 5 of WR3. (See 
Appendix A for WR3 details.) 

During initial ization, it is desirable to 
guarantee that the external/status latches 
reflect the latest interface information. 
Since up to two state changes are inter­
nally stored by the MPSC, at least two 
Reset External/Status Interrupt commands 
must be/issued. This procedure is most 
easily accomplished by simply issuing this 
reset command whenever the pointer register 
is set during initial ization. 

2·324 

An MPSC initialization procedure 
(MPSC$RX$ IN IT) for asynchronous communica­
tion is listed in Appendix B. Figure 5 
ill ustrates typi cal MPSC initial ization 
parameters for use with this procedure. 

call MPSC$RX$INIT(41, 1,1,0,1, 3,1,1, 3,1,1,0,1); 

initializes the 8274 at address 41 as follows: 

X16 clock rate 
1 stop bit 

Enable transmitter and receiver 
Auto enable set 

Odd parity DTR and RTS set 
8·bit characters (Tx and Rx) Break transmission disabled 

Figure 5. Sample 8274 initialization procedure for polled 
operation. 

Poll ed Opera ti on 

In the polled mode, the processor must mon­
itor the MPSC status by testing the appro­
priate bits in the read register. Data 
available, status, and error conditions are 
represented in RRO and RRl for channel s A 
and B. An example of MPSC pol1ed trans-
mi tter/ recei ver routi nes are given in 
Appendix B. The foll <7IIing routines are 
detailed: 

1. MPSC$POLL$RCV$CHARACTER - This proce­
dure receives a character from the ser­
ial data 1 ink. The routine waits until 
the character ava i1 ab1 e fl ag in RRO has 
been set. When this flag indicates 
that a character is available, RRl is 
checked for errors (overrun, parity, or 
framing). If an error is detected, the 
character in the MPSC receive buffer 
must be read and discarded and the 
error routine (RECEIVE$ERROR) is 
called. If no receive errors-have been 
detected, the character is input from 
the 8274 data port and returned to the 
calling program. 

MPSC$POLL$RCV$CHARACTER requires three 
parameters - the address of the 8274 
channel data port (data$port), the 
address of the 8274 channel command 
port (cmd$port), and the address of a 
byte variable in which to store the re­
ceived character (character$ptr). 

AFN: 01995A 



APPLICATIONS 

2. MPSC$POLL$TRAN$CHARACTER - This proce­
duretran.smits a character to the ser­
ial data 1 ink. .The routine wai ts until 
the transmi tter buffer empty fl ag has 
beel) ·set in RRO before wri ting the 
character to the 8274. 
MPSC$POLL$TRAN$CHARACTER requires three 
parameters - the address of the 8274 
channel data port (data$port), the 
address of the 8274 channel cOl!1'l1and 
port (cmd$port), and the character of 
data that is to be transmitted 
(character) . 

3. RECEIVE$ERROR - This procedure proces­
ses receiver errors. First, an Error 
Reset command is written to the affect­
ed channel. All addi ti onal error pro­
cess ing is dependent on the speci fi c 
appl ication. For examp1e, the receiv­
ing device may immediately request 
retransmission of the character or wait 
until a message has been compl eted. 
RECEIVE$ERROR requires two parameters -
the address of the affected 8274 com­
mand port (cr.1d$port) and the error 
status (status) from 8274 register RR1. 

Interrupt Driven Opera ti on 

In an interrupt driven environment, all 
receiver operations are reported to the 
system processor by means of interrupts. 
Once a character has been received and 
assembled, the ~'PSC interrupts the system 
processor. The system processor must then 
read the character from the MPSC data buf­
fer and cl ear the current interrupt. Dur­
ing transmission, the system processor 
starts serial I/O by writing the first 
character of a message to the MPSC. The 
MPSC interrupts the system processor when­
ever the next character is required .(i .e., 
~en the transmi tter bu ffer is empty) and 
the processor responds by writing the next 
character of the message to the MPSC data 
port for the appropriate channel. 

By using interrupt driven I/O, the MPSC 
proceeds independently of the system pro­
cessor, si gnall ing the processor only when 
characters are required for transmission, 
when ch aracters arerece ived from the da ta 
link, or ~en errors occur. In this man­
ner, the system processor may continue exe­
cution of other tasks while serial I/O is 
performed concurrently. 

Interrupt Configurations 

The 8274 is desi gned to interface to 8085-
and 8086-type processors in r.vch the same 
manner as the 8259A is designed. When 

operati ng in the 8085 mode, the 8274 causes 
a "call" to a prespeci fied interrupt 
service routine location. In the 8086 
mode, the 8274 presents the processor with 
a one-byte interrupt type nurrber. This 
interrupt type nurrber is used to "vector" 
through the 8086 interrupt servi ce tab 1 e. 
In either case, the interrupt service 
address or interrupt type nurmer is speci­
fied during MPSC initialization. 

To shorten interrupt 1 atency, the 8274 can 
be programmed to modify the prespeci fied 
interrupt vector so that no software over­
head is required to determine the cause of 
an interrupt. When this "status affects 
vector" mode is enabled, the foll C1Ning 
eight interrupts are differentiated auto­
matically by the 8274 hardware: 

1. Channel B Transmi tter Bu ffer Empty 

2. Channel B External/Status Transition 

3. Channel B Character Available 

4. Ch annel B Receive Error 

5. Channel A Transmi tter Buffer Empty 

6. Channel A External/Status Transition 

7. Channel A Char,acter Available 

8. Channel A Receive Error 

I nterrupt Sources/Priori ti es 

The 8274 has three interrupt sources for 
each channel: 

1. Receiver (RxA, RxB). An interrupt is 
initiated when a character is available 
in the receiver buffer. or when a re­
ceiver error (parit¥, framing, or 
overrun) is detected. 

2. Transmitter (TxA, TxB). An interrupt 
is initiated when the transmitter 
buffer is empty and the 8274 is ready 
to accept another character for 
transmi ss i on. 

3. External/Status (ExTA, ExTB). An 
interrupt is initiated whim one of the 
external/status conditions (CD, CTS, 
SYNDET, BREAK) changes state. 

The 8274 supports two interrupt priority 
orderings (selectable during MPSC initiali­
zation) as detailed in Appendix A, WR2, 
CH-A. 

AFN: 01995A 

2·325 



APPLICATIONS 

Interrupt Initialization 

In addition to the initial ization para­
meters required for po" ed operati on, the 
fo" (Ming parameters must be suppl ied to 
the 8274 to speci fy interrupt operati on: 

1. Transmit Interrupt Enable. Transnitter 
buffer empty inter,'upts are separately 
enabled by bit 1 of WR1. (See Appendix 
A for WRl deta il s . ) 

2. Receive Interrupt Enable. Receiver 
interrupts are separately enabled in 
one of three modes: a) interrupt on 
first received character only and on 
receive errors (used for message 
oriented transmission systems), b) 
interrupt on all received characters 
and on receive errors, but do not 
interrupt on parity errors, and c) 
interrupt on all received characters 
and on receive errors (including parity 
errors). The ability to separately 
disable parity interrupts can be ex­
tremel y useful when transmi tti ng Cles­
sages. Since the parity error bit in 
RRl is latched, it wi" not be reset 
until an error reset operation is per­
formed. Therefore, the parity error 
bit wi" be set if any parity errors 
were detected in a multi-character mes­
sage. If this mode is used,. the serial 
I/O software must po" the parity error 
bit at the completion of a message and 
issue an error reset if appropriate. 
The receiver interrupt node is con­
trolled by bits 3 and 4 of WR1. (See 
Appendix A for WRl details.) 

3. External/Status Interrupts. Ex­
ternal/Status interrupts can be sepa­
rately enabled by bit 0 of WR'. (See 
Appendix A for WRl details.) 

4. Interrupt Vector. An eight-bit inter­
rupt service routine location (8085) or 
interrupt type (8086) is speci fied 
through WR2 of channel B. (See 
Appendix A for WR2 details). Table 3 
1 ists interrupt vector addresses gen­
erated by the 8274 in the "status 
affects vector" mode. 

5. Status Affects Vector Mode. The 8274 
wi" automatically modify the interrupt 
vector if bit 3 of WRl is set. (See 
Appendix A for WRl details.) 

2·326 

6. System Configuration. Specifies the 
8274 data transfer mode. Three con­
figuration modes are available: a) 
interrupt driven operation for both 
channels, b) !Jo1A operation for both 
channel s, and c) !Jo1A operati on for 
channel A,· interrupt driven opera ti on 
for channel B. The SYSteCl confi gura­
tion is specified by means of bits 0 
and 1 of WR2 (channel A). (See 
Appendix A for WR2 details). 

7. Interrupt Priorities. The 8274 permits 
software specification of receive/ 
transmit priorities by means of bit 2 
of WR2 (channel A). (See Appendix A 
for WR2 details.) 

8. Interrupt fobde. Specifies whether the 
MPSe- is· to operate in a non-vectored 
mode (for use with an external inter­
rupt contro"er), in an 8086 vectored 
mode, or in an 8085 vectored mode. 
This parameter is specified through 
bits 3 and 4 of WR2 (channel A). (See 
Appendix A for WR2 details.) 

Table 3. MPSC Generated Interrupt Vectors in "Status Affects 
Vector" Mode 

Original Vector 

.1 
(specified during 

V7 V6 V5 V4 V3V2V1 VO V7V6 V5 V4 V3V2V1 VO initialization) 

8066 8085 Interrupt 
1"lerrupl TyPe Interrupt Location Condition 

V7 V6 V5 V4 Vl 0 o 0 V7V6V5 0 00 VI VO Channel B lransmitter 
Buffer Empty 

V7 V6 V5 V4 Vl o 0 I V7 V6 V5 0 0 I VI VO Channel B External/Status 
Change 

V7 V6 V5 V4 V3 0 I 0 V7 V6 V5 0 I o VI VO Channel B Receiver 
Character Available 

V7 V6 V5 V4 V3 0 I I V7 V6 V5 0 I I VI VO Channel B Receive Error 

V7 V6 V5 V4 V3 I 0 0 V7 V6 V5 I o 0 VI VO Channel A Transmitter 
Buffer Empty 

V7 V6 V5 V4 V3 I 0 I V7 V6 V5 I o I VI VO Channel A External/Status 
Change 

V7 V6 V5 V4 VJ I I 0 V7 V6 V5 I I 0 VI VO Channel A Receiver 
Character A vaiJablc 

V7 V6 V5 V4 VJ I I I V7 V6 V5 I I I VI VO Channel A Receive Error 

An MPSC interrupt initial ization procedure 
(MPSC$INTSINIT) is 1 isted in Appendix C. 

l 

AFN: 01995A 



APPLICATIONS 

Interrupt Service Routines 

Appendix C lists four interrupt service 
procedures, a buffer transmi ss ion proce­
dure, and a buffer reception procedure that 
illustrate the use of the 8274 in interrupt 
driven environments. Use of these proce­
dures assumes that the 8086/8088 interrupt 
vector is set to 2(}1 and that channel B is 
used with the "status affects vector" mode 
enabl ed. 

1. TRANSMIT$BUFFER - This procedure begins 
serial transmission of a data buffer. 
Two p-arameters are required - a pointer 
to the buffer (buf$ptr) and the 1 ength 
of the buffer (buf$length). The proce­
dure fi rst sets the global buffer 
pointer, buffer length, and initial 
index for the transmi tter interrupt 
servi ce routine and ini tia tes transmi s­
sion by writin.g the first character of 
the buffer to the 8274. The procedure 
then enters a wait loop until the I/O 
completion status is set by the trans­
mi t interrupt servi ce routi ne 
(MPSC$TRANSMIT$CHARACTER$INT). 

2. RECElVE$BUFFER - This procedure inputs 
aline (terminated by aline feed) from 
a serial I/O port. Two parameters are 
required - a pointer to the input buf­
fer (buf$ptr) and a pointer to the buf­
fer length variable (buf$length$ptr). 
The buffer length ~/i" be set by this 
procedure when the comp1 ete 1 ine has 
been input. The procedure first sets 
the global buffer pointer and ini tia' 
index for the receiver interrupt ser­
vice routine. RECEIVE$BUFFER then 
enters a wait loop until the I/O COr.1-
pletion status is set by the receive 
interrupt routine (MPSC$RECEIVE$CHAR­
ACTER$ INT). 

3. MPSC$RECE lVE$CHARACTER$ INT - This pro­
cedure is executed when the MPSC Tx 
buffer empty interrupt is ack nowl -
edged. If the current transmi t buffer 
index is less than the buffer length, 
the next character in the buffer is 
written to the MPSC da ta port and the 
buffer pointer, is updated. Otherwise. 
the transmission cOr.1pl ete status is 
posted. 

4. MPSC$RECEIVE$CHARACTER$INT - This pro­
cedure is executed when a character has 
been asserml ed by the MPSC and the MPSC 
has issued a character available inter­
rupt. If no input buffer has been set 
up by RECElVE$BUFFER, the character is 
ignored. If a buffer has been set up, 
but it is full, a receive overrun error 
is posted. Otherwise, the received 
character is read from the MPSC data 
port and the buffer index is updated. 
Finally, if the received character is a 
line feed, the receptiqn complete 
status is posted. 

5. RECEIVE$ERROR$INT - This procedure is 
executed when a receive error is de­
tected. First, the error conditions 
are read from RRl and the character 
currently in the MPSC receive buffer is 
read and discarded. Next, an Error 
Reset cOJlllland is written to the af­
fected ch annel . All addi ti onal error 
procession is appl ication depen~ent. 

6. EXTERNAL$STATUS$CHANGE$INT -This pro­
cedure is executed when an external 

i327 

sta tus condi ti on change is detected. 
The status conditions are read from RRO 
and a Reset External/Status Interrupt 
command is issued. Further error pro­
cessing is application dependent. 

AFN: 01995A 



APPLICATIONS 

4. Data Link Interface 

Serial Data Interface 

Each serial I/O channel within the 8274 
MPSC interfaces to two data 1 ink 1 ines -­
one 1 ine for transmitting data and one for 
receiving data. During transmission, char­
acters are converted from parallel data 
format (as suppl ied by the system processor 
or DMA device) into a serial bit stream 
(wi th START and STOP bi ts) and clocked out 
on the TxD pin. During reception, a serial 
bi t stream is input on the RxD pin, framing 
bits are stripped out of the data stream, 
and the resul ting character is converted to 
parall el data format and passed to the sys­
tem processor or DMA devi ceo 

Data Clocking 

As discussed previously, the frequency of 
data transmission/reception on the data 
1 ink is con troll ed by the MPSC clock in 
conjunction wi th the programmed clock di­
vider (in register WR4). The 8274 is 
desi gned to permi t all four serial inter­
face 1 ines (TxD and RxD for each channel) 
to operate at different data rates. Four 
clock input pins (TxC and RxC for each 
channel) are available for this function. 
Note that the clock rate divi der speci fi ed 
in WR4 is used for both RxC and TxC on the 
appropriate channel; clock rate dividers 
for each channel are independent. 

Modem Control 

The following four modem interface signals 
may be connected to the 8274: 

1. Data Terminal Ready (DTR). This inter­
face signal (output by the 8274) is 
software control 1 ed through bi t 7 of 
WRS. When active, DTR indicates that 
the data terminal/computer equipment is 
active and ready to interact wi th the 
data comrrunications channel. In addi­
tion, this si gnal prepares the modem 
for connection to the comrrunication 

2-328 

channel and maintains connections pre­
viously established (e.g., manual call 
ori gina ti on) . 

2. Reques t To Send (RTS). This interface 
si gnal (output by the 8274) is software 
controlled through bit 1 of WRS. When 
active, RTS indicates that the data 
terminal/cor.1puter equipment is ready to 
transmi t da ta. 

3. Clear To Send (CTS). This interface 
signal (input to the 8274) is supp1ied 
by the modem in response to an active 
RTS signal. CTS indicates that the 
data terminal/computer equipment is 
permitted to transmit data. The state 
of CTS is avanable to the prograJlll1E!r 
as bit S of RRO. In addition, if the 
auto enable control is set (bit S of 
WR3), the 8274 will not transmit data 
bytes until RTS has been activated. If 
CTS becomes inactive during trans­
mission of a character, the current 
character transmission is completed 
before the transmitter is disabled. 

4. Carri er Detect (CD). This interface 
signal (input to the 8274) is suppl ied 
by the modem to indicate that a data 
carrier signal has been detected and 
that a valid data signal is present on 
the RxD 1 ine. The state of CD is 
available to the programmer as bit 3 of 
RRO. In addition, if the auto enable 
control is set (bi t S of WR3), the 8274 
will not enable the serial receiver 
until CD has been activated. If the CD 
signal becomes inactive during recep­
ti on of a character, the receiver is 
disabled, and the partially received 
character is lost. 

In addi ti on to the above modem interface 
si gnal s, the 8274 SYNpET input pin for 
channel A may be used as a general purpose 
input in the asynchronous communication 
mode. The status of this signal is avail­
able to the prograll1ller as bi t 4 of status 
regi s ter RRO. 

AFN: 01995A 



APPLICATIONS 

Appendi x A: Connnand/Status 
Detail s for Asynchronous Conununi ca ti on 

Write Register 0 (WRO): 

r. 

02,01,00 

05,04,03 

COMMANO/STATOS pOiNTER 

ItEGISTER POINTER' 

NULL CODE 

NOT OSED IN ASYNCHRONOUS MODES 

RESET EXT/STATUS INTERRUPTS 

CHANNEL RESET 

ENABLE INTERRUPT ON NEXT Rx 
CHARACTER 

RESET TxlN1 PENDING 

ERROR RESET 

END OF INTERRUPT 

NOT·USEb IN ASYNCHRONOUS MODES 

Conunand/Status Register Pointer 
bi tsdetermine whi ch wri te­
register the next byte ;s to be 
written into, or which read­
register the next byte is to be 
read from. After reset, the 
first byte written into either 
channel goes into WRO. Foll ow­
ing a read or write to any 
register (except WRO) the 
pointer will pOint to WRO. 

Command bi ts determine whi ch of 
the basic seven commands are to 
be performed. . 

Command 0 Null--has no effect. 

Conrnand 1 Not used in asynchronous IOOdeS. 

Command 2 Reset External/Status Inter­
rupts-- resets the 1 atched 
status bits of RRO and 
re-enables them, allOWing 
interrupts to occur aga in ~ 

Command 3 Channel Reset--resets the 
Latched Status bits of RRO, the 
interrupt prioriti zati on logi c 
and all control registers for 
the channel. Four extra systeln 
clock eyc' es shoul d be allowed 
for MPSC reset time before any 
a ddi ti onal conunands or con trol s 
are written into the channel. 

Command 4 Enable Interrupt on, Next, Re­
ceive Character--if the Inter­
rupt on First Receive Character 
mode is selected,this command 
reacti,vates that mode after 
each compl ete message is re­
ceived to prepare the MPSC for 
the next message. 

Conunan d 5 Reset Transmitter Interrupt 
Pending--if The Transmit 
Interrupt mode is selected, the 
MPSC automatically interrupts 
da ta when the transmi t buffer 
becomes empty. When there are 
no IOOre characters to be sent, 
issuing this command prevents 
further transmitter interrupts 
until the next character has 
been compl etely sent. 

Command 6 Error Reset--error latches, 
Parity and Overrun errors in 
RRl are reset. 

Command 7 End of Interrupt--resets the 
interrupt-in-service latch of 
the hi ghes t-priori ty internal 
device under service. 

AFN: 01995A 

2·329· 



APPLICATIONS 

Write Register 1 (WR1): 

MBB LSB 

[01 0 , D.' 04 : 03' D.' 01 , Dol 

DO 

01 

02 

~ 1 EXT INTERRUPT 
ENABLE 

TxINTERRUPT/ 
DMA ENABLE 

1 VARIABLE 
STATUS AFFECTS VECTOR 
YECTOR (CH 8 ONLy) 0- FIXED 
(NULL coDe CH A) VECTOR 

~ 
0 0 RxINT/DMA DISABLE 

0 1 RxlNT ON FIRST CHAR OR SPECIAL 
CONDITION 

1 0 INT ON ALL Ax CHAR (PARITY AFFECTS 
VECTOR) OR SPECIAL CONDITION 

1 1 INT ON ALL Rx CHAR (PARITY DOES 
NOT AFFECT VECTOR) OR SPECIAL 
CONDITION 

1 '" WAIT ON Rx, 0 - WAIT ON Tx 

MUST BE ZERO 

WAIT ENABLE 1 - ENABLE. 0 - DISABLE 

External/Status Interrupt 
Enable--allows interrupt to 
occur as the resul t of transi­
tions on the rn-, ITS or ~ 
inputs. Also all ows interrupts 
as the resul t of a Break/Abort 
detection and tennination, or 
a t the begi n- ning of CRC, or 
sync character trans~ission 
when the Transrni t Underrun/EOtl 
latch becomes set. 

Transrni tter I nterrupt/O~IA 
Enabl e--all ows the MPSC to 
interrupt or request a !J.1A 
transfer when the transrni tter 
buffer becor.Es empty. 

Status Affects vector--(WRl ,02 
active in channel B only.) If 
this bit is not set, then the 
fixed vector, progral11l1E!d in 
WR2, is returned fron an inter­
rupt ackn~/l edge sequence. If 
the bi t is set then the vector 
returned from an interrupt 
acknowledge is variable as 
shown in the Interrupt Vector 
Tabl e. 

04,03 Receive Interrupt Mode 

o 0 Receive Interrupts/OMA Disabled 

o 1 Receive Interrupt on First 
Character Only or Special 
Condi tion 

1 0 I nterrupt on All Recei ve C har­
acters of Special Condition 
(Parity Error is a Special 
ReceiveCondi ti on) 

1 1 Interrupt on All Receive Char­
acters or Special Condition 
(Parity Error is not a Special 
Receive Condi ti on). 

05 

06 

07 

2-330 

Wait on Receive/Transmit--when 
the foll OWing condi ti ons are 
met the ROY pin is activated, 
otherwise it is hel d in the 
High-Z state. (Conditions: 
Interrupt Enabled t-bde, Wait 
Enabled, CS=O, A ()= 0/1 , and 
Al=O). The ROY pin is pulled 
low when the transmi tter bu ffer 
is full or the receiver buffer 
is empty and it is driven Hi gh 
when the transmitter buffer is 
empty or the receiver buffer is 
ful'. The RDYA and ROYB 
may be wired OR connected since 
only one signal is active at 
anyone time while the other is 
in the Hi gh Z state. 

Mus t be Zero. 

Wait Enable--enables the wait 
function. 

AFN: 01995A 



APPLICATIONS 

Write Register 2 (WA2): Channel A 

MSB LSB 

107 ~ 0105104:0310.101:001 

01,00 

~ ~ 

0 0 BOTH INTERRUPT 

0 1 A DMA, B INT 

1 0 BOTHDMA 

1 1 ILLEGAL 

: 1 = PRIORiTY RxA>RxS>TxA>TxB 

0- PRIORITY RxA>TxA >RxB>TxB 

>EXTA*>EXTB* 

>EXTA" >EXTB" 

~ 

0 0 8085 MODE 1 

0 1 .085 MODE 2 

1 0 8086/88 MODE 

1 1 ILLEGAL 

1 = YEC:rORED INTERRUPT 

0- NON VECTORED INTERRUPT 

MUST BE ZERO 

1 PIN 10= SYNDET B 

o PIN 10 = AlS e 

-EXlER"NAL STATUS INTERRUPT· 
ONLY IF EXT INTERRUPT ENABL:E (WR1: DOllS SET 

System Configuration;..-These 
specify 'ttie data transfer from 
MPSC channels to the CPU, 
either interrupt or ()'IA based. 

o 0 Channel A and Channel B both 
use interrupts 

o 1 

1 0 

1 1 

02 

o 

Channel A uses ()'lA, Channel 
Buses interrupt. 

Channel A and Channel B both 
use [)1A 

III egal Code 

Priority--this bit specifies 
the relative priorities of the 
internal MPSC interrupt/OMA 
sources. 

(Hi ghest) RxA, TxA, RxA, RxB, 
TxBExTA, ExTB (L~est) 

(Highest) RxA, RxB, TxA, 
TxB, ExTA, ExTB (LCMest) 

05,04,03 

o X X 

100 

1 0 1 

1 1 0 

06 

07 

o 

Interrupt Code--speci fi ~s the 
behavior of the MPSC when is 
receives an ,interrupt acknowl­
edge sequence from the CPU. 
(See Interrupt Vector tt>de 
Table). 

Non-vectored interrupts-­
intended for use wi th an 
extetnal, interrupt con troll er 
such as the 8259A. 

8085 Vector 'Mode l--intended 
'for use as the primary MPSC in 
a daisy chained priori1;y 
structure. 

8085 Vector tt>de 2--i ntended 
for use as any secondary MPSC 
in a daisy chained priority 
structure. 

8086/88 Vector Mode--intended 
for use as ei ther a primary or 
secondary in a daisy chained 
priority structure. 

Must be zero. 

Pin 10 RTSB 
Pin 10 = SYNOETB 

Write Register 2 (WR2): Channel B 

MSB LSB 

In:~:~:":~:~: ~:wl 
\ 

07-00 

2-331 

1,~.~ 
Vector 

Interrupt vector--This register 
contains the v,alue of the 
interrupt ve,ctor pl aced on the 
cja ta bus during acknowl edge 

, sequences. 

AFN: 01995A 



APPLICATIONS 

Write Register 3 (WR3): 

DO 

05 

07,06 

o 0 

o 1 

o 

1 1 

L-.-------AUTO ENABLES 

Ax 5 BITS/CHAR 

Ax 7 BITSJCHAR 

Rx 6 BITSICHAR 

Ax 8 BITSICHAR 

Receiver Enable--A one enables 
the receiver to begin. This 
bit shoul d be set only after 
the receiver has been 
initial ized. 

Auto Enabl es--A one wri tten to 
this bit caused CO to be auto­
matic enable ~nal for the 
receiver and erc to be an 
automati cenabl e si gnal for the 
transmi tter. A zero wri tten to 
this bit 1 imits the effect of 
CI) and m signals to setting/ 
resetting their corresponding 
bits in the status register 
(RRO). 

Receive Character length 

Receive 5 Data bi ts/character 

Receive 7 Data bits/character 

Receive 6 Data bi ts/character 

Receive 8 Data bits/character 

2-332 

Write Register 4 (WR4): 

o 0 X1 CLOCK 

o 1 X16 CLOCK 

1 0 X32 CLOCK 

1 1 X64CLOCK 

1 '" ENABLE PARITV 

o ,. DISABLE PARITY 

1 EVEN PARITY 

o ODD PARITY 

o 0 ENABLE SYNC MODES 

o 1 1 $TOP8IT 

1 0 1.5 STOP BITS 

1 1 2 STOP BITS 

NOT USED IN ASYNCHRONOUS MODES 

DO Parity--a one in this bit 
causes a pari1;y bit to be added 
to the prograllllled nur.ber of 
data bits per character for 
both the transmi tted and re­
ceived character. If the MPSC 
is programmed to receive 8 bits 
per character, the parity bit 
is not transferred to the 
microprocessor. With other 
receiver ch aracter 1 engths, the 
pari1;y bit is transferred to 

01 

03,02 

o 0 

the microprocessor. 

Even/Odd Parity--if parity is 
enabled, a one in this bit 
causes the MPSC to transmi t and 
expect even pari ty, and zero 
causes it to send and expect 
odd parity. 

Stop Bi ts 

Sel ects synchronous modes. 

o 1 Async mode, 1 stop bi t/character 

10 Async mode, 1-1/2 stop bits/ 
character 

1 1 Async mode, 2 stop 
bits/ ch aracter 

AFN: 01995A 



APPLICATIUNS 

07,06 

o 0 

Clock mode--selectsthe clock/ 
data rate multi pl i er for both 
the recei ver and the trans­
mitter. ·If the 1 x mode is 
selected, bit. synchronization 
must be done externallY. 

Clock rate = Data rate x 

o 1 Clock rate = Data rate x 16 

1 0 

1 1 

Clock rate Data rate x 32 

Clock rate Data rate x 64 

Write Register S (WRS): 

D1 

03 

04 

NOT USED IN ASYNCHRONOUS MODES 

RTS 

NOT USED IN ASYNCHRONOUS MODES 

L----Tx ENABLE 

L-_____ SEND BREAK 

Tx 5 BITS OR LESS{CHAR 

Tx 7 BITS/CHAR 

Tx 6 BITS/CHAR 

Tx 8 BITS/CHAR 

"--_________ OTR 

Request to Send--a one in this 
bit forces the RTS pin active 
(lowl and zero in this bit 
forces the RTS pin inactive 
(high l. . 

Transmitter Enable--a zero in 
this bit forces a marking state 
on the transmitter output. If 
this bit is set to zero during 
data or sync chara.cter trans­
mission, the marking state is 
entered after the character has 

. beerlsent. If this bit is set 
to zero during transmi ss ion of 
a CRe character, sync or flag 
bits are substituted for the 
remainder of the CRCbi ts. 

Send Break--aone in this bit 
forces the tr ansmit da ta 1 f1tI • 

A one in this bit allows normal 
transmitter operation. 

06,05 Transmit Character length 

o 0 Transmi t 5 or less bits/ 
character 

o 1 Transmit 7 bits/character 

0 Transmi t 6 bi ts/character 

Transmit 8 bits/character 

Bits to be sent must be right justified 
least significant bit first, eg: 

07 D6 05 D4 D3 D2 Dl DO 
o 0 B5 B4 B3 B2 Bl BO 

Read Register 0 (RRO): 

2-333 

Tx PUFFER EMPTY 

L-___ CARRIER DETECT 

L--'-____ SYNOET 

L-~_-,--___ CTS 

L----,-______ :~~N~!~6:ous MODES 

EXTERNAL STATUS 
INTERRUPT MODE 

L-______ ~-- BREAK 

DO 

Dl 

D2 

Receive Character Available-­
this bit is set when the re­
ceive FIFO contains data and is 
reset when the FIFO is empty. 

Interrupt Pending--Thi s Inter­
rupt-Pending bit is reset when 
and EOl command is issued and 
there is no other interrupt 
request pending at that time. 
In vector mode this bit is set 
at the fall ing edge of the 
second INTA in an INTA cycl e 
for anintetnal interrupt 
request~ In non-vector mode, 
this bit is set at the falling 
edge of RD input after pointer 
2 is specified. This bit is 
always zero in Channel B. 

Transmit Buffer Empty--This bit 
is set whenever the transmit 
buffer is empty except when CRC 
characters are being sent in a 
synchronous mode. This bit is 
reset when the transmit buffer 
is loaded. This bit is set 
after an MPSC reset. 

AFN: 01995A 



03 

04 

05 

APPLICATIONS 

Carrier Detect--This bit con­
ta ins the state of the CD pi n 
a t the time of the 1 ast change 
of any of the External/Status 
bi ts (CD, CTS, Sync /Hunt, 
Break/Abort, or Tx Underrun/ 
ECl1). Any change of state of 
the CD pin causes the CD bit to 
be latched and causes an Ex­
ternal/Status interrupt. This 
bi t indi ca tes current state of 
the CD pin ilil11ediately follow­
ing a Reset External/Status 
Interrupt command. 

SYNDET--In asynchronous modes, 
the operation of this bit is 
similar to the CD status bit, 
except that it shows the sta te 
of the SYNOET input. Any 
Hi gh-to-Low trans iti on on the 
SYNDET pin sets this bit, and 
causes an External/Status 
interrupt (if enabled). The 
Reset External/Status Interrupt 
command is issued to cl ear the 
interrupt. A Low-to-High 
transition clears this bit and 
sets the External/Status inter­
rupt. When the External/Status 
interrupt is set by the change 
in state of any other input or 
condition, this bit shows the 
inverted state of the SYNDEr 
pi n at time of the change. 
This bit must be read imme­
diately following a Reset Ex­
ternal/Status Interrupt command 
to read the current state of 
the SYNDET input. 

Clear to Send--this bit con­
tains the inverted state of the 
CTS pin at the time of the last 
change of any of the External/ 
Status bits (CD, CTS, Sync/ 
Hunt, Break/Abort, or Tx Under­
run/EOM). Any change of state 
of the CTS pin causes the CTS 
bit to be latched and causes an 
External/Status interrupt. 
This bit indicates the inverse 
of the current state of the CTS 
pi n il1l1lE!di atel y foll o~ling a 
Reset Externa'/Status Interrupt 
cOlTll1and. 

2·334 

07 Break--in the Asynchronous Re­
ceive mode, this bit is set 
when a Break sequence (null 
character plus framing error) 
is detected in the data 
stream. The External/Status 
interrupt, if enabled, is set 
when break is detected. The 
interrupt service routine must 
issue the Reset External/Status 
Interrupt command (WRO, COIiI11and 
2) to the break detection logic 
so the Break sequence termina­
ti on can be recogn ized. 

The Break bit is reset when the termination 
of the Break sequence is detected in the 
incoming data stream. The termination of 
the Break sequence also causes the Exter­
nal/Status interrupt to be set. The Reset 
External/Status Interrupt command must be 
issued to enable the break detection logic 
to look for the next Break sequence. A 
s ingl e extraneous null character is present 
in the receiver after the termination of a 
break; it shoul d be read and discarded. 

Read Register 1 (RR1) 

L-______ PARITV ERROR 

'----------Rx OVERRUN ERROR 

L-_________ CRC/FRAMING ERROR 

'--__________ END OF FRAME (SOLC/HDLC MODE) 

DO All sent--thi s bi t is set when all 
characters have been sent, in asyn­
chronous modes. It is reset when 
characters are in the transmitter, in 
asynchronous modes. In synchronous 
modes, this bit is always set. 

AFN: Q1995A 



APPLICATIONS 

04 Parity Error--If parity is enab1ed, 
this bit is set for received characters 
wh ose pari ty does not match the pro­
grammed sense (Even/Odd). This bit is 
latched. Once an error occurs, it re­
mains set until the Error Reset command 
is written. 

05 Receive Overrun Error--this bit indi­
cates that the receive FIFO has been 
overloaded by the receiver. The last 
character in the FIFO is overwri tten 
and f1agge~, with this error. Once the 
overwritten character is read, this 
error condition is latched until reset 
by the Error Reset command. If the 
MPSC is in the status affects vector 
mode, the overrun causes a special 
Receive Error Vector. 

06 Framing Error--In async modes, a one in 
this bit indicates a receive framing 
error. It can be reset by issuing an 
Error Reset command. 

Read Register 2 (I'lR2): 

Msa Lsa 

I V7 : VI: V5 : V4' : va' : vo': V": VO'I 

RR2 
07-00 

2·335 

... I 

Lnterrupt *Varlableln 
Status Affects 

Vector Vector Mode (WR1; D2) 

Channel B 
Interrupt vector--contains the 
interrupt vector programmed 
into WR2. If the status af­
fects vector mode is selected, 
it contains the modified vec­
tor, (See WR2) RR2 contains 
the modi fi ed vector for the 
highest priority interrupt 
pendi ng. If no interrupts are 
pending, the variable bits in 
the vector are set to one. 

AFN: 01995A 



APPLICATIONS 

APPENDIX B: MPSC Polled Transmit/Receive Character Routines 

MPSCSRX$INIT: procedure 

declare cmd$port 
clock$rate 
stop$bits 
parity$type 
parity$enable 
rx$char$length 
rx$enable 
auto$enable 
tx$char$length 
tx$enable 
dtr 
brk 
rts 

output(cmd$port)=30H; 

(cmd$port, 
clock$rate,stop$bits,parity$type,parity$enable, 
rx$char$length,rx$enable,auto$enable, 
tx$char$length,tx$enable,dtr,brk,rts) ; 

byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte, 
byte; 

/* channel reset */ 

output(cmd$port)=14H; /* point to WR4 */ 
/* set clock rate, stop bits, and parity information */ 
output(cmd$port)=shl(clock$rate,6) or shl(stop$bits,2) or shl(parity$type,l) 

or parity$enable; 

output(cmd$port)=13H; /* point to WR3 */ 
/* set up receiver parameters */ 
output(cmd$port)=shl(rx$char$length,6) or rx$enable or shl(auto$enable,5); 

output(cmd$port)=15H; /* point to WR5 */ 
/* set up transmitter parameters */ 
output(cmd$port)=shl(tx$char$length,5) or shl(tx$enable,3) or shl(dtr,7) 

or shl(brk,4) or shl(rts,l); 

end MPSC$RX$INIT; 

2·336 

AFN: 01995A 



APPLICATIONS 

MPSC$POLL$RCV$CHARACTER:procedure(data$port,cmd$port,character$ptr) byte; 

declare data$port 
cmd$port 
character$ptr 
character 
status 

declare char$avail 
rcv$error 

byte, 
byte, 
pointer, 
based character$ptr 
byte; 

literally "1", 
literally ;70H"; 

/* wait for input character ready */ 

byte, 

while (input(cmd$port) and char$avail) <> 0 do; end; 

/* check for errors in received character */ 

\ 

output(cmd$port)=l, /* point to RRl */ 
if (status:=input(cmd$port) and rcv$error) 

then do; 
character=input(data$port) , 
call RECEIVE$ERROR (cmd$port, sta'tus) , 
return 0; 

/* read character to clear MPSC */ 
/* clear receiver errors */ 
/* error return - no character avail */ 

end, 
else do; 

character=input(data$port) , 
return OFFH, /* good return - character avail */ 
end; 

end MPSC$POLL$RCV$CHARACTER, 

MPSC$POLL$TRAN$CHARACTER: procedure(data$port,cmd$port,character); 

declare data$port 
cmd$port 
character 

byte, 
byte, 
byte, 

declare tx$buffer$empty literally "4", 

/* wait for transmitter buffer empty */ 
while not (input(cmd$port) and tx$buffer$empty) do; end; 

/* output character */ 
output(data$port)=character, 

end MPSC$POLL$TRAN$CHARACTER, 

RECEIVE$ERROR: procedure(cmd$port,status), 

declare cmd$port 
status 

byte, 
byte, 

output(cmd$port)=30H, /* error reset */ 

/* *** other application dependent 
error processing should be placed here *** */ 

end RECEIVE$ERROR, 

2·337 

AFN: 01995A 



APPLICATIONS 

TRANSMIT$BUFFER: procedure(buf$ptr,buf$length) 

declare 
buf$ptr 
buf$length 

pointer, 
byte; 

/* set up transmit buffer pointer and buffer length in global variables for 
interrupt service */ 

tx$buffer$ptr=buf$ptr; 
transmit$length=buf$length; 

transmit$status=not$complete; 
output(data$port)=ttansmit$buffer(O) ; 
transmit$index=l; 

/* setup status for not complete */ 
/* transmit first character */ 
/* first character transmitted */ 

/* wait until transmission complete or error detected */ 
while transmit$status = not$complete do; end; 
if transmit$status <> complete 

then return false; 
else return true; 

end TRANSMIT$BUFFER; 

RECElVE$BUFFER: procedure (buf$ptr,buf$length$ptr); 

declare 
buf$ptr 
buf$length$ptr 
buf$length 

pointer, 
pointer, 
based buf$length$ptr byte; 

/* set up receive buffer pointer in global variable for interrupt service */ 
rx$buffer$ptr=buf$ptr; 
receive$index=O; 

receive$status=not$complete; /* set status to not complete */ 
/* wait until buffer received */ 
while receive$status = not$complete do; end; 
buf$length=receive$length; 
if receive$status = complete 

then return true; 
else return false; 

end RECElVE$BUFFER; 

2-338 

AFN: 01995A 



APPUCATIONS, 

MPSC$RECElVE$CHARACTER$INT: procedure interrupt 22H: 

/* ignore input if no open buffer */ 
if receive$status <> not$comp1ete then return: 

/* check for receive buffer overrun */ 
if receive$index = 128 

then receive$status=overrun: 
else do: 

/* read character from MPSC and place in buffer - note that the 
parity of the character must be masked off during this step if 
the character is less th~n 8 bits (e.g., ASCII) */ 

receive$puffer(receive$index) ,character=input(data$port) and 7FH: 
receive$index=receive$index+1: /* update receive buffer index */ 

/* check for line feed to end line */ 
if character = line$feed 

then do; receive$length=receive$index; reCeive$statusFcomplete: end; 
end; 

end MPSC$RECElVE$CHARACTER$INT: 

MPSC$TRANSMIT$CHARACTER$INT: procedure interrupt 20H; 

/* check for more characters to transfer */ 
if transmit$index < transmit$length 

then do; 
/* write next character from buffer to MPSC */ 
output(data$port)=transmit$buffer(transmit$index); 
transmit$index=transmit$index+lr /* update transmit buffer irtdex */ 

end: 
else transmit$status=comp1ete; 

end MPSC$TRANSMIT$CHARACTER$INT; 

RECElVE$ERROR$INT: procedure interrupt 23H; 

declare 
temp byte: 

output(cmd$port)=l: 
receive$status=input(cmd$port) ; 
temp=input(data$port) ; 
output(cmd$port)=error$reset; 

/* temporary character storage ~/ 

/* point to RRl */ 

/* discard character */ 
/* send error reset */ 

/* *** other application dependent 
error processing should be placed here *** */ 

end RECElVE$ERROR$INT; 

EXTERNAL$STATUS$CHANGE$INT: procedure interrupt 2lH: 

transmit$status=input(cmd$port) 
output(cmd$port)=reset$ext$status; 

/* input status change information */ 

/* *** other application dependent 
error processing should be placed here *** */ 

end. EXTERNAL$STATUS$CHANGE$INT; AFN: 01995A 



APPLICATIONS 

APPENDIX C: Interrupt Driven Transmit/Receive Software 

declare 
/* global variables for buffer manipulation */ 

rx$buffer$ptr 
receive$buffer based 
receive$status 
receive$index 
receive$length 

tx$buffer$ptr 
transmit$buffer based 
transmit$status 
transmit$index 
transmit$length 

cmd$port 
data$port 
a$cmd$port 
b$cmd$port 
line$feed 
not$complete 
complete 
overrun 

channel$reset 
error$reset 
reset$ext$status 

pointer, 
rx$buffer$ptr(128) 

byte initial(O), 
byte, 
byte, 

pointer, 
tx$buffer$ptr(128) 
byte initial (0) , 
byte, 
byte, 

literally ~ 4 3H~ , 
literally ~4lH~ , 
literally ~42H~ , 
literally ~ 4 3H~ , 
literally ~OAH~, 
literally .... 0 ... , 

literaqy ~OFFH~, 
literally "1"', 

literally ~18H~, 
literally ~ 30H~ , 
literally ~lOH'; 

/* pointer to receive buffer */ 
byte, 

/* indicates receive buffer status */ 
/* current index into receive buffer */ 
/* length of final receive buffer */ 

/* pointer to transmit buffer */ 
byte, 
/* indicates transmit buffer status */ 
/* current index into transmit buffer */ 
/* length of buffer to be transmitted */ 

AFN: 01995A 

2-340 



APPLICATIONS 

MPSC$INT$INIT: procedure (clock$rate,stop$bits,parity$type,parity$enable, 
rx$char$length,rx$enable,auto$enable, 
tx$char$length,tx$enable,dtr,brk,rts, 
ext$en,tx$en,rx$en,stat$affects$vector, 
config,priority,vector$int$mode,int$vector) ; 

declare 
clock$rate byte, /* 2-bit code for clock rate divisor 
stop$bits byte, /* 2-bit code for number of stop bits 
parity$type byte; /* I-bit parity type */ 
parity$enab1e byte, /* I-bit parity enable */ 
rx$char$length byte, /* 2-bit receive character length */ 
rx$enable byte, /* I-bit receiver enable */ 
auto$enable byte, /* I-bit auto enable flag */ 
tx$char$length byte, /* 2-bit transmit character length */ 
tx$enable byte, /* I-bit transmitter enable */ 
dtr byte, /* I-bit status of DTR pin */ 
brk byte, /* I-bit data link break enable */ 
rts byte, /* I-bit status of RTS pin */ 
ext$en byte, /* I-bit external/status enable */ 
tx$en byte, /* I-bit Tx interrupt enable */ 
rx$en byte, /* 2-bit Rx interrupt enable/mode */ 

*/ 
*/ 

stat$aff$vector byte, /* I-bit status affects vector flag */ 
config byte, /* 2-bit system config - int/DMA */ 
priority byte, /* I-bit pr iori ty flag */ 
vector$int$mode byte, /* 3-b1t interrupt mode code */ 
int$vector byte; /* a-bit interrupt type code */ 

output(b$cmd$port)=channel$reset; /* channel reset */ 

output(b$cmd$port)=14H: /* point to WR4 */ 
/* set clock rate, stop bits, and parity information */ 
output(b$cmd$port)=shl(clock$rate,6) or shl(stop$bits,2) or. shl(parity$type,l) 

or parity$enable; 

output (b$cmd$port)=13H; /* point to WR3 */ 
/* set up receiver parameters */ 
output(b$cmd$port)=shl(rx$char$length,6) or rx$enable or shl(auto$enable,5); 

output(b$cmd$port)=15H: /* point to WR5 */ 
/* set up transmitter parameters */ 
output(b$cmd$port)=shl(tx$char$length,5) or shl(tx$enable,3) or shl(dtr,7) 

or shl(brk,4) or shl(rts,l); 

output(b$cmd$port)=l2H: 
/* set up interrupt vector */ 
output (b$cmd$port) =int$vector; 

/* point to WR2 */ 

output(a$cmd$port)=l2H: /* point to WR2, channel A */ 
/* set up interrupt modes */ 
output(a$cmd$port)=shl(vector$int$mode,3) or shl(priority,2) or config; 

output(b$cmd$port)=llH; /* point to WRl */ 
/* set up interrupt enables */ 
output(b$cmd$port)=shl(rx$en,3) or shl(stat$aff$vector,2) or-shl(tx$en,l) 

or ext$en: 

end MPSC$INT$INIT; 

2-341 

AFN: 01995A 



APPLICATIONS 

Appendi x 0 

Appl ication Example Using SDK-86 

This application example shows the 8274 in 
simpl e iAPX-86/88 system. The 8274 con­
trols two separate asynchronous channel s 
us ing its internal interrupt controller to 
request all data transfers. The 8274 
driver software is described which trans­
mits and receives data buffers provided by 
the CPU. Also, status registers are 
maintained in system memory to all ow the 
CPU to monitor progress of the buffers and 
error condi ti ons. 

THE HARDWARE INTERFACE 

Nothing could be easier than the hardware 
design of an interrupt-driven 8274 system. 
Simply connect the data bus lines, a few 
bus control lines, supply a timing clock 
for baud rate and, voila, it's done! For 
this exampl e, the ubiquitous SDK-86 is used 
as the host CPU system. The 8274 interface 
is constructed on the wire-~lY'ap area pro­
vided. While discussing the harm/are 
interface, please refer to Diagram 1. 

Placing the 8274 on the lower 8-bi ts of tile 
8086 data bus allows byte-wide data 
transfers at even I/O addresses. For sim­
plicity, the 8274's CS/ input is generated 
by combining the M- IO/ select 1 ine ~/i th 
address line A7 via a 7432. This places 
the 8274 address range in mul ti pl e spots 
within the 8086 I/O address space. (While 
fine for this example, a more complete 
address decodi ng is recommended for actual 
prototype systems.) The 8086's Al and A2 
address lines are connected to the AO and 
Al 8274 register select inputs 
respectively. Al though other port 
assi gnments are possibl e because of the 
overlapping address spaces, the foll owing 
I/O port assignments are used in this 
exampl e: 

Port Functi on 
Data channel A 
Command/status A 
Da ta channel B 
Command/status B 

I/O Address 
OOOOH 
0002H 
0004H 
OOOSH 

To connect the 8274's interrupt controller 
into the system an inverter and pull-up re­
sistor are needed to convert the 8274's ac­
tive-low interrupt request output, IRQ, 
into the correct polarity for the 8086' s 
INTR interrupt input. The 8274 recognizes 
interrupt acknowledge bus cycles by con­
necting the INTA (INTerrupt Acknowledge) 
lines of the 8274 and 8086 together. 

The 8274 ReaD and WRi te 1 ines directl y con­
nect to the respective 8086 lines. The 
RESET line requires an inverter. The sys­
tem clock for the 8274 is provided by the 
PCLK (peripheral clock) output of the 8284A 
clock generator. 

On the 8274's serial side, traditional 1488 
and 1489 RS-232 drivers and receivers are 
used for the serial interface. The onboard 
baud rate generator suppl ies the channel 
baud rate timing. In th is exampl e, both 
sides of both channels operate at the same 
baud rate al though this certainly is not a 
requirement. (On the SDK-86, the baud rate 
selection is hard-wired thru jumpers. A 
more fl exibl e approach woul d be to 
incorporate a 8253 Progral!l11able Interval 
Timer to all ow software-confi gurabl e baud 
rate sel ecti on. ) 

That's all there is to it. This hardware 
interface is compl etely general-purpose and 
supports all of the 8274 features except 
the DMA data transfer mode which requires 
an external DMA controller. Now let's look 
a t the software interface. 

SOFTHARE I NTERF ACE 

In this example, it is assumed that the 
8086 has better things to do rather than 
cont i nuously run a seri al channel. Pre­
senting the software as a group of callable 
procedures lets the designer include them 
in the main body of another program. The 
interrupt-driven data transfers give the 
effect that the serial channels are handled 
in the background whil e the mai n program is 
executing in the foreground. There are 
five basic procedures: a seri al channel 
initialization routine and buffer handling 
routines for the transmit and receive data 
buffers of each channel. Appendi x 0-1 

2-342 

ShOHS the entire software 1; st i ng • Li st i ng 
line numbers are referenced as each major 
routing is discussed. 

The channel initial ization routine (INITIAL 
8274), starting with line #203, simply sets 
each channel into a particular operating 
mode by loading the command registers of 
the 8274. In normal operati on, once these 
registers are loaded, they are rarely 
changed. (Al though this exampl e assumes a 
s impl e asynchronous opera ting mode, the 
concept is easily extended for the byte and 
bit-sychronous modes. ) 

The channel operati ng modes are conta ined 
in two tables starting with 1 ine #163. As 
the 8274 has only one cor.mand register per 
channel, the remaining seven registers are 

AFN: 01995A 



APPLICATIONS 

(For detailed description 1m SDK,86, refer 
to SDK-86 MCS-86 System Design kit Assembly 
~lanual ) 

SDK·88 
EXPANSION 

BUS 

INTR .. 
Rii 48 

WR 48 

INTA 50 

PCLK 
38 

RST 
34 

p7 
16 

DB 
,. 

D. 12 

04 10 

D3 

D2 

01 

DO 

MilO 

A7 

A1 

A2 

SV 

40 

28 iNT 
TxOA 

22 Rii iiTS4 
21 WR AiDA 
27 INTA 

1 
CLK 

CTSA 

RESET CDA 

12 
DB7 DTRA 

1a DBB ,. 
DBS 

627. , TxDB 

" ilii.. 
16 RTSB 

DBa 

17 
DB2 AxDB 

16 
DB1 CTSB 

19 DBO 
CiiB 

os 
lffiIii 

2S 
AG fiCA 

24 
A1 RxCA 

fiCi 

\ RxCB 
jjij GND 

2B 20 

8274/SDK-86 Hardware Interface 

Diagram 1 

2-343 

CHANNEL 
A 

751489 

CHANNEL 
B 

CONTROL 
LINES 

CONNECTOR 

ADDRESS 
BUS EXPANSION 

CONNECTOR 

AFN: 01995A 



APPLICATIONS 

loaded indirectly through the WRO (Write 
Register 0) register. The first byte of 
each table entry is the register pOinter 
value ~lhich is loaded into WRO and the 
second bytei s the value for that parti cu-
1 ar register. . ' 

The indicated modes set the 8274 for asyn­
chronous operation with data characters 8 
bits long, no parity, and 2 stop bits. A 
X16 baud rate clock is assumend. Also 
selected is the "interrupt on an RX char­
acter" mode with a variable interrupt vec­
tor compatible with the 8086/8088. The 
transmi tters are enabl ed and all mode' con­
trol lines are put in their active state. 

In addition to initial izing the 8274, this 
routine also sets up the appropriate inter­
rupt vectors. The 8086 assumes the first 
1 K bytes of memory contain up to 256 sepa­
rate interrupt vectors. On the SDK-86 the 
ini tial 2K bytes of memory is RAM and 
therefore must be initial ized with the 
appropriate vectors. (In a prototype sys­
tem, this initial memory is probably ROM 
thus the vector set-up is not needed.) The 
8274 suppl ies up to eight different in+or­
rupt vectors. These vectors are developert 
from internal condi ti ons such as da ta re­
quests, status changes, or error conditions 
for each channel. The initial ization 
rou tine arbi traril y assumes tha t the 
initial 8274 vector corresponds to 8086 
vector location 80H (memory location 
200H). This choice is arbitrary since the 
8274 initial vector location is 
prograr.mab 1 e. 

Finally, the initial ization routine sets up 
the status and flag in RAM. The meaning 
and use of these locations are discussed 
later. 

Following the initialization routine are 
those for the transmit commands (starting 
with line #268). These commands assume 
that the host CPU has initial ized the pub­
lically declared variables for the transmit 
buffer pOinter, TX_POINTER_CHx, and the 
buffer 1 ength, TX_LENGTH-':CHx. The transmi t 
command routines simply cl ear the trans­
mitter empty flag, TX EMPTY CHx,and load 
the first character of the buffer into the 
transmi tter. It is necessary to load the 
first character in this manner since trans­
mitter interrupts are generated only when 
the 8274's transmit data buffer becomes 
empty. It is the act ()f becoming empty 
which generates the interrupt not simply 
the buffer being empty, thus the trans-
mitter needs one character to start. 

The host CPU can IlDnitor the transmitter 
empty flag, TX_EMPTLCHx, in order to de­
termine when transmission of the buffer is 
complete. Obviously, the CPU shoul d only 
call the command routine after first check­
ing that the empty flag is set. 

After returning to the main program, all 
transmitter data transfers are handled via 
the transmi tter interrupt service routines 
starting at 1 ines #360 and #443. These 
routines start by issuing and End-Of-Inter­
rupt corrmand to the 8274. (This corrmand 
resets the internal interrupt con troll er 
logic of the 8274 for this particular vec­
tor and opens the logic for other internal 
interrupt requests. The routines next 
check the 1 ength count. If the buffer is 
compl etel y transmi tted, the transmi tter 
empty flag, TX_EMPTLCHx, is set and a com­
mand is issued to the 8274 to reset its in­
terrupt line. Assuming that the buffer is 
not compl etel y transmi tted, the next char­
acter is output to the transmitter. In 
either case, an interrupt return is exe-
cu te d to re turn to the ma inC PU pro gram. 

The receiver corrmands start at 1 ine #314. 
L ike the transmi t commands, it is assumed 
that the CPU has initial ized the receive 
buffer pOinter public variable, RX_POINTER_ 
CHx. This variable points to the first lo­
cation in an empty receive buffer. The 
corrmand routines cl ear the receiver ready 
flag, RX_READLCHx, and then set the re­
ceiver enable bit in the 8274 WR3 regis­
ter. Wi th the receiver now enabl ed, any 
received characters are placed in the re­
ceive buffer using interrupt-driven data 
transfers. 

The received data service routines, start­
ing at lines #402 and #485, simply place 
the received- character in the buffer after 
first issuing the EOI command. The char­
acter is then compared to a ASCII CR. An 
ASCII CR causes the routine to set the re­
ceiver ready fl ag, RX_READLCHx, and to 
disable the receiver. The CPU can inter­
rogate this flag to determine when the 
buffer contains a new line of data. The 
receive buffer pointer, RX_PO INTER_CHx, 
points to the last received character and 
therecei ve counter, RX_COUNTER_CHx, con­
tains.the length. 

That completes our di scuss ion of the com­
mand routines and their associated inter­
rupt service routines. Although not used 
by the commands, two additional service 
routi nes are incl uded for compl eteness. 
These routines handle the error and sta­
tus-change interrupt vectors. 

AFN: 01995A 



· APPLICATIONS 

The error service routines, starting at 
lines #427 and #510, are vectored to if a 
special receive condition is detected by 
the 8274. These special receive conditions 
include pari t;y, receiver overrun ,and. fram­
ing errors. When this vector is generated, 
the error condition is indicated inRRl 
(Read Register 1).·, Theerro.r service rou­
tine issues an EOl command ,reads RRl and 
places it in theERROR_MSG_CHx variable, 
and then issues a reset error ,command to 
the 8274. The CPU can rmnitorthe error 
message location to detect error condi­
tions. The deSigner, of course, can supply 
his own error service routine. 

genera tes interrupts based upon changes in 
these lines. Pur WR2 parameter is 'such 
that the 8274isprogranuned to ignore 
changes for thes,e inputs.) The service 
rou tinessimpl y read RRO, pl ace its con­
tents in the STATUS_MSG_CHx variable and 
then issue a reset external status com­
mand. Read Register 0 contains the state 
of the modem inputs at the point of the 
last. change. ., 

Similarily, the status~change routines 
(starting lines #386 and #469) are initi­
ated by a change in the modem control sta­
tus lines CTS/, CD/, or SYNDET/. (Note 
that WR2 bitO controls whether the 8274 

Well, that's it. This appl ication exampl e 
has presented useful, abeit very simpl e, '. 
routines showing how the &274m,;ght be used 
to transmit and recieve buffers using an 
asynchronous serial format. Extensions for 
byte or bi t-synchronous forma ts woul d re­
quire no hardware changes due to the highly 
progranunable nature of the 8294's serial 
formats. 

Appendi x D-1 

i'ICS-86 IfICRO AS5E/1BI..ER ASYNCB 

1515-II i'ICS-86 f1ACRO ASSEt1IlI..ER V2. 1 ASSEl1BL Y If ItOOllE ASYNCIl 
OBJECT I'IOOLlE PLACE!) IN: F1: ASYNCB. OBJ 
ASSEl1BLER INYOKED BY: A5I186: F1: ASYNCB, SRC 

Let 08J LINE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

19 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27. 
28 
29 
30 

;**-*****-,*--*-**---*-*-****** 
i* * 
i'" 8274 APPlICATION BRIEF P~ * ' 

;* * 
i'" THE 8274 IS INITIfLIZED FIR SIIt'lE ASOCHR00J5 SERIfL '" 
i '" FORItAT AM) VECTORED INTERRUPT -DRIVEN CiATR TRRNSFERS. '" 
i '" THE INITIf@..IZR1~ON ROUTINE fL50 LOADS THE 88!!6'5 INTERRUPT * 
i '" YECTIR TAB!,E FROtI Tff: CODE SEGl£NT INTO L!lI RIll ON THE '" 
i * 51)1(-86. Tff: TRANSI'IITTER ANI) RECEIYER ARE lEFT ENAIllED. '" 
i* '" 
i * FOR TRANSl'IIT. THE CPU PASSES IN I'IEHORY THE POINTER If· R '" 
i;" BUFFER TO TRAN5I1IT fIND THE BYTE LENGTH OF THE BUFFER '" 
i ott TI£ DATR TRftlSFER PROCEED USIlf3 INTERRUPT-DRIIJEN TRftISFERS. '" 

, ; '" R STATUS BIT IN I£I'I(RV IS SET WHEN IF BlJ'FERS IS EI1PTY, if< 

i* '" 
i "'. FOR RECEIVE. Tf£ CPU PASSES THE POINTER OF A BlfFER TO FIlL. '" 
; * THE BlfFERIS FIllED OOIL A 'CR_CHR' CHARACTER 15 RECEIVED, '" 
; '" A STATUS BIT IS SET fIND TI£ CPU I'IW READ TI£ RX POINTER TO '" 
; * DETERI'IINE THE LOCATION OF THE LAST CHARACTER. '" 

'" i * ALL ROUTINES ARE AS5IJIEI) TO EXIST INTHE·SRI'IE.CODE SEGMENT. '" 
i '" CAll'S TO THE SERVICE ROUTINES ARE ASSI..II'IED TO BE "SHORT" OR ... 
i * INTRASEGl'lENT (ON!. Y TI£ RETURN ADDRESS IP IS ON THE STACK). '" 

'" 
'" ;* * 

i* • 
i*-"'-***-****_**_* __ **_**_** 

2-345 

PfIIE 1 

AFN: 01995A 



UK: fSJ LII£ 

31 
32 
31 
34 
J5 
J6 
37 
J8 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
68 
61 
62 
63 
64 
65 
66 
67 
68 
69 
78 
71 
72 
73 
74 
75 
76 
77 
78 
79 
89 
81 
82 
83 
84 

APPLICATIONS 

NIlE ASYNCB; IIOOIU NAI1E 

; PIIIlIC DECl~TIONS FOR COItIAI(l ROUTII£S 

; INITIfUZATION ROUTINE PIIIlIC INITIAL8274 
PUBLIC TlLCOMtlfINLCHB 
PUBlIC TlLCOI'IIIAN)_CHA 
PIllIC RlLClxtIAND-CHB 
PUBLIC RlLClxtIANI>-CHA 

; TX BlfFER COIt\ANI) CHANNEL B 
; TX BUFFER COI'I1AND CHANNEL A 
; RX BlfFER COI1MI1ND CHANNEL B 
; RX BUFFER COI1I1AND CHfNlEL R 

; PIIIlIC DE~TIONS FOR STATUS VARIABLES 

PUBLIC RlLREff)Y-CHB 
PUBLIC RlLREADY_CHA 
PUBL IC TlLEMPT'r'_CHB 
PUBLIC TlLEMPTY-CHA 
PUBLIC RlLCOUNLCHB 
PUBliC RlLCOUNLCHA 
PIIIlIC ERROILI'ISILCHB 
PIIIlI C ERROR.J1SILCHA 
PUBLIC STATUS_I'ISlLCHB 
PIIIlIC STATUS_t1SG_CHA 

; RX READ'r' FLAG CHB 
i RX READY FLAG CHA 
, TX EMPT'r' FLAG CHB 
; TX EI'1PTY FLAG CHA 
; RX BlfFER COUNTER CHB 
; RX BUFFER COUNTER CHA 
i ERROR FLAG CHB 
; ERRa;t FLAG CHA 
; STATUS FLAG CHB 
; STATUS FLAG CHA 

; PUBLIC DEClARATIONS FOR VARIABLES PASSED TO THE TRANSMIT 
;fH) RECEIYE WII'IANDS. 

PUBLIC TlLPOINTER_CHB ; TX BlfFER POINTER FOR CHB 
PUBLIC TlLLENGTlLCHB ; TX LENGTH OF BUFFER FOR CIiB 
PUBliC TlLPOINTER..CHA ; TX BUFFER POINTER FOR CHA 
PUBliC TlLLENGTfLCHA , TX LEOOTH OF BUFFER FOR CHA 
PUBliC RlLPOINTER..CHB ; RX BUFFER POINTER FOR CHB 
PIIIlIC RlLPOINTER..CHA ; RX BlfFER POINTER FOR CHA 

i 1/0 PORT ASSIGNIENTS 

; CHANNEl A PORT ASSIGNMENTS 

DATILPORLCHA 
COI1I1AND..PORT _CHA 
STATUS..PORLCHA 

EQU 9 
EQU 2 
EQU CatlfNLPORLCHA 

; DATA I/O PORT 
; COIt1AND PORT 
; STATUS PORT 

i CHfINI£L B PORT ASSIGNI1ENTS 

DATA_PORT _CHB 
COItI1AND..PORLCHB 
STATUS_PORT _CHB 

i !'IISC. 5'r'STEI'I EIllIlTES 

CR-CHR EQU 
INT _ TI1BLEJlA5E EQU 
COOE..5TART EQU 

EQU 4 
EQU 6 
EQU COMIRIILPORLCHB 

; DATA I/O PORT 
i OO'tI'lAND PORT 
; STATUS PORT 

9DH ; ASC I I CR CHARACTER CODE 
2Il8H ; INT. VECTOR BASE ADORESS 
509H ; START LOCATION FOR CODE 

85 +1 $EJECT 
B6 
87 ; RAM ASSSIGNIIENTS FOR DATA SE1lI'IENT 
88 
89 DATA SEGI£NT 
91! 

2-346 

PAGE 2 

AFN: 01995A 



APPLICATIONS 

11:5-86 IfK:RO ASSEIIIlER ASYNCB PAGE 3' 

LOC (I)J LINE 5OIJ1CE 

91 ; YECTIR INTERRtfT TABLE - ASSlI'IE INITIAL 8274 INTERRIPT 
92 ; VECTIR IS NIJIlER 88 (@288H).FOREfICII VECTOR. THE TABLE 
93 ; CONTAINS STflRT LOCATION fill) CODE SEGI1ENT REGISTER VALUE. 
94 ; TIE TABLE IS LCft)EI) FRtJI PRI»t 
95 

9298 96 .~ INT _ TABLE..8ASE 
97 :., 

11298 II8Il8 98 TlL VECTOILCHB OW 9 ; TX INTERRlfT YECTIR FOR CHB 
8292 Il88II 99 TlLCS.£HB OW 9 

199 
9294 9999 191 STS_ YECTOIt.CHB llI/ 8 ; STATUS INTERRUPT VECTIR FIR CH8 
9286 9988 182 STS_CS_CHB llI/ 8 

183 
9298 II8Il8 194 RlL YECTIR_CHB .OW 8 ; RX INTERRlPT YECTIR FOR CHB 
929R 9999 185 RlLCS_CHB DW 9 

196 
920C 9999 187 ERR_ YECTOIt.ctti OW 9 ; ERROR INTERRIPT vECTOR FOR CHB 
928E 9999 198 ERR..C5_CHB OW 111 

11119 
9219 9999 119 TlL YECTOR..CIII OW 9 ; TX INTERRIJ>T YE~FOR CHR 
8212 9999 111 TlLC5..CHR OW 9 

112 
92149999 113 STS_ VECTOR..CHR OW '9 i STATUS INTERRlPT YECTOR FOR CHR 
9216 9999 114 STS_CS_CIII DW 9 

115 
9218 9999 116 RlL YECTOR_CIII OW 9 i RX INTERRlPTVECTOR FOR CHfI 
921A 9808 117 RlLCS_CHR OW 8 

118 
921C 9999 119 ERR_ YECTOIt.CHR OW 9 i ERROR INTERRlfT VECTOR FOR CHR 
921E 9999 129 ERR_CS_CIII OW 9 

121 
122 ; "ISC Rm LOCATIONS FOR CHANNEL STATUS AtilPOINTERS 
123 
124 i CHAII£L B POINTERS AND STATUS 
125 

0229 9999 126 TlLPOINTER_CHB OW 8 i IX BlfFER POINTER FOR CHB 
8222 9999 127 TiLLENGTH_CII3 llI/ 9 i IX BUFFER LENGTH FOR CHB 
8224 9999 128 RlLPOINTER..CHB OW 8 i RX BUFFER POINTER FOR CHB 
8226 9999 129 RX..COUNT _CII3 OW 9 i RX LooTH COONTER FOR CHB 
11228 99 B8 TltDIPTY _CHB DB 9 i IX DIH: FLAG 
9229 99 131 RlLREADV _CHB DB 9 i READY FLAG <1 IF CR_CHR RECEIVED.. ELSE 9) 
922A 99 132 STATUSJ'lSILC113 DB 8 ; STATUS CHANGE I'IESSAGE 
11228 99 ill ERRIR_HSG_CHB DB 9 i ERROR STATUS LOCATION (nF NO ERRIR) 

B4 
135 i CfIlIflEL A POINTERS fIN) STATUS 
136 

Il22C 9999 137 TlLPOINTER_CHR OW e ; IX BUFFER POINTER FOR CHA 
922E 9999 138 TlLLENGTH_CHA OW 9 i IX BUFFER LooTH FOR CHR 
9239 9899 139 RlLPOINTER_CIII OW 0 i RX BUFFER POINTER FOR cHA 
8232 9999 149 RlLCOUNT _CHR OW 9 i RX LooTH COUNTER FOR CHR 
8234 99 141 TX.BIPTY _CHA DB 8 i TX DONE FLAG 
8235 99 142 RlLREADY _CHA '. DB 9 i REflDY FLAG (1 IF CR..CHR RECEIVED, ELSE 0) 
8236 99 143 STATUSJ1SG_CHR DB 8 i STATUS CHANGE MESsAGE 
8237 98 144 ERROR..MSG..CIII DB 0 i ERROR STATUS LOCATION (0 IF NO ERRIR) 

145 
146 DATA EtIlS 
147 
148 +1 $EJECT 

AFN: 01995A 

2~347 



I1CS-86 Ift:RO RSSEI'I3I..ER ASYNCB 

LOC 08J 

8598 III 
858116 

B5B4 113 
95B5 C0 

95B6 B4 
8587 4C 

858885 
B5B9 EA 

B5BC 111 
8501) 12 

85111 93 
85U C0 

9512 B4 
8513 4C 

8514 85 
8515 EA 

8516 B9 
8517 00 

LINE 

149 
159 
151 
152 
153 
154 
155 
156 
157 
158 
159 
169 
161 
162 
163 

164 
165 

166 
167 

168 
169 

179 
171 

172 
173 

174 
175 
176 
177 
178 

179 
189 

1111 
182 

183 
184 

185 
186 

187 
188 

189 

APPLICATIONS 

ABC SEGI1ENT 
ASSUI'IE CS: ABC, OS: DATA, SS: DATA 
~ COOESTART 

i-----**----***--**--* 
i * PfRlIIETERS FOR CIRIIEL INITIALIZATIIlI * 
i* * i-----**-----**-** 
i CllHfl B PfIRff'IETERS 

i WR1 - INTERRIPT III ALL Rl( CHR, VARIABLE INT VECTOR, TX INT ENABLE 
CI'1D5TRB DB 1, 16H 

i WR2 - INTERRUPT \lECTOR 
DB 2, (INLTflBl.E..BASE/4) 

i WR3 - Rl( 8 BITS/CHR, Rl( DISABLE 
DB 3, BCBH 

i 1R4 - X16 CLOCK, 2 STOP BITS, NO PARIT'r' 
DB 4,4CH 

i IRS - DTR ACTIVE, TX S BlTS/CHR, TX ENABLE, RTS ACTIVE 
DB 5,9EAH 

i WR6 All) 1oIR7 NOT REQUIRED FOR A5'r'NC 
DB 9,9 

; CIftflEL A PARAl'ETERS 

; WR1 - INTERRUPT ON ALL Rl( CHR, TX INT ENABLE 
C/tDSTRA DB L 12H 

i IoIR2 - VECTORED INTERRLPT FOR 8IlS6 
DB 2,39H 

i 1R3 - Rl( 8 BITS/CHR, Rl( D 15ABLE 
DB 3,9C9H 

i WR4 - X16 CLOCK, 2 STOP BITS, NO PARITY 
DB 4,4CH 

i WR5 - DTR ACTIYE, TX 8 BIT5/CHR, TX ENABLE, RTS ACTIVE 
DB 5,9EAH 

i WR6 fH) WR7 NOT REQUIRED FOR ASYNC 
DB 9,1:1 

199 +1 $EJECT 

2-348 

PAGE 4 

AFN: 01995A 



APPLICATIONS 

11CS-86 IIACRO RSSEIIIl.ER fI5YNCB 

LOC OBJ 

9518 

9518 C7961191l21l806 
951E SCllE02e2 
9522 C79604023586 
9528 SCllEB682 
952C C78608e24996 
9532 SCllE0A02 
9536 C7060C02771l6 
9S3C SCeE0A82 
954ll C70610028C06 
9546 SCllE1202 
954A C70614028996 
9550 SCllE1602 
9554 C7061802C006 
955A SCllE1A!I2 
955E C7061C!I2FB86 
9564 8C0E1E02 

0568 BF0Il05 
9568 BA0609 
956E E82EOO 
9571 BFOC85 
9574 BAll2Il0 
9577 E82500 

957A B80000 
9571) A22B02 
9580 A23702 
9583 A22A82 
11586 A23692 
9589 A326!I2 
958C A33292 
958F B081 
9591 A22982 
9594 A23592 
9597 A22802 
959A A23492 
9591) FB 
959E C3 

LINE SOURCE 

191 
192 i START IF COIt1fH) ROIJTIIES 
193 

194 i **---*--****---******--**-**** 
195 i* * 
196 i'" INITIALIZATION COI9IfH) FOR TI£ 8274 - TI£ 8274 * 
197 i * IS SETLf> ACCORDING TO THE PRRfH:TER5 ST~D IN '" 
198 i '" PRO!'! ABOYE STARTING AT C/1STRB FI:R CHANNEL B AN[) * 
199 i * C/'ISTRA FI:R CHfN£I.. A.. . '" 
200 i* * 
201 i-*"'------****-*******-*** 
292 
283 INITIAL8274; 
294 i COPY INTERRlf'T YECTOR IP AND CS YALUES FRt11 PRO!'! TO RAI1 
295 MOY TlLYECTOILCHB, OFFSET XllTINB i TX DATA I/ECTOR CHB 
2fJ6 I'lOl/ TX_CS_ClfJ, C5 
2117 MOY STS_YECTOILCHB, OFFSET STAINB i STATUS VECTOR CHB 
2!18 !'lOY STS_CS_CHB, CS 
2!19 MOY RlL YECTOR_CHB, OFFSET Rel/INB i RX DATA \/ECTOR CHB 
2111 MOY R:US_ClfJ, CS 
211 MOY ERR.. YECTOR_CHB, OFFSET ERRINB i ERRI:R \/ECTOR CHB 
212 MOY RX-CS_CHB, CS 
213 MOY TX-YECTOR_CHA. OFFSET XllTINA i TX DATA \/ECTI:R CHA 
214 I'lOl/ nLCS_CHA. CS 
215 I'lOl/ 51S_ YECTOR_CHA, OFFSET STAINA i STATUS \/ECTOR CHA 
216 I'KJII STS_CS_CIfl. CS 
217 MOY RX-YECTOR_CHIt OFFSET RCI/INA i RX DATA \/ECTOR CHA 
218 MOY RX-CS_CHA. CS 
219 MOY ERR..YECTOR_CHA. OFFSET ERRINA i ERROR YECTOR CHA 
22!1 i'IOli ERR..CS_CHA. CS 
221 
222 
223 
224 
225 
226 
227 
22B 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
25EI 

; COPY SETUP TABLE PARftlETERS INTO 8274 

MOY D I, IFFSET CI1[)STRB 
I'KJII DX. COMI'IAND_PORLCHB 
CALL SETUP 
HOY Dr. OFFSET CI'IDSTRA 
MOY DX, COI1PIANf) _PORLCHA 
CALL SETUP 

INITIALIZE STATUS BYTES AND FLAGS 

MOY Ax. II 
I'lOl/ ERROIU15G..OO, AL 
MOY ERRORJ'ISfLCHIt AL 
MOY STATUS_I\SG..CHB, AL 
MOY STATUSJlSG..CHA. AL 
!'lOY RX_COUNT _CHB, AX 
MOY RX_COUNT_CHA. AX 
MOY AL, 1 
MOY R'iLREADI' _00. AL 
!'lOY RX_REJIDY _CHIt AL 
!'lOY TlUl'IPT'UHB, AL 
!'lOY TX-EI'IPTY _CIfl, AL 
STI 
RET 

SETUP; !'lOY AL, WI] 
CI'IP ALII 
JE DONE 

2-349 

i INITIALIZE CHB 

; Copy CHB PARAl'lETER5 
; INITIALIZE CHA 

; COP'{ CIfl PARAl'lETERS 

; CLEAR ERROR FlAG ClfJ 
; CLEAR ERROR FLAG CHA 
; CLEAR STATUS FLAG CHB 
; CLEAR STATUS FLAG CHA 
; CLEAR RXCOUNTER 00 
; CLEAR RX COUNTER CHA 

; SET RX DONE FLAG CHB 
; SET RX DONE FLAG CIfl 
; SET TX DONE FLAG CHB 
; SET TX DONE FLAG CHA 
; ENABLE INTERRUPTS 
; REMN - DONE WITH SETUP 

; PARAI'IETER COPYING ROUTINE 

PAGE 5. 

AFN: 01995A 

t: 



APPLICATIONS 

1'ICS-86 IIACRO ASSEl'IBLER ASYNCS 

LOC 08J 

85A5 EE 
Il5fI6 47 
85ft7 EBF6 
85A9 (3 

85Afl 
85AA 50 
95fB 57 
IlSAC 52 
1M) C686280200 
95B2 BAIl480 
85B5 883E2992 
9SB9 8A95 
85BB EE 
95BC SA 
95IlI) 51' 
95BE 58 
!I5BF C3 

85C8 
05C0 50 
05C1 57 
95C2 52 
05C3 C696340280 
05C8 BfII!098 
05C8 8B3E2C92 
II5CF 8A95 
85D1 EE 
851)2 SA 
051)3 51' 
05D4 58 
851)5 C3 

LINE 

251 
252 
253 
254 
255 

SOIRCE 

OUT 
INC 
JI1P 

DIH: RET 

DX, fl 
DI 
SETUP 

i OUTPUT PARflltETER 
; POINT AT NEXT PARAI1ETER 
i 00 LOf{l IT 
; OM - SO REMII 

256 +1 $EJECT 
257 
258 
259 
2611 
261 
262 
263 
264 
265 
266 
267 
268 
269 
278 
271 
272 
273 
274 
275 
276 
277 
278 
279 
289 
281 
282 
283 
284 
285 
286 
287 
288 
289 
299 
291 
292 
293 
294 
295 
296 
297 
298 
299 
399 
391 
392 
393 
394 
395 

; --**--***-***-**--**-****-**-** 
;* * 
;* TX CIfH£l.. B rot1fIN) ROUTII£ - ROUTINE IS CALLED TO * ;* TRANSltIT A BUFFER, THE BUFFER STARTING ADDRESS, * i* TlLPOINTER_CHB, ANI) TIE BUFFER LENGTH, TlUENGTH..cHB, '" ;* I1UST BE INITIALIZED BY THE CALLING PROGRAM. '" i* BOTH ITEI1S ARE WORD ~IABLES, '" ;* * 
; ----*****-****-**-************---
TlLCOtHHLCHIl : 

PUSH AX i SAllE REGISTERS 
PUSH 01 
PUSH OX 
HOY TlLEII'TY-CHB, 8 i CLEAR EI1PTYFLAG 
HOY Ox, DATA-PORT _CHB i SETIJ' PORT POINTER 
HOY DI, TXYOINTEILCHB i GET TX, BUFFER POINTER CHB 
HOY fl, [DIl ; GET FIRST CHARACTER TO TX 
OUT DX, AL ; OUTPUT IT TO 8274 TO GET" IT STARTED 
POP OX 
POP DI 
POP AX 
RET ; RETURN 

i **--******-*****--**-********-******* 
i* * 
i* TX CHANlfl fI COI1I1fINI) ROUTINE - ROUTINE IS CALLED TO ... 
;* TRANSltIT A BUFFER THE BUFFER STARTING ADDRESS, * 
;* TX_POINTER_CHIt fINI) THE BI.fFER LENGTH, TX-LENGTILCHfI, '" 
;* ItUST BE INITIALIZED BY THE CALLING PROGRftI't * 
i* BOTH ITEI'IS ARE folIE VARIABLES. >I< 

i* * 
i --*******-*****-***--*****************-**** 
TlLCOl1ltlNlUHA: 

PUSH AX ; 5fI\IE REGISTERS 
PUSH DI 
PUSH DX 
MOV fiLEtlPTV)*", 8 i CLEAR EI1PTY FLAG 
i'MlY DX, DInA_PORT _CHfI ; SETUP PORT POINTER 
MOI/ £11, TX..POINTEIUHA ; GET. TX BUFFER POINTER CHfI 
MOV AL, [OIl i GET FIRST CHARACTER TO TX 
OUT DX, AI. ; OUTPUT IT TO 8274 TO GET IT STARTED 
POP OX 
POP 01 
POP fIX 
RET ; RETURN 

386 ; ****************-*******--***************************** 
397 ',' ;* * 
398 i * RX CIlt1Al() FOR CHfMEL B - THE CALLING ROUTINE11UST * 
399 ; * INITIALIZE RX_POINTER_CHB TO POINT AT THE RECEIVE * 
319 ; * BUFFER BEFORE CALLING 'THIS ROUTINE, * 

2-350 

PAGE 6 

AFN: 01995A 



Il5D6 
Il5D6 58 
851>7 52 
Ii5D8 C6II6298280 
85DI) C71162682.88118 
II5E3 IIAIl688 
85E6 B883 
II'5E8 EE 
8SE9 B8C1 
fiB EE 
85EC SA 
85EJ) 58 
85EE C3 

85EF 
85EF 58 
IJ5FlI 52 
85F1 C686358288 .. 
85F6 c7863282888iI 
85Ft IIA8298 
85FF B883 
8681 EE 
8682 BIIC1 
8684 EE 
8685 SA 
8686 58 
8687 C3 

8698 52 
1168957 
868A 58 
8688 E88281 
868E FF862882 
8612 FF8E2282 
8616 74eE 
8618 IIA848II 
861B 883E2Il92 
861F .8A85 
8621EE 

Lll£ 

311 
312 
313 
314 
315 
316 
317 
318 
319 
128 
321 
122 
l2l 
124 
325 
326 
l27 
128 
l29 
138 
331 
132 
III 
134 
135 
ll6 
117 
118 
m 
148 
341 
342 
343 
344 
345 
346 
347 
348 
349 
358+1 
351 
352 
353 
154 
355 
356 
357 
358 
359 
368 
361 
362 
363 
364 
365 
366 
367 
36S 
369 
378 

APPLl.CATIONS 

;. . 
;.IIIIIIIIIIIII ........ IIII-_~--

RlLaIlWIU:le: 
PUSH AX ; SAVE REGISTERS 
PUSH Dl( 
lIlY RX ... RElI)'i-CII3, 9; CLEfR RX REA>Y FLAG 
lIlY RlLCWIT _CII3,. 9 ; CLEfR RX ctUfTER 
lIlY Dl(, COIftI)..f'(IU....cHB ; POINT AT CtBIfN) PORT 
.IIIY fI..l 3 . ; SET IF m! WR3 
ruT Dl(, .11. 
lIlY ~,9C1H ; 1oIR3- 8 BI~ EIfIBlE RX 
ruT til(, II. 
P!P OX 
P!P AX 
RET ;RET\.RN 

; ___ 11*111111 ____ **** __ 
;* .. 
; .. RX ctJIIN) FOR CIRHL A - TIE Cll.L1NG ROUTINE I'IUST .. 
; .. INITIALIZE RlLPOINTER...£Ifl TO POINT RT THE RECEIVE ... 
;.. BUFFER BEFORE Cll.LlNG THIS ROUTINE. .. 
;* .. 
;-****** .... -_ .. 111111 •••• ___ .. _**-* 

RX....C{IIftI)_CHA : 
PUSH AX ; SAVE REGISTERS 
PUSH OX 
lIlY RlLREADY-C1ft 9; CLEAR RX R£II)'r' FLAG 
!'lOY RlLCOUNLCIfI. 9 ; CLEAR RX COOOER 
/'lOY DX, C1lt1fHLPORT _CIIA ! POINT AT COltlAND PORT 
lIlY AL 3 ; SET If FOR WR3 
ruT Ox. II. 
HOY AL 9C1H ; IR3 - B BITSICHR. EIflBI..E RX 
OUT DX, II. 
P!PDl( 
POP AX 
RET . ; RETI.RN 

i**--__ .. ________ ... 

STfRT OF IHTERRlfT SERVICE ROUTII£S 
.. 
.. 
.. 

; "1111111111111**1111 i 111 •••• *.11 tll***************************** 

; CIRf£l.B TRANSIIiT DATA SERVICE ROOTII£ 

XllTINB: PUSH 
PUSH 
PUSH 
CfU 
Ir«:: 
DEC 
JE 
lIlY 
lIlY 
lIlY 
OUT 

DX ; SAVE REGISTERS 
DI 
AX 
EOI ; SEND EOI cm!AN) TO 8274 
TX.POIHTER....C113 ; POINT TO NEXT CHARACTER 
TlUENGTH..C113 ; DEC LENGTH COUNTER 
XIB ; TEST IF DlH 
J»(, DFITILPORLCHB ; NOT DONE - GET NEXT CHARACTER 
DI, TX.POIHTER....CHB , 
AL £DI] ; PUTCHfRfICTER IN AI... 
DX, II. ; OUTPUT IT TO 8274 

2-351 

PAGE 7 

AFN: 01995A 



APPLICATIONS 

IICS-86 IIlCRO fI5SEIIllER ASYt«:8 PAGE 8 

LOC IEJ LINE SOlRCE 

8622 58 :m PIP AX j RESTIH: REGISTERS 
8623 SF 372 PIP 01 
8624 SA 373 PIP OK 
Il625 CF 374 IRET j ~ TO FIH:GROON> 
Il626 IIAIl688 37S K18: I'JJY Dl(, CIIIfN)..PORT J:Ifj j III ClfflACTERS IfIYE BEEN SEI{l 

iI629 B828 376 I10Y fL28H j RESET TRANSI1ITTER INTERRUPT PEN> INa 
II62B E£ 377 OOT OK, fL 
II62C C696288291 378 lIlY TlLEIfTY _CHB, 1 j I)(J£ - SO SET TK EI1PTY FLffi CHB 
8631 58 379 PIP AX j RESTIH: REGISTERS 
9632 SF 389 POP 01 
Il633 SA 381 PIP OK 
8634 CF 3B2 IRET j RETlRN TO FIH:GROON> 

383 
384 j CHNIEl. 8 STATUS CIMlE SERVICE ROOTINE 
385 

8635 52 386 STAINS: PUSH OK j SAVE REGISTERS 
8636 57 387 PUSH 01 
863758 388 PUSH AX 
963S E8D588 389 CPil EOI jSEl{l EOI rotIH) TO 8274 
963S BA8688 39!l lIlY Dl(, CI1IIH)_PORLCHB 
863E EC 391 IN AL, OX jREAD RR0 
863F A22A82 :m lIlY STATUS_IISG..CIII, fL j PUT RR0 IN STATUS I£SSAGE 
8642 B818 m lIlY IL 18H j SEND RESET STATUS INT CIIII1ANI) TO 8274 
8644 E£ 394 OOT Ox, fl 
8645 58 395 POP AX j RESTORE REGISTERS 
8646 SF 396 PIP 01 
8647 SA :197 PIP OX 
964B CF 398 IRET 

399 
488 j CIftINEl B RECEIVED DATA SERVICE ROOTINE 
481 

8649 52 482 RCVINS: PUSH OK j SAVE REGISTERS 
864A 57 483 PUSH DI 
864B 58 484 PUSH AX 
864C E8C188 485 CfLL EOI j SEND EOI COIt1fIf) TO 8274 
964F 883E24B2 486 HOY 01, RlLPOINTER_CHB j GET RK CHB BlfFER POINTER 
8653 BA8488 487 PlOY Dl(, DATfLPORLCHB 
8656 EC 488 IN fL, DX j READ CIfIRfICTER 
8657 8885 489 HOY [DI1 AL j STORE IN BlfFER 
8659 FF862482 4111 INC RK..POINTER_CHB j IUIP THE BlfFER POINTER 
865D FF8626Il2 411 INC RX..COOO .,.CHB j IU1P THE COUNTER 
8661 3C8D 412 C/'IP IL CR..CHR j TEST IF LAST CHAAACTER TO BE RECEIVED? 
8663 758E 413 JNE RIB 
8665 C68629Il281 414 PlOY RX_REfI)'U}B, 1 j YES, SET READY FLAG 
866A BAe688 415 lIlY Dl(, COIIl'lf'IIU'ffiLCHB j POINT AT COIt1AI{) PORT 
866D 8883 416 HOY 1L3 j POINT AT WR3 
866F E£ 417 ooT Ox, AL 
8678 88C8 418 lIlY AL 9C8H jOISABLE RK 
0672 EE 419 ooT OX, AL 
8673 58 428 RIB: POP AX j EITHER WAY, RESTORE REGISTERS 
8674 SF 421 POP 01 
8675 SA 422 POP OX 
8676 CF 423 IRET j RETlRN TO FIlREGRoIJID 

424 
425 j CHfHIEL B ERROR SERVICE ROUTINE 
426 

8677 52 427 ERRINS: PUSH OK j SAVE REGISTERS 
8678 58 428 PUSH AX 
8679 E8948Il 429 CfLL EOI . j sEND EOICOKftI) TO 8274 
867C BA8688 438 I10Y Dl(, COIIIfN)_P(JRLCHB 

AFN: 01995A 

2·352 



APPUQATIONS 

1ICS-86 IIftRO flSSEI'IIlI..ER ASYNCB PAlE 9 

LOC (BJ LINE SWlCE 

067F Be01 431 I10Y AL, 1 ;POINT AT RR1 
0681 EE 432 OOT DX.AL 
8682 EC m IN AL DX ; REAl) RR1 
868J A22B02 434 I10Y ERRORJ1S(LCHB, AL j Sf\\IE IT IN ERROR FLAG 
Il686 B839 435 I10Y Al, 38H ; SEND RESET ERROR COItIfN) TO 8274 
8688 EE 436 ruT DX.AL 
8689 58 437 POP AX j RESTORE REGISTERS 
068A SA 438 POP OX 
8688 CF 439 IRET j RE'fIMI TO FOREllROlIN) 

448 
441 j CHANNEL A TRANSI1IT DATA SERVICE ROUTINE 
442 

868C 52 443 Xl'lTINA: PUSH OX ; Sf\\IE REGISTERS 
868D 57 444 PUSH 01 
068E 50 445 PUSH AX 
868F E87E89 446 CALL EOI ; SEND EOI COItfANI) TO 8274 
8692 FF862C82 447 INC TX..POINTEfUHA i POINT TO NEXT CHARACTER 
8696 FFllE2E92 448 DEC nu.ENGTlUHA j DEC LENGTH COUNTER 
869A 748E 449 JE XIA ; TEST IF DONE 
869C BAI.'I0II0 450 I10Y Ox, DATA..PORT_CHA j NOT DONE - GET NEXT CHARACTER 
869F IlB3E2C82 451 I'lO\l DI, TX_POINTER..CHA 
86A3 8A85 452 I10Y AL, [OIJ i PUT CHARACTER IN II. 
86A5 EE 453 ruT Ox, AL i OUTPUT IT TO 8274 
86A6 58 454 POP AX j RESTORE REGISTERS 
86A7 SF 455 POP 01 
06A8 SA 456 POP I)X 
86A9 CF 457 IRET j RE'fIMI TO FOREGROUNI) 
86AA BA9200 458 XIA: I10Y DX, ~AND_PORLCHA ; All CHARACTERS HAVE BEEN SEND 
86AI) 8028 459 I'lO\l AL, 28H ; RESET TRANSMITTER INTERRUPT PENDING 
86AF EE 460 OUT DX, AL 
8688 C686340281 461 NOV TX-EMPT'''-CHAt 1 j DONE - SO SET TX E"PTY FLAG CHB 
86B5 58 462 POP AX j RESTORE REGISTERS 
06B6 SF 463 POP DI 
8687 SA 464 POP OX 
8688 CF 465 IRET j RETURN TO FOREGROIJND 

466 
467 ; CHANNEl A STATUS CHfHlE SERVICE ROUTINE 
468 

8689 52 469 5TAIHA: PUSH OX ; SA'o'E REGISTERS 
068A 57 470 PUSH Dl 
8688 50 471 PUSH AX 
86BC E85198 472 Cf4 EOI j SEND EOI cortlAND TO 8274 
86BF BA0298 473 110\1 I)X, COI'IItAND..PORLCHA 
86C2 EC 474 IN AL, OX jREAD RR0 
86C3 A23602 475 I'lO\l STATUSJ'lSG_CHA. . II. j PUT. RRe IN STATUS MESSAGE 
86C6 B819 476 I10Y AL 19H j SEND RESET STATUS INT COI1I'IAND TO 8274 
96C8 EE 477 OUT Ox, II. 
86C958 478 POP AX ; RESTORE REGISTERS 
Il6CA SF 479 POP 01 
86CB SA 480 POP I)X 

86CC CF 481 IRET 
482 
483 ; CHIHlEL fI RECEI'o'ED.DATR SERVICE ROUTINE 
484 

86CD 52 485 RCYINA: PUSH DX ; Sf\\IE REGISTERS 
86CE 57 486 PUSH 01 
86CF 50 487 PUSH AX 
8600 EB300S 488 CALL EOI ; SEND EOI COrtlAND TO 8274 
8603 883E3e92 489 .I'l0\l 01, RX.J>OINTER_CHA ; GET RX CHA BlfFER POINTER 
8607 BAIl9IlIl 490 I'lO\l DX, DATA-PQRT_CHA 

AFN: ·01995A 

2-353 



APPLICATIONS 

11C5-86 Ift::RO ASSEltBLER ASYN:B PAGE 19 

LOC OBJ LINE 5CW:E 

06DA EC 491 IN Al, DX i READ CHARACTER 
96DB 8805 492 HOY [OIL AI.. i STORE IN BlfFER 
9600 FF963I!92 493 Itt:: RlLPOINTEILCHA i BUMP THE BUFFER POINTER 
IJ6E1 FF963292 494 INC RX_CIlINT _CHA i BUMP THE COONTER 
Il6E5 3C9D 495 CI'f Al, CfLCHR i TEST IF LAST CImlCTER TO BE RECEIVED? 
96E7 759£ 496 mE RIA 
96E9 C696359291 497 OOY RX_READI' _CHA, 1 i I'ES, SET READ\' FLAG 
86EE BA9299 498 roY Ox, COI'II1AND_PORLCHA i POINT AT CO/tIANO PORT 
86F18083 499 J10II AL3 iPOINT AT NIB 
86F3 EE 5Il9 OUT OX, Al 
96F4 B9C8 591 J10II Al, 9C0H iDlSABlE RX 
96F6 EE 592 OUT DX, AI. 
96F7 58 5!B RIA: POP AX i EITHER WAI', RESTORE REGISTERS 
86F8 SF 504 POP DI 
86F95A 595 POP OX 
96FA CF 596 IRET ; RETURN TO FOREGROUND 

597 
598 i CHANNEl A ERROR SERVICE ROUTINE 
599 

96F852 519 ERRINA: PUSH DX i SAVE REGISTERS 
96FC 59 511 PUSH AX 
96FD EB11lOO 512 CAll EOI i SEND EO! COHI'IAND TO 8274 
9700 BAIl298 513 1101' Ox, COHI'IAND_PORLCHA 
9793 B991 514 HOY Al, 1 i POINT AT RR1 
9795 EE 515 OUT Ox, Al 
11796 EC 516 IN Al, OX iREAD RR1 
9797 A23792 517 t10V ERROR..I'1SILCHA, AI.. i SAVE IT IN ERROR FLAG 
079A 8039 518 HOY AL 39H ; SEND RESET ERROR COI1I1AND TO 8274 
079C EE 519 OUT Ox, Al 
9791) 58 529 POP AX i RESTORE REGISTERS 
079E 5A 521 POP DX 
070F CF 522 lRET ; RETURN TO FOREGROUND 

523 
524 ; END-OF-INTERRlPT ROUTINE - SENDS EOI CflMI1AI() TO 8274. 
525 ; THIS COIfIAND MUST AlWA't'5 TO ISSUED ON CHANNEl A. 
526 

9719 59 527 EO!: PUSH AX ; $AYE REGISTERS 
9711 52 528 PUSH OX 
0712 BA9200 529 HOY DX, CIJMMAI{) _PORUHA ; AlWAI'5 FOR CHANNEL A '" 
0715 8038 539 HOY Al, 38H 
9717 EE 531 OUT DX, AL 
0718 5A 532 POP OX 
9719 58 5I~ POP AX 
071A C3 534 RET 

535 
536 ; END OF CODE ROUTINE 
537 
538 ABC ENDS 
539 END 

ASSEI'IBl Y COI1PlETE, NO ERRORS FOIJlI) 

AFN: 01995A 

2-354 



APPLICATIONS 

References 

1. 8274 Multi·Protocol Serial Controller (MPSC) Data 
Sheet, Intel Corporation, California, 1980. 

2. Basics of Data Communication, Electronics. Book 
Series, McGraw-Hili, New York, 1976. ." '. 

3. Telecommunications and the Computer, J. Martin, 
Prentice-Hail, New Jersey, 1976. 

4. Technical Aspects of Data Communications,J~ 
McNamara, DEC Press, Massachusetts, 1977. 

5. Miscellaneous Data Communications Standards~ 
EIA RS·232·C, EIA RS·422, EIA RS-423, EIA Standard 
Sales, Washington, D.C. 

AFN: 01995A 



Using the 8292 
GPIB Controller 

Contents 

INTRODUCTION 

GPIB/IEEE 488 OVERVIEW 

HARDWARE ASPECTS OF THE SYSTEM 

8291 Talker/Listener 
8292 Controller 
8293 Bus Transceivers 
ZT7488/18 GPIB Controller 

8292 COMMAND DESCRipTION 

SOFTWARE DRIVER OUTLINE 

Initialization 
Talker/Listener 

Send Data 
Receive Data 
Transfer Data 

Controller 
Trigger 
Device Clear 
Serial Poll 
Parallel Poll 
Pass Control 
Receive Control 
Service Request 

System Controller 
Remote 
Local 
Interface Clear/Abort 

2-357 

2-357 

2-362 

2-367 

2-371 

INTERRUPT AND DMA CONSIDERATIONS 2-383 

APPLICATION EXAMPLE 2-384 

CONCLUSION 2-385 

APPENDIX A 2-385 

Source Listings 

APPENDIX B 2-403 

Test Cases for the Software Drivers 

APPENDIX C 2-407 

Remote Message Coding 

2·356 AFN-01380A 



APPLICATIONS 

INTRODUCTION 

The Intel® 8292 is a preprogrammed UPPM-4IAthat 
implements the Controller function of the IEEE Std 
488-1978 (GPIB, HP-IB, IEC Bus, etc.). In order to 
function the 8292 must be used with the 8291 
Talker I Listener and' suitable ,'interface andtransi 
ceiver logic such as a pair, of Intel 8293s. In this .. 
configuration the system has the potential to be a 
complete G PIB Controller when driven by ,the 
appropriate software. It has the, following 'capa~ 
bilities: System Controller, send IFC and Take 
Charge" send REN, Respond to SRQisendInterface' 
messages, Receive Control, Pass Control, Parallel 
Polfarid Take Control SynchronoiiM: ,.. , 

This application note will explain the 8292 only in 
the system context of an 8292, 8291, two 8293s and 
the driver software. If the reader wishes to learn 
more about the UPI-4IA aspects of the 8292, Intel's 
Application Note AP-41 describes the hardware 
features and programming characteristics of the 
device. Additional information on the 8291 may be 
obtained in the data sheet. The 8293 is detailed in its 
data sheet. Both chips will be covered here in the 
details that relate to the GPIB controller. " 

The next section of this application note presents an 
overview of the GPIB in a tutorial, but compre" 
hensive nature. The knowledgable reader may wish 
to skip this section; however, certain basic semantic 
concepts introduced there will be used throughout 
this note. 

Additional sections cover the view of the 8292 from 
the CPU's data bus', the 'interaction of the 3 chip' 
types, (8291, 8292, 8293), the 8292's software 
protocol and the system level hardware/software' 
protocol. A brief description of interrupts and 
DMA will be followed by an application example. 
Appendix A contains the source code for the system 
driver software. 

'GPIB/IEEE 488 OVERVIEW 

DESIGN OBJECTIVES 

What is the IEEE 488 (GPIB)? 

The experience of designing systems for a variety of 
applications in the early 1970's caused Hewlett­
Packard to define a standard intercommunication 
mechanism which would allow them to easily assemble 
instrumentation systems of varying degrees of com­
plexity. In a typical situation each instrument de­
signer designed his/ her own interface from scratch. 
Each one' was inconsistent in terms of electrical 
levels, pin-outs on a connector, and types of con­
nectors. Every time they built a system they had to 
invent new cables and new documentation just to 
specify the cabling and interconnection procedures. 

;- \.~. <" ~.'. "!:. , ,"} ,: "., :-..i:; '" .::' ,: ~. , '.~ 

"".' 'Based on this experience;Hewie'tt~PaCklfrdbegatrto 
.. ' define a new interconnectibn",.scheme.They.'«ient 
"fJ~ther than that, howeve~",f~r' they wanted to 
:sp~cify the typical communication protocol for 
systems of instruments. So in 1972, Hewlett­

',P.ackard came out with the first version of the bus 
which since has been modified and standardized by a 

'committee of several manufacturers, coordinated 
through the IEEE, to perfect what is now known as 
the IEEE 488 Interface Bus (also known as the HP­
IB, the GPIB and the IEC bus). While this bus 
sp~cification may not be perfect, it is a good 
compromise of the various desires and goals of 
in$trumentation and computer peripheral manu­
facturers to produce a common interconnection 
mechanism. It fits most instrumentation systems in 
use today and also fits very well the microcomputer 
I/O bus requirements. The basic design objectives 
for the GPIB were to: 

'I. Specify a system that is easy to use, but has all of 
the terminology and the definitions related to 
that system precisely spelled out so that every­
one uses the same language when discussing the 
GPIB. 

, ' 2. Define all of the mechanical, electrical, and func­
tional interface requirements of a system, yet not 
define any of the device aspects (they are left up 
to the instrument designer). 

2-351 

3. P~rmit a wide range of capabilities of instruments 
and computer peripherals to use a system simul­
taneously and not degrade each other's per­

, ," formance. 
4. Allow different manufacturers' equipment to be 

connected together and work together on the 
same bus. 

5. Define a system that is good for limited dis­
tance interconnections. 

6. Define a system with minimum restrictions on 
performance of the devices. 

7. ' Define a bus that allows asynchronous communi­
cation with a wide range of data rates. 

8. Define a low cost system that does not require 
,extensive and elaborate interface logic for the 
low cost instruments, yet provides higher capa­
bility for the higher cost instruments if desired. 

9. Allow systems to exist that do not need a central 
controller; that is, communication directly from 
one instrument to another is possible. 

Although the GPIB was originally designed for 
instrumentation systems, it became obvious that 
most of these systems would be controlled by a 
calculator or computer. With this in' mind several 
modifications were made to the original proposal 
before its final adoption as an international stan­
dard. Figure 1 lists the salient characteristics of the 

AFN-ll138OA 



APPLICATIONS 

GPIB as both ,an instrumentation bus and asa 
computer I/O bus. 

Data Rate 
1 M bytes/s, max 
250k bytes/s, typ 

Multiple Devices 
15 devices, max (electrical limit) 
a devices, typ (interrupt flexibility) 

Bus Length 
20 m, max 
2 m/device, typ 

ByteDriented ' 
a-bit co'mmands 
a·bit data 

Block Multiplexed 
Optimum strategy on GPI B due to 

setup overhead for commands 

I nterru pt Driven 
Serial poll (slower devices) 
Parallel poll (faster devices) 

Direct Memory Access 
One DMAfacility at controller 

serves all devices on bUS 

Asynchronous 
One talker ' , , } ". . 
Multiple li~tener~ 3-wrre handshake 

I/O to'f/O Transfers 
Talker and listeners need not 

include microcomputer/controller 

Figure 1. Major Char\l,cteristlcs of 
,GPIB as Microcomputer 1/0 Bus 

The bus can be best understood by examining each 
of these characteristics from the viewpoint of a 
general microcomputer I/O bus. 

Data Rate - Most, microcomputer systems utilize 
peripherals of differing operational rates, such as 
floppy discs at 3lkor 62k bytes/ s (single ordouble 
density), tape cassettes at 5k to 10k bytes/s, and 
cartridge tapes·at 40k to 80kbytes/s.ln general, the 
only devices that need high speed I/O are 0.5" (1.3-
cm) magnetic tapes and hard discs, operational at 
30k to 78lk bytes/s, respectively. Cei'tainly, the 
250k-bytes/ s data rate that can be easily achieved by 
the IEEE 488 bus is sufficient for microcomputers 
and their peripherals, and is more than needed for 
typical amllog instruments that take only a few read­
ings per second. The. I M-byte/ s maximum data rate 
is not easily, achieved on the GPIB and requires 
special attention to' considerations beyond the ·scope 
of this note~ Although.not required, data buffering 
in each device will improve the. overall bus per-

fOfmance and allow utilization of more of the bus 
bandwidth. 

Multiple Devices - Many microcomputer systems 
used as computers (not as components) service from 
three to seven peripherals. With the GPIB, up to 8 
devices can be handled easily by I controller; with 
some slowdown in interrupt handiing, up to IS 
devices can work together. The limit of 8 is imposed 
by the number of unique parallel poll responses 
available; the limit of 15 is set by the electrical drive 
characteristics of the bus. Logically, the IEEE 488 
Standard is capable of accommodating more device 
addresses (31 primary, each potentially. with 31 
secondaries). 

&lS Lenith - Physically, the majority of micro­
computer systems fit easily on a desk top or in a 
standard 19" (48-cm) rack, eliminating the need for 
extra long cables. The GPIB is designed typically to 
have 2 m of length per device, which accommodates 
most systems. A line printer might require greater 
cable lengths, but this can be handled at the lower 
speeds involved by using extra dummy termina­
tions. 

Byte Oriented - The 8-bit byte is almost universal 
in I/O applications; even 16-bit and 32-bit com­
puters use byte transfers for most p.eripherals. The 8-
bit byte matches the ASCII code for characters and 
is an integral submultiple of most computer word 
sizes. The G PIB has an 8-bit wide data path that may 
be used to transfer ASCII or binary data, as well,as 
the necessary status and control bytes. 

Block Multiplexed -Many peripherals are block 
oriented or are used in a block mode. Bytes are 
transferred in a fixed or variable length group; then 
there is a wait before another group is sent to that 
device, e.g., one sector ofa floppy disc, otie line ona 
printer or tape punch, etc. The G PIB is, by nature, a 
block multiplexed bus due to the overhead inyolved 
in addressing various devices to talk and listen. This 
overhead is less bothersome ifit only occurs once for 
a large number of data bytes (once per block). This 
mode of operation matches the needs Of' micro­
computers and most of their peripherals. Because of 
block multiplexing, the bus works best with buffered 
memory devices. . 

Interrupt Driven - Many types of interrupt systems 
exist, ranging from complex, fast, vectored / priority 
networks to simple polling schemes. The main 
tradeoff is usually cost versus speed of response. The 
GPIB has two interrupt protocols to help span the 
rangecif applications. The first is a single service 
request (SRQ) line that may be asserted by all 
interrupting devices. The controller then polls all 
devices to find'out which wants service. The polling 
mechanism is well defined and can be easily 

~-358 
AFN-Ol38OA 



APPLICATION5 

automated. For higher performance, the parallel 
poll capability in the IEEE 488allows up'to eight 
devices to be polled at once - each device is 
assigned to one bit ofthedata bus. This mechanism 
provides fast recognition of an interrupting device. 
A drawback is the frequent need for the controller to 
explicitly conduct a parallel poll, since there is no 
equivalent of the SRQ line for this mode. 

Direct Memory Access (DMA) -In many applica­
tions, no imediate processing of I/O data on a byte­
by-byte basis is needed or wanted. In fact, 
programmed transfers slow down the data transfer 
rate unnecessarily ilJ:these cases, and higher speed 
can be obtained using DMA. With the GPIB, one 
DMA facility at the controller serves all devices. 
There is no need to incorporate complex logic in 
each device. 

Asynchronous Transfers - An asynchronous bus is 
desirable so that each device can transfer at its own 
rate. However, there is still a strong motivation to 
buffer the data at each device when used in large 
systems in order to speed up the aggregate data rate 
on the bus by allowing each device to transfer at top 
speed. The GPIB is asynchronous and uses a special 

11111 
DEVICE A 
AILE TO 

== TALK. LISTEN, 
AND 

CONTROL 

'e.g. computer) 

DEVICE B 

ABLE TO 

== TALK AND 
LISTEN 

( •. g. digital 
multlmel.r) 

DEVICE C 

ONLY ABLE = TO LISTEN -== 1 •. g.llgnal· 
g.n.r.tor) 

( 

DEVICE 0 

°r~YTtrkE == ,e.g.counltr) 

Illf 
DATA BUS 

DATA BYTE 
TRANSFER 

( 
CONTROL 

GENERAL 
INTERFACE 

MANAGEMENT 

~}DIOL( 

~ DAYIDAT A VALID) 
NAt:D (NO 
NDAC(NO 

T READY FOR DATA) 
T DATA ACCEPTED) 

IFC (INTI!:' 
ATN (ATT 

AFACE CLEAR) • 
ENTION) 

SRD (SEA 
REN (REM 
EOI (ENO-

VICE REQUEST} 
OrE ENABLE) 
OR·IDENTIFY) 

Figure 2. Interface Capabilities and Bus Structure 

2-359 

3-wire handshake that allows data transfers from 
one talker to many listeners. 

I/O To I/O Transfers - In practice, I/O to I/O 
transfers are seldom done due to the need for 
processing data and changing formats or due to 
mismatched data rates. However, the GPIB can 
support this mode of operation where the micro­
computer is neither the talker nor one of the 
listeners. 

GPIB SIGNAL LINES 

Data Bus 

The lines D IO I through D I08are used to transfer 
addresses, control information and data. The 
formats for addresses and control bytes are defined 
by the IEEE 488 standard (see Appendix C). Data 
formats are undefined and rpay be ASCII (with or 
without parity) or binary. DIOI is the Least Sig­
nificant Bit (note that this will correspond to bit 0 
on most computers). 

Management Bus 

A TN - Attention This signal is asserted by the 
Controller to indicate that it is placing an address or 
control byte on the Data Bus. A TN is de-asserted to 
allow the assigned Talker to place status or data on 
the Data Bus. The Controller regains control by re­
asserting A TN; this is normally done synchronously 
with the handshake to avoid confusion between 
control and data bytes. 

EOI- End or Identify This signal has two uses as 
its name implies. A talker may assert EOI simul­
taneously with the last byte of data to' indicate end of 
data. The Controller may assert EO! along with 
A TN to initiate a Parallel Poll. Although many 
devices do not use Parallel Poll, all devices should 
use EOI to end transfers (many currently available 
ones do not). 

SRQ - Service Request This line is like an 
interrupt: it may be asserted by arty device to request 
the Controller to take some action. The Controller 
must determine which device is asserting SRQ by 
conducting a Serial Poll at its earliest convenience. 
The device deasserts SRQ when polled. 

1 Fe ~ Interface Clear This signal is asseited only 
by the System Controller in order to initialize all 
device interfaces to a known state. After deasserting 
I FC, the System Controller is the active controller of 
the system. 

REN- Remote Enable This signal is asserted 
only by the System Controller. Its assertion does not 
place devices into Remote Control mode; REN only 
enables:a device to go remote when addressed to 
listen. When in Remote, a device should ignore its 
front panel controls. 

AFN'()l38OA 



APPLICATIONS 

Transfer Bus 

NRFD - Not Ready For Data This handshake 
line is asserted by a listener to indicate it is not yet 
ready for the next data or control byte. Note that the 
Controller will not see NRFD deasserted (i.e., ready 
for data) until all devices have deasserted NRFD. 

N DA C - Not Data Accepted This handshake 
line is asserted by a Listener to indicate it has not yet 
accepted the data or control byte on the DIO lines. 
Note that the Controller will not see NDAC 
deasserted (i.e., data accepted) until all devices have 
deasserted NDAC. 

DA V - Data Valid This handshake line is 
asserted by the Talker to indicate that a data or 
control byte has been placed on the DIO lines and 
has had the minimum specified settling time. 

DID --f .... ___ --'~---f ... ____ .... ~-
H­

DAV 
L-

NRFD ~ =--1l ______ --1n ... __ _ 
NDAC ~ = ____ ... 11 ..... ____ ... 11 

Figure 3. GPIB Handshake Sequence 

GPIB INTERFACE FUNCTIONS 

There are ten (10) interface functions specified by 
the IEEE 488 standard. Not all devices will have all 
functions and some may only have partial subsets. 
The ten functions are summarized below with the 
relevant section number from the IEEE document 
given at the beginning of each paragraph. For 
further information please see the IEEE standard. 

I. SH - Source Handshake (section 2.3) This 
function provides a device with the ability to 
properly transfer data from a Talker to one or 
more Listeners using the three handshake lines. 

2. A H - Acceptor Handshake (section 2.4) This 
function provides a device with the ability to 
properly receive data from the Talker using the 
three handshake lines. The AH function may 
also delay the beginning (NRFD) or end 
(NDAC) of any transfer. 

3. T - Talker (section 2.5) This function allows a 
device to send status and data bytes when ad­
dressed to talk. An address consists of one 
(Primary) or two (Primary and Secondary) 

2·360 

bytes. The latter is called an extended Talker. 
4. L - Listener (section 2.6) This function allows 

a device to receive data when addressed to listen. 
There can be extended Listeners (analogous to 
extended Talkers above). 

5. SR - Service Request (section 2.7) This func­
tion allows a device to request service (inter­
rupt) the Controller. The SRQ line may be 
asserted asynchronously. 

6. RL - Remote Local (section 2.8) This function 
allows a device to be operated in two modes: 
Remote via the GPIB or Local via the manual 
front panel controls. 

7. PP - Parallel Poll (section 2.9) This function 
allows a device to present one bit of status to the 
Controller-in-charge. The device need not be 
addressed to talk and no handshake is required. 

8. DC - Device Clear (section 2. 10) This function 
allows a device to be cleared (initialized) by the 
Controller. Note that there is a difference 
between DC (device clear) and the IFC line 
(interface clear). 

9. DT - Device Trigger (section 2. I I) This func­
tion allows a device to have its basic operation 
started either individually or as part of a group. 
This capability is often used to synchronize 
several instruments. 

10. C - Controller (section 2.12) This function 
allows a device to send addresses, as well as 
universal and addressed commands to other 
devices. There may be more than one controller 
on a system, but only one may be the controller­
in-charge at anyone time. 

At power-on time the controller that is handwired to 
be the System Controller becomes the active 
controller-in-charge. The System Controller has 
several unique capabilities including the ability to 
send Interface Clear (IFC - clears all device 
interfaces and returns control to the System 
Controller) and to send Rernote Enable (REN -
allows devices to respond to bus data once they are 
addressed to listen). The System Controller may 
optionally Pass Control to another controller, if the 
system software has the capability to do so. 

GPIB CONNECTOR 

The GPIB connector is a standard 24-pin industrial 
connector such as Cinch or Amphenol series· 57 
Micro-Ribbon. The IEEE standard specifies this 
connector, as well as the signal connections and the 
mounting hardware. 

The cable has 16 signal lines and 8 ground lines. The 
maximum length is 20 meters with no more than two 
meters per device. 

AFN-Ol38OA 



t 
GND 

! 
REN 
0108 
0107 

0106 
0105 

2412 

13 1 

SHIELD 
ATN 
SRQ 

IFC 
NDAC 
NRFD 
DAV 
EOI 

0104 
0103 
0102 
0101 

Figure 4. GPIB Connector 

GPIB SIGNAL LEVELS 

The G PIB signals are all TTL compatible, low true 
signals. A signal is asserted (true) when its electrical 
voltage is less than 0.5 volts and is deasserted (false) 
when it is greater than 2.4 volts. Be careful not to 
become confused with· the two handshake signals, 
NRFD and NDAc which are also low true (i.e. 
> 0.5 volts implies the device is Not Ready For 
Data). . 

The Intel 8293 GPIB transceiver chips ensure that all 
relevant bus driver I receiver specifications are met. 
Detailed bus electrical specifications may be found 
in Section 30fthe IEEE Std 488-1978. The Standard 
is the ultimate reference for all GPIB questions. 

GPIB MESSAGE PROTOCOLS 

The GPIB is a very flexible communications 
medium and as such has many possible variations of 
protocols. To bring some order to the situation, this 
section will discuss aprotocol similar to the one used 
by Ziatech's ZT80 GPIB controller for Intel's 
MUL TIBUS™ computers. The ZT80 is a complete 
high-level interface processor that executes a set of 
high level instructions that map directly into GPIB 
actions. The sequences of commands, addresses and 
data for these instructions provide agood example 
of how to us'e the GPIB (additional information is 
available in the ZT80 Instruction Manual). The 
'null' at the end of each instruction is for cosmetic 
use to remove previous information from the DIO 
lines. 

2·361 

DA T A - Transfer a block of data from device A to 
devices B, C ... 
I. Device A Primary (Talk) Address 

Device.A Secondary Address (if any) 
2. Universal Unlisten 
3. Device B Primary (Listen) Address 

Device B Secondary Address (if any) 
Device C Primary (Listen) Address 
etc. 

4. First Data Byte 
Second Data Byte 

Last Data Byte (EOI) 
5. Null 

TRIG R - Trigger devices A, B, ... to take action 
I. Universal Unlisten 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3. Group Execute Trigger 
4. Null 

PSCTL - Pass control to device A 
I. Device A Primary (Talk) Address 

Device A Secondary Address (if any) 
2. Take Control 
3. Null 

C LEA R- Cleat all devices 
I. Device Clear 
2. Null 

REMA L - Remote Enable 
I. Assert REN continuously 

GOREM - Put devices A, B, ... into Remote 
I. Assert REN continuously 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc~ 

3. Null 

GOLOC - Put devices A, B, ... into Local 
I. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device. B Secondary Address (if any) 
etc. . 

2. Go To Local 
3. Null 

LOCAL - Reset all devices to Local 
I. Stop asserting REN 

AFN-0138OA 



APPLICATIONS 

LLKA L - Prevent all devices from returning to 
Local 
1. Local Lock Out 
2. Null 

SPOLL - Conduct a serial poll of devices A, B, ... 
I. Serial Poll Enable 
2. Universal Unlisten 
3. ZT 80 Primary (Listen) Address 

ZT 80 Secondary Address 
4. Device Primary (Talk) Address 

Device Secondary Address (if any) 
5. Status byte from device 
6. Go to Step 4 until all devices on list have been polled 
7. Serial Poll Disable 
8. Null 

PPUA L - Unconfigure and disable Parallel Poll 
response from all devices 
1. Parallel Poll Unconfigure 
2. Null 

EN A P P - Enable Parallel Poll response in devices 
A, B, ... 
1. Universal Un listen 
2. Device Primary (Listen) Address 

Device Secondary Address (if any) 
3. Parallel Poll Configure 
4. Parallel Poll Enable 
5. Go to Step 2 until all devices on list have been 

configured. 
6. Null 

DISPP - Disable Parallel Poll response from de­
vices A, B,; .. 
1. Universal Unlisten 
2. Device A Primary (Listen) Address 

Device A Secondary Address (if any) 
Device B Primary (Listen) Address 
Device B Secondary Address (if any) 
etc. 

3. Disable Parallel Poll 
4. Null 

This Ap Note will detail how to implement a useful 
subset of these controller instructions. 

HARDW ARE ASPECTS OF THE SYSTEM 

8291 GPIB TALKER/LISTENER 

The 8291 is a custom designed chip that implements 
many of the non-controller GPIB functions. It pro­
vides hooks so the user's software can implement 
additional features to complete the set. This chip is 
discussed in detail in its data sheet. The major fea­
tures are summarized here: 

-Designed to interface microprocessors to the GPIB 
-Complete Source and Acceptor' Handshake· 
~Complete Talker and Listener Functions with ex­

tended addressing 

2-362 

-Service Request, Parallel Poll, Device Clear, De-
vice Trigger, Remote/ Local functions 

-Programmable data transfer rate 
-Maskable int~rrupts 
-On-chip primary and secondary address recogni-

tion 
-1-8 MHz clock range 
-16 registers (8 read, 8 write) for CPU interface 
-DMA handshake provision 
- Trigger output pin 
-On-chip EOS (End of Sequence) recognition 

The pinouts and block diagram are shown in Fig. 5. 
One of eight read registers is for data transfer to the 
CPU; the other seven allow the microprocessor to 
monitor the GPIB states and various bus and device 
conditions. One of the eightwfite registers is for data 
transfer from the CPU; the other seven control 
various features of the 8291. 

The 8291 interface functions will be software 
configured in this application example to the 
following subsets for use with the 8292 as a 
controller that does not pass control. The 8291 is 
used only to provide the handshake logic and to send 
and receive data bytes. It is not acting as a normal 
device in this mode, as it never sees ATN asserted. 

SH I Source Handshake 
AH I Acceptor Handshake 
T3 Basic Talk-only 
L I Basic Listen-only 
SRO No Service Requests 
RLO No Remote/ Local 
PPO No Parallel Poll response 
DCO No Device Clear 
DTO No Device Trigger 

If control is passed to another controller, the 8291 
must be reconfigured to act as a talker / listener with 
the following subsets: 

SH I Source Handshake 
AH I Acceptor Handshake 
T5 Basic Talker and Serial poll 
L3 Basic Listener 
SR I Service Requests 
RLi Remote/ Local with Lockout 
PP2 Preconfigured Parallel Poll 
DC I Device Clear 
DTI Device Trigger 
CO Not a Controller 

Most applications do not pass control and the con­
troller is always the system controller (see 8292 
commands below). 

8292 GPIB CONTROLLER 

The 8292 is a preprogrammed Intel® 8041A that 
provides the additional functions necessary to 

AFN'()1380A 



PIN CONFIGURATION 

TiR! 
TIR2 

CLOCK 

INT 

DO 

01 

02 

BLOCK DIAGRAM 

GPIBOATA 

INTERFACE 

FUNCTIONS 1/':,::==="'-
SH GPIB CONTROL 

AH 
TE 
LE 
SR 
RL I 

TIR CONTROL 

BUS TRANSCEIVERS 

Figure 5. 8291 Pin Configuration and Block Diagram 

implement.a GPIB controller when used with an 
8291 Talker/Listener. The 8041 A is documented in 
both a user's manual and in AP-41. The following 
description will serve only as an outline to guide the 
later discussion. 

The 8292 acts as an intelligent slave processor to the 
main system CPU. It contains a processor, memory; 
I/O and is programmed to perform a variety of tasks 
associated with GPIB controller operation. The on­
chip RAM is used to store information about the 
state of the Controller function, as well as a variety 
of local variables, the stack and certain user status 
information. The timer/counter may be optionally 
used for several time-out functions or for counting 
data bytes transferred. The I/O ports provide the 
GPIB control signals, as well as the ancillary lines 
necessary to make the 829 I, 2, 3 work together. 

The 8292 is closely coupled to the main CPU 
through three on-chip registers that may be 
independently accessed by both the master and the 
8292 (UPI-4IA). Figure 6 shows this Register 
Interface. Also refer to Figure 12. 

The status register is; used to pass Interrupt Status 
information to the master CPU(AO = I on a read). 

The OBBOUT register is used to pass one of five 
other status words to the master based on the last 
command written into OBBIN. OBBOUT is accessed 
when AO = 0 on a, Read. The five. status words are 
Error Flag, Controller Status, GPIB Status, Event 
Counter Status or Time Out Status. 

OBBIN receives either' commands (AO = I on a 
Write) or command related data (AO = 0 on a write) 
from the master. These,command related data are 

Interrupt Mask, Error Mask, Event Counter or 
Time Out. 

CPU 

CS AO RO WR REGISTER 

0 0 0 1 READ DBBOUT 
0 1 0 1 READ STATUS 
0 0 1 0 WRITE DBBIN (DATA) 
0 1 1 0 WRITE DBBIN (COMMAND) 
1 X X X NO ACTION 

Figure 6. UPI-41A Registers 

8293 GPIB TRANSCEIVERS 

The 8293 is a multi-use HMOS chip that implements 
the IEEE 488 bus transceivers and contains the 
additional logic required to make the 8291 and 8292 
work together. The two option strapping pins are 
used to internally configure the chip to perform the 
~pecialized gating required for use with 8291 as a 
device or. with 8291/92 as a controller. 

In this application example the two configurations' 
used are shown in Fig. 7a and 7b. The drivers.are set 
to open collector or three state mode as required and 
the special logic is enabled as required in the two 
modes. 

AFN-Ol38OA 



Figure 7a. 8293 Mode 2 

'5 

mo.r-----------~ 

IDOer-----------~ 

Figure 7b. 8293 Mode 3 

APPLICATIONS 

2·364 

8291/2/3 CHIP SET 

Figure 8 shows the four chips interconnected with 
the special logic explicitly shown. 

The 8291 acts only as the mechanism to put 
commands and addresses on the bus while the 8292 
is asserting A TN. The 8291 is tricked into believing 
that the A TN line is not asserted by the A TN2 
output of the A TN transceiver and is placed in Talk­
only mode by the CPU. The 8291 then acts as though 
it is sending data, when in reality it is sending 
addresses and/or commands. When the 8292 
deasserts ATN, the CPU software must place the 
8291 in Talk-only, Listen-only or Idle based on the 
implicit knowledge of how the controller is going to 
participate in the data transfer. In other words, the 
8291 does not respond directly to addresses or 
commands that it sends on the bus on behalf of the 
Controller. The user software, through the use of 
Listen-only or Talk-only, makes the 8291 behave as 
though it were addressed. 

Although it is not a common occurrence, the GPIB 
specification allows the Controller to set up a data 
transfer between two devices and not directly 
participate in the exchange. The controller must 
know when to go active again and regain control. 
The chip set accomplishes this through use of the 
"Continuous Acceptor Handshake cycling mode" 
and the ability to detect EOI or EOS at the end ofthe 
transfer. See XFER in the Software Driver Outline 
below. 

If the 8292 is not the System Controller as 
determined by the signal on its SYC pin, then it must 
be able to respond to an IFC within 100 usec. This is 
accomplished by the cross-coupled NORs in Fig. 7a 
which deassert the 8293's internal version of err: 
(Not Controller-in-Charge). This condition is latched 
until the 8292's firmware has received the IFCL 
(interface clear received latch) signal by testing the 
IFCL input. The firmware then sets its signals to re­
flect the inactive condition and clears the. 8293's latch. 

In order for the 8292 to conduct a Parallel Poll the 
8291 must be able to capture the PP response on the 
DIO lines. The only way to do this is to fool the 8291 
by putting it into Listen-only mode and generating a 
DA V condition. However, the bus spec does not 
allow a DA V during Parallel Poll, so the back-to­
back 3-state buffers (see Fig. 7b) in the 8293 isolate 
the bus and allow the 8292 to generate a local DA V 
for this purpose. Note that the 8291 cannot assert a 
Parallel Poll response. When the 8292 is not the 
controller-in-charge the 8291 may respond to PPs 
and the 829Jguarantees that the DIO drivers are in 
"open collector" mode through the OR gate (Fig. 
7b). 

AfN.0138OA 



.. 

OAV 

" T1rh 
!lmf:B . 

" 

REN, 

EOi 

" 

T/R:z. 

8291 

IFC 

NRFO 

liiOAC 

" 

A'fIii .• , ,', 

SRQ 

OAV 

" 

.... . , 
IFC 

SYC 

REA 

SRQ 

8292 .' 
A'fNi 

. , 

Eoi2 

A"i'lim 
COUNT 

" 

I 

. IFCL' 

CLTH. 

CiC 
" 

, ;-, ATNO 

ifC[ 

mw 

T/Rl 

0101 

0102 , ;' 

0103 

0104 

0105 

0106 

DiO'7 

0108 

EOi 

A'fN 

NOAC 

N'R'l'i) 

TIl'll 

IFC 

SYC 
REN 

SRO 

ATNI 

, A'fN 
EOl2 

ATNO 

EOi 
T/R2 

ifC[ 

CLTH 
CIC 

MOOE 3 +5 

-~ .. j 

I p.;-R- OA 

OPTA 

OPTB 

V* 

I 

e 

i 

Rr- 01 

Rr- 01 

R r- 01 03* 

R I-- 01 04* 

R r- 01 05* 

R I-- 01 06* 

R I-- 01 

~ 
r- 01 08* 

MOOE 2 

- Jfi -7 
OPTA 

OPTB 

NOAC* 

fBt NRFO* SIR TIC 

IFC* 

~ REN* SIR TIC 

~ SRO* 

SIR '~/C~ ATN* 

~~T 
1 L>'-R= EOI* 

SIR, -TIC 

~ 
Flgl,lre 8. Talker/Listener/Controller 

2·365 AFN-0138OA 



APPLICATIONS 

ZT7488/18 GPIB CONTROLLER 

Ziatech's GPIB Controller, the ZT7488/ 18 will be 
used as the controller hardware in this Application 
Note. The controller consists of an 8291, 8292, an 8 
bit input port and TTL logic equivalent to that 
shown in Figure 8. Figure 9 shows the card's block 
diagram. The ZT7488/ 18 plugs into the STD bus, a 
56 pin 8 bit microprocessor oriented bus. An 8085 
CPU card is also available onthe STD bus and will 
be used to execute the driver software. 

The 8291 uses I/O Ports 60H to 67H and the 8292 
uses I/O Ports 68H and 69H. Thefive interrupt lines 
are connected to a three-state buffer at I/O Port 

ADDRESS 
AD·" 
CLOCK' 

RD' 

WT' 

SYS RESET' c)----; 
10 EXP' 

IOAO' 

ADDRESS 
M-A7 

ADDRESS 
".A4 

6FH to facilitate polling operation. This is required 
for the TCI, as it cannot be read internally in the 
8292. The other three 8292 lines (SPI, IBF, OBF) 
and the 8291's INT line are also connected to 
minimize the number of I/O reads necessary to poll 
the devices. 

NDAC is connected to COUNT on the 8292 to allow 
byte counting on data transfers. The example driver 
software will not use this feature, as the software is 
simpler and faster if an internal 8085 register is used 
for counting in software. 

Figure 9. ZT7488118 GPIB Controller 

REAO REGISTERS 

! 017 I 016 I 015 ! 014 I 013 I 012 011 1,010 

DATA IN 

1 CPT 1 APT 1 G'T 1 'NO 1 D,e 1 , •• 1 BO 1 B' 

INTERRUPT STATUS 1 

~EI REM I SPASC!LLOC I REMCI Aoscl 
INTERRUPT STATUS 2 

1 SB 1 s.os 1 S6 1 S5 1 S4 1 S3 1 S2 1 51 1 

SERIAL POLL STATUS 

PORT = WRITE REGISTERS 

- I~I~I~I~I-I~I~I~I 
DATA OUT 

61H I CPT I APT ! GET I END I DEC I ERR I 80 I 81 

INTERRUPT MASK 1 

62" I 0 1 0 I OMAolOMAl1 SPASC! LLOC I REMel ADSC I 
INTERRUPT MASK 2 

63H I S. I .. , I S6 I S5 I 54 I" I S2 Iso 
SERIAL POLL MODE 

I '"0 1'"0 I 'd. I LPAS I TPAS I LA I TA I MJMNI 64H I TO I LO I 0 I 0 I 0 I 0 I ADM '1 ADMOI 
ADDRESS STATUS 

I~~~I-I~I~I~I~I~I 
COMMAND PASS THROUGH 

ADDRESS MODE 

I CNT2 1 CNTlI eNTal COM4j COM3j COM21 CO~''I11 C~MO[ 
AUX MODE 

! x ! OTO [ OlO [ ADS.O! A04.0! A03.0[ AD2-01 ADl.O[ 66H lARS! OT ) Ol I ADS I A04 I AD3 I AD2 I AD' 

ADDRESS 0 ADDRESS 0·' 

! x ! on ! ell! ADS·,1 AD4.'! AD3·,1 AD2.'! AD'.'! 67H FE I EC5 ! EC4 ! EC3 I E~2 ! ECl I ECO 

ADDRESS 1 EOS 

Figure 10. 8291 Registers 

2·366 AFN-{)I38OA 



r---1 :: o,~ _____ ·~~~~ ________________________ ~ __________ ~ ______________ -, 

RD ~~O*·hr ____ ~IO~R ____ ~ ____________ ~~ __ ~ __ ~ ______ ~ ____ -. 

l§ A, ;:! 0, MEMW 
B3 iOW 

WR ::04H-4-h~--""-"-'----+-,.'~~~---'---1-'-------'-----C------__ -,--+-; 

.'~ 
101M.=:---, 1_ 

RESET---,---+~-H-+-------_---1I--+----lV 

INTA~=t====i:~tt========t=t=j:==~=======tti1-________________ JLJl-l~ __ -. IN~.:: 
07-00 -

DROO I--- DREQ 
DACKO [jACK 

8257-5 

HOCD-++-+-IHRQ 
HLDA + HLOA 

,-t.. ROY 

CCK- CLK 

I 'I 

~ 
" n .. 

~ ~ ~ iii' 
8212 

-y MD DS1 

~ ; 

8291 

11-- RS2 
It- RS1 
I~- RSO 

I CLK 

CS 
'I 

8205 

g 
;: 
~ 

AO-

I 
8293 ~~~~~~~~~~~~~~e~' 

... Jrt.)nO Jrt.) -0 r""% 

MODE 3 
8293 MODE 2 

1 !~ 11Ull 
> " '" ~ < > ... 

AO ~~Qi!~ " 
.. .. 

n " GPIB .. C C :I,l 
A15-A~0 ______________ ~ ________ ~ ____________ ~ __________ ~~ __ ~ ____________________ ~ 

Figure 11. DMAllnterrupt GPIB Controller Block Diagram 

The application example will not use OMA or 
interrupts; however, the Figure II block diagram 
includes these features for completeness. 

The 8257-5 OMA chip can be used to transfer data 
between the RAM and the 8291 Talker/Listener. 
This mode allows a faster data rate on the GPIB 
and typically will depend on the 8291's EOS or EO! 
detection to terminate the transfer. The 8259-5 
interrupt controller is used to vector the five possible 
interrupts for rapid software handling of the various 
conditions. 

8292 COMMAND DESCRIPTION 
This section discuss(!S each command in detail and 
relates them to a particular GPIB activity. Recall 
that although the 8041 A has only two read registers 
and one write register, through the magic of on-chip 
firmware the 8292 appears to have six read registers 
and five write registers. These are listed in Figure 12. 
Please see the 8292 data sheet for detailed definitions 

2-367 

of each register. Note the two letter mnemonics to be 
used in later discussions. The CPU must not write 
into the 8292 while IBF (Input Buffer Full) is a one, 
as information will be lost. 

DIRECT COMMANDS 

Both the Interrupt Mask (1M) and the Error Mask 
(EM) register may be directly written with the LSB 
of the address bus (AO) a "0". The firmware uses the 
MSB of the data written to differentiate between 1M 
and EM. 

Load Interrupt Mask 

This command loads. the Interrupt Mask with 
07-00. Note that 07 must be a "I" and that 
interrupts are enabled by a corresponding "I" bit in 
this register. IFC interrupt cannot be masked off; 
however, when the 8292 is the System Controller, 
sending an ABORT command will not cause an IFC 
interrupt. 

AFN-Q138OA 



APPLICATIONS 

READ FROM 8292 PORT # WRITE TO 8292 

INTERRUPT STATUS COMMAND FIELD 

1 SYC 1 ERR 1 SRO 1 EV 
1 

X 
1 

IFCR 1 IBF OBF 69H 
1 

OP 
1 

C 
1 

C 
1 

C 
1 

C 
1 

07 Do 
ERROR FLAG' INTERRUPT MASK 

X X 1 USER 1 X 
1 

X 1 TOUT 31 TOUT 21 TOUT ,I 6aH SPI TCI 1 SYC 1 OBFI 1 IBFI a SRO 1 

07 Do 
CONTROLLER STATUS' ERROR MASK 

1 CSBsl CA X 
1 

X 1 SYCS 1 IFC REN I·SRO 1 6aH a 
1 

a 1 USER 1 a 
1 

1 TOUT 41 TOUT31 TOUT ,I 

GPIB [BUSI STATUS' EVENT COUNTER' 

1 REN 1 OAV 1 EOI 1 X 1 SYC 1 IFC 1 ANTI 1 SRO 1 6aH 0 
1 

0 I 0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

EVENT COUNTER STATUS' TIME our 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

6aH 0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

TIME OUT STATUS' 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

0 
1 

6aH 'Note: These registers are accessed by a special utility command. 

Figure 12, 8292 Registers 

Load Error Mask 

This command loads the Error Mask with 07-00. 
Note that 07 must be a zero and that interrupts are 
enabled by a corresponding "I" bit in this register. 

UTILITY COMMANDS 

These commands are used to read or write the 8292 
registers that are not directly accessible. All utility 
commands are written with AO = I, 07 = 06 = 05 = I, 
D4 = O. 03-DOspecifythe particular command. For 
writing into registers the general sequence is: 

I. wait for IBF = Oin Interrupt Status Register 
2. write the appropriate command to the 8292, 
3. write the desired register value to the 8292 with 

AO = I with no other writes intervening, 
4. wait for indication of completion from 8292 

(IBF = 0). 

For reading a register the general sequence is: 

I. wait for IBF = 0 in Interrupt Status Register 
2. write the appropriate command to the 8292 
3. wait for a TCI (Task Complete Interrupt) 
4. Read the value of the accessed register from the 

8292 with AO = O. 

WEVC - Write to Event Counter 
(Command = OE2H) 

The byte written following this command will be 
loaded into the event counter register and event 
counter status for byte counting. The internal 

2-368 

counter is incremented on a high to low transition of 
the COUNT (TI) input. In this application example 
NOAC·is connected to count. The counter is an 8 bit 
register and therefore can count up to 256 bytes 
(writing 0 to the EC implies a count of256). If longer 
blocks are desired, the main CPU must handle the 
interrupts every 256 counts and carefully observe the 
timing constraints. 

Because the counter has a frequency range from 0 to 
133 kHz when using a 6 MHz crystal, this feature 
may not be usable with all devices on the G PIB. The 
8291 can easily transfer data at rates up to 250 kHz 
and even faster with some tuning of the system. 
There is also a 500 ns minimum high time 
requirement for COUNT which can potentially be 
violated by the 8291 in continuous acceptor 
handshake mode (i.e., TNOOVI + TOVN02-C = 
350 + 350 = 700 max). When cable delays are taken 
into consideration, this problem will probably never. 
occur. 

When the 8292 has completed the command, IBF 
will become a "0" and will cause an interrupt if 
masked on. 

WTOUT - Write to Time Out Register 
(Command = OE I H) 

The byte written following this command will be 
used to'determine the number of increments used for 
the time out functions. Because the register is 8 bits, 
the maximum time out is 256 time increments. This 

AFN·0138OA 



is probably enough for most instruments on the 
GPlB but is not enough for a manually stepped 
operation using a GPlB logic analyzer like Ziatech's 
ZT488. Also, the 488 Standard does not set a lower 
limit on how long a device may take to do each 
action. Therefore, any use of a time out must be able 
to be overridden (this is a good general design rule 
for service and debugging considerations). 

The time out function is implemented in the 8292's 
firmware and will not be an accurate time. The 
counter counts backwards to zero from its initial 
value. The function may be enabled/disabled by a 
bit in the Error mask register. When the command is 
complete lBF will be set to a "0" and will cause an 
interrupt if masked on. 

REVC -- Read Event Counter Status 
(Command = OE3H) 

This command transfers the content of the Event 
Counter to the DBBOUT register. The firmware 
then sets TCI = I and will cause an interrupt if 
masked on. The CPU may then read the value from 
the 8292 with AD = O. 

RIN M - Read Interrupt Mask Register 
(Command = DESH) 

This command transfers the content of the Interrupt 
Mask register to the DBBOUT register. The 
firmware sets TCI = I and will cause an interrupt if 
masked on. The CPU may then read the value. 

RERM - Read Error Mask Register 
(Command = DEAH) 

This command transfers the content of the Error 
Mask register to the DBBOUT register. The 
firmware sets TCI = I and will cause an interrupt if 
masked on. The CPU may then read the value. 

RCST - Read Controller Status Register 
(Command =OE6H) 

This command transfers the content of the Con­
troller Status register. to the DBBOUT register. The 
firmware sets TCI = I and will cause an interrupt if 
masked on. The CPU may then read the value. 

RTOUT - Read Time Out Status Register 
(Command = OE9H) 

This command transfers the content of the Time Out 
Status register to the DBBOUT register. The 
firmware sets TCI = I and will cause an interrupt if 
masked on. The CPU may then read the value. 

If this register is read while a time-out function is in 
process, the value will be the time remaining before 
time-out occurs·. If it is read after a time-out, it will 
be zero. If it is read when no time-out is in process, it 
will be the last value reached when the previous 
timing occurred. . 

2·369 

RBST - Read Bus Status Register 
(Command = OE7H) 

This command causes the firmware to read the 
GPlB management lines, DAVand the SYC pin and 
place a copy in DBBOUT. TCl is set to "I" and will 
cause an interrupt if masked on. The CPU may read 
the value. 

RERF - Read Error Flag Register 
(Command = OE4H) 

This command transfers the content of the Error 
Flag register to the D BBO UT register. The firmware 
sets TCl = I and will cause an interrupt if masked on. 
The CPU may then read the value. 

This register is also placed in DBBOUTby an lACK 
command if ERR remains set. TCl is set to "I" in 
this case also. 

lACK - Interrupt Acknowledge 
(Command = Al A2 A3 A4 I AS I I) 

This command is used to acknowledge any combina­
tions of the five SPI interrupts (AI-AS): SYC, 
ERR, SRQ, EV, and IFCR. Each bit AI-AS is an 
individual acnowledgement to the corresponding bit 
in the Interrupt Status Register. The command 
clears SPI but it will be set again if all ofthe pending 
interrupts were not acknowledged. 

If A2 (ERR) is "I", the Error Flag register is,placed 
in DBBOUTand TCI is set. The CPU may then read 
the Error Flag without issuing an RERf command. 

OPERA TION COMMANDS 

The following diagram (Fig. 13) is an attempt to 
show the interrelationships among the various 8292 
Operation Commands. It is not meant to replace the 
complete controller state diagram in the IEEE 
Standard. 

RST - Reset (Command = OF2H) 

This command has the same effect as an external 
reset applied to the chip's pin #4. The 8292's actions 
are: 

I. All outputs go to their electrical high state. This 
means that SPI, TCI, OBFI, lBFI, CLTHwill be 
TRUE and all other GPlB signals will be. FALSE. 

2. The 8292's firmware will cause the above men­
tioned five signals to go FALSEafter.approxi­
mately n.s usec.(at 6 MHz). 

3. These registers will be cleared: Interrupt Status, 
Interrupt Mask, Error Mask, Time Out, Event 
Counter, Error Flag. . 

4. If the 8292 is the System Controller (SYC is 
TR UE), then IFC will be seilt TR UE for approxi­
mately 100 usec and the Controller function will 
end up in charge of the bus. Ifthe8292 is notthe 

AFN'()138OA 



APPLICATIONS 

(RST + ABORT) • SYC 

RST. SVC IDLE 

,------,--------1 

I RST+ I ~SREMa I I --_.. LOCAL Sloe REMOTE I 
ABORT· SYC . . 

Figure 13. 8292 Command Flowchart 

System Controller then it will end up in an Idle 
state. 

5. TCI will not be set. 

RSTI - Reset Interrupts (Command = OF3) 

I 

This command clears all pending interrupts and 
error flags. The 8292 will stop waiting for actions to 
occur (e.g., waiting for ATN to go FALSE in a 
TCNTR command or waiting for the proper 
handshake state in a TCSY command). TCI will not 
be set. 

ABO RT - Abort all operations and Clear Interface 
(Command = OF9H) 

If the 8292 is not the System Controller this 
command acts like a NOP and flags a USER 
ERROR in the Error Flag Register. No TCI will 
occur. 

If the 8292 is the System Controller then IFC is set 
TRUE for approximately 100 IJ.sec and the 8292 
becomes the Controller-in-Charge and asserts A TN. 
TCI will be set, only if the 8292 was NOT the CIC. 

STCNI- Start Counter Interrupts 
(Command = OFEH) 

Enables the EV Counter Interrupt. TCI will not be 
set. Note that the counter must be enabled by a GSEC 
command. 

SPCNI- Stop Counter Interrupts 
(Command = OFOH) 

The 8292 will not generate an EV interrupt when the 
counter reaches O. Note that the counter will 
continue counting. TCI will not be set. 

SREM - Set Interface tO,Remote Control 
(Command = OF8H) 

If the 8292 isthe System Controller, it will set REN 

2·370 

and TCI TRUE. Otherwise it only sets the User 
Error Flag. 

SLOe - Set Interface to Local Mode 
(Command = OF7H) 

If the 8292 is the System Controller, it will set REN 
FALSE and TCI TRUE. Otherwise, it only sets the 
User Error Flag. 

EXPP - Execute Parallel Poll 
(Command = OF5H) 

If not Controller-in-Charge, the 8292 will treat this 
as a NOP and does not set TCI. If it is the Control­
ler-in-Charge then it sets lOY (EO! & ATN) TRUE 
and generates a local DA V pulse (that never reaches 
the GPIB because of gates in the 8293). If the 8291 is 
configured as a listener, it will capture the Parallel 
Poll Response byte in its data register. TCI is not 
generated, the CPU must detect the BI (Byte In) 
from the 8291. The 8292 will be ready to accept 
another command before the BI occurs; therefore 
the 829 I's BI serves as a task complete indication. 

GTSB - Go To Standby (Command = OF6H) 

If the 8292 is not the Controller-in-Charge, it will 
treat this command as a NOP and does not set TCI 
TRUE. Otherwise, it goes to Controller Standby 
State (CSBS), sets ATN FALSE and TCI TRUE. 
This command is used as part of the Send, Receive, 
Transfer and Serial Poll System commands (see 
next section) to allow the addressed talker to send 
datal status. 

If the data transfer does not start within the specified 
Time-Out, the 8292 sets TOUT2 TRUE in the Error 
Flag Register and sets SPI (if enabled). The 
controller continues waiting for a new command. 
The CPU must decide to wait longer or to regain 
control and take corrective action. 

GSEC - Go to Standby and Enable Counting 
(Command = OF4H) 

This command does the same things as GTSB but 
also initializes the event counter to the value pre­
viously stored in the Event Counter Register (default 
value is 256) and enables the counter. One may wire 
the count input to NDAC to count bytes. When the 
counter reaches zero, it sets EV (and SPI if enabled) 
in Interrupt Status and will set EV every 256 bytes 
thereafter. Note that there is a potential loss of 
count information if the CPU does not respond to 
the EV / SPI before another 256 bytes have been 
transferred. TCI will be set at the end of the 
command. 

TeSY - Take Control Synchronously 
(Command = OFDH) 

If the 8292 is not in Standby, it treats this command 
as a NOP and does not set TCI. Otherwise, it waits 

AFN.Ql38OA 



,.,..-.- ... ,,""' •• 'W' ..... 

for the proper handshake state and sets ATN 
TRUE. The 8292 will set TOUT3 if the handshake 
never assumes the correct state and will remain in 
this command until the handshake is proper or a 
RSTI command is issued. If the 8292 successfully 
takes control, it sets TCI TRUE. 

This is the normal way to regain control at the end of 
a Send, Receive, Transfer or Serial Poll System 
Command. If TCSY is not successful, then the 
controller must try TCAS (see warning below). 

TCAS - Take Control Asynchronously 
(Command = OFCH) 

If the 8292 is not in Standby, it treats this command 
as a Nap and does not set TCI. Otherwise, it 
arbitrarily sets ATN TRUE and TCI TRUE. Note 
that this action may cause devices on the bus to lose 
a data byte or cause them to interpret a data byte as a 
command byte. Both Actions can result in anoma­
lous behavior. TCAS should be used only in 
emergencies. If TCAS fails, then the System 
Controller will have to issue an ABORT to clean 
things up. 

GIDL - Go to Idle (Command = OFIH) 

If the 8292 is not the Controller in Charge and 
Active, then it treats this command as a Nap and 
does not set TCI. Otherwise, it sets ATN FALSE, 
becomes Not Controller in Charge, and sets TCI 
TRUE. This command is used as part of the Pass 
Control System Command. 

TCNTR - Take (Receive) Control 
(Command == OFAH) 

If the 8292is not Idle, then it treats this command as 
a Nap and does not set TCI. Otherwise, it waits for 
the current Controller-in-Charge to set A TN 
FALSE. If this does not occur within the specified 
Time Out, the 8292 sets TOUTI in the Error Flag 
Register and sets SPI (if enabled)~ it will not proceed 
until A TN goes false or it receives ali RSTI 
command. Note that the Controller in Charge must 
previously have sent this controller (via the 8291 's 
command pass through register) a Pass Control 
message. When A TN goes FALSE, the 8292 sets 
CIC, ATN and TCI TRUE and becomes Active: 

SOFTW ARE DRIVER OUTLINE 
The set of system commands discussed below is 
shown in Figure 14. These commands are imple­
mented in software routines executed by the main 
CPU. 

The following section assumes that the Controller is 
the System Controller and will not Pass Control.' 
This is a valid assumption for 99+% of all 
controllers. It also assumes that no DMA or; 
Interrupts will be used. SYC (System Control Input) 

should not be changed after Power-on in any system 
- it adds unnecessary complexity to the' CPU's 
software. 

In order to use polling with the 8292 one must enable 
TCI but not connect the pin to the CPU's interrupt 
pin. TCI must be readable by some means. In this 
application example it is connected to bit I port 6FH 
on the ZT7488/ 18. In addition, the other three 8292 
interrupt lines and the 8291 interrupt are also on that 
port (SPI-Bit 2, IBFI-Bit 4, OBFI-Bit 3, 8291 INT­
Bit 0). 

These drivers assume. that only primary addresses 
will be used on the GPIB. To use secondary 
addresses, one must modify the test for valid 
talk/ listen addresses (range macro) to include 
secondaries. 

INIT INITIALIZATION 

Talker/Listener 

SEND 
RECV 
XFER 

Controller 

TRIG 
DCLR 
SPOL 
PPEN 
PPDS 
PPUN 
PPOL 
PCTL 

. RCTL 
SRQD 

System Controller 

REME 
LOCL 
IFCL 

SEND DATA 
RECEIVE DATA 
TRANSFER DATA 

GROUP EXECUTE TRIGGER 
DEVICE CLEAR 
SERIAL POLL 
PARALLEL POLL ENABLE 
PARALLEL POLL DISABLE 
PARALLEL POLL UN CONFIGURE 
PARALLEL POLL 
PASS CONTROL 
RECEIVE CONTROL 
SERVICE REQUESTED 

REMOTE ENABLE 
LOCAL 
ABORT/INTERFACE CLEAR 

Figure 14. 'Software Driver Routines 

INITIALIZA TION 

8292 - Comes up.in Controller Active State when 
SYC is TRUE. The only initialization needed is to 
enable the. TCI interrupt mask. This is done by 
writing OAOHto Port 68H. . 

8291 - Disable both the major and minor addresses 
because the 8291 will never see the 8292's com­
mands/addresses (refer to earlier hardware discus­
sion). This is done by writing 60H and OEOH to 
Port 66H, . 

AFN-ol38OA 



APPLICATIONS 

Set Address Mode to Talk-only by writing 80H to 
Port 64H. 

Set internal counter to 3 MHz to match the clock 
input coming from the 8085 by writing 23H to Port 
65H. High speed mode for the handshakes will not 
be used here even though the hardware uses three­
state drivers. 

INIT: 
Enable-8292 

Enable TCI 
Enable-829I 

Disable major address 
Disable minor address 
ton 
Clock frequency 
All interrupts off 
Immediate execute pon 

TALKER/LISTENER ROUTINES 

Send Data 

No interrupts will be enabled now. Each routine will 
enable the ones it needs for ease of polling operation. 
The INT bit may be read through Port 6FH. Clear 
both interrupt mask registers. 

Release the chip's initialization state by writing 0 to 
Port 65H. 

;Set up Int. pins for Port 6FH 
;Task complete must bean 

;In controller usage, the 8291 
;Is set to talk only and/ or listen only 
;Talk only is our rest state 
;3 M Hz in this ap note example 

;Releases 8291 from init. state 

SEND<listener list pointer> <count> <EOS> <data buffer pointer> 

This system command sends data from the CPU to always sends Universal Unlisten. If it is desired to 
one or more devices. The data is usually a string of send data to the listeners previously addressed, one 
ASCII characters, but may be binary or other forms could add a check for a null list and not send UNL. 
as well. The data is device-specific. Count must be 255 or less due to an 8 bit register. 
My Talk Address (MTA) must be output to satisfy This routine also always uses an EOS character to 
the G PI B requirement of only one talker at a time terminate the string output; this could ecisily be 
(any other talker will stop when MT A goes out). The eliminated and rely on the count. Items in brackets 
MT A is not needed as far as the 8291 is concerned _ ( ) are optional and will not be included in the actual 
it will be put into talk-only mode (ton). code in Appendix A. 

This routine assumes a non-null listener list in that it 

SEND: 
Output-to-8291 MTA, UNL 
Put EOS into 8291 
While 20H :5 listener :5 3EH 

output-to-829l listener 
Increment listen list pointer 

Output-to-8292 GTSB 
Enable-829 I 

Output EOI on EOS sent 
If count < > 0 then 

While not (end or count;: 0) 
(could check tout 2 here) 

Output-to-829 I data 
Increment data buffer pointer 
Decrement count 

Output-to-8292 TCSY 
(If tout3 then take control async) 
Enable 8291 

No output EOI on EOS sent 
Return . 

2·372 

;We will talk, nobody listen 
;End of string compare character 
;GPIB listen addresses are 
;"space" thru " >" ASCII 
;Address all listeners 
;8292 stops asserting A TN, go to standby 

;Semc! EOI ·along with EOS character 

;Wait for EOS or end of count 
;Optionally check for stuck bus-tout 2 
;Output all data, one byte at a time 
;8085 CREG will count for us 

;8292 asserts A TN, take control sync. 
;If unable to t<}~e control sync. 
; Restore 8291 to standard cond ition 

AFN-ol38OA 



'~ '. l' 

,~ 
~ 

Figure 15. Flowchart For Receive Ending Conditions 

Receive Data 

. ; ~ 
LSTN 

"!" 

CONTROLLER 
8291.8292 ' 

LSTN 
"+" 

DEVICE 

TALK 
"0" 

TALK 
"R" 

TALK 
"K" 

TALK 
"/\" 

Figure 16. SEND to "1", "2", ">"; "ABCD"; EOS = "0" 

R EC V < talker':> '< coilnt> ' < EOS> < data', buffer pointer> 

This system command; is used to inputd:ata fr6m a 
device. The data is' typically a string ,of ASCII 
characters. 

This routine is the dual of SEND. It assumes a new 
talker will be ~pecified, a count of less than 257, and 
an EOS character to terminate the input. ,E01 
received will also terminate the input. Figure 15 
shows the flow chart for the RECV ending 
conditions. My Listen Address (MLA) is sent to 
keep the GPIB, transactions totally regular to 

2-373 

facilitate amilysis by a G PI B 16gic analyzer like the 
Ziatech ZT488. Otherwise, the bus would appear to 
have no listener even though the 8291 will be 
listening. 

Note that although the count maygo,to zero before 
the transmission ends, the talker will probably be 
left in a strange state and may have to be cleared by 
the controller. The' count, ending of RECV is 
therefore used as an error, condition in most 
situations. 

AFN.()l38OA 



APPLICATI(!)NS 

RECV: 
Put EOS into 8291 
If 40H ::; talker::; 5EH then 

Output-to-8291 talker, 
Increment talker pointer 
Output-to-8291 UNL, MLA 
Enable-829I 

Holdoff on end 
End on EOS received 
lon, reset ton 
Immediate execute pon 

Output-to-8292 GTSB 
While not (end or count = 0 (or tout2» 

Input-from-8291 data 
Increment data buffer pointer 
Decrement count 

(If count = 0 then error) 
Output-to-8292 TCSY 
(If Tout3 then take control async.) 
Enable-829I ' 

No holdoff on end 
No end on EOS recdved 
ton, reset Ion 
Finish handshake 
Immediate execute pon 

Return error-indicator 

TALK 
"A" 

LSTN 
"1" 

LSTN 
"2" 

DEVICE 

LSTN 
"+" 

, DEVICE 

LSTN 
">" 

TALK 
"K" 

TALK 
"N' 

;End of string compare character 
;GPIB talk addresses are 
;"@" thru "A" ASCII 
;00 this' for consistency's sake 
;Everyoneexcept us stop listening 

;Stop when EOS character is 
;Detected by 8291 
;Listen only (no talk) 

;8292 stops asserting ATN, go to standby 
;wait for EOS or EOI or end of count 
;optionally check for stuck bus-tout2 
;input data, one byte 'at a time 

; U se 8085 C register as 'counter 
;Count should not occur before end 
;8292 asserts A TN take control 
;If unable to take control Sync. 
;Put 8291 back'as needed for 
;Controller activity and 
;Clear holdoff doe to en~ 

;Complete holdoffdu'e t6 end, if any 
;Needed to reset Ion 

LSTN 
"!" 

CONTROLLER 
8291,8292 

CTLR 
TJliLK' 

"A" 

'lSTN 
">" , 

TALK 
"Q" 

TALK 
"K" 

Figure 17. RECV from "R"; EOS = ODH Figure 18. XFER from" A" to "1", "2", "+"; EOS = ODH 

2.374 AFNOO138OA 



APPLlOA~IONS 

Transfer Data 

X FER < Talker> < Listener list> < EOS > 
This system command is used to transfer da~a from a, 
talker to one or more listeners where the controller 
does not participate in the transfer of the ASCIl 
data. This is accomplished through the use of the 
8291 's continuous acceptor handshake mode while 
in listen-only. 

XFER: 
Output-to-829I: Talker, UNL 
While 20H :5 listen :5 3EH 

Output-to-829I : Listener 
Increment listen list pointer 

Enable-829I 
lon, no ton " 
Continuous AH mode 
End on EOS received 
Immediate exe~ute PON 

Put EOS into 8291 
Output-to-8297: GTSB 

Upon end (or tout2) then 
Take control synchronously 

Enable-829I 
Finish handshake 
Not continuous AH mode 
Not END on EOS received 
ton 
Immediate execute pon 

Return ' 

CONTROLLER 

Group Execute Trigger 

TRIG < Listener list> 

This system command causes 'a group execute 
trigger (GET) to be sent to all devices, on the listener 

TRIG: 
Output-to-829I UN L 
While 20H :5 listener :53EH 

Output-to-8291', Listener. 
Increment listen list pointer 

Output-to-8291 GET 
Return 

This routine assumes a device list that has the ASCII 
talker address as the first byte and the string (one or 
more) of ASCII listener addresses following. The 
EOS character or an EO I will cause the controller to 
take control synchronously and'thereby terminate 
the transfer. 

;Send talk address and unlisten 

;Send listen address 

;Controller is pseudo listener 
;Handshake but don't capture data 
;Capture EOS as well as EOI 
;Initialize the ,8291 
;Set up EOS character 
;Go to standby 
;8292 waits for EOS or EOI and then 

;Regains control 
;Go to Ready for Data 

list. The intended use is tosynctinmize a number of 
instrumerits. 

;Everybody stop listening 
;Check for valid listen address 
;Address each listener 
;Terminate on any non-valid character 
;Issuegroup execute trigger 

AFN.()138OA 



APPLICATIONS 

LSTN 

CONTROLLER 
8291,8292 

TALK 
"A" 

TALK 
"0" 

DEVICE 

LSTN TALK 
"2" "R" 

TALK 
"K" 

DEVICE 

LSTN TALK 
"1\" 

Figure 19. TRIG "1", "+" 

Device Clear 

DCLR < Listener list> 

This system command causes a device clear (SDC) 
to be sent to all devices on the listener list. Note 
that this is not intended to clear the GPIB interface 

Serial Poll 

DCLR: 
Output-to-829I UNL 
While 20H ::; Listener::; 3EH 

Output-to-829 I listener 
Increment listen list pointer 

Output-to-8291 SDC 
Return 

SPOL <Talker list> < status buffer pointer> 

This system command sequentially addresses the 
designated devices and receives one byte 'of status 
from each. The bytes are stored in the buffer in the 

2·376 

LSTN 
"I" 

CONTROLLER 
8291,8292 

TALK 
"A" 

LSTN 

lSTN 
">" 

Figure 20. DCLR "1", "2" 

TALK 
"0" 

TALK 
"R" 

OEVICE 

TALK 
"K" 

DEVICE 

TALK 
"1\" 

of th,e device, but should clear the device-specific 
logic. 

;Everybody stop listening 
;Check for valid listen address 
;Address each listener 
;Terminate on any non-valid character 
;Selective device clear 

same order as the devices appear on the talker list. 
. M LA is output for completeness. 

AFN-ol38OA 



APPLICATIONS 

SPOL: 
Output-to-8291 UNL, MLA, SPE 

While 40H ~ talker ~ 5EH 
Output-to-8291 talker 
Increment talker list pointer 
Enable-829I 

Ion, reset ton 
Immediate execute pon 

Output-to-8292 GTSB 
Wait for data in (BI) 
Output-to-8292 TCSY 
Input-from-8291 data 
Increment buffer pointer 
Enable 8291 

ton, reset Ion 
Immediate execute pon 

Output-to-8291 SPD 
Return 

TALK 
"A" 

;Unlisten, we listen, serial poll enable 
;0111y one hyte of <;eri,d pnl1 
;Status wanted from each talker 
;Check for valid transfer 
;Address each device to talk 
;One at a time 

;Listen only to get status 
;This resets ton 
;Go to standby·· 
;Serial poll status byte into 8291 
;Take control synchronously 
;Actually get data from 8291 

;Resets Ion 
;Send serial poll disable after all devices polled 

LSTN 

"'" 

CONTROLLER 
8291,8292 

TALK 
"A" 

DEVICE 

LSTN TALK 
"1" "a" 

lSTN TALK 
T ? 

DEVICE 

LSTN TALK 
"K" 

DEVICE 

lSTN TALK 
"/I." 

Figure 21. SPOL "0", "R", "K"," A" Figure 22. PPEN "2"; iP3P,P, = 01118 

Parallel Poll Enable 

PPEN < Listener list> < Configuration Buffer pointer> 

This system command configures one or. more list. The configuration byte has the format 
devices to respond to Parallel Poll, assuming they XXXXIP3P2PI as defined by the IEEE Std. P3P2PI 
implement subset PPI. The configuration informa- indicates the bit # to be used for a response and I 
tion is stored in a buffer withm.e byte per device indicates the assertion value. See Sec. 2.9.3.3 of the 
in the same vider dS devic", 4'i"dr on the listener Std. for more details. 

2·377 AFN-{)l380A 



APPLICATIONS 

PPEN: 
Output-to-8291 UNL 
While 20H :s: Listener :s: 3EH 

Output -to-829I listener 
Output-to-8291 PPC, (PPE or data) 
Increment listener list pointer 
Increment buffer pointer 

Return 

Parallel Poll Disable 

P P DS < listener list> 

This system command disables one or more devices 
from responding to a Parallel Poll by issuing a 

LSTN 
"!" 

PPDS: 
Output-to-829I UNL 
While 20H :s: Listener :s: 3EH 

Output-to-8291 listener 
Increment listener list pointer 

Output-to-829I PPC, PPD 
Return 

CONTROLLER 
8291,8292 

TALK 
"A" 

TALK 
"0" 

DEVICE 

lSTN TALK 
"2" "R" 

TALK 
"K" 

TALK 
"A" 

Figure 23, PPDS "1", "+", ">" 

; Universal unlisten 
;Check for valid listener 
;Stop old listener, address new 
;Send parallel poll info 
;Point to next listener 
;One configuration byte per listener 

Parallel Poll Disable (PPD), It does not decon­
figure the devices, 

;Universal Unlisten 
;Check for valid listener 
;Address listener 

;Disable PP on all listeners 

LSTN 
"I" 

CONTROLLER 

8291.8292 

TALK 
"A" 

~ 

.. 

"-
... 

~ 

or 

I\" 

V 

Figure 24, PPUN 

2-378 

DEVICE 

LSTN TALK 
"1" "0" 

DEVICE 

LSTN TALK 
"2" "R" 

DEVICE 

LSTN TALK 
"K" 

DEVICE 

LSTN TALK 
"1\" 

AFN-01380A 



APPLICATIONS 

Parallel Poll Unconfigure 

PPUN 

This system command deconfigures the Parallel Poll 
response of all devices by issl,ling a Parallel .Poll 
Unconfigure message. . 

PPUN: 
Output-to-8291 PPU 
Return 

Conduct a Parallel Poll 

PPOL 

This system command causes the controller to con­
duct a Parallel Poll on the GPIB for approximately 
12.5 usec (at 6 MHz). Note that a parallel poll does 
not use the handshake; therefore, to ensure that the 
device knows whether or not its positive response 

PPOL: 
Enable-829I 

Ion 
Immediate execute pon 

Output-to-8292 EXPP 
Upon BI 

Input-from-8291 data 
Enable-829I 

ton 
Immediate execute pon 

Return Data (status byte) 

Pass Control 

PCTL <talker> 

This system command allows the controller to 
relinquish active control of the GPIB to another 
controller. Normally some software protocol should 
already have informed the controller to expect this, 
and under what conditions to return control. The 

PCTL: 
If 40H ::::; talker ::::; 5EH then 

if talker < > MT A then 
output-to-8291 talker, TCT 
Ena ble-829I 

not ton, not Ion 
Immediate execute pon 
My device address, mode I 
Undefined command pass through 
(Parallel Poll Configuration) 

Output-to-8292 GIDL 
Return 

;Unconfigure all parallel poll 

was ob·served by the controller, the CPU should 
explicitly acknowledge each device by a device­
dependent data string. Otherwise, the response bit 
will still be set when the next Parallel Poll occurs. 
This command returns one byte of status. 

;Listen only 
;This resets ton 
;Execute parallel poll 
;When byte is input 
;Read it 

;Talk only 
;This resets Ion 

8291 must be set up to become a normal device 
and the CPU must handle all commands passed 
through, otherwise control cannot be returned (see 
Receive Control below). The controller will go idle. 

;Cannot pass control to myself 
;Take control message to talker 
;Set up 8291 as normal device 

;Reset ton and Ion 
;Put device number in Register 6 
;Required to receive control 
;Optional use of PP 
;Put controIler in idle 

2·379 AFNo0138OA 



APPLICATIONS 

CONTROLLER 
8291,8292 

~i TALK 
"!" CTL~ "A" 

L 

- z 01-
W .. 

0101 DEVICE 

LSTN TALK 
"1" "0" 

0102 DEVICE 

LSTN TALK 
"2" "R" 

0103 DEVICE 

LSTN TALK 
"+" "K" 

DEVICE 

'-
LSTN TALK 
">" "1\" 

Figure 25, PPOL 

Receive Control 

RCTL 

This system command is used to get control back 
from the current controller-in-charge if it has passed 
control to this inactive controller. Most GPIB 
systems do not use more than one controller and 
therefore would not need this routine. 

To make passing and receiving control a man­
ageable event, the system designer should specify a 

RCTL: 
Upon CPT 

If (command=TCT) then 
If TA then 

Enable-829! 
Disable major device number 
ton 
Mask off interrupts 
Immediate execute pon 

LSTN 

"'" 

CONTROLLER 
8291.8292· 

;!~I~ 
j1~1~ 

TALK 
"A" 

;!~[l1~1L-_____ -.-J"-
i;'r' -------,/ 

Iii 
1'------------" "-

:~~~:~ 
:~m:; 

11'1--·-------' 
111:i-1 -------, 

:%i: 

!¥~ 
::m~ 

Ilit-; _____ ---' 

.-___ ~wla.}'~~~--------,/ 
LSTN eTLR 

"#" 

lSTN 
"1" 

LSTN 
"2" 

LSTN 

LSTN 
"'>" 

Figure 26. pcn "Cn 

DEVICE 

TALK 
"0" 

DEVICE 

TALK 
"Rn 

DEVICE 

TALK 
"K" 

DEVICE 

TALK 
"A" 

protocol whereby the controller-in-charge sends a 
data message to the soon-to-be-active controller. 
This message should give the current state of the 
system, why control is being passed, what to do, 
and when to pass control back. Most of these issues 
are beyond the scope of this Ap Note. 

;Wait for command pass through bit in 8291 
;If command is take control and 
;We are talker addressed 

;Controller will use ton and Ion 
;Talk only mode 

2·380 AFN-01380A 



APPLICATIONS 

LSTN 

"'" 

LSTN 
"#" 

Output-to-8292 TCNTR 
Enable-829I 

Valid command 
Return valid 

Else 
Enable-829I 

Invalid command 
Else 

Enable-829I 
Invalid command 

Return invalid 

LSTN 

"'" 

LSTN 
"2" 

LSTN 
.0+" 

LSTN 

CONTROLLER 

FIgure 27. RCTL 

DEVICE 

DEVICE 

DEVICE 

DEVICE 

Service Request 

SRQD 

TALK 
"Q" 

TALK 
"R" 

TALK 
"K" 

TALK 
"A" 

This system command is used to detect the occur­
rence of a Service Request on the GPIB. One or 
more devices may assert SRQ simultaneously, and 

2-381 

;Take (receive) control 

;Release handshake 

;Not talker addr. so TCT not for us 

;Not TCT, so we don't care 

SYSTEM 
CONTROLLER 

8291,8292 

LSTN I!I TALK 
"!" "A" 

Z 
w 
II: 

DEVICE 

LSTN TALK 
"1" "Q" 

DEVICE 

lSTN TALK 
"2" "R" 

DEVICE 

LSTN TALK 
"K" 

DEVICE 

LSTN TALK 
"A" 

Figure 28. REME 

the CPU would normally conduct a Serial Poll 
after calling this routine to determine which devices 
are SRQing. 

AFN-Ol38OA 



APPLICATION:S 

SRQD: 
If SRQ then 

Output-to-8292 IACK.SRQ 
Return SRQ 

Else return no SRQ . 

SYSTEM CONTROLLER 

Remote Enable 

REME 

This system command asserts the Remote Enable 
line (REN) on the GPIB. The devices will not go 

Local 

LOCL 

REME: 
Output-to-8292 SREM 
Return 

This system command deasserts the REN line on the 
GPIB. The devices will go local immediately. 

LSTN 

LOCL: 
Output-to-8292 SLOC . 
Return 

SYSTEM 
CONTROLLER 

8291.8292 

1m 
I~ 

TALK 
"A" 

Figure 29. LOCL 

DEVICE 

LSTN TALK 
"1" "Q" 

DEVICE 

LSTN TALK 
"2" "R" 

DEVICE 

LSTN TALK 

DEVICE 

LSTN 
">" 

"K" 

TALK 
"A" 

;Test 92 status bit 
;Acknowledge it 

remote until they are later addressed to listen by 
some other system command. 

;8292 asserts remote enable line 

;8292 stops asserting remote enable 

" 
SYSTEM· 

,CONTROLLER· 

LSTN 1m TALK 
"!" "A" 

~ 
DEVICE 

LSTN TALK 
"1" "Q" 

DEVICE 

LSTN TALK 
"2" "R" 

DEVICE 

LSTN 
"+" 

DEVICE 

LSTN TALK 
">" "A" 

. Figure 30. IFCL 

2-382 AFN.o138OA 



Interface Clearl Abort 

IFCL 

This system command asserts the GPIB's Interface 
Clear (IFC) line for at least 100 microseconds. 
This causes all interface logic in all devices to go to 
a known state. Note that the device itself mayor 

IFCL: 
Output~to-8292 ABORT 
Return 

INTERRUPTS AND 
DMA CONSIDERATIONS, 

The previous sections have discussed in &tail how 
to use the 8291, 8292, 8293 chip set as a G PIB 
controller with the software operating in a polling 
mode and using programmed transfer of the data. 
This is the simplest mode of use, but it ties up the 
microprocessor. for the duration of a G PIS transac­
tion. If system design constraints do not allow this, 
then either Interrupts andf.or DMA may be used to 
free up proces~or cycles. 

The 8291 and 8292 provide. sufficient interrupts that 
one may return to do other work while waiting for 
such things as 8292 Task Completion,8291 Next 
Byte In, 8291 Last Byte Out, 8292 Service Request 

may notbe reset, too. Most instruments do totally 
reset upon IFC. Some devices may require a DCLR 
as well as an IFCL to be completely reset. The 
(system) controller becomes Controller-in-Charge. 

;8292 asserts Interface Clear 
;For 100 microseconds 

In, etc. The only difficulty lies in integrating these 
various interrupt sources and their matching 
routines into the overall system's interrupt structure. 
This is highly situation-specific and is beyond the 
scope of this Ap Note. . 

The strategy to follow is to replace each of the WAIT 
routines (see Appendix A) with a return to the main 
code and provide for the corresponding interrupt to 
bring the control back to the next section of G PIB 
code. For example WAITO (Wait fot Byte Out of 
8291) would be replaced by having the BO interrupt 
enabled and storing the (return) address of the next 
instruction in a known place. This co-routine 
structure will then be activated by a BO jnterrupt. 
Fig. 31 shows an example of the flow of control. 

MAIN CODE 

USER: 

INTERRUPT CODE GPIB SUBROUTINE 

SEND: 

ACTIVATE 

~SE~N~D.~ ______ ~===-------------__ ~(WAITO) 
INT: _________ -

G~O? . . 

(WAIT 0) 

... ----~==------_:_-----:- (WAIT T) 

INT: GPIB BO? ----
GPIB TCI?:"'------

ETC. 

FIgure 31. GPIB Interrupt & Co-RoutIne Flow of Control 

2·383 AFN-ol38OA 



APPLICATIONS 

DMA is also useful in relieving the processor if the 
average length of a data buffer is long enough to 
overcome the extra time used to set up a DMA chip. 
This decision will also be a function of the data rate 
of the instrument. The best strategy is to use the 
DMA to handle only the data buffer transfers on 
SEN D and R ECV and to do all the addressing and 
control just as shown in the driver descriptions. 

tude. It will then tell the counter to measure the 
frequency and Request Service (SRQ) when com­
plete. The progra~ will then read in the data. The 
assembled source code will be found at the end of 
Appendix A. 

Another major reason for using a DMA chip is to 
increase the data rate and therefore increase the 
overall transaction rate. In this case the limiting 
factor becomes the time used to do the addressing 
and control of the GPIB using software like that in 
Appendix A. The data transmission time becomes 
insignificant at DMA speeds unless extremely long 
buffers are used. 

Refer to Figure II for a typical DMA and interrupt 
based design using the 8291, 8292, 8293. A system 
like this can achieve a 250K byte transfer rate while 
under DMA control. 

APPLICATION EXAMPLE 
This section will present the code required to operate 
a typical GPIB instrument set up as shown in Fig. 
32. The H P5328A universal counter and the 
H P3325 function generator are typical of many 
GPIB devices; however, there are a wide variety of 
software protocols to be found on the G PIB. The 
Ziatech ZT488 GPIB analyzer is used to single step 
the bus to facilitate debugging the system. It also 
serves as a training/ familiarization aid for new­
comers to the bus. 

LSTN 
"I" 

ZT7488/18 
CONTROLLER 

CTLR 
TALK 

"A" 

HP 5328A 
COUNTER 

LSTN TALK 
"1" "0" 

HP3325A 
FUNCTION 

GENERATOR 

LSTN TALK 
''2" "R" 

ZT488 
GPIB ANALYZER 

This example will set up the function generator to 
output a specific waveform, frequency and ampli- Figure 32. GPIB Example Configuration 

SEND 
LSTN: "2", COUNT: 15, EOS: ODH, DATA: "FUIFR37KHAM2VO (CR)" 
;SETS UP FUNCTION GEN. TO 37 KHZ SINE, 2 VOLTS PP 
;COUNT EQUAL TO # CHAR IN BUFFER 
;EOS CHARACTER IS (CR) = ODH = CARRIAGE RETURN 

SEND 
LSTN: "I", COUNT: 6, EOS: "T" DATA: "PR4G7T" 
;SETS UP COUNTER FQR P:INITIALlZE, F4: FREQ CHAN A 

07:0.1 HZ RESOLUTION, T:TRIGGER AND SRQ 
;COUNT IS EQUAL TO # CHAR 

WAIT FOR SRQ 

SPOL TALK: "Q", DATA: STATUS I 
;CLEARS THE SRO -IN THIS EXAMPLE ONLY FREQ CTR ASSERTS SRQ 

RECV TALK: "Q", COUNT: 17, EOS: OAH, 
DATA: "+ 37000.0E+0" (CR) (LF) 
;GETS 17 BYTES OF DATA FROM COUNTER 
;COUNT IS EXACT BUFFER LENGTH 
;DATA SHOWN IS TYPICAL HP5328A READING THAT WOULD BE RECEIVED 

2·384 



CONCLUSION. 
This Applicatiori Note has shown a structured way 
to view the IEEE 488 bus and has given typical code 
sequences to make the Intel 8291; 8292, and 8293's 
behave as a controller of the OPIB. There are other 
ways to use the chip set, but whatever solution is 
chosen, it must be integrated into the overall system 
software, 

The ultimate reference for OPiB questions is the 
IEEE Std 488, -1978 which is available from IEEE, 
345 East 47th St., New York, NY, 10017, The ulti­
mate reference forthe 8292 is the source listing for it 
(remember it's a pTe~programmed UPI-4IA) which 
is available from INSITE, Intel Corp" 3065 Bowers 
Ave" Santa Clara, CA95051. 

APPENDIX A 

ISIS-II 8080/8085 MACHO ASSEMBLER, V3.0 
GPIS CON'rROLLE:R SUBROU'fINES 

LOC OBJ 

00fi~ 

0060 

0061 
0061 
0002 
0001 ° III 0 
0080 

00fi2 

0064 
0080 
1:1040 
00C0 
0001 

0064 
0020 
0'Hl2 
IHHH 

"065 
0~123 

LINE SOURCE ST~TEMENT 

1 $TITLE('GPIB CONTROLLER SUBROUTINES') 
2 
3 
4 

GPIB CONTROLLER SUBROUTINES 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
In , 
17 PRT91 
18 
19 
20 
21 
22 
23 
24 
25 

, 
DIN 
DOUT 

, 
INTI 
IN'rMl 

26 BOM 
27 BIM 

ENDMK 
CPT 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

, 
INT2 

, 
ADR,'·\D 
'fON 
LON 
TLON 
MODEl 

, 
ADRS1' 
EOIS1' 

44 TA 
45 LA 
46 
47 
48 
49 

, 
AUXMD 
CLKRT 

for Intel 8291, 8292 
Bert Forbes, Ziatech 
2410 Broad Street 
San Luis Ohispo, CA, 

on z'r 748<1/1A 
Corporation 

USA 93401 

General Definitions &'Equates 
8291 Control Values 

ORG Hl00H ZT7488/1A w/R085 

EQU fi~H ; 8291 Base Port 

Reg #0 Data in & Data out 
E:OU PRT91+0 ;91 Data in reg 
EQU PRT91+0 ;91 Data out reg 

Reg , 1 Interrupt 1 Constants 
EQU PRT91+1 ;INT Reg 1 
EQU PRT91+1 ;INT Ma~k Reg. 
EOU 02 ; 91 BO IlIl'rRP Mask 
E:QU 01 ; 91 Bl IN'rRP Mask 
EQU 10H ,91 END INTRP Mask 
EQU 8~H ;91 command pass thru int hit 

Reg *2 Interrupt 2 
EQU PRT9l+2 

Reg *4 Address Mode Constants 
EQU PRT9i+4 ,91 address mode register # 
EQU 80H ;91 talk only mode & not listen 
EQU 40H ,91 listen only & not ton 
EQU 0C0H ,91 talk & listen only 
EQU 01 ;mode 1 addressing for device 

Reg ~4 

EQU 
EOU 
EQU 
EOU 

Reg #5 
EQU 
EOU 

(Read) Add·ress Status Register 
PRT91+4' ;reg #4 
20H 
2 
1 ,listener active 

(Write) AuxilIary Mode Register 
PRT91+5 ;91 auxilIary mode register # 
23H ,91 3 Mhz clock input 

2·385 

only 

AFN-Ill38OA 



APPLICATIONS 

IlIHJ3 50 FNHSK EQU 03 ;91 fininsh handshake command 
QlQII'J6 51 SDEOl EOU IHi ; 91 sencl EOI wi th next byte 
t~ ~ R~l ~2 /lYR/I EOII R~fl ;<)1 ~py H'C! 1.\ n~tt.ern 

00~1 53 HOHSK EQU 1 ;91 rlu.uJ oft hanrlshake on all bytes 
01Hl2 54 HOEND EQU ;1 ;91 holrl off handshake on end 
IHll1l3 55 CAHC'f EQU 3 ;91 continuous AH cycling 
0004 56 EDEOS EQU 4 ;91 end on EOS received 
QHl08 57 EOIS EQU 8 ;91 output EOI on EOS sent 
!!IlIIlF 58 VSCMD EQU !!FH ;91 valid command pass through 
0007 59 NVCMD EOU 07H ;91 invalid command pass through 
"'0AIl 60 AXRB EQU IIIA0H i Aux • reg. B pattern 
"''''I'll 1)1 CPT,:N EQU 01H ;command pass thru enable 

'i2 
63 Reg ~5 (Read) 

00fi5 <;4 CPTRG EQU PRT9l+5 
(,5 
61) Reg #:, Arld ress 0/1 reg. constants 

0liHili 67 ADR"'l EQU PRT91+fi 
0"'60 68 D'rDLl EOU 60H ;Disable major tal ker & 1 istener 
"liE'" 59 DTDL2 EOU (IIEI'lH ;Disable minor talker & listener 

71l 
71 , Reg P EOS Character Register 

0067 72 EOSR r.OU PRT9l+7 
73 
74 
75 8292 CONTROL VALUES 
7fi 
77 
78 

fIIIHi8 79 PRT92 EQU PRT91+8 ;8292 Base Port iI (CEl7) 
80 

0068 81 INTMR EQU PRT92+0 ;92 INTRP Mask Reg 
1'10A0 82 INTM EQU I'IA0H ;TCI 

83 
0068 84 ERRM EQU PRT92+0 ; 92 Error Mask Reg 
"'''01 85 TOUTl EQU 01 ;92 'rime Out for Pass Control 
0002 86 'rOUT2 EQU 02 ;92 Time Out for Standby 
0004 87 TOU'r3 EQU 04 ; 92 Time Out fo r Take Control Sync 
01Hi8 88 EVREG EQU PRT92+1'1 ; 92 Event Counter Pseurlo Reg 
~0n8 89 TOREG EQU PRT92+1'1 ;92 Time Out Pseudo Reg 

90 , 
Illlfi9 91 CMD92 EQU PRT92+1 ;92 Command Register 

92 , 
11069 93 INTST EQU PRT92+1 ;92 Interrupt Status Reg 
"'011'1 94 EVBIT EQU 1I1JH ;Event Counter Bit 
001'12 95 IBFBT EQU 02 ;Input Buffer Full Bit 
0020 9S SROBT EQU 20H ;Seq bit 

97 
0068 98 ERFLG EQU PRT92+1'I ;92 Error Flaq Pseurlo Reg 
0068 99 CLRST EQU PRT92+0 ;92 Controller Status Pseuoo Reg 
fHlfiR 100 8USST EQU PRT92+1'1 ;92 GPIB (Bus) Status Pseudo Reg 
00(,8 101 EVCST EQU PRT92+0 ;92 Event Counter Status Pseudo Reg 
0~68 11'12 TOST EQU PRT92+e ;92 Time Out Status Pseudo Reg 

103 
104 8292 OPERATION COMMANDS 
105 
10fi , 

00F0 107 SPCNI EQU 0F0H ;Stop Counter Interrupts 
00Fl HI8 GIDL EQU IilFIH ;Go to idle 
00F2 lIiJ9 RSET EQU 0F2H ;Reset 
00F3 110 RSTI EQU 0F3H ;Reset Interrupts 
00F4 III GSEC EOU 0F4:-1 iGoto standby, enable counting 
00F5 112 EXPP EQU I'IF5H iF.:xecute parallel poll 
00F6 113 GTSB EQU 0F6H ;Goto standby 
00F7 114 SLOC EQU 0F7H ;Set local mQde 
00F8 115 SREM EQU 0F8H ;Set interface to remote 
00F9 116 ABORT EQU 0F9H ;Abort all operation, clear interface 
"'H'A 117 'rCNTR EQU 0FAH ;Take control (Receive ~ontrol) 
00FC 118 TCASY EQU 0FCH ;Take. control asyncronously 
01lFD 119 TCS'f gQU 0FDH ;Take control syncronously 
00FE 120 STCNI EQU 0FEH ;Start counter interrupts 

121 
122 

2·386 AFN-0138OA 



1!0El 
00E2 
00E3 
00E4 
00E5 
00E6 
00E7 
1!0E9 
00EA 
0fi"'B 

006F 
0002 
0004 
0008 
0010 
0001 

0001 
0041 
liHJ21 
003F 
:H"'8 
0004 
0018 
0019 
0005 
0'170 
0060 
0015 
0009 

123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
H0 
161 
Ui2 
153 
164 
165 
16'i 
Hi7 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
17A 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 

, 
WOUT 
WEVC 
REVC 
RERF 
RINM 
RCST 
RBST 
RTOUT 
RERM 
lACK 

, 
PRTF 
TCIF 
SprF 
OBFF 
18FF 
BOF 

MDA 
MTA 
MLA 
UNL 
GET 
SOC 
SPE 
SPD 
PPC 
PPD 
PPE 
PPU 
'rCT 

SETF 

; 
WAITO 

WAITL: 

WAITI 

WAI'fL: 

, 
WAITX 

WAITL: 

APPLICATIONS 

8292 UTILITY COMMANDS 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

0EIH 
0E2H 
0E3H 
filE4H 
0E5H 
0E6H 
0E7H 
0E9H 
0EAH 
!'IBH 

;Write to timeout reg 
;Write to event counter 
;Read event counter status 
;Read error flag reg 
;Read interrupt mask reg 
;Read controller status reg 
;Read GPIB Bus status reg 
;Read timeout status reg 
;Read error mask reg 
;Interrupt Acknowledge 

PORT F BIT ASSIGNMENTS 

EQU PRT91+0FH ;ZT7488 port 6F for interrupts 
EQU 02H ;Task complete interrupt 
EQU 04H ;Special interrupt 
EQU 08H ;92 Output (to CPU) Buffer full 
EQU 10H ;92 Input (from CPU) Buffer empty 
EQU 01H ;91 Int'line (BO in this case) 

GPIB MESSAG~S (COMMANDS) 

EQU 
EQU 
EQU 
EQU 
~~QU 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

1 
MDA+4I'1H 
MDA+20H 
3FH 
08 
04H 
ISH 
19H 
05 
70H 
6t'JH 
15H 
09 

;My device address is 1 
;My talk address is 1 ("A") 
;My listen address is 1 ("!") 
;Universal unlisten 
;Group Execute Trigqer 
;Device Clear 
;Serial poll enable 
;Serial poll disab,le 
;Parallel poll configure 
;Paral1el poll disable 
;Parallel poll disahle 
;Parallel poll unconfigured 
;Take control (pass control) 

MACRO DE F IN ITIONS 

MACRO 
ORA 
ENDM 

I~ACRO 

LOCAL 
IN 
ANI 
JZ 
ENDM 

MACRO 
LOCAl. 
IN 
MOV 
ANI 
JZ 
ENDM 

MACRO 
LOCAL 
IN 
ANI 
JNZ 
ENDM 

A 

WAITL 
INTI 
BOM 
WAITL 

WAITL 
INTI 
B,A 
BIM 
ioIlAITL 

WAITL 
PRTF 
TCIF 
WAITI. 

2·387 

;Sets flags on A reqister 

;Wait for last 91 hyte to be done 

;Get IntI status 
;Check for hyte out 
;If not, try again 
;until it is 

;Wait for 91 hyte to be input 

;Get INTI status 
;Save status in B 
;Check for hyte in 
;If not, just try again 
;until it is 

;Wait for 92's TCI to go false 

AFN-01380A 



Hlil0 3EMI 
1002 031;8 
1004 3E61'J 
1006 0366 
HIlliS 3EE0 
HIllA D35'i 
lIHIC 3E80 
HI0E D3fi4 
lfII10 3E23 
1012 D31;5 

HH4 AF 
1015 0361 
11117 0362 
1019 0355 
1016 C9 

196 WAIT'!' 
197 
198 WAITL: 
i99 
200 
201 
2112 
2'B RANGE 
2114 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 CLRA 
217 
218 
219 

MACRO 
LOCAL 
IN 
ANI 
JZ 
ENDM 

MACRO 

MOV 
CPI 
JM 
CPI 
JP 
ENDM 

MACRO 
XRA 
ENDM 

APPUCATIONS 

WAITL 
. PRTF 
TCIF 
WAITL 

1Get task complete int,etc. 
1Mask it 
;Wait for task to be complete 

LOWER, UPPER, LABEL , 

A,M 
LOWER 
LABEL 
UPPER+l 
LABEL 

A 

;Checks for value in range 
;branches to label if not 
lin range. Falls through if 
;lower <= ( (H) (L) ) <= upper. 
;Get next byte. 

;1'. XOR A =0 

220 
221 
222 
223 
224 

All of the following routines have these common 
assumptions about the state of the 8291 & 8292 upon entry 
to the routine and will exit the routine in an identical state. 

225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
231; 
237 
238 
239 
240 
241 
242 
243 
244 
245 
241; 
247 
248 
249 
250 
251 
252 
253 
254 
255 
25'i 
257 
258 
259+ 
2fi0 
2!il 
262 
263 
264 

8291 : 

8292: 

BO is or has been set, 
All interrupts are masked off 
'rON mode, not LA 
No holdoffs in effect or enabled 
Noholdoffs waiting for finish command 

ATN asserted (active controller) 
note: RCTL is an exception--- it expects 
to not be active controller 
Any previous task is complete & 92 is 
ready to receive next command. 

8085: Pointer registers (DE,HL) end one 
; beyond last legal entry 
.***************** ••• **.******** ••• ***************.*.*** , 

INITIALIZATION ROUTINE 

; INPU'rS: None 
;OU'rpUTS: None 
;CALLS: None 
; DES1'ROYS: A, ~' 
, 
INIT: MVI A,INTM ;Enable TCI 

ou'r I'II'rMR ;Output to 92's intr. mask reg 
MVI A,DTDLI ;Oisable major talker/listener 
ou'r ADR0l 
MVI A,OTDL2 ;Disahle minor talker/listener 
ou'r ADR(ll 
''lVI A,TON 1Talk. only mode 
OUT ADRMD 
MVI A,CLKRT ; 3 MHZ for delay timer 
ou'r AUXI'IID 
CLRA 
XRA A ;1'. XOR A =0 
ou'r 1'11'1'1 
ou'r IN'r2 1Disa ble all 91 mask bits 
OUT AUXMO 1Immediate execute PON 
RET 

265 ********************************.******.************* 
261; 
267 
268 SEND ROUTINE 
269 

2·388 AFrNll380A 



HliC 3E41 
101E D3<;0 

1020 D861 
HI22 E61')2 
1024 CA2010 
11.127 3E3F 
1029 D360 
1028 78 
HJ2C D357 

102E :7€ 
102F FE20 
HJ31 FA4710 
1034 ~'E3F 

1036 F24710 

1039 D861 
11"38 E602 
1030 CA3910 
1040 7E 
1041 D360 
1043 23 
1044 C32E10 

i047 D861 
1049 £602 
1048 CA4710 

1114£ 31':F6 
HI 5", D369 
1052 3E88 
HJ54 D31i5 

105<; DB6F 
1058 E6"'2 
105A C25<;10 

105D DB6F 
105F E602 
1061 CA5D10 

1064 79 

1065 B7 
101;5 CA8RHl 
1IlI;9 lA 
105A D3'i0 
10liC 88 

270 

At't'LK,;A1IUN:» 

INPU'fS: " HL listener list pointer 
DE d,ata buffer pointer 

271 
272 
273 
274 
275 
276 
277 
278 
279 
280 

C courit-- 0 will cause no data to be sent 
b EOS ch~racter-- softwaie detected 

OUTPUTS: none 
CALLS: none 
DESTROYS: A, C, DE, HL, F 

281 
282 END: 
283 
284, 
2R5+??0IHll : 
286+ 
287+ 
288 
289 
290 
~91 
292 
293 SElII01: 
294+ 
295+ 
29fi+ 
297+ 
298+ 
299+ 
3(HI+ 
301+ 
302+ 
3iB+ 
304 
305+??0:i02l 
306+ 
307+ 
308 
309 
310 
311 
312 
313 SEND2: 
314+??0I!:1J3 : 
315+ 
311';+ 
317 
318 

MVI 
OU'f 
WAITO 

IN 
ANI 
JZ 
MVI 
OU'f 
MOV 
OU'f 

RANGE 

MOV 
CPI 
JM 
CPI 
JP 
'''AlTO 

IN 
ANI 
JZ 
MOV 
ou'r 
INX 
J,'1~ 

WAITO 
IN 

ANI 
JZ 

319 MVI 
320 ou'r 
321 MVI 
322 OU'f 
323 WAITX 
324+??(-'l104: '1'1 
325+ ANI 
326+ 'JNZ 
327 WAIT'f 
328+110005: IN 
329+ ANI 
3311+ ,JZ 
331 

A,MTA 
DOUT 

;Send M'fA to turn off any 
;previous talker 

INTI ;Get'Intl status 
BOM ;Check for byte out 
110""1 ;If not, try again 
A,UNL ;Send universal unlisten 
OOUT ; to stop previous listeners 
A,B ;Get EOS character ' 
EOSR ;Output it to 8291 

;while listener ••••• 
20H,3EH,SEND2 ;Check next listen address 

;Checks for value in range 

A,M 
20H 
SEI'ID2 
3EH+1 
SEND2 

IN'r! 
BOM 
??;H'H!2 
A,M 
DOU'r 
H 
SEND1 

INTI 
BOM 
11011(0 

; hranches tt) label if not 
lin range; Falls through if 
; lower (= ( (H) (L) ) (= upper. 
;Get next byte. 

;wait for previous listener sent 
';Get IntI status 
;Check for byte out 
;If not, try again 

;Get this listener 
;Output to GPIB 
;Incre~ent listener list pointer 
;Loop till non-valid listener 
;Enahie'91 ending conditions 

;Wait for Istn addr accepted 
;Get IntI status 
;Check for byte out 
;If not, try again 
;WAITO required'for early versions 
;of 8292 to avoid GTSB before DAC 

A,GTSB ;Goto standby , 
CMD92 ; 
A,AXRA+EOIS ;SE!nd .EOI with EOS character 
AUXMD 

PRTF 
TCIF 
??i1l~fl4 

PRTF 
TCIF 
110"'05 

;Wait for TCI to go falSE! 

;Wait for TCI on GTSB 
;Get task complete int,etc~ 
;MasK it 
;Wait for task to he complete 

332 ; 
333 ; 
334 

delete next 3 instructions to make count of 0=251; 

335 
336+ 
337 
338 SEND3: 
339 
340 
341 
342 

MOV 
SETF 
ORA 
JZ 
LDAX 

, OU'f 
CMP 

A,C 

A 
SEND"i 
D 
DOU'f 
B 

;Get count 
;Set flaqs 

;If count-0, 'send no dat~' 

;Get data byte 
;Output to GPIe ' 
;Test EOS ••• this is faster 
land uses less code th~n using 
;91's END or EOI hits 

AFN-0138OA 



106D CA7~'11! 

1070 DB61 
U72 E6~2 
HJ74 CA7010 
1077 13 
1078 liD 
HJ79 C269Ul 
lIinc C38BH! 
107F 13 
1080 0D 

1081 OB61 
U83 E6~2 
11'185 CA811~ 

1088 3E~'0 

HI8A D3"9 
U8C 3E811 
108E D365 

11190 DBf'i~' 

11192 Ee;1!J2 
1094 C290H'J 

11197 DB6F 
1099 Ef'i02 
11!J9B CA971fIJ 
109E C9 

Hl9F 78 
1I!JAI!J 0307 

10A2 7E 
10A3 FE411J 
10A5 FA3911 
10A8 FE5F 
HJAA F23911 

HlAO D3611J 
HlAF 23 

10B0 DBf'il 
H1B2 E'i11J2 
1I!JB4 CAB I!J HJ 
10B7 3E3F 
11189 D3!';" 

HlBB DBlil 
II1JBD E61!2 
HlBF CABBII1J 

343 
344 SEND4: 
345+??00"''i: 
34,,+ 
347+ 
348 
349 
350 
351 
352 SEND5: 
353 
354 

355+??0~07: 

356+ 
357+ 
35H 
359 SEND';: 
360 
301 
3.,2 
3.,3 
3'i4+??~.1'I\l8: 

31i5+ 
3"<;+ 
3'i7 
368+??vHHI9 : 
369+ 
370+ 
371 

JZ 
WAlTa 

IN 
ANI 
JZ 
I III X 
OCR 
J,\lZ 
J;.1P 
I III X 
DCR 
WAI'ro 

1111 
ANI 
.JZ 

MVI 
ou'r 
MVI 
OUT 
'NAI'rX 
IN 
All/I 
.JIIIZ 
WAIT'r 
IN 
Alii I 
JZ 
RET 

APPLICATIONS 

SENDS 

INTI 
80"1 
??0~l'In 
o 
C 
SEND3 
SEN06 
D 
C 

IN'1'1 
BaM 
??I!J" 1'1 7 

A,TCSY 
01092 
A,AXRA 
AUX;~D 

PRTF 
TCIF 
??001'l8 

PRTF 
TCIF 
??fiHHI9 

;If char = EOS , go finish 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Increment buffer pointer 
;Oecrement count 
;If count ( > I'l, go send 
;Else go finish 
;for consistency 
; II 

;This ensures that the standard entry 
;Get Intl status 
;Check for hyte out 
;If not, try again 
;assumptions for the next subroutine are met 
;Take control syncronously 

;Reset send EOI on EOS 

;Wait for TCI false 

;Wait for TCI 
;Get task complete int,etc. 
;Maskit 
;Wait for task to he complete 

372 
373 
374 

;*******************************************************************.** 

RECEIVE ROU'rINE 
375 
376 
377 
378 
379 

; INPU'r: 

, 380 
381 
382 
383 
3R4 
385 
38t; 
387 

;ou'rpu'r: 
;CALLS: 
;OESTROYS: 
, 
;RETURNS: 

388 
389 
390 RgCV: 
391 
392 
393+ 
394+ 
395+ 
39<;+ 
397+ 
398+ 
399+ 
411J1!J+ 
4fiH+ 
402+ 
41'13 
41'l4 
41!J5 
406 
407+??01i111'1: 
408+ 
409+ 
410 
411 
412 
413+??0011 : 
414+ 
415+ 

MOV 
ou'r 
RANGE: 

MOV 
CPI 
J:>1 
,CPI 
.JP 

ou'r 
I III X 
',,rAI'fO 

IN 
All/I 
.1Z 
"lVI' 
OUT 
'f/AHO 

IN 
ANI 
JZ 

HL talker pointer 
DE data buffer pointer 
C count (max buffer size) I!J implies 25<; 
B ~;OS character 
Fills buffer poin'ten at hy DE 
None 
A, BC, DE, HL, F 

A=f/J normal termination--EOS netect.ed 
A=40 Error--- count overrun 
A<41'1 or A>5EH Error--- bad talk address 

A,B ;Get EOS character 
EOSR ;Outpui it to 91 
40H,5EH,RECVfi 

A,M 
41lJCH 
RECV6 
5EH+l 

-RECVo 

IXlu'r 
H 

IN'fl 
BaM 
??,HH0 
A,UNL 
DOUT 

INTI 
BOM 
??l'Il'Ill 

;Checks for value in range 
;branches to label if not 
;in range. Falls through if 
; lo\\,er (= ( (H) (L) ) (= upper. 
;Get next byte. 

;valid if 40H(- talk (=5EH 
;Output talker to GPIB 
;Incr pointer for consistency 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Stop .other 1 isteners 

;Get IntI status 
;Check, for byte out 
;If not, try again 

2-390 AFN.()l380A 



11lC2 3~21 

10C4 D350 
HlCG 3~a6 
!I!Ca D355 

lrIJCA D861 
UCC ~51l2 
l11CE CACAlll 
11lDl 3~41l 
1"'D3 D31i4 

11'1D5 AF 
lIlD6 D355 
11lDS 3E:FIi 
11lDA D3<;9 

lIlDC DB6F 
10D~ E602 
10E0 C20ClI! 

HJ~3 DB6F 
10E5 EI;02 
10EA DB51 
10EC 47 
11lED E611l 
UEF C20511 
10F2 78 
l1i1F3 E601 
1~F5 CAEA10 
10F8 DBt;~ 

HJFA 12 
UFB 13 
HJFC 00 
BJFD C2EA10 
111"" 0640 
1102 C31711 

111!5 78 
1106 E~liIl 
1108 C211Hl 
110B DB6l 
110D C:i0611 
1110 OB51i1 
1112 12 
1113 13 
1114 110 
1115 "'61l0 

1117 3EFD 
1119 D369 

1118 OB6F 
1110 E632 
l1lF C2lBll 

1122 OB6F 
1124 E61i12 
1126 CA2211 

1129 3E81l 
112B 0365 
112D 3E81'1 
112F 0364 
1131 3EIl3 
1133 0365 

1135 AF 
1136 D31;5 
1138 78 
1139 C9 

416 
417 
418 
419 
421i1 
421+??01112: 
422+ 
423+ 
424 
425 
126 
427+ 
428 
429 
430 
431 
432+??IlIH3: 
433+ 
434+ 
435 
436+??lllH4 : 
437+ 
439 RECVl: 
441l 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 

; 
RECV2: 
RECV3: 

459 RECV4: 
46f/J 
461 
462 
453 
464 ; 
465 RECV5: 
466 
467 
468+??1l1l15: 
469+ 
47f/J+ 
471 
472+??0016: 
473+ 
474+ 

; 

"1VI 
ou'r 
~VI 

ou'r 
WAITO 

IN' 
ANI 
JZ 
MVI 
oU'r 
CLR.A. 
XRA 
OUT 
MVI, 
ou'r, 
WAITX 
IN 
ANI 
JNZ 
WAITT 
IN 

,ANI 
1111 
MOV 
ANI 
JNZ 
MOV 
ANI 
JZ 
1111 
STAX 
INX 
DCR 
JNZ 
MVI 
JMP 

MOV 
ANI 
JNZ 
IN 
JMP 
IN 
STAX 
INX 
OCR 
MVI 

MVI 
oU'r 
WAI'rX 
IN 
I'.NI 
JNZ 
WAITT 
1111 
ANI 
JZ 

Af'f'LI(;AlIUNti 

A,MLA 
DOU'r 

;Forcompleteness 

A, AXRI'.+HOEND+EDEOS 
AUXMD ;EOS or EOI 

;Enti when 
& Holdoff 

INTI 
BO., 
??f/J012 
1'., LON 
ADRMD 

A 
AUXMD 
A,GTSB 
CMD92 

PRTF 
TCIF 
??0!!l3 

PRTF 
TCIF 
INTI 
B,A 
ENDMK 
RECV2 
A,B 
BIM 
RECVl 
DIN 
D 
D 
C 
RECVl 
8,4f/JH 
RECV5 

A,B 
BIM 
RECV4 
INTI 
H,ECV3 
DIN 
D 
D 
C 
B,f/J 

I'.,TCSY 
CMD92 

PRTF 
TCIF 
??1l!!l5 

PRTF' 
TCIF 
??llllJl5 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Listen only 

;Immediate XEO paN 
;1'. XOR A =~ 

;Goto standby 

;Wa i t ,fo r TCI={lJ 

;Wait for TCI=l 
;Get task complete int,etc. 
;"ask it 
;Get 91 Int status (END &/or 81) 
;Save it in 8 for 81 check later 
;Check for EOS or EOI 
;Yes end--- go wait for BI 
;NO, retrieve status & 
;check for BI 
;NO, go wait for either END or BI 
;YES, BI--- get data 
;Stote it in buffer 
;Increment buffer pointer 
;Decrement counter 
;If count < > 0 go back & wait 
;Else set error indicator 
;And go take control 

;Retreive status 
;Check for 81 
;If 81 then go input data 
;Else wait for last 81 
;In loop 
;Get data byte 
;Store it in buffer 
;Incr data pointer 
;Decrement count, but ignore it 
;Set normal completion indicators 

;Take control synchronously 

;Wa I t fo r TCI=0 (7 tcy) 

;Walt for 
, ;Get task 
;"ask It 
;Walt for 

TCI=l 
complete int,etc. 

task to be complete 
475 
476 
477 
478 
479 
481l 

;if timeout 3 Is to be checked, the above WAITT should 
;be omitted & the: ilPpropriat'e code to look for TCIor 
/TOU'r3 Inserted hete. 

481 
482 
483 
484 
4d 
486 
487+ 
488 
489 
49f/J RECV6: 

MVI 
OU'r 
.,VI 
OUT 
MVI 
OUT 
CLRA 
XRA 
ou'r 
I>lOV 
RE'r 

1'., AXR.A. 
AUXMD 
1'., TON 
ADRMD 
A,FNliSK 
AUXMD 

A 
AUXMD 
A,B 

;Pattern to clear 91 END conditions 
; 
;Thls bit pattern 
;Output TON 
;Finish handshake 

alreaoy in "I'." 

;A XOR A =Pl 
; Imme'd iate 'execute PaN-Reset LON 
;Get completion character 

2·391 AFN-ol38OA 



IDA 7E 
l13B FE40 
113D FABB11 
114111 FE5F 
1142 F26B11 
1145 D350 
1147 23 

114S DBlil 
114A E6~2 
114C CA4811 
114F 3E3F 
1151 D350 

1153 7E 
1154 FE2111 
1156 FA6Cll 
1159 FE3F 
115B F26C11 

USE OB6l 
1160 E602 
1162 CA5E11 
1165 7E 
1165 D36111 
llfiS 23 
1169 C35311 

U6C DB61 
116E E69J2 
1170 CA6Cll 
1173 3ES7 
1175 0355 
1177 3E40 
1179 D364 

1178 AF 
117C D365 
117E 78 
117F 0367 
11S1 3EF6 
11S3 D369 

APPLICATIONS 

491 
492 
493 

.*****.****************************************************** 
Xfo'ER ROUTINE 

494 

; INPU'fS: . 
495 
49<; 
497 
498 
499 
500 
501 
502 
sIn 

;OU'fPUTS: 
;CALLS: 
;DESTROYS: 
;RETURNS: 

51'l4 
535 
50fi 
5~7 
50S 
51119 

;NOTE: 

51>1 ; 
511 XFER: 
512+ 
513+ 
514+ 
515+ 
51fi+ 
517+ 
51!l+ 
519+ 
520+ 
521+ 
5/.2 
523 
524 
525+??1'l1'l17: 
52fi+ 
527+ 
528 
529 
530 XFERl: 
531+ 
532+ 
533+ 
534+ 
535+ 
536+ 
537+ 
53S+ 
539+ 
540+ 
541 
542+??I!018: 
543+ 
544+ 
545 
546 
547 
548 
549 XFER2: 
551'l+??1'l11l19: 
551+ 
552+ 
553 
554 
555 
556 
557 
558+ 
559 
56ilJ 
561 
562 
563 

RANGE 

MOV 
CPI 
JM 
CPI 
.1P 
OUT 
INX 
'f/AI'rO 

IN 
ANI 
JZ 
.,VI 
OUT 
RANGE 

MOV 
CPI 
3M 
CPI 
JP' 
WAITO 

IN 
ANI 
JZ 
"lOV 
ou'r 
INX 
JMP 
WAITO 

IN 
ANI 
JZ 
""VI 
OUT 
MVI, 
ou'r, 
CLRA 
XRA' 
ou'r 
"lOV 
OU'f 
MVI 
ou'r 

HL device list 'pointer 
B EOS character 
None 
None 
A, HL, F 
A=0 normal, A < > 0 bad talker 

XFER will not work if the talker 
uses EOI to terminate the transfer. 
Intel will be making hardware 
modifications to the 8291 that will 
correCt this problem. Until that time, 
only EOS may be used without possible 
loss of the last data byte transfercd. 
41!H,5EH,XFER4 ;Check for valid talker 

A,M 
41'1H 
XFER4 
5E!H+l 
XFER4 
DOUT 
H 

INTI 
BOM 
??11I11I17 
A,UNL 
DOUT 

;Checks for value in range 
;branches to label if not 
lin range. Falls through if 
;lower <= ( (H)(L) ) <= upper. 
;Get next byte. 

;Send it to GPIB 
;Incr pointer 

;Get Inti status 
;Check for byte out 
;If not, try again 
;Universal unlisten 

2I11H,3EH,XFER2 ;Check for valid listener 
;Checks for value in range 
;branches to label if not 
lin range. Falls through if 
;lower c= ( (H) IL) ) <= upoer. 
;Get next byte. 

A,M 
21'1H 
XFER2 
3EH+l 
XFER2 

INTI 
BOM 
??1'l0lS 
A,M 
DOUT 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Get 1 istener 

;Incr pointer H 
XFERI ;Loop until non-valid listener 

INTI ;Get IntI status 
BOM ;Check for byte out 
??AI'I19 ;If not, try again 
A, AXRA+CAHCY+EDEOS ;Invisible 
AUX.,O ;Continuous AH mode 
A,LON ;Listen only 
AORMO 

A 
AUX.,O 
A,B 
EOSR 
A,GTSB 
CM092 

';A XOR A =1'1 
; Immed. XEQ PON 
;Get EOS 
;Output it to 91 
;Go to standby 

2·~92 

handshake 

AFN-0138OA 



1185 DBI;F 
1187 E602 
1189 C28511 

118C DB6F 
118£ E602 
1190 CA8Cll 
1193 DB61 
1195 gfiUl 
1197 CA9311 
119A 3E~'D 

119C 031;9 

119£ DB5F 
11M £602 
1111.2 C29Ell 

1111.5 I)B6F 
1111.7 £602 
1111.9 CAA511 
llAC 3£80 
llAE 0365 
llB0 3E03 
llB2 D365 
llB4 3E811 
llB/i 031;4 

llB8 AF 
llB9 0365 
llBB C9 

118C 3E3F 
llBE D3~0 

llC0 7g 
llCl ~'E20 

llC3 FAD911 
llC/i FE3F 
llCa F2D9ll 

11CBDB/il 
llCD E6~2 
llCF CACBll 
1102 7~~ 
llD3 03611 
1105 23 
1106 C3CIIIl1 

1109 DBlil 
llDB g:;112 
llDD CAD911 
l1g0 3g01:1 
11g2 D3S11 

l1g4 DB6l 
llEIi £1i02 

564 
565+??002,1I,: 
556+ 
567+ 
5/i,8 
569+??IHl2l: 
57"'+ 
571+ 
572 XFER3: 
573 
574 
575 
576 
577 
578+??fll'J22 : 
579+ 
580+ 
581 
582+??0023: 
583+ 
584+ 
5135 
581; 
587 
588 
5R9 
5911 
591 
592+ 
593 
594 XF£:<4: 
595 

WAITX 
IN 
ANI 
JNZ 
WAI'r'r 
IN 
ANI 
JZ 
1111 
ANI 
,]Z 
MVI 
ou'r 
WAI'rX 
1111 
ANI 
JNZ 
WAIT'r 
IN 
ANI 
JZ 
. ..,VI 
OUT 
MVI 
ou'r 
"1 VI 
OUT 
CLRA 
XRA 
OUT 
RET 

PRTF 
TCIF 
??II "'2 I'J 

PRTF 
TCIF 
??032l 
IN'rl 
ENDMK 
XFER3 
A,TCSY 
C''1D92 

PRTF 
'fCIF 
'??01'122 

PRTF 
'rcu' 
??0"'23 
A,AXRA 
AUXMD 

1Wait for TCS 
1G,e,t task complete int,etc. 
1,Mask it 
1Wait for task to be complete 
1Get END status hit 
1Mask it 

1Take control syncronously 

1Wait for 
1Get task 
1Mask it 
1Wa i t fo r 
1Not cont 

TCI 
complete int,etc. 

task to be complete 
AH or ENI) on gOS 

A,FNHS.K '1Finish handshake 
AUXMD 
A,TOIII 
ADRMI) 

A 
AUX..,D 

1Talk only 

1Normal return A=~ 
ill. XOR A =i'I 
1Immediate XEQ PON 

596 ;*************************************************** 
597 
598 
599 
600 

'rlHGGgR ROU'rINE 

1INPu'rs: 
10 UTPU'l'S: 
1CALLS: 
1DESTHOYS: 

601 
1i~2 

603 
604 
605 
1i06 
637 1 
608 TRIG: 
6119 
filII TIUGl: 
511+ 
1)12+ 
613+ 
614+ 
615+ 
1;16+ 
617+ 
618+ 
619+ 
620+ 
621 
622+??0024: 
623+ 
624+ 
625 
626 
627 
62A 
629 TRIG2: 
1i30+??11J025: 
631+ 
632+ 
633 
1;34 
635 
('3fi+??0026: 
637+ 

MVI 
ou'r 
RANGE: 

MOV 
CPI 
JM 
CPI 
JP 
WAI'fO 

IN 
ANI, 
JZ 
"'IOV 
ou'r 
HIX 
JMP 
WAlTa 

IN 
ANI 
.JZ 
,,,\VI 
OUT 
WAI'f.O 

IN 
ANI 

HL listenei list pointer 
None 
None 
A, HL, F 

A,UNL 
DOUT 1Send universal unlisten 
2~H,3gH,TRIG2 1Check for valin listen 

,A,M 
211H 
TRIG2 
3EH+l 
TRIG2 

IN'rl 
BOM 
?70~24 

A,M 
DOUT 
H 
TRIGl 

IN'rl 
ROM 
??QJQJ25 
A,GET 
DOUT 

INTI 
80M 

1Checks for value in range 
1branches to lqbel if not 
1in range. Falls through if 
;lower (= ( (Hl (Ll l (= upper. 
1Get next byte. 

1Wait for UNL to finish 
1Get IntI status 
1Check for byte out 
1If not, try aqain 
1Get listener 
;Send Listener to GPIB 
1Incr. pointer 
1Lo6p uritil non-valin char 
1Wait fnr last listen to fi~jsh 
1Get Intl status 
1Check for byte out 
1If not, try aqain 
1Send qroup execute triqqer 
ito all adnressed listeners 

1Get IntI status 
1Check for byte out 

2·393 AFN-Ol38OA 



llE8 CAE4ll 
llEB C9 

llEC 3E3F 
llEE D369 

IlF0 7E 
lIFl FE21l 
llF3 FAClJ912 
llF6 FE3F 
llF8 F20912 

llFB DB61 
UFD E602 
llFF CAFBll 
1202 7E 
1203 D360 
1205 23 
1206 C3F011 

1209 DBlil 
120B E602 
l20D CA0912 
1210 3E04 
1212 D369 

1214 DB61 
1216 E602 
1218 CA1412 
l21B C9 

12lC 3E3F 
121E D360 

1220 DB61 
1222 E602 
1224 CA2912 
1227 3E2l 
1229 D369 

l22B DB61 
l22D E602 
122F CA2B12 
1232 3E18 
1234 D3li0 

1236 DB6l 

638+ 
639 
6411 , 

JZ 
RET 

APPLICATIONS 

??0926 ;If not, try again 

641 ;****************************************** 
642 , 
643 ;DEVICE CLEAR ROUTINE 
644 
645 
646 ; 
647 ;INPUTS: 
li48 ;OUTPUT: 
649 ;CALLS: 
li511 ; DESTROYS: 
651 , 
652 DCLR: 
653 
654 DCLRl: 
655+ 
656+ 
657+ 
65B+ 
659+ 
6611+ 
661+ 
fi62+ 
6fi3+ 
664+ 
665 
666+??0927: 
667+ 
668+ 
669 
6711 
671 
672 
673 DCLR2: 
674+??'''128 : 
675+ 
676+ 
677 
678 
679 
681'1+??0029: 
681+ 
682+ 
683 
684 , 

MVI 
OUT 
RANGE 

MOV 
CPI 
JM 
CPI 
JP 
WALTa 

IN 
ANI 
JZ 
MOV 
OUT 
INX 
J.'1P 
WALTa 

IN 
ANI 
JZ 
MVI 
OUT 
WALTa 

IN 
ANI 
JZ 
RET 

HL listener pointer 
None 
None 
A, HL, F 

A,UNL 
DOUT 
2IlH,3EH,DCLR2 

A,M 
20H 
DCLR2 
3EH+l 
DCLR2 

INTI 
BaM 
??0027 
A,M 
DOUT 
H 
DCLRI 

INTI 
BaM 
??9028 
A,SDC 
DOUT 

INTI 
BaM 
??0029 

;Checks for value in range 
;branches to label if not 
;in range. Falls through if 
; lower <= ( (Hl (Ll l <= upper. 
;Get next byte. 

;Get IntI status 
;Check for byte out 
;If not, try again 

;Send listener to GPIB 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Send devi~e clear 
;To all addressed listeners 

;Get IntI status 
;Check for byte out 
;If not, try again 

685 ;*************************************************** 
686 
687 
fi88 , 

SERIAL POLL ROUTINE 

689 ;INPUTS: 
690 , 
691 ;OUTPUTS: 
692 ;CALLS: 
693 ;DESTROYS: 
694 , 
695 SPOL: 
696 
697 
698+??9930 : 
699+ 
71Hl+ 
701 
7112 
703 
704+??9031: 
795+ 
7116+ 
7117 
7118 
709 
7l0+??0032 : 

MVI 
OUT 
WALTa 

IN 
ANI 
JZ 
MVI 
OUT 
WALTa 

IN 
ANI 
JZ 
MV! 
OUT 
WALTa 

IN 

HL talker list pointer 
DE status buffer pointer 
Fills buffer pointed to by DE 
None 
A, BC, DE, HL, F 

A,UNL 
DOUT 

INTI 
BaM 
??0030 
A,MLA 
DOUT 

INTI 
BaM 
??003l 
A,SPE 
DOUT 

INTI 

;Universal unlisten 

;Get IntI status 
;Check for byte out 
;If not, try again 
;My listen address 

;Get IntI status 
;Check for byte out 
;Ifnot, try again 
;Serial poll enable 
;To be formal about it 

;Get IntI status 

2·394 AFN-01380A 



1238 E<5~2 

123A CA3~12 

1230 7E 
123E FE411.1 
124'l FA9412 
1243 FE5F 
1245 1."29412 
1248 7E 
1249 0360 
124B 23 
124C 3E411.1 
124E 0364 

125'l DB61 
1252 E502 
1254 CA5'l12 

1257 AF 
1258 0365 
125A 3EF6 
125C 0369 

125E oB6F 
126" E5"2 
1262 C25E12 

1265 oB6F 
1267 E602 
1269 CA"i512 

126C oBn1 
126E 47 
126F En!'!l 
1271 CA6C12 
1274 3E:Fo 
127n 0359 

1278 oBfiF 
127A E6'l2 
127C C27812 

12n' DB6F 
1281 E6!12 
1283 CA7F12 
1286 DBne! 
1288 12 
1289 13 
128A 3EB0 
128C D364 

128E AF 
1281." D365 

1291 C33012 

1294 3U9 
1296 036". 

129B oB61 
129A E6\!2 
129C CA9B12 

1291." AF 
12A" 0365 
12A2 C9 

711+ 
712+ 
713 SPOL1: 
714+ 
715+ 
716+ 
717+ 
71R+ 
719+ 
72"+ 
721+ 
722+ 
723+ 
724 
725 
726 
727 
728 
729 
730+??0'l33: 
731+ 
732+ 
733 
734+ 
735 
736 
737 
738 
739+??0034 : 
74111+ 
741+ 
742 
743+??11035: 
744+ 
745+ 
746 
747+??"~36: 
748+ 
749+ 
75\!+ 
'151 
752 
753 
754+??~?l37: 

755+ 
756+ 
757 
758+??1I038: 
759+ 
7fi0+ 
761 
762 
763 
764 
765 
7fil) 
767+ 
768 
71';9 
7711.1 
771 , 
772 SPOL2: 
773 
774 
775+??"11.139: 
776+ 
777+ 
778 
779+ 
780 
781 

ANI 
JZ 
RANGE 

MOV 
CPI 
JM 
CPI 
JP 
,>lOV 
ou'r 
INX 
MVI 

, ou'r 
WAITO 

IN 
ANI 
,1Z 
CLRA 
XR!\ 
ou'r 
MVI 
ou'r 
WAITX 
IN 
ANI 
JNZ 
WAITT 
IN 
ANI 
JZ 
WAI'rI 
IN 
MOV 
ANI 
JZ 
MVI 
OUT 
WAITX 
IN 
Alii I 
JNZ 
WAI'l"r 
IN 
ANI 
,1Z 
IN 
STAX 
INX 
MVI 
ou'r 
CLRA 
XRA 
ou'r 

JMP 

MVI 
ou'r 
WAI'rO 

IN 
ANI 
JZ 
CLRA 
XRA 
OUT 
RET 

BOM ;Check for byte out 
??~A32 ;IE not, try again 
4OlH,5EH,SPOL2 ;Check for valid talker 

A,M 
4'lH 
SPOL2 
5EH+I 
SPOL2 
A,M 
DOU'f 
H 
A,LO'" 
ADRMO 

IN'rl 
80., 
??0'l33 

A 
AUXMO 
A,GTS8 
CMD92 

PRTF 
TeIF 
?UJ034 

PRT.I." 
TeIF 
??Ol?J35 

IN'fl 
B,A 
BIM 
??0036 
A,TCSV 
CMD92 

PR'fF 
TCIF 
??(lJOl37 

PRTF 
TCIF 
??'lOl38 
DIN 
o 
D 
A,TON 
AoRMo 

A 
AUXMD 

SPOLI 

A,SPo 
oou'r 

IN'rl 
BOM 
??(lJtB9 

A 
AUXMD 

1Checks for value in range 
;branches to 1a~e1 if not 
; in. ranqe. 'Falls .through i·f 
;lower (= «H)(L» (= upper. 
;Get next hyte. 

;Get talker 
; Senrt to GPIB 
;Incr t!!lker1ist 
;Listen only 

pointer 

;Wait for talk andress 
;Get IntI status 
;Check for byte out 
;If not, try again 
;Pattern for immertiate 
;A XOR A =QJ 

;Goto stanrtby 

;Wait for TCI false 

;Wait for TCI 

to complete 

XEQ PON 

;Get task complete int,etc. 
;Mask i,t 
;wait for task to he complete 
;Wait for status hyte input 
;Get INTI status 
;Save status in B 
;Check for byte in 
;If n~t, just try again 
;Take control sync 

;wait for TCI false 

;Wait for TCI 
;Get task complete int,etc. 
;Mask it 
;Wait for task to be complete 
;Get serial poll status byte 
:Store it in buffer 
;Incr pointer 
;Talk only for controller 

;A XOR A =~ 
;Immeditate XEQ PON 
;CLR LA 
;Go on to next device 

;Seria1 poll disable 

on 1 i st 

;We know BO was set (WAITO above) 

;Get IntI status 
;Check for byt~ out 
;If not, try aqain 

;A XOR. A =Ol 
;Immediate XEQ .. PON to clear LA 

782 
783 
784 

***************************************************** , , 

AFN-0138OA 



121'.3 3E3F 
121'.5 03691 

121'.7 7E 
121'.8 FE20 
121'.1'. ~'AD812 

12AD FE3F 
12AF F2D812 

1282 DB61 
12B4 ~h1l2 

1286 CAB212 
1289 7E 
12BA D3<;91 

12BC DB61 
12ilE ~h9l2 

12CCl CABC12 
12C3 3~05 
12C5 03<;0 

12C7 DBfi1 
12C9 Eli02 
12CB CAC712 
12CE II'. 
12CF Ffifi0 
12Dl D3fiQl 
12D3 23 
12D4 13 
12D5 C3A712 

12D8 DBh1 
12DA Eli1l2 
12DC CAD812 
120F C9 

12E0 3~3F 
12E2 D350 

12E 4 7E 
12E5 FE20 
12E7 FAFD12 
12EA FE3~' 
12EC F2FD12 

12EF DBfi1 
12F1 E602 
12F3 CAEF12 

APPLICATIONS 

785 
781) , 

PARALLEL POLL ENABLE ROU'rrNE 

787 ; INPUTS: 
788 
789 
790 
791 
792 
793 

; OUTPu'rs: 
;CALLS: 
;DESTROYS: 

794 PPEN: 
795 
795 PPEN1: 
797+ 
798+ 
799+ 
81HH 
801+ 
8fl2+ 
81l3+ 
804+ 
805+ 
80fi+ 
807 
8118+??0040: 
809+ 
B10+ 
811 
812 
813 
814+??0~41: 
815+ 
816+ 
817 
818 
B19 
820+??"'042: 
821+ 
822+ 
823 
824 
825 
826 
827 
828 
829 PPEN2: 
83IH??"~43 : 
831+ 
832+ 
833 
Jl34 , 

MVI 
OUT 
RA"IGE 

MOV 
CPI 
J'I 
CPI 
JP 
'NAITO 

IN 
1'."11 
.IZ 
MOV 
OUT 
ll/AITO 

IN 
1'.'11 
JZ 
i~VI 
ou'r 
WAITO 

IN 
MIl 
JZ 
LDAlC 
ORI 
OU'f 
INX 
INX 
JMP 
\~AI1'O 

IN 
1'."11 
JZ 

HL listener list pointer 
DE confiquration byte pointer 
None 
None 
A, DE, HL, F 

A,UNL 
DOU'r 

;Universa1 un1isten 

20H,3EH,PPEN2 ;Check for valid listener 

A,M 
2~H 

PPEN2 
3EH+1 
PPEN2 

INTI 
BOM 
??0!l4fl 
A,M 
DOU'r 

I"I'rl 
80M 
??0"'41 
A,PPC 
DOUT 

INTI 
80M 
??IHI42 
D 
PPE 
DOUT 
H 
o 
PPEN1 

INTI 
Sb., 
??llHl43 

;Checks for value in range 
;branches to label if not 
lin ranqe. Falls throuqh if' 
; lower (= ( (H) IL) ) (= upper. 
,;Get next byte. 

;Valid wait 91 data 
;Get IntI -status 
;Check for byte out 
;If not, try again 
;Get listener 

;Get IntI status 
;Check for byte out 

out reg 

;If not, try again 
;Paral1el poll configure 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Get matching configuration byte 
;Merge with parallel poll enable 

;Incr pointers 

;Loop until invalid 'li~tener char 

;Get IntI status 
;Check for byte o~t 
;If n6t, try again 

835 ;PARALLEL POLL DISABLE ROUTINE 
836 
837 
838 
839 
84'" 
841 

, 
; INPU'fS: 
;OUT!?U'rS: 
;CALLS: 
;DESTROYS: 

842 PI'DS: 
843 

,~VI 

OU'f 
844 PPDSl: RANGE 
845+ 
841;+ 
847+ 
848+ 
849+ 
851l+ 
851+ 
852+ 
853+ 
854+ 
855 

MOV 
CPI 
J"1 
CPI 
.IP 
WAITO 

856+??0044: IN 
857+ 1'."11 
858+ ,JZ 

HL listener list pointer 
None 
None 
A, HL, F 

A,UIIlL 
DOUT 

;Universa1 un1isten 

20H,3EH,PPDS2 ;Check for valid listener 
;Checks for value in range 

A,M 
2J.!H 
PPDS2 
3EH+1 
PPOS2 

: branches to label if not 
; in range. ~'a lls throuqh if 
; lower (= ( (H) ILl I (= upper. 
;Get next byte. 

I"ITI ;Get Inti status 
BOM ;Check for byte out 
??~~44 ;If not, try again 

2·396 AFN-ol38OA 



12F6 7E 
12F7 0360 
12F9 23 
12FA C3E412 

l2FO OB61 
12~'F Et;1'J2 
1301 CAF012 
1304 3"05 
130<; 0350 

1308 OB61 
13iJA E6iJ2 
130C CA0813 
13iJF 3E7iJ 
1311 03ljiJ 

1313 0861 
1315 g602 
1317 CA1313 
131A C9 

131B 3g15 
1310 0360 

131'F OB61 
1321 g602 
1323 CA1F13 
1326 C9 

1327 3E40 
1329 0364 

132B AF 
132C 0365 
132B 3EF5 
1330 0369 

1332 DB61 
1334 47 
1335 g691 
1337 CA3213 
133A 3E8~ 
133C 0364 

133E AF 
133F 0355 
1341 OB6iJ 
1343 C9 

859 
860 
8n1 
862 
863 PPOS2:' 
8fi4+??0?J45: 
81;5+ 
866+ 
8117 
868 
859 
870+170346: 

'871+ , 
872+ 
873 

.,OV 
OUT 
IN~ 
J"IP 
WAITO 

IN 
ANI 
,JZ 
'~vr 
qUT 
WAITO 

rN 
ANI 
JZ, 
MVI 

8]4 ou'r 
875 WAITO 
R7fi+??(iJ047: IN' 
877+ ,ANI 
878+ JZ 
879 RET 
88iJ 

A,M 
OOUT 
H 
PPDsi 

IN'r! 
80M 
??0(l145 
A,PPC 
OOUT 

IN'r! 
BOI~ 

??004fi 
A,PPO 
DOUT 

IN'r! 
BOM 
??0047 

;Get 1 istener" 

;Incr pointer 
;Loop until invalid listener 

;Get IntI status 
;Check for byte out 
;If'not, try again 
;parallel poll configure 

~Get IntI status 
;Check' for byte out 
;If not, try aqain 
iPara11e1 poll disable 

;Get IntI status 
;Check for byte out 
;If not, try aqain 

881 
882 
883 , 

PARALLEL POLL UNCONFIGURE ALL ROU'rINE 

884 ;INPu'rs: 
885 ;OUTPUTS: 
886 ;CALLS: 
887 ;OgSTROYS: 
888 , 
889 PPUN: 
89iJ 
891 
892+??011J48: 
893+ 
894+ 
895 
89fi , 

r~VI 

Olrr 
WAITO 

IN 
ANI 
JZ 
RET 

None 
None 
None 
A, F 

A,PPU 
oou'r 

INTi 
80,"1 
??0048 

;Para11el poll,unconfiqure 

;Get Inti status' 
;Check Ear byte out 
;If not~ try aqain 

897 i~*****~**.***********~*****.***~****************** 
898 • 
899 ;CONOUCT A PARALLEL POLL 
9iJiJ 
901 
902 ; I"IPu'rs:, 
903 ibiJ;rpUTS: 
904 ;CALLS: 
9iJ5 ;OESTROYS:" 
906 ; RETURNS: 
9iJ7 ; 
91!18 PPOL: 
9iJ9 
910 
911+ 
912 
913 
914 
915 
91fi+??0049: 
917+ 
918+ 
919+ 
920 
921 
922 
923+ 
924 
925 
926 

MVI 
ou'r 
CLRA 
XRA 
OUT 
MVI 
ou'r 
WArrI 
IN 
MOV 
ANI 
JZ 
MV!: 
ou'r, 
CLRA 
XRA 
ou'r 
IN 
RET 

None 
None 
None 

,A, a, r' 
A=, parallel poll status byte 

A,LON 
A1)RMO 

A 
AUXMD 
A,EXPP 
CM092 

INTI 
B,A 
BIM 
??"''''49 
A,'rON 
ADRMO 

A 
AUX.,O 
DIN 

;Listen only 

;Immediate XEO PON 
;A, XOR A =I'l 
;Resel: TO>! 
;Execute parallel poll 

;Wait for comp1etion= Alan 91 
;Get INTl status 
isave status in B 
;Check for byte in 
;IE not, just try aqain 
iTalk only 

; Immed i a te XEQ 
;AXORA=0 
;Reset LOlli 
;Get PP byte 

PON 

927 
928 ********************************************** 
929 PASS CONTROL ROU'fINE 
930 
931 INPu'rs: 
932 OU'rpUT!?: 

Ill. 'pointer to talker 
,None 

2;397 AFN-0138OA 



1344 7E 
1345 FE40 
1347 FA8A13 
134A FE5F 
134C 1"28,0.13 
1341" FE41 
1351 CA8A13 
1354 D3<;0 

1356 D861 
1358 E6C ~ 
USA CA5613 
135D 3E09 
1351" D3<;(II 

1361 DB61 
1363 E602 
131;5 CA6113 
1368 3E01 
136A D364 

13r,C AF 
136D D365 
135F 3E01 
1371 D366 
1373 3EAl 
1375 D365 

1377 3EFl 
1379 D31i9 

137B DBliF 
137D E602 
137F C27813 

1382 D86F 
1384 EfiQJ2 
1385 CA8213 
1389 23 
138A C9 

138B DB51 
138D E680 
138F CACF13 
1392 0865 
1394 FE(II9 

933 ;CALLS: 
934 ; DESTROYS: 
935 PCTL: RANGE 
936+ 
937+ 
938+ 
939+ 
94A+ 
941+ 
942+ 
943+ 
944+ 
945+ 
946 
947 
94 R 
949 
950+??!'I~51'l: 
951+ 
952+ 
953 
954 
955 
956+??0051: 
957+ 
958+ 
959 
960 
961 
9'i2+ 
953 
%4 
965 
91;5 

MOV 
CPI 
J,"1 
CPI 
JP 
CPI 
JZ 
OUT 
WALTa 

IN 
A'li I 
JZ 
MVI 
ou'r 
WAITO 

IN 
ANI 
JZ 
MVI 
ou'r 
CLRA 
XRA 
OUT 
'''I VI 
OUT 
MVI 
ou'r 

APPLICATIONS 

None 
A, HL, F' 
4I1lH,5EH,PCTLl ;Is it a valid talker? 

;Checks for value in range 
;branches to label if not 

A,M 
40H 
PC'rLl 
5EH+1 
PCTLl 
MTA 
PC'rLl 
DOUT 

IN'rl 
BOM 
??IH'5?! 
A,TCT 
DOUT 

IN'U 
80M 
??0351 
A,MODEI 
ADRMD 

lin range. Falls through if 
; lower (= ( (H) (L) ) <= upper. 
;Get next byte. 

;Is it my talker ad~ress 
;Yes, just return 
;Send on GPIB 

;Get IntI status 
;Check for byte out 
;If not, try again 
;Take control messaqe 

;Get IntI status 
;Check for hyte out 
;If not, try again 
;Not talk only or listen only 
;Enable 91 address mode 1 

A ;A XOR A =0 
AUXMD ;Immediate XEQ PON 
A;MDA ;My device address 
ADRAI ;enablerl to talk and listen 
A, AXR8+CPTEN ;Command pass thru en~hle 
AUXMD 9117 

91;8 
9'i9 
97C!1 

;*******optional PP configuration qoes here········ 
MVI A,GIDL ;92 go idle commAnd 
ou'r CMD92 

971 
972+??0(!52: 
973+ 
974+ 
975 
97('+??0053: 
977+ 
978+ 
979 
980 PCTLl: 
981 
982 • 

WAITX 
IN 
ANI 
JNZ 
,oJAITT 
IN 
ANI 
JZ 
INX 
RET 

PRTF 
TCIF 
170052 

PRTF 
TCIF 
??01'153 
H 

;Wait for 
;Get task 
;Mask it 
;wait for 

TCI 
complete int,etc. 

task to he complete 

933 ;***************************************** 
984 
985 ;RECEIVE CONTROL ROUTINE 
986 
987 :INPUTS: 
988 ;OU'rpUTS: 
989 ;CALLS: 
990 ;DF.:STROYS: 
991 ;RETURNS: 
992 • 
993 ;NOTE: 
994 
995 
996 
997 
998 
999 

1(H'0 
1031 RCTL: 
H!11l2 
1003 
1004 
1005 

IN 
ANI 
JZ 
IN 
CPI 

None 
None 
None 
A, F 
I'l= inval id (not take control to us or cP'r bi t not on) 
< > (II = valid take control-- 92 will now be in control 
THIS CODE MUST BE TIG~TLY INTEGRATED INTO ANY USEq 
SOFTWARE THAT FUNCTIONS WITH THE 8291 AS A DEVICE. 
NOH MALLY SOI~E ADVANCE WARNING OF IMPENDI"lG PASS 
CONTROL SHOULD BE GIVE~ TO US BY THE CONTROLLER 
WITH OTHER USEFUL INFO. THIS PHOTOcbL IS SITUATION 
SPECIFIC AND wiLL NOT ~E COVERED H~RE. 

IN'rl 
CPT 
RC'rL2 
CP'rRG 
1'CT 

;Get INTI re'l (i.e. cP'r etc.) 
;Is command pass thru on ? 
;No, .invalid-- '10 return 
;Get command 
;Is it take control? 

2·398 AFN-Ql38OA 



1395 C2CA13 
1399 OBfi4 
139B E602 
1390 CACA13 
13A0 3E60 
13A2 03"" 
l3A4 3E8~ 
13M; D3'i4 

13M AI' 
13A9 D361 
13AB D31j2 
13AD D31;5 
13AF 3EI'A 
13B1 0369 
13B3 3P.1,.. 
13B5 D3'i5 

13B7 OBIiF 
1389 E602 
13138 C2B713 

13i:lE OB6F 
13C0 E,,02 
13C2 CASE13 
13C5 3E09 
13C7 C 3CFl3 
13CA 3EIlF 
13CC D365 

13CE Ar' 
13C,' C<J 

13lJ0 ORr,9 
1302 E620 
1304 CAE213 
13D7 l;'6r~B 

13D9 03<;9 
l30B OB69 
1300 E602 
13DF CADBl3 
13E2 C9 

13E 3 3E,'8 
13E5 D369 

131':7 DBnF 
13E9 E602 
13EB C2E713 

DEE bB6F 
13F0 E<;02 
131'2 CAEEl3 

liB!" 
l(HJ7 
1<"'J8 
1009 
UHf! 
lIlll 
1012 
UH3 
lI'114 
1015+ 
HnEi 
1017 
lIll8 
1019 
1020 
1021 
1022 

JNZ 
IN 
ANI 
,JZ 
"IVI 
ou'r 
MVI 
ou'r 
CLRA 
XRA 
OUT 
OUT 
OU'!, 
MVI 
ou'r 
MVI 
ou'r 

"'I"'I"'LI\''''IIUrt~ 

RCTL1 
ADRST 

·TA 
RCTLi 
A,DTOL1 
ADR(il1 
A,TON 
1\ DRill 0 

1\ 
IN'r! 
INT2 
AUXMD 

;No, g~ return invalid. 
;Get adnress st"tus 
;Is Til on ? 
;No -- go return invalid 
;Disah1e talker listener 

;Talk only 

;/\ XOR A =0 
;Mask off INT bits 

A,TCNTR ;Take (receive) control 92 command 
C"ID92 
A,VSCiIIO ;Va1id command p"ttern for 91 
/\UXMD 

1023 ;******** optional TOUT1 check could be put here· ******** 
1024 
1025+?UHI54 : 
H126+ 
1027+ 
lIl28 
Hl29+??eJ~55: 

103 ~+ 
1031+ 
1032 
1033 
1034 HCTLl: 
1035 
111311 

',~AITX 

IN 
ANI 
JNZ 
'HAITT 
IN 
ANI 
JZ 
MVI 
J'IP 
MVI 
OUT 
CLRA 

1037+ XR.I\ 
1038 RCTL2: RET 
11'13 9 , 

PRTF 
TCIF 
??~1l54 

PRTF 
TC II" 

A·,TC'f 
RC'I'L2 
A,VSC,'iD 
AUX,-W 

A 

;Wait for TCI 
;Get task complete int,etc. 
;Mask it 
;Wait for task to he complete 
;Valid return pattern 
;On1y one return .per routine 
;Acknow1edge cP'r 

;Error return pattern 
;A XOR A =0 

1040 ;************************************************* 
1041 
11'142 
lr'43 

SR(J ROU'rINE 

11144 
1045 
H14Ei 
1047 
1048 
1049 

;INPu'rs: 
;OUTPU'fS: 
;CALLS: 
; RE'rURNS: 

1050 
1051 SHQO: 
1052 
1053 
1054 
HISS 
105t; SRQD1: 
1057 
lCJ58 
1059 SRQD2: 
lfH;0 , 

IN 
ANI 
,JZ 
ORI 
OUT 
IN 
ANI 
JZ 
RET 

None 
None 
None 
A= ~ no SR,) 
A < > II SR(J occured 

INTST 
SRQST 
SRQD2 
lACK 
CM092 
IN'rST 
IRFBT 
SRQD1 

;Get 9?'s INTRQ st"tus 
;iI\ask off SRQ 
;Not set--- go return 
;Set--- must clear it 

;Get IBF 
;Mask it 
;Wilit if n.ot set 

1061 ;************************************~******* 
Ul'i2 
1063 ;REMOTE ENABLE ROUTINE 
11'64 
1055.jINPu'rs: 
HI.%; oi.n pu'rs: 
10117 ; CALLS: 
Hl6e ;DESTROYS: 
lri169 

None 
None 
NONE 
A., F 

wi t h gCK 

HJ7i<l REME: 
1071 

.MVI 
OUT 

1872 WAITX 

A, SREM 
CMon ;92 asserts remote enable 

;Wait for TCI = 0 
1073+?711"5,,: IN 
1074+ ANI 
Hl75+ JNZ 
1076 WAITT 
1077+170057: IN 
1078+ ANI 
1079+ JZ 

PRTF 
TCIF 

PR'l'F 
TCIF 
??(l(l57 

;Wait for 
iGet task 
;Mask I.t 
iWait for 

2·399 

TCI 
complete int,etc. 

task to he complete 

AFN-0138QA 



l3F5 c9 

13F6 3E~'7 

13F8 0359 

l3~'A DB6F 
13FC E632 
13n: C2~'A13 

14lll DB6F 
1403 E602 
14"5 CAIl114 
1408 C9 

1409 3E:F9 
1401:1 D3';9 

14AD DR';F 
14AF E<;1l2 
1411 C2(1D14 

1414 DBfiF 
1416 E6~2 
1418 CA1414 

141B C9 

l(l8~ 

Hl81 , 
RET 

APPLICATIONS 

lA82 ;*********************.********************* 
US3 ; 
lA84 ;LOCAL ROUTINE 
HI85 
H'J86 
H187 ; INPU'I'S: 
11188 ;OUTPUTS: 
11189 ;CALLS: 
1 ~9" ; DESTROYS: 
1Il91 , 
Hl92 LOCL: 
11193 

MVI 
OUT 
o'IAITX 1~94 

11!95+??1l058: IN 
1096+ ANI 
11197+ JNZ 
11198 
lI'J99+??(H'J 59: 
1 III 11+ 
11n+ 
111,'2 
11113 , 

'o'IAITT 
IN 
ANI 
JZ 
RET 

None· 
None 
None 
A, F 

A,SLOC 
CI~D92 

PRTF 
'rCIF 

PR'rF 
TCIF 
??01l59 

;92 stops asserting remote enable 
;Wait for Tel =0 

;Wait for 
;Get task 
;Mask it 
;Wait for 

TCI 
complete int,etc. 

task to he complete 

llA4 i********************************************** 
1105 
11116 ;INTERFACE CLEAR I ABORT ROUTINE 
IH17 
llOB 
1109 
11111 
1111 
1112 
1113 
ll14 

, 
;INPUTS: 
;OU'rPllTS: 
;CALLS: 
;OESTROYS: 

1115 IFCL: MVI 
1116 OUT 
1117 WAITX 
I11B+??"HlJ60: IN 
1119+ ANI 
1120+ JNZ 

A,ABORT 
CMD92 

PR'rF 
TCIF 

None 
None 
None 
A, F 

;Send IFC 
;Wait for TCI =~ 

1121 
1122+??11I!r,1: 
1123+ 

WAI'rT ;'>lait for TCI 

1124+ 
1125 
112!i 
1127 
1128 
1129 
113~ 

1132 

IN PRTF ;Get task complete int,etc. 
ANI TCIF ;Mask it 
JZ ??A~~l ;Wait for task to be complete 

;Oelete both WAITX & WAITT if this routine 
lis to he called while the 9292 is 
;Control1er-in-Charqe. If not C.I.C. then 
;'rCI is set, else nothing is set (IFC is sent) 
land the WAIT'S will hang forever 

RE:T 

2·400 AFN-Ql38OA 



0032 
IH131 
~051 
000D 
~0~A 

00FF 
1'll!40 

IHC 46553146 
1420 52333746 
1424 48414D32 
1428 564F 
142A 1'10 
I'IliHIF 
142B 50463447 
142F 3754 
00"'6 
1431 31 
1432 FF 
1433 32 
1434 FF 
1435 51 
143<; FF 

1437 060D 
1439 0E0F 
1433 111C14 
143E 213314 
1441 C1l1C1C1 

14 4 4 11 ~54 
1440 l1E06 
1448 112a14 
1446 213114 
144E COlClfl 

1451 COD"'13 
1454 CA5114 

1457 11003C 
145A 213514 
145D COIC12 
1460 IB 
1461 lA 
1462 E64'" 
1464 CA7714 

1467 060A 
1469 "'Ell 
146B 213514 
146E 11013C 
1471 CD9F10 
1474 C27714 

1477 01'1 

3C00 
3C00 
"'Ill 1 

;APPLICATION EXA~PLP. CODE FOR 8~85 
, 
FGD~L 

~'CDNL 

FCDNT 
CR 
LF 
LEND 
SRQM 
; 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

'2' 
'I' 
'Q' 
0DH 
0AH 
0n'H 
40H 

;Func gen device num "2" ASCII,lstn 
;Freq ctr device num "I" ASCII,lstn 
;Freq ctr talk address 
;ASCII carriage return 
;ASCII line feed 
;List end for Talk/Listen lists 
;Bit indicating device sent SRQ 

1133 
1134 
1135 
1136 
1137 
1138 
1139 
1140 
1141 
1142 
1143 r'GDA'l'A: DB 'FUlFR37KHA~2VO',CR ;Data ,to set -up func. gen 

1144 LIMI EQU ;Buffer 'length 
1145 FCDATA: DB 

15 
'PF4GTf' ;Data to set up freq ctr 

h ;Buffer length 1146 LIM2 
1147 LLl: 

EQU 
DB FCDNL, LE:ND ;Listen list for freq ctr 

1148 LL2: DB FGDNL;LEND ;Listen list for func. gen 

1149 TLl: DB 

1150 
1151 
1152 
1153 
1154 
1155 
1156 

; SETUP FUNCTION 
MVI 

, 

MVI 
LXI 
LXI 
CALL 

FCDNT,L8111D 

GENERA'rOR 
B,CR ;EOS 
C,LIMI ;Count 
D,FGDATA 
H,LL2 ;Listen 
SEND 

1157 
1158 
1159 
1160 

;SETUP FREO COU~TER 

1161 
1162 
1163 
1164 
111';5 

MVI 
MVI 
LXI 
LXI 
CALL 

B,'T' ;EOS 
C,LtM2 ;Count" 
D,FCDATA 
H,LLI ;Listen 
SEND 

;Talk list for freg ctr 

;Data pointer 
list pointer 

;Data pointer 
list pointer 

1166 ;WAIT FOR SRQ FROM FREO CTR 
lHi7- , 
1168 LOOP: 
1169 

, 

CALL 
JZ 

SRQD 
LOOP 

;Has SRQ occurred ? 
; No, wa it fo r it 

1170 
1171 
lin 
1173 

;SERIAL POLL TO CLEAR SRQ 

1174 
1175 
1171'; 
1177 
117f.1 
1179 
1180 
1181 
1182 
1183 
1184 
1185 
118'5 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1195 
1197 

LXI 
LXI 
CALL 
DCX 
LDAX 
ANI 
JZ 

D,SPBYTE 
H,TLI 
SPOL 
D 
D 
SRQM 
ERROR 

;Buffer pointer 
;Talk list pointer 

;Backup buffer pointer to ctr byte 
;Get status byte 
;Did ctr assert SRQ ? 
;Ctr shoulo have said yes 

;RECEIVE READING FROM COUNTER 

, 

MVI 
~VI 

LXI 
LXI 
CALL 
JNZ 

B,LF ;EOS 
C,LI"13 ;Count 
H,TL1 ;Talk list pointer 
D,FCDATI ;Data in buffer pointer 
RECV 
ERROR 

;******* rest of user processing goes here ***** 

, 
ERROR: 
, 
ORG 
SPBYTE: 
LI.,3 

NOP 
ETC. 
3C"0H 
DS 
EQU 

1 
17 

;User dependant error hanolinq 

;Location for serial poll byte 
;Max freq counter input 

2·401 AFN-0138OA 



APPLlCAT~ONS 

3CI1Il 1198 FCDA'l'I: DS LIM3 ;Freq ctr input buffer 

1199 END 

PUBLIC SYMBOLS 

EX'rEHIIIAL SYi~BOLS 

us EH. SY:4BQLS 
AI"WHT A "'t.1F9 IID"~I A 011'i1; I\DR~D II ~~~4 II IlR 5'1' A A'1t;4 AtlX.D A ~~~s .~XR!\ II ~~8IJ IIXRB A ~MB 
81~ A ~001 HOP II 0~~1 BOI~ ~ 01~2 BUSST A A"t;R CAHCY II ~~~1 CLKR'I' II ~.n CLRA + ~0H 
eLHS'1' II ~"'I'i~ C,VlD92 1\ ~Hl1i9 CPT .&.. A'Hl~ CPTE'" II AA.I CPTRG II ~A~I) CR II ~eA1) DCL '11. 0014 
DCLR A llEC DCLRI !\ llF" DCLR2 !\ 12A9 DI~ II A~~f1 DaU'f !\ .~~. DTDLI II A~~0 DTDL2 !\ A0E0 
I::DI::O$ A !HH~4 I=': NU1"K II ~rHe EOl5 II 000~ EorST II ~~"(~ E0SQ !\ B0'7 ERPLG II ~"I)R ERR·" .11 .0~R 

,:RROR II 1477 EVdl'1' A ~':Hn ~:VCST II ~~:1R f.VREG A. A(11)~ EXPP II 0.~'5 FCDATII .11 It12~ FCnATI II 3CAI 
lo'CDN'L A 0031 FCDNr II 0051 ,lo"'GDATA .11 lit Ie FGI)NL II ~." FNHSK .11 CHHn GET II ~?lr!9 GIDL A BAFl 
GSEC II (l0F4 G'l'SB II 0~P~ HOEND II A0~2 HOHS~ A 00AI lACK A ~.~B ISFaT A 0007. IBFF A 0~IB 
lFCL A 1409 INIT A 1000 INTI A 0~~1 IN1'2 A 0A'2 IIIJTr., .~ AMA I~Tr"l II A~~1 lNTMR A 03~8 
I N'j'S'1' II ~0~9 LA A 0~01 LEND II B0FF LF A AAAA LIMI A A0~P LI,~2 II rH~lito:; LIM3 A "011 
LLI A 1431 LL2 A 1433 LOCL A 13F~ LnN A 004A L()OP .~ 14,,1 MDA II A~01 MLA A "021 
~()OEI A 0rHIl MTA 1\ AMI '1VC~D A PitH! 7 OHFF A ~A~R PCTL A 13~4 PCTLI A 138A PPC II 00A5 
PPD A 0070 PPDS .~ 12E~ PPilSI II 12E' PPDS2 A 12Pn PPE' II "'~c:;~ PPi::),J A 1?A3 PPF.:Nl A 12A7 
PPEN2 1\ 1208 PPOL A 1327 PPU A 0015 PPUN A 13IA PRT91 A OH'I';'" PHT92 II (H1S:;~ PRTf A ~O'lF 
H..I\NGE + (1~H'5 HoST A 00E7 RCST A 0'IE~ IlCTL A 13"B RC'l'Ll A nCA RCTL2 II 13CF RECV A 109f' 
H.ECVl A l~E:A RECV2 A lin" HECV3 ,~ ll"~ RECV'" A lllP HF.CV~ A 1117 RECVf) II 1139 RP'I"'F. A 13E3 
IU:Hf A "BE4 REHM 1\ n~8A REVC A 0003 RI'1."4 A 0085 ~SP.T A 00F2 RSTI II "0P3 RTOU'I' II 00E9 
$OEOI A 00~~ SEND A 101C SENDI A 102E SEND2 A 1047 SF.ND3 A 10~9 SEN!)4 II 1070 SEND5 II lA7F 
S~~r.JDt5 A 1088 SE'n' + 000:1 SLoe A 'lAP? SPBY'I'E A 3CA" SPCNI A ""FA SPO 0019 SPI-~ A 0018 
SPIP A 0004 SPOL A 121C SPOLI II 123D ~POL2 A D94 Sl~f,~ II "AFR SRQ8T 0020 SRon " 13D~ S~QOl A l3DB SRQ1l2 .~ 1382 St{OM A 0040 STOll A 00FF. TA A 0~02 'I'C~SY A ~~FC TOF A 00~2 
reN'I'H A ~0FJ\ TCSY A ~~F'n 'rCT A B0A9 'rLl A 1435 'rLO~ A ~"C~ 'rOfo.l II ~~qn TOHEG A 0~r;g 

TOST 1\ ~0~8 TOU'r! A Po0"1 TOUT2 A AAA2 'rOUT3 A """4 'r~IG A llRC T~IGI II llee 'rRIG2 A llD9 
UNL A 003~' VSC,~D A o~nF WAITI + 0A02 "'IAITO + OBOI W.~ITT + '1~04 WAITX 0!HO :.oJEVC II 0~E2 
'/Jou'r A "'A&l XF£A A 113A XFr.I~l A llS3 XFEH2 A ll~C XFER1 ,. 1193 XFEQ4 llSA 

,"SSEI~BLY COI4PLE'rE, NO ERRORS 

2-402 



APPENDIX B 

TEST CASES FOR THE SOFTWARE DRIVERS 

The following test cases were used to exercise the 
software routines and to check their action. To 
provide another device/controller on the GPIB a 
ZT488 GPIB Analyzer was used. This analyzer 

acted as a talker, listener or another controller as 
needed to execute the tests. The sequence of out­
puts are shown with each test. All numbers are 
hexadecimal. 

SEND TEST CASES 

B = 44 
C = 30 

DE = 3E80 
HL = 3E70 

3E70: 20 30 3E 3F 
3E80: II 44 

GPIB outp~t: 4lATN 
3F ATN 
20 ATN 
30 ATN 
3EATN 
II 
44 EOl 

":lHling B = 44 
Ending C = 2E 
Ending DE = 3E82 
Ending HL = 3E73 

RECEIVE TEST CASES 

B = 44 44 
C = 30· 30 

DE = 3E80 3E80 
HL = 3E70 3E70 

3E70: 40 50 
GPIB output: 40ATN 50ATN 

3F ATN 3F ATN 
21 ATN 21 ATN 

ZT488 Data I I 
In 2 2 

3 3 
4 4 
44 5,EOl 

Ending A =0 0 
Ending B =0 0 
Ending C = 2B 2B 
Ending DE = 3E85 3E85 
Ending HL = 3E71 3E71 

SERIAL POLL TEST CASES 

C = 30 
DE = 3E80 
HL = 3E70 

3E70: 40 
50 
5E 
5F 

44 
2 
3E80 
3E70 

41 ATN 
~F ATN. 
20ATN 
30ATN 
3E ATN 
1I 

·44 EOl 

44 
0 
3E82 
3E73 

44 44 
30 30 
3E80 3E80 
3E70 3E70 
5E 5F 
5E ATN 
3F ATN 
21 ATN 
I 
2 
3 
44,EOl 

0 5F 
0 44 
2C 30 
SE84 3E80 
3E71 3E70 

C = 30 
DE = 3E80 
HL = 3E70 

3E70: 5F 
GPIB output: 3F ATN 

21 ATN 
18 ATN 

44 
4 
3E80 
3E70 
40 
40ATN 
3F ATN 
21 ATN 
I 
2 
3 
4 

40 
40 
0 
3E84 
3E71 

44 
0 
3E80 
3E70 

41ATN 
3F ATN 
20ATN 
30 ATN 
3E ATN 

44 
0 
3E80 
3E73 

44 44 
4 0=256 
3E80 3E80 
3E70 3E70 
40 40 
40ATN 40ATN 
3F ATN 3F ATN 
21 ATN 21 ATN 
II I 
22 2 
33 3 
44 44 

0 0 
0 0 
0 FC 
3E84 3E84 
3E71 3E71 

AFN-Ol38OA 



APPLICATio'NS 

GPIB output: 3F ATN 
output: 21 A TN 
output: 18 A TN 
output: 40 A TN 
input*: 00 
output: 50 A TN 

19ATN 
Ending C = 30 
Ending DE = 3E80 
Ending HL = 3E70 

input*: 41 
output: 5E A TN 
input*: 7F 
output: 19 A TN 

*NOTE: leave ZT488 in single step mode even on input 
Ending C = 30 
Ending DE = 3E83 
Ending HL = 3E73 

Ending 3E80: 00 41 7F 

PASS CONTROL TEST CASES 

HL = 3E70 3E70 3E70 
3E70: 40 41(MTA) 5F 

GPIB output: 40 ATN 
09ATN 
-ATN 

Ending HL = 3E71 3E70 3E70 
Ending A = 02 41(MTA) 5F 

RECEIVE CONTROL TEST CASES 

GPIB input IOATN 
ATN 

40ATN 
09ATN 

Run Receive Control 
GPIB Input 
Ending A = o 

ATN 
o 

PARALLEL POLL ENABLE TEST CASES 

DE = 3E80 3E80 
HL = 3E70 3E70 

3E70: 20 30 3E 3F 3F 
3E80: 01 02 03 

G PIB output: 3F A TN 
20ATN 
05 ATN 
61 ATN 
30ATN 
05 ATN 
62ATN 
3E ATN 
05 ATN 
63 ATN 

Ending DE = 3E83 
Ending HL = 3E73 

3F ATN 

3E80 
3E70 

PARALLEL POLL DISABLE TEST CASES 

HL = 3E70 3E70 
3E70: 20 30 3E 3F 3F 

2-404 

41 ATN 
09ATN 

Am 
09 

AFN-0138OA 



GPIB output: 3F ATN 
20ATN 
30ATN 
3EATN 
05 ATN 
70ATN 

Ending HL = 3E73 

3F ATN 
05 ATN 
70 ATN 

3E70 

PARALLEL POLL UNCONFIGURE TEST CASE 

GPIB output: 15 ATN 

PARALLEL POLL TEST CASES 

Set 010 # I 2 3 4 5 6 7 8 None 
Ending A I 2 4 8 10 20 40 80 0 

SRQ TEST 

Set SRQ momentarily Reset SRQ 
Ending A = 02· 00 

TRIGGER TEST 

HL = 3E70 
DE = 3E80 
BC = 4430 

3E70: 20 30 3E 3F 
GPIB output: 3F A TN 

20ATN 
30ATN 
3E ATN 
08 ATN 

Ending HL = 3E73 
DE = 3E80 
BC = 4430 

DEVICE CLEAR TEST 

HL = 3E70 
DE = 3E80 
BC = 4430 

3E70: 20 30 3E 3F 
GPIB output: 3F ATN 

20ATN 
30ATN 
3EATN 
14ATN 

Ending HL = 3E73 
DE = 3E80 
RC = 443Q 

AFN'()I38OA 



XFER TEST 

B = 44 
HL = 3E70 

3E70: 40 20 30 3E 3F 
GPIB output: 40 ATN 

3F ATN 
20ATN 
30ATN 
3E ATN 

GPIB input: 0 
I 
2 
3 
44 

Ending A = 0 
B =44 

HL = 3E74 

APPLICATION EXAMPLE 
GPIB OUTPUT/INPUT 

GPIB output: 41 ATN 
3F ATN 
32ATN 
46 
55 
31 
46 
52 
33 
37 
4B 
48 
41 
4D 
32 
56 
4F 
OD EOI 
41ATN 
3F ATN 
31 ATN 
50 
46 
34 
47 
37 
54 EOI 

GPIB input: SRQ 
GPIBoutput: 3F ATN 

21 ATN 
18 ATN 
51 ATN 

GPIB input: 40 SRQ 
GPIB output: 19 ATN 

51 ATN 

'APPLICATIONS 

2·406 AFN'()l38OA 



3F ATN 
21 ATN 

GPIB input: 20 
28 
20 
io 
20 
33 
37 
30 
30 
30 
2E 
30 
45 
2B 
30 
OD 
OA 

GPIB ()utput: XX ATN 

Mnemonic 

ACG addressed command group 

ATN attention 

DAB data byte 

DAC data acceptl'd 

DAV data valid 

DCL device clear 

END end 

EOS end of string 

GET group execute trigger 

GTL go to local 

lOY identify 

IFC interface clear 

LAG listen address group 

Lt.O local lock out 

MLA my listen address 

MTA my talk address 

MSA my secondary address 

APPU~ATIQNS 

APPENDIX C 

REMOTE MESSAGE CODING 

Bus Sillnal Lin .. (_) and 
Coding Thal As . .'wrts the 

C Tru.- Valu.- .. I' lh., M .. ssage 
T I () D NN 
Y I I Dlt!) /I E S I R 
I' II 0 AFA T o R F E 

Message Name " H 7 Ii ;, 4 :3 2 I VDC,N I Q C N 

M /I( - Y 0 0 0 X X X X XXX 1 X X X X 

II lIC X X X X X X X X XXX 1 X X X X 

(Noles I, 9) M OD D 0 0 D 0 0 0 0 XXX 0 X X X X 
H 7 (; ;, 4 3 2 1 

U HS X X X XX X X X XX0 X X X X X 

U HS X X X X X X X X IXXX X X X X 

M UC Y 0 0 1 0 1 0 0 XXX 1 X X X X 

U ST X X X X X X X X XXX 0 1 X X X 

(Notes 2, 9) M 00 E E E E E E E E XXX 0 X X X X 
8 7 6 5 4 3 2 1 

M AC Y 0 0 0 1 0 0 0 xxx 1 X X X X 

M AC Y0 0 0 0 0 0 1 XXX 1 X X X X 

U UC X X X X X X X X XXX.X 1 X X X 

U UC X X X X X X X X XXX X X X 1 X 

M AD Y 0 1 X XXX X XXX 1 X X X X 

M UC Y 0 0 1 0 It 0 XXX 1 X X,X X 

(Note 3) M AD Y 0 L L L L L XXX X X X X 
5 4 3 2 1 

:Note 4) M AD Y 0 T T T T T XXX X X X X 
5 4 3 2 1 

(Note 5) M SE Y S S S S S XXX 1 X X·X.X 
5 4 3 2 1 

2·407 AFN-0138OA 



APPLICATIONS 

Mnemonic 

NUL null byte 

OSA other secondary address 

OT A other talk address 

PCG primary command group 

PPC parallel poll configure 

PPE parallel poll enable 

PPD parallel poll disable 

PPRI 

PPR2 

PPR3 

PPR4 

PPR5 

PPR6 

PPR7 

PPR8 

PPU 

REN 

RFD 

RQS 

SCG 

SDC 

SPD 

SPE 

SRQ 

STB 

TCT 

TAG 

UCG 

UNL 

UNT 

parallel poll response 1 

parallel poll response 2 

parallel poll response 3 

parallel poll response 4 

parallel poll response 5 

parallel poll response 61 
parallel poll response 7 

parallel poll response 8 

parallel poll unconfigure 

remote enable 

ready Cor data 

request service 

secondary command group 

selected device clear 

serial poll disa ble 

serial poll ena ble 

service request 

status byte 

take control 

talk address group 

universal command group 

unlisten 

untalk 

Message Name 

(Note 6) 

(Note 7) 

(Note 10) 

(Note 10) 

(Note 9) 

(Notes 8, 9) 

(Note 11) 

T 
y 
p 

M 

M 

M 

M 

M 

M 

M 

U 

U 

U 

U 

U 

U 

U 

U 

M 

U 

U 

U 

M 

M 

M 

M 

U 

M 

M 

M 

M 

M 

M 

Bus Signal Line(s) and 
Coding That Asserts the 

y Trup Value of the Message 
I D D NN 
a I I DRD A E SIR 

o 0 AFA TOR F E 
8 7 6 5 4 3 2 I VDC N I Q C N 

DD I' I' I' I' I' I' I' I' XXX X X X X X 

SE (OSA = SCG II MSA) 

AD (OTA = TAG II MTA) 

- (PCG = ACG V UCG V LAG V TAG) 

AC Y I' I' I' I' I' 1 XXX 1 X X X X 

SE Y I' S P P P XXX X X X X 
321 

SE Y D D D D XXX 1 X X X X 
432 1 

STXXXXXXXI 

STXXXXXX X 

ST X X X X X 1 X X 

STXXXX XXX 

STXXXIXXXX 

ST XXI XXXXX 

STX XXXXXX 

ST 1 X X X X X X X 

UC Y I' I' I' I I' 
UC X X X X X X X X 

HS X X X X X X X X 

ST XI XXXXXX 

SE Y I X X X X X 

AC Y I' I' I' I' I' I' 
UC Y I' I' I' I' 
UC Y I' I' 1 I' I' 0 

ST XXXXXXXX 

STSXSSSSSS 
8 654 321 

AC Y 0 I' 0 1 I' I' 1 

AD Y I' X X X X X 

UC Y I' I' 
AD Y I' I 

AD Y I' 

X X X X 

I 

1 1 

XXX 1 

XXX 

XXX I 

XXX 1 

XXX 

XXX 1 

XXX 1 

X X X 

X X X 

X X X 

X X X 

X X X 

X X X 

X X X 

XXX X X X 

XXX 1 X X X X 

XXX X X X X 1 

X0X X X X X X 

XXX I) X X X X 

XXX X X X X 

XXX X X X X 

XXX X X X X 

XXX X X X X 

XXX X X X X 

XXX I) X X X X 

XXX X X X X 

XXX 1 X X X X 

XXX X X X X 

XXX X X X X 

XXX X X X X 

The 111' coding on ATN when sent concurrent with multiline messages has been added to this revision for interpre­
tive convenience. 

NOTES: 
(1) DI-D8 specify the device dependent data bits. 
(2) E1-E8 specify the device dependent code used to 

indicate the EOS message. 
(3) L1-L5 specify the device dependent bits of the 

device's listen address. 
(4) T1-T5 specify the device dependent bits of the 

device's talk address. 
(5) Sl-S5 specify the device dependent bits of the de· 

vice's secondary address. 
(6) S specifies the sense of the PPR. 

S Ht'spons{' 
8 II 
1 1 

PI-P3 specify the PPR message to be sent when a paral­
lel poll is ex ecu ted. 

2·408 

P:l 1'1 PPR Message 
I'PRI 

PPR8 

(7) D1-D4 specify don't·care bits that shall not be 
decoded by the receiving device. It is recommended 
that all zeroes be sent. 

(8) Sl-S6, S8 specify the device dependent status. 
(D107 is used for the RQS message.) 

(9) The source of the message on the ATN line is 
always the. C function, whereas the messages on the 
DIO and EOI lines are enabled by the T function. 

(10) The source of the messages on the ATN and EOI 
liner; is always the C function, whereas the source of 
the messages on the DIO lines is always the PP func­
tion. 

(11) This code is provided for system use, see 6.3. 

AFN-Ol38OA 



Controllers 



8255A Programmable 
Peripheral Interface 

Applications 

Cont~flt~" ;~.;. :,. 

INTRODUCTION 

OVERVIEW 

8080 CPU MODULE INTERFACE 

PERIPHERAL INTERFACE SECTION 

INTERNAL LOGIC SECTION 

Mode Definition 
Bit Set/Reset 

2-410 

2-410 

2-410 

2-412 

2-413 

INTERRUPT CONTROL LOGIC STATUS WORD! 2-415 

SOFTWARE CONSIDERATIONS 2-417 

MODE a-STATUS DRIVEN 
PERIPHERAL INTERFACE 2-419 

8255A to Peripheral Hardware Interface 
8080 CPU Module to 8255A Interface 
Mode 0 Interface Software 
Summary/Conclusions 

MODE 1-INTERRUPT DRIVEN 
PRINTER INTERFACE 

CPU Module to 8255A Interface 
8255A to Peripheral Interface 
Mode 1 Software Driver 
Summary/Conclusions 

MODE 2-8080 TO 8080 INTERFACE 

Hardware Discussion 
Software Discussion 
Summary/Conclusions 

APPENDIX 

8255A Quick Reference 

2·409 

2-424 

2-429 

2-436 

AFN-00599A 



APPLICATIONS 

INTRODUCTION 

Microprocessor-based system designs are a cost­
effective solution to a wide variety of problems. 
When a system designer is presented with the 
task of selecting a microprocessor for a design, the 
capabilities of the microprocessor should· not· be 
the only consideration. The microprocessor should 
be an element of a compatible family of devices. 
The MCS-80 component family is a group of com­
patible devices which have been designed to 
directly address and solve the problems of micro­
processor-based system design. One member of the 
MCS-80 component family is Intel's 8255A pro­
grammable peripheral interface chip; This device 
replaces a significant percentage of the logic re­
quired to support a variety of byte oriented Input/ 
Output interfaces. Through the use of the 8255A, 
the I/O interface design task is significantly simpli­
fied, the design flexibility is increased, and the 
number of components required is reduced. 
This application note presents detailed design 
examples from both the hardware and software 
points of view. Since the 8255A is an extremely 
flexible device, it is impossible to list all of the 
applications and configurations of the device. A 
number of designs are presented which· fuay be 
modified to fulI!Jl specific user interface require­
ments. 
Detailed design examples are discussed wjthin the 
context of the 8080 system shown in Figure 1. The 
basic 8080 system is composed of the; CPU mod­
ule, memory module, and the I/O module. CPU 
module and memory module design are discussed 

DATA BUS (8 LINES) 

_{><-.! -,--,I I--=~{,..,."..t."...------,I Dl 
CONTROL BUS (8 LINES) 

__ {~)-=~{1~1:-±:::1 :-------11 [ 
IIIJII' I I/O MODULE I 

. 'within other. Intel publicatio~s; This application 
note deals exclusiv~ly with I/O module design. 

2·410 

It is assumed that th~ readeds. familiar with the 
MCS-80 User's ManuaL and/or . the MCS-85 User's 

. Manual, particularly the 8255A device description. 

OVERVIEW OF THE 8255A 

The 8255A block diagram shown in Figure 2 has 
been divided into three sections: 8080 CPU Mod­
ule Interface, Peripheral Interface, and the Internal 
Logic. 

Figure 2. 8255A Block Diagram 

8080 CPU MODULE INTERF ACt: 
The 8255A is a compatible member of the MCS-80 
component family and, therefore, may be directly 
interfaced to the 8080. Figure 3 displays one method 
of interconnecting the 8255A and an 8080 CPU 
module. The 8080 CPU module consists of the 
8080A CPU, the 8224 Clock Generator, and the 
8228 System Controller. The system shown in 
Figure 3 utilizes a linear select scheme whicll dedi­
cates an address line as an exclusive enable (chip 
select) for each specific I/O device. The chip select 
signal is used to enable communication between 
the selected 8255A and the 8080 CPU. I/O Ports 
A, B, C, or the Control Word Register are selected 
by the two port select signals (AI. Ao). These 
signals (AI and Ao) are driven by the least signifi­
cant bits of the address bus. The I/O port select 
characters required by this configuration are shown 
in Figure 4. 



APPLICATIONS 

When a system utilizing the linear select scheme is 
implemented, a maximum of six I/O devices may 
be selected. If more than six I/O devices must be 
addressed, the six device select bits must be en­
aoded to generate a maximum of 64 device select 
lines. Note that when large systems are imple­
mented, bus loading considerations may require 
that bus drivers be included in the CPU module. 
The MCS-80 component family contains parts 
which are designed to perform this function (8216, 
8226). 

The 8255A I/O read (RD) and I/O write (WR) 
signals may be directly driven by the 8228. This 
results in an isolated I/O architecture where 8080 
Input/Output instructions are used to reference an 
independent I/O address space. An alternate ap­
proach is memory mapped I/O. This architecture 
treats an area of memory as the I/O address space. 
The memory mapped I/O architecture utilizes 
8080 memory reference instructions to access the 
I/O address space. Interfacing with the 8080 is 
outlined in Chapter 3 of the "8080 Microcomputer 
User's Manual". 
The most important feature of the 8255A to 8080 
CPU Module Interface is that for small system 
designs the 8255A may be interfaced directly to 

XTAL 

~Dll 
ADDRESS BUS 

8080 
CPU 

CONTROL DATA BUS 8 
/ 

8224 
CLOCK 8228 

GENERATOR SYSTEM 
DRIVER CONTROLLER 

STATUS STROBE 

I RESET 

the standard MCS-80 component family with no 
external logic. Minimum external logic is required 
in large system designs. 

I A71 A61 A51 A41 A,I A21 A,I AO I 
-,-' 

~55APort5elect 
00 PortA 

'6 

DATA BUS 

IloR 

I/ow 

01 Port B 
10 PortC 
l' .ControlWord Register 

8255A::1 Select 

0- Select 
1 = No Select 

82!)SA =2 Select 

0= Select 
, = No Select 

Spare Select Lines {other 8255'5 or I/O Devices~ 
Setto 111' Binary 

HexadeCimal Port Select Character 
Port Selected (Used with IN or OUT Instructions) 

Port A 8255A 1 Fa 
Port B 8255A '" 1 F9 
Port C 8255A == 1 FA 
Control Word RegisterB255A =1 FB 

Port A 8255A = 2 F4 
PortS 8255A=2 F5 
Port C 8255A =2 F6 
Control Word Register 8255A :: 2 F7 

Figure 4. I/O Port Select Characters 

AO A "I\. r AO 

~ 
PA7_0 

A, "f Y 
A2 _8255A 

CS =1 A ,b,. 
DO_O;81- O 

"f V 
AD 

We 
A ,b,. 

PC7_0 

RESET 
"( Y 

1 
AO 

A A r.:- AO 

t; 
PA7_0 

A, "f V A, 8255A 
cs· =2 A J\. 

8 °0_oj87- O 
"iii' V 

RD 
A A 

We PC7_0 

RESET "f -V 

t 

Figure 3. Linear Select 8255A Interconnect 

2-411 AFN.()()599A 



APPLICATIONS 

PERIPHERAL INTERFACE SECTION 

The· peripheral interface section contains 24 per­
ipheral interface lines, buffers, and control logic. 
The characteristics and functions of the interface 
lines are determined by the operating mode se­
lected under program control. The flexibility of 
the 8255A is due to the fact that the device is 
programmable. Three modes of operation may be 
selected under program control: Mode 0 - Basic 
Input/Output, Mode 1 - Strobed Input/Output 
with interrupt support, and Mode 2 - Bidirectional 
bus with interrupt support. Through selecting the 
correct operating mode, the interface lines may be 
configured to fulfill specific interface require­
ments. The characteristics of the interface lines 
within each mode must be understood so that the 
designer may utilize the 8255A to achieve. the most 
efficient design. Table I lists the basic features of 
the peripheral interface lines within each mode 
group. Figure 5 shows the grouping of the periph­
eral interface lines within each mode. 

Table I. Features of Peripheral Interface Lines 

Mode 0 - Basic Input/Output 

Two 8-bit ports 

Two 4·bit ports with bit set/reset capability 

Outputs are latched 

Inputs are not latched 

Mode 1 - Strobed Input/Output 

One or two strobed ports 

Each Mode 1 port contains: -
a·bit data port 
3 control lines 
Interrupt support logic 

Any port may be input or output 

If one Mode 1 port is used, the remaining 13 lines 
may be configured in Mode O. 

If two Mode 1 ports are used, the remaining 2 bits 
may be input or output with bit set/reset capability. 

Mode 2 - Strobed Bidirectional Bus 

One bidirectional bus which contains: 

8-bit bidirectional bus supported by Port A 
5 control lines 
Interrupt support logic 
Inputs and outputs are latched 

The remaining 11 lines may be configured in either 
Mode 0 or Mode 1. 

2-412 

One feature of Port C is important to note. Each 
Port .c bit may be individually set and reset. 
Through the use of this feature, device strobes may 
be easily generated by software without utilizing 
external logic. The Mode I and Mode 2 configura­
tions use a number of the Port C lines for interrupt 
control lines. Thus, the 8255A contains a large por­
tion of the logic required to implement an inter­
rupt driven I/O interface. This feature simplifies 
interrupt driven hardware design and saves a signi­
ficant amount of the external logic that is normally 
required when less powerful I/O chips are used. In 
fact, the design examples contained in this applica­
tion note describe how interrupt driven interfaces 
may be designed such that the only interrupt con­
trollogic required is that contained in the 8255A. 

MODE!) 

MODE 1 

MODE 2 

ADDRESS BUS 

CONTROL BUS 

P~-PBo INTRa 1BFa STBB INTRA ffBA IBF A I/O I/O PA7-PAO 
OR OR OR OR OR OR 

OBFs ACKa I/O I/O ACKA oaF A 

PORT A, PORT B CONTROL 

1/0 OR 
CONTROL 

PORT A CONTROL BI· 

PORT B MAY BE 
MODE 0 OR MODE 1 

DIRECTIONAL 
BUS 

Figure 5. Grouping of Peripheral Interface Lines 

AFN-00599A 



···A ...... LI\,IAIIUN;) 

INTERNAL LOGIC SECTION 

The internal logic section manages the transfer of 
data and control information on the internal data 
bus (refer to Figure 2). If the port select lines (AI 
and Ao) specify Ports A, B,or C, the operation is 
an I/O port data transfer. The internal logic will 
select the specified I/O port and perform the data 
transfer between the I/O port and the CPU inter­
face. As was previously mentioned, both the func­
tional configuration of each port and bit set/reset 
on Port C are controlled by the system's software. 
When the control word register is selected the 
internal logic performs the operation describ~d by 
the control word. The control word contains an 
opcode field which defines which of the two func­
tions are to be performed (mode definition or bit 
set/reset). 

Mode Definition 

When the opcode field (Bit 7) of the control word 
is equal to a one, the control word is interpreted 
by the 8255A as a mode definition control word. 
The mode definition control word (shown in Fig­
ure 6) is used to specify the configuration of the 

CONTROL WORD 

l0'.l 06 05 1 04 1 03 ! 021 0, I DO I 

r- L / GROUPS " 

PORT C (LOWER - PC3-PCO) 
1 eo INPUT 
0= OUTPUT 

PORTS 
1 = INPUT 
0= OUTPUT 

MODE SELECTION 
O=MOOEO 
l=MODEl 

/ GROUP A " ~~~~;U~PPER ..:. PC7-PC4) . 

0= OUTPUT· 

PORT A 
'1 = INPUT 
o "'OUTPUT 

MODE SELECTION 
OO=MODEO 
01 =MODE 1 
lX=MODE2 

/ OPCODE " , MODE SET 

Fig",re 6. Mode Definition Control Word 

,2·413 

24 8255A peripheral interface lines. The system's 
software may specify the modes of Port A and Port 
B independently. Port C may be treated independ­
ently or divided into two portions as required by 
the Port A and Port B mode definitions. 

Example #1: This exampl~ demonstrates. how a 
mode control word is constructed and issued to an 
8255A. The mode control word is passed to the 
device through the use of an output instruction 
that references an 8080 I/O port address. The value 
of the I/O port address is determined by the 8080 
CPU interface implemented. This example refer­
ences the I/O port addresses realized by the simple 
8080 to 8255A interface shown in Figure 3. 

If an 8255A is to be configured through the use of 
the mode control word interface as: 

Port A 
PortH 
Port C 
Port C 

Mode 0 Input 
Mode I Output 
Bits PC7-PC4 Output 
Bit 3 Input 

The following mode control word is used: 

10;f06 oST 0410310210, 100 I 
-=;= 

II Port C Bit 3 Input - 1 

Port B Output = 0 

PortS Mode 1 '" 1 

Port C Bits PC7-PC4 Output 

PortA Input = 1 

Port A Mode = 00 

Opcode Mode Set - 1 

Mode Control Word = 10010101 Binary. 

The assembly lal).guage program is: 

=0 

CWR EQU OFBH. ; 8255A :::, CONTROL WORD R~GlSTER 
; ...... 

ISSUE MODE CONTROL WORD 

AFN-00599A 



Bit Set/Reset 
. When the opcode field (Bit 7) of the control word 
is equal to a zero,the control word is interpreted 
by the 825SA as a PottC bit set/reset command 
word (see Figure 7). ThrOugh the use 'of the bit 
set/reset command, any of the 8 bits on Port C 
may be independently set or reset. Note that con­
trol word bits 6-4 are not used. Bits 6-4 should 
be set to zero. 

°3°2°1 PORT C BIT 

NOT useD SET TO 000 

Figure 7. Bit Set/Reset Control Word 

BITO 
BIT 1 
BI12 
BIT 3 
SIT4 
81T5 
BIT6 
81T7 

Example #2,: This example demonstrates how a 
Port C bit set/reset control word is constructed and 
issued to an 8255A. The bit set/reset control word 
is passed to the device through the use of an output 
instruction that references an 8080 I/O port ad­
dress. The value of the I/O port address is deter­
mined by the 8080 CPU interface implemented. 
This example references the I/O port addresses 
realized by the simple 8080 to 8255A interface 
shown in Figure 3. 

2·414 

Control word (see Figure 7) . 

SetSlt-', RttetBit .. O 

Bit $elect = 011 (Binary) ··3 (Deci!'f\llll 

Not'Used '"' 000 (Binary) 

.' --"- Bit Set/Reset ~ode '" 0 

The control word for lilt Port C bit 3 is.!lOOOO1n binary. 
"The control word fOr reset Port C bit 3 is 00000110 binary. 

The assembly language program is: 

CWR EQU OFBH ; 8265A =1 CONTROL WORD REGISTER 

seT BIT 3 

MVI A,OOOO01118 ;GETSETBIT3CONTROLWOfiD 
OUT CWA ; OUTPUT TO 8255A = 1 CONTROL WOAD REGISTER 

RESET BIT 3 

MVI A,Ooooo1108 ; GET RESET BIT 3 CONtROL WORD 
OUT CWA ; OUTPUT TO 8255A =1 CONTROL WORD REGISTER 

NOTE: An MVI instruction is used to load the reset bit 3 
control word into the A register. Since it is known 
that the set bit control word is .already in the A 
register, a "DCR A" Instruction could be used to 
generate the correct control word and save one 
byte of code. 

00000111 - 1 = 00000110 (RESET BIT 3 CON­
TROLWORD) 

Example #3: This example demonstrates one 
simple method of performing a bit set/reset opera­
tion on Ports A and B. The state of any output 
port may be determined by reading the port. The 
assembly language prograin which may be used to 
set/reset Port A or Bbits is: 

PORT A EQU OF8H 

seT BITO 

IN PORTA 
ORI 01H 
OUT PORTA 

RESET BITO 

IN PORTA 
ANI OF"EH 
OUT PORTA 

; 8255A # 1 PORT A 

; GEt STATE OF PORT 
; seT BITO 
; OUTPUT TO PORT 

; GET STATE OF PORT 
; RESETBITO 
; OUTPUT TO PORT 

AFN-00599A 



... ..--..-- ... v ...... ...,. ..... v 

INTERRUPT CONTROL LOGIC STATUS 
WORDS 

As previously mentioned, the 8255A Mode I and 
Mode 2 configurations support interrupt control 
logic. If a read of Port C is issued when the 8255A is 
configured in Mode I, the software will receive.the 
Mode 1 status word shown in Figure 8. The bits in 
the status word correspond to the state of the asso­
ciated ,Port C lines (buffer full, interrupt request, 
etc.). The INTE bit shown in the status word corre­
sponds to the interrupt enable flip-flop contained 
in the 8255A. This signal is not available externally. 
The structure of the Mode I status word varies as a 
function of the mode of the 8255A. Example #4 
shows the status word which results from reading 
Port C from an 8255A which is configured with 
Port A Mode I input and Port B Mode I output 

PORTe BITS 

GROUP A GROUP B 
STATUS STATUS 

INPUT INPUT 
PORT PORT 

j 
O2 0, 00 

If 0 I I/O [IBF A [INTEA [INTRA I 
OUTPUT 

PORT 

IINTE"I'"F" I'NTR" I 
OUTPUT PORT 

j 
02 0, 00 

I OBF A JINTEA lifO If a [INTRAI IINTEB I OBFB [INTRa I 

Figure 8. Mode 1 Status Word 

Example #4 - MODE I STATUS WORD 

If an 8255A is to be configured through the use of 
the mode control word interface as: 

PortA 
Port B 
Port C 

Mode I Input 
Mode I Output 
Bits 6 & 7 Output 

The following mode control word is used: 

2-415 

10,1 Del Dsl ""I 031 021 0'1 Dol 
-..- I L Not UIIId '" Set ·to 0 

Port B Output .. 0 

Port8 Mode ,=1 

Port C Biu 6 & 7 Outpu t=O 

Port A Input = 1 

PortA Mode"01 

Opcode Mode Sat .. 1 

Mode Cannol Word"' 10110100 Binary. 

After the 8255A mode control word has been 
issued, a READ of Port C will obtain the following 
Mode I status word: 

Made 1 Status Word 
• from Port C READ 

Group A GroupO 

NOTE: The Port C I/O bits D7 and D6 should be modified 
through the use of the Port C bit set/reset com­
mand word. If a write to Port C is issued, the 
INTEA and INTEB bits may be inadvertently 
modified by the user. The IBF A, INTRA, OBFB, 
and INTRB bits will not be modified by either a 
write to Port C or a bit set/reset coinmand. These 
four bits always reflect the state of the interrupt 
control logic. 

Note that the Mode 2 status word (shown in Fig­
ure 9) differs from the Mode I status word. The 
format of the status word data pits D2~Do are 
defined by the specification of the Port B configu­
ration. Example #5 shows the structure of the 
Mode 2 status word when the 8255A IS configured 
with Port A Mode 2 (bidirectional bus) and Port B 
Mode I input. 

The Mode I and Mode 2 status words reflect the 
state of the interrupt logic supported by the 8255A. 

AFNoQ05II9A 



Example #6 demonstrates how the interrupt 
enable bits are controlled through the use of the 
Port C bit set/reset feature. The application exam­
ples provide a more detailed explanation of the use 
of the Port C status word in the Model and Mode 
2 configurations. 

GROUPA 
STATUS 

PORT C BITS 

GROUP B 
STATUS 

MOOED 
INPUT/OUTPUT 

MODE 1 
INPUT 
PORT 

110 I/O I/O 

-02 0, DO 

IINTES jlBFa i INTRa I 
MODE 1 
OUTPUT 

PORT 

IINTEs I OBFS I INTRa I 

Figure 9. Mc;>de 2 StatusWord 

Example #5 - MODE 2 STATUS WORD 

If the 8255A is to be configured as follows: 

Port A Mode 2 Bidirectional Bus 
Port B Mode I Input 

The following mode control word is used: 

Port B Mode 1 ~ 1 

. Not Used = Set to 00 

Port A Mode 2 = 10 

Opcnd.e Mode Set '" 1 

Mode Control Word = 11000110 ~inary, 

2-416 

After the 8255A mode control word, has been 
issued, a read of Port C will obtain the following 
Mode 2 status word: 

fllode 2 Status W~rd 
from Port C READ 

Example #6 '- MODE 2 INTERRUPT ENABLE/ 
DISABLE 

The Mode 2 status word shown in Figure 9 con­
tains two interrupt enable bits: 

INTEl - Bit 6 - Enable output interrupts 
INTE2 - Bit 4 - Enable input interrupts 

Bit set/reset control words may be constructed 
which may be used to control the INTE bits. 

Set Bit 6 (Enable Output Interrupts) = 
0000 110 1 Binary 

Reset Bit 6 (Disable Output Interrupts) = 
0000 1100 Binary 

Set Bit 4 (Enable Input Interrupts) = 
00001 00 1 Binary 

Reset Bit 4 (Disable Input Interrupts) = 
0000 1000 Binary 

The control words shown were constructed from 
the standard bit set/reset format shown in Fig­
ure 7. 

The value of CWR used in the following program 
example corresponds to the 8080 configuration 
shown in Figure 3. 

CWA EQU OFBH ; 8255A:1 CONTROL WORD REGISTER 

ENABLE INTERRUPTS FOR MODE 2 OUTPUT (SET PORT C BIT"6) 

MVI A,000011018 .; GET SET BIT 6 CONTROL WORD 
OUT CWA ; OUTPUT TO 8255 ==1 CONTROL WORD REGISTER 

DISABLE INTERRUPTS FOR ,MODE 2 OUTPUT (RESET PORT C SIT 6) 

MVI A,00001100B : GET RESET BIT 6 CONTROL WORD 
OUT CWA ; O~TPUT TO 8255A =1 CONTRQL W,ORD REGISTER 

AFN'()()599A 



SOFTWARE CONSIDERATIONS 

Regardless of the mode selected, the software must 
always issue the correct mode control word after a 
reset of the device. Generally, ari initialization 
routine is constructed which issues the correct 
mode control word, sets up the initial state of the 
control lines, and initializes any program internal 
data. 

Many of the software requirements of the 8255A 
vary as a function of the mode selected. The 
simplest mode supported by the device is Mode 0 
(Basic Input/Output). Generally, Mode 0 is used 
for simple status driven device interfaces (no inter­
rupts). Figure 10 illustrates sample software that 
could be used to support such interfaces. Most 
devices support a BUSY or READY signal which is 
used to determine when the device is ready to 
input or output data and a DATA STROBE which 
is used to request data transfer (DATA STROBE 
may easily be generated with the Port C bit set/ 
reset feature). In the Mode 0 configuration, Ports 
A and B are used to input/output byte oriented 
data. Port C is used to input 8255A status, peri­
pheral status and to drive peripheral control lines. 

When the Mode I and Mode 2 configurations are 
used, the software is generally required to support 
interrupts. SOftware routines written for an inter­
rupt driven environment tend to be more complex 
than status driven routines. The added complexity 
is due to the fact that interrupt driven systems are 
constructed such that other software tasks are run 
while the I/O transaction is in progress. A software 
routine that controls a peripheral device is gener­
ally referred to as a device driver. One method of 
implementing an interrupt driven device driver is to 
partition the device driver into a "Command Proc­
essor" and an "Interrupt Service Routine". The 
command processor is' the module that validates 

Table II. Sample Device Control Block 

NAME 

Figure 10. Sample Status Driven Software Flowchart 

and initiates user program requests to the device 
driver. A common method of passing information 
between the various software programs is to have 
the requesting routine proVide a device control 
block in memory. A sample device control block is 
shown in Table II. 

DESCRIPTION 

Status This l·byte field is used to transmit the status of the I/O transaction (busy, 
com pi ete, etc.). 

Opcode This l-byte field defines the type of I/O (READ, WRITE, etc.). 

Buffer Address This 2-byte field specifies the source/destination of the data block. 

Cha racter Cou nt This l-byte field is a count of the number of characters involved in the transaction. 

Character Transferred Count This l-byte count of the number of characters which were actually transferred. 

Completion Address This 2-byte field is the address of the user supplied completion routine which will 
be called after the I/O has been performed. 

2-417 AFN-00599A 



The command processor validates the transaction 
and initiates the operation described by the control 
block. Control is then returned to the requestor so 
that other processing may proceed. The interrupt 
service routine pI:ocesses the remainder of the 
transaction. 

The interrupt service routine supports the follow­
ing functions: 
1. The state of the machine (registers, status, etc.) 

must be saved so that it may be· restored after 
the interrupt is processed. 

2. The source of the interrupt must be determined. 
The hardware may support a register which indi­
cates the interrupting device, or the software 
may poll the devices through interrogating the 
Port C status word of each 82SSA. 

3. Data must be passed to or from the device. 
4. Control must be passed to the requesting routine 

at the completion of the I/O. 
5. The state of the machine must be restored be­

fore returning to the interrupted program. 

Figure 11. Command Processor 

2·418 

Figures 11 and 12· are. simplified flowcharts of one 
of the many. methods of implementing command 
processor and interrupt service routine, modules. 
The rest of this application note presents specific 
application examples. All of the 8080 assembly 
language programs supplied with the application 
examples use .the standard Intel 8080 assembly 
language mnemonics. The programs discussed use 
the program equate statement to specify all hard­
ware related data. Equate statements are used so 
that all references to an I/O port may be changed 
through a simple reassignment of the port address 
in the equate statement. . 

Figure 12. Interrupt Service Routine 

AFN.oD699A 



, .... rr ... ·v .... ~· "V'I!I~'" 

MODE 0 - STATUS DRIVEN PERIPHERAL 
INTERFACE 
This design example shows how a single 8255A in 
Mode 0 may be used to develop a status driven 
interface (no interrupts) for the Centronics 306 
character printer, the Remex paper tape punch, 
and the Remex paper tape reader. 

8255A To Peripheral Hardware Interface 
The first step in the design is to examine the speci­
fication for the peripheral devices and identify the 
control and data signals which must be supported 
by the interface. Table III lists the signals which 
were chosen to be supported by the 8255A inter­
face. All three of the devices support the standard 

Table III. Peripheral I nterface Signals 

CHARACTER PRINTER 

Name: DATA a-DATA 7 

Definition: Input data levels. A high signal represents a 
binary l'and a low signal ,represents a binary 
0, These eight lines are the data lines to the 
printer. 

Name: DATA STROBE 

Definition: A 0.5l'sec pulse (minimum) used to trans-
fer data from the 8255A to the printer. 

Name: BUSY 
Definition: The level indicating that the printer cannot 

rece.ive data. 

PAPER TAPE PUNCH 

Name: TRACKS 1-8 DATA INPUT 

Definition: I nput data level,s. A high signal causes a 
hole to be punched, on ,the assbeiated track. 
These eight lines are the data lines to the 
printer. 

Name: PUNCH COMMAND INPUT 

Definition: A true condition moves the tape and 
initiates punching the tape. This Signal is 
actually a data strobe. 

Name: PUNCH READY OUTPUT 

Definition: True signal indicates that the punch is!eady 
to accept a punch command. This is the 
punch busy line. 

PAPER TAPE READER 

Name: DATA TRACK OUTPUTS 

Definition: True signal indicates data track hole. These 
eight lines are the data lines from the punch. 

Name: DRIVE RIGHT 

Definition: True signal drives the tape to the right and 
reads a character. This signal is actually the 
data strobe (initiate read signal). 

Name: DATA READY OUTPUT 

Definition: True signal indicates data track outputs are 
in liOn character" condition. This signal is 
the reader busy line. 

2-419 

BUSY /DATA STROBE interface discussed previ­
ously (see Figure 10). Figure 13 is a block diagram 
of the interface design. The 8255A Port A is con­
figured as a Mode 0 output port which is used to 
support the printer and the paper tape punch data 
bus. Port B is configured as a Mode 0 input port 
and is used to input the paper tape reader data. 
Three of the Port C lower bits (PC1'--:PCO) config­
ured in input mode are used to input the device 
busy indications. Three of the Port C upper bits 
(PC6-PC4) configured in output mode are used to 
support the device strobe signals required by each 
device. 

The drive requirements of the interface lines are a 
function of the peripheral interface circuitry, the 
length of the interface cable, and the environment 
in which the unit is running. In this particular de­
sign example, all output lines from the 8255A to 
the peripherals were buffered through a 7407 
buffer/driver. The input lines from the peripherals 
were fed directly into the Port C and Port B inputs. 

, ' 

8080 CPU Module To 8255A Interface 
The schematic of the completed hardware design is 
shown in Figure 14. The CPU module design 
shown.is, the design which was implemented for 
Intel's SDK 80 kit board. The 8255A is addressed 
through the use of an isolated I/O architecture 
utilizing a linear select scheme_ Address bits Al and 
AO are used to select the 8255A port. Address bit 
A3 is the exclusive enable for 8255A # I. Exami­
nation of the schematic shows that all of the 
8255A interface lines are directly driven by the 
CPU module. 

pc. 
~7 DATA STROBE , 
V 

BUSY , 
oc, 

8 LINES / 

CHARACTER 

OUTPUT DATA SUS PRINTER 

PA7_0 

8255A 
7407 PAPER TAPE 

Pes 
...... PUNCH COMMAND INPUT /' PUNCH 
V 

PUNCH READY OUTPUT / / 1 
PC, 

INPUT DATA BUS - B LINES 

P87-O 

DATA READY OUTPUT , 
pc. 

~7 
PAPER TAPE 

DRIVE RIGHT , READER 
pc. .... 
PC, -} SPARE 

PC7 
_ LINES 

NOTE: 
1. OUTPUT DATA BUS BUFFERED WITH 7407. 
2. ALL 8255A OUTPUT LINES ARE PULLED UP TO +5 V AT THE PERIPHERAL. 

Figure 13_ Interface Block Diagram 



J\) 

~ 

I 

R • 
"""<>--0 

. .. 
o------:-=.tHOlD 

., " 
At .28 

:.,. 
<:1K 

D'. , rn. DO I' '''1 '~.,-AB"I-; LLII'I'IIII 
~~ 

~ . 
U: 
~~ 

DO, 

30 OBII' 

D', ... 
111111111 :1 .. , 

?' 
~ 

-}~~ I 
""'" CPU 

.,'" .," .... 

.," .," .. " 
~~ 
-, 

~.-1- . ~ 

~~ 7 Dl3 

,: 014 

D', 
~ 10A~ 

~\1 ~~llI11111111' 11111 j II HHI= !-D', 
D~ 

D., 

.." <tV 

1t=J., .. ~'NlM _ 

, 

.. -
..sv-2!t vcc 

YO 
18A32MHz 

-sv -----!!.t Vae . 

+12V~VDD 

n~c .. .... 
·'4···· .. 111 d GND 

-J;I" ~Ql +12V -----!1 v~ 
+$V -!!.J Vcc .. !!.t<'2 

AS tftar ---1" WAn 
.... JS 

RESET 1 '". L_ _J 12 RUET 

.. •. " '. 23 
READY . READY 

SYNC 

G2ITTLI 

~' ~ 
'---"--,,,-, ~ 

At 3 D~ ~ DOl.~ 
At !Ii .012 Do2~ 

Am' DI3 ~~ 
~ ~-~~ 
A'Z 37 DI5 82121;K16~ 
At3 3B Ole DOs ~3 
AM 3EI D? D01~~ 
At5: Dla D08~ 

~' * 
U-~LDA 

... " 
D. D • ., " ., ., D • 

D, D, .. .. 

MEMR 

iiiii"------- e~~======j=~====_ iiif""" 

- ~-
L-!.o 8Ysmt IIIJ$ ENABLE 

'-__ -':'<>0 ~frrll 

Figure 14. SDK 80 Schematic 

02ITTL) 

. ~ ,1I256A • 

I .. V";' .. 
~ Vss - , 

, 
" ',. 

RESET 

.. ..... 
. ~ a ,-. 
._~. . j Vcc 

VOs 

)I , , 
!: 
i .. 
c 
:; 
0 



APPLICATIONS 

Mode 0 Interface Software 

An initialization routine and three device drivers 
(one for each peripheral device) are required to 
support the peripheral interface. The I/O port 
addresses implemented by the hardware are shown 
in Figure 15. The unused chip seiect bits are set to 
one so that chip select conflicts will not result if 
the unused bits are required by an expanded sys­
tem. 

IA'[A6[AS[A4[A3[A'JA, I AD I 
-c-- --, 

I . 825SA Port Select 

00 Port A 
01 Port B 
10 porte 
11 Contral Word Register 

8251 Select 

O-Select 
"," No Select 

8256A # 1 Select 

0'" Select 
, = NoSeleet 

8255A # 2 Select 
O-Select 
1"" NaSelect 

Spate Select Lines Set to 111 Bine 

Port Selected 
. Port Select Ch.racw 
(In HalCadacimali 

Port A 8255A # 1 F' 
Port B 8255A # 1 F. 
Port C 8255A # 1 F6 
Control Word Register 8255A # 1 F7 
Port A 8255A #2 EC 
Port B 8255A #2 ED 
porte 8265A #2 EE 
Control Word Regi.ter8266A #2 EF 

F igu re 15. I/O Port Add resses 

Note that the initialization routine issues the 
mode control word (shown in Figure 16). It also 
sets the low true DATA STROBE signals to an 
inactive (high) state. 

Hardware Requirements: 

Port A - Output Mode 0 

Port C Upper Bits C7-C4 - Output Mode 0 

Port C.lower Bits C3-CO ... Input Mode 0 

Port B - Input Mode 0 

I' [ ° 01 0 10101'1'1 
-,--

I I Port C lower I/O - Input Mode 

Port 8 I/O - Input Mode 

Port B Mode - Set to Mode 0 

Port C Upper I/O - Output Mode 

Port A 1/0 - Output Mode 

Pol1 A Mode - Set to Mode 0 

Opcode = Mode Set· 1 

Mode Control Word = 100000011 Binary '" 83 HEX. 

Figure 16. Mode Control Word 

2-421 

IBIS 8080 NAcao ASSEMBLER. ",0 
MOllE ZERO DIMPLe 

,AIlE' 

00,6 
oon 

008, 

000. 
OOOC 
0008 
OOOA 
0009 
0008 

00011 
0002 
000' 

TITLE 'MODI ZERO IIAMPLE' i····· 
CHAR"ACTBR PRIITIR, PAPER TAPE PUMCH, PAPER TAPE READER 
MODE ZERO EXAMPLE , 

i .. ••• , 
i····· i··· .. PROGRAM EQUATES 

PORTA EQU 
PORTB EOU 
PORTC BOU 
CVR EQU 
j ••••• , 

0,"8 
OF58 
O,6H 
OFTH 

; 8255 PORT A 
I 8255 PORT B 
j 8255 PORT C 
i 8255 COH'l'ROL WORD REGISTER 

INITIALIZATION CONTROL WORD 

, 

USED TO CONFIGURE THE 8255" AS FOLLOWS: 

PORT A _ OUTPUT MODE ZERO 
PORT B _ INPUT MODt ZERO 
PORT C (UPPER) - OUTPUT 
roRT C '(LOWER) - INPUT 

j ..... 

ICV EQU 100000118 i INITIALIZATION CONTROL 'ilOltO 
j ••••• 

, , SETIRESIT COHTIIOt. WORDS FOR GENERATION OF DATA STRo/H:~ 
ON PORT C. 

j ..... 

LPSON EQU 
LPSOF EQU 
PHSON EgU 
PHSOF EQU 
RDsmI EgU 
R080F EOU 
j ..... 

000011018 
000011008 
0000101.18 
000010108 
000010018 
000010008 

i PRIIfTER DATA STROBE ON 
; PRINTER DATA STROBl OF' 
j PUNCH DATA. STROBE OM 
; PUNCH DATA. STROBE OFF 
i RElDER DATA. STROBE ON 
i READER DATA STROBE OFF 

BIT NASE FOR DEVICE BUSY CHECK i····· LPBSY BQU 
PNBSY EQU 
RDBSY EOU 

". 02' 01. 
i LINE PRINTER 8USY 
i PUIICH BUSY 
i READER BUS! 

ISIS 8080 MACRO ASSEMBLER, VI.O PAGE 2 
MODB ZERO EXAMPLE - INITIALIZATION ROUTINE 

3000 

3000 3E83 
3002D3F7 

300~ 3EOD 
300603F7 
30083£09 
300,1, 03f1 
lOOC C9 

; ..... 
i··· .. 
i····· INIT: 

i····· 
i .. • .. 

PROGRAM ORIGIN 

ORG 03000H 

INITIALIZATION ROUTIIIE 
A REGISTER MODIFIED 

MYI A,ICW; GET INITIALIZATION CONTROL WORD 
OUT CWR ; OUTPUT TO CONTROL WORD REGISTER 

SET ALL LOW TRUB DATA STROBES ON 

"VI 
OUT 
"VI 
OUT 
RET 

A,LPooH 
eWR 
A,ROSOH 
e," 

GET CONTROL WORD TO TURN ON PRINTER DATA STROBE 
OUTPUT TO CONTROL WORD REGISTER 
GET CONTIHlL WORD TO TURN ON READER DATA STR08E 
OUTPUT TO CONTROL WORD REGISTER 
RETURN TO CALLER 

AFN.Q0599A 



APPLIGATIOMS', 

The three peripheral drivers which follow all have 
the basic structure discussed previously. Consider 
the printer routine. Here the user routine places an 
ASCII data character in the C-register and passes 
control to the LPST location through a subroutine 
call. The printer driver interrogates the status of 
the printer by reading Port C. If the printer is busy, 
the routine wi11lo~p until the printer is idle. When 
the printer is ready to accept a data character, the 
character is placed oJ,1 the Port A lines and a DATA 
STROBE is generated. After generating the DATA 
STROBE, the driver executes a subroutine return 
to the caller. 
The DATA STROBE signals to the devices are 
generated through the use of the Port C bit set/ 
reset feature. The bit set/reset control words used 
are shown in Figure 17. 

Summary /ConcIusions 
This design example discussed the basic hardware 
and software required to handle a Simple device 
interface. The 8255A will easily accommodate a 
more complex interface design which utilizes addi­
tional interface lines supported by the peripheral. 

PRINTER DRIVER 

2·422 

'T-'.:=::!::::;!:::;:::::i:?-r. Set"Bit '" 1, R.set Bit .. 0 

Bit Select 110 Binary .; 6 Decimal" (Printer) 
101 Bi.nary" 5 Decimal (Punch) 
100 Binary = " Decim~ (A_Brl 

NotUsed-SettoOO 

. 'Bit Set/Rftet Opcode = 0 

The control woRt for set Printer OATA stROBE"IPC 6)" O~1101 binary. 
The control word for reset Printer DATA8TROBE (PC 6) '" 00001100binary. 
Th. control word for set Punch DATA STROBE (PC 6) III 00001011 binarV'. 
The control word for reset Punch DATA STROBE (PC 5) '" 00OO1010binarv. 
The control word 'orset Readlllr DATA STROBE (PC 41 = 0000100-' binary. 
The control word for l'8Iet Reader DATA stROBE (PC 4) = 0000100q ~inary. 

Figure 17. Bit Set/Reset Control Words 

For instance, one of the spare Port C output lines 
may !'>e used to control the punch direction. Sup­
port of this additional feature would require minor 
modification of the 4evice driver so that the punch 
direction line .could be specified by the user 
routine. 

Through consideration of this example, the use of 
the 8255A in Mode 0 should become evident. 

ISIS 8080 M~CIlO ASSEMBLEII, Y1.0 PAGE 3 
MODI ZERO EXAMPLE - atARACTBR PRINTBR DRIVER 

3000081"6 
3001" E6011 

3011119 
3015D3F11 
30173EOC 
3019 D3F7 
301B3C 
301C D3F1 
30lEC9 

I·· .. · ; 
I CHARA~iR PRINTER DRIVER 
,; 

. , ' lNPUTS : CHARACTER TO PRINT IN C~REG 
I OUTPUTS: CHARACTER TO PRINTER 

I A REGISTER MODIFIED 
; , ..... 
LPST: 

IN PORTC, GET STATUS OF PRINTER 
ANI LPBSY ; SBE IF BUSY 
JIIZ LPST ,IF BUSY - JUMP TO LPST (WAlT LOOP) 

; PRINTER IS IDLE _ OUTPUT A CHARACTER , ..... 
MO' 
OUT 
MYl 
OUT IN, 
OUT 
RET 

A,e 
PORTA 
A,LPSOF 

'" A 
ew, 

GET DATA BYTE SUPPJ.IED BY CALLER 
OUTPUT DATA TO DATA LINES 
GET DATA STRGBE CONTROl. WORD 
RESET DATA STROBE (LOW TRUE SIGHAI.) 
GENERATE SET DATA STROBE CONTROL WORD 
SET DATA STROBE 
RETURN TO CALLER 



B 
PUNCH DRIVER 

READER DRIVER 

APPLICATIONS 

2-423 

ISIS 8080 MACRO ASSEMBLER, ".0 PAGE II 
MOD! ZERO EXAHPLE • PAPER TAPE PWiCH DRIVER 

301F DBF6 
3021 E602 
3023 C21F]O 

302679 

3029 3EOB 
3021 D3F7 
302D 3D 
3021 D3F7 
30)0 C9 

; ..... , , , 
, , , 
; ..... 
PNST: 

PAPER TAPE PUNCH DRIVER 

IIlPUTS : DATA TO PUIfCH IN C.REGISTER 
OUTPUTS: DATA TO PUNCH 

A REGISTER MODIFIED 

11 PORte; OET STATUS OF PUIICH 
ANI PNBSY; SEE IF BUSY 
JNZ PHST ; IF "BUSY ~ JUMP TO PNST (WAlT LOOP) 

; PUIftH IS IDLE • OutPUT A CHARACTER 
; ..... 

MO. 
OUT 

"'I 
OUT 
DC. 
OUT 
RlT 

A,e 
PORTA 
A,PlSON 
ew. 
A 
ew. 

GET DATA BtT! SUPPLIED BI CALLER 
OUTPUT DATA TO DATA LINES 
SS1' DATA STROBE CONTROL WORD 
S!T DATA STROBE 
OEIIERAT! RESET DATA STROBE CORrAOL VORO 
RESET DATA STROBE 
II!'l'URN to CALLER 

ISIS 8080 MACRO ASSEMBLER, 111.0 PAGE 5 
HODB ZERO EXAMPLE. PAPER !APE READER DRIVER 

30313E08 
3033D3F7 

30)5 DBF6 
3031£601 
)O)9CZ)5)O 

)OlC DBFS 
]0)£0£07 
301l0)E09 
30112D]II'7 
lOlUI C9 

; ..... 
, 
, 
, I····· RDST: 

ROLP: 

PAPER TAPE READER DRIVER 

INPUTS: DATA FROM READER 
OUTPUTS: CHAR),CTER 10 USER IN C_REGISTER 

A AND C REGISTER MODIFIED 

MYI A, RDSOF : GET STROBE CONTROL WORD (LOW TRUE SIGNAL) 
OUT CWR I SET DATA STROBE 

IN PORTC I GET STATUS Of DEVICE 
AHI RDBSY I SEE IF BUSY 
Jill. RDLP ; If BUSY _ LOOP UNTIL IDLE 

; READER NOT BUSY - GET CHAR AIID CLEAR STROBE I····· IN PORTS GET CHARACTER 
MYI C,A SAVE CHARACTER 
MYI A,ADSON GET STROBE SET CONTROL WOltD (LOW TRUE SIGNAL) 
OUT ClIR TURN Off STROBE 
RET RETURN TO CALLER 

; ..... 
; END OF HODE ZERO EXAMPLE 
; ..... 

0000 END 



APPLICATIONS. 

MODE I INTERRUPT DRIVEN PRINTER 
INTERFACE 

The status driven interface described in the previ­
ous example required the software driver to poll 
the device status for completion. An alternate 
approach is to construct the device interface such 
that an interrupt is used to signal the completion 
of the operation. When an interrupt driven inter­
face is utilized, the time that was dedicated to 
polling can be used to perform other functions and 
the effective processor through-put is increased. 
This example demonstrates how an 8255A config­
ured in Mode I may be used to develop an inter­
rupt driven interface for the Centronics 306 char­
acter printer. 

CPU Module To 8255Alnterface 

The 8080 bus interface implemented for this ex­
ample is the same as the Mode 0 example with the 
addition of interrupt support. Interrupt support 
is implemented through the use of a special feature 
of the 8228 System Controller. If only one inter­
rupt vector is required (such as in small systems), 
the 8228 can automatically assert an RST 7 in­
struction onto the data bus at the proper time. 
This option is selected by connecting the INT A 
output of the 8228 to the + 12-volt supply through 
a"1 K ohm series resistor. 
The Mode I interrupt support logic of the 8255A 
provides an interrupt request line for each port. 
The 8255A interrupt request line (INTRA) must be 
connected to the INT line of the 8080. A 10K ohm 
pull up resistor is used to insure that the VIH re­
quirements of the 8080 are met. 

8255A To Peripheral Interface 

The interrupt driven configuration control signal 
interface to the printer is different than the status 
driven interface. Instead of a BUSY /DAT A 
STROBE interface, a DATA STROBE/ACK inter­
face is supported. The ACK signal notifies the 
8255A that a character transferred to the printer 
by a DATA STROBE has been accepted. After an 
ACK is issued. the printer is considered· idle. The 
block diagram shown in Figure 18 displays the 
interface signals used. . 

The Mode I interrupt driven peripheral support 
signals used are: 

PA7-PAO - Output Data 
Used to support the printer data 
port. 

OBF - Output Buffer Full 
This line goes low when data is 
placed in the output buffer. The 
OBF signal may be used as a data 

2-424· 

+5V 

lDkU 
TO 8080 

INT -
INTRA 

PC3 

PA7_0 

8255A 

pc. 

PC6-ACKA 

PCrOBFA 

pe',2A.S 

PB7_0 

NOTES: 

strobe signal when interfacing to 
peripherals which do not require a 
pulsed input. The Centronics 306 
requires a pulsed DATA STROBE 
signal. This signal is supported by 
Port C bit O. 

- ACKnowledge 
This line is used to signal the 8255A 
that the qevice has accepted the 
data. This line is supported by the 
printer ACKNLG signal. 

OUTPUT DATA. 
CHARACTER 

PRINTER 
V 

~7 
DATA STROBE ... 
ACKNLG 

~)~~rn 
1. DATA BUS BUFFERED WITH 7407. 
2. ALL B255A OUTPUT LINES ARE PULLED UP TO +5V AT THE PERIPHERAL 

Figure 18. Interface Block Diagram 



Mode 1 Software Driver 

APPLICATIONS 

Hardware Requirements: 

Port A - Input Mode 1 

Porte (Lower) -Output 

~~~ ~ (UPper)} Not Used 

I' 1 0 , 1 0 I' 1 0 I' 1 0 1
~r- I Port C Set to Output Mode

The software driver implemented for this example
utilizes the typical interrupt driven software struc­
ture outlined previously. The initialization routine
issues the mode control word (shown in Figure 19)
to the 8255A after reset of the device. The initial­
ization routine also places a jump to the interrupt
service routine in the interrupt location for RST 7.
The command processor is started by the user
routine through a subroutine call to PSTRT, with
the address of the control block in the D and E
registers (the control block format is shown in
Table IV). The command processor insures that an
I/O operation is not already in progress, starts the
I/O, enables interrupts, and returns to the caller so
that other processing may proceed. I Port B Not Used Set to Input Mode

Port B Mode Not Used Set to 0

Port C I/O Setta Input

Port A I/O Set to Output

Port A Mode One

Opcode = Mode Set

After a character is placed in the output buffer, the
DATA STROBE signal is generated through the use
of the Port C bit set/reset feature. When the ACK
is generated by the printer, the buffer full indica­
tion is cleared and the 8255A generates an inter­
rupt. If interrupts are enabled, the interrupt request
is serviced by the 8080 CPU through disabling
processor interrupts and then executing the in­
struction at location 38 hexadecimal in program
memory. The interrupt service routine saves the
processor state and polls the iS255A to determine
the source of the interrupt. Once the interrupting
device is located, the control block is used to
locate the next data character for transfer to the
8255A output buffer. After the entire buffer has
been printed, the interrupt service routine passes
control to the user-supplied completion routine.
Before returning from the interrupt, the state of
the processor is restored.

Mode Control Word = 10101010 Binary = AA HEX.

Figure 19. Mode Control Word

Table IV. Printer Software Control Blo'ck

NAME POSITION DEFINITION

Status Byte 0 A 1-byte field which defines the completion status of an I/O.

00 = Good completion
01 = Error - command already in progress

Buffer Address Byte 1, 2 Pointer to the start of the data to print.

Character Count Byte 3 Count of the number of characters to print.

Character Byte 4 The number of characters transferred.
Transferred Count

Completion Byte 5, 6 Address of a user supplied routine which will be called after the I/O has
Address been performed.

NOTES:

1. An opcode field is not required because WRITE is the only operation performed.

2. The control block must reside above location FF Hex.

2·425 AFN.()(J599A

APPLICATIONS

There are a number of error conditions which may
occur, such as an interrupt from a device which
does not have a control block in progress, or an
interrupt when polling establishes that no device
requires service. Neither of these errors should
occur, but if they do, the driver should perform in
a consistent fashion. The recovery routines imple­
mented to handle error conditions are determined
by the particular applications environment. _

Summary/Conclusions
When utilized in a small system design, the 8255A
interrupt support logic provides all of thecapabili­
ties required to implement an interrupt driven
hardware interface without the use of external
logic. In larger system designs, the designer may
chose to use additional hardware to determine the
source of interrupt requests without software
polling. The software design required by an inter­
rupt driven system is inherently more complex
than the status driven interface. If an interrupt
driven system is required the added complexity is
a small price to pay for a significant increase in
system through-put.

2-426

ISIS 888. MN:R) IISSEMBLER. V1,0
MCIlBIJOlEXAllPll!

PIGE.l

IIF4 " 0838

.OM

... ,
8180
~8OC

... ,

TITLE 'M'JDE ONE Blw1Pu:

; aIARAC1'ER PRINTER - IHl'ERRUP'l' DRIVEN
, IO)£QEEIUIME'LE .

/ ,*".*.
;""' ...
; PRJGlWI EOJATES
; •• ***

. PORTA fQU 9F4H
PORt'B EXJJ IFSH
PCRl'C EQU IIF'6H
CWR EQU IF7H
RST7 EQU 0388
I ,oUI .. *
/

I 8255 PORr A
; 8255PORl'B

"r 8255 PORI' C
; 8255 c:cton'ROL IOU) REX1ISl'ER
; RESTART 7 IIDDRESS

; INITIALIZATIOO cama. I«lKI
/

/­

I
/ ,

USED '10 C,QiJFIaIRE '11IE 8255 AS FOLIlN>:

PORT A - 0UTPU'l' IQ)E 1
PORl' B - INM IQlE " (tOI' USED)
I'OR't C LCII4BR - 00TPUl'

IOf E(XJ l8ltUllBB
,.****

1111811818
080011888

; IJElllCE STATUS E(XlA'l'ES ,.'.**

I SET STRCBE
I RESET STA:m:

LPBSY E(XJ 881K I BI.IFFER FUlL (LINE PRINTER BUSY)
INrRA IlIU 08H ; IN'lERRtJPI.' REClJEST

ISIS 8888 MACR> ASSEMBtER, VI."
MOOB <IE EXAII'LE

PAGE 2

,.****
/

1*"···
1888 CIlST , .. , ""'F , .. , CBCC
8804 CIlCr , .. , CIlCMP ,

/
;,,!Iot ••

lil88 Sl'GD

00N'l'la. BtOCIC E(.'(JATES

EQU 88H
EQU 01K
~ 0311
EfJIJ 84H "'" , ..
EW i1i1H

I STATUS BYTE .
o BUFFER I\OOOESS
I OIARACI'ER <XllNl'
I OiAAACl'ER TPANSFERED COONT
• COIIIPIBl'ICtl SERVICE ADDRESS

; QXD CDMPLErIOO
Iilill S,'" £ttl elH I ERroR -' o:HIAND AIJIEADY IN PilOORESS

31108

3888 JEM
3811J2 97
)884"3£81
3006D3f'7

31188 lEeJ
388A 323811
3010213831
3810223988
3013 C9

; -
0
1*****

,*****

o
,*****
INIT:

PKJGIW4 ORIGIN

0R:i i13tlB0H

INITIALIZATIQiI RXl'l'INE

A,H,L REXOlsrERS /Q)IFIEO

MYI A,IOi; GET MODE COOTRX. IilOO
OOT om I otrrarr TO CCNl'ROL.iOI) RroI~
MIll A.~ ; GET SET MTA S'l'QE CCIft'R)L I'DRD
OUT om I SEl' D.\TA STRm: tUM TRUE SIGNI\L)

, SET UP RESTART 7 llJCATION wrm JUMP '10 PINT
;*** ••

MIll A,0CJH

ST. ""'"
LXI H,PIN'l'
SHU) P.S'l'7+1
IWr

GEl' -JMP N

PlACE IN RST7 UlCATIDN
GET ADDIIESS OF IN'reRRUPT SERVICE RXTl'IN£
S'1UREADOR!ISS
RB'l'U1Il TO CALLER

AFN.()()599A

VES

B

APPLICATIONS

2·427

ISIS B080 MACRO ASSEMBLER, VI,O
COMMAND PROCESSOR

PAGE 3

301~ 3"A230
3017",7

3018C228]0
3018 EB
301C221130
301FEB
30202101100
302319
302113600
]026 CD5830
3029FB
3021C9

302B 3EOl
302D (394)O

j

;

i····· PSTRT:

COMMAND PROCESSOR

INPUTS: CONTROL. Sr..ClCX ADDRESS IN D MID E REGISTERS

DUlPUTS: STAftT ItO OR ERROR STATUS IN CONTROL BLOCK

A,H,L REGISTERS M<lOIFIED

LDA PIFRO., j GET PRINT IN "PROGRESS BLOCK ADDRESS
ANA A ; SEE IF ZERO (PRINT IN PROGRESS)

; IF BLOCK AODRESS NOT EQUAL TO ZERO THEN
; PRINT IN PROGRESS

JNZ PSTE ; IF YES ~ BRANCH' TO ERROR
leHO
SHLD PIPlIO ; SAVE CONTROL BLOCK ADDRESS
Xell'G
!.XI a,CBCT i GET INDEX TO CT
PAo D j COMPUTE ADDRESS OF CT
MVI H,OOH. i CLEAR CT
CALL PDAr! j START 110
EI i ENABl,.E PROCESSOR INTERRUPTS
RET i RETURN TO-CALLER

; ERROR - TIIANSACTIOH AI..READY IN PROGRESS
i·
PSTE:

MVI A ,STEl i GET ERROR STnus CODE
JMP POST i PASS COlITROL TO COMPLETIOII ROUtINE

ISIS BOBO MACRO ASSEMBLER, '11.0
PRINTER INTERRUPT SERVICE ROUTINE

PAGE 4

3030F5
3031C5
303205

3034 DBF6
3036E608
3038cA5230
303B3EOC
303DD3F7
303FFB
30110 2AAI30
30113AF
30114BC
30il5CA5530
3048E8
3049CD5B30

304CEI
3011001
30llECl
30llFFl
3050FB
3051Cg

3052C34C30

3055C34C30

i·····
;
;
j •••••

PINT:

j

~

i"'"

j

PRTN:

j"'"
PPOlL:

j •••••

;
;
PIERI:

PRINTER INTERRUPT SERVICE ROUTINE
ALL REGISTERS SAVED AND RESTORED

PUS. PS' i SAVE PSW
PUS. B i SAVE REGISTER PAIR BAND C
PUSH , iSAVEREGISTERPAIROANOE
PUSII . i SAVE REGISTER PAIR H AND I-

POLL INTERRUPT SOURCE _ SEE IF 82'.)5

IN POIITC GET STATUS OF DEVICE
ANI INTRA SEE IF INT
JZ PPOll NO _ BRANCH TO POLL OTHER DEVICES IF ANY
MYI A,IDN GEt 8255 INT DISABLE CONtROL WORD
OUT '" DISABLE DEVICE INTERRUPtS

" ENABLE PROCESSOR INTERRUPTS
LHLO PIPRG GET CONTROL BLOCK ADDRESS
XRA A CLEAR A REG
'MP • SEE IF PRIIiT IN PROGRESS
JZ PIERI NO _ BRANCH TO ERROR ROUTINE
XCHG
CALL POATA ; PRINT DATA

RESTORE REGISTERS ABO RETURN FROM INTERRUPT

POP II
POP 0
POP B
POP PSW

" 'ET

j RESTORE REGISTER PAIR II AND L
j REStORE REOISTER PAIR 0 AND E
i RESTORE REGISTER PAIR BAND C
;RESTOREPSW
; EHABLEPROCESSORINTERRUPTS
j RETURN TO INTERRUPTED PROCESS

POLL OTHER OEVICES IF AllY
IF NO OTHER DEVICES TO POLL _ USER SUPPLIED ERROR
RECOVERY ROUTINE.

j RETURH

ERROR _ INlERRUPT FROM IDLE DEVICE
USER SUPPLIED ERROR RECOlnERY ROUTINE

; RETURN

AFN.Q0599A

ISIS 8080 MACRO ASSEMBLER, Vl.0
PRINTER OUTPUT DATA ROUTINE

PAGE 5

3058DBF6
305AEf)80
305CCA81130
305F2tOil00
306219
30637E
30611311
30652B
3066 BE
3067CA8A3O
306A2tOl00
306D 19
306ED5
306F5E
307023
307156
30722600
307116F
307519
30767E
3077D3F4
30793EOO
307BD3F7
307D3C
307ED3F7
308001
3081C35830

30811F3
30853EOD
3087D3F7
3089C9

308A3EOO

308FAF
3090 32A230
3093C9

3094EB
309577
3096EB
3097210500
309A 19
309BIIE
309C23
3090116
309EC:';
309FC9

30Al0000

0000

;
;
;
;
;
;
PDATA:

;
;
PD10:

j •••••

PCOMP:

i····· ;

i··· ..
POST:

i·····
;
PIPRG:

PR:lN'rER'OOTPOt bATA'ROUT:lNE

CO~ROL BLOCK ADDRESS IN 0 AND E REG.

IN PORTC GET STATUS OF DEVICE.
ANI r;pagy SEE IF BUSY (~FFER FULL)
JZ PD10 IF BUSY ~ BRANCH

LXI H,tBCT GET INDEX TO CT
DAD D COMPUTE ADDRES,S OF c:r
MOV A,M GETCT
INR "M' INCCT
oex H DEC TO CC
CM~ H SEE IF EQUAL
JZ "'"'' IF EQUAL - DONE GO TELL USER'
m HtCBUF GET INDEX TO BUFFER ADDRESS
DAD D' COHPUTE ADDRESS OF BUFFER ADDRESS
PUSH' D SAVE o AND E REGISTERS
HDV E,M GET LSBOF BUFFER ADDRESS

'INK H INC TO NEXT BYTE
Hev D,H GEl' BUFFER MSB
HVI H,OOH CLEAR H REa

"" L,A GETCT
DAD 0 COMPUTE CHARACTER AD~RESS
HOY A,H GET CHARACTER
OUT PORTA OUTPUT CHARACTER TO PRINTER
HVI A,STBOF RESET DATA STROSE {LOW TRUE SiGNAL}
OUT OW.

GENERATE SET CONTROL WORD IN' A
OUT 'W. SET DATA STROIIE
POP 0 RESTORE CONTROL BLOCK ,ADDRESS
JMP PDATA LOOP UNTIL BUS):'

PRINTER BUSY - RETURN

01 iDISABLEINTERRUPTS
MVI A,IEN: ENABLE DEVICE INTJ;:RRUPTS
OUT CWR ; SET INTERRUPT ji:NABLE

i RETURN TO CALLER

POST GOOD COMPLETION TO USER

Mv-I A,STGD ~ GET GOOD, STATUS CODa
CALL POST i POST TO USER
XRA A i CLEAR A flEa
STA PIPRG+ 1 ; CLEAR' COMMAND IN PROGRESS ADDRESS
RET i RETURN TO CALLER

POST TO USER COMPLETION ROUTINE

XCHG

"" XeHG
LXI.
DAD
HOV

,'INX

H" . PUSH
RET

INPUTS: STATUS CODE IN A REG
CONTROL. BLUCK ADDRESS IN D AND E REG

OUTPUTS: PASSES CONTROL TO USER COMPLETION ADDRESS
SPECIFIED IN CONTROL BLOCK
WITH CONTROL BLOCK ADDRESS IN 0 AND E

A,H,L,B,C REG MODIFIED

M,A ; UPDATE ,STATUS

H, CBCMP ; GET INDEX TO COMPLETION ADDRESS
D ; COMPUTE ABDRESS
C, M i GET LSB OF c:QHFLETION ADDRESS
H i 'INC TO NEXT BYTE
B',M i GET MSB OF COHPLETION ADDRESS

oS' ; PUSH ADDRESS, INTO STACK
; PASS CONTROL TO USER ROUTlNE

DATA AND TABLES

; IN PROGRESS CONTROL BLOCK ADDRESS
i .IF:DA'rA = 0 NO CONTROL BLOCK IN PROGRESS
i IF. DATA NOT EQUAL TO ZERO CONTROL BLOCK IN PROGRESS

END OF MODE ONE EXAMPLE

AFN.Q0599A

APPLICATIONS'

MODE 2 - 8080 TO 8080 INTERFACE

Due to the drastic reduction of hardware costs,
system designs which utilize multiple CPU Modu­
les are becoming more common. An 8080 may be
configured as a master CPU and used to control
multiple 8080 slave modules which act as intelli­
gent I/O controllers. When mUltiple CPUs are
utilized, a method of processor intercommunica­
tion must be supported. Figure 20 is a block dia­
gram of one method of implementing a master/
slave interface through the use of the 8255A Mode
2 bidirectional bus.

Hardware Discussion

Two complete 8080 systems are required for this
example. Intel's SBC 80/10 OEM board is used as
the master CPU module and Intel's SDK 80 board is
used as the slave CPU. The SBC 80/10 supports an
8255A which is configured in Mode 2. The 8255A
is selected through the use of a decoded select
scheme. Through the use of the 8228 RST 7 inter­
rupt feature, a simple interrupt structure is sup­
ported. The SDK 80 is configured without inter­
rupts for this example. The external logic required
for this example is associated with the slave CPU.
Simple logic is implemented which allows the slave
CPU to generate the ACK and STB signals required
to READ from and WRITE to the 8255A bidirec­
tional bus with a single I/O instruction.

MASTER MODULE

INTERRUPT REQUEST

INT
SYSTEM

DATA BUS
PA

OBF

8080 ADDRESS BUS
8255A IBF MASTER

ACK

CONTROL BUS
STB

The system shown in Figure 20 utilizes SSI logic to
read the 8255A IBF and OBF signals. If two spare
8255A input lines are available they could be used
to input the IBF and OBF signals and eliminate the
SSI logic.

Software DisGussion

Two sets of software are required to support the
processor to processor interface. The master resi­
dent software which follows conforms to the
simple interrupt driven software structure outlined
previously. The initialization routine issues the
Mode 2 control word to the 8255A after device
reset. The command processor accepts READ/
WRITE control blocks which provide a simple user
interface for transferring data to/from the slave
CPU. The master software is capable of processing
both a read and a write control block simultane­
ously. The slave resident software shown at the end
of this example utilizes the status driven approach.

Summary /Conclusions

It is important to note that this design may be ex­
panded to include more slave CPUs by simply
adding another 8255A to the master module for
each slave. The software drivers discussed address
only the passing of data between the two proces­
sors. Specific applications generally dictate a soft­
ware protocol be implemented for information­
transfer.

SLAVE MODULE

SYSTEM OAT A BUS

BIDIRECTIONAL BUS

74125
DO

74125
0,

8080
SLAVE

CONTROL
BUS

Figure 20. I nterface Block Diagram

2-429 AFN-00599A

SLAVE READ
ROUTINE

SLAVE WRITE
ROUTINE.

APPLICATIONS

2·430

ISIS 8060 MACRO ASSEMBLER. V 1 .0
MODi TWO EXAMPLE. SLAYE '3lFTllARE

PAGEl

DOBF
007F

0001
0002

3000

3000DB7F
3002E601
30o_e20030
3007 DBBF
300911F
lOOAC9

TITLE 'MODE TWO ~MPLE - SLAVE SOFTWARE

; B060 MASTER TO 80BO S!iAV~ INTERFACE
; - Sl.AVE SOFTWARE -

'j MODE TWO E){AMPLE

I
i •
I
j •••••

PIIOGRAM EOUATES

p.mT! EQU oara
07FH

j·:um:ftPROCESSOR DATA PORT
JSTATUS PSTS EQU

j

i····· OSF
ISF
j

j

j

I

, ,
I ,
j •••••

SLRO:

BUFFER STATUS MASKS

EOU
EOU

O1H
02H

PROGRAM ORIGIN

03000H

j OUTPUT BUFFER FULL
jINPUTBUFFERFULL

SLlYE READ ROUTIME

INPUTS; NONE
OUTPUTS; CHARACTEII READ IN C-REGISTER

A,e REO'MODIFIED

IN PSTS i .GET STATUS
ANI oaF j SEE IF BUFFER FULL
JH:l. 5LHD ' ; 110 _ LOOP ·UNTIL FULL
IN PDATA i GET CHARACTER
mv CIA i PU.CE IN C-REG
RST j RETURN TO CALLER

DIS 8080 MAClIO ASSBMBLBR. V 1 • 0
IIDIII TWO ElAMPLX - SLAVE SOFTWARE

PAGE 2

300B DB7F
300DE602
300F C20B30
301-279
30BD3BF
3015 C9

0000

; ,
,
I

I ,
j •••••

SLWT:

SLAVE WRITE ROUTINE

INPUTS: CHARACTER TO WRITE IN C~REGISTER
OUTPUTS: NONE

A REG MODIFIED

IN PST! ; GET STATUS
ANI IBF ; SEE IF BUFFER FULL
JNZ SLWT ; YES - LOOP UNTIL EMPTY
HOV A,C ; GET OATA CHARACTER
OUT PDATA; OUTPUT DATA
RET j \lETURI(TO ClLLER

END OF SLAVE SOFTWARE DRIVER

'NO

AFN-«l599A

APPLICATIONS

ISIS 8060 MACRO ASSEMBLER, Vl.0
MODETWOEXAHPLE_MASTERSOFTilARE

ODEll

00E6
OOE7
0038

0000
0009
oooe
0008

0008
OOBO
0020

TITLE 'MODE TWO EXAMPLE - MASTER SOFTWARE'
j"'"

8080 MASTER TO BOBO SLAVE INTERFACE
- MASTER SOFTWARE -
HODE TWO EXAMPLE , i·· .. ·

j •••••

PROGRAM EQUATES
j •••••

PORTA RQU OE4H
EQU CE5H

PORTe EQU 086H
eWA EQU OE7H
AST7 EOU 038H ,
j •••••

i 8255 PORT A
j8255PORTB
jB255POHTC
jB255CONTROLWORDREGISTER
i RESTART 7 ADDRESS

INITIALIZATION CCNTROL WORD

USED TO CONFIGURE THE 8255 AS FOLLOWS:

;11."

PORT A-MODE 2 BIDIRECTIONAL BUS
PORT B - INPUT MODE 0 (NOT USED)
REMAINING PORT CLINES - INPUT MODE (NOT USED)

lCW EQO 110010118 i INITlALIZATIONCONTROLWORD

8255ENABLE/DISABLE INTERRUPT CONTROL WORDS

EOU
;
IENI
lEND
IDNI
IONO

EQU 000010018
jENABLEINPUT.INTERRUPTS
jEfl/ABLEOlJ7?UTIN7ERRlJI'TS
; DISABLE INPUT INTERRUI'TS EQU 0000'100B

EQU 000010008 : DISABLE OUTPUT INTERRlJPTS i····· STATUS EQUATES

:"'"
INTRA EQU 08H
OSFA EQU 80H
ISFA EQU 20H

jlNTERRUPTREQUEST
; OUTPUT SUFFER FULL
: INPUT BUFFER FULL

ISIS8080MACROASSEMBLER,Vl.0
MODE TWO EXAMPLE - MASTER SOFTWARE

0000

0002
0004
0005
0006

0000
0001

0001
0002

0038
003BC34630

3000

30003ECB
3002D3E7
3004C9

i····· CBST
CBOP

CONTROL BLOCK EQUATES

EQU OOH jSTATUSBYTE
EOU

caUF EQU 02H

; OPCODE:OREAD
i : 1 WRITE
i aUFFERADDRESS

cacc EQU 04H i CHARACTER COUNT
caCT EQl) 05H ; CHARACTER TRANSFERED COUNT

iCOMPLETIONSERVICEADDRESS CBCMP EQU 061! i·····
i"'"
OPRD
OPWT

i·''''
i····· STCD
STE1
STE2
;'.'"

j

;

j

INIT:

OPCODEEQllATES

EOU
EOU

i READOPCODE
;WRITEOPCODE

COMPLETIONSTATUSEQllATES

EOU
EQU 01H
EQll 021!

ORC RST7
JMP PINT

PROCRAMORlGIN

03000H

j GOOD COMPLETION
j ERROR _ COMMAND ALREADY IN PROGRESS
jERROR-INVALIDOPCODE

i JUMP TO INTERRUPT SERVICE ROUTINE

MVI A,ICW i GET MODE CONTROL WORD
OUT CWR j OUTPUT TO CONTROL WORD REGISTER
RET ; RETURN TO CALLER

2·431 AFN-OOS99A

~
~
8

YES

YES

YES

APPLICATIONS

2·432

ISIS 8060 MACRO ASSEMBLER, V1.0
COMMAND PROCESSOR

PACE 3

3005210500
300819
30093600
300B 210100
300E 19

3010FEOO
3012CA2430
3015FEOI
3017CA3530

301A3E02

301F3EOI
3021C30C30

3024]A8A30
3027A7
3028 C21F3e
302BEB
302C228930
302FEB
3030C07C30
3033FB
3034c9

jil

;
;
;

;

j

PSTRT:

;
;
j

PSTE:

,
,
PSRD:

COMMAND PROCESSOR

INPUTS: CONTROL BLOCK ADDRESS IN D AND E REGISTERS

OUTPUTS: START 110 OR ERROR STATUS IN CONTROL SUleK
A,H,L MODIFIED

LXI H,GBeT jGETINDEXTQCT
DAD D ; COMPUTE ADDRESS OF CT
MVI M,aPRn jCLEARCT
LXI H,CSOP jOETINDEXTOOPCODE
DAD D ; COMPUTE ADDRESS
MOY A,M j GET OPCODE
CPl 0"' ; SEE IF READ
JZ PSRD jYES-GOPROCE:sSREAD
ePI OPWT jSEEIFWRITE
JZ PSWT j YES _ GO PROCESS WIlITE

ERROR-INVALIDOPCODE

A,3T82 jGETERROaSTATUSCODE
POST ; CALL COMPLETION ROUTINE

ERROR - TRANSACTION ALREADY IN PROGRESS

MVI A,STE1; GET ERROR STATUS CODE
JMP POST ; CALL COHPLETIONROllTIHE

PROCESS READ COMMAND

LOA PRGRD+l; GET READ IN PROGRESS ADDRESS
ANA A ; SEE IF READ IN PROGRESS (TEST FOR ZERO)
JIlZ PSTE ; IF lES - BRANCH
XCHG
SHLD PRGRD ; SAVE CONTROL BLOCK ADDRESS
XeHG
CALL ,STARTIIO
EI , ENABLE INTERRUPTS
RET ,RETURNTOCALLER

ISIS 8080 MACRO ASSEMBLER, V1.0
COMMAND PROCESSOR

PAGEl!

30353AEC)0
)03847
30)9C21F)0
303C m
)030 22EB)0
)040EB
3041CD9C)0
3041j FB
)01!5c9

;
;
PSWT:

PROCESS WRITE COMMAND

LOA PRGWT+ 1 ; GET WRITE IN PROGRESS ADDRESS
ANA A , SEE IF WRITE IN PROGRESS (TEST FOR ZERO)
JNZ PSTE iIFYES-BRANCH
XCBO
SBLD PROWT i SAVE CONTROL Bt.OCK ADDRESS
XCBO
CALL ; START 110
EI ,ENA.BLEINTERRUPTS
RET ; RETURNTOC4LLER

A~99A

APPLICATIONS

2-433

ISIS 8080 MACRO ASSEMBLER, Vl.0
INTERRUPT SERVICE ROUTINE

PAGE 5

jl ••••

INTERRUPT SERVICE ROUTINE
ALL REGISTERS SAVED AND RESTORED

j

PINT:
3046FS PUSH ; SAVE PSW
3047C5 PUSH ; SAVE REGISTER PAIR 'a. AND C
3048D5 PUSH ; SAVE REGISTER PAIR D AND E

PUSH j SAVE REGISTER PUR HAND L
j •••••

POLL INTERRUPT SOURCE _ SEE IF B255
j

304ADBE& IN PORTe ; GET StATUS OF DEVICE
304CE60B ANI INTRA ; SEE IF IN!
304ECA7630 " ppaLL ; NO - BRANCH TO POLL OTHER DEVICES IF ANY
30513EOC MVI A,IONI j GET INPUT INT DISAB,LE CONTROL WORn
3053D3E7 OUT CWR ; DISABLE DEVICE INtERRUPTS
30553E08 ",I A,IoNO ; GET OUTPUT INT DISABLE CONTROL WORD
3057D3E7 OUT CW, j DISABEDEVICE INTERRUPTS
30S9FB EI ; ENABLE PROCESSOR INTERRUPTS
305A2AE930 LHLD PRGRD jGETREADCONTROL,BLOCK
305DAF XRA A .CLEARARF,G
305EBC CMF , i SEE IF READ IN PROGRESS
305FCA6530 JZ PINTI i HO _ BRANCH
3062CD7C30 CALL PIN ; DO UIPUT

30652AEB30 LHLD PRGWT • GET WRITE CONTROL BLOCK
3068AF XRA A iCLEARAREG
3069BC CMP H • SEE IF WRITE IN PROGRESS
306ACA1030 JZ PRTN • NO-BRANCH
306DCD9C30 CALL POUT • DO OUTPUT

i •
RESTORE REGISTERS AND RETURN FROM INTERRUPT

;
PRTN:

3070El POP , • RESTORE REGISTER PAIR HAND L
307101 POP 0 • RESTORE REGISTER PAIR D AHD E
3072CI POP B ; RESTORE REGISTER PAIR BAND C
3073Fl POP PS, ; RESTOREPSW
3074FB EI i ENABLE PROCgsSOR INTERRUPTS
3075C9 RET • RETURN TO INTERRUPTED PROCESS

ISIS8080HACROASSE:MBLER,V1.0
INTERRUPT SERVICE ROUTINE

PAGE 6

3076C37030

3079C37030

;

,
PPOLL:

i"'"
......
PIERI:

POLL OTHER DEVICES IF ANY
IF NO OTHER DEVICES '1'0 POLL - USER SUPPLIED ERROR
RECOVERY ROUTINE.

i RETURN

ERROR _ INTERRUPT ·FROM IDLE DEVICE
USER SUPPLIED ERROR RECOVERY ROUTINE

PRTN i RETURN

AFN-00599A

APPLICATIONS

ISIS s080 MACRO ASSBMBI.!R, Vl.0 PAOE 7
INPUT DATA ROUTINE .

307CDBE6
307£ !62G
)OSOCA96)0
3083 CDaC30
30S6 DASnO
30S9 DBEII
30SB77
308CC37C30

308FAF
3090 32EA30
3093C3963G

3096 F3
30973£OD
30990317
309SC9

I··· .. , INPUT DATA ROUTINE
;
PIN:

IN PORTC GET STATUS OF DEVICE
AHI IBFA SEE IF INPUT BUFFER FULL
JZ PRTI NO - BRANCH
CALL CSFA GET ADDRESS IN BUFFER
JC PIDON IF DONE _ BRANCH
IN PORTA GET DATA
HO' H,A PLACE IN BUFFER
JH' PI. LOO' ,
END OF INPUT TRANSACTION I ·

PlooN:
XRA . ,CLEARA
ST. PRGRD+l I CLEAR READ IN PROGRESS
JH' PRTI I RETURN

;
, RETUIIN FROM INPUT ,
PRTI:

DI DISABLE PROCESSOR INTERRUPTS
MVI A,IENI GET ENABLE INPUT IIlTERRUPTS CONTROL WORD
OUT CWII OUTPUT TO CONTROL WOIIo REGISTER
RET RETURN TO CALLBR

ISIS 8080 MACRO ASSEMBLER, Vl.0
OUTPUT DAtA RounNE

PAOE 8

309COBE6
3091 1620

30A] CoBC]O
30A6 DAAF30
301.9 1£
30AA D3E"
30ACC39C30

30AF AF
30BO 3ZEC30
30B) C)B630

3086 F3
30B1 3109
30B9 0317
3088 C9

I"'" ; OUTPUT DATA ROUTINE I····· POUT:
IN PORTC
ANI IBFA
JNZ PRTO
CALL CBFA
dC fODOM
NOV A,M
OUT POIITA
dMP POUT

GET PORTC STATUS
SEE IF OUTPUT BUFFER FULL
TES - BRANCH
SET UP ADDRESS OF DATA
IF DONE _ BRANCH
GET DATA FROM BUFFER
OUTPUT DATA
LOOP

I END OF OUTPUT TRANSACTION
I·
POllOI I

XRA A ,CLEARAREQ
STA PROWT.'; CLEAR WRITE IN PROGRESS
JMP PRTO I RETURN ,

; RETURN FROM OUTPUt
I •
PllTO:

01 DISABLE PRoCESSOR INTBRRUPTS
MYI A,IBNO GET ENABLE OUTPUT INTERRUPTS CONTROL WORD
OUT eVil OUTPUT" TO CONTROL WORD REGISTER
RET RETURif TO CALLER

B
Setup Buffer Address Subroutine

APPLICATIONS

2-435

ISIS 8080 "ACRO ASSEMBLER, Vl,a
COMPUTE BUFFER ADI)JIBSS ROUUNE

PADE9

lOse 210500
30BY 19
lOCO 7£
lOCI]4
]OC228
lOC]B!
3OC4CAD530
3DC7210200
]OCA,19
30CB 05
loce 5~
lOCD23
30CE56
30CFAC
30D06F
30DI19
300201
30D3AF
30D4 C9

;
I COMPUTE BUFFER ADDRESS ROUTINE
I·
CDPA:

LXI
DAD
MDV
INR
DCX

CM'
JZ
LXI
DAD
PUSH
MOV
INX
MOY

'RA
"lY
DAD

'OP 'RA
RET

H,CBCT
D
A,M
M

" M

'COM' H,CDur
o
o
E,M
M
D,M
M
L,A
o
D

GET INDEX TO CT
COMPUTE ADDRESS OF CT
GET CT
INC CT
DEC TO CC
SEE IF EQUAL
IF EQUAL - DONE GO TELL USER
GET INDEX TO BUFFER ADDRESS
COMPUTE ADDlltSS OF BUFFER ADDRESS
SAVE 0 AND E REGISTERS
GET LSD OF BtlFFER ADDRESS
INC TO NEXT BYTE
GEt BUFFEII MSB
CLE.AR H REG
GET CT
COMPUTE CHARACTER ADDRBSS
RESTORE CONTROL BLOCK ADDRESS
CLEAR CARRY
RETURN TO CALLER

ISIS 8080 MACRO ASSEMBl..ER, V1.0
POST TO USER COMPLETION ROUTINE

PAGE 10

30053EOO
3007 tODC30
300A37
30GB C9

30De £B
30DD77
30~EB
30DF 210600
30E2 19
30£311£
30£423
30£5116
30E6 C5
30E7C9
30ESc9

I·
I POST GOOD COHPLETION TO USER
;
peo"'P:

i· .. ••
POST:

; ,

flVl A,STGD; GET 0000 STATUS CODE
CALL POST ; CALL USER IIOIITINE
STC ; SET CAflRY
RET ; RETURN TO CALLER

POST TO USEfI COMPLETION flOUTINE

XCHO
1ol0V
XCHG
LXI
DAD

MO' m
MIl'
PUSH
RET
RET

H,A ; UPDATE STATUS

H,CBCHP I GET INOEI TO COMPI.,ETlOIf ADDRESS
D ; COflPUT,£ ADDRESS
C,K : OET LSB OF COMPLETION ADDRESS
H ; INC TO NEXT BYTE
B,M : GET MSB BYTE OF COMPLETION ADDRESS
B ; PUSH ADDRESS INTO STACK

; PASS CONTROl. TQ jlSER ROUTINE
: RETURN TO CALL.b

DATA ANO TABLES

IF DATA HOM ZERO CONTROl,. BLOCK IN PROGRESS

30£9 0000 PRORO: OW ; IN PROGRESS R~D CONTROL BLOCK
30EB 0000 PIIQIT: DtI

; •• !~.
; IN PROGRESS WRJ;TE CGHtROL BLOCK

; •.... tNO or MASTER SOF.TIi'ARE DRIVER

DDOD

APPENDIX A,::,,~5fiA9U!C.~~,EFERENCE

CONTROL WORD

10,1 D. 05 1 0.1 D31 D21 0, I DO I -- L/ GROUP a ~
PORT C (LOWER - PC3-Peal
1='NP.UT
Q"'OUTPUT

PORTS
, "INPUT
O=OUTPUT,

MODE SELECTION
a .. MOOED
'=MOI?E 1

/ GI=tOUPA "-
PORT C IUPPeR - pc,-pc,,)
'·'NPUT
0= OUTPUT

PORTA
, = INPUT
o = OUTPUT

MODE SELECTION
00= MODE 0
01 =MQDE 1
1X = MODE 2

f OPCODE j 1 "'MODE SET

MODE CONTROL WORD

CONTROL WORD

NOT USED SET TO 000

BITO
BIT 1
BI12
81T3
BIT4
81TS
BIT6
BIT1

BIT SET/RESET CONTROL WORD

2-436

GROUP A
STATUS

PORTC BITS

GROUPS
STATUS

MOOED
INPUT/OUTPUT

--02 0, DO I OBFA liNTEl I'BF A .!INT£21 INTRA'

MODEJ
INPUT PORT

'I I/O. I/O I/O

.1'NTEa I laFa I INTRa I
MODE 1
OUTPUT PORT

I'NTEa I oaFa I INTRa I

MODE 1 STATUS WORD

PORTe BITS

1001~1~1~1~lo,l~I~1
---,---- ----

INPUT PDRT

GROUP A
STATUS

GROUPS
STATUS

INPUT PDRT
1

I/O 1/0 I'SF A I'NTEA I INTRA I IINTE.I,aFa I'NTR.I
OUTPUT

!

I 08FA ,'NTEAt I/O

OUTPUT PORT

I/O I INTRA I

PDRT

MODE 2 STATUS WORD

j

CONTROL WORD

CONTROL WORD

IVIUUC I "UI'\II"'IUUnAIIUI'\I~

.-------.. /A,~ __

PA7-PAO K 8

"
PC. 1""----

-----<.~ IBFA

---_a INTRA

PC6,7 1 _____ 7-"<--2:......- 1/0

----.. OBFS

.c21-.---- ACKB

PCo 1----- INTRa

PORT A - STROBED INPUT
PORT B - STROBED OUTPUT

PA7-PAn Ko-
PC.

pc.

PC.

PCG.7

P87-PSD

PC2

PC,

PCo

PORT A -, STROBED INPUT
PORT B - STROBED INPUT

7
l 2 .

V 8
I'\..~

IBFA

I/O

1BFa

INTRa

CONTROL WORD

CONTROL WORD

07 06 Os D4 03 02 D, DO

I, I 0 I, I 011[' I 0 RJ
, ,",.5

. 1 = INPUT
0= OUTPUT

2·437

PA7-PAO

PC7

PCs

PC,

PC4.5

PB7-PSO V

PC2

PC,

PCo

PORT A - stROBED OUTPUT
PORT B - STROBED INPUT

PA7-PAD

PC7

pc.

pc.

PC4.5

PB7-PSo

PC,

PC2

PCo

. PORT A - STROBED OUTPUT
, ~RT B - STROBED OUTPUT

"

-"
•

..-

2
I/O

•

1BFS

INTRa

" 8

y

2

8

INTRa

AFN-OCl5IlM

· MODE 2 CONFIGU.RATIONS

CONTRllL WORD

07 De Os O. 03 02 0, 00

II I 'C><MXl 0 15'
PC2_0
, "'INPUT
D=OUTPUT

RD"

Viii

CONTROL WORD

O,lls05 0.jO,02 0,Od

I ' I, t><IXIXI, , 0 r><J

pc.

PAr-"AO

Pc,

PCs

PC,

PCs

PC2_a

PB,-PBO

ftoRr A -MODE 2
PORT B - MODE 0 INPUT

PC,~---_

PC61_---

pc. 1-----

PCsl----

PC,t----+

JIl)----<l!

lm---+ClI PCo~--~-

PORT A ~ MODE 2
PORT B - MODE 1 OUTPut

CONTROL WORD

'NTAA D7 O. Os 04 03 02 0, 00

[iliNXlXl 0 , "~T '
PC:2-0
1 = INPUT
0" OUTPUT

tlBrA

ACf{A

m A

IBFA

I/O AD

WR_

CONTROL WQHI.)

01 06 Os 04 03 02 0, 00

I' I, t><lXIXJ "'[XI

08FA

AcKA

STBA

IBFA

OiWB

ACKB All .
INTRa 1VR .

2·438

PC, INTRA

PC, OiWA

pc. ACKA

pc. rnA

PCs IBFA

pe2_0 110

PB,-"So

PORT A - MODE 2
PORT B - MODE 0 OUTPUT

PC,

PA7-PAO ~
PC,

PC.

PC.

PCs

PB7-PSa 8

PC,

PC, 1FBS

PCo INTRa

PORT A - MODE 2
PORT B - MODE 1 INPUT

AFN-00599A

A Low Cost CRT Terminal Contents

Using the 8275 1. INTRODUCTION

2. CRT BASICS

3. 8275 DESCRIPTION

3.1 CRT Display Refreshing
3.2 CRT Timing
3.3 Special Functions

4. DESIGN BACKGROUND

4.1 Design Philosophy
4.2 Using the 8275 without DMA

5. CIRCUIT DESCRIPTION

5.1 Scope of the Project
5.2 System Target Specifications
5.3 Hardware Descriptions
5.4 System Operation
5.5 System Timing

6. SYSTEM SOFTWARE

6.1 Software Overview
6.2 System Memory Organization
6.3 Memory Pointers and Scrolling
6.4 Software Timing

APPENDIX 7.1

CRT Terminal Schematics

APPENDIX 7.2

Keyboard Interface

APPENDIX 7.3

Escape/Control/Display Character Summary

APPENDIX 7.4

PROM Decoding

APPENDIX 7.5

Character Generator

APPENDIX 7.6

HEX Dump of Character Generator

APPENDIX 7.1

Composite Video

APPENDIX 7.8 .

Software Listings

2·439

2-440

2-440

2-443

2-447

2-449

2-454

2-458

2-460

2-461

.2-462

2-463

2-464

2-465

2-465.

AFN·Ol304A

APPLICATIONS

1. INTRODUCTION

The purpDse Dfthis applicatiDn nDte is to. prDvidethe
reader with the design cDncepts and factual tDDls
needed to. integrate Intel peripherals and microproc- .
eSSD(S into. a IDW CDSt raster scan CRT ,terminal. A
preViDusly published applicatiDn nDte, AP-32,'pre-
sen ted Dne pDssible sDlutiDn to. the CRT design
questiDn. This applicatiDn nDte expands upDn the
theme established in AP-32 and demDnstrateshDw
to. design a functiDnal CRT terminal while keeping
the parts CDunt to. a minimum. ,.'

FDr cDnvenience, this applic<J.tiDn nDte is divided
into. seven general sectiDns: . "

l. IntroductiDn
2. CRT Basics
3. 8275 DescriptiDn
4. Design Background
5. Circuit DescriptiDn
6. SDftware DescriptiDn
7. Appendix

There is no. questiDn that micrDprocessDrs and LSI
peripherals have had a significantrDlein the eVDlu~
tiDn Df CRT terminals. MicrDprDcessDrs have
allDwed design engineers to. incDrporate an abun­
dance Df sDphisticatedfeatures into. terminals that
were previDusly mere slaves to. a larger prDcessDr. To.
cDmplement microprDcessDrs, LSI pe.ripherals have
reduced cDmpDnent CDunt in many suppDrt areas. A
typical LSI peripheral easily replaces between 30
and 70 SSI and MSI packages, and Dffers features
and flexibility that are usually nDt available in mDst
hardware designs. In additiDn to. replacing a whDle
circuit bDard Df random IDgic, LSI citcuitsalsD
reduce the CDSt and increase the reliability Df design.
Fewer interconnects increases mechanical reliability
and fewer parts decreases the pDwer cDnsumption .
and hence, the overall reliability Df the design. The
reductio.n o.f co.mpo.nents also. yields a circuit that is
easier to. debug during the actual manufacturing
phase o.f a prDduct.

Until the era Df advanced LSI circuitry, a typical
CRT terminal consisted Df 80 to' 200 or mDre SSI
and MSI packages. The first microprocessDrs and
peripherals dropped this co.mponent co.unt to be­
tween 30 and 50 packages. This applicatiDn nDte
describes a CRT terminal that uses 20 packages.

2. CRT BASICS

The raster scan display gets its name from the fact
that the image displayed on the CRT is built up by
generating a series oflines (raster) across the faceof
the CRT. Usually, the beam starts in the upper left
hand corner Df the display and simultaneously
moves left to right and tDP to bottDm to put a series

2·440

-~~------ -- ~,=-----:=:-
----~----"
- ""=:..

- - RETRACE LINES
--- DISPLAYED LINES

Figure 2-1. Raster Scan

Df zig-zag lines on the screen (Fig. 2.1). Two. simul­
taneDusly operating independent circuits cDntrDI the
vertical and horizontal mDvement Df the beam.

As the electrDn beam mDves across the face Df the
CRT, a third circuit cDntrols the current flowing in
the beam. By varying the current in the electron
beam the image on the CRT can be made to. be as
bright Dr as dark as the user desires. This allDWS any
desired pattern to' be displayed.

When the beam reaches the end Df a line, it is
brDught back to the beginning of the next line at a
rate that is much faster than was used to' generate
the line. This actiDn is referred to. as "retrace".
During the retrace periDd the electron beam is
usually shut Dff so. that it dDesn't appear Dn the
screen.

As the electron beam is mDving across the screen
hDrizontally, it is also mDving downward. Because
of this, each successive line starts slightly belDw the
previo.us line. When the beam finally reaches the
bottom right hand CD mer of the screen, it retraces
vertically back to the top left hand CD mer. The time
it takes for the beam to mDve from the top of the
screen to the bottDm and back again to. the tDP is
usually referred to. as a "frame". In the United
States, cDmmercial televisiDn brDadcast use 15,750
Hz as the hDrizDntal sweep frequency (63.5 micrD­
secDnds per hDrizontalline) and 60 Hz as the vertical
sweep frequency Dr "frame" (16.67 millisecDnds per
vertical frame).

AlthDugh, the 60 Hz vertical frame and the 15,750 Hz
hDrizDntal line are the standards used by cDmmercial
brDadcasts, they are by no. means the Dnly frequency
at which CRrs can Dperate. In fact, many CRT
displays use a hDrizDntal scan that is around 18 KHz
to. 22 KHz and SDme even exceed 30 KHz. As the

AFN-01304A

horizontal frequency increases, the number of hori­
zontallines per frame increases. Hence, the resolution
on the vertical axis increases. This increased resolu­
tion is needed on high density graphic displays and
on special text editing terminals that display many
lines of text on the CRT.

Although many CRT's operate at non-standard
horizontal frequencies, very few operate at vertical
frequencies other than 60 Hz. If a vertical frequency
other than 60 Hz is chosen, any external or internal
magnetic or electrical variations at 60 Hz will
modulate the electron beam and the image on the
screen will be unstable. Since, in the United States,
the power line frequency happens to be 60 Hz, there
is a good chance for 60 Hz interference to exist.
Transformers can cause 60 Hz magnetic fields and
power supply ripple can cause 60 Hz electrical
variations. To overcome this, special shielding and
power supply regulation must be employed. In this
design, we will assume a standard frame rate of 60 Hz
and a standard line rate of 15,750 Hz.

By dividing the 63.5 microsecond horizontal line
rate into the 16.67 millisecond vertical rate, it is
found that there are 262.5 horizontal lines per
vertical frame. At first, the half line may seem a bit
odd, but actually it allows the resolution on the CR T
to be effectively doubled. This is done by inserting a
second set of horizontal lines between the first set
(interlacing). In an interlaced system the line sets are
not generated simultaneously. In a 60 Hz system,
first all of the even-numbered lines are scanned: 0,2,
4, ... 524. Then all the odd-numbered lines: 1,3,5, ...
525. Each set of lines usually contains different data
(Fig. 2.2).

------........... --- -- ------.......----....... ----
- --...... ---- ---.--- -------,---..-------- ----------- ----- --- ---.............. "'-

--- EVEN FIELD
--ODDFIELD

RETRACE LINES
NOT SHOWN

Figure 2-2. Interlaced Scan

Although interlacing provides greater resolution, it
also has some-distinct disadvantages. First of all, the
circuitry needed to generate the extra half horizontal
line per frame is quite complex when compared to a
noninterlaced design, which requires an integer
number of horizontal lines per frame. Next, the
overall vertical refresh rate is half that of a noninter­
laced display. As a result, flicker may result when the
CRT uses high speed phosphors. To keep things as
simple as possible, this design uses the noninterlaced
approach.

The first thing any CRT controller must do is
generate pulses that define the horizontal line timing
and the vertical frame timing. This is usually done by
dividing a crystal reference source by some appro­
priate numbers. On most raster scan CRT's the
horizontal frequency is very forgiving and can vary
by around 500 Hz or so and produce no ill effects.
This means that the CRT itself can track a horizontal
frequency between 15250 Hz and 16250 Hz, or in
other words, there can be 256 to 270 horizontal lines
per vertical frame. But, as mentioned earlier, the
vertical frequency should be 60 Hz to insure stability.

The characters that are viewed on the screen are
formed by a series of dots that are shifted out of the
controller while the electron beam moves across the
face of the CRT. The circuits that create this timing
are referred to as the dot clock and character clock.
The character clock is equal to the dot clock divided
by the number of dots used to form a character along
the horizontal axis and the dot clock is calculated by
the following equation:

DOT CLOCK (Hz) ::: (N + R) '" D '" L '" F
where N is the number of displayed characters per
row,
R is the number of retrace character time
increments,
D is the number of dots per character,
L is the number of horizontal lines per frame and
F is the frame rate in Hz.

In this design N = 80, R = 20, D = 7, L = 270, and
F = 60 Hz. If the numbers are plugged in, the dot
clock is found to be 11.34 MHz.

The retrace number, R, may vary from system to
system because it is used to establish the margins on
the left and right hand sides of the CRT. In this
particular design R = 20 was empirically found it be
optimum. The number of dots per character may
vary depending on the character generator used and
the number of dot clocks the designer wants to place
between characters. This design uses a 5 X 7 dot
matrix and allows 2 dot clock periods between
characters (see Fig. 2.3); since 5 + 2 equals 7, we find
that D = 7.

2·441 AFN-01304A

The number of lines per frame can be determined by
the following equation:

L=(H*Z)+V

where, H is the number of horizontal lines per
character,

Z is the number of character lines per frame and
V is the number of horizontal lines during vertical

retrace. In this design, a 5 X 7 dot matrix is to be
placed on a 7 X 10 field, so H = 10. Also, 25 lines are
to be displayed, so Z = 25. As mentioned before,
V = 20. When the numbers are plugged into the
equation, L is found to be equal to 270 \i.nes per
frame.

The designer should be cautioned that these numbers

OBo-7

ORO

=
IRQ

Iil5

AII-

Cf

DATA
BUS

BUFFER

BLOCK DIAGRAM

CHARACTER
COUNTER CClK

CGo·s

LCQ..3

LAO·'
HRTe
VRTe
HLGT
RVV
LTEN
VSP
GPA()'1

LPEN

are interrelated and that to guarantee proper opera­
tion on a standard raster scan. CRT, L should be
between 256 and 270. If L does not lie within these
bounds the horizontal circuits of the CRT may not

.. be able to lock onto the driving signal and the image
will roll horizontally. The chosen L of 270 yields a
horizontal frequency of 16,200 KHz on a 60 Hz
frame and this number is within the500 Hz tolerance
mentioned earlier. .

The V ·number is chosen to match the CRT in much
the same manner as the R number mentioned earlier.
When the electron beam. reaches the bottom right
corner of the screen it must retrace·vertically to the
top left corner. This retrace action requires time,
usually between 900-1200 microseconds. To allow
for this, enough horizontal sync times must be
inserted during vertical retrace. Twenty horizontal
sync - times. at 61.5 microseconds yield a total of
1234-.5 microseconds, which is enough time to !!-llow
the beam to return to the top of the .screen.

The choices of Hand Z largely relate to system
design preference. As H increases, the character size
along the vertical axis increases. Z is simply the
number of lines of characters that are displayed and
this, of course, is entirely a system design option.

PIN CONFIGURATION

lea Vee

le. LAO

le, lA,

leo LTEN

ORO RVV

= VSP

HRTe GPA,

VRTe GPAII

Iil5 HlGT

WR IRQ

LPEN . CCLK

OBo CCe

DB, ees

DB. CC.

DBa CCa

DB. CC,

DBs CC,

DB. ceo

DB7 Co
GNO Ao

Figure 3-1. 8275 Block Diagram/Pin Configuration

2·442 AFN-01304A

3. 8275 DESCRIPTION

A block diagram and pin configuration of the 8275
are shown in Fig. 3.1. The following is a description
of the general capabilities of the 8275.

3.1 CRT DISPLAY REFRESHING

The 8275, having been programmed by the designer
to a specific screen format, generates a series of
DMA request signals, resulting in the transfer of a
row of characters from display memory to the 8275's
row buffers. The 8275 presents the character codes
to an external character generator ROM by using
outputs CCO-CC6. External dot timing logic is then
used to transfer the parallel output data from the
character generator ROM serially to the video input
of the CRT. The character rows are displayed on the
CRT one line at a time. Line count outputs LCO-LC3
are applied to the character generator ROM to
perform the line selection function. The display
process is illustrated in Figure 3.2. The entire
process is repeated for each display row. At the
beginning of the last displayed row, the 8275 issues
an interrupt by setting the IRQ output line. The
8275 interrupt output will normally be connected to
the interrupt input of the system central processor.

The interrupt causes the CPU to execute an interrupt
service subroutine. The service subroutine typically
re-initializes DMA controller parameters for the
next display refresh cycle, polls the system keyboard
controller, and / or executes other appropriate func~
tions. A block diagram of a CRT system implemented
with the 8275 CRT Controller is provided in Figure
3.3. Proper CRT' refreshing requires that certain
8275 parameters be programmed prior to the begin­
ning of display operation. The 8275 has two types of
programming registers, the Command Registers
(CREG) and the Parameter Registers (PREG). It
also has a Status Register (SREG). The Command
Registers may only be written to and the Status
Registers may only be read. The 8275 expects to
receive a command followed by a sequence offrom 0
to 4 parameters, depending on the command. The
8275 instruction set consist of the eight commands
shown in Figure 3.4.

To establish the format of the display, the 8275
provides a number of user programmable display
format parameters. Display formats having from I
to 80 characters per row, I to 64 rows per screen, and
I to 16 horizontal lines per row are available.

In addition to transferring characters from memory

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character ------------.... -oo •••• ooo.oooo.ao ••••• ooooooooo •••• oooo ••• ooo.ooo.o

First Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Charactar Character Character Character Character Character Character --------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

0.0000.00 •• 000.00.0000000000000.000.00.000.00.000.0

Second Line of a Character Row

1st 2nd 3rd 4th 5th 6th 7th
Character Character Character Character Character Character Character --------------00 •••• 000.0000.00 ••••• 000000000 •••• 0000 ••• 000.000.0

oeoooo.oo •• ooo.oo.ooooooooooooo.ooo.oo.ooo.oo.ooo.o
-0.0000.00.0000.00.0000000000000.000.00.000.00.000.0

Third Line of a Character Row

1 st 2nd 3rd 4th 5th ,6th 7th '
Character Character Character Character Charac,ter Character Character --------------, 00 •••• 000.0000.000 ••••• 000000000 •••• 0000 ••• 000.000.0

o.oooo.oonooo.oo,.OOOOOOOOOOOOO.OOO.OO.OOO.OO.OOO.O
0.0000.00.0.00.00.00000000000000.0000.000.00000.000.00000.00
0.000000.000.00000.00 •••• 00000000000000 •••• 0000.000.00.0.0.0
00.000000.00.000.00.000.000000000000000000000000.00.00000000.000000.0000.00.00.00
O.OoOoOO.oOoO.OOO •• oOoO.oOOOOoOoOoOOOOOOp.oo.ooO.OOP.oOO.oO.O.oO
OoO •••• OoOO.OoOoOoO.OO ••••• oOOoOoOOOOOoO.oOOO.oOoOO ••• OoOoOoO.oO.oOP

Seventh Line of a Character Row

Figure 3-2. 8275 Row Display

2·443 AFN.Q1304A

., HOLD,·;.:
8085A

MleIIO- ,
PROCESSOR HACK

'.

:'

7'

APPLICATI.ONS

I
LCo-3 ~

DRQ
TRANSFER CHARACT.ER

DECODE CCO-6 GENERATOR
LOGIC DAfR ROM .8275

CRT V
CONTROLLeR·

CCLK

.'.

VIDEO cq(llTROLS

7' ~t
SYSTEM BUS

8253:5
COUNTER!~~--~

TIMER

8251
. USART

SERIAL
COMMUNICATIONS

CHANNEL

PROGRAM!
DISPLAY
MEMORY

HIGH
,SPEED

DOT
TIMING
LOGIC
AND

INTER~ACE 1
J

8255A·5
KEYBOARD

CONTROLLER

Figure 3·3. CRT System Block Diagram

to the CRT screen, the 8275 features cursor position
controL The cursor position may be programmed,
via X and Y cursor position registers, to any
character position on the display. The user may
select from four cursor formats. Blinking or non­
blinking underline and reverse video block cursors
are available.

3.2 CRT TIMING

The 8275 provides two timing outputs, HRTC and
VRTC, which are utilized in synchronizing CRT
horizontal and vertical oscillators to the 8275
refresh cycle. In addition, whenever HRTC orVRTC
is active, a third timing output, VSP (Video Sup­
press) is true, providinga blinking signal to the dot
timing logic. The dot timing logic will normally
inhibit the video output to the CRT during the time
when video suppress signal is true. An additional
timing output, L TEN (Light Enable) is used to
provide the ability to force the video output high
regardless of the state of VSP. This feature is used
by the 8275 to place a cursor on the screen and to
control attribute functions; Attributes wilt be
considered in the next section.

COMMAND

RESET

START
DISPLAY

STOP
DISP.LAY

READ
LIGHT
PEN

LOAD
CURSOR

ENABLE
INTERRUPT

DISABLE
INTERRUPT

PRESET
COUNTERS

NO. OF
PARAMETER

BYTES

4

0

0

2

2

0

0:·

,,9 ..

VIDEO'SIGNAL

HORIZONTAL SVN,G'

TO CRT
VERTICAL SYNC

INTENSITY

..

NOTES

Display format pa-
rameters required

DMA operation pa-
rameters included
in command

Cursor X,Y posi-
tion parameters re-
quired

Clears all internal
counters

The HLGT (Highlight) output aHowl an attribute
function to increase the CRT beam intensity to a
level greater than normal. The fifth timing signal,
RVV (Reverse Video) will, when enabled, ~use the,
~ystem yideo output to be. inverted.

Figure 3-4. 8275's Instruction Set

2·444. AFN-Ol304A

APPLICATIONS

Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE OUTPUTS
SYMBOL DESCRIPTIO

CODE "CCCC" LA, LAo VSP LTEN

[Above Underline 0 0 1 0
0000 Underline 1 0 0 0 I Top Left Corner

Below Underline 0 1 0 0
Above Underlihe 0 0 1 0

0001 Underline 1 1 0 0 I Top Right Corner
Below Underline 0 1 0 0
~bove Underline 0 1 0 0 L 0010 Underline 1 0 0 0 Bottom Left Corner
Below Underline 0 0 1 0
Above Underl ine 0 1 0 0

~ 0011 Underline 1 1 0 0 Bottom Right Corner
Below Underline 0 0 1 0
Above Underline 0 0 1 0

0100 Underline 0 0 0 1 -r- Top Intersect
Below Underline 0 1 0 0
Above Underline 0 1 0 0

---1 0101 Underline 1 1 0 0 Right Intersect
Below Underline 0 1 0 0
Above Underline 0 1 0 0

~ 0110 Underline 1 0 0 0 Left Intersect
Below Underline 0 1 0 0
Abo\lll Underline 0 1 0 0 -L 0111 Underline 0 0 0 1 Bottom Intersect
Below Underline 0 0 1 0
Above Underline 0 0 1 0

1000 Underline 0 0 0 1 --- Horizontal Line
Below Underline 0 0 1 0
Above Underline 0 1 0 0

I 1001 Underline 0 1 0 0 Vertical Line
Below Underline 0 1 0 0
Above Underline 0 1 0 0 + 1010 Underline 0 0 0 1 Crossed Li nes
Below Underline 0 1 0 0
Above Underline 0 0 0 0

1011 Underline 0 0 0 0 Not Recommended'
Below Underline 0 0 0 0
Above Underl ine 0 0 1 0

1100 Underline 0 0 1 0 Spec i al Codes
Below Underline 0 0 1 0

. Above Underl ine
1101 Underline Undefined Illegal

Below Underl ine 1

Above Underline I.
1110 Underline Undefined Illegal

Below Underline 1
Above Underline I

1111 Underline Undefined Illegal
Below Underline I

'Character Attribute Code 1011 is not recommended for
normal operation. Since none of the attribute outputs are
active; the character Generator will not be disabled, and
an indeterminate character will be generated.

Character Attribute Codes 1101, 1110, and 1111 are illegal.

Blinking is active when B = 1.

Highlight is active when H = 1.

Figure 3·5. Character Attributes

2·445 AFN-ol304A

APPLICATIONS

A 8 C D' E ,;, F G H I J K L M ."
NOPQRSTUV

12345 6 7 89

EXAMPLE OF THE VISIBLE. FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

A 8 C D E F G H, I J K L M
N 0 P Q.R STU V

1 234 567 8 9

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

Figure .3-6. Field Attribute Examples

3.3 SPECIAL FUNCTIONS

VISUAL ATTRIBUTES-Visual attributes are
special codes which, when. retrieved from display
memory by the 8275, affect the visual characteristics
of a character position or field of characters. Two
types of visual attributes exist; 'Charactt(r attributes
and field attributes.

Character Attribute Codes: Char.acter attribute
codes can be used to generate graphics symbols
without the use of a character generator. This is
accomplished by selectively activating the Line
Attribute outputs (LAO-LAl), the Video Suppres­
sion output (VSP), and the Light Enable output
(L TEN). The dot timing logic uses these signals to
generate the proper symbols. Character attributes
can be programmed to blink or be highlighted
individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is
equal to the screen refresh frequency divided by 32.
Highlighting is accomplished by activating the
Highiight output (H G L T). Character attributes
were designed to produce the graphic symbols
shown in Figure 3.5.

Field Attribute Codes: The field·attributes are
control codes which affect the visual characteristics
for a field of characters, starting at the character
following the field attribute code up to, and includ­
ing, the character which precedes the next field
attribute code, or up to the end of the frame.

There are six field attributes:

I. Blink - Characters following the code are
caused to blink by activating the Video Sup­
pression output (VSP). The blink frequency is
equal to the screen refresh frequency divided
by 32.

2·446

2. Highlight - Characters following the code are
caused to be highlighted by activating the
Highlight output (IiGLT).

3. Reverse Video - Characters following the
code are caused to appear in reverse video
format by activating the Reverse Video output
(RVV).

4. Underline - Characters following the code are
caused to be underlined by activating the Light
Enable output (L TEN).

5. General Purpose - There are two additional
8275 outputs which act as general purpose,
independently programmable field attributes.
These attributes may be used to select colors or
perform other desired control functions ..

The 8275 can be programmed to provide visible or
invisible field attribute characters as shown in Figure
3,6. If the 8275 is programmed in the visible field
attribute mode, all field attributes will occupy a
position on the screen. They will appear as blanks
caused by activation of .the Video Suppression
output (VSP). The chosen visual attributes are
activated after this blanked character. If the 8275 is
programmed in the invisible field attribute mode,
the 8275 row buffer FIFOs are activated. The FIFOs
effectively lengthen the row buffers by 16 characters,
making room for up to 16 field attribute characters
per display row. The FIFOs are 126 characters by 7
bits in size. When a field attribute is placed in the
row buffer during DMA, the buffer input controller
recognizes it ~nd places the next character in the
proper FIFO. When a field attribute is placed in the
buffer output controller during display, it causes the
controller to immediately put a character from the
FIFO on the Character Code outputs (CCO-6). The
chosen attributes are also activated.

AFN'()l304A

APPLICATIONS

LIGHT PEN DETECTION - A light pen consists
fundamentally of a switch and light sensor. When
the light pen is pressed against the CRT screen, the
switch enables the light sensor. When the raster
sweep coincides with the light sensor position on the
display, the light pen output is input and the row and
character position coordinates are stored in two
8275 internal registers. These registers can be read
by the microprocessor.

SPECIAL CODES - Four special codes may be
used to help reduce memory, software, or DMA
overhead. These codes are placed in character
positions in display memory.

1. End Of Row Code - Activates VSP. VSP
remains active until the end of the line is
reached. While VSP is active, the screen is
blanked.

2. End Of Row-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the row when it is written into the row buffer.
It affects the display in the same way as the End
of Row Code.

3. End Of Screen Code - Activates VSP. VSP
remains active until the end of the frame is
reached.

4. End Of Screen-Stop DMA Code - Causes the
DMA Control Logic to stop DMA for the rest
of the frame when it is written into the row
buffer. It affects the display in the same way as
the End of Screen Code.

PROGRAMMABLE DMA BURST CONTROL---'-­
The 8275 can be programmed to request singIe~byte
DMA transfers of DMA burst transfers of 2,4, or 8
characters per burst. The interval between bursts
is also programmable. This allows the user to tailor
the DMA overhead to fit the system needs.

4. DESIGN BACKGROUND

4.1 DESIGN PHILOSOPHY

Since the cost of any CRT system is somewhat
proportional to parts count, arriving at a minimum
part count solution without sacrificing performance
has be,en the motivating force throughout this design
effort. To successfully design a CRT terminal and
keep the parts count to a minimum, a few things
became immediately apparent.

1. An 8085 should be used.
2. Address and data buffering should be eliminated.
3. Multi-port memory should be ,eliminated.
4. DMA should be eliminated.

Decision 1 is obvious, the 8085's on-board clock
generator, bus controller and vectored interrupts
greatly reduce the overall part count considerably.

Decision 2 is fairly obvious; if a circuit cap. be
designed so that loading on the data and, address
lines is kept to a minimum, both the data and address
buffers can be eliminated. This easily saves three to
eight packages and reduces the power consumption
of the design. Both decisions 3 and 4 require a basic
understanding of current CRT design concepts.

In any CRT design, extreme time conflicts are' created
because all essential elements require access to the
bus. The CPU needs to access the memory to control
the system and to handle the incoming characters,
but, at the, same time, the CRT controller ,needs to
access the memory to keep the raster s~ndisplay
refreshed. To resolve this conflict two common
techniques are employed, page buffering and line
buffering. .

In. the page buffering approach the entire screen
memory is isolated from the rest of the system. This
isolation is usually accomplished with three-state
buffers or two line to one line multiplexers. Of
course, whenever a character needs to be manipu­
lated the CPU must gain access to the buffered
memory and, again, possible contention between the
CPU and the CRT controller results. This contention
is usually resolved in one of two ways, (I) the, CPU is
always given priority, or; (2) the CPU is allowed to
access the buffered memory only during horizontal
and vertical retrace times,

Approach I is the easiest to implement from a hard­
ware point of view, but if the CPU always has
priority the display may temporarily blink or
"flicker" while the CPU accesses the display memory.
This, of course, occurs because when the CPU
accesses the display memory the CRT controller is
not able to retrieve a character, so the 'display must
be blanked during this time. Aesethically, this
"flickering" is not desirable, so approach 2 is often
used.

The second approach eliminates the display flicker­
ing encountered in the previously mentioned tech­
nique, but additional hardware is required. Usually
the vertical and horizontal blank signals are gated
with the buffered memory select, lines and this line is
used to control the CPU~s ready line. So, if the CPU
wants to use the buffered memory; its ready line is
asserted until horizontal or vertical retrace times.
This, of course, will impact the CPU's overall
through put.

Both page buffered approaches require a significant
amount of additional hardware and for the most
part are not well suited for a minimum parts count
type of terminal. This guides us to the line buffered
approach. This approach eliminates the separate
buffered memory for the display, but, at the same
time, introduces a few new problems that must be
solved.

2-447 AFN-Ql304A

APPLICATIONS

"OPTIONAL'

VIDEO OUT

PAGE BUFFERING
TECHNIQUE

I---.VIDEO OUT

LINE BUFFERING
TECHNIQUE

Figure 4-1. Line Buffering Technique

In the line buffered approach both the CPU a.nd the
CRT controller share the same memory. Every time
the CRT controller needs a new character or line of
data, normal processing activity is halted and the
CRT' controller accesses memory-and displays the
data. Just how the CRT conttoller needs to acquire
the display data greatly affects the performance of
the overall system. Whether the 'CRT controller
needs to gain access to the main memory to acquire a
single character or a complete line of data depends
on th.e presence or absence of a separate)ine or row
buffer.

If no row buffer is present the CRT controller must
go to the main memory to fetch every character. This
of course, is not a very efficient approach because
the processor will be forced to relinquish the bus
70% to 80% of the time. So much, processor
inactivity greatly affects the overall system perform­
ance. In fact terminals that use this approach are
typically limited to around 1200 to 2400 baud on
their serial communication channels. This low baud
rate is in general not acceptable, hence this approach
was not chosen.

ClOCl(C\'ClES SEQ SOIJPCE STATE;lEIlT

If a separate row buffer is employed the CRT
controller only has to access the memory once for
each displayed character per line. This forces the
processor to relinquish the bus only about 20% to
35% of the time and a full 4800 to 9600 baud can be
achieved. Figure 4.1 illustrates these different
techniques.

18
10
18
10
10
4

-16
6
7
'4

400
4
4

11
18
4
6
11
4
4
4

7118
4
4

7118
10
16
7
4

11
11
11
4

11

1 PUSH P:ill ; SfI'~C H AtiD FI.fIG$
2 PUSH H ,~~,t H AI'~ L
3 PUSII D ,SRI'(D RI.~.
4 L.~I H,ea00H ,m.D H ~I> L
5 Mll 51' ; "vT STFiK POIUTER IN H Ifl) L
G XCIf.l ; PUT SIRtr. III D [ui[> E
7 LllLD cr.:F.f![l ;GCT po nITER
8 5PIL ; PUT O.lfEl4l LJI.'E IIITO SP
~ WII A.OCllH ISET ImSl: FOR SiH

1U SIH ;$<1 5fECIAL tRiiUSFER BIT
U P<lP ;DO >!IJ ~1lPS

12 RRC ;5!:T 1.1' A
13 51" ; GO 8IU 10 1i000MAL KOOf
14 LXI H.OOiI~~ ;ro.~ HL
15 DAD 51' ;(000 SlAtK
1G ~l;IIG ,PUTSlACl<INHAIIDL
17 Sl'Hl il':.ES10!=;i: sw:r
1S LYoI H.liGT ;M SOTlO" (J!SPt.ff{ III H ANO L
1!1 l!CHG i$l.lt'1P R:~:$lLF;S
21 ItIlY R,D ;PlII HI,H ORDER m R
21 ClIP H ;SEE IF ~IE AS II
22 JNZ KPTK ;IF NOT LEA~i
2l nov A,E ;M LIXI or<DER III A
24 ClIP L ;ICE Ir SIR~ AS L
25 Jill 1(MJ(i IF HOT L£FtVE
i/6 LY.I H.rroIS ,LQAll H Me L UlTH TOP OF =<.£N H<1K1P.\·
27 KPTY.: ,SliD (lIFftO ;PUT lAO: Cl.lRIDIT AD~
2S Wli F1.1Si1 ; GET P'f€/K B'r'i£
29 51n ,sa Ih'TERRUPT MIl(

38 POP D ,1l!D e Ail!> E ..
11 POP H ;Iifr H [lID L
12 POP ~ ;GET A RIir> FU<'JS
n EI ; EI:rru INTERRLI'T5
34 RCT ;GO BnCK

TOTAL ClOCl(C\'ClES • 65B (I!OfIST CflSE)

NITH R 6.1~4 ItiZ CRYSTAL TlITAL 1IHE ,TO FILL

!OW ilI'FER ON = = 650 • , 32S • 2U 25 ftICROSEro'1)5

The 8275 CRT controller is ideal for implementing
the row buffer approach because the row buffer is
contained on the device itself. In fact, the 8275
contains two 80-byte row buffers. The presence of
two row buffers allow one buffer to be filled while
the other buffer is displaying the data. This dual row
buffer approach enhances CPU performance even
further.

4.2 USING THE 8275 WITHOUT DMA

Until now the process of filling the row buffer has
only been alluded to. In reality, a DMA technique is
usually used. This approach was demonstrated in
AP-32 where an 8257 DMA controller was mated to
an 8275 CRT controller. In order to minimize
component count, this design eliminates the DMA
controller and its associated circuitry while replac­
ing them with a special interrupt-driven transfer.

Figure 4-2. Routine To Load 8275's Row Buffers

The only real concern with using the 8275 in an
interrupt-driven transfer mode is speed. Eighty
characters must be loaded into the 8275 every 617
microseconds and the processor roust also have time
to perform all the other tasks that are required. To
minimize the overhead associated with loading the
characters into the 8275 a special technique was
employed. This technique involves setting a special

2·448 AF1W1304A

APPLICATIONS

transfer bit and executing a string of POP instruc­
tions. The string of POP instructions is used to
rapidly move the data from the memory into the
8275. Figure 4.2 shows the basic software structure.

In this design the 8085's SOD line was used as the
special transfer bit. In order to perform the transfer
properly this special bit must do two things: (I) turn
processor reads into I5ACK plus WR for the 8275
and (2) mask processor fetch cycles from the 8275, so
that a fetch cycle does not write into the 8275.
Conventional logic could have been used to imple­
ment this special function, but in this design a small
bipolar programmable read only memory was used.
Figure 4.3 shows a basic version of the hardware.

Ad
Wr

TRANSFER
BIT

=D-

An
Ml

(FETCH
CYCLE)

CE

Ao

Al

A2

A3

A4

BIPOLAR
PROM 8275 iiAcK

8275 Ad

8275 Wr

8275 Cs

Figure 4-3. Simplified Version of Hardware Decoder

At first, it may seem strange that we are supplying a
DACK when no DMA controller exist in the
system. But the reader should be aware that all Intel
peripheral devices that have DMA lines actually use
DACK as a chip select for the data. So, when you
want to write a command or read status you assert
CS and WR or RD, but when you want to read or
write data you assert DACK and RD or WR. The
peripheral device doesn't "know" if aD MA control­
ler is in the circuit or not. In passing, it should be
mentioned that DACK and CS should not be
asserted on the same device at the same time, since
this combination yields an undefined result.

This POP technique actually compares quite
favorably in terms of time to the DMA technique.
One POP instruction transfers two bytes of data to
the 8275 and takes 10 CPU clock cycles to execute,
for a net transfer rate of one byte every five clock
cycles. The DMAcontroller takes four clock cycles
to transfer one byte but, some time is lost in
synchronization. So the difference between the two
techniques is one clock cycle per byte maximum. If
we compare the overall speed of the 8085 to the

2·449

speed of the 8080 used in AP-32, we find that at 3
MHz we can transfer one byte every 1.67 micro­
seconds using the 8085 and POP technique vs. 2
microseconds per byte for the 2 MHz 8080 using
DMA.

5. CIRCUIT DESCRIPTION

5.1 SCOPE OF THE PROJECT

A fully functional, microprocessor-based CRT
terminal was designed and constructed using the
8275 CRT controller and the 8085 as the controlling
element. The terminal had many of the functions
found in existing commercial low-cost terminals and
more sophisticated features could easily be added
with a modest amount of additional software. In
order to minimize component count LSI devices
were used whenever possible and software was used
to replace hardware.

5.2 SYSTEM TARGET SPECIFICA nONS

The design specifications for the CRT terminal were
as follows:

Display Format
• 80 characters per display row
• 25 display rows

Character Format
• 5 X 7 dot matrix character contained within a

7 X 10 matrix
• First and seventh columns blanked
• Ninth line cursor position
• Blinking underline cursor

Special Characters Recognized

• Control characters

• Line feed
• Carriage Return
• Backspace
• Form feed

Escape Sequences Recognized

• ESC, A, Cursor up
• ESC, B, Cursor down
• ESC, C, Cursor right
• ESC, D, Cursor left
• ESC, E, Clear screen
• ESC, H, Home cursor
• ESC, J, Erase to the end of the screen
• ESC, K, Erase the current line

Characters Displayed
• 96 ASCII alphanumeric characters
• Special control characters

AFN-Ol304A

APPLICATIONS

CRT TERMINAL
SERIAL If)lPUT LINE

SYSTEM BUS

CHARACTE.R
GENERATOR ROM

Figure 5.1. CRT Terminal Block Diagram

Characters Transmitted
• 96 ASCII alphanumeric characters
• ASCII control characters

Program Memory
• 2K bytes of 2716 EPROM

Display/ Buffer/ Stack Memory
• 2K bytes 2114 static memory (4 packages)

Data Rate

• 9600 BAUD using 3MHz 8085

CRT Monitor
• Ball Bros TV-12, 12MHz B.W.

Keyboard
• Any standard un-encoded ASCII keyboard

Screen Refresh Rate

• 60 Hz

5.3 HARDWARE DISCRIPTION

A block diagram of the CRT terminal is shown in
Figure 5.1. The diagram shows only the essential
system features. A detailed schematic of the CRT is
contained in the Appendix. The terminal was
constructed on a simple 6" by 6" wire wrap board.
Because of the minimum bus loading no buffering of
any kind was needed (see Figure 5.2),

The "heart" of the CRT terminal is the 8085
microprocessor. The 8085 initializes all devices in
the system, loads the CRT controller, scans the
keyboard, assembles the characters to be trans-

2·450

Worst case bus loading:

Data Bus: 8275
8255A-5
8253"5
8253-5
8251A

2x 2114
2716
8212

20pf
20pf
20pf
20pf
20pf
10pf
12pf
12pf

114pf max

Only As - A15 are important since Ao - A7 are
latched by the 8212

Address Bus: 4x 2114 20pf
2716 6pf

26pf max

This loading assures that all components will be
compatible with a 3MHz 8085 and that no wait
states will be required

Figure 5-2. Bus Loading

mitted, decodes the incoming characters and deter­
mines where the character is to be placed on the
screen. Clearly, the processor is quite busy.

A .standard list of LSI peripheral devices surround
the 8085. The 825lA is used as the serial communi­
cation link, the 8255A-5 is used to scan the keyboard
and read the system variables through a set of

AFN-lll304A

APPLICATIONS

switches, and the 8253 is used as a baud rate
generator and as a "horizontal pulse extender" for
the 8275.

The 8275 is used as the CR T controller in the system,
and a 2716 is used as the character generator. To
handle the high speed portion of the terminal the
8275 is surrounded by a small handful of TTL. The
program memory is contained in one 2716 EPROM
and the data and screen memory use four 2114-type
RAMs.

All devices in this system are memory mapped. A
bipolar PROM is used to decode all of the addresses
for the RAM, ROM, 8275, and 8253. As mentioned
earlier, the bipolar prom also turns READs into
DACK's and WR's for the 8275. The 8255 and 8253
are decoded by a simple address line chip select
method. The total package count for the system is
20, not including the serial line drivers. If this same
terminal were designed using the MCS-85 family of
integrated circuits, additional part savings could
have been realized. The four 2114's could have been
replaced by two 8185's and the 8255 and the 2716
program PROM could have been replaced by one
8755. Additionally, since both the 8185 and the
2716 have address latches no 8212 would be needed,
so the total parts count could be reduced by three
or four packages.

5.4 SYSTEM OPERATION

The 8085 CPU initializes each peripheral to the
appropiate mode of operation following system
reset. After initialization, the 8085 continually polls
the 8251 A to see if a character has been sent to the
terminal. When a character has been received, the
8085 decodes the character and takes appropriate
action. While the 8085 is executing the above "fore­
ground" programs, it is being interrupted once every
617 microseconds by the 8275. This "background"
program is used to load the row buffers on the 8275.
The 8085 is also interrupted once every frame time,
or 16.67 ms, to read the keyboard and the status of
the 8275.

As discussed earlier, a special POP technique was
used to rapidly move the contents of the display
RAM into the 8275's row buffers. The characters are
then synchronously transferred to the character code
outputs CCO-CC6, connected to the character
generator address lines A3-A9 (Figure 5.3). Line
count outputs LCO-LC2 from the 8275 are applied
to the character generator address lines\AO-A2. The
8275 displays character rows one line at a time. The
line count outputs are used to determine which line
of the character selected by A3-A8 will be displayed.
Following the transfer of the first line to the dot
timing logic, the line count is incremented and the
second line of the character row is selected. This

2·451

process continues until the last line of the. row is
transferred to the dot timing logic.

The dot timing logic latches the output of ~the
character generator ROM into a parallel in,serial
out synchronous shift register. This shift register is
clocked at the dot clock rate (11.34 MHz) and its
output constitutes the video input to the CRT.

O.
A
T
A

,-___ -'C""HA"'-RClOCK. ___ ~

,-~

LCO-LC2 ~:::t:~==:j
LfNECOUlIIT

I

I
I

eo

2706
CHARACTER.
GENERATOR

ROM

A3- A8

I
I

___________ J

VIDEO

HPRIZ DR

VERT DR

Figure 5-3 Character Generator/Dot Timing Logic
. Block Diagram

Table 5-1

PARAMETER RANGE
.'

Vertical Blanking Time 900 Ilsec nominal

(VRTC)

Vertical Drive Pulsewidth 300 Ilsec .;;; PW .;;; 1.4 ms

Horizontal Blanking Time 111lsec nominal
(HRTC)

Horizontal Drive Pulsewidth 25 Ilsec .;;; PW .;;; 30 Ilsec

Horizontal Repetition Rate 15,750 ±500 pps

5.5 SYSTEM TIMING

Before any specific timing can be calculated it is
necessary to determine what constraints the chosen
CRT places on the overall timing. The requirements
for the Ball Bros. TV-12 monitor are shown in Table
5.1. The data from Table 5.1; the 8275 specifications,
and the system target specifications are all thai is
needed to calculate the system's tilJ1ing.

1--7 DDTS-i

LINE 1_ •••••••••••••••••••••
eOO(lOO •• Ol)floC' •• n(lr (Jr..
• 0 0 0 0 0 •• n () () 0 (' •• " (' (1 l' (' •

• 0 (' 0 () 0 •• ') () 0 (\ 0 •• n " (' C' (l •

___ .00000 •• 00000 •• 00000e

• 0 0 (' 0 0 •• " 0 (' (' (' •• ~' n (' (1 (' •

• 0 0 0 (. :) •• (1 (' 0 (J. C •• (" ((' \' " •
UNDERLINE • 0 (\ Q 0 (' •• (1 (1 (' (l (' •• l' (' (' ,- c· •

POSITION ~ .00 (' 0 (' •• <' (' (' t, <, •• " (> <' ('.(' •

LINE 10 _ ••••••••••••••••••••• --..- --..- --..­
CHARACTER 1 CHARACTER 2 CHARACTER 3

Figure 5-4. Row Format

AFN-Ol304A

APPLICATIONS

First, let's select and "match"'afew numbers. From
our target specifications, we see that each character
is qispillyed on a 7 X 10 field, and is forIl\ed by a 5 X
7 Jh>t 'matrix (Figure 5.4). The, 8275 allows the
verti¥1I.1 retrace time to be only an integer multiple of

CHARACTER

COUNTER
STATE

141ii.9n;:------611nl -----+I

~I
DOT

CLOCK 44.9ft.

QA I I
14S163 I

COUNTER I I

~ ~ri-I __ ' __ ' __ 'i-II-:-I_--

CHARACTER ~rl : 15:,rMAX.

CLOC~1~lilIl .
~'--~------~TI:I----~

8215
CHAR.ACTER

OUTPUT
(CCO·CC6)

I

FIRST CHARACTER

the horizontal character line. This means that the
total number of horizontal lines in a frame equals 10
times the number of character lines plus the vertical
retrace time, which is programmed to be either I, 2,
3, or 4 character lines. Twenty-five display lines

I

SECOND CHARACTER THIRD CHARACTER

SHIFT
REGISTER
OUTPUT

FIRST CHARACTER VIOEO OUT SECOND CHARACTER VIDEO OUT

(74186) I
11.34 MHz

r;)~
~f '*X>+-"---i

33011

D
A
T
A

B
U
S

YSP
(6215)

LTEN
(8275)

HRTC
(8215)

VRTC
(8215)

Figure 5-5. Dol Timing Logic

2-452

+V

VIDEO OUT

CRT
MONITOR

HORI·
ZONTAL
DRIVE'

VERTICAL
DRIVE

AFN'()1304A

, APPLICATIONS

require 250 horizontal lines. So, if we wish to have
a horizontal frequency in the neighborhood of
15,750 Hz we must choose either one or two
character lines for vertical retrace. To allow for a
little more margin at the top and bottom of the
screen, two character lines were chosen for vertical
retrace. This choice yields a net 250 + 20 = 270
horizontal lines per frame. So, assuming a 60 Hz
frame:

60 Hz * 270 = 16,200 Hz (horizontal frequency)

This value falls within our target specification of
15,750 Hz with a 500 Hz variation and also assures
timing compatibility with the Ball monitor since, 20
horizontal sync times yield a vertical retract time of:

61.7 microseconds X 20 horizontal sync times =
1.2345 milliseconds

This number meets the nominal VRTC and vertical
drive pulse width time for the Ball monitor. A
horizontal frequency of 16,200 Hz implies a
I I 16,200 = 61. 73 microsecond period.

It is now known that the terminal is using 250
horizontal lines to display data and 20 horizontal
lines to allow for vertical retrace and that the
horizontal frequency is 16,200 Hz. The next thing
that needs to be determined is how much time must

be allowed for horizontal retrace. Unfortunately,
this number depends almost entirely on the monitor
used. Usually, this number lies somewhere between
15 and 30 percent of the total horizontal line time,
which in this case is 1/16,200 Hz or 61.73
microseconds. Since in most designs a fixed number
of characters can be displayed on a horizontal line, it
is often useful to express retrace as a given number
of character times. In this design, 80 characters can
be displayed on a horizontal line and it was
empirically found that allowing 20 horizontal
character times for retrace gave the best results. So,
in reality, there are 100 character times in every
given horizontal line, 80 are used to display
characters and 20 are used to allow for retrace. It
should be noted that if too many character times are
used for retrace, less time will be left to display the
characters and the display will not "fill out" the
screen. Conversely, if not enough character times
are allowed for retrace, the display may "run off' the
screen.

One hundred character times per complete horizontal
line means that each character requires

61.73 microseconds 1100 character times = 617.3
nanoseconds.

If we multiply the 20 horizontal retrace times by the

CHARACTER
CLOCK

I 1 1 H'," 1 H'," I 1 H;~C

HATC
\827S)

CHAR CODE
\8275)

LINE COUNT
(8275]

I
LATCH
CHAR3

JHl--fl-D
LATCH I

CHAR81l

SHIFT--r--+-t-+-+-t--+--1I---r---t-+-t--:+-:-+-+-t-\
REGISTER LOAD LOAO LOAD

LOADING CHf" CH." CHf" CH.,,,

VIDEO
OUTPUT VIDEO

FOR80lh

CHiR

Figure 5-6. CRT System Timing

2·453 AFN'{)l304A

APPLICATION.S

617.3 nanoseconds needed for each character, we find

617.3 nanoseconds * 20 retrace times = 12.345
microseconds

This value falls short of the 25 to 30 microseconds
required by the horizontal drive of the Ball monitor.
To correct for this, an 8253 was programmed in the
one-shot mode and was used to extend the horizontal
drive pulsewidth.

N ow that the 617.3 nanosecond character clock
period is known, the dot clock is easy to calculate.
Since each character is formed by placing 7 dots
along the horizontal.

DOT CLOCK PERIOD = 617.3 ns
(CHARACTER CLK PERIOD)I 7 DOTS
DOT CLOCK PERIOD = 88.183 nanoseconds
DOT CLOCK FREQUENCY = II PERIOD =
11.34 MHz

Figures 5.5 arid 5.6 illustrate the basic dot timing
and the CRT system timing, respectively.

6. SYSTEM SOFTWARE

6.1 SOFTWARE OVERVIEW

As mentioned earlier the software is structured on a
"foreground-background" basis. Two interrupt­
driven routines, FRAME and POPDAT (Fig. 6.1)
request service every 16.67 milliseconds and 617
microseconds respectively, frame is used to check
the baud rate switches, update the system pointers
and decode and assemble the keyboard characters.
POPDAT is used to move data from the memory
into the 8275's row buffer rapidly.

The foreground routine first examines the line-local
switch to see whether to accept data from the
USART or the keyboard. If the terminal is in the
local mode, action will be taken on any data that is
entered through the keyboard and the USART will
be ignored on both output and input. If the terminal
is in the line mode data entered through the
keyboard will be transmitted by the USART and
action· will be taken on any data read out of the
USART.

When data has been entered in the terminal the
software first determines if the character received
was an escape, line feed, form feed, carriage return,
back space, or simply a printable character. If an
escape was received the terminal assumes the next
received character will be a recognizable escape
sequence character. If it isn't no operation is
performed.

After the character is decoded, the processor jumps
to the routine to perform the required task. Figure
6.2 is a flow chart of the basic software operations;
the program is listed in Appendix 6.8.

2·454

SWITCHED
CHANGED

EXIT

EXIT

Figure 6-1. Frame and Popdat Interrupt Routines

AFN.()1304A

APPLICATIONS

LINE

Figure 6-2. Basic Terminal Software

6.2 SYSTEM MEMORY ORGANIZATION

The display memory organization is shown in
Figure 6.3. The display begins at location 0800H in
memory and ends at location OFCFH. The 48 bytes
of RAM from location OFDOH to OFFFH are
used as system stack and temporary system storage.
2K bytes of PROM located at OOOOH through
07FFH contain the systems program.

6.3 MEMORY POINTERS AND SCROLLING

To calculate the location of a character on the
screen, three variables must be defined. Two of these
variables are the X and Y position of the cursor
(CURSX, CURSY). In addition, the memory
address defining the top line of the display must be
known, since scrolling on the 8275 is accomplished
simply by changing the pointer that loads the 8275's
row buffers from memory. So, if it is desired to
scroll the display up or down all that must be
changed is one 16-bit memory pointer. This pointer
is entered into the system by the variable TOPAD
(TOP Address) and always defines the top line of the
display. Figure 6.4 details screen operation during
scrolling.

2-455

1st Column 2nd Column 80th Column

ROW 1 0800H 0801 H 084 FH
ROW2 0850H 0851 H 089FH
ROW.3 08AOH 08A1H 08EFH
ROW4 08FOH 08F1H 093FH
ROW5 0940H 0941 H 098FH
ROW6 0990H 0991 H 090FH
ROW7 09EOH 09E1 H OA2FH
ROW8 OA30H OA31H OA7FH
ROW9 OA80H OA81H•... OACFH
ROW 10 OADOH OAD1 H OB1 FH
ROW 11 OB20H OB21 H OB6FH
ROW 12 OB70H OB71H OBBFH
ROW 13 OBCOH OBC1 H OCOFH
ROW 14 OC10H OC11 H OC5FH
ROW 15 OC60H OC61H OCAFH
ROW 16 OCBOH OCB1 H OCFFH
ROW 17 ODOOH OD01 H OD4FH
ROW 18 OD50H OD51 H OD9FH
ROW 19 ODAOH ODA1H ODEFH
ROW 20 ODFOH ODF1 H OE3FH
ROW 21 OE40H OE41H OE8FH
ROW22 OE90H OE91 H OEDFH
ROW 23 OEEOH OEE1 H OF2FH
ROW 24 OF30H OF31 H OF7FH
ROW 25 OF80H OF81 H OFCFH

Figure 6-3. Screen Display After Initialization

Subroutines CALCU (Calculate) and ADX (ADd X
axis) use these three variables to calculate an
absolute memory address. The subroutine CALCU
is used whenever a location in the screen memory
must be altered.

6.4 SOFTWARE TIMING

One important question that must be asked about
the terminal software is, "How fast does it run". This
is important because if the terminal is running at
9600 baud, it must be able to handle each received
character in 1.04 milliseconds. Figure 6.5 is a
flowchart of the subroutine execution times. It
should be pointed out that all of the times listed are
"worst case" execution times. This means that all
routines assume they must do the maximum amount
of data manipulation. For instance, the PUT routine
assumes that the character is being placed in the last
column and that a line feed must follow the placing
of the character on the screen.

How fast do the routines need to execute in order to
assure operation at 9600 baud? Since POPDAT
interrupts occur every 617 microseconds, it is
possible to receive two complete interrupt requests
in every character time (1042 microseconds) at 9600

AFN-Dl304A

APPl:;ICATIONS

ROW1 0800H 0801 H , .. 084FH ROW2 0850H 0851 H 089FH
ROW2 0850H 0851H 089FH ROW3 08AOH 08A1H 08EFH
ROW3 08AOH 08A1H .. .' 08EFH ROW4 08FOH 08F1 H 093FH
ROW4 08FOH 08F1H 093FH ROW5 0940H 0941H 098FH
ROW5 0940H 0941H 098FH ROW6 0990H 0991H 090FH
ROW6 0990H 0991 H 090FH ROW7 09EOH 09ElH OA2FH
ROW7 09EOH 09E1 H OA2FH ROW8 OA30H OA31H OA7FH
ROW8 OA30H OA31H OA7FH ROW 9' OA80H OA81H OACFH
ROW9 OA80H OA81H ; ... OACFH ROW 10 OADOH OAD1 H OB1 FH
ROW 10 OADOH OAD1 H OB1 FH ROW 11 OB20H OB21H OB6FH
ROW11 OB20H OB21H OB6FH ROW 12 OB70H OB71H OBBFH
ROW 12 OB70H OB71H OBBFH ROW 13 OBCOH OBC1 H OCOFH
ROW13 OBCOH OBC1H OCOFH ROW 14 OC10H OC11 H OC5FH
ROW 14 OC10H OC11H OC5FH ROW 15 OC60H OC61 H OCAFH
ROW 15 OC60H OC61 H OCAFH ROW 16 OCBOH OCB1H OCFFH
ROW 16 OCBOH OCB1H ~ ... OCFFH ROW 17 ODOOH OD01H OD4FH
ROW 17 ODOOH OD01H OD4FH ROW 18 OD50H OD51H OD9FH
ROW 18 OD50H OD51H OD9FH ROW 19 ODAOH ODA1H ODEFH
ROW 19 ODAOH ODA1H ODEFH ROW 20 ODFOH ODF1 H OE3FH
ROW 20 ODFOH ODF1 H OE3FH ROW 21 OE40H OE41H OE8FH
ROW 21 OE40H OE41 H " ... OE8FH ROW 22 OE90H OE91 H OEDFH
ROW22 OE90H OE91 H OEDFH ROW 23 OEEOH OEE1H OF2FH
ROW 23 OEEOH OEE1H OF2FH ROW 24 ·OF30H OF31H OF7FH
ROW 24 OF30H OF31 H '" ... OF7FH ROW 25 OF80H OF81 H OFCFH
ROW 25 OF80H OF81 H OFCFH ROW 1 0800H 0801 H 084FH

After Initialization After 1 Scroll

ROW3 08AOH 08A1 H 08EFH ROW4 08FOH 08F1 H 093FH
ROW4 08FOH 08F1H 093FH ROW5 0940H 0941 H 098FH
ROW5 0940H 0941 H 098FH ROW6 0990H 0991H 090FH
ROW6 0990H 0991 H 090FH ROW7 09EOH 09E1 H OA2FH
ROW7 09EOH 09E1 H OA2FH ROW8 OA30H OA31H OA7FH
ROW8 OA30H OA31H OA7FH ROW9 OA80H OA81 H , OACFH
ROW9 OA80H DA81 H OACFH ROW 10 OADOH OAD1 H OB1 FH
ROW 10 OADOH OAD1H OB1FH ROW 11 OB20H OB21H OB6FH
ROW 11 OB20H OB21H OB6FH ROW 12 OB70H OB71H OBBFH
ROW 12 OB70H OB71H OBBFH ROW 13 OBCOH OBC1 H OCOFH
ROW 13 OBCOH OBC1 H OCOFH ROW 14 OC10H OC11H OC5FH
ROW 14 OC10H OC11H OC5FH ROW 15 OC60H OC61H OCAFH
ROW 15 OC60H OC61 H OCAFH ROW 16 OCBOH OCB1H OCFFH
ROW 16 OCBOH OCB1H OCFFH ROW 17 ODOOH OD01H OD4FH
ROW 17 ODOOH OD01H OD4FH ROW 18 OD50H OD51H OD9FH
ROW 18 OD50H OD51H OD9FH ROW19 ODAOH ODA1H ODEFH
ROW 19 ODAOH ODA 1 H ODEFH ROW 20 ODFOH ODF1H , OE3FH
ROW 20 ODFOH ODF1 H OE3FH ROW 21,' OE40H. OE41 H OE8FH
ROW21 OE40H OE41H OE8FH ROW 22 OE90H OE91 H OEDFH
ROW 22 OE90H OE91H OEDFH ROW 23. OEEOH OEE1H .. , OF2FH
ROW 23 OEEOH OEE1 H ; OF2FH ROW 24 OF30H OF31 H OF7FH
ROW 24 OF30H OF31 H OF7FH ROW 25 OF80H OF81 H OFCFH
ROW 25 OF80H OF81 H ; OFCFH ROW 1 0800H 0801 H 084FH
ROW1 0800H 0801 H '" .. 084FH ROW2, 0850H 0851H 089FH
ROW2 0850H 0851H 089FH ROW3 08AOH 08A1H 08EFH

After 2 Scrolls After 3 Scrolls

Figure 6-4. Screen Memory During Scrolling

2-456 AFN-Dl304A

APPLICATIONS

baud. Each POPDAT interrupt executes in 211
microseconds maximum. This means that each
routine must execute in:

By adding up the times for any loop, it is clear that
all routines meet this speed requirement, with the
exception of ESC J. This means that if the terminal
is operating at 9600 baud, at least one character time
must be inserted after an ESC J sequence. 1042 - 2 * 211 = 620 microseconds

r r i
esc A esc B esc C

r

(START·)

I
INITIALIZE

P011
53p.s

I
CHREC

43p.S

r t i r
esc D esc E esc H esc J esc K

78.7p.s 324p.s 107p.s 119p.s 316p.s 105p.s 862p.s 310p.s

Figure 6-5. Timing Flowchart

2·457

r r r
LF CR OUT

306p.s 42p.s 456

AFN'()1304A

I)l

"'" ~

'\;
~

~

WI

11.34 MHz
XTAL 10pF

rUt I +.
,SHEET, I .>on '>on I I I I I I
SHEET 1 1 31 41 51 11 101

~ l.oo.r c:.:.: 1 I CLR ABC" IC.8
SHEET 1 I ZIClk 11) i3J (4) (5) ITI IIDJ 0 6

SHEET. (') (2) (3) (4) [74.63
LO QAQCQD ":'

SHEET 1 7404 7404 9 ~4 12 1 .
SHEET 1 DOT osc 13

SHEET 1 Ie 12 7410

SHEET 1 .

SHEET 1 12

SHEET 1 DOT CLOCK

SHEET 1 Ie 10 7474

SHEET. 4CLK • 0 '''SET~
=12 9

Z1 Z8 Izg .. 31 32 33 34 J 19 18 11 16 15 14 13 12 le15 7 Ie 1& -

\I DJ 06 IIti °4 Da ~ 0, DO I 21 07°0 °5 04 Dallz 0, DO 129 22 n 19 14 elK
cc Wii~ - AD CC6r---- Ag "llr----" J5

iii - 9 CCs~ Aa UI~ G LOADP--+------'

CS~TOD5IC3 TOIC307~RD CC4~A7 DzHF
o-:--<T-- 14 'Co .. 9 . 10 Cc,~.. .,f!L-!!!,
......... cr-- 15 PC A 8 1.91&303""":< WR CC2~ AS 2716. 04~ 0 74168
~. :...-...... 1 1 24 4 . 15 4
...-v uo----4>--1Hr-r-t-t-',6 ~ le17 35 TO IlESETOUT8OB5 " CG, ~ A4 11s~ C

...-..... 17 PCa 8255A..s 'flo 18 Rlo T01C3D6....-== CS 8275 Ceui!L-J. Aa Da~ 8
cO" __ "19 IC.3 L2 i1-----! ., 0, f!l----! A

t--<.T PC4 P8, Rl, .• ___ e:
~C 12 PCs P8Z 21 RlZ TO 1C3 D4 ----- BACK L1 .L.-.2 Al

-... 11,'11 P8 21 Rl LOtf----!!.Ao
-<.T __ 3' TO /C1'S,..'......l DRO L ____ .J 0,

t--<.T 10 PC7 PB4 Z2 IL4 13

BAUD RATE SENSE I'Bfi 23 RLS , ..-...M HATC 7 4 DO O{I 2 TO GATE 0
'::" SWITCHES AND V 2& 24 Rl TO lel RST S.5 ---- IRQ 8 9 8253 PG 1+ f'

LINE-LOCAL CC......a PBa 6 VRTC Rl CLK

SWITCH ~ P~ 25 f Rl7 TOIL1DPIN5~CClK LTEN~ +---------+----' "
-=- PAoPA,PAtPAaP~PA5PAaPAJ VSp35 ~

" 3~ :t J ~+ ~+ ~+ 'J IO::~ IC," ~ +.
SLoIiLrSL2SL3S~SLfiSLeSL7 KEYBOARD ~ T'

KEYBOARD SCAN LINES _ 12 02 ~ 1 --
RETURN LINES 9 CLK Ie 12

7410

L.-__ ,"I3~ID3 fJa 14 IC 12 . +5

~ 7410 i
74175 ~404 n

) IC14 I ;>0 - •

CRT TERMINAL SCHEMATICS
IC11

TO CCLK
8275

TO CLKO
8~PG.1

VERTICAL DRIVE

VIDEO OUT

HORIZONTAL
DRIVE

»
"'tI
"'tI
C
n
.~
a
z
ell

.'Yrl
~~

APPLICATIONS

2·459

'" u
~
::;

~ ..
. J:

"'u
.!! en
[~ ... -
c~ ..

l­
I­
a:
U

AFN.()l304A

APPLlCATIONS

Appendix 7.2
KEYBOARD INTERFACE

The keyboard used in this design was a simple
unencoded ASCII keyboard. In order to keep the
cost to a minimum a simple scan matrix technique
was implemented by using two ports of an 8255
parallel 110 device.

When the system is initialized the contents of the
eight keyboard RAM locations are set to zero. Once
every frame, which is 16.67 milliseconds the contents
of the keyboard ram is read and then rewritten with
the contents of the current switch matrix. If a non­
zero value of one of the keyboard RAM locations is
found to be the same as the corresponding current
switch matrix, a valid key push is registered and

SPACE BAR

action is taken. By operating the keyboard scan in
this manner an automatic debounce time of 16.67
milliseconds is provided.

Figure 7.2A shows the actual physical layout ofthe
keyboard and Figure 7.2B shows how the individual
keys were encodedc'On Figure 7.2B the scan lines are
the numbers on the bottom of each key position and
the return lines are the numbers at the top of each
key position. The shift, control, and caps lock key
were brought in through separate lines of port C of
the, 8255. Figur(f 7.3 shows the basic keyboard
matrix.

In order to guarantee that two scan lines could not
be shorted together jf two or more keys are pushed
simultaneously, isolation diodes could be added as
shown in Figure 7.4.

/

Figure 7-2A. Keyboard Layout

TOP NUMBER = RETURN LINE

BOTTOM NUMBER = SCAN LINE

Figure 7-2B. Keyboard Encoding

2·460 AFN'()1304A

BIT

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

NOTE:

APPLICATIONS

Appendix 7.3
ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

CONTROL
CHARACTERS

000 001

@

NUL DLE

A lOCI
SOH

B
STX DC2

C
ETX DC3

0
EOT DC4

E
ENQ NAK

F
ACK SYN

: :
: B

<: :~ : :' :~> CAN

I
HT EM

:::::: :::::::::::::::i:::::::
: ~:::::~::R:::::::::: : SUB

p

Q

R

S

T

u

v

W

x

Y

z

K ::::::: \:::,
VT

L I
FF FS

:::::::::::::::::::::~::.
GS ::::: : : :

N A
SO RS

0
Sl us -

010

SP

!

..

$

%

&

(

)

.
+

I

DISPLAY ABLE
CHARACTER

011 100
101 110

</J @ p

I A Q A

2 B R B

3 C S C

4 D T 0

5 E U E

6 F V F

7 G W G

8 H X H

9 I Y I

: J Z J

K [K

< L \ L

- M 1 M

> N A N

? 0 - 0

111 010 011

P

Q

R

S

T

U

V

w

X

Y

Z

ESCAPE
SE~UENCE

100
101

t A

+ B - C - 0

CLR E

HOME H

EOS I

EL J

Shaded blocks functions terminal will react to. Others can be gener~ted but are iqnored up on reCcfpt.

2·461

110 111

AFN-01304A

APPLICATIONS

S~ANLINES

0 2 3 4 5 6 7
+5

10K

0

10K

1

10K

2 en w 10K Z
::J

3 z
a:
::;) 10K
I-
W a: 4

10K

5

10K

6

10K

7

Figure 7-3. Keyboard Matrix

Appendix 7.4
PROM DECODING

As stated e.arlier, all of the logic necessary to convert
the 8275. into a non-DMA type of device was
performed by a single small bipolar prom. Besides
turning certain processor READS into DACKS and
WRITES for. the 8275, this 32 by 8 prom decoded

. addresses for the system ram, rom, as well as for the
8255 parallel IjOp6rt.

Any.bipolar prom that has a by eight configuration
could function in this application. This particular
device was chosen simply because it is the only "by
eight" prom available in a 16 pin package. The
connection of the prom is shown in detail in Figure
7.5 and its truth table is shown in Figure 7.6. Note
that when a fetch cycle (M I) is not being performed,
the state of the SOD line is the only thing that
determines if memory reads will be written into the
8275's row buffers. This is done by pulling both
DACK and WRITE low on the 8275.

Also note that all of the outputs of the bipolar prom
MUST BE PULLED HIGH by a resistor. This
prevents any unwanted assertions when the prom is
disabled.

2-462

SCAN LINES

10k
--------~r--J------_r--J-----~~5V

RETURN LINES

10k
----------r--J------_r--J-----~~5V

Figure 7-4. Isolating Scan Lines With Diodes

AFN-Ol304A

A LI(;ATlON5

(Rd' Wr) . A1a Appendix 7.5
CHARACTER GENERATOR

ENABLE
As previously mentioned, the character generator

00 CE2716
used in this terminal is a 2716 or 2758 EPROM. A
1 K by 8 device is sufficient since a 128 character 5 by

SOD Au 01 CE2114 7 dot matrix only requires 8K of memory. Any
(8065) O8OOH·OBFFH

"standard" or custom character generator could
Al0 Al 02 CE2114 have been used.
(6085) OCOOH·OFFFH

The three low-order line count outputs (LCO-LC2)
All A:! 03 Wi from the 8275 are connected to the three low-order
(6085) 6275 address lines of the character generator and the

A12 ~ 04 OACK
seven character generator outputs (CCO-CC6) are

(8065) 6275 connected to A3-A9 of the character generator. The
output from the character generator is loaded into a

Ml ~ 05 Ci shift register and the serial output from the shift
(6085) 6255 register is the video output of the terminal.

Ml=SO'Sl 06 Ci Now, let's assume that the letter "E" is to be
6275 displayed. The ASCII code for "E" is 45H. So, 45H

VCC VCC is presented to address lines A2-A9 of the character
07 iii)

GNO GNO 6275 generator. The scan "lines will now count each line
from zero to seven to "form" the character as shown

Figure 7-5. Bipolar Prom (825123) Connection
in Fig. 7.7. This same procedure is used to form all
128 possible characters.

It should be obvious that "custom" character fonts

I~ If! If! ~ 0::
could be made.just by changing the bit patterns in

s: J: ..J the character generator PROM. For reference,
'" ~ 0 "0 '" '" '" '" '" '" '" ~ Appendix.7.6 contains HEX dump of the ,... !;; '"

,... ,... a
:IE :(:(:(0 '" ~ '" '"

,...
!Il <XI <XI <XI <XI '" '" '" character generator used in this terminal.

A4 A3 A2 A1 AO 07 06 05 04 03 02 01 00

0 O' 0 0 0 1 1· 1 1 1 1 1 0
0 0 a 0 1 1 1 1 1 1 1 1 0
0 0 0 1 0 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 1 0 45H = 01000101
0 0 1 0 a 1 1 1 1 1 1 0 1
0 0 1 0 1 1 1 1 1 1 1 0 1 Address to Prom = 01000101 SL2 SL 1 SLO
a 0 1 1 0 1 1 1 1 1 0 1 1 = 228H - 22FH
0 0 1 1 1 1 1 1 1 1 0 1 1
0 1 0 0 0 1 0 1 1 a 1 1 1 Depending on state of Scan
0 1 0 0 1 1 0 1 1 0 1 1 1 lines.
0 1 0 1 0 0 0 1 1 1 1 1 1
0 1 0 1 1 0 0 1 1 1 1 1 1
0 1 1 0 0 1 1 0 1 1 1 1 1 Character generator output
0 1 1 0 1 1 1 0 ·1 1 1 1 1
0 1 1 1 0 1 1 0 1 1 1 1 1 Rom Address Rom Hex Output Bit Output· 0 1 1 1 1 1 1 0 1 1 1 1 1
1 0 0 0 0 1 1 1 1 1 1 1 0 228H 3E o 1 234 5 6 7

1 0 a 0 1 1 1 1 0 0 1 1 0 229H 02
1 0 0 1 0 1 1 1 1 1 1 1 0 22AH 02 1 0 0 1 1 1 1 1 0 0 1 1 0
1 0 1 0 0 1 1 1 1 1 1 0 1 22BH OE
1 0 1 0 1 1 1 1 0 0 1 0 1 22CH 02
1 0 1 1 0 1 1 .1 1 1 0 1 1 22DH 02 1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 0 0 0 1 0 1 1 0 1 1 1 22EH 3E
1 1 0 0 1 1 0 1 1 0 1 1 1 22FH 00
1 1 0 1 0 0 a 1 1 1 1 1 1
1 1 0 1 1 0 0 1 1 1 1 1 1

Bits 0, 6 and 7 are not used. 1 1 1 0 0 1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 0 1 1 1 1 1 • note bit output is backward from convention.
1 1 1 1 1 1 1 0 1 1 1 1 1

Figure 7-6. Truth Table Bipolar Prom Figure 7-7. Character Generation

2·463 AFN-ol:104A

APPLICATIONS

Appendix 7.6
HEX DUMP OF CHARACTER GENERATOR

: 100000000100003000300000000002J0000000000EF
: 100010020000000000000000000000002J0000000E0
:1000200000000000000000000000000000000000D0
:.10003000000000000000002J0002J000000000B000C0
:100040000000000000000000000000000000000080
: 10071500000000000000000000000000000000000A0
:10006000710330000000000000003000000001300090
:100070000000000000000000000000000000000080
:1030800000210000000000000000000000000000070
: 10009000000000000000082AIC081C2A08000000BC
: 1000A0000000000000000000000000000000000050
: 10008000000000000'2l00000000000000000000004 0
: 1000C0000000000000000000000000000000000030
:100000000000000000000000000000000000000020
: 1000E0000000000000000000000000000000000010
: 1000r'0000000000::H100000000(~0000000000000000
: 100Hl000000000000000000008080808080:10800BF
: Hl011030141414U00000000014143E:143E141400C3
: 10012000083C0A1C281E08000~261008r14323000')0
: 10013000040MA042A122C00080808000000000fil23
:100140000804020202040800081020202010080001
: 10015000082A1C081C2A0800000W~83E080800009D
: 100Hi00000000000000808040000003C000000003F
:100170000000000000001800002010080402000029
: 100180001C22322A26221C00080C080808081C0021
: 1001901l;:JIC22201C02023EeJ03E20101820221C00Br'
:1001A000101814123E1010003~021E2020221C00C7
: 1001B0003804021E22221C003E20100804 04 0413001
: 1001C0001C22221C22221C001C22223C20100E0079
: 1001D0000000080.002108~2l0000002l802l02M8'0804F3
: 1001E002l1008040204081002l002l03E003E00000059
: 1001F000214081020100804001C2220100808000821
: 1013200001C222A3AIA023C00081422223E22220.012
: 102l21002l1E24241C24241E02l1C22020202221C0074
: 10'2l220001E2424242424U;003E02020E02023E02l4C
: 1002302l03E02020E020202003C02023A22223C005E
: 100240002222223E222222001C08080808081C0044
: 10;32502l07020202020221C02l22120A01)0A122200EE
: 100262l02l0202020202023E0022362A2A2222220032
: 1002700022262A32222222001C22222222221C0'2l92
: 10028002l1E22221E020202001C2222222A122C00f.o'E
: 100290001E22221E0A1222003C02021C20201E00E5
: 1002A0003E08080808'tJ82l80(7!2222222222221C00F8
: 1002B0002222222222140800222222222A3522005E
: 1002C002l2222140814222202l222222140808082l0E4
: 1002D0003E20100804023£02l1C04040404041C0018
: H'l2l2E002l002l20403102000003820202020203800C0
: 1002r'000081C2A08r~80808002l0000000000'tJ00 7E 12
: 10030000099011000000000000003C203C223C004E
: 1003103002021A2622221E00000038048404380038
: 1003200020202C3222223C00000038248C84B8005B
: 100330003824040£040404 000000BC22223C203CAB
: 10034002l02021A26222222000802l08080808902l048
: 10{.l350002000202020A42418020222120A152200C3
: 1003600088080808080890000000362A2A22221307F
: 1003700000001A21)222222000002l1824242418003B
:.100380000~001E22221EQJ202000'(l1C22223C20200D
: 102l39002l00001A260202020000003B0418201C00R7
: 1003A00008081C080808902l00000222222324C0095
: 1003B0000000222222140800000022222A3E1400FB
: 1003C000000022140314220000002222223C20388F
: 1003000000003E1008043E0018888903888919002F
: 1003E00008080808080808080C90912190910D0051
: 1003~'00'~00008C2BB00100'0000'2J0I;}0000000000095

2·464 AFN-Ol304A

Appendix 7.7
COMPOSITE VIDEO

APPLICATIONS

In this design, it was assumed that the monitor
required a separate horizontal drive, vertical drive,
and video input. However, many monitors require a
composite video signal. The schematic shown in
Figure 7.8 illustrates how to generate a composite
video signal from the output of the 8275.

HRTC

The dual one-shots are used to provide a small delay
and the proper horizontal and vertical pulse to the
composite video monitor. The delay introduced in
the vertical and horizontal timing is used to "center"
the display. VRI and VR2 control the amount of
delay. IC3 is used to mix the vertical and horizontal
retrace and Q I along with the R I, R2, and R3 mix
the video and the retrace signal and provide the
proper DC levels.

7486

VIDEO }-----'\IV'v--'

1500

Appendix 7.8
SOFTWARE LISTINGS

Figure 7-8. Composite Video

ISIS-II 8~80/8085 MACRO ASSEMBLER, X108

LeX; CBJ

1800
1801
lS02
1803
1\001
1\000
6000
6001
6002
6003
1001
1000
1401
0800
0Fsa
0FOO
0'US
00sa
0FE0

0000 F3
0001 3lE00F
0004 21000S
0007 22E30F
000A 22E80F
000D 3E00
000F 32E10F
011112 32E20F
0015 32EB0F
01!1l8 32E70F
001B 32EA0F

SEQ SOURCE STATEMENl'

1 $M0085 MACROFILE
2 ;00 Il4A 8275 SOF'lWARE ALL I/O IS MF>tCRY MAPPED
43 ;SYSTEM ROM 0000H TO 07FFH

;SYSTEM RAM 0800H TO 0FFFH
65 ;8275 WRITE 100I/JH TO 13FFH

;8275 READ 1400H TO 17FFH
7 ;S255 READ/WRITE lS00H TO 1FFF
8 ;8253 ENABLED BY A14 .
9 '8251 ENABLED BY A15 ..

10 PORTA ~QU 1800H ;8255 PORT A ~ESS
11 PCRTB EQU 1801H ;S255 PORT B ADDRESS
12 POR'OC EQU 1802H ;8255 PORT C~ESS
13 CNWD55 EQU 1803H ;8255 CONl'ROL PORT AomESS
14 USTF EQU 0A001H ;8251 FLAGS
15 tE'ID EQU M.000H ;8251 DATA
16 CNT0 EQU 6000H '8253 COUNTER 0
17 CNT1 EQU 6001H i8253 COUNTeR 1
18 CNT2 EOO 6002H ;8253 COUN'rER 2
19 afrM EQU 6003H ;8253 MODE WCRD ,
20 CRTS EQU 1001H ;8275 CONl'ROL AOORESS
21 CRTM EQU 1000H ;8275 MODE AOORESS
22 0075 i 1401H ;8275 INTERRUPl' CLEAR
23 TPDIS 0800H ;TOP OF DISPLAY AA!'04 ,
24 B'IDIS E 0F80H 'BOTrOM OF DISPLAY RAM
25 lAST E 0FDIlH iFIRST BYTE AFTER DISPLAY
2267 CLNGTHLR. BO. r E ISH ;BOTrOM Y CLRSOR

E 00saH • LENGTH OF (!lIE LINE
28 STPl'R E 0FE0H i LOCATION OF STACK pOIN'rER
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

: START PROGRAM
;ALL ~RIABLES ARE INITIALIZED BEFCRE ANYrHING ELSE

hI ;DISABLE INTERRUPl'S
LXI SP&"TPI'R ;LOAD STACJ(POIN'l'ER
LXI !h.'ll'uIS 'LOAD H&L WITH TOP OF DISPLAY
SHLD'lUPAD iSET '1'OP = TOP OF DISPlAY
SHLD ClRAD ;STCRE THE CURRENT ADCRESS
MVI A,~0H 'ZERO A .
STA CUKSY iZERO CURSOR Y POINTER
STA CURSX ; ZERO CURSOR X POINTER
STA KSCHR ;ZERO KBD CHARACTER
STA USCHR ;ZERO tEART CHAR BUFFER
STA KEYllIIN ;ZERO KEY I:lOIIN

2·465

VRTC

COMPOSITE
ViDEO
OUT

AFN'{)1304A

· APPLICATIONS

III1111E jED0F 44 S~ KE'lUK ;ZERO KEYOK
11111121 EEfIIF 45 S~ ESCP ; ZERO ESCAPE '"
11111124C3981110 i~ JMP LPKBD ;JUMP AND SET EVERYTHING UP

48 ~THIS JUMP VECTCR IS lOCATED AT THE RST 5.5 LoCATION
49 ;OF THE 8085. IT IS USED TO READ THE 8275 S~TUS AND
50 ; READ THE KE'i8O\RD. THIS ROI11'INE IS EXECI11'ED ONCE EVERY
51 ;16.61)7 MILLISECCHE. ' ,
52 ;

1111112C, 53 ORG ' 002CH
1111112C C3671111 54 JMP FRAME

55
;TifIS ROUTINE IS lOCATED AT THE RST, 6.5 lDCATION OF THE 56

57 ; 8085 AND IS USED TO LOAD THE Il\TA TO BE DISPLAYED INTO
58 , ;THE 8275. THIS ROI11'INE IS EXECI11'ED ONCE EVERY 617 MICRCBEX:ONIl3.
59 bRG 011134 60 34H

0034 FS 61 POPDAT: PUSH PSW ; SAVE ' A AND FlAGS
1/11/135 ES 62 PUSH H ;SAVE HAND L
11103605 63 PUSH 0 ;SAVE 0 ANDE SIR fglll000 64 LXI ~p0000H ;ZERO H AND L

65 DAD ; PU'f STACK POIN'rER IN H AND L,
011138 m 66 XCy:; ; PUT STACK IN 0 AND E
003C2AE80F 67 LHLD CURAD ;G,ET POINTER
003F 19 68 SPHL ;PUT CURRENT LINE Im'O SP
011140 3EX:III 69 I4VI A,OC0H ;SET MASK FOR SIM
011142 3O 7O SIM

71 REP!' (~tV2)
72 POP
73 ENIl4

0043 E1 74+ POP H
111044 El 75+ POP H
""45 E1 76+ POP H
0"46 E1 77+ POP H
01/147 E1 78+ POP H
011148 E1 79+ POP H
"049 El 80+ POP H
"1II4A El 81+ POP H
004B E1 82+ POP H
01114C El 83+ POP H
"11140 E1 84+ POP H
""4E El 85+ POP H
"1II4F E1 86+ POP H
"I/ISfII E1 87+ POP H
0"51 E1 88+ POP H
0052 £1 89+ POP H
""53 E1 91/1+ POP H
""54 E1 91+ pop H
111"55 El 92+ Pop H
"1/156 E1 93+ Pop H
""57 E1 94+ POP H
""58 E1 95+ Pop H
"059 E1 96+ Pop H
00SA El 97+ Pop H
0058 E1 98+ Pop H ""sc El 99+ Pop H
"0SO E1 100+ POP H
""SE E1 101+ Pop H
0~SF El 1"2+ Pop H
0060 E1 1"3+ Pop H
"061 E1 104+ POP H
""62 El 105+ POP H
""63 E1 106+ Pop H
0"64 E1 1"7+" POP: H
01J6S E1 1"8+ POP H
0066 E1 11119+ POP H
0067 E1 11"+ POP H
011168 El 111+ pop H
111069 E1 112+' POP H
00GA E1 113+ POP H

;SET UP A , , 0068 0F 114 RRC "
IIII11GC 3111 115 SIM ' ;00 BACK TO IlKW4AL MODE
0060 21000111 116 LXI ~p1ll000H 'ZERO HL
0070 39 117 DAD, ;ADD STACK
0071 EB 118" xcy:; ; PUT STACK IN H AND L
0072 F9 119 SPHL ; RESTCRE STACK
""73 210""F 12" LXI H,LAST ;PlJ'f BOl'TQ'o1 DISPLAY IN H AND L
"11176 EB 121 xcy:; ;SWAP RroISTERS

RI~~ ~~ 122 MOO A,O • PUT HIGH ORDER IN A
123 CMP H JSEE IF SAME AS H

SS~ 9l'4"0 }24 JNZ KPTK 'IF NOr LEAVE
25 MOV A,E i PlJ'f W>I ORDER IN A

0070'BO 126 CMP L ;SEE IF SA~E AS L
007E C28400 127 JNZ KPTK -IF Nor LEAVE
0081 21"008 128 LXI ~lI1'mIS iLOAD H AND L WITH 'raP OF SCREEN "tEMOR't
0084 22E8"F 129 KPTK: SHW ;PUT BACK ClRREN'f ADmESS " ,
111"87 3E18 13" MVI A,18H ;SET MASK '
0089 30 131 SIM ;OUTPUT MASK

2,466 AFN-Ol304A

00SA 01
008B E1
00se F1
0080 Fa
008E C9

008F 3E18
0091 30
0092 C1
0093 D1
0094 E1
0095 F1
0096 FB
0097 C9

0098 32EF0F
009B 32F00F
009E 32F10F

011lA1 210008
011lA4 0lD00F
011lA7 3620
011lA9 23
00AA 7C
00AB B8
011lAC C2A 700
011lAF 70
00B0 B9
0081 C2A700

00B4 3E8B
00B6 320318

00B9 2101Ae
00SC 3680
00SE 3600
00C0 3640
00C2 00
00C3 36EA
0ee5 3605

00C7 3E32
0Be9 320360
00CC 3E32
0eeE 320060
0001 3EI!JI!J
0003 320060
0006 CDOCI!J 0
000g C3F900

000C 3Ae218
000F E60F
00E1 32EC0F
00E4 07
00E5 21C505
00E8 1601'.1
00EA 5F
00ES 19
0I!JEC 110360
00EF 3ES6
0I!JF1 12
00F2 1B
00F3 7E
00F4 12
00F5 23
00F6 7E
0I!JF7 12
00F8 C9

132
133
134
135
136
137
138
139
140 BYPASS:
141
142
143
144
145
146
147
148
149
150
151
152 LPKBD:
153
154
155
156
157
158
159
160
161 LOOPF:
162
163
164
165
166
167
168
169
1713
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200 S'IBAUD:
201
202
203
204
2115
208
207
21'.18
209
210
211
212
213
214
215
216
217
218

APPLICATICJNS

POP
POP
POP
EI
RET

D
H
PSW

,GET D AND E
,GET H AND L
-GET A AND FlAGS ;TURN ON IN'l'ERRUPl'S
,GO BACK .

~THIS IS THE EXIT ROU'rINE FOO Tfi~ FRAME INTERRUPf

~VI A,18H ;SET MASK
SIM ,Ol1l'PUT THE MASK
pop 8 'GET B AND C
POP D ;GED D AND E
POP H 'GET H AND L
POP PStI ;GET A AND FLAGS
EI ,ENABLE IN'rERRUPrS
RET ,GO BACK

;THIS CLEARS 'mE AREA OF RAM THAT IS USED
; FOR KEY8Q\RD DEBOUNCE.

§TA SHC~ ,ZERO SHIFT CON'rROL
STA RETLIN ;ZERO RETURN LINE
STA s::!NLIN ;ZERO SCAN LINE

!THIS ROU'fINE CLEARS TfiE. EN'rIRE ScREEN BY PU'rrING
;SPACE CODES (20H) IN EVERY LOCATION ON THE SCREEN.

LxI H,'lPDIS ;pu'r TOP OF SCREDI iN HL
LXI S,lAST ,pu'r B~ IN BC
r4VI M,20H • PUT SPACE IN M
INX H ; INCREMEN'r PO.llIl'rER
MOIJ A,H ,GE'f H
CMP B ;SEE IF SA.~E AS B
JNZ LOOPF ,IF NOT LOOP AGAIti/
MOIJ A,L ,GET L
CMP C ; SEE IF SA.'1E AS C
JNZ LOOPF ,IF NOT LOOP AGAIti/

;8255 INITIALIZATION

hvI A,88H
STA CNilD55

;8251 INITIALIZATION

LxI HUSTF
MVI M;80H
MVI M,00H
t'o1VI M,40H
NOP
rowI M, 0EAH
MVI ."',05H

;8253 INITIALIZATION

,MOVE 8255 COmROL WOOD IN'fO A
; PU'!' CON'rROL WOOD INTO 8255

;GET 8251 FlAG ADrRESS
;D\J'1l>1Y STORE 'ro 8251
;RESET 8251
;RESET 8251
'WAlT ;LOAD 8251 MODE WOOD
;LOAD 8251 COMMAND WOOD

f.wr. A/1.~H -CONTROL WOOD FOO 8253
STA CN11'1 ; pu'r CON'rROL WOOD IN'ro 8253
MVI A, 32H ,ISB 8253
STA CNT0 ,PUT IT IN 8235
MVI A,I'.I0H 'MSB 8253
STA CNT0 jPU'r IT IN 8253
CALL STBAUD ,00 DO BAUD RATE
J"1P IN75 ;GO 00 8275

;THIS ROU'rINE READ> 'nIE BAUD RATE S'v'lITCHES FRO>! RlRT C
;OF THE 8255 AND LOOKS UP THE NlMBERS NEEDED TO £.DAD
;THE 8253 TO PROIJIIE THE PROPER BAUD RATE.

to\ PORTC . ,READ BAUD RATE S'v'lITCHES
ANI 0FH ,STRIP OFF 4 MSB'S ..
STA BAUD 'SAVE IT
RLC jMOVE BITS OVER ONE PLACE
LXI H,BDLK ;GET BAUD RATE lDOK UP TABLE
MVI D,00H ;ZERO D
MOIJ E,A ;pu'r A IN E
0\0 0 ;GET OFFSET
LXI D,CN'n"I ;POlN'r DE TO 8253
MVI A,086H ,GET CON'l'ROL WOOD
STAX 0 'STORE IN 8253 .
DCX D ;POINT AT 12 C<ll.HrER
MOIJ A,M ,GET ISB BAUD RATE
STAX D ;PU'i' IT IN 8253
!~ H ;POIN'r AT MSS BAUD RATE
'"IVY A,M ;GET MSB BAUD RATE
STAX D ;PUT IT IN 8253
RET ;GO BACK

2·467 AFNo01304A

00F9 210110
00FC 3600
00FE 28
00FF 364F
0101 3658
0103 3689
01053600
0107 23
0108 COB803
0108 36E0
0100 3623

010F JE18
0111 30
0112 FB

0113 20
0114 E680
0116 C22101
0119 3A1'llA0
011C E602
011E C2SC01
0121 ~EA0F
0124 E6S0
0126 C23101
0129 3E00
0128 32ED0F
C/l12E C31301
0131 ~
0134 4F
0135 3AEBC/lF
0138 89
0139 CAl301
013C J2ED0F
01lF 32E70F
0142 2fiJ
0143 E68fiJ
fiJ145 CA4B01
0148 C34E02
fiJ14B 3A01A0
014E E601
fijI51' CM801
0153 JAE70F
0156 3200A0
0159 C30F01
01SC 3A00A0
01SF E67F
0161 32E70F
0164 C34E02

0167 F5
0168 E5
0169 05
016A C5
016B 3A0114

016E 2AE3f1JF
0171 22E80F

0174 3A0218
0177 E6f1JF
0179 47
017A 3A&:0F
017D B8
017E C4DC00

0181 3AEA0F
0184 E640
0186 C2C201
0189 CDSF01
01ac C38F00

219
220
221 IN75:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237 SETUP:
238
239

APPUCATIONS

;8275 INITL\!-IZATION

-bu ", H CRTS
MVIoex MH:00" ;RESE'r AND STOP DISPIAY

'H[.=1000" "!l..
fotVI M,4FH :SCREEN PARAMETER BY'rE 1
fotVI M,59H ;SCREEN PARAMETER BY'rE 2
MVI M,89H ;SCREEN PARAMETER BYTE 3
MVI _ M,0DDH :SCREEN PARAMETER BYTE 4
.INX H ·H[.=1001H .', ",
CALL LOClR, ;LOADTHE CUftSOO
MVI . M,0E0H :PRESET COUNrERS
MVI M, 23H' ; ;START DIS~AY

; ,. '. ' < : •

:THIS ROUrINE READS BorH 'rUE KE'lBQ.\RO AND THE USAAT
: AND TAKES PROPER ACTION mPENDING ON H(loI THE LINE-LOCAL
:SWITCH .IS, SET"

A,18H ;SET MAsK
'LOAD MASK

~2r ;READ THE USART
242 •

; ~LE IN'rERRUP'rS

241RXRDY: kIM 'GETLINE LOCAL
244 '. ANI 8IiJH~IS IT ON CR OFF?
245 JNZ KE'lINP ;LEAVE IF IT IS ON
246 Lm USTF;READ. 8251 FIAG)
247 ANI 02H'LooK AT RXRDY
248 JNZ OK? ; IF HAVE CHARACTER 00 TO WCRK
249 KEYINP:Ul\' . KEYIliN ;GET KEYSQ.\RO CHARACTER .
250 ANI 80H • IS IT THERE .
251 ~Z KEYS ;IF KEY IS PUSHED LEAVE'
252 MVI A,00H ;ZERO A " '. .
253 STA KE'iOK ;CLEAR KEIDK
254 'JJ'4p RXRDY ; WOP AGAIN
255 KEYS,: L!l.&. KEIDK ;WAS KEY ~
256 WJV ~LA 'SAVE A IN C
257 LD\ KtlCHR ~GET KEYBQ.\RO CHARACTER
258 CMP C ; IS IT THE SAME AS KE'iOK·
259,JZ RXRDY ;IF, SAME LOOP AGAIN'

~~~ , ~t~ ~~!~~OTITSAVE IT 
262 RIM ;GET .LINE LOCAL 
263 ANI 80H 'WHICH WAY 
264 JZ. 'l1WS ~LEAVE IF LINE 
265 ' JMP CHREC ;TIME TO OOSQltE WCRK 
266 TRANS: L!l.&. USTF ;GET USART . FLAGS 
267 ANI 0,lH ;REA~ TO TRANSMIT? 
268 JZ 'mANS ; LOOP IF NOT R~ 
269 LD\ USCHR ;GET CHARACTER 
270 . ,; STA USTD ;PU'J'IN USART 
271 'JMP SETUp ; LEAVE 
272 OK7: L!l.&. USTD ;READ USART 
273 ANI 07FH 'S'lRIP I'\SB 
274 STA USCHR ;P'J'r IT IN M&tCRY 
275 JMP CHREC ; LEAVE ' 

~~~ ~THIS ROUTINE CHECKS THE BAuD RATE SWITCHES, RES'E1s THE 
278 ;SCREEN POINTERS AND READS AND LOOKS UP THE KE'lSQ.\RD.

~~: FRAME:~SH PSW ;SAVE A AND FLAGS
281 PUSH H ;SAVE H AND I.
282 PUSH D ;SAVE 0 AND. E

'283 . PUSH B ;SAVE B ,AND C
~g~ LOA' tNT75 ;READ 8~75,TO CLEAR I~ERRUP'r

286 ~SET UP THE POIN'~~S'
~g~ 'LHLD' TOPAD
289 SHLD ClJW)
290

~~~ , 

293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 

~SET VP BAUD RATE 

LDA ,.. " PORTC 
ANI 0FH 
I'IJIl B 1 r..::. 
LIlI\. BAIJu 
CMP B _ 
CNZ, STBAUD 

. Loa. 
ANI 
JNZ 
CALL 
JMP 

"KEYIliN 
40H 
K'iOOWN 
RlJ(8 
BYPASS 

2-468 

'WA!) TOP INH AND I. '," 
;STORE TOP IN CURRENT ADmESS 

:READ BAUDAA"m 9IlITCHES-
:S"mIP OFF 4,-/o1SB'S . 
'SAVE IN B ' 
;crET BAUD RATE 
:SEE IF' SAME AS B 
: I.F ,~or ~. 00 SQIiIETHING 

:SEE IF A KEY IS IXJIlN 
·SET· THE FLAGS 
;IF KEY IS OOWN JUMP AR(lJND 
;GO READ THE KEYBQ.\RD . 
: LEAVE 

AFN-OI304A 



APPLIl;A1IUN::i 

018F 21EF0F 307 RDKB: LXI iWii€ON ;POIN'r HL AT KEYBOA.RD R»1 0192 3A0218 308 Loa. ;GET CONTROL AND SHIFT 0195 77 309 MOV I'I,A ;SAVE IN r'lElio\ORY 0196 3EFE 310 MVI ~FEH ;SET UP A 
0198 320018 311 LOOPK: STA TA ;OUTPUT A 019B 47 312 MOV ~TS ;SAVE A IN B 019C 3A0118 313 Loa. ;READ KEYBOA.RD 019F 2F 314 CMA ;INVERT A 
0lA0 B7 315 ORA A ;SET THE FLAG; 0lAl C2AF0l 316 JNZ SIWKEY ;LEAVE IF Key IS IX)NN 0lA4 78 317 Mev A,B ;GET SCAN LINE BACK 0lA5 07 318 RLC ; ROTATE IT OVER ONE 
0lAG 0.\9801 319 JC LOOPK ·00 I'r AGAIN 0lA9 3E00 320 MVI A,00H iZERO A 
0lAB 32EA0F 321 STA KEYONN ; SAVE KEY In\IN 
0lAE C9 322 RET ; LEAVE 
0lAF 23 323 SAVKEY: INX Ii ;POINT AT RETURN LINE 0lB0 2F 324 CMA ; pu'r A BACK 
01B1 77 325 MOV 1'1, A ;SAVE RETURN ,LINe IN "'&tOOY 0lB2 23 326 INX H ; POIN'r H AT SCAN LINE 01B3 70 327 MOV I'I,B ;SAVE SCAN LINE IN MEMORY 
01B4 3E40 328 MVI A~40H ;SET A . 01B6 32EA0f 329 STA K YOtlN ;SAVE KEY rotIN 0lB9 C9 330 RET ; LEAVE 0lBA 3E00 331 KYCH~: MVI Ae00H ;ZERO 0 0lBC 32EA0F 332 STA K YOtlN ;ResET KEY DCMN 0lBF C38F00 333 JMP BYPASS ; LEAVE 0lC2 2lF!0F 334 KYOOfIN: LXI H,SCNLIN ;GET SCAN LINE 0lC5 7E 335 MOV AM ; PUT SCAlIl LINE IN A 01C6 320018 336 sm roRTA ;OUTPUT SCAN LINE TO PORT A 0lC9 2B 337 DCX H ;POIN'f AT RETUl-lN LINE 0lCA 3A0118 338 Loa. PORTS ;GET RETURN LINES 0lCD B6 339 ORA M ; ARE TliEY THE SA1'lE? 01ce 2f 340 CMA ·INVERT A 01CF B7 341 ORA A ;SET FLAG; 0lD0 CABArill 342 JZ KYC~ ,IF DIFFERENr KEY HAS CHANGED 01D3 3AEA0F 343 Loa. KEYIl\'N ,GET KEY In\IN 0106 E60l 344 ANI 01H ;HAS 'rHIS BEEN ooNE BEFCRE? 0108 C28F00 345 JNZ BYPASS ,LEAVE IF IT HAS 0lOB 3A0118 346 Lo.\ PORTB ,GE'f RETURN LINE 'HOE 06FF 347 MVI B,0FFH ;GETREADY TO ZERO B 01E0 04 348 UP: INR B ,ZERO-B 0lEl riIF 349 RRC ;RorATE A 01E2 mE001 35ri1 JC UP ,00 IT AGAIN 0lE5 23 351 INX Ii ;POINT H AT SCAN LINES 0lE6 7E 352 MOV A,M ,GE'f SCAN LINES 0lE7 0EFf 353 MVI C,0FFH ,GET READY TO LOOP 01E9 0C 354 UPl: INR C ,START C COON'rING 0lEA 0F 355 MC ;ROTATE A 
riIlEB mE9"'1 356 JC UP1 ,JUI'\P 'fO LOOp rnEE 78 357 MOV A,B ,GE'r RETURN LINES 0lEF 07 358 RLC ; MOVE OVER ONCE 01F0 07 359 RLC ; MOVE OVER TWICE 0lF! 07 360 RLC ,MOVE OVER THREE TIMES 0lF2 Bl 361 ORA C ,OR SCAN AND RETUl-lN LINES 01F3 47 362 J'\QV ~A ,SAVE A IN B 01F4 3A02l8 363 Loa. RTe ,GE'r SHIFT CONrl-lOL 0lF7 E640 364 ANI 40H ,ISCONrl-lOL SET 0lF9 4F 365 MeV C~ ,SAVE A IN C riIlFA 3AEF0F 366 Loa. S ON ,GE'r SHIFT CONTROL 0lFO 57 367 MOV D,A ,SAVE A IN 0 0lFE E640 368 ANI 40H ,STRIP' CONTl-lOL 0200 Bl 369 ORA C ,SET BIT 0201 CAJE02 370 JZ cm'0NN ,IF SET LEAVE 0204 3A0218 371 Loa. PORTe ,READ IT AGAIN 0207 E620 372 ANI 20H ;STRIP SHIFT 0209 4F 373 MOV C,A ,SAVE A 02riIA 7A 374 MOV A,D ;GET SHIFT CONrl-lOL 020B E620 375 ANI 20H ;STRIP CONTl-lOL 020D Bl 376 ORA C ; ARE THEY 'rHE SAME? 020E CA4702 377 JZ SHD-IN ; IF SET LEAVE 0211 58 378 SCR: MOV E,B ; PUT 'rARGET IN E 
02F 1600 379 MVI D 00H ·ZEROD 02 4 210705 380 LXI H;KYLKUP ;GET LOOKUP TABLE 0217 19 381 DAD D ;GET OFFSET 0218 7E 382 MOV A,M ;GET CHARACTER 
0219 47 383 MOV 

't:6A ·PUT CHARACTER INS 02lA 3A0218 384 Lm RTe ;GE'f PORTe 0210 E610 385 ANI l0H ;STRIP BIT 02lF CA2E02 386 JZ CAPLOC ·CAPSWCK 0222 78 387 MOV ~HR ;GET A BACK 0223 32EB0F 388 STKEY: STA ;SAVE CHARACTER 0226 3ECl 389 MVI Ae001H ;SET. A 0228 32EA0F 390 sm K YOtlN ;SAVE KEY In\IN 022B C38F00 391 JMP BYPASS ; LEAVE 
392 

~ IF THE CAP LOCK BUTTON IS PUSHED THIS ROUTINE SEES IF 393 
394 ;THE CHARACTER 'IS BETWEEN 6lH AND 7AH AND IF IT IS THIS 

2"469 AFN-Ql304A 



APPLICATIONS 

395 ;RourINE ASSUMES THAT THE CHARACTER IS LO.oIERCASE ASCII 
396 ;AND SUBTRACTS 2'ffl, WHICH CONVERTS THE CHARACTER TO 
397 ;UPPER CASE ASCII 
398 

~OV ·GET A BACK 022E 78 399 CAPLOC: A,B 
022F FE60 400 CPI 60H ;HON BIG IS IT? 
0231 0.\2302 401 JC STKEY ;L~VE .IF IT'S TOO SMALL 0234 FE7B 402 CPI 7BH • IS l'r 'roo BIG 
0236 022302 403 J.NC STKEY ;L~VE IF TOO BIG 
0239 0620 404 SUI 20H ;AD.1UST A 
023B C32302 405 JMP STKEY :STORE THE KEY 

406 
;THE ROl1rINES SHrWN AND CNTrWNSET BIT 6 AND 7 RESPECTIVLY 407 

408 ; IN 'rHE r..cc. 
409 f.wr ·SET BIT 7 IN A 023E 3g80 410 CN'rJlolN: A,80H 

0240 B0 411 ORA B !OR WITH CHARACTER 
0241 E6BF 412 ANI 0BFH ;MAKE SURE SHIFT IS NOT SET 0243 47 413 MOV ~~ ; pu'r IT BACK IN B 
0244 C31102 414 JMP ;GO BACK 
0247 3g40 415 SHJlolN: MVI A,40H ;SET BIT 6 IN A 
0249 B0 416 ORA B lOR WITH CHARAC'l'ER 
024A 47 417 MOV ~~ ; pu'r IT BACK IN B 
024B C31102 418 JMP ;GO BACK 

419 
~'rHIS ROUTINE CHECKS FeR ESCAPg CHARACTERS, LF, CR, 420 

421 ; FF, AND BACK SPACE 
422 

~ 024g 3ME0F 423 CHREC: ESCP ;ESCAPE SET? 
0251 ~'E80 424 CPI 80H ·SEE IF IT IS 
0253 CA7B02 425 JZ ESS~ ;~VE IF IT IS 
0256 3AE7111F 426 Lo.\ USC ;GET CHARACTER 
111259 FE9A 427 CPI 0AH ·LINE FEED 
025B CAF603 428 JZ LNFD ;C') TO LINE FEED 
11I25E FEOC 429 CPI OCH ·F~ FEED 
111260 CACA03 430 JZ FMFD ;GO 'ro FCRM FgED 0263 FE0D 431 CPI ilDH ·CR 
0265 CMD03 432 JZ <XJRT !oo A CR 
0268 FEI1I8 433 cpt 08H ;BACK SPACE 
026A CAGE03 434 JZ LEFT ;00 A BACK SPACE 
026D FEIB 435 CPI 18H ·ESCAPg 
026F CM503 436 JZ ESKAP ;00 AN ESCAPE 
0272 B7 437 ORA A ; CIE.r..R CARRY 
0273 C6EI1I 438 ADI I'IEI'IH ;SEE IF CHARAC'l'ER IS PRINTABLE 0275 [}\7704 439 JC CffiPUT ; IF PRINTABLE 00 IT 111278 C30F01 440 JMP SETUP ;GO BACK AND R~D USART AGAIN 441 

~THIS ROl1rINE RESE'IS THE ESCAP£ r.oc,o,TION AND DECODES 442 
443 ;THE CHARACTERS FOLlONING AN ESC,o,PE. T~ C().1MANOO ARE 
444 ;COMPATABLE WITH INTELS CREDI'l1TEK'l' ED TOR 
445 f.wr 0278 3EI1I0 446 ESSQ: ~~H ·ZERO A 1'127D 32EE0F 447 STA ; RESE'r ESCP 0281'1 3AE711lF 448 LO\ USCHR ;GET CHARACTER 1'1283 FE42 449 CPI 42H ;OONN 0285 CAAE02 450 JZ 00;m ;MOVE . ClRSOR 00IlN 111288 r'E45 451 CPI 45H ; CLEAR. SCREEN CHARACTER 028A CJ¥;F02 452 JZ CLEAR 'CLEAR THE SCREEN 1'1280 FE4A 453 CPI 4AH ~CLEAR REST OF SCREEN 028F CAD502 454 JZ CLRST iGO CLEAR THe ~T OF THE SCREEN 0292 FE4B 455 CPI 4BH ;CLEAR LINE ccorER 0294 CA2703 456 JZ CLRLIN :GO CLEAR A LINE 0297 FE41 457 CPI 41H ;CURSOR UP CHARACTER 0299 CA3303 458 JZ UPCUR • MOVE ClRSOR UP 11129C FE43 459 CPI 43H ~CURSOR RIGHT CHARAC'l'ER 1'129£ CM503 46111 JZ RIGH'r !MOVECURSOR TO THE RIGHT 02A1 FE44 4fi1 CPI 44H ;CURSCR IEFTCHARACTER 02A3 CAfiE03 4fi2 JZ LEFT ;MOVE ClRSOR TO THE LEFT 02A6 FE48 463 CPI 48H ; HCME CURSOO CHARACTER 02A8 CA9703 464 JZ H<l'1E ; Ha-tE THE CURSOR 02AB C30F01 465 JMP SE'rUP ; LEAVE 
466 

;THIS RourINEMOVES THe CURSOR DOWN ONE CHARACTER LINE 467 
468 6.. 02AE 3AE10F 469 lXIIIN: CURS'{ ;pu'r CURSOR Y IN A 1'12B1 FE18 470 CPI CURBor ;SEE IF ON BO'rI'O'1 OF SCREEN 02B3 CAI1JF01 471 JZ SET\JP ; LEAVE IF ON BO'I'T(»t 02B6 3C 472 INR A ; INCREMENT Y CURSOR 02B7 32El1'1F 473 STA CURSY ;S.I\VE flEW CURSOR 02BA COO803 474 CALL LOClR ;LOAD THE CURSOR 02BD C[}\504 475 CALL CAU::U ;CAU::ULATE A.DI:RESS 02C0 7E 476 MOV AM ;GET FIRST LOCATION OF THE LINE 02Cl FEF0 477 CPI 0F0H ;SEE IF CLEAR SCREEN CHARACTER 02C3 C20FI'I1 478 ~to SETUP ·~VE. IF IT IS NO'r 1'12C6 22E50F 479 LOC80 ;SAVE BEGINNING OF THE LINE 02C9 C01504 480 CALL CLLINE ;C~R THE LINE 02CC C30F01 481 J'1P SETUp ; LEAVE 482 ; 

2-470 AFN-Dl304A 



APPLICATIONS 

483 ;THIS RoorINE CLEARS 'niE SCREEN. 
484 

tALL ;GO CLEAR THE SCREEN 02CF ClE403 485 CLEAR: CrsCR 
0202 C3eF01 486 JMP SETUP ;GOB.&.CK 

487 
;THIS ROtlrINE CrEARS ALL LINES BENEATH 'rHE LOCATION 488 

489 ;~ THE CURSOR. 
490 

tALL ·CALCUlATE ADmESS 0205 cm504 491 CLRST: CAOCU 
0208 COC004 492 CALL ADX ;ADO X POSITION 
0208 01204F 493 LXI B~F23H ;Pl1r SPACE lI.ND LAST X IN B AND C 
02DE 3lI.E20F 494 L[)\ C SX ·GET X ClRSCR 
02E1 B8 495 CMP B ;SEE IF AT END OF LINE 
02E2 CA&:02 495 JZ OVR1 ;LEAVE IF X IS lI.T END OF LINE 
02E5 3C 497 LLP: INR A ;MOVE A OVER ONE X POSITION 
02E6 23 498 INX H ; INCREMENT MEMffiY POINTER 
02E7 71 499 "(JV M,C ; pu'r A SPACE IN MEMffiY 
02E8 B8 500 CMP B ;SEE IF A = 4FH 
02E9 C2E502 501 JNZ LLP ; IF Nor LOOP AGAIN 
02EC 01D00F 502 OVR1: LXI B,LAST • PU'f IAST LINE IN BC 
02EF 23 503 INX H ;PDIN'r HL TO LAST LINE 
02F0 78 504 MIN A,B ·GET B 
02F1 BC 505 CMP H ;SlI.ME AS H? 
02F2 C2FOO2 506 JNZ CONCL ;LEAVE IF oor 
02F5 79 507 M.OV A,C ·GET C 
02F6 BD 508 CMP L ;SAME lI.S L? 
1'12F7 C2FOO2 509 JNZ CONCL ·LEAVE IF Nor 
02FA 210008 510 LXI H,'lPDIS ;GET TOP OF DISPLAY 
02FD 3lI.E10F 511 CONCL: L[)\ CURS'i ·GET Y ClRSOR 
0300 FE18 512 CPI CURSOf ; IS I'f ON THE BorTOM 
0302 CA0F01 513 JZ SETUP ;LEAVE IF IT IS 
0305 3C 514 INR A ;MOVE IT OOIIN ONE LINE 
0306 47 515 MOV B,A ;SlI.VE ClRSffi IN B FOR LATER 
0307 115000 516 LXI D,LNGTH ;PUT LENGfH OF ONE LINE IN D 
03SA 3liF0 517 CLODP: MVI M,0F0H ; PU'f EOO IN MEMOOY 
(il3OC 78 518 M.OV A,B ;GET CURSOR Y 
0300 FE18 519 CPI CURSor • ARE WE CN THE BOM'O'l 
030F CA0F01 520 JZ SETUP ;LEAVE IF WE lI.RE 
1'1312 3C 521 INR A ·MOVE Cf.RSffi OOIIN ONE 
1'1313 19 522 OOD 0 ;GET NElCf LINE 
IB14 47 523 M.OV B,A ·SAVE A 
0315 7C 524 MOV AfH ;PUT H IN A 
0316 FE0F 525 CPI o H ;COMPARE TO HIGH LAST 
IIJ318 C2SAIIJ3 526 JNZ CLOOP ;LEAVE IF IT IS NOT 
IIJ31B 7D 527 M.OV ~L ·PU'f L IN A 
IIJ31C FEOO 528 CPI 0H jC(»1PARE TO 'iJ)Ji LAST 
IIJ31E C2SA03 529 JNZ CLODP • LEAVE IF IT IS NOT 
IIJ321 2111J011J8 5311J LXI HrlipIS ;PU'f T<J> DISPLAY IN H AND L 
0324 C3SA03 531 J.'4P C P ;LOOP AGAIN 

532 
;THIS ROt1rINE CLEARS TflE LINE THE CURSOR IS ON. 533 

534 
bALL IIJ327 C~504 535 CLRLIN: CALCU ;CALCUlATE ADmESS 

IIJ32A 22E511JF 536 SHLD LOC80 ;S'lURE H AND L TO CLEAR LINE 
IIJ32D CD1504 537 CALL CLUNE ;CLEAR THE LINE 
IIJ3311J C30FIIJ1 538 JMP SETUP ;00 BACK 

539 ~THIS ROllrINE MOVES THE CURSffi UP ONE LINE. 540 
541 ; 

IIJ333 3lI.E10F 542 UpClR: L[)\ CURSY ;GET Y ClRSCR 
IIJ336 FE00 ~:~ CPI 00H ·IS .IT ZERO 
IIJ338 CABF01 JZ SETUP i IF IT IS LEAVE 
0338 3D 545 OCR A ;MOVE ClRSOR UP 
033C 32E1eF 546 STA ClRSY ;SAVE NEW CURSOR 
IIJ33F CDB803 547 CALL LOClR ; LON) THE CURSOR 
IIJ342 C30F01 548 JMP SETUP ; LEAVE 

549 
;THIS ROtlrINE MOVES THE CURS<R ONE LOClI.TION TO 'rHE RIGH'l' 550 

551 Lo.a. ·GET X ClRsm IIJ345 3AE20F 552 RIGH'f: CURSX 
0348 FE4F 553 CPI 4FH ; IS IT ALL THE WAY OVER? 
o 34l1. C26403 554 JNZ NTOVER ;IF Nor JUMP AROOND 
0340 3lI.E10F 555 LOO CURSY ;GET Y CURSeR 
0350 FE18 556 CPI &,URSor ;SEE IF ON BorTOM 
IIJ352 CA5903 557 JZ 18 ; IF WE ARE JUMP 
0355 3C 558 INR A ; INCREMfNT Y CURSOR 
IIJ356 32E10F 559 STA CURSY ;SAVE IT 
0359 3E00 560 GDl8: MVI A,00H ;ZERO lI. . 
0358 32E20F 561 STA ClRSX ·ZERO X ClRSCR 
IIJ35E CD3803 562 CALL LOClR i LOOD THE CURSOR 
0361 C30F01 563 JMP SETUP ; LEAVE 
0364 3C 564 NI'OVER: INR lI. ; INCREMEN'r X ClRSCR 
0365 32E20F 565 STA CURSX ·SAVE IT 
0368 CDB803 566 CALL LDClR ; LON) THE CURSeR 
036B C30F01 557 JMP SETUP ; LEAVE 

568 
;THIS ROtlrINE MOVES THE CURSOR LEFT ONE CHARACTER POSI'rION 569 

2·471 AfN.01304A 



APPLICATIONS 

579 
~ CURSX 036E :W:29F 571 LEF'r: -GET X CURS<ll. 

9371 FE99 572 CPI .9f1JH ; IS IT ALL THE WAY· OVER 
IB73 C28DIl3 573 JNZ OOVER ; I F NOT JUMP AROUND 
1il376 :W:19F 574 LIl' CURS'i -GE:T CURSOR Y 
1il~79 FE00 575 CPI IilIiJH .. ~IS IT ZERO? 
o 7B CAIilF01 576 JZ SETUP 11F IT IS JUMP 
037E 3D 577 OCR A ;MOVE CURSOR Y UP 
037F 32E10F 578 STA CURSY . -SAVE· IT 
1il382 3E4F 579 MVI A~FH ;GE:T LAST X LOCATION 
1il384 32E20F 580 STA C SX ;SAVE IT 
1il387 COO803 ·581 CALL LOCUR ;LOAD THE CUijSOR 
038A C30F01 582 JMP SETUP 

;AUJUST X CuRsm 038D 3D 583 OOVER: OCR A 
1il38E 32E21ilF 584 STA CURSX -SAVE CURSOR X 
0391 Cll3803 585 CALL LDCUR ;LOAD THE CURSOR 
0394 C39F01 586 JMP SETUP ; LEAVE 

587 
~THIS RourINE HOMES THE CURSOR_ 588 

589 ~VI ;ZERO A 0397 3EIllil 599 HQIotE: AC:9H 
1il399 32E:21ilF 591 STA C SX -ZERO X CURS<ll. 
1il39C 32E:10F 592 STA CURS'i ; ZERO Y CURSOR 
039F COB893 593 CALL LDCUR ; LOAD THE CURSOR 
03A2 C30F01 594 JMP SETUP ; LEAVE 

595 ~THISROt1rINE SE'l'S THE ESCAPE BIT 596 
597 1M ;L()II.D A WITH ESCAPE: BI'r 03A5 3E80 598 ESKAP: ~~H 03A7 32EEIilF 599 STA -SE'r ESCAPE WCATION 

1il3M C3f1JFIil1 6Iil0 JMP SETUP ;GO BACK AND READ USAR'r 
691 

~THIS RourINE DOES A CR 602 
60j AVI 1il3AD 3EIil0 604 CGRT: A, 00H ;ZERO A 

03AF 32E20F 605 STA CURSX· - ZERO CURSOR X 
0382 COO803 605 CALL LOCIR ;L()II.D CURSOR I~ro 8275 
03B5 C31ilF01 507 JMP SE'rUP ;POLLll'lART AGAIN 

608 
hHIS ROtrrINE LOAIl3 'lliE CURS<ll. 609 

610 AVI 1il3B8 3E80 611 LDCUR: Ah8f1JH ;PUT 80H INTO A 
03BA 320111il 612 STA CTS ;LOAD CURSOR IN'l'O 8275 
03BD 3AE29F 613 LIl' CURSX ;GET CURSOR X 
1il3C0 321il011il 614 STA CR'lM ; pu'r IT IN 8275 
1il3C3 3AE10F 615 LIl' CURS'i ;GET .CURSOR Y 
03C6 321il010 616 STA CR'lM ;pu'r IT IN 8275 
03C9 C9 617 RE'r 

618 
;THIS ROt1rINE DOES A FORM FEED 619 

620 ; 
03CA ClE41il3 621 FMFD: CALL CLSCR . ;CALL CLEAR SCREEN 
Iil3CD 211il1il1il8 622 LXI r.tx:TPDIS ;pu'r TOP DISPLAY IN tiL 
93D9 22E59F 623 . SHLD 80 ; pu'r IT IN LOC89 
1il3D3 CDl594 624 CALL CLLINE ;CLEAR TOP LINE 
0306 3EIillil 625 MVI AC:9H ;ZERO A 
1il3D8 32E20F 626 STA C SX ; ZEM CURSOR X 
1il3OB 32E10F 627 STA CURS'i ;ZERO CURSOR· Y 
1il3OE COBB93 628 CALL LDCIR ;LOAD THE CURS<ll. 
1il3E1 C30FIil1 629 JMP SETUP ; BACK TO USART 

639 
;THIS ROUrINE CrEARS 'mE SCRE.EN BY WRITING END OF R<W 631 

632 ;CHARACTERS INTO THE FIRST WCATION OF ALL LINES (l'I 
533 ;THE SCREEN_ . 
634 1M 1il3E4 3EFIil 635 ClSCR: A,IilF0H ; PU'r EOR CHARACTER IN A 

1il3E6 9618 636 MVI B,CURSOT ;LOAD B WITH !'We Y 
93E8 94 637 INR B ;00 TO MAX PLll'l ONE 
03E9 211il1il98 638 l.XI H,'lFDIS ; LOAD H AND L WITH TOP OF RAM 
1il3EC 115000 639 LXI D,LNGTH ;MOVE 5f1JH = 800 INTO 0 AND E 
93EF 77 641il LOADX: MOV MA ;MOVE EOR IN'ro MEMORY 
1il3FIil 19 641 DAD D' ;C~E POINTER BY 890 
03F1 1il5 642 OCR B -COlNl' THE LOOPS 
1il3F2C2EFIil3 643 JNZ LOAtix iCON'rINUE IF NOT ZERO 
1il3F5 C9 644 RE'r. .;GO BACK 

645 
. ~THIS ROt1rINE DOES A LINE FEED 646 

647 
tALL 1il3F6 CDFCIil3 648 LNFD: LNFDl ;CALL ROtrrINE 

1il3F9 C39FIil1 649 JMP SETUP ;POLL FIACE 
651il 

;LINF; FEED 651 
652 

~ 03FC 3AE11ilF 653 LNFD1: CURS'i ;GETY LOCATION OF CURSOO 
1il3FF FE18 654 CPI CURSOT ;SEE IF AT BOM'(lI1 OF SCREEN 
1il41il1 CA531il4 655 JZ OIeOT -IF WE ARE LEAVE 
1il41il4 3C 656 INR A ~~~~~SOR 1il41il5 32E11ilF 657 STA CURS'i 

2,472 AFN-Q1304A 



APPLICATIONS 

0408 CDI\504 658 CALL CAICU ;CAIC ULA TEl'.DrRESS 043B 22E50F 659 SHLD LOC80 ;SAVE TO CLEAR LINE 043E CD1504 663 CALL CLLINE ;CLEAR THE LINE 0411 CDB803 661 CALL LOClR ;LDAD THE CURSOR 0414 C9 6':;2 RE'r ; LEAVE 
663 

~THIS ROUrINE CLEARS THE LINE WHOSE FIRST ADrRESS 664 
665 ; IS IN LOC80. PUSH INSTRUCTIONS ARE 113ED TO RI\PIDLY 
666 ;CLEAR THE LINE 
667 61 0415 F3 668 CLLINE: ;NO IN'rERRU?l'S HERE 0416 2AE50F 669 LALD LOC80 ;GET WC80 3419 115000 670 LXI 0, IlIIG'rH ;GE'r OFFSET 

041C 19 671 DAD D ;ADD OFFSET 3410 EB 672 XCHG ;PUT START IN DE 041E 210000 673 LXI ~p00ClJClJH ;ZERO HL 3421 39 674 DI\D ;GET STPCK 3422 EB 675 XCHG ;pu'r STACK IN DE 3423 F9 676 SPHL ;PUT START IN SP 0424 212320 677 LXI H,2023H ; pU'f SPACES IN HL 
678 

~ NCJ.oI 00 40 pUSH 679 INSTRUCTIONS TO CLEAR THE LINE 
680 

~EPT (LNG'rH/2) 681 
682 PUSH H 
683 ENIl'I 

3427 E5 684+ PUSH H 
0428 E5 685+ PUSH H 
3429 E5 686+ PUSH H 
342A E5 687+ PUSH H 
042B E5 688+ PUSH H 
042C E5 689+ PUSH H 
342D E5 690+ PUSH H 
042E E5 691+ PUSH H 
042F E5 692+ PUSH H 
3430 E5 693+ PUSH H 
0431 E5 694+ PUSH H 
3432 E5 695+ PUSH H 
0433 E5 696+ PUSH H 
0434 E5 697+ PUSH H 
3435 E5 698+ PUSH H 
3436 E5 699+ PUSH H 
3437 E5 700+ PUSH H 
3438 E5 731+ PUSH H 
3439 £5 702+ PUSH A 
343A £5 703+ PUSH H 
343B E5 734+ PUSH H 
343C E5 705+ PUSH H 
343D £5 706+ PUSH H 
043£ E5 707+ PUSH H 
043F £5 708+ PUSH H 
0440 E5 709+ PUSH H 
3441 E5 713+ PUSH H 
3442 E5 711+ PUSH H 
0443 E5 712+ PUSH H 
0444 E5 713+ PUSH H 
0445 E5 714+ PUSH H 
3446 E5 715+ PUSH H 
0447 E5 716+ PUSH H 
0448 E5 717+ PUSH H 
3449 E5 718+ PUSH H 
044A E5 719+ PUSH H 
344B E5 720+ PUSH H 
044C E5 721+ PUSH H 
044D E5 722+ PUSH H 
044E E5 723+ PUSH H 
044F EB 724 XCHG ;pu'r STACK IN HL 3453 F9 725 SPHL ;pu'r IT Bl'CK IN SP 0451 FB 726 EI ; ENABLE IN'rERRU?l'S 0452 C9 727 RET ;GO BACK 

728 
; IF CURSOR IS ON 'rAE BarTO>! OF 'rAE SCREEN 'rAIS RourINE 729 

733 ;IS USED TO IMPLEMENT THE LINE FEED 
731 

fRLD 0453 2AE30F 732 ONBOT: TOPAD ;GET TOP ADrRESS 0456 22E50F 733 SHLD LOC80 ;SAVE rr IN LOC80 
0459 115000 734 LXI D, IlIIG'rH ;LINE LENOrA 045C 19 735 DAD D ;ADD HL + DE 
3450 31D30F 736 LXI B,LAST ;GET BOTTO>! LINE 3460 7C 737 1'lOV A,H ;GET H 
0461 B8 738 CMP B ;SAME AS 8 0462 C26D34 739 JNZ ARND ;LEAVE IF NOT SA."IE 3465 70 740 MOV A,L ·GET L 0466 89 741 CMP C ;SA."IE AS C 
3467 C26D04 742 JNZ ARND ;LEAVE IF NOT SA."IE 046A 213038 743 LXI H6TPDIS ;LOAD HL WITH 'rop OF DISPLAY 3460 22E33F 744 ARND: SHLD 'r PAD ;SAVE I'£W TOP ADIRESS 

2-473 AFN.Q1304A 



0470 COl504 
0473 CJ:8803 
0476 C9 

0477 CIl\504 
1'147A 7E 
1'147B FEr'1'I 
1'1470 22E50F 
1'14.81'1 CC1504 
1'1483 2AE50F 
1'1486 COCD04 
1'1489 3AE70F 
1'148C 77 
1'148D 3AE21'1F 
1'1491'1 3C 
1'1491 FESQJ 
1'1493 C29C1'I4 
1'1496 C~C03 
1'1499 C3AOO3 
1'149C 32E21'1F 
1'149F COBB03 
1'14A2 C31'1Fl'l1 

1'14A5 21D504 
04A8 3AE10F 
04A8 07 
04AC 0601'1 
04AE 4F 
04AF 09 
04B0 7E 
1'1481 4F 
1'14B2 23 
1'14B3 7E 
1'14B4 47 
1'14B5 2111l0F8 
94B8 99 
04B9 EB 
04BA 2AE31'1F 
04BD 19 
04BE EB 
1'14BF 213I1lFI'I 
1'14C2 19 
1'14C3 1l\C804 
1'14C6 EB 
1'14C7 C9 
04C8 2131ilF8 
04CB 19 
04CC C9 

04CD 3AE20F 
0400 0600 
0402 4F 
04D3 09 
0404 C9 

04D5 001118 
0001 
04D7 501118 
001'12 
04D9 AIIl08 
IUl1'l3 
0408 "08 

) 001'14 
1'14DO 411l1ll9 
001'15 
04DF 91'109 

APPLICATIONS 

745 CALL 
746 CALL 
747 RET 

CLLINE 
LDCLR 

;CLEAR LINE . 
; LOAD THE CURS<R 

N8 • . 
749 1THIS ~l1fINE PUTS A CHARACTER CII THE SCREEN AND 
750 ;INCREMENl'S THE X CLRsm roSITION. A LINE .FEED IS 
751 ; INSERTED IF THE' INCREMENTED CLRSM !WArs 810 
752· . ' •• 
753 CHRPUT: &u. CALCU ;CALCUIATE SCREEN POOITION 
754 MOV ~L~H ;GET FIRST CIiMACTER. . 
755 CPI ... If., ; IS IT A CLEAR LINE 
756 SHLD LOC80 ;SAVE LINE TO CLEAR 
757 CZ CLUNE ;CLEAR LINE . 
758 LHLD LOe80 ·GET LINE 
759 CALL ADX 1ADD CLRSM X 
760 LIl\ llSC'iR ;GET CHARACTER 
761 MOV fotC'~SX ;PIJ'f IT ON SCREEN 
762 LIl\ UK ·GET CURSOR X 
763INR A ; INCREMENl' CURSOR X 
764 CPI LNG'flt ;HAS IT OONE TOO FAR? 
765 JNZ OK1 ; IF NOT GOOD 
766 CALL . LNFD1 ; 00 A UNE FEED 
767 JMP CGRT ;00 A .CR 
768 OK1: STA CURSX ·SAVE CLRSOR 
769 CALL LOCUR 1 LOAD THE CURSOR 
770 JfilP SETUP ; LEAVE 
771· , 
772 ;THIS ~UTINE TAKES THE TOP ADIRESS AND THE Y CURSOR 
773 • LOCATION AND CALCULATES THE ADIRESS OF THE LINE 
774 ;THAT THE CURSOR IS ON. THE RESULT IS RETURNED IN H 
775 ;AND L AND ALL REGISTERS ARE USED. 

H~ CALCU: LxI H,!-IN'fAB ;GET UNE TABLE INTO H AND L 
778 LIl\ ClI(SY ;GET CURSOR INrO A 
779 RLC ;SET UP A FOR IOOKUP 'fABLE 
780 fotVI B,00H ·ZERO B 
781 MOV C, A ~ pu'r CURSOR INrO A 
782 DAD B ;ADD LINE TABLE 'ro Y CURSOR 
783 MOV A,M ;PIJ'r r.c:M UNE TABLE IN'ro A 
784 MOV C,A ;pu'r r.c:M UNE TABLE INro C 
785 INX H ·~E MfMORY roINTER 
786 MOV A,M ;pu'r HIGH LINE TABLE IN'roA 
787 MOV B A ;PUT HIGH LINE '!'ABLE INTO B 
788 LXI H~0F800H ;'lWCS CQ\tPLEHENT SCREEN lOCATION 
789 Il\D B ;SUBTRACT OFFSET 
7911l XCii> ·SAVE HL IN IE 
791 LHLD TOPAD ;GET TOP ADmESS IN H AND L 
792 DAD 0 ;GET DISPLACED ADmESS 
793 XCii> ;SAVE rr IN D 
794 LXI H,0F0311JH ;'lWCS CQ\tPLEMENr SCREEN LOCATION 
795 o\D 0 ;SEE IF WE ARE OFF THE SCREEN 
796 JC FIX ·IF WE ARE FIX IT . 
797 XCii> ;GET DISPLACED ADmESS BACK 
798 RET ;ao BACK 
799 FIX: LXI H,0F830H ;SCREEN B<UlIlW 
800 DAD 0 ;AOJUST SCREEN 
801 RET ;GO BACK 

3~~ ~THIS ~trrINE ADOO THE X CLRsm lOCATION TO 'rHEADDRESS 
81'14 ;THAT IS IN THE H AND L RroISTERS AND RETURNS THE RESULT 
80S ;IN H AND L 
806 • 
807 ADX: Lm 
808 fotVI 
81'19 MOV 
810 DAD 
811 RET 

CURSX 
B,1J0H 
C,A 
B 

;GET CURSOR 
;ZERO B 
• PU'f CURSOR X IN C 
;ADD CLRSM X TO H AND L 
; LEAVE . 

812 ; 
813 ;'rHIS TABLE CONl'AINS THE OFFSET ADmESsES FOR EACH 
814 ;OF THE 25 DISPLAYED LINES. 

~l~ LINTAB: hNNlM SET 0 
817 REP1'(CLRBOT+1) 
818 rNl TPDIS+(LNGl'H*LINNUM) 
819 LINNlM SET (LINNUM+l) 
821'1 EN!loI 
821+ rNl. ,TPDIS+CLNGl'H*LINNUM) 
822+ LINNlM SET (LI~lM+1) 
823+ rNl TPDIS+CLNGTH*LINNlJ'I) 
824+ LINNll'I. S~LINNlM+l) 
825+ rNl S+(LNGl'H*LINNlM) 
826+ LINNU. M SET , (L'INNlM+1 , 
827+ rNl TPDIS+CLNGl'HirLINNll'I) 
828+ LINNlJ!II SET (LINNll'1+1) 
829+ rNl TPDIS+ (LNGl'H*LINNlM) 
830+ LINN1J'4 SET (LUINlM+1' 
831+ . rNlTPDIS+(LNGTHirLINNlJ'I) 

AFN.()1304A 



APPLICATIONS 

11111136 832+ LINNU>1 SET iL1NNlP>1+1l 
04El EI1I11I9 833+ OW TPD S+ (LNGrH*LINNU'I) 
1111111117 834+ LINNlM SET iLINNU!>1+ll 
11I4E3 311ll1lA 835+ OW TPD S+ (LNGrH*LINNU'I) 
1111111118 836+ LINNU>1 SET lLINNU!>\+ll 
11I4E5 811ll1lA 837+ DW TPD S+(LNGrH LINNlJ>\) 
01111119 838+ LINNUI., SET iLINNlM+ll 11I4E7 DI1II1lA 839+ DW TPD S+ (LNGrH LINNU.,) 
111 111 I1IA 84111+ LINNU., SET iLINNu!>\+ll 
11I4E9 2111111B 841+ OW TPD S+ ~NGrH LINNU'I) 11I11l0B 842+ LINNUM SET iLl lM+ll 11I4EB 7111111B 843+ OW TPD S+~NGrH LINNU>1) 000C 844+ LINNUM SET iLl UM-+l) 
04ED CI1II1lB 845+ OW TPD S+ ~LNGTH*LINNU"") 01110D 846+ LINNUM SET iLl UM+ll 11I4EF II110C 847+ DW 'I'P!) S+ (LNGrH LINNU'I) 
11I00E 848+ LINNU>1 SET iLINNlM+ll 
04Fl 600C 849+ OW TPD S+ ~NGrH*LINNU'I) 00111F 85111+ LINNU>1 SET iLl UI\+ll 11I4F3 B30C 851+ OW TPD S+(LNGrH LINNU>1) 
0010 852+ LINNlM SET iLINNlJ'1+l) 
04F5 11101110 853+ DW TPD S+(LNGrH*LINNU'I) 
0011 854+ LINNU!I\ SET lLINNU>1+1l 
11I4F7 5330 855+ OW TPD S+ (LNGrH LINNU"I) 
1111112 851i+ LINNUM SET lLINNU>1+1l 
04F9 AI1J0D 857+ OW TPD S+(LNGrH LINNU>1) 
0013 858+ LINNUM SET lL1NNUM+ll 11I4FB FI1l0D 859+ OW TPD S+(LNGrH LINNU>1) 
3014 850+ LINNU>1 SET lL1NNU'I+ll 11I4FD 400E 861+ DW TPD S+(LNGrH LINNU>1) 
0015 852+ LINNUM SET lLINNlM+ll 04FF 90111E 863+ OW TPD S+~GrH LINNU"I) 111016 8'54+ LINNlM SET iLl . U'\+ll 111501 E0111E 8<:;5+ DW TID S+ ~NGrH*LINNU"\) 0017 866+ LINNUI>\ SET iLl UM+l) 
0503 30111F 8<:;7+ OW TPD S+ (LNGrH*LINNU>1) 
0018 868+ LINNUM SET iLINNUM+ll 111505 81110F 869+ DW TPD S+(LNGrH LINNU>1) 
0"19 87111+ LINNu!>1 SET (LINNU>1+l) 

871 ; 
872 ; KEYBQl\.RO LOOKU P 'rABLE 
873 ;THIS TABLE CONTAINS ALL THE ASCII CHARACTERS 
874 • THAT ARE 'l'AANSMITTED BY THE TERMINAL 
875 ;THE CHARAC'rERS ARE ORGANIZED SO THAT BITS 0,1 AND 2 
876 ;ARE THE SCAt.J LINES, BITS 354 AND 5 ARE THE RETURN LINES 
877 ;BIT 6 IS SHIFT AND BIT 7 I CONTROL 
878 be 0537 38 879 KYLKUP: 38H,39H ;8 AND 9 0508 39 

0509 30 880 DB 30H,2DH ;0 AND -050A 2D 
053B 3D 
050C SC 

881 DB 3DH,SCH ;= AND \ 
0500 08 882 DB 08H,00H ;BS AND BREAK 050E 00 
050F 75 883 DB 75H,69H ; LCWER CASE U AND I 0510 69 
111511 6F 884 DB 6FH,7I11H ;LCWER CASE 0 AND P 0512 70 
111513 5B 885 DB SBH,SCH ; [ AND \ 0514 SC 
0515 I1lA 886 DB I1lAH,7FH ;LF AND DELETE 111516 7F 
05176A 887 DB 6AH,6BH ;LOWER CASE J AND K 0518 6B 
0519 5C 888 DB 6CH,3BH ; LCWER CASE L AND 11I51A 3B 
051B 27 889 DB 27H,00H ; I AND NOTHING 051C 0111 
051D 00 890 DB 0DH,37H ;CR AND 7 051E 37 
051F 60 891 DB 6bf1,2CH ; LCWER CASE M AND C01'\'>1A 0520 2C 
111521 2E 892 DB 2EH,2FH ;PERIOD A.t.J1) SLASH 0522 2F 
0523 0111 893 DB 00H,00H ;BlANK AND NO'rHING 0524 00 
0525 00 
0526 00 

894 DB 0111H,0111H ;NOTHING AND NO'rHING 
0527 0111 895 DB 00H,61H ; NOTHING AND LCWER CASE A 0528 61 
111529 7A 896 DB 7AH,78H ; LONER CASE Z AND X 052A 78 
11I52B 63 897 DB 63H,76H ; LONER CASE C AND V 052C 76 
11152D 62 898 DB 62H,6EH ; LONER CASE B AND N 0528 6E 

2·475 AFN-Q13Q4A 



APPLICATIONS 

052F 79 899 DB 79H,0~H ; LONER CASE Y AND NarHING 0530 00 
0531 00 
0532 20 

900 DB 0I1lH,2()JH ;NOTHINGANDSPACE 
0533 64 9 III 1 DB 64H,61;H ;LONER CASE D AND P 0534 66 
0535 67 902 DB 67H,68H ;LONER CASEG AND H 0536 68 
0537 00 
0538 71 

903 DB 00H,71H ;TAB AND LONER CASE Q 
053977 904 DB 77H,73H ;LONER CASE WANDS 053A 73 

; LONER CASE E AND R 053B 65 905 DB 65H,72H 
053C 72 
053D 74 906 DB 74H,00H ; LONER CASE T AND NOTHING 053E 00 
053F IB 907 DB IBH,31H ; ESCAPE AND 1 0540 31 
0541 32 908 DB 32H,33H 2 AND 3 
g~:~ i~ 909 DB 34H,35H ; 4 AND 5 0544 35 
0545 36 910 DB 36H,00H ; 6 AND NOTHING 0546 00 
0547 2A 911 DB 2AH,28H ;* AND ) 0548 28 
0549 29 
054A 5F 

912 DB 29H,5FH ; ( AND -
054B 2B 913 DB 2BH,00H ;+ AND l'OTHING 054C 00 
054D 08 
054E 00 

914 DB 08H,0"H ;BS A..~D BREAK 

054F 55 
055ri! 49 

915 DB 55H,4911 ;U AND I 
0551 4P 916 DB 4FH,50H ;0 AND P 0552 50 
0553 5D 917 DB 5oo,00H ; 1 AND NO CHARACTER 0554 00 
0555 0A 918 DB 0AH,7FH ;LF AND DELETE 
0556 1F 
0557 A 919 DB 4AH,4BH ;J AND. K 0558 4B 
0559 4C 920 DB OCH,3AH ;L AND : 055A 3A 
055B 22 921 DB 22H,00H ;" AND NO CHARACTER 055C 00 
055D 00 922 DB 0DH,26H ;CR AND & 055E 26 
055F 40 923 DB 4DH,3CH ;M AND < 0560 3C 
0561 3E 924 DB 3EH,3FH ;> AND? 0562 3F 
0563 00 925 DB 00H,011lH ;BLANK AND NOTHING 0564 00 
0565 00 926 DB 00H,00H ,NOTHING AND NOTHING 0566 00 
0567 00 927 DB 00H,41H ;NOTHING AND A 0568 41 
0569 5A 928 DB SAH,58H ;2 AND X 056A 58 
056B 43 929 DB 43H,56H ;C AND V 050C 56 
0560 42 
056E 4E 

930 DB 42H,4EH ;B AND N 
056F 59 931 DB 59H,00H ; Y AND NOTHING 0570 00 
0571 00 932 DB 00H,20H ;NO CHARACTER AND SPACE 
0572 20 
0573 44 933 DB 44H,46H ;0 AND F 
0574 46 
0575 47 
0576 48 

934 DB 47H,48H ;G AND H 
0577 00 935 DB 00H,51H ;TAB.AND Q 0578 51 
0579 57 936 DB 57H,5)H ;W AND S 057A 53 
057B 45 937 DB 45H,52H ;E AND R 057C 52 
057D 54 938 DB 54H,00H ;'r AND NO CONNECTION 057E 00 
057F 18 939 DB 1BH,21H ;ESCAPE AND 0580 21 
0581 40 940 DB 40H,23H ;@ AND • 0582 23 
0583 24 941 DB 24H,25H ;$ AND % 0584 25 
0585 5E 942 DB 5EH,00H ; ~ AND NO COONEC'rION 

2-476 AFN-ol304A 



APPLICATIONS 

0586 OO 
943 

~ THIS IS WHERE THE CONl'ROL CHARACTERS ARE LOOKED UP 944 
945 ba 0587 OO 946 00H,00H ;NOTHING 

0588 0O 
0589 00 947 DB 00H,00H ;NarHING 
05eA 0O 
058B OO 
058C OO 

948 DB 00H,00H ; NarHING 

0580 OO 949 
058E OO 

DB 00H,00H ;NOTHING 

058F 15 
0590 09 

950 DB 15H,09H ;CONTROL U AND I 

0591 OF 
0592 1O 

951 DB 0FH,10H ;CONTROL 0 AND P 

;COTffROL [ AND \ 0593 0B 952 DB 0BH,OCH 
0594 0C 

;LF AND DELETE 0595 0A 953 DB 0AH,7FH 
0596 7F 
0597 0A 
0598 0B 

954 DB 0AH,0BH ;CONTROL J AND K 

0599 OC 
059A O0 

955 DB OCH,00H ;CONTROL L AND NOTHING 

059B OO 956 
059C OO 

DB 00H,00H ; NarHING 

;CR AND NOTHING 0590 O0 957 DB 0OO,00H 
059E OO 
059F 0D 958 DB 0OO,00H ;CONl'ROL M AND COI+1A 
05/\.0 O111 
0SA1 O111 
Ill5/\.2 O111 

959 DB IIlIllH,0I1lH ;NarHING 

0SA3 OO 96111 DB 00H,00H ;NarHING 
Ill5/\.4 OO 
0SA5 OO 
0SA6 O111 

961 DB 00H,011lH ;.NarHING AND NOTHING 

!AR,lSH ;CONTROL Z AND X 0SA7 1A 962 DB 
05A8 18 
0SA9 1113 963 DB 1Il3H,16H ;CONTROL C AND V IIlSAA 16 
05A8 O2 964 DB 02H,0EH ;CONTROL B AND N 0SAC 0E 
0SAD 19 965 DB 19H,011lH ;COtn'ROL Y AND NOTHING IIlSAE O0 
05AF O111 966 DB 1Il0H,211lH ;NOTHING AND SPACE 05B0 29 
05B1 04 
0582 O6 

967 DB 04H,96H ;CONTROL 0 AND F 

05B3 07 968 DB 07H,08H ;CONl'ROL G AND H 
0584 O8 
05B5 00 
0586 11 

969 DB 00H,l1H ;NarHING AND CONl'ROL Q 

0587 17 970 DB 17H,13H ;CONTROL WANDS 
0588 13 
05B9 1116 971 DB 06H,12H ;CONTROL E AND R 058A 12 
0588 14 
058C 0O 

972 DB 14H,00H ;CONl'ROL W AND NOTHING 

05BO 1B 973 DB 1BH,10H ; ESCAPE AND HOME (CREDIT) 058E 10 
05BF IE 974 DB 1EH,lCH ;CURSOR UP AND OCWN (CREDIT) 0SC0 1C 
0SC1 14 975 DB 14H,lFH ;CURSOR RIGIfI' AND LEFT (CREDIT) 0SC2 IF 
0SC3 OO 976 DB 00H,00H ;NarHING 0SC4 0O 

977 
; LOOK UP 'fABLE FOR 8253 BAUD RATE GENERA'roR 978 

979 
~ 0SC5 O0 980 BDLK: 00H,0.5H,69H,03H ;75 AND 110 BAUD 

0SC6 05 
IIlSC7 69 
0SC8 03 
05C9 80 981 DB 80H,02H,40H,01H ;150 AND 300 BAUD 0SCA 02 
05CB 4O 
9SCC O1 
05C0 A0 982 DB 0.&.0H,00H ;609 BAUD 05CE OO 
05CF 50 983 DB 50H,00H ;1200 BAUD 0500 9O 
9501 28 
0502 11O 

984 DB 28H,00H ;2499 BAUD 

0503 14 
0504 OO 

985 DB 14H,00H ;4800 BAUD 

050511A 986 DB 0AH,00H ;91;00 BAUD 
0506 O0 

2-477 AFN-ol304A 



APPLICATIONS 

0FE1 
0001 
0001 
0002 
0002 
0001 
0082 
0001 
0081 
8001 
8001 
8081 
8001 
0081 
8081 

PUBLIC SYMBOLS 

EXTERNAL SYMBOLS 

lSERSYMBOLS 
ADX A 04CD 
CAPLOC A 822E 
CLRLIN A 0327 
CN'1M A 6003 
CURSX A 0FE2 
FMFD A 03CA 
KEYIJ,olN A 0FEA 
KYLKUP A 0507 
LNFO A 03F6 
LPKBO A 0098 
POPDAT A 0034 
RXRDY A 8113 
STSAUD A 080C 
UP1 A 01E9 

987 
988 
989 
990 
991 CmSy: 
992 CURSX: 
993 TOPAD: 
994 LOC80: 
995 USCHR: 
996 CLRAD: 
997 KEYil'IN: 
998 KBCHR: 
999 BAUD: 

1088 KEYOK: 
101'J1 ESCP: 
181'J2 SHCON: 
1003 RETUN: 
1004 SCNUN: 
11'J05 

;DA.TA AREA 

6RG 0FE1H 
t6 1 
t6 1 
t6 2 
t6 2 
Il3 1 
t6 2 
OS 1 
t6 1 
Il3 1 
Il3 1 

~ t 
Il3 1 
t6 1 
END 

ARND A 0460 BAUD A 0FEC 
CHREC A 024E 
CL<)CR A 03E4 
CONCL A 1'J2FD 

CGRT A 03AD 
CLRST A 0205 
CN'tlD55 A 1803 
CURSY A I'JFE1 
FRAME A 1'J167 
KEYINP A 0121 
LAST A 0F00 
LNF01 A 03FC 
NOVER A 0380 
PORTA A 1880 
SAVKEY A 01AF. 
STKEY A 0223 
UPCUR A 0333 

roNN A 02AE 
G018 A 11359 
KEYOK A 0FEO 
LOCUR A 1'J3B8 
[NG'rH A 01'J50 
NTOVER A 0364 
PORTS A 181'J1 
SCNLIN A 0FF1 
STPTR A 0FE0 
USCHR A 0FE7 

ASS&18LY COMPLETE, NO ERRORS 

2-478 

BOLK A 05C5 
CHRP1.tr A 0477 
CN'r0 A li000 
CR'll'I A Hl01'J 
ESCP A 0FEE 
H~E A 0397 
KEYS A 0131 
LEFT A 036E 
LOAOX A 1'J3EF 
OK1 A rlJ49C 
PCRTC A 1802 
SCR A 0211 
TOPAD A 0FE3 
USTD 1'.1'.000 

BTDIS A 0F80 
CLEM A 02CF 
CNT1 A liI'J01 
CRTS A 1001 
ESKAP A 1'J3A5 
IN75 A 00F9 
KPTK A 1'J084 
LINNUM A 8019 
LOC80 A 0FE5 
OK7 A 1'J15C 
RDKB A 0l8F 
SETUP A 010F 
TPDIS A 0800 
US'lY A A001 

BYPASS A 01'J8F 
CLLINE A 0415 
CNT2 A liI'J02 
CURAD A I'JFE8 
ESSQ A 027B 
!NT75 A 14111 
KYCHIIG A 1l1BA 
LIN'rAB A 0405 
LOOPF A 01lA7 
ONSOT A 0453 
RETUN A 0FF0 
SHCON A 0FEF 
TRANS A 014B 

AFN-Ol304A 



Appendix 

, .'; '.' :'. ,-



INTEL PERIPHERAL COMPONENTS 

Data Communications 
Description 

8251A Programmable Communication Interface 
8256 MUART -Multifunctional Asynchronous 

Receiver/Transmitter 
8273 Programmable HDLC/SDLC Protocol 

Controller 
8274 Dual Channel Multiprotocol Controller 
Ethernet Local Area Network Communications 
8291 GPIB (IEEE 488) Talker/Listener 
8292 GPIB Controller 
8293 GPIB Transceiver 

Magnetics 
7220 Bubble Memory Controller 
7230 Current Pulse Generator for Bubble 

Memories 
7242 Dual Formatter/Sense Amp for Bubble 

Memories 
7250 Coil Pre-Driver for Bubble Memories 
7254 Quad VMOS Drive Transistors for Bubble 

Memories 

Slave Processors 
(Universal Peripheral Interface) 
8041A Universal Peripheral Interface lK ROM 
8042 Universal Peripheral Interface 2K ROM 
RUPI Remote Universal Peripheral Interface 

4KROM 
8741A Universal Peripheral Interface lK EPROM 
8742 Universal Peripheral Interface 2K EPROM 

Special Function Slave Processors 
8231A 
8232 
8243 
8278 
8294 
8295 

Arithmetic Processing Unit 
Floating Point Processor 
I/O Expander for 8041A 
Keyboard Controller 
Data Encryption Unit 
Dot Matrix Printer Controller 

DRAM Memory Controllers 
8202A 
8203 
8206 

4K116K Dynamic RAM Controller 
16K/64K Dynamic RAM Controller 
Error Correction Unit 

Timer Counters/Paraliel 1/01 
Keyboard Controllers 
8253 Programmable Interval Timer 
8254 High Performance Programmable Interval 

Timer 

Description 

8255 Programmable Peripheral Interface (see 
also 8155, MCS 85 support; 8256 Data 
Com. for parallel I/O) 

8279 Keyboard/Display Interface (see also 
8278-Slave Processors) 

Math Processors 
8231A 
8232 

Arithmetic Processing Unit 
Floating Point Processor 

Floppy Disk Controllers 
8271 
8272 

Programmable Floppy Disk Controller 
Single/Double Density FDC 

Display Controllers 
8275 Programmable CRT Controller 
8276 Small System CRT Controller 
GDC Graphics Display Controller (see also 

8279 in Timer Counters/Parallel 1/0/ 
Keyboard Controllers) 

DMA Controllers/lnterrupt Controllers 
8237 

8257 
8259A 

High Performance Programmable DMA 
Controller 

Programmable DMA Controller 
Programmable Interrupt Controller (see 

also 8256 Data Com. section for 
interrupt controllers) 

MCS 80 Bipolar Support 

A·1 

8216/8226 
8218 
8224 
8228/8238 

4-Bit Parallel Bidirectional Bus Driver 
Bus Controller 
Clock Generator 
System Controller and Bus Driver 

MCS 85 Bipolar Support 
8212 8-Bit Input/Output Port 
8219 Bus Controller 

iAPX 88, 86 Bipolar Support 
828218283 
8284A 
8286/8287 
8288 
8289 

Octal Latches 
Clock Generator 
Octal Bus Transceivers 
Bus Controller 
Bus Arbiter 

Muxed, Memory/l/O Components for 
MCS 85, iAPX 88 . 
8155/8156 2048-Bit Static MOS RAM with I/O 

Ports and Timer 
8355/8755 16,384-Bit ROM with I/O 



inter 
3086 Bowers Avenue 
Santa Clar., California 96061 
Tel: (408) 987·8080 
TWX: 910·338-0026 
TELEX: 34·8372 

ALABAMA 
Inte' Corp. 
303 Williama Avenue. S.W. 
Suite 1422 
Huntsville 3580 1 
Tel: (205) 533-9353 

ARIZONA 

Inte' Corp. 
10210 N. 25th Avenue. Suite 11 
Phoenix 86021 
Tel: (602) 889·4980 

CALIFORNIA 
Intel Corp. 
7870 Opportunity Rd. 
Suite 135 
San Diego 92111 
Tel: (714) 288·3583 
Inte' Corp.· 
2000 East 4th Str.et 
Suite 100 
Santa Ana 92705 
Tel: (7'4) 835·9842 
TWX: 9'0·695-"14 
Intel Corp.· 
5530 Corbin Ave. 
Suite 120 
Tarzana 91358 
Tel: (213) 708·0333 
TWX: 91Q·495·2tM& 

Intel Corp.· 
3375 Scott Blvd. 
Santa Clara 96051 
Tel: (408) 987·8086 
TWX: D1D-33g·9279 
910-338·0255 
Earle A880clat8., Inc. 
4817 Autlne, Str •• t 
Suite 202 
San Olago 92111 
Tel: (714) 278-5441 

Mac-' 
2576 Shatluck Ave. 
Suite 48 
Berkeley, CA 94704 
Mac-I 
558 Valley Way 
Calaveraa Buaineaa Park 
Milpitaa 95036 
Tel: (408) 948·8885 

Mac·1 
P.O. Box 8783 
Fountain Valley 92708 
Tel: (714) 839·3341 

Mac-I 
25 Village Parkway 
Santa Monica 90409 
Tel: (213) 452·7611 

Mac-I 
20121 Ventura Blvd., Suite 240E 
Woodland Hilla 91384 
Tel: (213) 3-t7·5900 

COLORADO 
Intel Corp.· 
650 S. Cherry Street 
Suite 720 
Denver 80222 
Tel: (303) 321-8088 
TWX: 910·931'2289 

CONNEcnCUT 

Intel Corp. 
38 Padanaram Road 
Danbury 06810 
Tel: (203) 792·8366 
TWX: 710·468·1199 

EMC Corp. 
48 Purnell Place 
Manchester 08040 
Tel: (203) 848·8085 

u.s. AND CANADIAN SALES OFFICES 

FLORIDA 
Inte' Corp. 
1500 N.W. 82nd Straet, Suita 104 
Ft. Lauderdala 33309 
Tel: (305) 771·0600 
TWX: 510·958·94107 

Intel Corp. 
500 N. Maitland, Suite 2015 
Maitland 32751 
Tel: (306) 628-2393 
TWX: 810-853-9219 

GEORGIA 
Intel Corp. 
3300 Holcomb Bridge Rd. 
Norcroaa 30092 
Tel: (404) 449-0641 

ILLINOIS 
Intel Corp.' 
2650 Golf Road, Suite 815 
ROiling Meadowa 60008 
Tel: (312) 981·7200 
TWX; 910·851·5881 

INDIANA 
Intel Corp. 
9101 Waalayan Road 
Suite 204 
Indianapolia 48288 
Tal: (317) 815·0823 

IOWA 
Intel Corp. 
St. Andrewa Building 
1930 SI. Andrewa Drive N.E. 
Cedar Rapids 52402 
Tel: (319) 393·5510 

KANSAS 
Intel Corp. 
9393 W. IIOth St., St •. 286 
Ovarland Park 68210 
Tel: (913) 642·8080 

MARYLAND 
Intel Corp.· 
7257 Parkway Drive 
Hanover 21078 
Tel: (301) 798-7600 
TWX: 710-882·1944 

MASSACHUSETTS 
Intel Corp.' 
27 Induatrial Ave. 
Chelmsford 01824 
Tel: (617) 268·1800 
TWX; 710·343-8333 

EMC Corp. 
381 Elliot Street 
Newton 02164 
Tel: (617) 244-4740 
TWX: 922631 

MICHIGAN 

Intel Corp." 
26500 Northwestern Hwy. 
Suite 401 
Southfield 48075 
Tel: (313) 353-0920 
TWX: 810-244'4915 

MINNESOTA 
Intel Corp. 
7401 Metro Blvd. 
Suite 355 
Edina 55435 
Tal: (612).835·6722 
TWX: 910·678·2867 

MISSOURI 
Intel Corp. 
1502 Earth City Plaza 
Suite 121 
Earth City 83045 
Tel: (314) 291·1990 

NEW JERSEY 
Intel Corp.' 
Raritan Plaza 
2nd Floor 
Raritan Center 
Edison 08837 
Tel: (201) 225·3000 
TWX: 710·480-8238 

M. T.I. 
383 Route 48 Was. 
Fairfiald, NJ 07008 

NEW MEXICO 
BFA Corporation 
P.O. Box 1237 
Laa Cruces 8800 1 
Tel: (505) 523-080 1 
TWX: 910·983·0543 

BFA Corporation 
3706 Westetfleld. N.E. 
Albuquerque 87111 
Tel: (505) 292·1212 
TWX: 910·989·1157 

NEW YORK 
Intel Corp.· 
300 Motor Pkwy. 
Hauppauge 11787 
Tel: (516) 231·3300 
TWX: 510-227-8238 

Intel Corp. 
80 Washington St. 
Poughkeepsie 12801 
Tel: (914) 473·2303 
TWX: 510·248·0080 
Intal Corp.-
2255 Lys" Avenue 
Lower Floor Eas. Suite 
Rocheste, 14608 
Tel: (718) 254·8120 
TWX: 510·253·7391 

T-Squared 
4054 Newcourt Avenue 
Syracuse 13206 
Tel: (315) 463·8592 
TWX: 710·641·0564 

T·Squared 
7353 Pittsburgh 
Victor Road 
Victor 14584 
Tel: (716) 924·9101 
TWX: 510-264·8642 

NORTH CAROLINA 
Intel Corp. 
2308 W. Meadowview Rd. 
SUite 206 
Greensboro 27407 
Tal: (919) 284·1541 

OHIO 
Intel Corp.· 
6500 Poe Avenue 
Dayton 45414 
Tel: (513) 890·5350 
TWX: 810·450·2528 

Intel Corp.· 
Chagrin·Brainard Bldg., No. 300 
28001 Chagrin Blvd. 
Cleveland 44122 
Tal: (216) 484·2738 
TWX: 810·427·9298 

OREGON 
Intel Corp. 
10100 S.W. Beaverton 
Hillsdale Highway 
Suite 324 
Beaverton 97006 
Tel: (503) 641·8088 
TWX: 910-487·8741 

PENNSYLVANIA 

Intel Corp." 
510 Pennsylvania Avenue 
Fort Washington 19034 
Tel: (215) 64'·1000 
TWX: 510·881'2077 

Intel Corp.· 
201 Penn Center Boulevsrd 
Sufle 301W 
Pfllaburgh 15235 
Tal: (412) 823·4970 

Q.E.D. electronics 
300 N. York Road 
Hatboro 19040 
Tel: (215) 874·9800 

TEXAS 
Intel Corp.-
2925 L.B.J. Freeway 
Suite 175 
Dallaa 75234 
rei: (214) 241·952' 
TWX: 910·880-6817 

Intel Corp." 
8420 Richmond Ave. 
Suita 280 
Houston 77057 
Tel: (713) 784·3400 
TWX: 910·881'2490 

Induatnal Digital Systams Corp. 
5925 Sovereign 
Suite 101 
Houston 77036 
Tel: (713) 988·9421 

Intel Corp. 
313 E. Anderaon Lane 
Suite 314 
Austin 18762 
Tal: (512) 464-3628 

UTAH 

Inte' Corp. (temporary) 
3519 lexington Dr. 
Bountiful, UT 84010 
Tel: (SOl) 292·2184 

VIRGINIA 
Intel Corp. 
1501 Santa Ros. Road 
Suite C·7 
Richmond, VA 23288 
Tal: (80.1) 282-5888 

WASHINGTON 
Intel Corp. 
Suite 114. Bldg. 3 
1803 118th Ave. N.E. 
Bellavua 98005 
Tel, (206) 453·8086 
TWX: 910·443-3002 

WISCONSIN 
Intel Corp. 
160 S. Sunnyalopa Rd. 
Brooklleld 53005 
Tel: (414) 784·9060 

CANADA 
Intel Semiconductor Corp .• 
Suite 233, Bell Mews 
39 Highway 7, aeUa Corners 
Ottawa, Ontario K2H eR2 
Tel: (813) 829·9714 
TELEX: 053·4115 

Intel Samiconductor Corp. 
50 Galaxy Blvd. 
Unit 12 
Rexda'e, Ontario 
M9W4Y5 
Tel: (416) 875·2105 
TELEX: 08983574 

Multllek,lnc." 
15 Grenfell Crascent 
Ottawa, Ontario K2G OG3 
Tel: (813) 228·2385 
TELEX: 053·458$ 
Multilek, Inc .• 
Toronto 
Tel: 1·800·287·1070 

Multilek, Inc, 
Montre.1 
Tel: 1·800·267·1070 

• Field Application Location 



intJ 
3065 Bowers Avenue 
Santa Clara, California 95051 
Tel: (408) 987·8080 
TWX: 910·338·0026 
TELEX: 34·6372 

CALIFORNIA 
Intel Corp. 
1601 Old Bayahore Hwy, 
Suite 345 
Burlingame 94010 
Tel: (415) 892·4762 
TWX: 910·375·3310 
Intel Corp. 
2000 E, 4th Street 
Suite 110 
Santa Ana 92705 
Tel: (714) 835·2670 
TWX: 910-595·2475 

Intel Corp. , 
7670 Opportunity Road 
San Diego 92111 
Tel: (714) 286·3563 

Intel Corp. 
5530 N. Corbin AV8. 
Suite 120 
Tarzana 91356 
Tel: (213) 70B·0333 

COLORADO 
Intel Corp, 
650 South Cherry 
Suite 720 
Denvsr 80222 
Tel: (303) 321·8086 
TWX: 910·931·2289 

CONNECTICUT 
Intel Corp. 
36 Padanaram Rd. 
Danbury, cr 06810 
Tel: (203) 792·8366 

FLORIDA 

Intel Corp. 
1500 N.W. B2nd Street 
Suite 104 
Ft. Lauderdale 33309 
Tel: (305) 771-0600 
TWX: 510-958-9407 

Intel Corp. 
500 N. Mailland Ave. 
Suite 205 
Maitland, FL 32751 
Tel: (305) 828-2393 
TWX: 810-853-9219 
Intel Corp. 
5151 Adanson St. 
Orlando 32804 
Tel: (305) 826-2393 

GEORGIA 
Intel Corp. 
3300 Holcomb Bridge Rd. #225 
Norcross, GA 30092 
Tel: (404) 449-0641 

ILLINOIS 
Intel Corp. 
2550 Golf Road 
Suite 815 
Rolling Meadows 60006 
Tel: (312) 981·7230 
TWX: 910-253-1826 

KANSAS 
tntel Corp. 
9393 W. 110th Street 
Suite 266 
Overland Park 66210 
Tel: (913) 642-8080 

MARYLAND 

Intel Corp. 
7257 Parkway Drive 
Hanover 21078 
Tel: (301) 798-7500 
TWX: 710-882-1944 

u.s. AND CANADIAN SERVICE OFFICES 

MASSACHUSETTS 
Intel Corp. 
27 Industrial Avenue 
Chelmsford 01824 
Tel: (817) 256-1800 
TWX: 710-343-8333 

MICHIGAN 
Intel Corp. 
28500 Northwestern Hwy. 
Suite 401 
Southfield 48075 
Tel: (313) 353-0920 
TWX: 810-244-4915 

MINNESOTA 
Intel Corp. 
7401 Metro Blvd. 
Suite 355 
Edina 55435 
Tel: (812) 835-8722 
TWX: 910-578-2887 

MISSOURI 

Intel Corp. 
502 Earth City Plaza 
Suite 121 
Earth City 63045 
Tel: (314) 291-1990 

NEW JERSEY 
Intel Corp. 
2460 Lemoine Avenue 
18t Floor 
Ft. Lee 07024 
Tel: (201) 947-8287 
TWX: 710-991-8593 

NEW YORK 

Intel Corp. 
2266 Lyell Avenue 
Rochester. NY 14608 
lei: (716) 254-8120 

NORTH CAROLINA 

Intel Corp. 
2308 W. Meadowview Rd. 
Suite 208 
Greensboro, NC 27407 
Tel: (919) 294-1541 

OHIO 

Intel Corp. 
Chagrin-Brainard Bldg. Suite 300 
28001 Chagrin Blvd. 
Cleveland 44122 
Tel: (216) 464-2736 
TWX: 810-427-9298 
Intel Corp. 
6500 Poe Avenue 
Dayton 45414 
Tel: (513) 890-5350 
TWX: 810·460-2528 

OREGON 

Intel Corp. 
10700 S.W. Beaverton-Hilladale HWy. 
Suite 22 
Beaverton 97005 
Tel: (603) 841-8088 
TWX: 910-467-8741 

PENNSYLVANIA 

Intel Corp. 
500 Pennsylvania Avenue 
Fort Washington 19034 
Tel: (215) 841-1000 
TWX: 510-661-2077 

Intel Corp. 
201 Penn Center Blvd. 
Suite 301 W. 
Pittaburgh. PA 15235 
Tel: (412) 823-4970 

TEXAS 
Intel Corp. 
313 E. Anderson Lane 
Suite 314 
Austin 78762 
Tel: (512) 464-8477 
TWX: 910-874-1347 
Intel Corp. 
2926 L.B.J. Freeway 
Suite 176 
Dalla875234 
Tel: (214) 241-2820 
TWX: 910-880-5617 
Intel Corp. 
6420 Richmond Avenue 
Suite 280 
Hou8ton 77067 
Tel: (713) 784-1300 
TWX: 910-881-2490 

VIRGINIA 

Intel Corp. 
7700 Leesburg Pike 
Suite 412 
Falls Church 22043 
Tel: (703) 734-9707 
TWX: 710-931-0625 

WASHINGTON 
Intel Corp. 
1603 118th Ave. N.E. 
Suite 114 
Bellevue 98005 
Tel: (206) 232-7823 
TWX: 910-443-3002 

WISCONSIN 

Intel Corp. 
150 S. Sunnyslope Road 
Suite 148 
Brookfield 63005 
Tel: (414) 784-9080 

CANADA 
Intel Corp. 
50 Galaxy Blvd. 
Unit 12 
Rexdale, Ontario 
M9W4Y5 
Tel: (416) 675-2105 
Telex: 089-S9278 
Intel Corp. 
39 Bells Corners 
Ottawa. Ontario 
K2H 8R2 
Tel: (613) 829-9714 
Telex': 053-4115 



inter 
INTERNATIONAL SALES AND MARKETING OFFICES 

3085 Bowar. Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0028 
TELEX: 34-6372 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
AUSTRALIA 
A.J.F. Systems & Components Ply. Ltd. 
310 Queen Street 
Melbourne 
Victoria 3000 
Tel: 679-702 
TELEX: AA 31281 
Warburton Franki 
Corporate Headquarters 
372 Eastern Valley Way 
Chatawood, New South Wales 2087 
Tel: 407-3281 
TELEX: AA 21299 

AUSTRIA 
Bacher Elektroniache Ger.ete GmbH 
Rotenmulgas88 28 
A 1120 Vienna 
Tel: (222) 835646 
TELEX: 131532 

Rekirsch Etektronik Gereeta GmbH 
Lichtensteinalra ••• 9718 
A 1090 Vienna 
Tal: (222) 347646 
TELEX: 134759 

BELGIUM 
Inalco Belgium S.A. 
Ave. des Croix de Guerra 94 
81120 Brussels 
Tel: (02) 216 0160 
TELEX: 25441 

BRAZIL 
Icotron SA 
0511 Av. Muting. 3650 
6 Ander 
Piritube Seo Pe!Jlo 
Tel: 281·0211 
TELEX: 1122274/1COTBR 

CHILE 
DIN 
Av. Vic. MacKenna 204 
Casilla 6055 
Santiago 
Tel: 227 564 
TELEX: 3520003 

CHINA 

C.M. Technologies 
525 University Avenue 
Suite A·40 
Palo Alto, CA 94301 
Tel: (415) 328·9150 

Schmidt & Co. Ltd. 
Wing On Centre, 28th Floor 
Connaught Road 
Hong Kong 
Tel: 011·852·5·455-844 
TELEX: 74766 SCHMC HX 

COLOMBIA 

International Computer Machines 
Carrera 7 No. 72·34 
Apdo. Aereo 19403 
Bogota 1 
Tel: 211·7282 
TELEX: 44495 TOYOCO 

CYPRUS 
Cyprus Eltrom Electronics 
P.O. Box 5393 
Nicosia 
Tel: 21·27982 

DENMARK 

In Multi Komponent 
F.brysparken 31 
DK·2600 Gloskrup 
Tel: (02) 45 66 45 
TX: 33355 

Scandinavian Semiconductor 
Supply A/S 
Nannasgede 18 
OK-2200 Copenhagen 
Tei: (01) 83 50 90 
TELEX: 19037 

FINLAND 

Oy Fintronic AB 
Melkonkatu 24 A 
SF·0021,O 
Helsinki 21 
Tel: (0) 892 80 22 
TELEX: 124 224 Ftron SF 

FRANCE 

Celdis S.A.' 
53. Rua Charles Frerot 
F·94250 Gentilly 
Tel: (01) 646 13 13 
TELEX: 200 486 

Feulrler 
Rue des Troia Glorieuses 
F-42270 St. Priest-en-Jerez 
Tal: 33 (77) 74 87 33 
TELEX: 300 0 21 

Metrologie' 
La Tour d' Asnieres 
I, Avenue Laurent Cely 
92606·Asniares 
Tel: (t) 7914444 
TELEX: 811 448 

Tekelec Airtronic' 
Cite des Bruyerea 
Rue Csrle Vernet 
F·92310 Sevres 
Tel: (01) 534 75 35 
TELEX: 204552 

GERMANY 

Electronic 2000 Vertrlebs GmbH 
Naumarkter Strasse 75 
0·8000 Munich 80 
Tel: (89) 43 40 61 
TELEX: 622561 
Jermyn GmbH 
Posttach 1180 
Schutstrasse 48 
0·6277 Csmberg 
Tel: (6343) 4231 
TELEX: 464426 
Kontron Elektronik GmbH 
Breslaueretraese 2 
8057 Eching B 
0·8000 Munich 
Tel: (89) 319011 
TELEX: 522122 
Neye Enstechnik GmbH 
Schillerstrasse 14 
0·2085 Qulckborn-Hamburg 
Tel: (4108) 6121 
TELEX: 213590 

GREECE 

American Technical Enterprises 
P.O. Box 156 
Athens 
Tel: 30+8811271 
TX: 30+8219470 

HONG KONG 

Schmidt & Co. 
Wing on Center, 28th Floor 
Connaught Rosd 
Hong Kong 
Tel: 5·455-644 
TELEX: 74786 Schmc Hx 

INDIA 

Micronic Dellices 
104/109C, Nirmallndustrisl Estste 
Sion (E) 
Bombay 400022, India 
Tel: 488·170 
TELEX; 011·6947 MDEV IN 

ISRAEL 

Eeatronlcs ltd .• 
11 Rozanls Street 
P.O. Box 39300 
Tei Aviv 61390 
Tel: (3) 47 51 51 
TELEX: 33838 

ITALV 

Eledra 35 S.P.A.' 
Viale Elvezia, 18 
I 20154 Mlleno 
Tel: (2) 34 97 51 
TELEX: 332332 

JAPAN 

Asahi Electronica Co. Ltd. 
KMM Bldg. Room 407 
2-14·1 Asano, Kokura 
Kita·Ku, Kitakyushu City B02 
Tel: (093) 511-8471 
TELEX: AECKY 7126-16 

Hamilton-Avnet Electronics Japan Ltd. 
YU and YOU Bldg. 1-4 Horidome-Cho 
Nihonbaahi Chuo·Ku, Tokyo 103 
Tel: (03) 882·9911 
TELEX: 2623774 

Ryoyo Electric Corp. 
Konwa Bldg. 
1·12-22, Tsukiji 
Chuo·Ku, Tokyo 104 
Tel: (03) 543-7711 

Tokyo Electron ltd. 
Shin Juku, Nomura Bldg. 
28·2 Nishi-Shin Juku·lchome 
Shin Juku-Ku, Tokyo 160 
Tel. (03) 343-4411 
TELEX: 232·2220 LABTEL J 

KOREA 

Koram Digital 
Room 909 Woonam Bldg. 
7, I·KA Bongre·Dong 
Chung-Ku Seoul 
Tel: 238,123 
TELEX: K23542 HANSINT 

MEXICO 
Proveedora Electronica, S.A. (Proesa) 
Pro!. Moctezuma ate. 24 
Col. Romero de Terraroe 
Apdo. Postal 21-139 
Mexico 21, D.F. 
Tel: 554-8300 
TELEX: 017·72402 SAULME 

NETHERLANDS 

Inelco Nether. Comp. Sys. BV 
Turfstekerstraat 63 
P.O. Box 360 
NL Aalemeer 1430 
Tel; (2977) 28855 
TELEX: 14693 

Koning & Hartman 
Koperwerf 30 
P.O. Box 43220 
2544 EN's Grevenhage 
Tel: 31 (70) 210.101 
TELEX: 31528 

NEW ZEALAND 

McLean Information Technology Ltd. 
P.O. Box 18·065 
Glenn Inne8, Auckland, 8 
Tel: 587·037 
TELEX: NZ2763 KOSFY 

NORWAY 

Nordisk Elektronic (Norge) A I 5 
Postoffice Box 122 
Smedsvingen 4 
1384 Hvaletad 
Tel: (2) 788 210 
TELEX: 18963 

PC)ftTUGAL 
Ditram 
Componentes E Electronica LOA 
Av. Miguel Bombarda, 133 
Pl000 Lieboa 
Tal: (19) 545 313 
TELEX: 14182 Brieks-P 

SINGAPORE 

General Engineers Corpotation Pte. Ltd. 
Blk 3, Unite 1003-1008, 10th Floor 
P .S.A. Multi·Storey Complex 
Pasir Panjang Road 
Singapore 0511 
Tet; 271·3163 
TELEX: RS23987 GENERCO 

SOUTH AFRICA 

Electronic Building Elements 
P.O. Box 4809 
Hezelwood, Pretoria 0001 
Tel: 011'27-12-48·9221 
TELEX: 30181SA 

SPAIN 

Interface S.A. 
Ronda San Pedro 22, 3" 
Barcelona 10 
Tet: (3) 301 7851 
TWX: 51508 

ITT SESA 
Miguel Angel 16·6 
Madrid 10 
Tel: (1) 410.23.54 
TELEX: 27707/27461 

SWEDEN 

AS Gosta Backstrom 
Box 12009 
Aletrlilhe,,;atan 22 
S·10221 Stockholm 12 
Tel: (8) 541 OBO 
TELEX: 10136 

Nordisk Electronlk AS 
Box 2730t 
S-10254 Stockholm 
Tel: (8) 635 040 
TELEX: 10547 

SWITZERLAND 

Industrada AG 
Gemeanstrasse 2 
Postcheck 80 • 21190 
CH-B021 Zurich 
tal: (1) 363 22 30 
TELEX: 66788 

.TAIWAN 

Taiwan Automation Co .• 
3d Floor # 75, Section 4 
Nanking East Road 
Taipei 
Tel: 771·0940 
TELEX: 11942 TAIAUTO 

TURKEY 

Turkelek Electronics 
Apapurk Boulevard 169 
Ankara 
Tel: 189483 

UNITED KINGDOM 

Comway Microsyslems ltd. 
Marteat Street 
UK-Bracknell, Berkshire 
Tel: 44 (344) 51654 
TELEX: 847201 

M.E.D.L 
East Lana Road 
North Wambley 
Middlesex HA9 7PP 
Tel: 44 (01) 904·9303/908·4111 
TELEX: 28817 

Jermyn Industries (Mogul) 
Vestry Estete 
Sevenoaka, Kent 
Tel: (0732) 501.44 
TELEX: 95142 

Rapid Recall, ltd. 
Rapid House/Denmark St 
High Wycomba 
Bucks, England HPll 2ER 
Tel: 44 494 26 271 
TELEX: 849439 
Bytech Ltd. 
Sutton Park Avenue 
Reading, Berkshire 61 A2 
Tel: (0734) 61031 
TELEX: 848215 

• Field Application Location 



INTERNATIONAL SALES AND MARKETING OFFICES 
3065 Bowera Avenue 
Santa Clara, California 95051 
Tel: (408) 987-8080 
TWX: 910·338-0028 
TELEX: 34·8372 

INTEL@ MARKETING OFFICES 
AUSTRALIA 
Intel Semiconductor Pty. Ltd. 
Suite 2, Level 15, North Point 
100 Miller Street 
North Sydney, NSW, 2080 
Tel: 460-847 
TELEX: AA 20097 

BELGIUM 
Intel Corporation S.A. 
Rue du Moulin a Papler 51 
Boite 1 
B·l1BO Bru .. el, 
Tel: (02) BBO 30 10 
TELEX: 24814 

DENMARK 
Intel Denmark A/S· 
Lyngbyvaj 32F 2nd Floor 
DK-21oo Copenhagen East 
Tel: (01) 182000 
TELEX: 19587 

FINLAND 
Intel Finland OV 
Santnerlkuja 3 
SF - 00400 Halainki 40 
Tel: CO) 5B244 55 
TELEX: 123332 

FRANCE 
Inte' Corporation, S.A.R.l." 
5 Placa de la Balance 
Sillc 223 
94528 Rungia Cedex 
Tel: (01) 667 22 21 
TELEX: 270475 

GIRMANY 
Inta' Semiconductor GmbH· 
Seidl,.ras.a 27 
0-8000 Muenchen 2 
Tel: (S9) 53891 
TELEX: 523 177 
Intal Semiconductor GmbH 
Mainzer Stra'.e 75 
0-8200 Wiaabed.n 1 
Tal: (8121) 70 08 74 
TELEX: 04188183 
Intel Semiconductor GmbH 
Werneretra •• 87 
P.O. Box 1460 
0·7012 Fellbach 
Tel: (711) 580082 
TELEX: 7254828 
Intal Samiconductor GmbH 
Hohenzollern Stra ... 6 
3000 Hannover 1 
·T.8I: (611) 32 70 81 
TELEX: 923625 
Intel Semiconductor GmbH 
Vert,iebaburo Du •• eldorf 
Ober-Ratheratra .. e 2 
4000 Du .. aldorf 30 
Tel: (all) 85 to 54 
TELEX: 8688977 . 

HONG KONG 
Intal Semico'nductor Ltd. 
99-106 De. Voeux Rd., Central 
lSF, UnitS 

·Hong Kong 
Tal: 6-450·847 
TELEX: 63889 

ISRAEL 
Intal Semiconductor Ltd.· 
P.O. Box 1869 
Haifa " 
Tel: 41524 281 
TELEX: 48511 

ITALY 
Intel Corporation Italia Spa 
Mllanotion, Palazzo E 

, J", 20094 Auago (Milano) 
Tel: (02) S2. 00 06 
TELEX: 316183INTMIL 

·JAPAN 
Intal Japan K.K .• 
Flowar Hill-Shinmachi Ea,t Bldg. 
1-23-9 Shinmachi, Setagaya7ku 
Tokyo 154 
Tel: (03) 428-9261 
TELEX: 781-28428 

NETHERLANDS 
Intel Semiconductor Nederland B.V. 
OranJe.traat 1 ' 
3441 Ax Woerdan 
Netherland. 
Tel: 31-3480·112-84 
TELEX: 47970 
Intel Semiconductor B.V. 
Cometongebouw 
We.tblaak 106 
3012 Km Rotte,dam 
Tel: (10) 149122 
TELEX: 222S3 

NORWAY 
Intel Norway A I S 
P.O. Box 92 
Hvamveien 4 
N-2013 
Skletten 
Tel: (2) 742 420 
TELEX: 18018 

SWEDEN 
Intel Sweden A.B .• 
Sox 20092 
Enighetavagen S 
S-18120 Bromma 
Tel: (OS) 985385 
TELEX: 12281 

SWITZERLAND 
Intel Semiconductor A.G. 
Forchatrasae 95 
CH 8032 Zurich 
Tel: (01) 55 46 02 
TELEX: 557 89 ich ch 

UNITED KINGDOM 
Intel Corporation (U.K,) Ltd," 
S Hospital Street 
Nentwich, Cheshire CWS SRE 
Tel: (0270) 826 680 
TELEX: 38820 
Intel Corporation (U.K.) Ltd. 
Dorcan Hou •• 
Eldana Drive 
Swindon, Wiltshir. SN3 310 
Tel: (0793) 28 101 
TELEX: 4444471NT SWN 

-Field Application Location 



inter 
3065 Bowers Avenue 
Santa Clara. California 95051 
Tel: (408) 987-8080 
TWX: 910·338-0026 
TELEX: 34·6372 

ALABAMA 
Arrow Electronics 
4717 University Or. 
Suite 102 1/2 D. 
Huntsville 35405 
Tel: (205) 830-1103 

tHamiltonl Avne! ElectroniC8 
4612 Commercial Drive N.W. 
Huntsville 35805 
Tel: (205) 837·7210 
TWX: 810-726-2162 

tPionear I Huntsville 
1207 Putnam Drive N.W. 
Huntsville 35805 
Tel: (205) 937-9300 
TWX: 810-726·2197 

ARIZONA 
tHamiiton I Avns! Electronics 
505 S. Madison Drive 
Tempe, AZ 85281 
Tel: (602) 231-5140 
TWX: 910-950-0077 

tWyle Distribution Group 
8155 N. 24th Street 
Phoenix 85021 
Tel: (602) 995-9185 
TWX: 910-951·4282 

CALIFORNIA 

Arrow Electronics, Inc. 
521 Weddell Dr. 
Sunnyvale 94086 
Tel: (408) 745-6600 
TWX: 910-339-9371 

tAvnet Electronics 
350 McCormick Avenue 
Costa Mesa 92626 
Tel: (714) 754-6051 
TWX: 910-595-1928 

Hamilton I Avnet Electronics 
1175 Bordeaux Dr 
Sunnyvale 94086 
Tel: (408) 743-3300 
TWX: 910-339-9332 

tHamiltonl Avnet Electronics 
4545 Viewridge Ave 
San Diego 92123 
Tel: (714) 563-1969 
TWX: 910-335-1216 

tHamiltonl Avnet Electronics 
10912 W. Washington Blvd. 
Culver City 90230 
Tel: (213) 558-2193 
TWX: 910-340-6364 or 7073 

tHamilton Electro Sales 
3170 Pullman Street 
Costa Mesa 92626 
Tel: (714) 641-4109 
TWX: 910-595-2638 

tWyle Distribution Group 
124 Maryland Street 
EI Segundo 90245 
Tel: (213) 322·8100 
TWX: 910-348-7140 or 7111 

tWyle Distribution Group 
9525 Chesapeake Dr. 
San Diego 92123 
Tel: (714) 565-9171 
TWX: 910-335-1590 

tWyle Distribution Group 
3000 Bowers Avenue 
Santa Clara 95052 
Tel: (408) 727-2500 
TWX: 910-338-0451 or 0296 

Wyle Distribution Group 
17872 Cowan Avenue 
Irvine 92713 
Tel: (714) 641-1600 
TWX: 910-595·1572 

COLORADO 

tWyle Distribution Group 
451 E 124th Avenue 
Thornton, CO 80241 
Tel: (303) 457-9953 
TWX: 910-936-0no 

tHamilton I Avnet Electronics 
8765 E. Orchard Road 
Suite 708 
Englewood 80111 
Tel: (303) 740-1017 
TWX: 910-935·0787 

u.s. AND CANADIAN DISTRIBUTORS 

CONNECTICUT 

t Arrow Elec!onics 
12 Beaumont Road 
Wallingford 08512 
Tel: (203) 265-7741 
TWX: 710-476-0162 

tHamilton I Avnet Electronics 
Commerce Industrial Park 
Commerce Drive 
Danbury 06810 
Tel: (203) 797·2800 
TWX: 710-456-9974 

tHarvey Electronics 
112 Main Street 
Norwalk 06851 
Tel: (203) 853-1515 
TWX: 710-468-3373 

FLORIDA 

t Arrow Electronics 
1001 N.W. 62nd Street 
Suite 108 
Ft. Lauderdale 33309 
Tel: (305) 776-7790 
TWX: 510-955-9456 

t Arrow Electronics 
115 Palm Bay Road, N.W. 
Suite 10. Bldg. 200 
Palm Bay 32905 
Tel: (305) 725-1480 
TWX: 510-959-6337 

tHamiltonl Avnet Electronics 
6800 Northwest 20th Ave. 
Ft. Lauderdale 33309 
Tel: (305) 971-2900 
TWX: 510-956-3097 

Hamilton I Avnet Electronics 
3197 Tech. Drive North 
Sf. Petersburg 33702 
Tel: (813) 576-3930 
TWX: 810-863-0374 

tPioneer IOrlando 
6220 S. Orange Blossom Trail 
Suite 412 
Orlando 32809 
Tel: (305) 859·3600 
TWX; 810'850-0177 

GEORGIA 
Arrow Electronics 
2979 Pacific Drive 
Norcross 30071 
Tel: (404) 449-8252 
TWX: 810-766-0439 

tHamillon f Avne! Electronics 
5825 D. Peachtree Corners 
Norcross 30092 
Tel: (404) 447-7500 
TWX: 810-766-0432 

Pioneer I Georgia 
5835 B Peachtree Corners E 
Norcross 30092 
Tel: (404) 448-1711 
TWX: 810-766-4515 

ILLINOIS 
Arrow Electronics 
492 Lunt Avenue 
P.O. Box 94248 
Schaumburg 60172 
Tel: (312) 893-9420 
TWX: 910-291-3544 

tHamiltonl Avnet Electronics 
3901 No. 25th Avenue 
Schiller Park 60176 
Tel: (312) 678-6310 
TWX: 910-227-0060 

Pioneer I Chicago 
1551 Carmen Drive 
Elk Grove 60007 
Tel: (312) 437-9680 
TWX: 910-222-1834 

INDIANA 

Arrow Electronics 
2718 Rand Road 
Indianapolis 46241 
(317) 243-9353 
TWX: 810-341-3119 

tHamiiton I Avnet Electronics 
485 Gradle Drive 
Carmel 46032 
Tel: (317) 844-9333 
TWX: 810-260-3966 

INDIANA (Cont.) 
Pioneer Iindisna 
6408 Castleplace Drive 
Indianapolis 46250 
Tel: (317) 849-7300 
TWX: 810-260-1794 

KANSAS 
tHamiltonl Avnet Electronics 
9219 Quivera Road 
Overland Park 66215 
Tel: (913) 888-8900 
TWX: 910-743-0005 

tComponent Specialties, Inc. 
8369 Nieman Road 
Lenexa 66214 
Tel: (913) 492-3555 

MARYLAND 

tHamiiton I Avne! Electronics 
6822 Oak Hall lane 
Columbia, MD 21045 
Tel: (301) 995-3500 
TWX: 710-862-1861 
Mesa 
16021 Industrial Dr. 
Gaithersburg 20760 
Tel: (301) 948-4350 

tPioneer I Washington 
9100 Gaither Road 
Gaithersburg 20760 
Tel: (301) 948-0710 
TWX: 710·828-0545 

MASSACHUSETTS 
tHemilton I Avnet Electronics 
50 Tower Office Park 
Woburn 01801 
Tel: (617) 935-9700 
TWX: 710-393-0382 

tArrow Electronics 
Arrow Dr. 
Woburn 01801 
Tel: (617) 933-8130 
TWX: 710-393-6710 

Harvey I Boston 
44 Hartwell Ave. 
Lexington 02173 
Tel: (617) 863-1200 
TWX: 710-326-6617 

MICHIGAN 

t Arrow Electronics 
3810 Varsity Drive 
Ann Arbor 48104 
Tel: (313) 971-8220 
TWX: B 10-223-6020 

tPioneer I Michigan 
13485 Stamford 
Livonia 48150 
Tel: (313) 525-1800 
TWX: 810·242·3271 

tHamiiton I Avnet Electronics 
32487 Schoolcraft Road 
Livonia 48150 
Tel: (313) 522,4700 
TWX: 810-242-8775 

MINNESOTA 
t Arrow Electronics 
5230 W. 73rd Street 
Edina 55435 
Tel: (612) 830-1800 
TWX: 910-576-3125 

tlndustrial Components 
5229 Edina Industrial Blvd. 
Minneapolis 55435 
Tel: (612) 831-266~ 
TWX: 910-576-3153 

Hamilton I Avnet Electronics 
10300 Bren Rd. East 
Minnetonka 55343 
Tel: (612) 932-0666 
TWX: (910) 575-2720 

tHamillon I Avne! Electronics 
7449 Cahill Road 
Edina 55435 
Tel: (612) 941-3801 
TWX: 910-576-2720 

MISSOURI 
tArrow Electronics 
2380 Schuetz 
SI. Louis, MO 63141 
Tel: (314) 567-6888 

tHamilton I Avnet Electronics 
13743 Shorline CI. 
Earth City 63045 
Tel: (314) 344-1200 
TWX: 910-762-0684 

NEW HAMPSHIRE 
t Arrow Electronics 
1 Perimeter Drive 
Manchester 03103 
Tel: (603) 668-6968 
TWX: 110-220-1684 

NEW JERSEY 

tArrow Electronics 
Pleasant Valley. Avenue 
Moorestown 08057 
Tel: (215) 928-1800 
TWX: 710-897·0829 

t Arrow Electronics 
285 Midland Avenue 
Saddle Brook 07662 
Tel: (201) 797-5800 
TWX: 710-998·2206 

tHamiltonl Avnet Electronics 
1 Keystone Ave. 
Bldg. 36 
Cherry Hill 08003 
Tel: (609) 424·0100 
TWX: 710-940-0282 

Hamiltonl Avnel Electronics 
10 Industrial Road 
Fairfield 07006 
Tel: (201) 575-3390 
TWX: 710-734·4388 

tHarvey Electronics 
45 Route 46 
Pinebrook 07058 
Tel: (201) 227-1262 
TWX: 710-734-4382 

Measurement Technology Sales Corp. 
383 Route 46 W 
Fairfield, NJ 07006 
Tel: (201) 227-5552 

NEW MEXICO 

t Alliance Electronics Inc. 
11030 Cochiti S.E. 
Albuquerque 87123 
Tel: (505) 292-3360 
TWX: 910-989-1151 

tHamilion I Avnet Electronics 
2524 Baylor Drive S.E. 
Albuquerque 87119 
Tel: (505) 765-1500 
TWX: 910-989-0614 

NEW YORK 

tArrow Electronics 
900 Broad Hollow Rd. 
Farmingdale, NY 11735 
Tel: (516) 694-6800 
TWX: 510-224-6494 

tArrow Electronics 
3000 South Winton Road 
Rochester 14623 
Tel: (716) 275-0300 
TWX: 510-253-4766 

t Arrow Electronics 
7705 Maltage Drive 
Liverpool 13088 
Tel: (3tS) 652-1000 
TWX: 710-545-0230 

Arrow Electronics 
20 Oser Avenue 
Hauppauge 11787 
Tel: (516) 231-1000 
TWX: 510-227-6623 

tHamilton I Avnet Electronics 
333 Metro Park 
Rochester 14623 
Tel: (716) 475-9130 
TWX: 510-253-5470 

tHamilton I Avnst Electronics 
16 Corporate Circle 
e. Syracuse 13057 
Tel: (315) 437-2641 
TWX: 710-541-1560 

tHamilton I Avnet Electronica 
5 Hub Drive 
Melville, Long Island 11746 
Tel: (516) 454-6000 
TWX: 510-224-6166 

Harvey Electronics 
P _0. Box 1208 
Binghampton 13902 
Tel: (607) 746-8211 
TWX: 510-252-0893 

tMicrocompuler System Technical Demonstrator Centers 



inter 
3066 Bower. Avenue 
Santa Cia fa, California 95051 
Tel: (408) 987-8080 
TWX: 910-338-0026 
TELEX: 34-6372 

NEW YORK (ConI.) 
tHafVe'l Electronics 
60 Croasways Park Weal 
Woodbury, Long lal,and 1179~ 
Tel: (616) 921-8920 
TWX: 510-221-2184 
Harvey I Rochester 
840 Fairport Park 
Fairport 14460 
Tel: (716) 381-7070 
TWX: 510-263·7001 

Meas"re~8nt T~c;hnology Sale8 Corp_ 
169 Nortt)ern BlVd. ' 
Greatneck 11021 
Tel: (518) 482·3500 
TWX: 510·223·0848 

NORTH CAROUNA 
Arrow Electronics 
938 Burke Street 
Winston·Salem 27102 
Tel: (919) 725·8711 
TWX: 510·931·3189 
tHamiiton I Avnel Electronics 
2803 Industrial Drive 
Raleigh 27609 
Tel: (919) 829-8030 
TWX: 510·928·1836 
PioneerlCarolina 
106 Industrial Ave. 
Greensboro 27406 
Tel: (919) 273-4441 
TWX: 510·925·1114 

OHIO 
Arrow Electronics 
10 Knolkreat Dr. 
Reading, OH 45237 
Tel: (513) 761-5432 
TWX: 810-481-2670 

Arrow Electronics 
7820 McEwen Road 
Cenlerville 45459 
Tel: (513) 435-5563 
TWX: 810-459-1611 
Arrow Electronics 
6238 Cochran Rd. 
Solon 44139 
Tel: (218) 248·3990 
TWX: 810-427-9409 
tHamiitonl Avnet Electronics 
954 Senate Drive 
Daylon 45459 
Tel: (513) 433-0610 
TWX: 910-450-2531 

tHamilton f Avnet Electronics 
4588 Emery Industrial Parkway 
Warrensville Heights 44128 
Tel: (216) 831-3500 
TWX: 810-427-9452 

tPioneer/Oayton 
4433 Interpoin! Blvd. 
Dayton 45424 
Tel: (513) 236-9900 
TWX: 810-459-1622 
tPioneer f Cleveland 
4800 E. 131 st Street 
Cleveland 44105 
Tel: (216) 587-3600 
TWX: 810-422-2211 

OKLAHOMA 

tComponents Specialt.i~s, Inc. 
7920 E. 40th Street 
Tulsa 74145 
Tel: (918) 664-2820 
TWX: 910-845-2215 

u.s. AND CANADIAN DISTRIBUTORS 

OREGON 
tAlmac/Stroum Electronics 
8022 S. W. 'Nimbus, Bldg. 1 
Beaverton 97006 
Tel: (503) 841-9070 
TWX: 910-487-8743 

tHamliton/Avnet Electronics 
8024 S. W. Jesn Rd. 
Bldg. C, Suite 10 
Lake Oswego 97034 
Tel: (503) 835-7848 
TWX: 910·455-8179 

PENNSYLVANIA 

Arrow Ei.ctroni~" 
660 S8CO Rd. 
Monroeville, PA 15146 
Tel: (412) 858-7000 

tArrow Electronics 
850 Seco Rd. 
Monroeville 15148 
Tel: (412) 856-7000 

Pioneer (Pittsburgh 
259 Kappa Drive 
Pittsburgh 15238 
Tel: (412) 782-2300 
TWX: 710-795-3122 

Pioneer/Delaware Valley 
281 Glbralter Road 
Horsham 19044 
Tel! (215) 674-40OQ 
TWX: 510-866-8778 

TEXAS 
Arrow Electronics 
13715 Gama Road 
Dallas 76234 
Tel: (214) 386-7500 
TWX: 910-880-5377 

Arrow Electronics, Inc. 
10100 Corporate Drive, Suite 100 
Stafford 77477 
Tel: (713) 491-4100 
TWX: 91"0-880-4439 

Component Specialties, Inc. 
8222 Jamestown Drive 
Suite 116 
Austin 78758 
Tel: (512) 837-8922 
TWX: 910-874-1320 

tComponent Specialties, Inc. 
10907 Shady Trail, Suite 101 
DaUas 75220 
Tel: (214) 357-6511 
TWX: 910-881-4999 

tComponent Specialties, Inc. 
8181 Commerce Peril; Drive, Suite 700 
Houston 77038 
Tel: (713) 771-7237 
TWX: 910-881-2422 

Hamilton! Avnet Elactronics. 
10508A Boyer Blvd. 
Austin 78757 
Tel: (512) 837-8911 
TWX: 910-874-1319 

tHamiitonl Avnet Electronics 
211 t W. Walnut Hill Lane 
Iving 15082 
Tel: (214) 659-4100 
TWX: 910-880-5929 

tHamilton I Avnet Electronlca 
3939 Ann Arbor Drive 
Houston 77063 
Tel: (713) 780-1771 
TWX: 910-881-5523 

UTAH 
tHamilton I Avnet Electronic', 
1585 West 2100 South 
Salt Lake City 84119 
Tel: (801) 972-2800 
TWX: 910-925-4018 

WASHINGTON 
tAlmac/Stroum Electronics 
6811 Sixth Ave. South 
Seattle 98108 
Tel: (206) 163-2300 
TWX: 910-444-2067 

tHamiiton'l Avnet Electronics 
14212 N.E. 21st Street 
Bellevue 98006 . 
Tel: (206) 463-6844 
TWX: 910-443-2469 

tWyle Distribution Group 
1750 132nd Avenue H.E. 
Bellevue 98005 
Tel, (206)463·6300 
TWX: 910-443-2526 

WISCONSIN 
tArrow Electronics 
430 W. Rausaon Avenue 
Oakcreek 53154 
Tel: (414) 764·6600 
TWX: 910-262-1193 

tHamUton I Avnet Electronics 
2975 Moorland Road 
New Berlin 53151 
Tel: (414) 784-4510 
TWX: 910-262-1182 

CANADA 

ALBERTA 
tL.A. V.rah ltd. 
4742 14th Street N.E. 
Calgary no 6L7 
Tel: (403) 230-1235 
TWX: 038-268-97 

Zentronics 
9224 27th Avenue 
Edmonton T8N lB2 
Tel: (403) 463-3014 
Telex: 03742841 

Zentronics 
3651 21st N.E. 
Calgary T2E 8T5 
Tel: (403) 230-1422 

BRITISH COLUMBIA 
tL.A. Var.h ltd. 
2077 Alberta Street 
Vancouver V6Y 1C4 
Tel: (604) 873-3211 
TWX: 610-929-1068 

Zentronics 
560 Cambie St. 
Vancouver V8B 2N1 
Tel: (604) 888-2533 
TWX: 04-5077-89 

MANITOBA 
LA. Varah 
1-1832 King Edward Street 
Winnipeg R2R ON 1 . . 
Tel: (204) 633-6190 
TWX: 07-55-365 

Zentronics 
590 Berry St. 
Winnipeg R3H OS 1 
Tel: (204) 775-8661 

NOVA SCOTIA 
Zentronic8 
30 Simmonds Or., Unit B 
Dartmouth, B3B 1 R3 

ONTARIO 
tHamltton I Avn .. Electronics 
8845 Rexwood Road, Unit, G & H 
Misslssauga L4V lM5 
Tel: (418) 877-4732 
TWX: 810-492-8867 

tHamiiton 1 Avnet Electronics 
1735 Courtwood Cre .. nl 
Ottawa K2C 3J2 
Tel: (613) 226-1700 
TWX: 053-4971 

tLA. Varah, Ltd. 
505 Kenora Avenua 
Hamilton LBE 3P2 
Tel: (416) 561-9311 
TWX: 061-8349 

tZentronica 
141 Catherine Street 
Ottawa K2P lC3 
Tel: (613) 238-6411 
TWX, 063·3638 
tZentronics 
8 Kilbury Ct. 
Brampton, Ontario 
Toronto, L6T 3T4 
Tel: (416) 451-9600 
Telex: 06-976-78 

Zentronics 
564/10 Weber St., N. 
Waterloo, HAL 5C6 
Tel: (519) 884-5700 

QUEBEC 
tHamliton I Avnet Electronics 
2670 Sabourin Street 
Sf. Laurent H4S 1M2 
Tel: (514) 331-8843 
TWX: 610-421-3731 

Zentronics 
5010 Rue Pare Street 
Montreal H4P 1 P3 
'Tel: (514) 735-5361 
TWX: 05-827-535 

tMlcrocomputer System Technical Demonstrator Centers 




