

MPC620UM/AD
8/97

PowerPc= 620
RISC Microprocessor User's Manual

PowerPC ®MOTOROLA

©Motorola Inc. 1997. All rights reserved.

This document contains information on a new product under development. Motorola reserves the right to change or discontinue this product without notice.
Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or
Implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this
document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liabillty arising out of the application or use of any product
or circuit, and specnlcally disclaims any and all liability, including without limttation consequential or incidental damages. "Typical" parameters can and do
vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications Intended to support or sustain life, or for any other
application In which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectiy,
any claim of personal injury or death associated wtth such unintended or unauthorized use, even ii such claim alleges that Motorola was negligent
regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

IBM is a registered trademark of International Business Machines Corporation. The PowerPC name, PowerPC logotype, PowerPC 601, PowerPC 602,
PowerPC 603, PowerPC 603e, PowerPC 604, and PowerPC 620 are trademarks of International Business Machines Corporation used by Motorola under
license from International Business Machines Corporation.

CHAP is a trademark of Apple Computer, Inc., International Business Machines Corporation, and Motorola, Inc. Power Macintosh is a trademark of
Apple Computer, Inc.

Overview

Programming Model

Instruction and Data Cache Operation

Exceptions

Memory Management Unit -
Instruction Timing -

Signals -
Bus Interface Operation -

Secondary Cache Interface -
Performance Monitor -
Power Management -

Index -

.. Overview

• Programming Model

.. Instruction and Data Cache Operation

- Exceptions

Memory Management Unit

Instruction Timing

Signals

- Bus Interface Operation

- Secondary Cache Interface
I

- Performance Monitor

.. Power Management

- Index

Paragraph
Number

1.1
1.1.1
1.1.2
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.1.3
1.2.1.4
1.2.1.5
1.2.1.6
1.2.2
1.2.2.l
1.2.2.2
1.2.2.3
1.2.3
1.2.4
1.2.4. l
1.2.4.2
1.2.5
1.2.6
1.2.6.1
1.2.6.2
1.2.6.3
1.2.7
1.3
1.3.l
1.3.2
1.3.3
1.3.3. l

MOTOROLA

CONTENTS

Title

About This Book

Chapter 1
Overview

Page
Number

Overview .. 1-1
PowerPC 620 Microprocessor Features ... 1-2
Block Diagram ... 1-6

PowerPC 620 Microprocessor Hardware Implementation 1-8
Instruction Flow ... 1-9

Predecode Unit. .. 1-9
Fetch Unit .. 1-9
Dispatch Unit ... 1-10
Branch Processing Unit (BPU) .. 1-10
Completion Unit .. 1-10
Rename Buffers ... 1-11

Execution Units .. 1-11
Integer Units (IUs) ... 1-11
Floating-Point Unit (FPU) ... 1-12
Load/Store Unit (LSU) .. 1-12

Memory Management Units (MMUs) ... 1-13
Cache Implementation ... 1-13

Instruction Cache ... 1-14
Data Cache ... 1-14

Level 2 (L2) Cache Interface ... 1-15
System Interface/Bus Interface Unit (BIU) ... 1-16

Memory Accesses .. 1-17
Signals .. 1-18
Signal Configuration .. 1-19

Clocking ... 1-20
PowerPC 620 Microprocessor Execution Model... .. 1-20

Levels of the PowerPC Architecture ... 1-20
Registers and Programming Model ... 1-21
Instruction Set and Addressing Modes .. 1-27

PowerPC Instruction Set and Addressing Modes 1-27

Contents v

Paragraph
Number

1.3.3.1.l
1.3.3.1.2
1.3.4
1.3.5
1.4

2.1
2.1.l
2.1.2
2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4
2.1.2.5
2.1.2.6
2.1.2.7
2.1.2.7.1
2.1.2.7.2
2.1.2.7.3
2.1.2.7.4
2.1.2.7.5
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.3.l
2.3.1.1
2.3.1.2
2.3.1.3
2.3.1.4
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.2.4.1

vi

CONTENTS

Title Page
Number

Instruction Set .. 1-27
Calculating Effective Addresses .. 1-30

Exception Model .. 1-30
Instruction Timing .. 1-35

Performance Monitor. ... 1-37

Chapter 2
Programming Model

The PowerPC 620 Processor Register Set.. .. 2-1
Register Set. .. 2-2
Implementation-Specific Registers .. 2-9

Instruction Address Breakpoint Register (IABR) .. 2-9
Processor Identification Register (PIR) .. 2-10
Hardware Implementation-Dependent Register 0 (HIDO) 2-10
Bus Status and Control Register (BUSCSR) .. 2-12
L2 Cache Control Register (L2CR) .. 2-14
L2 Cache Status Register (L2SR) .. 2-16
Performance Monitor Registers .. 2-16

Monitor Mode Control Register 0 (MMCR0) .. 2-16
Monitor Mode Control Register 1 (MMCRl) .. 2-18
Performance Monitor Counter Registers (PMC l-PMC8) 2-19
Sampled Instruction Address Register (SIA) ... 2-26
Sampled Data Address Register (SDA) ... 2-26

Operand Conventions ... 2-27
Floating-Point Execution Models ... 2-27
Data Organization in Memory and Data Transfers .. 2-28
Alignment and Misaligned Accesses .. 2-28
Floating-Point Operand .. 2-29
Effect of Operand Placement on Performance ... 2-30

Instruction Set Summary .. 2-31
Classes of Instructions .. 2-32

Definition of Boundedly Undefined ... 2-32
Defined Instruction Class ... 2-32
Illegal Instruction Class .. 2-33
Reserved Instruction Class ... 2-34

Addressing Modes .. 2-34
Memory Addressing ... 2-34
Memory Operands .. 2-34
Effective Address Calculation .. 2-35
Synchronization .. 2-35

Context Synchronization .. 2-36

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

2.3.2.4.2
2.3.2.4.3
2.3.3
2.3.4
2.3.4.1
2.3.4.1.1
2.3.4.1.2
2.3.4.1.3
2.3.4.1.4
2.3.4.2
2.3.4.2.1
2.3.4.2.2
2.3.4.2.3
2.3.4.2.4
2.3.4.2.5
2.3.4.2.6
2.3.4.3
2.3.4.3.1
2.3.4.3.2
2.3.4.3.3
2.3.4.3.4
2.3.4.3.5
2.3.4.3.6
2.3.4.3.7
2.3.4.3.8
2.3.4.3.9
2.3.4.4
2.3.4.4.1
2.3.4.4.2
2.3.4.4.3
2.3.4.4.4
2.3.4.5
2.3.4.6
2.3.4.6.l
2.3.4.6.2
2.3.4.7
2.3.5
2.3.5.l
2.3.5.2
2.3.5.3
2.3.5.4
2.3.6
2.3.6.1

MOTOROLA

CONTENTS

Title
Page

Number

Execution Synchronization .. 2-36
Instruction-Related Exceptions .. 2-36

Instruction Set Overview .. 2-37
PowerPC UISA Instructions .. 2-37

Integer Instructions .. 2-37
Integer Arithmetic Instructions .. 2-38
Integer Compare Instructions ... 2-39
Integer Logical Instructions ... 2-39
Integer Rotate and Shift Instructions ... 2-40

Floating-Point Instructions ... 2-4 2
Floating-Point Arithmetic Instructions .. 2-42
Floating-Point Multiply-Add Instructions ... 2-43
Floating-Point Rounding and Conversion Instructions 2-43
Floating-Point Compare Instructions ... 2-44
Floating-Point Status and Control Register Instructions 2-44
Floating-Point Move Instructions .. 2-44

Load and Store Instructions ... 2-45
Self-Modifying Code ... 2-46
Integer Load and Store Address Generation .. 2-46
Register Indirect Integer Load Instructions ... 2-46
Integer Store Instructions ... 2-48
Integer Load and Store with Byte Reverse Instructions 2-49
Integer Load and Store Multiple Instructions .. 2-49
Integer Load and Store String Instructions .. 2-50
Floating-Point Load and Store Address Generation 2-52
Floating-Point Store Instructions ... 2-52

Branch and Flow Control Instructions ... 2-54
Branch Instruction Address Calculation .. 2-54
Branch Instructions .. 2-55
Condition Register Logical Instructions .. 2-55
Trap Instructions .. 2-56

System Linkage Instruction ... 2-56
Processor Control Instructions ... 2-57

Move to/from Condition Register Instructions 2-57
Move to/from Special-Purpose Register Instructions 2-58

Memory Synchronization Instructions ... 2-58
PowerPC VEA Instructions .. 2-59

Processor Control Instructions ... 2-59
Memory Synchronization Instructions ... 2-60
Memory Control Instructions ... 2-61
Optional External Control Instructions .. 2-63

Power PC OEA Instructions .. 2-63
System Linkage Instructions .. 2-63

Contents vii

Paragraph
Number

2.3.6.2
2.3.6.3
2.3.6.3.1
2.3.6.3.2
2.3.6.3.3
2.3.7

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.1.4
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.6
3.7
3.7.1
3.7.2
3.7.3

3.7.4
3.7.5
3.7.6
3.7.7
3.8
3.8.1
3.8.2
3.8.3

viii

CONTENTS

Title Page
Number

Processor Control Instructions ... 2-64
Memory Control Instructions ... 2-65

Supervisor-Level Cache Management lnstruction 2-66
Segment Register Manipulation Instructions ... 2-66
Translation Lookaside Buffer Management Instructions 2-67

Recommended Simplified Mnemonics .. 2-68

Chapter 3
Instruction and Data Cache Operation

Data Cache Organization3-3
Instruction Cache Organization3-4
MMUs/Bus Interface Unit3-5
Sequential Consistency .. .3-6

Sequential Consistency Within a Single Processor3-6
Weak Consistency Between Multiple Processors .. 3-7
Sequential Consistency Within Multiprocessor Systems3-7

Memory and Cache Coherency3-8
Data Cache Coherency Protocol ... 3-8

Modified Cache State .. .3-9
Exclusive Cache State3-10
Shared Cache State ... 3-10
Invalid Cache State .. .3-10

Coherency and Secondary Caches3-11
Page Table Control Bits3-11
MESI State Diagram ... 3-11
Coherency Paradoxes in Single-Processor Systems3-12
Coherency Paradoxes in Multiple-Processor Systems3-13

Cache Configuration .. .3-13
Cache Management Instructions3-14

Instruction Cache Block Invalidate (icbi)3-14
Instruction Synchronize (isync) .. .3-14
Data Cache Block Touch (debt) and

Data Cache Block Touch for Store (dcbtst)3-15
Data Cache Block Set to Zero (dcbz) ... 3-15
Data Cache Block Store (dcbst) ... 3-15
Data Cache Block Flush (dcbf) .. 3-15
Data Cache Block Invalidate (dcbi) .. .3-16

Basic Cache Operations3-16
Cache Reloads3-16
Cache Cast-Out Operation .. 3-16
Cache Block Push Operation3-16

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

CONTENTS

Title
Page

Number

3.8.4 Atomic Memory References .. 3-16
3.9 Cache State Response to Instruction Execution and Bus Operations 3-17
3.9.l Cache State Transitions Due to Instruction Execution 3-17
3.9.2 Cache State Transitions Due to Bus Snoop Operations 3-19
3.9.3 L3 Cache State Transitions Due to Bus-Above Operations 3-21
3.10 Access to Direct-Store Segments ... 3-25

4.1
4.2
4.3
4.4
4.4.l
4.4.2
4.4.3
4.4.4
4.5
4.6
4.6.1
4.6.2
4.6.2.1
4.6.2.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15

MOTOROLA

Chapter 4
Exceptions

PowerPC 620 Microprocessor Exceptions ... 4-2
Exception Recognition and Priorities ... 4-6
Support for 32-Bit Operating Systems .. .4-8
Exception Processing ... 4-8

Enabling and Disabling Exceptions ... 4-11
Steps for Exception Processing .. 4-12
Setting MSR[RI] .. 4-12
Returning from an Exception Handler .. .4-13

Process Switching .. 4-13
Exception Definitions ... 4-14

System Reset Exception (OxOOIOO) .. .4-14
Machine Check Exception (Ox00200) .. 4-16

Machine Check Exception Enabled (MSR[ME] = 1)4-18
Checkstop State (MSR[ME] = 0) .. .4-18

DSI Exception (Ox00300) .. 4-19
ISI Exception (Ox00400) .. 4-19
External Interrupt Exception (Ox00500)4-19
Alignment Exception (Ox00600) .. 4-20
Program Exception (Ox00700) ... 4-20
Floating-Point Unavailable Exception (Ox00800) .. .4-21
Decrementer Exception (Ox00900) .. 4-21
System Call Exception (OxOOC00) ... 4-21
Trace Exception (OxOOD00) ... 4-21
Floating-Point Assist Exception (OxOOE00) ... 4-22
Performance Monitoring Interrupt (OxOOFOO) .. .4-22
Instruction Address Breakpoint Exception (Ox01300)4-23
System Management Interrupt (Ox01400) ... 4-24

Contents ix

Paragraph
Number

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.6.1
5.1.6.2
5.1.6.3
5.1.6.4
5.1.7
5.1.8
5.1.8.1
5.1.8.2
5.1.8.3
5.2
5.3
5.4
5.4.1
5.4.1.1
5.4.1.2
5.4.1.3
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.5
5.5.1
5.5.2
5.6

x

CONTENTS

Title

Chapter 5
Memory Management

Page
Number

MMU Overview ... 5-2
Memory Addressing ... 5-5
MMU Organization .. 5-5
Address Translation Mechanisms ... 5-9
Memory Protection Facilities ... 5-12
Page History Information ... 5-12
General Flow of MMU Address Translation .. 5-13

Real Addressing Mode and Block Address Translation Selection 5-13
Page and Direct-Store Interface Address Translation Selection 5-14
Selection of Page Address Translation ... 5-17
Selection of Direct-Store Interface Address Translation 5-17

MMU Exceptions Summary ... 5-18
MMU Instructions and Register Summary ... 5-20

MMU Registers .. 5-20
Address Space Register (ASR) and the 64-Bit Bridge 5-20
MMU Instructions .. 5-21

Real Addressing Mode ... 5-23
Block Address Translation ... 5-23
Memory Segment Model .. 5-24

Page History Recording .. 5-24
Referenced Bit5-25
Changed Bit .. 5-25
Scenarios for Referenced and Changed Bit Recording 5-26

Page Memory Protection .. 5-27
SLB Description ... 5-27
SLB Invalidation .. 5-28
TLB Description ... 5-28
TLB Invalidation .. 5-29
TLB Synchronization ... 5-29
Page Address Translation Summary .. 5-30
Page Table Search Operation ... 5-32

Porting a 32-Bit Operating System ... 5-35
MMU Support for 32-bit OS .. 5-35
Guidelines ... 5-36

Direct-Store Interface Address Translation .. 5-36

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

6.1
6.2
6.2.1
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
6.3
6.3.1
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.1.3
6.5.1.4
6.5.1.5
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.7
6.7.l
6.7.2

MOTOROLA

CONTENTS

Title

Chapter 6
Instruction Timing

Page
Number

Terminology and Conventions ... 6-1
Instruction Timing Overview ... 6-3

Pipeline Structures ... 6-5
Fetch Stage ... 6-7
Dispatch Stage .. 6-7
Execute Stage ... 6-7
Complete Stage .. 6-7
Write-back Stage .. 6-8

Instruction Scheduling Guidelines ... 6-8
Instruction Dispatch Rules ... 6-8

Instruction Serialization Modes ... 6-10
Single Instruction Serialization .. 6-10
Execution Serialization .. 6-11
Ref etch Serialization .. 6-11
Other Serialization Modes .. 6-12

Instruction Execution Timing ... 6-12
Performance of Load/Store Multiples and Strings Instructions 6-20

Load-Multiple Word and Doubleword from Cacheable Memory 6-20
Store-Multiple Word to Cacheable Memory ... 6-21
Load-Multiple Word from Cache-Inhibited Memory 6-21
Store-Multiple Word to Cache-Inhibited Memory 6-21
String Instructions that are not Treated as Load/Store Multiples 6-21

Store Gathering for Cache-Inhibited and Write-Through Stores 6-22
Cache-Inhibited or Write-Through Store Bandwidth 6-23

LI, L2, and Memory Load Latency ... 6-23
L 1 Data Cache Latency .. 6-24
L2 Cache Latency .. 6-24
L2 Cache Disabled Latency ... 6-24
Bus Read Latency .. 6-25
Load Latency Example #1: ILI or DLI Miss and L2 Hit... 6-26
Load Latency Example #2: DLI and L2 Miss ... 6-26
Load Latency Example #3: DLI Miss and L2 Disabled 6-27

Snoop Push/Intervention Latency .. 6-29
Push/Intervention Example #1: L2 Enabled and data in LI 6-30
Push/Intervention Example #2: L2 Enabled and data in L2 6-31

Contents xi

Paragraph
Number

7.1
7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.3
7.2.2
7.2.2.1
7.2.3
7.2.3.1
7.2.3.1.1
7.2.3.1.2
7.2.3.2
7.2.3.2.1
7.2.3.2.2
7.2.3.3
7.2.4
7.2.4.l
7.2.4.1.l
7.2.4.1.2
7.2.4.2
7.2.4.3
7.2.4.4
7.2.5
7.2.5.1
7.2.6
7.2.6.1
7.2.6.2
7.2.6.3
7.2.6.4
7.2.6.5
7.2.6.6
7.2.6.7
7.2.6.8
7.2.6.8.l
7.2.6.8.2
7.2.6.9
7.2.6.9.1
7.2.6.9.2
7.2.7

xii

CONTENTS

Title

Chapter 7
Signal Descriptions

Page
Number

Signal Configuration ... 7-2
Signal Descriptions ... 7-4

Address Bus Arbitration Signals .. 7-4
Address Bus Request (ABR)-Output ... 7-4
Address Bus Grant (ABG)-lnput ... 7-4
High Priority Request (HPR)-Output .. 7-5

Address Transfer Start Signals ... 7-5
Early Address Transfer Start (EATS)-Input/Output... 7-5

Address Transfer Signals .. 7-6
Address Bus (A[0-63]) .. 7-6

Address Bus (A[0-63])-0utput ... 7-6
Address Bus (A[0-63])-lnput .. 7-6

Address Bus Parity (AP[0-2]) .. 7-6
Address Bus Parity (AP[0-2])-0utput .. 7-7
Address Bus Parity (AP[0-2])-lnput ... 7-7

Address Bus Tag .. 7-7
Address Transfer Attribute Signals .. 7-7

Address Type (ATYPE[0---4]) .. 7-8
Address Type (ATYPE0-4])-0utput ... 7-8
Address Type (A TYPE[0---4])-Input .. 7-8

Address Size Data (ASIZEDATA[0-3]) .. 7-9
Address Size Burst (ASIZEBURST) ... 7-9
Address Status (ASTATOUT[0-1] and ASTATIN[0-1]) 7-10

Address Transfer Response Signals ... 7-10
Address Response (ARESPOUT[0-2] and ARESPIN[0-2]) 7-10

L2 Cache Interface ... 7-10
L2 Data (L2DATA[0-127]) ... 7-10
L2 Address (L2ADDRESS[0-15]) .. 7-11
L2 Tag (L2TAG[0-10]) ... 7-11
L2 Tag/Address (L2TAGADD[0-8] .. 7-ll
L2 Coherency State (L2COHERENCY[O-l]) ... 7-11
L2 Data ECC (LZDATAECC[0-8]) ... 7-11
L2 Tag ECC (L2TAGECC[0-5]) ... 7-11
L2 Enable Signals ... 7-12

L2 Data Enable (L2DATAENABLE[0-1]) ... 7-12
L2 Tag Enable (L2T AGENABLE) .. 7-12

L2 Write Enable Signals ... 7-12
L2 Write Data (L2WRITEDATA) ... 7-12
L2 Write Tag (L2WRITETAG) ... 7-12

L2 SRAM Output Enable (L20UTPUTENABLE) 7-12

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

7.2.7.1

7.2.8
7.2.8.1
7.2.8.2
7.2.9
7.2.9.1
7.2.9.1.1
7.2.9.1.2
7.2.9.2
7.2.9.2.1
7.2.9.2.2
7.2.9.3
7.2.9.3.1
7.2.9.3.2
7.2.9.4
7.2.10
7.2.10.0.1
7.2.10.0.2
7.2.11
7.2.11.1
7.2.11.1.1
7.2.11.1.2
7.2.12
7.2.12.0.1
7.2.12.0.2
7.2.13
7.2.13.1
7.2.13.2
7.2.13.3
7.2.13.4
7.2.13.4.1
7.2.13.4.2
7.2.14
7.2.14.1
7.2.14.2
7.2.15
7.2.16
7.2.16.1
7.2.16.2
7.2.17
7.2.17.1
7.2.17.2

MOTOROLA

CONTENTS

Title

L2 Clocks Out/In (L2CLOCK/L2CLOCK and

Page
Number

L2CLOCKIN/L2CLOCKIN) ... 7-13
Data Bus Arbitration Signals ... 7-13

Data Bus Grant (DBG)-Input .. 7-13
Data Bus Request (DBR) ... 7-14

Data Transfer Signals ... 7-14
Data Bus (DH[0-63], DL[0-63)) ... 7-14

Data Bus (DH[0-63], DL[0-63])-0utput... ... 7-15
Data Bus (DH[0-63], DL[0-63])-Input .. 7-16

Data Bus Parity (DP[O-7]) ... 7-16
Data Bus Parity (DPH[0-7], DPL[0-7], DPCNTL)-Output.. 7-16
Data Bus Parity (DPH[0-7], DPL[0-7], DPCNTL)-lnput... 7-17

Data Cache (DCACHE) ... 7-17
Data Cache (DCACHE)-Output .. 7-17
Data Cache (DCACHE)-Input... .. 7-17

Data Bus Tag (DTAG[0-7]) .. 7-17
Data Valid (DV AL[0-1)) ... 7-18

Data Valid (DVAL[0-1])-0utput .. 7-18
Data Valid (DVAL[0-1])-Input .. 7-18

Data Transfer Termination Signals .. 7-19
Data Bus Busy (DBB) .. 7-19

Data Bus Busy (DBB)-Output... .. 7-19
Data Bus Busy (DBB)-Input ... 7-19

Data Error (DERR) .. 7-20
Data Error (DERR)-Output ... 7-20
Data Error (DERR)-Input .. 7-20

System Interrupt, Checkstop, and Reset Signals .. 7-20
Interrupt (INT)-Input ... 7-21
System Management Interrupt (SMl)-Input... ... 7-21
Machine Check Interrupt (MCP)-Input .. 7-22
Reset Signals .. 7-22

Hard Reset (HRESET)-Input .. 7-22
Soft Reset (SRESET)-lnput ... 7-23

Processor Configuration Signals .. 7-23
Checkstop (CHECKSTOP)-lnput/Output ... 7-24
Reservation (RSRV)-Output ... 7-24

JTAG Bus Signals .. 7-25
Miscellaneous Signals .. 7-25

Time Base Enable (TBENABLE)-lnput ... 7-25
Analog VDD (A VDD)-Input... .. 7-25

Clock Signals ... 7-25
Bus Clock (BUSCLK and BUSCLK)-Inputs .. 7-26
Phase-Locked Loop Bypass (PLLBypass)-Input 7-26

Contents xiii

Paragraph
Number

7.2.17.3

8.1
8.1.l
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.9.1
8.3.9.2
8.3.10
8.3.10.1
8.3.10.2
8.3.11
8.4
8.4.1
8.4.2
8.4.3
8.4.3.1
8.4.3.2
8.4.4
8.4.5
8.4.5.1
8.4.5.2
8.4.5.3
8.4.5.4
8.4.6
8.4.7
8.4.8
8.4.9
8.4.10
8.4.11

xiv

CONTENTS

Title Page
Number

Low Frequency Test Clock (LF _Test_Clk)-Input.. 7-26

Chapter 8
System Interface Operation

Overview .. 8-1
Timing Diagrams .. 8-6

Processor Interface Termination ... 8-9
Arbitration .. 8-9

Arbitration Requests ... 8-10
High-Priority Bus Operations ... 8-10
Withdrawing a Bus Request ... 8-11
Internal Request Arbitration ... 8-11
External Request Arbitration .. 8-12
Arbitration Grants ... 8-12
Address-Data Arbitration ... 8-13
Pending Data Bus Grant Arbitration .. 8-13
Early Address Transfer Start (EATS) ... 8-14

EATS Assertion Relative to ABG .. 8-14
EATS to DBG Minimum Latency for Address-Data Arbitration 8-14

Bus Parking .. 8-15
Address Bus Parking .. 8-16
Sustained Address Bus Parking .. 8-16

Arbiter Block Diagram ... 8-18
Address Bus Transfer·Protocol ... 8-18

Address Transfer Example ... 8-18
Address Command ... 8-19
Address Status and Address Response Signals .. 8-19

Address Status and Address Response Communication 8-19
Address Status and Address Response Validation 8-20

Address to ASTATOUT Latency (One BUSCLK) .. 8-20
Address to ARESPOUT Latency (BUSTLAR[0-2]) 8-21

BUSTLAR Initialization Rules .. 8-21
Derivation ofBUSTLAR Values ... 8-22
L2 Cache and Coprocessor Mode Disabled ... 8-22
L2 Cache or Coprocessor Mode Enabled ... 8-23

Address Status and Address Response Tenure (BUSRESPTEN[0-1]) 8-23
Snoop Pipeline Depth and Snoop Operation Processing 8-24
Address Status ln/Out. .. 8-26
Address Response In/Out ... 8-27
Address Status Acknowledge ... 8-28
Address Status Address Parity Error (AStat AParErr) 8-29

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

8.4.11.1
8.4.11.2
8.4.12
8.4.13
8.4.14
8.4.15
8.4.16
8.4.16.1
8.4.16.2
8.4.17
8.4.18
8.4.18.1
8.4.18.2
8.4.18.3
8.4.18.4
8.4.19
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.4.1
8.5.4.2
8.5.4.3
8.5.5
8.5.6
8.5.6.1
8.5.6.2
8.5.7
8.5.8
8.5.8.1
8.5.8.2
8.5.8.3

8.5.9
8.5.10
8.5.10.1
8.5.10.2
8.5.10.3
8.5.10.4
8.5.10.5
8.5.10.6
8.6

MOTOROLA

CONTENTS

Title Page
Number

Bus Operation Abort .. 8-29
PIO Reply and ReRun .. 8-30

Address Response Null .. 8-30
Address Response Shared .. 8-30
Address Response ReRun .. 8-30
Address Response Reserved .. 8-30
Address Response Modified .. 8-30

Modified vs ReRun and Shared ... 8-30
ARES POUT Modified Assertion ... 8-31

Address Status Out and Address Response Out Retry 8-31
ASTA TIN and ARESPIN Retry .. 8-32

ASTATIN Retry for All Bus Devices .. 8-33
ARESPIN Retry for All Bus Devices .. 8-33
ASTATIN and ARESPIN Retry Master .. 8-33
ASTA TIN and ARES PIN Retry Snooper .. 8-33

Function of ASTATOUT/ASTATIN and ARESPOUT/ARESPIN 8-33
Data Bus Transfer Protocol .. 8-37

Data Bus Width and Interconnectivity ... 8-37
Data Bus (DL[0-63]/DH[0-63]) .. 8-37
Data Sequence Ordering for Burst Operations ... 8-37
Data Bus Tag .. 8-38

Data Producer ... 8-38
Data Consumer ... 8-38
Data Bus Tag Interleaving ... 8-38

Data Bus Busy (DBB) .. 8-39
Data Valid (DVAL[0-1]) ... 8-39

Restrictions on Flow Control ... 8-40
Uses of Data Producer Flow Control ... 8-40

Minimum Latency to Sample Read Data ... 8-41
Data Cache (DCACHE) Signal .. 8-41

An Intervention Data Producer--Cache .. 8-42
A Memory Data Producer-Memory .. 8-42
A Memory and Intervention Data Consumer (Read or RWITM

Requestor) .. 8-42
Data Error (DERR) .. 8-42
DX Mode (64-Bit Data Bus Width Mode) ... 8-43

DX Mode Definition .. 8-44
Data Low (DL[0-63]) .. 8-44
Double-Word Ordering .. 8-44
Address Bus ... 8-44
Block Read Data Latency .. 8-44
DERR for PIO Load Last. .. 8-44

Address Commands Definition .. 8-45

Contents xv

Paragraph
Number

8.6.1
8.6.1.1
8.6.1.2
8.6.1.3
8.6.2
8.6.3
8.7
8.7.1
8.7.2
8.7.3
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.9
8.9.1
8.9.2
8.9.3
8.9.4
8.9.4.1
8.9.5
8.9.6
8.10
8.10.1
8.10.2
8.10.3
8.10.3.1
8.10.3.2
8.10.4
8.10.4.1
8.10.4.2
8.10.4.3
8.10.5
8.10.6
8.10.7
8.10.8
8.11
8.12
8.12.1
8.12.2
8.12.3

xvi

CONTENTS

Title Page
Number

WIM-Bit Definitions .. 8-48
Write-Through Address Attribute (W-Bit) ... 8-49
Cache-Inhibited Address Attribute (I-Bit) ... 8-49
Memory Coherent Address Attribute (M-Bit) .. 8-49

Atomic Address Attribute (A-Bit) .. 8-50
Intervention Address Attribute (N-Bit) .. 8-50

Intervention and Push Definition .. 8-50
Bus Intervention Bit (N-Bit) ... 8-52
Intervention Enable Bit (BUSINTVEN) .. 8-52
Non-Block Sized or Cache Inhibited .. 8-52

ASIZEDATA[0-3] and ASIZEBURST Definition .. 8-53
Supported Burst Data Sizes and Alignments .. 8-53
Burst Reads ... 8-54
Burst Writes .. 8-54
Non-Burst Data is Always Big-Endian Aligned .. 8-54
Supported Non-Burst Data Sizes and Alignments ... 8-54

Address Bus .. 8-56
Address Formats ... 8-56
The Memory Request Address Format. .. 8-57
The PIO Request Address Format.. .. 8-58
The PIO Reply Address Format ... 8-58

Error (E) ... , 8-59
The Tag-Only Address Format ... 8-59
The External Control Request Address Format (ExtCon) 8-59

Bus Tags ... 8-59
Bus Tag Usage .. 8-60
Bus Tag Format .. 8-60
Bus Tag Allocation/Deallocation ... 8-61

Bus Tag Allocation ... 8-61
Bus Tag Deallocation ... 8-61

Memory Read-Bus Tag Allocation/Deallocation .. 8-62
ASTATIN NoAck/PosAck, or ARESPIN of Null or Shared 8-62
ARESPIN of Modified ... 8-62
Retry or ARESPIN Rerun .. 8-62

Memory Write-Bus Tag Allocation/Deallocation 8-63
PIO-Bus Tag Deallocation ... 8-64
Address-Only Bus Operations-Bus Tag Deallocation 8-65
Snoopers - Bus Tag Deallocation ... 8-65

Parity Protection ... 8-65
Bus Operations ... 8-67

RWITM (Read-With-Intent-To-Modify) ... 8-68
LARX-Reserve ... 8-69
Read .. 8-69

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

8.12.4
8.12.5
8.12.6
8.12.7
8.12.8
8.12.9
8.12.10
8.12.11
8.12.12
8.12.13
8.12.14
8.12.15
8.12.16
8.13
8.13.1
8.13.1.l
8.13.1.2
8.13.2
8.13.2.1
8.13.2.2
8.13.3
8.13.3.1
8.13.3.2
8.13.4
8.13.5
8.13.6
8.13.7
8.14
8.15
8.16
8.16.1
8.16.1.l
8.16.1.2
8.16.2
8.16.3
8.16.4
8.16.5
8.16.5.1
8.16.5.2
8.16.5.3
8.16.5.4
8.17
8.17.1

MOTOROLA

CONTENTS
Page

Number
Title

Write-With-Kill .. 8-70
Write-With-Clean ... 8-71
Write-With-Flush ... 8-71
IKill .. 8-72
DKill ... 8-72
DC I aim ... 8-72
Flush ... 8-73
Clean .. 8-73
The tlbie, tlbsync, sync and eieio Instructions ... 8-73
ReRun ... 8-73
Null ... 8-73
PIO Loads, Stores and Reply ... 8-74
External Control In and Out ... 8-74

The ReRun Mechanism .. 8-7 4
AResp ReRun ... 8-75

ARESPOUT ReRun ... 8-75
ARESPIN ReRun ... 8-75

The ReRun Bus Operation ... 8-75
The Function of the ReRun Bus Operation .. 8-75
When the Bus Adapter Issues the ReRun Bus Operation 8-76

The R-Bit. ... 8-76
The R-Bit with Respect to AStat/AResp ReRun/Retry 8-76
The R-Bit and Address Tag Matching for Snoopers and Bus Adapters 8-76

Re Run and the Master .. 8-77
ReRun and Memory ... 8-78
SYNC/TLBSYNC: ReRun and the Snooper/Bus-Adapter 8-78
Non-SYNC/TLBSYNC: ReRun and the Snooper/Bus-Adapter 8-78

The Definition of Memory ... 8-79
The Definition of a Bus Adapter "Bridge-Chip" ... 8-81
PIO Load and Store Bus Operations .. 8-82

PIO Bus Operations .. 8-82
The Data Size of PIO Bus Operations ... 8-82
PIO Instructions Must Wait for an Error Free Reply 8-83

PIO Loads and Stores ... 8-83
PIO Store Operations ... 8-83
PIO Load Operations .. 8-83
PIO Reply ... 8-84

PIO Reply in Response to a PIO Load/Store Last Operation 8-84
PIO Reply E-bit. ... 8-84
Flow Control for PIO Reply ... 8-84
PIO Reply Received Before or After the Load Last DERR 8-84

Memory and Cache Coherence .. 8-84
Physical Memory Size .. 8-84

Contents xvii

Paragraph
Number

8.17.2
8.17.3
8.17.3.l
8.17.3.2
8.17.3.3
8.17.3.4
8.17.4
8.17.5
8.17.6
8.17.7
8.17.7.1
8.17.7.2
8.17.7.3
8.17.8
8.17.8.1
8.17.8.2
8.17.9
8.17.9.1
8.17.9.2
8.17.9.3
8.17.10
8.17.10.1
8.17.10.2
8.17.11
8.17.12
8.17.13
8.17.14
8.17.15
8.17.15.1
8.17.16
8.17.17
8.17.18
8.17.19
8.18
8.18.1
8.18.2
8.18.3
8.18.3.1
8.18.3.2
8.18.3.3
8.18.3.4
8.18.3.5
8.18.3.6

xviii

CONTENTS

Title Page
Number

Cache Block Size .. 8-84
WIMG Bit Definitions .. 8-85

Write Through .. 8-85
Cache Inhibit .. 8-85
Memory Coherent. .. 8-85
Guarded .. 8-85

Supported WIMG Combinations (Memory Access Modes) 8-86
WIMG-Bit Overrides .. 8-86
Inconsistent PTE WIM-Bit Memory Modes .. 8-87
Coherency Paradoxes ... 8-87

Ll/L2 Not Coherent ... 8-87
ARESPIN Paradoxes .. 8-87
Cache-Inhibited Paradoxes ... 8-87

Multi-Level Cache Definition .. 8-87
The Definition of L1, L2, and L3 ... 8-87
Inclusivity ... 8-88

Time and Hierarchical Priority ... 8-88
Time Priority .. 8-88
Hierarchical Priority ... 8-88
Time and Hierarchical Priority ... 8-88

Cache Coherency Protocol ... 8-88
Vertical Cache Coherence .. 8-88
Horizontal Cache Coherence .. 8-89

Invalid (I) .. 8-89
Shared (S) ... 8-89
Exclusive (E) .. 8-90
Modified (M) .. 8-90
Ownership ... 8-91

Transfer of Block Ownership Between Caches ... 8-91
Cache State Transition Definition .. 8-91
Master Cache State Transitions Due to Instructions 8-92
Snooper Cache State Transitions Due to Bus Operations 8-94
L3 Cache State Transitions Due to Bus-Above Operations 8-96

Address Collision Detection and Handling (CD) ... 8-99
Bus Operation Serialization .. 8-99
CD States and State Transitions ... 8-100
CD-Rules .. 8-102

Rule 1: CD Address Precision .. 8-102
Rule 2: CD Previous Adjacent ASTATOUT Retry 8-102
Rule 3: CD Disabled Bus Operations ... 8-104
Rule 4: Operations that Take CD Priority .. 8-105
Rule 5: CD Based on Completion .. 8-105
Rule 6: CD Between Snoop Buffers ... 8-107

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

8.18.3.7
8.19
8.19.1
8.19.1.1
8.19.1.2
8.19.2
8.20
8.20.1
8.20.2
8.20.3
8.20.4
8.20.4.1
8.20.4.2
8.21
8.21.1
8.21.2
8.21.3
8.21.4
8.21.5
8.21.6
8.21.7
8.22
8.22.l
8.22.2
8.22.3
8.23
8.24
8.25

9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.l
9.3.1.1
9.3.1.2
9.3.1.3

MOTOROLA

CONTENTS

Title Page
Number

Rule 7: CD Requirements for an IO Device .. 8-107
TLB Coherency Control ... 8-108

Page TLB ... 8-108
The Software Procedure for TLB Invalidating .. 8-108
Update of the TLB change bit (C-bit update) .. 8-108

Block Address Translation (BAT) Registers ... 8-108
Atomic Memory Reference Support .. 8-109

Cache-Inhibited .. 8-109
Write-Back ... 8-110
Write-Through .. 8-110
External Support for the Reservation ... 8-110

The A-bit Address Attribute .. 8-110
The RESERVE Signal ... 8-111

Processor Interface SPRs ... 8-111
Bus Snooper Enable (BUSSNPEN) ... 8-111
Bus Intervention Enable (BUSINTVEN) ... 8-111
Bus Parity Error (BUSPARERR[0-2]) .. 8-111
Bus Data Error and Enable (BUSDERR, BUSDERREN) 8-112
Bus Response Code Error (BUSRESPERR) .. 8-112
Bus Positive Acknowledge Error (BUSPOSACKERR) 8-112
Bus Positive Acknowledge Error Enable (BUSPOSACKEN) 8-112

Deadlock Scenarios and Solutions ... 8-112
The Queue Full/Ping-Pong Deadlock .. 8-112
The Non-Pended Push Deadlock ... 8-113
The Previous Adjacent Address Match Deadlock 8-114

Hardware Configuration Mechanism (HCM) .. 8-114
Debug Support .. 8-115
Hard Reset .. 8-116

Chapter 9
Secondary Cache Interface

Overview .. 9-1
L2 Cache Interface Operation .. 9-2

L2 SRAM Connection Diagram ... 9-2
Description of L2 Interface Digital PLL .. 9-2
L2 Direct Connectivity to SRAMs ... 9-3

L2 Interface Register Set .. 9-3
L2 Configuration Register (L2CR) .. 9-3

Programming Restrictions .. 9-3
L2NORWDEAD Bit .. 9-3
L2SIZE[0--3] Bits ... 9-4

Contents xix

Paragraph
Number

9.3.1.3.I
9.3.1.3.2
9.3.1.4
9.3.1.5
9.3.1.6
9.3.1.7
9.3.1.8
9.3.1.8.I
9.3.1.8.2
9.3.1.8.3
9.3.1.8.4
9.3.1.9
9.3.1.10
9.3.1.1 I
9.3.1.12
9.3.1.13
9.3.1.14
9.3.1.15
9.3.2
9.3.2.I
9.3.2.2
9.3.2.3
9.3.2.4
9.3.2.5
9.4
9.4.I
9.4.2
9.4.2.I
9.4.2.2
9.4.2.3
9.5

10.l
10.1.1
10.1.1.1
10.1.1.2
10.1.1.3
10.1.1.4
10.1.1.5

xx

CONTENTS

Title
Page

Number

The L2T A GADD Signal .. 9-4
L2 Cache Organization Examples .. 9-5

L2RATIOSR Bit. .. 9-6
L2ECCMODE[O-I] Bits .. 9-7
L2CLKPECL Bit .. 9-7
L2B2ENABLE Bit ... 9-8
L2CLC[O-I] Bits .. 9-8

L2CLC = 00 (L2, L3) ... 9-8
L2CLC = OI (LI, L2, L3) .. 9-8
L2CLC = IO (LI, L2, L3) .. 9-9
L2CLC =II (LI, L2, L3) .. 9-9

L2LATEWRITE Bit ... 9-9
L2SINGSYNC Bit .. 9-9
L2WRCNTRDIS Bit .. 9-IO
L21NIT Bit. ... 9-IO
L2DPWR[O-I] Bit ... 9-IO
L2ECCERREN Bit ... 9-I I
L2PLLEN Bit ... 9-I I

L2 Cache Status Register (L2SR) ... 9-I I
L2ECC Bit .. 9- I I
L2DATASYN[0-8] and L2TAGSYN[0-5] Bits 9-I I
Tag Syndrome .. 9-I l
Data Syndrome ... 9- I5
L2ECCADDR[0-24] .. 9-2I

ECC-L2 Error Detection and Correction ... 9-2I
The ECC Algorithm ... 9-2I
ECC Correction Modes .. 9-22

Always Correct Mode .. 9-22
Automatic Switch Correct Mode .. 9-22
Never Correct Mode ... 9-22

L2 Cache Timing Diagrams ... 9-23

Chapter 10
Performance Monitor

Overview .. I 0- I
Functional Overview .. I0-2

Special Purpose Registers (SPR) ... I0-2
Thresholder ... I 0-2
Time Base lnterface .. I0-2
lnterrupt .. I0-2
Event Selection ... I 0-2

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Paragraph
Number

10.1.1.6
10.1.2
10.1.3
10.1.4
10.1.5
10.l.6
10.1.7
10.2
10.3
10.3.1
10.3.2
10.3.2.1
10.3.3
10.4
10.5
10.6
10.6.1
10.6.2
10.6.3
10.7
10.8
10.9
10.10
10.10.1
10.10.2
10.10.3
10.10.4
10.10.5

11.1
11.1.1
11.1.2
11.2
11.3
11.4

MOTOROLA

CONTENTS

Title Page
Number

Monitor Modes ... 10-3
Event Counting Overview .. 10-3
Triggering Modes Overview .. 10-4
Instruction Address Break Point Register (IABR) Match 10-4
Event Sampling and Thresholder Overview .. 10-4
History Mode Overview ... 10-5
Trace Mode Overview .. 10-6

Performance Monitor Components .. 10-6
Related Registers .. 10-9

Sampled Instruction Address Register (SIA) ... 10-9
Sampled Data Address Register (SDA) ... 10-10

SIA and SDA Contents Freeze ... 10-10
Machine Status Save/Restore Register 1 (SRRl) .. 10-10

Monitor Mode Control Registers (MMCRO and MMCRl) 10-11
The Thresholder ... 10-13
The Counters .. 10-17

Enabling the Counters .. 10-17
Performance Monitor Mark Bit.. .. 10-18
Selecting the Events to be Monitored .. 10-18

Detailed Description of Events .. 10-25
Performance Monitor Interrupt .. 10-38
History Mode .. 10-39
Examples .. 10-40

Using the Thresholder .. 10-40
Enable Interrupt. ... 10-41
Disable Counting when Interrupt is Generated .. 10-41
Restriction of Events Counting Due to Processor State 10-41
PMCs in History and Counting Modes, Restricted Monitor Events

and IABR Triggered ... 10-41

Chapter 11
Power Management

Power Saving Management Enable-MSR[POW] .. 11-1
Entering Power Saving Mode .. 11-1
Leaving Power Saving Mode ... 11-2

The WAKEUP Signal .. 11-2
External or Decrementer Interrupt Signals ... 11-3
Preparing to Enter Nap Mode ... 11-3

Contents xxi

Paragraph
Number

CONTENTS

Title

Appendix A
PowerPC Instruction Set Listings

Page
Number

A.1 Instructions Sorted by Mnemonic .. A-1
A.2 Instructions Sorted by Opcode .. A-10
A.3 Instructions Grouped by Functional Categories .. A-18
A.4 Instructions Sorted by Form .. A-28

Appendix B
Invalid Instruction Forms

B.1 Invalid Forms Excluding Reserved Fields ... B-1
B.2 Invalid Forms with Reserved Fields (Bit 31 Exclusive) B-2
B .3 Invalid Form with Only Bit 31 Set .. B-5
B.4 Invalid Forms from Invalid BO Field Encodings .. B-6

Appendix C
Hardware Configuration

C.1 Hardware Configuration Signals ... C-1
C.2 Processor Start Up ... C-2
C.3 Setting Bus and Cache Configuration Registers .. C-2
C.4 Enabling Address Translation ... C-7
C.5 Flushing Data from the L1 Data Cache ... C-7

Appendix D
Bus Protocol Livelock Scenarios

D.1 2-way Multiprocessing-Imprecise Collision Hit Between Processors D-1
D.2 4-way Multiprocessing-All Processors Running lwarx and stwcx D-2
D.3 4-way Multiprocessing-3 Processors Reading Line with Pending W = 1

Stores to L2 .. D-3

Index

xxii PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Figure
Number

ILLUSTRATIONS

Title Page
Number

1-1 PowerPC 620 Microprocessor Block Diagram ... 1-7
1-2 Block Diagram-Internal Data Paths ... 1-8
1-3 Cache Unit Organization ... 1-15
1-4 System Interface .. 1-16
1-5 PowerPC 620 Microprocessor Signal Groups .. 1-19
1-6 Programming Model-PowerPC 620 Microprocessor Registers 1-23
1-7 Pipeline Diagram .. 1-35
2-1 Programming Model-PowerPC 620 Microprocessor Registers 2-3
2-2 Instruction Address Breakpoint Register .. 2-9
2-3 Processor Identification Register .. 2-10
3-1 Cache Organization ... 3-3
3-2 Bus Interface Unit and MMU ... 3-6
3-3 MESI Cache Coherency Protocol-State Diagram (WIM = 001) 3-12
4-1 Machine Status Save/Restore Register 0 .. 4-8
4-2 Machine Status Save/Restore Register 1 .. 4-8
4-3 Machine State Register (MSR)-64-Bit Implementation 4-9
5-1 Two-Level MMU Organization .. 5-6
5-2 MMU Conceptual Block Diagram .. 5-8
5-3 Address Translation Types ... 5-11
5-4 General Flow of Address Translation (Real Addressing Mode and Block) 5-14
5-5 General Flow of Page and Direct-Store Interface Address Translation 5-16
5-6 Page Address Translation Flow-TLB Hit. .. 5-31
5-7 Page Table Search ... 5-34
5-8 Shared Segment Registers and SLB Structure .. 5-35
6-1 Power PC 620 Microprocessor Block Diagram Showing Data Paths 6-4
6-2 Pipeline Diagram .. 6-5
6-3 Master Instruction Pipeline ... 6-6
6-4 Load Latency Example #1: DLl Miss and L2 Hit .. 6-26
7-1 PowerPC 620 Microprocessor Signal Groups .. 7-3
8-1 PowerPC 620 Microprocessor Data Path .. 8-3
8-2 PowerPC 620 Microprocessor Address Path .. 8-5
8-3 Two Burst Reads-A and B with Data Returning Out of Order 8-6
8-4 Three Burst Write Operations-DBG Given Earliest Cycle Possible

(Same Cycle as EATS) .. 8-7
8-5 Intervention: Memory Read with a Snoop Hit .. 8-8
8-6 Rerun Mechanism (Non-Sync{fLBSync): Extending Snoop Response 8-8
8-7 Special Case of Burst Read: Memory Supplies Data to Multiple Masters

in One Data Bus Tenure ... 8-9
8-8 Assertion and Deassertion of HPR ... 8-11
8-9 Pending DBG Arbitration ... 8-13
8-10 EATS Asserted Same Cycle as ABG .. 8-15
8-11 EA TS Asserted One Cycle after ABG .. 8-15
8-12 Address Bus Parking ... 8-16

MOTOROLA Illustrations xxiii

Figure
Number

8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-36
8-37
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18

xx iv

ILLUSTRATIONS

Title Page
Number

Sustained Address Bus Parking .. 8-17
Block Diagram of the Arbiter ... 8-18
Address Transfer Protocol .. 8-19
AStat and AResp Interconnection Diagram .. 8-20
BUSRESPTEN[0-1] Timing Definition ... 8-24
Optimal Snoop Pipeline Depth ... 8-25
Definition ofDBB ... 8-39
Definition of DV AL[0-1] ... 8-40
AResp-Disabled: Earliest Time to Sample Received Data 8-41
AResp-Enabled: Earliest Time to Sample Received Data 8-41
DCACHE Timing Diagram for an Intervention Data Transfer 8-42
DERR Timing Diagram .. 8-43
DX Mode: Non-Burst Operation: Addr=Double-Word 1.. 8-45
DX Mode: Burst Operation: Addr=Quad-Wordl, Double-Wordl 8-45
Data Alignment for 1-, 2- and 3-byte Sized Transfers 8-55
Data Alignment for 4,- 8- and 16-byte Sized Transfers 8-56
The Format of A[0-63] ... 8-57
Memory Read Bus Tag Allocation/Deallocation .. 8-63
Memory Write Bus Tag Allocation/Deallocation ... 8-64
The Bus Topology ... 8-68
Collision Detection State Diagram ... 8-101
The Definition of Previous Adjacent .. 8-103
Address with Respect to Address Response ... 8-106
Out-of-Order Completion ... 8-106
Queue Full/Ping-Pong Deadlock .. 8-113
L2 Connection Diagram .. 9-2
Timing of Quadruple Register L2 Reads .. 9-23
Timing of Triple Register L2 Reads ... 9-23
Timing of Double Register L2 Reads ... 9-24
Timing of Single Register L2 Reads ... 9-24
Timing of L2 Late Writes for all Register Depths ... 9-25
Timing of L2 Non-Late Writes for all Register Depths 9-25
Timing of Quadruple Register L2 Reads followed by Late Writes 9-26
Timing of Triple Register L2 Reads followed by Late Writes 9-26
Timing of Double Register L2 Reads followed by Late Writes 9-27
Timing of Single Register L2 Reads followed by LateWrites 9-27
Timing for Quadruple Register L2 Reads followed by Non-LateWrites 9-28
Timing for Triple Register L2 Reads followed by Non-Late Writes 9-28
Timing for Double Register L2 Reads followed by Non-Late Writes 9-29
Timing for Single Register L2 Reads followed by Non-Late Writes 9-29
Timing for Quadruple Register L2 Late Writes followed by Reads 9-30
Timing for Triple Register L2 Late Writes followed by Reads 9-30
Timing of Double Register L2 Late Writes followed by Reads 9-31

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Figure
Number

ILLUSTRATIONS

Title Page
Number

9-19 Timing of Single Register L2 Late Writes followed by Reads 9-31
9-20 Timing for Quadruple Register L2 Non-Late Writes followed by Reads 9-32
9-21 Timing for Triple Register L2 Non-Late Writes followed by Reads 9-32
9-22 Timing for Double Register L2 Non-Late Writes followed by Reads 9-33
9-23 Timing for Single Register L2 Non-Late Writes followed by Reads 9-33
10-1 Performance Monitor Block Diagram .. 10-7
10-2 Access Times of an Imaginary System Using the Thresholder 10-15
10-3 Block Diagram of the Delay Thresholding Mechanism for Load

Instructions ... 10-15
10-4 Block Diagram of the Delay Thresholding Mechanism for Store

Instructions ... 10-16
10-5 SampLe Timing Diagram of the Thresholding Mechanism

(Threshold Not Exceeded) ... 10-16
10-6 Sample Timing Diagram of the Thresholding Mechanism

(Threshold Exceeded) .. 10-16
10-7 Example of a History Mode Event Diagram ... 10-40
10-8 WAKEUP Timing Diagram: WAKEUP with Respect to EATS 11-3

MOTOROLA Illustrations xxv

Figure
Number

xxvi

ILLUSTRATIONS

Title

PowerPC 620 RISC Microprocessor User's Manual

Page
Number

MOTOROLA

Table
Number

TABLES

Title
Page

Number

Acronyms and Abbreviated Terms ... xxxix
ii Terminology Conventions .. xiii
iii Instruction Field Conventions ... xiii
1-1 Exception Classifications .. 1-32
1-2 Overview of Exceptions and Conditions .. 1-33
2-1 MSR[PMM] Bit .. 2-6
2-2 Instruction Address Breakpoint Register Bit Settings .. 2-9
2-3 HIDO Bit Settings .. 2-10
2-4 BUSCSR Bit Settings ... 2-12
2-5 L2CR Bit Settings ... 2-14
2-6 L2SR Bit Settings ... 2-16
2-7 MMCRO Bit Settings .. 2-17
2-8 MMCRl Bit Settings .. 2-18
2-9 Selec Events-PMCl ... 2-20
2-10 Selec Events-PMC2 ... 2-21
2-11 Selec Events-PMC3 ... 2-22
2-12 Selec Events-PMC4 ... 2-23
2-13 Selec Events-PMC5 ... 2-24
2-14 Selec Events-PMC6 ... 2-25
2-15 Selec Events-PMC7 ... 2-25
2-16 Selec Events-PMC8 ... 2-26
2-17 Supported Data Sizes and Alignments .. 2-28
2-18 Floating-Point Operand Data Type Behavior ... 2-29
2-19 Floating-Point Result Data Type Behavior. .. 2-30
2-20 Integer Arithmetic Instructions ... 2-38
2-21 Integer Compare Instructions .. 2-39
2-22 Integer Logical Instructions .. 2-40
2-23 Integer Rotate Instructions .. 2-41
2-24 Integer Shift Instructions ... 2-41
2-25 Floating-Point Arithmetic Instructions ... 2-42
2-26 Floating-Point Multiply-Add Instructions .. 2-43
2-27 Floating-Point Rounding and Conversion Instructions 2-43
2-28 Floating-Point Compare Instructions .. 2-44
2-29 Floating-Point Status and Control Register Instructions 2-44
2-30 Floating-Point Move Instructions ... 2-44
2-31 Integer Load Instructions .. 2-4 7
2-32 Integer Store Instructions .. 2-48
2-33 Integer Load and Store with Byte Reverse Instructions 2-49
2-34 Integer Load and Store Multiple Instructions ... 2-50
2-35 Integer Load and Store String Instructions ... 2-51
2-36 Floating-Point Load Instructions .. 2-52
2-37 Floating-Point Store Instructions .. 2-53
2-38 Store Floating-Point Single Behavior ... 2-53

MOTOROLA Tables xxvii

Table
Number

TABLES

Title
Page

Number

2-39 Store Floating-Point Double Behavior .. 2-54
2-40 Branch Instructions ... 2-55
2-41 Condition Register Logical Instructions ... 2-56
2-42 Trap Instluctions ... 2-56
2-43 System Linkage Instruction-UISA ... 2-56
2-44 Move to/from Condition Register Instructions ... 2-57
2-45 Move to/from Special-Purpose Register Instructions (UISA) 2-58
2-46 Memory Synchronization Instructions-UISA .. 2-58
2-47 Move from Time Base Instruction .. 2-59
2-48 Memory Synchronization Instructions-VEA ... 2-60
2-49 User-Level Cache Instructions .. 2-62
2-50 External Control Instructions .. 2-63
2-51 System Linkage Instructions-GEA ... 2-63
2-52 Move to/from Machine State Register Instructions .. 2-64
2-53 Move to/from Special-Purpose Register Instructions (OEA) 2-64
2-54 SPR Encodings for 620-Defined Registers (mfspr) ... 2-64
2-55 Cache Management Supervisor-Level Instruction .. 2-66
2-56 Segment Register Manipulation Instructions .. 2-66
2-57 Translation Lookaside Buffer Management Instruction 2-67
3-1 Cache Level and Modified Cache State .. 3-9
3-2 Cache Level and Exclusive Cache State ... 3-10
3-3 Cache Level and Shared Cache State .. 3-10
3-4 Cache Level and Invalid Cache State ... 3-10
3-5 Cache State Transitions Due to Instruction Execution 3-18
3-6 Cache State Transitions Due to Bus Snoop Operations 3-20
3-7 L3 Cache State Transitions Due to Bus-Above Operations 3-22
4-1 Exception Classifications .. 4-3
4-2 Exceptions and Conditions-Overview .. 4-3
4-3 MSR Bit Settings .. 4-9
4-4 IEEE Floating-Point Exception Mode Bits ... 4-11
4-5 MSR Setting Due to Exception ... 4-14
4-6 System Reset Exception-Register Settings .. 4-15
4-7 Machine Check Enable Bits .. 4-17
4-8 Machine Check Exception-Register Settings ... 4-18
4-9 Trace Exception-Register Settings ... 4-22
4-10 Performance Monitoring Interrupt-Register Settings 4-23
4-11 Instruction Address Breakpoint Exception-Register Settings 4-24
4-12 System Management Interrupt Exception-Register Settings 4-24
5-1 GEA-Defined PowerPC 620 Microprocessor MMU Features Summary 5-4
5-2 PowerPC 620 Microprocessor-Specific MMU Features Summary 5-5
5-3 Access Protection Options for Pages .. 5-12
5-4 Translation Exception Conditions ... 5-18
5-5 Other MMU Exception Conditions ... 5-19

xxviii PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table
Number

TABLES

Title
Page

Number

5-6 MMU Registers ... 5-20
5-7 Instruction Summary-Control MMU ... 5-22
5-8 Search Operations to Update History Bits-TLB Hit Case 5-25
5-9 Model for Guaranteed R and C Bit Settings ... 5-27
6-1 Instruction Execution Timing Sorted by Mnemonic .. 6-13
6-2 Performance of String Instructions not Treated as a Load/Store Multiple 6-22
6-3 Ll Data Cache Latency ... 6-24
6-4 L2 Cache Latency ... 6-24
6-5 L2 Disabled Latency ... 6-25
6-6 Bus Read Latency ... 6-25
6-7 Load Latency Example #2: DLl and L2 Miss .. 6-27
6-8 Load Latency Example #3: DLl Miss, L2 Disabled .. 6-28
6-9 The L1 Contains the Push/Intervention Data .. 6-29
6-10 The L2 Contains the Push/Intervention Data .. 6-29
6-11 Push/Intervention Example #1: L2 Enabled and data in L1 6-30
6-12 Push/Intervention Example #2: L2 Enabled and data in L2 6-31
7-1 Address Type Encoding for PowerPC 620 Processor Bus Master 7-8
7-2 ASIZEDATA[0-3] and ASIZEBURST ... 7-10
7-3 Coherency Encoding ... 7-11
7-4 Data Bus Lane Assignments ... 7-15
7-5 DP[0-7] Signal Assignments .. 7-16
7-6 JTAG Bus Signals ... 7-25
8-1 AStat and AResp Valid States .. 8-20
8-2 BUSTLAR[0-2] Encoding Definition .. 8-21
8-3 BUSTLAR[0-2] Minimum Definition ... 8-21
8-4 BUSTLAR Parameters .. 8-22
8-5 BUS_TO_L2 Values ... 8-22
8-6 L2_REGS Values .. 8-22
8-7 L2 Latency Additions Due to High-Impedance Cycle Injection 8-23
8-8 BUSRESPTEN[0-1] Code Definition .. 8-24
8-9 AStat: Code and Priority Definition ... 8-26
8-10 AStat Codes Enabled as a Function of Bus Operation Type 8-27
8-11 AResp Code and Priority Definition ... 8-28
8-12 AResp Codes Enabled as a Function of Bus Operation Type 8-28
8-13 PosAck Enabled as a Function of Bus Operation Type 8-29
8-14 Snooper ARES PIN Definition .. 8-36
8-15 Data Ordering for a Quad-Word Sized Bus .. 8-38
8-16 ATYPE[0-4] Definition .. 8-47
8-17 WIM-Bit Definition .. 8-48
8-18 Write-Through Address Attribute (W-Bit) ... 8-49
8-19 Cache Inhibited Address Attribute (I-Bit) .. 8-49
8-20 Memory Coherent Address Attribute (M-Bit) .. 8-49
8-21 Atomic Address Attribute (A-Bit) .. 8-50

MOTOROLA Tables xxix

Table
Number

TABLES

Title
Page

Number

8-22 Intervention Address Attribute (N-Bit) ... 8-50
8-23 Use of Intervention and Push on the PowerPC 620 Microprocessor 8-50
8-24 ASIZEDATA[0--3] and ASIZEBURST Validation .. 8-53
8-25 ASIZEDATA[0--3] and ASIZEBURST Definition .. 8-53
8-26 Supported Data Sizes and Alignments .. 8-54
8-27 Memory Request Address Format .. 8-57
8-28 PIO Request Address Format... ... 8-58
8-29 PIO Reply Address Format ... 8-58
8-30 Tag-Only Address Format .. 8-59
8-31 External Control Request Address Format ... 8-59
8-32 Bus Tag Usage .. 8-60
8-33 Bus Tag[0--7] Format .. 8-61
8-34 Address Bus Parity Protection .. 8-66
8-35 Address Bus Parity Protection .. 8-67
8-36 Data Bus Parity Protection .. 8-67
8-37 The Bus S-Bit for the Snooped Read Operation ... 8-70
8-38 Supported Write-With-Kill Types .. 8-71
8-39 The R-Bit with respect to AStat/AResp ReRun/Retry 8-76
8-40 The R-Bit and Address Tag Matching Handling for Snoopers and

Bus Adapters .. 8-77
8-41 PIO Bus Operations .. 8-83
8-42 Hardwired PTE WIMG-Bit Instructions/Operations .. 8-86
8-43 I with Respect to MESI. .. 8-89
8-44 S with Respect to MESI. ... 8-90
8-45 E with Respect to MESI .. 8-90
8-46 M with Respect to MESI. .. 8-91
8-47 Master Cache State Transitions Due to Instructions ... 8-93
8-48 Snooper Cache State Transitions Due to Bus Operations 8-94
8-49 L3 Cache State Transitions Due to Bus-Above Operations 8-97
8-50 CD Rules: Rules a Bus Device must Follow .. 8-100
8-51 Collision Detection State Transitions ... 8-101
8-52 The Definition of Previous Adjacent is Enabled .. 8-104
8-53 Collision that may immediately retry the snooped bus operation 8-105
8-54 Scoreboarding between the Master and Snoop Buffers ; 8-107
8-55 Scoreboarding Between Snoop Buffers .. 8-107
8-56 Hardware Configuration Variables ... 8-114
8-57 Register/ Array Settings after Hard Reset.. .. 8-117
9-1 L2NORWDEAD Bit ... 9-4
9-2 L2SIZE[0--3] Bits .. 9-4
9-3 L2 Cache Capacity and Tag/Index Signal Definition-Single Bank 9-5
9-4 L2 Cache Capacity and Tag/Index Signal Definition-Double Bank 9-5
9-5 Cache Capacity and Organization for Data Portion ofL2 Cache 9-6
9-6 Cache Capacity and Organization for Tag Portion of L2 Cache 9-6

xxx PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table
Number

TABLES

Title
Page

Number

9-7 L2RATIOSR Code Definition .. 9-7
9-8 L2ECCMODE[O--l] Code Definition ... 9-7
9-9 L2PECLEN Code Definition .. 9-7
9-10 Multi-Level Cache Configuration ... 9-8
9-11 L2LATEWRITE Code Definition .. 9-9
9-12 L2SINGSYNC Code Definition ... 9-9
9-13 L2WRCNTRDIS Code Definition .. 9-10
9-14 L2INIT Code Definition ... 9-10
9-15 L2DPWR Code Definition .. 9-10
9-16 L2 Tag Syndrome Bits .. 9-12
9-17 L2 Data Syndrome Bits ... 9-15
10-1 SPR Address of the 620 Performance Monitor Registers 10-9
10-2 SRRl Performance Monitor Implemented Bit Fields 10-10
10-3 MMCRO Bit Fields ... 10-11
10-4 MMCRl Bit Fields ... 10-13
10-5 PMCl Monitored Events and Selected Bit Patterns 10-18
10-6 PMC2 Monitored Events and Selected Bit Patterns 10-20
10-7 PMC3 Monitored Events and Selected Bit Patterns 10-21
10-8 PMC4 Monitored Events and Selected Bit Patterns 10-22
10-9 PMC5 Monitored Events and Selected Bit Patterns 10-23
10-10 PMC6 Monitored Events and Selected Bit Patterns 10-24
10-11 PMC7 Monitored Events and Selected Bit Patterns 10-24
10-12 PMC8 Monitored Events and Selected Bit Patterns 10-25
10-13 Interrupt Generation .. 10-39
A-1 Complete Instruction List Sorted by Mnemonic .. A-1
A-2 Complete Instruction List Sorted by Opcode .. A-10
A-3 Integer Arithmetic Instructions .. A-18
A-4 Integer Compare Instructions ... A-19
A-5 Integer Logical Instructions ... A-19
A-6 Integer Rotate Instructions ... A-20
A-7 Integer Shift Instructions ... A-20
A-8 Floating-Point Arithmetic Instructions .. A-20
A-9 Floating-Point Multiply-Add Instructions ... A-21
A-10 Floating-Point Rounding and Conversion Instructions A-21
A-11 Floating-Point Compare Instructions ... A-21
A-12 Floating-Point Status and Control Register Instructions A-22
A-13 Integer Load Instructions ... A-22
A-14 Integer Store Instructions ... A-23
A-15 Integer Load and Store with Byte Reverse Instructions A-23
A-16 Integer Load and Store Multiple Instructions .. A-23
A-17 Integer Load and Store String Instructions .. A-24
A-18 Memory Synchronization Instructions ... A-24
A-19 Floating-Point Load Instructions ... A-24

MOTOROLA Tables xxxi

Table
Number

TABLES

Title Page
Number

A-20 Floating-Point Store Instructions ... A-24
A-21 Floating-Point Move Instructions .. A-25
A-22 Branch Instructions .. A-25
A-23 Condition Register Logical Instructions .. A-25
A-24 System Linkage Instructions .. A-26
A-25 Trap Instructions .. A-26
A-26 Processor Control Instructions ... A-26
A-27 Cache Management Instructions .. A-26
A-28 Segment Register Manipulation Instructions ... A-27
A-29 Lookaside Buffer Management Instructions .. A-27
A-30 External Control Instructions ... A-27
A-31 I-Form .. A-28
A-32 B-Form ... A-28
A-33 SC-Form ... A-28
A-34 D-Form .. A-28
A-35 DS-Form .. A-30
A·36 X-Form ... A-30
A-37 XL-Form .. A-34
A-38 XFX-Form ... A-36
A-39 XFL-Form .. A-36
A-40 XS-Form .. A-36
A-41 XO-Form .. A-36
A-42 A-Form ... A-37
A-43 M-Form .. A-38
A-44 MD-Form ... A-38
A-45 MDS-Form ... ; ... A-39
B-1 Invalid Forms (Excluding Reserved Fields) ... B-1
B-2 Invalid Forms with Reserved Fields (Bit 31 Exclusive) B-3
C-1 Hardware Configuration Signals Summary .. C-1
D-1 Processor Code Sequence .. D-1

xxxii PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

About This Book
The primary objective of this manual is to help hardware and software designers who are
working with the PowerPC 620™ microprocessor. This book is intended as a companion
to the PowerPC™ Microprocessor Family: The Programming Environments, Rev. 1,
referred to as The Programming Environments Manual. Because the PowerPC architecture
is designed to be flexible to support a broad range of processors, The Programming
Environments Manual provides a general description of features that are common to
PowerPC processors and indicates those features that are optional or that may be
implemented differently in the design of each processor.

Note that The Programming Environments Manual does not attempt to replace the
Power PC architecture specification (documented in The Pow er PC Architecture: A
Specification for a New Family of RISC Processors), which defines the architecture from
the perspective of the three programming environments and which remains the defining
document for the PowerPC architecture.

The PowerPC 620 RISC Microprocessor User's Manual summarizes features of the 620
that are not defined by the architecture. This document and The Programming
Environments Manual distinguishes between the three levels, or programming
environments, of the PowerPC architecture, which are as follows:

PowerPC user instruction set architecture (UISA)-The UISA defines the level of
the architecture to which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers.

PowerPC virtual environment architecture (VEA)-The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, defines aspects of the cache model and cache control
instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for optimizing memory accesses and for managing resources in
an enyironment in which other processors and other devices can access external
memory.

MOTOROLA AboutThis Book xxxiii

PowerPC operating environment architecture (OEA)-The OEA defines supervisor­
level resources typically required by an operating system. The OEA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

It is important to note that some resources are defined more generally at one level in the
architecture and more specifically at another. For example, conditions that can cause a
floating-point exception are defined by the UISA, while the exception mechanism itself is
defined by the OEA.

Because it is important to distinguish between the levels of the architecture in order to
ensure compatibility across multiple platforms, those distinctions are shown clearly
throughout this book.

For ease in reference, this book has arranged topics described by the architecture
information into topics that build upon one another, beginning with a description and
complete summary of 620-specific registers and progressing to more specialized topics
such as 620-specific details regarding the cache, exception, and memory management
models. As such, chapters may include information from multiple levels of the architecture.
(For example, the discussion of the cache model uses information from both the VEA and
the OEA.)

The information in this book is subject to change without notice, as described in the
disclaimers on the title page of this book. As with any technical documentation, it is the
readers' responsibility to be sure they are using the most recent version of the
documentation. For more information, contact your sales representative.

Audience
This manual is intended for system software and hardware developers and application
programmers who want to develop products for the 620. It is assumed that the reader
understands operating systems, microprocessor system design, the basic principles of RISC
processing, and details of the PowerPC architecture.

Organization
Following is a summary and a brief description of the major sections of this manual:

xxxiv

Chapter 1, "Overview," is useful for those who want a general understanding of the
features and functions of the PowerPC architecture. This chapter describes the
flexible nature of the PowerPC architecture definition, and provides an overview of
how the PowerPC architecture defines the register set, operand conventions,
addressing modes, instruction set, cache model, exception model, and memory
management model.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 2, "Programming Model," is useful for software engineers who need to
understand the 620-specific registers, operand conventions, and details regarding
how PowerPC instructions are implemented on the 620.

Chapter 3, "Instruction and Data Cache Operation," provides a discussion of the
cache and memory model as implemented on the 620.

Chapter 4, "Exceptions," describes the exception model as implemented on the 620.

Chapter 5, "Memory Management," provides descriptions of the PowerPC address
translation and memory protection mechanism as implemented on the 620.

Chapter 6, "Instruction Timing," describes instruction timing in the 620.

Chapter 7, "Signal Descriptions," describes individual signals defined for the 620.

Chapter 8, "System Interface Operation," describes interface operations on the 620.

Chapter 9, "Secondary Cache Interface," provides information on the L2 cache
interface operation, register set, and ECC errors, as well as providing timing
diagrams.

Chapter 10, "Performance Monitor," describes the operation of the performance
monitor diagnostic tool incorporated in the 620.

Chapter 11, "Power Management," describes the power saving mechanism
implemented on the 620.

Appendix A, "PowerPC Instruction Set Listings," lists all the PowerPC instructions.
Instructions are grouped according to mnemonic, opcode, function, and form.

This manual also includes a glossary and an index.

In this document, the terms "PowerPC 620 Microprocessor" and "620" are used to denote
a microprocessor from the PowerPC architecture family. The PowerPC 620
microprocessors are available from Motorola as MPC620.

Suggested Reading
This section lists additional reading that provides background for the information in this
manual as well as general information about the PowerPC architecture.

General Information
The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

The following books are available from the Morgan-Kaufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mkp.com.

- The PowerPC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

MOTOROLA AboutThis Book xxxv

I ~

:~

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

- PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

- Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

- Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

• Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International).

• PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International).

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

User's manuals-These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

- PowerPC 601™ RISC Microprocessor User's Manual:
MPC601 UM/AD (Motorola order#)

- PowerPC 602™ RISC Microprocessor User's Manual:
MPC602UM/AD (Motorola order#)

- PowerPC 603e™ RISC Microprocessor User's Manual with Supplement for
PowerPC 603 Microprocessor:
MPC603EUM/ AD (Motorola order #)

- PowerPC 604™ RISC Microprocessor User's Manual:
MPC604UM/AD (Motorola order#)

• PowerPC Microprocessor Family: The Programming Environments, Rev. 1
provides information about resources defined by the PowerPC architecture that are
common to PowerPC processors. This document describes both the 64- and 32-bit
portions of the architecture.
MPCFPE/AD (Motorola order#)

• Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available via the world-wide web at http://www.mot.com/powerpc/.

xx xvi PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

• Addenda/errata to user's manuals-Because some processors have follow-on parts
an addendum is provided that describes the additional features and changes to
functionality of the follow-on part. These addenda are intended for use with the
corresponding user's manuals. These include the following:

- Addendum to PowerPC 603e RISC Microprocessor User's Manual: PowerPC
603e Microprocessor Supplement and User's Manual Errata:
MPC603EUMAD/AD (Motorola order#)

- Addendum to PowerPC 604 RISC Microprocessor User's Manual: PowerPC
604e™ Microprocessor Supplement and User's Manual Errata:
MPC604UMAD/AD (Motorola order#)

• Hardware specifications-Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as
other design considerations for each PowerPC implementation. These include the
following:

- PowerPC 601 RISC Microprocessor Hardware Specifications:
MPC601EC/D (Motorola order#)

- PowerPC 602 RISC Microprocessor Hardware Specifications:
MPC602EC/D (Motorola order #)

- PowerPC 603 RISC Microprocessor Hardware Specifications:
MPC603EC/D (Motorola order #)

- PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Specifications:
MPC603EEC/D (Motorola order#)

- PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Specifications:
MPC603E7VEC/D (Motorola order#)

- PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order#)

- PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Specifications:
MPC604E9VEC/D (Motorola order#)

• Technical Summaries-Each PowerPC implementation has a technical summary
that provides an overview of its features. This document is roughly the equivalent to
the overview (Chapter 1) of an implementation's user's manual. Technical
summaries are available for the 601, 602, 603, 603e, 604, and 604e as well as the
following:

- PowerPC 620™ RISC Microprocessor Technical Summary: MPC620/D
(Motorola order #)

MOTOROLA AboutThis Book xxxvii

• PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors:
MPCBUSIF/AD (Motorola order#) provides a detailed functional description of the
60x bus interface, as implemented on the 601, 603, and 604 family of PowerPC
microprocessors. This document is intended to help system and chipset developers
by providing a centralized reference source to identify the bus interface presented by
the 60x family of PowerPC microprocessors.

• PowerPC Microprocessor Family: The Programmer's Reference Guide:
MPCPRG/D (Motorola order#) is a concise reference that includes the register
summary, memory control model, exception vectors, and the PowerPC instruction
set.

• PowerPC Microprocessor Family: The Programmer's Pocket Reference Guide:
MPCPRGREF/D (Motorola order#): This foldout card provides an overview of the
PowerPC registers, instructions, and exceptions for 32-bit implementations.

• Application notes-These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

• Documentation for support chips-These include the following:

- MPC105 PC! Bridge/Memory Controller User's Manual:
MPC105UM/AD (Motorola order#)

- MPCJ06 PC! Bridge/Memory Controller User's Manual:
MPC106UM/AD (Motorola order#)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/powerpc/.

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE_LOW

mnemonics

OPERATIONS

xxxviii

A bar over a signal name indicates that the signal is active low-for
example, ARTRY (address retry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
APARITYO---APARITY3 (address bus parity signals) and TTO-TT4
(transfer type signals) are referred to as asserted when they are high
and negated when they are low.

Instruction mnemonics are shown in lowercase bold.

Address-only bus operations that are named for the instructions that
generate them are identified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

italics

OxO
ObO
rA,rB

rAIO

rD

frA, frB, frC

frD

REG[FIELD]

x

n

Italics indicate variable command parameters, for example, bcctrx

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

The contents of a specified GPR or the value 0.

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviations or acronyms for registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refers to the little-endian mode enable bit in the machine
state register.

In certain contexts, such as a signal encoding, this indicates a don't
care.

Used to express an undefined numerical value.

Acronyms and Abbreviations
The Table i contains acronyms and abbreviations that are used in this document. Note that
the meanings for some acronyms (such as SDRl and XER) are historical, and the words for
which an acronym stands may not be intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term Meaning

ALU Arithmetic logic unit

ASR Address space register

BAT Block address translation

BIST Built-in self test

BIU Bus interface unit

BHT Branch history table

BPU Branch processing unit

BTAC Branch target address cache

BUID Bus unit ID

COP Common on-chip processor

CR Condition register

CTR Count register

DABR Data address breakpoint register

MOTOROLA AboutThis Book xxxix

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

DAR Data address register

DBAT Data BAT

DEC Decrementer (register)

DEQ Decode queue

DISQ Dispatch queue

DSISR Register used for determining the source of a DSI exception

DTLB Data translation look-aside buffer

EA Effective address

EAR External access register

ECC Error checking and correction

FIFO First-in, first out

FLQ Finish load queue

FPR Floating-point register

FPSCR Floating-point status and control register

FPU Floating-point unit

GPR General-purpose register

HIDO Hardware implementation dependent (register) O

IABR Instruction address breakpoint register

IBAT Instruction BAT

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation look-aside buffer

IU Integer unit

JTAG Joint Test Action Group

L2 Secondary cache

LR Link register

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

LSU Load/store unit

MCIU Multiple-cycle integer unit

MESI Modified/exclusive/shared/invalid-cache coherency protocol

MMC Rn Monitor mode control register n

xi PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register

NaN Not a number

No-Op No operation

OEA Operating environment architecture

PIO Processor identification tag

PLL Phase-locked loop

PMCn Performance monitor control (register) n

PMI Performance monitor interrupt

PTE Page table entry

PTEG Page table entry group

PVR Processor version register

RISC Reduced instruction set computing/computer

ROB Reorder buffer

RTL Register transfer language

RWITM Read with intent to modify

SCIU Single-cycle integer unit

SDA Sampled data address (register)

SDR1 Register that specifies the page table base address for virtual-to-physical address translation

SIA Sampled instruction address (register)

SIMM Signed immediate value

SLB Segment look-aside buffer

SPA Special-purpose register

SPRGn Registers available for general purposes

SR Segment register

SARO (Machine status) save/restore register O

SRR1 (Machine status) save/restore register 1

TB Time base register

TLB Translation lookaside buffer

UIMM Unsigned immediate value

MOTOROLA AboutThis Book xii

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning

UISA User instruction set architecture

VEA Virtual environment architecture

XATC Extended address transfer code

XER Register used for indicating conditions such as carries and overflows for integer operations

Terminology Conventions
Table ii lists certain terms used in this manual that differ from the architecture terminology
conventions.

Table ii. Terminology Conventions

The Architecture Specification This Manual

Data storage interrupt (OSI) OSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISi) ISi exception

Interrupt* Exception

Privileged mode (or privileged state) Supervisor-level privilege

Problem mode (or problem state) User-level privilege

Real address Physical address

Relocation Translation

Storage (locations) Memory

Storage (the act of) Access

* For a detailed discussion of how the terms interrupt and exception are used in this document, see the introduction
to Chapter 4, "Exceptions."

Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA,FRB,FRC,FRiFRS frA, frB, frC, frD, frS (respectively)

xiii PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table iii. Instruction Field Conventions (Continued)

The Architecture Specification Equivalent to:

FXM CRM

RA, RB, RT, RS rA, rB, rD, rs (respectively)

SI SIMM

u IMM

UI UIMM

I, II, Ill o ... o (shaded)

MOTOROLA AboutThis Book xii ii

xliv PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 1
Overview
This chapter provides an overview of the PowerPC 620™ microprocessor. It includes the
following:

• A summary of 620 features

• Details about the 620 hardware implementation. This includes descriptions of the
620's execution units, cache implementation, memory management units (MMUs),
and system interface.

• A description of the 620 execution model. This section includes information about
the programming model, instruction set, exception model, and instruction timing.

• A description of the performance monitor facility

1.1 Overview
This section describes the features of the 620, provides a block diagram showing the major
functional units, and describes briefly how those units interact.

The 620 is an implementation of the PowerPC™ family of reduced instruction set computer
(RISC) microprocessors. The 620 implements the PowerPC architecture as it is specified
for 64-bit addressing, which provides 64-bit effective addresses, integer data types of 8, 16,
32, and 64 bits, and floating-point data types of 32 and 64 bits (single-precision and double­
precision). The 620 is software compatible with the 32-bit versions of the PowerPC
microprocessor family.

The 620 is a superscalar processor capable of issuing four instructions simultaneously. As
many as four instructions can finish execution in parallel. The 620 has six execution units
that can operate in parallel:

• Floating-point unit (FPU)

• Branch processing unit (BPU)

• Load/store unit (LSU)

• Three integer units (IUs):

- Two single-cycle integer units (SCIUs)

- One multiple-cycle integer unit (MCIU)

MOTOROLA Chapter 1.0verview 1-1

lj

I!
ll

This parallel design, combined with the PowerPC architecture's specification of uniform
instructions that allows for rapid execution times, yields high efficiency and throughput.
The 620's rename buffers, reservation stations, dynamic branch prediction, and completion
unit increase instruction throughput, guarantee in-order completion, and ensure a precise
exception model. (Note that the PowerPC architecture specification refers to all exceptions
as interrupts.)

The 620 has separate memory management units (MMUs) and separate 32-Kbyte on-chip
caches for instructions and data. The 620 implements a 128-entry, two-way set-associative
translation lookaside buffer (TLB) for instructions and data, and provides support for
demand-paged virtual memory address translation and variable-sized block translation. The
TLB and the cache use least-recently used (LRU) replacement algorithms.

The 620 has a 40-bit address bus, and can be configured with either a 64- or 128-bit data
bus. The 620 interface protocol allows multiple masters to compete for system resources
through a central external arbiter. Additionally, on-chip snooping logic maintains data
cache coherency for multiprocessor applications. The 620 supports single-beat and burst
data transfers for memory accesses and memory-mapped I/O accesses.

The 620 processor core uses an advanced, 2.5-V CMOS process technology, and is
compatible with 3.3-V CMOS devices.

1.1.1 PowerPC 620 Microprocessor Features
This section summarizes features of the 620's implementation of the PowerPC architecture.
Major features of the 620 are as follows:

1-2

• High-performance, superscalar microprocessor

- As many as four instructions can be issued per clock

- As many as six instructions can start executing per clock (including three integer
instructions)

- Single clock cycle execution for most instructions

• Six independent execution units and two register files

- BPU featuring dynamic branch prediction

Speculative execution through four branches

256-entry fully-associative branch target address cache (BTAC)

2048-entry branch history table (BHT) with two bits per entry indicating four
levels of prediction-not-taken, strongly not-taken, taken, strongly taken

- Two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU)

- Instructions that execute in the SCIU take one cycle to execute; most
instructions that execute in the MCIU take multiple cycles to execute.

Each SCIU has a two-entry reservation station to minimize stalls.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The MCIU has a two-entry reservation station and provides early exit (three
cycles) for 16 x 32-bit and overflow operations

Thirty-two GPRs for integer operands

Eight rename buffers for GPRs

- Three-stage floating-point unit (FPU)

Fully IEEE 754-1985 compliant FPU for both single- and double-precision
operations

- Supports non-IEEE mode for time-critical operations

- Fully pipelined, single-pass double-precision design

- Hardware support for denormalized numbers

- Two-entry reservation station to minimize stalls

Thirty-two 64-bit FPRs for single- or double-precision operands

Eight rename buffers for FPRs

- Load/store unit (LSU)

Three-entry reservation station to minimize stalls

Single-cycle, pipelined cache access

Dedicated adder that performs EA calculations

Performs alignment and precision conversion for floating-point data

Performs alignment and sign extension for integer data

Five-entry pending load queue that provides load/store address collision
detection

- Five-entry finished store queue

- Six-entry completed store queue

Supports both big- and little-endian modes

Rename buffers

- Eight GPR rename buffers

- Eight FPR rename buffers

- Sixteen condition register (CR) rename buffers

The 620 rename buffers are described in Section 1.2.1.6, "Rename Buffers."

Completion unit

- Retires an instruction from the 16-entry reorder buffer when all instructions
ahead of it have been completed and the instruction has finished execution

- Guarantees sequential programming model (precise exception model)

- Monitors all dispatched instructions and retires them in order

MOTOROLA Chapter 1.0verview 1-3

-

1-4

- Tracks unresolved branches and removes speculatively executed, dispatched,
and fetched instructions if branch is mispredicted

- Retires as many as four instructions per clock

Separate on-chip instruction and data caches (Harvard architecture)

- 32-Kbyte, eight-way set-associative instruction and data caches; data cache is 2-
way interleaved.

- LRU replacement algorithm

- 64-byte (sixteen word) cache block size

- Physically indexed; physical tags

- Cache write-back or write-through operation programmable on a per page or per
block basis

- Instruction cache can provide four instructions per clock; data cache can provide
two words per clock.

- Caches can be disabled in software

- Parity checking performed on both caches

- Data cache coherency (MESI) maintained in hardware

- Interprocessor broadcast of cache control instructions

- Instruction cache coherency maintained in software

On-chip L2 cache interface

- L2 cache is a unified instruction and data secondary cache with ECC.

- L2 cache is direct-mapped, physically-indexed, and physically-tagged.

- L2 data cache is inclusive of L 1; L2 instruction cache is not inclusive of L 1.

- L2 cache capacity is configurable from 1 Mbyte to 128 Mbyte.

- Independent user-configurable PLL provides L2 interface clock.

- L2 cache interface supports single-, double-, triple-, and quad-register
synchronous SRAMs.

- L2 cache interface supports CMOS SRAMs.

- Supports direct connection of two SRAM banks

- Supports direct connection of coprocessor

Separate memory management units (MMUs) for instructions and data

- Address translation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

- Independent 64-entry fully-associative effective-to-physical address translation
(EPAT) cache with invalid-first replacement algorithm for instructions and data

- Unified instruction and data translation lookaside buffer (TLB)

- TLB is 128-entry and two-way set-associative

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

- 20-entry CAM segment lookaside buffer (SLB) with FIFO replacement
algorithm

- Sixteen segment registers that provide support for 32-bit memory management

- SLB, TLB, and EPAT cache miss handling performed by 620 hardware

- Hardware update of page frame table referenced and changed bits

- Hardware broadcast of TLB and control instructions

- Separate IBATs and DBATs (four each) also defined as SPRs

- 64-bit effective addressing

- 80-bit virtual addressing

- 40-bit physical memory address for up to one terabyte

Bus interface

- Selectable processor-to-bus clock frequency ratios (2:1, 3:1, and 4:1)

- A 64- and 128-bit split-transaction external data bus with burst transfers

- Explicit address and data bus tagging

- Pended (split) read protocol

- Pipelined snoop response, fixed boot-time latency

- 620 bus is crossbar compatible

- Additional signals and signal redefinition for direct-store operations

Multiprocessing support

- Hardware-enforced, four-state cache coherency protocol (MESI) for data cache.
Bits are provided in the instruction cache to indicate only whether a cache block
is valid or invalid.

- Data cache coherency for L 1 and L2, and external L3 cache is fully supported by
620 hardware.

- Snoop operations take priority over processor access to L 1 and L2 cache.

- Instruction cache coherency is software controlled.

- Load/store with reservation instruction pair is provided for atomic memory
references, semaphores, and other multiprocessor operations.

Power requirements

- Operating voltage is 2.5 V for the processor core, and 3.3 V for I/0 drivers.

Performance monitor can be used to help in debugging system designs and
improving software efficiency, especially in multiprocessor systems.

In-system testability and debugging features are provided through JTAG boundary­
scan capability.

MOTOROLA Chapter 1.0verview 1-5

- 1.1.2 Block Diagram
Figure 1-1 provides a block diagram showing features of the 620. Note that this is a
conceptual block diagram intended to show the basic features rather than an attempt to
show how these features are physically implemented on the chip.

1-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

s:
0
d
:Il
0
r
)>

I
"11 ca·
c
iil
I

:-"
"ti
0
::e
CD ..,
"ti

0 0
:::1"
Ill O>

'9. N

CD
0 ... s:

0
c;·

~
..,
0

~
1J ..,

~- 0 n
CD
UI
UI
0 ..,
m
0 n
~

c
iii"
cc ..,
I»
3

~

_[

I 156 Bit I' INSTRUCTION UNIT I I 64 Bit ~'',.··' ,,·, ... ' ' '.;;·' · .. :··'..·· .. '· ·''

F~~~th• '• •},[~~~~~ 1
' ,;,,,, Rename ' CR

IMMU

IEPAT I ,----.,

Time-Base
Counter/Decrementer

,; ·~. · Buffers ".

Instruction I• • J~~;i :. : ,, ,,~~~) ,~, .L,R
Queue(8Word) \., '' ' ,,.,,,,,, ··

r - , I IBAT
SLB Array

L - .J

rUTLB,
L - ..J L....-....-....

°"""'huo;1 tti
C!8!:J 128 Bit

Clock I JT AG/COP
Multiplier Interface

~

1
Reservation

Station (2 Entry) GPR File FPR File
Reservation

Station (2 Entry)
Rename Rename

, .·.• , , ··... , Buffers (8) , ... · ... ,. · .. ··... Buffers (8)

\.;·.' ... '.·.·.•.M,. ,u. !tip.·· .ie;. .. ,:' ',.· , :''' Si-. ·i.... ·' , ·. f==i==l 64 Bit 'L~ ... · tpre.•.·.· .. • 64 Bit f==i==l •9YC•e~ , ·c:,.;·~ ~ '.'Umt ~

,,;r7~'f ,"""'!,: r.. I
, '" · , .. ·[!.]·.>•:· .·• ca teura · .. · .. ·.tiorl·.· .. ··.·.··.· .. ·

' ' ' 64 Bit > ' ; .. ; ' 64 Bit G .:·f.14---- °} 64Bit

COMPLETION
UNIT

16-Entry
Reorder Buffer

:::;i;:

}-64 Bit
t I D MMU

I EPAT I .------, °} 64Bit

* Floating·
Point Unit

~
IFPSCRI

J

12~

~
~

Load Queue

Finish store :§
Queue s~ompleted I 64 Bit I

:§:~·~
~ IDBAT
~Array

IUTLBI L__J

i

~
Bus

32-Kbyte l::==l lnt~rface
DC.oho~o;t

40-BIT ADDRESS BUS

64-/128-BIT DATA BUS

!
Tags1--32-Kbyte

I Cache

4

-..J. 156 Bit

Predecode

L2
Cache
Interface~

"'7'

- 1.2 PowerPC 620 Microprocessor Hardware
Implementation

This section provides an overview of the 620's hardware implementation, including
descriptions of the functional units, shown in Figure 1-2, the cache implementation, MMU,
and the system interface.

Note that Figure 1-2 provides a more detailed block diagram than that presented in
Figure 1-1-showing the additional data paths that contribute to the improved efficiency in
instruction execution and more clearly indicating the relationships between execution units
and their associated register files.

branch
correction

Fetch Unit

instruction dispatch buses

GPR operand buses

Dispatch Unit
(Four-instruction

dispatch)

FPR operand buses

1-8

Completion
Unit

32-Kbyte data cache
8-way, 16 words/block

result status buses

Figure 1-2. Block Diagram-Internal Data Paths

PowerPC 620 RISC Microprocessor User's Manual

Result buses
Operand buses

"' a:
c..
u..

~

MOTOROLA

1.2.1 Instruction Flow
Several units on the 620 ensure the proper flow of instructions and operands and guarantee
the correct update of the architectural machine state. These units include the following:

Predecode unit-Provides logic to decode instructions and determine what
resources are required for execution.

Fetch unit-Using the next sequential address or the address supplied by the BPU
when a branch is predicted or resolved, the fetch unit supplies instructions to the
eight-word instruction queue.

Dispatch unit-The dispatch unit dispatches instructions to the appropriate
execution unit. During dispatch, operands are provided to the execution unit (or
reservation station) from the register files, rename buffers, and result buses.

Branch processing unit (BPU)-In addition to providing the fetcher with predicted
target instructions when a branch is predicted (and a mispredict-recovery address if
a branch is incorrectly predicted), the BPU executes all condition register logical and
flow control instructions.

Completion unit-The completion unit retires executed instructions in program
order and controls the updating of the architectural machine state.

1.2.1.1 Predecode Unit
The instruction predecode unit provides the logic to decode the instructions and categorize
the resources that will be used, source operands, destination registers, execution registers,
and other resources required for execution. The instruction stream is predecoded on its way
from the bus interface unit to the instruction cache.

1.2.1.2 Fetch Unit
The fetch unit provides instructions to the four-entry (8-instruction) instruction queue by
accessing the on-chip instruction cache. Typically, the fetch unit continues fetching
sequentially as many as four instructions at a time.

The address of the next instruction to be fetched is determined by several conditions, which
are prioritized as follows:

1. Detection of an exception. Instruction fetching begins at the exception vector.

2. The BPU recovers from an incorrect prediction when a branch instruction is in the
execute stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

3. The BPU recovers from an incorrect prediction when a branch instruction is in the
dispatch stage. Undispatched instructions are flushed and fetching begins at the
correct target address.

4. As a cache block is fetched, the branch target address cache (BTAC) and the branch
history table (BHT) are searched with the fetch address. If it is found in the BTAC,
the target address from the BTAC is the first candidate for being the next fetch
address.

MOTOROLA Chapter 1.0verview 1-9

I·

5. If none of the previous conditions exist, the instruction is fetched from the next
sequential address.

1.2.1.3 Dispatch Unit
The dispatch unit provides the logic for dispatching the predecoded instructions to the
appropriate execution unit. For many branch instructions, these decoded instructions along
with the bits in the BHT, are used during the decode stage for branch correction. The
dispatch logic also resolves unconditional branch instructions and predicts conditional
branch instructions using the branch decode logic, BHT, and values in the count register
(CTR).

The 2048-entry BHT provides two bits per entry, indicating four levels of dynamic
prediction-strongly not-taken, not-taken, taken, and strongly taken. The history of a
branch's direction is maintained in these two bits. For example, each time a branch is taken,
the value is incremented (with a maximum value of three meaning strongly-taken); when it
is not taken, the bit value is decremented (with a minimum value of zero meaning strongly
not-taken). If the current value predicts taken and the next branch is taken again, the BHT
entry then predicts strongly taken. If the following branch is not taken, the BHT then
predicts taken.

The dispatch logic also allocates each instruction to the appropriate execution unit. A
reorder buffer entry in the completion unit is allocated for each instruction, and data (or
resource) dependency is checked between the instructions in the dispatch queue. The
rename buffers are searched for the operands as the operands are fetched from the register
file. Operands that are written by other instructions ahead of this one in the dispatch queue
are given the tag of that instruction's rename buffer; otherwise, the rename buffer or register
file supplies either the operand or a tag. As instructions are dispatched, the fetch unit is
notified that the dispatch queue can be updated with more instructions.

1.2.1.4 Branch Processing Unit (BPU)
The BPU is used for branch instructions and condition register logical operations. All
branches, including unconditional branches, are placed in reservation stations until
conditions are resolved and they can be executed. At that point, branch instructions are
executed in order-the completion unit is notified whether the prediction was correct.

The BPU also executes condition register logical instructions, which flow through the
reservation station like the branch instructions.

1.2.1.5 Completion Unit
The completion unit retires executed instructions from the reorder buffer in the completion
unit and updates register files and control registers. The completion unit recognizes
exception conditions and discards any operations being performed on subsequent
instructions in program order. The completion unit can quickly remove instructions from a
mispredicted branch, and the dispatch unit begins dispatching from the correct path.

1-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The instruction is retired from the reorder buffer when it has finished execution and all
instructions ahead of it have been completed. The instruction's result is written into the
appropriate register file and is removed from the rename buffers at or after completion. At
completion, the 620 also updates any other resource affected by this instruction. Several
instructions can complete simultaneously. Most exception conditions are recognized at
completion time.

1.2.1.6 Rename Buffers
To avoid contention for a given register location, the 620 provides rename registers for
storing instruction results before the completion unit commits them to the architected
register. Eight rename registers are provided for the GPRs, eight for the FPRs, and sixteen
for the condition register. GPRs, FPRs, and the condition register are described in
Section 1.3.2, "Registers and Programming Model,"

When the dispatch unit dispatches an instruction to its execution unit, it allocates a rename
register for the results of that instruction. The dispatch unit also provides a tag to the
execution unit identifying the result that should be used as the operand. When the proper
result is returned to the rename buffer, it is latched into the reservation station. When all
operands are available in the reservation station, execution can begin.

The completion unit does not transfer instruction results from the rename registers to the
registers until any speculative branch conditions preceding it in the completion queue are
resolved and the instruction itself is retired from the completion queue without exceptions.
If a speculatively executed branch is found to have been incorrectly predicted, the
speculatively executed instructions following the branch are flushed from the completion
queue and the results of those instructions are flushed from the rename registers.

1.2.2 .Execution Units
The following sections describe the 620's arithmetic execution units- two single-cycle
IUs, multiple-cycle IU, and FPU. When the reservation station sees the proper result being
written back, it will grab it directly from one of the result buses. Once all operands are in
the reservation station for an instruction, it is eligible to be executed. Reservation stations
temporarily store dispatched instructions that cannot be executed until all of the source
operands are valid.

1.2.2.1 Integer Units (IUs)
The two single-cycle IUs (SCIUs) and one multiple-cycle IU (MCIU) execute all integer
instructions. These are shown in Figure 1-1 and Figure 1-2. The results generated by the
IU s are put on the result buses that are connected to the appropriate reservation stations and
rename buffers. Each IU has a two-entry reservation station to reduce stalls. The reservation
station can receive instructions from the dispatch unit and operands from the GPRs, the
rename buffers, or the result buses.

Each SCIU consists of three single-cycle subunits-a fast adder/comparator, a subunit for
logical operations, and a subunit for performing rotates, shifts, and count-leading-zero

MOTOROLA Chapter 1.0verview 1-11

operations. These subunits handle all one-cycle arithmetic instructions; only one subunit
can execute an instruction at a time.

The MCIU consists of a 64-bit integer multiplier/divider. The MCIU executes mfspr and
mtspr instructions, which are used to read and write special-purpose registers. The MCIU
can execute an mtspr or mfspr instruction at the same time that it executes a multiply or
divide instruction. These instructions are allowed to complete out of order.

1.2.2.2 Floating-Point Unit (FPU)
The FPU, shown in Figure 1-1 and Figure 1-2, is a single-pass, double-precision execution
unit; that is, both single- and double-precision operations require only a single pass, with a
latency of three cycles.

As the dispatch unit issues instructions to the FPU's two reservation stations, source
operand data may be accessed from the FPRs, the floating-point rename buffers, or the
result buses. Results in tum are written to the floating-point rename buffers and to the
reservation stations and are made available to subsequent instructions. The three
reservation stations provided by the FPU support out-of-order execution of floating-point
instructions.

1.2.2.3 Load/Store Unit (LSU)
The LSU, shown in Figure 1-1 and Figure 1-2, transfers data between the data cache and
the result buses, which route data to other execution units. The LSU supports the address
generation and handles any alignment for transfers to and from system memory. The LSU
also supports cache control instructions and load/store multiple/string instructions.

The LSU includes a 64-bit adder dedicated for EA calculation. Data alignment logic
manipulates data to support aligned or misaligned transfers with the data cache. The LSU's
load and store queues are used to buffer instructions that have been executed and are
waiting to be completed. The queues are used to monitor data dependencies generated by
data forwarding and out-of-order instruction execution ensuring a sequential model.

The LSU allows load instructions to precede store instructions in the reservation stations.
Data dependencies resulting from the out-of-order execution of loads before stores to
addresses with the same low-order 12 bits in the effective address are resolved when the
store instruction is completed. If an out-of-order load operation is found to have an address
that matches a previous store, the instruction pipeline is flushed, and the load instruction
will be refetched and re-executed.

The LSU does not allow the following operations to be speculatively performed on
unresolved branches:

• Store operations

• Loading of noncacheable data or cache miss operations

• Loading from direct~store segments

1-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

1.2.3 Memory Management Units (MMUs)
The primary functions of the MMUs are to translate logical (effective) addresses to physical
addresses for memory accesses, 1/0 accesses (most 1/0 accesses are assumed to be
memory-mapped), and direct-store accesses, and to provide access protection on blocks
and pages of memory.

The PowerPC MMUs and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is a multiple of its size.

Address translations are enabled by setting bits in the MSR-MSR[IR] enables instruction
address translations and MSR[DR] enables data address translations.

The 620's MMUs support up to one heptabyte (280) of virtual memory and one terabyte
(240) of physical memory. The MMUs support block address translations, direct-store
segments, and page translation of memory segments. Referenced and changed status are
maintained by the processor for each page to assist implementation of a demand-paged
virtual memory system.

Separate but identical translation logic is implemented for data accesses and for instruction
accesses. The 620 implements a two-stage translation cache mechanism; the first stage
consists of independent 64-entry content-addressable EPATs for instructions and data, and
the second stage consists of a shared 128-entry, two-way set-associative translation
lookaside buffer (TLB). If a TLB miss occurs during the second-stage address translation,
memory segment lookup is assisted by a 20-entry content-addressable segment lookaside
buffer (SLB). The operating environment architecture (OEA) defines an additional,
optional bridge that allows 64-bit implementations to use a simpler memory management
model to access 32-bit effective address space. For processors that implement the address
translation portion of the bridge, segment descriptors take the form of the STEs defined for
64-bit MMUs; however, only 16 STEs are required to define the entire 4-Gbyte address
space. Like 32-bit implementations, the effective address space is entirely defined by 16
contiguous 256-Mbyte segment descriptors. Rather than using the set of 16, 32-bit segment
registers as is defined for the 32-bit MMU, the 16 STEs are implemented and are
maintained in 16 SLB entries. For more information on the optional bridge, refer to,
PowerPC Microprocessor Family: The Programming Environments, Rev. 1.

1.2.4 Cache Implementation
The PowerPC architecture does not define hardware aspects of cache implementations. For
example, the 620 implements separate data and instruction caches (Harvard architecture),
while other processors may use a unified cache, or no cache at all. The PowerPC

MOTOROLA Chapter 1.0verview 1-13

- architecture defines the unit of coherency as a cache block, which for the 620 is a 64-byte
(sixteen-word) line.

PowerPC implementations can control the following memory access modes on a page or
block basis:

• Write-back/write-through mode

• Caching-inhibited mode

• Memory coherency

• Guarded memory (prevents access for out-of-order execution)

1.2.4.1 Instruction Cache
The 620's 32-Kbyte, eight-way set-associative instruction cache is physically indexed.
Within a single cycle, the instruction cache provides up to four instructions. Instruction
cache coherency is not maintained by hardware.

The PowerPC architecture defines a special set of instructions for managing the instruction
cache. The instruction cache can be invalidated entirely or on a cache-block basis. The
instruction cache can be disabled and invalidated by setting the HIDO[l6] and HID0[20]
bits, respectively.

1.2.4.2 Data Cache
The 620's data cache is a 32-Kbyte, eight-way set-associative cache. It is a physically­
indexed, nonblocking, write-back cache with hardware support for reloading on cache
misses. Within one cycle, the data cache provides double-word access to the LSU.

The data cache tags are dual-ported, so the process of snooping does not affect other
transactions on the system interface. If a snoop hit occurs in the same cache set as a load or
store access, the LSU is blocked internally for one cycle to allow the 16-word block of data
to be copied to the write-back buffer.

The 620 data cache supports the four-state MESI (modified/exclusive/shared/invalid)
protocol to ensure cache coherency.

These four states indicate the state of the cache block as follows:

• Modified (M)-The cache block is modified with respect to system memory; that is,
data for this address is valid only in the cache and not in system memory.

• Exclusive (E)-This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

Shared (S)-This cache block holds valid data that is identical to this address in
system memory and at least one other caching device.

• Invalid (1)-This cache block does not hold valid data.

1-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Like the instruction cache, the data cache can be invalidated all at once or on a per cache
block basis. The data cache can be disabled and invalidated by setting the HIDO[17] and
HID0[21] bits, respectively.

Each cache line contains 16 contiguous words from memory that are loaded from a 16-word
boundary (that is, bits A[58-63] of the logical addresses are zero); thus, a cache line never
crosses a page boundary. Accesses that cross a page boundary can incur a performance
penalty.

The organization of the cache is shown in Figure 1-3.

I I I I I I I I I I I

64Se s • •

~ 1 • TT TT T Te TT TT T

• •
r--------1 I -r-

Block O Address Tag I-!---' State Words 0-15 t- -r-H f-

Address Tag I-t---i
TT

I-
H State Words 0-15 f- -r Block 1

Address Tag I-1---i
TT T T T TTTTTTTTTT

I-
H State Words 0-15 f-

T Block 2

Address Tag I-1---i
TT TT T TTTTTTTTTT

I-
H State Words 0-15 r-Block 3

Address Tag I-!---' State Words 0-15 t-r--r---i H t-Block 4

Address Tag I-t---i State
TT TT TT TT

I-\------H Words 0-15 ,....., Block 5

Address Tag I-
State

T TT T TTTTTTTT TT
H

I- Words 0-15 !--' Block 6

Address Tag I-
State

T TT TT
I-'

I- Words 0-15 I-Block 7

16 Words/Block

Figure 1-3. Cache Unit Organization

1.2.5 Level 2 (L2) Cache Interface
The 620 provides an integrated L2 cache controller that supports L2 configurations from
1 Mbyte to 128 Mbyte, using the same block size (64 bytes) as the internal LI caches. The
620's L2 cache interface supports a direct-mapped, error-correction-code (ECC) protected,
unified instruction and data secondary cache that uses single- and double-register
synchronous static RAMs. The L2 cache interface supports a wide variety of static RAM
access speeds by means of a boot-time configurable subsynchronous interface that is
configurable for either CMOS or HSTL logic levels. An external coprocessor can also be
connected to the 620 through the L2 cache interface.

The L2 cache interface generates 9 bits of ECC for the 128 bits of data in a cache block,
and 6 bits of ECC for the tag and coherency state of the block. The ECC allows the
correction of single-bit errors, and the detection of double-bit errors. Uncorrectable errors

MOTOROLA Chapter 1.0verview 1-15

ii
'~

- detected by the L2 cache interlace generates a machine check exception. The ECC
capability of the L2 cache interlace can be configured in three modes-always-corrected
mode, never-corrected mode, and automatic mode. In always-corrected mode, ECC is
generated for write operations, and always corrected on read operations, resulting in
constant L2 read access latency. In never-corrected mode, ECC generation, checking, and
correction are disabled. In the automatic mode, ECC is generated during write operations,
and read operations are corrected only when errors are detected, thereby increasing read
latency only when correctable errors are detected.

1.2.6 System Interface/Bus Interface Unit (BIU)
The 620 provides a versatile bus interlace that allows a wide variety of system design
options. The interlace includes a 144-bit data bus (128 bits of data and 16 bits of parity), a
43-bit address bus (40 bits of address and 3 bits of parity), and sufficient control signals to
allow for a variety of system-level optimizations. The 620 uses one-beat, four-beat, and
eight-beat data transactions (depending on whether the 620 is configured with a 64- or 128-
bit data bus), although it is possible for other bus participants to perform longer data
transfers. The 620 clocking structure supports processor-to-bus clock ratios of 2: 1, 3: 1, and
4:1 as described in Section 1.2.7, "Clocking."

The system interlace is specific for each PowerPC processor implementation. The 620
system interlace is shown in Figure 1-4.

ADDRESS

ADDRESS ARBITRATION

ADDRESS START

ADDRESS TRANSFER

TRANSFER ATTRIBUTE

ADDRESS TERMINATION

CLOCKS

Power PC
620

Processor

I
-==-+3.3

Figure 1-4. System Interface

DATA

DATA ARBITRATION

DATA TRANSFER

DATA TERMINATION

PROCESSOR STATE

TEST AND CONTROL

L2 CACHE INTERFACE

Four-beat (or eight-beat, if in 64-bi t data bus mode) burst-read memory operations that load
a 16-word cache block into one of the on-chip caches are the most common bus transactions
in typical systems, followed by burst-write memory operations, direct-store operations, and
single-beat (noncacheable or write-through) memory read and write operations.
Additionally, there can be address-only operations, data-only operations, variants of the
burst and single-beat operations (global memory operations that are snooped and atomic
memory operations, for example), and address retry activity.

1-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Memory accesses can occur in single-beat or four-beat burst data transfers. The address and
data buses are independent for memory accesses to support pipelining and split
transactions, and all bus operations are explicitly tagged through the use of 8-bit tags for
addresses and data. The 620 supports bus pipelining and out-of-order split-bus transactions.

Typically, memory accesses are weakly-ordered. Sequences of operations, including load
and store string/multiple instructions, do not necessarily complete in the same order in
which they began-maximizing the efficiency of the bus without sacrificing coherency of
the data. The 620 allows load operations to precede store operations (except when a
dependency exists). In addition, the 620 provides a separate queue for snoop push
operations so these operations can access the bus ahead of previously queued operations.
The 620 dynamically optimizes run-time ordering of load/store traffic to improve overall
performance.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 620 to be integrated into systems that use various fairness and bus-parking
procedures to avoid arbitration overhead. Additional multiprocessor support is provided
through coherency mechanisms that provide snooping, external control of the on-chip
caches and TLBs, and support for a secondary cache. The PowerPC architecture provides
the load/store with reservation instruction pair (lwarx/stwcx.) for atomic memory
references and other operations useful in multiprocessor implementations.

The following sections describe the 620 bus support for memory and direct-store
operations. Note that some signals perform different functions depending upon the
addressing protocol used.

1.2.6.1 Memory Accesses
Memory accesses allow transfer sizes of 8, 16, 24, 32, 64, or 128 bits in one bus clock cycle.
Data transfers occur in either single-beat, four-beat, or eight-beat burst transactions. A
single-beat transaction transfers as much as 128 bits. Single-beat transactions are caused by
noncached accesses that access memory directly (that is, reads and writes when caching is
disabled, caching-inhibited accesses, and stores in write-through mode). Burst transactions,
which always transfer an entire cache block (64 bytes), are initiated when a block in the
cache is read from or written to memory. Additionally, the 620 supports address-only
transactions used to invalidate entries in other processors' TLBs and caches, and data-only
transactions in which modified data is provided by a snooping device during a read
operation to both the bus master and the memory system.

Typically I/0 accesses are performed using the same protocol as memory accesses.

MOTOROLA Chapter 1.0verview 1-17

,.
1'

1.2.6.2 Signals
The 620's signals are grouped as follows:

Address arbitration signals-The 620 uses these signals to arbitrate for address bus
mastership.

Address transfer start signals-These signals indicate that a bus master has begun a
transaction on the address bus.

• Address transfer signals-These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

• Transfer attribute signals-These signals provide information about the type of
transfer, such as the transfer size and whether the transaction is bursted, write­
through, or caching-inhibited.

Address transfer termination signals-These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

Data arbitration signals-The 620 uses these signals to arbitrate for data bus
mastership.

Data transfer signals-These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

Data transfer termination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

System status signals-These signals include the interrupt signal, checkstop signals,
and both soft reset and hard reset signals. These signals are used to interrupt and,
under various conditions, to reset the processor.

Processor state signal-This signal is used to indicate the state of the reservation
coherency bit.

Miscellaneous signals-These signals are used in conjunction with such resources
as secondary caches and the time base facility.

COP interface signals-The common on-chip processor (COP) unit is the master
clock control unit and it provides a serial interface to the system for performing
built-in self test (BIST) on all internal memory arrays.

• Clock signals-These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

1-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

NOTE
A bar over a signal name indicates that the signal is active
low-for example, DBG (data bus grant) and EATS (early
address transfer start). Active-low signals are referred to as
asserted (active) when they are low and negated when they are
high. Signals that are not active low, such as AP[0-2) (address
bus parity signals) and DT[0-7] (data tag signals) are referred
to as asserted when they are high and negated when they are
low.

1.2.6.3 Signal Configuration
Figure 1-5 illustrates the logical pin configuration of the 620, showing how the signals are
grouped.

ADDRESS
ARBITRATION

ADDRESS
START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
TERMINATION

L2 CACHE
INTERFACE

MOTOROLA

[
ADDRESS BUS REQUEST 1

ADDRESS BUS GRANT 1
HIGH PRIORITY REQUEST 1

t TRANSFER START 1 ~

~
ADDRESS 40

~

ADDRESS PARITY 3
ADDRESS BUS TAG

8

TRANSFER TYPE 5 ! ~°'""'""' 00<
2

TRANSFER BURST 1 ~ ~

ADDRESS SIZE DATA
4

ADDRESS STATUS IN 2

l
ADDRESS RESPONSE IN 3
ADDRESS RESPONSE OUT 3

' L2 DATA
128

L2 COHERENCY
2

L2 DATA ECG
9

L2TAG ECG
6

~ L2 ENABLE
4

L2 WRITE ENABLE 2
..._ L2 CLOCK 2

L2 CLOCK IN 2
'---

1 DATA BUS GRANT

1 DATA BUS REQUEST

64/128 DATA

17 DATA PARITY

1 DATA CACHE

1 DATA BUS BUSY

8 ~ DATA BUS TAG

2 DATA VALID

1 DATA BUS ERROR

1 INTERRUPT

1 HARD RESET
~

1 SOFT RESET

1
MACHINE CHECK

~

1
SYSTEM MANAGEMENT

1 CHECKSTOP INPUT/OUTPUT

1 RESERVATION

2 SYSTEM CLOCK

4 TEST ACCESS PORT

1 TEST DATA OUT

1 ENABLE TIMEBASE

1 WAKEUP

7 PLLCONFIG

1
ANALOGVDD

~DATA :J ARBITRATION

~

......

~

lDATA
TRANSFER

~DATA :J TERMINATION

j•~••um

~PROCESSOR :J STATE

:J CLOCK

J JTAG/COP

J MISC

Figure 1-5. PowerPC 620 Microprocessor Signal Groups

Chapter 1.0verview 1-19

- 1.2. 7 Clocking
The 620 has a phase-locked loop (PLL) that generates the internal processor clock. The
input, or reference signal, to the PLL is the bus clock. The feedback in the PLL guarantees
that the processor clock is phase locked to the bus clock, regardless of process variations,
temperature changes, or parasitic capacitances. The PLL also ensures a 50% duty cycle for
the processor clock.

The 620 supports the following processor-to-bus clock frequency ratios-2:1, 3:1, and 4:1,
although not all ratios are available for all frequencies. For more information about the
configuration of the PLL, refer to the 620 hardware specifications.

1.3 PowerPC 620 Microprocessor Execution Model
This section describes the following characteristics of the 620's execution model:

• The PowerPC architecture

• The 620 register set and programming model

• The 620 instruction set

• The 620 exception model

• Instruction timing on the 620

1.3.1 Levels of the PowerPC Architecture
The PowerPC architecture is derived from the IBM POWER (Performance Optimized with
Enhanced RISC) architecture. The Power PC architecture shares the benefits of the POWER
architecture optimized for single-chip implementations. The architecture design facilitates
parallel instruction execution and is scalable to take advantage of future technological
gains.

The Power PC architecture consists of the following layers, and adherence to the Power PC
architecture can be measured in terms of which of the following levels of the architecture
is implemented. For example, if a processor adheres to the virtual environment architecture,
it is assumed that it meets the user instruction set architecture specification:

• PowerPC user instruction set architecture (UISA)-The UISA defines the level of
the architecture to which user-level software must conform. The UISA defines the
base user-level instruction set, user-level registers, data types, memory conventions,
and the memory and programming models seen by application programmers. Note
that the PowerPC architecture refers to user level as problem state.

• PowerPC virtual environment architecture (VEA)-The VEA, which is the smallest
component of the PowerPC architecture, defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the
memory model for an environment in which multiple processors or other devices can
access external memory, and defines aspects of the cache model and cache control

1-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

instructions from a user-level perspective. The resources defined by the VEA are
particularly useful for managing resources in an environment in which other
processors and other devices can access external memory.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but
may not necessarily adhere to the OEA.

• PowerPC operating environment architecture (OEA)-The OEA defines supervisor­
level resources typically required by an operating system. The OBA defines the
PowerPC memory management model, supervisor-level registers, and the exception
model. Note that the PowerPC architecture refers to the supervisor level as
privileged state.

Implementations that conform to the PowerPC OEA also conform to the PowerPC
UISA and VEA.

The 620 complies with all three levels of the PowerPC architecture for 64-bit processors.
In addition, the 620 implements the optional bridge; refer to PowerPC Microprocessor
Family: The Programming Environments, Rev. 1 for more information. Note that the
PowerPC architecture defines additional instructions for 64-bit data types. PowerPC
processors are allowed to have implementation-specific features that fall outside, but do not
conflict with, the PowerPC architecture specification. For example, the performance
monitor is an implementation-specific feature of the 620.

The 620 is a high-performance, superscalar PowerPC implementation of the PowerPC
architecture. Like other PowerPC processors, it adheres to the PowerPC architecture
specifications but also has additional features not defined by the architecture. These
features do not affect software compatibility. The PowerPC architecture allows optimizing
compilers to schedule instructions to maximize performance through efficient use of the
PowerPC instruction set and register model. The multiple, independent execution units in
the 620 allow compilers to maximize parallelism and instruction throughput. Compilers
that take advantage of the flexibility of the Power PC architecture can additionally optimize
instruction processing of the PowerPC processors.

1.3.2 Registers and Programming Model
The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

During normal execution, a program can access the registers, shown in Figure 1-6,
depending on the program's access privilege (supervisor or user, determined by the
privilege-level (PR) bit in the machine state register (MSR)). Note that registers such as the
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operands that are part of the instructions. Access to registers can be explicit (that is, through
the use of specific instructions for that purpose such as Move to Special-Purpose Register

MOTOROLA Chapter 1.0vervlew 1-21

(mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicitly as the
part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the right of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

Figure .1-6 shows the registers implemented in the 620, indicating those that are defined by
the PowerPC architecture for 64-bit processors and those that are 620-specific.

1-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

USER MODEL
UISA

General-Purpose
Registers

GPRO
GPR1 . . .
GPR31

Floating-Point
Registers

FPRO

FPR1

FPR31

Condition Register

CR

Floating-Point Status
and Control Register

I FPSCR I
XER

XER I SPR 1

Link Register

LR isPR 8

Count Register

CTR isPR 9.

USER MODEL
VEA

Time Base Facility
(For Reading)

~TBR268
~TBR269

SUPERVISOR MODEL
OEA

Machine State
Register

MSR

Configuration Registers

Hardware Implementation
Dependent Register 1

HIDO I SPR 1008

Processor Version
Register

PVR I SPR 287

Memory Management Registers
Instruction BAT
Registers

IBATOU

IBATOL

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

Data BAT Registers

DBATOU

DBATOL

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR 541

SPR 542

SPR 543

Performance Monitor

Segment
Registers

SRO

• • •
SR15

Address Space
Register

I ASR I SPR 280
SDR1

I SDR1 I SPR 25

Performance Monitor Mode Control Sampled Data/
Monitor Counters 1 Register o 1 Instruction Address 1

PMC1 I ~~:: ~:~ ~~~~ I MMCRO I ~~:: ~:~ ~~;~ I SIA I SPR 780

PMC2 I RD: SPR 7722

~--~-WR: SPR 7883
I SDA I SPR 781

Exception Handling Registers
Data Address Register DSISR

DAR lsPR 19 I os1sR I SPR 10

SPRGs Save and Restore

SPRGO SPR 272
Registers

SPRG1 SPR 273 ~SPR26
SPRG2 SPR 274 SPR27

SPRG3 SPR 275

Miscellaneous Registers
Time Base Facility Bus Control/
(For Writing) Status Register 1

~ SPR284 I BUSCSR I SPR 1016

~ SPR 285 L2 Cache Control

Instruction Address Register 1

Breakpoint Register1 I L2CR I SPR 1017

I IABR I SPR 1010 L2 Cache Status

Data Address Register 1

Breakpoint Register1 I L2SR I SPR 1018

I DABR I SPR 1013

Decrementer

DEC I SPR22

External Access
Register (Optional)

I EAR I SPR 282

Processor ID
Reglster1

I PIR lsPR 1023

1. 620-specifio-not defined by the PowerPC architecture 2. RD: read only 3. WR: write only

Figure 1-6. Programming Model-PowerPC 620 Microprocessor Registers

MOTOROLA Chapter 1.0verview 1-23

PowerPC processors have two levels of privilege-supervisor mode of operation (typically
used by the operating environment) anci one that corresponds to the user mode of operation
(used by application software). As shown in Figure 1-6, the programming model
incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Note that each PowerPC implementation has its own unique set of
implementation-dependent registers that are typically used for debugging, configuration,
and other implementation-specific operations.

Some registers are accessible only by supervisor-level software. This division allows the
operating system to control the application environment (providing virtual memory and
protecting operating-system and critical machine resources). Instructions that control the
state of the processor, the address translation mechanism, and supervisor registers can be
executed only when the processor is in supervisor mode.

The PowerPC registers implemented in the 620 are summarized as follows:

• General-purpose registers (GPRs)-The PowerPC architecture defines 32 user­
level, general-purpose registers (GPRs). These registers are 32 bits wide in 32-bit
PowerPC implementations and 64 bits wide in 64-bit PowerPC implementations
(such as the 620). The 620 also has eight GPR rename buffers, which provide a way
to buffer data intended for the GPRs, reducing stalls when the results of one
instruction are required by a subsequent instruction. The use of rename buffers is not
defined by the PowerPC architecture, and they are transparent to the user with
respect to the architecture. The GPRs and their associated rename buffers serve as
the data source or destination for instructions executed in the !Us.

• Floating-point registers (FPRs)-The PowerPC architecture also defines 32
floating-point registers (FPRs). These 64-bit registers typically are used to provide
source and target operands for user-level, floating-point instructions. The 620 has
eight FPR rename buffers that provide a way to buffer data intended for the FPRs,
reducing stalls when the results of one instruction are required by a subsequent
instruction. The rename buffers are not defined by the PowerPC architecture and are
transparent to the user. The FPRs and their associated rename buffers can contain
data objects of either single- or double-precision floating-point formats.

• Condition register (CR)-The CR is a 32-bit user-level register that consists of eight
4-bit fields that reflect the results of certain operations, such as move, integer and
floating-point compare, arithmetic, and logical instructions, and provide a
mechanism for testing and branching. The 620 also has 16 CR rename buffers,
which provide a way to buffer data intended for the CR. The rename buffers are not
defined by the PowerPC architecture and are transparent to the user.

• Floating-point status and control register (FPSCR)-The floating-point status and
control register (FPSCR) is a user-level register that contains all exception signal
bits, exception summary bits, exception enable bits, and rounding control bits
needed for compliance with the IEEE-754 standard.

1-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Machine state register (MSR)-The machine state register (MSR) is a supervisor­
level register that defines the state of the processor. The contents of this register are
saved when an exception is taken and restored when the exception handling
completes. The 620 implements the MSR as a 64-bit register that provides a superset
of the 32-bit functionality.

• Segment registers (SRs)-For memory management, 32-bit PowerPC
implementations use sixteen 32-bit segment registers (SRs). The 620 provides 16
segment registers for use when executing programs compiled for 32-bit PowerPC
microprocessors (as part of the "optional 64-bit bridge" defined in the architecture).

Special-purpose registers (SPRs)-The PowerPC operating environment
architecture defines numerous special-purpose registers that serve a variety of
functions, such as providing controls, indicating status, configuring the processor,
and performing special operations. Some SPRs are accessed implicitly as part of
executing certain instructions. All SPRs can be accessed by using the move to/from
SPR instructions, mtspr and mfspr.

- User-level SPRs-The following SPRs are accessible by user-level software:

Link register (LR)-The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The
LR is 64 bits wide.

-- Count register (CTR)-The CTR is decremented and tested automatically as
a result of branch and count instructions. The CTR is 64 bits wide.

XER-The 32-bit XER contains the integer carry and overflow bits.

Time base registers (TBL and TBU)-The TBL and TBU can be read by user­
level software, but can be written to only by supervisor-level software.

- Supervisor-level SPRs-The 620 also contains SPRs that can be accessed only
by supervisor-level software. These registers consist of the following:

MOTOROLA

DSISR-32-bit data register that defines the cause of DSI and alignment
exceptions.

Data address register (DAR)-A 64-bit register that holds the address of an
access after an alignment or DSI exception.

Decrementer register (DEC)-A 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.
In the 620, the decrementer frequency is equal to the bus clock frequency (as
is the time base frequency).

SDRl register-The 64-bit register that specifies the page table format used
in logical-to-physical address translation for pages.

Machine status save/restore register 0 (SRRO)-A 64-bit register that is used
by the 620 for saving the address of the instruction that caused the exception,
and the address to return to when a Return from Interrupt (rfi) instruction is
executed.

Chapter 1.0verview 1-25

- - Machine status save/restore register 1 (SRRI)-A 64-bit register used to save
machine status on exceptions and to restore machine status when an rfi
instruction is executed.

SPRG[0-3) registers-64-bit registers provided for operating system use.

- External access register (EAR)-A 32-bit register that controls access to the
external control facility through the External Control In Word Indexed
(eciwx) and External Control Out Word Indexed (ecowx) instructions.

Processor version register (PVR-A 32-bit, read-only register that identifies
the version (model) and revision level of the PowerPC processor.

- Time base registers (TBL and TBU)-Both upper and lower registers
together, provide a 64-bit time base register. The registers are implemented as
a 64-bit counter, with the least-significant bit being the most frequently
incremented. The PowerPC architecture defines that the time base frequency
be provided as a subdivision of the processor clock frequency. In the 620, the
time base frequency is equal to the bus clock frequency (as is the decrementer
frequency). Counting is enabled by the Time Base Enable (TBENABLE)
signal.

Address space register (ASR)-A 64-bit register that holds the physical
address of the segment table. The segment table defines the set of memory
segments that can be addressed.

Block address translation (BAT) registers-The PowerPC architecture defines
16 BAT registers, divided into four pairs of dataBATs (DBATs) and four pairs
of instruction BATs (IBATs).

The 620 includes the following registers not defined by the PowerPC architecture:

1-26

Instruction address breakpoint register (IABR)-This register can be used to cause
a breakpoint exception to occur if a specified instruction address is encountered.

Data address breakpoint register (DABR)-This register can be used to cause a
breakpoint exception to occur if a specified data address is encountered.

Hardware implementation-dependent register 0 (HIDO)-This register is used to
control various functions within the 620, such as enabling checkstop conditions, and
locking, enabling, and invalidating the instruction and data caches.

Bus control and status register (BUSCSR)-This register controls the setting of
various bus operational parameters, and provides read-only access to bus control
values set at system reset.

L2 cache control register (L2CR)-The L2 cache control register provides controls
for the operation of the L2 cache interface, including the ECC mode desired, size of
the L2 cache, and the selection of HSTL or CMOS interface logic.

L2 cache status register (L2SR)-The L2 cache status register contains all ECC
error information for the L2 cache interface.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Processor identification register (PIR)-The PIR is a supervisor-level register that
has a right-justified, 4-bit field that holds a processor identification tag used to
identify a particular 620. This tag is used to identify the processor in multiple-master
implementations.

Performance monitor counter registers (PMC 1 and PMC2)-The counters are used
to record the number of times a certain event has occurred.

Monitor mode control register 0 and 1 (MMCRO and MMCRl)-These registers are
used for enabling various performance monitoring interrupt conditions and
establishing the function of the counters.

Sampled instruction address and sampled data address registers (SIA and SDA)­
These registers hold the addresses for instruction and data used by the performance
monitoring interrupt.

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

1.3.3 Instruction Set and Addressing Modes
The following subsections describe the PowerPC instruction set and addressing modes.

1.3.3.1 PowerPC Instruction Set and Addressing Modes
All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. This fixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.3.1.1 Instruction Set
The 620 implements the entire PowerPC instruction set (for 64-bit implementations) and
most optional PowerPC instructions. The PowerPC instructions can be loosely grouped into
the following general categories:

Integer instructions-These include computational and logical instructions.

- Integer arithmetic instructions

- Integer compare instructions

- Logical instructions

- Integer rotate and shift instructions

Floating-point instructions-These include floating-point computational
instructions, as well as instructions that affect the FPSCR. Floating-point
instructions include the following:

- Floating-point arithmetic instructions

- Floating-point multiply/add instructions

- Floating-point rounding and conversion instructions

MOTOROLA Chapter 1.0verview 1-27

' - - Floating-point compare instructions

- Floating-point move instructions

- Floating-point status and control instructions

- Optional floating-point instructions (listed with the optional instructions below)

The 620 supports all IEEE 754-1985 floating-point data types (normalized,
denormalized, NaN, zero, and infinity) in hardware, eliminating the latency incurred
by software exception routines.

The Power PC architecture also supports a non-IEEE mode, controlled by a bit in the
FPSCR. In this mode, denormalized numbers, NaNs, and some IEEE invalid
operations are not required to conform to IEEE standards and can execute faster.
Note that all single-precision arithmetic instructions are performed using a double­
precision format. The floating-point pipeline is a single-pass implementation for
double-precision products. A single-precision instruction using only single­
precision operands in double-precision format performs the same as its double­
precision equivalent.

• Load/store instructions-These include integer and floating-point load and store
instructions.

1-28

- Integer load and store instructions

- Integer load and store multiple instructions

- Integer load and store string instructions

- Floating-point load and store

Flow control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

- Branch and trap instructions

- System call and rfi instructions

- Condition register logical instructions

Synchronization instructions-The instructions are used for memory synchronizing,
especially useful for multiprocessing.

- Load and store with reservation instructions-These UISA-defined instructions
provide primitives for synchronization operations such as test and set, compare
and swap, and compare memory.

- The Synchronize instruction (sync)-This UISA-defined instruction is useful for
synchronizing load and store operations on a memory bus that is shared by
multiple devices.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

- The Enforce In-Order Execution of I/O instruction (eieio)-The eieio
instruction, defined by the VEA, can be used instead of the sync instruction when
only memory references seen by 1/0 devices need to be ordered. The 620
implements eieio as a barrier for all storage accesses to the BIU, but not as a
barrier for all instructions like the implementation of the sync instruction.

Processor control instructions-These instructions are used for synchronizing
memory accesses and managing caches, TLBs, segment registers and SLBs. These
instructions include move to/from special-purpose register instructions (mtspr and
mfspr).

Memory /cache control instructions-These instructions provide control of caches,
TLBs, segment registers, and SLBs.

- User- and supervisor-level cache instructions

- Segment lookaside buffer management instructions

- Segment register manipulation instructions

- Translation lookaside buffer management instructions

Optional instructions-The 620 implements the following optional instructions:

- The eciwx/ecowx instruction pair

- TLB invalidate entry instruction (tlbie)

- TLB synchronize instruction (tlbsync)

- SLB invalidate entry instruction (slbie)

- SLB invalidate all instruction (slbia)

- Optional graphics instructions:

Store Floating-Point as Integer Word Indexed (stfiwx)

- Floating Reciprocal Estimate Single (fres)

Floating Reciprocal Square Root Estimate (frsqrte)

- Floating Square Root Single (fsqrts)

- Floating Square Root Double (fsqrt)

Floating Select (fsel)

Note that this grouping of the instructions does not indicate which execution unit executes
a particular instruction or group of instructions.

Integer instructions operate on byte, half-word, word, and double-word operands. Floating­
point instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, word, and double-word
operand loads and stores between memory and a set of 32 GPRs. It also provides for word
and double-word operand loads and stores between memory and a set of 32 FPRs.

MOTOROLA Chapter 1.0verview 1-29

- Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
specific store instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.3.1.2 Calculating Effective Addresses
The effective address (EA) is the 64-bit address computed by the processor when executing
a memory access or branch instruction or when fetching the next sequential instruction.

The PowerPC architecture supports two simple memory addressing modes:

• EA= (rAIO) +offset (including offset= 0) (register indirect with immediate index)

EA= (rAIO) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in a single clock cycle.

For a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 64-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

1.3.4 Exception Model
The following subsections describe the PowerPC exception model and the 620
implementation, respectively.

The PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to various registers and the processor begins execution at an address (exception vector)
predetermined for each exception and the processor changes to supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception-for example, the DSISR and the FPSCR. Additionally, specific exception
conditions can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular PowerPC processor may recognize exception conditions out of order,
exceptions are handled strictly in order. When an instruction-caused exception is

1-30 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

recognized, any unexecuted instructions that appear earlier in the instruction stream,
including any that have not yet entered the execute state, are required to complete before
the exception is taken. Any exceptions caused by those instructions must be handled first.
Likewise, exceptions that are asynchronous and precise are recognized when they occur
(unless they are masked) and the reorder buffer is drained. The address of the next
instruction to be executed is saved in SRRO so execution can resume at the proper place
when the exception handler returns control to the interrupted process.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. This method of recognizing and handling exception conditions
sequentially guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRRl early to prevent
the program state from being lost due to a system reset or machine check exception or to
an instruction-caused exception in the exception handler.

The PowerPC architecture supports four types of exceptions:

Synchronous, precise-These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occurs is known and can be completely restored.

Synchronous, imprecise-The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. The 620 treats the
imprecise, recoverable and imprecise, nonrecoverable modes as the precise mode.

Asynchronous-The OEA portion of the PowerPC architecture defines two types of
asynchronous exceptions:

- Asynchronous, maskable-The PowerPC architecture defines the external
interrupt and decrementer interrupt which are maskable and asynchronous
exceptions. In the 620, and in many PowerPC processors, the external interrupt
is generated by the assertion of the Interrupt (INT) signal, which is not defined
by the architecture. In addition, the 620 implements one additional interrupt, the
system management interrupt, which performs similarly to the external interrupt,
and is generated by the assertion of the System Management Interrupt (SMI)
signal.

When these exceptions occur, their handling is postponed until all instructions in
progress, and any exceptions associated with those instructions, complete
execution.

MOTOROLA Chapter 1.0verview 1-31

I

ll
1:
I

- - Asynchronous, nonmaskable-There are two nonmaskable asynchronous
exceptions that are imprecise-system reset and machine check exceptions. Note
that the OEA portion of the PowerPC architecture, which defines how these
exceptions work, does not define the causes or the signals used to cause these
exceptions. These exceptions may not be recoverable, or may provide a limited
degree of recoverability for diagnostic purposes.

The PowerPC architecture defines two bits in the MSR-FEO and FEl-that determine
how floating-point exceptions are handled. There are four combinations of bit settings, of
which the 620 implements two, which are as follows:

Ignore exceptions mode-In this mode, the instruction dispatch logic feeds the FPU
as fast as possible and the FPU uses an internal pipeline to allow overlapped
execution of instructions. In this mode, floating-point exception conditions return a
predefined value instead of causing an exception.

Precise interrupt mode-This mode includes both the precise mode and imprecise
recoverable and nonrecoverable modes defined in the PowerPC architecture. In this
mode, a floating-point instruction that causes a floating-point exception brings the
machine to a precise state. In doing so, the 620 takes floating-point exceptions as
defined by the PowerPC architecture.

The 620 exception classes are shown in Table 1-1.

Table 1-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine check
System reset

Asynchronous/maskable External interrupt
Decrementer
System management interrupt (not defined by the PowerPC architecture)

Synchronous/precise Instruction-caused exceptions

Synchronous/imprecise Floating-point exceptions

The 620's exceptions, and a general description of conditions that cause them, are listed in
Table 1-2.

1-32 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Exception
Type

Reserved

System reset

Machine check

OSI

ISi

External
interrupt

MOTOROLA

Table 1-2. Overview of Exceptions and Conditions

Vector Offset Causing Conditions
(hex)

00000 -
00100 A system reset is caused by the assertion of either the soft reset (SRESET)or

hard reset (RRl:Si:T) signal.

00200 A machine check exception is signaled by the assertion of a qualified DERR
indication on the 620 bus, or the machine check interrupt (iiilCJ5) signal. If
MSR[ME] is cleared, the processor enters the checkstop state when one of
these signals is asserted. Note that MSR[ME] is cleared when an exception is
taken. The machine check exception is also caused by parity errors on the
address or data bus, in the instruction or data caches, or L2 ECC errors.

The assertion of the DERR signal is determined by load and store operations
initiated by the processor; however, it is expected that the 1'.iERR signal would
be used by a memory controller to indicate that a memory parity error or an
uncorrectable memory ECC error has occurred.

Note that the machine check exception Is imprecise with respect to the
instruction that originated the bus operation.

00300 The cause of a OSI exception can be determined by the bit settings in the
OSISR, listed as follows:
0 Set if a load or store instruction results in a direct-store program exception;

otherwise cleared.
1 Set if the translation of an attempted access is not found in the primary table

entry group (PTEG), or in the secondary PTEG, or in the range of a BAT
register; otherwise cleared.

4 Set if a memory access is not permitted by the page or BAT protection
mechanism; otherwise cleared.

5 If SR[T] = 1, set by an eciwx, ecowx, lwarx, or stwcx. instruction;
otherwise cleared. Set by an eclwx or ecowx instruction if the access is to
an address that is marked as write-through.

6 Set for a store operation and cleared for a load operation.
9 Set if an EA matches the address in the OABR while in one of the three

compare modes.
1 O Set if the segment table search fails to find a translation for the effective

address; otherwise cleared.
11 Set if eciwx or ecowx is used and EAR[E] is cleared.

00400 An ISi exception is caused when an instruction fetch cannot be performed for
any of the following reasons: . The effective address cannot be translated. That is, there is a page fault for

this portion of the translation, so an ISi exception must be taken to retrieve
the translation from a storage device such as a hard disk drive. . The fetch access is to a direct-store segment. . The fetch access violates memory protection. If the key bits (Ks and Kp) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

00500 An external interrupt occurs when the external exception signal, INT, is
asserted. This signal is expected to remain asserted until the exception handler
begins execution. Once the signal is detected, the 620 stops dispatching
instructions and waits for all dispatched instructions to complete. Any
exceptions associated with dispatched instructions are taken before the
interrupt is taken.

Chapter 1. Overview 1-33

1
I

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions Type (hex)

Alignment 00600 An alignment exception is caused when the processor cannot perform a
memory access for the following reasons: . An integer load or store double word is not word aligned . . A floating-point load, store, lmw, stmw, lwarx, stwcx., eciwx, or ecowx

instruction is not word-aligned. . A dcbz instruction refers to a page that is marked either caching-inhibited or
write-through. . A dcbz instruction has executed when the 620 data cache is locked or
disabled. . An lmw, stmw, lswi, lswx, stswi, or stswx instruction is issued in little-
endian mode. . A floating-point instruction access to a direct-store segment.

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction: . Floating-point exceptions-A floating-point enabled exception condition

causes an exception when FPSCR[FEX] is set and depends on the values in
MSR[FEO] and MSR[FE1].
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR. . Illegal instruction-An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops). . Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and
the MSR user privilege bit, MSR[PR], is set. This exception is also generated
for mtspr or mfspr with an invalid SPA field if SPR[O] = 1 and MSR[PR] = 1. . Trap-A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point 00800 A floating-point unavailable exception is caused by an attempt to execute a
unavailable floating-point instruction (including floating-point load, store, and move

instructions) when the floating-point available bit is disabled (MSR[FP] = 0).

Decrementer 00900 The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from O to 1.

Reserved OOAOO-OOBFF -

System call oocoo A system call exception occurs when a System Call (sc) instruction is executed.

Trace OODOO Either the MSR[SE] = 1 and any instruction (except rfi) successfully completed
or MSR[BE] = 1 and a branch instruction is completed.

Floating-point OOEOO Defined by the PowerPC architecture, but does not occur in the 620.
assist

Reserved OOE10-00EFF -

1-34 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 1-2. Overview of Exceptions and Conditions (Continued)

Exception Vector Offset
Causing Conditions

Type {hex)

Performance OOFOO The performance monitoring interrupt is a 620-specific exception and is used
monitoring with the 620 performance monitor, described in Section 1.4, "Performance
interrupt Monitor.''

The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative_ The conditions that can cause this exception can be enabled or
disabled in the monitor mode control register O (MMCRO).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the EE bit and cannot be taken until the EE bit
is set.

Reserved 01000-012FF -

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits Oto
address 29) in the IABR matches the next instruction to complete in the completion unit,
breakpoint and the IABR enable bit IABR[30] is set.

System 01400 A system management interrupt is caused when MSR[EE] = 1 and the SMT
management input signal is asserted.
interrupt

Reserved 01500-02FFF Reserved, implementation-specific exceptions. These are not implemented in
the 620.

1.3.5 Instruction Timing
As shown in Figure 1-7, the common pipeline of the 620 has five stages through which all
instructions must pass. Some instructions occupy multiple stages simultaneously and some
individual execution units have additional stages. For example, the floating-point pipeline
consists of three stages through which all floating-point instructions must pass.

(Four-instruction dispatch per clock in
any combination)

Fetch (IF)

i
------------------1

Write-back (W)

Figure 1-7. Pipeline Diagram

MOTOROLA Chapter 1.0verview

I
I
I
I
I
I
I
I
I
I

1-35

- The common pipeline stages are as follows:

Instruction fetch (IF)-During the IF stage, the fetch unit loads the decode queue
(DEQ) with instructions from the instruction cache and determines from what
address the next instruction should be fetched.

Instruction dispatch (DS)-During the dispatch stage, the decoding that is not time­
critical is performed on the instructions provided by the previous IF stage. Logic
associated with this stage determines when an instruction can be dispatched to the
appropriate execution unit. At the end of the DS stage, instructions and their
operands are latched into the execution input latches or into the unit's reservation
station. Logic in this stage allocates resources such as the rename registers and
reorder buffer entries.

• Execute (E)-While the execution stage is viewed as a common stage in the 620
instruction pipeline, the instruction flow is split among the six execution units, some
of which consist of multiple pipelines. An instruction may enter the execute stage
from either the dispatch stage or the execution unit's dedicated reservation station.

At the end of the execute stage, the execution unit writes the results into the
appropriate rename buffer entry and notifies the completion stage that the instruction
has finished execution.

The execution unit reports any internal exceptions to the completion stage and
continues execution, regardless of the exception. Under some circumstances, results
can be written directly to the target registers, bypassing the rename buffers.

Complete (C)-The completion stage ensures that the correct machine state is
maintained by monitoring instructions in the completion buffer and the status of
instruction in the execute stage.

When instructions complete, they are removed from the reorder buffer. Results may
be written back from the rename buffers to the register as early as the complete stage.
If the completion logic detects an instruction containing exception status or if a
branch has been mispredicted, all subsequent instructions are cancelled, any results
in rename buffers are discarded, and instructions are fetched from the correct
instruction stream.

• Write-back (W)-The write-back stage is used to write back any information from
the rename buffers that was not written back during the complete stage. The CR,
CTR, and LR are updated during the write-back stage.

All instructions are fully pipelined except for divide operations and some integer multiply
operations. The integer multiplier is a three-stage pipeline. SPR and divide operations can
execute in the MCIU in parallel with multiply operations.

The floating-point pipeline has three stages. All floating-point instructions are fully
pipelined except for divide and square root operations.

1-36 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

1.4 Performance Monitor
The 620 incorporates a performance monitor facility that system designers can use to help
bring up, debug, and optimize software performance, especially in multiprocessing
systems. The performance monitor is a software-accessible mechanism that provides
detailed inf~rmation concerning the dispatch, execution, completion, and memory access
of PowerPC instructions.

The monitor mode control registers (MMCRO and MMCRl) can be used to specify the
conditions for which a performance monitoring interrupt is taken. For example, one such
condition is associated with one of the performance monitor counter registers (PMC1-
PMC8) incrementing until the most significant bit indicates a negative value. Additionally,
the sampled instruction address and sampled data address registers (SIA and SDA) are used
to hold addresses for instruction and data related to the performance monitoring interrupt.

MOTOROLA Chapter 1.0verview 1-37

-

1 -38 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 2
Programming Model
This chapter describes the PowerPC programming model with respect to the PowerPC 620.
It consists of three major sections, which describe the following:

• Registers implemented in the 620
• Operand conventions
• The 620 instruction set

2.1 The PowerPC 620 Processor Register Set
This section describes the registers in the 620 and includes an overview of the registers
defined by the PowerPC architecture and a more detailed description of 620-specific
registers and differences in how the registers defined by the PowerPC architecture are
implemented in the 620. Full descriptions of the basic register set defined by the PowerPC
architecture are provided in Chapter 2, "PowerPC Register Set," in The Programming
Environments Manual.

Note that registers are defined at all three levels of the PowerPC architecture-user
instruction set architecture (UISA), virtual environment architecture (VEA), and operating
environment architecture (OEA). The PowerPC architecture defines register-to-register
operations for all computational instructions. Source data for these instructions are
accessed from the on-chip registers or are provided as immediate values embedded in the
opcode. The three-register instruction format allows specification of a target register
distinct from the two source registers, thus preserving the original data for use by other
instructions and reducing the number of instructions required for certain operations. Data
is transferred between memory and registers with explicit load and store instructions only.

MOTOROLA Chapter 2. Programming Model 2-1

--
2.1.1 Register Set
The PowerPC UISA registers, shown in Figure 2-1, are user-level. The general-purpose
registers (GPRs) and floating-point registers (FPRs) are accessed through instruction
operands. Access to registers can be explicit (that is, through the use of specific instructions
for that purpose such as Move to Special-Purpose Register (mtspr) and Move from
Special-Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

The number to the right of the special-purpose registers (SPRs) indicates the number that
is used in the syntax of the instruction operands to access the register (for example, the
number used to access the XER is SPR 1). These registers can be accessed using the mtspr
and mfspr instructions.

Implementation Note-The 620 fully decodes the SPR field of the instruction. If the SPR
specified is undefined, the illegal instruction program exception occurs.

2-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

USER MODEL
UISA

General-Purpose
Registers

GPRO

GPR1 . . .
GPR31

Floating-Point
Registers

FPRO

FPR1

• • •
FPR31

Condition Register

CR

Floating-Point Status
and Control Register

I FPSCR I

XER

XER I SPR 1

Link Register

LR I SPR8

Count Register

CTR I SPR9

USER MODEL
VEA

Time Base Facility
(For Reading)

~TBR268
~TBR269

SUPERVISOR MODEL
OEA

Machine State
Register

MSR

Configuration Registers

Hardware Implementation
Dependent Register 1

HIDO I SPR 1008

Processor Version
Register

~-P_V_R~' SPR 287

Memory Management Registers
Instruction BAT
Registers

IBATOU

IBATOL

IBAT1U

IBAT1L

IBAT2U

IBAT2L

IBAT3U

IBAT3L

SPR 528

SPR 529

SPR 530

SPR 531

SPR 532

SPR 533

SPR 534

SPR 535

Performance
Monitor Counters 1

PMC1

PMC2

PMC3

PMC4

PMC5

PMC6

PMC7

PMC8

SPR 787

SPR 788

SPR 789

SPR 790

SPR 791

SPR 792

SPR 793

SPR 794

Time Base Facility
(For Writing)

~SPR284
~SPR285

Data BAT Registers

DBATOU

DBATOL

DBAT1U

DBAT1L

DBAT2U

DBAT2L

DBAT3U

DBAT3L

SPR 536

SPR 537

SPR 538

SPR 539

SPR 540

SPR541

SPR 542

SPR543

Performance Monitor

Address Space
Register

ASR I SPR280

Segment Registers

SRO

SR15

SDR1

SDR1 I SPR25

Monitor Mode Control Sampled Data/
Registers 1 Instruction Address 1

MMCRO SPR 795 ~ SPR 781

MMCR1 SPR 798 ~ SPR 780

Exception Handling Registers

Data Address Register

DAR I SPR 19

SPRGs

SPRGO SPR 272

SPRG1 SPR 273

SPRG2 SPR 274

SPRG3 SPR 275

DSISR

I DSISR I SPR 18

Save and Restore
Registers

~SPR26
~SPR27

Miscellaneous Registers
L2 Cache Control1

~SPR1017
~SPR1018

Decrementer

~-o_E_c~I SPR 22

Instruction Address
Breakpoint Register 1

I IABR I SPR 1010 External Address Register

EAR I SPR282 Data Address
Processor Identification Breakpoint Register
Register1 Bus Control Register1 I DABR I SPR 1013

I PIR I SPR 1023 I BUSCSR I SPR 1016

1 620-specifio-not defined by the PowerPC architecture

Figure 2-1. Programming Model-PowerPC 620 Microprocessor Registers

MOTOROLA Chapter 2. Programming Model 2-3

The PowerPC's user-level registers are described as follows:

2-4

• User-level registers (UISA)-The user-level registers can be accessed by all
software with either user or supervisor privileges. The user-level register set
includes the following:

- General-purpose registers (GPRs)-The PowerPC general-purpose register file
consists of thirty-two GPRs designated as GPRO--GPR31. The GPRs serve as
data source or destination registers for all integer instructions and provide data
for generating addresses. See "General Purpose Registers (GPRs)," in Chapter 2,
"PowerPC Register Set," of The Programming Environments Manual for more
information.

- Floating-point registers (FPRs)-The floating-point register file consists of
thirty-two FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. For more
information, see "Floating-Point Registers (FPRs)," in Chapter 2, "PowerPC
Register Set," of The Programming Environments Manual.

- Condition register (CR)-The CR is a 32-bit register, divided into eight 4-bit
fields, CRO-CR7, that reflects the results of certain arithmetic operations and
provides a mechanism for testing and branching. For more information, see
"Condition Register (CR)," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual.

Implementation Note: The PowerPC architecture indicates that in some
implementations the Move to Condition Register Fields (mtcrf) instruction may
perform more slowly when only a portion of the fields are updated as opposed to
all of the fields. The condition register access latency for the 620 is the same in
both cases. In the 620, an mtcrf instruction that sets only a single field performs
significantly faster than one that sets either no fields or multiple fields. For more
information regarding the most efficient use of the mtcrf instruction, see
Section 6.3, "Instruction Scheduling Guidelines."

- Floating-point status and control register (FPSCR)-The FPSCR contains all
floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754
standard. For more information, see "Floating-Point Status and Control Register
(FPSCR)," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual.

Implementation Note: The PowerPC architecture states that in some
implementations, the Move to FPSCR Fields (mtfst) instruction may perform
more slowly when only a portion of the fields are updated as opposed to all of the
fields. In the 620 implementation, there is no degradation of performance.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The remaining user-level registers are SPRs. Note that the PowerPC architecture
provides a separate mechanism for accessing SPRs (the mtspr and mfspr
instructions). These instructions are commonly used to explicitly access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions.

- XER-The XER indicates overflow and carries for integer operations. It is set
implicitly by many instructions. See "XER Register (XER)," in Chapter 2,
"PowerPC Register Set," of The Programming Environments Manual for more
information.

- Link register (LR)-The LR provides the branch target address for the Branch
Conditional to Link Register (bclrx) instruction, and can optionally be used to
hold the logical address of the instruction that follows a branch and link
instruction, typically used for linking to subroutines. For more information, see
"Link Register (LR)," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual.

- Count register (CTR)-The CTR holds a loop count that can be decremented
during execution of appropriately coded branch instructions. The CTR can also
provide the branch target address for the Branch Conditional to Count Register
(bcctrx) instruction. For more information, see "Count Register (CTR)," in
Chapter 2, "PowerPC Register Set," of The Programming Environments
Manual.

User-level registers (VEA)-The PowerPC VEA introduces the time base facility
(TB), a 64-bit structure that maintains and operates an interval timer. The TB is read
as a 64-bit register, and written to as two 32-bit registers-time base upper (TBU)
and time base lower (TBL). Note that the time base register can be accessed by both
user- and supervisor-level instructions. In the context of the VEA, user-level
applications are permitted read-only access to the TB. The OEA defines
supervisor-level access to the TB for writing values to the TB. For more information,
see "PowerPC VEA Register Set-Time Base," in Chapter 2, "PowerPC Register
Set," of The Programming Environments Manual.

Supervisor-level registers (OEA)-The OEA defines the registers that are used
typically by an operating system for such operations as memory management,
configuration, and exception handling. The supervisor-level registers defined by the
PowerPC architecture for 64-bit implementations are describes as follows:

- Configuration registers

MOTOROLA

Machine state register (MSR)-The MSR defines the state of the processor.
The MSR can be modified by the Move to Machine State Register (mtmsr),
Move to Machine State Register Double Word (mtmsrd), System Call (sc),
Return from Exception (rfi), and Return from Exception Double Word (rfid)
instructions. It can be read by the Move from Machine State Register (mfmsr)
instruction. See "Machine State Register (MSR)," in Chapter 2, "PowerPC
Register Set," of The Programming Environments Manual for more
information.

Chapter 2. Programming Model 2-5

..
Implementation Note-Note that the 620 defines MSR[61] as the performance monitor
marked mode bit (PMM). This additional bit is described in Table 2-1.

Bit

61

2-6

Table 2-1. MSR[PMM] Bit

Name Description

PMM Performance monitor marked mode. Used to mark specific processes. In conjunctio~ with the
MMCR0[3--4], FCMO, and FCM1, provides control for the processes in which the performance
monitor is enabled or disabled.
0 Process is not a marked process.
1 Process is a marked process.
This bit is specific to the 620, and is defined as reserved by the PowerPC architectu're. For more
information about the performance monitor, see Chapter 10, "Performance Monitor."

- Processor version register (PVR)-This register is a read-only register that
identifies the version (model) and revision level of the PowerPC processor.
For more information, see "Processor Version Register (PVR)," in Chapter 2,
"PowerPC Register Set," of The Programming Environments Manual.

Implementation Note: The processor version number is Ox0014 for the 620.
The processor revision level starts at OxOOOO and is different for each revision
of the chip. The revision level is updated for each silicon revision.

- Memory management registers

- Block-address translation (BAT) registers-The PowerPC OEA includes
eight block-address translation registers (BATs), consisting of four pairs of
instruction BATs (IBATOU-IBAT3U and IBATOL-IBAT3L) and four pairs of
data BATs (DBATOU-DBAT3U and DBATOL-DBAT3L). See Figure 2-1 for
a list of the SPR numbers for the BAT registers. For more information, see
"BAT Registers," in Chapter 2, "Power PC Register Set," of The Programming
Environments Manual. Because BAT upper and lower words are loaded
separately, software must ensure that BAT translations are correct during the
time that both BAT entries are being loaded.

SDRl-The SDRl register specifies the page table base address used in
virtual-to-physical address translation. For more information, see "SDR l ,"in
Chapter 2, "PowerPC Register Set," of The Programming Environments
Manual for more information.

Address space register (ASR)-The ASR is a 64-bit register that holds bits
0-51 of the segment table's physical address. For more information, see
"Address Space Register (ASR)," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information. ,

Segment registers (SR)-The PowerPC OEA defines sixteen 32-bit segment
registers (SRO-SR15). Note that the SRs are implemented on 32-bit
implementations only. The fields in the segment register are interpreted
differently depending on the value of bit 0. See "Segment Registers," in
Chapter 2, "PowerPC Register Set," of The Programming Environments
Manual for more information.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

- Exception handling registers

Data address register (DAR)-After a DSI or an alignment exception, DAR is
set to the effective address generated by the faulting instruction. See "Data
Address Register (DAR)," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual for more information.

- SPRGO-SPRG3-The SPRGO-SPRG3 registers are provided for operating
system use. See "SPRGO-SPRG3," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information.

DSISR-The DSISR register defines the cause of DSI and alignment
exceptions. See "DSISR," in Chapter 2, "PowerPC Register Set," of The
Programming Environments Manual for more information.

- Machine status save/restore register 0 (SRRO)-The SRRO register is used to
save machine status on exceptions and to restore machine status when an rfi
or rfid instruction is executed. See "Machine Status Save/Restore Register 0
(SRRO)," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual for more information.

- Machine status save/restore register 1 (SRRl)-The SRRl register is used to
save machine status on exceptions and to restore machine status when an rfi
or rfid instruction is executed. See "Machine Status Save/Restore Register 1
(SRR l)," in Chapter 2, "PowerPC Register Set," of The Programming
Environments Manual for more information.

- Miscellaneous registers

Time Base (TB)-The TB is a 64-bit structure that maintains the time of day
and operates interval timers. The TB is read as a 64-bit register, and written to
as two 32-bit registers-time base upper (TBU) and time base lower (TBL).
Note that the time base registers can be accessed by both user- and
supervisor-level instructions. See "Time Base Facility (TB)-OEA," in
Chapter 2, "PowerPC Register Set," of The Programming Environments
Manual for more information.

Decrementer register (DEC)-This register is a 32-bit decrementing counter
that provides a mechanism for causing a decrementer exception after a
programmable delay; the frequency is a subdivision of the processor clock.
See "Decrementer Register (DEC)," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information.

Implementation Note: In the 620, the time base and decrementer registers
are decremented once per bus clock cycle.

- Data address breakpoint register (DABR)-This optional register can be used
to cause a breakpoint exception to occur if a specified data address is
encountered. See "Data Address Breakpoint Register (DABR)," in Chapter 2,
"PowerPC Register Set," of The Programming Environments Manual for
more information.

MOTOROLA Chapter 2. Programming Model 2-7

2-8

External access register (EAR)-This optional register is used in conjunction
with the eciwx and ecowx instructions. Note that the EAR register and the
eciwx and ecowx instructions are optional in the PowerPC architecture and
may not be supported in all Power PC processors that implement the OEA. See
"External Access Register (EAR)," in Chapter 2, "PowerPC Register Set," of
The Programming Environments Manual for more information.

Hardware implementation registers-The PowerPC architecture allows
implementations to include SPRs not defined by the PowerPC architecture. Those
incorporated in the 620 are described as follows. Note that in the 620, these registers
are all supervisor-level registers.

- Instruction address breakpoint register (IABR)-This register can be used to
cause a breakpoint exception to occur if a specified instruction address is
encountered.

- Hardware implementation-dependent register 0 (HIDO)-This register is used to
control various functions within the 620, such as enabling checkstop conditions,
and locking, enabling, and invalidating the instruction and data caches.

- Processor identification register (PIR)-The PIR is a supervisor-level register
that has a right-justified, four-bit field that holds a processor identification tag
used to identify a particular 620. This tag is used to identify the processor in
multiple-master implementations. Note that although the SPR number is defined
by the OEA, the register definition is implementation-specific.

- Bus control and status register (BUSCR)-This register is used to set various
parameters for the processor interface, and provides status and error information
for bus operations.

- L2 cache control register (L2CR)-The L2CR contains all the control
parameters for the L2 cache interface. The L2CR also contains all the settings
required to set up ECC for the L2 interface.

- L2 cache status register (L2SR)-The L2SR provides all ECC error information
for the L2 cache interface.

- Performance monitor counter registers (PMC 1-PMC8)-These counters are
used to record the number of times a certain event has occurred.

- Monitor mode control registers 0 and 1 (MMCRO and MMCRl)-These
registers are used for enabling various performance monitoring interrupt
conditions and establishes the function of the counters.

- Sampled instruction address and sampled data address registers (SIA and
SDA)-These registers hold the addresses for instruction and data used by the
performance monitoring interrupt.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Note that while it is not guaranteed that the implementation of HID registers is consistent
among PowerPC processors, other processors may be implemented with similar or
identical HID registers.

2.1.2 Implementation-Specific Registers
This section describes registers that are defined for the 620 but are not included in the
PowerPC architecture. This section also includes a description of the PIR, which is assigned
an SPR number by the architecture but is not defined by it. Note that the 620-specific
register descriptions do not define all the bits in each register, and that all undefined bits
should be considered reserved and should be cleared to 0. Also note that all of the
620-specific registers are supervisor-level registers.

2.1.2.1 Instruction Address Breakpoint Register {IABR)
The 620 also implements an instruction address breakpoint register (IABR). When enabled,
instruction fetch addresses will be compared with an effective address that is stored in the
IABR. The granularity of these compares will be a word. If the word specified by the IABR
is fetched, the instruction breakpoint handler will be invoked. The instruction which
triggers the breakpoint will not be executed before the handler is invoked.

The IABR is shown in Figure 2-2.

ADDRESS

0 61 62 63

Figure 2-2. Instruction Address Breakpoint Register

The instruction address breakpoint register is used in conjunction with the instruction
address breakpoint exception, which occurs when an attempt is made to execute an
instruction at an address specified in the IABR. The bits in the IABR are defined as shown
in Table 2-2.

Table 2-2. Instruction Address Breakpoint Register Bit Settings

Bit Description

0-61 Word address to be compared

62 Breakpoint enabled. Setting this bit indicates that breakpoint checking is to be done.

63 Translation enabled. This bit is compared with the MSR[IR] bit. An IABR match is
signaled only if these bits also match.

MOTOROLA Chapter 2. Programming Model 2-9

--
The instruction that triggers the instruction address breakpoint exception is executed before
the exception handler is invoked. For more information about the IABR exception, see
Section 4.6.14, "Instruction Address Breakpoint Exception (Ox01300)."

The IABR can be accessed with the mtspr and mfspr instructions using the SPR 1010.

2.1.2.2 Processor Identification Register (PIR)
The processor identification register (PIR), shown in Figure 2-3, is a 32-bit register that
holds a processor identification tag in the four least significant bits (PIR[28-31]). This tag
is useful for processor differentiation in multiprocessor system designs. In addition, this tag
is used for several direct-store bus operations in the form of a 'bus transaction from' tag.

0

Figure 2-3. Processor Identification Register

B Reserved

PIO

27 28 31

The PIR can be accessed with the mtspr and mfspr instructions using SPR 1023. Note that
although this number is defined by the OBA, the register structure is defined by each
implementation that implements this optional register.

2.1.2.3 Hardware Implementation-Dependent Register 0 (HIDO)
The HIDO register (SPR 1008) controls the state of several functions within the 620. 2.1.2.3
provides bit setting information for the HIDO register.

Table 2-3. HIDO Bit Settings

Bit Description

0 Enable machine check input
0 The assertion of the MCJ5 does not cause a machine check exception.
1 Enables the entry into a machine check exception based on assertion of the MCJ5 input, detection of
a cache parity error, detection of an address parity error, or detection of a data parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

1 Enable cache parity checking
0 The detection of a cache parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a cache parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2 Enable machine check on address bus parity error
0 The detection of an address bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of an address parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

2-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-3. HIDO Bit Settings (Continued)

Bit Description

3 Enable machine check on data bus parity error
0 The detection of a data bus parity error does not cause a machine check exception.
1 Enables the entry into a machine check exception based on the detection of a data bus parity error.
Note that the machine check exception is further affected by the MSR[ME] bit, which specifies whether the
processor checkstops or continues processing.

14 Processor internal watchdog timer disable
0 Processor internal watchdog timer enabled. The 620 is forced into the checkstop state if it does not
complete any valid instructions during the period of time required for the decrementer to pass through O
twice.
1 Processor internal watchdog timer is disabled

15 Not hard reset
0 A hard reset occurred if software had previously set this bit
1 A hard reset has not occurred.

16 Instruction cache enable
0 The instruction cache is neither accessed nor updated. All pages are accessed as if they were
marked cache-inhibited (WIM = X1 X). All potential cache accesses from the bus (snoop and cache
operations) are ignored.
1 The instruction cache is enabled

17 Data cache enable
0 The data cache is neither accessed nor updated. All pages are accessed as if they were marked
cache-inhibited (WIM = X1 X). All potential cache accesses from the bus (snoop, cache ops) are ignored.
1 The data cache is enabled.

20 Instruction cache invalidate all
0 The instruction cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the instruction cache
as invalid without writing back any modified lines to memory. Access to the cache is blocked during this
time. Accesses to the cache from the bus are signaled as a miss while the Invalidate-all operation is in
progress.
The bit is cleared when the invalidation operation begins (usually the cycle immediately following the write
operation to the register). Note that the instruction cache must be enabled for the invalidation to occur.

21 Data cache invalidate all
0 The data cache is not invalidated.
1 When set, an invalidate operation is issued that marks the state of each clock in the data cache as
invalid without writing back any modified lines to memory. Access to the cache is blocked during this time.
Accesses to the cache from the bus are signaled as a miss while the Invalidate-all operation is in progress.
The bit is cleared when the invalidation operation begins (usually the cycle immediately following the Write
operation to the register). Note that the data cache must be enabled for the invalidation to occur.

24 Serial instruction execution disable
0 The 620 executes one instruction at a time. The 620 does not post a trace exception after each
instruction completes, as it would if MSR[SE] or MSR[BE] were set.
1 Instruction execution is not serialized.

25-26 Branch prediction mode
00 Static branch prediction without update of branch history table (BHT)
01 Dynamic branch prediction
10 Static branch prediction with BHT updates
11 Static branch prediction when branch instruction y-bit = 1 (no BHT update); dynamic branch
prediction when y-bit = 0.

MOTOROLA Chapter 2. Programming Model 2-11

--
Table 2-3. HIDO Bit Settings {Continued)

Bit Description

27-28 Instruction fetch modes (address translation enabled)
00 No speculative fetch from memory
01 Reserved
10 Reserved
11 Allow unrestricted speculative fetching from memory

30 Branch target address cache disable
0 The branch target address cache is enabled
1 The branch target address cache is disabled

2.1.2.4 Bus Status and Control Register (BUSCSR)
The bus status and control register (BUSCSR) is a 64-bit register (accessed as SPR 1016)
that provides the means for setting operational parameters for the 620's system interface
and provides status information related to bus operations. Note that some register bits are
marked read/write, some are read-only, and others are cleared by a write operation (W=O).
Read-only bits are not affected by write operations, and reserved bits are undefined for a
read operation, and no operation occurs for a write. The fields of the register are defined in
Table 2-4.

Table 2-4. BUSCSR Bit Settings

Bit Description
Read/
Write

4D-41 BUSRATIO configuration (BUSRATI0[0-1]) Read
These bits reflect the setting of the BUSRATIO signals present at the system interface. only

42 Bus clock logic (BUSCLKGTL) Read
This bit reflects the configuration of the BUSCLKGTL input signal. The configuration of the only
BUSCLKGTL signal determines whether the BUSCLK input signals are to be driven by GTL or
CMOS logic. If the BUSCLKGTL bit is set to 1, the BUSCLK input signals are configured for
GTL logic; if the BUSCLKGTL bit is cleared to 0, the BUSCLK input signals are configured for
CMOS logic.

44-45 AStat and AResp tenure (BUSRESPTEN[0-1]) Read
These bits reflects the configuration of the BUSRESPTEN input signals, which determine the only
latency from the assertion of ASTATOUT and ARESPOUT to the sampling of ASTATIN and
ARESPIN signals.

47 64-bit data bus mode (BUSDX) Read
This bit reflects the configuration of the BUSDX input signal. If this bit is cleared to 0, the data only
bus is configured for 128-bit operation. If this bit is set to 1, the bus is configured for 64-bit
operation, and data is transferred via the DH[0-63] signals.

48-50 Address to AResp latency (BUSTLAR[0-2]) R/W
These bits determine the address sampled to response driven latency.
000 8 bus clock cycles
010-111 2-7 bus clock cycles
001 Reserved

51 Bus data error enable (BUSDERREN) R/W
This bit, when set to 1, enables a machine check exception when the DERR signal is
asserted.

2-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-4. BUSCSR Bit Settings (Continued)

Bit Description
Read/
Write

52 Bus positive acknowledge error enable (BUSPOSACKEN) R/W
Setting this bit to 1 enables the positive acknowledge error condition to cause a machine
check exception. -54 Bus intervention enable (BUSINTVEN) R/W
Setting this bit to 1 enables intervention for the bus operations initiated by the processor.

55 Bus snoop enable (BUSSNPEN) R/W
Setting this bit to 1 enables the snooping of bus operations, and the assertion of the M-bit
(memory-coherency enforced) for bus operations initiated by the 620. If this bit is cleared to O
the 620 will not snoop bus operations, and the M bit will not be asserted for bus operations
initiated by the 620.

58 Bus response error (BUSRESPERR) R/W=O
This bit indicates that a reserved response code was detected for an address operation,
resulting in a machine check exception and the early termination of the bus operation. This bit
is cleared by a write operation to this bit position.

59 Bus positive acknowledge error (BUSPOSACKERR) R/W=O
This bit indicates that an expected positive acknowledge was not received for an address bus
operation. This bit is set regardless of the configuration of the BUSCSR[52] bit, and is cleared
by a write operation to this bit position.

60 Bus data error (BUSDERR) R/W=O
This bit indicates that the DERR signal was asserted for read data other than PIO Load Last.
In the case of PIO Load Last operations, this bit is set only if DERR is asserted for a read data
operation and a PIO Reply is received with the error bit set. This bit is set regardless of the
configuration of the BUSCSR[51], and is cleared by a write operation to this bit position.

61-63 Bus parity error (BUSPARERR[0-2])
These bits indicate that a bus parity error has occurred, and are set regardless of the
configuration of the HIDO[EBA] and HIDO[EBD] bits. These bits are cleared to Oby a write
operation.
000 Address bus parity error
001 Data bus tag parity error
010 Data bus data parity error
011-111 Reserved

MOTOROLA Chapter 2. Programming Model 2-13

2.1.2.5 L2 Cache Control Register (L2CR)
The L2 cache control register (L2CR) is a 64-bit register (accessed as SPR 1017) that
provides the means for setting operational parameters for the 620's L2 interface, and
provides status information related to L2 operations. The fields of the register are defined
in Table 2-5.

Table 2-5. L2CR Bit Settings

Bit Description
Read/
Write

36 L2CLOCKIN and L2CLOCKIN PECL enable (L2CLKPECL) R/W
When this bit is set to 1 the L2CLKIN and L2CLKIN signals are placed in PECL mode
regardless of the configuration of L2CR[57]. If this bit is cleared to 0, the logic levels for the
L2CLKIN and L2CLKIN signals are determined by the configuration of L2CR[57].

37 Remove dead cycles between read and write operations enable (L2NORWDEAD) R/W
When this bit is set to 1 dead cycles are not inserted between read and write cycles on the L2
cache interface.

40-43 Cache capacity and organization (L2SIZE) R/W
These bits determine the L2 cache capacity. For additional information on cache size
configuration, refer to Section 9.3.1.3.1, "The L2TAGADD Signal."
0000 1 MB
0001 2MB
0010 4 MB
0011 8MB
0100 16MB
0101 32MB
0110 64MB
0111 128 MB
1000-1111 Reserved

44 L2 drive power (L2DPWR) R/W
This bit is used to define the drive power for the L2 interface point-to-point signals.
0 50 ohm drive power
1 Reserved

46 ECC error enable (L2ECCERREN) R/W
When this bit is set to 1 a multi-bit ECC error will cause a machine check exception.

47-48 Multi-level cache configuration (L2CLC[0-1]) R/W
These bits, in conjunction with the HID0[16-17] bits, select one of seven multi-level cache
configurations. For more information about the configuration of these bits, refer to
Section 9.3.1.8, "L2CLC[0-1] Bits".

49 L2 PLL enable (L2PLLEN) R/W
When this bit is set to 1 the L2 PLL is enabled to lock.

50 L2 cache initialize enable (L21NIT) R/W
When this bit is cleared to O it indicates that the L2 SRAMs are being initialized. When in this
configuration, L2 read operations are returned a MESI cache state of invalid, and ECC is
forced to pass. When this bit is set to 1 the L2 SRAM initialization mode is disabled.

51 L2 late/normal write select (L2LATEWRITE) R/W
When this bit is cleared to O write data is driven on the bus data signals the same cycle as the
control and address signals are driven to the SRAMs. If this bit is set to 1 the write data is
driven on the bus data signals a cycle after the control and address signals are driven to the
SRAMs, thereby saving a dead cycle on the bus data signals when performing a read
operation after a write operation.

2-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-5. L2CR Bit Settings (Continued)

Bit Description
Read/
Write

52-53 ECC mode select (L2MODE[0-1]) R/W
These bits define the L2 cache ECC configuration.
00 Never correct (ECC disabled)
01 Always correct
10 Automatic switch correct
11 Reserved

54 L2 SRAM register depth select (L2SINGSYNC) R/W
This bit is used in conjunction with L2CR[38] to determine the number of pipeline registers
present in the SRAMs used to implement the L2 cache. For more information about the
configuration of this bit, refer to Section 9.3.1.10, "L2SINGSYNC Bit".

56 L2 double-bank enable (L2B2ENABLE) R/W
When this bit is set to 1 the internal decode for a dual SRAM bank L2 cache is enabled. For
more information about the configuration of this bit, refer to Section 9.3.1.7, "L2B2ENABLE
Bit".

60-61 L2 SRAM clock frequency (L2RATIOSR[0-1]) R/W
These bits set the ratio of the L2 clock to the processor clock. If the L2 is disabled, these bits
must be set to Ob01.
00 Reserved
01 1:1 ratio
10 2:1 ratio
11 3:1 ratio

For more information about the configuration of these bits, refer to Section 9.3.1.4,
"L2RATIOSR Bit".

MOTOROLA Chapter 2. Programming Model 2-15

-
2.1.2.6 L2 Cache Status Register (L2SR)
The L2 status register (L2SR) provides all information related to ECC errors occurring on
the L2 cache interface. The L2SR is accessed as SPR 1018. Note that the status provided
by the L2SR is valid only for the first ECC error, and subsequent ECC errors before the first
ECC error is cleared are lost. An ECC error that occurs during a read operation to the L2SR
is lost. Any write operation to the L2SR register results in clearing the register bits to 0
(W=O).

Table 2-6. L2SR Bit Settings

Bit Description
Read/
Write

16 L2 ECC error detected (L2ECC) R/W=O
This bit is set to 1 when the first single-or double-bit ECC error is detected.

17-25 L2 data syndrome (L2DATASYN[0-8]) RIW=O
These bits reflect the ECC syndrome for the first L2 data ECC error.

26-31 L2 tag syndrome (L2TAGSYN[0-5]) RIW=O
These bits reflect the ECC syndrome for the first L2 tag ECC error.

35--59 L2 ECC address ((L2ECCADDR[0-24]) R/W=O
these bits contain the address of the L2 quadword address of the first detected ECC error.
These bits map to bits 11 to 35 of the 40 bit address driven on the address bus. The bits
can be identified as either a tag or data address by examining the tag or data syndromes
for a non-zero value.

2.1.2.7 Performance Monitor Registers
The remaining twelve registers defined for use with the 620 are used by the performance
monitor. For more information about the performance monitor, see Chapter 10,
"Performance Monitor."

2.1.2.7.1 Monitor Mode Control Register O (MMCRO)
The monitor mode control register 0 (MMCRO) is a 32-bit SPR (SPR 795) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRO can be written to or read only in supervisor mode. The MMCRO includes
controls such as counter enable control, counter overflow interrupt control, counter event
selection and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-7.

2-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-7. MMCRO Bit Settings

Bit Name Description

0 FC Freeze counters
0 The values of the PMCn counters can be changed by hardware.
1 The values of the PMCn counters cannot be changed by hardware.

1 FCS Freeze counting while in supervisor mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in supervisor mode (MSR[PR] is cleared), the counters are not

changed by hardware.

2 FCP Freeze counting while in user mode
0 The PMCn counters can be changed by hardware.
1 If the processor is in user mode (MSR[PR] is set), the PMC counters are not

changed by hardware.

3 FCM1 Freeze counting while MSR[PM] is set
0 The PMCn counters can be changed by hardware.
1 If MSR[PMM] is set, the PMCn counters are not changed by hardware.

4 FCMO Freeze counting while MSR(PMM) is zero.
0 The PMCn counters can be changed by hardware.
1 If MSR[PMM] is cleared, the PMCn counters are not changed by hardware.

5 PMXE Performance monitor exception request enable.
0 Interrupt signaling is disabled.
1 Interrupt signaling is enabled.
This bit is cleared by hardware when a performance monitor interrupt is signaled. To
reenable these interrupt signals, software must set this bit after servicing the
performance monitor interrupt. The IPL ROM code clears this bit before passing control
to the operating system.

6 FCEX Freeze counting of PMCs when a performance monitor interrupt is signaled (that is,
((PMCnlNTCONTROL = 1) & (PMCn[O] = 1) & (ENINT = 1)) or the occurrence of an
enabled time base transition with ((TBXE =1) & (ENINT = 1)). Setting of this bit can be
overridden by configuration of MMCR0[18].
0 The signaling of a performance monitoring interrupt has no effect on the counting

status of PMCs.
1 The signaling of a performance monitoring interrupt prevents the changing of the

PMC counters until condition is reset by software.
Because a time base signal could have occurred along with an enabled counter
negative condition, software should always reset TBXE too, if the value in TBXE was a
1.

7-8 TBS EL 64-bit time base, bit selection enable
00 Pick bit 63 to count
01 Pick bit 55 to count
10 Pick bit 51 to count
11 Pick bit 47 to count

9 TBXE Cause interrupt signalling on bit transition (identified in TBSEL) from off to on
0 Do not allow interrupt signal if chosen bit transitions.
1 Signal interrupt if chosen bit transitions.
Software is responsible for setting and clearing TBXE.

10-15 THRESHOLD Threshold value. This number is multiplied by eight and the result is the number of
processor cycles to which the threshold value will be set.

MOTOROLA Chapter 2. Programming Model 2-17

--
Table 2-7. MMCRO Bit Settings (Continued)

Bit Name Description

16 PMC1XE Enable exception signaling due to PMC1 counter negative.
0 Disable PMC1 exception signaling due to PMC1 counter negative
1 Enable PMC1 exception signaling due to PMC1 counter negative

17 PMCnXE Enable exception signalling due to PMCn (where /1> 1) counter negative. This signal
overrides the setting of FCEX.
0 Disable PMCn exception signaling due to PMCn counter negative
1 Enable PMCn exception signaling due to PMCn counter negative

18 TRIGGER May be used to trigger counting of PMCn (where /1> 1) after PMC1 has become
negative or after a performance monitoring interrupt is signaled.
0 Enable PMCn counting
1 Disable PMCn counting until PMC1 bit 0 is set or until a performance monitor

interrupt is signaled
This signal can be used to trigger counting of PMCn after PMC1 has become negative.
This provides a triggering mechanism for counting after a certain condition occurs or
after a preset time has elapsed. It can be used to support getting the count associated
with a specific event.

19-25 PMC1SEL PMC1 input selector, see Table 2-9 for events selectable.

26-31 PMC2SEL PMC2 input selector, see Table 2-1 o for events selectable.

2.1.2.7.2 Monitor Mode Control Register 1 (MMCR1)
The monitor mode control register 1 (MMCRI) is a 32-bit SPR (SPR 798) whose bits are
partitioned into bit fields that determine the events to be counted and recorded. The
selection of allowable combinations of events causes the counters to operate concurrently.

The MMCRI can be written to or read only in supervisor mode. The MMCRI includes
controls such as counter enable control, counter overflow interrupt control, counter event
selection and counter freeze control.

This register must be cleared at power up. Reading this register does not change its
contents. The fields of the register are defined in Table 2-8

Table 2-8. MMCR1 Bit Settings

Bit Name Description

Q-4 PMC3SEL PMC3 input selector, see Table 2-11 for events selectable.

5-9 PMC4SEL PMC4 input selector, see Table 2-12 for events selectable.

10-14 PMC5SEL PMC5 input selector, see Table 2-13 for events selectable.

15-19 PMC6SEL PMC6 input selector, see Table 2-14 for events selectable.

20-24 PMC?SEL PMC7 input selector, see Table 2-15 for events selectable.

25-28 PMC8SEL PMC8 input selector, see Table 2-16 for events selectable.

2-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-8. MMCR1 Bit Settings (Continued)

Bit Name Description

29 FCUIABR Freeze Counters until IABR Match. After a monitored IABR match is detected this
bit is reset to zero by the hardware. An IABR match is said to be monitored if it
occurs when PMC updates are permitted by the configuration of MMCRO(Q-4],
MSR[PR] and MSR[PMM].
O =The PMCs are conditionally updated.
1 =The PMCs are not updated until a "monitored" IABR match occurs.

30 PMC1HIST PMC1 History Mode
O = PMC1 is conditionally incremented.
1 = PMC1 is in History mode.

31 PMCnHIST PMCn, n> 1, History mode
0 = PMCn, n>1, are conditionally incremented.
1 = PMCn, n>1, are in History mode.

2.1.2.7.3 Performance Monitor Counter Registers (PMC1-PMC8)
PMCI through PMC8 are 32-bit counters that can be programmed to generate interrupt
signals when they are negative. Counters are considered to be negative when the high-order
bit (the sign bit) becomes set; that is, they reach the value 2147483648 (Ox8000_0000).
However, an interrupt is not signaled unless both PCMn[XE] and MMCRO[PMXE] are also
set.

Note that the interrupts can be masked by clearing MSR[EEJ; the interrupt signal condition
may occur with MSR[EE] cleared, but the interrupt is not taken until the EE bit is set.
Setting MMCRO[FCEX] forces the counters to stop counting when a counter interrupt
occurs.

PMCI through PMC8 are SPRs 787 through 794, respectively, and can be read and written
to by using the mfspr and mtspr instructions. Software is expected to use the mtspr
instruction to explicitly set the PMC register to non-negative values. If software sets a
negative value, an erroneous interrupt may occur. For example, if both PCMn[XE] and
MMCRO[PMXE] are set and the mtspr instruction is used to set a negative value, an
interrupt signal condition may be generated prior to the completion of the mtspr and the
values of the SIA and SDA may not have any relationship to the type of instruction being
counted.

The event that is to be monitored can be chosen by setting the appropriate bits in the
MMCRO[19-31]. The number of occurrences of these selected events is counted from the
time the MMCRO was set either until a new value is introduced into the MMCRO register
or until a performance monitor interrupt is generated. Table 2-9 lists the selectable events
with their appropriate MMCRO encodings.

MOTOROLA Chapter 2. Programming Model 2-19

Table 2-9. Selectable Events-PMC1

MMCR0[19-25]
Description

Encoding

-- OxOO Processor cycles.

Ox01 Number of instructions completed.

Ox02 Time base selected bit transition from O to 1.

Ox03 Number of instructions dispatched.

Ox04 Number of load instructions completed.

Ox05 L 1 instruction cache miss.

Ox06 A load miss occurred in L 1 .

Ox07 Threshold exceeded (loads with no L2 intervention)

Ox OS Data cache EPAT miss.

Ox09 Threshold exceeded (stores with no L2 intervention)

OxOA A Read-Burst missed the L2 and another bus device has modified data.

OxOB L 1 instruction cache IERAT miss.

OxOC Brought/wrote a line into the !CACHE and used it.

OxOD Data cache detected an offset hit.

Ox OE Number of instructions deleted due to global cancel.

OxOF Chaining the counters in history mode. (PMC1 to PMCS)

Ox12 A master-generated store operation is retried.

Ox14 MSR external interrupt enable bit, MSR[EEJ, is off

Ox15 Branch unit idle.

Ox16 A single instruction serialization class instruction is in execution
(Counts the total number of cycles this condition is detected.)

Ox17 The FPU status and control register instructions.

Ox18 One store buffer is in use.

Ox19 A snooped operation cleaned data from the L2.

Ox1A Number of stores in the completion buffer.

Ox1B The link register stack is full.

Ox1C A conditional branch was resolved at dispatch.

Ox10 Number of loads in the completion buffer.

Ox1E Number of entries in the completion buffer.

2-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-9. Selectable Events-PMC1 (Continued)

MMCR0[19-25]
Description

Encoding

Ox1F The finished store queue (FSQ) is full.

Ox51 Data cache and instruction cache SLB miss occurred.

Ox53 Data cache and instruction cache TLB miss.

Ox56 A single instruction serialization class instruction is in execution
(Counts the number of times this condition is detected.)

Bits MMCR0[26-31] are used for selecting events associated with PMC2. These settings
are shown in Table 2-10.

Table 2-10. Selectable Events-PMC2

MMCR0[26-31]
Select Description

Encoding

OxOO Number of instructions completed.

Ox01 Processor cycles.

Ox02 Time base selected bit transition from zero to one.
-·

Ox03 Number of instructions dispatched.

Ox05 Data cache store address lookup.

Ox06 A sampled Read-Burst generated an L2 miss.

Ox08 A conditional branch was predicted.

Ox09 Store miss occurred in L 1.

OxOA Threshold exceeded (loads with L2 intervention)

OxOB A Read-with-Intent-to-Modify (RWITM) generated an L2 access.

OxOC Threshold exceeded (stores with L2 intervention)

OxOD A store conditional instruction failed to execute successfully

OxOE A master-generated non-burst store operation is stalled waiting for a store buffer.

OxOF Chaining the counters in history mode. (PMC2 to PMC1)

Ox10 A sampled Read-Burst missed the L2 and another bus device has modified data.

Ox11 The complex integer unit does not have a valid instruction to execute.

Ox12 A system call interrupt was taken.

Ox14 Two store buffers are in use.

Ox15 A master-generated load operation is not retried.

Ox16 A lwarx instruction has finished execution.

Ox18 A sample store instruction was scheduled for execution.

MOTOROLA Chapter 2. Programming Model 2-21

--
Table 2-10. Selectable Events-PMC2 (Continued)

MMCR0[26-31]
Select Description

Encoding

Ox19 The instruction buffer is empty this cycle.

Ox1C A snooped operation generated a push or an intervention.

Ox1D A master-generated store operation is loaded into the store buffer.

Ox33 Data cache and instruction cache SLB miss occurred.

Bits MMCRl[0-4] are used for selecting events associated with PMC3. These settings are
shown in Table 2-11.

Table 2-11. Selectable Events-PMC3

MMCR1 [o-4]
Select Description

Encoding

OxOO Brought/wrote a line into the ICACHE and used it.

Ox01 Processor cycles.

Ox02 Number of instructions completed.

Ox03 Time base selected bit transition from zero to one.

Ox04 Number of instructions dispatched.

Ox05 A load miss occurred in L 1 .

Ox06 A sampled Read-with-Intent-to-Modify (RWITM) generated an L2 miss.

Ox07 The branch queue is full.

Ox OS A sampled Read-with-Intent-to-Modify (RWITM) missed the L2 and another bus device has
modified data.

Ox09 A store instruction was completed.

OxOA A sampled store was completed.

OxOB A load instruction is the next instruction to complete.

OxOC A Read-with-Intent-to-Modify (RWITM) generated an L2 miss.

OxOD A sampled Read-Burst generated an L2 access.

OxOE A master-generated Non-Burst Store operation is stalled waiting for a store buffer.

OxOF Chaining the counters in History mode. (PMC3 to PMC2)

Ox10 A double word unaligned store was scheduled

Ox11 A master-generated store operation is loaded into the store buffer.

Ox13 Three store buffers are in use.

2-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-11. Selectable Events-PMC3 (Continued)

MMCR1[Q-4]
Select Description

Encoding

Ox14 A master-generated store conditional (STCX) is cancelled.

Ox15 A snooped operation generated a transition in the L2 from Exclusive or Shared to Invalid.

Ox16 The FPU divide instructions.

Ox18 1/0 interrupts detected.

Bits MMCRl[S-9] are used for selecting events associated with PMC4. These settings are
shown in Table 2-12.

Table 2-12. Selectable Events-PMC4

MMCR1[5-9]
Select Description

Encoding

OxOO L 1 instruction cache IERAT miss.

Ox01 Processor cycles.

Ox02 Number of instructions completed.

Ox03 Time base selected bit transition from zero to one.

Ox04 Number of instructions dispatched.

Ox05 Number of load instructions completed.

Ox07 The load/store scheduled a sampled load instruction

Ox OB A sampled Read-with-Intent-to-Modify (RWITM) generated an L2 access.

Ox09 The load/store received data from the data cache.

OxOA A Read-with-Intent-to-Modify (RWITM) missed the L2 and another bus device has modified data.

OxOB Data cache sync request was made to the BIU.

OxOC Global cancel due to a load or store instruction address conflict.

OxOD The multi-cycle integer unit pipeline is busy with a valid instruction.

OxOE A master-generated store operation is not retried.

OxOF Chaining the counters in History mode. (PMC4 to PMC3)

Ox10 Data cache detected an aliased hit.

Ox11 The simple integer unit 1 does not have a valid instruction to execute.

Ox12 A double word unaligned load was scheduled.

Ox13 Completion stalled on a load operation.

Ox14 A master-generated bus operation received an ARESPIN Retry.

Ox16 Branch completed.

MOTOROLA Chapter 2. Programming Model 2-23

--
Table 2-12. Selectable Events-PMC4 (Continued)

MMCR1[5-9]
Select Description

Encoding

Ox17 The dispatch buffer is empty this cycle.

Ox18 Link register stack error.

Ox19 The condition register logical unit produced a result.

Ox1B A snooped operation cleaned data from the L 1.

Bits MMCRl[l0--14] are used for selecting events associated with PMC5. These settings
are shown in Table 2-13.

Table 2-13. Selectable Events-PMCS

MMCR1[10-14]
Select Description

Encoding

OxOO Data cache EPAT miss.

Ox01 The instruction cache was accessed and a fetch block was fetched.

Ox02 No instructions completed.

Ox04 A Read-Burst generated an L2 access.

Ox OS The FPU finished the execution of an instruction.

Ox06 The load/store reservation stations are empty.

Ox07 BTAChit.

Ox OB Completed store queue (CSQ) is full.

Ox09 A master-generated store operation is stalled waiting for a store buffer.

OxOA A snooped operation generated a transition in the L2 from Modified to Invalid.

OxOB The FPU convert and round instructions.

OxOC Processor cycles.

OxOD A master-generated Bus operation received an ASTATIN Retry.

OxOF Chaining the counters in History mode. (PMCS to PMC4)

Bits MMCR1[15-19] are used for selecting events associated with PMC6. These settings
are shown in Table 2-14.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-14. Selectable Events-PMC6

MMCR1[15--19)
Select Description

Encoding

Ox01 Store hit occurred in L 1.

Ox02 The multi-cycle integer unit finished the execution of an instruction.

Ox03 A BTAC miss was detected.

Ox04 An instruction fetch generated an L2 miss.

Ox05 A conditional branch was dispatched.

Ox06 The load queue is full.

Ox08 A snooped operation generated a push or an intervention.

Ox09 The MSR[EE] bit is off and an external interrupt is pending.

OxOA A master-generated load operation is retried.

Ox OB The FPU move instructions and the select instruction.

OxOC Processor cycles.

OxOD A snooped operation accessed the L2.

Ox OE A snooped operation generated a transition in the L2 from Exclusive to Shared.

OxOF Chaining the counters in History mode. (PMC6 to PMC5)

Bits MMCR1[20-24] are used for selecting events associated with PMC7. These settings
are shown in Table 2-15.

Table 2-15. Selectable Events-PMC7

MMCR1 [20-24)
Select Description

Encoding

OxOO L 1 instruction cache miss.

Ox01 The simple integer unit 0 finished the execution of an instruction.

Ox02 A branch was dispatched (any}.

Ox03 Global cancel due to a branch guessed wrong.

Ox04 A bus operation was snooped.

Ox06 No instructions dispatched.

Ox07 The simple integer unit O does not have a valid instruction to execute.

OxOA A store instruction was dispatched.

OxOB Processor cycles.

OxOF Chaining the counters in History mode. (PMC7 to PMC6}

MOTOROLA Chapter 2. Programming Model 2-25

-

--
Bits MM CR I [25-28] are used for selecting events associated with PMC8. These settings
are shown in Table 2-16.

Table 2-16. Selectable Events-PMC8

MMCR1 [25-28]
Select Description

Encoding

Ox1 A snooped operation hit the L2.

Ox2 A Read-Burst generated an L2 miss.

Ox3 A store conditional instruction executed successfully.

Ox4 The simple integer unit 1 finished the execution of an instruction.

Ox5 A bus operation was ASTATOUT Retried.

Ox? Prefetch bad.

Ox8 Completion stalled on a store operation.

Ox A A load instruction was dispatched.

OxB Misaligned data interrupt

OxC Processor cycles.

OxF Chaining the counters in History mode. (PMC8 to PMC7)

2.1.2.7.4 Sampled Instruction Address Register (SIA}
The SIA contains the effective address of an instruction executing at or around the time that
the processor signals the performance monitor interrupt condition. If the performance
monitor interrupt was triggered by a threshold event, the SIA contains the exact instruction
that caused the counter to become negative. The instruction whose effective address is put
in the SIA is called the sampled instruction. For more information on threshold-related
interrupts, see Section•, "Performance Monitor Events."

If the performance monitor interrupt was caused by something besides a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SIA is
a supervisor-level SPR.

The SIA (SPR 780) can be read by using the mfspr instruction and written to by using the
mtspr instruction.

2.1.2.7.5 Sampled Data Address Register (SDA}
The SDA contains the effective address of an operand of the last sampled instruction
executed by the load/store unit at or around the time that the processor signals the
performance monitor interrupt condition. If the performance monitor interrupt was
triggered by a threshold event, the SDA contains the effective address of the operand of the
SIA.

If the performance monitor interrupt was caused by something other than a threshold event,
the SIA contains the address of the last instruction completed during that cycle. The SDA

2-26 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

contains an effective address that is not guaranteed to match the instruction in the SIA. The
SDA is a supervisor-level SPR.

The SDA (SPR 781) can be read by using the mfspr instruction and written to by using the
mtspr instruction.

2.2 Operand Conventions
This section describes the operand conventions as they are represented in two levels of the
PowerPC architecture-UISA and VEA. Detailed descriptions are provided of conventions
used for storing values in registers and memory, accessing PowerPC registers, and
representation of data in these registers.

2.2.1 Floating-Point Execution Models
The IEEE 754 standard defines conventions for 64- and 32-bit arithmetic. The standard
requires that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision arithmetic instructions to have either (or both)
single-precision or double-precision operands, but states that single-precision arithmetic
instructions should not accept double-precision operands.

Double-precision arithmetic instructions may have single-precision operands but
always produce double-precision results.
Single-precision arithmetic instructions require all operands to be single-precision
and always produce single-precision results.

For arithmetic instructions, conversion from double- to single-precision must be done
explicitly by software, while conversion from single- to double-precision is done implicitly
by the processor.

All Power PC implementations provide the equivalent of the following execution models to
ensure that identical results are obtained. The definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

Underflow during multiplication using a denormalized operand
Overflow during division using a denormalized divisor

MOTOROLA Chapter 2. Programming Model 2-27

I

•

-I
2.2.2 Data Organization in Memory and Data Transfers
Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction.

2.2.3 Alignment and Misaligned Accesses
The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-18. (Although not permitted as memory operands, quad words are shown because
quad-word alignment is desirable for certain memory operands).

Table 2-17. Supported Data Sizes and Alignments

Size Ordinary Segment
Direct Store

Definition Segment Notes
(Bytes) (T=O)

(T=1)

1 Byte Supported Supported All byte alignments are supported.

2 Half-Word Supported Supported All alignments that do not cross a

3 3-Byte Supported Supported
double word boundary are sup-
ported.

4 Word Supported Supported

8 Double-Word Supported Supported Only double word alignments are
supported.

16 Quad-Word Supported Unsupported Only quad word aligned quad word
is supported.

5-7,9-15 - Unsupported Unsupported Not Supported

The concept of alignment is also applied more generally to data in memory. For example,
a 12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned.

2-28 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

2.2.4 Floating-Point Operand
The 620 provides hardware support for all single- and double-precision floating-point
operations for most value representations and all rounding modes. This architecture
provides for hardware to implement a floating-point system as defined in ANSI/IEEE
standard 754-1985, IEEE Standard for Binary Floating Point Arithmetic. Detailed
information about the floating-point execution model can be found in Chapter 3, "Operand
Conventions," in The Programming Environments Manual.

The 620 supports non-IEEE mode whenever FPSCR[29] is set. In this mode, denormalized
numbers, NaNs, and some IEEE invalid operations are treated in a non-IEEE conforming
manner. This is accomplished by delivering results that approximate the values required by
the IEEE standard. Table 2-18 summarizes the conditions and mode behavior for operands.

Table 2-18. Floating-Point Operand Data Type Behavior

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI= 0) (NI= 1)

Single denormalized Single denormalized Single denormalized Normalize all three Zero all three
Double denormalized Double denormalized Double denormalized

Single denormalized Single denormalized Normalized or zero Normalize A and B Zero Aand B
Double denormalized Double denormalized

Normalized or zero Single denormalized Single denormalized Normalize B and C Zero Band C
Double denormalized Double denormalized

Single denormalized Normalized or zero Single denormalized Normalize A and C Zero A and C
Double denormalized Double denormalized

Single denormalized Normalized or zero Normalized or zero Normalize A Zero A
Double denormalized

Normalized or zero Single denormalized Normalized or zero Normalize B Zero B
Double denormalized

Normalized or zero Normalized or zero Single denormalized Normalize C ZeroC
Double denormalized

SingleQNaN Don't care Don't care QNaN[11 QNaN[11
Single SNaN
Double QNaN
Double SNaN

Don't care Single QNaN Don't care QNaN[1l QNaN[1l
Single SNaN
Double QNaN
Double SNaN

Don't care Don't care Single QNaN QNaN[1l QNaN[1l
Single SNaN
Double QNaN
Double SNaN

MOTOROLA Chapter 2. Programming Model 2-29

Table 2-18. Floating-Point Operand Data Type Behavior (Continued)

Operand A Operand B Operand C IEEE Mode Non-IEEE Mode
Data Type Data Type Data Type (NI= 0) (NI= 1)

Single normalized Single normalized Single normalized Do the operation Do the operation
Single infinity Single infinity Single infinity
Single zero Single zero Single zero
Double normalized Double normalized Double normalized
Double infinity Double infinity Double infinity
Double zero Double zero Double zero

1 Prioritize according to Chapter 3, "Operand Conventions;' in The Programming Environments Manual.

Table 2-19 summarizes the mode behavior for results.

Table 2-19. Floating-Point Result Data Type Behavior

Precision Data Type IEEE Mode (NI = O) Non-IEEE Mode (NI= 1)

Single Denormalized Return single-precision Return zero.
denormalized number with trailing
zeros.

Single Normalized Return the result. Return the result.
Infinity
Zero

Single QNaN Return QNaN. Return QNaN.
SNaN

Single INT Place integer into low word of FPR. If (Invalid Operation)
then

Place (OxBOOO) into FPR[32-63]
else

Place integer into FPR[32-63].

Double Denormalized Return double precision Return zero.
denormalized number.

Double Normalized Return the result. Return the result.
Infinity
Zero

Double QNaN Return QNaN. Return ONaN.
SNaN

Double INT Not supported by 620 Not supported by 620

2.2.5 Effect of Operand Placement on Performance
The PowerPC VEA states that the placement (location and alignment) of operands in
memory may affect the relative performance of memory accesses. The best performance is
guaranteed if memory operands are aligned on natural boundaries. To obtain the best
performance across the widest range of PowerPC processor implementations, the
programmer should assume the performance model described in Chapter 3, "Operand
Conventions," in The Programming Environments Manual.

2-30 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

2.3 Instruction Set Summary
This section describes instructions and addressing modes defined for the 620. These
instructions are divided into the following functional categories:

Integer instructions-These include arithmetic and logical instructions. For more
information, see Section 2.3.4.1, "Integer Instructions."

Floating-point instructions-These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register (FPSCR).
For more information, see Section 2.3.4.2, "Floating-Point Instructions."

• Load and store instructions-These include integer and floating-point load and store
instructions. For more information, see Section 2.3.4.3, "Load and Store
Instructions."

Flow control instructions-These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow. For more information, see Section 2.3.4.4, "Branch and Flow
Control Instructions."

Processor control instructions-These instructions are used for synchronizing
memory accesses and managing caches, TLBs, and segment registers. For more
information, see Section 2.3.4.6, "Processor Control Instructions," Section 2.3.5.1,
"Processor Control Instructions," and Section 2.3.6.2, "Processor Control
Instructions."

Memory synchronization instructions-These instructions are used for memory
synchronizing. See Section 2.3.4.7, "Memory Synchronization Instructions,"
Section 2.3.5.2, "Memory Synchronization Instructions," for more information.

Memory control instructions-These instructions provide control of caches, TLBs,
and segment registers. For more information, see Section 2.3.5.3, "Memory Control
Instructions," and Section 2.3.6.3, "Memory Control Instructions."

External control instructions-These include instructions for use with special
input/output devices. For more information, see Section 2.3.5.4, "Optional External
Control Instructions."

Note that this grouping of instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. This information, which is useful
in taking full advantage of the 620's superscalar parallel instruction execution, is provided
in Chapter 6, "Instruction Timing."

Integer instructions operate on word operands. Floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are four bytes long and word-aligned. It provides for byte, half-word,
word, double word, multiple word, and string operand loads and stores between memory
and a set of 32 general-purpose registers (GPRs). It also provides for word and double word
operand loads and stores between memory and a set of 32 floating-point registers (FPRs).

MOTOROLA Chapter 2. Programming Model 2-31

l.j

'·l I,

I~

I:
1~
ii

ll

~

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for some of the frequently-used instructions; see Appendix F, "Simplified
Mnemonics," in The Programming Environments Manual for a complete list of simplified
mnemonics. Note that the architecture specification refers to simplified mnemonics as
extended mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

2.3.1 Classes of Instructions
The 620 instructions belong to one of the following three classes:

• Defined
Illegal
Reserved

Note that while the definitions of these terms are consistent among the PowerPC
processors, the assignment of these classifications is not. For example, a PowerPC
instruction defined for 64-bit implementations are treated as illegal by 32-bit
implementations such as the PowerPC 604™.

The class is determined by examining the primary opcode and the extended opcode, if any.
If the opcode, or combination of opcode and extended opcode, is not that of a defined
instruction or of a reserved instruction, the instruction is illegal.

Instruction encodings that are now illegal may become assigned to instructions in the
architecture or may be reserved by being assigned to processor-specific instructions.

2.3.1.1 Definition of Boundedly Undefined
If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction may vary between implementations,
and between execution attempts in the same implementation.

2.3.1.2 Defined Instruction Class
Defined instructions are guaranteed to be supported in all PowerPC implementations,
except as stated in the instruction descriptions in Chapter 8, "Instruction Set," in The

2-32 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Programming Environments Manual. The 620 provides hardware support for all
instructions defined for 64-bit implementations.

A PowerPC processor invokes the illegal instruction error handler (part of the program
exception) when the unimplemented PowerPC instructions are encountered so they may be
emulated in software, as required. Note that the architecture specification refers to
exceptions as interrupts.

The 620 provides hardware support for all instructions defined for 64-bit implementations.
The 620 supports the optional fsqrt and fsqrts instructions, and does not support the tlbie
and tlbia instructions.

A defined instruction can have invalid forms. The 620 provides limited support for
instructions that are represented in an invalid form. Appendix B, "Invalid Instruction
Forms," lists all invalid instruction forms and specifies the operation of the 620 upon
detecting each.

2.3.1.3 Illegal Instruction Class
Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC architecture.The following primary
opcodes are defined as illegal but may be used in future extensions to the
architecture:

l,4,5,6,9,22,56,57,60,61

Future versions of the Power PC architecture may define any of these instructions to
perform new functions.

All unused extended opcodes are illegal. The unused extended opcodes can be
determined from information in Section A.2, "Instructions Sorted by Opcode," and
Section 2.3.1.4, "Reserved Instruction Class." Notice that extended opcodes for
instructions defined only for 64-bit implementations are illegal in 32-bit
implementations, and vice versa. The following primary opcodes have unused
extended opcodes.

17, 19, 31, 59, 63 (Primary opcodes 30 and 62 are illegal for all 32-bit
implementations, but as 64-bit opcodes they have some unused extended opcodes.)

• An instruction consisting of only zeros is guaranteed to be an illegal instruction. This
increases the probability that an attempt to execute data or uninitialized memory
invokes the system illegal instruction error handler (a program exception). Note that
if only the primary opcode consists of all zeros. The instruction is considered a
reserved instruction, as described in Section 2.3.1.4, "Reserved Instruction Class."

The 620 invokes the system illegal instruction error handler (a program exception) when it
detects any instruction from this class.

See Section 4.6. 7, "Program Exception (Ox00700)," for additional information about illegal
and invalid instruction exceptions. With the exception of the instruction consisting entirely

MOTOROLA Chapter 2. Programming Model 2-33

-

of binary zeros, the illegal instructions are available for further additions to the PowerPC
architecture.

2.3.1.4 Reserved Instruction Class
Reserved instructions are allocated to specific implementation-dependent purposes not
defined by the PowerPC architecture. An attempt to execute an unimplemented reserved
instruction invokes the illegal instruction error handler (a program exception). See
"Program Exception (Ox00700)," in Chapter 6, "Exceptions," in The Programming
Environments Manual for additional information about illegal and invalid instruction
exceptions.

The PowerPC architecture defines four types of reserved instructions:

• Instructions in the POWER architecture not part of the PowerPC UISA

POWER architecture incompatibilities and how they are handled by PowerPC
processors are listed in Appendix B, "POWER Architecture Cross Reference," in
The Programming Environments Manual.

• Implementation-specific instructions required to conform to the PowerPC
architecture

• Architecturally-allowed extended opcodes

• Implementation-specific instructions

2.3.2 Addressing Modes
This section provides an overview of conventions for addressing memory and for
calculating effective addresses as defined by the PowerPC architecture for 64-bit
implementations. For more detailed information, see "Conventions," in Chapter 4,
"Addressing Modes and Instruction Set Summary," of The Programming Environments
Manual.

2.3.2.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction or when it fetches the
next sequential instruction.

Bytes in memory are numbered consecutively starting with zero. Each number is the
address of the corresponding byte.

2.3.2.2 Memory Operands
Memory operands may be bytes, half words, words, or double words, or, for the load/store
multiple and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length is implicit for each instruction. The PowerPC architecture supports both
big-endian and little-endian byte ordering. The default byte and bit ordering is big-endian.

2-34 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

See "Byte Ordering," in Chapter 3, "Operand Conventions," of The Programming
Environments Manual for more information about big- and little-endian byte ordering.

The operand of a single-register memory access instruction has a natural alignment
boundary equal to the operand length. In other words, the natural address of an operand is
an integral multiple of the operand length. A memory operand is said to be aligned if it is
aligned at its natural boundary; otherwise it is misaligned. For a detailed discussion about
memory operands, see Chapter 3, "Operand Conventions," of The Programming
Environments Manual.

2.3.2.3 Effective Address Calculation
An effective address (EA) is the 64-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 64-bit unsigned
binary arithmetic. A carry from bit 0 is ignored.

Load and store operations have three categories of effective address generation:

Register indirect with immediate index mode

Register indirect with index mode
Register indirect mode

Refer to Section 2.3.4.3.2, "Integer Load and Store Address Generation," for a detailed
description of effective address generation for load and store operations.

Branch instructions have three categories of effective address generation:

Immediate
Link register indirect

Count register indirect

2.3.2.4 Synchronization
The synchronization described in this section refers to the state of the processor that is
performing the synchronization.

MOTOROLA Chapter 2. Programming Model 2-35

2.3.2.4.1 Context Synchronization
The System Call (sc), Return from Interrupt Double Word (rfid), and Return from Interrupt
(rfi) instructions perform context synchronization by allowing previously issued
instructions to complete before performing a change in context. Execution of one of these
instructions ensures the following:

No higher priority exception exists (sc).

• All previous instructions have completed to a point where they can no longer cause
an exception. If a prior memory access instruction causes direct-store error
exceptions, the results are guaranteed to be determined before this instruction is
executed.

Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

• The instructions following the sc, rfi, and rfid instructions execute in the context
established by these instructions.

2.3.2.4.2 Execution Synchronization
An instruction is execution synchronizing if all previously initiated instructions appear to
have completed before the instruction is initiated or, in the case of sync and isync, before
the instruction completes. For example, the Move to Machine State Register (mtmsr) and
Move to Machine State Register Double Word (mtmsrd) instructions are execution
synchronizing. It ensures that all preceding instructions have completed execution and will
not cause an exception before the instruction executes, but does not ensure subsequent
instructions execute in the newly established environment. For example, if mtmsr or
mtmsrd sets the MSR[PR] bit, unless an isync immediately follows the mtmsr or mtmsrd
instruction, a privileged instruction could be executed or privileged access could be
performed without causing an exception even though the MSR[PR] bit indicates user mode.

2.3.2.4.3 Instruction-Related Exceptions
There are two kinds of exceptions in the 620-those caused directly by the execution of an
instruction and those caused by an asynchronous event (or interrupts). Either may cause
components of the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

An attempt to execute an illegal instruction causes the illegal instruction (program
exception) handler to be invoked. An attempt by a user-level program to execute the
supervisor-level instructions listed below causes the privileged instruction (program
exception) handler to be invoked. The 620 provides the following supervisor-level
instructions-dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsrd, mtmsr, mtspr, mtsrd,
mtsrdin, mtsr, mtsrin, rfid, rfi, slbia, slbie, tlbie, and tlbsync. Note that the
privilege level of the mfspr and mtspr instructions depends on the SPR encoding.

• An attempt to access memory that is not available (page or segment fault) causes the
ISI exception handler to be invoked.

2-36 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

An attempt to access memory with an effective address alignment that is invalid for
the instruction causes the alignment exception handler to be invoked.

The execution of an sc instruction invokes the system call exception handler that
permits a program to request the system to perform a service.

The execution of a trap instruction invokes the program exception trap handler.

The execution of a floating-point instruction when floating-point instructions are
disabled invokes the floating-point unavailable handler.

The execution of an instruction that causes a floating-point exception while
exceptions are enabled in the MSR invokes the program exception handler.

Exceptions caused by asynchronous events are described in Chapter 4, "Exceptions."

2.3.3 Instruction Set Overview
This section provides a brief overview of the Power PC instructions implemented in the 620
and highlights any special information with respect to how the 620 implements a particular
instruction. Note that the categories used in this section correspond to those used in
Chapter 4, "Addressing Modes and Instruction Set Summary," in The Programming
Environments Manual. These categorizations are somewhat arbitrary and are provided for
the convenience of the programmer and do not necessarily reflect the PowerPC architecture
specification.

Note that some instructions have the following optional features:

CR Update-The dot(.) suffix on the mnemonic enables the update of the CR.

Overflow option-Theo suffix indicates that the overflow bit in the XER is enabled.

2.3.4 PowerPC UISA Instructions
The PowerPC UISA includes the base user-level instruction set (excluding a few user-level
cache control, synchronization, and time base instructions), user-level registers,
programming model, data types, and addressing modes. This section discusses the
instructions defined in the UISA.

2.3.4.1 Integer Instructions
This section describes the integer instructions. These consist of the following:

Integer arithmetic instructions
Integer compare instructions
Integer logical instructions

Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the XER, and into condition register (CR) fields.

MOTOROLA Chapter 2. Programming Model 2-37

2.3.4.1.1 Integer Arithmetic Instructions
Table 2-20 lists the integer arithmetic instructions for the PowerPC processors.

Table 2-20. Integer Arithmetic Instructions

Name Mnemonic Operand Syntax

Add Immediate addi rD,rA,SIMM

Add Immediate Shifted add is rD,rA,SIMM

Add add (add. ad do addo.) rD,rA,rB

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Subtract from Immediate Carrying subfic rD,rA,SIMM

Add Carrying addc (addc. addco addco.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Add to Minus One Extended addme {add me. addmeo addmeo.) rD,rA

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Negate neg (neg. nego nego.) rD,rA

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low Word mullw (mullw. mullwo mullwo.) rD,rA,rB

Multiply Low Double Word mulld (mulld. mull do mulldo.) rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Double Word mulhd (mulhd.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Multiply High Double Word Unsigned mulhdu (mulhdu.) rD,rA,rB

Divide Word divw {divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu (divwu. divwuo divwuo.) rD,rA,rB

Divide Double Word divd {divd. divdo divdo.) rD,rA,rB

Divide Double Word Unsigned divdu divdu. divduo divduo. rD,rA,rB

Although there is no Subtract Immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. The subf instructions subtract the second operand (r A) from the

2-38 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second operand. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for examples.

The UISA states that for some implementations that execute instructions that set the
overflow bit (OE) or the carry bit (CA) it may either execute these instructions slowly or it
may prevent the execution of the subsequent instruction until the operation is complete. The
620 arithmetic instructions may suffer this penalty. The summary overflow bit (SO) and
overflow bit (OV) in the XER are set to reflect an overflow condition of a 32-bit (executing
mullw, divw, divwu) or 64-bit (executing mulld, divd, divdu) result. This may only occur
when the overflow enable bit is set (OE= 1).

2.3.4.1.2 Integer Compare Instructions
The integer compare instructions algebraically or logically compare the contents of register
r A with either the zero-extended value of the UIMM operand, the sign-extended value of
the SIMM operand, or the contents of register rB. The comparison is signed for the cmpi
and cmp instructions, and unsigned for the cmpli and cmpl instructions. Table 2-21
summarizes the integer compare instructions.

Table 2-21. Integer Compare Instructions

Name Mnemonic Operand Syntax

Compare Immediate cm pi crfD,L,rA,SIMM

Compare cmp crfD,L,rA,rB

Compare Logical Immediate cmpli crfD,L,rA,UIMM

Compare Logical cmpl crfD,L,rA,rB

The crfD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using an
explicit field number.

For information on simplified mnemonics for the integer compare instructions see
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual.

2.3.4.1.3 Integer Logical Instructions
The logical instructions shown in Table 2-22 perform bit-parallel operations on the
specified operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect the XER[SO], XER[OV], and XER[CA] bits.

MOTOROLA Chapter 2. Programming Model 2-39

~
I

I

I

I

~

--
See Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
simplified mnemonic examples for integer logical operations.

Table 2-22. Integer Logical Instructions

Name Mnemonic
Operand
Syntax

AND Immediate andi. rA,rS,UIMM

AND Immediate Shifted andis. rA,rS,UIMM

OR Immediate ori rA,rS,UIMM

OR Immediate Shifted oris rA,rS,UIMM

XOR Immediate xori rA,rS,UIMM

XOR Immediate Shifted xoris rA,rS,UIMM

AND and (and.) rA,rS,rB

OR or (or.) rA,rS,rB

XOR xor (xor.) rA,rS,rB

NAND nand (nand.) rA,rS,rB

NOR nor (nor.) rA,rS,rB

Equivalent eqv (eqv.) rA,rS,rB

AND with Complement andc (andc.) rA,rS,rB

OR with Complement ore (ore.) rA,rS,rB

Extend Sign Byte extsb (extsb.) rA,rS

Extend Sign Half Word extsh (extsh.) rA,rS

Extend Sign Word extsw (extsw.) rA,rS

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS

Count Leading Zeros Double Word cntlzd (cntlzd.) rA,rS

2.3.4.1.4 Integer Rotate and Shift Instructions
Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for a complete list of simplified mnemonics that
allows simpler coding of often-used functions such as clearing the leftmost or rightmost
bits of a register, left justifying or right justifying an arbitrary field, and simple rotates and
shifts.

Integer rotate instructions rotate the contents of a register. The result of the rotation is either
inserted into the target register under control of a mask (if a mask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is 0 the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

2-40 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The integer rotate instructions are summarized in Table 2-23.

Table 2-23. Integer Rotate Instructions

Name Mnemonic Operand Syntax

Rotate Left Double Word then Clear Left rldcl (rldcl.) rA,rS,rB,MB

Rotate Left Double Word then Clear Right rider (rider.) rA,rS,rB,ME

Rotate Left Double Word Immediate then Clear rldic (rldic.) rA,rS,SH,MB

Rotate Left Double Word Immediate then Clear Left rldicl (rldicl.) rA,rS,SH,MB

Rotate Left Double Word Immediate then Clear Right rldicr (rldicr.) rA,rS,SH,ME

Rotate Left Double Word Immediate then Mask Insert rldimi (rldimi.) rA,rS,SH,MB

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

The integer shift instructions perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix F, "Simplified
Mnemonics," in The Programming Environments Manual) are provided to make coding of
such shifts simpler and easier to understand.

Multiple-precision shifts can be programmed as shown in Appendix C, "Multiple-Precision
Shifts," in The Programming Environments Manual. The integer shift instructions are
summarized in Table 2-24.

Table 2-24. Integer Shift Instructions

Name Mnemonic Operand Syntax

Shift Left Double Word sld (sld.) rA,rS,rB

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Algebraic Double Word srad (srad.) rA,rS,rB

Shift Right Algebraic Double Word Immediate sradi (sradi.) rA,rS,SH

Shift Right Double Word srd (srd.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

MOTOROLA Chapter 2. Programming Model 2-41

2.3.4.2 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

Floating-point arithmetic instructions
Floating-point multiply-add instructions
Floating-point rounding and conversion instructions

Floating-point compare instructions
Floating-point status and control register instructions
Floating-point move instructions

See Section 2.3.4.3, "Load and Store Instructions," for information about floating-point
loads and stores.

The PowerPC architecture supports a floating-point system as defined in the IEEE 754
standard, but requires software support to conform with that standard. All floating-point
operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR.

2.3.4.2.1 Floating-Point Arithmetic Instructions
The floating-point arithmetic instructions are summarized in Table 2-25.

Table 2-25. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) tadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Square Root (Double-Precision) fsqrt (fsqrt.) frD,frB

Floating Square Root Single fsqrts (fsqrts.) frD,frB

Floating Reciprocal Estimate Single fr es (fres.) frD,frB

Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB

Floating Select fsel frD,frA,frC,frB

All single-precision arithmetic instructions are performed using a double-precision format.
The floating-point architecture is a single-pass implementation for double-precision
products. In most cases, a single-precision instruction using only single-precision

2-42 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

operands, in double-precision format, has the same latency as its double-precision
equivalent.

2.3.4.2.2 Floating-Point Multiply-Add Instructions
These instructions combine multiply and add operations without an intermediate rounding
operation. The floating-point multiply-add instructions are summarized in Table 2-26.

Table 2-26. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

2.3.4.2.3 Floating-Point Rounding and Conversion Instructions
The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit
double-precision number to a 32-bit single-precision floating-point number. The
floating-point convert instructions convert a 64-bit double-precision floating-point number
to a 32-bit signed integer number.

Examples of uses of these instructions to perform various conversions can be found in
Appendix D, "Floating-Point Models," in The Programming Environments Manual.

Table 2-27. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax

Floating Convert from Integer Double Word fcfid (fetid.) frD,frB

Floating Convert to Integer Double Word fetid (fetid.) frD,frB

Floating Convert to Integer Double Word with Round toward Zero fctidz (fctidz.) frD,frB

Floating Round to Single frsp (frsp.) frD,frB

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round toward Zero fctiwz (fctiwz.) frD,frB

MOTOROLA Chapter 2. Programming Model 2-43

-

2.3.4.2.4 Floating-Point Compare Instructions
Floating-point compare instructions compare the contents of two floating-point registers.
The comparison ignores the sign of zero (that is +O = -0). The floating-point compare
instructions are summarized in Table 2-28.

Table 2-28. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax

Floating Compare Unordered fcmpu crfD,frA,frB

Floating Compare Ordered fem po crfD,frA,frB

Within the PowerPC architecture, an fcmpu or fcmpo instruction with the Re bit set can
cause an illegal instruction program exception or produce a boundedly undefined result. In
the 620, crfD should be treated as undefined.

2.3.4.2.5 Floating-Point Status and Control Register Instructions
Every FPSCR instruction appears to synchronize the effects of all floating-point
instructions executed by a given processor. Executing an FPSCR instruction ensures that all
floating-point instructions previously initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. The FPSCR instructions are summarized in Table 2-29.

Table 2-29. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM

Move to FPSCR Fields mtfsf {mtfsf.) FM,frB

Move to FPSCR Bit 0 mtfsbO {mtfsbO.) crbD

Move to FPSCR Bit 1 mtfsb1 {mtfsb1 .) crbD

2.3.4.2.6 Floating-Point Move Instructions
Floating-point move instructions copy data from one FPR to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions
controls the placing of result status into CRl. Table 2-30 summarizes the floating-point
move instructions.

Table 2-30. Floating-Point Move Instructions

Name Mnemonic Operand Syntax

Floating Move Register fmr {fmr.) frD,frB

2-44 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-30. Floating-Point Move Instructions (Continued)

Floating Negate fneg (fneg.) frD,frB

Floating Absolute Value fabs (fabs.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB

2.3.4.3 Load and Store Instructions
Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. This section describes the load and store instructions, which consist of the
following:

• Integer load instructions
Integer store instructions
Integer load and store with byte reverse instructions
Integer load and store multiple instructions

Integer load and store string instructions
Floating-point load instructions

Floating-point store instructions

Implementation Notes-The following describes how the 620 handles misalignment:

If an unaligned memory access crosses a 4-Kbyte page boundary, within a normal
segment, an exception may occur when the boundary is crossed (that is, a protection
violation occurs on the new page). In these cases, the 620 triggers a DSI exception
and the instruction may have partially completed.

Some misaligned memory accesses suffer performance degradation as compared to
an aligned access of the same type. Memory accesses that cross a word boundary are
broken into multiple discrete accesses by the load/store unit, except floating-point
doubles aligned on a double-word boundary. Any noncacheable access that crosses
a double-word boundary is broken into multiple external bus tenures.

Any operation that crosses a word boundary (double word for floating-point doubles
aligned on a double-word boundary) is broken into two accesses. Each of these
accesses is translated. If either translation results in a data memory violation, a DSI
exception is signaled. If two translations cross from T = 1 into T = 0 space (a
programming error), the 620 completes all of the accesses for the operation, the
segment information from the T = 1 space is presented on the bus for every access
of the operation, and the 620 requires a direct-store protocol "Reply" from the
device. Similarly, if two translations cross from T = 0 into T = 1 space, a DSI
exception is not signaled.

In the PowerPC architecture, the Re bit must be zero for almost all load and store
instructions. If the Re bit is one, the instruction form is invalid. These include the
integer load indexed instructions (lbzx, lbzux, ldux, ldx, lhzx, lhzux, lhax, lhaux,
lwaux, lwax, lwzx, lwzux), the integer store indexed instructions (stbx, stbux,

MOTOROLA Chapter 2. Programming Model 2-45

--
stdux, stdx, sthx, sthux, stwx, stwux), the load and store with byte-reversal
instructions (lhbrx, lwbrx, sthbrx, stwbrx), the string instructions (lswi, lswx,
stswi, stswx), and the synchronization instructions (sync, lwarx). In the 620,
executing one of these invalid instruction forms causes CRO to be set to an undefined
value. The floating-point load and store indexed instructions (lfsx, lfsux, lfdx, lfdux,
stfsx, stfsux, stfdx, stfdux) are also invalid when the Re bit is one. In the 620,
executing one of these invalid instruction forms causes CRO to be set to an undefined
value.

2.3.4.3.1 Self-Modifying Code
When a processor modifies a memory location that may be contained in the instruction
cache, software must ensure that memory updates are visible to the instruction fetching
mechanism. This can be achieved by the following instruction sequence:

dcbst !update memory
sync lwait for update
icbi !remove (invalidate) copy in instruction cache
sync lwait for icbi to be globally performed
isync !remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Since
instruction fetching bypasses the data cache, changes to items in the data cache may not be
reflected in memory until the fetch operations complete.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency that are provided in the VEA, and discussed in Chapter 5, "Cache Model
and Memory Coherency," in The Programming Environments Manual. Because the 620
does not broadcast the M bit for instruction fetches, external caches are subject to
coherency paradoxes.

2.3.4.3.2 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 2.3.2.3, "Effective Address Calculation," for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 4.6.6, "Alignment Exception
(Ox00600)," for additional information about load and store address alignment exceptions.

2.3.4.3.3 Register Indirect Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which r A is updated with the generated effective address. For these forms, if
rA-:;:. 0 and rA-:;:. rD (otherwise invalid), the EA is placed into rA and the memory element
(byte, half word, word, or double word) addressed by the EA is loaded into rD. Note that
the PowerPC architecture defines load with update instructions with operand r A = 0 or
rA = rD as invalid forms.

2-46 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Implementation Notes-The following notes describe the 620 implementation of integer
load instructions:

In the PowerPC architecture, the Re bit must be zero for almost all load and store
instructions. If the Re bit is one, the instruction form is invalid. These include the
integer load indexed instructions (lbzx, lbzux, ldux, ldx, lhzx, lhzux, lhax, lhaux,
lwaux, lwax, lwzx, and lwzux). In the 620, executing one of these invalid
instruction forms causes CRO to be set to an undefined value.

For load with update instructions (lbzu, lbzux, ldu, ldux, lhzu, lhzux, lhau, lhaux,
lwzu, lwzux, lfsu, lfsux, lfdu, lfdux), when r A= 0 or r A= rD the instruction form
is considered invalid. If r A = 0, the 620 sets GPRO to an undefined value. If r A =
rD, the 620 sets rD to an undefined value.

• The Power PC architecture cautions programmers that some implementations of the
architecture may execute the Load Half Algebraic (Iha, lhax) instructions with
greater latency than other types of load instructions. This is not the case for the 620.

Table 2-31 summarizes the integer load instructions.

Table 2-31. Integer Load Instructions

Name Mnemonic Operand Syntax

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Double Word Id rD,d(rA)

Load Double Word with Update ldu rD,d(rA)

Load Double Word with Update Indexed ldux rD,rA,rB

Load Double Word Indexed ldx rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic Iha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word Algebraic lwa rD,d(rA)

Load Word Algebraic with Update Indexed lwaux rD,rA,rB

Load Word Algebraic with Indexed lwax rD,rA,rB

MOTOROLA Chapter 2. Programming Model 2-47

-

Table 2-31. Integer Load Instructions (Continued)

Name Mnemonic Operand Syntax

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

2.3.4.3.4 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which r A is updated with the EA. For these forms, the following
rules apply:

• If r A :t:. 0, the effective address is placed into r A.

If rS = r A, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

The PowerPC architecture defines store with update instructions with r A = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Re field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 2-32
summarizes the integer store instructions.

Table 2-32. Integer Store Instructions

Name Mnemonic Operand Syntax

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Double Word std rS,d(rA)

Store Double Word with Update stdu rS,d(rA)

Store Double Word with Update Indexed stdux rS,rA,rB

Store Double Word Indexed stdx rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

2-48 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-32. Integer Store Instructions (Continued}

Name Mnemonic Operand Syntax

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Implementation Notes-The following notes describe the 620 implementation of integer
store instructions:

• In the PowerPC architecture, the Re bit must be zero for almost all load and store
instructions. If the Re bit is one, the instruction form is invalid. These include the
integer store indexed instructions (stbx, stbux, stdux, stdx, sthx, sthux, stwx,
stwux). In the 620, executing one of these invalid instruction forms causes CRO to
be set to an undefined value.

• For the store with update instructions (stbu, stbux, stdu, stdux, sthu, sthux, stwu,
stwux, stfsu, stfsux, stfdu, stfdux), when r A= 0, the instruction form is considered
invalid. In this case, the 620 sets GPRO to an undefined value.

2.3.4.3.5 Integer Load and Store with Byte Reverse Instructions
Table 2-33 describes integer load and store with byte reverse instructions. When used in a
PowerPC system operating with the default big-endian byte order, these instructions have
the effect of loading and storing data in little-endian order. Likewise, when used in a
PowerPC system operating with little-endian byte order, these instructions have the effect
of loading and storing data in big-endian order. For more information about big-endian and
little-endian byte ordering, see Section 3.2.2, "Byte Ordering," in The Programming
Environments Manual.

Implementation Note-In the PowerPC architecture, the Re bit must be zero for almost
all load and store instructions. If the Re bit is one, the instruction form is invalid. These
include the load and store with byte-reverse instructions (lhbrx, lwbrx, sthbrx, stwbrx).
In the 620, executing one of these invalid instruction forms causes CRO to be set to an
undefined value.

Table 2-33. Integer Load and Store with Byte Reverse Instructions

Name Mnemonic Operand Syntax

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

2.3.4.3.6 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory

MOTOROLA Chapter 2. Programming Model 2-49

-

accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.

Implementation Notes-The following describes the 620 implementation of the
load/store multiple instruction:

The PowerPC architecture requires that memory operands for Load Multiple and
Store Multiple instructions (lmw and stmw) be word-aligned. If the operands to
these instructions are not word-aligned, an alignment exception occurs. The 620
provides hardware support for lmw and stmw instructions that cross a page
boundary. However, a DSI exception may occur when the boundary is crossed (for
example, if a protection violation occurs on the new page).

• Executing an lmw instruction in which r A is in the range of registers to be loaded
or in which r A= rD = 0 is invalid in the architecture. In the 620, all registers loaded
are set to undefined values. Any exceptions resulting from a memory access cause
the system error handler normally associated with the exception to be invoked.

• The 620's implementation of the lmw instruction allows one double word of data to
be transferred to the GPRs per internal clock cycle (that is, one register is filled per
clock) whenever the data is found in the cache. For the stmw instruction, data is
transferred from the GPRs to the cache at a rate of one double word (GPR) per clock
cycle.

When an lmw or stmw access is to noncacheable memory, data is transferred on the
external bus at a rate of one double word per external bus tenure.

The load multiple instruction can be interrupted after the instruction has partially
completed. If r A has been modified and the instruction is restarted, the instruction
begins loading from the addresses specified by the new value of r A, which might be
anywhere in memory; therefore, the system error handler may be invoked.

The PowerPC architecture defines the load multiple word (lmw) instruction with rA in the
range of registers to be loaded as an invalid form.

Table 2-34. Integer Load and Store Multiple Instructions

Name Mnemonic Operand Syntax

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

2.3.4.3.7 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a

2-50 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

sequence of individual load or store instructions that produce the same results. Table 2-35
summarizes the integer load and store string instructions.

In other PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.2.2, "Byte Ordering," in The Programming Environments Manual for more
information.

Table 2-35. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax

Load String Word Immediate lswi rD,rA,NB

Load String Word Indexed lswx rD,rA,rB

Store String Word Immediate stswl rS,rA,NB

Store String Word Indexed stswx rS,rA,rB

Load string and store string instructions may involve operands that are not word-aligned.

As described in Section 4.6.6, "Alignment Exception (Ox00600)," a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a
double-word-aligned string operation that crosses a 256-Mbyte boundary always causes an
alignment exception. A non-word-aligned string operation that crosses a double-word
boundary is also slower than a word-aligned string operation.

Implementation Note-The following describes the 620 implementation of the load/store
string instruction:

The 620 provides hardware support for lswi, lswx, stswi, and stswx instructions to
cross a page boundary. However, a DSI exception may occur when the boundary is
crossed (for example, if a protection violation occurs on the new page).

An lswi or lswx instruction in which r A or r B is in the range of registers potentially
to be loaded or in which rA = rD = 0 is an invalid instruction form. In the 620, all
registers loaded are set to undefined values. Any exceptions resulting from a
memory access cause the system error handler normally associated with the
exception to be invoked.

The load multiple and load string instructions can be interrupted after the instruction
has partially completed. If r A has been modified and the instruction is restarted, the
instruction begins loading from the addresses specified by the new value of r A,
which might be anywhere in memory; therefore, the system error handler may be
invoked.

The load string instructions can be interrupted after the instruction has partially
completed. If r A has been modified and the instruction is restarted, the instruction
begins loading from the addresses specified by the new value of r A, which might be
anywhere in memory; therefore, the system error handler may be invoked.

MOTOROLA Chapter 2. Programming Model 2-51

-

-
2.3.4.3.8 Floating-Point Load and Store Address Generation
Floating-point load and store operations generate effective addresses using the register
indirect with immediate index addressing mode and register indirect with index addressing
mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store access results in an alignment exception.

There are two forms of the floating-point load instruction-single-precision and
double-precision operand formats. Because the FPRs support only the floating-point
double-precision format, single-precision floating-point load instructions convert
single-precision data to double-precision format before loading the operands into the target
FPR.

Note that the PowerPC architecture defines load with update instructions with r A = 0 as an
invalid form.

Table 2-36. Floating-Point Load Instructions

Name Mnemonic Operand Syntax

Load Floating-Point Single Ifs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Load Floating-Point Double ltd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

2.3.4.3.9 Floating-Point Store Instructions
This section describes floating-point store instructions. There are three basic forms of the
store instruction-single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only floating-point,
double-precision format for floating-point data, single-precision floating-point store
instructions convert double-precision data to single-precision format before storing the
operands. Table 2-37 summarizes the floating-point store instructions.

2-52 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-37. Floating-Point Store Instructions

Name Mnemonic Operand Syntax

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx trS,r B

Store Floating-Point Single with Update stfsu trS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,r B

Store Floating-Point Double stfd trS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rB

Store Floating-Point Double with Update stfdu trS,d(rA)

Store Floating-Point Double with Update Indexed stfdux trS,r B

Store Floating-Point as Integer Word Indexed stfiwx trS,rB

Some floating-point store instructions require conversions in the LSU. Table 2-38 shows
the conversions made by the LSU when performing a Store Floating-Point Single
instruction.

Table 2-38. Store Floating-Point Single Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero Store
Infinity
QNaN

Single SNaN Store

Double Normalized If(exp ,;;; 896)
then Denormalize and Store
else

Store

Double Denormalized Store Zero

Double Zero Store
Infinity
QNaN

Double SNaN Store

MOTOROLA Chapter 2. Programming Model 2-53

-

-
Table 2-39 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Table 2-39. Store Floating-Point Double Behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and Store

Single Zero Store
Infinity
QNaN

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero Store
Infinity
QNaN

Double SNaN Store

Architecturally, all floating-point numbers are represented in double-precision format
within the 620. Execution of a store floating-point single (stfs, stfsu, stfsx, stfsux)
instruction requires conversion from double- to single-precision format. If the exponent is
not greater than 896, this conversion requires denormalization.

Because of how floating-point numbers are implemented in the 620, there is also a case
when execution of a store floating-point double (stfd, stfdu, stfdx, stfdux) instruction can
require internal shifting of the mantissa. This case occurs when the operand of a store
floating-point double instruction is a denormalized single-precision value. The value could
be the result of a load floating-point single instruction, a single-precision arithmetic
instruction, or a floating round to single-precision instruction.

2.3.4.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

2.3.4.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

2-54 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative

• Branch conditional to relative address

Branch to absolute address

• Branch conditional to absolute address

• Branch conditional to link register

• Branch conditional to count register

Note that in the 620, all branch instructions (b, ba, bl, bla, be, bca, bcl, bcla, heir, bclrl,
bcctr, bcctrl) and condition register logical instructions (crand, cror, crxor, crnand,
crnor, crandc, creqv, crorc, and mcrt) are executed by the BPU. Some of these
instructions can redirect instruction execution conditionally based on the value of bits in the
CR. Whenever the CR bits resolve, the branch direction is either marked as correct or
mispredicted. Correcting a mispredicted branch requires that the 620 flush speculatively
executed instructions and restore the machine state to immediately after the branch. This
correction can be done immediately upon resolution of the condition registers bits.

2.3.4.4.2 Branch Instructions
Table 2-40 lists the branch instructions provided by the PowerPC processors. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided
for the most frequently used forms of branch conditional, compare, trap, rotate and shift,
and certain other instructions. See Appendix F, "Simplified Mnemonics," in The
Programming Environments Manual for a list of simplified mnemonic examples.

Table 2-40. Branch Instructions

Name Mnemonic Operand Syntax

Branch b {ba bl bla) target_addr

Branch Conditional be (bca bcl bcla) BO,BI, target_addr

Branch Conditional to Link Register bclr (bclrl) BO,BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI

2.3.4.4.3 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 2-41, and the Move Condition
Register Field (mcrt) instruction are also defined as flow control instructions.

MOTOROLA Chapter 2. Programming Model 2-55

Table 2-41. Condition Register Logical Instructions

Name Mnemonic Operand Syntax

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA, crbB

Condition Register AND with Complement crandc crbD,crbA, crbB

Condition Register OR with Complement crorc crbD,crbA, crbB

Move Condition Register Field mcrf crfD,crfS

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

2.3.4.4.4 Trap Instructions
The trap instructions shown in Table 2-42 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 2-42. Trap Instructions

Name Mnemonic Operand Syntax

Trap Double Word td TO,rA,rB

Trap Double Word Immediate tdi TO,rA,SIMM

Trap Word Immediate twl TO,rA,SIMM

Trap Word tw TO,rA,rB

See Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
a complete set of simplified mnemonics.

2.3.4.5 System Linkage Instruction
This section describes the System Call (sc) instruction that permits a program to call on the
system to perform a service. See also Section 2.3.6.1, "System Linkage Instructions," for
additional information.

Table 2-43. System Linkage lnstruction-UISA

Name Mnemonic Operand Syntax

System Call SC -

2-56 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

2.3.4.6 Processor Control Instructions
Prucessor control instructions are used to read from and write to the condition register
(CR), machine state register (MSR), and special-purpose registers (SPRs). See
Section 2.3.5. I, "Processor Control Instructions," for the mftb instruction and
Section 2.3.6.2, "Processor Control Instructions," for information about the instructions
used for reading from and writing to the MSR and SPRs.

2.3.4.6.1 Move to/from Condition Register Instructions
Table 2-44 summarizes the instructions for reading from or writing to the condition register.

Table 2-44. Move to/from Condition Register Instructions

Name Mnemonic Operand Syntax

Move to Condition Register Fields mtcrt CRM,rS

Move to Condition Register from XER mcrxr crtD

Move from Condition Register mfcr rD

Note that the performance of the mtcrf instruction depends greatly on whether only one
field is being accessed or either no fields or multiple fields are accessed as follows:

Those mtcrf instructions that update only one field are executed in either of the
SCIUs and the CR field is renamed as with any other SCIU instruction.

Those mtcrf instructions that update either multiple fields or no fields are dispatched
to the MCIU and a count/link scoreboard bit is set. When that bit is set, no more
mtcrf instructions of the same type, mtspr instructions that update the count or link
registers, branch instructions that depend on the condition register and CR logical
instructions can be dispatched to the MCIU. The bit is cleared when the mtctr,
mtcrf, or mtlr instruction that the bit is executed.

Because mtcrf instructions that update a single field do not require such synchronization
that other mtcrf instructions do, and because two such single-field instructions can execute
in parallel, it is typically more efficient to use multiple mtcrf instructions that update only
one field apiece than to use one mtcrf instruction that updates multiple fields. A rule of
thumb follows:

It is always more efficient to use two mtcrf instructions that update only one field
apiece than to use one mtcrf instruction that updates two fields.

- It is almost always more efficient to use three or four mtcrf instructions that
update only one field apiece than to use one mtcrfinstruction that updates three
fields.

- It is often more efficient to use more than four mtcrf instructions that update only
one field than to use one mtcrf instruction that updates four fields.

MOTOROLA Chapter 2. Programming Model 2-57

-

-
2.3.4.6.2 Move to/from Special-Purpose Register Instructions
Table 2-45 lists the mtspr and mfspr instructions.

Table 2-45. Move to/from Special-Purpose Register Instructions (UISA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr rD,SPR

2.3.4.7 Memory Synchronization Instructions
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, "Instruction
and Data Cache Operation," for additional information about these instructions and about
related aspects of memory synchronization.

Table 2-46. Memory Synchronization lnstructions-UISA

Name Mnemonic Operand Syntax

Load Double Word and Reserve Indexed ldarx rD,rA,rB

Load Word and Reserve Indexed lwarx rD,rA,rB

Store Double Word Conditional Indexed stdcx. rS,rA,rB

Store Word Conditional Indexed stwcx. rS,rA,rB

Synchronize sync -

The proper paired use of the ldarx and lwarx instructions with the stdcx. and stwcx.
instructions allows programmers to emulate common semaphore operations such as "test
and set," "compare and swap," "exchange memory," and "fetch and add." The ldarx or
lwarx instruction must be paired with an stdcx. or stwcx. instruction with the same
effective address used for both instructions of the pair. Note that the reservation granularity
is implementation-dependent. See 2.3.5.2, "Memory Synchronization Instructions," for
details about additional memory synchronization (eieio and isync) instructions.

Implementation Notes-The following notes describe the 620 implementation of memory
synchronization instructions:

2-58

The PowerPC architecture requires that memory operands for Load and Reserve
(ldarx or lwarx) and Store Conditional (sdwcx. or stwcx.) instructions must be
word-aligned. If the operands to these instructions are not word-aligned on the 620,
an alignment exception occurs.

The PowerPC architecture indicates that the granularity with which reservations for
ldarx, lwarx, stdcx., and stwcx. instructions are managed is
implementation-dependent. In the 620 reservations, this granularity is a 64-byte
cache block.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

• The sync instruction causes the 620 to serialize. The sync instruction can be
dispatched with other instructions that are before it, in program order. However, no
more instructions can be dispatched until the sync instruction completes.
Instructions already in the instruction buffer, due to prefetching, are not refetched
after the sync completes. If reflecting is required, isync should be executed to flush
the instruction buffer after the sync. The sync is dispatched to the LSU and is
broadcast onto the external bus.

In the PowerPC architecture, the Re bit must be zero for almost all load and store
instructions. If the Re bit is one, the instruction form is invalid. These include the sync,
ldarx, and lwarx instructions. In the 620, executing one of these invalid instruction forms
causes CRO to be set to an undefined value. The stdcx. and stwcx. instructions are the only
load/store instructions that has a valid form if Re is set. If the Re bit is zero, the result of
executing these instructions in the 620 causes CRO to be set to an undefined value.

2.3.5 PowerPC VEA Instructions
The PowerPC virtual environment architecture (VEA) describes the semantics of the
memory model that can be assumed by software processes, and includes descriptions of the
cache model, cache control instructions, address aliasing, and other related issues.
Implementations that conform to the VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

This section describes additional instructions that are provided by the VEA.

2.3.5.1 Processor Control Instructions
In addition to the move to condition register instructions (specified by the UISA), the VEA
defines the mftb instruction (user-level instruction) for reading the contents of the time base
register; see Chapter 3, "Instruction and Data Cache Operation," for more information.
Table 3-34 shows the mftb instruction.

Table 2-47. Move from Time Base Instruction

Name Mnemonic Operand Syntax

Move from Time Base mftb rD, TBR

Simplified mnemonics are provided for the mftb instruction so it can be coded with the
TBR name as part of the mnemonic rather than requiring it to be coded as an operand. See
Appendix F, "Simplified Mnemonics," in The Programming Environments Manual for
simplified mnemonic examples and for simplified mnemonics for Move from Time Base
(mftb) and Move from Time Base Upper (mftbu), which are variants of the mftb
instruction rather than of mfspr. The mftb instruction serves as both a basic and simplified
mnemonic. Assemblers recognize an mftb mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the simplified form.

MOTOROLA Chapter 2. Programming Model 2-59

-

Implementation Notes-The following information is useful with respect to using the
time base implementation in the 620:

The 620 allows user-mode read access to the time base counter through the use of
the Move from Time Base (mftb) and the Move from Time Base Upper (mftbu)
instructions. As a 64-bit Power PC implementation, the 620 can access the entire TB
register at once.

• The time base counter is clocked at the bus clock frequency. Counting is enabled by
assertion of the time base enable (TB ENABLE) input signal.

2.3.5.2 Memory Synchronization Instructions
Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. See Chapter 3, "Instruction
and Data Cache Operation," for additional information about these instructions and about
related aspects of memory synchronization.

Table 2-48 describes the memory synchronization instructions defined by the VEA.

Table 2-48. Memory Synchronization Instructions-VEA

Name Mnemonic
Operand

Implementation Notes
Syntax

Enforce In-Order eieio - The eieio instruction is dispatched by the 620 to the LSU. The
Execution of 1/0 eieio instruction executes after all preceding cache-inhibited

or write-through memory instructions execute; all following
cache-inhibited or write-through instructions execute after the
eieio instruction executes. When the eleio instruction
executes, an EIEIO address-only operation is broadcast on
the external bus to allow ordering to be enforced in the
external memory system.

Instruction isync - The isync instruction causes the 620 to purge its instruction
Synchronize buffers and fetch the double word containing the next

sequential instruction.

System designs that use a second-level cache should take special care to recognize the
hardware signaling caused by a SYNC bus operation and perform the appropriate actions
to guarantee that memory references that may be queued internally to the second-level
cache have been performed globally.

In addition to the sync instruction (specified by UISA), the VEA defines the Enforce
In-Order Execution of I/O (eieio) and Instruction Synchronize (isync) instructions. The
number of cycles required to complete an eieio instruction depends on system parameters
and on the processor's state when the instruction is issued. As a result, frequent use of this
instruction may degrade performance slightly.

2-60 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The isync instruction causes the processor to wait for any preceding instructions to
complete, discard all prefetched instructions, and then branch to the next sequential
instruction (which has the effect of clearing the pipeline behind the isync instruction).

2.3.5.3 Memory Control Instructions
Memory control instructions include the following types:

Cache management instructions (user-level and supervisor-level)

Segment register manipulation instructions
Translation lookaside buffer management instructions

This section describes the user-level cache management instructions defined by the VEA.
See 2.3.6.3, "Memory Control Instructions," for information about supervisor-level cache,
segment register manipulation, and translation lookaside buffer management instructions.

The instructions summarized in this section provide user-level programs the ability to
manage on-chip caches if they are implemented. See Chapter 3, "Instruction and Data
Cache Operation," for more information about cache topics.

The user-level cache instructions provide software a way to help manage processor caches.
The following sections describe how these operations are treated with respect to the 620's
cache.

As with other memory-related instructions, the effect of the cache management instructions
on memory are weakly-ordered. If the programmer needs to ensure that cache or other
instructions have been performed with respect to all other processors and system
mechanisms, a sync instruction must be placed in the program following those instructions.

Note that this discussion does not apply to direct-store segment accesses because these are
defined to be cache-inhibited and instruction fetch from them is not allowed. Cache
operations that access direct-store segment are treated as no-ops. Table 2-49 summarizes
the cache instructions defined by the VEA. Note that these instructions are accessible to
user-level programs.

MOTOROLA Chapter 2. Programming Model 2-61

-

Table 2-49. User-Level Cache Instructions

Name Mnemonic
Operand

Implementation Notes
Syntax

Data debt rA,rB The VEA defines this instruction to allow for potential system
Cache performance enhancements through the use of software-initiated
Block Touch prefetch hints. Implementations are not required to take any action based

off the execution of this instruction, but they may choose to prefetch the
cache block corresponding to the effective address into their cache. The
620 performs the prefetch when the address hits in the TLB or the BAT, is
permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a c::acheable page. If the
operation does not meet these criteria, it is treated as a no-op. The data
brought into the cache as a result of this instruction is validated in the
same way a load instruction would be (that is, if no other bus participant
has a copy, it is marked as Exclusive, otherwise it is marked as Shared).
The memory reference of a debt causes the reference bit to be set.
A successful debt instruction affects the state of the TLB and cache LRU
bits as defined by the LRU algorithm.

Data dcbtst rA,rB This instructions behaves like the debt instruction.
Cache
Block
Touch for
Store

Data dcbz rA,rB The effective address is computed, translated, and checked for
Cache protection violations as defined in the VEA. If the 620 does not have
Block Set exclusive access to the block, it presents an operation onto the 620 bus
to Zero interface that instructs all other processors to invalidate copies of the

block that may reside in their cache (this is the kill operation on the bus).
After it has exclusive access, the 620 writes all zeros into the cache
block. If the 620 already has exclusive access, it immediately writes all
zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or
disabled, an alignment exception occurs.
If the operation is successful, the cache block is marked modified.

Data dcbst rA,rB The effective address is computed, translated, and checked for
Cache protection violations as defined in the VEA. If the 620 does not have
Block Store exclusive access to the block, it broadcasts the essence of the instruction

onto the 620 bus (using the clean operation, described in Table 3-5). If
the 620 has modified data associated with the block, the processor
pushes the modified data out of the cache and into the memory queue for
future arbitration onto the 620 bus. In this situation, the cache block is
marked exclusive. Otherwise this instruction is treated as a no-op.

Data dcbf rA,rB The effective address is computed, translated, and checked for
Cache protection violations as defined by the VEA. If the 620 does not have
Block Flush exclusive access to the block, it broadcasts the essence of the instruction

onto the 620 bus. In addition, if the addressed block is present in the
cache, the 620 marks this data as invalid. On the other hand, if the 620
has modified data associated with the block, the processor pushes the
modified data out of the cache and into the memory queue for future
arbitration onto the 620 bus. In this situation, the cache block is marked
invalid.

2-62 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-49. User-Level Cache Instructions (Continued)

Name Mnemonic
Operand

Implementation Notes
Syntax

Instruction icbi rA,rB The effective address is computed, translated, and checked for
Cache protection violations as defined in the PowerPC architecture. If the
Block addressed block is in the instruction cache, the 620 marks it invalid. This
Invalidate instruction changes neither the content nor status of the data cache. In

addition, the ICBI operation is broadcast on the 620 bus unconditionally
to support this function throughout multilayer memory hierarchy.

2.3.5.4 Optional External Control Instructions
The external control instructions allow a user-level program to communicate with a
special-purpose device. Two instructions are provided and are summarized in Table 2-50.

Table 2-50. External Control Instructions

Name Mnemonic Operand Syntax

External Control In Word Indexed eciwx rD,rA,rB

External Control Out Word Indexed ecowx rS,rA,rB

The eciwx and ecowx instructions should be word-aligned. Misaligned eciwx and ecowx
instructions are treated like cache-inhibited accesses, and may be split into two bus
transactions.

2.3.6 PowerPC CEA Instructions
The PowerPC operating environment architecture (OEA) includes the structure of the
memory management model, supervisor-level registers, and the exception model.
Implementations that conform to the OEA also adhere to the UISA and the VEA. This
section describes the instructions provided by the OEA.

2.3.6.1 System Linkage Instructions
This section describes the system linkage instructions (see Table 2-51). The sc instruction
is a user-level instruction that permits a user program to call on the system to perform a
service and causes the processor to take an exception. The rfi and rfid instructions are
supervisor-level instructions that are useful for returning from an exception handler.

Table 2-51. System Linkage lnstructions-OEA

Name Mnemonic Operand Syntax

System Call SC -

Return from Interrupt Double Word rfld -

Return from Interrupt rfi -

MOTOROLA Chapter 2. Programming Model 2-63

-

2.3.6.2 Processor Control Instructions
This section describes the processor control instructions that are used to read from and
write to the MSR and the SPRs.

Table 2-52 summarizes the instructions used for reading from and writing to the MSR.

Table 2-52. Move to/from Machine State Register Instructions

Name Mnemonic Operand Syntax

Move to Machine State Register Double Word mtmsrd rs

Move to Machine State Register mtmsr rs

Move from Machine State Register mfmsr rD

The OEA defines encodings of the mtspr and mfspr instructions to provide access to
supervisor-level registers. The instructions are listed in Table 2-53.

Table 2-53. Move to/from Special-Purpose Register Instructions (OEA)

Name Mnemonic Operand Syntax

Move to Special Purpose Register mtspr SPR,rS

Move from Special Purpose Register mfspr rD,SPR

Encodings for the 620-specific SPRs are listed in Table 2-54.

Table 2-54 SPR Encodings for 620-Defined Registers (mfspr)

SPR1

Register Name
Decimal spr[5-9] spr[D-4]

795 11000 11011 MMC RO

798 11000 11110 MMCR1

787 11000 10011 PMC1

788 11000 10100 PMC2

789 11000 10101 PMC3

790 11000 10110 PMC4

791 11000 10111 PMC5

792 11000 11000 PMC6

793 11000 11001 PMC7

794 11000 11010 PMC8

790 11000 01100 SIA

781 11000 01101 SDA

1008 11111 10000 HIDO

2-64 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 2-54 SPR Encodings for 620-Defined Registers (mfspr) (Continued)

SPR1

Register Name
Decimal spr[5-9] spr[0-4]

1010 11111 10010 IABR

1016 11111 11000 BUSCSR

1017 11111 11001 L2CR

1018 11111 11010 L2SR

1023 11111 11111 PIR

1 Note that the order of the two 5-bit halves of the SPR number is reversed compared with actual instruction
coding.

For mtspr and mfspr instructions, the SPR number coded in assembly language does not appear directly as
a 10-bit binary number in the instruction. The number coded is split into two 5-bit halves that are reversed in
the instruction, with the high-order 5 bits appearing in bits 16-20 of the instruction and the low-order 5 bits in
bits 11-15.

Simplified mnemonics are provided for the mtspr and mfspr instructions in Appendix F,
"Simplified Mnemonics," in The Programming Environments Manual. For a discussion of
context synchronization requirements when altering certain SPRs, refer to Appendix E,
"Synchronization Programming Examples," in The Programming Environments Manual.

For information on SPR encodings (both user- and supervisor-level) see Chapter 8,
"Instruction Set," in The Programming Environments Manual. Note that there are
additional SPRs specific to each implementation; for implementation-specific SPRs, see
the user's manual for that particular processor.

2.3.6.3 Memory Control Instructions
Memory control instructions include the following types of instructions:

Cache management instructions (supervisor-level and user-level)
Segment register manipulation instructions

Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. See Section 2.7.3,
"Memory Control Instructions-VEA," for more information about user-level cache
management instructions.

MOTOROLA Chapter 2. Programming Model 2-65

2.3.6.3.1 Supervisor-Level Cache Management Instruction
Table 2-55 lists the only supervisor-level cache management instruction.

Table 2-55. Cache Management Supervisor-Level Instruction

Name Mnemonic Operand Syntax Implementation Notes

Data dcbi rA,rB The EA is computed, translated, and checked for protection
Cache violations as defined in the OEA.
Block The 620 broadcasts the essence of the instruction onto the 620
Invalidate bus (using the Kill operation). In addition, if the addressed block

is present in the cache, the 620 marks this data as invalid
regardless of whether the data is clean or modified. Note that
this can have the effect of destroying modified data which is
why the instruction is privileged and has store semantics with
respect to protection.

See Section 2.7.3.1, "User-Level Cache Instructions-VEA," for cache instructions that
provide user-level programs the ability to manage the on-chip caches. If the effective
address references a direct-store segment, the instruction is treated as a no-op. Note that any
cache control instruction that generates an effective address that corresponds to a
direct-store segment (segment descriptor[T] = 1) is treated as a no-op.

2.3.6.3.2 Segment Register Manipulation Instructions
The instructions listed in Table 2-56 provide access to the segment registers. These
instructions operate completely independently of the MSR[IR] and MSR[DR] bit settings.
Refer to "Synchronization Requirements for Special Registers and for Lookaside Buffers,"
in Chapter 2, "PowerPC Register Set," of The Programming Environments Manual for
serialization requirements and other recommended precautions to observe when
manipulating the segment registers.

Table 2-56. Segment Register Manipulation Instructions

Name Mnemonic Operand Syntax

Move to Segment Register Double Word mtsrd SR,rS

Move to Segment Register mtsr SR,rS

Move to Segment Register Double Word Indirect mtsrdin rS,rB

Move to Segment Register Indirect mtsrin rS,rB

Move from Segment Register mfsr rD,SR

Move from Segment Register Indirect mfsrin rD,rB

SLB Invalidate All slbia -

SLB Invalidate Entry slbie rB

2-66 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

2.3.6.3.3 Translation Lookaside Buffer Management Instructions
The address translation mechanism is defined in terms of segment descriptors and page
table entries (PTEs) used by PowerPC processors to locate the logical to physical address
mapping for a particular access. These segment descriptors and PTEs reside in segment
tables and page tables in memory, respectively.

Refer to Chapter 7, "Memory Management" for more information about TLB operation.
Table 2-57 summarizes the operation of the TLB instructions in the 620.

Table 2-57. Translation Lookaside Buffer Management Instruction

Name Mnemonic
Operand

Implementation Notes
Syntax

TLB tlbie rB Execution of this instruction causes all entries in the congruence class
Invalidate corresponding to the specified EA to be invalidated in the processor
Entry executing the instruction and in the other processors attached to the

same bus by causing a TLB invalidate operation on the bus as
described in Section 7.2.4, "Address Transfer Attribute Signals.''
The OEA requires that a synchronization instruction be issued to
guarantee completion of a tlbie across all processors of a system.
The 620 implements the tlbsync instruction which causes a
TLBSYNC operation to appear on the bus as a distinct operation,
different from a SYNC operation. It is this bus operation that causes
synchronization of snooped tlbie instructions. Multiple tlbie
instructions can be executed correctly with only one tlbsync
instruction, following the last tlbie, to guarantee all previous tlbie
instructions have been performed globally.
Software must ensure that instruction fetches or memory references
to the virtual pages specified by the tlbie have been completed prior
to executing the tlbie instruction.
When a snooping 620 detects a TLB invalidate entry operation on the
bus, it accepts the operation only if no TLB invalidate entry operation
is being executed by this processor and all processors on the bus
accept the operation. Once accepted, the TLB invalidation is
performed unless the processor is executing a multiple/string
instruction, in which case the TLB invalidation is delayed until it has
completed.
Other than the possible TLB miss on the next instruction prefetch, the
tlbie does not affect the instruction fetch operation-that is, the
prefetch buffer is not purged and does not cause these instructions to
be refetched.

TLB tlbsync - The TLBSYNC operation appears on the bus as a distinct operation,
Synchronize different from a SYNC operation. It is this bus operation that causes

synchronization of snooped tlbie instructions.
See the tlbie description above for information regrading using the
tlbsync instruction with the tlbie instruction. For more information
about how other processors react to TLB operations broadcast on the
system bus of a multiprocessing system, see Chapter 8, "System
Interface Operation."

MOTOROLA Chapter 2. Programming Model 2-67

-

-
2.3.7 Recommended Simplified Mnemonics
To simplify assembly language coding, a set of alternative mnemonics is provided for some
frequently used operations (such as no-op, load immediate, load address, move register, and
complement register). Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in this
document.

For a complete list of simplified mnemonics, see Appendix F, "Simplified Mnemonics," in
The Programming Environments Manual.

2-68 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 3
Instruction and Data Cache Operation
This chapter describes the organization of the PowerPC 620's on-chip cache system, the
MESI cache coherency protocol, special concerns for cache coherency in single- and
multiple-processor systems, cache control instructions, various cache operations, and the
interaction between the cache and the memory unit.

To minimize the number of bus accesses, the 620 contains separate 32-Kbyte, eight-way
set-associative instruction and data caches and also provides a level 2 (L2) cache interface
described in Chapter 9, "Secondary Cache Interface." Systems may also be implemented
with a level 3 (L3) cache external to the 620.

The 620's cache block size is 64 bytes. The cache is designed to adhere to a write-back
policy, but the 620 allows control of cacheability, write policy, and memory coherency at
the page and block level, as defined by the PowerPC architecture. The caches use a least
recently used (LRU) replacement policy.

The 620 cache implementation has the following characteristics:

Separate 32-Kbyte instruction and data caches (Harvard architecture)

• Instruction and data caches are eight-way set associative.

Caches implement an LRU replacement algorithm within each set.

• The cache directories are physically addressed. The physical address tag is stored in
the cache directory. (Note that physical is referred to as real in the architecture
specification.)

• Both the instruction and data caches have 64-byte cache blocks. A cache block is the
block of memory that a coherency state describes, also referred to as a cache line.

• The coherency state bits for each block of the data cache allow encoding for all four
possible MESI states:

- Modified (Exclusive) (M)

- Exclusive (Unmodified) (E)

- Shared (S)

- Invalid (I)

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-1

-

• The coherency state bit for each cache block of the instruction cache allows
encoding for two possible states:

- Invalid (INV)

- Valid (VAL)

• The instruction cache can be invalidated or locked, and the data cache can be
invalidated by setting the appropriate bits in the hardware implementation
dependent register 0 (HIDO), a special-purpose register (SPR) specific to the 620.

The 620 uses 16-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 620 presents a quad-word-aligned address. Memory
controllers are expected to transfer this quad word of data first, followed by quad words
from increasing addresses, wrapping back to the beginning of the 16-word block as
required.

Writes of cache blocks by the 620 (for a copy-back operation) always present the first
address of the block, and transfer data beginning at the start of the block. However, this does
not preclude other masters from transferring critical double words first on the bus for
writes.

Note that in this chapter the terms multiprocessor and multiple-processor are used in the
context of maintaining cache coherency. These devices could be processors or other devices
that can access system memory, maintain their own caches, and function as bus masters
requiring cache coherency.

The organization of the 620 instruction and data caches is shown in Figure 3-1.

3-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Block 0

64 Se~.----.----,
~ l •• 1

T TT T

• o T o T T Te T o o o T T T T o

•
Address Tag f-1-i--i State T T T T T T W~rd~ 0~15T ' T T T

Block 1 Address Tag f-1-i--i State T T T T T TW~rd~ 0~15T ' T ' T' t-1- T

Block 2 Address Tag t-l-i--1 State T ' T Words 0-15T T ' ' ' t-1- -.-

Block 3 Address Tag t-t-i--1 State Words 0-15 t-1-
t---+-+-T+--+--+--+--+-~T--1--1---i---it--t--t--t-1r---1

Block 4 Address Tag 1-1-1----1 State Words 0-15 1-f-r-r--

Block 5

Block 6

Block 7

T Word~ 0-15 f--f-
T ' Address Tag f-1-1----1 State

Address Tag f-H
f--------1

Address Tag f-t-J

1---+-+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--1

State Words 0-15 1--t-
1---+-+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--1

State Words 0-15 t­
i--

~---- 16 Words/Block -----..i

Figure 3-1. Cache Organization

The 620's instruction and data caches are connected to the bus interface unit (BIU) with a
128-bit bus. The 128-bit bus allows four instructions to be loaded into the instruction cache
or a quad word (for example, two double-precision floating-point operands) to be loaded
into the data cache in a single clock. The instruction cache provides a 156-bit interface (four
32-bit instructions plus 7 predecoded bits per instruction) to the instruction fetcher, so four
instructions can be made available to the instruction unit in a single clock cycle.

3.1 Data Cache Organization
The 620's physically-addressed, physically indexed data cache lies between the load/store
instruction unit (LSU) and the bus interface unit (BIU), and provides the ability to read and
write data in memory by reducing the number of system bus transactions required for
execution of load/store instructions.

The LSU transfers data between the data cache and the result bus, which routes data to the
other execution units. The LSU supports the address generation and all the data alignment
to and from the data cache. The LSU also handles other types of instructions that access
memory, such as cache control instructions, and supports out-of-order loads and stores
while ensuring the integrity of data.

The 32-Kbyte, eight-way set-associative data cache is a nonblocking write-back cache with
hardware reload. The associative capability is implemented using a content addressable
memory (CAM) within the cache instead of the traditional n-way bussing and n-way
comparator bank external to the cache. The use of a CAM is advantageous in relation to

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-3

-

-I

frequency and area considerations, but can impact the effective associativity, since the
cache cannot contain multiple entries which have EA[44-57] the same.

The data cache supports a coherent memory system using the four-state MESI coherency
(modified/exclusive/shared/invalid) protocol. There are two separate address ports into the
data cache; one port for stores and snoop operations that access the cache using a physical
address, and one port for load accesses using an effective address. A load or store access
may hit in the cache every cycle since there is no write recovery blockage between a store
and a subsequent load. The data cache is divided into two halves, with accesses to each
cache half selected with a low order address bit. Load and store operations can access the
cache in parallel if they address different halves of the data cache. Snoop lookups access
the cache such that parallel load operations are stalled only if they access the same cache
set.

Each cache block contains 16 contiguous words from memory that are loaded from a 16-
word boundary; as a result, cache blocks are aligned with page boundaries. Within a single
cycle, the data cache provides a quad-word access to the LSU.

The data cache stores one parity bit for each byte of cached data. This byte parity is
calculated within the data cache for any cache array write (allocation of a new cache block
or execution of a store or data cache block zero instruction). Parity is checked on every read
operation from the cache array (execution of a load instruction or cache control instruction
that reads cached data, or copyback operations caused by cache block replacement, snoop
operations, or cache control instructions). Parity errors cause the generation of a machine
check exception as described in Chapter 4, "Exceptions."

3.2 Instruction Cache Organization
The 32-Kbyte, eight-way set-associative instruction cache is physically-indexed. The
instruction cache also contains 7 Kbytes of predecoded instruction bits (7 bits per
instruction). The organization of the instruction cache, shown in Figure 3-1, is identical to
that of the data cache. Each cache block contains 16 contiguous words from memory that
are loaded from an 16-word boundary; as a result, cache blocks are aligned with page
boundaries.

The associative capability of the instruction cache is implemented using a content
addressable memory (CAM) within the cache instead of the traditional n-way bussing and
n-way comparator bank external to the cache. The use of a CAM is advantageous in relation
to frequency and area considerations, but can impact the effective associativity, as the cache
cannot contain multiple entries which have EA[44-57] the same.

The instruction cache implements a cache reload buffer (CRB), which stores the cache
block received as a result of the last instruction cache miss. Instruction from the BIU are
loaded directly into the CRB, allowing the processor to access other cache blocks in the
instruction cache without waiting for the cache block to be filled. If instructions are

3-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

accessed while they are still in the CRB, the CRB will supply the instructions to the fetcher.
The instructions and associated tag information are loaded into the cache from the CRB
when the next instruction cache miss occurs.

Within a single cycle, the instruction cache provides as many as four instructions to the
instruction fetch unit. The instruction cache coherency is software-controlled. The
instruction cache can be invalidated on a block or invalidate-all granularity. The instruction
cache can be enabled, locked, and checked for parity depending on the setting of enable bits
provided in HIDO.

The instruction cache differs from the data cache in that it does not implement MESI cache
coherency protocol, and a single state bit is implemented that indicates only whether a
cache block is valid or invalid. If a processor modifies a memory location that may be
contained in the instruction cache, software must ensure that memory updates are visible to
the instruction fetching mechanism. This can be achieved by the following instruction
sequence:

dcbst # update memory
sync # wait for update
icbi # remove (invalidate) copy in instruction cache
sync # wait for ICBI operation to be globally performed
isync # remove copy in own instruction buffer

These operations are necessary because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes made to items in the data cache may
not be reflected in memory until after a fetch operation completes.

3.3 MMUs/Bus Interface Unit
The bus interface unit (BIU) implements both tenured and split-transaction modes, with an
8-bit tag provided for all address and data transactions. If permitted, the BIU can complete
one or more write transactions between the address and data tenures of a read transaction.
The BIU has 40-bit address and 128-bit data buses, with the address and data buses
protected by word and byte parity, respectively.

The BIU implements the critical-quad-word-first access where the double word requested
by the fetcher or the LSU is fetched first and the remaining words in the line are fetched
later. The critical quad word as well as other words in the cache block are forwarded to the
fetcher or to the LSU before they are written to the cache. When a memory access fails to
hit in the cache, the 620 accesses system memory through the bus interface unit. These
operations must arbitrate for bus access.

The memory management units (MMU s) provide address translation as specified by the
PowerPC OEA, including block address translation and page translation of memory
segments. The MMUs and the bus interface unit are shown in Figure 3-2.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-5

- (])
.c

Instruction Unit

Instruction MMU

I EPATI ~

Load/Store Unit

Data MMU

I EPATI ~

~ t-------~ ~------!(])

(.)

c:
0

t5
2
1i5
.E

Bus Interface Unit

Bus

Figure 3-2. Bus Interface Unit and MMU

L2
Interface

.c
~
(.)

t;J
Cl

The 620 performs address translation in two levels. The first-level translation is
accomplished by two separate 64-entry, fully-associative effective to physical translation
caches (EPATs); one for instruction fetches, and the other for data accesses. The EPAT
caches the effective address to physical address pairs returned from the second-level MMU.
The second-level MMU consists of a 20-entry, fully-associative SLB and a 128-entry, 2-
way set associative TLB. The second-level MMU is shared between the first-level
instruction and data MMUs. The 620 provides hardware that performs the TLB reload (also
known as page table walk) when a translation is not in a TLB. Memory management is
described in Chapter 5, "Memory Management." The BIU handles block fill and write-back
requests from either cache, as well as all noncacheable reads and writes.

3.4 Sequential Consistency
The following sections describe issues related to sequential consistency with respect to
single processor and multiprocessor systems.

3.4.1 Sequential Consistency Within a Single Processor
The PowerPC architecture requires that all memory operations executed by a single
processor be sequentially consistent with respect to that processor. This means that all
memory accesses appear to be executed in the order that is specified by the program with
respect to exceptions and data dependencies. Even though the 620 has multiple pipelines
into the cache and the memory access through the pipeline is out of program order, the 620
achieves the sequential consistent requirement effect by maintaining a centralized store
queue to check data dependencies. The completion unit ensures that all exceptions caused
by memory accesses will be handled in program order. Note that although memory accesses

3-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

that miss in the cache are forwarded onto the memory queue for future arbitration onto the
bus, all potential synchronous exceptions have been resolved before the cache. In addition,
although subsequent memory accesses can address the cache, full coherency checking
between the cache and the memory queue is provided to avoid dependency conflicts.

3.4.2 Weak Consistency Between Multiple Processors
The PowerPC architecture requires only weak consistency among processors-that is,
memory accesses between processors need not be sequentially consistent and memory
accesses among processors can occur in any order. It is important to note that the 620
processor takes advantage of this relaxed requirement in an effort to maximize the
effectiveness of the bus. The 620 will allow read operations to go ahead of store operations
(except when a dependency exists). In addition, the 620 may re-order store operations
unless there is an eieio instruction in between. A single store-multiple instruction accessing
cache-inhibited memory may be converted into multiple bus operations, and 620 may re­
order those operations.

Note that strong ordering of memory accesses with respect to the bus (and therefore, as
observed by other processors and other bus participants) can be accomplished by following
instructions that access memory with the sync instruction.

3.4.3 Sequential Consistency Within Multiprocessor Systems
The PowerPC architecture defines a load operation to have been performed with respect to
all other processors (and mechanisms) when the value to be returned by the load can no
longer be changed by a subsequent store by any processor (or other mechanism). In
addition, it defines a store operation to be performed with respect to all other processors
(and mechanisms) when any load operation from the same location returns the value stored
(or a subsequently stored value).

In the 620, cacheable load operations and cacheable, non-write-through store operations
are performed with respect to all other processors (and mechanisms) when they have
arbitrated to address the cache. If a cache miss occurs, these operations may drop a memory
request into the processor's memory queue, which is considered an extension to the state of
the cache with respect to snooping bus operations.

However, cache-inhibited load operations and cache-inhibited or write-through store
operations are performed with respect to other processors (and mechanisms) when they
have been successfully presented onto the 620 bus interface. As a result, if multiple
processors are performing these types of memory operations to the same addresses without
properly synchronizing one another (through the use of the lwarx/stwcx. instructions), the
results of these instructions are sensitive to the conditions associated with the order in
which the processors are granted bus access.

If the 620 uses an L3 cache, the system designer must ensure the memory system responds
to bus operations resulting from the execution of sync and eieio instructions in such a way
that the required ordering of memory operations is preserved.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-7

-

3.5 Memory and Cache Coherency
The 620 can support a fully coherent 16 terabyte (240) memory address space. Bus
snooping is used to drive a four-state (MESI) cache coherency protocol which ensures the
coherency of all processor and direct-memory access (DMA) transactions to and from
global memory with respect to each processor's cache. It is important that all bus
participants employ similar snooping and coherency control mechanisms. The coherency
of memory is maintained at a granularity of 64-byte cache blocks (this size is also called
the coherency or cache-block size).

All instruction and data accesses are performed under the control of the four memory/cache
access attributes:

• Write-through (W attribute)
Caching-inhibited (I attribute)

• Memory coherency (M attribute)
• Guarded (G attribute)

These attributes are programmed by the operating system for each page and block. The W
and I attributes control how the processor performing an access uses its own cache. The
M attribute ensures that coherency is maintained for all copies of the addressed memory
location. The G attribute prevents speculative loading and prefetching from the addressed
memory location.

3.5.1 Data Cache Coherency Protocol
The primary objective of a coherent memory system is to provide the same image of
memory to all processors in the system. This is an important feature of multiprocessor
systems since it allows for synchronization, task migration, and the cooperative use of
shared resources. An incoherent memory system could easily produce unreliable results
depending on when and which processor executed a task. For example, when a processor
performs a store operation, it is important that the processor have exclusive access to the
addressed block before the update is made. If not, another processor could have a copy of
the old (or stale) data. TWo processors reading from the same memory location would get
different answers.

To maintain a coherent memory system, each processor must follow simple rules for
managing the state of the cache. These include externally broadcasting the intention to read
a cache block not in the cache and externally broadcasting the intention to write into a block
that is not owned exclusively. Other processors respond to these broadcasts by snooping
their caches and reporting status back to the originating processor. The status returned
includes a shared indicator (that is, another processor has a copy of the addressed block)
and a retry indicator (that is, another processor either has a modified copy of the addressed
block that it needs to push out of the device, or another processor had a queuing problem
that prevented appropriate snooping from occurring).

3-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

To maximize performance, the 620 provides a second path into the data cache directory for
snooping. This allows the mainstream instruction processing to operate concurrently with
the snooping operation. The instruction processing is affected only when the snoop control
logic detects a situation where a snoop push of modified data is required to maintain
memory coherency.

Each 64-byte cache block in the 620 data cache is in one of four states. The four possible
states for a block in the cache are the invalid state (I), the shared state (S), the exclusive state
(E), and the modified state (M). In a system where multiple cache levels function together
to form a single cache the inclusivity of a cache level above in a cache level below is called
vertical cache coherence. Coherency between different processors caches is called
horizontal cache coherence, and is maintained by all cache devices snooping the bus level
below, and optionally snooping the bus level above. The tables in the following sections
illustrate the rules concerning vertical and horizontal cache state coherence. The vertical
lines in the tables represent the separation between multi-level processor caches, and the
horizontal lines represent the separation between cache levels, usually implemented by a
bus interface. The box formed by these horizontal and vertical lines contain the allowable
cache states for that cache level.

Note that in the description of the MESI states that follow the term exclusive indicates that
the cache block referenced is located in a given cache, and in no other cache at the same
level. The term modified indicates that the cache block referenced is modified with respect
to main memory.

3.5.1.1 Modified Cache State
The modified (M) cache state specifies that a cache block is valid, modified, and exclusive.
The cache levels above a cache block marked M may be marked I, M, or S. Cache levels
below a block marked M may only be marked M, and other caches at the same level must
be marked I. Table 3-1 shows the permissible M cache states in a multi-level, multi­
processor cache implementation.

Table 3-1. Cache Level and Modified Cache State

Cache Level Processor A Processor B

Level 1 cache MSI

Level 2 cache M I

Level 3 cache M

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-9

-

3.5.1.2 Exclusive Cache State
The exclusive (E) cache state specifies that a cache block is valid, not modified, and
exclusive to the cache block. The cache levels above a block marked E may be marked S or
I, but not M or E. Cache blocks marked E must be at the lowest cache level, and other cache
blocks at the same level must be marked I. Table 3-2 shows the permissible E cache states
in a multi-level, multi-processor cache implementation.

Table 3-2. Cache Level and Exclusive Cache State

Cache Level Processor A Processor B

Level 1 cache SI

Level 2 cache E I

3.5.1.3 Shared Cache State
The shared (S) cache state specifies that a cache block is valid, and shared with another
cache block. Cache levels above a block marked S may be marked S or I, but not M or E.
Cache levels below a block marked S may be marked M, E, or S, but not I. Caches in other
processors may mark the cache block S or I, but not M or E. Table 3-3 shows the
permissible S cache states in a multi-level, multi-processor cache implementation.

Table 3-3. Cache Level and Shared Cache State

Cache Level Processor A Processor B

Level 1 cache SI

Level 2 cache s SI

Level 3 cache MES

3.5.1.4 Invalid Cache State
The invalid (I) cache state specifies that there is not a valid copy of the cache block in the
cache. The cache levels above a cache block marked I must be marked I, and cache levels
below a cache block marked I may be marked M, E, S or I. Caches in other processor may
mark the cache block M, E, S, or I. Table 3-4 shows the permissible I cache states in a multi­
level, multi-processor cache implementation.

Table 3-4. Cache Level and Invalid Cache State

Cache Level Processor A ProcessorB

Level 1 cache I

Level 2 cache I MESI

Level 3 cache MESI

3-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

3.5.2 Coherency and Secondary Caches
The 620 provides an interface to support a larger, off-chip secondary cache. The use of an
L2 cache can serve to further improve performance by reducing the number of bus accesses.
The L2 cache must operate with respect to the memory system in a manner that is consistent
with the intent of the PowerPC architecture.

External L3 caches must forward all relevant system bus traffic onto the 620 so the 620 can
take the appropriate actions to maintain memory coherency as defined by the PowerPC
architecture.

3.5.3 Page Table Control Bits
The PowerPC architecture allows certain memory characteristics to be set on a page and on
a block basis. These characteristics include the following:

Write-back/write-through (using the W bit)
Cacheable/noncacheable (using the I bit)

Memory coherency enforced/not enforced (using the M bit)

An additional page control bit, G, handles guarded memory and is not considered here. This
ability allows both single- and multiple-processor system designs to exploit numerous
system-level performance optimizations.

The PowerPC architecture defines two of the possible eight decodings of these bits to be
unsupported (WIM = 110 or 111).

Note that software must exercise care with respect to the use of these bits if coherent
memory support is desired. Careless specification of these bits may create situations that
present coherency paradoxes to the processor. In particular, this can happen when the state
of these bits is changed without appropriate precautions (such as flushing the pages that
correspond to the changed bits from the caches of all processors in the system) or when the
address translations of aliased physical addresses specify different values for any of the
WIM bits. These coherency paradoxes can occur within a single processor or across several
processors.

It is important to note that in the presence of a paradox, the operating system software is
responsible for correctness. The next section provides a few simple examples to convey the
meaning of a paradox.

3.5.4 MESI State Diagram
The 620 provides dedicated hardware to provide data cache coherency by snooping bus
transactions. The address retry capability of the 620 enforces the MESI protocol, as shown
in Figure 3-3. Figure 3-3 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-11

-

..
I
I

Bus Transactions

RH = Read hit (]) = Snoop push
RMS = Read miss, shared
AME = Read miss, exclusive Q9 = Invalidate transaction
WH = Write hit
WM = Write miss E9 = Read-with-intent-to-modify

SHA = Snoop hit on a read
SHW = Snoop hit on a write or (]) = Read

read-with-intent-to-modify

Figure 3-3. MESI Cache Coherency Protocol-State Diagram (WIM = 001)

3.5.5 Coherency Paradoxes in Single-Processor Systems
The following coherency paradoxes can be encountered within a single processor:

3-12

Load or store operations to a page with WIM = ObOl l and a cache hit occurs.
Caching was supposed to be inhibited for this page. Any load operation to a cache­
inhibited page that hits in the cache presents a paradox to the processor. The 620
ignores the data in the cache and the state of the cache block is unchanged.

Store operation to a page with WIM = OblOX and a cache hit on a modified cache
block occurs. This page was marked as write-through yet the processor was given
access to the cache (write-through page are always main memory). Any store
operation to ::t write-through page that hits a modified cache block in the cache

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

presents a coherency paradox to the processor. The 620 writes the data both to the
cache and to main memory (note that only the data for this store is written to main
memory and not the entire cache block). The state of the cache block is unchanged.

3.5.6 Coherency Paradoxes in Multiple-Processor Systems
It is possible to create a coherency paradox across multiple processors. Such paradoxes are
particularly difficult to handle since some scenarios could result in the purging of modified
data, and others may lead to unforeseen bus deadlocks.

Most of these paradoxes center around the interprocessor coherency of the memory
coherency bit (or the M bit). Improper use of this bit can lead to multiple processors
accepting a cache block into their caches and marking the data as exclusive. In tum, this can
lead to a state where the same cache block is modified in multiple processor caches. Non­
coherent cache states occur in the LI/L2 cache state pairings E/M, M/E, E/E, M/S, E/S,
M/I, E/I, and S/I. The 620 does not detect these cache states and processor behavior is
undefined if they occur.

3.6 Cache Configuration
There are several bits in the HIDO register that can be used to configure the instruction and
data cache. These are described as follows:

Bit I-Enable cache parity checking. Enables a machine check exception based on
the detection of a cache parity error. If this bit is cleared, cache parity errors are
ignored. Note that the machine check exception is further affected by the MSR[ME]
bit, which specifies whether the processor enters checkstop state or continues
processing

Bit I6-Instruction cache enable. If this bit is cleared, the instruction cache is
neither accessed nor updated. Disabling the caches forces all pages to be accessed
as if they were marked cache-inhibited (WIM =XIX). All potential cache accesses
from the bus are ignored.

Bit I 7-Data cache enable. If this bit is cleared, the data cache is neither accessed
nor updated. Disabling the cache forces all pages to be accessed as if they were
marked cache-inhibited (WIM =XIX). All potential cache accesses from the bus,
such as snoop and cache operations are ignored.

Bit I 8-Instruction cache lock. Setting this bit locks the instruction cache, in which
case all cache misses are treated as cache-inhibited. Cache hits occur as normal.
Cache operations and the icbi instruction continue to work as normal.

Bit 20-Instruction cache invalidate all. When this bit is set, the instruction cache
begins an invalidate operation marking the state of each cache block in the desired
cache as invalid without copying back any data to memory. It is assumed that no data
in the instruction cache is modified. Invalidation of the instruction cache is

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-13

-

-

completed in two processor clock cycles, and access to the cache is blocked during
this time. The bits are reset when the invalidation operation begins (usually the cycle
immediately following the write to the register beginning an invalidate operation).

• Bit 21-Data cache invalidate all. When this bit is set, the data cache begins an
invalidate operation marking the state of each cache block in the desired cache as
invalid without copying back any modified lines to memory. Access to the cache is
blocked during this time. The bits are reset when the invalidation operation begins
(usually the cycle immediately following the write to the register). Any accesses to
the cache from the bus are signaled as a miss during the time that the invalidate-all
operation is in progress.

• Bits 27-28-Instruction fetch modes (with address translation enabled).

- 00: no speculative fetch from main memory

- 01: no speculative fetch from main memory with more than one pending branch

- 10: no speculative fetch from main memory with more than two pending
branches

- 11: allow speculative instruction fetching from main memory

The HIDO register can be accessed with the mtspr and mfspr instructions.

3.7 Cache Management Instructions
The VEA and OEA portions of the PowerPC architecture define instructions that can be
used for controlling caches in both single- and multiprocessor systems. The exact behavior
of these instruction in the 620 is described in the following sections.

Several of these instructions are required to broadcast their essence (such as a Kill, Clean,
or Flush operation) onto the 620 bus interface so that all processors in a multiprocessor
system can take the appropriate actions. The 620 contains snooping logic to monitor the bus
for these commands and control logic to keep the cache and the memory queue coherent.
Additional details on the specific bus operations can be found in Chapter 8, "System
Interface Operation."

3.7.1 Instruction Cache Block Invalidate (icbi)
The effective address is computed, translated, and checked for protection violations as
defined in the PowerPC architecture. If the addressed block is in the instruction cache, the
620 marks this instruction cache block as invalid. This instruction changes neither the
content nor status of the data cache. The ICBI operation is broadcast on the 620 bus
unconditionally to support this function throughout a system's memory hierarchy.

3.7.2 Instruction Synchronize (isync)
The isync instruction causes the 620 to purge its instruction buffers and fetch the next
sequential instruction.

3-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

3.7.3 Data Cache Block Touch (debt) and
Data Cache Block Touch for Store (dcbtst)

The Data Cache Block Touch (debt) and Data Cache Block Touch for Store (debtst)
instructions provide potential system performance improvement through the use of
software-initiated prefetch hints. The 620 treats these instructions identically. Note that
PowerPC implementations are not required to take any action based on the execution of this
instruction, but they may choose to prefetch the cache block corresponding to the effective
address into their cache. The 620 fetches the data into the cache when the address hits in
the TLB or the BAT, is permitted load access from the addressed page, is not directed to a
direct-store segment, and is directed at a cacheable page. Otherwise, the 620 treats these
instructions as no-ops.

Regarding MESI cache coherency, the data brought into the cache as a result of these
instructions is validated in the same manner that a load instruction would be (that is, if no
other bus participant has a copy, it is marked as exclusive; otherwise it is marked as shared).
The memory reference of a debt instruction causes the reference bit to be set.

Note also that the successful execution of the debt instruction affects the state of the TLB
and cache LRU bits as defined by the LRU algorithm.

3.7.4 Data Cache Block Set to Zero (dcbz)
As defined in the VEA, when the debz instruction is executed the effective address is
computed, translated, and checked for protection violations. If the 620 does not already
have exclusive access to this cache block, it presents a Kill operation onto the 620 bus-a
Kill operation instructs all other processors to invalidate copies of the cache block that may
reside in their caches. After it has exclusive access to the cache block, the 620 writes all
zeros into the cache block. In the event that the 620 already has exclusive access, it
immediately writes all zeros into the cache block. If the addressed block is within a
noncacheable or a write-through page, or if the cache is locked or disabled, an alignment
exception occurs.

3.7.5 Data Cache Block Store (dcbst)
As defined in the VEA, when a Data Cache Block Store (debst) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 620
does not have modified data in this block, the 620 broadcasts a Clean operation onto the
bus. If modified (dirty) data is associated with the cache block, the processor pushes the
modified data out of the cache and into the memory queue for future arbitration onto the
620 bus. In this situation, the cache block is marked as exclusive. Otherwise this instruction
is treated as a no-op.

3.7.6 Data Cache Block Flush (debt)
As defined in the VEA, when a Data Cache Block Flush (debt) instruction is executed, the
effective address is computed, translated, and checked for protection violations. If the 620
does not have modified data in this cache block, it broadcasts a Flush operation onto the 620

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-15

-

bus. If the addressed cache block is in the cache, the 620 marks this data as invalid.
However, if the cache block is present and modified, the processor pushes the modified data
into the memory queue for arbitration onto the 620 bus and the cache block is marked as
invalid.

3.7.7 Data Cache Block Invalidate (dcbi)
As defined in the OEA, when a Data Cache Block fuvalidate (dcbi) instruction is executed,
the effective address is computed, translated, and checked for protection violations.

The 620 broadcasts a Kill operation onto the 620 bus. If the addressed cache block is in the
cache, the 620 marks this data as invalid regardless of whether the data is modified. Because
this instruction may effectively destroy modified data, it is privileged and has store
semantics with respect to protection; that is, write permission is required for the DCBI
(Kill) operation.

3.8 Basic Cache Operations
This section describes operations that can occur to the cache, and how these operations are
implemented in the 620.

3.8.1 Cache Reloads
A cache block is reloaded after a read miss occurs in the cache. The cache block that
contains the address is updated by a burst transfer of the data from system memory. Note
that if a read miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified data is first written to external memory before the cache reload occurs.

3.8.2 Cache Cast-Out Operation
The 620 uses an LRU replacement algorithm to determine which of the eight possible cache
locations should be used for a cache update. Updating a cache block causes any modified
data associated with the least-recently used element to be written back, or cast out, to
system memory.

3.8.3 Cache Block Push Operation
When a cache block in the 620 is snooped and hit by another processor and the data is
modified, the cache block must be written to memory and made available to the snooping
device. The cache block that is hit is said to be pushed out onto the bus,

3.8.4 Atomic Memory References
The lwarx/stwcx. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 2, "Programming Model."

3-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

3.9 Cache State Response to Instruction Execution
and Bus Operations

The following sections define the cache state transitions for the 620 caches with respect to
processor instructions and bus operations. External L3 cache state transitions due to snoop
responses to transactions on the bus above are also described to assist in the design of
systems that implement an external L3 cache.

3.9.1 Cache State Transitions Due to Instruction Execution
Table 3-5 below describes the cache coherency state transitions, bus operations, and
ARESPIN signal states associated with cache load, store, and control instructions. Each of
the columns in Table 3-5 are defined as follows:

Instruction or operation-Lists the instruction or operation that causes the state
transition. All entries in this column are instructions except deallocate, which
indicates a cache block deallocation due to a cache block castout. Note that LD and
ST explicitly denote all load and store operations except for LARX (lwarx and ldarx
instructions) and STCX (stwcx. and stdcx. instructions). Also, the setting of the PTE
M bit is ignored for all instructions except the DCBTST operation.

WIM state-Refers to the WIM memory access mode bits in the PTE. Refer to
Chapter 5, "Memory Management" for additional information about supported
WIMG bit configurations.

Coherency state-Defines the coherency for the addressed cache block. The
notation"->" indicates that the states shown on the left will transition to the states
shown on the right following the execution of the instruction. If the"->" notation is
not shown, the state does not change following instruction execution. The cache is
not accessed during instruction execution if the coherency state entry is blank.

Bus operation-Defines the bus operation, if any, that occurs as a result of
instruction execution.

• ARESPIN signal state-Reflects the input to the 620 from an external arbiter that
combines the responses from the ARESPOUT signals of other bus masters. The
ARESPIN responses are defined as follows:

- S, Null: If ARESPIN is S, coherency state is S, if ARESPIN is Null, coherency
state is E.

- M, M: Indicates whether response is modified or retry.

- Blank entry: Indicates that snoop response for this case is "don't care".

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-17

Table 3-5. Cache State Transitions Due to Instruction Execution

Instruction or
WIM State

Coherency Bus Operation ARE SPIN Comments
Operation State

LD, DCBT Cacheable MES

LARX MES LARX-reserve LARX-reserve broadcast
if L3 cache enabled

LD, DCBT, 1->S Burst read M M indicates data
LARX, DCBTST intervention
(M=O)

I-> SE Burst read S, Null

LD, LARX Non cache- Single-beat read
able

DCBT No operation on non-
cacheable blocks

ST, DCBTST, Cacheable, M
STCX writeback

ST, STCX E-> M

DCBTST E

DCBTSTM=O s
ST, STCX, and S-> M DClaim
DCBTSTM=1

I-> M RWITM M,M M indicates data interven-
ti on

ST Cacheable, MESI Write with Flush STCX not supported for
write through cacheable, write through

ST,STCX Non cache- Write with Flush
able

DCBTST Cacheable, No operation on write
write through or noncacheable
through, and blocks
noncacheable

Deallocate Cacheable M-> I Write with Kill
(CB)

ESI-> I

DCBF M->I Write with Kill (F)

ESI-> I Flush

DCBI MESI-> I DKill

DCBST M->SE Write with Clean Eifnol3

SE-> SE Clean S, Null Clean optional for ES if no
L3

I Clean

3-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 3-5. Cache State Transitions Due to Instruction Execution

Instruction or
WIM State

Coherency
Bus Operation ARESPIN Comments

Operation State

DCBZ Cacheable, EM->M
writeback

Cacheable, 18->M DClaim
write back

Cacheable, Alignment exception
write
through, and
noncacheable

Chapter 3, "Addressing Modes and Instruction Set Summary," and Chapter 8, "Instruction
Set," in The Programming Environments Manual describe the cache control instructions in
detail. Several of the cache control instructions broadcast onto the 620 interface so that all
processors in a multiprocessor system can take appropriate actions. The 620 contains
snooping logic to monitor the bus for these commands and the control logic required to
keep the cache and the memory queues coherent. For additional details about the specific
bus operations performed by the 620, see Chapter 8, "System Interface Operation."

3.9.2 Cache State Transitions Due to Bus Snoop Operations
Table 3-6 describes the state transitions that occur due to bus snoop operations. Note that
the following conditions apply when the 620 is snooping bus operations:

Bus operations that are marked not memory coherent (M = 0) are not snooped by the
620

Bus operations that are marked memory coherent (M = 1) are snooped by the 620
regardless of the state of the cache-inhibited (I) bit.

A Write-with-Clean bus operation will always be marked not memory coherent
(M = 0) and will be ignored by the 620 snooper.

The 620 will always have at least one cache block store buffer reserved for a cache
block push.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-19

-

Table 3-6. Cache State Transitions Due to Bus Snoop Operations

Bus Operation
Snooper Reservation

ARES POUT ARESPIN Comments
State State

Read-Burst N=1, S=O M->S M Causes C -> MC
N=1, S=1, 12en data-only opera-
N=1, S=1, 12en, ti on
13en (Intervention) - N=1, S=1, 12en, M-> E M
13en

N=O, S=O M->S Retry Causes Write
N=O, S=1, 12en with Clean
N=O, S=1, 12en, (push)
13en

N=O, S= 1, 12en, M-> E Retry
13en

s s Note3

S=O E-> S s Note3

S=1 s Re Run

S=1 E s Re Run

I R=O

R=1 s
RWITM N=1 M-> I M Causes C->C

data-only opera-
lion (lnterven-
lion)

N=O M-> I Retry Causes Write
with Kill (push)

ESI-> I Re Run

E-> S Re Run

IS

Write-With-Kill, MESI-> I Re Run
DKill,

DClaim E-> S ReRun

MSI

Write-With-Flush M-> I Retry Causes Write
with Kill (push}

ESI-> I Re Run

E-> S Re Run

SI

3-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 3-6. Cache State Transitions Due to Bus Snoop Operations (Continued)

Bus Operation
Snooper Reservation

ARESPOUT ARESPIN Comments
State State

Read-Non-Burst M->S Retry Causes Write
with Clean
(push)

ES-> S s Note3

I R=O

R=1 s

Clean M->ES M1 Causes Write
with Clean
(push)
E if lowest
cache level, S
otherwise

s s

E s2 Re Run

E->S s2 ReRun

I R=O

R=1 s

Flush M->I M1 Causes Write
with Kill (push)

ESI-> I Re Run

E->S Re Run

SI

SYNC, TLBSYNC ReRun, Will ReRun until
Null done. Will Null

when done.

Notes:

1. M overrides ReRun to optimize performance.

2. ARES POUT= Shared is not significant to any other snooping device that has this block marked
invalid. Note that the L2 E state implies that there is no L3 cache.

3. Burst read and single-beat read operations will mark the block S for the ReRun response, in addition
to the Null and Shared responses.

3.9.3 L3 Cache State Transitions Due to Bus-Above Operations
Although the 620 does not implement an L3 cache, this information in this section is
provided to show how coherence is maintained between the 620 and a cache external to the
620. For additional information about the operation of the bus and external cache refer to
Chapter 8, "System Interface Operation." Note that all bus operations occurring above the
L3 cache are snooped regardless of the state of the A, W, I, M, and N address attribute bits.
The L3 cache state transition attributes described in Table 3-7 are as follows:

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-21

-

Bus above operation-Lists the instruction or operation that causes the state
transition.

• M in L2-Indicates when the state of a cache block at a higher level has been
modified.

Snooper state-State of the L3 cache following a snoop operation.

ARESPOUT-State of the ARESPOUT signal during snoop operation.

ARESPIN-State of the ARESPIN signal during snoop operation.

Comments-Describes actions taken on busses above and below the L3 cache.

- Bus above-Describes actions taken with respect to the bus above the L3 cache

- Bus below-Describes actions taken with respect to the bus below the L3 cache

- Address above-Indicates that the L3 decodes the address to be above the L3
cache

- Address below-Indicates that the L3 decodes the address to be below the L3
cache

The L3 state transitions that occur due to bus-above transactions are described in Table 3-7.

Table 3-7. L3 Cache State Transitions Due to Bus-Above Operations

Bus-Above M State L3 State ARESPOUT ARESPIN
Comments

Operation in L2 Following Snoop State State

Read Burst, RWITM, y M No Action
Write-with-Flush,
Read-Non-Burst,

Clean, Flush

Read Burst N M M Bus Above: Source Data-
Only Operation

ES s Address Above:
No Action
Address Below:
Bus Above: Data-Only
Operation

1->ES s Address Above:
1. L3 allocates cache
block
2. Bus Above: Sink Data-
Only Operation
Address Below:
1. Bus Below: Read-Burst,
E-state if lowest cache
level and S response, else
S-state.
2. Bus Above: Source
Data-Only Operation

3-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 3-7. L3 Cache State Transitions Due to Bus-Above Operations (Continued)

Bus-Above M State L3 State ARESPOUT ARES PIN
Comments

Operation in L2 Following Snoop State State

RWITM N->Y M M Address Above:
Data is sourced by the L3

Null with the M response.
Address Below:
Bus Above: Source Data-
Only Operation with Null
response.

N->Y E-> M Null Address Above:
No Action and Null
response because data is
sourced from memory.
Address Below:
Bus Above: Source Data-
Only Operation with Null
response.

N->Y S-> M Null Address Above:
,M 1 a. No Action and Null

response if data is
sourced from memory.
1 b. Modified response if
data is sourced by L3.
Address Below:
1. Bus Below: DClaim
2. Bus Above: Source
Data-Only Operation with
Null response.

N->Y I-> M Address Above:
1. L3 allocates cache
block
2. Bus Above: Sink Data-
Only Operation
Address Below:
1. Bus Below: RWITM
2. Bus Above: Source
Data-Only Operation with
Null response.

Write-with-Kill, -> N MESI-> I Address Above:
DKill No Action

Address Below:
Bus Below: Write-with-Kill
or DKill

Write-with-Clean Y->N M-> ES Address Above:
No Action, E if lowest
cache level.
Address Below:
Bus Below: Write-with-
Clean, E if lowest cache
level.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-23

Table 3-7. L3 Cache State Transitions Due to Bus-Above Operations (Continued)

Bus-Above M State L3 State ARESPOUT ARESPIN
Comments

Operation in L2 Following Snoop State State

DC I aim N->Y MESI-> M Mlnl2 must start as N
Bus Below: DClaim if
initial state is M

Write-with-Flush, N M-> I Retry Address Above:

- Read-Non-Burst 1. Bus Above: Write with
Kill (Push)
2. Bus Below: DKill if
lower cache level exists.
Address Below:
Bus Below: Write with Kill
(Push)

ESI-> I Address Above:
No Action
Address Below:
Bus Below: Write-with-
Flush or Read-Non-Burst

Clean N M-> ES s Address Above:
1. Bus Above: Write with
Clean, E-state if lowest
cache level, else S-state.
2. Bus Below: Clean
Address Below:
1. Bus Below: Write with
Clean

ES s Bus Below: Clean

I Bus Below: Clean

Flush N M-> I Address Above:
1. Bus Above: Write with
Kill (Push)
2. Bus Below: DKill if
lower cache level exists.
Address Below:
Bus Below: Write with Kill
(Push)

E-> I No Action

SI-> I Bus Below: Flush

3-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

3.1 O Access to Direct-Store Segments
The 620 supports both memory-mapped and I/0-mapped access to I/O devices. In addition
to the high-performance bus protocol for memory-mapped I/O accesses, the 620 provides
the ability to map memory areas to the direct-store interface (SR[T] = 1) with the following
two kinds of operations:

• Direct-store operations-These operations are considered to address the
noncoherent and noncacheable direct-store; therefore, the 620 does not maintain
coherency for these operations, and the cache is bypassed completely.

• Memory-forced direct-store operations-These operations are considered to
address memory space and are therefore subject to the same coherency control as
memory accesses. These operations are global memory references within the 620
and are considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM bits.

MOTOROLA Chapter 3. Instruction and Data Cache Operation 3-25

-

3-26 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 4
Exceptions
The OEA portion of the PowerPC architecture defines the mechanism by which PowerPC
processors implement exceptions (referred to as interrupts in the architecture specification).
Exception conditions may be defined at other levels of the architecture. For example, the
UISA defines conditions that may cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

PowerPC exception mechanism allows the processor to change to supervisor state as a
result of external signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception-for example, the DSISR and the floating-point status and control register
(FPSCR). Additionally, certain exception conditions can be explicitly enabled or disabled
by software.

The PowerPC architecture requires that exceptions be taken in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are handled strictly in order with respect to the instruction stream. When an instruction­
caused exception is recognized, any unexecuted instructions that appear earlier in the
instruction stream, including any that have not yet entered the execute state, are required to
complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled sequentially.
Likewise, exceptions that are asynchronous and precise are recognized when they occur,
but are not handled until all instructions currently in the execute stage successfully
complete execution and report their results.

Note that exceptions can occur while an exception handler routine is executing, and
multiple exceptions can become nested. It is up to the exception handler to save the states
if it is desired to allow control to ultimately return to the excepting program.

MOTOROLA Chapter 4. Exceptions 4-1

-

In many cases, after the exception handler handles an exception, there is an attempt to
execute the instruction that caused the exception. Instruction execution continues until the
next exception condition is encountered. This method of recognizing and handling
exception conditions sequentially guarantees that the machine state is recoverable and
processing can resume without losing instruction results.

To prevent the loss of state information, exception handlers must save the information
stored in SRRO and SRRl soon after the exception is taken to prevent this information from
being lost due to another exception being taken.

In this chapter, the following terminology is used to describe the various stages of exception
processing:

Recognition

Taken

Handling

Exception recognition occurs when the condition that can cause an
exception is identified by the processor.

An exception is said to be taken when control of instruction
execution is passed to the exception handler; that is, the context is
saved and the instruction at the appropriate vector offset is fetched
and the exception handler routine is begun in supervisor mode
(referred to as privileged state in the architecture specification).

Exception handling is performed by the software linked to the
appropriate vector offset. Exception handling is begun in supervisor­
mode.

Note that the PowerPC architecture documentation refers to exceptions as interrupts. In this
book, the term interrupt is reserved to refer to asynchronous exceptions, and sometimes to
the event that causes the exception to be taken. Also, the PowerPC architecture uses the
word exception to refer to IEEE-defined floating-point exceptions, conditions that may
cause a program exception to be taken (See Section 4.6.7, "Program Exception (Ox00700).)
The occurrence of these IEEE exceptions may in fact not cause an exception to be taken.
IEEE-defined exceptions are referred to as IEEE floating-point exceptions or floating-point
exceptions.

4.1 PowerPC 620 Microprocessor Exceptions
As specified by the PowerPC architecture, all exceptions can be described as either precise
or imprecise and either synchronous or asynchronous. Asynchronous exceptions are caused
by events external to the processor's execution; synchronous exceptions are caused by
instructions.

The types of exceptions implemented by the 620 are shown in Table 4-1. Note that all
exceptions except for the system management interrupt and performance monitoring
exception are defined by the PowerPC architecture.

4-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 4-1. Exception Classifications

Type Exception

Asynchronous/nonmaskable Machine Check
System Reset

Asynchronous/maskable External interrupt
Decrementer interrupt
System management interrupt (620-specific)
Performance monitoring exception (620-specific)

Synchronous/precise Instruction-caused exceptions

Exceptions implemented in the 620, and conditions that cause them, are listed in Table 4-2.

Table 4-2. Exceptions and Conditions-Overview -
Exception Vector Offset

Causing Conditions
Type (hex)

Reserved 00000 -

System reset 00100 The causes of system reset exceptions are implementation-dependent. In the
620 a system reset is caused by the assertion of either the soft reset or hard
reset signal.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRRO and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

Machine check 00200 On the 620 a machine check exception is signaled by the assertion of the
machine check input (MCP) signal. If the MSR[ME] is cleared, the processor
enters the checkstop state when one of these signals is asserted. Note that
MSR[ME] is cleared when an exception is taken. The machine check exception
is also caused by parity errors on the address or data bus or in the instruction or
data caches. Regardless of the state of MSR[ME} the 620 enters the checkstop
state if parity errors are detected on the address or data bus.

Note that the machine check exception is imprecise with respect to the
instruction that originated the bus operation.

The machine check exception is disabled when MSR[ME] = 0. If a machine
check exception condition exists and the ME bit is cleared, the processor goes
into the checkstop state.

If the conditions that cause the exception also cause the processor state to be
corrupted such that the contents of SRRO and SRR1 are no longer valid or such
that other processor resources are so corrupted that the processor cannot
reliably resume execution, the copy of the RI bit copied from the MSR to SRR1
is cleared.

DSI 00300 A DSI exception occurs when a data memory access cannot be performed for
any of the reasons described in Section 4.6.3, "OSI Exception (Ox00300)." Such
accesses can be generated by load/store instructions, certain memory control
instructions, and certain cache control instructions.

ISi 00400 An ISi exception occurs when an instruction fetch cannot be performed for a
variety of reasons described in Section 4.6.4, "ISi Exception (Ox00400)."

MOTOROLA Chapter 4. Exceptions 4-3

Table 4-2. Exceptions and Conditions-Overview (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

External 00500 An external interrupt exception occurs when the external exception signal, INT,
interrupt is asserted. This signal is expected to remain asserted until the exception

handler begins execution. If MSR[EE] is set and the assertion of the INT signal
is detected, the 620 completes the oldest instruction in the completion queue
and cancels all outstanding instructions. Any exceptions associated with
dispatched instructions are taken before the exception is taken.

Alignment 00600 An alignment exception may occur when the processor cannot perform a
memory access for reasons described in Section 4.6.6, "Alignment Exception
(Ox00600)." Note that the PowerPC architecture defines a wider range of
conditions that may cause an alignment exception than required in the 620. In - these cases, the 620 provides logic to handle these conditions without requiring
the processor to invoke the alignment exception handler.

Program 00700 A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

Floating-point enabled exception-A floating-point enabled exception
condition is generated when either MSR[FEO] or MSR[FE1] and
FPSCR[FEX] are set. The settings of FEO and FE1 are described in
Table 4-4.
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a Move to FPSCR
instruction that sets both an exception condition bit and its corresponding
enable bit in the FPSCR. These exceptions are described in Chapter 6,
"Exceptions," of The Programming Environments Manual.
Illegal instruction-An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields or when execution of an
optional instruction not provided in the specific implementation is attempted
(these do not include those optional instructions that are treated as no-ops).
The PowerPC instruction set is described in Section 2.3, "Instruction Set
Summary."
Privileged instruction-A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. This exception is also
generated for mtspr or mfspr with an invalid SPR field if spr[O] = 1 and
MSR[PR] = 1.
Trap-A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

For more information, refer to Section 4.6.7, "Program Exception (Ox00700)."

Floating-point 00800 A floating-point unavailable exception occurs when the floating-point available
unavailable bit in the MSR is cleared (MSR[FP] = 0), and an attempt is made to execute a

floating-point instruction (including floating-point load, store, or move
instructions).

Decrementer 00900 The decrementer interrupt exception is taken if the exception is enabled
(MSR[EE] = 1) and the exception is pending. The exception is created when the
most significant bit changes of the decrementer register from O to 1. If it is not
enabled (MSR[EE] = 0), the exception remains pending until it is taken.

Reserved OOAOO Reserved for implementation-specific exceptions; this exception is not
implemented by the 620. For example, the 601 uses this vector offset for direct-
store exceptions.

4-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 4-2. Exceptions and Conditions-Overview (Continued)

Exception Vector Offset
Causing Conditions

Type (hex)

Reserved 00800 -

System call oocoo A system call exception occurs when a System Call (sc) instruction is executed.

Trace 00000 The trace exception, which is implemented in the 620, is defined by the
PowerPC architecture but is optional. A trace exception occurs if either MSR[SE]
= 1 and any instruction (except rfid, rfi, sc, or trap instruction whose condition is
true) successfully completed or MSR[BE] = 1 and a branch instruction is
completed.

Floating-point OOEOO The 620 does not implement the floating-point assist exception.
assist

Performance OOFOO The performance monitoring interrupt is a 620-specific exception and is used
monitoring with the 620 performance monitor, described in Section 4.6.13, "Performance
interrupt Monitoring Interrupt (OxOOFOO).''

The performance monitoring facility can be enabled to signal an exception when
the value in one of the performance monitor counter registers (PMC1 or PMC2)
goes negative. The conditions that can cause this exception can be enabled or
disabled through bits in the monitor mode control register 0 (MMCRO).
Although the exception condition may occur when the MSR[EE] bit is cleared,
the actual interrupt is masked by the MSR[EE] bit and cannot be taken until the
MSR[EE] bit is set.

Reserved 01000-012FF Reserved for implementation-specific exceptions not implemented on the 620.

Instruction 01300 An instruction address breakpoint exception occurs when the address (bits O to
address 61) in the IABR matches the next instruction to complete in the completion unit,
breakpoint the IABR enable bit (IABR[62]) is set, and the IABR break on translation bit

(IABR[63]) is equal to MSR[IR].

System 01400 A system management interrupt exception is caused when MSR[EE] = 1 and
management the SMI input signal is asserted. This exception is provided for use with the nap
interrupt mode.

Reserved 014FF-02FFF Reserved for implementation-specific exceptions not implemented on the 620.

MOTOROLA Chapter 4. Exceptions 4-5

-

4.2 Exception Recognition and Priorities
Exceptions are roughly prioritized by exception class, as follows:

1. Nonmaskable, asynchronous exceptions have priority over all other exceptions­
system reset and machine check exceptions (although the machine check exception
condition can be disabled so the condition causes the processor to go directly into
the checkstop state). These exceptions cannot be delayed, and do not wait for the
completion of any precise exception handling.

2. Synchronous, precise exceptions are caused by instructions and are taken in strict
program order.

3. Imprecise exceptions (imprecise mode floating-point enabled exceptions) are
caused by instructions and they are delayed until higher priority exceptions are
taken.

4. Maskable asynchronous exceptions (external interrupt and decrementer exceptions)
are delayed until higher priority exceptions are taken.

Exception priorities are described in "Exception Priorities," in Chapter 4, "Exceptions," in
The Programming Environments Manual.

The following is a summary of the exception priorities for the 620, including both
exceptions defined by the PowerPC architecture as well as the 620-specific exceptions.

1. System reset

2. Machine check

3. Instruction-dependent

A) Integer loads and stores

a) Instruction address breakpoint

b) Alignment

c) DSI

d) Trace

B) Floating-point loads and stores

a) Instruction address breakpoint

b) Floating-point unavailable

c) Alignment

d) DSI

e) Trace

4-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

C) Other floating-point instructions

a) Instruction address breakpoint

b) Floating-point unavailable

c) Program: Precise-mode floating-point enabled

d) Trace

D) rfi, rfid, mtmsr, and mtmsrd

a) Instruction address breakpoint for mtmsr and mtmsrd only

b) Program: Precise-mode floating-point enabled

c) Trace for mtmsr and mtmsrd only

E) Other instructions

a) Instruction address breakpoint

b) Exceptions mutually exclusive and same priority

- Program: Trap

- System call

- Program: Privileged instruction

- Program: Illegal instruction

c) Trace

F) ISi

4. System management interrupt
(Note that the 620 does not implement imprecise-mode floating-point exceptions)

5. External

6. Performance monitor

7. Decrementer

System reset and machine check exceptions may occur at any time and are not delayed even
if an exception is being handled. As a result, state information for the interrupted exception
may be lost; therefore, these exceptions are typically nonrecoverable.

All other exceptions have lower priority than system reset and machine check exceptions,
and the exception may not be taken immediately when it is recognized.

If an imprecise exception is not forced by either the context or the execution synchronizing
mechanism and if the instruction addressed by SRRO did not cause the exception then that
instruction appears not to have begun execution. For more information on context­
synchronization, see Chapter 6, "Exceptions," in The Programming Environments Manual.

MOTOROLA Chapter 4. Exceptions 4-7

-

-

4.3 Support for 32-Bit Operating Systems
The 620 supports the optional 64-bit bridge as defined by the PowerPC architecture and
supports the following architecture-defined, exception-related functionality:

mtmsr-32-bit version of Move to Machine State Register Double Word (mtmsrd)
instruction
rfi-32-bit version of Return from Interrupt Double Word (rfid) instruction

• MSR[ISF]-New MSR bit that copies to MSR[SF] when an exception is taken

4.4 Exception Processing
When an exception is taken, the processor uses the save/restore registers, SRRO and SRR 1,
to save the contents of the machine state register for user-level mode and to identify where
instruction execution should resume after the exception is handled.

When an exception occurs, the address saved in machine status save/restore register 0
(SRRO) is used to help calculate where instruction processing should resume when the
exception handler returns control to the interrupted process. Depending on the exception,
this may be the address in SRRO or at the next address in the program flow. All instructions
in the program flow preceding this one will have completed execution and no subsequent
instruction will have begun execution. This may be the address of the instruction that
caused the exception or the next one (as in the case of a system call or trap exception). The
SRRO register is shown in Figure 4-1.

SARO (holds EA for instruction in interrupted program flow)

0 63

Figure 4-1. Machine Status Save/Restore Register 0

The save/restore register l(SRRI) is used to save machine status (selected bits from the
MSR and possibly other status bits as well) on exceptions and to restore those values when
rfid (or rfi) is executed. SRRl is shown in Figure 4-2.

Exception-specific information and MSR bit values

0 63

Figure 4-2. Machine Status Save/Restore Register 1

Typically, when an exception occurs, bits 33-36 and 42-47 of SRRI are loaded with
exception-specific information and bits 0-32, 37-41, and 48-63 of SRRl are loaded with
equivalent bits from the MSR. Note that depending on the implementation, reserved bits in
the MSR may not be copied to SRRl.

4-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Note that in other implementations every instruction fetch that occurs when MSR[IR] = 1,
and every instruction execution requiring address translation when MSR[DR] = 1, may
modify SRR 1.

In the 620 and in other 64-bit PowerPC implementations, the MSR bits are as shown in
Figure 4-3.

O Reserved

IP IR DR -0 PMM2 RI LE

0 1 2 3 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

1 The ISF bit is optional and implemented only as part of the 64-bit bridge; this bit is cleared to O on hard reset.
2 620-specific

Figure 4-3. Machine State Register (MSR)-64-Bit Implementation

Table 4-3 shows the bit definitions for the MSR.

Table 4-3. MSR Bit Settings

Bit(s) Name Description

0 SF Sixty-four bit mode
0 The 64-bit processor runs in 32-bit mode. Note that this is the default setting following a

hard reset.
1 The 64-bit processor runs in 64-bit mode.

1 - Reserved

2 ISF Exception sixty-four bit mode (optional to OEA). When an exception occurs, this bit is copied
into MSR[SF] to select 64- or 32-bit mode for the context established by the exception.

3-45 - Reserved

46 - Reserved

47 ILE Exception little-endian mode. When an exception occurs, this bit is copied into MSR[LE] to
select the endian mode for the context established by the exception.

48 EE External interrupt enable
0 While the bit is cleared the processor delays recognition of external interrupts and

decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.

49 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.

50 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point

loads, stores, and moves.
1 The processor can execute floating-point instructions.

51 ME Machine check enable
0 Machine check exceptions are disabled.
1 Machine check exceptions are enabled.

52 FEO Floating-point exception mode O.

MOTOROLA Chapter 4. Exceptions 4-9

-

Table 4-3. MSR Bit Settings (Continued)

Bit(s) Name Description

53 SE Single-step trace enable (Optional in the architecture; implemented in the 620)
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of

the next instruction.
Note: If the function is not implemented, this bit is treated as reserved.

54 BE Branch trace enable (optional)
0 The processor executes branch instructions normally.
1 The processor generates a branch trace exception after completing the execution of a

branch instruction, regardless of whether the branch was taken.
Note: II the function is not implemented, this bit is treated as reserved.

55 FE1 Floating-point exception mode 1.

56 - Reserved

57 IP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or Os. In the following description, nnnnn is the offset of the exception vector.
See Table 4-2.
0 Exceptions are vectored to the physical address OxOOOO_OOOO_OOOn_nnnn in 64-bit

implementations.
1 Exceptions are vectored to the physical address OxFFFF _FFFF _FFFn_nnnn in 64-bit

implementations.

58 IR Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 5, "Memory Management."

59 DR Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 5, "Memory Management."

60 - Reserved

61 PMM Performance monitor mark (620-specilic). Used to mark specific processes. In conjunction with
the MMCR0[3-4], FCMO, and FCM1 provides control for the processes in which the
performance monitor is enabled or disabled.

62 RI Recoverable exception (for system reset and machine check exceptions).
0 Exception is not recoverable.
1 Exception is recoverable.
For more information see Section 4.6.1, "System Reset Exception (Ox00100),"and
Section 4.6.2, "Machine Check Exception (Ox00200)."

63 LE Little-endian mode enable
0 The processor runs in big-endian mode.
1 The processor runs in little-endian mode.

The IEEE floating-point exception mode bits (FEO and FEl) together define whether
floating-point exceptions are handled precisely, imprecisely, or whether they are taken at

4-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

all. The possible settings and default conditions for the 620 are shown in Table 4-4. For
further details, see Chapter 6, "Exceptions," of The Programming Environments Manual.

Table 4-4. IEEE Floating-Point Exception Mode Bits

FEO FE1 Mode

0 0 Floating-point exceptions disabled

0 1 Floating-point precise mode

1 0 Floating-point imprecise recoverable. In the 620, this bit setting causes the 620 to operate in floating-
point precise mode.

1 1 Floating-point precise mode

MSR bits are guaranteed to be written to SRRl when the first instruction of the exception
handler is encountered.

4.4.1 Enabling and Disabling Exceptions
When a condition exists that may cause an exception to be generated, it must be determined
whether the exception is enabled for that condition.

• IEEE floating-point enabled exceptions (a type of program exception) are ignored
when both MSRfFEOl and MSR[FE 1] are cleared. If either of these bits are set, all
IEEE enabled floating-point exceptions are taken and cause a program exception.

Asynchronous, maskable exceptions (that is, the external, decrementer, and system
management interrupts) are enabled by setting the MSR[EE] bit. When MSR[EE] =
0, recognition of these exception conditions is delayed. MSR[EE] is cleared
automatically when an exception is taken, to delay recognition of conditions causing
those exceptions.

A machine check exception can occur only if the machine check enable bit,
MSR[ME], is set. IfMSR[ME] is cleared, the processor goes directly into checkstop
state when a machine check exception condition occurs. Individual machine check
exceptions can be enabled and disabled through bits in the HIDO register, which is
described in Table 4-7.

System reset exceptions cannot be masked.

MOTOROLA Chapter 4. Exceptions 4-11

-

-

4.4.2 Steps for Exception Processing
After it is determined that the exception can be taken (by confirming that any instruction­
caused exceptions occurring earlier in the instruction stream have been handled, and by
confirming that the exception is enabled for the exception condition), the processor does
the following:

1. The machine status save/restore register 0 (SRRO) is loaded with an instruction
address that depends on the type of exception. See the individual exception
description for details about how this register is used for specific exceptions.

2. Bits 33-36 and 42-47 of SRRl are loaded with information specific to the exception
type.

3. Bits 0-32, 37-41, and 48-63 of SRRl are loaded with a copy of the corresponding
bits of the MSR. Note that depending on the implementation, reserved bits may not
be copied.

4. The MSR is set as described in Table 4-3. The new values take effect beginning with
the fetching of the first instruction of the exception-handler routine located at the
exception vector address.

Note that MSR[IR] and MSR[DR] are cleared for all exception types; therefore,
address translation is disabled for both instruction fetches and data accesses
beginning with the first instruction of the exception-handler routine.

5. Instruction fetch and execution resumes, using the new MSR value, at a location
specific to the exception type. The location is determined by adding the exception's
vector (see Table 4-2) to the base address determined by MSR[IP]. If IP is cleared,
exceptions are vectored to the physical address OxOOOO_OOOO_OOOn _ nnnn. If IP is
set, exceptions are vectored to the physical address OxFFFF _FFFF _FFFn_ nnnn. For
a machine check exception that occurs when MSR[ME] = 0 (machine check
exceptions are disabled), the checkstop state is entered (the machine stops executing
instructions). See Section 4.6.2, "Machine Check Exception (Ox00200)."

4.4.3 Setting MSR[RI]
The operating system should handle MSR[RI] as follows:

• In the machine check and system reset exceptions-If MSRl [RI] is cleared, the
exception is not recoverable. If it is set, the exception is recoverable with respect to
the processor.

• In each exception handler-When enough state information has been saved that a
machine check or system reset exception can reconstruct the previous state, set
MSR[RI].

• In each exception handler-Clear MSR[RI], set the SRRO and SRRl registers
appropriately, and then execute rfid (or rfi).

• Not that the RI bit being set indicates that, with respect to the processor, enough
processor state data is valid for the processor to continue, but it does not guarantee
that the interrupted process can resume.

4-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

4.4.4 Returning from an Exception Handler
The Return from Interrupt instructions, rfid (or rfi), perform context synchronization by
allowing previously issued instructions to complete before returning to the interrupted
process. In general, execution of the rfid (or rfi) instruction ensures the following:

All previous instructions have completed to a point where they can no longer cause
an exception. If a previous instruction causes a direct-store interface error exception,
the results must be determined before this instruction is executed.

Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

The rfid (or rfi) instruction copies SRRl bits back into the MSR.

The instructions following this instruction execute in the context established by this
instruction.

For a complete description of context synchronization, refer to Chapter 6, "Exceptions," of
The Programming Environments Manual.

4.5 Process Switching
The operating system should execute one of the following when processes are switched:

The sync instruction, which orders the effects of instruction execution. All
instructions previously initiated appear to have completed before the sync
instruction completes, and no subsequent instructions appear to be initiated until the
sync instruction completes. For an example showing use of the sync instruction, see
Chapter 2, "PowerPC Register Set," of The Programming Environments Manual.

The isync instruction, which waits for all previous instructions to complete and then
discards any fetched instructions, causing subsequent instructions to be fetched (or
refetched) from memory and to execute in the context (privilege, translation,
protection, etc.) established by the previous instructions.

The stwcx. instruction, to clear any outstanding reservations, which ensures that an
lwarx instruction in the old process is not paired with an stwcx. instruction in the
new process.

The operating system should set the MSR[RI] bit as described in Section 4.4.3, "Setting
MSR[RI]."

MOTOROLA Chapter 4. Exceptions 4-13

-

-

4.6 Exception Definitions
Table 4-5 shows all the types of exceptions that can occur with the 620 and the MSR bit
settings when the processor transitions to supervisor mode due to an exception. Depending
on the exception, certain of these bits are stored in SRR 1 when an exception is taken.

Table 4-5. MSR Setting Due to Exception

Exception
MSR Bit

Type
SF ISF POW ILE EE PR FP ME FEO SE BE FE1 IP IR DR PMM RI LE

System reset ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

Machine check ISF - 0 - 0 0 0 0 0 0 0 0 - 0 0 0 0 ILE

OSI ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

ISi ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

External ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

Alignment ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

Program ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

Floating-point ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE
unavailable

Decrementer ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

System call ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE

Trace ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE
exception

System ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE
management

Performance ISF - 0 - 0 0 0 - 0 0 0 0 - 0 0 0 0 ILE
monitor

O Bit is cleared.
ILE Bit is copied from the ILE bit in the MSR.

Bit is not altered
Reserved bits are read as if written as O.

The setting of the exception prefix bit (IP) determines how exceptions are vectored. If the
bit is cleared, exceptions are vectored to the physical address OxOOOO_OOOO_OOOn _ nnnn
(where nnnnn is the vector offset); if IP is set, exceptions are vectored to the physical
address OxFFFF _FFFF _FFFn _ nnnn. Table 4-2 shows the exception vector offset of the first
instruction of the exception handler routine for each exception type.

4.6.1 System Reset Exception (Ox00100)
The system reset exception is a non-maskable interrupt that is signaled to the 620 either
through the assertion of an input signal to the chip (SRESET) or internally during the
power-on reset sequence.

4-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The system reset exception is considered asynchronous in the manner that it has no relation
to any specific instruction. Although the exception is asynchronous, the 620 synchronizes
it to an instruction completion boundary. When the 620 detects a system reset exception
condition, it completes the oldest instruction in the processor and then cancels all
outstanding instructions before taking the system reset exception. As a result, the system
reset exception is considered recoverable if the completing instruction (oldest instruction)
does not cause an interrupt. If the completing instruction does not cause an exception,
SRRO holds the effective address of the next instruction that would have executed if the
exception were not present. If the completing instruction causes an exception, SRRO
contains the effective address of the first instruction of the exception handler.

Note that system software can use HID0[15] to indicate why the processor is taking a
system reset exception. To implement that, system software sets this bit at the end of the
system reset exception routine. HID0[15] is cleared when the processor takes a hard reset.

Register settings for the system reset exception are described in Table 4-6.

Table 4-6. System Reset Exception-Register Settings

Register Setting Description

SRRO If the completing instruction does not cause an exception, SRRO holds the effective address of the next
instruction that would have executed if the exception were not present. If the completing instruction causes
an exception, SRRO contains the effective address of the first instruction of the exception handler.

SRR1 0-32 Loaded with equivalent bits from the MSR
33-36 Cleared
37-41 Loaded with equivalent bits from the MSR
42-47 Cleared
48-61 Loaded with equivalent bits from the MSR
62 Loaded from the equivalent MSR bit, MSR[RI], if the exception is recoverable; otherwise

cleared.
63 Loaded with equivalent bit from the MSR
Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.
If the processor state is corrupted to the extent that execution cannot resume reliably, the bit corresponding
to MSR[RI], (SRR1 [62]), is cleared.

MSR SF Set to value of ISF PR 0 BE 0 PMM 0
ISF - FP 0 FE1 0 RI 0
POW 0 ME - IP - LE Set to value of ILE
ILE - FEO 0 IR 0
EE 0 SE 0 DR 0

The SRESET input provides a "warm" reset capability. This input is used to avoid causing
the 620 to perform the entire power-on reset sequence, thereby preserving the contents of
the architected registers. This capability is useful when recovering from certain checkstop
or machine check states. When a system reset exception is taken, instruction execution
continues at offset Ox00100 from the physical base address indicated by MSR[IP].

MOTOROLA Chapter 4. Exceptions 4-15

-

-

4.6.2 Machine Check Exception (Ox00200)
The 620 implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, or after the machine check interrupt (MCP) signal
had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME] is
cleared.

Although a machine check exception is asynchronous, the 620 synchronizes it to an
instruction completion boundary. When the 620 detects a machine check exception, it
completes the oldest instruction in the processor and then cancels all outstanding
instructions before invoking the machine check exception handler. If the completing
instruction (oldest instruction) causes another type of exception, SRRO contains the
effective address of the first instruction of the exception handler. If the completing
instruction does not cause another type of interrupt, SRRO contains the effective address of
the next instruction that would have executed if the exception were not present.

The 620 generates a machine check exception under the following conditions:

4-16

MCP asserted-MCP is an input to the 620. When MCP is asserted and HIDO[O] is
set, the 620 takes a machine check exception. This is a recoverable machine check
exception and is the only machine check exception in which the 620 copies the
MSR[RI] bit to SRRl, instead of clearing it.
Processor internal cache parity error-Parity checking for the 620's internal caches
is enabled by setting HIDO[l]. A machine check exception occurs when internal
cache parity checking is enabled and a parity error is detected for either the data or
the instruction cache. The resulting machine check exception is unrecoverable in the
620.

Processor interface parity error-Parity checking for the 620 processor interface is
enabled by setting HID0[2] for address parity checking or HID0[3] for data parity
checking. A machine check exception occurs when address parity checking is
enabled and a parity error is detected in the address bus. If data parity checking is
enabled and a parity error is detected in the data bus, a machine check exception
occurs regardless of the state of the MSR[ME] bit. The resulting machine check
exceptions result in the 620 entering an internal checkstop state.
L2 interface uncorrectable ECC error-ECC checking is enabled for the L2
interface when L2CR[46] is set. A machine check exception occurs when ECC
checking is enabled and an uncorrectable error is detected. Note that the L2 can be
accessed by either a processor or bus operation. The resulting machine check
exception is unrecoverable in the 620.
DERR bus signal-The DERR bus signal indicates that the data from a processor
load or bus read is corrupted. DERR may be used to indicate an uncorrectable read
memory error. A machine check exception occurs when BUSCSR[51] is set and a
DERR assertion is detected. This machine check exception is unrecoverable in the

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

620. Note that a direct-store load last operation uses DERR to indicate that a direct­
store error has occurred and to expect a reply. This case causes a DSI exception, but
not a machine check exception.

Machine check conditions can be enabled and disabled using bits in the HIDO described in
Table 4-7.

Table 4-7. Machine Check Enable Bits

HIDO Bit Description

0 Enable machine check input signal

1 Enable cache parity checking

2 Enable machine check on address bus parity error.

3 Enable machine check on data bus parity error.

If MSR[ME] and the appropriate HIDO bits are set, the exception is recognized and
handled; if MSR[ME] is cleared and the appropriate HIDO bits are set, the 620 will enter
an internal checkstop state. When a processor is in checkstop state, instruction processing
is suspended and generally cannot continue without restarting the processor. Note that
many conditions may lead to the checkstop condition; the disabled machine check
exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 4.6.2.1, "Machine Check Exception Enabled (MSR[ME] = 1)." If MSR[ME] = 0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 4.6.2.2, "Checkstop State (MSR[ME] = O)."

MOTOROLA Chapter 4. Exceptions 4-17

-

4.6.2.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 4-8.

Table 4-8. Machine Check Exception-Register Settings

Register Setting Description

SRRO On a best-effort basis implementations can set this to an EA of some instruction that was executing
or about to be executing when the machine check condition occurred.

SRR1 Q-32 Loaded from MSR
33-35 Cleared
36 Set if L2 ECC error
42 Set if L 1 data cache parity error
43 Set if L 1 instruction cache parity error
44 Set if machine-check signal input
45 Set if bus error (DERR)
46 Set if bus data parity error
47 Set if bus address parity error
4~1 Loaded from MSR
62 Loaded from MSR[62] if the processor is in a recoverable state; otherwise cleared
63 Loaded from MSR

MSR SF Set to value of ISF PR 0 BE 0 DR 0
ISF - FP 0 FE1 0 PMM 0
POW 0 ME 1 0 IP - RI 0
ILE - FEO 0 IR 0 LE Set to value of ILE
EE 0 SE 0

1 Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon
as it is practical to handle another machine check exception. Otherwise, subsequent machine check
exceptions cause the processor to automatically enter the checkstop state.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typically earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

When a machine check exception is taken, instruction execution resumes at offset Ox00200
from the physical base address indicated by MSR[IP].

4.6.2.2 Checkstop State (MSR[ME] = 0)
When a processor is in the checkstop state, instruction processing is suspended and
generally cannot resume without the processor being reset. The contents of all latches are
frozen within two cycles upon entering checkstop state.

4-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The 620 enters checkstop state when any of three conditions are present:

If MSR[ME] = 0 and a machine check exception occurs due to any of the reasons
mentioned previously.
If CHECKSTOP is asserted externally.
If an internal watchdog time-out is generated.

If a processor interface parity error occurs.

Upon entering the checkstop state the processor clocks are stopped and internal state is
kept. The CHECKSTOP signal is asserted to notify the system when the checkstop is
caused by a machine check exception with MSR[ME] = 0, or a processor internal watchdog
time-out or processor interface parity error occurs.

For all machine check events except those initiated by processor interface parity errors, the
number of cycles between the time in which a machine check event is detected and the time
in which the CHECKSTOP signal is asserted is undetermined since the processor
synchronizes the Machine Check event to an instruction completion boundary before it
reports it. When processor interface parity errors cause the checkstop state to be entered the
CHECKSTOP signal is asserted two processor clock cycles after the parity error is
detected, and all latches are frozen within six processor clock cycles.

Note that not all PowerPC processors provide the same level of error checking. The reasons
a processor can enter checkstop state are implementation-dependent.

4.6.3 OSI Exception (Ox00300)
A DSI exception occurs when no higher priority exception exists and a data memory access
cannot be performed. The DSI exception is implemented as it is defined in the PowerPC
architecture (OEA), and occurs for all the conditions defined in the PowerPC architecture.
A DSI exception also occurs for direct-store load or store errors.

Note that a DAER breakpoint match does not cause a DSI exception when the 620 is in
tracing mode (MSR[SE]=l) or when the performance monitor is turned on.

4.6.4 ISi Exception (Ox00400)
An ISi exception occurs when no higher priority exception exists and an attempt to fetch
the next instruction fails. This exception is implemented as it is defined by the PowerPC
architecture (OEA). When an ISi exception is taken, instruction execution resumes at
offset Ox00400 from the physical base address indicated by MSR[IP].

4.6.5 External Interrupt Exception (Ox00500)
An external interrupt is signaled to the processor by the assertion of the external interrupt
signal (INT). The INT signal is expected to remain asserted until the 620 takes the external
interrupt exception. If the external interrupt signal is negated early, recognition of the
interrupt request is not guaranteed.

MOTOROLA Chapter 4. Exceptions 4-19

-

-

Once an external interrupt is detected and external interrupts are enabled, MSR[EE] = 1,
the 620 completes the oldest instruction in the processor, cancels all outstanding
instructions, and takes the external interrupt as defined in the OEA.

After the 620 begins execution of the external interrupt handler, the system can safely
negate the INT. The interrupt may be delayed by other higher priority exceptions or if the
MSR[EE] bit is cleared when the exception occurs. Register settings for this exception are
described in Chapter 6, "Exceptions," in The Programming Environments Manual.

When an external interrupt exception is taken, instruction execution resumes at offset
Ox00500 from the physical base address indicated by MSR[IP].

4.6.6 Alignment Exception (Ox00600)
The 620 implements the alignment exception as defined by the PowerPC architecture
(OEA). An alignment exception is initiated when any of the following conditions is met:

• The operand of a floating-point load or store is not word-aligned
• The operand of a fixed-point load-double or store-double is not word-aligned

The operand of lmw, stmw, lwarx, or stwcx. is not word-aligned
The operand of ldarx or stdcx. is not doubleword-aligned.

A floating-point memory access is attempted to a direct-store segment.
• If the address for a dcbz instruction is to a memory space marked write-through or

cache-inhibited, an alignment exception is taken.

4.6. 7 Program Exception (Ox00700)
The 620 implements the program exception as it is defined by the PowerPC architecture
(OEA). A program exception occurs when no higher priority exception exists and one or
more of the exception conditions defined in the OEA occur.

The 620 invokes the system illegal instruction program exception when it detects any
instruction from the illegal instruction class.

The 620 fully decodes the SPR field of the instruction. If an undefined SPR is specified, a
program exception is taken.

The UISA defines the mtspr and mfspr instructions with the record bit (Re) set to cause a
program exception or provide a boundedly undefined result. In the 620, the appropriate CR
should be treated as undefined. Likewise, the PowerPC architecture states that the Floating
Compared Unordered (fcmpu) or Floating Compared Ordered (fem po) instruction with the
record bit set can either cause a program exception or provide a boundedly undefined result.
In the 620, CR field BF for these cases should be treated as undefined.

When a program exception is taken, instruction execution resumes at offset Ox00700 from
the physical base address indicated by MSR[IP].

4-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Two MSR bits are used to determine the mode used for handling floating-point exceptions
The 620 operates the floating-point unit (FPU) in either ignore exception mode (FEO = 0,
FEl = 0) or precise mode (FEO, FEl= (1,0), (0,1), or (1,1)). The FPU uses an internal
pipeline to gain overlapped execution of instructions. If an exception occurs during the
floating-point arithmetic or conversion operations, the FPU sends the exception signal to
the completion block in the instruction flow unit, and the FPU may continue its operation
as normal. The completion block performs the necessary exception handling as defined in
PowerPC architecture. Register settings for this exception are described in Chapter 6,
"Exceptions," in The Programming Environments Manual.

4.6.8 Floating-Point Unavailable Exception (Ox00800)
The floating-point unavailable exception is implemented as defined in the PowerPC
architecture. A floating-point unavailable exception occurs when no higher priority
exception exists, an attempt is made to execute a floating-point instruction (including
floating-point load, store, or move instructions), and the floating-point available bit in the
MSR is disabled, (MSR[FP] = 0). Register settings for this exception are described in
Chapter 6, "Exceptions," in The Programming Environments Manual.

When a floating-point unavailable exception is taken, instruction execution resumes at
offset Ox00800 from the physical base address indicated by MSR[IP].

4.6.9 Decrementer Exception (Ox00900)
The decrementer exception is implemented in the 620 as it is defined by the PowerPC
architecture. The decrementer exception occurs when no higher priority exception exists, a
decrementer exception condition occurs (for example, the decrementer register has
completed decrementing), and MSR[EE] = 1. In the 620, the decrementer register is
decremented at the bus clock rate. Register settings for this exception are described in
Chapter 6, "Exceptions," in The Programming Environments Manual.

When a decrementer exception is taken, instruction execution resumes at offset Ox00900
from the physical base address indicated by MSR[IP].

4.6.1 O System Call Exception (OxOOCOO)
A system call exception occurs when a System Call (sc) instruction is executed. In the 620,
the system call exception is implemented as it is defined in the PowerPC architecture.
Register settings for this exception are described in Chapter 6, "Exceptions," in The
Programming Environments Manual.

When a system call exception is taken, instruction execution resumes at offset OxOOCOO
from the physical base address indicated by MSR[IP].

4.6.11 Trace Exception (OxOODOO)
The trace exception is taken when the single step trace enable bit (MSR[SE]) or the branch
trace enable bit (MSR[BE]) is set and an instruction successfully completes. When a trace

MOTOROLA Chapter 4. Exceptions 4-21

-

•

exception is taken, the values written to SRRl are implementation-specific; those values for
the 620 are shown in Table 4-9.

Table 4-9. Trace Exception-Register Settings

Register Setting

SRRO Address of the instruction the processor would have attempted to execute next if no exception
condition were present.

SRR1 0-32 Copied from MSR
33 Set
34 Cleared
35 Set for load, debt, or dcbtst instruction
36 Set for store instruction (won't set either bit for other cache control instructions)
37-41 Copied from MSR
42 Set for lswx or stswx instruction.
43 Set for mtspr to any privileged register, or if SLB or TLB is updated since last exception.
44 Set for taken branch instruction.
45-47 Cleared
48-63 Copied from MSR.

The 620 does take the trace exception if the source instruction causes another type of
exception. Therefore, the 620 does not take the trace exception on sc, rfid (or rfi), and trap
instructions whose condition is true.

When either MSR[SE] or MSR[BE] is set, the 620 operates in single-instruction
serialization mode.

When a trace exception is taken, instruction execution resumes as offset OxOODOO from the
base address indicated by MSR[IP].

4.6.12 Floating-Point Assist Exception (OxOOEOO)
The optional floating-point assist exception defined by the PowerPC architecture is not
implemented in the 620.

4.6.13 Performance Monitoring Interrupt (OxOOFOO)
The PowerPC 620 performance monitor is a software-accessible mechanism that provides
detailed information concerning the dispatch, execution, completion, and memory access
of PowerPC instructions. The performance monitor is provided to help system developers
to debug their systems and to increase system performance with efficient software,
especially in a multiprocessor system where memory hierarchy behavior must be
monitored and studied in order to develop algorithms that schedule tasks (and perhaps
partition them) and distribute data optimally.

4-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Register settings are described in Table 4-10.

Table 4-10. Performance Monitoring Interrupt-Register Settings

Register Setting

SRRO Set to the effective address of the instruction that the processor would have
attempted to execute next if no exception conditions were present

SRR1 0-32 Loaded from MSR
33 Set if the content of SDA and SIA register is for the same instruction.
34-36 Cleared
37--41 Loaded from MSR
42-47 Cleared
48-63 Loaded from MSR

The performance monitor uses the following SPRs:

• Monitor mode control register 0 and 1 (MMCRO and MMCRl)-Controls the
behavior of the performance monitor. Provides the ability to select the events to
count and when they will be counted, set the threshold value, select the time base
input, enable history mode, and select the conditions that enable a performance
monitor exception.

• Performance monitor counters 1-8 (PMC 1-PMC8)-Store the number of times a
software selectable event (maximum of one event per counter at a time) has occurred
since the performance monitor was enabled for counting.

Sampled instruction address (SIA)-Stores the address of a sampled instruction.

Sampled data address (SDA)--Stores the address associated with the data used by
the sampled instruction.

The 620 supports a performance monitor interrupt that is caused by a counter negative
condition or by a time-base flipped bit counter defined in the MMCRO register.

As with other PowerPC exceptions, the performance monitoring interrupt follows the
normal PowerPC exception model with a defined exception vector offset (OxOOFOO). The
priority of the performance monitoring interrupt is below the external interrupt and above
the decrementer interrupt. The contents of the SIA and SDA are described in
Section 2.1.2.7, "Performance Monitor Registers." The performance monitor is described
in Chapter 10, "Performance Monitor."

4.6.14 Instruction Address Breakpoint Exception (Ox01300)
The instruction address breakpoint exception occurs when an attempt is made to execute an
instruction that matches the address in the instruction address breakpoint register (IABR)
and the breakpoint is enabled. Specifically the following three conditions must be met:

• Instruction address (0--61) = IABR[0--61]

• IABR[62] = 1
• IABR[63] = MSR[IR]

MOTOROLA Chapter 4. Exceptions 4-23

-

The instruction that triggers the instruction address breakpoint exception is not executed
before the exception handler is invoked. The vector offset of the instruction address
breakpoint exception is Ox01300. Register settings are described in Table 4-11.

Table 4-11. Instruction Address Breakpoint Exception-Register Settings

Register Setting Descriptions

SARO Set to the effective address of the instruction that causes the
exception.

SRR1 Q-32 Loaded from MSR
33-36 Cleared
37-41 Loaded from MSR
42-47 Cleared
48-63 Loaded from MSR.

4.6.15 System Management Interrupt (Ox01400)
The 620 implements a system management interrupt exception, which is not defined by the
PowerPC architecture. The system management exception is very similar to the external
interrupt exception and is particularly useful in implementing the nap mode. It has priority
over an external interrupt and it uses a different exception vector in the exception table (at
offset Ox01400).

The system management interrupt exception is taken when SMI is asserted and the
exception is enabled by MSR[EE].

Register settings for the system management exception are described in Table 4-12.

Table 4-12. System Management Interrupt Exception-Register Settings

Register Setting Descriptions

SARO Set to the effective address of the instruction that causes the
exception.

SRR1 Q-32 Loaded from MSR
33-36 Cleared
37-41 Loaded from MSR
42-47 Cleared
48-63 Loaded from MSR.

Like the external interrupt, a system management interrupt is signaled to the 620 by the
assertion of an input signal. The system management interrupt signal (SMI) is expected to
remain asserted until the exception is taken. If the SMI signal is negated early, recognition
of the exception request is not guaranteed. After the 620 begins execution of the exception
handler, the system can safely negate the SMI signal. When MSR[EE] is set and assertion
of the SMI signal is detected, the 620 completes the oldest instruction in the processor,
cancels all outstanding instructions, and takes the system management interrupt exception.

When the exception is taken, the 620 begins fetching instructions from exception vector
offset, Ox01400.

4-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 5
Memory Management
This chapter describes the PowerPC 620 microprocessor's implementation of the memory
management unit (MMU) specifications provided by the operating environment
architecture (OEA) for PowerPC processors. The primary function of the MMU in a
Power PC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses, I/0
accesses (most I/0 accesses are assumed to be memory-mapped), and direct-store interface
accesses (which are optional to the PowerPC architecture). In addition, the MMU provides
access protection on a segment, block or page basis. In addition, the 620 implements the
optional 64-bit bridge facility defined in the OEA. This facility provides resources that may
allow some 32-bit operating systems to operate in the 64-bit addressing environment of the
620.

This chapter describes the specific hardware used to implement the MMU model of the
OEA in the 620. Refer to Chapter 7, "Memory Management," in The Programming
Environments Manual for a complete description of the conceptual model.

Two general types of accesses generated by PowerPC processors require address
translation-instruction accesses and data accesses to memory generated by load and store
instructions. Generally, the address translation mechanism is defined in terms of segment
descriptors and page tables used by PowerPC processors to locate the effective-to-physical
address mapping for instruction and data accesses. The segment information translates the
effective address to an interim virtual address, and the page table information translates the
interim virtual address to a physical address.

The 64-bit MMU model implements segment descriptors, which are used to generate the
interim virtual addresses, as entries in a segment table, which are managed in memory
much as page tables are in both the 32- and 64-bit MMU models. On 32-bit
implementations, the segment descriptors are stored as on-chip segment registers, which
are emulated in the 620. In addition, a unified translation lookaside buffer (UTLB) keeps
recently-used page address translations on-chip.

The 620 implements two level of segmented address translation. The first-level translation
is accomplished by separate instruction and data 64-entry, fully-associative effective to
physical translation caches (EPATs). The EPATs cache the effective to physical translation
pairs that are returned from the second-level MMU. The second-level MMU consists of a

MOTOROLA Chapter 5. Memory Management 5-1

-

-

20-entry, fully-associate SLB, and a 128-entry, 2-way set-associative TLB. The
second-level MMU is shared between the first-level instruction and data MMUs.

The block address translation (BAT) mechanism is a software-controlled array that stores
the available block address translations on-chip. BAT array entries are implemented as pairs
of BAT registers that are accessible as supervisor special-purpose registers (SPRs). There
are separate instruction and data BAT mechanisms, and in the 620, they reside in the
instruction and data MMU s respectively.

The MMU s, together with the exception processing mechanism, provide the necessary
support for the operating system to implement a paged virtual memory environment and for
enforcing protection of designated memory areas. Exception processing is described in
Chapter 4, "Exceptions." Section 4.4, "Exception Processing," describes the MSR, which
controls some of the critical functionality of the MMUs.

5.1 MMU Overview
The 620 implements the memory management specification of the PowerPC OEA for
64-bit implementations, including the optional 64-bit bridge facility. Thus it provides 264

bytes of effective address space accessible to supervisor and user programs with a 4-Kbyte
page size and 256-Mbyte segment size. The 620's MMU provides an interim virtual address
(80 bits) and hashed page tables for the generation of 40-bit physical addresses. Power PC
processors also have a BAT mechanism for mapping large blocks of memory. Block sizes
range from 128 Kbyte to 256 Mbyte and are software-programmable.

Basic features of the 620 MMU implementation defined by the OEA are as follows:

5-2

Support for physical addressing mode-Logical-to-physical address translation can
be disabled separately for data and instruction accesses.

• Block address translation-Each of the BAT array entries (four IBAT entries and
four DBAT entries) provides a mechanism for translating blocks as large as
256 Mbytes from the 64-bit effective address space into the physical memory space.
This can be used for translating large address ranges whose mappings do not change
frequently.

Direct-store segments (optional to the PowerPC architecture)-If the T bit in the
indexed segment descriptor is set for any load or store request, this request accesses
a direct-store segment; bus activity is different and the memory space used has
different characteristics with respect to how it can be accessed. The address used on
the bus consists of bits from the EA and the segment descriptor.

Segmented address translation-The 64-bit effective address is extended to an
80-bit virtual address by having EA[0-35] select a 52-bit virtual segment ID
(VSID), EA[36-5 l] forming bits 52-67, which together form a virtual page number
(VPN). The remaining 12 bits, EA[52-63] remain intact to form the low-order 12
bits of the virtual address.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The 620 also provides the following features that are not required by the PowerPC
architecture:

• A 20-entry content-addressable memory (CAM) segment lookaside buffer (SLB)
with FIFO replacement algorithm for storing the most recently used segment table
entries (STEs). The SLB is fully-associative.

• Effective-to-Physical-Address Translators (EPATs)-The instruction and data
first-level MMUs each contain 64-entry, fully-associative EPATs that cache
effective-to-physical translation pairs that are returned from the second level MMU.
The EPATs are implemented as CAMs with an invalid-first replacement algorithm.

• Segment table lookup operations performed in hardware-The MMU attempts to
fetch the STE, which contains the segment descriptor, from the SLB on-chip. If the
STE is not in the SLB (that is, a SLB miss occurs), the hardware performs a segment
look-up operation (using a hashing function) to search for the STE.

• Unified translation lookaside buffer (UTLB)-The 128-entry, 2-way set UTLB
saves recently-used page address translations on-chip for both instruction and data
accesses. Valid UTLB entries are also forwarded to the EPATs in the first-level
IMMU and DMMU.

• Table search operations performed in hardware-If a page address translation is not
found in the EPATs, the MMU attempts to locate the STE. If the translation is not
found in the SLB (that is, a SLB miss occurs), the hardware performs a table search
operation (using a hashing function) to search for the STE. Once the segment
descriptor is located, an 80-bit virtual address is formed and the MMU attempts to
fetch the PTE, which contains the physical address, from the TLB. If the translation
is not found in a TLB (that is, a TLB miss occurs), the hardware performs a
table-search operation (similar to that performed for the STE) to search for the PTE.

SLB invalidation-The 620 implements the optional SLB Invalidate Entry (slbie)
and SLB Invalidate All (slbia) instructions, which can be used to invalidate SLB and
EPAT entries. For more information on the slbie and slbia instructions, see
Section 5.4.4, "SLB Invalidation."

• TLB invalidation-The 620 implements the optional TLB Invalidate Entry (tlbie)
and TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB
entries. For more information on the tlbie and tlbsync instructions, see
Section 5.4.6, "TLB Invalidation."

• The optional 64-bit bridge-The OEA defines an additional, optional bridge to the
64-bit architecture that may make it easier for 32-bit operating systems to migrate to
64-bit processors. The 64-bit bridge retains certain aspects of the 32-bit architecture
that otherwise are not supported, and in some cases not permitted, by the 64-bit
version of the architecture. In processors that implement this bridge, segment
descriptors are implemented by using 16 SLB entries to emulate segment registers,
which, like those defined for the 32-bit architecture, divide the 32-bitmemory space
(4 Gbytes) into sixteen 256-Mbyte segments. These segment descriptors however

MOTOROLA Chapter 5. Memory Management 5-3

use the format of the segment table entries as defined in the 64-bit architecture and
are maintained in SLBs rather than in hardware segment registers as defined bythe
architecture for 32-bit addressing.

Table 5-1 summarizes the 620 MMU features, including those defined by the PowerPC
architecture (OEA) for 32-bit processors and those specific to the 620.

Table 5-1. OEA-Defined PowerPC 620 Microprocessor MMU Features Summary

Feature Conventional 64-Bit Bridge

Address 264 bytes of effective address 232 bytes of effective address
ranges

280 bytes of virtual address 252 bytes of virtual address

~ 264 bytes of physical address ~ 232 bytes of physical address

Page size 4 Kbytes Same

Segment size 256 Mbytes Same

Block address Range of 128 Kbyte-256 Mbyte Same
translation

Implemented with IBAT and DBAT Same
registers in BAT array

Memory Segments selectable as no-execute Same
protection

Pages selectable as user/supervisor Same
and read-only

Blocks selectable as user/supervisor Same
and read-only

Page history Referenced and changed bits defined Same
and maintained

Page address Translations stored as PTEs in hashed Same
translation page tables in memory

Page table size determined by size Same
programmed into SDR1 register

TLBs Instructions for maintaining optional Same
TLBs

Segment Stored as STEs in hashed segment Stored in 16 SLB entries in the same format as the
descriptors tables in memory STEs defined for 64-bit implementations.

Instructions for maintaining optional 16 SLB entries are required to emulate the segment
SLBs registers defined for 32-bit addressing. The slble and

slbia instructions should not be executed when using
the 64-bit bridge.

5-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 5-2 lists implementation-specific features of the 620 MMU.

Table 5-2. PowerPC 620 Microprocessor-Specific MMU Features Summary

Feature Description

Separate MMUs Separate memory management units (MMUs) for instructions and data

EPATs Independent 64-entry fully-associative effective-to-physical address translation (EPAT)
cache with invalid-first replacement algorithm for instructions and data

TLBs Unified instruction and data TLB

TLB is 128-entry and two-way set-associative

LRU replacement algorithm

Hardware broadcast of TLB and control instructions

SLBs 20-entry CAM segment lookaside buffer (SLB) with FIFO replacement algorithm

Hardware miss handling SLB, TLB, and EPAT cache miss handling performed by 620 hardware

Referenced/changed bits Hardware update of page frame table referenced and changed bits

40 bit addressing 40-bit physical memory address for up to one terabyte

5.1.1 Memory Addressing
A program references memory using the effective (logical) address computed by the
processor when it executes a load, store, branch, or cache instruction, and when it fetches
the next instruction. The effective address is translated to a physical address according to
the procedures described in Chapter 7, "Memory Management," in The Programming
Environments Manual, augmented with information in this chapter. The memory
subsystem uses the physical address for the access.

For a complete discussion of effective address calculation, see Section 2.3.2.3, "Effective
Address Calculation."

5.1.2 MMU Organization
The PowerPC architecture defines two methods of address translation-segmented address
translation and block address translation (BAT). These translations occur in parallel, with
the BAT taking precedence.

The segmented address translation on the 620 is implemented in two levels. The first-level
translation is accomplished by two separate 64-entry, fully-associative EPATs, one for
instruction fetches and the other for data accesses. The EPAT caches translation pairs that
are returned from the second-level MMU. The second-level MMU consists of a more
traditional 20-entry, fully-associative SLB and a 128-entry, 2-way set-associative TLB.
This second-level MMU is used for both instruction and data accesses.

MOTOROLA Chapter 5. Memory Management 5-5

EA

DMMU
Miss

Physical
Address

IMMU
Miss

EA

EPAT
Refill

Bus equest

Figure 5-1. Two-Level MMU Organization

The second-level MMU consists of a hardware table-search mechanism that is initiated to
reload the EPAT, SLB, or TLB when both MMU levels fail to translate an effective address.
This mechanism searches translation tables that have been previously constructed in main
memory. The table-search mechanism is nonspeculative in that it waits for any refill request
to commit before generating bus requests.

The MMU does not make requests to the Ll cache. Instead, it immediately makes requests
into the L2 and main memory. If the requested cache block was modified in the L1 cache,
that block is copied back to main memory before the MMU's request is serviced. The
MMU's request for a cache block always appears as a cacheable coherent burst read
operation on the bus, and any writes caused by referenced and changed bits appear as
write-through coherent stores. Stores for referenced or changed updates are always single
byte store operations.

Figure 5-2 shows the conceptual organization of the MMU in a 64-bit implementation; note
that it does not describe the specific hardware used to implement the memory management

5-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

function for a particular processor and other hardware features (invisible to the system
software) not depicted in the figure may be implemented. For example, the memory
management function can be implemented with parallel MMUs that translate addresses for
instruction and data accesses independently.

The instruction addresses shown in the figure are generated by the processor for sequential
instruction fetches and addresses that correspond to a change of program flow. Memory
addresses are generated by load and store instructions (both for memory and the direct-store
interface) and by cache instructions.

As shown in Figure 5-2, after an address is generated, the higher-order bits of the effective
address, EAO-EA5 l (or a smaller set of address bits, EAO-EAn, in the cases of blocks), are
translated into physical address bits PAO-PA27. The lower-order address bits, A28-A39 are
untranslated and therefore identical for both effective and physical addresses. After
translating the address, the MMU passes the resulting 40-bit physical address to the
memory subsystem.

In addition to the higher-order address bits, the MMU automatically keeps an indicator of
whether each access was generated as an instruction or data access and a supervisor/user
indicator that reflects the state of the PR bit of the MSR when the effective address was
generated. In addition, for data accesses, there is an indicator of whether the access is for a
load or a store operation. This information is then used by the MMU to appropriately direct
the address translation and to enforce the protection hierarchy programmed by the
operating system. See Section 2.1.1, "Register Set," for more information about the MSR.

MOTOROLA Chapter 5. Memory Management 5-7

-

-

5-8

Data
Accesses

Instruction
Accesses

~
~
w

PAO-PA63

A52-A63

Figure 5-2. MMU Conceptual Block Diagram

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

As shown in Figure 5-2, the 620 implements a unified translation lookaside buffer (UTLB)
and supports the automatic search of the page tables for page table entries (PTEs), both of
which the OEA defines as optional.

In 64-bit implementations, the address space register (ASR) defines the physical address of
the base of the segment table in memory. The segment table entries (STEs) contain the
segment descriptors, which define the virtual address for the segment. Some 64-bit
implementations may have dedicated hardware to search for STEs in memory, and copies
of STEs may be cached on-chip in segment lookaside buffers (SLBs) for quicker access.

The 620's ASR implementation includes the optional V bit, which together with MSR[SF]
enable the use of the 64-bit bridge functionality.

5.1.3 Address Translation Mechanisms
The PowerPC architecture defines four types of address translation:

Block address translation-Translates the block number for blocks that range in size
from 128 Kbyte to 256 Mbyte

Page address translation-Translates the page frame address for a 4-Kbyte page size

Direct-store address translation-Used to generate direct-store interface accesses on
the external bus; not optimized for performance. Direct-store addressing is optional
and is present in the 620 for compatibility only

Real addressing mode address translation-When address translation is disabled,
the physical address is identical to the effective address

Figure 5-3 shows the four address translation mechanisms provided by the MMU. In
addition, it shows the 620-specific EPATs, which are a cache of the address translations for
page address and direct-store accesses.

The segment descriptors shown in the figure control both the page and direct-store segment
address translation mechanisms. When an access uses the page or direct-store segment
address translation, the appropriate segment descriptor is required. In 64-bit
implementations, the segment descriptor is located via a search of the segment table in
memory for the appropriate segment table entry (STE). One of the 16 emulated segment
registers (which contain segment descriptors) is selected by the highest-order effective
address bits.

Processors, such as the 620, that implement the 64-bit bridge divide the 32-bit address
space into sixteen 256-Mbyte segments defined by a table of 16 STEs maintained in 16 SLB
entries.

A control bit in the corresponding segment descriptor then determines if the access is to
memory (memory-mapped) or to a direct-store segment. Note that the direct-store interface
is present to allow certain older 1/0 devices to use this interface. When an access is
determined to be to the direct-store interface space, the implementation invokes an
elaborate hardware protocol for communication with these devices. The direct-store

MOTOROLA Chapter 5. Memory Management 5-9

-

-

interface protocol is not optimized for performance, and therefore, its use is discouraged.
The most efficient method for accessing I/0 is by memory-mapping the 1/0 areas.

For memory accesses translated by a segment descriptor, the interim virtual address is
generated using the information in the segment descriptor. Page address translation
corresponds to the conversion of this virtual address into the 64-bit physical address used
by the memory subsystem. In some cases, the physical address for the page resides in an
on-chip EPAT or TLB and is available for quick access. However, if the page address
translation misses in both the EPAT and TLB, the MMU searches the page table in memory
(using the virtual address information and a hashing function) to locate the required
physical address. Some implementations may have dedicated hardware to perform the page
table search automatically, while others may define an exception handler routine that
searches the page table with software.

Block address translation occurs in parallel with page and direct-store segment address
translation and is similar to page address translation, except that there are fewer upper-order
effective address bits to be translated into physical address bits (more lower-order address
bits (at least 17) are untranslated to form the offset into a block). Also, instead of segment
descriptors and a page table, block address translations use the on-chip BAT registers as a
BAT array. If an effective address matches the corresponding field of a BAT register, the
information in the BAT register is used to generate the physical address; in this case, the
results of the page translation (occurring in parallel) are ignored. Note that a matching BAT
array entry takes precedence over a translation provided by the segment descriptor in all
cases (even if the segment is a direct-store segment).

5-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

0

0 63
Effective Address

Compare with EPAT

Yes, T = 1 Yes, T = O

No

(T= 1 (T=O)
Direct-Store Segment Page Address
Translation (optional) Translation

(see Section 5.6)

0 79
Virtual Address

Look Up in
Page Table

40 o,__ ___ ...__ ___ 4...;,o o

Implementation-Dependent Physical Address

Address Translation Disabled

(MSR[IR] = 0, or MSR[DR] = 0)

Match with
BAT Register

Block Address Real Addressing Mode
Translation Effective Address = Pt¥;ical Address

(see Section 5.3) (see Section 5.2)

Physical Address

Match with
EPAT

40 o,__ __ _,__ ____ 4~o

Physical Address

Figure 5-3. Address Translation Types

Direct-store address translation is used when the direct-store translation control bit (T bit)
in the corresponding segment descriptor is set. In this case, the remaining information in
the segment descriptor is interpreted as identifier information that is used with the
remaining effective address bits to generate the packets used in a direct-store interface
access on the external interface; additionally, no TLB lookup or page table search is
performed.

Translation is disabled for real addressing mode. In this case the physical address generated
is identical to the effective address. Instruction and data address translation is enabled with
the MSR[IR] and MSR[DR] bits, respectively. Thus when the processor generates an
access, and the corresponding address translation enable bit in MSR (MSR[IR] for
instruction accesses and MSR[DR] for data accesses) is cleared, the resulting physical
address is identical to the effective address and all other translation mechanisms are
ignored.

MOTOROLA Chapter 5. Memory Management 5-11

-

5.1.4 Memory Protection Facilities
In addition to the translation of effective addresses to physical addresses, the MMUs
provide access protection of supervisor areas from user access and can designate areas of
memory as read-only as well as no-execute. Table 5-3 shows the protection options
supported by the MMUs for pages.

Table 5-3. Access Protection Options for Pages

Option

Supervisor-only

Supervisor-only-no-execute

Supervisor-write-only

Supervisor-write-only-no-execute

Both user/supervisor

Both user-/supervisor-no-execute

Both read-only

Both read-only-no-execute

v Access permitted
- Protection violation

User Read

I-Fetch Data

- -

- -
v v
- v
v v
- v
v v
- v

User
Supervisor Read

Write
I-Fetch Data

- v v
- - v
- v v
- - v
v v v
v - v
- v v
- - v

Supervisor
Write

v
v
v
v
v
v
-
-

The operating system determines whether instruction can be fetched from an area of
memory for which the no-execute option is provided in the segment descriptor. Each of the
remaining options is enforced based on a combination of information in the segment
descriptor and the page table entry. Thus, the supervisor-only option allows only read and
write operations generated while the processor is operating in supervisor mode
(corresponding to MSR[PR] = 0) to access the page. User accesses that map into a
supervisor-only page cause an exception to be taken.

Finally, the VEA and OBA define a facility that allows pages or blocks to be designated as
guarded preventing out-of-order accesses that may cause undesired side effects. For
example, areas of the memory map used to control 1/0 devices can be marked as guarded
so that accesses (for example, instruction prefetches) do not occur unless they are explicitly
required by the program.

For more information on memory protection, see "Memory Protection Facilities," in
Chapter 7, "Memory Management," in the The Programming Environments Manual.

5.1.5 Page History Information
The MMUs of PowerPC processors also define referenced (R) and changed (C) bits in the
page address translation mechanism that can be used as history information relevant to the
page. This information can then be used by the operating system to determine which areas

5-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

of memory to write back to disk when new pages must be allocated in main memory. While
these bits are initially programmed by the operating system into the page table, the
architecture specifies that the R and C bits may be maintained either by the processor
hardware (automatically) or by some software-assist mechanism that updates these bits
when required.

Implementation Notes-Because the 620 performs TLB- and SLB-miss table search
operations nonspeculatively, it does not speculatively update the reference bit in the PTE or
STE. The 620 also does not set the R or C bit if the instruction causing the update causes
an exception. For more information, see Section 5.4.1, "Page History Recording."

5.1.6 General Flow of MMU Address Translation
The following sections describe the general flow used by PowerPC processors to translate
effective addresses to virtual and then physical addresses.

5.1.6.1 Real Addressing Mode and Block Address Translation
Selection

When an instruction or data access is generated and the corresponding instruction or data
translation is disabled (MSR[IR] = 0 or MSR[DR] = 0), real addressing mode is used
(physical address equals effective address) and the access continues to the memory
subsystem as described in Section 5.2, "Real Addressing Mode."

Figure 5-4 shows the flow used by the MMUs in determining whether to select real
addressing mode, block address translation or to use the segment descriptor to select either
direct-store interface or page address translation.

MOTOROLA Chapter 5. Memory Management 5-13

-

Instruction
Translation Disabled

(MSR[IR] = 0)

Perform Real
Addressing Mode

Translation

Effective Address
Generated

I-access

~truction
Translation Enabled

(MSR[IR] = 1

D-access

~ Data
~ata ~ Translation Disabled

Translation Enabled (MSR[DR] - O)
(MSR[DR] = 1) -

Perform Real

Compare Address with
Instruction or Data BAT
Array (as appropriate)

Addressing Mode
Translation

BAT Array
Miss

BAT Array (see The Programming
Hit ~onments Manual)

Perform Address Translation
with Segment Descriptor

Access ~ Access
Protected Permitted

(see Figure 5-5) Access Faulted Translate Address

Continue Access
to Memory
Subsystem

Figure 5-4. General Flow of Address Translation (Real Addressing Mode and Block)

Note that if the BAT array search results in a hit, the access is qualified with the appropriate
protection bits. If the access violates the protection mechanism, an exception (ISi or DSI
exception) is generated.

Implementation Note-In real mode, 620 load and store operations are treated as though
they are marked as guarded, cacheable, writeback, and memory coherent (WIMG = 0011).
Instruction fetch operations are treated as guarded, cacheable, and memory coherent
(WIMG = 0011). However, these base WIMG values can be modified by configuration
specified in both HIDO and BUS CSR. Note however, that the 620 ignores the settings of the
W and G bits in the IBATs.

5.1.6.2 Page and Direct-Store Interface Address Translation
Selection

When an effective address is generated, and address translation is enabled, the effective
address is checked against both the BATs and the EPATs. If the address translation is not
present in the BATs and it is found in the EPATs, the address translation, WIMG settings,
protection information, and whether the access is to a page in memory or is a direct-store
access is determined immediately and the memory access can proceed.

5-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

However, if the effective address translation is in neither the BATs or the EPATs, the
segment descriptor must be located. The T bit in the segment descriptor selects whether the
translation is to a page or to a direct-store segment as shown in Figure 5-5. In addition,
Figure 5-5 also shows how no-execute protection is enforced; if the N bit in the segment
descriptor is set and the access is an instruction fetch, the access is faulted as described in
Chapter 7, "Memory Management," in The Programming Environments Manual. Note that
the figure shows the flow for these cases as described by the PowerPC OBA, and so the TLB
references are shown as optional. As the 620 implements TLBs, these branches are valid.
TLBs are described in more detail throughout this chapter.

MOTOROLA Chapter 5. Memory Management 5-15

Address Translation with
..------------- Segment Descriptor

EPAT EPAT
Hit Miss

.o·-·
Access · • Access

Permitted Protected _

: Translate Address : (Access Faulted)
Locate Segment (See Programming

Descriptor Environments Manua~

CheckT Bit . ---------------.

Continue Access
to Memory
Subsystem

'

Perform Direct·
Store Segment

Translation

othe

Generate 80-Bit
(or 52-Bit) Virtual

Address from Segment
Descriptor

Compare Virtual
Address with TLB

Entries

TLB
Miss

Check T bit in
Segment Descriptor

Page Address
Translation

(T=O)

Direct-Store
Segment Address

(T= 1)*

Perform Direct-Store
Segment Translation

I-Fetch with N bit set in
Segment Descriptor

(no-execute)

'',,_ TLB
Hit (See Figure 5-6)

..........................

(See Programming
Environments

Manua~

Perform Page Table (See Figure 5-7)
Search Operation

,,

Access 'Access

PTE Not
Found

Access Faulted

PTE Found

Permitted Protected

Translate Address Access Faulted

Continue Access
to Memory Subsystem

Notes:
• Not allowed for instruction accesses (causes ISi exception) Implementation-specific

Figure 5-5. General Flow of Page and Direct-Store Interface Address Translation

5-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

5.1.6.3 Selection of Page Address Translation
If the effective address hits in the EPAT, the EPAT provides the physical address translation
(the value of the physical page number, PTE[RPN]) required for generating the
effective-to-physical address translation. The EPAT saves information about the translation
that indicates whether it is a page address or a direct-store access.

If the EA is not in the EPATs, the segment descriptor is located. If the T bit in the
corresponding segment descriptor is 0, page address translation is selected. Otherwise, the
information in the segment descriptor is then used to generate the 80-bit virtual address.
The virtual address is then used to identify the page address translation information (stored
as page table entries (PTEs) in a page table in memory). For increased performance, the 620
has a unified TLB in the second-level MMU that stores recently-used PTEs on-chip. When
the TLBs are updated, copies of the page translation information are forwarded to the
EPATs.

If an access hits in the appropriate TLB, the page translation occurs and the physical
address bits are forwarded to the memory subsystem. If the required PTE is not resident,
the MMU must search the page table. In this case, logic in the 620's second-level MMU
directs the page table search operation. If the PTE is found, a new TLB and EPAT entry is
created and the page translation is once again attempted. This time, the EPAT is guaranteed
to hit. Once the PTE is located, the access is qualified with the appropriate protection bits.
If the access is a protection violation (not allowed), either an ISi or DSI exception is
generated.

If the PTE is not found by the table search operation, a page fault condition exists, and an
ISi or DSI exception occurs so software can handle the page fault.

5.1.6.4 Selection of Direct-Store Interface Address Translation
All effective addresses are checked against the content of the EPATs in the first-level
IMMU and DMMU. EPAT entries contain information that indicates whether the
translation is for a page address or a direct-store access.

If the translation is not provided in the EPAT, the segment descriptor must be located. When
the segment descriptor has the T bit set, the access is considered a direct-store interface
access and the direct-store interface protocol of the external interface is used to perform the
access to direct-store space. The selection of address translation type differs for instruction
and data accesses only in that instruction accesses are not allowed from direct-store
segments; attempting to fetch an instruction from a direct-store segment causes an ISi
exception. See Section 5.6, "Direct-Store Interface Address Translation," for more detailed
information about the translation of addresses in direct-store space.

MOTOROLA Chapter 5. Memory Management 5-17

-

-

5.1. 7 MMU Exceptions Summary
In order to complete any memory access, the effective address must be translated to a
physical address. As specified by the architecture, an MMU exception condition occurs if
this translation fails for one of the following reasons:

There is no valid entry in the page table for the page specified by the effective
address (and segment descriptor) and there is no valid BAT translation.

There is no valid segment descriptor and there is no valid BAT translation.

An address translation is found but the access is not allowed by the memory
protection mechanism.

The translation exception conditions defined by the OEA for 32-bit implementations cause
either the ISI or the DSI exception to be taken as shown in Table 5-5.

The translation exception conditions cause either the ISI or the DSI exception to be taken
as shown in Table 5-4. The state saved by the processor for each of these exceptions
contains information that identifies the address of the failing instruction. Refer to
Chapter 4, "Exceptions," for a more detailed description of exception processing, and the
bit settings of SRRl and DSISR when an exception occurs.

Table 5-4. Translation Exception Conditions

Condition Description Exception

Page fault (no PTE found) No matching PTE found in page tables (and I access: ISi exception
no matching BAT array entry) SRR1[33] = 1

O access: OSI exception
OSISR[1] = 1

Segment table fault (no STE No matching STE found in the segment tables I access: ISi exception
found) (for 64-bit implementations) and no matching SRR1[42] = 1

BAT array entry
0 access: OSI exception

OSISR[10] =1

Block protection violation Conditions described in Programming I access: ISi exception
Environments Manual SRR1[36] = 1

O access: OSI exception
OSISR[4] = 1

Page protection violation Conditions described in Programming I access: ISi exception
Environments Manual SRR1[36] = 1

O access: OSI exception
OSISR[4] = 1

5-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 5-4. Translation Exception Conditions (Continued)

Condition Description Exception

No-execute protection violation Attempt to fetch instruction when or STE[N] = ISi exception
1 SRR1[35] = 1

Instruction fetch from direct-store Attempt to fetch instruction when SR[T] = 1 or ISi exception
segment STE[T] = 1 SRR1[35] = 1

Instruction fetch from guarded Attempt to fetch instruction when MSR[IR] = 1 ISi exception
memory and either: SRR1[35] = 1

matching xBAT[G] = 1, or
no matching BAT entry and PTE[G] = 1

In addition to the translation exceptions, there are other MMD-related conditions (some of
them implementation-specific) that can cause an exception to occur. These conditions map
to the exceptions as shown in Table 5-5. The only MMU exception conditions that occur
when MSR[DR] = 0 are the conditions that cause the alignment exception for data accesses.
For more detailed information about the conditions that cause the alignment exception (in
particular for string/multiple instructions), see Section 4.6.6, "Alignment Exception
(Ox00600)." Refer to Chapter 4, "Exceptions," for a complete description of the SRRl and
DSISR bit settings for these exceptions.

Table 5-5. Other MMU Exception Conditions

Condition Description Exception

dcbz with W = 1 or I= 1 (may cause dcbz instruction to write-through Alignment exception (Optional in the
exception or operation may be or cache-inhibited segment or PowerPC architecture)
performed to memory) block

ldarx, stdcx., lwarx, or stwcx. with Reservation instruction to write- DSI exception (implementation-
W = 1 (may cause exception or through segment or block dependent)
execute correctly) DSISR[5] = 1

ldarx, stdcx., lwarx, stwcx., eciwx, or Reservation instruction or DSI exception (implementation-
ecowx instruction to direct-store external control instruction when dependent)
segment (may cause exception or may SR[T] = 1 or STE[T] = 1 DSISR[5] = 1
produce boundedly-undefined results)

Floating-point load or store to direct- Floating-point memory access Alignment exception
store segment (may cause exception when SR[T] = 1 or STE[T] = 1 (implementation-dependent)
or instruction may execute correctly)

Load or store operation that causes a Direct-store interface protocol DSI exception
direct-store error signalled with an error condition DSISR[O] = 1

eciwx or ecowx attempted when eciwx or ecowx attempted with DSI exception
external control facility disabled EAR[E] = 0 DSISR[11] = 1

lmw, stmw, lswi, lswx, stswi, or lmw, stmw, lswi, lswx, stswi, or Alignment exception
stswx instruction attempted in little- stswx instruction attempted
endian mode while MSR[LE] = 1

Operand misalignment Translation enabled and operand Alignment exception (some of these
is misaligned as described in cases are implementation-
Chapter 4, "Exceptions." dependent).

MOTOROLA Chapter 5. Memory Management 5-19

-

5.1.8 MMU Instructions and Register Summary
The MMU instructions and registers provide the operating system with the ability to set up
the segment descriptors. Additionally, the operating system has the resources to set up the
block address translation areas and the page tables in memory.

5.1.8.1 MMU Registers
Table 5-6 summarizes the registers that the operating system uses to program the MMU.
These registers are accessible to supervisor-level software only (supervisor level is referred
to as privileged state in the architecture specification). These registers are described in
detail in Chapter 2, "Programming Model."

Table 5-6. MMU Registers

Register Description

Segment registers The sixteen 32-bit segment registers are defined for 32-bit implementations of the
(SRO-SR15) PowerPC architecture, but are emulated by the first 16 SLBs when the 620 enables the
(64-bit bridge only) 64-bit bridge. The fields in the segment register are interpreted differently depending on

the value of bit 0. The segment registers are accessed by the mtsr, mtsrin, mfsr, and
mfsrin instructions.

BAT registers There are 16 BAT registers, organized as tour pairs of instruction BAT registers
(IBATOU-IBAT3U, (IBATOU-IBAT3U paired with IBATOL-IBAT3L) and tour pairs of data BAT registers
IBATOL-IBAT3L, (DBATOU-DBAT3U paired with DBATOL-DBAT3L). The BAT registers are defined as
DBATOU-DBAT3U, 64-bit for 64-bit implementations. These special-purpose registers are accessed by the
and DBATOL-DBAT3L) mtspr and mfspr instructions.

SDR1 register The SDR1 register specifies the base and size of the page tables in memory. SDR1 is a
64-bit register tor 64-bit implementations. This is a special-purpose register that is
accessed by the mtspr and mfspr instructions.

Address space The 64-bit ASR specifies the physical address in memory of the segment table for 64-bit
register implementations. This is a special-purpose register that is accessed by the mtspr and
(ASR) mfspr instructions. Because it implements the 64-bit bridge, the 620 defines ASR(63] as

a valid bit that specifies whether the access uses 32- or 64-bit addressing. The ASR is
described in more detail in Section 5.1.8.2, "Address Space Register (ASR) and the
64-Bit Bridge."

5.1.8.2 Address Space Register (ASR) and the 64-Bit Bridge
The OEA defines an additional, optional bridge to the 64-bit architecture that allows 64-bit
implementations to retain certain aspects of the 32-bit architecture that otherwise are not
supported, and in some cases not permitted by the 64-bit architecture. The bridge facilities
allow the option of defining bit 63 as ASR[V], the STABORG field valid bit. If this bit is
implemented, STABORG is valid only when ASR[V] is set. This bit is optional, but is
implemented if any of the following instructions, which are optional to a 64-bit processor,
are implemented: mtsr, mtsrin, mfsr, mfsrin, mtsrd, or mtsrdin. Processors that do not
implement ASR[V] treat ASR[63] as reserved except that it is assumed to be 1 for address
translation.

5-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The following further describes programming considerations that are affected by the
ASR[V] bit:

• If ASR[V] is cleared, having the STABORG field refer to a nonexistent memory
location does not cause a machine check exception. Also, if ASR[V] is cleared, the
segment table in memory is not searched and the result is the same as if the search
had failed.

• For a 64-bit operating system that uses the segment register manipulation
instructions as if it were running on a 32-bit implementation: if ASR[V] = 0, a
segment fault can occur only if the operating S)'Stem contains a bug that allows the
generation of an effective address larger than 232- 1 when MSR[SF] = 1 or if the
operating system fails to ensure that the first 16 ESIDs are established (that is, that
the corresponding SLB entries are valid)

• Note that slbie or slbia can be executed regardless of the setting of ASR[V];
however, the instructions should not be used if ASR[V] is cleared.

If ASR[V] is implemented, the ASR must point to a valid segment table whenever address
translation is enabled, the effective address is not covered by BAT translation, and
ASR[V] = 1.

5.1.8.3 MMU Instructions
Because the implementation of TLBs and SLBs is optional, the instructions that refer to
these structures are also optional. However, as these structures serve as caches of the page
table (and segment table, in the case of an SLB), there must be a software protocol for
maintaining coherency between these caches and the tables in memory whenever changes
are made to the tables in memory. Therefore, the PowerPC OEA specifies that a processor
implementing a TLB is guaranteed to have a means for doing the following:

• Invalidating an individual TLB entry (supported by the 620 through the tlbie
instruction)

• Invalidating the entire TLB (through the architecture defined tibia instruction; not
supported by the 620)

Similarly, a processor that implements an SLB is guaranteed to have a means for doing the
following:

• Invalidating an individual SLB entry (the architecture defines an optional slbie
instruction for this purpose)

• Invalidating the entire SLB (the architecture defines an optional slbia instruction for
this purpose)

Note that while the implementation of SLBs in 64-bit processors is optional, processors that
implement the 64-bit bridge are required to implement at least 16 SLB entries to provide a
means of emulating the segment registers as they are defined in the 32-bit architecture.
When the processor is using the 64-bit bridge, neither the slbie or slbia instruction should
be executed.

MOTOROLA Chapter 5. Memory Management 5-21

-

When the tables in memory are changed, the operating system purges these caches of the
corresponding entries, allowing the translation caching mechanism to refetch from the
tables when the corresponding entries are required.

A processor may implement one or more of the instructions listed in this section to support
table invalidation. If an instruction is implemented that matches the semantics of an
instruction listed here (and described in this document), the operation will be as described.
Alternatively, an algorithm may be specified that performs one of the functions listed above
(a loop invalidating individual TLB entries may be used to invalidate the entire TLB, for
example), or instructions with different semantics may be implemented.

A processor may also perform additional functions (not described here) as well as those
described in the implementation of some of these instructions. For example, an instruction
whose semantics are to purge a TLB entry may be implemented so as to purge all TLB
entries in a congruence class (that is, all TLB entries indexed by the specified EA which can
include corresponding entries in data and instruction TLBs) or the entire TLB.

Because the MMU specification for PowerPC processors is so flexible, it is recommended
that the software that uses these instructions and registers be "encapsulated" into
subroutines to minimize the impact of migrating across the family of implementations.

Table 5-7 summarizes the PowerPC instructions that specifically control the MMU. For
more detailed information about the instructions, refer to the Programming Environment's
Manual.

Table 5-7. Instruction Summary-Control MMU

Instruction Description

rntsrSR,rS Move to Segment Register
SR[SR]f-rS
(32-bit instruction used with 64-bit bridge)

mtsrin rS,rB Move to Segment Register Indirect
SR[rB[G-3]]f-rS
(32-bit instruction used with 64-bit bridge)

mtsrd SR,rS Move to Segment Register Double Word
SLB[SR]f- rS
(64-bit bridge only)

mtsrdin rS,rB Move to Segment Register Indirect Double Word
SLB(r8(32-35]) f- (rS)
(64-bit bridge only)

mfsrrD,SR Move from Segment Register
rDf-SR[SR]
(32-bit instruction used with 64-bit bridge)

mfsrin rD,rB Move from Segment Register Indirect
rDf-SR[rB[G-3]]
(32-bit instruction used with 64-bit bridge)

5-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 5-7. Instruction Summary-Control MMU (Continued)

Instruction Description

tibia Translation Lookaside Buffer Invalidate All-This instruction is optional to the PowerPC
(not architecture and is not supported in the 620. Attempting to execute it causes an illegal instruction
implemented) program exception.

tlbie rB Translation Lookaside Buffer Invalidate Entry
If TLB hit (for effective address specified as rB), TLB[V]~O
Causes EPAT and TLB invalidation of entry in all processors in system.
This instruction is optional to the PowerPC architecture.

tlbsync Translation Lookaside Buffer Synchronize
Ensures that all tlbie instructions previously executed by the processor executing the tlbsync
instruction have completed on all processors.
This instruction is optional to the PowerPC architecture.

slbia Segment Table Lookaside Buffer Invalidate All
For all SLB entries, SLB[V]~O
Also invalidated all EPATs.
64-bit implementations only. This instruction is optional to the PowerPC architecture.

slbie rB Segment Table Lookaside Buffer Invalidate Entry
If SLB hit (for effective address specified as rB), SLB[V]~O
Invalidates all EPAT entries that match the specified address (ESID). This instruction is optional
to the PowerPC architecture.

5.2 Real Addressing Mode
If address translation is disabled (MSR[IR] = 0 or MSR[DR] = 0) for a particular access,
the effective address is treated as the physical address and is passed directly to the memory
subsystem as described in Chapter 7, "Memory Management," in The Programming
Environments Manual.

For information on the synchronization requirements for changes to MSR[IR] and
MSR[DR], refer to Section 2.3.2.4, "Synchronization."

5.3 Block Address Translation
The 620 implements block address translation as it is defined by the PowerPC architecture.
The block address translation (BAT) mechanism in the OBA provides a way to map ranges
of effective addresses larger than a single page into contiguous areas of physical memory.
Such areas can be used for data that is not subject to normal virtual memory handling
(paging), such as a memory-mapped display buffer or an extremely large array of numerical
data.

Block address translation in the 620 is described in Chapter 7, "Memory Management," in
The Programming Environments Manual for 32-bit implementations.

MOTOROLA Chapter 5. Memory Management 5-23

-

5.4 Memory Segment Model
The 620 adheres to the memory segment model as defined in Chapter 7, "Memory
Management," in The Programming Environments Manual for 64-bit implementations.
Memory in the PowerPC OEA is divided into 256-Mbyte segments. This segmented
memory model provides a way to map 4-Kbyte pages of effective addresses to 4-Kbyte
pages in physical memory (page address translation), while providing the programming
flexibility afforded by a large virtual address space (80 bits).

The segment/page address translation mechanism may be superseded by the block address
translation (BAT) mechanism described in Section 5.3, "Block Address Translation." Also
if the page address translation has been saved in an EPAT in the first-level instruction or
data MMU, there is no need to access the segment descriptors. Information pertaining to
memory protection or whether the translation is for a direct-store access is saved in the
EPAT entry. Note that the EPATs are not defined by the PowerPC architecture.

If the translation is not already available, the translation proceeds in the following two
steps:

1. From effective address to the virtual address (which never exists as a specific entity
but can be considered to be the concatenation of the virtual page number and the byte
offset within a page), and

2. From virtual address to physical address.

This section highlights those areas of the memory segment model defined by the OEA that
are specific to the 620.

5.4.1 Page History Recording
Referenced (R) and changed (C) bits reside in each PTE to keep history information about
the page. They are maintained by a combination of the 620 table search hardware and the
system software. The operating system uses this information to determine which areas of
memory to write back to disk when new pages must be allocated in main memory.
Referenced and changed recording is performed only for accesses made with page address
translation and not for translations made with the BAT mechanism or for accesses that
correspond to direct-store (T = 1) segments. Furthermore, Rand C bits are maintained only
for accesses made while address translation is enabled (MSR[IR] = 1 or MSR[DR] = 1).

In the 620, the referenced and changed bits are updated as follows:

• For TLB hits, the C bit is updated according to Table 5-8.

• For TLB misses, when a table search operation is in progress to locate a PTE. The
Rand C bits are updated (set, if required) to reflect the status of the page based on
this access.

Table 5-8 shows that the status of the C bit in the TLB entry (in the case of a TLB hit) is
what causes the processor to update the C bit in the PTE (the R bit is assumed to be set in
the page tables if there is a TLB hit). Therefore, when software clears the Rand C bits in

5-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

the page tables in memory, it must invalidate the TLB entries associated with the pages
whose referenced and changed bits were cleared.

Table 5-8. Table Search Operations to Update History Bits-TLB Hit Case

Rand C bits
Processor Action

inTLB Entry

00 Combination doesn't occur

01 Combination doesn't occur

10 Read: No special action
Write: The 620 initiates a table search operation to update C.

11 No special action for read or write

The debt and dcbtst instructions can execute if there is a TLB/BAT hit or if the processor
is in real addressing mode. In case of a TLB/BAT miss, these instructions are treated as
no-ops; they do not initiate a table search operation and they do not set either the R or C bits.

As defined by the PowerPC architecture, the referenced and changed bits are updated as if
address translation were disabled (real addressing mode). Additionally, these updates are
performed with single-beat read and byte write transactions on the bus.

5.4.1.1 Referenced Bit
The referenced (R) bit of a page is located in the PTE in the page table. Every time a page
is referenced (with a read or write access) and the R bit is zero, the 620 sets the R bit in the
page table. The OBA specifies that the referenced bit may be set immediately, or the setting
may be delayed until the memory access is determined to be successful. Because the
reference to a page is what causes a PTE to be loaded into the TLB, the referenced bit in all
TLB entries is effectively always set. The processor never automatically clears the
referenced bit.

The referenced bit is only a hint to the operating system about the activity of a page. At
times, the referenced bit may be set although the access was not logically required by the
program or even if the access was prevented by memory protection. Examples of this in
PowerPC systems include the following:

Fetching of instructions not subsequently executed

Accesses generated by an lswx or stswx instruction with a zero length

• Accesses generated by an stwcx. or stdcx. instruction when no store is performed
because a reservation does not exist

Accesses that cause exceptions and are not completed

5.4.1.2 Changed Bit
The changed bit of a page is located both in the PTE in the page table and in the copy of the
PTE loaded into the TLB (if a TLB is implemented, as in the 620). Whenever a data store
instruction is executed successfully, if the TLB search (for page address translation) results

MOTOROLA Chapter 5. Memory Management 5-25

in a hit, the changed bit in the matching TLB entry is checked. If it is already set, the
processor does not change the C bit. If the TLB changed bit is 0, the 620 sets it and a table
search operation is performed to also set the C bit in the corresponding PTE in the page
table. The 620 initiates the table search operation for setting the C bit in this case.

The changed bit (in both the TLB and the PTE in the page tables) is set only when a store
operation is allowed by the page memory protection mechanism and the store is guaranteed
to be in the execution path (unless an exception, other than those caused by the sc, rfi, or
trap instructions, occurs). Furthermore, the following conditions may cause the C bit to be
set:

• The execution of an stwcx. or stdcx. instruction is allowed by the memory
protection mechanism but a store operation is not performed.

• The execution of an stswx instruction is allowed by the memory protection
mechanism but a store operation is not performed because the specified length is
zero.

• The store operation is not performed because an exception occurs before the store is
performed.

Again, note that although the execution of the debt and dcbtst instructions may cause the
R bit to be set in some PowerPC processors, they never cause the C bit to be set.

5.4.1.3 Scenarios for Referenced and Changed Bit Recording
This section provides a summary of the model (defined by the OEA) that is used by
PowerPC processors for maintaining the referenced and changed bits. In some scenarios,
the bits are guaranteed to be set by the processor, in some scenarios, the architecture allows
that the bits may be set (not absolutely required), and in some scenarios, the bits are
guaranteed to not be set. Note that when the 620 updates the Rand C bits in memory, the
accesses are performed as if MSR[DR] = 0 and G = 0 (that is, as nonguarded cacheable
operations in which coherency is required).

Table 5-9 defines a prioritized list of the R and C bit settings for all scenarios. The entries
in the table are prioritized from top to bottom, such that a matching scenario occurring
closer to the top of the table takes precedence over a matching scenario closer to the bottom
of the table. For example, if an stwcx. instruction causes a protection violation and there is
no reservation, the C bit is not altered, as shown for the protection violation case. Note that
in the table, load operations include those generated by load instructions, by the eciwx
instruction, and by the cache management instructions that are treated as a load with respect
to address translation. Similarly, store operations include those operations generated by

5-26 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

store instructions, by the ecowx instruction, and by the cache management instructions that
are treated as a store with respect to address translation.

Table 5-9. Model for Guaranteed R and C Bit Settings

Causes Setting of

Priority Scenario
R Bit

OEA 620

1 No-execute protection violation No No

2 Page protection violation Maybe No

3 Out-of-order instruction fetch or load operation Maybe No

4 Out-of-order store operation contingent on a branch, trap, Maybe No
sc or rfi instruction, or a possible exception

5 Out-of-order store operation contingent on an exception, Maybe No
other than a trap or sc instruction, not occurring

6 Zero-length load (lswx) Maybe

7 Zero-length store (stswx) Maybe1

8 Store conditional (stwcx. or stdcx.) that does not store Maybe1

9 In-order instruction fetch Yes2 Yes

10 Load instruction or eciwx Yes Yes

11 Store instruction, ecowx, or dcbz instruction Yes Yes

12 icbi, debt, dcbtst, dcbst, or dcbf instruction Maybe No

13 dcbi instruction Maybe1 No

1 If C is set, R is also guaranteed to be set.
2 This includes the case in which the instruction was fetched out-of order and R was not set

(does not apply for 620).

Causes Setting
of C Bit

OEA 620

No No

No No

No No

No No

No No

No No

Maybe1

Maybe1

No No

No No

Yes Yes

No No

Maybe1 No

For more information, see "Page History Recording" in Chapter 7, "Memory
Management," of The Programming Environments Manual.

5.4.2 Page Memory Protection
The 620 implements page memory protection as it is defined in Chapter 7, "Memory
Management," in The Programming Environments Manual.

5.4.3 SLB Description
The 620 implements a 20-entry, FIFO segment-lookaside buffer (SLB). The SLB
implementation supports both 64-bit addressing as defined by the PowerPC architecture
and 32-bit addressing which is supported through the 64-bit bridge defined as optional by
the PowerPC architecture.

MOTOROLA Chapter 5. Memory Management 5-27

-

..

When the processor is in 64-bit bridge mode, the first 16 entries of the SLB act like 64-bit
segment register. The remaining four SLB entries function as SLB entries as they are
defined for 64-bit addressing.

The SLB supports simultaneous updates from the 64-bit bridge's implementation of the
mtsr instruction as well as automatic hardware refills provided for 64-bit addressing, and
as such, allows complex combinations of translations based on STEs and segment registers.
In these hybrid modes, software must maintain SLB consistency.

5.4.4 SLB Invalidation
The 620 supports the slbie and the slbia instructions defined by the PowerPC architecture.
Note that the instructions invalidate the SLB entries as well as the EPAT entries that match
the specified ESID. These instructions are not broadcast on the bus.

5.4.5 TLB Description
The UTLB contains 128 entries organized as a two-way set associative array with 64 sets.
If the address in one of the two TLB entries is valid and matches the virtual address, that
TLB entry contains the physical address. If no match is found, a TLB miss occurs.

Unless the access is the result of an out-of-order access, a hardware table search operation
begins if there is a TLB miss. If the access is out of order, the table search operation is
postponed until the access is required, at which point the access is no longer out of order.
When the matching PTE is found in memory, it is loaded into a particular TLB entry
selected by the least-recently-used (LRU) replacement algorithm and the appropriate EPAT,
and the translation process begins again, this time with an EPAT hit.

TLB entries are on-chip copies of PTEs in the page tables in memory and are similar in
structure. Formats for the PTE are given in "PTE Format for 64-Bit Implementations," in
Chapter 7, "Memory Management," of The Programming Environments Manual.

Software cannot access TLB arrays directly, except to invalidate an entry with the tlbie
instruction.

Each set of TLB entries is associated with one LRU bit, which is accessed when those
entries in the same set are indexed. LRU bits are updated whenever a TLB entry is used or
after the entry is replaced. Invalid entries are always the first to be replaced.

Although both SLBs and TLBs can be accessed in the same clock, only one exception is
reported at a time.

Although address translation is disabled on a reset condition, the valid bits of the BAT array
and TLB entries are not automatically cleared. Thus, TLB entries must be explicitly cleared
by the system software (with the tlbie instruction) before the valid entries are loaded and
address translation is enabled.

5-28 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

5.4.6 TLB Invalidation
For PowerPC processors such as the 620 that implement TLB structures to maintain
on-chip copies of the PTEs that are resident in physical memory, the optional TLB
Invalidate Entry (tlbie) instruction provides a way to invalidate the TLB entries. Note that
the tibia instruction is not implemented by the 620.

When a tlbie instruction is executed, the following actions occur:

Processor Function-The processor invalidates its own instruction and data TLBs
and EPATs. The tlbie invalidates all members of the congruence class indexed by the
EA. No SLB lookup and tag compare is required for this instruction. The processor
issues the tlbie bus operation.

Finished and Complete-The tlbie instruction is finished and complete when the
LSU sends the tlbie bus operation to the bus unit.

Performed-The tlbie instruction is performed when the tlbsync instruction is
completes its operations on the bus.

Snooper Function-The snooper indexes into both instruction and data EPATs and
into TLBs, and it invalidates the entire congruence class in each TLB without
comparing the tags for the TLBs.

The 620 snooper handles only one tlbie instruction at a time-For more information
see Section 8.4.18, "ASTATIN and ARESPIN Retry."

Memory function-No operation

5.4.7 TLB Synchronization
The tlbsync instruction guarantees that all loads and stores in all processors that may have
used a TLB entry that has been invalidated by a tlbie instruction have been performed. The
tlbsync instruction may only be issued by one processor at a time; this must be software
controlled.

Note that as a tlbsync master or snooper, the 620 does not guarantee that all previous tlbie
instructions have been issued to the bus or, if completed on the bus, have been completed
by the 620 snooper. To guarantee that all tlbie instructions executed prior to the tlbsync will
have been completed on the bus and completed by all 620 snoopers before the tlbsync is
issued to the bus, the tlbsync instruction must follow a sync. The completion of the tlbsync
bus operation guarantees that all instructions on other processors that may have used a
translation invalidated by a tlbie are complete.

When the processor issues a tlbsync bus operation, ARES PIN Retry causes the tlbsync bus
operation to be reissued. ARESPIN ReRun causes the tlbsync operation to be issued R =
1. ARESPIN Null is treated as the completion of the tlbsync bus operation. ARESPIN
Shared and Modified are undefined. For more information, see Section 8.4.18, "ASTATIN
and ARESPIN Retry."

MOTOROLA Chapter 5. Memory Management 5-29

-

The tlbsync instruction is finished and complete when the tlbsync bus operation is
complete.

The snooper ensures that all loads, stores, and instruction fetches that used any TLBs have
been either flushed or performed. A snooped tlbsync has the same effect on a processor that
a sync would have if it were executed on that processor. A snooper receives the tlbsync and
accepts it only if ASTATIN is not Retry. If ASTATIN is Retry, the snooper must back out
of the tlbsync operation. A snooper may continue the tlbsync bus operation if ARESPIN is
Retry. A snooper issues ARESPOUT ReRun for as long as it takes to complete the tlbsync.

The tlbsync operation appears on the bus as a distinct operation, that causes
synchronization of snooped tlbie instructions. Section 5.4.6, "TLB Invalidation," describes
the TLB invalidation mechanisms in the 620.

5.4.8 Page Address Translation Summary
Figure 5-6 provides the detailed flow for the page address translation mechanism, it
includes the checking of the N bit in the segment descriptor and then expands on the "TLB
Hit" branch of Figure 5-7. The detailed flow for the "TLB Miss" branch of Figure 5-7 is
described in Section 5.4.9, "Page Table Search Operation." Note that, as in the case of block
address translation, if the dcbz instruction is attempted to be executed either in
write-through mode or as cache-inhibited (W = 1 or I= 1), the alignment exception is
generated. The checking of memory protection violation conditions for page address
translation is described in Chapter 7, "Memory Management," in The Programming
Environments Manual.

5-30 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Effective Address
Generated

Page Address
Translation

Generate 80-Bit
Virtual Address from
Segment Descriptor

I-Fetch with N Bit Set in
Segment Descriptor

(No-Execute)

1 Compare Virtual Address
1 with TLB Entries
I_ - -- -- -- - - --- -

TLB Hit
Case

Check Page Memory
Protection Violation Conditions

Access Permitted

(See
Programming
Environments

Manuan

Access Prohibited

-~·~h~
(See

Programming
Environments

Manuan

Page Memory
Protection Violation PTE [C] = O otherwise

~-----~~
1 Invalidate TLB entry 1
I __ --- ---- ___ I

Page Table
Search Operation

(See Programming
~----~ Environments Manuan

Note:- - - Implementation Specific

PAO-PA63t--RPN [[A52-A63

Continue Access to Mem­
ory Subsystem with WIMG

bits from PTE

Figure 5-6. Page Address Translation Flow-TLB Hit

MOTOROLA Chapter 5_ Memory Management 5-31

-

5.4.9 Page Table Search Operation
If the translation is not found in the TLBs (a TLB miss), the 620 initiates a table search
operation which is described in this section. Formats for the PTE are given in "PTE Format
for 32-Bit Implementations," in Chapter 7, "Memory Management," of The Programming
Environments Manual.

The following is a summary of the page table search process performed by the 620:

1. The 64-bit physical addresses of the primary and secondary PTEGs are generated as
described in the Programming Environments Manual.

2. As many as 16 PTEs (from the primary and secondary PTEGs) are read from
memory (the architecture does not specify the order of these reads, allowing
multiple reads to occur in parallel). PTE reads occur with an implied WIM
memory /cache mode control bit setting of ObOOl. Therefore, they are considered
cacheable.

3. The PTEs in the selected PTEGs are tested for a match with the virtual page number
(VPN) of the access. The VPN is the VSID concatenated with the page index field
of the virtual address. For a match to occur, the following must be true:

- PTE[H] = 0 for primary PTEG; PTE[H] = 1 for secondary PTEG

- PTE[V] = 1
- PTE[VSID] = VA[0-51]

- PTE[API] = VA[52-56]

4. If a match is not found within the eight PTEs of the primary PTEG and the eight
PTEs of the secondary PTEG, an exception is generated as described in step 8. If a
match (or multiple matches) is found, the table search process continues.

5. If multiple matches are found, all of the following must be true:

- PTE[RPN] is equal for all matching entries

- PTE[WIMG] is equal for all matching entries

- PTE[PP] is equal for all matching entries

6. If one of the fields in step 5 does not match, the translation is undefined, and R and
C bit of matching entries are undefined. Otherwise, the R and C bits are updated
based on one of the matching entries.

7. A copy of the PTE is written into the on-chip TLB and appropriate EPAT, and the R
bit is updated in the PTE in memory (ifnecessary). If there is no memory protection
violation, the C bit is also updated in memory (if necessary) and the table search is
complete.

8. If a match is not found within the primary or secondary PTEG, the search fails, and
a page fault exception condition occurs (either an ISI or DSI exception).

Reads from memory for page table search operations are performed as if the WIMG bit
settings were Ob0010 (that is, as unguarded cacheable operations in which coherency is
required).

5-32 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Reads from memory for table search operations should be performed as global (but not
exclusive), cacheable operations, and can be loaded into the on-chip cache.

Figure 5-7 shows how the conceptual model for the primary and secondary page table
search operations, described in The Programming Environments Manual are realized in the
620.

Figure 5-7 shows the case of a dcbz instruction that is executed with W = 1 or I = 1, and
that the R bit may be updated in memory (if required) before the operation is performed or
the alignment exception occurs. The R bit may also be updated if memory protection is
violated.

MOTOROLA Chapter 5. Memory Management 5-33

Adjust PA to read
more PTE(s)

Page Table Search

Generate Primary and
Secondary PTEG Addresses

Fetch PTE(s)
from Physical Address(es)

otherwise

otherwiseK
1 A~Es checked

PTE [VSID, API, VJ = Seg Desc [VSIDJ, EA[APIJ, 1
PTE [HJ = 0 (Primary PTEG) or
PTE [HJ = 1 (Secondary PTEG)

otherwiseAPTE(RPN, WIMG, PP)
equal for all matching PTEs

Page Fault

ISi Exception

· - - Implementation-specific

Translation
Undefined

R, C bits for
matching PTEs
also undefined

DSI Exception

Update PTE[RJ
(if required)

r-- ---
1 Write PTE :
I intoTLB I •--- __ ..

Check Memory Protection
Violation Conditions

Access
Permitted

Access
Prohibited

(See
Programming
Environments

Manua~

otherwise~peration Page Memory
Protection Violatio

(See
Programming

Page Table
Search Complete

withPTE~O

---- ----1
:_ T_L~[~TEiCIJ _:--_ ~

PTE[C] ~ 1
(update PTE[CJ in memory

Page Table
Search Complete

Figure 5-7. Page Table Search

Environments
Manua~

If the address in one of the two selected TLB entries is valid and matches the virtual
address, that TLB entry contains the physical address. If no match is found, a TLB miss
occurs and, if this is an in-order access, a hardware table search operation begins. Once the
matching PTE is found in memory, it is loaded into the appropriate TLB entry depending
on the LRU bit setting and translation continues.

5-34 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Note that when a TLB miss occurs, the MMU does not begin the table search operation if
the access is out of order.

5.5 Porting a 32-Bit Operating System
The 620 provides optional support, defined by the PowerPC architecture, that makes it
easier to modify a 32-bit operating system to work in the 64-bit environment.

5.5.1 MMU Support for 32-bit OS
The primary feature added to the MMU is support for segment register emulation that
resembles the segment registers defined by that OEA for 32-bit implementations. This is
accomplished by a modification to the SLB that allows the mtsr instruction to directly load
an entry into one of the first 16 entries of SLB. The entry number is determined by the
instruction. A diagram of this shared structure is shown in Figure 5-8.

EA I Segment Number

EA CAM

Logic VSID Data Array

~1 Binary ~ DCD

VSID (to TLB)

Figure 5-8. Shared Segment Registers and SLB Structure

The SLB supports both mtsr and normal hardware refills simultaneously, which allows
complex combinations of both STE- and segment-register based translations. In these
hybrid modes, the software must maintain SLB consistency. In particular, the LRU policy
of the SLB becomes critical because hardware refill can overwrite the segments. The SLB
internally maintains a pointer to determine which cache block is to be written on the next
hardware refill. Following any write operation, the pointer is moved just below the written
line. The mtsr instructions ignore the refill pointer and write at the offset indicated by the
instruction.

In addition the following resources, defined as optional by the PowerPC architecture, are
implemented on the 620.

ASR[V]-Address space register valid bit (ASR[63]) is used on the 620 to disable
segment table search operations. If this bit is cleared, any translation that misses in
the SLB causes in a segment fault.

MSR[ISF]-The MSR[ISF] is copied to MSR[SF] when the processor takes an
exception.

MOTOROLA Chapter 5. Memory Management 5-35

-

-

• Segment register instructions that are required by the 32-bit architecture that are
used by the 64-bit bridge, mtsr, mtsrin, mfsr, and mfsrin.

• Additional segment register double instructions that are used only by the 64-bit
bridge facility:

- mtsrd (Move to Segment Double)-This instruction is a 64-bit extension of the
32-bit mtsr instruction. The enhanced instruction allows larger virtual addresses
to be loaded into the SLB.

- mtsrind (Move to Segment Register Double Indirect)-This instruction is a
64-bit extension of the 32-bit mtsrin instruction. The enhanced instruction
allows larger virtual addresses to be loaded into the SLB.

5.5.2 Guidelines
This section provides a very general overview for adapting a 32-bit operating system to run
on the 620. In particular, it describes differences between a 32-bit based processor and 620
that are important to a operating system.

• PTE format-The 64-bit version of PTE has a different format from the 32-bit PTE.
Sections of the operating system that create and reference PTE data must reflect the
new format.

SDRl-The 64-bit version of SDRl has a different format from the 32-bit version.
References to this register must use the new 64-bit format.

• BATs-Since the 620 updates BATs as they are defined for 64-bit addressing,
software must ensure that the upper 32 bits are cleared in the GPR before issuing a
mtspr[BAT] instruction.

• HIDO, L2CR, L2SR, BUSCSR-Because most processors differ in how they use
these processor configuration registers, the operating systems that access these
registers will need modification.

This list cannot consider every operating system in detail, and should not be considered
complete.

5.6 Direct-Store Interface Address Translation
The 620 implements the optional direct-store interface as it is defined by the PowerPC
architecture. That is, if T = 1 for the selected segment descriptor and there are no BAT hits,
the access maps to the direct-store interface, invoking a specific bus protocol for accessing
some special-purpose 1/0 devices. Direct-store segments are provided for POWER
compatibility and is not implemented on all PowerPC processors. As the direct-store
interface is present only for compatibility with existing 1/0 devices that used this interface
and the direct-store interface protocol is not optimized for performance, its use is
discouraged. Applications that require low latency load/store access to external address
space should use memory-mapped 1/0, rather than the direct-store interface.

5-36 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Note that the 620 implements EPATs that provide effective-to-physical address translations
for recent memory accesses. The EPATs also contain information that indicates whether the
T bit is set for the segment descriptor that corresponds to the memory access. Therefore
whether an access is to a direct-store device can be determined without having to locate the
segment descriptor.

MOTOROLA Chapter 5. Memory Management 5-37

-

5-38 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 6
Instruction Timing
This chapter describes instruction prefetch and execution through all of the execution units
of the PowerPC 620 microprocessor. It also provides examples of instruction sequences
showing concurrent execution and various register dependencies to illustrate timing
interactions.

6.1 Terminology and Conventions
Terminology and conventions used in this chapter are described as follows:

• Stage-An element in the pipeline at which certain actions are performed, such as
decoding the instruction, performing an arithmetic operation, and writing back the
results. A stage typically takes a cycle to perform its operation; however, some
stages are repeated (a double-precision floating-point multiply, for example). When
this occurs, an instruction immediately following it in the pipeline is forced to stall
in its cycle.

In some cases, an instruction may also occupy more than one stage
simultaneously-for example, instructions may complete and write back their
results in the same cycle.

After an instruction is fetched, it can always be defined as being in one or more
stages.

• Pipeline-In the context of instruction timing, the term pipeline refers to the
interconnection of the stages. The events necessary to process an instruction are
broken into several cycle-length tasks to allow work to be performed on several
instructions simultaneously-analogous to an assembly line. As an instruction is
processed, it passes from one stage to the next. When it does, the stage becomes
available for the next instruction.

Although an individual instruction may take many cycles to complete (the number
of cycles is called instruction latency), pipelining makes it possible to overlap the
processing so that the throughput (number of instructions completed per cycle) is
greater than if pipelining were not implemented.

MOTOROLA Chapter 6. lnstructionTiming 6-1

-

-

6-2

Superscalar-A superscalar processor is one that can issue multiple instructions
concurrently from a conventional linear instruction stream. In a superscalar
implementation, multiple instructions can be in the same stage at the same time. In
the 620 these instructions can leave the execute stage out of order but must leave the
other stages in order.

• Branch prediction-The process of guessing whether a branch will be taken. Such
predictions can be correct or incorrect; the term predicted as it is used here does not
imply that the prediction is correct (successful). The PowerPC architecture defines
a means for static branch prediction, which is part of the instruction encoding. The
620 also implements dynamic branch prediction, where there are levels of
probability assigned to a particular instruction depending on the history of that
instruction, which is recorded in the branch history table (BHT).

• Branch resolution-The determination of whether a branch is taken or not taken. A
branch is said to be resolved when it can exactly be determined which path it will
take. If the branch is resolved as predicted, speculatively executed instructions can
be completed. If the branch is not resolved as predicted, instructions on the
mispredicted path are purged from the instruction pipeline and are replaced with the
instructions from the nonpredicted path.

• Program order-The original order in which program instructions are provided to
the instruction queue from the cache.

• Stall-An occurrence when an instruction cannot proceed to the next stage.

• Latency-The number of clock cycles necessary to execute an instruction and make
ready the results of that execution for a subsequent instruction. If the execution time
varies dependent on the data operands, then a best-case/worst-case range is given for
instructions that do not update architectural registers, such as store instructions. The
execution time means the time it takes to execute this instruction back-to-back.
Latency also includes the serialization penalty.

Throughput-A measure of the number of instructions that are processed per cycle.
For example, a series of double-precision floating-point multiply instructions has a
throughput of one instruction per clock cycle. Throughput also includes the
serialization penalty.

• Reservation station-A buffer between the dispatch and execute stages that allows
instructions to be dispatched even though the operands required for execution may
not yet be available. In the 620, each execution unit has a two-entry reservation
station. The 620 implements two types of reservation stations. The integer units
implement out-of-order execution units so integer instructions can be executed out
of order within individual integer units and among the three units. The load/store
unit also supports out-of-order retrieval of instructions from its reservation stations.
The reservation stations of the floating-point execution unit are in-order reservation
stations-that is, all instructions must pass through the floating-point unit in
program order with respect to other like instructions.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Rename buffer-Temporary buffers used by instructions that have not completed
and as write-back buffers for those that have.

Finish-The term indicates the final cycle of execution. In this cycle, the completion
buffer is updated to indicate that the instruction has finished executing.

Completion-Completion occurs when an instruction is removed from the
completion buffer. When an instruction completes we can be sure that this
instruction and all previous instructions will cause no exceptions. In some situations,
an instruction can finish and complete in the same cycle.

Write-back-Write-back (in the context of instruction handling) occurs when a
result is written from the rename registers into the architectural registers (typically
the GPRs and FPRs). Results are written back at completion time or are moved into
the write-back buffer. Results in the write-back buffer cannot be flushed. If an
exception occurs, these buffers must write back before the exception is taken.

6.2 Instruction Timing Overview
The 620 has been designed to maximize instruction throughput and minimize average
instruction execution latency. For many of the instructions in the 620, this can be simplified
to include only the execute phase for a particular instruction. Note that the number of
additional cycles required by data access instructions depends on whether the access hits in
the L 1 cache in which case there is a single cycle required for the cache access. If the access
misses in the LI cache, the number of additional cycles required is affected by the L2 cache
access latency, processor-to-bus clock ratios, and other factors pertaining to memory
access.

In keeping with this definition, most integer instructions have a latency of one clock cycle
(for example, results for these instructions are ready for use on the next clock cycle after
issue). Other instructions, such as the integer multiply, require more than one clock cycle
to finish execution.

Figure 6-1 provides a detailed block diagram-showing the additional data paths that
contribute to the improved efficiency in instruction execution and more clearly shows the
relationships between execution units and their associated register files.

MOTOROLA Chapter 6. lnstructionTiming 6-3

-

branch
correction

Fetch Unit

instruction dispatch buses

Dispatch Unit
(Four-instruction

dispatch)

GPR operand buses

Completion
Unit

32-Kbyte data cache
8-way, 16 words/block

result status buses

FPR operand buses

Q)

a: E (;;
o.. ro:i::
Ll.. c :::J

~Ill

Result buses
Operand buses

(/)

a:
0..
Ll..
(\j
(")

Figure 6-1. PowerPC 620 Microprocessor Block Diagram Showing Data Paths

As shown in Table 6-1, effective throughput of more than one instruction per clock cycle
can be realized by the many performance features in the 620 including multiple execution
units that operate independently and in parallel, pipelining, superscalar instruction issue,
dynamic branch prediction, the implementation of two reservation stations for each
execution unit to avoid additional latency due to stalls in individual pipelines, and result
buses that forward results to dependent instructions instead of requiring those instructions
to wait until results become available in the architected registers.

Although it is not shown in Figure 6-1, the LSU and FPU are pipelined.

The 620's completion buffer can retire four instructions every clock cycle. In general,
instruction processing is accomplished in five stages-fetch stage, dispatch stage, execute
stage, completion stage, and write-back stage. The instruction fetch stage includes the clock
cycles necessary to request instructions from the on-chip cache as well as the time it takes
the on-chip cache to respond to that request. In the complete stage, as many as four
instructions per cycle are completed in program order. In the write-back stage, results are
returned to the register file. Instructions are fetched and executed concurrently with the

6-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

execution and write-back of previous instructions producing an overlap period between
instructions. The details of these operations are explained in the following paragraphs.

6.2.1 Pipeline Structures
The currently proposed master instruction pipeline of the 620 has five stages. Each
instruction executed by the machine will flow through at least these stages. Some
instructions (for example, loads and stores) flow through additional pipeline stages as
shown in Figure 6-3.

The five basic stages of the master instruction pipeline are:

Fetch (IF)

Dispatch (DS)
Execute (E)

Completion (C)

Write-back (W)

These stages are shown in Figure 6-2. Some instructions occupy multiple stages
simultaneously and some individual execution units, such as the FPU and MCIU, have
multiple execution stages.

Fetch (IF)

(Four-inst~uct!on dispatch per clock cycle in I Dispatch (DS) I
any combination)

Figure 6-2. Pipeline Diagram

Pipelines for typical instructions for each of the execution units are shown in Figure 6-3.
Note that this figure does not accurately reflect the latencies for all instructions that pass

MOTOROLA Chapter 6. lnstructionTiming 6-5

-

-

through each of the pipelines. The division of instructions into branch, integer, load/store,
and floating-point instructions indicates the execution unit in which the instructions
execute. For example, mtspr instructions, which are not thought of as integer instructions
from a functional perspective, are considered with integer instructions here because they
execute in the MCIU.

Note that in many circumstances, complete and write-back can occur in the same cycle.
Also, integer multiply, integer divide, move to/from SPR, store, and load instructions that
miss in the cache can occupy both the final stage of execute (finish) and complete (and
write-back) simultaneously.

Branch Instructions

Fetch
Predict
Resolve

Integer Instructions

Resolve Complete

11111111111111

Fetch Dispatch Execute* Complete Write-Back

1111111111111

Load Instructions

Execute

Fetch Dispatch Cache Align Complete Write-Back

11111111111111

Store Instructions

Execute

Fetch
EA Read .

Dispatch Cale Cache Lookup Complete GPA Align Store

1111111111111111111~¥

Floating-point Instructions

Execute (FPR Access)

Fetch Dispatch
(Round

(Multiply) (Add) /Normalize) Complete Write-Back

1111111111111

* Note that several integer instructions that execute in the MCIU have multiple execute stages.

Figure 6-3. Master Instruction Pipeline

6-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

A description of each of the five stages of the master instruction pipeline is provided in the
following sections.

6.2.1.1 Fetch Stage
The fetch pipeline stage primarily involves accessing instructions from the instruction
cache and determining where the next instruction fetch should occur. The instructions
fetched from the cache are either latched into an instruction buffer or the dispatch buffer for
subsequent consideration by the dispatch pipeline stage. Both branch history table (BHT)
and branch target address cache (BTAC) are accessed in the fetch stage to determine where
the next instruction fetch should occur.

6.2.1.2 Dispatch Stage
The dispatch pipeline stage is responsible for decoding the instructions in the dispatch
buffer, and allocating execution resources to the instructions. Instructions are eligible to be
dispatched if they get all of their required resources; otherwise, they are held in the dispatch
buffer until the resources become available. Resources are allocated to the instructions in
program order. The source operands of the instructions are read from the register file or
rename buffers, and are dispatched with the instruction to the execution units. The target
registers are renamed, and the rename-register tags are sent to the execution units too. At
the end of the dispatch pipeline stage, the dispatched instructions and their operands are
sent and latched into reservation stations or execution unit input latches.

6.2.1.3 Execute Stage
The functionality of the execute pipeline stage is executing an instruction from the
reservation stations or from instructions just arriving from dispatch. An instruction
becomes eligible for execution when all its source operands are available. The execution
unit selects the oldest instruction to execute if there is more than one instruction ready for
execution. Integer and load/store units can retrieve instructions from the reservation
stations out-of-order, but branch and floating-point units can only execute the oldest
instruction in the reservation stations. At the end of execute stage, execution unit will write
the results into the appropriate rename buffer entry, and notify the completion stage that the
instruction has finished execution. In the cases an exception occurs due to the instruction,
the execution unit will report the exception to complete pipeline stage and continue
executing next instructions from the reservation stations.

6.2.1.4 Complete Stage
The complete pipeline stage is responsible for maintaining the correct architectural
machine state. It considers four instructions residing in the completion buffer and uses the
information about the status of instructions provided by the dispatch and execute stages. If
the instructions being considered meet the constraints on completion, their results are
scheduled to be written back from the rename buffer(s) to the architectural register file(s).
If the completion logic detects an instruction containing exception status or a branch has
been mispredicted, all following instructions will be cancelled, their execution results in the
rename buffers will be discarded, and the correct instruction stream will be fetched.

MOTOROLA Chapter 6. lnstructionTiming 6-7

6.2.1.5 Write-back Stage
The write-back pipeline stage is relatively straightforward. It acts on the write-back select
information generated by the complete pipeline stage and writes the appropriate Rename
Buffer entries into the appropriate architectural register file(s). Updating of many other
architectural registers (CTR, LK, CR, etc.) is performed at this time as well.

6.3 Instruction Scheduling Guidelines
Since instructions are dispatched in program order, the performance of the 620 can be
improved by scheduling instructions appropriately to avoid resource conflicts and promote
parallel utilization of execution units.

6.3.1 Instruction Dispatch Rules
The following list provides limitations on instruction dispatch that should be kept in mind
in order to avoid dispatch stalls:

6-8

• At most, four instructions can be dispatched per cycle.

• Since instructions are dispatched in program order, an instruction cannot be
dispatched unless all preceding instructions in the dispatch buffer are dispatched.

• One instruction can be dispatched per functional unit:

- The branch unit executes all branch and condition register logical instructions.

- The two single-cycle integer units are identical. Either can execute any integer
arithmetic, logical, shift/rotate, or trap instructions. They also handle mtcrf
instructions that update only one field.

- The multi-cycle integer unit executes all integer multiply, divide, and move
to/from instructions (except single-field mtcrf). It also executes cntlz
instructions.

- The load/store unit executes load, store, and cache control instructions.

- The floating-point unit executes all floating-point instructions, including move
to/from FPSCR.

• Each instruction must have an entry in the 16-entry reorder buffer (that is, the
completion buffer). The dispatch unit stalls when the reorder buffer is full. Reorder
buffer entries become available in the cycle after the instruction has completed.
Reorder buffer entries are assigned and released in pairs.

• An instruction that modifies a GPR is assigned at least one of the eight positions in
the GPR rename buffer. Load with update instructions get two positions since they
update two registers. When the GPR rename buffer is full, the dispatch unit stalls
when it encounters the first instruction that needs an entry. A rename buffer entry
becomes available for reassignment in the cycle that the previous results are written
back to the GPR, which is always the cycle after the instruction has completed.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

• Any instruction that modifies an FPR or is dispatched to the floating-point unit will
be assigned one entry in the eight-entry FPR rename buffer. When the FPR rename
buffer is full, dispatch will stall on the next instruction which requires an FPR
rename. A rename buffer entry becomes available for reassignment one cycle after
the instruction is completed.

CR renaming is implemented in the 16-entry reorder buffer, thereby removing the
possibility that an instruction will stall solely due to the lack of a CR rename.

Each execution unit (not including branch) has a reservation station with a minimum
of two entries (the load/store unit has three entries). The reservation station holds
instructions until they are ready for execution. Instructions can only be dispatched
to a unit if its reservation station is guaranteed to have at least one entry available.
(Instructions may be removed from the reservation station and executed out-of-order
in all units except the floating-point unit. When multiple instructions in the
reservation station are available for execution, the oldest instruction will be
selected.)

• Only one branch instruction can dispatch per cycle. There are no restrictions on the
dispatch of instructions after a branch, unless the branch unit determines that there
may have been a prefetch error. In this case, the branch unit will halt the dispatch of
the 'wrong-path' instructions after the branch and begin fetching instructions from
what it knows or suspects to be the correct path.

• Only one instruction which may update the count register (CTR) may be pending
completion at one time. A second update-CTR instruction will not dispatch until the
first completes. In addition, any branch instruction which uses the CTR will not
dispatch while a move-to-CTR instruction is pending.

There are also interlock mechanisms between instructions which update the Link
Register (LR). In general, two LR renames are supported. This allows, at most, two
instructions which update the LR to be pending completion. There are additional
constraints regarding the LR. A move-to-LR will not dispatch if there is a previous
move-to-LR pending execution. A move-from-LR will not dispatch if there is a
previous move-to-LR or move-from-LR pending execution. A branch with LK bit
set will not dispatch if there is a move-to-LR pending execution.

The 620 can handle as many as four branch instructions in the execute stage. The
dispatch stalls on the first instruction after the fourth branch until the first branch
executes. The 620 does not restrict the number of branches which have finished
execution, but have not completed.

• An instruction may not be dispatched if a serialization mode is in effect for the
instruction:

- When in single-step trace mode, branch trace mode, or single instruction mode,
an instruction will not be dispatched until the previous instruction has completed.

- An instruction will not be dispatched if there is a previous Single-Instruction
serialized instruction which has not finished execution.

- An instruction will not be dispatched if a soft-stop breakpoint event occurred on
the previous instruction.

MOTOROLA Chapter 6. lnstructionTiming 6-9

• No instructions are dispatched during a 'global cancel' or if a 'halt' command from
the COP is being processed.

• An instruction in the last slot of the dispatch buffer will not dispatch if the instruction
contains an rB field.

6.4 -Instruction Serialization Modes
Some instructions, such as mfspr and most mtspr instructions, extended arithmetic
instructions that require the carry bit, and condition register instructions, require
serialization to execute correctly. For this reason, the 620 implements a simple serialization
mechanism that allows such instructions to be dispatched properly but delays execution
until they can be executed safely. When all previous instructions have completed and
updated their results to the architectural states, the serialized instruction is executed by
directly reading and updated in the architectural states. If the instruction target is a GPR,
PPR, or the CR, the register is renamed to allow later nondependent instructions to execute.

Store instructions are dispatched to the LSU where they are translated and checked for
exception conditions. If no exception conditions are present, the instruction is passed to the
store queue where it waits for all previous instructions to complete before it can be
completed. Direct-memory accesses are handled in the same way to ensure that exceptions
are precise. Serialization modes are described in the following sections.

6.4.1 Single Instruction Serialization
During the first cycle in which the serializing instruction is present in the dispatch buffer
the instruction will be decoded. At this point the instruction will be identified as a
serializing instruction. If the instruction belongs to single instruction serialization class, the
serializing instruction will be dispatched as usual and all subsequent instructions will be
prevented from dispatching in this cycle. The drain time period begins at this point.

During the drain time period, all subsequent instructions will remain in the dispatch buffer.
While in the dispatch buffer, they may shift positions within the buffer but they may not be
dispatched. This time period will continue until all instructions prior to the serializing
instruction have completed execution and all architecture facilities are updated. At this
time, the single-instruction-mode time period begins.

At the beginning of the single-instruction-mode time period, all source operands for the
serializing instruction are guaranteed to be available from the appropriate architectural
facility. During the execution cycle any architectural facilities which are updated by the
serializing instruction are updated directly; all rename buffers and rename registers are
bypassed. After the instruction finishes execution, the unit in which the instruction is
executing will send a finish signal to the completion and dispatch blocks. The serializing
instruction is guaranteed to be completed by the completion logic in the cycle immediately
after it finishes because none of the completion constraints will prevent it from completing,
as the machine is empty of all other activity. The serializing instruction will not pass

6-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

through the write-back pipeline stage, as all of its destination writes will have completed
during the execution pipeline stage.

Upon receiving the finish signal for the serializing instruction, the dispatch mechanism will
begin dispatching the instructions following the serializing instruction normally. This will
constitute the end of the single-instruction-mode time period.

Instructions causing single instruction serialization include:

Instructions which update GPRs in non-rename mode, such as load multiples and
load string instructions

Instructions which update the entire condition register, such as mtcrf

Instructions defined by the architecture to have context synchronizing behavior

Cache operations which modify or invalidate the content of a cache line

6.4.2 Execution Serialization
The occurrence of an execution serialization instruction has no effect on the dispatching
and execution of any following instructions. The only difference between an execution
serialization instruction and a non-serialization instruction is that the execution
serialization instruction cannot be executed until it is the oldest instruction in the system.
In another words, the instruction will be dispatched into a reservation station, but cannot be
issued to execution until the completion block informs the execution unit to execute the
instruction.

Instructions causing execution serialization include:

Instructions which read CA and OV bits

Instructions which write the whole XER (except SO bit)

Instructions which store multiple data items to memory

Instructions which read SPRs and write MSR

Instructions which modify SPRs except CTR/LR

MMU operations which modify the contents of MMU

Instructions which modify reservation

• Load access to T = I and cache-inhibited space

Instructions which may alter the operating mode of the FPU

Floating-point instructions with bit Re= 1

Load/store instructions which require extra data alignment cycles, such as load­
byte-reverse instructions, and load/store crossing the double-word boundary.

6.4.3 Refetch Serialization
The occurrence of refetch serialization instruction prevents the 620 from dispatching
following instructions, and it will cause the 620 to cancel all outstanding instructions in the

MOTOROLA Chapter 6. lnstructionTiming 6-11

-

-

processor when the serialization instruction is completed and refetch instructions after the
serialization instructions.

Instructions causing execution serialization include:

• isync, rfi

• Instructions which change the SO bit in the XER

Store instructions which detect the out-of-order execution of load instructions
accessing the same doubleword.

6.4.4 Other Serialization Modes
This section provides additional serialization modes implemented on the 620.

• Single Instruction Step Trace Mode-The 620 will serialize all instructions when in
single-step trace mode, MSR[SE] = 1.

Branch Trace Mode-The 620 will serialize all instructions when in Branch Trace
mode, MSR[BE] = 1.

Single Instruction Dispatch Mode-The 620 will serialize all instructions when in
Single Instruction dispatch mode, HID0[24] = 0.

6.5 Instruction Execution Timing
Table 6-1 shows the latency and throughput of each instruction (sorted alphabetically by
mnemonic).

General assumptions used to derive the numbers in this table:

• Data and instruction accesses hit in the Ll caches.

• Floating point operations do not involve zeros, NaNs, or infinity.

• References to memory are aligned.

Notations used in the table:

• Execution Unit

- IPU: Instruction Processing Unit

- IFU: Instruction Flow Unit

- LSU: Load/Store Unit

- SCIU: Single-cycle Integer Unit

- MCIU: Multi-cycle Integer Unit

- FPU: Floating-Point Unit

- CRLU: Condition Register Logical Unit

6-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

• Latency-Latency is defined as the number of processor cycles from when the
instruction begins execution to when the execution result is available to dependent
instructions. If the execution time varies dependent on the data operands, then a best­
case/worst-case range is given. For instructions that do not update architectural
registers, such as store instructions, the execution time means the time it takes to
execute this instruction back to back. Latency also includes the serialization penalty.

Throughput-Throughput is defined as the number of processor cycles required per
instruction for a series of independent instructions. Throughput also includes the
serialization penalty.

Serialization Scheme

- Single_Inst_Ser: The instruction causes Single Instruction Serialization.

- Exec_Ser: The instruction causes Execution Serialization.

- Refetch: The instruction causes Refetch Serialization.

- Non-Pipelined: The instruction cannot be executed in a pipelined fashion.

Table 6-1. Instruction Execution Timing Sorted by Mnemonic

Instruction
Execution

Latency Throughput Serialization
Unit

add SCIU 1 1 -

addc SCIU 1 1 -

adde SCIU 2 1 Exec_Ser

addi SCIU 1 1 -
addic SCIU 1 1 -

addic. SCIU 1 1 -
ad dis SCIU 1 1 -

add me SCIU 2 1 Exec_Ser

addze SCIU 2 1 Exec_Ser

and SCIU 1 1 -

andc SCIU 1 1 -
an di. SCIU 1 1 -
and is. SCIU 1 1 -

b IPU 0 1 -
be IPU 0 1 -

be ctr IPU 0 1 -

bclr IPU 0 1 -

cmp SCIU 1 1 -

cm pi SCIU 1 1 -

MOTOROLA Chapter 6. Instruction Timing 6-13

-

Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction
Execution

Latency Throughput Serialization
Unit

cmpl SCIU 1 1 -
cmpli SCIU 1 1 -

cntlzd MCIU 2 1 -

cntlzw MCIU 2 1 -

crand CRLU 2 3 Exec_Ser

crandc CRLU 2 3 Exec_Ser

creqv CRLU 2 3 Exec_Ser

crnand CRLU 2 3 Exec_Ser

crnor CRLU 2 3 Exec_Ser

cror CRLU 2 3 Exec_Ser

crorc CRLU 2 3 Exec_Ser

crxor CRLU 2 3 Exec_Ser

- dcbf LSU 15 15 Single_lnst_Ser

dcbi LSU 30 30 Single_lnst_Ser

dcbst LSU 15 1 Exec_Ser

debt LSU 2 1 -

dcbtst LSU 2 1 -

dcbz LSU 7 7 Single_lnst_Ser

divd MCIU 37 36 Non-Pipelined

divdu MCIU 37 36 Non-Pipelined

divw MCIU 37 36 Non-Pipelined

divwu MCIU 37 36 Non-Pipelined

eciwx LSU 26 -

ecowx LSU 3 -

eieio LSU 22 NotApplic. Exec_Ser

eqv SCIU 1 1 -

extsb SCIU 1 1 -

extsh SCIU 1 1 -

extsw SCIU 1 1 -

fabs FPU 3 1 -

FP FPU 4 1 Exec_Ser
Instructions
with Rc=1

6-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued}

Instruction
Execution

Latency Throughput Serializatic-n
Unit

fadd FPU 3 1 -

fadds FPU 3 1 -

fcfid FPU 3 1 -

fem po FPU 3 1 -

fcmpu FPU 3 1 -

fetid FPU 3 1 -

fctidz FPU 3 1 -

fctiw FPU 3 1 -

fctiwz FPU 3 1 -

fdiv FPU 18- 25 18-25 Non-Pipelined

fdivs FPU 18- 25 18-25 Non-Pipelined

fmadd FPU 3 1 -

fmadds FPU 3 1 -

fmr FPU 3 i - -fmsub FPU 3 1 -

fmsubs FPU 3 1 -

fmul FPU 3 1 -

fmuls FPU 3 1 -

fnabs FPU 3 1 -

fneg FPU 3 1 -

fnmadd FPU 3 1 -

fnmadds FPU 3 1 -

fnmsub FPU 3 1 -

fnmsubs FPU 3 1 -

fr es FPU 3 1 -

frsp FPU 3 1 -

frsqrte FPU 3 1 -

fsqrt FPU 21 -30 21 -30 Non-Pipelined

fsel FPU 3 1 -

fsqrts FPU 21 - 30 21 -30 Non-Pipelined

fsub FPU 3 1 -

fsubs FPU 3 1 -

MOTOROLA Chapter 6. lnstructionTiming 6-15

Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction
Execution

Latency Throughput Serialization
Unit

icbi LSU 27 Exec_ Ser

isync IFU 6 Ref etch

lbz LSU 2 1 -
lbzu LSU 2 1 -

lbzux LSU 2 1 -
lbzx LSU 2 1 -

Id LSU 2 1 Exec_Ser if misaligned

ldarx LSU 3 NotApplic. Exec_Ser

ldu LSU 2 1 Exec_Ser if misaligned

ldux LSU 2 1 Exec_Ser if misaligned

ldx LSU 2 1 Exec_Ser if misaligned

lfd LSU 2 1 Exec_Ser if misaligned

- lfdu LSU 2 1 Exec_Ser if misaligned

lfdux LSU 2 1 Exec_Ser if misaligned

lfdx LSU 2 1 Exec_Ser if misaligned

Ifs LSU 2 1 Exec_Ser if misaligned

lfsu LSU 2 1 Exec_Ser if misaligned

lfsux LSU 2 1 Exec_Ser if misaligned

lfsx LSU 2 1 Exec_Ser if misaligned

Iha LSU 2 1 Exec_Ser if misaligned

lhau LSU 2 1 Exec_Ser if misaligned

lhaux LSU 2 1 Exec_Ser if misaligned

lhax LSU 2 1 Exec_Ser if misaligned

lhbrx LSU 5 1 Exec_Ser

lhz LSU 2 1 Exec_Ser if misaligned

lhzu LSU 2 1 Exec_Ser if misaligned

lhzux LSU 2 1 Exec_Ser if misaligned

lhzx LSU 2 1 Exec_Ser if misaligned

lmw LSU 1 +#reg 1 +#reg Single_lnst_Ser

lswi LSU 1 +#reg 1 +#reg Single_lnst_Ser

lswx LSU 1 +#reg 1 +#reg Single_lnst_Ser

lwa LSU 2 1 Exec_Ser if misaligned

6-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction
Execution

Latency Throughput Serialization
Unit

lwarx LSU 3 Not Applic. Exec_Ser

lwaux LSU 2 1. Exec_Ser if misaligned

I wax LSU 2 1 Exec_Ser if misaligned

lwbrx LSU 5 5 Exec_Ser

lwz LSU 2 1 Exec_ Ser if misaligned

lwzu LSU 2 1 Exec_Ser if misaligned

lwzux LSU 2 1 Exec_Ser if misaligned

lwzx LSU 2 1 Exec_Ser if misaligned

mcrf CRLU 2 3 Exec_Ser

mcrfs FPU 4 1 Exec_Ser

mcrxr MCIU 4 4 Exec_Ser

mfcr MCIU 4 4 Exec_Ser

mffs FPU 4 1 Exec_ Ser

mfmsr MCIU 5 5 Exec_Ser

mftb 268 MCIU 5 5 Exec_Ser

mftb 269 MCIU 4 4 Exec_Ser

mfspr MCIU 4 - 16 Some are

mfsr MCIU 9+ 9 Exec_Ser, can be stalled
by DCMMU

mfsrin MCIU 9+ 9 Exec_Ser, can be stalled
by DCMMU

mtcrf (single SCIU 2 1
field)

mtcrf MCIU 4 4 Single_lnst_Ser
(multiple
fields)

mtfsbO FPU 3 3 Exec_Ser

mtfsb1 FPU 3 3 Exec_Ser

mtfsf FPU 4 1 Exec_Ser

mtfsfi FPU 4 1 Exec_Ser

mtmsr MCIU 4 4 Exec_Ser

mtmsrd MCIU 4 4 Exec_Ser

mtspr MCIU 4 4
LR/CTR

MOTOROLA Chapter 6. lnstructionTiming 6-17

Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction
Execution

Latency Throughput Serialization
Unit

mtspr MCIU 4 - 16 Exec_Ser
(others)

mtsr MCIU 7+ 7 Exec_Ser, can be stalled
by DCMMU

mtsrin MCIU 7+ 7 Exec_Ser, can be stalled
by DCMMU

mulhd MCIU 3-9 1 1 O bits per iteration

mulhdu MCIU 3-9 1 1 O bits per iteration

mulhw MCIU 3-6 1+ 1 O bits per iteration

mulhwu MCIU 3-6 1+ 10 bits per iteration

mulld MCIU 3-9 1+ 1 O bits per iteration

mulli MCIU 3-4 1+ 1 O bits per iteration

mullw MCIU 3-6 1+ 1 0 bits per iteration

nand SCIU 1 1 -

- neg SCIU 1 1 -

nor SCIU 1 1 -
or SCIU 1 1 -

ore SCIU 1 1 -

ori SCIU 1 1 -

or is SCIU 1 1 -

rfi IFU 5 Ref etch

rfid IFU 5 Ref etch

rldcl SCIU 1 1 -

rider SCIU 1 1 -

rldic SCIU 1 1 -

rldicl SCIU 1 1 -

rldicr SCIU 1 1 -

rldimi SCIU 1 1 -

rlwimi SCIU 1 1 -

rlwinm SCIU 1 1 -
rlwnm SCIU 1 1 -

SC IFU 5 Ref etch

slbia LSU 2 Exec_Ser

6-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction
Execution

Latency Throughput Serialization
Unit

slbie LSU 10 Exec_Ser

sld SCIU 1 1 -

slw SCIU 1 1 -

srad SCIU 1 1 -

sradi SCIU 1 1 -

sraw SCIU 1 1 -

srawi SCIU 1 1 -

srd SCIU 1 1 -

srw SCIU 1 1 -

stb LSU 1 1

st bu LSU 2 1

stbux LSU 2 1 -

st bx LSU 2 1 -

std LSU 2 1 Exec_Ser if misaligned -stdcx. LSU 3 Exec_Ser

st du LSU 2 1 Exec_Ser if misaligned

stdux LSU 2 1 Exec_Ser if misaligned

stdx LSU 2 1 Exec_Ser if misaligned

stfd LSU 2 1 Exec_Ser if misaligned

stfdu LSU 2 1 Exec_Ser if misaligned

stfdux LSU 2 1 Exec_Ser if misaligned

stf dx LSU 2 1 Exec_ Ser if misaligned

stfiwx LSU 2 1 Exec_Ser if misaligned

stfs LSU 2 1 Exec_Ser if misaligned

stfsu LSU 2 1 Exec_Ser if misaligned

stfsux LSU 2 1 Exec_Ser if misaligned

stfsx LSU 2 1 Exec_Ser if misaligned

sth LSU 2 1 Exec_ Ser if misaligned

sthbrx LSU 2 1 Exec_Ser if misaligned

sthu LSU 2 1 Exec_Ser if misaligned

sthux LSU 2 1 Exec_Ser if misaligned

sthx LSU 2 1 Exec_Ser if misaligned

MOTOROLA Chapter 6. lnstructionTiming 6-19

Table 6-1. Instruction Execution Timing Sorted by Mnemonic (Continued)

Instruction
Execution

Latency Throughput Serialization
Unit

stmw LSU 1 +#reg 1 +#reg Exec_Ser

stswi LSU 1 +#reg 1 +#reg Exec_Ser

stswx LSU 1 +#reg 1 +#reg Exec_Ser

stw LSU 2 1 Exec_Ser if misaiigned

stwbrx LSU 2 1 Exec_Ser if misaligned

stwcx. LSU 3 Exec_Ser

stwu LSU 2 1 Exec_Ser if misaligned

stwux LSU 2 1 Exec_Ser if misaligned

stwx LSU 2 1 Exec_Ser if misaligned

subf SCIU 1 1 -

subfc SCIU 1 1 -

subfe SCIU 2 1 Exec_Ser

subfic SCIU 1 1 -

subfme SCIU 2 1 Exec __ Ser

subfze SCIU 2 1 Exec_Ser

sync LSU 26 Single_lnst_Ser

td SCIU 1 1 -
tdi SCIU 1 1 -

tlbie LSU 22 Exec_Ser

tlbsync LSU 26 Exec_Ser

tw SCIU 1 1 -
twi SCIU 1 1 -

xor SCIU 1 1 -

xori SCIU 1 1 -

xoris SCIU 1 1 -

6.5.1 Performance of load/Store Multiples and Strings Instructions
The following sections discuss the performance of load/store multiple and string
instructions.

6.5.1.1 load-Multiple Word and Doubleword from Cacheable Memory
The 620 will load one register per cycle with single-instruction serialization, which means
load multiple cannot be executed until all previous instructions are completed, and no
following instructions can be dispatched until load multiple is finished. The same

6-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

mechanism is used to handle load string instruction whose starting address is word-aligned
and byte count is multiple of four.

6.5.1.2 Store-Multiple Word to Cacheable Memory
The 620 will store one register per cycle with execution serialization, which means store
multiple can be dispatched, but cannot be executed until it's the oldest instruction in the
processor. All following instructions can be dispatched and executed as usual.

The same mechanism is used to handle store string instruction whose starting address is
word-aligned and byte count is multiple of four.

6.5.1.3 Load-Multiple Word from Cache-Inhibited Memory
The 620 will generate one bus transaction every register. There is no data gathering in this
case, and the transfers are not pipelined. Same serialization scheme is used as Load
Multiple from cacheable memory.

The same mechanism is used to handle load string instruction whose starting address is
word-aligned and byte count is multiple of four.

6.5.1.4 Store-Multiple Word to Cache-Inhibited Memory
620 will split a store-multiple instruction to cache-inhibit memory into multiple single­
word stores, and Data Cache Unit will use the store-gathering mechanism to gather these
single-word stores into doubleword packets and transfer these packets to the bus. Detailed
description of the store mechanism is presented in the next section. In the ideal case where
bus is always available and processor core can generate data fast enough, Same serialization
is used as store multiple to cacheable memory.

The same mechanism is used to handle store string instruction whose starting address is
word-aligned and byte count is multiple of four.

6.5.1.5 String Instructions that are not Treated as Load/Store
Multiples

For this kind of string instructions, the 620 will access 4-bytes at a time if the access does
not cross a doubleword boundary; otherwise, the access will be split into two separate
accesses. The same mechanism is used to handle to/from cache-inhibited memory, and each
access will generate a bus transaction; refer to Table 6-2.

MOTOROLA Chapter 6. lnstructionTiming 6-21

-

Table 6-2. Performance of String Instructions not Treated as a Load/Store Multiple

#of bytes Placement Accesses

1 don't care 1

2-4 within_DW 1

2-4 cross_DW 2

5-8 within_DW 2

5-8 cross_DW, 2
word_aligned

5-8 cross_DW, 3
byte_aligned

9-12 word_aligned 3

9-12 within_two_DW 4

9-12 cross_two_ DW 5

6.5.2 Store Gathering for Cache-Inhibited and Write-Through Stores
The 620 may gather consecutive stores in a quad word store buffer if they satisfy the
following conditions:

Have the same WI setting, and W = 1 or I = 1, and T = 0, and not atomic, and not
ecowx.

• Have same operand size of either word or double word.

String operation with word-aligned operand will be split into multiple store word, so
they will be gathered too.

Address of the following store is in the same quad word of the preceding store, and
its word-offset is greater than the preceding store by one for store word, or by two
for store double.

The store buffer will be flushed whenever a count of two words is reached during store
words, or a count of four words during store doubles, or the succeeding store does not
satisfy any of the above conditions, or there are no more stores in the completion store
queue.Word stores can only be gathered in two word quantities because the 620 bus does
not support three word transfers and there is no way of telling whether a fourth word will
be available to obtain an acceptable store size (one quad word). Maximum throughput is
one quad word every 12 processor cycles for cache-inhibited or write-through store
doubles. Cache-inhibited or write-through store singles have the same maximum
throughput, but only occupy half a quad word.

Gathering can be encouraged in the hardware by writing code which satisfies the above
conditions, but no code sequence can guarantee that gathering will occur in the hardware.
This variability is primarily caused by the fact that 620 can only gather based on stores that

6-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

are available in the completed store queue. Since store will be processed as soon as they
arrive in the completed store queue, gathering can be dramatically impacted by completed
store queue utilization.

6.5.3 Cache-Inhibited or Write-Through Store Bandwidth
This section describes the system conditions necessary to obtain the cache-inhibited or
write-through store maximum bandwidth of one quad word store every 14 processor cycles
(PCLKs). Given the following conditions, the store bandwidth will be the same for cache­
inhibited or write-through stores because these types of stores are strongly ordered with
respect to memory (as opposed to burst stores which are not strong ordered). For write
through stores, it is assumed that the L2 interface does not become the long path (that is, no
non write through activity that could block write buffers to the L2). The necessary system
conditions follow:

• The processor to bus ratio is 2: 1.

• The master is address bus parked for the address-data transactions, receiving ABG
the same cycle as the processor internal ABR goes active. See Section 8.3.10, "Bus
Parking." If the master can not be address bus parked, then one extra bus clock will
be added to the arbitration time and if a combinatorial arbiter is not used, one
additional cycle will be added for ABG beyond ABR.

• The DBR and DBG occur in one bus clock due to a combinatorial arbiter.

• The BUSRESPTEN is the minimum value of two bus clocks (so ASTATOUT/IN
have a tenure of two bus cycles). If the tenure is three bus clocks, then the extra bus
cycle will be added to the bandwidth. See Section 8.4.6, "Address Status and
Address Response Tenure (BUSRESPTEN[0-1])."

• The address tenure is one bus clock. If the tenure of the address is more then one bus
clock, then this may limit continuous store bandwidth and result in some idle bus
clocks when write data could have been transferred. See Section 8.3.9, "Early
Address Transfer Start (EATS)."

6.6 L 1, L2, and Memory Load Latency
This section defines the latency of data and instruction memory loads. This analysis does
not take into account additional latency due to a busy resource, either internal or external
to the 620. Latency is expressed in terms of PCLKs, L2CLOCKs, and BUSCLKs, which
are processor clocks, L2 clocks, and bus clocks. The PCLK is always the highest frequency
clock and the L2CLOCK and BUSCLK are always an integer multiple of PCLKs, but not
necessarily the same multiple (ratio). (Note: L2CLOCK = L2RATIOSR PCLKs and
BUSCLK = BUSRATIO PCLKs.)

MOTOROLA Chapter 6. lnstructionTiming 6-23

-

-

6.6.1 L 1 Data Cache Latency
Table 6-3 outlines the latency for an L l data cache access.

Table 6-3. L 1 Data Cache Latency

Owner Latency Description Parameter Value Unit

1 LD/ST Effective Address Calculation L1EA 0.5 PCLK

2 DCache L 1 Cache Access L1CA 1 PCLK

3 L 1 Hit: Add O latency.
L 1 Miss: Add latency from Table 6-6.

4 LD/ST Data Align/Extend, Drive, and L1RD 0.5 PCLK
Setup

6.6.2 L2 Cache Latency
Table 6-5 outlines the latency for an L2 cache access.

Table 6-4. L2 Cache Latency

Owner Latency Description Parameter Value Unit

1 DCache Tag Comparison L1TC 0.5 PCLK

2 BIU Address Muxed to L2 Interface L2AM 1 PCLK

3 BIU PCLK to L2CLOCK transition L2CK (see Note) PCLK

4 BIU SRAM External Address L2PR L2RATIOSR PCLK

5 BIU SRAM Array Access and External L2SR L2RATIOSR * PCLK
Data L2RATIOSR

6 BIU ECC +Tag Compare L2TC 1 PCLK

7 L2 Hit: Add O latency.
L2 Miss: Add latency from Table 6-6.

8 DCache Data passes rising to falling edge L2RF 0.5 PCLK

Note: Worst case transition from PCLK to L2CLOCK is (1 L2CLOCK- 1 PCLK). Best case
is 0 PCLK.

6.6.3 L2 Cache Disabled Latency
When the L2 is disabled for a cacheable read operation, address collision detection is not
hidden underneath the L2 cache access latency and becomes a sequential latency
component. Table 6-5 outlines the latency for an L2-disabled cacheable access.

6-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 6-5. L2 Disabled Latency

Owner Latency Description Parameter Value Unit

1 DCache Tag Comparison L1TC 0.5 PCLK

2 BIU Address Muxed to L2 Interface L2AM 1 PCLK

3 BIU PCLK to L2CLOCK transition L2CK (see Note) PCLK

4 BIU Collision detection compare L2CD1 1 PCLK

5 BIU Collision detection grant L2CD2 1 PCLK

6 Add latency from Table 6-6 starting with Parameter MIA.

7 DCache Data passes rising to falling edge L2RF 0.5 PCLK

Note: Worst case transition from PCLK to L2CLOCK is (1 L2CLOCK - 1 PCLK). Best
case is O PCLK.

6.6.4 Bus Read Latency
Table 6-6 defines the latency for a bus read.

Table 6-6. Bus Read Latency

Owner Latency Description Parameter Value Unit

1 BIU L2 Coherency to Bus Interface Req. MCR 1 PCLK

2 BIU Internal arbitration for address bus MIA 1 PCLK

3 BIU PCLK to BUSCLK transition MPB 0-1 BUSCLK1

4 XARB Bus Arbitration MAL 0-N BUSCLK2

5 Bus Address Transferred MAT 1-2 BUSCLK3

6 Bus Latency from address to response MRL BUSTLAR BUSCLK

7 Bus Snoop response transferred MRT 2-3 BUSCLK4

8 Bus Response logic and data bus arb MAD 2 PCLK

9 Bus No Return Data MDL 1-N BUSCLK

10 Bus First return data valid MDT 1 BUSCLK

11 BIU Data passed to Bus load buffer MDR 1 PCLK

12 DCache Load bus arbitration MLA 1 PCLK

Notes:

1. Worst case transition from PCLK to BUSCLK is (1 BUSCLK - 1 PCLK). Best case is 0 PCLKs.

2. Determined by external bus arbiter. O bus clock cycles for bus parked case, 1 bus clock cycle
for combinatorial arbiter case, and 2 bus clock cycles for registered arbiter case.

3. Determined by EATS.

4. Determined by BUSRESPTEN.

MOTOROLA Chapter 6. lnstructionTiming 6-25

-

6.6.5 Load Latency Example #1: IL 1 or DL 1 Miss and L2 Hit
This example illustrates the timing of both data and instruction L1 misses that hit in the L2.
The data load and instruction timing is common for the timing parameters grouped as BIU
and are different for the timing parameters grouped as Data Load and !Fetch. The L2 is
double-synchronous with L2RATIOSR equal to one PCLK. The address arrives at the L2
interface in time to be driven to the SRAMS. It takes one PCLK to drive the L2 address to
the SRAMs. It takes one PCLK to access the SRAMS. It takes one PCLK to pass the data
from the SRA.Ms to the processor. It takes one PCLK to check ECC and detect a hit.
Figure 6-4 illustrates this example:

PCLK I 1 I 2 3 I 4 5 6 I 7 I a I 9 10

aJ Execute ~ + 1 PCL [ii=:J(L~ hit) +6 PCLKs [ii=:J(L~2 . L2 h')
.9 EA Calculation (L 1 EA) GJ J1---1.,~lfll1httl+--'-~------~------1.,_J (L 1 miss, it

~ DL1 Cache (L1 CA) CL:=]
DL 1 Tag Comparison (L 1TC) 1

IL1 Cache (fetch A)

Dispatch

Address to L2 (L2AM + L2CK)
:::>
10 SAAM External Address (L2PR)

SAAM Array Access (L2SR)

SAAM External Data (L2SR)

ECG and Tag Compare (L2TC)

Data passes rising to falling edge (L2RF) 1

LD/ST Align/Extend, Return Data (L 1 RD) W

(L 1 hit) +7 PCLKs

A

IL 1 Cache (fetch A)

Dispatch

Predecode

XD

(L 1 miss, L2 hit)

Figure 6-4. Load Latency Example #1: DL 1 Miss and L2 Hit

6.6.6 Load Latency Example #2: DL 1 and L2 Miss
The data L1 and L2 accesses miss and the L2 is enabled. The address arrives at the L2
interface in time to be driven to the SRAMs. It takes one PCLK to drive the L2 address to
the SRAMs. It takes one PCLK to access the SRAMS. It takes one PCLK to pass the data
from the SRAMs to the processor. It takes one PCLK to detect a miss and make a bus
request. The bus clock ratio is 2: 1. The address bus is granted in the same BUSCLK cycle
the request is made. The address bus is one BUSCLK cycle in duration. Since data is not

6-26 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

returned until after ARESPIN, BUSTLAR is three BUSCLKs and BUSRESPTEN is two
BUSCLKs. Table 6-7 provides the calculation of the latency in PCLK cycles.

Table 6-7. Load Latency Example #2: DL 1 and L2 Miss

Owner Latency Description Parameter PCLKs

1 LD/ST Effective address calculation L1EA 0.5

2 DCache L 1 Cache Access L1CA 1

3 DCache Tag Comparison L1TC 0.5

4 BIU Address muxed to L2 interface L2AM 1

5 BIU SRAM External Address L2PR 1

6 BIU SRAM Array Access and External Data L2SR 2

7 BIU ECG +Tag compare (L2 miss) L2TC 1

8 BIU L2 Coherency to Bus Interface Req. MGR 1

9 BIU Internal arbitration for address bus MIA 1

10 BIU PCLK to BUSCLK transition MPB 0

11 XARB Addr Bus arbitration (AS"R and ABG in same MAL 2
BUSCLK)

12 Bus Address transferred MAT 2

13 Bus Latency from address to response MRL 6

14 Bus Snoop response transferred MRT 4

15 Bus Response logic and data bus arb MAD 2

16 Bus No Return Data MDL 2

17 Bus First return data valid MDT 2

18 BIU Data passed to bus load buffer MDR 1

19 BIU Load bus arbitration MLA 1

20 DCache Data passes rising to falling edge L2RF 0.5

21 LD/ST Align/Extend, Return data L1RD 0.5

22 Total Latency in PCLKs 32

6.6.7 Load Latency Example #3: DL 1 Miss and L2 Disabled
The data L1 access misses. The L2 is disabled. The bus clock ratio is 2: 1. The address bus
is parked. The address bus is one BUSCLK cycle in duration. BUSTLAR is three BUSCLK
cycles (six PCLKs). The response tenure is two BUSCLK cycles (four PCLKs). Table 6-8
provides the calculation of the latency in PCLK cycles.

MOTOROLA Chapter 6. lnstructionTiming 6-27

-

Table 6-8. Load Latency Example #3: DL 1 Miss, L2 Disabled

Owner Latency Description Parameter PCLKs

1 LO/ST Effective address calculation L1EA 0.5

2 DCache L 1 Cache Access L1CA 1

3 DCache Tag Comparison L1TC 0.5

4 BIU Address Muxed to L2 Interface L2AM 1

5 BIU Collision detection compare L2CD1 1

6 BIU Collision detection grant L2CD2 1

7 BIU Internal arbitration for address bus MIA 1

8 BIU PCLK to BUSCLK transition MPB 0

9 XARB Bus arbitration MAL 0

10 Bus Address transferred MAT 2

11 Bus Latency from address to response MRL 51

12 Bus Snoop response transferred MRT 42

- 13 BIU Response logic and data bus arb MAD 2

14 Bus No Return Data MDL 2

15 Bus First return data valid MDT 2

16 BIU Data/response passed to bus load MOR 1
buffer

17 BIU Load bus arbitration MLA 1

18 DCache Data passes rising to falling edge L2RF 0.5

19 LO/ST Align/Extend, Return data L1RD 0.5

20 Total Latency in PCLKs 27

Notes:

1. BUSTLAR = 3, BUSRATIO = 2:1.

2. BUSRESPTEN=2, BUSRATl0=2:1.

6-28 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

6. 7 Snoop Push/Intervention Latency
This section defines the latency from the 620 snooping a bus operation that causes a push
or intervention.

To calculate latency from the perspective of a master, start with Table 6-3. Use Table 6-5 if
the L2 is enabled in the master or Table 6-5 if the L2 is disabled in the master. Table 6-9
provides push/intervention latency information for the Ll cache.

Table 6-9. The L 1 Contains the Push/Intervention Data

Latency Description Parameter Value Unit

1 Latency from address to response MRL BUSTLAR BUSCLK

2 Snoop response transferred MRT 2-3 BUSCLK

3 Response evaluated BSARI 1 PCLK

4 Request and grant for L 1 snoop interface L1RG 1-N PCLK1

5 Request and grant tor bus store buffer SBRG 1-N PCLK2

6 Request and transfer first data from the L1D1 7 PCLK
L 1 (assuming the L 1 is idle).

7 The 2nd to 4th datums are passed to the L1D24 3 PCLK
bus store buffer.

8 Store butter valid BSBV 1 PCLK

9 Internal arbitration for data bus MID 1 PCLK

tJ PCLK to BUSCLK transition MPB 0-N PCLK

Notes:

1. Dependent on priority of other requestors.

2. Dependent on priority of other requestors and number of empty store buffers.

Table 6-10 provides push/intervention latency information for the L2 cache.

Table 6-1 O. The L2 Contains the Push/Intervention Data

Latency Description Parameter Value Unit

1 Bus address sample to L2 status BUSTLAR equation result PCLK
return.
Refer to the BUSTLAR equation in
Section 8.4.5.3, "L2 Cache and
Coprocessor Mode Disabled."

2 Start bus snoop state machine BSSM 1 PCLK

3 State machine check of bus status. BSASI 0-N PCLK1

4 Request and grant tor bus store butler SBRG 1-N PCLK

MOTOROLA Chapter 6 .. lnstructionTiming 6-29

Table 6-10. The L2 Contains the Push/Intervention Data (Continued)

Latency Description Parameter Value Unit

5 Get the data from the L2. The latency BUSTLAR equation result PCLK
from the assertion of the L2 request
to the first data.
Refer to the BUSTLAR equation in
Section 8.4.5.3, "L2 Cache and
Coprocessor Mode Disabled.''

6 Transfer first data to the bus store L2D1 1 PCLK
buffer.

7 The 2nd to 4th datums are passed to L2D24 3 * L2RATIOSR PCLK
the bus store buffer.

8 Store buffer valid BSBV 1 PCLK

9 Internal arbitration for data bus MID 1 PCLK

n PCLK to BUSCLK transition MPB 0-N PCLK

Note: Dependent on BUSRESPTEN value vs. L2 pipeline latency.

6.7.1 Push/Intervention Example #1: L2 Enabled and data in L1
The latency for this case is listed in Table 6-11. The L2 is enabled and the data is in the Ll.
BUSTLAR=5 and BUSRESPTEN=2.

Table 6-11. Push/Intervention Example #1: L2 Enabled and data in L1

Latency Description Parameter PCLKs

1 Latency from address to response MRL 10

2 Snoop response transferred MRT 4

3 Response evaluated BSARI 1

4 Request and grant for L 1 snoop L1RG 1
interface

5 Request and grant for bus store buffer SBRG 1

6 Request and transfer first data from L1D1 7
the L 1 (assuming the L 1 is idle).

7 The 2nd to 4th datums are passed to L1D24 3
the bus store buffer.

8 Store buffer valid BSBV 1

9 Internal arbitration for data bus MID 1

10 PCLK to BUSCLK transition MPB 1

Total latency in PCLKs 30

6-30 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

6.7.2 Push/Intervention Example #2: L2 Enabled and data in L2
The latency for this case is listed in Table 6-12. The L2 is enabled and the data is in the L2.
The parameters for the BUSTLAR equation are BUS_TO_L2=1, L2RATIOSR=2 and
L2_SS=l, BUSRESPTEN=2.

Table 6-12. Push/Intervention Example #2: L2 Enabled and data in L2

Latency Description Parameter PCLKs

1 Bus address sample to L2 status BUSTLAR 5
return.

2 Start bus snoop state machine. BSSM 1

3 State machine check of bus status. BSASI 1

4 Request and grant for bus store buffer. SBRG 1

5 Get the data from the L2. BUSTLAR 5

6 Transfer first data to the bus store L2D1 1
buffer.

7 The 2nd to 4th datums are passed to L2D24 6
the bus store buffer.

8 Store buffer valid BSBV 1

9 Internal arbitration for data bus MID 1

10 PCLK to BUSCLK transition MPB 0

Total latency in PCLKs 22

MOTOROLA Chapter 6. lnstructionTiming 6-31

' -

6-32 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 7
Signal Descriptions
This chapter describes the PowerPC 620 microprocessor's external signals. It contains a
concise description of individual signals, showing behavior when the signal is asserted and
negated and when the signal is an input and an output.

NOTE

A bar over a signal name indicates that the signal is active
low-for example, DBG (data bus grant) and EATS (early
address transfer start). Active-low signals are referred to as
asserted (active) when they are low and negated when they are
high. Signals that are not active low, such as AP[0-2] (address
bus parity signals) and DTAG[0-7] (data tag signals) are
referred to as asserted when they are high and negated when
they are low.

The 620's signals are grouped as follows:

Address arbitration signals-The 620 uses these signals to arbitrate for address bus
mastership.

Address transfer start signal-This signal indicates that a bus master will end its
transaction on the address bus.

Address transfer signals-These signals, which consist of the address bus and
address parity signals are used to transfer the address and to ensure the integrity of
the transfer.

Transfer attribute signals-These signals provide information about the type of
transfer, the transfer size, and whether the transfer is a burst transaction.

Address transfer response signals-These signals are used to acknowledge the end
of the address phase of the transaction. They also indicate whether a condition exists
that requires the address phase to be repeated.

Data arbitration signals-The 620 uses these signals to arbitrate for data bus
mastership.

Data transfer signals-These signals, which consist of the data bus, the data parity
signals, and data bus qualifier are used to transfer the data and to ensure the integrity
of the transfer.

MOTOROLA Chapter 7. Signal Descriptions 7-1

-

-

Data transfer termination signals-Data termination signals are required after each
data beat in a data transfer. In a single-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signals apply to individual beats and indicate the end of the tenure only after the final
data beat. They also indicate whether a condition exists that requires the data phase
to be repeated.

System status signals-These signals include the interrupt and reset signals.

Processor state signals-These signals are used to indicate the state of the
reservation coherency bit and checkstop.

L2 cache interface- These signals include the L2 cache address, data, clocking,
ECC, tagging, and enable signals.

Miscellaneous signals-These signals are used in conjunction with such resources
as secondary caches, time base, PLL configuration, and test and debug facilities.

COP interface signals-The common on-chip processor (COP) unit is the master
clock control unit and it provides a serial interface to the system for performing
built-in self test (BIST) on all internal memory arrays.

Clock signals-These signals determine the system clock frequency. These signals
can also be used to synchronize multiprocessor systems.

7.1 Signal Configuration
Figure 7-1 illustrates the logical signal configuration of the 620, showing how the signals
are grouped.

7-2

NOTE

A pinout showing actual pin numbers is included in the 620
hardware specifications.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

ADDRESS
ARBITRATION

ADDRESS
START

ADDRESS
TRANSFER

TRANSFER
ATTRIBUTE

ADDRESS
RESPONSE

L2 CACHE
INTERFACE

MOTOROLA

[
ADDRESS BUS REQUEST 1

ADDRESS BUS GRANT 1
HIGH PRIORITY REQUEST 1

~
EARLY ADDRESS
TRANSFER START

1

~
ADDRESS BUS 64

ADDRESS PARITY 3

[
ADDRESS TYPE 5 ~

ADDRESS STATUS OUT 2

ADDRESS SIZE BURST 1
ADDRESS SIZE DATA 4
ADDRESS STATUS IN 2

l
ADDRESS RESPONSE IN 3
ADDRESS RESPONSE OUT 3

.- L2 DATA
128

L2 COHERENCY
2

L2 DATA ECC
9

L2TAG ECC
6

L2 ENABLE 4
L2 WRITE ENABLE 2
L2 CLOCK 2
L2 CLOCK IN 2
l.2 ADDRESS

16
L2 TAG/ADDRESS

9
L2TAG

11 ~ ~

L2 OUTPUT ENABLE 1
'-

1 DATA BUS GRANT

1 DATA BUS REQUEST

128 DATA BUS

17 DATA PARITY

1 DATA CACHE

8 DATA BUS TAG

2 DATA BUS BUSY

1
DATA VALID

1 DATA BUS ERROR

1 INTERRUPT

1 HARD RESET

1
SOFT RESET

1
MACHINE CHECK

1
SYSTEM MANAGEMENT

1 CHECKSTOP

1 RESERVATION

2 SYSTEM CLOCK

4~
TEST ACCESS PORT

1 TEST DATA OUT

1 TIME BASE ENABLE

3 PLLCONFIG

1
ANALOGVDD

~DATA :J ARBITRATION

~DATA
~TRANSFER
~

~DATA ~ :J TERMINATION

!INTERRUPTS

~PROCESSOR :J STATE

::J CLOCK

J JTAG/COP __,,

~MISC

Figure 7-1. PowerPC 620 Microprocessor Signal Groups

Chapter 7. Signal Descriptions 7-3

-

7.2 Signal Descriptions
This section describes individual 620 signals, grouped according to Figure 7-1. Note that
the following sections are intended to provide a quick summary of signal functions.
Chapter 8, "System Interface Operation," describes many of these signals in greater detail,
both with respect to how individual signals function and how groups of signals interact.

7.2.1 Address Bus Arbitration Signals
The address arbitration signals are a collection of input and output signals the 620 uses to
request the address bus and recognize when the request is granted. For a detailed
description of how these signals interact, see Section 8.3, "Arbitration."

7.2.1.1 Address Bus Request (ABR)-Output
The address bus request (ABR) signal is a point-to-point signal from the 620 to the arbiter.
Following are the state meaning and timing comments for the ABR signal.

State Meaning Asserted-Indicates that the 620 is requesting mastership of the
address bus.

The request is pending for as long as the request is asserted. This is
called a level request implementation, as opposed to a pulsed request
implementation, and only 1 request can be pending at any given time
by a single 620.

Negated-Indicates that the 620 is not requesting the address bus.

Timing Comments Assertion-Occurs when an address bus transaction is needed and
the 620 does not have a qualified address bus grant.

Negation-Occurs when the address bus grant is received, even if
another transaction is pending.

7.2.1.2 Address Bus Grant (ABG)-lnput
The ABG is a point-to-point active low signal from the arbiter to the 620 and is asserted
low. If ABG is asserted in a manner not compliant with the rules stated in Chapter 8,
"System Interface Operation," it may result in undefined behavior.

State Meaning

7-4

Asserted-ABG is a pulsed grant, asserted for one bus clock cycle,
that indicates the address bus is being granted.

When ABG is asserted, it indicates that the address bus can start
driving the address bus on either the same edge that ABG is sampled
asserted or 1 processor clock cycle later.'

Negated-Indicates that the 620 is not the next potential address bus
master.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Timing Comments Assertion-May occur at any time when ABR is asserted. ABG
cannot be asserted more frequently than once every other cycle, with
the exception of the sustained address bus parking case, described in
Section 8.3.10.2, "Sustained Address Bus Parking."

Negation-May occur at any time to indicate the 620 cannot use the
address bus.

7.2.1.3 High Priority Request (HPR)-Output
The high-priority request (HPR) signal is an active low, output signal.

State Meaning Asserted-The HPR tells the arbiter that all high-priority bus
operations and all non-high-priority operations in front of high
priority bus operations should be treated as high priority bus
operations. Section 8.3.4, "Internal Request Arbitration," for more
information on low- and high-priority bus operations.

HPR will assert for a low priority request if the low-priority request
was granted internally before the high-priority bus operation
internally requested.

Negated-The HPR is negated when there are no outstanding high
priority operations queued for arbitration onto the bus.

Timing Comments Assertion-The HPR is asserted when either ABR or DBR are
asserted and if there is one or more high-priority bus operations that
need, but have not yet been granted, the bus.

Negation-HPR will stay asserted until there are no outstanding
high priority operations queued for arbitration onto the bus.

7 .2.2 Address Transfer Start Signals
The address transfer start signal is an input signal that indicates that an address bus transfer
has begun. The early address transfer start (EATS) signal identifies the operation as a
memory transaction. For detailed information about how EATS interacts with other signals,
refer to Section 8.4, "Address Bus Transfer Protocol."

7.2.2.1 Early Address Transfer Start (EATS)-lnput/Output
EATS may be a unidirectional bused signal or it can be driven point-to-point with the same
value.

State Meaning

MOTOROLA

Asserted-EATS indicates to the master driving the address that it
will disable its address drivers 1 cycle after sampling the assertion of
EATS. For all other devices monitoring the address bus, EATS
indicates that the address transfer should be sampled 1 cycle after
sampling the assertion of EATS.

Negated- Indicates that no bus transaction is occurring.

Chapter 7. Signal Descriptions 7-5

-

-

Timing Comments Assertion-EATS can be asserted in the same cycle as ABG, or on
the cycle following ABG. EATS cannot be delayed more than l bus
clock cycle from ABG. If EATS is asserted the same cycle as ABG,
then the address tenure is one bus clock cycle and a new address
transfer can begin every 2 cycles.

If EATS is asserted the cycle following the assertion of ABG and
BUSLAEN is deasserted, then the address tenure is 2 bus clocks. If
E_(A ... TS is asserted the cycle following the assertion of ABG and
BUSLAEN is asserted, then the address tenure is (2 bus clocks - 1
processor clock). Refer to Section 8.3.9, "Early Address Transfer
Start (EATS)," for more information.

Negation-Occurs one bus clock cycle after EATS is asserted.

7.2.3 Address Transfer Signals
The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For a detailed description of how these signals interact, refer
to Section 8.4, "Address Bus Transfer Protocol."

7.2.3.1 Address Bus (A[0-63])
The address bus (A[0-63]) consists of 64 signals that are both input and output signals for
memory operations.

7.2.3.1.1 Address Bus (A[0-63])-0utput
Following are the state meaning and timing comments for the A[0-63] output signals.

State Meaning Asserted/Negated-Represents the physical address (physical
address in the architecture specification) of the data to be transferred;
see Section 8.9, "Address Bus."

Timing Comments Assertion/Negation-Occurs on the bus clock cycle after ABG.

High Impedance-Occurs one bus clock cycle after EATS is
negated.

7.2.3.1.2 Address Bus (A[0-63])-lnput
Following are the state meaning and timing comments for the A[0-63] input signals.

State Meaning Asserted/Negated-Represents the physical address of a snoop
operation.

Timing Comments Assertion/Negation-Occurs on the bus clock cycle after ABG.

High Impedance-Occurs one bus clock cycle after EATS is
negated.

7.2.3.2 Address Bus Parity (AP[0-2])
The address bus parity (AP[0-2]) signals are both input and output signals reflecting odd­
byte parity.

7-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

7.2.3.2.1 Address Bus Parity (AP[0-2])-0utput
Following are the state meaning and timing comments for the AP[0-2] output signal on the
620.

State Meaning Asserted/Negated-Represents odd parity for each of three sections
of the address transaction. Odd parity means that an odd number of
bits, including the parity bit, are driven high. The signal assignments
correspond to the following:

APO A[0-31] (including the address tag)

APl A[32-63]

AP2 ATYPE[0-4], ASIZEDATA[0-3], ASIZEBURST

For more information, see Section •, "Address Bus Parity-The
address bus is parity protected by 3 bits, called AP[0-2]. Table 8-35
defines the coverage for each parity bit.."

Timing Comments Assertion/Negation-The same as A[0-63].

High Impedance-The same as A[0-63].

7.2.3.2.2 Address Bus Parity (AP[0-2])-lnput
Following are the state meaning and timing comments for the AP[0-2] input signal on the
620.

State Meaning Asserted/Negated-Represents odd parity for each of three bytes of
the physical address for snooping. Detected even parity causes the
processor to enter the checkstop state or take a machine check
exception depending on whether address parity checking is enabled
in the HIDO register and the condition of the MSR[ME] bit; see
Section 2.1.2.3, "Hardware Implementation-Dependent Register 0
(HIDO)."

Timing Comments Assertion/Negation-The same as A[0-63].

7.2.3.3 Address Bus Tag
The ATAG[0-7] is always aligned as A[8-15]. Refer to Section 8.9, "Address Bus," for
more information.

7 .2.4 Address Transfer Attribute Signals
The transfer attribute signals are a set of signals that further characterize the transfer-such
as the size of the transfer, whether it is a read or write operation, and whether it is a burst
or single-beat transfer. For a detailed description of how these signals interact, see
Section 8.4, "Address Bus Transfer Protocol."

Note that some signal functions vary depending on whether the transaction is a memory
access or an I/0 access.

MOTOROLA Chapter 7. Signal Descriptions 7-7

-

-

7.2.4.1 Address Type (ATYPE[0-4])
The address type (ATYPE[0-4]) signals consist of five input/output signals on the 620. For
a complete description of ATYPE[0-4] signals and for address type encodings, see
Table 7-1.

7.2.4.1.1 Address Type (ATYPE0-4])-0utput
Following are the state meaning and timing comments for the ATYPE[0-4] output signals
on the 620.

State Meaning Asserted/Negated-Indicates the type of transfer in progress.

Timing Comments Assertion/Negation/High Impedance-The same as A[0-63).

7.2.4.1.2 Address Type (ATYPE[0-4])-lnput
Following are the state meaning and timing comments for the ATYPE[0-4] input signals
on the 620.

State Meaning Asserted/Negated-Indicates the type of transfer in progress (see
Table 7-1).

Timing Comments Assertion/Negation-The same as A[0-63).

Table 7-1. Address Type Encoding for PowerPC 620 Processor Bus Master

ATYPE[0-4] Operation Address/Data Type

00000 Clean Address-Only

A0010 Write-With-Flush Address-Data

00100 Flush Address-Only

00110 Write-With-Kill Address-Data

00110 Write-With-Clean Address-Data

01000 SYNC Address-Only

A1010 Read A-Only/D-Only

01100 DKill Address-Only

A1110 RWITM A-Only/D-Only

10000 EIEIO Address-Only

10100 External Control Out Address-Data

11000 TLBIE Address-Only

11100 External Control In A-Only/D-Only

00001 LARX-Reserve Address-Only

A0011 DClaim Address-Only

01001 TLBSYNC Address-Only

01101 !Kill Address-Only

7-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 7-1. Address Type Encoding for PowerPC 620 Processor Bus Master
(Continued)

ATYPE(0-4] Operation Address/Data Type

10001 PIO Load Immediate A-Only/D-Only

10001 PIO Load Last A-Only/D-Only

10001 PIO Store Immediate. Address-Data

10001 PIO Store Last Address-Data

10101 PIO Reply Address-Only

11101 Re Run Address-Only

11111 Null Address-Only

00101 Reserved
00111 Treated as a Null operation by the 620 snooper.
01011 These codes are reserved tor future PowerPC products.
01111 Use of these codes should be coordinated with PowerPC if
10101 forwards compatibility is desired.
10101
10101
10110
10111
11001
11011

7.2.4.2 Address Size Data (ASIZEDATA[0-3])
The address bus signal ASIZEDATA[0-3] specifies the size of the data bus transfer. Refer
to Section 8.4, "Address Bus Transfer Protocol."

State Meaning Asserted-If ASIZEBURST is deasserted, or a 1, then ASIZEDATA
indicates the size of the data transfer in bytes. (Note that the 0 code
is a 16 byte size transfer.)

If ASIZEBURST is asserted, or a 0, then ASIZEDATA indicates the
size of the data transfer in full data bus width transfers. (Note that the
0 code is 16 bus width size transfers.) Refer to Table 7-2.

Timing Comments Assertion/Negation-The same asA[0-63].

7.2.4.3 Address Size Burst (ASIZEBURST)
The address bus signal ASIZEBURST specifies the size of the data bus transfer. Refer to
Section 8.4, "Address Bus Transfer Protocol."

State Meaning

MOTOROLA

Asserted-If ASIZEBURST is deasserted, or a 1, then ASIZEDATA
indicates the size of the data transfer in bytes. (Note that the 0 code
is a 16 byte size transfer.)

If ASIZEBURST is asserted, or a 0, then ASIZEDATA indicates the
size of the data transfer in full data bus width transfers. (Note that the
0 code is 16 bus width size transfers.)

Chapter 7. Signal Descriptions 7-9

-

-

The 620 data bus width is quad word sized, which means the unit for ASIZEDATA for burst
mode is 16 bytes. Refer to Section 8.12, "Bus Operations," for a definition of the
ASIZEBURST and ASIZEDATA codes that are supported by the 620 for each bus
operation. Refer to Table 7-2.

Table 7-2. ASIZEDATA[0-3] and ASIZEBURST

ASIZEBURST ASIZEDATA[o-3] Definition

1 0001-1111,0000 Transfer size in bytes. 1-15, 16

0 0001-1111,0000 Transfer size in full data bus width transfers. 1-15, 16

Timing Comments Assertion/Negation-The same as A[0-63].

7.2.4.4 Address Status (ASTATOUT[0-1] and ASTATIN[0-1])
The address status (AStat) consists of the unidirectional signals ASTATOUT[0-1] and
ASTATIN[0-1]. For more information, refer to Section 8.4.8, "Address Status In/Out."

7.2.5 Address Transfer Response Signals
The address transfer termination signals are used to indicate either that the address phase
of the transaction has completed successfully or must be repeated, and when it should be
terminated.

7.2.5.1 Address Response (ARESPOUT[0-2] and ARESPIN[0-2])
The address response (AResp) consists of the unidirectional signals ARESPOUT[0-2] and
ARESPIN[0-2].

AResp provides coherency information (Null, Shared, Modified) and control information
(Null, Retry, ReRun).

The function of ARESPOUT and ARESPIN is defined by Section 8.4.9, "Address
Response In/Out," Section 8.17 .17, "Master Cache State Transitions Due to Instructions,"
and Section 8.17 .18, "Snooper Cache State Transitions Due to Bus Operations."

For more information, refer to Section 8.4.9, "Address Response In/Out."

7.2.6 L2 Cache Interface
The following sections briefly describe the function for each of the signals of the L2 cache
interface.

7.2.6.1 L2 Data (L2DATA[0-127])
L2 cache read and write data signal. The L2 interface only supports 128 bit reads and
writes. All cache block transfers are implemented by four L2 interface reads or writes.

7-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

7.2.6.2 L2 Address {L2ADDRESS[0-15])
The L2ADDRESS[0-15] signals are used to address the L2 cache SRAM devices. All of
the address signals are connected to both the tag and data SRAMs, with the exception of
the L2ADDRESS[14-15] signals, which are connected only to the data SRAMs. Following
are the state meaning for the L2ADDRESS[0-15] output signals.

State Meaning Asserted/Negated-Represents the address of the data to be
transferred to or from the L2 cache.

7.2.6.3 L2Tag {L2TAG[0-10])
State Meaning Asserted/Negated-Represents the tag associated with the data

driven onto the L2DATA[0-127] signals.

7.2.6.4 L2 Tag/Address {L2TAGADD[0-8]
The L2TAGADD[0-8] signals function as address or tag bits based on the L2 cache
capacity configuration as described in Section 9.3.1.3.1, "The L2TAGADD Signal."

7.2.6.5 L2 Coherency State {L2COHERENCY[0-1])
The L2COHERENCY signal represents coherency associated with the data on L2DATA[0-
127]. Table 7-3 shows the encoding for L2COHERENCY.

Table 7-3. Coherency Encoding

L2COHERENCY [0-1] L2 State Implied Data L 1 State

00 Invalid Invalid

01 Shared Shared or Invalid

10 Exclusive Shared or Invalid

11 Modified Modified, Shared, or Invalid

7 .2.6.6 L2 Data ECC {L2DATAECC[0-8])
The ECC bits that are generated using L2DATA[0-127]. For a description of the algorithm
used, refer to Section 9 .4.1, "The ECC Algorithm."

7.2.6.7 L2 Tag ECC {L2TAGECC[0-5])
The ECC bits that are generated using L2TAG[0-10], L2COHERENCY[O-l] and the
signals in L2TAGADD[0-8] that are being used as tag. For a description of the algorithm
used, refer to Section 9 .4.1, "The ECC Algorithm."

MOTOROLA Chapter 7. Signal Descriptions 7-11

-

7 .2.6.8 L2 Enable Signals
The following sections describe theL2 Enable signals implemented on the 620.

7.2.6.8.1 L2 Data Enable (L2DATAENABLE[0-1])
State Meaning Asserted/Negated-When L2B2ENABLE, an L2 SPR bit, is

disabled then L2DATAENABLEO is the active low enable tied to the
chip select inputs of all the Data SRAMs. L2DATAENABLE1 is
deasserted. When L2B2ENABLE is enabled then
L2DATAENABLEO is the active low enable tied to the chip select
inputs of all the bank 0 data SRAMs and is enabled by
L2ADDRESS[0]=0.

L2DATAENABLE1 is the active low enable tied to the chip select
inputs of all the bank 1 data SRAMs and is enabled by
L2ADDRESS[0]=1. Refer to Section 9.3.1.7, "L2B2ENABLE Bit."

7.2.6.8.2 L2 Tag Enable (L2TAGENABLE)
State Meaning Asserted/Negated-L2TAGENABLE is the active low enable tied to

the chip select inputs of all the tag SRAMs for all banks.

7.2.6.9 L2 Write Enable Signals
The following sections describe the L2 write enable signals.

7.2.6.9.1 L2 Write Data (L2WRITEDATA)
State Meaning Asserted/Negated-L2WRITEDATA is the active low write enable

tied to the write enable inputs of all the data SRAMs.

7.2.6.9.2 L2 Write Tag (L2WRITETAG)
State Meaning Asserted/Negated-L2WRITETAG is the active low write enable

tied to the write enable inputs of all the tag SRAMs.

7.2.7 L2 SAAM Output Enable (L20UTPUTENABLE)
State Meaning

7-12

Asserted/Negated-The L2 output enable signal is used only for a
single bank of SRAMs that need an asynchronous output enable.
Note that the asynchronous output enable is provided as a backup
strategy. All SRAMs under consideration provide the internal
synchronous generation of the SRAM output enable. The L2 output
enable is not used if either double bank is enabled or the L2CP is
enabled, both of which must have internally generated synchronous
output enables. This signal is active low. If the SRAMs used do not
require this signal, a resistive pull up to 3.3V should be attached to
the signal.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA.

7.2.7.1 L2 Clocks Out/In (L2CLOCK/L2CLOCK and
L2CLOCKIN/L2CLOCKIN)

These signals output a differential CMOS clock that is used to clock the L2 cache SRAMs.
The L2 interface assumes that the SRAMs are rising edge triggered off of the L2CLOCK.
Single-ended clocking may be used, but is not recommended in high speed systems. If
L2CLOCK is not being used, then a resistive pull-up to 3.3V should be attached to the
signal.

During HRESET and CHECKSTOP the L2 output clocks are not three-stated during the
assertion HRESET or CHECKSTOP, but will not function as a periodic clock. The L2 clock
outputs during HRESET or CHECKSTOP will always be differential but will oscillate at
an indeterminate frequency.

State Meaning Asserted/Negated-These input signals are used by the L2 clock
phase-locked loop to lock the external L2 clock with the 620 internal
processor clock. The system should guarantee that the delay from
L2CLOCK to L2CLOCKIN should be the same as the delay from
L2CLOCK to the clock signals on the L2 SRAMs. The L2 clock
inputs can be configured to be single ended or differential by the
L2CLKPECL SPR bit; refer to Section 9.3.1.6, "L2CLKPECL Bit."

7.2.8 Data Bus Arbitration Signals
Like the address bus arbitration signals, data bus arbitration signals maintain an orderly
process for determining data bus mastership. F9r a detailed description on how these
signals interact, see Section 8.3, "Arbitration."

7 .2.8.1 Data Bus Grant (DBG)-lnput
The data bus grant (DBG) signal is an input signal on the 620. Following are the state
meaning and timing comments for the DBG signal.

State Meaning Asserted-DEG is a pulsed grant, asserted for one BUSCLK cycle
that indicates the data bus is being granted. DBG can never be
asserted more frequently than once every other cycle.

Negated-Indicates that the 620 is not the next potential data bus
master.

Timing Comments Assertion-May occur at any time when DBR is asserted.

MOTOROLA

A data bus master may start driving the data bus when both 6f the
following two conditions are satisfied:

• DBG is asserted.

• DBB is deasserted for two or more BUSCLKs.

If DBB was deasserted for two or more BUSCLKs when DBG is
asserted, then the master will start driving the bus on the same edge
that DBG is sampled asserted. The data bus grant is pending from the

Chapter 7. Signal Descriptions 7-13

-

assertion of the data bus grant to the beginning of the data transfer.
Refer to Section 8.3.8, "Pending Data Bus Grant Arbitration."

Negation-May occur at any time to indicate the 620 cannot assume
data bus mastership.

7 .2.8.2 Data Bus Request (DBR)
The address bus request (DBR) signal is a point-to-point signal from the 620 to the arbiter.
Following are the state meaning and timing comments for the DBR signal.

State Meaning Asserted-Indicates that the 620 is requesting mastership of the data
bus.

The request is pending for as long as the request is asserted. This is
called a level request implementation, as opposed to a pulsed request
implementation, and only one request can be pending at any given
time by a single 620.

Negated-Indicates that the 620 is not requesting the data bus.

Timing Comments Assertion-Occurs when a data bus transaction is needed and the
620 does not have a qualified data bus grant.

Negation-Occurs when the data bus grant is received, even if
another transaction is pending.

7.2.9 Data Transfer Signals
Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how the data
transfer signals interact, see Section 8.5, "Data Bus Transfer Protocol."

7.2.9.1 Data Bus (DH[0-63], DL[0-63])
The data bus (DH[0--63] and DL[0--63]) consists of 128 signals that are both input and
output on the 620. Following are the state meaning and timing comments for the data bus
signals. ,

State Meaning The data bus has two halves-data bus high (DH) and data bus low
(DL). See Table 7-4 for the data bus lane assignments.

Timing Comments The data bus is driven once for noncached transactions and four
times for cache transactions (bursts).

7-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 7-4. Data Bus Lane Assignments

Data Bus Signals Byte Lane

DH(0-7] 0

DH[S-15] 1

DH[16-23] 2

DH[24-31] 3

DH[32-39] 4

DH[40-47] 5

DH[48-55] 6

DH[56-63] 7

DL[0-7] 8

DL[S-15] 9

DL[16-23] 10

DL[24-31] 11

DL[32-39] 12

DL[40-47] 13

DL[48-55] 14

DL(56-63] 15

7 .2.9.1.1 Data Bus (DH[0-63], DL[0-63])-0utput
Following are the state meaning and timing comments for the DH and DL output signals.

State Meaning Asserted/Negated-Represents the state of data during a data write.
Byte lanes not selected for data transfer will not supply valid data.

Timing Comments Assertion/Negation-A data bus master may start driving the data

MOTOROLA

bus when both of the following two conditions are satisfied:

DBG was asserted.

DBB was deasserted for two or more BUSCLKs.

If DBB was deasserted for two or more BUSCLKs when DBG is
asserted, then the master will start driving the bus on the same edge
that DBG is sampled asserted.

High Impedance-Occurs on the bus clock cycle after the final
assertion of DVALO or DVALl.

Chapter 7. Signal Descriptions 7-15

-

7.2.9.1.2 Data Bus (DH[0-63], DL[0-63])-lnput
Following are the state meaning and timing comments for the DH and DL input signals.

State Meaning Asserted/Negated-Represents the state of data during a data read
transaction.

Timing Comments Assertion/Negation-Data must be valid on the same bus clock cycle
that DVALO or DVALl is asserted.

7.2.9.2 Data Bus Parity (DP[0-7])
The eight data bus parity (DP[O--7]) signals on the 620 are both output and input signals.

7.2.9.2.1 Data Bus Parity (DPH[0-7], DPL[0-7], DPCNTL)-Output
Following are the state meaning and timing comments for the DP output signals.

State Meaning Asserted/Negated-Represents odd parity for each of 17 bytes of
data write transactions. Odd parity means that an odd number of bits,
including the parity bit, are driven high. The signal assignments are
listed in Table 7-5.

Timing Comments Assertion/Negation-The same as DH[0--63].

High Impedance-The same as DL[0--63].

Table 7-5. DP[0-7] Signal Assignments

Signal Name Signal Assignments

DPHO DH[0--7]

DPH1 DH[8-15]

DPH2 DH[16-23]

DPH3 DH[24-31]

DPH4 DH[32-39]

DPH5 DH[40-47]

DPH6 DH[48-55]

DPH7 DH[56-63]

DPLO DL[0--7]

DPL1 DL[8-15]

DP2L DL[16-23]

DPL3 DL[24-31]

DPL4 DL[32-39]

DPL5 DL[40-47]

DPL6 DL[48-55]

DPL7 DL[56-63]

DPCNTL DTAG[0--7], lIBl3, DCACRE

7-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

7.2.9.2.2 Data Bus Parity (DPH[0-7], DPL[0-7], DPCNTL)-lnput
Following are the state meaning and timing comments for the DP input signals.

State Meaning Asserted/Negated-Represents odd parity for each byte of read data.
Detected even parity causes the processor to enter the checkstop
state, or take a machine check exception depending on whether data
parity checking is enabled in the HIDO register and the condition of
the MSR[ME] bit; see Section 2.1.2.3, "Hardware Implementation­
Dependent Register 0 (HIDO)."

Timing Comments Assertion/Negation-The same as DL[0-31].

7.2.9.3 Data Cache (DCACHE)
The function of the DCACHE signal is to distinguish cache (intervention) data from
memory data. The DCACHE is both an input and output signal.

7.2.9.3.1 Data Cache (DCACHE)-Output
Following are the state meaning and timing comments for the DCACHE output signal.

State Meaning Asserted-Data is being provided from the data cache.

Negated-Data is being provided from memory.

Timing Comments Asserted/Negated-DCACHE is valid only when DVAL is asserted.
DCACHE is driven asserted only for the first data that is transferred
and deasserted for all remaining data that are transferred.

7.2.9.3.2 Data Cache (DCACHE)-lnput
Following are the state meaning and timing comments for the DCACHE input signal.

State Meaning Asserted-Indicates that data is being provided from the data cache.

Negated-Data is being provided from memory.

Timing Comments Asserted/Negated-DCACHE is valid only when DVAL is asserted.
DCACHE is sampled asserted only for the first data that is
transferred.

7.2.9.4 Data Bus Tag (DTAG[0-7])
DTAG[0-7] is driven or sampled by the 620 during a read or write operation. The
DTAG[0-7] signals correlate data bus transactions with the associated address tenure.
Refer to Section 8.5.4, "Data Bus Tag."

State Meaning

MOTOROLA

Asserted/Negated-A 620 with a read operation waiting for data will
snoop the data bus tag and latch each data beat with a matching tag.
The 620 does not support the interleaving of data tags with other bus
master data tenures; when a transfer is initiated with a given data tag,
all data beats of the transfer must be completed together.

Chapter 7. Signal Descriptions 7-17

-

-

Timing Comments Asserted/Negated-DTAG[O-7] is driven or sampled for the
duration of the data bus tenure.

7.2.10 Data Valid (DVAL[0-1])
The data bus master samples or drives DVAL[0-1] to determine or indicate whether this
cycle has valid data, thereby implementing flow control by the driving data bus master. A
device receiving data from the data bus master has no means to control data flow. If a
memory bus device does not have the required buffer space for the transfer then it retries
the address. If a master has requested data, it must provide buffer space for the data
requested.

7.2.10.0.1 Data Valid (DVAL[0-1])-Output
Following are the state meaning and timing comments for the DVAL[0-1] output signals.

State Meaning Asserted-Indicates that data is valid for this bus clock cycle.

Negated-Indicates that data is not valid this bus clock cycle, or that
data flow control is being exercised. Note that DVAL[0-1] can be
deasserted during a data tenure when a bus master providing data
needs to delay data transfer for one or more cycles (for example,
when a correctable data error occurs), or when the bandwidth of the
memory system is not equivalent to the data bus, and the DVAL[0-
1] signals are used to indicate when memory data is valid on the bus.

Timing Comments Asserted/Negated-DVAL[0-1] is asserted by the 620 for all cycles
during a data bus tenure. DVAL[0-1] is asserted on the first bus cycle
of a data tenure and held asserted until all contiguous data beats are
completed.

The DVAL[0-1] signals are driven as follows:

DVALO will be asserted if DVALO has not been asserted by
another bus master in the previous two bus clock cycles.

DYAL 1 will be asserted if DVALO has been asserted by another
bus master in the two previous bus clock cycles. Note that bus
devices other than the 620 have the option of not implementing
a driver for DVALl, and may choose to wait one extra bus clock
cycle in order to avoid DVALO contention.

The DVAL[0-1] signals can switch between data tenures, but not
within a data tenure.

7.2.10.0.2 Data Valid (DVAL[0-1))-lnput
Following are the state meaning and timing comments for the DVAL[0-1] input signals.

State Meaning

7-18

Asserted- Indicates that data is valid for this bus clock cycle. Data
should be considered valid if either DVALO or DVALI are asserted
during a data tenure.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Negated- Indicates that data is not valid for this bus clock cycle. If
negation occurs during multiple-beat data transfer indicates that flow
control is being exercised.

Timing Comments Asserted/Negated-DVAL[0-1] is sampled for all cycles of a data
bus tenure.

7.2.11 Data Transfer Termination Signals
Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat.

7.2.11.1 Data Bus Busy (DBB)
The DBB signal indicates that the data bus is performing a transfer operation.

7 .2.11.1.1 Data Bus Busy (DBB)-Output
Following are the state meaning and timing comments for the DBB output signal.

State Meaning Asserted-Multiple-beat data transfer is in progress.

Negated-Last beat of a multiple-beat data transfer is progress, or
data bus is idle.

Timing Comments Asserted/Negated-DBE is asserted for all but the last data of the
last transfer of a data bus tenure. DBB can also be thought to indicate
that this is not the last BUSCLK of this data bus tenure.

7 .2.11.1.2 Data Bus Busy (DBB)-lnput
Following are the state meaning and timing comments for the DBB input signal.

State Meaning Asserted-Multiple-beat data transfer is in progress.

Negated-Last beat of a multiple-beat data transfer is progress, or
data bus is idle.

Timing Comments Asserted/Negated-DBE is sampled asserted for all but the last data
of the last transfer of a data bus tenure.

MOTOROLA Chapter 7. Signal Descriptions 7-19

-

7.2.12 Data Error (DERR)
The DERR signal indicates that the current data transfer contains an error. DERR is an input
and output signal.

7.2.12.0.1 Data Error (DERR)-Output
Following are the state meaning and timing comments for the DERR output signal.

State Meaning Asserted- DERR is asserted for the following reasons:

Snooper and push or intervention error-The 620 as a snooper
for a push or intervention detects an Ll parity error while moving
data from the LI or detects an uncorrectable L2 error while
moving data from the L2.

Master and Replacement Copyback Error-The 620 for a
replacement copyback detects an L1 parity error while moving
data from the LI or detects an uncorrectable L2 error while
moving data from the L2.

Negated- Indicates that no data error occurred.

Timing Comments Asserted/Negated-DERR is driven by the data bus master two bus
clock cycles following the assertion ofDVAL to indicate whether the
data transfer contains an error.

7.2.12.0.2 Data Error (DERR)-lnput
Following are the state meaning and timing comments for the DERR input signals.

State Meaning Asserted- The 620 will sample DERR asserted for the following
reasons:

The bus master providing the data has detected an error, e.g. 2-
bit ECC memory error.

A PIO load detected an error and the PIO master should expect a
PIO load reply. Refer to Section 8.I6, "PIO Load and Store Bus
Operations."

Negated-Indicates that no data error occurred.

Timing Comments Asserted/Negated-DERR is sampled by the 620 two bus clock
cycles following the assertion of DVAL to indicate whether the data
transfer contains an error.

7.2.13 System Interrupt, Checkstop, and Reset Signals
Most of the system interrupt, checkstop, and reset signals are input signals that indicate
when exceptions are received, when checkstop conditions have occurred, and when the 620
must be reset. The 620 generates the output signal, CHECKSTOP, when it detects a
checkstop condition.

7-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

7 .2.13.1 Interrupt (INT)-lnput
The INT signal is input only. Following are the state meaning and timing comments for the
INT signal.

State Meaning Asserted-The 620 initiates an interrupt if MSR[EE] is set;
otherwise, the 620 ignores the interrupt. To guarantee that the 620
will take the external interrupt, the INT signal must be held active
until the 620 takes the interrupt; otherwise, the 620 will take an
external interrupt depending on whether the MSR[EE] bit was set
while the INT signal was held active.

Negated-Indicates that normal operation should proceed.

Timing Comments Assertion/Negation-INT is level sensitive, and must be asserted
until the interrupt is taken.

INT is synchronized through two registers clocked by the BUSCLK,
so the INT signal can be treated asynchronously or synchronously.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the INT signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.13.2 System Management Interrupt (SMl)-lnput
The system management interrupt (SMI) signal is input only. Following are the state
meaning and timing comments for the SMI signal.

State Meaning Asserted-SM!, when asserted and enabled by MSR[EE], will cause
a system management interrupt.

If SMI is asserted and enabled when HRESET or SRESET is
deasserted, the 620 will take the interrupt.

Negated-Indicates that normal operation should proceed.

Timing Comments Assertion-SM! is level sensitive, and must be asserted until the
interrupt is taken.

SMI is synchronized through two registers clocked by the BUSCLK,
so the SMI signal can be treated asynchronously or synchronously.

Negation-Should not occur until interrupt is taken.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the SMI signal should be asserted and negated synchronously with
the SYSCLK signal.

MOTOROLA Chapter 7. Signal Descriptions 7-21

7.2.13.3 Machine Check Interrupt (MCP)-lnput
The machine check interrupt (MCP) signal is input only on the 620. Following are the state
meaning and timing comments for the MCP signal.

State Meaning Asserted-MCP, when asserted and enabled by MSR[ME] and
HIDO[O], will cause a machine check interrupt.

If MCP is asserted and enabled when HRESET or SRESET is
deasserted, the 620 will take the interrupt.

Negated-Indicates that normal operation should proceed.

Timing Comments Assertion-MCP is synchronized through 2 registers clocked by the
BUSCLK, so the MCP signal can be treated asynchronously or
synchronously.

Negation-May be negated two bus cycles after assertion.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the MCP signal should be asserted and negated synchronously with
the SYSCLK signal.

7.2.13.4 Reset Signals
There are two reset signals on the 620-hard reset (HRESET) and soft reset (SRESET).
Descriptions of the reset signals are as follows:

7.2.13.4.1 Hard Reset (HRESET)-lnput
The hard reset (HRESET) signal is input only and must be used at power-on to properly
reset the processor. Following are the state meaning and timing comments for the HRESET
signal.

State Meaning Asserted-Initiates a complete hard reset operation when this input
transitions from asserted to negated. Causes a reset exception as
described in Section 4.6.1, "System Reset Exception (OxOOlOO)."
Output drivers are released to high impedance after the assertion of
HRESET.

Negated-Indicates that normal operation should proceed.

Timing Comments Assertion-The minimum assertion at power-up occurs when the
system must assert HRESET for the longer of the following two
conditions:

7-22

As long as it takes the weakly pulled bus signals DYAL and DBB
to be pulled deasserted. See Section 8.5.5, "Data Bus Busy
(DBB)," and Section 8.5.6, "Data Valid (DVAL[0--1])."

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

It takes the BUSCLK PLL 2 ms to lock and scan reset state.

The minimum assertion at other times occurs in 1000 processor
clocks, the amount of time that it takes for the reset state to be
scanned.

HRESET is synchronized through two registers clocked by the
BUSCLK, so the HRESET signal can be treated asynchronously or
synchronously.

Negation-May occur any time after the minimum reset pulse width
has been met.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the HRESET signal should be asserted and negated synchronously
with the BUSCLK signal. The HRESET signal has additional functionality in certain test
modes.

7.2.13.4.2 Soft Reset (SRESET)-lnput
The soft reset (SRESET) signal is input only. Following are the state meaning and timing
comments for the SRESET signal.

State Meaning Asserted-The asserting or falling edge of SRESET tells the
processor to cancel any outstanding operations and to vector to a
base location to begin fetching instructions. A global cancel signal
may internally reset portions of the logic, but the internal latches are
not explicitly reset. No initiation of BIST is associated with soft
reset.

Negated-Indicates that normal operation should proceed.

Timing Comments Assertion-May be asserted at any time.

SRESET is synchronized through two registers clocked by the
BUSCLK, so the SRESET signal can be treated asynchronously or
synchronously.

Negation-May be negated after one bus clock cycle if synchronous,
or after two bus clocks if asynchronous.

If deterministic cycle sequencing is required (for example, in multiple processor systems
operating in lock step), the SRESET signal should be asserted and negated synchronously
with the SYSCLK signal. The SRESET signal has additional functionality in certain test
modes.

7 .2.14 Processor Configuration Signals
The signals described in this section provide inputs for controlling the 620's time base,
signal drive capabilities, L2 cache access, and PLL configuration, along with descriptions
of the output signals that indicate that a memory reservation has been set, and that the 620 's
internal clocking has stopped.

MOTOROLA Chapter 7. Signal Descriptions 7-23

ii
11
i ~

I~
:~

I.
'!

7.2.14.1 Checkstop (CHECKSTOP)-lnput/Output
The checkstop signal is input/output on the 620. Following are the state meaning and timing
comments for the CHECKSTOP signal.

State Meaning Asserted-The CHECKSTOP signal can also be asserted by an
external device. The 620 will respond by entering the checkstop state
and stopping the internal processor clock.

The CHECKSTOP signal is an open-drain input/output that must be
pulled high outside of the 620.

If the checkstop condition is detected as an input from an external
device, then all outputs, except L2CLOCK/L2CLOCK, and
including the CHECKSTOP signal, will be three-stated.
L2CLOCK/L2CLOCK will function normally. The 620 outputs to
be three-stated will go three-stated asynchronously from detecting
the checkstop condition.

If the checkstop condition is detected internally, then all outputs
except the CHECKSTOP signal and L2CLOCK/L2CLOCK will be
three-stated. L2CLOCK/L2CLOCK will function normally. The 620
outputs to be three-stated will go three-stated asynchronously from
detecting the checkstop condition.

Negated-Indicates that normal operation should proceed.

Timing Comments Assertion-CHECKSTOP, as an input, is synchronized through two
registers clocked by the BUSCLK, so the CHECKSTOP signal can
be treated asynchronously or synchronously. CHECKSTOP, as an
output, is asynchronous.

The CHECKSTOP signal as an output can not be BUSCLK
synchronized because the internal PCLK is immediately halted by
the check stop condition, potentially before the next BUSCLK and
PCLK occurs.

Negation-Occurs upon assertion of HRESET.

7 .2.14.2 Reservation (RSRV)-Output
The reservation (RSRV) signal is output only on the 620. Following are the state meaning
and timing comments for the RSRV signal.

State Meaning Asserted/Negated-Represents the state of the reservation
coherency bit in the reservation address register that is used by the
lwarx and stwcx. instructions.

Timing Comments Assertion/Negation-Occurs synchronously one bus clock cycle
after the execution of an lwarx instruction that sets the internal
reservation condition.

Note: The 620 does not require for a system to use this signal in order for lwarx and stwcx.
instructions to work in a multi-level cache hierarchy.

7-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

7.2.15 JTAG Bus Signals
In accordance with the IEEE 1149 .1 standard, the 620 supports the standard JTAG bus I/Os
as shown in Table 7-6.

Table 7-6. JTAG Bus Signals

Signal Name Function Input/Output

JTAG_TCK JTAG Clock -Used to control the internal TAP Input
controller state transitions and used to clock data in and
out during JTAG Boundary Scan.

JTAG_TMS Mode Select - This input in conjunction with transitions Input
of JTAG_ TCK causes state changes in the TAP.

JTAG_TRST Reset -Asynchronous input to reset TAP. Input

JTAG_TDI Serial Input -Source of all instructions and input data Input
for the TAP.

JTAG_TDO Serial Output -Enabled during prescribed times to Output
provide desired output of data from the TAP.

7 .2.16 Miscellaneous Signals
The following sections provide information on miscellaneous signals implemented on the
620.

7.2.16.1 Time Base Enable (TBENABLE)-lnput
The time base enable (TBENABLE) signal is input only on the 620. Following are the state
meanings and timing comments for the TBENABLE signal.

State Meaning Asserted-TBENABLE, when asserted, enables the time base
increment function. The unit for the 620 time base is the period of the
BUSCLK.

Negated-Indicates the time base should stop clocking.

Timing Comments Assertion/Negation-May occur on any cycle. TBENABLE is
synchronized through two registers clocked by the BUSCLK, so the
TBENABLE signal can be treated asynchronously or synchronously.

7.2.16.2 Analog VDD (AVDD)-lnput
The analog VDD signal is an input for supplying a stable voltage to the on-chip phase­
locked loop clock generator. For more information about the electrical requirements of the
AVDD input signal, refer to the 620 electrical specification.

7.2.17 Clock Signals
The clock signal inputs of the 620 determine the system clock frequency and provide a
flexible clocking scheme that allows the processor to operate at an integer multiple of the
system clock frequency. An analog voltage input signal is provided to supply stable power

MOTOROLA Chapter 7. Signal Descriptions 7-25

-

-

for the internal PLL clock generator. The 620 incorporates phase-locked-loop logic to
generate the internal processor core and interface clocks with minimal skew relative to the
BUSCLK input.

Refer to the 620 hardware specifications for exact timing relationships of the clock signals.

7.2.17.1 Bus Clock (BUSCLK and BUSCLK)-lnputs
State Meaning Asserted/Negated-BUSCLK is the system BUSCLK input to the

620. An internal PLL is designed to synchronize the internal
processor clock to the BUSCLK at the package input.
Synchronization is rising edge to rising edge. Care should be taken
to ensure that minimal noise is present on this input to avoid high
frequency noise coupling into the package.

The BUSCLK input signals are configured for CMOS or GTL logic
through the configuration of the BUSCLKGTL signal. When
BUSCLKGTL is asserted the BUSCLK signals are configured for
GTL drive levels. If single-ended GTL drive is being used, the
BUSCLK signal should be connected to the GTL reverence voltage.
If BUSCLKGTL is negated (selecting CMOS logic drive levels),
BUSCLK should be weakly pulled low.

Timing Comments Duty cycle-Refer to the 620 hardware specifications for timing
comments.

7.2.17.2 Phase-Locked Loop Bypass (PLLBypass)-lnput
State Meaning Asserted/Negated-The PLLBypass signal, when asserted high,

disables the internal PLL and puts the 620 into a low frequency
test/emulation mode. For normal chip operation this signal should be
weakly pulled low. For correct low frequency test/emulation
operation an additional clock signal, LF _Test_Clk, must be
provided.

7.2.17.3 Low Frequency Test Clock (LF _Test_Clk)-lnput
State Meaning

7-26

Asserted/Negated-The LF _Test_ Clk (low frequency test clock) is
an additional clock signal required in the low frequency
test/emulation mode (PLLBypass active high). When PLLBypass is
deasserted LF _Test_ Clk should be weakly pulled low with a resistor,
or driven actively high or low so as not to bring unnecessary
switching noise into the chip.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 8
System Interface Operation
This chapter describes the PowerPC 620 microprocessor bus interface and its operation. It
shows how the 620 signals, defined in Chapter 7, "Signal Descriptions," interact to perform
address and data transfers.

8.1 Overview
There are three functional sections to the bus protocol-arbitration, address and data.
Arbitration is described first to illustrate how address and data bus transfers are and are not
related. The address bus is described next because any data transfer is directly or indirectly
resultant from an address bus transfer. The data bus is the last of the three to be described
because it depends on both arbitration and the address bus.

Figure 8-1 and Figure 8-2 show a high-level block diagram of the 620 bus interface unit
implementation for the internal data and address paths that connect from the L 1 caches to
the L2 and system bus interfaces. The L2 controller is included in these diagrams because
it is part of the bus interface unit logic design.

As noted in Figure 8-1, the internal data paths are 16 bytes or 128 bits wide. All of the data
buffers are implemented as four 16-byte registers or one 64-byte cache line per buffer (note
that the 620 cache line size is fixed at 64 bytes). Each buffer can be written to in four-beat
bursts or in individual bytes for non-burst transactions.

If DX mode (64-bit wide data bus option) is used, then eight beats of 64 bits of system data
is required to fill the data load buffer. In this mode, two 64-bit quantities will be collected
before each 128-bit wide register is written. Likewise, outgoing stores to the system data
bus are sent out as eight beats of 64 bits to form the store back buffers.

As shown in Figure 8-1, there is one reload buffer per Ll cache, one data load buffer, two
L2 load buffers and three store back buffers. The store back buffers are used for system bus
stores from either the Ll cache or the L2 cache and for L2 stores from the Ll data cache.
All three store back buffers can be used for cache line pushes, but only two of the three
buffers can be used for store data.

On the L2 interface, ECC generation and checking is performed on the L2 data. ECC
checking on cache lines going to the L 1 instruction cache are optional. Another feature of
the L2 interface shown here is the Late Write latch. If the Late Write mode is selected in

MOTOROLA Chapter 8. System Interface Operation 8-1

the L2 configuration register (L2CR), then outgoing data to the L2 will be written one L2
clock cycle later than the L2 address (without this mode, address and data are written to the
L2 in the same L2 clock cycle).

Parity generation and checking is provided on the system bus interface. Boundary scan
latches as well as some internal logic are clocked by the L2 interface clock for the L2 and
by the system bus clock on the system bus. Internally, most of the logic runs off of the
internal processor clock. An analog PLL controls the system bus to processor clock ratios
and a digital PLL on the L2 interface controls the processor to L2 clock ratio.

8-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Notes:

L1 Data
Cache

L B
2 u

L2 Store

Path

• Store/Push Buffer

Push Only Buffer

L 1 Instruction
Cache

Reload Buffer

f L f 1------+---1.i

o e
a r
d s

Parity Gen

--~--.
~i~u;~1 ~

Off Chip System Data Bus

System Bus
Boundary Latches

r-•

Late Write Latch I
I
I
I
I
I

L2

L2 I
I

L _ _J

L2 Boundary
Latches

1. * = Cache line size buffers (64 Byte). All other latches are 16 Byte size. All internal data
paths are 16 Byte wide to/from caches.

Off Chip
L2 Data
+ECC

2. Symbol "L2" clocked by L2 interface. "B" clocked by system bus interface. All other latches
clocked by processor clock.

Figure 8-1. PowerPC 620 Microprocessor Data Path

MOTOROLA Chapter 8. System Interface Operation

-

8-3

-

Figure 8-2 shows the 620 high-level address paths for the system bus interface and the L2
interface.

Several levels of muxes exist to select which address source will get to read from or write
to the L2. Pipeline stages 3, 4 and 5 can be bypassed depending or whether single-,
double-, triple- or quad-synchronous SRAMs are used.

The processor-to-L2 clock ratios are selected by the parameter L2RATIOSR in the L2CR.
The L2RATIOSR configures the SRAM access time in terms of number of processor clocks
where an L2RATIOSR value of two would indicate a ratio of two processor clocks to one
L2 clock. SRAMs with appropriate access times would be selected accordingly.

Pipeline stages 1 and 6 also double up as boundary scan latches for tag and address going
off of the 620.

Not shown in detail here, but a very important topic for the 620, is the collision detection
logic that controls sequencing of incoming and outgoing bus transactions to the system bus
and L2 interface in time to prevent collisions from occurring between different transactions
in progress. For more detail on this topic, refer to Section 8.18, "Address Collision
Detection and Handling (CD)."

8-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

DL 1 Load Address

DL 1 Store Address

IL 1 Load Address
Bus Snoop Address _________ ,

L2 Push Address

L2 Write Address

L 1, L2, and Snoop
Addresses In

DL 1 Store Address

L 1 Snoop Address

Collision Detection

Logic

To CD State Machine

To Bus Snoop
Logic r---

L2 Address

Bus Address In Store/Push Buffer

Late Write Latch

ECG&
Tag Compare

0

_ J ___ '"'" Ooli>--B-u_ff_e_r ---,- L2 Write Address

L2 Address

r

SRAM Chips:

L2

CD

I
I
I
L - - _J

())
a.~,.-------~

0::

L2Tag

~B~n~ j _ _J
Notes: Symbol "L2" clocked by L2 interface. "B" clocked by system

bus interface. All other latches clocked by the processor
internal clock.

Figure 8-2. PowerPC 620 Microprocessor Address Path

MOTOROLA Chapter 8. System Interface Operation 8-5

-

-

8.1.1 Timing Diagrams
The following sets of timing diagrams are designed to illustrate the 620 bus protocol. In all
of the timing diagrams, BUSTLAR=3 and BUSRESPTEN=2. The bus time latency address
to response (BUSTLAR) and BUSRESPTEN are set at boot time and remain fixed system
parameters thereafter. System implementations using the bus protocol could choose
different values based on their needs.

All data is clocked on the rising edge of BUSCLK. Figure 8-3 shows an example of two
burst reads with data returning out of order. Masters A and B each request the address bus
for two cycles. These request signals are really separate signals on each master, but are
shown on one line here to save space. An ABG will be granted by the arbiter to each of the
620 masters. The master must hold the ABR asserted until it has sampled the valid ABG.

BUSCLK

ABR (Master)

AllG,EAIS

Addr, ASize,
ATYPE, AP

ASTATIN/OUT[0-1]

ARESP!N/OUT[0-2]

DBR (Slave) I B B

DBG

DH[0-631
(DL[0-63]

DTAG[0-7] I I

DBB I
I I I rt--t-\ I I I I

\ B B 8 B 1 A A A A
I I

DVALO or DYAL 1 I
\ B B B BJ;\ A A A 4r,

Figure 8-3. Two Burst Reads-A and B with Data Returning Out of Order

In this example, the maximum address bus bandwidth is used, which is one valid address
every other bus clock. The 620 will expect read data from the memory controller in critical
quad-word first. The notation A(3) means that master A is asking for the third quad-word
of the burst read (cache line read) first. Master B is asking for the first quad-word of the
cache line. Quad-words are numbered 0--3 for the four beat burst transaction.

Address duration in bus cycles is determined by when the arbiter drives EATS to all
devices. In this example, EATS is driven in the same cycle as ABG. The master will stop
driving the address on the bus one cycle after EATS is sampled. From the time that the
address bus is sampled to the beginning of when ASTATOUT is driven is fixed at one cycle
in the 620 bus protocol. BUSRESPTEN = 2 indicates that both ASTATOUT/IN and
ARESPOUT/IN have a total duration of two bus cycles. BUSTLAR is the snoop response
latency from when the address is sampled to the beginning of when ARES POUT is driven.

8-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The DBR and DBG are unique to each device requesting the data bus. They follow the same
rules as the ABR and ABG signals.

Once the data bus has been granted, the device supplying the data will begin driving the
data bus in the next cycle. Data is supplied critical quad-word first. DBB is asserted for all
but the last quad-word, while the DYAL signals are asserted for the whole tenure on the data
bus. Because of the tagged transactions, memory controllers may supply data out of order
from the original requests (in this case, B is back before A).

This example shows the fastest that data could be sampled by the master. Data can be
sampled no earlier than the cycle when ARESPIN is sampled due to bus tag
allocation/deallocation rules.

Figure 8-4 is an example of three address-data burst write transactions from the same or
multiple masters (A, B, C). The address bus transaction is the same as for read operations,
but the DBR goes out in the same cycle as the ABR. The earliest that the bus arbiter can
issue the DBG is in the same cycle as EATS. For 620 bus writes, the quad-words do not get
written critical quad-word first (even if the address specifies a quad-word other than zero).

BUSCLK

ABR (Master)

ABG, EATS

Addr, ASIZE,
ATYPE, AP

ASTATIN/OUT[0-1] 1;---;--~~;::::A=f:C~;::x~cx:;:Jc::>--;---;---;---;---;--~
ARESPIN/OUT[0-2]

I I 1~•~'-~__._ ___ ,_,__~~-~~--~,-----,--,-----,--,-----,---;
DBR (Master) ~~.,...A-.,.------T--'i------i--'i------i---,-~~

DSG 1

DH[0-63]
(DL[0-63]) I

DTAG[0-7] ,------<~~~~~~~~

W8

DW\[O or DVi\[1

Figure 8-4. Three Burst Write Operations-DBG Given Earliest Cycle Possible
(Same Cycle as EATS)

Figure 8-5 is an example of a snooper supplying intervention data to a 620 master using the
intervention protocol. Intervention is a mode which can be used when a snooper responds
modified when a master tries to do a read-with-intent-to-modify (RWITM) or a normal bus
read operation. The earliest that data can be sampled by the master is the same as for all
reads (same cycle as ARESPIN is sampled). The DCACHE signal tells the master and the
memory controller that the data is coming from a snooper.

MOTOROLA Chapter 8. System Interface Operation 8-7

-

-

BUSCLK

Aliff (Master)

AfiG,Ei\TS

Addr, ASize, ,_1 _,___,__

ATYPE,AP

ASTATIN/OUT[0-1] :
1

1; BUSC;LK

ARESPIN/OUT[0-2]
1 BUSTLAR BUSCLKs

!IBR, HPR (Snooper) '

lIBG (Snooper) 1

modified

A

DH[0-63] 1-' -+---+--1----1-__,_-+---+--r:AnrAiiYATVA?i (DL[0-63]) >--1---+--+--+--+---<

DTAG[0-7] ,_1 -~----~----~
DCACHE \l_/Tells Master That Data:

I Supplied By s,_n_oo~p_er_,~~-~-~~~~
\A A A/A

DVALO or DVAL1 A A A A

Figure 8-5. Intervention: Memory Read with a Snoop Hit

Figure 8-6 is an example of how a bus adapter could extend the snoop response time beyond
the BUSTLAR value. This is done by the bus adapter responding with a snoop response of
the Rerun operation. When the bus adapter is ready to provide the snoop response to the
master, it issues ReRun with the same tag as was used by the master. This tells the master
to try to start this bus operation again. This time, the bus adapter responds with a valid
snoop response.

BUSCLK

ABR (Master)

ABR (Bus Adapter)

Addr

ATYPE, ATag, R Bit

ASTATIN/OUT[0-1]

ARESPIN/OUT[0-2]

I I I I I I

Two Cycle Minimum Internal Arbitration
I I A'3 ,__~I -~-~~-~
I I I

I~' 1='-='I l=bl
~--~1 -<~>--i-~--,-~--,,--<~>--1-~-~-~1-<~f-,,-~-~1-~-~

Tag=A, R=O 1 1 1 TAG=A, R=O :TAG=A, R= 1 1 1

m~ U m~

BUSTLAR
rerun Null Null
~ BUSTLAR Extended By 11 Cycles

Figure 8-6. Rerun Mechanism (Non-SyncfTLBSync): Extending Snoop Response

Figure 8-7 is a special case of burst reads where data is supplied to several masters from
memory using one DBG. Memory may bundle data into one data bus tenure so that one
dead bus cycle does not have to be inserted between data bus tenures. Masters sampling the
data know which data to sample because the data bus tag changes every four beats.

8-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

BUSCLK

Alil1 (Master) 1

,.....,.. _ _,___, _ _,.__,___,__-t----;-----r---t----.·~

I I I

Addr, ASize,
ATYPE, AP

l~l~I I I
,___,__..,.._~.......,.1--.1---,1c---r---.,...._--r-...---i--r---;--_,...-..,.--__,

j BUSCLKt.i..i I I I I

ASTATIN/OUT[0-1] I I I I ~ -~-'--~-~,.........-~~-~~

: susrlAR B~SCL~s I .. : , .. 1
ARESPINIOUT[0-2]

liSR" (Memory)

lJBG (Memory) 1

DH[Q-63l
(DL[0-63]

A B

DTAG[0-7] :--1 -.,..----,--...,---,--,--.,..---.,..--,---:-~_. '-~ ,_, ~__,,.__~ ~---~~ ~__,,

llBB

B B B A A A

Figure 8-7. Special Case of Burst Read: Memory Supplies Data to Multiple Masters
in One Data Bus Tenure

8.2 Processor Interface Termination
The following sections provide information on the 620 processor interface termination.

Output-only signals-When HRESET is asserted the 620 will three-state all signals,
including output-only signals. In order to prevent these signals from floating
asserted when HRESET is asserted they must be pulled to the high or deasserted
state.

DVAL, DBB and DCACHE signals-The DVAL, DBB and DCACHE signals are
terminated high. The DVAL and DBB signals are not driven when the bus is idle.
The DCACHE signal is not required to be driven by a data provider that will never
assert DCACHE.

8.3 Arbitration
The 620 bus utilizes a centralized, as opposed to a distributed, arbitration scheme. The
address bus and data bus are arbitrated for independently, except for address-data (write)
bus operations.

A bus device that wants bus ownership issues a request to the central arbiter, which grants
ownership of the address and/or data bus. The arbitration algorithm, such as round-robin or
fixed priority, is defined by the central arbiter.

MOTOROLA Chapter 8. System Interface Operation 8-9

-

8.3.1 Arbitration Requests
All bus operation types cause one or more of these arbitration request types, as defined in
Table 8-16 under the column titled "Address-Data Type."

• Address-Only-The address-only arbitration type is for an address bus only
operation. In the case of bus operations, an address-only bus operation may cause
one or more bus devices to respond with a data-only bus operation. The arbiter may
arbitrate the address bus independent of the data bus for the address-only request
type.

• Data-Only-The data-only arbitration type is always in response to an address-only
bus read operation. The arbiter may arbitrate the data bus independent of the address
bus for the data-only request type.

Address-Data-The address-data arbitration type is for data store type operations
that pair a store data bus operation with an address bus operation. The arbiter must
not allow the data to be sampled prior to the address being sampled. This means that
for some system configurations, the arbiter must delay the assertion of DBG relative
to the ABG in response to address-data requests. The relationship of DBG to ABG
is a function of ABG-to-address-sampled latency and DEG-to-data-sampled latency.
See Section 8.3.9, "Early Address Transfer Start (EATS)," to determine address
sample latency and Section 8.5.6, "Data Valid (DVAL[0--1]),"for a discussion of the
data sample latency.

Address-data requests may be used to simultaneously issue address-only and data­
only bus operations that do not have the same bus tag. However, the 620 will not
utilize this feature. The 620 will only use address-data requests for address-data bus
operations. The 620 will arbitrate for address-only and data-only operations as
separate requests.

8.3.2 High-Priority Bus Operations
The HPR signal asserts to indicate that the 620 contains one or more high-priority bus
operations. See Section 8.3.4, "Internal Request Arbitration," for the definition of low and
high-priority data bus arbitration.

There are two types of high-priority bus operations, as described by the following:

• Pushes and intervention-An arbitration request on behalf of a snoop push or a data­
only intervention. See Section 8.12.4, "Write-With-Kill," Section 8.12.5, "Write­
With-Clean," and Section 8.7, "Intervention and Push Definition."

HPR may be left disconnected, which effectively groups high and low priority
requests.

• Collisions against the store buffer-An arbitration request on behalf of a copy-back
or store that has caused a bus operation to be retried due to collision detection. See
Section 8.18.3.4, "Rule 4: Operations that Take CD Priority."

8-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

HPR asserts when either ABR or DBR are asserted and there are one or more high-priority
operations that need the bus. HPR asserts for a low-priority request if there are internally­
queued, high-priority requests. HPR stays asserted until there are no outstanding high­
priority requests. The HPR signal tells the arbiter that all high-priority bus operations and
all non-high-priority operations in front of high-priority bus operations should be treated as
high-priority bus operations.

For more information on HPR, refer to Section 7.2.1.3, "High Priority Request (HPR)­
Output."

BUSCLK

I I I

ABR or DBR ' \~s
I I I

I

\ B B B

B I

B I
A = Low Priority
B = High Priority

Figure 8-8. Assertion and Deassertion of HPR

8.3.3 Withdrawing a Bus Request
The 620 will never withdraw a request before the appropriate grant is received (with the
exception of a hard reset).

8.3.4 Internal Request Arbitration
Internal operations seeking access to the bus are grouped into four groups. Arbitration
between groups is fixed priority, with the highest priority given to group 1. Arbitration
within each group is round-robin.

1. High-priority store buffer operations

There are three sources for high-priority store buffer operations.

a) Bus snoop pushes. (Cast-outs caused by bus snoops)

b) Bus snoop data-only intervention. See Section 8.7, "Intervention and Push
Definition."

c) Any low priority store buffer operation that causes a CD collision with either a
core or bus operation will be turned from a low to a high priority store. See group
4.

2. Instruction load operations-Instruction fetches.

3. Data load and address-only operations-Data loads, tablewalk loads (I and D) and
address-only operations.

MOTOROLA Chapter 8. System Interface Operation 8-11

-

4. Low-priority store buffer operations

There are two sources for low-priority store buffer operations.

a) Cast-outs caused by cache management instructions and data or instruction
loads.

b) Write-through or cache-inhibited stores.

8.3.5 External Request Arbitration
The external arbiter, that arbitrates between multiple 620s and other bus devices,
implements an algorithm which may be the same or different from the 620 internal request
arbitration.

While a fair arbitration algorithm, such as round-robin or snap-shot, applied to all bus
requests will functionally work, performance will be less than optimal. The 620 supports
an arbitration model that divides requests into three groups or tiers that have a strict
arbitration priority with respect to each other and a fair arbitration priority within a group
or tier. The three groups or tiers are listed as follows:

1. High priority address-only, address-data, or data-only

2. Low priority address-only

3, Low priority address-data or data-only.

8.3.6 Arbitration Grants
There are two grant signals, address bus grant (ABG) and data bus grant (DBG). ABG and
DBG are point-to-point active-low signals from the arbiter to the bus device. The grants are
not combined like the requests. ABG and DBG are treated by the 620 as independent grants
for each bus.

ABG and DBG are pulsed grants, asserted for one BUSCLK cycle, indicating which buses
are being granted. Except for the sustained address bus parking case, as described by
Section 8.3.10.2, "Sustained Address Bus Parking," ABG cannot be asserted more
frequently than once every other cycle. DBG can never be asserted more frequently than
once every other cycle. Asserting ABG and DBG in violation with the rules stated in the
following sections may result in undefined behavior. ABG, when asserted, indicates that the
address bus master can start driving the address bus on the same edge that ABG is sampled
asserted.

A data bus master may start driving the data bus when both of the following two conditions
are satisfied:

• DBG is asserted.

• DBB is deasserted for two or more BUSCLK cycles.

If DBB was deasserted for two or more BUSCLK cycles when DBG is asserted, then the
master will start driving the bus on the same edge that DBG is sampled asserted. The data

8-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

bus grant is pending from the assertion of the data bus grant to the beginning of the data
transfer. See Section 8.3.8, "Pending Data Bus Grant Arbitration."

8.3.7 Address-Data Arbitration
Address-data arbitration is used for write or store operations where the data bus operation
must occur with or after the address bus operation. This means that the arbiter must control
the assertion of DBG with respect to ABG and EATS for address-data bus operations. See
Section 8.3.9, "Early Address Transfer Start (EATS)."

If an address-data request is pending and only ABG is asserted, then the 620 deasserts ABR,
keeping DBR, and possibly HPR, asserted. The 620 will not assert ABR for a new request
until DBG is received for the DBR belonging to the address-data request. If the address bus
operation for an address-data bus transaction is cancelled or retried and the DBR is still
pending, then the 620 will wait for the pending data request to be granted before continuing;
however, the 620 will not take data bus ownership (DBB will not be asserted). No DVALs
will be asserted for the DBG in order to satisfy the rules for data bus tag deallocation. See
Section 8.10, "Bus Tags." The 620 will not use the grants for an address-data request for
address-only or data-only bus operations.

8.3.8 Pending Data Bus Grant Arbitration
The 620 supports zero or one pending DBGs. A description of each follows:

Zero pending DBG-The arbiter does not issue DBG when DBB is asserted. This
means that DBB for BUSCLK cycle 0 needs to be included into the equations that
will produce DBG in BUSCLK cycle 1.

• One pending DBG-DBB is registered by the arbiter, the arbiter uses only the
registered version of DBB and the arbiter asserts another DBG before knowing
whether the previous DBG will take the bus for more than one BUSCLK. If the
transfer is greater than one BUSCLK then the arbiter will hold off another DBG until
the beginning of the data tenure for the pending DBG.

Pending DBG arbitration is described in Figure 8-9.

10 11 12 13 14

BUSCLK

!llllr : I I y

DBG(w) ~
I I I

DBG(x) \..!;..../ 1

I
DBG(y)1 1\y__j1

I

Figure 8-9. Pending DBG Arbitration

MOTOROLA Chapter 8. System Interface Operation 8-13

-

-

DBG(w) is the data bus grant for data bus operation Wand so forth to Z. In cycle 2 DBB
has been deasserted for two BUSCLKs, so W takes the bus in cycle 3. Although DBG for
Xis asserted in cycle 4 DBB is not deasserted for two BUSCLKs until cycle 7, and X starts
in cycle 8. DBG for Y asserts in cycle 9 and DBB has not deasserted for two BUSCLKs
until cycle 10, and Y starts in cycle 11. Z is like X in that DBB has been deasserted for two
BUSCLKs in cycle 12, and Z begins in cycle 13.

Note that DBG cannot be asserted speculatively (no DBR) since the 620 does not support
data bus parking.

8.3.9 Early Address Transfer Start (EATS)
The arbiter asserts the early address transfer start (EATS) signal to all bus participants for
one BUSCLK cycle. EATS may be a unidirectional bussed signal or it can be driven point­
to-point with the same value.

EATS indicates to the master driving the address that it will disable its address drivers one
BUSCLK after sampling the assertion of EATS. For all other devices monitoring the
address bus, EATS indicates that the address transfer should be sampled one BUSCLK after
from sampling the assertion of EATS.

8.3.9.1 EATS Assertion Relative to ABG
EATS can be asserted in the same cycle as ABG or on the cycle following ABG. It is not
permitted for EATS to be delayed more than one BUSCLK from ABG. If EATS is asserted
in the same cycle as ABG, then the address tenure is one BUSCLK cycle and a new address
transfer can begin every two BUSCLK cycles. If EATS is asserted in the cycle following
the assertion of ABG, then the address tenure is two BUSCLK cycles.

8.3.9.2 EATS to DBG Minimum Latency for Address-Data Arbitration
The system arbiter controls the minimum latency from EATS to DBG which is useful for
systems where the address must be seen a minimum number of BUSCLK cycles before the
data. The arbiter may want a non-zero minimum latency from EATS to DBG for crossbar
implementations. For example, if the arbiter guaranteed that the minimum latency from
EATS to DBG was two BUSCLK cycles, then the address bus tag could be passed through
the address controller to each data slice that needed to snoop the data bus tag. A system that
requires a non-zero latency from EATS to DBG implies the need for a count function for
each address-data operation that can have asserted an EATS and not yet asserted a DBG.
The absolute minimum latency the 620 supports from EATS to DBG is zero BUSCLK
cycles, which means they are both asserted simultaneously.

Figure 8-10 refers to a one BUSCLK address transfer time. The maximum bandwidth is
one address every two BUSCLKs.

8-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Figure 8-10. EATS Asserted Same Cycle as ABG

Figure 8-11 refers to a two BUSCLK address transfer time. The maximum bandwidth is
one address every three BUSCLKs. Note that operation D can be granted one BUSCLK
sooner if C and D are the same device.

BUSCLK

ABR

ABG

Addr

Figure 8-11. EATS Asserted One Cycle after ABG

8.3.10 Bus Parking
Bus parking is a mechanism that can minimize the latency from internally requesting the
bus to obtaining the bus.

The 620 bus protocol allows for bus parking for the address bus only. Bus parking is
implemented by the arbiter, which pulses the appropriate grant to the parked master. The
arbiter specifies the algorithm for bus parking.

If a master has a transaction to run that matches the parked grant, then the master can take
the bus without asserting the external request, thus eliminating arbitration latency.
Otherwise, the bus device will assert the request.

A parked ABG without a DBG may be used for address-only and address-data operations.
If an ABG is speculatively asserted to the master and the master has an address-data
transaction to run, the master may use the parked ABG for the address-data transaction and
assert DBR. The master will hold DBR asserted until DBG is asserted.

The 620 does not support data bus parking.

MOTOROLA Chapter 8. System Interface Operation 8-15

-

-

Unless otherwise noted, all following discussion and figures assume that EATS is asserted
coincident with ABG, producing a one cycle address tenure with two cycles from address
to address.

8.3.10.1 Address Bus Parking
In reference to Figure 8-12, parked grant PA occurs during the same cycle as internal
request A (cycle 2), which enables the address for bus operation A to start on the next cycle
(cycle 3). If a parked grant is not present at the same cycle as an internal request (cycle 4),
then an external request is made (cycle 5). The grant may be a parked grant PB and will
enable the address for bus operation B to start on the next cycle (cycle 6). If the grant was
a parked grant, then the arbiter may issue a grant that will effectively go unused (cycles 7
and 8).

If a bus device is issued a parked address grant and it does not need to use the address bus,
then it must run a null address bus operation.

BUSCLK
I

Internal ABR 1

I

ASA :

A!IB,EAIS I
I

Addr ~'------'----'---{

Figure 8-12. Address Bus Parking

8.3.10.2 Sustained Address Bus Parking
While the reduced latency associated with the statistical parking capability is adequate for
most systems, there are some systems (such as uniprocessor systems) that could easily park
the bus device in a sustained, non-statistical fashion if that capability existed. For these
systems, memory latency could be further reduced if the arbiter could assert the address bus
grant to a bus device for more than one bus clock cycle, such that if the bus device does have
an operation to run, it is guaranteed to win the address bus immediately. With certain
constraints, described below, it is permissible for the arbiter to park the 620 on the address
bus in the "sustained" fashion.

Note: This description may contradict statements made elsewhere in this document. This is
a special mode of operation; the rest of this document assumes the normal arbitration mode.
If and only if the system designer meets all of the constraints outlined in this section, then
the sustained address bus parking capability can be utilized.

System constraints:

• EATS and ABG are asserted together, and DBG must not be asserted. Only address
tenures of one BUSCLK are supported for sustained address bus parking.

8-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The bus device will drive the address bus with a valid transaction if it has a pending
internal request; otherwise, the bus device must drive the Null address bus operation
in response to the parked address bus grant.

All bus devices must be capable of decoding the Null type field and avoid filling their
snoop buffers and other system resources with these Null operations.

If the preceding constraints are met, then the arbiter may assert both the address bus grant
(ABG) and early address transfer start (EATS) to the bus device for multiple, consecutive
bus clock cycles. In response to the parked address bus condition, the bus device will drive
the address bus and associated signals starting with the bus clock following the assertion of
ABG and EATS. If the device has no pending internal request, the bus device will drive the
Null code on the address type signals. The Null code will be driven on every bus clock cycle
in which the bus device is parked and it has no pending internal request. This is illustrated
in Figure 8-13.

BUSCLK

Internal ABR 1

I

ABG 1

I

ffiS I
I

Addr ~: ~L__-+-~ID<J@CF..J(]@!)(:::[)@i!IX])

Figure 8-13. Sustained Address Bus Parking

If the bus device has a pending internal request, it will present that transaction on the
following bus clock cycle, without asserting the address bus request. If the pending internal
request is for a store operation, and the data bus grant is not asserted, then the data bus
request will be asserted with the address transaction on the following bus clock cycle. The
transaction will be presented for a single bus clock and then removed. If the bus device is
still parked, it will begin driving the Null code on the following bus cycle(s). If it is no
longer parked, the bus device drivers will go back into a high-impedance state.

Special considerations:

The data bus cannot be parked in a fashion similar to the sustained address bus.

The arbiter knows when it can deassert the bus grant in the same manner as the
normal mode; the 620 may have elected to run an address operation in the last cycle
that address bus grant was sampled asserted. In this case, it will run a single clock
cycle address operation in the next bus clock cycle (the first cycle with ABG
deasserted).

The 620 cannot run valid bus operations every BUSCLK in sustained address
parking mode. The maximum address throughput is a new address every other
BUSCLK cycle. Like statistical parking, this mode does not improve throughput;
however, it can be used to lower memory latency.

MOTOROLA Chapter 8. System Interface Operation 8-17

-

-I

8.3.11 Arbiter Block Diagram
Figure 8-14 is intended to illustrate the input and output signals of the 620 arbiter.

ABRO, DBRO, HPRO

ABR1, DBR1, HPR1

ABR2, DBR2, HPR2

Dl3B

CLK

2
~

2

2 -------=--..

2
~

~

_,..

620
Arbiter

2

2

2

2

1 or n
~

ABGO,DBGO

ABG1, DBG1

ABG2,DBG2

ABGn, DBGn

EATS

Figure 8-14. Block Diagram of the Arbiter

8.4 Address Bus Transfer Protocol
The address bus transfer protocol specifies how address and address related status is passed
between bus devices. Following are useful definitions:

• Address command-The address command transfers master information to all
memories and snoopers. The information contained in the address command will
vary from operation to operation but generally has an address, a tag and address
attributes.

Address status-The address status is a fixed, low-latency composite response from
all bus devices for the purpose of providing positive acknowledge, flow control retry
and address parity information.

• Address response-The address response is a "boot-time determined" latency
composite response from all bus devices for the purpose of providing coherency
information.

8.4.1 Address Transfer Example
Figure 8-15 is an example of three address transfers, labeled A, Band C.

• BUSTLAR is three BUSCLK cycles, ARESPOUT is driven three BUSCLK cycles
from the address being sampled.

• BUSRESPTEN is two BUSCLK cycles, ASTATIN and ARESPIN are sampled two
BUSCLK cycles from being driven.

8-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

BUSCLK
I I

ABR~ A A B B c c I
ABG I

EATS I

Addr, ASize,
ATYPE, AP 1

ASTATIN/OUT[0-1]
1

c
I I BUSTLAR

ARESPIN/OUT[0-2] : A x B x c ~

Figure 8-15. Address Transfer Protocol

8.4.2 Address Command
The address command consists of the following:

Address, Address Bus Tag-Refer to Section 8.9, "Address Bus"

ATYPE-Refer to Section 8.6, "Address Commands Definition"

Size-Refer to Section 8.8, "ASIZEDATA[0-3] andASIZEBURST Definition"

Address Parity-Refer to Section 8.11, "Parity Protection"

8.4.3 Address Status and Address Response Signals
This section describes how the address status and address response signals interact.

Address status-The address status (AStat) consists of the unidirectional signals
ASTATOUT[0-1] and ASTATIN[0-1]. AS tat provides positive acknowledge
(PosAck), retry flow control (Retry) and address parity (AParErr) functionality for
the address bus. Bus operations that do not need the functionality of the address
response (AResp) will complete based on AStat.

Address response-The address response (AResp) consists of the unidirectional
signals ARESPOUT[0-2] and ARESPIN[0-2]. AResp provides coherency
information (Null, Shared, Modified) and control information (Retry and ReRun).

8.4.3.1 Address Status and Address Response Communication
All ASTATOUT andARESPOUT output signals from all bus participants are driven point­
to-point to logic that then drives ASTATIN and ARESPIN inputs, either point-to-point or
bused. The system must handle the priority encoding of all ASTATOUT and ARESPOUT
outputs and generate the appropriate ASTATIN and ARESPIN inputs. The priority
definition is defined in Table 8-9 and Table 8-11. With respect to Figure 8-16, a 620 is a bus
device.

MOTOROLA Chapter 8. System Interface Operation 8-19

-

-

Bus Device Bus Device Bus ~evicej
A B

~ l ~ l ~
ASTATOUT[0-1]

ASTATOUT[0-1]

ASTATOUT[0-1] A Stat
ASTATIN[0-1] and

A Resp
ARESPOUT[0-2] Combination
ARESPOUT[0-2] Logic
ARESPOUT[0-2]

ARESPIN[0-2]

Figure 8-16. AStat and AResp Interconnection Diagram

8.4.3.2 Address Status and Address Response Validation
Table 8-1 defines when AStat and AResp are valid for each bus operation type. AStat-not­
valid means that ASTATIN will be ignored. AResp-not-valid means that ARESPIN will be
ignored. AResp-enabled operations that are AStat-aborted (AStat Retry, AParErr, or no
PosAck and PosAck enabled) are AResp-not-valid. The I and M bits are the PTE IM bits.

Table 8-1. AStat and AResp Valid States

Bus Operation
AStatValid A Resp

Comment
Status Valid Status

Null No No

PIO Reply, ReRun Yes AStat support is limited; see
Table 8-10.

PIO Load + Store (lmmed + Last), Only flow control is provided for
External Control In/Out, TLBIE, these bus operations.
EIEIO, IKill

Read, 1=1 and M=O AResp is ignored in order to provide
Write with high performance operation.
Flush-A,

1=0 or M=1 Yes Coherency response is needed for

RWITM,
these bus operations.

Clean, Flush, DKill, DClaim,
Write with Kill, Write with Clean,
Write with Flush-A,
LARX-Reserve,
SYNC, TLBSYNC

8.4.4 Address to ASTATOUT Latency (One BUSCLK)
The latency from the address sample point to the ASTATOUT drive point is always one
BUSCLK. All bus devices must be able to compute ASTATOUT in one BUSCLK.

8-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.4.5 Address to ARESPOUT Latency (BUSTLAR[0-2])
The address to response latency (BUSTLAR) is defined to be from the address sample point
to the ARESPOUT drive point. Table 8-2 shows the encoding definition for BUSTLAR.

BUSCSR[BUSTLAR] is configured by software at power up, before or at the same time
BUSCSR[BUSSNPEN] is asserted and is not changed during system operation.

Table 8-2. BUSTLAR[0-2] Encoding Definition

BUSTLAR[0-2]
Latency from Address Sample to

Response Drive

010-111,000 2-7, 8 BUSCLK cycles

001 Reserved

The minimum BUSTLAR supported by the 620 is configuration-dependent and is defined
in Table 8-3. The table values represent the cycles required by a 620 in the specified
configuration to provide the response for a snooped bus operation. The PCLK:L2 ratio
referenced in Table 8-3 refers to system variable L2RATIOSR which is described in
Section 9.3.1.4, "L2RATIOSR Bit." The "X" entry in Table 8-3 corresponds to invalid
combinations of PCLK:L2 and PCLK:BUSCLK ratios-the 620 does not support ratio
combinations where the L2 is slower than the bus. Table 8-3 assumes that L2SINGSYNC
and Coprocessor mode are both disabled. The maximum BUSTLAR supported by the 620
is eight BUSCLK cycles.

Table 8-3. BUSTLAR[0-2] Minimum Definition

PCLK:L2 PCLK:BUSCLK PCLK:BUSCLK PCLK:BUSCLK
Unit

Ratio Ratio 2:1 Ratio 3:1 Ratio 4:1

No L2 3 2 2 BUSCLK cycles

1 :1 3 2 2 BUSCLK cycles

2:1 5 4 3 BUSCLK cycles

3:1 x 5 4 BUSCLK cycles

8.4.5.1 BUSTLAR Initialization Rules
If BUSTLAR is initialized to a value less than the specified minimum value, the 620 may
generate an ARESPOUT Retry for all snooped operations. The 620 will ARESPOUT Retry
if the cache snoops are not complete when ARESPOUT is driven.

MOTOROLA Chapter 8. System Interface Operation 8-21

-

8.4.5.2 Derivation of BUSTLAR Values
Table 8-4 describes the parameters used to generate BUSTLAR values. The L2RATIOSR
parameter is described in Section 9 .3.1.4, "L2RATIOSR Bit." The L2SINGSYNC mode bit
is described in Section 9.3.1.10, "L2SINGSYNC Bit."

Table 8-4. BUSTLAR Parameters

Parameter Definition Latency (in PCLKs)

BUS_TO_L1 Number of cycles between a BUSCLK and the PCLK used to 3
clock the L 1 arbiter request.

BUS_TO_L2 Number of cycles between a BUSCLK and the subsequent Refer to Table 8-5
PCLK edge used to clock the 620-internal address register for
the L2 cache.

L2_SR SRAM array latency Defined by L2RATIOSR

L2_REGS Number of L2 registers Defined by L2SINGSYNC

L1_DAT_VAL Number of cycles to validate L 1 Snoop Data 2.5

L2_DAT __ VAL Number of cycles to validate L2 Snoop Data 1

ARESP_GEN Number of cycles to generate ARESPOUT 0.5

Table 8-5 lists the values of the BUS_TO_L2 parameter for the various configurations.

Table 8-5. BUS_ TO_L2 Values

PCLK:L
PCLK:BUSCLK PCLK:BUSCLK PCLK:BUSCLK

2 Unit
Ratio

Ratio 2:1 Ratio 3:1 Ratio 4:1

1 :1 1 1 1 PCLK

2:1 1 2 1 PCLK

3:1 x 3 3 PCLK

Table 8-6 lists the L2_REGS value associated with all combinations of L2SINGSYNC.

Table 8-6. L2_REGS Values

L2SINGSYNC L2_REGS

0 2

1 1

8.4.5.3 L2 Cache and Coprocessor Mode Disabled
For a system with no L2 cache and Coprocessor mode disabled, BUSTLAR is generated by
rounding up the result of the following equation:

BUSTLAR = (BUS_TO_Ll + Ll_DAT_ VAL+ ARESP _GEN) I BUSRATIO

8-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.4.5.4 L2 Cache or Coprocessor Mode Enabled
For a system with either L2 cache or Coprocessor mode enabled, BUSTLAR is generated
by rounding up the result of the following equation:

BUSTLAR = (BUS_TO_L2 + L2_SR*(l+L2REGS) + L2_DAT_ VAL+
ARESP _GEN) I BUSRATIO

In addition, if the L2 is configured in Coprocessor mode, additional latency may be
introduced due to high-impedance cycle injection. Table 8-7 illustrates the latency impact
as a function of three consecutive accesses where the number of high-impedance cycles is
shown for the third access. The 0 represents access to one read device and the 1 represents
access to a second read device. See Section 9.2.3, "L2 Direct Connectivity to SRAMs."

Table 8-7. l2 latency Additions Due to High-Impedance Cycle Injection

Number of L2RATIOSR
Access Pattern Multiples Added to Third

Access

000 0

001 1

010 2
f----------··----- -----

011 1

100 1

101 2

110 1

111 0

Note that the values in Table 8-3 for configurations with a L2 cache are somewhat
conservative. To generate those values, the following assumptions were made:

• Double-synchronous SRAMS so L2_REGS=2.

• No high-impedance cycles.

Using these assumptions, BUSTLAR is generated by rounding up the result of the
following equation:

BUSTLAR = (BUS_TO_L2 + L2_SR*3 + L2_DAT_ VAL+ ARESP _GEN) /BUSRATIO

8.4.6 Address Status and Address Response Tenure
(BUSRESPTEN[0-1])

BUSRESPTEN[0-1] defines the latency from ASTATOUT and ARESPOUT being driven
until ASTATIN and ARESPIN can be sampled. BUSRESPTEN is assigned by the hardware
configuration mechanism. BUSRESPTEN is software readable by the BUSCSR SPR.

MOTOROLA Chapter 8. System Interface Operation 8-23

-

-

Table 8-8. BUSRESPTEN[0-1] Code Definition

BUSRESPTEN[0-1] Definition

01 Reserved

10-11 2-3 BUSCLKs

00 Reserved

ASTATOUT and ARESPOUT are always driven valid for two BUSCLK cycles,
independent of the configuration of BUSRESPTEN[0-1]. Figure 8-17 illustrates the
relationship between ASTATOUT and ARESPOUT and ASTATIN and ARESPIN for each
response tenure.

BUSCLK

Addr
1 1 1 +_:~~1Sample Point 1

ASTATOUT 1 1 BUSCLK ,------,>--'--~~-~~~
I I I I lh----,....1,t i t ASTATIN I
1 ' ' ' ' Sample Point 1

BUSRESPTEN = 10 :: :• 1 1 I
BUSRESPTEN = 11 - · • I I I

ARESPOUT
' ' ~.susn,AR su,scLKs,.J ' ' '

' ' ' ' r---J~~.-t-A~RE-SP~IN
I t • Sample Point

BUSRESPTEN = 10 : •
BUSRESPTEN = 11 """-~--~

Figure 8-17. BUSRESPTEN[0-1] Timing Definition

When BUSRESPTEN = 3 a register stage is required in the AStat and AResp collection
logic in order to pipeline the AS tat/ AR esp collection.

The BUSRESPTEN configuration used is a function of the speed of the AStat/AResp
collection logic. BUSRESPTEN[0-1] is readable from the BUSCSR SPR.

8.4.7 Snoop Pipeline Depth and Snoop Operation Processing
The 620 bus protocol specifies pipelined address responses. A bus device which supports
pipelined address responses has an implementation-dependent snoop pipeline depth which
corresponds to the number of addresses that a bus device is capable of storing while the
address responses remain outstanding.

The optimal snoop pipeline depth is determined by the number of addresses that can be
transmitted over the address bus for the period of time that it takes one address to be issued
by the master, snooped by the snoopers and resolved by all bus devices.

If a bus device implements snoop logic that is less than the optimal depth, that bus device
will cause retries due to an insufficient number of snoop buffers being available during
saturated address bus conditions.

8-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The optimal snoop pipeline depth is determined using the following assumptions:

1. The minimum tenure for an address is one BUSCLK.

2. The address bus is saturated so an address is snooped every other BUSCLK.

3. The response (snoop) latency is the maximum of eight BUSCLKs (BUSTLAR=8).

4. The response tenure is the maximum of three BUSCLKs (BUSRESPTEN=3).

5. The address response can be resolved by the snooper in 1 PCLK.

Figure 8-18 illustrates the snoop buffer utilization given the stated assumptions (BusRatio
is 2:1). Under these conditions, once an address (referred to as Address 1) is snooped off
the bus, it remains in a queue location for 11.5 BUSCLKs. In that duration another 5
addresses (Address 2-6) are sampled off the bus. Snoop Buffer 0 is emptied just prior to the
Address 7 sample. These assumptions yield an optimal snoop pipeline depth of 6 locations.

BUSCLK

Addr

ARESPIN/OUT[0-2] 1 1 1 1

Snoop BufferO ~'----------'A-"-1 _______ _,~
I I I I I

Snoop Buffer 1 t---+---+-+-1 -.c-~· ··---- -·~-·· A2 ~

Snoop Buffer 2 A3

Snoop Buffer 3

Snoop Buffer 4 A5

Snoop Buffer 5 AS

Figure 8-18. Optimal Snoop Pipeline Depth

The 620 snoop pipeline depth is determined using the following assumptions:

1. The minimum tenure for an address is one BUSCLK cycle.

2. The address bus is saturated so an address is driven onto the bus every other
BUSCLK. However, it is assumed that only a subset of the bus addresses are actually
snooped. This assumption is based on the fact that operations such as copybacks,
pushes, SYNCs, TLBSYNCs, TLBIEs and !Kills are sourced to the bus with the M­
bit equal to 0. For this analysis, an average of 1 out of every 5 bus operations is
assumed to be non-memory-coherent.

3. Given the minimum response latencies specified in Table 8-3, a reasonable response
(snoop) latency is 6 BUSCLKs (BUSTLAR=6).

4. The maximum response tenure is three BUSCLKs (BUSRESPTEN=3).

5. An address response can be resolved by all bus devices in 1 PCLK.

MOTOROLA Chapter 8. System Interface Operation 8-25

-

-

Under these conditions, once an address (referred to as Address 1) is snooped off the bus, it
remains in a queue location for 9.5 BUSCLKs. During those 9.5 BUSCLKs, another four
addresses (Address2-5) are sourced onto the Bus and 3 of these 4 addresses must be
snooped. Thus,Addressl-5 fill four snoop buffers and the Address I snoop location empties
prior to Address 6 being sampled. These assumptions yield a 620 snoop pipeline depth of
four locations.

For both analyses, assumption 5 indicates that 1 PCLK is sufficient to resolve all bus
operations. In the 620, this is true for all bus operations that miss the cache. For those
operations that need additional processing (such as a push or intervention), additional logic
is needed to complete the operation. The 620 incorporates two independent state machines
to concurrently process these bus operation types.

Each of the state machines is capable of handling either a block move operation (push or
intervention), a tag write, an !Kill, a SYNC, a TLBIE or a TLBSYNC.

The 620 implements a 4-deep snoop pipeline and two independent state machines for
additional processing.

8.4.8 Address Status In/Out
Table 8-9 defines the encoding and priority of address status out (ASTATOUT) and address
status in (ASTATIN). Priority encoding 1 is highesi and 4 is lowest.

Table 8-9. AStat: Code and Priority Definition

ASTATOUT[0-1]
Priority Definition Reference Page

ASTATIN[0-1]

00 1 AParErr (Address Parity Error) Refer to Section 8.4. 11, "Address Status
Address Parity Error (AStat AParErr)"

01 2 Retry Refer to Section 8.4.17, "Address Status
Out and Address Response Out Retry,''
and Section 8.4.18, "ASTATIN and
ARESPIN Retry"

10 3 PosAck (Positive Acknowledge) Refer to Section 8.4.10, "Address Status

11 4 NoAck (No Acknowledge)
Acknowledge"

Table 8-10 defines which AStat codes are defined for each bus operation type. Shaded is
defined for ASTATOUT and ASTATIN.

8-26 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-10. AStat Codes Enabled as a Function of Bus Operation Type

Bus Operation Type
Status Type

(AStat Enabled Only)
No Ack PosAck AParErr Retry

PIO Reply #1 #2

ReRun #1

TLBSYNC, SYNC, TLBIE, EIEIO . · .. · I
......

Flush, Clean, Write with Flush, Write with Kill, Write with Clean, Read,
DKill, IKill, RWITM, DClaim, LARX-Reserve, PIO Load and Store .··
operations, Ext Control Out and In

Notes:

1. The 620 will generate ASTATOUT AParErr if bad parity is detected, but will (if successfully decoded) execute
the bus operation anyway. The master for these operations should not run the operation again.

2. The system bus specification allows a PIO master to flow control the PIO Reply from the PIO slave.
However, the 620 will not flow control PIO Reply and will not drive ASTATOUT Retry. The 620 will ignore
ASTATIN Retry for PIO Reply.

8.4.9 Address Response In/Out
Table 8-11 defines the encoding and priority of address response in (ARESPIN) and
address response out (ARESPOUT). The encoding is defined such that if the ReRun
responses are not used by a system, thenARESPIN[O] can be pulled high. Priority encoding
1 is highest and 5 is lowest.

The function of ARESPOUT and ARESPIN is defined by Section 8.4.19, "Function of
ASTATOUT/ASTATIN and ARESPOUT/ARESPIN," Section 8.17.17, "Master Cache
State Transitions Due to Instructions," and Section 8.17.18, "Snooper Cache State
Transitions Due to Bus Operations."

MOTOROLA Chapter 8. System Interface Operation 8-27

-

Table 8-11. AResp Code and Priority Definition

ARESPOUT[0-2]
Priority Definition Reference Page ARESPIN[0-2]

000 - Reserved1 Refer to Section 8.4. 15, "Address Response

Reserved1
Reserved"

001 -

010 - Reserved1

011 3 Re Run Refer to Section 8.4. 14, "Address Response
ReRun," and Section 8.13, "The ReRun
Mechanism"

100 1 Retry Refer to Section 8.4. 17, "Address Status Out
and Address Response Out Retry," and
Section 8.4. 18, "ASTATIN and ARESPIN
Retry"

101 2 Modified Refer to Section 8.4. 16, "Address Response
Modified"

110 4 Shared Refer to Section 8.4. 13, "Address Response
Shared"

111 5 Null (Not Modified or Shared) Refer to Section 8.4. 12, "Address Response
Null"

Note: Refer to Section 2. 1.2.4, "Bus Status and Control Register (BUSCSR),'' for information on the bus response error
bit.

Table 8-12 defines which AResp codes are defined for each bus operation type. Shaded is
defined for ARESPOUT and ARESPIN.

Table 8-12. AResp Codes Enabled as a Function of Bus Operation Type

Bus Operation Type
(AResp Enabled Only)

Read (1=0 or M=1), Clean

RWITM, Flush

Response Type

Write with Flush (1=0 or M=1), DKill, DClaim, Write with
Kill, Write with Clean, TLBSYNC, SYNC, LARX-Reserve

8.4.10 Address Status Acknowledge
The AStat positive acknowledge (PosAck) code indicates that the addressed slave accepted
this address bus operation and that a higher priority AStat code, such as AParErr or Retry,
did not occur.

8-28

If positive acknowledge is enabled and the no acknowledge (NoAck) code is
received from the AS tat collection logic by the master, then the BUSPOSACKERR
SPR bit is set. If BUSPOSACKEN is asserted then the 620 will take a machine-

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

check exception. The master will abort the address and data portions of the
operation. See Section 2.1.2.4, "Bus Status and Control Register (BUSCSR),"
BUSPOSACKERR bit. The non-master bus devices will treat this condition as a
retry but will not set BUSPOSACKERR or take a machine-check exception.

If positive acknowledge is enabled and the PosAck code is received, then the
operation has been accepted.

If positive acknowledge is not enabled and the NoAck or PosAck codes are received,
then the operation has been accepted.

Ack Is OK:=
((posack_disabled_op & (PosAck I NoAck))
I (posack_enabled_op & ((BUSPOSACKEN & PosAck)
I ("BUSPOSACKEN & (PosAck I NoAck)));

Table 8-13 defines for each 620 bus operation whether positive acknowledge is enabled and
what slave bus device is responsible to give a positive acknowledge if positive acknowledge
is enabled.

Table 8-13. PosAck Enabled as a Function of Bus Operation Type

620 Bus Operation Enabled Definition

Flush, Clean, Write with Flush, Write Yes Positive acknowledge is given by the memory slave
with Kill, Write with Clean, Read, DKill, that decodes the real (T =0) memory address.
IKill, RWITM, DClaim, LARX-Reserve Snoopers do not give positive acknowledge for these

bus operations.

PIO Load Immediate+ Last Positive acknowledgment is given by the addressed
PIO Store Immediate + Last BUID (T=1).

External Control Out, Positive acknowledge is given by the device
External Control In addressed by the RID.

TLBIE No Positive acknowledge is not supported for virtual
address bus operations.

SYNC, EIEIO, TLBSYNC, Null, PIO Positive acknowledge is not supported for address-
Reply, ReRun less bus operations.

Reserved By definition, because the 620 does not issue
reserved bus operations, positive acknowledge is not
supported by the 620 for reserved bus operations

8.4.11 Address Status Address Parity Error (AStat AParErr)
AStat AParErr indicates to the 620 that at least one bus device detected an address parity
error. AStat AParErr is the highest priority AS tat code. Section 8.11, "Parity Protection."

8.4.11.1 Bus Operation Abort
All devices will unconditionally abort the bus operation that receives ASTATIN AParErr,
independent of whether parity checking is enabled for that device that receives ASTATIN
AParErr, except for PIO Reply and ReRun. The master may, but does not have to, reissue
the bus operation again.

MOTOROLA Chapter 8. System Interface Operation 8-29

i

"

-

8.4.11.2 PIO Reply and ReRun
All bus devices will complete and not abort if the PIO Reply and ReRun bus operations
receive ASTATIN AParErr and will execute them as if no parity error was detected. The
master will not reissue these bus operation if ASTATIN is AParErr.

8.4.12 Address Response Null
AResp Null indicates that one of the following conditions is true:

• This device does not cache data.

• This device does cache data but the block does not exist in this cache, which is
referred to as the invalid state.

• This device does cache data, the block is not invalid and the null response is allowed
(for example, Null for Clean on block marked E).

8.4.13 Address Response Shared
AResp Shared indicates that this cache will maintain a copy of the block marked shared.
ARESPOUT Shared may be issued by a bus device to indicate that a copy of the addressed
block may be cached in the shared state. The AResp collection logic must be able to handle
receiving ARESPOUT shared and modified and prioritize modified as described in
Table 8-11.

8.4.14 Address Response ReRun
AResp ReRun response indicates that the response is not available to one or more bus
devices and that the bus operation will need to be run again. Refer to Section 8.13, "The
ReRun Mechanism."

8.4.15 Address Response Reserved
No bus device should issue AResp Reserved. A 620 snooper will treat ARES PIN Reserved
as a retry. A 620 master will treat ARESPIN Reserved as an abort, will initiate a machine
check exception and will set the BUSRESPERR status bit. See Section 2.1.2.4, "Bus Status
and Control Register (BUSCSR)."

8.4.16 Address Response Modified
AResp Modified indicates that a snooper or bus adapter has an exclusive modified copy of
the addressed cache block and that the snooper or bus adapter will provide the exclusive
modified copy of the cache block.

8.4.16.1 Modified vs ReRun and Shared
The Modified response dominates over the ReRun and Shared responses because the
Modified response guarantees in a coherent cache-memory system that all other snoopers
must have the addressed block marked Invalid.

8-30 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.4.16.2 ARESPOUT Modified Assertion
Note that ARESPOUT Modified is never asserted by the 620 as a master. ARESPOUT
Modified will never be asserted by a snooper except for the following conditions.

• Read-Burst or RWITM and N = 1: The 620 as a snooper will assert ARESPOUT
Modified for the Read-Burst or RWITM bus operations if the addressed block is
modified (M) and bus intervention is enabled (N=l). If ARESPIN for this case is
Modified (not Retry) then the 620 will use the intervention mechanism to supply the
modified cache block. If ARESPIN for this case is Retry, then the 620 will not alter
the cache state and will not push the block.

• Flush or Clean: The 620 as a snooper will assertARESPOUT Modified for the Flush
or Clean bus operations if the addressed block is modified (M). If ARESPIN for this
case is Modified (not Retry), then the 620 will push the modified cache block and
mark the cache I (Flush) or S/E (Clean). If ARESPIN for this case is Retry, then the
620 will not alter the cache state and will not push the block.

ARESPIN Modified is handled by the 620 in the following manner:

Snooper: ARESPIN for a snooper only specifies Retry or not-retry. ARESPIN
Modified is treated like a non-retry ARESPIN.

Master and Read-Burst or RWITM: The 620 will wait for the snooper to provide the
exclusive modified block via the intervention mechanism.

Master and all other bus operations: The 620 will ignore the Modified response.
There is no exception or state indicating that this condition occurred.

For more information, refer to:

Section 8.12.3, "Read"

Section 8.12.1, "RWITM (Read-With-Intent-To-Modify)"

Section 8.17 .14, "Modified (M)"

Section 8.17.18, "Snooper Cache State Transitions Due to Bus Operations"

Section 8.17.8, "Multi-Level Cache Definition"

Section 8.7, "Intervention and Push Definition

Section 8.10.3, "Bus Tag Allocation/Deallocation"

8.4.17 Address Status Out and Address Response Out Retry
The term 'retry', within the context of the address transfer protocol, is defined as follows:

• ASTATOUT Retry is asserted in general by bus devices for the following reasons:

- Memory and snooper: The memory or snooper does not have buffer space for the
address or data operation.

- AResp disabled and ASTATOUT Retry: With the exception of TLBIE and
IKILL, when AResp is disabled then only the addressed slave can assert
ASTATOUT Retry; refer to Table 8-1. This enables a slave for an AResp-

MOTOROLA Chapter 8. System Interface Operation 8-31

-

disabled operation to proceed with the operation without waiting for ASTATIN.

• ASTATOUT Retry is asserted by the 620 for the following reasons:

- Master and CD previous adjacent: The master will ASTATOUT Retry itself if the
CD previous adjacent condition is true. Section 8.18.3.2, "Rule 2: CD Previous
Adjacent ASTATOUT Retry."

- Snooper and no snoop buffer available: The snooper does not have a snoop buffer
for the bus operation.

- Snooper and no snoop state machine available for TI, SY, TS and IK: These
operations require a snoop state machine immediately after being received and
thus flow control using ASTATOUT Retry if a snoop state machine is not
available.

- Snooper working on TI and a second TI is received: The 620 will only work on
one TI (TLBIE) at a time; see Section 2.3.6.3.3, "Translation Lookaside Buffer
Management Instructions."

• ARESPOUT Retry is asserted by the 620 for the following reasons:

- Master and lost collision detection-A master operation will retry itself if
collision detection is lost. Section 8.18, "Address Collision Detection and
Handling (CD)."

Master and atomic: A master will retry itself if the reservation is lost.

- Snooper and push condition: A snooper will retry a bus operation if a push is
needed.

- Snooper and CD: The snooper will retry a bus operation due to CD. See
Section 8.18.3.4, "Rule 4: Operations that Take CD Priority," Section 8.18.3.5,
"Rule 5: CD Based on Completion," and Section 8.18.3.6, "Rule 6: CD Between
Snoop Buffers."

- Snooper and BUSTLAR: If BUSTLAR is set below the minimum value
specified in Table 8-3.

- Snooper and no snoop state machine available: The snooper will retry a bus
operation if a snoop state machine is needed and a snoop state machine is not
available.

- Snooper and L2 uncorrectable error: The snooper will retry a bus operation if
there is an uncorrectable error for the L2 access to determine the coherency state.

Refer to Section 8.10.3, "Bus Tag Allocation/Deallocation," for more information.

8.4.18 ASTATIN and ARESPIN Retry
A bus operation that gets AStat or AResp Retried does not have to be reissued to the bus
again by the master with the same address, type or tag. Although the present
implementation of the 620, with a few exceptions, will reissue a bus operation with the
same address, type and tag, compatibility with future implementations is not guaranteed.

8-32 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

A bus operation that gets A Stat or AResp Retried does not have to be the next bus operation
from the master that was retried.

8.4.18.1 ASTAT~N Retry for All Bus Devices
A bus operation that gets ASTATIN Retried will be aborted one BUSCLK from sampling
ASTATIN Retry. Aborted means that the ASTATIN Retried bus operation will not cause
any subsequent bus operations to be ASTATOUT or ARESPOUT Retried due to a Queue
Full condition. See Section 8.22.1, "The Queue Full/Ping-Pong Deadlock."

8.4.18.2 ARESPIN Retry for All Bus Devices
A bus operation that gets ARES PIN Retried may take a variable amount of time to clear up
queue resources. Note that this does not affect when the bus tags (Address/Data) are
deallocated.

8.4.18.3 ASTATIN and ARESPIN Retry Master
The 620 as a master will internally rearbitrate following a Retry. The 620 may run the same
operation again or may internally grant a different operation.

With the exception of Write-With-Flush, writes that aren't atomic may complete
independent of ARES PIN Retry. For Write-With-Flush (either Atomic or Non-Atomic), the
write is conditional based on the response. For more information refer to Section 8.12.6,
"Write-With-Flush."

8.4.18.4 ~STATIN and ARESPIN Retry Snooper
The 620 handles ASTATIN Retry as described above. All bus operations that are AResp­
enabled that receive ARESPIN Retry will be aborted by the 620 snooper and leave the
cache state unchanged. For more information refer to Section 8.10, "Bus Tags."

8.4.19 Function of ASTATOUT/ASTATIN and ARESPOUT/ARESPIN
The purpose of this section is to define the function of ASTATOUT/IN and
ARESPOUT/IN.

The following abbreviations are defined:

• The codes for the bus operations are defined in Table 8-16. "M" is the bus M-bit
which is defined in Section 8.6.1.3, "Memory Coherent Address Attribute (M-Bit)."

• previous_adjacent_address_match is defined in Section 8.18.3.2, "Rule 2: CD
Previous Adjacent ASTATOUT Retry."

• Ack_Is_OK is defined in Section 8.4.10, "Address Status Acknowledge."

• aresp_disabled_op is defined in Table 8-1.

• my_bus_operation indicates that this 620 master sourced the operation.

• address_parity _error_detected indicates incorrect address parity for snooped
addresses.

MOTOROLA Chapter 8. System Interface Operation 8-33

-

-

no_snoop_buffer_available indicates that all four snoop buffers are currently active.

• non_mc_snoop_op indicates one of the following-IKill, SYNC, TLBIE,
TLBSYNC.

no_snoop_state_machine indicates that the snooper has detected a snoop hit and that
there is no snoop state machine available.

cd_enabled_op and cd_disabled_op are defined in Section 8.18.3.3, "Rule 3: CD
Disabled Bus Operations."
cd_is_not_ok:= (cd_enabled_op & Acd_in);

• cistcx:= (WNB & atomic); STCX does not support write-through mode.
stcx_succeed indicates whether the STCX instruction will succeed or fail.
reservation is the LARX/STCX reservation.

snoop_didnt_complete indicates that the 620 did not complete snooping into the Ll,
and optionally the L2, before generating ARESPOUT. Refer to Section 8.4.17,
"Address Status Out and Address Response Out Retry."

push_ retry_ condition indicates that the operation will get AResp Retried and will
cause a push or intervention; see Table 8-48.

SY _or_ TS_arent_done indicates that the 620 has not completed the execution of the
SYNC or TLBSYNC bus snoop operation. This completion is dependent only on the
state of the 620 and is not affected by other masters continuing to ReRun the SYNC
orTLBSYNC.

Following are additional functions of AStat andAResp in the form of an "If-Then-Else" and
"Switch statement" equations:

Master Address Status Out/In Definition
ASTA TOUT:

ASTA TIN:

8-34

If (previous_adjacent_address_match)
ASTATOUT:= Retry;
Else
ASTATOUT:= Null;

AParErr:
l. Set the BUSPARERR[O] bit.
2. ARESPOUT/IN is not valid. The master bus operation is complete.
3. If BUSPOSACKEN = 1, issue a machine-check exception or Checkstop if MSR(ME)=O.
Retry:
l. ARESPOUT/IN is not valid. The master bus operation is complete.
2. Start master bus operation over again.
AAck Is OK:
l. Set the BUSPOSACKERR bit.
2. ARESPOUT/IN is not valid. The master bus operation is complete.
3. Issue a machine-check exception or Checkstop if MSR(ME)=O.
Ack_Is_OK:
If (aresp_disabled_op)

ARESPOUT/IN is not valid. The master bus operation is complete.
Else

ARESPIN/OUT is valid. Refer to the ARESPOUT/IN figures for the master.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Snooper Address Status Out/In Definition
ASTATOUT:

If (l'my_bus_operation & address_parity_enor_detected & EBA)
ASTA TOUT:= AParErr;

Else
If (BUSSNPEN & "my_bus_operation & (no_snoop_buffer_available I

non_mc_snoop_op & no_snoop_hit_buffer))
AST A TOUT:= Retry;

ASTA TIN:

Else
AST A TOUT:= Null;

If (Retry I AParErr I "Ack_Is_OK):
ARESPOUT/IN is not valid. The snoop bus operation is aborted.
If (AParErr):

Issue a machine-check exception or Checkstop if MSR(ME)=O.
Else
If (aresp_disabled_op)

ARESPOUT/IN is not valid. The snoop bus operation is complete.
Else

ARESPIN/OUT is valid. Refer to the ARESPOUT/IN figures for the snooper.

Master Address Response Out/In Definition
ARESPOUT:

ARESPIN:

If (cd_is_not_ok I (cistcx & "reservation))
ARESPOUT:= Retry;

Else
ARESPOUT:= Null;

Retry:
(cistcx & "reservation):

I. stcx_succeed:= false;
2. The master operation is complete. The STCX instruction failed.

(cd_is_not_ok):
(LR I DC):

The master operation gets retried back to the load/store unit. [see Note]
All Other Operations:

1. The master operation is NOT complete.
2. The master operation waits in the BIU until collision detection is passed.
3. Go back to the bus with the same bus operation.

All other cases:
I. The master operation is NOT complete.
2. Go back to the bus with the same bus operation.

ReRun:
I. The master operation is NOT complete.
2. The operation is "ReRun" according to Section 8.13, "The ReRun Mechanism."

(Null I Modified I Shared):
The master operation is complete.
If (atomic)

stcx_succeed:= true;
Else

stcx_succeed:= false;

Note: When Larx-Reserve and DClaim lose collision detection it may be due to a snoop operation that has changed
the state of the Ll data cache. Because Larx-Reserve and DClaim are dependent on the state of the Ll data cache,
unlike all other operations from the DCMMU, the conservative solution chosen is to retry the operation back to the
load store unit and the operation starts over again.

MOTOROLA Chapter 8. System Interface Operation 8-35

-

Snooper Address Response Out Definition
ARESPOUT:

If (cd_is_not_ok I snoop_didnt_complete I (Anon_mc_snoop_op & no_snoop_hit_buffer) I
push_retry _condition)
ARESPOUT:= Retry;
Else
If (SY _or_TS_arent_done)

ARESPOUT:= ReRun;
Else

ARESPOUT:= (Null, Modified, Shared); [see Note]

Note: The response is determined by Table 8-48.

The snooper ARESPIN definition is described in Table 8-14. Refer to Section 8.18,
"Address Collision Detection and Handling (CD)," for more information.

Table 8-14. Snooper ARESPIN Definition

Operation(s) ARES PIN Definition

SY or TS Null, 1. If the snoop CD is "IN"1 at ARESPIN and AR ESP IN-Clean then force the CD for
(All operations Shared, all master and snooper devices from IN to OUT for each SB2 bit that is set.
other than Modified, ARESPIN-Clean =(Null J Shared I Modified I Retry(Push) I (ReRun & E-State));
SYNC and ReRun, 2. Clear all SB bits for that snooper at ARESPIN.
TLBSYNC) Retry (Push) 3. If the snooper determines that a "cache state change is not needed" prior to

ARESPIN then the snooper may drop the snoop address and inhibit subsequent
collisions against that snoop operation. See Section 8.17.18, "Snooper Cache State
Transitions Due to Bus Operations," for the definition of "cache state change is
needed''.
4. If a "cache state change is needed" then go from IN to IN BUSY at AR ESP IN and
modify the cache and move data according to Table 8-48. Stay INBUSY until the
cache modification is complete and then go OUT.
5. The snoop operation is done.

Retry (Push) 1. Clear all SB bits for that snoop buffer.
2. The snoop operation is aborted.

SYNC Null The snooper has completed the SYNC.

Re Run If ARESPOUT was ReRun, the snooper has not completed the SYNC.
If ARESPOUT was not ReRun, the snooper has completed the SYNC.

Retry The snooper will abort the snooped SYNC. Section 2.3.4.7, "Memory
Synchronization Instructions."

TLBSYNC (Ignored) TLBSYNC ignores ARESPIN. See Section 2.3.6.3.3, "Translation Lookaside Buffer
Management Instructions."

Notes:

1. "OUT", "IN" and "IN BUSY" are defined in Section 8.18.2, "CD States and State Transitions."

2. "SB"indicates whether there is a shared collision scoreboard bit asserted between this snoop buffer and a 620
master bus operation or another snoop buffer.

8-36 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.5 Data Bus Transfer Protocol
The latency from data bus grant to the beginning of the data bus transfer is not fixed and is
dependent on the tenure of the data transfer already granted use of the data bus. The tenure
of a data bus operation is variable and determined by the bus device that sources the data.
The data transfer can be flow controlled by the producer, but not by the consumer. The data
bus consists of the following signals:

• DH[0-63] and DL[0-63] (Data Bus)

• DTAG[0-7] (Data Bus Tag)

• DBB (Data Bus Busy)

• DVAL[0-1] (Data Bus Valid)

• DPHigh[0-7], DPLow[0-7], DPCntl (Data Bus Parity)

• DERR (Data Bus Error)

• DCACHE (Data Cache) g

8.5.1 Data Bus Width and Interconnectivity
The 620 supports connectivity with quad-word width bus devices (non-DX mode) or
double-word width bus devices (DX mode); refer to Section 8.5.10, "DX Mode (64-Bit
Data Bus Width Mode)." The 620 does not support connectivity with word-width bus
devices or to mixed double-word and quad-word devices. Connectivity to narrower bus
widths is intended to be supported via a bus adapter that handles narrower width
connectivity.

An exception is cache-inhibited and PIO bus devices that are allowed to connect to less than
the full quad-word sized data bus as long as only the portion of the data bus that is
connected to is addressed.

8.5.2 Data Bus (DL[0-63]/DH[0-63])
The data bus width is four words or 128-bits wide and is divided into two double-word
parts. The least significant double-word is called DL[0-63]. The most significant double­
word is called DH[0-63].

8.5.3 Data Sequence Ordering for Burst Operations
• All Burst Operations-The least significant 4 bits that point to the byte in quad-word

(A[60-63]) should be ignored for all burst operations.

• All Burst Writes-All write burst bus operations, Write-With-Kill and Write-With­
Clean, will be block aligned (the address points to quad-word 0). The sequence will
appear as 0, 1, 2 and 3.

• All Burst Reads-The order that data is returned for burst read transfers, such as
Read and RWITM, is called critical quad-word first. The byte address that caused
the burst transfer points to a quad-word in a block and this is the first quad-word to

MOTOROLA Chapter 8. System Interface Operation 8-37

be transferred on the data bus. The sequence of quad-words that follows the quad­
word pointed to by the address increments in a modulo-4 fashion that wraps around
to the initial quad-word. ·

Table 8-15. Data Ordering for a Quad-Word Sized Bus

Quad-word Physical Quad-word
A[34-35] Ordering

0 0,1,2,3

1 1,2,3,0

2 2,3,0,1

3 3,0,1,2

8.5.4 Data Bus Tag
The data bus tag is 8 bits and is called DTAG[0-7]. Refer to Section 8.10, "Bus Tags," for
more information.

8.5.4.1 Data Producer
The data producer for a read or write must drive the tag for all data transferred.

Bus devices such as the memory subsystem are allowed to produce multiple return data
transfers during one data bus tenure. This means that the memory subsystem does not need
to include a dead cycle between data transfers during the data bus tenure. Dead cycles are
only required for handoffs between data bus tenures. The 620 need only see the change in
data bus tag, qualified by one of the two DVALs, to recognize that a different data transfer
is in progress. Note that data transfers cannot be interleaved- once a multi-beat transfer
has started, it must complete before a different data bus tag can be presented. The 620 will
not return multiple data transfers during one data bus tenure.

8.5.4.2 Data Consumer
The read data consumer will snoop the data bus tag and consume each data that tag matches
a pending read that is waiting for data. The read data consumer can assume that read data
for different read transfers will not be interleaved. The read data consumer must be able to
consume zero or more data transfers for itself from a data bus tenure that includes zero or
more data for other read data consumers. The consumer must not expect data after the
deallocation of the data bus tag. Refer to Section 8.10.3, "Bus Tag
Allocation/Deallocation.''

8.5.4.3 Data Bus Tag Interleaving
The 620 bus does not support the interleaving of multiple transfers by the data producer.
When a transfer is started then all data of that transfer must be transferred together allowing
for producer flow control.

8-38 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.5.5 Data Bus Busy (DBB)
DBB is asserted for all but the last data of the last transfer of a data bus tenure. DBB can
also be thought to indicate that "this is not the last BUSCLK of this data bus tenure".
Figure 8-19 illustrates when DBB is asserted for 1, 2, 3 and n BUSCLK data bus tenures.

1 2 3 N-1 N
BUSCLK ~

[
~1 BUSCLK I

1 BUSCLK DBB Tenure I I I I I

[
IC I ,. I 2 BUSCLKs I

2 BUSCLK
DBB ~ I I I

Tenure I I I I

[
IC I I ,. I 3 BUSCLKs I

3 BUSCLK DBB 1 I
Tenure I

[
IC 1 n BUSCLK

nBUSCLK DBB :
I I I r;--; Tenure

Figure 8-19. Definition of DBB

8.5.6 Data Valid (DVAL[0-1])
The data bus master, or the data producer, drives DYAL[0-1] to indicate whether this cycle
has valid data. This implements flow control by the data producer. The data consumer
cannot flow control the data producer.

If a memory bus device does not have room for the transfer then it retries the address. If a
master has requested data, it must have room for the return data.

The following information provides a definition for DYAL[0-1].

• DYAL[0-1] Producers

- DYALO should be driven enabled and asserted ifDYALO was not asserted two
cycles previously by another bus device.

- DYAL 1 should be driven enabled and asserted if DY ALO was asserted two cycles
previously by another bus device. (Note: A bus device has the option of not
implementing a driver for DYALl and may choose to wait one extra bus cycle in
order to avoid DYALO contention. This is a cost/performance trade-off.)

- DYAL[0-1] will switch between data bus tenures, but not within a data bus
tenure.

• DYAL[0-1] Consumers

- DYAL consumers should consider DYAL asserted if either DYALO or DYALl is
asserted.

- A DYAL driver that has driven either DYAL signal asserted will drive that signal
deasserted for one cycle before disabling.

MOTOROLA Chapter 8. System Interface Operation 8-39

-

Figure 8-20 provides the timing for DYAL[0-1].

10

BUSCLK

Device A [

DVJ\[Q I

ow;r 1 '-----'---'-----'--'----'--"--'---'-----"---'

Device B 1 1 [
DVJ\[Q I I

DVAr1 '----1-----1-~,--4--,~'---'-~-1-------4-----'

[
DVJ\[Q I ~

Composite ,.---~~-~'-~
DVAr1

I

\.J_/
I

Notes:

Device A (cycle 3) drives DVALO because DVALO was not being
used two cycles previously (cycle 1).

Device B (cycle 5) drives OVAL 1 because DVALO was being used
two cycles previously (cycle 3).

Device A (cycle 7) drives DVALO because DVALO was not being
used two cycles previously (cycle 5).

Figure 8-20. Definition of DVAL[0-1]

8.5.6.1 Restrictions on Flow Control
The 620 as a data producer will not flow control data and will provide four contiguous data
quad-words. The 620 as a data consumer, for memory or intervention (DCACHE) data,
will always allow data to be flow controlled by the producer.

An exception to the previous rule is that a processor that is not allowed to flow control may
hold off the beginning of a data transfer with DYAL, but not after the first data is transferred.
It should be noted that this hurts data bus bandwidth and should be avoided. The 620 does
not plan to hold off data transfers in this manner. The 620 will always assert DYAL on the
first bus cycle of the data bus tenure.

8.5.6.2 Uses of Data Producer Flow Control
Data producer flow control can be used for many purposes, a few of which are listed as
follows:

8-40

A producer detects a correctable error for a transfer after the transfer has begun, and
needs a cycle or more to correct the error and continue the data transfer.

The bandwidth of memory may not be as high as the bus and the memory will want
to get the critical data to the bus as quickly as possible and transfer the rest of the
data as it becomes available.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.5.7 Minimum Latency to Sample Read Data
This section describes the minimum latency that data can be supplied for the Read,
RWITM, PIO Load Immediate and PIO Load Last bus operations. Note that this rule does
not state the minimum latency of DBR and DBG; see Figure 8-21 and Figure 8-22.

If AResp is disabled then received data may be sampled by the 620 no sooner than sampling
ASTATIN. If AResp is enabled then received data may be sampled by the 620 no sooner
than sampling ARESPIN, refer to Section 8.4.3.2, "Address Status and Address Response
Validation." Ack_Is_OK is defined in Section 8.4.10, "Address Status Acknowledge." Tag
allocation and deallocation are defined in Section 8.10, "Bus Tags."

4

BUSCLK

ASTATIN
I I I I I I I I I

Data~I I I I I I

' E~rliest ~oint Th~t Dat~ Can ~e Sam~led

[
Ack ls OK

ASTATIN Retry, AParErr,
Ack ls OK

No Late Point To Source Or Sample

Data Can Be Sampled No Later
Than BUSCLK 3

Earliest Point That Data Can Be Sourced

Figure 8-21. AResp-Disabled: Earliest Time to Sample Received Data

4 8
BUSCLK

ARESPIN
I I I I I I I I I

Data~I I I I I I I

' E~rliest ~oint Th~t Dat~ Can ~e Sam~led

[

Null, Shared, Modified No Late Point To Source Or Sample

ARESPIN (Intervention) Data Can Be Sampled No Later
Retry, Rerun, Modified Than BUSCLK 3

(Memory)
Earliest Point That Data Can Be Sourced

Figure 8-22. AResp-Enabled: Earliest Time to Sample Received Data

8.5.8 Data Cache (DCACHE) Signal
The function of the DCACHE signal is to distinguish cache (intervention) data from
memory data. Refer to Section•, "Definition of Intervention-An Intervention is when a
Read burst or RWITM bus operation is given the AResp modified response by a snooper
that holds the modified data and the modified data is supplied by that snooper as a data-only
transfer. Note that the minimum latency to sample intervention data is defined in
Section 8.5.7, "Minimum Latency to Sample Read Data .. "

MOTOROLA Chapter 8. System Interface Operation 8-41

-

-

8.5.8.1 An Intervention Data Producer-Cache
DCACHE is valid only when OVAL is asserted. DCACHE is driven asserted only for the
first data that is transferred and deasserted for all remaining data that are transferred.
DCACHE may only be driven asserted for a block transfer that consists of two or more data
transfer cycles. The 620 only supports 64-byte sized blocks, requiring four data transfer
cycles.

8.5.8.2 A Memory Data Producer-Memory
="'""',,....,....,== A device, such as memory, that does not care to drive DCACHE asserted is allowed to not

implement either a driver to drive DCACHE or an input buffer to receive DCACHE, and
may assume that DCACHE is deasserted for parity generation and checking. The bus N-bit
must never be asserted by a bus device that does not implement the DCACHE input.

8.5.8.3 A Memory and Intervention Data Consumer (Read or RWITM
Requestor)
The data consumer monitors the DCACHE signal for the first data transferred. The state of
the DCACHE signal for the first data determines if the read will be serviced by an
intervention. The data consumer may rely on the DCACHE signal to be deasserted for all
remaining data transfers in the block. The timing diagram in Figure 8-23 is a block transfer
from a cache.

Figure 8-23. DCACHE Timing Diagram for an Intervention Data Transfer

8.5.9 Data Error (DERR)
DERR is driven by the data producer two BUSCLK cycles from when OVAL is asserted to
indicate whether this data transfer contains an error. A device that does not care to drive
DERR asserted must still drive DERR deasserted. The two BUSCLK cycle delay allows
data crossbar or sliced implementations to pass DERR signals for each data slice to the
address controller to produce the 620 DERR signal, see Figure 8-24.

8-42 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Figure 8-24. DERR Timing Diagram

Memory Read or PIO Load Immediate-The assertion of DERR for these
operations will not prevent the error data from being loaded into the register or
caches. A DERR for a Memory Read or PIO Load Immediate bus operation will
always set the SPR bit BUSDERR and will cause a machine-check exception if the
SPR bit BUSDERREN is asserted. See Section 2.1.2.4, "Bus Status and Control
Register (BUSCSR)," and Section 2.1.2.3, "Hardware Implementation-Dependent
Register 0 (HIDO)."

PIO Load Last-A DERR for a PIO Load Last will cause a DSI exception. The data
will not be loaded into the register. If a data parity occurs for a PIO load last error
occurs then there is no guaranteed order between the DSI and MCI exceptions.

Note: The assertion of DERR associated with a data transfer will not affect the number of
data transferred, which must be the number of data requested, independent of whether the
data transferred are valid.

In general, bus devices will drive DERR asserted for the following reasons:

The data producer is producing error data (for example, 2-bit ECC memory error).

The PIO load detected an error and the PIO master should expect a PIO load reply.
Section 8.16, "PIO Load and Store Bus Operations."

In specific, the 620 will drive DERR asserted for the following reasons:

Snooper and push or intervention error-The 620 as a snooper for a push or
intervention detects an LI parity error while moving data from the LI or detects an
uncorrectable L2 error while moving data from the L2.

Master and replacement copyback error-The 620 for a replacement copyback
detects an LI parity error while moving data from the Ll or detects an uncorrectable
L2 error while moving data from the L2.

8.5.1 O DX Mode (64-Bit Data Bus Width Mode)
The mode of operation is non-DX mode, unless otherwise specified. It is to be assumed that
all deviations in behavior due to DX mode are defined in this section.

MOTOROLA Chapter 8. System Interface Operation 8-43

-

-

8.5.10.1 DX Mode Definition
The 620 data bus has a power-up hardware configuration mode that changes the data bus
width from the native quad-word size to the special double-word size. Instead of passing
quad-word data transfers on DH[0--63] and DL[0-63], double-word data transfers are
passed only on DH[0--63]. BUSDX is software readable from the BUSCSR SPR. See
Section 2.1.2.4, "Bus Status and Control Register (BUSCSR)." BUSDX is assigned by the
hardware configuration mechanism. BUSDX is assigned the value of the BUSDX signal
(for example, when BUSDX is a 1, then BUSDX is assigned a 1 and is asserted); see
Section 8.23, "Hardware Configuration Mechanism (HCM)."

8.5.10.2 Data Low (DL[0-63])
DL[0-63] and the associated parity bits DPLow[0-7] will be disabled internally and tied to
ground by the external pins. Parity checking is disabled for DL[0--63] and DPLow[0-7] for
DX mode.

8.5.10.3 Double-Word Ordering
The double word ordering for DX-mode is the same as the quad-word ordering of non-DX
mode. Additionally, each quad-word is broken up into two double-words with big-endian
double-word 0 first and double-word 1 second. This is true even if the critical load data is
in double-word 1.

8.5.10.4 Address Bus
The data bus DX mode does not affect the definition of the address bus. Size for burst
transfers always refers to the number of quad-word transfers. Size for non-burst transfers
always refers to the number of bytes transferred up to a full quad-word or two double­
words. Non-burst operations will always transfer two double-words.

8.5.10.5 Block Read Data Latency
The 620 will gather double-word data into quad-words through the bus load buffer and will
not use the combinatorial data forwarding path. This will add 1 PCLK of load latency.

8.5.10.6 DERR for PIO Load Last
The DERR signal for PIO Load Last is used to indicate if the PIO should cause a DSI
exception. DERR should either be asserted or deasserted for both data transfers. All other
bus operations, including PIO Load Immediate, can assert DERR on a per data basis.

Example 1: DX Mode Non-Burst Operation

Non-Burst transfers are always two double-word transfers, even ifthe non-burst size is one
double-word or smaller and there is no valid data in one of the double-word transfers.
Double-word 0 is always transferred first even if the address points to double-word 1 as
shown by the following example. DBB is asserted for the first of the two double-word
transfers.

8-44 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

BUSCLK~
I I I I I l

iIBGI\ I~
1~1 I I I

- r-----t"""\ I I ,-.---i
DVAL 1 1 ~, 1

DBB~
I I I I I I

DH~

Figure 8-25. DX Mode: Non-Burst Operation: Addr=Double-Word 1

Example 2: DX Mode Burst Operation

Burst transfers are always eight double-word transfers. Double-word 0 is always
transferred first even if the address points to double-word 1 as shown by the following
example. DBB is asserted for the first seven of the eight double-word transfers.

OVA[
I I
~,,,

LiCACHr I I \...J_/ I
I I I I

088 II'\ I /~.:..., -'---'
I I I I

DH : DO 01 DO 01 DO 01 DO 01
01 01 02 02 03 03 00 QO

Figure 8-26. DX Mode: Burst Operation: Addr=Quad-Word1, Double-Word1

8.6 Address Commands Definition
The address command is defined by ATYPE[0-4] andA[0-7] according to Table 8-16. The
following attributes are defined:

• 'X' is defined as deasserted or 0 for an output and a don't care as an input.

'O' or '1' is defined as a logical 0 or 1 for both an input and an output.

'M' -Memory Coherent (Refer to Section 8.6.1.3, "Memory Coherent Address
Attribute (M-Bit)"and Section 8.6.1, "WIM-Bit Definitions.")

• '!'-Cache Inhibited (Refer to Section 8.6.1.2, "Cache-Inhibited Address Attribute
(I-Bit).")

• 'A'-Atomic (Refer to Section 8.6.2, "Atomic Address Attribute (A-Bit).")

• 'N'-Intervention (Refer to Section 8.6.3, "Intervention Address Attribute (N-Bit),"
Section 8.12.1, "RWITM (Read-With-Intent-To-Modify)," and Section 8.12.3,
"Read.")

• 'K'-PIO Key (Refer to Section 8.9.3, "The PIO Request Address Format")

MOTOROLA Chapter 8. System Interface Operation 8-45

-

'E'-PIO Error (Refer to Section 8.9.4.1, "Error (E)")

'W'-Write Through (Refer to Section 8.6.1.1, "Write-Through Address Attribute
(W-Bit)") '

• 'S' and 'G'-The Sand G bits are defined in Section 8.12.3, "Read."

• 'R'-ReRun (Refer to Section 8.13.3, "The R-Bit")

The terminology is defined as follows:

• ATYPE is the bus operation code. The encoding of the least significant 4 bits for all
bus operations except for PIO bus operations should be the same as the 60x
implementations.

• Address is the definition of the upper 8 bits for all address formats. Note that bit 2
is always defined as the bus M-bit. Note that bit [7] is the R-Bit for allAResp enabled
operations. The"-" character indicates that the text defines the function of this bit.
The "X" character indicates that this bit is undefined for the 620, driven as 0 as an
output and ignored as an input.

• 620 indicates whether the 620 will issue or decode the specified bus operation. If the
620 does not issue or decode the specified bus operation, then this document will
not define the function of the specified bus operation.

• Operation is the name of the bus operation. A definition under the same name can
be found in Section 8.12, "Bus Operations."

• Symbol/Code is used throughout this document to denote the particular operation.

• Address format indicates the format of the bus operation, which are defined in
Section 8.9, "Address Bus."

• Address-Data Type indicates whether the bus operation is address-only or address­
data. An address-only bus operation that requests for a data-only bus operation is
listed as address-only/data-only.

• Page Num provides a cross reference to a description of that bus operation.

8-46 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-16. ATYPE[0-4) Definition

ATYPE A[0-7] 620 Operation
Symbol/ Address Address-Data Page

[0-4] Code Format Type Num

00000 XXMXXXXR y Clean CL Mem Req Address-Only 73

A0010 WIMXXXXR y Write-With-Flush WNB Mem Req Address-Data 71

00100 XXMXXXXR y Flush FL Mem Req Address-Only 73

00110 WXMOXXXR y Write-With-Kill WBK Mem Req Address-Data 70

00110 WXM1XXXR y Write-With-Clean WBC Mem Req Address-Data 71

01000 XXMXXXXR y SYNC SY Tag Only Address-Only 73

A1010 NSMXGXXR y Read RB,RNB Mem Req A-Only/D-Only 69

01100 XXMXXXXR y DKill DK Mem Req Address-Only 72

A1110 NXMXXXXR y RWITM RWITM Mem Req A-Only/D-Only 68

10000 XXMXXXXX y EIEIO El Tag Only Address-Only 73

10100 XXM----- y External Control Out xco ExtCon Address-Data 74

11000 XXMXXXXX y TLBIE Tl Mem Req Address-Only 73

11100 XXM----- y External Control In XC! ExtCon A-Only/D-Only 74

00001 XXMXXXXR y LARX-Reserve LR Mem Req Address-Only 69

A0011 XXMXXXXR y DClaim DC Mem Req Address-Only 72

01001 XXMXXXXR y TLBSYNC TS Tag Only Address-Only 73

01101 XXMXXXXX y I Kill IK Mem Req Address-Only 72

10001 KOMO---- y PIO Load Immediate PLI PIO Req A-Only/D-Only 82

10001 KOM1---- y PIO Load Last PLL PIO Req A-Only/D-Only 82

10001 K1MO---- y PIO Store Immediate PSI PIO Req Address-Data 82 -10001 K1M1---- y PIO Store Last PSL PIO Req Address-Data 82

10101 E1M1-XXX y PIO reply PR PIO Rep Address-Only 82

11101 XXMXXXXX y Re Run RR Tag Only Address-Only 75

11111 XXMXXXXX y Null Null N/A Address-Only 73

00101 XXMXXXXX N Reserved
00111 XXMXXXXX Treated as a Null operation by the 620 snooper.
01011 XXMXXXXX These codes are reserved for future PowerPC products. Use of these
01111 XXMXXXXX codes should be coordinated with PowerPC if forwards compatibility is
10101 XOMOXXXX desired.
10101 XOM1XXXX
10101 X1MOXXXX
10110 XXMXXXXX
10111 XXMXXXXX
11001 XXMXXXXX
11011 XXMXXXXX

MOTOROLA Chapter 8. System Interface Operation 8-47

-

8.6.1 WIM-Bit Definitions
Table 8-17 defines the bus WIM-bits for all bus operations. The snooped column indicates
YES if the bus snooper accepts a bus operation and NO if the bus snooper ignores a bus
operation.

Operations that are marked M=O in the bus M-Bit column must never appear on the bus
M=l. There are known functional failures that will occur in the 620 if any M=O bus
operations appear as M=l.

Table 8-17. WIM-Bit Definition

Bus Operation W-Bit Definition I-Bit Definition M-Bit Definition Snoop Status

Clean NIA NIA PTE M-Bit Yes

Write-With-Flush PTEW-Bit PTE I-Bit PTE M-Bit Yes

Flush NIA NIA PTE M-Bit Yes

Write-With-Kill page 70 NIA page 70 Yes

Write-With-Clean 1 NIA 0 No

SYNC NIA NIA 0 Yes

Read NIA See Section 8.12.3, PTE M-Bit Yes
"Read."

DKill NIA NIA PTE M-Bit Yes

RWITM NIA NIA PTE M-Bit Yes

EIEIO NIA NIA 0 No

External Control Out NIA NIA 0 No

TLBIE NIA NIA 0 Yes

External Control In NIA NIA 0 No

LARX-Reserve NIA NIA 0 No

DClaim NIA NIA PTE M-Bit Yes

TLBSYNC NIA NIA 0 Yes

IKill NIA NIA PTE M-Bit Yes

PIO Load Immediate NIA NIA 0 No

PIO Load Last NIA NIA 0 No

PIO Store Immediate NIA NIA 0 No

PIO Store Last NIA NIA 0 No

PIO reply NIA NIA 0 Yes

Re Run NIA NIA 0 Yes

Null NIA NIA 0 No

Reserved NIA NIA 0 No

8-48 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.6.1.1 Write-Through Address Attribute (W-Bit)
The write-through W-bit indicates whether a bus operation needs to be propagated at least
one level or all levels towards main memory; see Table 8-18.

Table 8-18. Write-Through Address Attribute (W-Bit)

w Definition

1 The bus operation must be propagated through all
cache levels to main memory.

0 The bus operation must be propagated at least
one cache level towards main memory.

8.6.1.2 Cache-Inhibited Address Attribute (I-Bit)
The cache inhibited I-bit indicates whether the bus operation is cache inhibited; see
Table 8-19.

Table 8-19. Cache Inhibited Address Attribute (I-Bit)

I Definition

0 Cache enabled

1 Cache inhibited

8.6.1.3 Memory Coherent Address Attribute (M-Bit)
The 620 source for this signal is specified for each bus operation. Section 8.6.1, "WIM-Bit
Definitions." Since A[2] is defined as the M-bit for all ATYPE codes, a snooper can
determine if a memory-coherent bus operation needs to be snooped exclusively by the M­
bit.

Table 8-20 defines the significance of the M-bit for the two types of snoopers, snoopers for
other LI and L2 caches (horizontal) and the snooper for the L3 (vertical). Refer to
Figure 8-32. Refer to Section 8.17.10, "Cache Coherency Protocol," for the definition of
vertical and horizontal cache coherence.

Table 8-20. Memory Coherent Address Attribute (M-Bit)

L1,L2,L3 M Definition

L1-L2 1 Memory coherent, must be snooped.

0 Not memory coherent, may be snooped.

L3 x Must be snooped independent of the M-Bit to preserve
coherence between levels.

MOTOROLA Chapter 8. System Interface Operation 8-49

-I

8.6.2 Atomic Address Attribute (A-Bit)
The A signal indicates whether this transaction was caused by a LARX or STCX
instruction; see Table 8-21.

Table 8-21. Atomic Address Attribute (A-Bit}

A Definition

1 Caused by a LARX or STCX instruction

0 Not caused by a LARX or STCX
instruction

8.6.3 Intervention Address Attribute (N-Bit)
The definition of intervention is defined in Section 8.7, "Intervention and Push Definition."

Intervention address attribute N-bit is the enable for intervention and is defined as shown
in Table 8-22.

Table 8-22. Intervention Address Attribute (N-Bit}

N Definition

0 Intervention disabled

1 Intervention enabled

8. 7 Intervention and Push Definition
When the 620 snoops a bus operation and determines that the addressed block is cached
modified in either the L1 or L2, then the 620 will supply the modified block using either the
intervention mechanism or the push mechanism. The following table defines which
mechanism is used for all possible cases.

Table 8-23. Use of Intervention and Push on the PowerPC 620 Microprocessor

Bus Operation
Bus

Intervention/Push
N-Bit

Read 0 Push (Write with Clean)

1 Intervention

RWITM 0 Push (Write with Kill)

1 Intervention

Write with Flush N/A Push (Write with Kill)
Flush

Read Non-Burst NIA Push (Write with Clean)
Clean

8-50 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

For more information, refer to Section 6.7, "Snoop Push/Intervention Latency,"
Section 8.17 .18, "Snooper Cache State Transitions Due to Bus Operations," and
Section 8.12, "Bus Operations."

Definition of Push-A push is when the modified data is written back to memory
with either a Write with Kill or Write with Clean.

- SYNC Bus Operation-A snooped SYNC bus operation will wait until all
pushes have been completed on the bus. Section 2.3.4.7, "Memory
Synchronization Instructions." Note that the EIEIO bus operation is not snooped
by the 620.

- Collision Detection-All bus operations that are snooped and address match
with an internal push operation, and are not CD-disabled, as defined in
Section 8.18.3.3, "Rule 3: CD Disabled Bus Operations," will beAResp Retried
until that push has completed on the bus.

Definition of Intervention-An Intervention is when a Read burst or RWITM bus
operation is given the AResp modified response by a snooper that holds the modified
data and the modified data is supplied by that snooper as a data-only transfer. Note
that the minimum latency to sample intervention data is defined in Section 8.5.7,
"Minimum Latency to Sample Read Data.

- Read Burst-Intervention for a Read Burst bus operation is defined as a "cache
to memory and cache" transfer, for which the cache supplies the data to the
master and the memory captures the data as it is sent on the data bus. Therefore,
the cache is the intervention data producer and the memory and Read requestor
are both intervention data consumers.

- RWITM-Intervention for a RWITM bus operation is defined as a "cache to
cache" transfer, for which the cache supplies the data to the master. The memory
does not capture the data as it is sent on the data bus. Therefore, the cache is the
intervention data producer and the RWITM requestor is the intervention data
consumer.

- Intervention Data Producer (Snooper)-The bus architecture specifies that the
snooper which produces the intervention data can supply the data such that it is
sampled by the master no sooner than when ARES PIN is sampled. The 620 will
not supply the modified data until determining that ARESPIN is Modified. The
intervention data producer will request for a data-only operation and will
indicate high-priority by asserting the HPR signal. The intervention data
producer supplies the intervention data, using the same bus tag value for the data
tag that was received from the address bus tag, and asserts the DCACHE signal.
The DCACHE signal indicates to the intervention data consumer(s) that this data
is the intervention data, as opposed to the memory data.

- Intervention Data Consumer(s)-The bus architecture states that the intervention
data can be sampled no sooner than when ARESPIN is sampled. The master that
requested the Read or RWITM may receive both memory and intervention data
and will use the DCACHE signal to distinguish between them.

MOTOROLA Chapter 8. System Interface Operation 8-51

-

-

For more information, refer to:

Section 8.5.8, "Data Cache (DCACHE) Signal"

• Section 8.3.1, "Arbitration Requests"

Section 8.3.2, "High-Priority Bus Operations"

Section 8.10, "Bus Tags"

Section 8.12.3, "Read"

Section 8.12.1, "RWITM (Read-With-Intent-To-Modify)"

8.7.1 Bus Intervention Bit (N-Bit)
The intervention N-bit address attribute signal indicates that the master and the memory
system support intervention. Each master that supports intervention must be configured to
know whether the memory system supports intervention and should assert the N-bit only
when the memory system supports intervention.

The intervention address attribute is defined in Section 8.6.3, "Intervention Address
Attribute (N-Bit).

The 620 snooper looks at the bus N-bit to determine if intervention is enabled and not the
620 intervention enable bit. Even if the master and the memory system support
intervention, the snooper that has the modified block may or may not support intervention.
If the snooper does not support intervention, then the snooper behaves as if the bus
intervention bit was deasserted or 0 by retrying the master and writing the block back to
memory.

The 620 always supports intervention.

8.7.2 Intervention Enable Bit (BUSINTVEN)
The 620 as a master and a snooper supports intervention. The SPR mode bit BUSINTVEN
indicates that memory, external to the 620, supports intervention. If BUSINTVEN is
asserted, enabling intervention, then the 620 for Read and RWITM bus operations will
assert the intervention N-bit, otherwise it will be deasserted.

8.7.3 Non-Block Sized or Cache Inhibited
Intervention is only supported for block-sized (64-byte) burst RWITM and Read transfers.
It is the responsibility of the master for a Read that is intervention-enabled to ensure that
the read is cache-enabled and block-sized. The 620 snooper will assume that intervention
enabled read requests are cache enabled and block sized and reserves the option to ignore
the size and bus I-bit.

8-52 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.8 ASIZEDATA[0-3] and ASIZEBURST Definition
The address bus signals ASIZEDATA[0-3] and ASIZEBURST specify the size of the data
bus transfer. Refer to Section 8.4, "Address Bus Transfer Protocol."

Table 8-24 defines for each of the three address bus operation types whether the signals
ASIZEDATA[0-3] and ASIZEBURST are defined. If these signals are not defined their
value is not significant for that address bus operation transfer. Refer to Table 8-16 for the
definition of Address-Data Type.

Table 8-24. ASIZEDATA[0-3] and ASIZEBURST Validation

Address-Data Type Status Bus Operations

Address-Data Valid WNB, WBK, WBC, XCO, PSI, PSL

Address-Only/Data-Only Valid RB, RNB, RWITM, XCI, PLI, PLL

Address-Only Invalid CL, FL, SY, DK, El, Tl, LR, DC, TS, IK, PR, RR, Null

ASIZEDATA[0-3] and ASIZEBURST are defined in Table 8-25. If ASIZEBURST is
deasserted, then ASIZEDATA indicates the size of the data transfer in bytes. (Note that the
0 code is a 16 byte size transfer.) If ASIZEBURST is asserted, or a 0, then ASIZEDATA
indicates the size of the data transfer in full data bus width transfers. (Note that the 0 code
is 16 bus width size transfers.) The 620 data bus width is quad-word sized, which means
the unit for ASIZEDATA for burst mode is 16 bytes. Refer to Section 8.12, "Bus
Operations," for a definition of the ASIZEBURST and ASIZEDATA codes that are
supported by the 620 for each bus operation.

Table 8-25. ASIZEDATA[0-3] and ASIZEBURST Definition

ASIZEBURST ASIZEDATA[0-3] Definition

1 0001-1111, 0000 Transfer size in bytes. 1-15, 16

0 0001-1111, 0000 Transfer size in full data bus width transfers. 1-15, 16

The following sub-sections discuss data alignment on the 620.

8.8.1 Supported Burst Data Sizes and Alignments
The only supported burst data size for the 620 as a master is 4, which specifies four bus­
width or quad-word transfers (64 bytes). The four quad-word burst size is the address block
size, the coherency block size and the transfer block size for the 620. The 620 will not issue
any other burst transfer size.

MOTOROLA Chapter 8. System Interface Operation 8-53

-

-

8.8.2 Burst Reads
The least significant 4 bits, physical address[36-39], address the byte requested in a quad­
word. These bits should be ignored by read data producers (memory and cache) and read
data is supplied as aligned quad-words assuming the byte address is b'OOOO'.

8.8.3 Burst Writes
The least significant 4 bits, physical address[36-39], address byte 0 and are driven as
b'OOOO'.

8.8.4 Non-Burst Data is Always Big-Endian Aligned
Non-Burst data on the data bus is always big-endian aligned on a quad-word sized data bus.
This applies to all data transfers, PIO and memory. ("Big-Endian", as opposed to "Little­
Endian", "MS or Left-Justified", or "LS or Right-Justified." The address for big-endian
alignment always points to the most significant or "big end" byte of the data being
addressed. Examples of big-endian transfers can be found in tables on Figure 8-27 and
Figure 8-28.)

8.8.5 Supported Non-Burst Data Sizes and Alignments
Table 8-26 defines the supported non-burst data sizes and alignments as a master.
Figure 8-27 defines the supported alignments for 1-, 2- and 3-byte sized transfers.
Figure 8-28 defines the supported alignments for 4-, 8- and 16-byte sized transfers.

Table 8-26. Supported Data Sizes and Alignments

Supported

Size
Name (if any) Ordinary

Direct Definition
(Bytes) Store

Segment
Segment

T=O
T=1 (PIO)

1 Byte Yes All byte alignments are
supported.

2 Half-Word All alignments that do not cross a

3 3-Byte
double-word boundary are
supported.

4 Word

8 Double-Word Only double-word alignments are
supported.

16 Quad-Word Yes No Only quad-word aligned quad-
word is supported.

5-7,9-15 No Not Supported

Data alignments not specified by these tables are undefined.

8-54 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

ASize Byte Lanes
A[G0-63] Data

[0-3]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0001
0001 0001
0010 0001
0011 0001
0100 0001
0101 0001
0110 0001
0111 0001
1000 0001
1001 0001
1010 0001
1011 0001
1100 0001
1101 0001
1110 0001
1111 0001

..
~

~ ~ -0000 0010
0001 0010
0010 0010
0011 0010
0100 0010
0101 0010
0110 0010
1000 0010
1001 0010
1010 0010
1011 0010
1100 0010
1101 0010
1110 0010

0000 0011
0001 0011
0010 0011
0011 0011
0100 0011
0101 0011
1000 0011
1001 0011
1010 0011
1011 0011 -1100 0011
1101 0011

Figure 8-27. Data Alignment for 1-, 2- and 3-byte Sized Transfers

MOTOROLA Chapter 8. System Interface Operation 8-55

-

A[60-63) ASIZE Byte Lanes
DATA[0-3) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0100
0001 0100
0010 0100
0011 0100
0100 0100
1000 0100
1001 0100
1010 0100
1011 0100
1100 0100

0000 1000
1000 1000

0000 0000

Figure 8-28. Data Alignment for 4,- 8- and 16-byte Sized Transfers

8.9 Address Bus
The following subsections discuss the address bus (A[0-63]).

8.9.1 Address Formats
The format of A[0-63] varies according to the type of bus operation, with the exception of
the ATAG[0-7], which is always aligned as A[8-15]. The following supported address
formats are detailed in Figure 8-29:

• Memory Request

• PIO Request

• PIO Reply

• Tag Only

• External Control Request (ExtCon)

8-56 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Address[0-31] O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Physical Address[0-7] - 8 of 40 b

PIO Request

PIO Reply

Tag Only

Ext. Cont. Req.

Address[32-63] 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62
33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Physical Address[8:39] - 32 of 40 b

Memory Request~--------------------~

Physical Address[0-31 J - 32 b

PIO Request ~' ---------------------

PIO Reply VZ7ZZZZZ7ZZZ7Z7

Tag Only rzzzzzzzzzzzzzz
Ext. Cont. Req.

Physical Address[8:39] - 32 of 40 b

Key: l2l Reserved

Figure 8-29. The Format of A[0-63]

8.9.2 The Memory Request Address Format
The memory request address format is for normal segment accesses to the memory address
space and is defined as shown in Table 8-27:

Table 8-27. Memory Request Address Format

A[0-63]
Width

Definition
Bits

0-7 5 Refer to Section 8.6, "Address Commands Definition."

8-15 8 Tag[0-7]
Defined in Section 8.1 O, "Bus Tags."

16-23 8 Output - 8'00000000'
Input - B'XXXXXXXX'

24-63 40 Physical Address[0-39]

MOTOROLA Chapter 8. System Interface Operation 8-57

-

8.9.3 The PIO Request Address Format
The PIO request address format is for accesses to the I/O or direct address space and is
defined in Table 8-28.

Table 8-28. PIO Request Address Format

Addressing Mechanism

A[!Mi3]
Width

Definition
Bits 64-bit Segment 32-bit Segment

STE
Register Register

[OJ 1 Refer to Section 8.9.3, "The PIO Request Address Format" Key (K)

[1-3J 3 Refer to Section 8.6, "Address Commands Definition" ATYPE[1-3J

[4-7J 4 STE double-word 1 [34-36, 44J SR[46-48, 56J SR[14-16, 24J Not part of this
document.

[8-15J 8 Refer to Section 8.10, "Bus Tags" Tag[0-7J

[16-24J 9 STE double-word 0 [60-61 J I I SR[35-43J SR[3-11J BUID[O-SJ
STE double-word 1 [25-31 J

[25-31J 7 STE double-word 1 [37-43] SR[49-55J SR[17-23J Authority[0-6J

[32-35J 4 STE double-word 1 [48-51J SR[60-63J SR[28-31J Physical Address[0-3]

[36-63J 28 EA[36-63J Physical Address[4-31]

The K signal is derived from the K bits in the STE and the MSR bit specifying which K-bit
to use according to the equation-Key= (MSR[PR] & Kp) I (~MSR[PR] & Ks)

8.9.4 The PIO Reply Address Format
The PIO Reply address format is defined as shown in Table 8-29:

Table 8-29. PIO Reply Address Format

A[G-63] Width Bits Definition

[OJ 1 PIO Error (E-Bit)
1 - Error
0 - No Error

[1-3J 3 Refer to Section 8.6, "Address Commands Definition"

[4] 1 Type of Reply:
1 = load reply
O = store reply

[5-7] 3 Reserved

[8-15J 8 Tag[0-7J, Defined in Section 8.10, "Bus Tags."

[16-24] 9 BUID[O-SJ

[25-31J 7 Reserved

[32-63J 32 Reserved

8-58 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.9.4.1 Error (E)
The E bit indicates that an error occurred during this PIO operation.

8.9.5 The Tag-Only Address Format
The Tag-Only address format is defined in Table 8-30. The tag-only address format consists
of the master or sender tag and attribute bits. The bus operations that use the tag-only
address format are EIEIO, SYNC, TLBSYNC and ReRun.

Table 8-30. Tag-Only Address Format

A[0-63]
width

Definition
bits

[0-7] 4 Refer to Section 8.6, "Address Commands Definition"

[8-15] 8 Tag[0-7] Defined in Section 8.10, "Bus Tags."

[16-63] 48 Reserved

8.9.6 The External Control Request Address Format (ExtCon)
The external control request address format is defined in Table 8-31:

Table 8-31. External Control Request Address Format

A[0-63] Width Definition
Bits

[0-2] 3 Refer to Section 8.6, "Address Commands Definition"

[3-7] 5 RID[0-4] (from SPR EAR[27-31]. Refer to Section 2.1.1, "Register Set:')

[8-15] 8 Tag[0-7] Defined in Section 8.10, "Bus Tags."

[16-23] 8 Output - B'OOOOOOOO'
Input - B'XXXXXXXX'

[24-63] 40 Physical Address[Q-39]

8.1 O Bus Tags
Explicit bus tagging has been added to the address and data buses so that data bus transfers
do not have to occur in the same order as operations on the address bus. This capability can
increase bus bandwidth for any system in which access latencies can vary.

Address bus tagging is found in Section 8.9, "Address Bus," and data bus tagging is found
in Section 8.5.4, "Data Bus Tag."

MOTOROLA Chapter 8. System Interface Operation 8-59

8.10.1 Bus Tag Usage
Bus tags are used for the following purposes.

• A memory identifies the data for a write by comparing the address bus tag and the
data bus tag.

• A memory identifies the data for a Read intervention by comparing the address bus
tag and the data bus tag.

• The master identifies the data for a read by comparing the address bus tag and the
data bus tag.

• The bus device identifies address-only operations that match the bus tag of a pending
operation (for example, PIO reply).

Table 8-32 defines the usage of the address and data bus tags. Out means that the tag is
produced, In means that the tag is consumed, snoop means that the tag is snooped and N/A
means that the bus tag does not have significance for this case.

Table 8-32. Bus Tag Usage

Bus
Tag Master Memory Snooper PIO Slave Operation

All Reads A-Tag Out In In In

D-Tag Snoop Out/ln1 Out2 NIA

All Writes A-Tag Out In In In

D-Tag Out Snoop NIA Snoop

PIO Reply A-Tag Snoop NIA NIA Out

D-Tag NIA NIA NIA NIA

Notes:

1. Optional - Only for intervention

2. Optional - Only for intervention

8.10.2 Bus Tag Format
The bus tag should be thought of as the address for a bus device. Just like memory is
addressed by the memory address, bus masters are identified or addressed by the bus tags.

At boot time, each bus device is assigned an aligned power of two sized block of bus tag
space. This. allows for bus tag values to be assigned as needed, instead of allocating a
maximum to all bus devices. Not all devices will need the same number of bus tags.

Each bus device that generates bus tags has the notion of a bus tag base address and a bus
tag block size. Bus tag blocks can be any size as long as they are in the 256 bus tag space
and are unique.

8-60 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Masters will use the bus tag as a bus device ID and a transfer ID. The master accepts its
entire bus tag block and then interprets the transfer ID.

Memory and Snoopers only think of the bus tag as a value, which is compared and
presented back to the master.

The 620 bus tag format is defined in Table 8-33.

Table 8-33. Bus Tag[0-7] Format

Bus Tag bits Definition

[0-4] 5 BUSPID[0-4]

[5-7] 3 Transaction ID[0-2] (8 bus tags)

BUSPID[0--4]-The 5-bit bus tag base address is defined to be BUSPID[0--4],
which represents a unique processor ID value. BUSPID is software readable by the
PIR SPR. See Section 2.1.2.2, "Processor Identification Register (PIR)." BUSPID is
assigned by the hardware configuration mechanism; see Section 8.23, "Hardware
Configuration Mechanism (HCM)."

Transaction ID[0-2]-The transaction ID uniquely identifies a bus operation that
belongs to the 620, as specified by the BUSPID. This 3-bit field allows a maximum
of 8 simultaneous bus operations to be in progress from any one bus master. The 620
can support up to 5 simultaneous pending bus operations, two reads and three writes.

8.10.3 Bus Tag Allocation/Deallocation
Defining allocation and deallocation of tags in a precise manner prevents bus tag aliasing,
where the same tag value is associated with two different bus operations simultaneously.
The objective is for a single tag at any point in time to refer to no more than one bus
operation.

8.10.3.1 Bus Tag Allocation
When a bus operation is allocated, it is associated with that bus operation and can not be
used by a bus device to refer to any other bus operation until the tag is deallocated.

8.10.3.2 Bus Tag Deallocation
When a bus operation is deallocated, it is deassociated with that bus operation and can no
longer be used by a bus device to refer to that bus operation. The deallocated bus tag is then
available for use by a bus device to refer to another bus operation. Note that for a given bus
operation, a bus tag may be allocated and deallocated at different times. Refer to the
following documentation.

Bus tag deallocation depends onASTATIN andARESPIN. Refer to Section 8.4.3, "Address
Status and Address Response Signals."

MOTOROLA Chapter 8. System Interface Operation 8-61

-

-

8.10.4 Memory Read-Bus Tag Allocation/Deallocation
This section describes bus tag allocation and deallocation for memory read bus operations.
The memory read bus operations are Read and RWITM. See Figure 8-30. For this
discussion, the master is the bus device that initiated the memory read operation. The
memory is the device that sources the data in response to the memory read operation, which
could be the memory subsystem or 1/0. Cases associated with each of the ASTATIN or
ARESPIN codes are discussed below.

8.10.4.1 ASTATIN NoAck/PosAck, or ARES PIN of Null or Shared
The data bus tag is deallocated by the master on the later of the two deallocation cases in
Figure 8-30. The data bus tag is deallocated by the memory on the earlier of the two
deallocation cases. The data bus tag is deallocated by the snooper/L3 when the response is
known.

This definition prevents any aliasing of the bus tag; the memory system will always
deallocate the tag before the master can allocate the same tag for another bus operation.

8.10.4.2 ARES PIN of Modified
This is the intervention case. Tag allocation/deallocation is the same as above. The memory
may return part of the data block before recognizing the Modified ARI (Address Response
In) code and deallocating the tag. The intervening cache will then source the intervention
data to the requesting master.

8.10.4.3 Retry or ARES PIN Rerun
Master tag deallocation for ASTATIN/ARESPIN Retry code is described in case #1 in
Figure 8-30. Depending on the type of operation that receives ARespin Rerun code, master
tag deallocation is described by case #1, or by snooping the Rerun Reply bus operation
which tag matches, refer to Section 8.13, "The ReRun Mechanism." The data bus tag is
deallocated by the memory on the earlier of the two deallocation cases. The data bus tag is
deallocated by the snooper/L3 when the response is known.

Note: The master can begin rearbitration for the address bus as early as 1 cycle after
sampling the ASTATIN/ ARES PIN Retry (or Rerun, under certain conditions). If the master
is parked onto the address bus, the same address tag can be re-allocated as early as cycle 5
in case #1. Systems which deallocate the data tag as late as three cycles from the
ASTATIN/ARESPIN sample point must handle the case of the master re-allocating the
same address tag before the system has deallocated the data bus tag.

8-62 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Allocation

ATag 1

NOTE: The data bus tag is allocated 2 cycles from sampling EATS.

Deallocation
Master - The Later Of 2 Cases
Memory - The Earlier Of 2 Cases

Case 1 -AStaVAResp Deallocates Tags
1 2 3

BUSCLK

AStaVAResp
11Cycle~ I I

ATag

DTAG
31cycleil c1 1) .i JJ

Case 2 - Last data Deallocates Tags
1 2 3 4 5

BUSCLK~
I I l~I I

Data~
I I I I I I

ATag~
~II

DTAG~

The address bus tag is allocated when the address
is sourced by the master at the beginning of cycle
2.

The data bus tag is allocated 2 cycles from
sampling EATS. See Section 8.5.7, "Minimum
Latency to Sample Read Data."

Case #1 applies to AStat if AStat completes the
bus operation or to AResp if AResp completes the
bus operation.

The address bus tag is deallocated 1 cycle from
sampling ASTATIN or ARESPIN.

The data bus tag is deallocated 3 cycles from
sampling ASTATIN or ARESPIN, 2 cycles from the
address bus tag deallocation. This latency allows a
cross-bar configuration to pass the response from
the address controller to each data slice.

The address and data bus tags are deallocated
when the last data is sampled by the data
consumer.

Note that the last read data for intervention may be
the last data sourced by the intervening cache.

Figure 8-30. Memory Read Bus Tag Allocation/Deallocation

8.10.5 Memory Write-Bus Tag Allocation/Deallocation
This section describes bus tag allocation and deallocation for memory write bus operations.
The memory write bus operations are Write with Flush, Write with Kill and Write with
Clean. See Figure 8-31. The address tag is not snooped for memory writes.

The data bus tag is deallocated by the Master or Memory-Atomic (Write with Flush
Atomic- see Section 8.12.6, "Write-With-Flush") on the later of the two deallocation
cases.

The data bus tag is deallocated by the Memory (Not-Atomic) on the earlier of the two
deallocation cases. This definition prevents any aliasing of the bus tag; the memory system
will always deallocate the tag before the master can allocate the same tag for another bus
operation.

MOTOROLA Chapter 8. System Interface Operation 8-63

-

-

Allocation

BUSCLK

ATag

Addr

Data[0-127]

I , I
ar>j

r---r-__,....,~....,...--i--r---r-~

_____ __,__~' ~~~_,_-+--+-~

I

DTAG ~' -~~-~-<
~-------

•a -The minimum latency from the address tag to
the data tag is determined by the arbiter minimum
latency from ABG to Dl3G.

Deallocation
Master - The Later Of 2 Cases
Memory - The Earlier Of 2 Cases

Case 1 -AStaVAResp Deallocates Tags

BUSCLK

AStaVAResp

ATag

DTAG
----'=3=C~yc=les~""'-"''.:'..'-:::.-:::.-:::.'::.-:::.-:::.~"-.,, : :

----------~~

I 1Cycle~ I

) :

Case 2 - Last data Deallocates Tags

BUSCLK nJlJl_jL_fl_;
I I I ,.-L... I I

Data~
I I I I I I

ATag~
r--r--r--r' I I

DTAG~

The address bus tag is allocated when the address
bus grant is sampled, which is also when the
address is sourced.

The data bus tag is allocated when the data bus
grant is sampled, which may be when the first data
is sourced.

Case #1 applies to AStat if AStat completes the
bus operation or to AResp if AResp completes the
bus operation.

The address bus tag is deallocated 1 cycle from
sampling ASTATIN or ARESPIN.

The data bus tag is deallocated 3 cycles from
sampling the response, 2 cycles from the address
bus tag deallocation.

If the write operation is not retried then the address
and data bus tags are deallocated when the last
data is sampled by the data consumer.

Figure 8-31. Memory Write Bus Tag Allocation/Deallocation

8.10.6 PIO-Bus Tag Deallocation
The same bus tag is used for all PIO bus operations caused by a single load/store to the
direct store segment. The bus tag is deallocated for the last PIO bus operation like a T=O
bus operation. The bus tag is deallocated for a PIO Reply in the cycle after the address is
sampled on the bus. Note that a PIO Reply with the error bit set does not deallocate the data
bus tag. The bus master still requires the PIO device to satisfy the data bus transfer
requirements. The bus tag is deallocated for a PIO Load Last like a read bus operation. The
bus tag is deallocated for a PIO Store Last like a write bus operation.

8-64 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.1O.7 Address-Only Bus Operations-Bus Tag Deallocation
This section describes bus tag deallocation for address only bus operations. The address­
only bus operations are LARX-Reserve, !Kill, DKill, DClaim, Flush, Clean, TLBIE,
TLBSYNC, SYNC and EIEIO.

The address bus tag will be allocated when the address is sourced, in the same manner that
the address bus tag is allocated for memory reads and writes. The address bus tag will be
deallocated for address-only bus operations one cycle from sampling the response, in the
same manner that the address bus tag is deallocated for memory reads and writes. The data
bus tag is not allocated for address-only bus operations.

8.10.8 Snoopers - Bus Tag Deallocation
Unless otherwise stated, a snooper may deallocate the bus tag for a bus operation when the
snooper has snooped the cache and determined that a ReRun for TLBSYNC/SYNC or a
data-only bus operation that uses the bus tag will not be needed.

8.11 Parity Protection
This section discusses parity protection.

• Odd Parity-Bus parity is defined as odd parity. All bits over which parity is
computed, including the parity bit itself, that are a binary 1 add up to an odd number.

• Parity Generation-Parity is always generated for all parity protected signals during
a transfer, independent of transfer content beign valid (that is, even if only 1 byte of
data is valid parity is still computed over a quad-word).

• Memory and PIO Parity Errors-Parity error detection and handling is the same for
PIO and memory operations.

• Machine-Check exceptions are Asynchronous-A parity error that causes a
machine-check exception will occur asynchronously with respect to the operation
that caused the exception. If a PIO Load Last causes a DSI exception and a machine
check exception is pending from a PIO load immediate, there is no guarantee
between the order of the machine-check and the DSI exceptions.

• Address Bus Parity Checking and Handling (ASTATOUT)

- Every address bus device parity checks the address bus for a bus operation,
except for the master for that address bus operation. If a parity error is detected
and HIDO(EBA) is asserted then the bus device will assert the ASTATOUT
AParErr code, otherwise ASTATOUT will be the appropriate code for a non­
parity error condition. The definition of HIDO(EBA) can be found in
Section 2.1.2.3, "Hardware Implementation-Dependent Register 0 (HIDO)."

MOTOROLA Chapter 8. System Interface Operation 8-65

-

-I

- ASTATIN and Master-If a master bus device receives the ASTATIN AParErr
code then BUSCSR(BUSPARERR[O]) will be set and a machine-check
exception will be issued. Note that EBA does not affect the actions taken when
ASTATIN is AParErr. The master operation will be aborted and not reissued to
the bus. The data for a store is discarded. The data for a read is indeterminate.

- ASTATIN and Non-Master-A non-master device will never issue a machine­
check exception or set its own BUSCSR(BUSPARERR[O]) when an address bus
parity error is detected. A non-master bus device that receives the ASTATIN
AParErr code will not issue a machine-check exception, will not set
BUSCSR(BUSPARERR[O]), and will treat ASTATIN AParErr just like
ASTATIN Retry.

• Data Bus Parity Checking and Handling-Every data bus device, including the
master, parity checks the data bus for every data bus transfer. The detection of a data
parity error will not prevent the bad data from being forwarded to the caches or the
registers.

8-66

- Data tag errors-Every data bus consumer, that expects to receive data, parity
checks the data tag (DPCntl) for every BUSCLK that DYAL is asserted. If a
parity error is detected then BUSCSR(BUSPARERR[l]) is set. IfHIDO[EBD] is
asserted the a machine-check exception will be generated. The definition of
HIDO[EBD] can be found in Section 2.1.2.3, "Hardware Implementation­
Dependent Register 0 (HIDO)."

- Data errors-If a parity error is detected with the data bus (DPHigh[0-7],
DPLow[0-7] and DPDPCntl) by the consumer of the data, then
BUSCSR(BUSPARERR[2]) is set. If HIDO[EBD] is asserted then a machine­
check exception will be generated. If the device is not the data consumer then
BUSCSR(BUSPARERR[2]) is not modified and a machine-check is not
generated.

Table 8-34. Addrf;!ss Bus Parity Protection

BUSPARERR[0-2] Definition

0 Address bus parity error.

1 Data bus tag parity error.

2 Data bus data parity error.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Refer to Section 2.1.2.4, "Bus Status and Control Register (BUSCSR)," and Section 4.6.2,
"Machine Check Exception (Ox00200)."

Signals Excluded from Parity Protection-There is no parity protection for the
following classes of signals:

- Clocks (BUSCLK)

- Arbitration (ABR, HPR, ABG, DBR, DBG and EATS), ASTATOUT[0-1] and
ARESPOUT[0-2)

- ASTATIN[0-1] and ARESPIN[0-2]

- DVAL[0-1)

-DERR

- Miscellaneous Control (Reserve)

Address Bus Parity-The address bus is parity protected by 3 bits, called AP[0-2].
Table 8-35 defines the coverage for each parity bit.

Table 8-35. Address Bus Parity Protection

AP[N] Coverage

0 A[0-31] (includes the address tag)

1 A[32-63]

2 ATYPE[0-4], ASIZEDATA[0-3],
ASIZEBURST

Data Bus Parity-The data bus is parity protected byl 7 bits, called DPHigh[0-7],
DPLow[0-7] and DPCntl. Table 8-36 defines the coverage for each parity bit.

Table 8-36. Data Bus Parity Protection

Data Parity Coverage

DPHigh[0-7] DH[0-63] bytes O to 7

DPLow[0-7] DL[0-63] bytes O to 7

DPCntl DTAG[0-7], DBS and DCACHE

8.12 Bus Operations
The purpose of this section is to describe the function of each bus operation. Refer to
Figure 8-32 for the bus topology. Note that local bus and remote bus are also referred to as
the 'upper level' and 'lower level', respectively.

MOTOROLA Chapter 8. System Interface Operation 8-67

-

-

Bus Adapter
L3

620 Remote Bus

Memory

Figure 8-32. The Bus Topology

Related topics:

Section 8.8, "ASIZEDATA[0-3] and ASIZEBURST Definition"

Section 8.17 .16, "Cache State Transition Definition"

Section 8.6.1.1, "Write-Through Address Attribute (W-Bit)"

Section 8.6.1.2, "Cache-Inhibited Address Attribute (I-Bit)"
Section 8.6.1.3, "Memory Coherent Address Attribute (M-Bit)"

Section 8.6.2, "Atomic Address Attribute (A-Bit)"

Section 8.6.3, "Intervention Address Attribute (N-Bit)"

Section 8.7, "Intervention and Push Definition."

8.12.1 RWITM (Read-With-Intent-To-Modify)
The Read-With-Intent-To-Modify (RWITM) bus operation is intended to bring a block into
a cache marked modified for the purpose of writing. ASIZEBURST is always asserted. In
general, the RWITM is caused by a store, stwcx. or dcbtst instruction; see Section 8.5.7,
"Minimum Latency to Sample Read Data."

The RWITM bus operation is accepted from the upper level and ReRun until completed. If
the cache level is marked I, then a RWITM bus operation is passed to the lower level. If the
cache level is marked S, then a DClaim bus operation is passed to the lower level. If the
cache level is marked E or M, then no bus operation is passed to the lower level. When the
response for the bus operation to the lower level, if any, is Null, then the Null response can
be passed to the upper level and the cache can be marked M. Data is sourced from the
highest valid cache or memory if memory is at the same level as the highest valid cache.

8-68 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The N-Bit-The N-bit is sourced from the intervention enable mode bit.

The A-Bit-If the A-bit is deasserted then the function of RWITM is normal as
defined previously. If the A-bit is asserted and the reservation is clear, then the
RWITM is retried to the upper level with the assumption that what cleared the
reservation at this level will eventually clear the reservation at the upper level.

If the A-bit is asserted and the reservation is set, then the RWITM operates as
previously defined. When the response from the lower level is Null, then the cache
is marked M, the reservation is cleared, and the null response is passed to the upper
level.

8.12.2 LARX-Reserve
The data for a cacheable LARX will be supplied by the highest cache level that hits.
However, all reservations below the highest cache level that hits are notified of the
reservation via the LARX-Reserve bus operation. If the L2CLC[l] (L3 Enable) is
deasserted, indicating that there is no reservation below the 620, then the LARX-Reserve
bus operation is inhibited.

The LARX-Reserve bus operation propagates down all cache levels to the lowest level.
Each level may Null response a requester when the LARX-Reserve bus operation has been
accepted (for example, when the 620 passes the LARX-Reserve to the L3). If the LARX­
Reserve bus operation conflicts with a bus operation coming from below that will invalidate
the reservation, such as a write, then the LARX-Reserve may be aborted and the response
may be Null. This assumes that the write is going to be propagated to the top level and abort
all reservations that match above this level. The LARX-Reserve bus operation is complete
when it sets the reservation in the lowest level.

8.12.3 Read
The Read bus operation is caused by a load, load multiple, DCBT, or LARX. Read burst
bus operations will always be block sized. Read non-burst bus operations will use all
supported non-burst sizes and alignments. See Section 8.8.5, "Supported Non-Burst Data
Sizes and Alignments," and Section 8.5.7, "Minimum Latency to Sample Read Data."

The N-Bit-Burst reads: The N-bit is sourced from the intervention enable mode bit.
NonBurst reads: The N-Bit is 0.

The S-Bit-The 620 as a Read bus operation master will source the S-bit from the
PTE I-Bit. The 620 as a Read bus operation snooper will interpret the S-Bit
according to the following table and to the table called Section 8.17.18, "Snooper
Cache State Transitions Due to Bus Operations."

MOTOROLA Chapter 8. System Interface Operation 8-69

-

-

Table 8-37. The Bus S-Bit for the Snooped Read Operation

ASIZEBURST Bus S-Bit Snooper Definition

No 1 Normal Read Non-Burst Operation (Wl=01).

No 0 Normal Read Non-Burst Operation (Wl=10).

Yes 1 RWNITC (Read With No Intent To Cache).

Yes 0 Normal Read Burst Operation (Wl=OO).

AResp: The Address Response-If I=l and M=O, then AResp is not valid and is
ignored. AResp is valid for all other T=O memory access modes. Refer to
Section 8.4.3.2, "Address Status and Address Response Validation."

The A-Bit-The A-bit, when asserted, indicates that the read was caused by a cache­
inhibited or cacheable write-back LARX. Refer to Section 8.20, "Atomic Memory
Reference Support." The read will set the reservation for each level that the read
accesses. If the read is cacheable write-back and hits on a block marked S, E, or M,
then the LARX-Reserve bus operation will be issued to the lower level if the L3 is
enabled.

The G-Bit-The G-bit, when asserted, indicates that the cache-inhibited read is
guarded. The G-bit, when deasserted, indicates that the cache-inhibited read is non­
guarded. This bit is undefined and assumed unguarded for cacheable reads. A
guarded cache-inhibited read may only complete once.

8.12.4 Write-With-Kill
The "Write-With-Kill" bus operation is issued by the 620 as a master due to the following
conditions:

Copybacks: A processor load, store, or DCBZ allocates the addressed block, which
in tum causes the deallocation of a modified block with a different block address.

Flushes: A processor DCBF hits against the addressed block which is marked
modified.

Pushes: A bus snoop RWITM, Write-With-Flush or Flush hits against the addressed
block which is marked modified.

Write-With-Kill is always a burst block sized write that tells all snoopers to mark a block
that address matches to the I state.
Memory will be updated independent of the response.

8-70 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The Wand M bits are defined in Table 8-38 and are not sourced from the PTE.

Table 8-38. Supported Write-With-Kill Types

PowerPC620 PowerPC620
Cause/Comment W-Bit M-Bit Master Snooper

Generated Generated

Copyback (CB): Caused by a processor load, store, or 0 0 y N
DCBZ.

Reserved. 0 1 N N

Flush (F): Caused by a processor DCBF. 1 0 y N

Push (P): Caused by a bus snoop RWITM, Write-With-Flush, N y
or Flush.

10 Write (10) 1 1 N N

8.12.5 Write-With-Clean
The "Write-with-Clean" bus operation is issued by the 620 as a master due to the following
conditions:

• A processor DCBST hits against the addressed block which is marked modified.

• A bus snoop Read (Burst and NonBurst) or Clean hits against the addressed block
which is marked modified.

The block is written through all levels to memory and the final state is S or E. Write-with­
Clean is always burst block sized.

8.12.6 Write-With-Flush
The Write-with-Flush bus operation is described as follows:

• As a Master-The 620 will issue the Write-With-Flush bus operation due to T=O
cache-inhibited or write-through stores, T=O cache-inhibited STCX and MMU RC
bit updates. The Write-With-Flush bus operation will always be a non-burst write to
memory and will use all supported non-burst sizes and alignments. See
Section 8.8.5, "Supported Non-Burst Data Sizes and Alignments." Memory may
commit the store independent of the response (AResp).

As A Snooper-The 620 will snoop into the L1 and L2, if enabled, and will cause a
flush of the addressed block if the addressed block is detected. If the block is
detected to be modified then the snooper will retry the Write-with-Flush bus
operation and then the addressed block is pushed back to memory with a Write-with­
Kill bus operation. The Write-With-Flush bus operation address is only significant
as a block address and the size, alignment and burst/non-burst attributes are
insignificant.

Address Response-Refer to Section 8.4.3.2, "Address Status and Address
Response Validation," and Section 8.4.9, "Address Response In/Out."

MOTOROLA Chapter 8. System Interface Operation 8-71

-

• The A-Bit-The atomic bit indicates whether this bus operation was caused by a
cache-inhibited STCX. The atomic bit modifies the functionality ofWrite-With­
Flush as follows:

If the bus operation is atomic and the reservation is set, then the device may give the
Null response when the bus operation has been accepted, passed to the next lower
level, and the response is Null. This process is followed by all levels down to the
lowest level, each level rerunning or retrying the upper level until the lowest level
gets the Null response. The Null response then propagates up each level, as long as
the reservation is still set. The device may update the cache when the response is
Null and the reservation is set. The reservation is not cleared when the Write-With­
Flush bus operation is retried.

If the bus operation is atomic and the reservation is clear, then the device must retry
the upper level with the assumption that whatever cleared the reservation is going to
clear the reservation at all above levels (for example, whatever cleared the L3
reservation is going to clear the 620 reservation). The device may not update the
cache when the response is Null and the reservation is clear.

Since the memory has no knowledge of whether the reservation is set, it will
conditionally execute the Write-With-Flush (both Atomic and Non-Atomic) based
on the response. The memory will complete the write when the response is null. The
memory will wait if the response is ReRun. The memory will abort if the response
is retry.

8.12.7 IKill
The intent for !Kill is to invalidate a block in all instruction-only caches. Instruction-data
and data-only caches will be invalidated by other cache control operations. The address is
a physical address.

Refer to Section 2.3.4.6, "Processor Control Instructions," and Section 2.3.5.2, "Memory
Synchronization Instructions."

8.12.8 DKill
The intent of DKill is to invalidate all copies of this block in all instruction-data and data­
only caches, including the 620 that issues the DKill.

8.12.9 DClaim
The DClaim bus operation can be caused by any of the following conditions:

• A write-back store to a block marked shared (S).

• A write-back DCBZ to a block that is either marked shared (S) or invalid (I).

The intent of DClaim is to invalidate all copies of this block in other caches and to mark my
copy of the addressed block M in all levels. This bus operation differs from DKill in that it
does not kill the master's copy in lower levels.

8-72 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

DClaim is accepted by the upper level and ReRun until the DClaim is passed to the lower
level and the response for the lower level is a Null, at which time the cache is marked M
and the Null response is passed to the upper level. This has th~ effect of waiting until the
DClaim has propagated to the lowest level and succeeded before marking the block M.

If the A-bit is deasserted then the function of DClaim is as defined previously. If the A-bit
is asserted and the reservation is clear, then the DClaim is retried to the upper level with the
assumption that what cleared the reservation at this level will eventually clear the
reservation at the upper level.

If the A-bit is asserted and the reservation is set, then the DClaim is passed to the lower
level. When the response from the lower level is Null, then the cache is marked M, the
reservation is cleared and the null response is passed to the upper level.

8.12.10 Flush
The Flush bus operation is issued by the 620 due to the DCBF instruction. Flush causes any
cache that has a copy of the block marked modified to write the block back to memory. All
caches mark the block invalid.

8.12.11 Clean
Clean causes any cache that has a copy of the block marked modified to write the block
back to memory; the block is marked exclusive in the lowest cache level (L3, for example),
otherwise, the block is marked shared.

8.12.12 The tlbie, tlbsync, sync and eieio Instructions
The definitions of tlbie and tlbsync is located in Section 2.3.6.3.3, "Translation Lookaside
Buffer Management Instructions." The 40-bit A[24-63] is defined to be the EA[24-63] of
the tlbie.

The definition of sync is located in Section 2.3.4.7, "Memory Synchronization
Instructions."

The definition of eieio 1s located in Section 2.3.5.2, "Memory Synchronization
Instructions."

8.12.13 ReRun
Refer to Section 8.13.2, "The ReRun Bus Operation."

8.12.14 Null
The null bus operation is ignored by all bus devices and is intended to enable a bus device
to take ownership of the address bus when a bus device does not have an address bus
operation to run.

MOTOROLA Chapter 8. System Interface Operation 8-73

-

-

8.12.15 PIO Loads, Stores and Reply
Refer to Section 8.16, "PIO Load and Store Bus Operations," for a description of PIO loads
and stores.

8.12.16 External Control In and Out
The architectural definition of the external control instructions is located in Section 2.3.5.4,
"Optional External Control Instructions."

The address format for the External Control bus operations is located at Section 8.9.6, "The
External Control Request Address Format (ExtCon)."

The External Control Out bus operation is a word-sized non-burst address-data bus
operation that is treated as a write by the external device addressed by the RID[~].

The External Control In bus operation is a word-sized non-burst address-only bus operation
that is treated as a read by the external device addressed by the RID[0-4].

Address positive acknowledge is provided by the external device addressed by the RID[0-
4] for both bus operations.

Data on the data bus is aligned according to the word address just like a cache-inhibited
load or store.

8.13 The ReRun Mechanism
The ReRun mechanism allows the snoop response for a bus operation to be extended
beyond the fixed latency response time of ARESPOUT (BUSTLAR BUSCLKs). A bus
device that desires to extend the snoop response latency asserts ARESPOUT ReRun.

A bus adapter or snooper will assert ARESPOUT ReRun in order to extend the response of
a bus operation. If the master receives ARESPIN ReRun the master will reissue the same
bus operation with the same tag and assert the R-Bit. The assertion of the R-Bit indicates
to the snooper and bus adapter bus devices that this is not the first occurrence of this
operation. The ReRun bus operation is used by a bus adapter for non-SYNC{fLBSYNC
bus operations to tell the master to run the bus operation again.

For more information, refer to:

Section 8.13.1, "AResp ReRun"
Section 8.13.3, "The R-Bit"

Section 8.13.2, "The ReRun Bus Operation"

The 620 supports ReRun as a master for all AResp-enabled bus operations. The 620
snooper will ARESPOUT ReRun the SYNC and TLBSYNC bus operations. The 620 will
not ARESPOUT ReRun non-SYNC{fLBSYNC bus operations.

8-74 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

For more information, refer to:

Section 8.13.4, "ReRun and the Master"
Section 8.13.5, "ReRun and Memory"

Section 8.13.6, "SYNC(fLBSYNC: ReRun and the Snooper/Bus-Adapter"
Section 8.13.7, "Non-SYNC(fLBSYNC: ReRun and the Snooper/Bus-Adapter"

All bus operation types that can be rerun are divided into two groups that function
differently with respect to the rerun bus operation. SYNC(fLBSYNC bus operations do not
use the ReRun bus operation. Non-SYNC(fLBSYNC bus operations use the ReRun bus
operation. The SYNC(fLBSYNC group consists of the SYNC and TLBSYNC bus
operations. The Non-SYNC(fLBSYNC group consists of all AResp-enabled bus
operations other than SYNC and TLBSYNC.

8.13.1 AResp ReRun
The AResp ReRun code indicates that this bus operation should be "re-run" by the master
using the same ATYPE and bus tag. See Section 8.4.9, "Address Response In/Out."

8.13.1.1 ARESPOUT ReRun
Bus adapters are allowed to ARESPOUT ReRun all AResp-enabled bus operations.
Snoopers and memories are allowed to ARESPOUT ReRun only the SYNC and
TLBSYNC bus operations. There is no limit to the number of times that a snooper or bus
adapter can assert ARESPOUT ReRun. The master for a bus operation will never assert
ARESPOUT ReRun.

8.13.1.2 ARESPIN ReRun
See the following sections for how ARESPIN ReRun is handled by the master, memory,
snooper and bus adapter.

8.13.2 The ReRun Bus Operation
The following sections provide a detailed explanation of the ReRun bus operation.

8.13.2.1 The Function of the ReRun Bus Operation
The ReRun bus operation is an address-only bus operation issued from a bus adapter to the
master, and possibly other bus adapters, to tell the master to reissue the non­
SYNC(fLBSYNC bus operation that was AResp ReRun. A master that receives ARESPIN
ReRun for a non-SYNC(fLBSYNC bus operation will wait to see the ReRun bus operation
that tag matches the non-SYNC(fLBSYNC bus operation before rearbitrating and
reissuing the bus operation that was ARESPIN ReRun. The ReRun bus operation is not
used for the ReRun of SYNC(fLBSYNC bus operations. The tag for the ReRun bus
operation is the tag for the operation that was AResp ReRun. The ReRun bus operation has
no address and therefore is tag-only. See Section Table 8-16, ". ATYPE[0-4] Definition."
See Section Table 8-17, ". WIM-Bit Definition." Other bus adapters, if there are any, should

MOTOROLA Chapter 8. System Interface Operation 8-75

-

-

also take notice of the ReRun bus operation. See Section 8.13.7, "Non-SYNC(fLBSYNC:
ReRun and the Snooper/Bus-Adapter."

8.13.2.2 When the Bus Adapter Issues the ReRun Bus Operation
The earliest time that a bus adapter may issue the ReRun bus operation is immediately
following the address bus tenure of the operation that will be ReRun, which is prior to the
master receiving ARESPIN ReRun.

The latest time that the bus adapter may issue the ReRun bus operation is BUSTLAR
BUSCLKs from snooping another ReRun bus operation, from another bus adapter, that tag
matches the operation being rerun. Note that this case does not exist in a single bus adapter
system.

8.13.3 The A-Bit
The R-Bit is located in the most significant byte of the address. See Section Table 8-16, ".
ATYPE[0--4] Definition." The R-Bit indicates whether this operation has already been
issued and ARESPIN ReRun by at least 1 bus device. R=O for the first time that a bus
operation is issued. R=l when the bus operation is reissued due toARESPIN ReRun. IfR=l
then the master must use the same bus operation type and tag as was used when the bus
operation was run R=O. The R-Bit is defined for all AResp-enabled bus operations.

8.13.3.1 The A-Bit with Respect to AStat/AResp ReRun/Retry
The following table defines the value of the R-bit based on AStat Retry and AResp ReRun
and Retry (for example, if an R=l operation is AStat Retried, then the operation will be
reissued R=l). Note that the master does not have to reissue bus operations that are AResp
Retried (that is, as a result of the AResp Retry, the master may change, or even kill, the bus
operation).

Table 8-39. The R-Bit with respect to AStat/AResp ReRun/Retry

R-Bit ASTATIN/ARESPIN
Reissued

R-Bit

0 ASTATIN Retry 0

ARESPIN Retry 0

ARESPIN ReRun 1

1 ASTATIN Retry 1

ARESPIN Retry 0

ARESPIN ReRun 1

8.13.3.2 The A-Bit and Address Tag Matching for Snoopers and Bus
Adapters

Snoopers will ignore the R-Bit and will not tag match for the non-SYNC(fLBSYNC bus
operations. The following table defines how bus adapters handle non-SYNC(fLBSYNC

8-76 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

bus operations and how snoopers and bus adapters handle the SYNC and TLBSYNC bus
operations.

Table 8-40. The R-Bit and Address Tag Matching Handling for Snoopers and Bus
Adapters

Address Definition of:
R-Bit Tag - Bus Adapters and Snoopers for SYNC/TLBSYNC

Match - Bus Adapters for Non-SYNC/TLBSYNC

0 No The snooper/adapter accepts the bus operation as a new bus
operation to process.

0 Yes ILLEGAL CASE: The snooper/adapter should never be processing a
bus operation and snoop an R=O bus operation that tag matches.

1 No The snooper/adapter has already finished this bus operation and
should ignore this and all future occurrences of this bus operation.

1 Yes The snooper/adapter should use the response of this bus operation to
indicate ReRun or ReRun.

8.13.4 ReRun and the Master
The following sections provide information on ReRun and the master.

ARESPOUT ReRun-The master will never assert ARESPOUT ReRun.

ARESPIN ReRun-A master that receives ARESPIN ReRun will behave differently
based on whether the bus operation is a SYNC{fLBSYNC, or a bus operation other
than SYNC{fLBSYNC.

SYNC{fLBSYNC: ARESPIN ReRun and the ReRun Bus Operation-The master
will not wait to rearbitrate internally. The master will not snoop for the ReRun bus
operation that tag matches the bus operation that received ARESPIN ReRun.

Non-SYNC{fLBSYNC: ARESPIN ReRun and the ReRun Bus Operation-The
master will wait to rearbitrate internally until a ReRun bus operation is snooped that
tag matches the bus operation that received ARESPIN ReRun. Note that the earliest
time that the ReRun bus operation may be snooped by the master is immediately
following the address tenure for the bus operation that will receive ARESPIN
ReRun. With respect to read and write data the master will treat ARESPIN ReRun
like ARESPIN Retry (that is, any data received will be discarded and any data sent
will be resent when the operation is run again).

The R-Bit-Referto Section 8.13.3, "The R-Bit," for when the R-Bitis asserted and
deasserted. If R= 1 then the master must use the same bus operation type and tag as
was used when the bus operation was run R=O.

MOTOROLA Chapter 8. System Interface Operation 8-77

-

8.13.5 ReRun and Memory
See Section 8.14, "The Definition of Memory."

• ARESPOUT ReRun-The memory will never assert ARESPOUT ReRun.

• ARESPIN ReRun-The memory treats ARESPIN ReRun like ARESPIN Retry.

• The ReRun Bus Operation-The memory ignores the ReRun bus operation issued
by the bus adapter(s).

• The R-Bit-The memory ignores the bus R-Bit and does not have to tag compare
R=l bus operations with any memory operations already in progress.

8.13.6 SYNC/TLBSYNC: ReRun and the Snooper/Bus-Adapter
This section describes the ReRun mechanism for the SYNC and TLBSYNC bus operations
and the snooper and bus adapter bus devices.

• ARESPOUT ReRun-Snooper and bus adapter bus devices may use the ReRun
mechanism for extending the response of SYNC and TLBSYNC bus operations.

• ARESPIN ReRun-lf a snooper or bus adapter receives ARESPIN ReRun for a
SYNC(fLBSYNC bus operation then the snooper or bus adapter will drop the
operation if ARESPOUT was not ReRun. The snooper or bus adapter will hold onto
the operation if ARESPOUT was ReRun.

• The ReRun Bus Operation-The snooper and bus adapter bus devices will not issue
the ReRun bus operation. (The master will not wait to internally rearbitrate the
SYNC or TLBSYNC bus operation.)

• The R-Bit-See Section 8.13.3, "The R-Bit," for how the snooper and bus adapter
handle the R-Bit for SYNC(fLBSYNC bus operations.

8.13.7 Non-SYNC/TLBSYNC: ReRun and the Snooper/Bus-Adapter
This section describes the ReRun mechanism for the non-SYNC(fLBSYNC bus
operations and the snooper and bus adapter bus devices.

• ARESPOUT ReRun-Only bus adapter bus devices may use the ReRun mechanism
for extending the response of non-SYNC(fLBSYNC bus operations. Snooper type
bus devices must ARESPOUT Retry if the snoop response is not available by
ARESPOUT.

• ARESPIN ReRun-lf a snooper receives ARESPIN ReRun for a non­
SYNC(fLBSYNC bus operation the snooper will take no action except to mark all
cache blocks that hit exclusive (E State) to the shared state (S State). See

8-78

Section 8.17.18, "Snooper Cache State Transitions Due to Bus Operations." The
snooper will drop the operation as soon as it is determined that either no cache state
change to shared is needed or the state change to shared is complete.

A bus adapter that receives ARESPIN ReRun and did not assertARESPOUT ReRun
will not participate further for this bus operation.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

A bus adapter that receives ARESPIN ReRun and did assert ARESPOUT ReRun
will issue the ReRun bus operation when the remote status is obtained.

The ReRun Bus Operation (Snooper)-The snooper will never issue the ReRun bus
operation and will not snoop the ReRun bus operation.

The ReRun Bus Operation (Bus Adapter)-The bus adapter will issue the ReRun
bus operation when the remote status for the bus operation has been received by the
bus adapter. The bus adapter may issue the ReRun bus operation before receiving
the remote status, for the purpose of reducing the latency to complete the R=l bus
operation. The earliest time that the bus adapter may issue the ReRun bus operation
is immediately following the address tenure for the bus operation that received
ARESPIN ReRun.

If there is only one bus adapter, then the bus adapter does not have to snoop the
ReRun bus operation. If there are multiple bus adapters, then the bus adapter must
snoop for the other bus adapters ReRun starting immediately following the address
tenure for the bus operation that received ARES PIN ReRun. If a bus adapter sees the
ReRun for another bus adapter that tag matches an operation that was ReRun by that
bus adapter, then the bus adapter may not issue the ReRun bus operation after
BUSTLAR BUSCLKs from snooping the ReRun bus operation. If the remote status
has not been received when ARESPOUT occurs for the R=l bus operation, then
ARESPOUT is ReRun.

The R-Bit-See Section 8.13.3, "The R-Bit," for how the snooper and bus adapter
handle the R-bit for non-SYNC{fLBSYNC bus operations.

8.14 The Definition of Memory
A definition of memory is follows:

Supported Bus Operations-Only the following bus operations are received by the
memory. All other bus operations are ignored by the memory.

- RWITM and Read (all types)

- Write-With-Kill, Write-With-Clean and Write-With-Flush

- SYNC and EIEIO (Significant to the memory only if reordering can occur)

- All positive acknowledge bus operations handled by the memory; see
Table 8-13.

Minimal Requirements

- Positive Acknowledgment-The memory must provide positive
acknowledgment. See Section 8.4.10, "Address Status Acknowledge."

- ABR and ABG-A memory does not have to implement ABR and ABG.

- Parity Error Reporting-AS tat AParErr is the address bus parity error reporting
mechanism. The bus protocol does not specify a data bus parity error reporting
mechanism. It is up to the memory to define how data bus parity error reporting
is handled.

MOTOROLA Chapter 8. System Interface Operation 8-79

-

8-80

- Receiving ASTATIN and ARES PIN-A memory must receive ASTATIN and
ARESPIN in order to detect when a bus operation is aborted. A memory is
required to monitor ASTATIN retry and ARESPIN retry. Refer to Section 8.4.17,
"Address Status Out and Address Response Out Retry."

- Driving ASTATOUT: Flow Control, Positive Acknowledge, Parity-A memory
must use ASTATOUT Retry for flow control. If positive acknowledge is enabled,
then the memory must generate ASTATOUT PosAck for the memory space of
the memory. If the memory checks parity, then the memory must generate
ASTATOUT AParErr if an address bus parity error is detected.

- Driving ARESPOUT-The memory does not have to drive ARESPOUT.

- Guarded Space-Any accesses to guarded memory cannot occur until ASTATIN
and ARESPIN responses indicate that the operation can proceed.

- Supported Non-Burst and Burst sizes-See Section 8.8.5, "Supported Non­
Burst Data Sizes and Alignments." The memory must support the data sizes and
alignments that the 620 can generate.

- Burst data ordering-Data must always be received and transmitted according to
critical quad-word first with incremental wrap-around within an aligned block.
Refer to Section 8.5.3, "Data Sequence Ordering for Burst Operations."

- Aborting read return data based on a Retry or Modified response-The minimal
requirement for a memory is that the memory shall not use a tag for an address
bus operation three cycles after sampling an ARESPIN Retry or Modified
response for that bus operation. This means that the minimal implementation
only needs to place a known unused tag on the data tag bus, or deassert DVAL,
so that the master will not see the return data. A more sophisticated approach that
does not waste data bus bandwidth will abort the read return data and start the
next memory operation.

- The ReRun mechanism-The memory treats ARESPIN ReRun like ARESPIN
Retry. The memory can ignore the bus R-Bit (Address[7]) and does not have to
tag compare R=l bus operations with any memory operations already in
progress. See Section 8.13.5, "ReRun and Memory."

RWITM and Read-Read and RWITM, without intervention, are treated like a basic
read, because "with intent to modify" only has meaning for a cache. See
Section 8.5.7, "Minimum Latency to Sample Read Data."

A memory may implement intervention. Refer to Section 8.7, "Intervention and
Push Definition," and Section 8.6.3, "Intervention Address Attribute (N-Bit)."

Write-With-Kill, Write-With-Clean-Write-with-Kill and Write-with-Clean are
both treated like a basic write, because kill and clean only have meaning for a cache.

If a write is aborted (for example, ASTATIN Retry, AParErr, ARESPIN Retry,
ReRun) then the data tag will be deallocated according to Section 8.10.5, "Memory
Write-Bus Tag Allocation/Deallocation." Write data that has been received prior to
the data tag deallocation for an aborted write may, but does not have to be committed
to the memory array.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Write-With-Flush (Atomic and Non-Atomic)-A memory must treat any Write­
With-Flush as a conditional operation that waits for ReRun, aborts for Retry, and
commits for Null. See Section 8.12.6, "Write-With-Flush."

SYNC and EIEIO-These operations only act as barriers. If the memory does not
have the capability to reorder memory accesses, then these bus operations are treated
as no-ops. If the memory can reorder memory accesses, then the memory must obey
the barrier function of these bus operations.

8.15 The Definition of a Bus Adapter "Bridge-Chip"
This section describes the issues related to adapting the 620 bus to another bus.

Non-Pended Bus Adapter-A non-pended bus is a bus that does not support retry as
a mechanism to allow a higher priority operation to hold off a lower priority
operation until the higher priority operation can get onto the bus. The following
guidelines must be followed when a bus adapter connects a non-pended bus to the
620 bus.

- Non-Pended Bus Memory Space-Memory that is mapped to the non-pended
bus may not be mapped write-back, thus allowing a cache block to be in the
modified state and to be cast-out or pushed to the non-pended bus. The result of
having a push or cast-out directed towards a non-pended bus and to have the non­
pended bus access that block would be to deadlock. Violating this rule can cause
the deadlock described by Section 8.22.2, 'The Non-Pended Push Deadlock."

- PowerPC 620 Bus Masters and Push Buffers-All 620 bus masters must set
aside at least one push buffer that can not be used for processor stores or cast­
outs. In addition each master must guarantee that if there are other stores or cast­
outs and they are constantly retried, the push buffer will sooner or later win
internal arbitration and get a chance to arbitrate and run on the bus.

Therefore, if all store/copy-back buffers are filled with stores to a non-pended
bus, and a non-pended bus device wants to read memory, and the non-pended
read will cause a push to memory, then the push buffer will sooner or later be
available for the push caused by the non-pended read, and will get to the bus even
though the stores to the non-pended bus continually get retried.

The ReRun Mechanism-Refer to Section 8.13, "The ReRun Mechanism."

TLBIE/TLBSYNC-If a bus adapter passes TLBSYNC and TLBIE between two
nodes, then software must guarantee that only one processor on each node is allowed
to issue TLBIE and TLBSYNC at a time. The 620 bus only allows a single
TLBIE/TLBSYNC to be active at a time.

• SYNC-A Sync bus operation, originating on node A, and passed from node A to
node B must not block operations on node B that need to complete on node A before
the Sync bus operation on both nodes can be complete.

MOTOROLA Chapter 8. System Interface Operation 8-81

-

• Guarded Space-Any accesses to guarded memory cannot occur until ASTATIN
and ARESPIN responses indicate that the operation can proceed. Aborted operations
cannot speculatively access guarded space.

• ARESPOUT Retry Generation-Bus adapters cannotARESPOUT Retry operations
that are not directed to their own space. Live lock scenarios arise if bus adapters start
retrying operations to another adapter's address space.

8.16 PIO Load and Store Bus Operations
The PowerPC architecture defines separate address spaces defined as the normal memory
segment and the direct-store segment. They are distinguished architecturally by the
segment table entry T-bit. If T=O then the reference is a normal memory segment access,
implemented by memory bus operations. IfT=l then the reference is a direct-store segment
access, implemented by Programmed IO (PIO) bus operations.

Refer to the PowerPC Microprocessor Family: The Programming Environments for the
architectural definition of the direct-store segment.

The architectural ramifications of the direct-store segment are listed as follows:

• Direct-store segment accesses and the resultant PIO bus operations are strongly
ordered.

• They must also provide synchronous error reporting capability.

• A PIO reply error causes a DSI exception.

PIO bus operations and memory bus operations use the same processor interface.

8.16.1 PIO Bus Operations
The following instruction types are supported to the direct-store segment (T=l), in the same
manner as the normal memory segment that is cache inhibited (T=O, l=l), with the
additional architectural constraints of strongly ordered, synchronous error reporting,
uncachable, and not memory coherent.

• Loads and Stores (LB*, LH*,LW*,LD*, STB*, STH*, STW*, STD*)(Note: The*
is a wild-card for all instruction mnemonics with this prefix.)

• Load and Store Multiple (LM*, STM*)

• Load and Store String (LS*, STS*)

8.16.1.1 The Data Size of PIO Bus Operations
Section 8.8, "ASIZEDATA[0-3] and ASIZEBURST Definition," defines the legal PIO bus
operation transfer sizes for the direct store segment. (Note that 16 byte sized transfers are
not supported by the PIO mechanism and that the 620 will split direct store transfers that
cross a double-word boundary into at least two PIO transfers. This is because the 620 will
not gather direct store segment (PIO) stores.)

8-82 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.16.1.2 PIO Instructions Must Wait for an Error Free Reply
Direct Load and Store instructions to the direct store segment cannot retire until an error­
free reply is received from the addressed BUC.

8.16.2 PIO Loads and Stores
5 PIO bus operations are defined in the 620, as shown in Table 8-41. These PIO operations
allow for communication between the 620 and the BUCs. A single direct-store segment
store or load instruction will generate one or more PIO bus operations and, optionally (for
loads), one PIO Reply bus operation from the addressed BUC.

Table 8-41. PIO Bus Operations

PIO Operation Type Direction

PIO Load Immediate A-Only/D-Only 620=>10

PIO Load Last A-Only/D-Only 620=>10

PIO Store Immediate Address-Data 620=>10

PIO Store Last Address-Data 620=>10

PIO Reply Address Only 10 => 620

AS tat for PIO loads and stores supports positive acknowledge. Section 8.4.10, "Address
Status Acknowledge." AResp is not valid and is ignored for PIO bus operations. See
Section 8.4.3.2, "Address Status and Address Response Validation."

8.16.3 PIO Store Operations
A direct-store access store is comprised of 0 or more PIO Store Immediates, 1 PIO Store
Last and 1 PIO Reply, in that order.

Each PIO Store Immediate and PIO Store Last operation transfers data from the 620 to the
BUC. The PIO Store Last tells the BUC that this is the last PIO data transfer and that the
BUC should respond with a PIO Reply. The PIO reply from the BUC provides the 620 with
the E-bit status for the direct-store access store.

8.16.4 PIO Load Operations
A direct-store access load is comprised of 0 or more PIO Load Immediates, 1 PIO Load
Last, and optionally 1 PIO Reply, in that order.

Each PIO Load Immediate and PIO Load Last operation transfers data to the 620 from the
BUC. The PIO Load Last tells the BUC that this is the last PIO data transfer and that the
BUC should respond with a PIO Reply if an error was detected for the PIO load bus
operation sequence. The BUC indicates whether an error was detected for the PIO load
immediate/last bus operation sequence by asserting DERR for the PIO load last. This
indicates to the 620 to expect a PIO reply associated with the PIO Load Last. If DERR for
the PIO load last is not asserted, then 620 will not expect a PIO reply.

MOTOROLA Chapter 8. System Interface Operation 8-83

:'.\ ,\(

!~

II
"!

i ~ ,,,

-

8.16.5 PIO Reply
The following subsections discuss PIO reply.

8.16.5.1 PIO Reply in Response to a PIO Load/Store Last Operation
The PIO Reply is an address-only transaction that is used by the PIO slave to indicate error
status to the PIO master. PIO Store Last operations are always followed by a PIO Reply.
PIO Load Last operations are followed by a PIO Reply only if DERR for the PIO Load Last
operation is asserted. If DERR is asserted for the PIO Load Immediate, then the 620 will
take a machine-check exception.

8.16.5.2 PIO Reply E-bit
If the E-bit of the PIO Reply is set, then the 620 will issue a DSI exception. See
Section 4.6.3, "DSI Exception (Ox00300)." If the E-bit is clear, then the PIO operation and
the direct memory segment operation that caused the PIO operation will complete without
an exception.

8.16.5.3 Flow Control for PIO Reply
Only the PIO master is allowed to flow control a PIO Reply. The 620, as a PIO master, will
never flow control a PIO reply. that is, The 620 will always accept the PIO reply in response
to the PIO operation in progress. Further, the 620 will not wait for the ASTATIN window,
nor will the 620 recognize any attempt to flow control the operation.

8.16.5.4 PIO Reply Received Before or After the Load Last DERR
The PIO Reply may be received before or after sampling DERR for the PIO Load Last data.
The 620 will wait until the latter of receiving the DERR for the load data and the PIO Reply
before internally completing the PIO Load Last and posting a DSI.

8.17 Memory and Cache Coherence
The following sections provide information on the memory and cache coherency of the
620.

8.17 .1 Physical Memory Size
The PowerPC architecture supports a 264 byte physical memory address space. The 620 bus
architecture supports a 248 byte physical memory address space. The 620 supports a 240

byte physical memory address space. The upper 8 bits of the 48-bit bus address will be
driven 0 as an output and ignored as an input. Refer to Section 8.9, "Address Bus."

8.17.2 Cache Block Size
The cache block is the smallest increment of memory over which coherency information is
maintained. This is also called the coherency block. The cache block is an aligned 64-byte
block (four quad-words).

8-84 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.17.3 WIMG Bit Definitions
This section contains the details that are 620 implementation specific.

8.17 .3.1 Write Through
The W-bit is defined as follows.

1 - Write Through-Stores to write through blocks (W=l) will update memory
immediately with non-burst writes. If the block is in the cache, the store will also
update the cache's copy, and leave the state of the cache unchanged (S,E, or M). If
the block is not in the cache (I), the block is not allocated into the cache. The 620
will write the data to memory with the same size and alignment as the store.

0 - Write Back (not write through)-Stores to write back blocks (W=O) will only
update the cache and the block in the cache will be marked modified. Store misses
will cause the blocks to be read into the cache, where they are marked modified.
Modified blocks can be written back to memory, at a later time, using the burst write
bus operation.

When the cache-inhibited bit is set, the W bit is a don't care.

8.17.3.2 Cache Inhibit
The I-bit is defined as follows:

1 - Cache Inhibited

• 0 - Cache Enabled

Cache-enabled memory accesses index into the cache. Except for DCBST, DCBF and
DCBI, cache-inhibited memory accesses do not index into the cache and will not detect
cached blocks if they exist in the cache.

8.17 .3.3 Memory Coherent
The M-bit is defined as follows:

1 - Memory Coherent-The 620 will snoop all bus operations marked memory
coherent, independent of the I-bit.

• 0 - Not Memory Coherent-The 620 snooper will ignore all bus operations marked
not memory coherent (with the exception of TS, TI, SY and IK).

8.17.3.4 Guarded
The G-bit is defined as follows.

1 - Guarded-The 620 will not speculatively access guarded pages in main memory.

• 0 - Not Guarded-The 620 will speculatively access non-guarded pages in main
memory.

MOTOROLA Chapter 8. System Interface Operation 8-85

-

8.17.4 Supported WIMG Combinations (Memory Access Modes)
The following abbreviations are used to the clarify the WIMG codes.

"Ca" and "Noca" indicate cacheable and non-cacheable, respectively.

"Wb" and "Wt" indicate write-back and write-through, respectively.

"Coho" and "Noco" indicate "coherent" and "non-coherent," respectively.

There are 6 memory access modes supported by the 620. They are listed below and
followed by the abbreviation that will be used in this document.

• WIM = 001: Cache Enabled, Coherent, and Write-Back (Ca Coho Wb)

WIM = 101: Cache Enabled, Coherent, and Write-Through (Ca Coho Wt)

WIM = X 11: Cache Inhibited, and Coherent (N oca Coho)

WIM = 000: Cache Enabled, Non-coherent, and Write-Back (Ca Noco Wb)

WIM = 100: Cache Enabled, Non-coherent, and Write-Through (Ca Noco Wt)

WIM = XlO: Cache Inhibited, and Non-coherent (Noca Noco)

8.17 .5 WI MG-Bit Overrides
There are several ways to control the WIMG bits on 620. The MMU provides a base value
for WIMG (generated by the translation mechanism) which can be overridden by several
configuration bits as detailed below:

The following instructions and operations have hardwired PTE WIMG bits. WIMG values
are sourced from the PTE WIMG bits and 0 and 1 indicated hardwired values.

Table 8-42. Hardwired PTE WIMG-Bit Instructions/Operations

WIMG
Instruction/

Definition/Reason
Operation

xx ox All The M-Bit is forced to a 0, or deasserted, when the BUSCSR
SPA bit BUSSNPEN is deasserted. Refer to Section 2.1.2.4,
"Bus Status and Control Register (BUSCSR):'

XX1X LARX and STCX The M-Bit is forced to 1 if the operation is atomic (except LARX
Reserve - see Table 8-18), caused by either the LARX or STCX
instructions. Note that LARX/STCX is not supported until
BUSSNPEN is asserted.

X10X All All Instruction fetch accesses are marked 1=1 and M=O if
BUSSNPEN is deasserted. All Data Loads and Stores are
marked 1=1 and M=O if the DL 1 is disabled. See BUSCSR bit
BUSSNPEN in Section 2.1.2.4, "Bus Status and Control
Register (BUSCSR);' and HIDO bit DCE in Section 2.1.2.3,
"Hardware Implementation-Dependent Register 0 (HIDO)."

1011 MMU Load and store The MMU RC bit stores for the 620 are write through real mode,
which is simpler than copy-back mode. Since the W-bit is a don't
care for loads, MMU loads also use 1011.

0101 ExtConln External Control In and Out are treated as guarded and cache-
ExtConOut inhibited.

8-86 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.17.6 Inconsistent PTE WIM-Bit Memory Modes
Inconsistent WIM memory modes are when two virtual pages, marked with different WIM
settings, alias to the same physical page. All memory instructions, including cache
management instructions, are subject to the restrictions stated in this section.

The 620 does not guarantee hardware memory-cache coherence for any WIM inconsistency
except forWIM = (001,101) Write-Through and Write-Back Memory Coherent.

8.17. 7 Coherency Paradoxes
The following sections list the identified types of coherency paradoxes and how they are
handled by the 620.

8.17.7.1 L1/L2 Not Coherent
The following cases are Ll/L2 not coherent: E/M, M/E, E/E, M/S, E/S, M/I, E/I, S/I. The
620 does not detect these cases and exhibits unspecified behavior if they occur.

8.17.7.2 ARESPIN Paradoxes
ARESPIN paradoxes occur when ARESPIN is not what it should be for a coherent cache
memory system. ARES PIN paradoxes are described below. See Section 8.17 .17, "Master
Cache State Transitions Due to Instructions," and Section 8.17.18, "Snooper Cache State
Transitions Due to Bus Operations."

• Master or Snooper and ARES PIN is reserved-A machine-check exception will be
made if a reserved AResp code is detected. This rule dominates over the next rule.

• Master or Snooper and ARESPIN is invalid due to ASTATIN-ARESPIN is
ignored. Any paradox is not detected.

8.17.7.3 Cache-Inhibited Paradoxes
Cache-inhibited memory accesses do not index into either the Ll or L2 caches. Paradoxes
between cache-inhibited operations and data in the L1 or L2 will not be detected by the 620.

8.17 .8 Multi-Level Cache Definition
A multi-level cache is a hierarchy oflevels that work together to function as one cache. The
nomenclature used in this specification is the Ll is the highest cache level and the level
closest to the processor. The L3 is the lowest level cache; the L3 is the level furthest from
the processor.

8.17 .8.1 The Definition of L 1, L2, and L3
There are three levels of caches defined for the 620: Ll, L2, and L3. The L1 is the first level
cache completely internal to the 620. The L2 is the second level cache whose controller and
interface are built in to the 620 but the tag and data memory is external. The L3 is the third
level of cache and is external to the 620. Refer to Section 9.3.1.8, "L2CLC[0-1] Bits."

MOTOROLA Chapter 8. System Interface Operation 8-87

8.17 .8.2 lnclusivity
A requirement for multi-level cache coherence is that the level above must be inclusive in
the level below. Maintaining this inclusivity will be referred to within this specification as
'vertical cache coherence'. Note that inclusivity is not required for instructio- only caches.

8.17.9 Time and Hierarchical Priority
The following sections provide information on the time and hierachical priorities on the
620.

8.17.9.1 Time Priority
"Time priority" prioritizes bus operations based on the order that they complete on the bus.
There is no priority associated with the order that operations start on the bus. Number 1 is
the highest priority.

1. A bus operation that.has completed on the bus.

2. All bus operations that have not yet completed on the bus.

See Section 8.18, "Address Collision Detection and Handling (CD)."

8.17.9.2 Hierarchical Priority
"Hierarchical Priority" prioritizes bus operations based on their relation or direction with
respect to the root of the hierarchy, the lowest level, which is the system coherency point.
Number 1 is the highest priority.

1. A bus operation directed away from the root of the hierarchy.

2. A bus operation directed towards the root of the hierarchy.

8.17.9.3 Time and Hierarchical Priority
Hierarchical priority has priority over time priority.

1. Hierarchical Priority

2. Time Priority

8.17 .1 O Cache Coherency Protocol
Cache coherence is based on a distributed (snooping) versus a centralized (directory)
coherence mechanism.

The 620 distributed mechanism places a cache block in all caches into 1 of 4 possible states,
Modified, Exclusive, Shared, and Invalid, abbreviated as M, E, S, and I (MESI protocol).

8.17 .10.1 Vertical Cache Coherence
Multiple cache levels together functionally form a single cache. lnclusivity of a cache level
above in a level below is called vertical cache coherence.

8-88 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.17 .10.2 Horizontal Cache Coherence
Coherency between different caches is called horizontal cache coherence. Horizontal cache
coherence is maintained by all cache devices by snooping the bus below that level, and
optionally the bus above that level.

The following tables illustrate the rules concerning cache state coherence in both the
horizontal and vertical dimensions. Vertical lines represent the separation between multi­
level caches. Horizontal lines represent the separation between cache levels, usually
implemented by a bus interface. The box formed by these vertical and horizontal lines
contains the allowable cache states for that cache level.

Note that the term exclusive means that this block is contained in this cache and no other
(horizontal) cache. The term modified means that this block is modified with respect to
memory.

8.17.11 Invalid (I)
Invalid (I) specifies that there is not a valid copy of this block in this cache. Nothing is
implied about whether memory is the owner of this block.

Cache levels above a block marked I must be marked I. Cache levels below a block marked
I may be marked in any of the four states. Other caches may have this block marked in any
of the four states.

The following table describes the rules about I with respect to MESI. Level N on processor
1 is the frame of reference.

Table 8-43. I with Respect to MESI

Cache
P1 P2

Level

LN-1 I

LN I MESI

LN+1 MESI

8.17.12 Shared (S)
A block marked Shared (S) indicates that this block is valid, not modified, and possibly
shared in another cache.The memory is the owner of this block.

Levels above a block marked S may be marked I or S, but not E or M. Levels below a block
marked S may be marked S, E, or M, but not I. Other caches may have this block marked
S or I, but not E or M. (Note: Shared above Modified occurs when Invalid is above modified
and the processor makes a load causing a read. Shared above Modified enables multiple
caches to share an unmodified block that is Modified at a lower level.)

MOTOROLA Chapter 8. System Interface Operation 8-89

The following table describes the rules about S with respect to MESI. Level N on processor
1 is the frame of reference.

Table 8-44. S with Respect to MESI

Cache
P1 P2 Level

LN-1 IS

LN s IS

LN+1 SEM

8.17 .13 Exclusive (E)
A block marked Exclusive (E) indicates that this block is valid, not modified, and exclusive.
No other cache may have a copy of this block. The memory is the owner of this block.

Levels above a block marked E may be marked S or I, but not E or M. A block marked E
must be at the lowest cache level. Other caches at this level must have this block marked I.

The following table describes the rules about E with respect to MESI. Level N on processor
1 is the frame of reference.

Table 8-45. E with Respect to MESI

Cache
P1 P2 Level

L N-1 IS

LN E I

8.17 .14 Modified (M)
Modified (M) specifies that this block is valid, modified, and exclusive. The cache in state
M is the owner of this block.

Levels above a block marked M may be marked I, M, or S (a block may be marked E only
at the lowest level). Levels below a block marked M may only be marked M. Other caches
must have this block marked I.

8-90 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-46 describes the rules about M with respect to MESI. Level N on processor 1 is the
frame of reference.

Table 8-46. M with Respect to MESI

Cache
P1 P2

Level

L N-1 MSI

LN M I

LN+1 M

8.17.15 Ownership
The concept of ownership is applied to the memory location that will service a read.

• The M State-Since a block marked M is the only copy of a block in the system,
then it must be the owner because the data can only be sourced from the modified
copy.

• The E State-The E state, for the 620, defines memory or a lower level as the owner,
not a cache block marked E. This precludes other bus devices from defining the E
state as the owner.

• The S State-The S state defines memory as the owner.

8.17.15.1 Transfer of Block Ownership Between Caches
The 620 implements intervention, the transfer of ownership between caches, for the
RWITM bus operation, but not the Read bus operation. Refer to Section 8.7, "Intervention
and Push Definition."

8.17.16 Cache State Transition Definition
The following sections define the cache state transitions for the 620 caches with respect to
processor instructions and bus operations, one table for each. The third table defines the
cache state transitions for a cache level below the 620 bus, which for this document will be
called the "L3 cache".

Each row of the following tables is a case or set of cases that can be defined as a single
statement. Each of the columns in the following tables are defined as follows:

• Instr./Op.-The "Instruction or Operation" column lists the instruction or operation
that causes this state transition. All rows are instructions, except for deallocate which
means "cache block deallocate".

• Memory Mode-The "Memory Mode" column refers to the "WIM" memory access
mode bits found in the PTE, as described in the PowerPC Microprocessor Family:
The Programming Environments user's manual. See Section 8.17.4, "Supported
WIMG Combinations (Memory Access Modes)."

MOTOROLA Chapter 8. System Interface Operation 8-91

-

-

Note that many combinations of operations and access modes are not listed. Those
that are not listed are considered to be paradoxical. Refer to Section 8.17.7,
"Coherency Paradoxes."

• Coherency State-The "Coherency State" column defines the coherency for the
addressed cache block. The possible states are limited to I, S, E, and M. See
Section 8.17 .10, "Cache Coherency Protocol ."

The notation"->" means that any of the previous states on the left before this
operation will go to the final state on the right after this operation. A list of states that
do not have the"->" symbol will not change state.

A blank box means that the cache does not get accessed.

• Bus Operation-The "Bus Operation" column defines the bus operation, if any, that
this instruction/operation causes. Section 8.12, "Bus Operations."

• ARESPOUT/ARESPIN

- ARESPOUT is the output response caused by this instruction/operation.

- A blankARESPOUT defines the Null response.

- ARESPIN is the input response combined from all output responses.

- A blankARESPIN means that the snoop response for this case is "don't care".

- "S,Null": The final state is S if "Shared", E if "Null".

- "M,M" and "Retry,Retry" indicate whether the response is modified or retry.

• Comments-The definition of"C ->CM" is "cache-to-memory-and-cache" and "C
-> C" is "cache to cache". Section 8.7, "Intervention and Push Definition."

"E if the lowest cache level" means that the final state is E if the level of concern is
the lowest cache level in the system, else the final cache state is S.

8.17 .17 Master Cache State Transitions Due to Instructions
The following table describes cache state transitions that occur due to processor
instructions given the following constraints:

• LD and ST are all loads and stores except for LARX and STCX.

• M=X: The PTE M-bit is ignored by the cache state table except for DCBTST. Refer
to Section 8.12, "Bus Operations," for the computation of the bus M-bit.

8-92 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-47. Master Cache State Transitions Due to Instructions

Num
Instruction/ Memory Coherency

Bus Operation
AResp

Comments
Operation Mode State In

1 LD,DCBT Ca MES

2 LARX MES LARX-Reserve LARX-Reserve issued if L3
t---------1 is enabled (page 69)

3

4 LD, DCBT,LARX, 1->S Read-Burst M M indicates data intervention
t---------1 DCBTSTM=O

5 1->SE Read-Burst $,Null

6 LD, LARX Noca Read-Non-Burst

7 DCBT No Op on Noca blocks

8 ST, DCBTST,STCX CaWb M

9 ST, STCX E->M

10 DCBTST E

11 DCBTST M=O s
12 ST, STCX, and S->M DClaim

1-- DCBTSTM=1
13 1->M RWITM M,M M indicates data intervention

14 ST Ca Wt MESI Write with Flush STCX not supported for Ca
Wt

15 ST,STCX Noc a Write with Flush

16 DCBTST Ca Wt No Op on Wt or Noca blocks
Noca

17 Deallocate Ca M->I Write with Kill (CB)
t---------1

18 ESI-> I

19 DCBF M->I Write with Kill (F)
t---------1

20 ESI-> I Flush

21 DCBI MESl->I DKill

22 DCBST M->SE Write with Clean E if no L3
t----1

23 SE-> SE Clean $,Null Clean optional for ES if no
L3

t----1
24 I Clean

25 DCBZ CaWb EM->M
t---------1

26 CaWb IS->M DClaim
t---------1

27 Ca Wt System Alignment Error Int
Noc a

MOTOROLA Chapter 8- System Interlace Operation 8-93

8.17 .18 Snooper Cache State Transitions Due to Bus Operations
The following table describes the snooper cache state transitions that occur due to snooped
bus operations given the following constraints:

A,W,l=X: These bits are ignored by the 620 as a bus snooper.

M=O: Bus operations that are marked not memory coherent (M=O) may be snooped
by the 620 but do not affect cache states.

M=l: Bus operations that are marked memory coherent (M=l) are snooped by the
620 as a bus snooper, independent of the cache inhibited I-bit.

• Write with Clean bus operation will always be marked M=O, and thus will be
ignored by the 620 snooper.

See Section 8.7, "Intervention and Push Definition"

• Rsrv state: R = 1 indicates a valid reservation with a matching address. R = 0
indicates an invalid reservation or a non-matching address.

Table 8-48. Snooper Cache State Transitions Due to Bus Operations

Num Bus Operation
Snooper Rsrv A Resp AResp

Comments
State State Out In

1 Read-Burst N=1, 8=0 M->8 M Causes C->
N=1, 8=1, 12en MC data-only
N=1, 8=1, 12en, 13en op.

1-----i (Intervention)
2 N=1, 8=1, 12en, 13en M->E M

1-----i
3 N=0,8=0 M->8 Retry Causes Write

N=O, 8=1, 12en with Clean
N=O, 8=1, 12en, 13en (Push)

1-----i
4 N=O, 8=1, 12en, 13en M-> E Retry

1-----i
5 8 8 Note3

1-----i
6 8=0 E->8 8 Note3

i-------i
7 8=1 8 Re Run

1-------i
8 8=1 E 8 Re Run

1-----i
9 I R=O

. 1-----i
10 R=1 8

8-94 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-48. Snooper Cache State Transitions Due to Bus Operations (Continued)

Num Bus Operation
Snooper Rsrv A Resp A Resp

Comments
State State Out In

11 RWITM N=1 M-> I M Causes C->C
data-only op.
{Intervention)

!----
12 N=O M-> I Retry Causes Write

with Kill (Push)
!----

13 ISE-> I Re Run
f---

14 E-> S Re Run
f---

15 IS

16 Write-With-Kill, IESM-> I Re Run
t----- DKill,

17 DClaim E-> S Re Run
!----

18 ISM

19 Write-With-Flush M-> I Retry Causes Write
with Kill (Push)

f---
20 ISE-> I Re Run

f---
21 E-> S Re Run

t----- --
22 IS

23 Read-Non-Burst M->S Retry Causes Write
with Clean
(Push)

t-----
24 SE-> S s Note3

t-----
25 I R=O

f---
26 R=1 s

27 Clean M->SE M1 Causes Write -with Clean
(Push)
E if lowest
cache level, S
otherwise

t-----
28 s s

t---1 s2 29 E Re Run
1----1

30 E-> S s2 Re Run
1----1

31 I R=O
1----1

32 R=1 s

MOTOROLA Chapter 8. System Interface Operation 8-95

Table 8-48. Snooper Cache State Transitions Due to Bus Operations (Continued)

Num Bus Operation
Snooper Rsrv A Resp A Resp

Comments
State State Out In

33 Flush M->I M1 Causes Write
with Kill (Push)

t-----
34 ISE-> I Re Run

t-----
35 E-> S Re Run

t-----
36 IS

37 SYNC, TLBSYNC Re Run, Will ReRun
Null until done. Will

Null when
done.

Notes:

1. M overrides ReRun. This is a performance optimization.

2. ARESPOUT = Shared is not significant to any other snooper which must have this block marked invalid. Note
that the L2 E state implies that there is no L3 cache.

3. Read and Read-Non-Burst will mark the block S for the ReRun response, as well as the Null and Shared
responses.

8.17 .19 L3 Cache State Transitions Due to Bus-Above Operations
The L3 is not implemented by the 620. This section is intended to show how coherence
would be maintained between the 620 and a cache external to the 620. Refer to Figure 8-32.

The following table describes the L3 state transitions that occur due to bus operations given
the following constraints:

8-96

A,W,I,M,N=X: These bits are ignored by the L3 as a bus-above snooper.

All bus operations are snooped, independent of the M-bit and I-bit.

MinL2

- M in L2 is undefined when the state of a block is not modified.

- M in L2, when asserted, indicates that the block is modified at a higher level.

- M in L2, when deasserted, indicates that this block is the highest level that is
marked modified and that the valid data is in this cache level.

Comments

- "Bus Above" means that the actions are taken with respect to the bus above the
L3.

- "Bus Below" means that the actions are taken with respect to the bus below the
L3.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Num

1

2
r----1

3

r----1
4

- The L3 must know what memory space(s) are mapped above and below the L3.

"Address Above" means that the L3 decodes the address to be above the L3

"Address Below" means that the L3 decodes the address to be below the L3

- "1 a or 1 b" indicates that either 1 a or 1 b, but not both.

ARESPIN Retry-Unless otherwise specified the ARESPIN retry response restores
the L3 to the initial state.

Table 8-49. L3 Cache State Transitions Due to Bus-Above Operations

Bus-Above
M In L2

Snooper A Resp A Resp
Comments

Operation State Out In

Read Burst, y M No Action
RWITM,
Write-With-Flush,
Read-Non-Burst,
Clean, Flush

Read-Burst N M M Bus Above: Source Data-Only Operation

SE s Address Above:
No Action
Address Below:
Bus Above: Data-Only Operation

I-> SE s Address Above:
1 . L3 allocates cache block
2. Bus Above: Sink Data-Only Operation
Address Below:
1. Bus Below: Read-Burst, E-state if lowest
cache level and S response, else S-state.
2. Bus Above: Source Data-Only Operation

MOTOROLA Chapter 8. System Interface Operation 8-97

-

Table 8-49. L3 Cache State Transitions Due to Bus-Above Operations (Continued)

Num
Bus-Above

M lnl2
Snooper A Resp A Resp

Comments
Operation State Out In

5 RWITM N->Y M M Address Above:
Data is sourced by the L3 with the M

Null response.
Address Below:
Bus Above: Source Data-Only Operation
with Null response.

t--
6 N->Y E-> M Null Address Above:

No Action and Null response because data
is sourced from memory.
Address Below:
Bus Above: Source Data-Only Operation
with Null response.

t--
7 N-> y S-> M Null Address Above:

,M 1 a. No Action and Null response if data is
sourced from memory.
1 b. Modified response if data is sourced by
L3.
Address Below:
1. Bus Below: DClaim
2. Bus Above: Source Data-Only Operation
with Null response.

t----1
8 N->Y I-> M Address Above:

1 . L3 allocates cache block
2. Bus Above: Sink Data-Only Operation
Address Below:
1. Bus Below: RWITM
2. Bus Above: Source Data-Only Operation
with Null response.

9 Write-With-Kill, -> N IESM-> Address Above: - DKill I No Action
Address Below:
Bus Below: Write-With-Kill or DKill

10 Write-With-Clean Y-> N M->SE Address Above:
No Action, E if lowest cache level.
Address Below:
Bus Below: Write-With-Clean, E if lowest
cache level.

11 DC I aim N->Y IESM-> Mlnl2 must start as N
M Bus Below: DClaim if initial state is M

8-98 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-49. L3 Cache State Transitions Due to Bus-Above Operations (Continued)

Num
Bus-Above Mlnl2 Snooper A Resp A Resp Comments Operation State Out In

12 Write-With-Flush, N M->I Retry Address Above:
Read-Non-Burst 1. Bus Above: Write with Kill (Push)

2. Bus Below: DKill if lower cache level
exists.
Address Below:
Bus Below: Write with Kill (Push) .___

13 ISE->I Address Above:
No Action
Address Below:
Bus Below: Write-With-Flush or Read-Non-
Burst

14 Clean N M->ES s Address Above:
1. Bus Above: Write with Clean, E-state if
lowest cache level, else S-state.
2. Bus Below: Clean
Address Below:
1. Bus Below: Write with Clean

r------1
15 ES s Bus Below: Clean

r------1
16 I Bus Below: Clean

17 Flush N M->I Address Above:
1. Bus Above: Write with Kill (Push)
2. Bus Below: DKill if lower cache level
exists.
Address Below:
Bus Below: Write with Kill (Push)

t-----1
18 E-> I No Action

1----1
19 IS-> I Bus Below: Flush

8.18 Address Collision Detection and Handling (CD)
The purpose of this section is to describe the mechanism used to avoid the interaction
between multiple bus operations. Operations that may interact are referred to "collide" with
each other. The mechanism that detects collisions is called the "collision detection" (CD)
mechanism. The address granularity of CD is the cache block address. (See Section 8.18.3,
"CD-Rules.")

8.18.1 Bus Operation Serialization
Bus execution serialization with respect to the address bus means that two or more
operations are serialized from beginning to end. Bus operations that collide are execution
serialized. Bus operations that do not collide are not execution serialized.

MOTOROLA Chapter 8. System Interface Operation 8-99

-

-

There are two bus device types presently defined with respect to collision detection.

S-Only: A device can only cache in the S state. (Not ME states)

• MES: A device can cache in the MES cache states and supports connectivity with
one or more S-Only device types.

The 620 is an MES-type device. Note that if there are no S-Only type devices, then MES
devices would not have to obey Section 8.18.3.6, "Rule 6: CD Between Snoop Buffers."
The following table defines which CD rules must be followed by each device type in order
to achieve correct operation. Each of the rules are defined in subsequent sections.

Table 8-50. CD Rules: Rules a Bus Device must Follow

Device
CD Rules fype

MES Section 8.18.3, "CD-Rules"
Section 8.18.3.2, "Rule 2: CD Previous Adjacent ASTATOUT Retry"
Section 8.18.3.3, "Rule 3: CD Disabled Bus Operations"
Section 8.18.3.4, "Rule 4: Operations that Take CD Priority"
Section 8.18.3.5, "Rule 5: CD Based on Completion"
Section 8.18.3.6, "Rule 6: CD Between Snoop Buffers"

S-Only Section 8.18.3, "CD-Rules"
Section 8.18.3.2, "Rule 2: CD Previous Adjacent ASTATOUT Retry"
Section 8.18.3.3, "Rule 3: CD Disabled Bus Operations"
Section 8.18.3.7, "Rule 7: CD Requirements for an 10 Device"

8.18.2 CD States and State Transitions
All 620 operations that use collision detection (CD) must be in one of three CD states­
OUT, IN or INBUSY. It is not necessary for other bus devices to implement these same
states a:s long as the CD rules are followed. These states are as follows:

The OUT State-The OUT state indicates that the operation has not passed collision
detection. An operation that is in the OUT state may only snoop the L2 cache to
determine coherency state and change CD states. An operation that is in the OUT
state may not modify any state that may be shared with another operation. No
operation will collide agairist another operation that is in the OUT state. All
operations start and end in the OUT state.

• The INBUSY State-The INBUSY state enables the operation to be uninterrupted
when an operation needs to perform multiple tasks that must be indivisible. An
operation may go from the OUT state to the INBUSY state when the operation has
passed CD, and may stay in the INBUSY state untii the operation is complete or it
is determined that the operation needs to go to the bus. An operation may go from
the IN state to the INBUSY state when the address bus operation response indicates
completion and may stay in the INBUSY state until the operation is complete.

8-100 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

The IN State-The IN state indicates that the operation has passed CD and needs to
go to the bus. Bus operations may share CD for the same block. The first bus
operation that completes on the bus will go into the INBUSY state. All other bus
operations that share CD to that block will be forced from the IN state to the OUT
state. This CD sharing function is handled by the CD collection logic.

Figure 8-33. Collision Detection State Diagram

Table 8-51 provides CD state transition information.

Table 8-51. Collision Detection State Transitions

State Transition Description

OUT-> IN A snooper operation that passes CD will transition from the OUT
state to the IN state.

OUT -> INBUSY The following conditions will cause this state transition:
A master operation that passes CD will transition to the INBUSY
state until the L2 cache state is determined. If the master
operation can be completed without going to the bus, then the
operation stays in the INBUSY state until completion.

INBUSY -> OUT Operations that complete in the IN BUSY state can at any time
give up the CD privilege and go from the INBUSY state to the
OUT state.

INBUSY-> IN If the 620 master operation determines, upon receiving the L2
cache state, that a bus operation is needed, then a state
transition is made from INBUSY to IN.

IN-> INBUSY When an operation completes on the bus the master or snooper
may transition into the INBUSY state and not be interrupted until
the completed bus operation is completed internally.

IN-> OUT The following conditions will cause this state transition:
1. An operation can be forced from the IN state to the OUT state
if another bus operation to the same block completes first.
(Complete is ARESPIN Null, Shared, and Modified. Not complete
is ARESPIN Retry and ReRun.) The operation forced into the
OUT state then loses the ability to continue until CD is passed
again and transitions to the IN or INBUSY states.
2. An operation, for the master or snooper, determines that no
action is needed when completion occurs on the bus.

MOTOROLA Chapter 8. System Interface Operation 8-i 01

-

-

8.18.3 CD-Rules
The following sections discuss the rules for collision detection on the 620.

8.18.3.1 Rule 1: CD Address Precision
The address comparison precision for collision detection for the 620 is the 34-bit block
address, given a 40-bit byte address and a 64-byte block (A[24:57]). All devices that require
compatibility with the 620 will implement the same degree of precision.

• Non-A40 Bus Devices-Bus devices that implement more than 40 bits of physical
address (for example, A44 or A48) must not include the upper address bits above
A40 into collision detection if compatibility with the 620 is desired and addresses
above A40 will be accessed. Bus devices that implement less than 40 bits of physical
address (for example, A32) require the system not to address outside of the smallest
address space device. (that is, An A32 device will limit the system to A32
addressing, even if there are A40 processors in the system.)

32-Byte Sized Block Bus Devices-Bus devices that implement smaller block sizes
than 64 bytes, such as 32 bytes, must not include the lower order block address bits
into collision detection that are not included in the 64 byte block address. Bus
devices that implement larger block sizes than 64 bytes (for example, 128 bytes)
must not exclude high order byte-in-block address bits into collision detection that
are included in the 64-byte block address.

8.18.3.2 Rule 2: CD Previous Adjacent ASTATOUT Retry
CD that is based on completion needs to be able to retry all other operations that have not
yet completed. See Section 8.18.3.5, "Rule 5: CD Based on Completion." Due to the
overlap of ARESPOUT with ARESPIN it is necessary to keep bus operations to the same
block from being too close as to make retrying the later operation impossible.

• Previous Adjacent ASTATOUT Retry Definition-When a master puts an address
bus operation onto the bus the master will ASTATOUT Retry its own bus operation
if the following condition is true. See Section 8.4.17, "Address Status Out and
Address Response Out Retry." The condition exists when the previous address bus
operation does not belong to this master, the present address bus operation does
belong to this master, the previous address bus operation is adjacent, both addresses
block address match (See Section 8.18.3, "CD-Rules."), and previous adjacent is
enabled (Table 8-52).

8-102

The first time that the 620 ASTATOUT retries its own bus operation due to the CD
previous adjacent condition the 620 will reissue the bus operation without first
issuing a Null bus operation. The 2nd to Nth time that the 620 ASTATOUT retries a
bus operation due to the CD previous adjacent condition the 620 will first issue the
Null bus operation and then reissue the bus operation. This will break the deadlock
between devices that all want to issue bus operation that previous adjacent address
match. See Section 8.22.3, "The Previous Adjacent Address Match Deadlock."

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

• The Definition of Previous Adjacent-The previous address bus operation is
considered to be adjacent if it was sampled three or less BUSCLKs before the
present address bus operation is sampled. Figure 8-34 illustrates an address A(O) and
the sample points for three previous addresses. A(-3) andA(-2) are previous adjacent
and A(-4) is not previous adjacent.

Note that the definition of previous adjacent guarantees that for the
BUSRESPTEN=3 configuration that there is a worst case of lBUSCLK from
ARESPIN(-4) to ARESPOUT(O) (see bottom of Figure 8-34). This allows
1 BUSCLK for the completion of A(-4) to retry A(O). For simplicity of testing the
definition of previous adjacent is the same when BUSRESPTEN is less than 3. See
Section 8.4.6, "Address Status and Address Response Tenure (BUSRESPTEN[0-
1])."

Figure 8-34 defines when a previous address bus operation is adjacent.

MOTOROLA

BUSCLK~

Addr

(BUSRESPTEN = 3)
ARESPIN

1 1 1 4 BUSCLKs 1 '
,.._.~,.---~-~----;-- Not Previous Adjacent

I I I I

1 3 BUSCLKs 1

,---.,--...{A-(-3-).;:~:::.-=--=.-::.., -=...-=...--=,_-rl, ~+---,P~evious Adjacent

2 BUSCLKs
'--~----'----UAit:(-2?\)~:r=::::::::r,~.!'.EP~evious Adjacent

I I I

~~-~-~-~: ~~
I I I

I I I 'A(O)\-l
I I 1~1
~1BUSCLK I

ARESPOUT '-----'----'--'. --1(A(O))>----''.---'

Figure 8-34. The Definition of Previous Adjacent

Chapter 8. System Interface Operation 8-103

The following table defines previous adjacent is enabled.

Table 8-52. The Definition of Previous Adjacent is Enabled

Present Operation that is mine

Definition of Previous Adjacent is
Enabled RWITM, LR, WNB-A,

DK, DC, FL, CL

Previous
adjacent
operation
that is not
mine

Notes:

RWITM, LR, DK, DC,
FL, CL, WBK, WBC

Read, l;O or M;1
WNB

1;1 and M;O No

Null, PIO Reply, Tl, IK, SY,
El, TS, PLI, PLL, PSI, PSL,
XCl,XCO

Read

1=0 1=1
or and

M=1 M=O

No

WBK3, WBC3, WNB-A,
Null, PIO Reply1, Tl, IK,
El, SV2, TS2, PLI, PLL,

PSI, PSL, XCI, XCO

1. The 620 will never be the master for PIO Reply and is included here for completeness.

2. Only SY and TS can be ReRun by the 620 as a master.

3. Store buffer operation will retry previous adjacent operation. See Section 8.18.3.4, "Rule 4: Operations that
Take CD Priority."

8.18.3.3 Rule 3: CD Disabled Bus Operations
This section defines the bus operation types that do not collide even when both operations
are to the same block address.

Non-Physical Address Operations-Non-physical address operations do not collide.
Non-physical address operations do not participate in the cache coherency protocol.
The non-physical address operations are:

- XCI, XCO-The graphics commands use the address bus to pass an address to
the DMA controller.

- PLI, PLL, PSI, PSL, PIO Reply-PIO operations are to PIO address space.

- SY, TS, EI-SYNC, TLBSYNC, and EIEIO are address-less operations.

- TI-The TLBIE address is virtual.

• The !Kill Bus Operation-Although the !Kill bus operation has a physical address,
hardware does not maintain coherence for instruction only caches. Software must
maintain coherence when executing the ICBI instruction.

8-104 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.18.3.4 Rule 4: Operations that Take CD Priority
This section defines when a master operation may take CD priority over a snooped bus
operation and ARES POUT Retry the snooped bus operation. See Section 8.4.17, "Address
Status Out and Address Response Out Retry."

Table 8-53. Collision that may immediately retry the snooped bus operation

Case Snooped Bus
Number Operation

620 Master Bus Operation Description

1

2

All AResp-enabled All Block writes or intervention data Data in the store buffer can not be read
M= 1 bus operations. transfers in the store buffer. 1 (Copy-backs, or written and is considered to be an
(See Table 8-1) Pushes, block writes due to flush and clean, operation in progress that cannot be

intervention data transfers.) interrupted.

Any operation that is in a critical section An operation that does not need the
and can't be interrupted. bus to complete is allowed to retry
1. Have passed CD but do not yet have snooped bus operations to the same
cache state to determine if a bus operation block.
is necessary.
2. Completed address bus operation and
either haven't yet updated the cache state
or haven't completed the data read or write
transfer.

Note: A collision on any low priority store in the store buffer will cause that store to be marked as a high priority store.
See Section 8.3.2, "High-Priority Bus Operations," and Section 8.3.4, "Internal Request Arbitration."

8.18.3.5 Rule 5: CD Based on Completion
In general, if an operation does not fall under either Section 8.18.3.3, "Rule 3: CD Disabled
Bus Operations," or Section 8.18.3.4, "Rule 4: Operations that Take CD Priority," then
priority is determined by the order of completion. When the priority between multiple
operations that collide is determined by completion then one operation must succeed and
all other must be retried. Completion is defined as ARESPIN is not Retry or ReRun.

Figure 8-35 and Figure 8-36 describe two aspects of CD when ordering is with respect to
completion. Figure 8-35 defines CD between two bus operations that overlap in time.
Figure 8-36 defines CD between two bus operations that complete out of order.

CD Between Two Bus Operations that Overlap in Time-Operation A starts on the
bus first and operation B starts on the bus second. It is given that operation A is not
previous adjacent to B, so B does notASTATOUT retry itself. See Section 8.18.3.2,
"Rule 2: CD Previous Adjacent ASTATOUT Retry."

The following diagram describes the CD responsibility of the master and snoopers
between operation A which is completing and operation B which is starting.
Sampling ARESPIN for bus operation A occurs at the end of BUSCLK 0.

The master for bus operation A will retry bus operation B if address B occurs prior
to or during cycle 0, addresses A and B collide, address B came after address A, and
operation A completes successfully. If address B occurs in cycle + 1 or later, then the
snoopers and master that may be changing state based on the completion of

MOTOROLA Chapter 8. System Interface Operation 8-105

-

8-106

operation A may retry operation B. Operation B will not be retried when the last of
the devices to change state based on the completion of operation A is finished.

BUSCLK

ARESPIN

I -3 I -2 I -1 I o I + 1 I +2 I +3 I +4 I +5

I I I I I I I I I
I -3 I -2 I -1 I 0 I +1 I +2 I +3 I +4 I +5 I

~~ Master

::i+M:susy ~
Figure 8-35. Address with Respect to Address Response

CD between two bus operations that complete out of order-It is the responsibility
of the master (A) to self ARESPOUT retry if another operation (B) starts after the
master, collides, and completes before the master, Figure 8-36 illustrates this point.
Operation A starts first and operation B starts second. Operation A gets ReRun at
least once and operation B completes first. The master for operation A will see
operation B complete first and will ARESPOUT Retry its own operation A.

BUSCLK

Addr

ARESPIN

ARESPOUT-A

Figure 8-36. Out-of-Order Completion

620 as a Master-The 620 can issue two load operations as a master, one from the
load port and one from the instruction fetch port. The 620 keeps track of which four
bus snoop buffers collide with the two master ports using an 8-entry scoreboard. The
scoreboard is described by the following table. A "Y" indicates a scoreboard bit that
keeps track of a collision between a master port and a snoop buffer.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-54. Scoreboarding between the Master and Snoop Buffers

Master Operations Snoop Buffers

Port Port Operation 0 1 2 3

Data Load Read (1=0 or y y y y

M=1), RWITM, LR,
DK, DC, FL, CL

Instruction Fetch Read (1=0 or M=1) y y y y

8.18.3.6 Rule 6: CD Between Snoop Buffers
Since the S-Only device does not obey the rule described by Section 8.18.3.5, "Rule 5: CD
Based on Completion," then the snooper needs to cover the period from sampling the
address to sampling ARESPIN, as described by Figure 8-35.

The 620 can simultaneously snoop four bus operations. The 620 snooper keeps track of
which snoop buffers collide with each other by using a 6-entry scoreboard, one scoreboard
bit for each pair of snoop buffers that can collide. A "Y" indicates a scoreboard bit that
keeps track of a collision between snoop buffers.

Table 8-55. Scoreboarding Between Snoop Buffers

Snoop Buffers
Snoop Buffers

0 1 2 3

0 y y y

1 y y

2 y

3

8.18.3.7 Rule 7: CD Requirements for an 10 Device
Data may only be cached into the shared (S) coherence state.

1. Any of the following snooped bus operations will speculatively invalidate a pending
read and require that the read data be discarded and the read operation reissued over
again.

- Write-With-Flush

- Write with Kill M=l

-RWITM

- DClaim

- Flush

- DKill

MOTOROLA Chapter 8. System Interface Operation 8-107

-

-

2. Any of the following snooped operations will receive ARESPOUT Shared,
independent of the completion status for the operation that the snoop operation
collided against.

- Clean

-Read

3. IO should take no action for the following operations.

- Write with Clean M=O.

- LARX-Reserve

All other operations are CD-disabled. See Section 8.18.3.3, "Rule 3: CD Disabled Bus
Operations."

8.19 TLB Coherency Control
Translation lookaside buffer coherency control is described in the following sections.

8.19.1 Page TLB
The 620 provides hardware assistance for handling TLB consistency. The 620 supports a
hardware broadcast of TLBI instructions onto the bus. In addition, the 620 supports a
hardware atomic update of the page table change bit.

8.19.1.1 The Software Procedure for TLB Invalidating
TLB invalidating sequences are implemented with the tlbie, sync, and tlbsync instructions
and are fully described in the PowerPC Microprocessor Family: The Programming
Environments user's manual.

8.19.1.2 Update of theTLB change bit (C-bit update)
The 620 processor provides hardware support for page table walking in the event of a TLB
miss. The 620 guarantees that the change bit will be updated successfully before the
operation that caused the C-bit update is started.

8.19.2 Block Address Translation (BAT) Registers
A second method for address translation of large blocks of memory is provided for in the
620 processor. The details of the translation can be found in the PowerPC Microprocessor
Family: The Programming Environments user's manual. In general, this block translation
function is maintained entirely by software. Therefore, the 620 does not provide any type
of hardware coherency support for the update of BATs across processors in a
multiprocessor system. This function is left up to software.

8-108 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

8.20 Atomic Memory Reference Support
This section defines 620 implementation-specific details.

• The Reservation Granule Size-The reservation granule for the 620, defined in the
PowerPC architecture as the reservation block size that is snooped, is 1 aligned
cache block or 64 bytes.

• A Reservation will not be lost when a cache deallocation occurs-The 620 will
continue to hold the reservation when the cache block in which the reservation lies
is deallocated. The reservation participates in the coherence protocol independent of
the contents (valid/invalid) or mode (inhibited/enabled) of the cache.

Snooped bus operations that clear the reservation-The following 5 bus operations
will clear the reservation of the 620 if ARESPIN is not ReRun or Retry. Snooped bus
operations other than those listed will not clear the reservation (RWITM, DClaim,
Write with Flush, DKill, Write with Kill).

• The Definition of a Reservation-A reservation, as treated by the 620, is a multi­
level single-entry tag-only cache that can only have two states, set and clear. The 620
prescribes a LARX/STCX solution that requires a reservation to be set at all levels
in order for the STCX to succeed.

• Reservation Inclusivity-All reservations are inclusive in the same meaning of the
word customarily used with respect to caches. This means that if a reservation is set
at a higher level, then it must be set at all lower levels. If a reservation is cleared
because of a store, a bus operation must be propagated to all higher levels to clear
out the reservation.

Related Sections:

• Section 8.6.2, "Atomic Address Attribute (A-Bit)"

• Section, "The address command is defined by ATYPE[0-4] andA[0-7] according
to Table 8-16. The following attributes are defined:"

Section 8.17 .17, "Master Cache State Transitions Due to Instructions"

8.20.1 Cache-Inhibited
• LARX-The LARX causes the reservation to be set and the Read-NonBurst-Atomic

bus operation to be issued. The Read-NonBurst-Atomic bus operation will set all
reservations at all levels below the processor. See Section 8.12.3, "Read."

STCX-The STCX instruction will cause the Write-With-Flush-Atomic bus
operation to be issued if the reservation is set. Otherwise, no bus operation will be
issued and the STCX will fail.

If the reservation is cleared by a non-previous adjacent address bus operation during
the address tenure of the Write-with-Flush-Atomic, then the 620 will retry itself and
the STCX will fail. If the reservation is set when the response to the Write-With­
Flush-Atomic bus operation is Null (ARESPIN = Null), then the STCX succeeds

MOTOROLA Chapter 8. System Interface Operation 8-109

and the reservation is cleared. See Section 8.12.6, "Write-With-Flush," and
Section 8.18.3.2, "Rule 2: CD Previous AdjacentASTATOUT Retry."

8.20.2 Write-Back
• LARX-The LARX causes the reservation to be set at each cache level and causes

either the Read-Burst-Atomic bus operation to be issued if the addressed block is
marked I or the LARX-Reserve bus operation to be issued if the addressed block is
marked S, E, or M.

The 620 will issue the LARX-Reserve bus operation only ifthe L3 is enabled. If the
L3 is disabled the operation will complete internally without a LARX-Reserve bus
operation. The Read-Burst-Atomic bus operation will set all reservations at all levels
down to the highest level that has the addressed block valid. The LARX-Reserve bus
operation is then issued to set all reservations from that level to the lowest level. See
Section 8.12.3, "Read," and Section 8.12.2, "LARX-Reserve."

• STCX-Ifthe reservation is clear, then the STCX fails and the data is not written to
memory or the cache.

If the reservation is set and the addressed cache block is marked I, then the STCX
causes the RWITM-Atomic bus operation to be issued.

If the reservation is set and the addressed cache block is marked S, then the STCX
causes the DClaim-Atomic bus operation to be issued.

If the reservation is set and the addressed cache block is marked E or M, then the
STCX succeeds and no bus operation needs to be issued.

The following text describes behavior after the bus operation is issued. If the
reservation is set and the response is null, then the STCX succeeds and the data is
written to the cache. If the reservation is clear and the response is retry or null, then
the STCX fails and the STCX data is not written to the cache. See Section 8.12.1,
"RWITM (Read-With-Intent-To-Modify)," and Section 8.12.9, "DClaim."

8.20.3 Write-Through
The LARX and STCX instructions to the Write-Through memory access mode are not
supported by the PowerPC architecture and will cause a DSI exception.

8.20.4 External Support for the Reservation
The following sections provide information on the external support for the reservation
provided for by the 620.

8.20.4.1 The A-bit Address Attribute
All bus operations that are a direct result of either a LARX or STCX instruction are encoded
on the bus with the atomic address attribute (for example, castouts caused by a lwarx do
not have the atomic address attribute). Bus operations behave differently when marked
atomic. Each bus operation will define how the atomic address attribute changes the bus

8-110 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

operation function. See Section 8.6.2, "Atomic Address Attribute (A-Bit)," and
Section 8.12, "Bus Operations."

Note that this does not force all LARX and STCX instructions to generate bus transactions,
but rather provides a means for identifying when they do.

If an implementation requires that all LARX and STCX instructions generate bus
transactions, then the associated pages should be marked cache-inhibited.

8.20.4.2 The RESERVE Signal
The state of the reservation is always presented onto the RESERVE signal output pin. The
latency from the internal reservation bit to the RESERVE signal will be no more than one
BUSCLK cycle. This can be used to determine when an internal condition has caused the
reservation bit to be set or reset.

The 620 does not require for a system to use this signal in order for LARX/STCX
instructions to work in a multi-level cache hierarchy.

8.21 Processor Interface SPRs
The address map for the 620 SPRs is located in Section 2.1.2.3, "Hardware
Implementation-Dependent Register 0 (HIDO)." This section discusses several BUSCSR
bits.

8.21.1 Bus Snooper Enable (BUSSNPEN)
The SPR bit BUSSNPEN enables the bus snooper. When BUSSNPEN is deasserted the
snooper will ignore all bus operations and all bus operations issued by the 620 will have the
bus M bit deasserted or forced to 0. Note that coherency between any two processors is not
supported until the last processor snooper has been enabled. When BUSSNPEN is asserted
the snooper will snoop bus operations and all bus operations issued by the 620 will not force
the M bit to 0. The hardware reset state for BUSSNPEN is deasserted.

8.21.2 Bus Intervention Enable (BUSINTVEN)
The SPR bit BUSINTVEN enables intervention for the bus operations issued by the
processor. Section 8.7.2, "Intervention Enable Bit (BUSINTVEN)." The hardware reset
state is deasserted.

8.21.3 Bus Parity Error (BUSPARERR[0-2])
The SPR bits BUSPARERR[0-2] indicate that a bus parity error has occurred and is always
set independent of the parity enable bits (HIDO(EBA,EBD)). Refer to Section 8.11, "Parity
Protection," for the definition of BUSPARERR[0-2]. BUSPARERR[0-2] is deasserted by
any write to BUSCSR SPR. The hardware reset state is deasserted.

Refer to Table 4-2 for the function of HIDO(EBA,EBD). EBA and EBO do not effect the
setting of BUSPARERR[0-2]. The hardware reset state for EBA and EBD is deasserted.

MOTOROLA Chapter 8. System Interface Operation 8-111

-

-

8.21.4 Bus Data Error and Enable (BUSDERR, BUSDERREN)
The SPR bit BUSDERR indicates that the bus signal DERR was asserted for a read data
other than for PIO Load Last and is always set by this condition independent of the
BUSDERREN SPR bit. BUSDERR is deasserted by any write to BUSCSR SPR. For PIO
Load Last, the BUSDERR bit is set only if DErr received on a read data and a PIO Reply
is received with the Error bit set (see Section 8.16.5, "PIO Reply"). The hardware reset state
is deasserted. Section 8.5.9, "Data Error (DERR)."

The bus SPR bit BUSDERREN enables this error condition to cause a machine-check
exception. This SPR bit does not effect the setting of BUSDERR or the behavior of the bus
DERR signal. The hardware reset state is deasserted.

8.21.5 Bus Response Code Error (BUSRESPERR)
The SPR bit BUSRESPERR indicates that a reserved response code was detected for an
address bus operation and is always set by this condition. A machine-check exception is
initiated. The bus operation is aborted.

BUSRESPERR is deasserted by any write to BUSCSR SPR. The hardware reset state is
deasserted. See Section 8.4.9, "Address Response In/Out."

8.21.6 Bus Positive Acknowledge Error (BUSPOSACKERR)
The SPR bit BUSPOSACKERR indicates that an expected positive acknowledge was not
received for an address bus operation and is always set by this condition independent of the
BUSPOSACKEN SPR bit. A positive acknowledge will be expected independent of the
BUSPOSACKEN SPR bit. BUSPOSACKERR is deasserted by any write to BUSCSR
SPR. The hardware reset state is deasserted. Section 8.4.10, "Address Status
Acknowledge."

8.21. 7 Bus Positive Acknowledge Error Enable (BUSPOSACKEN)
The SPR bit BUSPOSACKEN enables the positive acknowledge error condition to cause a
machine-check exception. This SPR bit does not effect the setting of BUSPOSACKERR.
The hardware reset state for BUSPOSACKEN is deasserted. In addition, when
BUSPOSACKEN is deasserted bus operations that support positive acknowledge (refer to
Table 8-13) will treat NoAck like a PosAck.

8.22 Deadlock Scenarios and Solutions
The following sections provide information on deadlock scenarios and solutions.

8.22.1 The Queue Full/Ping-Pong Deadlock
A bus master issues a bus operation to two bus devices, 1 and 2. The bus operation takes
longer to execute than it takes for a master to rearbitrate for the bus and issue the same
operation over again. Each time the master issues the bus operation it is retried by 1, then

8-112 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

2, then 1, and so on. Each bus device has executed the bus operation at least once, but the
master thinks, or assumes, that it has not been executed once by all bus devices.

Figure 8-37 illustrates the deadlock.
Bus device 1 is busy for some other reason and retries the first address.
Bus device 2 accepts the bus operation and starts to execute the operation.
Bus device 2 is busy with the first address and retries the second address.
Bus device 1 accepts the second address and starts to execute the operation.
Bus device 1 is busy with the second address and retries the third address.
Bus device 2 accepts the third address and starts to execute the operation.
Repeat this pattern.

BUSCLK

I

1 Busy I I I I I
- -, - -1- - i - -1- - 1

2 Busy :~

Figure 8-37. Queue Full/Ping-Pong Deadlock

A bus operation that gets AStat Retried will be aborted 1 cycle from sampling ASTATIN
Retry. Aborted means that the ASTATIN Retried bus operation will not cause any
subsequent bus operations to be ASTATOUT or ARESPOUT Retried due to a queue full
condition.

Related Text:

• Section 8.4.17, "Address Status Out and Address Response Out Retry"

• Section 8.4.18, "ASTATIN andARESPIN Retry"

8.22.2 The Non-Pended Push Deadlock
A bus device adapts a non-pended bus to the 620 bus. The non-pended bus starts an
operation that locks up the non-pended bus until the operation is complete. The non-pended
bus operation causes a snoop push by the 620 and there is no push buffer available for the
push and all push buffers contain operations directed towards the non-pended bus.

• Deadlock prevention by the system-Non-Pended memory space can not be marked
write-back and cached in the modified state. See Section•, "Non-Pended Bus
Adapter-A non-pended bus is a bus that does not support retry as a mechanism to
allow a higher priority operation to hold off a lower priority operation until the
higher priority operation can get onto the bus. The following guidelines must be
followed when a bus adapter connects a non-pended bus to the 620 bus .. "

MOTOROLA Chapter 8. System Interface Operation 8-113

• Deadlock prevention by the 620:

- There is 1 store buff er set aside for bus cast-outs (pushes) that can not be used
for stores and processor cast-outs.

- Internal operations will be reprioritized when a bus operation is retried.

- Internal arbitration will guarantee that a bus push will be issued to the bus
eventually, even if other pushes continually get retried. See Section 8.3.4,
"Internal Request Arbitration."

8.22.3 The Previous Adjacent Address Match Deadlock
N bus devices attempt to issue operations to the bus. Each of the devices collide. Each
device responds to the detection of the previous adjacent address match by retrying itself
and reissuing the same bus operation. Every time each bus device issues it's bus operation
it collides with the operation of the previous bus device.

Refer to the solution described by Section 8.18.3.2, "Rule 2: CD Previous Adjacent
ASTATOUT Retry."

8.23 Hardware Configuration Mechanism (HCM)
The Hardware Configuration Mechanism (HCM) provides external configuration
information to the 620 during hardware reset in order for the 620 to be able to start fetching
instructions.

There are two types of pins used by the HCM-LSSD and HCM-Only. LSSD pins function
as HCM inputs when the Testlnhibit signal is deasserted (LSSD disabled). LSSD pins are
only used during chip manufacturing. The HCM-Only pins are always defined to be HCM
inputs and should be weakly pulled or driven to the desired value.

All pins used by the HCM should have valid HCM values during the assertion of HRESET
and should be held valid for three BUSCLKs after HRESET is deasserted.

Table 8-56. Hardware Configuration Variables

Pin Type Signal name
Hardware Configuration

Variable

HCM Only BUSCLKGTL BUSCLKGTL

LSSD/HCM SHIFTGATE BUSRATIO[O)

HCMOnly BUSRATI01 BUSRAT10(1)

LSSD/HCM L1_TESTCLK PLLPUMPLOW

L2_TESTCLK PLLVCODIV[O)

RCVRINHIBIT PLLVCODIV[1)

8-114 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-56. Hardware Configuration Variables (Continued)

HCM Only BUSRESPTENO BUSRESPTEN[O]

BUSRESPTEN1 BUSRESPTEN[1]

BUS DX BUS DX

BU SP I DO BUSPID[O]

BUSPID1 BUSPID[1]

BUSPID2 BUSPID[2]

LSSD/HCM DRVRINHIBIT1 BUSPID[3]

DRVRINHIBIT2 BUSPID[4]

8.24 Debug Support
The 620 implements the following facility to support system debugging:

• Instruction Tracing-The 620 supports instruction tracing as described in PowerPC
Microprocessor Family: The Programming Environments, and Section 4.6.11,
"Trace Exception (OxOODOO)."

Data Address Breakpoint-The 620 supports data address breakpoint as described
in Section 2.1.1, "Register Set."

Instruction Address Breakpoint-The 620 supports instruction address breakpoint
as described in Section 2.1.1, "Register Set." The IABR is also incorporated in the
ESP debug support. An ESP breakpoint command can be used to initialize the IABR
and set-up the 620 such that if an address compares, no exception will be taken, but
620 will stop the processor clock and allow the ESP to access the processor's
internal states. The clock will resume running when ESP issues a resume command.

Single-Instruction Mode-When HID0[24]=0, 620 will run in the single-instruction
mode. The 620 will dispatch, execute and complete one instruction at a time, see also
Section 2.1.2.3, "Hardware Implementation-Dependent Register 0 (HIDO)."
HID0[24] is also incorporated in the ESP debug. The ESP instruction step command
will cause 620 to stop the internal clock every time it completes a valid instruction,
and allow the ESP to access processor's internal states.

• Processor Internal Watchdog-The 620 implements a watchdog facility which will
force the 620 into Checkstop state if 620 does not complete any valid instructions
during the period of time that the Decrementer passes through zero twice. The
Decrementer is enabled when the TBEnable_ signal is asserted and it decrements
every BUSCLK. If the bus frequency is 66MHz, then it takes at least 65 seconds for
the 32-bit Decrementer to pass through zero twice. The watchdog facility is disabled
when HID0(14)=1.

MOTOROLA Chapter 8. System Interface Operation 8-115

-

-

8.25 Hard Reset
The hard reset sequence begins when the hard reset signal HRESET is asserted. While
HRESET is asserted, the internal phase-lock-loop (PLL) will synchronize the internal
processor clock with the system bus clock based upon the PLL bandwidth control signals
described in Section 7.2.13.4.l, "Hard Reset (HRESET)-Input," and the bus ratio
specified on the hardware configuration pins as described in Section 8.23, "Hardware
Configuration Mechanism (HCM)." At the same time, the 620 will automatically reset the
internal registers through the built-in scan chains. The whole process including PLL
synchronization should take no more that 2ms. See Section 7.2.13.4.1, "Hard Reset
(HRESET)-Input," for more detailed timing requirements. Once the HRESET is
deasserted, the 620 will start its functional clock and fetch the first instruction from address
OxOOOOOOOOFFFOOIOO in the system reset exception vector.

While HRESET is asserted, all processor and L2 interface I/O's are set in the tristated mode
except for L2Clock and L2CLOCK, and the system interface signals are ignored. All pins
used by the HCM should have valid HCM values during the assertion of HRESET and
should be held valid for at least three BUSCLKs after HRESET is deasserted. The JTAG
Reset (JTAG_TRST) pin should be held asserted, and all LSSD Test input signals should
be deasserted while HRESET is asserted.

Table 8-57 shows the state of the architectural registers and major arrays after the hard reset
and before the first instruction is fetched. Most arrays are not initialized at the end of hard
reset, but they can be initialized through the Array-Built-In-Self-Test (ABIST) mechanism
which can be initiated with JTAG commands.

The following is also true after a hard reset operation:

MSR is initialized with all O's except IP bit is set which means 620 will operate with

- both instruction and data translation disabled, and in

- 32-bit, and big-endian mode,

HIDO is initialized with all O's which means 620 will operate with

- both instruction and data caches disabled, and parity checking disabled,

- internal watchdog enabled,

- superscalar mode disabled,

- static branch prediction without update of branch history table, and

- speculative instruction fetch from the memory disabled.

• External checkstop is enabled.

• Processor interface configuration is set through hardware configuration mechanism
as described in Section 8.23, "Hardware Configuration Mechanism (HCM)."

• Processor and L2 interface I/O's operate in functional mode.

8-116 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 8-57. Register/Array Settings after Hard Reset

Register Width Setting Array Setting

FPSCR 32 All Os GPR undefined

CR 32 All Os FPR undefined

LR 64 All Os I Cache invalidated

CTR 64 FFFFFFFFFFFFFFFF D Cache invalidated

XER 32 All Os TLB undefined

MSR 64 0000000000000040 (IP set) SLB undefined

SRR1 64 0000000000000040 I BAT's undefined

SRRO 64 All Os D BAT's undefined

DEC 32 All Os I ERAT invalidated

SPRGO 64 All Os D ERAT invalidated

SPRG1 64 All Os BHT undefined

SPRG2 64 All Os BTAC undefined

SPRG3 64 All Os

Time Base 64 All Os

PVR 32 0014tMrm
t: technology indicator
M: major revision
r: reserved
m: minor revision

DABR 64 All Os

IABR 64 All Os

ASR 64 All Os -SDR1 64 All Os

DSISR 32 All Os

HIDO 32 00000102

EAR 32 All Os

L2CR 64 0000000000000215

L2SR 64 All Os except bits (35-39)
undefined

BUSCSR 64 All Os except bits (40-42, 44-
47) sampled from pins

PIR 32 All Os except bits (59-63)
sampled from pins

PMC1 32 All Os

PMC2 32 All Os

MOTOROLA Chapter 8. System Interface Operation 8-117

Table 8-57. Register/Array Settings after Hard Reset (Continued)

Register Width Setting Array Setting

MMCRO 32 All Os

MMCR1 32 All Os

SIA 64 All Os

SDA 64 All Os

PMC1 32 SC

PMC2 32 3

PMC3 32 All Os

PMC4 32 2

PMC5 32 All Os

PMC6 32 All Os

PMC? 32 2

PMC8 32 All Os

-

8-118 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 9
Secondary Cache Interface
The PowerPC 620 microprocessor implements an in-line secondary (L2) cache (that is, an
integrated L2 cache controller and external tag and data SRAMs). This chapter provides
information on the L2 cache interface operation, register set, and ECC errors, as well as
providing timing diagrams.

9.1 Overview
The L2 cache interface includes the following features:

A unified instruction and data cache
Direct· mapped
Data and tag memories are accessed with the same address
The block size, which is the same as the sector size, is 64 bytes
The L2 may be disabled

Supports L2 cache configurations from 1 Mbyte to 512 Mbytes
Supports single-, double-, triple-, and quad-register synchronous SRAMs
Provides no support for asynchronous SRAMs
Accommodates a wide range of access time SRAMs with a sub-synchronous
interface configured at power-on

• Provides the following ECC protection:
- A 9-bit ECC code is generated over 128 bits of data
- A 6-bit ECC code is generated over the tag and coherency stat~
- ECC codes are single-bit correcting and double-bit detecting

- The L2 interface generates a machine check exception for uncorrectable errors
- ECC operates in the following three modes:

- Always corrected mode-ECC is generated for writes and always corrected

MOTOROLA

for reads. This provides constant L2 read access latency.

Never corrected mode-ECC generation, checking, and correction are
disabled. The 620 ECC inputs are disconnected; outputs are not defined.

Automatic switch mode-ECC is generated for writes and corrected for reads
only when an error is detected. L2 read access latency is a function of when
correctable errors are detected.

Chapter 9. Secondary Cache Interface 9-1

-

I'

',

-

For more information on the ECC refer to Section 9.4, "ECC-L2 Error Detection and
Correction."

9.2 L2 Cache Interface Operation
The following sections describe L2 cache operations.

9.2.1 L2 SRAM Connection Diagram
Figure 9-1 shows how SRAMs are connected to the L2 interface. Though only two SRAMs
are shown, the blocks could be composed of multiple SRAMs.

L2ADDAESS[0-15] t---+--+-+-'--1 A '-A
L2DATAENABLEO r-----+--+-

L2TAGENABLE r----+-+---1 E" Tag L____ E" Data
l2WAITEDATA f---1- AAM(s) AAM(s)

L2WRITETAG r-----t----1 W ~w

[20 UTPLJTENABLE G ~--1G

CLK CO< D CLK CD< D
620

L2TAG[0-10] ~
L2COHERENCY[0-1]

L2TAGECC[0-5]
L2DATA[0-127] 1----"'I

L2DATAECC[0-8] t-----'

I 7
l
1

Clock r----'
L2CLOCK 1----------; Distribution
L2CLOCK Chip 1-----~

L2CLKIN 1-----------~J T
[2CLKlN r1-

Figure 9-1. L2 Connection Diagram

9.2.2 Description of L2 Interface Digital PLL

J

To eliminate clock latency on the L2 data bus, a digital PLL is utilized to guarantee that the
SRAM clocks are phase aligned to the internal processor clock. The output of the PLL is
the differential CMOS pair of L2CLOCK and L2CLOCK, as shown in Figure 9-1. The
L2CLOCK pair (or single ended CMOS output when selected) must be fed into a fanout
clock buffer, with one output (pair) fed back to the L2CLOCKIN and L2CLOCKIN inputs.
This closes and completes the PLL feedback loop. As long as the length of the feedback
output of the clock buffer is equal to the length of the buffer output traces to the SRAM
clock inputs, the SRAM clocks will be phase aligned to the internal 620 processor clock,
refer to Section 9.3.1.15, "L2PLLEN Bit."

9-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

9.2.3 L2 Direct Connectivity to SRAMs
The 620 interface supports direct connectivity (without external support) for up to two
banks of SRAMs (Banks 0 and 1). The 620 will insert a high impedance L2CLOCK cycle
to avoid bus contention for the following general conditions on the L2 data bus:

• When a write follows a read

• When a read follows a write

• For other conditions dead cycle injection depends on whether the SRAMs are
enabled and the value of the L2 deadcycle bit in the L2CR register. For complete
details when dead cycles are injected see Section 9.3.1.2, "L2NORWDEAD Bit."

Note that this mechanism can increase the maximum snoop latency through the cache by
one L2CLOCK (L2RATIOSR). Section 8.4.5, "Address to ARESPOUT Latency
(BUSTLAR[0-2])."

9.3 L2 Interface Register Set
The following sections provides information on the L2 interface register set. For more
information refer to Chapter 2, "Programming Model."

9.3.1 L2 Configuration Register (L2CR)
The following section describes the usage of the L2CR bits. Refer to Section 2.1.2.6, "L2
Cache Status Register (L2SR)." The coherency block size of the L2 cache is fixed at 64
bytes.

9.3.1.1 Programming Restrictions
L2NORWDEAD=O; L2LATEWRITE= 1; L2SINGSYNC= 1

Incorrect operation may result if these four SPR bits are programmed as specified. All other
possible combinations of these four bits are not restricted.

9.3.1.2 L2NORWDEAD Bit
When L2NORWDEAD (bit 37) is asserted dead cycles are not inserted between read and
write cycles on the L2 interface. If you have determined that there would be no detrimental
effect caused by having two buffers enabled on a net at a given time, and you can handle
the added timing of having a signal take two transit times to resolve instead of one, you may
choose to eliminate the injection of dead cycles between read and write cycles. This
increases the throughput of the L2 interface and should positively affect performance.

MOTOROLA Chapter 9. Secondary Cache Interface 9-3

-

-

Table 9-1 shows the definition ofL2NORWDEAD.

Table 9-1. L2NORWDEAD Bit

L2NORWDEAD Meaning

0 Dead cycles injected between read and writes.

1 Dead cycles not injected between read and writes.

9.3.1.3 L2SIZE(0-3] Bits
The L2SIZE[0-3] bits (L2CR[40-43]) are the cache capacity and organization bits; refer
to Table 9-2. Note that values of L2SIZE not shown in Table 9-2 are reserved. Refer to
Section 2.1.2.6, "L2 Cache Status Register (L2SR)," for more information.

Table 9-2. L2SIZE[0-3] Bits

L2SIZE[0-3] L2 Cache Capacity

0000 1MB

0001 2MB

0010 4 MB

0011 8 MB
t---------1

0100 16MB

0101 32 MB
c---

0110 64MB

0111 128 MB

1000 256 MB

1001 512 MB

9.3.1.3.1 The L2TAGADD Signal
The width of the L2 cache tag decreases as the L2 cache capacity increases. The width of
the L2 cache index increases as the L2 cache capacity increases. A minimal interface signal
implementation is achieved by changing the definition of L2TAGADD[0-8] based on the
L2 cache capacity, as shown by Table 9-3 and Table 9-4. Table 9-3 describes a single bank
cache. Refer to Section 7.2.6.8, "L2 Enable Signals." for additional information about L2
signals.

9-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 9-3. L2 Cache Capacity and Tagnndex Signal Definition-Single Bank

Total Tag
Tag Data Tag: Tag Index: Data Index:

Capacity Size
Index Index [L2TAG]ll [L2TAGADD]ll [L2TAGADD]ll
Size Size [L2TAGADD] [L2Address] [L2ADDRESS]

1 Mbytes 20 bits 14 bits 16 bits 10-1011110-01 10-131 I0-151

2 Mbytes 19 bits 15 bits 17 bits 10-1011110-71 1811110-131 1811110-151

4 Mbytes 18 bits 16 bits 18 bits I0-1011110-61 [7-8Jlll0-131 17-BJlll0-151

8 Mbytes 17 bits 17 bits 19 bits I0-10)1\[0-51 16-BJlll0-131 [6-BJlll0-151

16 Mbytes 16 bits 18 bits 20 bits I0-101111D-41 [5-8Jlll0-131 15-BJlll0-151

32 Mbytes 15 bits 19 bits 21 bits I0-10)1\ID-31 14-Bllll0-131 14-Bllll0-151

64 Mbytes 14 bits 20 bits 22 bits 10-1011110-21 13-811110-131 13-BJlll0-15]

128 Mbytes 13 bits 21 bits 23 bits [0-1011110-11 12-811110-131 12-8]1110-151

Table 9-4 describes a double bank cache.

Table 9-4. L2 Cache Capacity and Tagnndex Signal Definition-Double Bank

Total Tag
Tag Data Tag: Tag Index: Data Index:

Index Index [L2TAG]ll [L2TAGADD]ll [L2TAGADD]ll
Capacity Size

Size Size [L2TAGADD] [L2ADDRESS] [L2ADDRESS]

1 MBytes 20 bits 14 bits 15 bits 10-1011110-s1 10-131 11-151

2 M Bytes 19 bits 15 bits 16 bits [0-10111[0-71 18]1110-131 1811111-151

4 MBytes 18 bits 16 bits 17 bits 10-1011110-61 17-811110-131 17-811111-15]

8 MBytes 17 bits 17 bits 18 bits 10-1011110-51 16-BJlll0-131 16-811111-151

16 MBytes 16 bits 18 bits 19 bits I0-10llllD-41 15-811110-13] 15-811111-151

32 MBytes 15 bits 19 bits 20 bits 10-10]11[0-31 14-BJlll0-13] 14-811111-151

64 MBytes 14 bits 20 bits 21 bits 10-1011110-21 13-811110-131 13-811111-15]

128 MBytes 13 bits 21 bits 22 bits 10-1011110-11 12-BJlll0-13] 12-BJlll1-151

9.3.1.3.2 L2 Cache Organization Examples
The 620 provides direct connect support for SRAM devices. The issue rate of some SRAM
configurations may be less than other configurations because of address loading. Address
repowering may be necessary depending on the configuration.

Some example configurations of the data and tag portions of the L2 are listed in Table 9-5
and Table 9-5. The L2 tag store only needs to be 1/4 of the depth of the L2 data store. A
configuration is acceptable if it meets the functional requirements for the configured
capacity and operates at the proper L2 cycle time.

MOTOROLA Chapter 9. Secondary Cache Interface 9-5

-

-

The tag memory will vary based on the cache capacity and the availability of less dense and
wide' SRAMS. (For availability reasons the tag SRAMs may be the same as the data
memory SRAMS, and waste all but l/nth where n is the block size in quad words.)

Table 9~5. Cache Capacity and Organization for Data Portion of L2 Cache

Total Total SRAM SRAM Overall.
Capacity Devices Density Organization Organization

1 MByte 8 1 Mbit 64 Kbits x 18 bits 8 wide x 1 deep

2 MBytes 16 1 Mbit 64 Kbits x 18 bits 8 wide x 2 deep

2 MBytes 16 1 Mbit 128 Kbits x 9 bits 16 wide x 1 deep

4 MBytes 8 4 Mbits 256 Kbits x 18 bits 8 wide x 1 deep

8 MBytes 16 4 Mbits 256 Kbits x 18 bits 8 wide x 2 deep

16 MBytes 8 16Mbits 1 Mbit x 18 bits 8 wide x 1 deep

32 MBytes 16 16 Mbits 1 Mbit x 18 bits 8 wide x 2 deep

Table 9-6. Cache Capacity and Organization for Tag Portion of L2 Cache

Total Total SRAM SRAM Overall
Capacity Devices Density Organization Organization

1 MByte 2 1 Mbit 64 Kbits x 18 bits 2 wide x 1 deep

2 MBytes 2 1 Mbit 64 Kbits x 18 bits 2 wide x 1 deep

2 MBytes 4 1 Mbit 128 Kbits x 9 bits 4 wide x 1 deep

4 MBytes 2 4Mbits 256 Kbits x 18 bits 2 wide x 1 deep

8 MBytes 2 4Mbits 256 Kbits x 18 bits 2 wide x 1 deep

16 MBytes 2 16 Mbits 1 Mbit x 18 bits 2 wide x 1 deep

32 MBytes 2 16 Mbits 1 Mbit x 18 bits 2 wide x 1 deep

9.3.1.4 L2RATIOSR Bit
L2RATIOSR (L2CR[60--61]) indicates the frequency L2CLOCK in terms of processor
clocks (PCLKs).

If the L2 is disabled L2RATIORP must have its value set to the default 01. Refer to
Section 2.1.2.6, "L2 Cache Status Register (L2SR)."

9-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

L2RATIOSR is defined in Table 9-7:

Table 9-7. l2RATIOSR Code Definition

L2RATIONSR[0-1] Definition Unit

00 Reserved PCLK

01 1 PCLK

10 2 PCLK

11 3 PCLK

Example of how to set L2RATIO:

If the processor clock is running in 2: l mode with respect to the L2 interface, then the value
is set to two PCLKs. Likewise, if the ratio is 1: 1 for PCLKs to L2, then the value is set to
one PCLK (default mode).

9.3.1.5 L2ECCMODE[0-1] Bits
The L2ECCMODE[0-1] (L2CR[52:53]) are the ECC mode select bits. Table 9-8 defines
the SPR field that specifies the L2 cache ECC mode. Refer to Section 2.1.2.6, "L2 Cache
Status Register (L2SR)."

Table 9-8. l2ECCMODE[0-1] Code Definition

L2ECCMODE[0-1] L2 ECC Mode

00 Never correct (ECC disabled)

01 Always correct

10 Automatic switch correct

11 Reserved

9.3.1.6 L2CLKPECL Bit
The L2CLKPECL (L2CR[36]) is the PECL enable bit. Table 9-9 provides the definition of
L2CLKPECL.

Table 9-9. L2PECLEN Code Definition

L2CLKPECL Logic Type

0 CMOS

1 PECL

When L2CLKPECL is asserted L2CLOCKIN and L2CLOCKIN go into PECL mode
regardless of the state of L2HSTLEN. L2CLKPECL does not affect the logic levels for
L2CLOCK and L2CLOCK. When the output buffers are in CMOS mode, a resistor divider
network can be used to generate the proper PECL levels.

MOTOROLA Chapter 9. Secondary Cache Interface 9-7

-

-

9.3.1. 7 L2B2ENABLE Bit
L2B2ENABLE (L2CR[56]) is the double-bank enable bit. When asserted high, it enables
the internal decode for a dual SRAM bank L2 cache. See Section 7.2.6.8, "L2 Enable
Signals."

9.3.1.8 L2CLC[0-1] Bits
The 620 supports 7 multi-level cache configurations, as specified by the HIDO and L2CR
SPR configuration fields ILl and DLl and L2CLC[0--1] (L2CR[47-48]). HID0[16] is the
ILl cache enable. HIDO[l 7] is the DLl cache enable. L2CLC[O] is the L2 cache enable.
L2CLC[l] is the L3 cache enable. See Table 4-2 for the vector offset values. Also, refer to
Section 2.1.2.6, "L2 Cache Status Register (L2SR)," and Section 8.17.8, "Multi-Level
Cache Definition." L2CLC[O--l] is defined as follows. Any configurations not listed in
Table 9-10 are not supported by the 620.

Table 9-10. Multi-Level Cache Configuration

Enabled
Num HID0[16-17] L2CLC[0-1]

Ill DL1 L2 L3

1 00 00 N N N N

2 01 00 N y N N

3 10 00 y N N N

4 11 00 y y N N

5 11 01 y y N y

6 11 10 y y y N

7 11 11 y y y y

9.3.1.8.1 L2CLC = 00 (L2, L3)
If either the ILl or DLl are disabled then snooping must be disabled (BUSSNPEN=O) and
both the L2 and L3 must be disabled. If both the ILl and DLl are enabled then snooping
can be enabled (BUSSNPEN=l) and the L2 and L3 may be left disabled. The DLl will
snoop all memory coherent bus operations directly. The DLl and ILl is the lowest cache
level in the system.

9.3.1.8.2 L2CLC = 01 (L 1, L2, L3)
There is no L2, but there is an L3 external to the 620. The DLl will snoop all memory
coherent bus operations directly. One application for this configuration is when a bus
adapter adapts the 620 to a 60x bus and needs to snoop the 60x bus and maintain coherence
with the DLl.

9-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

9.3.1.8.3 L2CLC = 10 (L 1, L2, L3)
The L1 and the L2 are both between the processor and the system bus and there is no cache
external to the 620. The L2 will snoop all memory coherent bus operations. The L2 is the
lowest cache level in the system.

9.3.1.8.4 L2CLC = 11 (L 1, L2, L3)
The L1 and the L2 are both between the processor and the system bus. There is an L3
external to the 620. The L2 will snoop all memory coherent bus operations.

9.3.1.9 L2LATEWRITE Bit
L2LATEWRITE (L2CR[51]) is the late/normal write select bit. Table 9-11 indicates the
definition of L2LATEWRITE.

Table 9-11. L2LATEWRITE Code Definition

L2LATEWRITE Mode

0 Disabled

1 Enabled

When L2LATEWRITE is enabled, the write data is put on the data lines a cycle after the
control and address for that data has been applied to the SRAM inputs. This saves a dead
cycle on the data lines when going from writes to reads.

When L2LATEWRITE is disabled, the write data is put on the data lines the same cycle as
the control and address for that data has been applied to the SRAM inputs.

Refer to Section 2.1.2.6, "L2 Cache Status Register (L2SR)." For detailed diagrams, refer
to Section 9.5, "L2 Cache Timing Diagrams."

9.3.1.10 L2SINGSVNC Bit
L2SINGSYNC (L2CR[54]) is the L2 SRAM register depth select bit. Table 9-12 indicates
the definition of L2SINGSYNC.

Table 9-12. L2SINGSYNC Code Definition

L2SINGSYNC Mode

0 Two Registers

1 One Register

L2SINGSYNC is used to determine the number of pipeline registers that are in the SRAMs
used in the L2.

Refer to Section 2.1.2.6, "L2 Cache Status Register (L2SR)." For detailed diagrams, refer
to Section 9.5, "L2 Cache Timing Diagrams."

MOTOROLA Chapter 9. Secondary Cache Interface 9-9

-

-

9.3.1.11 L2WRCNTRDIS Bit
L2WRCNTRDIS (L2CR[45]) is the L2 write counter disable.

Table 9-13. L2WRCNTRDIS Code Definition

L2WRCNTRDIS Counter Mode

0 Enabled

1 Disabled

The L2 interface transitions between read mode and write mode. During a read access
sequence it is possible for an L2 write to be held waiting for a transition to write mode. The
L2 write counter is used to track the number of processor clocks the pending L2 write is
held waiting for an L2 cache write opportunity. If L2WRCNTRDIS is enabled (the default
condition) and the L2 write counter reaches a count of 32, the L2 interface is forced into
write mode to allow the pending L2 write operation to proceed. If the L2WRCNTRDIS bit
is set the L2 write counter is disabled.

9.3.1.12 L21NIT Bit
L2INIT (L2CR[50]) is the L2 cache initialize enable bit. Table 9-14 indicates the definition
ofL2INIT.

Table 9-14. L21NIT Code Definition

L21NIT Mode

0 Enabled

1 Disabled

When the L2INIT is enabled it indicates that the L2 SRAMs are being initialized. When in
this mode, if the L2 is read it always returns a MESI state of invalid, and ECC is forced to
pass. Refer to Section 2.1.2.6, "L2 Cache Status Register (L2SR)."

9.3.1.13 L2DPWR[0-1] Bit
L2DPWR[0-1] (L2CR[44--45]) is the point-to-point driver strength select bit. Table 9-15
indicates the definition of L2DPWR.

Table 9-15. L2DPWR Code Definition

L2DPWR[0-1) Mode

0 L2 point-to-point drivers in 50 Ohm mode

1 L2 point-to-point drivers in 75 Ohm mode

L2DPWR is used to define the power of the point-to-point drivers used in the L2 interface.
Refer to Section 2.1.2.6, "L2 Cache Status Register (L2SR)."

9-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

9.3.1.14 L2ECCERREN Bit
L2ECCERREN (L2CR[46]) is the ECC error enable bit. A multi-bit ECC error will cause
a machine-check interrupt if L2ECCERREN is asserted. Refer to Section 2.1.2.6, "L2
Cache Status Register (L2SR)." The hardware reset state for L2ECCERREN is deasserted.

9.3.1.15 L2PLLEN Bit
L2PLLEN (L2CR[49)), the PLL enable bit, enables the L2 PLL to lock. The initial and hard
reset state is deasserted. See Section 2.1.2.5, "L2 Cache Control Register (L2CR)," for how
to program L2PLLEN.

9.3.2 L2 Cache Status Register (L2SR)
The following section describes the usage of the L2SR bits. Refer to Section 2.1.2.6, "L2
Cache Status Register (L2SR)."

9.3.2.1 L2ECC Bit
The L2ECC (L2SR[16)) is the error detected bit. This bit will be set when the first single
or double bit error is detected and will remain set until the L2SR is written.

9.3.2.2 L2DATASYN[0-8] and L2TAGSYN[0-5] Bits
L2DATASYN[0-8] (L2SR [17-25]) and L2TAGSYN[0-5] (L2SR[26-31] are the L2 data
and tag syndromes bits. A description of each of these follows:

• L2DATASYN is the syndrome for the L2 data.

• L2TAGSYN is the syndrome for the L2 tag.

• The syndromes are for the first detected ECC error.

• The reset state is undefined.

• The syndromes are cleared to all Os for any write to the L2SR SPR.

• Data can not be written into the syndromes.

Bit 0 of the syndrome field reflects parity generated across the syndrome such that odd
parity across the field indicates the single bit errors that were corrected, while even parity
indicates a double bit error was detected but no specific information may be ascertained. If
all bits are 0 no error is indicated. Some odd parity combinations are unused because more
combinations were available than ECC or data to check; these patterns are invalid because
they have no meaning. In addition, multiple bit errors (>2) may look like single or double
bit errors in the syndrome or may appear as invalid combinations. ECC bits are interspersed
with the rest of the bits being checked at powers of two and a modified Hamming code
algorithm is used to generate the syndrome.

9.3.2.3 Tag Syndrome
Should a correctable ECC error occur on the L2COHERENCY[O-l], L2TAG[0-10],
L2TAGADD[0-8], or the L2TAGECC[0-5] bits, the L2TAGSYN[0-5] bits of the L2SR

MOTOROLA Chapter 9. Secondary Cache Interface 9-11

-

-

will indicate the corrected single bit. Table 9-16 shows each syndrome and the associated
bit that was in error.

Table 9-16. L2 Tag Syndrome Bits

L2TAGSYN[0-5] Bit in Error

000000 No Error

100000 L2TAGECC[O]

000001 L2TAGECC[5]

000010 L2TAGECC[4]

100011 L2COHERENCY[O]

000100 L2TAGECC[3]

100101 L2COHERENCY[1]

100110 L2TAG[O]

000111 L2TAG[1]

001000 L2TAGECC[2]

101001 L2TAG[2]

101010 L2TAG[3]

001011 L2TAG[4]

101100 L2TAG[5]

001101 L2TAG(6]

001110 L2TAG[7]

101111 L2TAG[8]

010000 L2TAGECC[1]

110001 L2TAG(9]

110010 L2TAG[10]

010011 L2TAGADD[O]

110100 L2TAGADD[1]

010101 L2TAGADD[2]

010110 L2TAGADD(3]

110111 L2TAGADD[4]

111000 L2TAGADD[5]

011001 L2TAGADD[6]

011010 L2TAGADD[7]

111011 L2TAGADD[8]

All Other Combinations Detectable Uncorrectable

9-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

C code used to generate the tag syndrome table:
/***/

/* Generates a table of the TagECC syndromes in binary for PPC 620 */

/**/

#include <stdio.h>
main () {
int g,i,j=O;

/* assign data to symbol positions */

printf("L2SR<l7:25> -- L2TAGECC<0:8> Syndrome\n\n");
printf("Single Bit ECC Failure Indication Only\n\n");
printf (" TagECC Syndrome\tBit in Error\n", i);
printf("----------------\t------------\n",i);
printf (" 000000\t\t NONE\n");
printf(" 100000\t\t TagECC<O>\n",i,j);

/* The Tag symbol is composed of 22 info + 6 ECC bits = 28 bits */
/* 5 ECC bits are derived from the L2 info bits and the 6th is parity for */

/* the entire symbol. In single bit errors, which is all this ECC code */
/* will detect, this most significant ECC bit also happens to yield an */

/* odd parity for the syndrome. The L2 info consists of two Coherency */
/* bits, eleven Tag bits, and nine TAGADD bits. */

for(i=l;i<28;i++)

I* Special cases: ECC bits are interspersed at powers of 2 */
if (i -- OxOl 11 i Ox02 11 i Ox04 11 i Ox08 11

i -- OxlO 11 i -- Ox20 11 i -- Ox40 11 i -- Ox80) {

switch (i)

case OxOl
printf(" 000001\t\t TagECC<5>\n");
break;

case Ox02
printf(" 000010\t\t TagECC<4>\n");
break;

case Ox04
printf(" 000100\t\t TagECC<3>\n");
break;

case Ox08
printf(" 001000\t\t TagECC<2>\n");
break;

case OxlO
printf(" 010000\t\t TagECC<l>\n");
break;
break;

default :

MOTOROLA Chapter 9. Secondary Cache Interface 9-13

-

else

printf (• %x\ t \ tunknown) \n") ;
}

/* Figure out what the ECC parity bit for this combination should be */

g = giveparity(i);
printf(" ");
printbits (g);
if (j-2 < 0) printf("\t\t Coherency<%d>\n",j);
else if (j-2 < 11) printf("\t\t Tagc%d>\n",j-2);

else printf("\t\t TAGADD<%d>\n",j-13);

j++;

printf("
}

Other\t\t INVALID\n\n\n", i, j);

int printbits(int num) {
/* This function prints the binary sequence for a 6-bit number */

!* as ASCII characters to <STDOUT> */

int lcv, mask=Ox20;

for (lcv=O;lcv<6;lcv++)
((mask & num) == 0) ? printf ("0")
mask >>= 1;

int giveparity(int num) {

printf("l");

/* Returns a 6 bit number with odd parity (MSB) given a 5 bit number */

int lcv, par=O, mask=l;

for (lcv=O;lcv<6;lcv++)
if ((mask & num) != 0) par++;
mask <<= 1;

if ((par% 2) == 1)
return num;

else return num I Ox20;

9-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

9.3.2.4 Data Syndrome
Should a correctable ECC error occur on L2DATA[0-127] or L2DATAECC[0-8], the
L2DATASYN[0-8] bits of the L2SR will indicate the single bit that was in error. Table 9-17
shows each syndrome and the associated corrected bit.

Table 9-17. L2 Data Syndrome Bits

L2DATASYN[D-8) Bit in Error

000000000 No Error

100000000 DATAECC[O]

000000001 DATAECC[B]

000000010 DATAECC[7]

100000011 DATA(O]

000000100 DATAECC[6]

100000101 DATA(1]

100000110 DATA(2]

000000111 DATA(3]

000001000 DATAECC[5]

100001001 DATA[4]

100001010 DATA[5]

000001011 DATA(6]

100001100 DATA[7]

000001101 DATA[B]

000001110 DATA[9]

100001111 DATA(10]

000010000 DATAECC[4]

100010001 DATA(11]

100010010 DATA(12]

000010011 DATA[13]

100010100 DATA[14]

000010101 DATA[15]

000010110 DATA[16]

100010111 DATA[17]

100011000 DATA(18]

000011001 DATA(19]

000011010 DATA(20]

100011011 DATA[21]

MOTOROLA Chapter 9. Secondary Cache Interface 9-15

Table 9-17. L2 Data Syndrome Bits (Continued)

L2DATASYN[o-8] Bit in Error

000011100 DATA(22]

100011101 DATA[23]

100011110 DATA[24]

000011111 DATA[25]

000100000 DATAECC[3]

100100001 DATA[26]

100100010 DATA[27]

000100011 DATA[28]

100100100 DATA[29]

000100101 DATA[30]

000100110 DATA[31]

100100111 DATA[32]

100101000 DATA[33]

000101001 DATA[34]

000101010 DATA[35]

100101011 DATA[36]

000101100 DATA[37]

100101101 DATA[38]

100101110 DATA[39]

000101111 DATA[40]

100110000 DATA[41]

000110001 DATA[42]

- 000110010 DATA[43]

100110011 DATA[44]

000110100 DATA[45]

100110101 DATA[46]

100110110 DATA[47]

000110111 DATA[48]

000111000 DATA[49]

100111001 DATA[50]

100111010 DATA[51]

000111011 DATA[52]

9-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 9-17. L2 Data Syndrome Bits (Continued)

L2DATASYN[0-8] Bit in Error

100111100 DATA[53]

000111101 DATA[54]

000111110 DATA[55]

100111111 DATA[56]

001000000 DATAECC[2]

101000001 DATA[57]

101000010 DATA[58]

001000011 DATA[59]

101000100 DATA[60

001000101 DATA[61]

001000110 DATA[62]

101000111 DATA[63]

101001000 DATA[64]

001001001 DATA[65]

001001010 DATA[66]

101001011 DATA[67]

001001100 DATA[68]

101001101 DATA[69]

101001110 DATA[70]

001001111 DATA[71]

101010000 DATA[72]

001010001 DATA[73]

001010010 DATA[74]

101010011 DATA[75] -001010100 DATA[76]

101010101 DATA[77]

101010110 DATA[78]

001010111 DATA[79]

001011000 DATA[BO]

101011001 DATA[81]

101011010 DATA[82]

001011011 DATA[83]

MOTOROLA Chapter 9. Secondary Cache Interface 9-17

Table 9-17. L2 Data Syndrome Bits (Continued)

L2DATASYN[O-SJ Bit in Error

101011100 DATA[84]

001011101 DATA[85]

001011110 DATA[86]

101011111 DATA[87]

101100000 DATA[88]

001100001 DATA[89)

001100010 DATA[90]

101100011 DATA[91]

001100100 DATA[92]

101100101 DATA[93]

101100110 DATA[94]

001100111 DATA[95]

001101000 DATA[96]

101101001 DATA[97]

101101010 DATA[98]

001101011 DATA[99]

101101100 DATA[100]

001101101 DATA[101]

001101110 DATA[102]

101101111 DATA[103]

001110000 DATA[104]

101110001 DATA[105]

- 101110010 DATA[106]

001110011 DATA[107]

101110100 DATA[108]

001110101 DATA[109]

001110110 DATA[110]

101110111 DATA[111]

101111000 DATA[112]

001111001 DATA[113]

001111010 DATA[114]

101111011 DATA[115]

9-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 9-17. L2 Data Syndrome Bits (Continued)

L2DATASYN[0-8] Bit in Error

001111100 DATA[116)

101111101 DATA[117]

101111110 DATA[118]

001111111 DATA[119)

010000000 DATAECC[1]

110000001 DATA[120]

110000010 DATA[121]

010000011 DATA[122)

110000100 DATA[123)

010000101 DATA[124]

010000110 DATA[125]

110000111 DATA[126)

110001000 DATA[127]

Other Detectable; uncorrectable or invalid

C code used to generate the data syndrome table:
/**/

/* Generates a table of the DataECC syndromes in binary for PPC 620 */

/***/

#include <stdio.h>
main () {
int g,i,j=O;

printf("L2SR<l7:25> -- L2DATAECC<0:8> Syndrome\n\n");
printf("Single Bit ECC Failure Indication Only\n\n");

printf ("DataECC Syndrome\tBit in Error\n");
printf("----------------\t------------\n");
printf (" 000000000\t\t NONE\n");
printf(" 100000000\t\t DataECC<O>\n");

/* The Data symbol is composed of 128 data bits + 9 ECC bits = 137 bits */

/* 8 ECC bits are derived from the data and the 9th is parity for */
/* the entire symbol. In single bit errors, which is all this ECC code */
/* will detect, this most significant ECC bit also happens to yield an */

/* odd parity for the syndrome */\

MOTOROLA Chapter 9. Secondary Cache Interface 9-19

-

-

for(i=l;i<137;i++) {

/* Special cases: ECC bits are interspersed at powers of 2 */

I I i Ox004 I I i Ox008 I I
I I i == Ox040 I I i == Ox080) {

if (i -- OxOOl 11 i Ox002
i -- Ox010 11 i -- Ox020

switch (i)

case OxOOl
printf(" 000000001\t\t DataECC<8>\n");

break;
case Ox002
printf(" 000000010\t\t DataECC<7>\n");
break;

case Ox004
printf(" 000000100\t\t DataECC<6>\n");

break;
case Ox008
printf(" 000001000\t\t DataECC<5>\n");

break;
case Ox010
printf(" 000010000\t\t DataECC<4>\n");

break;
case Ox020
printf(" 000100000\t\t DataECC<3>\n");

break;
case Ox040 :
printf(" 001000000\t\t DataECC<2>\n");
break;

case Ox080
printf(" 010000000\t\t DataECC<l>\n");
break;

default :
printf("%x\t\tunknown) \n");

}

else
/* Figure out what the ECC parity bit for this combination should be */

g = giveparity(i);
printf(" ");
printbits (g);
printf("\t\t Data<%d>\n",j);
j++;

printf ("
}

Other\t\t INVALID\n\n\n", i, j);

int printbits(int num) {
/* This function prints the binary sequence for a 9-bit number */

/* as ASCII characters to <STDOUT> */

9-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

int lcv, mask=OxlOO;

for (lcv=O;lcv<9;lcv++)
((mask & num) == 0)? printf("O") printf("l");
mask >>= l;

int giveparity(int num) {
/* Returns a 9 bit number with odd parity (MSB) given an 8 bit number */

int lcv, par=O, mask=l;

for (lcv=O;lcv<9;lcv++)
if ((mask & num) ! = 0) par++;
mask <<= l;

if ((par% 2) == 1)
return num;

else return num I OxlOO;

9.3.2.5 L2ECCADDR[0-24]
L2ECCADDR (L2SR[35-59) is the L2 quad word address of the first detected ECC error.
These 25 bits map to bits 11 to 35 of the 40 bit address brought off chip (located on external
address bus pins 35-59, which is also the same bit location as the position of this address
in the L2SR register). The address will be held until the syndromes are cleared. The address
written is qualified by either of the tag or data syndromes not having a 0 value. The index
can be determined by masking bits according to Table 9-4.

9.4 ECC-L2 Error Detection and Correction
The data in the cache is protected by ECC. The data portion is protected with a 9-bit ECC
code that covers all 128-bits of L2DATA. The tag portion is protected with a 6-bit ECC
code, which covers L2TAG, the portion of L2TAGADD used for tag, and
L2COHERENCY.

9.4.1 The ECC Algorithm
The syndromes generated are based on the modified Hamming code algorithm. The tag data
portion used to generate the syndrome is L2COHERENCY[O-l] concatenated with
L2TAG[0-10] concatenated with L2TAGADD[0-8]. If the full tag width is not required,
based on L2SIZE, the L2TAGADD bits not used are forced to logic zero, see Table 9-3.

See Table 9-16 and Table 9-17 for the tag and data syndrome bit values.

MOTOROLA Chapter 9. Secondary Cache Interface 9-21

-

-

9.4.2 ECC Correction Modes
The ECC associated with the L2 can operate in three modes which are software
configurable:

• Always correct mode

• Automatic switch correct mode

• Never correct mode

9.4.2.1 Always Correct Mode
The data is encoded as it is written to the L2 cache. Data coming from the cache is always
corrected.

When a correctable error is detected the L2 interface will log that an error occurred, store
the cache index of the tag or data that caused the error, and the syndrome that resulted from
the error. It is software's responsibility to poll this information which is in the L2SR
register.

When an uncorrectable error is encountered a machine check interrupt is generated.

9.4.2.2 Automatic Switch Correct Mode
The data is encoded as it is written to the L2 cache. Data coming from the cache follows
two paths: a corrected path and a non-corrected path. The corrected path takes a cycle
longer than the non-corrected path. Under normal conditions data flowing from the L2 to
the bus follows the corrected path. Instructions flowing from the L2 to L1 follows the
uncorrected path, while data transferred from the L2 to the L1 data cache always follows
the corrected path regardless of the ECC correction mode selected.

When a correctable error is detected for data that is going from the L2 to the LI, hardware
automatically switches to the corrected path. All data from the L2 to L1 will follow the
corrected path after the detection of a correctable error. The L2 interface· will log that an
error occurred, store the cache index of the tag or data that caused the error, and the
syndrome that resulted from the error. It is software's responsibility to poll this information.
Switching back to the uncorrected path is done automatically by hardware when the next
write following the error is performed by the L2 interface.

When an uncorrectable error is encountered a machine check interrupt is generated.

9.4.2.3 Never Correct Mode
The data is not encoded as it is written to the L2 and the output buffers that drive the data
lines for ECC are disabled. Data is not corrected as it flows from the L2 to the L1 data cache
or the bus. There is no data load latency advantage for ECC disabled as compared to the
other ECC modes. During instructions fetch transactions latency is reduced by one
processor clock cycle when the never correct ECC mode is selected.

9-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

9.5 L2 Cache Timing Diagrams
Figure 9-2 through Figure 9-23 show the timing diagrams for the L2 interface.

Note: Assume that L2RATIOSR is at 1: 1.

MOTOROLA

L2CLOCK

L2DATAENABLE I

L2TAGENABLE

L2WRITED ATA

I

~

l2WRITETAG .-' -..,--.,---....--..----.--.---.--..,--.,---..

L20UTP0TENA

L2DATA

L2DATAECC

A2 A3
I I

...--.----,---.--~' ~.......,'--,--~
I I

..___, _ __.. _ _,__ _4,_.~--1--1--~

L2ThG ,f---+----1~+---+~+--+-<Jfil>c@j~

L2COHERENCY

L2TAGECC

Figure 9-2. Timing of Quadruple Register L2 Reads

L2CLOCK

L2DATAENABLE I

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

BLE

I

~

I

...----,-----~,__,'-----~ L2DATA ~
I I _______ .,., -fDiTYD2il 1,------+

L2DATAECC '-'T"'"'-=f'J

L2TAG ----------'--<@D@)>--'----
L2COHERENCY 1-1 --+---1---+--1---+

1--<@:x:ID --+--...
I I

L2TAGECC I I CQID(QID '-~-~

Figure 9-3. Timing of Triple Register L2 Reads

Chapter 9. Secondary Cache Interface

-

9-23

9-24

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

BLE

L2ADDRESS

I I

L-:-1

~~-~-~l-'DiT'1D2i'>--~-~~-~~~
'L2DATA I ~

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC

I I

l~I
________ 1~~>--------
1---1----<1----<---<~~>--<I--+--+--~

I I

~-+-----~~""""'I-~-~~

Figure 9-4. Timing of Double Register L2 Reads

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA
~~-'----'-~-'---'-~!

BLE 1

L2ADDRESS
~-~-~I -'DiT'1D2i'~I-~-~-~-~-~

L2DATA ~
I I

fDiiY02i\ I L2DATAECC '-=f-'~

L2TAG -1 ------~-•-1--------

L2COHERENCY ~-----+--+----<
I I

L2TAGECC I ~-+I-----~~

Figure 9-5. Timing of Single Register L2 Reads

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

L2CLOCK

L20ATAENABLE

L2TAGENABLE ~I I I
L2WRITEOATA

I

L2WRITETAG I I

~I : I I

L20UTPUTENA

BLE
A1 A2 A3

L2AOORESS
I

~ L20ATA
I I

L20ATAECC
I ~

L2TAG I 010 020 030
I I I

L2COHERENCY 010 020 030

L2TAGECC I D1o D2o 030

Figure 9-6. Timing of L2 LateWrites for all Register Depths

L20ATAENABLE

L2TAGENABLE

L2WRITEOATA

I

~~-+-~;...---+~!
I

L2WRITETAG I I

~~,'~--t~--t'~/ I
L20UTPUTENA

BLE

L2DATA

L2DATAECC

L2TAG

L2COHERENCY

Figure 9-7. Timing of L2 Non-LateWrites for all Register Depths

MOTOROLA Chapter 9. Secondary Cache Interface

-

9-25

-

9-26

L2CLOCK

L2DATAENABLE I

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

BLE 1

L2DATA I

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC ~' -~-+---:-~-~-(15.I)CQgD<J@

Figure 9-8. Timing of Quadruple Register L2 Reads followed by LateWrites

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

L2DATA I

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC ~1 -~-!----:-~:--{]Jl)Qfil@D

Figure 9-9. Timing of Triple Register L2 Reads followed by LateWrites

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

L2ADDRESS

L2DATA

L2DATAECC

L2TAG

L2COHERENCY

Figure 9-10. Timing of Double Register L2 Reads followed by LateWrites

L2CLOCK

L2DATAENABLE 1

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

L2DATAECC

L2TAG

L2COHERENCY

I I

I _J___J
I I

~

Figure 9-11. Timing of Single Register L2 Reads followed by LateWrites

MOTOROLA Chapter 9. Secondary Cache Interface

-

9-27

-

L2CLOCK

L2DATAENABLE I

L2TAGENABLE

L2WRITEDATA ~ I I I

L2WRITETAG

L20UTPUTENA

I I I

~

BLE 1

A2 A3
L2ADDRESS

L2DATA I

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC I

Figure 9-12. Timing for Quadruple Register L2 Reads followed by Non-LateWrites

L2CLOCK

L2DATAENABLE I

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

L2DATA I

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC ~1 --!---+-+-~-(]]Xf!fil@LJ

~ I I I

I I I

I~

Figure 9-13. Timing for Triple Register L2 Reads followed by Non-LateWrites

9-28 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

BLE 1

A2
L2ADDRESS

L2DATA

L2DATAECC

L2TAG I

L2COHERENCY

L2TAGECC I

Figure 9-14. Timing for Double Register L2 Reads followed by Non-LateWrites

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

BLE 1

L2ADDRESS I

L2DATA

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC

Figure 9-15. Timing for Single Register L2 Reads followed by Non-LateWrites

MOTOROLA Chapter 9. Secondary Cache Interface 9-29

-

-

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA

L2WRITETAG

L20UTPUTENA

BLE

L2DATAECC

L2TAG

L2COHERENCY

I I

~ I
~ I I
I I

~ I I

I

AS A6

Figure 9-16. Timing for Quadruple Register L2 LateWrites followed by Reads

,/
'-.,-___ __,/ I

'-+---+--+I_,/ I

BLE 1

A1
L2ADDRESS I

L2DATA

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC ~' -~---<

Figure 9-17. Timing for Triple Register L2 LateWrites followed by Reads

9-30 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA ,__ ___ ...;.1..J/ I

L2WRITETAG I I

~~+'--+--+'~/
L20UTPUTENA

BLE I

L2DATA

L2DATAECC

L2COHERENCY

I I

Figure 9-18. Timing of Double Register L2 LateWrites followed by Reads

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA ~I

L2WRITETAG I I

L20UTPUTENA
~I

......,.-....,...-...,.'~/,
I I

BLE

L2DATA

L2DATAECC

L2COHERENCY

L2TAGECC

Figure 9-19. Timing of Single Register L2 LateWrites followed by Reads

MOTOROLA Chapter 9. Secondary Cache Interface

-

9-31

-

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA I
L2WRITETAG I I

~-~'~ ~ !
L20UTPUTENA

BLE 1

L2ADDRESS

L2DATA

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC

Figure 9-20. Timing for Quadruple Register L2 Non-LateWrites followed by Reads

L2CLOCK

L2DATAENABLE

L2TAGENABLE

L2WRITEDATA I
L2WRITETAG I I

~-~'~--r-~-t-' I I
L20UTPUTENA

L2ADDRESS

L2DATA

L2DATAECC

L2TAG

L2COHERENCY

L2TAGECC

I

I I

I

I I \ I~
I

A4 AS A6

Figure 9-21. Timing for Triple Register L2 Non-LateWrites followed by Reads

9-32 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

L2CLOCK

L2DATAENABLE

L2TAGENABLE ~~_,_' _ _.._ _ _,__..___---+-_,_,/

L2WRITEDATA ~~----' ~! I

L2WRITETAG I I

~I '/

L20UTPUTENA

BLE

L2DATA

L2DATAECC

L2COHERENCY

Figure 9-22. Timing for Double Register L2 Non-LateWrites followed by Reads

L2CLOCK

L2DATAENABLE I I

L2TAGENABLE

L2WRITEDATA

I I

~~+'--+---l--1----J.--1--J/

~~-'---~! I

L2WRITETAG I I

~ '/
L20UTPUTENA

BLE 1

'~~'-~~-~~

L2DATAECC

L2COHERENCY

Figure 9-23. Timing for Single Register L2 Non-LateWrites followed by Reads

MOTOROLA Chapter 9. Secondary Cache Interface 9-33

-

-

9-34 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 10
Performance Monitor
The PowerPC 620 microprocessor provides a performance monitor facility to monitor
selected 620 characteristics and to facilitate the generation of instruction traces. The
performance monitor facility is not defined by the PowerPC architecture.

10.1 Overview
The performance monitor can be used for the following:

To increase system performance with efficient software (especially in an MP
system), memory hierarchy behavior must be understood in order to develop
algorithms that schedule tasks (and perhaps partition them) and that structure and
distribute data optimally.

To improve processor and system architecture, 620's behavior must be known and
understood in software environments of interest. Some environments may not be
easily characterized by a benchmark or trace (for example, MP) and are therefore
not easily investigated with simulators.

The performance monitor helps system developers to debug and analyze their
systems.

The capabilities of the 620 performance monitor include:

Concurrently counting the number of occurrences of eight different, software­
selectable events of interest on eight 32-bit counters

To start the counting of software-selectable events (Xi) on the condition that n events
of a second type (W) have occurred.

The periodical designation of an instruction as a "sampled instruction" and
recording information about it if it causes an event of interest.

Counting the sampled storage instructions whose access time exceeds a software
settable value (called thresholding).

• Storage of 32 bits of data per counter which indicates the status of the software­
selectable events for a period of 32 cycles (called history mode).

Mark a process to enable the counters while executing the instructions related to this
process.

MOTOROLA Chapter 10. Performance Monitor 10-1

-

-

10.1.1 Functional Overview
The following subsections describe the functional characte1istics of the 620.

10.1.1.1 Special Purpose Registers (SPR)
The contents of these registers can be read or modified by the mtspr and mfspr
instructions. These MMCRO, MMCRl and PMCl thru PMC8 registers can be modified
only in privilege state, but they can be read in privilege or problem state. The SIA and SDA
registers can not be modified by software but they can beread in privilege or problem state.

Monitor mode control register 0 and 1 (MMCRO and MMCRl)-Controls the
behavior of the Performance Monitor. Provides the ability to select the events to
count and when they will be counted, set the Threshold value, select the Time Base
input, enable History Mode and select the conditions that will enable a Performance
Monitor interrupt.

• Performance monitor counters 1 thru 8 (PMCl thru PMC8)-Store the number of
times a software selectable event (maximum of one event per counter at a time) has
occurred since the Performance Monitor was enabled for counting.

Sample instruction address (SIA)-Stores the address of a sampled instruction.

Sample data address (SDA)-Stores the address associated with the data used by the
sampled instruction.

10.1.1.2 Thresholder
Provides the capability to obtain the distribution of memory access times that results from
an application's accesses to all levels of a system's memory hierarchy, including main
memory, during its execution. The threshold value is set by the software and can range from
0 to 63 cycles.

10.1.1.3 Time Base Interface
Allows the selection of four Time Base bits. When a transition from zero to one in the
selected bit is detected the Performance Monitor can be configured to generate an interrupt
or start monitoring the selected events.

10.1.1.4 Interrupt
An interrupt can be generated if the conditions specified by the software in the MMCRO
and MMCRl are met. The conditions in which an interrupt can be generated are when a
zero to one transition is detected on the Time Base selected bit and when the contents of
one or more of the counters PMCl thru PMC8 becomes negative (Most Significant Bit==
one).

10.1.1.5 Event Selection
A maximum of one event per counter can be monitored at a given time. The event to be
monitored is selected by software. For some of the events it is possible to count the cycles
associated to the duration of an event as well as the number of times the event is detected.

10·2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

10.1.1.6 Monitor Modes
The Performance Monitor can be enabled during a specific execution state
(privilege/problem) and/or during the execution of a software marked process. A counter
can also be enabled after a Performance Monitor interrupt is generated or after a software
preset number of events is detected.

10.1.2 Event Counting Overview
Eight counters in the 620 count the occurrences of software-selectable events. The Monitor
Mode Control Registers (MMCRO and MMCRl) are used to control the performance
monitor operation. The counters and the MMCRs are readable and writable Special
Purpose Registers (SPRs). Control fields in the MMCRs select the events to be counted,
indicate conditions that enable the performance monitor interrupt, set the Thresholder
value, enable History Mode and specify the conditions under which counting is enabled,
etc.

Counting is enabled if the condition in the processor state matches a software-specified
condition. Since a software task scheduler may switch a processor's execution among
multiple processes and because statistics on only a particular process may be of interest, a
facility is provided to mark a process. A control bit (bit 61) in the Machine State Register
(MSR), MSR(PMM), the "Performance Monitor Mark" bit, is used for this purpose.
System software may set this bit when a "Performance Monitor marked process" is
running. This enables statistics to be gathered only during the execution of the marked
process. The states of MSR(PR) and MSR(PMM) together define a state that the processor
(Privileged or Problem) and the process (marked or unmarked) may be in at any time. If this
state matches a state specified by the MMCRs, the state for which monitoring is enabled,
counting is enabled. The following are the possible states that can be monitored:

1. (Privileged) only

2. (Problem) only

3. (Marked and Problem) only

4. (Not Marked and Problem) only

5. (Marked and Privileged) only

6. (Not Marked and Privileged) only

7. (Marked) only

8. (Not Marked) only

In addftion, one of two unconditional counting modes may be specified:

1. Counting is unconditionally enabled regardless of the states of MSR(PMM,PR)

2. Counting is unconditionally disabled regardless of the states of MSR(PMM,PR)

MOTOROLA Chapter 10. Performance Monitor 10-3

-

-

10.1.3 Triggering Modes Overview
The Performance Monitor provides several ways to trigger (enable for the first time) the
event counting process.

• The execution of a mtspr instruction to a Performance Monitor Special Purpose
Register (MMCRs or PMCs) that creates the scenario which causes the sampling
process to be enabled. This is the default triggering mode. An example will be, a
write to the MMCRO in which counters are unconditionally enabled.

• An Instruction Address Break Point Register (IABR) match.

• A selected Time Base bit transition from zero to one,

• A Performance Monitor Counter 1 (PMCl) negative value.

The Monitor Mode Control Registers (MMCRs) provide the primary control for these
operations but they are also affected by the contents of the Performance Monitor Counter 1
(PMCl), Time Base register and the Instruction Address Break Point Register. The
interaction of these trigger mechanisms among themselves and with the different monitor
modes described previously, allows the user to create many different scenarios.

10.1.4 Instruction Address Break Point Register (IABR) Match
There are some differences between the Performance Monitor IABR match and the normal
IABR behavior. These differences are listed below.

1. An IABR match is not dependent on the IABR being turned on or the translation
mode matching, but is only dependent on the address matching.

2. An IABR match will only occur on instructions that go into the branch queue (any
branch instruction and condition register logical instructions).

3. The IABR indication occurs when the branch finishes, and not completes, therefor
if the instruction is cancelled by an interrupt after finishing the match will still be
reported.

4. The IABR match is only valid if the Performance Monitor is enabled, refer to
Section 10.6, "The Counters," for more information.

10.1.5 Event Sampling and Thresholder Overview
It is sometimes desirable to link an event to the instruction that caused it and to save certain
information about the instruction. Hardware is simplified by providing this capability for
sampled instructions only. Periodically, an instruction entering the processor is designated
as a sampled instruction. Certain information about the instruction is recorded as it is
processed and is made available if its execution causes an event of interest.

Software developers may want to know the effective address of an instruction that caused
an L2 miss and the effective address of its operand. The performance monitor provides this
information for "sampled" Load and Store instructions only. To simplify hardware, at most
one sampled instruction is allowed to be in the processor at one time. Since no more than

10-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

16 instructions can be in the 620 at once (the completion buffer size), every 16th instruction
that is dispatched to the execution units is given a special tag that identifies it as a "sampled
instruction". The address of a sampled instruction is saved in an SPR called the Sampled
Instruction Address register (SIA register). If the sampled instruction is a Load or Store
instruction, the address of its operand is saved in a SPR called the Sampled Data Address
register (SDA register). The number of L2 misses caused by sampled instructions may be
counted. If a Performance Monitor exception occurs, subsequent writes to the SIA and the
SDA are not allowed and a performance monitor interrupt may be initiated. Software may
then record the information in these registers. Since the SIA and the SDA are written into
during different machine cycles, it is necessary to indicate when their contents relate to the
same instruction, i.e., that their contents are "coupled". A bit is set in SRRI, SRRI [1], when
the SDA is written into and it is reset when the SIA is written into. The contents of the
registers are coupled when SRRl [l] is a "1 ".

The performance monitor can also gather information about the access times of sampled
Load and Store instructions. If the access time of a sampled instruction exceeds a software­
specified number of cycles, a counter is incremented. This is called thresholding - a counter
is incremented if the access time of a sampled instruction exceeds the threshold. A
histogram of access times can be constructed by recording the number of accesses that
exceed each threshold in a series of decreasing thresholds. The histogram generated reveals
the average access time to each level of memory hierarchy and any access time variations
to a given level that may be caused by resource conflicts (e.g., bus conflicts and interleaved
memory bank conflicts). This information is especially useful in systems without an L2
cache.

The thresholding facility may be used with sampled Store instructions that store into
cacheable lines. The Thresholder considers a sampled Store instruction to be complete
when its data is written into a cache line in Ll. A Store instruction that accesses a memory
location that is not cacheable would not have the instruction's address, SIA contents, and
the data address, SDA contents, held; the 620 can not determine when it completes. The
instruction and data address will be stored in the registers but it can be easily be overwritten.

10.1.6 History Mode Overview
The Performance Monitor provides a way to relate the selected events in a cycle by cycle
basis. In this mode the events are stored as they are received no addition is performed during
this mode. A maximum of 32 cycles per counter can be stored. The counters can be linked
to achieve several combinations. For example:

8 events with 32 cycles each

4 events with 64 cycles each

6 events, 4 with 32 cycles and 2 with 64 cycles

MOTOROLA Chapter 10. Performance Monitor 10-5

-

-

The intent of this feature is for small loops or small sections of the code to be analyzed in
detail. The data is stored in the PMC registers. The most significant bit is the oldest cycle
while the least significant bit is the most recent one.

10.1. 7 Trace Mode Overview
The performance monitor facilitates the construction of instruction traces. The processor
issues instructions in sequence and one at a time in trace mode. An instruction is not issued
until the instruction preceding it in the instruction stream completes. In trace mode, the
following information is recorded in SRRl about the last instruction that completed:

1. It was a Load instruction

2. It was a Store instruction

3. It accessed the operand field length field (bits 25-31) of the XER register

4. It may have changed the effective-to-virtual address map

In addition, in trace mode, the EA of the operand of each Load and Store instruction
(sampled or not) executed is saved in the SDA.

10.2 Performance Monitor Components
620 supports the following hardware structure for performance monitoring:

• Interaction with the following registers: (See "Related Registers" on page 9.)

- Time Base

- Machine Status Save/Restore register 1 (SRRl)

- Instruction Address Break Point Register (IABR)

- Sampled Instruction Address Register (SIA)

- Sampled Data Address Register (SDA).

• Two 32-bit mask registers to select events to count, refer to Section 10.4, "Monitor
Mode Control Registers (MMCRO and MMCRl)."

• A multiplexer structure to allow programmable event selection for eight counters.

See Section 10.6, "The Counters," and Section 10.7, "Detailed Description of
Events."

• Memory access times collection block. Refer to Section 10.5, "The Thresholder."

• Exception generation mechanism. Refer to Section 10.8, "Performance Monitor
Interrupt."

• A cycle by cycle event status storage. Refer to Section 10.9, "History Mode."

Figure 10-1 shows the block diagram of the 620 performance monitor, and Table 10-1 lists
the special purpose register addresses of the performance monitor SPR registers.

10-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

:s::
@
:D
0
);:

(')
:::T
Ill

l
!:I

~
:::i.
0 ...
3
Ill
:::J
0
ID

s:
0
2.
Q

0
~

"Tl
cE"
c
Cl>
0
I

"ti
Cl>
::::i.
0
3
Cl>
::J n
Cl>

s:
0
::J
;::;:
0
Ill
0 n
"'" 0
iii"
cc
Cl>
3

Other Events

"Sampled Load~

64-Bit
ITime Base

Bit63
Bit55
Bit 51
Bit 47

Enable Counters 2 thru 8 on Counterl negative Value
Ef~------~

· Writable Readable ' .

reset

NOTE: The counters (8), the ~···------------ilie)
E/1able Counting >-----Eh

IABRMatch

(MMCRO) 32-bits

Monitor Mode Control Registe

(MMCRJ) 32-bits

I

Machine Status Save/Restore
Register 1

(SRRJ) 32-bits

(IABR) 64-bits

Enable SIA anlIDA Updates

Sampled Instruction Address Regi
Instruction

,.._ Address (EA)

1
Data

(SUA) J Sampled Data Address R·e·g· i.·s.ter.. · ..,__ Address (EA)
64-bit

• Legend for Figure 10-1:

- Ea- MMCR0[16] Enable PMCl exception signalling

- Eb - MMCRO[l 7] Enable PMCn, n> 1 exception signalling

- Ee - MMCR0[6] Freeze counting on PMCn when a Performance Monitor
Exception condition is detected

- Ed - MMCRO[S] Performance monitoring signal exception enable.

- Ee - MMCR0[9] Time base signal exception enable.

- Ef - MMCR0[18] Disable PMCn (n> 1) counting until PMCl becomes negative.

- Eg - MMCR0[0:4] Monitor mode and unconditionally disable bits.

- Eh - MMCR1[29] Freeze Counters until IABR match.

- Sl - MMCR0[19:25] PMCl Event selection bits

- S2 - MMCR0[26:31] PMC2 Event selection bits

- S3 - MMCR1[0:4] PMC3 Event selection bits

- S4 - MMCR1[5:9] PMC4 Event selection bits

- SS - MMCR1[10:14] PMCS Event selection bits

- S6 - MMCR1[15:19] PMC6 Event selection bits

- S7 - MMCR1[20:24] PMC7 Event selection bits

- SS - MMCR1[25:28] PMC8 Event selection bits

- S9 - MMCR0[7:8] Time Base selection bits

- A - PMCl Event selection MUX

- B - PMC2 Event selection MUX

- C - PMC3 Event selection MUX

- D - PMC4 Event selection MUX

- E - PMCS Event selection MUX

- F - PMC6 Event selection MUX

- G - PMC7 Event selection MUX

- H - PMC8 Event selection MUX

- __: V - Time Base bit select MUX

10-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 10-1. SPR Address of the 620 Performance Monitor Registers

SPR Address
r/w Name Function

5-9 0-4

11000 xxxxx Reserved for performance monitor

11000 00011 r PMC1/RD Performance Monitor Counter 1 (read only)

11000 00100 r PMC2/RD Performance Monitor Counter 2 (read only)

11000 00101 r PMC3/RD Performance Monitor Counter 3 (read only)

11000 00110 r PMC4/RD Performance Monitor Counter 4 (read only)

11000 00111 r PMCS/RD Performance Monitor Counter 5 (read only)

11000 01000 r PMC6/RD Performance Monitor Counter 6 (read only)

11000 01001 r PMC7/RD Performance Monitor Counter 7 (read only)

11000 01010 r PMC8/RD Performance Monitor Counter 8 (read only)

11000 01011 r MMC RO/RD Monitor Mode Control Register O (read only)

11000 01110 r MMCR1/RD Monitor Mode Control Register 1 (read only)

11000 01100 r SIA Sampled Instruction Address register

11000 01101 r SDA Sampled Data Address register -SDA(0:61) is physically the
same as the, Data Address Breakpoint Register, DABR(0:61)

11000 10011 r/w PMC1 Performance Monitor Counter 1

11000 10100 r/w PMC2 Performance Monitor Counter 2

11000 10101 r/w PMC3 Performance Monitor Counter 3

11000 10110 r/w PMC4 Performance Monitor Counter 4

11000 10111 r/w PMCS Performance Monitor Counter 5

11000 11000 r/w PMC6 Performance Monitor Counter 6

11000 11001 r/w PMC7 Performance Monitor Counter 7

11000 11010 r/w PMC8 Performance Monitor Counter 8

11000 11011 r/w MMC RO Monitor Mode Control Register 0

11000 11110 r/w MMCR1 Monitor Mode Control Register 1

10.3 Related Registers
The following subsections provide information on registers related to the performance
monitor.

10.3.1 Sampled Instruction Address Register (SIA)
The SIA contains the effective address of the last sampled instruction to be dispatched. This
instruction may be a speculative instruction in a correct or an incorrect execution path.

MOTOROLA Chapter 1 O. Performance Monitor 10-9

-

-

Since the instruction stream may be restarted for various reasons (e.g., an incorrectly
predicted branch), the sampled instruction may not be executed. When a Performance
Monitor exception is requested, the content of the SIA is frozen. It will contain the effective
address of an instruction that was dispatched in the 620 shortly before (no further in time
than 16 instruction executions) the occurrence of the interrupt-causing condition. If the
Performance Monitor is configured to cause an interrupt on an event that is caused by a
sampled load or store instruction, the SIA will contain the effective address of the sampled
instruction causing the event.

10.3.2 Sampled Data Address Register (SDA)
The SDA contains the effective address of the operand of the last sampled storage
instruction to be executed by the Load/Store Unit. When a Performance Monitor exception
is requested, the content of the SDA is frozen. It may contain the effective address of the
operand of the instruction address stored in the SIA. When it does, bit 1 in the SRRl is set
as described below.

On the 620 the SDA and the DABR use the same physical register to store the data. This
will create some limitations described below.

10.3.2.1 SIA and SDA Contents Freeze
The content of the SIA is modified in Performance Monitor mode. The SDA can be
modified in Trace Mode, Performance Monitor mode and in DABR mode. To prevent the
content of the SDA register to change (stay frozen) the processor can only be in one of these
modes at a given time. Once the registers are frozen, if the processor enters one of the
modes mentioned above the contents of the registers will no longer be frozen and their
contents will be undefined. The following mode definitions are for illustration of the SIA
and SDA behavior only:

Performance Monitor Mode is active when the "Performance monitor Signal
Exception Enable (PMXE)" bit, MMCR0[5]==1.

Trace Mode is controlled by the MSR "Single-Step Trace Enable (SE)" and the
"Branch Trace Enable(BE)" bits.

DABR mode is controlled by the two least significant bits of the DABR register.

10.3.3 Machine Status Save/Restore Register 1 (SRR1)
SRRl bits that provide information related to the SIA and SDA are shown in Table 10-2.

Table 10-2. SRR1 Performance Monitor Implemented Bit Fields

Bit Description

1 Specifies whether the contents of the SIA and SDA are associated with the same instruction.
O = SDA does not contain the effective operand address generated by the instruction that has its
effective instruction address in the SIA.
1 = SDA contains the effective operand address generated by the instruction that has its effective
instruction address in the SIA

10-10 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

10.4 Monitor Mode Control Registers
(MMC RO and MMCR1)

The monitor mode control registers (MMCRO, MMCR I) are partitioned into bit fields that
allow the selection of events to be counted. Selection of allowable combinations of events
causes the counters to operate concurrently.

Writes to the MMCRs are only allowed in privileged state. The MMCRs include controls
such as counter enable control, counter negative interrupt control, counter event selection,
and counter freeze control. Reading the MMCRs do not alter their content. The control
functions of the fields in the MMCRs registers are defined in Table 10-3 and Table 10-4.

Table 10-3. MMCRO Bit Fields

Bits Mnemonic Description

0 FC Freeze Counters
0 =The PMCs are conditionally updated by processor events.
1 =The PMCs are NOT updated by processor events.

1 FCS Freeze Counting while in Supervisor state
0 =The PMCs are conditionally updated by processor events.
1 =The PMCs are not updated by processor events if MSR[PR] == 0.

2 FCP Freeze Counting while in Problem state
0 =The PMCs are conditionally updated.
1 =The PMCs are not updated by processor events if MSR[PR] == 1.

3 FCM1 Freeze Counting while mark bit is set to one.
0 =The PMCs are conditionally updated.
1 =The PMCs are not updated by processor events if MSR(PMM) is set to 1.

4 FCMO Freeze Counting while mark bit is set to zero.
0 =The PMCs are conditionally updated.
1 =The PMCn are not updated by processor events if MSR(PMM) is set to 0.

5 PMXE Performance Monitor Exception Request Enable. This bit is reset to zero by
hardware when a Performance Monitor exception is requested.
0 = Performance Monitor exception request is disabled.
1 = Performance Monitor exception request is enabled.

6 FCEX Freeze counting of the PMCs when a Performance Monitor exception
condition is detected (an enabled counter negative condition' or detection of
an enabled time base transition). Could be overridden by MMCR0[18]
0 = Detection of an enabled counter negative condition or enabled time base
transition has no effect on the behavior of the PMCs.
1 = Detection of an enabled counter negative condition or enabled time base
transition, freezes the contents of the PMCs until the condition is reset by
software. Could be overridden by MMCR0[18].

7-8 TBS EL Selects the Time Base bit whose transition from zero to one could cause a
Performance Monitor interrupt (see bit 9 below).
00 =Time Base bit 63
01 =Time Base bit 55
10 =Time Base bit 51
11 =Time Base bit 47

MOTOROLA Chapter 10. Performance Monitor 10-11

-

-

Table 10-3. MMCRO Bit Fields (Continued)

Bits Mnemonic Description

9 TBXE Time Base exception request enable on bit transition (selected by above bits 7
and 8) from zero to one. Exception request needs also to be enable by
MMCR0[5].
O = Do not request exception due to Time Base bit transition.
1 = Request exception if chosen Time Base bit transitions.

10-15 THRESHOLD Threshold value. This number is multiplied by eight and the result is the
number of processor cycles the threshold will be set to.
Effective Threshold= MMCR0[10:15] X 8

16 PMC1XE PMC1 Exception Request Enable. Exception request needs also to be enable
by MMCR0[5].
O = PMC1 exception request disabled due to PMC1 negative value.
1 = PMC1 exception request enable due to PMC1 negative value.

17 PMCnXE PMCn, n> 1, Exception Request Enable. Exception request needs also to be
enable by MMCR0[5].
O = PMCn, n>1, exception request disabled due to PMCn, n>1 negative value.
1 = PMCn, n> 1, exception request enabled due to PMCn, n> 1 negative value

18 TRIGGER Disable PMCn, n> 1, updates, until PMC1 has a negative value or a
Performance Monitor exception is signalled (MMCR0[5] == 0).
O = Enable PMCn, n> 1, updates.
1 = Disable PMCn, n> 1, updates until PMC1 [0]==1 or until a Performance
Monitor exception is requested (MMCR0[5]==0).

19-25 PMC1SEL PMC1 event selector.
See table: ''Performance Monitor Counter 1 Monitored events and select bit
pattern".

26-31 PMC2SEL PMC2 event selector.
See table: "Performance Monitor Counter 2 Monitored events and select bit
pattern".

Notes:

1. ·Enabled Time Base transition is when a transition from zero to one is detected on the Time Base bit
selected by MMCR0[7-8] and (MMCR0[9] == 1).

2. Enabled counter negative condition is when (PMCx[O] ==1) and (PMCyXE ==1).

3. "Conditionally updated" means that the counters will be updated if all the other MMCR's conditions are
satisfied.

10-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 10-4. MMCR1 Bit Fields
-

Bits Mnemonic Description

0-4 PMC3SEL PMC3 event selector.
See table: "Performance Monitor Counter 3 Monitored events and select bit
pattern".

5-9 PMC4SEL PMC4 event selector.
See table: "Performance Monitor Counter 4 Monitored events and select bit
pattern".

10 - 14 PMC5SEL PMC5 event selector.
See table: "Performance Monitor Counter 5 Monitored events and select bit
pattern".

15- 19 PMC6SEL PMC6 event selector.
See table: "Performance Monitor Counter 6 Monitored events and select bit
pattern".

20- 24 PMC7SEL PMC7 event selector.
See table: "Performance Monitor Counter 7 Monitored events and select bit
pattern".

25- 28 PMCBSEL PMCB event selector.
See table: "Performance Monitor Counter 8 Monitored events and select bit
pattern".

29 FCUIABR Freeze Counters until IABR Match. Alter a "monitored" IABR match is
detected this bit is reset to zero by the hardware.
0 =The PMCs are conditionally updated.
1 =The PMCs are not updated until a "monitored" IABR match occurs.

30 PMC1HIST PMC1 History Mode
0 = PMC1 is conditionally incremented.
1 = PMC1 is in History mode. (See history mode section)

31 PMCnHIST PMCn, n> 1, History Mode
0 = PMCn, n> 1 , are conditionally incremented.
1 = PMCn, n>1, are in History Mode. (See History Mode section).

Notes:

1. An IABR match is said to be "monitored" ii it occurs when PMC updates are permitted by MMCR0[0:4] and
MSR[PR, PMM]

2. "Conditionally incremented" means that the counters will be incremented if all the other MMCRs
conditions are satisfied.

10.5 The Thresholder
It is often desirable to obtain the distribution of memory access times that results from an
application's accesses to all levels of a system's memory hierarchy, including main
memory, during its execution.

The 620 performance monitor therefore incorporates a facility called a thresholder that can
obtain this information. It counts the number of sampled storage instructions whose access
time exceeds a software-settable value or threshold. The counter value reflects the total
number of instructions that exceeded the specified access time in machine cycles for the

MOTOROLA Chapter 10. Performance Monitor 10-13

-

-

selected storage instruction. The access time of all sampled load instructions, with and
without intervention, may be thresholded. Additionally, sampled store accesses, with and
without intervention, to cacheable memory locations may be thresholded. The Thresholder
circuit behaves in the following manner, when a sampled storage instruction is issued to the
memory hierarchy, a decrementer is initialized with a value (threshold) that has been set by
software in the MMCRO[I0-15]. Then it is decremented by one every subsequent clock
cycle. The threshold is said to be exceeded when the decrementer reaches zero before the
storage instruction completes. It is not exceeded if the storage instruction is completed
before the decrementer reaches zero. The term completed has different meaning depending
of the type of storage instruction. For the load instructions it indicates that the data
associated with the same request was received and for the store instructions it indicates that
the data was written to the Ll cache. The Performance Monitor counter that is monitoring
the Thresholder is incremented every time the threshold is exceeded.

By accumulating counts of accesses that exceed decreasing threshold values, a histogram
can be generated that reveals the access time distribution of memory requests. The
distribution reflects the proportionate numbers of "hits" at the various memory levels (e.g.,
Ll, L2, and main memory) and will also reflect a smearing effect caused by bus and other
resource conflicts that cause the access time to a given memory level (say to L2, for
example) to vary over a range of values. This detailed distribution will reveal system effects
that are not captured with previous approaches.

NOTE: The performance monitor can only threshold one type of sampled storage
instruction at a given time. If a performance monitor counter is selected to monitor the
threshold of two different types of storage instructions then the PMC value associated with
the thresholder will reflect the value of the thresholded event with the highest priority as
shown below (1 is the highest priority). Therefore the value of the thresholded lower
priority event will be invalid.

l. Stores without intervention

2. Loads with intervention

3. Stores with intervention

4. Loads without intervention

If another sampled instruction is issued to the memory hierarchy while the decrementer in
the Thresholder circuit is active, the Thresholder logic resets itself and begins decrementing
the threshold value for the new sampled instruction. This scenario only happens when the
instruction been monitored by the Thresholder was cancelled.

Figure 10-2 shows an illustrative distribution of access times that might be measured using
the Thresholder on an imaginary system. Notice that main memory access times vary over
a wide range in this example-perhaps due to interleaved memory bank conflicts or system
bus conflicts. A distribution of L1 hit access times reveals how well the structure of the LI
supports the application running when this data was gathered. Figure 10-2 through
Figure 10-6 provide timing information and block diagrams for various Thresholder states.

10-14 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Number of

Occurrences

L1 Hits

L2 Hits

Main Memory
Accesses

12345678910111213141516

Access Time in Cycles

Figure 10-2. Access Times of an Imaginary System Using the Thresholder

Memory Start
Request

Data received

Stop

Main Memory

Cycle

Counter

Count
Value

Threshold

Value

Processor
Clock

Count >Threshold

Event
Counter

Read

Figure 10-3. Block Diagram of the Delay Thresholding Mechanism for Load
Instructions

MOTOROLA Chapter 10. Performance Monitor 10-15

-

-

Memory Start
Request

Main Memory

Cycle
Counter

Count
Value

Thresholder

Threshold
Value

Processor
Clock

Count >Threshold

Event
Counter

Figure 10-4. Block Diagram of the Delay Thresholding Mechanism for Store
Instructions

10-16

C cle 0 2 3 4 5 6

Clock

Sampled_Load_Sent

Sampled_Data_Received

Threshold Exceeded

Decrementer_value x 3 2 3 3 3 3

NOTE: Threshold=3

Figure 10-5. Sample Timing Diagram of the Thresholding Mechanism
(Threshold Not Exceeded)

Cycle

Clock

Sampled_Load_Sent

Sampled_Data_Received

Threshold Exceeded

Decrementer_value x 3 2 0 0 0

NOTE: Threshold=3

Figure 10-6. Sample Timing Diagram of the Thresholding Mechanism
(Threshold Exceeded)

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

10.6 The Counters
The performance monitor counters contain the total number of times the software
selectable monitored event has occurred since the performance monitor was enabled for
counting. Each counter consists of a 32 bit register. These counters can be initialized to zero
or any other value via a "mtspr" instruction. Each counter can monitor only one event at a
time. The behavior of the counters is directly controlled by the Monitor Mode Control
Registers (MMCRO and MMCRl). To take advantage of the different counting and
interrupt features controlled by the MMCRs the counters should not be initialized to a
negative number. If a negative number is detected in a counter the performance monitor will
take the action dictated by the bits in the MMCRs (i.e. Generate a Performance Monitor
Exception request). These registers can only be modified in privilege state but they can be
read in problem or privilege state.

NOTE: The performance monitor exception request could be generated or the counters
could be disabled several cycles after the count became negative.

10.6.1 Enabling the Counters
The counters can be enabled to count based on different conditions that are controlled by
the MMCRs. Once an event is selected to be monitored by a PMC the default is for that
counter to be enabled and to count under all scenarios. A combination of MMCRO bits can
be used to control in which scenarios the counters will be enable to count. MMCRO[O]
forces the counters to be disabled, MMCR0[1:4] selects the state in which the counters will
be disabled and MMCR0[5:9 and 16:18) control when and the order in which the counters
will be enabled. Some of the possible scenarios that can be achieved involve any
combination of an enable and a disable scenario listed below.

Enable counting scenarios:

• Enable only PMCl.

• Enable only PMC2-8.

• Enable PMCl-8 at the same time.

• Enable PMCl first and after it becomes negative enable PMC2-8.

• Wait for a Time Base transition; once it is detected enable only PMCl.

• Wait for a Time Base transition; once it is detected enable only PMC2-8.

• Wait for a Time Base transition; once it is detected enable PMCl and PMC2-8.

• Wait for a Time Base transition; once it is detected enable PMCl and once it
becomes negative enable PMC2-8.

MOTOROLA Chapter 1 o. Performance Monitor 10-17

-

-

Disable counting scenarios:

• Disable unconditionally.

• DisablePMCl only.

• Disable PMC2-8 only.

• Disable counting while in Privileged state.

• Disable counting while in Problem state.

• Disable counting if the process is marked.

• Disable counting if the process is not marked.

• Disable counting while in Privileged state and executing a marked process.

• Disable counting while in Privileged state and not executing a marked process.

• Disable counting while in Problem state and executing a marked process.

• Disable counting while in Problem state and not executing a marked process.

10.6.2 Performance Monitor Mark Bit
The performance monitor mark (PMM) bit is located in the MSR[61]. The purpose of this
bit is to mark specific processes and use it in conjunction with the MMCR0[3-4], FCMO
arid FCMl. With the combination of these bits it is possible to control the processes in
which the performance monitor will be enabled or disabled.

10.6.3 Selecting the Events to be Monitored
The performance monitor events to be monitored can be selected by properly setting the
MMCR0[19-31] and MMCRl[0-28]. There are 7 bits associated with the PMCl and 6 bits
associated with the PMC2. In Table 10-5 through Table 10-12 a correlation is established
between each counter, the events to be monitored and the select pattern required in the
MMCRs for the desired selection.

NOTE: If the select pattern specified in the corresponding MMCRs bits is not specified in
the following tables the contents of the associated PMC will be undefined.

Table 10-5. PMC1 Monitored Events and Selected Bit Patterns

MMCR0[19-25] Unit Event Description

OxOO PERFMON Processor cycles.

Ox01 IFU Number of instructions completed.

Ox02 PERFMON Time Base selected bit transition from zero to one.

Ox03 PERFMON Number of instructions dispatched.

Ox04 IFU Number of load instructions completed.

Ox05 IPU L1 instruction cache miss.

10-18 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 10-5. PMC1 Monitored Events and Selected Bit Patterns (Continued)

MMCR0[19-25] Unit Event Description

Ox06 DCACHE A Load miss occurred in L 1.

Ox07 PERFMON Threshold exceeded (loads with no L2 intervention)

Ox08 DCACHE Data cache EPAT miss.

Ox09 PERFMON Threshold Exceeded (Stores with No L2 Intervention)

OxOA BIU A Read-Burst missed the L2 and another bus device has modified
data.

Ox OB IPU L 1 instruction cache IEPAT miss.

OxOC IPU Brought/wrote a line into the !CACHE and used it.

OxOD DCACHE Data cache detected an offset hit.

OxOE PERFMON Number of instructions deleted due to global cancel.

OxOF PERFMON Chaining the counters in history mode. (PMC1 to PMC8)

Ox12 BIU A master-generated store operation is retried.

Ox14 IFU MSR External Interrupt Enable bit, MSR(EE), is off

Ox15 IPU Branch unit idle.

Ox16 IFU A Single instruction serialization class instruction is in execution
(Counts the total number of cycles this condition is detected.)

Ox17 FPU The FPU status and control register instructions.

Ox18 BIU One store buffer is in use.

Ox19 BIU A snooped operation cleaned data from the L2.

Ox1A PERFMON Number of stores in the completion buffer.

Ox1B IPU The Link Register stack is full.

Ox1C IPU A conditional branch was resolved at dispatch.

Ox1D PERFMON Number of loads in the completion buffer.

Ox1E PERFMON Number of entries in the completion buffer.

Ox1F LOST The Finished Store Queue (FSQ) is full.

Ox51 DCACHE Data cache and Instruction cache SLB miss occurred.

Ox53 DCACHE Data cache and instruction cache TLB miss.

Ox56 IFU A Single instruction serialization class instruction is in execution -(Counts the number of times this condition is detected.)

MOTOROLA Chapter 1 O. Performance Monitor 10-19

Table 10-6. PMC2 Monitored Events and Selected Bit Patterns

MMCR0[26-31] Unit Event Description

OxOO IFU Number of instructions completed.

Ox01 PERFMON Processor cycles.

Ox02 PERFMON Time Base selected bit transition from zero to one.

Ox03 PERFMON Number of instructions dispatched.

Ox05 DCACHE Data cache store address lookup.

Ox06 BIU A Sampled Read-Burst generated an L2 miss.

Ox08 IPU A conditional branch was predicted.

Ox09 DCACHE Store miss occurred in L 1.

OxOA PERFMON Threshold Exceeded (Loads with L2 Intervention)

OxOB BIU A Read-with-Intent-to-Modify (RWITM) generated an L2 access.

OxOC PERFMON Threshold Exceeded (Stores with L2 Intervention)

OxOD IFU A Store conditional instruction failed to execute successfully

OxOE BIU A master-generated non-burst store operation is stalled waiting for a
store buffer.

OxOF PERFMON Chaining the counters in history mode. (PMC2 to PMC1)

Ox10 BIU A Sampled Read-Burst missed the L2 and another bus device has
modified data.

Ox11 FXU The Complex Integer Unit does not have a valid instruction to execute.

Ox12 IFU A system call interrupt was taken.

Ox14 BIU Two store buffers are in use.

Ox15 BIU A master-generated load operation is not retried.

Ox16 LOST A larx instruction has finished execution.

Ox18 LOST A sample store instruction was scheduled for execution.

- Ox19 IPU The instruction buffer is empty this cycle.

Ox1C BIU A snooped operation generated a push or an intervention.

Ox1D BIU A master-generated store operation is loaded into the store buffer.

Ox33 DCACHE Data cache and Instruction cache SLB miss occurred.

10-20 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 10-7. PMC3 Monitored Events and Selected Bit Patterns

MMCR1[o-4] Unit Event Description

OxOO IPU Brought/wrote a line into the ICACHE and used it.

Ox01 PERFMON Processor cycles.

Ox02 IFU Number of instructions completed.

Ox03 PERFMON Time Base selected bit transition from zero to one.

Ox04 IFU Number of instructions dispatched.

Ox05 DCACHE A Load miss occurred in L 1.

Ox06 BIU A sampled read-with-intent-to-modify (RWITM) generated an L2 miss.

Ox07 IPU The branch queue is full.

Ox OB BIU A sampled read-with-intent-to-modify (RWITM) missed the L2 and another
bus device has modified data.

Ox09 IFU A store instruction was completed.

OxOA DCACHE A sampled store was completed.

Ox OB IFU A load instruction is the next instruction to complete.

OxOC BIU A read-with-intent-to-modify (RWITM) generated an L2 miss.

OxOD BIU A sampled read-burst generated an L2 access.

OxOE BIU A master-generated non-burst store operation is stalled waiting for a store
buffer.

OxOF PERFMON Chaining the counters in history mode. (PMC3 to PMC2)

Ox10 LDST A double word unaligned store was scheduled

Ox11 BIU A master-generated store operation is loaded into the store buffer.

Ox13 BIU Three store buffers are in use.

Ox14 BIU A master-generated Store Conditional (STCX) is cancelled.

Ox15 BIU A snooped operation generated a transition in the L2 from Exclusive or
Shared to Invalid.

Ox16 FPU The FPU divide instructions.

Ox18 IFU 1/0 interrupts detected. -
MOTOROLA Chapter 10. Performance Monitor 10-21

Table 10-8. PMC4 Monitored Events and Selected Bit Patterns

MMCR1[5-9] Unit Event Description

OxOO IPU L 1 instruction cache IEPAT miss.

Ox01 PERFMON Processor cycles.

Ox02 IFU Number of instructions completed.

Ox03 PERFMON Time Base selected bit transition from zero to one.

Ox04 IFU Number of instructions dispatched.

Ox05 IFU Number of load instructions completed.

Ox07 LOST The load/store scheduled a sampled load instruction

Ox OB BIU A sampled read-with-intent-to-modify (RWITM) generated an
L2 access.

Ox09 LOST The load/store received data from the data cache.

OxOA BIU A read-with-intent-to-modify (RWITM) missed the L2 and
another bus device has modified data.

OxOB DCACHE Data cache sync request was made to the BIU.

OxOC IFU Global cancel due to a load or store instruction address
conflict.

OxOD FXU The multi-cycle integer unit pipeline is busy with a valid
instruction.

OxOE BIU A master-generated store operation is not retried.

OxOF PERFMON Chaining the counters in history mode. (PMC4 to PMC3)

Ox10 DCACHE Data cache detected an aliased hit.

Ox11 FXU The simple integer unit 1 does not have a valid instruction to
execute.

-

Ox12 LOST A double word unaligned load was scheduled.

Ox13 PERFMON Completion stalled on a load operation.

Ox14 BIU A master-generated Bus operation received an ARESPIN
Retry.

Ox16 IPU Branch completed.

- Ox17 IPU The dispatch buffer is empty this cycle.

Ox18 IPU Link Register stack error.

Ox19 IPU The condition register logical unit produced a result.

Ox1B BIU A snooped operation cleaned data from the L 1 .

10-22 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 10-9. PMCS Monitored Events and Selected Bit Patterns

MMCR1(10-14) Unit Event Description

OxOO DCACHE Data cache EPAT miss.

Ox01 IPU The instruction cache was accessed and a fetch block was fetched.

Ox02 PERFMON No instructions completed.

Ox04 BIU A read-burst (RB) generated an L2 access.

Ox05 FPU The FPU finished the execution of an instruction.

Ox06 LDST The load/store reservation stations are empty.

Ox07 IPU BTAC hit.

Ox OB LDST Completed Store Queue (CSQ) is full.

Ox09 BIU A master-generated store operation is stalled waiting for a store buffer.

OxOA BIU A snooped operation generated a transition in the L2 from Modified to
Invalid.

Ox OB FPU The FPU convert and round instructions.

OxOC PERFMON Processor cycles.

OxOD BIU A master-generated Bus operation received an ASTATIN Retry.

Ox OF PERFMON Chaining the counters in history mode. (PMC5 to PMC4)

-
MOTOROLA Chapter 10. Performance Monitor 10-23

Table 10-10. PMC6 Monitored Events and Selected Bit Patterns

MMCR1 [15-19] Unit Event Description

Ox01 DCACHE Store hit occurred in L 1.

Ox02 FXU The Multi-cycle integer unit finished the execution of an instruction.

Ox03 IPU A BTAC miss was detected.

Ox04 BIU An instruction fetch generated an L2 miss.

Ox05 IPU A conditional branch was dispatched.

Ox06 LOST The Load queue is full.

Ox08 BIU A snooped operation generated a push or an intervention.

Ox09 IFU The MSR(EE) bit is off and an external interrupt is pending.

OxOA BIU A master-generated load operation is retried.

OxOB FPU The FPU move instructions and the select instruction.

OxOC PERFMON Processor cycles.

OxOD BIU A snooped operation accessed the L2.

OxOE BIU A snooped operation generated a transition in the L2 from Exclusive to Shared.

OxOF PERFMON Chaining the counters in history mode. (PMC6 to PMC5)

Table 10-11. PMC7 Monitored Events and Selected Bit Patterns

MMCR1 [20-24] Unit Event Description

OxOO IPU L 1 instruction cache miss.

Ox01 FXU The simple integer unit 0 finished the execution of an instruction.

Ox02 /PU A branch was dispatched (any).

Ox03 IFU Global cancel due to a branch guessed wrong.

Ox04 BIU A bus operation was snooped.

Ox06 PERFMON No instructions dispatched.

Ox07 FXU The simple integer unit 0 does not have a valid instruction to execute.

- OxOA PERFMON A store instruction was dispatched.

OxOB PERFMON Processor cycles.

OxOF PERFMON Chaining the counters in history mode. (PMC7 to PMC6)

10-24 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Table 10-12. PMC8 Monitored Events and Selected Bit Patterns

MMCR1 [25-28] Unit Event Description

Ox1 BIU A snooped operation hit the L2.

Ox2 BIU A Read-Burst generated an L2 miss.

Ox3 PERFMON A store conditional instruction executed successfully.

Ox4 FXU The Simple Integer unit 1 finished the execution of an instruction.

Ox5 BIU A bus operation was ASTATOUT Retried.

Ox7 IPU Prefetch bad.

Ox8 PERFMON Completion stalled on a store operation.

Ox A PERFMON A load instruction was dispatched.

OxB IFU Misaligned data interrupt

OxC PERFMON Processor cycles.

OxF PERFMON Chaining the counters in history mode. (PMC8 to PMC7)

10.7 Detailed Description of Events
A detailed description of performance monitor events follows:

• Instruction Flow Unit Events

1. MSR External Interrupt Enable bit, MSR(EE), is off. (PMCl Event Ox14)

The MSR(EE) bit is disabled. For every processor cycle in which this bit is off,
this event will be asserted.

2. A Single instruction serialization class instruction is in execution (PMCl Event
Ox16 and Ox56)

Single instruction serialization class instructions (SIS class instructions) will
only execute when they are the oldest in the machine and will also halt the
dispatch of instructions which follow them. This event will be asserted for every
processor cycle from the cycle after the instruction gets dispatched to the cycle
after the instruction finishes. See Section 6.4.2, "Execution Serialization."

3. A Load instruction is the next instruction to complete. (PMC3 Event OxOB)

A load instruction is the first instruction pending completion. The debt and
dcbtst instructions are considered load instructions in the 620. For every
processor cycle in which a load instruction is the first instruction pending
completion, this event will be asserted for one processor cycle.

MOTOROLA Chapter 10. Performance Monitor 10-25

-

-
10-26

4. Number of instructions completed. (PMCl Event OxOl, PMC2 Event OxOO,
PMC3 and PMC4 Event Ox02)

Number of instructions completed on a processor cycle. This number has a
minimum value of 0 (no instructions completed) and a maximum value of 4 (4
instructions were completed). This event is asserted for one processor cycle.

5. Number of load instructions completed. (PMCl Event Ox04 and PMC4 Event
Ox05)

Number of load instructions completed on a processor cycle. This number has a
minimum value of 0 (no load instructions completed) and a maximum value of
4 (4 load instructions completed). The debt and dcbtst instructions are
considered load instructions in the 620. This event is asserted for one processor
cycle.

6. Number of instructions dispatched. (PMC3 and PMC4 Event Ox04)

Number of instructions dispatched on a processor cycle. This number has a
minimum value of 0 (no instructions dispatched) and a maximum value of 4 (4
instructions dispatched). This event is asserted for one processor cycle.

7. A store instruction was completed. (PMC3 Event Ox09)

Only one store instruction is allowed to complete per processor cycle. This event
indicates that a store instruction was completed. This event is asserted for one
processor cycle.

8. Global cancel due to a load or store instruction address conflict.(PMC4 Event
OxOC)

This event indicates that there was a global cancel due to a load instruction
potentially bypassing a load or store instruction to the same effective address.
For an instruction stream with a load instruction before a load or store instruction
to the same effective address, upon completion of the load or store instruction a
load bypass error will be generated. Due to this bypass error, a global cancel will
be generated which cancels the execution of instructions after the load or store
instruction, and causes them to be re-fetched and re-executed.

9. Global cancel due to a branch guessed wrong. (PMC7 Event Ox03)

This event indicates that a branch has been guessed wrong and the incorrect path
was taken. A global cancel is generated to cancel the instructions executed
through the incorrect path and refetch the instructions on the correct path. This
event is asserted for one processor cycle.

10. A store conditional instruction failed to execute successfully. (PMC2 Event
Ox OD)

A stwcx. or stdcx. instruction has completed and the resulting CR bit (bit 2 of
CR field 0) was a 0. This indicates that the store conditional was executed
unsuccessfully. This event is asserted for one processor cycle.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

11. A store conditional instruction executed successfully. (PMC8 Event Ox03)

A stwcx. or stdcx. instruction has completed and the resulting CR bit (bit 2 of CR
field 0) was a 1. This indicates that the store conditional was executed
successfully. This event is asserted for one processor cycle.

12.A load instruction was dispatched. (PMC8 Event OxOA)

This event indicates that a load instruction was dispatched. This includes
speculatively dispatched instructions which may be later cancelled. This event is
active for one processor cycle.

13. A store instruction was dispatched. (PMC7 Event OxOA)

This event indicates that a store instruction was dispatched. This includes
speculatively dispatched instructions which may be later cancelled. This event is
active for one processor cycle.

14. System call interrupt (PMC2 Event Ox12)

This event indicates that a system call interrupt was taken. This event is asserted
for one processor cycle.

15.EE bit is off and an external interrupt is pending. (PMC6 Event Ox09)

Interrupts like decrementer, external, performance and system management
interrupts are masked by the EE bit. If the EE bit is disabled these interrupts will
be pending until EE is enabled. This event will be asserted for every processor
cycle in which any of the interrupts above is pending while EE is off.

16. 1/0 interrupts detected. (PMC3 Event Ox 18)

This event indicates that an external or a system management interrupt was
taken. This event is asserted for one processor cycle.

17. Misaligned data interrupt (PMC8 Event Ox OB)

This event indicates that there was an exception due to misaligned data. This
event is asserted for one processor cycle.

Instruction Processing Unit Events

1. The instruction cache was accessed and a fetch block was fetched.
(PMC5 Event OxOl)

A fetch block was accessed by the branch unit. The fetch block could have been
fetched from the !CACHE (including the cache-reload-buffer), the L2 cache or
system memory. This event is active for one clock cycle.

2. L1 instruction cache miss. (PMC7 Event OxOO;PMCl Event Ox05)

The I CACHE was accessed, with valid translation if instruction side translation
is enabled, and the instructions were not available in the instruction cache. A
request was made by the I CACHE to the BIU for instructions. This event is active
for one clock cycle.

MOTOROLA Chapter 10. Performance Monitor 10-27

-

-
10-28

3. L1 instruction cache IEPAT miss. (PMC4 Event OxOO;PMCl Event OxOB)

The IEPAT did not contain an entry for the requested instruction address. A table
walk request was sent to the I CACHE and the IEPAT was loaded with translation
data from a table walk or from a segment register entry. This event is active for
one clock cycle.

4. A BTAC miss was detected. (PMC6 Event Ox03)

An entry for the fetch address was not found in the BTAC. This event is active
for one clock cycle.

5. A branch was dispatched (any). (PMC7 Event Ox02)

A branch instruction was dispatched. This includes speculatively dispatched
instructions which may be later cancelled. This event is active for one clock
cycle.

6. The branch queue is full. (PMC3 Event Ox07)

The branch queue contained four guessed branches on the last processor clock.
Every processor clock which occurs while the branch queue is full will cause
another event signal. This event is active for one clock cycle.

7. A conditional branch was predicted. (PMC2 Event Ox08)

A conditional branch was predicted at dispatch. The branch may be cancelled
due to it or a previous branch being mispredicted. This event is active for one
clock cycle.

8. A conditional branch was dispatched. (PMC6 Event Ox05)

A conditional branch instruction was dispatched. This could include
speculatively dispatched instructions which may be later cancelled. This event is
active for one clock cycle.

9. Brought/wrote a line into the ICACHE and used it. (PMC3 Event OxOO,
PMCl Event OxOC)

A line was brought into the CRB and one or more instructions from the line were
dispatched. This event is active for one clock cycle.

10. BTAC hit. (PMC5 Event Ox07)

The branch target address cache had an entry that corresponded to the instruction
fetch address. This signal is active for one clock cycle.

11. Prefetch bad. (PMC8 Event Ox07)

The prefetch address was not used. A fetch correction had to be made at dispatch.
This event is active for one clock cycle.

12. Branch unit idle. (PMCl Event Ox15)

The queue is empty, so the branch unit is idle.This event is active for one clock
cycle.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

13. Branch completed. (PMC4 Event Ox 16)

A branch completed this cycle. This event is active for one clock cycle.

14. The dispatch buffer is empty this cycle. (PMC4 Event Ox 17)

The dispatch buffer is empty this cycle. This event is active for one clock cycle.

15.Link Register stack error. (PMC4 Event Oxl8)

The fetch address from the Link Register stack was not correct. A fetch
correction had to be made. This event is active for one clock cycle.

16. The instruction buffer is empty this cycle. (PMC2 Event Ox 19)

The instruction buffer is empty this cycle. This event is active for one clock cycle.

17. The condition register logical unit produced a result. (PMC4 Event Ox 19)

The condition register logical unit finished an instruction. This event is active for
one clock cycle.

18. The Link Register stack is full. (PMCl Event OxlB)

The Link Register stack holds 8 fetch addresses. This event is active for one
clock cycle.

19. A conditional branch was resolved at dispatch. (PMCl Event OxlC)

The conditional branch was dispatched and was not guessed. This event is active
for one clock cycle.

• Data Cache Events

L Store hit occurred in LL (PMC6 Event OxOl)

Asserts for one cycle, once for each writeback store that is taken from the CSQ.
It has nothing to do with the number of translation lookups done on behalf of
stores.

2. Store miss occurred in L1. (PMC2 Event Ox09)

Asserts from one cycle when a writeback store misses the cache. It may assert
more than once for a given store if that store's cache allocate gets retried by the
BIU due to collision detection.

3. Data cache and instruction cache TLB miss. (PMCl Event Ox53)

A TLB miss was detected in the data cache or the instruction cache. This event
is asserted for two cycles for each TLB miss detected but this 2 cycle pulse will
be counted as one occurrence.

4. A Load miss occurred in LL (PMCl Event Ox06, PMC3 Event Ox05)

Asserts one cycle for each cache allocate on behalf of a load miss. This event will
also assert on aliased hits since the DCACHE go to the BIU before performing
second cycle lookups. (See "Data cache offset hit" below)

MOTOROLA Chapter 10. Performance Monitor 10-29

-

-

5. A sampled store was completed. (PMC3 Event OxOA)

Asserts for one cycle for each sampled store that completes.

6. Data cache EPAT miss. (PMCl Event Ox08, PMC5 Event OxOO)

Asserts for one cycle to indicate a DCACHE EPAT miss.

7. Data cache and Instruction cache SLB miss occurred. (PMCl Event Ox51,
PMC2 Event Ox33)

This event will be asserted whenever a data cache or instruction cache SLB miss
occurs. This event will be asserted for more than 1 cycle pulse but this pulse will
be counted as one occurrence.

8. Data cache detected an aliased hit. (PMC4 Event OxlO)

Asserts for one cycle for each aliased hit.

9. Data cache detected an offset hit. (PMCI Event OxOD)

Asserts for one cycle for each offset hit. The total count of aliased hits and offset
hits will indicate the number of times that a load request encounters a multi-cycle
hit scenario. Substracting this total from the number of "Load misses" count will
give a true count of cache load misses.

10. Data cache store address lookup. (PMC2 Event Ox05)

Asserts for one cycle each time the DCACHE returns an address translation to
the Load Store unit on behalf of a store instruction.

11. Data cache sync request was made to the BIU. (PMC4 Event OxOB)

This event is asserted when a SYNC request to the BIU is made, this could take
several cycles. This event will count each of the cycles.

• Bus Interface Unit Events

10-30

- L2-Related Data for Master-Generated Events

I. A Read-Burst (RB) generated an L2 access. (PMC5 Event Ox04)

Asserts for one cycle for each RB from the DCache that generated an L2
access. The RB is associated with either a normal data request or a table walk.

2. A Read-Burst generated an L2 miss. (PMC8 Event Ox02)

Asserts for one cycle for each RB from the DCache that generated an L2 miss.

3. A Sampled Read-Burst generated an L2 access. (PMC3 Event OXOD)

Asserts for one cycle for each Sampled RB from the DCache that generated
an L2 access. The Sampled RB is associated with a normal data request, not
a table walk.

4. A Sampled Read-Burst generated an L2 miss. (PMC2 Event Ox06)

Asserts for one cycle for each Sampled RB from the DCache that generated
an L2 miss.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

5. A Read-with-Intent-to-Modify (RWITM) generated an L2 access.
(PMC2 Event OxOB)

Asserts for one cycle for each RWITM from the DCache that generated an L2
access. A RWITM is the result of a cacheable store miss or touch-for-store
miss in the DCache.

6. A Read-with-Intent-to-Modify (RWITM) generated an L2 miss.
(PMC3 Event OxOC)

Asserts for one cycle for each RWITM from the DCache that generated an L2
miss.

7. A Sampled Read-with-Intent-to-Modify (RWITM) generated an L2 access.
(PMC4 Event Ox08)

Asserts for one cycle for each Sampled RWITM from the DCache that
generated an L2 access.

8. A Sampled Read-with-Intent-to-Modify (RWITM) generated an L2 miss.
(PMC3 Event Ox06)

Asserts for one cycle for each Sampled RWITM from the DCache that
generated an L2 miss.

9. An instruction fetch generated an L2 miss. (PMC6 Event Ox04)

Asserts for one cycle for each instruction fetch that generated an L2 miss.

MOTOROLA

10.A Read-Burst missed the L2 and another bus device has modified data.
(PMCl Event OxOA)

Asserts for one cycle for each RB from the DCache that missed the L2 and
found modified data in another bus device, as opposed to main memory.

11.A Sampled Read-Burst missed the L2 and another bus device has modified
data. (PMC2 Event OxlO)

Asserts for one cycle for each Sampled RB from the DCache that missed the
L2 and found modified data in another bus device, as opposed to main
memory.

12.A Read-with-Intent-to-Modify (RWITM) missed the L2 and another bus
device has modified data. (PMC4 Event OxOA)

Asserts for one cycle for each RWITM from the DCache that missed the L2
and found modified data in another bus device, as opposed to main memory.

13.A Sampled Read-with-Intent-to-Modify (RWITM) missed the L2 and
another bus device has modified data. (PMC3 Event Ox08)

Asserts for one cycle for each Sampled RWITM from the DCache that missed
the L2 and found modified data in another bus device, as opposed to main
memory.

Chapter 10. Performance Monitor 10-31

-

-
10-32

- Bus-Related Data for Master-Generated Events

1. A master-generated Bus operation received an ASTATIN Retry.
(PMC5 Event OxOD)

Asserts for one cycle for any master-generated Bus operation that received an
ASTATIN Retry response. This event includes all data loads, all instruction
fetches and all stores.

2. A master-generated Bus operation received an ARESPIN Retry.
(PMC4 Event Ox14)

Asserts for one cycle for any master-generated Bus operation that received an
ARESPIN Retry response. This event includes all data loads, all instruction
fetches and all stores.

3. A master-generated load operation is retried. (PMC6 Event OxOA)

Asserts for one cycle for any master-generated load operation that received
either an ASTATIN Retry or an ARESPIN Retry response. This event
includes all data loads and all instruction fetches.

4. A master-generated load operation is not retried. (PMC2 Event Ox15)

Asserts for one cycle for any master-generated load operation that received
neither an ASTATIN Retry nor an ARESPIN Retry response. This event
includes all data loads and all instruction fetches.

5. A master-generated store operation is retried. (PMCl Event Ox12)

Asserts for one cycle for any master-generated store operation that received
either an ASTATIN Retry or an ARESPIN Retry response. This event
includes all stores.

6. A master-generated store operation is not retried. (PMC4 Event OxOE)

Asserts for one cycle for any master-generated store operation that received
neither an ASTATIN Retry nor an ARESPIN Retry response. This event
includes all stores.

7. A master-generated store operation is loaded into the store buffer.
(PMC2 Event OxlD and PMC3 Event Oxll)

Asserts for one cycle for any master-generated store operation that entered the
store buffer.

8. A master-generated store operation is stalled waiting for a store buffer.
(PMC5 Event Ox09)

Asserts for every cycle that a master-generated store operation is stalled
waiting for a store buffer. This event includes all stores.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

9. A master-generated non-burst store operation is stalled waiting for a store
buffer. (PMC2 Event OxOE and PMC3 Event OxOE)

Asserts for every cycle that a master-generated non-burst store operation is
stalled waiting for a store buffer. This event includes write-through stores,
cache-inhibited stores, External Control Out operations and PIO Store
operations.

10. Three store buffers are in use. (PMC3 Event Ox13)

Asserts for every cycle that all three store buffers are valid.

I I.Two store buffers are in use. (PMC2 Event Oxl4)

Asserts for every cycle that any two of three store buffers are valid.

12.0ne store buffer is in use. (PMCI Event Oxl8)

Asserts for every cycle that one of three store buffers is valid.

13.A master-generated Store Conditional (STCX) is cancelled. (PMC3 Event
Ox14)

Asserts for one cycle for any master-generated STCX that received an
ARESPIN Retry. Self-retry cases where the Master generates ARESPOUT
Retry are included in this event.

- Snooper-Generated Events

1. A bus operation was snooped. (PMC7 Event Ox04)

Asserts for one cycle for each snooped operation. This event includes all
memory-coherent operations where the M-bit on the Bus is set to 1. In
addition, the event includes non-memory-coherent operations TLBIE,
TLBSYNC and SYNC.

2. A bus operation was ASTATOUT Retried. (PMC8 Event OxOS)

Asserts for one cycle for each snooped operation that generated an
ASTATOUT Retry. ASTATOUT Retry is generated when all four snoop
buffers are full, when both state machines are full, when a snooped TLBIE
encounters an active TLBIE or when a snooped TLBSYNC encounters an
active TLBIE. Note that multiple conditions may occur in the same cycle.

3. A snooped operation accessed the L2. (PMC6 Event OxOD)

Asserts for one cycle for each snooped operation that accessed the L2. This
includes only the memory-coherent operations (M=l) which check L2 state.
This event asserts regardless of whether the L2 is enabled or disabled. This
event is not signalled when the snoop buffers are full and the operation is
ASTATOUT Retried.

4. A snooped operation hit the L2. (PMC8 Event OxOl)

Asserts for one cycle for each snooped operation that accessed and hit the L2.

MOTOROLA Chapter 10. Performance Monitor 10-33

-

-

5. A snooped operation generated a push or an intervention.
(PMC2 Event OxlC and PMC6 Event Ox08)

Asserts for one cycle for each snooped operation that generated either a push
or an intervention.

6. A snooped operation cleaned data from the Ll. (PMC4 Event OxlB)

A snooped operation such as Clean or Read-Burst generated a push or
intervention from the L 1 and also changed the L2 from Modified to Exclusive
or Shared.

7. A snooped operation cleaned data from the L2. (PMCl Event Ox19)

A snooped operation such as Clean or Read-Burst generated a push or
intervention from the L2 and changed the L2 from Modified to Exclusive or
Shared.

8. A snooped operation generated a transition in the L2 from Modified to
Invalid.
(PMC5 Event OxOA)

A snooped operation generated a transition in the L2 from Modified to
Invalid. This event includes operations such as DKill which simply invalidate
the line and operations such as RWITM which generate a push or intervention
and then invalidate the line.

9. A snooped operation generated a transition in the L2 from Exclusive to
Shared.
(PMC6 Event OxOE)

A snooped operation such as Read-Burst generated a transition in the L2 from
Exclusive to Shared.

1 O.A snooped operation generated a transition in the L2 from Exclusive or
Shared to Invalid. (PMC3 Event Ox15)

A snooped operation such as Read-with-Intent-to-Modify generated a
transition in the L2 from Exclusive or Shared to Invalid.

• Floating Point Unit Events

10-34

1. The FPU finished the execution of an instruction. PMC5(0x05)

Finish is generated for all valid instructions sent to the FPU regardless of whether
the instruction updates an architected register or produces a valid result. Since
the FPU is capable of finishing one instruction per cycle the finish signal may
stay active for multiple cycles.

2. The FPU move instructions and the select instruction. PMC6(0x0B)

Execution of the FPU move instructions: fmr(.), fneg(.), fads(.), fnabs(.) and the
FPU select instruction fsel(.) are counted.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

3. The FPU convert and round instructions. PMC5(0xOB)

Execution of the FPU convert instructions: fetid(.), fetidz(.), fetiw(.), fetiwz(.),
fetid(.) and the round to single precision are counted.

4. The FPU divide instructions. PMC3(0x16)

Execution of the FPU divide instructions: fdiv(.), fdivs(.) are counted.

5. The FPU status and control register instructions. PMCl(Ox17)

Execution of the FPU status and control register instructions: mffs(.), mcrfs,
mtfsfi(.), mtfsf(.), mtfsbO(.), mtfsbl(.) are counted.

• Integer Unit Events

1. The Simple Integer unit 0 finished the execution of an instruction.
(PMC7 Event OxOl)

This signal goes active for one cycle for each instruction that finishes in the
Simple Integer unit 0, single cycle unit, (the 620 chip has two single cycle units).

2. The Simple Integer unit 1 finished the execution of an instruction.
(PMC8 Event Ox04)

This signal goes active for one cycle for each instruction that finishes in the
Simple Integer unit 1, single cycle unit, (the 620 chip has two single cycle units).

3. The Multi-cycle integer unit finished the execution of an instruction.
(PMC6 Event Ox02)

This signal goes active for one cycle to indicate that an instruction has finished
in the FXU multi-cycle unit.

4. The Multi-cycle integer unit pipeline is busy with a valid instruction.
(PMC4 Event OxOD)

This event is active any time one or more instructions is executing in one or more
of the multi-cycle units (multiply, divide, or logic). This event does not indicate
which units are active, more than one unit can be operating at the same time.

5. The Simple Integer unit 0 does not have a valid instruction to execute.
(PMC7 Event Ox07)

This event is active any time that the Simple Integer Unit 0 is not currently
executing an instruction and does not have any instructions waiting for execution

6. The Simple Integer unit 1 does not have a valid instruction to execute.
(PMC4 Event Oxl l)

This event is active any time that the Simple Integer Unit 1 is not currently
executing an instruction and does not have any instructions waiting for execution

MOTOROLA Chapter 10. Performance Monitor 10-35

-

-

7. The Complex Integer Unit does not have a valid instruction to execute.
(PMC2 Event Oxl 1)

This event is active any time that the Complex Integer Unit is not currently
executing an instruction and does not have any instructions waiting for
execution.

• Load/Store Unit Events

10-36

1. The Load queue is full. (PMC6 Event Ox06)

The Load queue has a total of five entries. When all the five entries are valid, this
event is asserted for a one cycle pulse.

2. The Load/Store reservation stations are empty. (PMC5 Event Ox06)

The Load/Store unit has three reservation stations. When all three entries are
valid, this event is asserted for one cycle.

3. The Load/Store scheduled a sampled load instruction (PMC4 Event Ox07)

This event is asserted when any sampled load instruction is scheduled for
execution. This event is asserted for one cycle.

4. Completed Store Queue (CSQ) is full. (PMC5 Event Ox08)

The CSQ has a total of six entries. When all the six entries are valid this event is
asserted for one cycle.

5. A double word unaligned store was scheduled (PMC3 Event OxlO):

When a store crosses a double-word address, it is considered unaligned. Such
stores are execution serialized. When an unaligned store becomes the oldest
instruction on the machine, it is fired for execution, and this event is asserted for
one cycle.

6. The Load/Store received data from the data cache. (PMC4 Event Ox09)

When the Load/Store receives data from the data cache due to a previous load
request, this event will be asserted for one cycle.

7. A double word unaligned load was scheduled. (PMC4 Event Ox12)

When a load crosses a double-word address, it is considered unaligned. Such
loads are execution serialized. When an unaligned load becomes the oldest
instruction in the machine, it is fired for execution, and this event will be asserted
for one cycle.

8. A sample store instruction was scheduled for execution. (PMC2 Event Ox18)

This event is asserted when a sampled store instruction is scheduled for
execution. This event is asserted for one cycle.

9. The Finished Store Queue (FSQ) is full. (PMCl Event OxlF)

The FSQ has a total of five entries. When all five entries are valid this event is
asserted for one cycle.

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

10. A larx instruction has finished execution. (PMC2 Event Ox16)

A larx is serialized type instruction. This event will be asserted for one cycle.

• Performance Monitor Events

1. Processor cycles. (PMCl Event OxOO, PMC2 Event OxOl, PMC3 Event OxOl,
PMC4 Event OxOl, PMC5 Event OxOC, PMC6 Event OxOC, PMC7 Event OxOB
and PMC8 Event OxOC)

This event is asserted every cycle.

2. Time Base selected bit transition from zero to one. (PMCl Event Ox02, PMC2
Event Ox02, PMC3 Event Ox03, PMC4 Event Ox03)

The Time Base is a 64 bit counter that increments once per Processor Bus clock.
The user can select which bit transition to monitor by using the MMCR0[7:8].
This event is asserted for one clock cycle when a transition form zero to a one is
detected in the Time Base selected bit.

3. No instructions completed. (PMC5 Event Ox02)

This event is asserted for one processor cycle when the number of instructions
completed is zero.

4. No instructions dispatched. (PMC7 Event Ox06)

This event is asserted for one processor cycle when the number of instructions
dispatched is zero.

5. Completion stalled on a load operation. (PMC4 Ox13)

This event is asserted for one cycle when a load is the next instruction to be
completed and no instructions are completed in that cycle.

6. Completion stalled on a store operation. (PMC8 Ox08)

This event is asserted for one cycle when a store is the next instruction to be
completed and no instructions are completed in that cycle.

7. Number of instructions deleted due to global cancel. (PMCl Event OxOE)

This event counts the total number of instructions deleted from the completion
buffer due to a global cancel. There could be more than one instruction deleted
from the completion buffer at a given time. In history mode independent of the
number of instructions deleted the value of this signal in a cycle will be zero or
one.

8. Number of entries in the completion buffer. (PMCl Event OxlE)

This event counts the total number of entries in the completion buffer every
cycle. In history mode independent of the number of entries in the completion
buffer the value of this signal in a cycle will be zero or one.

MOTOROLA Chapter 1 o. Performance Monitor 10-37

-

-

9. Number ofloads in the completion buffer. (PMCl Event OxlD)

This event counts the total number of loads in the completion buffer every cycle.
In history mode independent of the number of entries in the completion buffer
the value of this signal in a cycle will be zero or one.

IO.Number of stores in the completion buffer. (PMCl Event OxlA)

This event counts the total number of stores in the completion buffer every cycle.
In history mode independent of the number of entries in the completion buffer
the value of this signal in a cycle will be zero or one.

11. Chaining the counters in history mode. (PMCl Event OxOF, PMC2 Event
OxOF,PMC3 Event OxOF, PMC4 Event OxOF, PMC5 Event OxOF, PMC6 Event
OxOF, PMC7 Event OxOF, PMC8 Event OxOF)

Refer to Section 10.9, "History Mode."

12. Threshold Exceeded (PMCl Event Ox07, PMCl Event OxOA, PMC2 Event
OxOA, PMC2 Event OxOC)

The performance monitor can monitor four different types of thresholding items:

- Loads with no L2 intervention

- Stores with no L2 intervention

- Loads with L2 intervention

- Stores with L2 intervention

Refer to Section 10.5, "The Thresholder."

10.8 Performance Monitor Interrupt
The conditions responsible for a Performance Monitor interrupt generation are:

• The value of PMCl becomes negative (PMCl[O] == 1)

• The value of PMCn becomes negative (PMCn[O] == 1, n> 1)

• A transition from zero to one is detected in the Time Base bit selected by the TBSEL
bits (MMCR0[7:8]).

The interrupt can be disabled for each event independently (MMCR0[9 I 16 I 17]) or to all
the events at the same time (MMCR0[6]). The Performance Monitor interrupt is classified
as an external interrupt and for this reason it is masked by the MSR[16] or external interrupt
enable bit. If a Performance Monitor interrupt is signalled while the external interrupts are
disabled, it will be recorded and it will be reported when the external interrupts get enabled.

When a Performance Monitor interrupt is signalled the hardware resets the MMCR0[5],
PMXE, bit to disable any other possible Performance Monitor interrupts.

10-38 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

To properly start any subsequent analysis the software is responsible to:

1. Reset the condition that caused the interrupt to be reported.

2. Set the MMCRO[S], PMXE, bit back to one if a Performance Monitor interrupt is
desired

3. Because a Time Base transition could have occurred along with an enabled counter
negative condition, software should always reset MMCR0[9], TBXE to zero, if its
value was previously set to one.

The following is an example on how read Table 10-13. (First "Value" column.)

If { (MSR[16]==1) and (MMCR0[5)==1) and (MMCR0[16]==1) and (PMCl[O]==l)} then
the Performance Monitor interrupt is scheduled and will be reported to software.

Table 10-13. Interrupt Generation

Mnemonic Event Value

EE MSR [16J 1 1 1 1

PMXE MMCRO [5J 1 1 1 0

TBXE MMCRO [9J - 1 -
PMC1XE MMCRO [16J 1 -

PMCnXE MMCRO [17J 1 -

PMC1 Negative PMC1 [OJ 1 - - -

PMCn Negative (n> 1) PMCn [OJ 1 - -

Selected Time Base Bit Time Base t
-= Don't Care

t = Signal Transition from zero to one.

10.9 History Mode
The PMCs can work in two different modes: as incrementers (counting mode) or as shift
left registers (History mode). The default operation mode of the PMCs is the incrementer
mode (counting the events). When the PMCs are working in History mode the contents of
the registers are shifted by one bit to the left and the event detected is stored in the least
significant bit (Event detected= 1, Event not detected= 0). Using this facilities it is possible
to establish limited co-relation between the events. In history mode it is only possible to
monitor a maximum of one event per PMC at a time. When an event can generate a value
greater than one in a cycle (i.e. Number of instructions dispatched) this value will be
reflected as a one (value>' 1 ')or as a zero (value= 'O'). An event diagram can be generated
with the data stored in the PMCs as follows.

MOTOROLA Chapter 10. Performance Monitor 10-39

-

-

At the expense of monitoring less events, the PMCs are allowed to chain in history mode
to provide more cycles per event. The counters can only be chained in the following order:

PMCl chained to PMC8

PMC8 chained to PMC7

PMC7 chained to PMC6

PMC6 chained to PMCS

PMCS chained to PMC4

PMC4 chained to PMC3

PMC3 chained to PMC2

PMC2 chained to PMCl

When a counter is chained, it becomes the high order 32 bits of a 64 bit register and it can't
monitor any event. For example PMC2 chained to PMCI, PMC2 will be the high order 32
bits and PMCl will be the low order 32 bits and at this time PMC2 will not be able to
monitor any other event.

To chain two or more counters see Section 10.6.3, "Selecting the Events to be Monitored."

Figure 10-7 is an example of an event diagram in which PMCl thru PMC4 are not chained,
PMC6 is chained to PMCS and PMC8 is chained to PMC7.

PMC1

PMC2

PMC3

0100110010011101 0011011010011110

0011 1001 1010 1101 0011 0101 1010 1100

1010 1110 1010 1001 000100101001 0101

PMC4 0101 001 O 0000 1000 0000 1100 1111 0001
PMC6-PMC5 0000 0000 0000 0000 1111 0000 0000 0000 0010 1010 0101 0011 0011 0110 0000 0001

PMC8-PMC7 1000 0000 0000 0000 0000 1100 0000 001 O 1000 1100 1011 0000 0000 0000 1100 0001

Figure 10-7. Example of a History Mode Event Diagram

10.10 Examples
This section provides various examples using the performance monitor.

10.10.1 Using the Thresholder
MMCRO = Ox001E0441, MMCRl=OxOOOOOOOO

Threshold value is 30, the counters are monitoring:

PMCl event Oxl l, PMC2 event OxOl, PMC3 thru PMC8 event OxOO.

10-40 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

10.10.2 Enable Interrupt
MMCRO = Ox041E4441, MMCRl=OxOOOOOOOO

Same as above but PMCn, n> 1, are enable to generate an exception (MMCRO[l 7] == 1)
when any of these PMC's value becomes a negative number. The exception will be
propagated because the Performance Monitor is also enable to generate an exception
(MMCR0[5]==1). If the exception is reported to the software ornot depends on the state of
the Enable External interrupt, EE bit, in the MSR.

10.10.3 Disable Counting when Interrupt is Generated
MMCRO = Ox061E4441, MMCRl=OxOOOOOOOO

Same as above but the PMCs will stop counting when the Performance Monitor interrupt
is generated due to one or more PMCn, n> 1, reaching a negative value.

10.10.4 Restriction of Events Counting Due to Processor State
MMCRO = Ox2e le4441, MMCR l=OxOOOOOOOO

Same as above, but the Performance Monitor will only count the events when the
instruction belongs to a marked process and the processor is on Privilege state.

10.10.5 PMCs in History and Counting Modes, Restricted Monitor
Events and IABR Triggered.

MMCRO = Ox2ele4441, MMCR1=0x00000005

Same as above, but the Performance Monitor will trigger, start monitoring the events, only
when an IABR match is detected while executing an instruction that belongs to a marked
process and the processor is on Privilege state. After the IABR match is detected PMC 1 will
be counting events, PMCn, n> 1, will be in history mode. Note that this run will finish
(Exception reported by the Performance Monitor and PMCs disabled) 31 sampling cycles
after a PMCn, n> 1, detects an event. The reason is that it takes 31 cycles for this sample to
propagate to bit zero making the value on that PMC negative.

MOTOROLA Chapter 10. Performance Monitor 10-41

-

-
10-42 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Chapter 11
Power Management
The PowerPC 620 power saving mechanism is based on globally disabling the internal
clock, except for clocks needed for the time base, decrementer, external interrupt detection,
and the L2 interface clocks. (Globally disabling the internal clock is a function that is
already needed for testability. References to globally disabling clocks will never apply to
the time base, decrementer, external interrupt detection, or the L2 interface clocks.)
Software initiates the Power Saving mechanism by executing a specific code sequence that
includes a MTMSR instruction that sets the POW bit in the MSR. Hardware terminates the
Power Saving mechanism by a hardware interrupt that clears that bit.

The 620 Power Saving mechanism supports the system to implement 2 modes, called Doze
mode and Nap mode. Both of these modes save power by selectively disabling the internal
clocks. No instructions will be dispatched from the core while in either mode.

• Doze mode-The 620 caches are not flushed before enabling the Power Savings
Mechanism and the 620 is temporarily woken up by the external WAKEUP signal
in order to snoop bus operations. The processor stays awake for the minimum
number of cycles or until it completes all pending snoop operations (cache state
change, intervention, or push) and then it goes back to sleep.

• Nap mode-All state that can be modified by bus snoop operations is flushed or
invalidated prior to enabling the Power Saving mechanism. The WAKEUP pin does
not need to be asserted because the 620 does not have any valid internal state that
can be snooped. However, ifthe WAKEUP signal is asserted, the snoop operation
will miss in the caches and the 620 will go back to sleep. The procedure for :flushing
all internal state in the 620 is described by Section 11.4, "Preparing to Enter Nap
Mode."

11.1 Power Saving Management Enable-MSR[POW]
The following sections provide information on the power saving management enable bit of
the MSR.

11.1.1 Entering Power Saving Mode
The MSR(POW) bit 45, called the power management enable, enables the Power Saving
mechanism. The hardware reset state is disabled or 0. When MSR(POW) is disabled, all
internal clocks are running and the WAKEUP signal is ignored. When MSR(POW) is

MOTOROLA Chapter 11. Power Management 11-1

-

-

asserted all internal clocks are disabled except for clocks needed for the time base,
decrementer, external intenupt detection and the L2 interface, so that the 620 can detect the
wake-up conditions while most of the logic is asleep. The following code sequence must be
used to enable the 620 Power Saving mechanism. When MSR(POW) is set by a mtmsr
instruction, the processor will go into the Power Saving mode. The processor clock will
stop running after the MSR(POW) bit is set and one cycle after the ISYNC is completed
and has generated the global cancel.

Note: MSR(EE) must be set to 1 prior to entering power savings mode. A code sequence to
initiate power saving mode follows:

loop:
1. sync
2. mtmsr (45)

Ensure that all outstanding bus ops have been completed.
Enable Power Savings Mechanism (MSR(POW))

3. isync # Ensure that mtmsr has been executed.
4. br loop # After WAKEUP the processor will go back to sleep.

11.1.2 Leaving Power Saving Mode
The 620 will unconditionally leave power saving mode when the MSR(POW) is cleared by
any of the following:

• INT

• Decrementer Intenupt

• CHECKSTOP

• HRESET

SRESET

• MACHINECHECK_IN (Only if HIDO(O) - MCI enable is asserted and
MSR(ME)=l)

• SYSTEM_MANAGEMENT

The 620 will momentarily wake-up to service one or more snoop operations when the
WAKEUP signal is asserted for one BUSCLK. The MSR(POW) is not cleared.
Section 11.2, "The WAKEUP Signal." The 620 will stay awake until the mtmsr succeeds,
which occurs only when the snooper is idle.

11.2 The WAKEUP Signal
The system arbiter asserts WAKEUP to each 620 in Doze mode according to the following
timing diagram. Each 620 that receives WAKEUP in cycle 1 will be awake by cycle 3 to
snoop EATS and to sample the address bus operation by cycle 4.

11-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

BUSCLK I 1 I 2 I 3 I 4 I 5 I
WAKEUP :J c

~ BUSCLK~j
~ ~

EATS :J c
--

3 BUSCLKs
~

A, ATYPE Sampled

A, ATYPE Sampled

Figure 10-8. WAKEUP Timing Diagram: WAKEUP with Respect to EATS

The WAKEUP signal may be held asserted. This allows the arbiter to keep the doze mode
620(s) awake when the arbiter determines that the work load on the bus is too high to
warrant putting processors back into Doze mode. This enables the arbiter to avoid the
latency penalty from WAKEUP to EATS when WAKEUP is deasserted and an address bus
request is detected by the arbiter.

The WAKEUP signal is listed in the section called Section 11.2, "The WAKEUP Signal."

11.3 External or Decrementer Interrupt Signals
If an external or decrementer interrupt (all doze mode signals except WAKEUP) occurs
while the 620 is in process of enabling the Power Saving mechanism or after Power Savings
has been asserted, the POW bit will be cleared and the processor will leave the Power
Savings mode. The only exception to this rule is-MACHINECHECK_IN with
HIDO(O)=O. The processor will wake up, but since the Machine Check input is disabled, it
will not service the interrupt and will go back to sleep.

The 620's Power Saving mechanism will be tested only under the code sequence in 11.1.

11.4 Preparing to Enter Nap Mode
To enter Nap mode, all the following has to happen before enabling the Power Saving MSR
(POW) bit using the code sequence in page 279:

• Invalidate the SLB and MMU tables.

• Invalidate all instruction cache blocks.

• Flush all data cache and L2 blocks.

The WAKEUP signal is not needed, since there is no valid internal state to snoop in the 620.
However, if WAKEUP is asserted, the 620 will wake up and snoop the operation in
accordance to the timing described above, even though nothing will happen since it will be

MOTOROLA Chapter 11. Power Management 11-3

-

-

a miss in the caches. In order to eliminate all state that can be modified by bus snoop
operations the following must be done:

• Invalidating the SLB and MMU tables

- Execute SLBIA to clear out the ERAT and SLB.

- Execute TLBIE to 64 contiguous pages.

• Invalidating the Instruction Cache (ILl)

- Reset SPR(HIDO) bit (ICE) to disable the I cache

- Set SPR(HIDO) bit (ICEFI) to invalidate the whole I cache.

• Flushing the Data Cache (DLl and L2)

Since modified data may be resident in the Data cache, it may be necessary to flush out this
modified data before entering NAP mode. In addition, all lines must be left in the INVALID
state during nap mode to avoid incoherence upon wake up with another processor that may
have modified a line.

• L2 Enabled

- Execute DCBT to consecutive blocks of data equal to the L2 cache capacity.
(This sets up the DLl and L2 into a known state.)

- Execute DCBF to the same cache blocks to force copybacks of any lines that
were already resident in L2 when the DCBT's were executed and to leave all
lines in the INVALID state.

• L2 Disabled-For systems without an L2, software has to rely on the Data cache
LRU algorithm and use touch or load instructions in order to force all modified Ll
data out to memory. Make sure that whatever flush routine is used, all lines end up
in the INVALID state. If the flush routine itself does not do this, the following
sequence will invalidate all lines in the data cache.

- Reset SPR(HIDO) bit (DCE) to disable D cache, and

- Set SPR(HIDO) bit (DCEFI) to invalidate the whole D cache

11-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Appendix A
PowerPC Instruction Set Listings

This appendix lists the PowerPC 620 microprocessor instruction set as well as PowerPC
instructions not implemented in the 620. Instructions are sorted by mnemonic, opcode,
function, and form. Also included in this appendix is a quick reference table that contains
general information, such as the architecture level, privilege level, and form, and indicates
if the instruction is 64-bit and optional.

Note that split fields, that represent the concatenation of sequences from left to right, are
shown in lowercase. For more information refer to Chapter 8, "Instruction Set," in The
Programming Environments Manual.

A.1 Instructions Sorted by Mnemonic
Table A-1 lists the instructions implemented in the 620 in alphabetical order by mnemonic.

Key:

D Reserved bits .. Instruction not implemented in the 620

Table A-1. Complete Instruction List Sorted by Mnemonic

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B 266 Re

addcx 31 D A B 10 Re

addex 31 D A B 138 Re

addi 14 D A SIMM

addic 12 D A SIMM

addic. 13 D A SIMM

add is 15 D A SIMM

addmex 31 D A 234 Re

addzex 31 D A 202 Re

andx 31 s A B 28 Re

andcx 31 s A B 60 Re

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-1

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andi. 28 s A UIMM

andis. 29 s A UIMM

bx 18 LI AA LK

bcx 16 BO Bl BD AA LK

bcctrx 19 BO Bl 528 LK

bclrx 19 BO Bl 16 LK

cmp 31 erfD L A 0

cm pi 11 erfD L A SIMM

cmpl 31 erfD L A B 32

cmpli 10 erfD L A UIMM

cntlzdx 5 31 s A 58 Re

cntlzwx 31 s A 26 Re

crand 19 erbD erbA erbB 257

crandc 19 erbD erbA erbB 129

creqv 19 erbD erbA erbB 289

crnand 19 erbD erbA erbB 225

crnor 19 erbD erbA erbB 33

cror 19 erbD erbA erbB 449

crorc 19 erbD erbA erbB 417

crxor 19 erbD erbA erbB 193

dcba 4 31 A B 758

dcbf 31 A B 86

dcbi 1 31 A B 470

dcbst 31 A B 54

debt 31 A B 278

dcbtst 31 A B 246

dcbz 31 A B 1014

divdx 5 31 D A B 489 Re

divdux 5 31 D A B 457 Re

dlvwx 31 D A B 491 Re

divwux 31 D A B 459 Re

eciwx 31 D A B 310

ecowx 31 s A B 438

A-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 . 00000 00000· 854 0.

eqvx 31 s A 284 Re

extsbx 31 s A 954 Re

extshx 31 s A 922 Re

extswx 5 31 s 986 Re

fabsx 63 D Re

faddx 63 D 21 Re

faddsx 59 D 21 Re

fcfidx 5 63 D Re

fem po 63 erfD B 32

fcmpu 63 erfD B 0

fctidx 5 63 D B 814 Re

fctidzx 5 63 D B 815 Re

fctiwx 63 D B 14 Re

fctiwzx 63 D B 15 Re

fdivx 63 D A B 18 Re

fdivsx 59 D A B 18 Re

fmaddx 63 D A B c 29 Re

fmaddsx 59 D A B c 29 Re

fmrx 63 D 72 Re

fmsubx 63 D c 28 Re

fmsubsx 59 D c 28 Re

fmulx 63 D c 25 Re

fmulsx 59 D c 25 Re

fnabsx 63 D 136 Re

fnegx 63 D 40 Re

fnmaddx 63 D A B c 31 Re

fnmaddsx 59 D A B c 31 Re

fnmsubx 63 D A B c 30 Re

fnmsubsx 59 D A B c 30 Re

fresx 4 59 D B 24 Re

frspx 63 D B Re

frsqrtex 4 63 D B 26 Re

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-3

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tselx 4 63 23 Re

fsqrtx 4 63 22 Re

tsqrtsx 4 59 22 Re

fsubx 63 20 Re

fsubsx 59 20 Re

icbi 31

isync 19

lbz 34 D A d

lbzu 35 D A d

lbzux 31 D A B 119

lbzx 31 D A B 87

Id 5 58 D A ds

ldarx 5 31 D A B 84

ldu 5 58 D A ds

ldux 5 31 D A B 53

ldx 5 31 D A B 21

ltd 50 D A d

lfdu 51 D A d

lfdux 31 D A B 631

lfdx 31 D A B 599

Ifs 48 D A d

lfsu 49 D A d

ltsux 31 D A B 567

lfsx 31 D A B 535

Iha 42 D A d

lhau 43 D A d

lhaux 31 D A B 375

lhax 31 D A B 343

lhbrx 31 D A B 790

lhz 40 D A d

lhzu 41 D A d

lhzux 31 D A B 311

lhzx 31 D A B 279

A-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw 3 46 D A d

lswi 3 31 D A NB 597

lswx 3 31 D A B 533

lwa 5 58 D A ds 2

lwanc 31 D A B 20

lwaux 5 31 D A B 373

lwax 5 31 D A B 341

lwbnc 31 D A B 534

lwz 32 D A d

lwzu 33 D A d

lwzux 31 D A B 55

lwzx 31 D A B 23

mer! 19 0

mcrfs 63 64

mcrxr 31 512

mfcr 31 19

mffsx 63 583 Re

mfmsr 1 31 83

mfspr 2 31 339

mfsr 1• 6 31 595

mtsrln 1• 6 31 659

mftb 31 371

mtcrf 31 144

mtfsbOx 63 70 Re

mttsb1x 63 38 Re

mtfsfx 63 711 Re

mtfsfix 63 134 Re

mtmsr 1• 6 31 146

mtmsrd 1•5 31 178

mtspr 2 31 467

mtsr 1• 6 31 210

mtsrd 1• 6 31 82

mtsrdin 1•6 31 114

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-5

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mtsrln 1• 6 31 s B 242

mulhdx 5 31 D A B 73 Re

mulhdux5 31 D A B 9 Re

mulhwx 31 D A B 75 Re

mulhwux 31 D A B 11 Re

mulldx 5 31 D A B 233 Re

mum 7 D A SIMM

mullwx 31 D A 235 Re

nandx 31 s A 476 Re

negx 31 D A 104 Re

norx 31 s A B 124 Re

orx 31 s A B 444 Re

orcx 31 s A B 412 Re

ori 24 s A UIMM

oris 25 s A UIMM

rfi 1, 6 19 50

rfld 1•5 19 18

rldclx 5 30 s A B mb 8 Re

rldcrx 5 30 s A B me 9 Re

rldicx 5 30 s A sh mb 2 sh Re

rldiclx 5 30 s A sh mb 0 sh Re

rldicrx 5 30 s A sh me sh Re

rldlmix 5 30 s A sh mb 3 sh Re

rlwimix 20 s A SH MB ME Re

rlwinmx 21 s A SH MB ME Re

rlwnmx 23 s A B MB ME Re

SC 17

slbla 1•4•5 31

slbie 1•4•5 31

sldx 5 31 s A B 27 Re

slwx 31 s A B 24 Re

sradx 5 31 s A B 794 Re

sradix 5 31 s A sh 413 sh Re

A-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Name o

srawx

srawix

srdx 5

srwx

stb

stbu

stbux

stbx

std 5

stdcx. 5

stdu 5

stdux 5

stdx 5

stf d

stfdu

stfdux

stfdx

stfiwx

stfs

stfsu

stfsux

stfsx

sth

sthbrx

sthu

sthux

sthx

stmw 3

stswi 3

stswx 3

stw

stwbrx

stwcx.

MOTOROLA

31

31

31

31

38

39

31

31

62

31

62

31

31

54

55

31

31

31

52

53

31

31

44

31

45

31

31

47

31

31

36

31

31

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s A B 792 Re

s A SH 824 Re

s A B 539 Re

s A B 536 Re

s A d

s A d

s A B 247 ~
s A B 215

s A ds I 0

s A B 214 1

s A ds l 1

s A B 181

s A B 149

s A d

s A d

s A B 759

s A B 727

s A B 983

s A d

s A d

s A B 695 ~
s A B 663

s A d

s A B 918 I!~:
s A d

s A B 439 ~'l
s A B 407 ~
s A d

s A NB 725 '.J
s A B 661 oj
s A d

s A B 662

s A B 150 1

Appendix A. PowerPC Instruction Set Listings A-7

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

stwu 37 s
stwux 31 s

stwx 31 s
subfx 31 D

subfcx 31 D

subfex 31 D

subfic 08 D

subfmex 31 D

subfzex 31

sync 31

td 5 31

tlbsync1·4 31

tw 31

twi 03 TO

xorx 31 s
xori 26 s

xoris 27 s

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 Optional instruction
5 64-bit instruction

A

A B

A B

A B

A B

A B

A

A

A

A B

A

A

22 23 24 25 26 27 28 29 30 31

d

183

151

40 Re

8 Re

136 Re

SIMM

232 Re

200

598

68

566

4

SIMM

316 Re

UIMM

UIMM

A-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-9

A.2 Instructions Sorted by Opcode
Table A-2 lists the 620 instruction set sorted in numeric order by opcode, including those
PowerPC instructions not implemented by the 620.

Key:

0 Reserved bits • Instruction not implemented in the 620

Table A-2. Complete Instruction List Sorted by Opcode

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tdi 5 000010 TO

twi 000011 TO

mulli 000111 D

subfic 001000 D

cmpli 0 0 1 0 1 0 crfD
1--~~~~--+~~-

c mp I 001011 crfD
1--~~~~--+~~-

a d di c 001100

addle.

addi

add ls

001101

001110

0 0 1 1 1 1

hex 010000

SC 010001

bx 010010

mcrf

bclrx

rfid 1• 5

crnor

rfi 1, 6

crandc

isync

crxor

crnand

crand

creqv

crorc

cror

010011

0 100 11

010011

0 100 11

0 100 11

010011

010011

0 100 11

010011

0100 1 1

010011

0 100 11

010011

D

D

D

D

crbD

crbD

crbD

crbD

crbD

A

A

A

A

L A

L A

A

A

A

A

crbA crbB

crbA crbB

crbA crbB

crbA crbB

crbA crbB

A-10 PowerPC 620 RISC Microprocessor User's Manual

SIMM

SIMM

SIMM

SIMM

UIMM

SIMM

SIMM

SIMM

SIMM

SIMM

0000000000

0000010000

0000010010

0000100001

0000110010

0010000001

0010010110

0011000001

0011100001

0100000001

0100100001

0110100001

0111000001

MOTOROLA

Name o

bcctrx

rlwimix

rlwinmx

rlwnmx

ori

oris

xori

xoris

andi.

and is.

rldiclx5

rldicrx 5

rldlcx 5

rldimix 5

rldc!x 5

rldcrx 5

cmp

tw

subfcx

mulhdux 5

add ex

mulhwux

mfcr

lwarx

ldx 5

lwzx

slwx

cntlzwx

sldx 5

andx

cmpl

subfx

ldux 5

MOTOROLA

010011

010100

010101

010111

011 000

0 1100 1

011010

011011

011100

011101

011110

0 1 1 11 0

0 1 1 1 1 0

01111 0

0 1 1 11 0

0 1 1 11 0

0 1 1 11 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 11

0 1 1 1 1 1

0 1 1 11 1

0 1 1 11 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

011111

0 1 1 1 1 1

011111

0 1 1 1 1 1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BO Bl 'i.:'.!J~'.~g~}1 1000010000 LK

s A SH MB ME Re

s A SH MB ME Re

s A B MB ME Re

s A UIMM

s A UIMM

s A UIMM

s A UIMM

s A UIMM

s A UIMM

s A sh mb 000 sh Re

s A sh me 001 sh Re

s A sh mb 010 sh Re

s A sh mb 0 1 1 sh Re

s A B mb 01000 Re

s A B me 01001 Re

erfD • L A B 0000000000

TO A B 0000000100

D A B 0000001000 Re

D A B 0000001001 Re

D A B 0000001010 Re

D A B 0000001011 Re

D 0000010011

D A B 0000010100

D A B 0000010101
'

D A B 0000010111

s A B 0000011000 Re

s A - 0000011010 Re

s A B 0000011011 Re

s A B 0000011100 Re

erfD L A B 0000100000 ~-D A B ~ 0000101000 Re

D A B 0000110101 ~i~

Appendix A. PowerPC Instruction Set Listings A-11

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbst 011111 A B 0000110110

lwzux 011111 D A B 0000110111

cntlzdx 5 011111 s A 0000111010 Re

andcx 011111 s A B 0000111100 Re

td 5 0 1 1 1 1 1 TO A B 0001000100

mulhdx 5 011 1 1 1 D A B 0001001001 Re

mulhwx 0 1 1 1 1 1 D A B 0001001011 Re

mtsrd 1• 6 0 1 1 1 1 1 0001010010

mfmsr 1 0 1 1 1 1 1 0001010011

ldarx 5 0 1 1 1 1 1 0001010100

dcbf 0 1 1 1 1 1 0001010110

lbzx 0 1 1 1 1 1 0001010111

negx 0 1 1 1 1 1 0001101000 Re

mtsrdln 1•6 0 1 1 1 1 1 0001110010

lbzux 0 1 1 1 1 1 0001110111

norx 0 1 1 1 1 1 0001111100 Re

subfex 0 1 1 1 1 1 0010001000 Re

add ex 0 1 1 1 1 1 0010001010 Re

mtcrf 0 1 1 1 1 1 0010010000

mtmsr 1• 6 0 1 1 1 1 1 0010010010

stdx 5 0 1 1 1 1 1 0010010101

stwcx. 0 1 1 1 1 1 0010010110

stwx 0 1 1 1 1 1 0010010111

mtmsrd 1· 5 0 1 1 1 1 1 0010110010

stdux 5 0 1 1 1 1 1 0010110101

stwux 011111 0010110111

subfzex 0 1 1 1 1 1 0011001000 Re

addzex 011111 0011001010 Re

mtsr 1• 6 0 1 1 1 1 1 0011010010

stdcx. 5 011 1 1 1 0011010110

stbx 0 1 1 1 1 1 0011010111

subfmex 011111 0011101000 Re

mulld 5 0 1 1 1 1 1 0011101001 Re

A-12 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addmex 011111 0011101010 Re

mullwx 011111 0011101011 Re

mtsrin 1· 6 011111 0011110010

dcbtst 011111 0011110110

stbux 011111 0011110111

addx 011111 0100001010

debt 011111 0100010110

lhzx 011111 0100010111

eqvx 011111 0100011100

tlbie 1•4 011111 0100110010

eciwx 011111 D A B 0100110110

lhzux 011111 D A B 0100110111

xorx 011111 s A B 0100111100

mfspr 2 011111 D 0101010011

!wax 5 011111 0 A B 0101010101

lwaux 5 011111 D A B 0101110101

lhaux 011111 D A B 0101110111

sthx 011111 s A B 0110010111

orcx 011111 s A B 0110011100

sradix 5 011111 s A sh 1100111011

slbie 1•4•5 011111 B 0110110010

ecowx 011111 s A B 0110110110

sthux 011111 s A B 0110110111

orx 011111 s A B 0110111100 Re

divdux 5 011111 D A B 0111001001 Re

divwux 011111 D A B 0111001011 Re

mtspr 2 011111 s spr 0111010011

dcbi 1 011111 A B 0111010110

nandx 011111 s A B 0111011100 Re

divdx 5 011111 D A B 0111101001 Re

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-13

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

divwx 011111 0111101011 Re

slbia 1·4•5 011111 0111110010

mcrxr 011111 1000000000

lswx 3 011111 D A B 1000010101

lwbrx 011111 D A B 1000010110

lfsx 011111 D A B 1000010111

srwx 011111 s A B 1000011000 Re

srdx 4 011111 s A B 1000011011 Re

tlbsync 1·4 011111 1000110110

lfsux 011111 1000110111

mfsr 1• 6 011111 1001010011

lswi 3 011111 1001010101

sync 011111 1001010110

lfdx 011111 1001010111

lfdux 011111 1001110111

mfsrin 1· 6 011111 1010010011

stswx 3 0 1 1 1 1 1 s A B 1010010101

stwbrx 0 1 1 1 1 1 s A B 1010010110

stfsx 011111 s A B 1010010111

stfsux 011111 s A B 1010110111

stswi 3 011111 s A NB 1011010101

stfdx 011111 s A B 1011010111

dcba 4 31 A B 1011110110

stfdux 011111 s A B 1011110111

lhbrx 011111 D A B 1100010110

srawx 0 1 1 1 1 1 s A B 1100011000 Re

sradx 5 0 1 1 1 1 1 s A B 1100011010 Re

srawix 011111 s A SH 1100111000 Re

eieio 011111 1101010110

sthbrx 011111 1110010110

extshx 0 1 1 1 1 1 1110011010 Re

extsbx 011111 1110111010 Re

icbi 0 1 1 1 1 1 1111010110

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Name o

stfiwx

extsw 5

dcbz

lwz

lwzu

lbz

lbzu

stw

stwu

stb

st bu

lhz

lhzu

Iha

lhau

sth

sthu

lmw 3

stmw 3

Ifs

lfsu

lfd

lfdu

stfs

stf su

stfd

stfdu

Id 5

ldu 5

lwa 5

fdivsx

fsubsx

faddsx

MOTOROLA

0 1 1 1 1 1

0 1 1 1 1 1

011111

100000

100001

100010

100011

100100

100101

100110

100111

101000

101001

101010

1 0 1 0 1 1

101100

101101

101 1 1 0

1 0 1 1 1 1

110000

110001

110010

1 100 1 1

110100

110101

110110

110111

111010

111010

111010

111011

1 1 1 0 1 1

1 1 1 0 1 1

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s A B 1111010111 i~
s A 00000 1111011010 Re

I 000.00 I A B 1111110110 Le_
D A d

D A d

D A d

D A d

s A d

s A d

s A d

s A d

D A d

D A d

D A d

D A d
"---

s A d

s A d

D A d

s A d

D A d

D A d

D A d

D A d

s A d

s A d

s A d

s A d

D A ds 00

D A ds 0 1

D A ds 1 0

D A B 100 1 0 Re

D A B 1 0 1 0 0 Re

D A B 1 0 1 0 1 Re

Appendix A. PowerPC Instruction Set Listings A-15

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fsqrtsx 4 111011 D 1 0 1 1 0 Re

fresx 4 111011 D 1 100 0 Re

fmulsx 111011 D 1 1 0 0 1 Re

fmsubsx 111011 D A B c 1 1 1 0 0 Re

fmaddsx 111011 D A B c 1 1 1 0 1 Re

fnmsubsx 111011 D A B c 1 1 1 1 0 Re

fnmaddsx 111011 D A B c 1 1 1 1 1 Re

std 5 111110 s A ds 00

stdu 5 111110 s A ds 0 1

fcmpu 111111 erfD B 0000000000

frspx 111111 D B 0000001100 Re

fctiwx 1 1 1 1 1 1 D B 0000001110

fctiwzx 111111 D Re

fdivx 111111 D 100 1 0 Re

fsubx 111111 D 10100 Re

faddx 1 1 1 1 1 1 D 10101 Re

fsqrtx 4 1 1 1 1 1 1 D 1 0 1 1 0 Re

fselx 4 1 1 1 1 1 1 D 1 0 1 1 1 Re

fmulx 1 1 1 1 1 1 D 1 1 0 0 1 Re

frsqrtex 5 1 1 1 1 1 1 D 1 1 0 1 0 Re

fmsubx 1 1 1 1 1 1 D A B c 1 1 1 0 0 Re

fmaddx 1 1 1 1 1 1 D A B c 1 1 1 0 1 Re

fnmsubx 111111 D A B c 1 1 1 1 0 Re

fnmaddx 1 1 1 1 1 1 D A B c 1 1 1 1 1 Re

fem po 1 1 1 1 1 1 erfD 0000100000

mtfsb1x 111111 0000100110

fnegx 111111 D 0000101000

mcrfs 111111 erfD 0001000000

mtfsbOx 111111 0001000110 Re

fmrx 111111 D 0001001000 Re

mtfsfix 111111 crfD 0010000110 Re

fnabsx 111111 D 0010001000 Re

fabsx 1 1 1 1 1 1 D 0100001000 Re

A-16 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

mffsx 1 1 1 1 1 1 D

mtfstx 1 1 1 1 1 1 :Q

fctidx 5 1 1 1 1 1 1 D

fctidzx 5 1 1 1 1 1 1 D

fcfldx 5 1 1 1 1 1 1 D · <o'tt#o'p:

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 Optional instruction
5 64-bit instruction
6 Optional 64-bit bridge instruction

B

B
'·,.!)

B ·)'

MOTOROLA Appendix A. PowerPC Instruction Set Listings

22 23 24 25 26 27 28 29 30 31

1001000111 Re

1011000111 Re

1100101110 Re

1100101111 Re

1101001110 Re

A-17

A.3 Instructions Grouped by Functional Categories
Table A-3 through Table A-30 list the 620 instructions grouped by function, as well as the
PowerPC instructions not implemented in the 620.

Key:

D Reserved bits • Instruction not implemented in the 620

Name o

addx

addcx

addex

add I

addle

addle.

add is

addmex

addzex

divdx 5

divdux5

divwx

divwux

mulhdx5

mulhdux5

mulhwx

mulhwux

A-18

mulld 5

mum

mullwx

negx

subfx

subfcx

31

31

31

14

12

13

15

31

31

31

31

31

31

31

31

31

31

31

07

31

31

31

31

Table A-3. Integer Arithmetic Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D A B p~ 266 Re

D A B p~ 10 Re

D A B p~ 138 Re

D A SIMM

D A SIMM

D A SIMM

D A SIMM

D A

•
234 Re

D A 202 Re

D A 489 Re

D A B PE1 457 Re

D A B p~ 491 Re

D A B P9 459 Re

D A B 73 Re

D A B 9 Re

D A B 75 Re

D A B 11 Re

D A B 233 Re

D A SIMM

D A - 235 Re

D A 104 Re

D A B PE1 40 Re

D A B p~ 8 Re

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

subficx 08 D A SIMM

subfex 31 D A B PE 136 Re

subfmex 31 D A I 000().0 p~ 232 Re

subfzex 31 D A 2 00.00 p~ 200 Re

Table A-4. Integer Compare Instructions

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp 31 erfD L A B

cm pi 11 erfD L A

cmpl 31 erfD L A B
f-----t---iil--+--t------t------'-----------~

cmpli 10 erfD L A UIMM

Table A-5. Integer Logical Instructions

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

andx 31 s A B 28 Re

andcx 31 s A B 60 Re
>-----+-------+-------- ____ ____________J --------------'----J

andi.

andis.

cntlzdx 5

nandx

norx

orx

orcx

ori

or is

xorx

xori

xoris

MOTOROLA

28 S A UIMM

29 S A UIMM

Re

31 B 476 Re

31 S A B 124 Re

31 S A B 444 Re

31 S A B 412 Re

24 s A UIMM

25 s A UIMM

31 s A B 316 Re

26 s A UIMM

27 s A UIMM

Appendix A. PowerPC Instruction Set Listings A-19

Name o

rldclx 5

rldcrx 5

rldicx 5

rldiclx 5

rldicrx 5

rldimix 5

rlwimlx

rlwinmx

rlwnmx

Name o

sldx 5

slwx

sradx 5

sradix 5

srawx

srawix

srdx 5

srwx

Name 0

faddx

faddsx

fdivx

fdivsx

fmulx

tmulsx

fresx 4

frsqrtex 4

fsubx

A-20

30

30

30

30

30

30

22

20

21

31

31

31

31

31

31

31

31

63

59

63

59

63

59

59

63

63

Table A-6. Integer Rotate Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s A B mb 8 Re

s A B me 9 Re

s A sh mb 2 sh Re

s A sh mb 0 sh Re

s A sh me 1 sh Re

s A sh mb 3 sh Re

s A SH MB ME Re

s A SH MB ME Re

s A SH MB ME Re

Table A-7. Integer Shift Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s A B 27 Re

s A B 24 Re

s A B 794 Re

s A sh 413 }sh Re

s A B 792 Re

s A SH 824 Re

s A B 539 Re

s A B 536 Re

Table A-8. Floating-Point Arithmetic Instructions

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

D 21 Re

D 21 Re

D 18 Re

D 18 Re

D 25 Re

D 25 Re

D 24 Re

D 26 Re

D 20 Re

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA

fsubsx

fselx 4

fsqrtx 4

fsqrtsx 4

59

63

63

59

D A

D A

D 00000

D ooooi:l

B 00000 20 Re

B c 23 Re

B 00000 22 Re

B 00000 22 Re

Table A-9. Floating-Point Multiply-Add Instructions

Name o 5 6 7 8 9 1 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fmaddx 63 D A B c 29 Re

fmaddsx 59 D A B c 29 Re

fmsubx 63 D A B c 28 Re

fmsubsx 59 D A B c 28 Re

fnmaddx 63 D A B c 31 Re

fnmaddsx 59 D A B c 31 Re

fnmsubx 63 D A B c 30 Re

fnmsubsx 59 D A B c 30 Re

Table A-10. Floating-Point Rounding and Conversion Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fcfidx 5 63 D I' . 00000:'' B 846 Re

fctidx 5 63 D I' 00 OO'O' '·. B 814 Re

fctidzx 5 63 D ,.0·900;0 '· B 815 Re

fctiwx 63 D ,, JfOOOO B 14 Re
. ·: ;·~

fctiwzx 63 D o:cioo.o B 15 Re

frspx 63 D t1i:l:ooo B 12 Re

Table A-11. Floating-Point Compare Instructions

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rempo~~-6-3~-+-~~-+--...,.-+-~~~~-+-~~~~-+-~~~~~~~~~--!'"'"1
fcmpu 63

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

erfD 

1::1 
A B 32 

~l erto A B 0 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-21 



Table A-12. Floating-Point Status and Control Register Instructions 

Name 0 

mcrfs 

mffsx 

mHsbOx 

mHsb1x 

mffsfx 

mHsflx 

Name o 

lbz 

lbzu 

lbzux 

lbzx 

Id 5 

ldu 5 

ldux 5 

ldx 5 

Iha 

lhau 

lhaux 

lhax 

lhz 

lhzu 

lhzux 

lhzx 

lwa 5 

lwaux 5 

lwax 5 

lwz 

lwzu 

lwzux 

lwzx 

A-22 

63 

63 

63 

63 

31 

63 

34 

35 

31 

31 

58 

58 

31 

31 

42 

43 

31 

31 

40 

41 

31 

31 

58 

31 

31 

32 

33 

31 

31 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

64 

583 Re 

70 Re 

38 Re 

711 Re 

134 Re 

Table A-13. Integer Load Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A d 

D A d 

D A B 119 

D A B 87 

D A ds 0 

D A ds 1 

D A B 53 

D A B 21 

D A d 

D A d 

D A B 375 

D A B 343 

D A d 

D A d 

D A B 311 

D A B 279 

D A ds 2 

D A B 373 

D A B 341 

D A d 

D A d 

D A B 55 

D A B 23 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Name o 

stb 

st bu 

stbux 

stbx 

std 5 

stdu 5 

stdux 5 

stdx 5 

sth 

sthu 

sthux 

sthx 

stw 

stwu 

stwux 

stwx 

38 

39 

31 

31 

62 

62 

31 

31 

44 

45 

31 

31 

36 

37 

31 

31 

Table A-14. Integer Store Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

s A d 

s A d 

s A B 247 0 

s A B 215 0 

s A ds 0 

s A ds 1 

s A B 181 >I 

s A B 149 
! 01 

s A d 

s A d 

s A B 439 16 
s A B 407 [qj 
s A d 

s A d 

s A B 183 iOl 
s A B 151 161 

Table A-15. Integer Load and Store with Byte Reverse Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

lhbrx 31 D A B 790 f o 
lwbrx 31 D A B 534 () 

sthbrx 31 s A B 918 p 
stwbrx 31 s A B 662 Jf 

Table A-16. Integer Load and Store Multiple Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-23 



Name o 

lswi 3 

lswx 3 

stswi 3 

stswx 3 

Name 

eieio 

isync 

ldarx 5 

lwarx 

stdcx.5 

stwcx. 

sync 

Name 

lfd 

lfdu 

lfdux 

lfdx 

Ifs 

lfsu 

lfsux 

lfsx 

0 

0 

Name o 

stfd 

stfdu 

stfdux 

stfdx 

A-24 

Table A-17. Integer Load and Store String Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 D A NB 597 1:~; 

31 D A B 533 ~ 
31 s A NB 725 1fil 
31 s A B 661 I~ 

Table A-18. Memory Synchronization Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 854 

19 150 

31 D A B 84 

31 D A B 20 

31 s A B 214 

31 s A B 150 

31 598 

Table A-19. Floating-Point Load Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

50 D A d 

51 D A d 

31 D A B 631 ,~;i 

31 D A B 599 illBl 
48 D A d 

49 D A d 

31 D A B 567 Jl~J 
31 D A B 535 ~!~;] 

Table A-20. Floating-Point Store Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

54 s A d 

55 s A d 

31 s A B 759 lrnir 
31 s A B 727 

1rwrn 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



stfiwx 31 s A B 983 0 

stfs 52 s A d 

stfsu 53 s A d 

stfsux 31 s A B 695 0 

stfsx 31 s A B 663 b 

Table A-21. Floating-Point Move Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

fabsx 63 D 00000 B 264 Re 

fmrx 63 D 00000 B 72 Re 

fnabsx 63 D OOOOo. B 136 Re 

fnegx 63 D I 00000 B 40 Re 

Table A-22. Branch Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bx 18 LI AALK 

bcx 16 BO Bl BD AALK 

bcctrx 19 BO Bl 528 LK 

bclrx 19 BO Bl 16 LK 

Table A-23. Condition Register Logical Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

crand 19 erbD erbA erbB 257 

crandc 19 erbD erbA erbB 129 0 

creqv 19 erbD erbA erbB 289 

crnand 19 erbD erbA erbB 225 0 

crnor 19 erbD erbA erbB 33 

cror 19 erbD erbA erbB 449 

er ore 19 erbD erbA crbB 417 

crxor 19 erbD erbA erbB 193 0 

mcrf 19 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-25 



Name o 

rfi 1· 6 19 

rfid 1· 5 19 

SC 17 

Name o 

td 5 

tdi 5 

tw 

twi 

Name 

mcrxr 

mfcr 

mfmsr 1 

mfspr 2 

mftb 

mtcrf 

mtmsr 1· 6 

mtmsrd 1· 5 

mtspr 2 

Name 0 

dcba 4 

dcbf 

dcbi 1 

dcbst 

debt 

A-26 

31 

03 

31 

03 

0 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

Table A-24. System Linkage Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Table A-25. Trap Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

TO A B I 68 II~~ 
TO A SIMM 

TO A B l 4 Iii! 
TO A SIMM 

Table A-26. Processor Control Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

crfS 512 

D 19 

D 83 

D 339 

D 371 

s 144 

s 146 

s 178 

D 467 

Table A-27. Cache Management Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

A B 758 

A B 86 

A B 470 

A B 54 

A B 278 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



dcbtst 

dcbz 

icbi 

Name 

mfsr 1· 6 

mfsrin 1• 6 

0 

31 A B 246 

31 A B 1014 

31 A B 982 

Table A-28. Segment Register Manipulation Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

31 D 595 

31 

mtsr 1· 6 31 S 210 

mtsrd 1· 6 31 S 82 
1--~~-+~~~~~~,,,,,,,,~~~~~~9-~~~~~~~~--1--'~ 

mtsrdin 1· 6 31 S 114 

mtsrin 1· 6 31 s 242 

Table A-29. Lookaside Buffer Management Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

tlbsync1.4 31 566 

Table A-30. External Control Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

eciwx~~-3_1~--+~~~~~+-~~~~--+~~~~~+-~~~~~~~~~~+.~ 
ecowx. 31 

D A B 310 

l;J1I s A B 438 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load and store string or multiple instruction 
4 Optional instruction 
5 64-bit instruction 
6 Optional 64-bit bridge instruction 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-27 



A.4 Instructions Sorted by Form 
Table A-31 through Table A-45 list the 620 instructions grouped by form, including those 
PowerPC instructions not implemented in the 620. 

Key: 

0 Reserved bits • Instruction not implemented in the 620 

Table A-31. I-Form 

OPCD LI IAAILKI 
Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bxl 18 LI IAAILKI 

Table A-32. B-Form 

OPCD BO Bl BD IAAILKI 

Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bcxl 16 BO Bl BD IAAILKI 

Table A-33. SC-Form 

OPCD 

Specific Instruction 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

SC 17 

Table A-34. D-Form 

OPCD D A d 

OPCD D A SIMM 

OPCD s A d 

OPCD s A UIMM 

OPCD crfD lf~r L A SIMM 

OPCD crfD !i~ L A UIMM 

OPCD TO A SIMM 

A-28 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Name o 

addi 

addic 

addic. 

add is 

andi. 

and is. 

cm pi 

cmpli 

lbz 

lbzu 

ltd 

lfdu 

Ifs 

lfsu 

Iha 

lhau 

lhz 

lhzu 

lmw 3 

lwz 

lwzu 

mulli 

ori 

oris 

stb 

stbu 

stfd 

stfdu 

stfs 

stfsu 

sth 

sthu 

stmw 3 

MOTOROLA 

14 

12 

13 

15 

28 

29 

11 

10 

34 

35 

50 

51 

48 

49 

42 

43 

40 

41 

46 

32 

33 

7 

24 

25 

38 

39 

54 

55 

52 

53 

44 

45 

47 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A SIMM 

D A SIMM 

D A SIMM 

D A SIMM 

s A UIMM 

s A UIMM 

crfD Q; L A SIMM 

crfD I:~, L A UIMM 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A d 

D A SIMM 

s A UIMM 

s A UIMM 

s A d 

s A d 

s A d 

s A d 

s A d 

s A d 

s A d 

s A d 

s A d 

Appendix A. PowerPC Instruction Set Listings A-29 



stw 

stwu 

subfic 

tdi 5 

twi 

xori 

xoris 

Name o 

A-30 

Id 5 

ldu 5 

lwa 5 

std 5 

stdu 5 

36 

37 

08 

02 

03 

26 

27 

OPCD 

OPCD 

58 

58 

58 

62 

62 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

OPCD 

s A d 

s A d 

D A SIMM 

TO A SIMM 

TO A SIMM 

s A UIMM 

s A UIMM 

Table A-35. OS-Form 

D A ds 

s A ds 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A ds 0 

D A ds 1 

D A ds 2 

s A ds 0 

s A ds 1 

Table A-36. X-Form 

D A B XO 6 

D A NB XO 6 

D :.Loo o 0.9. B XO (); 

D •• 00600 ooaoo .! XO 0 _{_ ·· ......... 

D 'o1 SR .b OOO!O · .•• XO ( 
s A B XO Re 

s A B XO 

s A B XO 9 
s A NB XO ··.~. 
s A ]:0900 XO Re 

s ~ o6~•qo .• J B XO .o 
s I ooo o:o : .. .. 00009 XO cL 
s @l SR o\J oo:o 

_!_: .: • c:..'. 
XO /Q,·I 

s A SH XO Re 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



OPCD crfD oJL A B XO 0 

OPCD crfD 00 A B XO 0 

OPCD crfD 00 cr!S Ioo 00000 XO 0 

OPCD crfD 00 00000 00000 XO 0 

OPCD crfD 00 00000 IMM Io XO Re 

OPCD TO A B XO 0 

OPCD D 00000 B XO Re 

OPCD D 00000 I o.ooo 0 XO Re 

OPCD crbD 00000 I otroo o XO Re 

OPCD 0 0.00 0 A B XO 0 

OPCD 00000 00000· B XO OJ 
OPCD 00000 00000: :: bdooo· ·· XO 0 

Specific Instructions 

andx 31 s A B 28 Re 

andcx 31 s A B 60 Re 

cmp 31 crfD o L A B o 'o 
1---------il--------i~-----i-------1-------1-----------+--< 

cmpl 31 crfD 0 L A B 32 .0 
entlzdx 5 r---3-1 --+---s~~-+---A---+-.-•·o~.O~iJ~O-a-··~""".:-t· -----58---------tR"--tc 

cntlzwx 

deba 4 

debt 

debi 1 

debst 

debt 

dcbtst 

debz 

eciwx 

eeowx 

eieio 

31 s A o·oooo 
31 00000 A B 

31 00()00 A B 

31 00000 A B 

31 00000 A B 

31 00000 A B 

31 I <:HlOOO A B 

31 OQOQO A B 

31 D A B 

31 s A B 

eqvx 31 S A B 

26 Re 

758 0 

86 

470 0 

54 

278 

246 

1014 0 

310 0 

438 0 

854 0 

284 Re 
1---------<-------1-------1-------+-----------+---< 

extsbx 31 S 954 Re 

extshx 31 s 922 Re 

extswx 5 31 s 986 Re 

fabsx 63 D 264 Re 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-31 



A-32 

fcfidx 5 

fem po 

fcmpu 

fctidx 5 

fctidzx 5 

fctiwx 

fctiwzx 

fmrx 

fnabsx 

fnegx 

frspx 

icbi 

lbzux 

lbzx 

ldarx 5 

ldux 5 

ldx 5 

lfdux 

lfdx 

lfsux 

lfsx 

lhaux 

lhax 

lhbrx 

lhzux 

lhzx 

lswi 3 

lswx 3 

lwarx 

lwaux 5 

lwax 5 

lwbrx 

lwzux 

lwzx 

mcrts 

63 

63 

63 

63 

63 

63 

63 

63 

63 

63 

63 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

63 

D f (fofoo .: B 846 Re 

erfD oo· A B 32 0 

erfD ~ A B 0 0 

D I··· 00060 d '..C .... __c: 
B 814 Re 

D • •O O·O.Qoc.• B 815 Re 

D oodoor B 14 Re 

D F ·.·~ B 15 Re o.o.o :_{ 
D t~ B 72 Re 

D fw odooa < B 136 Re ... ·. -"-
D I 0060.a B 40 Re 

D 0000.0 B 12 Re 

ooooa·•• A B 982 0 

D A B 119 0 

D A B 87 0 

D A B 84 0 

D A B 53 0 

D A B 21 0 

D A B 631 0 

D A B 599 0 

D A B 567 0 

D A B 535 0 

D A B 375 0 

D A B 343 0 

D A B 790 0 

D A B 311 0 

D A B 279 0 

D A NB 597 0 

D A B 533 0 

D A B 20 0 

D A B 373 0 

D A B 341 0 

D A B 534 0 

D A B 55 0 

D A B 23 0 

oo 
. 

Too ·: a.oo.a.S erfD erfS 64 0 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



mcrxr 

mfcr 

mffsx 

mfmsr 1 

mfsr 1· 6 

mfsrin 1• 6 

mtfsbOx 

mtfsb1x 

mtfsfix 

mtmsr 1· 6 

mtmsrd 1· 5 

mtsr 1• 6 

mtsrd 1• 6 

mtsrin 1· 6 

mtsrdin 1• 6 

nandx 

norx 

orx 

orcx 

slbia l.4,5 

slbie l.4.5 

sldx 5 

slwx 

sradx 5 

srawx 

srawix 

srdx 5 

srwx 

stbux 

st bx 

stdcx. 5 

stdux 5 

stdx 5 

stfdux 

stfdx 

MOTOROLA 

31 

31 

63 

31 

31 

31 

63 

63 

63 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

erfD Too 00000 00000 

D ClOOOO ClO 0 00 ..... 

D 00000 00000 

D 00000 00000 

D 0 SR 00000 

D 00000 B 

erbD 00000 00000 

erfD 00000 000.00 

erbD 100 00000 IMM Io 
s 00000 .::.~P9f: 
s 00000 00000' 

s 0 SR 
' . . ' 

!· O(l~OO, 

s 0 SR 00000 . 
~ 

s · o.oood B 

s 00000 .. · B 

s A B 

s A B 

s A B 

s A B 

t ocooo,o:·i 00000, 00000[; ! 
'•'' ~ 00,00(l irooo'o B 

s A B 

s A B 

s A B 

s A B 

s A SH 

s A B 

s A B 

s A B 

s A B 

s A B 

s A B 

s A B 

s A B 

s A B 

Appendix A. PowerPC Instruction Set Listings 

512 0 

19 0 

583 Re 

83 0 

595 0 

659 0 

70 Re 

38 Re 

134 Re 

146 13 
178 l:tf 
210 Cl 

82 '{)' 

242 :n: 

114 .o 

476 Re 

124 Re 

444 Re 

412 Re 

498 •0; 

434 a 
27 Re 

24 Re 

794 Re 

792 Re 

824 Re 

539 Re 

536 Re 

247 /J 

215 0 

214 1 

181 10: 

149 ~·· 759 • ~i 

727 ~· 
A-33 



stflwx 31 s A B 983 

stfsux 31 s A B 695 

stfsx 31 s A B 663 

sthbrx 31 s A B 918 

sthux 31 s A B 439 

sthx 31 s A B 407 

stswi 3 31 s A NB 725 

stswx 3 31 s A B 661 

stwbrx 31 s A B 662 

stwcx. 31 s A B 150 

stwux 31 s A B 183 

stwx 31 s A B 151 

sync 31 598 

tlbsync1•4 31 566 

tw 31 4 

xorx 31 316 Re 

Table A-37. XL-Form 

OPCD XO LK 

OPCD XO 

OPCD XO 

OPCD XO 

Specific Instructions 

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

bcctrx 19 BO Bl 528 LK 

bclrx 19 BO Bl 16 LK 

crand 19 crbD crbA crbB 257 

crandc 19 crbD crbA crbB 129 

creqv 19 crbD crbA crbB 289 

crnand 19 i;rbD crbA crbB 225 

crnor 19 crbD crbA crbB 33 

A-34 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



cror 

crorc 

crxor 

isync 

mcrf 

rfi 1, 6 

rfid 1· 5 

Name o 

mfspr 2 

mftb 

mtcrf 

mtspr 2 

Name 0 

mtfstxj 

Name 0 

sradix 5 j 

MOTOROLA 

19 

19 

19 

19 

19 

19 

19 

OPCD 

OPCD 

OPCD 

OPCD 

31 

31 

31 

31 

OPCD 

63 

OPCD 

31 

crbD crbA crbB 449 0 

crbD crbA crbB 417 0 

crbD crbA crbB 193 0 

00000 00000 00000 150 0 

cr!D J 00 crfS J 0 0 00000 0 0 

00000 00000 00000 50 0 

00000 00000 00000 18 0 

Table A-38. XFX-Form 

D spr XO 0 

D oJ CRM Jo XO 0 

s spr XO 0 

D tbr XO 0 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D spr 339 0 
D tbr 371 © 
s oI CRM 1~ 144 0 

coo 

D spr 467 6 

Table A-39. XFL-Form 

!oj FM joj B XO jRcj 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

I 0 I FM joj B 711 jRcl 

Table A-40. XS-Form 

s A sh XO jshjRcl 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

s A sh 413 jshjRcj 

Appendix A. PowerPC Instruction Set Listings A-35 



Name o 

addx 

addcx 

addex 

addmex 

addzex 

divdx 5 

divdux 5 

divwx 

divwux 

mulhdx 5 

mulhdux 5 

mulhwx 

mulhwux 

mulldx 5 

mullwx 

negx 

subfx 

subfcx 

subfex 

subfmex 

subfzex 

A-36 

OPCD 

OPCD 

OPCD 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

31 

Table A-41. XO-Form 

D A B OE XO Re 

D A B 0 XO Re 

D A ·00000 joE XO Re 

Specific Instructions 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

D A B \oE 266 Re 

D A B o~ 10 Re 

D A B joE 138 Re 

D A 00000 \oE 234 Re 

D A 00000 o~ 202 Re 

D A B \oE 489 Re 

D A B PE 457 Re 

D A B OE 491 Re 

D A B OE 459 Re 

D A B Q 73 Re 

D A B Q 9 Re 

D A B Q 75 Re 

D A B 0 11 Re 

D A B OE 233 Re 

D A B \oE 235 Re 

D A o o a a.a joE 104 Re 

D A B OE 40 Re 

D A B OE 8 Re 

D A B OE 136 Re 

D A 00000 OE 232 Re 

D A 00000 OE 200 Re 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Table A-42. A-Form 

OPCD D A B 00000 XO Re 

OPCD D A B c XO Re 

OPCD D A 00000 c XO Re 

OPCD D 00000 B 00000 XO Re 

Specific Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

faddx 63 D A B 00000 21 Re 

faddsx 59 D A B .00000 21 Re 

fdivx 63 D A B 18 Re 

fdivsx 59 D A B OOddlJ 18 Re 

fmaddx 63 D A B C 29 Re 

fmaddsx 59 D A B C 29 Re 

fmsubx 63 D A B C 28 Re 

fmsubsx 59 D A B C 28 Re 

fmulx 63 25 Re 

fmulsx 59 D A . 0 0 0 o.e _k C 25 Re 

fnmaddx 63 D A B C 31 Re 

fnmaddsx 59 D A B C 31 Re 

fnmsubx 63 D A B C 30 Re 

fnmsubsx 59 D A B C 30 Re 

tresx 4 59 D ~ ·.· B pooop 24 Re 

frsqrtex 4 63 D 0 QO 0.0 .. B ••.• oo'oo () 26 Re 
1--~~---1t--~~~---1~..2.~~·-· ~·~-1-~~~~~li1:..~~·~~~-1-~~~~-t-~ 

fselx 4 63 D A B C 23 Re 

tsqrtx 4 1--_6_3~-+-~~D~---+l"-7-o~o_o~o+·'o+•·-,+-~~s~~*[!~·-a+.o-o_~~~o~1--~2-2~---+----;Re 
fsqrtsx 4 59 D ll OO~oiq B i~()(~ 22 

1--~~-+~~~~+---'~~""'4-~~~~...p-~~~,....,,~~~~-+-~ 

fsubx 63 D A B ~ 20 Re 
tsubsxf--~5-9~-+~~-D~~-+-~~A~~-+~~-B~~~~......, ~. "-+~~2-0~~-+-R~e 

Re 

MOTOROLA Appendix A. PowerPC Instruction Set Listings A-37 



Table A-43. M-Form 

OPCD s A SH MB ME 

OPCD s A B MB ME 

Specific Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rlwimix 20 s A SH MB ME Re 

rlwinmx 21 s A SH MB ME Re 

rlwnmx 23 s A B MB ME Re 

Table A-44. MD-Form 

OPCD s A sh mb XO 

1::1::1 OPCD s A sh me XO 

Specific Instructions 

Name o 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

rldicx 5 

rldiclx 5 

rldicrx 5 

rldimix 5 

30 

30 

30 

30 

s A sh 

s A sh 

s A sh 

s A sh 

Table A-45. MOS-Form 

OPCD s 
OPCD s 

Name 0 5 6 7 8 9 10 11 

'""''x'I 
30 s 
30 s rldcrx 5 

1 Supervisor-level instruction 
2 Supervisor- and user-level instruction 
3 Load/store string/multiple instruction 
4 Optional instruction 
5 64-bit instruction 
6 Optional 64-bit bridge instruction 

A B 

A B 

Specific Instructions 

12 13 14 15 16 17 18 19 20 21 

A B 

A B 

mb 2 sh Re 

mb 0 sh Re 

me 1 sh Re 

mb 3 sh Re 

mb XO 

1::1 me XO 

22 23 24 25 26 27 28 29 30 31 

mb 8 

1:1 me 9 

A-38 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Appendix B 
Invalid Instruction Forms 

This appendix describes how invalid instructions are treated by the PowerPC 620 
microprocessor. 

8.1 Invalid Forms Excluding Reserved Fields 
Table B-1 illustrates the invalid instruction forms of the PowerPC architecture that are not 
a result of a nonzero reserved field in the instruction encoding. 

Table B-1. Invalid Forms (Excluding Reserved Fields) 

rA=O rA in rA or rB SPR Not 
Mnemonic 802=0 or rA=O rA=rT=O 

Range in Range L = 1 
Implemented 

rA = rD 

be ctr x 
bcctrl x 
lbzu x 
lbzux x 
lhzu x 
lhzux x 
lhau x 
lhaux x 
lwzu x 
lwzux x 
stbu x 
stbux x 
sthu x 
sthux x 
stwu x 
stwux x 
lmw x x 

MOTOROLA Appendix B. Invalid Instruction Forms B-1 



Table B-1. Invalid Forms (Excluding Reserved Fields) (Continued) 

rA=O 
rA in rA or rB SPR Not 

Mnemonic 802=0 or rA=O rA = rT = O 
Range in Range L=1 

Implemented 
rA = rD 

lswi x x 
lswx x x 
cm pi x 
cmp x 
cmpli x 
cmpl x 
mtspr x 
mfspr x 
LFSU x 
lfsux x 
lfdu x 
lfdux x 
stfsu x 
stfsux x 
stfdu x 
stfdux x 

B.2 Invalid Forms with Reserved Fields (Bit 31 
Exclusive) 

Table B-2 lists the invalid instruction forms of the PowerPC architecture that result from a 
nonzero reserved field in the instruction encoding. This table takes into consideration all 
reserved fields in an instruction that must be zero, excluding only those instructions that 
would become invalid if only bit 31 were set. Note that any combination of a one being 
detected in the instructions field(s) marked X results in an invalid form. 

The tlbsync instruction has the same opcode and format as the sync instruction. Setting 
bit 31 in the instruction indicates a tlbsync. 

B-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) 

6 6 6 6 9 9 11 11 14 16 21 
Mnemonic 6 to to to to 9 to to 11 to to to 15 to 20 21 to 31 

10 15 20 29 10 15 15 20 20 20 25 

bclr x 
bclrl x 
bcctr x 
bcctrl x 
SC x x 
mcrf x x x 
sync x * 
addme[o][.] x 
subfme[o][.] x 
addze[o][.] x 
subfze[o][.] x 
neg[o][.] x 
mulhw[u][.] x 
cm pi x x 
cmp x 
cmpli x x 
cmpl x 
extsb[.] x 

extsh[.] x 
cntlzw[.] x 
mtcrf x x x 
mcrxr x x x 
mtpmr x x 
mfpmr x x 
fmr[.] x 
fneg[.] x 
fabs[.] x 
fnabs[.] x 
fadd[.J x 

fadds[.] x 

MOTOROLA Appendix B. Invalid Instruction Forms B-3 



Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued) 

6 6 6 6 9 9 11 11 14 16 21 
Mnemonie 6 to to to to 9 to to 11 to to to 15 to 20 21 to 31 

10 15 20 29 10 15 15 20 20 20 25 

fsub[.] x 
fsubs[.] x 
fmul[.] x 
fmuls[.] x 
fdiv[.] x 
fdivs[.] x 
frsp[.] x 
fetiw[.] x 
fetiwz[.] x 
fempu x x 
fempuo x x 
mffs[.] x 
mcrfs x x x 
mtfsfi[.] x x 
mtfsf[.] x x 
mtfsbO[.] x 
mtfsb1[.] x 
iebi x x 
isyne x x 
debt x x 
debtst x x 
debz x x 
debst x x 
de bf x x 
eieio x x 
mftb x x 
mftbu x x 
rfi x x 
mtmsr x x 
mfmsr x x 
de bi x x 

B-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Table B-2. Invalid Forms with Reserved Fields (Bit 31 Exclusive) (Continued) 

6 6 6 6 9 9 11 11 14 16 21 
Mnemonic 6 to to to to 9 to to 11 to to to 15 to 20 21 to 31 

10 15 20 29 10 15 15 20 20 20 25 

mtsr x x x 
mfsr x x x 
mtsrln x x 
mfsrin x x 
tlbie x x 
mttb x x 
mttbu x x 
tlbsync x * 

B.3 Invalid Form with Only Bit 31 Set 
The following instructions generate invalid instruction forms if only bit 31 is set in the 
instruction: 

• cror 
• crxor 
• crnand 
• crnor 
• crandc 
• creqv 
• crorc 
• lbzx 
• lbzux 
• lhzx 
• lhzux 
• lhax 
• lhaux 
• lwzx 
• lwzux 
• stbx 
• stbux 
• sthx 
• sthux 
• stwx 
• stwux 
• lhbrx 

MOTOROLA Appendix B. Invalid Instruction Forms 8-5 



• lwbrx 
• sthbrx 
• stwbrx 
• lswi 
• lswx 
• stswi 
• stswx 
• Iwarx 
• tw 
• mtspr 
• mfspr 
• lfsx 
• lfsux 
• lfdx 
• lfdux 
• stfsx 
• stfsux 
• stfdx 
• stfdux 

B.4 Invalid Forms from Invalid BO Field Encodings 
The following list illustrates the invalid BO fields for the conditional branch instructions 
(be, bca, bcl, bcla, heir, bclrl, bcctr, and bcctrl). Specifying a conditional branch 
instruction with one of these fields results in a invalid instruction form. Note that entries 
with the y bit represent two possible instruction encodings. Invalid BO field encodings are 
as follows: 

• OOlly 
• Ollly 
• llOOy 
• l lOly 
• 10101 
• 10110 
• 10111 
• 11100 
• 11101 
• 11110 
• 11111 

The 620 treats the bits listed above as causing an invalid form as "don't cares." 

B-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Appendix C 
Hardware Configuration 

This appendix is devoted to a consolidated collection of narrower requirements to bring up 
a PowerPC 620 in a defined state. Included is a summary of hardware configuration signals, 
their use and the prescribed sequence to use on a 620 processor during and after reset. This 
involves bus configuration, the L2 interface and other tidbits. 

C.1 Hardware Configuration Signals 
Table C-1 provides a summary of signals used for hardware configuration. Additional 
information can be found in Chapter 7, "Signal Descriptions." All of these inputs must be 
set at power-on reset. Changing these signals with hard reset deasserted will have no effect. 

Table C-1. Hardware Configuration Signals Summary 

Typical 
Signal Name Purpose Values to 

Use 

SHIFTGATE This signal is used during LSSD testing to enable shift clocks. In system 1 
appiications this signal defines the MSB for BUSRATIO. 

BUSRATI01 This is a dedicated signal to define the LSB for BUSRATIO on the 620. 0 
Acceptable ratios are-10:2:1 mode, 11 :3:1 mode, 00:4:1 mode. 
Note: A setting of 01 is invalid and will result in unpredictable behavior. 

BUSCLKGTL This is a dedicated signal to set the 1/0 interface for the input clock to the 620. 0 
For CMOS single-ended clock input this net should be tied low. Then drive the 
input clock into the BUSCLK input signal and ground the BUSCLK_B signal. If 
using a differential input pair of clocks with a GTL source, tie the 
BUSCLKGTL input high and source the clock in on the BUSCLK, BUSCLK_B 
pair of inputs. 

BUSLAEN This is another dedicated input that is used to enable or disable the late 0 
address enable mode. When active high, this input indicates that the address 
associated with an ABG should be enabled 1 PCLK after the beginning of the 
next BUSCLK cycle. When deasserted, the address should be asserted at 
the beginning of the next BUSCLK cycle. For further information refer to 
Section 2.1.2.4, "Bus Status and Control Register (BUSCSR):' 

BUSRESPTEN[0-1] These two inputs are dedicated signals to set the latency between valid 10 
ASTATOUT and ARESPOUT being driven and ASTATIN/ARESPIN being 
sampled. Valid decodes are 01 -1 BUSCLK, 10 - 2 BUSCLKS, 11 - 3 
BUSCLKS. 
Note: 00 is invalid. 

MOTOROLA Appendix C. Hardware Configuration C-1 



Table C-1. Hardware Configuration Signals Summary (Continued) 

Typical 
Signal Name Purpose Values to 

Use 

BUS DX This input when asserted high forces the 620 to run in DX mode. In this 0 
mode, bus data transfers occur over the DataHigh bus only in double word 
format. The Datalow bus is therefore dibbled. The normal mode power on 
default is to enable quadword operations with DX mode off. 

BUSPID(Q-4) BUSPID(0-4) comprises a five bit processor ID number on the bus. This 000 
value is sampled during hard reset and used to form the bus tag for all 
subsequent bus operations. The first three bits of this bus are formed from 
dedicated signals. 

DRVRINHIBIT1 Shared signal between LSSD function to disable drivers and hard reset 0 
function of BUSPID[3) 

DRVRINHIBIT2 Shared signal between LSSD function to disable drivers and hard reset 0 
function of BUSPID[4] 

RCVRINHIBIT These final three pins are shared between LSSD function and PLL 0 
configuration during power up. During power up, that is, when hard reset is 
asserted, this signal is used to decode the function of PllVcoBand. 

L1_TESTCLK During hard reset this signal is decoded as PllPumplow 0 

L2_TESTCLK During hard reset this signal is decoded as PllVcoDiv. 0 

C.2 Processor Start Up 
To illustrate what happens when the 620 is powered up, assume the default values are 
asserted during hard reset as illustrated in Table C-1. Given this back drop and input 
BUSCLK of 50 MHz, CMOS single ended, the 620 will be running at an internal frequency 
of lOOMHz. 

The following sequence is important to follow for safe operation: 

1. Assert hard reset prior to applying power or as the power suply is ramping up. To 
accomplish this a simple method is via a pull down resistor. This is important to 
avoid internal bus contention and put the internal caches in a safe state. 

2. After power stabilizes, hold reset for 2ms to ensure the internal PLL has time to lock. 
During this time, the 620 is scanning all internal latches to initial values and getting 
set to branch to the system reset vector. 

3. Upon deassertion ofreset, 620 will start fetching at address FFFOOIOO, expecting to 
find the system interrupt handler. In so doing, the 620 will assert that address on the 
lower 32 bits of address along with ABR and DBR. In response 620 will expectABG 
andDBG. 

C.3 Setting Bus and Cache Configuration Registers 
Not all 620 configuration registers are set during the hardware reset process. Several, 
including the BUSCSR, L2CR and HIDO registers require a prescribed software sequence 

C-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



to be set. This sequence is illustrated in PowerPC pseudo-assembly code. It assumes that 
the HIDO, BUSCSR, and L2CR registers are at reset state, and that address translation is 
disabled. It also assumes that the run state has both L 1 caches and snooping enabled. 

Note that, in order to program the BUSCSR and L2CR correctly, the bus must be running 
incoherently. In particular, since snooping is disabled, there can be no master or slave 
running on the bus that could rerun the SYNC operations. The code to form an incoherent 
barrier before enabling snooping for processors in an multiprocessor system is not included 
here. 

# this number is guaranteed to run a countdown loop for at least 

# 100 us on a 200 MHz machine (20,000 cycles) 

const int32 one_hundred_us = Ox4e20; 

# 

# initialize HIDO, BUSCSR and L2CR registers 

#assume the values to be set are in some memory location 

# called hwavprr_ <register> offset from the address in register 2 

#Note: each sync, mtspr, isync sequence for setting buscsr, hidO or 12cr 

# must be aligned on a quadword boundary 

# 

# step 1: set all buscsr parameters except snpen 

# step 2: set all hidO parameters 

# step 3: set all L2CR except 12clc, 12pllen, 12initb 

# step 4: set 12pllen and wait 100 us. 

# step 5: set all L2CR except 12initb 

# step 6: touch all L2 lines 

# step 7: set 12initb 

# step 8: flush L2 

# step 9: enable snooping 

# 

# step 1 - set buscsr except snpen 

# 

Id r3, hwavprr_BUSCSR(r2); 

andi. r3, r3, Oxfffffeff; #don't enable snooping 

.align 16; 

sync; 

mtbuscsr r3; 

isync; 

#align to QW 

MOTOROLA Appendix C. Hardware Configuration C-3 



C-4 

# 

# step 2 - set all hidO parameters 

# 

lwz r3, hwavprr_HIDO(r2); 

ori r3, r3, OxOOOOOcOO; #add flash invalidates to config 

.align 16; 

sync; 

mthidO r3; 

isync; 

# 

# steps 3-8 - set and initialize L2 

# 

Id r3, hwavprr_L2CR(r2); 

#skip init if 12clc<0> is 0 

andis. r4, r3, OxOOOl; 

cmpwi crO, r4, O; 

beq crO, 12_done; 

# 

#Step 3 - set 12cr except write O's to 12clc, 12pllen, 12init_b 

# 

addi r5, rO, O; 

ori r5, r5, Oxlfff; 

oris r5, r5, Oxfffe; 

and r4, r3, r5; 

.align 16; 

sync; 

mtl2crr4; 

isync; 

# 

# step 4 - assert 12pllen and wait for pll to lock 

# 

addi r5, rO, O; 

ori r5, rO, Ox5 fff; 

oris r5, r5, Oxfffe; 

and r4, r3, r5; 

.align 16; 

sync; 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



loop: 

initloop: 

mtl2cr r4; 

isync; 

# 100 us loop 

addi r4, rO, one_hundred_us; 

mtctr r4; 

bdnz.y loop; 

# 

# step 5: enable L2 in init mode 

# 

addi r5, rO, 0; 

ori r5, r5, Oxdfff; 

oris r5, r5, Oxffff; 

and r4, r3, r5; 

.align 16; 

sync; 

mt12cr r4; 

isync; 

# 

#Step 6 

# 

#touch all of L2(16384*(12size+1) cache blocks) 

#Note: these loops assume that the memory starting at location 

# zero and of size == 12 exists. 

rlwinm r4, r3, 12, 20, 31 ;# srwi r4, r4, 20 

andi. r4, r4, Oxf; 

addi r4, r4, 1; 

rlwinm r4, r4, 14, 0, 17;# slwi r4, r4, 14 <=> n*16384 

mtctr r4; 

addi r5, rO, O; 

lwz r6, O(r5); 

addi r5, r5, 64; 

bdnz.y initloop; 

#clear 12sr 

addi r6, rO, 0; 

sync; # no align needed for 12sr set 

MOTOROLA Appendix C. Hardware Configuration C-5 



flushloop: 

12_done: 

C-6 

mt12sr r6; 

isync; 

# 

# Step 7: fully enable LZ 

# 

.align 16; 

sync; 

mtl2cr r3; 

isync; 

# 

#Step 8: flush LZ 

# 

mtctr r4; 

addi r5, rO, O; 

dcbf rO, r5; 

addi r5, r5, 64; 

bdnz.y flushloop; 

# 

# step 9 - enable snooping 

# 

mfbuscsr r3; 

ori r3, r3, Ox JOO; 

.align 16; 

sync; 

mtbuscsr r3; 

isync; 

# 

# enable snooping 

# end special bringup code 

# 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



C.4 Enabling Address Translation 
Setting the MSR also requires a special code sequence. Address translation should be 
enabled after the initialization of the SPRs (HIDO, BUSCSR, L2CR), the L2 interface, and 
after enabling snooping. The following code is recommended to make sure that setting the 
IR and DR bits in the MSR register has completed execution before any new instructions 
are prefetched (the reason for the 16 Nops). 

mfmsr r12 

mask and set IR and DR 

mtmsr r12 

sync 

isync 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

nop 

C.5 Flushing Data from the L 1 Data Cache 
Flushing data from the data cache can be accomplished in two ways. First, the dcbst or dcbf 
instructions can be used to force a particular address from the data cache back to main 
memory. If you know the addresses of the data to be flushed, this is the preferred method. 

For example, if a page of instructions has been loaded into the data cache and must be 
flushed to main memory in order to be executed, a simple routine could be written to do a 
dcbf to each line in that page. 

Flushing the entire data cache regardless of its contents is a more difficult proposition. This 
may be required, for example, if the processor is being placed in nap mode. The dcbf and 

MOTOROLA Appendix C. Hardware Configuration C-7 



dcbst instructions cannot be used because they will only force copy-backs for specific 
addresses, and you cannot practically do a dcbf for the entire physical address space. The 
better solution is to perform enough loads to guarantee that all previous data has been 
replaced in the data cache with new data. The difficulty with this method is that accidental 
hits, aliased hits, or ECAM matches can confuse the PLRU algorithm so that more loads 
are required than might be expected. 

If loads are done from an address space that is known not to be in the data cache, then the 
cache can be completely flushed by doing 13 loads to each camlet, each with a unique 
ECAM value (that is, EA[44-51] must be unique). If, however, the data loaded to force 
copy-backs might already be in the cache, making hits and aliased hits possible, then it is 
required to do 20 loads with unique ECAM values. In addition, since any of the loads may 
have hit rather than forced a copy-back, it is also necessary to perform a dcbf on each 
address loaded. 

The code segment below should perform the necessary operations for a complete flush of 
the data cache. Notice that this code segment assumes that data being loaded may in fact be 
in the cache, so 20 loads are performed for each camlet, and dcbf instructions are 
performed after the loads. The comments indicate where the code can be modified if the 
data being loaded is known not to be in the cache. 

Note that if the dcbf loop is performed, the final state of all lines in the data cache will be 
invalid. If the dcbf instruction is replaced with dcbst or if loads are done from unused 
memory and the dcbf loop is skipped altogether, then the final state of all lines in the data 
cache will be shared or exclusive. 

full_cache_flush: 

C-8 

.set FLUSH_START_HI,OxOOOO #Change to whatever starting 

.set FLUSH_START_LO,OxOOOO #address you like .... 

. set HIDO,Ox3FO# SPR value for HIDO 

.set BLOCK_SIZE,Ox40# 64 bytes per line 

.set LOOP _COUNT,20# This number should be 13 if loads 

mfmsr GO 

#are done from unused memory, 

#or 20 if not. 

# Save MSR value to GO 

mfspr G l ,HIDO # Save HIDO value to G 1 

rlwinm G2,G0,0,17,15# Disable EE 

rlwinm G3,G 1,0,16,17# Leave I and D caches on 

# Turn superscalar mode off 

# No speculative ifetch 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



.align 

sync 

mtmsr 

4 

G2 

#No dynamic branch prediction or 

# branch history table updates 

#Align to quad-word boundary 

#Update SPR's 

# 

mtspr G3,HIDO # G2 and G3 are free to be reused 

isync # 

addi G2,GO,Ox1000# G2 = ECAM incrementer 

addi G3,GO,O # Clear G3 

oris G4,G3,FLUSH_ST ART _HI# G4 = start address of data 

ori G4,G4,FLUSH_START_LO# used to flush cache 

subf G4,G2,G4 #minus initial offset. 

addi G3,GO,OxOFCO# G3 = camlet offset 

# Start at 63 and work back to 0 

addi GS,GO,LOOP _COUNT# GS= number of loads/flushes 

add G6,GO,BLOCK_SIZE# G6 = line size 

camlet_flush_loop: 

load_loop: 

dcbf_loop: 

mtctr GS #ctr=# ofload's to do 

add G7,G4,G3 #add camlet offset to address 

lbzux G8,G7,G2 #do 20 loads to the same camlet 

be 16,0,load_loop# each with a unique ECAM value 

#until CTR=O 

# This loop can be removed if data is loaded from unused memory 

mtctr GS # ctr = # of dcbf' s to do 

add 

dcbf 

add 

be 

subf. 

G7 ,G4,G3 # reset G7 to start address 

G7,G2 #Flush the line from the cache 

G7,G7,G2 #in case the line actually hit 

16,0,dcbf_loop# Loop until CTR=O 

G3,G6,G3 # Subtract line size from G3 to 

MOTOROLA Appendix C. Hardware Configuration C-9 



# point to next camlet. 

bne camlet_flush_loop# Repeat camlet flush loop 

#until G3<0 

.align 4 

sync # restore SPR' s 

mtmsr GO # 

mtspr G1 ,HIDO # 

sync # 

If the dcbf instruction is changed to a dcbst or if the dcbf loop is not executed, and it is 
desired to leave all lines in the data cache in the invalid state, the following sequence can 
be appended to the previous procedure. 

Reset SPR (HIDO[DCE]) to disable data cache 

Set SPR(HIDO[DCEFI]) to invalidate the whole data cache 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



Appendix D 
Bus Protocol Livelock Scenarios 

In any multiprocessor system, livelock scenarios are possible. Measures to avoid these 
scenarios include, but are not limited to, the following: 

• Special-purpose hardware in the PowerPC 620 such as pacing counters. 

• Special-purpose hardware in the system such as a smart arbiter or the use of high­
priority requests. 

The remainder of this appendix documents livelocks encountered during either simulation 
or hardware debug. 

D.1 2-way Multiprocessing-Imprecise Collision Hit 
Between Processors 

This livelock was encountered during 2-way multiprocessing (MP) simulation where the 
second processor was retried all the time by the first processor. The situation is as follows: 

• The codes sequence for both processors are illustrated in Table D-1: 

Table D-1. Processor Code Sequence 

Processor 1 Processor2 

Loop: 

Load A Load A 

....... ········· 
Load B Store A 

....... 

Branch back to "Loop:" if A is 
not updated by processor 2 

MOTOROLA Appendix D. Bus Protocol Livelock Scenarios D-1 



• Other conditions required for this scenario to occur include: 

- Both A and B have the same 20 least significant bits for their effective addresses. 
Based on the current L 1 cache placement policy, this will cause A and B to map 
to the same Ll entry. In other words, fetching B will force the invalidation of A 
in the L 1 cache and vice versa. 

- A and B have the same 20 least significant bits for the physical addresses. This 
will cause imprecise collision detection between B, from processor 1, and A, 
from processor 2. 

- The size of L2 cache is greater than 1 Mbyte. This will allow both A and B to 
reside in the L2 cache at the same time. 

- Both A and B are located in the L2 cache of processor 1, but A is not in the L2 
cache of processor 2. In this case, Processor 2 will go out to the 620 bus to fetch 
the cache line for A when "load A" is executed. 

• After the first iteration of the loop in processor 1, B (not A) is in the L 1 cache. In 
order to load A, DCMMU has to send a request to BIU to fetch A from the L2 cache. 
After that, A (not B) is in the L1 cache, which will cause DCMMU to request B from 
the L2 cache when "Load B" is executed next. Therefore, DCMMU will keep 
sending requests to L2 for either A or B alternatively as long as processor 1 stays 
within that loop. During the iteration of each loop, if processor 2 's fetching request 
to A which is sent to 620 bus is always snooped by processor 1 within a particular 
timing window, then processor l's collision detection logic will win and retry 
processor 2 every time. Since processor 2 is retried all the times, it cannot load A and 
update it. On the other hand, if A is not updated, processor 2 will stay in the loop 
forever and also keeps processor 1 from making any progress. This causes a livelock 
problem. 

This livelock may be broken by using the 620 pacing counters or by having a smart arbiter 
detect the sequence and change the grant pattern. 

D.2 4-way Multiprocessing-All Processors Running 
lwarx and stwcx. 

This livelock was encountered during hardware debug. Processors 0-3 (PO-P3) were all 
attempting to access the same cache line. The situation is as follows: 

0-2 

1. PO is waiting for a lock variable to update and is using a lwarx to check the value of 
the memory. 
Pl is executing a similar code sequence. 
P2 has a reservation and is attempting to execute a stwcx to the shared cache line. 
P3 is executing a similar code sequence. 

2. When PO accesses L2, it temporarily takes ownership of the cache line so it moves 
its CD state to IN-BUSY. 

PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



3. While PO is IN-BUSY, it snoops the stwcx from P3. This stwcx fails CD since the 
PO lwarx is IN-BUSY and the stwcx is subsequently ARESPIN Retried. PO runs the 
lwarx on the bus, finds that the value is unchanged and loops back to the lwarx. 

4. The same sequence exists for the Pl-P2 pairs. 

5. When PO and Pl run the lwarx operations on the bus, they line up in previous 
adjacent windows and each takes turns ASTATIN Retrying its operation. 

This livelock may be broken by using the 620 pacing counters or by having a smart arbiter 
detect the sequence and change the grant pattern. 

D.3 4-way Multiprocessing-3 Processors Reading 
Line with Pending W = 1 Stores to L2 

A variation of this livelock was encountered during 4-way MP simulation. Processor 0 (PO) 
is processing two write-through stores and Processors 1-3 (Pl-P3) are all attempting to 
read the same lines. The situation is as follows: 

1. The L2 is 2:1, single-synchronous. BUSTLAR=3; BUSRESPTEN=2. 

2. PO moves a W=l store to Address A to the Store Buffer. The line is valid in L2. The 
L2 write is pending. 

3. PO moves a W=l store to Address B to the Store Buffer. The line is valid in L2. The 
L2 write is pending. 

4. Pl generates a bus read for Address A. PO snoops this operation and generates an L2 
read. 

5. P2 generates a bus read for Address B. PO snoops this operation and generates an L2 
read. The Pl and P2 addresses are adjacent. 

6. P3 generates a bus read for Address A. PO snoops this operation and generates an L2 
read. The P2 and P3 addresses are adjacent. 

7. Pl is AResp Retried since Address A is held in the Store Buffer. 

8. P2 is AResp Retried since Address B is held in the Store Buffer. 

9. P3 is AResp Retried since Address A is held in the Store Buffer. 

10. Since L2 reads are higher priority than L2 writes, the pending PO stores cannot 
access the L2. 

11. Pl, P2 and P3 continually get AResp Retried and repeat this access pattern. 

Note that the livelock could also occur for other types of PO stores. Examples include 
consecutive LI deallocates to L2 or two snooped "Clean" operations which cause pushes 
to the bus and the L2. 

This livelock may be broken by using the 620 pacing counters or by having a smart arbiter 
detect the sequence and change the grant pattern. 

MOTOROLA Appendix D. Bus Protocol Livelock Scenarios 0-3 



D-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



INDEX 

Numerics 
64-bit bridge 

32-bit support for operating systems, 4-8, 5-35 
ASR register, V bit, 5-21, 5-35 
description, 5-3 
instructions, 5-22, 5-36 
MMU features, 5-4 
porting a 32-bit operating system, 5-35 
SLBs (segment lookaside buffers), 5-3, 5-21 

A 
ABO (address bus grant) signal, 7-4, 8-12 
ABR (address bus request) signal, 7-4, 8-10 
Address bus 

address aribitration, 8-13 
address bus command, 8-19 
address status and response interaction, 8-19 
address transfer 

An, 7-6 
APn, 7-6 
transfer protocol, 8-18 

addressing modes, 2-34 
arbitration requests, 8-10 
bus parking, 8-15 
bus tagging, 8-59 
WIM bits, bus operations, 8-48, 8-87 

Address translation, see Memory management unit 
Alignment 

alignment exception, 4-20, 5-19 
misaligned accesses, 2-28 
rules, 2-28 

An (address bus) signals, 7-6 
APn (address bus parity) signal, 8-67 
APn (address parity) signals, 7-6 
ARESPIN/OUT (address response in/out) 

signals, 7-10, 8-19, 8-27 
Arithmetic instructions 

floating-point, A-20 
integer, A-18 

ASIZEBURST (address size burst) signal, 7-9, 8-53 
ASIZEDATA (address size data) signal, 7-9, 8-53 
ASR register, V bit, 5-21, 5-35 
ASTATIN/OUT (address status in/out) 

signal, 7-10, 8-19, 8-26, 8-26 
ATAG (address bus tag) signal, 7-7 
Atomic address attribute (A-bit), 8-50 
Atomic memory references 

support, 8-109 
using lwarx/stwcx., 3-16 

B 
Block address translation 

block address translation flow, 5-13 

MOTOROLA Index 

definition, 5-9 
selection of block address translation, 5-10 

Block diagram, 1-7 
Boundedly undefined, definition, 2-32 
Branch instructions 

address calculation, 2-54 
branch instructions, 2-55, A-25 
condition register logical, 2-55, A-25 
system linkage, 2-56, 2-63, A-26 
trap, 2-56, A-26 

Branch processing unit (BPU), 1-10 
Bus interface unit (BIU) 

BIU events, 10-30 
description, 1-16, 3-5 

Bus operations 
livelock scenarios, D-1 
PIO load/store, 8-82 
ReRun,8-75 
setting bus configuration registers, C-2 
summary, 8-67 
WIM bits, 8-48, 8-87 

Bus parking, 8-15 
BUSCSR (bus status and control register), 2-12 
Byte ordering, 2-34 

c 
Cache 

block size, 8-84 
cache coherency 

cache block size, 8-84 
data cache protocol, 3-8 
horizontal cache coherence, 3-9, 8-89 
L2 cache, 3-11 
MESI protocol 

state definitions, 3-9 
state diagram, 3-12 

paradoxes, 3-12, 3-13, 8-87 
protocol, 8-88 
vertical cache coherence, 3-9, 8-88 
vertical/horizontal cache coherency, 8-88 

cache configuration, 3-13 
cache management instructions, 2-62, 2-66, 

3-14, A-26 
cache ownership, 8-91 
cache parity error, 4-16 
cache state transition, 8-91 
characteristics, 3-1 
data cache 

events, 10-29 
organization, 3-3 
overview, 1-14 

EPAT (effective-to-physical address 
translation), 5-5 

exclusive cache state, 8-90 

lndex-1 
-



-

INDEX 

instruction cache, 1-14 
invalid cache state, 8-89 
Ll data cache latency, 6-24 
L2 interface 

clock signals, 7-13 
data syndrome, 9-15 
digital PLL, 9-2 
ECC, 9-21 
L2 cache, overview, 1-15 
L2 interface signals, 7-10 
L2 latency, 6-24 
L2 SRAM wiring diagram, 9-2 
operation, 9-2 
organization examples, 9-5 
registers, 9-3 
signals, 7-10 
tag syndrome, 9-11 
timing diagrams, 9-23 

L3 cache (not implemented), 3-21, 8-68 
MESI protocol, 3-9, 3-12, 8-89 
modified cache state, 8-90 
multi-level cache, definition, 8-87 
operations, 3-1, 3-16 
organization, instruction and data, 3-3, 3-4 
overview, 1-13 
setting cache configuration registers, C-2 
shared cache state, 8-89 
state transitions, 3-17 
WIM bits, bus operations, 8-48, 8-87 
WIMG bits, 3-8, 3-19, 8-85 

Cache management intructions, 2-62, 2-66, 3-14, A-
26 

Changed (C) bit maintenance recording, 5-12, 5-24--5-
25 

Checkstop state, 4-18 
Clocking, 1-20 
Collision detection, 8-99 
Compare instructions 

floating-point, A-21 
integer, A-19 

Completion unit, 1-10 
Completion, definition, 6-3 
Context synchronization, 2-36 
Conventions, xxxviii, xxxix, xiii, 2-27 
CR (condition register) 

CR logical instructions, 2-55, A-25 
CR, description, 2-4 

CR logical instructions, A-25 
CTR (count register), 2-5 

D 
DABR (data address breakpoint register), 2-7 
DAR (data address register), 2-7 
Data bus 

arbitration requests, 8-10 
arbitration signals, 7-13, 8-12 
bus tagging, 8-59 
data arbitration, 8-13 
data bus parity, 8-67 
data transfer 

DHn/DLn, 7-14, 8-37 
DPn, 7-16, 8-67 

data transfer protocol, 8-37 
Data cache organization, 3-3 
Data organization in memory, 2-28 
Data transfers, 2-28 
DBB (data bus busy) signal, 7-19, 8-39 
DBG (data bus grant)signal, 7-13, 8-12 
DCACHE (data cache) signal, 7-17, 8-41 
Deadlocks, scenarios and solutions, 8-112 
Debug support, 8-115 
Decrementer exception, 4-21 
Defined instruction class, 2-32 
DERR (data bus error) signal, 7-20, 8-42 
DHn/DLn (data bus) signals, 7-14, 8-37 
Direct-store interface 

access to direct-store segments, 3-25 
direct-store address translation, 5-9 
selection of direct-store segments, 5-17, 5-36 

Dispatch unit, 1-10 
DPn (data bus parity) signals, 7-16, 8-67 
DSI exception, 4-19 
DSISR register, 2-7 
DTAG (data tag) signal, 7-17, 8-38 
DVAL (data valid) signal, 7-18, 8-39 
DX mode (64-bit data bus width mode), 8-43 

E 
EATS (early address transfer start) signal, 7-5, 8-14 
Effective address calculation 

address translation, 5-5 
branches, 2-35 
loads and stores, 2-35, 2-46, 2-52 

eieio, 2-60 
Exceptions 

alignment exception, 4-4, 4-20 
decrementer exception, 4-4, 4-21 
DSI exception, 4-3, 4-19 
enabling and disabling, 4-11 
exception classes, 4-2 
exception handling registers, 2-7 
exception model, 1-30 
exception prefix bit (IP), 4-14 
exception priorities, 4-6 
exception processing, 4-8, 4-12 
external interrupt, 4-4, 4-19 
FP assist exception, 4-5, 4-22 
FP unavailable exception, 4-4, 4-21 

lndex-2 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



INDEX 

instruction address breakpoint exception, 4-5, 4-23 
instruction-related exceptions, 2-36 
ISI exception, 4-3, 4-19 
machine check exception, 4-3, 4-16 
MMU exception conditions, 5-19 
MMD-related exceptions, 5-18 
performance monitor interrupt, 4-5, 4-22, 10-38 
program exception, 4-4, 4-20 
register settings 

MSR, 4-14 
SRRO/SRRl, 4-8 

reset, 4-14 
return from exception, 4-13 
summary table, 4-3 
system call exception, 4-5, 4-21 
system management interrupt, 4-5, 4-24 
system reset, 4-3 
terminology, 4-2 
trace exception, 4-5, 4-21 
vector offset table, 4-3 

Execution model 
execution units, 1-11 
overview, 1-20 
synchronization, 2-36 

External control instructions, 2-63, A-27 

F 
Features summary, 1-2 
Fetch unit, 1-9 
Finish cycle, definition, 6-3 
Floating-point model 

FEO/FEl bits, 4-11 
FP arithmetic instructions, 2-42, A-20 
FP assist exceptions, 4-22 
FP compare instructions, 2-44, A-21 
FP load instructions, A-24 
FP move instructions, 2-44, A-25 
FP multiply-add instructions, 2-43, A-21 
FP operand, 2-29 
FP rounding/conversion instructions, 2-43, A-21 
FP store instructions, 2-53, A-24 
FP unavailable exception, 4-21 
FP unit events, 10-34 
FPRn registers, 2-4 
FPS CR 

instructions, 2-44, A-22 
NI bit, 2-29 
register description, 2-4 

IEEE-754 compatibility, 2-27 
Floating-point unit, 1-12 
FPRn (floating-point registers), 2-4 
FPSCR (floating-point status and control register) 

FPSCR instructions, 2-44, A-22 
FPSCR register description, 2-4 

MOTOROLA Index 

NI bit, 2-29 

G 
GPRn (general-purpose registers), 2-4 

H 
Hardware configuration, C-1 
Hardware configuration mechanism (HCM), 8-114 
Hardware table walk, 5-6 
HIDO (hardware implementation-dependent 0) 

register, 3-13 
description, 2-10 

Horizontal cache coherence, 3-9, 8-89 
HRESET (hard reset) signal, 7-22, 8-116 

IABR (instruction address breakpoint 
register), 2-9, 10-4 

Illegal instruction class, 2-33 
Instruction address breakpoint exception, 4-23 
Instruction cache organization, 3-4 
Instruction timing 

dispatch rules, 6-8 
execution timing, 6-12 
overview, 6-3 
serialization modes, 6-10 
terminology /definitions, 6-1 

Instructions 
64-bit bridge instructions, 5-22, 5-36 
addressing modes, 1-27, 2-34 
architectural level 

OEA instructions, 2-63 
VISA instructions, 2-37 
VEA instructions, 2-59 

branch address calculation, 2-54 
branch instructions, 2-55, A-25 
cache management instructions, 2-62, 2-66, 

3-14, A-26 
classes of instructions, 2-32 
condition register logical, 2-55, A-25 
defined instructions, 2-32 
EA calculation, 2-35 
external control instructions, 2-63, A-27 
floating-point 

arithmetic, 2-42, A-20 
compare, 2-44, A-21 
FP load instructions, 2-52, A-24 
FP move, 2-44 
FP move instructions, A-25 
FP rounding/conversion, 2-43, A-21 
FP store instructions, 2-52, A-24 
FPSCR, 2-44 
FPSCR instructions, A-22 

lndex-3 



.. 

multiply-add, 2-43, A-21 
illegal instructions, 2-33 
instruction flow units, 1-9 
instruction processing unit, 10-27 
instruction set, 1-27, 2-31 
instruction timing, 1-35 
instructions not implemented, B-1 
integer 

arithmetic, 2-38, A-18 
compare, 2-39, A-19 
load, A-22 
load/store multiple, A-23 
load/store string, A-24 
load/store with byte reverse, A-23 
logical, 2-39, A-19 
rotate/shift, 2-40, A-20 
store, A-23 

load and store 
address generation, floating-point, 2-52 
address generation, integer, 2-46 
byte reverse instructions, 2-49, A-23 
floating-point load, A-24 
floating-point move, A-25 
floating-point store, 2-52 
handling misalignment, 2-45 
integer load, 2-46, A-22 
integer multiple, 2-49 
integer store, 2-48, A-23 
memory synchronization, A-24 
multiple instructions, 6-20, A-23 
string instructions, 2-50, 6-20, A-24 

lookaside buffer management instructions, A-27 
memory control instructions, 2-61, 2-65 
memory synchronization instructions, 2-58, 

2-60, A-24 
move to/from CR instructions, 2-57 
optional instructions, 2-63 
processor control instructions, 2-57, 2-59, 2-64, 

A-26 
quick reference guide, summary, A-1, A-10, 

A-18, A-28 
reserved instructions, 2-34 
segment register manipulation instructions, A-27 
SLB management instructions, A-27 
stwcx., 8-109 
system linkage instructions, 2-56, 2-63, A-26 
TLB management instructions, 2-67, A-27 
trap instructions, 2-56, A-26 

Integer arithmetic instructions, 2-38, A-18 
Integer compare instructions, 2-39, A-19 
Integer load instructions, 2-46, A-22 
Integer logical instructions, 2-39, A-19 
Integer rotate/shift instructions, 2-40, A-20 
Integer store instructions, 2-48, A-23 

INDEX 

Integer unit, 1-11 
Internal request arbitration, 8-11 
Interrupt, external, 4-19 
Intervention mechanism, 8-50 
ISi exception, 4-19 
isync, 2-60, 4-13 

L 
L2COHERENCY (L2 coherency state) signal, 7-11 
L2CR (L2 cache control register), 2-14 
L2CR (L2 configuration register), 9-3 
L2DATAECC signal, 7-11 
L2DATAENABLE signal, 7-12 
L2DATAn signal, 7-10 
L2DATASYN, 9-11 
L20UTPUTENABLE (L2 SRAM output enable) 

signal, 7-12 
L2SR (L2 cache status register), 2-16, 9-11 
L2TAGADD signal, 9-4 
L2TAGECC signal, 7-11 
L2TAGENABLE signal, 7-12 
L2WRITEDATA signal, 7-12 
L2WRITETAG signal, 7-12 
L3 cache (not implemented), 8-96 
Latency 

bus parking, 8-15 
bus read latency, 6-25 
definition, 6-2 
LI data cache latency, 6-24 
L2 cache latency, 6-24 
load latency examples, 6-26 
snoop/push intervention, 6-29 

Level request implementation, 7-4, 7-14 
Load/store 

address generation, 2-46 
byte reverse instructions, 2-49, A-23 
floating-point load instructions, 2-52, A-24 
floating-point move instructions, A-25 
floating-point store instructions, 2-52, A-24 
handling misalignment, 2-45 
integer load instructions, 2-46, A-22 
integer store instructions, 2-48, A-23 
load/store multiple instructions, A-23 
load/store unit, 1-12, 10-36 
memory synchronization instructions, A-24 
multiple instructions, 2-49 
string instructions, 2-50, A-24 

Logical instructions, integer, A-19 
Lookaside buffer management instructions, A-27 
LR (link register), 2-5 
lwarx/stwcx. overview, 3-16 

lndex-4 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



M 
Machine check exception, 4-16 
MCP signal, 7-22 
Memory interface 

addressing modes, 2-34 
atomic memory reference support, 8-109 
control instructions, 2-61, 2-65 
definition, 8-79 
memory accesses, 1-17 
memory coherency 

description, 8-49, 8-84 
memory/cache coherency, 3-8 
sequential consistency, 3-6 

memory size, 8-84 
segment register manipulation instructions, A-27 
SLB management instructions, A-27 

Memory management unit 
address translation flow, 5-13 
address translation mechanisms, 5-9, 5-13 
block address translation, 5-10, 5-13, 5-23 
block diagram, 5-8 
exceptions, 5-18 
features summary, 5-4 
implementation-specific features, 5-3 
instruction summary, 5-22 
locating the segment descriptor, 5-9 
logical address translation, 5-1 
memory protection, 5-12 
MMU and bus interface unit, 3-5 
MMU exception conditions, 5-19 
MMU registers, 5-20 
overview, 1-13 
page address translation, 5-10, 5-13, 5-30 
page history status, 5-12, 5-24-5-27 
page table control bits, 3-11 
physical address generation, 5-1 
real addressing mode, 5-11, 5-13, 5-23 
register summary, 5-20 
segment model, 5-24 

Memory synchronization instructions, 2-58, A-24 
Memory/cache access modes, see WIMG bits 
MESI protocol, 3-9, 3-12, 8-89 
MMCRn (monitor mode control registers), 2-16, 

4-23, 10-11 
MSR (machine state register) 

bit settings, 4-9 
FEO/FEl bits, 4-11 
IP bit, 4-14 
ISF bit, 5-35 
PMbit,2-6 
POW bit, 11-1 
RI bit, 4-12 
settings due to exception, 4-14 

mtcrfperformance, 2-4, 2-57 

MOTOROLA 

INDEX 

Index 

mtfsf performance, 2-4 
Multiple-precision shifts, 2-41 
Multiply-add instructions, A-21 

N 
No-execute protection, 5-4 

0 
Operand 

conventions, 2-27 
placement and performance, 2-30 

Operating environment architecture (OEA) 
cache operation, 3-1 
description, xxxiv 
exception mechanism, 4-1 
instructions, 2-63 
memory management specifications, 5-1 
MMU features summary, 5-4 
registers, summary, 2-5 

Operating systems, 32-bit support, 4-8, 5-35 
Order of completion, 8-88 

p 
Page address translation 

definition, 5-9 
page address translation flow, 5-30 
page size, 5-24 
selection of page address translation, 5-10, 5-17 

Page history status 
cases of debt and dcbtst misses, 5-25 
R and C bit recording, 5-12, 5-24-5-27 

Paradoxes 
cache coherency, 8-87 
multiple-processor systems, 3-13 
single-processor systems, 3-12 

Parity protection, 8-65 
Performance monitor 

block diagram, 10-7 
components, 10-6 
counters, 10-17 
event types, description, 10-25 
examples, 10-40 
history mode, 10-39 
instruction processing unit, 10-27 
overview, 1-37, 10-1 
PM events, 10-37 
PM interrupt, 10-38 
register summary, 10-9 
thresholder, 10-13 

Physical address generation, 5-1 
Pipeline 

definition, 6-1 
diagram, 6-5 

lndex-5 



-

INDEX 

PIR (processor identification register), 2-10 
PMCn (performance monitor counter) registers, 2-

19, 4-23, 10-2 
Power management, 11-1 
Power-on activity, C-2 
PowerPC architecture 

instruction list, A-1, A-10, A-18, A-28 
levels of implementation, 1-20 
operating environment architecture, xxxiv, 1-21 
user instruction set architecture, xxxiii, 1-20 
virtual environment architecture, xxxiii, 1-20 

Predecode unit, 1-9 
Priorities 

exception priorities, 4-6 
hierarchical priority, 8-88 
time priority, 8-88 

Process switching, 4-13 
Processor configuration 

RSRV, 7-24 
TBEN, 7-25 

Processor control instructions, 2-57, 2-59, 2-64, A-26 
Processor interface termination, 8-9 
Program exception, 4-20 
Programming model/registers, 1-21 
Protection of memory areas 

no-execute protection, 5-4, 5-15 
options available, 5-12 
protection violations, 5-18 

Pulsed request implementation, 7-4, 7-14 
Push mechanism, 8-50 
PVR (processor version register), 2-6 

R 
Real address (RA), see Physical address generation 
Real addressing mode (translation disabled) 

definition, 5-9 
instruction/data accesses, 5-11, 5-13, 5-23 
support for real addressing mode, 5-2 

Referenced (R) bit maintenance recording, 5-12, 5-
24-5-25, 5-33 

Registers 
implementation-specific registers 

programming model, 2-3 
summary, 2-8 

implementation-specific SPRs, 2-64 
L2 interface registers, 9-3 
L2CR, 9-3 
L2SR, 9-11 
MMU registers, 5-20 
performance monitor register summary, 10-9 
programming model, 1-21 
setting cache/bus configuration registers, C-2 
special-purpose registers, 10-2 
supervisor-level 

BUSCSR, 2-12 
DABR,2-7 
DAR,2-7 
DSISR,2-7 
HIDO, 2-10 
IABR, 2-9, 10-4 
L2CR, 2-14 
L2SR, 2-16 
MMCRn, 2-16, 4-23, 10-11 
MSR, 11-1 

PMM bit,2-6 
PIR, 2-10 
PMCn, 2-19, 4-23, 10-2 
PVR,2-6 
SDA, 2-26, 4-23, 10-9 
SDRl, 2-6 
SIA, 2-26, 4-23, 10-9 
SPRGn, 2-7 
SRRn, 2-7, 4-8, 10-10 
TBL(fBU, 2-7 

user-level 
CR, 2-4 
CTR, 2-5 
FPRn, 2-4 
FPSCR, 2-4 
GPRn, 2-4 
LR, 2-5 
TBL(fBU, 2-5 

Rename buffer, 6-3 
Rename register operation, 1-11 
ReRun mechanism, 8-74 
Reservation station, 6-2 
Reserved instruction class, 2-34 
Reset 

register/array settings after HRESET, 8-117 
reset exception, 4-14 
signals, 7-22 

Retry, AStat and AResp, 8-31 
Rotate/shift instructions, A-20 
RSRV (reservation) signal, 7-24 

s 
SC, 4-21 
SDA (sampled data address) register, 2-26, 4-23, 10-9 
SDRI register, 2-6 
Segmented memory model, see Memory management 

unit 
Shift/rotate instructions, A-20 
SIA (sampled instruction address) register, 2-26, 4-

23, 10-9 
Signals 

620 signals, list, 1-18 
ABO, 7-4, 8-12 
ABR, 7-4,8-10 

lndex-6 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



INDEX 

address transfer, 7-6 
address transfer attribute, 7-7 
address transfer start, 7-5 
An, 7-6 
APn, 7-6, 8-67 
ARESPIN/OUT, 7-10, 8-19, 8-27 
ASIZEBURST, 7-9, 8-53 
ASIZEDATA, 7-9, 8-53 
ASTATIN/OUT, 7-10, 8-19, 8-26, 8-26 
ATAG, 7-7 
clocks, 7-13, 7-25 
data bus arbitration, 7-13 
data transfer, 7-14 
data transfer termination, 7-19 
DBB, 7-19, 8-39 
DEG, 7-13, 8-12 
DCACHE, 7-17, 8-41 
DERR, 7-20, 8-42 
DHn!DLn, 7-14, 8-37 
DPn, 7-16, 8-67 
DTAG, 7-17, 8-38 
DYAL, 7-18, 8-39 
EATS, 7-5, 8-14 
HRESET, 7-22,8-116 
L2COHERENCY, 7-11 
L2DATAECC, 7-11 
L2DATAENABLE, 7-12 
L2DATAn, 7-10 
L20UTPUTENABLE, 7-12 
L2TAGADD, 9-4 
L2TAGECC, 7-11 
L2TAGENABLE, 7-12 
L2WRITEDATA, 7-12 
L2WRITETAG, 7-12 
MCP, 7-22 
processor configuration, 7-23 
RSRV, 7-24 
SMI, 4-24, 7-21 
SRESET, 7-23 
system status, 7-20 
TBEN, 7-25 
WAKEUP, 11-2 

Simplified mnemonics, 2-68 
SLB management instructions, A-27 
SLBs (segment lookaside buffers) 

description, 5-3 
MMU organization, 5-5 
SLB invalidate instructions, 5-21 

SMI (system management interrupt) signal, 4-24, 7-21 
Snooper-generated events, 10-33 
SPRGn registers, 2-7 
SRAM wiring diagram, 9-2 
SRESET (soft reset) signal, 7-23 
SRn (segment registers) 

SR manipulation instructions, 2-66, A-27 

MOTOROLA Index 

SRRn (status save/restore) registers, 2-7, 4-8, 10-10 
stwcx. instruction, 4-13, 8-109 
Synchronization 

context/execution synchronization, 2-35 
memory synchronization instructions, 2-58, 

2-60, A-24 
sync instruction, 4-13 

System call exception, 4-21 
System interface, 1-16 
System linkage instructions, 2-56, 2-63, A-26 
System management interrupt, 4-24 
System status 

T 

HRESET, 7-22, 8-116 
MCP, 7-22 
SMI, 4-24, 7-21 
SRESET, 7-23 

Table search operations, 5-33 
TBEN signal, 7-25 
TBL/TBU (time base lower/upper) registers, 2-5, 2-7 
TLBs (translation lookaside buffers) 

description, 5-28 
LRU replacement, 5-28 
MMU organization, 5-5 
table search operation, 5-28, 5-32, 5-34 
TLB invalidate 

description, 5-29 
TLB management instructions, 2-67, A-27 

TLB miss, 5-28, 5-32, 5-34 
tlbsync, 5-29 
Trace exception, 4-21 
Trap instructions, 2-56 

u 
User instruction set architecture (UISA), xxxiii 

description, 1-20 
instructions, 2-37 
registers, summary, 2-4 

v 
Vector offset table, exceptions, 4-3 
Vertical cache coherence, 3-9, 8-88, 8-88 
Virtual environment architecture (VEA) 

cache operation, 3-1 
description, xxxiii, 1-20 
instructions, 2-59 

w 
WAKEUP signal, 11-2 
WIM bits, bus operations, 8-48, 8-87 
WIMG bits cache actions, 3-19, 8-85 

lndex-7 
-



INDEX 

.. 
lndex-8 PowerPC 620 RISC Microprocessor User's Manual MOTOROLA 



6/1/97 

MOTOROLA AUTHORIZED DISTRIBUTOR & WORLDWIDE SALES OFFICES 

NORTH AMERICAN DISTRIBUTORS 

UNITED STATES 

ALABAMA 
Huntsville 

Arrow/Schweber Electronics ... (205)837-6955 
FAI ......................... (205)837-9209 
Future Electronics . . . . . . . . . . . . (205)830-2322 
Hamilton/Hallmark ........... (205)83741700 
Newark ....•.•.............. (205)837-9091 
Wyle Electronics ............. (205)830-1119 

ARIZONA 
Phoenix 

FAI ..•...•.•................ (602)731-4661 
Future Electronics ............ (602)968-7140 
Hamilton/Hallmark .....•..... (602)736-7000 
Wyle Electronics ............. (602)804-7000 

Tempe 
Arrow!Schweber Electronics ... (602)43Hl030 
Newark . • • . . . . • . . . . . . . . . . . . . (602)96&-6340 
PENSTOCK ................. (602)967-1620 

CALIFORNIA 
Agoura Hills 

Future Electronics ............ (818)865---0040 
C81abassas 

Arrow!SchweberElectronics ... (818)880--9686 
Wyle Electronics ............. (818)880-9000 

Culver City 
Hamilton/Hallmark . . . . . . . . . . . (310)558-2000 

Garden Grove 
Newark ..................... (714)893-4909 

Irvine 
Arrow/Schweber Electronics ... (714)587--0404 
FAI ......................... (714)753-4778 
Future Electronics ............ (714)453--1515 
Hamilton/Hallmark ........... (714)789-4100 
Wyle Laboratories Corporate .. (714)753-9953 
Wyle Electronics ............. (714)789-9953 

Los Angeles 
FAI .•...•................... (818)879-1234 

Manhattan Beach 
PENSTOCK ................. (310)54641953 

N~~~~fJ:~ark.. . (805)375-6680 

Palo Alto 
Newark •...........•........ (415)812-6300 

Rancho Cordova 
Wyle Electronics ............. (916)638-5282 

Riverside 
Newark • . . . . . . . . . . . . . . . . . . . . (909)980-2105 

Rocklin 
Hamilton/Hallmark ........... (916)632-4500 

Sacramento 
FAI ......................... (916)782-7882 
Newark . . . . . . . . . . . . . . . . . . . . . (916)565-1760 

San Diego 
Arrow/SchweberElectronics ... (619)565-4800 
FAI ......................... (619)623-2888 
Future Electronics ............ (619)625-2800 
Hamilton/Hallmark ........... (619)571-7540 
Newark .................•... (619)45341211 
PENSTOCK ................. (619)623-9100 
Wyle Electronics ............. (619)558-6600 

San Jose 
Arrow/Schweber Electronics ... (408)441-9700 
Arrow/Schweber Electronics ... (408)428-6400 
FAI ......................... (408)434--0369 
Future Electronics ............ (408)434-1122 

Santa Clara 
Wyle Electronics ............. (408)727-2500 

Santa Fe Springs 
Newark ..................... (310)929-9722 

Sierra Madre 
PENSTOCK ................. (818)355-6775 

Sunnyvale 
Hamilton/Hallmark ........... (408)435-3600 
PENSTOCK ................. (408)730--0300 

Thousand Oaks 
Newark ..................... (805)449-1480 

Woodland Hills 
Hamilton/Hallmark ........... (818)594-0404 

COLORADO 
Lakewood 

FAI ......................... (303)237-1400 
Future Electronics ............ (303)232-2008 

Denver 
Newark ..................... (303)373-4540 

Englewood 
Arrow/Schweber Electronics ... (303)799-0258 
Hamilton/Hallmark ........... (303)790-1662 
PENSTOCK ................. (303)799-7845 

Thornton 
Wyle Electronics ............. (303)457-9953 

CONNECTICUT 
Bloomfield 

Newark ..................... (203)243-1731 
Cheshire 

FAI ......................... (203)250-1319 
Future Electronics ............ (203)250--0083 
Hamilton/Hallmark ........... (203)271-5700 

Wallingford 
Arrow/SchweberElectronics ... (203)265-7741 
Wyle Electronics ............. (203)2694!077 

FLORIDA 
Altamonte Springs 

Future Electronics ........ (407)865-7900 
Clearwater 

FAI ......................... (813)53CH665 
Future Electronics ............ (813)530-1222 

Deerfield Beach 
Arrow/Schweber Electronics ... (305)429-8200 
Wyle Electronics ...........•. (305)420--0500 

Ft. Lauderdale 
FAI ......................... (305)428-9494 
Future Electronics ............ (305)436-4043 
Hamilton/Hallmark ........... (954)677-3500 
Newark........ . ....... (305)488-1151 

Lake Mary 
Arrow/Schweber Electronics ... (407)333-9300 

Largo/Tampa/St. Petersburg 
Hamilton/Hallmark ........... (813)507-5000 
Newark ..................... (813)287-1578 
Wyle Electronics ............. (813)378-3004 

Maitland 
Wyle Electronics ............. (407)740-7450 

Orlando 
FAI . . . . . . . . . . . . . . . . . . . . . . . . . ( 407)865-9555 
Newark . . . . . . . . . . . . . . . . . . . . . ( 407)89641350 

Tallahassee 
FAI ......................... (904)668-7772 

Tampa 
Newark ..................... (813)287-1578 
PENSTOCK ................. (813)247-7556 

Winter Park 
Hamilton/Hallmark ........... (407)657-3300 
PENSTOCK ................• (407)672-1114 

GEORGIA 
Atlanta 

FAI ......................... (404)447-4767 
Duluth 

Arrow/Schweber Electronics ... (404)497-1300 
Hamilton/Hallmark ........... (770)623-4400 

Norcross 
Future Electronics ............ (770)441-7676 
Newark ..................... (770)448-1300 
PENSTOCK ................. (770)734--9990 
Wyle Electronics ............. (770)441-9045 

IDAHO 
Boise 

FAI ......................... (208)378-8080 
Newark ..................... (208)342-4311 

ILLINOIS 
Addison 

Wyle Laboratories ............ (708)620--0969 
Arlington Heights 

Hamilton/Hallmark .....•..... (847)797-7300 
Chicago 

FAI ......................... (708)843--0034 
Newark Electronics Corp ... 14!00-4NEWARK 

Hoffman Estates 
Future Electronics ............ (708)882-1255 

Itasca 
Arrow/Schweber Electronics ... (708)250--0500 

Palatine 
PENSTOCK . . . . . . . . (708)934--3700 

Schaumburg 
Newark ..................... (708)3104!980 

IN DIANA 
Indianapolis 

Arrow/Schwelier Electronics ... (317)299-2071 
Hamilton/Hallmark ........... (317)575-3500 
FAI ......................... (317)469--0441 
Future Electronics ............ (317)469--0447 
Newark ..................... (317)259--0085 

Ft. Wayne 
Newark ..................... (219)484--0766 
PENSTOCK ................. (219)432-1277 

IOWA 
Cedar Rapids 

Newark ..................... (319)393-3800 
KANSAS 

Kansas City 
FAI ......................... (913)381-6800 

Lenexa 
Arrow/Schweber Electronics .... (913)541-9542 

Olathe 
PENSTOCK ................. (913)829-9330 

Overland Park 
Future Electronics ............ (913)649-1531 
Hamilton/Hallmark ........... (913)663-7900 
Newark ..................... (913)677--0727 

MARYLAND 
Baltimore 

FAI ......................... (410)312--0833 
Columbia 

Arrow/Schweber Electronics ... (301 )598-7800 
Future Electronics ............ (410)290--0600 
Hamilton/Hallmark ........... (410)720-3400 
PENSTOCK ................. (410)29(}-3746 
Wyle Electronics ............. (410)312-4844 

Hanover 
Newark ..................... (410)712-6922 

MASSACHUSETTS 
Bedford 

Wyle Electronics ............. (617)271-9953 
Boston 

Arrow/Schweber Electronics ... (508)658--0900 
FAI ......................... (508)779-3111 
Newark . . . . . . . . . . . . . . . . . . 14!00-4NEWARK 

Bolton 
Future Corporate ............. (508)779-3000 

Burlington 
PENSTOCK ................. (617)229-9100 

Peabody 
Hamilton/Hallmark ........... (508)532-3701 

Woburn 
Newark ..................... (617)935-6350 

continued on next page 

For changes to this Information contact Technical Publications at FAX (602) 244-6560 



611197 

AUTHORIZED DISTRIBUTORS - continued 
UNITED STATES- continued 

MICHIGAN 
Detroll 

FAI ••••.•••.••.••••••••..•.. (313)513-0015 
Future Electronics •..••••••••• (616)691H18DO 

Grand Rapids 
Newark • • • • • . . • . • • • • . • . • . • • . (616)954-6700 

Uvonls 
Am>w/SchweberElectronics .•• (810)455--0850 
Future Electronics •••••••••••• (313)261-5270 
Hamilton/Hallmark ••••••••••. (313)416-5800 

Troy 
Newark ••••••••••.•..•.•.•.. (810)583-2899 

MINNESOTA 
Bloomington 

Wyle Electronics ••••••••.••••• (612)853-22SO 
Burnsvllls 

PENSTOCK •••••••.••.•.•..•. (612)882-7630 
EdenPrslrle 

Arrow/Schweber Electronics ..• (612)941-5280 
FAI. • • • • • • • • • • • • • • • • • • • • • • • • (612)947--0909 
Future Electronics • • . • • • • . . . . • (612)944-2200 
Hamilton/Hallmark ••••.•••.•• (612)881-2600 

Minneapolis · 
Newark •••••••••••..••.•••.• (612)331-6350 

MISSOURI 
Ealth City 

Hamilton/Hallmark •..•....•.. (314)29Hi350 
St. Louis 

Arrow/Schweber Electronics •.. (314)567--a!88 
Future Electronics • • • • • • • • • • • • (314)469-6805 
FAI •••••••••••••••...•..••.. (314)542-9922 
Newark ..................... (314)453-1l400 

NEW JERSEY 
Bridgewater 

PElllSTOCK • • • • • • • • • • • • • • • • • (908)575-9490 
East Brunswick 

Newark • • • • • • • • .. . . • . . . • . . • . (908)937-8i00 
Falrlleld 

FAI ••••.•.•.•••.•.••....•... (201)331-1133 
Marn on 

Arrow/Schweber Electronics • • . (609)59IHIOOO 
FAI. ••••••••••••••.••..•.••• (609)988-1500 
Future Electronics • • . • • • • • • • • • (609)!i96-'l080 

Mt. Laurel 
Hamilton/Hallmark ••••••••••• (609)~ 
Wyle Electronics ••••••••••••• (609)439-9110 

Oradell 
Wyle Electronics ••••••.•••••• (201)261-3200 

Plnabrook 
Arrow/Schweber Electronics ••. (201)227-7880 
Wyle Electronics •••••..•.•.•• (201)88~56 

Parslpp11ny 
Future Electronics •.••......•. (201)299--0400 
Hamilton/Hallmark •.•.•...... (201)51S-1641 

NEW MEXICO 
Albuquerque 

Hamdton/Hallmark ..•......•. (505)293-5119 
Newark ••••••.•......•...••. (505)82&-1878 

NEW YORK 
Bohemia 

Newark ..................... (516)567-4200 
Hauppauge 

Arrow/Scfiweber Electronics ..• (516)231-1000 
FAI ••••..••••••.•••••.•.•.•• (516)348-3700 
Future Electronics .•.••....••• (516)234-4000 
Hamilton/Hallmark •••••.••••• (516)434-7400 
Newark ••••••.•••••.••••. 1-800-4NEWARK 
PENSTOCK ••••••••••••••••• (516)72oHl580 
Wyle Electronics .•••••••••••• (516)231-7850 

Henrietta 
Wyle Electronics • • • • . • . • . • . . • (716)334-S970 

Konkoma 
Hamilton/Hallmark ..••.•..•.• (516)737-0600 

Pittsford 
Newark • • • • • • • . • • • . • • . . • . • • . (716)381-4244 

Rochester 
Arrow/Schweber Electronics • • . (716)427--0300 
Future Electronics • • • • • • • • • • • • (716)387-9550 
FAI • • • • • • • • • • • • • • • • • . . • • . • • . (716)387-9600 
Hamilton/Hallmark • • • • • • • . . • . (716)272-2740 

Syracuse 
FAI ......................... (315)451-4405 
Future Electronics •••.••.••.•. (315)451-2371 
Newark •..••.••.••..•..•..•. (315)457-4873 

NORTH CAROLINA 
Charlotte 

FAI •.•..••.•.••...•..•.••.•• (704)546-9503 
Future Electronics .••..•....•• (704)547-1107 
Newark • • • • • • • • • • • • • • • • • • • • • (704)535-5650 

Morrisville 
Wyle Electronics . . . • . . • . . • . . • (919)469-1502 

Raleigh 
Arrow/Schweber Electronics • • • (919)876-3132 
FAI. ..••.•..••.•..•..•..•..• (919)876--0088 
Future Electronics ..•..•..•..• (919)790-7111 
Hamilton/Hallmark .......•..• (919)872-0712 
Newark • • • • • • • • • • • • • • . • • • 1-800-4NEWARK 

OHIO 
Centervllle 

Armw/Schweber Electronics ... (513)435-5563 
Cleveland 

FAI • • • • • • . • . • .. • • . • .. • . • . • • . (216)446--0061 
Newark ..................... (216)391-9330 

Columbus 
Newark ••.•••••..•..•..•...• (614)326--0352 

D~Xl~~ ...................... (513)427-8090 
Future Electronics ••.....•..•. (513)426--0090 
Hamilton/Hallmark ••••••••••• (513)439-6735 
Newark .•.••.••.••..•..•.••. (513)294-8980 

Mayfield Heights 
Future Electronics ............ (216)~ 

Miamisburg 
Wyle Electronics . . . . . . . . • . . . . (937)436-9953 

Solon 
Arrow/Schweber Electronics . • . (216)246-3990 
Hamilton/Hallmark •...•.•..•. (216)498-1100 
Wyle Electronics . • • . . • . . • . . • . (216)248-9996 

Wonhlngton 
Hamilton/Hallmark •..•.••.••• (614)888-3313 

OKLAHOMA 
TUisa 

FAI ......................... (918)492-1500 
Hamilton/Hallmark ...•....... (918)459-6000 
Newark •••••••••••••••••.••. (918)252-5070 

OREGON 
Baavelton 

Arrow/Almac Electronics Corp •• (503)829-8090 
Future Electronics . . . . . • • . • . • • (503)645-9454 
Hamilton/Hallmark • • • • • • . • . . • (503)526-6200 

Pon land 
FAI • . • • • • • • • • • • • • . . . • . . . • . . • (503)297-5020 
Newark ..................... (503)297-1984 
PENSTOCK ••.•..•...•....•. (503)646-1870 
Wyle Electronics ..•.....•..•. (503)598-9953 

PENNSYLVANIA 
Coatesvllle 

PENSTOCK •...•...•..•....• (610)383-9536 
Ft. Washington 

Newark ••................... (215)654-1434 
Pittsburgh 

Arrow/SChweber Electronics •.. (412)9~7 
Newark ••••••••••••••••••••• (412)788-4790 

TENNESSEE 
Knoxville 

Newark •.•..•..•.••..•.•..•. (615)568-6493 

TEXAS 
Austin 

Am>w/SchweberElectronlcs ..• (512)835-4180 
Future Electronics •••••••••••• (512)50Nl991 
FAI ......................... (512)346-6426 
Hamilton/Hallmark ...•...••.• (512)219-3700 
Newark . • • • • .. . • . . . . • . . • . • . • (972)458-25211 
PENSTOCK •...•....•..•.•.• (512)348-9762 
Wyle Electronics •..•....•.•.. (512)633-9953 

Ban brook 
PENSTOCK ................. (817)249--0442 

Cerollton 
Armw/Schweber Electronics • . . (214)380-6464 

Dallas 
FAI ......................... (214)231,-7195 
Future Electronics •••.•••••••• (214)437-2437 
Hamilton/Hallmark .•...•.•.•. (214)553-4300 
Newark • • • • • • • . . • . • . . . . . • . • . (214)458-2526 

El Paso 
FAI •...•.•••••..•..•..•.•..• (915)5n-9531 
Newark ••••••••••••••••••••• (915)n2-6387 

Ft.Wonh · 
Allied Electronics •......•.•..• (817)336-o-5401 

Houston 
Armw/Schweber Electronics •.• (713)647-6868 
FAI •...••.•••••..•.•..•.•..• (713)952-7088 
Future Electronics ...•....•.•• (713)7SS-1155 
Hamilton/Hallmark •....•.•..• (713)781-6100 
Newark ••••••••••••••••••••• (713)894-9334 
Wyle Electronics • . • . • . . . . • • . • (713)784-9953 

Richardson 
PENSTOCK •••••••••.••.••.• (214)479-9215 
Wyle Electronics • • . . . . . . . • • . . (214)235-9953 

San Antonio 
FAI • • • • • • • • • • • • • • • • • • • • • • • . • (210)738-3330 
Newark ••••••••••••••••••••• (210)734-7960 

UTAH 
Draper 

Wyle Electronics • • • • . • . . • . • • . (801 )523-2335 
Salt Lake City 

Armw/Schweber Electronics ... (801)973-8913 
FAI • • • • • • • • • • • • • • . • . . . . • . • . . (801 )467-9896 
Future Electronics •••....•.•.. (801)467-4448 
Hamilton/Hallmark . . . . . . • . • • . (801 )268-2022 
Newark ••.••••••...••..•.••. (801)261-5660 

West Vallay CHy 
Wyle Electronics •.•.....••••• (801)974-9953 

WASHINGTON 
Ballevue 

Almac Electronics Corp. . . • • . • (206)643-9992 
PENSTOCK . • . • • . • . . • . • • • .. • (206)454-2371 

Bothell 
Future Electronics •••••.••••.• (206)489-3400 

Kirkland 
Newark ••••••.•••••••.•.•.•• (206)814-8230 

Redmond 
Hamilton/Hallmark . . . . . . . . . • . (206)882-7000 
Wyle Electronics ••....•••..•. (206)881-1150 

Seattle 
FAI •••••••••••••.•.....•.•.. (206)485-6616 

WISCONSIN 
Brookfield 

Armw/Schweber Electronics . . • (414)792-0150 
Future Electronics •.••..•.•..• (414)879--0244 
Wyle Electronics .•.•...•...•. (414)87!Hl434 

Madison 
Newark . • . • • . . • .. . .. .. . • . • • • (608)278-01 n 

Miiwaukee 
FAI ••••••••••••••••••.•.•..• (414)792-9778 

New Berlin 
Hamilton/Hallmark ••..•....•. (414)780-7200 

WauwstOBB 
Newark .••••••.•..•..••..•.. (414)453-9100 

For changes to this Information contact Technical Publications at FAX (602) 244-6560 



6'1197 

AUTHORIZED DISTRIBUTORS - continued 

CANADA 
ALBERTA 

c~~~ar~ ............ . 
Future Electronics .. . 
Hamilton/Hallmark .. 

Edmonton 
FAI .............. .. 
Future Electronics .. 
Hamilton/Hallmark 

Saskatchewan 
Hamilton/Hallmark 

BRITISH COLUMBIA 
Vancouver 

. . . . . . ( 403)291-5333 
. . . ( 403)250-5550 

. ...... (800)663-5500 

. . . ( 403)438-5888 
..... (403)438-2858 

. (800)663-5500 

(800)663-5500 

Arrow Electronics ............ (604)421-2333 
FAI .. .. .. .. .. .. . .. .. (604)654-1050 
Future Electronics ... 
Hamilton/Hallmark 

. ... (604)294-1166 
" " . (604)420-4101 

MANITOBA 
Winnipeg 

FAI .......... .. 
Future Electronics 
Hamiltor\/Hallmark 

ONTARIO 
Kanata 

PENSTOCK .. 

London 
Newark ..... . 

Mississauga 
PENSTOCK .. 
Newark 

Ottawa 
Arrow Electronics 
FAI 
Future Electronics .. 
Hamiltor\/Hallmark . 

. ...... (204)786-3075 
""". (204)944-1446 

... (800)663-5500 

. . . . . (613)592-£088 

. .. (519)685--4280 

. . . (905)403-0724 
. . . . . (905)670--2888 

" . (613)226-6903 
.... (613)820~244 
. ... (613)727-1800 
"" (613)22&--1700 

Toronto 
Arrow Electronics ............ (905)670-7769 
FAI .. .. .. .. .. .. .. ........ (905)612-9888 
Future Electronics ............ (905)612-9200 
Hamilton/Hallmark ........... (905)564-£060 
Newark . . . . . (905)670-2888 

QUEBEC 
Montreal 

Arrow Electronics ............ (514)421-7411 
FAI ......................... (514)69-157 
Future Electronics ............ (514)694-7710 
Hamilton/Hallmark ........... (514)335-1000 

Mt. Royal 
Newark ..................... (514)738-4488 

Quebec City 
Arrow Electronics ............ (418)687-4231 
FAI.................. (418)682-5775 
Future Electronics ............ (418)877-6666 

INTERNATIONAL DISTRIBUTORS 

AUSTRALIA 
AVNET VSI Eloctmnics (Aust.) . 
Veltek Australia Pty Ltd 

(61)29878-1299 
(61)39574-9300 

AUSTRIA 
EBV Elektronik .. 
SEVElbatex GmbH . 
Spoerle Electronic ... 

BELGIUM 
Spoerle Electronic ..... 
EBV Elektronik 
SEl/Rodelco B.V .... 

BULGARIA 

. . (43) 1 8941774 
. ... (43) 1 866420 

... (43) 1 31872700 

(32) 2 725 4660 
(32) 2 716 0010 
(32) 2 460 0560 

Macro Group . . . ....... (359) 2708140 
CZECH REPUBLIC 

Spoerle Electronic . . . . .. (420) 2 731355 
SEl/Elbatex . . . . . . . . . .. (420) 2 4763707 
Macro Group ............... (420) 2 3412182 

CHINA 
Advanced Electronics Ltd. (852)2 305-3633 
AVNETWKKComponents Ud. . . . (852)2 357~888 
Olina El. App. Corp.XiaMan Co .. (86)10 6818-9750 
Nance Ek>ctronics Supply Ltd .. (852) 2 765-3025 
........................ or (852) 2 333-5121 

Qing Cheng Enterprises Ltd ... (852) 2 493-4202 
DENMARK 

Arrow Exatec ... 
Avnet Nortec A/S 
EBV Elektronik .. 

ESTONIA 

.... (45) 44 927000 
... (45) 44 880800 

. .... (45) 39690511 

Arrow Field Eesti .............. (372) 65o3288 
Avnet Baltronic . . . .... (372) 6397000 

FINLAND 
Arrow Field OY .. .. . .. (358)97 775 71 
Avnet Nortec OY .............. (358)9613181 
EBV Elektronik . (358)98557730 

FRANCE 
Arrow Electronique .. 
Avnet Components .. 
EBV Elektronik .... . 
Future Electronics .... . 
Newark ....... .. 
SEVScaib .... . 

GERMANY 

(33) 1 49 78 49 78 
(33) 1 49 65 25 00 
(33) 1 64 68 86 00 

" " " (33)1 69821111 
. ... (33)1-30954060 

(33) 1 6919 89 00 

Avnet E2000 .............. (49) 89 4511001 
EBV Elektronik GmbH ....... (49) 89 99114-0 
Future Electronics GmbH .... (49) 89-957 270 
SEVJermyn GmbH . . . . . . . . . . (49) 6431-5080 
Newark .................... (49)2154-70011 
Sasco Semiconductor ......... (49) 89-46110 
Spoerle Electronic .......... (49) 6103-304-0 

GREECE 
EBV Elektronik ..... (30) 13414300 

HONG KONG 
AVNETWKKComponentsUd .... (852)2357~88 
Nanslling Cir. & Chem. Co. Lid . . . (852)2 333-5121 

INDIA 
Canyon Products Ltd . . . . . (91) 80 558-7758 

INDONESIA 
P.T. Ometraco . . . . . . (62) 21 619-5166 

IRELAND 
Arrow ..................... (353) 14595540 
Future Electronics..... . .... (353) 6541330 
Macro Group . . . . . . . . (353) 16766904 

ITALY 
AVNET EMG SRL ............. (39) 2 381901 
EBV Elektronik . . . . . . . . .... (39) 2 660961 
Future Electronics ............. (39) 2 660941 
Silverstar Ltd. SpA ........... (39) 2 6612 51 

JAPAN 
AMSC Co., Ltd. . . . . . . . . .. 81-422-54-5800 
Fuji Electronics Co., Ltd ..... 81-3-3814-1411 
Marubun Corporation ....... 81-3-3639-8951 
Nippon Motorola Micro Elec .. 81-3-3280-7300 
OMRON Corporation ....... 81-3-3779-9053 
Tokyo Electron Ltd. . . . . .. 81-3-5561-7254 

KOREA 
Jung Kwang Sa .............. (82)2278-5333 
Lite--On Korea Ltd. . . . . .... (82)2858-3853 
Nasca Co. Ltd. . .... (82)23772-5800 

LATVIA 
Avnet..... .. ..... (371) 8821118 

LITHUANIA 
Macro Group ................. (370) 7751487 

NETHERLANDS 
HOLLAND 
EBV Elektronik 
Spoerle Electronic . 
SEVRodelco B.V. 

NEW ZEALAND 

(31) 3465 623 53 
. (31) 4054 5430 
(31) 7657 227 00 

AVNET VSI (NZ) Ltd ......... (64)9 636-7801 
NORWAY 

ArrowTahonic A/S ............ (47)2237 8440 
Avnet Nortec A/S Norway ...... (47)6684 6210 
EBV Elektronik . . . . . .... (47)2267 1780 

PHILIPPINES 
Alexan Commercial 

POLAND 
. " (63) 2241-9493 

EBV Elektronik ............. (48) 713 422944 
Macro Group ................ (48) 22 224337 
SEVElbatex ................ (48) 22 6254877 
Spoerle Electronic ........... (48) 22 6060447 

PORTUGAL 
Amitron Arrow ............... (35) 114714806 

ROMANIA 
Macro Group ................. (401) 6343129 

RUSSIA 
Macro Group ............... (781) 25311476 

SCOTLAND 
EBV Elektronik ............ (44) 161 4993434 

SINGAPORE 
Future Electronics ............. (65) 479-1300 
Strong Pte. Ltd ............... (65) 276-3996 
Uraco Technologies Pte Ltd ..... (65) 545-7811 

SLOVAKIA 
Macro Group ................. (42) 89634181 

SLOVENIA 
EBV Elektronik ............ (386) 611 330216 
SEVElbetex ............... (386) 611 597113 

SPAIN 
Amitron Arrow .............. (34) 1 304 30 40 
EBV Elektronik ............. (34) 1 804 32 56 
SEVSelco SA .............. (34) 1 637 10 11 

SWEDEN 
Arrow-Th:s .................. (46) 8362970 
AvnetNortec AB ............ (46) 86291400 
EBV Elektronik .............. (46) 405 92100 

SWITZERLAND 
EBV Elektronik .............. (41) 1 7456161 
SEl/Elbetex AG ............. (41) 56 4375111 
Spoerle Electronic ............ (41) 1 8746262 

$.AFRICA 
Advanced .................. (27) 11 4442333 
ReuthecComponents ....... (27) 11 8233357 

THAILAND 
Shapiphatltd ... (66)2221-0432or2221-5384 

TAIWAN 
Avnet-Mercuries Co., Ltd ... (886)2 516-7303 
Solomon Technology Corp. . . (886)2 7~989 
Strong Electronics Co. Ltd. . . (886)2 917-9917 

TURKEY 
EBV Elektronik .. .. . .. . (90) 2164 631352 

UNITED KINGDOM 
Arrow Electronics (UK) Ltd. (44) 1 234 270027 
AvneVAccess ............. (44) 1 462 488SOO 
EBV Elektronik ........... (44) 1 628 783688 
Future Electronics Ltd. . . . . . (44) 1 753 763000 
Macro Group .............. (44) 1 628 60600 
Newark .................. (44) 1 420 543333 

For changes lo this information contact Technical Publications at FAX (602) 244-6560 



6/1/97 

MOTOROLA WORLDWIDE SALES OFFICES 
UNITED STATES 

ALABAMA 
Huntsville . • • • • . • • • . • • . . • . • • . (205)464-a!OO 

ALASKA .................... (800)63!H!291 
ARIZONA 

Phoenix • • • • • • • • . • • • . . . . • • • . (602)30lH!056 
CALIFORNIA 

Calabssas ••.•..•.•.•..••... (818)871Hl800 
Irvine ••••••••..•••.••••..••• (714)753-7360 
Los Angeles ..••...•••..•••.. (818)871Hl800 
San Diego •••..•.•.•..•...•. (619)541-2163 
SUnnyvale •.••.•..•••..•...• (408)749--0510 

COLORADO 
Denver ••.•.•..•......•..... (303)337-3434 

CONNECTICUT 
Wslllnglord • • • • . . • • . . • . . • . . • . (203)949-4100 

FLORIDA 
Clserwater .................. (813)524-41n 
Maitland •••..••...•••..•.... (407)828-,1!636 
l'Ol1fll10 llllllNR. l..ulenllle ..... (954)351-8140 

GEORGIA 
Atlanla .•••••.••....•.•....• (n0)729-7100 

IDAHO 
Boise ..•.•.••.•.•....•...... (208)323-9413 

ILLINOIS 
Chicago/Schaumbixg .....•..• (847)413-2500 

IN DIANA 
Indianapolis •....•....•..••.• (317)57Hl400 
Kokomo ••••••...••.••.....• (317)455-5100 

IOWA 
Cedar Rapids . . • • • . • • • • . . . • • • (319)376-0383 

KANSAS 
Kansas City/Mission •..•.....• (913)451-8555 

MARYLAND 
Columbia ••..••.•.•..•..•.•. (410)381-1570 

MASSACHUSETTS 
Ma~borough ..•..•.••••.....• (508)357~7 
Woburn •.•••.•.••••..••.•..• (617)9~700 

MICHIGAN 
Detroit ••.•.•.•..•.•......... (810)347-MOO 

MINNESOTA 
Minnetonka .••...••......... (612)932-1500 

MISSOURI 
St Louis .•...•.............. (314)275-7380 

NEW JERSEY 
Fairfield .•.•.••.•.•.•..•..... (201)808-2400 

NEW YORK 
Fairport • • . • • • . . • . • . • . . . . . . . . (716)425-4000 
Fishkill •..•..••..•...•.•...•. (914)896--0511 
Hauppauge ••.••••.•........ (516)361-7000 

NORTH CAROLINA 
Raleigh •...•....•.•....••... (919)870-4355 

OHIO 
Cleveland • • • • . • . . • . • . . . . . • . . (216)349-31 oo 
Columbus/Worthington .•..••.. (614)431-2 
Dayton • • . . . • • • . • . • . . . . . • . . . (937)438-6800 

OKLAHOMA 
Tulsa •••.•.••...•••..••...•• (918)251-3414 
or •••.•.••...•.•.•....•...•. (918)258--0933 

OREGON 
PorUand ••••••••••.•......•. (503)841--0681 

PENNSYLVANIA 
Colmar ••••.••••......••.•.. (215)997-1020 
Philadelphia/Horsham •..•..•• (215)957-4100 

TENNESSEE 
Knoxville • • . . • • • • . . • • . • . . • • • • ( 423)584-4841 

TEXAS 
Austin •••••••.•••••..••.•••. (512)502-2100 
Houston • • . . . • . . . . . • . . . . • • • . (713)25Hl006 
Plano ••..••••..••••..••.•••• (972)518-5100 

VIRGINIA 
Richmond ..•••••••.•....••.• (804)285-2100 

WASHINGTON 
Bellevue •.•..••..•......•... (206)454-4160 
Seattle (IOll free) . . • • . . . • . . . • . (206)622-9960 

WISCONSIN 
Milwaukee/Brookfield ...•...•. (414)792-0122 

Field Applications Engineering Available 
Through All Sales Offices 

CANADA 
BRITISH COLUMBIA 

Vancouver ••.••.••.......... (604)608-8502 
ONTARIO 

Ottawa ••...••...•..••••...• (613)226-3491 
Toronto .•..•..•.••..•......• (416)497-a181 

QUEBEC 
Montreal •...••....•.......•. (514)333-3300 

INTERNATIONAL 
AUSTRALIA 

Melbourne .••..•.••.•...•.. (61-3)98870711 
Sydney •..•.•.•.•.•...••... (61-2)99661071 

BRAZIL 
Sao Paulo ...•..•..••••.... 55(11)815-4200 

CHINA 
Beijing •••.•••.•...•.•..•.. 86--10-68437222 
Guangzhou . . . • • • . . • • . . • . • 86-20-a7537888 
Shanghai .......•••.•.••.. 86-21-a3747668 
Toar;in . • • • . . • • • . • . . • . . . . . . 86-22--25325072 

DENMARK 
Copenhagen ......•..•....... (45) 43488393 

FINLAND 
Helsinki ..................... 358 9 6824 400 
Direct Sales Lines ..•.......• 358 9 6824 4044 
•.........•................ 358 9 6824 4045 

FRANCE 
Paris .•...•.....•...........• 33134 635900 

GERMANY 
Langenhagen/Hanover •.....• 49(511)786880 
Munich .•....••.....•.•.•••• 498992103-0 
Nuremberg . • • . . . . • • . . . . . . . . 49 911 96-3190 
Sindelfingen •.•..•..•.•...... 49 7031 79 71 O 
Wiesbaden . • . • • . . • . . • . . . . . . • 49 611 973050 

HONGKONG 
Kwal Fong •..•.••.....•..• 852-2-61CHl888 
Tai Po . • . . • • . • . . • . . • . . • . • . 852-lHl66-a333 

INDIA 
Bangalore •••••••..•..••...• 91-80-5598615 

IS RAEL 
Herzlia .......•..•...•....• 97~522333 

ITALY 
Milan . . • . • • . . • . • . . . . . . . . . . • . • . • 39(2)82201 

JAPAN 
Kyusyu .••.•.••.•..•••..•. 81-92-725-7583 
Golanda .••.•.••...•••.•.• 81-3-5487-a311 
Nagoya . . • • • . • • • • • . • • • . . • . 81-62-232-3500 
Osaka ••.••••..••••••.••.•. 81-6-005-1801 
Sendai ••••.••..••.•..••.• 81-22-268-4333 
Takamatsu • . • • . • . • . • • . . . . • 81-a78-37-9972 
Tokyo •..••.••••.•.•••••.• 81-3-3440-3311 

KOREA 
Pusan •••••.•.••....••..••• 82(51)4635--035 
Seoul •••••••••.•.•••..••••.• 82(2)554-5118 

MALAYSIA 
Penang •.••.••...•.••.••.•.. 60(4)228-2514 

MEXICO 
Mexico City . • • . . . • . • . . • • . • . • 52(5)282-0230 
Guadalajara ••..••.•••....... 52(36)21-aen 
Zapopan Jalisco • • . • • . • . . • . • . 52(36)78-0750 
Marketing •••••.••••••..•.•.. 52(36)21-2023 
Customer Service ..•..•..•.. 52(36)669-9160 

NETHERLANDS 
Best. •••••••..•••.•.••..•.. (31)499361211 

PHILIPPINES 
Manila . • • . • • . . . . . . . . . . . . . . . (63)2 822-0625 

PUERTO RICO 
Rio Piedras . . . • • . . . . . . . . . . . . (787)282-2300 

SCOTLAND 
East Kilbride ..•....•.•..•.. (44)1355565447 

SINGAPORE .................. (65)4818188 
SPAIN 

Madrid .•••.•..••.••.••..•.•. 34(1)457-a204 
or ••••••.••••••..•••..••••.• 34(1)457-a254 

SWEDEN 
Solna . . . • . • • . . . • . . . . . . . . . . . . 46(8)734-aBOO 

SWITZERLAND 
Geneva ••.•..•.•..•.....•.. 41(22)7991111 
Zurich .•.••.•.•..•.•..•..•.• 41(1)730-4074 

TAIWAN 
Taipei ••••••••..•..•....... 886(2)717-7089 

THAILAND 
Bangkok •••••.••••.•....•... 66(2)254-4910 

UNITED KINGDOM 
Aylesbury ••••.•..•••..•••. 44 1 (296)395252 

NORTH AMERICA 
FULL LINE REPRESENTATIVES 

CALIFORNIA, Loomis 
Galena Technology Group . . . . . (916)652--0268 

INDIANA, lndlanapolls 
Bailey"s Electronics ........... (317)848-9958 

NEVADA Reno 
Galena Tech. Group ..••....•. (702)746--0642 

NEW MEXICO, Albuquerque 
S&S Technologies, Inc. .••.... (505)414-1100 

UTAH, Salt Lake City 
Ulah Comp. Sales, Inc ..•..•.• (801)572-4010 

WASHINGTON, Spokane 
Doug Kenley .•••..••.•..•.•. (509)924-2322 

NORTH AMERICA 
HYBRID/MCM COMPONENT SUPPLIERS 

Chip Supply ••••••...••••••.• (407)298-7100 
Elmo Semiconductor •.••.•••• (818)768-7400 
Minco Technology Labs Inc. . • . (512)834-2022 
Semi Dice Inc •••••••••••.•.•. (310)594-4631 

For changes to this Information contact Tachnlcal Publlcatlons at FAX (602) 244-6560 



Overview 

Programming Model 

Instruction and Data Cache Operation 

Exceptions 

Memory Management Unit -
Instruction Timing -

Signals -
Bus Interface Operation -

Secondary Cache Interface -
Performance Monitor -
Power Management -

Index -



- Overview 

- Programming Model 

- Instruction and Data Cache Operation 

- Exceptions 

- Memory Management Unit 

- Instruction Timing 

- Signals 

Bus Interface Operation 

- Secondary Cache Interface 

Performance Monitor 

- Power Management 

- Index 

1ATX35554-1 Printed in USA 7/97 BANTA CO. MOTO# 124 5,000 LITRISC 



Attention! 
This book is a companion to the PowerPC Microprocessor Family: The Programming 
Environments, referred to as The Programming Environments Manual. Note that the 
companion Programming Environments Manual exists in two versions. See the Preface for 
a description of the following two versions: 

PowerPC Microprocessor Family: The Programming Environments, Rev 1 
Order#: MPCFPE/AD 

PowerPC Microprocessor Family: The Programming Environments for 32-Bit 
Microprocessors, Rev I 
Order#: MPCFPE32B/AD 

Call the Motorola LDC at 1-800-441-2447 (website: http://ldc.nmd.com) or contact your 
local sales office to obtain copies. 



iTechnical Inf 
Motorola Inc. 

. . 
Sf?S Customer Su P-Ort Center; 

Tel. (800) 521-627<i 
Document Comments: 
FAX (512) 891-2638, 
Attn : RISC Application 
World Wide Web Addr 
http://www.motorola.com/P.owerP.C/ 

.. -


