
~ National
~ Semiconductor

400093 Rev. 1

MICROPROCESSOR

DATABOOK

• Series 32000
• NSC800

1988 Edition

Series 32000 Overview

CPU-Central Processing Units

Slave Processors

Peripherals

Board Level Family

Development Tools

Software Support

Application Notes

NSC800 Family

Physical Dimensions! Appendices

iii

III • • II
II
II
II
II
II
III

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable™ E-Z-L1NKTM MSTTM Shelf Chek™
AnadigTM FACTTM Naked-8TM SPIRETM
ANS-R-TRANTM FASTTM National® STARTM
APPSTM 5-Star Service TM NAX800™ StarlinkTM
Auto-Chem Deflasher™ GAL® Nitride PIUS™ STARPLEXTM
BCPTM GENIXTM Nitride Plus Oxide™ STARPLEX IITM
BI-FETTM GNXTM NMLTM SuperChipTM
BI-FET IITM HEX 3000TM NOBUSTM SuperScript™
BI-L1NETM HPCTM NSC800™ SYS32TM
BIPLANTM ICMTM NSX-16TM TapePak®
BLCTM INFOCHEXTM NS-XC-16TM TDSTM
BLXTM Integral ISETM NURAMTM TeleGate™
Brite-Lite TM IntelisplayTM OXISSTM The National Anthem®
BTLTM ISETM p2CMOSTM Time ChekTM
CheckTrackTM ISEI06™ Perfect WatchTM TINATM
CIMTM ISE/08TM Pharma....-ChekTM TLCTM
CIMBUSTM ISEI16™ PLANTM Trapezoidal™
Clock....-ChekTM ISE32™ PMPTM TRI-CODETM
COM BOTM KeyScan™ Polycraft™ TRI-POLYTM
COMBO ITM LMCMOSTM POSitalker™ TRI-SAFETM
COMBO IITM M2CMOSTM Power & Control™ TRI-STATE®
COPSTM microcontrollers Macrobus™ QUAD3000TM TURBOTRANSCEIVERTM
Datachecker® MacrocomponentTM QUIKLOOKTM VIPTM
DENSPAKTM Meat....-ChekTM RATTM VR32TM
DIBTM Microbus™ data bus RTX16TM WATCHDOGTM
Digitalker® MICRO-DACTM SABRTM XMOSTM
DISCERNTM /Jotalker™ Script....-Chek™ XPUTM
DISTILLTM Microtalker™ SCXTM Z STARTM
DNR® MICROWIRETM SERIES/800TM 883B/RETSTM
DPVMTM MICROWIRE/PLUSTM Series 3000™ 883S/RETSTM
ELSTARTM MOLETM Series 32000®

Postscript™ is a trademark of Adobe Systems Inc.
CCS-Page™ is trademark of Control-C Software Inc.
Laserjet™ and PCLTM are trademarks of Hewlett Packard
VERDIX and VADS are trademarks of the VERDIX Corporation
UNIX® and DWB are registered trademarks of AT&T.
IBM® is a registered trademark and IBM-PC, XT and ATTM are trademarks of International Business Machines Corporation
VisiCalc is a trademark of Visi Corporation
VAXTM, VMSTM, DECTM, PDP-11 TM, RSX-11TM are trademarks of Digital Equipment Corporation
CP/MTM is a trademark of Digital Research Corporation
Z80® is a registered 'trademark of Zilog Corporation
MULTIBUS® is a registered trademark of Intel Corporation
Model 19TM is a trademark of DATA I/O Corporation
VRTX®, 10X®, FMX® are registered trademarks of Hunter & Ready Corporation
TRACERTM is a trademark of Hunter & Ready Corporation
PAL® and PALASMTM are trademarks of and are used under license from Monolithic Memories, Inc.
OpUS5™ is a trademark of Opus Systems

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORA-
TION. As used herein:

- 1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be reason-
or (b) support or sustain life, and whose failure to per- ably expected to cause the failure of the life support de-
form, when properly used in accordance with instructions vice or system, or to affect its safety or effectiveness.
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

iv

~NatiOnal
Semiconductor

Product Status Definitions

Definition of Terms
Data Sheet Identification Product Status Definition

Advance Information Formative or This data sheet contains the design specifications for product
In Design development. Specifications may change in any manner without notice.

Preliminary First This data sheet contains preliminary data, and supplementary data will
Production be published at a later date. National Semiconductor Corporation

reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product.

No Full This data sheet contains final specifications. National Semiconductor

Identification Production Corporation reserves the right to make changes at any time without

Noted notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

v

'"tJ
(;
Co
c
n -en -I» -C
C/l

C
(I) -s·
;:;
o·
::l
C/l

Table of Contents
Alphanumeric Index .. .

Section 1 Series 32000 Overview
Introduction
Key Features of Series 32000
Series 32000 Component Descriptions
Hardware Chart
Systems and Software Chart .. .
Support Devices
Military Aerospace Program
Series 32000 Programs and Services .. .

Section 2 CPU-Central Processing Units
NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessors .. .
NS32332-10, NS32332-15 32-Bit Advanced Microprocessor
NS32C032-10, NS32C032-15 High-Performance Microprocessors
NS32032-10 High-Performance Microprocessor
NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processor
NS32C016-10, NS32C016-15 High-Performance Microprocessors
NS32016-10 High-Performance Microprocessor
NS32008-10 High-Performance 8-Bit Microprocessor

Section 3 Slave Processors
NS32382-10, NS32382-15 Memory Management Units (MMU)
NS32082-10 Memory Management Unit (MMU)
NS32381-15, NS32381-20 Floating-Point Units
NS32081-10, NS32081-15 Floating-Point Units
NS32580-20, NS32580-25, NS32580-30 Floating-Point Controllers

Section 4 Peripherals
NS32C201-10, NS32C201-15 Timing Control Units
NS32202-10 Interrupt Control Unit
NS32203-10 Direct Memory Access Controller (DMAC)

Section 5 Board Level Products
VME532 High Performance 32-Bit CPU VME Board with Cache, Memory Management

and Floating Point
DB332-PLUS Development Board
DB32000 Development Board
DB32016 Development Board

Section 6 Development Systems and Tools
SYS32/30 PC-Add-In Development Package
SYS32/20 PC Add-In Development Package
ISE32 NS32032 In-System Emulator
SPLICE Development Tool

Section 7 Software Support
Series 32000 GENIX Native and Cross-Support (GNX) Language Tools (Release 2) .. .
Series 32000 Ada Cross-Development System for SYS32/20 Host
Series 32000 Ada Cross-Development System for VAXIVMS Host
GENIX V.3 Operating System
Series 32000 Real-Time Software Components VRTX, lOX, FMX and TRACER
Series 32000 EXEC ROMabie Real-Time Multitasking Executive

Section 8 Application Notes
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone

viii

1-3
1-4
1-5
1-6
1-7
1-8
1-9

1-12

2-3
2-94

2-168
2-233
2-298
2-299
2-363
2-427

3-3
3-42
3-81

3-111
3-128

4-3
4-25
4-50

5-3
5-6

5-10
5-15

6-3
6-9

6-12
6-21

7-3
7-7

7-11
7-16
7-19
7-39

Configurations 8-3

vi

Table of Contents (Continued)

Section 8 Application Notes (Continued)

AB-27 Use of the NS32332 with the NS32082 and the NS32201 . 8-4
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral. 8-6
AN-404 10 MHz, No Wait States NS32016 System. 8-14
AN-405 Using Dynamic RAM with Series 32000 CPUs . 8-25
AN-406 Interfacing the Series 32000 CPUs to the MUL TIBUS 8-32
AN-464 Effects of NS32082 Memory Management Unit on Processor Through Put. . . . 8-37
AN-513 Interfacing Memory to the NS32532 8-41
AN-524 Introduction to Bresenham's Line Algorithm Using the SBIT Instruction; Series

32000 Note 5 .. 8-67
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2 8-77
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3 8-80
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note 4 8-84
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6 8-93
AN-530 Bit Mirror Routine; Series 32000 Graphics Note 7 . 8-99

Section 9 NSC800
NSC800 High-Performance Low-Power CMOS Microprocessor. 9-3
NSC810A RAM-I/O-Timer... 9-76
NSC831 Parallel 1/0 9-97
NSC888 NSC800 Evaluation Board.. 9-111
Comparison Study NSC800 vs. 8085/80C85/Z80/Z80 CMOS.. 9-115
Software Comparison NSC800 vs. 8085, Z80 9-118

Section 10 Physical Dimensionsl Appendices
Glossary of Terms. 10-3
Physical Dimensions. 10-10
Bookshelf
Distributors

vii

Alpha-Numeric Index
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone Configurations 8-3
AB-27 Use of the NS32332 with the NS32082 and the NS32201 8-4
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral 8-6
AN-404 10 MHz, No Wait States NS32016 System .. 8-14
AN-405 Using Dynamic RAM with Series 32000 CPUs ... 8-25
AN-406 Interfacing the Series 32000 CPUs to the MUL TIBUS 8-32
AN-464 Effects of NS32082 Memory Management Unit on Processor Through Put 8-37
AN-513 Interfacing Memory to the NS32532 ... 8-41
AN-524 Introduction to Bresenham's Line Algorithm Using the SBIT Instruction;

Series 32000 Note 5 .. 8-67
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2 8-77
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3 8-80
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note 4 8-84
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6 8-93
AN-530 Bit Mirror Routine; Series 32000 Graphics Note 7 8-99
Comparison Study NSC800 vs. 8085/80C85/Z80/Z80 CMOS 9-115
DB332-PLUS Development Board ... 5-6
DB32000 Development Board .. 5-10
DB32016 Development Board .. 5-15
GENIX V.3 Operating System .. 7-16
ISE32 NS32032 In-System Emulator .. 6-12
NS32C016-10 High-Performance Microprocessor ... 2-299
NS32C016-15 High-Performance Microprocessor ... 2-299
NS32C032-10 High-Performance Microprocessor ... 2-168
NS32C032-15 High-Performance Microprocessor ... 2-168
NS32C201-10 Timing Control Unit ... 4-3
NS32C201-15 Timing Control Unit ... 4-3
NS32CG16-10 High-Performance Printer/Display Processor 2-298
NS32CG16-15 High-Performance Printer/Display Processor 2-298
NS32008-10 High-Performance 8-Bit Microprocessor .. 2-427
NS32016-10 High-Performance Microprocessor ... 2-363
NS32032-10 High-Performance Microprocessor ... 2-233
NS32081-10 Floating-Point Unit ... 3-111
NS32081-15 Floating-Point Unit ... 3-111
NS32082-10 Memory Management Unit (MMU) .. 3-42
NS32202-10 Interrupt Control Unit .. 4-25
NS32203-1 0 Direct Memory Access Controller (DMAC) .. 4-50
NS32332-10 32-Bit Advanced Microprocessor ... 2-94
NS32332-15 32-Bit Advanced Microprocessor ... 2-94
NS32381-15 Floating-Point Unit .. 3-81
NS32381-20 Floating-Point Unit .. 3-81
NS32382-10 Memory Management Unit (MMU) ... 3-3
NS32382-15 Memory Management Unit (MMU) ... 3-3
NS32532-20 High-Performance 32-Bit Microprocessor ... 2-3
NS32532-25 High-Performance 32-Bit Microprocessor ... 2-3
NS32532-30 High-Performance 32-Bit Microprocessor ... 2-3
NS32580-20 Floating-Point Controller .. 3-128
NS32580-25 Floating-Point Controller .. 3-128
NS32580-30 Floating-Point Controller .. 3-128
NSC800 High-Performance Low-Power CMOS Microprocessor 9-3
NSC810A RAM-IIO-Timer ... 9-76

viii

Alpha-Numeric Index(continUed)

NSC831 Parallel 1/0 .. 9-97
NSC888 NSC800 Evaluation Board .. 9-111
Series 32000 Ada Cross-Development System for SYS32/20 Host 7-7
Series 32000 Ada Cross-Development System for VAXIVMS Host 7-11
Series 32000 EXEC ROMabie Real-Time Multitasking Executive 7-39
Series 32000 GENIX Native and Cross-Support (GNX) Language Tools (Release 2) 7-3
Series 32000 Real-Time Software Components VRTX, lOX, FMX and TRACER 7-19
Software Comparison NSC800 vs. 8085, Z80 ... 9-118
SPLICE Development Tool .. 6-21
SYS32/20 PC Add-In Development Package .. 6-9
SYS32/30 PC-Add-In Development Package .. 6-3
VME532 High Performance 32-Bit CPU VME Board with Cache, Memory Management and

Floating Point ... 5-3

ix

Section 1
Series 32000 Overview

•

Section 1 Contents
Introduction. 1-3
Key Features of Series 32000 . 1-4
Series 32000 Component Descriptions. 1-5
Hardware Chart . 1-6
Systems and Software Chart. 1-7
Support Devices ... 1-8
Military Aerospace Program. 1-9
Series 32000 Programs and Services ... 1-12

1-2

Introduction
Series 32000 offers the most complete solution to your 32-bit micro­
processor needs via CPUs, slave processors, system peripherals,
evaluation/ development tools and software.

We at National Semiconductor firmly believe that it takes a total family
of microprocessors to effectively meet the needs of a system design­
er.

This Series 32000 Databook presents technical descriptions of Series
320008-, 16- and 32-bit microprocessors, slave processors, peripher­
als, software and development tools. It is designed to be updated
frequently so that our customers can have the latest technical infor­
mation on the Series 32000.

Series 32000 leads the way in state-of-the-art microprocessor de­
signs because of its advanced architecture, which includes:

• 32-Bit Architecture

• Demand Paged Virtual Memory

• Fast Floating-Point Capability

• High-Level Language Support

• Symmetrical Architecture

When we at National Semiconductor began the design of the Series
32000 microprocessor family, we decided to take a radical departure
from popular trends in architectural deSign that dated back more than
a decade. We chose to take the time to design it properly.

Working from the top down, we analyzed the issues and anticipated
the computing needs of the 80's and 90's. The result is an advanced
and efficient family of microprocessor hardware and software prod­
ucts.

Clearly, software productivity has become a major issue in computer­
related product development. In microprocessor-based systems this
issue centers around the capability of the microprocessor to maximize
the utility of software relative to shorter development cycles, im­
proved software reliability and extended software life cycles.

In short, the degree to which the microprocessor can maximize soft­
ware utility directly affects the cost of a product, its reliability, and time
to market. It also affects future software modification for product en­
hancement or rapid advances in hardware technology.

Our approach has been to define an architecture addressing these
software issues most effectively. Series 32000 combines 32-bit per­
formance with efficient management of large address space. It facili­
tates high-level language program development and efficient instruc­
tion execution. Floating-point is integrated into the architecture.

This combination gives the user large system computing power at two
orders of magnitude less cost.

But we didn't stop there. Advanced architecture isn't enough. Our top­
down approach includes the hardware, software, and development
support products necessary for your design. The evaluation board, in­
system emulator, software development tools, including a VAX-11
cross-software package, and third party software are also available
now for your evaluation and development.

The Series 32000 is a solid foundation from which National Semicon­
ductor can build solutions for your future designs while satisfying your
needs today.

For further information please contact your local sales office.

1-3

•

~National
~ Semiconductor

Key Features of Series 32000®

Some of the features that set the Series 32000 family apart
as the best choice for 32-bit designs are as follows:

FAMILY OF MICROPROCESSOR CHIP SETS

Series 32000 is more than just a single chip set, it is a family
of chip sets. By mixing and matching Series 32000 CPUs
with compatible slave processors and support chips, a sys­
tem designer has an unprecedented degree of flexibility in
matching price/performance to the end product.

CLEANEST 32-BIT SUPER MINI COMPUTER
ARCHITECTURE

Series 32000 was designed around a 32-bit architecture
from the beginning. It has a fully symmetrical instruction set
so that all addressing modes and all data types can be oper­
ated on by all instructions. This makes it easy to learn the
architecture, easy to program in assembly language, and
easy to write code-efficient, high-level language compilers.

DEMAND-PAGED VIRTUAL MEMORY MANAGEMENT

Series 32000 provides hardware support for Demand-Paged
Virtual Memory Management. This allows use of low-cost
disk storage to increase the apparent size of main memory,
and is an efficient method of managing very large address
spaces. It is also the same popular memory management
method used by DEC and IBM in their minicomputers and
mainframes.

APPLICATION·SPECIFIC SLAVE PROCESSORS

Series 32000 architecture allows users to deSign their own
application-specific slave processors to interface with the
existing chip set. These processors can be used to increase
the overall system performance by accelerating customized
CPU instructions that would otherwise be implemented in
software. At the same time, software compatibility is main­
tained, i.e., it is always possible to substitute lower-cost soft­
ware modules in place of the slave processor.

1-4

FLOATING-POINT SUPPORT

The Series 32000 offers a complete set of floating-point
solutions. This includes the NS32081 Floating-Point Unit,
the NS32381 Floating-Point Unit and the NS32580 Floating­
Point Controller. The NS32081 provides high-speed arith­
metic computation with high preCision and accuracy at low
cost. The NS32381 provides low power consumption and
even greater performance than the NS32081 while main­
taining high-precision and accuracy.

The NS32580 is a floating-point controller that provides a
direct interface between the Weitek WTL 3164 Floating­
Point Data Path and the NS32532 CPU. This two chip com­
bination, NS32580/WTL3164, provides optimum perform­
ance for speed critical floating-point applications.

OPERATING SYSTEM SUPPORT

Series 32000 features such as hardware support for De­
mand-Paged Virtual memory management, user software
protection and modular programming make it much easier
to implement powerful, reliable and efficient operating sys­
tems. These features along with its symmetrical architecture
and powerful instruction set make the Series 32000 the
most efficient and highest performance UNIX engine.

HIGH· LEVEL LANGUAGE SUPPORT

Series 32000 has special features that support high-level
languages, thus improving software productivity and reduc­
ing development costs. For example, there are special in­
structions that help the compiler deal with structured data
types such as Arrays, Strings, Records, and Stacks. Also,
modular programming is supported by special hardware reg­
isters, software instructions, an external addressing mode,
and architecturally supported link tables.

~NatiOnal
Semiconductor

Series 32000® Component Descriptions

Bus Width

Device Description External Process
Internal

Address Data

CENTRAL PROCESSING UNITS (CPU's)

NS32532 High-Performance 32-Bit Microprocessor 32 32 32 M2CMOS

NS32332 32-Bit Advanced Microprocessor 32 32 32 XMOS
(NMOS)

NS32C032 High-Performance Microprocessor 32 24 32 CMOS

NS32032 High-Performance Microprocessor 32 24 32 XMOS
(NMOS)

NS32C016 High-Performance Microprocessor 32 24 16 CMOS

NS32016 High-Performance Microprocessor 32 24 16 XMOS
(NMOS)

NS32008 High Performance 8-Bit Microprocessor 32 24 8 XMOS
(NMOS)

NS32CG16 High Performance Printer IDisplay Processor 32 24 16 CMOS

SLAVE PROCESSORS

NS32382 Memory Management Unit 32 32 32 XMOS
(NMOS)

NS32082 Memory Management Unit 32 24 16 XMOS
(NMOS)

NS32081 Floating-Point Unit 64 - 16 XMOS

NS32381 Floating-Point Unit 64 - 16 CMOS

NS32580 Floating-Point Controller 64 - 16or32 CMOS

PERIPHERALS

NS32C201 CMOS Timing Control Unit - - - CMOS

NS32202 Interrupt Control Unit 32 - 16 XMOS
(NMOS)

NS32203 Direct Memory Access Controller - - 16 XMOS
(NMOS)

1-5

Package
Type

175-pin PGA

84-pin PGA

68-pin LCC
Leadless

Chip Carrier

68-pin LCC
Leadless

Chip Carrier

48-pin DIP
Dual-In-Line

Package

48-pin DIP
Dual-In-Line

Package

48-pin DIP
Dual-In-Line

Package

68-pinPCC

PGA

48-pin DIP
Package

24-pin DIP
Dual-In-Line

Package

68-pin PGA

172-pin PGA

24-pin DIP
Dual-In-Line

Package

40-pin DIP
Dual-In-Line

Package

48-pin DIP
Dual-In-Line

Package

en
(I)
::lI,
(I)
UI
Co)
N o o
o
o o
3

't:J o
::lI
(I)
::lI -C
(I)
UI
n ..,.
-6' -0'
::lI
UI

•

~National
~ Semiconductor

Hardware Chart

PROCESSORS

NS32C032
CMOS NS32032

NS32C016
CMOS NS32016

SLAVE
PROCESSORS

NS32081
Flce.tIng Point Unft

NS32580 with
Wll3164 Floating Point

Controller

CUSTOM

1-6

PERIPHERALS

NSI6450
UART with nrc

TL/XX/OOB4-1

,--, 0

~National
~ Semiconductor

Systems and Software Chart

BOARD LEVEL
PRODUCTS SOFlWARE

COI.lPILERS FOR
C, PASCAL, I.lODULA-2,

FORTRAN, ADA

REAL TII.lE
OPERATING SYSTEI.lS

VRTX TM, EXEC

EI.lULATORS

1-7

HOST
DEVELOPI.lENT
ENVIRONI.lENTS

TL/XX/0083-1

~
CD
3
UI
I»
::::I
C.
o
2-
i
n;
o
:::T
I» ... -

•

-... ca
Support Devices Chart .c

0
rn SUPPORT
CI) DEVICES U os;
CI)
Q
1:
0
Do
Do
:::lI
rn DP8455

Disk Daia Synchronizer

DP8390 DP8461
LAN Interface Controller Disk Data Separator

DP8391 DP8462

Serial Network Interface Disk Daia Synchronizer
For 27 RLL Code

DP8392
COAX Transceiver Interface

DP84648
Disk Pulse Detector

DP8465
Disk Daia Separator

DP8466
Disk Daia Controller

DP8468
Pulse Detector And
Embedded Servo

BIT-MAPPED DP8470

GRAPHICS Floppy Daia Separator II:
Write Precom ensatlon

DP8472/74
Floppy Disk ComrrJIIer/

Data Se arator

TLIXXIOlll-l

1·8

~National
~ Semiconductor

Military I Aerospace Programs
from National Semiconductor

This section is intended to provide a brief overview of mili­
tary products available from National Semiconductor. For
further information, refer to our t 986 Reliability Handbook
which is expected to be available by mid t 986.

MIL-M-38510
The MIL-M-38510 Program, which is sometimes called the
JAN IC Program, is administered by the Defense Electronics
Supply Center (DESC). The purpose of this program is to
provide the military community with standardized products
that have been manufactured and screened to government­
controlled specifications in government certified facilities.
All 3851 0 manufacturers must be formally qualified and their
products listed on DESC's Qualified Products List (QPL) be­
fore devices can be marked and shipped as JAN products.

There are two processing levels specified within MIL-M-
38510: Classes Sand B. Class S is typically specified for
space flight applications, while Class B is used for aircraft
and ground systems. National is a major supplier of both
classes of devices. Screening requirements are outlined in
Table III.

Tables I and II explain the JAN device marking system.

Copies of MIL-M-38510, the QPL, and other related docu­
ments may be obtained from:

Naval Publications and Forms Center
5801 Tabor Avenue
Philadelphia, PA 19120
(212) 697-2179

DESC Specifications
DESC specifications are issued to provide standardized ver­
sions of devices which are not yet available as JAN product.
MIL-STD-883 Class B screening is coupled with tightly con­
trolled electrical specifications which have been written to
allow a manufacturer to use his standard electrical tests. A
current listing of National's DESC specification offerings can
be obtained from our franchised distributors, sales repre­
sentatives, or DESC. DESC is located in Dayton, Ohio.

1-9

MIL-STD-883
Although originally intended to establish uniform test meth­
ods and procedures, MIL-STD-883 has also become the
general specification for non-JAN military product. Revision
C of this document defines minimum requirements for a de­
vice to be marked and advertised as 883-compliant. Includ­
ed are design and construction criteria, documentation con­
trols, electrical and mechanical screening requirements,
and quality control procedures. Details can be found in par­
agraph 1.2.1 of MIL-STD-883.

National offers both 883 Class Band 883 Class S product.
The screening requirements for both classes of product are
outlined in Table III.

As with DESC specifications, a manufacturer is allowed to
use his standard electrical tests provided that all critical pa­
rameters are tested. Also, the electrical test parameters,
test conditions, test limits, and test temperatures must be
clearly documented. At National Semiconductor, this infor­
mation is available via our RETS (Reliability Electrical Test
Specification) program. The RETS document is a complete
description of the electrical tests performed and is con­
trolled by our QA department. Individual copies are available
upon request.

Some of National's older products are not completely com­
pliant with MIL-STD-883, but are still required for use in mili­
tary systems. These devices are screened to the same
stringent requirements as 883 product but are marked
"-Mil".

Military Screening Program (MSP)
National's Military Screening Program was developed to
make screened versions of advanced products such as gate
arrays and microprocessors available more quickly than is
possible for JAN and 883 devices. Through this program,
screened product is made available for prototypes and
brassboards prior to or during the JAN or 883 qualification
activities. MSP products receive the 100% screening of
Table III, but are not subjected to group C and D quality
conformance testing. Other criteria such as electrical testing
and temperature range will vary depending upon individual
device status and capability.

~
s=
-< »
CI) ... o
til
'a
I»
n
CI)

-a o
CCI
iil
3
til -o
3
z a
c)'
::J
!!!.
en
CI)

3
(;"
o
::J
a..
c
2-o ...

III

TABLE I. The MIL-M-38510 Part Marking TABLE II. JAN Package Codes

JM38!1 ~ O/XXXXXYVY 38510
Microcircuit Industry C'- Package

A = Solder Dipped Designation
Description

B=Tin Plate
C = Gold Plate A 14-pin 1/4" x 1/4" (metal) flat pack
X = Any lead finish above B 14-pin 3/16" x 1/4" flat pack is acceptable

C 14-pin 1/4" x3/4" dual-in-line Dovlce Package
(see Table III) D 14-pin 1/4" x 3/8" (ceramic) flat pack

'-- Screening Lovel E 16-pin 1/4" x 7/8" dual-in-line
S, B, or C F 16-pin 1/4" x3/8"

'--- Dovice Number on (metal or ceramic) flat pack
Slash Sheet G 8-pin TO-99 can or header

'----Slash Sheet Number H 10-pin1/4" x1/4" (metal) flat pack
For radiation hard devices I 1 O-pin TO-1 00 can or header
this slash is replaced by the
Radiation Hardness Assurance J 24-pin 1/2" x 1-1/4" dual-in-line
Designator (M, D, R, or H per K 24-pin 3/8" x 5/8" flat pack
paragraph 3.4.1.3 of MIL -M- L 24-pin 1/4" x 1-1/4" dual-in-line 38510)
MIL-M-38510 M 12-pin TO-1 01 can or header

JAN Prefix N (Note 1)

(which may be applied only to P 8-pin 1/4" X 3/8" dual-in-line
a fully conformant device per Q 40-pin 3/16" X 2-1/16" dual-in-line
paragraphs 3.6.2.1 and 3.6.7 of R 20-pin 1/4" X 1-1/16" dual-in-line MIL-M-38510)

BllK1S-l
S 20-pin 1/4" x 1/2" flat pack
T (Note 1)
U (Note 1)
V 18-pin 3/8" x 15/16" dual-in-line
W 22-pin 3/8" x 1-1/8" dual-in-line
X (Note 1)
y (Note 1)
Z (Note 1)
2 20-terminal 0.350" x 0.350" chip carrier
3 28-terminal 0.450" x 0.450" chip carrier

Note 1: These letters are assigned to packages by individual detail specifi·
cations and may be assigned to different packages in different specifica-
tions.

TABLE 111.100% Screening Requirements

Screen
ClassS ClassB

Method Reqmt Method Reqmt

1. Wafer Lot Acceptance 5007 All Lots

2. Nondestructive 2023
100%

Bond Pull

3. I nternal Visual (Note 1) 2010, Condition A 100% 2010, Condition B 100%

4. Stabilization Bake 1008, Condition C,
100%

1008, Condition C,
100%

Min, 24 Hrs. Min Min, 24 Hrs. Min

5. Temp. Cycling (Note 2) 1010, Condition C 100% 1010, Condition C 100%

6. Constant Acceleration 2001, Condition E (Min)
100%

2001, Condition E (Min)
100%

y 1 Orientation Only Y 1 Orientation Only

7. Visual Inspection (Note 3) 100% 100%

8. Particle Impact Noise 2020, Condition A
100%

Detection (PIND) (Note 4)

9. Serialization (NoteS) 100%

10. Interim (Pre-Bum-In) Per Applicable Device
100%

Per Applicable Device
Electrical Parameters Specification (Note 13) Specification (Note 6)

11. Burn-In Test 1015240 Hrs. at 125'C
100%

1015, 160 Hrs. at 125'C Min
100%

Min (Cond. F Not Allowed)

1-10

TABLE III. 100% Screening Requirements (Continued)

Screen
ClassS ClassB

Method Reqmt Method Reqmt

12. Interim (Post-Burn-In) Per Applicable Device
100%

Electrical Parameters Specification (Note 13)

13. Reverse Bias Burn-In 1015; Test Condition A, C,
(Note7) 72 Hrs. at 150'C Min 100%

(Cond. F Not Allowed)

14. Interim (Post-Burn-In) Per Applicable Device
100%

Per Applicable Device
100%

Electrical Parameters Specification (Note 13) Specification

15. PDA Calculation 5% Parametric (Note 14)
All Lots

5% Parametric (Note 14)
All Lots

3% Functional- 25'C

16. Final Electrical Test Per Applicable Device Per Applicable Device
a) Static Tests Specification Specification

1) 25'C (Subgroup 1, 100% 100%
Table I, 5005)

2) Max & Min Rated 100% 100%
Operating Temp
(Subgroups 2, 3,
Table I, 5005)

b) Dynamic Tests & 100% 100%
Switching Tests,
25'C (Subgroups 4, 9,
Table I, 5005)

c) Functional Test, 1000/0 1000/0

25'C (Subgroup 7,
Table I, 5005)

17. Seal Fine, Gross 1014 100% 1014 1000/0

(Note 8) (Note 9)

18. Radiographic (Note 10) 2012 Two Views 1000/0

19. Qualification or Quality (Note 11) (Note 11)

Conformance Inspection Samp. Samp.

Test Sample Selection

20. External Visual 2009
1000/0 1000/0

(Note 12)

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or
following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g. bond strength requirements shall apply to
each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).

Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.

Note 3: At the manufacturer's option, visual inspection for castastrophic failures may be conducted after each of the thermal/mechanical screens, after the
sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages or lids off.

Note 4: The PI NO test may be performed in any sequence after step 9 and prior to step 16. See MIL·M-38510, paragraph 4.6.3.

Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.

Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.

Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in
may be inverted.

Note 8: For Class S devices, the seal test may be performed in any sequence between step t 6 and step 19, but it shall be performed after all shearing and forming
operations on the terminals.

Nate 9: For Class B devices, the fine and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except
that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming
(e.g. lIatpacks and chip carriers) the seal screen shall be done 100% prior to those operations and a sample test (LTPO = 5) shall be performed on each
inspection lot following these operations. If the sample fails, 100% rescreening shall be required.

Note 10: The radiographic screen may be performed in any sequence after step 9.

Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005.

Nate 12: External visual shall be performed on the lot any time after step 19 and prior to shipment.

Note 13: Read and Record when post bum-in data measurements are specified.

Note 14: PDA shall apply to all static, dynamic, functional and switching measurements at either 25°C or maximum rated operating temperature.

1-11

o ,--,
CD

'~ ~ National
~ ~ Semiconductor
'1:1
c
tV
o
E Series 32000 Programs and Services e
CD

e
£L
C)
C)
C)
N
C")

~
't;
CD
U)

Technical Support Engineering
Center (TSEC)
National Semiconductors Technical Support Engineering
Center offers full aftersales service support. The Technical
Support Staff is available to answer technical questions,
and has the ability to utilize all of the resources within the
company to resolve issues or problems. Extended mainte­
nance contracts are available extending the warranty period
of the product one full year, allowing full technical support,
software and/or hardware maintenance.

HIGHLIGHTS OF THE EXTENDED MAINTENANCE
PROGRAM

1. Unlimited Technical Assistance-access to 24 hour Hot
Line and factory engineering staff'

2. Automatic Software Updates allowing customers to re­
ceive all software enhancements or bug fixes free of
charge whenever they become available for the products
covered.

3. Software Bulletin-Informative newsletter showing cur­
rent software revisions, bug listings, work arounds, and
new product information.

4. Equipment repairs-Factory repair for all products cov­
ered, including equipment on loan.

OBTAINING A MAINTENANCE CONTRACT

1. Determine which product(s) are to be placed under main­
tenance (refer to the Service Products Guide).

2. Fill out the Maintenance Contract and return to the Serv­
ice Center along with a purchase order, or call any of the
TSEC 800 numbers and a completed contract will be sent
to your attention for signature. Return the contract along
with a purchase order to us.

TOLL-FREE NUMBERS

(800) 538-1866 (OutSide of California)
(800) 672-1811 (Inside California)
(800) 223-3248 (Canada)
(408) 749-7306 (Rest of World)
49-08141-103-0 (Europe)

FACTORY REPAIRS

The Service Center provides highly trained technicians and
a complete range of Depot Services to meet your service
needs. For more information on depot services and pricing,
call one of the Service Center phone numbers listed above.

EVALUATION PROGRAM

The Series 32000 Development hardware and software
products are available for a free 30 day evaluation. For full

1-12

details and qualifications on the evaluation program, please
call one of the Service Center phone numbers listed above
or your local sales office.

The University Program
Begun as merely a concept several years ago, National
Semiconductor's University Program has now emerged as
one of the company's most successful programs. The Uni­
versity Program was originally created to establish a rela­
tionship between National and the academic community
that would foster the exchange of information and keep stu­
dents abreast of modern advancements in technology.

The University Program catalog provides a complete, up-to­
date list of all student/university services as well as pro­
gram application forms and course materials to guide in­
structors in introducing students to advanced microproces­
sors.

Because tomorrow's technology is dependent upon today's
nurturing of up-and-coming scientists and engineers, Na­
tional is committed to supporting universities, particularly in
the area of microprocessor technology. National hopes that
more universities will share in this commitment by becoming
a part of the University Program.

For more information on any of these programs, contact the
Series 32000 University Program Manager, National Semi­
conductor Corporation, P.O. Box 58090, M/S D3-667, Santa
Clara, California 95052-8090, 408-721-7295.

Microcomputer Systems Division
The Microcomputer Systems Division's goal is to become a
leading force in the microcomputer systems marketplace.

To achieve this goal, a total systems approach has been
taken on the Series 32000 program to provide the customer
with the necessary hardware and software support, evalua­
tion and development tools, training, service and technical
literature.

The focus is on upward migration paths, system integration
at all levels and the preservation of the user's software in­
vestment.

Three groups (Microprocessor, Software Products and De­
velopment Systems) offer a broad capability to solve cus­
tomer needs at various levels of performance and integra­
tion.

Section 2
CPU-Central Processing
Units

fII

Section 2 Contents
NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessors. 2-3
NS32332-10, NS32332-15 32-Bit Advanced Microprocessor . 2-94
NS32C032-10, NS32C032-15 High-Performance Microprocessors. 2-168
NS32032-10 High-Performance Microprocessor. 2-233
NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processor............... 2-298
NS32C016-10, NS32C016-15 High-Performance Microprocessors........................ 2-299
NS32016-10 High-Performance Microprocessor. .. 2-363
NS32008-10 High-Performance 8-Bit Microprocessor.. 2-427

2-2

~National PRELIMINARY

~ Semiconductor
NS32532-20/NS32532-25/NS32532-30
High-Performance 32-Bit Microprocessor

General Description Features
The NS32532 is a high-performance 32-bit microprocessor
in the Series 32000® family. It is software compatible with
the previous microprocessors in the family but with a greally
enhanced internal implementation.

III Software compatible with the Series 32000 family
II 32-bit architecture and implementation
II 4-GByte uniform addressing space
II On-chip memory management unit with 64-entry

The high-performance specifications are the result of a four­
stage instruction pipeline, on-chip instruction and data
caches, on-chip memory management unit and a signifi­
cantly increased clock frequency. In addition, the system
interface provides optimal support for applications spanning
a wide range, from low-cost, real-time controllers to highly
sophisticated, general purpose multiprocessor systems.

translation look-aside buffer
II 4-Stage instruction pipeline
II 512-Byte on-chip instruction cache
II 1024-Byte on-chip data cache
II High-performance bus

- Separate 32-bit address and data lines
- Burst mode memory accessing
- Dynamic bus sizing

II Extensive multiprocessing support

The NS32532 integrates more than 370,000 transistors fab­
ricated in a 1.25 I-'m double-metal CMOS technology. The
advanced technology and mainframe-like design of the de­
vice enable it to achieve more than 10 times the throughput
of the NS32032 in typical applications.

II Floating-point support via the NS32381 or NS32580
II 1.25 I-'m double-metal CMOS technology

In addition to generally improved performance, the
NS32532 offers much faster interrupt service and task
switching for real-time applications.

II 175-pin PGA package

Block Diagram
4-STAGE

INSTRUCTION PIPELINE

LOADER
INSTRUCTION

CACHE
(IC)

DATA
CACHE
(DC)

DATA INTERFACE

FIGURE 1

2-3

CONTROL

'--=--"\I7TT.rT7"TT:I---'\ ADDRESS

BUS
INTERFACE

UNIT
(BIU)

DATA

TL/EE/9354-1

z en w
N
U1
W
~
N
Q
.......
Z en w
N
U1
W
N

I
N
U1
Z en w
N
U1
W
N

I
W
Q

~
~
~
N
CO)

rn
z -Ln
N
~
CO)
Ln
N
CO)
tJ)
Z -o
N
~
CO)
Ln
N
CO)
tJ)
Z

Table of Contents

1.0 PRODUCT INTRODUCTION

2.0 ARCHITECTURAL DESCRIPTION

2.1 Register Set

2.1.1 General Purpose Registers

2.1.2 Address Registers

2.1.3 Processor Status Register

2.1.4 Configuration Register

2.1.5 Memory Management Registers

2.1.6 Debug Registers

2.2 Memory Organization

2.2.1 Address Mapping

2.3 Modular Software Support

2.4 Memory Management

2.4.1 Page Tables Structure

2.4.2 Virtual Address Spaces

2.4.3 Page Table Entry Formats

2.4.4 Physical Address Generation

2.4.5 Address Translation Algorithm

2.5 Instruction Set

2.5.1 General Instruction Format

2.5.2 Addressing Modes

2.5.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Instruction Execution

3.1.1 Operating States

3.1.2 Instruction Endings

3.1.2.1 Completed Instructions

3.1.2.2 Suspended Instructions

3.1.2.3 Terminated Instructions

3.1.2.4 Partially Completed Instructions

2-4

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.1.3 Instruction Pipeline

3.1.3.1 Branch Prediction

3.1.3.2 Memory Mapped lID
3.1.3.3 Serializing Operations

3.1.4 Slave Processor Instructions

3.1.4.1 Regular Slave Instruction Protocol

3.1.4.2 Pipelined Slave Instruction Protocol

3.1.4.3 Instruction Flow and Exceptions

3.1.4.4 Floating-Point Instructions

3.1.4.5 Custom Slave Instructions

3.2 Exception Processing

3.2.1 Exception Acknowledge Sequence

3.2.2 Returning from an Exception Service Procedure

3.2.3 Maskable Interrupts

3.2.3.1 Non-Vectored Mode

3.2.3.2 Vectored Mode: Non-Cascaded Case

3.2.3.3 Vectored Mode: Cascaded Case

3.2.4 Non-Maskable Interrupt

3.2.5 Traps

3.2.6 Bus Errors

3.2.7 Priority Among Exceptions

3.2.8 Exception Acknowledge Sequences:
Detailed Flow

3.2.8.1 Maskable/Non-Maskable Interrupt
Sequence

3.2.8.2 Abort/Restartable Bus Error Sequence

3.2.8.3 SLAVE/ILL/SVC/DVZlFLG/BPT lUND
Trap Sequence

3.2.8.4 Trace Trap Sequence

Table of Contents (Continued)

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.2.B.5 Integer-Overflow Trap Sequence

3.2.B.6 Debug Trap Sequence

3.2.B.7 Non-Restartable Bus Error Sequence

3.3 Debugging Support

3.3.1 Instruction Tracing

3.3.2 Debug Trap Capability

3.4 On-Chip Caches

3.4.1 Instruction Cache (IC)

3.4.2 Data Cache (DC)

3.4.3 Cache Coherence Support

3.4.4 Translation Look-aside Buffer (TLB)

3.5 System Interface

3.5.1 Power and Grounding

3.5.2 Clocking

3.5.3 Resetting

3.5.4 Bus Cycles

3.5.4.1 Bus Status

3.5.4.2 Basic Read and Write Cycles

3.5.4.3 Burst Cycles

3.5.4.4 Cycle Extension

3.5.4.5 Interlocked Bus Cycles

3.5.4.6 Interrupt Control Cycles

3.5.4.7 Slave Processor Bus Cycles

3.5.5 Bus Exceptions

3.5.6 Dynamic Bus Configuration

3.5.6.1 Instruction Fetch Sequences

3.5.6.2 Data Read Sequences

3.5.6.3 Data Write Sequences

3.5.7 Bus Access Control

2-5

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.5.B Interfacing Memory-Mapped I/O Devices

3.5.9 Interrupt and Debug Trap Requests

3.5.10 Cache Invalidation Requests

3.5.11 Internal Status

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 SWitching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signal Requirements

4.4.3 Timing Diagrams

Appendix A: Instruction Formats

B: Compatibility Issues

B.1 Restrictions on Compatibility

B.2 Architecture Extensions

B.3 Integer-Overflow Trap

B.4 Self-Modifying Code

B.5 Memory-Mapped I/O

C: Instruction Set Extensions

C.1 Processor Service Instructions

C.2 Memory Management Instructions

C.3 Instruction Definitions

z en w
N
U'I
W
N

I
N
o
........
Z en w
N
U'I
W
N

I
N
U'I
........
Z en w
N
U'I
W
~
W o

•

C) r---~

~
CO)

~
CO)

tn
Z

~ an
C'oI
CO)

tn
Z

~ an
C'oI

~
Z

List of Illustrations

CPU Block Diagram ..•................................ 1

NS32532 Internal Registers .. 2-1
Processor Status Register (PSR)•.....•...................•... 2-2

Configuration Register (CFG) ... 2-3
Page Table Base Registers (PTBn)•.......................•.. 2-4
Memory Management Control Register (MCR) .. 2-5

Memory Management Status Register (MSR)•..............•..........................•.................... 2-6

Debug Condition Register (DCR) ...•.............. 2-7
Debug Status Register (DSR) ... 2-8
NS32532 Address Mapping•................•... 2-9
NS32532 Run-Time Environment•... 2-10

Two-Level Page Tables•...•.. 2-11

Page Table Entries (PTE's) ..•....................................•.. 2-12
Virtual to Physical Address Translation .. 2-13
General Instruction Format .. 2-14
Index Byte Format ..•.. 2-15

Displacement Encodings•......•.......•... 2-16
Operating States ..•................................. 3-1

NS32532 Internal Instruction Pipeline ...•.. 3-2

Memory References for Consecutive Instructions•.........................•......................... 3·3
Memory References aiter Serialization•.•.. 3-4
Regular Slave Instruction Protocol: CPU Actions .. 3-5

ID and Operation Word ... 3-6
Slave Processor Status Word ... 3-7

Instruction Flow in Pipelined Floating·Point Mode .. 3-8
Interrupt Dispatch Table ... 3·9
Exception Acknowledge Sequence: Direct-Exception Mode Disabled ... 3-10

Exception Acknowledge Sequence: Direct·Exception Mode Enabled .. 3-11

Return From Trap (RETIn) Instruction Flow: Direct-Exception Mode Disabled .. 3·12
Return From Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabled 3-13

Exception Processing Flowchart ... 3-14
Service Sequence ... 3·15
Instruction Cache Structure ... 3·16

Data Cache Structure ... 3·17
TLB Model .. 3-18

Power and Ground Connections ... 3-19
Bus Clock Synchronization .. 3·20

Power·On Reset Requirements .. 3·21
General Reset Timing•.. 3-22

Basic Read Cycle .. 3·23

Write Cycle .. 3·24
Burst Read cycles .. 3-25
Cycle Extension of a Basic Read Cycle ... 3·26

Slave Processor Write Cycle ... 3·27

Slave Processor Read Cycle .. 3-28
Bus Retry During a Basic Read Cycle ... 3-29

Basic Interface for 32·Bit Memories•.. 3·30
Basic Interface for 16-Bit Memories .. 3-31

Hold Acknowledge: (Bus Initially Idle) ... 3·32

Typical 1/0 Device Interface ... 3-33

2-6

List of Illustrations (Continued)

NS32532 Interface Signals ... 4-1

175-Pin PGA Package ... 4-2

Timing Specification Standard (Signal Valid after Clock Edge) ... 4-3

Timing Specification Standard (Signal Valid before Clock Edge) ... 4-4

Basic Read Cycle Timing ... 4-5

Write Cycle Timing .. 4-6

Interlocked Read and Write Cycles .. 4-7

Burst Read Cycles .. 4-8

External Termination of Burst Cycles .. 4-9

Bus Error or Retry During Burst Cycles .. 4-10

Extended Retry Timing ... 4-11

HOLD Timing (Bus Initially Idle) .. 4-12

HOLD Acknowledge Timing (Bus Initially Nolldle) .. 4-13

Slave Processor Read Timing ... 4-14

Slave Processor Write Timing .. 4-15

Slave Processor Done .. 4-16

FSSR Signal Timing .. 4-17

Cache Invalidation Request ... 4-18

INT and NMI Signals Sampling ... 4-19

Debug Trap Request ... 4-20

PFS Signal Timing ... 4-21

ISF Signal Timing .. 4-22

Break Point Signal Timing ... 4-23

Clock Waveforms .. 4-24

Bus Clock Synchronization .. 4-25

Power-On Reset ... 4-26

Non-Power-On Reset ... 4-27

LPRilSPRi Instruction Formats ... C-1

CINV Instruction Format ... C-2

LMRISMR Instruction Formats ... C-3

List of Tables
Access Protection Levels .. 2-1

NS32532 Addressing Modes ... 2-2

NS32532 Instruction Set Summary .. 2-3

Floating-Poinllnstruction Protocol ... 3-1

Custom Slave Instruction Protocols .. 3-2

Summary of Exception Processing .. 3-3

Interrupt Sequences ... 3-4

Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus ... 3-5

Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus ... 3-6

Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus ... 3-7

Cacheable/Non-Cacheable Data Reads from a 32-Bit Bus ... 3-8

Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus ... 3-9

Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus .. 3-10

Data Writes to a 32-Bit Bus .. 3-11

Data Writes to a 16-Bit Bus .. 3-12

Data Writes to an 8-Bit Bus .. 3-13

LPRi/SPRi New 'Short' Field Encodings ... C-1

LMRISMR 'Short' Field Encodings .. C-2

2-7

z en
(0)
I\)
CJ1
(0)
I\)

I
I\)
Q
Z en
(0)
I\)
CJ1
(0)
I\)
I
I\)
CJ1
z en
(0)
I\)
CJ1
(0)
I\)

I
(0)
Q

fJI

C) r---~

2
C")
In
N
C")
U)
z
In
N

~
In
N
C")
U)
z

~
C")
In
N
C")
U)
z

1.0 Product Introduction
The NS32532 is an extremely sophisticated microprocessor
in the Series 32000 family with a full 32-bit architecture and
implementation optimized for high-performance applica­
tions.

By employing a number of mainframe-like features, the de­
vice can deliver 15 MIPS peaks performance with no wait
states at a frequency of 30 MHz.

The NS32532 is fully software compatible will all the other
Series 32000 CPUs. The architectural features of the Series
32000 family and particularly the NS32532 CPU, are de­
scribed briefly below.

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 ar­
chitecture incorporates powerful instructions for control op­
erations, such as array indexing and external procedure
calls, which save considerable space and time for compiled
code.

Memory-to·Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all usefull
operations. This is important for temporary operands as well
as for context switching.

Memory Management. The NS32532 on-Chip memory
management unit provides advanced operating system sup­
port functions, including dynamic address translation, virtual
memory management, and memory protection.

Address
+- 32Bits ~

PC
SPO

SP1

FP
SB

INTBASE

I MOD

Processor Status

I PSR I
Memory Management

PTBO
PTB1

IVARO
IVAR1
TEAR

MCR
MSR

Large, Uniform Addressing. The NS32532 has 32-bit ad­
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro­
vides flexible memory management without added-on ex­
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a Significant reduction in hardware and
software costs.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

• High-level language support

• Easy future growth path

• Application flexibility

2.0 Architectural Description
2.1 REGISTER SET

The NS32532 CPU has 28 internal registers grouped ac­
cording to functions as follows: 8 general purpose, 7 ad­
dress, 1 processor status, 1 configuration, 7 memory man­
agement and 4 debug. All registers are 32 bits wide except
for the module and processor status, which are each 16 bits
wide. Figure 2-1 shows the NS32532 internal registers.

General Purpose
+- 32 Bits ~

RO

R1
R2

R3
R4
R5

R6
R7

Debug

DCR

DSR
CAR

BPC

Configuration
CFG

FIGURE 2-1. NS32532 Internal Registers

2-8

2.0 Architectural Description (Continued)

2.1.1 General Purpose Registers

There are eight registers (RO-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is eight or 16 bits long, only the low part of
the register is used; the high part is not referenced or modi·
fied.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. A description of them
follows.

PC-Program Counter. The PC register is a pOinter to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

sPa, SP1-Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
pOints to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms 'SP Register' or 'SP' are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

The NS32532 also allows the SP1 register to be directly
loaded and stored using privileged forms of the LPRi and
SPRi instructions, regardless of the setting of the PSR S-bit.
When SP1 is accessed in this manner, it is referred to as
'USP Register' or Simply 'USP'.

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP-Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pOinter.

SB-Static Base. The S8 register points to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The S8
register holds the lowest address in memory occupied by
the global variables of a module.

P S

INTBASE-Interrupt Base. The INT8ASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD-Module. The MOD register holds the address of the
module descriptor of the currently executing software mod­
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo­
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa­
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used
with the AD DC and SU8C instructions to perform multi­
ple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T The T bit causes program tracing. If this bit is set to 1, a
TRC trap is executed after every instruction (Section
3.3.1).

L The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating-Point comparisons, this
bit is always cleared.

V The V-bit enables generation of a trap (OVF) when an
integer arithmetic operation overflows.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is
set to "0".

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to "0".

U If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "0" then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to

Z F V L T

FIGURE 2·2. Processor Status Register (PSR)

2-9

z
CJ)
Co)
N
U1
Co)
N .
N o
Z
CJ)
Co)
N
U1
Co)
N .
N
U1
Z
CJ)
Co)
N
U1
Co)

~
Co)
o

2.0 Architectural Description (Continued)

be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer­
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S The S bit specifies whether the SPO register or SP1
register is used as the Stack Pointer. The bit is automat­
ically cleared on interrupts and traps. It may have a
setting of 0 (use the SPO register) or 1 (use the SP1
register).

P The P bit prevents a TRC trap from occuring more than
once for an instruction (Section 3.3.1). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

If I = 1, then all interrupts will be accepted. If I = 0,
only the NMI interrupt is accepted. Trap enables are not
affected by this bit.

2.1.4 Configuration Register

The Configuration Register (CFG) is 32 bits wide, of which
nine bits are implemented. The implemented bits enable
various operating modes for the CPU, including vectoring of
interrupts, execution of slave instructions, and control of the
on-chip caches. In the NS32332 bits 4 through 7 of the CFG
register selected between the 16-bit and 32-bit slave proto­
cols and between 512-byte and 4-Kbyte page sizes. The
NS32532 supports only the 32-bit slave protocol and
4-Kbyte page size: consequently these bits are forced to 1.

When the CFG register is loaded using the LPRi instruction,
bits 13 through 31 should be set to O. Bits 4 through 7 are
ignored during loading, and are always returned as 1 's when
CFG is stored via the SPRi instruction. When the SETCFG
instruction is executed, the contents of the CFG register bits
o through 3 are loaded from the instruction's short field, bits
4 through 7 are ignored and bits 8 through 12 are forced to
O.
The format of the CFG register is shown in Figure 2-3. The
various control bits are described below.

I Interrupt vectoring. This bit controls whether maska­
ble interrupts are handled in nonvectored (I = 0) or
vectored (I = 1) mode. Refer to Section 3.2.3 for more
information.

F Floating-point instruction set. This bit indicates
whether a floating-point unit (FPU) is present to exe­
cute floating-point instructions. If this bit is 0 when the
CPU executes a floating-point instruction, a Trap
(UNO) occurs. If this bit is 1, then the CPU transfers
the instruction and any necessary operands to the
FPU using the slave-processor protocol described in
Section 3.1.4.1.

M Memory management instruction set. This bit en­
ables the execution of memory management instruc­
tions. If this bit is 0 when the CPU executes an LMR,
SMR, RDVAL, or WRVAL instruction, a Trap (UNO)
occurs. If this bit is 1, the CPU executes LMR, SMR,
RDVAL, and WRVAL instructions using the on-chip
MMU.

C Custom instruction set. This bit indicates whether a
custom slave processor is present to execute custom
instructions. If this bit is 0 when the CPU executes a
custom instruction, a Trap (UNO) occurs. If this bit is
1, the CPU transfers the instruction and any neces­
sary operands to the custom slave processor using
the slave-processor protocol described in Section
3.1.4.1.

DE Direct-Exception mode enable. This bit enables the
Direct-Exception mode for processing exceptions.
When this mode is selected, the CPU response time
to interrupts and other exceptions is significantly im­
proved. Refer to Section 3.2.1 for more information.

DC Data Cache enable. This bit enables the on-Chip Data
Cache to be accessed for data reads and writes. Re­
fer to Section 3.4.2 for more information.

LDC Lock Data Cache. This bit controls whether the con­
tents of the on-chip Data Cache are locked to fixed
memory locations (LDC = 1), or updated when a data
read is missing from the cache (LDC=O).

IC Instruction Cache enable. This bit enables the on­
chip Instruction Cache to be accessed for instruction
fetches. Refer to Section 3.4.1 for more information.

LIC Lock Instruction Cache. This bit controls whether the
contents of the on-chip Instruction Cache are locked
to fixed memory locations (LlC= 1), or updated when
an instruction fetch is misSing from the cache
(LlC=O).

PF Pipelined Floating-point execution. This bit indicates
whether the floating-point unit uses the pipelined
slave protocol. When PF is 1 the pipelined protocol is
selected. PF is ignored if the F bit is O. Refer to Sec­
tion 3.1.4.2 for more information.

01
I Reserved I PF I LlC I IC I LDC I DC I DE I 1 I 1 I 1 I I

FIGURE 2-3. Configuration Register (CFG) Bits
13 to 31 are Reserved; Bits 4 to 7 are Forced to 1.

2-10

2.0 Architectural Description (Continued)

2.1.5 Memory Management Registers

The NS32532 provides 7 registers to support memory man­
agement functions. They are accessed by means of the
LMR and SMR instructions. All of them can be read and
written except IVARO and IVARI that are write-only. A de­
scription of the memory management registers is given in
the following sections.

PTBO, PTB1-Page Table Base Pointers. The PTBn regis­
ters hold the physical addresses of the level-I page tables
used in address translation. The least significant 12 bits are
permanently zero, so that each register always points to a
4-Kbyte boundary in memory.

When either PTBO or PTBI is loaded by executing an LMR
instruction, the MMU automatically invalidates all entries in
the TLB that had been translated using the old value in the
selected PTBn register.

The format of the PTBn registers is shown in Figure 2-4.

31 12 11 °
Base Address 000000000000

FIGURE 2-4. Page Table Base Registers (PTBn)

IVARO, IVARI-invalidate Virtual Address. The Invalidate
Virtual Address registers are write-only registers. When a
virtual address is written to IVARO or IVARI using the LMR
instruction, the translation for that virtual address is purged,
if present, from the TLB. This must be done whenever a
Page Table Entry has been changed in memory, since the
TLB might otherwise contain an incorrect translation value.

Another technique for purging TLB entries is to load a PTBn
register. Turning off translation (clearing the MCR TU and/
or TS bits) does not purge any entries from the TLB.

TEAR-Translation Exception Address Register. The
TEAR register is laoded by the on-chip MMU when a trans­
lation exception occurs. It contains the 32-bit virtual address
that caused the translation exception.

TEAR is not updated if a page fault is detected while pre­
fetching an instruction that is not executed because the pre­
vious instruction caused a trap.

MCR-Memory Management Control. The MCR register
controls the operation of the MMU. Only four bits are imple­
mented. Bits 4 to 31 are reserved for future use and must be
loaded with zeroes.

When MCR is read as a 32-bit word, bits 4 to 31 are re­
turned as zeroes. The format of MCR is shown in Figure 2-5.
Details on the control bits are given below.

TU Translate User. While this bit is 1, address translation
is enabled for User-Mode memory references. While
this bit is 0, address translations is disabled for User­
Mode memory references.

TS Translate Supervisor. While this bit is 1, address trans­
lation is enabled for Supervisor Mode memory refer­
ences. While this bit is 0, address translation is dis­
abled for Supervisor-Mode memory references.

2-11

OS Dual Space. While this bitis 1, then PTB1 contains the
level-I page table base address of all addresses spec­
ified in User-Mode, and PTBO contains the level-I
page table base address of all addresses specified in
Supervisor Mode. While this bit is 0, then PTBO con­
tains the level-I page table base address of all ad­
dresses specified in both User and Supervisor Modes.

AO Access Level Override. When this bit is set to 1, User­
Mode accesses are given Supervisor Mode privilege.

Reserved

FIGURE 2-5. Memory Management
Control Register (MCR)

MSR-Memory Management Status. The MSR register
provides status information related to the occurrence of a
translation exception. Only eight bits are implemented. Bits
8 to 31 are ignored when MSR is loaded and are returned
as zeroes when it is read as a 32-bit word. MSR is only
updated by the MMU when a protection violation or page
fault is detected while translating an address for a reference
required to execute an instruction. It is not updated if a page
fault is detected during either an operand or an instruction
prefetch, if the data being prefetched is not needed due to a
change in the instruction execution sequence. The format of
MSR is shown in Figure 2-6. Details on the function of each
bit are given below.

TEX Translation Exception. This two-bit field specifies the
cause of the current address translation exception.
(Trap(ABT)). Combinations appearing in this field
are summarized below.

00 No Translation Exception

01 First Level PTE Invalid

1 0 Second Level PTE Invalid

11 Protection Violation

During address translation, if a protection violation
and an invalid PTE are detected at the same time,
the TEX field is set to indicate a protection violation.

DDT Data Direction. This bit indicates the direction of the
transfer that the CPU was attempting when the
translation exception occurred.

DDT = 0 = > Read Cycle

DDT = 1 = > Write Cycle

UST User/Supervisor. This bit indicates whether the
Translation Exception was caused by a User-Mode
or Supervisor Mode reference. If UST is 1, then the
exception was caused by a User-Mode reference;
otherwise it was caused by a Supervisor Mode refer­
ence.

z
(J)
w
~
(J1
w
~

I
~
o
........
Z
(J)
w
~
(J1
W
~
~
(J1
........
Z
(J)
w
~
(J1
w
~

I
W o

fII

2.0 Architectural Description (Continued)

1

31 'I' Reserved DDT "I
FIGURE 2-6. Memory Management Status Register (MSR)

STT CPU Status. This four bit field is set on an address
translation exception according to the following en­
codings.

1000 Sequential Instruction Fetch

1001 Non-Sequential Instruction Fetch

1010 Data Transfer

1011 Read Read-Modify-Write Operand

1100 Read for Effective Address

If a reference for an Interrupt-Acknowledge or End­
of-Interrupt bus cycle (either Master of Cascaded)
causes a Translation Exception, then the value of
the STT-field is undefined.

2.1.6 Debug Registers

The NS32532 contains 4 registers dedicated for debugging
functions.

These registers are accessed using privileged forms of the
LPRi and SPRi instructions.

OCR-Debug Condition Register. The DCR Register en·
abies detection of debug conditions. The format of the DCR
is shown in Figure 2-1; the various bits are described below.
A debug condition is enabled when the related bit is set to 1.

CBEO Compare Byte Enable 0; when set, BYTEO of an
aligned double-word is included in the address com­
parison

CBE1 Compare Byte Enable 1; when set, BYTEl of an
aligned double-word is included in the address com­
parison

CBE2 Compare Byte Enable 2; when set, BYTE2 of an
aligned double-word is included in the address com­
parison

CBE3 Compare Byte Enable 3; when set, BYTE3 of an
aligned double-word is included in the address com­
parison

VNP Compare virtual address (VNP = 1) or physical ad-
dress (VNP = 0)

CWR Address-compare enable for write references

CRO Address-compare enable for read references

CAE Address·compare enable

TR Enable Trap (DBG) when a debug condition is de­
tected

15 9

Reserved

31

Reserved

PCE PC-match enable

UO Enable debug conditions in User-Mode

SO Enable debug conditions in Supervisor Mode

DEN Enable debug conditions

The following 3 bits control testing features that can be
used during initial system debugging. These features are
unique to the NS32532 implementation of the Series 32000
architecture; as such, they may not be supported in future
implementations. For normal operation these 3 bits should
be set to O.

BF Bus interface unit FIFO disable. When this bit is 1,
all data references, including Data Cache hits, ap­
pear on the system interface.

SI Single-Instruction mode enable. This bit, when set
to 1, inhibits the overlapping of instruction's execu­
tion.

BCP Branch Condition Prediction disable. When this bit is
1, the branch prediction mechanism is disabled. See
Section 3.1.3.1.

DSR-Debug Status Register. The DSR Register indicates
debug conditions that have been detected. When the CPU
detects an enabled debug condition, it sets the correspond­
ing bit (BC, BEX, BCA) in the DSR to 1. When an address­
compare condition is detected, then the RD-bit is loaded to
indicate whether a read or write reference was performed.
Software must clear all the bits in the DSR when appropri·
ate. The format of the DSR is shown in Figure 2-8; the vari­
ous fields are described below.

RO Indicates whether the last address-compare condi­
tion was for a read (RD = 1) or write (RD = 0)
reference

BPC PC-match condition detected

BEX External condition detected

BCA Address-compare condition detected

CAR-Compare Address Register. The CAR Register
contains the address that is compared to operand reference
addresses to detect an address-compare condition. The ad·
dress must be double-word aligned; that is, the two least­
significant bits must be O. The CAR is 32 bits wide.

FIGURE 2-7. Debug Condition Register (OCR)

BPC BEX Reserved

FIGURE 2-8. Debug Status Register (DSR)

2-12

r--.z
2.0 Architectural Description (Continued)
BPC-Breakpoint Program Counter. The BPC Register
contains the address that is compared with the PC contents
to detect a PC-match condition. The BPC Register is 32 bits
wide.

2.2 MEMORY ORGANIZATION

The NS32532 implements full 32·bit virtual addresses. This
allows the CPU to access up to 4 Gbytes of virtual memory.
The memory is a uniform linear address space. Memory lo­
cations are numbered sequentially starting at zero and end­
ing at 232 -1. The number specifying a memory location is
called an address. The contents of each memory location is
a byte consisting of eight bits. Unless otherwise noted, dia­
grams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad­
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

A

Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

A+1 A

MSB LSB

Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is

Address (Hex)

00000000

FFOOOOOO

FF800000

FFFFFEOO

FFFFFFFF

stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double·word may start at any
address.

A+3
24

1

23
A+2

16
1

15
A+1 A

MSB LSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.2.1 Address Mapping

Figure 2-9 shows the NS32532 address mapping.

The NS32532 supports the use of memory-mapped periph­
eral devices and coprocessors. Such memory-mapped de­
vices can be located at arbitrary locations in the address
space except for the upper 8 Mbytes of virtual memory (ad­
dresses between FF800000 (hex) and FFFFFFFF (hex), in­
clusive), which are reserved by National Semiconductor
Corporation. Nevertheless, it is recommended that high-per­
formance peripheral devices and coprocessors be located
in a specific 8 Mbyte region of virtual memory (addresses
between FFOOOOOO (hex) and FF7FFFFF (hex), inclusive),
that is dedicated for memory-mapped I/O. This is because
the NS32532 detects references to the dedicated locations
and serializes reads and writes. See Section 3.1.3.3. When
making I/O references to addresses outside the dedicated
region, external hardware must indicate to the NS32532
that special handling is required.

In this case a small performance degradation will also re­
sult. Refer to Section 3.1.3.2 for more information on memo­
ry-mapped I/O.

Memory and I/O

Memory-Mapped I/O

Reserved by NSC

Interrupt Control

FIGURE 2-9. NS32532 Address Mapping

2-13

en
eN
I\)
(.J1
eN
I\)

I
I\)
o
z
en
eN
I\)
(.J1
eN
I\)

I
I\)
(.J1
z en
eN
I\)
(.J1
eN
I\)

I
eN
o

2.0 Architectural Description (Continued)

2.3 MODULAR SOFTWARE SUPPORT
The NS32532 provides special support for software mod­
ules and modular programs.

Each module in a NS32532 software environment consists
of three components:

1. Program Code Segment.

This segment contains the module's code and constant
data.

2. Static Data Segment.

Used to store variables and data that may be accessed
by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro­
cedure (CXP) instruction to compute the address of an
external procedure.

Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non­
contiguous locations in memory, and each can be indepen­
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To handle the transfer of control from one module to anoth­
er, the NS32532 uses a module table in memory and two
registers in the CPU.

The Module Table is located within the first 64 kbytes of
virtual memory. This table contains a Module Descriptor
(also called a Module Table Entry) for each module in the
address space of the program. A Module Descriptor has
four 32-bit entries corresponding to each component of a
module:

• The Static Base entry contains the address of the begin­
ning of the module's static data segment.

• The Link Table Base pOints to the beginning of the mod­
ule's Link Table.

• The Program Base is the address of the beginning of the
code and constant data for the module.

• A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut­
ing module, i.e., it points to the beginning of the current
module's static data area.

This register is implemented in the CPU for efficiency pur­
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS32532 software environment modules need not be
linked together prior to loading. As modules are loaded, a
linking loader simply updates the Module Table and fills the
Link Table entries with the appropriate values. No modifica­
tion of a module's code is required. Thus, modules may be
stored in read-only memory and may be added to a system
independently of each other, without regard to their individu­
al addressing. Rgurs 2-10 shows a typical NS32532 run­
time environment.

STATIC DATA
SEGMENT

SB REGISTER

I
I
I
I
I
I
I

OFFSET--+q)+-~
I
I
I
I
I
I
I
I
I

DISP1.4

PROGRAM CODE
SEGMENT

DISP

31 LINK TABLE a
ABSOLUTE ADDRESS

EXT. VARIABLE

DISP2

TL/EE/9354-2

Note: Dashed lines indicate information copied to registers during transfer of control between modules.

FIGURE 2-10. NS32532 Run-Time Environment

2-14

2.0 Architectural Description (Continued)

2.4 MEMORY MANAGEMENT

The Memory Mangement Unit of the NS32532 provides
support for demand-paged virtual memory. The MMU trans­
lates 32-bit virtual addresses into 32-bit physical addresses.
The page size is 4096 bytes.

The mapping from virtual to physical addresses is defined
by means of sets of tables in physical memory. These tables
are found by the MMU using one of its two Page Table Base
registers: PTBO or PTB 1. Which register is used depends on
the currently selected address space. See Section 2.4.2.

Translation efficiency is improved by means of an on-chip
64-entry translation look-aside buffer (TLB). Refer to Sec­
tion 3.4.4 for details.

If the MMU detects a protection violation or page fault while
translating an address for a reference required to execute
an instruction, a translation exception {Trap (ABT)) will re­
sult.

2.4.1 Page Tables Structure

The page tables are arranged in a two-level structure, as
shown in Figure 2-". Each of the MMU's PTBn registers
may point to a Level-1 page table. Each entry of the Level-1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level-1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently, but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level-1 Page Table contains 1024 32-bit Page Table
Entries (PTE's) and therefore occupies 4 Kbytes. Each entry
of the Level-1 Page Table contains a field used to construct
the physical base address of a Level-2 Page Table. This
field is a 20-bit PFN field, providing bits 12-31 of the physi­
cal address. The remaining bits (O-ll) are assumed zero,
placing a Level-2 Page Table always on a 4-Kbyte (page)
boundary.

PT8n ~
L-___ --l ~ -328ITS-

10Z4

11------1
LEVEL·1

PAGE TA8LE

1024

Level-2 Page Tables contain 1024 32-bit Page Table en­
tries, and so occupy 4 Kbytes (1 page). Each Level-2 Page
Table Entry points to a final 4-Kbyte physical page frame. In
other words, its PFN provides the Page Frame Number por­
tion (bits 12-31) of the translated address (Figure 2-13).
The OFFSET field of the translated address is taken directly
from the corresponding field of the virtual address.

2.4.2 Virtual Address Spaces

When the Dual Space option is selected for address transla­
tion in the MCR (Section 2.1.5) the on-chip MMU uses two
maps: one for translating addresses presented to it in Su­
pervisor Mode and another for User Mode addresses. Each
map is referenced by the MMU using one of the two Page
Table Base registers: PTBO or PTB1. The MMU determines
the map to be used by applying the following rules.

1) While the CPU is in Supervisor Mode (UIS pin = 0), the
CPU is said to be generating virtual addresses belonging
to Address Space 0, and the MMU uses the PTBO regis­
ter as its reference for looking up translations from mem­
ory.

2) While the CPU is in User Mode (UIS pin = 1), and the
MCR DS bit is set to enable Dual Space translation, the
CPU is said to be generating virtual addresses belonging
to Address Space 1, and the MMU uses the PTB1 regis­
ter to look up translations.

3) If Dual Space translation is not selected in the MCR,
there is no Adress Space 1, and all virtual addresses gen­
erated in both Supervisor and User modes are consid­
ered by the MMU to be in Address Space O. The privilege
level of the CPU is used then only for access level check­
ing.

Note: When the CPU executes a Dual-Space Move instruction (MOVUSi or
MOVSUi), it temporarily enters User Mode by switching 1he state of
the ufs pin. Accesses made by the CPU during this time are treated
by the MMU as User·Mode accesses for both mapping and access
level checking. It is possible, however, to force the MMU to assume
Supervisor Mode privilege on such accesses by setting the Access
Override (AO) bit in the MCR (Section 2.t.5).

-328ITS--

4KBYTES

ENI ____ / MEMORY

LEVEL·2
PAGE TABLES

TL/EE/9354-3

FIGURE 2-11. Two-Level Page Tables

2-15

z en w
N
en
W
N .
N
C)
Z en w
N
en
W
~
N
en
Z en w
N
en
W
N .
W
C)

fII

~ .
N
CO)
LI)
N
CO)
(I)
Z
LI)

~
N
CO)
LI)
N
CO)
(I)
Z
o
N .
N
CO)

~
CO)
(I)
Z

2.0 Architectural Description (Continued)

2.4.3 Page Table Entry Formats

Figure 2-12 shows the formats of Level-l and Level-2 Page
Table Entries (PTE's).

The bits are defined as follows:

V Valid. The V bit is set and cleared only by software.

V = 1 = > The PTE is valid and may be used for
translation by the MMU.

V = 0 = > The PTE does not represent a valid trans­
lation. Any attempt to use this PTE to trans­
late and address will cause the MMU to
generate an Abort trap.

PL Protection Level. This two-bit field establishes the
types of accesses permitted for the page in both User
Mode and Supervisor Mode, as shown in Table 2-1.

The PL field is modified only by software. In a Level-l
PTE, it limits the maximum access level allowed for all
pages mapped through that PTE.

TABLE 2-1. Access Protection Levels

Mode U/S
Protection Level Bits (PL)

00 01 10 11

User 1 no no read full
access access only access

Supervisor 0 read full full full
only access access access

NU Not Used. These bits are reserved by National for
future enhancements. Their values should be set to
zero.

CI Cache Inhibit. This bit appears only in Level-2 PTE's.
It is used to specify non-cacheable pages.

PFN ''I'' USR 'I' NU

R

M

Referenced. This is a status bit, set by the MMU and
cleared by the operating system, that indicates
whether the page mapped by this PTE has been ref­
erenced within a period of time determined by the
operating system. It is intended to assist in imple­
menting memory allocation strategies. In a Level-l
PTE, the R bit indicates only that the Level-2 Page
Table has been referenced for a translation, without
necessarily implying that the translation was suc­
cessful. In a Level·2 PTE, it indicates that the page
mapped by the PTE has been sucessfully referenced.

R = 1 = > The page has been referenced since the
R bit was last cleared.

R = 0 = > The page has not been referenced since
the R bit was last cleared.

Modified. This is a status bit, set by the MMU when­
ever a write cycle is successfully performed to the
page mapped by this PTE. It is initialized to zero by
the operating system when the page is brought into
physical memory.

M = 1 = > The page has been modified since it was
last brought into physical memory.

M = 0 = > The page has not been modified since it
was last brought into physical memory.

In Level-l Page Table Entries, this bit po­
sition is undefined, and is unaltered.

USR User bits. These bits are ignored by the MMU and
their values are not changed.

They can be used by the user software.

PFN Page Frame Number. This 20·bit field provides bits
12-31 of the physical address. See Figure 2-13.

R
: + : I + I v 'I

First Level PTE

"1"
8

'I 'I USR : M R CI NU + V
1

31 PFN

Second Level PTE

FIGURE 2-12. Page Table Entries (PTE's)

2-16

2.0 Architectural Description (Continued)

VIRTUAL ADDRESS
31 2221 1211

l INDEX 1
I

INDEX 2 OFFSET
I

I

B- lEVEl·1 PAGE TABLE

ct
~ ,. lEVEl·1 PTE

I PTBn I INDEX 1 I DO I-- PFN I USR I NU IR IN+lv

31 1211 21 0 31 0

(1) SElECT 1ST PTE 1024
IF 05=0 THEN PTEs

n=D
ELSE

n = 1 FOR USER MODE
n = 0 FOR SUPV MODE 4 BYTES-

~ ,.. " I PFN I INDEX 2 I 00 I
31 1211 21 0

(2) SELECT 2ND PTE

--,
I
I
I
I
~

I PFN I 000000000000 ~ lEVEl·2 PAGE TABLE

lEVEl·2 PTE

• PFN lus~ M I R ICI \"uIPll V

31 0

~ ,.
"' PHYSICAL ADDRESS I PFN I OFFSET

31 12 11

(3) GENERATE PHYSICAL
ADDRESS

1024
prEs

TL/EE/9354-4

FIGURE 2-13. Virtual to Physical Address Translation

2.4.4 Physical Address Generation

When a virtual address is presented to the MMU and the
translation information is not in the TLB, the MMU performs
a page table lookup in order to generate the physical ad­
dress.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia­
grammed in Figure 2-13.

Bits 12-31 of the virtual address hold the 20·bit Page Num­
ber, which in the course of the translation is replaced with
the 20·bit Page Frame Number of the physical address. The
virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-11 constitute the OFFSET field, which identifies a
byte's position within the accessed page. Since the byte
pOSition within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-11 of the final physical address.

The 10-bit INDEX 1 field of the virtual address is used as an
index into the Level·l Page Table, selecting one of its 1024
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN field of that entry gives the
base address of the selected Level·2 Page Table.

The INDEX 2 field of the virtual address (10 bits) is used as
the index into the Level·2 Page Table, by adding it (scaled

2·17

by 4) to the base address taken from the Level-1 Page Ta­
ble Entry. The PFN field of the selected entry provides the
entire Page Frame Number of the translated address.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address.

2.4.5. Address Translation Algorithm

The MMU either translates the 32-bit virtual address to a 32-
bit physical address or generates an abort trap to report a
translation error. The algorithm used by the MMU to perform
the translation is compatible with that of the NS32382. Re­
fer to Appendix C for differences between the two MMUs.

In the description that follows, the symbol 'u' takes the val­
ue 1 for a User-Mode memory reference. A reference is a
User-Mode reference in the following cases:

I. The reference is performed while executing in User­
Mode.

2. The reference is for the source operand of a MOVUS
instruction.

3. The reference is for the destination operand of a MOVSU
instruction.

The following notations are used in the algorithm.

• AIIB --+ A concatenated with B

• A.B --+ B is a field inside register A

• (A) --+ object pointed to by address A

• (A).B --+ B field of the object pointed to by address A

z
(J)
Co)
N
(J1
Co)
N

I
N

~
Z
(J)
Co)
N
(J1
Co)
N

I
N

~
Z
(J)
Co)
N
(J1
Co)
N

I
Co)
o

2.0 Architectural Description (Continued)

Each access is associated with one of two Address Spaces
(AS), defined as follows:

AS = U AND MCR.OS

If AS = 1, Page Table Base Register 1 (PTB1) is used to
select the first·level page table. If AS = 0, PTBO is used to
select the first·level page table.

The access-level is a 2-bit value used to specify the privi­
lege level of an access. It is determined as follows:

• BIT1 = U AND (NOT(MCR.AO))

• BITO = 1 for write, or read with 'RMW' status
o otherwise

START TRANSLATION:

If (U = 0 AND MCR.TS = 0 OR U = 1 AND MCR.TU = 0)

then

/* address translation disabled .,

(physical address - virtual address; ClOUT pin = 0);

,. Note: ClOUT = 0 in all MMU generated accesses *'
else BEGIN '* (see also Figure 2-13) *'
1. Select PTB:

• If (MCR.DS = 1 AND U = 1) then

- PTB = PTB1,

- AS = 1;

• else (PTB = PTBO. AS = 0);

2. Fetch first level PTE:

• PTE Pointer = PTB.BASE ADDRESsIIINDEX11!00;

• PTE - (PTE POinter); /* Fetch PTE1 .,

• Effective PL - PTEPL
3. Validate First Level PTE:

• If (PTEPL < access level) then

• ,. Protection Exception *'
- TEAR - virtual address,

- clock MSR with MSR.TEX = 11,

- terminate translation;

• If (PTEV = 0) then
• ,. PTE1 Invalid .,

- TEAR - virtual address,

- clock MSR with MSR.TEX = 01,

- terminate translation;

• If (PTER = 0) then

- Write a Byte (PTE Pointer) .R = 1;

• Effective PL - PTEPL
4. Fetch second level PTE:

• PTE Pointer = PTE.PFNIIINDEX21100;

• PTE - (PTE Pointer); '* Fetch PTE2 .,

• If (PTEPL < effective PL) then

- Effective PL - PTEPL;
5. Validate Second Level PTE:

• If (PTEPL < access level) then

• 1* Protection Exception .,

2-18

- TEAR - virtual address,

- clock MSR with MSR.TEX = 11,

- terminate translation;

• If (PTEV = 0) then

• ,. PTE2 Invalid"

- TEAR - virtual address,

- clock MSR with MSR.TEX = 10,

- terminate translation;

• If (read AND NOT interlocked) AND PTE.R = 0) then
Read-Modify-Write a double-word interlocked (PTE
Pointer).R = 1;

• If ((write OR interlocked read) AND (PTER = 0 OR
PTE.M = 0) then Read-Modify-Write a double-word in­
terlocked (PTE Pointer).R = 1, (PTE Pointer).M = 1;

6. Generate Physical address:

• physical address - PTEPFNlloFFSET

• ClOUT pin - PTECI
7. Update Translation Buffer:

• Select entry for replacement;

• TLB. Virtual Page Number - INDEX111INDEX2;

• TLB.AS - AS;
• TLB. Physical Frame Number - PTE.PFN

• TLB.PL - Effective PL

• TLB.CI - PTECI
• TLB.M - (PTE Pointer) .M

• Enable entry
END
Note 1: The TEAR and MSR are only updated when a Trap (ABT) occurs. It

is possible that the MMU detects a page fault or protection violation
on a reference for an instruction that is not executed, for example
on a prefetch. In that event. Trap (ABT) does not occur. and the
TEAR and MSR are not updated.

Note 2: If the MMU is translating a virtual address to check protection while
executing a RDVAL or WRVAL instruction. then Trap (ABT) occurs
only if the level·1 PTE is invalid and the access is permitted by the
PL-field.

2.5 INSTRUCTION SET

2.5.1 General Instruction Format

Figure 2-14 shows the general format of a Series 32000
instruction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad­
dressing Mode (uGen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-15.

,--, z
2.0 Architectural Description (Continued)

OPTIONAL BASIC
EXTENSIONS INSTRUCTION

r~----------------~A~----------------~\r~--------~~

DISP2 DISPI DISP21DISPI
I

~
GEN I GEN IMPUED INDEX INDEX I

DISP DISP ADDR I ADDR OPCODE IMMEDIATE BYTE BYTE MODE I
MODE OPERAND(S)

A ~ B
IMM IMM

I

:
l ~ 1

TL/EE/9354-5

FIGURE 2-14. General Instruction Format

I' GEN. ADDR. MODE l REG. NO. 'I
TL/EE/9354-6

FIGURE 2-15. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded with the top bits of that
field, as shown in Figure 2-16, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi­
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional, 'implied" immediates
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.5.3).

2.5.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per­
forming this calculation is specified by the programmer as
an "addressing mode."

Addressing modes are designed to optimally support high­
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers

2-19

PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

7

1

Byte Displacement: Range -64 to +63

SIGNED DISPLACEMENT

Word Displacement: Range -8192 to +8191

I
I

Double Word Displacement:
Range -(229 - 224) to + (229 - 1)*

0

1 I
~/-
~

TLlEE/9354-7

FIGURE 2-16. Displacement Encodlngs
'Note: The pattern "11100000" for the most significant byte of the displace­

ment is reserved by National for future enhancements. Therefore. it
should never be used by the user program. This causes the lower
limit of the displacement range to be -(229-224) instead of -229.

en
Co)
I\)
en
Co)

~
I\)

~
z en
Co)
I\)
en
Co)

~ en z en
Co)
I\)
en
Co)
I\)

w
CI

o
CO)

N
CO)
.."
N
CO)

en z
"­
.."
~
N
CO)
.."
N
CO)

en
z
"­o
~
N
CO)
.."
N
CO)

en
z

2.0 Architectural Description (Continued)

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pOinter to generate the Effec­
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written .

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pOinter value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

Table 2-2 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2_5.3 Instruction Set Summary

Table 2-3 presents a brief description of the NS32532 in­
struction set. The Format column refers to the Instruction

2-20

Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Instruction Set Reference Manual.

Notations:

i = Integer length suffix: B = Byte

W = Word

o = Double Word

f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value append­
ed aiter any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Processor Register: Address, Debug, Status,
Configuration.

mreg = Any Memory Management Register.

creg = A Custom Slave Processor Register (Implementa­
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

z
2.0 Architectural Description (Continued)

(J)
w
I\)
UI

TABLE 2-2. NS32532 Addressing Modes w
I\)

I

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS
I\)
0

Register
Z

00000 Register 0 RO or FO None: Operand is in the (J)

00001 Register 1 specified register. w
R1 or F1 I\)

00010 Register 2 R2 or F2
UI
W

00011 Register 3 R3 or F3
I\)

I
I\)

00100 Register 4 R40rF4 UI
00101 Register 5 R5 or F5 Z
00110 Register 6 R60rF6 (J)

w
00111 Register 7 R7 or F7 I\)

UI
Register Relative w

I\)

01000 Register 0 relative disp(RO) Disp + Register. I w
01001 Register 1 relative disp(R1) 0

01010 Register 2 relative disp(R2)
01011 Register 3 relative disp(R3)
01100 Register 4 relative disp(R4)
01101 Register 5 relative disp(R5)
01110 Register 6 relative disp(R6)
01111 Register 7 relative disp(R7)

Memory Relative
10000 Frame memory relative disp2(disp1 (FP)) Disp2 + POinter; Pointer found at
10001 Stack memory relative disp2(disp1 (SP)) address Disp1 + Register. "SP" is either
10010 Static memory relative disp2(disp1 (S8)) SPO or SP1, as selected in PSR.

Reserved
10011 (Reserved for Future Use)

Immediate
10100 Immediate value None. Operand is input from

instruction queue.

Absolute
10101 Absolute @disp Disp.

External
10110 External EXT(disp1) + disp2 Disp2 + Pointer; Pointer is found

at Link Table Entry number Disp1.

Top of Stack
10111 Top of stack TOS Top of current stack, using either

User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Memory Space
11000 Frame memory disp(FP) Disp + Register; "SP" is either
11001 Stack memory disp(SP) SPO or SP1, as selected in PSR.
11010 Static memory disp(S8)
11011 Program memory *+disp

Scaled Index
11100 Index, bytes mode[Rn:8] EA (mode) + Rn.
11101 Index, words mode[Rn:W] EA (mode) + 2 x Rn.
11110 Index, double words mode[Rn:D] EA (mode) + 4 X Rn.
11111 Index, quad words mode[Rn:Q] EA (mode) + 8 x Rn.

"Mode' and 'n' are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

2-21

0
CO) · 2.0 Architectural Description (Continued) N
CO)
Ln
N TABLE 2-3. NS32532 Instruction Set Summary
CO)
(J) MOVES
Z Format Operation Operands Description
Ln 4 MOVi gen,gen Move a value. N • 2 MOVQi short,gen Extend and move a signed 4-bit constant. N
CO) 7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16). Ln
N 7 MOVZBW gen,gen Move with zero extension. CO)
(J) 7 MOVZiD gen,gen Move with zero extension.
Z 7 MOVXBW Move with sign extension. gen,gen
0 7 MOVXiD gen,gen Move with sign extension. N · 4 ADDR Move Effective Address. N gen,gen
CO)
Ln INTEGER ARITHMETIC
N
CO) Format Operation Operands Description
(J)
Z 4 ADDI gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

4 ADDCi gen,gen Add with carry.
4 SUBi gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2's complement).

6 ABSi gen,gen Take absolute value.
7 MULi gen,gen Multiply.

7 QUOi gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEli gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.

PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description

6 ADDPi gen,gen Add Packed.

6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON
Format Operation Operands Description

4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical Exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical Shift, left or right.

6 ASHi gen,gen Arithmetic Shift, left or right.

6 ROTi gen,gen Rotate, left or right.

2-22

2.0 Architectural Description (Continued)

TABLE 2-3. NS32532 Instruction Set Summary (Continued)
BITS
Format Operation Operands Description

4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.

BIT FIELDS
Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source.
Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm
7 INSSi gen,gen,imm,imm
8 CVTP reg,gen,gen

ARRAYS
Format Operation Operands

8 CHECKi reg,gen,gen
8 INDEXi reg,gen,gen

STRINGS
String instructions assign specific functions to
the General Purpose Registers:
R4 - Comparison Value
R3 - Translation Table Pointer
R2 - String 2 Pointer
RI - String I Pointer
RO - Limit Count

Format Operation Operands
5 MOVSi options

MOVST options
5 CMPSi options

CMPST options
5 SKPSi options

SKPST options

Extract bit field (short form).
Insert bit field (short form).
Convert to Bit Field Pointer.

Description
I ndex bounds check.
Recursive indexing step for multiple-dimensional arrays.

Options on all string instructions are:
B (Backward): Decrement string pointers after each step

rather than incrementing.
U (Until match): End instruction if String I entry

matchesR4.
W (While match): End instruction if String I entry

does not match R4.
All string instructions end when RO decrements to zero.
Description
Move String I to String 2.
Move string, translating bytes.
Compare String I to String 2.
Compare translating, String I bytes.
Skip over String I entries.
Skip, translating bytes for Until/While.

2-23

z
(J)
Co)
N
C1I
Co)
N

I
N
o -Z
(J)
Co)
N
C1I
Co)
N
I

N
C1I -Z
(J)
Co)
N
C1I
Co)
N

I
Co)
o

C) r---,
C')

~ 2.0 Architectural Description (Continued)
an
~ TABLE 2-3. NS32532 Instruction Set Summary (Continued)
(I) JUMPS AND LINKAGE
Z
an
N .
N
C')
an
N
C')
(I)
Z
C)
N
~
C')
an
N
C')
(I)
Z

Format Operation Operands
3 JUMP gen
0 BR disp
0 Bcond disp
3 CASEi gen
2 ACBi short,gen,disp
3 JSR gen

BSR disp
CXP disp

3 CXPD gen
1 SVC

FLAG
BPT
ENTER [reg listl,disp
EXIT [reg list]
RET disp
RXP disp
RETT disp
RETI

CPU REGISTER MANIPULATION
Format Operation Operands

1 SAVE [reg list]
1 RESTORE [reg list]
2 LPRi areg,gen

2 SPRi areg,gen

3 ADJSPi gen
3 BISPSRi gen
3 BICPSRi gen
5 SETCFG [option list]

FLOATING POINT
Format Operation Operands

11 MOVf gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVfi gen,gen
9 ROUNDfi gen,gen
9 TRUNCfi gen,gen
9 FLOORfi gen,gen

11 ADDf gen,gen
11 SUBf gen,gen
11 MUll gen,gen
11 DIVf gen,gen
11 CMPf gen,gen
11 NEGf gen,gen
11 ABSf gen,gen
9 LFSR gen
9 SFSR gen

Description
Jump.
Branch (PC Relative).
Conditional branch.
Multiway branch.
Add 4-bit constant and branch if non-zero.
Jump to subroutine.
Branch to subroutine.
Call external procedure.
Call external procedure using descriptor.
Supervisor Call.
Flag Trap.
Breakpoint Trap.
Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.
Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description
Save General Purpose Registers.
Restore General Purpose Registers.
Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).
Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).
Adjust Stack Pointer.
Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description
Move a Floating Point value.
Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.
Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.
Subtract.
Multiply.
Divide.
Compare.
Negate.
Take absolute value.
Load FSR.
Store FSR.

2-24

z
2.0 Architectural Description (Continued)

(J)
w
N
U1

TABLE 2-3. NS32532 Instruction Set Summary (Continued) w
N

MEMORY MANAGEMENT · N
Format Operation Operands Description 0

14 LMR mreg,gen Load Memory Management Register. (Privileged) Z
(J)

14 SMR mreg,gen Store Memory Management Register. (Privileged) w
14 RDVAL gen Validate address for reading. (Privileged) N

U1
14 WRVAL gen Validate address for writing. (Privileged) w

N
8 MOVSUi gen,gen Move a value from Supervisor • N

Space to User Space. (Privileged) U1
8 MOVUSi gen,gen Move a value from User Space Z

(J)
to Supervisor Space. (Privileged) w

N
MISCELLANEOUS U1 w
Format Operation Operands Description N · 1 NOP No Operation. w

0
WAIT Wait for interrupt.
DIA Diagnose. Single·byte "Branch to Self" for hardware

breakpointing. Not for use in programming.
14 CINV options,gen Cache Invalidate. (Privileged)

CUSTOM SLAVE
Format Operation Operands Description

15.5 CCALOc gen,gen Custom Calculate.
15.5 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen
15.5 CMOVOc gen,gen Custom Move.
15.5 CMOV1c gen,gen
15.5 CMOV2c gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1c gen,gen
15.1 CCVOci gen,gen Custom Convert.
15.1 CCV1ci gen,gen
15.1 CCV2ci gen,gen
15.1 CCV3ic gen,gen
15.1 CCV4DQ gen,gen
15.1 CCV5QD gen,gen
15.1 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.
15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)

2·25

3.0 Functional Description
This chapter provides details on the functional characteris­
tics of the NS32532 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,
On-Chip Caches and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32532 performs the fol­
lowing operations:

• Fetch the instruction

• Read source operands, if any (1)

• Calculate results

• Write result operands, if any

• Modify flags, if necessary

• Update the program counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc­
currence of exceptions, the sequence of operations per­
formed during the execution of an instruction may be al­
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as
the occurrence of exceptions on the instruction execution,
are provided in the following sections.
Note: 1 In this and following sections, memory locations read by the CPU to

calculate effective addresses for Memory·Relative and External ad·
dressing modes are considered like source operands, even if the
effective address Is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has five operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex­
ecuting Instructions, Processing An Exception, Waiting-For­
An-Interrupt, and Halted. The various states and transitions
between them are shown in Figure 3-1. .

Whenever the RST Signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RSf signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.5.3 for
details.

In the Executing-Instructions state, the CPU executes in­
structions. It will exit this state when an exception is recog­
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting­
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure (see note).

Following the completion of all data references required to
process an exception, the CPU enters the Executing-In­
structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe­
cial status identifying this state is presented on the system
interface (Section 3.5). When an interrupt or a debug condi-

2-26

RST ACTIVE

TL/EE/9354-B

FIGURE 3-1. Operating States

tion is detected, the CPU enters the Processing-An-Excep­
tion state.

The CPU enters the Halted state when a bus error or abort
is detected while the CPU is processing an exception, there­
by preventing the transfer of control to an appropriate ex­
ception service procedure. The CPU remains in the Halted
state until reset occurs. A special status identifying this state
is presented on the system interface.
Note: When the Direct·Exception mode is enabled. the CPU does not save

the MOD Register contents nor does it read the module linkage infor·
mation for the exception service procedure. Refer to Section 3.2 for
details.

3.1.2 Instruction Endings

The NS32532 checks for exceptions at various points while
executing instructions. Certain exceptions, like interrupts,
are in most cases recognized between instructions. Other
exceptions, like Divide-8y-Zero Trap, are recognized during
execution of an instruction. When an exception is recog­
nized during execution of an instruction, the instruction ends
in one of four possible ways: completed, suspended, termi­
nated, or partially completed. Each type of exception caus­
es a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next instruction
to execute. The exception service procedure can, at its con­
clusion, execute the RETT instruction (or the RETI instruc­
tion for vectored interrupts), and the CPU will begin execut­
ing the instruction following the completed instruction.

3.0 Functional Description (Continued)

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi­
tions or a restartable bus error is detected during execution
of the instruction. A suspended instruction has not been
completed, but all other instructions executed since the last
exception occurred have been completed. Result operands
and flags due to be affected by the instruction may have
been modified, but only modifications that allow the instruc­
tion to be executed again and completed can occur. For
certain exceptions (Trap (AST), Trap (UND), Trap (ILL), and
bus errors) the CPU clears the P-f1ag in the PSR before
saving the copy that is pushed on the Interrupt Stack. The
PC saved on the Interrupt Stack contains the address of the
suspended instruction.

For example, the RESTORE instruction pops up to 8 gener­
al-purpose registers from the stack. If an invalid page table
entry is detected on one of the references to the stack, then
the instruction is suspended. The general-purpose registers
due to be loaded by the instruction may have been modified,
but the stack pOinter still holds the same value that it did
when the instruction began.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in·
struction's execution. After calculating and writing the in·
struction's results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe­
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con­
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a SPT instruction that was temporarily
placed in another instruction's location in order to set a
breakpoint.

Note 1: Although the NS32532 allows a suspended instruction to be execut·
ed again and completed, the CPU may have read a source operand
for the instruction from a memory.mapped peripheral port before
the exception was recognized. In such a casa, the characteristics of
the peripheral device may prevent correct reexecution of the in­
struction.

Note 2: It may be necessary for the exception service procedure to alter the
P·flag in the PSR copy saved on the Interrupt Stack: If the exception
service procedure simulates the suspended instruction and the p.
flag was cleared by the CPU before saving the PSR copy, then the
saved T·flag must be copied to the saved P·flag (like the floating·
point instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P·flag was not cleared by the CPU before saving the PSR copy,
then the saved P·flag must be cleared (like the breakpoint trap de·
scribed above). Otherwise, no alteration to the saved P·flag is nec·
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset or a
nonrestartable bus error occurs. Any result operands and
flags due to be affected by the instruction are undefined, as

2-27

is the contents of the PC. The result operands of other in·
structions executed since the last serializing operation may
not have been written to memory. A terminated instruction
cannot be completed.

3.1.2.4 Partially Completed Instructions

When a restartable bus error, interrupt, abort, or debug con­
dition is recognized during execution of a string instruction,
the instruction is said to be partially completed. A partially
completed instruction has not completed, but all other in­
structions executed since the last exception occurred have
been completed. Result operands and flags due to be af­
fected by the instruction may have been modified, but the
values stored in the string pOinters and other general-pur­
pose registers used during the instruction's execution allow
the instruction to be executed again and completed.

The CPU clears the P-f1ag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for vectored interrupts), and the
CPU will resume executing the partially completed instruc­
tion.

3.1.3 Instruction Pipeline

The NS32532 executes instructions in a heavily pipelined
fashion. This allows a significant performance enhancement
since the operations of several instructions are performed
simultaneously rather than in a strictly sequential manner.

The CPU provides a four-stage internal instruction pipeline.
As shown in Figure 3-2, a write buffer, that can hold up to
two operands, is also provided to allow write operations to
be performed off-line.

I Fetch Instruction I Stage 1 _-..,..-----' . _______ t _______ .
: 8 Byte Queue : Buffer

--------1-------·
I Decode Instruction I Stage 2

. _______ t _______ .
: 1 Decoded Instruction : Buffer

--------1-------·

I Calculate Results I Stage 4
Write Destination Operands

. _______ t _______ .
: 2 Memory Results : Buffer ._-------------_.

TL/EE/9354-9

FIGURE 3-2. NS32532 Internal Instruction Pipeline

Due to the pipe lining, operations like fetching one instruc­
tion, reading the source operands of a second instruction,
calculating the results of a third instruction and storing the
results of a fourth instruction, can all occur in parallel.

z
(J)
Co)
N
U1
Co)
N .
N
o
Z
(J)
Co)
N
U1
Co)

~
N
U1
Z
(J)
Co)
N
U1
Co)
N • Co)
o

3.0 Functional Description (Continued)

The order of memory references performed by the CPU may
also differ from that related to a strictly sequential instruc­
tion execution. In fact, when an instruction is being execut­
ed, some of the source operands may be read from memory
before the instruction is completely fetched. For example,
the CPU may read the first source operand for an instruction
before it has fetched a displacement used in calculating the
address of the second source operand. The CPU, however,
always completes fetching an instruction and reading its
source operands before writing its results. When more than
one source operand must be read from memory to execute
an instruction, the operands may be read in any order. Simi­
larly, when more than one result operand is written to mem­
ory to execute an instruction, the operands may be written
in any order.

An instruction is fetched only after all previous instructions
have been completely fetched. However, the CPU may be­
gin fetching an instruction before all of the source operands
have been read and results written for previous instructions.

The source operands for an instruction are read only after
all previous instructions have been fetched and their source
operands read. A source operand for an instruction may be
read before all results of previous instructions have been
written, except when the source operand's value depends
on a result not yet written. The CPU compares the physical
address and length of a source operand with those of any
results not yet written, and delays reading the source oper­
and until after writing all results on which the source oper­
and depends. Also, the CPU ensures that the interlocked
read and write references to execute an SBITli or CBITli
instruction occur after writing all results of previous instruc­
tions and before reading any source operands for subse­
quent instructions.

The result operands for an instruction are written after all
results of previous instructions have been written.

The description above is summarized in Figure 3-3, which
shows the precedence of memory references for two con­
secutive instructions.

INSTRUCTION N INSTRUCTION N + 1

INSTRUCTION FETCH ~UCTION FETCH

\ ~\WO • ~"\'l
DATA WRITE ~ DATA WRITE

TLlEE/9354-10

FIGURE 3-3. Memory References for
Consecutive Instructions

(An arrow from one reference to another indicates that
the first reference always precedes the second.)

Another consequence of overlapping the operations for sev­
eral instructions, is that the CPU may fetch an instruction
and read its source operands, even though the instruction is
not executed (e.g., due to the occurrence of an exception).
In such a case, the MMU may update the R-bit in Page
Table Entries used in referring to the fetched instruction and
its source operands.

Special care is needed in the handling of memory-mapped
110 devices. The CPU provides special mechanisms to en­
sure that the references to these devices are always per-

2-28

formed in the order implied by the program. Refer to Section
3.1.3.2 for details.

It is also to be noted that the CPU does not check for de­
pendencies between the fetching of an instruction and the
writing of previous instructions' results. Therefore, special
care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is
called '"Pipeline Breakage".

This occurs every time the sequentiality of the instructions is
broken, due to the execution of certain instructions or the
occurrence of exceptions.

The result of a pipeline breakage is a performance degrada­
tion, due to the fact that a certain portion of the pipeline
must be flushed and new data must be brought in.

The NS32532 provides a special mechanism, called branch
prediction, that helps minimize this performance penalty.

When a conditional branch instruction is decoded in the ear­
ly stages of the pipeline, a prediction on the execution of the
instruction is performed.

More precisely, the prediction mechanism predicts back­
ward branches as taken and forward branches as not taken,
except for the branch instructions BLE and BNE that are
always predicted as taken.

Thus, the resulting probability of correct prediction is fairly
high, especially for branch instructions placed at the end of
loops.

The sequence of operations performed by the loader and
execution units in the CPU is given below:

• Loader detects branches and calculates destination ad­
dresses

• Loader uses branch opcode and direction to select be-
tween sequential and non-sequential streams

• Loader saves address for alternate stream

• Execution unit resolves branch decision

Due to the branch predicition, some special care is required
when writing self-modifying code. Refer to the appropriate
section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped I/O
The characteristics of certain peripheral devices and the
overlapping of instruction execution in the pipeline of the
NS32532 require that special handling be applied to memo­
ry-mapped 110 references. 110 references differ from mem­
ory references in two significant ways, imposing the follow­
ing requirements:

1. Reading from a peripheral port can alter the value read
on the next reference to the same port or another port in
the same device. (A characteristic called here '"destruc­
tive-reading".) Serial communication controllers and
FIFO buffers commonly operate in this manner. As ex­
plained in '"Instruction Pipeline" above, the NS32532 can
read the source operands for one instruction while the
previous instruction is executing. Because the previous
instruction may cause a trap, an interrupt may be recog­
nized, or the flow of control may be otherwise altered, it is
a requirement that destructive-reading of source oper­
ands before the execution of an instruction be avoided.

3.0 Functional Description (Continued)

2. Writing to a peripheral port can alter the value read from
another port of the same device. (A characteristic called
here "side-effects of writing"). For example, before read­
ing the counter's value from the NS32202 Interrupt Con­
trol Unit it is first necessary to freeze the value by writing
to another control register.

However, as mentioned above, the NS32532 can read the
source operands for one instruction before writing the re­
sults of previous instructions unless the addresses indicate
a dependency between the read and write references. Con­
sequently, it is a requirement that read and write references
to peripheral that exhibit side-effects of writing must occur in
the order dictated by the instructions.

The NS32532 supports 2 methods for handling memory­
mapped 1/0. The first method is more general; it satisfies
both requirements listed above and places no restriction on
the location of memory-mapped peripheral devices. The
second method satisfies only the requirement for side ef­
fects of writing, and it restricts the location of memory­
mapped 1/0 devices, but it is more efficient for devices that
do not have destructive-read ports.

The first method for handling memory-mapped 1/0 uses two
signals: 10lNH and 10DEC. When the NS32532 generates a
read bus cycle, it asserts the output signal 10lNH if either of
the 1/0 requirements listed above is not satisfied. That is,
10lNH is asserted during a read bus cycle when (1) the read
reference is for an instruction that may not be executed or
(2) the read reference occurs while a write reference is
pending for a previous instruction. When the read reference
is to a peripheral device that implements ports with destruc­
tive-reading or side-effects of writing, the input signal
10DEC must be asserted; in addition, the device must not
be selected if 10lNH is active. When the CPU detects that
the 10DEC input signal is active while the 10lNH output sig­
nal is also active, it discards the data read during the bus
cycle and serializes instruction execution. See the next sec­
tion for details on serializing operations. The CPU then gen­
erates the read bus cycle again, this time satisfying the re­
quirements for 1/0 and driving 10lNH inactive.

The second method for handling memory-mapped 1/0 uses
a dedicated region of virtual memory. The NS32532 treats
all references to the memory range from address FFOOOOOO
to address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads
from locations in the same range are delayed. However,
reads from locations with addresses lower than FFOOOOOO
may occur. Similarly, reads from locations in the above
range may occur while writes to locations outside of the
range are pending.

It is to be noted that the CPU may assert 10lNH even when
the reference is within the dedicated region. Refer to Sec­
tion 3.5.B for more information on the handling of 1/0 devic­
es.

3.1.3.3 Serializing Operations

After executing certain instructions or processing an excep­
tion, the CPU serializes instruction execution. Serializing in­
struction execution means that the CPU completes writing
all previous instructions' results to memory, then begins
fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by
executing an LPRW instruction, the pipeline is flushed and a

2-29

serializing operation takes place. This is necessary since
the privilege level might have changed and the instructions
following the LPRW instruction must be fetched again with
the new privilege level and possibly with a different MMU
mapping. See Section 2.4.2.

The CPU serializes instruction execution after executing one
of the following instructions: BICPSRW, BISPSRW, BPT,
CINV, DIA, FLAG (trap taken), LMR, LPR (CFG, INTBASE,
PSR, UPSR, DCR, BPC, DSR, and CAR only), RETT, RETI,
and SVC. Figure 3-4 shows the memory references after
serialization.
Note 1: LPRB UPSR can be executed in User Mode to serialize instruction

execution.

Note 2: After an instruction that writes a result to memory is executed, the
updating of the result's memory location may be delayed until the
next serializing operation.

Note 3: When reset or a nonrestartable bus error exception occurs, the CPU
discards any results that have not yet been written to memory.

INSTRUCTION N INSTRUCTION N + 1

INSTRUCTION FETCH INSTRUCTION rETCH

~R\ /~R\
DATA WRITE DATA WRITE

TL/EE/93S4-11

FIGURE 3-4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32532 recognizes two groups of instructions being
executable by external slave processors:

• Floating Point Instructions

• Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu­
ration Register (Section 2.1.4). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor.

Note that the Memory Management Instructions, like Float­
ing Point and Custom Slave Instructions, have to be en­
abled through an appropriate bit in the configuration register
in order to be executable.

However, they are not considered here as Slave Instruc­
tions, since the NS32532 integrates the MMU on-chip and
the execution of them does not follow the protocol of the
Slave Instructions.

3.1.4.1 Regular Slave Instruction Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an ID Byte followed by an Oper­
ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-5. While applying
Status code 11111 (Broadcast ID Section 3.5.4.1), the CPU
transfers the ID Byte on bits AD24-AD31, the operation

z en
Co)
N
U1
Co)
N

I
N o
Z
en
Co)
N
U1
Co)
N

I
N
U1
Z en
Co)
N
U1
Co)
N

I
Co)
o

• I

C) r---,
C?
C'I
C')
Ln
C'I

~
Z
Ln
~
C'I
C')
Ln
C'I

~
Z
~
~
Ln
C'I
C')
U)
z

3.0 Functional Description (Continued)

SEND OPERAND
(BUS STATUS = 11101)

READ RESULT
(BUS STATUS = 11101)

FIGURE 3-5. Regular Slave Instruction Protocol: CPU Actions

2-30

TUEE/9354-12

3.0 Functional Description (Continued)

31 o
IDBYTE OPCODE (LOW) OPCODE (HIGH) XXXXXXXX

FIGURE 3-6. 10 and Operation Word

31 15 7 ~I ZERO ZERO o TS N Z o o o L

FIGURE 3-7. Slave Processor Status Word

word on bits AD8-AD23 in a swapped order of bytes and a
non-used byte XXXXXXXX (X = don't care) on bits ADO­
AD? (Figure 3-6).

All slave processors observe the bus cycle and inspect the
identification code. The slave selected by the identification
code continues with the protocol; other slaves wait for the
next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the
slave any source operands that are located in memory or
the General-Purpose registers. The CPU then waits for the
slave to assert SDN or FSSR. While the CPU is waiting, it
can perform bus cycles to fetch instructions and read
source operands for instructions that follow the slave in­
struction being executed. If there are no bus cycles to per­
form, the CPU is idle with a special Status indicating that it is
waiting for a slave processor. After the slave asserts SDN or
FSSR, the CPU follows one of the two sequences described
below.

If the slave asserts SDN, then the CPU checks whether the
instruction stores any results to memory or the General-Pur­
pose registers. The CPU reads any such results from the
slave by means of 1 or 2 bus cycles and updates the desti­
nation.

If the slave asserts FSSR, then the NS32532 reads a 32-bit
status word from the slave. The CPU checks bit 0 in the
slave's status word to determine whether to update the PSR
flags or to process an exception. Figure 3-7 shows the for­
mat of the slave's status word.

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UND) if TS is 1 or a Trap (SLAVE) if TS is O.
Note 1: Only the floating~point and custom compare instructions afe allowed

to return a value 01 0 lor the Q bit when the FSSR Signal is activat·
ed. All other instructions must always set the Q bit to 1 (to Signal a
Trap). when activating FSSR.

Note 2: While executing an LMR or CINV instruction, the CPU displays the
operation code and source operand using slave processor write bus
cycles, as described in the protocol above. Nevertheless. the CPU
does not wait lor SON or FSSR to be asserted while executing
these instructions. This information can be used to monitor the con­
tents 01 the on-chip TLB, Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave instruction
at any time, even while the slave is executing another instruction or
waiting lor the CPU to read results. For example. the CPU may
terminate an instruction being executed by a slave because a non­
restartable bus error is detected while the MMU is updating a Page
Table Entry lor an instruction being preletched.

Note 4: II a slave instruction stores a result to memory, the CPU checks
whether Trap (ABn would occur on the store operation belore read·
ing the result from the slave. For quad-word destination operands,
the CPU checks that both double·words 01 the destination can be
stored without an abort before reading either double-word of the
result from the slave.

2-31

3.1.4.2 Pipelined Slave Instruction Protocol

In order to increase performance of floating-point instruc­
tions while maintaining full software compatibility with the
Series 32000 architecture, the NS32532 incorporates a
pipelined floating-point protocol. This protocol is deSigned
to operate in conjunction with the NS32580 FPC, or any
other floating·point slave which conforms to the protocol
and the Series 32000 architecture. The protocol is enabled
by the PF bit in the CFG register.

The basic methods of transferring data and control informa­
tion between the CPU and the FPC, are the same as in the
regular slave protocol.

However, in pipelined mode, the CPU may send a new float­
ing-point instruction to the FPC before the previous instruc­
tion has been completed.

Although the CPU can advance as many as four floating­
point instructions before receiving a completion pulse on
SDN for the first instruction, full exception recovery is as­
sured. This is accomplished through a FIFO mechanism
which maintains the addresses of all the floating-point in­
structions sent to the FPC for execution.

Pipe lined execution can occur only for instructions which do
not require a result to be read from the FPC.

In cases where a result is to be read back, the CPU will wait
for instruction completion before issuing the next instruc­
tion. Instructions can be divided into three groups, depend­
ing on the amount of pipe lining permitted.

Group A. Fully-Pipelined Instructions

Instructions in this group can be sent to the FPC before
previous group A instructions are completed. No instruction
completion indication from the FPC is required in order to
continue to another group A or group B instruction.

Group A contains floating-point instructions satisfying all of
the following conditions.

1. The destination operand is in a floating-point register.

2. The source operand is not of type TOS or IMM.

3. The instruction format is either 11 or 12.

Group B. Half-Pipelined Instructions

Group B instructions can begin execution before previous
group A instructions are completed. However, they cannot
complete before the FPC signals completion of all the previ­
ous floating-point instructions.

Group B contains floating-point instructions satisfying at
least one of the following conditions.

1. The destination operand is either in memory or in a CPU
register (this includes the CMPf instruction which modifies
the PSR register).

2. The source operand is of type TOS or IMM.

3. The instruction format is 9.

•

3.0 Functional Description (Continued)

PROCESS TRAP.
GET

INSTRUCTION
ADDRESS

FROM FIFO

REMOVE
INSTRUCTION

ADDRESS
FROM FIFO

FIGURE 3-8. Instruction Flow in Pipelined Floating·Point Mode

2-32

PROCESS TRAP.
GET

INSTRUCTION
ADDRESS

FROM FIFO

TL/EE/9354-73

3.0 Functional Description (Continued)
Group C. Non-Pipelined Instructions

Group C instructions can begin execution only after all other
instructions have been completed. The CPU cannot pro­
ceed to other instructions before their execution is complet­
ed.

Group C contains all the floating-point/integer conversion
instructions.

3.1.4.3 Instruction Flow and Exceptions

When operating in pipelined mode, the CPU will push the
address of group A instructions into a five-entry FIFO after
the ID, opcode and source operands have been sent to the
FPC. The address will be pushed into the FIFO only if no
exception is detected during the transfer of the source oper­
ands needed for the execution of the instruction.

Group A instructions are only stalled when the FIFO is full,
in which case the CPU will wait before sending the next
instruction. Group B instructions can begin execution while
some entries are still in the FIFO, but cannot complete be­
fore the FIFO is empty (Le., before all previous instructions
are completed). Group C instructions cannot begin execu­
tion until the FIFO is empty. When a normal completion indi­
cation is received, the instruction address at the bottom of
the FIFO is dropped. If a trap indication is received and the
FIFO is not empty, the instruction address at the bottom of
the FIFO is copied to the PC register and the floating-point
exception is serviced. The remaining entries in the FIFO are
discarded.

A floating-point exception may be received and serviced at
any time after the CPU has sent the ID and opcode for the
first instruction and until the FPC has signalled completion
for the last instruction.

Other exceptions may occur while the FIFO is not empty.
This may be the case when an interrupt is received or a
translation exception is detected in the access of an oper­
and needed for the execution of the next floating-point in­
struction. These exceptions will be processed as soon as
the FIFO becomes empty, and after any floating-point ex­
ception has been acknowledged.

In the event of a non-restartable bus error, the acknowledge
will occur immediately. The CPU will flush the internal FIFO
and will reset the FPC by performing a dummy read of the
slave status word. This operation is performed for both the
regular and pipe lined floating-point protocol and regardless
of whether any floating-point instruction is pending in the
FPC instruction queue.

The CPU may cancel the last instruction sent to the FPC by
sending another ID and opcode, before the last source op­
erand for that instruction has been sent. Figure 3-8 shows
the instruction flow in pipelined floating-point mode.

3.1.4.4 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). "f" indicates that the instruction

2-33

specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR-Bits-Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.1.4.5 Custom Slave Instructions

Provided in the NS32532 is the capability of communicating
with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-2 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an
operand which can be a 32-bit ("D") or 64-bit ("Q") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.

Any operand indicated as being of type "c" will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes three basic types
of exceptions: interrupts, traps and bus errors.

An interrupt occurs in response to an event signalled by
activating the NMI or INT input signals. Interrupts are typi­
cally requested by peripheral devices that require the CPU's
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

A bus error exception occurs when the BER signal is acti­
vated during an instruction fetch or data transfer required by
the CPU to execute an instruction.

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter­
rupt stack and then it transfers control to an exception serv­
ice procedure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi­
cantly different way than it does for exceptions.

Refer to Section 3.5.3 for details on the reset operation.

z en
Co)
N
U1
Co)
N

I
N
o -Z en
Co)
N
U1
Co)
N

I
N
U1 -Z
en
Co)
N
U1
Co)
N

I
Co)
o

(:)
C')

~ 3.0 Functional Description (Continued)
C')
an

TABLE 3-1. Floating Point Instruction Protocols C'I
C')

en Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits Z Mnemonic Class Class Issued Issued Type and Dest • Affected an
C'I ADDI read.1 rmw.! I I ItoOp.2 none • C'I SUBI read.! rmw.! ftoOp.2 none C')
an MUll read.! rmw.! Ito Op.2 none C'I
C') DIVI read.! rmw.! ItoOp.2 none en z MOVI read.f write.f N/A ftoOp.2 none ASSf read.! write.f N/A ftoOp.2 none (:)
C'I NEGf read.f write.! N/A ftoOp.2 none • C'I

CMPf read.f read.! N/A N,Z,L .C')
an FLOORfi read.f write.i N/A itoOp.2 none C'I
C') TRUNCfi read.f write.i N/A itoOp.2 none en z ROUNDfi read.f write.i f N/A itoOp.2 none

MOVFL read.F write.L F N/A L toOp.2 none
MOVLF read.L write.F L N/A FtoOp.2 none
MOVil read.i write.! i N/A ftoOp.2 none
LFSR read.D N/A 0 N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none

TABLE 3-2. Custom Slave Instruction Protocols

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp.2 none
CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none
CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L
CCVOci read.c write.i c N/A i toOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c N/A ctoOp.2 none
CCV4DQ read.D write.Q 0 N/A QtoOp.2 none
CCVSQD read.Q write.D Q N/A DtoOp.2 none
LCSR read.D N/A 0 N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none
LCR· read.D N/A 0 N/A N/A none
SCR· write. 0 N/A N/A N/A DtoOp.1 none

Note:
o = Double Word
i = Integer size (B,W,D) specified in mnemonic.
c = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
• = Privileged instruction: will trap if CPU is in User Mode.
NI A = Not Applicable to this instruction.

2-34

3.0 Functional Description (Continued)
3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through
three major steps:

1) Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con­
tents of the Program Counter (PC), the Processor Status
Register (PSR) and the currently·selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRC) and Trap (OVF) are always disabled.
Maskable interrupts are also disabled if the exception is
caused by an interrupt, Trap (DBG), Trap (ABT) or bus
error.

2) Vector Acquisition. A vector is either obtained from the
data bus or is supplied internally by default.

3) Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct-Exception mode is disabled or en­
abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it

,.~

MEMORY t
rv

/ CASCADE ADDR 0 .
CASCADE TABLE ~ . ~~

0

I """""' .. ~
CASCADE ADDR 14

CASCADE ADDR 15

FIXED INTERRUPTS

ANOTRAPS

reads the double-word entry from the Interrupt Dispatch ta­
ble at address 'INTBASE + vector x 4'. See Figures 3-9
and 3-10. The CPU uses this entry to call the exception
service procedure, interpreting the entry as an external pro­
cedure descriptor.

A new module number is loaded into the MOD register from
the least-significant word of the descriptor, and the static­
base pointer for the new module is read from memory and
loaded into the SB register. Then the program-base pointer
for the new module is read from memory and added to the
most-significant word of the module descriptor, which is in­
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double-word entry from the Interrupt Dis­
patch Table at address 'INTBASE + vector x 4'. The CPU
uses this entry to call the exception service procedure, inter­
preting the entry as an absolute address that is simply load­
ed into the PC register. Figure 3-11 provides a pictorial of
the acknowledge sequence. It is to be noted that while the

rIJ1 iiI'"

0 NVI NON-VECTORED INTERRUPT

1 NMI NON-MASKABLE INTERRUPT

2 ABT ABORT

3 SLAVE S LAVE PROCESSOR TRAP

4 ILL I LLEGAL OPERATION TRAP

5 SVC S UPERVISOR CALL TRAP REGISTER I!
I DISPATCH TABLE

6 DVZ DIVIDE BY ZERO TRAP VECTORED

1 INTERRUPTS l: 7 FLG F LAG TRAP

8 BPT BREAKPOINT TRAP

9 TRC T RACE TRAP

10 UNO UNDEFINED INSTRUCTION TRAP

11 RBE RESTARTABLE BUS ERROR

12 NBE NON-RESTARTABLE BUS ERROR

13 DVF I NTEGER OVERFLOW TRAP

14 DBG DEBUG TRAP

15 RESERVED

16 VECTORED
INTERRUPTS

r~ r'"
TLlEE/9354-13

FIGURE 3·9. Interrupt Dispatch Table

2-35

z
(J)
W
N
CJ1
W
~
N
<:)
.......
Z
(J)
W
N
CJ1
W
N
I

N
CJ1
Z
(J)
W
N
CJ1
W
~
W
<:)

FII

CI

~
C')
In

~
U)
Z
In
N
N
C')
In
N
C')
U)
Z
CI

~
C')
In
N
C')
U)
Z

3.0 Functional Description (Continued)

I
I

RETURN ADDRESS I (PUSH)

I

STATUS I MODULE I
I (PUSH)

PSR MOD

INTBASE REGISTER

I INTERRUPT BASE

1 I VECTOR 04
Y

DESCRIPTOR

1--32BITS-

PC

PSR I MOD

INTERRUPT
STACK

r-------------.,
I I
I CASCADE TABLE I
I I
I I
I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

)

LOWER
ADDRESSES

HIGHER
ADDRESSES

I~' -1S----r-°I_· -16-_"1
OFFSET MODULE

0

MOD REGISTER ~ MODULE TABLE

I NEW MODULE

I MODULE TABLE ENTRY

J

MODULE TiBlE ENTRY
32

STATIC BASE POINTER - ----.,

UNK BASE POINTER

+ PROGRAM BASE POINTER

(RESERVED)

PROGRAM COUNTER SBREGISTER

I ENTRY POINT ADDRESS 4- NEW STATIC BASE I
FIGURE 3·10. Exception Acknowledge Sequence.

Direct·Exceptlon Mode Disabled.

2-36

TL/EE/9354-14

Tl/EE/9354-15

3.0 Functional Description (Continued)

RETURN ADDRESS (PUSH)

32 BITS

PC

LOWER
ADDRESSES

STATUS r--(=P~U=SH=)---------------------r-PSR

PSR

INTBASE REGISTER

I INTERRUPT BASE

J I VECTOR .4

INTERRUPT

STACK HIGHER
ADDRESSES

r-------- ------,
I I
I CASCADE TABLE I
I I I I

DISPATCH

TABLE

ABSOLUTE ADDRESS

)

PROGRAM COUNTER

ENTRY POINT ADDRESS J

TL/EE/9354-16

TL/EE/9354-17

FIGURE 3-11. Exception Acknowledge Sequence.
Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep­
tion. The MOD and SB registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe­
cuting any instructions, such as CXP, that use the contents
of the MOD or SB registers in effective address calcula­
tions.

3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in­
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter­
rupt or bus error service procedure. Since some traps are
often used deliberately as a call mechanism for supervisor

2-37

mode procedures, RETT can also adjust the Stack Pointer
(SP) to discard a specified number of bytes from the original
stack as surplus parameter space.

RETI is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex­
ternal events, RETI does not discard parameters from the
stack.

Both of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and SB register contents. Fig­
ures 3-12 and 3-13 show the RETT and RETI instruction
flows when the Direct-Exception mode is disabled.

z
~
N
U\
Co)
N

I
N
C
Z en
Co)
N
U\
Co)
N

I
N
U\
Z en
Co)
N
U\
Co)
N
W
C

•

C)
C")

N
C")
II)
N
C")

en
z
II)

~
C")
II)
N
C")

en
z
C)

~
C")
II)
N
C")

en z

3.0 Functional Description (Continued)

PROGRAM COUNTER

I RETURN ADDRESS ·1

fo---- 32 BITS----O

(POP)
PC

LOWER
ADDRESSES

I I +- (POP)
STATUS MODULE ---------ir--PSR I MOD

PSR MOD

MODULE T~BLE ENTRY

STATIC BASE POINTER -h

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

o

INTERRUPT

STACK

MODULE

TABLE

MODULE TABLE ENTRY

PARAMETERS

HIGHER
ADDRESSES

LOWER
ADDRESSES

/ n

SBREGISTER

STATIC BASE

POP AND

DISCARD

BYTES

STACK SELECTED

IN NEWLY·

POPPEDPSR. HIGHER
ADDRESSES

TL/EE/9354-18

FIGURE 3-12. Return from Trap (RETT n) Instruction Flow.
Direct-Exception Mode Disabled.

3,2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in­
put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit
is set. The I bit is automatically cleared during service of an
INT, NMI, Trap (DBG), Trap (ABT) or Bus Error request, and
is restored to its original setting upon return from the inter­
rupt service routine via the RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit I = 0) or Vec­
tored (bit I = 1).

3,2,3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

2-38

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section
3.5.4.6) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing

3.0 Functional Description (Continued)

"END OF INTERRUPT"

BUS CYCLE

INTERRUPT
CONTROL

UNIT

PROGRAM COUNTER

LOWER
t<----- 32 BITS -'t ADDRESSES

(POP)
RETURN ADDRESS PC

STATUS 1 MODULE -t-----------+- PSR MOD
(POP) I

PSR MOD

• MOOULE TABLE ENTRY

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

STATIC BASE POINTER -r-------
LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SBREGISTER

FIGURE 3-13. Return from Interrupt (RETI) Instruction Flow.
Direct-Exception Mode Disabled.

2·39

HIGHER
ADDRESSES

TL/EE/9354-19

z
en
IN
I\)
U1
IN
I\)

I
I\)
o
z
en
IN
I\)
U1
IN
I\)

I
I\)
U1 z
en
IN
I\)
U1
IN
I\)

I
IN
o

3.0 Functional Description (Continued)

a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter·
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per·
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT·
BASE) Register. Its entries are 32·bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3·9 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle,
reading the final vector value. This vector is interpreted by
the CPU as an unsigned byte, and can therefore be in the
range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle, whereupon the
Master ICU again provides the negative Cascade Table in­
dex. The CPU, seeing a negative value, uses it to find the
corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an "End of Interrupt, Cas·
caded" bus cycle, informing the Cascaded ICU of the com·
pletion of the service routine. The byte read from the Cas­
caded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con·
troller.

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac­
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section

2-40

3.5.4.6) when processing of this interrupt actually begins.
The Interrupt Acknowledge cycle differs from that provided
for Maskable Interrupts in that the address presented is
FFFFFFOOI6. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETI) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di·
rect results of the execution of an instruction.

The return address saved on the stack by any trap except
Trap (TRC) and Trap (DBG) is the address of the first bye of
the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis­
abled except for the case of Trap (ABT) and Trap (DBG).

There are 11 trap conditions recognized by the NS32532 as
described below.

Trap (ABT): An abort trap occurs when an invalid page ta­
ble entry or a protection level violation is detected for any of
the memory references required to execute an instruction.

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Section 3.1.4.1).

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (OVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UNO): An Undefined-Instruction trap occurs when an
attempt to execute an instruction is made and one or more
of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a
description of the codes that the CPU recognizes to be
undefined.

2. The instruction is a floating point instruction and the F-bit
in the CFG register is O.

3. The instruction is a custom slave instruction and the C-bit
in the CFG register is O.

4. The instruction is a memory·management instruction and
the M-bit in the CFG register is O.

5. An LMR or SMR instruction is executed while the U-flag
in the PSR is 0 and the most significant bit of the instruc·
tion's short field is O.

6. The reserved general adressing mode encoding (10011)
is used.

7. Immediate addressing mode is used for an operand that
has access class different from read.

3.0 Functional Description (Continued)

8. Scaled Indexing is used and the base mode is also Scaled
Indexing.

9. The instruction is a floating-point or custom slave instruc­
tion that the FPU or custom slave detects to be unde­
fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit
in the PSR register is set to 1 and an Integer-Overflow con­
dition is detected during the execution of an instruction. An
Integer-Overflow condition is detected in the following cas­
es:

1. The F-flag is 1 following execution of an ADDi, ADDQi,
ADDCi, SUBi, SUBCi, NEGi, ABSi, or CHECKi instruction.

2. The product resulting from a MULi instruction cannot be
represented exactly in the destination operand's location.

3. The quotient resulting from a DEli, DIVi, or QUOi instruc­
tion cannot be represented exactly in the destination op­
erand's location.

4. The result of an ASHi instruction cannot be represented
exactly in the destination operand's location.

5. The sum of the 'INC' value and the 'INDEX' operand for
an ACBi instruction cannot be represented exactly in the
index operand's location.

Trap (DBG): A debug trap occurs when one or more of the
conditions selected by the settings of the bits in the DCR
register is detected. This trap can also be requested by acti­
vating the input signal DBG. Refer to Section 3.3.2 for more
information.
Note 1: Following execution of the WAIT instruction, then a Trap (DBG) can

be pending for a PC-match condition. In such an event, the Trap
(OBG) is processed immediately.

Note 2: If an attempt is made to execute a memory-management instruction
while in User·Mode and the M·bit in the CFG register is 0, then Trap
(UNO) occurs.

Note 3: If an attempt is made to execute a privileged custom instruction
while in User-Mode and the C-bit in the CFG register is 0, then Trap
(UNO) occurs.

Note 4: While operating in User-Mode, if an attempt is made to execute a
privileged instruction with an undefined use of a general addressing
mode (either the reserved encoding is used or else scaled-index or
immediate modes are incorrectly used), the Trap (UND) occurs.

Note 5: If an undefined instruction or illegal operation is detected, then no
data references are performed for the instruction.

Note 6: For certain instructions that Bre relatively long to execute, such as
OEIO, the CPU checks for pending interrupts during execution of the
instruction. In order to reduce interrupt latency, the NS2532 can
suspend executing the instruction and process the interrupt. Refer
to Section 8.5 in Appendix B for more informa~ion about recognizing
interrupts in this manner.

3.2.6 Bus Errors

A bus error exception occurs when the BER signal is assert­
ed in response to an instruction fetch or data transfer that is
required to execute an instruction.

Two types of bus errors are recognized: Restartable and
Non-Restartable. Restartable bus errors are recognized dur­
ing read bus cycles, except for MMU read cycles (from Page
Tables) needed to translate the address of a result being
stored into memory. All other bus errors are non-restartable.

The CPU responds to restartable bus errors by suspending
the instruction that it was executing. When a non-restartable
bus error is detected, the CPU responds immediately and
the instruction being executed is terminated.

In this case, any results that have not yet been written to
memory are discarded, and any pending traps other than

2-41

Trap (DBG) for external condition, are eliminated. The PC
value saved on the stack is undefined.

The NS32532 does not respond to bus errors indicated for
instructions that are not executed. For example, no bus er­
ror exception occurs in response to asserting the BER sig­
nal during a bus cycle to prefetch an instruction that is not
executed because the previous instruction caused a trap.

An exception to this rule occurs if the bus error is detected
during an MMU write cycle to update the R-bit in a page
table entry.

In this case the CPU recognizes the bus error and considers
it as non-restartable even though the bus cycle that caused
it belongs to a non-executed instruction.

If a bus error is detected during a data transfer required for
the processing of another exception or during the ICU read
cycle of a RETI instruction, then the CPU considers it as a
fatal bus error and enters the 'HALTED' state.
Note 1: If the address and control signals associated with the last bus cycle

that caused a bus error are latched by external hardware, then the
information they provide can be used by the service procedure for
restartable bus errors to analyze and resolve the exception recog­
nized by the CPU. This can be accomplished because upon detect­
ing a restartable bus error, the NS32532 stops making memory ref­
erences for subsequent instructions until it determines whether the
instruction that caused the bus error is executed and the exception
is processed.

Note 2: When a non-restartable bus error is recognized, the service proce­
dure must execute the CINV and LMR instructions to invalidate the
on-chip caches and TLB. This is necessary to maintain coherence
between them and external memory.

3.2.7 Priority Among Exceptions

The CPU checks for specific exceptions at various points
while executing an instruction. It is possible that several ex­
ceptions occur simultaneously. In that event, the CPU re­
sponds to the exception with highest priority.

Figure 3-14 shows an exception processing flowchart. A
non-restartable bus error is assigned highest priority and is
serviced immediately regardless of the execution state of
the CPU.

Before executing an instruction, the CPU checks for pend­
ing Trap (DBG), interrupts, and Trap (TRG), in that order. If a
Trap (DBG) is pending, then the CPU processes that excep­
tion, otherwise the CPU checks for pending interrupts. At
this pOint, the CPU responds to any pending interrupt re­
quests; nonmaskable interrupts are recongized with higher
priority than maskable interrupts. If no interrupts are pend­
ing, then the CPU checks the P-flag in the PSR to determine
whether a Trap (TRC) is pending. If the P-flag is 1, a Trap
(TRG) is processed. If no Trap (DBG), interrupt or Trap
(TRG) is pending, the CPU begins executing the instruction.

While executing an instruction, the CPU may recognize up
to four exceptions:

1. trap (ABT)

2. restartable bus error

3. trap (DBG) or interrupt, if the instruction is interruptible

4. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,
FLG, BPT, UND

Trap (ABT) and restartable bus error have equal priority; the
CPU responds to the first one detected.

If no exception is detected while the instruction is executing,
then the instruction is completed and the PC is updated to
point to the next instruction. If a Trap (OVF) is detected,
then it is processed at this time.

z en w
I\)
(J1
w
I\)

I
I\)
o z en w
I\)
(J1
w
I\)

I
I\)
(J1
z en
w
I\)
(J1
w
I\)

I
W o

•

CI

~ 3.0 Functional Description (Continued)

~
C')
(I)
Z
In
N
N
C')
In
N
C')
(/)
Z

~
N
C')
In
N
C')
(I)
Z

NO

FIGURE 3-14. Exception Processing Flowchart

2·42

TLfEEf9354-20

3.0 Functional Description (Continued)

While executing the instruction, the CPU checks for enabled
debug conditions. If an enabled debug condition is met, a
Trap (DBG) is held pending until after the instruction is com­
pleted (see Note 3). If another exception is detected before
the instruction is completed, the pending Trap (DBG) is re­
moved and the DSR register is not updated.
Note 1: Trap (DBG) can be detected simultaneously with Trap (OVF). In this

event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address-compare debug condition can be detected while pro­
cessing a bus error, interrupt, or trap. In this event, the Trap (DBG)
is held pending until after the CPU has processed the first excep­
tion.

Note 3: Between operations of a string instruction. the CPU responds to
pending operand address compare and external debug conditions
as well as interrupts. If a PC-match debug condition is detected
while executing a string instruction, then Trap (DBG) is held pending
until the instruction has completed.

3.2.8 Exception Acknowledge Sequences: Detailed Flow

For purposes of the following detailed discussion of excep­
tion acknowledge sequences, a single sequence called
"service" is defined in Figure 3-15.

Upon detecting any interrupt request, trap or bus error con­
dition, the CPU first performs a sequence dependent upon
the type of exception. This sequence will include saving a
copy of the Processor Status Register and establishing a
vector and a return address. The CPU then performs the
service sequence.

3.2.8.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of an interrupt­
ible instruction (e.g., string instruction), at the next interrupt­
ible point during its execution.

1. If an interruptible instruction was interrupted and not yet
completed:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, S, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFFFF0016, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step 8.
4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFFFE0016, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set "Vector" to O.

c. Go to Step 8.
5. Here the interrupt is Vectored. Read "Byte" from address

FFFFFE0016, applying Status Code 00100 (Interrupt Ac­
knowledge, Master).

6. If "Byte" ;;, 0, then set "Vector" to "Byte" and go to Step
8.

2-43

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4* Byte.

b. Read "Vector," applying the Cascade Address just
read and Status Code 00101 (Interrupt Acknowledge,
Cascaded).

8. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.2 AbortlRestartable Bus Error Sequence

1. Suspend instruction and restore the currently selected
Stack Pointer to its original contents at the beginning of
the instruction.

2. Clear the PSR P bit.

3. Copy the PSR into a temmporary register, then clear PSR
bits T, V, U, S and I.

4. Set "Vector" to the value corresponding to the exception
type:

Abort: Vector = 2

Restartable Bus Error: Vector = 11

5. Set "Return Address" to the address of the first byte of
the suspended instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT lUND Trap
Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DVZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.
UND: Vector = 10.

3. If Trap (ILL) or Trap (UND)

a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, Sand P.

5. Set "Return Address" to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.4 Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits T, V, U and S.

3. Set "Vector" to 9.

4. Set "Return Address" to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.5 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR
bits T, V, U, Sand P.

2. Set "Vector" to 13.

C) r---,
C")

~
C")
1.1)
C'II
C")

tn
Z
;;;
C'II
~
C")
1.1)
C'II
C")

tn
Z

~
~
C")
1.1)
C'II
C")

tn
Z

3.0 Functional Description (Continued)

3. Set "Return Address" to the address of the next instruc-
tion.

4. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.6 Debug Trap Sequence

A debug condition can be recognized either at the next in­
struction boundary or, in the case of the String instructions,
at the next interruptible point during its execution.

1. If PC-match condition, then go to Step 3.

2. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the instruction.

c. Go to Step 4.

3. Set "Return Address" to the address of the next instruc­
tion.

4. Set "Vector" to 14.

5. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and I.

6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.7 Non-Restartable Bus Error Sequence

1. Set "Vector" to 12.

2. Set "Return Address" to "Undefined".

3. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits T, V, U, S, P and I.

4. Perform a dummy read of the Slave Status Word to reset
the Slave Processor.

5. Perform Service (Vector, Return Address), Figure 3-15.

3.3 DEBUGGING SUPPORT

The NS32532 provides serveral features to assist in pro­
gram debugging.

Besides the Breakpoint (BPT) instruction that can be used
to generate soft breaks, the CPU also provides instruction
tracing as well as debug trap (or hardware breakpoints) ca­
pabilities. Details on these features are provided in the fol­
lowing sub-sections.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of
a program. Tracing is enabled by setting the T -bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRC) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into
the PSR P (Trace "Pending") bit. If the P bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in­
struction, its entire service procedure is allowed to complete
before the Trace Trap occurs. Each interrupt and trap se­
quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P
bits in the PSR, in some cases a Trace Trap may not occur
at the end of the instruction. This happens when one of the
privileged instructions BICPSRW or LPRW PSR is executed.

TABLE 3-3. Summary of Exception Processing

Exception Instruction Cleared Before Cleared After
Ending SavingPSR SavingPSR

Restartable Bus Error Suspended P TVUSI
Nonrestartable Bus Error Terminated Undefined TVUSPI

Interrupt Before Instruction None/P· TVUSPI

ABT Suspended P TVUSI
ILL, UND Suspended P TVUS
SLAVE,SVC, DVZ, FLG,BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS
DBG Before Instruction None/P· TVUSPI

..
*Nate: The P bit of the saved PSR IS cleared In case the exception IS acknowledged before the Instruction IS completed (e.g., Interrupted stnng instruction). ThiS IS

to avoid a mid-instruction trace trap upon return from the Exception Service Routine.

Service (Vector, Return Address):

1) Push the PSR copy onto the Interrupt Stack as a 16-blt value.

2) If Direct-Exception mode Is selected, then go to step 4.

3) Push MOD Register Into the Interrupt Stack as a lB-blt value.

4) Read 32·blt Interrupt Dispatch Table (lOT) entry at address 'INTBASE + vector x 4'.

5) If Dlrect·Exceptlon mode Is selected, then go to Step 10.

6) Move the LS. word of the lOT entry (Module Field) Into the MOD register.

7) Read the Program Base pOinter from memory address 'MOD + 8', and add to It the M.S. word of the lOT entry (Offset Field), placing the result In the
Program Counter.

8) Read the new Static Base pOinter from the memory address contained In MOD, placing it into the SB Register.

9) Go to Step 11.

10) Place lOT entry in the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32-blt quantity.

12) Serialize: Non·sequentially fetch first Instruction of Exception Service Routine.

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.

FIGURE 3-15. Service Sequence

2-44

3.0 Functional Description (Continued)

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe­
cial care is taken before returning from the Trace Trap Serv­
ice Procedure. In case a BICPSRB instruction has been ex­
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be­
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.
Note: If instruction tracing is enabled while the WAIT instruction is executed,

the Trap (fRC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a
Debug Trap:

1) Address Compare

2) PC Match

3) External

These conditions can be enabled and monitored through
the CPU Debug Registers.

An address-compare condition is detected when certain
memory locations are either read or written. The double­
word address used for the comparison is specified in the
CAR Register. The address-compare condition can be sep­
arately enabled for each of the bytes in the specified dou­
ble-word, under control of the CBE bits of the DCR Register.
The VNP bit in the DCR controls whether virtual or physical
addresses are compared. The CRD and CWR bits in the
DCR separately enable the address compare condition for
read and write references; the CAE bit in the DCR can be
used to disable the compare-address condition indepen­
dently from the other control bits. The CPU examines the
address compare condition for all data reads and writes,
reads of memory locations for effective address calcula­
tions, Interrupt-Acknowledge and End-of-Interrupt bus cy­
cles, and memory references for exception processing. An
address-compare condition is not detected for MMU refer­
ences to Page Table Entries.

The PC-match condition is detected when the address of
the instruction equals the value specified in the BPC regis­
ter. The PC-match condition is enabled by the PCE bit in the
DCR.

Detection of address-compare and PC-match conditions is
enabled for User and Supervisor Modes by the UD and SD
bits in the DCR. The DEN-bit can be used to disable detec­
tion of these two conditions independently from the other
control bits.

An external condition is recognized whenever the DBG sig­
nal is activated.

When the CPU detects an address-compare or PC-match
condition while executing an instruction or processing an
exception, then Trap (DBG) occurs if the TR bit in the DCR
is 1. When an external debug condition is detected, Trap
(DBG) occurs regardless of the TR bit. The cause of the
Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect­
ed while executing an instruction, the CPU asserts the BP
signal at the beginning of the next instruction, synchronous-

2-45

Iy with PFS. If the instruction is not completed because a
higher priority trap (I.e., ABORT) is detected, the BP signal
mayor may not be asserted.
Note 1: While executing the MOVUS and MOVSU instructions, the cam­

pare-address condition is enabled for the User space memory refer­
ence under control of the UD-bit in the DCA.

Note 2: When the LPRi instruction is executed to load a new value into the
BPC. CAR or OCR, it is undefined whether the address-compare
and PC-match conditions, in effect while executing the instruction,
are detected under control of the old or new contents of the loaded
register. Therefore, any LPRi instruction that alters the control of the
address·compare or PC·match conditions should use register or im·
mediate addressing mode for the source operand.

3.4 ON-CHIP CACHES

The NS32532 provides three on-chip caches: the Instruc­
tion Cache (IC), the Data Cache (DC) and the Translation
Look-aside Buffer (TLB).

The first two are used to hold the contents of frequently
used memory locations, while the TLB holds address-trans­
lation information.

The IC and DC can be individually enabled by setting appro­
priate bits in the CFG Register (See Section 2.1.4); the TLB
is automatically enabled when address-translation is en­
abled.

The CPU also provides a locking feature that allows the
contents of the IC and DC to be locked to specific memory
locations. This is accomplished by setting the LlC and LDC
bits in the CFG register.

Cache locking can be successfully used in real-time applica­
tions to guarantee fast access to critical instruction and data
areas.

Details on the organization and function of each of the
caches are provided in the following sections.
Note: The size and organization of the on-Chip caches may change in future

Series 32000 microprocessors. This however, will not affect software
compatibility.

3.4.1 Instruction Cache (IC)

The basic structure of the instruction cache (IC) is shown in
Figure 3-16.

The IC stores 512 bytes of code in a direct-mapped organi­
zation with 32 sets. Direct-mapped means that each set
contains only one block, thus each memory location can be
loaded into the IC in only one place.

Each block contains a 23-bit tag, which holds the most-sig­
nificant bits of the physical address for the locations stored
in the block, along with 4 double-words and 4 validity bits
(one for each double-word).

A 4-double-word instruction buffer is also provided, which is
loaded either from a selected cache block or from external
memory. Instructions are read from this buffer by the loader
unit and transferred to an 8-byte instruction queue.

The IC mayor may not be enabled to cache an instruction
being fetched by the CPU. It is enabled when the IC bit in
the CFG Register is set to 1 and either the address transla­
tion is disabled or the CI bit in the Level-2 PTE used to
translate the virtual address of the instruction is set to o.
If the IC is disabled, the CPU bypasses it during the instruc­
tion fetch and its contents are not affected. The instruction
is read directly from external memory into the instruction
buffer.

z
fJ)
(0)
I\)
U1
(0)
I\)

• I\)
o
Z
fJ)
(0)
I\)
U1
(0)
I\) · I\)
U1
Z
fJ)
(0)
I\)
U1
(0)
N · (0)
o

=r---

~ en z ;
C'II

~
Z

~
CI)

~ en z

3.0 Functional Description (Continued)

31

TAG
MEMORY

23

TAG
COMPARE

23

32 32 INSTRUCTION
MEMORY

32

CACHE
INVALIDATE
ADDRESS

9843210
INSTRUCTION AOORESS INSTRUCTION OOUBLE-WORD

TL/EE/9354-21

FIGURE 3-16. Instruction Cache Structure

When the IC is enabled, the instruction address bits 4 to 8
are used to select the IC set where the instruction may be
stored. The tag corresponding to the single block in the set
is compared with the 23 most-significant bits of the instruc­
tion's physical address. The 4 double-words in this block are
loaded into the instruction buffer and the 4 validity bits are
also retrieved. Bits 2 and 3 of the instruction's physical ad­
dress select one of these double-words and the associated
validity bit.

If the tag matches and the selected double-word is valid, a
cache 'hit' occurs and the double-word is directly trans­
ferred to the instruction queue for decoding; otherwise a
cache 'miss' will result.

In the latter case, if the cache is not locked, the CPU will
take the following actions.

First, if the tag of the selected block does not match, the tag
is loaded with the 23 most-significant bits of the instruction
address and all the validity bits are cleared. Then, the in­
struction is read from external memory into the instruction
buffer.

If the CII N input signal is not active during the fetching of the
missing instruction, then the IC is updated and the instruc­
tion double-words fetched from memory are stored into it
with the validity bits set.

If the cache is locked, its contents are not affected, as the
CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or
not the IC is enabled, it always fetches instruction double·
words in a non-wrap-around fashion. Refer to Sections
3.5.4.3 and 3.5.6 for more information.

The contents of the instruction cache can be invalidated by
software through the CINV instruction or by hardware
through the appropriate cache invalidation input signals.
Clearing the IC bit in the CFG Register also invaiidates the
instruction cache. Refer to Sections 3.5.10 and C.3 for de­
tails.
Note: If the IC is enabled for a certain Inslruction and a 'miss' occurs due 10

a tag mismalch, the CPU will updale the tag and clear all the validity
bHs before fetching the Instruction from external memory. If the CIIN
Input signal is activated during the fetching of that instruction, the
validity bits are not set and the IC is not updated.

2-46

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two­
way set associative organization as shown in Figure 3-17.

Each of the 32 sets has 2 cache blocks. Each block con­
tains a 23-bit tag, which holds the most-significant bits of
the physical address for the locations stored in the block,
along with 4 double-words and 4 validity bits (one for each
double-word).

The DC is enabled for a data read when all of the following
conditions are satisfied.

• The DC bit in the CFG Register is set to 1.

• Either the address translation is disabled or the CI bit in
the Level-2 PTE used to translate the virtual address of
the data reference is set to O.

• The reference is not an interlocked read resulting from
executing a CBITI or SBITI instruction.

If the DC is disabled, the CPU bypasses it during the data
read and its contents are not affected. The data is read
directly from external memory. The DC is also bypassed for
MMU reads from Page Table entries during address transla­
tion and for Interrupt-Acknowledge and End-of-Interrupt bus
cycles.

When the DC is enabled for a data read, the address bits 4
to 8 are used to select the DC set where the data may be
stored.

The tags corresponding to the two blocks in the set are
compared to the 23 most-significant bits of the phYSical ad­
dress. Bits 2 and 3 of the address select one double-word in
each block and the associated validity bit.

If one of the tag matches and the selected double-word in
the corresponding block is valid, a cache 'hit' occurs and
the data is used to execute the instruction; otherwise a
cache 'miss' will result. In the latter case, if the cache is not
locked, the CPU will take the following actions.

3.0 Functional Description (Continued)

23

31

TAG
COMPARE

23

23

DATA ADDRESS DATA

DECODE

5

CACHE
INVALIDATE
ADDRESS

TL/EE/9354-22

FIGURE 3-17. Data Cache Structure

First, if the tag of either block in the set matches the data
address, that block is selected for updating. Otherwise, if
neither tag matches, then the least recently used block is
selected; its tag is loaded with the 23 most-significant bits of
the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou­
ble-word bits are read into the cache in a wrap-around fash­
ion. Refer to Sections 3.5.4.3 and 3.5.6 for more informa­
tion.

If the CIIN and IODEC input signals are both inactive during
the bus cycles performed to read the missing data, then the
DC is updated, as each double-word is read from memory,
and the corresponding validity bit is set. If the cache is
locked, its contents are not affected, as the CPU reads the
missing data from external memory.

The DC is enabled for a data write whenever the DC bit in
the CFG Register is set to 1, including interlocked writes
resulting from executing the CBITI and SBITI instructions,
and MMU writes to Page Table entries during address trans­
lation.

The DC does not use write allocation. This means that, dur­
ing a write, if a cache 'hit' occurs, the DC is updated, other­
wise it is unaffected. The data is always written through to
external memory.

The contents of the data cache can be invalidated by soft­
ware through the CINV instruction or by hardware through
the appropriate cache invalidation input signals. Clearing
the DC bit in the CFG Register also invalidates the data
cache. Refer to Sections 3.5.10 and C.3 for details.
Note: If Ihe DC is enabled for a certain data reference and a "miss" occurs

due to tag mismatch, the CPU will update the tag of the least recently
used block and clear all the validity bits before reading the data from
external memory. If either CIIN or IODEC are activated during the data
read bus cycles, the validity bits are not set and the DC is not updat­
ed.

3.4.3 Cache Coherence Support

The NS32532 provides several mechanisms for maintaining
coherence between the on-chip caches and external mem-

2-47

ory. In software, the use of caches can be inhibited for indi­
vidual pages using the CI-bit in the level-2 Page Table En­
tries. The CINV instruction can be executed to invalidate
entriely the Instruction Cache and/or Data Cache; the CINV
instruction can also be executed to invalidate a single
16-byte block in either or both caches.

In hardware, the use of the caches can be inhibited for indi­
vidual locations using the CIIN input signal. A cache invali­
dation request can cause the entire Instruction Cache and/
or Data Cache to be invalidated; a cache invalidation re­
quest can also cause invalidation of a single set in either or
both caches. Refer to Section 3.5.7 for more information.

An external "Bus Watcher" circuit can also be used to help
maintain cache coherence. The Bus Watcher observes the
CPU's bus cycles to maintain a copy of the on-chip cache
tags while also monitoring writes to main memory by DMA
controllers and other microprocessors in the system. When
the Bus Watcher detects that a location in one of the on­
chip caches has been modified in main memory, it issues an
invalidation request to the CPU. The CPU provides the nec­
essary information on the system interface to help maintain
an external copy of the on-Chip tags.

The status codes differentiate between instruction fetches
and data reads.

The set, affected during the bus access (if ClOUT is low), as
well as the tag can be determined from the address bits A4
through AS and A9 through A31 respectively.

During a data read the CPU also indicates, by means of the
CASEC signal, which block in the set is being updated.

Whenever a CINV instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, invalidations of the on­
chip caches by software can be monitored externally.

Note, however, that the software is responsible for commu­
nicating to the external circuitry the values of the cache en­
able and lock bits in the CFG Register, since the CPU does
not generate any special cycle (e.g., Slave Cycle) when the
CFG Register is loaded.

z
U)
Co)
N
U1
Co)

~

~
Z
U)
Co)
N
U1
Co)
N
N
U1
Z
U)
Co)
N
U1
Co)

~
Co)
o

PI

o r---~
('I) · N
('I)
It)
N
('I)

en
z
It)
N · N
('I)
It)
N
('I)

en
z
o
N • N
('I)
It)
N
('I)

en z

3.0 Functional Description (Continued)

3.4.4 Translation Look·aside Buffer (TLB)

The Translation Look-aside Buffer is an on-chip fully asso­
ciative memory. It provides direct virtual to physical mapping
for 64 pages, thus minimizing the time needed to perform
the address translation.

The efficiency of the on-chip MMU is greatly increased by
the TLB, which bypasses the much longer Page Table look­
up in over 99% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced automatically;
the operating system is not involved. The TLB entries can­
not be read or written by software; however, they can be
purged from it under program control.

Figure 3-18 shows a model of the TLB. Information is
placed into the TLB whenever a Page Table lookup is per­
formed. If the retrieved mapping is valid (V = 1 in both
levels of the Page Tables), and the access attempted is
permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory.

The on-chip MMU places the Virtual Page Number (VPN)
and the Address Space qualifier (AS) into the tag portion of
the TLB entry.

The value portion of the entry is loaded from the Page Ta­
bles as follows:

• The PFN field (20 bits) as well as the CI and M bits are
loaded from the Level-2 Page Table Entry (PTE2).

• The PL field (2 bits) is loaded to reflect the most restric­
tive of the protection levels imposed by the PL fields of
the Level-l and Level-2 Page Table Entries (PTE 1 and
PTE2).

Not shown in the figure is an additional bit associated with
each TLB entry which indicates whether the entry is valid.

Address translation can be either enabled or disabled for a
memory reference. If translation is disabled, then the TLB is
bypassed and the physical address is identical to the virtual
address.

When translation is enabled and a virtual address needs to
be translated, the high-order 20 bits (VPN) and the Address
Space qualifier are compared associatively to the corre­
sponding fields in all entries of the TLB.

For a read reference, if the tag portion of a valid TLB entry,
completely matches the input values, then the value portion
of the entry is used to complete the address translation and
protection checking.

For a write reference, if a valid entry with a matching tag is
present in the TLB, then the M bit is examined. If the M bit is
1, the value portion of the entry is used to complete the
address translation and protection checking. If the M bit is 0,
the entry is invalidated.

In either case, if a protection level violation is detected, a
translation exception (Trap (ABT)) is generated. When no
matching entry is found or a matching entry is invalidated
because the M bit is 0 in a write reference, a Page Table
lookup is performed. The virtual address is translated ac­
cording to the algorithm given in Section 2.4.5 and the
translation information is loaded into the TLB.

The recipient entry is selected by an on-chip circuit that im­
plements a First-In-First-Out (FIFO) algorithm.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-l and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in the pro­
cess of loading a TLB entry (during a Page Table lookup)
the Level-l and Level-2 R bits will be set in memory if they

2-48

were not already set. For these reasons, there is no need to
replicate either the V bit or the R bit in the TLB entries.

Whenever a Page Table Entry in memory is altered by soft­
ware, it is necessary to purge any matching entry from the
TLB, otherwise the corresponding addresses would be
translated according to obsolete information. TLB entries
may be selectively purged by writing a virtual address to one
of the IVARn registers using the LMR instruction. The TLB
entry (if any) that matches that virtual address is then
purged, and its space is made available for another transla­
tion. Purging is also performed whenever an address space
is remapped by altering the contents of the PTBO or PTBI
register. When this is done, all the TLB entries correspond­
ing to the address space mapped by that register are
purged. Turning translation on or off (via the MCR TU and
TS bits) does not affect the contents of the TLB.

It is possible to maintain an external copy of the valid con­
tents of the on-chip TLB by observing the CPU's system
interface during the replacement and invalidation of TLB en­
tries. Whenever the CPU replaces a TLB entry, the page
tables are accessed in external memory using bus cycles
with a special Status. Because a FIFO replacement algo­
rithm is used, it is possible to determine which entry is being
replaced by using a 6-bit counter that is incremented when­
ever a Level-l PTE is accessed. The contents of the new
entry can be found as follows:

• VPN appears on A2 through All during the PTEI and
PTE2 accesses. The most-significant 10 bits appear dur­
ing the PTEI access, and the least-significant 10 bits
appear during the PTE2 access.

• AS can be determined from the U/S signal during the
PTEI access.

• PFN, M and CI can be determined from the PTE2 value
read on the Data Bus. PL can be determined from the
most restrictive of the PTEI and PTE2 values read on
the Data Bus.

Whenever a LMR instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, the information is avail­
able externally to determine the translation modes con­
trolled by the MCR and to identify that a TLB entry has been
invalidated.

When the PTBO register is loaded by executing the 'LMR
PTBO src' instruction, the internal FIFO pointer is also reset
to point to the first TLB entry.

Note that the contents of the TLB maintained externally in­
clude copies of all valid entries in the on-chip TLB, but the
external copy may include some entries that are invalid in
the on-chip TLB. For example, when the TLB is searched
for a write reference and a matching entry is found with the
M bit clear, then the on-chip entry is invalidated and a miss
is processed. It is not possible to detect externally that the
old matching entry on-chip has been invalidated.

3.5 SYSTEM INTERFACE

This section provides general information on the NS32532
interface to the external world. Descriptions of the CPU re­
quirements as well as the various bus characteristics are
provided here. Details on other device characteristics in­
cluding timing are given in Chapter 4.

3.5.1 Power and Grounding

The NS32532 requires a single 5-volt power supply, applied
on 21 pins. The logic voltage pins (VCCL 1 to VCCL6) supply

3.0 Functional Description (Continued)

VIRTUAL
ADDRESS

(Ufs, ZZZ)
COMPARISON

·AS represents the virtual address space qualifier.

,
AS·

0

1

0

1

TAG

VPN (20 BITS)

xxx

YYY

zzz

www

H

PL M

11 0

11 0

11 1

00 1

VALUE

CI PFN (20 BITS)

0 mmm

0 nnn

1 PPP

0 qqq

.

TRANSLATED
ADDRESS

(PPP)

TL/EE/9354-23

FIGURE 3-18. TLB Model

the power to the on-chip logic. The buffer voltage pins
(VCCBl to VCCB14) supply the power to the output drivers
of the chip. The bus clock power pin (VCCClK) is the power
supply for the on-chip clock drivers. All the voltage pins
should be connected together by a power (VCC) plane on
the printed circuit board.

The NS32532 grounding connections are made on 20 pins.
The logic ground pins (GNDll to GNDl6) are the ground
pins for the on-chip logic. The buffer ground pins (GNDBI to
GNDB13) are the ground pins for the output drivers of the
chip. The bus clock ground pin (GNDClK) is the ground
connection for the on-chip clock drivers. All the ground pins
should be connected together by a ground plane on the
printed circuit board.

Both power and ground connections are shown in Figure
3-19.

+5V

VCCL1 _ 6

veeBI-14
14

OTHER Vee
VCCCLK I--+-+ CONNECTIONS

(Vee PLANE)

NS32532
CPU

GNDL1- 6

GNDBI-13
OTHER GROUND

GNDCLK I--+-+ CONNECTIONS 1..-_____ (GND PLANE)

TL/EE/9354-24

FIGURE 3-19. Power and Ground Connections

3.5.2 Clocking

The NS32532 requires a single-phase input clock Signal
(ClK) with frequency twice the CPU's operating frequency.

This clock Signal is internally divided by two to generate two
non-overlapping phases PHil and PHI2. One single-phase
clock signal BClK in phase with PHil and its complement
BClK, are also generated and output by the CPU for timing
reference.

Following power-on, the phase relationship between BClK
and ClK is undefined. Nevertheless, in some systems it
may be necessary to synchronize the CPU bus timing to an
external reference. The SYNC input signal can be used to
initialize the phase relationship between ClK and BClK.
SYNC can also be used to stretch BClK (low) while ClK is
toggling.

SYNC is sampled on each rising edge of ClK. As shown in
Figure 3-20, whenever SYNC is sampled low, BClK stops
toggling and stays low. On the first rising edge that SYNC is
sampled high, BClK is driven high and then toggles on each
subsequent rising edge of ClK.

Every riSing edge of BClK defines a transition in the timing
state (ooT-State") of the CPU.

One T -State represents the execution of one microinstruc­
tion within the CPU and/or one step of an external bus
transfer.
Not.: The CPU requirement on the maximum period of BCLK must be satis­

fied when SYNC is asserted at times other than reset.

3.5.3 Resetting

The RST input pin is used to reset the NS32532. The CPU
samples RST synchronously on the rising edge of BClK.
Whenever a low level is detected, the CPU responds imme­
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis­
carded; and any pending bus errors, interrupts, and traps
are eliminated. The internal latches for the edge-sensitive
NMI and DBG signals are cleared.

ClK [

I I I I I I I I I ,

:~Dllljj~
TLlEE/9354-25

FIGURE 3-20. Bus Clock Synchronization

2-49

z
CJ)
Co)
N
U1
Co)

~
N
o -Z
CJ)
Co)
N
U1
Co)

~
N
U1 -Z
CJ)
Co)
N
U1
Co)

~
Co)
o

3.0 Functional Description (Continued)

The CPU stores the PC contents in the RO Register and the
PSR contents in the least-significant word of R1, leaving the
most-significant word undefined. The PC is then cleared to 0
and so are all the implemented bits in the PSR, MSR, MCR
and CFG registers. The DEN-bit in the OCR Register is also
cleared to O. After reset, the remaining implemented bits in
OCR and the contents of all other registers are undefined.
The CPU begins executing the instruction at Address O.

On application of power, RST must be held low for at least
50 /Ls after Vee is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 BCLK cycles. See Figures 3-21 and 3-22.

While in ~ Reset state, the CPU drives the Signals ADS,
BEO-3, BMT, CONF and HLDA inactive. The data bus is
floated and the state of all other output signals is undefined.
Note: If SYNC is asserted while the CPU is being rese~ then BClK does not

toggle. Consequently. SYNC must be high for at least 200 ClK cycles
while RST is low.

BCLK[._......j-...... JLSL
i..-O!: 100 CLo;aCK

R~[. ____ ~ _______ ~ __ CL __ ES -

;---- O!: 50 S's

TL/EE/9354-26

FIGURE 3-21. Power-On Reset Requirements

c O!: 10:=r-0 CLOCK
[
_______1.- CYCLES

RST \\~ S

TUEE/9354-27

FIGURE 3-22. General Reset Timing

3.5.4 Bus Cycles

The NS32532 CPU will perform bus cycles for one of the
following reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or peripheral
devices. Peripheral input and output are memory mapped
in the Series 32000 family.

3. To read and update Page Table Entries in memory to
perform memory management functions.

4. To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

5. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 4 above are identi­
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the 5-bit code placed on the
Bus Status pins (STO-ST 4). Slave Processor cycles differ in
that separate control signals are applied (Section 3.5.4.7).

2-50

3.5.4.1 Bus Status

The CPU presents five bits of Bus Status information on
pins STO-ST4. The various combinations on these pins in­
dicate why the CPU is performing a bus cycle, or, if it is idle
on the bus, then why is it idle.

The Bus Status pins are interpreted as a five·bit value, with
STO the least significant bit. Their values decode as follows:

00000 The bus is idle because the CPU does not yet need
to access the bus.

00001 The bus is idle because the CPU is waiting for an
interrupt following execution of the WAIT instruc·
tion.

00010 The bus is idle because the CPU has halted after
detecting an abort or bus error while processing an
exception.

00011 The bus is idle because the CPU is waiting for a
Slave Processor to complete executing an instruc­
tion.

00100 Interrupt Acknowledge, Master.

The CPU is reading an interrupt vector to acknowl­
edge an interrupt request.

00101 Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl·
edge a maskable interrupt request from a Cascad­
ed Interrupt Control Unit.

00110 End of Interrupt, Master.

The CPU is performing a read cycle to indicate that
it is executing a Return from Interrupt (RETI) in­
struction at the completion of an interrupt's service
procedure.

00111 End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cascad­
ed Interrupt Control Unit to indicate that it is execut­
ing a Return from Interrupt (RETI) instruction at the
completion of an interrupt's service procedure.

01000 Sequential Instruction Fetch.

The CPU is fetching the next double-word in se­
quence from the instruction stream.

01001 Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new
sequence of instruction. This will occur as a result
of any JUMP or BRANCH, any exception, or after
the execution of certain instructions.

01010 Data Transfer.

The CPU is reading or writing an operand for an
instruction, or it is referring to memory while pro­
cessing an exception.

01011 Read RMW Class Operand.

The CPU is reading an operand with access class
of read-modify-write.

01100 Read for Effective Address Calculation.

The CPU is reading a pOinter from memory in order
to calculate an effective address for Memory Rela­
tive or External addressing modes.

01101 Access PTE1 by MMU.

The CPU is reading or writing a Level-1 Page Table
Entry while the on-chip MMU is translating virtual
address.

3.0 Functional Description (Continued)

01110 Access PTE2 by MMU.

The CPU is reading or writing a Level-2 Page Table
Entry while the on-chip MMU is translating a virtual
address.

11101 Transfer Slave Processor Operand.

The CPU is transferring an operand to or from a
Slave Processor.

11110 Read Slave Processor Status.

The CPU is reading a status word from a slave
processor after the slave processor has activated
the FSSR signal.

11111 Broadcast Slave Processor ID + OPCODE.

The CPU is initiating the execution of a Slave In­
struction by transferring the first 3 bytes of the in­
struction, which specify the Slave Processor identi­
fication and operation.

3.5.4.2 Basic Read and Write Cycles

The sequence of events occurring during a basic CPU ac­
cess to either memory or peripheral device is shown in Fig­
ure 3-23 for a read cycle, and Figure 3-24 for a write cycle.

The cases shown assume that the selected memory or pe­
ripheral device is capable of communicating with the CPU at
full speed. If not, then cycle extension may be requested
through the RDY line. See Section 3.5.4.4.

A full speed bus cycle is performed in two cycles of the
BCLK clock, labeled T1 and T2. For both read and write bus
cycles the CPU asserts ADS during the first half of T1 indi­
cating the beginning of the bus cycle. From the beginning of
T1 until the completion of the bus cycle the CPU drives the
Address Bus and other relevant control signals as indicated
in the timing diagrams. For cacheable data read cycles the
CPU also drives the CASEC signal to indicate the block in
the DC set where the data will be stored. If the bus cycle is
not cancelled (e.g., state T2 is entered in the next clock
cycle), the confirm signal (CONF) is asserted in the middle
of T1. Note that due to a bus cycle cancellation, the BMT
signal may be asserted at the beginning of T1, and then
deasserted before the time in which it is guaranteed valid
(see Section 4.4.2).

A confirmed bus cycle is completed at the end of T2, unless
a cycle extension is requested. Following state T2 is either
state T1 of the next bus cycle, or an idle T-state, if the CPU
has no bus cycle to perform.

In case of a read cycle the CPU samples the data bus at the
end of state T2.

If a bus exception is detected, the data is ignored.

For write bus cycles, valid data is output from the middle of
T1 until the end of the cycle. When a write bus cycle is
immediately followed by another write cycle, the CPU keeps
driving the bus with the data related to the previous cycle
until the middle of state T1 of the second bus cycle.

The CPU always inserts an idle state before a write cycle
when the write immediately follows a read cycle.
Note: The CPU can initiate a bus cycle with a n·state and then cancel the

cycle, such as when a TLB miss or a Cache hit occurs. In such a case,
the CONF signal remains High and the eMT signal is driven High; the
n·slale is followed by anolher noslale or an Idle Toslale.

2-51

ANY

BCLK [

IT-STATE I Tl

- IX: I--)(- I--

'/, rl/. 'I/, ~---
\.

AO-3{

00-31 [

ODIN [

ADS [

BIIT [

\.. I I\. V
Vb I~

CONr [

ROY [

BRT [

BER [

'/,

'/,

Z

BOUT [

BiN [IJ

BWO-l, [
CIIN,IOOEC 'J

'-BEO- 3, STO- 4, [
U;S, CIOUT,IOINH 0-

If/, rl/.

rl/. rl/.

Vii 'Iii

'Iii 'Iii

'1/ II/

Y I--

.... I--

'-CASEC [
- IX: 0--

/

'Iii

'Iii

'Iii

/

'Iii

VI;

X

I--

I--

-

'Iii

'Iii

Vii

Vii

VII

)(

T2 I T1 OR n I

IX

-- rG>- - _.

I

\. J

I v.tI

II

'Iii 'A /J VLL 011

Vii V '< 'Iii 'IlL

VI.. ~ 'Iii 'II!

'II- '/Ii 'Iii 'Iii VII

7X)G 'II-rl/. Iff.

X I--X I--

~ --
TLlEE/9354-28

FIGURE 3·23. Basic Read Cycle

z
~
N
U1
c.:I
~
N o
Z
CJ)
c.:I
N
U1
c.:I
N
N
U1
Z
~
N
U1
c.:I

~ o

•

C) ,---,

~
C")

~ en z
iij
N
C")
an
N
C")

en
z
~
N
C")
an
N

~
Z

3.0 Functional Description (Continued)

ANY

BCLK[
,T- STATE, Tl

'l.

AO-3{

DO-3{

ODIN [

ADS [

BtoIT [

CDNF [

ROY [

BRT [

BER[

'l.

'I

Z

BOUT [

BiN [IJ

'II,

\.

iXU

'II,

'II,

'Iii

'IIJ

'/, '1/

IX

'II, ~ K

I

/ \. /

~ -
/ "

'II, 'II. 'II,

'II, '(fh rL!J

Vii Vii '1h

I

'IIJ 'II. VIJ

'II 'II 'II BWO-{

B[o-3, [
STO-4,U/S

~-

--X -- ')(

T2 ,T10RTI,

X

DATA OUT

"-

\. /

I ~ /

1/ \. -
'II, ~ II //J 11/

'1h 'I '(; 'Iii 'Lit

'I/, XI VII VII

VIJ VI. VIJ IIJ V//

~ ex 'II, 'II, 'II,
X

TUEE/9354-29

FIGURE 3-24. Write Cycle

2-52

3.5.4.3 Burst Cycles

The NS32532 is capable of performing burst cycles in order
to increase the bus transfer rate. Burst is only available in
instruction fetch cycles and data read cycle from 32-bit wide
memories. Burst is not supported in operand write cycles or
slave cycles.

The sequence of events for burst cycles is shown in Figure
3-25. The case shown assumes that the selected memory is
capable of communicating with the CPU at full speed. If not,
then cycle extension can be requested through the ROY
line. See Section 3.5.4.4.
A Burst cycle is composed of two parts. The first part is a
regular cycle (opening cycle), in which the CPU outputs the
new status and asserts all the other relevant control signals.
In addition, the Burst Out Signal (BOUn is activated by the
CPU indicating that the CPU can perform Burst cycles. If the
selected memory allows Burst cycles, it will notify the CPU
by activating the burst in signal (BIN). BIN is sampled by the
CPU in the middle of T2 on the falling edge of BClK. If the
memory does not allow burst (BIN high), the cycle will termi­
nate at the end of T2 and BOUT will go inactive immediate­
ly. If the memory allows burst (BIN low), and the CPU has
not deasserted BOUT, the second part of the Burst cycle
will be performed and BOUT will remain active until termina­
tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In
each of them a data item is read by the CPU. For each
nibble in the burst sequence the CPU forces the 2 least-sig­
nificant bits of the address to 0 and increments address bits
2 and 3 to select the next double-word; all the byte enable
signals (BEO-3) are activated.

As shown in Figures 3-25 and 4-8 (in Section 4), the CPU
samples ROY at the end of each nibble and extends the
access time for the burst transfer if ROY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status = 01000 or
0(001), and the instruction address does not fall within
the last double-word in an aligned 16-byte block (e.g.,
address bits 2 and 3 are not both equal to 1).

2.A data item must be read (Status = 01010,01011 or
0(100), and all of the following conditions are met.

• The data cache is enabled and not locked. (DC = 1
and lOC = 0 in the CFG register.)

• The addressed page is cacheable as indicated in the
level-2 Page Table Entry.

• The bus cycle is not an interlocked data access per-
formed while executing a CBITI or SBITI instruction.

The Burst sequence will be terminated when one of the
following events occurs.
1. The last instruction double-word in an aligned 16-byte

block has been fetched.

2. The CPU detects that the instructions being prefetched
are no longer needed due to an alteration of the flow of
control. This happens, for example, when a Branch in­
struction is executed or an exception occurs.

3. 4 double-words of data have been read by the CPU. The
double-words are transferred within an aligned 16-byte
block in a wrap-around order. For example, if a source
operand is located at address 104, then the burst read
cycle transfers the double-words at 104, 108, 112, and
100, in that order.

,--,z
3.0 Functional Description (Continued)

ANY

8CLK [

IT - STATE I T1 I T2 I T28 I T28 I T28 I T1 OR Ti I

AO-3{

DO- 31 [

DDIN [

ADS [

st,tT [

CONF [

RDY [

8EO- 3 [

BfN[

80UT [

I;

1:

Ii.

[i,

8WO-I,
CIIN,IODEC

STO - 4,U/S
ClOUT, 10lNH

[1:

['l
[

VI;

I~

~

'ILl

ru

~

VfJ

[: I--r--CASEC

X r--D< I'"'-

r-- I'"'-

VII ~ K! D-~
1\

\. V

1'% +--V

II

V~ V~ VI; VI; VA Ii ~ h ~

lX 1\

'II; 'II, Vii VA Ii ~ Ii IA II

1\

f/I, VI, VI; VII V/ ~ {/ '<G {f

fj~ 'Iii Vh VII V/ ~ V ~ f'l
II; VI; VI; ~ P< rtL; rtL; '(fL VfL

JX

DC +--
IX +--

FIGURE 3-25. Burst Read Cycles

2-53

pc r--tx r--

p-~ ~ fJ

1/

.\... /

I~ ~ V

l/ I\. +--

Ii ~ II VI; VI,

/

VI; f// III, rl/ VI

V

~ V 'V III VI;

~ r; 'V (II VI,

VLL VfL VI; VI; :/~

D<

DC +--
+--

TL/EE/9354-30

en
(0)
I\)
(11
(0)
I\)

I
I\)
o
z
en
(0)
I\)
(11
(0)
I\)

I
I\)
(11
z
en
(0)
I\)
(11
(0)
I\)

w
o

i z

~
It)
N
CO)

en
z ;
o z

3.0 Functional Description (Continued)

4. The BIN signal is deasserted.

5. BRT is asserted to signal a bus retry.

6. IODEC is asserted or the BWO-1 signals indicate a bus
width other than 32-bits. The CPU samples these signals
during state T2 of the opening cycle. During T2B-states
BWO-1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled
during the last state of the transfer when the cycle is ex­
tended. See Section 3.5.4.4.
Note: A burst sequence is not stopped by the assertion of BEA. See Note 3

In Section 3.5.5.

3.5.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32532 provides for extension of a
bus cycle. Any type of bus cycle except a slave processor
cycle can be extended.

A bus cycle can be extended by causing state T2 for a
normal cycle or state T2B for a Burst cycle to be repeated.

At the end of each T2 or T2B state, on the rising edge of
BCLK, the RDY line is sampled by the CPU. If RDY is active,
then the transfer cycle will be completed. If RDY is inactive,
then the bus cycle is extended by repeating the T-state for
another clock cycle. These additional T-states inserted by
the CPU in this manner are called 'WAIT' states.

During a transfer the CPU samples the input control signals
BIN, BER, BRT, BWO-1, CIIN and IODEC.

When wait states are inserted, only the values of these sig­
nals sampled during the last wait state are significant.

Figures 3-26 and 4-8 (in Section 4) illustrate both a normal
read cycle and a Burst cycle with wait states added through
the RDYpin.
Note: If RST is asserted during a bus cycle, then the cycle is terminated

without regard of ROY.

3.5.4.5 Interlocked Bus Cycles

The NS32532 supports indivisible read-modify-write trans­
actions by asserting the ILO signal during consecutive read
and write operations. See Figure 4-7 in Section 4.

Interlocked transactions are always preceded and followed
by one or more idle T-states.

The ILO signal is asserted in the middle of the idle T-state
preceding state T1 of the read operation, and is deasserted
in the middle of one of the idle T -states following completion
of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur
while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys­
tems to handle shared resources. The CPU uses them to
reference data while executing a CBITIi or SBITIi instruction,
during which a single byte of data is read and written. They
are also used when the on-chip MMU is updating a Level-2
Page Table Entry during a Page Table Lookup.

In this case a double-word is read and written. If the Level-2
Page Tables are located in a memory area whose width is
other than 32 bits, multiple interlocked reads followed by
multiple interlocked writes will result. The ILO signal is al­
ways released for one or more clock cycles in the middle of
two consecutive interlocked transactions.
Note 1: If a bus error is detected during an interlocked read cycle, the sub·

sequent Interlocked write cycle will not be performed, and ILO is
deasserted before the next bus cycle begins.

2-54

Note 2: The CPU may assert j[Q before a read cycle thai is cancelled (for
example, due to a TLB miss). In such a case, the CPU deasserts
j[Q before performing any additional bus cycles.

3.5.4.6 Interrupt Control Cycles

The CPU generates Interrupt-Acknowledge bus cycles in re­
sponse to non-maskable interrupt and enabled maskable
interrupt requests.

The CPU also generates one or two End-of-Interrupt bus
cycles during execution of the Return-Irom-Interrupt (RETI)
instruction.

The timing for the interrupt control cycles is the same as for
the basic memory read cycle shown in Figure 3-23; only the
status presented on pins STO-4 is different. These cycles
are single-byte read cycles, and they always bypass the
data cache.

Table 3-4 shows the interrupt control sequences associated
with each interrupt and with the return Irom its service pro­
cedure.

3.5.4.7 Slave Processor Bus Cycles

The NS32532 performs bus cycles to transfer information to
or from slave processors while executing floating-point or
custom-slave instructions.

The CPU uses slave write bus cycles to broadcast the iden­
tification and operation codes of a slave instruction as well
as to transler operands from memory or general purpose
registers to a slave.

Figure 3-27 shows the timing lor a slave write bus cycle.
The CPU asserts SPC during T1; the status is valid during
T1 and T2. The operation code or operand is output on the
data bus from the middle of T1 until the end of T2. The
address line A9 is used during the transfer of the operation
code to communicate to the slave the value of the I bit in the
PSR register. A9 is high when the I bit is 1.

The CPU uses a slave read bus cycle to transfer a result
operand Irom a slave to either memory or a general purpose
register. A slave read cycle is also used to read a status
word when the FSSR signal is asserted. Figure 3-28 shows
the timing for a slave read bus cycle.

During T1 and T2 the CPU drives the status lines and as­
serts SPC. The data from the slave is sampled at the end of
T2.

The CPU will never perform another slave cycle immediately
following a slave read cycle. In fact, the T-state following
state T2 01 a slave read cycle is either an idle T-state or the
T1 state of a memory cycle.

Slave processor data translers are always 32 bits wide. If
the operand is a single byte, then it is transferred on DO
through D7. If it is a word, then it is transferred on DO
through D15.

When two operands are transferred, operand 1 is trans­
ferred before operand 2. For double-precision operands, the
least-significant double-word is transferred before the most­
Significant double-word.

During a slave bus cycle the output signals BEO-3 are un­
defined while the input signals BWO-1 and RDY are ig­
nored.

BER and BRT must be kept high.

,--, z
3.0 Functional Description (Continued)

ANY
IT-STATE I Tl I T2 IT2(W)ITlORnl

AO-3{

DO-3{

DDIN [

ADS [

Bt.H [

--
'/

'J

'/

DC
rll

\.

~

VII

rll

CONF [

RDY [

8RT [

8ER ['/ '1/

BOUT [

BiN [

8WO-l, [
CIIN,IODEC

IJ

1/

--8£0- 3, STO- 4, [
U/S, CIOUT,IOINH -

CASEC [
--
--

VI/

VI/

Dc
+--
+--

t--
+--

(II

V

III

(II

'II

VI/

VI/

t--

t--

pc

~

i?--r-

\.

I\.. V

I~ t--

\1 \

III 'I/,

(I/, (I/,

'II If/,

\1

VII VII

'1/ 'II

X

t--

D< t--

lX

-- -- _. I<E>-
L

\.

V ~

V

r//, rl ~ ~ fl

rfiL rfh '(fi-rI '<

'fL, 'L/. V/, ~

VI/, 'II 'II 'I/, 'I/,

'1/ II/ ~ P< [fL;

X

3-26. Cycle Extension of a Basic Read Cycle

2-55

- -.

..I

- /

I\. ~
VLi rtiL

r.tL r'!i

'fL, 'ffL

,/1 II~

rLL (fl

DC +--
+--

TLlEE/9354-31

en
Co)
N
U1
Co)

~
N o
Z en
Co)
N
U1
Co)
N

I
N
U1
Z en
Co)
N
U1
Co)
N

I
Co)
o

C) r---,
C") .
C'\I
C")
In
C'\I
C")
(f)
z
In
~
C'\I
C")
In
C'\I
C")
(f)
z
C)

~
C")
In
C'\I
C")
(f)
z

3.0 Functional Description (Continued)

TABLE 3-4. Interrupt Sequences
Data Bus

r~------------~·------------~\

Cycle Status Address ODIN BE3 BE2 BE1 BED Byte 3 Byte 2 Byte 1 By teD
A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge
1 00100 FFFFFF0016 0 0 X X X X

Interrupt Return
None: Performed through Return from Trap (RETT) instruction .

B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge

1 00100 FFFFFE0016 0 0 X X X X
Interrupt Return

1 00110 FFFFFE0016 0 0 X X X X
C. Vectored Interrupt Sequences: Non-Cascaded

Interrupt Acknowledge
1 00100 FFFFFE0016 0 0 X X X Vector:

Range: 0-127
Interrupt Return

1 00110 FFFFFE0016 0 0 X X X Vector: Same as
in Previous Int.
Ack. Cycle

D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge

1 00100 FFFFFE0016 0 0 X X X Cascade Index:
range -16to-1

(The CPU here uses the Cascade Index to find the Cascade Address)
2 001101 Cascade 0 See Note

Address
Vector, range 16-255; on appropriate byte of
data bus.

Interrupt Return
1 00110 FFFFFE0016 o

(The CPU here uses the Cascade Index to find the Cascade Address)
2 00111 Cascade 0 See Note

Address
X = Don't Care

Note: BEQ-BE3 signals will be activated according to the cascaded leu address

2-56

o X X

X X

X

X

Cascade Index:
Same as in
previouslnt.
Ack.Cycle

X

3.0 Functional Description (Continued)

00-3{
SPC [

ODIN [

STO-4 [

ANY
IT - STATEI T1 T2

I
}-K DATA OUT

I\. I--V

/

X

\.

X

TLlEE/9354-32

FIGURE 3-27. Slave Processor Write Cycle

3.5.5 Bus Exceptions

The NS32532 has the capability of handling errors occurring
during the execution of a bus cycle. These errors can be
either correctable or incorrectable, and the CPU can be no­
tified of their occurrence through the input signals BRT and!
or BER.

Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the BRT signal. BRT is sampled at the end of
state T2 or T2B.

When the CPU detects that BRT is active, it completes the
bus cycle normally, but ignores the data read in case of a
read cycle, and maintains a copy of the data to be written in
case of a write cycle. Then, after a delay of two clock cy­
cles, it will start executing the bus cycle again.

If the transfer cycle is multiple (e.g., for non-aligned data),
only the problematic part will be repeated.

For instance, if a non-aligned double-word is being trans·
ferred and the second half of the transfer fails, only the
second part will be repeated.

The same applies for a retry during a burst sequence. The
repeated cycle will begin where the read operation failed
(rather than the first address of the burst) and will finish the
original burst.

Figures 3-29 and 4-10 (in Section 4) show the BRT timing
for a basic access cycle and for burst cycles respectively.

The CPU always waits for BRT to be HIGH before repeating
the bus cycle. While BRT is LOW, the CPU places all the
output signals shown in Figure 4-11 in a TRI-STATE® condi·
tion.

Bus Error

If a bus error is incorrectable the CPU may be requested to
interrupt the current process and branch to an appropriate
procedure to handle the error. The request is performed by

2-57

BClK [

00-3{

SPC [

ODIN [

STO-4[

ANY
IT - STATE I T1

\.

\.

X

T2 I T1 or TI I

E3

/

TL/EE/9354-33

FIGURE 3-28. Slave Processor Read Cycle

activating the BER signal. BER is sampled by the CPU at
the end of state T2 or T2B on the rising edge of BCLK.
When BER is sampled active, the CPU completes the bus
cycle normally. If a bus error occurs during a bus cycle for a
reference required to execute an instruction, then a bus er­
ror exception is recognized. However, if an error occurs dur­
ing an acknowledge cycle of another exception or during
the ICU read cycle of a RETI instruction, the CPU interprets
the event as a fatal bus error and enters the 'halted' state.

In this state the CPU floats its address and data buses and
places a special status code on the STO-4 lines. The CPU
can exit this condition only through a hardware reset. Refer
to Section 3.2.6 for more details on bus error.
Note 1: If the erroneous bus cycle is extended by means of wait states, then

the CPU uses the values of BRT and/or BER sampled during the
last wait state.

Note 2: If the CPU samples both BRT and BER active. BRT has higher
priority. The bus error indication is ignored, and the bus cycle is
repeated.

Note 3: If BER is asserted during a bus cycle of a multi·cycle data transfer.
the CPU completes the entire transfer normally, but the data will be
ignored. The CPU also ignores any subsequent assertion of BER
during the same data transfer.

Note 4: Neither BRT nor BER should be asserted during the T2 state of a
slave processor bus cycle.

3.5.6 Dynamic Bus Configuration

The NS32532 is tuned to operate with 32-bit wide memory
and peripheral devices. The bus also supports S-bit and
l6-bit data widths, but at reduced efficiency. The CPU can
switch from one bus width to another dynamically; the only
restriction is that the bus width cannot change for locations
within an aligned l6-byte block.

The CPU determines the bus width in effect for a bus cycle
by using the values of the BWO and BWl signals sampled
during the last T2 state. Values of BWO and BWl sampled
before the last T2 state or during T2B states are ignored.
Whenever a bus width other than 32·bit is sampled by the
CPU, the bus remains idle for 2 clock cycles before the next
bus cycle can be initiated.

z
(J)
Co)
N en
Co)

~
N
C
Z
(J)
Co)
N en
Co)
N .
N en
Z
(J)
Co)
N en
Co)

~
Co)
C

tI

3.0 Functional Description (Continued)

ANY
IT - STATE I T1 I T2 I T1 OR TI I TI I T1 I T2 I T1 or TI I

-X ~ ~ X ~ DC ~ .-(X - ~

'I. 'II. 'II. /)'- -- _. ~ .. -- I-- _. -- I-- _. ~ .. -- _.

\. I \. I

\. / \. / \. J I\. V \. V

AO-3{

00-3{
ODIN [

ADS [

BtotT [r'0 ~ - V ~ I~ ~ V ~ I--V

'l. 'II.

CONF [

ROY [

BRT [

BER [

'1'1/

Z

BOUT [

~[iJ

BWO-1, [
CIIN,IOOEC '/

.-BEO-3,STO- 4, [
U/S, CIOUT,IOINH .-

--
--CASEC [

'II.

'I!J

VIJ

he ...
~

~

'II.

'1/

'Ih

'I!J

'I)

....-
~

~

/ \.

'Ih rll. 'II. ~

'II. 'II. '1/ ~

'Ih Vii 'II.

/

'Ih 'I!J 'III 'I!J

II) (II vX .. ~ ~

X

~ X ~

/ .f

IJ VII III Iii Iii 'III 'III ~ Iv

I-r/h 'II. 'IJ VI) II- 'Iii V ~

'G Vii Vii Vii 'Iii 'Ih 'Iii 'I ~

I!J Iii III III VII VII III II) III

'II. 'II 'IJ 'IJ 'I) 'I) vX .. ~ ~ 'Ih

X
,.....

X - ')(X ... ~ -
~ - X - X- -

FIGURE 3·29. Bus Retry During a Basic Read Cycle

2-58

\. I-
I/V I,

7l. ~

~ ~

VIJ V/

'I!J rh

- -

X --
TL/EE/93S4-34

3.0 Functional Description (Continued)

The various combinations for BWO and BW1 are shown be­
low.

.-
BW1 BWO

0 0 Reserved
0 1 8-Bit Bus
1 0 16-Bit Bus
1 1 32-Bit Bus

The bus width must always be 32 bits during slave cycles.
An important feature of the NS32532 is that it does not
impose any restrictions on the data alignment, regardless of
the bus width.

Bus accesses are performed in double-word units. Access­
es of data operands that cross double-word boundaries are
decomposed into two or more aligned double-word access­
es.

The CPU provides four byte enable signals (BEO-3) which
facilitate individual byte accessing on either a 32-bit or a
16-bit bus.

Figures 3-30 and 3-31 show the basic interfaces for 32-bit
and 16-bit memories. An 8-bit memory interface (not shown)
is even simpler since it does not use any of the BEO-3
signals and its single bank is always enabled whenever the
memory is selected. Each byte location in this case is se­
lected by address bits AO-31.

The NS32532 does not keep track of the bus width used in
previous instruction fetches or data accesses. At the begin­
ning of every memory transaction, the CPU always assumes
that the bus is 32-bit wide and the BEO-3 signals are acti­
vated accordingly.

The BOUT signal is also asserted during instruction fetches
or data reads if the conditions for bursting are satisfied. If
the bus is other than 32-bit wide, the BIN signal is ignored
and BOUT is deasserted at the beginning of the T state
following T2, since burst cycles are not allowed for 8-bit or
16-bit buses.

A2-31

DO-31\r ______________________ ~

TL/EE/9354-35

FIGURE 3-30. Basic Interface for 32-Blt Memories
Note: The CACH signal must be asserted during cacheable read accesses.

2-59

The following subsections provide detailed descriptions of
the access sequences performed in the various cases.
Note: Although the NS32532 ignores the BIN signal for B·bit and 16-bit bus

widths, it is recommended that BIN be asserted only if the system
supports burst transfers. This is to ensure compatibility with future
versions of the CPU that might support burst transfers for 8·bit and
16-bit buses.

Al

BE2 -""';;"---L...-;
BEO--------,
BE3---.....,
8El-----.,
CACH----~H_-_,

AI-31

00-15 \,.. ______ ..J

TL/EE/9354-36

FIGURE 3-31. Basic Interface for 16-Blt Memories

3.5.6.1 Instruction Fetch Sequences

The CPU performs two types of Instruction fetch cycles: se­
quential and non-sequential. These can be distinguished
from each other by the differing status combinations on pins
STO-4. For non-sequential instruction fetches the CPU
presents on the address bus the exact byte address of the
first instruction in the instruction stream that is about to be­
gin; for sequential instruction fetches, the address of the
next aligned instruction double-word is presented on the ad­
dress bus. The CPU always activates all byte enable signals
(BEO-3) for both sequential and non-sequential fetches.
BOUT is also asserted during T2 if the addressed double­
word is not the last in an aligned 16-byte block. Tables 3-5
to 3-7 show the fetch sequence for the various bus widths.

32-Blt Bus Width

The CPU reads the entire double-word present on the data
bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3
consecutive double-words using burst cycles. Burst cycles
are used for instruction fetches regardless of whether the
accesses are cacheable.

z en
Co)
N
CI1
Co)
N

I
N o
Z en
Co)
N
CI1
Co)
N

I
N
CI1
Z en
Co)
N
CI1
Co)

~
Co)
o

•

3.0 Functional Description (Continued)

Example: JUMP @5 Example JUMP @6

• The CPU performs a fetch cycle at address 5 with BEO-3 • A fetch cycle is performed at address 6 with BEO-3 all
all active. active.

• Two burst cycles are then performed and addresses 8 and • The word at address 4 is then fetched if the access is
12 are output while BEO-3 are kept active. cacheable.

16-Bit Bus Width 8-Blt Bus Width

The word on the least-significant half of the data bus is read The instruction byte on the bus lines DO-7 is fetched. The
by the CPU. This is either the even or the odd word within CPU performs three consecutive cycles to read the remain-
the required instruction double-word, as determined by ad- ing bytes within the required double-word, while keeping
dress bit 1. BEO-3 all active. The 4 bytes are then assembled into a

The CPU then complements address bit 1, clears address double-word and transferred into the instruction buffer. For

bit 0 and initiates a bus cycle to read the other word, while a non-sequential fetch, if the access is not cacheable, the

keeping all the BEO-3 signals active. CPU will only read the upper bytes within the instruction

These two words are then assembled into a double-word
double-word starting with the byte at the instruction ad-

and transferred into the instruction buffer. dress.

In case of a non-sequential fetch, if the access is not cache-
Example: JUMP @7

able and the instruction address selects the odd word within • The CPU performs a fetch cycle at address 7 with BEO-3

the instruction double-word, the even word is not fetched. all active.

• Bytes at addresses 4, 5 and 6 are then fetched consecu-
tively if the access is cacheable.

TABLE 3-5. Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus

1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A 'C' on the data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An 'I' refers
to non-cacheable fetches and indicates that the byte is ignored.

Number Address
Bytes to be Fetched

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 11 BO - - - A LLLL BO C/I C/I CII

2 10 81 BO - - A LLLL B1 BO CII C/I

3 01 B2 B1 BO - A LLLL B2 B1 BO C/I

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3-6. Cacheable/Non-Cacheable Instruction Fetches from a 16-Blt Bus

1. A bus access marked with '0' in the 'Address Bus' column Is performed only if the fetch is cacheable.

Number Address
Bytes to be Fetched

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 11 BO - - - A LlLL - - BO C/I
°A - 3 LLLL - - C C

2 10 B1 BO - - A LLLL - - B1 BO
°A - 2 LLLL - - C C

3 01 B2 B1 BO - A LLLL - - BO C/I
A+1 LLLL - - B2 B1

4 00 B3 B2 B1 BO A LLLL - - B1 BO
A+2 LLLL - - B3 B2

2-60

3.0 Functional Description (Continued)

TABLE 3·7. CacheablelNon-Cacheable Instruction Fetches from an 8-Bit Bus

Number Address
Bytes to be Fetched

of Bytes LSB

1 11 BO - - -

2 10 B1 BO - -

3 01 B2 B1 BO -

4 00 B3 B2 B1 BO

3.5.6.2 Data Read Sequences

The CPU starts a data read access by placing the exact
address of the operand on the address bus. The byte en­
able lines are activated to select only the bytes required by
the instruction being executed. This prevents spurious ac­
cesses to peripheral devices that might be sensitive to read
accesses, such as those which exhibit the characteristic of
destructive reading. If the on-chip data cache is internally
enabled for the read access, the BOUT signal is asserted at
the beginning of state T2. BOUT will be deasserted if the
data cache is externally inhibited (through CIiN or IODEC),
or the bus width is other than 32 bits. During cacheable
accesses the CPU always reads all the bytes in the double­
word, whether or not they are needed to execute the in­
struction, and stores them into the data cache. The external
memory, in this case, must place the data on the bus reo
gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited
during the access, the CPU ignores the bytes not selected
by the BEO-3 signals. Data read sequences for the various
bus widths are shown in tables 3-8 to 3·10.

32-Bit Bus Width

The entire double·word present on the bus is read by the
CPU. If the access is cacheable and the memory allows
burst accesses, the CPU reads up to 3 additional double­
words within the aligned 16-byte block containing the first
byte of the operand. These burst accesses are performed in
a wrap·around fashion within the 16·byte block.

Example: MOVW @5, RO

• The CPU reads a double-word at address 5 while keeping
BE1 and BE2 active.

• If the access is not-cacheable, BOUT is deasserted and
the data bytes 0 and 3 are ignored.

• If the access is cacheable, the CPU performs burst cycles
with BEO-3 all active, to read the double·words at ad·
dresses 8, 12, and O.

2-61

Address
BEO-3 Data Bus

Bus

A LLLL - - - BO
* A - 3 LLLL - - - C
* A - 2 LLLL - - - C
• A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1

• A - 2 LLLL - - - C
* A - 1 LLLL - - - C

A LLLL - - - BO
A+1 LLLL - - - B1
A+2 LLLL - - - B2

'A - 1 LLLL - - - C

A LLLL - - - BO
A + 1 LLLL - - - B1
A+2 LLLL - - - B2
A+3 LLLL - - - B3

16-Bit Bus Width

The word on the least·significant half of the data bus is read
by the CPU. The CPU can then perform another access
cycle with address bit 1 complemented and address bit 0
cleared to read the other word within the addressed double­
word.

If the access is cacheable, the entire double-word is read
and stored into the cache.

If the access is not cacheable, the CPU ignores the bytes in
the double-word not selected by BEO-3. In this case, the
second access cycle is not performed, unless selected
bytes are contained in the second word.

Example: MOVB @5, RO

• The CPU reads a word at address 5 while keeping BE1
active.

o If the access is not cacheable, the CPU ignores byte O.

o If the access is cacheable, the CPU performs another ac­
cess cycle, with BEO-3 all active, to read the word at
address 6.

8-Bit Bus Width

The data byte on the bus lines DO-7 is read by the CPU.
The CPU can then perform up to 3 access cycles to read
the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read
and stored into the cache.

If the access is not cacheable, the CPU will only perform
those access cycles needed to read the selected bytes.

Example: MOVW @5, RO

o The CPU reads the byte at address 5 while keeping BE1
and BE2 active.

• If the access is not cacheable, the CPU activates BE2 and
reads the byte at address 6.

o If the access is cacheable, the CPU performs three bus
cycles with BEO-3 all active, to read the bytes at address­
es 6, 7 and 4.

z en
Co)
I\)
U1
Co)
I\) · I\)
0
Z en
Co)
I\)
U1
Co)
I\) · I\)
U1
Z en
Co)
I\)
U1
Co)
I\)
• Co)

0

3.0 Functional Description (Continued)

TABLE 3·8. Cacheable/Non·Cacheable Data Reads from a 32·Bit Bus

1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A 'C' on the data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An 'I' refers to non·
cacheable reads and indicates that the byte is ignored.

Number Address
Bytes to be Read

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - BO A HHHL C/I C/I C/I BO

1 01 - - BO - A HHLH C/I C/I BO CII

1 10 - BO - - A HLHH CII BO C/I C/I

1 11 BO - - - A LH H H BO C/I C/I C/I

2 00 - - B1 BO A HH LL C/I CII B1 BO

2 01 - B1 BO - A HLLH C/I B1 BO C/I

2 10 B1 BO - - A LLH H B1 BO C/I C/I

3 00 - B2 B1 BO A HLLL CII B2 B1 BO

3 01 B2 B1 BO - A LLLH B2 B1 BO C/I

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 80

TABLE 3·9. Cacheable/Non·Cacheable Data Reads from a 16·Bit Bus

1. A bus access marked with '.' in the 'Address Bus' column is performed only if the read is cacheable.

Number Address
Data to be Read

Address BEO-3
Data Bus

of Bytes LSB Bus Cach. NonCach.

1 00 - - - BO A HHHL HHHL - - C/I BO

• A + 2 LLLL - - C C

1 01 - - BO - A HHLH HHLH - - BO C/I
*A + 1 LLLL - - C C

1 10 - BO - - A HLHH HLHH - - C/I BO
* A - 2 LLLL - - C C

1 11 BO - - - A LHHH LHHH .- - BO C/I
• A - 3 LLLL - - C C

2 00 - - B1 BO A HH LL HHLL - - B1 BO
*A + 2 LLLL - - C C

2 01 - 81 BO - A HLLH HLLH - - 80 C/I
A+1 LLLL HLHH - - C/I 81

2 10 B1 BO - - A LLHH LLH H - - B1 BO

• A - 2 LLLL - - C C

3 00 - B2 B1 BO A HLLL HLLL - - 81 BO
A+2 LLLL HLHH - - C/I 82

3 01 82 B1 BO - A LLLH LLLH - - BO C/I
A+1 LLLL LLH H - - B2 B1

4 00 B3 B2 81 BO A LLLL LLLL - - B1 80
A+2 LLLL LLH H - - B3 82

2-62

3.0 Functional Description (Continued)

TABLE 3-10. CacheableINon-Cacheable Data Reads from an 8-Bit Bus 08-12

Number Address
Data to be Read

Address BEO-3
Data Bus

of Bytes LSB Bus Cacho NonCach.

1 00 - - - BO A HHHL HHHL - - - BO
*A + 1 LLLL - - - C
*A + 2 LLLL - - - C
*A + 3 LLLL - - - C

1 01 - - BO - A HHLH HHLH - - - BO
'A + 1 LLLL - - - C
'A + 2 LLLL - - - C
'A-1 LLLL - - - C

1 10 - BO - - A HLHH HLHH - - - BO
'A+ 1 LLLL - - - C
*A - 2 LLLL - - - C
'A - 1 LLLL - - - C

1 11 BO - - - A LH H H LH H H - - - BO
'A - 3 LLLL - - - C
*A - 2 LLLL - - - C
*A - 1 LLLL - - - C

2 00 - - Bl BO A H H LL H H LL - - - BO
A+l LLLL HHLH - - - Bl

*A + 2 LLLL - - - C
*A + 3 LLLL - - - C

2 01 - Bl BO - A HLLH HLLH - - - BO
A+l LLLL HLHH - - - Bl

*A+ 2 LLLL - - - C
'A - 1 LLLL - - - C

2 10 Bl BO - - A LLH H LLH H - - - BO
A+l LLLL LHHH - - - Bl

*A - 2 LLLL - - - C
'A - 1 LLLL - - - C

3 00 - B2 Bl BO A HLLL HLLL - - - BO
A+l LLLL HLLH - - - Bl
A+2 LLLL HLHH - - - B2

*A + 3 LLLL - - - C

3 01 B2 Bl BO - A LLLH LLLH - - - BO
A+l LLLL L L H H - - - Bl
A+2 LLLL LHHH - - - B2

*A - 1 LLLL - - - C

4 00 B3 B2 Bl BO A LLLL LLLL - - - BO
A+1 LLLL LLLH - - - Bl
A+2 LLLL LLH H - - - B2
A+3 LLLL LHHH - - - B3

3.5.6.3 Data Write Sequences 32-Bit Bus Width

In a write access the CPU outputs the operand address and The CPU performs only one access cycle to write the se-
asserts only the byte enable lines needed to select the spe- lected bytes within the addressed double-word.
cific bytes to be written. Example: MOVB RO, @6
In addition, the CPU duplicates the data to be written on the • The CPU duplicates byte 2 of the data bus into byte 0 and
appropriate bytes of the data bus in order to handle 8-bit performs a write cycle at address 6 with BE2 active.
and 16-bit buses.

16-Bit Bus Width
The various access sequences as well as the duplication of

Up to two access cycles are needed to complete the write
data are summarized in tables 3-11 to 3-13.

operation.

2-63

z
en w
N
U1
W
N

I
N
o
Z en w
N
U1
W
N

I
N
U1
Z
en w
N
U1
W
N

~
o

o
CO)

'" CO)
Ln
N
CO)
U)
Z
Ln
N

'" CO)
Ln
N
CO)
(f)
Z

~
I

N
CO)
Ln
N
CO)
(f)
Z

3.0 Functional Description (Continued)

Example: MOVW RO, @5 signals. By asserting HOLD, an external device requests ac-

o The CPU duplicates byte 1 of the data bus into byte 0 and cess to the bus. On receipt of HLDA from the CPU, the

performs a write cycle at address 5 with BE1 and BE2 device may perform bus cycles, as the CPU at this point has

active. placed all the output signals shown in Figure 3-32 into the

o A write at address 6 is then performed with BE2 active TRI-STATE condition.

and the original byte 2 of the data bus placed on byte O. To return control of the bus to the CPU, the external device

8-Bit Bus Width sets HOLD inactive, and the CPU acknowledges return of

Up to 4 access cycles are needed in this case to complete
the bus by setting HLDA inactive.

The CPU samples HOLD in the middle of each T-state on the write operation.
the falling edge of BCLK. If HOLD is asserted when the bus

Example: MOVB RO, @7 is idle between access sequences, then the bus is granted
• The CPU duplicates byte 3 of the data bus into bytes 0 immediately (see Figure 3-31). If HOLD is asserted during

and 1, and then performs a write cycle at address 7 with an access sequence, then the bus is granted immediately
BE3 active. after the access sequence, including any retried bus cycles,

3.5_7 Bus Access Control has completed (see Figure 4-13). Note that an access se-
quence can be composed of several bus cycles if the bus

The NS32532 has the capability of relinquishing its control width is 8 or 16 bits.
of the bus upon request from a DMA device or another CPU.
This capability is implemented with the HOLD and HLDA

TABLE 3-11. Data Writes to a 32-Bit Bus

1. Bytes on the data bus marked with '.' are undefined.

Number Address
Data to be Written

Address
BEO-3 Data Bus

of By1es LSB Bus

1 00 - - - BO A HHHL • • • BO

1 01 - - BO - A HHLH 0 0 BO BO

1 10 - BO - - A HLHH 0 BO • BO

1 11 BO - - - A LHHH BO • BO BO

2 00 - - B1 BO A H HLL • 0 B1 BO

2 01 - B1 BO - A HLLH • B1 BO BO

2 10 B1 BO - - A LLH H B1 BO B1 BO

3 00 - B2 B1 BO A HLLL • B2 B1 BO

3 01 B2 B1 BO - A LLLH B2 B1 BO BO

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO

TABLE 3·12. Data Writes to a 16·Bit Bus

Number Address
Data to be Written

Address
BEO-3 Data Bus

of Bytes LSB Bus

1 00 - - - BO A HHHL • • • BO

1 01 - - BO - A HHLH • • BO BO

1 10 - BO - - A HLHH • BO • BO

1 11 BO - - - A LHHH BO • BO BO

2 00 - - B1 BO A H H LL 0 • B1 BO

2 01 - B1 BO - A HLLH 0 B1 BO BO
A+1 HLHH • • • B1

2 10 B1 BO - - A LLH H B1 BO B1 BO

3 00 - B2 B1 BO A HLLL • B2 B1 BO
A+2 HLHH • • • B2

3 01 B2 B1 BO - A LLLH B2 B1 BO BO
A+1 LLH H • 0 B2 B1

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+2 LLH H 0 • B3 B2

2-64

3.0 Functional Description (Continued)

TABLE 3-13. Data Writes to an 8-Bit Bus

Number Address Data to be Written Address BEO-3 of Bytes LSB Bus

1 00 - - - 80 A HHHL

1 01 - - 80 - A HHLH

1 10 - 80 - - A HLHH

1 11 80 - - - A LH HH

2 00 - - 81 80 A HH LL
A+1 HHLH

2 01 - 81 80 - A HLLH
A+1 HLHH

2 10 81 80 - - A LLHH
A+1 LHHH

3 00 - B2 B1 BO A HLLL
A+1 HLLH
A+2 HLHH

3 01 82 B1 BO - A LLLH
A+1 LLHH
A+2 LHHH

4 00 B3 82 B1 BO A LLLL
A+1 LLLH
A+2 LLH H
A+3 LHHH

2-65

Data Bus

• · ·
• • 80

• 80 •
80 • 80

• • 81
• • •
• 81 80
• • •

B1 BO B1
• • •
• 82 B1
• • •
• • •

B2 81 BO
• • •
• • •

B3 82 B1
• • •
• • •
• • •

80

80

80

80

80
81

80
81

BO
B1

BO
B1
B2

BO
B1
82

BO
B1
B2
B3

z
(J)
(0)
N
c.n
(0)
N
N o
Z
(J)
(0)
N
c.n
(0)
N

I
N
c.n
Z
(J)
(0)
N
c.n
(0)
N
~ o

fJI

3.0 Functional Description (Continued)

BCLK [

AO-31 [

00-3{ -.-
ODIN [

ADS [

BI.tT [

CONF [

HOLD [

HLDA [

BOUT [

BEO-3[

CASEC [

STO-4[

TI TI

~ -- -

TI

}

-- -- I--

}

'\"

'\"

'\"

I\,

\.

'\"

~

~

TI

-- --
-- --
-. --

1--. --
- --

- --
_. --
- --

T1Jif[h
-- ~S-

_. I.{ X -
- ~S- - -- - (- -- -
- ~S- -Ie x -- -- --

-- ~S- .. IJ I\. /
I-- ~S- - J

I' / ~

- ~S- - J I\, -- r-

ir V

ir - V
- ~S- - IJ " --- ~S-

_. 1.(x ...
.(f-- -----r-- ~S- - x.. ... ~ - r-

" .. X
TL/EE/9354-37

FIGURE 3·32. Hold Acknowledge. (Bus Initially Idle.)
Not.: The status Indicates 'IDLE' while the bus is granted. II the cause 01 the IDLE changes (e.g., CPU starts waiting lor an Interrupt), the status also changes.

The CPU will never grant the bus between interlocked read
and write bus cycles.
Note: II an external device requires a very short latency to get control 01 the

bus, the bus retry signal (BRT) can be used instead 01 hold. See
Section 3.5.5.

3,5.B Interfacing Memory-Mapped 1/0 Devices

In Section 3.1,3.2 it was mentioned that some special pre­
cautions are needed when interfacing 1/0 devices to the
NS32532 due to its internal pipe lined implementation. Two
special signals are provided for this purpose: IOINH and
10DEC. The CPU asserts 10lNH during a read bus cycle to
indicate that the bus cycle should be ignored if an 110 de­
vice is selected. The system responds by asserting 10DEC
to indicate to the CPU that an 110 device has been select­
ed. 10DEC is sampled by the CPU in the middle of state T2.
If the cycle is extended, then the CPU uses the IODEC val­
ue sampled during the last wait state. If a bus error or a bus
retry occurs, the sampled 10DEC value is ignored. 10DEC
must be kept high during burst transfer cycles.

2-66

When 10DEC Is active during a bus cycle for which 10lNH is
asserted, the CPU discards the data and applies the special
handling required for 110 devices. Figure 3-33 shows a pos­
sible implementation of an 1/0 device interface where the
address mapping of the 1/0 devices is fixed.

In an open system configuration, 10DEC could be generated
by the decoding logic of each 1/0 device subsystem.

When the on-chip MMU is enabled, the ClOUT signal could
also be used for this purpose, since 1/0 devices are located
in noncacheable areas. In this case however, a small per­
formance degradation could result, due to the fact that the
special 1/0 handling is also applied on references to non­
cacheable program andlor data areas.
Note 1: When IODEC is active in response to a read bus cycle, the CPU

treats the reference as noncacheable.

Note 2: lOiNR is kept inactive during write cycles.

3.0 Functional Description (Continued)

10lNH

NS32532 ADDRESS ~ L
CPU .)1 DECODE t'"

CHIP
SELECT I/o I DEVICE

TL/EE/9354-3B

FIGURE 3·33. Typical 1/0 Device Interface

3.5.9 Interrupt and Debug Trap Requests

Three signals are provided by the CPU to externally request
interrupts and lor a debug trap. INT and NMi are for maska­
ble and non-maskable interrupts respectively. DBG is used
for requesting an external debug trap.

The CPU samples INT and NMI on every other rising edge
of BClK, starting with the second rising edge of BClK after
RST goes high.

NMI is edge-sensitive; a high-to-Iow transition on it is detect­
ed by the CPU and stored in an internal latch, so that there
is no need to keep it asserted until it is acknowledged.

INT is level-sensitive and, as such, once asserted, it must
be kept asserted until it is acknowledged.

The DBG signal, like NMI, is edge-sensitive; it differs from
NMI in that the CPU samples it on each rising edge of
BClK. DBG can be asserted asynchronously to the CPU
clock, but it should be at least 1.5 clock cycles wide in order
to be recognized.

If DBG meets the specified setup and hold times, it will be
recognized on the rising edge of BClK deterministically.

Refer to Figures 4-19 and 4-20 for more details on the tim­
ing of the above signals.
Note: If the NMI signal is pulsed to request a non-maskable interrupt. it may

be necessary to keep it asserted for a minimum of two clock cycles to
guarantee its detection, unless extra logic ensures that the pulse oc­
curs around the BCLK sampling edge.

3.5.10 Cache Invalidation Requests

The contents of the on-chip Instruction and Data Caches
can be invalidated by external requests from the system. It
is possible to invalidate a single set or all sets in the Instruc­
tion Cache, Data Cache or both. The input signals INVIC
and INVDC request invalidation of the Instruction Cache
and Data Cache respectively. The input signal INVSET indi­
cates whether the invalidation applies to a single set (16
bytes for the Instruction Cache and 32 bytes for the Data
Cache) or to the entire cache. When only a single set is
invalidated, the set number is specified on CIAO-CIA6.

2-67

INVIC, INVDC, INVSET and CIAO-CIA6 are all sampled
synchronously by the CPU on the rising edge of BClK. The
CPU can respond to cache invalidation requests at a rate of
one per BClK cycle.

As shown in Figures 3-16 and 3-17, the validity bits of the
on-Chip caches are dual-ported. One port is used for ac­
ceSSing and updating the caches, while the other port is
used independently for invalidation requests. Consequently,
invalidation of the on-Chip caches occurs with no interfer­
ence to on-going cache accesses or bus cycles.

A cache invalidation request can occur during a read bus
cycle for a location affected by the invalidation. In such a
case, the data will be invalid in the cache if the invalidation
request occurs during or after the T2- or T2B-state of the
bus cycle.

Refer to Figure 4-18 in Section 4 for timing details.

3.5.11 Internal Status

The NS32532 provides information on the system interface
concerning its internal activity.

The U/S signal indicates the Address Space for a memory
reference (See Section 2.4.2).

Note that U/S does not necessarily reflect the value of the
U bit in the PSR register. For example, U/S is high during
the memory access used to store the destination operand of
a MOVSU instruction.

The PFS signal is asserted for one BClK cycle when the
CPU begins executing a new instruction. The ISF signal is
driven High along with PFS if the new instruction does not
follow the previous instruction in sequence. More specifical­
ly, ISF is High along with PFS after processing an exception
or after executing one of the following instructions: ACB
(branch taken), Bcond (branch taken), BR, BSR, CASE,
CXP, CXPD, DIA, JSR, JUMP, RET, RETT, RETI, and RXP.

The BP Signal is asserted for one BClK cycle when an ad­
dress-compare or PC-match condition is detected. If the BP
signal is asserted one BClK cycle after PFS, it indicates
that an address-compare debug condition has been detect­
ed. If BP is asserted at any other time, it indicates that a PC­
Match debug condition has been detected.

While executing an lMR or CINV instruction, the CPU dis­
plays the operation code and source operand using slave
processor write bus cycles. This information can be used to
monitor the contents of the on-chip TlB, Instruction Cache
and Data Cache.

During idle bus cycles, the Signals STO-ST4 indicate wheth­
er the CPU is waiting for an interrupt, waiting for a Slave
Processor to complete executing an instruction or halted.

4.0 Device Specifications

CLOCKING {

BUS ACCESS {
CONTROL

RESET

EXCEPTION {
REQUEST

INTERNAL {
STATUS NS32532

AOORESS

DATA

BUS TIMING AND
CONTROL OUlPUTS

} SLAVE TIMING
AND CONTROL

TL/EE/9354-39

FIGURE 4-1. NS32532 Interface Signals

4.1 NS32532 PIN DESCRIPTIONS

Descriptions of the NS32532 pins are given in the following
sections.

Included are also references to portions of the functional
description, Section 3.

Figure 4·1 shows the NS32532 interface signals grouped
according to related functions.
Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal when FKll1i is acknowledged or during an extended
retry.

4.1.1 Supplies

VCCl1-6 logic Power.

+ 5V positive supplies for on-chip logic.
VCCB1-14 Buffers Power_

VCCClK

GNDl1-6

+ 5V positive supplies for on-chip output
buffers.

Bus Clock Power.

+ 5V positive supply for on-Chip clock driv­
ers.

logic Ground.

Ground references for on-chip logic.

GNDB1-13 Buffers Ground.

Ground references for on-chip output buffers.

GNDClK Bus Clock Ground.

Ground reference for on-Chip clock drivers.

2-68

4.1.2 Input Signals

ClK Clock.

Input Clock used to derive all CPU Timing.

Synchronize.

When SYNC is active, BCLK will stop tog­
gling. This signal can be used to synchronize
two or more CPUs (Section 3.5.2).

Hold Request.

When active, causes the CPU to release the
bus for DMA or multiprocessing purposes
(Section 3.5.7).
Note:

If the FKll1i signal is generated asynchronously. its set
up and hold times may be violated. In this case it is rec­
ommended to synchronize it with CLK to minimize the
possibility of metastable states.

The CPU provides only one synchronization stage to min­
imize the HLDA latency. This is to avoid speed degrada­
tions In cases of heavy HOLD activity (i.e. DMA oontroller
cycles interleaved with CPU cycles).

Reset.

When RST is active, the CPU is initialized to
a known state (Section 3_5.3).

Interrupt.

A low level on this signal requests a maska­
ble interrupt (Section 3.5.9).

NMI Nonmaskable Interrupt.

A High-to-Low transition of this signal re­
quests a nonmaskable interrupt (Section
3.5.9).

4.0 Device Specifications (Continued)

DBG Debug Trap Request.

CIAO-6

A High·to·Low transition of this signal reo
quests a debug trap (Section 3.5.9).

Cache Invalidation Address Bus.

Bits 0 through 4 specify the set address to
invalidate in the on-chip caches. CIAO is the
least significant. Bits 5 and 6 are reserved
(Section 3.5.10).

Invalidate Set.

When Low, only a set in the on-chip cache(s)
is invalidated; when High, the entire cache(s)
is (are) invalidated.

Invalidate Data Cache.

When Low, the Data Cache contents are in­
validated. INVSET determines whether a sin­
gle set or the entire Data Cache is invalidat­
ed.

Invalidate Instruction Cache.

When Low, the Instruction Cache contents
are invalidated. INVSET determines whether
a single set or the entire Instruction Cache is
invalidated.

CIIN Cache Inhibit In.

BWO-1

When active, indicates that the location refer­
enced in the current bus cycle is not cache­
able. CIIN must not change within an aligned
16-byte block.

I/O Decode.

Indicates to the CPU that a peripheral device
is addressed by the current bus cycle. The
value of IODEC must not change within an
aligned 16-byte block (Section 3.5.8).

Force Slave Status Read.

When asserted, indicates that the slave
status word should be read by the CPU (Sec­
tion 3.1.4.1). An external 10 kn resistor
should be connected between FSSR and
Vee·
Slave Done.

Used by a slave processor to signal the com­
pletion of a slave instruction (Section
3.1.4.1). An external 10 kn resistor should be
connected between SON and Vee.

Burst In.

When active, indicates to the CPU that the
memory supports burst cycles (Section
3.5.4.3).

Ready.

While this Signal is not active, the CPU ex­
tends the current bus cycle to support a slow
memory or peripheral device.

Bus Width.

These lines define the bus width (8, 16 or 32
bits) for each data transfer; BWO is the least
significant bit. The bus width must not
change within an aligned 16-byte block-en­
codings are:

OO-Reserved

01-8 Bits

2·69

10-16 Bits

11-32 Bits

BRT Bus Retry.

When active, the CPU will reexecute the last
bus cycle (Section 3.5.5).

BER Bus Error.

When active, indicates that an error occurred
during a bus cycle. It is treated by the CPU as
the highest priority exception after reset.

4.1.3 Output Signals

BCLK Bus Clock.

U/S

CASEC

ClOUT

Output clock for bus timing (Section 3.5.2).

Bus Clock Inverse.

Inverted output clock.

Hold Acknowledge.

Activated by the CPU in response to the
HOLD input to indicate that the CPU has re­
leased the bus.

Program Flow Status.

A pulse on this signal indicates the beginning
of execution for each instruction (Section
3.5.11).

Internal Sequential Fetch.

Indicates along with PFS that the instruction
beginning execution is sequential (ISF Low)
or non·sequential (ISF High).

User/Supervisor.

User or supervisor mode status.

Break Point.

This signal is activated when the CPU de­
tects a PC or operand-address match debug
condition (Section 3.3.2).

'Cache Section.
For cacheable data read bus cycles indicates
the Section of the on·chip Data Cache where
the data will be placed; undefined for other
bus cycles. This signal can be used for exter­
nal monitoring of the data cache contents.

Cache Inhibit Out.

This signal reflects the state of the CI bit in
the second level page table entry (PTE). It is
used to specify non-cacheable pages. It is
held low while address translation is disabled
and for MMU references to page table en­
tries.

I/O Inhibit.
Indicates that the current bus cycle should
be ignored if a peripheral device is ad·
dressed.

Slave Processor Control.

Data strobe for slave processor transfers.

"Burst Out.

When active, indicates that the CPU is re­
questing to perform burst cycles.

Interlocked Operation.

When active, indicates that interlocked cy­
cles are being performed (Section 3.5.4.5).

z en
Co)
N
c.n
Co)
N · N o
Z en
Co)
N
c.n
Co)
N · N
c.n
Z en
Co)
N
c.n
Co)
N · Co)
o

4.0 Device Specifications (Continued)

ODIN "Data Direction. 00101-lnterrupt Acknowledge, Cascaded.
Indicates the direction of a data transfer. It is 00110-End of Interrupt, Master.
low for reads and high for writes. 00111-End of Interrupt, Cascaded.

CONF "Confirm Bus Cycle. 01000-8equentiallnstruction Fetch.
When active, indicates that a bus cycle initia- 01001-Non-Sequentiallnstruction Fetch.
ted by ADS is valid; that is, the bus cycle has

01 01 O-Data Transfer.
not been cancelled (Section 3.S.4.2).

01 011-Read Read-Modify-Write Operand.
BMT ·Begln Memory Transaction.

When Stable Low indicates that the current
0110o-Read for Effective Address.

bus cycle is valid; that is, the bus cycle has 01101-Access PTE1 by MMU.

not been cancelled (Section 3.S.4.2). 01110-Access PTE2 by MMU.

ADS • Address Strobe.

~"" } When active, indicates that a bus cycle has
begun and a valid address is on the address Reserved.
bus.

BED-3 ·Byte Enables. 11100
Used to selectively enable data transfers on 11101-Transfer Slave Operand.
bytes 0-3 of the data bus.

1111O-Read Slave Status Word.
STD-4 Status.

Bus cycle status code; STO is the least signif-
11111-Broadcast Slave 10.

icant. Encodings are: AO-31 • Address Bus.

OOOOO-idle: CPU Inactive on Bus. Used by the CPU to output a 32-bit address

00001-ldle: WAIT Instruction.
at the beginning of a bus cycle. AO is the

00010-ldle: Halted.
least significant.

00011-ldle: The bus is idle while the slave
4.1.4 Input/Output Signals

processor is executing an instruction. 00-31 ·Data Bus.

0010o-Interrupt Acknowledge, Master. Used by the CPU to input or output data dur-
ing a read or write cycle respectively.

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages with

If Military/Aerospace specified devices are required, Respect to GND -O.SVto +7V

contact the National Semiconductor Sales Office/ Power Dissipation 4W
Distributors for availability and specifications. Note: Absolute maximum ratings indicate limits beyond
Temperature Under Bias O·Cto +70·C which permanent damage may occur. Continuous operation

Storage Temperature -6S·C to + IS0·C at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = O· to + 70·C, Vee = SV ± S%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vee + O.S V

VIL Low Level Input Voltage -O.S O.B V

. VOH High Level Output Voltage IOH = - 400 /LA 2.4 V

VOL Low Level Output Voltage
AO-11, 00-31, ODIN IOL=4mA 0.4 V
CONF, BMT IOL = 6mA 0.4 V
BCLK, BCLK IOL = 16mA 0.4 V
All Other Outputs IOL = 2mA 0.4 V

IL Input Load Current 0';; VIN';; Vee -20 20 /LA

IL Leakage Current (Output and 0.4 ,;; VIN ,;; Vee -20 20 /LA
110 pins in TRI-STATElinput Mode)

lee Active Supply Current lOUT = 0, TA = 2S·C 7S0 mA

2-70

r--,z
4.0 Device Specifications (Continued)

Connection Diagram

s@@@@@@@@@@@@@@@@
R@@@@@@@@@@@@@@@@
p@@@@@@@@@@@@@@@@
N@@@@@@@@@@@@@@@@
M@@@ @@@
L@@@ @@@
K@@@ @@@
J @ @ @ NS32532 @ @ @
H@@@ @@@
G@@@ @@@
F@@@ @@@
E@@@ @@@
D@@@@@@@@@@@@@@@@
c@@@@@@@@@@@@@@@@
B@@@@@@@@@@@@@@@@
A@@@@@@@@@@@@@@@

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TLlEE/9354-40

Bottom View

FIGURE 4-2. 175-Pin PGA Package

NS32532 Pinout Descriptions

Dese Pin Dese Pin Dese Pin Dese Pin Dese Pin Dese

Reserved Al 026 B16 GNOB13 014 GNOL6 J14 GNOL5 N9 AO
Reserved A2 Reserved Cl VCCB14 015 VCCL5 J15 CONF Nl0 VCCB9
Reserved A3 Reserved C2 023 016 013 J16 ROY Nll ClOUT
BP A4 VCCL2 C3 IOINH El VCCB6 Kl HOLO N12 8PC
18F A5 Reserved C4 ILO E2 A23 K2 VCCBll N13 BE3
R8T A6 PF8 C5 GNOB3 E3 GNOL4 K3 GNOB10 N14 VCCB10
NMI A7 80N C6 024 E14 GNOBll K14 04 N15 A08
GNOBl AS Reserved C7 022 E15 011 K15 06 N16 BWl
Reserved A9 BCLK C8 020 E16 012 K16 A16 Pl BER
VCCB2 Al0 VCCCLK C9 A30 Fl A22 Ll VCCB7 P2 CIIN
INVIC All 8YNC Cl0 CA8EC F2 A21 L2 GNOB6 P3 02
Reserved (1) A12 CIAO Cll Reserved F3 VCCL3 L3 Al0 P4 A13
CIAl A13 CIA6 C12 021 F14 08 L14 A6 P5 A8
CIA4 A14 VCCL6 C13 019 F15 09 L15 A2 P6 A5
VCCBl A15 029 C14 018 F16 010 L 16 8T3 P7 A3
Reserved Bl 027 C15 A29 Gl A20 Ml GNOB8 P8 Al
VCCB4 B2 025 C16 A31 G2 GNOB5 M2 VCCL4 P9 8T2
Reserved B3 U/S 01 VCCB5 G3 A17 M3 BEl Pl0 8Tl
Reserved B4 Reserved 02 GNOB12 G14 05 M14 GNOB9 Pll 8TO
VCCB3 B5 Reserved 03 017 G15 07 M15 BWO P12 BOUT
F88R B6 GNOL3 04 016 G16 VCCB12 M16 BIN P13 OOIN
INT B7 GNOB2 05 A27 Hl A19 Nl Reserved P14 BE2
VCCLl B8 OBG 06 A28 H2 A18 N2 00 P15 BEO
GNOL2 B9 Reserved 07 GNOB4 H3 A14 N3 03 P16 BMT
INV8ET Bl0 BCLK 08 VCCB13 H14 All N4 A15 Rl BRT
INVOC Bll GNOCLK 09 015 H15 VCCB8 N5 A12 R2 IOOEC
CIA3 B12 CLK 010 014 H16 GNOB7 N6 A9 R3 01
CIA5 B13 CIA2 011 A26 Jl 8T4 N7 A7 R4
030 B14 031 012 A25 J2 HLOA N8 A4 R5
028 B15 GNOLl 013 A24 J3

Note 1: This pin should be grounded.
All other reserved pins should be left open.

2·71

Pin

R6
R7
R8
R9
Rl0
Rll
R12
R13
R14
R15
R16
81
82
83
84
85
86
87
88
89

810
811
812
813
814
815
816

en
(0)
I\)
CJ'I
(0)
I\)

I
I\)
o
z en
(0)
I\)
CJ'I
(0)
I\)

I
I\)
CJ'I
z en
(0)
I\)
CJ'I
(0)
I\)

I
(0)
o

o
C')

N
C')
II)
N
C')
CJ)
Z
II)
N
N
C')
II)
N
C')
CJ)
Z
o
N
N
C')
II)
N
C')
CJ)
Z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS:

4.4.1 Definitions L.E.-Ieading edge R.E.-rising edge

All the timing specifications given in this section refer to T.E.-training edge F.E.-falling edge

O.BV or 2.0V on all the signals as illustrated below. unless

[specifically stated otherwise. ~K= BCLK

[) 2.0V
O.BV

BCLK
O.BV

[.. ~
--2.4V

SlG1

[- \-~.~v24V ISIG11
SlG1 O.45V

ISIG11

[
2.4V

O.45V / 2.0V ISIG2h

I 1'"
24V

[
ISIG2h SIG2

-------O.45V
51G2 TL/EE/9354-42

---------045V FIGURE 4-4. Timing Specification Standard

TLlEE/9354-41 (Signal Valid before Clock Edge)

FIGURE 4-3. Timing Specification Standard
(Signal Valid after Clock Edge)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30
Maximum times assume capacitive loading of 100 pF on the clock signals and 50 pF on all the other signals. A minimum
capacitance load of 50 pF on BClK and BClK is also assumed.

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25 NS32532-30

Units
Min Max Min Max Min Max

tBCp 4-24 Bus Clock Period R.E., BClK to Next
50 100 40 100 33.3 100

R.E., BClK
ns

tBCh 4-24 BClK High Time At 2.0V on BClK 0.5 tBCp 0.5 tBCp 0.5 tBCp
(Both Edges) -5 ns -4ns -3 ns

tBCI 4-24 BClK low Time At O.BV on BClK 0.5 tBCp 0.5 tBCp 0.5 tBCp
(Both Edges) -5 ns -4 ns -3 ns

tBCr 4-24 BClK Rise Time O.BV to 2.0V on
5 4 3

R.E., BClK
ns

tBCt 4-24 BClK Fall Time 2.0V to O.BV on
5 4 3

F.E., BCLK
ns

tNBCh 4-24 BCLK High Time At 2.0V on BCLK 0.5 tNBCp 0.5 tNBCp 0.5 tNBCp
(Both Edges) -5 ns -4ns -3ns

tNBC, 4-24 BClK Low Time At O.BV on BCLK 0.5 tNBCp 0.5 tNBCp 0.5 tNBCp
(Both Edges) -5 ns -4 ns -3ns

tNBCr 4-24 BClK Rise Time O.BV to 2.0V on
5 4 3

R.E., BClK
ns

tNBCt 4-24 BCLK Fall Time 2.0V to O.BV on
5 4 3

F.E., BCLK
ns

tCBCdr 4-24 ClKto BClK 2.0V on R.E., ClK to
17 14 12

R.E. Delay 2.0V on R.E., BClK
ns

tCBCdt 4-24 ClKto BCLK 2.0V on R.E., ClK to
17 14 12

F.E. Delay O.BV on F.E., BCLK
ns

tCNBCdr 4-24 CLKto BCLK 2.0V on R.E., ClK to
17 14 12

R.E. Delay O.BV on R.E., BCLK
ns

2-72

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued)

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25

Min Max Min Max

tCNSCd! 4-24 CLKto BCLK 2.0V on R.E., CLK to
17 14

F.E. Delay O.BV on F.E., BCLK

tSCNSCrf 4-24 Bus Clocks Skew 2.0Von R.E., BCLK to
-2 +2 -2 +2

O.BVon F.E., BCLK

tSCNBClr 4-24 Bus Clocks Skew O.BV on F.E., BCLK to
-2 +2 -2 +2

2.0V on R.E., BCLK

tAy 4-5,4-6 Address Bits 0-31 After R.E., BCLK T1
11 B

Valid

tAh 4-5,4-6 Address Bits 0-31 After R.E., BCLK T1 or Ti
0 0

Hold

tAl 4-11,4-12 Address Bits 0-31 After F. E., BCLK Ti
21 17

Floating

tAnl 4-11,4-12 Address Bits 0-31 After F.E., BCLK Ti
0 0

Not Floating

tABy 4-8 Address Bits A2, A3 After R.E., BCLK T2B
11. B

Valid (Burst Cycle)

tASh 4-8 Address Bits A2, A3 After R.E., BCLK T2B
0 0

Hold (Burst Cycle)

toOy 4-6,4-15 Data Out Valid After F.E., BCLK T1 13 12

tOOh 4-6,4-15 Data Out Hold After R.E., BCLK T1 or Ti 0 0

toospc 4-15 Data Out Setup Before SPC T.E.
B 6

(Slave Write)

tOOl 4-7 Data Bus Floating After R.E., BCLK
21 17

T10rTi

tOOnl 4-7 Data Bus After F.E., BCLK T1
0 0

Not Floating

tSMTy 4-5,4-7 BMT Signal Valid After R.E., BCLK T1 32 27

tSMTh 4-5,4-7 BMT Signal Hold After R.E., BCLK T2 0 0

tSMTI 4-11,4-12 BMT Signal Floating After F.E., BCLK Ti 21 17

tSMThl 4-11,4-12 BMTSignal After F.E., BCLK Ti
a a

Not Floating

tCONFa 4-5,4-B CONF Signal Active After F.E., BCLK T1 11 9

tCONFia 4-5,4-B CONF Signal Inactive After R.E., BCLK T1 or Ti 11 9

tCONFI 4-11,4-12 CONF Signal Floating After F.E., BCLK Ti 21 17

tCONFnl 4-11,4-12 CONFSignal After F.E., BCLK Ti
a a

Not Floating

tAOSa 4-5,4-B ADS Signal Active After R.E., BCLK T1 11 B

tAOSia 4-5,4-B ADS Signal Inactive After F.E., BCLK T1 11 8

tAOSw 4-6 ADS Pulse Width At a.8V (Both Edges) 15 12

tAOSI 4-11,4-12 ADS Signal Floating After F.E., BCLK Ti 21 17

2-73

NS32532-30

Min Max

12

-1 +1

-1 +1

7

0

13

0

7

0

11

0

5

13

a

23

0

13

a

B

8

13

a

7

7

1a

13

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z
en
Co)
N
(II
Co)
N .
N o
Z en
Co)
N
(II
Co)
N .
N
(II
.......
Z en
~
(II
Co)

~
Co)
o

•

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued)

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25 NS32532-30

Units
Min Max Min Max Min Max

tAOSn! 4-11,4-12 ADS Signal After F.E., BCLK Ti
0 0 0

Not Floating
ns

tBEv 4-6,4-8 BEn Signals Valid After R.E., BCLK T1 11 9 8 ns

tBEh 4-6,4-8 BEn Signals Hold After R.E., BCLK T1,
0 0 0

TiorT2B
ns

tBE! 4-11,4-12 BEn Signals Floating After F.E., BCLK Ti 21 17 13 ns

tBEn! 4-11,4-12 BEn Signals After F.E., BCLK Ti
0 0 0

Not Floating
ns

tOOINv 4-5,4-6 DDIN Signal Valid After R.E., BCLK T1 11 8 7 ns I
tOOINh 4-5,4-6 DDIN Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tOOIN! 4-11,4-12 DDIN Signal Floating After F.E., BCLK Ti 21 17 13 ns

tOOINn! 4-11,4-12 DDINSignal After F.E., BCLK Ti
0 0 0 ns

Not Floating

tSPca 4-14,4-15 SPC Signal Active After R.E., BCLK T1 19 15 12 ns

tSPCia 4-14,4-15 SPC Signal Inactive After R.E., BCLK Ti, T1 or T2 19 15 12 ns

toosPC 4-14 DDIN Valid to Before SPC L.E.
0 0 0

SPCActive
ns

tHLOAa 4-12,4-13 HLDA Signal Active After F.E., BCLK Ti 15 11 10 ns

tHLDAia 4-12 HLDA Signal Inactive After F.E., BCLK Ti 15 11 10 ns

tSTv 4-5,4-14 Status (STO-4) Valid After R.E., BCLK T1 11 8 7 ns

tSTh 4-5,4-14 Status (STO-4) Hold After R.E., BCLK T1 or Ti 0 0 0 ns

tBOUTa 4-8,4-9 BOUT Signal Active After R.E., BCLK T2 15 12 11 ns

tBOUTia 4-8,4-9 BOUT Signal Inactive After R.E., BCLK
15 12 11 ns

Last T2B, T1 or Ti

tBOUT! 4-11,4-12 BOUT Signal Floating After F.E., BCLK Ti 21 17 13 ns

tBOUTn! 4-11,4-12 BOUT Signal After F.E., BCLK Ti
0 0 0 ns

Not Floating

tlLOa 4-7 Interlock Signal Active After F.E., BCLK Ti 11 9 8 ns

tlLOia 4-7 Interlock Signal Inactive After F.E., BCLK Ti 11 9 8 ns

tpFSa 4-21 PFS Signal Active After F.E., BCLK 15 11 10 ns

tPFSia 4-21 PFS Signal Inactive After F.E., Next BCLK 15 11 10 ns

tlSFa 4-22 ISF Signal Active After F.E., BCLK 15 11 10 ns

tlSFia 4-22 ISF Signal Inactive After F.E., Next BCLK 15 11 10 ns

tBPa 4-23 BP Signal Active After F.E., BCLK 15 11 10 ns

tBPia 4-23 BP Signal Inactive After F.E., Next BCLK 15 11 10 ns

tusv 4-5 U/S Signal Valid After R.E., BCLK T1 11 9 8 ns

tUSh 4-5 U/S Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

2-74

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued)

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25

Min Max Min Max

tCASv 4-5 CASEC Signal Valid After F.E., BClK T1 15 11

tCASh 4-5 CASEC Signal Hold After F.E., BlCK T1 or Ti a a

tCASt 4-11,4-12 CASEC Signal Floating After F.E., BlCK Ti 21 17

tCASnt 4-11,4-12 CASEC Signal After F.E., BlCK Ti a a
Not Floating

tCIOv 4-5 ClOUT Signal Valid After R.E., BLCK T1 15 11

ICIOh 4-5 ClOUT Signal Hold After R.E., BlCK T1 or Ti a a

tlOlv 4-5 IOINH Signal Valid After R.E., BlCK T1 15 11 ,
tlOlh 4-5 IOINH Signal Hold After R.E., BlCK T1 or Ti 0 a

4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, NS32532-30

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25

Min Max Min Max

tcp 4-24 Input Clock Period R.E., ClK to Next
25 100 20 100

R.E., ClK

tCh 4-24 ClK High Time At 2.0V on ClK 0.5 tcp 0.5 tcp
(Both Edges) -5 ns -5 ns

tCI 4-24 ClK low Time At O.BV on ClK 0.5 tcp 0.5 tcp
(Both Edges) -5 ns -5ns

tc, 4-24 ClK Rise Time O.BV to 2.0V on R.E., ClK 5 4

tCt 4-24 ClK Fall Time 2.0V to O.BV on F.E., ClK 5 4

tOls 4-5,4-14 Data In Setup Before R.E., BlCK T1 or Ti 13 11

tOlh 4-5,4-14 Data In Hold After R.E., BClK T1 or Ti 1 1

tROYs 4-5 ROY Setup Time Before R.E., BClK T2(W),
22 1B

T10rTi

tROYh 4-5 ROY Hold Time Ater R.E., BClK T2(W).
1 1

T10rTi

tsws 4-5 BWO-1 Setup Time Before F.E., BClK T2 or T2(W) 21 17

tSWh 4-5 BWO-1 Hold Time After F.E., BClK T2 or T2(W) 1 1

tHO LOs 4-12,4-13 HOLD Setup Time Before F.E., BClK 21 17

tHOLOh 4-12 HOLD Hold Time After F.E., BClK 1 1

tSINs 4-B BIN Setup Time Before F.E., BClK T2 or T2(W) 21 17

tSINh 4-B BIN Hold Time After F.E., BClK T2 or T2(W) 1 1

2-75

NS32532-30

Min Max

10

a
13

a

10

a
10

a

NS32532-30

Min Max

16.6 100

0.5 tcp
-4ns

0.5tcp
-4ns

3

3

9

1

15

1

14

1

14

1

14

1

Units

ns

ns

ns

ns

ns

ns

ns

ns

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en
Co)
I\)
c.n
Co)
I\)

I
I\)
o
z en
Co)
I\)
c.n
Co)
I\)

I
I\)
c.n
z en
Co)
I\)
c.n
Co)
I\)

I
Co)
o

•

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, NS32532-30 (Continued)

Name Figure Description Reference/Conditions
NS32532-20 NS32532-25 NS32532-30

Units
Min Max Min Max Min Max

tBERs 4-6,4-8 BER Setup Time Before R.E., BCLK Tl or Ti 21 17 14 ns

tBERh 4-6,4-8 BER Hold Time After R.E., BCLK Tl or Ti 1 1 1 ns

tBRTs 4-6,4-8 BRT Setup Time Before R.E., BCLK Tl or Ti 21 17 14 ns

tBRTh 4-6,4-8 BRT Hold Time After R.E., BCLK Tl or Ti 1 1 1 ns

tlODs 4-5 IODEC Setup Time Before F.E., BCLK T2 or T2(W) 21 17 14 ns

tlODh 4-5 IODEC Hold Time After F.E., BCLK T2 or T2(W) 1 1 1 ns

tPWR 4-26 Power Stable to After VCC Reaches 4.5V
50 40 30

R.E.of RST IJ.s

tRSTs 4-27 RST Setup Time Before R.E., BCLK 14 12 11 ns

tRSTw 4-27 RST Pulse Width At 0.8V (Both Edges) 64 64 64 tBCp

tells 4-5 CUN Setup Time Before F.E., BCLK T2 21 17 14 ns

tClih 4-5 CUN Hold Time After F.E., BCLK T2 1 1 1 ns

tiNTs 4-19 INT Setup Time Before R.E., BCLK 14 12 11 ns

tlNTh 4-19 INT Hold Time After R.E., BCLK 1 1 1 ns

tNMls 4-19 NMI Setup Time Before R.E., BCLK 20 17 16 ns

tNMlh 4-19 NMI Hold Time After R.E., BCLK 1 1 1 ns

tSD. 4-16 SDN Setup Time Before R.E., BCLK 14 12 11 ns

tSDh 4-16 SON Hold Time After R.E., BCLK 1 1 1 ns

tFSSR. 4-17 FSSR Setup Time Before R.E., BCLK 14 12 11 ns

tFSSRh 4-17 FSSR Hold Time After R.E., BCLK 1 1 1 ns

tSYNC. 4-25 SYNC Setup Time Before R.E., CLK 10 8 7 ns

tSYNCh 4-25 SYNC Hold Time After R.E., ClK 1 1 1 ns

tCIAs 4-18 CIAO-6 Setup Time Before R.E., BClK 16 13 11 ns

tCIAh 4-18 CIAO-6 Hold Time After R.E., BClK 1 1 1 ns

tINVS. 4-18 INVSET Setup Time Before R.E., BClK 16 13 11 ns

tlNVSh 4-18 INVSET Hold Time After R.E., BClK 1 1 1 ns

tlNVls 4-18 INVIC Setup Time Before R.E., BCLK 14 12 11 ns

tlNVlh 4-18 INVIC Hold Time After R.E., BCLK 1 1 1 ns

tlNVDs 4-18 INVDC Setup Time Before R.E., BCLK 16 13 11 ns

tlNVDh 4-18 INVDC Hold Time After R.E., BClK 1 1 1 ns

tDBGs 4-20 DBG Setup Time Before R.E., BClK 14 12 11 ns

tDBGh 4-20 DBG Hold Time After R.E., BClK 1 1 1 ns

2-76

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

BCLK [

AO-3{

00-3{

ODIN [

ADS [

BI,n[

--

CONt [

ROY [

BWO-{

BEO-3 [

STO-4[

ujS [

CIIN [

ClOUT [

CASEC [

IOOEC [

IOINH[

ANY
IT-STATE I 11 T2 I T2(W) 111 OR Til

....: r- lAy -- r-IIAh

X- IX X ... ~ It .,- '0\. I}- - -- -- - IN t- -.
.... {[IDDINY -- IDlh

¥
IADSa { r IADSia -- I-- 10DINh

~~ ~ --IBMTh
\. V

0-

r<b ~ I ~ V - ~
~

{
lCONFa -- r-/CONFIa

/
:IJ:-

I--

N 1/ \. ¥
IBWS~

~
I- IROYh

-- IBWh

- j4 IsTY - 15Th

X X

- r IUSY - lUSh

X X
IClis t --1< - j4 \clOY

r: ~IClih
X X.

-- r>-lcAsy
\cIOh- ~ !+- ICASh

X Xl---
liDOs br ~

IIOIY- r IIOIDh'= ~ r-~IOlh
X X

I I I

FIGURE 4·5. Basic Read Cycle Timing

2-77

TL/EE/9354-43

C) r---______ ~
C')

I
N
C')
Lt)
N
C')
(/)
Z
Lt)
N
N
C')
Lt)
N
C')
(/)
Z
C)

~
N
C')
Lt)
N
C')
(/)
Z

4.0 Device Specifications (Continued)

ANY

BCLK [

I T- STATE I T1

AO-31 [

00-3{
ODIN [

ADS [

Bt.H[

CONF [

ROY [

BWO-1 [

BEO-3 [

BRT [

BER [

STO- 4 [

U/s[

tAd t
IX

tJov-"

I)-
tOOINv-" I'

~

\. JO~
1'0 I~

/

tBEv '" t"
X

X

X

j+

K

~
l-

T21T10RTii

... tAh

](

.... tOOh

DATA OUT

..... ~tODINh
I\. V

V ~ po-V
/ I\. -

\. /

)(D<
..... tSEh

](

lSRTs H l-
I)' j tSERs f.t tSRTI

1)1' ~ -- ,:...tSERh

TL/EE/9354-44

Note: An Idle State is always inserted before a Write Cycle when the Write immediately follows a Read Cycle.

FIGURE 4·6. Write Cycle Timing

2·78

,--, z
4.0 Device Specifications (Continued)

TI T1 T2 TI T1 T2 TI

BCLK [

I I
X

btooni --
AO- 3{~-+__+'''+ ___ !-+--+-I--+_+-+_+~''"+_+--- .1 tDOf

~
~~ DATA OUT

'I 00- 31 [l::t:!>-+-+-~
--{ tDDINv

-- f{DDIN~/
\. DDIN[-+_~~~-+_~~~+__¥

ADS [

Bt.tT [

I\, /
-} tlLOI -

X -BWO - {-+-+-r-+--+I" Xr-H-1"K''+--+--+-+--fI ~ t-" .. ~ tSEh

X
..... r tBEv

BEO- 3 [_+-I--+,XlI-+-+-+ __ I--+-+--+-+-+_+'l-I--+­

/

/

B~[-+--+-+---+ __ I---~/ \."+--+----+---+_~

BER[-+-~~~ __ ~¥/ \.~-+--+~ __ ~

\.

\.

STO- 4 [-+-+_joI'X'+-+_r-+-+--+-+~~+-~~I---+--

U/S [~~--+,' X,+-+~~ __ ~~+--+-~~X,+--+-_
FIGURE 4·7. Interlocked Read and Write Cycles

2·79

a

TL/EE/9354-45

en w
N
U1
W

~
C)

" z rn w
N
U1
W
~
N
U1

" Z rn w
N
U1 w
2!
C)

•

0,---,
~
II)
C'I

~
Z
II)

~
(/)
z o
~
~
C")
(/)
z

4.0 Device Specifications (Continued)

BCLK[

AO-3{

00-31 [
ODIN [

ADS [

BtolT [

CONF [

ROY [

BWO-{

BEO- 3 [

ruN [

BOUT [

BRT [

BER [

CIIN [

IODEC [

ANY
IT-STATE I 11 I T2 I T2B I 12B I 12B I T1 OR n I

.... }4 tAv tABv - I::: ..r-~
X - ")(X ~r-I'" - ~

(!~ rG€>--<J~ rG~
\. 1/

tADSa- { I'" tADSIa

I\..V ./ I\.. V

I'<Q I~ _I ~ --~--IcONFa tCONFIa - r
/ fl \.

\. / "'\ / 1'\ / "'\ / - !-itBWh
tBW~ ~ I~ - (+ tSEv r-'I_ {ltBEV

X 1/
tBIN~N l-

I" i\. / 1\ /
tBOUTa-- {1i--ltBINh tBOUTla- j.

/
tBRT~1 ;-

/
~ \. V \. V \.

tBERf ""1"""":

fl ~h \. / \. V \. -
IX -~ ~

Dc ~
FIGURE 4-8. Burst Read Cycles

2-80

I

-

TL/EE/9354-46

4.0 Device Specifications (Continued)

ANY
IT-STATE I T1 12 I T2B I T2B(W) I T1 orTI I

-
BCLK [

AO- 31 [

00-31 [

ADS [

CONF [

ROY l

-

h

BiN ['J

BOUT [

l'C -~

\. V

'(//i '(//)

'II VIL

X X

~~

\. /

/ \.

'(//i 'l/i 'l/i A /I

VI/,'!/, ,l).. /; 1/
IBOUTa-

~
I

IX

':'\
~~

I\. V
/ \. r-

V/ V. r\. Ii V/J VII
IBIN':"1 ~

~ ~
'I/, '(j/,'(j!J

'l j4 IBOUTIB

;
I I

FIGURE 4·9. External Termination of Burst Cycles

ANY
I T- STATE I T1 T2 I12B IT10rTII

TLlEE/9354-47

TL/EE/9354-48

FIGURE 4·10. Bus Error or Retry During Burst Cycles
Nole: Two Idle state are always inserted by the CPU following the assertion of BRT,

2-81

z en
Co)
N
C7I
Co)

~ o z en
Co)
N
C7I

~
C7I
Z

~
~
N .
Co)
o

PI

Q .---,
C')

~
C')
II)
C'I
C')
U)
z
II)
C'I

I
C'I
C')
II)
C'I

~
Z
Q
C'I

I
C'I
C')
II)
C'I
C')
U)
z

4.0 Device Specifications (Continued)

AO-3{

00-3{
ODIN [

ADS [

Bt.1T [

CONF [

BEO· 3 [

[~

[
CASEC [

u/s [
STO-4 [

I T2 I T1 or Ti I 11 11

DC ttl'· t DC 1"-

--I-~ ~. t--

)- -.
.... tDDIN!

X --r-....

~tj-I\. V
....

I~ t-t--
....

p:r;m~. 1/

~ X I--
I--

~ ?x IL ~ LL ~ Ii ~
....

rtsOUTf -t-·
,.~ kl tCAS!

)or- ---r-r-

X r-- DC -f)< I-- I'-'""

X I--DC -f)< I-- I--

I 11 JiJij-t
....

1<
tAn!

-- -H· D<
~~ - -10(- -- --

....
.(tDDINn!

~~ Dt~l~ - fo-r-
....

~
tADSn!

~I- r- [j,I if ~~ 1-- ~ l/
.... tf IcoN;n!

~~ 1-- 0"
~f ~~ IX -- ,-

//J W ~ 'II 'II 'I/, 'I/, rfL
.... t: tSOUTn!

-- ~~ 1-- t"f
teAst t{ ~~ jo- ~
IX

IX

FIGURE 4-11. Extended Retry Timing

2-82

TL/EE/9354-49

.--, z
4.0 Device Specifications (Continued)

TI TI

BCLK [

TI TI

ADS [

BMT. [

CON. [

u/s [-t--+--t-'X~ X;::D<"+--1f-+--+-t--+'X"'l--+~

STO - 4 [-+--I-t'X~ ~:::D<""t_...,.--t_lI-t-..,....-t'X~-+---j.-
FIGURE 4·12. Hold Timing (Bus Initially Idle)

2·83

TL/EE/9354-50

(f)
w
I\)
U1
W
I\)

N o
Z
(f)
w
I\)
U1
W
I\)

I
I\)
U1
Z
(f)
w
I\)
U1
W
I\)

I
W o

Q ,--,

~
{ii
CI)

tn
Z

iij
N
CI)
LI)
C\I
CI)

en
z
~
N
CI)
LI)
C\I

~
Z

4.0 Device Specifications (Continued)

BCLI([

AO-3{

AOS [

ANY
I T- STATE I 11

CONF [--+-+--l'

HOLD [
, ...

HLDA [

T2 TI TI

TUEE/9354-51

FIGURE 4·13. HOLD Acknowledge Timing
(Bus Initially Not Idle)

ANY

BCLK [

IT - STATEI T1 T21110rTII

DO - 3{__+_-+--+,

SPC [

ODIN [.-1--+--1'

STO- 4 [~--1_+',"+-+~_I"'+-+_
TL/EE/9354-53

FIGURE 4·15. Slave Processor Write Timing

2·84

ANY
IT - STATEI 11 12 111 or Til

00-31 [:tn>t-H
SPC [

ODIN [....,_+--+++-+ ___ -~--+--+--

STO-4[_--+-~__+_,~+_~-~~~-+__
TL/EE/9354-52

FIGURE 4·14. Slave Processor Read Timing

I I I

BCLK[SUUL

I I I tsOs

SON [

tSOh

TL/EE/9354-54

FIGURE 4·16. Slave Processor Done

I I I

BCLK[SUUL

FSSR [

t~SR. I I I
trsSRh

TL/EE/9354-55

FIGURE 4·17. FSSR Signal Timing

4.0 Device Specifications (Continued)

I I I I

BCLK[nsuu
tc~s I I-; tclAh

CIAO- 6 [.~-+~-"''1'-r~''fo:--r-

INVS~[~_~~_~~-+~,~-+_
INVIC [

IHVDC [

FIGURE 4-18. Cache Invalidation Request
Note 1: CIAO-6 and INVSET are only relevant when INVIC and/or INVDC are asserted.

TL/EE/9354-56

Note 2: If a memory location is being read at the same time an invalidation request for that location occurs, the data will be invalid in the cache if the invalidation
request occurs during or after state T2 or T2B of the read cycle.

BCLK [
RST [

oo[

Nt'lI[

I
1/ I.

tiNTs

iNMIS

I

i +-

....
~ -....
~ +-

-..,; ...
~
r--

I
tlNTh

K ~ ~ r--

~ I-
+-INMlh

~ ~ r--I-
r--l--r-

TLlEE/9354-57

FIGURE 4-19. INT and NMI Signals Sampling
Note 1: INT and NMI are sampled on every other riSing edge of BClK, starting with the second rising edge of BClK after RST goes high.

Note 2: INT is level sensitive, and once asserted, it should not be deasserted until it is acknowledged.

I I I I

BCLK[nnnn
'OBGST1 I I

IOBGh

DBG [

TL/EE/9354-58

FIGURE 4-20. Debug Trap Request

I I I I

BCLK[nnnn
tls~a I I I

IISFia

~[
TL/EE/9354-60

FIGURE 4-22. ISF Signal Timing

2-85

I I I I

BCLK[nnnn
tPF~a I I I

IPFSla

TL/EE/9354-59

FIGURE 4-21. PFS Signal Timing

8P[
TL/EE/9354-61

FIGURE 4-23. Break Point Signal Timing

z en
Co)
N
U1
Co)
N .
N o
Z en
Co)
N
U1
Co)
N .
N
U1
Z en
Co)
N
U1
Co)

~
Co)
o

o r--,
C")

~
f3
~ en z

~
C")

~ en z o
N
~
C")
an
N

~
Z

4.0 Device Specifications (Continued)

BCLK [

i+-----tNBCp.-----I

FIGURE 4-24. Clock Waveforms
TL/EE/9354-62

CLK[~h.h..h.h-
[

I t~YNCs I I ~YNC'
SYNC I tsYNCh ~-+--I--+--1-+--

BCLK [

TL/EE/9354-63

FIGURE 4-25. Bus Clock Synchronization

BCLK [, __ -1-_

nrL:J' tRSTS.1

RST[
.----------~! TUEE/9354-64

FIGURE 4-26. Power-On Reset

TL/EE/9354-65

FIGURE 4-27. Non-Power-On Reset

2·86

Appendix A: Instruction Formats
NOTATIONS:

i = Integer Type Field
B = 00 (Byte)
W = 01 (Word)
D = 11 (Double Word)

f = Floating Point Type Field
F = 1 (Std. Floating: 32 bits)
L = 0 (Long Floating: 64 bits)

c = Custom Type Field
D = 1 (Double Word)
Q = 0 (Quad Word)

op = Operation Code
Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field
See Section 2.2 for encodings.

reg = General Purpose Register Number

cond = Condition Code Field
0000 = EQual: Z = 1
0001 = Not Equal: Z = 0

0010 = CarrySet:C = 1
0011 = Carry Clear: C = 0

0100 = Higher: L = 1
0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0

1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0 and Z = 0

1011 = Higher or Same: L = 1 or Z = 1
1100 = Less Than: N = 0 and Z = 0
1101 = Greater or Equal: N = 1 or Z = 1
1110 = (Unconditionally True)

1111 = (Unconditionally False)

short = Short Immediate value. May contain:
quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR.
0000 = US
0001 = DCR
0010 = BPC
0011 = DSR

0100 = CAR
0101-0111 = (Reserved)

1000 = FP
1001 = SP
1010 = SB
1011 = USP

1100 = CFG
1101 = PSR

1110 = INTBASE

1111 = MOD

2-87

Options: in String Instructions

I U/W I BIT I
T = Translated
B = Backward
U/W = 00: None

01: While Match
11: Until Match

Configuration bits, in SETCFG Instruction:

I 1 C I M

mreg: MMU Register number, in LMR, SMR.

~= 0 } Trap (UND)

0111
1000 = Reserved
1001 = MCR
1010 = MSR

1011 = TEAR
1100 = PTBO

1101 = PTB1
1110 = IVARO

1111 = IVAR1

F

7 0

co'nd' 11'0'1'01

Format 0

Bcond (BR)

7 0

~p' 10' 0' 1 ' 01

Format 1

BSR -0000 ENTER -1000

RET -0001 EXIT -1001

CXP -0010 NOP -1010

RXP -0011 WAIT -1011
RETT -0100 DIA -1100

RETI -0101 FLAG -1101

SAVE -0110 SVC -1110

RESTORE -0111 BPT -1111

15 81 7 0 , ,
, sh~rt 1

, ,
11 ' 1 1 gen op

Format 2
ADDQ -000 ACB -100

CMPQ -001 MOVQ -101
SPR -010 LPR -110

Scond -011

z
(J)
Co)
N
C1I
Co)
N

I
N
o -Z
(J)
Co)
N
C1I
Co)
N
I

N
C1I -Z
(J)
Co)
N
C1I
Co)
N

I
Co)
o

o ,--,

~
CW)
."
N
CW)
tJ)
Z
."
N
~
CW)
."
N
CW)
tJ)
Z

~
~
CW)
."
N

~
Z

Format 3

CXPD -0000 ADJSP -1010
BICPSR -0010 JSR -1100
JUMP -0100 CASE -1110
BISPSR -0110

Trap (UND) on XXX1, 1000

sI7 1S 0

II g~nll I II I I I
I I I

gen2 op

Format 4

ADD -0000 SUB -1000
CMP -0001 AD DR -1001
BIC -0010 AND -1010
ADDC -0100 SUBC -1100
MOV -0101 TBIT -1101
OR -0110 XOR -1110

0

i 0 000 1 110

MOVS
CMPS

FormatS

-0000
-0001

SETCFG
SKPS

-0010
-0011

Trap (UND) on lXXX, 01XX

o

001 1 1 0

Format 6

ROT -0000 NEG -1000
ASH -0001 NOT -1001
CBIT -0010 Trap (UND) -1010
CBITI -0011 SUBP -1011
Trap (UND) -0100 ABS -1100
LSH -0101 COM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111

0

00111 0

Format 7

MOVM -0000 MUL -1000
CMPM -0001 MEl -1001
INSS -0010 Trap (UND) -1010
EXTS -0011 DEI -1011
MOVXBW -0100 QUO -1100
MOVZBW -0101 REM -1101
MOVZiD -0110 MOD -1110
MOVXiD -0111 DIV -1111

EXT
CVTP
INS
CHECK
MOVSU
MOVUS

MOVif
LFSR
MOVLF
MOVFL

Trap (UND) Always

ADD!
MOV!
CMP!
Note 3
SUB!
NEG!
Note 2
Note 1

2-88

TLlEE/9354-66

FormatS

-000 INDEX -100
-001 FFS -101
-010
-011
-110,reg = 001
-110, reg = 011

0

1 1 1 1 0

Format 9

-000 ROUND -100
-001 TRUNC -101
-010 SFSR -110
-011 FLOOR -111

7 0
---I I I I I I I I 1
___ 0 1 1 1 1 1 1 ~

TL/EE/9354-67

Format 10

o

11110

Format 11

-0000 DIV! -1000
-0001 Note 1 -1001
-0010 Note 3 -1010
-0011 Note 1 -1011
-0100 MUll -1100
-0101 ABSf -1101
-0110 Note 2 -1110
-0111 Note 1 -1111

Appendix A: Instruction Formats (Continued)

7 0

1 1 1 1 1 0

Format 12

Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Note 3 -1010
Note 3 -0011 Note 1 -1011
Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111

7 0

---I I I I I I I I 1
___ 10011110

TUEE/9354-68

Format 13

Trap (UNO) Always

8 7 0

0001111 0

Format 14

ROVAL -0000 LMR -0010
WRVAL -0001 SMR -0011

CINV -1001

Trap (UNO) on 01XX, 1000, 101X, 11XX

1
23

16115
8

1
:'n' n'1'o'1'1':1

nnn

000

LCR
SCR

Operation Word 10 Byte

Format 15

(Custom Slave)

Operation Word Format

Format 15.0

-0010
-0011

Trap (UNO) on all others

001

2-89

z
(J)
Co)
N

Format 15.1 CJ1
Co)
N

CCV3 -000 CCV2 -100 · N
LCSR -001 CCV1 -101 Q
CCV5 -010 SCSR -110 Z

(J)
CCV4 -011 CCVO -111 Co)

N
CJ1
Co)
N • N

101 CJ1
Z
(J)

Format 15.5 Co)
N
CJ1

CCALO -0000 CCAL3 -1000 Co)
N

CMOVO -0001 CMOV3 -1001 · Co)

CCMPO -0010 Note 3 -1010 Q

CCMP1 -0011 Note 1 -1011
CCAL1 -0100 CCAL2 -1100
CMOV2 -0101 CMOV1 -1101
Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111

111

Format 15.7

Note 2 -0000 Note 2 -1000
Note 1 -0001 Note 1 -1001
Note 3 -0010 Note 3 -1010

Note 3 -0011 Note 1 -1011

Note 2 -0100 Note 2 -1100
Note 1 -0101 Note 1 -1101

Note 2 -0110 Note 2 -1110
Note 1 -0111 Note 1 -1111
If nnn ~ 010.011.100.110 then Trap (UNO) Always. fII

7 0

---I Ii " " I 1 ___ 0 1 0 1 1 1 1 0

TLlEE/9354-69

Format 16

Trap (UNO) Always

7 0

---I " " " I 1 ___ 1 1 0 1 1 1 1 0

TL/EE/9354-7D

Format 17

Trap (UNO) Always

7 0

---I I " I I Ii 1 ___ 1 0 0 0 1 1 1 0

TL/EE/9354-71

C) r---~

i
CO)
(I)
z ;
N
CO)

en z

~
CO)
an
~ en z

Appendix A: Instruction Formats (Continued)

Format 18

Trap (UNO) Always

Format 19
Trap (UNO) Always

Implied Immediate Encodlngs:
7

7 0 ---I I I I I I I I I ___ x x x 0 0 1 1 0

TL/EE/9354-72

o

rl rO

Register Mark, Appended to SAVE, ENTER

7 o

Register Mark, Appended to RESTORE, EXIT

7 o

: offset:

OffsetlLength Modifier Appended to INSS, EXTS
Nole 1: Opcode not defined; CPU treats like MOVf or CMOVc. First operand
has access class of read; second operand has access class of write; f or c
field selects 32· or 64·bft data.

Nole 2: Opcode not defined; CPU treats like ADDf or CCAL". First operand
has access class of read;, second operand has access class of read· modify·
write; f or c field selects 32· or 64·bft data.

Nole 3: Opcode not defined; CPU treats like CMPf or CCMPc. First operand
has access class of read;, second operand has access class of read; f or c
field selects 32· or 64·bit data.

Appendix B. Compatibility Issues
The NS32532 is compatible with the Series 32000 architec­
ture implemented by the NS32032, NS32332, and previous
microprocessors in the family. Compatibility means that
within certain limited constraints, programs that execute on
one of the earlier Series 32000 microprocessors will pro­
duce identical results when executed on the NS32532.
Compatibility applies to privileged operating systems pro­
grams, as well as to non-privileged applications programs.
This appendix explains both the restrictions on compatibility
with previous Series 32000 microprocessors and the exten­
sions to the architecture that are implemented by the
NS32532.

B.l RESTRICTIONS ON COMPATIBILITY

If the following restrictions are observed, then a program
that executes on an earlier Series 32000 microprocessor
will produce identical results when executed on the
NS32532 in an appropriately configured system:

1. The program is not time-dependent. For example, the
program should not use instruction loops to control real­
time delays.

2. The program does not use any encodings of instruc­
tions, operands, addresses, or control fields identified to
be reserved or undefined. For example, if the count op­
erand's value for an LSHi instruction is not within the
range specified by the Series 32000 Instruction Set Ref­
erence Manual. then the results produced by the
NS32532 may differ from those of the NS32032.

2-90

3. Either the program does not depend on the use of a
Memory Management Unit (MMU), or it is written for op­
eration with the NS323B2 MMU and does not use the
bus-error or debugging features of the NS323B2 .

4. The program does not depend on the detection of bus
errors according to the implementation of the NS32332.
For example, the NS32532 distinguishes between re­
startable and nonrestartable bus errors by transferring
control to the appropriate bus-error exception service
procedure through one of two distinct entries in the In­
terrupt Dispatch Table. In contrast, the NS32332 uses a
single entry in the Interrupt Dispatch Table for all bus
errors.

5. The program does not modify itself. Refer to Section B.4
for more information.

6. The program does not depend on the execution of cer­
tain complex instructions to be non-interruptible. Refer
to Section B.5 on. "Memory-Mapped 1/0" for more in­
formation.

7. The program does not use the custom slave instructions
CATSTO and CATST1, as they are not supported by the
NS32532 and will result in a Trap (UNO) when their exe­
cution is attempted.

B.2 ARCHITECTURE EXTENSIONS

The NS32532 implements the following extensions of the
Series 32000 architecture using previously reserved control
bits, instruction encodings, and memory locations. Exten­
sions implemented earlier in the NS32332, such as 32-bit
addressing, are not listed.

1. The DC, LDC, IC, and LlC bits in the CFG register have
been defined to control the on-chip Instruction and Data
Caches. The DE·bit in the CFG register has been de­
fined to enable Direct-Exception Mode.

2. The V-flag in the PSR register has been defined to en­
able the Integer-Overflow Trap.

3. The OCR, BPC, DSR, and CAR registers have been de­
fined to control debugging features. Access to these
registers has been added to the definition of the LPR
and SPR instructions.

4. Access to the CFG and SPI registers has been added
to the definition of the LPR and SPR instructions.

5. The CINV instruction has been defined to invalidate
control of the on·chip Instruction and Data Caches.

6. Direct·Exception Mode has been added to support fast­
er interrupt service time and systems without module
tables.

7. A new entry has been added to the Interrupt Dispatch
Table for supporting vectors to distinguish between re­
startable and nonrestartable bus errors. Two additional
entries support Trap (OVF) and Trap (DBG).

B. Restrictions have been eliminated for recovery from
Trap (ABT) for operands with access class of write that
cross page boundaries. Restrictions still exist however,
for the operands of the MOVMi instruction.

B.3INTEGER OVERFLOW TRAP

A new trap condition is recognized for integer arithmetic
overflow. Trap (OVF) is enabled by the V-flag in the PSR.
This new trap is important because detection of integer
overflow conditions is required for certain programming lan­
guages, such as ADA, and the PSR flags do not indicate the
occurrence of overflow for ASHi, DIVi and MUll instructions.

Appendix B. Compatibility Issues (Continued)

More details on integer overflow are given in Section 3.2.5,
where a description of all the cases in which an overflow
condition is detected is also provided.

INTEGER ARITHMETIC

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an integer arithmetic instruction whose result
cannot be represented exactly in the destination operand's
location.

If the number of bits required to represent the resulting quo­
tient of a DEI instruction exceeds half the number of bits of
the destination, then the contents of both the quotient and
remainder stored in the destination are undefined.

The ADDR instruction can be used in place of integer arith­
metic instructions to perform certain calculations. In this
case however, integer overflow is not detected by the CPU.

LOGICAL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ASHi instruction whose result cannot be
represented exactly in the destination operand's location.

ARRAY INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of a CHECKi instruction whose source operand is
out of bounds.

PROCESSOR CONTROL INSTRUCTIONS

The V-flag in the PSR enables Trap (OVF) to occur following
execution of an ACBi instruction if the sum of the "inc" val­
ue and the "index" operand cannot be represented exactly
in the "index" operand's location.

B.4 SELF·MODIFYING CODE

The Series 32000 architecture does not have special provi­
sions to optimally support self-modifying programs.
Nevertheless, on the NS32332 and previous Series 32000
microprocessors it is possible to execute self-modifying
code according to the following sequence:

1. Modify the appropriate instruction.

2. Execute a JUMP instruction or other instruction that
causes the microprocessor's instruction queue to be
flushed.

3. Execute the modified instruction.

For example, an interactive debugger may follow the se­
quence above after reaching a breakpoint in a program be­
ing monitored.

The same program may not produce identical results when
executed on the NS32532 due to effects of the Instruction
Cache and branch prediction. In order to execute self-modi­
fying code on the NS32532 it is necessary to do the follow­
ing:

1. Modify the appropriate instruction.

2. If the modified instruction is on a cacheable page, exe­
cute CINV to invalidate the contents of the Instruction
Cache.

3. Execute an instruction that causes a serializing opera-
tion. See Section 3.1.3.3.

4. Execute the modified instruction.

B.5 MEMORY·MAPPED 1/0

As was mentioned in Section 3.1.3.2, certain peripheral de­
vices exhibit characteristics identified as "destructive·read-

2-91

ing" and "side·effects of writing" that impose requirements
for special handling of memory-mapped I/O references.
The NS32532 supports two methods to use on references
to memory-mapped peripheral devices that exhibit either or
both of these characteristics.

For peripheral devices that exhibit only side-effects of writ­
ing, correct operation can be ensured either by locating the
device between addresses FFOOOOOO (hex) and FF7FFFFF
(hex) in the virtual address space or by observing the first 2
restrictions listed below. For peripheral devices that exhibit
destructive-reading, all the following restrictions must be ob­
served to ensure correct operation:

1. References to the device must be inhibited while the
CPU asserts the output signal 101NH.

2. The input signal 10DEC must be asserted by the system
on references to the device.

3. The device cannot be used for instruction fetches, reads
of effective addresses, or Page Table Entries.

4. If an instruction that reads a source operand from the
device crosses a page boundary, then no Trap (ABT) or
restartable bus error can occur during fetches from the
page with higher addresses.

5. No Trap (ABT) for a data reference or other exception
can occur during execution of an instruction that reads a
source operand from the device. (Exceptions that are
recognized after completion of an instruction, like Trap
(OVF) and Trap (DBG), cause no problem.)

6. The device can be used as a source operand only for
instructions in the list below.
ABSi CBITi MOVMi SBITli
ADDi CBITIi MOVXi SUBi
ADDCi CMPi MOVZi SUBCi
ADDPi CMPQi NEGi SUBPi
ADDQi COMi NOTi TBITi
ANDi IBITi ORi XORi
ASHi LSHi ROTi
BICi MOVi SBITi

This restriction arises because the CPU can respond to
interrupt requests during the execution of complex in­
struction in order to reduce interrupt latency. Thus, the
CPU may read the source operands for a DEID instruc­
tion (extended-precision divide), begin calculating the in­
struction's results, and then respond to an interrupt re­
quest before completing the instruction. In such an
event, the instruction can be executed again and com­
pleted correctly after the interrupt service procedure re­
turns unless one of the source operands was altered by
destructive-reading.

Appendix C. Instruction Set
Extensions
The following sections describe the differences and ex­
tensions to the Series 32000 instruction set (as present­
ed in the "Series 32000 Instruction Set Reference Man­
ual") implemented by the NS32352.

No changes or additions have been made to the user­
mode instruction set, and only a few privileged instruc­
tions have been added.

z en
Co)
N
(It
Co)

~
N
o
Z en
Co)
N
(It
Co)
N
~
(It
z en
Co)
N
(It
Co)
N .
Co)
o

o
CO)

• N
CO)
II)
N
CO)

en
z
II)
N
~
CO)
II)
N
CO)

en
z
o
N
~
CO)
II)
N
CO)

en
z

Appendix C.lnstruction Set Extensions (Continued)

C.l PROCESSOR SERVICE INSTRUCTIONS 11~ , ' ,8 17, ' , , , , :01
The CFG register, User Stack Pointer (SP1), and Debug
Registers can be loaded and stored using privileged forms
of the LPRi and SPRi instructions.

When the SETCFG instruction is executed, the CFG register
bits 0 through 3 are loaded from the instruction's short field,
bits 4 through 7 are forced to 1, and bits 8 through 12 are
forced to O.

The contents of the on·chip I nstruction Cache and Data
Cache can be invalidated by executing the privileged in­
struction CINV. While executing the CINV instruction, the
CPU generates 2 slave bus cycles on the system interface
to display the first 3 bytes of the instruction and the source
operand. External circuitry can thereby detect the execution
of the CINV instruction for use in monitoring the contents of
the on-chip caches.

C.2 MEMORY MANAGEMENT INSTRUCTIONS
The NS32532 on-chip MMU does not implement the BAR,
BDR, BEAR, and BMR registers of the NS32382. These
registers are used in the NS32382 to support bus error and
debugging features. When an attempt is made to access
one of these 4 registers by executing an LMR or SMR in­
struction, a Trap (UND) occurs. More generally, a Trap
(UND) occurs whenever an attempt is made to execute an
LMR or SMR instruction and the most-significant bit of the
short-field is O.

While executing an LMR instruction, the CPU generates 2
slave bus cycles on the system interface to display the first
3 bytes of the instruction and the source operand. External
circuitry can thereby detect the execution of an LMR in­
struction for use in monitoring the contents of the on-chip
Translation Lookaside Buffer.

Like the NS32382 MMU, the F-flag in the PSR is set and no
Trap (ABT) occurs when a RDVAL or WRVAL instruction is
executed and the Protection Level in the Level-l Page Ta­
ble Entry indicates that the access is not allowed. In the
NS32082 MMU, an abort occurs when the Level-l PTE is
invalid, regardless of the Protection Level.

C.3 INSTRUCTION DEFINITIONS

This section provides a description of the operations and
encodings of the new NS32532 privileged instructions.

Load and Store Processor Registers

Syntax: LPRi procreg, src
short gen

read.i

SPRi procreg dest
short gen

write.i
The LPRi and SPRi instructions can be used to load and
store the User Stack Pointer (USP or SP1), the Configura­
tion Register (CFG) and the Debug Registers in addition to
the Processor Registers supported by the previous Series
32000 CPUs. Access to these registers is privileged.

Figure C-t and Table C-l show the instruction formats and
the new 'short' field encodings for LPRi and SPRi.

Flags Affected: No flags affected by loading or storing the
USP, CFG, or Debug Registers.

Traps: Illegal Instruction Trap (ILL) occurs if an
attempt is made to load or store the USP,
CFG or Debug Registers while the U·flag
is 1.

2-92

[I

gen short 1 1 0 1 1

src procreg LPRi

11~ " ",8 17"", I . gen short 0 1 0 1 1

dest procreg SPRi
FIGURE C-l. LPRi/SPRi Instruction Formats

TABLE C-l. LPRi/SPRi New 'Short' Field Encodings

Register procreg

Debug Condition Register DCR

Breakpoint Program Counter BPC

Debug Status Register DSR

Compare Address Register CAR

User Stack Pointer USP

Configuration Register CFG

Cache Invalidate

Syntax: CINV options, src

gen

read. D

short field

0001

0010

0011

0100

1011

1100

The CI NV instruction invalidates the contents of locations in
the on-chip Instruction Cache and Data Cache. The instruc­
tion can be used to invalidate either the entire contents of
the on-chip caches or only a 16-byte block. In the latter
case, the 28 most-significant bits of the source operand
specify the physical address of the aligned 16-byte block;
the 4 least-significant bits of the source operand are ig­
nored. If the specified block is not located in the on-chip
caches, then the instruction has no effect. If the entire
cache contents is to be invalidated, then the source oper­
and is read, but its value is ignored.

Options are specified by listing the letters A (invalidate All), I
(Instruction Cache), and D (Data Cache). If neither the I nor
D option is specified, the instruction has no effect.

In the instruction encoding, the options are represented in
the A, I, and D fields as follows:

A: O-invalidate only a 16-byte block
1-invalidate the entire cache

I: O-do not affect the Instruction Cache
1-invalidate the Instruction Cache

D: O-do not affect the Data Cache
1-invalidate the Data Cache

Flags Affected: None

Traps: Illegal Operation Trap (ILL) occurs if an at­
tempt is made to execute this instruction
while the U-flag is 1.

Examples:

1.CINVA,D,I,R3 lEA71B

2. CINV I, R3 1 E 27 19

Example 1 invalidates the entire Instruction Cache and Data
Cache.

Example 2 invalidates the 16-byte block whose physical ad­
dress in the Instruction Cache is contained in R3.

Appendix C. Instruction Set Extensions (Continued)

~3 \15 817 0\
' ~e~' 10iAII 010'1'0'0'1'1'1 0'0'0'1'1'1'1'0

src options CINV
FIGURE C-2. CINV Instruction Format

Load.:.land Store Memory Management Register

Syntax: LMR mmreg, src
short gen

read.O

SMR mmureg, dest
short gen

write.O

The LMR and SMR instruction load and store the on-chip
MMU registers as 32-bit quantities to and from any general
operand. For reasons of system security, these instructions
are privileged. In order to be executable, they must also be
enabled by setting the M bit in the CFG register.

The instruction formats as well as the 'short' field encodings
are shown in Figure C-3 and Table C-2 respectively.

It is to be noted that the IVARO and IVAR1 registers are
write'only, and as such, they can only be loaded by the LMR
instruction.

Flags Affected: none

Traps: Undefined Instruction Trap (UNO) occurs if
an attempt is made to execute this instruc·
tion while either of the following conditions
is true:

1. The M-bit in the CFG register is O.

2. The U-Flag in the PSR is 0 and the
most-significant bit of the short field is O.

Illegal Instruction Trap (ILL) occurs if an at­
tempt is made to execute this instruction
while the M-bit in the CFG register and the
U-flag in the PSR are both 1.

2-93

o
1 000 1 1 1 1 0

src mmureg LMR

dest mmureg SMR
FIGURE C-3. LMRISMR Instruction Formats

TABLE C-2. LMRISMR 'Short' Field Encodings

Register mmureg short field

Memory Management MCR 1001
Control Reg

Memory Management MSR 1010
Status Reg

Translation Exception TEAR 1011
Address Reg

Page Table Base PTBO 1100
Register 0

Page Table Base PTB1 1101
Register 1

Invalidate Virtual IVARO 1110
Address 0

Invalidate Virtual IVAR1 1111
Address 1

z en
Co)
I\)
U1
Co)
I\)

I
I\)
o z
en
Co)
I\)
U1
Co)
I\)

I
I\)
U1
z en
Co)
I\)
U1
Co)

~
Co)
o

•

~.---~
N
C')
C')
N
C')
U)
Z o
N
C')
C')
N
C')
U)
Z

~National
~ Semiconductor

PRELIMINARY

NS32332-10/NS32332-15
32-Bit Advanced Microprocessors

General Description
The NS32332 is a 32-bit, virtual memory microprocessor
with 4 GByte addressing and an enhanced internal imple­
mentation. It is fully object code compatible with other Se­
ries 32000® microprocessors, and it has the added features
of 32-bit addressing, higher instruction execution through­
put, cache support, and expanded bus handling capabilities.
The new bus features include bus error and retry support,
dynamic bus sizing, burst mode memory accessing, and en­
hanced slave processor communication protocol. The high­
er clock frequency and added features of the NS32332 en­
able it to deliver 2 to 3 times the performance of the
NS32032.

The NS32332 microprocessor is designed to work with both
the 16- and 32-bit slave processors of the Series 32000
family.

Block Diagram

Features
• 32-bit architecture and implementation
• 4 Gbyte uniform addressing space
• Software compatible with the Series 32000 Family
• Powerful instruction set

- General 2-address capability
- Very high degree of symmetry
- Address modes optimized for high level languages

• Supports both 16- and 32-bit Slave Processor Protocol
- Memory management support via NS32082 or

NS32382
- Floating pOint support via NS32081 or NS32381

• Extensive bus feature
- Burst mode memory accessing
- Cache memory support
- Dynamic bus configuration (8-, 16-, 32-bits)
- Fast bus protocol

• High speed XMOSTM technology
• 84 Pin grid array package

ADD/DATA CONTROLS & STATUS

32·BIT
INTERNAL BUS

DATA

MICROCODE ROM
AND

CONTROL LOGIC

I
I
I
I
I
I

WIM III! L ____ J
CFG REGISTER

TLlEE/8673-1

FIGURE 1

·Shaded areas indicate enhancements from the NS32032.

2-94

Table of Contents
1.0 PRODUCT INTRODUCTION

1.1 NS32332 Key Features

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers

2.1.2 Dedicated Registers

2.1.3 The Configuration Register (CFG)

2.1.4 Memory Organization

2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.3 Clocking

3.3 Resetting

3.4 Bus Cycles

3.4.1 Cycle Extension

3.4.2 Burst Cycles

3.4.3 Bus Status

3.4.4 Data Access Sequences

3.4.4.1 Bit Accesses

3.4.4.2 Bit Field Accesses

3.4.4.3 Extending Multiple Accesses

3.4.5 Instruction Fetches

3.4.6 Interrupt Control Cycles

3.4.7 Dynamic Bus Configuration

3.4.B Bus Exceptions

3.4.8.1 Bus Retry

3.4.B.2 Bus Error

3.4.B.3 Fatal Bus Error

3.4.9 Slave Processor Communication

3.4.9.1 Slave Processor Bus Cycles

3.4.9.2 Slave Operand Transfer Sequence

3.5 Memory Management Option

3.5.1 The FL T (Float) Pin

3.5.2 Aborting Bus Cycles

3.5.2.1 Instruction Abort

3.5.2.2 Hardware Considerations

2-95

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.6 Bus Access Control

3.7 Instruction Status

3.8 NS32332 Interrupt Structure

3.B.1 General Interrupt/Trap Sequence

3.B.2 Interrupt/Trap Return

3.B.3 Maskable Interrupts (The INT Pin)

3.B.3.1 Non-Vectored Mode

3.B.3.2 Vectored Mode: Non-Cascaded Case

3.B.3.3 Vectored Mode: Cascaded Case

3.B.4 Non-Maskable Interrupt (The NMI Pin)

3.8.5 Traps

3.8.6 Prioritization

3.B.7 Interrupt/Trap Sequences: Detailed Flow

3.8.7.1 Maskable/Non-Maskable Interrupt
Sequence

3.B.7.2 Trap Sequence: Traps Other than Trace

3.B.7.3 Trace Trap Sequence

3.B. 7.4 Abort Sequence

3.9 Slave Processor Instructions

3.9.1 16-Bit Slave Processor Protocol

3.9.2 32-Bit Fast Slave Protocol

3.9.3 Floating Point Instructions

3.9.4 Memory Management Instructions

3.9.5 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Clocking Requirements

4.4.2.3 Input Signal Requirements

4.4.3 Timing Diagrams

Appendix A: Instruction Formats

B: Interfacing Suggestions

z
en
Co)
N
Co)
Co)
N
o
z
en
Co)
N
Co)
Co)
N
U1

•

~ r--,
~
C')
C')
C'\I
C')
(/)
z
C)
~
C')
C')
C'\I
C')
(/)
z

List of Illustrations

CPU Block Diagram .. 1

The General and Dedicated Registers .. 2-1

Processor Status Register ... 2-2

CFG Register .. 2-3

Module Descriptor Format. .. 2-4

A Sample Link Table ... 2-5

General Instruction Format .. 2-6

Index Byte Format ... 2-7

Displacement Encodings .. 2-8

Recommended Supply Connections .. 3-1

Clock Timing Relationships .. 3-2

Power-on Reset Requirements ... 3-3

General Reset Timing .. 3-4

Recommended Reset Connections, Non-Memory Managed System ... 3-5a

Recommended Reset Connections, Memory Managed System ... 3-5b

Read-cycle Timing ... 3-6

Write-cycle Timing ... 3-7

Bus Connections ... 3-8

RDY Pin Timing .. 3-9

Extended Cycle Example .. 3-10

Burst Cycles; Normal Termination of Burst .. 3-11 a

Burst Cycles; External Termination of Burst. ... 3-11 b

BOUT Timing Resulting from a Bus Width Change ... 3-12

Memory Interface ... 3-13

Bus Width Changes ... 3-14

Bus Cycle Retry; Bus Cycle Not Retried ... 3-15a

Bus Cycle Retry; Bus Cycle Retried .. 3-15b

Bus Error During Read or Write Cycle .. 3-16

Slave Processor Connections .. 3-17

CPU Read from Slave Processor .. 3-18

CPU Write to Slave Processor .. 3-19

Read (Write) Cycle with Address Translation .. 3-20

FL T Timing ... 3-21

HOLD Timing, Bus Initially Idle .. 3-22

HOLD Timing, Bus Initially Not Idle .. 3-23

ILO Timing ...•.....•......... 3-24

Non-Aligned Write Cycle-MC/EXS Timing ... 3-25

Interrupt Dispatch Table ... 3-26

Interrupt/Trap Service Routine Calling Sequence ... 3-27

Return from Trap (RETTn) Instruction Flow ... 3-28

Return from Interrupt (RETI) Instruction Flow ... 3-29

Service Sequence .. 3-30

Slave Processor Protocol .. 3-31

Fast Slave Protocol ... 3-32

ID and Opcode Format for Fast Slave Protocol. ... 3-33

Slave Processor Status Word Format .. 3-34

2-96

List of Illustrations (Continued)

Connection Diagram, Pin Grid Array Package .. 4-1

Timing Specification Standard (Signal Valid After Clock Edge) .. 4-2

Timing Specification Standard (Signal Valid Before Clock Edge) .. 4-3

NS32332 Read Cycle Timing .. 4-4

NS32332 Write Cycle Timing .. 4-5

NS32332 Burst Cycle Timing .. 4-6

External Termination of Burst Cycle•... .4-7

NS32332 Bus Retry During Normal Bus Cycle .. 4-8

BRT Activated, but No Bus Retry ... 4-9

Bus Retry During Burst Bus Cycle ... 4-10

BRT Activated During Burst Bus Cycle, but No Bus Retry ... 4-11

Bus Error During Normal Bus Cycle .. 4-12

Bus Error During Burst Bus Cycle .. .4-13

Timing of Interlocked Bus Transactions4-14

Floating by HOLD Timing (CPU not Idle Initially) ... 4-15

Floating by HOLD Timing (Burst Cycle Ended by HOLD Assertion) .. .4-16

Floating by HOLD Timing (CPU Initially Idle) .. 4-17

Release from HOLD .. .4-18

FL T Initiated Cycle Timing .. 4-19

Release from FLT Timing (CPU Write Cycle) .. 4-20

Slave Processor Write Timing ... 4-21

Slave Processor Read Timing .. 4-22

DT ISDONE Timing (32-Bit Slave Protocol) .. .4-23

SPC Timing (16-Bit Slave Protocol) .. 4-24

Clock Waveforms .. .4-25

Relationship of PFS to Clock Cycles ... 4-26

Guaranteed Delay, PFS to Non-Sequential Fetch .. 4-27

Guaranteed Delay, Non-Sequential Fetch to PFS4-28

Abort Timing, FL T Not Applied .. 4-29

Abort Timing, FL T Applied4-30

Power-on Reset .. 4-31

Non-Power-on Reset .. 4-32

U/S Relationship to Any Bus Cycle, Guaranteed Valid Interval4-33

INT Interrupt Signal Detection4-34

NMllnterrupt Signal Timing .. .4-35

System Connection Diagram (32332, 32081 & 32082) .. B-1

System Connection Diagram (32332, 32381 & 32382) .. B-2

List of Tables

NS32332 Addressing Modes .. 2-1

Series 32000 Instruction Set Summary .. 2-2

Bus Access Types ... 3-1

Access Sequences ... 3-2

Interrupt Sequences .. 3-3

2-97

z
en
Co)
N
Co)
Co)
N
o
........
Z
en
Co)
N
Co)
Co)
N
U1

•

~ r---, .,...
N
CO)
CO)
C'I
CO)

en z
" o .,...
N
CO)
CO)
C'I
CO)

en z

1.0 Product Introduction
The Series 32000 Microprocessor family is a new genera­
tion of devices using National's XMOS and CMOS technolo­
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc­
essors.

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided. This powerful memory-to-memory archi­
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op­
erands as well as for context switching.

Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func­
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32332 has 32-bit ad­
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addreSSing scheme pro­
vides flexible memory management without added-on ex­
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

2-98

• High-Level Language Support

• Easy Future Growth Path

• Application Flexibility

1.1 NS32332 KEY FEATURES

The NS32332 is a 32-bit CPU in the Series 32000 family. It
is totally software compatible with the NS32032, NS32016,
and NS32008 CPUs but with an enhanced internal imple­
mentation.

The NS32332 design goals were to achieve two to three
times the throughput of the NS32032 and to provide the full
32-bit addreSSing inherent in the architecture.

The basic approaches to higher throughput were: fewer
clock cycles per instruction, better bus use, and higher
clock frequency.

An examination of the block diagram of the NS32332 shows
it to be identical to that of the NS32032, except for en­
hanced bus interface control, a 20-byte (rather than 8-byte)
instruction prefetch queue, and special hardware in the ad­
dress unit. The new addressing hardware consists of a high­
speed ALU, a barrel shifter on one of its inputs, and an
address register. Of the throughput improvement not due to
increased clock frequency, about 15% is derived from the
new address unit hardware, 15% from the bus enhance­
ments, 10% from the larger prefetch queue, and 60% from
microcode improvements.

Other important aspects of the enhanced bus interface cir­
cuitry of the NS32332 are a burst access mode, designed to
work with nibble and static column RAMs, read and write
timing designed to support caches, and support for bus er­
ror processing.

An enhanced slave processor communication protocol is
designed to achieve improved performance with the
NS32382 MMU and NS32381 FPU, while still working di­
rectly with the previous NS32082 MMU and NS32081 FPU.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture has 8 general purpose and 8
dedicated registers. All registers are 32 bits wide except the
STATUS and MODULE register. These two registers are
each 16 bits wide.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the processor are assigned
specific functions.

PC: The PROGRAM COUNTER register is a pOinter to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

sPa, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used

2.0 Architectural Description (Continued)

GENERAL
DEDICATED

32
32

RD
PROGRAM COUNTER PC

R1
STATIC BASE SB

R2
FRAME POINTER FP

R3
USER STACK PTR. SP1 }

SP R4
INTERRUPT STACK PTR. SPD

RS
INTERRUPT BASE INTBASE

PSR MOD R6

STATUS MODULE R7

TLlEE/8673-2

FIGURE 2-1. The General and Dedicated Registers

primarily for storing temporary data, and holding return infor­
mation for operating system subroutines and interrupt and
trap service routines. The SP1 register pOints to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms "SP register" or "SP" refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0 the SP refers to SPO. If the S bit in
the PSR is 1 then SP refers to SP1.

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB: The STATIC BASE register pOints to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

INTBASE: The INTERRUPT BASE register holds the ad­
dress of the dispatch table for interrupts and traps (Sec.
3.8). The INTBASE register holds the lowest address in
memory occupied by the dispatch table.

MOD: The MODULE register holds the address of the mod­
ule descriptor of the currently executing software module.
The MOD register is sixteen bits long, therefore the module
table must be contained within the first 64K bytes of memo­
ry.

PSR: The PROCESSOR STATUS REGISTER (PSR) holds
the status codes for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-

15 8 r 0
IXIXIXIXIllplslu NlzlFIXIXILlrlcl

TLlEE/8673-3

FIGURE 2-2. Processor Status Register

2-99

grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It can be
used with the ADDC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T: The T bit causes program tracing. If this bit is a 1, a
TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is
set to "0".

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to "0".

U: If the U bit is "1" no privileged instructions may be
executed. If the U bit is "0" then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer­
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati­
cally cleared on interrupts and traps. It may have a set­
ting of 0 (use the SPO register) or 1 (use the SP1 regis­
ter).

z
en
w
I\)
W
W
I\) •
0
Z
en
W
I\)
W
W
I\)
•

U1

•

2.0 Architectural Description (Continued)

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.B.5.). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I: If I = 1, then all interrupts will be accepted (Sec. 3.B.).
If I = 0, only the NMI interrupt is accepted. Trap en­
ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)*
Within the Control section of the CPU is the CFG Register,
which declares the presence and type of external devices. It
is referenced by only one instruction, SETCFG, which is in­
tended to be executed only as part of system initialization
after reset. The format of the CFG Register is shown in
Figure 2-3.
'The NS32332 CPU has four new bits in the CFG Register, namely P, FC,
FM and FF.

7 o

FIGURE 2-3. CFG Register

The CFG I bit declares the presence of external interrupt
vectoring circuitry (specifically, the Interrupt Control Unit). If
the CFG I bit is set, interrupts requested through the INT pin
are "Vectored." If it is clear, these interrupts are "Non-Vec­
tored." See Sec. 3.B.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.

The FF, FM, FC bits define the Slave Communication Proto·
col to be used in FPU, MMU and Custom Slave instructions
(Sec. 3.4.9). If these bits are not set, the corresponding in­
structions will use the 16-bit protocol (32032 compatible). If
these bits are set, the corresponding instructions will use
the new (fast) 32·bit protocol.

The P bit improves the efficiency of the Write Validation
Buffer in the CPU. It is set if the Virtual Memory has page
size(s) larger than or equal to 4 Kbytes. It is reset otherwise.
In Systems where the MMU is not present, the P bit is not
used.

2.1.4 Memory Organization

The main memory is a uniform linear address space. Memo·
ry locations are numbered sequentially starting at zero and
ending at 232 • 1. The number specifying a memory location
is called an address. The contents of each memory location
is a byte conSisting of eight bits. Unless otherwise noted,
diagrams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad·
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least Significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

01

A
Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. In memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

2·100

115 MSB's BI7 LSB's 0 I

A+1 A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou­
ble word is stored at the lowest address and the most signif­
icant word of the double word is stored at the address two
greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

131 MSB's 24123 BI7 LSB's 01

A+3 A+2 A+1 A
Double Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a
double·word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double·word
boundary.

2.1.5 Dedicated Tables

Two of the dedicated registers (MOD and INTBASE) serve
as pOinters to dedicated tables in memory.

The INTBASE register pOints to the Interrupt Dispatch and
Cascade tables.

The MOD register contains a pOinter into the Module Table,
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers. The MOD register contains
the address of the Module Descriptor for the currently run­
ning module. It is automatically up·dated by the Call Exter­
nal Procedure instructions (CXP and CXPD).

15 o
I MOD I

l
"I" oj 31

STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

~

"
TL/EE/8673-4

FIGURE 2-4. Module Descriptor Format

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
aSSigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry points, the Program Base pointer serves only
as a reference to find them.

2.0 Architectural Description (Continued)

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor­
mation needed for:

1) Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad­
dressing mode.

2) Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module's Program Base pointer.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

-131
ENTRY

o

_

ABSOLUTE ADDRESS

ABSOLUTE ADDRESS

OFFSET I MODULE

0-1'"'

(VARIABLE)

(VARIABLE)

(PROCEDURE)

_
TL/EE/8673-5

FIGURE 2-5. A Sample Link Table

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to, two 5-bit General Ad­
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-7.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-

I' GEN. ADDR. MODE l REG. NO. "I
TL/EE/8673-7

FIGURE 2-7. Index Byte Format

ed address modes. Each Displlmm field may contain one or
two displacements, or one immediate value. The size of a
Displacement field is encoded with the top bits of that field,
as shown in Figure 2-8, with the remaining bits interpreted
as a Signed (two's complement) value. The size of an imme­
diate value is determined from the Opcode field. Both Dis­
placement and Immediate fields are stored most significant
byte first. Note that this is different from the memory repre­
sentation of data (Sec. 2,1.4).

Some instructions require additional, "implied" immediates
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Sec. 2.2.3).

2.2.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per­
forming this calculation is specified by the programmer as
an "addressing mode."

Addressing modes are designed to optimally support high­
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space. Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION

r~----------------~A~----------------~\I~--------~~

DISP2 DISPl DISP21DISP1
I

i
GEN I

IMPLIED INDEX INDEX I GEN
DISP DISP ADDR I ADDR OPCODE IMMEDIATE BYTE BYTE MODE I MODE OPERAND(S) i A

I
B

IMM IMM I

t ~ j

TL/EE/8673-6

FIGURE 2-6. General Instruction Format

2-101

z en w
N
W
W
N

I
<:)
.......
z en w
N
W
W
~
en

•

U) ,---,
~
C')
C')
C'I
C')
U)
z
C;
~
C')
C')
C'I
C')
U)
z

2.0 Architectural Description (Continued)

BYTE DISPLACEMENT: RANGE -64 TO + 63

SIGNED DISPLACEMENT

WORD DISPLACEMENT: RANGE -8192 TO + 8191

7

1 I
I

DOUBLE WORD DISPLACEMENT:
RANGE -(229-224) to +(229 -1).

0

1 I

//-
TL/EE/8673-8

FIGURE 2·8. Displacement Encodlngs
'Note: The pattern "11100000" for the most significant byte of the dis­

placement Is reserved by National for future enhancements.
Therefore. It should never be used by the user program. This
causes the lower limit of the displacement range to be
- (229 - 224) Instead of - 229.

Memory Relative: A pOinter variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pOinter to generate the Effec·
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

2-102

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode .
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary

Table 2-2 presents a brief description of the Series 32000
instruction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Instruction Set Reference Manual.

Notations:

i = Integer length suffix: B = Byte

W = Word

D = Double Word

f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value append­
ed after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R?

areg = Any Dedicated/ Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).

mreg = Any Memory Management Status/Control Regis­
ter.

creg = A Custom Slave Processor Register (Implementa­
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

r--, Z

2.0 Architectural Description (Continued)

ENCODING
Register
00000
OOOOt
00010
00011
00100
00101
00110
00111
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top of Stack
10111

Memory Space
11000
11001
11010
11011
Scaled Index
11100
11101
11110
11111

MODE

Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

TABLE 2-1

NS32332 Addressing Modes

ASSEMBLER SYNTAX

RO or FO
RlorFl
R2 or F2
R3 or F3
R40rF4
R5 or F5
R60r F6
R7 or F7

disp(RO)
disp(Rl)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(displ (FP))
disp2(displ (SP))
disp2(displ (SB))

(Reserved for Future Use)

Immediate value

Absolute @disp

External EXT (displ) + disp2

Top of stack TOS

Frame memory disp(FP)
Stack memory disp(SP)
Static memory disp(SB)
Program memory • +disp

I ndex, bytes mode[Rn:B]
Index, words mode[Rn:W]
Index, double words mode[Rn:D]
Index, quad words mode[Rn:Q]

2-103

EFFECTIVE ADDRESS

None: Operand is in the specified
register

Disp + Register.

Disp2 + Pointer; Pointer found at
address Displ + Register. "SP"
is either SPO or SPI , as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Displ.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.
EA (mode) + 2x Rn.
EA (mode) + 4X Rn.
EA (mode) + B X Rn.
'Mode' and 'n' are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

UJ
(0)
N
(0)
(0)
N

I
o
Z
UJ
(0)
N
(0)
(0)

~
U1

•

U) r---~ .-
~ 2.0 Architectural Description (Continued)

~
C") TABLE 2-2

~ Series 32000 Instruction Set Summary

Ci .-
~
C")
C")
('II

~
Z

MOVES

Format Operation Operands
4 MOVi gen,gen
2 MOVQi short,gen
7 MOVMi gen,gen,disp
7 MOVZBW gen,gen
7 MOVZiD gen,gen
7 MOVXBW gen,gen
7 MOVXiD gen,gen
4 ADDR gen,gen

INTEGER ARITHMETIC

Format Operation Operands

4 ADDI gen,gen
2 ADDQi short,gen
4 ADDCi gen,gen
4 SUBi gen,gen
4 SUBCi gen,gen
6 NEGi gen,gen
6 ABSi gen,gen
7 MULi gen,gen
7 QUOi gen,gen
7 REMi gen,gen
7 DIVi gen,gen
7 MODi gen,gen
7 MEIi gen,gen
7 DEli gen,gen

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands

6 ADDPi gen,gen
6 SUBPi gen,gen

INTEGER COMPARISON

Format Operation Operands

4 CMPi gen,gen
2 CMPQi short,gen
7 CMPMi gen,gen,disp

LOGICAL AND BOOLEAN

Format Operation Operands

4 ANDi gen,gen
4 ORi gen,gen
4 BICi gen,gen
4 XORi gen,gen
6 COMi gen,gen
6 NOTi gen,gen
2 Scondi gen

Description
Move a value.
Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 16).
Move with zero extension.
Move with zero extension.
Move with sign extension.
Move with sign extension.
Move Effective Address.

Description

Add.
Add signed 4-bit constant.
Add with carry.
Subtract.
Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.
Multiply
Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description

Add Packed.
Subtract Packed.

Description

Compare.
Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.
Logical OR.
Clear selected bits.
Logical Exclusive OR.
Complement all bits.
Boolean complement: LSB only.
Save condition code (cond) as a Boolean variable of size i.

2-104

2.0 Architectural Description (Continued)

SHIFTS

Format Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.

BITS

Format Operation Operands Description

4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records
used in Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned
source.
Format Operation

8 EXTi
8 INSi
7 EXTSi
7 INSSi
8 CVTP

ARRAYS

Format Operation

8 CHECKi
8 INDEXi

STRINGS

Operands

reg,gen,gen,disp
reg,gen,gen,disp
gen,gen,imm,imm
gen,gen,imm,imm
reg,gen,gen

Operands

reg,gen,gen
reg,gen,gen

Description

Extract bit field (array oriented).
Insert bit field (array oriented).
Extract bit field (short form).
Insert bit field (short form).
Convert to Bit Field Pointer.

Description

I ndex bounds check.
Recursive indexing step for multiple-dimensional arrays.

String instructions assign specific functions to the Gen­
eral Purpose Registers:

Options on all string instructions are:

B (Backward): Decrement string pOinters after each step
rather than incrementing. R4 - Comparison Value

R3 - Translation Table Pointer

R2 - String 2 Pointer

R1 - String 1 Pointer

RO - Limit Count

Format Operation
5 MOVSi

MOVST

5 CMPSi
CMPST

5 SKPSi
SKPST

Operands
options
options

options
options

options
options

U (Until match): End instruction if String 1 entry matches
R4.

W (While match): End instruction if String 1 entry does not
match R4.

All string instructions end when RO decrements to zero.

Descriptions
Move String 1 to String 2.
Move string, translating bytes.

Compare String 1 to String 2.
Compare translating, String 1 bytes.

Skip over String 1 entries
Skip, translating bytes for Until/While.

2-105

z
CJ)
Co)
I\)
Co)
Co)
I\)

I
0
Z
CJ)
Co)
I\)
Co)
Co)
I\)

I
U1

an ,..
• 2.0 Architectural Description (Continued) C'I

CO)
CO) JUMPS AND LINKAGE
C'I

Format Operation Operands Description CO)

en 3 JUMP gen Jump. Z 0 BR disp Branch (PC Relative).
0 ,.. 0 Bcond disp Conditional branch. • C'I 3 CASEi gen Multiway branch.
CO)
CO) 2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.
C'I 3 JSR gen Jump to subroutine. CO)

en BSR disp Branch to subroutine. Z
1 CXP disp Call external procedure.
3 CXPD gen Call external procedure using descriptor.

SVC Supervisor Call.
FLAG Flag Trap.
BPT Breakpoint Trap.
ENTER [reg IistJ.disp Save registers and allocate stack frame (Enter Procedure).
EXIT [reg listl Restore registers and reclaim stack frame (Exit Procedure).
RET disp Return from subroutine.
RXP disp Return from external procedure call.
RETT disp Return from trap. (Privileged)

1 RETI Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION
Format Operation Operands Description

SAVE [reg listl Save General Purpose Registers.
RESTORE [reg listl Restore General Purpose Registers.

2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or INTBASE)
2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or INTBASE)
3 ADJSPi gen Adjust Stack Pointer.
3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)
3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)
5 SETCFG [option listl Set Configuration Register. (Privileged)

FLOATING POINT
Format Operation Operands Description

11 MOVf gen,gen Move a Floating Point value.
9 MOVLF gen,gen Move and shorten a Long value to Standard.
9 MOVFL gen,gen Move and lengthen a Standard value to Long.
9 MOVif gen,gen Convert any integer to Standard or Long Floating.
9 ROUNDfi gen,gen Convert to integer by rounding.
9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.
9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

11 ADDf gen,gen Add.
11 SUBf gen,gen Subtract.
11 MULf gen,gen Multiply.
11 DIVf gen,gen Divide.
11 CMPf gen,gen Compare.
11 NEGf gen,gen Negate.
11 ABSf gen,gen Take absolute value.
12 POLYf gen,gen Polynomial Step.
12 DOn gen,gen Dot Product.
12 SCALBf gen,gen Binary Scale.
12 LOGBf gen,gen Binary Log.
9 LFSR gen Load FSR.
9 SFSR gen Store FSR.

2-106

2.0 Architectural Description (Continued)

MEMORY MANAGEMENT

Format Operation

14 LMR
14 SMR
14 RDVAL
14 WRVAL
8 MOVSUi

8 MOVUSi

MISCELLANEOUS

Format Operation

NOP
WAIT
DIA

CUSTOM SLAVE

Format Operation

15.5 CCALOc
15.5 CCALlc
15.5 CCAL2c
15.5 CCAL3c
15.5 CMOVOc
15.5 CMOVlc
15.5 CMOV2c
15.5 CMOV3c
15.5 CCMPOc
15.5 CCMPlc
15.1 CCVOci
15.1 CCVlci
15.1 CCV2ci
15.1 CCV3ic
15.1 CCV4DQ
15.1 CCV5QD

15.1 LCSR
15.1 SCSR

15.0 CATSTO
15.0 CATSTI

15.0 LCR
15.0 SCR

Operands

mreg,gen
mreg,gen
gen
gen
gen,gen

gen,gen

Operands

Operands

gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

gen
gen

gen
gen

creg,gen
creg,gen

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)
Validate address for writing. (Privileged)
Move a value from Supervisor
Space to User Space. (Privileged)
Move a value from User Space
to Supervisor Space. (Privileged)

Description

No Operation.
Wait for interrupt.
Diagnose. Single-byte "Branch to Self" for hardware
breakpointing. Not for use in programming.

Description

Custom Calculate.

Custom Move.

Custom Compare.

Custom Convert.

Load Custom Status Register.
Store Custom Status Register.

Custom Address/Test. (Privileged)
(Privileged)

Load Custom Register. (Privileged)
Store Custom Register. (Privileged)

2-107

z
en w
N
W
W
~
o
z
en w
N
W
W
N •
CI1

fJI

it) .,...
N
C")
C")
N
C")

en
z
CI .,...
N
C")
C")

~ en z

3.0 Functional Description
The following is a functional description of the NS32332
CPU.

3.1 POWER AND GROUNDING

The NS32332 requires a single 5-volt power supply, applied
on 7 pins. The Logic Voltage pins (VeeL 1 and VeeL2) sup­
ply the power to the on-chip logic. The Buffer Voltage pins
(VeeBl to VeeB5) supply the power to the output drivers of
the chip. The Logic Voltage pins and the Buffer Voltage pins
should be connected together by a power (Vecl plane on
the printed circuit board.

The NS32332 grounding connections are made on 8 pins.
The Logic Ground pins (GNDL 1 and GNDL2) are the ground
pins for the on-chip logic. The Buffer Ground pins (GNDB1
to GNDB6) are the ground pins for the output drivers of the
chip. The Logic Ground pins and the Buffer Ground pins
should be connected together by a ground plane on the
printed circuit board.

In addition to Vee and Ground, the NS32332 CPU uses an
internally-generated negative voltage. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig­
ure 3. 1) from the BBG pin to Ground.

Recommended values for these are:

C1: 1 ,..F, Tantalum

C2: 1000 pF, Low inductance. This should be either a disc
or monolithic capaCitor.

+5V

TLlEE/B673-11

FIGURE 3-1_ Recommended Supply Connections

3.2 CLOCKING

The NS32332 inputs clocking signals from the Timing Con­
trol Unit (TCU), which presents two non-overlapping phases
of a single clock frequency. These phases are called PHI1
(pin A7) and PHI2 (pin B8). Their relationship to each other
is shown in Figure 3-2.

vee

PHil ---t--~

Each rising edge of PHI1 defines a transition in the timing
state ("T-State") of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Sec. 4 for com­
plete specifications of PHI1 and PHI2 .

PHil

PHI2

TLlEE/B673-9

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as pOSSible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST / ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.2.

The DT/SDONE pin is sampled on the riSing edge of PHI1,
one cycle before the reset signal is deasserted to select the
data timing during write cycles. If DT/SDONE is sampled
high, ADO-AD31 are floated during state T2 and the data is
output during state T3. This mode must be selected if an
MMU is used (Section 3.5). If DT/SDONE is sampled low,
the data is output during state T2. See Figure 3-7.

The CPU may be reset at any time by pulling the RSf / ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction proceSSing, resets its inter·
nal logic, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for at
least 50 ,..sec after Vee is stable. This is to ensure that all

RsT/ABr ----t---------fJ-JI

TL/EE/B673-l0

FIGURE 3-3. Power·on Reset Requirements

2-108

3.0 Functional Description (Continued)

on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain active for
not less than 64 clock cycles. See Figures 3-3 and 3-4.

The Timing Control Unit (TCU) provides circuitry to meet the
Reset requirements of the NS32332 CPU. Figure 3-5a
shows the recommended connections for a non-Memory­
Managed system. Figure 3-5b shows the connections for a
Memory-Managed system.

VCC

1"-------------.
I I

PHll~Jl-Jl
I--- l!: 64 CLOCK-I

iiST/ABT---....,~................. C~CLES I

TCU

TL/EE/8673-12

FIGURE 3-4. General Reset Timing

cpu

II mr--SET t:~+I-~_1--~---~~~----.~ I I RSTI RsTO 1----------1 RsT/ABr
! : L. _____________ .J

EXTERNAL RESET
(OPTIONAL) l!: 501'88C

RESET SWITCH
(OPTIONAL)

SYSTEM RESET

TLlEE/8673-13

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

VCC

TCU MMU CPU

1"-------------.
I I

I RESET E>--+I-~_1--~--..... ~+-----~ iiSri RsTO
I
! I L. _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

i!: 50p.sec

TL/EE/8673-14

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4 BUS CYCLES

The NS32332 CPU will perform Bus cycles for one of the
following reasons:

1) To write or read data to or from memory or peripheral
interface device. Peripheral input and output are memory
mapped in the Series 32000 family.

2) To fetch instructions into the 20·byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing speCifications, see Sec. 4. The only external

2·109

difference between them is the 4·bit code placed on the Bus
Status pins (STO-ST3). Slave Processor cycles differ in that
separate control signals are applied (Sec. 3.4.6).

For case 1 (only Read) and case 2, the NS32332 supports
Burst cycles which are suitable for memories that can han­
dle "nibble mode" accesses. (Sec. 3.4.2).

The sequence of events in a non-Slave, non-Burst Bus cy­
cle is shown in Figure 3-6 for a Read cycle, and Figure 3-7
for a Write cycle. The cases shown assume that the select­
ed memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).

A full speed Bus cycle is performed in four cycles of the
PHI1 clock,labeled T1 through T4. Clock cycles not associ­
ated with a Bus cycle are designated Ti (for idle).

z
en
Co)
N
Co)
Co)

~
o
z
en
Co)
N
Co)
Co)
N •
U1

3.0 Functional Description (Continued)

NS32332 CPU BUS SIGNALS

Tl T2 T3 T4 I TlORTi I
PHil [

PHI 2 [

ADO-AD31 [

STS [

ADS [

STD-ST3 [

ODiN [

iEii-i'E3 [

BWO-BWI [

ROY [

TL/EE/B673-15

FIGURE 3-6_ Read Cycle Timing

2-110

3.0 Functional Description (Continued)

NS32332 CPU BUS SIGNALS

FIGURE 3-7. Write Cycle Timing

2-111

TLlEE/B673-16

z
CJ)
Co)
N
Co)
Co)
N

I
o -Z
CJ)
Co)
N
Co)
Co)
N

I
en

fII

~ r---,
po

~
C")
C")
C'I
C")
U)
z
Q
po

~
C")
C")
C'I
C")
U)
z

3.0 Functional Description (Continued)

During T4 or Ti which preceed T1 of the current Bus cycle,
the CPU applies a Status Code on pins STO-ST3. It also
provides a low-going pulse on the STS pin to indicate that
the status code is valid.

The ADS signal has the dual purpose of informing the exter­
nal circuitry that a Bus cycle is starting and of providing
control to an external latch for demultiplexing address bits
0-31 from ADO-AD31 pins. (See Figure 3-8.)

During this time, the control signal iJDijij, which indicates
the direction of the transfer, and BEO-BE3 which indicate
which of the four bus bytes to be referenced, become valid.
Note that during Instruction Fetch cycles BEO-BE3 are all
active, but in operand Read or Write cycles they indicate the
byte(s) to be referenced.
Note: II a burst cycle occurs during an operand read. all the memory banks

should be enabled, during the burst cycle, regardless of BEn. The
CPU BEn lines, In this case, are valid in the middle of T3 of the burst
cycle-thus, there may not be enough time to selectively enable the
different memory banks, unless a WAIT state is added. See Figure
4·6.

During T2 the CPU floats ADO-AD31 lines unless
DT/SDONE is sampled Iowan the rising edge of reset and
the bus cycle is a write cycle. T2 is a time window to be
used for virtual to physical address translation by the Memo­
ry Management Unit, if virtual memory is used in the system.

The T3 state provides for access time requirements and it
occurs at least once in a bus cycle. In the middle of T3 on
the falling edge of PHI1, the ROY line is sampled to deter­
mine whether the bus cycle will be extended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD31) is sampled on the falling edge of PHI2 of the last T3
state. See Sec. 4. Data must, however, be held at least until
the beginning of T 4. The T 4 state finishes the Bus cycle .
Data from the CPU during Write cycles remains valid
throughout T4. Note that the Bus Status lines (STO-ST3)
change at the beginning of T 4, anticipating the following bus
cycle (if any).

3,4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32332 pro­
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the ROY (Ready) pin.

In the middle of T3 on the falling edge of PHI1, the RDY line
is sampled by the CPU. If RDY is high, the next T-state will
be T4, ending the bus cycle. If ROY is low, then another T3
state will be inserted and the ROY line will again be sampled
on the falling edge of PHI1. Each additional T3 state after
the first is referred to as a "WAIT STATE". See Figure 3-9.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the ROY pin.

ODIN r-----------~~

TL/EE/B673-17

FIGURE 3-8. Bus Connections

2-112

3.0 Functional Description (Continued)

PHil

PHI2

ROY

n T2
T3

(WAIT) T3

FIGURE 3-9. ROY Pin Timing

NS32332 CPU BUS SIGNALS
PREV.CYCLE

PHil [

PHI2 [

AOO-A023 [

STS [

ADs [

STo-ST3 [

DoiN [

m-iiEi [

ROY [

\T40R Ti \ Tl T2 I (W~IT) I (vlllT) I 13

FIGURE 3-10. Extended Cycle Example

2-113

T4

TLlEE18673-18

NEXT CYCLE

T4 InoRTi I

TLIEE18673-19

~ r---~
~ a
~
o
~

I

3.0 Functional Description (Continued)

3.4.2 Burst Cycles
The NS32332 is capable of performing Burst cycles in order
to increase the bus throughput. Burst is available in instruc­
tion Fetch cycles and operand Read cycles only. Burst is
not supported in operand Write cycles or Slave cycles.

The sequence of events for Burst cycles is shown in Figuf9
3-". The cases shown assume that the selected memory is
capable of communicating with the CPU at full speed. If it is

T4 Tl

PIli 1 [

PIli 2 [

m[

ADS [

mIT [

liN [

ADO-AD31 [

not, then cycle extension may be requested through the
RDY line (Sec. 3.4.1).

A Burst cycle is composed of two parts. The first part is a
regular cycle (i.e. Tl through T4), in which the CPU outputs
the new status and asserts all the other relevant control
signals discussed in Sec. 3.4. In addition, the Burst Out Sig­
nal (BOUT) is activated by the CPU indicating that the CPU
can perform Burst cycles. If the selected memory allows

T3 T4 T4 T3 T4

--cp- --¢----¢--
TUEE/8673-2()

(a) Normal Termination of Burst

Ta T4 T3 T4

PIli 1 [

PHI 2 [

IIIR[

ADO-ADal [-+---I''--+' --cp-- -¢--
(b) External Termination of Burst

FIGURE 3·11_ Burst Cycles (For Read Only)

2-114

TL/EE/8673-21

3.0 Functional Description (Continued)

Burst cycles, it will notify the CPU by activating the burst in
signal (BIN). BIN is sampled by the CPU in the middle of T3
on the falling edge of PHil. If the memory does not allow
burst (BIN high), the cycle will terminate through T4 and
BOUT will go inactive immediately. If the memory allows
burst (BIN low), and the CPU has not deasserted BOUT, the
second part of the Burst cycle will be performed (see Figure
3-11) and BOUT will remain active until termination of the
Burst.

The second part consists of up to 3 nibbles. In each nibble,
a data item is read by the CPU. The duration of each nibble
is 2 clock cycles labeled T3 and T4.

The Burst chain will be terminated in the following cases:

1. The CPU has reached a 16 byte boundary i.e. the byte
address of the current nibble is x ... xll11 (binary).

2. The CPU detects that the instructions being prefetched
(in Burst Mode) are no longer needed due to an alteration
of the flow of control. This happens, for example, when a
branch instruction is executed or an exception occurs.

Note: In 16-blt bus systems (see Sec. 3.4.7) the Burst chain will be terminat­
ed by the CPU on an a.byte boundary i.e. address x •. x111 (binary) and
in a·blt bus system on a 4.byte boundary i.e. address x ... x11 (binary).

11 T2 T3

3. The data operand has been completely read. This applies
to burst read cycles for non-aligned operands or when
the bus width is either 8 or 16 bits.

4. BIN, sampled in the current nibble's last T3, is not active
any more. (See Figure 3. 11b).

5. Bus Error or Bus Retry occurs (see Sec. 3.4.8).

6. A HOLD Request occurs.

Any nibble's T3 may be extended with WAIT states using
the ROY line as described in Sec. 3.4.2.

The control signals BOUT, STO-ST3, and ODIN remain sta­
ble during the Burst chain.

BEO-BE3 are adjusted for every nibble in operand cycles.

BOUT is initially set by the CPU according to the known bus
width. Its state may change in a subsequent T3 as a result
of a change in the bus width. Figure 3-12 shows the result­
ing BOUT timing.
Note: If the selected memory is capable of handling burst transfers, it

should activate BiJiI regardless of the state of lIDll'i'.
The reason is that BOUT may be activated by the CPU after the BIN
sampling time. The liOiJf signal Indicates when the CPU Is going to
burst, and should not be Interpreted as a 'Burst Request' signal.

T3 T3 T4

PHil ~

PHI2 [l--rL ~ r--r1 r--r1 - n --rL r---

-'---I ADS [

RDY [

BWO-l [

BIN [

(1) Biilii' [

(2) BOUT [

Note 1: CPU deasserts BOUT.

Note 2: CPU asserts liOiJf.

\. /

X

/

\.

FIGURE 3·12_ BOUT Timing Resulting from a Bus Width Change

2-115

TL/EE/8673-88

~ ,--,
~
CO)
CO)
IN
CO)
fJ)
z
~
~
CO)
CO)
IN

~
Z

3.0 Functional Description (Continued)

3.4.3 Bus Status
The NS32332 CPU presents four bits of Bus Status informa­
tion on pins STO-ST3. The various combinations on these
pins indicate why the CPU is performing a bus cycle, or, if it
is idle on the bus, then why is it idle .

Referring to Figures 3-6 and 3-7, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T 4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded Signals before ADS initiates the
Bus Cycle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:

0000 - The bus is idle because the CPU does not yet
need to perform a bus access.

0001 - The bus is idle because the CPU is executing the
WAIT instruction.

0010 - (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To ac­
knowledge receipt of a Non-Maskable Interrupt
(on NMI) it will read from address FFFFFF0016,
but will ignore any data provided.

To acknowledge receipt of a Maskable Interrupt
(on INT) it will read from address FFFFFE0016,
expecting a vector number to be provided from
the Master Interrupt Control Unit. If the vectoring
mode selected by the last SETCFG instruction
was Non-Vectored, then the CPU will ignore the
value it has read and will use a default vector
instead. See Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a Cas­
caded Interrupt Control Unit. The address provid­

ed is the address of ICU's Hardware Vector regis­
ter. See Sec. 3.4.6.

0110 - End of Interrupt, Master.

The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI)
instruction. See Sec. 3.4.6.

0111 - End of Interrupt, Cascaded.

The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service routine
requested by that unit. See Sec. 3.4.6.

2-116

1000 - Sequential Instruction Fetch.

The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. It will do so whenever the bus would oth­
erwise be idle and the queue is not already full.

1001 - Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruc­
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

1010 - Data Transfer.

The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.

The CPU is reading an operand which will subse­
quently be modified and rewritten. If memory pro­
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

1100 - Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addressing
mode.

1101 - Transfer Slave Processor Operand.

The CPU is either transferring an instruction op­
erand to or from a Slave Processor, or it is issu­
ing the Operation Word of a Slave Processor in­
struction. See Sec. 3.9.1.

1110 - Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions it pre­
sents new values for the CPU Processor Status
Register bits N, Z, Lor F. See Sec. 3.9.1.

1111 - Broadcast Slave 10.

The CPU is initiating the execution of a Slave
Processor instruction. The 10 Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point the
CPU is communicating with only one Slave Proc­
essor. See Sec. 3.9.1.

3.0 Functional Description (Continued)

3.4.4 Data Access Sequences

The 32-bit address provided by the NS32332 is a byte ad­
dress; that is, it uniquely identifies one of up to 4 billion
eight-bit memory locations. An important feature of the
NS32332 is that the presence of a 32-bit data bus imposes
no restrictions on data alignment; any data item, regardless
of size, may be placed starting at any memory address. The
NS32332 provides special control signals. Byte Enable
(BEO-BE3) which facilitate individual byte accessing on a
32-bit bus.

Memory is organized as four eight-bit banks, each bank re­
ceiving the double-word address (A2-A31) in parallel. One
bank, connected to Data Bus pins ADO-AD? is enabled
when BEO is low. The second bank, connected to data bus
pins AD8-AD15 is enabled when BE1 is low. The third and
fourth banks are enabled by BE2 and BE3, respectively.
See Figure 3-13.

TLlEE/B673-22

FIGURE 3-13. Memory Interface

Since operands do not need to be aligned with respect to
the double-word bus access performed by the CPU, a given
double-word access can contain one, two, three, or four
bytes of the operand being addressed, and these bytes can
begin at various positions, as determined by A1, AO. Table
3-1 lists the 10 resulting access types.

TABLE 3-1

Bus Access Types
Type Bytes Accessed A 1,AD BE3 BE2 BE1 BED

1 1 00 1 0
2 01 0 1
3 10 1 0
4 11 0 1
5 2 00 0 0
6 2 01 1 0 0
? 2 10 0 0 1
8 3 00 1 0 0 0
9 3 01 0 0 0

10 4 00 0 0 0 0

2-117

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment. Table 3-2 lists
the bus cycles performed for each situation.

3.4.4.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.4.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou­
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it.

3.4.4.3 Extending Multiple Accesses

The Extending Multiply Instruction (MEl) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory, the most-significant half of the
result is written first (at the higher address), then the least­
significant half. This is done in order to support retry if this
instru'ction is aborted.

3.4.5 Instruction Fetches

Instructions for the NS32332 CPU are "prefetched"; that is,
they are input before being needed into the next available
entry of the twenty-byte Instruction Queue. The CPU per­
forms two types of Instruction Fetch cycles: Sequential and
Non-Sequential. These can be distinguished from each oth­
er by their differing status combinations on pins STO-ST3
(Sec. 3.4.3).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
type 10 Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle depends on the destination address.

If a non-sequential fetch is followed by additional sequential
fetches which are burst continuation of the non-sequential
fetch, then the Status Bus (STO-ST3) remains the same.
Nole 1: During instruction fetch cycles, SEO-SE3 are all active regardless

of the alignment.

Note 2: During Operand Access cycles BEQ-BE3 are activated as if the bus
is 32 bits wide, regardless of the real width.

3.4.6 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine.

U) r---,
c:..
CO)
CO)

:a z
o
c:..
CO)
CO)
eN

~
Z

3.0 Functional Description (Continued)

Cycle Type Address

A. Word at address ending with 11

1.
2.

4 A
A+1

o

B. Double word at address ending with 01

1.
2.

9 A
A+3

o

C. Double word at address ending with 10

1.
2.

7
5

A
A+2

o

D. Double word at address ending with 11

o

o

o

TABLE 3·2

Access Sequences

o

o

o

o

1
o

Data Bus

I '\
Byte 3 B~e2 B~e1 B~eO

I BYTE 1 I BYTE 01 - A

Byte 0 X X X
X X X Byte 1

IBYTE31BYTE21BYTE11BYTEoi - A

Byte 2 Byte 1 Byte 0 X
X X X Byte 3

I BYTE 31 BYTE 21 BYTE 11BYTEoi - A

Byte 1 Byte 0 X X
X X Byte 3 Byte 2

IBYTE31BYTE21BYTE11BYTEoi - A

Byte 0 X X X 1.
2.

4
8

A
A+1 o 0 0 X Byte 3 Byte 2 Byte 1

E. Quad word at address endIng with 00 I BYTE7IBYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 01 - A

1. 10 A o o o o Byte 3 Byte 2 Byte 1 Byte 0
Other bus cycles (instruction prefetch or slave) can occur here.
2. 10 A + 4 0 0 0 0 Byte 7 Byte 6 Byte 5 Byte 4

F. Quad word at address endIng with 01 I BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I - A

1.
2.

9 A
A+3

o o o

Other bus cycles (instruction prefetch or slave) can occur here.
o

Byte 2
X

Byte 1
X

Byte 0
X

X
Byte 3

3. 9 A + 4 0 0 0 Byte 6 Byte 5 Byte 4 X
4. A + 7 1 1 0 X X X Byte 7

G. Quad word at address ending with 10 I BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I - A

1.
2.

7
5

A
A+2

o o
o

Other bus cycles (instruction prefetch or slave) can occur here.
o

Byte 1
X

Byte 0
X

X
Byte 3

X
Byte 2

3. 7 A + 4 0 0 1 1 Byte 5 Byte 4 X X
4. 5 A + 6 1 1 0 0 X X Byte 7 Byte 6

H. Quad word at address ending with 11 I BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I - A

1. 4 A 0 1 Byte 0 X X X
2. 8 A+1 0 0 0 X Byte 3 Byte 2 Byte 1
Other bus cycles (instruction prefetch or slave) can occur here.
1. 4 A+4 0 1 1 1 Byte 4 X X X
2. 8 A+5 0 0 0 X Byte 7 Byte 6 Byte 5

X = Don't Care

2-118

3.0 Functional Description (Continued)

TABLE 3-3
Interrupt Sequences

Data Bus
(~ __________ A-__________ ~

\

Cycle Status Address ODIN BE3 BE2 BE1 BEO Byte 3 Byte 2 Byte 1 Byte 0
A. Non-Maskable Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFFFF0016 o o X X X X

Interrupt Return
None: Performed through Return from Trap (RETT) instruction.

B. Non- Vectored Interrupt Control Sequences

Interrupt Acknowledge

1 0100 FFFFFE0016 o o X X X X

Interrupt Return
1 0110 FFFFFE0016 o o X X X X

C. Vectored Interrupt Sequences: Non-Cascaded.

Interrupt Acknowledge

1 0100 FFFFFE0016 o o X X X Vector:
Range: 0-127

Interrupt Return
1 0110 FFFFFE0016 o o X X X Vector: Same as

in Previous In!.
Ack. Cycle

D. Vectored Interrupt Sequences: Cascaded

Interrupt Acknowledge

1 0100 FFFFFE0016 o o X X X Cascade Index:
range -16 to -1

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade 0 See Note

Address
Vector, range 9-255; on appropriate byte of
data bus.

Interrupt Return
1 0110 FFFFFE0016 o

(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note

Address

X = Don't Care

o X X

X X

X

X

Cascade Index:
Same as in
previous In!.
Ack. Cycle

X

Note: BEO-BE3 signals will be activated according to the cascaded leu address. The cycle type can be 1,2,3 or 4, when reading the interrupt vector. The vector
value can be in the range 0-255.

2-119

z en
Co)
I\)
Co)
Co)
I\) ,
0
Z en
Co)
I\)
Co)
Co)
I\) ,
(J'J

EI

U) r---~
~
C")
C")
C'I
C")

en z
o
~
C")
C")
C'I

~
Z

3.0 Functional Description (Continued)

3.4.7 Dynamic Bus Configuration

The NS32332 interfaces to external data buses with 3 differ­
ent widths: a-bit, 16-bit and 32-bit. The NS32332 can switch
from one bus width to another dynamically i.e. on a cycle by
cycle basis.

This feature allows the user to include in his system differ­
ent bus sizes for different purposes, like a-bit bus for boot­
strap ROM and 32-bit bus for cache memory, etc.

In each memory cycle, the bus width is determined by the
inputs BWO and BW1.

Four combinations exist:

BW1 BWO

0 0 reserved
0 1 a-bit bus
1 0 16-bit bus
1 1 32-bit bus

The dynamic bus configuration is not applicable for slave
cycles (see Sec. 3.4.1).

The BWO-BW1 lines are sampled by the CPU in T3 with the
falling edge of PHI1 (see Figure 3-14).

T4 TI I T2lTmmu I T3

PHil [

PHI 2 [

ROY [

8WO-8WI [

-+---+--fo--oIf

T3

If the bus width didn't change from the previous memory
cycle, the CPU terminates the cycle normally.

If the bus width of the current cycle is different from the bus
width of the previous cycle, then two WAIT states (see Sec.
3.4.1) must be inserted in order to let the CPU switch to the
new width.

The additional 2 WAIT states count from the moment BWO
BW1 change. This can be overlapped with the wait states
due to slow memories.
Nole: 8WO-8WI can only be changed during the first T3 state of a memory

access cycle. They should be externally latched and should not be
changed at any other time.

In write cycles, the appropriate data will be present on the
appropriate data lines. The CPU presents the data during T3
in a way that would fit any bus width.

If the operand being written is a byte, it will be duplicated on
the 4 bytes ADO-AD31 depending on the operand address:

Address AO-1 = 00 XX XX XX OP
01 XX XX OP OP
10 XX OP XX OP
11 OP XX OP OP

T3 T4 T1 I T2/Tmmu I T3

TL/EE/8673-23

FIGURE 3-14. Bus width changes. Two wait states are required after the signals BWO-BW1 change.

2-120

3.0 Functional Description (Continued)

If the operand being written is a word, 4 cases exist. The
operand address can be X ••• xOO (binary) or x ... x01 (binary) or
x ... x10 or x ... x11 (binary).

See the duplications for each case:

OPERANO STARTS HERE t

11 10 01 00

"T - - -r---t--r--r---,
I OP
: HIGH

..1. ___ L-_....L._...L.._.....L_----I

A1AO 11 10 01 00

TLlEE/8673-25

OPERAND STARTS HERE ---.

T---r---~--~---+---'
I OP
I HIGH 2

.L ___ '--__L.. __ --I ____ -'-__J

T - - i - - -...----.,......--+---...,---....,
I OP I OP
I HIGH 2 I HIGH 1

..L __ .1 ___ , _-'-__ _ _---'

T- - i - - T- - - r--r-...,----.--....,
10PIOPIOP
I HIGH 2 I HIGH 1 I LOW2 .L __ ..I. __ ..1 ___ '--__ -'-__ '---__ -'-__

A1 AD 11 10 01 00

TL/EE/8673-26

If the operand being written is a double word 4 cases exist:
The operand address can be x ... xOO (binary) or x ... x01 (bina­
ry) or x ... x10 (binary) or x ... x11 (binary).

See the duplications for each case:

Note that the organization of the operand described applies
to the initial part of the operand cycle. For instance, if the

2-121

CPU writes a double word operand to a 16-bit bus and the
operand address is x ... x11 (binary) it needs three memory
cycles.

The description above applies to the first cycle. In the other
2 memory cycles belonging to the same operand, the data
will be presented on the data bus lines to fit 16-bit bus width
and take into account the operand length.

Example:

The CPU has to write a double word DDCCBBAA to address
HEX 987653 which is in a 16-bit bus area. In the first cycle,
the CPU does not know the width until T3 so it generates a
cycle to address 987653 which activates the BE3 line and
puts on the data bus AA XX AA AA (X = don't care). After
this cycle, the CPU knows it has a 16-bit bus and it gener­
ates a cycle to address 987654 which activates the BEO,
BE1 and BE2 lines and puts on the data bus XX XX CC BB.
The last cycle will address 987656, activate BE2, and put on
the data bus XX XX XX DD. The BEO-BE3 lines are always
activated as if the bus is 32-bit wide, regardless of BWO­
BW1 state.

The CPU does not support a change of the bus width during
a sequence of several memory references belonging to the
same operand e.g. nonaligned double word. In other words,
any operand should not be split between two memory
spaces having different bus widths .

Instruction Fetches do not fall in this category and an In­
struction Fetch can have its own bus width regardless of the
bus width in the previous cycle.

3.4.8 Bus Exceptions

Any bus cycle may have a bus error during its execution.
The error may be corrected during the current cycle or may
be incorrectable. The NS32332 can handle both types of
errors by means of BUS RETRY and BUS ERROR.

3.4.8.1 Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the BRT (Bus Retry) signal.

The CPU response to Bus Retry depends on the cycle type:

Instruction Fetch Cycle-If the RETRY occurs during an
instruction fetch, the fetch cycle will be retried as soon as
possible. If the RETRY is requested during a burst chain,
the burst is stopped and the fetch is retried. The only delay
in retrying the instruction fetch may result from pending op­
erand requests (and, of course, from hold or wait requests).

The fetch cycle will be retried only if there are no more than
four bytes in the queue .

Operand Read Cycle-If the RETRY occurs on an operand
read, the bus cycle is immediately repeated. If the data read
is "multiple" e.g. non-aligned, only the problematic part will
be repeated. For instance, if the cycle is a non-aligned dou­
ble word and the second half failed, only the second part
will be repeated. The same applies for a RETRY occurring
during a burst chain. The repeated cycle will begin where
the read operand failed (rather than the first address of the
burst) and will finish the original burst.

z
(J)
Co)
N
Co)
Co)

~
o
Z
(J)
Co)
N
Co)
Co)
N

I
U1

fII

~ ,---,

a
i
c;
~
CW)

~

3.0 Functional Description (Continued)

Operand Write Cycle-If the RETRY occurs on a write, the
bus cycle is immediately repeated. If the operand write is
"multiple" e.g. non-aligned, only the problematic part will be
repeated. For instance, if the cycle is a non-aligned double
word and the second half failed, only the second part will be
repeated.

A Bus Retry is requested by activating the BRT line (see
Figure 3-15). EiR'i' is sampled by the CPU during T3 on the
falling edge of PHI1. If BRT is inactive, the cycle will be
terminated in a regular way. In this case BRT must also be
kept Inactive during T 4. If BRT is active, EiR'i' will be sam­
pled again during T4 on the falling edge of PHI1. If BRT is
inactive, the cycle will be terminated In a regular way. If BRT
is active, T 4 will be followed by an idle state and the

cycle will be repeated, i.e. a new T4 for setting the Status
Bus and issuing STS and then T1 through T4 will be per­
formed.

Although the decision about Retry is taken by the CPU on
T4, BRT must have an early activation in T3 as described
above in order to prevent the internal pipeline to advance.
Holding the pipeline allows the repeated cycle to override
the original one. If BRT is activated only in T3 and not in T4,
there might be one cycle penalty in the performance of the
execution unit in operand read cycles.

Retry is applicable for regular memory cycles and burst cy­
cles, but not for Slave cycles.

T4 T1 I T2/Tmmu I T3 T4 I TI DR T1 I

T4

PIli 1 [

PIli 2 [

(a) Bus Cycle Not Retried

Tl I T2/Tmmu I T3 T4 TI

(b) Bus Cycle Retried

FIGURE 3-15. Bus Cycle Retry

2-122

TL/EE/8673-27

T4 Tl I T2/Tmmu I

TL/EE/8673-28

3.0 Functional Description (Continued)

3.4.8.2 Bus Error

If a Bus Error is incorrectable the CPU may be requested to
abort the current process and branch to an appropriate rou­
tine to handle the error. The request is performed by activat­
ing the BER signal.

BER is sampled by the CPU during T4 on the falling edge of
PHI1. If BER is active the bus will go to Tidle after T4 and
the CPU will jump to the Bus Error handler (see Sec. 3.8).

The CPU response to Bus Error depends on the cycle type:

Instruction Fetch Cycles-If the bus error occurs on an
instruction fetch, additional fetches are inhibited including
the one which failed. If, after inhibiting instruction fetches,
some operand cycles are still pending within the CPU, they
are executed normally, delaying the access to the bus error
exception. If and when the internal instruction queue be­
comes empty, the CPU will enter the BUS ERROR excep­
tion. This arrangement enables the CPU to ignore bus errors
which belong to fetch ahead cycles if these fetches are not
to be used as a result of a jump.

Operand Read Cycles-If the bus error occurs on an oper­
and read, the bus error is immediately accepted, and the
CPU enters the BUS ERROR exception.

Operand Write Cycles-If the bus error occurs on an oper­
and write, the exception is immediately accepted.
Note 1: When a bus error occurs, the Instruction that caused the error is

generally not re·executable.

The process that was being executed should either be aborted or
should be restarted from the last checkpoint.

Note 2: Bus error has top priority and is accepted even during the acknowl·
edge sequence of another CPU exception (i.e. Abort, Interrupt, etc.).

It is the responsibility of the user software to detect such an occur­
ence and to take the appropriate corrective actions.

3.4.8.3 Fatal Bus Error

As previously mentioned, the CPU response to a bus error is
to interrupt the current activity and enter the error routine.

An exception to this rule occurs when a bus error is sig­
nalled to the CPU during the acknowledge of a previous bus
error. In this case the second error is interpreted by the CPU
as a fatal bus error.

The CPU will respond to this event by halting execution and
floating ADS, BEO-BE3, DDIN, STS and ADO-AD31.

The Halt condition is indicated by the setting of STO-ST3 to
zero and by the assertion of MC/EXS for more than one
clock cycle (see Sec. 4.1.3).

The CPU can exit this condition only through a hardware
reset.

T4 T1 I T2ITmmu I T3 T4 TI TI

PHil [

PHI2 [

m[

AtiS[

m[
TUEE/B673-30

FIGURE 3·16. Bus Error During Read or Write Cycle

2-123

z en
Co)
N
Co)

~
Q
Z
~
N
Co)
Co)

~
UI

•

U) r---~------------------------------------, ..-
N
CW)
CW)
C'I
CW)
U)
Z
o ..-
N
CW)
CW)
C'I
CW)

en z

3.0 Functional Description (Continued)

3.4.9 Slave Processor Communication

The SPC pin is used as the data strobe for Slave Processor
transfers. I n this role, it is referred to as Slave Processor
Control (SPC). In a Slave Processor bus cycle, data is trans­
ferred on the Data Bus and the status lines (STO-ST3) are
monitored by each Slave Processor in order to determine
the type of transfer being performed. SPC is bidirectional,
but is driven by the CPU during all Slave Processor bus
cycles. See Sec. 3.9 for full protocol sequences.

PREVo CYCLE

I T40rTi

PHil [

PHIZ [

spc[

ACO·AC31 [.Lf""""".L.I.""4-'1

STO-ST3 [

ADS [

5DiN[

Tl

A '" AIJO.AD31 IJO.D31

SPC
...

SPC

NS32332 SLAVE
cpu PROCESSOR

STO-ST3 STO-ST3

iii'/SDDNE SiiONE

TL/EE/8673-31

FIGURE 3-17. Slave Processor Connections

NEXT CYCLE

T4 Tl0RTi I

Notes: TUEE/8673-32

(1) CPU samples Data Bus here.

(2) Slave Processor samples CPU Status here.

FIGURE 3·18. CPU Read from Slave Processor

2·124

3.0 Functional Description (Continued)

3.4.9.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles,labeled T1 and T4 (see Figures 3·18 and 3·1El). Dur·
ing a Read cycle, SPC is active from the beginning of T1 to
the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri·
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

The CPU does not pulse the address (ADS) and status
(STS) strobes during a slave protocol. The direction of a
transfer is determined by the sequence ("protocol") estab·
lished by the instruction under execution; but the CPU indio
cates the direction on the DDIN pin for hardware debugging
purposes.

3.4.9.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
slave operand cycles. The NS32332 supports two slave
protocols which can be selected by the configuration regis­
ter (CFG).

PREV.CYCLE

I T40RTi

PHil [

SPC [

ADO·AD3l [

STO·ST3 [

STS [

ADS [

CoiN [

Note:

(1) Arrows indicate points at which the Slave Processor samples.

T1

1. The regular Slave protocol is fully compatible with
NS32032, NS32016 and NS3200B slave protocols.

In this protocol the NS32332 uses only the two least sig·
nificant bytes of the data bus for slave cycles. This allows
the NS32332 CPU to work with the current slaves (like
NS320B2, NS320B1 etc.)

A byte operand is transferred on the least significant byte
of the data bus (ADO-AD15).

A double word is transferred in a consecutive pair of bus
cycles least significant word first. A quadword is trans­
ferred in two pairs of slave cycles.

2. The fast slave protocol is unique to the NS32332 CPU. In
this protocol the NS32332 uses the full width of the data
bus (ADO-AD31) for slave cycles.

A byte operand is transferred on the least significant byte
of the data bus (ADO-AD?), a word operand is trans­
ferred on bits ADO-AD15 and a double word operand is
transferred on bits ADO-AD31. A quad word is trans­
ferred in two pairs of slave cycles with other bus cycles
possibly occurring between them.

T4

NEXT CYCLE

T1 OR Ti I

TLlEE18673-33

FIGURE 3-19. CPU Write to Slave Processor

2-125

z
(J)
Co)
N
Co)
Co)

~
Q
.......
Z
(J)
Co)
N
Co)
Co)
N •
U1

II)
N
CO)
CO)
N
CO)
tn
Z o
N
CO)
CO)
N
CO)
U)
Z

3.0 Functional Description (Continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32332 CPU, in conjunction with the Memory Man­
agement Unit (MMU), provides full support for address
translation, memory protection, and memory allocation
techniques up to and including Virtual Memory .

When an MMU is used, the states T2 and TMMU are over­
lapped. During this time the CPU places ADO-AD31 into the
TRI-STATE mode, allowing the MMU to assert the translat­
ed address and issue the physical address strobe PAV. Fig­
ure 3-20 shows the Bus Cycle timing with address transla­
tion.
Note 1: If an NS32382 MMU is used. the CPU can be selected to output

data during write cycles in state T2, by forcing lYi'/SDONE low duro
ing reset. This can be done because the NS32382 uses a separate
physical address bus.

However, if a write cycle causes an MMU page table lookup, the
CPU data will be valid in state T3. After FLT is deasserted, regard·
less of the data timing selected.

DT ISDONE must always be forced high during reset if an NS32082
MMU is used since, in this case, no separate physical address bus
is provided.

Note 2: If an NS32082 MMU is used, in order for it to operate properly, it
must be set to the 32·Bit mode by forcing a A24/HBF low during
reset. In this mode the bus lines ADI6-AD24 are floated after the
MMU address has been latched, since they are used by the CPU to
transfer data.

3.5.1 The FL T (Float) Pin

The FL T signal is used by the CPU for address translation
support. Activating FL T during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida­
tion. This feature is used occasionally by the MMU in order
to update its Translation Lookaside Buffer (TLB) from page
tables in memory, or to update certain status bits within
them.

Figure 3-21 shows the effect of FL T. Upon sampling FL T
low, late in Tmmu, the CPU enters idle T-States (Tf) during
which it:

1) Sets ADO-AD31, and DDIN to the TRI-STATE condition
("floating").

2) Suspends further internal processing of the current in­
struction. This ensures that the current instruction re­
mains abortable with retry. (See RST I ABT description.)

The above conditions remain in effect until FL T again goes
high. See Sec. 4.

3.5.2 Aborting Bus Cycles

The RST/ABT pin, apart from its Reset function (Sec. 3.3),
also serves as the means to "abort", or cancel, a bus cycle
and the instruction, if any, which initiated it. An Abort re­
quest is distinguished from a Reset in that the RST I ABT pin
is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or n, this signals
that the cycle must be aborted. Since it is the MMU PAV
signal which triggers a physical cycle, the rest of the system
remains unaware that a cycle was started.

The MMU will abort a bus cycle for either of two reasons:

1) The CPU is attempting to access a virtual address which
is not currently resident in physical memory. The refer­
enced page must be brought into physical memory from
mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not
allowed by the protection level assigned to that page.

2-126

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later.
Note: To guarantee correct instruction reexecution, Bit M in the CFG Regis­

ter must be set.
11 T2/Tmmu T3 T4 T1 OR TI

PHI 1 (

PHI2 [

ADO-A031 [

BED-BE3 [

-+---+--++--+--1

TLlEE/8673-87

FIGURE 3-20. Read (Write) Cycle with
Address Translation

3.5.2.1 Instruction Abort

Upon aborting an instruction, the CPU immediately inter­
rupts the instruction and performs an abort acknowledge
using the ABT vector in the Interrupt Table (see Sec. 3.B).
The Return Address pushed on the Interrupt Stack is the
address of the aborted instruction, so that a Return from
Trap (RETT) instruction will automatically retry it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will
actually be executed, the Abort will occur, in effect aborting
the instruction that was being fetched.

3.5.2.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be
followed in applying an Abort to the CPU. These rules are
followed by the Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse
must occur during Tmmu.

3.0 Functional Description (Continued)

2) If FL T has been applied to the CPU, the Abort pulse must
be applied before the T -State in which FL T goes inactive.
The CPU will not actually respond to the Abort command
until FL T is removed.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management functions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU pres­
ents RMW status, that cycle must be aborted if it would
be illegal to write to any of the accessed addresses.

T1 I T2ITmmu I TI

PHI1 [

PHI2 [

ADD-AD31· [

ADS [

FLT [

STD-STJ [VALID

If RST I ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high-pri­
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32332 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. Byas­
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the

TI · · · I TI I T3 I

~

VALID

ODIN [VALID ---- ---- ---fI- VALID

BED-BEl [VALID

·See MMU data sheet lor details on physical address timing and MMU initiated Bus cycles. TUEE/8673-34

FIGURE 3-21. FLT Timing

2-127

•

U) r--, .,...
N
C")
C")
N
C")
(/)
Z
o .,...
N
C")
C")
N
C")
(/)
Z

3.0 Functional Description (Continued)

ADO-AD31, ADS, STS, DDIN and SEO-SE3 pins to the
TRI-STATE condition. To return control of the bus to the
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-22 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-23 shows the sequence
if the CPU is using the bus at the time that the HOLD re-

quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T 4. If
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T 4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect­
ed in a daisy-chain through the MMU, so that the MMU can
release the bus if it is using it.

I Ti I Ti I··· I
PHll[JLsu1

Ti Ti

PHI2 [

HOL5[

HLDi[
AFFECTED SIGNALS

-i~ ----

ADs [

DDiN[-.~r--------

BEo-m [
-+----t----+-'

TL/EE/8673-35

FIGURE 3-22. HOLD Timing, Bus Initially Idle

2-128

3.0 Functional Description (Continued)

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32332 CPU also presents Instruction Status informa­
tion on four separate pins. These pins differ from STO-ST3
in that they are synchronous to the CPU's internal instruc­
tion execution section rather than to its bus interface sec­
tion.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes.

U/S originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for

T3 T4 T,

PHI2 [

HOLD [

HLDA[

mapping, protection, and debugging purposes. U/S line is
updated every T4.

ILO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing.

While ILO is active, the CPU inhibits instruction fetches. In
order to prevent MMU cycles during ILO, the CPU executes
a dummy Read cycle with status code 1011 (RMW) prior to
activating ILO. Thereafter, ILO is activated and the Read is
performed again but with status code 1010 (operand trans­
fer). Refer to Figure 3-24.

AFFECTED SIGNALS

--- H--------

ADS [

DDIN [-+ ___ --4 __ V_A_LI_D_I-___ +' --- ~~--- ---- - - - -

BEO-BE3 [-+ ___ --4 __ VA_L_ID_+ ___ -+J 1~-- ---- -----

STO-ST3[-+---__ f----t-'

TL/EE/8873-36

FIGURE 3-23. HOLD Timing, Bus Initially Not Idle

2-129

•

U) r---,
c:..
C')
C')
C'II
C')
rn z
C)
c:..
C')
C')
C'II

~
Z

3.0 Functional Description (Continued)

MC/EXS (Multiple Cycle/Exception Status) is activated dur­
ing the access of the first part of an operand that crosses a
double-word address boundary. The activation of this signal
is independent of the selected bus width. Its timing is shown
in Figure 3-25. The MMU or other external circuitry can use
it as an early indication of a CPU access to an operand that
crosses a page boundary.

MC/EXS is also activated during the first non-sequential in­
struction fetch (status code 1001) following an abort, and
when the CPU enters the idle state (Status Code 0000) fol­
lowing a fatal bus error.

T1 I T2/Tmmu I T3 T4 TI

TLlEE/8673-37

FIGURE 3-24. ILO Timing

T4 Tl T2 T3 T4 T1 T2 13 T4 11

PHil [

PHI2 [

TL/EE/8673-38

FIGURE 3-25. Non-aligned Write Cycle-MC/EXS Timing

2-130

3.0 Functional Description (Continued)

3.8 NS32332 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non·maskable interrupts may be request­
ed,and

RST/ABT, which may be used to abort a bus cycle and
any associated instruction. See Sec. 3.5.2.

In addition there is a set of internally-generated "traps"
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.8.1 General Interrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through three major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program

,.

MEMORY ~
,.,..

/ CASCADE ADDR 0

• CASCADE TABLE :: ::: • ~~ •

II'"-'''~
CASCADE ADDR 14

CASCADE ADDR 15

REGISTER I FIXED INTERRUPTS
AND TRAPS

Counter (PC), the Processor Status Register (PSR) and
the currently-selected Stack Pointer (SP). A copy of the
PSR is made, and the PSR is then set to reflect Supervi­
sor Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup­
plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dispatch
Table, whose base address is taken from the CPU Inter­
rupt Base (INTBASE) Register. See Figure 3-26. A 32-bit
External Procedure Descriptor is read from the table en­
try, and an External Procedure Call is performed using it.
The MOD Register (16 bits) and Program Counter (32
bits) are pushed on the Interrupt Stack.

"'31 0"
0 NVI N ON·VECTORED INTERRUPT

1 NMI N ON·MASKABLE INTERRUPT

2 ABT A BORT

3 SLAVE S LAVE PROCESSOR TRAP

4 ILL I LLEGAL OPERATION TRAP

5 SVC SUPERVISOR CALL TRAP

i VECTORED i DISPATCH TABLE
6 DVZ DIVIDE BY ZERO TRAP

INTERRUPTS 1: 7 FLG F LAG TRAP

8 BPT BREAKPOINT TRAP

9 TRC T RACE TRAP

10 UNO U NDEFINED INSTRUCTION TRAP

11 RESERVED

12 BER B us ERROR

13-15 :: RESERVED ~
16 VECTORED

INTERRUPTS
,.., rL

TL/EE/8673-39

FIGURE 3-26. Interrupt Dispatch Table

2-131

II)
~
('I)
('I)
N
('I)
CJ)
Z -o
N
('I)
('I)
N
('I)
CJ)
Z

3.0 Functional Description (Continued)

This process is illustrated in Figure 3-27, from the viewpoint of the programmer.

I RETURN ADDRESS I (PUSH)

I

I STATUS I MODULE I
I (PUSH)

PSR MOD INTERRUPT
STACK

r-------- -----..,

INTBASE REGISTER

I I
i CASCADE TABLE i
I I
: I

I INTERRUPT BASE

t
DISPATCH

TABLE

I VECTOR <4
Y DESCRIPTOR (32 BITS)

)

DESCRIPTOR i""1----16---··-t-1 .. ----16-----<·~11
OFFSET MODULE

0

MOD REGISTER ~ MODULE TABLE

I NEW MODULE

l MODULE TABLE ENTRY

j

MODULE TiBlE ENTRY
32

STATIC BASE POINTER - t------

LINK BASE POINTER

+ PROGRAM BASE POINTER

(RESERVED)

1
32BITS

32 BITS

PROGRAM COUNTER SBREGISTER

I ENTRY POINT ADDRESS I Y- NEW STATIC BASE

FIGURE 3-27_lnterrupt/Trap Service Routine Calling Sequence

2-132

TLlEE/B673-40

j
TL/EE/B673-41

3.0 Functional Description (Continued)

3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in­
structions is used. The RETT (Return from Trap) instruction
(Figure 3-28) restores the PSR, MOD, PC and S8 registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETT is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-29.

3.8.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in-

PROGRAM COUNTER

put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit
is set. The I bit is automatically cleared during service of an
INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit I = 0) or Vec­
tored (bit I = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an I nterrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

I RETURN ADDRESS -j

I STATUS I MODULE +-
(POP) }

__ (P_O_P_) ___ -1~~~---------t} :::
PSR MOD

MODULE T~BLE ENTRY

STATIC BASE POINTER - --.,

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SB REGISTER

STATIC BASE

/ B~ES

POP AND
DISCARD

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

PARAMETERS

STACK SELECTED
IN NEWLY·

POPPEDPSR.

FIGURE 3-28. Return from Trap (RETT n) Instruction Flow

2-133

TL/EE/8673-42

z
en
(0)
N
(0)
(0)
N

I
o z
en
(0)
N
(0)
(0)
N

I
U1

3.0 Functional Description (Continued)

"END OF INTERRUPT"

BUS CYCLE

PROGRAM COUNTER
(POP)

RETURN ADDRESS

INTERRUPT
CONTROL

UNIT

I (POP)
STATUS MODULE -1----------4-

PSR MOD

MODULETAJLEENTRY

STATIC BASE POINTER - h
LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SBREGISTER

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

FIGURE 3-29. Return from Interrupt (RETI) Instruction Flow

2·134

TL/EE/8673-43

3.0 Functional Description (Continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Sec. 3.4.3)
reading a vector value from the low-order byte of the Data
Bus. This vector is then used as an index into the Dispatch
Table in order to find the External Procedure Descriptor for
the proper interrupt service procedure. The service proce­
dure eventually returns via the Return from Interrupt (RETI)
instruction, which performs an End of Interrupt bus cycle,
informing the ICU that it may re-prioritize any interrupt re­
quests still pending. The ICU provides the vector number
again, which the CPU uses to determine whether it needs
also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter­
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-26 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle
(Sec. 3.4.3), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle (Sec. 3.4.3), where­
upon the Master ICU again provides the negative Cascade

2-135

Table index. The CPU, seeing a negative value, uses it to
find the corresponding Cascade Address from the Cascade
Table. Applying this address, it performs an "End of Inter­
rupt, Cascaded" bus cycle (Sec. 3.4.3), informing the Cas­
caded ICU of the completion of the service routine. The byte
read from the Cascaded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con­
troller.

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt. the CPU may still perform an interrupt ac­
knowledge cycle following that instruction since it might have sampled
the INT line before the leu deasserted it. This could cause the leu to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Sec. 3.4.3)
when processing of this interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is
FFFFFF0016. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Sec. 3.B.7.1.

3.8.5Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap
(TRG) is the address of the first byte of the instruction during
which the trap occurred. Traps do not disable interrupts, as
they are not associated with external events. Traps recog­
nized by the NS32332 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Sec. 3.9.1).

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVG) instruction was exe­
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The Slave trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UNO): An undefined opcode was encountered by the
CPU.

z
en
Co)
N
Co)
Co)

~
o
z
en
Co)
N
Co)
Co)
N

I
U1

Il) • N
CO)
CO)
N

~
Z
o
• N

CO)
CO)

~
tn
Z

3.0 Functional Description (Continued)

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending") bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.
Note: A slight difference exists between the NS32332 and previous Series

32000 CPU. when traCing is enabled.

The NS32332 always clears the P bit in the PSR before pushing the
PSR on the stack. Previous CPUs do not clear it when a trap (ILL)
occurs.
The result is that an instruction that causes a trap (ILL) exception is
traced by previous Series 32000 CPU •• but is never traced by the
NS32332.

3.8.6 Prioritization

The NS32332 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)

2) Abort

3) Bus Error

4) Non-Maskable Interrupt

5) Maskable Interrupts

6) Trace Trap (Lowest priority)

3.8.7Interrupt/Trap Sequences: Detailed Flow
For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called
"Service" is defined in Figure 3-30. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis·
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskable interrupts (on the INT or NMI pins, respec­
tively), see Sec. 3.8.7.1 For Abort Interrupts, see Sec.
3.8.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all
other traps see Sec. 3.8.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu­
tion.

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and I.

2-136

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Master,
Sec. 3.4.3). Discard the byte read .

b. Set "Vector" to 1 .
c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFFFE0016, applying
Status Code 0100 (Interrupt Acknowledge, Master:
Sec. 3.4.3). Discard the byte read.

b. Set "Vector" to O.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read "Byte" from address
FFFFFE0016, applying Status Code 0100 (Interrupt Ac­
knowledge, Master: Sec. 3.4.3).

6. If "Byte" :2: 0, then set "Vector" to "Byte" and go to Step
8.

7.lf "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE +4· Byte.

b. Read "Vector," applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Sec. 3.4.3).

8. Perform Service (Vector, Return Address), Figure 3-30.

Service (Vector, Return Address):

1) Read the 32-blt External Procedure Descriptor from the Interrupt
Dispatch Table: address Is Vector· 4 + INTBASE Register contents.

2) Move the Module field of the Descriptor Into the MOD Register.

3) Read the Program Base pointer from memory address MOD + 8,
and add to It the Ollset field from the Descriptor, placing the result
In the Program Counter.

4) Read the new StatiC Base pOinter from the memory address con­
tained In MOD, placing It into the SB Register.

S) Flush queue: Non-sequentially fetch first Instruction of Interrupt
routine.

6) Push the PSR copy onto the Interrupt Stack as a 16-blt value.

7) Push MOD Register Into the Interrupt Stack as a 16·blt value.

8) Push the Return Address onto the Interrupt Stack as a 32-blt quant~
!y.

FIGURE 3·30. Service Sequence
Invoked during all interrupt/trap sequences.

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector = 3.

ILL: Vector = 4.

SVC: Vector = 5.

DVZ: Vector = 6.

FLG: Vector = 7.

BPT: Vector = 8.

UND: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, P and T.

3.0 Functional Description (Continued)

4) Set "Return Address" to the address of the first byte of
the trapped instruction.

5) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.3 Trace Trap Sequence

1)ln the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3) Set "Vector" to 9.

4) Set "Return Address" to the address of the next instruc-
tion.

5) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its original
contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear PSR
bits S, U, T and I.

4) Set "Vector" to 2.

5) Set "Return Address" to the address of the first byte of
the aborted instruction.

S) Perform Service (Vector, Return Address), Figure 3-30.

3.8.7.5 Bus Error Sequence

1) The same as Abort sequence above, but set vector to 12.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32332 CPU recognizes three groups of instructions
being executable by external Slave Processor:

Floating Point Instruction Set

Memory Management Instruction Set
Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Sec. 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor.

In addition, each slave instruction will be performed either
through the regular (32032 compatible) slave protocol or
through a fast slave protocol according to the relevent bit in
the configuration register (Sec. 2.1.3).

A combination of one slave communicating with an old pro­
tocol and another with a new protocol is allowed, e.g. 1S-bit
FPU (32081) and 32·bit MMU (32382) or vice versa.

3.9.116-Blt Slave Processor Protocol
(32032 Compatible)

Slave Processor instructions have a three·byte Basic In­
struction field, consisting of an ID Byte followed by an Oper·
ation Word. The ID Byte has three functions:

1)lt identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

2-137

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3·31. While applying
Status Code 1111 (Broadcast ID, Sec. 3.4.3), the CPU
transfers the ID Byte on bits ADO-AD7 and a non-used byte
xxxxxxx1 (x = don't care) on bits AD24-AD31. All Slave
Processors input this byte and decode it. The Slave Proces­
sor selected by the ID Byte is activated, and from this point
the CPU is communicating only with it. If any other slave
protocol was in progress (e.g., an aborted Slave instruction),
this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.3).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The operation Word is swapped on the Data Bus, that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD?

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operand and issuing them to the
Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Sec. 3.4.3).

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this SPC is normally held high only by an internal
pull-up device of approximately 5 kfi.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Sec.
3.4.3).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.3). This
word has the format shown in Figure 3-34. If the Q bit
("Quit", Bit 0) is set, this indicates that an error was detect­
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the SLAVE vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec.
3.4.3).

An exception to the protocol above is the LMR (Load Mem­
ory Management Register) instruction, and a corresponding
Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

•

3.0 Functional Description (Continued)

Step Slatus

I 10

2 OP

3 OP

4

S

6 ST

OP

Slatus Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101

Read Slatus (ST): Code 1110

Action

CPU Send 10 Byte.

CPU Sends Operaton Word.

CPU Sends Required Operands

Slave Starts execution. CPU Pre·letches.

Slave Pulses SPC Low.

CPU Reads Status Word. (Trap? Alter Flags?)

CPU Reads Results (II Any).

FIGURE 3·31. 16·Blt Slave Processor Protocol

3.9.2 32·Blt Fast Slave Protocol

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-32. While applying
Status code 1111 (Broadcast ID Sec. 3.4.2), the CPU trans­
fers the ID Byte on bits AD24-AD31, the operation word on
bits AD8-AD23 in a swapped order of bytes and a non-used
byte XXXXXXX1 (X = don't care) on bits ADO-AD? (Figure
3-33).

Using the addressing mode fields within the Operation word,
the CPU fetches operands and sends them to the Slave
Processor. Since the CPU is solely responsible for memory
accesses, addressing mode extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand Sec. 3.4.2). After the CPU has
issued the last operand, the Slave Processor starts the ac­
tual execution of the instruction. Upon completion, it will sig­
nal the CPU by pulsing SDONE or SPC low for one clock
cycle.

Unlike the old protocol, the SLAVE may request the CPU to
read the status by activating the SDONE or SPC line for two
clock cycles instead of one. The CPU will then read the
slave status word and update the PSR Register, unless a
trap is signalled. If this happens, the CPU will immediately
abort the protocol and start a trap sequence using either the
SLAVE or the UNO vector in the interrupt table as specified
in the Status Word.
Note: The PSR update Is presenUy restricted to three Instructions: CMPI,

ROVAL. WRVAL and their custom slave equivalents.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills its
queue before the Slave Processor finishes, the CPU will
wait applying status code 0011 (waiting for Slave, Sec.
3.4.2).

Upon receiving the pulse on either SDONE or SPC, the CPU
uses SPC to read the result from the Slave Processor and
transfer it to the destination. The Read cycles from the
Slave Processor are performed by the CPU while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).

2-138

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP~ Code 1101

Reed Statu8 (Sn: Code 1110

Step Status Actton

ID CPU .ends ID and Operation Word.

2 OP CPU sends required operands (~ any).

3 Slave starts execution (CPU preletches).·

4 Slave pulses Si5ONE: or SPa low.

S ST CPU Reads Status wcrd (only II l!OONE or SPa
pulse Is two clock cycles wide).

6 OP CPU Reads Results gl any).

FIGURE 3·32. 32·Blt Fast Slave Protocol

Certain Slave Processor instructions affect CPU PSR. For
these instructions only the CPU will perform a Read Slave
status cycle as described in 3.9.1.1 before reading the re­
sult. The relevent PSR bits will be loaded from the status
word.

byte 3 byte 2 byte 1 byte 0

10 OPCODE low OPCODE high Don't Care

FIGURE 3·33. 10 and Opcode Format
for Fast Slave Protocol

3.9.3 FloatIng Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodlngs of each Instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands Issued to the Floating Point Unit by the CPU. "0" indi­
cates a 32-bit Double Word. "I" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, 0 = Double Word). "f'~ Indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places It. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-34).

3.0 Functional Description (Continued)

TABLE 3·4
Floating Point Instruction Protocols,

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected

ADDf read.f
SUSf read.f
MULl read.f
DIVf read.f

MOVf read.f
ASSf read.!
NEGf read.f

CMPf read.!

FLOORfi read.!
TRUNCfi read.f
ROUNDfi read.!

MOVFL read.F
MOVLF read.L

MOVif read.i

POLYf read.f
DOTf read.!
SCALSf read.!
LOGSf read.!

LFSR read.D
SFSR N/A

Note 1:

D = Double Word

I = Integer size (B,W,D) specified in mnemonic.

rmw.!
rmw.!
rmw.!
rmw.!

write.!
write.f
write.f

read.!

write.i
write.i
write.i

write.L
write.F

write.f

read.f
read.f
rmw.!
write.!

N/A
write.D

I = Floating Point type (F,L) specilied in mnemonic.

NI A = Not Applicable to this instruction.

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

t5 8 7 o

1 TS 0 0 0 0 0 0 0 1 N Z F 0 0 L MIl' 01
NewPsRBltYaIUe(.)~ ..A

TL/EE/8673-44

FIGURE 3·34. Slave Processor Status Word Format
Note 1: 0 is the Trap Bit. It is set to 1 by the Slave whenever a trap is

requested.

Note 2: TS is the Trap Select Bit. When a trap is requested (0 = I), TS telis
the CPU whether a SLAVE or an UND trap is to be generated. TS is
o lor a slave trap and t lor an UND trap.

Note 3: MIl' should be set for a RDYAL, WRVAL, or Custom Slave Equiva­
lent instruction. It should be cleared for CM?I and CCMPOc and
CCMPc. When MIl' is cleared, the F bit should also be cleared.

F
L

D
N/A

2-139

N/A
N/A
N/A

f

N/A
N/A
N/A

N/A
N/A

N/A

f
N/A

N/A
N/A

ftoOp.2
ftoOp.2
ftoOp.2
ftoOp.2

ftoOp.2
ftoOp.2
ftoOp.2

N/A

itoOp.2
itoOp.2
itoOp.2

LtoOp.2
FtoOp.2

ftoOp.2

ftoFO
ftoFO

ftoOp.2
ftoOp.2

N/A
DtoOp.2

3.9.4 Memory Management Instructions

none
none
none
none

none
none
none

N,Z,L

none
none
none

none
none

none

none
none
none
none

none
none

Table 3-5 gives the protocols for Memory Management in­
structions. Encodings for these instructions may be found in
Appendix A.
In executing the RDVAL and WRVAL instructions, the CPU
calculates and issues the 32-bit Effective Address of the
single operand. The CPU then performs a single-byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage­
ment Instruction set, see the Instruction Set Reference
Manual and the MMU Data Sheet.

z
tJ)
W
N
W
W
N •
Q
Z
tJ)
w
N w w
N •
en

U) r--,
N
Cf)
Cf)
C'i

~
Z
CI
N
Cf)
Cf)
C'i
Cf)

tn
Z

3.0 Functional Description (Continued)

TABLE 3-5

Memory Management Instruction Protocols.

Mnemonic

RDVAL'
WRVAL"

LMR'
SMR'

Nole:

Operand 1
Class

addr
addr

read.D
write.D

Operand 2
Class

N/A
N/A

N/A
N/A

Operand 1
Issued

D
D

D
N/A

Operand 2 Returned Value PSR Bits
Issued Type and Dest. Affected

N/A N/A F
N/A N/A F

N/A N/A none
N/A DtoOp.1 none

In the ROYAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle from that memory address. For
details, see the Instruction Set Reference Manual and the Memory Management Unit Data Sheet.

D = Double Word

• = Privileged Instruction: will trap if CPU is in User Mode.

NI A = Not Applicable to this instruction.

3.9.5 Custom Slave Instructions

Provided in the NS32332 is the capability of communicating
with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an

2-140

operand which can be a 32-bit ("D") or 64-bit ("0") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.

Any operand indicated as being of type "c" will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

z
3.0 Functional Description (Continued)

en w
I\)
w w

TABLE 3-6 I\)
I

Custom Slave Instruction Protocols.
....
c

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
......
Z

Mnemonic Class Class Issued Issued Type and Dest. Affected en w
CCALOc read.c rmw.c c c ctoOp.2 none I\)

w
CCAL1c read.c rmw.c c c ctoOp.2 none w

I\)

CCAL2c read.c rmw.c c c ctoOp.2 none I
CCAL3c read.c rmw.c c c ctoOp.2 none U1

CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none

CMOV3c read.c write.c c N/A cto Op.2 none

CCMPOc read.c read.c c c N/A N,Z,L

CCMP1c read.c read.c c c N/A N,Z,L

CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c i N/A cto Op. 2 none
CCV4DQ read.D write.Q D N/A QtoOp.2 none
CCV5QD read.Q write.D Q N/A DtoOp.2 none

LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOP.2 none

CATSTO' addr N/A D N/A N/A F
CATST1' addr N/A D N/A N/A F

LCR' read.D N/A D N/A N/A none
SCR' write.D N/A N/A N/A D to Op.1 none

Note:

o = Double Word

i = Integer size (B,W,D) specified in mnemonic.

c = Custom size (0:32 bits or Q:64 bits) specified in mnemonic.

• = Privileged instruction: will trap if CPU is in User Mode.

NI A = Not Applicable to this instruction.

2-141

U) r---,
c.:a
C')
C')

~
tn
Z
o
c.:a
C')
C')
N
C')
U)
Z

4.0 Device Specifications
4.1 NS32332 PIN DESCRIPTIONS

The following is a brief description of all NS32332 pins. The
descriptions reference portions of the Functional Descrip·
tion, Section 3.

Unless otherwise indicated, reserved pins should be left
open.

4.1.1 Supplies

Logic Power (VCCL1, 2): +5V positive supply.

Buffers Power (VCCB1, 2, 3, 4, 5): +5V positive supply.
Logic Ground (GNDL 1, GNDL2): Ground reference for on·
chip logic.

Buffer Grounds (GNDB1, GNDB2, GNDB3, GNDB4,
GNDB5, GNDB6): Ground references for on·chip drivers.

Back Bias Generator (BBG): Output of on-chip substrate
voltage generator.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals.

Ready (ROY): Active high. While ROY is not active, the CPU
adds wait cycles to the current bus cycle. Not applicable for
slave cycles.

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes.
Nole: If the FiO[l) signal is generated asynchronously. it's set up and hold

times may be violated. In this case it is recommended to synchronize
it with CTIL to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
AIDA latency. This is to avoid speed degradations In cases of heavy
fID[lj activity (i.e. DMA controller cycles interleaved with CPU
cycles.)

Interrupt (INT): Active low. Maskable Interrupt request.

Non-Maskable Interrupt (NMI): Active low. Non-Maskable
Interrupt request.

Resetl Abort (RST / ABT): Active low. If held active for one
clock cycle and released, this pin causes an ABORT. If held
longer, it is interpreted as RESET.

Bus Error (BER): Active low. When active, indicates that an
error occurred during a bus cycle. It is treated by the CPU as
the highest priority exception after RESET. Not applicable
for slave cycles.

Bus Retry (BRT): Active low. When active, the CPU will re­
execute the last bus cycle. Not applicable for slave cycles.

Bus Width (BW1, BWO): Define the bus width (8,16,32) in
every bus cycle. 01-8 bits, 10-16 bits, 11 -32 bits. 00 is a
reserved combination. Not applicable for slave cycles.

Burst In (BIN): Active low. When active, the CPU may per­
form burst cycles.

Float (FL T): Active low. Float command input. In non­
memory managed systems. this pin should be tied to Vee
through a 10 kO resistor.

Data Timing/Slave Done (DT /SDONE): Active low. Used
by a 32-bit slave processor to acknowledge the completion
of an instruction and/or indicate that the slave status should
be read (Section 3.9.2). Sampled during reset to select the
data timing during write cycles (Section 3.3).

2-142

4.1.3 Output Signals

Address Strobe (ADS): Active low. Controls address latch­
es, indicates the start of a bus cycle.

Data Direction in (ODIN): Active low. Indicates the direc­
tions of data transfers.
Byte Enables (BEO-BE3): Active low. Enable the access of
bytes 0-3 in a 32 bit system.

Status (STO-ST3): Bus cycle status code, STO least signifi­
cant. Encodings are:

0000 - Idle: CPU Inactive on Bus.
0001 - Idle: WAIT Instruction.
0010 - (Reserved).
0011 - Idle: Waiting for Slave.
0100 -Interrupt Acknowledge, Master.
0101 - Interrupt Acknowledge, Cascaded.
0110- End of Interrupt, Master.
0111 - End of I nterrupt, Cascaded.
1000 - Sequential Instruction Fetch.
1001 - Non-Sequential Instruction Fetch.
1010 - Data Transfer.
1011 - Read Read-Modify-Write Operand.
1100 - Read for Effective Address.
1101 - Transfer Slave Operand.
1110 - Read Slave Status Word.
1111 - Broadcast Slave 10.

Status Strobe (STS): Active low. Indicates that a new
status (STO-ST3) is valid. Not applicable for slave cycles.

Multiple Cycle/Exception Status (MC/EXS): Active low.
This signal is activated during the access of the first part of
an operand that crosses a double word address boundary.

It is also activated in conjunction with status codes 1001
and 0000 during Abort Acknowledge and when a fatal bus
error occurs.
Note: MC/Ei<S indicates a fatal bus error only when it has been active for

more than one clock cycle.

Hold Acknowledge (HLDA): Active low. Activated by the
CPU in response to HOLD input. Indicates that the CPU has
released the bus.

User/Supervisor (U/S): User or Supervisor Mode status.

Interlocked Operation (lLO): Active low. Indicates that an
interlocked cycle is being performed.

Program Flow Status (PFS): Active low. A pulse that indi­
cates the beginning of an instruction execution.

Burst Out (BOUT): Active low. When active, indicates that
the CPU will perform burst cycles.

4.1.4InputiOutput Signals

Address/Data 0-31 (ADO-AD31): Multiplexed address
and data lines.

Slave Processor Control (SPC): Active low. Used by the
CPU as a data strobe output for slave processor transfers.
Used by a 16-bit slave processor to acknowledge the com­
pletion of an instruction.

4.0 Device Specifications (Continued)

If Military/Aerospace specified devices are required, Ail Input or Output Voltages with
contact the National Semiconductor Sales Office/ Respect to GND -0.5Vto +7V
Distributors for availability and specifications. Power Dissipation 3 Walt

4.2 ABSOLUTE MAXIMUM RATINGS Note: Absolute maximum ratings indicate limits beyond

Temperature Under Bias O'Cto +70'C which permanent damage may occur. Continuous operation

Storage Temperature -65'C to + 150'C
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = 0' to + 70'C, Vcc = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vcc +0.5 V

Vil Low Level Input Voltage -0.5 0.8 V

VCH High Level Clock Voltage PHI1, PHI2 pins only Vcc -0.5 Vcc +0.5 V

VCl Low Level Clock Voltage PHI1, PHI2 pins only -0.5 0.3 V

VCRT Clock Input Ringing Tolerance PHI1, PHI2 pins only -0.5 0.5 V

VOH High Level Output Voltage IOH = -400".A 2.4 V

VOL Low Level Output Voltage IOl = 2mA 0.45 V

IllS SPC and DT ISDONE VIN = O.4V, SPC in input mode
0.05 1.0 mA

Input Current (low)

II Input Load Current o ,,:; VIN ,,:; Vcc, Input Pins except
-20 20 ".A

PHI1, PHI2, DT/SDONE

Il Leakage Current (Output and 0.4 ,,:; VIN ,,:; Vcc
-80 80 ".A

I/O pins in TRI-STATE/lnput Mode)

Icc Active Supply Current lOUT = 0, TA = 25'C 450 600 mA

Connection Diagram*
NS32332 Pinout Descriptions

N ®®®®®®®®®®® 84 Pin Grid Array
Dese Pin Desc Pin Dese Pin

®0®®®®®®®®®0® GNDBI 81 AD29 N6 BOUT E12
M AD6 B2 AD30 M6 SPC D13

®® ®® AD7 Cl AD31 N7 MC/EXS D12
L AD8 C2 VCCLI M7 VCCB5 C13

®® ®®
AD9 Dl VCCL2 N8 ADS C12

K AD10 D2 INT M8 GNDB6 B13

®® ®®
ADll El NMI N9 DDIN A12

J GNDB2 E2 RESERVED M9 BEO B12
AD12 Fl RESERVED Nl0 BEl All

H ®® ®® AD13 F2 RESERVED MID BE2 Bll
AD14 Gl RESERVED NIl BE3 AID

G ®® NS32332 ®® AD15 G2 ILO MIl HLDA BID
VCCB2 HI VCCB4 N12 HOLD A9

F ®® ®® AD16 H2 ST3 M13 RDY B9
AD17 Jl ST2 M12 iJf/SDONE A8

E ®® ®® AD18 J2 ST1 L13 PHI2 B8
AD19 Kl STO L12 PHil A7

0 ®® ®® GNDB3 K2 STS K13 BBG B7
AD20 Ll GNDB5 K12 GNDL2 A6

C ®®® ®® AD21 L2 PFS J13 GNDL1 B6
AD22 Ml U/S J12 VCCBl A5

B ®0®®®®®®®®®0® AD23 N2 BWI H13 ADO B5
VCCB3 M2 BWO H12 ADI A4

A ®®®®®®®®®®® AD24 N3 BIN G13 AD2 B4
AD25 M3 FLT G12 AD3 A3

1 2 3 4 5 6 7 8 9 10 11 12 13 AD26 N4 RST/ABT F13 AD4 B3
AD27 M4 BRT F12 AD5 A2

TL/EE/B673-45 GNDB4 N5 BER E13 POSITION PIN C3
Bottom View AD28 M5

Order Number NS32332U-10 or NS32332U-15
See NS Package Number U84C

FIGURE 4-1. Pin Grid Array Package

'AMP sockets are recommended for use with NS32332 CPU. AMP sockets are manufactured by AMP INCORPORATED, Harrisburg PA.

2-143

z en
Co:!
N
Co:!
Co:!
~
CI z en
Co:!
N
Co:!
Co:!
~
U\

FJI

U) r--,
N
C")
C")
N
C")
U)
Z
Ci
N
C")
C")
N

~
Z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS:

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1
and PHI2 and 0.8V or 2.0V on all other signals as illustrated
below, unless specifically stated otherwise.

L.E. - leading edge

T.E. - trailing edge

R.E. - rising edge

F.E. - falling edge

PHln[~ __

[
- ~2'4V

tSIGII t---="------------ a.BV
O.45V

SIGI

SIG2
[___ I __ IS_IG_2_

h

-Jj,_ --~------~:

PHln [

SIG!

SIG2

[
[

__ >E
------------....... , -- - - - - 2.4V

a.BV ~\..-----t ISIG!I
'----+--O.45V

/~-----+--2.4V

2.0V ISIG2h

-----...J.--------O.45V

TL/EE/8673-47 TL/EE/B673-46

FIGURE 4-2. Timing Specification Standard
(Signal Valid After Clock Edge)

FIGURE 4-3. Timing Specification Standard
(Signal Valid Before Clock Edge)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-15

Maximum times assume capacitive loading of 100 pF.
ADO-31, ADS and BOUT timings are defined with a capacitive loading of 75 pF.

Symbol Figure Description

tALv 4-5 Address bits 0-31 valid

tALh 4-5 Address bits 0-31 hold

tOv 4-5 Data valid (write cycle)

tDh 4-5 Data hold (write cycle)

tALADSs 4-4 Address bits 0-31 setup

tALADSh 4-18 Address bits 0-31 hold

tALI 4-4 Address bits 0-31
floating (no MMU)

tALMf 4-18 Address bits 0-31
floating (by FL T line)

tSTSa 4-3,4-5 STS signal active (low)

tSTSia 4-3,4-5 STS Signal inactive

tSTSw 4-3 STS pulse width

tSErv 4-4,4-6 BEn Signals valid
(Operand Read Cycles Only)

tSEv 4-5,4-6 BEn Signals valid

tSEh 4-4 BEn signals hold

Referencel
Conditions

after R.E., PHI1 T1

after R.E., PHI1 T2/Tmmu

after R.E., PHI1 T30rT2

after R.E.,
PHI1 nextT1 orTi

before ADS T.E.

after ADS T.E.

after R.E., PHI1 T2/Tmmu

after R.E., PHI1 Tf

after R.E., PHI1 T 4 of
previous bus cycle or Ti

after R.E., PHI2 T4 of
previous bus cycle or Ti

at 0.8V (both edges)

after R.E., PHI2, T4 or Ti

after R.E., PHI2, T4 or Ti

after R.E., PHI2, T 4

2-144

NS32332-10

Min Max

30

10

50

0

25

10

25

40

35

45

35

140

85

0

NS32332·15
Units

Min Max

20 ns

6 ns

38 ns

0 ns

20 ns

10 ns

24 ns

40 ns

25 ns

30 ns

24 ns

95 ns

58 ns

0 ns

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-15 (Continued)

Symbol Figure Description
Referencel NS32332-10 NS32332-15

Units
Conditions Min Max Min Max

tSTv 4-5 Status (STO-ST3) valid after RoEo, PHI1 T4 50 35 ns
(before T1 , see note)

tSTSTSs 4-5 Status Signals Setup Before STS ToEo 10 6 ns

tSTh 4-5 Status (STO-ST3) hold after RoE., PHI1 T4 (after T1) 0 0 ns

tOOINv 4-4 DDIN signal valid after RoE., PHI1 T1 35 25 ns

tOOINh 4-4 DDIN signal hold after RoE., PHI1 next T1 or Ti 0 0 ns

tAOSa 4-5 ADS signal active (low) after RoE., PHI1 T1 25 17 ns

tAOSia 4-5 ADS signal inactive after RE., PHI2 T1 45 29 ns

tAOSw 4-5 ADS pulse width at Oo8V (both edges) 35 24 ns

tMCa 4-4,4-5 MC signal active (low) after REo, PHI1 T1 70 50 ns

tMCia 4-4,4-5 MC signal inactive after REo, PHI1 T1 70 50 ns
or T3 (burst)

tALI 4-15 ADO-AD31 floating after REo, PHI1 T1 25 24 ns
(caused by HOLD)

tAOS! 4-15, ADS floating __ after RoEo, PHI1 Ti 55 40 ns
4-17 (caused by HOLD)

teE! 4-15, BEn floating __ after RoEo, PHI1 Ti 55 40 ns
4-17 (caused by HOLD)

tOOIN! 4-15, DDIN floati~ after RE., PHI1 Ti 55 45 ns
4-17 (caused by HOLD)

tHLOAa 4-15, HLDA signal active (low) after RE., PHI1 T4 60 45 ns
4-16

tHLOAia 4-18 HLDA signal inactive after RoEo, PHI1 Ti 60 45 ns

tAOSr 4-18 ADS signal returns from after RoEo, PHI1 Ti 55 40 ns
floating (caused by HOLD)

teEr 4-18 BEn signals return from after RE., PHI1 Ti 55 40 ns
floating (caused by HOLD)

tOOINr 4-18 DDIN signal returns from after RE., PHI1 Ti 55 40 ns
floating (caused by HOLD)

too IN! 4-19 DDIN signal floating after FLT FoEo 50 45 ns
(caused by FL T)

tOOINr 4-20 DDIN Signal returns from after FL T RoEo 40 28 ns fJI
floating (caused by FL T)

tSPCa 4-21 SPC output active (low) after RoE., PHI1 T1 30 21 ns

tSPCia 4-21 SPC output inactive after RoE., PHI1 T4 2 35 2 26 ns

tSPCn! 4-24 SPC output nonforcing after RoE., PHI2 T4 10 8 ns

tov 4-21 Data valid (slave after RoE., PHI1 T1 50 38 ns
processor write)

tOh 4-21 Data hold (slave after RoE., PHI1 0 0 ns
processor write) nextT10rTi

tpFSw 4-26 PFS pulse width at Oo8V (both edges) 70 45 ns

tPFSa 4-26 PFS pulse active (low) after RoE., PHI2 50 38 ns

tPFSia 4-26 PFS pulse inactive after REo, PHI2 50 38 ns

tUSv 4-33 U/S signal valid after RoE., PHI1 T4 48 35 ns

tUSh 4-33 UlS signal hold after RoE., PHI1 T4 10 6 ns

tNSPF 4-28 Nonsequential fetch to after RoEo, PHI1 T1
4 4 tcp next PFS clock cycle

2-145

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32332-10, NS32332-15 (Continued)

Symbol Figure Description Referencel NS32332-10 NS32332-15 Units
Conditions Min Max Min Max

tpFNS 4·27 PFS clock cycle to next before R.E., PHI1 T1 4 4 tcp non·sequential fetch

tsTSf 4·15, STS floating (HOLD) after R.E., PHI1 Ti
55 44 ns

4·16

tSTSr 4-18 STS not floating (HOLD) after R.E., PHI1 Ti, T4 55 40 ns

tBOUTa 4·6, BOUT output active after R.E., PHI2 Tmmu 100 66 ns
4-10

tBOUTla 4·6, BOUT Ou1put inactive after R.E., PHI2 75 40 ns
4·10 T30rT4

tlLOa 4·14 ILO signal active after R.E., PHI1 T4 50 38 ns

tlLOia 4·14 ILO signal inactive after R.E., PHI1 Ti 50 38 ns
Note: Every memory cycle starts wHh T 4, during which Cycle Status is applied. If the CPU was idling. the sequence will be:". . . n. T 4, T1 If the CPU was
not idling, the sequence will be:". . . T 4, T1

4.4.2.2 Input Signal Requirements: NS32332-10, NS32332-15

Symbol Figure Description
Referencel NS32332-10 NS32332-15

Units
Conditions Min Max Min Max

tPWR 4·31 Power stable to afterVcc 50 33
RSTR.E. reaches 4.5V ,..s

tOls 4·4 Data in setup before F.E., PHI2 T3
12 10

(read cycle)
ns

tOlh 4·4 Data in hold after R.E., PHI1 T4 3 3
(read cycle)

ns

tHLOa 4·15 HOLD active setup before F.E., PHI2
25 17 ns

4·16, time T2/Tmmu or T3 or Ti

tHLOia 4·18 HOLD inactive setup before F.E., PHI2 Ti
25 17

time
ns

tHLOh 4·15,4·17, HOLD hold time after R.E., PHI1 0 0 ns
4·18 TiorT3

tFLTa 4·19 FL T active (low) before F.E., PHI2
25 17 ns

setup time Tmmu

tFLTia 4·20 FL T inactive setup before F.E., PHI2 T3
25 17 ns

time

tROYs 4·4,4·5, ROY setup time before F.E., PHI1 T3
20 12 ns

4·6

tROYh 4·4,4·5, ROY hold time after R.E., PHI2 T3 4 3
4·6

ns

tABTs 4·29 ABT setup time before F.E., PHI2 20 13
(FL T inactive) T2/Tmmu

ns

tABTs 4·30 ABT setup time before F.E., PHI2 Tf 20 13
(FL T active)

ns

tABTh 4·29, ABT hold time after R.E., PHI1 T3
0 0 ns

4·30

tRSTs 4·31,4·32 RST setup time before F.E., PHI1 20 13 ns

tRSTw 4·31,4·32 RST pulse width at 0.8V (both edges) 64 64 tcp

tiNTs 4·34 INT setup time before F.E., PHI2 20 13 ns

tNMlw 4·35 NMI pulse width at 0.8V (both edges) 40 27 ns

2·146

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32332·10, NS32332·15 (Continued)

Symbol Figure Description
Reference! NS32332·10 NS32332·15
Conditions Min Max Min Max

to Is 4·24 Data setup (slave before F.E., PHI2 T1
12 10

read cycle)

tOlh 4-24 Data hold (slave after R.E., PHI1 T4
3 3

read cycle)

tOTs 4-31 DT setup time before F.E., PHI1 0 0

tOTh 4-31 DT hold time after R.E., PHI1 0 0

tSPCd 4-24 SPC pulse delay after R.E., PHI2 T 4
10 B

from slave

tsPCs 4-24 SPC setup time before F.E., PHI1 25 15

tsPCw 4-24 SPC pulse width at O.BV (both edges) 20 100 13 66

tSONd 4-23 SDONE pulse delay after R.E., PHI2 T 4
10 B

from slave

tSONs 4-23 SDONE setup time before F.E., PHI1 25 15

tSONw 4-23 SDONE pulse width at O.BV (both edges) 20 100 13 66

tSONSTw 4-23 SDONE pulse width at O.BV (both edges)
(to force CPU to 175 275 115 200
read slave status)

tsws 4-4,4-5 BW 0-1 setup time before F.E., PHI1 T3
25 13

4-6

tSWh 4-6 BWO-1 hold time after R.E., PHI1 T3 0 0
of Next Memory
Access Cycle

tSINs 4-6,4-7 BIN setup time (for before F.E., PHI1 T3
25 12

each cycle of the burst)

tSINh 4-6,4-7 BIN hold time after R.E., PHI1 T4 0 0

tSERs 4-12,4-13 BER setup time before F.E., PHI1 T4 25 14

tSERh 4-12,4-13 BER hold time (see note) after R.E., PHI1 Ti 0 0

tSRTs 4-B,4-9, BRT setup time before F.E., PHI1
25 14

4-10,4-11 T3 and T4

tSRTh 4-B,4-9, BRT hold time after R.E., PHI1
0 0

4-10 T40rTi

Note: A Ti state follows T4 when SER is asserted. SER should be deasserted at the latest in the beginning of the cycle following this Ti state.

4.4.2.3 Clocking Requirements: NS32332-10, NS32332-15

Symbol Figure Description
Reference! NS32332·10 NS32332-15
Conditions Min Max Min Max

tcp 4-25 Clock period R.E., PHI1, PHI2 to next
100 250 66 250

R.E., PHI1, PHI2

tCLw(l,2) 4-25 PHI1, PHI2 Pulse Width At 2.0V on PHI1, PHI2 0.5 tep 0.5tep
(Both Edges) - 10ns - 6ns

tCLh(l,2) 4-25 PHI1, PHI2 high time At Vcc-0.9V on 0.5 tep 0.5tep
PHI1, PHI2 (Both Edges) - 15ns - 10ns

tCLI 4-25 PHI1, PHI210w time AtO.BVon 0.5 tep 0.5tep
PHI1, PHI2 (Both Edges) -5 ns -5 ns

tnOVL(l,2) 4-25 Non-overlap time O.BV on F.E., PHI1, PHI2 to -2 2 -2 2
O.BV on R.E., PHI2, PHil

tnOVLas Non-overlap asymmetry At O.BV on PHI1, PHI2
-3 3 -3 3

(tnOVL(l) -tnOVL(2))

tCLhas PHI1, PHI2 asymmetry At Vcc-0.9V on PHI1, PHI2
-5 5 -3 3

(tCLh(11- tCLh(21)

2-147

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Units

ns

ns

ns

ns

z
en
Co)
I\)
Co)
Co)
I\)

•
o
z
en
Co)
I\)
Co)
Co)
I\)
U1

r.n .,...
N
C")
C")
N
C")
U)
Z
Q .,...
~
C")
N
C")
U)
Z

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

PHil [

ISTS.

STS [

ADS [

T4 TI I T2lTmmu I

AOO-31 [--+-ojJ\,.;,;,;;;;;;;.t

T3 T3 T4 I TIORTI I

ODIN [

----~+-~-+------+-------+-~-++------

mw-I[____ +--r~--~---I.F_--------~~--+_------
(2) BEO-3 [___ .I

(II MC/EXS [

Biili'f[(HIGH I

TL/EE/8673-48

Note I: Asserted (low) when the bus transaction crosses a double-word boundary (address bits AQ-I wrap around during the transaction).

Note 2: BEQ-BE3 are all active during instruction fetch cycles.

FIGURE 4-4. NS32332 Read Cycle Timing

2-148

4.0 Device Specifications (Continued)

T4 T1 I T2ITmmu

ADo-31 [__ -+-_1''' __ '1'''1

iiEo-3 [
---'

BOUT [

T3 T3 T4

(HIGH)

Note: If 5T ISDONE is sampled low during reset, the CPU outputs the data during T2/TMMU (see Section 3.3).

FIGURE 4·5. NS32332 Write Cycle Timing

2-149

Tl OR TI

TL/EE/B673-49

z
(J)
Co)
N
Co)
Co)

~
Q
Z
(J)
Co)
N
Co)
Co)
N •
U1

U) r---~
~ 4.0 Device Specifications (Continued)
CO)
N :a z
C;
~
CO)
N :a
z

AOO-31
I--+-~-;;!;!.

PHIl [

PH12 [

m[

iIlII[

ADD-AD31 [

FIGURE 4·6_ NS32332 Burst Cycle Timing
(Instruction fetches followed by Operand Reads)

T1 T3 T4 T3 T4

-+---I'''-t' --$- -~-
FIGURE 4·7_ External Termination of Burst Cycle

2-150

TLlEE/8673-50

TL/EE/8673-94

r--, Z

4.0 Device Specifications (Continued)

T4 T1 I T2/Tmmu I T3 T4 TI T4 11 I T2/Tmmu I

PHI2 [

ADS [

BRT [

-+--~----+----+--------~--~--~---------

FIGURE 4·8. Bus Retry During Normal Bus Cycle

T4 T1 T3 T4 Tl

PHI{

PHI2[

STS[

ADS [

BRT[

TL/EE/8673-51

TLlEE/8673-52

FIGURE 4·9. BRT Activated, but no Bus Retry

2-151

~
N
Co)
Co)
N
Q
Z
(/)
Co)
N
Co)
Co)
N
U1

fII

U) r--, .,...
~ 4.0 Device Specifications (Continued)
C')
N
C')

en z
o .,...
N
C')
C')
N
C')

en
z

PHil [

PHI2 [

STi[

ADS [

BRT [

BlliiT[

T4 T1 T3

'BOUT.

NIBBLE 1

T4 T3 T4

NIBBLE 2

FIGURE 4·10. Bus Retry During Burst Bus Cycle

14 11 I T2ITmmu I 13

PH12[

BRl[
------------+-~+--

8DDT[

NIBBLE 1

14 T3 14

NIBBLE 2

1i 14

18RTh

T1 112llmmu I

FIGURE 4·11. BRT Activated During Burst Bus Cycle, but no Bus Retry

2·152

TL/EE/B673-53

TLlEE/B673-54

4.0 Device Specifications (Continued)

T4 Tl I T2ITmmu I T3 T4 Ti Ti

PHI2 [

ADS [

BER[

FIGURE 4-12. Bus Error During Normal Bus Cycle

T4 11 I T2/Tmmu I T3 T4 T3 T4

PHil [

PHI2 [

STS [

ADS [

tBERs

BER [

BOUT [

NIBBLE 1 NIBBLE 2

FIGURE 4-13. Bus Error During Burst Bus Cycle

2-153

TL/EE/8673-55

Ti

TL/EE/8673-56

z
en
w
N
W
W
N
o
z
en w
N
W
W
N
U1

~ r---,
N
C")
C")
C"I

&J z
C;

* ~
Z

4.0 Device Specifications (Continued)

T4" T1 I T2fTmmu I T3 T4 TI TI Tl I T2fTmmu I T3 T4

"End of Dummy Read cycle with the address of the Interlocked operand.

FIGURE 4·14. Timing of Interlocked Bus Transactions

T2ITmmuOR T3 T4 n TI Ti

PHil [

PHI2 [-1--""

H&ii[
~~~~~~~--~-­iiLDA[ 

lAOS! 
ADS [-1-----1-----+-----+-"\1 t.!l.,!N.!. 
Ii6iN -I-----I-----+------,-+-J - -- - (FLOATING) - - --

iEo-iE3[ -----------1------
ADO-AD23 [-I-----I-----+-----+-""\II~~J _____ :~T~N:)- __ _ 

I (FLOATING) 

tADf 1 ----r----(FLOiTIN"iii----m[ 

FIGURE 4-15. Floating by HOLD Timing (CPU Not Idle Initially) 

TI 

t'LOIa 

TUEE/8673-57 

TUEE/8673-58 

Nole: Whenever the CPU Is not idling (not in Ti), the FIOlli signal must be active before the falling edge of PHI2 of the clock cycle that appears two clock cycles 
before T4 (TX1) and stay low until after the rising edge of PHil of the clock cycle that precedes T4 (TX2) for the request to be acknowledged. 

2-154 



4.0 Device Specifications (Continued) 

PHil [ 

PHI2 [ 

STS[ 
S10-3 [ ~.~-+--+-+-++-+--H-+-I-I-+--+--

ADS [ 

ADO-31 [ +--fo"'-~ 

8E0-3 [ 

RDY[ -+_-+_-+_.11 

HOLD [ 

HLDA [ 

TL/EE/8673-90 

FIGURE 4-16. Floating by HOLD Timing (Burst Cycle Ended by HOLD Assertion) 

2·155 

z en 
Co) 
N 
Co) 

~ 
I ..... 

o ..... z en 
~ 
Co) 
Co) 
N 

I ..... 
UI 

PI 



II) ,.... 
N 
C') 

~ 
C') 

en 
z ...... 
CI ,.... 
N 
C') 
C') 
N 
C') 

en 
z 

4.0 Device Specifications (Continued) 

I TI I TI I Ti I 

PHil LJl n ...... ----I!n'--~n~-
PHI 2 [_-+ __ 

HLDA [ 

ADS, ODIN [ 

-+------+------+---_~-'I 

BEO-BE3 [--10-----+-----+-----+-
ADD-AD31 [-

FIGURE 4-17. Floating by HOLD Timing (CPU Initially Idle) 

I Ti I TI I TiorT4 I TiorTI 

PHil [Jl----.......n ..... ----I!n_---!nL-_ 
PHI2 [--+0--

IHlOia 

HOLD [_+ __ 

HDm[_+ ______ +-_ 
tODINr 

(FLOATING) 

SEO-SE3 [ -
(FLOATING) ---

ADO-031 [ -
(FLOATING) ----

}ISTsr 
[

(FLOATING) 

STS -----------, V 
FIGURE 4-18. Release from HOLD 

2-156 

TL/EE/8673-59 

TLlEE/8873-60 



4.0 Device Specifications (Continued) 

CPU STATES I T1 I 
MMU STATES Tl 

T21Tmmu 
Tmmu 

PHil [Jl~n,-------! 
I 

n 
PHI2 [-+ __ -' 
FLT [ 

ADO-31 [ 
(CPU) 

ADS [ 
(CPU) 

ODiN [+--------+-..JI 

I 
TI TI 

T4 Tl 

n 

BEO-ru [+ __ -1 '-___ + ______ + ___ _ 

TL/EE/B673-61 

Note: The bus lines ADO-31 are temporarily driven in T2/TMMU and Tf when FLT is asserted only if DT ISDONE is sampled low during reset (see Section 3.3). 

FIGURE 4-19. FLT Initiated Cycle Timing 

CPU STATES Tf T3 T4 Ti OR T1 

MMU STATES Tmmu 

PHil [ 

PHI2[-I __ -' 

AX [ r--~-+----+----~-----
(MMU) 

ADO-AD31 [ 
(CPU) - DATA OUT 

iiiiiN 
(CPU) [ __ 

ADs [ 
(CPU) 

mrn-mra[-I ____ -+ ____ + __ -',_+_J, ___ 

TL/EE/B673-62 

FIGURE 4-20. Release from FLT Timing (CPU Write Cycle) 

Note: When FLT is deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not cause any conflict, since both CPU and MMU 
force DDIN to the same logic level. 

2-157 

z en 
Co) 
N 
Co) 
Co) 
N . .... 
0 ..... 
z en 
Co) 
N 
Co) 
Co) 
N . .... 
U1 



U) r---------------------------------------------------------------------------------, .,... 
~ 
CO) 
CO) 
N 
CO) 
(/) 
Z 
C; .,... 
~ 
CO) 
CO) 
N 
CO) 
(/) 
Z 

4.0 Device Specifications (Continued) 

I T1 I T4 I 
PHI![~ 

PHI2 [ 

ADO-31 [ 
(ADO-IS) 

m[ 
iiiiiN[ 

STO·3 [ 

AiiS[ (HIGH) 
I 

TLlEE/B673-64 

FIGURE 4-21. Slave Processor Write Timing 

PHI! [ 

PHI 2 [ 

&Pe[ 
(FROM CPU) 

SDONE [ . 
(FROM SlAVE) 

11 T4 

I T1 I T4 I 
PHI1[~ 

PHI2[-+_.....J 

ADO-31 [ 
(ADO-IS) 

SPe[ (CPU) 

--IOlh 

DoiN[-l-.....l. ___ --1 _____ 1-

STD-3 [-t_S1:_'I'._T_US_'l_A_L_ID+-, ,-N_E_XT_S_1:_AT-r-U_S 

AiiS[ (HIGH) 

TLlEE/8673-65 

FIGURE 4-22. Slave Processor Read Timing 

TL/EE/B673-63 

FIGURE 4-23. DT/SDONE Timing (32-8it Slave Protocol) 

SPC [ 
(FROM CPU) 

SPC[­
(FROM SlAVE) 

11 T4 

FIGURE 4-24. SPC Timing (16-8it Slave Protocol) 
Nole: After transferring last operand to a Slave Processor, CPU turns OFF driver and holds SPC high with internal 5 kll pull up. 

2·158 

TL/EE/B673-66 



4.0 Device Specifications (Continued) 

PHil [ 

PHI2[ -----~I 

FIGURE 4-25. Clock Waveforms 

PH'2[~fLILS 

m[~U--

TL/EE/8673-91 

TL/EE/8673-68 

FIGURE 4-26. Relationship of PFS to Clock Cycles 

Tl 

PHil [ 

m[b / 
tpFNS J 

STD-3 [ X CODE 1001 

TL/EE/8673-69 

FIGURE 4-27. Guaranteed Delay, PFS to Non-Sequential Fetch 

I Tl I T2 I ••• I I I I 
PHll[~fLfLJL 

A6S[ 

STD-3[-+ _______ C_OD_E_l_00_l ______ ~}--------+_-------------

tNSPF 

TLlEE/8673-70 

FIGURE 4-28. Guaranteed Delay, Non-Sequential Fetch to PFS 

2-159 

z en 
IN 
N 
IN 
IN 
N 

I ...... 
o ....... 
z en 
IN 
N 
IN 
IN 
N 

I ...... 
Ut 



U) ,---------------------------------------------------------------------------------, ..... 
~ 
CW) 
C'I 
CW) 
(/) 
z ..... 
o ..... • C'I 
CW) 
CW) 
C'I 
CW) 
(f) 
z 

4.0 Device Specifications (Continued) 

T1 I T2ITmmu I 13 Ti 

PHI1 [ 

PHI2 [ 

A6S[ 

FIGURE 4-29. Abort Timing, FL T Not Applied 

Tf Tf Tf Tf Ti 

PHI1 [ 

PHI2 [ 

FiT[_I-__ -+ ___ + __ -+t-....J 

FIGURE 4-30. Abort Timing, FL T Applied 

vee ~--------~~ 

PHil [ ----f---...J 

RsiT/Atrr[ ____________ ~I--J 

FIGURE 4-31. Power-On Reset 

2-160 

TL/EE/B673-71 

Ti 

TL/EE/B673-72 

TL/EE/B673-73 



4.0 Device Specifications (Continued) 

PHI1[~ 

~L-~ ____ ~~~I_t_R~_w ____ ~I ____ ~:~tRS~ 
RSTjABT [~~ \I L J f

tOTh 
r-

~h1 CtOTs ~ _ 

m~DONE[ ____________ ~,~ 
TLlEE18673-92 

FIGURE 4-32. Non-Power-On Reset 

I T30RTi I T40RTi I T1 T2 T3 T4 

PHI1[ 

A5S[ 

UlS[ ................. :.L..l.f.LI 1'--+-----------1-'1 
TLIEE18673-75 

FIGURE 4-33. U/S Relationship to Any Bus Cycle - Guaranteed Valid Interval 

PHI2[ JL..JL.JL 
~~NT' 

iNT[ ~ 
TLIEE18673-76 

FIGURE 4-34. INT Interrupt Signal Detection 

~[ 

2-161 

TLlEEI8673-77 

FIGURE 4-35. NMllnterrupt Signal Timing 

z en 
w 
N 
W 
W 
N 

I ..... 
o 
'"' z en 
w 
N 
W 
W 
~ ..... 
(II 

• 



U) r---------------------------------------------------------------------------------, ..... . 
N 
CO) 
CO) 
N 
CO) 

en z ...... 
o ..... 
N 
CO) 
CO) 
N 

~ 
Z 

Appendix A: Instruction Formats 
NOTATIONS 

i = Integer Type Field 

B = 00 (Byte) 

W = 01 (Word) 

D = 11 (Double Word) 

f= Floating Point Type Field 

F = 1 (Std. Floating: 32 bits) 

L = 0 (Long Floating: 64 bits) 

c= Custom Type Field 

D = 1 (Double Word) 

Q = 0 (Quad Word) 

op= Operation Code 

Valid encodings shown with each format. 

gen, gen 1, gen 2 = General Addressing Mode Field 

See Sec. 2.2 for encodings. 

reg= General Purpose Register Number 

cond = Condition Code Field 
0000 = EQual: Z = 1 
0001 = Not Equal: Z = 0 
0010 = Carry Set: C = 1 
0011 = Carry Clear: C = 0 
0100 = Higher: L = 1 
0101 = Lower or Same: L = 0 
0110 = Greater Than: N = 1 
0111 = Less or Equal: N = 0 
1000 = Flag Set: F = 1 
1001 = Flag Clear: F = 0 
1010 = LOwer: L = 0 and Z = 0 
1011 = Higher or Same: L = lor Z = 1 
1100 = Less Than: N = 0 and Z = 0 
1101 = Greater or Equal: N = 1 or Z = 1 
1110 = (Unconditionally True) 
1111 = (Unconditionally False) 

short= Short Immediate value. May contain 
quick: Signed 4-bit value, in MOVQ, ADDQ, 

CMPQ, ACB. 

cond: Condition Code (above), in Scond. 

areg: CPU Dedicated Register, in LPR, SPA. 
0000 = US 
0001 - 0111 = (Reserved) 
1000 = FP 
1001 = SP 
1010 = SB 
1011 = (Reserved) 
1100 = (Reserved) 
1101 = PSR 
1110 = INTBASE 
1111 = MOD 

Options: in String Instructions 

I U/W I BIT I 

T = Translated 

B = Backward 

U/W = 00: None 

01: While Match 

11: Until Match 

2-162 

Configuration bits in SETCFG Instruction: 

I P I FC I FM I FF I C I M I F II I 

mreg: NS32382 Register number, in LMR, SMA. 
0000 = BAR 
0001 = (Reserved) 
0010 = BMR 
0011 = BDR 
0100 = (Reserved) 
0101 = (Reserved) 
0110 = BEAR 
0111 = (Reserved) 
1000 = (Reserved) 
1001 = MCR 
1010 = MSR 
1011 = TEAR 
1100 = PTBO 
1101 = PTBl 
1110 = IVARO 
1111 = IVARl 

7 

FormatO 

Bcond (BR) 

7 

1 

Format 1 

BSR -0000 ENTER 
RET -0001 EXIT 
CXP -0010 NOP 
RXP -0011 WAIT 
RETT -0100 DIA 
RETI -0101 FLAG 
SAVE -0110 SVC 
RESTORE -0111 BPT 

15 

, , 
op 

o 

11 ' 0 ' 1 '01 

0 

10 ' 0 ' l' 01 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

0 8 17 

1 

, , 
, Sh~rt 1 

, , 
11 ' 1 

, 
1 gen op 

Format 2 
ADDQ -000 ACB -100 
CMPQ -001 MOVQ -101 
SPR -010 LPR -110 
Scond -011 



Appendix A: Instruction Formats (Continued) 

15 sI7 
1 

, , , , 

1 

, 
'~p 11'1'1'1'11 gen i 

Format 3 
CXPD -0000 ADJSP -1010 
BICPSR -0010 JSR -1100 
JUMP -0100 CASE -1110 
BISPSR -0110 

Trap (UND) on XXX1, 1000 

,sI7, 15 

I 
, , , , 

I 
, 

I 
, , , 

gen 1 gen 2 op 

Format 4 

ADD -0000 SUB -1000 
CMP -0001 ADDR -1001 
BIC -0010 AND -1010 
ADDC -0100 SUBC -1100 
MOV -0101 TBIT -1101 
OR -0110 XOR -1110 

o 0 0 0 1 1 1 

Format 5 
MOVS -0000 SETCFG' -0010 
CMPS -0001 SKPS -0011 

Trap (UND) on 1XXX, 01XX 

S 7 
o 1 0 0 1 1 1 

Format 6 
ROT -0000 NEG -1000 
ASH -0001 NOT -1001 
CBIT -0010 Trap (UND) -1010 
CBITI -0011 SUBP -1011 
Trap (UND) -0100 ABS -1100 
LSH -0101 COM -1101 
SBIT -0110 IBIT -1110 
SBITI -0111 ADDP -1111 

'Short 1 in format 5 applies only for SETCFG instruction. In other instruc· 
tions this field is O. 

0 

1 

0 

I 

0 

0 

0 

0 

2-163 

z 
(J) 
Co) 
N 
Co) 

0 
Co) 
N . ... 

1 1 0 0 1 1 1 0 C) ....... 
Z 
(J) 

Format 7 Co) 
N 

MOVM -0000 MUL -1000 Co) 
Co) 

CMPM -0001 MEl -1001 N • 
INSS -0010 Trap (UNO) -1010 

... 
U'I 

EXTS -0011 DEI -1011 
MOVXBW -0100 QUO -1100 
MOVZBW -0101 REM -1101 
MOVZiD -0110 MOD -1110 
MOVXiD -0111 DIV -1111 

TL/EE/8673-78 

FormatS 
EXT -000 INDEX -100 
CVTP -001 FFS -101 
INS -010 
CHECK -011 
MOVSU -110,reg = 001 
MOVUS -110,reg = 011 

0 

o 0 1 1 1 1 1 0 

Format 9 
MOVif -000 ROUND -100 
LFSR -001 TRUNC -101 
MOVLF -010 SFSR -110 
MOVFL -011 FLOOR -111 

0 ---
10 01 111 1 11 

---
TL/EE/8673-79 

Format 10 

Trap (UND) Always 



." .... • Appendix A: Instruction Formats (Continued) C'I 
C') 
C') 

1
23 

16115 

81: ' n ' n ' l' 0' l' 1 ':1 

C'I 
0 C') 

en 
z 1 1 1 1 0 " 0 .... Operation Word ID Byte . 
C'I Format 11 C') 
C') Format 15 C'I ADDf -0000 DIVf -1000 
C') 
U) MOVf -0001 Note 1 -1001 (Custom Slave) Z CMPf -0010 Trap (UND) -1010 nnn Operation Word Format 

Note 3 -0011 Trap (UND) -1011 
SUBf -0100 MULf -1100 
NEGf -0101 ABSf -1101 
Trap (UND) -0110 Trap (UND) -1110 000 
Trap (UND) -0111 Trap (UND) -1111 

Format 15.0 

0 CATSTO -0000 LCR -0010 
CATST1 -0001 SCR -0011 

1 1 1 1 1 0 

Trap (UND) on all others 

Format 12 8 

Note 2 -0000 Note 2 -1000 001 

Note 1 -0001 Note 1 -1001 
POLYf -0010 Trap (UND) -1010 Format 15.1 

DOTf ·0011 Trap (UND) ·1011 
CCV3 ·000 CCV2 -100 

SCALBf -0100 Note 2 -1100 
LCSR -001 CCV1 -101 

LOGBf -0101 Note 1 -1101 
CCV5 ·010 SCSR -110 

Trap (UND) ·0110 Trap (UND) -1110 
CCV4 -011 CCVO -111 

Trap (UND) -0111 Trap (UND) -1111 

7 0 

---I I I I I I I I , 
__ . 1 0 0 1 1 1 1 ~ 101 

TL/EE/8673-81 

Format 13 Format 15.5 

Trap (UND) Always 
CCALO -0000 CCAL3 -1000 

0 CMOVO -0001 CMOV3 -1001 
CCMPO -0010 Trap (UND) -1010 

1 1 1 1 0 CCMP1 -0011 Trap (UND) -1011 
CCAL1 -0100 CCAL2 -1100 

Format 14 CMOV2 -0101 CMOV1 -1101 
Trap (UND) ·0110 Trap (UND) -1110 

RDVAL -0000 LMR -0010 Trap (UND) -0111 Trap (UND) -1111 
WRVAL -0001 SMR -0011 

Trap (UND) on 01XX, 1XXX 

2-164 



Appendix A: Instruction Formats (Continued) 

111 

Format 15.7 

Note 2 -0000 Note 2 -1000 
Note 1 -0001 Note 1 -1001 
Note 3 -0010 Trap (UNO) ·1010 
Note 3 -0011 Trap (UNO) -1011 
Note 2 -0100 Note 2 ·1100 
Note 1 ·0101 Note 1 -1101 
Trap (UNO) -0110 Trap (UNO) -1110 
Trap (UNO) -0111 Trap (UNO) -1111 
If nnn = 010, 011,100,110 then Trap (UNO) Always. 

---I I I I I I I I 1 
___ 0 1 0 1 1 1 1 0 

TL/EE/8673-82 

Format 16 

Trap (UNO) Always 

7 0 

---I \I \I \I I 1 
___ 1 1 0 1 1 1 1 0 

TL/EE/8673-83 

Note 1: Opcode not defined; CPU treats like MOV, or CMOVc' Firsl operand 
has access class of read; second operand has access class of write; f or c 
field selects 32· or 64·bit data. 

Note 2: Opcode not defined; CPU treats like ADD, or CCALc. First operand 
has access class of read; second operand has access class of read-modify­
write; f or c field selects 32· or 64·bit data. 

Note 3: Opcode not defined; CPU treats like CMP, or CCMPc. First operand 
has access class of read; second operand has access class of read; f or c 
field selects 32· or 64·bit data. 

2-165 

Format 17 

Trap (UNO) Always 

Format 18 

Trap (UNO) Always 

Format 19 

Trap (UNO) Always 

Implied Immediate Encodings: 
7 

7 0 

---I I I \I I \I 1 
__ • 1 0 0 0 1 1 1 0 

TLlEE/8673-84 

7 0 

---I I \I I \I I 1 __ . x x x 0 0 1 1 0 

TL/EE/8673-85 

o 

r1 rO 

Register Mark, appended to SAVE, ENTER 
7 0 

Register Mark, appended to RESTORE, EXIT 
7 o 

; offset; 

Offset/Length Modifier appended to INSS, EXTS 

• 



~ 
en 
en 

CJ 

NSJ2C201 
reu 

ilO 

FIGURE 8-1. System Connection Diagram (32332, 32081 & 32082) 

NS32332-10/NS32332-15 

o 

WR 

,CK 

ODIN 

8W, 

8W' 

BOUT 
8lN 

l> 
'tJ 
'tJ 
CD 
~ 
Q. 
;C" 

~ 
~ -CD 
~ 
D) 
n 
S" 

CQ 

en c 
CQ 
CQ 
CD 
UI -0" 
~ 
UI 

TLlEE/8673-86 



Appendix B: Interfacing Suggestions (Continued) 

.... 

.,.. 

+-

81N >- ....... 
>--
>--
+--

>---+ 
,>---+ 

::: 

+5 iL 
~ 

,.... 

CWAIT 

WAITI 

WAIT2 

8RSTI 
--
8RSTO 

-+m 
RST 

1 
8EO 8EI8E2 8E3 RD~~ 

80UT ILO 
FLT 

BiN DDIN 
RST/A8T 

8WO 
M 
HLDA 

8WI -
NS32332 ADS 

CPU 8ER 
PFS 8RT 

Dr/SDONE iNT 
SPC 

HOLD T 
mil I 

STO-3 

PHil 

ADO-31 PHI2 

.... 

• I" +5 I 10 kll 

• j, 
DO-31 

NOE SDN332 I---

PSO SPC 

PSI STO-3 ' .... 

NS32381 -
FPU RST 

CLK 

-
DDIN 

RD 
WR 

8US TSO 
CONTROL 

D8E LOGIC 
ADS 

RDY 

CLK DDIN 

- RDY 
RSTI 
m 
DDiN 
RSI/A8T 
l!LL 
HLDAI 

ADS NS32382 
8ER MMU 
8RT 

SDONE 
SPC 
HOLD 

--'" STO-3 
"; 

PHil 
PHI2 ADO-31 

I 

~ 
+E'A IY~ 2A 

3A 2Y~ 
4A 
18 3Y~ 
28 
38 
48 
4Y~ 

'-J~ 
L-~ 

MILO 

HLDAO 

-
PAY 

5V 
CINH 

PAO-31 ~ . 
MADS 

~ 
5V 

Lw-.,....5V 

• ~ 

J 

8EO 

ill 

8E2 

8E3 

CINH 

PAO-31 

RST 

DO-31 

PHil PHI2 
RSTO 

NS32C201 
TCU 

cm XIN 16 
XOUT ~ r RSTI 

TL/EE/8673-93 

FIGURE 8-2. System Connection Diagram (32332,32381 & 32382) 

2-167 

z en 
c,.) 
N 
c,.) 
c,.) 
N 

I .... 
o ....... 
z en 
c,.) 
N 
c,.) 
c,.) 
N 
I .... 

U1 



U) r----------------------------------------------------------------------------, .... 
N 
CO) 
Q 

~ 
CO) 

tn 
Z 
C; .... 
N 
CO) 
Q 

U 
C\I 

~ 
Z 

~National 
~ Semiconductor 
NS32C032-10/NS32C032-15 
High-Performance Microprocessors 
General Description 
The NS32C032 is a 32-bit, virtual memory microprocessor 
with a 16-MByte linear address space and a 32-bit external 
data bus. It has a 32-bit ALU, eight 32-bit general purpose 
registers, an eight-byte prefetch queue, and a slave proces­
sor interface. The NS32C032 is fabricated with National 
Semiconductor's advanced CMOS process, and is fully ob­
ject code compatible with other Series 32000® processors. 
The Series 32000 instruction set is optimized for modular, 
high-level languages (HLL). The set is very symmetric, it has 
a two address format, and it incorporates HLL oriented ad­
dressing modes. The capabilities of the NS32C032 can be 
expanded with the use of the NS32081 floating point unit 
(FPU), and the NS32082 demand-paged virtual memory 
management unit (MMU). Both devices interface to the 
NS32C032 as slave processors. The NS32C032 is a gener­
al purpose microprocessor that is ideal for a wide range of 
computational intensive applications. 

Block Diagram 
ADD/DATA CONTROLS. STAlUS 

0 FP 
0 SPI 
0 SPO 
0 PC 

RD 
Rl 
R2 
R3 
R4 
RS 
R6 
R7 

Features 
• 32-bit architecture and implementation 
• Virtual memory support 
• 16-MByte linear address space 
• 32-bit data bus 
• Powerful instruction set 

- General 2-address capability 
- Very high degree of symmetry 
- Addressing modes optimized for high-level 

languages 
• Series 32000 slave processor support 
• High-speed CMOS technology 
• 68-pin leadless chip carrier 

MICROCODE ROM 
AND 

CONTROL LOGIC 

IIIIJ 
CFG REGISTER 

WORKING 
REGISTERS 

I 
I 
I 
I 
I 

MOD I 

PSR : 
L _________________ J 

TL/EE/9160-1 

FIGURE 1 

2-168 



1.0 PRODUCT INTRODUCTION 

2.0 ARCHITECTURAL DESCRIPTION 

2.1 Programming Model 

2.1.1 General Purpose Registers 
2.1.2 Dedicated Registers 
2.1.3 The Configuration Register (CFG) 
2.1.4 Memory Organization 
2.1.S Dedicated Tables 

2.2 Instruction Set 

2.2.1 General Instruction Format 
2.2.2 Addressing Modes 
2.2.3 Instruction Set Summary 

3.0 FUNCTIONAL DESCRIPTION 

3.1 Power and Grounding 
3.2 Clocking 
3.3 Resetting 
3.4 Bus Cycles 

3.4.1 Cycle Extension 
3.4.2 Bus Status 
3.4.3 Data Access Sequences 

3.4.3.1 Bit Accesses 
3.4.3.2 Bit Field Accesses 
3.4.3.3 Extending Multiply Accesses 

3.4.4 Instruction Fetches 
3.4.S Interrupt Control Cycles 
3.4.6 Slave Processor Communication 

3.4.6.1 Slave Processor Bus Cycles 

Table of Contents 
3.0 FUNCTIONAL DESCRIPTION (Continued) 

3.8 NS32C032 Interrupt Structure 

3.8.1 General Interrupt/Trap Sequence 
3.8.2 Interrupt/Trap Return 
3.8.3 Maskable Interrupts (The INT Pin) 

3.8.3.1 Non-Vectored Mode 
3.8.3.2 Vectored Mode: Non-Cascaded Case 
3.8.3.3 Vectored Mode: Cascaded Case 

3.8.4 Non-Maskable Interrupt (The NMI Pin) 
3.8.S Traps 
3.8.6 Prioritization 
3.8.7 Interrupt/Trap Sequences Detailed Flow 

3.8.7.1 Maskable/Non-Maskable Interrupt 
Sequence 

3.8.7.2 Trap Sequence: Traps Other Than Trace 
3.8.7.3 Trace Trap Sequence 
3.8.7.4 Abort Sequence 

3.9 Slave Processor Instructions 

3.9.1 Slave Processor Protocol 
3.9.2 Floating Point Instructions 
3.9.3 Memory Management Instructions 
3.9.4 Custom Slave Instructions 

4.0 DEVICE SPECIFICATIONS 

4.1 Pin Descriptions 

4.1.1 Supplies 
4.1.2 Input Signals 
4.1.3 Output Signals 

3.4.6.2 Slave Operand Transfer Sequences 
4.1.4 Input/Output Signals 

4.2 Absolute Maximum Ratings 
4.3 Electrical Characteristics 
4.4 Switching Characteristics 

3.S Memory Management Option 

3.S.1 Address Translation Strap 
3.S.2 Translated Bus Timing 
3.S.3 The FL T (Float) Pin 
3.S.4 Aborting Bus Cycles 

3.S.4.1 The Abort Interrupt 
3.S.4.2 Hardware Considerations 

3.6 Bus Access Control 
3.7 Instruction Status 

4.4.1 Definitions 
4.4.2 Timing Tables 

4.4.2.1 Output Signals: Internal Propagation 
Delays 

4.4.2.2 Input Signals Requirements 
4.4.2.3 Clocking Requirements 

4.4.3 Timing Diagrams 
Appendix A: Instruction Formats 
Appendix B: Interfacing Suggestions 

List of Illustrations 
. . ...................................... 1-1 CPU Block Diagram..................................................... 2-1 

The General and Dedicated Registers ............................................................................ 2-2 

~~~i~s~j 
Recommended Supply Connections .. 3-2
Clock Timing Relationships .. 3 3

~:~:~~~~~:~~i~~n~Ui~~~.~~t~. : ~~~:
Recommended Reset Connections, Non-Memory-Managed System .. .
Recommended Reset Connections, emory- anage M M d System 3-Sb

2-169

z
tJ)
Co:)
N o
C
Co:)
N

I
C
Z
tJ)
Co:)
N o
C
Co:)
N

I
U1

EI

U) r---, ..-
N
('f)

~
~
Z
C; ..-
N a
~
('f)

en z

List of Illustrations (Continued)
Bus Connections•....••••.•••••...•.•.....••.••....•................••...............•.•...........•••... 3·6
Read Cycle Timing•..•.....•••..........••.•....•.•.............•••••.....•.•..•...•.•..•••..•...••••..••• 3·7
Write Cycle Timing•......••.•..•••••...••.••••.•.•••..•••••••••.•••••..•••••.•.•••.•.•...•. 3·8
ROY Pin Timing••.....•....••......•........................•................•........••.....•.•......•... 3·9
Extended Cycle Example•........•......••.....•.••.....•••......•••....•.••.....••.•.. 3·1 0
Memory Interiace , .•.............•..........•.•...•.•..•.••......•••.•.....................•........•.. 3·11
Slave Processor Connections•..•....•.•....••••.. , •••••.•.••••.•..•••.•••..•••••.••••••.••.•.•••••.••• 3·12
CPU Read from Slave Processor ...••.•...•••........•.....•.....•..........•........•••.....••....•..••......•. 3·13
CPU Write to Slave Processor••......•......••••..•.•.•.....•••••.....•••.••.••••....•••.•.. 3·14
Read Cycle with Address Translation (CPU Action) ...••.•....•••..•...••••....••.......••.•....••••.....••••..•••. 3·15
Write Cycle with Address Translation (CPU Action)•.....••••......••........••......•................•.. 3·16
Memory·Managed Read Cycle•.....•...........•..........•.........••...•....•••....•.......•.•........ 3·17
Memory·Managed Write Cycle•........•.•......••....••••....•••••.....••••.....•••...••••......•..•.. 3·18
FLT Timing•.....••.....•......•......•••.....••.......•••.....•••.•....••••....•••.•••.•••••.•..•• 3·19
HOLD Timing, Bus Initially Idle•.......•••........•.•............••.•......•.. 3·20
HOLD Timing, Bus Initially Not Idle•.•....•.•....••••.......•....•••....••..••••...•.•.•....•••.....•••••..• 3·21
Interrupt Dispatch and Cascade Tables•......•....•...........••.......••..•...••......•••......•. 3·22
Interrupt/Trap Service Routine Calling Sequence •.•..•.•••.. , ..•.••...••••••. , .•.••••. , .•••••...••••••.••••.•••.• 3·23
Return from Trap (RETT n) Instruction Flow •..........•......................•.........•..............••.......•. 3·24
Return from Interrupt (RET) Instruction Flow•.•..•...••.....••••.....•••......•.••.....••......••........•.. 3·25
Interrupt Control Connections (16 levels)•.•...••......•••.......••.....•..•.....•.......••..•...••••.....•• 3·26
Cascaded Interrupt Control Unit Connections•.........•..........•................•..........•.....•.. 3·27
Service Sequence•..............••....•••.....•.••....••.•......••••.•...•.•...•...•.•...•.•.•..• 3·28
Slave Processor Protocol•..•...•••....••••..••••••.....•••••...•.•••....••••.....••••.. 3·29
Slave Processor Status Word Format •.....•.•.......•......•.........•......•....•..••..•...••.•.....•••......•• 3·30
NS32C032 Connection Diagram•.............•..•................•.•....••........•... 4·1
Timing Specification Standard (Signal Valid After Clock Edge) ..•.•..•....••.•...••.••...•••.•.•..••.•.•...•••••.•.••• 4·2
Timing Specification Standard (Signal Valid Before Clock Edge) .•...............•.......••......••.....•............ .4·3
Write Cycle•......•••....••.•......•••......•••.•..••••......•••.•..••••...••••.•..• 4-4
Read Cycle •...........••..•.......•........•...••...•..•...... 4·5
Floating by HOLD Timing (CPU Not Initially Idle) ...•........••.•..•••••....•.••....••........•••.....•....••••.••..• 4·6
Floating by HOLD Timing (CPU Initially Idle)•....•.......•........•........................•.....•............ .4·7
Release from Hold•............................•.......•.......••.......••.•..••••...•.••.••.. 4·8
FLT Initiated Float Cycle Timing•••.....••.•... , ..•.••.•..••..•....••••....••....•••.•.•..•••.•..•••. 4-9
Release from FL T Timing•....................................•........•.. 4·10
Ready Sampling (CPU Initially READy)•••.....••.......••......••..•..........•..•......••......... 4·11
Ready Sampling (CPU Initially NOT READY)•••......•.•.....•••....•••.......•••.. 4·12
Slave Processor Write Timing•......•••......•••....••••..•.••.•....••••.••..•••••...••••.....•. 4·13
Slave Processor Read Timing ..•..................................•.. 4·14
SPCTiming•..............•.•....•••.....••.....•••........•.•...••••..•..••.••...•.•.••.••.•....•. 4·15
Reset Configuration Timing••......•..•.......•..............•...............•......•... 4·16
Clock Waveforms••.•...•..•••...••••..•...•.••...•.•.•...•.•.....••••....... 4·17
Relationship of PFS to Clock Cycles ...•........•.. 4·18
Guaranteed Delay, PFS to Non·Sequential Fetch••.....•.•......•••••...••.•.•..••••...••••••....••••... 4·19a
Guaranteed Delay, Non·Sequential Fetch to PFS•.......••...•..................... 4·19b
Relationship of ILO to First Operand of an Interlocked Instruction •...•••......••.......••......••...•.•••...•••••.. 4·20a
Relationship of ILO to Last Operand of an Interlocked Instruction•.....•..•....•..••................ 4·20b
Relationship of ILO to Any Clock Cycle••.•....••••...•..•••....••••..•...•..•...•........•. 4·21
U/S Relationship to any Bus Cycle - Guaranteed Valid Interval.•..•.......................•.•.. 4·22
Abort Timing, FL T Not Applied•........••......•.•••...••••.•.....•••...••.••••.•..•.•...•••.....•• .4·23
Abort Timing, FL T Applied•............•........•........................•.. 4·24
Power·On Reset•.....•••......••.......•••..•...••••••.••.•••..•••.•.•...•••....•••.•...••• 4·25
Non·Power·On Reset.•...•......•.. 4·26
INT Interrupt Signal Detection•.......•........••.••....••..............•.......... 4·27
MNllnterrupt Signal Timing•.......•.......•.••...•..•......••••....••.•......•••...••.•.•...•.•••.. 4·28
Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction •.........................• 4·29
Processor System Connection Diagram••..............•.......•••......•...............•••...•••••.... B·1

2·170

List of Tables
NS32C032 Addressing Modes ... 2-1
NS32C032 Instruction Set Summary .. 2-2
Bus Access Type .. 3-1
Access Sequence .. 3-2
Interrupt Sequences .. 3-3
Floating Point Instruction Protocols ... 3-4
Memory Management Instruction Protocols ..•...••........ 3-5
Custom Slave Instruction Protocols•................................•.........•.... 3-6

2-171

z en
Co)
N g
~ •
Q
Z en
~
o
Q
Co)

~
U1

U) r--,
N
C")
o
(J
N

~
Z
o
N
C")
o
~
C")
U)
Z

1.0 Product Introduction
The Series 32000 microprocessor family is a new genera­
tion of devices using National's XMaS and CMOS technolo­
gies. By combining state-of-the-art MaS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc­
essors .

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op·
erand can be referenced by anyone of the addressing
modes provided. This powerful memory·to·memory archi·
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op­
erands as well as for context switching.

Memory Management. Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func·
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS32C032 has 24-bit ad­
dress pOinters that can address up to 16 megabytes without
requiring any segmentation; this addressing scheme pro­
vides flexible memory management without added-on ex­
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac·
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by speCial slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

2-172

• High-Level Language Support
• Easy Future Growth Path

• Application Flexibility

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes 16 registers on the
NS32C032 CPU.

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in
length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS32C032 are as­
Signed specific functions.

PC: The PROGRAM COUNTER register is a pointer to
the first byte of the instruction currently being executed.
The PC is used to reference memory in the program
section. (In the NS32C032 the upper eight bits of this
register are always zero.)

SPO, SP1: The SPO register points to the lowest address
of the last item stored on the INTERRUPT STACK. This
stack is normally used only by the operating system. It is
used primarily for storing temporary data, and holding
return information for operating system subroutines and
interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on
the USER STACK. This stack is used by normal user
programs to hold temporary data and subroutine return
information.

In this document, reference is made to the SP register.
The terms "SP register" or "SP" refer to either SPO or
SP1, depending on the setting of the S bit in the PSR
register. If the S bit in the PSR is 0 the SP refers to SPO.
If the S bit in the PSR is 1 then SP refers to SP1. (In the
NS32C032 the upper eight bits of these registers are
always zero).

Stacks in the Series 32000 family grow downward in
memory. A Push operation pre-decrements the Stack
Pointer by the operand length. A Pop operation post-in­
crements the Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a proce­
dure to access parameters and local variables on the
stack. The FP register is set up on procedure entry with
the ENTER instruction and restored on procedure termi­
nation with the EXIT instruction.

The frame pOinter holds the address in memory occu­
pied by the old contents of the frame pointer. (In the
NS32C032 the upper eight bits of this register are al­
ways zero.)

58: The STATIC BASE register points to the global vari·
abies of a software module. This register is used to sup­
port relocatable global variables for software modules.

2.0 Architectural Description (Continued)

DEDICATED

~--------32----------~

·0

PSR

STATUS

PROGRAM COUNTER I PC

STATIC BASE I SB

FRAME POINTER \ FP

USER STACK PTR. \ SP1 }
SP

INTERRUPT STACK PTR. I SPO

INTERRUPT BASE \INTBASE

MOD

MODULE

GENERAL

32

RO

Rl

R2

R3

R4

R5

R6

R7

TLlEE/9160·3

FIGURE 2·1. The General and Dedicated Registers

The SB register holds the lowest address in memory
occupied by the global variables of a module. (In the
NS32C032 the upper eight bits of this register are al·
ways zero.)

INTBASE: The INTERRUPT BASE register holds the
address of the dispatch table for interrupts and traps
(Sec. 3.8). The INTBASE register holds the lowest ad­
dress in memory occupied by the dispatch table. (In the
NS32C032 the upper eight bits of this register are al­
ways zero.)

MOD: The MODULE register holds the address of the
module descriptor of the currently executing software
module. The MOD register is sixteen bits long, therefore
the module table must be contained within the first 64K
by1es of memory.

PSR: The PROCESSOR STATUS REGISTER (PSR)
holds the status codes for the NS32C032 microproces­
sor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all
programs, but the high order eight bits are accessible
only to programs executing in Supervisor Mode.

TL/EE/9160-4

FIGURE 2·2. Processor Status Register

C: The C bit indicates that a carry or borrow occurred
after an addition or subtraction instruction. It can be
used with the AD DC and SUBC instructions to perform
multiple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T: The T bit causes program tracing. If this bit is a 1, a
TRC trap is executed after every instruction (Sec. 3.8.5).

L: The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating Point comparisons, this
bit is always cleared.

F: The F bit is a general condition flag, which is altered
by many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

2-173

Z: The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is
set to "0".

N: The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to "1" if the sec·
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to "0".

U: If the U bit is "1" no privileged instructions may be
executed. If the U bit is "0" then all instructions may be
executed. When U = 0 the NS32C032 is said to be in
Supervisor Mode; when U = 1 the NS32C032 is said to
be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer·
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1
register is used as the stack pointer. The bit is automati­
cally cleared on interrupts and traps. It may have a set­
ting of 0 (use the SPO register) or 1 (use the SP1 regis­
ter).

P: The P bit prevents a TRC trap from occurring more
than once for an instruction (Sec. 3.8.5.). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I: If I = 1, then all interrupts will be accepted (Sec. 3.8.).
If I = 0, only the NMI interrupt is accepted. Trap en­
ables are not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS32C032 CPU is the four­
bit CFG Register, which declares the presence of certain
external devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of
system initialization after reset. The format of the CFG Reg­
ister is shown in Figure 2-3.

FIGURE 2-3. CFG Register

z
en
c.:I
N
(')
0
c.:I
N
0

" Z
en
c.:I
N
(')
0
c.:I
N
U1

U) r--, ...
c.:..
C')

~
C')

UJ
Z
o ...
c.:..
C')

8
'" ~
z

2.0 Architectural Description (Continued)

The CFG I bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS32202 Interrupt Con­
trol Unit). It the CFG I bit is set, interrupts requested through
the INT pin are "Vectored." If it is clear, these interrupts are
"Non-Vectored." See Sec. 3.S.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.

2.1.4 Memory Organization

The main memory of the NS32C032 is a uniform linear ad­
dress space. Memory locations are numbered sequentially
starting at zero and ending at 224 - 1. The number specify­
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits. Un­
less otherwise noted, diagrams in this document show data
stored in memory with the lowest address on the right and
the highest address on the left. Also, when data is shown
vertically, the lowest address is at the top of a diagram and
the highest address at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given
the number zero, and is shown at the right of the diagram.
Bits are numbered in increasing significance and toward the
left.

Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed (Sec. 2.2.1), the least significant byte of a word is stored
at the lower address, and the most significant byte of the
word is stored at the next higher address. I n memory, the
address of a word is the address of its least significant byte,
and a word may start at any address.

115 MSB's sI7 LSB's 01

A+l A
Word at Address A

Two contiguous words are called a double word. Except
where noted (Sec. 2.2.1), the least significant word of a dou­
ble word is stored at the lowest address and the most signif­
icant word of the double word is stored at the address two
greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

sI7 LSB's 01

A+3 A+2 A+1 A
Double Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.1_5 Dedicated Tables

Two of the NS32C032 dedicated registers (MOD and INT­
BASE) serve as pOinters to dedicated tables in memory.

The INTBASE register points to the Interrupt Dispatch and
Cascade tables. These are described in Sec. 3.S.

2-174

The MOD register contains a pOinter into the Module Table,
whose entries are called Module Descriptors. A Module De­
scriptor contains four pOinters, three of which are used by
NS32C032. The MOD register contains the address of the
Module Descriptor for the currently running module. It is au­
tomatically up-dated by the Call External Procedure instruc­
tions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry pOints, the Program Base pointer serves only
as a reference to find them.

15 o
I MOD I

1
or

°U 31

STATIC BASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

...
°
TL/EE/9160-5

FIGURE 2-4. Module Descriptor Format

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor­
mation needed for:

1) Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad­
dressing mode.

2) Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module's Program Base pOinter.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

ENTRY

o

31

'-

o-r
ABSOLUTE ADDRESS (VARIABLE)

ABSOLUTE ADDRESS (VARIABLE)

OFFSET I MODULE (PROCEDURE)

-'-
TL/EE/9160-6

FIGURE 2·5. A Sample Link Table

2.0 Architectural Description (Continued)

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2·6 shows the general format of a Series 32000 in·
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5·bit General Ad·
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-7.

I ' GEN. ADDR. MODE l REG. NO. 'I
TL/EE/9160-8

FIGURE 2-7. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed address modes. Each Disp/lmm field may contain one or
two displacements, or one immediate value. The size of a
Displacement field is encoded with the top bits of that field,
as shown in Figure 2-8, with the remaining bits interpreted
as a signed (two's complement) value. The size of an imme­
diate value is determined from the Opcode field. Both Dis­
placement and Immediate fields are stored most significant
byte first. Note that this is different from the memory repre­
sentation of data (Sec. 2.1.4).

Some instructions require additional, "implied" immediates
and I or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Sec. 2.2.3).

Byte Displacement: Range -64 to +63

17 0 SIGNED DISPLACEMENT
o I

Word Displacement: Range -8192 to +8191

I' ,
r;J¢'t.O

~t.!Io~ 'I
Double Word Displacement:

Range (Entire Addressing Space)
7 0

1
I

1 I I

,../-
TL/EE/9160-11

FIGURE 2-8. Displacement Encodlngs

2.2.2 Addressing Modes

The NS32C032 CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro­
grammer as an "addressing mode."

OPTIONAL BASIC
ExrENSIONS INSTRUCTION

r~--------------~A~--------------~\~~

DISP2 DISPI OlSP21DISPl
I
I
I

IMPUED GEN I GEN INDEX INDEX I
IMMEDIATE DISP DISP ADDR I ADDR OPCODE BYTE BYTE I

OPERAND(S) MODE I MODE
A I B

IMM IMM
I

:

t ...)J

TL/EE/9160-7

FIGURE 2-6. General Instruction Format

2-175

z en
Co)
N
(")
Q
Co)
N •
Q
Z en
Co)
N
(")
Q
Co)
N •
U1

~ r--, -~
C')

8
N
C')

en
z
C) -. N
C')
C)
(.)
N
C')
en
z

2.0 Architectural Description (Continued)

Addressing modes in the NS32C032 are designed to opti­
mally support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.

NS32C032 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space. Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers pOint to data areas gen­
erally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pOinter to generate the Effec­
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pOinter value is read from a specified entry of
the current Link Table. To this pOinter value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode.
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

2-176

Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32C032 in­
struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Instruction Set Reference Manual.

Notations:

i = I nteger length suffix: B = Byte

W = Word

D = Double Word

f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value append­
ed after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Dedicated/Address Register: SP, SB, FP,
MOD, INTBASE, PSR, US (bottom 8 PSR bits).

mreg = Any Memory Management Status/Control Regis­
ter.

creg = A Custom Slave Processor Register (Implementa­
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

z
2.0 Architectural Description (Continued)

en
Co)
N
0
0

TABLE 2-1 Co)
N

NS32C032 Addressing Modes • -0.
0

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS Z en
Register Co)

N
00000 Register 0 ROor FO None: Operand is in the specified 0
00001 Register 1 Rl or Fl register

0
Co)

00010 Register 2 R20r F2
N • -0.

00011 Register 3 R30rF3 (II

00100 Register 4 R40r F4
00101 Register 5 R50rF5
00110 Register 6 R60rF6
00111 Register 7 R70rF7
Register Relative
01000 Register 0 relative disp(RO) Disp + Register.
01001 Register 1 relative disp(Rl)
01010 Register 2 relative disp(R2)
01011 Register 3 relative disp(R3)
01100 Register 4 relative disp(R4)
01101 Register 5 relative disp(R5)
01110 Register 6 relative disp(R6)
01111 Register 7 relative disp(R7)
Memory Relative
10000 Frame memory relative disp2(displ (FP» Disp2 + Pointer; Pointer found at
10001 Stack memory relative disp2(displ (SP» address Displ + Register. "SP"
10010 Static memory relative disp2(displ (SB» is either SPO or SP1, as selected

in PSR.
Reserved
10011 (Reserved for Future Use)
Immediate
10100 Immediate value None: Operand is input from

instruction queue.
Absolute
10101 Absolute @disp Disp.
External
10110 External EXT (displ) + disp2 Disp2 + Pointer; Pointer is found

at Link Table Entry number Displ.
Top of Stack
10111 Top of stack TOS Top of current stack, using either

User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Memory Space
11000 Frame memory disp(FP) Disp + Register; "SP" is either
11001 Stack memory disp(SP) SPO or SP1, as selected in PSR.
11010 Static memory disp(SB)
11011 Program memory *+disp
Scaled Index
11100 Index, bytes mode[Rn:B] EA (mode) + Rn.
11101 Index, words mode[Rn:W] EA (mode) + 2 x Rn.
11110 Index, double words mode[Rn:D] EA (mode) + 4X Rn.
11111 Index, quad words mode[Rn:Q] EA (mode) + B x Rn.

'Mode' and 'n' are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

2-177

~ r---,
~
C")

~ en z
Q
§
C'II

~

2.0 Architectural Description (Continued)

TABLE 2-2
NS32C032 Instruction Set Summary

MOVES

Format Operation Operands Description
4 MOVi gen,gen Move a value.
2 MOVQi short,gen Extend and move a signed 4-bit constant.
7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16).
7 MOVZBW gen,gen Move with zero extension.
7 MOVZiD gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen,gen Move Effective Address.

INTEGER ARITHMETIC

Format Operation Operands Description

4 ADDI gen,gen Add.
2 ADDQi short,gen Add signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBi gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSi gen,gen Take absolute value.
7 MULi gen,gen Multiply
7 QUOi gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to Extended Integer.
7 DEli gen,gen Divide Extended Integer.

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands Description

6 ADDPi gen,gen Add Packed.
6 SUBPi gen,gen Subtract Packed.

INTEGER COMPARISON

Format Operation Operands Description

4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN

Format Operation Operands Description

4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical Exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

2-178

2.0 Architectural Description (Continued)

TABLE 2·2 (Continued)
NS32C032 Instruction Set Summary (Continued)

SHIFTS

Format Operation Operands Description
6 LSHi gen,gen Logical Shift, left or right.
6 ASHi gen,gen Arithmetic Shift, left or right.
6 ROTi gen,gen Rotate, left or right.

BITS

Format Operation Operands Description

4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records
used in Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned
source.
Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to Bit Field Pointer.

ARRAYS

Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.

STRINGS

String instructions assign specific functions to the Gen·
eral Purpose Registers:

Options on all string instructions are:

B (Backward): Decrement string pointers after each step
rather than incrementing. R4 - Comparison Value

R3 - Translation Table Pointer

R2 - String 2 Pointer

R 1 - String 1 Pointer

RO - Limit Count

Format Operation
5 MOVSi

MOVST

5 CMPSi
CMPST

5 SKPSi
SKPST

Operands
options
options

options
options

options
options

U (Until match): End instruction if String 1 entry matches
R4.

W(While
match): End instruction if String 1 entry does not

match R4.

All string instructions end when RO decrements to zero.

Descriptions
Move String 1 to String 2.
Move string, translating bytes.

Compare String 1 to String 2.
Compare translating, String 1 bytes.

Skip over String 1 entries
Skip, translating bytes for Until/While.

2-179

z
tn
Co)
N
0
0
Co)
N •
0
Z
tn
Co)
N
0
0
Co)
N •
UI

fII

~ r---,
~ 2.0 Architectural Description (Continued)

8 TABLE 2-2 (Continued)
N NS32C032 Instruction Set Summary (Continued)
~ JUMPS AND LINKAGE

Z
CI
~

8
N
CO)
tn
Z

Format
3
0
0
3
2
3
1
1
3

Operation
JUMP
BR
Bcond
CASEi
ACBi
JSR
BSR
CXP
CXPD
SVC
FLAG
BPT
ENTER
EXIT
RET
RXP
RETT
RETI

Operands
gen
disp
disp
gen
short,gen,disp
gen
disp
disp
gen

[reg listl,disp
[reg list]
disp
disp
disp

CPU REGISTER MANIPULATION
Format Operation Operands

SAVE [reg listl
1 RESTORE [reg listl
2 LPRi areg,gen
2 SPRi areg,gen
3 ADJSPi gen
3 BISPSRi gen
3 BICPSRi gen
5 SETCFG [option list]

FLOATING POINT

Format Operation Operands

11 MOVf gen,gen
9 MOVLF gen,gen
9 MOVFL gen,gen
9 MOVif gen,gen
9 ROUNDfi gen,gen
9 TRUNCli gen,gen
9 FLOORfi gen,gen

11 ADDf gen,gen
11 SUBf gen,gen
11 MULf gen,gen
11 DIVf gen,gen
11 CMPf gen,gen
11 NEGf gen,gen
11 ABSf gen,gen
9 LFSR gen
9 SFSR gen

MEMORY MANAGEMENT

Format Operation Operands

14 LMR mreg,gen
14 SMR mreg,gen
14 RDVAL gen
14 WRVAL gen
8 MOVSUi gen,gen

8 MOVUSi gen,gen

Description
Jump.
Branch (PC Relative).
Conditional branch.
Multiway branch.
Add 4-bit constant and branch if non-zero.
Jump to subroutine.
Branch to subroutine.
Call external procedure.
Call external procedure using descriptor.
Supervisor Call.
Flag Trap.
Breakpoint Trap.
Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.
Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description

Save General Purpose Registers.
Restore General Purpose Registers.
Load Dedicated Register. (Privileged if PSR or INTBASE)
Store Dedicated Register. (Privileged if PSR or INTBASE)
Adjust Stack Pointer.
Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set Configuration Register. (Privileged)

Description

Move a Floating Point value.
Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.
Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.
Subtract.
Multiply.
Divide.
Compare.
Negate.
Take absolute value.
Load FSR.
Store FSR.

Description

Load Memory Management Register. (Privileged)
Store Memory Management Register. (Privileged)
Validate address for reading. (Privileged)
Validate address for writing. (Privileged)
Move a value from Supervisor
Space to User Space. (Privileged)
Move a value from User Space
to Supervisor Space. (Privileged)

2-180

z
2.0 Architectural Description (Continued)

(/)
Co)
N

TABLE 2-2 (Continued) 0
0 NS32C032 Instruction Set Summary (Continued) Co)

MISCELLANEOUS N • ...
Format Operation Operands Description 0

1 NOP No Operation. Z
WAIT Wait for interrupt. (/)

Co)

DIA Diagnose. Single-byte "Branch to Self" for hardware N
0

breakpointing. Not for use in programming. 0
Co)

CUSTOM SLAVE N • ...
Format Operation Operands Description U1

15.5 CCALOc gen,gen Custom Calculate.
15.5 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen

15.5 CMOVOc gen,gen Custom Move.
15.5 CMOV1c gen,gen
15.5 CMOV2c gen,gen
15.5 CMOV3c gen,gen

15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1c gen,gen

15.1 CCVOci gen,gen Custom Convert.
15.1 CCV1ci gen,gen
15.1 CCV2ci gen,gen
15.1 CCV3ic gen,gen
15.1 CCV4DQ gen,gen
15.1 CCV5QD gen,gen

15.1 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.

15.0 CATSTO gen Custom Address/Test. (Privileged)

15.0 CATST1 gen (Privileged)

15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)

2-181

~.---~
N
Cf)

8
C"I :a
z
c;
N
Cf)

8
C"I :a z

3.0 Functional Description
3.1 POWER AND GROUNDING

The NS32C032 requires a single 5-volt power supply, ap­
plied on 4 pins. The Logic Voltage pins (VccL 1 and VccL2)
supply the power to the on-chip logic. The Buffer Voltage
pins (VCCBl and VCCB2) supply the power to the output driv­
ers of the chip. The Logic Voltage pins and the Buffer Volt­
age pins should be connected together by a power (Vccl
plane on the printed circuit board.

The NS32C032 grounding connections are made on 5 pins.
The Logic Ground pins (GNDL 1 and GNDL2) are the ground
pins for the on-chip logic. The Buffer Ground pins (GNDB1
to GNDB3) are the ground pins for the output drivers of the
chip. The Logic Ground pins and the Buffer Ground pins
should be connected together by a ground plane on the
printed circuit board.

Both power and ground connections are shown below (Fig­
ure 3-1).

NS32C032
CPU

+5V

OTHER Vee
CONNECTIONS
(Vee PLANE)

OTHER GROUND
...,~ ... CONNECT10NS

~ ___ (GNO PLANE)

TL/EE/91S0-12

FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS32C032 inputs clocking signals from the Timing
Control Unit (TCU), which presents two non-overlapping
phases of a single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 3-2.

vcc

Each rising edge of PHI1 defines a transition in the timing
state ("T-State") of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Section 4 for com­
plete specifications of PHI1 and PHI2.

PHil

PHI2

NON-OVERLAPPING

TLlEE/91S0-13

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST / ABT pin serves both as a Reset for on-Chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Sec. 3.5.4.

The CPU may be reset at any time by pulling the RST / ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction proceSSing, resets its inter­
nal logic, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes.

On application of power, RST / ABT must be held low for at
least 50].Lsec after Vee is stable. This is to ensure that all
on-chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain

PHil ---t---~ JJJL
I i!: 64 CLOCK r-- CYCLES

AST/Aii'i' ---j----------U---'
1-----i!:50,,1II!C ------1

TLlEE/91S0-14

FIGURE 3-3. Power-on Reset Requirements

2-182

3.0 Functional Description (Continued)

active for not less than 64 clock cycles. The rising edge
must occur while PHil is high. See Figures 3-3 and 3-4.

The NS32C201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32C032 CPU. Fig­
ure 3-5a shows the recommended connections for a non­
Memory-Managed system. Figure 3-5b shows the connec­
tions for a Memory-Managed system.

Vcc

r------------,
I I

PHll~JUL
L .-2:64CLOCK---i

____ ---.I<""'<";r-- CYCLES

RST/Aai' ~ ,-

~""~ r~ I

NS32C201
lCU

TL/EE/9160-15

FIGURE 3-4. General Reset Timing

NS32C032
CPU

I ~]~~Ir_~_4r_~--~~~~------~ I I
RSTI RsTc51------.....,>--------~ iiSr/AiT

! I I... _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

" 50"

SYSTEM RESET

TL/EE/9160-16

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

vcc

r------------,
I I

NS32C201
TCU

N83Zoaz
MMU

NS32C032
CPU

I RESET J>--tl---t-....,.--T---+~ ... --------l I I i'iSTi RsTo
! I I... _____________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

TL/EE/9160-17

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4 BUS CYCLES

The NS32C032 CPU has a strap option which defines the
Bus Timing Mode as either With or Without Address Trans­
lation. This section describes only bus cycles under the No
Address Translation option. For details of the use of the
strap and of bus cycles with address translation, see Sec.
3.5.

The CPU will perform a bus cycle for one of the following
reasons:

1) To write or read data, to or from memory or a peripheral
interface device. Peripheral input and output are memory­
mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

2-183

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Sec. 4. The only external
difference between them is the four-bit code placed on the
Bus Status pins (STO-ST3). Slave Processor cycles differ in
that separate control signals are applied (Sec. 3.4.6).

The sequence of events in a non-Slave bus cycle is shown
below in Figure 3-7 for a Read cycle and Figure 3-8 for a
Write cycle. The cases shown assume that the selected
memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Sec. 3.4.1).

z en w
N
o
C)
w
~
C)
z en w
N o
C)
w
~
U1

II) ...
I

N
C")
o o
N
C")

en z
o ...

I
N
C")
o o
N
C")

en
z

3.0 Functional Description (Continued)

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for "Idle").

During T1, the CPU applies an address on pins ADO-AD23 .
It also provides a low-going pulse on the ADS pin, which
serves the dual purpose of informing external circuitry that a
bus cycle is starting and of providing control to an external
latch for demultiplexing Address bits 0-23 from the ADO­
AD23 pins. See Figure 3-6. During this time also the status
signals DDIN, indicating the direction of the transfer, and
BEO-BE3, indicating which of the four bus bytes are to be
referenced, become valid.

During T2 the CPU switches the Data Bus, ADO-AD31 to
either accept or present data. It also starts the data strobe
(DS), signalling the beginning of the data transfer. Associat­
ed signals from the NS32C201 Timing Control Unit are also
activated at this time: RD (Read Strobe) or WR (Write
Strobe), TSO (Timing State Output, indicating that T2 has
been reached) and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2 or T3,
on the falling edge of the PHI2 clock, the RDY (Ready) line
is sampled to determine whether the bus cycle will be ex­
tended (Sec. 3.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD31) is sampled at the falling edge of PHI2 of the last T3
state. See Section 4. Data must, however, be held at least
until the beginning of T4. DS and RD are guaranteed not to
go inactive before this point, so the rising edge of either of
them may safely be used to disable the device providing the
input data.

The T 4 state finishes the bus cycle. At the beginning of T 4,
the DS, RD or WR, and TSO signals go inactive, and at the
rising edge of PHI2, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T4, an­
ticipating the following bus cycle (if any).

ODIN I--:-""f'-----l

024-031

AOO-A023

NS32C032

PHil PHI2 OS/FLT

PHil PHI2 A05 ODIN

NS32C201

OBE

os

RO
ROr-----------~-

WR
WR t-----------~-

T50
T50 /-------------

TLlEE/9160-1B

FIGURE 3-6. Bus Connections

2-184

3.0 Functional Description (Continued)

NS32C032 CPU BUS SIGNALS

I T40RTi I n T2 TJ

PHI 1 [

PHI 2 [

ADO-A023 [

02 031 [

AOS [

ST()'ST3 [

0iiiN [

BED-In [

OS [

ROY [

TSO [

FIGURE 3-7. Read Cycle Timing

2·185

T4 I nORTi I

TL/EE/9160-20

z
en
w
I\)

o o w
I\)

I
o
z en w
I\)

o
o w
I\)

I
U1

It)
c.:..
CO)
o
~
CO)

en z
o
N a o
N
CO)
en
z

3.0 Functional Description (Continued)

NS32C032 CPU BUS SIGNALS

T40RTi I T1 T2 T3

PHil [

PHI2 [

ADO-AD23 [DATA OUT

02 031 [DATA OUT

m[
STO-ST3 [STATUS VA~IO

i5iiiN [

iiEo-iii3 [VA~ID

i5S [

RDv [

Ro [

WR [

OBE [

TSO [

FIGURE 3-8. Write Cycle Timing

2·186

T4 I TIORTi I

NEXT

TL/EE/9160-19

3.0 Functional Description (Continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32C032 pro­
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

At the end of T2 on the falling edge of PHI2, the RDY line is
sampled by the CPU. If RDY is high, the next T -states will be
T3 and then T4, ending the bus cycle. If RDY is low, then
another T3 state will be inserted after the next T -state and
the RDY line will again be sampled on the falling edge of
PHI2. Each additional T3 state after the first is referred to as
a "WAIT STATE". See Figure 3-9.

T1 T2

PHil

PHI 2

RDY

The RDY pin is driven by the NS32C201 Timing Control
Unit, which applies WAIT States to the CPU as requested
on three sets of pin:

1) CWAIT (Continuous WAIT), which holds the CPU in WAIT
states until removed.

2) WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITn),
which may be given a four-bit binary value requesting a
specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and WR
strobes. This provides the setup and hold times required
by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal
and useful. For details of their use, see the NS32C201 Data
Sheet.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the TCU WAITn pins.

T3 I (w~m I T4

TL/EE/9160-21

FIGURE 3-9. ROY Pin Timing

3.4.2 Bus Status

The NS32C032 CPU presents four bits of Bus Status infor­
mation on pins STO-ST3. The various combinations on
these pins indicate why the CPU is performing a bus cycle,
or, if it is idle on the bus, then why is it idle.

Referring to Figures 3-7 and 3-8, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T 4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:

0000 - The bus is idle because the CPU does not need to
perform a bus access.

0001 - The bus is idle because the CPU is executing the
WAIT instruction.

0010 - (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To acknowl­
edge receipt of a Non-Maskable Interrupt (on
NMI) it will read from address FFFF0016, but will
ignore any data provided.

2-187

To acknowledge receipt of a Maskable Interrupt
(on INn it will read from address FFFE0016, ex­
pecting a vector number to be provided from the
Master NS32202 Interrupt Control Unit. If the vec­
toring mode selected by the last SETCFG instruc­
tion was Non-Vectored, then the CPU will ignore
the value it has read and will use a default vector
instead, having assumed that no NS32202 is
present. See Sec. 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a Cas­
caded NS32202 Interrupt Control Unit. The ad­
dress provided is the address of the NS32202
Hardware Vector register. See Sec. 3.4.5.

0110 - End of Interrupt, Master.

The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt (RETI)
instruction. See Sec. 3.4.5.

0111 - End of Interrupt, Cascaded.

The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning (through
RETI) from an interrupt service routine requested
by that unit. See Sec. 3.4.5.

1000 - Sequential Instruction Fetch.

The CPU is reading the next sequential word from
the instruction stream into the Instruction

z
U)
Co)
I\)

o c
Co)

~
c
Z
U)
Co)
I\)

o c
Co)
I\)
CI1

fII

~ ,--,
~

I
N
CO)

o
o
N
CO)

en
z -o
~

I
N
CO)

o o
N
CO)

en z

3.0 Functional Description (Continued)

NS32C032 CPU BUS SIGNALS
NEXT CYCLE

InoRTl1

PREY. CYCLE

IT40RTiI Tl

PHil [- IL LIL L-!Ln-n-n--
PHI2 [

-
AOO-A023 [~

024-031 [~

STD-ST3 [~
DoiN[~

BeO-BE3 [~

-

CWAIT [%:

~

WAiTn[~

ROY [

(TCUTOCPU)

-

-

-
rso[-

R

Jl Jl J U- J U1Ln Ul-
~--~ t-

~ ~ AOOR ~ 'W ~--- NEXT ADO VALID
t-

W0 ~ ~--y; ~ 'W OATAIN --- .~~ ""'--

IV M
~ STATUS VALlO X NEXT STATU S

~ ~ I~
t-

~ VALlO NEXT

V 1\
NS32C201 TCU CYCLE EXTENSION SIGNALS

~ ~ ~

tI//'~ Wd ~ ~ ~ ~ ~

~ WI I~ ~W IWh ~ ~ ~ ~
~

~ ~ ~ ~~ ~ ~ ~~ ~ ~
/

NS32C201 TCU BUS SIGNALS

V 1I

V
J
/ 1\ V

FIGURE 3·10. Extended Cycle Example
TL/EE/9160-22

Note: Arrows on CWAIT, PER, WAITn indicate points at which the TCU samples. Arrows on AOO-A015 and ROY indicate paints at which the CPU samples.

2-188

,--, z
3.0 Functional Description (Continued)

Queue. It will do so whenever the bus would oth­
erwise be idle and the queue is not already full.

1001 - Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruction
code after the Instruction Queue is purged. This
will occur as a result of any jump or branch, or any
interrupt or trap, or execution of certain instruc­
tions.

1010 - Data Transfer.

The CPU is reading or writing an operand of an
instruction.

1011 - Read RMW Operand.

The CPU is reading an operand which will subse­
quently be modified and rewritten. If memory pro­
tection circuitry would not allow the following
Write cycle, it must abort this cycle.

1100 - Read for Effective Address Calculation.

The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruction
uses the Memory Relative or External addreSSing
mode.

1101 - Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper­
and to or from a Slave Processor, or it is issuing
the Operation Word of a Slave Processor instruc­
tion. See Sec. 3.9.1.

1110 - Read Slave Processor Status.

The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Processor
has signalled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions it pre­
sents new values for the CPU Processor Status
Register bits N, Z, L or F. See Sec. 3.9.1.

1111 - Broadcast Slave I D.

The CPU is initiating the execution of a Slave
Processor instruction. The I D By1e (first by1e of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this pOint the
CPU is communicating with only one Slave Proc­
essor. See Sec. 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32C032 is a by1e
address; that is, it uniquely identifies one of up to
16,777,216 eight-bit memory locations. An important feature
of the NS32C032 is that the presence of a 32-bit data bus
imposes no restrictions on data alignment; any data item,
regardless of size, may be placed starting at any memory
address. The NS32C032 provides special control signals.
Byte Enable (BEO-BE3) which facilitate individual byte ac­
cessing on a 32-bit bus.

Memory is organized as four eight-bit banks, each bank re­
ceiving the double-word address (A2-A23) in parallel. One
bank, connected to Data Bus pins ADO-AD7 is enabled

2-189

when BEO is low. The second bank, connected to data bus
pins AD8-AD15 is enabled when BE1 is low. The third and
fourth banks are enabled by BE2 and BE3, respectively.
See Figure 3-11.

TL/EE/9160-23

FIGURE 3-11. Memory Interface

Since operands do not need to be aligned with respect to
the double-word bus access performed by the CPU, a given
double-word access can contain one, two, three, or four
bytes of the operand being addressed, and these by1es can
begin at various positions, as determined by A1, AO. Table
3-1 lists the 10 resulting access types.

TABLE 3-1

Bus Access Types
Type Bytes Accessed A 1 ,AO BE3 BE2 BE1 BEO

1 1 00 1 0
2 1 01 1 0
3 10 1 0
4 11 0 1 1
5 2 00 0 0
6 2 01 1 0 0
7 2 10 0 0 1 1
8 3 00 1 0 0 0
9 3 01 0 0 0

10 4 00 0 0 0 0

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment. Table 3-2 lists
the bus cycles performed for each situation.

en
Co)
N
(')
o
Co)
N • ...
o
z en
Co)
N
(')
o
Co)
N • ...
C11

•

U) ,---, .,...
I

N
C')
o o
N
C')
tf)
Z
o .,...

I
N
C')
o o
N
C')
tf)
Z

3.0 Functional Description (Continued)

Cycle Type Address

A. Word at address ending with 11

1.
2.

4 A
A+ 1

o

B. Double word at address ending with 01

1.
2.

9 A
A+3

o

C. Double word at address ending with 10

1. 7 A 0
2. 5 A + 2

D. Double word at address ending with 11

1.
2.

4
8

A
A+1

o

E. Quad word at address ending with 00

1. 10 A o

o

o
1

TABLE 3·2

Access Sequences

0

o
0

1

o 0

Data Bus

r~------------~A~----------~\

Byte 3 Byte 2 Byte 1 Byte 0

1 BYTE 1 1 BYTE 01 +- A

Byte 0 X X X
X X X Byte 1

1 BYTE 31 BYTE 21 BYTE 11 BYTE 01 +- A

Byte 2 Byte 1 By1eO X
X X X By1e3

IBYTE31 BYTE 21 BYTE 11 BYTE 01 +- A

Byte 1 Byte 0 X X
X X Byte 3 By1e2

1 BYTE 31 BYTE 21BYTE 11 BYTE 01 +- A

Byte 0 X X X
o 0 0 X Byte 3 Byte 2 Byte 1

1 BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 01 +- A

o o o Byte 3 Byte 2 Byte 1 Byte 0

Other bus cycles (instruction prefetch or slave) can occur here.

2. 10 A + 4 0 0 0 0 By1e 7 By1e 6 Byte 5 Byte 4

F. Quad word at address ending with 01 1 BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 01 +- A

1. 9 A 0 0 0 Byte 2 Byte 1 Byte 0 X
2. A+3 0 X X X Byte 3

Other bus cycles (instruction prefetch or slave) can occur here.

3. 9 A+4 0
4. A+7

G. Quad word at address ending with 10

1.
2.

7
5

A
A+2

o

0 0 Byte 6 Byte 5 Byte 4 X
0 X X X Byte 7

1 BYTE 71 BYTE 61 BYTE 51 BYTE 41 BYTE 31BYTE 21 BYTE 1 I BYTE 01 +- A

o
o o

Byte 1

X
Byte 0

X
X

Byte 3

X
Byte 2

Other bus cycles (instruction prefetch or slave) can occur here.

3.
4.

7
5

A+4

A+6

o

H. Quad word at address ending with 11

1. 4 A 0

2. B A+1

o 1 Byte 5 Byte 4 X X

1 0 0 X X Byte 7 Byte 6

1 BYTE 71BYTE 61 BYTE 51 BYTE 41 BYTE 31 BYTE 21BYTE 1 I BYTE 01 +- A

By1eO X X X
0 0 0 X Byte 3 Byte 2 By1e1

Other bus cycles (instruction prefetch or slave) can occur here.

1. 4 A+4 0 1 1 Byte 4 X X X
2. B A+5 0 0 0 X Byte 7 By1e6 Byte 5

X = Don't Care

2-190

3.0 Functional Description (Continued)

3.4.3.1 Bit Accesses

The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou­
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply Instruction (MEl) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory, the most-significant half of the
result is written first (at the higher address), then the least­
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS32C032 CPU are "prefetched"; that
is, they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs
two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec.
3.4.2).

2-191

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
type 10 Read cycles (Table 3-1).

A Non·Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non·Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle depends on the destination address.
Note: During non·sequential fetches, BEO-BE3 are all active regardless of

the alignment.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data
transfers only in the status pesented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine. For full details of the NS32C032 interrupt
structure, see Sec. 3.S.

z
(J)
Co)

~ o
Co)
N •
o
Z
(J)
Co)
N o o
Co)
N
C11

II) .,... .
N
M
C

~
M
(f)
Z
Ci .,...
~
M
C
o
N
M
(f)
Z

3.0 Functional Description (Continued)

Cycle Status Address

Interrupt Acknowledge
1 0100 FFFF0016

Interrupt Return

TABLE 3-3
Interrupt Sequences

r
ODIN BE3 BE2 BE1 BEO Byte 3

A. Non-Maskable Interrupt Control Sequences

o o X

None: Performed through Return from Trap (RETI) instruction.
B. Non- Vectored Interrupt Control Sequences

Interrupt Acknowledge
1 0100 FFFE0016 0 0 X

Interrupt Return
1 0110 FFFE0016 0 0 X

C. Vectored Interrupt Sequences: Non-Cascaded.

Interrupt Acknowledge
1 0100 FFFE0016 0 0 X

Interrupt Return
1 0110 FFFE0016 0 0 X

D. Vectored Interrupt Sequences: Cascaded

Interrupt Acknowledge
1 0100 FFFE0016 o o X

(The CPU here uses the Cascade Index to find the Cascade Address.)

Data Bus

\

Byte 2 Byte 1 Byte 0

x X X

X X X

X X X

X X Vector:
Range: 0-127

X X Vector: Same as
in Previous Int.
Ack.Cycle

X X Cascade Index:
range -16to-1

2 0101 Cascade 0 See Note
Address

Vector, range 9 - 255; on appropriate byte of
data bus.

Interrupt Return
1 0110 FFFE0016 o

(The CPU here uses the Cascade Index to find the Cascade Address)
2 0111 Cascade 0 See Note

Address

X = Don't Care

o X X

X X

X

X

Cascade Index:
Sameasin
previous Int.
Ack.Cycle

X

Note: BEO·BE3 signals will be activated according to the cascaded leu address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector
value can be in the range 0-255.

2-192

,--, Z

3.0 Functional Description (Continued)

3.4.6 Slave Processor Communication

In addition to its use as the Address Translation strap (Sec.
3.5.1), the AT/SPC pin is used as the data strobe for Slave
Processor transfers. In this role, it is referred to as Slave
Processor Control (SPC). In a Slave Processor bus cycle,
data is transferred on the Data Bus (ADO-AD15), and the
status lines (STO-ST3) are monitored by each Slave Proc­
essor in order to determine the type of transfer being per­
formed. SPC is bidirectional, but is driven by the CPU during
all Slave Processor bus cycles. See Sec. 3.9 for full protocol
sequences.

Note:

(I) CPU samples Data Bus here.

PREY. CYCLE

PHil [

PHIZ [

m[

ITO-In [

_(3)[
DBE

I T40rTI Tl

A " AD(0·15) D«(J.15)

AT/SPC " v
SPC

NS32CD32 SLAVE
cpu PROCESSOR

STO-ST3 STO-ST3

TL/EE/9160-24

FIGURE 3-12. Slave Processor Connections

T4

NEXT CYCLE

TIORTI I

TLlEE/9160-25

(2) DBE and all other NS32C201 TCU bus signals remain inactive because no ADS pulse is received from the CPU.

FIGURE 3-13. CPU Read from Slave Processor

2-193

~
I\)

o o
Co)
I\)
o
Z
(/)
Co)
I\)

o
o
Co)
I\)

•
U1

•

In
c:..
C')

8
C'I
C')
C/)
z o
c:..
C')
o
o
C'I
C')
C/)
z

3.0 Functional Description (Continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-13 and 3-14). Dur­
ing a Read cycle SPC is active from the beginning of T1 to
the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1 ,
removing SPC at T4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS32C201 Timing Con­
trol Unit. The direction of a transfer is determined by the
sequence ("protocol") established by the instruction under
execution; but the CPU indicates the direction on the DDIN
pin for hardware debugging purposes.

PREV.CYCLE

I T40RTi

PHil [

TI

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD7), and a
Word operand is transferred on bits ADO-AD15. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif­
icant word to most-significant.

Note that the NS32C032 uses only the two least significant
bytes of the data bus for slave cycles. This is to maintain
compatibility with existing slave processors.

T4

NEXTCVCLE

TIORTi I

ADO-ADI5 [4~~.:.L'f' '---t----r '----t-

Note:

STO-ST3 [

ADs [

_(2)[
DBE

(1) Slave Processor samples Data Bus here.

TL/EE/9160-26

(2) DBE, being provided by the NS32C201 TCU, remains inactive due to the fact that no pulse is presented on ADS. TCU Signals RD, WR and TSO also remain
inactive.

FIGURE 3-14. CPU Write to Slave Processor

2-194

3.0 Functional Description (Continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32C032 CPU. in conjunction with the NS32082
Memory Management Unit (MMU), provides full support for
address translation, memory protection, and memory alloca­
tion techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32C032 CPU
has two bus timing modes: With or Without Address Trans­
lation. The mode of operation is selected by the CPU by
sampling the AT/SPC (Address Translation/Slave Proces­
sor Control) pin on the rising edge of the RST (Reset) pulse.

If AT /SPC is sampled as high, the bus timing is as previous­
ly described in Sec. 3.4. If it is sampled as low, two changes
occur:

1) An extra clock cycle, Tmmu, is inserted into all bus cycles
except Slave Processor transfers.

2) The OS/FL T pin changes in function from a Data Strobe
output (OS) to a Float Command input (FL T).

The NS32082 MMU will itself pull the CPU AT/SPC pin low
when it is reset. In non-Memory-Managed systems this pin
should be pulled up to Vee through a 10 k!1 resistor.

Note that the Address Translation strap does not specifical-

I T40RTI I T1 I Tmmu I 12 TJ T4

PHI! [

PHI2 [

ADO-AD23 ["'I-"-L~"-L"f4 '--_...-.J.J

ADs [

STD-STJ [

DDIN [~~~~~£L ____ +-____ -+ ____ ~+-____ ~ ______ ~~ ____ +-

BEo-iiEi [£4<'-.£..o~ 4------+------1------4+------+---..J '-+-__ 4_

TLlEE/9160-27

FIGURE 3-15. Read Cycle with Address Translation (CPU Action)

2-195

z
en w
N o
o
W
N

I
o
z
en w
N o
o
W
N

I
c..n

Il') .,... .
C"II
C')
C o
C"II
C')
(/)
z
c .,...
N
C')
c o
C"II
C')
(/)
Z

3.0 Functional Description (Continued)

Iy declare the presence of an NS32082 MMU, but only the
presence of external address translation circuitry. MMU in­
structions will still trap as being undefined unless the
SETCFG (Set Configuration) instruction is executed to de­
clare the MMU instruction set valid. See Sec. 2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation mode.
The additional T-State, Tmmu, is inserted between T1 and
T2. During this time the CPU places ADO-AD23 into the
TRI-STATE® mode, allowing the MMU to assert the trans­
lated address and issue the physical address strobe PAV.
T2 through T 4 of the cycle are identical to their counterparts

without Address Translation. Note that in order for the
NS32082 MMU to operate correctly it must be set to the
32032 mode by forcing A24/HBF low during reset. In this
mode the bus lines AD16-AD23 are floated after the MMU
address has been latched, since they are used by the CPU
to transfer data .

Figures 3-17 and 3-18 show a Read cycle and a Write cycle
as generated by the 32C032/32082/32C20t group. Note
that with the CPU ADS signal going only to the MMU, and
with the MMU PAV signal substituting for ADS everywhere
else, Tmmu through T4 look exactly like T1 through T4 in a
non-Memory-Managed system. For the connection diagram,
see Appendix B.

I T40RTI I Tl Tmmu I T2 T3 T4

PHil [

PHI2

ADO-AD23 [

D24-D31 [

ADS [

STD·5T3 [STATUS VALID

DDIN [

BEO-BE3 [

ROY [
TL/EE/9160-28

FIGURE 3-16. Write Cycle with Address Translation (CPU Action)

2-196

3.0 Functional Description (Continued)

I T40RTi I Tl I Tmmu I T2 I T3 I T4 I nORTI I
PHil [~ !LfL IL !LfL !L

r-

-Sl JlSlJ1 L-flJl Jlr-
VIRTUA PHYSICAL

~ ~~ ~ ADDRESS ADDRESS_~ ~ DATA/IN) -- -~EXTADDR VALID VAUD ---

1

PHI2 [

ADG-AD23 [

D24-D31 [~ ~ @ ~ ~ ~ ~ DATAIIN J ~ ~ ~

.iDs [IV

U
? ,~ STO·ST3 [~ STATU VALID X NEX STATUS

% ~ ~ ~ / NEXT

BEO-BE3 [~ ~ ~~ VALID X NEXT

RDY [~ ~ ~ ~ WI ~ W%0 ~ ~
NS32C201 leU BUS SIGNALS

.- j

- j

.-LI
II I

-
TSO [

FIGURE 3-17. Memory-Managed Read Cycle

2-197

TLlEE/9160-29

z
en
Co)
N
n
o
Co)
N

I ...
o
z
en
Co)
N
n
o
Co)
N

I ...
c.n

fII

LI) .,...
• 3.0 Functional Description (Continued) C'I

Cf)
CI
0 I T40RTi I T1 I Tmmu I 12 T3 T4 I Tl0RTi I C'I
Cf)
tn

PHil [Z
CI .,... .
C'I

PHI 2 [
Cf)
CI
0
C'I
Cf)

tn
Z ADO-ADZ! [

024-031 [

Aiii[

PAV[

STOoST3 [STATUS VALID NEXT STATUS

iii5iN[

Ho-1Ei [VALID

RDY [

NS32C201 TCU BUS SIGNALS

Wii[

iiBE[

Tl/EE/9160-30

FIGURE 3-18. Memory-Managed WrIte Cycle

2·198

,--, z
3.0 Functional Description (Continued)

3.5.3 The FL T (Float) Pin

The FL T pin is used by the CPU for address translation
support. Activating FL T during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida·
tion. This feature is used occasionally by the NS320B2 MMU
in order to update its translation look·aside buffer (TLB)
from page tables in memory. or to update certain status bits
within them.

Figure 3-19 shows the effect of FL T. Upon sampling FL T
low. late in Tmmu. the CPU enters idle T-States (Tt) during
which it:

T1 Tf

PHil [

PHI2 [

AOO-A023 [

024-031 [-t----t'

ADS [

PAY [

FLT [

STO·ST3 [

ODIN [

BEO-BE3 [VALID

1) Sets AOO-A023. 024-031 and ODIN to the TRI-STATE
condition ("floating").

2) Suspends further internal processing of the current in­
struction. This ensures that the current instruction reo
mains abortable with retry. (See RST / ABT description.
Sec. 3.5.4.)

Note that the AOO-A023 pins may be briefly asserted duro
ing the first idle T-State. The above conditions remain in
effect until FL T again goes high. See the Timing Specifica·
tions. Sec. 4.

Tf Tf T2

TLlEE/9160-31

FIGURE 3-19. FLTTiming

2·199

~
N o o
Co)

~ ...
o
z en
Co)
N o o
Co)
N
U1

•

~ ~--. ..-
~
8
C\I

~
Z o ..-
N
CO)
o
U
C\I
CO)
en
z

3.0 Functional Description (Continued)

3.5.4 Aborting Bus Cycles

The RST I ABT pin, apart from its Reset function (Sec. 3.3),
also serves as the means to "abort", or cancel, a bus cycle
and the instruction, if any, which initiated it. An Abort re­
quest is distinguished from a Reset in that the RST I ABT pin
is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter T2
and then Ti, thereby terminating the cycle. Since it is the
MMU PAY signal which triggers a physical cycle, the rest of
the system remains unaware that a cycle was started.

The NS32082 MMU will abort a bus cycle for either of two
reasons:

1) The CPU is attempting to access a virtual address which
is not currently resident in physical memory. The refer­
enced page must be brought into physical memory from
mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is not
allowed by the protection level assigned to that page.

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later. The information that is
changed irrecoverably by such a partly-executed instruction
does not affect its re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs
an interrupt through the ABT vector in the Interrupt Table
(see Sec. 3.8). The Return Address pushed on the Interrupt
Stack is the address of the aborted instruction, so that a
Return from Trap (RETT) instruction will automatically retry
it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will
actually be executed, the ABT interrupt will occur, in effect
aborting the instruction that was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be
fOllowed in applying an Abort to the CPU. These rules are
followed by the NS32082 Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort pulse
must occur during or before Tmmu. See the Timing Spec­
ifications, Figure 4-22.

2-200

2) If FL T has been applied to the CPU, the Abort pulse must
be applied before the T -State in which FL T goes inactive.
The CPU will not actually respond to the Abort command
until FL T is removed. See Figure 4-23.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management functions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU pres­
ents RMW status, that cycle must be aborted if it would
be illegal to write to any of the accessed addresses.

If RST I ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high-pri­
ority interrupt. However, the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32C032 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. By as­
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the
ADO-AD23, D24-D31, ADS, DDIN and BEO-BE3 pins to
the TRI-STATE condition. To return control of the bus to the
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting H LDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOLD request is made,
as the CPU must always complete the current bus cycle.
Figure 3-20 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-21 shows the sequence
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. If
the request occurs closer to T 4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T 4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA signal is connect­
ed in a daisy-chain through the NS32082, so that the MMU
can release the bus if it is using it.

3.0 Functional Description (Continued)

I T, I T, I T, I··· I
PHll[iLtuV

T, Ti

PHI2 [

HOLD [

HL5A[

I
AFFECTED SIGNALS

------- IT------ ------- -------

os[----- -H·----- ----- ------

ODIN [---- ~r----------

BEO-Be3 [-+----+---41

STO·ST3 [PREVIOUS

FIGURE 3-20. HOLD Timing, Bus Initially Idle

2-201

T, Ti OR T4 I T,ORTI I

NEXT ADDR

TL/EE/9160-32

z
CJ)
Co)
N o
o
Co)
N

I
o
Z
CJ)
Co)
N o o
Co)
N

I
U1

U) r---,
c.:.
('I)
o
(.)
N
('I)
U)
Z
o

3.0 Functional Description (Continued)

.... .
N
('I)

~ PHI 2 [

('I)
U)
Z

HOLD[

HLDA[

ADS[

os[

ODIN [

BEO-BE3[

ADO-AD23 [

024-031 [

STO-ST3[

I T20RT3 I T3 T4 Ti TI TI

AFFECTED SIGNALS

VALID

VALID

-- 1r-- ----

FIGURE 3·21. HOLD Timing, Bus Initially Not Idle

2·202

Ti

NEXT

NEXTADDR

TL/EE/9160-33

3.0 Functional Description (Continued)

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32C032 CPU also presents Instruction Status infor­
mation on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus interface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes, and
is used that way by the NS32082 Memory Management
Unit.

U/S originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for
mapping, protection, and debugging purposes. Although it is
not synchronous to bus cycles, there are guarantees on its
validity during any given bus cycle. See the Timing Specifi­
cations, Figure 4-21.

ILO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. As with the U/S pin, there are
guarantees on its validity during the operand accesses per­
formed by the instructions. See the Timing SpeCification
Section, Figure 4-19.

3.8 NS32C032 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable interrupts may be request­
ed, and

RST / ABT, which may be used to abort a bus cycle and
any associated instruction. See Sec. 3.5.4.

,~

MEMORY ~
I"r-o'

/ CASCADE ADDR 0

· CASCADE TABLE ;~ · * ·
I '''~~m''~

CASCADE ADDR 14

CASCADE ADDR 15

REGISTER I FIXED INTERRUPTS

AND TRAPS

In addition there is a set of internally-generated "traps"
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.8.1 GenerallnterruptlTrap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through three major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program
Counter (PC), the Processor Status Register (PSR) and
the currently-selected Stack Pointer (SP). A copy of the
PSR is made, and the PSR is then set to reflect Supervi­
sor Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup­
plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dispatch
Table, whose base address is taken from the CPU Inter­
rupt Base (lNTBASE) Register. See Figure 3-22. A 32-bit
External Procedure Descriptor is read from the table en­
try, and an External Procedure Call is performed using it.
The MOD Register (16 bits) and Program Counter (32
bits) are pushed on the Interrupt Stack.

31 o~

0 NVI N ON·VECTORED INTERRUPT

1 NMI NON·MASKABLE INTERRUPT

2 ABT A BORT

3 SLAVE SLAVE PROCESSOR TRAP

4 ILL I LLEGAL OPERATION TRAP

5 SVC S UPERVISOR CALL TRAP

t VECTORED I DISPATCH TABLE
6 DVZ DIVIDE BY ZERO TRAP

INTERRUPTS X 7 FLG F LAG TRAP

8 BPT BREAKPOINTTRAP

9 TRC T RACE TRAP

10 UNO U NDEFINED INSTRUCTION TRAP

11·15 ~ ;::: RESERVED ;"
16 VECTORED

INTERRUPTS

,.'" A.

TLlEE/9160-34

FIGURE 3-22. Interrupt Dispatch and Cascade Tables

2-203

z

~
o
8
N •
~
~
W
N
o
~ •
en

II

U) r---,

I
~ z
C;
N
CO)
C)

~ en z

3.0 Functional Description (Continued)

This process is illustrated in Figure 3-23, from the viewpoint of the programmer.

l RETURN ADDRESS

I STATUS I MODULE

PSR MOD

INTBASE REGISTER

OESCRIPTOR

I (PUSH)

I

I
I (PUSH)

INTERRUPT
STACK

r-------------...,
I I
I CASCADE TABLE I
I I
I I

DISPATCH
TABLE

DESCRIPTOR (32 Brrs)

Ii""" 0-----16---0 "1""1 ._--16---0 11

OFFSET MODULE

0

MOD REGISTER -:::r-J MODULE TABLE

I NEW MOOULE

I MODULE TABLE ENTRY

J

MODULE TABLE ENTRY
32

STATIC BASE POINTER -r-----,

UNK BASE POINTER

+ PROGRAM BASE POINTER

(RESERVED)

j32BITS

32 BITS

PROGRAM COUNTER SBREGISTER

ENTRY POINT ADDRESS +- NEW STATIC BASE

FIGURE 3-23. Interrupt/Trap Service Routine Calling Sequence

2-204

TL/EE/9160-35

I
TL/EE/9160-36

3.0 Functional Description (Continued)

3.8.2 Interrupt/Trap Return

To return control to an interrupted program, one of two in­
structions is used. The RETI (Return from Trap) instruction
(Figure 3-24) restores the PSR, MOD, PC and S8 registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETI is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests.

PROGRAM COUNTER

The input is maskable, and is therefore enabled to generate
interrupt requests only while the Processor Status Register I
bit is set. The I bit is automatically cleared during service of
an INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit I = C) or Vec­
tored (bit I = 1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

I (POP) j
RETURN ADDRESS -.o1l----------~1-------------l 32 BITS

I (POP)
STATUS MODULE 32 BITS

PSR MOD

MODULET~BLEENTRY
STATIC BASE POINTER - h

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SBREGISTER

STATIC BASE +'

POP AND

DISCARD

n
BYTES

INTERRUPT

STACK

MODULE

TABLE

MODULE TABLE ENTRY

PARAMETERS

STACK SELECTED

IN NEWLY­
POPPEDPSR.

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow

2-205

Tl/EE/9160-37

z
en
CAl
N o o
CAl
~
o z en
CAl
N o o
CAl
~
U1

U) r---, ...
~
C\I
C')

en z
c;; ...
N

8
C\I
C')
U)
z

3.0 Functional Description (Continued)

"END OF INTERRUPT"

BUS CYCLE

PROGRAM COUNTER
(POP)

RETURN ADDRESS

INTERRUPT
CONmOL

UNIT

(POP)
STATUS J MODULE -1r---------+_

PSR MOO

MODULE TAJLE ENTRY

STATIC BASE POINTER - ---...,

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATlCBASE

SBREGISTER
-+-'

o

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENmy

J

FIGURE 3·25. Return from Interrupt (RETI) Instruction Flow

2·206

TL/EE/9160-39

3.0 Functional Description (Continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle (Sec.
3.4.2) reading a vector value from the low·order byte of the
Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re·prioritize any in­
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-21,
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (lNT­
BASE) Register. Its entries are 32-bit addresses, pOinting
to the Vector Registers of each of up to 16 Cascaded
ICUs.

NS32C1l32
CPU

GROUP

INf 1------1

Figure 3-22 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32·bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle
(Sec. 3.4.2), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle (Sec. 3.4.2), where­
upon the Master ICU again provides the negative Cascade
Table index. The CPU, seeing a negative value, uses it to
find the corresponding Cascade Address from the Cascade
Table. Applying this address, it performs an "End of Inter­
rupt, Cascaded" bus cycle (Sec. 3.4.2), informing the Cas·
caded ICU of the completion of the service routine. The byte
read from the Cascaded ICU is discarded.
Note: If an interrupt must be masked off, the CPU can do so by selting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con·
troller.

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac·
knowledge cycle following that instruction Since it might have sampled
the INT line before the leu deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

HARDWARE
INTERRUPTS

OR
CASCADED

CONTROLLERS

INTERRUPTS,
CASCADED,

OR
BrrllO

TUEE19160-40

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels)

2·207

z en
Co)
N o o
Co)

~ ...
o
Z en
Co)
N o o
Co)

~ ...
en

~ .---~
N
CO)
o
o
C'I
CO)

rn
z
~
N
CO)

~
rn z

3.0 Functional Description (Continued)

NS32C032
CPU

GROUP

CONTROL

ADDR

STATUS 1

DATA

CONTROL

CASCADED
ADDR 5 BITS NS32202

STATUS

FROM
ADDRESS
DECODER

ICU

MASTER
N&32202

ICU

HARDWARE
INTERRUPTS

INTERRUPTS
OR

BIT 1/0

TLlEE/9160-41

FIGURE 3-27. Cascaded Interrupt Control Unit Connections

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Sec. 3.4.2)
when processing of this interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is FFFF0016.
The vector value used for the Non-Maskable Interrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Sec. 3.8.7.1.

2·208

3.B.5Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap
(TRC) is the address of the first byte of the instruction during
which the trap occurred. Traps do not disable interrupts, as
they are not associated with external events. Traps recog­
nized by the NS32C032 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Sec. 3.9.1).

3.0 Functional Description (Continued)

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The FPU trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UNO): An undefined opcode was encountered by the
CPU.

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending") bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper traCing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.8.6 Prioritization

The NS32016 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows:

1) Traps other than Trace (Highest.priority)

2) Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7InterruptlTrap Sequences: Detailed Flow

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called
"Service" is defined in Figure 3-28. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskable interrupts (on the INT or NMI pins, respec­
tively), see Sec. 3.B. 7.1 For Abort Interrupts, see Sec.
3.B.7.4. For the Trace Trap, see Sec. 3.8.7.3, and for all
other traps see Sec. 3.B. 7 .2.

3.8.7.1 Maskable/Non·Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu­
tion.

2-209

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying Status
Code 0100 (Interrupt Acknowledge, Master, Sec.
3.4.2). Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step B.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0016, applying Status
Code 0100 (Interrupt Acknowledge, Master: Sec.
3.4.2). Discard the byte read.

b. Set "Vector" to O.

c. Go to Step B.

5. Here the interrupt is Vectored. Read "Byte" from address
FFFE0016, applying Status Code 0100 (Interrupt Ac­
knowledge, Master: Sec. 3.4.2).

6. If "Byte" :2: 0, then set "Vector" to "Byte" and go to Step
B.

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE +4' Byte.

b. Read "Vector," applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded: Sec. 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack
as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-28.

Service (Vector, Return Address):

1) Read the 32-blt Externat Procedure Descriptor from the tnterrupt
Dispatch Table: address Is Vector' 4 + INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD Register.

3) Read the new Static Base pOinter from the memory address con­
tained in MOD, placing it Into the SB Register.

4) Read the Program Base pOinter from memory address MOD + 8,
and add to it the Offset field from the Descriptor, placing the result
In the Program Counter.

5) Flush queue: Non-sequentially fetch first Instruction of Interrupt
routine.

6) Push MOD Register Into the Interrupt Stack as a 16-blt value. (The
PSR has already been pushed as a 16-blt value.)

7) Push the Return Address onto the Interrupt Stack as a 32-blt quanti­
ty.

FIGURE 3·28. Service Sequence

Invoked during all interrupt/trap sequences.

z en
~ g
~ •
CI z en
Co)
I\)

o
CI
Co)

~
en

PI

3.0 Functional Description (Continued)

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector = 3.

ILL: Vector = 4.

SVC: Vector = 5.

DVZ: Vector = 6.

FLG: Vector = 7.

BPT: Vector = 8.

UNO: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Retum Address" to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set "Vector" to 9~

5) Set "Return Address" to the address of the next instruc-
tion.

6) Perform Service (Vector, Return Address), Agure 3-28.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its original
contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear PSR
bits S, U, T and I.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Vector" to 2.

6) Set "Return Address" to the address of the first byte of
the aborted Instruction.

7) Perform Service (Vector, Return Address), Figure 3-28.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32C032 CPU recognizes three groups of instructions
being executable by external Slave Processor:

Floating Point Instruction Set

Memory ManagemEmt Instruction Set
Custom Instruction Set

2-210

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Sec. 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 Byte followed by an Oper­
ation Word. The 10 Byte has three functions:

1) It identifies the instruction as being a Slave Proc­
essor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Opera-
tion Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-29. While applying
Status Code 1111 (Broadcast 10, Sec. 3.4.2), the CPU
transfers the 10 Byte on the least-significant byte of the
Data Bus (ADO-AD7). All Slave Processors input this byte
and decode it. The Slave Processor selected by the 10 Byte
is activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The operation Word is swapped on the Data Bus, that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD7.

Using the Address Mode fields within the Operation Word,
the CPU starts fetching operand and issuing them to the
Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible

Step

1

2

3

4

6

7

Status

10

OP

OP

ST

OP

Slatus Combinations:

Send 10 (10): Code 1111

Xler Operand (OP): Code 1101

Read Status (ST): Code 1110

Action

CPU Send 10 Byte.

CPU Sends Operaten Word.

CPY Sends Required Operands

Slave Starts Execution. CPU Pre·fetches.

Slave Pulses SPe Low.

CPU Reads Status Word. (Trap? Alter Flags?)

CPU Reads Results (If Any).

FIGURE 3-29. Slave Processor Protocol

3.0 Functional Description (Continued)

for memory accesses, these extensions are not sent to the
Slave processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Sec. 3.4.2).

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, and for the Address Translation strap func­
tion, AT ISPC is normally held high only by an internal pull­
up device of approximately 5 kfl..

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Sec.
3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
("Quit", Bit 0) is set, this indicates that an error was detect­
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the Slave vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any. and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand. Sec.
3.4.2).

An exception to the protocol above is the LMR (Load Mem­
ory Management Register) instruction, and a corresponding
Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions. the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction. see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "0" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word. 0 = Double Word). "f" indicates that the instruction
specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-30).

TABLE 3-4

Floating Point Instruction Protocols.

Mnemonic
Operand 1 Operand 2

Class Class

ADDf read.! rmw.!
SUB! read.! rmw.f
MUU read.f rmw.f
DIV! read.f rmw.f

MOVf read.! write.!
ABS! read.f write.!
NEGf read.! write.!

CMP! read.! read.!

FLOOR!i read.! write.i
TRUNC!i read.f write.i
ROUND!i read.f write.i

MOVFL read.F write.L
MOVLF read.L write.F

MOVif read.i write.!

LFSR read.D N/A
SFSR N/A write.D

Note:

o = Double Word

I = Integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mnemonic.

Nt A = Not Applicable to this instruction.

Operand 1 Operand 2
Issued Issued

!

N/A
N/A
N/A

N/A
N/A
N/A

F N/A
L N/A

N/A

0 N/A
N/A N/A

2-211

Returned Value PSR Bits
Type and Dest. Affected

Ito Op. 2 none
ftoOp.2 none
ftoOp.2 none
!toOp.2 none

ftoOp.2 none
ftoOp.2 none
ftoOp.2 none

N/A N,Z,L

itoOp.2 none
itoOp.2 none
itoOp.2 none

LtoOp.2 none
FtoOp.2 none

Ito Op. 2 none

N/A none
Dto Op. 2 none

z en
Co)
I\)

o o
Co)
I\)
o
z en
Co)
I\)

o o
Co)
I\)
•

c.n

~ r---,
N
CO)

i z
CI
N
~
~

~

3.0 Functional Description (Continued)

15 87

l 00000000 IN Z F 0 0 L 0 01
New PSR BII V.lue«.)~ -- I
"Oull": Termlnlle Protocol. Trap(FPU). /

TL/EE/9160-42

FIGURE 3·30. Slave Processor Status Word Format

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in­
structions. Encodings for these instructions may be found in
Appendix A.
In executing the RDVAL and WRVAL instructions, the CPU
calculates and issues the 32-bit Effective Address of the
single operand. The CPU then performs a single-byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage­
ment Instruction set, see the Instruction Set Reference
Manual and the NS32082 MMU Data Sheet.

TABLE 3·5

Memory Management Instruction Protocols.
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class Issued Issued Type and Dest. Affected

RDVAL' addr N/A 0 N/A N/A F
WRVAL' addr N/A 0 N/A N/A F

LMR' read.D N/A 0 N/A N/A none
SMR' write.D N/A N/A N/A DtoOp.1 none

Note:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and perfonns a single.byte Read cycle from that memory address. For
details, see the Instruction Set Reference Manual and the NS32082 Memory Management Unit Data Sheel

o - Double Word

• - Privileged Instruction: will trap if CPU is in User Mode.

NI A - Not Applicable to this instruction.

2-212

3.0 Functional Description (Continued)

3.9.4 Custom Slave Instructions

Provided in the NS32C032 is the capability of communicat­
ing with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats. the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-5 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an
operand which can be a 32-bit ("0") or 54-bit ("Q") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.

Any operand indicated as being of type "c" will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

TABLE 3-6

Custom Slave Instruction Protocols.
Operand 1 Operand 2

Mnemonic Class Class

CCALOc read.c rmw.c
CCAL1c read.c rmw.c
CCAL2c read.c rmw.c
CCAL3c read.c rmw.c

CMOVOc read.c write.c
CMOV1c read.c write.c
CMOV2c read.c write.c
CMOV3c read.c write.c

CCMPOc read.c read.c
CCMP1c read.c read.c

CCVOci read.c write.i
CCV1ci read.c write.i
CCV2ci read.c write.i
CCV3ic read.i write.c

CCV40Q read. 0 write.Q
CCV5QO read.Q write.O

LCSR read.O N/A
SCSR N/A write.D

CATSTO* addr N/A
CATST1* addr N/A
LCR* read.O N/A
SCR* write.O N/A

Note:

o ~ Double Word

i = Integer size (B,W,D) specified in mnemonic.

c ~ Custom siza (0:32 bits or Q:64 bits) spacified in mnamonic.

• = Privileged instruction: will trap if CPU is in User Mode.

NI A ~ Not Applicable to this instruction.

Operand 1 Operand 2 Returned Value PSRBlts
Issued Issued Type and Dest. Affected

c c ctoOp.2 none
c c ctoOp.2 none
c c cto Op. 2 none
c c ctoOp.2 none

c N/A cto Op. 2 none
c N/A ctoOp.2 none
c N/A ctoOp.2 none
c N/A ctoOp.2 none

c c N/A N,Z,L
c c N/A N,Z,L

c N/A itoOp.2 none
c N/A ito Op. 2 none
c N/A itoOp.2 none

N/A ctoOp.2 none

0 N/A QtoOp.2 none
Q N/A OtoOp.2 none

0 N/A N/A none
N/A N/A OtoOP.2 none

0 N/A N/A F
0 N/A N/A F

0 N/A N/A none
N/A N/A OtoOp.1 none

2-213

z en
Co)
N
o
C
Co)
N •
c
z en
Co)
N
o
C
Co)

~
U'I

fII

U) r---,
N
C')
o

~ en z
o
N
C')
o
~
C')
U)
Z

4.0 Device Specifications
4.1 NS32C032 PIN DESCRIPTIONS

The following is a brief description of all NS32C032 pins.
The descriptions reference portions of the Functional De­
sCription. Sec. 3 .

Unless otherwise indicated reserved pins should be left
open.

4.1.1 Supplies

Logic Power (VCCL1, 2): +5V positive supply.

Buffers Power (VCCB1, 2): + 5V positive supply.

Logic Ground (GNDL 1, GNDL2): Ground reference for on­
chip logic.

Buffer Grounds (GNDB1, GNOB2, GNOB3): Ground refer­
ences for on-chip drivers.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec. 3.2.

Ready (ROY): Active high. While ROY is inactive, the CPU
extends the current bus cycle to provide for a slower memo­
ry or peripheral reference. Upon detecting ROY active, the
CPU terminates the bus cycle. Sec. 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. Sec.
3.6.
Nole 1: FiQi]j must not be asserted until HLDA from a previous

FfOi])IHLDA sequence is deasserted.

Nole 2: If the FfOi]) signal is generated asynchronously, it's set up and hold
times may be violated.

In this case it is recommended to synchronize it with CTTL to mini­
mize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
R05A latency. This is to avoid speed degradations in cases of
heavy FfOi]) activity (i.e., DMA controller cycles interleaved with
CPU cycles.)

Interrupt (I NT): Active low. Maskable Interrupt request.
Sec. 3.8.

Non-Maskable Interrupt (NMI): Active low. Non-Maskable
Interrupt request. Sec. 3.8.

Reset/Abort (RST/ABT): Active low. If held active for one
clock cycle and released, this pin causes an Abort Com­
mand, Sec. 3.5.4. If held longer, it initiates a Reset. Sec. 3.3.

4.1.3 Output Signals

Address Strobe (ADS): Active low. Controls address latch­
es: indicates start of a bus cycle. Sec. 3.4.

Data Direction In (ODIN): Active low. Status signal indicat­
ing direction of data transfer during a bus cycle. Sec. 3.4.

2-214

Byte Enable (BEO-BE3): Active low. Four control signals
enabling data transfers on individual bus bytes. Sec. 3.4.3.

Status (STO-ST3): Bus cycle status code, STO least signifi­
cant. Sec. 3.4.2. Encodings are:

0000 - Idle: CPU Inactive on Bus.
0001 - Idle: WAIT Instruction.
0010 - (Reserved).
0011 - Idle: Waiting for Slave.
0100 -Interrupt Acknowledge, Master.
0101 -Interrupt Acknowledge, Cascaded.
0110 - End of Interrupt, Master.
0111 - End of Interrupt, Cascaded.
1000 - Sequential Instruction Fetch.
1001 - Non-Sequential Instruction Fetch.
1010 - Data Transfer.
1011 - Read Read-Modify-Write Operand.
1100 - Read for Effective Address.
1101 - Transfer Slave Operand.
1110 - Read Slave Status Word.
1111 - Broadcast Slave 10.

Hold Acknowledge (HLOA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus has
been released for DMA or multiprocessing purposes. Sec.
3.6.

User/Supervisor (U/S): User or Supervisor Mode status.
Sec. 3.7. High state indicates User Mode, low indicates Su­
pervisor Mode. Sec. 3.7.

Interlocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Sec. 3.7.

Program Flow Status (PFS): Active low. Pulse indicates
beginning of an instruction execution. Sec. 3.7.

4.1.4 Input-Output Signals

Address/Data 0-23 (AOO-A023): Multiplexed Addressl
Data information. Bit 0 is the least significant bit of each.
Sec. 3.4.

Data Bits 24-31 (024-031): The high order 8 bits of the
data bus.

Address Translation/Slave Processor Control (AT/
SPC): Active low. Used by the CPU as the data strobe out­
put for Slave Processor transfers; used by Slave Proces­
sors to acknowledge completion of a slave instruction.
Sec. 3.4.6; Sec. 3.9. Sampled on the riSing edge of Reset
pulse as Address Translation Strap. Sec. 3.5.1.

In non-memory-managed systems, this pin should be
pulled-up to Vee through a 10 kO resistor.

Data Strobe/Float (OS/FL T): Active low. Data Strobe out­
put, Sec. 3.4, or Float Command input, Sec. 3.5.3. Pin func­
tion is selected on AT/SPC pin, Sec. 3.5.1.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages with
Respect to GND

Power Dissipation

-0.5Vto +7V

1.5 Watt
If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Temperature Under Bias O'C to + 70'C

Storage Temperature -65'C to + 150'C

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS TA = 0' to + 70'C, Vee = 5V ± 5%, GND = OV

Symbol

VIH

Vil

VeH

Vel

VeRT

VOH

VOL

IllS

II

Il

Icc

Parameter

High Level Input Voltage

Low Level Input Voltage

High Level Clock Voltage

Low Level Clock Voltage

Clock Input
Ringing Tolerance

High Level Output Voltage

Low Level Output Voltage

AT ISPC Input Current (low)

Input Load Current

Leakage Current
Output and I/O Pins in
TRI-ST ATElinput Mode

Active Supply Current

Conditions Min

2.0

-0.5

PHI1, PHI2 pins only 0.85 Vee

PHI1, PHI2 pins only -0.5

PHI1, PHI2 pins only -0.5

IOH = -400/LA 0.85 Vee

IOl = 2mA

VIN = O.4V, AT ISPC in input mode 0.05

o ,,; VIN ,,; Vee, All inputs except
-20

PHI1, PHI2, AT/SPC

0.4 ,,; VOUT ,,; Vee
-20

lOUT = 0, TA = 25'C

VCC82 gsUUUUUUUUUUUUUUUl!l~

:5 ~
iiiiiii::J C
VCCl2 ::J C

GNDL2 :::J C
PHil ::J C
PHI2 ::J NS32C032 C
iDs :::II CPU C
U/i :II C

Typ

70

AD22
AD21
ADZU

AD19
AD18
AD17
AU16
AD15
ADI.
AD13

RESERVED ::. C AD12

RE~IIV!!! ::. C

=5 ~
ADll
AD10
AD9

RST/AIl p E:: ADa
RESERVED I:J C AD7

THR::U::E: !~~~c:s~~~ ~1I1 n n n n n n n n n n n n n n n 1iI~ AD6

Bottom View

FIGURE 4-1. NS32C032 Connection Diagram

Order Number NS32C032-10E, NS32C032-15E,
NS32C032-10Vor NS32C032-15V

See NS Package Number E6SB or V6SA

2-215

Max Units

Vee +0.5 V

0.8 V

Vee +0.5 V

0.10 Vee V

0.6 V

V

0.10 Vee V

1.0 mA

20 /LA

20 /LA

100 mA

TL/EE/9160-2

Z
tn w
N
n e
~
o
Z
tn w
N
n o w
~
en

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS:

4.4.1 Definitions L.E. - leading edge R.E. - rising edge

All the timing specifications given in this section refer to T.E. - trailing edge F.E. - falling edge

2.OV on the rising or falling edges of the clock phases PHI1
PHln [and PHI2; to 15% or 85% of Vee on all the CMOS output 2.0V

signals, and to 0.8V or 2.OV on all the TTL input signals as
illustrated in Figures 4-2 and 4-3 unless specifically stated

[-------_. otherwise. SIG1
O.BV "

tSlG1I

[- I

PHln 2.0V -
SIG2 [2.0V /i lslG2h ------------.-

SIG1 [• "--0715V;c· TLlEEI9160-44
lslGll FIGURE 4-3. Timing Specification Standard

(TTL Input Signals)

SIG2 [- tSIG2h -±~~5!£c ________ •

TLlEE19160-43

FIGURE 4-2. Timing Specification Standard
(CMOS Output Signals)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-10, NS32C032-15

Maximum times assume capacitive loading of 100 pF.

Name Figure Description Reference/Conditions
NS32C032-10 NS32C032-15

Units
Min Max Min Max

tALY 4-4 Address bits 0-23 valid after R.E., PHI1 T1 40 35 ns

tALh 4-4 Address bits 0-23 hold after R.E., PHI1 Tmmu or T2 5 5 ns

toy 4-4 Data valid (write cycle) after R.E., PHI1 T2 50 35 ns

tDh 4-4 Data hold (write cycle) afterR.E., PHI1 nextT1 orTi 0 0 ns

tALADSs 4-5 Address bits 0-23 setup before ADS T.E. 25 20 ns

tALADSh 4-10 Address bits 0-23 hold after ADS T.E. 15 10 ns

tALI 4-5 Address bits 0-23 after R.E., PHI1 T2 25 20 ns
floating (no MMU)

tADf 4-5 Data bits 024-031 after R.E., PHI1 T2 25 20 ns
floating (no MMU)

tALMf 4·9 Address bits 0-23 after R.E., PHI1 Tmmu 25 20 ns
floating (with MMU)

tADMf 4·9 Data bits 21-31 after R.E., PHI1 Tmmu 25 20 ns
floating (with MMU)

tBEY 4-4 BEn signals valid after R.E., PHI2 T 4 60 45 ns

tSEh 4-4 BEn signals hold after R.E., PHI2 T4 orTi 0 0 ns

tSTy 4-4 Status (STO-ST3) valid after R.E., PHI1 T4 45 35 ns
(before T1, see note)

tSTh 4-4 Status (STO-ST3) hold after R.E., PHI1 T4 (after T1) 0 0 ns

2-216

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-8, NS32C032-10 (Continued)

Name Figure Description
Reference! NS32C032-10 NS32C032-15

Units
Conditions Min Max Min Max

tOOINv 4-5 ODIN signal valid after R.E., PHI1 T1 50 35 ns

tOOINh 4-5 ODIN signal hold after R.E., PHI1 next T1 or Ti 0 0 ns

tAOSa 4-4 ADS signal active (low) after RE., PHI1 T1 35 26 ns

tAOSia 4-4 ADS signal inactive after R.E., PHI2 T1 40 30 ns

tAOSw 4-4 ADS pulse width at 15% Vcc (both edges) 30 25 ns

tOSa 4-4 OS signal active (low) after RE., PHI1 T2 40 30 ns

tOSia 4-4 OS signal inactive after RE., PHI1 T4 40 30 ns

tALI 4-6 ADO-AD23 floating after RE., PHI1 T1 25 20 ns
(caused by HOLD)

tAO! 4-6 024-031 floating after R.E., PHI1 T1 25 20 ns
(caused by HOLD)

toS! 4-6 OS floating after R.E., PHI1 Ti 50 40 ns
(caused by HOLD)

tAOS! 4-6 ADS floating after RE., PHI1 Ti 50 40 ns
(caused by HOLD)

tBE! 4-6 BEn floating after RE., PHI1 Ti 50 40 ns
(caused by HOLD)

tOOIN! 4-6 ODIN floating after RE., PHI1 Ti 50 40 ns
(caused by HOLD)

tHLOAa 4-6 HLDA signal active (low) after R.E., PHI1 Ti 30 25 ns

tHLOAia 4-8 HLDA signal inactive after RE., PHI1 Ti 40 30 ns

tOSr 4-8 OS signal returns from after RE., PHI1 Ti 55 40 ns
floating (caused by HOLD)

tAOSr 4-8 ADS signal returns from after R.E., PHI1 Ti 55 40 ns
floating (caused by HOLD)

tBEr 4-8 BEn signals return from after R.E., PHI1 Ti 55 40 ns
floating (caused by HOLD) fII

tOOINr 4-8 ODIN signal returns from after RE., PHI1 Ti 55 40 ns
floating (caused by HOLD)

tOOIN! 4-9 ODIN signal floating after FL T F.E. 55 50 ns
(caused by FL n

tOOINr 4-10 ODIN signal returns from after FL T RE. 40 30 ns
floating (caused by FL n

tspca 4-13 SPC output active (low) after R.E., PHI1 T1 35 26 ns

tSPCia 4-13 SPC output inactive after R.E., PHI1 T4 35 26 ns

tSPCn! 4-15 SPC output nonforcing after R.E., PHI2 T4 30 25 ns

tov 4-13 Data valid (slave processor after R.E., PHI1 T1 50 35 ns
write)

tOh 4-13 Data hold (slave processor after RE., PHI1 0 0 ns
write) nextT10rTi

tPFSw 4-18 PFS pulse width at 15% VCC (both edges) 50 40 ns

2-217

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C032-10, NS32C032-15 (Continued)

Name Figure Description
Reference/ NS32C032-10 NS32C032-15

Units
Conditions Min Max Min Max

tPFSa 4-18 PFS pulse active (low) after R.E., PHI2 40 35 ns

tPFSia 4-18 PFS pulse inactive after R.E., PHI2 40 35 ns

tlLOs 4-20a ILO signal setup before R.E., PHI1 T1 50 35 ns
of first interlocked
read cycle

tlLOh 4-20b ILO Signal hold after R.E., PHI1 T3 10 7 ns
of last interlocked
write cycle

tlLOa 4-21 j[(j Signal active (low) after R.E., PHI1 35 30 ns

tlLOia 4-21 ILO Signal inactive after R.E., PHI1 35 30 ns

tusv 4-22 U/S Signal valid after R.E., PHI1 T 4 35 30 ns

tUSh 4-22 U/S signal hold after R.E., PHI1 T4 8 6 ns

tNSPF 4-19b Nonsequential fetch to after R.E., PHI1 T1 4 4 tcp
next PFS clock cycle

tpFNS 4-19a PFS clock cycle to next before R.E., PHI1 T1 4 4 tcp
non-sequential fetch

tLXPF 4-29 Last operand transfer before R.E., PHI1 T1 of first 0 0 tcp
of an instruction to next of first bus
PFS clock cycle cycle of transfer

Note: Every memory cycle starts with T 4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: Ti, T 4, T1 ... ". If the CPU wes not
Idling, the sequence will be:" ... T4, T1 ... ".

4.4.2.2 Input Signal Requirements: NS32C032-10, NS32C032-15

Name Figure Description Reference/Conditions NS32C032-10 NS32C032-15 Units
Min Max Min Max

tPWR 4-25 Power stable to after Vcc reaches 4.5V 50 50 }Jos
RSTR.E.

tOls 4-5 Data in setup before F.E., PHI2 T3 15 10 ns
(read cycle)

tOlh 4-5 Data in hold after R.E., PHI1 T4 3 3 ns
(read cycle)

tHLDa 4-6 HOLD active (low) setup before F.E., PHI2 TX1 25 17 ns
time (see note)

tHLDia 4-8 HOLD inactive setup before F.E., PHI2 Ti 25 17 ns
time

tHLDh 4-6 HOLD hold time after R.E., PHI1 TX2 0 0 ns

tFLTa 4-9 FL T active (low) before F.E., PHI2 Tmmu 25 17 ns
setup time

tFLTia 4-10 FL T inactive setup before F.E., PHI2 T2 25 17 ns
time

tRDYs 4-11,4-12 ROY setup time before F.E., PHI2 T2 or T3 15 10 ns

tRDYh 4-11,4-12 ROY hold time after F.E., PHI1 T3 5 5 ns

tABTs 4-23 ABT setup time before F.E., PHI2 Tmmu 20 13 ns
(FL T inactive)

tABTs 4-24 ABT setup time before F.E., PHI2 T, 20 13 ns
(FLTaclive)

tABTh 4-23 ABT hold time after R.E., PHI1 0 0 ns

2-218

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements NS32C032·10, NS32C032·15 (Continued)

Name Figure Description
Referencel NS32C032·10 NS32C032·15

Units
Conditions Min Max Min Max

tRSTs 4-25,4-26 RST setup time before F.E., PHil 10 8 ns

tRSTw 4-26 RST pulse width at 0.8V (both edges) 64 64 tcp

tiNTs 4-27 INT setup time before F.E., PHil 20 15 ns

tNMlw 4-28 NMI pulse width at O.8V (both edges) 70 70 ns

tOls 4-14 Data setup (slave before F.E., PHI2 T1 15 10 ns
read cycle)

tOlh 4-14 Data hold (slave after R.E., PHI1 T4 3 3 ns
read cycle)

tSPcd 4-15 SPC pulse delay from after R.E., PHI2 T4 30 25 ns
slave

tspcs 4-15 SPC setup time before F.E., PHI1 30 25 ns

tspCw 4-15 SPC pulse width from at 0.8V (both edges) 25 20 ns
slave processor
(async input)

tATs 4-16 AT ISPC setup for ad- before R.E., PHI1 of cycle 1 1 tcp
dress translation strap during which RST

pulse is removed

tATh 4-16 AT ISPC hold for ad- after F.E., PHI1 of cycle 2 2 tcp
dress translation strap during which RST

pulse is removed

Note: This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from the receipt
of the HOLD signal unlilthe CPU floats is a funcUon of the time HOLD signal goes low, the state of the ROY input (in MMU systems), and the length of the current
MMU cycle.

4.4.2.3 Clocking Requirements: NS32C032·10, and NS32C032·15

Name Figure Description
Referencel NS32C032·10 NS32C032·15

Units
Conditions Min Max Min Max

tcp 4-17 Clock Period R.E., PHI1, PHI2 100 250 66 250 ns
to next
R.E., PHI1, PHI2

tCLw(1,2) 4-17 PHI1, PHI2 At 2.0V on PHI1, 0.5tcp 0.5 tcp
Pulse Width PHI2 (Both Edges) -10ns -6ns

tCLh(l,2) 4-17 PHI1, PHI2 High Time At 90% Vccon O.5tCp 0.5 tcp
PHI1, PHI2 -15ns -10 ns

tcLl(1,2) 4-17 PHI1. PHI2 Low Time At15% Vccon 0.5 tcp 0.5tcp
PHI1. PHI2 -6ns -5ns

ns

tnOVL(l,2) 4-17 Non-Overlap Time At15% Vcc -2 2 -2 2 ns
on PHI1. PHI2

tnOVLas Non-Overlap Asymmetry At15% Vcc -3 3 -3 3 ns

(tnOVlJl) -tnOVL(2» on PHI1. PHI2

tCLwas PHI1. PHI2 Asymmetry At2.0V -5 5' -3 3 ns

(tCLw(l) - tCLw(2» on PHI1. PHI2

2-219

z
(J)
Co)
I\)

o o
Co)

~
o
Z
(J)
Co)
I\)

o o
Co)
I\)

I
U1

fI

U) r---~
~ a
~
&J
z
Ci
~
CO)
o

~ en z

4.0 Device Specifications
4.4.3 Timing Diagrams

PHil [

PHI2 [

ADO-AD23 [

D24-D31 [

B'EO-m[

iiiiiN[
STO-3 [

PHil [

PHIZ [

ADo-AD23 [

D24-D31 [

Ao§[

BEo-iiEi [

DiiiN[
ST0-3 [

iiS[
ROY [

T4 OR TI I T1 I T2 I T3 I T4

n -, - -

1lb1Jl: ~!P IL -
K' ADDRESS IlX DATA OUT)

I -IDy tDli

X J X DATA OUT)
t-: IADSls

II~AD~W
tADS. IIEh W

~ VALID

-1 IIEV I
(HIGH)

r---< ~ tSTv

VALID tSTh k-D Cl NEXT

NIDSS /
~ 'f-IDSls

(HIGH) I I

FIGURE 4-4. Write Cycle

T4 OR TI I T1 T2 I T3 I T4 ~ I roo- -, i--

~
JL -

X ADDRESS)ro' ------ __ -(OATAIN

~, ------ t::l: t-!Dlh

X ADDRESS ---(DAT~IN
--lAD!

,I

ALADSa

VALID

~ /
loolNv ---lIDO

VALID NE:IA~~~LE

'\.
(HIGH)

FIGURE 4-5. Read Cycle

2-220

TLlEE/9160-45

INh

TLlEE/9160-46

r--, Z

4.0 Device Specifications (Continued)

TXl TX2 T4 Ti Ti Ti

PHil [

PHI2 [-+_---'

HOLO[

H_LOA [-t ____ + ____ + ____ !-_~IHLOAa
'DSF

OS 'ADSI '--1-----+---­
tDDINf

TL/EE/9160-47

FIGURE 4·6. Floating by HOLD Timing (CPU Not Idle Initially).

Note that whenever the CPU is not idling (not in Ti). the HOLD request (HOLD low) must be active tHLDa before the falling edge
of PHI2 of the clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the rising edge of PHI1 of
the clock cycle that precedes T 4 (TX2) for the request to be acknowledged.

PHil [

PHI2 [

HOLD [

HLDA [

tDSf
tADsf os. _+ ___ +-__ -+""'ltDDINf

ADS. [
DDIN -+---+----+..J· tSEf

BEo-an [-+---t----+..J

ADO-AD23 [. - - (FLOATING)

D24-D31 [. - - -- - - - - -- - - -- '(FLOATiNGi

-----.---(FLOATING)

TLlEE/9160-48

FIGURE 4·7. Floating by HOLD Timing (CPU Initially idle)

Note that during Ti1 the CPU is already idling.

2-221

PHil [

PHI2 [_+-.......

HLDA [-+---+----1-'

OS.
ADS. [.--
DDIN (FLOATING)

(HIGH)

BrO-an [• - -

ADO-AD23 [.--~ - - -- -- t ------ ~(FLOATiNG i
D24-D31 I I

TL/EE/9160-49

FIGURE 4·8. Release from HOLD

(J)
W
N
n
«:)
w
N
~
Z
(J)
W
N
n
«:)
w
N •
en

•

~ r---,
c.:.
8
N

~
Z
o
c.:.
C')
o
o
N
C')
(/)
z

4.0 Device Specifications (Continued)

CPU STATES T1 TMMU Tt Tt

MMUSTATES [11

PHil

PHI2 [

m[
ADO-AD23 [

(CPU)

D24-D31 [
(CPU)

ADS [
(CPU)

PAV [
(MMU)

iiiiiN[

BEO-iiii [

FIGURE 4-9. FL T Initiated Float Cycle Timing

CPU STATES Tf T2 T3 T4

MMU STATES Tmmu

PHil [

PHI2 [-1-----1
FLY [,---~~--------_+--------4---------

(MMU) 1

(FLOAfiN:I;VENBYMMu)
toDINr

AI6-23 [
(CPU) -

6iiiN[(CPU)

AoS[
(CPU)

m-_[~ ____ -4 ______ ~ ____ ~ __ ___

FIGURE 4-10. Release from FL T Timing

TUEE/9160-50

TL/EE/9160-51

Note that when FL Tis deasserted the CPU restarts driving DDIN before the MMU releases it. This, however, does not cause any
conflict, since both CPU and MMU force DDIN to the same logic level.

TLlEE/9160-52

FIGURE 4-11. Ready Sampling (CPU Initially READY)

2-222

4.0 Device Specifications (Continued)

I I I I

:~~
RDV[~

TL/EE/9160-53

FIGURE 4·12. Ready Sampling (CPU Initially NOT READY)

I T1 I T4 I
PHI1[~

I T1 I T4 I
PHI1[~

PHI2 [PHI2 [

tOth

ADO-15 [ADIl-15 [

s.c[SPe[(CPU)

DDiN[DffiN[-+~ +-............ -+--
STG-3 [S~3 [-+ +-J, __ -+_

AoS[(HIGH)
I

AoS[
TUEE/9160-54

FIGURE 4·13. Slave Processor Write Timing
TL/EE/9160-55

FIGURE 4·14. Slave Processor Read Timing

PHil [

PHI2 [

SPC [
(rROM CPU)

T1 T4

(rROM SLA~E1 [. -------- ------- ------

FIGURE 4·15. SPC Timing

After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5 kO pull up.

FIGURE 4·16. Reset Configuration Timing

2·223

TL/EE/9160-56

TL/EE/9160-57

z en
Co)
I\)

o o
Co)

~
o
z en
Co)
I\)

o o
Co)
I\)
(II

•

II)
•
'" C")
«:)

o
'" ~ z
«:)
~
C")
«:)

~
C")
(J)
z

4.0 Device Specifications (Continued)

PHil [

PHI2 [

FIGURE 4-17. Clock Waveforms

PHI2[~ruu

~[~~

TL/EE/9160-5B

TL/EE/9160-59

FIGURE 4-18. Relationship of PFS to Clock Cycles

T1

PHil [

~[b'----J/
s~ [_______________ ...J CODE 1001

TL/EE/9160-60

FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch

I Tl I T2 I ••• I I I I
PHllL[LfLJl-1{LflJL
AoS[

s~ [CODE 1001

+-----~}--~----

INSPF

TL/EE/9160-61

FIGURE 4-19b. Guaranteed Delay, Non-Sequential Fetch to PFS

2-224

4.0 Device Specifications (Continued)

I 13 OR TI I T40RTI I Tl 12 13 T4

ADS [

ILO[

TLlEE/9160-62

FIGURE 4-20a. Relationship of ILO to First Operand Cycle of an Interlocked Instruction

I T3 OR T; I T40RTI I T1 12 T3 T4

iD[________________ t-____________ -+'

TL/EE/9160-63

FIGURE 4-20b. Relationship of ILO to Last Operand Cycle of an Interlocked Instruction

TL/EE/9160-64

FIGURE 4-21. Relationship of ILO to Any Clock Cycle

I T30RT; I T40RTI I T1 T2 T3 T4

PHil [

AiiS[

U/S["""''''''-LI.,",",,¥, 1\-__ +-____________________ +'1

TLlEE/9160-65

FIGURE 4-22. U/S Relationship to Any Bus Cycle - Guaranteed Valid Interval

2-225

z
en
Co)
N
o
C)
Co)

~
C)
z
en
Co)
N
o
C)
Co)

~
U1

til

U) .---, .,...
N
CO)
(;)

o
N
CO)
tn
Z
~ .,...
N
CO)
(;)

o
N
CO)

tn
Z

4.0 Device Specifications (Continued)

T1 I Tmmu T2 n

PHil [

FIGURE 4-23. Abort Timing, FL T Not Applied

PHil [

PHIZ [

OS/FtT [-r----+---+---++-.....J

FIGURE 4-24. Abort Timing, FL T Applied

vee
I.o----------I\--

PHil [

--1------

RST/ffi[_____________ \\--1

Tl/EE/9160-66

TlIEE/9160-67

Tl/EE/9160-66

FIGURE 4-25. Power-On Reset

PHll[~JLfl-
1RSTSr-"',~[~ II

Tl/EE/9160-69

FIGURE 4-26. Non-Power-On Reset

2-226

4.0 DevIce Specifications (Continued)

PHI1[JULrL
~tINT.

iNr[~
TL/EE/9160-70

FIGURE 4-27. INT Interrupt Signal Detection

ARST BUS CYCLE

T1 12 T3

NM{

TL/EE/9160-71

FIGURE 4-28. NMllnterrupt Signal Timing

NEXT

T4 TlorTI I

TL/EE/9160-72

FIGURE 4-29. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction
Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer, displaying RMW Status (Code 1011).

2-227

z
(f)
c.,)
I\)

n
o
c.,)
I\)
o
Z
(f)
c.,)
I\)

n
o
c.,)
I\)
en

~ ,--, ,...
N
C")
o
~
C")

tn
Z
C; ,...
N
C")

8
C'I
C")

tn
Z

Appendix A: Instruction Formats
NOTATIONS

i = Integer Type Field

B = 00 (Byte)

W = 01 (Word)

D = 11 (Double Word)

f= Floating Point Type Field

F = 1 (Std. Floating: 32 bits)

L = 0 (Long Floating: 64 bits)

c= Custom Type Field

D = 1 (Double Word)

Q = 0 (Quad Word)

op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field

See Sec. 2.2 for encodings.

reg= General Purpose Register Number

cond = Condition Code Field
0000 = EQual: Z = 1
0001 = Not Equal: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1
0101 = Lower or Same: L = 0
0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0
1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0 and Z = 0
1011 = Higher or Same: L = 1 orZ = 1
1100 = Less Than: N = 0 and Z = 0
1101 = Greater or Equal: N = 1 or Z = 1
1110 = (Unconditionally True)
1111 = (Unconditionally False)

short= Short Immediate value. May contain
quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ,ACB.

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR.
0000 = US
0001 - 0111 = (Reserved)
1000 = FP
1001 = SP
1010 = SB
1011 = (Reserved)
1100 = (Reserved)
1101 = PSR
1110 = INTBASE
1111 = MOD

Options: in String Instructions

I U/W I BIT I
T = Translated

B = Backward

U/W = 00: None

01: While Match

11: Until Match

2-228

Configuration bits, in SETCFG:

I C I M I Fill
mreg: NS32082 Register number, in LMR, SMR.

0000 = BPRO
0001 = BPR1
0010 = (Reserved)
0011 = (Reserved)
0100 = (Reserved)
0101 = (Reserved)
0110 = (Reserved)
0111 = (Reserved)
1000 = (Reserved)
1001 = (Reserved)
1010 = MSR
1011 = BCNT
1100 = PTBO
1101 = PTB1
1110 = (Reserved)
1111 = EIA

7 0

1 co'nd' 11' 0' l' 01

FormatO

Bcond (BR)

7 0

;p' 10' 0' l' 01

Format 1

BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE -0111 BPT -1111

15 al7 0

1

, ,
'sh~rt 1

, ,
11 ' 1 '

1 gen op

Format 2
ADDQ -000 ACB -100
CMPQ -001 MOVQ -101
SPR -010 LPR -110
Scond -011

z
Appendix A: Instruction Formats (Continued)

en
Co)
N

SI7
0

15 0 S 7 0 0
Co)

I
, , , ,

I
,
I

N

" I"" I I

gen i 1 0 0 1 1 1 0 op 1 1 1 1 1 0
Format 3 Z

Format 7 en
CXPD -0000 ADJSP -1010 Co)

MOVM -0000 MUL -1000 N
BICPSR -0010 JSR -1100

CMPM -0001 MEl -1001
0

JUMP -0100 CASE -1110 0
INSS Trap (UND) -1010

Co)

BISPSR -0110
-0010 N

EXTS -0011 DEI -1011
I

Trap (UND) on XXX1, 1000
MOVXBW -0100 QUO -1100

UI

,SI7,
MOVZBW -0101 REM -1101

15 0 MOVZiD -0110 MOD -1110

I
, , , ,

I
,

I
, , ,

I MOVXiD -0111 DIV -1111
gen 1 gen2 op

Format 4

ADD -0000 SUB -1000
CMP -0001 AD DR -1001 TLlEE/9160-73

BIC -0010 AND -1010 FormatS
AD DC -0100 SUBC -1100 EXT -000 INDEX -100
MOV -0101 TBIT -1101 CVTP -001 FFS -1 01
OR -0110 XOR -1110 INS -010

CHECK -011
0 MOVSU -110,reg = 001

i o 0 0 0 1 1 1 0 MOVUS -110, reg = 011

0
Format 5

MOVS -0000 SETCFG -0010 1 1 1 1 1 0
CMPS -0001 SKPS -0011

Trap (UND) on 1XXX, 01XX Format 9
MOVif -000 ROUND -100

0 LFSR -001 TRUNC -101

o 0 1 1 1 0 MOVLF -010 SFSR -110
MOVFL -011 FLOOR -111

Format 6 0

ROT -0000 NEG -1000 ---I I I I I I I I 1
ASH -0001 NOT -1001

___ 0 1 0 1 1 1 1 0 •
CBIT -0010 Trap (UND) -1010

TLlEE/9160-77

Format 10
CBITI -0011 SUBP -1011

Trap (UND) Always
Trap (UND) -0100 ABS -1100
LSH -0101 COM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111

2-229

~ r---,
~
8
~
U)
z o
N
C")

8
N
C")
U)
z

Appendix A: Instruction Formats (Continued)

o

1 1 1 1 0

Format 11

ADD! -0000 DIV! -1000
MOV! -0001 Trap (SLAVE) -1001
CMP! -0010 Trap (UNO) -1010
Trap (SLAVE) -0011 Trap (UNO) -1011
SUB! -0100 MUll -1100
NEG! -0101 ABS! -1101
Trap (UNO) -0110 Trap (UNO) -1110
Trap (UNO) -0111 Trap (UNO) -1111

7 0

---I I I I I I I I 1
___ .1 1 1 1 1 1 1 O.

TLIEE19160-75

Format 12

Trap (UNO) Always

7 o

16115

Operation Word 10 Byte

Format 15

(Custom Slave)

nnn Operation Word Format

000

CATSTO
CATST1

Format 15.0

-0000
-0001

LCR
SCR

Trap (UNO) on all others

-0010
-0011

-'-1 I I I I I I I 1
___ 1 0 0 1 1 1 1 0 001

Trap (UNO) Always

RDVAL
WRVAL

Format 13

Format 14

-0000
-0001

LMR
SMR

Trap (UNO) on 01 XX, 1XXX

TLIEE19160-76

o
i 000 1 1 1 0

-0010
-0011

2-230

Format 15.1

CCV3
LCSR
CCV5
CCV4

101

-000
-001
-010
-011

23

gen 1

CCV2
CCV1
SCSR
CCVO

Format 15.5

CCALO
CMOVO
CCMPO
CCMP1
CCAL1
CMOV2
Trap (UNO)
Trap (UNO)

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

If nnn ~ 010,011,100,110,111
then Trap (UNO) Always

CCAL3
CMOV3
Trap (UNO)
Trap (UNO)
CCAL2
CMOV1
Trap (UNO)
Trap (UNO)

-100
-101
-110
-111

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

Appendix A: Instruction Formats (Continued)

7 0 ---I I I I I I I I 1
___ 0 1 0 1 1 1 1 0

TLlEE/9160-77

Format 16

Trap (UNO) Always

7 0

---I " " " I 1 ___ 11011110

TL/EE/9160-78

Format 17

Trap (UNO) Always

---I " I I " I 1 n. 1 0 0 0 1 1 1 0

TLlEE/9160-79

Format 18

Trap (UNO) Always

2-231

Format 19

Trap (UNO) Always

Implied Immediate Encodings:
7

7 0

---I II " " I 1 ___ x x x 0 0 1 1 ~

TLlEE/91S0-80

a

r1 ra

Register Mark, appended to SAVE, ENTER
7 a

Register Mark, appended to RESTORE, EXIT
7 a

; offset;

Offset/Length Modifier appended to INSS, EXTS

z en w
N
o o
W
N •
o z en w
N o o
W
N •
U1

•

NS32C032·10/NS32C032-15

XCTAl2 PER
P[AIPH CYCLE

~ CVlM.IT
REAOY ~

~ XCTALI _ITII

~I
'0
'0 Wiifi I+-- ... IT AlQU(STS CD

RESET
NS32C201 WlIT' ~ (AOOR DECODEO OR STRAPPfD)

::l
RSH TCU iim'1 AD a.
PHil IIIi ;C' PHI] Wi! w.

ADS BE.

~
ODIN ROY 08£

BEl
R5TO tTlL .5' aE2

BEl ::l -CD H' IV 2V 3V 4V t- ""I
5 7U,lS257 G

I»
18 28 38 48 ,. 2,\ lAo 4" (')

J
f u [1 ,,~ ::l

ce
en

I\l

rr>o
c
ce

IlO' ce

I
CD

HOLD tn -ROY PHil PHil BEO BE3 IlO " HtDAO 0'
HOLD ROY ::l

PHil
Al tn

'" PHil
c.>
I\l

'NTS I::: iNT
HOLD

N'"
OSfFLT FLT HLOAD

HlOA HLOAI PAil STROBE
"'0-"'23 ~ NS32C032 PFS PFS 12 'I~ ADDRESS

CPU UIS NS32082
~7

AOO-A023 LATCHI
UIS

.... U BUffER 12'1 ,
ADS ADS

ODIN ODIN

STO-ST3 SI0-ST3

RSTfABT ' RST/ABT ~ ~;TA BUFFERS A2'
ATISPe SPC

ADO-AD23 024-031 10 KII AOO-A023 AST

~~16-D31 (241 • t (8) +-
12.1 ~

AOO-AD15- ~ 1321
., ADORIDATA BUS

(16
1

" It ifWl! I ODIN -ADO-AD1S spc

tt: ~~r1 NS32081 SIO-ST1

~ ~31 FPU
AST ~
elK ,321

132) AN~:~~~~!" OATA BUFFERS ~

STO-STil'

TLlEE/9160-81

FIGURE B-1. System Connection Diagram

--

~National
~ Semiconductor
NS32032-10 High-Performance Microprocessor
General Description
The NS32032 is a 32-bit, virtual memory microprocessor
with a 16-MByte linear address space and a 32-bit external
data bus. It has a 32-bit ALU, eight 32-bit general purpose
registers, an eight-byte prefetch queue, and a slave proces­
sor interface. The NS32032 is fabricated with National
Semiconductor's advanced XMOSTM process, and is fully
object code compatible with other Series 32000® proces­
sors. The Series 32000 instruction set is optimized for mod­
ular, high-level languages (HLL). The set is very symmetric,
it has a two address format, and it incorporates HLL orient­
ed addressing modes. The capabilities of the NS32032 can
be expanded with the use of the NS32081 floating point unit
(FPU), and the NS32082 demand-paged virtual memory
management unit (MMU). Both devices interface to the
NS32032 as slave processors. The NS32032 is a general
purpose microprocessor that is ideal for a wide range of
computational intensive applications.

Block Diagram
ADD/DATA CONTROLS. STATUS

o
o
o
o

REGISTER SET

INTBASE
SB
FP
SPI
SPO
PC
RD
Rl
R2
R3
R4
R5
R6
R7

Features
• 32-bit architecture and implementation
• Virtual memory support
• 16-MByte linear address space
• 32-bit data bus
• Powerful instruction set

- General 2-address capability
- Very high degree of symmetry
- Addressing modes optimized for high-level

languages
• Series 32000 slave processor support
• High-speed XMOS technology
• 68-pin lead less chip carrier

MICROCODE ROM
AND

CONTROL LOGIC

mIl
CFG REGISTER

WORKING
REGISTERS

I
I
I
I
I

MOD I

PSR :

L _________________ J
TL/EE/5491-1

FIGURE 1

2-233

1.0 PRODUCT INTRODUCTION

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers
2.1.2 Dedicated Registers
2.1.3 The Configuration Register (CFG)
2.1.4 Memory Organization
2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format
2.2.2 Addressing Modes
2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding
3.2 Clocking
3.3 Resetting
3.4 Bus Cycles

3.4.1 Cycle Extension
3.4.2 Bus Status
3.4.3 Data Access Sequences

3.4.3.1 Bit Accesses
3.4.3.2 Bit Field Accesses
3.4.3.3 Extending Multiply Accesses

3.4.4 Instruction Fetches
3.4.5 Interrupt Control Cycles
3.4.6 Slave Processor Communication

3.4.6.1 Slave Processor Bus Cycles

Table of Contents
3.0 FUNCTIONAL DESCRIPTION (Continued)

3.B NS32032 Interrupt Structure

3.B.1 General Interrupt/Trap Sequence
3.B.2 Interrupt/Trap Return
3.B.3 Maskable Interrupts (The INT Pin)

3.B.3.1 Non-Vectored Mode
3.B.3.2 Vectored Mode: Non-Cascaded Case
3.B.3.3 Vectored Mode: Cascaded Case

3.B.4 Non-Maskable Interrupt (The NMI Pin)
3.B.5 Traps
3.B.6 Prioritization
3.B.7 Interrupt/Trap Sequences Detailed Flow

3.B.7.1 Maskable/Non-Maskable Interrupt
Sequence

3.B.7.2 Trap Sequence: Traps Other Than Trace
3.B.7.3 Trace Trap Sequence
3.B.7.4 Abort Sequence

3.9 Slave Processor Instructions

3.9.1 Slave Processor Protocol
3.9.2 Floating Point Instructions
3.9.3 Memory Management Instructions
3.9.4 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies
4.1.2 Input Signals
4.1.3 Output Signals

3.4.6.2 Slave Operand Transfer Sequences
4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings
4.3 Electrical Characteristics
4.4 Switching Characteristics

3.5 Memory Management Option

3.5.1 Address Translation Strap
3.5.2 Translated Bus Timing
3.5.3 The FL T (Float) Pin
3.5.4 Aborting Bus Cycles

3.5.4.1 The Abort Interrupt
3.5.4.2 Hardware Considerations

3.6 Bus Access Control
3.7 Instruction Status

4.4.1 Definitions
4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signals Requirements
4.4.2.3 Clocking Requirements

4.4.3 Timing Diagrams
Appendix A: Instruction Formats
Appendix B: Interfacing Suggestions

List of Illustrations
CPU Block Diagram .. ~:~
The General and Dedicated Registers .. -2

~~~1~1~:/~1 
Recommended Supply Connections .............................................................................. 3-2 

~=;~~~:~;~:::~~ ..•.•••.•••..••.••.••••.••.•••..••.••.•••...•..•••••...•..•••...•••..•••••.••. ··,E 
Recommended Reset Connections, Non-Memory-Managed System ................................................ . 
Recommended Reset Connections, Memory-Managed System ..................................................... 3-5b 

2-234 



List of Illustrations (Continued) 
Bus Connections ............................................................................................... 3-6 
Read Cycle Timing ............................................................................................. 3-7 
Write Cycle Timing ............................................................................................. 3-8 
RDY Pin Timing ................................................................................................ 3-9 
Extended Cycle Example ...................................................................................... 3-1 0 
Memory Interface ............................................................................................. 3-11 
Slave Processor Connections .................................................................................. 3-12 
CPU Read from Slave Processor ................................................................................ 3-13 
CPU Write to Slave Processor .................................................................................. 3-14 
Read Cycle with Address Translation (CPU Action) ................................................................ 3-15 
Write Cycle with Address Translation (CPU Action) ................................................................ 3-16 
Memory-Managed Read Cycle .................................................................................. 3-17 
Memory-Managed Write Cycle .................................................................................. 3-18 
FLTTiming ................................................................................................... 3-19 
HOLD Timing, Bus Initially Idle .................................................................................. 3-20 
HOLD Timing, Bus Initially Not Idle .............................................................................. 3-21 
Interrupt Dispatch and Cascade Tables .......................................................................... 3-22 
Interrupt/Trap Service Routine Calling Sequence ................................................................. 3-23 
Return from Trap (RETT n) Instruction Flow ...................................................................... 3-24 
Return from Interrupt(RET) Instruction Flow ...................................................................... 3-25 
Interrupt Control Connections (16 levels) ......................................................................... 3-26 
Cascaded Interrupt Control Unit Connections ..................................................................... 3-27 
Service Sequence ............................................................................................ 3-28 
Slave Processor Protocol ...................................................................................... 3-29 
Slave Processor Status Word Format. ........................................................................... 3-30 
NS32032 Connection Diagram ................................................................................... 4-1 
Timing Specification Standard (Signal Valid After Clock Edge) ........................................................ 4-2 
Timing Specification Standard (Signal Valid Before Clock Edge) ...................................................... 4-3 
Write Cycle .................................................................................................... 4-4 
Read Cycle ................................................................................................... .4-5 
Floating by HOLD Timing (CPU Not Initially Idle) .................................................................... 4-6 
Floating by HOLD Timing (CPU Initially Idle) ...................................................................... .4-7 
Release from Hold ............................................................................................. 4-8 
FLT Initiated Float Cycle Timing .................................................................................. 4-9 
Release from FL T Timing ..................................................................................... .4-10 
Ready Sampling (CPU Initially READY) .......................................................................... 4-11 
Ready Sampling (CPU Initially NOT READy) ...................................................................... 4-12 
Slave Processor Write Timing ................................................................................... 4-13 
Slave Processor Read Timing ................................................................................. .4-14 
SPC Timing ................................................................................................. .4-15 
Reset Configuration Timing .................................................................................... .4-16 
Clock Waveforms ............................................................................................. 4-17 
Relationship of PFS to Clock Cycles ............................................................................ .4-18 
Guaranteed Delay, PFSto Non-Sequential Fetch ................................................................ 4-19a 
Guaranteed Delay, Non-Sequential Fetch to PFS ................................................................ 4-19b 
Relationship of ILO to First Operand of an Interlocked Instruction .................................................. 4-20a 
Relationship of ILO to Last Operand of an Interlocked Instruction .................................................. 4-20b 
Relationship of ILO to Any Clock Cycle .......................................................................... 4-21 
U/S Relationship to any Bus Cycle - Guaranteed Valid Interval. .................................................... 4-22 
Abort Timing, FL T Not Applied ................................................................................. .4-23 
Abort Timing, FL T Applied ...................................................................................... 4-24 
Power-On Reset ............................................................................................. .4-25 
Non-Power-On Reset. ........................................................................................ .4-26 
INT Interrupt Signal Detection .................................................................................. 4-27 
MNI Interrupt Signal Timing ..................................................................................... 4-28 
Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction ........................... 4-29 
Processor System Connection Diagram ........................................................................... B-1 

2-235 

z 
w 
Co) 
N o 
Co) 
N . ..... 
o 



C) r---------------------------------------------------------------------------------, .... 

~ 
C') 

en 
z 

List of Tables 
NS32032 Addressing Modes .................................................................................... 2-1 
NS32032 Instruction Set Summary ............................................................................... 2-2 
Bus Access Type .............................................................................................. 3-1 
Access Sequence .............................................................................................. 3-2 
Interrupt Sequences ............................................................................................ 3-3 
Floating Point Instruction Protocols ............................................................................... 3-4 
Memory Managementlnstruction Protocols ........................................................................ 3-5 
Custom Slave Instruction Protocols ............................................................................... 3-6 

2-236 



1.0 Product Introduction 
The Series 32000 microprocessor family is a new genera­
tion of devices using National's XMaS and CMOS technolo­
gies. By combining state-of-the-art MaS technology with a 
very advanced architectural design philosophy, this family 
brings mainframe computer processing power to VLSI proc­
essors. 

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a 
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. Th!! family consists of a selection of CPUs supported 
by a set of peripherals and slave processors that provide 
sophisticated interrupt and memory management facilities 
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described 
briefly below: 

Powerful Addressing Modes. Nine addressing modes 
available to all instructions are included to access data 
structures efficiently. 

Data Types. The architecture provides for numerous data 
types, such as byte, word, doubleword, and BCD, which may 
be arranged into a wide variety of data structures. 

Symmetric Instruction Set. While avoiding special case 
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations, 
such as array indexing and external procedure calls, which 
save considerable space and time for compiled code. 

Memory-to-Memory Operations. The Series 32000 CPUs 
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing 
modes provided. This powerful memory·to-memory archi­
tecture permits memory locations to be treated as registers 
for all useful operations. This is important for temporary op­
erands as well as for context switching. 

Memory Management. Either the NS32382 or the 
NS32082 Memory Management Unit may be added to the 
system to provide advanced operating system support func· 
tions, including dynamic address translation, virtual memory 
management, and memory protection. 

Large, Uniform Addressing. The NS32032 has 24-bit ad­
dress pointers that can address up to 16 megabytes without 
requiring any segmentation; this addressing scheme pro­
vides flexible memory management without added·on ex­
pense. 

Modular Software Support. Any software package for the 
Series 32000 family can be developed independent of all 
other packages, without regard to individual addressing. In 
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and 
software cost. 

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can 
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is 
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave 
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be 
physically integrated on the CPU chip itself. 

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics: 

2-237 

• High-Level Language Support 

• Easy Future Growth Path 
• Application Flexibility 

2.0 Architectural Description 
2.1 PROGRAMMING MODEL 

The Series 32000 architecture includes 16 registers on the 
NS32032 CPU. 

2.1.1 General Purpose Registers 

There are eight registers for meeting high speed general 
storage requirements, such as holding temporary variables 
and addresses. The general purpose registers are free for 
any use by the programmer. They are thirty-two bits in 
length. If a general register is specified for an operand that 
is eight or sixteen bits long, only the low part of the register 
is used; the high part is not referenced or modified. 

2.1.2 Dedicated Registers 

The eight dedicated registers of the NS32032 are assigned 
specific functions. 

PC: The PROGRAM COUNTER register is a pointer to 
the first byte of the instruction currently being executed. 
The PC is used to reference memory in the program 
section. (In the NS32032 the upper eight bits of this 
register are always zero.) 

SPO, SP1: The SPO register points to the lowest address 
of the last item stored on the INTERRUPT STACK. This 
stack is normally used only by the operating system. It is 
used primarily for storing temporary data, and holding 
return information for operating system subroutines and 
interrupt and trap service routines. The SP1 register 
pOints to the lowest address of the last item stored on 
the USER STACK. This stack is used by normal user 
programs to hold temporary data and subroutine return 
information. 

In this document, reference is made to the SP register. 
The terms "SP register" or "SP" refer to either SPO or 
SP1, depending on the setting of the S bit in the PSR 
register. If the S bit in the PSR is 0 the SP refers to SPO. 
If the S bit in the PSR is 1 then SP refers to SP1. (In the 
NS32032 the upper eight bits of these registers are al­
ways zero). 

Stacks in the Series 32000 family grow downward in 
memory. A Push operation pre-decrements the Stack 
Pointer by the operand length. A Pop operation post-in­
crements the Stack Pointer by the operand length. 

FP: The FRAME POINTER register is used by a proce­
dure to access parameters and local variables on the 
stack. The FP register is set up on procedure entry with 
the ENTER instruction and restored on procedure termi­
nation with the EXIT instruction. 

The frame pointer holds the address in memory occu­
pied by the old contents of the frame pointer. (In the 
NS32032 the upper eight bits of this register are always 
zero.) 

S8: The STATIC BASE register points to the global vari­
ables of a software module. This register is used to sup­
port relocatable global variables for software modules. 

z en 
~ o 
Co) 
N • .... 
o 



0 ..-• C"\I 
CO) 
0 
C"\I 
CO) 
en 
Z 

2.0 Architectural Description (Continued) 

GENERAL 
DEDICATED 

32 
32 

RO 
0 PROGRAM COUNTER PC 

R1 
0 STAT1CBASE SB 

R2 
0 FRAME POINTER FP 

R3 
0 USER STACK PTR. 

SP1 } 
SP R4 

0 INTERRUPT STACK PTR. SPO 
RS 

·0 INTERRUPT BASE INTBASE 

PSR MOD 
RS 

STATUS MODULE R7 

TLlEE/5491-3 

FIGURE 2·1. The General and Dedicated Registers 

The SB register holds the lowest address in memory 
occupied by the global variables of a module. (In the 
NS32032 the upper eight bits of this register are always 
zero.) 

INTBASE: The INTERRUPT BASE register holds the 
address of the dispatch table for interrupts and traps 
(Sec. 3.8). The INTBASE register holds the lowest ad­
dress in memory occupied by the dispatch table. (In the 
NS32032 the upper eight bits of this register are always 
zero.) 

MOD: The MODULE register holds the address of the 
module descriptor of the currently executing software 
module. The MOD register is sixteen bits long, therefore 
the module table must be contained within the first 64K 
bytes of memory. 

PSR: The PROCESSOR STATUS REGISTER (PSR) 
holds the status codes for the NS32032 microproces­
sor. 

The PSR is sixteen bits long, divided into two eight-bit 
halves. The low order eight bits are accessible to all 
programs, but the high order eight bits are accessible 
only to programs executing in Supervisor Mode. 

15 817 0 

IXlXIXIXII I P lsi U HI z I F IXIXI LI T Icl 
TLlEE/5491-4 

FIGURE 2·2. Processor Status Register 

C: The C bit indicates that a carry or borrow occurred 
after an addition or subtraction instruction. It can be 
used with the ADDC and SUBC instructions to perform 
multiple-precision integer arithmetic calculations. It may 
have a setting of 0 (no carry or borrow) or 1 (carry or 
borrow). 

T: The T bit causes program traCing. If this bit is a 1, a 
TRC trap is executed after every instruction (Sec. 3.8.5). 

L: The L bit is altered by comparison instructions. In a 
comparison instruction the L bit is set to "1" if the sec­
ond operand is less than the first operand, when both 
operands are interpreted as unsigned integers. Other­
wise, it is set to "0". In Floating Point comparisons, this 
bit is always cleared. 

F: The F bit is a general condition flag, which is altered 
by many instructions (e.g., integer arithmetic instructions 
use it to indicate overflow). 

2-238 

Z: The Z bit is altered by comparison instructions. In a 
comparison instruction the Z bit is set to "1" if the sec­
ond operand is equal to the first operand; otherwise it is 
set to "0". 

N: The N bit is altered by comparison instructions. In a 
comparison instruction the N bit is set to "1" if the sec­
ond operand is less than the first operand, when both 
operands are interpreted as signed integers. Otherwise, 
it is set to "0". 

U: If the U bit is "1" no privileged instructions may be 
executed. If the U bit is "0" then all instructions may be 
executed. When U = 0 the NS32032 is said to be in 
Supervisor Mode; when U = 1 the NS32032 is said to 
be in User Mode. A User Mode program is restricted 
from executing certain instructions and accessing cer­
tain registers which could interfere with the operating 
system. For example, a User Mode program is prevent­
ed from changing the setting of the flag used to indicate 
its own privilege mode. A Supervisor Mode program is 
assumed to be a trusted part of the operating system, 
hence it has no such restrictions. 

S: The S bit specifies whether the SPO register or SP1 
register is used as the stack pOinter. The bit is automati­
cally cleared on interrupts and traps. It may have a set­
ting of 0 (use the SPO register) or 1 (use the SP1 regis­
ter). 
P: The P bit prevents a TRC trap from occurring more 
than once for an instruction (Sec. 3.8.5.). It may have a 
setting of 0 (no trace pending) or 1 (trace pending). 

I: If I = 1, then all interrupts will be accepted (Sec. 3.B.). 
If I = 0, only the NMI interrupt is accepted. Trap en­
ables are not affected by this bit. 

2.1.3 The Configuration Register (CFG) 

Within the Control section of the NS32032 CPU is the four­
bit CFG Register, which declares the presence of certain 
external devices. It is referenced by only one instruction, 
SETCFG, which is intended to be executed only as part of 
system initialization after reset. The format of the CFG Reg­
ister is shown in Figure 2-3. 

FIGURE 2·3. CFG Register 



2.0 Architectural Description (Continued) 

The CFG I bit declares the presence of external interrupt 
vectoring circuitry (specifically, the NS32202 Interrupt Con­
trol Unit). If the CFG I bit is set, interrupts requested through 
the INT pin are "Vectored." If it is clear, these interrupts are 
"Non-Vectored." See Sec. 3.8. 

The F, M and C bits declare the presence of the FPU, MMU 
and Custom Slave Processors. If these bits are not set, the 
corresponding instructions are trapped as being undefined. 

2.1.4 Memory Organization 

The main memory of the NS32032 is a uniform linear ad­
dress space. Memory locations are numbered sequentially 
starting at zero and ending at 224 - 1. The number specify­
ing a memory location is called an address. The contents of 
each memory location is a byte consisting of eight bits. Un­
less otherwise noted, diagrams in this document show data 
stored in memory with the lowest address on the right and 
the highest address on the left. Also, when data is shown 
vertically, the lowest address is at the top of a diagram and 
the highest address at the bottom of the diagram. When bits 
are numbered in a diagram, the least significant bit is given 
the number zero, and is shown at the right of the diagram. 
Bits are numbered in increasing significance and toward the 
left. 

01 

A 
Byte at Address A 

Two contiguous bytes are called a word. Except where not­
ed (Sec. 2.2.1), the least significant byte of a word is stored 
at the lower address, and the most significant byte of the 
word is stored at the next higher address. In memory, the 
address of a word is the address of its least significant byte, 
and a word may start at any address. 

115 MSB's 817 LSB's 01 

A+1 A 
Word at Address A 

Two contiguous words are called a double word. Except 
where noted (Sec. 2.2.1), the least significant word of a dou­
ble word is stored at the lowest address and the most signif­
icant word of the double word is stored at the address two 
greater. In memory, the address of a double word is the 
address of its least significant byte, and a double word may 
start at any address. 

131 MSB's 24123 16115 817 LSB's 01 

A+3 A+2 A+1 A 
Double Word at Address A 

Although memory is addressed as bytes, it is actually orga­
nized as double-words. Note that access time to a word or a 
double-word depends upon its address, e.g. double-words 
that are aligned to start at addresses that are multiples of 
four will be accessed more quickly than those not so 
aligned. This also applies to words that cross a double-word 
boundary. 

2.1_5 Dedicated Tables 

Two of the NS32032 dedicated registers (MOD and INT­
BASE) serve as pOinters to dedicated tables in memory. 

The INTBASE register points to the Interrupt Dispatch and 
Cascade tables. These are described in Sec. 3.8. 

2-239 

The MOD register contains a pOinter into the Module Table, 
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers, three of which are used by 
NS32032. The MOD register contains the address of the 
Module Descriptor for the currently running module. It is au­
tomatically up-dated by the Call External Procedure instruc­
tions (CXP and CXPD). 

The format of a Module Descriptor is shown in Figure 2-4. 
The Static Base entry contains the address of static data 
assigned to the running module. It is loaded into the CPU 
Static Base register by the CXP and CXPD instructions. The 
Program Base entry contains the address of the first byte of 
instruction code in the module. Since a module may have 
multiple entry pOints, the Program Base pointer serves only 
as a reference to find them. 

15 o 

I MOD I 
I 

r- oj 31 

STATIC BASE 

LINK TABLE ADDRESS 

PROGRAM BASE 

RESERVED 

.. 
TL/EE/5491-5 

FIGURE 2-4. Module Descriptor Format 

The Link Table Address points to the Link Table for the 
currently running module. The Link Table provides the infor­
mation needed for: 

1) Sharing variables between modules. Such variables are 
accessed through the Link Table via the External ad­
dressing mode. 

2) Transferring control from one module to another. This is 
done via the Call External Procedure (CXP) instruction. 

The format of a Link Table is given in Figure 2-5. A Link 
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure 
contains two 16·bit fields: Module and Offset. The Module 
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number 
giving the position of the entry point relative to the new 
module's Program Base pOinter. 

For further details of the functions of these tables, see the 
Series 32000 Instruction Set Reference Manual. 

ENTRY 

o 

2 

31 

... 

o-r 

ABSOLUTE AODRESS ( VARIABLE) 

ABSOLUTE AODRESS ( VARIABLE) 

OFFSET I MODULE ( PROCEDURE) 

-... 
TL/EE/5491-6 

FIGURE 2-5. A Sample Link Table 

z en w 
N 
C) 
W 
~ ...... 
C) 



C) r-------------------------------------------------------------------------------------~ .... 
W 
C") 
C) 
N 

~ 
Z 

2.0 Architectural Description (Continued) 

2.2 INSTRUCTION SET 

2.2.1 General Instruction Format 

Figure 2-6 shows the general format of a Series 32000 in· 
struction. The Basic Instruction is one to three bytes long 
and contains the Opcode and up to two 5-bit General Ad­
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions, which may appear 
depending on the instruction and the addressing modes se· 
lected. 

Index Bytes appear when either or both Gen fields specify 
Scaled Index. In this case, the Gen field specifies only the 
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies 
which General Purpose Register to use as the index, and 
which addressing mode calculation to perform before index­
ing. See Rgure 2-7. 

1 ' GEN. ADDR. MODE REG. NO. 'I 
TL/EE/5491-B 

FIGURE 2-7. Index Byte Format 

Following Index Bytes come any displacements (addressing 
constants) or immediate values associated with the select­
ed address modes. Each Disp/lmm field may contain one or 
two displacements, or one immediate value. The size of a 
Displacement field is encoded with the top bits of that field, 
as shown in Figure 2-8, with the remaining bits interpreted 
as a Signed (two's complement) value. The size of an imme­
diate value is determined from the Opcode field. Both Dis­
placement and Immediate fields are stored most significant 
byte first. Note that this is different from the memory repre­
sentation of data (Sec. 2.1.4). 

Some instructions require additional, "implied" immediates 
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of 
the instruction, in the order that they appear within the list of 
operands in the instruction definition (Sec. 2.2.3). 

Byte Displacement: Range -64 to +63 

SIGNED DISPLACEMENT 

Word Displacement: Range -8192 to + 8191 

Double Word DiBplacement: 
Range (Entire AddreBslng Space) 

7 0 

1 : 1 I 

,,/-
TLlEE/5491-11 

FIGURE 2-8. Displacement Encodings 

2.2.2 Addressing Modes 

The NS32032 CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be 
used in performing this calculation is specified by the pro­
grammer as an "addressing mode." 

OPTIONAL BASIC 
EXTENSIONS INSTRUCTION 

r~----------------~A~----------------~\(~-------~~ 

DISP2 DISPI DISP21DISPI 

IMPUED INDEX INDEX GEN GEN 
IMMEDIATE DISP DISP BYTE BYTE 

ADDR ADDR OPCODE 
OPERAND(S) MODE MODE 

A B 
IMM IMM 

t t j 

TL/EE/5491-7 

FIGURE 2-6. General Instruction Format 

2-240 



2.0 Architectural Description (Continued) 

Addressing modes in the NS32032 are designed to optimal­
ly support high-level language accesses to variables. In 
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that 
variable. Extraneous data movement is therefore minimized. 

NS32032 Addressing Modes fall into nine basic types: 

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced 
instead. 

Register Relative: A General Purpose Register contains an 
address to which is added a displacement value from the 
instruction, yielding the Effective Address of the operand in 
memory. 

Memory Space. Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers 
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages. 

Memory Relative: A pointer variable is found within the 
memory space pointed to by the SP, SB or FP register. A 
displacement is added to that pointer to generate the Effec­
tive Address of the operand. 

Immediate: The operand is encoded within the instruction. 
This addressing mode is not allowed if the operand is to be 
written. 

Absolute: The address of the operand is specified by a 
displacement field in the instruction. 

External: A pointer value is read from a specified entry of 
the current Link Table. To this pOinter value is added a dis­
placement, yielding the Effective Address of the operand. 

Top of Stack: The currently-selected Stack Pointer (SPO or 
SP1) specifies the location of the operand. The operand is 
pushed or popped, depending on whether it is written or 
read. 

Scaled Index: Although encoded as an addressing mode. 
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of 
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by I, 2, 4 or 8 and adding it into the 
total, yielding the final Effective Address of the operand. 

2-241 

Table 2-1 is a brief summary of the addressing modes. For a 
complete description of their actions, see the Instruction Set 
Reference Manual. 

2.2.3 Instruction Set Summary 

Table 2-2 presents a brief description of the NS32032 in­
struction set. The Format column refers to the Instruction 
Format tables (Appendix A). The Instruction column gives 
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function 
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the 
Instruction Set Reference Manual. 

Notations: 

i = Integer length suffix: B = Byte 

W = Word 

D = Double Word 

f = Floating Point length suffix: F = Standard Floating 

L = Long Floating 

gen = General operand. Any addressing mode can be 
specified. 

short = A 4-bit value encoded within the Basic Instruction 
(see Appendix A for encodings). 

imm = Implied immediate operand. An 8-bit value append­
ed after any addressing extensions. 

disp = Displacement (addressing constant): 8, 16 or 32 
bits. All three lengths legal. 

reg = Any General Purpose Register: RO-R7. 

areg = Any Dedicated/Address Register: SP, SB, FP, 
MOD, INTBASE, PSR, US (bottom 8 PSR bits). 

mreg = Any Memory Management Status/Control Regis­
ter. 

crag = A Custom Slave Processor Register (Implementa­
tion Dependent). 

cond = Any condition code, encoded as a 4-bit field within 
the Basic Instruction (see Appendix A for encodings). 

II 



C) ..-
N 2.0 Architectural Description (Continued) 
(I) 
C) 
C'I 
(I) TABLE 2-1 
(/) 
Z NS32032 Addressing Modes 

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS 
Register 
00000 Register 0 ROorFO None: Operand is in the specified 
00001 Register 1 R1 or F1 register 
00010 Register 2 R20rF2 
00011 Register 3 R3 or F3 
00100 Register 4 R40rF4 
00101 Register 5 R50rF5 
00110 RegisterB RBorFB 
00111 Register 7 R7orF7 
Register Relative 
01000 Register 0 relative disp(RO) Disp + Register. 
01001 Register 1 relative disp(R1) 
01010 Register 2 relative disp(R2) 
01011 Register 3 relative disp(R3) 
01100 Register 4 relative disp(R4) 
01101 Register 5 relative disp(R5) 
01110 Register B relative disp(RB) 
01111 Register 7 relative disp(R7) 
Memory Relative 
10000 Frame memory relative disp2(disp1 (FP» Disp2 + Pointer; Pointer found at 
10001 Stack memory relative disp2(disp1 (SP» address Disp1 + Register. "SP" 
10010 Static memory relative disp2( disp 1 (SB» is either SPO or SP1 , as selected 

in PSR. 
Reserved 
10011 (Reserved for Future Use) 
Immediate 
10100 Immediate value None: Operand is input from 

instruction queue. 
Absolute 
10101 Absolute @disp Disp. 
External 
10110 External EXT (disp1) + disp2 Disp2 + Pointer; Pointer is found 

at Link Table Entry number Disp1. 
Top of Stack 
10111 Top of stack TOS Top of current stack, using either 

User or Interrupt Stack Pointer, 
as selected in PSR. Automatic 
Push/Pop included. 

Memory Space 
11000 Frame memory disp(FP) Disp + Register; "SP" is either 
11001 Stack memory disp(SP) SPO or SP1, as selected in PSR. 
11010 Static memory disp(SB) 
11011 Program memory *+disp 
Scaled Index 
11100 Index, bytes mode[Rn:B] EA (mode) + Rn. 
11101 Index, words mode[Rn:W] EA (mode) + 2x Rn. 
11110 Index, double words mode[Rn:D] EA (mode) + 4x Rn. 
11111 Index, quad words mode[Rn:Q] EA (mode) + B X Rn. 

'Mode' and 'n' are contained 
within the Index Byte. 
EA (mode) denotes the effective 
address generated using mode. 

2-242 



2.0 Architectural Description (Continued) 

TABLE 2-2 
NS32032 Instruction Set Summary 

MOVES 

Format Operation Operands Description 
4 MOVi gen,gen Move a value. 
2 MOVQi short,gen Extend and move a signed 4-bit constant. 
7 MOVMi gen,gen,disp Move Multiple: disp bytes (1 to 16). 
7 MOVZBW gen,gen Move with zero extension. 
7 MOVZiD gen,gen Move with zero extension. 
7 MOVXBW gen,gen Move with sign extension. 
7 MOVXiD gen,gen Move with sign extension. 
4 ADDR gen,gen Move Effective Address. 

INTEGER ARITHMETIC 

Format Operation Operands Description 

4 ADDI gen,gen Add. 
2 ADDQi short,gen Add signed 4-bit constant. 
4 ADDCi gen,gen Add with carry. 
4 SUBi gen,gen Subtract. 
4 SUBCi gen,gen Subtract with carry (borrow). 
6 NEGi gen,gen Negate (2's complement). 
6 ABSi gen,gen Take absolute value. 
7 MULi gen,gen Multiply 
7 QUOi gen,gen Divide, rounding toward zero. 
7 REMi gen,gen Remainder from QUO. 
7 DIVi gen,gen Divide, rounding down. 
7 MODi gen,gen Remainder from DIV (Modulus). 
7 MEIi gen,gen Multiply to Extended Integer. 
7 DEli gen,gen Divide Extended Integer. 

PACKED DECIMAL (BCD) ARITHMETIC 

Format Operation Operands Description 

6 ADDPi gen,gen Add Packed. 
6 SUBPi gen,gen Subtract Packed. 

INTEGER COMPARISON 

Format Operation Operands Description 

4 CMPi gen,gen Compare. 
2 CMPQi short,gen Compare to signed 4-bit constant. 
7 CMPMi gen,gen,disp Compare Multiple: disp bytes (1 to 16). 

LOGICAL AND BOOLEAN 

Format Operation Operands Description 

4 ANDi gen,gen Logical AND. 
4 ORi gen,gen Logical OR. 
4 BICi gen,gen Clear selected bits. 
4 XORi gen,gen Logical Exclusive OR. 
6 COMi gen,gen Complement all bits. 

6 NOTi gen,gen Boolean complement: LSB only. 

2 Scondi gen Save condition code (cond) as a Boolean variable of size i. 

2-243 

z 
tJ) 
w 
I\) 
o w 
I\) . ..... 
o 



C) r-------------------------------------------------------------------------------------~ .... 
~ 
Cf) 

~ 
~ z 

2.0 Architectural Description (Continued) 

TABLE 2·2 (Continued) 
NS32032 Instruction Set Summary (Continued) 

SHIFTS 

Format Operation Operands Description 
6 LSHi gen,gen Logical Shift, left or right. 
6 ASHi gen,gen Arithmetic Shift, left or right. 
6 ROTi gen,gen Rotate, left or right. 

BITS 

Format Operation Operands Description 

4 TBITi gen,gen Test bit. 
6 SBITi gen,gen Test and set bit. 
6 SBITII gen,gen Test and set bit, interlocked 
6 CBITi gen,gen Test and clear bit. 
e CBITli gen,gen Test and clear bit, interlocked. 
6 IBITi gen,gen Test and invert bit. 
8 FFSi gen,gen Find first set bit 

BIT FIELDS 

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records 
used in Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned 
source. 
Format Operation Operands Description 

8 EXTi reg,gen,gen,disp Extract bit field (array oriented). 
8 INSi reg,gen,gen,disp Insert bit field (array oriented). 
7 EXTSi gen,gen,imm,imm Extract bit field (short form). 
7 INSSi gen,gen,imm,imm Insert bit field (short form). 
8 CVTP reg,gen,gen Convert to Bit Field Pointer. 

ARRAYS 

Format Operation Operands Description 

8 CHECKi reg,gen,gen Index bounds check. 
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays. 

STRINGS 

String instructions assign specific functions to the Gen­
eral Purpose Registers: 

Options on all string instructions are: 

B (Backward): Decrement string pointers after each step 
rather than incrementing. R4 - Comparison Value 

R3 - Translation Table Pointer 

R2 - String 2 Pointer 

R 1 - String 1 Pointer 

RO - Limit Count 

Format Operation 
5 MOVSi 

MOVST 

5 CMPSi 
CMPST 

5 SKPSi 
SKPST 

Operands 
options 
options 

options 
options 

options 
options 

U (Until match): End instruction if String 1 entry matches 
R4. 

W (While match): End instruction if String 1 entry does not 
match R4. 

All string instructions end when RO decrements to zero. 

Descriptions 
Move String 1 to String 2. 
Move string, translating bytes. 

Compare String 1 to String 2. 
Compare translating, String 1 bytes. 

Skip over String 1 entries 
Skip, translating bytes for Until/While. 

2-244 



2.0 Architectural Description (Continued) 

TABLE 2-2 (Continued) 
NS32032 Instruction Set Summary (Continued) 

JUMPS AND LINKAGE 

Format Operation Operands Description 
3 JUMP gen Jump. 
0 BR disp Branch (PC Relative). 
0 Bcond disp Conditional branch. 
3 CASEi gen Multiway branch. 
2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero. 
3 JSR gen Jump to subroutine. 

BSR disp Branch to subroutine. 
1 CXP disp Call external procedure. 
3 CXPD gen Call external procedure using descriptor. 

SVC Supervisor Call. 
FLAG Flag Trap. 
BPT Breakpoint Trap. 
ENTER [reg Iistl,disp Save registers and allocate stack frame (Enter Procedure). 
EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure). 
RET disp Return from subroutine. 
RXP disp Return from external procedure call. 
RETT disp Return from trap. (Privileged) 

1 RETI Return from interrupt. (Privileged) 

CPU REGISTER MANIPULATION 

Format Operation Operands Description 

SAVE [reg list] Save General Purpose Registers. 
1 RESTORE [reg list] Restore General Purpose Registers. 
2 LPRi areg,gen Load Dedicated Register. (Privileged if PSR or INTBASE) 
2 SPRi areg,gen Store Dedicated Register. (Privileged if PSR or INTBASE) 
3 ADJSPi gen Adjust Stack Pointer. 
3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length) 
3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length) 
5 SETCFG [option list] Set Configuration Register. (Privileged) 

FLOATING POINT 

Format Operation Operands Description 

11 MOVf gen,gen Move a Floating Point value. 
9 MOVLF gen,gen Move and shorten a Long value to Standard. 
9 MOVFL gen,gen Move and lengthen a Standard value to Long. 
9 MOVif gen,gen Convert any integer to Standard or Long Floating. 
9 ROUNDfi gen,gen Convert to integer by rounding. 
9 TRUNCfi gen,gen Convert to integer by truncating, toward zero. 
9 FLOORfi gen,gen Convert to largest integer less than or equal to value. 

11 ADDf gen,gen Add. 
11 SUBf gen,gen Subtract. 
11 MULl gen,gen Multiply. 
11 DIVf gen,gen Divide. 
11 CMPf gen,gen Compare. 
11 NEGf gen,gen Negate. 
11 ABSf gen,gen Take absolute value. 
9 LFSR gen Load FSR. 
9 SFSR gen Store FSR. 

MEMORY MANAGEMENT 

Format Operation Operands Description 

14 LMR mreg.gen Load Memory Management Register. (Privileged) 
14 SMR mreg,gen Store Memory Management Register. (Privileged) 
14 RDVAL gen Validate address for reading. (Privileged) 
14 WRVAL gen Validate address for writing. (Privileged) 
8 MOVSUi gen,gen Move a value from Supervisor 

Space to User Space. (Privileged) 
8 MOVUSi gen,gen Move a value from User Space 

to Supervisor Space. (Privileged) 

2-245 

z en 
Co) 
N o 
Co) 

~ .... 
o 



0 ..... 
• 2.0 Architectural Description (Continued) N 

('I) 
0 TABLE 2·2 (Continued) 
N 
('I) NS32032 Instruction Set Summary (Continued) 
(I) 

MISCELLANEOUS Z 
Format Operation Operands Description 

1 NOP No Operation. 
WAIT Wait for interrupt. 
DIA Diagnose. Single-byte "Branch to Self" for hardware 

breakpointing. Not for use in programming. 

CUSTOM SLAVE 

Format Operation Operands Description 

15.5 CCALOc gen,gen Custom Calculate. 
15.5 CCAL1c gen,gen 
15.5 CCAL2c gen,gen 
15.5 CCAL3c gen,gen 

15.5 CMOVOc gen,gen Custom Move. 
15.5 CMOV1c gen,gen 
15.5 CMOV2c gen,gen 
15.5 CMOV3c gen,gen 

15.5 CCMPOc gen,gen Custom Compare. 
15.5 CCMP1c gen,gen 

15.1 CCVOci gen,gen Custom Convert. 
15.1 CCV1ci gen,gen 
15.1 CCV2ci gen,gen 
15.1 CCV3ic gen,gen 
15.1 CCV4DO gen,gen 
15.1 CCV50D gen,gen 

15.1 LCSR gen Load Custom Status Register. 
15.1 SCSR gen Store Custom Status Register. 

15.0 CATSTO gen Custom Address/Test. (Privileged) 
15.0 CATST1 gen (Privileged) 

15.0 LCR creg,gen Load Custom Register. (Privileged) 
15.0 SCR creg,gen Store Custom Register. (Privileged) 

2-246 



3.0 Functional Description 
3.1 POWER AND GROUNDING 

The NS32032 requires a single 5-volt power supply, applied 
on pin 1 B (Vee!. 

Grounding connections are made on four pins. Logic 
Ground (GNDL, pin 54) is the common pin for on-chip logic, 
and Buffer Grounds (GNDB1, pin 52 and GNDB2, pin 16 
and GNDB3, pin 60) (16) are the common pins for the out­
put drivers. For optimal noise immunity it is recommended 
that GNDBI and GNDB2 be connected together through a 
single conductor, and GNDL be directly connected to the 
middle point of this conductor. All other ground connections 
should be made to the common line as shown in Figure 3-1. 

In addition to Vee and Ground, the NS32032 CPU uses an 
internally-generated negative voltage. It is necessary to filter 
this voltage externally by attaching a pair of capacitors (Fig. 
3-1) from the BBG pin to ground. Recommended values for 
these are: 

C1: 1 fLF, Tantalum. 

C2: 1000 pF, low inductance. This should be either a disc or 
monolithic ceramic capacitor. 

NS32032 
CPU 

TUEE/5491-12 

FIGURE 3-1. Recommended Supply Connections 

3.2 CLOCKING 

The NS32032 inputs clocking signals from the Timing Con­
trol Unit (TCU), which presents two non-overlapping phases 
of a single clock frequency. These phases are called 

Vcc 

PHIl ---f---.... 

PHil (pin 26) and PHI2 (pin 27). Their relationship to each 
other is shown in Figure 3-2. 

Each rising edge of PHil defines a transition in the timing 
state ("T-State") of the CPU. One T-State represents the 
execution of one microinstruction within the CPU, and/or 
one step of an external bus transfer. See Section 4 for com­
plete specifications of PHil and PHI2. 

PHIl 

PHI2 

TLlEE/5491-13 

FIGURE 3-2. Clock Timing Relationships 

As the TCU presents signals with very fast transitions, it is 
recommended that the conductors carrying PHil and PHI2 
be kept as short as possible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TIL Clock signal (CTIL) is provided by the 
TCU for all other clocking. 

3.3 RESETTING 

The RST / ABT pin serves both as a Reset for on-chip logic 
and as the Abort input for Memory-Managed systems. For 
its use as the Abort Command, see Sec. 3.5.4. 

The CPU may be reset at any time by pulling the RST / ABT 
pin low for at least 64 clock cycles. Upon detecting a reset, 
the CPU terminates instruction processing, resets its inter­
nal logic, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes. 

On application of power, RST / ABT must be held low for at 
least 50 fLsec after Vee is stable. This is to ensure that all 
on-chip voltages are completely stable before operation. 
Whenever a Reset is applied, it must also remain 

RSr/Aiii ---+----------I~...J 

1-----1::501'_ -----l 

TL/EE/5491-14 

FIGURE 3-3_ Power-on Reset Requirements 

2-247 



o r---------------------------------------------------------------------~ 
'P'" 

~ 
Cf) 
o 
N 
Cf) 
tJ) 
Z 

3.0 Functional Description (Continued) 

active for not less than 64 clock cycles. The rising edge 
must occur while PHI1 is high. See Figures 3-3 and 3-4. 

The NS32201 Timing Control Unit (TCU) provides circuitry 
to meet the Reset requirements of the NS32032 CPU. Fig­
ure 3-5a shows the recommended connections for a non­
Memory-Managed system. Figure 3-5b shows the connec­
tions for a Memory-Managed system. 

vcc 

r------------., 

N632201 
TCU 

TL/EE/5491-15 

FIGURE 3-4. General Reset Timing 

NS32032 
CPU 

I I 

I RESET 1>--l-1--l--_-1--....... + .... ----' RSTI R-STO - -I I /----"""1r----l RST/ABT 

, I L. _____________ .J 

EXTERNAL RESET 
(OPTIONAL) 

RESET SWITCH 
(OPTIONAL) 

~50J.L.ec 

SYSTEM REiEr 

TL/EE/5491-16 

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System 

vcc 

r------------., 
I I 

N832201 
TCU 

N832082 
MMU 

NS32032 
CPU 

I RESET 1>---1Ii-+"""1r+-~~ ...... ~----I iiSii RsTci 
I 
! I L. _____________ .J 

EXTERNAL RESET 
(OPTIONAL) 

RESET SWITCH 
(OPTIONAL) 

~ 50~sec 

TL/EE/5491-17 

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System 

3.4 BUS CYCLES 

The NS32032 CPU has a strap option which defines the Bus 
Timing Mode as either With or Without Address Translation. 
This section describes only bus cycles under the No Ad­
dress Translation option. For details of the use of the strap 
and of bus cycles with address translation, see Sec. 3.5. 

The CPU will perform a bus cycle for one of the following 
reasons: 

1) To write or read data, to or from memory or a peripheral 
interface device. Peripheral input and output are memory­
mapped in the Series 32000 family. 

2) To fetch instructions into the eight-byte instruction queue. 
This happens whenever the bus would otherwise be idle 
and the queue is not already full. 

2-248 

3) To acknowledge an interrupt and allow external circuitry 
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine. 

4) To transfer information to or from a Slave Processor. 

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Sec. 4. The only external 
difference between them is the four-bit code placed on the 
Bus Status pins (STO-ST3). Slave Processor cycles differ in 
that separate control signals are applied (Sec. 3.4.6). 

The sequence of events in a non-Slave bus cycle is shown 
below in Figure 3-7 for a Read cycle and Figure 3-8 for a 
Write cycle. The cases shown assume that the selected 
memory or interface device is capable of communicating 
with the CPU at full speed. If it is not, then cycle extension 
may be requested through the RDY line (Sec. 3.4.1). 



3.0 Functional Description (Continued) 

A full-speed bus cycle is performed in four cycles of the 
PHI1 clock signal, labeled T1 through T4. Clock cycles not 
associated with a bus cycle are designated Ti (for "Idle"). 

During T1, the CPU applies an address on pins ADO-AD23. 
It also provides a low-going pulse on the ADS pin, which 
serves the dual purpose of informing external circuitry that a 
bus cycle is starting and of providing control to an external 
latch for demultiplexing Address bits 0-23 from the ADO­
AD23 pins. See Figure 3-6. During this time also the status 
signals DDIN, indicating the direction of the transfer, and 
BEO-BE3, indicating which of the four bus bytes are to be 
referenced, become valid. 

During T2 the CPU switches the Data Bus, ADO-AD31 to 
either accept or present data. It also starts the data strobe 
(DS), signalling the beginning of the data transfer. Associat­
ed signals from the NS32201 Timing Control Unit are also 
activated at this time: RD (Read Strobe) or WR (Write 
Strobe), TSO (Timing State Output, indicating that T2 has 
been reached) and DBE (Data Buffer Enable). 

The T3 state provides for access time reqUirements, and it 
occurs at least once in a bus cycle. At the end of T2 or T3, 
on the falling edge of the PHI2 clock, the ROY (Ready) line 
is sampled to determine whether the bus cycle will be ex­
tended (Sec. 3.4.1). 

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD31) is sampled at the falling edge of PHI2 of the last T3 
state. See Section 4. Data must, however, be held at least 
until the beginning of T4. OS and RD are guaranteed not to 
go inactive before this paint, so the rising edge of either of 
them may safely be used to disable the device providing the 
input data. 

The T4 state finishes the bus cycle. At the beginning of T4, 
the DS, RD or WR, and TSO signals go inactive, and at the 
rising edge of PHI2, DBE goes inactive, having provided for 
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T4. Note that the Bus 
Status lines (STO-ST3) change at the beginning of T4, an­
ticipating the following bus cycle (if any). 

fiCiN I--~------I 

024-031 

ADO-AD23 

NS32032 

PHil PHI2 iiSliiU: 

PHil PHI2 ADS ODIN 

NS32201 

os 

DBE AD 
RDI-----------~ 

WR 
WRI-----------~ 

TSo 
TsO~-----------. 

FIGURE 3·6. Bus Connections 

2-249 

TLlEE/5491-18 

II 



o r-----------------------------------------------------------------------------, .... 
~ o 
~ 
rn z 

3.0 Functional Description (Continued) 

NS32032 cpu BUS SIGNALS 

I T40RTi I T1 T2 T3 

PHil [ 

PHI 2 [ 

ADO-AD23 [ 

D24-D31 [ 

Aii§ [ 

STOoBT3 [ 

i5iiiN [ 

iEO-lli [ 

Os [ 

RDY [ 

AD [ 

DBE [ 

rso[ 

FIGURE 3-7. Read Cycle Timing 

2·250 

T4 I Tl0RTI I 

TL/EE/5491-20 



3.0 Functional Description (Continued) 

NS32032 CPU BUS SIGNALS 

T3 

FIGURE 3-8. Write Cycle Timing 

2-251 

T4 I Tl0RTi I 

Tl/EE/5491-19 

z en 
Co) 
N o 
Co) 

')) ..... 
o 



3.0 Functional Description (Continued) 

3.4.1 Cycle Extension 

To allow sufficient strobe widths and access times for any 
speed of memory or peripheral device, the NS32032 pro­
vides for extension of a bus cycle. Any type of bus cycle 
except a Slave Processor cycle can be extended. 

In Figures 3-7 and 3-8, note that during T3 all bus control 
signals from the CPU and TCU are fiat. Therefore, a bus 
cycle can be cleanly extended by causing the T3 state to be 
repeated. This is the purpose of the RDY (Ready) pin. 

At the end of T2 on the falling edge of PHI2, the RDY line is 
sampled by the CPU. If RDY is high, the nextT-states will be 
T3 and then T4, ending the bus cycle. If RDY is low, then 
another T3 state will be inserted after the next T -state and 
the RDY line will again be sampled on the falling edge of 
PHI2. Each additional T3 state after the first is referred to as 
a "WAIT STATE". See Figure 3-9. 

Tl T2 

PHil 

PHI2 

RDY 

The RDY pin is driven by the NS32201 Timing Control Unit, 
which applies WAIT States to the CPU as requested on 
three sets of pin: 

1) CWAIT (Continuous WAIT), which holds the CPU in 
WAIT states until removed. 

2) WAIT1, WAIT2, WAIT4, WAITS (Collectively WAITn), 
which may be given a four-bit binary value requesting a 
specific number of WAIT States from 0 to 15. 

3) PER (Peripheral), which inserts five additional WAIT 
states and causes the TCU to reshape the RD and WR 
strobes. This provides the setup and hold times required 
by most MOS peripheral interface devices. 

Combinations of these various WAIT requests are both legal 
and useful. For details of their use, see the NS32201 Data 
Sheet. 

Figure 3-10 illustrates a typical Read cycle, with two WAIT 
states requested through the TCU WAITn pins. 

T3 I (W~T) I T4 

TL/EE/5491-21 

FIGURE 3·9. ROY Pin Timing 

3.4.2 Bus Status 

The NS32032 CPU presents four bits of Bus Status informa­
tion on pins STO-ST3. The various combinations on these 
pins indicate why the CPU is performing a bus cycle, or, if it 
is idle on the bus, then why is it idle. 

Referring to Figures 3-7 and 3-8, note that Bus Status leads 
the corresponding Bus Cycle, going valid one clock cycle 
before T1, and changing to the next state at T 4. This allows 
the system designer to fully decode the Bus Status and, if 
desired, latch the decoded signals before ADS initiates the 
Bus Cycle. 

The Bus Status pins are interpreted as a four-bit value, with 
STO the least significant bit. Their values decode as follows: 

0000 - The bus is idle because the CPU does not need 
to perform a bus access. 

0001 - The bus is idle because the CPU is executing the 
WAIT instruction. 

0010 - (Reserved for future use.) 

0011 - The bus is idle because the CPU is waiting for a 
Slave Processor to complete an instruction. 

0100 - Interrupt Acknowledge, Master. 

The CPU is performing a Read cycle. To ac­
knowledge receipt of a Non-Maskable Interrupt 
(on NMI) it will read from address FFFF0016, but 
will ignore any data provided. 

2-252 

To acknowledge receipt of a Maskable Interrupt 
(on INT) it will read from address FFFE0016, ex­
pecting a vector number to be provided from the 
Master NS32202 Interrupt Control Unit. If the 
vectoring mode selected by the last SETCFG in­
struction was Non-Vectored, then the CPU will 
ignore the value it has read and will use a default 
vector instead, having assumed that no NS32202 
is present. See Sec. 3.4.5. 

0101 - Interrupt Acknowledge, Cascaded. 

The CPU is reading a vector number from a Cas­
caded NS32202 Interrupt Control Unit. The ad­
dress provided is the address of the NS32202 
Hardware Vector register. See Sec. 3.4.5. 

0110 - End of Interrupt, Master. 

The CPU is performing a Read cycle to indicate 
that it is executing a Return from Interrupt (RETI) 
instruction. See Sec. 3.4.5. 

0111 - End of Interrupt, Cascaded. 

The CPU is reading from a Cascaded Interrupt 
Control Unit to indicate that it is returning 
(through RETI) from an interrupt service routine 
requested by that unit. See Sec. 3.4.5. 

1000 - Sequential Instruction Fetch. 

The CPU is reading the next sequential word 
from the instruction stream into the Instruction 



3.0 Functional Description (Continued) 

PREVo CYCLE N532032 CPU BUS SIGNALS NEXT CYCLE 

IT40RTi I T1 I T2 I T3 I (vl~n I (vlilT) I T4 IT10RTi I 
PHil [ -iLL iL iL IL ~ IL iL~ 
PHI2 [ 

ADO-AD23 [ 

024-031 [ 

- Jl Jl J J Lf J}U1 U1~ 
~ ~ ~ )--~ w ~ ~ 

VALID ~--- NEXT ADD 
I-

~ ~ ~ ~--~ W ~ DATAIN --- .~~ 

R 

ADS [ V V 
5T0-5T3 [ ~ ~ STATUS VALID X NEXT STATU 5 

~ ~ ~ I~ -

~ ~ VALID NEXT 

- j 1\ 
NS32201 Teu CYCLE EXTENSION SIGNALS 

t t t 
CWAiT[ %: ~ rIM ~ V~ ~ ~ ~ 

~ ~ 'W I~ V.W W ~~ ~ W& ~ 
t 

~[ ~ t;::f@ ~ ~I~W:~V~ W% ~ % 

ROY [ 

(TCUTOCPU 

DBE [ 

T50 [ 

) 

-V 
- V 
-~ 
_V 

1ft 

INS32201 TL BUS SIGJLS 

Ii 

\ V 

FIGURE 3-10. Extended Cycle Example 
TL/EE/5491-22 

Note: Arrows on CWAIT, PER, WAITn indicate pOints at which the TCU samples. Arrows on AOO-A015 and ROY indicate points at which the CPU samples. 

2-253 

z en 
Co) 
N o 
Co) 

~ .... 
o 



C) r-------------------------------------------------------------------------------------, ..-
N 
C') 
C) 
N 

~ 
Z 

3.0 Functional Description (Continued) 

Queue. It will do so whenever the bus would oth­
erwise be idle and the queue is not already full. 

1001 - Non-Sequential Instruction Fetch. 

The CPU is performing the first fetch of instruc­
tion code after the Instruction Queue is purged. 
This will occur as a result of any jump or branch, 
or any interrupt or trap, or execution of certain 
instructions. 

1010 - Data Transfer. 

The CPU is reading or writing an operand of an 
instruction. 

1011 - Read RMW Operand. 

The CPU is reading an operand which will subse­
quently be modified and rewritten. If memory pro­
tection circuitry would not allow the following 
Write cycle, it must abort this cycle. 

1100 - Read for Effective Address Calculation. 

The CPU is reading information from memory in 
order to determine the Effective Address of an 
operand. This will occur whenever an instruction 
uses the Memory Relative or External addressing 
mode. 

1101 - Transfer Slave Processor Operand. 

The CPU is either transferring an instruction op­
erand to or from a Slave Processor, or it is issu­
ing the Operation Word of a Slave Processor in­
struction. See Sec. 3.9.1. 

1110 - Read Slave Processor Status. 

The CPU is reading a Status Word from a Slave 
Processor. This occurs after the Slave Processor 
has signalled completion of an instruction. The 
transferred word tells the CPU whether a trap 
should be taken, and in some instructions it pre­
sents new values for the CPU Processor Status 
Register bits N, Z, L or F. See Sec. 3.9.1. 

1111 - Broadcast Slave ID. 

The CPU is initiating the execution of a Slave 
Processor instruction. The ID Byte (first byte of 
the instruction) is sent to all Slave Processors, 
one of which will recognize it. From this point the 
CPU is communicating with only one Slave Proc­
essor. See Sec. 3.9.1. 

3.4.3 Data Access Sequences 

The 24-bit address provided by the NS32032 is a byte ad­
dress; that is, it uniquely identifies one of up to 16,777,216 
eight-bit memory locations. An important feature of the 
NS32032 is that the presence of a 32-bit data bus imposes 
no restrictions on data alignment; any data item, regardless 
01 size, may be placed starting at any memory address. The 
NS32032 provides special control Signals. Byte Enable 
(BEO-BE3) which facilitate individual byte accessing on a 
32-bit bus. 

Memory is organized as four eight-bit banks, each bank re­
ceiving the double-word address (A2-A23) in parallel. One 
bank, connected to Data Bus pins ADO-AD? is enabled 

2-254 

when BEO is low. The second bank, connected to data bus 
pins AD8-AD15 is enabled when BE1 is low. The third and 
fourth banks are enabled by BE2 and BE3, respectively. 
See Figure 3-11. 

TL/EE/5491-23 

FIGURE 3·11. Memory Interface 

Since operands do not need to be aligned with respect to 
the double-word bus access performed by the CPU, a given 
double-word access can contain one, two, three, or four 
bytes of the operand being addressed, and these bytes can 
begin at various positions, as determined by A1, AO. Table 
3-1 lists the 10 resulting access types. 

TABLE 3·1 
Bus Access Types 

Type BytesAccessed A1,AO BE3 BE2 BE1 BEO 
1 1 00 1 0 
2 01 1 0 
3 10 0 1 
4 11 0 1 
5 2 00 0 0 
6 2 01 1 0 0 
? 2 10 0 0 1 1 
8 3 00 0 0 0 
9 3 01 0 0 0 1 

10 4 00 0 0 0 0 

Accesses of operands requiring more than one bus cycle 
are performed sequentially, with no idle T-States separating 
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment. Table 3-2 lists 
the bus cycles performed for each situation. 



,----------------------------------------------------------------------, z 
3.0 Functional Description (Continued) 

Cycle Type Address 

A. Word at address ending with 11 

1. 
2. 

4 A 
A+1 

o 

B. Double word at address ending with 01 

1. 
2. 

9 A 
A+3 

o 

C. Double word at address ending with 10 

1. 7 A 0 
2. S A+2 

D. Double word at address ending with 11 

o 

0 
1 

0 

TABLE 3·2 

Access Sequences 

0 

0 
1 0 

0 0 

Data Bus 

I '\ 
Byte 3 Byte 2 Byte 1 Byte 0 

IBYTE11BYTEOI +- A 

Byte 0 X X X 
X X X Byte 1 

IBYTE31BYTE21BYTE11BYTEOI +- A 

Byte 2 Byte 1 Byte 0 X 
X X X Byte 3 

I BYTE 31 BYTE 21 BYTE 1 1 BYTE 01 +- A 

Byte 1 Byte 0 X X 
X X Byte 3 Byte 2 

IBYTE31BYTE21BYTE11BYTEOI +- A 

Byte 0 X X X 1. 
2. 

4 
8 

A 
A+1 o 0 0 X Byte 3 Byte 2 Byte 1 

E. Quad word at address ending with 00 I BYTE 71 BYTE 61 BYTE SIBYTE 41 BYTE 3/BYTE 21 BYTE 11 BYTE 01 +- A 

1. 10 A o o o o Byte 3 Byte 2 Byte 1 Byte 0 
Other bus cycles (instruction prefetch or slave) can occur here. 
2. 10 A + 4 0 0 0 0 Byte 7 Byte 6 ByteS Byte 4 

F. Quad word at address ending with 01 I BYTE 71 BYTE 61 BYTE sl BYTE 41 BYTE 31 BYTE 2/ BYTE 11 BYTE 0 I +- A 

1. 
2. 

9 A 
A+3 

o o o 

Other bus cycles (instruction prefetch or slave) can occur here. 

1 
o 

Byte 2 
X 

Byte 1 
X 

Byte 0 
X 

X 
Byte 3 

3. 9 A + 4 0 0 0 1 Byte 6 Byte S Byte 4 X 
4. 1 A + 7 1 1 0 X X X Byte 7 

G. Quad word at address endIng wIth 10 I BYTE 71 BYTE 61 BYTE sl BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I +- A 

1. 
2. 

7 
S 

A 
A+2 

o o 
1 

1 
o 

Other bus cycles (instruction prefetch or slave) can occur here. 

1 
o 

Byte 1 
X 

Byte 0 
X 

X 
Byte 3 

X 
Byte 2 

3. 7 A + 4 0 0 1 Byte S Byte 4 X X 
4. S A + 6 0 0 X X Byte 7 Byte 6 

H. Quad word at address endIng wIth 11 I BYTE 71 BYTE 61 BYTE sl BYTE 41 BYTE 31 BYTE 21 BYTE 11 BYTE 0 I +- A 

1. 4 A 0 1 1 Byte 0 X X X 
2. 8 A+1 0 0 0 X Byte 3 Byte 2 Byte 1 
Other bus cycles (instruction prefetch or slave) can occur here. 
1. 4 A+4 0 1 1 Byte 4 X X X 
2. 8 A+S 0 0 0 X Byte 7 Byte 6 ByteS 

X = Don't Care 

2-2SS 

U) 
(0) 
I\) 
o 
(0) 
I\) . ... 
o 

• 



3.0 Functional Description (Continued) 

3.4.3.1 Bit Accesses 

The Bit Instructions perform byte accesses to the byte con· 
taining the designated bit. The Test and Set Bit instruction 
(SBIT), for example, reads a byte, alters it, and rewrites it, 
having changed the contents of one bit. 

3.4.3.2 Bit Field Accesses 

An access to a Bit Field in memory always generates a Dou· 
ble-Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract 
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it. 

3.4.3.3 Extending Multiply Accesses 

The Extending Multiply Instruction (MEl) will return a result 
which is twice the size in bytes of the operand it reads. If the 
multiplicand is in memory, the most-significant half of the 
result is written first (at the higher address), then the least­
significant half. This is done in order to support retry if this 
instruction is aborted. 

3.4.4 Instruction Fetches 

Instructions for the NS32032 CPU are "prefetched"; that is, 
they are input before being needed into the next available 
entry of the eight-byte Instruction Queue. The CPU performs 
two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by 
their differing status combinations on pins STO-ST3 (Sec. 
3.4.2). 

2-256 

A Sequential Fetch will be performed by the CPU whenever 
the Data Bus would otherwise be idle and the Instruction 
Queue is not currently full. Sequential Fetches are always 
type 10 Read cycles (Table 3-1). 

A Non-Sequential Fetch occurs as a result of any break in 
the normally sequential flow of a program. Any jump or 
branch instruction, a trap or an interrupt will cause the next 
Instruction Fetch cycle to be Non-Sequential. In addition, 
certain instructions flush the instruction queue, causing the 
next instruction fetch to display Non-Sequential status. Only 
the first bus cycle after a break displays Non-Sequential 
status, and that cycle depends on the destination address. 
Note: During non·sequential fetches, BEO-BE3 are all active regardless of 

the alignment. 

3.4.5 Interrupt Control Cycles 

Activating the INT or NMI pin on the CPU will initiate one or 
more bus cycles whose purpose is interrupt control rather 
than the transfer of instructions or data. Execution of the 
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data 
transfers only in the status pesented on pins STO-ST3. All 
Interrupt Control cycles are single-byte Read cycles. 

This section describes only the Interrupt Control sequences 
associated with each interrupt and with the return from its 
service routine. For full details of the NS32032 interrupt 
structure, see Sec. 3.B. 



3.0 Functional Description (Continued) 

TABLE 3·3 
Interrupt Sequences 

r 
Cycle Status Address ODIN BE3 BE2 BE1 BED Byte 3 Byte 2 

A. Non-Maskable Interrupt Control Sequences 

Interrupt Acknowledge 
1 0100 FFFF0016 o o x X 

Interrupt Return 
None: Performed through Return from Trap (RETT) instruction. 

B. Non- Vectored Interrupt Control Sequences 

Interrupt Acknowledge 
1 0100 FFFE0016 0 0 X X 

Interrupt Return 
1 0110 FFFE0016 0 0 X X 

C. Vectored Interrupt Sequences: Non-Cascaded. 

Interrupt Acknowledge 
1 0100 FFFE0016 0 0 X X 

Interrupt Return 
1 0110 FFFE0016 0 0 X X 

D. Vectored Interrupt Sequences: Cascaded 

Interrupt Acknowledge 
1 0100 FFFE0016 o o X X 

(The CPU here uses the Cascade Index to find the Cascade Address.) 

Data Bus 

\ 

Byte 1 Byte 0 

X X 

X X 

X X 

X Vector: 
Range: 0-127 

X Vector: Same as 
in Previous In!. 
Ack. Cycle 

X Cascade Index: 
range -16to-1 

2 0101 Cascade 0 See Note 
Address 

Vector, range 9-255; on appropriate byte of 
data bus. 

Interrupt Return 
1 0110 FFFE0016 o 

(The CPU here uses the Cascade Index to find the Cascade Address) 
2 0111 Cascade 0 See Note 

Address 

X = Don't Care 

o X X 

X X 

X 

X 

Cascade Index: 
Same as in 
previous In!. 
Ack. Cycle 

X 

Note: BEO-BE3 signals will be activated according to the cascaded leu address. The cycle type can be 1, 2, 3 or 4, when reading the interrupt vector. The vector 
value can be in the range 0-255. 

2·257 

z 
(f) 
Co) 
N o 
Co) 
N 

I .... 
o 



C) r---------------------------------------------------------------------------------, ..-
N 3.0 Functional Description (Continued) 

~ 3.4.6 Slave Processor Communication 

(J) In addition to its use as the Address Translation strap (Sec. 
Z 3.5.1), the AT/SPC pin is used as the data strobe for Slave 

Processor transfers. In this role, it is referred to as Slave 
Processor Control (SPC). In a Slave Processor bus cycle, 
data is transferred on the Data Bus (ADO-AD15), and the 
status lines (STO-ST3) are monitored by each Slave Proc­
essor in order to determine the type of transfer being per­
formed. SPC is bidirectional, but is driven by the CPU during 
all Slave Processor bus cycles. See Sec. 3.9 for full protocol 
sequences. 

Nota: 

(1) ('oU samples Data Bus here. 

PREY.CVCLE 

PHil [ 

PHil [ 

8TII-8T3 [ 

_<31[ 
OBE 

I T40rTi TI 

A ... 
AD«()'15) D(M5) 

AT/SPC " v 
SPC 

NS32D32 SLAVE 
CPU PROCESSOR 

5TO-ST3 STO-ST3 

TL/EE/5491-24 

FIGURE 3-12. Slave Processor Connections 

T4 

NEXT CYCLE 

TIORTI I 

TLlEE/5491 -25 

(2) DBE and ali other NS32201 TCU bus signals remain Inactive because no ADS pulse is received from the CPU. 

FIGURE 3-13. CPU Read from Slave Processor 

2-258 



3.0 Functional Description (Continued) 

3.4.6.1 Slave Processor Bus Cycles 

A Slave Processor bus cycle always takes exactly two clock 
cycles, labeled T1 and T4 (see Figures 3·13 and 3·14). Dur· 
ing a Read cycle SPC is active from the beginning of T1 to 
the beginning of T4, and the data is sampled at the end of 
T1. The Cycle Status pins lead the cycle by one clock peri· 
od, and are sampled at the leading edge of SPC. During a 
Write cycle, the CPU applies data and activates SPC at T1, 
removing SPC at T4. The Slave Processor latches status on 
the leading edge of SPC and latches data on the trailing 
edge. 

Since the CPU does not pulse the Address Strobe (ADS), 
no bus signals are generated by the NS32201 Timing Con­
trol Unit. The direction of a transfer is determined by the 
sequence ("protocol") established by the instruction under 
execution; but the CPU indicates the direction on the DDIN 
pin for hardware debugging purposes. 

PREV.CYCLE 

I T40RTI 

PHil [ 

§PC [ 

T1 

3.4.6.2 Slave Operand Transfer Sequences 

A Slave Processor operand is transferred in one or more 
Slave bus cycles. A By1e operand is transferred on the 
least-significant byte of the Data Bus (ADO-AD7), and a 
Word operand is transferred on bits ADO-AD15. A Double 
Word is transferred in a consecutive pair of bus cycles, 
least-significant word first. A Quad Word is transferred in 
two pairs of Slave cycles, with other bus cycles possibly 
occurring between them. The word order is from least-signif­
icant word to most·significant. 

Note that the NS32032 uses only the two least significant 
by1es of the data bus for slave cycles. This is to maintain 
compatibility with existing slave processors. 

T4 

NEXT CYCLE 

TIORTi I 

ADO-AD15 [ .-'f'""'" ....... '"'-'fJ ~--+----r ~_-+_ 

Note: 

STG-ST3 [ 

ADs [ 

_(2)[ 
DBE 

(I) Slave Processor samples Data Bus here. 

-' __ J 

TL/EE/5491-26 

(2) DBE. being provided by the NS32201 TCU. remains inactive due to the lact that no pulse is presented on ADS. TCU signals RD. WR and TSO also remain 
inactive. 

FIGURE 3·14. CPU Write to Slave Processor 

2-259 

z en 
Co:! 
I\) 
o 
Co:! 
~ ...... 
o 

• 



C) r---------------------------------------------------------------------------------~ ..-

i en z 

3.0 Functional Description (Continued) 

3.5 MEMORY MANAGEMENT OPTION 

The NS32032 CPU, in conjunction with the NS32082 Mem­
ory Management Unit (MMU), provides full support for ad­
dress translation, memory protection, and memory alloca­
tion techniques up to and including Virtual Memory. 

3.5.1 Address Translation Strap 

The Bus Interface Control section of the NS32032 CPU has 
two bus timing modes: With or Without Address Translation. 
The mode of operation is selected by the CPU by sampling 
the AT /SPC (Address Translation/Slave Processor Control) 
pin on the rising edge of the RST (Reset) pulse. If AT/SPC 

I T40Rn I T1 

PHI 1 [ 

PHil [ 

ADD-ADla [ 

014-031 [ 

ADS [ 

STO-ST3 [ 

ODiN [ 

iiEo"-iiii [ 

ROY [ 

is sampled as high, the bus timing is as previously described 
in Sec. 3.4. If it is sampled as low, two changes occur: 

1) An extra clock cycle, Tmmu, is inserted into all bus cy­
cles except Slave Processor transfers. 

2) The DS/FL T pin changes in function from a Data Strobe 
output (OS) to a Float Command input (FL n. 

The NS32082 MMU will itself pull the CPU AT/SPC pin low 
when it is reset. In non-Memory-Managed systems this pin 
should be pulled up to Vee through a 10 k.!l resistor. 

Note that the Address Translation strap does not specifical­
ly declare the presence of an NS32082 MMU, but only the 

TL/EE/5491-27 

FIGURE 3-15. Read Cycle with Address Translation (CPU Action) 

2-260 



r--------------------------------------------------------------------------, Z 

3.0 Functional Description (Continued) 

presence of external address translation circuitry. MMU in· 
structions will still trap as being undefined unless the 
SETCFG (Set Configuration) instruction is executed to de· 
clare the MMU instruction set valid. See Sec. 2.1.3. 

3.5.2 Translated Bus Timing 

Figures 3·15 and 3·16 illustrate the CPU activity during a 
Read cycle and a Write cycle in Address Translation mode. 
The additional T·State, Tmmu, is inserted between Tl and 
T2. During this time the CPU places ADO-AD23 into the 
TRI·STATE® mode, allowing the MMU to assert the trans· 
lated address and issue the physical address strobe PAY. 
T2 through T 4 of the cycle are identical to their counterparts 
without Address Translation. Note that in order for the 

NS320B2 MMU to operate correctly it must be set to the 
32032 mode by forcing A24/HBF low during reset. In this 
mode the bus lines ADI6-AD23 are floated after the MMU 
address has been latched, since they are used by the CPU 
to transfer data. 
Figures 3·17and 3·18 show a Read cycle and a Write cycle 
as generated by the 32032/320B2/32201 group. Note that 
with the CPU ADS signal gOing only to the MMU, and with 
the MMU PAY signal substituting for ADS everywhere else, 
Tmmu through T4 look exactly like Tl through T4 in a non· 
Memory·Managed system. For the connection diagram, see 
Appendix B. 

I T4 OR TI I Tl Tmmu I fa T3 T4 I Tl0RTI I 
PHil [ 

PHI 2 

ADO-AD23 [ 

D24-D31 [ 

ADS [ 

STD-ST3 [ STATUS VALID 

DoiN [ 

BEo-iiEi [ 

RDY [ 
TLlEE/5491-28 

FIGURE 3·16. Write Cycle with Address Translation (CPU Action) 

2·261 

U) 
Co) 
N o 
Co) 

~ ..... 
o 

• 



o r-----------------------------------------------------------------------------, .... 
~ 
COl) 
o 
C'oI 

~ 
Z 

3.0 Functional Description (Continued) 

I T40RTi I T1 I Trnmu I T2 T3 T4 I TlORTi I 
PHIl [ 

PHIZ [ 

ADO-AD23 [ 
D24-D3l [ 

Aoi[ 

PiV[ 

STO-8T3 [ 

OliN [~~~~~~--+-----~----~------r_~--~----_t_ 
BEo-iia [ 

iSO[ 
TL/EE/5491-29 

FIGURE 3-17. Memory-Managed Read Cycle 

2-262 



3.0 Functional Description (Continued) 

I T40RTi I Tl I Tmmu T2 T3 T4 I TlORTi I 
PHil [ 

PHI 2 [ 

ADO-A023 [ 

024-031 [ 

AiiS[ 

PiV[ 

STO·ST3 [ STATUS VALlO NEXT STATUS 

00iN[ 

BEo-iiEi [ VALID 

ROY [ 

NS32201 Teu BUS SIGNALS 

iiii[ 

DBE [ 

TL/EE/5491-30 
FIGURE 3-18. Memory-Managed Write Cycle 

2·263 



o ..... 

2 en z 

3.0 Functional Description (Continued) 

3.5.3 The FL T (Float) Pin 

The FL T pin is used by the CPU for address translation 
support. Activating FL T during Tmmu causes the CPU to 
wait longer than Tmmu for address translation and valida­
tion. This feature is used occasionally by the NS32082 MMU 
in order to update its translation look-aside buffer (TLB) 
from page tables in memory, or to update certain status bits 
within them. 

Figure 3-19 shows the effect of FLT. Upon sampling FLT 
low, late in Tmmu, the CPU enters idle T-States (Tf) during 
which it: 

Tl TI 

PHil [ 

PHI2 [ 

AOO-A023 [ 

024-031 [-t----t' 

ADs [ 

PAV [ 

FLT [ 

STO·ST3 [ 

ODIN [ 

BEO-BE3 [ 

1) Sets AOO-A023, 024-031 and ODIN to the TRI-STATE 
condition ("floating"). 

2) Suspends further internal processing of the current in­
struction. This ensures that the current instruction re­
mains abortable with retry. (See RST/ABT description, 
Sec. 3.5.4.) 

Note that the AOO-A023 pins may be briefly asserted dur­
ing the first idle T-State. The above conditions remain in 
effect until FL T again goes high. See the Timing Specifica­
tions, Sec. 4. 

TI TI T2 

TL/EE/5491-31 

FIGURE 3-19. FLT Timing 

2-264 



3.0 Functional Description (Continued) 

3.5.4 Aborting Bus Cycles 

The RST I ABT pin, apart from its Reset function (Sec. 3.3), 
also serves as the means to "abort", or cancel, a bus cycle 
and the instruction, if any, which initiated it. An Abort re­
quest is distinguished from a Reset in that the RST I ABT pin 
is held active for only one clock cycle. 

If RST I ABT is pulled low during Tmmu or Tf, this signals 
that the cycle must be aborted. The CPU itself will enter T2 
and then Ti, thereby terminating the cycle. Since it is the 
MMU PAY signal which triggers a physical cycle, the rest of 
the system remains unaware that a cycle was started. 

The NS32082 MMU will abort a bus cycle for either of two 
reasons: 

1) The CPU is attempting to access a virtual address which 
is not currently resident in physical memory. The refer­
enced page must be brought into physical memory from 
mass storage to make it accessible to the CPU. 

2) The CPU is attempting to perform an access which is not 
allowed by the protection level assigned to that page. 

When a bus cycle is aborted by the MMU, the instruction 
that caused it to occur is also aborted in such a manner that 
it is guaranteed re-executable later. The information that is 
changed irrecoverably by such a partly-executed instruction 
does not affect its re-execution. 

3.5.4.1 The Abort Interrupt 

Upon aborting an instruction, the CPU immediately performs 
an interrupt through the ABT vector in the Interrupt Table 
(see Sec. 3.8). The Return Address pushed on the Interrupt 
Stack is the address of the aborted instruction, so that a 
Return from Trap (RETI) instruction will automatically retry 
it. 

The one exception to this sequence occurs if the aborted 
bus cycle was an instruction prefetch. If so, it is not yet 
certain that the aborted prefetched code is to be executed. 
Instead of causing an interrupt, the CPU only aborts the bus 
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will 
actually be executed, the ABT interrupt will occur, in effect 
aborting the instruction that was being fetched. 

3.5.4.2 Hardware Considerations 

In order to guarantee instruction retry, certain rules must be 
followed in applying an Abort to the CPU. These rules are 
followed by the NS32082 Memory Management Unit. 

1) If FL T has not been applied to the CPU, the Abort pulse 
must occur during or before Tmmu. See the Timing Spec­
ifications, Figure 4-22. 

2·265 

2) If FL T has been applied to the CPU, the Abort pulse must 
be applied before the T -State in which FL T goes inactive. 
The CPU will not actually respond to the Abort command 
until FL T is removed. See Figure 4-23. 

3) The Write half of a Read-Modify·Write operand access 
may not be aborted. The CPU guarantees that this will 
never be necessary for Memory Management functions 
by applying a special RMW status (Status Code 1011) 
during the Read half of the access. When the CPU pres­
ents RMW status, that cycle must be aborted if it would 
be illegal to write to any of the accessed addresses. 

If RST I ABT is pulsed at any time other than as indicated 
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high-pri­
ority interrupt. However, the program that was running at the 
time is not guaranteed recoverable. 

3.6 BUS ACCESS CONTROL 

The NS32032 CPU has the capability of relinquishing its 
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD 
(Hold Request) and HLDA (Hold Acknowledge) pins. By as­
serting HOLD low, an external device requests access to 
the bus. On receipt of HLDA from the CPU, the device may 
perform bus cycles, as the CPU at this point has set the 
ADO-AD23, D24-D31, ADS, DDIN and BEO-BE3 pins to 
the TRI-STATE condition. To return control of the bus to the 
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting HLDA inactive. 

How quickly the CPU releases the bus depends on whether 
it is idle on the bus at the time the HOLD request is made, 
as the CPU must always complete the current bus cycle. 
Figure 3-20 shows the timing sequence when the CPU is 
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-21 shows the sequence 
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the 
clock cycle shown (two clock cycles before T4), the CPU 
will release the bus during the clock cycle following T4. If 
the request occurs closer to T4, the CPU may already have 
decided to initiate another bus cycle. In that case it will not 
grant the bus until after the next T 4 state. Note that this 
situation will also occur if the CPU is idle on the bus but has 
initiated a bus cycle internally. 

In a Memory-Managed system, the HLDA signal is connect­
ed in a daisy-chain through the NS32082, so that the MMU 
can release the bus if it is using it. 



or---------------------------------------------------------------______ ~ ... 
N 
CO) 3.0 Functional Description (Continued) 
o 

i z 
Ti TI 011 T4 I TiOIlTl I Ti Ti 

PHI2 [ 

H6L6[ 

HLDi[ 

I 
AFFECTEO SIGNALS 

iDs [ ~~------ ------- -------

DDIN[ ---- ~r---- ----- NEXT 

BEO-BE3 [-+ ___ +-__ -+' NEXT 

STO-ST3 [ PIIEVIOUS 

TLlEE/5491-32 
FIGURE 3-20. HOLD Timing, Bus Initially Idle 

2-266 



3.0 Functional Description (Continued) 

PHll[ 

PHI 2 [ 

HOLD [ 

HLDA[ 

AFFECTED SIGNALS 

ADS[ 

Di[ --- 1~--- ---- ----

ODIN [ VALID NEXT 

BEO-BE3[ VALID 

ADO-AD23[ -- 1r--- ---- --- NEXTADDR fII 
024-031 [ --- ~--- ---- ---- ---- ----

STo-ST3[ 

TL/EE/5491-33 

FIGURE 3·21. HOLD Timing, Bus Initially Not Idle 

2-267 



o .-----------------------------------------------------------------------------~ .... 
N 
CO) 

o 
IN 

&J z 

3.0 Functional Description (Continued) 

3.7 INSTRUCTION STATUS 

In addition to the four bits of Bus Cycle status (STO-ST3), 
the NS32032 CPU also presents Instruction Status informa· 
tion on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in· 
struction execution section rather than to its bus interface 
section. 

PFS (Program Flow Status) is pulsed low as each instruction 
begins execution. It is intended for debugging purposes, and 
is used that way by the NS32082 Memory Management 
Unit. 

U/S originates from the U bit of the Processor Status Regis· 
ter, and indicates whether the CPU is currently running in 
User or Supervisor mode. It is sampled by the MMU for 
mapping, protection, and debugging purposes. Although it is 
not synchronous to bus cycles, there are guarantees on its 
validity during any given bus cycle. See the Timing Specifi­
cations, Figure 4-21. 

ILO (Interlocked Operation) is activated during an SBIT! (Set 
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction. 
It is made available to external bus arbitration circuitry in 
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. As with the U/S pin, there are 
guarantees on its validity during the operand accesses per­
formed by the instructions. See the Timing Specification 
Section, Figure 4-19. 

3.8 NS32032 INTERRUPT STRUCTURE 

INT, on which maskable interrupts may be requested, 

NMI, on which non-maskable interrupts may be request­
ed,and 

RST / ABT, which may be used to abort a bus cycle and 
any associated instruction. See Sec. 3.5.4. 

, ... , ... 
MEMORY ~ 

/ CASCADE ADDR 0 

• CASCADE TABLE ;::::: · ~~ · 
I ""_m .. ~ 

CASCADE ADDR 14 

CASCADE ADDR 15 

FIXED INTERRUPTS 

AND TRAPS 

In addition there is a set of internally-generated "traps" 
which cause interrupt service to be performed as a result 
either of exceptional conditions (e.g., attempted division by 
zero) or of specific instructions whose purpose is to cause a 
trap to occur (e.g., the Supervisor Call instruction). 

3.8.1 Generallnterrupt/Trap Sequence 

Upon receipt of an interrupt or trap request, the CPU goes 
through three major steps: 

1) Adjustment of Registers. 

Depending on the source of the interrupt or trap, the CPU 
may restore and/or adjust the contents of the Program 
Counter (PC), the Processor Status Register (PSR) and 
the currently-selected Stack Pointer (SP). A copy of the 
PSR is made, and the PSR is then set to reflect Supervi­
sor Mode and selection of the Interrupt Stack. 

2) Vector Acquisition. 

A Vector is either obtained from the Data Bus or is sup­
plied by default. 

3) Service Call. 

The Vector is used as an index into the Interrupt Dispatch 
Table, whose base address is taken from the CPU Inter­
rupt Base (INTBASE) Register. See Figure 3-22. A 32-bit 
External Procedure Descriptor is read from the table en­
try, and an External Procedure Call is performed using it. 
The MOD Register (16 bits) and Program Counter (32 
bits) are pushed on the Interrupt Stack. 

This process is illustrated in Figure 3-23, from the viewpoint 
of the programmer. 

~~1 ~'"' 
0 NVI N ON·VECTDRED INTERRUPT 

1 NMI N DN·MASKABLE INTERRUPT 

2 ABT A BORT 

3 SLAVE SLAVE PROCESSOR TRAP 

4 ILL I LLEGAL OPERATION TRAP 

5 SVC S UPERVISOR CALL TRAP REGISTER I 1 
VECTORED i DISPATCH TABLE 

6 DVZ D IVIDE BY ZERO TRAP 

1 INTERRUPTS :r 7 FLG F LAG TRAP 

8 BPT B REAKPOINT TRAP 

9 TRC T RACE TRAP 

10 UNO U NDEFINED INSTRUCTION TRAP 

'1-15 :: ~ RESERVED ~ 
,6 VECTORED 

INTERRUPTS 

,. .... A. 
TLlEE/549, -34 

FIGURE 3-22. Interrupt Dispatch and Cascade Tables 

2-268 



3.0 Functional Description (Continued) 

I RETURN ADORESS 

I STATUS I MOOUlE 

PSR MOD 

INTBASE REGISTER 

DESCRIPTOR 

I (PUSH) 

I 

I 
J (PUSH) 

INTERRUPT 
STACK 

r-------------, 
I I 
I CASCADE TABLE I 
I I I I 

DISPATCH 
TABLE 

DESCRIPTOR (32 BITS) 

\ 

32 BITS 

32 BITS 

II"" .. o----16--_·'I"I~---16---·1 
OFFSET MODULE 

0 

MOD REGISTER ~ MODULE TABLE 

I NEW MODULE 

I MODULE TABLE ENTRY 

j 

MODULE TLlE ENTRY 
32 

STATIC BASE POINTER - ----.., 

UNK BASE POINTER 

(+ PROGRAM BASE POINTER 

(RESERVED) 

PROGRAM COUNTER SBREGISTER 

ENTRY POINT ADDRESS 4- NEW STATIC BASE 

FIGURE 3·23. Interrupt/Trap Service Routine Calling Sequence 

2·269 

TlfEEf5491-35 

PI 

I 
TlfEEf5491-36 



o r---------------------------------------------------------------------------.... 
N 
('I) 
o 
C\I 
('I) 

o z 

3.0 Functional Description (Continued) 

3.8.2 Interrupt/Trap Return 

To return control to an interrupted program, one of two in· 
structions is used. The RETT (Return from Trap) instruction 
(Figure 3-24) restores the PSR, MOD, PC and S8 registers 
to their previous contents and, since traps are often used 
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from 
the original stack as surplus parameter space. RETT is used 
to return from any trap or interrupt except the Maskable 
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI 
does not pop parameters. See Figure 3-25. 

3.8.3 Maskable Interrupts (The INT Pin) 

The INT pin is a level-sensitive input. A continuous low level 
is allowed for generating multiple interrupt requests. 

PROGRAM COUNTER 

The input is maskable, and is therefore enabled to generate 
interrupt requests only while the Processor Status Register I 
bit is set. The I bit is automatically cleared during service of 
an INT, NMI or Abort request, and is restored to its original 
setting upon return from the interrupt service routine via the 
RETT or RETI instruction. 

The INT pin may be configured via the SETCFG instruction 
as either Non-Vectored (CFG Register bit I = C) or Vec­
tored (bit I = 1). 

3.8.3.1 Non-Vectored Mode 

In the Non-Vectored mode, an interrupt request on the INT 
pin will cause an Interrupt Acknowledge bus cycle, but the 
CPU will ignore any value read from the bus and use instead 
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary. 

I (POP) ~ RETURN ADDRESS • 32 BITS 

I (POP) 1----------1 
STATUS MODULE -\-----..:..---+- 32 BITS 

PSR MOD 

MODULET~BLEENTRY 
STATIC BASE POINTER - ,.., 

LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

SBREGISTER 

STATIC BASE + 
/ n 

BYTES 

POP AND 

DISCARD 

INTERRUPT 

STACK 

MODULE 

TABLE 

MODULE TABLE ENTRY 

PARAMETERS 

STACK SELECTED 

IN NEWLY· 

POPPEDPSR. 

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow 

2-270 

TL/EE/5491-37 



3.0 Functional Description (Continued) 

"END OF INTERRUPT' 

BUS CYCLE 

PROGRAM COUNTER 
(POP) 

RETURN ADDRESS 

STATUS J MODULE 
(POP) 

PSR MOD 

MODULE TAllE ENTRY 

STATIC BASE POINTER - r----
liNK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

STATIC BASE 

SBREGISTER 

INTERRUPT 
CONTROL 

UNIT 

INTERRUPT 
STACK 

MODULE 
TABLE 

MODULE TABLE ENTRY 

J 

FIGURE 3-25. Return from Interrupt (RETI) Instruction Flow 

2-271 

TLlEE/5491-39 

z en w 
~ w 
~ .... 
Q 



Q r---------------------------------------------------------------------------------~ ... 
N 
~ 
CO) 

en 
z 

3.0 Functional Description (Continued) 

3.8.3.2 Vectored Mode: Non-Cascaded Case 

In the Vectored mode, the CPU uses an Interrupt Control 
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle (Sec. 
3.4.2) reading a vector value from the low-order byte of the 
Data Bus. This vector is then used as an index into the 
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt 
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector 
number again, which the CPU uses to determine whether it 
needs also to inform a Cascaded ICU (see below). 

In a system with only one ICU (16 levels of interrupt), the 
vectors provided must be in the range of 0 through 127; that 
is, they must be positive numbers in eight bits. By providing 
a negative vector number, an ICU flags the interrupt source 
as being a Cascaded ICU (see below). 

3.8.3.3 Vectored Mode: Cascaded Case 

In order to allow up to 256 levels of interrupt, provision is 
made both in the CPU and in the NS32202 Interrupt Control 
Unit (lCU) to transparently support cascading. Figure 3-27, 
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re· 
quest input of the Master ICU, which is the only ICU which 
drives the CPU INT pin. 

In a system which uses cascading, two tasks must be per­
formed upon initialization: 

1) For each Cascaded ICU in the system, the Master ICU 
must be informed of the line number (0 to 15) on which it 
receives the cascaded requests. 

2) A Cascade Table must be established in memory. The 
Cascade Table is located in a NEGATIVE direction from 
the location indicated by the CPU Interrupt Base (INT­
BASE) Register. Its entries are 32-bit addresses, pOinting 
to the Vector Registers of each of up to 16 Cascaded 
ICUs. 

NS32032 
CPU 

GROUP 

INf \-------1 

Figure 3-22 illustrates the position of the Cascade Table. To 
find the Cascade Table entry for a Cascaded ICU, take its 
Master ICU line number (0 to 15) and subtract 16 from it, 
giving an index in the range -16 to -1. Multiply this value 
by 4, and add the resulting negative number to the contents 
of the INTBASE Register. The 32·bit entry at this address 
must be set to the address of the Hardware Vector Register 
of the Cascaded ICU. This is referred to as the "Cascade 
Address." 

Upon receipt of an interrupt request from a Cascaded ICU, 
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index 
into the Cascade Table and reads the Cascade Address 
from the referenced entry. Applying this address, the CPU 
performs an "Interrupt Acknowledge, Cascaded" bus cycle 
(Sec. 3.4.2), reading the final vector value. This vector is 
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255. 

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction, 
as it would for any Maskable Interrupt. The CPU performs 
an "End of Interrupt, Master" bus cycle (Sec. 3.4.2), where· 
upon the Master ICU again provides the negative Cascade 
Table index. The CPU, seeing a negative value, uses it to 
find the corresponding Cascade Address from the Cascade 
Table. Applying this address, it performs an "End of Inter­
rupt, Cascaded" bus cycle (Sec. 3.4.2), informing the Cas­
caded ICU of the completion of the service routine. The byte 
read from the Cascaded ICU is discarded. 
Note: If an interrupt must be masked off, the CPU can do so by setting the 

corresponding bit in the Interrupt Mask Register of the Interrupt Con· 
troller. 

However, if an interrupt is set pending during the CPU instruction that 
masks off that interrupt, the CPU may still perform an interrupt ac· 
knowledge cycle following that instruction since it might have sampled 
the INT line before the ICU deasserted it. This could cause the ICU to 
provide an invalid vector. To avoid this problem the above operation 
should be performed with the CPU interrupt disabled. 

HARDWARE 
INTERRUPTS 

OR 
CASCADED 

CONTROLLERS 

INTERRUPTS, 
CASCADED, 

OR 
BIT 110 

TLIEE/5491-40 

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels) 

2-272 



3.0 Functional Description (Continued) 

NS32032 
CPU 

GROUP 

DATA 

CONTROL 

ADDR --STATUS 1 

DATA 

CONTROL 

ADDR5BITS 

STATUS 

FROM 
ADDRESS 
DECODER 

CASCADED 
N532202 

ICU 

MASTER 
N532202 

ICU 

HARDWARE 
INTERRUPTS 

INTERRUPTS 
OR 

BIT 1/0 

INT ~----------------------------------1~ 

FROM 
ADDRESS 
DECODER 

TL/EE/5491-41 

FIGURE 3-27. Cascaded Interrupt Control Unit Connections 

3.8.4 Non-Maskable Interrupt (The NMI Pin) 

The Non-Maskable Interrupt is triggered whenever a falling 
edge is detected on the NMI pin. The CPU performs an 
"Interrupt Acknowledge, Master" bus cycle (Sec. 3.4.2) 
when processing of this interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is FFFF0016. 
The vector value used for the Non-Maskable Interrupt is 
taken as 1, regardless of the value read from the bus. 

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No 
special bus cycles occur on return. 

For the full sequence of events in processing the Non­
Maskable Interrupt, see Sec. 3.8.7.1. 

2-273 

3.8.STraps 

A trap is an internally-generated interrupt request caused as 
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap 
(TRC) is the address of the first byte of the instruction during 
which the trap occurred. Traps do not disable interrupts. as 
they are not associated with external events. Traps recog­
nized by the NS32032 CPU are: 

Trap (SLAVE): An exceptional condition was detected by 
the Floating Point Unit or another Slave Processor during 
the execution of a Slave Instruction. This trap is requested 
via the Status Word returned as part of the Slave Processor 
Protocol (Sec. 3.9.1). 

z en w 
N 
Q 
W 
~ ... 
Q 

II 



3.0 Functional Description (Continued) 

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1). 

Trap (SYC): The Supervisor Call (SVC) instruction was exe­
cuted. 

Trap (DYZ): An attempt was made to divide an integer by 
zero. (The slave trap is used for Floating Point division by 
zero.) 

Trap (FLG): The FLAG instruction detected a "1" in the 
CPU PSR F bit. 

Trap (BPn: The Breakpoint (BPT) instruction was execut­
ed. 

Trap (TRC): The instruction just completed is being traced. 
See below. 

Trap (UNO): An undefined opcode was encountered by the 
CPU. 

A special case is the Trace Trap (TRC), which is enabled by 
setting the T bit in the Processor Status Register (PSR). At 
the beginning of each instruction, the T bit is copied into the 
PSR P (Trace "Pending") bit. If the P bit is set at the end of 
an instruction, then the Trace Trap is activated. If any other 
trap or interrupt request is made during a traced instruction, 
its entire service procedure is allowed to complete before 
the Trace Trap occurs. Each interrupt and trap sequence 
handles the P bit for proper tracing, guaranteeing one and 
only one Trace Trap per instruction, and guaranteeing that 
the Return Address pushed during a Trace Trap is always 
the address of the next instruction to be traced. 

3.8.6 Prioritization 

The NS32016 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows: 

1) Traps other than Trace (Highest priority) 

2) Abort 

3) Non-Maskable Interrupt 

4) Maskable Interrupts 

5) Trace Trap (Lowest priority) 

3.8.7 Interrupt/Trap Sequences: Detailed Flow 

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a Single sequence called 
"Service" is defined in Figure 3-28. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a 
sequence dependent upon the type of interrupt or trap. This 
sequence will include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The 
CPU then performs the Service sequence. 

For the sequence followed in processing either Maskable or 
Non-Maskable interrupts (on the INT or NMI pins, respec­
tively), see Sec. 3.B. 7.1 For Abort Interrupts, see Sec. 
3.B.7.4. For the Trace Trap, see Sec. 3.B.7.3, and for all 
other traps see Sec. 3.B.7.2. 

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence 

This sequence is performed by the CPU when the NMI pin 
receives a falling edge, or the INT pin becomes active with 
the PSR I bit set. The interrupt sequence begins either at 
the next instruction boundary or, in the case of the String 
instructions, at the next interruptible pOint during its execu­
tion. 

2-274 

1. If a String instruction was interrupted and not yet com­
pleted: 

a. Clear the Processor Status Register P bit. 

b. Set "Return Address" to the address of the first byte of 
the interrupted instruction. 

Otherwise, set "Return Address" to the address of the 
next instruction. 

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and J. 

3. If the interrupt is Non-Maskable: 

a. Read a byte from address FFFF0016, applying Status 
Code 0100 (Interrupt Acknowledge, Master, Sec. 
3.4.2). Discard the byte read. 

b. Set "Yector" to 1. 

c. Go to Step B. 

4. If the interrupt is Non-Vectored: 

a. Read a byte from address FFFF0016, applying Status 
Code 0100 (Interrupt Acknowledge, Master: Sec. 
3.4.2). Discard the byte read. 

b. Set "Vector" to o. 
c. Go to Step 8. 

5. Here the interrupt is Vectored. Read "Byte" from address 
FFFE0016, applying Status Code 0100 (Interrupt Ac­
knowledge, Master: Sec. 3.4.2). 

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to Step 
B. 

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform the following: 

a. Read the 32-bit Cascade Address from memory. The 
address is calculated as INTBASE +4' Byte. 

b. Read "Vector," applying the Cascade Address just 
read and Status Code 0101 (Interrupt Acknowledge, 
Cascaded: Sec. 3.4.2). 

B. Push the PSR copy (from Step 2) onto the Interrupt Stack 
as a 16-bit value. 

9. Perform Service (Vector, Return Address), Figure 3-28. 

Service (Vector, Return Address): 

1) Read the 3l1-blt External Procedure Descriptor from the Interrupt 
Dispatch Table: address Is Vector' 4 + INTBASE Register contents. 

2) Move the Module field of the Descriptor Into the MOD Register. 

3) Read the new StaUc Base pointer from the memory address con­
tained In MOD, placing It Into the SB Register. 

4) Read the Program Base pointer from memory address MOD + 8, 
and add to It the Offset field from the Descriptor, placing the result 
In the Program Counter. 

5) Flush queue: Non-sequentlally fetch first InstrucUon of Interrupt 
routine. 

6) Push MOD Register Into the Interrupt Stack as a 16·blt value. (The 
PSR has already been pushed as a 16·blt value.) 

7) Push the Return Address onto the Interrupl Stack as a 32·bll quanti· 
ty. 

FIGURE 3·28. Service Sequence 

Invoked during all interrupt/trap sequences. 



3.0 Functional Description (Continued) 

3.8.7.2 Trap Sequence: Traps Other Than Trace 

1) Restore the currently selected Stack Pointer and the 
Processor Status Register to their original values at the 
start of the trapped instruction. 

2) Set "Vector" to the value corresponding to the trap type. 

SLAVE: Vector = 3. 

ILL: Vector = 4. 

SVC: Vector = 5. 

DVZ: Vector = 6. 

FLG: Vector = 7. 

BPT: Vector = 8. 

UNO: Vector = 10. 

3) Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, P and T. 

4) Push the PSR copy onto the Interrupt Stack as a 16-bit 
value. 

5) Set "Return Address" to the address of the first byte of 
the trapped instruction. 

6) Perform Service (Vector, Return Address), Figure 3-28. 

3.8.7.3 Trace Trap Sequence 

1) In the Processor Status Register (PSR), clear the P bit. 

2) Copy the PSR into a temporary register, then clear PSR 
bits S, U and T. 

3) Push the PSR copy onto the Interrupt Stack as a 16-bit 
value. 

4) Set "Vector" to 9. 

5) Set "Return Address" to the address of the next instruc-
tion. 

6) Perform Service (Vector, Return Address), Figure 3-28. 

3.8.7.4 Abort Sequence 

1) Restore the currently selected Stack Pointer to its original 
contents at the beginning of the aborted instruction. 

2) Clear the PSR P bit. 

3) Copy the PSR into a temporary register, then clear PSR 
bits S, U, T and 1. 

4) Push the PSR copy onto the Interrupt Stack as a 16-bit 
value. 

5) Set "Vector" to 2. 

6) Set "Return Address" to the address of the first byte of 
the aborted instruction. 

7) Perform Service (Vector, Return Address), Figure 3-28. 

3.9 SLAVE PROCESSOR INSTRUCTIONS 

The NS32032 CPU recognizes three groups of instructions 
being executable by external Slave Processor: 

Floating Point Instruction Set 

Memory Management Instruction Set 
Custom Instruction Set 

2-275 

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Sec. 2.1.3). Any Slave Instruction which 
does not have its corresponding Configuration Register bit 
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor. 

3.9.1 Slave Processor Protocol 

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 Byte followed by an Oper­
ation Word. The 10 Byte has three functions: 

1) It identifies the instruction as being a Slave Proc­
essor instruction. 

2) It specifies which Slave Processor will execute it. 

3) It determines the format of the following Opera-
tion Word of the instruction. 

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-29. While applying 
Status Code 1111 (Broadcast 10, Sec. 3.4.2), the CPU 
transfers the 10 Byte on the least-significant byte of the 
Data Bus (ADO-AD7). All Slave Processors input this byte 
and decode it. The Slave Processor selected by the 10 Byte 
is activated, and from this point the CPU is communicating 
only with it. If any other slave protocol was in progress (e.g., 
an aborted Slave instruction), this transfer cancels it. 

The CPU next sends the Operation Word while applying 
Status Code 1101 (Transfer Slave Operand, Sec. 3.4.2). 
Upon receiving it, the Slave Processor decodes it, and at 
this point both the CPU and the Slave Processor are aware 
of the number of operands to be transferred and their sizes. 
The operation Word is swapped on the Data Bus, that is, 
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear 
on pins ADO-AD7. 

Using the Address Mode fields within the Operation Word, 
the CPU starts fetching operand and issuing them to the 
Slave Processor. To do so, it references any Addressing 
Mode extensions which may be appended to the Slave 
Processor instruction. Since the CPU is solely responsible 

Step 

1 

2 

3 

4 

6 

Status 

ID 

OP 

OP 

ST 

OP 

Status Combinations: 

Send 10(10): Code 1111 

Xler Operand (OP): Code 1101 

Read Status (ST): Code 1110 

Action 

CPU Send 10 Byte. 

CPU Sends Operaton Word. 

CPY Sends Required Operands 

Slave Starts Execution. CPU Pre·letches. 

Slave Pulses SPC Low. 

CPU Reads Status Word. (Trap? Alter Flags?) 

CPU Reads Results (If Any). 

FIGURE 3-29. Slave Processor Protocol 

z en 
CAl 
N o 
CAl 
~ ..... 
o 



C) ,---------------------------------------------------------------------------------, ..... 

~ w 
CO) 
(/) 
z 

3.0 Functional Description (Continued) 

for memory accesses, these extensions are not sent to the 
Slave processor. The Status Code applied is 1101 (Transfer 
Slave Processor Operand, Sec. 3.4.2). 

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual executidn of the instruction. Upon 
completion, it will signal the CPU by pulsing SPC low. To 
allow for this, and for the Address Translation strap func­
tion, AT/SPC is normally held high only by an internal pull­
up device of approximately 5 kO. 

While the Slave Processor is executing the instruction, the 
CPU is free to prefetch instructions into its queue. If it fills 
the queue before the Slave Processor finishes, the CPU will 
wait, applying Status Code 0011 (Waiting for Slave, Sec. 
3.4.2). 

Upon receiving the pulse on SPC, the CPU uses SPC to 
read a Status Word from the Slave Processor, applying 
Status Code 1110 (Read Slave Status, Sec. 3.4.2). This 
word has the format shown in Figure 3-30. If the Q bit 
("Quit", Bit 0) is set, this indicates that an error was detect­
ed by the Slave Processor. The CPU will not continue the 
protocol, but will immediately trap through the Slave vector 
in the Interrupt Table. Certain Slave Processor instructions 
cause CPU PSR bits to be loaded from the Status Word. 

The last step in the protocol is for the CPU to read a result, 
if any, and transfer it to the destination. The Read cycles 
from the Slave Processor are performed by the CPU while 
applying Status Code 1101 (Transfer Slave Operand, Sec. 
3.4.2). 

An exception to the protocol above is the LMR (Load Mem­
ory Management Register) instruction, and a corresponding 
Custom Slave instruction (LCR: Load Custom Register). In 
executing these instructions, the protocol ends after the 
CPU has issued the last operand. The CPU does not wait for 
an acknowledgement from the Slave Processor, and it does 
not read status. 

3.9.2 Floating Point Instructions 

Table 3-4 gives the protocols followed for each Floating 
Point instruction. The instructions are referenced by their 
mnemonics. For the bit encodings of each instruction, see 
Appendix A. 

The Operand class columns give the Access Class for each 
general operand, defining how the addressing modes are 
interpreted (see Instruction Set Reference Manual). 

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "0" indi­
cates a 32-bit Double Word. "i" indicates that the instruction 
specifies an integer size for the operand (B = Byte, W = 
Word, 0 = Double Word). "f" indicates that the instruction 
specifies a Floating Point size for the operand (F = 32-bit 
Standard Floating, L = 64-bit Long Floating). 

The Returned Value Type and Destination column gives the 
size of any returned value and where the CPU places it. The 
PSR Bits Affected column indicates which PSR bits, if any, 
are updated from the Slave Processor Status Word (Figure 
3-3{}). 

TABLE 3-4 

Floating Point Instruction Protocols. 

Mnemonic 
Operand 1 Operand 2 

Class Class 

AOOf read.f rmw.f 
SUBf read.f rmw.f 
MUll read.f rmw.f 
OIVf read.f rmw.f 

MOVf read.f write.f 
ABSf read.f write.f 
NEGf read.f write.f 

CMPf read.f read.f 

FLOORfi read.f write.i 
TRUNCfi read.f write.i 
ROUNOfi read.f write.i 

MOVFL read.F write.L 
MOVLF read.L write.F 

MOVif read.i write.f 

LFSR read. 0 N/A 
SFSR N/A write.O 

Nate: 

o = Double Word 

I = Integer size (B,W,D) specified in mnemonic. 

f = Floating Paint type (F,L) specijied in mnemonic. 

Nt A = Not Applicable to this instruction. 

Operand 1 Operand 2 
Issued Issued 

f 

N/A 
N/A 
N/A 

N/A 
N/A 

f N/A 

F N/A 
L N/A 

N/A 

0 N/A 
N/A N/A 

2-276 

Returned Value PSR Bits 
Type and Dest. Affected 

ftoOp.2 none 
ftoOp.2 none 
ftoOp.2 none 
ftoOp.2 none 

ftoOp.2 none 
ftoOp.2 none 
ftoOp.2 none 

N/A N,Z,L 

itoOp.2 none 
itoOp.2 none 
itoOp.2 none 

LtoOp.2 none 
FtoOp.2 none 

ftoOp.2 none 

N/A none 
OtoOp.2 none 



3.0 Functional Description (Continued) 

15 8 7 o 

I 0 0 0 0 0 0 0 0 IN Z F 0 0 L 0 01 
NewPsRBltV.IUe(.)~ .-A) 
"Quit": Terminate Prolocol.1l'ap(FPU). 

TL/EE/5491-42 

FIGURE 3·30. Slave Processor Status Word Format 

Any operand indicated as being of type "f" will not cause a 
transfer if the Register addressing mode is specified. This is 
because the Floating Point Registers are physically on the 
Floating Point Unit and are therefore available without CPU 
assistance. 

3.9.3 Memory Management Instructions 

Table 3·5 gives the protocols for Memory Management in­
structions. Encodings for these instructions may be found in 
Appendix A. 

In executing the RDVAL and WRVAL instructions, the CPU 
calculates and issues the 32-bit Effective Address of the 
single operand. The CPU then performs a single· byte Read 
cycle from that address, allowing the MMU to safely abort 
the instruction if the necessary information is not currently in 
physical memory. Upon seeing the memory cycle complete, 
the MMU continues the protocol, and returns the validation 
result in the F bit of the Slave Status Word. 

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage­
ment Instruction set, see the Instruction Set Reference 
Manual and the NS32082 MMU Data Sheet. 

TABLE 3-5 

Mnemonic 

RDVAL* 
WRVAL' 

LMR' 
SMR* 

Note: 

Operand 1 
Class 

addr 
addr 

read.D 
write.D 

Memory Management Instruction Protocols. 
Operand 2 Operand 1 Operand 2 

Class Issued Issued 

N/A D N/A 
N/A D N/A 

N/A D N/A 
N/A N/A N/A 

Returned Value PSR Bits 
Type and Dest. Affected 

N/A F 
N/A F 

N/A none 
DtoOp.1 none 

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single·byte Read cycle from that memory address. For 
details, see the Instruction Set Reference Manual and the NS32082 Memory Management Unit Data Sheet. 

o ~ Double Word 

• ~ Privileged Instruction: will trap if CPU is in User Mode. 

NI A ~ Not Applicable to this instruction. 

2-277 

z 
(J) 
Co) 
N o 
Co) 
N . ..... 
o 

II 



C) r---------------------------------------------------------------------------------, ..-
~ 
C") 
C) 
N 
C") 
U) 
Z 

3.0 Functional Description (Continued) 

3.9.4 Custom Slave Instructions 

Provided in the NS32032 is the capability of communicating 
with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines 
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations 
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type. 

Table 3-6 lists the relevant information for the Custom Slave 
instruction set. The designation "c" is used to represent an 
operand which can be a 32-bit ("D") or 64-bit ("0") quantity 
in any format; the size is determined by the suffix on the 
mnemonic. Similarly, an "i" indicates an integer size (Byte, 
Word, Double Word) selected by the corresponding mne­
monic suffix. 

Any operand indicated as being of type "c" will not cause a 
transfer if the register addressing mode is specified. It is 
assumed in this case that the slave processor is already 
holding the operand internally. 

For the instruction encodings, see Appendix A. 

TABLE 3-6 

Custom Slave Instruction Protocols. 
Operand 1 Operand 2 

Mnemonic Class Class 

CCALOc read.c rmw.c 
CCAL1c read.c rmw.c 
CCAL2c read.c rmw.c 
CCAL3c read.c rmw.c 

CMOVOc read.c write.c 
CMOVlc read.c write.c 
CMOV2c read.c write.c 
CMOV3c read.c write.c 

CCMPOc read.c read.c 
CCMPlc read.c read.c 

CCVOci read.c write.i 
CCVlci read.c write.i 
CCV2ci read.c write.i 
CCV3ic read.i write.c 

CCV4DO read.D write.O 
CCV50D read.O write.D 

LCSR read.D N/A 
SCSR N/A write.D 

CATSTO· addr N/A 
CATST1* addr N/A 

LCR" read.D N/A 
SCR" write.D N/A 

Note: 

o = Double Word 

i = Integer size (B,W,D) specified in mnemonic. 

c = Custom size (0:32 bits or Q:64 bits) specified in mnemonic. 

• = Privileged instruction: will trap H CPU is in User Mode. 

N/ A = Not Applicable to this instruction. 

Operand 1 Operand 2 
Issued Issued 

c c 
c c 
c c 
c c 

c N/A 
c N/A 
c N/A 
c N/A 

c c 
c c 

c N/A 
c N/A 
c N/A 

N/A 

D N/A 
0 N/A 

D N/A 
N/A N/A 

D N/A 
D N/A 

D N/A 
N/A N/A 

2-278 

Returned Value PSR Bits 
Type and Dest. Affected 

ctoOp.2 none 
ctoOp.2 none 
ctoOp.2 none 
ctoOp.2 none 

ctoOp.2 none 
ctoOp.2 none 
ctoOp.2 none 
ctoOp.2 none 

N/A N,Z,L 
N/A N,Z,L 

itoOp.2 none 
itoOp.2 none 
itoOp.2 none 
ctoOp.2 none 

OtoOp.2 none 
DtoOp.2 none 

N/A none 
DtoOP.2 none 

N/A F 
N/A F 

N/A none 
DtoOp.l none 



4.0 Device Specifications 
4.1 NS32032 PIN DESCRIPTIONS 

The following is a brief description of all NS32032 pins. The 
descriptions reference portions of the Functional Descrip­
tion. Sec. 3. 

Unless otherwise indicated reserved pins should be left 
open. 

4.1.1 Supplies 

Power (VcC>: +5V Positive Supply. Sec. 3.1. 

Logic Ground (GNDL): Ground reference for on-chip logic. 
Sec. 3.1. 

Buffer Grounds # 1 (GNDB1, GNDB2, GNDB3): Ground 
references for the on-chip output drivers connected to out­
put pins. Sec. 3.1. 

Back-Bias Generator (BBG): Output of on-Chip substrate 
voltage generator. Sec. 3.1. 

4.1.2 Input Signals 

Clocks (PHI1, PHI2): Two-phase clocking signals. Sec. 3.2. 

Ready (ROY): Active high. While RDY is inactive, the CPU 
extends the current bus cycle to provide for a slower memo­
ry or peripheral reference. Upon detecting RDY active, the 
CPU terminates the bus cycle. Sec. 3.4.1. 

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. Sec. 
3.6. 
Note1: HOLD must not be asserted until HLDA from a previous 

HOLD/HLDA sequence is deasserted. 

Note 2: If the FiQTIj signal is generated asynchronously, it's set up and hold 
times may be violated. 

In this case it is recommended to synchronize it with CTTL to mini­
mize the possibility of metastable states. 

The CPU provides only one synchronization stage to minimize the 
HLOA latency. This is to avoid speed degradations in cases of 
heavy HOLD activity (i.e., DMA controlier cycles inte~eaved with 
CPU cycles.) 

Interrupt (INn: Active low. Maskable Interrupt request. 
Sec. 3.8. 

Non-Maskable Interrupt (NMI): Active low. Non-Maskable 
Interrupt request. Sec. 3.8. 

Reset/Abort (RST/ABn: Active low. If held active for one 
clock cycle and released, this pin causes an Abort Com­
mand, Sec. 3.5.4. If held longer, it initiates a Reset. Sec. 3.3. 

4.1.3 Output Signals 

Address Strobe (ADS): Active low. Controls address latch­
es: indicates start of a bus cycle. Sec. 3.4. 

Data Direction in (ODIN): Active low. Status signal indicat­
ing direction of data transfer during a bus cycle. Sec. 3.4. 

2-279 

Byte Enable (BEO-BE3): Active low. Four control signals 
enabling data transfers on individual bus bytes. Sec. 3.4.3. 

Status (STO-ST3): Bus cycle status code, STO least signifi­
cant. Sec. 3.4.2. Encodings are: 

0000 - Idle: CPU Inactive on Bus. 
0001 - Idle: WAIT Instruction. 
0010 - (Reserved). 
0011 - Idle: Waiting for Slave. 
0100 - Interrupt Acknowledge, Master. 
0101 -Interrupt Acknowledge, Cascaded. 
0110 - End of Interrupt, Master. 
0111 - End of Interrupt, Cascaded. 
1000 - Sequential Instruction Fetch. 
1001 - Non-Sequential Instruction Fetch. 
1010 - Data Transfer. 
1011 - Read Read-Modify-Write Operand. 
1100 - Read for Effective Address. 
1101 - Transfer Slave Operand. 
1110 - Read Slave Status Word. 
1111 - Broadcast Slave ID. 

Hold Acknowledge (HLDA): Active low. Applied by the 
CPU in response to HOLD input, indicating that the bus has 
been released for DMA or multiprocessing purposes. Sec. 
3.6. 

User/Supervisor (U/S): User or Supervisor Mode status. 
Sec. 3.7. High state indicates User Mode, low indicates Su­
pervisor Mode. Sec. 3.7. 

Interlocked Operation (ILO): Active low. Indicates that an 
interlocked instruction is being executed. Sec. 3.7. 

Program Flow Status (PFS): Active low. Pulse indicates 
beginning of an instruction execution. Sec. 3.7. 

4.1.4 Input-Output Signals 

Address/Data 0-23 (ADO-AD23): Multiplexed Address/ 
Data information. Bit 0 is the least significant bit of each. 
Sec. 3.4. 

Data Bits 24-31 (024-031): The high order 8 bits of the 
data bus. 

Address Translation/Slave Processor Control (AT/ 
SPC): Active low. Used by the CPU as the data strobe out­
put for Slave Processor transfers; used by Slave Proces­
sors to acknowledge completion of a slave instruction. 
Sec. 3.4.6; Sec. 3.9. Sampled on the rising edge of Reset 
pulse as Address Translation Strap. Sec. 3.5.1. 

In non-memory-managed systems, this pin should be 
pulled-up to Vee through a 10 kn. resistor. 

Data Strobe/Float (DS/FL n: Active low. Data Strobe out­
put, Sec. 3.4, or Float Command input, Sec. 3.5.3. Pin func­
tion is selected on AT /SPC pin, Sec. 3.5.1. 

z 
CJ) 
Co) 
N o 
Co) 
N 

I ...... 
o 

EI 



C) r---------------------------------------------------------------------------------, -e:. 
CO) 
C) 
N 
CO) 
tn 
Z 

4.0 Device Specifications (Continued) 

4.2 ABSOLUTE MAXIMUM RATINGS All Input or Output Voltages With 
Respect to GND 

Power Dissipation 

-0.5Vto +7V 

1.5 Watt 
If Military/Aerospace specified devices are required, 
contact the National Semiconductor Sales Office/ 
Distributors for availability and specifications. 

Temperature Under Bias O'C to + 70'C 

Storage Temperature -65'Cto + 150'C 

Note: Absolute maximum ratings indicate limits beyond 
which permanent damage may occur. Continuous operation 
at these limits is not intended; operation should be limited to 
those conditions specified under Electrical Characteristics. 

4.3 ELECTRICAL CHARACTERISTICS T A = 0' to + 70'C, Vcc = 5V ± 5%, GND = OV 

Symbol 

VCLl 

ICC 

Parameter 

High Level Input Voltage 

Low Level Input Voltage 

High Level Clock Voltage 

Low Level Clock Voltage 

Low Level Clock Voltage. 
Transient (ringing tolerance) 

High Level Output Voltage 

Low Level Output Voltage 

AT/SPC Input Current (low) 

Input Load Current 

Leakage Current 
Output and I/O Pins in 
TRI-STATE/lnput Mode 

Active Supply Current 

Conditions 

PHI1, PHI2 pins only 

PHI1, PHI2 pins only 

PHI1, PHI2 pins only 

IOH = -400/LA 

IOL = 2mA 

VIN = 0.4V, AT/SPC in input mode 

o ~ VIN ~ Vee, All inputs except 
PHI1, PHI2, AT/SPC 

lOUT = 0, TA = 25'C 

Min 

2.0 

-0.5 

Vcc - 0.35 

-0.5 

-0.5 

2.4 

0.05 

-20 

-20 

~~E~I~15~~~~~~~~g 

Typ 

180 

RESERVED ~UUUUUUUUUUUUUUUElI! AD22 

:~5 ~:=! 
iiiiiri :::J c:: AD19 

RESERVED :::J I: AD18 
RESERVED ::J I: AD17 

PHI1 :::J I: AD1& 
PHI2 ;:::J NS32032 I: AD15 
AiiS b:I cpu t: AD14 

UtS 3D I: AD13 
RESERVED ;:J I: AD12 
RESERVED t:J I: ADn 

Af/S~ :J I: AD10 
II1IFLJ ;::J c:: AD9 

m,m :J I: AD8 
RESERVED :::J I: AD7 

RESERVED ICDNNECT ro Vee lL m: AM 
THROUGH A 4.7 kll RESISTORI ~ nnn non n n n n n n n n n JiIj 

~I;I~I~I~I~I~ i ~ ~ =! ~!!! § £5 z: ljut 

Bottom View 

FIGURE 4·1. NS32032 Connection Diagram 

Order Number NS32032E·10 or NS32032V·10 
See NS Package E6SB or V6SA 

2-280 

Max Units 

Vee +0.5 V 

0.8 V 

Vee +0.5 V 

0.3 V 

0.6 V 

V 

0.45 V 

1.0 mA 

20 

30 

300 mA 

TLlEE/5491-2 



4.0 Device Specifications (Continued) 

4.4 SWITCHING CHARACTERISTICS 

4.4.1 Definitions 

All the timing speCifications given in this section refer to 
2.0V on the rising or falling edges of the clock phases PHI1 

-[::¥--
SIGI [- ~2'4V 

ISIGII 
1---'="------ a.BV 

O.45V 

[ 
I ISIG2h 1~2'4V 

2.0V 

----J. __ .--------O.45V 

SlG2 

TL/EE/5491-43 

FIGURE 4·2. Timing Specification Standard 
(Signal Valid After Clock Edge) 

4.4.2 Timing Tables 

and PHI2 and O.BV or 2.0V on all other signals as illustrated 
in Figures 4-2 and 4-3, unless specifically stated otherwise. 

ABBREVIATIONS: 

L.E. - leading edge 

T.E. - trailing edge 

R.E. - rising edge 

F.E. - falling edge 

PHln 

SIGl 

SlG2 

[ 

[ 
[ 

__ k 
-------,-.---- - -- 2.4V 

a.BV ..l\~_~ ISIGlI 
'----I--O.45V 

/I"""---I---2.4V 

2.0V -1-----.-1 ISIG2h 

_____ ....J:..... ______ ._._ - O.45V 

TL/EE/5491-44 

FIGURE 4·3. Timing Specification Standard 
(Signal Valid Before Clock Edge) 

4.4.2.1 Output Signals: Internal Propagation Delays, NS32032·10 

Maximum times assume capacitive loading of 100 pF. 

Name Figure Description Reference/Conditions 
NS32032·10 

Units 
Min Max 

tALv 4-4 Address bits 0-23 valid after R.E., PHI1 T1 40 ns 

tALh 4-4 Address bits 0-23 hold after R.E., PHI1 Tmmu or T2 5 ns 

tov 4-4 Data valid (write cycle) after R.E., PHI1 T2 50 ns 

tOh 4-4 Data hold (write cycle) after R.E., PHI1 next T1 or Ti 0 ns 

tALAOSs 4-5 Address bits 0-23 setup before ADS T.E. 25 ns 

tALAOSh 4-10 Address bits 0-23 hold after ADS T.E. 15 ns 

tAL! 4-5 Address bits 0-23 after R. E., PH 11 T2 25 ns 
floating (no MMU) 

tAD! 4-5 Data bits 024-031 after R.E., PHI1 T2 25 ns 
floating (no MMU) 

tALM! 4-9 Address bits 0-23 after R.E., PHI1 Tmmu 25 ns 
floating (with MMU) 

tAOM! 4-9 Data bits 21-31 after R.E., PHI1 Tmmu 25 ns 
floating (with MMU) 

tBEv 4-4 BEn Signals valid after R.E., PHI2 T 4 60 ns 

tBEh 4-4 BEn Signals hold after R.E., PHI2 T4 orTi 0 ns 

tSTv 4-4 Status (STO-ST3) valid after R.E., PHI1 T4 60 ns 
(before T1, see note) 

tSTh 4-4 Status (STO-ST3) hold after R.E., PHI1 T4 (afterT1) 0 ns 

2-2B1 

fII 



4.0 Device Specifications (Continued) 

4.4.2.1 Output Signals: Internal Propagation Delays, NS32032-10 (Continued) 

Name Figure Description 
Referencel NS32032-10 

Units 
Conditions Min Max 

tOOINv 4-5 ODIN signal valid after RE., PHI1 T1 50 ns 

tOOINh 4-5 ODIN signal hold after RE., PHI1 next T1 or Ti 0 ns 

tAOSa 4-4 ADS signal active (low) after RE., PHI1 T1 35 ns 

tAOSia 4-4 ADS signal inactive after RE., PHI2 T1 40 ns 

tAOSw 4-4 ADS pulse width at 0.8V (both edges) 30 ns 

tOSa 4-4 OS signal active (low) after RE., PHI1 T2 40 ns 

tOSia 4-4 OS signal inactive after RE., PHI1 T4 40 ns 

tALI 4-6 ADO-AD23 floating after R.E., PHI1 T1 25 ns 
(caused by HOLD) 

tAD! 4-6 024-031 floating after RE., PHI1 T1 25 ns 
(caused by HOLD) 

tOS! 4-6 OS floating after RE., PHI1 Ti 50 ns 
(caused by HOLD) 

tAOS! 4-6 ADS floating after RE., PHI1 Ti 50 ns 
(caused by HOLD) 

tBE! 4-6 BEn floating after RE., PHI1 Ti 50 ns 
(caused by HOLD) 

tOOIN! 4-6 ODIN floating after RE., PHI1 Ti 50 ns 

(caused by HOLD) 

tHLOAa 4-6 HLDA signal active (low) after RE., PHI1 Ti 30 ns 

tHLOAia 4-8 HLDA signal inactive after RE., PHI1 Ti 40 ns 

IOSr 4-8 OS signal returns from after R.E., PHI1 Ti 50 ns 
floating (caused by HOLD) 

tAOSr 4·8 ADS signal returns from after R.E., PHI1 Ti 55 ns 
floating (caused by HOLD) 

tBEr 4·8 BEn signals return from after RE., PHI1 Ti 55 ns 
floating (caused by HOLD) 

tOOINr 4-8 . ODIN signal returns from after RE., PHI1 Ti 55 ns 

floating (caused by HOLD) 

too IN! 4-9 ODIN signal floating after FL T F.E. 55 ns 

(caused by FL n 
tOOINr 4-10 ODIN signal returns from after FL T R E. 40 ns 

floating (caused by FL n 
tSPCa 4-13 SPC output active (low) after RE., PHI1 T1 35 ns 

tsPCia 4-13 SPC output inactive after RE., PHI1 T4 35 ns 

tsPCn! 4-15 SPC output nonforcing after R.E., PHI2 T4 30 ns 

tov 4-13 Data valid (slave processor after RE., PHI1 T1 55 ns 
write) 

tOh 4-13 Data hold (slave processor after R.E., PHI1 0 ns 
write) nextT10rTi 

tpFSw 4-18 PFS pulse width at 0.8V (both edges) 50 ns 

2-282 



4.0 Device Specifications (Continued) 

4.4.2.1 Output Signals: Internal Propagation Delays, NS32032-10 (Continued) 

Name Figure Description 
Reference/ NS32032-10 

Units 
Conditions Min Max 

tPFSa 4-18 PFS pulse active (low) after R.E., PHI2 40 ns 

tPFSia 4-18 PFS pulse inactive after R.E., PHI2 40 ns 

tllOs 4-20a ILO signal setup before R.E., PHI1 T1 50 ns 
of first interlocked read cycle 

tllOh 4-20b ILO signal hold after R.E., PHI1 T3 10 ns 
of last interlocked write cycle 

tllOa 4-21 ILO signal active (low) after R.E., PHI1 35 ns 

tllOia 4·21 ILO signal inactive after R.E., PHI1 35 ns 

tUSv 4·22 U/S signal valid after R.E., PHI1 T4 35 ns 

tUSh 4·22 U/S signal hold after R.E., PHI1 T4 8 ns 

tNSPF 4·19b Nonsequential fetch to after R.E., PHI1 T1 4 tep 
next PFS clock cycle 

tpFNS 4·19a PFS clock cycle to next before R.E., PHI1 T1 4 tep 
non·sequential fetch 

tLXPF 4·29 Last operand transfer before R.E., PHI1 T1 of first 0 tep 
of an instruction to next of first bus 
PFS clock cycle cycle of transfer 

Nate: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: " ... Ti, T4, T1 ... ". If the CPU was 
not idling, the sequence will be: ". . . T 4, T1 . . .". 

4.4.2.2 Input Signal Requirements: NS32032-10 

Name Figure Description Reference/Conditions NS32032-10 Units 
Min Max 

tPWR 4·25 Power stable to after Vee reaches 4.5V 50 !,-S 
RST R.E. 

tDls 4·5 Data in setup before F.E., PHI2 T3 15 ns 
(read cycle) 

tDlh 4·5 Data in hold after R.E., PHI1 T4 3 ns 
(read cycle) 

tHlDa 4·6 HOLD active (low) setup before F.E., PHI2 TX1 25 ns 
time (see note) 

tHlDia 4·8 HOLD inactive setup before F.E., PHI2 Ti 25 ns 
time 

tHlDh 4·6 HOLD hold time after R.E., PHI1 TX2 0 ns 

tFlTa 4·9 FL T active (low) before F.E., PHI2 Tmmu 25 ns 
setup time 

tFlTia 4·10 FL T inactive setup before F.E., PHI2 T2 25 ns 
time 

tRDYs 4·11,4·12 ROY setup time before F.E., PHI2 T2 or T3 15 ns 

tRDYh 4·11,4·12 ROY hold time after F.E., PHI1 T3 5 ns 

tASTs 4·23 ABT setup time before F.E., PHI2 Tmmu 20 ns 
(FL T inactive) 

tASTs 4·24 ABT setup time before F.E., PHI2 Tf 
0 20 ns 

(FL T active) 

tASTh 4·23 ABT hold time after R.E., PHI1 0 ns 

2·283 

z en w 
N 

~ • ...... 
o 

fII 



o .... . 
C'I 
C') 
o 
C'I 
C') 
(/) 
z 

4.0 Device Specifications (Continued) 

4.4.2.2 Input Signal Requirements: NS32032-10 (Continued) 

Name Figure Description 
Referencel NS32032-10 

Units 
Conditions Min Max 

tRSTs 4-25,4-26 RST setup time before F.E., PHI1 15 ns 

tRSTw 4-26 RST pulse width at O.BV (both edges) 64 tcp 

tiNTs 4-27 INT setup time before F.E., PHI1 25 ns 

tNMlw 4-2B NMI pulse width at O.BV (both edges) 70 ns 

tOls 4-14 Data setup (slave before F.E., PHI2 T1 15 ns 
read cycle) 

tOlh 4-14 Data hold (slave after R.E., PHI1 T4 3 ns 
read cycle) 

tSPCd 4-15 SPC pulse delay from after R.E., PHI2 T4 25 ns 
slave 

tspcs 4-15 SPC setup time before F.E., PHI1 25 ns 

tgPCw 4-15 SPC pulse width from at O.BV (both edges) 20 ns 
slave processor 
(async input) 

tATs 4-16 AT /SPC setup for ad- before R.E., PHI1 of cycle 1 tcp 
dress translation strap during which RST 

pulse is removed 

tATh 4-16 AT /SPC hold for ad- after F.E., PHI1 of cycle 2 tcp 
dress translation strap during which RST 

pulse is removed 
Note: This setup time is necessary to ensure prompt acknowledgement via HLOA and the ensuing floating of CPU off the buses. Note that Ihetime from the receipt 
of the HOLO Signal until the CPU floats is a function of the lime HOLD signal goes low, the state of the ROY input (in MMU systems), and the length of the current 
MMU cycle. 

4.4.2.3 Clocking Requirements: NS32032-10 

Name Figure Description 
Referencel NS32032-10 

Units 
Conditions Min Max 

tcp 4-17 Clock period R.E., PHI1, PHI2 to next 100 250 ns 
R.E., PHI1, PHI2 

tCLw 4-17 PHI1, PHI2 At 2.0V on PHI1, 0.5tcp 
pulse width PHI2 (both edges) -10ns 

tCLh 4-17 PHI1, PHI2 high time At Vcc - 0.9Von 0.5tcp 
PHI1, PHI2 (both edges) -15ns 

tCLI 4-17 PHI1, PHI2, Low Time at O.BV on PHI1, PHI2 0.5 tcp 
-5ns 

tnOVL(1,2) 4-17 Non-overlap time O.BVon F.E., PHI1, PHI2 to -2 5 ns 
O.BV on R.E., PHI2, PHI1 

tnOVLas Non·overlap asymmetry at O.BV on PHI1, PHI2 -4 4 ns 

(tnOVL(1) - tnOVL(2» 

tCLwas PHI1, PHI2 asymmetry at 2.0Von PHI1, PHI2 -5 5 ns 

(tcLw(1) - tCLw(2» 

2-2B4 



,--------------------------------------------------------------------------, z 
4.0 Device Specifications 
4.4.3 Timing Diagrams 

T4 OR Ti , 11 I T2 , T3 I T4 

PHI, [ 

PHI2 [ 

ADO-A023 [ 

024-031 [ 

iDS [ 

BED-BE [ 

DDiN[ 

5TO·3 [ 

PHil [ 

PHI2 [ 

ADO-AD23 [ 

024-031 [ 

AliS[ 

BEO-BE3" [ 

DDiN[ 

5T0-3 [ 

os[ 

ROY [ 

n n L 
-~tJl: .~~ IL -

KJ ADDRESS IX DATA OUT I) 
I -tDv tOh 

X I X DATA OUT ) 
I-: 'AOSI. 

l~AD~W 
'tAOS. taEh W 

VALID 

-l taEv 

(HIGH) 

I-- ~ tSTY 

VALID tSTh ~~ \I NEXT 

NtDSS 1/ -'f- tOSI. 

(HIGH) 
I I 

FIGURE 4·4. Write Cycle 

T4 OR TI Tl T2 T3 T4 

n ,...- n r-- r---

~ 
JL r---

X ADDRESS A-' ------ __ -( DATAIN 

ALI E -!Dlh 

X ADDRESS ~. ------ ---( DA~~IN 
-'AOt 

'ALAOSs 

VALID X 

~ L 
tDOINv --l too 

VALID NE:iA~0~LE 

'" 
(HIGH) 

FIGURE 4·5. Read Cycle 

2·285 

TL/EE/5491-45 

INh 

TL/EE/5491-46 

en 
w 
I\) 
<:) 
w 
~ ..... 
<:) 

• 



C) .-------------------------------------------------------------------------------------, ..... 
N 
C") 
C) 
N 
C") 
(f) 
Z 

4.0 Device Specifications (Continued) 

TX1 TX2 

PH11[ 

PHI2[-+_........I 

HOLO[ 

HLi5l[ 
os 

T4 

IDSF 
IADSI 
IOOINI 

TI Ti TI 

AoS[ 
IiiiiN -t----+----+----:-__ t--J --- ----(fLOATlNGj----

BEo_m[-t----+----+--.,.=.::.:....j-~ ----,-----tFL01ii'NG)----

AOO-A023 [ I~~-- ___ ----1-- ___ _ 
024-031 [ ~~~_-'- ____ ~~Oj~:~ ___ _ 

I (FLOfTING) 

FIGURE 4-6. Floating by HOLD Timing (CPU Not Idle Initially). 
TL/EE/5491 -47 

Note that whenever the CPU is not idling (not in Ti), the HOLD request (HOLD low) must be active tHLDa before the falling edge 
of PHI2 of the clock cycle that appears two clock cycles before T4 (TX1) and stay low until tHLDh after the rising edge of PHI1 of 
the clock cycle that precedes T4 (TX2) for the request to be acknowledged. 

PHil [ 

PHI2 [ 

HOLD [ 

HLDA [ 

lOS! 

lADS! 
Os, _+ ___ +-__ -+ ....... ,IODINf 

AOS.[_-r ____ ~----~ 
ODIN 

BEci-iiE3 [-+---I----+..J 
AOO-AD23 [- - - (FLOATING) 

---------(FLOATING) 

024-031 [--- ------ ------ ------- --------
(FLOATING) 

TL/EE/5491 -48 

FIGURE 4-7. Floating by HOLD Timing (CPU initially idle) 

Note that during Ti1 the CPU is already idling. 

2-286 

PHil [ 

PHI2 [_+-........1 

OS. 
ADS. [ • - - (FLOATING) 
ODIN 

BEo-iiE3 [ • - -

ADO-AD23 [. - -~ - - - - - - t ------~i FLOATiNG i 
024-031 I I 

(HIGH) 

TL/EE/5491 -49 

FIGURE 4·8. Release from HOLD 



4.0 Device Specifications (Continued) 

CPU STATES Tl TMMU TI TI 

MMUSTATES [ T1 

PHI 1 

PHI2 [ 

m[ 
ADO-AD23 [ 

(CPU) 

D24-D31 [ 
(CPU) 

ADS [ 
(CPU) 

PAV[ 
(MMU) 

DDiN[ 

BEO-BE3 [ 

TL/EE/S491-50 

FIGURE 4·9. FL T Initiated Float Cycle Timing 

CPU STATES TI T2 T3 T4 

MMU STATES Tmmu 

PHI1 [ 

PHI2[~ __ .J 

m[ (MMU) 

ADG-23 [ 
& D24-31 • 

(CPU) 

Di5iN[ 
(CPU) --

ADS[ 
(CPU) 

m-m[~ ____ -+ ____ -4 ______ ~ __ __ 

TL/EE/S491-51 

FIGURE 4·10. Release from FLT Timing 

Note that when FL Tis deasserted the CPU restarts driving ODIN before the MMU releases it. This, however, does not cause any 
conflict, since both CPU and MMU force ODIN to the same logic level. 

TL/EE/5491-52 

FIGURE 4·11. Ready Sampling (CPU Initially READy) 

2-287 

z 
~ 
N 
Q 
Co) 
N • ..... 
Q 



4.0 Device Specifications (Continued) 

I I I I 

:~~ 
RDV[ ~ 

TLlEE/5491-53 

FIGURE 4-12. Ready Sampling (CPU Initially NOT READY) 

I T1 I T4 I 
PHI1[~ 

L__ T1 I T4 I 
PHI1[JLJLJ 

PHI2 [ PHI2 [ 

tDlh 

ADO-IS [ ADO-IS [ 

SPc[ SPC[ (CPU) 

DoiN[ DDtN[-+~ ______ ~ ______ +-

STO-3 [ STD·3 [-+---f-J ~---1"'" 

ADii[ (HIGH) 
I 

AiiS[ 
TL/EE/5491-54 

FIGURE 4-13. Slave Processor Write Timing 
TL/EE/5491-55 

FIGURE 4-14. Slave Processor Read Timing 

PHil [ 

PHI2 [ 

SPC [ 
(FROM CPU) 

SPC [ • 
(FRON SLAVE) 

T1 T4 

FIGURE 4-15. SPC Timing 

After transferring last operand to a Slave Processor, CPU 
turns OFF driver and holds SPC high with internal 5 kO pullup. 

FIGURE 4-16. Reset Configuration Timing 

2-288 

TLlEE/5491-82 

TL/EE/5491-57 



4.0 Device Specifications (Continued) 

PHI1 [ 

PHI2[ -----..,..r 
TLlEE/S491-S8 

FIGURE 4-17. Clock Waveforms 

PHI2[~fUl-J 

mr~r--e-
TL/EE/S491-S9 

FIGURE 4-18. Relationship of PFS to Clock Cycles 

T1 

PHI1 [ 

~[b--....JI 
.1 

ST(J.3 [ _______________ -JX'-__ C_O_OE_1_00_1 __ 
TL/EE/S491-60 

FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch 

I Tl I T2 I ••• I I I I 
PHil LfLJLJ~fLfl-Jl-

A5S[ 

ST~3[-+ ____ CO_D_E_l_00_l ___ -i.r-___ -r ______ _ 

TL/EE/S491-6l 

FIGURE 4-19b. Guaranteed Delay, Non-Sequential Fetch to PFS 

2-289 

z en w 
N 
o 
W 
N 

I ..... 
o 



Q r-----------------------------------------------------------------------------, .... 
N 
C") 
Q 
N 

~ 
Z 

4.0 Device Specifications (Continued) 

I T30RTI I T40RTI I T1 12 T3 T4 

PHil [ 

AiiS[ 

iLO[ 
TL/EE/5491-62 

FIGURE 4·20a. Relationship of ILO to First Operand Cycle of an Interlocked Instruction 

I T30RTI I T40RTI I T1 12 T3 T4 

ILO[ ................................ ~ ........................ _+' 

TL/EE/5491-63 

FIGURE 4·20b. Relationship of ILO to Last Operand Cycle of an Interlocked Instruction 

TL/EE/5491-64 

FIGURE 4·21. Relationship of ILO to Any Clock Cycle 

I T3 OR Ti I T4 OR TI I T1 T2 T3 T4 

PHil [ 

U/i['-L.c..L.","","~ 1'-_+-_________ -+...11 

TL/EE/5491-65 

FIGURE 4·22. U/S Relationship to Any Bus Cycle - Guaranteed Valid Interval 

2·290 



4.0 Device Specifications (Continued) 

T1 I Tmmu T2 TI 

PHI! [ 

PHI2 [ 

FiST/m [ 

FIGURE 4-23. Abort Timing, FL T Not Applied 

PHI! [ 

PHI2 [ 

iiS/ffi [ 

-+-----+-----r----+r-J 

RsT/ABT [ 

FIGURE 4-24. Abort Timing, FL T Applied 

vee 
~----------~~ 

PHI{ __ --1 ___ ....1 

R!rrMBT[ ____________ ~\--J 

FIGURE 4-25. Power-On Reset 

FIGURE 4-26. Non-Power-On Reset 

2-291 

TL/EE/5491-66 

TL/EE/5491-67 

TL/EE/5491-68 

TL/EE/5491-69 

z en 
Co) 

~ 
Co) 
~ • ..... 
o 



C) r-----------------------------------~----------------------------------------------------_, ,... 
c:.. 
C") 
C) 
C'I 
C") 

en 
z 

4.0 Device Specifications (Continued) 

TLlEE/5491-70 

FIGURE 4·27. INT Interrupt Signal Detection 

NMi[ 
TL/EE/5491-71 

FIGURE 4·28. NMI Interrupt Signal Timing 

FIRST BUS CYCLE NEXT 

Tl 12 

'--+-~/ 
TLlEE/5491-72 

FIGURE 4·29. Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction 
Note: In a transfer of a Read·Modify·Write type operand, this is the Read transfer, displaying RMW Status (Code 1011). 

2·292 



.--------------------------------------------------------------------------. z 
Appendix A: Instruction Formats 
NOTATIONS 

i= Integer Type Field 

B = 00 (Byte) 

W = 01 (Word) 

D = 11 (Double Word) 

f= Floating Point Type Field 

F = 1 (Std. Floating: 32 bits) 

L = 0 (Long Floating: 64 bits) 

c= Custom Type Field 

D = 1 (Double Word) 

Q = 0 (Quad Word) 

op= Operation Code 

Valid encodings shown with each format. 

gen, gen 1, gen 2 = General Addressing Mode Field 

See Sec. 2.2 for encodings. 

reg = General Purpose Register Number 

cond = Condition Code Field 
0000 = EQual: Z = 1 
0001 = Not Equal: Z = 0 
0010 = Carry Set: C = 1 
0011 = Carry Clear: C = 0 
0100 = Higher: L = 1 
0101 = Lower or Same: L = 0 
0110 = Greater Than: N = 1 
0111 = Less or Equal: N = 0 
1000 = Flag Set: F = 1 
1001 = Flag Clear: F = 0 
1010 = LOwer: L = 0 and Z = 0 
1011 = Higher or Same: L = 1 or Z = 1 
1100 = Less Than: N = 0 and Z = 0 
1101 = Greater or Equal: N = 1 or Z = 1 
1110 = (Unconditionally True) 
1111 = (Unconditionally False) 

short= Short Immediate value. May contain 
quick: Signed 4-bit value, in MOVQ, ADDQ, 

CMPQ, ACB. 

cond: Condition Code (above), in Scond. 

areg: CPU Dedicated Register, in LPR, SPR. 
0000 = US 
0001 - 0111 = (Reserved) 
1000 = FP 
1001 = SP 
1010 = SB 
1011 = (Reserved) 
1100 = (Reserved) 
1101 = PSR 
1110 = INTBASE 
1111 = MOD 

Options: in String Instructions 

I U/W I BIT I 
T = Translated 

B = Backward 

U/W = 00: None 

01: While Match 

11: Until Match 

2-293 

Configuration bits, in SETCFG: 

I C I M I F II I 
mreg NS32082: MMU Register number, in LMR, SMR. 

0000 = BPRO 

Bcond 

BSR 
RET 
CXP 
RXP 
RETT 
RETI 
SAVE 
RESTORE 

15 

1 

ADDQ 
CMPQ 
SPR 
Scond 

0001 = BPR1 
0010 = (Reserved) 
0011 = (Reserved) 
0100 = (Reserved) 
0101 = (Reserved) 
0110 = (Reserved) 
0111 = (Reserved) 
1000 = (Reserved) 
1001 = (Reserved) 
1010 = MSR 
1011 = BCNT 
1100 = PTBO 
1101 = PTB1 
1110 = (Reserved) 
1111 = EIA 

7 0 

FormatO 

(BR) 

7 0 

1 

, , 
10 ' 0 ' l' 01 op 

Format 1 

-0000 ENTER -1000 
-0001 EXIT -1001 
-0010 Nap -1010 
-0011 WAIT -1011 
-0100 DIA -1100 
-0101 FLAG -1101 
-0110 SVC -1110 
-0111 BPT -1111 

8 17 0 , , 
'sh~rt 1 

, , 
11 ' 1 ' gen op 

Format 2 
-000 ACB -100 
-001 MOVQ -101 
-010 LPR -110 
-011 

en w 
I\) 
o w 
~ .... 
o 

fII 



C) ~--------------------------------------------------------------------------------, ,.. 
~ Appendix A: Instruction Formats (Continued) 
C) 

~ 15 al7 0 

~ I' ~e~ , I' ~p 11'1'1'1'11 : I 
CXPD 
BICPSR 
JUMP 
BISPSR 

Format 3 
-0000 ADJSP 
-0010 JSR 
-0100 CASE 
-0110 

Trap (UND) on XXX1, 1000 

ADD 
CMP 
BIC 
ADDC 
MOV 
OR 

15 al7 

Format 4 

-0000 
-0001 
-0010 
-0100 
-0101 
-0110 

SUB 
ADDR 
AND 
SUBC 
TBIT 
XOR 

-1010 
-1100 
-1110 

o 
I I I 

op 

-1000 
-1001 
-1010 
-1100 
-1101 
-1110 

o 

i 000 0 1 1 1 0 

MOVS 
CMPS 

Format 5 
-0000 SETCFG 
-0001 SKPS 

Trap (UND) on 1 XXX, 01 XX 

Format 6 
ROT -0000 NEG 
ASH -0001 NOT 
CBIT -0010 Trap (UND) 
CBITI -0011 SUBP 
Trap (UND) -0100 ABS 
LSH -0101 COM 
SBIT -0110 IBIT 
SBITI -0111 ADDP 

-0010 
-0011 

o 

001110 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

2-294 

MOVM 
CMPM 
INSS 
EXTS 
MOVXBW 
MOVZBW 
MOVZiD 
MOVXiD 

EXT 
CVTP 
INS 
CHECK 
MOVSU 
MOVUS 

MOVif 
LFSR 
MOVLF 
MOVFL 

Trap (UND) Always 

0 

00111 0 

Format 7 
-0000 MUL -1000 
-0001 MEl -1001 
-0010 Trap (UND) -1010 
-0011 DEI -1011 
-0100 QUO -1100 
-0101 REM -1101 
-0110 MOD -1110 
-0111 DIV -1111 

TLlEE/5491-73 

Format a 
-000 INDEX -100 
-001 FFS -1 01 
-010 
-011 
-110, reg = 001 
-110,reg=011 

a 7 0 

i 001 1 1 1 1 0 

Format 9 
-000 ROUND -100 
-001 TRUNC -101 
-010 SFSR -110 
-011 FLOOR -111 

7 0 ---
10 1 1 01 1 1 1 1 ---

TL/EE/5491-38 

Format 10 



,--------------------------------------------------------------------------, z 
Appendix A: Instruction Formats (Continued) 

AOO! 
MOVI 
CMP! 
Trap (SLAVE) 
SUB! 
NEG! 
Trap (UNO) 
Trap (UNO) 

Trap (UNO) Always 

Trap (UNO) Always 

ROVAL 
WRVAL 

o 

1 1 1 1 1 0 

Format 11 

-0000 OIV! -1000 
-0001 Trap (SLAVE) -1001 
-0010 Trap (UNO) -1010 
-0011 Trap (UNO) -1011 
-0100 MULl -1100 
-0101 ABS! -1101 
-0110 Trap (UNO) -1110 
-0111 Trap (UNO) -1111 

·--1 I I I I I I I 1 
no 1 1 1 1 1 1 1 0 

TL/EE/5491-75 

Format 12 

---I I I I I I I I 1 
___ 1 0 0 1 1 1 1 0 

TL/EE/5491-76 

Format 13 

7 o 

o 0 0 1 1 1 1 0 

Format 14 

-0000 
-0001 

LMR 
SMR 

-0010 
-0011 

Trap (UNO) on 01XX, 1XXX 

2-295 

Operation Word 10 Byte 

Format 15 

(Custom Slave) 

nnn Operation Word Format 

000 

CATSTO 
CATST1 

Format 15.0 

-0000 LCR 
-0001 SCR 

Trap (UNO) on all others 

001 

CCV3 
LCSR 
CCV5 
CCV4 

101 

CCALO 
CMOVO 
CCMPO 
CCMP1 
CCAL1 
CMOV2 
Trap (UNO) 
Trap (UNO) 

Format 15.1 

-000 
-001 
-010 
-011 

CCV2 
CCV1 
SCSR 
CCVO 

Format 15.5 

-0000 CCAL3 
-0001 CMOV3 
-0010 Trap (UNO) 
-0011 Trap (UNO) 
-0100 CCAL2 
-0101 CMOV1 
-0110 Trap (UNO) 
-0111 Trap (UNO) 

If nnn ~ 010,011,100,110,111 
then Trap (UND) Always 

-0010 
-0011 

-100 
-101 
-110 
-111 

-1000 
-1001 
-1010 
-1011 
-1100 
-1101 
-1110 
-1111 

(f) 
Co) 
I\l 
<:) 
Co) 
I\l 

I ..... 
<:) 



C) r-------------------------------------------------------------------------------~ .... 
~ 
CO) 

~ 
~ z 

Appendix A: Instruction Formats (Continued) 

7 0 7 0 ---I I I I I I II I 
___ 0 1 0 1 1 1 1 ~ 

---I I I I I I I I I 
n_ x X x 0 0 1 1 0 

TUEE/5491-77 TL/EE/5491-80 

Format 16 Format 19 
Trap (UNO) Always Trap (UNO) Always 

7 0 
Implied Immediate Encodlngs: 

---111111111 7 0 

; ; ; ; ; ---
I 1 0 1 1 1 1 0 

r7 r6 r5 r4 r3 r2 r1 rO 
TUEE/5491-78 

Register Mark, appended to SAVE, ENTER 
Format 17 7 0 

Trap (UNO) Always 
; ; ; ; ; ; ; rO r1 r2 r3 r4 r5 r6 r7 

7 0 ---111111111 Register Mark, appended to RESTORE, EXIT 

--- I 0 0 0 1 1 1 0 7 0 
TL/EE/5491-79 

; offset; ; lengfh -1 ; 
Format 18 

Trap (UNO) Always 
Offset/Length Modifier appended to INSS, EXTS 

2-296 



I\) 

'" CD 
--J 

XCTAl2 
...L 
CJ 
~ 

REm 'I"STI i PHIt 
, PHI2 

NS32201 
TCU 

PER 

c*11 

ViR 

PERIPH CYCLE 

~ 

I WAIT REQUESTS 
IAOOR DECODED OR STRAPPED) _ 

RO 

ViR 
BED 

AOsl' 

RSTO CTTL ODIN RDY 08EI-----------, 
BEl 

+5' 

1 BE2 

I 
ROY PHI1 PHI2 BED •••••• BEl ILO 

l--+liNT 
INTS. ~NMI 

N532032 
CPU 

ADO-AD23 024-031 

(24~t t(8) 
ADDRfOATA BUS 

HOLD 

0Siffi 
HLOA 

PFS 

uis 
ADS 

ODIN 

5TO-513 

RS'fiAiif 
A:iTsPc 

.J 10KII 
t-JV\I'v 
+5 (32) 

BE3 

IlO' 

HOLD 

...i.......i. HLOAD 

HOLD ROY 
PHil AI 
PHI2 

ill HlOAD 

I I '~ ~STROBE (24) AODRESS ....... II!I., 
ADO-AD23 LATCHI .. 

I BUFFER 

iiUiil PM 
PFs 
UlS NS32082 

ADS 
MMU 

ODIN 

S10-S13 

RST/ABT A24k+ 
SPC +-. 

ADO-AD23 RST 

(24)t---±. 

~ 
') Auu-AD23r 

AND 024_031 DATA au 

~1u-:iT3 , 

FIGURE 8-1. System Connection Diagram 

iii 

TLlEE/5491-74 

l> 

" " (I) 
:::J 
Q. 
X" 
~ 
:::J -(I) 
""I -D) 
(') 

5" 
CO 
en c 

CO 
CO 
(I) 
en -0" 
:::J 
en 

O~·~&O~&SN 



U) .----------------------------------------------------------------------------, .... 
• CD .... 

~ en z 
C; .... . 
CD .... 
c" 
~ 
C') 

en 
z 

~National 
~ Semiconductor 

PRELIMINARY 

NS32CG 16-1 O/NS32CG 16-15 
High-Performance Printer IDisplay Processor 
General Description 
The NS32CG16 is a 32-bit microprocessor in the Series 
32000@ family that provides special features for graphics 
applications. It is specifically designed to support page ori­
ented printing technologies such as Laser, LCS, LED, lon­
Deposition and InkJet. 

The NS32CG16 provides a 16 Mbyte linear address space 
and a 16-bit external data bus. It also has a 32-bit ALU, an 
eight-byte prefetch queue, and a slave processor interface. 

The capabilities of the NS32CG16 can be expanded by us­
ing an external floating point unit which interfaces to the 
NS32CG16 as a slave processor. This combination pro­
vides optimal support for outline character fonts. 

The NS32CG16 highly efficient architecture, in addition to 
the built-in capabilities for supporting BITBL T (BIT-aligned 
BLock Transfer) operations and other special graphics func­
tions, make the device the ideal choice to handle a variety 
of page description languages such as Postscript™, CCS­
Page™ and PCLTM. 

Features 
• Software compatible with the Series 32000 family 
• 32-bit architecture and implementation 
• 16 Mbyte linear address space 
• Special support for graphics applications 

- 18 graphics instructions 
- Binary compression/expansion capability for font 

storage using RLL encoding 
- Pattern magnification for Epson and HP LaserJetTM 

emulations 
- 6 BITBL T instructions on chip 
-Interface to an external BITBLT processing unit for 

very fast BITBL T operations (optional) 
• Floating point support via the NS32081 or the NS32381 

for outline font, scaling and rotation 
• On-Chip clock generator 
• Optimal interface to large memory arrays via the 

DP84xx family of DRAM controllers 

• Power save mode 
• High-speed CMOS technology 
• 68-pin plastic PCC package 

Block Diagram ADlJjOATA COIflROLS4:STAtuS 

Pl'EUNED 
OISF'LACEMDlTAND 

IIWEW.TE EXTRACTOR 

""""SET ...... 
58 

SPI 

SPO 
PC 

" II 

" .. .. .. .. 

_ROM ... 
CONTROL""' 

1 
1 
1 
1 
I 
I 
1 

~D 1 ps. 1 
1 t ___________________ J 

2-298 

TL/EE/9424-1 



.----------------------------------------------------------------,z 

~National 
~ Semiconductor 

PRELIMINARY 

NS32CO 16-1 O/NS32CO 16-15 
High-Performance Microprocessors 
General Description 
The NS32C016 is a 32-bit, CMOS microprocessor with TIL 
compatible inputs. The NS32C016 has a 16M byte linear 
address space and a 16-bit external data bus. It is fabricat­
ed with National Semiconductor's advanced CMOS process 
and is fully object code compatible with other Series 
32000® CPU's. The NS32C016 has a 32-bit ALU, eight 32-
bit general purpose registers, an eight-byte prefetch queue 
and a highly symmetric architecture. It also incorporates a 
slave processor interface and provides for full virtual memo­
ry capability in conjunction with the NS32082 memory man­
agement unit (MMU). High performance floating-point in­
structions are provided with the NS32081 floating-point unit 
(FPU). The NS32C016 is intended for a wide range of high 
performance computer applications. 

Block Diagram 
ADD/DATA CONTROLS & STATUS 

it it 
BUS INTERFACE CONTROL FA-

STRUCTIX 

I I a-BYTE 
r---- QUEUE 

I ~ 

IN 

r INSTRUCTION}-
DECODER 

DISPLACEMENT AND r----
IMMEDIATE EXTRACTOR 

REGISTER SET 

0 INTBASE 
0 SB 
0 FP 
0 SPl 
0 SPO 
0 PC 

RO 
Rl 
R2 
R3 
R4 
RS 
R6 
R7 

I MOD 

PSR 

I 

Features 
III 32-bit architecture and implementation 
III 16M byte uniform addressing space 
III Powerful instruction set 

- General 2-address capability 
- Very high degree of symmetry 
- Addressing modes optimized for high-level 

Language references 
III High-speed CMOS technology 
III TTL compatible inputs 
III Single 5V supply 
III 48-pin dual-in-line package 

MICROCODE ROM 
AND 

CONTROL LOGIC 

I---

II) [l]J] ::> 

'" ..J CFG REGISTER 

'" z 
a: 
w .... 
i!: 
l:: 
~ 
M 

I-- WORKING 
REGISTERS 

! j 

\ / 32·BIT 
ALU 

I I 
I 
I 
I 
I 
I 
I 
I 
I L _________________ .J 

TLlEE/8525-1 

2-299 

en 
(,.) 
N o 
o ..... 
en . ..... 
o ...... 
z en 
(,.) 
N o 
o ..... 
en . ..... 
(J1 



~ ,-----------------------------------------------------------------------------, ..-
tD ..-
CI 

~ 
CW) 

en 
z 
C; ..-
tD ..-

H en z 

1.0 PRODUCT INTRODUCTION 

2.0 ARCHITECTURAL DESCRIPTION 

2.1 Programming Model 

2.1.1 General Purpose Registers 

2.1.2 Dedicated Registers 

2.1.3 The Configuration Register (CFG) 

2.1.4 Memory Organization 

2.1.5 Dedicated Tables 

2.2 Instruction Set 

2.2.1 General Instruction Format 

2.2.2 Addressing Modes 

2.2.3 Instruction Set Summary 

3.0 FUNCTIONAL DESCRIPTION 

3.1 Power and Grounding 

3.2 Clocking 

3.3 Resetting 

3.4 Bus Cycles 

3.4.1 Cycle Extension 

3.4.2 Bus Status 

3.4.3 Data Access Sequences 

3.4.3.1 Bit Accesses 

3.4.3.2 Bit Field Accesses 

3.4.3.3 Extending Multiply Accesses 

3.4.4 Instruction Fetches 

3.4.5 Interrupt Control Cycles 

3.4.6 Slave Processor Communication 

3.4.6.1 Slave Processor Bus Cycles 

Table of Contents 
3.0 FUNCTIONAL DESCRIPTION (Continued) 

3.8 NS32C016 Interrupt Structure 

3.8.1 General InterruptiTrap Sequence 

3.8.2 Interrupti Trap Return 

3.8.3 Maskable Interrupts (The INT Pin) 

3.8.3.1 Non-Vectored Mode 

3.8.3.2 Vectored Mode: Non-Cascaded Case 

3.8.3.3 Vectored Mode: Cascaded Case 

3.8.4 Non-Maskable Interrupt (The NMI Pin) 

3.8.5 Traps 

3.8.6 Prioritization 

3.8.7InterruptiTrap Sequences: Detail Flow 

3.8.7.1 Maskable/Non-Maskable Interrupt Se-
quence 

3.8.7.2 Trap Sequence: Traps Other Than Trace 

3.B.7.3 Trace Trap Sequence 

3.B.7.4 Abort Sequence 

3.9 Slave Processor Instructions 

3.9.1 Slave Processor Protocol 

3.9.2 Floating Point Instructions 

3.9.3 Memory Management Instructions 

3.9.4 Custom Slave Instructions 

4.0 DEVICE SPECIFICATIONS 

4.1 NS32C016 Pin Descriptions 

4.1.1 Supplies 

4.1.2 Input Signals 

4.1.3 Output Signals 

3.4.6.2 Slave Operand Transfer Sequences 

4.1.4 Input-Output Signals 

4.2 Absolute Maximum Ratings 

4.3 Electrical Characteristics 

4.4 Switching Characteristics 

3.5 Memory Management Option 

3.5.1 Address Translation Strap 

3.5.2 Translated Bus Timing 

3.5.3 The FL T (Float) Pin 

3.5.4 Aborting Bus Cycles 

3.5.4.1 The Abort Interrupt 

3.5.4.2 Hardware Considerations 

3.6 Bus Access Control 

3.7 Instruction Status 

4.4.1 Definitions 

4.4.2 Timing Tables 

4.4.2.1 Output Signals: Internal Propagation De­
lays 

4.4.2.2 Input Signal Requirements 

4.4.2.3 Clocking Requirements 

APPENDIX A: INSTRUCTION FORMATS 

APPENDIX B: INTERFACING SUGGESTIONS 

List of Illustrations 
The General and Dedicated Registers ...........................................................................• 2-1 

Processor Status Register ......•.•.....•...........................•.•........•.......•......................... 2-2 

CFG Register .................................................•..•.................••......•.•....•.•.....•.... 2-3 

Module Descriptor Format. ....•........•...............•.••..........•.......•.................................. 2-4 

A Sample Link Table .............................................•.................•............••............. 2-5 

General Instruction Format .........•....................•....................................................... 2-6 

Index Byte Format .......................................................................................••.... 2-7 

Displacement Encodings ....•..•••......••.••......•......•..........•........•................................. 2-B 

Recommended Supply Connections ......................................................................•..•...• 3-1 

Clock Timing Relationships ......•...................•.......•...........•......•.......•........................ 3-2 

2-300 



List of Illustrations (Continued) 

Power-On Reset Requirements .................................................................................. 3-3 

General Reset Timing .......................................................................................... 3-4 

Recommended Reset Connections, Non-Memory-Managed System ................................................. 3-5a 

Recommended Reset Connections, Memory-Managed System ..................................................... 3-5b 

Bus Connections ............................................................................................... 3-6 

Read Cycle Timing ............................................................................................. 3-7 

Write Cycle Timing ............................................................................................. 3-8 

ROY Pin Timing ................................................................................................ 3-9 

Extended Cycle Example ...................................................................................... 3-1 0 

Memory Interface ............................................................................................. 3-11 

Slave Processor Connections ..•............................................................................... 3-12 

CPU Read from Slave Processor ................................................................................ 3-13 

CPU Write to Slave Processor .................................................................................. 3-14 

Read Cycle with Address Translation (CPU Action) ................................................................ 3-15 

Write Cycle with Address Translation (CPU Action) ................................................................ 3-16 

Memory-Managed Read Cycle .................................................................................. 3-17 

Memory-Managed Write Cycle .................................................................................. 3-18 

FLTTiming ................................................................................................... 3-19 

HOLD Timing, Bus Initially Idle .................................................................................. 3-20 

HOLD Timing, Bus Initially Not Idle .............................................................................. 3-21 

Interrupt Dispatch and Cascade Tables .......................................................................... 3-22 

Interrupt/Trap Service Routine Calling Sequence ................................................................. 3-23 

Return from Trap (RETT n) Instruction Flow ...................................................................... 3-24 

Return from Interrupt (RET I) Instruction Flow ..................................................................... 3-25 

Interrupt Control Unit Connections (16 Levels) .................................................................... 3-26 

Cascaded Interrupt Control Unit Connections ..................................................................... 3-27 

Slave Processor Status Word Format. ........................................................................... 3-30 

Connection Diagram ............................................................................................ 4-1 

Timing Specification Standard (CMOS Output Signals) ............................................................. .4-2 

Timing Specification Standard (TTL Input Signals) .................................................................. 4-3 

Write Cycle ................................................................................................... .4-4 

Read Cycle .................................................................................................... 4-5 

Floating by HOLD Timing (CPU Not Idle Initially) .................................................................... 4-6 

Floating by HOLD Timing (CPU Initially Idle) ....................................................................... 4-7 

Release from HOLD ............................................................................................ 4-8 

FL T Initiated Cycle Timing ....................................................................................... 4-9 

Release from FL T Timing ...................................................................................... 4-1 0 

Ready Sampling (CPU Initially READY) .......................................................................... 4-11 

Ready Sampling (CPU Initially NOT READY) ...................................................................... 4-12 

Slave Processor Write Timing .................................................................................. .4-13 

Slave Processor Read Timing .................................................................................. 4-14 

SPC Non-Forcing Delay ........................................................................................ 4-15 

Reset Configuration Timing ..................................................................................... 4-16 

Clock Waveforms ............................................................................................. 4-17 

Relationship of PFS to Clock Cycles ........•.................................................................... 4-18 

Guaranteed Delay, PFS to Non-Sequential Fetch ................................................................ 4-19a 

Guaranteed Delay, Non-Sequential Fetch to PFS ................................................................ 4-19b 

Relationship of ILO to First Operand Cycle of an Interlocked Instruction ............................................. 4-20a 

Relationship of ILO to Last Operand Cycle of an Interlocked Instruction ............................................. 4-20b 

Relationship of ILO to Any Clock Cycle .......................................................................... 4-21 

U/S Relationship to any Bus Cycle-Guaranteed Valid Interval ...................................................... 4-22 

Abort Timing, FL T Not Applied ................................................................................. .4-23 

Abort Timing, FL T Applied ...................................................................................... 4-24 

2-301 

z 
en w 
N o o ..... 
en 

I ..... 
o 
" z 
en w 
N o 
o ..... 
en 
I ..... 

U1 

fI 



U) r---------------------------------------------------------------------------------, .... 
ch .... 
~ 
tn 
Z ...... 
Q .... 
ch .... 
~ 
U) 
z 

List of Illustrations (Continued) 

Power·On Reset .............................................................................................. 4·25 

Non·Power·On Reset .•....••..•............•..........................•.............•...................•..... 4·26 

INT Interrupt Signal Detection .................................................................................. 4·27 

NMllnterrupt Signal Timing ••...••....•......................................................•.....•.....•...... 4·28 

Relationship Between Last Data Transfer of an Instruction and PFS 

Pulse of Next Instruction ..................................................................................... 4·29 

List of Tables 
NS32C016 Addressing Modes ................................................................................... 2·1 

NS32C016 Instruction Set Summary .............................................................................. 2·2 

Bus Cycle Categories ........................................................................................... 3·1 

Access Sequences ............................................................................................. 3·2 

Interrupt Sequences ............................................................................................ 3·3 

Floating Point Instruction Protocols ............................................................................... 3·4 

Memory Management Instruction Protocols ........................................................................ 3·5 

Custom Slave Instruction Protocols ............................................................................... 3·6 

2·302 



.--------------------------------------------------------------------------, z 
1.0 Product Introduction 
The Series 32000 Microprocessor family is a new genera­
tion of devices using National's XMaS and CMOS technolo­
gies. By combining state-of-the-art MaS technology with a 
very advanced architectural design philosophy, this family 
brings mainframe computer processing power to VLSI proc­
essors. 

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a 
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported 
by a set of peripherals and slave processors that provide 
sophisticated interrupt and memory management facilities 
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described 
briefly below: 

Powerful Addressing Modes_ Nine addressing modes 
available to all instructions are included to access data 
structures efficiently. 

Data Types_ The architecture provides for numerous data 
types, such as byte, word, doubleword, and BCD, which may 
be arranged into a wide variety of data structures. 

SymmetriC Instruction Set While avoiding special case 
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations, 
such as array indexing and external procedure calls, which 
save considerable space and time for compiled code. 

Memory-to-Memory Operations. The Series 32000 CPUs 
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing 
modes provided. This powerful memory-to-memory archi­
tecture permits memory locations to be treated as registers 
for all useful operations. This is important for temporary op­
erands as well as for context switching. 

Memory Management Either the NS32382 or the 
NS32082 Memory Management Unit may be added to the 
system to provide advanced operating system support func­
tions, including dynamic address translation, virtual memory 
management, and memory protection. 

Large, Uniform Addressing. The NS32C016 has 24-bit ad­
dress pointers that can address up to 16 megabytes without 
any segmentation; this addressing scheme provides flexible 
memory management without added-on expense. 
Modular Software Support_ Any software package for the 
Series 32000 family can be developed independent of all 
other packages, without regard to individual addressing. In 
addition, ROM code is totally relocatable and easy to ac-

DEDICATED 

32 

PROGRAM COUNTER PC 

STATIC BASE SB 

FRAME POINTER FP 

USER STACK PTR. SPl } 
SP 

INTERRUPT STACK PTR. SPO 

INTERRUPT BASE INTBASE 

PSR MOD 

STATUS MODULE 

cess, which allows a significant reduction in hardware and 
software cost. 

Software Processor Concept The Series 32000 architec­
ture allows future expansions of the instruction set that can 
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is 
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave 
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be 
physically integrated on the CPU chip itself. 

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics: 

• High-Level Language Support 

• Easy Future Growth Path 

• Application Flexibility 

2.0 Architectural Description 
2.1 PROGRAMMING MODEL 

The Series 32000 architecture includes 16 registers on the 
NS32C016 CPU. 

2.1.1 General Purpose Registers 
There are eight registers for meeting high speed general 
storage requirements, such as holding temporary variables 
and addresses. The general purpose registers are free for 
any use by the programmer. They are thirty-two bits in 
length. If a general register is specified for an operand that 
is eight or sixteen bits long, only the low part of the register 
is used; the high part is not referenced or modified. 

2.1.2 Dedicated Registers 

The eight dedicated registers of the NS32C016 are as­
signed specific functions. 

PC: The PROGRAM COUNTER register is a pointer to the 
first byte of the instruction currently being executed. The PC 
is used to reference memory in the program section. (In the 
NS32C016 the upper eight bits of this register are always 
zero.) 

sPa, SP1: The SPO register points to the lowest address of 
the last item stored on the INTERRUPT STACK. This stack 
is normally used only by the operating system. It is used 
primarily for storing temporary data, and holding return infor­
mation for operating system subroutines and interrupt and 

RD 

Rl 

R2 

R3 

R4 

RS 

R6 

GENERAL 

32 

:========:=======: 

R7 '--_____ -'-__ --'-__ --' TL/EE/8S2S-3 

FIGURE 2-1. The General and Dedicated Registers 

2-303 

(J) 
(0) 
N o o ..... 
0) 

I ..... 
o ...... 
Z 
(J) 
(0) 
N o o ..... 
0) 

I ..... 
U1 



U) r---------------------------------------------------------------------------------, .-
cD .-
8 
C'I 
Cf) 
U) 
z ..... 
o .-
cD .-
o 
~ 
Cf) 
U) 
z 

2.0 Architectural Description (Continued) 

trap service routines. The SP1 register pOints to the lowest 
address of the last item stored on the USER STACK. This 
stack is used by normal user programs to hold temporary 
data and subroutine return information. 

In this document, reference is made to the SP register. The 
terms "SP register" or "SP" refer to either SPO or SP1, 
depending on the setting of the S bit in the PSR register. If 
the S bit in the PSR is 0 then SP refers to SPO. If the S bit in 
the PSR is 1 then SP refers to SP1. (In the NS32C016 the 
upper eight bits of these registers are always zero.) 

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by 
the operand length. A Pop operation post-increments the 
Stack Pointer by the operand length. 

FP: The FRAME POINTER register is used by a procedure 
to access parameters and local variables on the stack. The 
FP register is set up on procedure entry with the ENTER 
instruction and restored on procedure termination with the 
EXIT instruction. 

The frame pointer holds the address in memory occupied by 
the old contents of the frame pOinter. (In the NS32C016 the 
upper eight bits of this register are always zero.) 

SB: The STATIC BASE register pOints to the global vari­
ables of a software module. This register is used to support 
relocatable global variables for software modules. The SB 
register holds the lowest address in memory occupied by 
the global variables of a module. (In the NS32C016 the up­
per eight bits of this register are always zero.) 

INTBASE: The INTERRUPT BASE register holds the ad­
dress of the dispatch table for interrupts and traps (Section 
3.8). The INTBASE register holds the lowest address in 
memory occupied by the dispatch table. (in the NS32C016 
the upper eight bits of this register are always zero.) 

MOD: The MODULE register holds the address of the mod­
ule descriptor of the currently executing software module. 
The MOD register is sixteen bits long, therefore the module 
table must be contained within the first 64k bytes of memo­
ry. 

PSR: The PROCESSOR STATUS REGISTER (PSR) holds 
the status codes for the NS32C016 microprocessor. 

The PSR is sixteen bits long, divided into two eight-bit 
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to 
programs executing in Supervisor Mode. 

15 817 0 

IXIXIXD<Jllplslu NlzlFIXIXILlrlcl 
TL/EE/8525-78 

FIGURE 2-2. Processor Status Register 

C: The C bit indicates that a carry or borrow occurred after 
an addition or subtraction instruction. It can be used with the 
ADDC and SUBC instructions to perform multiple-precision 
integer arithmetic calculations. It may have a setting of 0 (no 
carry or borrow) or 1 (carry or borrow). 

T: The T bit causes program tracing. If this bit is a 1, a TRC 
trap is executed after every instruction (Section 3.8.5). 

L: The L bit is altered by comparison instructions. In a com­
parison instruction the L bit is set to "1" if the second oper­
and is less than the first operand, when both operands are 
interpreted as unsigned integers. Otherwise, it is set to "0". 
In Floating Point comparisons, this bit is always cleared. 

2-304 

F: The F bit is a general condition flag, which is altered by 
many instructions (e.g., integer arithmetic instructions use it 
to indicate overflow). 

Z: The Z bit is altered by comparison instructions. In a com­
parison instruction the Z bit is set to "1" if the second oper­
and is equal to the first operand; otherwise it is set to "0". 

N: The N bit is altered by comparison instructions. In a com­
parison instruction the N bit is set to "1" if the second oper­
and is less than the first operand, when both operands are 
interpreted as signed integers. Otherwise, it is set to "0". 

U: If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "0" then all instructions may be execut­
ed. When U = 0 the NS32C016 is said to be in Supervisor 
Mode; when U = 1 the NS32C016 is said to be in User 
Mode. A User Mode program is restricted from executing 
certain instructions and accessing certain registers which 
could interfere with the operating system. For example, a 
User Mode program is prevented from changing the setting 
of the flag used to indicate its own privilege mode. A Super­
visor Mode program is assumed to be a trusted part of the 
operating system, hence it has no such restrictions. 

S: The S bit specifies whether the SPO register or SP1 regis­
ter is used as the stack pointer. The bit is automatically 
cleared on interrupts and traps. It may have a setting of 0 
(use the SPO register) or 1 (use the SP1 register). 

P: The P bit prevents a TRC trap from occurring more than 
once for an instruction (Section 3.8.5). It may have a setting 
of 0 (no trace pending) or 1 (trace pending). 

I: If 1= 1, then all interrupts will be accepted (Section 3.8). If 
1=0, only the NMI interrupt is accepted. Trap enables are 
not affected by this bit. 

2.1.3 The Configuration Register (CFG) 

Within the Control section of the NS32C016 CPU is the four­
bit CFG Register, which declares the presence of certain 
external devices. It is referenced by only one instruction, 
SETCFG, which is intended to be executed only as part of 
system initialization after reset. The format of the CFG Reg­
ister is shown in Figure 2-3. 

FIGURE 2-3. CFG Register 

The CFG I bit declares the presence of external interrupt 
vectoring circuitry (specifically, the NS32202 Interrupt Con­
trol Unit). If the CFG I bit is set, interrupts requested through 
the INT pin are "Vectored." If it is clear, these interrupts are 
"Non-Vectored." See Section 3.8. 

The F, M and C bits declare the presence of the FPU, MMU 
and Custom Slave Processors. If these bits are not set, the 
corresponding instructions are trapped as being undefined. 

2.1.4 Memory Organization 

The main memory of the NS32C016 is a uniform linear ad­
dress space. Memory locations are numbered sequentially 
starting at zero and ending at 224 - 1. The number specify­
ing a memory location is called an address. The contents of 
each memory location is a byte consisting of eight bits. Un­
less otherwise noted, diagrams in this document show data 
stored in memory with the lowest address on the right and 
the highest address on the left. Also, when data is shown 
vertically, the lowest address is at the top of a diagram and 



~----------------------------------------------------~z 
en 
Co) 
N 

2.0 Architectural Description (Continued) 

the highest address at the bottom of the diagram. When bits 
are numbered in a diagram, the least significant bit is given 
the number zero, and is shown at the right of the diagram. 
Bits are numbered in increasing significance and toward the 
left. 

Byte at Address A 

Two contiguous bytes are called a word. Except where not­
ed (Section 2.2.1), the least significant byte of a word is 
stored at the lower address, and the most significant byte of 
the word is stored at the next higher address. In memory, 
the address of a word is the address of its least significant 
byte, and a word may start at any address. 

115 MSB's 817 LSB's 01 

A+1 A 
Word at Address A 

Two contiguous words are called a double word. Except 
where noted (Section 2.2.1), the least significant word of a 
double word is stored at the lowest address and the most 
significant word of the double word is stored at the address 
two greater. In memory, the address of a double word is the 
address of its least significant byte, and a double word may 
start at any address. 

16115 817 LSB's 01 

A+3 A+2 A+1 A 
Double Word at Address A 

Although memory is addressed as bytes, it is actually orga­
nized as words. Therefore, words and double words that are 
aligned to start at even addresses (multiples of two) are 
accessed more quickly than words and double words that 
are not so aligned. 

2.1.5 Dedicated Tables 

Two of the NS32C016 dedicated registers (MOD and INT­
BASE) serve as pointers to dedicated tables in memory. 

The INTBASE register points to the Interrupt Dispatch and 
Cascade tables. These are described in Section 3.8. 

The MOD register contains a pOinter into the Module Table, 
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers, three of which are used by 
the NS32C016. The MOD register contains the address of 
the Module Descriptor for the currently running module. It is 
automatically updated by the Call External Procedure in­
structions (CXP and CXPD). 

The format of a Module Descriptor is shown in Figure 2-4. 
The Static Base entry contains the address of static data 
assigned to the running module. It is loaded into the CPU 
Static Base register by the CXP and CXPD instructions. The 
Program Base entry contains the address of the first byte of 
instruction code in the module. Since a module may have 
multiple entry points, the Program Base pointer serves only 
as a reference to find them. 

2-305 

15 

l MOO J 
I 

31 oj 
STATIC BASE 

LINK TABLE ADDRESS 

PROGRAM BASE 

RESERVED 

TLlEE/B525-4 

FIGURE 2-4. Module Descriptor Format 

The Link Table Address pOints to the Link Table for the 
currently running module. The Link Table provides the infor­
mation needed for: 

1) Sharing variables between modules. Such variables 
are accessed through the Link Table via the External 
addressing mode. 

2) Transferring control from one module to another. This 
is done via the Call External Procedure (CXP) instruc­
tion. 

The format of a Link Table is given in Figure 2-5. A Link 
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure 
contains two 16-bit fields: Module and Offset. The Module 
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number 
giving the position of the entry point relative to the new 
module's Program Base pointer. 

For further details of the functions of these tables, see the 
Series 32000 Instruction Set Reference Manual. 

ENTR V.., 31 0" 
ABSOLUTE ADDRESS I VARIABLE) 

ABSOLUTE ADDRESS I VARiABLE) 

OFFSET I MODULE I· ROCEDURE) 

.... 
TLlEE/B525-5 

FIGURE 2·5_ A Sample Link Table 

2.2 INSTRUCTION SET 

2.2.1 General Instruction Format 

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long 
and contains the Opcode and up to 5-bit General Address­
ing Mode ("Gen") fields. Following the Basic Instruction 
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected. 

I ndex Bytes appear when either or both Gen fields specify 
Scaled Index. In this case, the Gen field specifies only the 
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies 
which General Purpose Register to use as the index, and 
which addressing mode calculation to perform before index­
ing. See Figure 2-1. 

Following Index Bytes come any displacements (addressing 
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain 

g ... 
tp ... 
~ 
Z 
~ 
N g ... 
m • ... 
en 



~ r-------------------------------------------------------------------------~ ,.. 
ch ,.. 
o 

~ 
(/) 
z 
C; ,.. 
ch ,.. 
8 
'" ~ z 

2.0 Architectural Description (Continued) 
OPTIONAL BASIC 

EXTENSIONS INSTRUCTION 

r~----------------~A~----------------~\r~--------~A----------\ 

DISP2 DISP1 DISP2iDISP1 
I I 
I I 
I I 

IMPUED GEN I GEN I 
INDEX INDEX I I 

IMMEDIATE DISP DISP ADDR I ADDR I OPCODE BYTE BYTE I I 
OPERAND(S) MODE I MODE I 

A I B I 

IMM IMM 
I I 

I I 
I 

t 4.. 1 
TL/EE/8525-6 

FIGURE 2·6. General InstructIon Format 

1 ' GEN. ADDR. MODE l REG. NO. 'I 
TLiEE/B525-7 

FIGURE 2·7. Index Byte Format 

one of two displacements, or one immediate value. The size 
of a Displacement field is encoded within the top bits of that 
field, as shown in Figure 2-8, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an 
immediate value is determined from the Opcode field. Both 
Displacement and Immediate fields are stored most-signifi­
cant byte first Note that this is different from the memory 
representation of data (Section 2.1.4). 

Some instructions require additional "implied" immediates 
and/or displacements. apart from those associated with ad­
dressing modes. Any such exiensions appear at the end of 
the instruction, in the order that they appear within the list of 
operands in the instruction definition (Section 2.2.3). 

2.2.2 Addressing Modes 

The NS32C016 CPU generally accesses an operand by cal: 
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be 
used in performing this calculation is specified by the pro­
grammer as an "addressing mode." 

Addressing modes in the NS32C016 are designed to opti­
mally support high-level language accesses to variables. In 
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that 
variable. Extraneous data movement is therefore minimized. 

NS32C016 Addressing Modes fall into nine basic types: 

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced 
instead. 

RegIster RelatIve: A General Purpose Register contains an 
address to which is added a displacement value from the 
instruction, yielding the Effective Address of the operand in 
memory. 

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers 
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages. 

Memory RelatIve: A pointer variable is found within the 
memory space pointed to by the SP, SB or FP register. A 

2-306 

Byte DIsplacement: Range -64 to + 63 

SIGNED DISPLACEMENT 

Word DIsplacement: Range -8192 to +8191 

Double Word DIsplacement: 
Range (Entire AddressIng Space) 

7 0 

1 
I 

1 I I 

r/ 
~+~o 

TLiEE/8525-8 

FIGURE 2·8. Displacement Encodlngs 

displacement is added to that pOinter to generate the Effec· 
tive Address of the operand. 

ImmedIate: The operand is encoded within the instruction. 
This addressing mode is not allowed if the operand is to be 
written. 

Absolute: The address of the operand is specified by a 
displacement field in the instruction. 

External: A pOinter value is read from a specified entry of 
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand. 

Top of Stack: The currently-selected Stack Pointer (SPO or 
SP1) specifies the location of the operand. The operand is 
pushed or popped, depending on whether it is written or 
read. 



2.0 Architectural Description (Continued) 

Scaled Index: Although encoded as an addressing mode, 
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of 
calculating an Effective Address, then multiplying any Gen-

eral Purpose Register by 1, 2, 4 or 8 and adding into the 
total, yielding the final Effective Address of the operand. 

Table 2-1 is a brief summary of the addressing modes. For a 
complete description of their actions, see the Series 32000 
Instruction Set Reference Manual. 

TABLE 2-1. NS32C016 Addressing Modes 

ENCODING MODE 
Register 
00000 Register 0 
00001 Register 1 
00010 Register 2 
00011 Register 3 
00100 Register 4 
00101 Register 5 
00110 Register 6 
00111 Register 7 
Register Relative 
01000 Register 0 relative 
01001 Register 1 relative 
01010 Register 2 relative 
01011 Register 3 relative 
01100 Register 4 relative 
01101 Register 5 relative 
01110 Register 6 relative 
01111 Register 7 relative 
Memory Relative 
10000 
10001 
10010 

Reserved 
10011 
Immediate 
10100 

Absolute 
10101 
External 
10110 

Top Of Stack 
10111 

Memory Space 
11000 
11001 
11010 
11011 
Scaled Index 
11100 
11101 
11110 
11111 

Frame memory relative 
Stack memory relative 
Static memory relative 

(Reserved for Future Use) 

Immediate 

Absolute 

External 

Top of stack 

Frame memory 
Stack memory 
Static memory 
Program memory 

I ndex, bytes 
Index, words 
Index, double words 
Index, quad words 

ASSEMBLER SYNTAX 

RO orFO 
R1 or F1 
R20rF2 
R30rF3 
R40rF4 
R50rF5 
R6orF6 
R6orF7 

disp(RO) 
disp(R1) 
disp(R2) 
disp(R3) 
disp(R4) 
disp(R5) 
disp(R6) 
disp(R7) 

disp2( disp 1 (FP» 
disp2(disp1 (SP» 
disp2(disp1 (SB» 

value 

@disp 

EXT (disp1) + disp2 

TOS 

disp(FP) 
disp(SP) 
disp(SB) 
.+ disp 

mode[Rn:B] 
mode[Rn:W] 
mode[Rn:D] 
mode[Rn:Q] 

2-307 

EFFECTIVE ADDRESS 

None: Operand is in the specified 
register. 

Disp + Register. 

Disp2 + Pointer; Pointer found at 
address Disp 1 + Register. "SP" 
is either SPO or SP1, as selected 
in PSR. 

None: Operand is input from 
instruction queue. 

Disp. 

Disp2 + Pointer; Pointer is found 
at Link Table Entry number Disp1. 

Top of current stack, using either 
User or Interrupt Stack Pointer, 
as selected in PSR. Automatic 
Push/Pop included. 

Disp + Register; "SP" is either 
SPO or SP1 , as selected in PSR. 

EA (mode) + Rn. 
EA (mode) + 2 X Rn. 
EA (mode) + 4 x Rn. 
EA (mode) + 8 x Rn. 
"Mode" and "n" are contained 
within the Index Byte. 
EA (mode) denotes the effective 
address generated using mode. 

z en 
Co) 
N 
o 
CI .... 
m 

I .... 
CI ..... 
z en 
Co) 
N o 
CI .... 
m 

I .... 
en 



It) .... 
cO .... 
~ 
i 
c; .... 
cO .... 

i z 

2.0 Architectural Description (Continued) 

2.2.3 Instruction Set Summary short = A 4-bit value encoded within the Basic Instruction 
(see Appendix A for encodings). Table 2-2 presents a brief description of the NS32C016 in­

struction set. The Format column refers to the Instruction 
Format tables (Appendix A). The Instruction column gives 
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function 
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the 
Series 32000 Instruction Set Reference Manual. 

imm = Implied immediate operand. An a-bit value appended 
after any addressing extensions. 

disp = Displacement (addressing constant): a, 16 or 32 bits . 
All three lengths legal. 

reg = Any General Purpose Register: RO-R7. 

areg=Any Dedicated/Address Register: SP, SB, FP, MOD, 
INTBASE, PSR, US (bottom a PSR bits). 

Notations: 

i = Integer length suffix: B = Byte 
W= Word 
D = Double Word 

f = Floating Point length suffix: F = Standard Floating 
L = Long Floating 

mreg=Any Memory Management Status/Control Register. 

creg=A Custom Slave Processor Register (Implementation 
Dependent). 

cond = Any condition code, encoded as a 4-bit field within 
the Basic Instruction (see Appendix A for encodings). 

gen = General operand. Any addressing mode can be speci­
fied. 

TABLE 2-2. NS32C016 Instruction Set Summary 
MOVES 

Format Operation Operands Description 

4 MOVi gen,gen Move a value. 
2 MOVQi short,gen Extend and move a signed 4-bit constant. 
7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16). 
7 MOVZBW gen,gen Move with zero extension. 
7 MOVZiD gen,gen Move with zero extension. 
7 MOVXBW gen,gen Move with sign extension. 
7 MOVXiD gen,gen Move with sign extension. 
4 ADDR gen,gen Move effective address. 

INTEGER ARITHMETIC 
Format Operation Operands Description 

4 ADDi gen,gen Add. 
2 ADDQi short,gen Add signed 4-bit constant. 
4 ADDCi gen,gen Add with carry. 
4 SUBi gen,gen Subtract. 
4 SUBCi gen,gen Subtract with carry (borrow). 
6 NEGi gen,gen Negate (2's complement). 
6 ABSi gen,gen Take absolute value. 
7 MULi gen,gen Multiply. 
7 QUOi gen,gen Divide, rounding toward zero. 
7 REMi gen,gen Remainder from QUO. 
7 DIVi gen,gen Divide, rounding down. 
7 MODi gen,gen Remainder from DIV (Modulus). 
7 MEli gen,gen Multiply to extended integer. 
7 DEli gen,gen Divide extended integer. 

PACKED DECIMAL (BCD) ARITHMETIC 
Format Operation Operands Description 

6 ADDPi gen,gen Add packed. 
6 SUBPi gen,gen Subtract packed. 

2-30a 



2.0 Architectural Description (Continued) 

TABLE 2-2. NS32C016 Instruction Set Summary (Continued) 
INTEGER COMPARISON 

Format Operation Operands Description 
4 CMPi gen,gen Compare. 
2 CMPQi short,gen Compare to signed 4-bit constant. 
7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16). 

LOGICAL AND BOOLEAN 
Format Operation Operands Description 

4 ANDi gen,gen Logical AND. 
4 ORi gen,gen Logical OR. 
4 BICi gen,gen Clear selected bits. 
4 XORi gen,gen Logical exclusive OR. 
6 COMi gen,gen Complement all bits. 
6 NOTi gen,gen Boolean complement: LSB only. 
2 Scondi gen Save condition code (cond) as a Boolean variable of size i. 

SHIFTS 

Format Operation Operands Description 

6 LSHi gen,gen Logical shift, left or right. 
6 ASHi gen,gen Arithmetic shift, left or right. 
6 ROTi gen,gen Rotate, left or right. 

BITS 

Format Operation Operands Description 

4 TBITi gen,gen Test bit. 
6 SBITi gen,gen Test and set bit. 
6 SBITli gen,gen Test and set bit, interlocked. 
6 CBITi gen,gen Test and clear bit. 
6 CBITII gen,gen Test and clear bit, interlocked. 
6 IBITi gen,gen Test and invert bit. 
8 FFSi gen,gen Find first set bit. 

BIT FIELDS 

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in 
Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source. 

Format Operation Operands Description 

8 EXTi reg,gen,gen,disp Extract bit field (array oriented). 
8 INSi reg,gen,gen,disp Insert bit field (array oriented). 
7 EXTSi gen,gen,imm,imm Extract bit field (short form). 

7 INSSi gen,gen,imm,imm Insert bit field (short form). 
8 CVTP reg,gen,gen Convert to bit field pointer. 

ARRAYS 
Format Operation Operands Description 

8 CHECKi reg,gen,gen Index bounds check. 
8 INDEXi reg,gen,gen Recursive indexing step for multiple·dimensional arrays. 

2-309 

z 
tJ) 
W 
N o o ...... 
Q) . ...... 
o ....... 
Z 
tJ) 
W 
N o 
o ...... 
Q) 

• ...... 
CJ1 



U) r---------------------------------------------------------------------------------, .-• CD .­
CI 

~ 
C') 

en 
z 
C; .-
cD .-
8 
C\I 

~ 
Z 

2.0 Architectural Description (Continued) 

TABLE 2·2. NS32C016 Instruction Set Summary (Continued) 

STRINGS Options on all string instructions are: 
String instructions assign specific functions to the General 
Purpose Registers: 

B (Backward): Decrement strong pointers after each 
step rather than incrementing. 

R4 - Comparison Value 

R3 - Translation Table Pointer 

R2 - String 2 Pointer 

R1 - String 1 Pointer 

RO - Limit Count 

Format Operation 

5 MOVSi 
MOVST 

5 CMPSi 
CMPST 

5 SKPSi 
SKPST 

JUMPS AND LINKAGE 

Format Operation 

3 JUMP 
0 BR 
0 Bcond 
3 CASEi 
2 ACBi 
3 JSR 

BSR 
CXP 

3 CXPD 
SVC 
FLAG 
BPT 
ENTER 
EXIT 
RET 
RXP 
RETT 
RETI 

CPU REGISTER MANIPULATION 

Format Operation 

SAVE 
RESTORE 

2 LPRi 
2 SPRi 
3 ADJSPi 
3 BISPSRi 
3 BICPSRi 
5 SETCFG 

Operands 

options 
options 
options 
options 
options 
options 

Operands 

gen 
disp 
disp 
gen 
short,gen,disp 
gen 
disp 
disp 
gen 

[reg listl, disp 
[reg list] 

disp 
disp 
disp 

Operands 

[reg listl 
[reg listl 
areg,gen 
areg,gen 
gen 
gen 
gen 
[option list] 

U (Until match): End instruction if String 1 entry matches 
R4. 

W (While match): End instruction if String 1 entry does not 
match R4. 

All string instructions end when RO decrements to zero. 

Description 

Move string 1 to string 2. 
Move string, translating bytes. 
Compare string 1 to string 2. 
Compare, translating string 1 bytes. 
Skip over string 1 entries. 
Skip, translating bytes for until/while. 

Description 

Jump. 
Branch (PC Relative). 
Conditional branch. 
Multiway branch. 
Add 4-bit constant and branch if non-zero. 
Jump to subroutine. 
Branch to subroutine. 
Call external procedure 
Call external procedure using descriptor. 
Supervisor call. 
Flag trap. 
Breakpoint trap. 
Save registers and allocate stack frame (Enter Procedure). 
Restore registers and reclaim stack frame (Exit Procedure). 
Return from subroutine. 
Return from external procedure call. 
Return from trap. (Privileged) 
Return from interrupt. (Privileged) 

Description 

Save general purpose registers. 
Restore general purpose registers. 
Load dedicated register. (Privileged if PSR or INTBASE) 
Store dedicated register. (Privileged if PSR or INTBASE) 
Adjust stack pOinter. 
Set selected bits in PSR. (Privileged if not Byte length) 
Clear selected bits in PSR. (Privileged if not Byte length) 
Set configuration register. (Privileged) 

2-310 



z 
U) 

2.0 Architectural Description (Continued) 
w 
N 
0 

TABLE 2·2. NS32C016 Instruction Set Summary (Continued) 0 
FLOATING POINT 

-10 
en 

Format Operation Operands Description 
I 

-10 

11 MOVf gen,gen Move a floating point value. 0 ...... 
9 MOVLF gen,gen Move and shorten a long value to standard. Z 

U) 
9 MOVFL gen,gen Move and lengthen a standard value to long. w 
9 MOVif Convert any integer to standard or long floating. 

N 
gen,gen 0 

9 ROUNDfi gen,gen Convert to integer by rounding. 0 
-10 

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero. en 
I 

9 FLOORfi gen,gen Convert to largest integer less than or equal to value. -10 
U1 

11 ADDf gen,gen Add. 
11 SUBf gen,gen Subtract. 
11 MUll gen,gen Multiply. 
11 DIVf gen,gen Divide. 
11 CMPf gen,gen Compare. 
11 NEGf gen,gen Negate. 
11 ABSf gen,gen Take absolute value. 
9 LFSR gen Load FSR. 
9 SFSR gen Store FSR. 

MEMORY MANAGEMENT 
Format Operation Operands Description 

14 LMR mreg,gen Load memory management register. (Privileged) 
14 SMR mreg,gen Store memory management register. (Privileged) 
14 RDVAL gen Validate address for reading. (Privileged) 
14 WRVAL gen Validate address for writing. (Privileged) 
8 MOVSUi gen,gen Move a value from supervisor 

space to user space. (Privileged) 
8 MOVUSi gen,gen Move a value from user space 

to supervisor space. (Privileged) 

MISCELLANEOUS 
Format Operation Operands Description 

NOP No operation. 
WAIT Wait for interrupt. 
DlA Diagnose. Single·byte "Branch to Self" for hardware 

breakpointing. Not for use in programming. 

CUSTOM SLAVE 
Format Operation Operands Description 

15.5 CCALOc gen,gen Custom calculate. 
15.5 CCAL1c gen,gen 
15.5 CCAL2c gen,gen 
15.5 CCAL3c gen,gen 
15.5 CMOVOc gen,gen Custom move. 
15.5 CMOV1c gen,gen 
15.5 CMOV2c gen,gen 
15.5 CMOV3c gen,gen 
15.5 CCMPOc gen,gen Custom compare. 
15.5 CCMP1c gen,gen 
15.1 CCVOci gen,gen Custom convert. 
15.1 CCV1ci gen,gen 
15.1 CCV2ci gen,gen 
15.1 CCV3ic gen,gen 
15.1 CCV4DQ gen,gen 
15.1 CCV5QD gen,gen 
15.1 LCSR gen Load custom status register. 
15.1 SCSR gen Store custom status register. 
15.0 CATSTO gen Custom address/test. (Privileged) 
15.0 CATST1 gen (Privileged) 
15.0 LCR creg,gen Load custom register. (Privileged) 
15.0 SCR creg,gen Store custom register. (Privileged) 

2·311 



~r-------------------------------------------------------------~ .... 
cb .... 
o 
~ 
C') 

tn 
Z 
C; .... . 
CD .... 
8 
~ 
tn 
Z 

3.0 Functional Description 
3.1 POWER AND GROUNDING 

Power and ground connections for the NS32C016 are made 
on four pins. On-chip logic is connected to power through 
the logic power pin (VCCL, pin 48) and to ground through 
the logic ground pin (GNDL, pin 24). On-chip output drivers 
are connected to power through the buffer power pin 
(VCCP, pin 29) and to ground through the buffer ground pin 
(GNDB, pin 25). For optimal noise immunity, it is recom­
mended that single conductors be connected directly from 
VCCL to VCCB and from GNDL to GNDB, as shown below 
(Figure 3-1). 

1-4_-0+SV 

........ -+ OTHER GROUND 
CONNECTIONS 

TL/EE/8525-9 

FIGURE 3-1. Recommended Supply Connections 

3.2 CLOCKING 

The NS32C016 inputs clocking signals from the NS32C201 
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a single clock frequency. These phases are 
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to 
each other is shown in Figure 3-2. 

vcc 

Each rising edge of PHI1 defines a transition in the timing 
state ("T-State") of the CPU. One T-State represents the 
execution of one microinstruction within the CPU, and/or 
one step of an external bus transfer. See Section 4 for com­
plete specifications of PHI1 and PHI2. 

PHI1 

PHI2 

TLlEE/8525-10 

FIGURE 3-2. Clock Timing Relationships 

As the TCU presents signals with very fast transitions, it is 
recommended that the conductors carrying PHI1 and PHI2 
be kept as short as possible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TTL Clock signal (CTTL) is provided by the 
TCU for all other clocking. 

3.3 RESETTING 

The RST / ABT pin serves both as a Reset for on-chip logic 
and as the Abort input for Memory-Managed systems. For 
its use as the Abort Command, see Section 3.5.4. 

The CPU may be reset at any time by pulling the RST / ABT 
pin low for at least 64 clock cycles. Upon detecting a reset, 
the CPU terminates instruction processing, resets its inter­
nal logiC, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes. 

On application of power, RST / ABT must be held low for at 
least 50 ""S after Vee is stable. This is to ensure that all on­
chip voltages are completely stable before operation. 
Whenever a Reset is applied, it must also remain active 

PHI1 ---I-_...J JJ-Jl.-
I lt64CLOCK r--- CYCLES 

ii$i/ABT ----+---____ ~ 
1-----lt50~oec: ---~ 

TL/EE/8525-11 

FIGURE 3-3. Power-On Reset Requirements 

2-312 



3.0 Functional Description (Continued) 

for not less than 64 clock cycles. The rising edge must oc­
cur while PHil is high. See Figures 3-3 and 3-4. 

The NS32C201 Timing Control Unit (TCU) provides circuitry 
to meet the Reset requirements of the NS32C016 CPU. Fig­
ure 3-58 shows the recommended connections for a non­
Memory-Managed system. Figure 3-5b shows the connec­
tions for a Memory-Managed system. 

Vee 

1"'------------, 

PHil 

f-ol'~--"64CLOCK-1 
iiST/ABT-----,~"''t'''t'~ CYCLES I 

- rl . 
TL/EE/B525-12 

FIGURE 3-4. General Reset Timing 

NS32C201 
Teu 

NS32COI6 
CPU 

I I 

I RESET J>--fI-+-""'-+--+~-----1 RsTi RSTO 1----....,.------1 iiSr/m 
I 
! I L _____________ ..1 

EXTERNAL RESET 
(OPTIONAL) 

RESET SWITCH 
(OPTIONAL) 

O!:50p.sec 

SYSTEM RESET 

TUEE/B525-13 

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System 

Vee 

1"'------------, 
I I 

NS32C201 
TCU 

NS32082 
MMU 

NS32C016 
CPU 

I RESET 1>-l-I-+-....,..-f--+~+-------I RsTi iiSTci I I 

! : L _____________ ..1 

EXTERNAL RESET 
(OPTIONAL) 

RESET SWITCH 
(OPTIONAL) 

2: SOj..lsec 

TUEE/B525-14 

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System 

3.4 BUS CYCLES 

The NS32C016 CPU has a strap option which defines the 
Bus Timing Mode as either With or Without Address Trans­
lation. This section describes only bus cycles under the No 
Address Translation option. For details of the use of the 
strap and of bus cycles with address translation, see Sec­
tion 3.5. 

The CPU will perform a bus cycle for one of the following 
reasons: 

1) To write or read data, to or from memory or a peripheral 
interface device. Peripheral input and output are memo­
ry-mapped in the Series 32000 family. 

2) To fetch instructions into the eight-byte instruction 
queue. This happens whenever the bus would otherwise 
be idle and the queue is not already full. 

2-313 

3) To acknowledge an interrupt and allow external circuitry 
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine. 

4) To transfer information to or from a Slave Processor. 

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the four-bit code placed on 
the Bus Status pins (STO-ST3). Slave Processor cycles dif­
fer in that separate control signals are applied (Section 
3.4.6). 

The sequence of events in a non-Slave bus cycle is shown 
in Figure 3-7 for a Read cycle and Figure 3-8 for a Write 
cycle. The cases shown assume that the selected memory 
or interface device is capable of communicating with the 
CPU at full speed. If it is not, then cycle extension may be 
requested through the ROY line (Section 3.4.1). 

z 
UJ 
c.:I 
N g .... 
G) 
• .... 

Q ...... 
Z 
UJ 
c.:I 
N 
o 
Q .... 
G) 
• .... 

U1 



U) r---------------------------------------------------------------------------------, .... 
ch .... 
8 
C'oI 

~ 
Z 
c; .... 
ch .... 
~ 
CO) 

en z 

3.0 Functional Description (Continued) 

A full-speed bus cycle is performed in four cycles of the 
PHI1 clock signal, labeled T1 through T4. Clock cycles not 
associated with a bus cycle are designated Ti (for "Idle"). 

During T1, the C~U applies an address on pins ADO-AD15 
and A16-A23. It also provides a low-going pulse on the 
ADS pin, which serves the dual purpose of informing exter­
nal circuitry that a bus cycle is starting and of providing con­
trol to an external latch for demultiplexing Address bits 0-
15 from the ADO-AD15 pins. See Figure 3-6. During this 
time also the status signals DDIN, indicating the direction of 
the transfer, and HBE, indicating whether the high byte 
(AD8-AD15) is to be referenced, become valid. 

During T2 the CPU switches the Data Bus, ADO-AD15, to 
either accept or present data. Note that the signals A 16-
A23 remain valid, and need not be latched. It also starts the 
data strobe (DS), signaling the beginning of the data trans­
fer. Associated signals from the NS32C201 Timing Control 
Unit are also activated at this time: RD (Read Strobe) or WR 
(Write Strobe), TSO (Timing State Output, indicating that T2 
has been reached) and DBE (Data Buffer Enable). 

PHil PHI2 

NS32C201 

The T3 state provides for access time reqUirements, and it 
occurs at least once in a bus cycle. At the end of T2, on the 
falling edge of the PHI2 clock, the RDY (Ready) line is sam­
pled to determine whether the bus cycle will be extended 
(Section 3.4.1). 

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD15) is sampled at the falling edge of PHI2 of the last T3 
state, see Section 4. Data must, however, be held at least 
until the beginning of T4. DS and RD are guaranteed not to 
go inactive before this point, so the rising edge of either of 
them may safely be used to disable the device providing the 
input data. 

The T4 state finishes the bus cycle. At the beginning of T4, 
the DS, RD, or WR, and TSO signals go inactive, and at the 
rising edge of PHI2, DBE goes inactive, having provided for 
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T 4. Note that the Bus 
Status lines (STO-ST3) change at the beginning of T4, an­
ticipating the following bus cycle (if any). 

AD 
AD~--------------------~ 

WR 
Wii~---------------------

'fSo 
1iO~---------------------

TL/EE/8525-15 

FIGURE 3·6. Bus Connections 

2-314 



3.0 Functional Description (Continued) 
NS32COI & CPU BUS SIGNALS 

I T40RTi I n T2 T3 

PHil [ 

PHI 2 [ 

A16·A23 [ 

AOO·ADI5 [ 

ADS [ 

ST()'ST3 [ 

ODIN [ 

Hii [ 

Os [ 

RDV [ 

FIGURE 3-7. Read Cycle Timing 

2·315 

T4 nORTi I 

TL/EE/8525-16 

z en w 
I\) 

n 
Q .... 
G) 

• .... 
Q ...... 
Z en w 
I\) 

n 
Q .... 
G) 

• .... 
CI1 



lot) .,... 
• CD .,... 

Q 

o 
N 
M 
U) 
Z 
C;) .,... . 
CD .,... 
Q 

o 
N 
M 
U) 
Z 

3.0 Functional Description (Continued) 

NS32C016 CPU BUS SIGNALS 

T1 T2 T3 T4 I T1 ORTi I 
PHI.1 [ 

PHI2 [ 

A16·A23 [ 

ADO-AD1S [ 

ADS [ 

STO·ST3 [ 

Di5iN [ 

HBE [ 

OS [ 

ROY [ 

DBE 

TL/EE/B525-17 

FIGURE 3·8. Write Cycle Timing 

2·316 



3.0 Functional Description (Continued) 

3.4.1 Cycle Extension 

To allow sufficient strobe widths and access times for any 
speed of memory or peripheral device, the NS32C016 pro­
vides for extension of a bus cycle. Any type of bus cycle 
except a Slave Processor cycle can be extended. 

In Figures 3-1 and 3-8, note that during T3 all bus control 
signals from the CPU and TCU are flat. Therefore, a bus 
cycle can be cleanly extended by causing the T3 state to be 
repeated. This is the purpose of the ROY (Ready) pin. 

At the end of T2 on the falling edge of PHI2, the ROY line is 
sampled by the CPU. If ROY is high, the next T -states will be 
T3 and then T 4, ending the bus cycle. If it is sampled low, 
then another T3 state will be inserted after the next T·state 
and the ROY line will again be sampled on the falling edge 
of PHI2. Each additional T3 state after the first is referred to 
as a "wait state." See Figure 3-9. 

T1 T2 

PHil 

PHI 2 

ROY 

The ROY pin is driven by the NS32C201 Timing Control 
Unit, which applies WAIT States to the CPU as requested 
on three sets of pins: 

1) CWAIT (Continues WAIT), which holds the CPU in WAIT 
states until removed. 

2) WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITn), 
which may be given a four-bit binary value requesting a 
specific number of WAIT States from 0 to 15. 

3) PER (Peripheral), which inserts five additional WAIT 
states and causes the TCU to reshape the RO and WR 
strobes. This provides the setup and hold times required 
by most MOS peripheral interface devices. 

Combinations of these various WAIT requests are both legal 
and useful. For details of their use, see the NS32C201 TCU 
Oata Sheet. 

Figure 3-10 illustrates a typical Read cycle, with two WAIT 
states requested through the TCU WAITn pins. 

T3 I T3 
(WAin T4 

TLlEE/8525-l8 

FIGURE 3-9. ROY Pin Timing 

3.4.2 Bus Status 

The NS32C016 CPU presents four bits of Bus Status infor­
mation on pins STO-ST3. The various combinations on 
these pins indicate why the CPU is performing a bus cycle, 
or, if it is idle on the bus, then why it is idle. 

Referring to Figures 3-1 and 3-8, note that Bus Status leads 
the corresponding Bus Cycle, going valid one clock cycle 
before T1, and changing to the next state at T 4. This allows 
the system designer to fully decode the Bus Status and, if 
desired, latch the decoded signals before ADS initiates the 
Bus Cycle. 

The Bus Status pins are interpreted as a four-bit value, with 
STO the least significant bit. Their values decode as follows: 

0000 - The bus is idle because the CPU does not need 
to perform a bus access. 

0001 - The bus is idle because the CPU is executing 
the WAIT instruction. 

0010 - (Reserved for future use.) 

0011 - The bus is idle because the CPU is waiting for a 
Slave Processor to complete an instruction. 

0100 - Interrupt Acknowledge, Master. 

The CPU is performing a Read cycle. To ac­
knowledge receipt of a Non-Maskable Interrupt 
(on NMI) it will read from address FFFF0016, 
but will ignore any data provided. 

To acknowledge receipt of a Maskable Interrupt 
(on INT) it will read from address FFFE0016, 

2-317 

expecting a vector number to be provided from 
the Master NS32202 Interrupt Control Unit. If 
the vectoring mode selected by the last 
SETCFG instruction was Non-Vectored, then 
the CPU will ignore the value it has read and will 
use a default vector instead, having assumed 
that no NS32202 is present. See Section 3.4.5. 

0101 - Interrupt Acknowledge, Cascaded. 

The CPU is reading a vector number from a 
Cascaded NS32202 Interrupt Control Unit. The 
address provided is the address of the 
NS32202 Hardware Vector register. See Sec­
tion 3.4.5. 

0110- End of Interrupt, Master. 

The CPU is performing a Read cycle to indicate 
that it is executing a Return from Interrupt 
(RETI) instruction. See Section 3.4.5. 

0111 - End of Interrupt, Cascaded. 

The CPU is reading from a Cascaded Interrupt 
Control Unit to indicate that it is returning 
(through RETI) from an interrupt service routine 
requested by that unit. See Section 3.4.5. 

1000 - Sequential Instruction Fetch. 

The CPU is reading the next sequential word 
from the instruction stream into the Instruction 
Queue. It will do so whenever the bus would 
otherwise be idle and the queue is not already 
full. 

z 
(J) 
Co) 
I\) 

o o .... 
cp .... 
o ....... 
Z 
(J) 
Co) 
I\) 

o o .... 
CJ) . .... 
c.n 

• 



~r-----------------------------------------------------------------. .... 
c.b .... 
o 

~ 
(/) 
z 
C; .... . 
CD .... 
8 
N 

~ 
Z 

3.0 Functional Description (Continued) 

NS32C018 CPU BUS SIGNALS 
NEXT CYCLE PREV.CYCLE 

IT40RTII TI I T2 I T3 I (W~T) I (vlllT) I T4 InORTl1 

PHil [ _IL IL rL IL !L IL !L !L r-

PHI2 [ - Ul J1 LJ1 LJ1 U1 U- J1 
AI6-A23 [ ~ ~ OC ADDRESS VALID 

AIlG-ADI5 [ ~--~ 
~ 

~ ~ ~ ADDR ~ ~ ~IN ---VALID 

AiiS[ IV 
STO-ST3 [ ~ ~ STATUS VALID X 

DoiN[ ~ rw0 ~ 

iiiF.[ ~ ~ ~ VALID 

- V 1\ 
NS32C201 TCU EXTENSION SIGNALS 

~ ~ i 
CWAiT[ %: ~ ~ ~ ~ ~ 

PER [ ~ ~ WI ~ ~ ~ ~ ~ 

WAiTn[ 
t 

~ ~ ~ S ~ ~ ~ ~ 
t . t ~ 

I ROY [ 

(TCUTOCP U) 

NS32C201 TCU BUS SIGNALS 

-V II 

- / 

iiBe[ - -1 
/ r"\ V -

FIGURE 3·10. Extended Cycle Example 

J1 -

~ 
NEXT ADD 

NEXTA~ 

R 

R 

V 
NEXT STATUS 

;;;;;;'""" 

E I-

I-

~ ~ 

~ % 

~ ~ 

TL/EE/B525-19 

Note: Arrows on CWAi'f, PEi'i. WAITn indicate points at which the TCU samples. Arrows on AOO-A015 and 
ROY indicate points at which the CPU samples. 

2·318 



3.0 Functional Description (Continued) 

1001 - Non-Sequential Instruction Fetch. 
The CPU is performing the first fetch of instruc­
tion code after the Instruction Queue is purged. 
This will occur as a result of any jump or branch, 
or any interrupt or trap, or execution of certain 
instructions. 

1010- Data Transfer. 
The CPU is reading or writing an operand of an 
instruction. 

1011 - Read RMW Operand. 
The CPU is reading an operand which will sub­
sequently be modified and rewritten. If memory 
protection circuitry would not allow the following 
Write cycle, it must abort this cycle. 

1100 - Read for Effective Address Calculation. 
The CPU is reading information from memory in 
order to determine the Effective Address of an 
operand. This will occur whenever an instruc­
tion uses the Memory Relative or External ad­
dressing mode. 

1101 - Transfer Slave Processor Operand. 
The CPU is either transferring an instruction op­
erand to or from a Slave Processor, or it is issu­
ing the Operation Word of a Slave Processor 
instruction. See Section 3.9.1. 

1110- Read Slave Processor Status. 
The CPU is reading a Status Word from a Slave 
Processor. This occurs after the Slave Proces­
sor has signalled completion of an instruction. 
The transferred word tells the CPU whether a 
trap should be taken, and in some instructions it 
presents new values for the CPU Processor 
Status Register bits N, Z, L or F. See Section 
3.9.1. 

1111 - Broadcast Slave 10. 
The CPU is initiating the execution of a Slave 
Processor instruction. The 10 Byte (first byte of 
the instruction) is sent to all Slave Processors, 
one of which will recognize it. From this point 
the CPU is communicating with only one Slave 
Processor. See Section 3.9.1. 

3.4.3 Data Access Sequences 

The 24-bit address provided by the NS32C016 is a byte 
address; that is, it uniquely identifies one of up to 
16,777,216 eight-bit memory locations. An'important feature 
of the NS32C016 is that the presence of a 16-bit data bus 
imposes no restrictions on data alignment; any data item, 
regardless of size, may be placed starting at any memory 
address. The NS32C016 provides a special control Signal, 
High Byte Enable (HBE), which facilitates individual byte ad­
dressing on a 16-bit bus. 

2-319 

Memory is organized as two eight-bit banks, each bank re­
ceiving the word address (A 1-A23) in parallel. One bank, 
connected to Data Bus pins ADO-AD7, is enabled to re­
spond to even byte addresses; i.e., when the least signifi­
cant address bit (AO) is low. The other bank, connected to 
Data Bus pins AD8-AD15, is enabled when HBE is low. See 
Figure 3-11. 

Al·A23 

HBE AO(LBE) 

TL/EE/B525-20 

FIGURE 3·11. Memory Interface 

Any bus cycle falls into one of three categories: Even Byte 
Access, Odd Byte Access, and Even Word Access. All ac­
cesses to any data type are made up of sequences of these 
cycles. Table 3-1 gives the state of AO and HBE for each 
category. 

Category 
Even Byte 
Odd Byte 
Even Word 

TABLE 3·1. Bus Cycle Categories 

HBE 

o 
o 

AO 
o 

o 
Accesses of operands requiring more than one bus cycle 
are performed sequentially, with no idle T-States separating 
them. The number of bus cycles required to transfer an op­
erand depends on its size and its alignment (i.e., whether it 
starts on an even byte address or an odd byte address). 
Table 3-2 lists the bus cycle performed for each situation. 
For the timing of AO and HBE, see Section 3.4. 

z en 
Co) 
N 
n 
Q .... 
en • .... 
Q ....... 
Z en 
Co) 
N 
n 
Q .... 
en • .... 
C7I 

• 



It) .... • 3.0 Functional Description (Continued) CD .... 
0 
0 TABLE 3-2. Access Sequences N 
C") 
en Cycle Type Address HBE AO High Bus Low Bus Z ..... 
0 .... 
tb A. Odd Word Access Sequence .... 
0 
0 BYTE 1 BYTE 0 -A N 
C") 

en Odd Byte A 0 1 Byte 0 Don't Care 
Z 

2 Even Byte A+1 1 0 Don't Care Byte 1 

B. Even Double-Word Access Sequence 

BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A 

1 Even Word A 0 0 Byte 1 Byte 0 
2 Even Word A+2 0 0 Byte 3 Byte 2 

C. Odd Double-Word Access Sequence 

BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A 

Odd Byte A 0 1 Byte 0 Don't Care 
2 Even Word A+1 0 0 Byte 2 Byte 1 
3 Even Byte A+3 0 Don't Care Byte 3 

D. Even Quad-Word Access Sequence 

BYTE 7 BYTE 6 BYTES BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A 

Even Word A 0 0 Byte 1 Byte 0 
2 Even Word A+2 0 0 Byte 3 Byte 2 

Other bus cycles (instruction prefetch or slave) can occur here. 

3 Even Word A+4 0 0 Byte 5 Byte 4 
4 Even Word A+S 0 0 Byte 7 ByteS 

E Odd Quad-Word Access Sequence 

BYTE 7 BYTE 6 BYTES BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A 

1 Odd Byte A 0 Byte 0 Don't Care 
2 Even Word A+1 0 0 Byte 2 Byte 1 
3 Even Byte A+3 0 Don't Care Byte 3 

Other bus cycles (instruction prefetch or slave) can occur here. 

4 Odd Byte A+4 0 Byte 4 Don't Care 
5 Even Word A+5 0 0 ByteS Byte 5 

S Even Byte A+7 0 Don't Care Byte 7 

2-320 



3.0 Functional Description (Continued) 

3.4.3.1 Bit Accesses 

The Bit Instructions perform byte accesses to the byte con­
taining the designated bit. The Test and Set Bit instruction 
(SBIT), for example, reads a byte, alters it, and rewrites it, 
having changed the contents of one bit. 

3.4.3.2 Bit Field Accesses 

An access to a Bit Field in memory always generates a Dou­
ble·Word transfer at the address containing the least signifi­
cant bit of the field. The Double Word is read by an Extract 
instruction; an Insert instruction reads a Double Word, modi· 
fies it, and rewrites it. 

3.4.3.3 Extending Multiply Accesses 

The Extending Multiply Instruction (MEl) will return a result 
which is twice the size in bytes of the operand it reads. I! the 
multiplicand is in memory, the most·significant hal! of the 
result is written first (at the higher address), then the least­
significant half. This is done in order to support retry if this 
instruction is aborted. 

3.4.4 Instruction Fetches 

Instructions for the NS32C016 CPU are "prefetched"; that 
is, they are input before being needed into the next available 
entry of the eight·byte Instruction Queue. The CPU performs 
two types of Instruction Fetch cycles: Sequential and Non· 
Sequential. These can be distinguished from each other by 
their differing status combinations on pins STO-ST3 (Sec­
tion 3.4.2). 

2-321 

A Sequential Fetch will be performed by the CPU whenever 
the Data Bus would otherwise be idle and the Instruction 
Queue is not currently full. Sequential Fetches are always 
Even Word Read cycles (Table 3-1). 

A Non-Sequential Fetch occurs as a result of any break in 
the normally sequential flow of a program. Any jump or 
branch instruction, a trap or an interrupt will cause the next 
Instruction Fetch cycle to be Non-Sequential. In addition, 
certain instructions flush the instruction queue, causing the 
next instruction fetch to display Non-Sequential status. Only 
the first bus cycle after a break displays Non-Sequential 
status, and that cycle is either an Even Word Read or an 
Odd Byte Read, depending on whether the destination ad­
dress is even or odd. 

3.4.5 Interrupt Control Cycles 

Activating the INT or NMI pin on the CPU will initiate one or 
more bus cycles whose purpose is interrupt control rather 
than the transfer of instructions or data. Execution of the 
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data 
transfers only in the status presented on pins STO-ST3. All 
Interrupt Control cycles are single-byte Read cycles. 

This section describes only the Interrupt Control sequences 
associated with each interrupt and with the return from its 
service routine. For full details of the NS32C016 interrupt 
structure, see Section 3.8. 

z en 
C.:I 
N o o .... 
0) 

I .... 
o ....... 
z en 
C.:I 
N o 
o .... 
0) 

I .... 
U1 



an .... 
"' .... 
CI 

~ 
(/) 
Z 
C;; .... • CD .... 
8 
C'I 

~ 
Z 

3.0 Functional Description (Continued) 

TABLE 3-3. Interrupt Sequences 

Cycle Status Address AO High Bus 

A. Non·Maskable Interrupt Control Sequences . 

Interrupt Acknowledge 
1 0100 FFFF0016 o o Don't Care 

Interrupt Return 

None: Performed through Return from Trap (RETT) instruction. 

B. Non· Vectored Interrupt Control Sequences. 

Interrupt Acknowledge 
1 0100 FFFE0016 o o Don't Care 

Interrupt Return 

None: Performed through Return from Trap (RETT) instruction. 

C. Vectored Interrupt Sequences: Non·Cascaded 

Interrupt Acknowledge 
1 0100 FFFE0016 o o Don't Care 

I nterrupt Return 
1 0110 FFFE0016 o o Don't Care 

D. Vectored Interrupt Sequences: Cascaded 

Interrupt Acknowledge 
1 0100 FFFE0016 o o Don't Care 

Low Bus 

Don't Care 

Don't Care 

Vector: 
Range: 0-127 

Vector: Same as 
in Previous Int. 
Ack.Cycle 

Cascade Index: 
range -16to-l 

(The CPU here uses the Cascade Index to find the Cascade Address.) 
2 0101 Cascade 0 lOr 0 or 

Address O' l' 
Vector, range 0-255; on appropriate 
half of Data Bus for even/odd address 

Interrupt Return 
1 0110 FFFE0016 o o 

(The CPU here uses the Cascade Index to find the Cascade Address.) 
2 0111 Cascade 0 1 or 0 or 

Address O' l' 

Don't Care 

Don't Care 

Cascade Index: 
same as in 
previous Int. 
Ack.Cycle 

Don't Care 

• If the Cascaded ICU Address is Even (AO is low), then the CPU applies RBE high and reads the vector number from bits 0-7 of the Data Bus. 
If the address is Odd (AO is high). then the CPU applies RBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number may be In the 
range 0-255. 

2-322 



3.0 Functional Description (Continued) 

3.4.6 Slave Processor Communication 

In addition to its use as the Address Translation strap (Sec­
tion 3.5.1), the AT/SPC pin is used as the data strobe for 
Slave Processor transfers. In this role, it is referred to as 
Slave Processor Control (SPC). In a Slave Processor bus 
cycle, data is transferred on the Data Bus (ADO-AD15), and 
the status lines STO-ST3 are monitored by each Slave 
Processor in order to determine the type of transfer being 
performed. SPC is bidirectional, but is driven by the CPU 
during all Slave Processor bus cycles. See Section 3.9 for 
full protocol sequences. 

PREV.CYCLE 

I T40rTi 

PHil [ 

PHI 2 [ 

SPC [ 

STO-ST3 [ 

ADS [ 

Tl 

A J\. 
AO(D-15) 0(11-15) 

A'f/SPC " SPC 

NS32C016 SLAVE 
CPU PROCESSOR 

STO-ST3 STO-ST3 

TL/EE/6525-21 

FIGURE 3-12. Slave Processor Connections 

T4 
I NEXT CYCLE 

Tl0RTi I 

HBE [~~~~~~L-----r-------+L------+-
-OB-E (3)[ -1-----1 

TL/EE/6525-22 

Notes: 

(1) CPU samples Data Bus here. 

(2) DBE and all other NS32C201 TCU bus signals remain inactive because no ADS pulse is received from the CPU. 

FIGURE 3·13. CPU Read from Slave Processor 

2-323 

z en 
Co) 
N 
C') 
o .... 
cp .... 
~ 
z en 
Co) 
N 
C') 
o .... 
en , .... 
CJI 

fII 



~r-----------------------------------------------------~ .... 
ch .... 
o 
o 
~ 
U) 
z 
C; .... 
• CD .... 
8 
~ 

~ z 

3.0 Functional Description (Continued) 

3.4.6.1 Slave Processor Bus Cycles 

A Slave Processor bus cycle always takes exactly two clock 
cycles, labeled T1 and T4 (see Figures 3-13 and 3-14). 
During a Read cycle SPC is active from the beginning of T1 
to the beginning of T 4, and the data is sampled at the end of 
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a 
Write cycle, the CPU applies data and activates SPC at T1 , 
removing SPC at T 4. The Slave Processor latches status on 
the leading edge of SPC and latches data on the trailing 
edge. 

Since the CPU does not pulse the Address Strobe (ADS), 
no bus signals are generated by the NS32C201 Timing Con­
trol Unit. The direction of a transfer is determined by the 

PREV.CYCLE 

I T4 OR Ti 

PHil [ 

sPC [ 

ADO-AD15 [ 

STO-ST3 [ 

ADS [ 

ODIN [ 

T1 

sequence ("protocol") established by the instruction under 
execution; but the CPU indicates the direction on the DDIN 
pin for hardware debugging purposes. 

3.4.6.2 Slave Operand Transfer Sequences 

A Slave Processor operand is transferred in one or more 
Slave bus cycles. A Byte operand is transferred on the 
least-significant byte of the Data Bus (ADO-AD7), and a 
Word operand is transferred on the entire bus. A Double 
Word is transferred in a consecutive pair of bus cycles, 
least-significant word first. A Quad Word is transferred in 
two pairs of Slave cycles, with other bus cycles possibly 
occurring between them. The word order is from least-signif­
icant word to most-significant. 

T4 

NEXT CYCLE 

T1 ORTi I 

HBE [£4~~~~~----~------~~----1-
DBE (21 [ -+_....J 

TLlEE/B525-23 

Notes: 

(11 Slave Processor samples Data Bus here. 

(21 DBE, being provided by the NS32C201 TCU, remains inactive due to the fact that no pulse is presented on ADS. 
TCU signals RD, WR and TSO also remain inactive. 

FIGURE 3-14. CPU Write to Slave Processor 

2-324 



3.0 Functional Description (Continued) 

3.5 MEMORY MANAGEMENT OPTION 

The NS32C016 CPU, in conjunction with the NS32082 
Memory Management Unit (MMU), provides full support for 
address translation, memory protection, and memory alloca­
tion techniques up to and including Virtual Memory. 

3.5.1 Address Translation Strap 

The Bus Interface Control section of the NS32C016 CPU 
has two bus timing modes: With or Without Address Trans­
lation. The mode of operation is selected by the CPU by 
sampling the ATISPC (Address TranslationlSlave Proces­
sor Control) pin on the rising edge of the RST (Reset) pulse. 
If ATISPC is sampled as high, the bus timing is as previous-

I T40RTi I T1 

PHil [ 

PHI2 [ 

A16-A23 [ 

ADO-AD1S [ 

ADS [ 

STO-ST3 [ 

ODIN [ 

HBE [ 

ROY [ 

Iy described in Section 3.4. If it is sampled as low, two 
changes occur: 

1) An extra clock cycle, Tmmu, is inserted into all bus 
cycles except Slave Processor transfers. 

2) The DS/FL T pin changes in function from a Data 
Strobe output (DS) to a Float Command input (FL T). 

The NS32082 MMU will itself pull the CPU AT/SPC pin low 
when it is reset. In non-Memory·Managed systems this pin 
should be pulled up to Vee through a 10 kfl resistor. 

Note that the Address Translation strap does not specifical­
ly declare the presence of an NS32082 MMU, but only the 

T3 T4 

TL/EE/6S2S-24 

FIGURE 3-15. Read Cycle with Address Translation (CPU Action) 

2-325 

z 
en 
Co) 
N 
o o ..... 
0) . ..... 
o ...... z 
en 
Co) 
N o 
o ..... 
0) 
• ..... 

U1 

• 



U) r-------------------------------------------------------------------------------~ ..... . 
CD ..... 
o o 
N 
CO) 
en 
z ...... 
o ..... . 
CD ..... 
o o 
N 
CO) 
en 
z 

3.0 Functional Description (Continued) 

presence of external address translation circuitry. MMU in­
structions will still trap as being undefined unless the 
SETCFG (Set Configuration) instruction is executed to de­
clare the MMU instruction set valid. See Section 2.1.3. 

3.5.2 Translated Bus Timing 

Figures 3-15 and 3-16 illustrate the CPU activity during a 
Read cycle and a Write cycle in Address Translation mode. 
The additional T-State, Tmmu, is inserted between Tl and 
T2. During this time the CPU places ADO-ADI5 and A16-
A23 into the TRI-STATE® mode, allowing the MMU to as­
sert the translated address and issue the physical address 
strobe PAV. T2 through T4 of the cycle are identical to 

I T40RT; I T1 Tmmu I 

PHI1 [ 

PHI2 

A16-A23 [ 

ADO-AD1S [ 

ADS [ 

STO·ST3 [ 

ODIN [ 

HBE [ 

ROY [ 

their counter-parts without Address Translation, with the ex­
ception that the CPU Address lines A 16-A23 remain in the 
TRI-STATE condition. This allows the MMU to continue as­
serting the translated address on those pins. 

Note that in order for the NS32082 MMU to operate correct­
ly, it must be set to the 32C016 mode by forcing A24 high 
during reset. 

Figures 3-17and 3-18 show a Read cycle and a Write cycle 
as generated by the 32C016/32082/32C201 group. Note 
that with the CPU ADS signal going only to the MMU, and 
with the MMU PAV signal substituting for ADS everywhere 
else, Tmmu through T4100k exactly like Tl through T4 in a 
non-Memory-Managed system. For the connection diagram, 
see Appendix B. 

T2 T3 T4 

TL/EE/8525-25 

FIGURE 3-16. Write Cycle with Address Translation (CPU Action) 

2-326 



3.0 Functional Description (Continued) 

NS32C016 CPU BUS SIGNALS 

I T40RTi I T1 I Tmmu I T2 T3 T4 I T. ORT, I 
PHil [ 

PHI2 [ 

A16·A23 [ 
ADO·AD15 [ 

AiiS[ 

PiW[ 

5TO·5T3 [ 

ODIN [~~~"~~----+------+----~~------r------+L-----+-

HBE [~~L£'"I~ L--+---+----+I----+-.J '-+----i-

iiD[ 

DBE [ 

TSO [ 

FIGURE 3·17. Memory-Managed Read Cycle 

2·327 

TLlEE/8525-26 

z 
en 
c.:I 
N 
n o .... 
cp .... 
o ...... 
z 
en 
c.:I 
N 
n o .... 
cp .... 
U'I 



It) .... . 
CD .... 
o 
o 
C\I 
(I) 

en 
z ...... 
o .... . 
CD .... 
o o 
C\I 
(I) 
en 
z 

3.0 Functional Description (Continued) 

NS32C016 CPU BUS SIGNALS 

I T40RTi I TI Tmmu I T2 13 

PHil [ 

PHI 2 [ 

I 
PHYSICAL 

A16-A23 [ ADDRESS VALID 

ADO-AD 15 [ DATA OUT 

ADS [ 

PAV[ 

STO-ST3 [ STATUS VALID 

ODIN [ 

HBE [ VALID 

ROY [ 

NS32C201 TCU BUS SIGNALS 

FIGURE 3-18. Memory-Managed Write Cycle 

2-328 

T4 I TlORTi I 

NEXT STATUS 

TL/EE/B525-27 



3.0 Functional Description (Continued) 

3.5.3 The FL T (Float) Pin 

The FL T pin is used by the CPU for address translation 
support. Activating FL T during Tmmu causes the CPU to 
wait longer than Tmmu for address translation and valida­
tion. This feature is used occasionally by the NS32082 MMU 
in order to update its internal translation Look-Aside Buffer 
(TLB) from page tables in memory, or to update certain 
status bits within them. 

Figure 3-19 shows the effects of FLT. Upon sampling FLT 
low, late in Tmmu, the CPU enters idle T·States (Tf) during 
which it: 

1) Sets ADO-AD15, A16-A23 and ODIN to the TRI· 
STATE condition ("floating"). 

2) Sets HBE low. 

3) Suspends further internal processing of the current in­
struction. This ensures that the current instruction re­
mains abortable with retry. (See RST / ABT description, 
Section 3.5.4.) 

Note that the ADO-AD15 pins may be briefly asserted duro 
ing the first idle T·State. The above conditions remain in 
effect until FL T again goes high. See the Timing Specifica· 
tions, Section 4. 

TL/EE/8525-28 

FIGURE 3-19. FLT Timing 

2·329 

z 
en 
to) 
I\) 

o o .... 
Q) 

I .... 
o ........ 
z en 
to) 
I\) 

o o .... 
Q) 

I .... 
U1 



&I) .... 
ch .... 
8 
C\I 

~ 
Z ..... 
Q .... 
• CD .... 

Q 
U 
C\I 
CO) 

tn 
Z 

3.0 Functional Description (Continued) 

3.5_4 Aborting Bus Cycles 

The RST I ABT pin, apart from its Reset function (Section 
3.3), also serves as the means to "abort," or cancel, a bus 
cycle and the instruction, if any, which initiated it. An Abort 
request is distinguished from a Reset in that the RSi I ABT 
pin is held active for only one clock cycle. 

If RST I ABT is pulled low during Tmmu or Tf, this signals 
that the cycle must be aborted. The CPU itself will enter T2 
and then Ti, thereby terminating the cycle. Since it is the 
MMU PAY Signal which triggers a physical cycle, the rest of 
the system remains unaware that a cycle was started. 

The NS32082 MMU will abort a bus cycle for either of two 
reasons: 

1) The CPU is attempting to access a virtual address 
which is not currently resident in physical memory. The 
reference page must be brought into physical memory 
from mass storage to make it accessible to the CPU. 

2) The CPU is attempting to perform an access which is 
not allowed by the protection level assigned to that 
page. 

When a bus cycle is aborted by the MMU, the instruction 
that caused it to occur is also aborted in such a manner that 
it is guaranteed re-executable later. The information that is 
changed irrecoverably by such a partly-executed instruction 
does not affect its re-execution. 

3.5.4.1 The Abort Interrupt 

Upon aborting an instruction. the CPU immediately performs 
an interrupt through the ABT vector in the Interrupt Table 
(see Section 3.8). The Return Address pushed on the Inter­
rupt Stack is the address of the aborted instruction, so that 
a Return from Trap (RETT) instruction will automatically re­
try it. 

The one exception to this sequence occurs if the aborted 
bus cycle was an instruction prefetch. If so, it is not yet 
certain that the aborted prefetched code is to be executed. 
Instead of causing an interrupt, the CPU only aborts the bus 
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will 
actually be executed, the ABT interrupt will occur, in effect 
aborting the instruction that was being fetched. 

3.5.4.2 Hardware Considerations 

In order to guarantee instruction retry, certain rules must be 
followed in applying an Abort to the CPU. These rules are 
followed by the NS32082 Memory Management Unit. 

1) If FLT has not been applied to the CPU, the Abort 
pulse must occur during or before Tmmu. See the Tim­
ing Specifications, Figure 4-23. 

2-330 

2) If FL T has been applied to the CPU, the Abort pulse 
must be applied before the T-State in which FLT goes 
inactive. The CPU will not actually respond to the Abort 
command until FL T is removed. See Figure 4-24. 

3) The Write half of a Read-Modify-Write operand access 
may not be aborted. The CPU guarantees that this will 
never be necessary for Memory Management funtions 
by applying a special RMW status (Status Code 1011) 
during the Read half of the access. When the CPU 
presents RMW status, that cycle must be aborted if it 
would be illegal to write to any of the accessed ad­
dresses. 

If RSi IABi is pulsed at any time other than as indicated 
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high-pri­
ority interrupt. However, the program that was running at the 
time is not guaranteed recoverable. 

3.6 BUS ACCESS CONTROL 

The NS32C016 CPU has the capability of relinquishing its 
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD 
(Hold Request) and HLDA (Hold Acknowledge) pins. By as­
serting HOLD low, an external device requests access to 
the bus. On receipt of HLDA from the CPU, the device may 
perform bus cycles, as the CPU at this point has set the 
ADO-AD15, A16-A23, ADS, ODIN and HBE pins to the 
TRI-STATE condition. To return control of the bus to the 
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting HLDA inactive. 

How quickly the CPU releases the bus depends on whether 
it is idle on the bus at the time the HOLD request is made, 
as the CPU must always complete the current bus cycle. 
Figure 3-20 shows the timing sequence when the CPU is 
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-21 shows the sequence 
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the 
clock cycle shown (two clock cycles before T4), the CPU 
will release the bus during the clock cycle following T4. If 
the request occurs closer to T 4, the CPU may already have 
decided to initiate another bus cycle. In that case it will not 
grant the bus until after the next T4 state. Note that this 
situation will also occur if the CPU is idle on the bus but has 
initiated a bus cycle internally. 

In a Memory-Managed system, the HLDA Signal is connect­
ed in a daisy-chain through the NS32082, so that the MMU 
can release the bus if it is using it. 



3.0 Functional Description (Continued) 

I TI I TI I··· I 
PHI1[hJLj 

TI 

PHI2 [ 

H&D[ 

HLDi[ 

i6S[ 

0&[ 

~[ 

HiE [ 

ADO-AD15 [ :.q:~.L.L.L.Lf' 

AFFECTED SIGNALS 

~~------ -------

----- 1~----- -----

---- 1r----------

TI I TIOAT4 I TIORTI I 

FIGURE 3-20. HOLD Timing, Bus Initially Idle 

2·331 

TL/EE/8525-29 

z en 
~ 
o 
CI .... 
G) 
• .... 
~ 
z 
en 
c.:I 
I\) 

o 
CI .... 
G) . .... 
en 



U) r---------------------------------------------------------------------------------, .... 
cb 

8 
N 

~ 
Z ;:; .... • CD .... 
o 
~ 
CO) 

en z 

3.0 Functional Description (Continued) 

T3 T4 n Ti 

PHll[ 

PHlz[ 

HOlD [ 

u[ 

AFFECTED SIGNALS 

iDS [ 

1---- ----

DDiN[ -+ __ -ir-_VA_L_ID-; ___ -t' --- ~~--- ----

iiii[ -+ ___ -If-~_A_LID_+ __ _IJ -- ~~-- ----

A16-A23 [ + __ -iI-_VA_Li_D-I ___ -t' 

FIGURE 3·21. HOLD Timing, Bus Initially Not Idle 

2-332 

Ti Ti 

NEXT 

NEXT 

NEXTADDR 

TLlEE/8525-30 



3.0 Functional Description (Continued) 

3.7 INSTRUCTION STATUS 

In addition to the four bits of Bus Cycle status (STO-ST3), 
the NS32C016 CPU also presents Instruction Status infor­
mation on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus interface 
section. 

PFS (Program Flow Status) is pulsed low as each instruction 
begins execution. It is intended for debugging purposes, and 
is used that way by the NS32082 Memory Management 
Unit. 

UIS originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in 
User or Supervisor mode. It is sampled by the MMU for 
mapping, protection and debugging purposes. Although it is 
not synchronous to bus cycles, there are guarantees on its 
validity during any given bus cycle. See the Timing Specifi­
cations, Figure 4-22. 

ILO (Interlocked Operation) is activated during an SBITI (Set 
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction. 
It is made available to external bus arbitration circuitry in 
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. As with the UIS pin, there are 
guarantees on its validity during the operand accesses per­
formed by the instructions. See the Timing Specification 
Section, Figure 4-20. 

3.8 NS32C016 INTERRUPT STRUCTURE 

INT, on which maskable interrupts may be requested, 

NMI, on which non-maskable interrupts may be request­
ed,and 

RST/ABT, which may be used to abort a bus cycle and 
any associated instruction. See Section 3.5.4. 

,~ 

MEMORY ~ 
"1'" 

/ CASCAOE ADDR 0 

· CASCADE TAB~E ; · ~~ 

I ~,"~"M"~ 
· 

CASCADE ADDR 14 

CASCADE ADDR 15 

FIXED INTERRUPTS 

AND TRAPS 

In addition, there is a set of internally-generated "traps" 
which cause interrupt service to be performed as a result 
either of exceptional conditions (e.g., attempted division by 
zero) or of specific instructions whose purpose is to cause a 
trap to occur (e.g., the SupervisDr Call instruction). 

3.8.1 Generallnterrupt/Trap Sequence 

Upon receipt of an interrupt or trap request, the CPU goes 
through three major steps: 

1) Adjustment Df Registers. 

Depending on the source of the interrupt or trap, the 
CPU may restore and/or adjust the contents of the 
Program Counter (PC), the Processor Status Register 
(PSR) and the currently-selected Stack Pointer (SP). A 
copy of the PSR is made, and the PSR is then set to 
reflect Supervisor Mode and selection of the Interrupt 
Stack. 

2) Vector Acquisition. 

A Vector is either obtained from the Data Bus or is 
supplied by default. 

3) Service Call. 

The Vector is used as an index into the Interrupt Dis­
patch Table, whose base address is taken from the 
CPU Interrupt Base (INTBASE) Register. See Figure 
3-22. A 32-bit External Procedure Descriptor is read 
from the table entry, and an External Procedure Call is 
performed using it. The MOD Register (16 bits) and 
Program Counter (32 bits) are pushed on the Interrupt 
Stack. 

This process is illustrated in Figure 3-23, from the viewpoint 
of the programmer. 

'31 01'"' 

0 NVI NON·VECTORED INTERRUPT 

1 NMI NON-MASKAB~E INTERRUPT 

2 ABT ABORT 

3 S~VE S~VE PROCESSDR TRAP 

4 I~~ I LLEGAL OPERATION TRAP 

5 svc SUPERVISOR CALL TRAP REGISTER I 1 
VECTORED 1 DISPATCH TAB~E 

6 DVZ DIVIDE BY ZERO TRAP 

r INTERRUPTS :t 7 F~G F ~AG TRAP 

B BPT BREAKPOINT TRAP 

9 TRC T RACE TRAP 

III UND UNDEFINED INSTRUCTION TRAP 

11-15 ~ ~ RESERVED ~ 
16 VECTORED 

INTERRUPTS 
,. .... A.. 

TLlEE/B525-31 

FIGURE 3-22. Interrupt Dispatch and Cascade Tables 

2-333 

z 
en 
Co) 
N 
o o .... 
cp .... 
o ....... z 
en 
Co) 
N o o .... 
en 
I .... 

CTI 



~ .-----------------------------------------------------------------------------~ .... 
rD .... 
8 
C'I 
C") 

en 
z 
Ci .... 
rD .... 
CI 

~ en z 

3.0 Functional Description (Continued) 

I RETURN ADDRESS 

I STATUS I MODULE 

PSR MOD 

INTBASE REGISTER 

DESCRIPTOR 

I (PUSH) 

J 

I 
I (PUSH) 

INTERRUPT 
STACK 

r-------------l 
I I 
I CASCADE TABLE I 
I I 
I I 

DISPATCH 
TABLE 

DESCRIPTOR (32 BITS) 

1
32 BITS 

32 BITS 

.... 1 . ..----16----."1'"1:---16----.1 
OFFSET MODULE 

0 

MOD REGISTER -=t-J MODULE TABLE 

l NEW MODULE 

I MODULE TABLE ENTRY 

J 

MODULET~LEENTRY 
32 

STATIC BASE POINTER -

------LINK BASE PDlNTER 

+ PROGRAM BASE POINTER 

(RESERVED) 

PROGRAM COUNTER SBREGISTER 

I ENTRY POINT ADDRESS +- NEW STATIC BASE 

FIGURE 3·23. Interrupt/Trap Service Routine Calling Sequence 

2·334 

TL/EE/8525-32 

J 
TL/EE/8525-33 



3.0 Functional Description (Continued) 

3.8.2 Interrupt/Trap Return 

To return control to an interrupted program, one of two in­
structions is used. The RETT (Return from Trap) instruction 
(Figure 3-24) restores the PSR, MOD, PC and S8 registers 
to their previous contents and, since traps are often used 
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from 
the original stack as surplus parameter space. RETT is used 
to return from any trap or interrupt except the Maskable 
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI 
does not pop parameters. See Figure 3-25. 

3.8.3 Maskable Interrupts (The INT Pin) 

The INT pin is a level-sensitive input. A continuous low level 
is allowed for generating multiple interrupt requests. The 

PROGRAM COUNTER 

RETURN ADDRESS I (POP) 

input is maskable, and is therefore enabled to generate in­
terrupt requests only while the Processor Status Register I 
bit is set. The I bit is automatically cleared during service of 
an INT, NMI or Abort request, and is restored to its original 
setting upon return from the interrupt service routine via the 
RETT or RETI instruction. 

The INT pin may be configured via the SETCFG instruction 
as either Non-Vectored (CFG Register bit 1=0) or Vectored 
(bit 1=1). 

3.8.3.1 Non-Vectored Mode 

In the Non-Vectored mode, an interrupt request on the INT 
pin will cause an Interrupt Acknowledge bus cycle, but the 
CPU will ignore any value read from the bus and use instead 
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary. 

} 32 BITS 

I (POP) t---------l} 
STATUS MODULE -1---------+- 32 BITS 

PSR MOO 

MODULE T~BLE ENTRY 

STATIC BASE POINTER - n 
LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

SBREGISTER 

STATIC BASE + 
/ 

POP AND 
DISCARD 

n 
BYTES 

INTERRUPT 
STACK 

MODULE 
TABLE 

MODULE TABLE ENTRY 

PARAMETERS 

STACK SELECTED 
IN NEWLY­

POPPEDPSR. 

FIGURE 3-24_ Return from Trap (RETT n) Instruction Flow 

2-335 

TLlEE/8525-34 

z en w 
N g .... 
G) . .... 
~ 
z en w 
N o 
CI .... 
G) 

• .... 
UI 

PI 



Lr) r---------------------------------------------------------------------------------, .... 
cb 3.0 Functional Description (Continued) .... 
8 
~ 
tn 
Z ...... 
C) 

.... "END OF INTERRUPT" 
cb 
.... BUS CYCLE 

8 
C'I 

~ 
Z 

PROGRAM COUNTER 
(POP) 

RETURN ADDRESS 

INTERRUPT 
CONTROL 

UNIT 

(POP) 
STATUS I MODULE -t------------i-

PSR MOD 

t 
MODULE TABLE ENTRY 

STATIC BASE POINTER - r------
LINK BASE POINTER 

PROGRAM BASE POINTER 

(RESERVED) 

STAnCBASE 

SBREGISTER 

o 

INTERRUPT 
STACK 

MODULE 
TABLE 

MODULE TABLE ENTRY 

FIGURE 3·25. Return from Interrupt (RET I) Instruction Flow 

2·336 

TLlEE/8525-35 



r-----------------------------------------------------------------------.z 
3.0 Functional Description (Continued) 

3.B.3.2 Vectored Mode: Non-Cascaded Case 

In the Vectored mode, the CPU uses an Interrupt Control 
Unit (ICU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle (Sec­
tion 3.4.2) reading a vector value from the low-order byte of 
the Data Bus. This vector is then used as an index into the 
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt 
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector 
number again, which the CPU uses to determine whether it 
needs also to inform a Cascaded ICU (see below). 

In a system with only one ICU (16 levels of interrupt), the 
vectors provided must be in the range of 0 through 127; that 
is, they must be positive numbers in eight bits. By providing 
a negative vector number, an ICU flags the interrupt source 
as being a Cascaded ICU (see below). 

3.B.3.3 Vectored Mode: Cascaded Case 

In order to allow up to 256 levels of interrupt, provision is 
made both in the CPU and in the NS32202 Interrupt Control 
Unit (ICU) to transparently support cascading. Figure 3-27 
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which 
drives the CPU INT pin. 

In a system which uses cascading, two tasks must be per­
formed upon initialization: 

1) For each Cascaded ICU in the system, the Master ICU 
must be informed of the line number (0 to 15) on which 
it receives the cascaded requests. 

2) A Cascade Table must be established in memory. The 
Cascade Table is located in a NEGATIVE direction 
from the location indicated by the CPU Interrupt Base 
(INTBASE) Register. Its entries are 32-bit addresses, 

pointing to the Vector Registers of each of up to 16 
Cascaded ICUs. 

Figure 3-22 illustrates the position of the Cascade Table. To 
find the Cascade Table entry for a Cascaded ICU, take its 
Master ICU line number (0 to 15) and subtract 16 from it, 
giving an index in the range -16 to -1. Multiply this value 
by 4, and add the resulting negative number to the contents 
of the INTBASE Register. The 32-bit entry at this address 
must be set to the address of the Hardware Vector Register 
of the Cascaded ICU. This is referred to as the "Cascade 
Address." 

Upon receipt of an interrupt request from a Cascaded ICU, 
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index 
into the Cascade Table and reads the Cascade Address 
from the referenced entry. Applying this address, the CPU 
performs an "Interrupt Acknowledge, Cascaded" bus cycle 
(Section 3.4.2), reading the final vector value. This vector is 
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255. 

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction, 
as it would for any Maskable Interrupt. The CPU performs 
an "End of Interrupt, Master" bus cycle (Section 3.4.2), 
whereupon the Master ICU again provides the negative 
Cascaded Table index. The CPU, seeing a negative value, 
uses it to find the corresponding Cascade Address from the 
Cascade Table. Applying this address, it performs an "End 
of Interrupt, Cascaded" bus cycle (Section 3.4.2), informing 
the Cascaded ICU of the completion of the service routine. 
The byte read from the Cascaded ICU is discarded. 
Note: If an interrupt must be masked off, the CPU can do so by selling the 

corresponding bit in the Interrupt Mask Register of the Interrupt Con­
troller. However, if an interrupt is set pending during the CPU instruc· 
tion that masks off that Interrupt, the CPU may still perform an inter· 
rupt acknowledge cycle following that instruction since it might have 
sampled the INT line before the ICU deasserted it. This could cause 
the ICU to provide an invalid vector. To avoid this problem the above 
operation should be performed with the CPU interrupt disabled . 

NS32COI6 
cpu 

GROUP 

NS32202 

HARDWARE 
INTERRUPTS 

OR 
CASCADED 

CONTROLLERS 

STATUS 1 

INT \------lINT 

~~~~ESS Cs 
DECODER

INTERRUPTS.
CASCADED,

OR
BIT 1/0

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels)

2-337

TL/EE/8525-36

fa
o
CI
~
CI
Z
tn
Co)
~ o
CI
~
en

•

~ ,---,
m
o

~
U)
z
C;
m
8
C'I

~
Z

3.0 Functional Description (Continued)

NS32C016
cpu

GROUP

DATA

CONTROL

ADDR 5 BITS

STATUS

FROM
ADDRESS
DECODER

CASCADED
NS32202

ICU

CS

MASTER
NS32202

ICU

HARDWARE
INTERRUPTS

INTERRUPTS
OR

BIT 110

iiiT 1---------------------1 iiiT

FROM
ADDRESS
DECODER

TL/EE/8525-37

FIGURE 3-27. Cascaded Interrupt Control Unit Connections

3.8.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section 3.4.2)
when processing of this interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is FFFF0016.
The vector value used for the Non-Maskable Interrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETI) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Section 3.8.7.1.

2-338

3.8.STraps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap
(TRC) below is the address of the first byte of the instruction
during which the trap occurred. Traps do not disable inter·
rupts, as they are not associated with external events. Traps
recognized by NS32C016 CPU are:

Trap (SLAVE): An exceptional condition was detected by
the Floating Point Unit or another Slave Processor during
the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor
Protocol (Section 3.9.1).

,--, z
3.0 Functional Description (Continued)

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (OVZ): An attempt was made to divide an integer by
zero. (The Slave trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPn instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UNO): An undefined opcode was encountered by the
CPU.

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending") bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.8.6 Prioritization

The NS32C016 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)

2) Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7Interrupt/Trap Sequences: Detail Flow

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called
"Service" is defined in Figure 3-28. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequenced followed in processing either Maskable
or Non-Maskable Interrupts (on the INT or NMI pins, respec­
tively), see Section 3.B.7.1. For Abort interrupts, see Section
3.B.7.4. For the Trace Trap, see Section 3.B.7.3, and for all
other traps see Section 3.B.7.2.

3.8.7.1 Maskable/Non·Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu­
tion.

2-339

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first
byte of the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tem­
porary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Mas­
ter: Section 3.4.2). Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step B.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Mas­
ter: Section 3.4.2). Discard the byte read.

b. Set "Vector" to O.
c. Go to Step B.

5. Here the interrupt is Vectored. Read "Byte" from ad­
dress FFFE0016, applying Status Code 0100 (Interrupt
Acknowledge, Master: Section 3.4.2).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to
Step B.

7. If "Byte" is in the range -16 through -1, then the
interrupt source is Cascaded. (More negative values
are reserved for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory.
The address is calculated as INTBASE + 4· Byte.

b. Read "Vector," applying the Cascade Address
just read and Status Code 0101 (Interrupt Ac­
knowledge, Cascaded: Section 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt
Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-28.

Service (Vector, Return Address):

1) Read the 32-bit External Procedure Descriptor from the Interrupt Dis­
patch Table: address is Vector'4 + INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD Register.

3) Read the new Static Base pOinter from the memory address contained
in MOD, placing it into the SB Register.

4) Read the Program Base pointer from memory address MOD+8, and
add to it the Offset field from the Descriptor, placing the result In the
Program Counter.

S) Flush Queue: Non·sequentially fetch first instruction of Interrupt Rou·
tine.

6) Push MOD Register onto the Interrupt Slack as a 16·bit value. (The
PSR has already been pushed as a 16-bit value.)

7) Push the Return Address onto the Interrupt Slack as a 32·bit quantity.

FIGURE 3·28. Service Sequence
Invoked during all interrupt/trap sequences

t/)
Co)
N
n
I:)
G)

I
I:)
Z
t/)
Co)
N
n
I:)
G)
I

(It

•

3.0 Functional Description (Continued)

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set "Vector" to the value corresponding to the trap
type.

SLAVE: Vector = 3.

ILL: Vector = 4.

SVC: Vector=5.

DVZ: Vector=6.

FLG: Vector = 7.

BPT: Vector = 8.

UND: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tem­
porary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Return Address" to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear
PSR bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set "Vector" to 9.

5) Set "Return Address" to the address of the next in-
struction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its origi­
nal contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear
PSR bits S, U, T and I.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Vector" to 2.

6) Set "Return Address" to the address of the first byte of
the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-28.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32C016 CPU recognizes three groups of instructions
as being executable by external Slave Processors:

Floating Point Instruction Set

Memory Management Instruction Set

Custom Instruction Set

2-340

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Section 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an ID Byte followed by an Oper­
ation Word. The ID Byte has three functions:
1) It identifies the instruction as being a Slave Processor

instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation
Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-29. While applying
Status Code 1111 (Broadcast ID, Section 3.4.2), the CPU
transfers the ID Byte on the least-significant half of the Data
Bus (ADO-AD7). All Slave Processors input this byte and
decode it. The Slave Processor selected by the ID Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section 3.4.2).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The Operation Word is swapped on the Data Bus; that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD7.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Section 3.4.2).

Status Combinations:
Send 10 (10): Code 1111
Xfer Operand (OP): Code 1101
Read Status (ST): Code 1110

Step Status Action
1 ID CPU Send ID Byte.
2 OP CPU Sends Operation Word.
3 OP CPU Sends Required Operands.
4 Slave Starts Execution. CPU Pre-Fetches.
5 Slave Pulses SPC Low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 OP CPU Reads Results (If Any).

FIGURE 3-29. Slave Processor Protocol

3.0 Functional Description (Continued)

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, and for the Address Translation strap func­
tion, AT/SPC is normally held high only by an internal pull·
up device of approximately 5 kn.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Section
3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Section 3.4.2). This
word has the format shown in Figure 3-30. If the Q bit
("Quit", Bit 0) is set, this indicates that an error was detect·
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the Slave vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec·
tion 3.4.2).

An exception to the protocol above is the LMR (Load Mem·
ory Management Register) instruction, and a corresponding

Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait for
an acknowledgement from the Slave Processor, and it does
not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Series 32000 Instruction Set Reference
Manual).

The Operand Issued columns show the sizes of the oper·
ands issued to the Floating Point Unit by the CPU. "0" indio
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte,
W=Word, 0= Double Word). "f" indicates that the instruc·
tion specifies a Floating Point size for the operand (F = 32-
bit Standard Floating, L=64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-30).

TABLE 3-4. Floating Point Instruction Protocols
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Mnemonic Class Class Issued Issued Type and Oest. Affected

ADDf read.f rmw.f fto Op. 2 none
SUBf read.f rmw.f ftoOp.2 none

MULf read.f rmw.f ftoOp.2 none
DIVf read.f rmw.f ftoOp.2 none

MOVf read.f write.f N/A fto Op. 2 none
ABSf read.f write.f N/A ftoOp.2 none
NEGf read.f write.f N/A ftoOp.2 none

CMPf read.f read.f f N/A N,Z,L

FLOORfi read.f write.i N/A itoOp.2 none
TRUNCfi read.f write.i f N/A itoOp.2 none
ROUNDfi read.f write.i f N/A itoOp.2 none

MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A FtoOp.2 none

MOVif read.i write.f N/A fto Op. 2 none

LFSR read.D N/A 0 N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none

Noles:

o = Double Word

I = integer size (B,W,D) specified in mnemonic.

f = Floating Point type (F,L) specified In mnemonic.

NI A = Not Applicable to this instruction.

2-341

z
~
~
o c
0)

•
c
z en
(0)
~
o c
0)

•
U1

PI

."
cb
C)

~
Cf)

tn
Z
C; • CD
8
N

~
Z

3.0 Functional Description (Continued)

15 8 7

lo 0 0 0 0 000 IN. Z F 0 0 L 0 oj
New PSR Bit VsIUe(I)&- ..,A J
"Ouit": Te,mlnlll Protocol, lI'ap(FPU) .

TL/EE/8525-38

FIGURE 3·30. Slave Processor Status Word Format

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.9.3 Memory Management Instructions

Table 3·5 gives the protocols for Memory Management in·
structions. Encodings for these instructions may be found in
Appendix A.
In executing the RDVAL and WRVAL instructions, the CPU
calculates and issues the 32·bit Effective Address of the
single operand. The CPU then performs a single·byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32·
bit Double Word. For further details of the Memory Manage·
ment Instruction set, see the Series 32000 Instruction Set
Reference Manual and the NS32082 MMU Data Sheet.

TABLE 3-5. Memory Management Instruction Protocols
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSRBlts

Mnemonic Class Class Issued Issued Type and Dest. Affected

RDVAL· addr N/A D N/A N/A F
WRVAL· addr N/A D N/A N/A F

LMR· read.D N/A D N/A N/A none
SMR· write.D N/A N/A N/A DtoOp.1 none

Note:

In the RDVAL and WRVAL instructions, the CPU issues the address as a Double Word, and performs a single-byte Read cycle lrom that memory address. For
details, see the Series 32000 Instruction Set Reference Manual and the NS320B2 Memory Management Unit Data Sheel

o = Double Word

• = Privileged Instruction: will trap II CPU is In User Mode.

NI A = Not Applicable to this instruction.

2-342

3.0 Functional Description (Continued)

3.9.4 Custom Slave Instructions

Provided in the NS32C016 is the capability of communicat­
ing with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an

operand which can be a 32-bit ("D") or 64-bit ("Q") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.

Any operand indicated as being of type 'c' will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

TABLE 3·6. Custom Slave Instruction Protocols
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSRBlts

Mnemonic Class Class Issued Issued Type and Dest. Affected

CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c cto Op. 2 none
CCAL3c read.c rmw.c c c cto Op. 2 none

CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A cto Op. 2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none

CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L

CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A ito Op. 2 none
CCV3ic readi write.c N/A cto Op. 2 none

CCV4DQ read.D write.Q D N/A QtoOp.2 none
CCV5QD read.Q write.D Q N/A DtoOp.2 none

LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none

CATSTO' addr N/A D N/A N/A F
CATST1' addr N/A D N/A N/A F

LCR· read.D N/A D N/A N/A none
SCR' write.D N/A N/A N/A DtoOp.1 none

Notes:

D - Double Word

i = integer size (B,W,D) specified in mnemonic.

c - Custom size (D:32 bits or Q:64 bits) specified in mnemonic.

.. = Privileged instruction: will trap if CPU is in User Mode.

N/A - Not Applicable to this instruction.

2-343

z en
c.:I
N
o
C)
Q)

•
C) z en
c.:I
N
o
C)
Q)

•
Ut

II

U) r---~ .,..
~ .,..
8
~ en z
o .,..

I
CD .,..
o
(.)
N
C")
(/)
z

4.0 Device Specifications
4.1 NS32C016 PIN DESCRIPTIONS

The following is a brief description of all NS32C016 pins.
The descriptions reference portions of the Functional De·
scription, Section 3.

4.1.1 Supplies

Logic Power (VeeLl: + SV positive supply for on·chip logic .
Section 3.1.

Buffer Power (VeeB): + SV positive supply for on·chip out·
put buffers. Section 3.1.

Logic Ground (GNDL): Ground reference for on-chip logic.
Section 3.1.

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 3.1.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Section
3.2.

Ready (ROY): Active high. While ROY is inactive, the CPU
extends the current bus cycle to provide for a slower memo­
ry or peripheral reference. Upon detecting ROY active, the
CPU terminates the bus cycle. Section 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. Section
3.6.
Nole: If Ihe HOLD signal is generated asynchronously, its set up and hold

times may be violated. In this case it is recommended to synchronize
it with CTTL to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
HLDA latency. This is to avoid speed degradalions in cases of heavy
HOLD activity (Le. DMA controller cycles inte~eaved with CPU cy­
cles).

Interrupt (I NT): Active low. Maskable Interrupt request.
Section 3.B.

Non-Maskable Interrupt (NMI): Active low. Non-Maskable
Interrupt request. Section 3.B.

Reset/Abort (RST/ABT): Active low. If held active for one
clock cycle and released, this pin causes an Abort Com­
mand, Section 3.S.4. If held longer, it initiates a Reset, Sec­
tion 3.3.

4.1.3 Output Signals

Address Bits 16-23 (A16-A23): These are the most sig­
nificant 8 bits of the memory address bus. Section 3.4.

Address Strobe (ADS): Active low. Controls address latch­
es; indicates start of a bus cycle. Section 3.4.

Data Direction In (ODIN): Active low. Status signal indicat­
ing direction of data transfer during a bus cycle. Section 3.4.

High Byte Enable (HBE): Active low. Status signal enabling
transfer on the most significant byte of the Data Bus. Sec­
tion 3.4; Section 3.4.3.
Nole: In Ihe current NS32C016, the HBE Signal is forced low by the CPU

when FLT is asserted by the MMU. However, in future revisions of the
CPU, HBE will no longer be affected by FLT. Therefore, in a memory
managed system, an external 'AND' gate is required. This is shown in
Figure 8-1 in Appendix B.

2-344

Status (STO-ST3): Active high. Bus cycle status code, STO
least significant. Section 3.4.2. Encodings are:

OOOO-idle: CPU Inactive on Bus.

0001-ldle: WAIT Instruction .

001O-(Reserved)

0011-ldle: Waiting for Slave.

010o-Interrupt Acknowledge, Master.

0101-lnterrupt Acknowledge, Cascaded.

0110-End of Interrupt, Master.

0111-End of Interrupt, Cascaded.

1000-5equential Instruction Fetch.

1001-Non-Sequentiallnstruction Fetch.

101O-Data Transfer.

1 011-Read Read-Modify-Write Operand.

110o-Read for Effective Address.

1101-Transfer Slave Operand.

111o-Read Slave Status Word.

1111-Broadcast Slave 10.

Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus has
been released for DMA or multiprocessing purposes. Sec­
tion 3.B.

User/Supervisor (U/S): User or Supervisor Mode status.
Section 3.7. High state indicates User Mode, low indicates
Supervisor Mode. Section 3.7.

Interlocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Section 3.7.
Program Flow Status (PFS): Active Low. Pulse indicates
beginning of an instruction execution. Section 3.7.

4.1.4 Input-Output Signals

Address/Data 0-15 (ADO-AD15): Multiplexed Addressl
Data information. Bit 0 is the least significant bit of each.
Section 3.4.

Address Translation/Slave Processor Control
(AT/SPC): Active low. Used by the CPU as the data strobe
output for Slave Processor transfers; used by Slave Proces­
sors to acknowledge completion of a slave instruction. Sec­
tion 3.4.6; Section 3.9. Sampled on the rising edge of Reset
as Address Translation Strap. Section 3.S.1.

In non-memory-managed systems this pin should be pulled
up to Vee through a 10 kO resistor.

Data Strobe/Float (DS/FL T): Active low. Data Strobe out­
put, Section 3.4, or Float Command input, Section 3.S.3. Pin
function is selected on AT/SPC pin, Section 3.S.1.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

Temperature Under Bias O'C to + 70'C

Storage Temperature -65'Cto +150'C

All Input or Output Voltages with

Respect to GND

Power Dissipation
-0.5Vto +7V

1.5 Watt

4.3 ELECTRICAL CHARACTERISTICS: TA = -40'Cto + 85'C, Vee = 5V ±10%, GND = OV

Symbol Parameter

VIH High Level Input Voltage

Vil Low Level Input Voltage

VeH High Level Clock Voltage

Vel Low Level Clock Voltage

VeRT Clock Input
Ringing Tolerance

VOH High Level Output Voltage

VOL Low Level Output Voltage

IllS AT ISPC Input Current (low)

II Input Load Current

Il Leakage Current Output
and 10 Pins in TRI·STATEI
Input Mode

Icc Active Supply Current

Conditions

PHI1, PHI2 pins only

PHI1, PHI2 pins only

PHI1, PHI2 pins only

IOH = -400".A

IOl = 2mA

VIN = O.4V, AT/SPC in input mode

o s: VIN s: Vee, All inputs except
PHI1, PHI2, AT ISPC

0.4 s: VIN s: Vee

lOUT = 0, TA = 25'C

Min

2.0

-0.5

0.90 Vee

-0.5

-0.5

0.90 Vee

0.05

-20

-20

Connection Diagram
Dual·ln·Line Package

A22c::~b veeL
A21~2 47gA23

A2:§ 3 46 E5 iNT
A19 4 45 g~

A18 5 44 ~'LO
AI:§ 6 43 5TO
A16 1 42 ST1

A015 8 41 5T2

ADI. E 9 .0 :::::I STl
AD13 ~ 10 39 ~ 'PFS

ADI. 1= 11 38 F DDIN

:~~~ ~ ~~ N~::~'6 : F= ~~:
AD9 ~ " 35 ~ Ar/SPC
ADS == 15 34 t::::= RST/ABT
AD7 E 16 33 EJ OS/FLT
AD6~ 17 32 g HBE
ADS ~ I. 31 :::::I HLDA

~~ 19 30 ~ HOLD
AD3 c:: •• 29 :=::J veeB
A~~ 21 28 ~ ROY

ADI~ § 22 "Z7 ~PHI2
ADO 23 26 PHI1

GNDL 24 25 GNDB

Top View

FIGURE 4-1

TL/EE/8525-2

Order Number NS32C016D-10, NS32C016D-15,
NS32C016N-10 or NS32C016N-15

See NS Package Number D48A or N48A

2-345

Typ Max Units

Vee + 0.5 V

0.8 V

Vee + 0.5 V

0.10 Vee V

0.6 V

V

0.10 Vee v
1.0 mA

20 ".A

20 ".A

70 100 mA

z en
c.:I
N o o ...
cp ...
~
Z
~
N o o ...
cp ...
UI

U) r---,
ch
CI

~
~
Z
(:)
ch
8
i3 z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHil
and PHI2; to 15% or 85% of Vee on all the CMOS output
signals, and to 0.8V or 2.0V on all the TTL input signals as
illustrated in Figures 4·2 and 4-3 unless specifically stated
otherwise.

PHln [") 2.0V -

ABBREVIATIONS:

L.E. - leading edge

T.E. - trailing edge

R.E. - rising edge

F.E. - falling edge

PHI" [________ }~

SIGI [

[2.0V -F-====i':::::-SIG2 ____ .If'.. _______ ts.!G~h
SIGI [

TL/EE/8525-40

FIGURE 4-3. Timing Specification Standard

SIG2 [

TL/EE/8525-39

FIGURE 4·2. Timing Specification Standard
(CMOS Output Signals)

4.4.2 Timing Tables

(TTL Input Signals)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C016·10 and NS32C016·15
Maximum times assume capacitive loading of 75 pF, on the address/data bus signals and 50 pF on all other signals.

Name Figure Description Reference/Conditions I-_N_S_3_2C.,.0_1_6_.1_0_t-_N_S_3_2C.,.0_1_6_.1_5--j

4·4

4-4

toy 4·4

4·4

4·4

4·4

tALADSs 4·5

tAHADSs 4·5

tALADSh 4·9

tAHADSh 4·9

4·5

tALMf 4·9

4·9

tHBEv 4·4

tHBEh 4·4

tSTv 4·4

IsTh 4·4

tDDINv 4-5

Address bits 0-15 valid

Address bits 0-15 hold

Data valid (write cycle)

Data hold (write cycle)

Address bits 16-23 valid

Address bits 16-23 hold

after R.E., PHil Tl

after R.E., PHil
TmmuorT2

after R.E., PHil T2

after R.E., PHil
nexiTlorTi

after R.E., PHil Tl

after R.E., PHil
nexiTlorTi

Address bits 0-15 set up before ADS T.E.

Address bits 16-23 set up before ADS T.E.

Address bits 0-15 hold after ADS T.E.

Address bits 16-23 hold after ADS T.E.

Address bits 0-15 floating after R.E., PHil T2
(no MMU)

Address bits 0-15 floating after R.E., PHil TMMU
(withMMU)

Address bits 16-23 floating after R.E., PHil TMMU
(withMMU)

HBE Signal valid

HBE signal hold

Status (STO-ST3) valid

Status (STO-ST3) hold

DDIN signal valid

after R.E., PHil n
after R.E., PHil
nexiTlorTi

after R.E., PHil T4
(before n, see note)

after R.E., PHil T4
(after Tl)

after R.E., PHil Tl

2·346

Min Max Min Max

40 35

5 5

50 35

o o

40 35

o o

25 20

25 20

15 10

15 10

25 20

25 20

25 20

45 35

o o

45 35

o o

50 35

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C016·10 and NS32C016·15 (Continued)

Name Figure Description Reference/Conditions
NS32C016·10

Min Max

tOOINh 4·5 ODIN Signal hold after R.E., PHil
0

next Tl orTi

tAOSa 4·4 ADS signal active (low) after R.E., PHil Tl 35

tAOSia 4·4 ADS signal inactive after R.E., PHI2 Tl 40

tAOSw 4·4 ADS pulse width at 15% Vcc (both edges) 30

tOSa 4·4 OS signal active (low) after R.E., PHil T2 40

tOSla 4·4 OS signal inactive after R.E., PHil T4 40

tALI 4·6 ADO-AD15 floating after R.E., PHil Tl
25

(caused by HOLD)

tAH! 4·6 A16-A23 floating after R.E., PHil Tl
25

(caused by HOLD)

toS! 4·6 OS floating (caused by HOLD) after R.E., PHil Ti 50

tAOS! 4·6 ~ floating (caused by HOLD) after R.E., PHil Ti 50

tHBE! 4·6 HBE floating (caused by HOLD) after R.E., PHil Ti 50

toolN! 4·6 ODIN floating (caused by HOLD) after R.E., PHil Ti 50

tHLOAa 4·6 HLDA signal active (low) after R.E., PHil Ti 30

tHLOAia 4·8 HLDA signal inactive after R.E., PHil Ti 40

tOSr 4·8 OS signal returns from floating after R.E., PHil Ti
55

(caused by HOLD)

tAOSr 4·8 ~ signal returns from floating after R.E., PHil Ti
55

(caused by HOLD)

tHBEr 4·8 HBE Signal returns from floating after R.E., PHil Ti
55

(caused by HOLD)

tOOINr 4·8 ODIN signal returns from floating after R.E., PHil Ti
55

(caused by HOLD)

tOOIN! 4·9 ODIN Signal floating (caused by FLT) after FL T F.E. 55

tHBEI 4·9 HBE signal low (caused by FL T) after FL T F.E. 40

tOOINr 4·10 ODIN signal returns from floating after FL T R. E.
40

(caused by FL T)

tHBEr 4·10 HBE signal returns from low after FL T R. E. 35
(caused by FL T)

tspca 4·13 SPC output active (low) after R.E., PHil Tl 35

tsPCia 4·13 SPC output inactive after R.E., PHil T4 35

tSPCn! 4·15 SPC output nonforcing after R.E., PHI2 T4 30

tov 4-13 Data valid (slave processor write) after R.E., PHil Tl 50

tOh 4·13 Data hold (slave processor write) after R.E., PHil next Tl or Ti 0

tpFSw 4-18 PFS pulse width at 15% VCC (both edges) 50

tPFSa 4-18 PFS pulse active (low) after R.E., PHI2 40

tPFSia 4-18 PFS pulse inactive after R.E., PHI2 40

tlLOs 4-20a ILO signal setup before R.E., PHil Tl of first
50

interlocked write cycle

tlLOh 4-20b ILO signal hold after R.E., PHil T3 of last
10

interlocked read cycle

tlLOa 4-21 iIO Signal active (low) after R.E., PHil 35

2-347

NS32C016·15

Min Max

0

26

30

25

30

30

20

20

40

40

40

40

25

30

40

40

40

40

50

30

30

25

26

26

25

35

0

40

35

35

35

7

30

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en
Ct.)
N
o
C
(7)
c
z en
Ct.)
N
o
C
(7)
•

(11

II)
d.
8
~ en z
C)
CD
8
N

~
Z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32C016-10 and NS32C016-15 (Continued)

Name Figure Description Reference/Conditions
NS32C016-10 NS32C016-15

Units
Min Max Min Max

tlLOia 4-21 ILO signal inactive after R.E., PHI1 35 30 ns

tusv 4-22 U/S signal valid after R.E., PHI1 T4 35 30 ns

tUSh 4-22 U/S signal hold after R.E., PHI1 T4 8 6 ns

tNSPF 4·19b Nonsequential fetch to after R.E., PHI1 T1
4 4 tcp next PFS clock cycle

tpFNS 4·19a PFS clock cycle to next before R.E., PHI1 T1
4 4 Icp nonsequential fetch

tLXPF 4·29 Last operand transfer of before R.E., PHI1 T1 of first
an instruc1ion to next bus cycle of transfer 0 0 Icp
PFS clock cycle

Note: Every memory cycle starts with T4. during which Cycle Status is applied. If the CPU was idling. the sequence will be:" ... TI, T4. Tl .. :'.11 the CPU was
not idling. the sequence will be: ". . . T 4. T1 . . .".

4.4.2.2 Input Signal Requirements: NS32C016-10 and NS32C016-15

Name Figure Description Reference/Conditions
NS32C016-10 NS32C016-15

Units
Min Max Min Max

tPWR 4·25 Power stable to RST R.E. after V cc reaches 4.5V 50 33 I's

tOls 4·5 Data in setup (read cycle) before F.E., PHI2 T3 15 10 ns

tOlh 4·5 Data in hold (read cycle) after F.E., PHI1 T4 3 3 ns

tHLOa 4·6 HOLD active (low) setup before F.E., PHI2 TX1
25 17

time (see note)
ns

tHLOia 4·8 HOLD inactive setup time before F.E., PHI2 Ti 25 17 ns

tHLDh 4·6 HOLD hold time after R.E., PHI1 TX2 0 0 ns

tFLTa 4·9 FL T active (low) setup time before F.E., PHI2 Tmmu 25 17 ns

tFLTia 4·10 FL T inactive setup time before F.E., PHI2 T2 25 17 ns

tROYs 4·11,4·12 ROY setup time before F.E., PHI2 T2 or T3 15 10 ns

tROYh 4·11,4·12 ROY hold time after F.E., PHI1 T3 5 5 ns

tASTs 4·23 ABT setup time before F.E., PHI2 Tmmu
20 13

(FL T inactive)
ns

tASTs 4-24 ABT setup time before F.E., PHI2 Tf
20 13

(FL T active)
ns

tASTh 4·23 ABT hold time after R.E., PHI1 0 0 ns

tRSTs 4·25,4·26 RST setup time before F.E., PHI1 10 8 ns

tRSTw 4·26 RST pulse width at 0.8V (both edges) 64 64 tcp

tiNTs 4·27 INT setup time before R.E., PHI1 20 15 ns

tNMlw 4·28 NMI pulse width at 0.8V (both edges) 70 70 ns

tOls 4·14 Data setup before F.E., PHI2 T1
15 10

(slave read cycle)
ns

tOlh 4·14 Data hold after R.E., PHI1 T4
3 3

(slave read cycle)
ns

2·348

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32C016-10 and NS32C016-15 (Continued)

Name Figure Description Reference/Conditions
NS32C016-10 NS32C016-15

Units
Min Max Min Max

tSPCd 4-15 SPC pulse delay after R.E., PHI2 T4
30 25

from slave
ns

tsPCs 4-15 SPC setup time before F.E., PHI1 30 25 ns

tspCw 4-15 SPC pulse width from at O.BV (both edges)
slave processor 20 20 ns
(async. input)

tATs 4-16 AT ISPC setup for before R.E., PHI1 of cycle
address translation during which RST pulse 1 1 tcp
strap is removed

tATh 4-16 AT/SPC hold for after F.E., PHI1 of cycle
address translation during which RST pulse 2 2 tcp
strap is removed

Note: This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time from the receipt
of the HOLD signal until the CPU floats is a function of the time HOLD signal goes low, the state of the ROY input (in MMU systems), and the length of the current
MMU cycle.

4.4.2.3 Clocking Requirements: NS32C016-10 and NS32C016-15

Name Figure Description Reference/Conditions
NS32C016-10 NS32C016-15

Units
Min Max Min Max

tep 4-17 Clock period R.E., PHI1, PHI2 to
100 250 66 250

next R.E., PHI1, PHI2
ns

teLw 4-17 PHI1, PHI2 At2.0V
O.5tcp 0.5tcp

pulse width on PHI1, PHI2
(both edges)

-10 ns -6ns

teLh 4-17 PHI1, PHI2 At 90% VCC 0.5tep 0.5tcp
High Time on PHI1, PHI2 -15ns -10ns

tCLI 4-17 PHI1, PHI2 At 15% Vcc 0.5tep 0.5tcp
Low Time on PHI1, PHI2 -5ns -5 ns

tnOVL(1,2) 4-17 Non-overlap time At 15% Vcc
-2 2 -2 2

on PHI1, PHI2
ns

tnOVLas Non-overlap asymmetry At15% Vcc
-3 3 -3 3 ns

(tnOVL(1) - tnOVL(2») on PHI1, PHI2

tCLwas PHI1, PHI2 asymmetry At2.0V
-5 5 -3 3

(teLw(1) - tCLw(2») on PHI1, PHI2
ns

2-349

z en
Co)
N o
o
Q)
o
z en
Co)
N o o
Q)
U1

~ r--, .,... *' 4.0 Device Specifications (Continued)

B 4.4.3 Timing Diagrams

~
(/)
Z
Q .,... .
CD .,...
8
N

~
Z

T1 12 T3 T4

PHil [

PHI2 [

AJlO.15 [

AI6-23 [

ST(1.3 [-1 ________ +~-Il-A-LI-O--+------' 1_"_/' ~N-E-XT---
[-1----~IDS. os ~ ___ +_---~

ROY [

PHil [

PHI2 [

AJlO.15 [

AI6-23 [

A5S[

ROY [

Tl

_n
-Ul
-K ADDRESS

-~
- ~I"!I'!W'"
-t"\~

'ALAOSI

=tx
-~

'DDINv

(HIGH)
I

FIGURE 4·4. Write Cycle

12 T3

r0- n
~ -<I DATA IN

ilALl --
VALID

VALID

VALID

'\. /

(HIGH)

FIGURE 4·5. Read Cycle

2·350

T4

r--

rr -
1 __ ~Dlh

>C

>C
/

I---t I DDlNh

·N~{A~~L~

TLlEE/8525-41

TLlEE/8525-42

4.0 Device Specifications (Continued)

TXI TX2 T4 TI Ti Ti

PHil [

PHI2 [---4--....

iiiiUi[
HLOA[

1m
loSt
IHBE!
'ADS!
IOOINt

HBE [
ODIN ---,�_----+------+------il--~ - - - - iFLOATiNGi - - --

~I_----+------+------il-__J'AU I
AOO·IS [(FLO"XTING)

~~---~~---~I----~I-__ I'AH! I
~[~~

I

FIGURE 4·6. Floating by HOLD Timing (CPU Not Idle Initially)
TLlEE/8525-43

Note that whenever the CPU is not idling (not in Ti), Ihe HOLD requesl (HOLD low) must be active IHLDa before the falling edge of PHI2 of Ihe clock cycle Ihat
appears two clock cycles before T4 (TXt) and stay low unlil IHLDh after Ihe rising edge of PHil of Ihe clock cycle Ihal precedes T4 (TX2) for Ihe requesl 10 be
acknowledged.

PHil [

TLlEE/8525-44

FIGURE 4·7. Floating by HOLD Timing (CPU Initially Idle)
Nole Ihat during Tit the CPU is already idling.

2·351

11 Tl TI T4

PHil [

PHI2 [

HOLD [

HLDA [-t-----t--'

Os
ADS
HBE [

ODIN •

A16-23 [_
ADO-15

(HIGH)

(FLOATING)

TLlEE/8525-80

FIGURE 4·8. Release from HOLD

z
CJ)
W
I\)

o o
0'1

I
o
Z
CJ)
w
I\)

o o
0'1

I
U\

•

r.n ,...
• CD ,...

C)

~
C')

en z
C) ,...
cD ,...
C)

o
N
C')

en
z

4.0 Device Specifications (Continued)

CPU STATES TI TMMU TI TI

MMUSTATES[

PHil

PHI2 [

m[
ADO·IS [

(CPU)

AI6-23 [
(CPU)

ADS [
(CPU)

ODIN [
(CPU)

"HBE [

TLlEE/BS25-46

'Note: In future higher speed versions of the NS32COl6, HBE will no longer be affected by FL T. See Figure 8·1 in Appendix B for the required mod~ication to the
interface logiC.

FIGURE 4-9. FL T Initiated Cycle Timing

CPU STATES TI T2 T3 T4

MMUSTATES Tmmu

PHil [

PHI2[

FLT [
(MMU)

AI6-23 [
(CPU) -

ODIN
(CPU) [

ADs [
(CPU)

HiE [

TL/EE/8525-47

Note that when FLT is deasserted the CPU restarts driving ODIN before the MMU releases it. This, however, does not cause any conllict, since both CPU and MMU
force ODIN to the same logic level.

FIGURE 4-10. Release from FLT Timing

PHil [

PHI2 [

RDV [

TL/EE/8525-48

FIGURE 4-11. Ready Sampling (CPU Initially READY)

2-352

4.0 Device Specifications (Continued)

I u u I U

PHI1 [D ________ n!-_-!nl.....-_
PHI2[-t--......

RDY[+ __

TL/EE/8525-49

FIGURE 4·12. Ready Sampling (CPU Initially NOT READY)

I T1 I T4 I

PHI1[~ I T1 I T4 I
PHI1[~

PHI2 [I
A[)().15 [

sPC [

S11).3 [-+_S_TII:_:T_U_S_VA_L_ID-i-J '\. =
iDs [(HIGH)

I

TL/EE/8525-50

FIGURE 4·13. Slave Processor Write Timing

PHI1 [

PHI2 [-+-_

SPC [
(FROM CPU)

Tl T4

(FROM sJJE1 [- ---------------- ------

PHI2 [

A[)()'15 [

SPC [
(CPU)

DATA (FROM SLAVE),.-__ --+_

DDIN[-+~ ______ ~ ________ +-

5111-3 [-+_S_t_ATU __ S_VA_L_ID+-J '-____,.._

iDs [

TLlEE/8525-51

FIGURE 4·14. Slave Processor Read Timing

'spew TLlEE/8525-81
FIGURE 4-15. SPC Timing

After transferring last operand to a Slave Processor, CPU turns
OFF driver and holds SPC high with internal 5 kO pull up.

FIGURE 4-16. Reset Configuration Timing

2-353

TLlEE/8525-53

z
en
Co)
N
(')
Q
en •
Q
Z
en
Co)
N
(')
Q
en •
C7I

~ r---,
ch
8
:a z
c;
ch
Q

~
(I)
z

4.0 Device Specifications (Continued)

PHI1 [

PHI2 [-----~r
TL/EE/8525-54

FIGURE 4-17. Clock Waveforms

PHI2[~ruu

~;~u-
TL/EE/8525-55

FIGURE 4-18. Relationship of PFS to Clock Cycles

T1

TL/EE/8525-58

FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch

I T1 I T2 I ••• I I I I
PHI1[~rfl-n-Jl-

A6S[

STO-3 [CODE 1001

~--------------~~----~~-----------

TUEE/8525-57

FIGURE 4019b. Guaranteed Delay, Non-Sequential Fetch to PFS

2-354

4.0 Device Specifications (Continued)

AiiS[

n:o[

A5S[

I T30RTI I T40RTI I T1 12 T3 T4

FIGURE 4·20a. Relationship of ILO to First Operand Cycle
of an Interlocked Instruction

I T3 OR TI I T40RTi I Tl 12 T3 T4

ILO[................................ ~ ~~
FIGURE 4·20b. Relationship of ILO to Last Operand Cycle

of an Interlocked Instruction

FIGURE 4·21. Relationship of ILO to Any Clock Cycle

I T3 OR TI I T40RTI I Tl 12 T3

FIGURE 4·22. U/S Relationship to Any Bus Cycle­
Guaranteed Valid Interval

2·355

T4

TL/EE/8525-58

TL/EE/8525-59

TL/EE/8525-60

TUEE/8525-61

z
~
I\)

o
Q
en •
Q
Z en
Co)
I\)

o
Q
en •
U'I

II)
CD
o
o
N
('I)

en
z
....... o
CD
o o
N
('I)

en
z

4.0 Device Specifications (Continued)

T1 I Tinmu T2 TI

PHI1 [

PHI2 [

ADS [

TL/EE/B525-62

FIGURE 4·23. Abort Timing, FL T Not Applied

PHI1 [

PHI2 [

Ds/FLT [-+---~f----f----H-...J

TLlEE/8525-63

FIGURE 4·24. Abort Timing, FL T Applied

~----------~~
vee

PHI1[___ +-__ ~

RST/AiiT[_____________ -\\--J

TL/EE/B525-64

FIGURE 4·25. Power·On Reset

TL/EE/B525-65

PHI{~JUl-
tRS~r-

''''~ [~ I' ,~~
FIGURE 4·26. Non-Power-On Reset

2-356

4.0 Device Specifications (Continued)

PHI1[~
~tINT.

iNT[}..-
NM{ ~_tNMIW_-r

TLlEE/B525-66

FIGURE 4-27. INT Interrupt Signal Detection

TL/EE/B525-67

FIGURE 4-28. NMllnterrupt Signal Timing

FIRST BUS CYCLE NEXT
Tl T2 T3 T4 T10rTi I

FIGURE 4-29. Relationship Between Last Data Transfer of
an Instruction and PFS Pulse of Next Instruction

NOTE:

In a transfer of a Read-Modify-Write type operand, this is the Read transfer,
displaying RMW Status (Code 1011).

2-357

TL/EE/B525-66

z en
CJ,)
N
n
o
Q)
o
z en
CJ,)
N
n o
Q)
U1

•

~r---~
co
o
~
~
z
C;
cb
o o
('II
CO)

en
z

Appendix A: Instruction Formats
NOTATIONS:

i = Integer Type Field
B = 00 (Byte)

W = 01 (Word)
o = 11 (Double Word)

f = Floating Point Type Field

F = 1 (Std. Floating: 32 bits)

L= 0 (Long Floating: 64 bits)
c = Custom Type Field

o = 1 (Double Word)
Q = 0 (Quad Word)

op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field

See Sec. 2.2 for encodings.
reg = General Purpose Register Number

cond = Condition Code Field
0000 = EQual: Z = 1
0001 = Not Equal: Z = 0

0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1

0101 = Lower or Same: L = 0

0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0

1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0
1010 = LOwer: L = 0 and Z = 0

1011 = Higher or Same: L = 1 or Z = 1
1100 = Less Than: N = 0 and Z = 0

1101 = Greater or Equal: N = 1 or Z = 1
1110 = (Unconditionally True)

1111 = (Unconditionally False)
short = Short Immediate Value. May contain:

quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ,ACB.
cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPA.

0000 = US

0001 - 0111 = (Reserved)
1000 = FP

1001 = SP
1010 = SB

1011 = (Reserved)

1100 = (Reserved)
1101 = PSR

1110 = INTBASE

1111 = MOD

2-358

Options: in String Instruct,--io_nS_-r-_.----,

I U/W B T

T = Translated

B = Backward
U/W = 00: None

01: While Match
11: Until Match

Configuration bits, in SETCFG:

I C I M I F

mreg: NS32082 Register number, in LMR, SMA.
0000 = BPRO

Bcond

0001 = BPR1
0010 = (Reserved)
0011 = (Reserved)
0100 = (Reserved)

0101 = (Reserved)

0110 = (Reserved)
0111 = (Reserved)
1000 = (Reserved)
1001 = (Reserved)

1010 = MSR

1011 = BCNT
1100 = PTBO

1101 = PTB1
1110 = (Reserved)

1111 = EIA
7

FormatO

(BR)
7

o

0

I
I

10 ' 0 ' 1 101 op

BSR
RET
CXP
RXP
RETT
RETI
SAVE
RESTORE

15

gen

ADDQ
CMPQ
SPR
Scond

Format 1
-0000 ENTER
-0001 EXIT
-0010 NOP
-0011 WAIT
-0100 DIA
-0101 FLAG
-0110 SVC
-0111 BPT

81 7

sh~rt 1 op

Format 2

-000
-001
-010
-011

ACB
MOVQ
LPR

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

0

11 I 1 1 1

-100
-101
-110

z
Appendix A: Instruction Formats (Continued)

en w
I\)

15 al7 0

~e~ , I' ~p \1'1'1'1'11

0
n
0
en o 0 1 1 1 0
0

Format 3 Format 7
Z en w

CXPD -0000 ADJSP -1010
MOVM -0000 MUL -1000 I\)

0
CMPM -0001 MEl -1001 0

BICPSR -0010 JSR -1100
JUMP -0100 CASE -1110
BISPSR -0110

....
INSS -0010 Trap (UND) -1010 en •
EXTS -0011 DEI -1011

(II

MOVXBW -0100 QUO -1100

Trap (UND) on XXX1, 1000 MOVZBW -0101 REM -1101
MOVZiD -0110 MOD -1110
MOVXiD -0111 DIV -1111

o
I' , , , I" 'I gen 1 gen 2

I I I

op

Format 4

ADD -0000 SUB -1000
TL/EE/8525-69

CMP -0001 ADDR -1001
BIC -0010 AND -1010
ADDC -0100 SUBC -1100

Format a
MOV -0101 TBIT -1101
OR -0110 XOR -1110 EXT -000 INDEX -100

CVTP -001 FFS -101
INS -010

a 7 0 CHECK -011
MOVSU -110, reg=001

i 000 0 1 1 1 0 MOVUS -110, reg=011

a 7 0
FormatS

i 001 1 1 1 1 0
MOVS -0000 SETCFG -0010
CMPS -0001 SKPS -0011 Format 9 • Trap (UND) on 1 XXX, 01XX MOVif -000 ROUND -100

LFSR -001 TRUNC -101
MOVLF -010 SFSR -110
MOVFL -011 FLOOR -111

0

00111 0

0
Format 6]0 111 1 1 1 01

ROT -0000 NEG -1000 TLlEE/8525-70

ASH -0001 NOT -1001
CBIT -0010 Trap (UND) -1010 Format 10
CBITI -0011 SUBP -1011
Trap (UND) -0100 ABS -1100 Trap (UND) Always

LSH -0101 COM -1101
SBIT -0110 IBIT -1110
SBITI -0111 ADDP -1111

2-359

U) ,---, .,... .
CD .,...
o
U
N
C')
U)
Z
o .,... .
CD .,...
o
U
N
C')
U)
Z

Appendix A: Instruction Formats (Continued)

ADD!
MOV!
CMP!
Trap (SLAVE)
SUB!
NEG!
Trap (UNO)
Trap (UNO)

Trap (UNO) Always

Trap (UNO) Always

ROVAL
WRVAL

Format 11

-0000 OIV! -1000
-0001 Trap (SLAVE) -1001
-0010 Trap (UNO) -1010
-0011 Trap (UNO) -1011
-0100 MUll -1100
-0101 ABS! -1101
-0110 Trap (UNO) -1110
-0111 Trap (UNO) -1111

0 ---
111111111

_1 1 1 1 1 1 1 0,

TL/EE/8525-71

Format 12

7

---I I I I I I I I I
___ 10011110

Format 13

Format 14

-0000
-0001

LMR
SMR

TLlEE/8525-72

o

000 1 1 1 1 0

-0010
-0011

Trap (UNO) on 0IXX. lXXX

2-360

16 115

Operation Word

Format 15
(Custom Slave)

10 Byte

nnn Operation Word Format

000

CATSTO
CATSTI

Format 15.0
-0000 LCR
-0001 SCR

Trap (UNO) on ali others

001

Format 15.1

CCV3 -000 CCV2
LCSR -001 CCV1
CCV5 -010 SCSR
CCV4 -011 CCVO

101

Format 15.5

CCALO
CMOVO
CCMPO
CCMPI
CCALI
CMOV2
Trap (UNO)
Trap (UNO)

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

If nnn ~ 010, all, 100, 110, 111
then Trap (UND) Always

CCAL3
CMOV3
Trap (UNO)
Trap (UNO)
CCAL2
CMOVI
Trap (UNO)
Trap (UNO)

-0010
-0011

-100
-101
-110
-111

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

Appendix A: Instruction Formats (Continued)

---I I I I I I I I 1
_no 1 0 1 1 1 1 ~

TL/EE/8525-73

Format 16
Trap (UND) Always

7 0 ---I I I I I I I I 1
___ 1 1 0 1 1·1 1 ~

TL/EE/8525-75

Format 17

Trap (UND) Always

7 0

---I I I I I I I I 1
___ 1 0 0 0 1 1 1 0

TUEE/8525-76

Format 18

Trap (UND) Always

2-361

Format 19

Trap (UND) Always

Implied Immediate Encodings:
7

7 0

---I I I I I I I I 1
U. X X X 0 0 1 1 0

TL/EE/8525-74

a

r1 ra

Register Mask, appended to SAVE, ENTER

7 a

r1 r2 r3 r4 rS r6

Register Mask, appended to RESTORE, EXIT

7 a

: offset: le~gth-1 :
Offset/Length Modifier appended to INSS, EXTS

z
(J)
W
N
o
C
en •
C
Z
U)
Co)
N o
C
en •
C11

i')

00
~

XCTAL2

E -To XCTAL1

REID

~
ROY PHI1 PHI2 ILD HBE HOLD

HLDA

DS/FlT

INTS{~ iNT PFS

Niii NS32C016 U/S
CPU

ADS

DoiN
STO-ST3

RST/ABT

ADDRIDATA AT/SPC
10kO

(24)1 t> +5

(24)

ADDR/DATA (16),
MULTIPLEXED
BUS

DATA
SPC j.-

STo-sn
N532081

FPU RST

ClK

PER

CWAIT

NS32C201 WAIT8

TCU WAif4 ~ WAIT REQUESTS

NS32C016-10/NS32C016-15

.--L.n • .--

READY

J>
-g
-a

WAIT2

RSTI WAIT1

~} 1:= (ADDR. DECODED OR STRAPPED)

iffi

CD
~
Q.
>C.

~ PHil AD
PHI2 WR

ADS

RSTO CTTL ODIN ROY ffiiE

I !
HOLD ROY RSTI

PHI1

PHI2

HLDAI HlDAO

FLT PAV
PFs
Uti

N532082
ADS MMU
ODIN

STO-ST3

I-I-- RST/Aiif
1-I---t SPC ADDR/DATA

(24) I-
L..-

(24)

I I
(16t

DATA

MULTIPLEXED

I BUS l---t RST I MEMORYI -- CLK PERIPHERALS

FIGURE 8-1. System Connection Diagram

~ J,..

--;r
+5

10 kl!

r PHYSICAL
AD DR.

VALID

STROBE

(24) ADDRESS
LATCHI
BUFFER

EN DIR

(16) ~.
DATA BUfFERS

Wii

ILO

HBE

HOLD

HLDAD

ADDRESS
BUS

(24)

ODIN

DATA BUS

(16)

STATUS

~ -CD
::l
DJ
n S·

CO
en c

CO
CO
CD
tn -O·
~
tn

TUEE/8525-n

~National
~ Semiconductor

PRELIMINARY

NS32016-10 High-Performance Microprocessor
General Description
The NS32016 is a 32-bit, virtual memory microprocessor
with a 16-MByte linear address space and a 16-bit external
data bus. It has a 32-bit ALU, eight 32-bit general purpose
registers, an eight-byte prefetch queue, and a slave proces­
sor interface. The NS32016 is fabricated with National
Semiconductor's advanced XMOS process, and is fully ob­
ject code compatible with other Series 32000 processors.
The Series 32000 instructions set is optimized for modular
high-level languages (HLL). The set is very symmetric, it has
a two address format, and it incorporates HLL oriented ad­
dressing modes. The capabilities of the NS32016 can be
expanded with the use of the NS32081 floating point unit
(FPU), and the NS32082 demand-paged virtual memory
management unit (MMU). Both devices interface to the
NS32016 as slave processors. The NS32016 is a general
purpose microprocessor that is ideal for a wide range of
computational intensive applications.

Block Diagram
ADD/DATA CONTROLS & STATUS

REGISTER SET

INTBASE
SB
FP

o SPI
o SPO

PC
RO
Rl
R2
R3
R4
R5
R6
R7

Features
• 32-bit architecture and implementation
• Virtual memory support
• 16-MByte linear address space
• 16-bit external data bus
• Powerful instruction set

- General 2-address capability
- High degree of symmetry
- Addressing modes optimized for high-level languages

• Series 32000 slave processor support
• High-speed XMOSTM technology
• 48-pin dual-in-line (DIP) package

MICROCODE ROM
AND

CONTROL LOGIC

o::rn
CFG REGISTER

WORKING
REGISTERS

I
I
I
I
I

MOD I

PSR :

L _________________ J
TL/EE/5054-1

2-363

~
c.:I
N
CI
c:p
CI

C) r---~
'P'"

ch
'P'"
C) a z

Table of Contents

1.0 PRODUCT INTRODUCTION
2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers

2.1.2 Dedicated Register

2.1.3 The Configuration Register (CFG)

2.1.4 Memory Organization

2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION
3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

3.4 Bus Cycles

3.4.1 Cycle Extension

3.4.2 Bus Status

3.4.3 Data Access Sequences

3.4.3.1 Bit Access

3.4.3.2 Bit Field Accesses

3.4.3.3 Extending Multiply Accesses

3.4.4 Instruction Fetches

3.4.5 Interrupt Control Cycles

3.4.6 Slave Processor Communication

3.4.6.1 Slave Processor Bus Cycles

3.4.6.2 Slave Operand Transfer Sequences

3.5 Memory Management Option

3.5.1 Address Translation Strap

3.5.2 Translated Bus Timing

3.5.3 The FL T (Float) Pin

3.5.4 Aborting Bus Cycles

3.5.4.1 The Abort Interrupt

3.5.4.2 Hardware Considerations

3.6 Bus Access Control

3.7 Dual Processing

3.7.1 Bus Arbitration

3.7.2 Processor Assignment

2-364

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.8 Instruction Status

3.8.1 General Interrupt/Trap Sequence

3.8.2 Interrupt/Trap Return

3.8.3 Maskable Interrupts (The INT Plan)

3.8.3.1 Non-Vectored Mode

3.8.3.2 Vectored Mode: Non-Cascaded Case

3.8.3.3 Vectored Mode: Cascaded Case

3.8.4 Non-Maskable Interrupt (The NMI Pin)

3.8.5 Traps

3.8.6 Prioritization

3.8.7 Interrupt/Trap Sequence: Detail Flow

3.8.7.1 MaskablelNon-Maskable Interrupt Sequence

3.8.7.2 Trap Sequence: Traps Other Than Trace

3.9 Slave Processor Instructions

3.9.1 Slave Processor Protocol

3.9.2 Floating Point Instructions

3.9.3 Memory Management Instructions

3.9.4 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS
4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays

4.4.2.2 Input Signals Requirements

4.4.2.3 Clocking Requirements

4.4.3 Timing Requirements

Appendix A: Instruction Formats

B: Interfacing Suggestions

r--, Z

List of Illustrations
The General and Dedicated Registers .. 2-1

Processor Status Register ... 2-2
CFG Register .. 2-3

Module Descriptor Format. .. 2-4
A Sample Link Table ... 2-5
General Instruction Format .. 2-6

Index Byte Format ... 2-7
Displacement Encodings .. 2-8

Recommended Supply Connections .. 3-1

Clock Timing Relationships .. 3-2
Power-On Reset Requirements .. 3-3
General Reset Timing .. 3-4

Recommended Reset Connections, Non-Memory-Managed System ... 3-5a

Recommended Reset Connections, Memory-Managed System ... 3-5b
Bus Connections ... 3-6
Read Cycle Timing ... 3-7

Write Cycle Timing ... 3-8
ROY Pin Timing .. 3-9

Extended Cycle Example .. 3-1 0

Memory Interface ... 3-11
Slave Processor Connections .. 3-12

CPU Read from Slave Processor .. 3-13
CPU Write to Slave Processor .. 3-14

Read Cycle with Address Translation (CPU Action) .. 3-15
Write Cycle with Address Translation (CPU Action) .. 3-16

Memory-Managed Read Cycle .. 3-17
Memory-Managed Write Cycle .. 3-18
FLTTiming : .. 3-19

HOLD Timing, Bus Initially Idle .. 3-20
HOLD Timing, Bus Initially Not Idle .. 3-21

Interrupt Dispatch and Cascade Tables .. 3-22
Interrupt/Trap Service Routine Calling Sequence ... 3-23

Return from Trap (RETT n) Instruction Flow .. 3-24
Return from Interrupt (REn Instruction Flow .. 3-25

Interrupt Control Connections (16 levels) ... 3-26
Cascaded Interrupt Control Unit Connections ... 3-27
Service Sequence .. 3-28

Slave Processor Protocol .. 3-29
Slave Processor Status Word Format .. 3-30

NS32016 Connection Diagram .. .4-1

Timing Specification Standard (Signal Valid after Clock Edge) .. 4-2
Timing Specification Standard (Signal Valid before Clock Edge)4-3
Write Cycle4-4
Read Cycle .. 4-5

Floating by HOLD Timing (CPU Not Idle Initially) .. 4-6

Floating by HOLD Timing (CPU Initially Idle) ... 4-7

2-365

en
c.:I
N
Q
a)
Q

C) .---, .,...
cb .,...

~
U)
z

List of Illustrations (Continued)

Release from HOLD•................•... 4-8
FL T Initiated Float Cycle Timing•...•......................................•.....•...................•. 4-9
Release from FLTTiming ••.. 4-10

Ready Sampling (CPU Initially READy) •..•••.•...•...•...•.........•...•....•....•..•.••.••.•......•....•....... 4-11
Ready Sampling (CPU Initially NOT READY)•...••...••.................•••.•....•..•........ 4-12
Slave Processor Write Timing ..•.......•.. 4-13

Slave Processor Read Timing•.......•.......................•...•....•...•.........•...•....• 4-14
SPCTiming ••..••.•.•..•...•.. 4-15

Reset Configuration Timing ...•.•..•..•........•........•....•...........• 4-16

Clock Waveforms ...•.................................... .4-17
Relationship of PFS to Clock Cycles•.................•....•...•.....................•......... 4-18

Guaranteed Delay, PFS to Non-Sequential Fetch .. 4-19a
Guaranteed Delay, Non-Sequential Fetch to PFS ..•....•..•....•....•...•.•..•....•..•.•...•...•....•....•..•.•. 4-19b

Relationship of ILO to First Operand otan Interlocked Instruction ..•.............•....••...•..................•... .4-20a

Relationship of ILO to Last Operand of an Interlocked Instruction•............ 4-20b
Relationship of ILO to Any Clock Cycle •..........•................•...............•...•.............••.......... 4-21

U/S Relationship to Any Bus Cycle - Guaranteed Valid Interval .. 4-22
Abort Timing, FL T Not Applied .•.•..............•.........•.............•..............•...•..................•• 4-23

Abort Timing, FL T Applied ..•.......................... .4-24
Power-On Reset ..•....•......•....•...•.......••......................•....•........•........•....•....•...•. 4-25
Non-Power-On Reset•... 4-26

INT Interrupt Signal Detection .. 4-27
NMllnterrupt Signal Timing .•........•.......•....•....•........•..................•...••.....................• .4-28

Relationship between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction 4-29
System Connection Diagram .•..•.•..............•......•... B-1

List of Tables
NS32016 Addressing Modes •....•.......•.............•....•..........................•...............•........ 2-1
NS32016 Instruction Set Summary ... 2-2

Bus Cycle Categories•... 3-1
Access Sequences ..•.............•.........•...• 3-2

Interrupt Sequences •...•... 3-3
Floating Point Instruction Protocols ...•................................. 3-4

Memory Management Instruction Protocols ...•..................•.......•. 3-5
Custom Slave Instruction Protocols•...•....•... 3-6

2-366

1.0 Product Introduction
The Series 32000 Microprocessor family is a new genera­
tion of devices using National's XMOS and CMOS technolo­
gies. By combining state-of-the-art MOS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc­
essors.

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes: Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types: The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

Symmetric Instruction Set: While avoiding special case
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations: The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided. This powerful memory-to-memory archi­
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op­
erands as well as for context switching.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes 16 registers on the
NS32016 CPU.

DEDICATED

32

PROGRAM COUNTER PC

STAnCBASE sa

FRAME POINTER FP

USER STACK PTR.
SPI} SP

INTERRUPT STACK PTR. SPO

INTERRUPT BASE INTBASE

PSR MOD

STATUS MDDULE

Memory Management: Either the NS32382 or the
NS32082 Memory Management Unit may be added to the
system to provide advanced operating system support func­
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing: The NS32016 has 24-bit ad­
dress pOinters that can address up to 16 megabytes without
requiring any segmentation; this addressing scheme pro­
vides flexible memory management without added-on ex­
pense.

Modular Software Support: Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac­
cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept: The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

• High-Level Language Support

• Easy Future Growth Path
• Application Flexibility

GENERAL

32

RO

RI

R2

R3

R4

R5

R6

R7

TUEE/5054-3

FIGURE 2-1. The General and Dedicated Registers

2.1.1 General Purpose Registers

There are eight registers for meeting high speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are thirty-two bits in

2-367

length. If a general register is specified for an operand that
is eight or sixteen bits long, only the low part of the register
is used; the high part is not referenced or modified.

z
tJ)
Co)
N
C)
en
C)

fI

o r---~ ,..
ch ,..
o
N

~
Z

2.0 Architectural Description (Continued)

2.1.2 Dedicated Registers

The eight dedicated registers of the NS32016 are assigned
specific functions.

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The PC
Is used to reference memory in the program section. (In the
NS32016 the upper eight bits of this register are always
zero.)

SPO, SP1: The SPO register points to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used
primarily for storing temporary data, and holding return infor­
mation for operating system subroutines and interrupt and
trap service routines. The SP1 register points to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms "SP register" or "SP" refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0 then SP refers to SPO. If the S bit in
the PSR is 1 then SP refers to SP1. (In the NS32016 the
upper eight bits of these registers are always zero.)

Stacks in the Series 32000 family grow downward in memo­
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pOinter. (In the NS32016 the
upper eight bits of this register are always zero.)

SB: The STATIC BASE register points to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module. (In the NS32016 the upper
eight bits of this register are always zero.)

INTBASE: The INTERRUPT BASE register holds the ad­
dress of the dispatch table for interrupts and traps (Section
3.B). The INTBASE register holds the lowest address in
memory occupied by the dispatch table. (In the NS32016
the upper eight bits of this register are always zero.)

MOD: The MODULE register holds the address of the mod­
ule descriptor of the currently executing software module.
The MOD register is sixteen bits long, therefore the module
table must be contained within the first 64K bytes of memo­
ry.

PSR: The PROCESSOR STATUS REGISTER (PSR) holds
the status codes for the NS32016 microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

15 B 17 0

IXIXIXIXI'I plslu NlzlFIXIXI LITle'
TUEE/5054-Bl

FIGURE 2·2. Processor Status Register

2-36B

C: The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used with the
ADDC and SUBC instructions to perform multiple-precision
integer arithmetic calculations. It may have a setting of 0 (no
carry or borrow) or 1 (carry or borrow).

T: The T bit causes program traCing. If this bit is a 1, a TRC
trap is executed after every instruction (Section 3.B.5).

L: The L bit is altered by comparison instructions. In a com­
parison instruction the L bit is set to "1" if the second oper­
and is less than the first operand, when both operands are
interpreted as unsigned integers. Otherwise, it is set to "0".
In Floating Point comparisons, this bit is always cleared.

F: The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions use it
to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a com­
parison instruction the Z bit is set to "1" if the second oper­
and is equal to the first operand; otherwise it is set to "0".

N: The N bit is altered by comparison instructions. In a com­
parison instruction the N bit is set to "1" if the second oper­
and is less than the first operand, when both operands are
interpreted as signed integers. Otherwise, it is set to "0".

U: If the U bit is "1" no privileged instructions may be exe­
cuted. If the U bit is "0" then all instructions may be execut­
ed. When U = 0 the NS32016 is said to be in Supervisor
Mode; when U= 1 the NS32016 is said to be in User Mode.
A User Mode program is restricted from executing certain
instructions and accessing certain registers which could in­
terfere with the operating system. For example, a User
Mode program is prevented from changing the setting of the
flag used to indicate its own privilege mode. A Supervisor
Mode program is assumed to be a trusted part of the oper­
ating system, hence it has no such restrictions.

S: The S bit specifies whether the SPO register or SP1 regis­
ter is used as the stack pointer. The bit is automatically
cleared on interrupts and traps. It may have a setting of 0
(use the SPO register) or 1 (use the SP1 register).

P: The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.B.5). It may have a setting
of 0 (no trace pending) or 1 (trace pending).

I: If 1= 1, then all interrupts will be accepted (Section 3.B). If
1=0, only the NMI interrupt is accepted. Trap enables are
not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS32016 CPU is the four­
bit CFG Register, which declares the presence of certain
external devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of
system initialization after reset. The format of the CFG Reg­
ister is shown in Figure 2-3.

FIGURE 2-3. CFG Register

The CFG I bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS32202 Interrupt Con­
trol Unit). If the CFG I bit is set, interrupts requested through
the INT pin are "Vectored." If it is clear, these interrupts are
"Non-Vectored." See Section 3.8.

The F, M and C bits declare the presence of the FPU, MMU
and Custom Slave Processors. If these bits are not set, the
corresponding instructions are trapped as being undefined.

2.0 Architectural Description (Continued)

2.1.4 Memory Organization

The main memory of the NS32016 is a uniform linear ad­
dress space. Memory locations are numbered sequentially
starting at zero and ending at 224 - 1. The number specify­
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits. Un­
less otherwise noted, diagrams in this document show data
stored in memory with the lowest address on the right and
the highest address on the left. Also, when data is shown
vertically, the lowest address is at the top of a diagram and
the highest address at the bottom of the diagram. When bits
are numbered in a diagram, the least significant bit is given
the number zero, and is shown at the right of the diagram.
Bits are numbered in increasing significance and toward the
left.

Byte at Address A

Two contiguous bytes are called a word. Except where not­
ed (Section 2.2.1), the least significant byte of a word is
stored at the lower address, and the most significant byte of
the word is stored at the next higher address. In memory,
the address of a word is the address of its least significant
byte, and a word may start at any address.

115 MSB's 817 LSB's 0 I
A+1 A

Word at Address A

Two contiguous words are called a double word. Except
where noted (Section 2.2.1), the least significant word of a
double word is stored at the lowest address and the most
significant word of the double word is stored at the address
two greater. In memory, the address of a double word is the
address of its least significant byte, and a double word may
start at any address.

'5

I MOD I

I
31 oJ

STATIC SASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

TL/EE/5054-4

FIGURE 2·4. Module Descriptor Format

16115 817 LSB's 01
A+3 A+2 A+1 A

Double Word at Address A

Although memory is addressed as bytes, it is actually orga­
nized as words. Therefore, words and double words that are
aligned to start at even addresses (multiples of two) are
accessed more quickly than words and double words that
are not so aligned.

2.1.5 Dedicated Tables

Two of the NS32016 dedicated registers (MOD and INT­
BASE) serve as pointers to dedicated tables in memory.

The INTBASE register pOints to the Interrupt Dispatch and
Cascade tables. These are described in Section 3.8.

The MOD register contains a pOinter into the Module Table,
whose entries are called Module Descriptors. A Module De­
scriptor contains four pointers, three of which are used by
the NS32016. The MOD register contains the address of the
Module Descriptor for the currently running module. It is au­
tomatically updated by the Call External Procedure instruc­
tions (CXP and CXPD).

The format of a Module Descriptor is shown in Figure 2-4.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry pOints, the Program Base pOinter serves only
as a reference to find them.

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor­
mation needed for:

1) Sharing variables between modules. Such variables
are accessed through the Link Table via the External
addressing mode.

ENTRY 3' 0

ABSOLUTE ADDRESS (VARIABLE)

ABSOLUTE ADDRESS (VARIABLE)

OFFSET I MODULE (P ROCEDURE)

....
TL/EE/5054-5

FIGURE 2·5. A Sample Link Table

OPTIONAL BASIC
EXTENSIONS INSTRUcnON

r~------------~A~---------------~~-----,

DISP2DISP1 DISP~~ISP1 .
I

IMPUED INDEX INDEX GEN I GEN
ADCR ADDR OPCODe _EDIATE DISP DISP BYTE BYTE MODE MODE OPE"AND(S)

A I B
IMII IMII I

I

t I Y
l

TL/EE/5054-6

FIGURE 2·6. General Instruction Format

2-369

fI

e r---~
dJ
~
Cf)

~

2.0 Architectural Description (Continued)

2) Transferring control from one module to another. This
is done via the Call External Procedure (CXP) instruc­
tion.

The format of a Link Table is given in Figure 2-5. A Link
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module's Program Base pOinter.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-6 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to 5-bit General Address­
ing Mode ("Gen") fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-7.

GEN. ADDR. MODE REG. NO.

TL/EE/5054-7

FIGURE 2-7. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Displlmm field may contain
one of two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-8, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most-signifi­
cant byte first. Note that this is different from the memory
representation of data (Section 2.1.4).

Some instructions require additional "implied" immediates
andlor displacements, apart from those associated with ad­
dreSSing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.2.3).

2.2.2 Addressing Modes

The NS32016 CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro·
grammer as an "addressing mode."

Addressing modes in the NS32016 are designed to optimal­
ly support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.

2-370

NS32016 Addressing Modes fall into nine basic types:

Register: The operand Is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions, an auxiliary set of eight registers may be referenced
instead. .

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

Byte Displacement: Range - 64 to + 63

1'0 I _~~_ 0
1

Word Displacement: Range -8192 to +8191

Double Word Displacement:
Range (Entire Addressing Space)

7 0

1 : 1 I

//-
TL/EE/5054-10

FIGURE 2-8. Displacement Encodlngs

Memory Relative: A pOinter variable is found within the
memory space pOinted to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec­
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding into the
total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Series 32000
Instruction Set Reference Manual.

,---, z
2.0 Architectural Description (Continued)

TABLE 2·1
NS32016 Addressing Modes

ENCODING MODE
Register
00000 Register 0
00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register 5
00110 Register 6
00111 Register 7
Register Relative
01000
01001
01010
01011
01100
01101
01110
01111
Memory Relative
10000
10001
10010

Reserved
10011
Immediate
10100

Absolute
10101
External
10110

Top Of Stack
10111

Memory Space
11000
11001
11010
11011
Scaled Index
11100
11101
11110
11111

Register 0 relative
Register 1 relative
Register 2 relative
Register 3 relative
Register 4 relative
Register 5 relative
Register 6 relative
Register 7 relative

Frame memory relative
Stack memory relative
Static memory relative

(Reserved for Future Use)

Immediate

Absolute

External

Top of stack

Frame memory
Stack memory
Static memory
Program memory

Index, bytes
Index, words
Index, double words
Index, quad words

ASSEMBLER SYNTAX

RO orFO
R1 or F1
R20rF2
R30rF3
R4 or F4
R50rF5
R60rF6
R60rF7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1 (FP))
disp2(disp1 (SP))
disp2(disp1 (SB))

value

@disp

EXT (disp1) + disp2

TOS

disp(FP)
disp(SP)
disp(SB)
"+ disp

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

2·371

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp 1 + Register. "SP"
is either SPO or SP1, as selected
inPSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.
EA (mode) + 2 x Rn.
EA (mode) + 4 x Rn.
EA(mode) + 8xRn.
"Mode" and "n" are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

(/)
(0)
I\)
o
G)
•
o

o r---, ..-
ch ..­
o a z

2.0 Architectural Description (Continued)

2.2.3InstructJon Set Summary short=A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings). Table 2·2 presents a brief description of the NS32016 in·

struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further details of the exact op­
erations performed by each instruction may be found in the
Series 32000 Instruction Set Reference Manual.

imm = Implied immediate operand. An 8-bit value appended
after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32 bits.
All three lengths legal.

reg=Any General Purpose Register: RO-R7.

areg=Any Dedicated/Address Register: SP, SB, FP, MOD,
INTBASE, PSR, US (bottom 8 PSR bits).

Notations:

i = Integer length suffix: B = Byte
W= Word
D = Double Word

f = Floating Point length suffix: F = Standard Floating
L = Long Floating

mreg = Any Memory Management Status/Control Register.

creg = A Custom Slave Processor Register (Implementation
Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

gen = General operand. Any addressing mode can be speci­
fied.

TABLE 2-2
NS32016 Instruction Set Summary

MOVES
Format Operation Operands Description

4 MOVi gen,gen Move a value.
2 MOVQi short,gen Extend and move a signed 4-bit constant.
7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).
7 MOVZBW gen,gen Move with zero extension.
7 MOVZiD gen,gen Move with zero extension.
7 MOVXBW gen,gen Move with sign extension.
7 MOVXiD gen,gen Move with sign extension.
4 ADDR gen,gen Move effective address.

INTEGER ARITHMETIC
Format Operation Operands Description

4 ADDi gen,gen Add.
2 ADDQi short,gen Add Signed 4-bit constant.
4 ADDCi gen,gen Add with carry.
4 SUBi gen,gen Subtract.
4 SUBCi gen,gen Subtract with carry (borrow).
6 NEGi gen,gen Negate (2's complement).
6 ABSi gen,gen Take absolute value.
7 MULi gen,gen Multiply.
7 QUOi gen,gen Divide, rounding toward zero.
7 REMi gen,gen Remainder from QUO.
7 DIVi gen,gen Divide, rounding down.
7 MODi gen,gen Remainder from DIV (Modulus).
7 MEIi gen,gen Multiply to extended integer.
7 DEli gen,gen Divide extended integer.

PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands Description

6 ADDPi gen,gen Add packed.

6 SUBPi gen,gen Subtract packed.

2-372

2.0 Architectural Description (Continued)

TABLE 2-2
NS32016 Instruction Set Summary (Continued)

INTEGER COMPARISON
Format Operation Operands Description

4 CMPi gen,gen Compare.
2 CMPQi short,gen Compare to signed 4-bit constant.
7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN
Format Operation Operands Description

4 ANDi gen,gen Logical AND.
4 ORi gen,gen Logical OR.
4 BICi gen,gen Clear selected bits.
4 XORi gen,gen Logical exclusive OR.
6 COMi gen,gen Complement all bits.
6 NOTi gen,gen Boolean complement: LSB only.
2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical shift, left or right.
6 ASHi gen,gen Arithmetic shift, left or right.
6 ROTi gen,gen Rotate, left or right.

BITS
Format Operation Operands Description

4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBlTIi gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITli gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm.imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to bit field pOinter.

ARRAYS
Format Operation Operands Description

8 CHECKi reg.gen,gen Index bounds check.
8 INDEXi reg.gen,gen Recursive indexing step for multiple-dimensional arrays.

2-373

z en w
N o
a> •
o

C) r--, *' 2.0 Architectural Description (Continued)

~
C") TABLE 2-2
~ NS32016 Instruction Set Summary (Continued)

STRINGS Options on all string instructions are:
String instructions assign specific functions to the General
Purpose Registers:

B (Backward): Decrement strong pointers after each
step rather than incrementing.

R4 - Comparison Value

R3 - Translation Table Pointer

R2 - String 2 Pointer

Rl - String 1 Pointer

RO - Limit Count

Format Operation

5 MOVSi
MOVST

5 CMPSi
CMPST

5 SKPSi
SKPST

JUMPS AND LINKAGE

Format Operation

3 JUMP
0 BR
0 Bcond
3 CASEi
2 ACBi
3 JSR

BSR
CXP

3 CXPD
SVC
FLAG
BPT
ENTER
EXIT
RET
RXP
RETT
RETI

CPU REGISTER MANIPULATION

Format Operation

SAVE
1 RESTORE
2 LPRi
2 SPRi
3 ADJSPi
3 BISPSRi
3 BICPSRi
5 SETCFG

Operands

options
options
options
options
options
options

Operands

gen
disp
disp
gen
short,gen,disp
gen
disp
disp
gen

[reg list), disp
[reg list]

disp
disp
disp

Operands

[reg list]
[reg list]
areg,gen
areg,gen
gen
gen
gen
[option list]

U (Until match): End instruction if String 1 entry matches
R4.

W (While match): End instruction if String 1 entry does not
match R4.

All string instructions end when RO decrements to zero.

Description

Move string 1 to string 2.
Move string, translating bytes.
Compare string 1 to string 2.
Compare, translating string 1 bytes.
Skip over string 1 entries.
Skip, translating bytes for until/while.

Description

Jump.
Branch (PC Relative).
Conditional branch.
Multiway branch.
Add 4-bit constant and branch if non-zero.
Jump to subroutine.
Branch to subroutine.
Call external procedure
Call external procedure using descriptor.
Supervisor call.
Flag trap.
Breakpoint trap.
Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.
Return from external procedure call.
Return from trap. (Privileged)
Return from interrupt. (Privileged)

Description

Save general purpose registers.
Restore general purpose registers.
Load dedicated register. (Privileged if PSR or INTBASE)
Store dedicated register. (Privileged if PSR or INTBASE)
Adjust stack pOinter.
Set selected bits in PSR. (Privileged if not Byte length)
Clear selected bits in PSR. (Privileged if not Byte length)
Set configuration register. (Privileged)

2-374

z
2.0 Architectural Description (Continued)

en
Co:!
N

TABLE 2·2 Q

NS32016 Instruction Set Summary (Continued)
.....
Q)

FLOATING POINT
I

Format Operation Operands Description Q

11 MOVf gen,gen Move a floating point value.
9 MOVLF gen,gen Move and shorten a long value to standard.
9 MOVFL gen,gen Move and lengthen a standard value to long.
9 MOVif gen,gen Convert any integer to standard or long floating.
9 ROUNDfi gen,gen Convert to integer by rounding.
9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.
9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

11 ADDf gen,gen Add.
11 SUBf gen,gen Subtract.
11 MUll gen,gen Multiply.
11 DIVf gen,gen Divide.
11 CMPf gen,gen Compare.
11 NEGf gen,gen Negate.
11 ABSf gen,gen Take absolute value.
9 LFSR gen Load FSR.
9 SFSR gen Store FSR.

MEMORY MANAGEMENT
Format Operation Operands Description

14 LMR mreg,gen Load memory management register. (Privileged)
14 SMR mreg,gen Store memory management register. (Privileged)
14 RDVAL gen Validate address for reading. (Privileged)
14 WRVAL gen Validate address for writing. (Privileged)
8 MOVSUi gen,gen Move a value from supervisor

space to user space. (Privileged)
8 MOVUSi gen,gen Move a value from user space

to supervisor space. (Privileged)

MISCELLANEOUS
Format Operation Operands Description

1 NOP No operation.
1 WAIT Wait for interrupt.
1 DIA Diagnose. Single-byte "Branch to Self" for hardware

breakpointing. Not for use in programming.

CUSTOM SLAVE
Format Operation Operands Description

15.5 CCALOc gen,gen Custom calculate.
15.5 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen
15.5 CMOVOc gen,gen Custom move.
15.5 CMOV1c gen,gen
15.5 CMOV2c gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom compare.
15.5 CCMP1c gen,gen
15.1 CCVOci gen,gen Custom convert.
15.1 CCV1ci gen,gen
15.1 CCV2ci gen,gen
15.1 CCV3ic gen,gen
15.1 CCV4DQ gen,gen
15.1 CCV5QD gen,gen
15.1 LCSR gen Load custom status register.
15.1 SCSR gen Store custom status register.
15.0 CATSTO gen Custom address/test. (Privileged)
15.0 CATST1 gen (Privileged)
15.0 LCR creg,gen Load custom register. (Privileged)
15.0 SCR creg,gen Store custom register. (Privileged)

2-375

«:) ,..
u, ,..
«:)
('II
Cf)
U)
z

3.0 Functional Description
3.1 POWER AND GROUNDING

The NS32016 requires a single 5-volt power supply, applied
on pin 48 {Vecl.

Grounding connections are made on two pins. Logic Ground
(GNDL, pin 24) is the common pin for on-chip logic, and
Buffer Ground (GNDB, pin 25) is the common pin for the
output drivers. For optimal noise immunity, it is recommend-
ed that GNDL be attached through a single conductor di-
rectly to GNDB, and that all other grounding connections be
made only to GNDB, as shown below (Figure 3-1).

In addition to Vee and Ground, the NS32016 CPU uses an
internally-generated negative voltage. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig-

Each rising edge of PHI1 defines a transition in the timing
state ("T-State") of the CPU. One T-State represents the
execution of one microinstruction within the CPU, and/or
one step of an external bus transfer. See Section 4 for com­
plete specifications of PHI1 and PHI2.

PHI1

ure 3-1) from the BBG pin to ground. Recommended values PHI2
of these are:

C1: 1 JLF, Tantalum.

C2: 1000 pF, low inductance. This should be either a disc or
monolithic ceramic capacitor.

~ y+5V
1 vcc~

NS32018
cpu

TL/EE/SOS4-11

FIGURE 3-1_ Recommended Supply Connections

3.2 CLOCKING

The NS32016 inputs clocking signals from the NS32201
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 3-2.

vcc

TL/EE/SOS4-12

FIGURE 3-2_ Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect­
ed anywhere except from the TCU to the CPU and, if pres­
ent, the MMU. A TTL Clock signal (CTTL) is provided by the
TCU for all other clocking.

3.3 RESETTING

The RST / ABT pin serves both as a Reset for on-chip logic
and as the Abort input for Memory-Managed systems. For
its use as the Abort Command, see Section 3.5.4.

The CPU may be reset at any time by pulling the RST / ABT
pin low for at least 64 clock cycles. Upon detecting a reset,
the CPU terminates instruction processing, resets its inter­
nal logic, and clears the Program Counter (PC) and Proces­
sor Status Register (PSR) to all zeroes.

On application of power, RST/ABT must be held low for at
least 50 JLs after Vee is stable. This is to ensure that all on­
chip voltages are completely stable before operation.
Whenever a Reset is applied, it must also remain active

PHI1 ---+---~ JJ-JL
I 264 CLOCK r- CYCLES

RSf/m ---+----------1
f-00-----250~aec---·- .-

TL/EE/SOS4-13

FIGURE 3-3_ Power-On Reset Requirements

2-376

3.0 Functional Description (Continued)

for not less than 64 clock cycles. The rising edge must oc­
cur while PHI1 is high. See Figures 3-3 and 3-4.

The NS32201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32016 CPU. Fig­
ure 3-58 shows the recommended connections for a non­
Memory-Managed system. Figure 3-5b shows the connec­
tions for a Memory-Managed system.

VCC

.. ------------,
I I

PHil

'""1·~--"64CLOCK-1
Rsi'IABT---.....,~~~~ CYCLES ,--

- rl .

NS32201
TCU

TLIEEISOS4-14

FIGURE 3-4. General Reset Timing

NS32018
cpu

I I I RESET l> :-+-_-l---+-~ ----I iiSTi RSTO I-----t------I iiSrlm

! I L. _____________ J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

,,50,,_

SYSTEM RESET

TLlEEISOS4-1S

FIGURE 3-5a. Recommended Reset Connections, Non-Memory-Managed System

vcc

.. ------------,
I I

NS32201
TCU

NS32082
MMU

NS32018
CPU

I I I RESET J>-rl-+-....,.-+--+~------t iiSTi RsTo
! I L. _____________ J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

TLIEEIS054-16

FIGURE 3-5b. Recommended Reset Connections, Memory-Managed System

3.4 BUS CYCLES

The NS32016 CPU has a strap option which defines the Bus
TIming Mode as either With or Without Address Translation.
This section describes only bus cycles under the No Ad­
dress Translation option. For details of the use of the strap
and of bus cycles with address translation, see Section 3.5.

The CPU will perform a bus cycle for one of the following
reasons:

1) To write or read data, to or from memory or a peripheral
interface device. Peripheral input and output are memo­
ry-mapped in the Series 32000 family.

2) To fetch instructions into the eight-byte instruction
queue. This happens whenever the bus would otherwise
be idle and the queue is not already full.

2-377

3) To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4) To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing speCifications, see Section 4. The only exter­
nal difference between them is the four-bit code placed on
the Bus Status pins (STO-ST3). Slave Processor cycles dif­
fer in that separate control signals are applied (Section
3.4.6).

The sequence of events in a non-Slave bus cycle is shown
in Figure 3-7 for a Read cycle and Figure 3-8 for a Write
cycle. The cases shown assume that the selected memory
or interface device is capable of communicating with the
CPU at full speed. If it is not, then cycle extension may be
requested through the RDY line (Section 3.4.1).

o r---,
ch
o

~
Z

3.0 Functional Description (Continued)
A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for "Idle").
During T1, the CPU applies an address on pins ADO-AD15
and A 16-A23. It also provides a low-going pulse on the
ADS pin, which serves the dual purpose of informing exter­
nal Circuitry that a bus cycle is starting and of providing con­
trol to an external latch for demultiplexing Address bits 0-
15 from the ADO-AD15 pins. See Figure 3-6. During this
time also the status signals DDIN, indicating the direction of
the transfer, and HBE, indicating whether the high byte
(AD8-AD15) is to be referenced, become valid.
During T2 the CPU switches the Data Bus, ADO-AD15, to
either accept or present data. Note that the signals A 16-
A23 remain valid, and need not be latched. It also starts the
data strobe (DS), signaling the beginning of the data trans­
fer. Associated signals from the NS32201 Timing Control
Unit are also activated at this time: RD (Read Strobe) or WR
(Write Strobe), TSO (Timing State Output, indicating that T2
has been reached) and DBE (Data Buffer Enable).

The T3 state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2 or T3,
on the falling edge of the PHI2 clock, the RDY (Ready) line
is sampled to determine whether the bus cycle will be ex­
tended (Section 3.4.1).
If the CPU is performing a Read cycle, the Data Bus (ADO­
AD15) is sampled at the falling edge of PHI2 of the last T3
state. See Section 4. Data must, however, be held at least
until the beginning of T4. DS and RD are guaranteed not to
go inactive before this pOint, so the rising edge of either of
them may safely be used to disable the device providing the
input data.
The T4 state finishes the bus cycle. At the beginning of T4,
the DS, RD, or WR, and TSO signals go inactive, and at the
rising edge of PHI2, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T4. Note that the Bus
Status lines (STO-ST3) change at the beginning of T4, an­
ticipating the following bus cycle (if any).

ODIN 1--_---....

NS320'8 .

PHI' PHI2

NS3ZZO'

AO(LBE)

DiiE Ro
iiDl-----------

WR 1-----------
no

;:so 1------------
TL/EE/5054-17

FIGURE 3-6. Bus Connections

2-378

3.0 Functional Description (Continued)

NS32018CPU BUS SIGNALS

I T40RTI I T1 T2 T3

PHI1 [

PHIZ [

A16·A23 [

AOO·AD15 [

ADS [

STD-ST3 [

iiDiN [

HiE [

iii [

RDY [

DiE [

iSci[

FIGURE 3-7. Read Cycle Timing

2-379

T4 I T10RTI I

TL/EE/5054-1B

Z
tn
Co)
I\)
Q
m •
Q

C) r---,
~ 3.0 Functional Description (Continued)
C)
C"I NS32D18 CPU BUS SIGNALS
CO)

en
z

TUEE/5Q54-19

FIGURE 3·8. Write Cycle Timing

2-380

3.0 Functional Description (Continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32016 pro­
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the ROY (Ready) pin.

At the end of T2 on the falling edge of PHI2, the ROY line is
sampled by the CPU. If ROY is high, the next T-states will be
T3 and then T4, ending the bus cycle. If it is sampled low,
then another T3 state will be inserted after the next T-state
and the ROY line will again be sampled on the falling edge
of PHI2. Each additional T3 state after the first is referred to
as a "wait state." See Figure 3-9.

11 T2

PHI1

PHI 2

ROY

The RDY pin is driven by the NS32201 Timing Control Unit,
which applies WAIT States to the CPU as requested on
three sets of pins:

1) CWAIT (Continues WAIT), which holds the CPU in WAIT
states until removed.

2) WAIT1, WAIT2, WAIT4, WAIT8 (Collectively WAITn),
which may be given a four-bit binary value requesting a
specific number of WAIT States from 0 to 15.

3) PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RO and WR
strobes. This provides the setup and hold times required
by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal
and useful. For details of their use, see the NS32201 TCU
Data Sheet.

Figure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the TCU WAITn pins.

T3 I T3
(WAIT) T4

TL/EE/S054-20

FIGURE 3·9. ROY Pin Timing

3.4.2 Bus Status

The NS32016 CPU presents four bits of Bus Status informa­
tion on pins STO-ST3. The various combinations on these
pins indicate why the CPU is performing a bus cycle, or, if it
is idle on the bus, then why it is idle.

Referring to Figures 3-7 and 3-8, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1, and changing to the next state at T 4. This allows
the system designer to fully decode the Bus Status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.

The Bus Status pins are interpreted as a four-bit value, with
STO the least significant bit. Their values decode as follows:

0000 - The bus is idle because the CPU does not need
to perform a bus access.

0001 - The bus is idle because the CPU is executing
the WAIT instruction.

0010- (Reserved for future use.)

0011 - The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 - Interrupt Acknowledge, Master.
The CPU is performing a Read cycle. To ac­
knowledge receipt of a Non-Maskable Interrupt
(on NMI) it will read from address FFFF0016,
but will ignore any data provided.

To acknowledge receipt of a Maskable Interrupt
(on INT) it will read from address FFFE0016,
expecting a vector number to be provided from

2-381

the Master NS32202 Interrupt Control Unit. If
the vectoring mode selected by the last
SETCFG instruction was Non-Vectored, then
the CPU will ignore the value it has read and will
use a default vector instead, having assumed
that no NS32202 is present. See Section 3.4.5.

0101 - Interrupt Acknowledge, Cascaded.
The CPU is reading a vector number from a
Cascaded NS32202 Interrupt Control Unit. The
address provided is the address of the
NS32202 Hardware Vector register. See Sec­
tion 3.4.5.

0110- End of Interrupt, Master.
The CPU is performing a Read cycle to indicate
that it is executing a Return from Interrupt
(RETI) instruction. See Section 3.4.5.

0111 - End of Interrupt, Cascaded.
The CPU is reading from a Cascaded Interrupt
Control Unit to indicate that it is returning
(through RETI) from an interrupt service routine
requested by that unit. See Section 3.4.5.

1000 - Sequential Instruction Fetch.
The CPU is reading the next sequential word
from the instruction stream into the Instruction
Queue. It will do so whenever the bus would
otherwise be idle and the queue is not already
full.

z en
c.:I
N o
en
o

Q .--,
cD
Q
C\I
('I)
en
z

3.0 Functional Description (Continued)

N8320IB CPU BUS SIGNALS
PREV.CYCLE

IT40RTii TI I T2 I TJ I (¥l11T) I (¥l11T) I T4

NEXT CYCLE

InORT; I
PHil [

PHI2 [

AI6-A23 [

AIl().ADI5 [

ADS [

STo-STJ [

ffiiiN[

tiBF.[

CWAiT[

WAiTn[

ROY [

(TCUTOCP

Rii[

Wii[

iiiiE[

rso[

_~Il-IL~ IL Il-Il-rL r

- Ln -I1 Lrl W1 W1 J Ln 01 r-
~ ~ ~ ADDRESS VALID

~ ,
~ ~ ~ ADDR ~--~ ~~ ~~--- NEXTADDR

VALID
-~ I-

R

IV IV
~ ~ STATUS VALID IX NEXT STATUS

~ W& ~ I~r-

~NEXT t-~ ~ I?\ VALID
t-

- V 1\
N832201 TCU CYCLE EXTENSION SIGNALS

~ ~ ~
%; ~ rw ~ ~ ~ ~ ~

~ ~ W I'W ~ ~ tW2 ~ ~ f%
~

~ ~ ~ ~ ~ ~ ~ ~ ~ 1%
'~ ~ ~

\
U)

NS32201 TCU BUS SIGNALS

- V 1\

- V

-~

- V \ V

FIGURE 3·10. Extended Cycle Example
Note: Arrows on CWAIT, PER, WAiTn indicate points at which the TCU samples. Arrows on AOO-AOI5 and
ROY indicate points at which the CPU samples.

2-382

TL/EE/5054-21

3.0 Functional Description (Continued)

1001 - Non-Sequential Instruction Fetch.
The CPU is performing the first fetch of instruc­
tion code after the Instruction Queue is purged.
This will occur as a result of any jump or branch,
or any interrupt or trap, or execution of certain
instructions.

1010 - Data Transfer.
The CPU is reading or writing an operand of an
instruction.

1011- Read RMW Operand.
The CPU is reading an operand which will sub­
sequently be modified and rewritten. If memory
protection circuitry would not allow the following
Write cycle, it must abort this cycle.

1100 - Read for Effective Address Calculation.
The CPU is reading information from memory in
order to determine the Effective Address of an
operand. This will occur whenever an instruc­
tion uses the Memory Relative or External ad­
dressing mode.

1101 - Transfer Slave Processor Operand.
The CPU is either transferring an instruction op­
erand to or from a Slave Processor, or it is issu­
ing the Operation Word of a Slave Processor
instruction. See Section 3.9.1.

1110- Read Slave Processor Status.
The CPU is reading a Status Word from a Slave
Processor. This occurs after the Slave Proces­
sor has signalled completion of an instruction.
The transferred word tells the CPU whether a
trap should be taken, and in some instructions it
presents new values for the CPU Processor
Status Register bits N, Z, Lor F. See Section
3.9.1.

1111 - Broadcast Slave ID.
The CPU is initiating the execution of a Slave
Processor instruction. The ID Byte (first byte of
the instruction) is sent to all Slave Processors,
one of which will recognize it. From this point
the CPU is communicating with only one Slave
Processor. See Section 3.9.1.

3.4.3 Data Access Sequences

The 24-bit address provided by the NS32016 is a byte ad­
dress; that is, it uniquely identifies one of up to 16,777,216
eight-bit memory locations. An important feature of the
NS32016 is that the presence of a 16-bit data bus imposes
no restrictions on data alignment; any data item, regardless
of size, may be placed starting at any memory address. The
NS32016 provides a special control signal, High Byte En­
able (HBE), which facilitates individual byte addressing on a
16-bit bus.

2-383

Memory is organized as two eight-bit banks, each bank reo
ceiving the word address (A1-A23) in parallel. One bank,
connected to Data Bus pins ADO-AD7, is enabled to re­
spond to even byte addresses; i.e., when the least signifi­
cant address bit (AO) is low. The other bank, connected to
Data Bus pins AD8-AD15, is enabled when HBE is low. See
Figure 3-11.

Al·AZ3

HBE AO(LBE)

BYTE

TL/EE/5054-22

FIGURE 3-11. Memory Interface

Any bus cycle falls into one of three categories: Even Byte
Access, Odd Byte Access, and Even Word Access. All ac·
cesses to any data type are made up of sequences of these
cycles. Table 3·1 gives the state of AO and HBE for each
category.

TABLE 3-1
Bus Cycle Categories

Category HBE AD
Even Byte 1 0
Odd Byte 0
Even Word 0 0

Accesses of operands requiring more than one bus cycle
are performed sequentially, with no idle T-States separating
them. The number of bus cycles required to transfer an op·
erand depends on its size and its alignment (i.e., whether it
starts on an even byte address or an odd byte address).
Table 3-2 lists the bus cycle performed for each situation.
For the timing of AO and HBE, see Section 3.4.

z en
Co)
I\)
C)
en •
C)

Q
I 3.0 Functional Description (Continued) CD

Q

'" TABLE 3.2 CW)
(/) Access Sequences Z

Cycle Type Address HBE AO High Bus Low Bus

A. Odd Word Access Sequence

BYTE 1 BYTE 0 -A

Odd Byte A 0 Byte 0 Don't Care
2 Even Byte A+1 1 0 Don't Care Byte 1

B. Even Double-Word Access Sequence

BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A

Even Word A 0 0 Byte 1 Byte 0
2 Even Word A+2 0 0 Byte 3 Byte 2

C. Odd Double-Word Access Sequence

BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A

Odd Byte A 0 Byte 0 Don't Care
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 0 Don't Care Byte 3

D. Even Quad-Word Access Sequence

BYTE 7 BYTE 6 BYTES BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A

1 Even Word A 0 0 Byte 1 Byte 0
2 Even Word A+2 0 0 Byte 3 Byte 2

Other bus cycles (instruction prefetch or slave) can occur here.

3 Even Word A+4 0 0 Byte S Byte 4
4 Even Word A+6 0 0 Byte 7 Byte 6

E. Odd Quad-Word Access Sequence

BYTE 7 BYTE 6 BYTES BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE 0 -A

Odd Byte A 0 1 Byte 0 Don'teare
2 Even Word A+1 0 0 Byte 2 Byte 1
3 Even Byte A+3 0 Don'teare Byte 3

Other bus cycles (instruction prefetch or slave) can occur here.

4 Odd Byte A+4 0 1 Byte 4 Don't Care
S Even Word A+S 0 0 Byte 6 ByteS
6 Even Byte A+7 0 Don'teare Byte 7

2-384

3.0 Functional Description (Continued)

3.4.3.1 Bit Accesses

The Bit I nstructions perform byte accesses to the byte can·
taining the designated bit. The Test and Set Bit instruction
(SBIT), for example, reads a byte, alters it, and rewrites it,
having changed the contents of one bit.

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou·
ble·Word transfer at the address containing the least signifi·
cant bit of the field. The Double Word is read by an Extract
instruction; an Insert instruction reads a Double Word, modi­
fies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The Extending Multiply Instruction (MEl) will return a result
which is twice the size in bytes of the operand it reads. If the
multiplicand is in memory, the most-significant half of the
result is written first (at the higher address), then the least­
significant half. This is done in order to support retry if this
instruction is aborted.

3.4.4 Instruction Fetches

Instructions for the NS32016 CPU are "prefetched"; that is,
they are input before being needed into the next available
entry of the eight-byte Instruction Queue. The CPU performs
two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec­
tion 3.4.2).

2-385

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full. Sequential Fetches are always
Even Word Read cycles (Table 3-1).

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the instruction queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status, and that cycle is either an Even Word Read or an
Odd Byte Read, depending on whether the destination ad­
dress is even or odd.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is inerrupt control rather
than the transfer of instructions or data, Execution of the
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Control cycles are single-byte Read cycles.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine. For full details of the NS32016 interrupt
structure, see Section 3.8.

z en
Co)
I\)
o
en •
o

•

o r---,
ch
o

ia z

3.0 Functional Description (Continued)

Cycle Status Address

Interrupt Acknowledge
1 0100 FFFF0016

Interrupt Return

TABLE 3·3
Interrupt Sequences

AD High Bus

A. Non-Maskable Interrupt Control Sequences.

o o Don'teare

None: Performed through Return from Trap (RETT) Instruction.

8. Non-Vectored Interrupt Control Sequences.

Interrupt Acknowledge
1 0100 FFFE0016 o o Don't Care

I nterrupt Return

None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequences: Non-Csscaded.

Interrupt Acknowledge
1 0100 FFFE0016 o o Don't Care

Interrupt Return
1 0110 FFFE0016 o o Don't Care

D. Vectored Interrupt Sequences: Csscaded.

Interrupt Acknowledge
1 0100 FFFE0016 o o Don't Care

(The CPU here uses the Cascade Indx to find the Cascade Address.)

Low Bus

Don't Care

Don't Care

Vector:
Range: 0-127

Vector: Same as
in Previous In!.
Ack.Cycle

Cascade Index:
range -16to-1

2 0101 Cascade 0 1 or 0 or
Address O· 1·

Vector, range 0-255; on appropriate
half of Data Bus for even/odd address

I nterrupt Return
1 0110 FFFE0016 o o

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade 0 10r Oor

Address O· 1·

Don't Care

Don't Care

Cascade Index:
same as in
previous In!.
Ack.Cycle

Don't Care

• If the Cascaded ICU Address Is Even (AO is low), then the CPU applies HSE high and reads the vector number from bits 0-7 of the Data Bus.

If the address is Odd (AO Is high), then the CPU applies RBE low and reads the vector number from bits 8-15 of the Data Bus. The vector number may be In the
range 0-255.

2-386

r--,z
3.0 Functional Description (Continued)

3.4.6 Slave Processor Communication

In addition to its use as the Address Translation strap (Sec·
tion 3.5.1), the AT /SPC pin is used as the data strobe for
Slave Processor transfers. In this role, it is referred to as
Slave Processor Control (SPC). In a slave processor bus
cycle, data is transferred on the Data Bus (ADO-AD15), and
the Status Lines STO-ST3 are monitored by each Slave
Processor in order to determine the type of transfer being
performed. SPC is bidirectional, but is driven by the CPU
during all Slave Processor bus cycles. See Section 3.9 for
full protocol sequences.

PREV.CYCLE

I T40rTI

PHil [

PHI 2 [

sPc [

ADO-AD15 [.4f;.L./.;.L./. .. "+,

STO-ST3 [

ADs [

DDIN [

HiE [
__ (3)[
DBE

Note:

(1) CPU samples Data Bus here.

T1

...
AD(1I-15) 0111-15)

AT/SPC ~ " SPe

N83Z018 SLAVE
CPU PROCESSOR

STo-ST3 STG-ST3

TL/EE/5054-23

FIGURE 3-12. Slave Processor Connections

T4
I NEXT CYCLE

Tl0RTI I

TL/EE/5054-24

(2) DBE and all other NS32201 TCU bus signals remain inactive because no AD!! pulse is received from the CPU.

FIGURE 3-13. CPU Read from Slave Processor

2-387

~
N o
'P
o

Q ~--,
cD
Q
C"I
('I)
(/)
z

3.0 Functional Description (Continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-13 and 3·14).
During a Read cycle SPC is active from the beginning of T1
to the beginning of T 4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1,
removing SPC at T4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS32201 Timing Con- .
trol Unit. The direction of a transfer is determined by the

PREVo CYCLE I
I T40RTi

PHil [

sPC [

Tl

sequence ("protocol") established by the instruction under
execution; but the CPU indicates the direction on the DDIN
pin for hardware debugging purposes.

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD7), and a
Word operand is transferred on the entire bus. A Double
Word is transferred in a consecutive pair of bus cycles,
least-significant word first. A Quad Word is transferred in
two pairs of Slave cycles, with other bus cycles possibly
occurring between them. The word order is from least-signif­
icant word to most-significant.

T4
I NEXT CYCLE

flORTi I

ADO-AD15 [.~'-"'-"'-"~ ~_-+ ___ --:-I ~_-+_

Note:

810-813 [

ADS [

HiE [~""~~~ __ ;-___ ~ ___ +-

__ (2)[
DBE

(1) Slave Processor samples data bus here.

TL/EE/5054-25

(2) DBE. being provided by the NS32201 TeU. remains inactive due to the fact that no pulse is presented on ADS.
TCU signals RD. WR and 'FSO also remain inactive.

FIGURE 3·14. CPU Write to Slave Processor

2-388

3.0 Functional Description (Continued)

3.5 MEMORY MANAGEMENT OPTION

The NS32016 CPU, in conjunction with the NS32082 Mem­
ory Management Unit (MMU), provides full support for ad­
dress translation, memory protection, and memory alloca­
tion techniques up to and including Virtual Memory.

3.5.1 Address Translation Strap

The Bus Interface Control section of the NS32016 CPU has
two bus timing modes: With or Without Address Translation.
The mode of operation is selected by the CPU by sampling
the AT ISPC (Address TranslationlSlave Processor Control)
pin on the rising edge of the RST (Reset) pulse. If ATISPC
is sampled as high, the bus timing is as previously

described in Section 3.4. If it is sampled as low, two chang­
es occur:

1) An extra clock cycle, Tmmu, is inserted into all bus
cycles except Slave Processor transfers.

2) The OS/FL T pin changes in function from a Data
Strobe output (OS) to a Float Command input (FL T).

The NS32082 MMU will itself pull the CPU ATISPC pin low
when it is reset. In non-Memory-Managed systems this pin
should be pulled up to Vee through a 10 kO resistor.

Note that the Address Translation strap does not specifical­
ly declare the presence of an NS32082 MMU, but only the

I T40RTi I Tl I llnmu I T2 T4 I nORTi I
PHil [

PHI2 [

AI6-A23 [

ADO-AD15 [

ADS [

STO-ST3 [STATUS VALID

ODIN [

HBE [VALID

ROY [
TL/EE/5054-26

FIGURE 3-15. Read Cycle with Address Translation (CPU Action)

2-389

z
~
N
C)
en •
C)

•

o r---~ .,... .
CD .,...
o
N
C")
(J)
Z

3.0 Functional Description (Continued)

presence of external address translation circuitry. MMU in­
structions will still trap as being undefined unless the
SETCFG (Set Configuration) instruction is executed to de­
clare the MMU instruction set valid. See Section 2.1.3.

3.5.2 Translated Bus Timing

Figures 3-15 and 3-16 illustrate the CPU activity during a
Read cycle and a Write cycle in Address Translation mode.
The additional T-State, Tmmu, is inserted between T1 and
T2. During this time the CPU places ADO-AD15 and A16-
A23 into the TRI-STATE® mode, allowing the MMU to as­
sert the translated address and issue the physical address
strobe PAV. T2 through T4 of the cycle are identical to their
counter-parts without Address Translation, with the excep-

I T40RTi I T1

PHil [

PHI2

A16-A23 [

ADO-ADIS [

ADS [

STO·STJ [

ODIN [

HBE [

ROY [

tion that the CPU Address lines A16-A23 remain in the
TRI-STATE condition. This allows the MMU to continue as­
serting the translated address on those pins.

Note that in order for the NS32082 MMU to operate correct­
ly it must be set to the 32016 mode by forcing A24/HBF
high during reset.

Figures 3-17and 3-18 show a Read cycle and a Write cycle
as generated by the 32016/32082/32201 group. Note that
with the CPU ADS signal going only to the MMU, and with
the MMU PAV signal substituting for ADS everywhere else,
Tmmu through T4 look exactly like T1 through T4 in a non­
Memory-Managed system. For the connection diagram, see
Appendix B.

T2 T3 T4

TL/EE/SOS4-27

FIGURE 3-16. Write Cycle with Address Translation (CPU Action)

2-390

3.0 Functional Description (Continued)

PHil [

PHI 2 [

A16·A23 [
ADIl-AD15 [

iiAV[

5TO·5T3 [

I T40RTi I
NS32018 CPU BUS SIGNALS

T1 I Tmmu I T2 T3 T4 I Tl OR Ti I

DIOiN [~~~LL~~----+------+----~~------r------+~----+-
iiBE [",,+~c.L.~~ \._-+ __ --+ __ -++-__ +_J \.+ __ -+_

iffi[

DBE [

FIGURE 3-17. Memory-Managed Read Cycle

2-391

TLlEE/5054-2B

z en
Co)
I\)
Q
Q)

I
Q

Q 3.0 Functional Description (Continued) CD
Q
N
('I) NS320l8CPU BUS SIGNALS
U) I T4 OR Ti I I I I TlORTi I Z Tl Tmmu T2 T3 T4

PHil [

PHI 2 [

A16·A23 [

ADO·AD15 [

AiiS[

PAV [

STO·ST3 [STATUS VALID NEXT STATUS

ODIN [

iiiiE[VALID

ROY [

NS32201 TCU BUS SIGNALS

DBE [

TLIEEISOS4-29

FIGURE 3-18. Memory-Managed Write Cycle

2-392

~--~Z

3.0 Functional Description (Continued)

3.5.3 The FL T (Float) Pin
The FL T pin is used by the CPU for address translation
support. Activating FL T during Tmmu causes the CPU to
wait longer than Tmmu for address translation and valida­
tion. This feature is used occasionally by the NS32082 MMU
in order to update its internal translation look.aside buffer
(TLB) from page tables in memory, or to update certain
status bits within them.

Figure 3-19 shows the effects of FLT. Upon sampling FLT
low, late in Tmmu, the CPU enters idle T-States (Tt) during
which it:

1) Sets ADO-AD15, A16-A23 and DDIN to the TRI­
STATE condition ("floating").

2) Sets HBE low.

3) Suspends further internal processing of the current in­
struction. This ensures that the current instruction re­
mains abortable with retry. (See RST I ABT description,
Section 3.5.4.)

Note that the ADO-AD15 pins may be briefly asserted dur­
ing the first idle T-State. The above conditions remain in
effect until FL T again goes high. See the Timing Specifica­
tions, Section 4.

TLlEE/5054-30

FIGURE 3-19. FLT Timing

2-393

en
Co)
N
o
en
o

o r---~
rh
o
('II
C")

en z

3.0 Functional Description (Continued)

3.5.4 Aborting Bus Cycles

The RST I ABT pin, apart from its Reset function (Section
3.3), also serves as the means to "abort," or cancel, a bus
cycle and the instruction, if any, which initiated it. An Abort
request is distinguished from a Reset in that the RST I ABT
pin is held active for only one clock cycle.

If RST/ABT is pulled low during Tmmu or Tf, this signals
that the cycle must be aborted. The CPU itself will enter T2
and then Ti, thereby terminating the cycle. Since it is the
MMU PAY signal which triggers a physical cycle, the rest of
the system remains unaware that a cycle was started.

The NS32082 MMU will abort a bus cycle for either of two
reasons:

1) The CPU is attempting to access a virtual address
which is not currently resident in physical memory. The
reference page must be brought into physical memory
from mass storage to make it accessible to the CPU.

2) The CPU is attempting to perform an access which is
not allowed by the protection level aSSigned to that
page.

When a bus cycle is aborted by the MMU, the instruction
that caused it to occur is also aborted in such a manner that
it is guaranteed re-executable later. The information that is
changed irrecoverably by such a partly-executed instruction
does not affect its re-execution.

3.5.4.1 The Abort Interrupt

Upon aborting an instruction, the CPU immediately performs
an interrupt through the ABT vector in the Interrupt Table
(see Section 3.8). The Return Address pushed on the Inter­
rupt Stack is the address of the aborted instruction, so that
a Return from Trap (RETT) instruction will automatically re­
try it.

The one exception to this sequence occurs if the aborted
bus cycle was an instruction prefetch. If so, it is not yet
certain that the aborted prefetched code is to be executed.
Instead of causing an interrupt, the CPU only aborts the bus
cycle, and stops prefetching. If the information in the In­
struction Queue runs out, meaning that the instruction will
actually be executed, the ABT interrupt will occur, in effect
aborting the instruction that was being fetched.

3.5.4.2 Hardware Considerations

In order to guarantee instruction retry, certain rules must be
followed in applying an Abort to the CPU. These rules are
followed by the NS32082 Memory Management Unit.

1) If FLT has not been applied to the CPU, the Abort
pulse must occur during or before Tmmu. See the Tim­
ing Specifications, Figure 4-22.

2-394

2) If FL T has been applied to the CPU, the Abort pulse
must be applied before the T-State in which FLT goes
ina,ctive. The CPU will not actually respond to the Abort
command until FL T is removed. See Figure 4-23.

3) The Write half of a Read-Modify-Write operand access
may not be aborted. The CPU guarantees that this will
never be necessary for Memory Management funtions
by applying a special RMW status (Status Code 1011)
during the Read half of the access. When the CPU
presents RMW status, that cycle must be aborted if it
would be illegal to write to any of the accessed ad­
dresses.

If ~ I ABT is pulsed at any time other than as indicated
above, it will abort either the instruction currently under exe­
cution or the next instruction and will act as a very high-pri­
ority interrupt. However. the program that was running at the
time is not guaranteed recoverable.

3.6 BUS ACCESS CONTROL

The NS32016 CPU has the capability of relinquishing its
access to the bus upon request from a DMA device or an­
other CPU. This capability is implemented on the HOLD
(Hold Request) and HLDA (Hold Acknowledge) pins. By as­
serting HOLD low, an external device requests access to
the bus. On receipt of HLDA from the CPU, the device may
perform bus cycles, as the CPU at this point has set the
ADO-AD15, A16-A23, ADS, DDIN and HBE pins to the
TRI-STATE condition. To return control of the bus to the
CPU, the device sets HOLD inactive, and the CPU acknowl­
edges return of the bus by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether
it is idle on the bus at the time the HOI]) request is made,
as the CPU must always complete the current bus cycle.
Figure 3-20 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-21 shows the sequence
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T4. If
the request occurs closer to T4, the CPU may already have
decided to initiate another bus cycle. In that case it will not
grant the bus until after the next T 4 state. Note that this
situation will also occur if the CPU is idle on the bus but has
initiated a bus cycle internally.

In a Memory-Managed system, the HLDA Signal is connect­
ed in a daisy-chain through the NS32082, so that the MMU
can release the bus if it is using it.

r---,z
3.0 Functional Description (Continued)

I Ti I Ti I··· I
PHll[iLrLJ

Ti I Ti OR T4 I Ti OR T1 I Ti

PHI2 [

HoLD [

HLDA[

AFFECTED SIGNALS

ADS [------- ~}------ -------

os[----- 1r----- -----

oom[---- i~----------

HBE [

ADO-AD15 [-Li''-L..<'-L..<'-L..o''f'

A 16-A23 ['-'<jL..L.L..L.L..L."'jU

STO-ST3 [-+------+-'~ ~ •• '---+----+-

FIGURE 3-20. HOLD Timing, Bus Initially Idle

2-395

TL/EE/SOS4-31

en
w
~ ...
Q)

I ...
C

fII

«:)
~ 3.0 Functional Description (Continued)
«:)
C'oI

:a z
T2 OR TJ TJ T4 TI Ti

HOLD [

HUiA[

A55[

os[
---~:1----

1r----1-----

00iN[VALID

m[VALlO -- ir--

ADO-A01S[-- i~--

A1S·A23[

STO.ST3[

FIGURE 3·21. HOLD Timing, Bus Initially Not Idle

2·396

TI Ti

TUEE/5054-32

3.0 Functional Description (Continued)

3.7 INSTRUCTION STATUS

In addition to the four bits of Bus Cycle status (STO-ST3),
the NS32016 CPU also presents Instruction Status informa­
tion on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus interface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes, and
is used that way by the NS32082 Memory Management
Unit.

U/S originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. It is sampled by the MMU for
mapping, protection and debugging purposes. Although it is
not synchronous to bus cycles, there are guarantees on its
validity during any given bus cycle. See the Timing Specifi­
cations, Rgure 4-21.

ILO (Interlocked Operation) is activated during an SBIT! (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema­
phore primitive operations for multi-processor communica­
tion and resource sharing. As with the U/S pin, there are
gUl!I'antees on its validity during the operand accesses per­
formed by the instructions. See the Timing Specification
Section, Figure 4-19.

3.8 NS32016 INTERRUPT STRUCTURE

INT, on which maskable interrupts may be requested,

NMI, on which non-maskable interrupts may be request­
ed,and

RST / ABT, which may be used to abort a bus cycle and
any associated instruction. See Section 3.5.4.

'1""
MEMORY ~

'1""

/ CASCADE ADDR 0

· CASCADE TABLE ; ~ · ~~ ·
CASCADE ADDR 14

CASCADE ADDR 15

FIXED INTERRUPTS

In addition, there is a set of internallY'generated "traps"
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.8.1 GenerallnterruptlTrap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through three major steps:

1) Adjustment of Registers.

Depending on the source of the interrupt or trap, the
CPU may restore and/or adjust the contents of the
Program Counter (PC), the Processor Status Register
(PSR) and the currently-selected Stack Pointer (SP). A
copy of the PSR is made, and the PSR is then set to
reflect Supervisor Mode and selection of the Interrupt
Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is
supplied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dis­
patch Table, whose base address is taken from the
CPU Interrupt Base (INTBASE) Register. See Figure
3-22. A 32-bit External Procedure Descriptor is read
from the table entry, and an External Procedure Call is
performed using it. The MOD Register (16 bits) and
Program Counter (32 bits) are pushed on the Interrupt
Stack.

This process is illustrated in Figure 3-23, from the viewpoint
of the programmer.

"'31 01""
0 NYI N ON·YECTORED INTERRUPT

1 NMI N ON·MASKABLE INTERRUPT

2 ABT A BORT

3 SLAVE S LAVE PROCESSOR TRAP

4 ILL I LLEGAL OPERATION TRAP

5 SYC S UPERVISOR CALL TRAP I-'-'-~ REGISTER I!
~~ AND TRAPS r DISPATCH TABLE

VECTORED 6 DYZ

r
DIVIDE BY ZERO TRAP

INTERRUPTS :t 7 FLG F LAG TRAP

8 BPT B REAKPOINT TRAP

9 TRC T RACE TRAP

10 UNO UNDEFINED INSTRUCTION TRAP

11-15 ~ r:: RESERVED ~
16 VECTORED

INTERRUPTS ,....
TL/EE/5054-33

FIGURE 3-22. Interrupt Dispatch and Cascade Tables

2-397

z en
Co)
N o
cp
......
o

fII

C) ,---,
~
~
CO)
U)
z

3.0 Functional Description (Continued)

I RETURN AODRESS I (PUSH)

J

I STATUS I MODULE I
I (PUSH)

PSR MOD INTERRUPT
STACK

INTBASE REGISTER

r-------- -----,
I I
I I
I CASCADE TABLE I
I I
I

I INTERRUPT BASE DISPATCH J j TABLE

I VECTOR I-------@
OESCRIPTOR (32 BITS)

)

DESCRIPTOR

\".---16---· I·---16i---·1
OFFSET MODULE

0

MOD REGISTER ~ MODULE TABLE

I NEW MODULE

I MODULE TABLE ENTRY

)

MODULE T1BLE ENTRY
32

STATIC BASE POINTER - r-------
LINK BASE POINTER

+ PROGRAM BASE POINTER

(RESERVED)

l32BITS

32 BITS

PROGRAM COUNTER SBREGISTER

I ENTRY POINT ADDRESS +- NEW STATIC BASE

FIGURE 3-23. Interrupt/Trap Service Routine Calling Sequence

2-398

TL/EE/5D54-34

J
TL/EE/5D54-35

3.0 Functional Description (Continued)

3.8.2InterruptlTrap Return

To return control to an interrupted program. one of two in­
structions is used. The RETT (Return from Trap) instruction
(Figure 3·24) restores the PSR. MOD, PC and S8 registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro­
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETT is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc­
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has completed. Since inter­
rupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-25.

3.8.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The

PROGRAM COUNTER

I ·1
(POP)

RETURN ADDRESS

I
(POP)

STATUS MODULE

PSR MOD

input is maskable, and is therefore enabled to generate in­
terrupt requests only while the Processor Status Register I
bit is set. The I bit is automatically cleared during service of
an INT, NMI or Abort request, and is restored to its original
setting upon return from the interrupt service routine via the
RETT or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit 1=0) or Vectored
(bit 1=1).

3.8.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary.

· · ·

o

INTERRUPT
STACK

MODULE
TABLE.

MODULE TABLE ENTRY

} 32 BITS

} 32 BITS

· · ·

z
~
N o
(I)
•
o

MODULET~BLEENTRY ~
STATIC BASE POINTER -I----,

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SBREGISTER

STATIC BASE

POP AND
DISCARD

n
BYTES

r-r---------,

PARAMETERS

STACK SELECTED
IN NEWLY·

POPPEDPSR.

FIGURE 3-24. Return from Trap (RETT n) Instruction Flow

2-399

TLlEE/5054-36

o 'A 3.0 Functional Description (Continued)
o
C'I
C")
(/)
z

PROGRAM COUNTER

RETURN ADDRESS

"END OF INTERRUPT'

BUS CYCLE

(POP)

INTERRUPT
CONTROL

UNIT

(POP)
STATUS I MODULE -1------------+-

PSR MOD

f
MODULE TABLE ENTRY

STATIC BASE POINTER

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SBREGISTER

o

+

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

FIGURE 3·25. Return from Interrupt (REn Instruction Flow

2·400

TUEE/5054-38

3.0 Functional Description (Continued)

3.8.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (lCU) to prioritize up to 16 interrupt requests. Upon re­
ceipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle (Sec­
tion 3.4.2) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return from Inter­
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in­
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.8.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-27
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which
it receives the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction
from the location indicated by the CPU Interrupt Base
(INTBASE) Register. Its entries are 32-bit addresses,
pointing to the Vector Registers of each of up to 16
Cascaded ICUs.

NS3Z01e
CPU

GROUP

rNi'1------i

Figure 3-22 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle
(Section 3.4.2), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle (Section 3.4.2),
whereupon the Master ICU again provides the negative
Cascaded Table index. The CPU, seeing a negative value,
uses it to find the corresponding Cascade Address from the
Cascade Table. Applying this address, it performs an "End
of Interrupt, Cascaded" bus cycle (Section 3.4.2), informing
the Cascaded ICU of the completion of the service routine.
The byte read from the Cascaded ICU is discarded.
Note: If an interrupl must be masked oil, the CPU can do so by selling the

corresponding bit in the interrupt mask register of the interrupt con·
troller. However, if an interrupt is set pending during the CPU instruc·
tion that masks 011 that interrupt, the CPU may still perform an inter·
rupt acknowledge cycle following that instruction since it might have
sampled the INT line before the ICU deassorted it This could cause
the ICU to provide an invalid vector. To avoid this problem the above
operation should be performed with the CPU interrupt disabled.

HARDWARE
INTERRUPTS

OR
CASCADED

CONTROLLERS

INTERRUPTS,
CASCADED,

OR
BIT 1/0

TlIEE/5054-39

FIGURE 3-26. Interrupt Control Unit Connections (16 Levels)

2-401

Z
t.n
Co)

~
m •
Q

3.0 Functional Description (Continued)

NS32018
CPU

GROUP

CONTROL

ADDR

STATUS 1

DATA

CONTROL

ADDR5BITS

STATUS

FROM
ADDRESS
DECODER

CASCADED
NS32202

ICU

MASTER
NS32202

ICU

HARDWARE
INTERRUPTS

INTERRUPTS
OR

BrrIlO

TL/EE/5054-40

FIGURE 3-27. Cascaded Interrupt Control Unit Connections

3.8.4 Non·Maskable Interrupt (The NMI Pin)

The Non·Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section 3.4.2)
when processing of this interrupt actually begins. The Inter·
rupt Acknowledge cycle differs from that provided for Mask·
able Interrupts in that the address presented is FFFFOOIS.
The vector value used for the Non·Maskable Interrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Section 3.8.7.1.

2-402

3.8.STraps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except Trap
(TRC) below is the address of the first byte of the Instruction
during which the trap occurred. Traps do not disable inter­
rupts, as they are not associated with external events. Traps
recognized by NS32016 CPU are:

Trap (Slave): An exceptional condition was detected by the
Floating Point Unit or another Slave Processor during the
execution of a Slave Instruction. This trap is requested via
the Status Word returned as part of the Slave Processor
Protocol (Section 3.9.1).

.--,z
3.0 Functional Description (Continued)
Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The SLAVE trap is used for Floating Point division by
zero.)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPn: The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UNO): An undefined opcode was encountered by the
CPU.

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending") bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.8.6 Prioritization

The NS32016 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows:

1) Traps other than Trace (Highest priority)

2) Abort

3) Non-Maskable Interrupt

4) Maskable Interrupts

5) Trace Trap (Lowest priority)

3.8.7InterruptlTrap Sequences: Detail Flow

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called
"Service" is defined in Figure 3-28. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequenced followed in processing either Maskable
or Non-Maskable Interrupts (on the INT or NMI pins, respec­
tively), see Section 3.B.7.1. For Abort interrupts, see Section
3.B.7.4. For the Trace Trap, see Section 3.B.7.3, and for all
other traps see Section 3.B.7.2.

3.8.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptible point during its execu­
tion.

2-403

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first
byte of the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2. Copy the Processor Status Register (PSR) into a tem­
porary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Mas­
ter: Section 3.4.2). Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step B.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFF0016, applying
Status Code 0100 (Interrupt Acknowledge, Mas­
ter: Section 3.4.2). Discard the byte read.

b. Set "Vector" to O.

c. Go to Step B.

5. Here the interrupt is Vectored. Read "Byte" from ad­
dress FFFE0016, applying Status Code 0100 (Interrupt
Acknowledge, Master: Section 3.4.2).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to
Step B.

7. If "Byte" is in the range -16 through -1, then the
interrupt source is Cascaded. (More negative values
are reserved for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory.
The address is calculated as INTBASE + 4' Byte.

b. Read "Vector," applying the Cascade Address
just read and Status Code 0101 (Interrupt Ac­
knowledge, Cascaded: Section 3.4.2).

B. Push the PSR copy (from Step 2) onto the Interrupt
Stack as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-28.

Service (Vector, Return Address):

1) Read the 32·bit External Procedure Descriptor from the Interrupt Dis·
patch Table: address is Vector'4+INTBASE Register contents.

2) Move the Module field of the Descriptor into the MOD Register.

3) Read the new Static Base pointer from the memory address contained
in MOD, placing it into the SB Register.

4) Read the Program Base painter from memory address MOD + 8. and
add to it the Offset field from the Descriptor, placing the result in the
Program Counter.

5) Flush Queue: Non·sequentially fetch first instruction of Interrupt Rou·
tine.

6) Push MOD Register onto the Interrupt Stack as a 16·bit value. (The
PSR has already been pushed as a 16·blt value.)

7) Push the Return Address onto the Interrupt Stack as a 32·bit quantity.

FIGURE 3·28. Service Sequence
Invoked during all interruptltrap sequences

~ ...,
o
a> •
o

fII

Q r---~
~
tia
C")
U)
z

3.0 Functional Description (Continued)

3.8.7.2 Trap Sequence: Traps Other Than Trace

1) Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2) Set "Vector" to the value corresponding to the trap
type.

SLAVE: Vector = 3.

ILL: Vector = 4.
SVC: Vector = 5.

DVZ: Vector = 6.
FLG: Vector = 7.
BPT: Vector = 8.

UNO: Vector = 10.

3) Copy the Processor Status Register (PSR) into a tem­
porary register, then clear PSR bits S, U, P and T.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Return Address" to the address of the first byte of
the trapped instruction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.3 Trace Trap Sequence

1) In the Processor Status Register (PSR), clear the P bit.

2) Copy the PSR into a temporary register, then clear
PSR bits S, U and T.

3) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4) Set "Vector" to 9.

5) Set "Return Address" to the address of the next in-
struction.

6) Perform Service (Vector, Return Address), Figure 3-28.

3.8.7.4 Abort Sequence

1) Restore the currently selected Stack Pointer to its origi­
nal contents at the beginning of the aborted instruction.

2) Clear the PSR P bit.

3) Copy the PSR into a temporary register, then clear
PSR bits S, U, T and I.

4) Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5) Set "Vector" to 2.

6) Set "Return Address" to the address of the first byte of
the aborted instruction.

7) Perform Service (Vector, Return Address), Figure 3-28.

3.9 SLAVE PROCESSOR INSTRUCTIONS

The NS32016 CPU recognizes three groups of instructions
as being executable by external Slave Processors:

Floating Point Instruction Set

Memory Management Instruction Set

Custom Instruction Set

2-404

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Section 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com­
munication attempted by the CPU. This allows software sim­
ulation of a non-existent Slave Processor.

3.9.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 Byte followed by an Oper­
ation Word. The 10 Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation
Word of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-29. While applying
Status Code 1111 (Broadcast 10, Section 3.4.2), the CPU
transfers the 10 Byte on the least-significant half of the Data
Bus (ADO-AD7). All Slave Processors input this byte and
decode it. The Slave Processor selected by the 10 Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section 3.4.2).
Upon receilling it, the Slave Processor decodes it, and at
this pOint both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The Operation Word is swapped on the Data Bus; that is,
bits 0-7 appear on pins AD8-AD15 and bits 8-15 appear
on pins ADO-AD7.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Section 3.4.2).

Status Combinations:
Send 10 (10): Code 1111
Xfer Operand (OP): Code 1101
Read Status (Sn: Code 1110

Step Status Action
1 10 CPU Send 10 Byte.
2 OP CPU Sends Operation Word.
3 OP CPU Sends Required Operands.
4 Slave Starts Execution. CPU Pre-Fetches.
5 Slave Pulses SPC Low.
6 ST CPU Reads Status Word. (Trap? Alter Flags?)
7 OP CPU Reads Results (If Any).

FIGURE 3-29. Slave Processor Protocol

3.0 Functional Description (Continued)

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution 01 the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow lor this, and lor the Address Translation strap func­
tion, AT/SPC is normally held high only by an internal pull­
up device 01 approximately 5 kn.

While the Slave Processor is executing the instruction, the
CPU is Iree to preletch instructions into its queue. If it lills
the queue belore the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Section
3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word lrom the Slave Processor, applying
Status Code 1110 (Read Slave Status, Section 3.4.2). This
word has the lormat shown in Figure 3-30. If the Q bit
("Quit", Bit 0) is set, this indicates that an error was detect­
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the Slave vector
in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded Irom the Status Word.

The last step in the protocol is lor the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transler Slave Operand, Sec­
tion 3.4.2).

An exception to the protocol above is the LMR (Load Mem­
ory Management Register) instruction, and a corresponding

Custom Slave instruction (LCR: Load Custom Register). In
executing these instructions, the protocol ends after the
CPU has issued the last operand. The CPU does not wait lor
an acknowledgement Irom the Slave Processor, and it does
not read status.

3.9.2 Floating Point Instructions

Table 3-4 gives the protocols loll owed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings 01 each instruction, see
Appendix A.
The Operand class columns give the Access Class lor each
general operand, delining how the addressing modes are
interpreted (see Series 32000 Instruction Set Relerence
Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specilies an integer size lor the operand (B = Byte,
W = Word, D = Double Word). "I" indicates that the instruc­
tion specilies a Floating Point size for the operand (F = 32-
bit Standard Floating, L=64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Allected column indicates which PSR bits, if any,
are updated Irom the Slave Processor Status Word (Figure
3-30).

TABLE 3-4
Floating Point Instruction Protocols

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSRBits
Mnemonic Class Class Issued Issued Type and Dest. Affected

ADDI read.1 rmw.I ftoOp.2 none
SUBf read.! rmw.1 ftoOp.2 none
MUll read.! rmw.I ItoOp.2 none
DIVf read.f rmw.! ItoOp.2 none

MOVf read.1 write.! N/A ItoOp.2 none
ABSf read.! write.f N/A ItoOp.2 none
NEGf read.! write.f N/A ItoOp.2 none

CMPI read.! read.! f N/A N,Z,L

FLOORfi read.1 write.i N/A itoOp.2 none
TRUNCIi read.1 write.i N/A itoOp.2 nOl1e
ROUNDfi read.! write.i I N/A itoOp.2 none

MOVFL read.F write.L F N/A Lto Op. 2 none
MOVLF read.L write.F L N/A Fto Op. 2 none

MOVif read.i write.f N/A fto Op. 2 none

LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none

Note:

o = Double Word

i = integer size (B.W,D) specified in mnemonic.

f = Floating Point type (F,L) specified in mnemonic.

Nt A = Not Applicable 10 Ihis instruction.

2-405

z en w
~
Q
en •
Q

PI

o r---,
ch
o

i3 z

3.0 Functional Description (Continued)

15 8 7 o

I 00000000 IN Z F 0 0 L 0 01
New PSR Bll V.lue{,)~ ./ J
ooOuil": Terminal. Prolocol. 1I"ap(FPU~

TLlEE/5054·41

FIGURE 3·30. Slave Processor Status Word Format

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.9.3 Memory Management Instructions

Table 3-5 gives the protocols for Memory Management in­
structions. Encodings for these instructions may be found in
Appendix A.

In executing the RDVAL and WRVAL instructions, the CPU
calculates and issues the 32-bit Effective Address of the
single operand. The CPU then performs a single-byte Read
cycle from that address, allowing the MMU to safely abort
the instruction if the necessary information is not currently in
physical memory. Upon seeing the memory cycle complete,
the MMU continues the protocol, and returns the validation
result in the F bit of the Slave Status Word.

The size of a Memory Management operand is always a 32-
bit Double Word. For further details of the Memory Manage­
ment Instruction set, see the Series 32000 Instruction Set
Reference Manual and the NS32082 MMU Data Sheet.

TABLE 3-5.
Memory Management Instruction Protocols

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSRBlts
Mnemonic Class Class Issued Issued Type and Oest. Affected

RDVAL' addr N/A 0 N/A N/A F
WRVAL' addr N/A 0 N/A N/A F

LMR' read.D N/A 0 N/A N/A none
SMR' write. 0 N/A N/A N/A DtoOp.1 none

Note:

In the ROVAL and WRVAL instructions, the CPU Issues the address as a Double Word, and performs a single·byte Read cycle from that memory address. For
detailS, see the Series 32000 Instruction Set Reference Manual and the NS32082 Memory Management Un~ Data Sheet.

o = Double Word

• = Privileged Instruction: will trap if CPU Is in User Mode.

N/ A = Not Applicable to this Instruction.

2-406

3.0 Functional Description (Continued)

3.9.4 Custom Slave Instructions

Provided in the NS32016 is the capability of communicating
with a user-defined, "Custom" Slave Processor. The in­
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com­
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus­
tom Slave and the actual types of data transferred. The pro­
tocol specifies only the size of an operand, not its data type.

Table 3-6 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an

operand which can be a 32-bit ("D") or 64-bit ("a") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne­
monic suffix.
Any operand indicated as being of type 'c' will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

TABLE 3-6.
Custom Slave Instruction Protocols

Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Mnemonic Class Class Issued Issued Type and Dest. Affected

CCALOc read.c rmw.c c c cto Op. 2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c rmw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp.2 none

CMOVOc read.c write.c c N/A ctoOp.2 none
CMOV1c read.c write.c c N/A ctoOp.2 none
CMOV2c read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none
CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L

CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCV2ci read.c write.i c N/A itoOp.2 none
CCV3ic readi write.c N/A ctoOp.2 none

CCV4Da read.D write.a D N/A atoOp.2 none
CCV5aD read.a write.D a N/A DtoOp.2 none

LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none

CATSTO' addr N/A D N/A N/A F
CATST1* addr N/A D N/A N/A F

LCR* read.D N/A D N/A N/A none
SCR* write.D N/A N/A N/A D to Op.1 none

Note:

D ~ Double Word

i = integer size (B,W,D) specified in mnemonic.

c ~ Custom size (D:32 bits or Q:64 bits) specified in mnemonic.

• ~ Privileged Instruction: will trap if CPU is in User Mode.

N/ A ~ Not Applicable to this instruction.

2-407

z en
c.:I
N
CI
~
CI

Q r---~ .,...
ch .,...
Q
C\I

~
Z

4.0 Device Specifications
4.1 PIN DESCRIPTIONS

The following is a brief description of all NS32016 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 3.

4.1.1 Supplies

Power (Vee): + SV positive supply. Section 3.1

Logic Ground (GNDL): Ground reference for on-chip logic.
Section 3-1.

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 3.1.

Back-Bias Generator (BBG): Output of on-chip substrate
voltage generator. Section 3.1.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Section
3.2.

Ready (ROY): Active high. While ROY is inactive, the CPU
extends the current bus cycle to provide for a slower memo­
ry or peripheral reference. Upon detecting ROY active, the
CPU terminates the bus cycle. Section 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. Section
3.6.
Note: If the Fi()[ij signal is generated asynchronously, it's set up and hold

times may be violated.

In this case it is recommended to synchronize it with CTIL to mini·
mize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
HLDA latency. This is to avoid speed degradations in cases of heavy
fiOITj activity (i.e. DMA controller cycles interleaved with CPU
cycles.)

Interrupt (lNT): Active low, Maskable interrupt request.
Section 3.B.

Non-Maskable Interrupt (NMI): Active low, Non-Maskable
interrupt request. Section 3.B.

Reset/Abort (RST/ABT): Active low. If held active for one
clock cycle and released, this pin causes an Abort Com­
mand, Section 3.S.4. If held longer, it initiates a Reset, Sec­
tion 3.3.

4.1.3 Output Signals

Address Bits 16-23 (A16-A23): These are the most sig­
nificant B bits of the memory address bus. Section 3.4.

Address Strobe (ADS): Address low. Controls address
latches; indicates start of a bus cycle. Section 3.4.

Data Direction In (ODIN): Active low. Status Signal indicat­
ing direction of data transfer during a bus cycle. Section 3.4.

High Byte Enable (HBE): Active low. Status Signal enabling
transfer on the most significant byte of the Data Bus. Sec­
tion 3.4; Section 3.4.3.
Note: The HBJ: Signal is normally floated when the CPU grants the bus in

response to a DMA request on the ROil) pin.

However, when an MMU Is used and the bus Is granted during an
MMU page table look·up, HBE is not floated since the CPU does not
have sufficient information to synchronize the release of HBE to the
MMU's bus cycles.

Therefore, in a memory managed system, an exiernal TRI-STATE
buffer is required. This is shown in Figure B·l in Appendix B.

2-40B

Status (STO-ST3): Active high. Bus cycle status code, STO
least significant. Section 3.4.2. Encodings are:

0000 - Idle: CPU Inactive on Bus.

0001 - Idle: WAIT Instruction.

0010 - (Reserved)

0011 - Idle: Waiting for Slave.

0100 -Interrupt Acknowledge, Master.

0101 -Interrupt Acknowledge, Cascaded.

0110 - End of Interrupt, Master.

0111 - End of Interrupt, Cascaded.

1000 - Sequential Instruction Fetch.

1001 - Non-Sequential Instruction Fetch.

1010 - Data Transfer.

1011 - Read Read-Modify-Write Operand.

1100 - Read for Effective Address.

1101 - Transfer Slave Operand.

1110 - Read Slave Status Word.

1111 - Broadcast Slave 10.
Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus has
been released for DMA or multiprocessing purposes. Sec­
tion 3.7.

User/Superior (U/S): User or Supervisor Mode status.
Section 3.7. High state indicates User Mode, low indicates
Supervisor Mode. Section 3.7.

Interlocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Section 3.7.

Program Flow Status (PFS): Active low. Pulse indicates
beginning of an instruction execution. Section 3.7.

4.1.4InputiOutput Signals

Address/Data 0-15 (ADO-AD15): Multiplexed Address/
Data information. Bit 0 is the least significant bit of each.
Section 3.4.

Address Translation/Slave Processor Control
(AT /SPC): Active low. Used by the CPU as the data strobe
output for Slave Processor transfers; used by Slave Proces­
sors to acknowledge completion of a slave instruction. Sec­
tion 3.4.6. Section 3.9. Sampled on the rising edge of Reset
as Address Translation Strap. Section 3.S.1.

In Non-Memory-Managed systems this pin should be pulled­
up to Vee through a 10 kO resistor.

Data Strobe/Float (DS/FLT): Active low. Data Strobe out­
put, Section 3.4, or Float Command input, Section 3.S.3. Pin
function is selected on ATISPC pin, Section 3.5.1.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Temperature Under Bias O°C to + 70"C

Storage Temperature -65°C to + 150°C

All Input or Output Voltages With

Respect to GND

Power Dissipation

-0.5Vto +7V

1.5 Watt

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = 0 to + 70°C, Vee = 5V ± 5%, GND = OV

Symbol

VIH

VIL

VeH

Vel

VeLT

VOH

VOL

IllS

II

Il

Icc

Parameter

High Level Input Voltage

Low Level Input Voltage

High Level Clock Voltage

Low Level Clock Voltage

Low Level Clock Voltage,
Transient (ringing tolerance)

High Level Output Voltage

Low Level 0 Output Voltage

AT/SPC Input Current (low)

Input Load Current

Leakage Current
Output and 110 Pins in
in TRI-STATElinput Mode

Active Supply Current

Conditions

PHI1, PHI2 pins only

PHI1, PHI2 pins only

PHI1, PHI2 pins only

VIN=O.4V, AT/SPC in input mode

O:>:VIN:>:Vee, All inputs except
PHI1, PHI2, AT/SPC

Min Typ Max

2.0 Vee + 0.5

-0.5 0.8

Vee- 0.35 Vee+ 0.5

-0.5 0.3

-0.5 0.6

2.4

0.45

0.05 1.0

-20 20

-20 30

200 300

Connection Diagram
Dual·ln·Llne Package

A22!;;~::::::J vcc
A21 ~ 2 47 ~ A23
A20~ 3 46 ~ INT
A19~ 4 45 ::::::l NMI

::~~: : ~~~
A16~ 7 42 ~ STI

AD15 ~ 8 41 ::::::l ST2
ADI4!;; 9 40 ~ ST3
AD13 ~ 10 39 ~ PFS
AD12 ~ 11 38 ~ ODIN
ADll!;; 12 NS32018 37 b;:;:! AD~
AD10 E 13 CPU 36 ~ U/S
AD9!;; 14 35 g Ar/SPC
AD8 ~ 15 34 g RST/ABT
AD7 ~ 16 33 g Ds/FLT
AD6~ 17 32 g HBE
ADS ~ 18 31 g HLDA
AD4 ~ 19 30 g HOLD
AD3 E 20 29 g BBG
AD2~ 21 28 g RDV
ADI C 22 27 g PHIZ
ADO!;; 23 26 g PHil

GNDL C 24 25 P GNDB

Top View

FIGURE 4·1

2-409

Order Number NS32016D or NS32016N
See NS Package Number D48A or N48A

TL/EE/5054-2

Units

V

V

V

V

V

V

V

mA

",A

",A

mA

z en
Co)

~
'P
o

fII

C) r---~ • CD
~ en z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions
All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1
and PHI2 and O.SV or 2.0V on all other signals as iIIustrat-

-[~'------
SlG1

SlGZ

[-- -IS-IG-1-1------.~~:

[____ I ___ I_SI_G_2h_lj ___ ._~ ______ ~:
TL/EE/5D54-42

FIGURE 4-2. Timing Specification Standard
(Signal Valid After Clock Edge)

4.4.2 Timing Tables

ed in Figures 4-2 and 4-3, unless specifically stated other­
wise.

ABBREVIATIONS:
L.E. - leading edge
T.E. - trailing edge

R.E. - rising edge
F.E. - falling edge

PHI.

SlG1

SIG2

[

[
[

__ k
-------..--.-- - -- 2.4V

O.8V -',\Ir---..-j ISIG11
'---I--O.45V

~---t--2.4V

2.0V L ISIG2h

-------'---.------ -O.45V

TL/EE/5D54-43

FIGURE 4-3. Timing Specification Standard
(Signal Valid Before Clock Edge)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32016-10
Maximum times assume capacitive loading of 100 pF.

Name Figure Description Reference/Conditions
NS32016-10

Units
Min Max

tALv 4-4 Address bits 0-15 valid after R.E., PHI1 T1 40 ns

tALh 4-4 Address bits 0-15 hold after R.E., PHI1 Tmmu or T2 5 ns

tov 4-4 Data valid (write cycle) after R.E., PHI1 T2 50 ns

tOh 4-4 Data hold (write cycle) after R.E., PHI1 next T1 or Ti 0 ns

tAHv 4-4 Address bits 16-23 valid after R.E., PHI1 T1 40 ns

tAHh 4-4 Address bits 16-23 hold after R.E., PHI1 next T1 or Ti 0 ns

tALAOSs 4-5 Address bits 0-15 setup before ADS T.E. 25 ns

tAHAOSs 4-5 Address bits 16-23 set up before ADS T.E. 25 ns

tALAOSh 4-9 Address bits 0-15 hold after ADS T.E. 15 ns

tAHAOSh 4-9 Address bits 16-23 hold after ADS T.E. 15 ns

tALI 4-5 Address bits 0-15 floating after R.E., PHI1 T2 25 ns
(noMMU)

tALMf 4-9 Address bits 0-15 floating after R.E., PHI1 Tmmu 25 ns
(withMMU)

tAHMf 4-9 Address bits 16-23 floating after R.E., PHI1 Tmmu 25 ns
(withMMU)

tHBEv 4-4 HBE Signal valid after R.E., PHI1 T1 50 ns

tHBEh 4-4 HBE signal hold after R.E., PHI1 next T1 or Ti 0 ns

tsTv 4-4 Status (STO-ST3) valid after R.E., PHI1 T4 45 ns
(before T1, see note)

tSTh 4-4 Status (STO-ST3) hold after R.E., PHI1 T4 (after T1) 0 ns

tOOINv 4-5 DDIN signal valid after R.E., PHI1 T1 50 ns

2-410

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32016-10 (Continued)

Name Figure Description Reference/Conditions

tOOINh 4-5 ODIN signal hold after R.E., PHil nextTl orTi

tAOSa 4-4 ADS signal active (low) after R.E., PHil Tl

tAOSia 4-4 ADS signal inactive after R.E., PHI2 Tl

tAOSw 4-4 ADS pulse width at 0.8V (both edges)

tOSa 4-4 DS signal active (low) after R.E., PHil T2

tOSla 4-4 DS signal inactive after R.E., PHil T4

tALI 4-6 ADO-AD15 floating (caused by after R.E., PHil T1
HOLD)

tAH! 4-6 A16-A23 floating (caused by after R.E., PHil T1
HOLD)

tOS! 4-6 DS floating (caused by HOLD) after R.E., PHil Ti

tADS! 4-6 ADS floating (caused by HOLD) after R.E., PHI1 Ti

tHBE! 4-6 HBE floating (caused by HOLD) after R.E., PHil Ti

tODlN! 4-6 ODIN floating (caused by HOLD) after R.E., PHI1 Ti

tHLOAa 4-6 HLDA signal active (low) after R.E., PHI1 Ti

tHLOAia 4-8 HLDA signal inactive after R.E., PHI1 Ti

tOSr 4-8 OS signal returns from floating after R.E., PHil Ti
(caused by HOLD)

tAOSr 4-8 ADS signal returns from floating after R.E., PHil Ti
(caused by HOLD)

tHBEr 4-8 HBE signal returns from floating after R.E., PHI1 Ti
(caused by HOLD)

tOOINr 4-8 ODIN signal returns from floating after R.E., PHI1 Ti
(caused by HOLD)

tOOIN! 4-9 ODIN signal floating (caused by after FL T FE
FLn

tHBEI 4-9 HBE signal low (caused by FLn after FL T F.E.

tOOINr 4-10 ODIN signal returns from floating after FL T F.E.
(caused by FL n

tHBEr 4-10 HBE signal returns from LOW after FL T F.E.
(caused by FL n

tgPCa 4-13 SPC output active (low) after R.E., PHil T1

tgPCla 4-13 SPC output inactive after R.E., PHil T4

tgPCn! 4-15 SPC output nonforcing after R.E., PHI2 T4

tov 4-13 Data valid (slave processor write) after R.E., PHI1 T1

tOh 4-13 Data hold (slave processor write) after R.E., PHI1 next T1 or Ti

tpFSw 4-18 PFS pulse width at 0.8V (both edges)

tPFSa 4-18 PFS pulse active (low) after R.E., PHI2

tPFSla 4-18 PFS pulse inactive after R.E., PHI2

tlLOs 4-20a ILO signal setup before R.E., PHI1 T1 of first
interlocked write cycle

tlLOh 4-20b ILO signal hold after R.E., PHI1 T3 of last
interlocked read cycle

tlLOa 4-21 ILO signal active (low) after R.E., PHI1

2-411

NS32016-10

Min Max

0

35

40

30

40

40

25

25

50

50

50

50

30

40

55

55

55

55

55

35

40

35

35

35

30

50

0

50

40

40

50

10

35

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z
U)
Co)
~ o
cp
o

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32D16·1D (Continued)

Name Figure Description Reference/Conditions
NS32D16·1D

Units
Min Max

tllOia 4-21 ILO signal inactive after R.E., PHI1 35 ns

tUSv 4-22 U/S signal valid after R.E., PHI1 T4 35 ns

tUSh 4-22 U/S signal hold after R.E., PHI1 T4 8 ns

tNSPF 4-19b Nonsequential fetch to next PFS after R.E .• PHI1 T1 4 tcp
clock cycle

tpFNS 4-19a PFS clock cycle to next non- before R.E., PHI1 T1 4 tcp
sequential fetch

tLXPF 4-29 Last operand transfer of an instruc- before R.E., PHI1 T1 of first 0 tcp
tion to next PFS clock cycle bus cycle of transfer

Note: Every memory cycle starts w~h T 4. during which Cycle Status is applied. If the CPU was Idling, the sequence will be: ". . . Ti, T 4, Tl . . .". II the CPU was
not idling, the sequence will be: " ... T4, T1 ... ".

4.4.2.2 Input Signal Requirements: NS32016·10

Name Figure Description Reference/Conditions
NS32D16·1D

Units
Min Max

tPWR 4-25 Power stable to RST R.E. after Vce reaches 4.5V 50 /Ls

tDis 4-5 Data in setup (read cycle) before F.E., PHI2 T3 15 ns

tDlh 4-5 Data in hold (read cycle) after R.E., PHI1 T4 3 ns

tHlDa 4-6 HOLD active (low) setup time before F.E., PHI2 TX1 25 ns
(see note)

tHlDia 4-8 HOLD inactive setup time before F.E., PHI2 Ti 25 ns

tHlOh 4-6 HOLD hold time after R.E., PHI1 TX2 0 ns

tFLTa 4-9 FL T active (low) setup time before FE, PHI2 Tmmu 25 ns

tFLTia 4-11 FL T inactive setup time before F.E., PHI2 T2 25 ns

tROYs 4~11, 4-12 ROY setup time before FE, PHI2 T2 or T3 15 ns

tROYh 4-11,4-12 ROY hold time after FE, PHI1 T3 5 ns

tASTs 4-23 ABT setup time (FL T inactive) before FE, PHI2 Tmmu 20 ns

tASTs 4-24 ABT setup time (FL T active) before FE, PHI2 Tf 20 ns

tASTh 4-23 ABT hold time after R.E., PHI1 0 ns

tRSTs 4-25,4-26 RST setup time before F.E., PHI1 15 ns

tRSTw 4-26 RST pulse width at 0.8V (both edges) 64 tcP

tiNTs 4-27 INTsetup time before F.E., PHI1 25 ns

tNMlw 4-28 NMI pulse width at 0.8V (both edges) 70 ns

tOls 4-14 Data setup (slave read cycle) before FE, PHI2 T1 15 ns

tOlh 4-14 Data hold (slave read cycle) after R.E., PHI1 T4 3 ns

tsped 4-15 SPC pulse delay from slave after R.E., PHI2 T4 25 ns

tgpes 4-15 SPC setup time before FE, PHI1 25 ns

tspew 4-15 SPC pulse width from slave at 0.8V (both edges) 20 ns
processor (async.input)

2-412

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32016·10 (Continued)

Name Figure Description Reference/Conditions
NS32016·10

Units
Min Max

tATh 4·16 AT ISPC hold for address after F.E., PHI1 of cycle during 2 tcp
translation strap which RST pulse is removed

tATs 4·16 AT ISPC setup for address before R.E., PHI1 of cycle during 1 tcp
translation strap which RST pulse is removed

Note: This setup time is necessary to ensure prompt acknowledgement via HLOA and the ensuing floating of CPU off the buses. Note that the time from the receipt
of the HOLD Signal until the CPU floats is a function of the lime HOLD signal goes low, the state of the ROY input (in MMU systems), and the length of the current
MMU cycle.

4.2.3 Clocking Requirements: NS32016·10

Reference/ NS32016·10
Name Figure Description

Conditions
Units

Min Max

tcp 4·17 Clock period R.E., PHI1, PHI2 to next
100 250

R.E., PHI1, PHI2
ns

tCLw 4·17 PHI1, PHI2 at 2.0V on PHI1, PHI2
0.5 tcp - 10 ns

pulse width (both edges)

tCLh 4·17 PHI1, PHI2 high time at Vcc - 0.9Von
0.5 tcp - 15 ns

PHI1, PHI2 (both edges)

tCLI 4·17 PHI1, PHI210w time atO.8Von
0.5tcp - 5 ns

PHI1, PHI2

tnOVL(1,2) 4·17 Non·overlap time 0.8Von F.E., PHI1, PHI2 to
-2 5

0.8V on R.E., PHI2, PHI1
ns

InOVLas Non·overlap asymmetry At 0.8V on PHI1, PHI2
-4 4 ns

(tnOVL(1) - tnOVL(2»

tcLwas PHI1, PHI2 asymmetry At 2.0V on PHI1, PHI2
-5 5 ns

(tCLw(1) - tcLw(2»

2·413

z en w
!'.)
Q ...
0)
Q

C) r---, --~ 4.0 Device Specifications (Continued)

~ 4.4.3 Timing Diagrams
CO)
U)
Z

PHil [

PHI2 [

ADO-IS [

AI6-Z3 [

iiDiN[

TI 12 T3 T4

S~[~ ________ _r---~-A-L-IO--~----~~~~N-E-XT-----
[
-+--------{-jIOSI

os ~------t_--------n
ROY [

PHil [

PHIZ [

ADO-IS [
"-

AI6-23 [

AiiS[

iiiE[

i5iiiN[
S~[

iii [

ROY [

TI

(HIGH)
I

FIGURE 4-4. Write Cycle

12 T3

FIGURE 4-5. Read Cycle

2-414

T4

TUEE/5054-44

TUEE/5054-45

4.0 Device Specifications (Continued)

TXI TX2 T4 TI Ti Ti

PHil [

PHI2 [-1--.....

HOLD [

_4-________ -+ ________ ~r---_,~~t_--~~I'HLDA.
HLDA ['DS,

IHBe! os lADS!
ADS 'ODIN!

:[-+ ____ -+ ____ -+ ____ -' __ ~ - -- -iFLOATINGj- ---

ADO·IS [I I I ~~'~~-l------L-----
AI6-23 [-I-------l------I--__+__' ~~H~_l ____ ~]~:~ __ --. . . _ _ I (FLO~TING)

TL/EE/5lJS4-46

FIGURE 4·6. Floating by HOLD Timing (CPU Not Idle Initially)
Nole Ihal whenever Ihe CPU is nol idling (nol in Ti), Ihe HOLD request (HOLD low) must be active tHLOa before the falling edge of PHI2 of the clock cycle that
appears two clock cycles before T4 (TXl) and stay low until tHLOh after the rising edge of PHil of Ihe clock cycle that precedes T4 (TX2) for the request to be
acknowledged.

PHil [

PHI2 [

HOLD [

Hi:iiA[-+---4~~­
OS

ADS [
HBE -I----------I-.J1 (FL.OAilNCii --

AD
D

OD"
IN
S [-1------ I ,R.OATING)- -------

A16.23 [- - - - - - - (FLOATING)

TLlEE/SOS4-47

FIGURE 4·7. Floating by HOLD Timing (CPU Initially Idle)
Nole thai during Til the CPU is already idling.

2-415

PHil [

PHI2 [

ii6Cii[

Ti

HLiiA [+ ________ +~
os

ADS [
HBE - (FLOATING)

DDIN

Ti

to",
tHBEr
lADSr
tDDINr

TI

(HIGH)

AI6-23 [_1 _______ 1 ____________ _
ADD·15

(FLOATING)

T4

TLlEE/SOS4-46

FIGURE 4·8. Release from HOLD

z en
Co)
N o
en

I
o

•

Q
cb
Q
N
('I)
(/)
Z

4.0 Device Specifications (Continued)

CPU STATES T1 TIIMU TI TI

MMUSTATES T1 TIIMU T4 Tl

PHil [

PHI2 [

m[
ADO-IS [

(CPU)

AI8-23 [
(CPU)

ADS [
(CPU)

iiiiiN[
(CPU)

HBE [

TLlEE/5054-49

FIGURE 4·9. FL T Initiated Cycle Timing

CPU STATES Tt T2 T3 T4

MMU STATES Tmmu

PHil [

PHI2[

FiT [(MMU)

ADO-15 [
AI6-23 -

ffi5iN
(CPU) [__

ADS [
(CPU)

HBE [____ --..... -+----+----+-----
Tl/EE/5054-50

Note that when FIT is dea .. erted the CPU restarts driving ODIN betore the MMU releases it. This, however, does not cause any conflict, since both CPU and MMU
torce ODIN to the same logic level.

FIGURE 4·10. Release from FLT Timing

TL/EE/5054-51

FIGURE 4·11. Ready Sampling (CPU Initially READY)

2-416

4.0 Device Specifications (Continued)

\ 13\\13\ T4

:~~
RDV[~

TL/EE/SOS4-S2

FIGURE 4-12. Ready Sampling (CPU Initially NOT READY)

I T1 I TO I

PHI'[~
I T1 I T4 I

PHI'[JLJLJ

PHI2 [I
ADO-.5 [

spc[SPC [
(CPU)

iiiiiN[DaN[-+~ ____ ~r-______ +-

STQ.3[STIH [-4----1-""---....-

AiiS[(HIGH)
I

AiiS[
TLlEE/S054-53

FIGURE 4-13. Slave Processor Write Timing

TLlEE/SOS4-S4

FIGURE 4-14. Slave Processor Read Timing

PH)I [

PHI2 [

SPC [
(FROM CPU)

11 T4

(FROM Sl.A~1 [. --- ------ ------- ------

FIGURE 4·15. SPC Timing

After transferring last operand to a Slave Processor. CPU turns
OFF driver and holds SPC high with internal 5 kO pullup.

FIGURE 4·16. Reset Configuration Timing

2-417

TL/EE/SOS4-82

TLlEE/SOS4-S6

z en
Co)
N o ...
Q)
o

o *' 4.0 Device Specifications (Continued)
o
C\I
C")
(/)
z

PHil [

PHI2 [-----~I
TL/EE/5054-57

FIGURE 4-17. Clock Waveforms

PHI2 [~f1---JLJ

m[~~
TL/EE/5054-58

FIGURE 4-18. Relationship of PFS to Clock Cycles

11

IpFNS .1
STQ.3 [_______________JX'--_C_O_DE_l_00_' __

TUEE/5054-59

FIGURE 4-19a. Guaranteed Delay, PFS to Non-Sequential Fetch

I 11 I 12 I ••• I I I I
PHil LfU"LJl-1fl--fl--JL
ADS [

S1Q.3[-+ ____ CO_D_E_l_00_l ___ ~.r-----r-------

INSPF

TLlEE/5054-60

FIGURE 4-19b. Guaranteed Delay, Non-Sequential Fetch to PFS

2·418

4.0 Device Specifications (Continued)

I T30RTI I T40RTI I T1 T2 T3 T4

iiiS[

FIGURE 4-20a. Relationship of ILO to First Operand Cycle
of an Interlocked Instruction

I TJORTI I T4 OR TI I Tl T2 T3 T4

ILO[______________ -+ ____________ -+,

FIGURE 4-20b. Relationship of ILO to Last Operand Cycle
of an Interlocked Instruction

PHI1[JLJLt

~[~Ir----~u.
FIGURE 4-21. Relationship of ILO to Any Clock Cycle

I TJORTI I T40RTI I T1 T2 T3

FIGURE 4-22. U/S Relationship to Any Bus Cycle­
Guaranteed Valid Interval

2-419

T4

TLlEE/5054-61

TLlEE/5054-62

TLlEE/5054-63

TL/EE/5054-64

z en
Co)
N
CI
'l»
CI

fII

C) .---,
J, re
C")
rn
z

4.0 Device Specifications (Continued)

I T1 I Trnmu 12 TI

PHIZ [

FIGURE 4-23. Abort Timing, FL T Not Applied

Tf Tf TI TI 12

PHil [

PHI2 [

~Ri[__ r_----_+------~----~+_-J

FIGURE 4-24. Abort Timing, FL T Applied

~---------------~~ vee

PHil [----1----.....
~/AErr[_____________ _ilr_J

FIGURE 4-25. Power-On Reset

FIGURE 4-26. Non-Power-On Reset

2-420

TLlEE/S054-6S

TI

TL/EE/SOS4-66

TL/EE/5054-67

TLlEE/5054-68

4.0 Device Specifications (Continued)

PHI1[..nJLIL
(.J liNTs

iNT[~

NM{ ~_INMIw_'r

TL/EE/SOS4-69

FIGURE 4-27.INT Interrupt Signal Detection

TL/EE/SOS4-70

FIGURE 4-28. NMllnterrupt Signal Timing

FIRST BUS CYCLE NEXT

FIGURE 4-29. Relationship Between Last Data Transfer of
an Instruction and PFS Pulse of Next Instruction

NOTE:

In a Iransfer of a Read.Modify.Write type operand. this is the Read transfer,
displaying RMW Slatus (Code 1011).

2-421

TL/EE/SOS4-71

z en
Co)
~ o
cp
......
o

fII

Q .--,
ch
~
Cf)
tn
Z

Appendix A: Instruction Formats
NOTATIONS:

i = Integer Type Field
B = 00 (Byte)

W = 01 (Word)

o = 11 (Double Word)
f = Floating Point Type Field

F = 1 (Std. Floating: 32 bits)
L= 0 (Long Floating: 64 bits)

c = Custom Type Field
o = 1 (Double Word)
Q = 0 (Quad Word)

op = Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 = General Addressing Mode Field

See Sec. 2.2 for encodings.
reg = General Purpose Register Number

cond = Condition Code Field

0000 = EQual: Z = 1

0001 = Not Equal: Z = 0
0010 = Carry Set: C = 1
0011 = Carry Clear: C = 0
0100 = Higher: L = 1

0101 = Lower or Same: L = 0

0110 = Greater Than: N = 1
0111 = Less or Equal: N = 0

1000 = Flag Set: F = 1
1001 = Flag Clear: F = 0

1010 = LOwer: L = 0 and Z = 0

1011 = Higher or Same: L = 1 orZ = 1
1100 = Less Than: N = 0 and Z = 0

1101 = Greater or Equal: N = 1 or Z = 1
1110 = (Unconditionally True)

1111 = (Unconditionally False)
short = Short Immediate Value. May contain:

quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB.
cond: Condition Code (above), in Scond.
areg: CPU Dedicated Register, in LPR, SPR.

0000 = US

0001 - 0111 = (Reserved)
1000 = FP

1001 = SP
1010 = SB
1011 = (Reserved)

1100 = (Reserved)

1101 = PSR
1110 = INTBASE

1111 = MOD

2-422

Options: in String Instrucrt_io_n_s_,-_,--,

I U/W B T

T = Translated

B = Backward
U/W = 00: None

01: While Match
11: Until Match

Configuration bits, in SETCFG:

I C I M I F

mreg: NS32082 Register number, in LMR, SMR.
0000 = BPRO

0001 = BPR1

0010 = (Reserved)
0011 = (Reserved)
0100 = (Reserved)
0101 = (Reserved)

0110 = (Reserved)
0111 = (Reserved)

1000 = (Reserved)
1001 = (Reserved)
1010 = MSR

1011 = BCNT
1100 = PTBO

1101 = PTB1
1110 = (Reserved)
1111 = EIA

7 0

I
I I I

11 10 11 101 cond

FormatO

Bcond (BR)
7 0

I
I

10
1
0

1
1 101 op

Format 1
BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 Nap -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE -0111 BPT -1111

81 7 0

sh~rt I op 11 I 1 I I
15

I gen

Format 2

ADDQ -000 ACB -100
CMPQ -001 MOVQ -101
SPR -010 LPR -110
Scond -011

,--, z
Appendix A: Instruction Formats (Continued)

CXPD
BICPSR
JUMP
BISPSR

1S 017 0

~e~ , I' o'p 11'1'1'1'11 I
Format 3

-0000
-0010
-0100
-0110

ADJSP
JSR
CASE

-1010
-1100
-1110

Trap (UND) on XXX1, 1000

o
I' , , , I" 'I gen 1 gen 2

iii

op

Format 4

ADD -0000 SUB -1000
CMP -0001 ADDR -1001
BIC -0010 AND -1010
ADDC -0100 SUBC -1100
MOV -0101 TBIT -1101
OR -0110 XOR -1110

0

i 00001 1 1 0

MOVS
CMPS

FormatS

-0000
-0001

SETCFG
SKPS

Trap (UND) on 1XXX, 01XX

ROT
ASH
CBIT
CBITI
Trap (UND)
LSH
SBIT
SBITI

Format 6

-0000 NEG
-0001 NOT
-0010 Trap (UND)
-0011 SUBP
-0100 ABS
-0101 COM
-0110 IBIT
-0111 ADDP

-0010
-0011

o

001110

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

2-423

MOVM
CMPM
INSS
EXTS
MOVXBW
MOVZBW
MOVZiD
MOVXiD

EXT
CVTP
INS
CHECK
MOVSU
MOVUS

MOVif
LFSR
MOVLF
MOVFL

Trap (UND) Always

o 7 0

i 1 1 00111 0

Format 7

-0000 MUL -1000
-0001 MEl -1001
-0010 Trap (UND) -1010
-0011 DEI -1011
-0100 QUO -1100
-0101 REM -1101
-0110 MOD -1110
-0111 DIV -1111

TLlEE/5054-72

FormatO

-000 INDEX -100
-001 FFS -101
-010
-011
-110,reg=001
-110, reg=011

o

1 1 1 1 0

Format 9
-000 ROUND -100
-001 TRUNC -101
-010 SFSR -110
-011 FLOOR -111

7 0

Format 10

]0111 1 1101

TLlEE/5054-37

en
Co)
~ o
Q)

I
o

fII

o .--, ,...
ch ,...
o
N
(W)

tn
Z

Appendix A: Instruction Formats (Continued)

ADDf
MOVf
CMPf
Trap (SLAVE)
SUBt
NEGf
Trap (UND)
Trap (UND)

Trap (UND) Always

Trap (UND) Always

RDVAL
WRVAL

o

1 1 1 1 0

Format 11

-0000 DIVf -1000
-0001 Trap (SLAVE) -1001
-0010 Trap (UND) -1010
-0011 Trap (UND) -1011
-0100 MULf -1100
-0101 ABSf -1101
-0110 Trap (UND) -1110
-0111 Trap (UND) -1111

7 0
on l I I I I I I I 1
___ .1 1 1 1 1 1 1 O.

TL/EE/5054-75

Format 12

0

onl I I I I I I I I
___ . 1 0 0 1 1 1 1 O.

Format 13

Format 14

-0000
-0001

LMR
SMR

TLlEE/5054-76

0

1 1 1 1 0

-0010
-0011

Trap (UND) on 01 XX, 1 XXX

2-424

Operation Word

Format 15
(Custom Slave)

ID Byte

nnn Operation Word Format

000

CATSTO
CATST1

Format 15.0
-0000 LCR
-0001 SeR

Trap (UND) on all others

001

Format 15.1

CCV3 -000 CCV2
LCSR -001 CCV1
CCV5 -010 SCSR
CCV4 -011 CCVO

101

Format 15.5

CCALO
CMOVO
CCMPO
CCMP1
CCAl1
CMOV2
Trap (UND)
Trap (UND)

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

If nnn ~ 010,011,100,110,111
then Trap (UNO) Always

CCAL3
CMOV3
Trap (UND)
Trap (UND)
CCAL2
CMOV1
Trap (UND)
Trap (UND)

-0010
-0011

-100
-101
-110
-111

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

Appendix A: Instruction Formats (Continued)

---I I I I I I I I 1
___ 0 1 0 1 1 1 1 0

TL/EE/5054-77

Format 16

Trap (UNO) Always

7 0

---I I I I I I I I 1
___ 1 1 0 1 1 ·1 1 0

TL/EE/5054-7B

Format 17
Trap (UNO) Always

7 0

---I I I I I I I I 1
__ . 1 0 0 0 1 1 1 0

TL/EE/5054-79

Format 18

Trap (UNO) Always

2-425

Format 19

Trap (UNO) Always

Implied Immediate Encodings:
7

7 0

---I I I " I " 1 ___ x x x 0 0 1 1 0

TL/EE/5054-BO

o

r1

Register Mask, appended to SAVE, ENTER

7 o

ro r1 r2 r3 r4 r5 rS

Register Mask, appended to RESTORE, EXIT

7 o

: offset:

Offset/Length Modifier appended to INSS, EXTS

z
(J)
W
N o
01
o

~
Sl

XCTAL2

-ff T XCTAL1

RESET

~
ROY PHil PHI2 ILO HBE HOLD

HLDA

DS/FLT

INTS{=:
iN'f PFS

NMi NS32018 UlS
CPU

ADS

ODIN

STO-ST3

RST/ABT

ADDR/DATA AT/SPC
10 kD

(24)i
+5

(24)

ADDR/DATA (16,
MULTIPLEXED
BUS

DATA
SPC ~

STO-STl
NS32081

FPU RST

CLK

PER

EWAi'f

NS32201
WAffii -} TCU WAiT4 - WAIT REOUESTS
WAffi ;= (ADDR. DECODED OR STRAPPED)

RSTI WAffi
PHil iiii
PHI2 WR

ADS

RS'fO CTTL illiiN ROY ffiiE

""
I

1 l
HOLD ROY RSTI

I
PHil

PHI2

HLDAI HLDAO

FIT PAY STROBE
PFs
UlS (24) ADDRESS

NS32082 +5 LATCH!
ADS

MMU

II
BUFFER

ODIN

STO-ST3

I-t-- iiSf/ABT A24
I-f---- SPC ADDR!DATA

(24) to
'-

(24)

I I
(16t

DATA EN DIR

~
MULTIPLEXED

I BUS --- iiS'f MEMORY! (16) --- CLK PERIPHERALS
DATA BUFFERS

FIGURE B-1. System Connection Diagram

PERIPH. CYCLE

READY

Rii

WR

iLO

HBE

HOLD

HLDAO

ADDRESS
BUS

(24)

ODIN

DATA BUS

(16)

STATUS

NS32016-10

l>
"CI
"CI
CD
::::I a.
>C"

~
::::I -CD ;.
()

S"
eQ
(/)
C

eQ
eQ
CD
!1.
0"
::::I
fD

TUEE/5054-73

~National
~ Semiconductor
NS32008-10 High-Performance 8-Bit Microprocessor

General Description
The NS3200B is a 32-bit microprocessor with a 16-MByte
linear address space and a B-bit external data bus. It has a
32-bit ALU, eight 32-bit general purpose registers, a four­
byte prefetch queue, and a slave processor interface. The
NS3200B is fabricated with National Semiconductor's ad­
vanced XMOSTM process, and is fully object code compati­
ble with other Series 32000@ processors. The Series 32000
instructions set is optimized for modular high-level lan­
guages (HLL). The set is very symmetric, it has a two ad­
dress format, and it incorporates HLL oriented addressing
modes. The capabilities of the NS3200B can be expanded
with the use of the NS320B1 floating point unit (FPU), which
interfaces to the NS3200B as a slave processor. The
NS3200B is a general purpose microprocessor that is ideal
for a wide range of computational intensive applications.

Block Diagram
ADD/DATA CONTROLS. STATUS

INTBASE
S8
FP
SP1
SPO

o PC
RO
R1
R2
R3
R4
R5
R6
R7

Features
• 32-bit architecture and implementation
• 16-MByte linear address space
• B-bit external data bus
• Powerful instruction set

- General 2-address capability
- High degree of symmetry
- Addressing modes optimized for high-level

languages
• Series 32000 slave processor support
• High-speed XMOS technology
• 4B-pin dual-in-line (DIP) package

MICROCODE ROM
AND

CONTROL LOGIC

a:o
CFG REGISTER

WORKING
REGISTERS

I
I
I
I
I

MOD I

PSR :

L _________________ J
TL/EE/6156-1

2-427

•

Table of Contents

1.0 PRODUCT INTRODUCTION

1.1 NS32008 Design Goals

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 General Purpose Registers

2.1.2 Dedicated Registers

2.1.3 The Configuration Register (CFG)

2.1.4 Memory Organization

2.1.5 Dedicated Tables

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

3.4 Bus Cycles

3.4.1 Cycle Extension

3.4.2 Bus Status

3.4.3 Data Access Sequences

3.4.3.1 Bit Accesses

3.4.3.2 Bit Field Accesses

3.4.3.3 Extending Multiply Accesses

3.4.4 Instruction Fetches

3.4.5 Interrupt Control Cycles

3.4.6 Slave Processor Communication

3.4.6.1 Slave Processor Bus Cycles

3.4.6.2 Slave Operand Transfer Sequences

3.5 Bus Access Control

3.6 Instruction Status

3.7 NS32008 Interrupt Structure

3.7.1 General InterruptlTrap Sequence

3.7.2 InterruptlTrap Return

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.7.3 Maskable Interrupts (The INT Plan)

3.7.3.1 Non-Vectored Mode

3.7.3.2 Vectored Mode: Non-Cascaded Case

3.7.3.3 Vectored Mode: Cascaded Case

3.7.4 Non-Maskable Interrupt (The NMI Pin)

3.7.5 Traps

3.7.6 Prioritization

3.7.7InterruptlTrap Sequences: Detail Flow

3.7.7.1 Maskable/Non-Maskable Interrupt
Sequence

3.7.7.2 Trap Sequences: Traps Other Than
Trace

3.8 Slave Processor Instructions

3.8.1 Slave Processor Protocol

3.8.2 Floating Point Instructions

3.8.3 Custom Slave Instructions

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 InputlOutput Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation
Delays

4.4.2.2 Input Signals Requirements

4.4.2.3 Clocking Requirements

4.4.3 Timing Requirements

Appendix A: Instruction Formats

List of Illustrations
The General and Dedicated Registers ..•....•............••.............•............•............•.............. 2-1

Processor Status Register•......•..•......••.....•... 2-2

CFG Register ..•••....•...................•............•......•............•................................... 2-3

Data Formats for NS32008 Memory .••...•.......••..•..•......•....••.........................•....•............ 2-4

Module Descriptor Format. .. 2-5

A Sample Link Table ... 2-6

General Instruction Format•...•...................... 2-7

Index Byte Format ... 2-8

Displacement Encodings•........................•.......•......•...................•.. 2-9

Recommended Supply Connections .. 3-1

Clock Timing Relationships•... 3-2

Power-on Reset Requirements••.........................•................•...................... 3-3

General Reset Timing .. 3-4

Recommended Reset Connections•... 3-5

2-428

List of Illustrations (Continued)

Bus Connections••..•... 3-6

Read Cycle Timing ... 3-7

Write Cycle Timing ... 3-8

ROY Pin Timing ..•......•.. 3-9

Extended Cycle Example .. 3-1 0

Slave Processor Connections•..................................•.......................... 3-11

CPU Read from Slave Processor .. 3-12

CPU Write to Slave Processor•.. 3-13

HOLD Timing, Bus Initially Idle .. 3-14

HOLD Timing, Bus Initially Not Idle .. 3-15

I nterrupt Dispatch and Cascade Tables .. 3-16

Interrupt/Trap Service Routine Calling Sequence ..•.............. 3-17

Return from Trap (RETT n) Instruction Flow .. 3-18

Return from Interrupt(RET) Instruction Flow .. 3-19

Interrupt Control Connections (16 levels) ... 3-20

Cascaded Interrupt Control Unit Connections ... 3-21

Service Sequence .. 3-22

Slave Processor Protocol .. 3-23

Slave Processor Status Word Format. ... 3-24

Connection Diagram .. 4-1

Timing Specification Standard (Signal Valid After Clock Edge)4-2

Timing Specification Standard (Signal Valid Before Clock Edge) .. 4-3

Write Cycle .. 4-4

Read Cycle .. 4-5

Floating by HOLD Timing (CPU Notldle Initially)4-6

Floating by HOLD Timing (CPU Initially Idle) ... 4-7

Release from HOLD .. 4-8

Ready Sampling (CPU Initially READY)4-9

Ready Sampling (CPU Initially NOT READY) .. 4-10

Slave Processor Write Timing ... 4-11

Slave Processor Read Timing4-12

SPCTiming .. 4-13

Clock Waveforms ... 4-14

Relationship of PFS to Clock Cycles ... 4-14

Guaranteed Delay, PFS to Non-Sequential Fetch .. 4-15a

Guaranteed Delay, Non-Sequential Fetch to PFS .. 4-15b

Relationship of ILO to First Operand of an Interlocked Instruction4-17

Relationship of ILO to Last Operand of an Interlocked Instruction .. 4-18

Relationship of ILO to Any Clock Cycle .. 4-19

TIls Relationship to any Bus Cycle - Guaranteed Valid Interval .. 4-20

Power-On Reset .. 4-21

Non-Power-On Reset .. 4-22

INT Interrupt Signal Detection4-23

NMllnterrupt Signal Timing ... 4-24

Relationship Between Last Data Transfer of an Instruction and PFS Pulse of Next Instruction 4-25

List of Tables
NS32008 Addressing Modes .. 2-1

NS32008 Instruction Set Summary ... 2-2

Interrupt Sequences .. 3-1

Floating-Point Instruction Protocols ... 3-2

Custom Slave Instruction Protocols ... 3-3

2-429

z en w
I\)
c c
CD •
c

fII

C) r---,
• CIO

C)
C)
C'II
C")

en
z

1.0 Product Introduction
The Series 32000 Microprocessor family is a new genera­
tion of devices using National's XMaS and CMOS technolo­
gies. By combining state-of-the-art MaS technology with a
very advanced architectural design philosophy, this family
brings mainframe computer processing power to VLSI proc­
essors.

The Series 32000 family supports a variety of system con­
figurations, extending from a minimum low-cost system to a
powerful 4 gigabyte system. The architecture provides com­
plete upward compatibility from one family member to an­
other. The family consists of a selection of CPUs supported
by a set of peripherals and slave processors that provide
sophisticated interrupt and memory management facilities
as well as high-speed floating-point operations. The archi­
tectural features of the Series 32000 family are described
briefly below:

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.

SymmetriC Instruction Set. While avoiding special case
instructions that compilers can't use, the Series 32000 fami­
ly incorporates powerful instructions for control operations,
such as array indexing and external procedure calls, which
save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op­
erand can be referenced by anyone of the addressing
modes provided. This powerful memory-to-memory archi­
tecture permits memory locations to be treated as registers
for all useful operations. This is important for temporary op­
erands as well as for context switching.

Memory Management. Either the NS323B2 or the
NS320B2 Memory Management Unit may be added to the
system to provide advanced operating system support func­
tions, including dynamic address translation, virtual memory
management, and memory protection.

Large, Uniform Addressing. The NS3200B has 24-bit ad­
dress pOinters that can address up to 16 megabytes without
requiring any segmentation; this addreSSing scheme pro­
vides flexible memory management without added-on ex­
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addreSSing. In
addition, ROM code is totally relocatable and easy to ac-

DEDICATED

• 3' ~

PROGRAM COUNTER PC

STATIC BASE sa

FRAME POINTER FP

USER STACK PTA. SP1

INTERRUPT STACK PTR.
SPO I

INTERRUPT BASE INTBASE

PSR MOD

STATUS MODULE

SP

cess, which allows a significant reduction in hardware and
software cost.

Software Processor Concept. The Series 32000 architec­
ture allows future expansions of the instruction set that can
be executed by speCial slave processors, acting as exten­
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com­
patibility even for future components because the slave
hardware is transparent to the software. With future ad­
vances in semiconductor technology, the slaves can be
phYSically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro­
vide three primary performance advantages and character­
istics:

• High-Level Language Support

• Easy Future Growth Path

• Application Flexibility

1.1 NS32008 DESIGN GOALS

The NS3200B is aimed at small to medium size systems,
and is designed to bridge the gap between B-bit CPUs and
the higher-end members of the Series 32000 family. The
NS3200B provides an B-bit data bus and is the only CPU in
the Series 32000 family that does not support virtual memo­
ry.

The NS3200B is most suitable for systems designed with
B-bit memory and peripherals.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes 16 registers on the
NS3200B CPU.

2.1.1 General Purpose Registers

There are eight registers for meeting high-speed general
storage requirements, such as holding temporary variables
and addresses. The general purpose registers are free for
any use by the programmer. They are 32 bits in length. If a
general register is specified for an operand that is B or 16
bits long, only the low part of the register is used; the high
part is not referenced or modified.

2.1.2 Dedicated Registers

The eight dedicated registers of the NS3200B are assigned
specific functions:

PC: The PROGRAM COUNTER register is a pointer to the
first byte of the instruction currently being executed. The PC

GENERAL

• 3' ~

RO

R1

R'

R3

R'

RS

R6

R7
TL/EE/6156-3

FIGURE 2-1. he General and Dedicated Registers

2-430

.--, z
2.0 Architectural Description (Continued)

is used to reference memory in the program section. (In the
NS32008, the upper eight bits of this register are always
zero.)

SPO, SP1: The SPO register pOints to the lowest address of
the last item stored on the INTERRUPT STACK. This stack
is normally used only by the operating system. It is used
primarily for storing temporary data, and holding return infor­
mation for operating system subroutines and interrupt and
trap service routines. The SP1 register pOints to the lowest
address of the last item stored on the USER STACK. This
stack is used by normal user programs to hold temporary
data and subroutine return information.

In this document, reference is made to the SP register. The
terms "SP register" or "SP" refer to either SPO or SP1,
depending on the setting of the S bit in the PSR register. If
the S bit in the PSR is 0, then SP refers to SPO. If the S bit in
the PSR is 1, the SP refers to SP1. (In the NS32008, the
upper eight bits of these registers are always zero.)

Stacks in the Series 32000 family grow downward in memo­
ry. A push operation pre-decrements the stack pOinter by
the operand length. A pop operation post-increments the
stack pOinter by the operand length.

FP: The FRAME POINTER register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pOinter. (In the NS32008, the
upper eight bits of this register are always zero.)

SB: The STATIC BASE register points to the global vari­
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module. (In the NS32008, the upper
eight bits of this register are always zero.)

INTBASE: The INTERRUPT BASE register holds the ad­
dress of the dispatch table for interrupts and traps (Section
3.7). The INTBASE register holds the lowest address in
memory occupied by the dispatch table. (In the NS32008,
the upper eight bits of this register are always zero.)

MOD: The MODULE register holds the address of the mod­
ule descriptor of the currently executing software module.
The MOD register is 16 bits long, therefore the module table
must be contained within the first 64K bytes of memory.

PSR: The PROCESSOR STATUS REGISTER holds the
status codes for the NS32008 microprocessor.

The PSR is 16 bits long, divided into two 8-bit halves (Figure
2-2). The low order eight bits are accessible to all pro­
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

TLlEE/6156-4

FIGURE 2-2. The Processor Status Register

C: The C bit indicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used with the
ADDC and SUBC instructions to perform multiple-precision
integer arithmetic calculations. It may have a setting of 0 (no
carry or borrow) or 1 (carry or borrow).

2-431

T: The T bit causes program traCing. If this bit is a 1, a TRC
trap is executed after every instruction (Section 3.7.5).

L: The L bit is altered by comparison instructions. In a com­
parison instruction, the L bit is set to "1" if the second oper­
and is less than the first operand, when both operands are
interpreted as unsigned integers. Otherwise, it is set to "0".
In Floating-Point comparisons, this bit is always cleared.

F: The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions use it
to indicate overflow).

Z: The Z bit is altered by comparison instructions. In a com­
parison instruction, the Z bit is set to "1" if the second oper­
and is equal to the first operand; otherwise it is set to "0".

N: The N bit is altered by comparison instructions. In a com­
parison instruction, the N bit is set to "1" if the second
operand is less than the first operand, when both operands
are interpreted as signed integers. Otherwise, it is set to
"0".

U: If the U bit is "1", no privileged instructions may be exe­
cuted. if the U bit is "0", then all instructions may be execut­
ed. When U = 0, the NS32008 is said to be in Supervisor
Mode; when U = 1, the NS32008 is said to be in User Mode.
A User Mode program is restricted from executing certain
instructions and accessing certain registers which could in­
terfere with the operating system. For example, a User
Mode program is prevented from changing the setting of the
flag used to indicate its own privilege mode. A Supervisor
Mode program is assumed to be a trusted part of the oper­
ating system, hence it has no such restrictions.

S: The S bit specifies whether the SPO register on SP1 reg­
ister is used as the stack pointer. The bit is automatically
cleared on interrupts and traps it. It may have a setting of 0
(use the SPO register) or 1 (use the SP1 register).

P: The P bit prevents a TRC trap from occurring more than
once for an instruction (Section 3.7.5). It may have a setting
of 0 (no trace pending) or 1 (trace pending).

I: If I = 1, then all interrupts will be accepted (Section 3.7). If
I = 0, only the NMI interrupt is accepted. Trap enables are
not affected by this bit.

2.1.3 The Configuration Register (CFG)

Within the Control section of the NS32008 CPU is the 4-bit
CFG Register, which declares the presence of certain exter­
nal devices. It is referenced by only one instruction,
SETCFG, which is intended to be executed only as part of
system initialization after reset. The format of the CFG Reg­
ister is shown in Figure 2-3.

\cWF\'1
TLlEE/6156-5

FIGURE 2-3. CFG Register

The CFG I bit declares the presence of external interrupt
vectoring circuitry (specifically, the NS32202 Interrupt Con­
trol Unit). If the CFG I bit is set, interrupts requested through
the INT pin are "Vectored." If it is clear, these interrupts are
"Non-Vectored." See Section 3.7.

The F and C bits declare the presence of the FPU and Cus­
tom Slave Processors. If these bits are not set, the corre­
sponding instructions are trapped as being undefined.

2.1.4 Memory Organization

The main memory of the NS32008 is a uniform linear ad­
dress space. Memory locations are numbered sequentially

en w
N o
o
CC)
o

2.0 Architectural Description (Continued)

starting at zero and ending at 224 -1. The number specify­
ing a memory location is called an address. The contents of
each memory location is a byte consisting of eight bits (Fig­
ure 2-4A). Unless otherwise noted, diagrams in this docu­
ment show data stored in memory with the lowest address
on the right and the highest address on the left. Also, when
data is shown vertically, the lowest address is at the top of a
diagram and the highest address at the bottom of the dia­
gram. When bits are numbered in a diagram, the least signif­
icant bit is given the number zero, and is shown at the right
of the diagram. Bits are numbered in increasing significance
and toward the left.

A

A. Byte at Address A

1'5 Mse's T LSB's 01

A+l A

B. Word at Address A

r MSB's T LSB's

A+3 A+2 A+ 1 A

TL/EE/6156-6

C. Double Word at Address A
FIGURE 2-4. Data Formats for NS32008 Memory

Two contiguous bytes are called a word (Figure 2-48). Ex­
cept where noted (Section 2.2.1), the least significant byte
of a word is stored at the lower address, and the most signif­
icant byte of the word is stored at the next higher address.
In memory, the address of a word is the address of its least
significant byte, and a word may start at any address.

Two contiguous words are called a double word (Figure 2-
4C). Except where noted (Section 2.2.1), the least signifi­
cant word of a double word is stored at the lowest address
and the most significant word of the double word is stored at
the address two greater. In memory, the address of a dou­
ble word is the address of its least significant byte, and a
double word may start at any address.

2.1.5 Dedicated Tables

Two of the NS32008 dedicated registers (MOD and INT­
BASE) serve as pOinters to dedicated tables in memory.

The INTBASE register pOints to the Interrupt Dispatch and
Cascade tables. These are described in Section 3.7.

The MOD register contains a pointer into the Module Table,
whose entries are called Module Descriptors. A Module De­
scriptor contains four pOinters, three of which are used by
the NS32008. The MOD register contains the address of the
Module Descriptor for the currently running module. It is au­
tomatically updated by the Call External Procedure instruc­
tions (CXP and CXPD).

2-432

The format of a Module Descriptor is shown in Figure 2-5.
The Static Base entry contains the address of static data
assigned to the running module. It is loaded into the CPU
Static Base register by the CXP and CXPD instructions. The
Program Base entry contains the address of the first byte of
instruction code in the module. Since a module may have
multiple entry pOints, the Program Base pOinter serves only
as a reference to find them.

15

I MOO I
I

31 oj
STATlCBASE

LINK TABLE ADDRESS

PROGRAM BASE

RESERVED

TL/EE/6156-7

FIGURE 2-5. Module DeSCriptor Format

The Link Table Address points to the Link Table for the
currently running module. The Link Table provides the infor­
mation needed for:

1. Sharing variables between modules. Such variables are
accessed through the Link Table via the External ad­
dressing mode.

2. Transferring control from one module to another. This is
done via the Call External Procedure (CXP) instruction.

The format of a Link Table is given in Figure 2-6. A Link
Table Entry for an external variable contains the 32-bit ad­
dress of that variable. An entry for an external procedure
contains two 16-bit fields: Module and Offset. The Module
field contains the new MOD register contents for the mod­
ule being entered. The Offset field is an unsigned number
giving the position of the entry point relative to the new
module's Program Base pOinter.

For further details of the functions of these tables, see the
Series 32000 Instruction Set Reference Manual.

ENTRY 31 0

ABSOLUTE ADDRESS (VARIABLE)

ABSOLUTE ADDRESS (VARIABLE)

OFFSET I MODULE (PROCEDURE)

TLlEE/6156-B

FIGURE 2-6. A Sample Link Table

2.0 Architectural Description (Continued)

OPTIONAL BASIC
EXTENSIONS INSTRUCTION __________________ ~A __________________ ~--------~A~------~

r - ~ - ,

DISPZ DISPI DISPZIDISPI : ,
IMPLIED GEN GEN

,
INDEX INDEX

,
IMMEDIATE DISP DISP ADDR ADDR ,

OPCODE BYTE BYTE MODE MODE
,

OPERAND(S) ,
A B

,
IMM IMM

, , ,

t t)J

TLlEE/6156-10

FIGURE 2-7. General Instruction Format

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-7 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the opcode and up to two 5-bit General Ad­
dressing Mode ("Gen") fields. Following the Basic Instruc­
tion field is a set of optional extensions which may appear,
depending on the instruction and the addressing modes se­
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or a), and the Index Byte specifies
which General Purpose register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-8.

GEN. ADDR. MODE REG. NO.

TLlEE/6156-9

FIGURE 2-8. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Displacement/Immediate field
may contain one or two displacements, or one immediate
value. The size of a Displacement field is encoded within the
top bits of that field, as shown in Figure 2-9, with the remain­
ing bits interpreted as a signed (two's complement) value.
The size of an Immediate value is determined from the Op­
code field. Both Displacement and Immediate fields are
stored most-significant byte first. Note that this is different
from the memory representation of data (Section 2.1.4.).

Some instructions require additional, "implied" immediates
and/or displacements, apart from those associated with ad­
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.2.3).

2-433

2.2.2 Addressing Modes

The NS3200a CPU generally accesses an operand by cal­
culating its Effective Address based on information avail­
able when the operand is to be accessed. The method to be
used in performing this calculation is specified by the pro­
grammer as an "addressing mode."

Addressing modes in the NS3200a are designed to optimal­
ly support high-level language accesses to variables. In
nearly all cases, a variable access requires only one ad­
dressing mode, within the instruction that acts upon that
variable. Extraneous data movement is therefore minimized.

NS3200a Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen­
eral Purpose Registers. In certain Slave Processor instruc­
tions. an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the effective address of the operand in
memory.

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated registers
PC, SP, SB or FP. These registers point to data areas gen­
erally needed by high-level languages.

Memory Relative: A pOinter variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pOinter to generate the Effec­
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

z
U)
Co)
N
C)
C)
C» •
C)

tI

o r---, .-

i
~
z

2.0 Architectural Description (Continued)

Byte Displacement: Range -64 to + 63

SIGNED DISPLACEMENT

Word Displacement: Range -8192 to + 8191
o

Double Word Displacement:
Range (Entire Addressing Space)

7 o
I

1 I 1
I

f.tI~
c,~\f.

s~\,."
oO~

'!>\Utl'"

TL/EE/6156-13

FIGURE 2-9. Displacement Encodings

Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-

2-434

eral Purpose Register by 1, 2, 4 or a and adding it into the
total, yielding the final Effective Addrsss of the operand.

Table 2-1 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.2.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS3200a in­
struction set. The Format column refers to the Instruction
Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De­
scription column provides a short description of the function
provided by that instruction. Further detailS of the exact op­
erations performed by each instruction may be found in the
Instruction Set Reference Manual.

Notations:

i = I nteger length suffix: B = Byte

W = Word

D = Double Word

f = Floating-Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.

short = A 4-bit value encoded within the Basic Instruction.
(See Appendix A for encodings.)

imm = Immediate operand. An a-bit value appended after
any addressing extensions.

disp = Displacement (addressing constant): a, 16,32 bits.
All three lengths legal.

reg = Any General Purpose Register: RO-R7.

areg = Any Dedicated/Address Register: SP, SB, FP,
MOD .. INTBASE, PSR, UPSR, (bottom eight PSR bits).

creg = A Custom Slave Processor Register (implementa­
tion dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction. (See Appendix A for encodings.)

r--, Z

2.0 Architectural Description (Continued)

ENCODING MODE

Register
00000 Register 0
00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register 5
00110 Register 6
00111 Register 7

Register Relative
01000 Register 0 relative
01001 Register 1 relative
01010 Register 2 relative
01011 Register 3 relative
01100 Register 4 relative
01101 Register 5 relative
01110 Register 6 relative
01111 Register 7 relative

Memory Relative
10000
10001
10010

Reserved

Frame memory relative
Stack memory relative
Static memory relative

TABLE 2·1
NS32008 Addressing Modes

ASSEMBLER SYNTAX

RO orFO
R1 or F1
R20rF2
R30rF3
R4 or F4
R50rF5
R60rF6
R70rF7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp2(disp1 (FP))
disp2(disp1 (SP))
disp2(disp1 (SB))

10011 (Reserved for Future Use)

Immediate
10100 Immediate value

Absolute
10101 Absolute @disp

External
10110 External EXT (disp1) + disp2

Top of Stack
10111 Top of stack TOS

Memory Space
11000 Frame memory disp(FP)
11001 Stack memory disp(SP)
11010 Static memory disp(SB)
11011 Program memory • +disp

Scaled Index
11100 Index, bytes mode[Rn:B]
11101 Index, words mode[Rn:W]
11110 Index, double words mode[Rn:D]
11111 Index, quad words mode[Rn:Q]

2-435

EFFECTIVE ADDRESS

None: Operand is in the specified
register.

Disp + Register.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "SP"
is either SPO or SP1, as selected
in PSR.

None: Operand is input from
instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

EA (mode) + Rn.
EA (mode) + 2 x Rn.
EA (mode) + 4 x Rn.
EA (mode) + 8 x Rn.
'Mode' and 'n' are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

~
~
C)
C)

cp
C)

Q r--, .,..
~ 2.0 Architectural Description (Continued)
Q
C'I :3 TABLE 2·2
Z NS32008 Instruction Set Summary

MOVES
Format Operation

4 MOVi
2 MOVQi
7 MOVMi
7 MOVZBW
7 MOVZiD
7 MOVXBW
7 MOVXiD
4 ADDR

INTEGER ARITHMETIC

Format Operation

4 ADDi
2 ADDQi
4 ADDCi
4 SUBi
4 SUBCi
6 NEGi
6 ABSi
7 MULi
7 QUOi
7 REMi
7 DIVi
7 MODi
7 MEli
7 DEli

Operands
gen,gen
short,gen
gen,gen,disp
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

Operands

gen,gen
short,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen

PACKED DECIMAL (BCD) ARITHMETIC

Format

6
6

Operation

ADDPi
SUBPi

INTEGER COMPARISON
Format

4
2
7

Operation
CMPi
CMPQi
CMPMi

LOGICAL AND BOOLEAN

Format
4
4
4
4
6
6
2

Operation
ANDi
ORi
BICi
XORi
COMi
NOTi
Scondi

Operands

gen,gen
gen,gen

Operands
gen,gen
short,gen
gen,gen,disp

Operands
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

Description
Move a value.
Extend and move a signed 4·bit constant.
Move multiple: disp bytes (1 to 16).
Move with zero extension.
Move with zero extension.
Move with sign extension.
Move with sign extension.
Move effective address.

Description

Add.
Add signed 4·bit constant.
Add with carry.
Subtract.
Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.
Multiply.
Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to extended integer.
Divide extended integer.

Description

Add packed.
Subtract packed.

Description
Compare.
Compare to signed 4·bit constant.
Compare multiple: disp bytes (1 to 16).

Description
Logical AND.
Logical OR.
Clear selected bits.
Logical exclusive OR.
Complement all bits.
Boolean complement: LSB only.
Save condition code (cond) as a Boolean variable of size i.

2-436

2.0 Architectural Description (Continued)

TABLE 2-2
Instruction Set Summary (Continued)

SHIFTS
Format Operation Operands Description

6 LSHi gen,gen Logical shift, left or right.
6 ASHi gen,gen Arithmetic shift, left or right.
6 ROTi gen,gen Rotate, left or right.

BITS
Format Operation Operands Description

4 TSITi gen,gen Test bit.
6 SSITi gen,gen Test and set bit.
6 SBITli gen,gen Test and set bit, interlocked.
6 CSITi gen,gen Test and clear bit.
6 CSITIi gen,gen Test and clear bit, interlocked.
6 ISITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.

BIT FIELDS
Sit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used

in Pascal. "Extract" instructions read and align a bit field. "Insert" instructions write a bit field from an aligned source.

Format Operation Operands
8 EXTi reg,gen,gen,disp

8 INSi reg,gen,gen,disp
7 EXTSi gen,gen,imm,imm
7 INSSi gen,gen,imm,imm
8 CVTP reg,gen,gen

ARRAYS
Format Operation Operands

8 CHECKi reg,gen,gen
8 INDEXi reg,gen,gen

STRINGS
String instructions assign specific functions to the
General Purpose Registers:

R4 - Comparison Value

R3 - Translation Table Pointer
R2 - String 2 Pointer

R1 - String 1 Pointer
RO - Limit Count

Format Operation
5 MOVSi

MOVST

5 CMPSi
CMPST

5 SKPSi
SKPST

Operands
options

options

options
options

options
options

Description
Extract bit field (array oriented).

Insert bit field (array oriented).
Extract bit field (short form).

Insert bit field (short form).
Convert to bit field pointer.

Description
Index bound check.

Recursive indexing step for multiple-dimensional arrays.

Options on all string instructions are:
B (Backward): Decrement string pointers after each

U (Until match):

W (While match):

step rather than incrementing.

End instruction if String 1 entry
matches R4.
End instruction if String 1 entry does

not match R4.
All string instructions end when RO decrements to zero.

Description
Move String 1 to String 2.

Move string, translating bytes.

Compare String 1 to String 2.

Compare, translating String 1 bytes.

Skip over String 1 entries.
Skip, translating bytes for Until/While.

2-437

z en
w
N
o
o
Q)

I
o

PI

C) r--,
~ 2.0 Architectural Description (Continued)
C)
N TABLE 2·2
~ Instruction Set Summary (Continued)
Z JUMPS AND LINKAGE

Format Operation Operands Description
3 JUMP gen Jump.
0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.
3 CASEi gen Multiway branch.

2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.
3 JSR gen Jump to subroutine.

BSR disp Branch to subroutine.

CXP disp Call external procedure.

3 CXPD gen Call external procedure using descriptor.

SVC Supervisor call.
FLAG Flag trap.
BPT Breakpoint trap.

ENTER [reg list] ,disp Save registers and allocate stack frame. (Enter Procedure)

EXIT [reg list] Restore registers and reclaim stack frame. (Exit Procedure)

RET disp Return from subroutine.
RXP disp Return from external procedure call.

RETT disp Return from trap. (Privileged)

RETI Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION

Format Operation Operands Description
1 SAVE [reg list! Save general purpose registers.

RESTORE [reg list! Restore general purpose registers.

2 LPRi areg,gen Load dedicated register. (Privileged if PSR or INTBASE)

2 SPRi areg,gen Store dedicated register. (Privileged if PSR or INTBASE)
3 ADJSPi gen Adjust stack pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)

5 SETCFG [option list] Set configuration register. (Privileged)

FLOATING POINT
Format Operation Operands Description

11 MOVf gen,gen Move a floating point value.

9 MOVLF gen,gen Move and shorten a long value to standard.

9 MOVFL gen,gen Move and lengthen a standard value to long.

9 MOVif gen,gen Convert any integer to standard or long floating.

9 ROUNDfi gen,gen Convert to integer by rounding.

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.

9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

11 ADDf gen,gen Add.

11 SUBf gen,gen Subtract.

11 MULf gen,gen Multiply.

11 DIVf gen,gen Divide.

11 CMPf gen,gen Compare.

11 NEGf gen,gen Negate.

11 ABSf gen,gen Take absolute value.

9 LFSR gen Load FSR.

9 SFSR gen Store FSR.

MISCELLANEOUS
Format Operation Operands Description

1 NOP No operation.

WAIT Wait for interrupt.

DIA Diagnose. Single-byte "Branch to Self" for hardware
breakpointing. Not for use in programming.

2-438

2.0 Architectural Description (Continued)

TABLE 2-2
Instruction Set Summary (Continued)

CUSTOM SLAVE
Format Operation Operands Description

Custom calculate. 15.5 CCALOc
15.5 CCAL1c
15.5 CCAL2c
15.5 CCAL3c

15.5 CMOVOc
15.5 CMOV1c
15.5 CMOV2c
15.5 CMOV3c

15.5 CCMPOc
15.5 CCMP1c

15.1 CCVOci
15.1 CCV1ci
15.1 CCV2ci
15.1 CCV3ic

15.1 CCV4DQ
15.1 CCV5QD

15.1 LCSR
15.1 SCSR

15.0 CATSTO
15.0 CATST1

15.0 LCR
15.0 SCR

3.0 Functional Description
3.1 POWER AND GROUNDING

gen,gen
gen,gen
gen,gen
gen,gen

gen,gen
gen,gen
gen,gen
gen,gen

gen,gen
gen,gen

gen,gen
gen,gen
gen,gen
gen,gen

gen,gen
gen,gen

gen
gen

gen
gen

creg,gen
creg,gen

The NS32008 requires a single 5V power supply, applied on
pin 48 (Vee).

Grounding connections are made on two pins. Logic Ground
(GNDL, pin 24) is the common pin for on-chip logic, and
Buffer Ground (GNDB, pin 25) is the common pin for the
output drivers. For optimal noise immunity, it is recommend­
ed that GNDL be attached through a single conductor di­
rectly to GNDB, and that all other grounding connections be
made only to GNDB, as shown below (Figure 3-1).

In addition to Vee and Ground, the NS32008 CPU uses an
internally-generated negative voltage. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig­
ure 3-1) from the BBG pin to ground. Recommended values
for these are:

Cl: 1 ".F, Tantalum.

C2: 1000 pF, low inductance. This should be either a

disc or monolithic ceramic capacitor.

~ i+5V

1 vcc~
NS32008

CPU

TL/EE/6156-14

FIGURE 3-1. Recommended Supply Connections

2-439

Custom move.

Custom compare.

Custom convert.

Load custom status register.
Store custom status register.

Custom address/test. (Privileged)
(Privileged)

Load custom register. (Privileged)
Store custom register. (Privileged)

3.2 CLOCKING

The NS32008 inputs clocking Signals from the NS32201
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 3-2.

Each rising edge of PHil defines a transition in the timing
state ("T-State") of the CPU. One T-State represents the
execution of one microinstruction within the CPU and/or
one step of an external bus transfer. See Section 4 for com­
plete specifications of PHI1 and PHI2.

PHil

PHI2

TL/EE/6156-15

FIGURE 3-2. Clock Timing Relationships

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be

z
(J)
w
I\)
o
o
CC)

•
o

C) r---~
Ut
C)
C)
C\I
CO)
U)
z

3.0 Functional Description (Continued)

connected anywhere except from the TCU to the CPU. A
TTL clock signal (CTTL) is provided by the TCU for all other
clocking.

3.3 RESETTING

The RST pin serves as a reset for on·chip logic. The CPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the CPU ter­
minates instruction processing, resets its internal logic, and
clears the Program Counter (PC) and Processor Status
Register (PSR) to all zeroes.

On application of power, RST must be held low for at least
50 ",s after Vee is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 clock cycles. The rising edge must occur while PHI1
is high. See Figures 3-3 and 8-4.

4.SV

Vcc

PHI , __ -+-__ -' J)Jl

I---~~:~
TL/EE/6156-16

FIGURE 3-3. Power-On Reset Requirements

The NS32201 Timing Contol Unit (TCU) provides circuitry to
meet the Reset requirements of the NS32008 CPU. Rgure
8·5 shows the recommended connections.

vcc

r------------,
I I

PHll~JLJJ-
I· 64cLOCK-1

RST-------.::~, C;CLES I
TL/EE/6156-17

FIGURE 3-4. General Reset Timing

3.4 BUS CYCLES

The NS32008 will perform a bus cycle for one of the follow­
ing reasons:

1. To write or read data to or from memory or a peripheral
interface device. Peripheral input and output are memory­
mapped in the Series 32000 family.

2. To fetch instructions into the 4-byte instruction queue.
This happens whenever the bus would otherwise be idle
and the queue is not already full.

3. To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple­
tion of an interrupt service routine.

4. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 3 above are identi­
cal. For timing specifications, see Section 4. The only exter­
nal difference between them is the 4-bit code placed on the
Bus Status pins (STO-ST3). Slave Processor cycles differ in
that separate control signals are applied and transfers are
performed 16 bits at a time (Section 3.4.6).

Figure 8-6 shows typical bus connections for the NS32008.
The address, data, and control signals referenced in the
following discussion are shown in this figure.

The sequence of events in a non-Slave Processor bus cycle
is shown in Figure 8-lIor a Read cycle and Figure 8-8 for a
Write cycle. The cases shown assume that the selected
memory or interface device is capable of communicating
with the CPU at full speed. If it is not, then cycle extension
may be requested through the RDY line (Section 3.4.1).

HU220'
TCU

NS32008
CPU

I RESET ,,--+1 ~;---,-__+--+_'~'----_l I'" RSTI RSTO 1----_-----1 iiSi
! I '---- __________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

FIGURE 3-5. Recommended Reset Connections

2-440

SYSTEM RESET

TL/EE/6156-16

3.0 Functional Description (Continued)

A full-speed bus cycle is performed in four cycles of the
PHI1 clock signal, labeled T1 through T4. Clock cycles not
associated with a bus cycle are designated Ti (for "Idle").

During T1, the CPU applies an address on pins ADO-AD15
and A16-A2S. It also provides a low-going pulse on the
ADS pin, which serves the dual purpose of informing exter­
nal circuitry that a bus cycle is starting and of providing con­
trol to an external latch for demultiplexing address bits 0-7
from the ADO-AD7 pins. See Figure 3-6. Also during this
time the status signal DDIN, indicating the direction of the
transfer, becomes valid.

During T2, the CPU switches the Data Bus, ADO-AD7, to
either accept or present data. Note that the signals AD8-
AD15 and AD16-AD2S remain valid, and need not be
latched. It also starts the Data Strobe (DS), signaling the
beginning of the data transfer. Associated signals from the
NSS2201 Timing Control Unit are also activated at this time:
RD (Read Strobe) or WR (Write Strobe), TSO (Timing State
Output, indicating that T2 has been reached) and DBE (Data
Buffer Enable).

ODIN

ADO-AD7 I'

NS32008

ADs

ADB-ADI5
A1B-A23

PHil PHI2 os

r 1
I

PHil PHI2 ADS ODIN

NS32201

The TS state provides for access time requirements, and it
occurs at least once in a bus cycle. At the end of T2 or TS,
on the falling edge of the PHI2 clock, the RDY (Ready) line
is sampled to determine whether the bus cycle will be ex­
tended (Section S.4.1).

If the CPU is performing a Read cycle, the Data Bus (ADO­
AD7) is sampled at the falling edge of PHI2 of the last TS
state. See Timing Specification, Section 4. Data must, how­
ever, be held at least until the beginning of T4. DS and RD
are guaranteed not to go inactive before this point, so the
rising edge of either of them may safely be used to disable
the device providing the input data.

The T4 state finishes the bus cycle. At the beginning of T4,
the DS, RD or WR, and TSO signals go inactive, and at the
rising edge of PHI2, DBE goes inactive, having provided for
necessary data hold times. Data during Write cycles re­
mains valid from the CPU throughout T4. Note that the Bus
Status lines (STO-STS) change at the beginning of T4, an­
ticipating the following bus cycle (if any).

DATA
BUFFER

,---

I

OCTAL -LATCH

AO-A23

os

DBE AD
RD

WR
WR

TSO
TSO

TL/EE/6156-19

FIGURE 3-6. Bus Connections

2-441

z
en
Co)
N
C
C
~
c

o r---~

~
~ z

3.0 Functional Description (Continued)

N83ZOO8 CPU 8USSIGNALS

I T40RTi I T1 12 T3 T4 I T10RTI I
PHI 1 [

PHI 2 [
ADI-AD16 [A16-A23

ADo-AD7 [

ADs [

5T0-5T3 [

iiiiiii [

Os [

ROY [

AD [

5BE[

TLlEE/6156-20

FIGURE 3·7_ Read Cycle Timing

2-442

3.0 Functional Description (Continued)

NS32008 CPU BUS SIGNALS

NU220' TCU BUS SIGNALS

Dai[

FIGURE 3·8. Write Cycle Timing

2-443

TL/EE/6156-21

z
~
N o
o
co
o

C) r--, ..-
~
C)
C)
C"oI
CO)
en
z

3.0 Functional Description (Continued)

3.4.1 Cycle Extension

To allow sufficient strobe widths and access times for any
speed of memory or peripheral device, the NS32008 pro·
vides for extension of a bus cycle. Any type of bus cycle
except a Slave Processor cycle can be extended.

In Figures 3-7 and 3-8, note that during T3 all bus control
signals from the CPU and TCU are flat. Therefore, a bus
cycle can be cleanly extended by causing the T3 state to be
repeated. This is the purpose of the RDY (Ready) pin.

At the end of T2 on the falling edge of PHI2, the RDY line is
sampled by the CPU. If RDY is high, the next T-states will be
T3 and T4, ending the bus cycle. If RDY is low, then another
T3 state will be inserted after the next T -state and the RDY
line will again be sampled on the falling edge of PHI2. Each
additional T3 state after the first is referred to as a "WAIT
STATE". See Figure 3-9.

Tl T2

PHil

PHI 2

RDY

The RDY pin is driven by the NS32201 Timing Control Unit,
which applies WAIT States to the CPU as requested on
three sets of pins:

1. CWAIT (Continuous WAIT), which holds the CPU in WAIT
States until removed.

2. WAIT1, WAIT2, WAIT4, WAIT8 (collectively, WAITn),
which may be given a 4-bit binary value requesting a spe­
cific number of WAIT States from 0 to 15.

3. PER (Peripheral), which inserts five additional WAIT
states and causes the TCU to reshape the RD and WR
strobes. This provides the setup and hold times required
by most MOS peripheral interface devices.

Combinations of these various WAIT requests are both legal
and useful. For details of their use, see the NS32201 Data
Sheet.

Rgure 3-10 illustrates a typical Read cycle, with two WAIT
states requested through the TCU WAITn pins.

T3 I (W~T) I T4

TLlEE/6156-22

FIGURE 3-9. ROY Pin Timing
3.4.2 Bus Status

The NS32008 CPU presents four bits of Bus Status informa­
tion on pins STO-ST3. The various combinations on these
pins indicate why the CPU is performing a bus cycle, or, if it
is idle on the bus, why it is idle.

Referring to Figures 3-7 and 3-8, note that Bus Status leads
the corresponding Bus Cycle, going valid one clock cycle
before T1 , and changing to the next state at T 4. This allows
the system designer to fully decode the bus status and, if
desired, latch the decoded signals before ADS initiates the
Bus Cycle.

The Bus Status pins are interpreted as a 4-bit value, with
STO the least significant bit. Their values decode as follows:

0000 The bus is idle because the CPU does not need to
perform a bus access.

0001 The bus is idle because the CPU is executing the
WAIT instruction.

0010 (Reserved for future use.)

0011 The bus is idle because the CPU is waiting for a
Slave Processor to complete an instruction.

0100 Interrupt Acknowledge, Master.

The CPU is performing a Read cycle. To acknowl­
edge receipt of a Non-Maskable Interrupt (on NMI),
it will read from address FFFF0016, but will ignore
any data provided. To acknowledge receipt of a
Maskable Interrupt (on IND, it will read from

2-444

address FFFE0016, expecting a vector number to be provid­
ed from the Master NS32202 Interrupt Control Unit. If the
vectoring mode selected by the last SETCFG instruction
was Non-Vectored, then the CPU will ignore the value it has
read and will use a default vector instead, having assumed
that no NS32202 is present. See Section 3.4.5.

0101 Interrupt Acknowledge, Cascaded.

The CPU is reading a vector number from a Cascad­
ed NS32202 Interrupt Control Unit. The address
provided is the address of the NS32202 Hardware
Vector register. See Section 3.4.5.

0110 End of Interrupt, Master.

The CPU is performing a Read cycle to indicate that
it is executing a Return from Interrupt (RETI) instruc­
tion. See Section 3.4.5.

0111 End of Interrupt, Cascaded.

The CPU is reading from a Cascaded Interrupt Con­
trol Unit to indicate that it is returning (through RETI)
from an interrupt service routine requested by that
unit. See Section 3.4.5.

1000 Sequential Instruction Fetch.

The CPU is reading the next sequential word from
the instruction stream into the Instruction Queue. It
will do so whenever the bus would otherwise be idle
and the queue is not already full.

3.0 Functional Description (Continued)

PREV.CYCLE
NS32DD8 CPU BUS SIGNALS

NEXT CYCLE

IT40RTi I T1 I T2 I 13 I (W~n I (W~T) I T4 1T10RTi I
PHil [nJLJL Lfl--fL ""L!l-'
PHI2 [

ADo-AD7 [

- J1 Ul Ul J1Jl Lf1~ Ul-
~ ~ff~ ~ ADDRESS VALID

~)--0 ~A~---~ ~ ~ ~8Im NEXT ADD
VALID

~r-- ,...

R

R

ADS [V 'iJ
STO-S13 [~ ~ STAlUSVALID IX NEXTSlATU S

~ ~ ~ I~
f-

- / 1\
NS32201 TCU CYCLE EXTENSION SIGNALS

~ ~ ~
CWAiT[%; ~ ~ '0 ~ o/a 0/& ~

PER [~ ~ Wi I'W ::'@ ~ ~ ~ 0/& t%
I

WAITn [~ 0/& ~ G w ~ ~ ~ ~ ~
ROY [

(TCU TO CPU)

-

-

-

-

V
V
~
II

I
NS32201 lCU BUS SIGNALS

II

1\ V

Note: Arrows on CWAIT, PER, WAITn indicale pOinls al which the TCU samples.

Arrows on ADO-AD7 and ROY indicate points at which the CPU samples.

FIGURE 3-10. Extended Cycle Example

2-445

TL/EE/6156-23

z en w
N
Q
Q
Q)

•
Q

3.0 Functional Description (Continued)

1001 Non-Sequential Instruction Fetch.

The CPU is performing the first fetch of instruction
code after the Instruction Queue is purged. This will
occur as a result of any jump or branch, or any inter­
rupt or trap, or execution of certain instructions.

1010 Data Transfer.

The CPU is reading or writing an operand of an in­
struction.

1011 Read RMW Operand.

The CPU is reading an operand which will subse­
quently be modified and rewritten.

1100 Read for Effective Address Calculation.

The CPU is reading information from memory in or­
der to determine the Effective Address of an oper­
and. This will occur whenever an instruction uses
the Memory Relative or External addressing mode.

1101 Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper­
and to or from a Slave Processor, or it is issuing the
Operation Word of a Slave Processor instruction.
See Section 3.B.1.

1110 Read Slave Processor Status.

The CPU is reading a status word from a Slave
Processor. This occurs after the Slave Processor
has signaled completion of an instruction. The
transferred word tells the CPU whether a trap
should be taken, and in some instructions, it pres­
ents new values for the CPU Processor Status Reg­
ister bits N, Z, L or F. See Section 3.B.1.

1111 Broadcast Slave 10.

The CPU is initiating the execution of a Slave Proc­
essor instruction. The 10 Byte (first byte of the in­
struction) is sent to all Slave Processors, one of
which will recognize it. From this point, the CPU is
communicating with only one Slave Processor. See
Section 3.B.1.

3.4.3 Data Access Sequences

The NS3200B accesses all memory and peripheral devices
in sequences of single-byte transfers. Transfer of values
larger than bytes is performed from least-significant byte
(lowest address) to most-significant byte.

3.4.3.1 Bit Accesses

The bit instructions access the byte containing the designat­
ed bit. The Test and Set Bit instruction (SBID, for example,
reads a byte, alters it, and rewrites it, having changed the
contents of one bit.

2-446

3.4.3.2 Bit Field Accesses

An access to a Bit Field in memory always generates a Dou­
ble Word transfer starting at the address containing the
least-significant bit of the field. The Double Word is read by
an Exact instruction; an Insert instruction reads a Double
Word, modifies it, and rewrites it.

3.4.3.3 Extending Multiply Accesses

The extending multiply instruction (MEl) will return a result
which is twice the size in bytes of the operand that it reads.
If the multiplicand is in memory, the most-significant half of
the result is written first (at the higher address), then the
least-significant half.

3.4.4 Instruction Fetches

Instructions for the NS3200B CPU are "prefetched"; that is,
they are input before being needed into the next available
entry of the 4-byte Instruction Queue. The CPU performs
two types of Instruction Fetch cycles: Sequential and Non­
Sequential. These can be distinguished from each other by
their differing status combinations on pins STO-ST3 (Sec­
tion 3.4.2).

A Sequential Fetch will be performed by the CPU whenever
the Data Bus would otherwise be idle and the Instruction
Queue is not currently full.

A Non-Sequential Fetch occurs as a result of any break in
the normally sequential flow of a program. Any jump or
branch instruction, a trap or an interrupt will cause the next
Instruction Fetch cycle to be Non-Sequential. In addition,
certain instructions flush the Instruction Queue, causing the
next instruction fetch to display Non-Sequential status. Only
the first bus cycle after a break displays Non-Sequential
status.

3.4.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or
more bus cycles whose purpose is interrupt control rather
than the transfer of instructions or data. Execution of the
Return from Interrupt instruction (RETI) will also cause Inter­
rupt Control bus cycles. These differ from instruction or data
transfers only in the status presented on pins STO-ST3. All
Interrupt Control cycles are Read cycles. Table 3-1 summa­
rizes NS3200B interrupt sequences.

This section describes only the Interrupt Control sequences
associated with each interrupt and with the return from its
service routine. For full details of the NS3200B interrupt
structure, see Section 3.7.

r--, Z

3.0 Functional Description (Continued)

TABLE 3·1
Interrupt Sequences

Cycle Status
A. Nonmaskable Interrupt Control Sequences.
Interrupt Acknowledge

1 0100
Interrupt Return

Address

FFFF0016

None: Performed through Return from Trap (RETT) instruction.

B. Nonvectored Interrupt Control Sequences.
Interrupt Acknowledge

1 0100 FFFE0016
Interrupt Return
None. Performed through return from Trap (RETT) instruction.

C. Vectored Interrupt Sequences: Noncascaded.

Interrupt Acknowledge
1 0100 FFFE0016

Interrupt Return
1 0110

D. Vectored Interrupt Sequences: Cascaded.

Interrupt Acknowledge
1 0100

FFFE0016

FFFE0016

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0101 Cascade

Interrupt Return
1 0110

Address

FFFE0016

(The CPU here uses the Cascade Index to find the Cascade Address.)
2 0111 Cascade

Address

2·447

o

o

o

o

o

o

o

o

Bus

Don't Care

Don't Care

Vector: Range 0-127

Vector: Same as in
Previous Interrupt
Acknowledge Cycle

Cascade Index:
Range -16to-1

Vector: Range 0-255

Cascade Index: Same
as in Previous Interrupt
Acknowledge Cycle

Don't Care

~
~
o
o
CO

I
o

o ..-
~ 3.0 Functional Description (Continued)

~ 3.4.6 Slave Processor Communication

~ The SPC pin is used as the data strobe for Slave Processor
Z transfers. In a Slave Processor bus cycle, data is transferred

16 bits at a time on the Data Bus (ADO-AD15) and the
status lines STO-ST3 are monitored by each Slave Proces­
sor in order to determine the type of transfer being per­
formed. Figure 3-11 shows typical Slave Processor connec­
tions. SPC is bidirectional, but is driven by the CPU during all
Slave Processor bus cycles. See Section 3.8 for full proto­
col sequences.

AD(O·IS)

AT/SPC

N532032
CPU

5TO-5T3

O(o-IS)

" v
SPC

SLAVE
PROCESSOR

STO-5T3

TL/EE/6156-24

FIGURE 3-11. Slave Processor Connections

PREVo CYCLE NEXT CYCLE

I T40rTi T1 T4 T10RTi I
PHI1 [

PHI2 [

5PC [

ADO-AD7 [

5TO-5T3 [

ADS [

Nole 1. CPU samples Data Bus here.

Nole 2. DBE and all o1her NS32201 TCU bus signals remain inactive be·
cause no ADS pulse is received from the CPU.

FIGURE 3-12. CPU Read from Slave Processor

2-448

TLlEE/6156-25

.--,z
3.0 Functional Description (Continued)

3.4.6.1 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock
cycles, labeled T1 and T4 (see Figures 3-12 and 3-13). Dur­
ing a Read cycle SPC is active from the beginning of T1 to
the beginning of T4, and the data is sampled at the end of
T1. The Cycle Status pins lead the cycle by one clock peri­
od, and are sampled at the leading edge of SPC. During a
Write cycle, the CPU applies data and activates SPC at T1 ,
removing SPC at T 4. The Slave Processor latches status on
the leading edge of SPC and latches data on the trailing
edge.

Since the CPU does not pulse the Address Strobe (ADS),
no bus signals are generated by the NS32201 Timing Con­
trol Unit. The direction of a transfer is determined by the

PREV.CYCLE

PHil [

sPc [

ADO-AD7 [

STD.STI [

ADS [

_(2)[
DBE

I T40RTi T1

sequence ("protocol") established by the instruction under
execution; but the CPU indicates the direction on the DDIN
pin for hardware debugging purposes.

3.4.6.2 Slave Operand Transfer Sequences

A Slave Processor operand is transferred in one or more
Slave bus cycles. A Byte operand is transferred on the
least-significant byte of the Data Bus (ADO-AD7), and a
Word operand is transferred on the entire 16-bit bus (ADO­
AD15). A Double Word is transferred in a consecutive pair
of bus cycles, least-significant word first. A Quad Word is
transferred in two pairs of Slave cycles, with other bus cy­
cles possibly occurring between them. The word order is
from least-significant to most-significant word.

NEXTCVCLE

T4 T1 OR Ti I

TL/EE/6156-26

Note 1. Slave Processor samples Data Bus here.

Note 2. DBE, being provided by the NS322Dl TCU, remains Inactive due to
the fact that no pulse is presented on ADS, TCU signals RD, WR and TSO
also remain inactive.

FIGURE 3-13. CPU Write to Slave Processor

2-449

tn
c.,)
I\)
o
o
OC)
o

o
I

CCI o o
C'I
C')
U)
Z

3.0 Functional Description (Continued)

3.5 BUS ACCESS CONTROL

The NS3200B CPU has the capability of relinquishing its
access to the bus request from a DMA device or another
CPU. This capability is implemented on the HOLD (Hold Re­
quest) and HLDA (Hold Acknowledge) pins. By asserting
HOLD low, an external device requests access to the bus.
On receipt of HLDA from the CPU, the device may perform
bus cycles, as the CPU at this point has set the ADO-AD15,
A16-A23, ADS and DDIN pins to the TRI-STATEI!> condi­
tion. To return control of the bus to the CPU, the device sets
HOLD inactive, and the CPU acknowledges return of the
bus by setting HLDA inactive.

I Ti I Ti I··· I
PHll[JULf

PHI2 [

HOLD [

HCDA[

How quickly the CPU releases the bus depends on.whether
it is idle on the bus at the time the HOLD request IS made,
as the CPU must always complete the current bus cycle.
Figure 3-14 shows the timing sequence when the CPU is
idle. In this case, the CPU grants the bus during the immedi­
ately following clock cycle. Figure 3-15 shows the sequence
if the CPU is using the bus at the time that the HOLD re­
quest is made. If the request is made during or before the
clock cycle shown (two clock cycles before T4), the CPU
will release the bus during the clock cycle following T 4. If
the request occurs closer to T4, the CPU may alre~dy.have
decided to initiate another bus cycle. In that case, It will not
grant the bus until after the next T 4 state. Note that this
situation will also occur if the CPU is idle on the bus, but has
initiated a bus cycle internally.

TI TI TI TIORT1 I

AFFECTED SIGNALS

ADS [------- It------ -------

DFN[

ADI-AD15 [
A16·A23

~----- -----

---- ~r---- -----

:...<t':..L.L.L.L.o'4"

TL/EE/6156-27

FIGURE 3-14. HOLD Timing, Bus Initially Idle

2-450

r--. Z

3.0 Functional Description (Continued)

T3 T4

PHI 2 [

iiiiLo[

iiLDA[

AiiS[

DDiN[-+ ______ +-____ ~~----~

AD8-AD15[
A16·A23

~-----r-----r----~

STO.ST3[-+----/----4_J

Ti TI

AFFECTED SIGNALS

--- ·n---- ----

--- I~--- ----

FIGURE 3-15. HOLD Timing, Bus Initially Not Idle

2-451

TI Ti

TL/EE/6156-28

en w
I\,)
o
o
CO • ...
o

•

3.0 Functional Description (Continued)

3.6 INSTRUCTION STATUS

In addition to the four bits of bus cycle status (STO-ST3),
the NS32008 CPU also presents Instruction Status informa­
tion on three separate pins. These pins differ from STO­
ST3 in that they are synchronous to the CPU's internal in­
struction execution section rather than to its bus inerface
section.

PFS (Program Flow Status) is pulsed low as each instruction
begins execution. It is intended for debugging purposes.

U/S originates from the U bit of the Processor Status Regis­
ter, and indicates whether the CPU is currently running in
User or Supervisor mode. Although it is not synchronous to
bus cycles, there are guarantees on its validity during any
given bus cycle. See the Timing Specifications, Rgure 4-19.

ILO (Interlocked Operation) is activated during an SBITI (Set
Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.
It is made available to external bus arbitration circuitry in
order to allow these instructions to implement the sema­
phore primitive operations for multiprocessor communica­
tion and resource sharing. As with the U/S pin. there are
guarantees on its validity during the operand accesses per­
formed by the instructions. See the Timing Specification
section, Figures 4-16 and 4-17.

3.7 NS320081NTERRUPT STRUCTURE

The NS32008 CPU has two interrupt pins: INT, on which
maskable interrupts may be requested, and NMI, on which
nonmaskable interrupts may be requested.

'1"'
MEMORY ~

'1"'

/ CASCADE ADDR 0

· CASCADE TABLE f:: • ~F ·
I·'~"~·~~

CASCADE ADDR 14

CASCADE ADDR 15

REGISTER J
FIXED INTERRUPTS

AND TRAPS

In addition, there is a set of internally-generated "traps"
which cause interrupt service to be performed as a result
either of exceptional conditions (e.g., attempted division by
zero) or of specific instructions whose purpose is to cause a
trap to occur (e.g., the Supervisor Call instruction).

3.7.1 Generallnterrupt/Trap Sequence

Upon receipt of an interrupt or trap request, the CPU goes
through three major steps:

1. Adjustment of Registers.

Depending on the source of the interrupt or trap, the CPU
may restore and/or adjust the contents of the Program
Counter (PC), the Processor Status Register (PSR) and
the currently-selected Stack Pointer (SP). A copy of the
PSR is made, and the PSR is then set to reflect Supervi­
sor Mode and selection of the Interrupt Stack.

2. Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup­
plied by default.

3. Service Call.

The Vector is used as an index into the Interrupt Dispatch
Table, whose base address is taken from the CPU Inter­
rupt Base (INTBASE) Register. See Figure 3-16. A 32-bit
External Procedure Descriptor is read from the table en­
try, and an External Procedure Call is performed using it.
The MOD Register (16 bits) and Program Counter (32
bits) are pushed on the Interrupt Stack.

This process is illustrated in Figure 3-17, from the viewpoint
of the programmer.

'131 ~I"'

0 NVI N ON·VECTORED INTERRUPT

1 NMI N ON·MASKABLE INTERRUPT

2 RESERVED

3 SLAVE S LAVE PROCESSOR TRAP

4 ILL IL LEGAL OPERATION TRAP

5 SVC S UPERVISOR CALL TRAP

t i DISPATCH TABLE 6 DVZ D IVIDE BY ZERO TRAP VECTORED
INTERRUPTS 1 7 FLG F LAG TRAP

8 BPT B REAKPOINT TRAP

9 TRC T RACE TRAP

10 UND U NDEFINED INSTRUCTION TRAP

11-15 ~ RESERVED ~
16 VECTORED

INTERRUPTS

, ~

TL/EE/6156-29

FIGURE 3·16. Interrupt Dispatch and Cascade Tables

2-452

3.0 Functional Description (Continued)

I RETURN ADDRESS

I STATUS I MODULE

P5R MOD

INTBASE REGISTER

DESCRIPTOR

I (PUSH)

I

I
I (PUSH)

INTERRUPT
STACK

r-------- -----,
I I
I I
: CASCADE TABLE :
I I
: I

DISPATCH
TABLE

DESCRIPTOR (32 BITS)

... 1 ---16---.. 0"1"1 ... ---16--_0 1
OFFSET MODULE

0

MOD REGISTER ~ MODULE TABLE

I NEW MODULE

I MODULE TABLE ENTRY

)

MODULE JBLE ENmy
32

STATIC BASE POINTER - r------
UNK BASE POINTER

+ PROGRAM BASE POINTER

(RESERVED)

]

32BIT5

32BIT5

PROGRAM COUNTER SBREGISTER

ENTRY POINT ADDRESS +- NEW STATIC BASE J
FIGURE 3-17.lnterrupt/Trap Service Routine Calling Sequence

2·453

TL/EE/6156-30

TLlEE/6156-31

z
(J)
Co)
I\)
o
o
CD
o

3.0 Functional Description (Continued)

3.7.2Interrupt/Trap Return

To return control to an interrupted program, one of two in·
struction is used. The RETT (Return From Trap) instruction
(Figure 3·18) restores the PSR, MOD, PC and S8 registers
to their previous contents and, since traps are often used
deliberately as a call mechanism for Supervisor Mode pro·
cedures, it also discards a specified number of bytes from
the original stack as surplus parameter space. RETT is used
to return from any trap or interrupt except the Maskable
Interrupt. For this, the RETI (Return from Interrupt) instruc·
tion is used, which also informs any external Interrupt Con­
trol Units that interrupt service has been completed. Since
interrupts are generally asynchronous external events, RETI
does not pop parameters. See Figure 3-19.

PROGRAM COUNTER

·1
(POP)

RETURN ADDRESS

3.7.3 Maskable Interrupts (The INT Pin)

The INT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in­
put is maskable, and is therefore enabled to generate inter­
rupt requests only while the Processor Status Register I bit
is set. The I bit is automatically cleared during service of an
INT or NMI request, and is restored to its original setting
upon return from the interrupt service routine via the RETT
or RETI instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG register bit 1=0) or Vectored
(bit 1=1).

3.7.3.1 Non·VectoredMode

In the Non-Vectored Mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys­
tems in which hardware interrupt prioritization is unneces­
sary. The RETT instruction should be used to return from an
interrupt in Non-Vectored Mode.

I
I

(POP)
STATUS MODULE

} 32 BITS

-11-________ :_-_-~-------i} 32 BITS

PSR MOD

MODULE T~BLE ENTRY

STATIC BASE POINTER - --."

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

SBREGISTER

STATIC BASE

~ ---<
n

BYTES

a

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

,r-------..,

PARAMETERS

STACK SELECTED
IN NEWLY·

POPPEDPSR.

POP AND
DISCARD

TlIEE/6156-32

FIGURE 3·18. Return from Trap (RETTn) Instruction Flow

2-454

3.0 Functional Description (Continued)

"END OF INTERRUpr'

BUS CYCLE

PROGRAM COUNTER
(POP)

RETURN ADDRESS

INTERRUPT
CONTROL

UNIT

I I (POP)
STATUS MODULE -11-----------+-

PSR MOD

~
MODULE TABLE ENTRY

STATIC BASE POINTER - ---.,

LINK BASE POINTER

PROGRAM BASE POINTER

(RESERVED)

STATIC BASE

SBREGISTER

INTERRUPT
STACK

MODULE
TABLE

MODULE TABLE ENTRY

FIGURE 3-19. Return from Interrupt (RETI) Instruction Flow

2-455

TLlEE/6156-34

z
(J)
W
N
o o
cp ...
o

Q r---~ .,..
~
Q
Q
N

~
Z

3.0 Functional Description (Continued)

3.7.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize up to 16 interrupt requests. Figure 3-
20 shows the connections required for a single ICU. Upon
receipt of an interrupt request on the INT pin, the CPU per­
forms an "Interrupt Acknowledge, Master" bus cycle (Sec­
tion 3.4.2) reading a vector value from the Data Bus. This
vector is then used as an index into the Dispatch Table in
order to find the External Procedure Descriptor for the prop­
er interrupt service procedure. The service procedure even­
tually returns via the Return from Interrupt (RETI) instruc­
tion, which performs an End of Interrupt bus cycle, informing
the ICU that it may reprioritize any interrupt requests still
pending. The ICU provides the vector number again, which
the CPU uses to determine whether it needs also to inform a
Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing
a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.7.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is
made both in the CPU and in the NS32202 Interrupt Control
Unit (ICU) to transparently support cascading. Figure 3-21
shows a typical cascaded configuration. Note that the Inter­
rupt output from a Cascaded ICU goes to an Interrupt Re­
quest input of the Master ICU, which is the only ICU which
drives the CPU INT pin.

In a system which uses cascading, two tasks must be per­
formed upon initialization:

1. For each Cascaded ICU in the system, the Master ICU
must be informed of the line number (0 to 15) on which it
receives the cascaded requests.

2. A Cascade Table must be established in memory. The
Cascade Table is located in a negative direction from the
location indicated by the CPU Interrupt Base (lNTBASE)

DATA

(81

CONTROL

ADDR5Brrs

register. Its entries are 32-bit addresses, pOinting to the
Vector Registers of each of up to 16 Cascaded ICUs.

Figure 3-16 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range -16 to -1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the "Cascade
Address."

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega­
tive Cascade Table index instead of a (positive) vector num­
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an "Interrupt Acknowledge, Cascaded" bus cycle
(Section 3.4.2), reading the final vector value. This vector is
interpreted by the CPU as an unsigned byte, and can there­
fore be in the range of 0 through 255.

In returning from a Cascaded interrupt, the service proce­
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an "End of Interrupt, Master" bus cycle (Section 3.4.2),
whereupon the Master ICU again provides the negative
Cascade Table index. The CPU, seeing a negative value,
uses it to find the corresponding Cascade Address from the
Cascade Table. Applying this address, it performs an "End
of Interrupt, Cascaded" bus cycle (Section 3.4.2), informing
the cascaded ICU of the completion of the service routine.
The byte read from the Cascaded ICU is discarded.
Note: If an interrupt must be masked off. the CPU can do so by selting the

corresponding bit in the interrupt mask register of the interrupt con~
troller. However, if an interrupt is set pending during the CPU instruc·
tion that masks off that interrupt. the CPU may still perform an inter·
rupt acknowledge cycle following that Instruction since it might have
sampled the INT line before the ICU deasserted it. This could cause
the ICU to provide an invalid vector. To avoid this problem the above
operation should be performed with the CPU interrupt disabled.

_IAI

_IR3

-IA5
HARDWARE

_IR7 INTERRUPTS
OR

_lAg CASCADED
CONTROLLERS

N83Z008
Cl'U

N83ZZ02
i--IAII

i--IRI3

i--IR15
STATUS 1

f--GOIIRO

i--GlI1R2

INT I-------i IN'f i-G211R4

I-G311A6
INTERRUPTS.
CASCADED.

i--G411R8 OR
BrrllO GND- HiE

i-G511Al0

i-G8IIAI2

i-G711R14
~~g:ESS- Cs
DECODER

TLlEE16156-35

FIGURE 3-20. Interrupt Control Unit Connections (16 Levels)

2-456

3.0 Functional Description (Continued)

DATA

CONTROL

CASCADED
ADDR 5 BITS NS32202

ICU

STATUS 1

FROM -
~~g~g~~ - CS

.---- iiii'

DATA

CONTROL

MASTER

ADDR NS32202
NS3200B ICU

CPU

STATUS 1

iNT iNT

FROM
Cs ~~g~g~~ -

-IR1

-IRJ

-IRS

-IR7

-IRS

-IR11

-IR1J

-IR1S

-GOIIRO

-GlIIR2

-G211R4

-GJIIR6

-G4I1RB

-GSIIR10

-G611R12

-G7/IR14

_IR1

_IRJ

-IRS

-IR7

-IRS

HA RDWARE
RRUPTS INTE

INTE

B

RAUPTS
OR
ITI/O

-IR11-

-IR13

-IR1S

-GO/IRO

-G1IIR2

-G211R4

-GJ/IR6

-G4I1RB

-G511R10

-G6/IR12

-G7IIR14

TL/EE/6156-36

FIGURE 3-21. Cascaded Interrupt Control Unit Connections

3.7.4 Non-Maskable Interrupt (The NMI Pin)

The Non-Maskable interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
"Interrupt Acknowledge, Master" bus cycle (Section 3.4.2)
when processing of this interrupt actually begins. The Inter­
rupt Acknowledge cycle differs from that provided for Mask­
able Interrupts in that the address presented is FFFF0016.
The vector value used for the Non-Maskable I nterrupt is
taken as 1, regardless of the value read from the bus.

The service procedure returns from the Non-Maskable In­
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

For the full sequence of events in processing the Non­
Maskable Interrupt, see Section 3.7.7.1.

3.7.5 Traps

A trap is an internally-generated interrupt request caused as
a direct and immediate result of the execution of an instruc­
tion. The Return Address pushed by any trap except TRC is

2-457

the address of the first byte of the instruction during which
the trap occurred. Traps do not disable interrupts, as they
are not associated with external events. Traps recognized
by the NS3200B are:

Trap (Slave): An exceptional condition was detected by the
Floating-Point unit or another Slave Processor during the
execution of a Slave Instruction. This trap is requested via
the Status Word returned as part of the Slave Processor
Protocol (Section 3.B.1).

Trap (ILL): Illegal operation. A privileged operation was at­
tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe­
cuted.

Trap (DVZ): An attempt was made to divide an integer by
zero. (The Slave Trap is used for Floating-Point division by
zero.)

z en
w
N
(;)
(;)
(X)
(;)

o ,---,
~ o
N

~
Z

3.0 Functional Description (Continued)

Trap (FLG): The FLAG instruction detected a "1" in the
CPU PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut­
ed.

Trap (TRC): The instruction just completed is being traced.
See below.

Trap (UNO): An undefined opcode was encountered by the
CPU.

A special case is the Trace Trap (TRC), which is enabled by
setting the T bit in the Processor Status Register (PSR). At
the beginning of each instruction, the T bit is copied into the
PSR P (Trace "Pending") bit. If the P bit is set at the end of
an instruction, then the Trace Trap is activated. If any other
trap or interrupt request is made during a traced instruction,
its entire service procedure is allowed to complete before
the Trace Trap occurs. Each interrupt and trap sequence
handles the P bit for proper tracing, guaranteeing one and
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

3.7.6 Prioritization

The NS32008 CPU internally prioritizes simultaneous inter­
rupt and trap requests as follows:

1. Traps other than Trace (Highest priority)

2. Non-Maskable Interrupt

3. Maskable Interrupts

4. Trace Trap (Lowest priority)

3.7.7Interrupt/Trap Sequences: Detailed Flow

For purposes of the following detailed discussion of inter­
rupt and trap service sequences, a single sequence called
"Service" is defined in Figure 3-22. Upon detecting any in­
terrupt request or trap condition, the CPU first performs a
sequence dependent upon the type of interrupt or trap. This
sequence will include pushing the Processor Status Regis­
ter and establishing a Vector and a Return Address. The
CPU then performs the Service sequence.

For the sequence followed in processing either Maskable or
Non-Maskable interrupts (on the INT or NMI pins, respec­
tively), see Section 3.7.7.1. For the Trace Trap, see Section
3.7.7.3, and for all other traps, see Section 3.7.7.2.

3.7.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR I bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of the String
instructions, at the next interruptable point during its execu­
tion.

1. If a String instruction was interrupted and not yet com­
pleted:

a. Clear the Processor Status Register P bit.

b. Set "Return Address" to the address of the first byte of
the interrupted instruction.

Otherwise, set "Return Address" to the address of the
next instruction.

2-458

2. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying Status
Code 0100 (Interrupt Acknowledge, Master: Section
3.4.2). Discard the byte read.

b. Set "Vector" to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFE0016, applying Status
Code 0100 (Interrupt Acknowledge, Master: Section
3.4.2). Discard the byte read.

b. Set "Vector" to O.
c. Go to Step 8.

5. Here the interrupt is Vectored. Read "Byte" from address
FFFE0016, applying Status Code 0100 (Interrupt Ac­
knowledge, Master, Section 3.4.2).

6. If "Byte" ~ 0, then set "Vector" to "Byte" and go to Step
8.

7. If "Byte" is in the range -16 through -1, then the inter­
rupt source is Cascaded. (More negative values are re­
served for future use.) Perform t~e following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE +4· Byte.

b. Read "Vector," applying the Cascade Address just
read and Status Code 0101 (Interrupt Acknowledge,
Cascaded, Section 3.4.2).

8. Push the PSR copy (from Step 2) onto the Interrupt Stack
as a 16-bit value.

9. Perform Service (Vector, Return Address), Figure 3-22.

Service (Vector, Return Address):
1) Read the 32-bit External Precedure Descriptor from the Interrupt

Dispatch Table: address is Veclor'4 + INTBASE Register
contents.

2) Move the Module field of the Descriptor Into the MOD Register.

3) Read the new Static Bese pointer from the memory address
contained In MOD. placing it Into the SB Register.

4) Read the Program Base pOinter from memory address MOD + B.
and add to it the Offset field from the Descriptor, placing the
result In the Program Counter.

5) Flush queue: Non-sequentially fetch first Instruction of Interrupt routine.

6) Push MOD Register onto the Interrupt Stack es a IS-bit value.
(The PSR has already been pushed as a 16-bR value.)

7) Push the Return Address onto the Interrupt Stack as a 32-bit
quantity.

FIGURE 3·22. Service Sequence
Invoked during all interrupt/trap sequences.

3.0 Functional Description (Continued)

3.7.7.2 Trap Sequence: Traps Other Than Trace

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set "Vector" to the value corresponding to the trap type.

SLAVE: Vector=3

ILL: Vector = 4

SVC: Vector = 5

DVZ: Vector = 6

FLG: Vector = 7

BPT: Vector = 8

UND: Vector = 10

3. Copy the Processor Status Register (PSR) into a tempo­
rary register, then clear PSR bits S, U, T and P.

4. Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

5. Set "Return Address" to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-22.

3.7.7.3 Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits S, U and T.

3. Push the PSR copy onto the Interrupt Stack as a 16-bit
value.

4. Set "Vector" to 9.

5. Set "Return Address" to the address of the next instruc-
tion.

6. Perform Service (Vector, Return Address), Figure 3-22.

3.8 SLAVE PROCESSOR INSTRUCTIONS

The NS32008 CPU recognizes two groups of instructions as
being executable by external Slave Processors:

Floating-Point Instruction Set

Custom Instruction Set

Each Slave Instruction Set is validated by a bit in the Config­
uration Register (Section 2.1.3). Any Slave Instruction which
does not have its corresponding Configuration Register

Step

1

4

Slatus

10

OP

OP

ST

OP

Status Combinations:

Send ID (ID): Code 1111

Xler Operand (OP): Code 1101

Read Slatus (Sn: Code 1110

Action

CPU Send 10 Byte.

CPU Sends Operalion Word.

CPU Sends Required Operands.

Slave Starts Execution. CPU Pre-Fetches.

Slave Pulses SPC Low.

CPU Reads Status Word. (Trap? Alter Flags?)

CPU Reads Results (II Any).

FIGURE 3-23. Slave Processor Protocol

2-459

bit set will trap as undefined, without any Slave Processor
communication attempted by the CPU. This allows software
simulation of a nonexistent Slave Processor. Slave Proces­
sor cycles use pins ADO-ADI5 as a 16-bit data bus.

3.8.1 Slave Processor Protocol

Slave Processor instructions have a 3-byte Basic Instruction
field, consisting of an ID Byte followed by an Operation
Word. The ID Byte has three functions:

1. It identifies the instruction as being a Slave Processor
instruction.

2. It specifies which Slave Processor will execute it.

3. It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Figure 3-23. While applying
Status Code 1111 (Broadcast ID, Section 3.4.2), the CPU
transfers the ID Byte on the least-significant half of the data
bus (ADO-AD7). All Slave Processors input this Byte and
decode it. The Slave Processor selected by the ID Byte is
activated, and from this point the CPU is communicating
only with it. If any other slave protocol was in progress (e.g.,
an aborted Slave instruction), this tranfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 1101 (Transfer Slave Operand, Section 3.4.2).
Upon receiving it, the Slave Processor decodes it, and at
this point both the CPU and the Slave Processor are aware
of the number of operands to be transferred and their sizes.
The Operation Word is swapped on the Data Bus; that is,
bits 0-7 appear on pins AD8-ADI5 and bits 8-15 appear
on pins ADO-AD7.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the Slave Processor. To do so, it references any Addressing
Mode extensions which may be appended to the Slave
Processor instruction. Since the CPU is solely responsible
for memory accesses, these extensions are not sent to the
Slave Processor. The Status Code applied is 1101 (Transfer
Slave Processor Operand, Section 3.4.2).

After the CPU has issued the last operand, the Slave Proc­
essor starts the actual execution of the instruction. Upon
completion, it will signal the CPU by pulsing SPC low. To
allow for this, SPC is normally held high only by an internal
pull-up device of approximately 5 kO.

While the Slave Processor is executing the instruction, the
CPU is free to prefetch instructions into its queue. If it fills
the queue before the Slave Processor finishes, the CPU will
wait, applying Status Code 0011 (Waiting for Slave, Section
3.4.2).

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word from the Slave Processor, applying
Status Code 1110 (Read Slave Status, Section 3.4.2). This
word has the format shown in Figure 3-24. If the Q bit
("Quit," Bit 0) is set, this indicates that an error was detect­
ed by the Slave Processor. The CPU will not continue the
protocol, but will immediately trap through the Slave vector

z en
Co)
I\)
o o c:p
o

o r---, .,..
• CO o o

C'\I

~
Z

3.0 Functional Description (Continued)

in the Interrupt Table. Certain Slave Processor instructions
cause CPU PSR bits to be loaded from the Status Word.

The last step in the protocol is for the CPU to read a result,
if any, and transfer it to the destination. The Read cycles
from the Slave Processor are performed by the CPU while
applying Status Code 1101 (Transfer Slave Operand, Sec­
tion 3.4.2).

An exception to the protocol above is a Custom Slave in­
struction (LCR: Load Custom Register). In executing this in­
struction, the protocol ends after the CPU has issued the
last operand. The CPU does not wait for an acknowledge­
ment from the Slave Processor, and it does not read status.

3.8.2 Floating-Point Instructions

Table 3-2 gives the protocols followed for each Floating­
Point instruction. The instructions are referenced by their
mnemonics. For the bit encoding of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating-Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = byte,
W=word, D=double word). "f" indicates that the instruc­
tion specifies a Floating-Point size for the operand (F = 32-
bit standard floating, L = 64-bit Long Floating).

The Returned Value type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-24).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating-Point Registers are physically on the
Floating-Point Unit and are therefore available without CPU
assistance.

TABLE 3-2
Floating-Point Instruction Protocols

Operand 1 Operand 2 Operand 1 Operand 2
Mnemonic Class
ADDf read.f
SUBf read.f
MULf read.f
DIVf read.f

MOVf read.f
ABSf read.f
NEGf read.f

CMPf read.f

FLOORfi read.f
TRUNCli read.f
ROUNDfi read.f

MOVFL read.F
MOVLF read.L

MOVif readj

LFSR read.D
SFSR N/A

Note:

0= Double word.

1= Integer size (B,W,D) specified in mnemonic.

f=Floating·point type (F,L) specified in mnemonic.

NI A = Not applicable to this instruction.

Class Issued Issued
rmw.! f f
rmw.f f f
rmw.f
rmw.!

write.f N/A
write.! N/A
write.! N/A

read.f

writej N/A
writej N/A
writej f N/A

write.L F N/A
write.F L N/A

write.! N/A

N/A D N/A
write.D N/A N/A

2-460

Returned Value PSR Bits
Type and Dest. Affected

ftoOp.2 none
ftoOp.2 none
ftoOp.2 none
ftoOp.2 none

ftoOp.2 none
ftoOp.2 none
ftoOp.2 none

N/A N,Z,L

itoOp.2 none
itoOp.2 none
itoOp.2 none

LtoOp.2 none
FtoOp.2 none

!toOp.2 none

N/A none
DtoOp.2 none

3.0 Functional Description (Continued)

3.B.3 Custom Slave Instruction

Provided in the NS3200B is the capability of communicating
with a user·defined, "Custom" Slave Processor. The in·
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com·
munication protocol. Left to the user are the interpretations
of the opcode fields, the programming model of the Custom
Slave and the actual types of data transferred. The protocol
specifies only the size of an operand, not its data type.

Table 3·3 lists the relevant information for the Custom Slave
instruction set. The designation "c" is used to represent an
operand which can be a 32·bit ("0") or 64·bit ("Q") quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an "i" indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne·
monic suffix.

115 8 7 01

1 000 0 0 0 0 0 N Z F 0 0 L 0 01
NeWPsRBitv'luel.)~ .-A)
"Quit": Terminate Protocol. Trap(FPU).

TUEE/6156-37

FIGURE 3-24. Slave Processor Status Word Format

Any operand indicated as being of type "c" will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction en co dings, see Appendix A.

TABLE 3-3
Custom Slave Instruction Protocols

Operand 1 Operand 2
Mnemonic Class Class
CCALOc read.c rmw.c
CCAL1c read.c rmw.c
CCAL2c read.c rmw.c
CCAL3c read.c rmw.c

CMOVOc read.c write.c
CMOV1c read.c write.c
CMOV2c read.c write.c
CMOV3c read.c write.c

CCMPOc read.c read.c
CCMP1c read.c read.c

CCVOci read.c write.i
CCV1ci read.c write.i
CCV2ci read.c write.i
CCV3ic read.i write.c

CCV4DQ read.D write.Q
CCV5QD read.Q write.D

LCSR read.D N/A
SCSR N/A write.D

CATSTO' addr N/A
CATST1" addr N/A

LCR" read.D N/A
SCA" write.D N/A

Note:

0= Double word.

i = Integer size (B, w, D) specified in mnemonic.

c = Custom size (0: 32 bits or Q: 64 bits) specified in mnemonic .

• = Privileged instruction; will trap if CPU is in User Mode.

NI A = Not applicable to this instruction.

Operand 1 Operand 2
Issued Issued

c c
c c
c c
c c

c N/A
c N/A
c N/A
c N/A

c c
c c

c N/A
c N/A
c N/A

N/A

0 N/A
Q N/A

D N/A
N/A N/A

D N/A
D N/A

D N/A
N/A N/A

2·461

Returned Value PSR Bits
Type and Dest. Affected

ctoOp.2 none
cto Op. 2 none
ctoOp.2 none
ctoOp.2 none

ctoOp.2 none
ctoOp.2 none
ctoOp.2 none
ctoOp.2 none

N/A N,Z,L
N/A N,Z,L

itoOp.2 none
itoOp.2 none
itoOp.2 none
ctoOp.2 none

QtoOp.2 none
DtoOp.2 none

N/A none
DtoOp.2 none

N/A F
N/A F

N/A none
DtoOp.1 none

z en w
N o o c;o
o

o r---~ .-
~ o o
COol

~
Z

4.0 Device Specifications
4.1 NS32008 PIN DESCRIPTIONS

The following is a brief description of all NS32008 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 3.

4.1.1 Supplies

Power (Vee): +5V Positive Supply. Section 3.1.

Logical Ground (GNDL): Ground reference for on-chip log­
ic. Section 3.1.

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 3.1.

Back-Bias Generator (BBG): Output of on-chip substrate
voltage generator. Section 3.1.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Section
3.2.

Ready (RDY): Active high. While RDY is inactive, the CPU
extends the current bus cycle to provide for a slower memo­
ry or peripheral reference. Upon detecting RDY active, the
CPU terminates the bus cycle. Section 3.4.1.

Hold Request (HOLD): Active low. Causes the CPU to re­
lease the bus for DMA or multiprocessing purposes. Section
3.5.
Note: If the HOLD signal is generated asynchronously. it's set up and hold

times may be violated. In this case it is recommended to synchronize
it with CTTL to minimize the possibility of metastable states.

The CPU provides only one synchronization stage to minimize the
HLDA latency. This is to avoid speed degradations in cases of heavy
fiOITj activity (i.e. DMA controller cycles interleaved with CPU
cycles.)

Interrupt (INT): Active low. Maskable Interrupt Request.
Section 3.7.

Dual-In-Line Package

A22 vcc
A21 47 A23
A20 46 iNT
A19 4 45 NMI
Ala 5 44 ILO
A17 43 STO
A16 7 42 STI

AD15 a 41 ST2
AD14 9 40 ST3
AD13 10 39 PFS
AD12 11 38 DDIN
ADll 12

NS3200B
37 ADS

AD10 13 36 U/S
ADS 14 35 SPC
ADS 15 34 RST
AD7 16 33 os
A06 17 32 NC
AD5 18 31 HLDA
AD4 19 30 HOLD
AD3 20 29 SSG
AD2 21 28 RDY
ADI 22 27 PHI2
ADO 23 26 PHil

GNDL 24 25 GNDS

Top View
TL/EE/6156-2

Figure 4-1. NS3200B Connection Diagram

Order Number NS32008D or NS32008N
See NS Package Number D48A or N48A

2-462

Non-Maskable Interrupt (NMI): Active low. Non-Maskable
Interrupt Request. Section 3.7.

Reset (RST): Active low. It initiates a Reset. Section 3.3.

4.1.3 Output Signals

Address Bits 16-23 (A16-A23): These are the most sig­
nificant eight bits of the memory address bus. Section 3.4.

Address Strobe (ADS): Active low. Controls address latch­
es; indicates start of a bus cycle. Section 3.4.

Data Direction In (DDIN): Active low. Status signal indicat­
ing direction of data transfer during a bus cycle. Section 3.4.

Status (STO-ST3): Bus cycle status code, STO least signifi­
cant. Section 3.4.2. Encodings are:

OOOO-idle: CPU Inactive on Bus

0001-ldle: WAIT Instruction

0010-(Reserved)

0011-ldle: Waiting for Slave

0100-Interrupt Acknowledge, Master

0101-lnterrupt Acknowledge, Cascaded

0110-End of Interrupt, Master

0111-End of Interrupt, Cascaded

1000-Sequentiallnstruction Fetch

1001-Nonsequentiallnstruction Fetch

1010-Data Transfer

1 011-Read Read-Modify-Write Operand

1100-Read for Effective Address

1101-Transfer Slave Operand

1110-Read Slave Status Word

1111-Broadcast Slave ID.

Hold Acknowledge (HLDA): Active low. Applied by the
CPU in response to HOLD input, indicating that the bus has
been released for DMA or multiprocessing purposes. Sec­
tion 3.5.

User/Supervisor (U/S): User or Supervisor Mode status.
High state indicates User Mode, low indicates Supervisor
Mode. Section 3.6.

Interlocked Operation (ILO): Active low. Indicates that an
interlocked instruction is being executed. Section 3.6.

Program Flow Status (PFS): Active low. Pulse indicates
beginning of an instruction execution. Section 3.6.

Data Strobe (DS): Active low. Data strobe output. Section
3.4.

4.1.4 Input-Output Signals

Address/Data 0-15 (ADO-AD15): In all except Slave
Processor bus cycles, pins ADO-AD7 serve as an 8-bit Mul­
tiplexed Address/Data bus. and pins AD8-AD15 hold ad­
dress bits 8-15 throughout the bus cycle. Bit 0 is defined as
the least-significant bit. Section 3.4.

In Slave Processor bus cycles, all 16 pins are used as a
data bus (Section 3.4.6).

Slave Processor Control (SPC): Active low. Used by the
CPU as the data strobe output for Slave Processor trans­
fers; used by Slave Processors to acknowledge completion
of a slave instruction. Section 3.4.6 and Section 3.8. This
pin should be pulled up to Vee through a 10 kO resistor.

Data Strobe (DS): Active low. Data Strobe output. Section
3.4.

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS If Military/Aerospace specified devices are required,

Temperature Under Bias O'Cto +70'C
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Storage Temperature -65'Cto +150'C Note: Absolute maximum ratings indicate limits beyond
All Input or Output Voltages With which permanent damage may occur. Continuous operation

Respect to GND -0.5Vto +7V at these limits is not intended; operation should be limited to

Power Dissipation 1.5 Watt those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = 0 to + 70'C, Vee = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vee + 0.5 V

Vil Low Level Input Voltage -0.5 0.8 V

VeH High Level Clock Voltage PHI1, PHI2 pins only Vee- 0.35 Vee + 0.5 V

Vel Low Level Clock Voltage PHI1, PHI2 pins only -0.5 0.3 V

VelT
Low Level Clock Voltage, Transient

PHI1, PHI2 pins only -0.5 0.6 V
(ringing tolerance)

VOH High Level Output Voltage IOH = -400p.A 204 V

VOL Low Level Output Voltage IOl = 2mA 0.45 V

IllS SPC Input Current (low) VIN = OAV, SPC in input mode 0.05 1.0 mA

II Input Load Current O"VIN"Vee, All inputs except
-20 20 p.A

PHI1, PHI2, SPC

Il Leakage Current
Output and I/O Pins 004:>: VIN:>: Vee -20 30 p.A
in TRI·STATElinput Mode

Icc Active Supply Current IOUT=O, TA=25'C 180 300 mA

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions Abbreviations:

All the timing specifications given in this section refer to L.E.-Ieading edge
2.0V on the rising or falling edges of the clock phases PHI1 T.E.-trailing edge
and PHI2 and 0.8V or 2.0V on all other signals as illustrated

R.E.--fising edge
in Figures 4·2 and 4·3, unless specifically stated otherwise.

F.E.-falling edge

PHln [3(PHln [£
~

2.4V

SIG! [- SIG! [tSIGlI
tSIG!1 O.BV \ O.BV

O.4SV O.4SV

2.4V 2.4V

[
I ISIG2h

t.'~ [2.0V / tSlG2h

SIG2 SIG2

O.4SV

TLlEEI6!56-3B TLlEEI6!56-39

FIGURE 4·2. Timing Specification Standard FIGURE 4-3. Timing Specification Standard
(Signal Valid After Edge) (Signal Valid Before Edge)

2·463

z en
Co)
N o
o
C» •
o

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32008·10
Maximum times assume capacitive loading of 100 pF

Name Figure Description Reference/Conditions
NS32008·10

Units
Min Max

tAlv 4·4 Address Bits 0-7 Valid after R.E., PHI1 T1 50 ns

tAlh 4·4 Address Bits 0-7 Hold after R.E., PHI1 T2 5 ns

tov 4·4 Data Valid (Write Cycle) after R.E., PHI1 T2 50 ns

tOh 4·4 Data Hold (Write Cycle) after R.E., PHI1 next T1 or Ti 0 ns

tAHv 4·4 Address Bits 8-23 Valid after R.E., PHI1 T1 50 ns

tAHh 4·4 Address Bits 8-23 Hold after R.E., PHI1 next T1 or Ti 0 ns

tALADSs 4·5 Address Bits 0-7 Set Up before ADS T.E. 25 ns

tAHADSs 4·5 Address Bits 8-23 Set Up before ADS T.E. 25 ns

tALAOSh 4·10 Address Bits 0-7 Hold after ADS T.E. 15 ns

tAli 4·5 Address Bits 0-7 Floating after R.E., PHI1 T2 25 ns

IsTv 4·4 Status (STO-ST3) Valid after R.E., PHI1 T4 45 ns
(before T1, see note)

IsTh 4·4 Status (STO-ST3) Hold after R.E., PHI1 T4 (after T1) 0 ns

tODINv 4·5 ODIN Signal Valid after R.E., PHI1 T1 50 ns

tDDINh 4·5 ODIN Signal Hold after R.E., PHI1 next T1 or Ti 0 ns

tADSa 4·4 ADS Signal Active (Low) after R.E., PHI1 T1 35 ns

tADSia 4·4 ADS Signal Inactive after R.E., PHI2 T1 40 ns

tADSw 4·4 ADS Pulse Width at 0.8V (both edges) 30 ns

tOSa 4·4 OS Signal Active (Low) after R.E., PHI1 T2 40 ns

tOSia 4·4 OS Signal Inactive after R.E., PHI1 T4 40 ns

tAU 4·6 ADO-AD7 Floating (Caused by HOLD) after R.E., PHI1 T1 25 ns

tAH! 4·6 A8-A23 Floating (Caused by HOLD) after R.E., PHI1 T1 25 ns

tAOS! 4·6 ADS Floating (Caused by HOLD) after R.E., PHI1 Ti 50 ns

tODIN! 4·6 ODIN Floating (Caused by HOLD) after R.E., PHI1 Ti 50 ns

tHlOAa 4·6 HLDA Signal Active (Low) after R.E., PHI1 Ti 50 ns

tHLDAia 4·8 HLDA Signal Inactive after R.E., PHI1 Ti 50 ns

tADSr 4·8 ADS Signal Returns from Floating after R.E., PHI1 Ti 55 ns
(Caused by HOLD)

tDOINr 4·8 ODIN Signal Returns from Floating after R.E., PHI1 Ti 55 ns
(Caused by HOLD)

tSPCa 4·13 SPC Output Active (Low) after R.E., PHI1 T1 35 ns

tSPCia 4·13 SPC Output Inactive after R.E., PHI1 T4 35 ns

tSPCn! 4·15 SPC Output Nonforcing after R.E., PHI2 T 4 30 ns

tDv 4·11 Data Valid (Slave Processor Write) after R.E., PHI1 T1 50 ns

tOh 4·11 Data Hold (Slave Processor Write) after R.E., PHI1 next T1 or Ti 0 ns

tpFSw 4·15 PFS Pulse Width at 0.8V (both edges) 50 ns

tPFSa 4·15 PFS Pulse Active (Low) after R.E., PHI2 40 ns

tPFSia 4·15 PFS Pulse Inactive after R.E., PHI2 40 ns

2·464

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS3200B-l0 (Continued)

Name Figure Description
Referencel NS3200B-l0

Units
Conditions Min Max

tllOs 4-17 ILO Signal Setup before RE., PHil Tl 50 ns
of first interlocked
read cycle

tllOh 4-18 ILO Signal Hold after RE., PHil T3 10 ns
of last interlocked
write cycle

tllOa 4-19 ILO Signal Active (Low) after R.E., PHil 40 ns

tllOia 4-19 ILO Signal Inactive after R.E., PHil 40 ns

tusv 4-20 U/S Signal Valid after RE., PHil T4 45 ns

tUSh 4-20 U/S Signal Hold after R.E., PHil Tl 8 ns

tNSPF 4-16b Nonsequential Fetch to Next PFS after R.E., PHil Tl 4 tcp
Clock Cycle

tPFNS 4-16a PFS Clock Cycle to Next Non- before RE., PHil Tl 4 tcp
Sequential Fetch

tLXPF 4-25 Last Operand Transfer of an before RE., PHil Tl 0 tcp
Instruction to Next PFS clock of first bus
Cycle cycle of transfer

Note: Every memory cycle starts with T4, during which Cycle Status is applied. lithe CPU was idling, the sequence will be:" ... Ti, T4, n ... ".11 the CPU was not
idling, the sequence will be:" ... T4, Tl ... ".

4.4.2.2 Input Signal Requirements: NS3200B-l0

Name Figure Description
Referencel NS3200B-l0

Units
Conditions Min Max

tpWR 4-21 Power Stable to RST R.E. after Vcc reaches 4.5V 50 IJ-s

tOls 4-5 Data in Setup (Read Cycle) before F.E., PHI2 T3 15 ns

tOlh 4-5 Data in Hold (Read Cycle) after RE., PHil T4 3 ns

tHlOa 4-6 HOLD Active (Low) Setup Time before F.E., PHI2 TXl 25 ns
(See Note)

tHlOia 4-8 HOLD Inactive Setup Time before F.E., PHI2 Ti 25 ns

tHlOh 4-6 HOLD Hold Time after RE., PHil TX2 0 ns

tROYs 4-9,4-10 ROY Setup Time before F.E., PHI2 25 ns
T20rT3

tROYh 4-9,4-10 ROY Hold Time after F.E., PHil T3 5 ns

tRSTs 4-21,4-22 RST Setup Time before F.E., PHil 15 ns

tRSTw 4-22 RST Pulse Width at 0.8V (both edges) 64 tep
tiNTs 4-23 INT Setup Time before T.E., PHil 20 ns

tNMlw 4·28 NMI Pulse Width at 0.8V (both edges) 70 ns

tOls 4-12 Data Setup (Slave Read Cycle) before F.E., PHI2 Tl 15 ns

tOlh 4·12 Data Hold (Slave Read Cycle) after RE., PHil T4 3 ns

tSPCd 4-13 SPC Pulse Delay from Slave after RE., PHI2 T 4 25 ns

tspcs 4-13 SPC Setup Time Before F.E., PHil 30 ns

tspCw 4-13 SPC Pulse Width from Slave at 0.8V (both edges) 20 ns
Processor (Async. Input)

NOTE: This setup time is necessary to ensure prompt acknowledgement via HLDA and the ensuing floating of CPU off the buses. Note that the time Irom the
receipt 01 the HOLD signal until the CPU Iloats is a function of the time ROTIi signal goes low, and the state of the ROY input.

2-465

z en
c.:I

~
~ •
o

fII

4.0 Device Specifications (Continued)

4.4.2.3 Clocking Requirements: NS32008-10

Name Figure Description
Referencel NS32008-10

Unit
Conditions

Min Max

tcp 4·14 Clock Period R.E., PHI1, PHI2 to next 100 250 ns
R.E., PHI1, PHI2

teLw 4-14 PHI1, PHI2 at 2.0V on PHI1, 0.5 tep
Pulse Width PHI2 (both edges) -10n8

tCLh 4-14 PHI1, PHI2 High Time at Vec - 0.9Von 0.5tep
PHI1, PHI2 (both edges) -15 ns

tCLI 4-14 PHI1, PHI2 Low Time at O.BV on 0.5tep
PHI1, PHI2 -5n8

tnOVL(1,2) 4-14 Non-Overlap Time O.BV on F.E., PHI1, PHI2 to -2 5 ns
O.BV on R.E., PHI1, PHI2

tnOVLas Non-OVerlap Asymmetry at O.BVon PHI1, PHI2 -4 4 ns

(tnOVL(1) - tnOVL(2»)

tCLwas PHI1, PHI2 Asymmetry at 2.0Von PHI1, PHI2 -5 5 ns

(tCLw(1) - teLw(2»)

2-466

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

PHil [

PHI2 [

ADO-AD7 [

AD8-ADI5 [
A16-23

TI T2 T3 T4

(HIGH)

STD-3 [....,I-___ --i-,-_V_A_L_ID_+ ___ ='+'~ ~-N-E-X-T_-

os[

ROY [

PHil [

PHI2 [

ADO-AD7 [

ADB-AD15 [
AI6-23

ADS [

ODIN [

STo-3 [

os[

ROY [

-!-----l:~IDSa

FIGURE 4·4. Write Cycle

Tl T2 T3

VALID

VALID

(HI H)

FIGURE 4·5. Read Cycle

2·467

T4

--lIDDINh
NEXTCY LE

STATUS

TL/EE/6156-40

•
TL/EE/615B-41

C) ,---, ...
!:
~ en z

4.0 Device Specifications (Continued)

TXI TX2

PHil [

PHI2 [

HOLD [

HLiiA[

~[

T4

'ADS!
IODIN!

Ti TI Ti

-- ----(FLOATINGj----

ADO-AD7 [
-t-----t-----t-----+-""\l'~~ _________ L ____ _

I (FLOATING)

ADB-ADIS [
AI6-23 -t-----t-----+-----+-,I ~~H~ __ ' ____ ---1-------

I (FLO~TING)

TLlEE/6156-42

Note: Whenever the CPU is not Idling (not in Ti). the HOLD request (HOLD low) must be active tHLDa before the failing edge of PHI2 of the clock cycle thai appears
two clock cycles before T 4(TXI) and stay low unUI tHLDh after the rising edge of PHil of the clock cycle that precedes T 4(TX2) for the request to be acknowledged.

FIGURE 4-6. Floating by HOLD Timing (CPU Not Idle Initially)

PHil [

PHI2 [

HOLD [

HLDA [
-L~~r$Aa"-

~ [-+---4-JI

ADD-AD7 [-

ADB-AD1S [- -----­
AI6-23

(FLOATING)

(FLOATING)

TLlEE/6156-43

FIGURE 4-7. Floating by HOLD Timing
(CPU Initially Idle)

2-468

PHil [

PHI2[

iiiiLD[

TI TI T4

HLiiA [-+ ____ -+....J

~ [_ ________ (HIGH)

AI6-23 [__ :~~:~ ________ I ______ _
ADO-IS

(FLOATING)

TL/EE/6156-44

FIGURE 4-8. Release from HOLD

4.0 Device Specifications (Continued)

FIGURE 4·9. Ready Sampling
(CPU Initially READY)

I 11 I T4 I
PHil [JLSLj"
PHI2 [

ADO-15 [

SPC [

DiiiN[

STO-3 [+ ____ +../ ,....2.=~

AiiS[

TLlEE/6156-45

TL/EE/6156-47

FIGURE 4·11. Slave Processor Write Timing

PHI1 [

PH12 [-+_

SPC [
(FROM CPU)

Tl T4

(FROM SLASJE1 [- -

PHil [

PHI2 [

ROV [

FIGURE 4·10. Ready Sampling
(CPU Initially NOT READY)

TL/EE/6156-46

I 11 I T4 I
PHI1[~

PHI2 [

A~O-IS [

SPe[
(CPU)

DATA (FROM SLAVE)~_-I_

STO-15 [-+_S_~_A_JU_S_'l_A_LI_O+-J NEXT STATUS

AiiS[(HIGH)

TLlEE/6156-48

FIGURE 4·12. Slave Processor Read Timing

TL/EE/6156-82

Note: After transferring last operand to a Slave Processor, CPU
turns OFF driver and holds SPC high with internal 5 kO pullup_

FIGURE 4·13. SPC Timing

2-469

Z
tn w
N o o
CD •
o

o ,---,
~ 4.0 Device Specifications (Continued)
o

ia z
PHil [

PHI2 [-----..pr
TLlEE/S156-50

FIGURE 4-14. Clock Waveforms

PHI2 [~fl----Il--J

m~r-e-
TLlEE/S15S-51

FIGURE 4-15. Relationship of PFS to Clock Cycles

Tl

IpFNS

~~3[____________________________ _J ~ __ C_O_DE_'_OO_' __ __
TLlEE/S15S-52

FIGURE 4-16a. Guaranteed Delay, PFS to Non-Sequential Fetch

I Tl I T2 I ••• I I I I
PHI1[~fl--rl-JL

iDS [

S~3[_+------C-O-D-E-'00-'------~r------_+--------------

INSPF

TLlEE/e15S-53

FIGURE 4-16b. Guaranteed, Delay, Non-Sequential Fetch to PFS

2-470

r--.z
4.0 Device Specifications (Continued)

AoS[

iLO[

I T30RTi I T40RTi I T1 T2 T3 T4

FIGURE 4·17. Relationship of ILO to First Operand Cycle
of an Interlocked Instruction

T30RT, T4 OR Ti I T1 T2 T3 T4

ILO[________________ ~--------------fJ

PHI1[

FIGURE 4·18. Relationship of ILO to Last Operand Cycle
of an Interlocked Instruction

FIGURE 4·19. Relationship of ILO to Any Clock Cycle

I T30RTi I T4 OR Ti I T1 T2 T3 T4

UlS [<..L.L.LL.LLJ.LfU 1\----1r--------.-------------+-'1

FIGURE 4·20. U/S Relationship to Any Bus Cycle­
Guarantee Valid Interval

2-471

TL/EE/6156-54

TL/EE/6156-55

TL/EE/6156-56

TL/EE/6156-57

(J)
Co)
N o o
tp
o

fII

C) ,---, ..,...
I co

C)
C)
N
C"')
(/)
Z

4.0 Device Specifications (Continued)

VCC
~-----------4~

PHil [___ !-__ --'

[
lPWR

RST _____________ ~~-J

TLlEE/6156-58

FIGURE 4-21. Power-On Reset

PHll[~
~tINTS

iNT[~
TL/EE/6156-60

FIGURE 4-23. INT Interrupt Signal Detection

FIRST BUS CYCLE

T1 T2 T3

NM{

T4

TLlEE/6156-59

FIGURE 4-22. Non-Power-On Reset

~,-----tNMlw_r
TL/EE/6156-61

FIGURE 4-24. NMllnterrupt Signal Timing

NEXT

T10rTi I

TL/EE/6156-62

Note: In a transfer of a Read-Modify-Write type operand, this is the Read transfer,
displaying RMW Status (Code 1011).

FIGURE 4-25. Relationship Between Last Data Transfer of an
Instruction and PFS Pulse of Next Instruction

2-472

Appendix A: Instruction Formats
NOTATIONS

i Integer Type Field

B=OO (Byte)

W=01 (Word)

D = 11 (Double Word)

f Floating-Point Type Field

F=1 (Standard Floating: 32 bits)

L=O (Long Floating: 64 bits)

c Custom Type Field

D = 1 (Double Word)

Q=O (Quad Word)

op Operation Code

Valid encodings shown with each format.

gen, gen1,

gen2 General Addressing Mode Field.

See Section 2.2 for encodings.

reg General Purpose Register Number

cond Condition Code Field

0000= EQual: Z=1

0001 = Not Equal: Z=O

0010=Carry Set: C= 1

0011 = Carry Clear: C = 0

0100 = Higher: L = 1

0101 = Lower or Same: L = 0

0110=Greater Than: N= 1

0111 = Less or Equal: N=O

1000= Flag Set: F= 1

1001 = Flag Clear: F=O

1010= LOwer: L=O and Z=O

1011 = Higher or Same: L=1 orZ=1

1100= Less Than: N=O and Z=O

1101 = Greater or Equal: N = 1 or Z= 1

1110= (Unconditionally True)

1111 = (Unconditionally False)

short Short Immediate Value. May contain:

quick: Signed 4-bit value, in MOVQ,

ADDQ,CMPQ,ACB

cond: Condition Code (above), in

Scond.

areg: CPU Dedicated Register, in

LPR, SPR.

OOOO=US

0001-0111 = (Reserved)

1000=FP

1001 =SP

1010=SB

1011 = (Reserved)

1100 = (Reserved)

1101 =PSR

1110= INTBASE

1111 =MOD

2-473

Options: in String Instructions

I U/W I BIT I
T = Translated

B=Backward

U/W=OO: None

01: While Match

11: Until Match

Configuration bits, in SETCFG:

TL/EE/6156-63

7 0

cond 11 0 1 0

FormatO
Bcond (BR)

1
7

, ~p , 10' 0 '1,:1

Format 1
BSR -0000 ENTER -1000
RET -0001 EXIT -1001
CXP -0010 NOP -1010
RXP -0011 WAIT -1011
RETT -0100 DIA -1100
RETI -0101 FLAG -1101
SAVE -0110 SVC -1110
RESTORE -0111 BPT -1111

1
15

,
al7

; 01
, ,

, Sh~rt 1

, ,
11 I 1 1 gen op

Format 2
ADDQ -000 ACB -100
CMPQ -001 MOVQ -101
SPR -010 LPR -110
Scond -011

z
~
N
Q
Q
00 •
Q

C) .---~

~
(/)
z

Appendix A: Instruction Formats (Continued)

Format 3

CXPD -0000
BICPSR -0010
JUMP -0100
BISPSR -0110

Trap (UND) on XXX1, 1000

ADJSP
JSR
CASE

Format 4

ADD
CMP
BIC
ADDC
MOV
OR

23

-0000
-0001
-0010
-0100
-0101
-0110

SUB
ADDR
AND
SUBC
TBIT
XOR

-1010
-1100
-1110

iii

op

-1000
-1001
-1010
-1100
-1101
-1110

o

o 0 0 0 0 i 0 000 1 1 1 0

MOVS
CMPS

Format 5

- 0000 SETCFG
-0001 SKPS

Trap (UND) on 1 XXX, 01XX

Format 6

ROT
ASH
CBIT
CBITI
Trap (UND)
LSH
SBIT
SBITI

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

Trap (UND) on all others

NEG
Trap (UND)
SUBP
ABS
COM
IBIT
ADDP

-0010
-0011

0

00111 0

-1000
-1010
-1011
-1100
-1101
-1110
-1111

2-474

23

gen 1

MOVM
CMPM
INSS
EXTS
MOVXBW
MOVZBW
MOVZiD
MOVXiD

8 7 o

11001110

Format 7

-0000
-0001
-0010
-0011
-0100
-0101
-0110
-0111

MUL
MEl
Trap (UND)
DEI
QUO
REM
MOD
DIV

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

123 16115

TUEE/6156-64

FormatS

EXT -000 INDEX -100
CVTP -001 FFS -101
INS -010
CHECK -011

23 1sb5 8 7 0

gen 1 I gen2 I op I f I i o 0 1 1 1 1 1 0

Format 9

MOVif -000 ROUND -100
LFSR -001 TRUNC -101
MOVLF -010 SFSR -110
MOVFL -011 FLOOR -111

~~:I: 1 1 1 1 1 1 :1
TUEE/6156-65

Format 10

Trap (UND) Always

Appendix A: Instruction Formats (Continued)

23 16115 8 7 o

gen1 I gen2 I op 10lf10111110

Format 11

AOOf -0000 OIVf -1000
MOVf -0001 Trap (Slave) -1001
CMPf -0010 Trap (UNO) -1010
Trap (Slave) -0011 Trap (UNO) -1011
SUBf -0100 MULf -1100
NEGf -0101 ABSf -1110
Trap (UNO) -0110 Trap (UNO) -1110
Trap (UNO) -0111 Trap (UNO) -1111

Format 12

Trap (UNO) Always

17 01 --- I I I I I I I
___ 1 0 a 1 1 1 1 a

TL/EE/6156-77

Format 13

Trap (UNO) Always

23 16115 8 7 o

gen 1 I short 01 op Ii 00011110

Format 14

Trap (UNO) Always

2-475

817, , , , , , ,01
nnn10110

Operation Word 10 Byte

nnn

000

CATSTO
CATST1

001

CCVS
LCSR
CCV5
CCV4

101

CCALO
CMOVO
CCMPO
CCMP1
CCAL1
CMOV2
Trap (UNO)

1
23

,

12~

12~

Trap (UNO)

Format 15
(Custom Slave)

Operation Word Format

i i

gen 1

Format 15.0

-0000 LCR
-0001 SCR

,16115, , , , ,
I

,
I

,
gen 1 gen2 op

Format 15.1

-000 CCV2
-001 CCV1
-010 SCSR
-011 CCVO

,16115, , , ,
1

,
I

, ,
gen 1 gen2 op

Format 15.5

-0000 CCALS
-0001 CMOVS
-0010 Trap (UNO)
-0011 Trap (UNO)
-0100 CCAL2
-0101 CMOV1
-0110 Trap (UNO)
-0111 Trap (UNO)

-0010
-0011

I c I : 81

-100
-101
-110
-111

,
1 x 1 :1

-1000
-1001
-1010
-1011
-1100
-1101
-1110
-1111

If nnn=010, 011, 100, 110,111, then Trap (UNO) Always

z en
w
N o o
cp
o

fill

C) r---,

- Appendix A: Instruction Formats (Continued)

~
z Implied Immediate Encodings:

r 0

1
--- I I I I I I I
___ 0 1 0 1 1 1 1 0

TLlEE/6156-78 r6 r5 r4 r3 r2 rl

Format 16 Register Mask, appended to SAVE, ENTER

Trap (UNO) Always

r1 r2 rS r4 r5 r6

r 0

1
--- I I I I I I I
___ 1 1 0 1 1 1 1 0

TL/EE/6156-79

Format 17

Register Mask, appended to RESTORE, EXIT

I' len9+ -1 °1 : offset :

Trap (UNO) Always Offset/Length Modifier, appended to INSS, EXTS

17 01 I I I I I I I
1 0 0 0 1 1 1 0

TL/EE/6156-80

Format 18

Trap (UNO) Always

17
0
1 I I I I I I I

___ x x x 0 0 1 1 ~

TL/EE/6156-81

Format 19

Trap (UNO) Always

2-476

Section 3
Slave Processors

•

Section 3 Contents
NS32382-10, NS32382-15 Memory Management Units (MMU) 3-3
NS32082-10 Memory Management Unit (MMU) .. 3-42
NS32381-15, NS32381-20 Floating-Point Units... 3-81
NS32081-10, NS32081-15 Floating-Point Units. 3-111
NS32580-20, NS32580-25, NS32580-30 Floating-Point Controllers 3-128

3·2

,---, z

~National
~ Semiconductor
NS32382-10/NS32382-15
Memory Management Units

General Description
The NS32382 Memory Management Unit (MMU) provides
hardware support for demand-paged virtual memory imple­
mentations. The NS32382 functions as a slave processor in
Series 32000 microprocessor-based systems. Its specific
capabilities include fast dynamic translation, protection, and
detailed status to assist an operating system in efficiently
managing up to 4 Gbytes of physical memory. Support for
multiple address spaces, virtual machines, and program de­
bugging is provided.

High-speed address translation is performed on-chip
through a 32-entry fully associative translation look-aside
buffer (TLB), which maintains itself from tables in memory
with no software intervention. Protection violations and
page faults (references to non-resident pages) are automat­
ically detected by the MMU, which invokes the instruction
abort feature of the CPU.

Additional features for program debugging include three
breakpoint registers which provide the programmer with
powerful stand-alone debugging capability.

PRELIMINARY

Features
II Compatible with the NS32332 CPU
• Totally automatic mapping of 4 Gbyte virtual address

space using memory based tables
II On-chip translation look-aside buffer allows 97% of

translations to occur in one clock for most applications
II Full hardware support for virtual memory and virtual

machines
II Implements "referenced" bits for simple, efficient work­

ing set management
III Protection mechanisms implemented via access level

checking and dual space mapping
• Program debugging support
III Dedicated 32-bit physical address bus
II Non-cacheable page support
III 125-pin PGA (Pin grid array) package

Conceptual Address Translation Model

r----., VIRTUAL ADDRESS--.. .-----. PHYSICAL ADDRESS-----,

NS32332
CPU

... ...
ADDRESS STROBE NS32382 ADDRESS STROBE

FLOAT MMU

ABORT

3-3

PHYSICAL
MEMORY

TL/EE/9142-1

en
Co)
I\,)
Co)
ClO
I\,)

I
o z en
Co)
I\,)
Co)
ClO
I\,)

I
U1

•

U) r---, ,... .
N
CIO
Cf)
N
Cf)
(f)
Z
o ,... .
N
CIO
Cf)
N
Cf)
(f)
Z

Table Of Contents

1.0 PRODUCT INTRODUCTION

1.1 Programming Considerations

2.0 FUNCTIONAL DESCRIPTION

2.1 Power and Grounding

2.2 Clocking

2.3 Resetting

2.4 Bus Operation

2.4.1 Interconnections

2.4.2 CPU-Initiating Cycles

2.4.3 MMU-Initiated Cycles

2.4.4 Cycle Extension

2.4.5 Bus Retry

2.4.6 Bus Error

2.4.7 Interlocked Bus Transfers

2.5 Slave Processor Interface

2.5.1 Slave Processor Bus Cycles

2.5.2 Instruction Protocols

2.6 Bus Access Control

2.7 Breakpointing

3.0 ARCHITECTURAL DESCRIPTION

3.1 Programming Model

3.2 Memory Management Functions

3.2.1 Page Table Structure

3.2.2 Virtual Address Spaces

3.2.3 Page Table Entry Formats

3.2.4 Physical Address Generation

3.3 Page Table Base Registers (PTBO, PTBI)

3.4 Invalidate Virtual Address Registers (IVARn)

3.0 ARCHITECTURAL DESCRIPTION (Continued)

3.5 Translation Exception Address Register (TEAR)

3.6 Bus Error Address Register (BEAR)

3.7 Breakpoint Address Register (BAR)

3.B Breakpoint Mask Register (BMR)

3.9 Breakpoint Data Register (BDR)

3.10 Memory Management Control Register (MCR)

3.11 Memory Management Status Register (MSR)

3.12 Translation Lookaside Buffer (TLB)

3.13 Address Translation Algorithm

3.14 Instruction Set

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals; Internal

Propagation Delays

4.4.2.2 Input Signal Requirements

4.4.2.3 Clocking Requirements

Appendix A: Interfacing Suggestions

List of Illustrations
The Virtual Memory Model.. 1-1

NS323B2 Address Translation Model ... 1-2

Recommended Supply Connections. 2-1

Clock Timing Relationships 2-2

Power-On Reset Requirements .. 2-3

General Reset Timing. 2-4

Recommended Reset Connections. Memory Managed System. . . • 2-5

CPU Read Cycle; Translation in TLB 2-6

Abort Resulting from Protection Violation or a Breakpoint; Translation in TLB .. 2-7

Page Table Lookup. • .. 2-B

Abort Resulting After a Page Table Lookup 2-9

Slave Access Timing; CPU Reading from MMU.. 2-10

Slave Access Timing; CPU Writing to MMU ... 2-11

FL T Deassertation During RDVALlWRVAL Execution. 2-12

Two-Level Page Tables. • 3-1

Page Table Entries 3-2

Virtual to Physical Address Translation • .. 3-3

Page Table Base Registers (PTBO, PTB1) ... 3-4

Invalidate Virtual Address Registers (IVARO, IVAR1) .. 3-5

Breakpoint Registers (BAR, BMR, BDR) • .. 3-6

3-4

List of Illustrations (Continued)

Memory Management Control Register (MCR) ... 3-7

Memory Managment Status Register (MSR) ... 3-8

TLB Model .. 3-9

Slave Instruction Format... 3-10

Pin Grid Array Package. 4-1

Timing Specification Standard (Signal Valid After Clock Edge) .. 4-2

Timing Specification Standard (Signal Valid Before Clock Edge) 4-3

CPU Write Cycle Timing. .. 4-4

MMU Read Cycle Timing After a TLB Miss. .. 4-5

MMU Write Cycle Timing After a TLB Miss. .. 4-6

FL T Deassertation Timing • 4-7

Abort Timing (FL T = 1) 4-8

Abort Timing (FL T = 0) 4-9

Bus Retry Timing. 4-10

Bus Error Timing 4-11

Slave Access Timing; CPU Reading from MMU. 4-12

Slave Access Timing; CPU Writing to MMU ... 4-13

SDONETiming ... 4-14

HOLD Timing (FL T = 0) ... 4-15

HOLD Timing (FLT = 1) ... 4-16

Clock Waveforms ... 4-17

NON Power-On Reset Timing. 4-18

Power-On Reset 4-19

System Connection Diagram. .. A-1

Tables
STO-ST3 Encodings.. 2-1

LMR Instruction Protocol. 2-2

SMR Instruction Protocol. .. 2-3

RDVAL/WRVAL Instruction ProtocoL... 2-4

Access Protection Levels. .. 3-1

"Short" Field Encodings .. 3-2

3-5

z
(J)
c;,)
N
c;,)
CO
~
o
Z
(J)
c;,)
N
c;,)
CO
N •
U1

•

Lr) r---,
~
CO)
(\II
CO)
U)
z
C;
~
CO)
(\II
CO)
U)
z

1.0 Product Introduction
The NS32382 MMU provides hardware support for three
basic features of the Series 32000; dynamic address trans­
lation, access level checking and software debugging. Dy­
namic Address Translation is required to implement de­
mand-paged virtual memory. Access level checking is per­
formed during address translation, ensuring that unautho­
rized accesses do not occur. Because the MMU resides on
the local bus and is in an ideal location to monitor CPU
activity, debugging functions are also included.

The MMU is intended for use in implementing demand­
paged virtual memory. The concept of demand-paged virtu­
al memory is illustrated in Figure 1-1. At any point in time, a
program sees a uniform addressing space of up to 4 giga­
bytes (the "virtual" space), regardless of the actual size of
the memory physically present in the system (the "physical"
space). The full virtual space is recorded as an image on a
mass storage device. Portions of the virtual space needed
by a running program are copied into physical memory when
needed.

To make the virtual information directly available to a run­
ning program, a mapping must be established between the
virtual addresses asserted by the CPU and the physical ad­
dresses of the data being referenced.

To perform this mapping, the MMU divides the virtual mem­
ory space into 4 Kbyte blocks called "pages". It interprets
the 32-bit address from the CPU as a 20-bit "page number"
followed by a 12-bit offset, which indicates the position of a
byte within the selected page. Similarly, the MMU divides
the physical memory into 4 Kbyte frames, each of which can
hold a virtual page.

The translation process is therefore modeled as accepting a
virtual page number from the CPU and substituting the cor­
responding physical page frame number for it, as shown in

VIRTUAL
MEMORY

HIGH
MEMORYa...-----.....
ADDRESS

Figure 1-2. The offset is not changed. The translated page
frame number is 20 bits long. Physical addresses issued by
the MMU are 32 bits wide.

TL/EE/9142-3

FIGURE 1-2. NS32382 Address Translation Model
Generally, in virtual memory systems the available physical
memory space is smaller than the maximum virtual memory
space. Therefore, not all virtual pages are simultaneously
resident. Nonresident pages are not directly addressable by
the CPU. Whenever the CPU issues a virtual address for a
nonresident or nonexistent page, a "page fault" will result.
The MMU Signals this condition by invoking the Abort fea­
ture of the CPU. The CPU then halts the memory cycle,
restores its internal state to the point prior to the instruction
being executed, and enters the operating system through
the abort trap vector.

PHYSICAL
MEMORY

HIGH
a... _____ MEMORY

ADDRESS

MASS STORAGE
TL/EE/9142-2

FIGURE 1-1_ The Virtual Memory Model

3-6

1.0 Product Introduction (Continued)

The operating system reads from the MMU the virtual ad­
dress which caused the abort. It selects a page frame which
is either vacant or not recently used and, if necessary,
writes this frame back to mass storage. The required virtual
page is then copied into the selected page frame.

The MMU is informed of this change by updating the page
tables (Section 3.2), and the operating system returns con­
trol to the aborted program using the RETT instruction.
Since the return address supplied by the abort trap is the
address of the aborted instruction, execution resumes by
retrying the instruction.

This sequence is called paging. Since a page fault encoun­
tered in normal execution serves as a demand for a given
page, the whole scheme is called demand-paged virtual
memory.

The MMU also provides debugging support. It may be pro­
grammed to monitor the CPU bus for a single or a range of
virtual addresses in real time.

1.1 PROGRAMMING CONSIDERATIONS

When a CPU instruction is aborted as a result of a page
fault, some memory resident data might have been already
modified by the instruction before the occurrence of the
abort.
This could compromise the restartability of the instruction
when the CPU returns from the abort routine.

To guarantee correct results following the re-execution of
the aborted instruction, the following actions should not be
attempted:

a) No instruction should try to overlay part of a source oper­
and with part of the result. It is, however, permissible to

84 GND
83
C4
C8

Cll
C13
K12
t.t2
N2

NS32382

rewrite the result into the source operand exactly, if page
faults are being generated only by invalid pages and not
by write protection violations (for example, the instruction
"ABSW X, X", which replaces X with its absolute value).
Also, never write to any memory location which is neces­
sary for calculating the effective address of either oper­
and (i.e. the pointer in "Memory Relative" addressing
mode; the Link Table pointer or Link Table Entry in "Ex­
ternal" addressing mode).

b) No instruction should perform a conversion in place from
one data type to another larger data type (Example:
MOVWF X, X which replaces the IS-bit integer value in
memory location X with its 32-bit floating-point value).
The addressing mode combination "TOS, TOS" is an ex­
ception, and is allowed. This is because the least-signifi­
cant part of the result is written to the possibly invalid
page before the source operand is affected. Also, integer
conversions to larger integers always work correctly in
place, because the low-order portion of the result always
matches the source value.

c) When performing the MOVM instruction, the entire
source and destination blocks must be considered "oper­
ands" as above, and they must not overlap.

2.0 Functional Description
2.1 POWER AND GROUNDING

The NS323B2 requires a single 5V power supply, applied on
eight (Veel pins. These pins should be connected together
by a power (Vee) plane on the printed circuit board. See
Figure 2-1.

The grounding connections are made on eighteen (GND)
pins.

Vee C7
• C9

M7
85
Cl0
L3
L12

Vee M13

+5V

....... ___ +-...... -+ -4I---o4~ +-___ _ -+OTHER GROUND
CONNECTION

TLlEE/9142-4

Cl = 1 I'F, Tantalum.

C2 = 1000 pF,low inductance. This should be either a disc or monolithic ceramic capaCitor.
FIGURE 2·1. Recommended Supply Connections

3-7

•

~ r---,
~ co
C')
N
C')
U)
Z
Ci
~
co
C')
N
C')
U)
Z

2.0 Functional Description (Continued)

These pins should be connected together by a ground
(GND) plane on the printed circuit board.

In addition to Vee and Ground, the NS32382 MMU uses an
internally-generated negative voltage (BBG), output of the
on-chip substrate voltage generator. It is necessary to filter
this voltage externally by attaching a pair of capacitors (Fig­
ure 2-1) from the BBG pin to ground.

2.2 CLOCKING

The NS32382 inputs clocking signals from the NS32301
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a single clock frequency. These phases are
called PHil (pin B8) and PHI2 (pin B9). Their relationship to
each other is shown in Figure 2-2.

PHil

PHI2

vec

TLlEE/9142-5

FIGURE 2-2. Clock Timing Relationships

PHI' __ -+ __ ~

iiSii ---+---------U·--'I
~------e~~MC------~

TL/EE/9142-6

FIGURE 2·3. Power·On Reset Requirements

Vee

r---------,
I I

Each rising edge of PHil defines a transition in the timing
state (UT-State") of the MMU. One T-State represents one
hardware cycle within the MMU, and/or one step of an ex­
ternal bus transfer. See Section 4 for complete specifica­
tions of PHil and PHI2.

As the TCU presents signals with very fast transitions, it is
recommended that the conductors carrying PHil and PHI2
be kept as short as possible, and that they not be connect­
ed to any devices other than the CPU and MMU. A TTL
Clock signal (CTTL) is provided by the TCU for all other
clocking.

2.3 RESETTING

The RSTI input pin is used to reset the NS32382. The MMU
responds to RSTI by terminating processing, resetting its
internal logic and clearing the MCR and MSR registers.

Only the MCR and MSR registers are changed on reset. No
other program accessible registers are affected.

The RST / ABT signal is activated by the MMU on reset. This
Signal should be used to reset the CPU.

On application of power, RSTI must be held low for at least
50 '""S after Vee is stable. This is to ensure that all on-Chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 clock cycles. See Figures 2·3 and 2-4.
The NS32C201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32382 MMU. Fig­
ure 2-5 shows the recommended connections.

PHI'

I---264CLOCK-i

iiiii ---,~ m C~CLES I

NS32C201
TCU

TL/EE/9142-7

FIGURE 2·4. General Reset Timing

NS32382
MMU

NS32332
CPU

I iiffif .J>--t-f-...... ;-..... ~-.... --+I RSTI RSTO
I I L _________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

2:50pSlC

FIGURE 2·5. Recommended Reset Connections, Memory·Managed System

3-8

TL/EE/9142-6

2.0 Functional Description (Continued)

2.4 BUS OPERATION

2.4.1 Interconnections

The MMU runs synchronously with the CPU, sharing with it a
single multiplexed address/data bus. The interconnections
used by the MMU for bus control, when used in conjunction
with the NS32332, are shown in Figure A-1 (Appendix A).

The CPU issues 32-bit virtual addresses on the bus, and
status information on other pins, pulsing the signal ADS low.
These are monitored by the MMU. The MMU issues 32-bit
physical addresses on the Physical Address bus, pulsing the
PAV line low. The PAV pulse triggers the address latches
and signals the NS32C201 TCU to begin a bus cycle. The
TCU in turn generates the necessary bus control signals
and synchronizes the insertion of WAIT states, by providing
the signal RDY to the MMU and CPU. Note that it is the
MMU rather than the CPU that actually triggers bus activity
in the system.

The functions of other interface signals used by the MMU to
control bus activity are described below.

The STO-ST3 pins indicate the type of cycle being initiated
by the CPU. STO is the least-significant bit of the code. Ta­
ble 2-1 shows the interpretations of the status codes pre­
sented on these lines.

Status codes that are relevant to the MMU's function during
a memory reference are:

1000, 1001 Instruction Fetch status, used by the debug­
ging features to distinguish between data and
instruction references.

1010 Data Transfer. A data value is to be trans­
ferred.

1011 Read RMW Operand. Although this is always
a Read cycle, the MMU treats it as a Write
cycle for purposes of protection and break­
pointing.

1100 Read for Effective Address. Data used for ad-
dress calculation is being transferred.

The MMU ignores all other status codes. The status
codes 1101, 1110 and 1111 are also recognized by the
MMU in conjunction with pulses on the SPC line while it is
executing Slave Processor instructions, but these do not
occur in a context relevant to address translation.

TABLE 2-1. STO-ST3 Encodings
(STO is the Least Significant)

0000 -Idle: CPU Inactive on Bus
0001 -Idle: WAIT Instruction
0010- (Reserved)
0011 - Idle: Waiting for Slave
0100 -Interrupt Acknowledge, Master
0101 -Interrupt Acknowledge, Cascaded
0110- End of Interrupt, Master
0111 - End of Interrupt, Cascaded
1000 - Sequential Instruction Fetch
1001 - Non-Sequential Instruction Fetch
1010- Data Transfer
1011 - Read Read-Modify-Write Operand
1100 - Read for Effective Address
1101 - Transfer Slave Operand
1110 - Read Slave Status Word
1111 - Broadcast Slave ID and Operation Word

3-9

The DDIN line indicates the direction of the transfer: 0 =
Read, 1 = Write.

DDIN is monitored by the MMU during CPU cycles to detect
write operations, and is driven by the MMU during MMU-ini­
tiated bus cycles.

The U/S pin indicates the privilege level at which the CPU is
making the access: 0 = Supervisor Mode, 1 = User Mode.
It is used by the MMU to select the address space for trans­
lation and to perform protection level checking. Normally,
the U/S pin is a direct reflection of the U bit in the CPU's
Processor Status Register (PSR). The MOVUS and MOVSU
CPU instructions, however, toggle this pin on successive
operand accesses in order to move data between virtual
spaces.

The MMU uses the FL T line to take control of the bus from
the CPU. It does so as necessary for updating its internal
TLB from the Page Tables in memory, and for maintaining
the contents of the status bits (R and M) in the Page Table
Entries.

The MMU also aborts invalid accesses attempted by the
CPU. This is done by pulsing the RST / ABT pin low for one
clock period. (A pulse longer than one clock period is inter­
preted by the CPU as a Reset command.)

2.4.2 CPU-Initiated Bus Cycles

A CPU-initiated bus cycle is performed in a minimum of four
clock cycles: Tl, T2, T3 and T 4, as shown in Figure 2-6.

During period Tl, the CPU places the virtual address to be
translated on the bus, and the MMU latches it internally and
begins translation. The MMU also sa~ples the DDIN pin,
the status lines STO-ST3, and the U/S pin in the previous
T4 cycle to determine how the CPU intends to use the bus.

During period T2 the CPU removes the virtual address from
the bus and the MMU takes one of three actions:

1) If the translation for the virtual address is resident in the
MMU's TLB, and the access being attempted by the CPU
does not violate the protection level of the page being
referenced, the MMU presents the translated address on
PAO-PA31 and generates a PAV pulse to trigger a bus
cycle in the rest of the system. See Agure 2-6.

2) If the translation for the virtual address is resident in the
MMU's TLB, but the access being attempted by the CPU
is not allowed due to the protection level of the page
being referenced, the MMU generates a pul~n the
RST/ABT pin to abort the CPU's access. No PAV pulse
is generated. See Figure 2-7.

3) If the translation for the virtual address is not resident in
the TLB, or if the CPU is writing to a page whose M bit is
not yet set, the MMU takes control of the bus asserting
the FL T signal as shown in Figure 2-8. This causes the
CPU to float its bus and wait. The MMU then initiates a
sequence of bus cycles as described in Section 2.4.3.

From state T2 through T 4 data is transferred on the bus
between the CPU and memory, and the TCU provides the
strobes for the transfer.

Whenever the MMU generates an Abort pulse on the
RST/ABT pin, the CPU enters state T3 and then Ti (idle),
ending the bus cycle. Since no PAV pulse is issued by the
MMU, the rest of the system remains unaware that an ac­
cess has been attempted.

z
(J)
(0)
N
(0)
CI)
N
<:)
........
Z
(J)
(0)
N
(0)
CI)

~
U1

~~--~
~ co
('I)
C'I

~
Z
o
~
CO
('I)
C'I
('I)
(I)
z

2.0 Functional Description (Continued)

2.4.3 MMU-Inltlated Cycles

Bus cycles initiated by the MMU are always nested within
CPU-initiated bus cycles; that is, they appear after the MMU
has accepted a virtual address from the CPU and has set
the FL T line active. The MMU will initiate memory cycles in
the following cases:

1) There is no translation in the MMU's TLB for the virtual
address issued by the CPU, meaning that the MMU must
reference the Page Tables in memory to obtain the trans­
lation.

2) There is a translation for that virtual address in the TLB,
but the page is being written for the first time (the M bit in
its Level-2 Page Table Entry is 0). The MMU treats this
case as if there were no translation in the TLB, and per­
forms a Page Table lookup in order to set the M bit in the
Level-2 Page Table Entry as well as in the TLB.

Having made the necessary memory references, the MMU
either aborts the CPU access or it provides the translated
address and allows the CPU's access to continue to T3.

T4 OR Ti T1 T2

PHI1 [

PHI2 [

AOO-31 [

PAO-ll [

PA12-31 [

ADS [

PAY [

ODIN [

FLT [

Uts [

STO-3 [

Figure 2-8 shows the sequence of events in a Page Table
lookup. After asserting FL T, the MMU waits for one addition­
al clock cycle, then reads the Level-1 Page Table Entry and
the Level-2 Page Table Entry in two consecutive memory
Read cycles. There are no idle clock cycles between MMU­
initiated bus cycles unless a bus request is made on the
HOLD line (Section 2.6).

During the Page Table lookup the MMU driv~s the DDIN
Signal. The status lines STO-ST3 and the U/S pin are not
released by the CPU, and retain their original settings while
the MMU uses the bus. The Byte Enable signals from the
CPU, BEO-BE3, should be handled externally for correct
memory referencing.

In the clock cycle immediately after T4 of the last lookup
cycle, the MMU issues the translated address and pulses
MADS. In the subsequent cycle it removes FL T and pulses
PAY to continue the CPU's access.

T3 T4 Tl OR TI

(HIGHI

TlIEE/9142-9

FIGURE 2-6. CPU Read Cycle; Translation In TLB (TLB Hit)

3-10

2.0 Functional Description (Continued)

I T1 I T2 13 " 11

PHil [

PHI2 [

ADD-31 [

A5S[

fW[

HOLD [

TLlEE/9142-10

Note t: The CPU drives the bus if a write cycle is aborted.

FIGURE 2-7. Abort Resulting from Protection Violation or a Breakpoint; Translation in TLB

CPU STATES

MMUSTATES

PHI1

PH12

lOBUS

MBUS

iiii

",y

CPU ACCESS PTE.1

T2

Note t: If the R bit on the Level-1 PTE must be set, a write cycle is inserted here.

PTE.2

T3 " T4

Note 2: If either the R or the M bit on the Level-2 PTE must be set, a write cycle is inserted here.

121

FIGURE 2-8. Page Table Lookup

3-11

CPU ACCESS

r, 13

T2 13

T4

T4

TL/EE/9142-11

z
en w
N
W
co
N
C
z
en w
N
W
co
~
U1

•

U)
N
CIO
C")
N
C")
U)
Z
"­Q
~
CIO
C")
N
C")
U)
Z

2.0 Functional Description (Continued)

If the V bit (Bit 0) in any of the Page Table Entries is zero, or
the protection level field PL (bits 1 and 2) indicates that the
CPU's attempted access is illegal, the MMU does not gener­
ate any further memory cycles, but instead issues an Abort
pulse during the clock cycle after T 4 and removes the FL T
signal.

If the Rand/or M bit (bit 7 or 8) must be updated, the MMU
does this immediately in a single Write cycle. All bits except
those updated are rewritten with their original values.

At most, the MMU writes two double words to memory dur­
ing a translation: the first to the Level-1 table to update the
R bit, and the second to the Level-2 table to update the R
and/ or M bits.

2.4.4 Cycle Extension

To allow sufficient strobe widths and access time require­
ments for any speed of memory or peripheral device, the
NS32382 provides for extension of a bus cycle. Any type of

READ PTE

MMU STATES Tl T2

PHil [

PHI2 [

PAD-31 [

ADD-31 [

MADS [

PAV

FLT

iiii

RSTIABT [

ROY

MILO [

T3

bus cycle, CPU-initiated or MMU-initiated, can be extended,
except Slave Processor cycles, which are not memory or
peripheral references.

In Figures 2-6 and 2-8, note that during T3 all bus control
signals are flat. Therefore, a bus cycle can be cleanly ex­
tended by causing the T3 state to be repeated. This is the
purpose of the ROY (Ready) pin.

In the middle of T3, on the falling edge of clock phase PHil,
the ROY line is sampled by the CPU and/or the MMU. If
ROY is high, the next state after T3 will be T4, ending the
bus cycle. If it is low, the next state after T3 will be another
T3 and the ROY line will be sampled again. ROY is sampled
in each following clock period, with insertion of additional T3
states, until it is sampled high. Each additional T3 state in­
serted is called a "WAIT state".

The ROY pin is driven by the NS32C201 Timing Control
Unit, which applies WAIT states to the CPU and MMU as
requested on its own WAIT request input pins.

T4 T1 TI

TLIEE19142-12

FIGURE 2·9. Abort Resulting after a Page Table Lookup

3-12

.---~z

2.0 Functional Description (Continued)

2.4.5 Bus Retry

The Bus Retry input signal (BRT) provides a system with the
capability of repeating a bus cycle upon the occurrence of a
"soft" or correctable error. The system first determines that
a correctable error has occurred and then activates the BRT
input. The MMU then samples this input on the falling edge
of PHI1 in both T3 and T4 of a bus cycle. A valid bus retry
will be issued as a result of a low being sampled in both T3
and T4.

If the MMU gets a Bus Retry when it is contrOlling the bus, it
will re-run the bus cycle until BRT is deactivated.

Any Pending Hold request will not be acknowledged by the
MMU if a bus retry is detected and during Hold Acknowl­
edge, the MMU will not recognize the Bus Retry signal.

2.4.6 Bus Error

The Bus Error input signal BER will be activated (low) when
a "hard" or uncorrectable error occurs within the system
(e.g. bus timeout, double ECC error). BER will be sampled
on the falling edge of PHI1 in T4. If the MMU detects Bus
Error while it is controlling the bus, it will store the virtual
address which caused the error in the BEAR (Bus Error Ad·
dress Register), and set the ME bit in the MSR to indicate
MMU ERROR. An abort signal ABT will be generated and
further memory accesses by the MMU will be inhibited. The
32382 then returns bus control to the CPU by releasing the
FL T signal, (FL T = 1). Any pending Hold request will not be
acknowledged by the MMU if a bus error is detected.

If the Bus Error signal is received when the CPU is control­
ling the bus, the MMU will store the virtual address in BEAR,
and set the CE bit in the MSR to indicate CPU ERROR.

During the Hold Acknowledge, the MMU will ignore the BER
signal.

2.4.7 Interlocked Bus Transfers

Both the 32332 CPU and the 32382 MMU are capable of
executing interlocked cycles to access a stream of data
from memory without intervention from other devices.

Before executing an interlocked access, the 32332 CPU
performs a dummy read with Read·Modify-Write status
(1011). The MMU handles the dummy read as if it were a
real RMW access. The TLB entries will be searched and
page table look-up will be performed if a miss occurs. The
access level is checked and the CPU will be aborted if write
privilege is not currently assigned. The Reference (R) and
the Modify (M) bits in the first and second level PTEs, as
well as those in the Translation look·aside Buffer, will be
updated. By executing the dummy read, the CPU is assured
of no MMU intervention when the actual interlocked access
is performed.

The 32382 MMU executes interlocked Read-Modify-Write
memory cycles to access Page Table Entries (PTEs) and
update the Reference (R) and Modify (M) bit in the PTEs
when necessary. If the Rand/or M bit(s) do not require
updating, the write portion of the RMW cycle will not be
executed. The memory cycles to access PTEs during exe­
cution of RDVAL and WRVAL instructions are not inter­
locked since Rand M bits are not updated.

During interlocked access cycles, the MILO signal from the
MMU will be asserted. MILO has the same timing as ILO

3-13

from the CPU. MILO is asserted in the clock cycle immedi­
ately before the Read·Modify-Write access and de·activated
in the clock cycle following T4 of the write cycle.

The write portion of the Read·Modify-Write access will not
be executed if anyone of the following conditions occurs:

(1) A bus error has occurred in the read portion of the inter-
locked access.

(2) The Rand/or M bit(s) in the PTE(s) do not require up-
dating.

(3) A protection violation has occurred.

(4) An invalid PTE is detected.

If a bus retry is encountered in an interlocked access, MILO
will continue to be asserted, and the access will be retried.

2.5 SLAVE PROCESSOR INTERFACE

The CPU and MMU execute four instructions cooperatively.
These are LMR, SMR, RDVAL and WRVAL, as described in
Section 2.5.2. The MMU takes the role of a Slave Processor
in executing these instructions, accepting them as they are
issued to it by the CPU. The CPU calculates all effective
addresses and performs all operand transfers to and from
memory and the MMU. The MMU does not take control of
the bus except as necessary in normal operation; i.e., to
translate and validate memory addresses as they are pre­
sented by the CPU.

The sequence of transfers ("protocol") followed by the CPU
and MMU involves a special type of bus cycle performed by
the CPU. This "Slave Processor" bus cycle does not involve
the issuing of an address, but rather performs a fast data
transfer whose purpose is pre-determined by the form of the
instruction under execution and by status codes asserted by
the CPU.

2.5.1 Slave Processor Bus Cycles

The interconnections between the CPU and MMU for Slave
Processor communication are shown in Figure A-1 (Appen­
dix A). The SPC signal is pulsed by the CPU as a low-active
data strobe for Slave Processor transfers. Since SPC is nor­
mally in a high-impedance state, it must be pulled high with
a 10 kfl. resistor, as shown. The MMU also monitors the
status lines STO-ST3 to follow the protocol for the instruc­
tion being executed.

Data is transferred between the CPU and the MMU with
Slave Processor bus cycles, illustrated in Figures 2-10 and
2-11. Each bus cycle transfers one double-word (32 bits) to
or from the MMU.

Slave Processor bus cycles are performed by the CPU in
two clock periods, which are labeled T1 and T4. During T1,
the CPU activates SPC and, if it is writing to the MMU, it
presents data on the bus. During T4, the CPU deactivates
SPC and, if it is reading from the MMU, it latches data from
the bus. The CPU guarantees that data written to the MMU
is held through T4 to provide for the MMU's hold time re­
quirements. The CPU also guarantees that the status code
on STO-ST3 becomes valid, at the latest, during the clock
period preceding T1. The status code changes during T 4 to
antiCipate the next bus cycle, if any.

Note that Slave Processor bus cycles are never extended
with WAIT states. The RDY line is not sampled.

U)
Co)
N
Co)
QC)

~
o
Z
U)
Co)
N
Co)
QC)
N •
U1

•

U) r---,
co:. co
CO)
N
CO)

tn
Z
CI
~
CO)
N
CO)
(J)
Z

2.0 Functional Description (Continued)

Note 1: CPU samples Data Bus here.

PREY. CYCLE

I T40RTI

PHil [

PHI2 [

SPC [

AOO-AD31 [

STO-ST3 [

ADs [

Tl T4

NEXT CYCLE

T10RTi I

DoiN [LfL&.L&.L&."fL-<l---f----+L....--+

FIGURE 2-10. Slave Access Timing; CPU Reading from MMU

PREY. CYCLE NEXT CYCLE

I T40RTi Tt T4 T1 ORTi I
PHil [

PHI 2 [

SPC [

AOO-AD31 [

STO·ST3 [

ADs [

FIGURE 2-11. Slave Access Timing; CPU Writing to MMU

3-14

TLlEE/9142-13

TLlEE/9142-14

2.0 Functional Description (Continued)

2.5.2 Instruction Protocols In executing the SMR instruction (Store MMU Register, Ta·

MMU instructions have a three-byte Basic Instruction field
ble 2-3), the CPU also issues the ID Byte and the Operation
Word of the instruction to the MMU. It then waits for the

consisting of an ID byte followed by an Operation Word. See
MMU to signal (by pulsing SDONE low) that it is ready to

Figure 3-10 for the MMU instruction encodings. The ID Byte
present the specified register's contents to the CPU. Upon

has three functions:
receiving this "Done" pulse, the CPU reads the contents of

1) It identifies the instruction as being a Slave Processor the selected register in one Slave Processor bus cycle, and
instruction. places this result value into the instruction's destination (a

2) It specifies that the MMU will execute it. CPU general-purpose register or a memory location).

3) It determines the format of the following Operation Word In executing the RDVAL (Read-Validate) or WRVAL (Write-
of the instruction. Validate) instruction, the CPU first performs the effective

The CPU initiates an MMU instruction by issuing the ID Byte address calculation and obtains the address to be validated.

and the Operation Word, using Slave Processor bus cycles. It then issues the ID Byte and the Operation Word to the

While applying status code 1111, the CPU transfers the ID MMU. It initiates a one·byte Read cycle from the memory

byte on bits AD24-AD31, the operation word on bits ADS- address whose protection level is being tested. It does so

AD23 in a swapped order of bytes and a non-used byte while presenting status code 1010; this being the only place

XXXXXXX1 (X = Don't Care) on bits ADO-AD7. that this status code appears during a RDVAL or WRVAL

Other actions are taken by the CPU and the MMU according instruction. This memory access triggers a special address

to the instruction under execution, as shown in Tables 2·2, translation from the MMU. The translation is performed by

2-3 and 2-4. the MMU using User-Mode mapping, and any protection vio-

In executing the LMR instruction (Load MMU Register, Ta-
lation occurring during this memory cycle does not cause an
Abort. The MMU will, however, abort the CPU if the Level-1

ble 2-2), the CPU issues the ID Byte, the Operation Word, Page Table Entry is invalid.
and then the operand value to be loaded by the MMU. The

Upon completion of the address translation, the MMU puls-register to be loaded is specified in a field within the Opera-
es SDONE for two clock cycles to acknowledge that the tion Word of the instruction.

The CPU then waits for the MMU to signal the completion of
instruction may continue execution and an MMU status read

the instruction by pulsing SDONE low.
is required.

TABLE 2-2. LMR Instruction Protocol

CPU Action Status MMU Action

Issues ID Byte and Operation Word, pulsing SPC. 1111 Accepts and decodes instruction.
Accesses memory for effective address calculation XXXX Translates CPU addresses.
and operand fetching or instruction prefetching.
Issues operand value to MMU, pulsing SPC. 1101 Accepts operand value from bus; places it into

referenced MMU register.
Waits for SDONE pulse from MMU. 0011 Sends completion signal by pulsing SDONE low.

TABLE 2-3. SMR Instruction Protocol

CPU Action Status MMU Action

Issues ID Byte and Operation Word, pulsing SPC. 1111 Accepts and decodes instruction.
Accesses memory for effective address calculation XXXX Translates CPU addresses.
or instruction prefetching.
Waits for SDONE pulse from MMU. 0011 Sends completion signal by pulsing SDONE low.
Reads results from MMU, pulsing SPC. 1101 Presents data value from referenced MMU register

on bus.

TABLE 2-4. RDVAL/WRVAL Instruction Protocol

CPU Action Status MMUAction

Performs effective address calculation and obtains XXXX Translates CPU addresses.
address to be validated.
Issues ID Byte and operation word, pulsing SPC. 1111 Accepts and decodes instruction.
CPU may prefetch instructions. XXXX
Performs dummy one-byte memory read from 1010 Translates CPU address, using User-Mode
operand's location. mapping, and performs requested test on the

address presented by the CPU. Aborts the CPU if
there is no protection violation and the level-1 page
table entry is invalid. Aborts on protection violations
are temporarily suppressed.

Waits for SDONE pulse from MMU XXXX Pulses SDONE low for two clock cycles.
Sends SPC pulse and reads Status Word from 1110 Presents Status Word on bus, indicating in bit 5 the
MMU; places bit 5 of this word into the F bit of the result of the test.
PSR register.

3-15

z en
Co)
N
Co)
CD
N

I
o
z en
Co)
N
Co)
CD
N

I
(JI

Ell

~.---~
N
co
CO)
('I
CO)
(I)
Z o
N
CO
CO)
('I

~
Z

2.0 Functional Description (Continued)

The CPU then reads a status word from the MMU. Bit 5 of
this Status Word indicates the result of the instruction:

o if the CPU in User Mode could have made the corre­
sponding access to the operand at the specified ad­
dress (Read in RDVAL, Write in WRVAL),

1 if the CPU would have been aborted for a protection
violation.

Bit 5 of the Status Word is placed by the CPU into the F bit
of the PSR register, where it can be tested by subsequent
instructions as a condition code.

2.6 BUS ACCESS CONTROL

The NS32382 MMU has the capability of relinquishing its
access to the bus upon request from a DMA device. It does
this by using HOLD, HLDAI and HLDAO.

Details on the interconnections of these pins are provided in
Figure A-1 (Appendix A).

Requests for DMA are presented in parallel to both the CPU
and MMU on the HOLD pin of each. The component that
currently controls the bus then activates its Hold Acknowl­
edge output to grant bus access to the requesting device.
When the CPU grants the bus, the MMU passes the CPU's
HLDA signal to its own HLDAO pin. When the MMU grants
the bus, it does so by activating its HLDAO pin directly, and
the CPU is not involved. HLDAI in this case is ignored.

Refer to Figures 4-15 and 4-16 for details on bus granting
sequences.

CPU STATES Tf Tf
MMU STATES T3 T4

PHil [

PHI2 [

PAV[

Tf
T1

2.7 BREAKPOINTING

The MMU provides the ability to monitor references to mem­
ory locations in real time, generating a Breakpoint trap on
occurrence of any type of reference made by a program to a
specified virtual address or range of addresses .

Breakpoint monitoring is enabled and regulated by the set­
ting of appropriate bits in the BAR, BMR, BDR, MCR and
MSR registers. See Sections 3.7 through 3.11.

The MMU compares the 32-bit address stored in the BAR
register with the virtual address from the CPU. Selected bits
can be masked off by the data pattern stored in the BMR
register. Only those bit positions which are set in the BMR
register will be used in the comparison process, bit positions
which are cleared become "Don't Cares".

If a Breakpoint condition is detected, an abort will be issued
to the CPU and the BP bit in the MSR register will be set.
The virtual address that triggered the Breakpoint is then
stored in the BDR register.

The dummy read addresses generated by the CPU during
RDVALlWRVAL operations, are not subject to Breakpoint
address comparison. See Section 2.5.2.

When a Breakpoint is enabled, the NS32332 burst cycles
should be inhibited by keeping the BIN signal high. The rea­
son being that the CPU addresses are not incremented dur­
ing burst. It is therefore possible for the CPU to skip over the
address specified in the BAR register during burst cycle.

Tf T3 T4
T2 T3 T4

FLT [-+---+----+----+-----t-----t'
SDONE [(I)

RDY [_+-__ -+ __ '"

Note I: " there is a protection violation or an invalid Level-2 PTE then SDONE is issued two clock cycles earlier in TI.

Nole 2: "there is no protection violation and the Level·1 PTE is not valid. an abort is generated and SDONE is not pulsed.

FIGURE 2-12. FLT Deassertion During RDVAL/WRVAL Execution

3-16

TL/EE/9142-15

~--~Z

3.0 Architectural Description
3.1 PROGRAMMING MODEL

The MMU contains a set of registers through which the CPU
controls and monitors management and debugging func·
tions. These registers are not memory· mapped. They are
examined and modified by executing the Slave Processor
instructions LMR (Load Memory Management Register) and
SMR (Store Memory Management Register). These instruc·
tions are explained in Section 3.14, along with the other
Slave Processor instructions executed by the MMU.

A brief description of the MMU registers is provided below.
Details on their formats and functions are provided in the
following sections.

PTBD, PTB1-Page Table Base Registers. They hold the
physical memory addresses of the LEVEL·1 Page Tables
referenced by the MMU for address translation. See Section
3.3.

IVARD, IVAR1-lnvalidate Virtual Address Registers.
These WRITE-ONLY registers are used to remove invalid
Page Table Entries from the Translation Buffer.

TEAR-Translation Exception Address Registers. This
register contains the virtual address which caused the trans­
lation exception.

BEAR-Bus Error Address Register. This register con­
tains the virtual address which triggered the bus error.

BAR-Breakpoint Address Register. Used to hold a virtu­
al address for breakpoint address comparison.

BMR-Breakpoint Mask Register. The contents of this
register indicate which bit positions of the virtual address
are to be compared.

BDR-Breakpoint Data Register. This register contains
the virtual address that triggered a breakpoint.

MCR-Memory Management Control Register. Contains
the control field for selecting the various features provided
by the MMU.

PTBn ~
~--- ~ -32 BITS-

1024

I~
lEVEl·1

PAGE TABLE

MSR-Memory Management Status Register. Contains
basic status fields for all MMU functions. See Section 3.11.

3.2 MEMORY MANAGEMENT FUNCTIONS

The NS32382 uses sets of tables in physical memory (the
"Page Tables") to define the mapping from virtual to physi­
cal addresses. These tables are found by the MMU using
one of its two Page Table Base registers: PTBO or PTB1.
Which register is used depends on the currently selected
address space. See Section 3.2.2.

3.2.1. Page Tables Structure

The page tables are arranged in a two-level structure, as
shown in FigureS-t. Each of the MMU's PTBn registers may
point to a Level-1 page table. Each entry of the Level-1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level-1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently, but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level-1 Page Table contains 1024 32-bit Page Table
Entries (PTE's) and therefore occupies 4 Kbyte. Each entry
of the Level-1 Page Table contains fields used to construct
the physical base address of a Level-2 Page Table. These
fields are a 20·bit PFN field, providing bits 12-31 of the
phYSical address. The remaining bits (0-11) are assumed
zero, placing a Level-2 Page Table always on a 4 Kbyte
(page) boundary.

-32 BITS-

lEVEl·2
PAGE TABLES

4k BYTES

MEMORY

TL/EE/9142-18

FIGURE 3-1. TWO-Level Page Tables

3-17

en w
N
W
CD
~ ...
o z
en w
N
W
CD
N
U'I

U) ,---,
N co
C")
N
C")
(J)
Z o
N
CO

~
C")
U)
Z

3.0 Architectural Description (Continued)

Level-2 Page Tables contain 1024 32-bit Page Table en­
tries, and so occupy 4 Kbytes (1 page). Each Level·2 Page
Table Entry points to a final 4 Kbyte physical page frame. In
other words, its PFN provides the Page Frame Number por­
tion (bits 12-31) of the translated address (Figure 3-3). The
OFFSET field of the translated address is taken directly
from the corresponding field of the virtual address.

3.2.2 Virtual Address Spaces

When the Dual Space option is selected for address transla·
tion in the MCR (Sec. 3.10) the MMU uses two maps: one
for translating addresses presented to it in Supervisor Mode
and another for User Mode addresses. Each map is refer­
enced by the MMU using one of the two Page Table Base
registers: PTBO or PTB1. The MMU determines the CPU's
current mode by monitoring the state of the U/S pin and
applying the following rules.

1) While the CPU is in Supervisor Mode (U/S pin = 0), the
CPU is said to be presenting addresses belonging to Ad­
dress Space 0, and the MMU uses the PTBO register as
its reference for looking up translations from memory.

2) While the CPU is in User Mode (U/S pin = 1), and the
MCR DS bit is set to enable Dual Space translation, the
CPU is said to be presenting addresses belonging to Ad­
dress Space 1, and the MMU uses the PTB1 register to
look up translations.

3) If Dual Space translation is not selected in the MCR,
there is no Address Space 1, and all addresses present·
ed in both Supervisor and User modes are considered by
the MMU to be in Address Space O. The privilege level of
the CPU is used then only for access level checking.

Note: When the CPU executes a Dual·Space Move instruction (MOVUSi or
MOVSUi), it temporarily enters User Mode by switching the state of
the U/S pin. Accesses made by the CPU during this time are treated
by the MMU as User·Mode accesses for both mapping and access
level checking. It is possible, however, to force the MMU to assume
Supervisor-Mode privilege on such accesses by setting the Access
Override (AO) bit in the MCR (Sec. 3.10).

3.2.3 Page Table Entry Formats

Figure 3-2 shows the formats of Level-1 and Level-2 Page
Table Entries (PTE's).

The bits are defined as follows:

V Valid. The V bit is set and cleared only by software.

V = 1 => The PTE is valid and may be used for trans·
lation by the MMU.

I"
PFN ,J, :USR: 1"+1 9 8

V = 0 => The PTE does not represent a valid transla­
tion. Any attempt to use this PTE will cause
the MMU to generate an Abort trap.

PL Protection Level. This two-bit field establishes the
types of accesses permitted for the page in both User
Mode and Supervisor Mode, as shown in Table 3-1.

The PL field is modified only by software. In a Level-1
PTE, it limits the maximum access level allowed for all
pages mapped through that PTE.

TABLE 3-1. Access Protection Levels

Mode U/S
Protection Level Bits (PL)

00 01 10 11

User 1 no no read full
access access only access

Supervisor 0 read full full full
only access access access

NU Not Used. These bits are reserved by National for fu­
ture enhancements. Their values should be set to
zero.

CI Cache Inhibit. This bit appears only in Level-2 PTE's.
It is used to specify non-cacheable pages.

R Referenced. This is a status bit, set by the MMU and
cleared by the operating system, that indicates wheth­
er the page mapped by this PTE has been referenced
within a period of time determined by the operating
system. It is intended to assist in implementing memo­
ry allocation strategies. In a Level·1 PTE, the R bit
indicates only that the Level·2 Page Table has been
referenced for a translation, without necessarily imply­
ing that the translation was successful. In a Level-2
PTE, it indicates that the page mapped by the PTE
has been successfully referenced.

R = 1 => The page has been referenced since the R
bit was last cleared.

R = 0 => The page has not been referenced since the
R bit was last cleared.

M Modified. This is a status bit, set by the MMU whenev­
er a write cycle is successfully performed to the page
mapped by this PTE. It is initialized to zero by the
operating system when the page is brought into physi­
cal memory.

:
First Level PTE

I"
PFN I :USR: IMIRH

12 11 9 8

~L V

o
Second Level PTE

FIGURE 3-2. Page Table Entries (PTE's)

3-18

3.0 Architectural Description (Continued)

M = 1 => The page has been modified since it was
last brought into physical memory_

M=O=> The page has not been modified since it
was last brought into physical memory.

In Level-1 Page Table Entries, this bit position is unde­
fined, and is unaltered_

USR User bits_ These bits are ignored by the MMU and their
values are not changed.

They can be used by the user software.

PFN Page Frame Number. This 20-bit field provides bits
12-31 of the physical address. See Figure 3-3.

3_2.4 Physical Address Generation

When a virtual address is presented to the MMU by the CPU
and the translation information is not in the TLB, the MMU
performs a page table lookup in order to generate the physi­
cal address.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia­
grammed in Figure 3-3.

VIRTUAL ADDRESS
31 22 21 1211

L INDEX 1 \ INDEX 2 OFFSET
L

I

a- LEVEL-l PAGE TABLE

... LEVEL-l PTE

I PTB. \ INDEX 1 \ DO t-- PFN I USR I NU I ;r+~V
31 1211 21 0 31 0 t
II) SELECT 1ST PTE 1024

IF DS=O THEN PTE.
A=O

ELSE
• = 1 FOR USER MODE
• = 0 FOR SUPV MODE 4 BYTES-

... ",

"" PFN I INDEX 2 r 00-:

31 1211 21 0

12) SELECT 2ND PTE

Bits 12-31 of the virtual address hold the 20-bit Page Num­
ber, which in the course of the translation is replaced with
the 20-bit Page Frame Number of the physical address. The
virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-11 constitute the OFFSET field, which identifies a
byte's position within the accessed page_ Since the byte
position within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-11 of the final physical address.

The 10-bit INDEX 1 field of the virtual address is used as an
index into the Level-1 Page Table, selecting one of its 1024
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN field of that entry gives the
base address of the selected Level-2 Page Table.

The INDEX 2 field of the virtual address (10 bits) is used as
the index into the Level-2 Page Table, by adding it (scaled
by 4) to the base address taken from the Level-1 Page Ta­
ble Entry_ The PFN field of the selected entry provides the
entire Page Frame Number of the translated address.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address_

1---,
I
I
I
I
~

I PFN I 000000000000 ~ LEVEL-2 PAGE TABLE

LEVEL-2 PTE

PFN IUSRI M I R I CIINUlpL\ V 1024
31

......

"" PHYSICAL ADDRESS I PFN I OFFSET

31 12 11

13) GENERATE PHYSICAL
ADDRESS

0 PTE.

TLlEE/9142-20

FIGURE 3-3. Virtual to Physical Address Translation

3-19

z en w
N
W co
~
o
z en w
N
W co
N

I
U1

•

~ r---~
N co
~
('I)
U)
Z
~
N co
('I)
C'I
('I)
U)
Z

3.0 Architectural Description (Continued)

3.3 PAGE TABLE BASE REGISTERS (PTBD, PTB1)

The PTBn registers hold the physical addresses of the Lev­
el-1 Page Tables.

The format of these registers is shown in Figure 3-4. The
least-significant 12 bits are permanently zero, so that each
register always points to a 4 Kbyte boundary in memory.

The PTBn registers may be loaded or stored using the MMU
Slave Processor instructions LMR and SMR (Section 3.14).

3.4 INVALIDATE VIRTUAL ADDRESS REGISTERS
(IVARD,IVAR1)

The Invalidate Virtual Address registers are write-only regis­
ters. When a virtual address is written to IVARO or IVAR1
using the LMR instruction, the translation for that virtual ad­
dress is purged, if present, from the TLB. This must be done
whenever a Page Table Entry has been changed in memo­
ry, since the TLB might otherwise contain an incorrect trans­
lation value.

Another technique for purging TLB entries is to load a PTBn
register. This automatically purges all entries associated
with the addressing space mapped by that register. Turning
off translation (clearing the MCR TU and/or TS bits) does
not purge any entries from the TLB.

The format of the IVARn registers is shown in Figure 3-5.

3.5 TRANSLATION EXCEPTION ADDRESS REGISTER
(TEAR)

The TEAR Register is loaded when a translation exception
occurs. It contains the 32-bit virtual address which caused
the translation exception and is a read-only register. TEAR
has the same format as the IVARn registers of Figure 3-5.

For more details on the updating of TEAR, refer to the note
at the end of Section 3.11.

3.6 BUS ERROR ADDRESS REGISTER (BEAR)

The BEAR Register is loaded when a CPU or MMU bus
error occurs. It contains the 32-bit virtual address which trig­
gered the bus error and is a read-only register. BEAR has
the same format as the IVARn registers of Figure 3-5.

3.7 BREAKPOINT ADDRESS REGISTER (BAR)

The Breakpoint Address Register is used to hold a virtual
address for breakpoint address comparison during instruc­
tion and operand accesses. It is 32 bits in length and its
format is shown in Figure 3-6.

3.8 BREAKPOINT MASK REGISTER (BMR)

The Breakpoint Mask Register provides corresponding bit
positions for each of the virtual address bits that are to be
compared when the Breakpoint Address Compare Function
is enabled. Bits which are set in this register are used for
matching virtual address bits while bits which are cleared
are treated as "don't cares". This allows a breakpoint to be
generated upon an access to any location within a block of
addresses. The BMR Register format is shown in Figure 3-6.

3.9 BREAKPOINT DATA REGISTER (BDR)

The Breakpoint Data Register holds the virtual address that
triggered the breakpoint.

It is a read-only register and its format is shown in Figure 3-6.

3.1D MEMORY MANAGEMENT CONTROL REGISTER
(MCR)

The MCR Register controls the various features provided by
the MMU. It is 32 bits in length and has the format shown in
Figure 3-7. All bits will be cleared on reset. The bits 8 to 31
are RESERVED for future use and must be loaded with ze­
ros.

When MCR is read as a 32-bit word, bits 8 to 31 will be
returned as zeros. Details on the MCR bits are given below.

TU Translate User·Mode Addresses. While this bit is "1",
the MMU translates all addresses presented while
the CPU is in User Mode. While it is "0", the MMU
echoes all User-Mode virtual addresses without per­
forming translation or access level checking.

Note: Altering the TU bit has no effect on the contents of the TLB.

TS Translate Supervisor-Mode Addresses. While this bit
is "1", the MMU translates all addresses presented
while the CPU is in Supervisor Mode. While it is "0",
the MMU echoes all Supervisor-Mode virtual ad­
dresses without translation or access level checking.

Note: Altering the TS bit has no effect on the contents of the TLB.

OS Dual-Space Translation. While this bit is "1", Supervi­
sor Mode addresses and User Mode addresses are
translated independently of each other, using sepa­
rate mappings. While it is "0", both Supervisor Mode
addresses and User Mode addresses are translated
using the same mapping. See Section 3.2.2.

1 : : : : : ~O~+~+:2~+: : : : : 101+101+1+1+1+1
31 1211 0

FIGURE 3-4. Page Table Base Registers (PTBD, PTB1)

131: : : : : : : : : : : ~1~+HoH+: : : : : : : : : : : :,1
FIGURE 3-5. Address Registers (IVARD, IVAR1, TEAR, BEAR)

FIGURE 3-6. Breakpoint Registers (BAR, BMR, BDR)

3-20

r--, Z

3.0 Architectural Description (Continued)

AO Access Level Override. This bit may be set to tempo­
rarily cause User Mode accesses to be given Supervi­
sor Mode privilege. See Section 3.13.

BR Break on Read. If BR is 1, a break is generated when
data is read from the breakpoint address. Instruction
fetches do not trigger a Read breakpoint. If BR is 0,
this condition is disabled.

BW Break on Write. If BW is 1, a break is generated when
data is written to the breakpoint address or when
data is read from the breakpoint address as the first
part of a read-modify-write access. If BW is 0, this
condition is disabled.

BE Break on Execution. If BE is 1, a break is generated
when the instruction at the breakpoint address is
fetched. If BE is 0, this condition is disabled.

BAS Breakpoint Address Space. This bit selects the ad­
dress space for breakpointing.

BAS = 0 Selects Address Space 0 (PTBO).

BAS = 1 Selects Address Space 1 (PTB1).

3.11 MEMORY MANAGEMENT STATUS REGISTER
(MSR)

The Memory Management Status Register provides status
information for translation exceptions as well as bus errors.

When either a translation exception or a bus error occurs,
the corresponding bits in the MSR are updated.

The MSR register can be loaded with an LMR instruction. Its
format is shown in Figure 3-8. Bits 19 through 31 are re­
served for future use and are returned as zeros when read.
Bits 8 and 18 are also reserved.

Upon reset, all MSR bits are cleared to zero. Details on the
function of each bit are given below.

TEX Translation Exception. This 2-bit field specifies the
cause of the current address translation exception.
Combinations appearing in this field are summarized
below.

00 No Translation Exception

01 First Level PTE Invalid

10 Second Level PTE Invalid

11 Protection Violation
Note: During address translation, if a protection violation and an invalid PTE

are detected at the same time, the TEX field is set to indicate a pro·
tection violation.

DDT Data Direction. This bit indicates the direction of the
transfer that the CPU was attempting when the trans­
lation exception occurred.

DDT = 0 = > Read Cycle

DDT = 1 = > Write Cycle

UST User/Supervisor. This is the state of the U/S pin from
the CPU during the access cycle that triggered the
translation exception.

STT CPU Status. This 4-bit field is set on an address
translation exception to the value of the CPU Status
Bus (STO-ST3).

BP Break. This bit is set to indicate that a breakpoint
condition has been detected by the MMU.

CE CPU Error. This bit is set when a bus error occurs
while the CPU is in control of the bus.

ME MMU Error. This bit is set when a bus error occurs
while the MMU is in control of the bus.

DDE Data Direction. This bit indicates the direction of the
transfer that the CPU was attempting when the bus
error occurred.

DDE = 0 = > Read Cycle

DDE = 1 = > Write Cycle

USE User/Supervisor. This is the state of the U/S pin from
the CPU during the access cycle that triggered the
bus error.

STE CPU Status. This 4-bit field is set to the value of the
CPU status bus (STO-ST3) when a bus error is de­
tected.

Note: The MBR and TEAR registers are updated whenever a translation
exception occurs, regardless of whether a CPU abort will result As a
consequence, after an abort is recognized, MSR and TEAR may be
overwritten with new data and thus the original contents may be lost.
This happens if the CPU, while executing the abort routine, performs
instruction prefetch cycles from an invalid page. To ensure correct
operation the reading of MBR and TEAR should be performed before
any instruction prefetch crosses a page boundary, unless the next
page is valid. This may place soma restrictions in the relocation of the
abort routine.

_BASi BEIBWIBRIAOloslTS ITU I
131 BI7 01

TLlEE/9142-24

FIGURE 3·7. Memory Management Control Register (MCR)

IU5EIooEI ME I CE I BP @l : sf : lUST lOOT I
TL/EE/9142-25

FIGURE 3·8. Memory Management Status Register (MSR)

3-21

en
Co)
I\)
Co)
co
~
~
z en
Co)
I\)
Co)
co
~
U'I

•

~ r--,
N
co
C")
N
C")
tI)
Z
C;
N co
C")
N
C")
tI)
Z

3.0 Architectural Description (Continued)

3.12 TRANSLATION LOOKASIDE BUFFER (TLB)

The Translation Lookaside Buffer is an on-chip fully asso­
ciative memory. It provides direct virtual to physical mapping
for the 32 most recently used pages, requiring only one
clock period to perform the address translation.

The efficiency of the MMU is greatly increased by the TLB,
which bypasses the much longer Page Table lookup in over
97% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced by the MMU
itself; the operating system is not involved. The TLB entries
cannot be read or written by software; however, they can be
purged from it under program control.

Figure 3-9 models the TLB. Information is placed into the
TLB whenever the MMU performs a lookup from the Page
Tables in memory. If the retrieved mapping is valid (V= 1 in
both levels of the Page Tables), and the access attempted
is permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory. The re­
cipient entry is selected by an on-chip circuit that imple­
ments a Least-Recently-Used (LRU) algorithm. The MMU
places the virtual page number (20 bits) and the Address
Space qualifier bit into the Tag field of the TLB entry.

The Value portion of the entry is loaded from the Page Ta­
bles as follows:

The Translation field (20 bits) is loaded from the PFN field
of the Level-2 Page Table Entry.

The CI and M bits are loaded from the Level-2 Page Table
Entry.

The PL field (2 bits) is loaded to reflect the net protection
level imposed by the PL fields of the Level-1 and Level-2
Page Table Entries.

(Not shown in the figure are additional bits associated with
each TLB entry which flag it as full or empty, and which
select it as the recipient when a Page Table lookup is per­
formed.)

When a virtual address is presented to the MMU for transla­
tion, the high-order 20 bits (page number) and the Address
Space qualifier are compared associatively to the corre-

VIRTUAL
ADDRESS

(U/s, ZZZ)
COMPARISON

AS·

0

1

0

1

TAG

PAGE NUMBER
(20 BITS)

xxx

YYY

zzz

www

sponding fields in all entries of the TLB. When the Tag por­
tion of a TLB entry completely matches the input values, the
Value portion is produced as output. If the protection level is
not violated, and the M bit does not need to be changed,
then the physical address Page Frame number is output in
the next clock cycle. If the protection level is violated, the
MMU instead activates the Abort output. If no TLB entry
matches, or if the matching entry's M bit needs to be
changed, the MMU performs a page-table lookup from
memory.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-1 and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in the pro­
cess of loading a TLB entry (during a Page Table lookup)
the Level-1 and Level-2 R bits will be set in memory if they
were not already set. For these reasons, there is no need to
replicate either the V bit or the R bit in the TLB entries.

Whenever a Page Table Entry in memory is altered by soft­
ware, it is necessary to purge any matching entry from the
TLB, otherwise the MMU would be translating the corre­
sponding addresses according to obsolete information. TLB
entries may be selectively purged by writing a virtual ad­
dress to one of the IVARn registers using the LMR instruc­
tion. The TLB entry (if any) that matches that virtual address
is then purged, and its space is made available for another
translation. Purging is also performed by the MMU whenev­
er an address space is remapped by altering the contents of
the PTBO or PTB1 register. When this is done, the MMU
purges all the TLB entries corresponding to the address
space mapped by that register. Turning translation on or off
(via the MCR TU and TS bits) does not affect the contents
of the TLB.

3.13 ADDRESS TRANSLATION ALGORITHM

The MMU either translates the 32-bit virtual address to a
32-bit physical address or reports a translation error. This
process is described algorithmically in the following pages.
See also Figure 3-3.

PL M

11 0

11 a

11 1

00 1

VALUE

CI TRANSLATION
(20 BITS)

0 mmm

a nnn

1 PPP

a qqq

TRANSLATED
ADDRESS

(PPP)

TL/EE/9142-26

FIGURE 3-9. TLB Model
• AS represents the virtual address space qualifier.

3-22

'" r\,

'"

MMU Page Table Lookup and Access Validation Algorithm
Legend:
x = y
x == y

x AND y
x OR y

(... J
item(i)
item(i:j)
item.x
DONE
ABORT

x is assigned the value y
Comparison expression, true if x is equal to y
Boolean AND expression, true only if assertions x and yare both true
Boolean inclusive OR expression, true if either of assertions x and y is true
Delimiter marking end of statement
Delimiters enclosing a statement block
Bit number i of structure "item"
The field from bit number i through bit number of structure "item"
The bit or field named "x" in structure "item"
Successful end of translation; MMU provides translated address
Unsuccessful end of translation; MMU aborts CPU access

This algorithm represents for all cases a valid definition of address translation.
Bus activity implied here occurs only if the TLB does not contain the mapping,
or if the reference requires that the MMU alter the M bit of the Page Table Entry.
Otherwise, the MMU provides the translated address in one clock period.
Input (from CPU) :

U (1 if U/S is high)
W (1 if DDIN input is high)
VA Virtual address consisting of:

INDEX_l (from pins A31-A22)
INDEX_2 (from pins A21-A12)
OFFSET (from pins AII-AO)

Co)

(:)

»
""I
(')
:::r
;:;:
CD
(') -C
""I

~
C
CD en
(')
~.

" -0'
:J
'0
o
;a
s·
c m
.e,

ACCESS_LEVEL The access level of a reference is a 2-bit value synthesized by the MMU from CPU status:
bit 1 U AND NOT MCR.AO (U from U/S input pin)
bit 0 = 1 for Write cycle, or Read cycle of an "rmw" class operand access

o otherwise.

Output:

Uses:

PA Physical Address on pins PAO-PA31;
CI Cache Inhibit Signal
Abort pulse on RST/ABT pin.

MCR Control Register:
fields TU, TS and DS

II
s ~ -l8£l£SN/O ~ -l8£l£SN

U)

'" -I>-

NS32382-10/NS32382·15

MMU Page Table Lookup and Access Validation Algorithm (Continued)

PTBO
PTBI
PTE_l

PTEP_l
PTE_2

PTEP_2
IF ((MCR.TU

THEN {

Page Table Base Register 0
Page Table Base Register 1
Level-l Page Table Entry:

fields PFN, PL, V and R
Pointer, holding address of PTE_l
Level-2 Page Table Entry:

fields PFN, PL, V, M, Rand CI
Pointer, holding address of PTE_2

= = 0) AND (U = = 1) OR «MCR.TS 0) AND
PA(0:31) = VA(0:31) ; CINH PIN = 0 ; DONE

IF (MCR.DS = = 1) AND (U = = 1)
THEN { PTEP_l(31:12) = PTBl(31:12)

PTEP_l(1l:2) = VA.INDEX_l ; PTEP_l(l:O) =0
ELSE PTEP_l(31:12) = PTBO(31:12) ;

PTEP_l(11:2) = VA.INDEX_l; PTEP_l(l:O) = 0

(U ==0)) If translation not enabled then echo
virtual address as physical address.

If Dual Space mode and CPU in User Mode
then form Level-l PTE address

from PTBI register,
else form Level-l PTE address

from PTBO register.

- - - LEVEL 1 PAGE TABLE LOOKUP - - -

IF (ACCESS_LEVEL > PTE_I. PL) OR (PTE_I. V
THEN ABORT ;

IF PTE_l.R 0 THEN PTE_l.R 1

PTEP_2(31:11) = PTE_LPFN
PTEP_2(1l:2) = VA.INDEL2 PTEP_2(1:0) 0

0)

IF (ACCESS_LEVEL > PTE_2. PL) OR (PTE_2. V = = 0)
THEN ABORT ;

IF PTE_2.R = = 0 THEN PTE_2.R = = 1
IF (W = = 1) AND (PTE_2.M = = 0 THEN PTE_2.M 1

If protection violation or invalid Level-2 page
table then abort the access.

Otherwise. set Reference bit if not already set,

and form Level-2 PTE address.

LEVEL 2 PAGE TABLE LOOKUP -

If protection violation or invalid page
then abort the access.

Otherwise, set Referenced bit if not already set,
if Write cycle set Modified bit if not

already set,
PA(31:11) PTE_2.PFN PA(ll:O) VA.OFFSET CINH PTE_2.CI and generate physical address.
DONE ;

(0)

o
l> a
J
::;:
(I)
n -c
~

e!-
o
(I)
U)
n
:::::!.
"C -o·
:::s
'0 o
3-
5"
t:
CD
B

3.0 Architectural Description (Continued)

3.14 INSTRUCTION SET

Four instructions of the Series 32000 instruction set are ex·
ecuted cooperatively by the CPU and MMU. These are:

LMR Load Memory Management Register

SMR Store Memory Management Register

RDVAL Validate Address for Reading

WRVAL Validate Address for Writing

The format of the MMU slave instructions is shown in Figure
3-10. Table 3-2 shows the encodings of the "short" field for
selecting the various MMU internal registers.

TABLE 3-2. "Short" Field Encodlngs

"Short" Field Register

0000 BAR
0001 RESERVED
0010 BMR
0011 BDR
0110 BEAR
1001 MCR
1010 MSR
1011 TEAR
1100 PTBO
1101 PTBI
1110 IVARO
1111 IVARI

Note: All other codes are illegal. They will cause unpredictable registers to
be selected if used in an instruction.

For reasons of system security, all MMU instructions are
privileged, and the CPU does not issue them to the MMU in
User Mode. Any such attempt made by a User-Mode pro·
gram generates the Illegal Operation trap, Trap (ILL). In ad­
dition, the CPU will not issue MMU instructions unless its
CFG register's M bit has been set to validate the MMU in·
struction set. If this has not been done, MMU instructions
are not recognized by the CPU, and an Undefined Instruc­
tion trap, Trap (UND), results.

The LMR and SMR instructions load and store MMU regis­
ters as 32-bit quantities to and from any general operand
(including CPU General-Purpose Registers).

The RDVAL and WRVAL instructions probe a memory ad­
dress and determine whether its current protection level
would allow reading or writing, respectively, if the CPU were
in User Mode. Instead of triggering an Abort trap, these in­
structions have the effect of setting the CPU PSR F bit if the
type of access being tested for would be illegal. The PSR F
bit can then be tested as a condition code.
Nole: The Series 32000 Dual-Space Move instructions (MOVSUi and

MOVUSi), although they involve memory management action. are not
Slave Processor instructions. The CPU implements them by switching
the state of its U/S pin at appropriate times to select the desired
mapping and protection from the MMU.

For full architectural details of these instructions, see the
Series 32000 Instruction Set Reference Manual.

4.0 Device Specifications
4.1 NS32382 PIN DESCRIPTIONS

The following is a brief description of all NS32382 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 2.0.

OPERATION WORD 817 to CODE 01
TLlEE/9142-27

FIGURE 3-10. MMU Slave Instruction Format

3-25

z
~
I\)
Co)
CC)
I\)
c
Z
(J)
Co)
I\)
Co)
CC)
I\)
U1

~ ,--, ,...
~
co
('I)
N
('I)
rJ)
Z
c ,... .
N
co
('I)
N
('I)
rJ)
Z

4.0 Device Specifications (Continued)

4.1.1 Supplies

Power (Vee): Eight pins, connected to the + 5V supply.

Back Bias Generator (BBG): Output of on-chip substrate
voltage generator.

Ground (GND): Eighteen pins, connected to ground.

4.1.2 Input Signals

Clocks (PHI1, PHI2): Two-phase clocking signals. Section
2.2.

Ready (ROY): Active high. Used by slow memories to ex­
tend MMU originated memory cycles. Section 2.4.4.

Hold Request (HOLD): Active low. Causes a release of the
bus for DMA or multiprocessing purposes. Section 2.6.

Connection Diagram

®®®®®®®®®®®®
B®@®®®®®®®®®®@®
c®® ®®®®®®®®®®®
o®®® ®®®
E®®® ®®®
F®®® ®®®
G®®® ®®®

NS32382

H®®® ®®®
J ®®® ®®®
K®®® ®®®
L®®® ®®®
M®® ®®®®®®®® ®®
N®@®®®®®®®®®®@®

®®®®®®®®®®®®
14 13 12 11 10 9

TL/EE/9142-28

Bottom View

FIGURE 4-1. Pin Grid Array Package

Order Number NS32382U-10 or NS32382U-15
See NS Package Number U125A

3-26

Hold Acknowledge in (HLDAI): Active low. Applied by the
CPU in response to HOLD input, indicating that the CPU has
released the bus for DMA or multiprocessing purposes.
Section 2.6 .

Reset Input (RSTI): Active low. System reset. Section 2.3.

Status Lines (STO-ST3): Status code input from the CPU.
Active from T 4 of previous bus cycle through T3 of current
bus cycle. Section 2.4.

User/Supervisor Mode (U/S): This signal is provided by
the CPU. It is used by the MMU for protection and for select­
ing the address space (in dual address space mode only).
Section 2.4.

Address Strobe Input (ADS): Active low. Pulse indicating
that a virtual address is present on the bus.

Bus Error (BER): Active low. When active, indicates that an
error occurred during a bus cycle. Not applicable for slave
cycles.

Desc

NC
SPC
NC
SDONE
MILO
HLDAI
RSTI
BER
8RT
RST/A8T
STO
STI
NC
NC
GND
GND

Vee
HOLD
RDY
PHI2
PHil
PAV
FLT
ST2
ST3
RESERVED
NC
MADS
GND
GND
DDIN
HLDAO

NS32382 Pinout Descriptions
125 Pin Grid Array

Pin Desc Pin Desc Pin

A2 Vee C7 AD22 HI
A3 GND C8 AD21 H2
A4 Vee C9 AD20 H3
A5 Vee Cl0 GND H12
A6 GND Cl1 PA22 H13
A7 GND C13 PA21 H14
A8 CINH C14 AD19 Jl
A9 AD29 Dl AD18 J2
Al0 AD31 D2 AD17 J3
All GND D3 PA20 J12
A12 ADS D12 PA19 J13
A13 RESERVED D13 PA18 J14
81 PA31 D14 AD14 Kl
82 AD27 El AD15 K2
83 AD30 E2 AD16 K3
B4 U/S E3 GND K12
85 PA30 E12 PA17 K13
86 PA29 E13 PA16 K14
87 PA28 E14 AD13 L 1
B8 AD25 Fl AD12 L2
B9 AD26 F2 Vee L3
Bl0 AD28 F3 Vee L12
Bll PA27 F12 PA14 L13
B12 PA26 F13 PA15 L14
B13 PA25 F14 NC MI
B14 AD23 Gl GND M2
Cl AD24 G2 GND M4
C2 GND G3 AD7 M5
C3 GND G12 AD3 M6
C4 PA24 G13 Vee M7
C5 PA23 G14 BBG M8
C6

Desc Pin

PA4 M9
PA7 Ml0
GND MIl

Vee M13
PA13 M14
NC Nl
GND N2
GND N3
AD9 N4
AD5 N5
AD2 N6
ADO N7
PAO N8
PA3 N9
PA6 Nl0
PA9 NIl
GND N12
NC N13
PA12 N14
ADll P2
AD10 P3
AD8 P4
AD6 P5
AD4 P6
ADI P7
PAl P8
PA2 P9
PA5 Pl0
PA8 Pll
PAlO P12
PAIl P13

4.0 Device Specifications (Continued)

Bus Retry (BRT): Active low. When active, the MMU will re- Slave Done (SDONE): Active low. Used by the MMU to
execute the last bus cycle. Not applicable for slave cycles. inform the CPU of the completion of a slave instruction. It

Slave Processor Control (SPC): Active low. Used as a floats when it is not active.

data strobe for slave processor transfers. MMU Address Strobe (MADS): Active low. This signal is

4.1.3 Output Signals
asserted in T1 of an MMU initiated cycle. It indicates that
the physical address is available on the physical address

Reset Output/Abort (RST/ABT): Active Low. Held active bus. MADS is floated during hold acknowledge.
longer than one clock cycle to reset the CPU. Pulsed low MMU Interlock (MILO): Active low. This signal is asserted
during T2 to abort the current CPU instruction.

by the MMU when it performs a read-modify-write operation
Float Output (FL T): Active low. Floats the CPU from the to up-date the R and/or the M bit in the Page Table Entry
bus when the MMU accesses page table entries. Section (PTE). It is inactive during Hold Acknowledge.
2.4.3. Physical Address Bus (PAO-PA31): These 32 signal lines
Physical Address Valid (PAV): Active low. Pulse generat- carry the physical address. They float during Hold Acknowl-
ed during T2 indicating that a physical address is present on edge.
the bus.

Hold Acknowledge Output (HLDAO): Active low. When 4.1.4 Input-Output Signals

active, indicates that the bus has been released. Data Direction In (DDIN): Active low. Status signal indicat-

Cache Inhibit (CINH): This output signal reflects the state
ing direction of data transfer during a bus cycle. Driven by

of the CI bit in the second level Page Table Entry (PTE). It is
the MMU during a page-table lookup.

used to specify non-cacheable pages. During MMU generat- Address/Data 0-31 (ADO-AD31): Multiplexed Addressl

ed bus cycles and when the MMU is in No-Translation Data Information. Bit 0 is the least significant bit.

mode, CINH will be held low.

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required, Note: Absolute maximum ratings indicate limits beyond
contact the National Semiconductor Sales Office/ which permanent damage may occur. Continuous operation
Distributors for availability and specifications. at these limits is not intended; operation should be limited to

Temperature Under Bias O"Cto +70"C those conditions specified under Electrical Characteristics.

Storage Temperature - 65"C to + 150"C

All Input or Output Voltages with
Respect to GND -0.5Vto +7V

Power Dissipation 2.5W

4.3 ELECTRICAL CHARACTERISTICS T A = 0 to + 70"C, Vcc = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vcc + 0.5 V

Vil Low Level Input Voltage -0.5 0.8 V

VCH High Level Clock Voltage PHI1, PHI2 Pins Only Vcc - 0.5 Vcc + 0.5 V

VCl Low Level Clock Voltage PHI1, PHI2 Pins Only -0.5 0.3 V

VCRT Clock Input PHI1, PHI2 Pins Only
-0.5 0.5 V

Ringing Tolerance

VOH High Level Output Voltage IOH = -400 p.A 2.4 V

VOL Low Level Output Voltage IOl = 2mA 0.45 V

IllS SPC Input Current (Low) VIN = O.4V, SPC in Input Mode 0.05 1.0 mA

II Input Load Current o ,;; VIN ,;; Vcc, All Inputs Except
-20 20 p.A

PHI1, PHI2, AT/SPC

Il Leakage Current 0.4 ,;; VOUT ,;; Vcc
(Output and I/O Pins -20 20 p.A
in TRI-STATElinput Mode)

Icc Active Supply Current lOUT = 0, TA = 25"C 350 500 mA

3-27

z
CJ)
Co)
~
Co)
0)
~
c
Z
CJ)
Co)
~
Co)
0)

~
U1

&I

It) ,..
N
CD
C")
N

~
Z
o ,.. .
N
CD
C")
N
C")
tJ)
Z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS and PHI2, and 0.8V or 2.0V on all other signals as illustrated

4.4.1 Definitions
in Figures 4-2 and 4-3, unless specifically stated otherwise.

All the timing specifications given in this section refer to
ABBREVIATIONS:

2.0V on the rising or falling edges of the clock phases PHI1 L.E. - leading edge R.E. - rising edge

T.E. - trailing edge F.E. - falling edge

PHln [:x PH In [x::
----2.4V ._---- --2.4V

SIGI [- ~~.45V
SIGI [lSIGll

lSIGll O.BV
'\ O.45V

2.4V 2.4V

[
I lSIG2h

j'~ [/
'SIG2h 2.0V

SIG2 SIG2

---O.45V -----O.45V

TL/EE/9142-29 TL/EE/9142-30

FIGURE 4·2. Timing Specification Standard FIGURE 4·3. Timing Specification Standard
(Signal Valid after Clock Edge) (Signal Valid before Clock Edge)

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation Delays, NS32382·10, NS32382·15.
Maximum times assume capacitive loading of 50 pF.

Name Figure Description Reference/Conditions
NS32382·10 NS32382·15

Units
Min Max Min Max

tpALv 4-4 PAO-11 Valid (FLT = 1) After R.E., PHI1 T1 75 50 ns

tpAHv 4-4 PA12-31 Valid (FLT = 1) After R.E., PHI1 T2 30 20 ns

tPAVa 4-4 PAY Signal Active After R.E., PHI1 T2 25 17 ns

tPAVia 4-4 PAY Signal Inactive After R.E., PHI2 T2 40 27 ns

tpAVw 4-4 PAY Pulse Width At 0.8V (Both Edges) 35 22 ns

tpALh 4-4 PAO-11 Hold (FLT = 1) After R.E., PHI1 (Next) T1 0 0 ns

tpAHh 4-4 PA12-31 Hold (FLT = 1) After R.E., PHI1 (Next) T2 0 0 ns

tClv 4-4, CINH Signal Valid (FL T = 1) After R.E., PHI1 T2
40 27 ns

4-15, (FLT = 0) After R.E., PHI1 T1

tClh 4-4 CINH Signal Hold (FL T = 1) After R.E., PHI1 (Next) T2 0 0

tOOINv 4-5, ODIN Signal Valid (FL T = 0) After R.E., PHI1 T1
4-7, 35 25 ns
4-15

tOOINh 4-5 ODIN Signal Hold (FL T = 0) After R.E., PHI1 (Next) T1 0 0 ns

tov 4-6 ADO-AD31 Valid (Memory Write) After R.E., PHI1 T2 50 38 ns

tOh 4-6 ADO-AD31 Hold (Memory Write) After R.E., PHI1 (Next) T1 0 0 ns

tMAv 4-6 PAO-31 Valid (FL T = 0) After R.E., PHI1 T1 30 20 ns

tMAh 4-6 PAO-31 Hold (FL T = 0) After R.E., PHI1 (Next) T1 0 0 ns

3-28

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32382-10, NS32382-15.
Maximum times assume capacitive loading of 50 pF. (Continued)

Name Figure Description Reference/Conditions

tMAOSa 4-6,15 MADS Signal Active (FL T = 0) After R.E., PHil Tl

tMAOSia 4-6 MADS Signal Inactive After R.E., PHI2 Tl

tMAOSw 4-6 MADS Pulse Width At 0.8V (Both Edges)

tOOIN! 4-7, DDIN Floating After R.E., PHil T3
4-9,11 After R.E., PHil Tl

tMILOa 4-5, MILO Signal Active After R.E., PHil T4
4-15

tMILOia 4-7, MILO Signal Inactive After R.E., PHil Tl or Ti
4-15

tABTa 4-8 RST / ABT Signal Active (Abort) After R.E., PHil Tl or T2

tABTia 4-8 RST / ABT Signal Inactive (Abort) After R.E., PHil T2 or T3

tABTw 4-8 RST / ABT Pulse Width (Abort) At 0.8V (Both Edges)

tFLTa 4-5 FL T Signal Active After R.E., PHil T2

tFLTia 4-7, FL T Signal Inactive After R.E., PHil T2
4-9

tOf 4-12 Data Bits Floating After R.E., PHil T4
(Slave Processor Read)

tov 4-12 ADO-AD31 Valid After R.E., PHil Tl
(CPU Slave Read)

tOh 4-12 ADO-AD31 Hold After R.E., PHil T4
(CPU Slave Read)

tSONa 4-14 SDONE Signal Active After R.E., PHI2

tSONia 4-14 SDONE Signal Inactive Ater R.E., PHil

tSONw 4-14 SIJONE Pulse Width At 0.8V (Both Edges)

tSONdw 4-14 SDONE Double Pulse Width At 0.8V (Both Edges)

tSON! 4-14 SDONE Signal Floating After R.E., PHI2

tHLOAOa 4-15 HLDAO Signal Active (FL T = 0) After R.E., PHil Ti

tHLOAOia 4-15 HLDAO Signal Inactive (FLT = 0) After R.E., PHil T4

tMAOSz 4-15 MADS Signal Floated by HOLD After R.E., PHil Ti

tpAVz 4-15 PAV Signal Floated by HOLD After R.E., PHil Ti

tPAVr 4-15 PAV Return from Floating After R.E., PHil Tl
(Caused by HOLD)

toz 4-15 ADO-AD31 Floating After R.E., PHil Ti
(Caused by HOLD)

tMAz 4-15 PAO-31 Floated by HOLD After R.E., PHil Ti

tOOINz 4-15 DDIN Signal Floated by HOLD After R.E., PHil Ti

telz 4-15 CINH Signal Floated by HOLD After R.E., PHil Ti

tMILOia 4-15 MILO Signal Inactive After R.E., PHil Ti
by HOLD (FL T = 0)

3-29

NS32382-10

Min Max

25

5 35

35

25

50

50

50

2 50

60

50

40

25

50

4

50

50

25 90

225 275

40

60

60

40

40

40

25

25

40

25

50

NS32382-15

Min Max

17

5 25

22

25

38

38

40

2 40

40

40

30

18

38

3

35

35

17 60

140 180

25

40

40

25

25

25

18

18

25

18

38

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

z en w
I\)
w
CXI
I\)
o z en
w
I\)
w
CXI
~
U1

&I

II)
co:. co
C")
C\I
C")
(1)
z
C:>
C\I co
C")
C\I
C")
(1)
z

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32382·10, NS32382·15.
Maximum times assume capacitive loading of 50 pF. (Continued)

Name Figure Description Reference/Conditions
NS32382·10

Min Max

tMILOa 4-15 MILO Signal Active (FL T = 0) After R.E., PHI1 T4 50

tHLDAOa 4-16 HLDAO Signal Active (FL T = 1) After R.E., PHI1 Ti 45

tHLDAOia 4-16 HLDAO Signal Inactive (FL T = 1) After R.E., PHI1 Ti or T4 45

tMAOSz 4-16 MADS Signal Floated After R.E., PHI1 Ti
25

byHLDAI(FLT= 1)

tMAOSr 4-16 MADS Return from After R.E., PHI1 Ti orT4
30

Floating (FL T = 1)

tpAVz 4-16 PAY Signal Floated After R.E., PHI1 Ti
25

HLDAI (FLT = 1)

tpAVr 4-16 PAY Return from Floating After R.E., PHI1 Ti or T4
30

(FLT = 1)

toz 4-16 ADO-AD31 Signals After R.E., PHI1 Ti
25

Floating (FL T = 1)

tOr 4-16 ADO-AD31 Return After R.E., PHI1 Ti orT4
30

from Floating (FL T = 1)

tMAz 4-16 PAO-31 Signals Floated After R.E., PHI1 T1
25

by HLDAI (FLT = 1)

tMAr 4-16 PAO-31 Return from After R.E., PHI1 Ti or T4
30

Floating (FL T = 1)

tClz 4-16 CINH Signal Floated by HLDAI (FL T = 1) After R.E., PHI1 Ti 25

tClr 4-16 CINH Return from Floating (FLT = 1) After R.E., PHI1 Ti or T 4 30

tRSTOa 4-18 RST / ABT Signal Active (Reset) After R.E., PHI2 Ti 50

tRSTOia 4-18 RST / ABT Signal Inactive (Reset) After R.E. PHI2 Ti 50

tRSTOw 4-18 RST / ABT Pulse Width (Reset) At 0.8V (Both Edges) 64

4.4.2.2 Input Signal Requirements: NS32382·10, NS32382·15

Name Figure Description Reference/Conditions
NS32382·10

Min Max

tOls 4-5 Input Data Setup (FL T = 0) Before F.E., PHI2 T3 12

tOlh 4-5 Input Data Hold (FL T = 0) After R.E., PHI1 T4 3

tRDYs 4-5 RDY Setup Before F.E., PHI1 T3 20

tRDYh 4-5 RDY Hold After R.E., PHI2 T3 4

tsPCs 4-12 SPC Input Setup Before F.E., PHI2 T1 45

tSPCh 4-12 SPC Input Hold After R.E., PHI1 T4 0

tUSs 4-4,4-12 U/S Setup Before F.E., PHI2T4 25

tUSh 4-4,4-12 U/S Hold After R.E., PHI1 (Next) T4 0

tSTs 4-4,4-12 STO-3 Setup Before F.E., PHI2 T4 40

tSTh 4-4,4-12 STO-3 Hold After R.E., PHI1 (Next) T4 0

tOls 4-13 Data In Setup Before F.E., PHI2 T1
40

(Slave Processor Write)

3-30

NS32382·15
Units

Min Max

38 ns

30 ns

30 ns

18 ns

20 ns

18 ns

20 ns

18 ns

20 ns

18 ns

20 ns

18 ns

20 ns

40 ns

40 ns

64 Icp

NS32382·15
Units

Min Max

10 ns

3 ns

12 ns

3 ns

35 ns

0 ns

20 ns

0 ns

25 ns

0 ns

22 ns

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32382-10, NS32382-15 (Continued)

Name Figure Description Reference/Conditions

tDlh 4-13 Data In Hold After R.E., PHil (Next) Ti
(Slave Processor Write)

tHOLDs 4-15 HOLD Setup (FL T = 0) Before F.E., PHI2 T3

tHOLDh 4-15 HOLD Hold (FL T = 0) After R.E.. PHil T4

tHLDAis 4-16 HLDAI Signal Setup (FL T = 1) Before F.E., PHI2 Ti

tHLDAih 4-16 HLDAI Signal Hold (FL T = 1) After R.E., PHil Ti or T4

tBRTs 4-10 BRT Signal Setup (FL T = 0) Before F.E., PHil T3 or T4

tBRTh 4-10 BRT Signal Hold (FL T = 0) After R.E., PHI2 T3 or T 4

tBERs 4-11 BER Signal Setup (FL T = 0) Before F.E., PHil T4

tBERh 4-11 BER Signal Hold (FL T = 0) After R.E., PHI2 T4

tRSTls 4-1B Reset Input Setup Before F.E., PHil Ti

tRSTlw 4-1B Reset Input Width At O.BV (Both Edges)

4.4.2.3 Clocking Requirements: NS32382-10, NS32382-15

Name Figure Description
Reference/
Conditions

tcp 4-17 Clock Period R.E., PHil, PHI2 to Next
R.E., PHil, PHI2

tCLw(1,2) 4-17 PHil, PHI2 Pulse Width At 2.0V on PHil, PHI2
(Both Edges)

teLh(1,2) 4-17 PHil, PHI2 High Time At Vcc - 0.9Von
PHil, PHI2 (Both Edges)

tell 4-17 PHil, PHI2 Low Time AtO.BVon
PHil, PHI2 (Both Edges)

tnOVL (1, 2) 4-17 Non-Overlap Time O.BVon F.E., PHil, PHI2 to
O.BV on R.E., PHI2, PHil

tnOVLas Non·Overlap Asymmetry At O.BV on PHil, PHI2

(tnOVL(l) - tnOVL(2)

tCLhas PHil, PHI2 Asymmetry At Vcc - 0.9V on PHil, PHI2

teLh(l) - teLh(2)

3-31

NS32382-10

Min Max

3

15

0

25

0

25

0

25

0

20

64

NS32382-10

Min Max

100 250

0.5 tep
-10 ns

0.5 tep
-15 ns

0.5 tcp
-5ns

-2 5

-4 4

-5 5

NS32382-15

Min Max

3

15

0

15

0

14

0

14

0

10

64

NS32382-15

Min Max

66 250

0.5tep
-6 ns

0.5tep
-10 ns

0.5tcp
-5ns

-2 5

-3 3

-3 3

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

tep

Units

ns

ns

ns

ns

z
en
Co)
N
Co)
co
~
o
z
en
Co)
N
Co)
co
N

I
CJ1

•

~ r--,
C'I co
C')
C'I
C')
(f)
z
o
N
CO
C')
C'I
C')

en z

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

T4 T1 TZ

P1111 [__ n n n
PHIZ [1 U- UL n

ADD-31 [VADDR " J
I "-

'PAlv- C

T3 T4 T1 or TI
.- IL-
n UL n

DATA OUT

- _~fPAlh

PAD-II [X ADDRESS VALID IX
tPAHr ----0

PA12-31 [) ADDRESS VALID

~tPAVia
\......../

IPAVa I-

'~l ----0

-'CI~

/ \

ADS [

PAi[

CINH [

ODIN [

(HIGH)

tUS~i:=:: - tUSh

X X
ts~s -t::=:=: - 1m

STD-3 [

ROY [
~ \

FIGURE 4-4. CPU Write Cycle Timing; Translation In TLB

3-32

T2 or Ti

rL

_r-=tPAHh

\......../
IClh

TL/EE/9142-31

4.0 Device Specifications (Continued)

CPU STATES
MMU STATES

PHil [

PHI2 [

ADD-31 [

PAD-" [

PA12-31 [

MADS [

PAV[

ROY [

DmN[

MILO [

CINH [

T1 T2
T2

T,
T4

~ IL
1 Ln Ln Ln Ln
- tx VA

'\

- ,

PH ADDR

- V

- -tUDINv

l.I -to- FLOATiNG" - - ... - - -tFlTa

- ~-I.'lDa

- I--IMA'

\

T,

T2

T,
T3

T,

T3
T,

T4

T,

T1

~
Ln ~ In ~~ U-

~~_IDlh

1\..../ - --tRDYh

~-tRDY'l !
V I\.

tllOlHh- v:

TL/EE/9142-32

FIGURE 4-5. MMU Read Cycle Timing (1-Wait State); After a TLB Miss
Note: After FL T is daasserted, DDIN may ba drivan temporarily by both CPU and MMU. This, however, does not cause any conflict. Since CPU and MMU force
DDIN to the same logic lavel.

3-33

z
CJ)
Co)
N
Co)
CD
~
o
Z
CJ)
Co)
N
Co)
CD
~
U1

•

Ln ,---,
C'I co
('I)
C'I
('I)

en z
o • C'I
CO
('I)
C'I
('I)

en z

4.0 Device Specifications (Continued)

I T1 I 12 T3 T4

PHI1 [

PHI2 [

"'-31 [-+--+--+"\---I----+-----!-"!'

PAG-31 [_+'~+":""-!-----+----+_----II_"
MADS [

... [
RDY [_+--:--:-_ _1----'

ODIN [

fLJ[_+-___ __I----_r----+_---__Ir_---

.I~[-+_---__Ir_---_r----+_-----r_---
FIGURE 4-6. MMU Write Cycle Timing; after a TLB Miss

CPU STATES

MMU STATES

PHI1 [

PflI2 [

ADD-31 [

PAD-31 [

MADI[

... [
(MU: [

DDIN [
ICPUI -

T,

T1 12

T,

T3 T4

T,

T1

fLJ[_+__-+---+--+-:--_r"""':--+.J

.I~ [-+---+---+--+---+.1

T,

12

T3

T3

T4

T.

(FlOAnNG)

TUEE/9142-33

ClN" [-+---+_--+--_r---+~r-_I--""""r_--+_--+_-
TL/EE/9142-34

FIGURE 4-7. FLT Deassertlon Timing
Note: After FLT is deasserted. ODIN may be driven temporarily by both CPU and MMU. This. however. does not cause any conflict. Since CPU and MMU force
ODIN to the same logic level.

3-34

4.0 Device Specifications (Continued)

T4 OR 11

PHil [

PHIZ [

ADS [

PA'i[

m[

RsT/ AiiT [

CPU STATES

MMU STATES T4

PIII1 [

PIII2 [

~[

... [
m[

iiS'i/ABT [

tDDINI

DoiN[IMMU}

T1 T2

FIGURE 4·8. Abort Timing (FLT = 1)

T1 r;

T3

T3

TI

----IFLOAlING)

FIGURE 4·9. Abort Timing (FL T = 0)

3·35

11

T4

li

TL/EE/9142-35

TL/EE/9142-36

z en
Co)
N
Co)
CD

~
o
Z
~
N
Co)
CD
N
U1

•

U) ,---,
~
co
CO)
C'I
CO)
(f)
z
(:)
~
co
CO)
C'I
CO)
(f)
z

4.0 Device Specifications (Continued)

T1 T2 T3 T4 T1 T2

PHil [

PHI2 [

PAO-3l [

ADD-3l [

MADS [

PAV[

m[
RDY [

FLT [(LOW)

MliO[(LOW)

FIGURE 4-10. MMU Bus Retry Timing

T3 T4 T1

PHil [

PHI2 [

BER[

MILO [

RDY [

m[
m[

RST/ABT [

FIGURE 4·11. Bus Error Timing

3-36

T3 T4

DATA IN

TL/EE/9l42-37

n

TLlEE/9l42-53

4.0 Device Specifications (Continued)

T4 OR TI T1

PHI1 [

PHI2 [L+-_..I
ADO-31[.-

5PC [

T4 T1 OR TI

U/S[__ ~_~ __ ++ _____ -r_~ ___ ~ ___ ____

5TO- 3 [

DDIN[~~ __________ ~ __ ~~ ____ +-__________ +-__ ~~ ____

FIGURE 4-12. Slave Access Timing; CPU Reading from MMU

T4 OR Ti T1 T4 T1 OR TI

PHil [

PHI2 [

AOO-31 [__ +-____________ +-__ .J ,..-----+--------I-..JI

SPC [

STO-3 [_+-_01 ,, ___ -+ ___________ -+ ______ +-______ _

1iiiili[
(CPU) __ +-__________ +-_.1

FIGURE 4-13. Slave Access Timing; CPU Writing to MMU

3-37

TL/EE/9142-38

TLlEE/9142-39

z en
c;,.)
N
c;,.)
co
N

I
o
z en
c;,.)
N
c;,.)
co
N

I
U1

•

U) r---, ..-
N co
C')
C'I
C')
U)
Z
Q ..-
N co
C')
C'I
C')
U)
Z

4.0 Device Specifications (Continued)

PHil [

PHI2 [

soom[

FIGURE 4-14. SDONE Timing

T3 T4 TI TI TI T4

PHil [

PHI2 [

HOLD [

HLDAD [

MADS [- ---~~ -----FLOATING

PiV[FLOATING

m[
AOO·31 [

PAO·31 [

ODIN [
IMMU)

CINH [

MILD [

FIGURE 4·15. Hold Timing (FLT = 0)

3·38

TLlEE/9142-40

T1 T2

AOOR VALID

IMMU READ)

ILOW)

TL/EE/9142-50

z
4.0 Device Specifications (Continued)

en
c.:I
N
c.:I
0)

CPU STATE T4 Ti TI Ti TI Ti or T4 N .
PHil [

....
Q
Z en
c.:I

PHI2 [

N
c.:I
0)
N •

HLDAI [

U1

HLDAD [

IMADS,

MADS [--~~ -----
FLOATING

--lpAVz

PAV [--~~ FLOATING

FLT [
(HIGH)

-tor

ADD-3l [---0- ---- --~ FLOATING

-tMAr

PAD-3l [-----'i~ -~ FLOATING

--tClr

CINH [----i~ ---- -~
FLOATING

MILO [
(HIGH)

TlIEE/9142-51 • FIGURE 4-16. Hold Timing (FL T = 1)

PHil [

PHIZ [------I-"r
TlIEE/9l42-49

FIGURE 4-17. Clock Waveforms

3-39

n TI TI TI TI

PHil [

PHI2 [

nT/ABT [

m[
TLIEE19142-45

FIGURE 4-18. Non Power-On Reset Timing

vee
...It-"----~__

PHI{ __ -t ___ -'

RSfI[____________ ~~-J
TUEE19142-46

FIGURE 4-19. Power-On Reset

3·40

Appendix A: Interfacing Suggestions

IT,

1T1

T2

1
BEO BE1BE2 BE3 ROY

ut+-

IN>-H

WO>--

wl>--

8

B

rS+--

iN'i>----t

Mi>----t

ER
RT
lO

B
B

HO

+5 +-~

BOUT

BiN

8WO

BWI

PFS

iN'i

Ni.ii

... ,

1 k.1l 1 k.1l

"- NOE

'-- PSO

f"
PSI

SET

iLci
FlT

OOiN
RST/AB!

M
HlOA

NS32332 ADS
CPU BER

8RT
iiT/SOONE

SPC
HOLD

STO-3
PHil

AOO-31 PHI2

.,
, ~

+5

' ...
00-31

SON332

SPC

STO-3

NS32381 RST FPU

ClK

OOiN

CWAIT Rii
WAIT1 WR
WAIT2 8US TSO

8RSn CONTROL
08E lOGIC

8RSTO ADS

~m ROY

RST ClK ODIN

U Rsn
FlT
OOiN
RST./A8T
iUL
HlOAI

ADS

BER
BRT
SOONE
SPC
HOLD _iii.
STO-3 r,:
PHil
PHI2

10k.1l

ROY

NS32382
MMU

AOO-31

.,

I

~ +E lA lY r---+ 2A
3A 2Yr---+
4A
18 3Yr---+
28
38
48

4Yr---+

'--

f~
L- r-+

MilO

HlOAO

PAY
5V

CINH

PAO-31 ---.. .
MADS

~
5V

L...."..",...5V
~ ..

r

I

CINH

PAO-31

RST

00-31

f-- PHil PHI2
RSTO

...
I'

NS32C201
TCU

em XIN 1;5
I-J XOUT r RST1

Tl/EE/9142-52

FIGURE A-1. System Connection Diagram

3-41

z en
Co)
N
Co)
co
N

I
o
z en
Co)
N
Co)
co
N

I
U1

C) r--, .-

~ ~National
&i ~ Semiconductor
z

NS32082-10 Memory Management Unit

General Description
The NS32082 Memory Management Unit (MMU) provides
hardware support for demand-paged virtual memory imple­
mentations. The NS32082 functions as a slave processor in
Series 32000 microprocessor-based systems. Its specific
capabilities include fast dynamic translation, protection, and
detailed status to assist an operating system in efficiently
managing up to 32 Mbytes of physical memory. Support for
multiple address spaces, virtual machines, and program de­
bugging is provided.

High-speed address translation is performed on-chip
through a 32-entry fully associative translation look-aside
buffer (TLB), which maintains itself from tables in memory
with no software intervention. Protection violations and
page faults (references to non-resident pages) are automat­
ically detected by the MMU, which invokes the instruction
abort feature of the CPU.

Additional features for program debugging include two
breakpoint registers and a breakpoint counter, which pro­
vide the programmer with powerful stand-alone debugging
capability.

Features
• Totally automatic mapping of 16 Mbyte virtual address

space using memory based tables
• On-Chip translation look-aside buffer allows 97% of

translations to occur in one clock for most applications
• Full hardware support for virtual memory and virtual

machines
• Implements "referenced" bits for simple, efficient work­

ing set management
• Protection mechanisms implemented via access level

checking and dual space mapping
• Program debugging support
• Compatible with NS32016, NS32032 and NS32332

CPUs
• 48-pin dual-in-line package

Conceptual Address Translation Model

r----., VIRTUAL ADDRESS ... r----., PHYSICAL ADDRESS ... r----"I
SERIES
32000

CPU

ADDRESS STROBE

FLOAT

ABORT

NS320B2
MMU

3-42

ADDRESS STROBE

..
PHYSICAL
MEMORY

TL/EE/8692-1

Table Of Contents
1.0 PRODUCT INTRODUCTION

1.1 Programming Considerations

2.0 FUNCTIONAL DESCRIPTION

2.1 Power and Grounding

2.2 Clocking

2.3 Resetting

2.4 Bus Operation

2.4.1 Interconnections

2.4.2 CPU-Initiating Cycles

2.4.3 MMU-Initiated Cycles

2.4.4 Cycle Extension

2.5 Slave Processor Interface

2.5.1 Slave Processor Bus Cycles

2.5.2 Instruction Protocols

2.6 Bus Access Control

2.7 Breakpointing

2.7.1 Breakpoints on Execution

3.0 ARCHITECTURAL DESCRIPTION

3.1 Programming Model

3.2 Memory Management Functions

3.2.1 Page Table Structure

3.2.2 Virtual Address Spaces

3.2.3 Page Table Entry Formats

3.2.4 Physical Address Generation

3.3 Page Table Base Registers (PTBO, PTBI)

3.4 Error/Invalidate Address Register (EIA)

3.0 ARCHITECTURAL DESCRIPTION (Continued)

3.5 Breakpoint Registers (BPRO, BPR1)

3.6 Breakpoint Count Register (BCNT)

3.7 Memory Management Status Register (MSR)

3.7.1 MSR Fields for Address Translation

3.7.2 MSR Fields for Debugging

3.8 Translation Lookaside Buffer (TLB)

3.9 Entry/Re-entry into Programs Under Debugging

3.10 Address Translation Algorithm

3.11 Instruction Set

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input-Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals; Internal Propagation
Delays

4.4.2.2 Input Signal Requirements

4.4.2.3 Clocking Requirements

Appendix A: Interfacing Suggestions

List of Illustrations
The Virtual Memory Model. .. 1-1

NS32082 Address Translation Model ... 1-2

Recommended Supply Connections. .. 2-1

Clock Timing Relationships .. 2-2

Power-On Reset Requirements .. 2-3

General Reset Timing. .. 2-4

Recommended Reset Connections, Memory Managed System. .. 2-5

CPU Read Cycle; Translation in TLB .. 2-6

Abort Resulting from Protection Violation; Translation in TLB 2-7

Page Table Lookup. .. 2-8

Abort Resulting After a Page Table Lookup 2-9

Slave Access Timing; CPU Reading from MMU.. 2-10

Slave Access Timing; CPU Writing to MMU ... 2-11

FLT Deassertation During RDVAL/WRVAL Execution.. 2-12

Bus Timing with Breakpoint on Physical Address Enabled. .. 2-13

Execution BreakpointTiming; Insertion of DIA Instruction... 2-14

Two-Level Page Tables. .. 3-1

A Page Table Entry. 3-2

Virtual to Physical Address Translation .. 3-3

Page Table Base Registers (PTBO, PTB1) ... 3-4

EIA Register. .. 3-5

Breakpoint Registers (BPRO, BPR1) .. 3-6

Breakpoint Counter Register (BCNT). .. 3-7

Memory Managment Status Register (MSR) ... 3-8

3-43

Z
tn
Co)
I\)
o
01)
I\)
o

C) ,---,
I

N
co
C)
N
C')
(/)
Z

List of Illustrations (Continued)

TLB Model 3-9

Slave Instruction Format... 3-10

Dual-In-Line Package. .. 4-1

Timing Specification Standard (Signal Valid After Clock Edge) .. 4-2

Timing Specification Standard (Signal Valid Before Clock Edge) .. 4-3

CPU Read (Write) Cycle Timing (32-Bit Mode) .. 4-4

MMU Read Cycle Timing (32-Bit Mode) after a TLB Miss... 4-5

MMU Write Cycle Timing After a TLB Miss. .. 4-6

FL T Deassertation Timing. .. 4-7

Abort Timing (FL T = 1) 4-8

AbortTiming (FL T = 0) 4-9

CPU Operand Access Cycle with Breakpoint On Physical Address Enabled .. 4-10

Slave Access Timing; CPU Reading from MMU .. 4-11

Slave Access Timing; CPU Writing to MMU ... 4-12

SPC Pulse From the MMU .. 4-13

HOLD Timing (FL T = 1); SMR Instruction Not Being Executed. .. 4-14

HOLD Timing (FL T = 1); SMR Instruction Being Executed. .. 4-15

HOLD Timing (FLT = 0) ... 4-16

Clock Waveforms. .. 4-17

ResetTiming ... 4-18

Power-On Reset .. 4-19

System Connection Diagram......... A-1

System Connection Diagram..................................... .. A-2

Tables
STO-ST3 Encodings.. 2-1

LMR Instruction Protocol. .. 2-2

SMR Instruction Protocol. .. 2-3

RDVAL/WRVAL Instruction Protocol.. 2-4

Access Protection Levels. .. 3-1

Instructions Causing Non-Sequential Fetches. .. 3-2
"Short" Field Encodings .. 3-3

3-44

1.0 Product Introduction
The NS320B2 MMU provides hardware support for three
basic features of the Series 32000; dynamic address trans­
lation, access level checking and software debugging. Dy­
namic Address Translation is required to implement de­
mand-paged virtual memory. Access level checking is per­
formed during address translation, ensuring that unautho­
rized accesses do not occur. Because the MMU resides on
the local bus and is in an ideal location to monitor CPU
activity, debugging functions are also included.

The MMU is intended for use in implementing demand­
paged virtual memory. The concept of demand-paged virtu­
al memory is illustrated in Figure 1-1. At any point in time, a
program sees a uniform addressing space of up to 16 mega­
bytes (the "virtual" space), regardless of the actual size of
the memory physically present in the system (the "physical"
space). The full virtual space is recorded as an image on a
mass storage device. Portions of the virtual space needed
by a running program are copied into physical memory when
needed.

To make the virtual information directly available to a run­
ning program, a mapping must be established between the
virtual addresses asserted by the CPU and the physical ad­
dresses of the data being referenced.

To perform this mapping, the MMU divides the virtual mem­
ory space into 512-byte blocks called "pages." It interprets
the 24-bit address from the CPU as a 15-bit "page number"
followed by a 9-bit offset, which indicates the position of a
byte within the selected page. Similarly, the MMU divides
the physical memory into 512-byte frames, each of which
can hold a virtual page.

VIRTUAL
MEMORY

HIGH
MEMORY ------..
ADDRESS

The translation process is therefore modeled as accepting a
virtual page number from the CPU and substituting the cor­
responding physical page frame number for it, as shown in
Figure 1-2. The offset is not changed. The translated page
frame number is 16 bits long, including an additional ad­
dress bit (A24) intended for physical bank selection. Physi­
cal addresses issued by the MMU are 25 bits wide.

TLlEE/B692-3

FIGURE 1-2. NS32082 Address Translation Model

Generally, in virtual memory systems the available physical
memory space is smaller than the maximum virtual memory
space. Therefore, not all virtual pages are simultaneously
resident. Nonresident pages are not directly addressable by
the CPU. Whenever the CPU issues a virtual address for a
nonresident or nonexistent page, a "page fault" will result.
The MMU signals this condition by invoking the Abort fea­
ture of the CPU. The CPU then halts the memory cycle,

PHYSICAL
MEMORY

HIGH
.... ______ .. MEMORY

ADDRESS

MASS STORAGE
TL/EE/B692-2

FIGURE 1-1. The Virtual Memory Model

3-45

z rn
Co)
N o
CD
~
o

•

0.---1
~ co o
C'I

~
Z

1.0 Product Introduction (Continued)

restores its internal state to the point prior to the instruction
being executed, and enters the operating system through
the abort trap vector.

The operating system reads from the MMU the virtual ad­
dress which caused the abort. It selects a page frame which
is either vacant or not recently used and, if necessary,
writes this frame back to mass storage. The required virtual
page is then copied into the selected page frame.

The MMU is informed of this change by updating the page
tables (Section 3.2), and the operating system returns con­
trol to the aborted program using the RETT instruction.
Since the return address supplied by the abort trap is the
address of the aborted instruction, execution resumes by
retrying the instruction.

This sequence is called paging. Since a page fault encoun­
tered in normal execution serves as a demand for a given
page, the whole scheme is called demand-paged virtual
memory.

The MMU also provides debugging support. It may be pro­
grammed to monitor the bus for two virtual or physical ad­
dresses in real time. A counter register is associated with
one of these, providing a "break-on-N-occurrences" capa­
bility.

1.1 PROGRAMMING CONSIDERATIONS

When a CPU instruction is aborted as a result of a page
fault, some memory resident data might have been already
modified by the instruction before the occurrence of the
abort.

This could compromise the restartability of the instruction
when the CPU returns from the abort routine.

To guarantee correct results following the re-execution of
the aborted instruction, the following actions should not be
attempted:

a) No instruction should try to overlay part of a source oper­
and with part of the result. It is, however, permiSSible to
rewrite the result into the source operand exactly if page
faults are being generated only by invalid pages and not
by write protection violations (for example, the instruction
"ABSW X, X", which replaces X with its absolute value).
Also, never write to any memory location which is neces­
sary for calculating the effective address of either oper­
and (i.e. the pOinter in "Memory Relative" addressing
mode; the Link Table pointer or Link Table Entry in "Ex­
ternal" addressing mode).

b) No instruction should perform a conversion in place from
one data type to another larger data type (Example:
MOVWF X, X which replaces the 16-bit integer value in
memory location X with its 32-bit floating-point value).
The addressing mode combination "TOS, TOS" is an ex­
ception, and is allowed. This is because the least-signifi­
cant part of the result is written to the possibly invalid
page before the source operand is affected. Also, integer
conversions to larger integers always work correctly in
place, because the low-order portion of the result always
matches the source value.

c) When performing the MOVM instruction, the entire
source and destination blocks must be considered "oper­
ands" as above, and they must not overlap.

3-46

2.0 Functional Description
2.1 POWER AND GROUNDING

The NS32082 requires a single 5V power supply, applied on
pin 48 (Vee).

Grounding connections are made on two pins. Logic Ground
(GNDL, pin 24) is the common pin for on-chip logic, and
Buffer Ground (GNDB, pin 25) is the common pin for the
output drivers. For optimal noise immunity, it is recommend­
ed that GNDL be attached through a single conductor di­
rectly to GNDB, and that all other grounding connections be
made only to GNDB, as shown below (Figure 2-1).

~ y+sv
1 vccp-

TLlEE/8692-4

FIGURE 2·1. Recommended Supply Connections

2.2 CLOCKING

The NS32082 inputs clocking signals from the NS32201
Timing Control Unit (TCU), which presents two non-overlap­
ping phases of a single clock frequency. These phases are
called PHI1 (pin 26) and PHI2 (pin 27). Their relationship to
each other is shown in Figure 2·2.

Each rising edge of PHI1 defines a transition in the timing
state ("T-State") of.the MMU. One T-State represents one
hardware cycle within the MMU, and/or one step of an ex­
ternal bus transfer. See Section 4 for complete specifica­
tions of PHI1 and PHI2.

PHil

PHI2

TLlEE/8692-5

FIGURE 2·2. Clock Timing Relationships

As the TCU presents signals with very fast tranSitions, it is
recommended that the conductors carrying PHI1 and PHI2
be kept as short as possible, and that they not be connect­
ed to any devices other than the CPU and MMU. A TTL
Clock signal (CTTL) is provided by the TCU for all other
clocking.

2.0 Functional Description (Continued)

2.3 RESETTING

The ASTI input pin is used to reset the NS32082. The MMU
responds to ASTI by terminating processing, resetting its
internal logic and clearing the appropriate bits in the MSR
register.

Only the MSR register is changed on reset. No other pro­
gram accessible registers, including the TLB are affected.

The RST I ABT signal is activated by the MMU on reset. This
signal should be used to reset the CPU. AT/SPC is held low
for five clock cycles after the rising edge of RSTI to indicate
to the CPU that the address translation mode must be se­
lected.

The A24/HBF signal is sampled by the MMU on the rising
edge of ASTI. It indicates the bus size of the attached CPU.
A24/HBF must be sampled high for a 16-bit bus and low for
a 32-bit bus.

On application of power, RSTI must be held low for at least
50 }Jos after Vee is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 clock cycles. The rising edge must occur while PHI1
is high. See Figures 2-3 and 2-4.

The NS32201 Timing Control Unit (TCU) provides circuitry
to meet the Reset requirements of the NS32082 MMU. Fig­
ure 2-5 shows the recommended connections.

VCC

PHil ----1-----' Jl-JL
I ~64CLOCK I-" CYCLES

Rsn----4---------------1~

1-"---1!:50jAsec --~.,

TLIEE18692-6

FIGURE 2·3. Power·On Reset Requirements

Vee

r---------,
I I

2.4 BUS OPERATION

2.4.1 Interconnections

The MMU runs synchronously with the CPU, sharing with it a
single multiplexed addressl data bus. The interconnections
used by the MMU for bus control, when used in conjunction
with the NS32016, are shown in Figure A-l (Appendix A).

The CPU issues 24-bit virtual addresses on the bus, and
status information on other pins, pulsing the signal ADS low.
These are monitored by the MMU. The MMU issues 25-bit
physical addresses on the bus, pulsing the PAV line low.
The PAV pulse triggers the address latches and signals the
NS32201 TCU to begin a bus cycle. The TCU in turn gener­
ates the necessary bus control Signals and synchronizes
the insertion of WAIT states, by providing the signal RDY to
the MMU and CPU. Note that it is the MMU rather than the
CPU that actually triggers bus activity in the system.

The functions of other interface signals used by the MMU to
control bus activity are described below.

The STO-ST3 pins indicate the type of cycle being initiated
by the CPU. STO is the least-significant bit of the code. Ta­
ble 2-1 shows the interpretations of the status codes pre­
sented on these lines.

PHI1~JUl
t--- ~64CLOCK-1

RSn---""'~"""'~ C~CLES I

NS32201
TCU

TLIEE18692-7

FIGURE 2·4. General Reset Timing

NS32082
MMU

SERIES 32000
CPU

I RESET 1>--1-+-..... ..;.-+-"""""-.... --+1 nSTI RSTO
1 I L _________ .J

EXTERNAL RESET
(OPTIONAL)

RESET SWITCH
(OPTIONAL)

~5Ql'sec

FIGURE 2·5. Recommended Reset Connections, Memory·Managed System

3-47

TLIEEIB692-B

z
rn
Co)
I\,)
c
00
~
c

2.0 Functional Description (Continued)

Status codes that are relevant to the MMU's function during
a memory reference are:

1000,1001 Instruction Fetch status, used by the debug­
ging features to distinguish between data and
instruction references.

1010 Data Transfer. A data value is to be trans­
ferred.

1011 Read RMW Operand. Although this is always
a Read cycle, the MMU treats it as a Write
cycle for purposes of protection and break­
pointing.

1100 Read for effective address. Data used for ad-
dress calculation is being transferred.

All other status codes are treated as data accesses if they
occur in conjunction with a pulse on the ADS pin. Note that
these include Interrupt Acknowledge and End of Interrupt
cycles performed by the CPU. The status codes 1101, 1110
and 1111 are also recognized by the MMU in conjunction
with pulses on the SPC line while it is executing Slave Proc­
essor instructions, but these do not occur in a context rele­
vant to address translation.

TABLE 2-1. STO-ST3 Encodings
(STO Is the Least Significant)

0000 -Idle: CPU Inactive on Bus
0001 -Idle: WAIT Instruction
0010- (Reserved)
0011 -Idle: Waiting for Slave
0100 - Interrupt Acknowledge, Master
0101 -Interrupt Acknowledge, Cascaded
0110- End of Interrupt, Master
0111 - End of Interrupt, Cascaded
1000 - Sequential Instruction Fetch
1001 - Non-Sequential Instruction Fetch
1010- Data Transfer
1011 - Read Read-Modify-Write Operand
1100 - Read for Effective Address
1101 - Transfer Slave Operand
1110- Read Slave Status Word
1111 - Broadcast Slave 10

The ODIN line indicates the direction of the transfer: 0 =
Read, 1 = Write.

ODIN is monitored by the MMU during CPU cycles to detect
write operations, and is driven by the MMU during MMU-ini­
tiated bus cycles.

The U/S pin indicates the privilege level at which the CPU is
making the access: 0 = Supervisor Mode, 1 = User Mode.
It is used by the MMU to select the address space for trans­
lation and to perform protection level checking. Normally,
the U/S pin is a direct reflection of the U bit in the CPU's
Processor Status Register (PSR). The MOVUS and MOVSU
CPU instructions, however, toggle this pin on successive
operand accesses in order to move data between virtual
spaces.

The MII.;U uses the FL T line to take control of the bus from
the CPU. It does so as necessary for updating its internal
TLB from the Page Tables in memory, for maintaining the

3-48

contents of the status bits (R and M) in the Page Table
Entries, and for implementing bus timing adjustments need­
ed by the debugging features.

The MMU also aborts invalid accesses attempted by the
CPU. This is done by pulsing the RST I ABT pin low for one
clock period. (A pulse longer than one clock period is inter­
preted by the CPU as a Reset command).

Because the MMU performs only 16-bit transfers, some ad­
ditional circuitry is needed to interface it to the 32-bit data
bus of an NS32032-based system. However, since the
MMU never writes to the most-significant word of a Page
Table Entry, the only special requirement is that it must be
able to read from the top half of the bus. This can be ac­
complished as shown in Figure A-2 (Appendix A) by using a
16-bit unidirectional buffer and some gating circuitry that en­
ables it whenever an MMU-initiated bus cycle accesses an
address ending in binary "1 0".

The bus connections required in conjunction with the
NS32332 CPU are somewhat more complex (see the
NS32332 data sheet), but the sequences of events docu­
mented here still hold.

2.4.2 CPU-Initiated Bus Cycles

A CPU-initiated bus cycle is performed in a minimum of five
clock cycles (four in the case of the NS32332): T1, TMMU,
T2, T3 and T4, as shown in Figure 2-6.

During period T1, the CPU places the virtual address to be
translated on the bus, and the MMU latches it internally and
begins translation. The MMU also samples the ODIN pin,
the status lines STO-ST3, and the U/S pin to determine
how the CPU intends to use the bus.
During period TMMU the CPU floats its bus drivers and the
MMU takes one of three actions:

1) If the translation for the virtual address is resident in the
MMU's TLB, and the access being attempted by the CPU
does not violate the protection level of the page being
referenced, the MMU presents the translated address
and generates a PAY pulse to trigger a bus cycle in the
rest of the system. See Figure 2-6.

2) If the translation for the virtual address is resident in the
MMU's TLB, but the access being attempted by the CPU
is not allowed due to the protection level of the page
being referenced, the MMU generates a pulse on the
RST/ABT pin to abort the CPU's access. No PAY pulse
is generated. See Figure 2-7.

3) If the translation for the virtual address is not resident in
the TLB, or if the CPU is writing to a page whose M bit is
not yet set, the MMU takes control of the bus asserting
the FL T signal as shown in Figure 2-8. This causes the
CPU to float its bus and wait. The MMU then initiates a
sequence of bus cycles as described in Section 2.4.3.

From state T2 through T4 data is transferred on the bus
between the CPU and memory, and the TCU provides the
strobes for the transfer. During this time the MMU floats

2.0 Functional Description (Continued)

pins ADO-AD15, and handles pins A16-A24 according to
the mode of operation (16-bit or 32-bit) selected during re­
set (Section 2.3).

In 16-bit bus mode, the MMU drives address lines A 16-A24
from TMMU through T4 and they need not be latched exter­
nally. This is appropriate for the NS32016 CPU, which uses
only ADO-AD15 for data transfers. In 32-bit bus mode, the
MMU asserts the physical address on pins A16-A24 only
during TMMU, and floats them from T2 through T4 because
the CPU uses them for data transfer. In this case the physi­
cal address presented on these lines must be latched exter­
nally using PAY.

Whenever the MMU generates an Abort pulse on the
RST I ABT pin, the CPU enters state T2 and then Ti (idle),
ending the bus cycle. Since no PAY pulse is issued by the
MMU, the rest of the system remains unaware that an ac­
cess has been attempted. The MMU requires that no further
memory references be attempted by the CPU for at least
two clock cycles after the T2 state, as shown in Figure 2-7.
This requirement is met by all Series 32000 CPU's. During
this time, the RDY line must remain high. This requirement
is met by the NS32201 TCU.

2.4.3 MMU·lnitiated Cycles

Bus cycles initiated by the MMU are always nested within
CPU-initiated bus cycles; that is, they appear after the MMU
has accepted a virtual address from the CPU and has set
the FL T line active. The MMU will initiate memory cycles in
the following cases:

1) There is no translation in the MMU's TLB for the virtual
address issued by the CPU, meaning that the MMU must
reference the Page Tables in memory to obtain the trans­
lation.

T4 OR n TI TMMU

lWL -1"L -1"L
X v. ADDR. X

2) There is a translation for that virtual address in the TLB,
but the page is being written for the first time (the M bit in
its Level-2 Page Table Entry is 0). The MMU treats this
case as if there were no translation in the TLB, and per­
forms a Page Table lookup in order to set the M bit in the
Level-2 Page Table Entry as well as in the TLB.

Having made the necessary memory references, the MMU
either aborts the CPU access or it provides the translated
address and allows the CPU's access to continue to T2.

Figure 2-8 shows the sequence of events in a Page Table
lookup. After asserting FL T, the MMU waits for one addition­
al clock cycle, then reads the Level-1 Page Table Entry and
the Level-2 Page Table Entry in four consecutive memory
Read cycles. Note that the MMU performs two 16-bit trans­
fers to read each Page Table Entry, regardless of the width
of the CPU's data bus. There are no idle clock cycles be­
tween MMU-initiated bus cycles unless a bus request is
made on the HOLD line (Section 2.6).

During the Page Table lookup the MMU drives the DDIN
signal. The status lines STO-ST3 and the U/S pin are not
released by the CPU, and retain their original settings while
the MMU uses the bus. The Byte Enable signals from the
CPU (HBE in 16-bit systems, BEO-BE3 in 32-bit systems)
should in general be handled externally for correct memory
referencing. (The current NS32016 CPU does, however,
handle HBE in a manner that is acceptable in many systems
at clock rates of 12.5 MHz or less.)

In the clock cycle immediately after T4 of the last lookup
cycle, the MMU removes the FL T signal, issues the translat­
ed address, and pulses PAY to continue the CPU's access.

Note that when the MMU sets FL T active, the clock cycle
originally called TMMU is redesignated Tf. Clock cycles in
which the PAY pulse occurs are designated TMMU.

T2 T3 T4

WL WL WL J
PH. ADDR. X -

PHil [

PHI2 [

A16-24 [

ADO-IS [

ADS [

X
I . __ h.

V.ADDR. ~Rj----- --< -c

PAY [

ODIN [

m[
u/s [-~ .-,.....-

STO-3 [-~ .-,.....-

DATA IN

(HIGH)

FIGURE 2-6. CPU Read Cycle; Translation in TLB (TLB Hit)

3-49

--

Ir

X

X
TLlEE/B692-9

z
(J)
W
N
Q
ao
~
Q

&I

2.0 Functional Description (Continued)

RSi'/m[

m[
HOL6[

RDY[

T1 TWWU

\~_~/(2)

T2 13 T4 T1 OR n

c=
-------- c=

(HIGH)

(BY CPU)

TL/EE/8692-10

Note 1: The CPU drives the bus If a write cycle is aborted.

Note 2: FL T may ba pulsed if a breakpoint on physical address is enabled or an execution breakpoint is triggered.

Note 3: If this bus cycle is a write cycle to a write-protected page, FLT is asserted for two clock cycles and the abort pulse is delayed by one clock cycle.

FIGURE 2·7. Abort Resulting from Protection Violation; Translation In TLB

CPU
STATES

WWU
STATES

PHI1[

I
CPU ACCESS I L.S. WORD PTE. t I M.S. WORD PTE. I I L.S. WORD PTE.21 M.S. WORD PTE.21 CPU ACCESS I
T1 Tf T1 Tf... . .. Tf ntt.4U T2 T3 14

TI I·Tf 1 Tf l\IM~ T2 1 T3 1 T4 TMM~ T2 1 T3 1 T4 TMM~ T2 1 T3 1 T4 TMM~ 12 1 T3 1 T4 TMW~ T2 1 T3 1 T4

_n... n.. n.. n.. n.. 1.. n.. n.. n.. n... ru ru ru ru 1.. n.. n.. n.. n.. ru ru ru 1.. rL
PHI2[-'Ul Jl Jl Jl Jl Jl Jl Ul U1 Ul Ul .Jl Ul U1 U1 Jl Ul 11 U1 Ul ~ Jl 11 U1
BUS[:P£~ ~. ifl-·~A~· f~- ·~R· 'f~- fSR· f~-·~R 1('"1 X x

PH." AD. DATA OUT -
'-~

IV V IV V V
'--1\ I

\ I

V-r-I\- .r - \.. r t--rL \. t-- I- - r-~

(I)

Note 1: If the R bit on the Level-' PTE must be set, a write cycle is inserted here.

Note 2: If enher the R or the M bit on the Level-2 PTE must be set, a write cycle is inserted here.

Note 3: If a breakpoint on physical address is enabled, an extra clock cycle is inserted here.

FIGURE 2·8. Page Table Lookup

3-50

\r-I{ -

(3) TL/EE/8692-11

2.0 Functional Description (Continued)

The Page Table Entries are read starting with the low-order
word. If the V bit (bit 0) of the low-order word is zero, or the
protection level field PL (bits 1 and 2) indicates that the
CPU's attempted access is illegal, the MMU does not gener­
ate any further memory cycles, but instead issues an Abort
pulse during the clock cycle after T 4 and removes the FL T
signal. The CPU continues to T2 and then becomes idle on
the bus, as shown in Figure 2-9.

If the Rand/or M bit (bit 3 or 4) of the low-order word must
be updated, the MMU does this immediately in a single
Write cycle, before reading the high-order word of the Page
Table Entry. All bits except those updated are rewritten with
their original values.

At most, the MMU writes two 16-bit words to memory during
a translation: the first to the Level-I table to update the R
bit, and the second to the Level-2 table to update the R
and/ or M bits.

2.4.4 Cycle Extension

To allow sufficient strobe widths and access time require­
ments for any speed of memory or peripheral device, the
NS32082 provides for extension of a bus cycle. Any type of
bus cycle, CPU-initiated or MMU-initiated, can be extended,
except Slave Processor cycles, which are not memory or
peripheral references.

In Figures 2-6 and 2-8, note that during T3 all bus control
signals are flat. Therefore, a bus cycle can be cleanly ex­
tended by causing the T3 state to be repeated. This is the
purpose of the ROY (Ready) pin.

Immediately before T3 begins, on the falling edge of clock
phase PHI2, the ROY line is sampled by the CPU and/or the
MMU. If ROY is high, the next state after T3 will be T4,
ending the bus cycle. If it is low, the next state after T3 will
be another T3 and the ROY line will be sampled again. ROY
is sampled in each following clock period, with insertion of
additional T3 states, until it is sampled high. Each additional
T3 state inserted is called a "WAIT state."

During CPU bus cycles, the MMU monitors the ROY pin only
if the 16-bit mode is selected. This is necessary since the
MMU drives the address lines A16-A24, and needs to de­
tect the end of the bus cycle in order to float them.

If the 32-bit mode is selected, the above address lines are
floated following the TMMU state. The MMU will be ready to
perform another translation after three clock cycles, and the
ROY line is ignored.

The ROY pin is driven by the NS32201 Timing Control Unit,
which applies WAIT states to the CPU and MMU as request­
ed on its own WAIT request input pins.

(BY CPU)

c
c

TL/EE/8692-12

Note 1: If a breakpoint on physical address is enabled, an extra clock cycle is inserted here.

FIGURE 2-9. Abort Resulting after a Page Table Lookup

3-51

II

C) r---, ..-
~
co
~
C")

rn
z

2.0 Functional Description (Continued)

2.5 SLAVE PROCESSOR INTERFACE

The CPU and MMU execute four instructions cooperatively.
These are LMR, SMR, RDVAL and WRVAL, as described in
Section 2.5.2. The MMU takes the role of a Slave Processor
in executing these instructions, accepting them as they are
issued to it by the CPU. The CPU calculates all effective
addresses and performs all operand transfers to and from
memory and the MMU. The MMU does not take control of
the bus except as necessary in normal operation; i.e., to
translate and validate memory addresses as they are pre­
sented by the CPU.

The sequence of transfers ("protocol") followed by the CPU
and MMU involves a special type of bus cycle performed by
the CPU. This "Slave Processor" bus cycle does not involve
the issuing of an address, but rather performs a fast data
transfer whose purpose is pre-determined by the form of the
instruction under execution and by status codes asserted by
the CPU.

2.5.1 Slave Processor Bus Cycles

The interconnections between the CPU and MMU for Slave
Processor communication are shown in Figures A-1 and A-2
(Appendix A). The low-order 16 bits of the bus are used for
data transfers. The SPC signal is bidirectional. It is pulsed by
the CPU as a low-active data strobe for Slave Processor

PREV.CYCLE

I T40RTi

PHil [

PHI2 [

SPC [

ADO-AD15 [

STO-ST3 [

ADS [

iiiiiN [

Note 1: CPU samples Dala Bus here.

T1

transfers, and is also pulsed low by the MMU to acknowl­
edge, when necessary, that it is ready to continue execution
of an MMU instruction. Since SPC is normally in a high-im­
pedance state, it must be pulled high with a 10 kO resistor,
as shown. The MMU also monitors the status lines STO­
ST3 to follow the protocol for the instruction being execut­
ed.

Data is transferred between the CPU and the MMU with
Slave Processor bus cycles, illustrated in Figures 2-10 and
2-11. Each bus cycle transfers one byte or one word (16
bits) to or from the MMU.

Slave Processor bus cycles are performed by the CPU in
two clock periods, which are labeled T1 and T4. During T1,
the CPU activates SPC and, if it is writing to the MMU, it
presents data on the bus. During T 4, the CPU deactivates
SPC and, if it is reading from the MMU, it latches data from
the bus. The CPU guarantees that data written to the MMU
is held through T4 to provide for the MMU's hold time re­
quirements. The CPU also guarantees that the status code
on STO-ST3 becomes valid, at the latest, during the clock
period preceding T1. The status code changes during T 4 to
antiCipate the next bus cycle, if any.

Note that Slave Processor bus cycles are never extended
with WAIT states. The RDY line is not sampled.

T4

NEXT CYCLE

T1 ORTi I

TL/EE/8692-13

FIGURE 2-10. Slave Access Timing; CPU Reading from MMU

3-52

2.0 Functional Description (Continued)

PREVo CYCLE I
I T40RTI

PHil [

PHI 2 [

SPC [

AOO-AD15 [

STO-ST3 [

ADS [

ODiN [
Note 1: MMU samples Data Bus here.

T1 T4

VALID

NEXT CYCLE

T1 aRT; I

TL/EE/8692-14

FIGURE 2·11. Slave Access Timing; CPU Writing to MMU

2.5.2 Instruction Protocols

MMU instructions have a three-byte Basic Instruction field
conSisting of an ID byte followed by an Operation Word. See
Figure 3-10 for the MMU instruction encodings. The ID Byte
has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies that the MMU will execute it.

3) It determines the format of the following Operation Word
of the instruction.

The CPU initiates an MMU instruction by issuing first the ID
Byte and then the Operation Word, using Slave Processor
bus cycles. The ID Byte is sent on the least-significant byte
of the bus, in conjunction with status code 1111 (Broadcast
ID Byte). The Operation Word is sent on the entire 16-bit
data bus, with status code 1101 (Transfer Operation Word I
Operand). The Operation Word is sent with its bytes
swapped; i.e., its least-significant byte is presented to the
MMU on the most-significant half of the 16-bit bus.

Other actions are taken by the CPU and the MMU according
to the instruction under execution, as shown in Tables 2-2,
2-3 and 2-4.

In executing the LMR instruction (Load MMU Register, Ta­
ble 2-2), the CPU issues the ID Byte, the Operation Word,
and then the operand value to be loaded by the MMU. The
register to be loaded is specified in a field within the Opera­
tion Word of the instruction.

3-53

In executing the SMR instruction (Store MMU Register, Ta­
ble 2-3), the CPU also issues the ID Byte and the Operation
Word of the instruction to the MMU. It then waits for the
MMU to signal (by pulsing SPC low) that it is ready to pre­
sent the specified register's contents to the CPU. Upon re­
ceiving this "Done" pulse, the CPU reads first a "Status
Word" (dictated by the protocol for Slave Processor instruc­
tions) which the MMU provides as a word of all zeroes. The
CPU then reads the contents of the selected register in two
successive Slave Processor bus cycles, and places this re­
sult value into the instruction's destination (a CPU general­
purpose register or a memory location).

In executing the RDVAL (Read-Validate) or WRVAL (Write­
Validate) instruction, the CPU again issues the ID Byte and
the Operation Word to the MMU. However, its next action is
to initiate a one-byte Read cycle from the memory address
whose protection level is being tested. It does so while pre­
senting status code 1010; this being the only place that this
status code appears during a RDVAL or WRVAL instruction.
This memory access triggers a special address translation
from the MMU. The translation is performed by the MMU
using User-Mode mapping, and any protection violation oc­
curring during this memory cycle does not cause an Abort.
The MMU will, however, abort the CPU if the Level-1 Page
Table Entry is invalid.

Upon completion of the address translation, the MMU puls­
es SPC to acknowledge that the instruction may continue
execution.

z en w
~ o
co
~ •
o

•

2.0 Functional Description (Continued)

TABLE 2·2. LMR Instruction Protocol

CPU Action Status MMUAction

Issues ID Byte of instruction, pulsing SPC. 1111 Accepts ID Byte.
Sends Operation Word of Instruction, pulsing SPC. 1101 Decodes instruction.
Issues low-order word of new register value to 1101 Accepts word from bus; places it into low-order half
MMU, pulsing SPC. of referenced MMU register.
Issues high-order word of new register value to 1101 Accepts word from bus; places it into high-order
MMU, pulsing SPC. half of referenced MMU register.

TABLE 2·3. SMR Instruction Protocol

CPU Action Status MMUAction

Issues ID Byte of Instruction, pulsing SPC. 1111 Accepts ID Byte.
Sends Operation Word of instruction, pulsing SPC. 1101 Decodes instruction.
Waits for Done pulse from MMU. xxxx Sends Done pulse on SPC.
Pulses SPC and reads Status Word from MMU. 1110 Presents Status Word (all zeroes) on bus.
Pulses SPC, reading low-order word of result from 1101 Presents low-order word of referenced MMU
MMU. register on bus.
Pulses SPC, reading high-order word of result from 1101 Presents high-order word of referenced MMU
MMU. register on bus.

TABLE 2-4. RDVAL/WRVAL Instruction Protocol

CPU Action Status MMUAction

Issues ID Byte of instruction, pulsing SPC. 1111 Accepts ID Byte.
Sends Operation Word of instruction, pulsing SPC. 1101 Decodes instruction.
Performs dummy one-byte memory read from 1010 Translates CPU's address, using User-Mode
operand's location. mapping, and performs requested test on the

address presented by the CPU. Aborts the CPU if
the level-1 page table entry is invalid. Starts a
Memory Cycle from the Translated Address if the
translation is successful. Aborts on protection
violations are temporarily suppressed.

Waits for Done pulse from MMU xxxx Sends Done pulse on SPC.
Sends SPC pulse and reads Status Word from 1110 Presents Status Word on bus, indicating in bit 5 the
MMU; places bit5 of this word into the F bit of the result of the test.
PSR register.

If the translation is successful the MMU will also start a Requests for DMA are presented in parallel to both the CPU
dummy memory cycle from the translated address. See Fig- and MMU on the HOLD pin of each. The component that
ure 2-12. Note that, during this time the CPU will monitor the currently controls the bus then activates its Hold Acknowl-
RDY line. Therefore, for proper operation, the RDY line edge output to grant bus access to the requesting device.
must be kept high if the memory cycle is not performed. When the CPU grants the bus, the MMU passes the CPU's

The CPU then reads from the MMU a Status Word. Bit 5 of HLDA signal to its own HLDAO pin. When the MMU grants

this Status Word indicates the result of the instruction: the bus, it does so by activating its HLDAO pin directly, and

o if the CPU in User Mode could have made the corre-
the CPU is not involved. HLDAI in this case is ignored.

sponding access to the operand at the specified ad- Refer to Figures 4-14, 4-15 and 4-16 for details on bus

dress (Read in RDVAL, Write in WRVAL), granting sequences.

1 if the CPU would have been aborted for a protection 2.7 BREAKPOINTING
violation. The MMU provides the ability to monitor references to two

Bit 5 of the Status Word is placed by the CPU into the F bit memory locations in realtime, generating a Breakpoint trap
of the PSR register, where it can be tested by subsequent on occurrence of any specified type of reference to either
instructions as a condition code. location made by a program. In addition, a Breakpoint trap
Note: The MMU sets the R bit on ROVAL; Rand M bits on WRVAL. may be inhibited until a specified number of such references

2.6 BUS ACCESS CONTROL
have been performed.

The NS320B2 MMU has the capability of relinquishing its
Breakpoint monitoring is enabled and regulated by the set-

access to the bus upon rquest from a DMA device. It does
ting of appropriate bits in the MSR and BPRO-1 registers.

this by using HOLD, HLDAI and HLDAO.
See Sections 3.5 and 3.7.

Details on the interconnections of these pins are provided in
A Breakpoint trap is signalled to the CPU as either a Non-
Maskable Interrupt or an Abort trap, depending on the set-

Figures A-1 and A-2 (Appendix A).
ting of the AI bit in the MSR register.

3-54

2.0 Functional Description (Continued)

CPU STATES

MMU STATES I
PHil [

PHI2 [

ADS [

T2

T2

T3

T3

T4

T4

FU[-+ t-.......... ~ ~ _(I_) +'

SPC [

RST/ ABT [

ROY [
(3)

TLlEE/8692-15

Note 1: FLT is asserted if the translation is not in the TLB or a WRVAL instruction is executed and the M Bit is not set.

Note 2: If the Level-t PTE is not valid, an abort is generated, SPC is issued in TMMU and FL T is deasserted in T 2.

Note 3: If a protection violation occurs or the Level-2 PTE is invalid, an Idle State is inserted here, PAV is not pulsed and SPC is pulsed during this Idle State.

FIGURE 2·12. FLT Deassertlon During RDVAL/WRVAL Execution

The MSR register also indicates which breakpoint register
triggered the break, and the direction (read or write) and
type of memory cycle that was detected. The breakpoint
address is not placed into the EIA register, as this register
holds the addresses of address translation errors only. The
breakpoint address is, however, available in the indicated
Breakpoint register.

On occurrence of any trap generated by the MMU, including
the Breakpoint trap, the BEN bit in the MSR register is im­
mediately cleared, disabling any further Breakpoint traps.

Enabling breakpoints may cause variations in the bus timing
given in the previous sections. Specifically:

1) While either breakpoint is enabled to monitor physical ad­
dresses, the MMU inserts an additional clock period into
all bus cycles by asserting the FL T line for one clock. See
Figure 2-13.

2) If the CPU initiates an instruction prefetch from a location
at which a breakpoint is enabled on Execution, the MMU
asserts the FL T line to the CPU, performs the memory
cycle itself, and issues an edited instruction word to the
CPU. See Figure 2-14 and Section 2.7.1.

Note: Instructions which use two operands, a read-type and a write-type
(e.g., MOVO 0(rl).0(r2), with the first operand valid and protected to
allow user reads, and the second operand either invalid (page fault) or
write protected, cause a read-type break event to occur for the first
operand regardless of the outcome of the instruction. Each time the
instruction is retried, the read-event is recorded. Hence, the break·
point count register may reflect a different count than a casual as­
sumption would lead one to. The same effect can occur on a RMW
type operand with read only protection.

3-55

2.7.1 Breakpoints on Execution

The Series 32000 CPUs have an instruction prefetch which
requires synchronization with execution breakpoints. In con­
sideration of this, the MMU only issues an execution break­
point when an instruction is prefetched with a nonsequential
status code and the conditions specified in a breakpoint reg­
ister are met. This guarantees that the instruction prefetch
queue is empty and there are not pending instructions in the
pipeline. There are three cases to consider:

Case 1 : A nonsequential instruction prefetch is made to
a breakpointed address.

Response: The queue is necessarily empty. The breakpoint
is issued.

Case 2, 3: A sequential prefetch is made to a breakpointed
address OR a prefetch is made to an even ad­
dress and the breakpoint is on the next odd ad­
dress.

Response: In these cases, there may be instructions pend­
ing in the queue which must finish before the
breakpoint is fired. Instead of putting the op­
code byte (the one specified by the breakpoint­
ed address) in the queue, a DIA instruction is
substituted for it. DIA is a single byte instruction
which branches to itself, causing a queue flush.
When the DIA executes, the breakpoint address
is again issued, this time with nonsequential
fetch status and the problem is reduced to
case 1.

Note: Execution breakpoints cannot be used when the MMU is connected
to either an NS32032 or an NS32332 CPU.

Z
tn
(0)
N o
CD
~ ...
o

~
N 2.0 Functional Description (Continued)

!
~
z

Tl TMMU Tf

• _ ...

T2

. .
'. --- --_.'
• • ' .. _-- .. '

T3 T4

TLlEE/8692-16

Note: If a breakpoint condition is met and abort on breakpoint is enabled. the bus cycle is aborted. In this case FLT is stretched by one clock cycle.

CPU STATES Tl
MMU STATES I Tl

PHil [

PHI2[

A1S-24[

AOO-1S[

AOS[

PAVe

FLT[

RD[

ROY[

FIGURE 2·13. Bus Timing with Breakpoint on Physical Address Enabled

TMMU
TMMU

(1)

Tf
T2

Tf
T3

T2
T4

(BY CPU)

T3
11

T4
11

Tl OR 11
I TlOR11

~~--- -c

TL/EE/8692-17

Note 1: If a breakpoint on physical address is enabled. an extra clock cycle is inserted here.

FIGURE 2·14. Execution Breakpoint Timing; Insertion of DIA Instruction

3-56

.--,z
3.0 Architectural Description
3.1 PROGRAMMING MODEL

The MMU contains a set of registers through which the CPU
controls and monitors management and debugging func·
tions. These registers are not memory· mapped. They are
examined and modified by executing the Slave Processor
instructions LMR (Load Memory Management Register) and
SMR (Store Memory Management Register). These instruc·
tions are explained in Section 3.11, along with the other
Slave Processor instructions executed by the MMU.

A brief description of the MMU registers is provided below.
Details on their formats and functions are provided in the
following sections.

PTBO, PTB1-Page Table Base Registers. They hold the
physical memory addresses of the Page Tables referenced
by the MMU for address translation. See Section 3.3.

EIA-Errorllnvalidate Register. Dual·function register.
used to display error addresses and also to purge cached
translation information from the TLB. See Section 3.4.

BPRO, BPR1-Breakpoint Registers. Specify the condi·
tions under which a breakpoint trap is generated. See Sec·
tion 3.5.

BCNT -Breakpoint Counter Register. 24·bit counter used
to count BPRO events. Allows the breakpoint trap from the
BPRO register to be inhibited until a specified number of
events have occurred. See Section 3.6.

MSR-Memory Management Status Register. Contains
basic control and status fields for all MMU functions. See
Section 3.7.

PTBn

~_m-
I

256
ENTRIES

1
LEVEL·1

PAGE TABLE

3.2 MEMORY MANAGEMENT FUNCTIONS

The NS32082 uses sets of tables in physical memory (the
"Page Tables") to define the mapping from virtual to physi­
cal addresses. These tables are found by the MMU using
one of its two Page Table Base registers: PTBO or PTB1.
Which register is used depends on the currently selected
address space. See Section 3.2.2.

3.2.1. Page Table Structure

The page tables are arranged in a two·level structure, as
shown in Figure3-f. Each of the MMU's PTBn registers may
point to a Level-1 page table. Each entry of the Level·1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level·1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently. but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level-1 Page Table contains 256 32-bit Page Table
Entries (PTE'S) and therefore occupies 1 Kbyte. Each entry
of the Level·1 Page Table contains fields used to construct
the physical base address of a Level-2 Page Table. These
fields are a 15·bit PFN field, providing bits 9-23 of the physi­
cal address, and an MS bit providing bit 24. The remaining
bits (0-8) are assumed zero, placing a Level·2 Page Table
always on a 512-byte (page) boundary.

-32BITS-

512 BYTES

. MEMORY .
LEVEL·2

PAGE TABLES

TL/EE/8692-18

FIGURE 3·1. Two·Level Page Tables

3-57

(J)
Co)
N o
(X)
N
o

•

Q r--,
~

!
CO)
U)
z

3.0 Architectural Description (Continued)

Level-2 Page Tables contain 128 32-bit Page Table entries,
and so occupy 512 bytes (1 page). Each Level-2 Page Table
Entry points to a final 512-byte physical page frame. I n other
words, its PFN and MS fields provide the Page Frame Num­
ber portion (bits 9-24) of the translated address (Figure 3-3).
The OFFSET field of the translated address is taken directly
from the corresponding field of the virtual address.

3.2.2 Virtual Address Spaces

When the Dual Space option is selected for address transla·
tion in the MSR (Sec. 3.7) the MMU uses two maps: one for
translating addresses presented to it in Supervisor Mode
and another for User Mode addresses. Each map is refer­
enced by the MMU using one of the two Page Table Base
registers: PTBO or PTB1. The MMU determines the CPU's
current mode by monitoring the state of the UIS pin and
applying the following rules.

1) While the CPU is in Supervisor Mode (U/S pin = 0), the
CPU is said to be presenting addresses belonging to Ad­
dress Space 0, and the MMU uses the PTBO register as
its reference for looking up translations from memory.

2) While the CPU is in User Mode (U/S pin = 1), and the
MSR OS bit is set to enable Dual Space translation, the
CPU is said to be presenting addresses belonging to Ad­
dress Space 1, and the MMU uses the PTB1 register to
look up translations.

3) If Dual Space translation is not selected in the MSR,
there is no Address Space 1, and all addresses present­
ed in both Supervisor and User modes are considered by
the MMU to be in Address Space O. The privilege level of
the CPU is used then only for access level checking.

Note: When the CPU executes a Dual-Space Move instruction (MOVUSi or
MOVSUi), it temporanly enters User Mode by switching the slste of
the U/S pin. Accesses made by the CPU during this time are treated
by the MMU as User-Mode accesses for both mapping and access
level checking. It is pOSSible, however, to force the MMU to assume
Supervisor-Mode privilege on such accesses by selting the Access
Overnde (AO) bit in the MSR (Sec. 3.7).

3.2.3 Page Table Entry Formats

Figure 3-2 shows the formats of Level-1 and Level-2 Page
Table Entries (PTE's). Their formats are identical except for
the "M" bit, which appears only in a Level-2 PTE.

The bits are defined as follows:

V Valid. The V bit is set and cleared only by software.

V= 1 => The PTE is valid and may be used for trans­
lation by the MMU.

V=O=> The PTE does not represent a valid transla­
tion. Any attempt to use this PTE will cause
the MMU to generate an Abort trap. While
V = 0, the operating system may use all oth­
er bits except the PL field for any desired
function.

PL Protection Level. This two-bit field establishes the
types of accesses permitted for the page in both User
Mode and Supervisor Mode, as shown in Table 3-1.

The PL field is modified only by software. In a Level-1
PTE, it limits the maximum access level allowed for all
pages mapped through that PTE.

TABLE 3·1 Access Protection Levels

Mode U/S
Protection Level Bits (PL)

00 01 10 11

User 1 no no read full
access access only access

Supervisor a read full full full
only access access access

R Referenced. This is a status bit, set by the MMU and
cleared by the operating system, that indicates wheth­
er the page mapped by this PTE has been referenced
within a period of time determined by the operating
system. It is intended to assist in implementing memo­
ry allocation strategies. In a Level-1 PTE, the R bit
indicates only that the Level-2 Page Table has been
referenced for a translation, without necessarily imply­
ing that the translation was successful. In a Level-2
PTE, it indicates that the page mapped by the PTE
has been successfully referenced.

R = 1 => The page has been referenced since the R
bit was last cleared.

R = a => The page has not been referenced since the
R bit was last cleared.

Note: The RDVAL and WRVAL instructions set the Level-l and Level-2 bits
for the page whose protection level Is tested. See Sections 2.5.2 and
3.11.

M Modified. This is a status bit, set by the MMU whenev­
er a write cycle is successfully performed to the page
mapped by this PTE. It is initialized to zero by the
operating system when the page is brought into physi­
cal memory.

M = 1 => The page has been modified since it was
last brought into physical memory.

M = a => The page has not been modified since it
was last brought into physical memory.

In Level-1 Page Table Entries, this bit pOSition is unde­
fined, and is altered in an undefined manner by the
MMU while the V bit is 1.

Note: The WRVAL instruction sets the M bit for the page whose protection
level is tested. See Sections 2.5.2 and 3.11.

NSC Reserved. These bits are ignored by the MMU and
their values are not changed.

They are reserved by National, and therefore should
not be used by the user software.

USR User bits. These bits are ignored by the MMU and
their values are not changed.

They can be used by the user software.

TUEE/8692-19

FIGURE 3·2. A Page Table Entry

3-58

3.0 Architectural Description (Continued)

PFN Page Frame Number. This 15-bit field provides bits
9-23 of the Page Frall]e Number of the physical ad­
dress. See Figure 3-3.

MS Memory System. This bit represents the most signifi­
cant bit of the physical address, and is presented by
the MMU on pin A24. This bit is treated by the MMU no
differently than any other physical address bit, and can
be used to implement a 32-Mbyte physical addressing
space if desired.

3.2.4 Physical Address Generation

When a virtual address is presented to the MMU by the CPU
and the translation information is not in the TLB, the MMU
performs a page table lookup in order to generate the physi­
cal address.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia­
grammed in Figure 3-3.

Bits 9-23 of the virtual address hold the 15-bit Page Num­
ber, which in the course of the translation is replaced with
the 16-bit Page Frame Number of the physical address. The

(11 SELECT 1 ST PTE
IF DS;D THEN

n;O
ELSE

n;1 FDR USER MODE
n;O FDR SUPV MDDE

virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-8 constitute the OFFSET field, which identifies a
byte's position within the accessed page. Since the byte
position within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-8 of the final physical address.

The 8-bit INDEX 1 field of the virtual address is used as an
index into the Level-1 Page Table, selecting one of its 256
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN and MS fields of that entry
give the base address of the selected Level-2 Page Table.

The INDEX 2 field of the virtual address (7 bits) is used as
the index into the Level-2 Page Table, by adding it (scaled
by 4) to the base address taken from the Level-1 Page Ta­
ble Entry. The PFN and MS fields of the selected entry pro­
vide the entire Page Frame Number of the translated ad­
dress.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address.

24 23
(31 GENERATE PHYSICAL

ADDRESS

TUEE/B692-20

FIGURE 3-3. Virtual to Physical Address Translation

3-59

C) r--, • C"I
CD
C)
C"I
CO)

tn
Z

3.0 Architectural Description (Continued)

3.3 PAGE TABLE BASE REGISTERS (PTBO, PTB1)

The PTBn registers hold the physical addresses of the Lev­
el-1 Page Tables.

The format of these registers is shown in Figure 3-4. The
least-significant 10 bits are permanently zero, so that each
register always pOints to a 1 Kbyte boundary in memory.

The PTBn registers may be loaded or stored using the MMU
Slave Processor instructions LMR and SMR (Section 3.11).

3.4 ERRORIINVALIDATE ADDRESS REGISTER (EIA)

The Error/Invalidate Address register is a dual-purpose reg­
ister.

1) When it is read using the SMR instruction, it presents the
virtual address which last generated an address transla­
tion error.

2) When a virtual address is written into it using the LMR
instruction, the translation for that virtual address is
purged, if present, from the TLB. This must be done
whenever a Page Table Entry has been changed in mem­
ory, since the TLB might otherwise contain an incorrect
translation value.

The format of the EIA register is shown in Figure 3-5. When
a translation error occurs, the cause of the error is reported
by the MMU in the appropriate fields of the MSR register

(Section 3.7). The ADDRESS field of the EIA register holds
the virtual address at which the error occurred, and the AS
bit indicates the address space that was in use.

In writing a virtual address to the EIA register, the virtual
address is specified in the low-order 24 bits, and the AS bit
specifies the address space. A TLB entry is purged only if it
matches both the ADDRESS and AS fields.

Another technique for purging TLB entries is to load a PTBn
register. This automatically purges all entries associated
with the addressing space mapped by that register. Turning
off translation (clearing the MSR TU and/or TS bits) does
not purge any entries from the TLB.

3.5 BREAKPOINT REGISTERS (BPRO, BPR1)

The Breakpoint registers BPRO and BPR1 specify the ad­
dresses and conditions on which a Breakpoint trap will be
generated. They are each 32 bits in length and have the
format shown in Figure 3-6. All implemented bits of BPRO
and BPR1 are readable and writable.

Bits 0 through 23 and bit 31 (AS) specify the breakpoint
address. This address may be either virtual or physical, as
specified in the VP bit.

Bits 24 and 25 are not implemented. Bit 26 (CE) is not im­
plemented in register BPR1.

MS (RESERVED) ADDRESS BITS lD-23

I 31 24 I 23

FIGURE 3-4. Page Table Base Registers (PTBO, PTB1)

I 31 24 I 23

FIGURE 3-5. EIA Register

I AS I VP I BE I BR IBwl CE IXIXI : ADD~ESS:

FIGURE 3-6. Breakpoint Registers (BPRO, BPR1)

3-60

TL/EE/8692-21

o I
TL/EE/8692-22

o I
TLlEE/8692-23

3.0 Architectural Description (Continued)

Bits 26 through 30 specify the breakpoint conditions. Break­
point conditions define how the breakpoint address is com­
pared and which conditions permit a break to be generated.
A Breakpoint register can be selectively disabled by setting
all of these bits to zero.

AS Address Space. This bit depends on the setting of
the VP bit. For virtual addresses, this bit contains the
AS (Address Space) qualifier of the virtual address
(Section 3.2.2). For physical addresses, this bit con­
tains the MS (Memory System) bit of the physical
address.

VP Virtual/Physical. If VP is 0, the breakpoint address is
compared against each referenced virtual address. If
VP is 1, the breakpoint address is compared against
each physical address that is referenced by the CPU
(i.e. after translation).

BE Break on Execution. If BE is 1, a break is generated
immediately before the instruction at the breakpoint
address is executed. While this option is enabled, the
breakpoint address must be the address of the first
byte of an instruction. If BE is 0, this condition is
disabled.

Note: This option cannot be used in systems based on any CPU with a 32-
bit wide bus.

The BE bit should only be set when the CPU has a 16·bit bus (i.e.
NS32016, NS32COI6). In other systems. use instead the BPT instruc­
tion placed in memory, to signal a break.

BR Break on Read. If BR is 1, a break is generated when
data is read from the breakpoint address. Instruction
fetches do not trigger a Read breakpoint. If BR is 0,
this condition is disabled.

BW Break on Write. If BW is 1, a break is generated when
data is written to the breakpoint address or when
data is read from the breakpoint address as the first
part of a read-modify-write access. If BW is 0, this
condition is disabled.

CE Counter Enable. This bit is implemented only in the
BPRO register. If CE is 1, no break is generated un­
less the Breakpoint Count register (BCNT, see be­
low) is zero. The BCNT register decrements when
the condition for the breakpoint in register BPRO is
met and the BCNT register is not already zero. If CE
is 0, the BCNT register is disabled, and breaks from
BPRO occur immediately.

Note 1: The bits BR, BW and CE should not all be set. The counting per­
formed by the MMU becomes inaccurate, and in Abort Mode (MSR
AI bit set). it can trap a program in such a way as to make it impossi­
ble to retry the breakpointed instruction correctly.

Note 2: An execution breakpoint should not be counted (BE and CE bits
both set) if it is placed at an address that is the destination of a
branch, or if it follows a queue-flushing instruction. See Table 3-2.
The counting performed by the MMU will be inaccurate if interrupts
occur during the fetch of that address.

Branch

ACBi

BR

BSR

Bcond

CASEi

CXP

CXPD

DIA

JSR

JUMP

RET

RXP

BPT

FLAG

RETI

RETT

SVC

TABLE 3-2_lnstructlons Causing
Non-Sequential Fetches

Add, Compare and Branch: unless result is zero

Branch (Unconditional)

Branch to Subroutine

Branch (Conditional): only if condition is met

Case Branch

Call External Procedure

Call External Procedure with Descriptor

Diagnose

Jump to Subroutine

Jump

Return from Subroutine

Return from External Procedure

Breakpoint Trap

Trap on Flag

Return from Interrupt: if MSR loaded properly
by supervisor

Return from Trap: if MSR loaded properly by
supervisor

Supervisor Call

Also all traps or interrupts not generated by the MMU.

Branch to Following Instruction

BICPSRi Bit Clear in PSR

BISPSRi

LMR

LPRi

MOVSUi

MOVUSi

WAIT

Bit Set in PSR

Load Memory Management Register

Load Processor Register: unless UPSR is the
register specified

Move Value from Supervisor to User Space

Move Value from User to Supervisor Space

Wait: fetches next instruction before waiting

3.6 BREAKPOINT COUNT REGISTER (BCNn

The Breakpoint Count register (BCNT) permits the user to
specify the number of breakpoint conditions given by regis­
ter BPRO that should be ignored before generating a Break­
point trap. The BCNT register is 32 bits in length, containing
a counter in its low-order 24 bits, as shown in Figure 3-7.
The high-order eight bits are not used.

o I
TLlEE/8692-24

FIGURE 3-7. Breakpoint Count Register (BCNn

3-61

z
(I)
(0)
I\;)
o
co
I\;)
o

Q r---,
N co
Q
N
C")

en z

3.0 Architectural Description (Continued)

The BCNT register affects the generation of Breakpoint
traps only when it is enabled by the CE bit in the BPRO
register. When the BPRO breakpoint condition is encoun­
tered, and the BPRO CE bit is 1, the contents of the BCNT
register are checked against zero. If the BCNT contents are
zero, a breakpoint trap is generated. If the contents are not
equal to zero, no breakpoint trap is generated and the
BCNT register is decremented by 1.

If the CE bit in the BPRO register is 0, the BCNT register is
ignored and the BPRO condition breaks the program execu­
tion regardless of the BCNT register's contents. The BCNT
register contents are unaffected.

3.7 MEMORY MANAGEMENT STATUS REGISTER (MSR)

The Memory Management Status Register (MSR) provides
overall control and status fields for both address translation
and debugging functions. The format of the MSR register is
shown in Figure 3-8.

The MSR fields relevant to either of the above functions are
described in the following sub-sections.

3.7.1 MSR Fields for Address Translation.

Control Functions

The address translation control bits in the MSR, ad excep­
tion of the R bit, are both readable (using the SMR instruc·
tion) and writable (using LMR).

R Reset. When read, this bit's contents are undefined.
Whenever a "1" is written into it, MSR status fields
TE, B, TET, ED, BD, EST and BST are cleared to all
zeroes. (The BN bit is not affected.)

TU Translate User-Mode Addresses. While this bit is "1 ",
the MMU translates all addresses presented while the
CPU is in User Mode. While it is "0", the MMU ech­
oes all User-Mode virtual addresses without perform­
ing translation or access level checking. This bit is
cleared by a hardware Reset.

Note: Altering the TU bit has no effect on the contents of the TLB.

TS Translate Supervisor-Mode Addresses. While this bit
is "1 ", the MMU translates all addresses presented
while the CPU is in Supervisor Mode. While it is "0",
the MMU echoes all Supervisor-Mode virtual address­
es without translation or access level checking. This
bit is cleared by a hardware Reset.

Note: Altering the TS bit has no effect on the contents of the TLB.

DS Dual·Space Translation. While this bit is "1", Supervi·
sor Mode addresses and User Mode addresses are
translated independently of each other, using sepa­
rate mappings. While it is "0", both Supervisor Mode
addresses and User Mode addresses are translated
using the same mapping. See Section 3.2.2.

AO Access Level Override. This bit may be set to tempo­
rarily cause User Mode accesses to be given Supervi­
sor Mode privilege. See Section 3.10.

Status Fields

The MSR status fields may be read using the MSR instruc­
tion, but are not writable. Instead, all status fields (except
the BN bit) may be cleared by loading a "1" into the R bit
using the LMR instruction.

TE Translation Error. This bit is set by the MMU to indi­
cate that an address translation error has occurred.
This bit is cleared by a hardware reset.

TET Translation Error Type. This three-bit field shows the
reason(s) for the last address translation error report­
ed by the MMU. The format of the TET field is shown
below.

I IL2 I IL1 I PL I
PL Protection Level error. The access attempted

by the CPU was not allowed by the protection
level assigned to the page it attempted to ac­
cess (forbidden by either of the Page Table
Entry PL fields).

IL 1 Invalid Level 1. The Level-1 Page Table Entry
was invalid (V bit = 0).

IL2 Invalid Level 2. The Level-2 Page Table Entry
was invalid (V bit = 0).

These error indications are not mutually exclusive. A
protection level error and an invalid translation error
can be reported simultaneously by the MMU.

ED Error Direction. This bit indicates the direction of the
transfer that the CPU was attempting on the most
recent address translation error.

ED=O=>Write cycle.

ED = 1 => Read cycle.

EST Error Status. This 3-bit field is set on an address
translation error to the low-order three bits of the CPU
status bus. Combinations appearing in this field are
summarized below.

000 Sequential instruction fetch

001 Non-sequential instruction fetch

010 Operand transfer (read or write)

011 The Read action of a read-modify-write trans­
fer (operands of access class "rmw" only: See
the Series 32000 Instruction Set Reference
Manual for further details).

1 00 A read transfer which is part of an effective
address calculation (Memory Relative or Exter­
nal mode)

01
TL/EE/8692-25

Note: In some Series 32000 documentation. the bits TE, Rand B are jOintly referenced with the keyword "ERC".

FIGURE 3·8. Memory Management Status Register (MSR)

3-62

r--, Z

3.0 Architectural Description (Continued)

3.7.2 MSR Fields for Debugging

Control Functions

Breakpoint control bits in the MSR are both readable (using
the SMR instruction) and writable (using LMR).

BEN Breakpoint Enable. Setting this bit enables both
Breakpoint Registers (BPRO, BPR1) to monitor CPU
activity. This bit is cleared by a hardware reset or
whenever a Breakpoint trap or an address translation
error occurs. If only one breakpoint register must be
enabled, the other register should be disabled by
clearing all of its control bits (bits 26-31) to zeroes.

Note: When the BEN bit is set (using the LMR instruction), the MMU en·
abies breakpoints only after two non·sequential instruction fetch cy­
cles have been completed by the CPU. See Section 3.9.

UB User-Only Breakpointing. When this bit is set in con·
junction with the BEN bit, it limits the Breakpoint
Registers to monitor addresses only while the CPU is
in User Mode.

AI Abortllnterrupt. This bit selects the action taken by
the MMU on a breakpoint. While AI is "0" the MMU
generates a pulse on the INT pin (this can be used to
generate a non-maskable interrupt). While AI is "1"
the MMU generates an Abort pulse instead.

Status Fields

The MSR status fields may be read using the SMR instruc­
tion, but are not writable. Instead, all status fields (except
the BN bit) may be cleared by loading a "1" into the R bit
using the LMR instruction. See Section 3.7.1.

B Break. This bit is set to indicate that a breakpoint trap
has been generated by the MMU.

BN Breakpoint Number. The BN bit contains the register
number for the most recent breakpoint trap generat­
ed by the MMU. If BN is 1, the breakpoint was trig­
gered by the BPR1 register. If BN is 0, the breakpoint
was triggered by the BPRO register. If both registers
trigger a breakpoint simultaneously, the BN bit is set
to 1.

BD Break Direction. This bit indicates the direction of the
transfer that the CPU was attempting on the access
that triggered the most recent breakpoint trap. It is
loaded from the complement of the DDIN pin.

BD=O=>Write cycle.

BD=1 =>Read cycle.

BST Breakpoint Status. This 3-bit field is loaded on a
Breakpoint trap from the low-order three bits of the
CPU status bus. Combinations appearing in this field
are summarized below.

000 No break has occurred since the field was last
reset.

001 Instruction fetch

010 Operand transfer (read or write)

011 The Read action of a read-modify-write trans­
fer (operands of access class "rmw" only:
See the Series 32000 Instruction Set Refer­
ence Manual for further details).

3-63

1 00 A read transfer which is part of an effective
address calculation (Memory Relative or Ex­
ternal mode)

Note: The BST field encodings 000 and 001 differ from those of the EST
field (Section 3.7.1) because the MMU inserts a DIA Instruction into
the instruction stream in implementing Execution breakpoints (Section
2.7.1). One side effect of this is that a breakpoint trap is never trig­
gered directly by a sequential instruction fetch cycle.

3.8 TRANSLATION LOOKASIDE BUFFER (TLB)

The Translation Lookaside Buffer is an on-chip fully asso­
ciative memory. It provides direct virtual to phYSical mapping
for the 32 most recently used pages, requiring only one
clock period to perform the address translation.

The efficiency of the MMU is greatly increased by the TLB,
which bypasses the much longer Page Table lookup in over
97% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced by the MMU
itself; the operating system is not involved. The TLB entries
cannot be read or written by software; however, they can be
purged from it under program control.

Figure 3-9 models the TLB. Information is placed into the
TLB whenever the MMU performs a lookup from the Page
Tables in memory. If the retrieved mapping is valid (V = 1 in
both levels of the Page Tables), and the access attempted
is permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory. The re­
cipient entry is selected by an on-chip circuit that imple­
ments a Least-Recently-Used (LRU) algorithm. The MMU
places the virtual page number (15 bits) and the Address
Space qualifier bit into the Tag field of the TLB entry.

The Value portion of the entry is loaded from the Page Ta­
bles as follows:

The Translation field (16 bits) is loaded from the MS bit
and PFN field of the Level-2 Page Table Entry.

The M bit is loaded from the Level-2 Page Table Entry.

The PL field (2 bits) is loaded to reflect the net protection
level imposed by the PL fields of the Level-1 and Level-2
Page Table Entries.

(Not shown in the figure are additional bits associated with
each TLB entry which flag it as full or empty, and which
select it as the recipient when a Page Table lookup is per­
formed.)

When a virtual address is presented to the MMU for transla­
tion. the high-order 15 bits (page number) and the Address
Space qualifier are compared associatively to the corre­
sponding fields in all entries of the TLB. When the Tag por­
tion of a TLB entry completely matches the input values, the
Value portion is produced as output. If the protection level is
not violated, and the M bit does not need to be changed,
then the physical address Page Frame number is output in
the next clock cycle. If the protection level is Violated, the
MMU instead activates the Abort output. If no TLB entry
matches, or if the matching entry's M bit needs to be
changed, the MMU performs a page-table lookup from
memory.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-1 and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in

en
Co)
N o
QC)

~
o

•

C) r---, -~
~
C")
U)
z

3.0 Architectural Description (Continued)

the process of loading a TLB entry (during a Page Table
lookup) the Level-1 and Level-2 R bits will be set in memory
if they were not already sel. For these reasons, there is no
need to replicate either the V bit or the R bit in the TLB
entries.

Whenever a Page Table Entry in memory is altered by soft­
ware, it is necessary to purge any matching entry from the
TLB, otherwise the MMU would be translating the corre­
sponding addresses according to obsolete information. TLB
entries may be selectively purged by writing a virtual ad­
dress to the EIA register using the LMR instruction. The TLB
entry (if any) that matches that virtual address is then
purged, and its space is made available for another transla­
tion. Purging is also performed by the MMU whenever an
address space is remapped by altering the contents of the
PTBO or PTB1 register. When this is done, the MMU purges
all the TLB entries corresponding to the address space
mapped by that register. Turning translation on or off (via
the MSR TU and TS bits) does not affect the contents of the
TLB.
Note: If the value in the PTBO register must be changed, it is strongly recom­

mended that the translation be disabled before loading the new value,
otherwise the purge performed may be incomplete. This is due to
instruction prefetches and/or memory read cycles occurring during
the lMR instruction which may restore TLB entries from the old map.

TAG

VIRTUAL
ADDRESS

(U/S. ZZZ)
COMPARISON

AS

a

1

a

1

PAGE NUMBER
(15 BITS)

xxx

yyy

zzz

www

3.9 ENTRY IRE-ENTRY INTO PROGRAMS
UNDER DEBUGGING

Whenever the MSR is written, breakpoints are disabled. Af­
ter two non-sequential instruction fetch cycles have com­
pleted, they are again enabled if the new BEN bit value is
'1'. The recommended sequence for entering a program un­
der test is:

LMR
RETT

MSR, New_Value
n ; or RETI

executed with interrupts disabled (CPU PSR I bit off).

This feature allows a debugger or monitor program to return
control to a program being debugged without the risk of a
false breakpoint trap being triggered during the return.

The LMR instruction performs the first non-sequential fetch
cycle, in effect branching to the next sequential instruction.
The RETT (or RETI) instruction performs the second non­
sequential fetch as its last memory reference, branching to
the first (next) instruction of the program under debug. The
non-sequential fetch caused by the RETT instruction, which
might not have occurred otherwise, is not monitored.

3_10 ADDRESS TRANSLATION ALGORITHM

The MMU either translates the 24-bit virtual address to a
25-bit physical address or reports a translation error. This
process is described algorithmically in the following pages.
See also Figure 3-3.

PL M

11 a

11 0

11 1

00 1

VALUE

TRANSLATION
(16 BITS)

mmm

nnn

PPP

qqq

TRANSLATED
ADDRESS

(PPP)

TUEE/8692-26

FIGURE 3-9_ TLB Model

3-64

'" m
01

MMU Page Table Lookup and Access Validation Algorithm
Legend:
x = y x is assigned the value y
x == y Comparison expression, true if x is equal to y
x AND y
x OR Y

Boolean AND expression, true only if assertions x and yare both true
Boolean inclusive OR expression, true if either of assertions x and y is true
Delimiter marking end of statement

{ ... I
item(i)
item(i:j)
item.x
DONE
ABORT

Delimiters enclosing a statement block
Bit number i of structure "item"
The field from bit number i through bit number of structure "item"
The bit or field named "x" in structure "item"
Successful end of translation; MMU provides translated address
Unsuccessful end of translation; MMU aborts CPU access

This algorithm represents for all cases a valid definition of address translation.
Bus activity implied here occurs only if the TLB does not contain the mapping,
or if the reference requires that the MMU alter the M bit of the Page Table Entry.
Otherwise, the MMU provides the translated address in one clock period.
Input (from CPU) :

U (1 if U/S is high)
W (1 if DDIN input is high)
VA Virtual address conSisting of:

INDEX_l (from pins A23-A16)
INDEX_2 (from pins AD15-AD9)
OFFSET (from pins ADS-ADO)

ACCESS_LEVEL The access level of a reference is a 2-bit value synthesized by the MMU from CPU status:
bit 1 U AND NOT MSR.AO (U from U/S input pin)
bi t 0 = 1 for Write cycle, or Read cycle of an "rmw" class operand access

o otherwise.

Output:

Uses:

PA PhYSical Address on pins A24-A16, AD15-ADO;
or

Abort pulse on RSTIABT pin.

MSR Status Register:
fields TU, TS and DS

II
O~-l80l£SN

'" a,
0>

MMU Page Table Lookup and Access Validation Algorithm (Continued)

PTBO
PTBl
PTE_l

PTEP_l
PTE_2

Page Table Base Register 0
Page Table Base Register 1
Level-l Page Table Entry:

fields PFN, PL, V, Rand MS
Pointer, holding address of PTE_l
Level-2 Page Table Entry:

fields PFN, PL, V, M, Rand MS
PTEP_2 Pointer, holding address of PTE_2

IF «MSR.TU == 0) AND (U == 1) OR «MSR.TS
THEN (PA(O:23) = VA(O:23) ; PA(24) = 0 ; DONE

IF (MSR.DS = = 1) AND (U = = 1)

0) AND (U ==0))
I

THEN (PTEP_l(24) = PTBloMS ; PTEP_l(23:10) = PTB1(23:1O)
PTEP_l(9:2) = VA.INDEX_l ; PTEP_l(l:O) =0 I

ELSE PTEP_l(24) = PTBO.MS ; PTEP_l(23:10) = PTBO(23:1O)
PTEL1(9:2) = VA.INDEX_l; PTEP_l(l:O) = 0

If translation not enabled then echo
virtual address as physical address.

If Dual Space mode and CPU in User Mode
then form Level-l PTE address

from PTBl register,
else form Level-l PTE address

from PTBO register.

- - - LEVEL 1 PAGE TABLE LOOKUP - - -

IF (ACCESS_LEVEL> PTE_l.PL) OR (PTE_l.V
THEN ABORT ;

0) If protection violation or invalid Level-2 page
table then abort the access.

NS32082-10

IF PTE_loR = = 0 THEN PTE_loR
PTE_l(4) = (undefined value) ;

1 Otherwise, set Reference bit if not already set,
(the M bit position may be garbaged)

PTEL2(24) = PTE_loMS ; PTEP_2(23:9) = PTE_loPFN
PTEP_2(8:2) = VA.INDEX_2 ; PTEP_2(l:O) = 0 ;

IF (ACCESS_LEVEL > PTE_2. PL) OR (PTE_2. V = = 0)
THEN ABORT ;

IF PTE_2.R = = 0 THEN PTE_2.R = = 1
IF (W = = 1) AND (PTE_2.M = = 0) THEN PTE_2.M

PA(24) PTE_2.MS; PA(23:9) PTE_2.PFN PA(8:0)
DONE;

1

and form Level-2 PTE address.

LEVEL 2 PAGE TABLE LOOKUP -

VA. OFFSET

If protection violation or invalid page
then abort the access.

Otherwise, set Referenced bit if not already set,
if Write cycle set Modified bit if not

already set,
and generate physical address.

3.0 Architectural Description (Continued)

3.11 INSTRUCTION SET

Four instructions of the Series 32000 instruction set are ex­
ecuted cooperatively by the CPU and MMU. These are:

LMR Load Memory Management Register

SMR Store Memory Management Register

RDVAL Validate Address for Reading

WRVAL Validate Address for Writing

The format of the MMU slave instructions is shown in Figure
3-10. Table 3-3 shows the encodings of the "short" field for
selecting the various MMU internal registers.

TABLE 3-3. "Short" Field Encodings

"Short" Field Register

0000 BPRO
0001 BPRl
1010 MSR
1011 BCNT
1100 PTBO
1101 PTBl
1111 EIA

Note: All other codes are illegal. They will cause unpredictable registers to
be selected if used in an instruction.

For reasons of system security, all MMU instructions are
privileged, and the CPU does not issue them to the MMU in
User Mode. Any such attempt made by a User-Mode pro­
gram generates the Illegal Operation trap, Trap (ILL). In ad­
dition, the CPU will not issue MMU instructions unless its
CFG register's M bit has been set to validate the MMU in­
struction set. If this has not been done, MMU instructions
are not recognized by the CPU, and an Undefined Instruc­
tion trap, Trap (UND), results.

The LMR and SMR instructions load and store MMU regis­
ters as 32-bit quantities to and from any general operand
(including CPU General-Purpose Registers).

The RDVAL and WRVAL instructions probe a memory ad­
dress and determine whether its current protection level
would allow reading or writing, respectively, if the CPU were
in User Mode. Instead of triggering an Abort trap, these in­
structions have the effect of setting the CPU PSR F bit if the
type of access being tested for would be illegal. The PSR F
bit can then be tested as a condition code.
Note: The Series 32000 Duat-Space Move instructions (MOVSUi and

MOVUSi), although they involve memory management action, are not
Slave Processor instructions. The CPU implements them by switching
the state of its U/S pin at appropriate times to select the desired
mapping and protection from the MMU.

For full architectural details of these instructions, see the
Series 32000 Instruction Set Reference Manual.

4.0 Device Specifications
4.1 NS32082 PIN DESCRIPTIONS

The following is a brief description of all NS32082 pins. The
descriptions reference portions of the Functional Descrip­
tion, Section 2.0.

A22

A2t A23

A20 A24/HBF

A19 iN'i
AIS PAY

A17 STO

A16 STI

AD15 5T2

AD14 ST3

A013 m
A012 DDIN

ADll ADS

AD10 U/S
AD9 AT/SPC

ADS iffi;AST
AD7 F[f

AD6 HLDAO

AD5 HLDAI

AD4 HOLD

AD3 RSTI

AD2 RDY

ADI PHI2

ADO PHil

GNDL GNDS

TL/EE/8692-28

Top View

Order Number NS16082D
See NS Package Number D48A

FIGURE 4-1. Dual·ln·Line Package Connection Diagram

4.1.1 Supplies

Power (Vee): +5V positive supply. Section 2.1.

Logic Ground (GNDL): Ground reference for on-chip logic.
Section 2.1.

Buffer Ground (GNDB): Ground reference for on-chip driv­
ers connected to output pins. Section 2.1.

4.1.2 Input Signals

Clocks (PHil, PHI2): Two-phase clocking signals. Section
2.2.

Ready (RDY): Active high. Used by slow memories to ex­
tend MMU originated memory cycles. Section 2.4.4.

Hold Request (HOLD): Active low. Causes a release of the
bus for DMA or multiprocessing purposes. Section 2.6.

Hold Acknowledge In (HLDAI): Active low. Applied by the
CPU in response to HOLD input, indicating that the CPU has
released the bus for DMA or multiprocessing purposes.
Section 2.6.

OPERATION WORD sI7 ID CODE 01
TLlEE/8692-27

FIGURE 3·10. MMU Slave Instruction Format

3-67

z
(f)
c.:I
N o
0)

~ ...
o

o ,...
I

N
CO
o
N
('I)
en
z

4.0 Device Specifications (Continued)

Reset Input (RSTI): Active low. System reset. Section 2.3. Hold Acknowledge Output (HLDAO): Active low. When

Status Lines (STO-ST3): Status code input from the CPU. active, indicates that the bus has been released.

Active from T4 of previous bus cycle through T3 of current 4.1.4 Input-Output Signals
bus cycle. Section 2.4.

Data Direction In (ODIN): Active low. Status signal indicat-
Program Flow Status (PFS): Active low. Pulse issued by ing direction of data transfer during a bus cycle. Driven by
the CPU at the beginning of each instruction. the MMU during a page-table lookup.
User/Supervisor Mode (U/S): This signal is provided by Address Translation/Slave Processor Control (AT/
the CPU. It is used by the MMU for protection and for select- SPC): Active low. Used by the CPU as the data strobe out-
ing the address space (in dual address space mode only). put for Slave Processor transfers; used by the MMU to ac-
Section 2.4. knowledge completion of an MMU instruction. Section 2.3
Address Strobe Input (ADS): Active low. Pulse indicating and 2.5. Held low during reset to select the address transla-
that a virtual address is present on the bus. tion mode on the CPU.

4_1.3 Output Signals M.S. Bit of Physical Address/High Byte Float (A24/

Reset Output! Abort (RST / ABT): Active Low. Held active
HBF): Most significant bit of physical address. Sampled on
the rising edge of the reset input to select 16 or 32-bit bus longer than one clock cycle to reset the CPU. Pulsed low
mode. This pin outputs a low level if address translation is

during T2 or TMMU to abort the current CPU instruction.
not enabled. It is floated during T2-T4 if 32-bit bus mode is

Interrupt Output (I NT): Active low. Pulse used by the de- selected.
bug functions to inform the CPU that a break condition has

Address Bits 16-23 (A16-A23): High order bits of the ad-
occurred.

dress bus. These signals are floated by the MMU during
Float Output (FLT): Active low. Floats the CPU from the T2-T4 if 32-bit bus mode is selected.
bus when the MMU accesses page table entries or per-

Address/Data 0-15 (ADO-AD1S): Multiplexed Addressl
forms a physical breakpoint check. Section 2.4.3.

Data Information. Bit 0 is the least significant bit.
Physical Address Valid (PAV): Active low. Pulse generat-
ed during TMMU indicating that a physical address is pres-
ent on the bus.

4.2 ABSOLUTE MAXIMUM RATINGS
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation

If Military/Aerospace specified devices are required, at these limits is not intended; operation should be limited to
contact the National Semiconductor Sales Office/ those conditions specified under Electrical Characteristics.
Distributors for availability and specifications.

Temperature Under Bias O'Cto +70'C

Storage Temperature -65'Cto +150'C

All Input or Output Voltages with
Respect to GND -0.5Vto +7V

Power Dissipation 1.5W

4.3 ELECTRICAL CHARACTERISTICS TA = 0 to + 70'C, Vee = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage 2.0 Vee + 0.5 V

Vil Low Level Input Voltage -0.5 0.8 V

VeH High Level Clock Voltage PHI1, PHI2 pins only Vee - 0.35 Vee + 0.5 V

Vel Low Level Clock Voltage PHil, PHI2 pins only -0.5 0.3 V

VelT Low Level Clock Voltage, PHil, PHI2 pins only
-0.5 0.6 V

Transient (ringing tolerance)

VOH High Level Output Voltage IOH = - 400 fLA 2.4 V

VOL Low Level Output Voltage IOl = 2 mA 0.45 V

IllS AT/SPC Input Current (low) VIN = O.4V, AT ISPC in input mode 0.05 1.0 mA

II Input Load Current o :0; VIN :0; Vee, All inputs except
-20 20 fLA

PHil, PHI2, AT/SPC

Il Leakage Current 0.4 :0; VIN :0; Ve
(Output and 1/0 Pins -20 30 fLA
in TRI-STATE/lnput Mode)

Ice Active Supply Current lOUT = O,TA = 25'C 200 300 mA

3-68

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the timing specifications given in this section refer to
2.0V on the rising or falling edges of the clock phases PHI1

SIGl [-- --.-SI-G-,I------~'----.:~:

SIG2 [___ ' __ .s_IG_2_h....JI. ___ ~ _____ ~:
TL/EE/B692-29

FIGURE 4-2. Timing Specification Standard
(Signal Valid after Clock Edge)

4.4.2 Timing Tables

and PHI2, and O.BV or 2.0V on all other signals as illustrated
in Figures 4-2 and 4-3, unless specifically stated otherwise.

ABBREVIATIONS:

L.E. - leading edge R.E. - rising edge

T.E. - trailing edge F.E. - falling edge

PHln

SIGl

SIG2

[

[
[

____ >E
--------.:------ ,- 2.4V

O.BV '\ 'SIG 11
'---I--O.45V

/r---+--2.4V

2.0V +---~ 'SIG2h

-----~---- ---- - O.45V

TL/EE/B692-30

FIGURE 4-3. Timing Specification Standard
(Signal Valid before Clock Edge)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32082-10.
Maximum times assume capacitive loading of 100 pF.

Name Figure Description Reference/Conditions
NS32082-10

Units
Min Max

tALv 4-4 Address Bits 0-15 Valid After R.E., PHI1 TMMU or T1 40 ns

tALh 4-4 Address Bits 0-15 Hold After R.E., PHI1 T2 5 ns

tAHv 4-4,4-6 Address Bits 16-24 Valid After R.E., PHI1 TMMU or T1 40 ns

tAHh 4-4 Address Bits 16-24 Hold After R.E., PHI1 T2 5 ns

tALPAVs 4-5 Address Bits 0-15 Set Up Before PAY T.E. 25 ns

tAHPAVs 4-5 Address Bits 16-24 Set Up Before PAY T.E. 25 ns

tALPAVh 4-5 Address Bits 0-15 Hold After PAY T.E. 15 ns

tAHPAVh 4-5 Address Bits 16-24 Hold After PAY T.E. 15 ns

tALI 4-10 ADO-AD15 Floating After R.E., PHI1 T2 25 . ns

tAHI 4-7,4-10 A16-A24 Floating After R.E., PHI1 T2 or T1 25 ns

tALz 4-15,4-16 ADO-AD15 Floating After R.E., PHI1 Ti
25

(Caused by HOLD)
ns

tAHZ 4-15,4-16 A16-A24 Floating After R.E., PHI1 Ti
25

(Caused by HOLD)
ns

tALr 4-15,4-16 ADO-AD15 Return from Floating After R.E., PHI1 T1
50

(Caused by HOLD)
ns

3-69

z
tJ)
c.:I
N
o
co
N •
o

&I

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32082·10. (Continued)

Name Figure Description Reference/Conditions
NS32082·10

Units
Min Max

tAHr 4-15,4-16 A16-A24 Return from Floating After R.E., PHil Tl
50 ns

(Caused by HOLD)

tDv 4-6 Data Valid After R.E., PHil T2
50

(Memory Write)
ns

tOh 4-6 Data Hold After R.E., PHil next Tl or Ti
0

(Memory Write)
ns

tot 4-11 Data Bits Floating After R.E., PHil Tl or Ti
10

(Slave Processor Read)
ns

tov 4-11 Data Valid After R.E., PHil Tl
50

(Slave Processor Read)
ns

tOh 4-11 Data Hold After R.E., PHil next Tl or Ti
0

(Slave Processor Read)
ns

tOOINv 4-5,4-7 ODIN Signal Valid AfterR.E., PHil T1 orTMMU 50 ns

tOOINh 4-5 DDIN Signal Hold After R.E., PHil T1 or Ti 0 ns

tOOIN! 4-7 DDIN Signal Floating After R.E., PHil T2 25 ns

tODINz 4-16 DDIN Signal Floating After R.E., PHil Ti
50

(Caused by HOLD)
ns

tODINr 4-16 ODIN Return from Floating After R.E., PHil Tl or Ti
50

(Caused by HOLD)
ns

tODlNA! 4-9 ODIN Floating after After R.E., PHI2 T2
25

Abort (FL T = 0)
ns

tPAVa 4-4 PAY Signal Active After R.E., PHil TMMU orTl 35 ns

tPAVia 4-4 PAY Signal Inactive After R.E., PHI2 T MMU or Tl 40 ns

tpAVw 4-4 PAY Pulse Width At O.SV (Both Edges) 30 ns

tpAVdz 4-14,4-15 PAY Floating Delay After HLDAI F.E. 25 ns

tPAVdr 4-14,4-15 PAY Return from Floating After HLDAI R.E. 25 ns

tpAVz 4-16 PAY Floating After R.E., PHI2 T4
30

(Caused by HOLD)
ns

tPAVr 4-16 PAY Return from Floating After R.E., PHI2 Ti
30

(Caused by HOLD)
ns

tFLTa 4-5,4-10 FL T Signal Active After R.E., PHil T MMU 55 ns

tFLTia 4-7,4-10 FL T Signal Inactive After R.E., PHil T MMU, T! or T2 35 ns

tABTa 4-S, 4-10 Abort Signal Active After R.E., PHil T MMU or Tl 55 ns

tABTia 4-S, 4-10 Abort Signal Inactive After R.E., PHil T2 55 ns

tABTw 4-S,4-10 Abort Pulse Width At O.SV (Both Edges) 70 ns

tlNTa 4-4,4-10 INT Signal Active After R.E., PHil T MMU or Tf 55 ns

tlNTia 4-4,4-10 INT Signal Inactive After R.E., PHil T2 55 ns

tlNTw 4-10 INT Pulse Width At O.SV (Both Edges) 70 ns

tSPCa 4-13 SPC Signal Active After R.E., PHil Tl 40 ns

tSPCia 4-13 SPC Signal Inactive After R.E., PHil T4 40 ns

3·70

4.0 Device Specifications (Continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32082-10. (Continued)

Name Figure Description Reference/Conditions

tSPCf 4-13 SPC Signal Floating After F.E., PHI1 T4

tspCw 4-13 SPC Pulse Width At 0.8V (Both Edges)

tHLOOda 4-14 HLDAO Assertion Delay After HLDAI F.E.

tHLOOdia 4-14,4-15 HLDAO Deassertion Delay After HLDAI R.E.

tHLOOa 4-15,4-16 HLDAO Signal Active After R.E., PHI1 Ti

tHLDOia 4-16 HLDAO Signal Inactive After R.E, PHI1 Ti

tATa 4-18 AT ISPC Signal Active After R.E., PHI1

tATia 4-18 AT ISPC Signal Inactive After R.E., PHI1

tAT! 4-18 AT ISPC Signal Floating After F.E., PHI1

tRSTOa 4-18 RST I ABT Asserted (Low) After R.E. PHI1

tRSTOia 4-18 RST I ABT Deasserted (High) After R.E. PHI1 Ti

4.4.2.2 Input Signal Requirements: NS32082-10

Name Figure Description Reference/Conditions

tOls 4-5 Data In Set Up Before F.E., PHI2 T3
(Memory Read)

tOlh 4-5 Data In Hold After R.E., PHI1 T4
(Memory Read)

tOls 4-12 Data In Set Up Before F.E., PHI2 T1
(Slave Processor Write)

tOlh 4-12 Data In Hold After R.E., PHI1 T4
(Slave Processor Write)

tROYs 4-5 RDY Signal Set Up Before F.E., PHI2 T2 or T3

tROYh 4-5 RDY Signal Hold After F.E., PHI1 T3

tUSs 4-4,4-11 U/S Signal Set Up Before F.E., PHI2 T4 or Ti

tUSh 4-4,4-11 U/S Signal Hold After R.E., PHI1 Next T4

3·71

NS32082-10

Min Max

25

70

50

50

30

30

35

35

25

30

30

NS32082-10

Min Max

15

3

20

3

15

5

35

0

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Units

ns

ns

ns

ns

ns

ns

ns

ns

z
fa
o co
N
o

4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32082-10 (Continued)

Name Figure Description Reference/Conditions
NS32082-10

Units
Min Max

tSTs 4-4,4-11 Status Signals Set Up Before F.E., PHI2 T4 or Ti 35 ns

tSTh 4-4,4-11 Status Signals Hold After R.E., PHI1 Next T4 0 ns

tspcs 4·11 SPC Input Set Up Before F.E., PHI2 T1 45 ns

tSPCh 4·11 SPC Input Hold After R.E., PHI1 T4 0 ns

tHLDs 4·16 HOLD Signal Set Up Before F.E., PHI2 T4 or Ti 25 ns

tHLDh 4·16 HOLD Signal Hold After F.E., PHI2 T 4 or Ti 0 ns

tHLDls 4-15 HLDAI Signal Set Up Before F.E., PHI2 Ti 20 ns

tHLDlh 4-15 HLDAI Signal Hold After F.E., PHI2 Ti 0 ns

tHBFs 4-18 A24/HBF Signal Set Up Before F.E., PHI2 10 ns

tHBFh 4-18 A24/HBF Signal Hold After F.E., PHI2 0 ns

tRSTls 4-18 Reset Input Set Up Before F.E., PHI1 20 ns

tPWR 4-19 Power Stable to RSTI R.E. After Vee Reaches 4.5V 50 ",s

tRSTlw RSTI Pulse Width At 0.8V (Both Edges) 64 tep

4.4.2.3 Clocking Requirements: NS32082-10

Name Figure Description
Reference/ NS32082-10

Units
Conditions Min Max

tcp 4-17 Clock Period R.E., PHI1, PHI2 to Next
100 250

R.E., PHI1, PHI2
ns

tCLw 4-17 PHI1, PHI2 At 2.0V on PHI1 , 0.5tep
Pulse Width PHI2 (Both Edges) -10 ns

tCLh 4-17 PHI1, PHI2 High Time At VCC - 0.9Von 0.5tep
PHI1, PHI2 (Both Edges) - 15 ns

tell 4-17 PHI1, PHI2 Low Time AtO.BVon 0.5tep
PHI1, PHI2 - 5ns

tnOVL (1,2) 4-17 Non-overlap Time 0.8Von F.E. PHI1, PHI2 to
-2 5

O.BVon R.E., PHI2, PHI1
ns

tnOVLas Non-overlap Asymmetry At O.BVon PHI1, PHI2
-4 4 ns

(tnOVb(1) - tnOVY2»)

teLwas PHI1, PHI2 Asymmetry At 2.0V on
-5 5

teLw(1) - tCLw(2») PHI1, PHI2
ns

3-72

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

T4 OR TI T1 TMMU TZ T3 T4 I T1 OR TI

~I"L-'-!l-JI"L-I"L-IL PHI1 [

PHIZ[

A1S-Z4[

ADO - 1S[

ADS[

l---1L

PAVe

DDINL

m[
u/s[

STO-3[

IUS, 1_
'-~ .--
._~'I-

~---X

iNT[

~ ---1L ---1L ---1L ~ U
IAHv - _IAHh

V. ADDR.) PH. ADDR. ~------------------- -----
IALv I--- I--

I (FLOATED BY MMU)

X V. ADDR.) PH. ADDR. ~~--L-------l----- __ -----
(FLOATED BY MMU)

':';Vla

IPAVa ~~A~W ________ -------- ------- ---_.
\.

(HIGH)
lUSh -
15Th -

--IIINTa ~IINTIa

'1.---- .)

FIGURE 4-4. CPU Read (Write) Cycle Timing (32-Blt Mode); Translation in TLB

FIGURE 4-5. MMU Read Cycle Timing (32-Blt Mode); After a TLB Miss

TL/EE/8692-31

TL/EE/8692-32

Note: After FLT is asserted, ODIN may be driven temporarily by both CPU and MMU. This, however, does not cause any conflict, since both CPU and MMU force
ODIN to the same logic level.

3·73

z
en w
I\)
o
CO
I\)

I
o

•

C).r--, .,...
• C'I co C)

C'I
C')

en
z

4.0 Device Specifications (Continued)

Tf

T1 OR TI

A16-24[~--------~J,~--~~------~~~----~------_+~,~----+_----

ADD-15[~-----+-, --_t_J,--_+----,....---+'I---I__--

(HIGH)

DDIN[~ ___ ~-J

FU[~---~---~----~(~LO~W~)--+_---+_---~---
FIGURE 4-6. MMU Write Cycle Timing; after a TLB Miss

TMMU

TMMU

T2

T2

T3

T3

T4

T4

A16-24[~----+-'·'--__1---__iF=;;...--+_---+_'l
ADO-15 [-+----I--'-~-r-' --------------(FLOATED BY MMU)

(HIGH)

--------------(FLOATED BY MMU)

m[-+ ____ I--'

T1

T1

TLlEE/8692-33

TL/EE/B692-34

FIGURE 4-7. FL T Deassertion TImIng
Note: After FL T is deasserted, ODIN may be driven temporarily by both CPU and MMU. This, however, does not cause any conflict Since CPU and MMU force

lIDfiij to lhe same logic level.

3·74

r--, Z

4.0 Device Specifications (Continued)

T4 OR T1

PHil [

PHI2 [

AiiS[

m[

m[
RST/ AST [

CPU STATES I Tf
MMU STATES T4

PHil [

PHI2 [

AOS [

PAY [

m[
RST/ AST [

ODIN [

T1

PHil [

PHI2 [

A16-24 [

ADO-15 [

ADS [

m[
ODIN [

m[
RST/ABT [

TI TMMU T2 T1

(HIGH)

FIGURE 4·8. Abort Timing (FL T = 1)

Tf
TI

T2
T2

T3
T3

T4
T4

FIGURE 4-9. Abort Timing (FLT = 0)

TMWU T2 T3 T4

--(rLOATID Bv"WMU)---- --{

--(~MiolMM~---- --{

--~;;;.±j
FIGURE 4-10. CPU Operand Access Cycle with Breakpoint on Physical Address Enabled

TL/EE/8692-35

TL/EE/8892-36

TL/EE/8692-37

Note: If a breakpoint condition is met and abort on breakpoint is enabled, the bus cycle is aborted. In this case FLT is stretched by one clock cycle.

3·75

~
N o
CD
~
o

•

C) r---,

~
C')

en
z

4.0 Device Specifications (Continued)

T4 OR 11

PHl1 [

PHI2 ['-1-__ ""

ADO-IS [.-

SPC [

TI T4 11 OR 11

U/S[__ ~-~--~-----~-4----~---...
STO-3 [--1~-l_----1---------I-~r'----_+-----...
ODIN[~~-----__1---~--__I-----__I--~-----

FIGURE 4-11. Slave Access Timing; CPU Reading from MMU

T4 OR 11 11 T4 TI OR 11

PHil [

PHI2 ['+ __ ""

~O-15[__1~-----__1-~r}_----~---~,----__I---------­
SPC [

STO- 3 [__ ~....J,'----__1~------__1---'---__I-------
DDIN[__ ~ ____ --1~ __

FIGURE 4-12. Slave Access Timing; CPU Writing to MMU

T4 11 T4 11

PHil [

PHI2 ['-1-__ ""

FIGURE 4-13. SPC Pulse from the MMU

TLlEE/8692-38

TLlEE/8692-39

TLlEE/8692-40

4.0 Device Specifications (Continued)

A16-24 [--.32 BIT MODE-- -

ADO-15 [. -------

TI

(HIGH)

i S - - - - - '(FlOATING)- - - - - - - - - - - - -.

i S -- - -- '(FlOATING) - - - - - - - - - - - - -.
TLlEE/8692-41

FIGURE 4·14. Hold Timing (FL T = 1); SMR Instruction Not Being Executed

PHil [I

PHI2 [

HLOAI [

HLOAO [

PAY [

m[
Al~24 [_.~ ____ ~~~~ ____ ~

AOO-15 [....: ________ .:.... ______ ...:...J'

(HIGH)

i S----- '(FlOATING)-----~~r---E
i S----- '(FlOATING)- ----~~---C

TL/EE/8692-42

PHil [

PHI2 [

HOLD [

HLOAO [

PAY [

FIGURE 4·15. Hold Timing (FLT = 1); SMR Instruction Being Executed

~1

(FLOATING)

m[~------_+------_+--~--~------___ ~ ~----~~~~~------_+~_
Al~24 [~------_+------_+.J, ------- i S----- -(F~:~G)- -c

_l:::
AOO-15 [~------_+------_+.J, ------- i S----- -(FLOATING)- 'L

ODIN [+ ______ _+------_+.J, ------- i S----- -(FLOATING)- -C
FIGURE 4·16. Hold Timing (FLT = 0)

3·77

TLlEE/8692-43

z
(J)
W
N o co
~
o

o r--, .-
~ 4.0 Device Specifications (Continued)

~
CO)
(I)
Z

PHI1 [

PHI2 [------1"",
TL/EE/B692-49

FIGURE 4-17. Clock Waveforms

PHil [J-LJ--l...1uuVL.J--LfiJ-Lh.
PHI2 [

r. \._~~~-~-__ _+5-~-O-C-K-~K"f .. Ilr-fj,.n .. -Ar/SPC C

A24/HBF [:+--t--""1'! ~-+_--t-§~,lo--...('I +--t§

FIGURE 4-18. Reset Timing

vee
Jr--------ll---

PHI{ __ -+ __

~[------------~r_~
TLlEE/8692-46

FIGURE 4-19. Power-On Reset

3-78

TL/EE/8692-45

XCTAL2 PER

~ eMIT

~ ICTAlt MITI ~} Wiif.i f.- _IT REQUESTS

RESET
N532201 Wiii2 ~ tADDA DECODED OR STRAPPED)

RSTO TCU MIT1
PHil liD
PHI2 WR

ADS

RSlO eTTL ODiN ROY oBE

I

10kD
+5

--

.I. I ROY PHI1 PHI2 '"O HBE HOLD

HOLD ROY RSTI

c.> PHIt

~
CD INTS. I iNT

PHI2

1-< NM.
HLOA HLOAI HLOAD

NS320161 OSlFlT FLT PAY STROBE

N532C016 PFS PFS (21-i
ADDRESS

CPU
UtS UIS N532082 LATCH'

ADS ADS
MMU

lL
BUFFER

DDIN ODIN

510-513 510-513

RST/ABT RST/ABT A2'

ADDRIDATA
AT/SPC SPC

ADDRIOATA

(24). 5~ (2'~ +5
(241 (24) •

ADDRIDATA (16).

I I
(161

MULTIPLEXED
BUS

ADO-AD1S

~
OATA EN O'R

SPC

NS32081 510-5T1
MULTIPLEXED

(1.H cgJ FPU
BUS

RST I==: RST MEMORYI
PERIPERALS

CLK ClK DATA BUFFERS

Note: The "AND" gate on the HBE line is not needed when an NS32016 is used.

FIGURE A-1. System Connection Diagram

II

PERIPH CYCLE

READY

AD
WR

'"O
HBE

HOLD

HLOAO

ADDRESS
BUS

(24)

ffiiiN

DATA BUS

TUEE/6692-47

~
"C
"C
CD
:l
C. ;C.

~
:l -CD

~
Q.
:l

CQ

en
C

CQ
CQ
CD en -O·
:l
en

O~·~80~eSN

'" Co
o

--'­
Cl
-.::..

XCTAl2

XCTAll

PERI_ PERIPH CYCLE

CWlf!.lT READY

WAif4 WAIT REOUESTS

RESET _jRSTI
, PHI1

NS32201
rcu

v.im1i§1 M.1l2 IADOR. DECODED OR STRAPPED)

MIT1
iijj

iiD
ViR

, I IpH17 WRI BEO:
~, ~

RSTO ern ODIN ROY DBE I + S' BE2

Be3

H 1Y 2Y 3Y 4Y ~
S 74ALS257 G

18 28 38 48 1A 2A 3A 4A
111: 1 1 1 10 1

II II I 1111)JI~U ~

ILO'

1 HOLD

ROY PHil PHI2 BED . • • . . • BE3 j[Q .i HlOAO

J --+tiNT
INTS.\-+t NMI

1

NS32032
CPU

AOO-AD23 024-031

(24,,· .• (8)

.,---ADDRfDATA BUS

HOLD ROY
PHil

PHI2

HOLD
ru HLOAD
HLOAI Piij

DS/Flrl' I I I' I
'HCDA

PFS PFS
NS32082

MMU "'_I I I ~I"'--
ADS
ODIN

STO-SI3

RST/ABT

Arlspcl' ,I I .~
10k1l

+5~
(32)

ADS
ODIN

STO-ST3

RSf/m
SPC

A241-t+

ADO-A023 RSll

(24)t_'-

FIGURE A-2. System Connection Diagram

A1

~
I '~ ~srROBE (24) ADORESS'" ••• ~~.

ADO-AD23 LATCHI P
I BUFFER

+--.
ADO-AD1S

•. 2) AUU-AD23"
AND 024-031 DATA BU ~

5T0-513 ,

NS32082-10

TLlEE/8692-48

»
"0
"0
CD
:;,
Q.
;:C.

~ -:;, -CD ... -D)
(')
:;j.

(Q

en c
(Q
(Q
CD
til -O·
:;,
til

g
a
::J c

'" ,e,

~National
~ Semiconductor

PRELIMINARY

NS32381-15/NS32381-20 Floating-Point Unit

General Description
The NS32381 is a second generation, CMOS, floating-point
slave processor that is fully software compatible with its
forerunner, the NS32081 FPU. The NS32381 FPU functions
with any Series 32000 CPU, from the NS32008 to the
NS32532, in a tightly coupled slave configuration. The per­
formance of the NS32381 has been increased over the
NS32081 by architecture improvements, hardware en­
hancements, and higher clock frequencies. Key improve­
ments include the addition of a 32-bit slave protocol, an
early done algorithm to increase CPU/FPU parallelism, an
expanded register set, an automatic power down feature,
expanded math hardware, and additional instructions.

The NS32381 FPU contains eight 64-bit data registers and
a Floating-Point Status Register (FSR). The FPU executes
20 instructions, and operates on both single and double­
precision operands. Three separate processors in the
NS32381 manipulate the mantissa, sign, and exponent. The
NS32381 FPU conforms to IEEE standard 754-1985 for bi­
nary floating-point arithmetic.

When used with a Series 32000 CPU, the CPU and
NS32381 FPU form a tightly coupled computer cluster. This
cluster appears to the user as a single processing unit. All
addressing modes, including two address operations, are

FPU Block Diagram

available with the floating-point instructions. In addition,
CPU and FPU communication is handled automatically, and
is user transparent.

The FPU is fabricated with National's advanced double-met­
al CMOS process. It is available in a 68-pin Pin Grid Array
(PGA) package.

Features
• Directly compatible with NS32008, NS32016,

NS32C016, NS32032, NS32C032, NS32332 and
NS32532 microprocessors

• Selectable 16-bit or 32-bit Slave Protocol
• Conforms to IEEE standard 754-1985 for binary float-

ing-point arithmetic
• Early done algorithm
• Single (32-bit) and double (64-bit) precision operations
• Eight on-chip (64-bit) data registers
• (Automatic) power down mode
• Full upward compatibility with existing 32000 software
• High speed double-metal CMOS design
• 68-pin PGA package

5

Control
Unit

Execution
Unit

Interface
and
Storage Unit

TL/EE/9157 -1

FIGURE 1·1

3-81

z
(J)

~
Co)
Q)
•

U1
Z
(J)
Co)
~
Co)
Q)
~
Q

Q r---~

~ ..-
~
N
C")
(/)
Z
U; ..-

I ..­
CD
C")
N

~
Z

1.0 PRODUCT INTRODUCTION

1.1 IEEE Features Supported

1.2 Operand Formats

1.2.1 Normalized Numbers

1.2.2 Zero

1.2.3 Reserved Operands

1.2.4 Integers

1.2.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 Floating-Point Registers

2.1.2 Floating-Point Status Register (FSR)

2.1.2.1 FSR Mode Control Fields

2.1.2.2 FSR Status Fields

2.1.2.3 FSR Software Fields (SWF)

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Floating-Point Instruction Set

2.3 ExceptionslTRAPS

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Automatic Power Down Mode

3.3 Clocking

3.4 Resetting

3.5 Bus Operation

3.5.1 Bus Cycles

3.5.2 Operand Transfer Sequences

Table of Contents

3-82

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.6 I nstruction Protocols

3.6.1 General Protocol Sequence

3.6.2 Early Done Algorithm

3.6.3 Floating·Point Protocols

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signal Propagation Delays for all
CPUs

4.4.2.2 Output Signal Propagation Delays for the
NS32008, NS32016, NS32032 CPUs

4.4.2.3 Output Signal Propagation Delays for the
32·Bit Slave Protocol NS32332 CPU

4.4.2.4 Output Signal Propagation Delays for the
32-Bit Slave Protocol NS32532 CPU

4.4.2.5 Input Signal Requirements for all CPUs

4.4.2.6 Input Signal Requirements for the
NS32008, NS32016, NS32032 CPUs

4.4.2.7 Input Signal Requirements for the 32-Bit
Slave Protocol NS32332 CPU

4.4.2.8 Input Signal Requirements for the 32-Bit
Slave Protocol NS32532 CPU

4.4.2.9 Clocking Requirements for all CPUs

APPENDIX A: NS32381 PERFORMANCE ANALYSIS

,---, z
List of Illustrations

FPU Block Diagram•... 1-1

Floating-Point Operand Formats ... 1-2

Integer Format. ...•.............. 1-3

Register Set ...•..............•.. 2-1

The Floating-Point Status Register ... 2-2

General Instruction Format .. 2-3

Index Byte Format ... 2-4

Displacement Encodings .. 2-5

Floating-Point Instruction Formats .. 2-6

Recommended Supply Connections ' .. 3-1

Power-On Reset Requirements .. 3-2

General Reset Timing .. 3-3

System Connection Diagram with the NS32532 CPU•... 3-4a

System Connection Diagram with the NS32332 CPU ... 3-4b

System Connection Diagram with the NS32008, NS32016 or NS32032 CPU .. 3-4c

Slave Processor Read Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs) 3-5

Slave Processor Read Cycle (NS32532 CPU)•..............•.. 3-6

Slave Processor Write Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs) 3-7

Slave Processor Write Cycle (NS32532 CPU) .. 3-8

ID and Opcode Format 16-Bit Slave Protocol .. 3-9

ID and Opcode Format 32-Bit Slave Protocol ... 3-10

FPU Status Word Format .. 3-11

16-Bit General Slave Instruction Protocol: FPU Actions .. 3-12

32-Bit General Slave Instruction Protocol: FPU Actions .. 3-13

68-Pin PGA Package .. .4-1

Timing Specification Standard (Signal Valid After Clock Edge)•.. 4-2

Timing Specification Standard (Signal Valid Before Clock Edge) .. 4-3

Clock Timing .. 4-4

Power-On Reset ... 4-5

Non-Power-On Reset ... 4-6

RST Release Timing .. 4-7

Read Cycle from FPU (NS32008, NS32016, NS32032 CPUs)4-8

Write Cycle to FPU (NS32008, NS32016, NS32032 CPUs) ... 4-9

Read Cycle from FPU (NS32332 CPU) .. .4-10

Write Cycle to FPU (NS32332 CPU) ... 4-11

SDN332 Timing (NS32332 CPU)•... 4-12

SDN332 (TRAP) Timing (NS32332 CPU) ... 4-13

Read Cycle from FPU (NS32532 CPU) .. .4-14

Write Cycle from FPU (NS32532 CPU) ... 4-15

SDN532 Timing (NS32532 CPU) .. 4-16

FSSR Timing (NS32532 CPU) .. 4-17

SPC Pulse from FPU4-18

3-83

en
Co)
I\)
Co)
00 •
U1
z en
Co)
I\)
Co)
00
I\)
CI

~ • ..-
CD
C")
C'i

~
Z
II) ..-• ..-
CD
C")
C'i
C")
tI)
z

List of Tables
Sample F Fields ... 1·1

Sample E Fields ... 1·2
Normalized Number Ranges ... 1·3

Series 32000 Family Addressing Modes ... 2·1
16·Bit General Slave Instruction Protocol .. 3·1
32·Bit General Slave Instruction Protocol .. 3·2

Floating·Point Instruction Protocols ... 3·3

3·84

r---, Z

1.0 Product Introduction
The NS32381 Floating-Point Unit (FPU) provides high
speed floating-point operations for the Series 32000 family,
and is fabricated using National high-speed CMOS technol­
ogy. It operates as a slave processor for transparent expan­
sion of the Series 32000 CPU's basic instruction set. The
FPU can also be used with other microprocessors as a pe­
ripheral device by using additional TTL and CMOS interface
logic. The NS32381 is compatible with the IEEE Floating­
Point Formats by means of its hardware and software fea­
tures.

1.1 IEEE FEATURES SUPPORTED

a) Basic floating-point number formats

b) Add, subtract, multiply, divide and compare operations

c) Conversions between different floating-point formats

d) Conversions between floating-point and integer formats

e) Round floating-point number to integer (round to near­
est, round toward negative infinity and round toward
zero, in double or single-precision)

1) Exception signaling and handling (invalid operation, di-
vide by zero, overflow, underflow and inexact)

The remaining IEEE features are supported in software.
These items include:

a) Extended floating-point number formats

b) Positive and negative infinity, Not-a-Number (NaN), De­
normalized numbers

c) Square root and conversions between basic formats,
floating-point numbers and decimal strings

1.2 OPERAND FORMATS

The N32381 FPU operates on two floating-point data
typeS-Single precision (32 bits) and double precision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single precision data type, and the
suffix L (Long Floating) to select the double preCision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-2.

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.2.1), the binary pOint
is assumed to be immediately to the left of the most signifi­
cant bit of the F field, with an implied 1 bit to the left of the
binary point. Thus, the F field represents values in the range
1.0 s:; x s:; 2.0.

TABLE 1-1. Sample F Fields

FFleld Binary Value Decimal Value
000 ... 0 1.000 ... 0 1.000 ... 0
010 ... 0 1.010 ... 0 1.250 ... 0
100 ... 0 1.100 ... 0 1.500 ... 0
110 ... 0 1.110 ... 0 1.750 ... 0

t
Implied Bit

3-85

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true
exponent. The bias value is 011 ... 112, which is either 127
(single precision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

TABLE 1-2. Sample E Fields

EFleld FField Represented Value
011 ... 110 100 ... 0 1.5x2-1 = 0.75
011 ... 111 100 ... 0 1.5x20 = 1.50
100 ... 000 100 ... 0 1.5x21 = 3.00

Two values of the E field are not exponents. 11 ... 11 sig-
nals a reserved operand (Section 1.2.3). 00 ... 00 repre-
sents the number zero if the F field is also all zeroes, other­
wise it signals a reserved operand.

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.2.1 Normalized Numbers

Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither all zeroes nor all ones.

The value of a Normalized number can be derived by the
formula:

(-1)5 X 2(E-Bias) X (1 + F)

The range of Normalized numbers is given in Table 1-3.

1.2.2 Zero

There are two representations for zero-positive and nega­
tive. Positive zero has all-zero F and E fields, and the S bit is
zero. Negative zero also has all-zero F and E fields, but its S
bit is one.

1.2.3 Reserved Operands

The proposed IEEE Standard for Binary Floating-Point Arith­
metic (Task P754) provides for certain exceptional forms of
floating-point operands. The NS32381 FPU treats these
forms as reserved operands. The reserved operands are:
• Positive and negative infinity
• Not-a-Number (NaN) values
• Denormalized numbers
80th Infinity and NaN values have all ones in their E fields.
Denormalized numbers have all zeroes in their E fields and
non-zero values in their F fields.

The NS32381 FPU causes an Invalid Operation trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU
does not generate reserved operands as results.

(I)
(0)

~ co
•
en
Z
(I)
(0)
N
(0)
co
~
Q

•

C) r--,
~ .,...
co
CO)
N
CO)
U)
Z
;;, .,...
• .,...
~
N
CO)

~

1.0 Product Introduction (Continued)

3130
Single Precision

2322 o

Is I E I F
8 23

Double Precision
6362 5251 o

lsi E I F

11 52

FIGURE 1·2. Floating·Polnt Operand Formats

TABLE 1·3. Normalized Number Ranges

Most Positive

Least Positive

Least Negative

Most Negative

Single Precision
2127 x (2 - 2-23)
= 3.40282346 x 1038

2- 126

= 1.17549436 X 10-38

-(2- 126)
= -1.17549436 x 10-38

-2127 X (2 - 2-23)
= - 3.40282346 x 1038

Double Precision
21023 X (2 - 2-52)
= 1.7976931348623157 X 10308

2- 1022

= 2.2250738585072014 X 10-308

-(2- 1022)
= -2.2250738585072014 X 10-308

-21023 X (2 - 2-52)
= -1.7976931348623157 X 10308

Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms.

1.2.4 Integers
In addition to performing floating-point arithmetic, the
NS32381 FPU performs conversions between integer and
floating-point data types. Integers are accepted or generat­
ed by the FPU as two's complement values of byte (8 bits),
word (16 bits) or double word (32 bits) length.

See Figure 1-3 for the Integer Format and Table 1-4 for the
Integer Fields.

S

0

1

n-l n·2 o
I S I

FIGURE 1·3. Integer Format

TABLE 1·4. Integer Fields

Value Name

I Positive Integer

1- 2n Negative Integer

Note: n represents n number of bits in the word. 8 for byte. 18 for word and
32 for double-word.

3-86

1.2.5 Memory Representations

The NS32381 FPU does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of
two-address instructions with its Series 32000 Family CPU.
The CPU determines the representation of operands in
memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte
address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes nine registers that
are implemented on the NS32381 Floating-Point Unit (FPU).

.--,z
2.0 Architectural Description (Continued)

DEDICATED
I+- 32--.j
I FSR I

LSDW ---. least significant double word
MSDW ---. most significant double word

DATA
I---- "64'---+1

1--32 ·32-
Fl MSDW LSDW LO / FD
F3 L2 MSDW L2 LSDW L2 / F2
F5 L4 MSDW L4 LSDW L4 / F 4
F7 ~~~~~s---l L6 / F6

Ll
r.;~~t-7;,f_~SIN;-I L3

1-7:;"';;;;=H~=-I L5
L..."'--""=--L-"'--'=!!......l L7

TL/EE/9157-36

FIGURE 2-1. Register Set

2.1.1 Floating-Point Registers

There are eight registers (lO-l7) on the NS32381 FPU for
providing high-speed access to floating-point operands.
Each is 64 bits long. A floating-point register is referenced
whenever a floating-point instruction uses the Register ad­
dressing mode (Section 2.2.2) for a floating-point operand.
All other Register mode usages (i.e., integer operands) refer
to the General Purpose Registers (RO-R7) of the CPU, and
the FPU transfers the operand as if it were in memory.
Nole: These registers are all upward compatible with the 32-bit NS32081

registers, (FO-F7I. such that when the Register addressing mode is
specified for a double precision (84-bitl operand, a pair of 32-bit reg­
isters holds the operand. The programmer specifies the even register
of the pair which contains the least significant half of the operand and
the next consecutive register contains the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register (FSR) selects operating
modes and records any exceptional conditions encountered
during execution of a floating-point operation. Figure 2-2
shows the format of the FSR.

9876543210

TL/EE/9157-37

FIGURE 2-2. The Floating-Point Status Register

2.1.2.1 FSR Mode Control Fields

The FSR mode control fields select FPU operation modes.
The meanings of the FSR mode control bits are given be­
low.

Rounding Mode (RM): Bits 7 and 8. This field selects the
rounding method. Floating-point results are rounded when­
ever they cannot be exactly represented. The rounding
modes are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value
(lSB = 0) is returned.

01 Round toward zero. The nearest value which is closer
to zero or equal to the exact result is returned.

10 Round toward positive infinity. The nearest value which
is greater than or equal to the exact result is returned.

11 Round toward negative infinity. The nearest value
which is less than or equal to the exact result is re­
turned.

3-87

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the
FPU requests a trap whenever a result is too small in abso­
lute value to be represented as a normalized number. If it is
not set, any underflow condition returns a result of exactly
zero.
Inexact Result Trap Enable (lEN): Bit 5. If this bit is set,
the FPU requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of the
destination. If it is not set, the result is rounded according to
the selected rounding mode.

2.1.2.2 FSR Status Fields
The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ings of the FSR status bits are given below:

Trap Type (TT): bits 0-2. This 3-bit field records any excep­
tional condition detected by a floating-point instruction. The
n field is loaded with zero whenever any floating-point in­
struction except lFSR or SFSR completes without encoun­
tering an exceptional condition. It is also set to zero by a
hardware reset or by writing zero into it with the load FSR
(lFSR) instruction. Underflow and Inexact Result are always
reported in the n field, regardless of the settings of the
UEN and lEN bits.

000 No exceptional condition occurred.
001 Underflow. A non-zero floating-point result is too small

in magnitude to be represented as a normalized float­
ing-point number in the format of the destination oper­
and. This condition is always reported in the TT field
and UF bit, but causes a trap only if the UEN bit is set.
If the UEN bit is not set, a result of Positive Zero is
produced, and no trap occurs.

010 Overflow. A result (either floating-point or integer) of a
floating-point instruction is too great in magnitude to
be held in the format of the destination operand. Note
that rounding, as well as calculations, can cause this
condition.

011 Divide by zero. An attempt has been made to divide a
non-zero floating-point number by zero. Dividing zero
by zero is considered an Invalid Operation instead
(below).

100 Illegal Instruction. Any instruction forms not included
in the NS32381 Instruction Set are detected by the
FPU as being illegal.

(I)
(,)
N
(,)
co
•
UI
"­
Z
~
N
(,)
co
N
Q

•

C) r---,
~ .,...
eo
C")
N
C")

UJ
Z
II) .,...
• .,...

eo
C")
N
C")

UJ
Z

2.0 Architectural Description (Continued)

101 Invalid Operation. One of the floating-point operands
of a floating-point instruction is a Reserved operand,
or an attempt has been made to divide zero by zero
using the DIVf instruction .

110 Inexact Result. The result (either floating-point or inte­
ger) of a floating-point instruction cannot be repre­
sented exactly in the format of the destination oper­
and, and a rounding step must alter it to fit. This condi­
tion is always reported in the TT field and IF bit unless
any other exceptional condition has occurred in the
same instruction. In this case, the TT field always con­
tains the code for the other exception and the IF bit is
not altered. A trap is caused by this condition only if
the lEN bit is set; otherwise the result is rounded and
delivered, and no trap occurs.

111 (Reserved for future use.)

Underflow Flag (UF): Bit 4. This bit is set by the FPU when­
ever a result is too small in absolute value to be represented
as a normalized number. Its function is not affected by the
state of the UEN bit. The UF bit is cleared only by writing a
zero into it with the Load FSR instruction or by a hardware
reset.

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU
whenever the result of an operation must be rounded to fit
within the destination format. The IF bit is set only if no other
error has occurred. It is cleared only by writing a zero into it
with the Load FSR instruction or by a hardware reset.

Register Modify Bit (RMB): Bit 16. This bit is set by the
FPU whenever writing to a floating point data register. The
RMB bit is cleared only by writing a zero with the LFSR
instruction or by a hardware reset. This bit can be used in
context switching to determine whether the FPU registers
should be saved.

2.1.2.3 FSR Software Field (SWF)

Bits 9·15 of the FSR hold and display any information writ·
ten to them (using the LFSR and SFSR instructions), but are

not otherwise used by FPU hardware. They are reserved for
use with NSC floating-point extension software.

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2·3 shows the general format of an Series 32000
instruction. The Basic Instruction is one to three bytes long
and contains the opcode and up to two 5·bit General Ad­
dressing Mode (Gen) fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se·
lected.

The only form of extension issued to the NS32381 FPU is
an Immediate operand. Other extensions are used only by
the CPU to reference memory operands needed by the
FPU.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index·
ing. See Figure 2-4.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-5, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi·
cant byte first.

Some non·FPU instructions require additional, "implied" im­
mediates and/or displacements, apart from those associat·
ed with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear with­
in the list of operands in the instruction definition.

OPTIONAL BASIC
EXTENSIONS INSTRUCTION

rr-------------------~~--------------------\lr---------~~---------\

DISP21DISP1
,

DISP2 DISP1 , ,
GEN I GEN IMPUED INDEX INDEX ADDR : ADDR OPCODE IMMEDIATE DISP DISP BYTE BYTE MODE

,
MODE OPERAND(S) I

A
,

B ,
IMM IMM I

t f
~ ~

\

TLlEE/9157-2

FIGURE 2-3. General Instruction Format

3-88

2.0 Architectural Description (Continued)

2.2.2 Addressing Modes

The Series 32000 Family CPUs generally access an oper­
and by calculating its Effective Address based on informa­
tion available when the operand is to be accessed. The
method to be used in performing this calculation is specified
by the programmer as an "addressing mode."

Addressing modes in the Series 32000 family are designed
to optimally support high-level language accesses to vari­
ables. In nearly all cases, a variable access requires only
one addressing mode within the instruction which acts upon
that variable. Extraneous data movement is therefore mini­
mized.

Series 32000 Addressing Modes fall into nine basic types:

Register: In floating-point instructions, these addressing
modes refer to a Floating-Point Register (FO-F7) or (LO­
L7) if the operand is of a floating-point type. Otherwise. a
CPU General Purpose Register (RO-R7) is referenced. See
Section 2.1.1-

Register Relative: A CPU General Purpose Register con­
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of the
operand in memory.

GEN. ADDR. MODE

TL/EE/9157-3

FIGURE 2-4. Index Byte Format

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated CPU
registers PC, SP, S8 or FP. These registers point to data
areas generally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pointed to by the CPU SP, S8 or FP register.
A displacement is added to that pointer to generate the Ef­
fective Address of the operand.

Immediate: The operand is encoded within the instruction.
This addreSSing mode is not allowed if the operand is to be
written. Floating-point operands as well as integer operands
may be specified using Immediate mode.

3-89

Absolute: The address of the operand is specified by a
Displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected CPU Stack Pointer
(SPO or SP1) specifies the location of the operand. The op­
erand is pushed or popped, depending on whether it is writ­
ten or read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

The following table, Table 2-1, is a brief summary of the
addreSSing modes. For a complete description of their ac­
tions, see the Series 32000 Instruction Set Reference Man­
ual.

SIGNED DISPLACEMENT

7 0

1 11 I

<;\u't\tll
1l\<;~IJ.Ct"'t't\i

TL/EE/9157 -4

FIGURE 2-5. Displacement Encodings

z en
Col
N
Col
(1)
U1 z en
Col
N
Col
(1)
• N o

•

C) r---,
~
co

~ en z
U, •
~
C'II
C')

en
z

2.0 Architectural Description (Continued)

TABLE 2·1. Series 32000 Family Addressing Modes
Encoding

REGISTER

Mode Assembler Syntax

00000 Register 0
00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register 5
00110 Register 6
00111 Register 7

REGISTER RELATIVE

01000 Register 0 relative
01001 Register 1 relative
01010 Register 2 relative
01011 Register 3 relative
01100 Register 4 relative
01101 Register 5 relative
01110 Register 6 relative
01111 Register 7 relative

MEMORY SPACE

11000 Frame memory
11001 Stack memory
11010 Static memory
11011 Program memory

MEMORY RELATIVE

10000
10001
10010

IMMEDIATE

10100

ABSOLUTE

10101

EXTERNAL

10110

TOP OF STACK

10111

SCALED INDEX

11100
11101
11110
11111

10011

Frame memory relative
Stack memory relative
Static memory relative

Immediate

Absolute

External

Top of Stack

Index, bytes
Index, words
Index, double words
Index, quad words

(Reserved for Future Use)

RO, FO or LO
R1, F1 or L1
R2, F20r L2
R3, F30r L3
R4, F4 or L4
R5, F50r L5
R6, F60r L6
R7, F7 or L7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp(FP)
disp(SP)
disp(SB)
"+disp

disp2(disp1 (FP))
disp2(disp1 (SP))
disp2(disp1 (SB))

value

@disp

EXT (disp1)+ disp2

TOS

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

3·90

Effective Address

None: Operand is in the specified register.

Disp + Register.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "SP" is
either SPO or SP1, as selected in PSR.

None: Operand is issued from
CPU instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp 1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Mode + Rn.
Mode + 2 x Rn.
Mode + 4 X Rn.
Mode + 8 x Rn.
"Mode" and "n" are contained
within the Index Byte.

2.0 Architectural Description (Continued)

2.2.3 Floating-Point Instruction Set

The NS32381 FPU instructions occupy formats 9, 11 and 12
of the Series 32000 Family instruction set (Figure 2-6). A
list of all Series 32000 family instruction formats is found in
the applicable CPU data sheet.

Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each
instruction to its binary format in Figure 2-6.

23

23

i I
g8n1

l ~'n:

Format 9

I I I
gen2

I i III iii I Ii' i I
up • . i 0 0 1 1 1 1 1 0 .. ,

OPERATION WORO 10 BYTE

TL/EE/9157-5

Format 11

I ~en2 I I I ~p I I I I I I I
\ 0 \1 1 0 1 1 1 1 1 0 I

OPERATION WORD

Format 12

n ,

10 BYTE

TL/EE/9157-6

TUEE/9157 -7

FIGURE 2-6. Floating-Point Instruction Formats

The Format column indicates which of the three formats in
Figure 2-6 represents each instruction.

The Op column indicates the binary pattern for the field
called "op" in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case, with one or more suffix­
es (i or f) indicating data types, followed by a list of oper­
ands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice of
integer data types. This choice affects the binary pattern in
the i field of the corresponding instruction format (Figure 2-6)
as follows:

Suffix i
B
W
D

Data Type
Byte
Word
Double Word

iField
00
01
11

An f suffix on an instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format (Figure 2-6)
as follows:

Suffix f
F
L

Data Type
Single Precision
Double Precision (Long)

f Bit
1
o

An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bin-

3-91

ary pattern in the corresponding gen1 or gen2 field of the
instruction format (Figure 2-6). Refer to Table 2-1 for the
options available and their patterns.

Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

Movement and Conversion

The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Format Op Instruction
gen1,gen2 11 0001 MOVf

9 010 MOVLF gen1, gen2

9 011 MOVFL gen1, gen2

9 000 MOVif gen1,gen2

9 100 ROUNDfi gen1, gen2

9 101 TRUNCfi gen1, gen2

9 111 FLOORfi gen1, gen2

Description
Move without
conversion

Move, converting
from double
precision to
single precision.

Move, converting
from single
precision to
double
precision.

Move, converting
from any integer
type to any
floating-point
type.

Move, converting
from floating-
point to the
nearest integer.

Move, converting
from floating-
point to the
nearest integer
closer to zero.

Move, converting
from floating­
point to the
largest integer
less than or
equal to its
value.

Note: The MOVLF instruction f bit must be 1 and the i field must be 10.

The MOVFL instruction f bit must be 0 and the i field must be 11.

Arithmetic Operations

The following instructions perform floating-point arithmetic
operations on the gen1 and gen2 operands, leaving the re­
sult in the gen2 operand.

Format Op Instruction Description
11 0000 ADDf gen1,gen2 Add gen1 to gen2.

11 0100 SUBf gen1,gen2 Subtract gen 1
from gen2.

11 1100 MULf gen1,gen2 Multiply gen2 by
gen1.

z en
Co)
I\)
Co)
co
U1
z en
Co)
I\)
Co)
co • I\)
o

Q

~
co
Cf)
N
Cf)
U)
Z
U;
•

co
Cf)
N
Cf)
en
z

2.0 Architectural Description (Continued)

Format Op Instruction Description
11 1000 DIVf gen1, gen2 Divide gen2 by gen1.

11 0101 NEGf gen1, gen2 Move negative of
gen1 to gen2.

11 1101 ASSf gen1, gen2 Move absolute value
of gen1 to gen2 .

(N) 12 0100 SCALSf gen1, gen2 Move gen2'2gen1 to
gen2, for integral
values of gen1
without computing
2gen1 •

(N) 12 0101 LOGSf gen1,gen2 Move the unbiased
exponent of gen1 to
gen2.

(N) 12 0011 DOTI gen1, gen2 Move (gen1'gen2)
+ LOto LO.

(N) 12 0010 POL Yf gen1, gen2 Move (LO'gen1) +
gen2 to LO.

(N): Indicates NEW instruction.

Comparison

The Compare instruction compares two floating-point val­
ues, sending the result to the CPU PSR Z and N bits for use
as condition codes. See Figure 3-11. The Z bit is set if the
gen1 and gen2 operands are equal; it is cleared otherwise.
The N bit is set if the gen1 operand is greater than the gen2
operand; it is cleared otherwise. The CPU PSR L bit is un­
conditionally cleared. Positive and negative zero are consid­
ered equal.

Format
11

Op
0010

Instruction
CMPf gen1, gen2

Description
Compare gen1
to gen2.

Floating·Point Status Register Access

The following instructions load and store the FSR as a 32·
bit integer.

Format
9
9

Op
001
110

Instruction
LFSR gen1
SFSR gen2

Description
Load FSR
StoreFSR

Note: All instructions support all of the NS32000 family data formats (for
extemal operands) and all addressing modes are supported.

NS32381

K5 •

Kll GND

Rounding

The FPU supports all IEEE rounding options: Round toward
nearest value or even significant if a tie. Round toward zero,
Round toward positive infinity and Round toward negative
infinity.

2.3 EXCEPTIONS/TRAPS

The FPU supports five types of traps: Invalid operation, Divi·
sion by zero, Overflow, Underflow and Inexact (one trap can
be signaled at a time). The user can disable the Inexact and
the Underflow traps. If an undefined Floating·Point instruc·
tion is passed to the FPU an Illegal Instruction trap will oc·
cur. The user can't disable trap on Illegal Instruction.

Upon detecting an exceptional condition in executing a
floating·point instruction, the FPU requests a TRAP by puis·
ing the SPC line for one clock cycle, pulsing the SDN332
line for two and a half clock cycles and pulsing the FSSR
line for one clock cycle. (The user will connect the correct
lines according to the CPU being used).

In addition, the FPU sets the Q bit in the status word regis·
ter. The CPU responds by reading the status word register
while applying status h'E (transferring status word) on the
status lines. A trapped instruction returns no result (also if
the destination is FPU register) and does not affect the CPU
PSR. The FPU displays the reason for the TRAP in the
TRAP TYPE (TT) field of the FSR. If the CPU sends FPU ID
with illegal opcode, the FPU generates TRAP(UND) by sig·
naling TRAP and setting the T bit in the status word register.

3.0 Functional Description
3.1 POWER AND GROUNDING

The NS323B1 requires a single 5V power supply, applied on
seven (VeC> pins. These pins should be connected together
by a power {VeC> plane on the printed circuit board. See
Figure 3-1.

The grounding connections are made on eight (GND) pins.
These pins should be connected together by a ground
(GND) plane on the printed circuit board. See Figure 3-1.

+5V

TLIEEI9157 -8

FIGURE 3·1. Recommended Supply Connections

3-92

3.0 Functional Description (Continued)

V 4.5VII"'"---------------I~S-----
CC...J

ClK

-~----------------~ ~ l-:? 64C~~~~~ r
R5T __ +-_____________ ~"

1-------~30 1'5--------- •
TLlEE/9157-9

FIGURE 3-2. Power-On Reset Requirements

3.2 AUTOMATIC POWER DOWN MODE

The NS32381 supports a power down mode in which the
device consumes only 10% of its original power at 30 MHz.
The NS32381 enters the power down mode (internal clocks
are stopped with phase two high) if it does not receive an
SPC pulse from the CPU within 256 clocks.

The FPU exits the power down mode and returns to normal
operation after it receives an SPC from the CPU. There is no
extra delay caused by the FPU being in the power down
mode.

3.3 CLOCKING

The NS32381 FPU requires a single-phase TIL clock input
on its CLK pin (pin A8). When the FPU is connected to a
Series 32000 CPU, the CLK signal is provided from the
CTIL pin of the NS32201 Timing Control Unit.

3.4 RESETTING

The RST pin serves as a reset for on-chip logic. The FPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPU ter­
minates instruction processing, resets its internal logic, and
clears the FSR to all zeroes.

On application of power, RST must be held low for at least
30 /Ls after Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figures
3-2 and 3-3.

ClK lLfLfLSLJl
_

,,64ClDCK--I
____ .. _............... CYCLES I

iiSf I
/I

Tl/EE/9157-10

FIGURE 3-3. General Reset Timing

3.5 BUS OPERATION

Instructions and operands are passed to the NS32381 FPU
with slave processor bus cycles. Each bus cycle transfers

3-93

either one byte (8 bits), one word (16 bits) or one double
word (32 bits) to or from the FPU. During all bus cycles, the
SPC line is driven by the CPU as an aciive low data strobe,
and the FPU monitors pins STO-ST3 to keep track of the
sequence (protocol) established for the instruction being ex­
ecuted. This is necessary in a virtual memory environment,
allowing the FPU to retry an aborted instruction.

3.5.1 Bus Cycles

A bus cycle is initiated by the CPU, which asserts the proper
status on (STO-ST3) and pulses SPC low. The status lines
are sampled by the FPU on the leading (falling) edge of the
SPC pulse except for the 32532 CPU. When used with the
32532 CPU, the status lines are sampled on the rising edge
of CLK in the T2 state. If the transfer is from the FPU (a
slave processor read cycle), the FPU asserts data on the
data bus for the duration of the SPC pulse. If the transfer is
to the FPU (a slave processor write cycle), the FPU latches
data from the data bus on the trailing (rising) edge of the
SPC pulse. Figures 3-5, 3-6, 3-7 and 3-8 illustrate these
sequences.

The direction of the transfer and the role of the bidirectional
SPC line are determined by the instruction protocol being
performed. SPC is always driven by the CPU during slave
processor bus cycles. Protocol sequences for each instruc­
tion are given in Section 3.6.

3.5.2 Operand Transfer Sequences

An operand is transferred in one or more bus cycles. For the
16-8it Slave Protocol a 1-byte operand is transferred on the
least significant byte of the data bus (00-07). A 2-byte op­
erand is transferred on the entire bus. A 4-byte or 8-byte
operand is transferred in consecutive bus cycles, least sig­
nificant word first.

For the 32-8it Slave Protocol a 4-byte operand is trans­
ferred on the entire data bus in a single bus cycle and an
8-byte operand is transferred in two consecutive bus cycles
with the most significant byte transferred on data bits (00-
07). The complete operand transfer of bytes 80-87 where
80 is the least significant byte would appear on the data bus
as 84, 85, 86, 87 followed by 80, 81, 82, 83 in the second
bus cycle.

z en w
N
W co •
U'I
z en w
N
W co
• N
o

~ ..­
co
C')

~ z
LI) ..-• ..-
co
C')
N
C')
tJ)
Z

3.0 Functional Description (Continued)

+5V -
10k

SPC

ODIN ..
00-D31

(NS32532) 510

CPU STI

ST2

ST4

SDN

FSSR

BClK

1
R51

10k

32-BIT -II.
DATA BUS

I

+5V

lk lk lk

NOE PSO PSI

SPC

ODIN

DO-031

STO (NS32381)

STI FPU

ST2

ST3

SDN532
RESERVED M!L

FSSR !!..-RESERVED
ClK ..!!.!-RESERVED
R51 = -

TL/EE/9157 -38

FIGURE 3-4a. System Connection Diagram with the NS32532 CPU

+5V +5V +5V
)

10k Ik Ik

NOE PSO PSI

SPC SPC

DDIN DDIN .. 32-BIT I\.
ADO-AD31 DATA BUS 00-031

~ ~

(NS32332) STO 510 (NS32381)

CPU STI STI FPU

512 512

ST3 513

RESERVED ~
iiT/SDONE SDN332 !!..-RESERVED

R51/ABT R51

I RESERVED ..!!.!-

I
ClK

'17
R510 cm

SYSTEM .. R51I
RESET

NS32201

TCU

TL/EE/9157 -39

FIGURE 3-4b. System Connection Diagram with the NS32332 CPU

3-94

3.0 Functional Description (Continued)

+5V
c . 10k

Ar/SPC

DDIN
A 16-BIT

ADO-ADI5 DATA BUS
'I

(NS32032) STO

(NS32016) STI

(NS32008)

CPU

RST/ABi'

1 I
RSTO em

SYSTEM RSTI
RESET

NS32201

TCU

J ~ ~ l NOE PSO PSI -
SPC

DDIN

" DO-DIS
I'

STO (NS32381)

STI FPU

--. ST2

r--+ ST3

-:.= RESERVED .ill...... -
RESERVED ~

RESERVED 11-
CLK

-==--

FIGURE 3-4c. System Connection Diagram with the NS32008, NS32016 or NS32032 CPU

STO,STI ~",, ____ VA.,.LIO ___ -,~

&Pi: -----------~-" ~

TLlEE/9157-40

DO-D15 ---------- ~,, ___ VA_Ll_O_FR_O_M_FP_U __ .I}---
TL/EE/9157 -12

Note 1: FPU samples CPU status here.

FIGURE 3-5. Slave Processor Read Cycle (NS32008, NS32016, NS32032 and NS32332 CPUs)

3-95

z
(J)
Co)
N
Co)
co

I
U1
Z
(J)
Co)
N
Co)
co
I

N o

•

C) r---~

~
co

~ o
z
II) •
CO
CO)
C'II
CO)
(J)
Z

3.0 Functional Description (Continued)

r- TI --+--

ClK

+ (NOTEI)

STO-5T4 ZZZZOVZX'--__ ---Jxzzzmz
ODIN I/Z7l//llA m7ll11

\'--___J1

Do-rel----------------------------«~ ________________________ J)~--------------
Nole 1: FPU samples CPU status here.

FIGURE 3-6. Slave Processor Read Cycle (NS32532 CPU)

STO, STI VALID

__________________ 1 (NOTE 1)

(NOTE 2)

DO-015 ----- VALID FROM CPU

TL/EE/9157-13

TLlEE/9157 -14

Nole 1: FPU samples CPU status here.

Nole 2: FPU samples data bus here.

FIGURE 3-7. Slave Processor Write Cycle (NS3200S, NS32016, NS32032 and NS32332 CPU)

ClK

+ (NOTE I)

5TO-5T3 71171//17X~~X!,....,..Z"T""'T71....,....,7/,.......,...Z.,......,..I/"T""'TI/.....,........,7

ODIN ZII0ZOIY VZ71Z1///

\'----x-i (NOTE 2)

DO-D31----------«\" _____ ,,J)>-------
Nole 1: FPU samples CPU status here.

Nole 2: FPU samples data bus here.

FIGURE 3-S. Slave Processor Write Cycle (NS32532 CPU)

3-96

TL/EE/9157 -15

3.0 Functional Description (Continued)

3.6 INSTRUCTION PROTOCOLS 2) It specilies which Slave Processor will execute it.

3.6.1 General Protocol Sequences

The NS32381 supports both the 16·bi\ and 32-bit General
Slave protocol sequences. See Tables 3-1,3-2 and Figures
3-12, 3-13 respectively.

3) It determines the lormat 01 the following Operation Word
01 the instruction.

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an ID byte followed by an Oper­
ation Word. See Figure 3-9 for the ID and Opcode lormat
16-bit Slave Protocol and Figure 3-10 lor the ID and Opcode
Format 32-bit Slave Protocol. The ID Byte has three lunc­
tions:

1) It identilies the instruction to the CPU as being a Slave
Processor instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Table 3-3. Then depending on
the state 01 the Protocol Select Signals PSO and PS1, either
the 16·bit or a 32·bi\ Slave protocol is used. The NS32008,
NS32016, NS32C016, NS32032 and the NS32C032 all
communicate with the NS32381 using the 16-bit Slave Pro­
tocol. The NS32332 and NS32532 CPUs communicate with
the NS32381 using a 32-bit Slave Protocol; a different ver­
sion is provided lor each CPU.

Mnemonic

ADDI
SUSI
MUll
DIVf
MOVI
ASSI
NEGf
CMPI
FLOORli
TRUNCfi
ROUNDli
MOVFL
MOVLF
MOVif
LFSR
SFSR
SCALSI
LOGSI
DOTI
POLY!

D ~ Double Word

Step

1
2
3
4
5
6
7

Step

1
2
3
4
5

6

Operand 1
Class

read.1
read.f
read.f
read.1
read.f
read.f
read.1
read.f
read.f
read.1
read.!
read.F
read.L
read.i
read.D
N/A

read.1
read.!
read.!
read.f

TABLE 3-1. 16-Bit General Slave Instruction Protocol

Status

ID (1111)
OP(1101)
OP(1101)

ST(1110)
OP(1101)

Action

CPU sends ID Syte
CPU sends Operation Word
CPU sends required operands (il any)
Slaves starts execution (CPU preletches)
Slave pulses SPC low
CPU Reads Status Word
CPU Reads Result (il destination is
memory and il no TRAP occurred)

TABLE 3-2. 32-Bit General Slave Instruction Protocol

Status

ID (1111)
OP (1101)

ST(1110)

OP(1101)

Action

CPU sends ID and Operation Word
CPU sends required operands (il any)
Slaves starts execution (CPU prefetches)
Slave signals DONE or TRAP or CMPI
CPU Reads Status Word (II TRAP was signaled
or a CMPf instruction was executed)
CPU Reads Result (if destination is memory and
if no TRAP occurred)

TABLE 3-3. Floating-Point Instruction Protocols

Operand 2 Operand 1 Operand 2
Returned Value

Class Issued Issued

rmw.f I I ftoOp.2
rmw.f f I ItoOp.2
rmw.f I I ItoOp.2
rmw.f I I ItoOp.2
write.f I N/A ItoOp.2
write.f I N/A ItoOp.2
write.f I N/A ItoOp.2
read.1 I I N/A
write.i I N/A itoOp.2
write.i I N/A itoOp.2
write.i I N/A itoOp.2
write.L F N/A LtoOp.2
write.F L N/A Fto Op. 2
write.f i N/A Ito Op. 2
N/A D N/A N/A

write.D N/A N/A DtoOp.2
rmw.f f I ftoOp.2
write.! f N/A !toOp.2
read.f f ! !toFO
read.! ! I !toFO

i = Integer size (B, W. D) specified in mnemonic.

f ~ Floating·Point type (F. L) specified in mnemonic.

NI A ~ Not Applicable to this instruction.

3-97

PSRBits
Affected

none
none
none
none
none
none
none
N,Z,L
none
none
none
none
none
none
none
none
none
none
none
none

z
en
Co)
N
Co)
Q)
•
(II z en
Co)
N
Co)
Q) • N
CI

~ •
co
C")
C'\I
C")

en z
II) •
co

~ o z

3.0 Functional Description (Continued)

31

7 o

ID Byte

15 7 0

I OPCODE low I OPCODE high I

Byte 1 Byte 0
Operation Word

FIGURE 3-9. 10 and OPCODE Format
16-Bit Slave Protocol

23 15 7 0

I ID I OPCODE low IOPCODE highl XXXXXXX1

Byte 3 Byte 2 Byte 1 Byte 0
FIGURE 3-10. 10 and OPCODE Format

32-Blt Slave Protocol

For the 16-bit Slave Protocol the CPU applies Status Code
1111 (Broadcast ID. Tables 3-1, 3-2), and sends the ID Byte
on the least significant half of the Data Bus (DO-D7). The
CPU next sends the Operation Word while applying Status
Code 1101 (Transfer Slave Operand, Tables 3-1, 3-2). The
Operation Word is swapped on the Data Bus; that is, bits 0-
7 appear on pins D8-D15, and bits 8-15 appear on pins
DO-D7.

For the 32-bit Slave Protocol the CPU applies Status Code
1111 and sends the ID Byte (different ID for each format) in
byte 3 (D24-D31) and the Operation Word in bytes 1 and 2
in a Single double word transfer. The Operation Word is
swapped such that OPCODE low appears on byte 2 (D16-
D23) and OPCODE high appears on byte 1 (D8-D15). Byte
o (DO-D7) is not used.

All Slave Processors input and decode the data from these
transfers. The Slave Processor selected by the I D Byte is
activated and from this point the CPU is communicating only
with it. If any other slave protocol is in progress (e.g., an
aborted Slave instruction), this transfer cancels it. At this
point also, both the CPU and FPU are aware of the number
of operands to be transferred and their sizes.

Using the Addressing Mode fields within the Operation
Word, the CPU starts fetching operands and issuing them to
the FPU. To do so, it references any Addressing Mode ex­
tensions appended to the FPU instruction. Since the CPU is
solely responsible for memory accesses, these extensions
are not sent to the Slave Processor. The Status Code ap­
plied is 1101 (Transfer Slave Processor Operand, Tables
3-1,3-2).

After the CPU has issued the last operand, the FPU starts
the actual execution of the instruction. A one clock cycle
SPC pulse is used to indicate the completion of the instruc-

3-98

tion and for the CPU to continue with the 16-Bit Slave Proto­
col by reading the FPU's status word.

For the 32-bit Slave Protocol, upon completion of the in­
struction, the FPU will signal the CPU by pulsing either
SDNXXX or FSSR (Force Slave Status Read) .

A half clock cycle SDN332 pulse with a NS32332 CPU indi­
cates a valid completion of the instruction and that there is
no need for the CPU to read its Status Word.

A two and a half clock cycle SDN332 pulse indicates that
there is a need for the CPU to read its Status Word. In the
case of the NS32532 CPU, a one clock cycle SDN532 pulse
indicates a valid completion of the instruction and that there
is no need to read the Status Word.

A one clock cycle FSSR pulse is used to indicate the need
for the CPU to read the Status Word.

In all cases and for both the 16-Bit and 32-Bit Slave Proto­
cols the CPU will use SPC to read the Status Word from the
FPU, while applying status code (1110). This word has the
format shown in Figure 3-11. If the Q bit ("Quit", Bit 0) is set,
this indicates that an error (TRAP) has been detected by the
FPU. The CPU will not continue the protocol, but will imme­
diately trap through the Slave vector in the Interrupt Table. If
the instruction being performed is CMPf (Section 2.2.3) and
the Q bit is not set, the CPU loads Processor Status Regis­
ter (PSR) bits N, Z and L from the corresponding bits in the
FPU Status Word. The FPU always sets the L bit to zero.

The last step in the Slave Protocol if no errors have oc­
curred and the result's destination is memory will be for the
CPU to read the result. Here again the CPU uses SPC to
read the result from the FPU and transfer it to its destina­
tion. These Read cycles from the FPU are performed by the
CPU while applying Status Code 1101 (Transfer Slave Oper­
and).

Bit Description

(0) Q: Set to "1" if an FPU TRAP (error) occurred.

Cleared to '0" by a valid CMPf.

(2) L: Cleared to "0" by the FPU.

(6) Z: Set to "1" if the second operand is equal to
the first operand. Otherwise it is cleared to

(7) N: Set to "1" if the second operand is less than
the first operand. Otherwise it is cleared to
"0".

(15) T: Setto "1" iftheTRAP is (UND) and cleared to
"0" if the TRAP is (FPU).

FIGURE 3-11. FPU Status Word Format

3.0 Functional Description (Continued)

GO

READ OPERAND
(BUS STATUS = I 101)

FIGURE 3-12. 16-Blt General Slave Instruction Protocol: FPU Actions

y

Pulse Active
-- 1 SDN332 for:1 clock

or
SiiN532 for I clock (DONE)

READ OPERAND
(BUS STATUS=IIOI)

FIGURE 3-13. 32-Bit General Slave Instruction Protocol: FPU Actions

3-99

TL/EE/9157-16

TL/EE/9157-17

z en
Co)
N
Co)
QI)
CJ1
z en
Co)
N
Co)
QI)
• N o

o
N
CO
C")
N
C")
(/)
Z
an
•

co
C")
N
C")
(/)
Z

3.0 Functional Description (Continued)

3.6.2 Early Done Algorithm

The NS32381 has the ability to modify the General Slave
protocol sequences and to boost the performance of the
FPU by 20% to 40%. This is called the Early Done Algo­
rithm .

Early Done is defined by the fact that the destination of an
instruction is an FPU register and that the instruction and
range of operands cannot generate a TRAP (error). When
these conditions are met the FPU will send a SDNXXX or
SPC pulse after receiving all of the operands from the CPU
and before executing the instruction, hence an early done
as compared to the General Slave Protocols.

In the case of the 16-bit Slave Protocol in which the CPU
always reads the slave status word, the FPU will force all
zeroes to be read. The CPU can then send the next instruc­
tion to the FPU saving the general protocol overhead. The
FPU will start the new instruction immediately after finishing
the previous instruction.

SFSR, CMPF and CMPL do not generate an Early Done.

3.6.3 Floating-Point Protocols

Table 3-3 gives the protocols followed for each floating­
point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
section 2.2.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating-Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). "f" indicates that the instruction
specifies a floating-point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the FPU Status Word (Figure 3-11).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified, be­
cause the Floating-Point Registers are physically on the
Floating-Point Unit and are therefore available without CPU
assistance.

4.0 Device Specifications
4.1 PIN DESCRIPTIONS

4.1.1 Supplies

The following is a brief description of all NS32381 pins.

Vee Power: + 5V positive supply.

GND Ground: Ground reference for both on-chip log­
ic and drivers connected to output pins.

3-100

4.1.2 Input Signals

CLK Clock: TTL-level clock signal.

DDIN Data Direction In: Active low. Status signal indi­
cating the direction of data transfers during a
bus cycle .

STO-ST3 Status: Bus cycle status code from CPU. STO is
the least significant and rightmost bit.

1100- Reserved

1101- Transferring Operation Word or Oper·
and

1110- Reading Status Word

1111- Broadcasting Slave ID
Note: The NS32332 generates four status lines and the

NS32532 generates five. The user should connect the
status lines as shown below:

NS32381
STO
ST1
ST2
ST3

NS32332
STO
ST1
ST2
ST3

NS32532
STO
ST1
ST2
ST4

RST Reset: Active low. Resets the last operation
and clears the FSR register.

NOE New Opcode Enable: Active high. This signal
enables the new opcodes available in the
NS32381.

PSO. PS1 Protocol Select: Selects the slave protocol to
be used. PSO is the least significant and right­
most bit.

OO-Selects 16-bit protocol.
01-5elects 32-bit protocol for NS32332.
10-Reserved.
11-Selects 32-bit protocol for NS32532.

4.1.3 Output Signals

SDN332 Slave Done 332: Active low. This signal is for
use with the NS32332 CPU only. If held active
for a half clock cycle and released this pin indi­
cates the successful completion by the FPU of
a floating-point instruction. Holding this pin ac­
tive for two and a half clock cycles indicates
TRAP or that the CMPf instruction has been ex­
ecuted.

SDN532 Slave Done 532: Active low. This signal is for
use with the NS32532 CPU only. When active it
indicates successful completion by the FPU of
a floating-point instruction.

FSSR Force Slave Status Read: Active low. This sig­
nal is for use with the NS32532 CPU only.
When active it indicates TRAP or that the CMPf
instruction has been executed.

4.1.4 Input/Output Signals

*DO-D31 Data Bus: These are the 32 Signal lines which
carry data between the NS32381 and the CPU.

SPC Slave Processor Control: Active low. This is the
data strobe Signal for slave transfers. For the
32-bit protocol, SPC is only an input signal.

'For the 16·bH Slave Protocol the upper sixteen data Input signals (016-
031) should be left floating.

4.0 Device Specifications (Continued)

Connection Diagram

Desc

Vee
01
00
PSl (Note 1)
GNO
GNO
CLK
RST
Reserved (Note 2)
Reserved (Note 2)
02
017
016
PSO (Note 1)
GNO
NOE(Note 1)
Reserved (Note 3)
Reserved (Note 2)
Vee
015
018
03
031
014
019
Vee
030
Vee
04
020
013
029
Reserved (Note 3)
05

Note 1: eMOS input; never float.

Note 2: Pin should be grounded.

Note 3: Pin should be left floating.

@@@@@@@@@
K@@@@@@@@@@@
J @ @ @@
H @ @ @@
G @@ @@
F @@ NS32381 @@
E@@ @@
D@@ @@
C @ @d @ @
B@@@@@@@@@@@
A @@@@@@@@@

1 2 3 4 5 6 7 8 9 10 11

Bottom View

Order Number NS32381
See NS Package Number U68D

FIGURE 4-1. 68-Pin PGA Package
NS32381 Pinout Descriptions

TL/EE/9157-1B

Pin Desc

A2 028
A3 GNO
A4 GNO
A5 021
A6 012
A7 027
A8 06
A9 022
Al0 011
81 SON332
82 07
83 023
84 SPC
85 SON532
86 Vee
87 08
88 GNO
89 026
810 GNO
811 Vee
Cl Reserved (Note 3)
C2 STO
Cl0 STl
Cll Reserved (Note 3)
01 GNO
02 024
010 025
011 09
El 010
E2 OOIN
El0 Vee
Ell ST2
Fl ST3
F2 FSSR

3-101

Pin

FlO
Fll
Gl
G2
Gl0
Gll
Hl
H2
Hl0
Hll
Jl
J2
Jl0
Jll
Kl
K2
K3
K4
K5
K6
K7
K8
K9
Kl0
Kll
L2
L3
L4
L5
L6
L7
L8
L9
L10

z
tJ)
Co)
N
Co)
co
CI1
Z
tJ)
Co)
N
Co)
co
• N o

~ •
co
C")
C'I
C")
(/)
z
In
co
C")
C'I
C")
(/)
z

4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Temperature Under Bias O'C to + 70'C

Storage Temperature

All Input or Output Voltages
with Respect to GND

-65'Cto +150'C

-0.5Vto +7.0V

Power Dissipation

Power Down Mode

ESD Rating is to be determined .

1.5W

0.15W

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS TA = O'C to 70'C, Vee = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage' 2.0 Vee +0.5 V

VIL Low Level Input Voltage' -0.5 0.8 V

VOH High Level Output Voltage IOH = -400 p.A 2.4 V

Val Low Level Output Voltage IOl = 2mA 0.4 V

II Input Load Current' -10.0 10.0 p.A

3.5 Vee +0.5 V VIH High Level Input Voltage
for PSO, PS1, NOE

-0.5 1.5 V Vil Low Level Input Voltage
for PSO, PS 1, NOE

-100 100 p.A II Input Load Current
for PSO, PS 1, NOE

Il Leakage Current 0.4 ,,; VOUT ,,; 2.4V
(Output and I/O Pins -20.0 20.0 p.A
in TRI-STATE®/Input Mode)

Icc Active Supply Current lOUT = 0, TA = 25'C 300 mA

Icc Power Down Current lOUT = 0, TA = 25'C 30 mA

CIN Input Capacitance 6 10 pF

COUT Output Capacitance 8 12 pF

'"Except PSO, PS1, NOE and Reserved pins.

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the Timing Specifications given in this section refer to
0.8V and 2.0V on all the input and output signals as illustrat­
ed in Figures 4.2 and 4.3, unless specifically stated other­
wise.

ABBREVIATIONS

L.E. - Leading Edge

T.E. - Trailing Edge

R.E. - Rising Edge

F.E. - Falling Edge

ClK

SlG1

SlG2

[=:J 2.0V

O.SV
1'----

[tSIG11

2.4V

O.SV
O.45V

[___ I __ tS_IG_2_h.....J1, ___ ~ ______ .::

TLlEE/9157-19

FIGURE 4-2. Timing Specification Standard
(Signal Valid after Clock Edge)

3-102

ClK

SlG1

SlG2

[

[
[

----:---'=1 C
------"'----- --2.4V o.s\-- tSlG11

'----If---O.45V

L---f---2.4V

2.0V tSIG2h

_____ ...J. __ ----- -O.45V

TLlEE/9157-20

FIGURE 4-3. Timing Specification Standard
(Signal Valid before Clock Edge)

4.0 Device Specifications (Continued)

4.4.2 Timing Tables (Maximum times assume temperature range D'C to 7D'C)

4.4.2.1 Output Signal Propagation Delays for all CPUs
(Maximum times assume capacitive loading of 100 pF)

Reference! NS32381-15 NS32381-20
Units Symbol Figure Description

Conditions Min Max Min Max

tSPCFw 4-18 SPC Pulse Width from FPU At 0.8V (Both Edges) %tcLKp - 10 % tCLKp + 10 % tcLKp - 10 %tCLKp + 10 ns

tSPCFa 4·18 SPC Output Active After CLK R.E. 38 33 ns

tsPCFj 4-18 SPC Output Inactive After CLK R.E. 18 38 18 33 ns

tSPCFnl 4-18 SPC Output Nonforcing After CLK F.E. 35 30 ns

4.4.2.2 Output Signal Propagation Delays for the NS32008, NS32016 and NS32032 CPUs
Maximum times assumes capacitive loading of 100 pF

Reference! NS32381-15 NS32381-2D
Units Symbol Figure Description

Conditions Min Max Min Max

tOy 4-8 Data Valid (00-015) After SPC L.E. 30 ns

tOj 4-8 00-015 Floating After SPC T.E. 30 ns

4.4.2.3 Output Signal Propagation Delays for the 32-811 Slave Protocol NS32332 CPU
Maximum times assume capacitive loading of 100 pF unless otherwise specified

Reference! NS32381-15 NS32381-2D
Units Symbol Figure Description

Conditions Min Max Min Max

tOy 4-10 D.:ItaValid After SPC L.E.;
30 25

75 pF Cap. Loading
ns

tOlv 4-10 Data Invalid After SPC T.E. lB 18 ns

tOni 4-10 Data Nonforcing After SPC T.E. 30 30 ns

tsONa 4-12,13 Slave Done Active After CLK F.E. 3 33 3 33 ns

tsONh 4-13 Slave Done Hold After CLK R.E. 33 33 ns

tSONw 4-12 Slave Done AtO.8V
%tCLKp-l0 % tCLKp + 10 %tcLKp-l0 %tcLKp+l0 Pulse Width (Both Edges)

ns

tSONn! 4-12,13 Slave Done Nonforcing After eLK R. E. 30 30 ns

tSTRPw 4-13 Slave Done (TRAP) AtO.BV
2%tcLKp-l0 2%tcLKp+l0 2112 tCLKp -10 2% tCLKp+ 10

Pulse Width (Both Edges)
ns

3-103

z
(J)
Co)

~
co •
U\
z en
Co)
N
Co)
co
~
Q

&I

4.0 Device Specifications (Continued)

4.4.2.4 Output Signal Propagation Delays for the 32-Blt Slave Protocol NS32532 CPU
Maximum times assume capacitive loading of 75 pF

Reference!
NS32381-

Symbol Figure Description Conditions 15 20 25 30 Units

Min Max Min Max Min Max Min Max

tOy 4-14 Data Valid After SPC L.E. 30 25 25 25 ns

toly 4-14 Data Invalid After ClK R.E. 3 3 3 3 ns

tOn! 4-14 Data Nonforcing After SPC T.E. 30 30 30 30 ns

tsoa 4-16 Slave Done Active After ClK R.E. 40 35 25 25 ns

tSOh 4-16 Slave Done Hold After ClK R.E. 2 38 2 33 2 25 2 25 ns

tSOn! 4-16 Slave Done Nonforcing After ClK R. E. 35 30 30 30 ns

tFSSRa 4-17 Forced Slave Status After ClK R.E.
40 35 25 25

Read Active
ns

tFSSRh 4-17 Forced Slave Status After ClK R.E.
2 38 2 33 2 25 2 25

Read Hold
ns

tFSSRn! 4-17 Forced Slave Status After ClK R.E.
35 30 30 30

Read Nonforcing
ns

4.4.2.5 Input Signal Requirements with all CPUs

Reference!
NS32381-

Symbol Figure Description Conditions 15 20 25 30 Units

Min Max Min Max Min Max Min Max

tpWR 4-5 Power-On Reset Duration After ClK R.E. 30 30 30 30 ,...s

tRSTw 4-6 Reset Pulse Width At 0.8V (Both Edges) 64 64 64 64 tCLKp

tRSTs 4-7 Reset Release Before ClK F.E. 10 10 10 10 ns

tRSTh 4-7 Reset Hold After ClK R.E. 0 0 0 0 ns

4.4.2.6 Input Signal Requirements with the NS32008, NS32016, NS32032 CPUs

Reference! NS32381-15 NS32381-20
Units Symbol Figure Description

Conditions Min Max Min Max

tss 4-8 Status (STO-ST1) Setup Before SPC L.E. 25 20 ns

tSh 4-8 Status (STO-ST1) Hold After SPC L.E. 20 20 ns

tos 4-9 Data Setup (DO-D15) Before SPC T.E. 25 20 ns

tOh 4-9 Data Hold (DO-D15) After SPC T.E. 20 20 ns

tspCw 4-8 SPC Pulse Width AtO.8V
35 35

from CPU (Both Edges)
ns

3-104

4.0 Device Specifications (Continued)

4.4.2.7 Input Signal Requirements with the 32·Bit Slave Protocol NS32332 CPU

Reference! NS32381·15 NS32381·20
Symbol Figure Description

Conditions Min Max Min Max

tSTs 4-11 Status Setup Before SPC L.E. 25 20

tSTh 4-11 Status Hold After SPC L.E. 20 20

tos 4-11 Data Setup Before SPC T.E. 25 20

tOh 4-11 Data Hold After SPC T.E. 20 20

tspcw 4-11 SPC Pulse Width At O.BV (Both Edges) 35 35

4.4.2.8 Input Signal Requirements with the 32·Bit Slave Protocol NS32532 CPU

NS32381

Symbol Figure Description
Reference!

15 20 25 30
Conditions

Min Max Min Max Min Max Min Max

tSTs 4-15 Status Setup Before ClK (T2) R.E. 25 25 20 15

tSTh 4-15 Status Hold After ClK (T2) R.E. 25 20 10 10

tOOINs 4-15 Data Direction in Setup Before SPC L.E. 0 0 0 0

tOOINh 4-15 Data Direction In Hold After SPC T.E. 10 10 10 10

tDs 4-15 Data Setup Before SPC T.E. 10 6 6 6

tDh 4-15 Data Hold After SPC T.E. 20 20 10 10

tspcs 4-15 SPCSetup Before ClK (T2) R.E. 20 20 20 20

tSPCh 4-15 SPCHold After ClK (T2) R.E. 0 0 0 0

tSPCia 4-14 SPC Inactive After ClK (Tl) R.E. 0 0

tSPca 4-14 SPCActive After ClK (Tl) R.E. 3 3

4.4.2.9 Clocking Requirements with all CPUs

NS32381

Symbol Figure Description
Reference!

15 20 25 30
Conditions

Min Max Min Max Min Max Min Max

tCLKh 4-4 Clock High Time At 2.0 V (Both Edges) 25 1000 20 1000 lB 1000 16 1000

tCLKI 4-4 Clock low Time At O.BV (Both Edges) 25 DC 20 DC 18 DC 16 DC

tCTr 4-4 Clock Rise Time Between O.BV and 2.0V 7 5 4 3

tCTd 4-4 Clock Fall Time Between 2.0V and O.BV 7 5 4 3

tCLKp 4-4 Clock Period ClK R.E. to Next ClK R.E. 66 DC 50 DC 40 DC 33.3 DC

3-105

Units

ns

ns

ns

ns

ns

Units

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

Units

ns

ns

ns

ns

ns

Z
tn w
N
W
co
•

U1
Z
(J)
W
N
W co • N
C

•

CI
~ 4.0 Device Specifications (Continued)
~
C'i 4.4.3 Timing Diagrams
('I)
(J)
Z
;:n
•

CIO
('I)
C'i
('I)
(/)
Z

eLK

Tl/EE/9157 -21

FIGURE 4-4. Clock Timing

vee -I
Tl/EE/9157-22

FIGURE 4-5. Power-On Reset

Tl/EE/9157 -23

FIGURE 4-6. Non-Power-On Reset

CLK--.J t I r --.Y---RST•
tRSTh ,----..

ill
TLlEE/9157-24

FIGURE 4-7. RST Release Timing
Note: The rising edge of RST must occur while elK is high, as shown.

CLK -_
STO, STI ?ll1. VALID xzmmv

rts'1~tSh4
SPC _ tsPCw--j,('"""

tev4 -l-tOf:j
00-015 -----------< VALID FROM FPU)--

TLlEE/9157-25

FIGURE 4-8. Read Cycle from FPU (NS32008, NS32016, NS32032 CPUs)

3-106

4.0 Device Specifications (Continued)

ClK [

ClK ___

STO, 5T1 ?llX VALID XllIlllW
j-tss-j j-tsh-l

5PC ----ctspcw--lIiL
r---- to. --I tOh::j

DO-D1S--ZI""lZ"""V""Z""ZX"" VALID FROM CPU ~
TL/EE/9157 -26

FIGURE 4-9. Write Cycle to FPU (NS3200B, NS32016, NS32032 CPUS)

r-- 11 ------"'·+1'- T4 ---j

5TO-513 [ZZZZ77ZZZX"'-----JXZVZ7IZ/I/ll

~[H
DO_D3{ _________ tDv __ f~, pmm_m_m

FIGURE 4·10. Read Cycle from FPU (NS32332 CPU)

r-- 11 T4---j

DO-D3{-----------<1 DATA VALID ~---------
FIGURE 4-11. Write Cycle to FPU (NS32332 CPU)

3-107

TLlEE/9157 -27

TLlEE/9157-28

z
en
Co)
N
Co)
co
(II
z
en
Co)
N
Co)
co
• N o

~
co
C')
N
C')
t/)
Z
II)
•

co
C')
N

~
Z

4.0 Device Specifications (Continued)

ClK [

_[-----~~!~~-l t:t~.o~~ _____ _
SDN332

IsONw
TUEE/9157 -29

FIGURE 4-12. SDN332 Timing (NS32332 CPU)

ClK [

tSONa-li:

SON332 [---------- ~ ______ __

,...- tSTRpw

TLlEE/9157-30

FIGURE 4-13. SDN332 (TRAP) Timing (NS32332 CPU)

00- 031 [----------~l'----O-A-TA-V-A-Ll-D __ """'I ___ .1.0

TL/EE/9157-31

FIGURE 4-14. Read Cycle from FPU (NS32532 CPU)

3-108

4.0 Device Specifications (Continued)

r-- T1 ------<·+I·-T2 -----j

ClK[

f tSTS-j .J..!h
STO-ST3[·-,-0'7"""'7""/ /~!I~O"""""! X/,....,....O,.....,....O.,.....,...77~O~O..,.....-y7

I

SPC [

DO-D31[--------------------~~---DA-~--VA-L1-D--~~---------------
TL/EE/9157 -32

FIGURE 4·15. Write Cycle to FPU (NS32532 CPU)

TL/EE/9157 -33

FIGURE 4·16. SDN532 Timing (NS32532 CPU)

ClK [

[
tFSSRa--i { --; 1:"''' --I ~_~':!mm

rSSR ----1'
TL/EE/9157-34

FIGURE 4·17. FSSR Timing (NS32532 CPU)

\sPCra I , "1 ,\sPCFla

ClK

TL/EE/9157 -35

FIGURE 4·18. SPC Pulse from FPU

3-109

z en
CAl
N
CAl
CD
•

C7I
z en
CAl
N
CAl
CD
• N
o

C) r---~

~

i
N
CO)
(I)
z
iii •
CD
CO)
N

~
Z

Appendix A
NS32381 PERFORMANCE ANALYSIS
The following performance numbers were taken from simu­
lations using the 381 SIMPLE model. The timing terms have
been designed to provide performance numbers which are
CPU independent. Numbers were obtained from SIMPLE
simulations, taking the average execution times using 'typi­
cal' operands.

Listed below are definitions of the timing terms:

EXT - (EXecution Time) This is the time from the last data
sent to the FPU, until the early DONE is issued.
(FPU Pipe is empty)

EDD - (Early Done Delta) This is the time from when the
early DONE is issued until the execution of the next
instruction may start.

Provided that the CPU can transfer the ID/OPCODE and
any operands to the FPU during the EDD time, the average
system execution time for an instruction (keeping the FPU
pipe filled) is: EXT + EDD.

The system execution time for a single FPU instruction with
FPU register destination and early done is: EXT plus the
protocol time. (FPU pipe is initially empty)

Instruction EXT EDD Total

LFSR any, reg 5 8 13

MOVF any, reg 5 6 11
MOVL any, reg 5 8 13

MOVif any, reg 5 45 50

MOVFL any, reg 9 6 15

ADDF any, reg 11 31 42
ADDL any, reg 11 31 42

SUBF any, reg 11 31 42
SUBL any, reg 11 31 42

MULF any, reg 11 20 31
MULL any, reg 11 27 38

DIVF any, reg 11 45 56
DIVL any, reg 11 59 70

POL YF any, any 15 46 61
POL YL any, any 15 53 68

DOTF any,any 15 46 61
DOTL any, any 15 53 68

3-110

NS32381 PERFORMANCE ANALYSIS
The following instructions do not generate an early done. In
this case, EXT is the time from the last data sent to the FPU,
until the normal DONE is issued. (FPU Pipe is empty)

Instruction EXT

SFSR reg,mem 7

MOVLF any,any 18

ROUNDfi any, mem 46
FLOORfi any, mem 46
TRUNCfi any, mem 46

CMPF any,any 17
CMPL anY,any 17

ABSf anY,any 9
NEGf any,any 9

SCALBf any,any 49

LOGBf any,any 36

~National
~ Semiconductor
NS32081-10/NS32081-15 Floating-Point Units

General Description
The NS320B1 Floating-Point Unit functions as a slave proc­
essor in National Semiconductor's Series 32000® micro­
processor family. It provides a high-speed floating-point in­
struction set for any Series 32000 family CPU, while remain­
ing architecturally consistent with the full two-address archi­
tecture and powerful addressing modes of the Series 32000
micro-processor family.

Block Diagram

r
I
I

I
~

I
I
~

I

Features
III Eight on-chip data registers
III 32-bit and 64-bit operations
III Supports proposed IEEE standard for binary floating­

point arithmetic, Task P754
III Directly compatible with NS32016, NS3200B and

NS32032 CPUs
III High-speed XMOSTM technology
III Single 5V supply
III 24-pin dual in-line package

C.ntrot Bus

- ExEcUTION UNjj"I

I

16

INTERFACE ANoi
STORAGE UNIT I

L ___________ _
TL/EE/5234-1

3-111

z
en w
I\)
Q
Q) •
Q

'" Z
en w
I\)
Q
Q)
U1

•

~r---~
•

co
Q
N

~
Z ;:; •
co
Q
N

~
Z

1.0 PRODUCT INTRODUCTION

1.1 Operand Formats

1.1.1 Normalized Numbers

1.1.2 Zero

1.1.3 Reserved Operands

1.1.4 Integers

1.1.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 Floating-Point Registers

2.1.2 Floating-Point Status Register (FSR)

2.1.2.1 FSR Mode Control Fields

2.1.2.2 FSR Status Fields

2.1.2.3 FSR Software Field (SWF)

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Floating-Point Instruction Set

2.3 Traps

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

Table of Contents

3-112

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.4 Bus Operation

3.4.1 Bus Cycles

3.4.2 Operand Transfer Sequences

3.5 Instruction Protocols

3.5.1 General Protocol Sequence

3.5.2 Floating-Point Protocols

4.0 DEVICE SPECIFICATIONS

4.1 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signals: Internal Propagation De­
lays

4.4.2.2 Input Signals Requirements

4.4.2.3 Clocking Requirements

4.4.3 Timing Diagrams

List of Illustrations
Floating-Point Operand Formats 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 01-1

Register Set .. 0 0 0 0 .. 0 0 0 0 .. 0 0 .. 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 .. 0 0 0 .. 0 0 0 0 0 0 0 02-1

The Floating-Point Status Register 0 .. 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 02-2

General Instruction Format 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000002-3

Index Byte Format 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 02-4

Displacement Encodings 0 .. 0 0 .. 0 0 0 0 0 0 .. 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02-5

Floating-Point Instruction Formats 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 02-6

Recommended Supply Connections 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 03-1

Power-On Reset Requirements 00 0 0 0 0 000000000000000000000000003-2

General Reset Timing 0 0 0 0 .. 0 0 0 0 0 0 .. 0 .. 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 03-3

System Connection Diagram 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 .. 0 0 .. 0 0 0 0 0 .. 0 0 0 0 0 03-4

Slave Processor Read Cycle 0 0 0 .. 0 0 0 0 0 .. 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 .. 0 0 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 .. 0 .. 3-5

Slave Processor Write Cycle 0 0 0 0 0 .. 0 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 .. 0 0 0 0 .. 0 0 0 .. 0 0 0 0 0 .. 03-6

FPU Protocol Status Word Format. 0 0 0 0 0 00 03-7

Dual-In-Line Package 0 .. 0 0 0 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 .. 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 04-1

Timing Specification Standard (Signal Valid After Clock Edge) 0 0 0 0 .. 0 0 .. 0 0 0 0 .. 0 0 0 .. 0 0 04-2

Timing Specification Standard (Signal Valid Before Clock Edge) 04-3

Clock Timing 0 0 .. 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 04-4

Power-an-Reset 00 04-5

Non-Power-On-Reset. 04-6

Read Cycle From FPU 0 .. 0 0 0 0 .. 0 0 0 0 .. 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 04-7

Write Cycle To FPU 0 0 0 0 0 0 0 0 0 .. 0 0 0 .. 0 0 0 0 0 .. 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 .. 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 .4-8
SPC Pulse from FPU 0 0 .. 0 0 0 0 0 0 .. 0 0 .. 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 04-9

RST Release Timing 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 .. 0 0 0 0 0 0 .. 0 0 .. 4-1 0

List of Tables
Sample F Fields 00 00000000000000000001-1

Sample E Fields 00 01-2

Normalized Number Ranges 000 .. 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 01-3

Series 32000 Family Addressing Modes 0 0 .. 0 0 0 0 0 0 0 0 .. 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 0 02-1

General Instruction Protocol 03-1

Floating-Point Instruction Protocols 0 0 0 .. 0 .. 0 .. 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 0 .. 0 0 0 .. 0 0 0 03-2

3-113

z en
Co)
I\)
o
00
~
z en
Co)
I\)
o
00
•

U1

U) ,---, •
co o
N

~
Z o •
CO o
N
(I)
U)
Z

1.0 Product Introduction
The NS32081 Floating-Point Unit (FPU) provides high
speed floating-point operations for the Series 32000 family,
and is fabricated using National high-speed XMOS technol­
ogy. It operates as a slave processor for transparent expan­
sion of the Series 32000 CPU's basic instruction set. The
FPU can also be used with other microprocessors as a pe­
ripheral device by using additional TTL interface logiC. The
NS32081 is compatible with the IEEE Floating-Point For­
mats by means of its hardware and software features.

1.1 OPERAND FORMATS

The NS32081 FPU operates on two floating-point data
types-single precision (32 bits) and double preCision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single preCision data type, and the
suffix L (Long Floating) to select the double preCision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-1.

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.1.1), the binary point
is assumed to be immediately to the left of the most signifi­
cant bit of the F field, with an implied 1 bit to the left of the
binary point. Thus, the F field represents values in the range
1.0 ,;:; x ,;:; 2.0.

TABLE 1·1. Sample F Fields

FField Binary Value DeCimal Value
000 ... 0 1.000 ... 0 1.000 ... 0
010 ... 0 1.010 ... 0 1.250 ... 0
100 ... 0 1.100 ... 0 1.500 ... 0
110 ... 0 1.110 ... 0 1.750 ... 0

t
Implied Bit

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true
exponent. The bias value is 011 .•. 112, which is either 127
(Single preCision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

31 30

Is I

TABLE 1·2. Sample E Fields

E Field F Field Represented Value
011 ... 110 100 ... 0 1.5x2-1 =0.75
011 ... 111 100 ... 0 1.5 x 20 = 1.50
100 ... 000 100 ... 0 1.5X21 =3.00

Two values of the E field are not exponents. 11 ... 11 sig­
nals a reserved operand (Section 2.1.3). 00 ... 00 repre­
sents the number zero if the F field is also ali zeroes, other­
wise it signals a reserved operand.

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.1.1 Normalized Numbers

Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither ali zeroes nor ali ones.

The value of a Normalized number can be derived by the
formula:

(-1)8 X 2(E-Bias) X (1 + F)

The range of Normalized numbers is given in Table 1-3.

1.1.2 Zero

There are two representations for zero-positive and nega­
tive. Positive zero has ali-zero F and E fields, and the S bit is
zero. Negative zero also has ali-zero F and E fields, but its S
bit is one.

1.1.3 Reserved Operands

The proposed IEEE Standard for Binary Floating-Point Arith­
metic (Task P754) provides for certain exceptional forms of
floating-point operands. The NS32081 FPU treats these
forms as reserved operands. The reserved operands are:

• Positive and negative infinity

• Not-a-Number (NaN) values

• Denormalized numbers
Both Infinity and NaN values have ali ones in their E fields.
Denormalized numbers have ali zeroes in their E fields and
non-zero values in their F fields.

The NS32081 FPU causes an Invalid Operation trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is simply a move (without conversion). The FPU
does not generate reserved operands as results.

Single Precision

2322 o
E F
8 23

Double Precision

6362 52 51 o

lsi E F

11 52

FIGURE 1·1. Floating·Point Operand Formats

3-114

1.0 Product Introduction (Continued)

TABLE 1-3. Normalized Number Ranges

Most Positive
Single Precision

2127 X(2-2-23)
Double Precision

21023X(2-2-52)

= 3.40282346 x 1 038 = 1.7976931348623157X 10308

Least Positive 2- 126 2- 1022

= 1.17549436X 10-38 = 2.2250738585072014 x 1 0-308

Least Negative -(2- 126) -(2-1022)
= -1.17549436X 10-38 = -2.2250738585072014X 10-308

Most Negative -2127X(2-2-23) -21023X(2-2-52)

= -3.40282346 X 1038 = -1.7976931348623157X10308

Note: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms.

1.1.4 Integers

In addition to performing floating-point arithmetic, the
NS32081 FPU performs conversions between integer and
floating-point data types. Integers are accepted or generat­
ed by the FPU as two's complement values of byte (8 bits),
word (16 bits) or double word (32 bits) length.

1.1.5 Memory Representations

The NS32081 FPU does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of
two-address instructions with its Series 32000 Family CPU.
The CPU determines the representation of operands in
memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least significant byte at the lowest byte
address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes nine registers that
are implemented on the NS32081 Floating-Point Unit (FPU).

DEDICATED DATA
4-----32-

FSR FD::! ===~
F1~!===~
F2!:= ===~
F3~! ====!
F4~! ====!
F5:=! ===~
F6~!====!
F7 ... ! ___ ---'

TL/EE/5234-4

FIGURE 2-1. Register Set

3-115

2.1.1 Floating-Point Registers

There are eight registers (FO-F7) on the NS32081 FPU for
providing high-speed access to floating-point operands.
Each is 32 bits long. A floating-point register is referenced
whenever a floating-point instruction uses the Register ad­
dressing mode (Section 2.2.2) for a floating-point operand.
All other Register mode usages (i.e., integer operands) refer
to the General Purpose Registers (RO-R7) of the CPU, and
the FPU transfers the operand as if it were in memory.
When the Register addressing mode is specified for a dou­
ble precision (64-bit) operand, a pair of registers holds the
operand. The programmer must specify the even register of
the pair. The even register contains the least significant half
of the operand and the next consecutive register contains
the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register (FSR) selects operating
modes and records any exceptional conditions encountered
during execution of a floating·point operation. Figure 2-2
shows the format of the FSR.

TL/EE/5234-5

FIGURE 2-2. The Floating-Point Status Register

2.1.2.1 FSR Mode Control Fields

The FSR mode control fields select FPU operation modes.
The meanings of the FSR mode control bits are given be­
low.

Rounding Mode (RM): Bits 7 and 8. This field selects the
rounding method. Floating-point results are rounded when­
ever they cannot be exactly represented. The rounding
modes are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value
(LSB = 0) is returned.

01 Round toward zero. The nearest value which is closer to
zero or equal to the exact result is returned.

z
en
Co)
N o
CD
•
~
z
en
Co)
N o
CD •
U1

•

2.0 Architectural Description (Continued)

10 Round toward positive infinity. The nearest value which
is greater than or equal to the exact result is returned.

11 Round toward negative infinity. The nearest value which
is less than or equal to the exact result is returned.

Underflow Trap Enable (UEN): Bit 3. If this bit is set, the
FPU requests a trap whenever a result is too small in abso­
lute value to be represented as a normalized number. If it is
not set, any underflow condition returns a result of exactly
zero.

Inexact Result Trap Enable (lEN): Bit 5. If this bit is set,
the FPU requests a trap whenever the result of an operation
cannot be represented exactly in the operand format of the
destination. If it is not set, the result is rounded according to
the selected rounding mode.

2.1.2.2 FSR Status Fields

The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ings of the FSR status bits are given below:

Trap Type (TT): bits 0-2. This 3-bit field records any excep­
tional condition detected by a floating-point instruction. The
TT field is loaded with zero whenever any floating-point in­
struction except LFSR or SFSR completes without encoun­
tering an exceptional condition. It is also set to zero by a
hardware reset or by writing zero into it with the Load FSR
(LFSR) instruction. Underflow and Inexact Result are always
reported in the TT field, regardless of the settings of the
UEN and lEN bits.

000 No exceptional condition occurred.

001 Underflow. A non-zero floating-point result is too small
in magnitude to be represented as a normalized lIoat­
ing-point number in the format of the destination oper­
and. This condition is always reported in the TT field
and UF bit, but causes a trap only if the UEN bit is set. If
the UEN bit is not set, a result of Positive Zero is pro­
duced, and no trap occurs.

010 Overflow. A result (either floating-point or integer) of a
floating-point instruction is too great in magnitude to be
held in the format of the destination operand. Note that
rounding, as well as calculations, can cause this condi­
tion.

011 Divide by zero. An attempt has been made to divide a
non-zero floating-point number by zero. Dividing zero by
zero is considered an Invalid Operation instead (below).

100 Illegal Instruction. Two undefined floating-point instruc­
tion forms are detected by the FPU as being illegal. The
binary formats causing this trap are:

~001lxxl0lllll0

xxxxxxxxxxl00lxxl0lllll0
101 Invalid Operation. One of the floating-point operands of

a floating-point instruction is a Reserved operand, or an
attempt has been made to divide zero by zero using the
DIVf instruction.

110 Inexact Result. The result (either lIoating-point or inte­
ger) of a floating-point instruction cannot be represent­
ed exactly in the format of the destination operand, and
a rounding step must alter it to fit. This condition is al­
ways reported in the TT field and IF bit unless any other
exceptional condition has occurred in the same instruc­
tion. I n this case, the TT field always contains the code
for the other exception and the IF bit is not altered. A
trap is caused by this condition only if the lEN bit is set;
otherwise the result is rounded and delivered, and no
trap occurs.

111 (Reserved for future use.)

Underflow Flag (UF): Bit 4. This bit is set by the FPU when­
ever a result is too small in absolute value to be represented
as a normalized number. Its function is not affected by the
state of the UEN bit. The UF bit is cleared only by writing a
zero into it with the Load FSR instruction or by a hardware
reset.

Inexact Result Flag (IF): Bit 6. This bit is set by the FPU
whenever the result of an operation must be rounded to fit
within the destination format. The IF bit is set only if no other
error has occurred. It is cleared only by writing a zero into it
with the Load FSR instruction or by a hardware reset.

2.1.2.3 FSR Software Field (SWF)

Bits 9-15 of the FSR hold and display any information writ­
ten to them (using the LFSR and SFSR instructions), but are
not otherwise used by FPU hardware. They are reserved for
use with NSC lIoating-point extension software.

2.2 INSTRUCTION SET

2.2.1 General Instruction Format

Figure 2-3 shows the general format of an Series 32000
instruction. The Basic Instruction is one to three bytes long

OPllONAL BASIC
EXTENSIONS INSTRUCTION

r~-------------------~'--------------------\(~--------_J'----------\

DISP2 DISPI DISP21DISPI

IMPUED INDEX INDEX GEN GEN
ADDR AODR oPCODE IMMEDlIm: DISP DISP BYrE BYrE MODE MODE OPERAND(S)

A B
IMM IMM

t ~ j

TLlEE/5234-6

FIGURE 2-3. General Instruction Format

3-116

r--, Z

2.0 Architectural Description (Continued)

and contains the opcode and up to two 5-bit General Ad­
dressing Mode (Gen) fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected.

The only form of extension issued to the NS320B1 FPU is
an Immediate operand. Other extensions are used only by
the CPU to reference memory operands needed by the
FPU.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-4.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Disp/lmm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-5, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi­
cant byte first.

Some non-FPU instructions require additional, "implied" im­
mediates and I or displacements, apart from those associat­
ed with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear with­
in the list of operands in the instruction definition.

2.2.2 Addressing Modes

The Series 32000 Family CPUs generally access an oper­
and by calculating its Effective Address based on informa­
tion available when the operand is to be accessed. The
method to be used in performing this calculation is specified
by the programmer as an "addressing mode."

Addressing modes in the Series 32000 family are designed
to optimally support high-level language accesses to vari­
ables. In nearly all cases, a variable access requires only
one addressing mode within the instruction which acts upon
that variable. Extraneous data movement is therefore mini­
mized.

Series 32000 Addressing Modes fall into nine basic types:

Register: In floating-point instructions, these addressing
modes refer to a Floating-Point Register (FO-F7) if the op­
erand is of a floating-point type. Otherwise, a CPU General
Purpose Register (RO-R7) is referenced. See Section 2.1.1.

Register Relative: A CPU General Purpose Register con­
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of the
operand in memory.

7

GEN. ADDR. MODE

TL/EE/5234-7

FIGURE 2·4. Index Byte Format

3-117

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated CPU
registers PC, SP, SB or FP. These registers point to data
areas generally needed by high-level languages.

Memory Relative: A pOinter variable is found within the
memory space pointed to by the CPU SP, SB or FP register.
A displacement is added to that pointer to generate the Ef­
fective Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written. Floating-point operands as well as integer operands
may be specified using Immediate mode.

Absolute: The address of the operand is specified by a
Displacement field in the instruction.

External: A pOinter value is read from a specified entry of
the current Link Table. To this pOinter value is added a dis­
placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected CPU Stack Pointer
(SPO or SP1) specifies the location of the operand. The op­
erand is p~shed or popped, depending on whether it is writ­
ten or read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex·
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or B and adding it into the
total, yielding the final Effective Address of the operand.

The following table, Table 2-1, is a brief summary of the
addressing modes. For a complete description of their ac­
tions, see the Series 32000 Instruction Set Reference Man­
ual.

o
SIGNED DISPLACEMENT

7 0

1 ~ 1 I

..\'U,,~t.
t.\"Y\J.t~IA~"'"

TL/EE/5234-10

FIGURE 2·5. Displacement Encodlngs

en
Co)
N
C
Q) •
C z en
Co)
N
C
Q)
•
en

&I

~ r---,
; 2.0 Architectural Description (Continued)
CI
C'i TABLE 2·1. Series 32000 Family Addressing Modes

~
Z Effective Address Encoding Mode Assembler Syntax
CI REGISTER

~ None: Operand is in the specified register. 00000 Register 0 RO orFO
co
~
CO)
f/)
z

00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register 5
00110 Register 6
00111 Register 7

REGISTER RELATIVE

01000 Register 0 relative
01001 Register 1 relative
01010 Register 2 relative
01011 Register 3 relative
01100 Register 4 relative
01101 Register 5 relative
01110 Register 6 relative
01111 Register 7 relative

MEMORY SPACE

11000 Frame memory
11001 Stack memory
11010 Static memory
11011 Program memory

MEMORY RELATIVE

10000
10001
10010

IMMEDIATE

10100

ABSOLUTE

10101

EXTERNAL

10110

TOP OF STACK

10111

SCALED INDEX
11100
11101
11110
11111

10011

Frame memory relative
Stack memory relative
Static memory relative

Immediate

Absolute

External

Top of Stack

Index, bytes
Index, words
Index, double words
Index, quad words

(Reserved for Future Use)

R1 or F1
R20rF2
R30rF3
R4 or F4
R5 or F5
R60rF6
R7 or F7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)
disp(R5)
disp(R6)
disp(R7)

disp(FP)
disp(SP)
disp(SB)
·+disp

disp2(disp1 (FP»
disp2(disp1 (SP»
disp2(disp1 (SB»

value

@disp

EXT (disp1) + disp2

TOS

mode[Rn:B]
mode[Rn:W]
mode[Rn:D]
mode[Rn:Q]

3-118

Disp + Register.

Disp + Register; "SP" is either
SPO or SP1 , as selected in PSR.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "SP" is
either SPO or SP1, as selected in PSR.

None: Operand is issued from
CPU instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.

Mode + Rn.
Mode + 2 X Rn.
Mode + 4 X Rn.
Mode + 8 X Rn.
"Mode" and "n" are contained
within the Index Byte.

2.0 Architectural Description (Continued)

2.2.3 Floating-Point Instruction Set

The NS32081 FPU instructions occupy formats 9 and 11 of
the Series 32000 Family instruction set (Figure 2-6). A list
of all Series 32000 family instruction formats is found in the
applicable CPU data sheet.

Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each
instruction to its binary format in Figure 2-6.

23

I ii I
. gen1 ,

23

I I I I
. ganl

Format 9

I I I
gen2

OPERATION WORD

I I I I I i I I I i I I I
op I I 0 0 1 1 1 1 1 0

10 BYTE

TL/EE/5234-11

Format 11

OPERATION WORD

I I
op

10 BYTE

TL/EE/5234-12

FIGURE 2-6. Floating-Point Instruction Formats

The Format column indicates which of the two formats in
Figure 2-6 represents each instruction.

The Op column indicates the binary pattern for the field
called "op" in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case. with one or more suffix­
es (i or f) indicating data types, followed by a list of oper­
ands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice of
integer data types. This chOice affects the binary pattern in
the i field of the corresponding instruction format (Figure2-6)
as follows:

Suffix i
B
W
D

Data Type
Byte
Word
Double Word

iField
00
01
11

An f suffix on an instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format (Figure 2-6)
as follows:

Suffix f
F
L

Data Type
Single Precision
Double Precision (Long)

f Bit
1
o

An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bina­
ry pattern in the corresponding gen1 or gen2 field of the
instruction format (Figure 2-6). Refer to Table 2-1 for the
options available and their patterns.

Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

3-119

Movement and Conversion

The following instructions move the gen1 operand to the
gen2 operand, leaving the gen1 operand intact.

Format Op Instruction Description
Move without
conversion

11 0001 MOVf gen1, gen2

9 010 MOVLF gen1, gen2 Move, converting
from double

9

9

9

9

9

011 MOVFL gen1,gen2

000 MOVif gen1,gen2

precision to
single precision.

Move, converting
from single
precision to
double
precision.

Move, converting
from any integer
type to any
floating-point
type.

100 ROUNDfi gen1, gen2 Move, converting
from floating­
paint to the
nearest integer.

101 TRUNCfi gen1, gen2 Move, converting
from floating­
point to the
nearest integer
closer to zero.

111 FLOORfi gen1, gen2 Move, converting
from floating­
point to the
largest integer
less than or
equal to its
value.

Note: The MOVLF instruction' bit must be 1 and the i field must be 10.

The MOVFL instruction' bit must be 0 and the i field must be 11.

Arithmetic Operations

The following instructions perform floating-point arithmetic
operations on the gen1 and gen2 operands, leaving the re­
sult in the gen2 operand.

Format Op Instruction Description
11 0000 ADDf gen1,gen2 Add gen1 to gen2.
11 0100 SUBf gen1. gen2 Subtract gen1

fromgen2.
11 1100 MUll gen1. gen2 Multiply gen2 by

gen1.
11 1000 DIVf gen1, gen2 Divide gen2 by

gen1.
11 0101 NEGf gen1,gen2 Move negative of

gen1 to gen2.
11 1101 ASSf gen1.gen2 Move absolute

value of gen1 to
gen2.

~
Co)
N o co •
~
Z
~
N o co
•

CI1

•

U) r---, •
~
('II
CO)
en
z
Ci •
co
~
CO)

en z

2.0 Architectural Description (Continued)

Comparison

The Compare instruction compares two floating-point val­
ues, sending the result to the CPU PSR Z and N bits for use
as condition codes. See Figure 3-7. The Z bit is set if the
genl and gen2 operands are equal; it is cleared otherwise .
The N bit is set if the gen 1 operand is greater than the gen2
operand; it is cleared otherwise. The CPU PSR L bit is un­
conditionally cleared. Positive and negative zero are consid­
ered equal.

Format
11

Op
0010

Instruction
CMPf genl, gen2

Description
Compare genl
to gen2.

Floating-Point Status Register Access

The following instructions load and store the FSR as a 32-
bit integer.

Format
9
9

2.3 TRAPS

Op
001
110

Instruction
LFSR genl
SFSR gen2

Description
LoadFSR
StoreFSR

Upon detecting an exceptional condition in executing a
floating-point instruction, the NS32081 FPU requests a trap
by setting the Q bit of the status word transferred during the
slave protocol (Section 3.5). The CPU responds by perform­
ing a trap using a default vector value of 3. See the Series
32000 Instruction Set Reference Manual and the applicable
CPU data sheet for trap service details.

A trapped floating-point instruction returns no result, and
does not affect the CPU Processor Status Register (PSR).
The FPU displays the reason for the trap in the Trap Type
(TTl field of the FSR (Section 2.1.2.2).

3.0 Functional Description
3.1 POWER AND GROUNDING

The NS32081 requires a Single 5V power supply, applied on
pin 24 (Vecl. See DC Electrical Characteristics table.

Grounding connections are made on two pins. Logic Ground
(GNDL, pin 12) is the common pin for on-chip logic, and
Buffer Ground (GNDB, pin 13) is the common pin for the
output drivers. For optimal noise immunity, it is recommend­
ed that GNDL be attached through a single conductor di­
rectly to GNDB, and that all other grounding connections be
made only to GNDB, as shown below (Figure 3-1).

12
GNDl

NS32D81
FPU

+5V

Vee 24

13 OTHER
GNDB ...-.... -1P'--+GROUND

_______ '::' CONNECTIONS

TLIEEI5234-13

FIGURE 3-1. Recommended Supply Connections

3-120

3.2 CLOCKING

The NS32081 FPU requires a single-phase TTL clock input
on its CLK pin (pin 14). When the FPU is connected to a
Series 32000 CPU, the CLK signal is provided from the
CTTL pin of the NS32201 Timing Control Unit.

3.3 RESETTING

The RST pin serves as a reset for on-chip logic. The FPU
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPU ter­
minates instruction processing, resets its internal logic, and
clears the FSR to all zeroes.

On application of power, RST must be held low for at least
50 p.s aiter Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figures 3-2
and 3-3.

Vee 4.5V

ClK J1JL
I. >:64 CLOCK={

1m'

r--- CYCLES _

.... ---->:50~s-----t

TLIEEI5234-14

FIGURE 3-2. Power-On Reset Requirements

CLK JlJLfLSLfl
_

>:64 ClOCK----...I

---.. -:ft'I'I'~'!i CYCLES I

RST I
II

TUEEI5234-15

FIGURE 3-3. General Reset Timing

3.4 BUS OPERATION

Instructions and operands are passed to the NS32081 FPU
with slave processor bus cycles. Each bus cycle transfers
either one byte (8 bits) or one word (16 bits) to or from the
FPU. During all bus cycles, the SPC line is driven by the
CPU as an active low data strobe, and the FPU monitors

SPC

10kD.~
SPC SPC

AID 0-15
.... 1S-BIT ...

D 0-15
..... DATA BUS'"

SERIES STO STO NS32081
32000 STO

CPU STI ST1 STI rpu
RST

RST

J r ClK

RST CTTL

NS32201
TCU

TLIEEI5234-2

FIGURE 3-4. System Connection Diagram

3.0 Functional Description (Continued)

pins STO and ST1 to keep track of the sequence (protocol)
established for the instruction being executed. This is nec­
essary in a virtual memory environment, allowing the FPU to
retry an aborted instruction.

3.4.1 Bus Cycles

A bus cycle is initiated by the CPU, which asserts the proper
status on STO and ST1 and pulses SPC low. STO and ST1
are sampled by the FPU on the leading (falling) edge of the
SPC pulse. If the transfer is from the FPU (a slave processor
read cycle), the FPU asserts data on the data bus for the
duration of the SPC pulse. If the transfer is to the FPU (a
slave processor write cycle), the FPU latches data from the
data bus on the trailing (rising) edge of the SPC pulse. Fig­
ures 3-5 and 3-6 illustrate these sequences.

The direction of the transfer and the role of the bidirectional
SPC line are determined by the instruction protocol being
performed. SPC is always driven by the CPU during slave
processor bus cycles. Protocol sequences for each instruc­
tion are given in Section 3.5.

3.4.2 Operand Transfer Sequences

An operand is transferred in one or more bus cycles. A 1-
byte operand is transferred on the least significant byte of
the data bus (00- 07). A 2-byte operand is transferred on
the entire bus. A 4-byte or 8-byte operand is transferred in
consecutive bus cycles, least significant word first.

3.5 INSTRUCTION PROTOCOLS

3.5.1 General Protocol Sequence

Slave Processor instructions have a three-byte Basic In­
struction field, consisting of an 10 byte followed by an Oper­
ation Word. See Section 2.2.3 for FPU instruction encod­
ings. The 10 Byte has three functions:

1) It identifies the instruction to the CPU as being a Slave
Processor instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi­
ates the sequence outlined in Table 3-2. While applying
Status Code 11 (Broadcast 10. Table 3-1), the CPU trans­
fers the 10 Byte on the least significant half of the Oata Bus
(00-07). All Slave Processors input this byte and decode it.
The Slave Processor selected by the 10 Byte is activated,
and from this point the CPU is communicating only with it. If
any other slave protocol was in progress (e.g., an aborted
Slave instruction), this transfer cancels it.

The CPU next sends the Operation Word while applying
Status Code 01 (Transfer Slave Operand, Table 3-1). Upon
receiving it, the FPU decodes it, and at this point both the
CPU and the FPU are aware of the number of operands to
be transferred and their sizes. The Operation Word is
swapped on the Oata Bus; that is, bits 0-7 appear on pins
08-015, and bits 8-15 appear on pins 00-07.

STO, sn 1I/IIIIIIIIIII!'-___ vA""I'L1o __ --'~~

-----------y .• ", -
SPC -\

DO-015 ---------- ~\, ___ V_AL_IO_F_R_OM_FP_U __ J}---
Note 1: FPU samples CPU status here.

FIGURE 3-5. Slave Processor Read Cycle

STO, STI VALID

----------""\1 (NOTE 11

DD-015 ------ VALID FROM CPU

Note 1: FPU samples CPU status here.

Nole 2: FPU samples data bus here.

FIGURE 3-6. Slave Processor Write Cycle

3-121

(NOTE 21

TL/EE/5234-16

TLIEE/5234-17

z
tJ)
Co)
~ o
CD
•
o
z en
Co)
~ o
CD
•

U'I

U) r---~ ..-• ..-
CD
CI
C'I
C")

o
z
CI ..-. ..-
~
C'I
C")

rn
z

3.0 Functional Description (Continued)

Using the Addressing Mode lields within the Operation
Word, the CPU starts letching operands and issuing them to
the FPU. To do so, it relerences any Addressing Mode ex­
tensions appended to the FPU instruction. Since the CPU is
solely responsible lor memory accesses, these extensions
are not sent to the Slave Processor. The Status Code ap­
plied is 01 (Transler Slave Processor Operand, Table 3-1).

After the CPU has issued the last operand, the FPU starts
the actual execution 01 the instruction. Upon completion, it
will signal the CPU by pulsing SPC low. To allow lor this, the
CPU releases the SPC Signal, causing it to Iloat. SPC must
be held high by an external pull-up resistor.

Upon receiving the pulse on SPC, the CPU uses SPC to
read a Status Word Irom the FPU, applying Status Code 10.
This word has the lormat shown in Figure 3-7. II the a bit
("auit", Bit 0) is set, this indicates that an error has been
detected by the FPU. The CPU will not continue the proto­
col, but will immediately trap through the Slave vector in the
Interrupt Table. II the instruction being performed is CMPI
(Section 2.2.3) and the a bit is not set, the CPU loads Proc­
essor Status Register (PSR) bits N, Z and L Irom the corre­
sponding bits in the Status Word. The NS32081 FPU always
sets the L bit to zero.

15 8 7 0

100000000lNZOOOLOQI

NEW PSR BIT VALUEIS)~ ..1
"QUIT": TERMINATE PROTOCOL, TRAP IFPU).

TL/EE/5234-18

FIGURE 3-7. FPU Protocol Status Word Format

The last step in the protocol is lor the CPU to read a result,
il any, and transler it to the destination. The Read cycles
Irom the FPU are performed by the CPU while applying
Status Code 01 (Section 4.1.2).

TABLE 3-1. General Instruction Protocol

Step Status Action
1 11 CPU sends ID Byte.
2 01 CPU sends Operation Word.
3 01 CPU sends required operands .
4 XX FPU starts execution.
5 XX FPU pulses SPC low.
6 10 CPU reads Status Word.
7 01 CPU reads result (il any).

3.5.2 Floating-Point Protocols
Table 3-2 gives the protocols lollowed lor each floating­
point instruction. The instructions are relerenced by their
mnemonics. For the bit encodings 01 each instruction, see
Section 2.2.3.

The Operand Class columns give the Access Classes lor
each general operand, delining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Relerence Manual).

The Operand Issued columns show the sizes 01 the oper­
ands issued to the Floating-Point Unit by the CPU. "D" indi­
cates a 32-bit Double Word. "i" indicates that the instruction
specilies an integer size lor the operand (B = Byte, W ",;
Word, D = Double Word). "I" indicates that the instruction
specilies a Iloating-point size lor the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size 01 any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, il any,
are updated Irom the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being 01 type "I" will not cause a
transler il the Register addressing mode is specilied, be­
cause the Floating-Point Registers are physically on the
Floating-Point Unit and are therelore available without CPU
assistance.

TABLE 3-2. Floating Point Instruction Protocols

Mnemonic
Operand 1 Operand 2

Class Class
ADDI read.1 rmw.!
SUBI read.! rmw.!
MULl read.1 rmw.!
DIV! read.! rmw.1
MOVI read.! write.!
ABSI read.1 write.!
NEGI read.1 write.!
CMPI read.! read.!
FLOORli read.1 writej
TRUNCIi read.1 write.i
ROUNDli read.! writej
MOVFL read.F write.L
MOVLF read.L write.F
MOVif read.i write.!
LFSR read.D N/A
SFSR N/A write.D
o ~ Double Word

i = Integer size (B, W, D) specified in mnemonic.

f ~ Floating-Point type (F. L) specified in mnemonic.

Nt A ~ Not Applicable to this instruction.

Operand 1 Operand 2 Returned Value PSRBlts
Issued Issued Type and Dest. Affected

I I ItoOp.2 none
f ftoOp.2 none

ftoOp.2 none
ItoOp.2 none

N/A ItoOp.2 none
N/A ItoOp.2 none
N/A ftoOp.2 none

N/A N,Z,L
N/A itoOp.2 none
N/A itoOp.2 none
N/A itoOp.2 none

F N/A LtoOp.2 none
L N/A FtoOp.2 none
i N/A fto Op. 2 none
D N/A N/A none

N/A N/A DtoOp.2 none

3-122

4.0 Device Specifications 4.1.1 Supplies

Power (Vee): +5V positive supply. Section 3.1.
4.1 PIN DESCRIPTIONS

Logic Ground (GNDL): Ground reference for on-chip logic.
The following are brief descriptions of all NS32081 FPU Section 3.1.
pins. The descriptions reference the relevant portions of the

Buffer Ground (GNDB): Ground reference for on·chip driv-
Functional Description, Section 3.

ers connected to output pins. Section 3.1.
Dual-In-Line Package

4.1.2 Input Signals
010-~f-Vcc Clock (CLK): TTL-level clock Signal.

09- 2 23 f- STO Reset (RST): Active low. Initiates a Reset, Section 3.3.

OB- 3 22 f- ST1

07- 4 21 f-SPC Status (STO, ST1): Input from CPU. STO is the least signifi-
cant bit. Section 3.4 encodings are:

06- 5 20 rOll OO-(Reserved)

05- 6
NS32081

19 r012 01-Transferring Operation Word or Operand
FPU

10-Reading Status Word
04- 7 18 -013 II-Broadcasting Slave 10

03- 8 17 -014 4.1.3 Input/Output Signals

02- 9 16 -015 Slave Processor Control (SPC): Active low. Driven by the
CPU as the data strobe for bus transfers to and from the

Ol- IO 15 -im' NS32081 FPU, Section 3.4. Driven by the FPU to signal
completion of an operation, Section 3.5.1. Must be held high

00- 11 14 -ClK with an external pull-up resistor while floating.

GNOl- 12 13 -GNDB Data Bus (DO-D15): 16-bit bus for data transfer. DO is the
least significant bit. Section 3.4.

TLlEE/5234-3

Top View
FIGURE 4-1. Connection Diagram

Order Number NS32081D-l0 or NS32081D-15
See NS Package Number D24C

Order Number NS32081N-l0 or NS32081N-15
See NS Package Number N24A

4.2 ABSOLUTE MAXIMUM RATINGS If Military/Aerospace specified devices are required,

Temperature Under Bias O'Cto +70'C
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Storage Temperature -65'Cto +150'C Note: Absolute maximum ratings indicate limits beyond
All Input or Output Voltages which permanent damage may occur. Continuous operation

with Respect to GND -0.5Vto +7.0V at these limits is not intended; operation should be limited to

Power Dissipation 1.5W those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS T A = O'C to 70'C, Vee = 5V ± 5%, GND = OV

Symbol Parameter Conditions Min Typ Max Units

VIH HIGH Level Input Voltage 2.0 Vee +0.5 V

VIL LOW Level Input Voltage -0.5 0.8 V

VOH HIGH Level Output Voltage IOH = -400/LA 2.4 V

VOL LOW Level Output Voltage IOL = 4mA 0.45 V

II Input Load Current o S; VIN S; Vee -10.0 10.0 /LA

IL Leakage Current 0.45 S; VIN S; 2.4V
Output and I/O Pins in -20.0 20.0 /LA
TRI-STATElinput Mode

Icc Active Supply Current lOUT = 0, TA = 25'C 300 mA

3-123

z
en
Co)
N o
QC)

I
o
z
en
Co)
N
o
QC)

I
c.n

U) .---~
~
C')

en
z
C;
•
~
C')

en z

4.0 Device Specifications (Continued)

4.4 SWITCHING CHARACTERISTICS

4.4.1 Definitions

All the Timing Specifications given in this section refer to O.BV
and 2.0V on all the input and output signals as illustrated in
Figures 4.2 and 4.3, unless specifically stated otherwise.

2.0V

D.IV

SIGI ['SIOII

[
'Sl02h jow 2.4V

SIG2

---------O.45V

TL/EE/5234-26

FIGURE 4-2. Timing Specification Standard
(Signal Valid After Clock Edge)

ABBREVIATIONS

L.E. - Leading Edge

T.E. - Trailing Edge

SIOI [
Sl02 [

R.E. - Rising Edge

F.E. - Falling Edge

2.4V

'SlG2h

TUEE/5234-27

FIGURE 4·3. Timing Specification Standard
(Signal Valid Before Clock Edge)

3·124

4.0 Device Specifications (Continued)

4.4.2 Timing Tables

4.4.2.1 Output Signal Propagation Delays

Maximum times assume capacitive loading of 100 pF.

Reference!
Name Figure Description

Conditions

tev 4-7 OataValid After SPC L.E.

tOi 4-7 00-015 Floating After SPC T.E.

tSPCFw 4-9 SPC Pulse Width AtO.8V
fromFPU (Both Edges)

tSPCFI 4-9 SPC Output Active After ClK R.E.

tSPCFh 4-9 SPC Output Inactive After ClK R.E.

tSPCFnf 4-9 SPCOutput After ClK F.E.
Nonforcing

4.4.2.2 Input Signal Requirements

Name Figure Description
Reference!
Conditions

tpWA 4-5 Power Stable to AfterVcc
RSTR.E. Reaches 4.5V

tASTw 4-6 RST Pulse Width AtO.8V
(Both Edges)

tss 4-7 Status (STO-ST1) Before SPC L.E.
Setup

Ish 4-7 Status (STO-ST1) After SPC L.E.
Hold

tos 4-8 00-015 Setup Time Before SPC T.E.

tOh 4-8 00-015 Hold Time After SPC T.E.

tspcw 4-7 SPC Pulse Width AtO.8V
from CPU (Both Edges)

tsPCs 4-7 SPC Input Active Before ClK R.E.

tSPCh 4-7 SPC Input Inactive After ClK R.E.

tASTs 4-10 RSTSetup Before ClK F.E.

tASTh 4-10 RST R.E. Delay After ClK R.E.

4.4.2.3 Clocking Requirements

Name Figure Description
Reference!
Conditions

\eLKh 4-4 Clock High Time At2.0V
(Both Edges)

\eLKI 4-4 Clock low Time AtO.8V
(Both Edges)

tCLKp 4-4 Clock Period ClK R.E. to Next
CLKR.E.

NS32081-10

Min Max

45

50

tCLKp - 50 tCLKp + 50

55

55

45

Min Max

50

64

50

40

40

50

70

40

0

10

0

Min Max

42 1000

42 1000

100 2000

3-125

NS32081-15

Min Max

30

35

\eLKp - 40 \eLKp + 40

38

38

35

Min Max

50

64

33

35

30

35

50

35

0

10

0

Min Max

27 1000

27 1000

66

Units

ns

ns

ns

ns

ns

ns

Units

/Ls

tCLKp

ns

ns

ns

ns

ns

ns

ns

ns

ns

Units

ns

ns

ns

z
~
N
o
00 •
o
Z
(/)
W
N o
00
U1

U) r--, ... • ...
!
~ z
«:) ... • ...
CD
«:)
C\I
C'I)
tI)
z

4.0 Device Specifications (Continued)

4.4.3 Timing Diagrams

~----------------~~
i------ICLICp------t Vcc

CLK n
TLfEEf5234-19

m _____ ,F
FIGURE 4-4. Clock Timing

FIGURE 4-5. Power-On Reset

CLK JULfLSLfL
lIST ----'""'i IRST. 1--

FIGURE 4-6. Non-Power-On Reset

CLK __ --!

STO.STI

DO-DIS ·-··----··-··----,.-··:~,{:J~~~~t)
FIGURE 4-7. Read Cycle from FPU

Note: SI'e pulse must be (nominally) 1 clock wide when wTiting into FPU.

STO.STI

I'
DO-DI5 ~'_ ___ V_A_U_D_F_R_O_M_CP_U ___

TLfEEf5234-21

TLiEEf5234-22

TLfEEf5234-20

TLfEEf5234-23

FIGURE 4-8. Write Cycle to FPU
Note: SPC pulse may also be 2 clocks wide, but its edges must meet the !gpcs and tSPCh requirements with respect to elK.

3-126

4.0 Device Specifications (Continued)

-\tSPCFlt- -\ t-tSPCFh

\ I 1~~SPCFnl
SPC---------~~ ______ JI'

!.-tsPCF.-1
FIGURE 4-9. SPC Pulse from FPU

CLK-.J t I r
~

RST'

tRSlh
RsT

FIGURE 4-10. RST Release Timing
Note: The rising edge of RST must occur while elK is high, as shown.

3-127

Tl/EE/5234-25

Tl/EE/5234-24

z en
(0)
N o
QI) ...
• ...
o z en
(0)
N o
QI)
U1

C) r---,
('I)

o
CO
Ln
C"II
('I)
U)
z
U;
C"II .
C)
CO
Ln
C"II
('I)
U)
z
C)
C"II o
CO
Ln
C"II
('I)
U)
z

~National
~ Semiconductor

PRELIMINARY

NS32580-20/NS32580-25/NS32580-30
Floating Point Controller
General Description
The NS32580 Floating-Paint Controller (FPC) is an interface
controller designed to couple the NS32532 Microprocessor
with the Weitek WTL 3164 Floating-Point Data Path (FPDP).
It is a new member of the Series 32000® family and it is fully
upward compatible with the existing NS32081 floating-point
software. The performance of the NS32580 (FPC) and the
WTL 3164 (FPDP) with the NS32532 has been significantly
enhanced for high-performance floating-paint applications.
It reaches the peak performance of 15 Mflops when execut­
ing single and double preCision ADD, SUB, MUL, and MAC
instructions in a pipelined mode while maintaining precise
exception handling.
The FPC/FPDP supports the IEEE 754-1985 standard for
Binary Floating-Point Arithmetic. An improved exception
handling scheme allows enabling or disabling of each of the
IEEE defined traps. It supports Infinity and Not a Number
(NaN) and can flush the result to zero or trap on under­
flowed instructions.
The NS32580 contains three FIFOs and a Floating-Paint
Status Register (FSR). It executes 18 instructions in con­
junction with the WTL 3164 and with the NS32532 forms a
tightly coupled computer cluster. The FPC/FPDP appears
to the user as a Single slave processing unit. All addressing
modes, including two address operations, are available with
the floating-point instructions. In addition, the CPU and

Block Diagram

OONE

.. '" STATUS

FPC/FPDP communication is handled automatically, and is
user transparent.
The FPC is fabricated with National's advanced double-met­
al CMOS process and can operate at a frequency of
30 MHz.

Features
• Provides the NS32532 CPU with a complete interface

controller for high-speed floating-point arithmetic
• 15 Mflops peak performance for single and double pre­

cision ADD, SUB, MUL and MAC instructions with the
Weitek WTL 3164 FPDP

• Conforms to IEEE 754-1985 standard for Binary Float­
ing-POint Arithmetic

• Pipelined Slave Protocol with Data and Instruction
FIFOs

• Improved exception handling including support of Infini­
ties and Not a Number (NaN)

• Single (32-bit) and double (64-bit) precision operations
• Upward compatible with existing NS32081 software

base
• 20 MHz, 25 MHz and 30 MHz operating frequencies
• 1 ,...m double-metal CMOS technology
• 172-pin PGA package

I:::::::::==::::::::~~==::::~"IIP TA
'lIS

"lIP
COH1ROL

TL/EE/9421-1

FIGURE 1-1

3-128

1.0 PRODUCT INTRODUCTION

1.1 IEEE Features Supported

1.2 Operand Formats

1.2.1 Normalized Numbers

1.2.2 Zero

1.2.3 Reserved Operands

1.2.4 Integer Formats

1.2.5 Memory Representations

2.0 ARCHITECTURAL DESCRIPTION

2.1 Programming Model

2.1.1 Floating-Point Data Registers

2.1.2 Floating-Point Status Register (FSR)

2.1.2.1 FSR Mode Control Fields

2.1.2.2 FSR Status Fields

2.1.2.3 FSR Software Field (SWF)

2.1.2.4 FSR New Fields

2.1.2.5 FSR Default Values

2.2 Instruction Set

2.2.1 General Instruction Format

2.2.2 Addressing Modes

2.2.3 Floating-Point Instruction Set

2.3 Exceptions/TRAPs

3.0 FUNCTIONAL DESCRIPTION

3.1 Power and Grounding

3.2 Clocking

3.3 Resetting

3.4 Bus Operation

3.4.1 Operand Transfers

Table of Contents

3·129

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.5 Instruction Protocols

3.5.1 General Slave Protocol Sequence

3.5.2 Pipelined Slave Protocol Sequence

3.5.3 Status Word Register

3.5.4 Termination of Instruction (Not Including CMPf)

3.5.5 Byte Sex

3.5.6 Floating-Point Protocols

3.6 FPDP Interface

3.6.1 Controlling the FPDP

3.6.2 Instruction Control

3.6.3 "2 Cycle Mode" and "3 Cycle Mode"

3.6.4 FPDP Mode Control Registers SRO, SR1

3.6.5 IEEE Enables Register SR2

3.6.5.1 FPDP Status Lines (SO-S3)

3.6.6 FPC-FPDP Clocks

3.6.6.1 FPC Clock

3.6.6.2 FPDP Main Clock (WCLK)

3.6.6.3 Divide/Sqrt Unit Clock (DIVCLK)

4.0 DEVICE SPECIFICATIONS

4.1 NS32580 Pin Descriptions

4.1.1 Supplies

4.1.2 Input Signals

4.1.3 Output Signals

4.1.4 Input/Output Signals

4.2 Absolute Maximum Ratings

4.3 Electrical Characteristics

4.4 Switching Characteristics

4.4.1 Definitions

4.4.2 Timing Tables

4.4.2.1 Output Signal Propagation Delays

4.4.2.2 Input Signal Requirements

APPENDIX A: Compatibility of FPC-FPDP with
NS32081INS32381

APPENDIX B: Performance Analysis

z
(J)
Co)
N
U1
CD o

I
N
o
........
Z
(J)
Co)
N
U1
CD o

I
N
U1
........
Z
(J)
Co)
N
U1
CD o

I
Co)
o

•

C)
C") .
C)
co
."
C\I
C")

en
z
'" ."
C\I .
C)
co
."
C\I
C")

en
z
~
:!:
co
."
C\I
C")
U)
z

List of Illustrations
FPC Block Diagram•.. 1-1

Floating-Point Operand Formats ... 1-2
Single-Precision Operand E and F Fields .. 1-3

Double-Precision Operand E and F Fields ... 1-4
Integer Format•.............••....•...•... 1-5
Data Registers ... 2-1

FSR (Compatible Fields) .. 2-2

New FSR Mode Control Fields•...•.•................. 2-3
General Instruction Format .. 2-4
Index Byte Format•...•.. 2-5

Displacement Encodings .. 2-6
Floating-Point Instruction Formats .. 2-7

Recommended Supply Connections•.................•...............•.................................... 3-1
Power-On Reset Requirements•...•.. 3-2

General Reset Timing .. 3-3
Slave Processor Read Cycle from FPC .. 3-4
Slave Processor Write Cycle to FPC .. 3-5

System Connection Diagram .. 3-6
ID and Opcode Format .. 3-7

32-Bit General Slave Instruction Protocol .•.... " ..•..............•................• ,•.. 3-8
FPC Status Word Format .. 3-9

Byte Sex Connection Diagrams•.. 3-10
FPDP Control Word ... 3-11

FPDP Multiplier and ALU Bus Control .. 3-12
IEEE Enables Register {FPDP) .. 3-13
FPDP Status Timing•........•.......•..........•............................•.........•............ 3-14

Divide/Sqrt Clock DCLK2/DCLK3 ... 3-15
NS32580 Interface Signals .. 4-1

172-Pin PGA Package .. 4-2
Timing Specification Standard (Signal Valid after Clock Edge) .. 4-3

Timing Specification Standard (Signal Valid before Clock Edge) .. 4-4
Clock Waveforms•...•.............•........•.. .4-5
Power-On Reset ...•......................•.....•...... 4-6

Non-Power-On Reset. .. 4-7

Read Cycle from FPC .. .4-8
Write Cycle to FPC ... 4-9
Slave Processor Done Timing .. 4-1 0

FSSR Signal Timing ... 4-11
FPDP Status Signal Timing ... 4-12

FPDP Clock Signals Timing ... 4-13
FPDP Output Signals Timing .. 4-14

List of Tables
Sample F Fields•.....................••....................•.......•............... 1-1

Sample E Fields ... 1-2
Normalized Number Ranges ..•.................................... 1-3

Integer Fields .•..................•........•.............•......................•............................... 1-4
FSR Default State Summary ... 2-1

Series 32000 Family Addressing Modes ... 2-2
Exception Enabled/Disabled Summary ... , 2-3

32-Bit General Slave Instruction Protocol•.............•.. 3-1

Floating-Point Instruction Protocols ... 3-2

3-130

1.0 Product Introduction
The NS32580 Floating-Point Controller (FPC) provides com­
plete control for high speed floating-point operations be­
tween the NS32532 CPU and the Weitek WTL 3164 Float­
ing-Point Data Path (FPDP). The FPC is fabricated using
National high-speed CMOS technology and operates as a
slave processor for transparent expansion of the Series
32000 CPU's basic instruction set. The NS32580 is compat­
ible with the IEEE Floating-Point Formats by means of its
hardware and software features.

1.1 IEEE FEATURES SUPPORTED

a. Basic floating-point number formats

b. Add, subtract, multiply, divide, sqrt, and compare opera-
tions

c. Conversions between different floating-point formats

d. Conversions between floating-point and integer formats

e. Round floating-point number to integer (round to near­
est, round toward negative infinity and round toward
zero, in double- or single-precision)

f. Exception signaling and handling (invalid operation, di­
vide by zero, overflow, underflow and inexact)

g. Positive and negative infinity (Section 1.2.3)
Note: In addition to supporting the IEEE floating-point overflow. the

NS32580 supports integer conversion overflow.

Also, the FPC-FPDP can accept Not-a-Number (NaN) as an
operand and generate NaN as a result, but it does not con­
form to the IEEE 754-1985 Standard since it does not differ­
entiate between signaling and quiet Not-a-Number.

The remaining IEEE features are supported in the software
library. These items include:

a. Extended floating-point number formats

b. Mixed floating-point data formats

c. Conversions between basic formats, floating-point num­
bers and decimal strings

d. Remainder

e. Denormalized numbers

1.2 OPERAND FORMATS

The NS32580 FPC operates on two floating-point data
types-single precision (32 bits) and double precision (64
bits). Floating-point instruction mnemonics use the suffix F
(Floating) to select the single preciSion data type, and the
suffix L (Long Floating) to select the double precision data
type.

A floating-point number is divided into three fields, as shown
in Figure 1-2.

The F field is the fractional portion of the represented num­
ber. In Normalized numbers (Section 1.2.1), the binary point
is assumed to be immediately to the left of the most signifi­
cant bit of the F field, with an implied 1 bit to the left of the
binary point. Thus, the F field represents values in the range
1.0:;;; x:;;; 2.0, as shown in Table 1-1.

TABLE 1·1. Sample F Fields
FField Binary Value Decimal Value

000 ... 0 1.000 ... 0 1.000 ... 0
010 ... 0 1.010 ... 0 1.250 ... 0
100 ... 0 1.100 ... 0 1.500 ... 0
110 ... 0 1.110 ... 0 1.750 ... 0

t
Implied Bit

3-131

The E field contains an unsigned number that gives the bi­
nary exponent of the represented number. The value in the
E field is biased; that is, a constant bias value must be sub­
tracted from the E field value in order to obtain the true
exponent. The bias value is 011 ... 112, which is either 127
(single precision) or 1023 (double precision). Thus, the true
exponent can be either positive or negative, as shown in
Table 1-2.

TABLE 1·2. Sample E Fields
EField F Field Represented Value

011 ... 110 100 ... 0 1.5x2-1 =0.75
011 ... 111 100 ... 0 1.5x2o=1.50
100 ... 000 100 ... 0 1.5 x 21 = 3.00

Two values of the E field are not exponents. 11 ... 11 sig­
nals Not-a-Number (NaN) or Infinity (Section 1.2.3). 00 ...
00 represents the number zero (Section 1.2.2), if the F field
is also all zeroes, otherwise it signals a reserved operand
(Section 1.2.4).

The S bit indicates the sign of the operand. It is 0 for posi­
tive and 1 for negative. Floating-point numbers are in sign­
magnitude form, that is, only the S bit is complemented in
order to change the sign of the represented number.

1.2.1 Normalized Numbers

Normalized numbers are numbers which can be expressed
as floating-point operands, as described above, where the E
field is neither all zeroes nor all ones.

The value of a Normalized number can be derived by the
formula:

(-1)8 X 2(E-Bias) X (1 + F)

The range of Normalized numbers is given in Table 1-3.

1.2.2 Zero

There are two representatives for zero-positive and nega­
tive. Positive zero has all-zero F and E fields, and the S bit is
zero. Negative zero also has all-zero F and E fields, but its S
bit is one.

1.2.3 Reserved Operands

Infinity arithmetic is the limiting case of real arithmetic with
operands of arbitrarily large magnitudes. The NS32580
does not treat infinity as a reserved operand and in
ROUND/i, TRUNCfi and FLOORfi instructions, when the op­
erand is infinity, the FPC will return the TRAP "overflow"
instead of TRAP "INVALID OPERATION" with the Integer
Conversion Overflow Flag, IOF, set to "1".

Another special case regarding infinity occurs when dividing
infinity by zero. In this case NO TRAP "DIVIDE BY ZERO"
will be signaled and infinity will be returned as the result.
See Figures 1-3 and 1-4.

The NS32580 FPC treats only Denormalized numbers as
reserved operands if the Floating-Point Status Register
ROE bit is set (Section 2.1.2). Denormalized numbers have
all zeroes in their E fields and non-zero values in their F
fields.

The NS32580 FPC causes an Invalid Operation Trap (Sec­
tion 2.1.2.2) if it receives a reserved operand, unless the
operation is Simply a move (without conversion).

z en
Co)
N
U1
0)
o .
N
o
Z en
Co)
N
U1
0)

9
N
U1
Z en
Co)
N
U1
0)
o • Co)
o

•

1.0 Product Introduction (Continued)

Single Precision
31 30 23 22 0

Is I E I F I
1 8 23

Double Precision
63 62 52 51 0

151 E I F I
1 11 52

FIGURE 1-2. Floating-Point Operand Formats

TABLE 1-3. Normalized Number Ranges
Single Precision Double Precision

Most Positive 2127 x (2 - 2-23) 21023 x (2 - 2-52)
= 3.40282346 x 1038 = 1.7976931348623157 X 10308

Least Positive 2-126 2- 1022
= 1.17549436 X 10-38 = 2.2250738585072014 X 10-308

Least Negative -(2-126) -(2- 1022)
= -1.17549436 x 10-38 = -2.2250738585072014 X 10-308

Most Negative -2127 X (2 - 2-23) -21023 X (2 - 2-52)
= -3.40282346 X 1038 = -1.7976931348623157 X 10308

Nole: The values given are extended one full digit beyond their represented accuracy to help in generating rounding and conversion algorithms.

E F Value Name Comments

255 NatO None NaN ROE = 0 -+ Reserved Operand
ROE = 1 -+ NaN Returned as Result

255 0 (-1)S • Infinity Infinity Not a Reserved Operand
1-254 Any (-1)s' 2e- 127 ' (1.1) Normalized Number

0 NatO (-1)"' 2- 126 ' (O.f) Denormalized Number Reserved Operand
0 0 (-1)"' 0 Zero

FIGURE 1-3. Single-Precision Operand E and F Fields

E F Value Name Comments

2047 NatO None NaN ROE = 0 -+ Reserved Operand
ROE = 1 -+ NaN Returned as Result

2047 0 (-1)" • Infinity Infinity Not a Reserved Operand
1-2046 Any (-1)" • 2e-1023 • (1.t) Normalized Number

0 NatO (-1)" • 2-1022 • (O.t) Denormalized Number Reserved Operand
0 0 (-1)"'0 Zero

FIGURE 1-4. Double-Precision Operand E and F Fields

3-132

1.0 Product Introduction (Continued)

1.2.4 Integer Formats

The FPC-FPDP performs conversions between integer and
floating point operands. Integers are accepted and generat­
ed by the FPC-FPDP as two's complement values of byte
(8 bits), word (16 bits) or double-word (32 bits).

n-1

S

S

0

1

FIGURE 1-5. Integer Format

TABLE 1-4. Integer Fields

Value Name

I Positive Integer

1- 2n Negative Integer

o

n represents number of bits in the word, 8 for byte, 16 for
word and 32 for double-word.

The FPDP supports only 32-bit integers, therefore, the FPC
has to sign extend 8- and 16-bit integers prior to integer to
floating-point number conversion.

In floating to integer conversion, FPC has to check possible
integer overflow, in case of 8- and 1S-bit integer formats.

1.2.5 Memory Representations

The NS32580 FPC does not directly access memory. How­
ever, it is cooperatively involved in the execution of a set of
two-address instructions with the NS32532 CPU. The CPU
determines the representation of operands in memory.

In the Series 32000 family of CPUs, operands are stored in
memory with the least Significant byte at the lowest byte
address. The only exception to this rule is the Immediate
addressing mode, where the operand is held (within the in­
struction format) with the most significant byte at the lowest
address.

2.0 Architectural Description
2.1 PROGRAMMING MODEL

The Series 32000 architecture includes nine registers; eight
data registers and one floating-point status register.

2.1.1 Floating-Point Data Registers (LO-L7)

There are eight registers (LO-L7) in the FPDP for providing
high-speed access to floating-point operands. Each is 64
bits long. A floating-point register is referenced whenever a
floating-point instruction uses the Register addressing mode
(Section 2.2.2) for a floating-point operand. All other Regis­
ter mode usages (i.e., integer operands) refer to the General
Purpose Registers (RO-R7) of the CPU, and the FPU trans­
fers the operand as if it were in memory.
Note: These registers are all upward compatible with the 32·bil NS32081

registers, (FO-F7), such that when the Register addressing mode is
specified for a double precision (64·bit) operand. a pair of 32·bit regis·
ters holds the operand. The programmer specifies the even register of
the pair which contains the least significant half of the operand and
the next consecutive register contains the most significant half.

2.1.2 Floating-Point Status Register (FSR)

The Floating-Point Status Register selects operating modes
and records any exceptional condition encountered during
execution of a floating-point operation. The FPC FSR con­
tains all the NS32081INS32381 FSR bits and additional
fields for better exception handling. The FSR is cleared to
all zeros during reset.

3-133

DATA
+- 64 -+-32- +-32-

I F1 LOMSDW LOLSDW FO I
L1 MSDW L1 LSDW

I F3 L2MSDW L2LSDW F2 I
L3MSDW L3 LSDW

I F5 L4MSDW L4LSDW F4 I
L5MSDW L5LSDW

I F7 LSMSDW L6LSDW F6 I
L7MSDW L7LSDW

LSDW Least Significant Double Word

MSDW Most Significant Double Word

FIGURE 2-1. Data Registers

2.1.2.1 FSR Mode Control Fields

The FSR mode control fields select FPC operation modes.
The meanings of the FSR mode control bits are given be­
low:

ROUNDING MODE (RM bit 8-7). This field selects the
rounding method. Floating-point results are rounded when­
ever they cannot be represented exactly. The rounding
modes are:

00 Round to nearest value. The value which is nearest to
the exact result is returned. If the result is exactly half­
way between the two nearest values the even value
(Isb = 0) is returned.

01 Round toward zero. The nearest value which is closer
to zero or equal to the exact result is returned.

10 Round toward positive infinity. The nearest value which
is greater than or equal to the result is returned.

11 Round toward negative infinity. The nearest value
which is less than or equal to the exact result is re­
turned.

UNDERFLOW TRAP ENABLE (UEN bit 3). If this bit is set,
the FPC requests a trap whenever a result is too small in
absolute value to be presented as a Normalized number. If it
is not set, FPC returns a result of exactly zero.

INEXACT RESULT TRAP ENABLE (lEN bit 5). If this bit is
set, the FPC requests a trap whenever the result of an oper­
ation cannot be represented exactly in the operand format
of the destination (and no other exception occurred in the
same operation) or if the result of an operation overflows
and the overflow trap is disabled. If lEN is not set, the result
is rounded according to the selected rounding mode.

2.1.2.2 FSR Status Fields

The FSR Status Fields record exceptional conditions en­
countered during floating-point data processing. The mean­
ing of the FSR status bits are given below:

TRAP TYPE (TT bits 2-0). This 3-bit field indicates the rea­
son for TRAP (FPU) requested by the FPC. The TT field is
loaded with zero whenever any floating-point instruction ex­
cept LFSR or SFSR completes without exception. It is also
set to zero by a reset or by writing zero into it with the LFSR
instruction. The TT field is updated regardless of the setting
of the exception enable bits.

Z
tn
(0)
I\)
en
co
o • I\)
o
Z
tn
(0)
I\)
en
co
o • I\)
en
Z
tn
(0)
I\)
en
co
o · (0)
o

•

Qr---~
C") .
Q
co
II)
N
C")
rn
z
U=i
N
6 co
II)
N
C")

rn
z
~
6 co
II)
N
C")
rn
z

2.0 Architectural Description (Continued)

31 17 16 15 98 7 6 5 4 3 2 0

NewFields SWF

FIGURE 2-2. FSR (Compatible Fields)

000 No exceptional condition occurred.

001 Underflow. This condition occurs whenever a result is
too close to zero to be represented as a Normalized
number.

010 Overflow. This condition occurs whenever a result is
too large in absolute value to be represented (float or
integer).

011 Divide by Zero. This condition occurs whenever an
attempt was made to divide a non-zero value by zero.

100 Illegal Instruction. An illegal or undefined Floating­
Point instruction was passed to the FPC. If the T bit in
the Status Word Register (SWR) is a "0", then it indi­
cates that an illegal instruction was passed to the
FPC. If the T bit in the SWR is a "1 ", then it indicates
that an undefined instruction was passed to the FPC.

101 Invalid Operation. This condition occurs if:
1. NaN is used as a floating-point operand by any in­

struction except MOVf and the Reserved Operand
Enable (ROE) bit in the FSR is disabled.

2. DNRM is used as a floating-point operand by any
instruction except MOVf.

3. Both operands of the DIVf instruction are zero.
4. Sqrt when the floating-point number is negative.
5. Infinity plus negative infinity, infinity minus infinity.

110 Inexact Result. This condition occurs whenever the
result of an operation cannot be exactly represented
in the precision of the destination (and no other ex­
ception occurred in the same operation) or if the result
of an operation overflows (floating-point or integer
conversion overflow) and the overflow trap is dis­
abled.

111 Reserved.

UNDERFLOW FLAG (UF bit 4). This bit is set by the FPC
whenever a result is too small in absolute value to be repre­
sented as a Normalized number. Its function is not affected
by the state of the UEN bit. The UF bit is "sticky" therefore
it can be cleared only by writing a zero into it with the Load
FSR instruction or by a hardware reset.

INEXACT RESULT FLAG (IF bit 6). This bit is set by the
FPC whenever the result of an operation must be rounded
to fit within the destination format (and no other exception
occurred in the same operation) or if the result of an opera­
tion overflows and the overflow trap is disabled. This situa­
tion applies both to floating-point and integer destinations.
The IF bit is "sticky" therefore it is cleared only by writing a
zero into it with the Load FSR instruction or by a hardware
reset.

REGISTER MODIFY BIT (RMB BIT 16). This bit is set by the
FPC whenever writing to a floating-point data register. The
RMB bit is cleared only by writing a zero with the LFSR
instruction or by a hardware reset. This bit can be used in
context switching to determine whether the FPC registers
should be saved.

2.1.2.3 FSR Software Field (SWF)

Bits 15-9 of the FSR hold and display any information writ­
ten to them using the LFSR and SFSR instructions, but are
not otherwise used by FPC hardware. They are reserved for
use with NSC floating-point extension software.

3-134

2.1.2.4 FSR New Fields

New fields were added to the FSR for better exception han­
dling. In the FPC, the user can enable or disable each ex­
ception or combination of exceptions by using new "enable
bits" implemented in the FSR. After reset the new fields are
loaded to the default values (compatible with NS32081). il­
legal Instruction always causes TRAP and can't be dis­
abled.

CONTROL BITS

RESERVED OPERANDS ENABLE (ROE bit 17). If this bit is
cleared, the FPC requests an Invalid Operation trap when­
ever a NaN has been detected by the FPC. Infinities are not
reserved operands in the FPC. When ROE is disabled, the
FPC does not generate reserved operands as results. De­
normalized Numbers (DNRM) are always treated as re­
served operands, except for the case of the SQRTf instruc­
tion. When calculating the square root of the negative de­
normalized number, the TRAP "INVALID OPERATION" will
occur and the Reserved Operand Flag ROF will be "0"
while Invalid Operation Flag IOF will be "1". If Invalid Opera­
tion exception is disabled, the ROE bit is overwritten inter­
nally (the FPC does not change the ROE bit in the FSR) and
the FPC can generate NaN as a result. ROE bit does not
affect MOVf instruction.

INVALID OPERATION ENABLE (IVE bit 18). If this bit is
cleared, the FPC requests a trap whenever the operation is
invalid. If this bit is set to "1", the trap is disabled and if
invalid operation occurred, NaN will be delivered as result.

DIVIDE BY ZERO ENABLE (DZE bit 19). If this bit is cleared
the FPC requests a trap whenever an attempt is made to
divide by zero. If this bit is set the trap is disabled and if
divide by zero occurred, infinity will be delivered as result.

OVERFLOW ENABLE (OVE bit 20). If this bit is cleared, the
FPC requests a trap whenever a floating-point result is too
big in absolute value to be represented. If this bit is set, the
overflow trap is disabled and if overflow occurred, Infinity or
Maximum Number will be delivered as result.

INTEGER CONVERSION OVERFLOW ENABLE (IOE bit
21). If this bit is cleared, the FPC requests a trap whenever
an Integer result is too big to be represented. If this bit is
set, the integer conversion overflow is disabled and if inte­
ger conversion overflow occurred, Max/Min integer will be
delivered as result.

STATUS BITS

RESERVED OPERAND FLAG (ROF bit 22). This bit is set
by the FPC whenever reserved operand DNRM or NaN
(when ROE is cleared) is selected by the FPC. The ROF bit
is "sticky" and can be cleared only by writing a zero with the
Load FSR instruction or by a hardware reset.

INVALID FLAG (IVF bit 23). This bit is set by the FPC when­
ever the operation is invalid. The IVF bit is "sticky" and can
be cleared only by writing a zero with the Load FSR instruc­
tion or by a hardware reset.

DIVIDE BY ZERO FLAG (DZF bit 24). This bit is set by the
FPC whenever an attempt is made to divide a non-zero val­
ue by zero. The DZF bit is "sticky" and can be cleared only
by writing a zero with the Load FSR instruction or by a hard­
ware reset.

2.0 Architectural Description (Continued)

31 27 26 25 24 23 22 21 20 19 18 17 16

Reserved IOF OVF DZF IVF ROF IOE OVE DZE IVE ROE I RMB I
FIGURE 2-3. New FSR Mode Control Fields

OVERFLOW FLAG (OVF bit 25). This bit is set by the FPC
whenever a floating-paint result is too large in absolute val·
ue to be represented. The OVF bit is "sticky" and can be
cleared only by writing a zero with the Load FSR instruction
or by a hardware reset.

INTEGER CONVERSION OVERFLOW FLAG (IOF bit 2S).
This bit is set by the FPC whenever an integer result is too
large in absolute value to be represented. The IOF bit is
"sticky" and can be cleared only by writing a zero with the
Load FSR instruction or by a hardware reset.

RESERVED FIELD

Bits 31-27 in the FSR are reserved by NSC for future use.
User should not use this field.

2.1.2.5 FSR Default Values

During Reset the FSR is loaded to a default value (see Ta­
ble 2-1). The default values for the FSR represent upward
compatibility of the FPC-FPDP with the NS32081. The user
can change the default values by loading the FSR register
with new values.

TABLE 2-1. FSR Default State Summary

Bit Name
Default

Default State
Value

TI(bits2-0) 0 No exceptional condition
occurred.

UEN(bit3) 0 Underflow trap disabled.

UF (bit 4) 0 Underflow flag is cleared.

lEN (bit 5) 0 Inexact result trap disabled.

IF (bitS) 0 Inexact flag is cleared.

RM (bits 8-7) 0 Round to nearest.

SWF (bits 15-9) 0 Undefined

RMB (bit 1S) 0 RMB flag is cleared.

ROE(bitI7) 0 FPC requests a trap whenever
an attempt is made to use
reserved operand except for
MOVf instruction.

IVE (bit 18) 0 FPC requests a trap whenever
the operation is invalid.

DZE (bit 19) 0 FPC requests a trap whenever
an attempt is made to divide by
zero.

OVE(bit20) 0 FPC requests a trap whenever a
floating-point result is too big to
be represented.

IDE (bit 21) 0 FPC requests a trap whenever
an integer conversion result is
too big to be represented.

ROF(bit22) 0 ROF flag is cleared.

3-135

TABLE 2-1. FSR Default State Summary (Continued)

Bit Name
Default

Default State
Value

IVF(bit23) 0 IVF flag is cleared.

DZF (bit 24) 0 DZF flag is cleared.

OVF (bit 25) 0 OVF flag is cleared.

IOF(bit2S) 0 IOF flag is cleared.

RESERVED 0 Reserved field is c'2ared.
(bits 31-27)

2.2 INSTRUCTION SET

2.2.1 Generaiinstruction Format

Figure 2-4 shows the general format of a Series 32000 in­
struction. The Basic Instruction is one to three bytes long
and contains the opcode and up to two 5-bit General Ad­
dressing Mode (Gen) fields. Following the Basic Instruction
field is a set of optional extensions, which may appear de­
pending on the instruction and the addressing modes se­
lected.

The only form of extension issued to the NS32580 FPC is
an Immediate operand. Other extensions are used only by
the CPU to reference memory operands needed by the
FPC.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index­
ing. See Figure 2-5.

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select­
ed addressing modes. Each Displlmm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded within the top bits of that
field, as shown in Figure 2-6, with the remaining bits inter­
preted as a signed (two's complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi­
cant byte first.

Some non-FPC instructions require additional, "implied" im­
mediates and/or displacements, apart from those associat­
ed with addressing modes. Any such extensions appear at
the end of the instruction, in the order that they appear with­
in the list of operands in the instruction definition.

2.2.2 Addressing Modes

The Series 32000 Family CPUs generally access an oper­
and by calculating its Effective Address based on informa­
tion available when the operand is to be accessed. The
method to be used in performing this calculation is specified
by the programmer as an "addressing mode."

Addressing modes in the Series 32000 family are designed
to optimally support high-level language accesses to vari­
ables. In nearly all cases, a variable access requires only

z en
c.:I
I\)
C11 co
o

I
I\)
o
z
en
c.:I
I\)
C11
co o

I
I\)
C11
z en
c.:I
I\)
C11
co o

I
c.:I o

•

2.0 Architectural Description (Continued)
OPTIONAL BASIC

EXTENSIONS INSTRUcnON

rr----------------~A~------------------~\r~--------~A~--------,

DISP2 DISPI DISPZIDISPI
I I
I I
I I

GEN I GEN I
IMPUED INDEX INDEX I I

IMMEDIATE DISP DISP ADDR I ADDR I OPCODE BYTE BYTE MODE I MODE I
OPERAND(SI I I

A I B I

IMM IMM
I I

: I
I

l ~ ~

TLlEE/9421-2

FIGURE 2·4. General Instruction Format

one addressing mode within the instruction which acts upon
that variable. Extraneous data movement is therefore mini­
mized.

Series 32000 Addressing Modes fall into nine basic types:

Register: In floating-point instructions, these addressing
modes refer to a Floating-Point Register (FO-F7) or (LO­
L7) if the operand is of a floating-point type. Otherwise, a
CPU General Purpose Register (RO-R7) is referenced. See
Section 2.1.1.

Register Relative: A CPU General Purpose Register con­
tains an address to which is added a displacement value
from the instruction, yielding the Effective Address of the
operand in memory.

7

GEN. ADDR. MDDE

TLlEE/9421-3

FIGURE 2·5. Index Byte Format

Memory Space: Identical to Register Relative above, ex­
cept that the register used is one of the dedicated CPU
registers PC, SP, S8 or FP. These registers point to data
areas generally needed by high-level languages.

Memory Relative: A pointer variable is found within the
memory space pOinted to by the CPU SP, S8 or FP register.
A displacement is added to that pOinter to generate the Ef­
fective Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written. Floating-point operands as well as integer operands
may be specified using Immediate mode.

Absolute: The address of the operand is specified by a
Displacement field in the instruction.

External: A pOinter value is read from a specified entry of
the current Link Table. To this pOinter value is added a dis­
placement, yielding the Effective Address of the operand.

3-136

Top of Stack: The currently-selected CPU Stack Pointer
(SPO or SP1) specifies the location of the operand. The op­
erand is pushed or popped, depending on whether it is writ­
ten or read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex­
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen­
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.

The following table, Table 2-2, is a brief summary of the
addressing modes. For a complete description of their ac­
tions, see the Series 32000 Instruction Set Reference Man­
ual.

SIGNED DISPLACEMENT

7

7 0

1 1 I
r:c.",f..'t\'\

~f..\\\\'''~ .. ,'iJ

TLIEE/9421-4

FIGURE 2·6. Displacement Encodlngs

2.0 Architectural Description (Continued)

TABLE 2-2. Series 32000 Family Addressing Modes
Encoding

REGISTER

Mode Assembler Syntax

00000 Register 0
00001 Register 1
00010 Register 2
00011 Register 3
00100 Register 4
00101 Register 5
00110 Register 6
00111 Register 7

REGISTER RELATIVE

01000 Register 0 relative
01001 Register 1 relative
01010 Register 2 relative
01011 Register 3 relative
01100 Register 4 relative
01101 Register 5 relative
01110 Register 6 relative

01111 Register 7 relative

MEMORY SPACE

11000 Frame memory

11001 Stack memory
11010 Static memory

11011 Program memory

MEMORY RELATIVE

10000
10001
10010

IMMEDIATE

10100

ABSOLUTE

10101

EXTERNAL

10110

TOP OF STACK

10111

SCALED INDEX

11100

11101
11110

11111

10011

Frame memory relative
Stack memory relative

Static memory relative

Immediate

Absolute

External

Top of Stack

I ndex, bytes

Index, words
Index, double words

Index, quad words

(Reserved for Future Use)

RO, FO or LO
R1, F1 orL1
R2, F2 or L2

R3, F3 or L3
R4, F40rL4
R5, F5 or L5

R6, F6 or L6
R7, F7 or L7

disp(RO)
disp(R1)
disp(R2)
disp(R3)
disp(R4)

disp(R5)
disp(R6)

disp(R7)

disp(FP)

disp(SP)
disp(SB)

* +disp

disp2(disp1 (FP))
disp2(disp1 (SP))
disp2(disp1 (SB))

value

@disp

EXT (disp1) + disp2

TOS

mode[Rn:B]
mode[Rn:W]

mode[Rn:D]
mode[Rn:Q]

3-137

Effective Address

None: Operand is in the specified register.

Disp + Register.

Disp + Register; "SP" is either
SPO or SP1, as selected in PSR.

Disp2 + Pointer; Pointer found at
address Disp1 + Register. "SP" is

either SPO or SP1, as selected in PSR.

None: Operand is issued from

CPU instruction queue.

Disp.

Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.

Top of current stack, using either
User or Interrupt Stack Pointer,

as selected in PSR. Automatic
Push/Pop included.

Mode + Rn.

Mode + 2 x Rn.
Mode + 4 X Rn.

Mode + 8 x Rn.
"Mode" and "n" are contained
within the Index Byte.

z en w
to.)
U1
00
o

I
to.)
o z en
w
to.)
U1
00
o
N
U1 z en
w
to.)
U1
00
o

I
W
o

2.0 Architectural Description (Continued)

2.2.3 Floating-Point Instruction Set

The NS32580 FPC-FPDP instructions occupy formats 9, 11
and 12 of the Series 32000 Family instruction set (Figure
2-7). A list of all Series 32000 family instruction formats is
found in the applicable CPU data sheet.
Certain notations in the following instruction description ta­
bles serve to relate the assembly language form of each
instruction to its binary format in Figure 2-7.

23

I I I I
. aenl

iii
gen2

Format 9

OPERATION WORD

Format 11

I I I iii I I
I 0 0 1 1 1 1 1 0 I

'\ ,

10 BYTE

TUEE/9421-5

B 17 0 16115 10 I , ,. 0 i 1 i 1 i ,.,.,. 0 I I I I I I I
gan2 • op

OPERATION WORD

Format 12

H ,

10 B'YTE

TLlEE/9421-6

TL/EE/9421-7

FIGURE 2-7. Floating-Point Instruction Formats

The Format column indicates which of the three formats in
Figure 2-7 represents each instruction.

The Op column indicates the binary pattern for the field
called "op" in the applicable format.

The Instruction column gives the form of each instruction as
it appears in assembly language. The form consists of an
instruction mnemonic in upper case, with one or more suffix­
es (i or f) indicating data types, followed by a list of oper­
ands (gen1, gen2).

An i suffix on an instruction mnemonic indicates a choice of
integer data types. This choice affects the binary pattern in
the i field of the corresponding instruction format (Figure 2-7)
as follows:

Suffix I
B
W
D

Data Type
Byte
Word
Double Word

I Field
00
01
11

An f suffix on an instruction mnemonic indicates a choice of
floating-point data types. This choice affects the setting of
the f bit of the corresponding instruction format (Figure 2-7)
as follows:

Suffix f
F
L

Data Type
Single Precision
Double Precision (Long)

f Bit

o
An operand designation (gen1, gen2) indicates a choice of
addressing mode expressions. This choice affects the bina­
ry pattern in the corresponding gen1 or gen2 field of the

3-138

instruction format (Rgurs 2-7). Refer to Table 2·2 for the
options available and their patterns.
Further details of the exact operations performed by each
instruction are found in the Series 32000 Instruction Set
Reference Manual.

Movement and Conversion
The following instructions move the gen1 operand to the
gen2 operan~, leaving the gen1 operand intact.

Format Op Instruction Description
11 0001 MOVf gen1, gen2 Move without

conversion.
9 010 MOVLF gen1, gen2 Move, converting

from double
precision to
single precision.

9

9

9

9

011 MOVFL gen1, gen2 Move, converting

000 MOVif

from single
preCision to
double
precision.

gen1, gen2 Move, converting
from any integer
type to any
floating-point
type.

100 ROUNDfi gen1, gen2 Move, converting
from floating­
point to the
nearest integer.

101 TRUNCfi gen1, gen2 Move, converting
from floating­
point to the
nearest integer
closer to zero.

9 111 FLOORfi gen1, gen2 Move, converting
from floating­
point to the
largest integer
less than or
equal to its
value.

Note: The MOVLF instruction f bit must be 1 and the i field must be 10.
The MOVFL instruction f bit must be 0 and the i field must be 11.

Arithmetic Operations
The following instructions perform floating-point arithmetic
operations on the gen 1 and gen2 operands, leaving the re-
sult in the gen2 operand.

Format Op Instruction Description
11 0000 ADDf gen1,gen2 Add gen1 to gen2.
11 0100 SUBf gen1,gen2 Subtract gen 1

fromgen2.
11 1100 MULf gen1,gen2 Multiply gen2 by

gen1.
11 1000 DIVf gen1,gen2 Dividegen2

bygen1.
11 0101 NEGf gen1,gen2 Move negative

of gen1 to gen2.
11 1101 ABSf gen1,gen2 Move absolute

value of gen1 to
gen2.

,--, z
2.0 Architectural Description (Continued)

Format Op Inl3truction Description
(N) 12 1010 MACf genl, gen2 Move (genl"gen2)

+ L1 or Fl to L1
or F1 with two
rounding errors.

(N) 12 0001 SQRTI genl, gen2 Move the square
root of gen 1 to
gen2.

(N): Indicates NEW instruction.

Comparison

The compare instruction compares two floating-point oper­
ands, sending the result to the CPU PSR Z, Nand L bits for
use as condition codes.

Format Opcode
11 0010

Instruction Description
CMPf genl, gen2 Compare genl

to gen2.

There are four possible results to the CMPf instruction (with
normal operands):
Operands are equal

Operand1 is less than
Operand2

Z bit is set N, L bits are cleared

N, L,Zbits
are cleared

Operand2 is less than N bit is set L, Z bits are cleared
Operand1

Unordered (when
at least one
operand is NaN
and ROE is set)

L bit is set N, Z bits are cleared

Floating-Point Status Register Access
The following instructions load and store the FSR as a 32-
bit integer. If the user specifies a register (genl in LFSR or
gen2 in SFSR) it will be a general purpose register in the
CPU.

Format Opcode Instruction Description
9 001 LFSR genl Load FSR with the

content of gen1.
(gen2 field = 0)

9 110 SFSR gen2 Store FSR in gen2.
(gen1 field = 0)

Note: All instructions support all of the NS32000 family data formats (for
external operands) and all addressing modes are supported.

3-139

2.3 EXCEPTIONS/TRAPS
An exception for the FPC is a special floating-paint condi­
tion with a default handling scheme. Seven types of excep­
tions are supported:

1) Underflows

2) Overflows

3) Divisions by zero

4) Illegal Instructions

5) Invalid Operations

6) Inexact results

7) Undefined Instructions

The FPC has improved exception handling. Except for ille­
gal and Undefined Instructions, the user can control all of
the exception types. In addition, there are some specific
exceptions that the user can control:

Overflows -Floating-Point overflow
Integer conversion overflow

Invalid Operations -Reserved Operands

Each exception or type that is controlled by the user can be
set-up to cause an interrupt or to return a result without an
interrupt on the occurrence of the exception. The interrupt is
called a TRAP and is signaled by the FPC pulsing the FSSR
line for one clock cycle. Illegal and Undefined instructions
are not under control of the user and will always cause a
TRAP if they are passed to the FPC.

Enabling an exception will cause a TRAP whenever the ex­
ception occurs and disabling an exception will return a result
without a TRAP.

When the FPC TRAPS it sets the Q bit in the status word
register. The CPU responds by reading the status word reg­
ister while applying status (11110) on the status lines. If the
CPU sent the FPC ID with an undefined opcode, the T bit in
the status word register would also be set by the FPC indi­
cating a TRAP (UND). If the T bit is clear aiter the TRAP it
indicates a TRAP(FPU) and the reason for the TRAP re­
sides in the FSR TRAP TYPE field. A trapped instruction
returns no result (also if the destination is an FPDP register)
and does not affect the CPU PSR.

In addition there is a flag bit, for each exception under user
control, which will mark the occurrence of the exceptional
condition whether or not the exception is enabled or dis­
abled. These bits in the FSR can be used for polling the
exception status while TRAPS are disabled.

Floating-point instructions that end with an enabled excep­
tion will trap, activating the FSSR signal, but will not update
the destination register. In this case, the FPC will ABORT
the instruction that ended with the exception to prevent de­
struction of the data in the destination register. Instructions
that ended with a disabled exception update the destination
register with the default result.

tJ)
Co)
N
U1
Q)
C) · N
C)
Z
tJ)

~
U1
Q)
C) · N
U1
Z
tJ)
Co)
N
U1
Q)
C) · Co)
C)

«:)
C')

:i
It)
N
C')
(I)
Z
It)
N .
«:)
CQ
It)
N
C')
(I)
Z
«:)
N .
«:)
CQ
It)
N
C')

en
z

2.0 Architectural Description (Continued)

TABLE 2·3. Exception Enabled/Disabled Summary

Q = 1;
Exception Occurred Enabled By

Trap Type
Disabled By

Underflow UEN = 1 001 UEN = 0

Floating·Point Overflow OVE= 0 010 OVE = 1
lEN = 0

OVE = 1
110

lEN = 1

Integer Conversion Ov. IOE = 0 010 IOE= 1
·IEN = 0

IOE = 1
110

lEN = 1

Divide by Zero DZE = 0 011 DZE = 1

Illegal Instruction Always Tbit = o and Cannot be
Enabled 100 Disabled

Invalid Operation IVE = 0 101 IVE = 1

Reserved Op. (NaN) ROE = 0 101 ROE = 0
IVE = 0 IVE= 1

Reserved Op. (NaN) 000 ROE = 1
IVE = X

Reserved Op. (DNRM) ROE = X 101 ROE = X
IVE = 0 IVE = 1

Inexact Result lEN = 1 110 lEN = 0

Undefined Instruction Always Tbit = 1 and Cannot be
Enabled 100 Disabled

CMPf(NaN) ROE = 0 101 ROE = 0
IVE = 0 IVE = 1

CMPf(NaN) 000 ROE = 1
IVE = X

CMPf(DNRM) ROE =X 101 ROE = X
IVE = 0 IVE = 1

x ~ Don't Care

3·140

Q= 0;
Default Flag Bits

Result Returned

Zero UF = 1

Infinity or OVF = 1
Max NRM Number

OVF = 1
IF = 1

Max or Min IOF= 1
Integer

IOF:. 1
IF = 1

Infinity DZF = 1

No Result No Flags
Affected

NaN IVF = 1

NaN ROF = 1
IVF = 1

NaN No Flags

Undefined ROF = 1
IVF = 1

Correctly IF = 1
Rounded Result

No Result No Flags
Affected

Status Word
Register

L=1,N=Z=0 ROF = 1
IVF = 1

L=1,N=Z=0 No Flags
Affected

N, L,Z ROF = 1
Undefined IVF = 1

r--, Z

3.0 Functional Description
(VCC PLANE)

+5V

VCCLl

VCCL2

VCCL3

VCCL4

VCCL5

VCCL6

VCCL7

VCCBl

VCCB2

VCCB3

VCCB4

VCCB5

VCCB6

VCCB7

VCCBB

NS32580

(GND PLANE)
TL/EE/9421-8

3.1 POWER AND GROUNDING

FIGURE 3-1. Recommended Supply Connections

3.2 CLOCKING

The NS325BO requires a single 5V power supply, applied on
15 pins. The logic voltage pins (VCCL1 to VCCL7) supply
the power to the on-chip logic. The buffer voltage pins
(VCCB1 to VCCBB) supply the power to the output drivers of
the chip. All the voltage pins should be connected together
by a power (Vee) plane on the printed circuit board.

The NS325BO grounding connections are made on 26 pins.
The logic ground pins (GNDL 1 to GNDL 13) are the ground
pins for the on-chip logic. The buffer ground pins (GNDB1-
GNDB13) are the ground pins for the output drivers of the
chip. All the ground pins should be connected together by a
ground plane on the printed circuit board.

Both power and ground connections are shown in Figure
3-1.

3-141

The NS325BO FPC requires a single-phase TTL clock input
on its BCLK pin (pin C10) and an inverted TTL clock input
on its BCLK pin (pin BB). When the FPC is connected to a
NS32532 CPU these signals are provided directly from the
CPU's BCLK and BCLK output signals.

3.3 RESETTING

The RST pin serves as a reset for on-chip logic. The FPC
may be reset at any time by pulling the RST pin low for at
least 64 clock cycles. Upon detecting a reset, the FPC ter­
minates instruction processing, resets its internal logic,
clears the FSR to all zeroes, and clears the FIFOs.

On application of power, RST must be held low for at least
50 fJos after Vee is stable. This ensures that all on-chip volt­
ages are completely stable before operation. See Figures
3-2 and 3-3.

tn w
I\)
U1
co
9
I\)
o
Z
tn w
I\)
U1
co
o • I\)
U1
Z
tn w
I\)
U1
co o . w
o

•

3.0 Functional Description (Continued)

BCLK[._-+-~ s-IL..JL
I-- 2: 64 Clo;aCK

RST [
CYCLES _

1----2: 50}'1

Tl/EE/9421-9

FIGURE 3-2. Power-On Reset Requirements

TLlEE/9421-10

FIGURE 3-3. General Reset Timing

3.4 BUS OPERATION

Instructions and operands are passed to the NS325BO FPC
with slave processor bus cycles. Each bus cycle transfers
one double·word (32 bits) to or from the FPC. During all bus
cycles, the SPC line is driven by the CPU as an active low
data strobe, and the FPC monitors pins STO-ST4 to keep
track of the sequence (protocol) established for the instruc·
tion being executed. This is necessary in a virtual memory
environment, allowing the FPC to retry an aborted instruc·
tion.

A bus cycle is initiated by the CPU, which asserts the proper
status on STO-ST4 and pulses SPC low. The status lines
are sampled by the FPC on the rising edge of BCLK in the
T2 state. Figures 3·4 and 3-5 illustrate these sequences.

3.4.1 Operand Transfers

The CPU fetches operands from memory, aligns them (if
needed) and sends them to the slave (with status h'1 D) as a
32·bit transfer. If the operand is double·precision the Less
significant half is transferred first (in 32000 mode). The FPC
can not access the memory directly.

BClK

STO-ST.

(NOTE 2)

DO-D3t - - - - - - - - - - - - - - ~V~AU~D~FR~OM~FPSC t>---
Note 1: FPC samples CPU status here. TLlEE/9421-11
Note 2: CPU samples FPC data here.

FIGURE 3·4. Slave Processor Read Cycle from FPC

3-142

BCLK

~~4 ----~---4-----n-+---4----

(NOTE 3)

oo-~, --------~c:::::~::~)
Note 1: FPC samples CPU status here.
Note 2: FPC samples l!J5O here.
Note 3: FPC samples data here.

Tl/EE/9421-12

FIGURE 3-5. Slave Processor Write Cycle to FPC

From the slave processor point of view there are four possi·
ble combinations of locations for operands: (For special
cases see next paragraph.)

Register to Register Instructions--Both operands reside in
the register file inside the FPDP. No operand fetch or trans·
fer from memory is needed.

Memory to Register-The source operand is in memory,
therefore the CPU will transfer the operand (one 32-bit
transfer for single·precision and two 32·bit transfers for dou­
ble·precision). The result is going to the floating,point regis·
ter in the register file located inside the FPDP.

Register to Memory-The source operand resides inside
the FPDP. If the instruction is monadic (one operand) the
CPU will not transfer the operand to the FPC before the
beginning of the instruction (all the information needed to
start the operation resides inside the FPDP). For dyadic in·
structions, the CPU will fetch and transfer one operand from
memory.

Memory to Memory-In monadic instructions the source op·
erand is in memory and the CPU will transfer it to the FPC·
FPDP. If the instruction is dyadic, two operands will be
transferred from memory to the FPC·FPDP by the CPU
(gen 1 before gen2). The result in both cases is sent back to
memory.

When the CPU transfers an operand from memory to the
FPC-FPDP it is loaded into one of the registers that create
the operand FIFO inside the FPDP. The FPC translates the
incoming instruction (mem, reg or mem, mem) to a register­
to-register instruction with the same register number. From
the incoming instruction addressing mode it should know if
the operands are coming from memory or already located in
the register file.

The Data FIFO inside the FPC is 10 entries deep, single- or
double-precision. If the destination of instruction is memory,
the FPC will wait for completion of the instruction. Then, the
result will be transferred to the FPC and SON will be sig­
naled. If the FPC receives a new 10 and Opcode before the
CPU finishes reading the result, (can happen if page fault
has been detected on a write) the FPC will abort the last
instruction and will start the execution of the new instruc­
tion. The NS32532 CPU can "reset" the FPC by issuing
SPC and status h' 1 E when there was no FSSR from FPC. In
this case FPC flushes the instructions currently being exe­
cuted and the contents of the floating-point registers are
undefined.

~
t';

" , RST

NS32532-30

BQ.K

BQ.K

A

00-D31

STO-ST4

CPU

+5V

SPC

SDN

FSSR

RST

II

NS32580-30

BCLK

BCLK WCLK

DATA BUS .. DIVCLK
A

32-BIT DO-D31 XO-X31
I' " .. ! A

STD-ST4 SO-S3

5-BIT
I' !'1

FO-F4

AAIN

ABIN
FPC MAIN

MBIN

AADDO-AADD4

BADDO-BADD4

CADDO-CADD4
5

10K.D. 10K.D.

EFDoo-EFDD4

SPC XCNTO-XCNT3

SDN WABORT
FSSR

LMODE I+-
RST BS l+-

~

FIGURE 3-6. System Connection Diagram

WTL-3164-15

CLK

DIVCLK
DATA BUS ..

32-BIT XO-X31

"
SO-S3

4-BIT
5/

FO-F4

AAIN
ABIN

MAIN FPDP

MBIN
5/ AADDO-AADD4
5/

BADDO-BADD4
5

CADDO-CADD4
'1 5

/ DADDO-DADD4
5

EFDDO-EFDD4
4

XCNTO-XCNT3

ABORT
+5V

l10kA

e...; STALL

NEUT r OEX

TL/EE/9421-13

w
b

" C
::l
n -ci"
::l
et
c
CD

~ ..,
"§:
0'
::l
g
a.
:::l
c:
m
S.

oe-08sc:eSN/sC:-08sc:eSN/OC:-08sc:eSN

3.0 Functional Description (Continued)

3.5 INSTRUCTION PROTOCOLS

3.5.1 General Slave Protocol Sequence

(023-016) and puts the Opcode high on byte 1 (015-08).
Byte 0 (07-00) is not used.

The FPC interfaces with the CPU using the Slave-Protocol.
The slave protocol is a well defined protocol for instruction
and operand transfers between the CPU and the slave co­
processors (FPC and Custom Slave). Only the CPU can initi­
ate slave cycle or access memory to fetch operands. The
communication between the CPU and the FPC occurs at the
beginning of the floating-point instruction, when the CPU
transfers the Opcode and possible operands. At the end of
the instruction, the FPC signals successful or unsuccessful
conclusion of floating-point instruction and the CPU trans­
fers operands from the FPC, if applicable.

31 23 15 7 0

10 1 OPCOOE low 1 OPCOOE high 1 XXXXXXXX 1

Byte 3 Byte 2 Byte 1 Byte 0
FIGURE 3·7. 10 and Opcode Format

CPU Status Combinations

11101 (h'1 0) Transfer Slave Processor Operands-The
CPU is transferring an operand to or from a
slave processor.

The CPU broadcasts the 10 and Opcode to all slave proces­
sors, one of which will recognize it and from this point the
CPU is communicating only with one slave processor.

11110 (h'1 E) Read Slave Processor Status-The CPU is
reading the Status Word Register aiter the
FPC signaled TRAP or is resetting the FPC
when there was no FSSR.

The CPU puts the slave 10 (different 10 for each format) on
byte 3 (031-024), puts the Opcode low on byte 2

11111 (h'1 F) Broadc~:st Slave 10-The CPU is initiating
the execution of a slave processor instruc­
tion.

The floating-point unit has three different instruction formats:

Format 91 23 16115
" Gen 1 Gen 2 Op

8 7

1 0 0

MOVif -000

LFSR -001

MOVLF -010 ROUNO -100 SFSR -110

MOVFL -011 TRUNC -101 FLOOR -111

1
23

16115
81 7 Format 11

Gen 1 Gen2 Op 0 1 f 1 0

AOOf -0000 SUBf -0100 OIVf -1000 MUll
MOVf -0001 NEGf -0101 Trap(FPU) -1001 ABSf
CMPf -0010 Trap(UNO) -0110 Trap(UNO) -1010 Trap(UNO)
Trap(FPU) -0011 Trap(UNO) -0111 Trap(UNO) -1011 Trap(UNO)

1
23

16115

f
8

1 ~ Format 12
Gen 1 Gen2 Op 0

SREMf" -0000 SCAlBf" -0100 Trap(UNO) -1000 Trap(UNO)
SaRTI -0001 lOGBf" -0101 Trap(UNO) -1001 Trap(UNO)
POlYf" -0010 Trap(UND) -0110 MACf -1010 Trap(UND)
DOTf" -0011 Trap(UND) -0111 Trap(UND) -1011 Trap(UNO)

-1100
-1101
-1110
-1111

-1100
-1101
-1110
-1111

"All the marked instructions are not supported by the NS32580 and will cause Trap(UND).

TABLE 3·1. 32·Bit General Slave Instruction Protocol

Step Status Action

1 10 (11111) CPU sends 10 and Operation Word
2 OP (11101) CPU sends required operands (if any)
3 - Slaves starts execution (CPU prefetches)
4 - Slave signals DONE, TRAP or CMPf
5 ST (11110) CPU Reads Status Word (If TRAP was signaled

or if a"CMPf instruction was executed)
6 OP (11101) CPU Reads Result (if destination is

memory and if no TRAP occurred)

3-144

:1

:1

3.0 Functional Description (Continued)

TABLE 3-2. Floating-Point Instruction Protocols

Operand 1 Operand 2 Operand 1
Mnemonic

Class Class Issued

ADDI read.! rmw.1 I
SUSI read.! rmw.1 I
MUll read.1 rmw.1 I
DIVI read.1 rmw.! I
MOVI read.1 write. I I
ASSI read.! write.1 I
NEGI read.! write.! I
CMPI read.! read.1 I
FLOORli read.! write.i I
TRUNCIi read.1 write.i I
ROUNDfi read.! write.i I
MOVFL read.F write.L F
MOVLF read.L write.F L
MOVil read.i write.! i
LFSR read.D N/A D
SFSR N/A write.D N/A
SORTI read.! write.1 I
MACI read.! read.! I

D = Double Word

i = Integer size (B, W, D) specified in mnemonic.

f = Floating,Point type (F, l) specified in mnemonic.

Nt A = Not Applicable to this instruction.

Pulse Active
SDN for

1 clock (DONE)

y

READ AND DECODE
ID AND OPERATION WORD

(BUS STATUS=IIIII)

Operand 2
Issued

I
I
I
I

N/A
N/A
N/A

I
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

I

READ OPERAND
(BUS STATUS = 11101)

FIGURE 3-8. 32-Bit General Slave Instruction Protocol

3-145

Returned Value

flo Op. 2
Ito Op. 2
Ito Op. 2
ItoOp.2
ItoOp.2
Ito Op. 2
Ito Op. 2

N/A
itoOp.2
itoOp.2
itoOp.2
LtoOp.2
FtoOp.2
flo Op. 2

N/A
DtoOp.2
ItoOp.2
ItoLl/Fl

Pulse Active
FSSR for 1 clock
(TRAP or CmPf)

z en w
N
U1
CD
0

PSRBits · N
Affected 0

none Z en
none w

N
none U1
none CD

0
none • N
none U1
none Z
N,Z,L en

w
none N

none
U1
CD

none 0 · none w
0

none
none
none
none
none
none

•

TLfEEf9421-14

o r---~
'? o
CO
II)
C'I
C")

tn
Z

~
~
C'I

&J z

~
CO

~
C")

tn
Z

3.0 Functional Description (Continued)

3.5.2 Pipellned Slave Protocol Sequence

The NS32532 can communicate with the FPC using the
pipelined Slave Protocol. In the pipelined slave protocol, the
CPU proceeds to the next floating-point instruction if the
destination of the current floating-point instruction is a regis­
ter, without waiting for SDN signal. The FPC from the other
end can receive new instructions before the end of the pre­
vious instruction. The FPC can internally store up to five
new instructions, with up to 10 single- or double-precision
operands. The CPU saves the PC of the floating-point in­
structions in the Floating-Point Instruction FIFO (FIF).

If exception occurs, the floating·point instruction can be
reexecuted using the PC saved in the FIF (if exception oc­
curs the CPU will flush the FIF and the FPC will flush the
instruction and the operand's FIFOs).

The FPC-FPDP can start execution of a new floating-point
instruction every two CPU clock cycles.

In the following example three floating-point instructions are
being pipelined:

DIVF O(RO), F1
ADDF F2, F3
MULF F4, F5

Step Status Action
1 ID(h'1F) CPU sends ID and Opcode of DIVF

instruction.

2 OP(h'1D) CPU sends operand (RO).

3 Slave starts execution of DIVF instruction.

4 ID(h'1F) CPU sends ID and Opcode of ADDF
instruction.

5 Slave starts execution of ADDF
instruction.

6 ID(h'1F) CPU sends ID and Opcode of MULF
instruction.

7 Slave starts execution of MULF
instruction.

B Slave pulses SDN or FSSR for the DIVF
instruction. if TRAP occurred, the rest of
the instructions will be aborted.

9 ST(h'1E) CPU Reads Status Word (if TRAP was
signaled).

10 Slave pulses SDN or FSSR for the ADDF
instruction. If TRAP occurred, the rest of
the instructions will be aborted.

11 ST(h'1E) CPU Reads Status Word (if TRAP was
signaled).

12 Slave pulses SDN or FSSR for the MULF
instruction.

13 ST (h'1E) CPU Reads Status Word (if TRAP was
signaled).

3.5.3 Status Word Register

There is a Status Word Register (SWR) that holds the com·
pare results and an exception flag, which indicates TRAP.
This register can be read by the CPU by applying status
code h'1 E (read slave status) on the status line and SPC as
a timing signal. The FPC updates the status word register
after a compare float instruction or if TRAP has occurred.
The content of SWR is valid only after the FPC signals
FSSR.

3-146

31 23 15 7 0

1000000001 000000001 Toooooool NZOOOLOQI

FIGURE 3-9. FPC Status Word Format (SWR)

Status Bits

N BIT: The N bit is set to "1" if the second operand is less
than the first operand. Otherwise, it is set to "0".

Z BIT: The Z bit is set to "1" if the second operand is
equal to the first operand. Otherwise, it is set to
"0".

L BIT: The L bit is set to "1" if the operands in CMPf
operation are "Unordered" (i.e., one of them is
NaN). If ROE bit is cleared, the L bit is always
cleared by the FPC.

Q BIT: The Q bit is set to "1" if TRAP occurred. The T bit
will distinguish between TRAP(UND) and
TRAP(FPU).

T BIT: The T bit is set to "1" if the TRAP is TRAP(UND)
and "0" if the TRAP is TRAP(FPU). The CPU ex­
amines this bit whenever TRAP occurs.

3.5.4 Termination of Instruction (Not Including CMPf)

Floating-Point Instructions that ended without exception will
signal done by pulsing the SDN line for one clock cycle. The
CPU will read the result from the FPC if the destination is
memory. The CPU can try to read the result immediately
after detecting the SDN signal. Therefore, the DONE must
be signaled after loading the result to the FPC. To read the
result the CPU uses the Read from FPC cycle as shown in
Figure 3-4. Upon detecting an exceptional condition in exe­
cuting a floating point instruction, the FPC requests a TRAP
by pulsing the FSSR line for one clock cycle. In addition, it
sets the Q bit in the status word register. The CPU responds
by reading the status word register while applying status
h'1 E (transferring status word) on the status lines. A
trapped instruction returns no result (also if the destination
is FPC register) and does not affect the CPU PSR.

The FPC displays the reason for the TRAP(FPU) in the
TRAP TYPE (TT) field of the FSR. If the CPU sends FPC ID
with illegal opcode, the FPC generates TRAP(UND) by sig­
naling TRAP and setting the T bit in the status word register.
The n field in the FSR will be set to Illegal Instruction
(h'100). POLYf, DOTl, SREMf, SCALBf, LOGBf and all the
unused opcodes in formats 11 and 12 will cause a
TRAP(UND).

3.5.5 Byte Sex

The FPC supports the VME or 32000 bus, depending on the
state of the BS pin. In 32000 mode (BS = "0"), the FPC is
ready to receive the less significant half of a double-preci­
sion operand first and the more significant half afterward. In
VME mode (BS = "1 "), the FPC is ready to receive the
more significant half of a double-precision operand first and
the less significant half afterward. The FPC will send the
received operands to the correct destination registers inside
the FPDP. In VME mode, the user must swap the data bus
between the CPU and FPC. Byte 0 in the CPU should be
connected to Byte 3 in the FPC, Byte 1 in the CPU should
be connected to Byte 2 in the FPC, byte 2 in the CPU should
be connected to Byte 1 in the FPC and Byte 3 in the CPU
should be connected to Byte 0 in the FPC. The BS line is
sampled by the FPC during Reset only.

3.0 Functional Description (Continued)

Data Bus

D7-DO D7-DO

D15-D8 D15-D8
CPU FPC

D23-D16 D23-D16

D31-D24 D31-D24
32000 Mode

Data Bus

D7-DO D31-D24

D15-D8 D23-D16
CPU FPC

D23-D16 D15-D8

D31-D24 D7-DO
VMEMode

FIGURE 3-10. Byte Sex Connection Diagrams

3.5.6 Floating-Point Protocols
Table 3-2 gives the protocols followed for each floating­
point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Section 2.2.3.

The Operand Class columns give the Access Classes for
each general operand, defining how the addressing modes
are interpreted by the CPU (see Series 32000 Instruction
Set Reference Manual).

The Operand Issued columns show the sizes of the oper­
ands issued to the Floating·Point Controller by the CPU.
"D" indicates a 32-bit Double Word. "i" indicates that the
instruction specifies an integer size for the operand (B =
Byte, W = Word, D = Double Word). "f" indicates that the
instruction specifies a floating-point size for the operand
(F = 32-bit Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR Bits Affected column indicates which PSR bits, if any,
are updated from the FPC Status Word (Figure 3-9).

Any operand indicated as being of type "f" will not cause a
transfer if the Register addressing mode is specified, be­
cause the Floating-Point Registers are physically in the
Floating-Point Data Path and are therefore available without
CPU assistance.

3.6 FPDP INTERFACE

The FPC uses the Weitek WTL 3164 Floating-Point Data
Path (FPDP) as the computational unit.

5 5

FUNC MIN ABIN MAIN MBIN AADD

C41

The FPDP is capable of supporting 32-bit and 64-bit IEEE
floating-point operations. The FPDP consists of a Multiplier,
ALU, Divide/Sqrt unit, 32 x 64-bit, Six-Port Register file, I/O
port and control unit. There are six major internal 64-bit wide
data buses used for data transfers between the different
blocks inside the FPDP.

Using six data buses allows an input of two double-precision
operands to a selected unit and to output one double-preci­
sion result in one WCLK cycle, supporting pipelining of a
new double-precision instruction every WCLK cycle. (WCLK
is half the frequency of BCLK.)

3.6.1 ContrOlling the FPDP

The FPC controls the FPDP on an instruction by instruction
basis and not clock by clock. The instruction's control sig­
nals are delayed in the FPDP to match the pipeline stages
inside the FPDP.

This allows the specifying of all the controls for a Reg to
Reg instruction in a single control word. There are two types
of operations that can be executed concurrently on the
FPDP. The first operation is a floating-paint arithmetic oper­
ation done on operands from the register file. The second
operation is a Load/Store operation using the X port of the
FPDP.

3.6.2 Instruction Control

The FPC controls the FPDP using a 33-bit control word. The
control word contains all the information needed for the ex­
ecution of an instruction including the function to be execut­
ed, source operands and destination of the result. The con­
trols are pipelined along with the instruction and affect the
operation at the appropriate times. The control word is sam­
pled with the riSing edge of the WCLK (system clock divided
by two).

There are three functional fields in the control word:

1. The FUNC bits define the arithmetic operation to be exe­
cuted.

2. The MIN, ABIN, MAIN, MBIN, A ADD, B ADD, C ADD,
D ADD bits specify the source and destination for arith­
metic operation. Both C ADD and D ADD fields of the
FPDP are connected to the D ADD field in the FPC con­
trol (C) word.

3. The E/F ADD and XCNT control the Load and Store
operations.

FUNC, AAIN, ABIN, MAIN, MBIN Fields

The five-bit FUNC field specifies the arithmetic operation to
be executed. The MAIN and AAIN control the muxes on the
A inputs to the MUL T and ALU respectively. MBIN and ABIN
control the muxes on the B inputs to the MUL T and ALU.

Aain, Main: A = "1", X = "0"
Abin, Mbin: B = "1", Y = "0"

5 5 5 5 4

BADD CADD DADD E/FADD XCNT

C4
FIGURE 3-11. FPDP Control Word

3-147

Z
tn
Co)
N
U1
CD o
~
o
Z
tn
Co)
N
U1
CD o .
N

~
Z
tn
Co)
N
U1
CD o
~ o

3.0 Functional Description (Continued)

A BUS

lMIJ:
fA""YXl
~

164

A B

MULTIPLIER

A BUS

r-r-xl
~

164

A

ALU

TL/EE/9421-15

FIGURE 3·12. FPDP Multiplier and ALU Bus Control

XCNTField
The XCNT field specifies the I/O operation to be executed.

Code Operation

H'O NOP

H'1 EREG LS - XPAD

H'2 EREG MS - XPAD

H'3 EREG INT - XPAD

H'5 XPAD - XREG/FREG LS

H'6 XPAD - XREG/FREG MS

H'? XPAD - XREG/FREGINT

Data from FPC is transferred to the FPDP through the XPAD
(32-bit 1/0 Port). The data is loaded into the XREG and into
a register in the register file specified by the ElF ADD.

Loading the data to both locations allows the immediate use
of the data by the ALU and MUL T, bypassing the register
file. Loading the data to register in the register file prevents
data from being lost if the data from memory is needed a
few cycles later.

The FPDP 1/0 Mode is determined by the control bits in the
control register SR1 bits 4-0. The FPDP is being used in
Undelayed Single-Pump mode (code 00000).

3.6.3 "2 Cycle Mode" and "3 Cycle Mode"
The FPDP has two timing modes, "Two cycle latency" and
"Three cycle latency". In "Two cycle latency" single- and
double-precision operations have latency of two cycles. In
"Three cycle latency", double-precision multiply has a three
cycle latency, single-precision multiplies and single- or dou­
ble-precision ALU operations have latency of two cycles.

3-148

Description

No Operation

Transfer the Less Significant half of the register
specified by EREG to the X-port (Store LS).

Transfer the More Significant half of the register
specified by EREG to the X-port (Store MS).

Transfer Integer operand in the register
specified by EREG to the X-port (Store Int).

Load the Less Significant half of the data in the
X-port into the XREG LS and into the register
specified by FREG.

Load the More Significant half of the data in the
X-port into the XREG MS and into the register
specified by FREG.

Load the Integer operand in X-port into the
XREG and into the register specified by FREG.

When using the "Three cycle latency" the Divide/Sqrt block
uses the same clock as the FPDP (can not use the 2X
clock). Although the "Three cycle latency" is not optimized
for double-precision multiply it may be very useful if the sys­
tem speed divided by two (WCLK output from FPC) is faster
than the FPDP speed rating.

The FPC has a pin to specify the desired mode. In "Three
cycle latency" the LMODE pin should be connected to Vee
and in "Two cycle latency" it should be connected to GND.
The LMODE line is sampled during reset. After reset, as part
of the initialization cycle, the FPC updates the Multiply La­
tency bit in the FPDP control register SRO bit-? (0 = "Two
cycle latency", 1 = "Three cycle latency").

In "Three cycle latency" Divide/Sqrt block uses the DCLK3
(same as WCLK), in "Two cycle latency" it uses the DCLK2
(2 X WCLK). FPC uses the latency pin to determine the
length of some instructions (number of cycles before FPC
can Signal DONE or TRAP).

This feature allows the CPU to run at more than twice the
maximum FPDP speed.

3.0 Functional Description (Continued)

FPDPSpeed
WCLK WCLK

Max System
"Two Cycle "Three Cycle

Grade
Latency" Latency"

Speed

120 ns 120 ns 90ns 45ns
100 ns 100 ns 75ns 38ns
80ns 80 ns 60ns 30ns
60ns 60ns 50ns 25ns

3.6.4 FPDP Mode Control Registers SRO, SRl

There are few options in the FPDP like Rounding, I/O, IEEE
handling, Latency and other options that can be controlled
by writing into the control registers SRO and SR1.

After reset and whenever the user changes the relevant
fields in the FSR, the FPC updates the FPDP control regis­
ters.

Fast/IEEE Mode SRO bit 0

"1" Set to Fast mode. An underflowed instruction with dis­
abled underflow exception delivers zero to the destination
register.

Rounding

SRO SRO
Rounding Mode

Blt-2 Bit-1

0 0 Round toward nearest value, if tie round
toward even significant

0 1 Round toward zero

1 0 Round toward positive infinity

1 1 Round toward negative infinity

IntAbortOn SRO Blt-3

"0" I nternal abort off.

SROBlt-4
"0"

lIokOn SRO Blt-5

"0" Disables Interlocks.

FpexStlcky SRO Blt-6

"0" FPEX is "Pulsed". In this mode, FPEX is asserted
for one clock cycle.

CODE [EJ m
S 3-0

Multiply Latency SRO Bit-7

The FPDP has two multiply latency modes: Two cycle laten­
cy mode and Three cycle latency mode. (See separate par­
agraph on Latency Modes.)

Latency Mode SRO Blt-7
o Two Cycle Latency Mode

Three Cycle Latency Mode

I/O Mode SRl Bits 4-0

00000 Single-Pump Undelayed

The FPDP is being used in the undelayed single-pump
mode for load and store operations.

FpexDelay SRl Bit-5

"1" Delayed FPEX- Mode.

BypassOn SRl Bit-6

"1" Enables bypaSSing of operands between
instructions.

SRl Bit-7
"Oil

3.6.5 IEEE Enables Register SR2

The SR2 register has enable bits for each of the exception
conditions. The FPC updates the enable bits after Reset
and whenever the user changes the relevant bits in the
FSR. (See LFSR Instruction.)

7 0

EN~:~ES I NaN Iinv I Dvz I Dnrm I Ovl I Unf Iinx IIOVf I

FIGURE 3-13. IEEE Enables Register (FPDP)

FPC updates the Inv, Dvz, Ovl and lovl, Unf, Inx enable bits
to reflect those enable bits in the FSR.

The NaN bit is affected by the ROE bit in the FSR. If the
ROE is cleared then NaN should be enabled (signal excep­
tion upon detection of NaN). If ROE is set NaN will be dis­
abled.

The Dnrm bit is always enabled and detection of Dnrm as
operand for operation will cause source exception.

Whenever the user changes the enable bit in the FSR, the
same bit will be updated in the exception enable register in
the FPDP.

Registers SR3-SRll are not used by the FPC.

3.6.5.1 FPDP Status Lines (S3-S0)

The status of operation in the FPDP can be obtained by
using the FPDP status lines (S3-S1). The status is not
"sticky", therefore, the FPC has to sample the status lines
in the correct timing. If ALU and MUL T instructions end in
the same cycle, the ALU status is valid at the end of the
cycle and the MUL T status is valid at the beginning of the
following cycle.

ALU MUL ALU NUL

1][11][1 ~ ~
TUEE19421-16

FIGURE 3-14. FPDP Status Timing

3-149

C) r---~
C')

i
Lt)
C'I
C')
t/)
z
Lt)

~
co
Lt)
C'I
C')
U)
z
C)

~
co
Lt)
C'I
C')
t/)
z

3.0 Functional Description (Continued)

3.6.6 FPC-FPDP Clocks

FPC runs off BCLK and BCLK, which is generated by the
CPU. FPDP uses two clock signals, one clock signal for
most of the chip and a special clock for the Divide unit. Both
FPDP clock signals are supplied by the FPC.

3.6.6.1 FPC Clock

The FPC uses the system clocks (BCLK and BCLK) gener­
ated by the NS32532. All the timing for Signals between the
CPU and the FPC are referenced to the BCLK. BCLK is a
30 MHz, TTL level clock (for timing characteristics refer to
the timing chapter).

WCLK

3.6.6.2 FPDP Main Clock (WCLK)

The FPDP uses a TTL level clock supplied by the FPC. The
FPC generates the WCLK by dividing the BCLK by two. All
the FPDP control Signal times are specified relative to the
rising edge of the WCLK.

3.6.6.3 Divide/Sqrt Unit Clock (DIVCLK)

The Divide/Sqrt unit in "Two cycle latency" mode uses a
clock signal that is twice the WCLK (DCLK2). If the FPDP is
in "three cycle latency", the Divide/Sqrt unit uses a clock
signal that has the same frequency as WCLK (DCLK3). The
FPC generates the correct DCLK automatically using the
LMODE pin.

TL/EE/9421-17

FIGURE 3-15. Dlvide/Sqrt Clock DCLK2/DCLK3

4.0 Device Specifications

CPU RESET

DATA

CPU STATUS

~~~~ { 
AND 

CONTROL 

CLOCKING { 

I/o CONTROL 

MULTIPLY CONTROL 

~ 

...1\ 
5-BIT 

-y 

+--

RST SO-S3 

00-031 XO-X31 

FO-F4 

MIN 
STO-ST4 ABIN 

NS32580 
MAIN 

MBIN 

MDDO-MOD4 

BADDO-BADD4 

CADDO-CADD4 

SPC 

SON EFDDO-EFDD4 

FSSR XCNTO-XCNT3 

WABORT 
BCLK 

BCLK 
WCLK 

DIVCLK 

BS 

LMODE 

A 

; I\. 
) 

'I v 

5/ 

5 

5 

5 5 
/ 

,1..4 
5 

4 

1 

FIGURE 4-1. NS32580 Interface Signals 

3-150 

FPDP STATUS 

FPDP 
DATA BUS 

FPDP 
CONTROL 
C BUS 

} 
FPDP 
CLOCKING 

TLlEE/9421-1 B 



4.0 Device Specifications (Continued) 

4.1 NS32580 PIN DESCRIPTIONS 

Descriptions of the NS325BO pins are given in the following 
sections. Figure 4-1 shows the NS325BO interface signals 
grouped according to related functions. 

4.1.1 Supplies 

VCCL 1-7 Logic Power- + 5V positive supplies for 
on-chip logic. 

VCCBl-8 

GNDLl-13 

GNDBl-13 

Buffers Power-+5V positive supplies 
for on·chip buffers. 

Logic Ground-Ground references for 
on·chip logic. 

Buffers Ground-Ground references for 
on-chip buffers. 

4.1.2 Input Signals 

BCLK Bus Clock-Input clock for CPU bus tim­
ing; NS32532 system clock. 

BS 

LMODE 

SO-S3 

STO-ST4 

Bus Clock Inverse-Inverted input clock 
from NS32532. 

Byte Sex-Specifies the 110 byte order­
ing of the FPC. If connected to GND the 
FPC is in 32000 mode. If connected to 
Vee the FPC is in VME mode. The BS line 
must be valid during and after Reset. See 
Section 3.6.5. 

Latency Mode-Specifies the latency 
mode of the FPC-FPDP. If connected to 
GND the FPC-FPDP is in the "Two cycle 
latency", if connected to Vee the FPC­
FPDP is in the "Three cycle latency". 
LMODE line must be valid during and af· 
ter Reset. 

Reset-Active low. Resets the last oper­
ation, clears the FIFOs and the FSR reg­
ister to its default state. 

FPDP Status-Indicates any exceptions 
or conditions that resulted from opera· 
tions performed by the WTL 3164 float­
ing-point data path. 

Slave Processor Control-Active low. 
Data strobe for slave transfers between 
the CPU and the FPC. 

CPU Status-Bus cycle status code from 
CPU. STO is the least significant and 
rightmost bit. 

1 1 1 0 0 -Reserved 

1 1 1 01 -Transferring Operand 
1 1 1 1 0 -Reading Status Word 

1 1 1 1 1 -Broadcasting Slave ID 

3-151 

AADDO-AADD4 A Read Port Register Address­
Chooses the inputs to the A bus of the 
FPDP. 

AAIN 

ABIN 

ALU A Input Select-Controls the A in­
put multiplexers of the FPDP ALU. 

ALU B Input Select-Controls the Bin­
put multiplexers of the FPDP ALU. 

BADDO-BADD4 B Read Port Register Address-
Chooses the inputs to the B bus of the 
FPDP. 

CADDO-CADD4 C Write Port Register Address-C/O 
Bus Control. Chooses the destinations of 
C and D buses. These signals should be 
connected to both the (CADDO-CADD4) 
and the (DADDO-DADD4) lines of the 
FPDP. 

4.1.3 Output Signals 

DIVCLK Divide/Square Root Clock-Clock sig­
nal for the Divide/Sqrt unit in the FPDP. 

EFDDO-EFDD4 E and/or F Port Register Address­
Chooses the source and destination for 
the Load/Store operations of the FPDP. 

FO-F4 

MAIN 

MBIN 

WABORT 

WCLK 

Function Code-Specifies the operation 
to be performed by the FPDP. 

Forced Slave Status Read-Active low. 
When active, indicates that the slave 
status word should be read by the CPU. It 
is floating before and after being active. 

Multiplier A Input Select-Controls the 
A input multiplexers of the multiplier of 
the FPDP. 

Multiplier B Input Select-Controls the 
B input multiplexers of the multiplier of 
the FPDP. 

Slave Done-Active low. When active, 
indicates successful completion by the 
FPC-FPDP of a floating-point instruction. 
It is floating before and after being active. 

FPDP Abort-Aborts the current and 
previous instructions in the FPDP. 

FPDP Clock-Clock signal for the FPDP. 
It is BCLK divided by two. i.e., if BCLK is 
30 MHz, WCLK will be 15 MHz. 

XCNTO-XCNT3 X Port Control-They are the Load/ 
Store controls for the FPDP. 

4.1.4 Input/Output Signals 

00-031 CPU Data Bus-Data bus between FPC 
and the CPU. 

XO-X31 FPDP Data Bus-Data bus between FPC 
and the FPDP X port. 

z en w 
N 
UI co 
o 

I 
N 
o -Z 
(f) 
W 
N 
UI 
co 
o 

I 
N 
UI -Z en w 
N 
UI 
co 
o 

I 
W 
o 

• 



or-----------------------------------------------------------~ 

~ 
CD 

~ 
Z ..... 
In 

~ 
CD 

~ 
~ z 

~ 
CD 

~ 
~ z 

4.0 Device Specifications (Continued) 

Connection Diagram 

R @@@@@@@@@@@@@ 
p @@@@@@@@@@@@@@@ 
N @@@@@@@@@@@@@@@ 
M @@@@@@@@@@@@@@@ 
L @@@@ @@@@ 
K @@@@ @@@@ 
J @@@@ @@@@ 
H @@@@ NS32580 @@@@ 
G @@@@ @@@@ 
r @@@@ @@@@ 
E @@@@ @@@@ 
D @@@@@@@@@@@@@@@ 
C @@@@@@@@@@@@@@@ 
B @@@@@@@@@@@@@@@ 
A D@@@@@@@@@@@@@ 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Bottom View 

FIGURE 4-2. 172-Pln PGA Package 

Order Number NS32580-20. NS32580-25 or NS3258D-30 
See NS Package Number U172B 

3-152 

Tl/EE/9421-31 



4.0 Device Specifications (Continued) 

NS32580 Pinout Descriptions 
Dese Pin Dese Pin Dese 

VCCL1 A2 X3 D1 D2B 
GND91 A3 X4 D2 GND95 
GNDL1 A4 NC D3 FO 
XCNTO A5 D2 D4 F1 
XCNT3 A6 D17 D5 X13 
EFADD1 A7 D16 D6 X15 
EFADD2 AB NC D7 GND96 
GNDL2 A9 GNDL5 DB D21 
GND92 A10 NC D9 D12 
CADDO A11 NC D10 D27 
CADD2 A12 NC D11 F2 
CADD3 A13 VCC92 D12 F3 
9ADDO A14 D15 D13 X14 
GND93 91 AADD1 D14 X17 
GNDL3 92 AADD2 D15 D6 
XO 93 X5 E1 D22 
XCNT1 94 X7 E2 D11 
XCNT2 95 D1B E3 NC 
EFADDO 96 D3 E4 SO 
EFADD3 97 D31 E12 F4 
9CLK 9B D14 E13 X16 
WCLK 99 AADD3 E14 X1B 
DIVCLK 910 AADD4 E15 D7 
EFADD4 911 X6 F1 D23 
CADD1 912 X9 F2 SPC 
CADD4 913 D19 F3 SDN 
9ADD1 914 VCCL3 F4 S2 
9ADD2 915 D30 F12 S1 
VCC91 C1 VCC93 F13 X19 
X2 C2 MAIN F14 Reserved 
X1 C3 M91N F15 VCCL4 
VCCL2 C4 XB G1 DB 
D1 C5 X10 G2 GNDB7 
DO C6 D4 G3 D26 
NC C7 D20 G4 GNDL6 
GNDL4 CB D13 G12 VCCB4 
GND94 C9 D29 G13 NC 
9CLK C10 AAIN G14 STO 
RST C11 A91N G15 ST1 
NC C12 X11 H1 NC 
9ADD3 C13 X12 H2 GNDL7 
AADDO C14 NC H3 WABORT 
9ADD4 C15 D5 H4 S3 

Note: NC ~ No Connection 

3-153 

Pin Dese 
H12 VCCL5 
H13 GNDBB 
H14 Reserved 
H15 D24 
J1 D25 
J2 D9 
J3 D10 
J4 NC 
J12 VCCB5 
J13 ST2 
J14 ST4 
J15 FSSR 
K1 GNDB9 
K2 VCCB6 
K3 GNDLB 
K4 GNDL9 
K12 VCCL6 
K13 X21 
K14 X23 
K15 X25 
L1 X26 
L2 X28 
L3 X31 
L4 X30 
L12 BS 
L13 ST3 
L14 VCCB7 
L15 GNDB10 
M1 GNDL10 
M2 GNDB11 
M3 GNDB12 

M4 GNDL11 
M5 VCCL7 
M6 X20 
M7 X22 
MB X24 
M9 X27 
M10 X29 
M11 LMODE 
M12 GND913 
M13 GNDL12 
M14 VCC9B 
M15 GNDL13 

Pin 
N1 
N2 
N3 
N4 
N5 
N6 
N7 
NB 
N9 
N10 
N11 
N12 
N13 
N14 
N15 
P1 
P2 
P3 
P4 
P5 
P6 
P7 
PB 
P9 
P10 
P11 
P12 
P13 

P14 
P15 
R2 

R3 
R4 
R5 
R6 
R7 
RB 
R9 
R10 
R11 
R12 
R13 
R14 

z en w 
I\) 
U1 
co o 

I 
I\) 
o ..... 
z en w 
I\) 
U1 
co 
o 
I 

I\) 
U1 ..... 
z en w 
I\) 
U1 
co o 

I 
W 
o 



o 
CO) 

o 
CO 
II) 
N 
CO) 
(J) 
Z ...... 
II) 
N . o 
CO 
II) 
N 
CO) 
(J) 
Z ...... 
o 
~ o 
CO 
II) 
N 
CO) 
(J) 
Z 

4.0 Device Specifications (Continued) 

4.2 ABSOLUTE MAXIMUM RATINGS Power Dissipation 1.5W 

If Military/Aerospace specified devices are required, ESD Rating is to be determined. 
contact the National Semiconductor Sales Office/ Note: Absolute maximum ratings indicate limits beyond 
Distributors for availability and specifications. which permanent damage may occur. Continuous operation 
Temperature Under Bias O·Cto +70·C at these limits is not intended; operation should be limited to 

Storage Temperature -65·C to + 150·C those conditions specified under Electrical Characteristics. 

All Input or Output Voltages 
with Respect to GND -0.5Vto +7V 

4.3 ELECTRICAL CHARACTERISTICS TA = O·Cto 70·C, Vee = 5V ±10%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

VIH High Level Input Voltage 2.0 Vee + 0.5 V 

VIL Low Level Input Voltage -0.5 0.8 V 

VOH High Level Output Voltage IOH = -400 p.A 2.4 V 

VOL Low Level Output Voltage IOL = 2mA 0.4 V 

II Input Load Current 0:0: VIN:O: Vee 

IL Leakage Current 0.4 :0: VOUT :0: 2.4V 
(Output and I/O Pins in 
TRI-STATE®/Input Mode) 

Icc Active Supply Current lOUT = 0, TA = 25·C 300 mA 

CIN Input Capacitance pF 

COUT Output Capacitance pF 

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS 

4.4.1 Definitions L.E. - Leading Edge R.E. - Rising Edge 

All the Timing Specifications given in this section refer to 
T.E. - Trailing Edge F.E. - Falling Edge 

0.8V and 2.0V on all the input and output signals as illustrat-
ed in Figures 4.2 and 4.3, unless specifically stated other- [ ~K= wise. ClK 

o.sv 

[) 2.0V 

ClK 

.w~ 
--2.4V 

O.SV SlG1 [ 1SIG11 

----2.4V O.45V 

SIG1 [ \ O.SV 

2.4V 
1SIG11 [ I 

tSlG2h 2.0V 
O.45V 

2.4V 
SIG2 

[ 
I j~ 

tSIG2h -------O.45V 

TLlEE/9421-20 

SlG2 FIGURE 4-4. Timing Specification Standard 
(Signal Valid before Clock Edge) 

---------O.45V 

Tl/EE/9421-19 

FIGURE 4-3. Timing Specification Standard 
(Signal Valid after Clock Edge) 

3-154 



4.0 Device Specifications (Continued) 

4.4.2 Timing Tables Maximum times assume temperature range O'C to 70'C 

4.4.2.1 Output Signal Propagation Delays Maximum times assume capacitive loading of 100 pF 

Symbol Figure Description 
Reference! NS32580·20 NS32580·25 
Conditions Min Max Min Max 

tDv 4·8 CPU Data Valid After R.E., BCLK T2 35 27 

tDoh 4·8 CPU Data Hold After R.E., BCLK Next T1 ITi 2 2 

tDnf 4·8 CPU Data Not Floating After R.E., BCLK Next T1 ITi 28 23 

tSDa 4·10 SDN Signal Active After R.E., BCLK 35 28 

tSDia 4·10 SDN Signal Inactive After R.E., Next BCLK 2 2 

tSDnf 4·10 SDN Signal Not Floating After R.E., BCLK 25 20 

tFSSRa 4·11 FSSR Signal Active After R.E., BCLK 35 28 

tFSSRia 4·11 FSSR Signal Inactive After R.E., Next BCLK 2 2 

tFSSRnf 4·11 FSSR Signal Not Floating After R.E., BCLK 25 20 

tCv 4·14 C Bus and After R.E., WCLK 
83 63 

WABORTValid 

tCh 4·14 CBUSand After R.E., WCLK 
2 2 

WABORT Hold Time 

tXLv 4·14 FPDP Data Valid After R.E., WCLK 83 63 

tXLh 4·14 FPDP Data Hold Time After R.E., WCLK 2 2 

tD2p 4·13 DCLK2 Period From 1.5V R.E., to 1.5V R.E. 50 40 

tD2h 4·13 DCLK2 High Time From 1.5V R.E., to 1.5V F.E. 22 17 

tD21 4·13 DCLK2 Low Time From 1.5V F.E. to 1.5V R.E. 22 17 

tD3p 4·13 DCLK3 Period From 1.5V R.E., to 1.5V R.E. 100 80 

tD3h 4·13 DCLK3 High Time From 1.5V R.E., to 1.5V F.E. 45 36 

tD31 4·13 DCLK3 Low Time From 1.5V F.E., to 1.5V R.E. 45 36 

tWCLKp 4·13 WCLKPeriod From 1.5V R.E., to 1.5V R.E. 100 80 

tWCLKh 4·13 WCLK High Time From 1.5V R.E., to 1.5V F.E. 45 36 

tWCLKI 4·13 WCLK Low Time From 1.5V F.E. to 1.5V R.E. 45 36 

tDWd 4·13 DCLK2/DCLK3 to From 1.5V R.E., to 1.5V R.E. 
2.5 8 2.5 8 

WCLKDelay 

tWr 4·13 FPDP Clock Rise Time From O.4V R.E., to 2.4V R.E. 2 2 

tWf 4·13 FPDP Clock Fall Time From 2.4V F.E. to O.4V F.E. 2 2 

4.4.2.2 Input Signal Requirements NS32580-20, NS32580-25, NS32580-30 

Symbol Figure Description 
Reference/ NS32580·20 NS32580·25 
Conditions Min Max Min Max 

tBCp 4·5 BCLKPeriod R.E., BCLK to Next R.E., BLCK 50 100 40 100 

tBCh 4·5 BCLK High Time At 2.0V on BCLK (Both Edges) 0.5tBCp 0.5tBCp 
-5 -4 

tBCI 4·5 BCLK Low Time At 0.8V on BCLK (Both Edges) 0.5 tBCp 0.5 tBCp 
-5 -4 

tBCr 4·5 BCLK Rise Time 0.8V to 2.0V on R.E., BCLK 5 4 

tBCI 4·5 BCLK Fall Time 2.0V to 0.8V on F.E., BCLK 5 4 

tNBCp 4·5 BCLKPeriod R.E., BCLK to Next R.E., BCLK 50 100 40 100 

tNBCh 4·5 BCLK High Time At 2.0V on BCLK (Both Edges) 0.5tNBCp 0.5 tNBCp 
-5 -4 

3·155 

NS32580·30 

Min Max 

23 

2 

19 

22 

2 

17 

22 

2 

17 

50 

2 

50 

2 

33.3 

14.5 

14.5 

66.6 

30 

30 

66.6 

30 

30 

2.5 8 

2 

2 

NS32580·30 

Min Max 

33.3 100 

0.5tBCp 
-3 

0.5tBCp 
-3 

3 

3 

33.3 100 

0.5tNBCp 120 
-3 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Units 

ns 

ns 

ns 

ns 

ns 

z en 
Co) 
~ 
UI 
OC) 
o . 
~ o ..... 
z en 
Co) 
~ 
UI 
OC) 
o . 
~ 
UI ..... 
z en 
Co) 
~ 
UI 
OC) 
o 
W o 

• 



4.0 Device Specifications (Continued) 

4.4.2 Timing Tables Maximum times assume temperature range O°C to 70'C (Continued) 

4.4.2.2 Input Signal Requirements NS32580-20, NS32580-25, NS32580-30 (Continued) 

Symbol Figure Description 
Referencel NS32580-20 NS32580-25 NS32580-30 

Units 
Conditions Min Max Min Max Min Max 

tNBCI 4-5 BCLK Low Time At 0.8V on BCLK (Both Edges) 0.5tNBCp 0.5tNBCp 0.5tNBCp 
120 

-5 -4 -3 
ns 

tNBCr 4·5 BCLK Rise Time 0.8V to 2.0V on R.E., BCLK 5 4 3 ns 

tNBCI 4·5 BCLK Fall Time 2.0V to 0.8V on F.E., BCLK 5 4 3 ns 

tBCNBCrf 4·5 Bus Clock Skew 2.0Von R.E., BCLK to 
-2 +2 -2 +2 -1 +1 

0.8Von F.E., BCLK 
ns 

tBCNBCfr 4·5 Bus Clock Skew 0.8Von F.E., BCLK to 
-2 +2 -2 +2 -1 +1 

2.0V on R.E., BCLK 
ns 

tpWR 4·6 Power Stable to After Vcc Reaches 4.5V 
50 40 30 

R.E. ofRST /Ls 

tRSTs 4·6,4·7 RST Setup Time Before R.E., BCLK 14 12 11 ns 

tRSTw 4·7 RST Pulse Width At 0.8V (Both Edges) 64 64 64 tBCp 

tSTs 4·8,4·9 CPU Status Setup Time Before R.E., BCLK T2 36 30 24 24 ns 

tSTh 4·8,4·9 CPU Status Hold Time After R.E., BCLK T2 15 12 10 10 ns 

tsPCs 4·8,4·9 SPC Setup Time Before R.E., BCLK T2 30 23 20 20 ns 

tSPCh 4·8,4·9 SPC Hold Time After R.E., BCLK T2 
0 tecp 0 tecp 0 tecp 

+19 +15 +12 
ns 

tos 4·9 Data Setup Time Before R.E., BCLK T2 7 5 3 ns 

tOh 4·9 Data Hold Time After R.E., BCLK Next T1 or Ti -4 -4 -4 ns 

tSAs 4·12 FPDP ALU Status Before R.E., WCLK 
9 9 8 

Setup Time 
ns 

tSAh 4·12 FPDP ALU Status After R.E., WCLK 
2 2 2 

Hold Time 
ns 

tSMs 4·12 FPDP Multiplier Status Before F.E., WCLK 
9 9 8 

Setup Time 
ns 

tSMh 4·12 FPDP Multiplier Status After F.E., WCLK 
2 2 2 

Hold Time 
ns 

txSs 4·14 FPDP Data Setup Time Before R.E., WCLK 9 9 9 ns 

tXSh 4·14 FPDP Data Hold Time After R.E., WCLK 2 2 2 ns 

'--==\ ~ IBCI --
_IBCr 

BCLK[~ 
I""-IBC' ~ IBCI -

fi ~ 
IBCp 

--I _IBCNBCI, - _IBCNBCr! 

I~Cr ~ _INBC! 

BCLK[--1 
~INBCI 

INBCh~ 

L INBCp 
TL/EE/9421-21 

FIGURE 4-5. Clock Waveforms 

3·156 



4.0 Device Specifications (Continued) 

BCLK[, __ + ...... 

FIGURE 4-6_ Power-On Reset 

BCLK[~JLJUL 
J' tRSlW • t tRSTS .1 

RST[..-~\~S~S~~ 11 r~----

FIGURE 4-7_ Non-Power-On Reset 

ANY 
T-STATE Tl T2 T1 OR n 

BCLK [ 

STO-ST4 [ 

SPC [ 

00-031 [ 

FIGURE 4-8. Read Cycle from FPC 

BCLK [ 

STO-ST4 [ 

SPC [ 

00-031 [ 

FIGURE 4-9. Write Cycle to FPC 

3-157 

TL/EE/9421-22 

TL/EE/9421-23 

TLlEE/9421-24 

TLlEE/9421-25 

z 
tJ) 
c.:I 
N 
UI co o 
N o ...... 
Z 
tJ) 
c.:I 
N 
UI co o . 
N 
UI ...... 
Z 
tJ) 
c.:I 
N 
UI co o . 
c.:I o 

• 



C) r---------------------------------------------------------------------------------, 
~ 
iQ 
Cf) 

en z 

~ 
f8 
~ en z .... 
C) 

i 
C'I 

~ 
Z 

4.0 Device Specifications (Continued) 

BCLK [ BCLK [ 

SON [ rsSR [ 

TLlEE/9421-26 

FIGURE 4-10. Slave Processor Done Timing 
TL/EE/9421-27 

FIGURE 4·11. FSSR Signal Timing 

WCLK [ 

SO-53 [ 

TL/EE/9421-26 

FIGURE 4-12. FPDP Status Signal Timing 

DCLK2 [ 

DCLK3 [ 

WCLK [ I.SV 

TLlEE/9421-29 

FIGURE 4·13. FPDP Clock Signal Timing 

WCLK [ 

C, WABORT [ -.4.--.J{-il----J-----

X (LOAO) [ 

X(STORE) [ 

FIGURE 4·14. FPDP Output Signal Timing 

3-158 

TL/EE/9421-30 



Appendix A 
COMPATIBILITY OF FPC·FPDP WITH NS32081/NS32381 

NS32081 NS32381 NS32580 NS32081 NS32381 NS32580 

INSTRUCTIONS FSR 

NS32081 + NS32081+ NS32081 FSA + NS32081 FSA + 

DOTf MACf RMB AMB 
POLYf SOATf AOE 
SCALBf IVE 
LOGBf 

DZE 
REGISTERS OVE 

8x32Bit 8x64Bit 8x64 Bit IOE 

RESERVED OPERANDS 
ROF 
IVF 

DNRM DNRM DNAM DZF 
OVF 

NaN NaN NaN can be IOF 
enabled or 
Disable. 

Infinity Infinity Infinity is NOT a 
reserved 
operand. 

AppendixB 
PERFORMANCE ANALYSIS 
The execution time is calculated from SPC (T1, T2 included) to SDN (including the SDN pulse) 

Latency Latency Throughput Throughput 
Pipe 

Instruction reg, reg reg, reg reg, reg reg, reg 
Break 

2 cycles mode 3 cycles mode 2 cycles mode 3 cycles mode 

ADDfll 13 13 2 2 No 

SUBfll 13 13 2 2 No 

MULf 13 13 2 2 No 
MUll 13 15 2 4 No 

DIVf 29 43 Upt029 Up to 43 No 
DIV1 43 71 Up to 43 Upto 71 No 

MOVflI 13 13 2 2 No 

ABSfll 13 13 2 2 No 

NEGf/1 13 13 2 2 No 

CMPfll 13 + CPU 13 + CPU - - Yes 

FLOOAfi 13 + CPU 13 + CPU - - Yes 

TRUNCfi 13 + CPU 13 + CPU - - Yes 

AOUNDfi 13 + CPU 13 + CPU - - Yes 

MOVFL 13 + CPU 13 + CPU - - Yes 

MOVLF 13 + CPU 13 + CPU - - Yes 

MOVif 17 + CPU 17 + CPU - - Yes 
MOVil 13 + CPU 13 + CPU - - Yes 

LFSA 13 13 - - Yes 

SFSA 13 + CPU 13 + CPU - - Yes 

MACf 15 15 6 6 No 
MACI 15 17 6 8 No 

SORTf 41 65 Up to 41 Upt065 No 
SORTI 69 123 Up to 69 Up to 123 No 

3·159 

z en 
c,) 
I\) 
en 
CQ 
o 
~ o ....... z en 
c,) 
I\) 
en 
CQ 
o . 
I\) 
en ....... 
z en 
c,) 
I\) 
en 
CQ 
o 
~ o 

• 



Appendix B (Continued) 

Add the following CPU cycles to the base (reg, reg) number of cycles for the different cases: 

Instruction 
Latency Latency Throughput Throughput 

Pipe Break 
2 Cycles Mode 3 Cycles Mode 2 Cycles Mode 3 Cycles Mode 

MONADIC FLOAT (One Operand) 

mem, reg 0 0 2 2 see reg, reg 
reg, mem 0+ CPU 0+ CPU - - Yes 
mem,mem 0+ CPU 0+ CPU - - Yes 

DYADIC FLOAT (Two Operands) 

mem, reg 0 0 2 2 see reg, reg 
reg, mem 0+ CPU 0+ CPU - - Yes 
mem,mem 2 + CPU 2 + CPU - - Yes 

MONADIC LONG (One Operand) 

mem, reg 2 2 4 4 see reg, reg 
reg, mem 2 + CPU 2 + CPU - - Yes 
mem,mem 2 + CPU 2 + CPU - - Yes 

DYADIC LONG (Two Operands) 

mem,reg 2 2 4 4 see reg, reg 
reg,mem 6 + CPU 6 + CPU - - Yes 
mem,mem 6 + CPU 6 + CPU - - Yes 

Note: CPU stands for the time it takes the CPU to take the result from the FPC and resume operation. 

3-160 



Section 4 
Peripherals 



Section 4 Contents 
NS32C201-10, NS32C201-15 Timing Control Units..................................... 4-3 
NS32202-10 Interrupt Control Unit.. ... ..... ..... .... .. .... ....... ...... ...... ........ 4-25 
NS32203-10 Direct Memory Access Controller (DMAC) ................................. 4-50 

4-2 



~National 
~ Semiconductor 

PRELIMINARY 

NS32C201-10/NS32C201-15 Timing Control Units 

General Description 
The NS32C201 Timing Control Unit (TCU) is a 24-pin device 
fabricated using National's microCMOS technology. It pro­
vides a two-phase clock, system control logic and cycle ex­
tension logic for the Series 32000@ microprocessor family. 
The TCU input clock can be provided by either a crystal or 
an external clock signal whose frequency is twice the sys­
tem clock frequency. 

In addition to the two-phase clock for the CPU and MMU 
(PHI1 and PHI2), it also provides two system clocks for gen­
eral use within the system (FCLK and CTTL). FCLK is a fast 
clock whose frequency is the same as the input clock, while 
CTTL is a replica of PHI1 clock. 

The system control logic and cycle extension logic make the 
TCU very attractive by providing extremely accurate bus 
control signals, and allowing extensive control over the bus 
cycle timing. 

Features 
• Oscillator at twice the CPU clock frequency 
• 2 phase full Vee swing clock drivers (PHI1 and PHI2) 

Block Diagram 
XIN 

XOUT 

• 4-bit input (WAITn) allowing precise specification of 0 to 
15 wait states 

• Cycle Hold for system arbitration and/or memory 
refresh 

• System timing (FCLK, CTTL) and control (RD, WR, and 
DBE) outputs 

• General purpose Timing State Output (TSO) that 
identifies internal states 

• Peripheral cycle to accommodate slower MOS 
peripherals 

• Provides "ready" (ROY) output for the Series 32000 
CPUs 

• Synchronous system reset generation from Schmitt 
trigger input 

• Phase synchronization to a reference signal 
• High-speed CMOS technology 
• TTL compatible inputs 
• Single 5V power supply 
• 24-pin dual-in-line package 

FCLK 

PHI2 

PHil 

Wt:::=------....... ;;;.;.;===~D--- CTTL 

ADS 

DOIN 
PER ----~-4_~ 

twAIT --------1 
WAlTa --------1 
WAIU --------1 
WAIT2 --------1 
WAIT1 -------1 

T·STATE 
COUNTER 
& LOGIC 

WAIT 
STATE 

COUNTER 
& LOGIC 

4-3 

liSTe 

RDY 

WAIT 

TLlEE/8524-1 

z en 
Co) 
N 
o 
N 
C .... 
• .... 
c ....... 
z en 
Co) 
N o 
N 
C .... 
• .... 

(II 



II) .-• .-
C) 
N 
U 
N 
C') 

tn 
Z ..... 
C) .-. .-
C) 
N 
U 
N 
C') 
tn 
Z 

1.0 FUNCTIONAL DESCRIPTION 

1.1 Power and Grounding 

1.2 Crystal Oscillator Characteristics 

1.3 Clocks 

1.4 Resetting 

1.5 Synchronizing Two or More TCUs 

1.6 Bus Cycles 

1.7 Bus Cycle Extension 

1.7.1 Normal Wait States 

1.7.2 Peripheral Cycle 

1.7.3 Cycle Hold 

1.8 Bus Cycle Extension Combinations 

1.9 Overriding WAIT Wait States 

Table of Contents 
2.0 DEVICE SPECIFICATIONS 

2.1 Pin Descriptions 

2.1.1 Supplies 

2.1.2 Input Signals 

2.1.3 Output Signals 

2.2 Absolute Maximum Ratings 

2.3 Electrical Characteristics 

2.4 Switching Characteristics 

2.4.1 Definitions 

2.4.2 Output Loading 

2.4.3 Timing Tables 

2.4.4 Timing Diagrams 

List of Illustrations 
Crystal Connection ............................................................................................. 1·1 

PHil and PHI2 Clock Signals .................................................................................... 1·2 

Recommended Reset Connections (Non Memory·Managed System) ................................................ 1·3a 

Recommended Reset Connections (Memory· Managed System) .................................................... 1·3b 

Slave TCU does not use RWEN during Normal Operation .......................................................... 1·4a 

Slave TCU Uses Both SYNC and RWEN ......................................................................... 1·4b 

Synchronizing Two TCUs ....................................................................................... 1·5 

Synchronizing One TCU to an External Pulse ...................................................................... 1·6 

Basic TCU Cycle (Fast Cycle) .................................................................................... 1·7 

Wait State Insertion Using CWAIT (Fast Cycle) ..................................................................... 1·8 

Wait State Insertion Using WAITn (Fast Cycle) ..................................................................... 1·9 

Peripheral Cycle .............................................................................................. 1·10 

Cycle Hold Timing Diagram ..................................................................................... 1·11 

Fast Cycle with 12 Wait States .................................................................................. 1·12 

Peripheral Cycle with Six Wait States ............................................................................ 1·13 

Cycle Hold with Three Wait States ............................................................................... 1·14 

Cycle Hold of a Peripheral Cycle ................................................................................ 1·15 

Overriding WAITn Wait States .................................................................................. 1·16 

Connection Diagram ............................................................................................ 2·1 

Clock Signals (a) ............................................................................................... 2·2 

Clock Signals (b) ............................................................................................... 2·3 

Control Inputs ................................................................................................. 2·4 

Control Outputs (Fast Cycle) ..................................................................................... 2·5 

Control Outputs (Peripheral Cycle) ............................................................................... 2·6 

Control Outputs (TRI·STATE Timing) ............................................................................. 2·7 

Cycle Hold .........................................................•.......................................... 2·8 

Wait States (Fast Cycle) ........................................................................................ 2·9 

Wait States (Peripheral Cycle) .................................................................................. 2·10 

Synchronization Timing ........................................................................................ 2·11 

4·4 



1.0 Functional Description 
1.1 POWER AND GROUNDING 

The NS32C201 requires a single +5V power supply, ap­
plied to pin 24 (Vecl. See Electrical Characteristics. The 
Logic Ground on pin 12 (GND), is the common pin for the 
TCU. 

A 0.1 ,..F, ceramic decoupling capacitor must be connected 
across Vee and GND, as close to the TCU as possible. 

1.2 CRYSTAL OSCILLATOR CHARACTERISTICS 

The NS32C201 has an internal oscillator that requires con­
nections of the crystal and bias components to XIN and 
XOUT as shown in Figure 1-1. It is important that the crystal 
and the RC components be mounted in close proximity to 
the XIN, XOUT and Vee pins to keep printed circuit trace 
lengths to an absolute minimum. 

Typical Crystal Specifications: 

Type ........................................... At-Cut 

Tolerance .............................. 0.005% at 25·C 

Stability .......................... 0.01 % from o· to 70·C 

Resonance ...................... Fundamental (parallel) 

Capacitance .................................... 20 pF 

Maximum Series Resistance ........................ 50n 

l~c 
CRYSTAL 

30pF 
FREQUENCY R 1800 

XOUT (MHz) (OHM) (141 

l00kOc::J 6-12 470 
12-18 220 

XIN 18-24 100 (13) 

TLfEEf8524-3 24-30 47 

FIGURE 1-1. Crystal Connection Diagram 

Vee 

r-------------, 
I I 

1.3 CLOCKS 

The NS32C201 TCU has four clock output pins. The PHI1 
and PHI2 clocks are required by the Series 32000 CPUs. 
These clocks are non-overlapping as shown in Figure 1-2. 

PHI1 

PHI2 

TLfEEf8524-4 

FIGURE 1.2. PHI1 and PHI2 Clock Signals 

Each rising edge of PHI1 defines a transition in the timing 
state of the CPU. 

As the TCU generates the various clock signals with very 
short transition timings, it is recommended that the conduc­
tors carrying PHI1 and PHI2 be kept as short as possible. It 
is also recommended that only the Series 32000 CPU and, if 
used, the MMU (Memory Management Unit) be connected 
to the PHI1 and PHI2 clocks. 

CTTL is a clock signal which runs at the same frequency as 
PHI1 and is closely balanced with it. 

FCLK is a clock, running at the frequency of XIN input. This 
clock has a frequency that is twice the CTTL clock frequen­
cy. The exact phase relationship between PHI1, PHI2, CTTL 
and FLCK can be found in Section 2. 

NS32C201 
TCU 

NS32C018 
CPU 

I I i RESET l>--l:-+-~_+-_+~+----I RsTi RsTii I-----.,r------l RSr/ABT 

! : L _____________ .J 

EXTERNAL ReSET 
(OPTIONAL) 2: SOp5eC 

RESET SWITCH 
(OPTIONAL) 

SYSTEM RESET 

FIGURE 1-3a. Recommended Reset Connections (Non Memory-Managed System) 

Vee 

r-------------, 

NS32C201 
TCU 

I I 

: RESET 1>-+1 ---!:-~_+-_+..", ...... ---_l RsTi RsTo 
I 
! I L _____________ .J 

EXTERNAL RESET 
(OPTIONAL) 

RESET SWITeH 
(OPTIONAL) 

~ SO,...sec 

NS32082 
MMU 

FIGURE 1-3b. Recommended Reset Connections (Memory-Managed System) 

4-5 

NS32CoI6 
epu 

TLfEEf8524-5 

TLfEEf8S24-6 

z 
(J) 
(0) 
~ 
o 
~ o .... 
• .... 

o ..... 
Z 
(J) 
(0) 
~ 
o 
~ o .... . .... 
en 

III 



II) .... • .... 
o 
C'\I 

~ en z ;:; .... 
• .... 
~ 
C'\I 

~ 
Z 

1.0 Functional Description (Continued) 

1.4 RESETTING 

The NS32C201 TCU provides circuitry to meet the reset 
requirements of the Series 32000 CPUs. If the Reset Input 
line, RSTI is pulled low, the TCU asserts RSTO which resets 
the Series 32000 CPU. This Reset Output may also be used 
as a system reset signal. Figure 1-3a illustrates the reset 
connections for a non Memory-Managed system. Figure 
1-3b illustrates the reset connections for a Memory-Man­
aged system. 

1.5 SYNCHRONIZING TWO OR MORE TCUs 

During reset, (when RSTO is low), one or more TCUs can 
be synchronized with a reference (Master) TCU. The 

RWERISYNC 
(Mull Be Low 
DuringROMII 

RWEN/SYNC input to the slave TCU(s) is used for synchro­
nization. The Slave TCU samples the RWEN/SYNC input 
on the rising edge of XIN. When RSTO is low and CTTL is 
high (see Figure 1-5), if RWEN/SYNC is sampled high, the 
phase of CTTL of the Slave TCU is shifted by one XIN clock 
cycle . 

Two possible circuits for TCU synchronization are illustrated 
in Figures 1-48 and 1-4b. It should be noted that when 
RWEN/SYNC is high, the RD and WR signals will be TRI­
STATE on the slave TCU. 
Note: RWEN/SYNC should not be kept constantly high during reset, other­
wise the clock will be stopped and the device will not exit reset when RSTI is 
deasserted. 

TUEE/8524-7 

FIGURE 1·4a. Slave TCU Does Not Use RWEN During Normal Operation 

R"WENISYNC 
(MuotBeLow 
DurlngROMII 

RWEN>-.... +-.................... +--.r-~ 

FIGURE 1·4b. Slave TCU Uses Both SYNC and RWEN 

TL/EE/8524-8 

Note: When two or more Teus are to be synchronized, the XIN of all the reus should be connected to an external clock source. For details on the external clock, 
see Switching Specifications In Section 2. 

XIN 

CITL(s) \ I 
I 

\ I \ I I I 

I PHASE CHANGE. 
t + 

RWEN/SYNC I \ I \ I '--
RSTl~ 

\~------------------------ TL/EE/8524-9 

FIGURE 1·5. Synchronizing Two TCUs 

4-6 



1.0 Functional Description (Continued) 

RSTO~LO~W~------------------------------------------------------------------------

XIN 

RWEN/SYNC / ___ ...J \~-------------------
CTTL(S)~ \'--_--11 

TUEE/8524-10 

FIGURE 1-6. Synchronizing One TCU to An External Pulse 

In addition to synchronizing two or more TCUs, the RWENI 
SYNC input can be used to "fix" the phase of one TCU to 
an external pulse. The pulse to be used must be high for 
only one rising edge of XIN. Independent of CTTL's state at 
the XIN rising edge, the CTTL state following the XIN rising 
edge will be high. Figure 1-6 shows the timing of this se­
quence. 

1.6 BUS CYCLES 

In addition to providing all the necessary clock signals, the 
NS32C201 TCU provides bus control signals to the system. 
The TCU senses the ADS signal from the CPU or MMU to 
start a bus cycle. The DDIN input signal is also sampled to 
determine whether a Read or Write cycle is to be gener-

CPU STATES 
TeU STATES 

PHil 

ADS 

TSO 

ODIN 

Viii 

iiii 

OBE 

ROY 

11 
11 

T2 
T2 

HIGH 

T3 
T3 

T4 
T4 

FIGURE 1-7. Basic TCU Cycle (Fast Cycle) 

4-7 

ated. In addition to RD and WR, other signals are provided: 
DBE and TSO. DBE is used to enable data buffers. The 
leading edge of DBE is delayed a half clock period during 
Read cycles to avoid bus conflicts between data buffers and 
either the CPU or the MMU. This is shown in Figure 1-7. 

The Timing State Output (TSO) is a general purpose signal 
that may be used by external logic for synchronizing to a 
System cycle. TSO is activated at the beginning of state T2 
and returns to the high level at the beginning of state T 4 of 
the CPU cycle. TSO can be used to gate the CWAIT signal 
when continuous waits are required. Another application of 
TSO is the control of interface circuitry for dynamic RAMs. 

Notes: 

1. The CPU and TCU view some tim· 
ing states (T·states) differently. 
For clarity, references to T-states 
will sometimes be followed by 
(TCU) or (CPU). (CPU) also im­
plies (MMU). 

2. Arrows indicate when the TCU 
samples the input. 

3. RWEN is assumed low (RD and 
WR enabled) unless specified dif­
ferently. 

4. For clarily, T-states for both the 
TeU and CPU are shown above 
the diagrams. (See Note 1.) 

TL/EE/8524-11 

z 
(J) 
W 
N 
o 
N 
C ..... . ..... 
C ..... 
Z 
(J) 
W 
N 
o 
N 
C ..... 
• ..... 

U1 



~.-----------------------------------------------------~ .... • .... 
~ 
CO) 

en z 
C; .... • .... 
o 
('II 

~ 
CO) 
en 
z 

1.0 Functional Description (Continued) 

1.7 BUS CYCLE EXTENSION 

The NS32C201 TCU uses the Wait input signals to extend 
normal bus cycles. A normal bus cycle consists of four PHI1 
clock cycles. Whenever one or more Wait inputs to the TCU 
are activated, a bus cycle is extended by at least one PHI1 
clock cycle. The purpose is to allow the CPU to access slow 
memories or peripherals. The TCU responds to the Wait 
signals by pulling the ROY signal low as long as Wait States 
are to be inserted in the Bus cycle. 

CPU STATES T1 T2 

TCU STATES T1 T2 

PHI1 

There are three basic cycle extension modes provided by 
the TCU, as described below. 

1.7.1 Normal Wait States 

This is a normal Wait State insertion mode. It is initiated by 
pulling CWAIT or any of the WAITn lines low in the middle of 
T2. Figure 1-8 shows the timing diagram of a bus cycle 
when CWAIT is sampled high at the end of T1 and low in the 
middle of T2. 

T3.. ....... T3 T3 T4 

TCW ..... TCW T3 T4 

TL/EE/8524-12 

FIGURE 1·8. Wait State Insertion Using CWAIT (Fast Cycle) 

4-8 



1.0 Functional Description (Continued) 

The ROY signal goes low during T2 and remains low until 
CWAIT is sampled high by the TCU. ROY is pulled high by 
the TCU during the same PHI1 cycle in which the CWAIT 
line is sampled high. 

If any of the WAITn signals are sampled low during T2 and 

CPU STATES T1 

TCU STATES T1 

PHI1 

T2 

T2 

T3 

TW1 

CWAIT is high during the entire bus cycle, then the ROY line 
goes low for 1 to 15 clock cycles, depending on the binary 
weighted value of WAITn. If, for example, WAIT1 and 
WAIT4 are sampled low, then five wait states will be insert­
ed. This is shown in Figure 1-9. 

T3 .......... T3 T3 

TW2. • •• TWn T3 

T4 

T4 

TL/EE/8524-13 

FIGURE 1-9. Wait State Insertion Using WAITn (Fast Cycle) 

4-9 

z en 
Co) 
N 
o 
N 
C .... 
• .... 
c ...... z en 
Co) 
N o 
N 
C .... 
• .... 

(II 

• 



~r-----------------------------------------------------------------------' .... • 
~ 
~ 
~ 
z 
C; .... . .... 
C) 

~ 
Cf) 
U) 
z 

1.0 Functional Description (Continued) 

1.7.2 Peripheral Cycle 

This cycle is entered when the PER signal line is sampled 
low at the beginning of T2. The TCU adds five wait states 
identified as TDO-TD4 into a normal bus cycle. The RD and 

CPU STATES 
TCU STATES 

PHI1 

AOS 

TSii 

iiiiiN 

WR 

iiii 

OlE 

PER 

ROY 

T1 

T1 

-.... 

T2 

T2 

T3 

TOO 

T3 

T01 

WR signals are also re-shaped so the setup and hold times 
for address and data will be increased. 

This may be necessary when slower peripherals must be 
accessed. 

Figure 1-10 shows the timing diagram of a peripheral cycle • 

T3 

T02 

T3 

T03 

T3 

T04 

T3 

T3 

T4 

T4 

TL/EE/8524-14 

FIGURE 1-10. Peripheral Cycle 

4-10 



1.0 Functional Description (Continued) 

1.7.3 Cycle Hold 

If the CWAIT input is sampled low at the end of state T1, the 
TCU will go into cycle hold mode and stay in this mode for 
as long as CWAIT is kept low. During this mode the control 
signals RD, WR, T50 and DBE are kept inactive; ROY is 

CPU STATES T1 T2 T3 

pulled low, thus causing wait states to be inserted into the 
bus cycle. The cycle hold feature can be used in applica­
tions involving dynamic RAMs. A timing diagram showing 
the cycle hold feature is shown in Figure 1-11. 

f3 T3 T4 

TLlEE/8524-15 

FIGURE 1·11. Cycle Hold Timing Diagram 

1.8 BUS CYCLE EXTENSION COMBINATIONS 

Any combination of the TCU input signals used for extend­
ing a bus cycle can be activated at one time. The TCU will 
honor all of the requests according to a certain priority 
scheme. A cycle hold request is assigned top priority. It fol­
lows a peripheral cycle request, and then CWAIT and 
WAITn respectively. 

If, for example, all the input signals CWAIT, PER and WAITn 
are asserted at the beginning of the cycle, the TCU will en­
ter the cycle hold mode. As soon as CWAIT goes high, the 

4-11 

input signal PER is sampled to determine whether a periph­
eral cycle is requested. 

Next, the TCU samples CWAIT again and WAITn to check 
whether additional wait states have to be inserted into the 
bus cycle. This sampling point depends on whether PER 
was sampled high or low. If PER was sarapled high, then the 
sampling point will be in the middle of the TCU state T2, 
(Figure 1-14), otherwise it will occur three clock cycles later 
(Figure 1-15). Figures 1-12 to 1-15 show the timing dia­
grams for different combinations of cycle extensions. 

z 
en w 
I\) 

o 
I\) 
Q ..... , ..... 
Q 
....... 
Z 
en w 
I\) 

o 
I\) 
Q ..... , ..... 
U1 



II) .... 
• 1.0 Functional Description (Continued) .... 

0 
IN 
0 CPU STATES T1 T2 T3 T3 T3 ......... T3 T3 T4 IN 
CO) 
(I) TeU STATES Z ..... 
0 .... PHil • .... 
0 
IN 
0 
IN 
CO) 
(I) 

ADS 

Z 

TSO 

WR 

iW 

DBE 

PER 

eWAIT 

WAIT1 

WAIT2 

WAIT4 

WAIT8 

WAITn 
11112 10102 value 

sampled 15,0 10,0 

ROY 

TLlEE/8524-16 

FIGURE 1-12. Fast Cycle With 12 Walt States 
(2 CWAIT and WAIT10) (Read Cycle) 

4-12 



r-----------------------------------------------------------------------,z 
1.0 Functional Description (Continued) 

CPU STATES 

TCU STATES 

PHI1 

WAIfR 
value 

sampled 

ROY 

T1 

T1 

T2 

T2 

T3 T3 T3 T3 T3 ........ T3 

TOO T01 T02 TCW TW1 .... TW5 

HIGH 

lOW 

HIGH 

lOW 

HIGH 

FIGURE 1·13. Peripheral Cycle with Six Walt States 
(1 CWAIT and WAIT5) (Write Cycle) 

4-13 

T3 

T03 

T3 

T04 

T3 

T3 

TL/EE/8524-17 

en 
Co) 
~ 
o 
~ o ..... 
I ..... 

o ....... 
Z en 
Co) 
~ o 
~ o ..... 

I ..... 
CTI 



It) .,... . .,... 
<:) 
C'II 
0 
C'II 
CO) 
(/) 
Z ....... 
<:) .,... . .,... 
<:) 
C'II 
0 
C'II 
CO) 
(/) 
Z 

1.0 Functional Description (Continued) 

CPU STATES Tt 

TCU STATES 11 

PHil 

ADS 

TSO 

WR 

iiii 

DBE 

PER 

CWAIT 

WAiTt 

WAIT2 

WAIT4 

WAIT8 

WAlTn 

ROY 

T2 T3 T3 T3 T3 T3 

TH TH T2 TCW TW1 TW2 

HIGH 

LOW 

HIGH 

HIGH 

FIGURE 1-14. Cycle Hold with Three Wait States 
(1 CWAIT and WAIT2) (Read Cycle) 

4-14 

T3 T4 

T3 T4 

TL/EE/8524-18 



1.0 Functional Description (Continued) 

CPU STATES T1 T2 T3 T3 

lCU STATES T1 TH •• • TH T2 

T3 T3 

TOO T01 

13 

T02 

T3 

T03 

T3 

104 

13 

T3 

T4 

T4 

TL/EE/8524-19 

FIGURE 1-15. Cycle Hold of a Peripheral Cycle 

1.9 OVERRIDING WAITn WAIT STATES 

The TCU handles the WAITn Wait States by means of an 
internal counter that is reloaded with the binary value corre­
sponding to the state of the WAITn inputs each time CWAIT 
is sampled low, and is decremented when CWAIT is high. 

This allows to either extend a bus cycle of a predefined 
number of clock cycles, or prematurely terminate it. To ter-

4-15 

minate a bus cycle, for example, CWAIT must be asserted 
for at least one clock cycle, and the WAITn inputs must be 
forced to their inactive state. 

At least one wait state is always inserted when using this 
procedure as a result of CWAIT being sampled low. Figure 
1-16 shows the timing diagram of a prematurely terminated 
bus cycle where eleven wait states were being inserted. 

z 
~ 
N 
o 
N 
<:) ..... • ..... 
<:) ....... 
z en 
(,,) 
N o 
N 
<:) ..... • ..... 
U1 



~ r-----------------------------------------------------------------------------, .... • .... 
~ o 
~ 
tn 
Z ...... 
Q .... • .... 
Q 

3 
C'II 
C") 
tn 
Z 

1.0 Functional Description (Continued) 

CPU STATES 

lCU STATES 

PHI1 

iiii 

WAITn 
value 

sampled 

ROY 

T1 

T1 

T2 

T2 

T3 

TW1 

T3 

TW2 

T3 T3 

Twa TCW 

00002 

FIGURE 1-16. Overriding WAITn Wait States 
(Write Cycle) 

4-16 

T3 T4 

T3 T4 

TL/EE/8524-20 



2.0 Device Specifications 
2.1 PIN DESCRIPTIONS 

The following is a description of all NS32C201 pins. The 
descriptions reference portions of the Functional Descrip­
tion. Section 1. 

2.1.1 Supplies 

Power (VCc>: +5V positive supply. Section 1.1. 

Ground (GND): Power supply return. Section 1.1. 

2.1.2 Input Signals 

Reset Input (RSTI): Active low. Schmitt triggered, asyn­
chronous signal used to generate a system reset. Section 
1.4. 

Address Strobe (ADS): Active low. Identifies the first timing 
state (Tl) of a bus cycle. 

Data Direction Input (ODIN): Active low. Indicates the di­
rection of the data transfer during a bus cycle. Implies a 
Read when low and a Write when high. 
Note: In Rev. A of the NS32C201 this signal is CMOS compatible. In later 

revisions it is TTL compatible. 

Read/Write Enable and Synchronization (RWEN/ 
SYNC): TRI-STATE® the RD and the WR outputs when high 
and enables them when low. Also used to synchronize the 
phase of the TCU clock signals, when two or more TCUs 
are used. Section 1.5. 

Crystal or External Clock Source (XIN): Input from a crys­
tal or an external clock source. Section 1.3. 

Continuous Walt (CWAIT): Active low. Initiates a continu­
ous wait if sampled low in the middle of T2 during a Fast 
cycle, or in the middle of TD2, during a peripheral cycle. If 
CWAIT is low at the end of Tl, it initiates a Cycle Hold. 
Section 1.7.1. 

Four-Bit Walt State Inputs (WAIT1, WAIT2, WAIT4 and 
WAITS): Active low. These inputs, (collectively called 
WAITn), allow from zero to fifteen wait states to be speci­
fied. They are binary weighted. Section 1.7.1. 

Peripheral Cycle (PER): Active low. If active, causes the 
TCU to insert five wait states into a normal bus cycle. It also 
causes the Read and Write signals to be re-shaped to meet 
the setup and hold timing requirement of slower MOS pe­
ripherals. Section 1.7.2. 

4-17 

2.1.3 Output' Signals 

Reset Output (RSTO): Active low. This signal becomes ac­
tive when RSTI is low, initiating a system reset. RSTO goes 
high on the first rising edge of PHI1 after RSTI goes high. 
Section 1.4. 
Read Strobe (RD): (TRI-STATE) Active low. Identifies a 
Read cycle. It is decoded from DDIN and TRI-STATE by 
RWEN/SYNC. Section 1.6. 

Write Strobe (WR): (TRI-STATE) Active low. Identifies a 
Write cycle. It is decoded from DDIN and TRI-STATE by 
RWEN/SYNC. Section 1.6. 
Note: RD and WR are mutually exclusive in any cycle. Hence they are never 

low at the same time. 

Data Buffer Enable (DBE): Active low. This signal is used 
to control the data bus buffers. It is low when the data buff­
ers are to be enabled. Section 1.6. 

Timing State Output (TSO): Active low. The falling edge of 
TSO signals the beginning of state T2 of a bus cycle. The 
rising edge of TSO signals the beginning of state T4. Sec­
tion 1.6. 

Ready (ROY): Active high. This signal will go low and re­
main low as long as wait states are to be inserted in a bus 
cycle. It is normally connected to the RDY input of the CPU. 
Section 1.7. 
Fast Clock (FCLK): This is a clock running at the same 
frequency as the crystal or the external source. Its frequen­
cy is twice that of the CPU clocks. Section 1.3. 

CPU Clocks (PHI1 and PHI2): These outputs provide the 
Series 32000 CPU with two phase, non-overlapping clock 
signals. Their frequency is half that of the crystal or external 
source. Section 1.3. 

System Clock (CTIL): This is a system version of the PHil 
clock. Hence, it operates at the CPU clock frequency. Sec­
tion 1.3. 

Crystal Output (XOUn: This line is used as the return path 
for the crystal (if used). It must be left open when an exter­
nal clock source is used to drive XIN. Section 1.2. 

z 
en 
Co) 
I\) 

o 
I\) 
o ..... 

I ..... 
o ...... 
z 
en 
Co) 
I\) 

o 
I\) 
o ..... 

I ..... 
en 



Ln .... . .... 
(:) 
C'I 
Co) 
C'I 

~ 
Z ..... 
(:) .... 
• .... 

(:) 
C'I 

~ 
C') 

o z 

2.0 Device Specifications (Continued) 

2.2 ABSOLUTE MAXIMUM RATINGS (Note 1) Note: Absolute maximum ratings indicate limits beyond 

If Military/Aerospace specified devices are required, which permament damage may occur. Continuous opera-

contact the National Semiconductor Sales Office/ tion at these limits is not intended; operation should be limit-

Distributors for availability and specifications • ed to those conditions specified under Electrical Character-

Supply Voltage 7V istics. 

Input Voltages -0.5V to Vee + 0.5V 

Output Voltages -0.5VtoVee + 0.5V 

Storage Temperature -65'C to + 150'C 

Lead Temperature (Soldering, 10 sec.) 300'C 

Continous Power Dissipation 1W 

2.3 ELECTRICAL CHARACTERISTICS T A = -40'C to + 85'C, Vee = 5V ± 5%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

VIL Input Low Voltage All Inputs Except RSTI & XIN 0.8 V 

VIH Input High Voltage All Inputs Except RSTI & XIN 2.0 V 

VT+ RSTI Rising Threshold Voltage Vee = 5.0V 2.5 3.5 V 

VHYS RSTI Hysteresis Voltage Vee = 5.0V 0.8 1.9 V 

VXL XIN Input Low Voltage 0.20 Vee V 

VXH XIN Input High Voltage 0.80 Vee V 

IlL Input Low Current VIN = OV -10 p.A 

IIH Input High Current VIN = Vee 10 p.A 

VOL 
Output Low Voltage PHI1 & PHI2, I = 1 mA 

0.10 Vee V 
All Other Oujputs Except XOUT, I = 2 mA 

VOH 
Output High Voltage All Outputs Except 

0.90 Vee V 
XOUT, 1= -1 mA 

IL Leakage Current on RD/WR 0.4V s: VIN s: Vee -20 +20 p.A 

Icc Supply Current fxin = 20 MHz 100 120 mA 

Note 1: All typical values are for Vce = 5V and TA = 25'C. 

Connection Diagram 
Dual-In-Llne Package 

Iii£-~ I-Vcc 
RWEN/SYNC - 2 23I-PEii 

1ID-3 22 i-CWAiT 
Wii-4 211-WAITI 

DDIN- 5 2D I-WAlT2 
ADS-I NS32C201 19 I-WAIT4 
RITi- 7 ICU 18i-WAm 
RITD- 8 17 I-TSO 
ROY- 9 161--Cm 
PHI2- 10 151-FCLK 
PHll- 11 141-XOUT 

0"0- 12 13 i-XIN 

TL/EE/8524-2 
Top View 

Order Number NS32C201li or NS32C201N 
See NS Package Number D24C or N24A 

FIGURE 2.1 

4-18 



2.0 Device Specifications (Continued) 

2.4 SWITCHING CHARACTERISTICS 2.4.2 Output Loading 

2.4.1 Definitions Capacitive loading on output pins for the NS32C201. 

All the timing specifications given in this section refer to ROY, DBE, TSO ................................. 50 pF 

2.0V on the rising or falling edges of the clock phases PHil RD,WR ........................................ 75pF 
and PHI2; to 15% or B5% of Vcc on all the CMOS output CTTL ..................................... 50+100pF 
signals, and to O.BV or 2.0V on all the TTL input signals, FCLK ......................................... 100pF 
unless specifically stated otherwise. 

PHil, PHI2 ..................................... 170 pF 

ABBREVIATIONS 

L.E.-Leading Edge 

T.E.-Trailing Edge 

R.E.-Rising Edge 

F.E.-Falling Edge 

2.4.3 Timing Tables 

Symbol Figure Description Reference/Conditions NS32C201-10 NS32C20 1-15 
Units 

Min Max Min Max 

CLOCK-SIGNALS (XIN, FCLK, PHil & PHI2) TIMING 

tcp 2.2 Clock Period PHil R.E. to Next 
PHil R.E. 100 66 ns 

tClh 2.2 Clock High Time At 90% Vcc on PHil 0.5 tep 0.5tcp 0.5tcp 0.5 tep 
(Both Edges) -15ns -7ns -IOns -3ns 

tell 2.2 Clock Low Time At 15% Vcc on PHil 0.5tep 0.5tep 0.5tCp 0.5tep 
-5ns +10ns -5ns +6ns 

tClw(1,2) 2.2 Clock Pulse Width At 2.0V on PHil, PHI2 0.5tcp 0.5tcp 0.5tcp 0.5tcp 
(Both Edges) -IOns -4ns -6ns -4ns 

tClwas PHil, PHI2 Asymmetry At 2.0V on PHil, -5 5 -3 3 ns 
(telw (1) - telw (2» PHI2 

tClR 2.2 Clock Rise Time 15% to 90% Vcc 8 6 ns on PHil R.E. 

tClF 2.2 Clock Fall Time 90% to 15% VCC B 6 ns 
on PHil F.E. 

tnOVl(1,2) 2.2 Clock Non·Overlap Time At 15% Vcc on PHil, 
PHI2 

-2 +2 -2 +2 ns 

tnOVLas Non·Overlap Asymmetry At 15% Vcc on PHil, -4 4 -3 3 ns 
(tnOVl (1) - InOVl (2» PHI2 

tXh 2.2 XIN High Time At BO% Vee on XIN 16 10 ns 
(External Input) (Both Edges) 

tXI 2.2 XIN Low Time At 15% Vccon XIN 16 10 ns (External Input) (Both Edges) 

tXFr 2.2 XIN to FCLK R.E. Delay BO% Vcc on XIN R.E. 6 29 6 25 to FCLK R.E. ns 

tXFf 2.2 XIN to FCLK F.E. Delay 15% Vee on XIN F.E. 6 29 6 25 to FCLKF.E. 
ns 

txcr 2.2 XIN to CTTL R.E. Delay BO% Vcc on XIN R.E. 6 34 6 25 ns 
to CTTLR.E. 

tXPr 2.2 XIN to PHil R.E. Delay BO% Vee on XIN R.E. 6 32 6 25 ns to PHil R.E. 

tFCr 2.2 FCLK to CTTL R.E. Delay FCLK R.E. to CTTL R.E. 0 6 0 6 ns 

tFCf 2.2 FCLK to CTTL F.E. Delay FCLK R.E. to CTTL F.E. -3 4 -3 4 ns 

tFPr 2.3 FCLK to PHil R.E. Delay FCLK R.E. to PHil R.E. -3 4 -3 4 ns 

tFPf 2.3 FCLK to PHil F.E. Delay FCLK R.E. to PHil F.E. -5 2 -5 2 ns 

tFw 2.3 FCLK Pulse Width At 50% Vcc on FCLK 0.25tCp 0.25 tep 0.25tCp 0.25 tcp 
with Crystal (Both Edges) -5ns +5ns -5ns +5ns 

tpCf 2.3 PHI2 R.E.to CTTL PHI2 R.E. to CTTL F.E. -3 4 -3 3 ns 
F.E. Delay 

tcrw 2.3 CTTL Pulse Width At 50% Vcc on CTTL 0.5tep 0.5tcp 0.5 tep 0.5tCp 
(Both Edges) -7ns +1 ns -5ns +1 ns 

Note 1: Ixc., IFCr, IFCf. IpCf. IcTh are measured wHh 100 pF load on CTTL 
Note 2: PHI1 and PHI2 are interchangeable for the following parameters: tcp. tcLh. tcu. tCLw. telR, tcLF. tnOVL. tXPr. tFPr. tFPf. 

4-19 

z 
en 
Co) 
N o 
N 
C) .... . .... 
C) ..... 
z 
en 
Co) 
N 
o 
N 
C) .... 
• .... 

CJ1 



." .... • .... 
Q 

~ 
~ 
z ...... 
Q .,.. 
• .... 

Q 

~ 
C') 
f/) 
z 

2.0 Device Specifications (Continued) 

2.4.3 Timing Tables (Continued) 

Symbol Figure Description Reference/Conditions 

CTTL TIMING (CL = 50 pF) 

tpcr 2.3 PHI1 to CTTL R.E. Delay PHI1 R.E. to CTTL R.E. 

tcrR 2.3 CTTL Rise Time 10% to 90% Vcc 
on CTTLR.E. 

tCTF 2.3 CTTL Fall Time 90% to 10% Vee 
on CTTLF.E. 

CTTL TIMING (CL = 100 pF) 

tpcr 2.3 PHI1 to CTTL R.E. Delay PHI1 R.E. to CTTL R.E. 

tCTR 2.3 CTTL Rise Time 10% to 90% Vcc 
on CTTLR.E. 

tcrF 2.3 CTTL Fall Time 90% to 10% Vee 
on CTTLF.E. 

CONTROL INPUTS (RST1, ADS, ODIN) TIMING 

tRSTs 2.4 RSTI Setup Time Before PHI1 R.E. 

tAOs 2.4 ADS Setup Time Before PHI1 R.E. 

tADw 2.4 ADS Pulse Width ADS L.E. to ADS T.E. 

toos 2.4 DDIN Setup Time Before PHI1 R.E. 

CONTROL OUTPUTS (RSTO, TSO, RD, WR, DBE 8& RWEN/SYNC) TIMING 

tRSTr 2.4 RSTO R.E. Delay After PHI1 R.E. 

tTl 2.5 TSO L.E. Delay After PHI1 R.E. 

tTr 2.5 TSO T.E. Delay After PHI1 R.E. 

tRWI(F) 2.5 RD/WR L.E. Delay (Fast Cycle) After PHI1 R.E. 

tRWI(S) 2.6 RD/WR L.E. Delay After PHil R.E. 
(Peripheral Cycle) 

tRWr 2.5/6 RD/WR T.E. Delay After PHI1 R.E. 

tOBI(W) 2.5/6 DBE L.E. Delay (Write Cycle) After PHI1 R.E. 

tOBI(R) 2.5/6 DBE L.E. Delay (Read Cycle) After PHI2 R.E. 

tOBr 2.5/6 DBE T.E. Delay After PHI2 R.E. 

IpLZ 2.7 RD,WR Low Level to TRI-STATE After RWEN/SYNC R.E. 

tpHZ 2.7 RD,WR High Level to TRI·STATE After RWEN/SYNC R.E. 

IpZL 2.7 RD,WR TRI-STATE to Low Level After RWEN/SYNC F.E. 

tpZH 2.7 RD,WR TRI-STATE to High Level After RWEN/SYNC F.E. 

WAIT STATES 8& CYCLE HOLD (CWAIT, WAITn, PER 8& ROY) TIMING 

tCWs(H) 2.8 CWAIT Setup Time (Cycle Hold) Before PHil R.E. 

leWh(H) 2.8 CWAIT Hold Time (Cycle Hold) After PHil R.E. 

tCWs(W) 2.8/9 CWAIT Setup Time (Wait States) Before PHI2 R.E. 

tCWh(W) 2.9 CWAIT Hold Time (Wait States) After PHI2 R.E. 

tws 2.9 WAITn Setup Time Before PHI2 R.E. 

tWh 2.9 WAITn Hold Time After PHI2 R.E. 

tps 2.10 PER Setup Time Before PHil R.E. 

tPh 2.10 PER Hold Time After PHI1 R.E. 

tRd 2.8/9/10 RDYDelay After PHI2 R.E. 

SYNCHRONIZATION (SYNC) TIMING 

tSys 2.11 SYNC Setup Time Before XIN R.E. 

tSyh 2.11 SYNC Hold Time After XIN R.E. 

les 2.11 CTTLISYNC Inversion Delay CTTL (master) to 
RWEN/SYNC (slave) 

4-20 

NS32C201-10 NS32C201-15 Units 
Min Max Min Max 

-2 5 -2 3 ns 

7 6 ns 

7 6 ns 

-2 6 -2 4 ns 

8 7 ns 

8 7 ns 

20 15 

25 20 ns 

25 20 ns 

15 13 ns 

21 10 ns 

12 8 ns 

3 18 3 10 ns 

30 21 ns 

25 15 ns 

3 20 3 15 ns 

25 15 ns 

20 11 ns 

20 15 ns 

25 20 ns 

20 15 ns 

25 18 ns 

25 18 ns 

30 20 ns 

0 0 ns 

10 6 ns 

20 10 ns 

7 6 ns 

15 10 ns 

7 5 ns 

30 20 ns 

25 12 ns 

6 6 ns 

5 5 ns 

10 7 ns 



2.0 Device Specifications (Continued) 

2.4.4 Timing Diagrams 

FCLK 

CTIL 

PHil 

PHI2 

FIGURE 2·2. Clock Signals (a) 

XIN 

FCLK 

PHil 

PHI2 

cm 

FIGURE 2·3. Clock Signals (b) 

TI 
PHil 

RSTI 

RSTO 

ADS 

ODIN 

FIGURE 2·4. Control Inputs 

4·21 

TL/EE/8524-21 

TL/EE/8524-22 

T2 III 

TLlEE/8524-23 



~ r-----------------------------------------------------------------------------, .-• .-
~ o 
N 
('I) 
U) 
Z 
C; .-• .-
o 
N 
o 
N 

~ 
Z 

2.0 Device Specifications (Continued) 

PH11 

PH12 

Tl T2 T3 

PHI1 

PHI2 

R5-+---";';'-n. 
WR 

FIGURE 2·5. Control Outputs (Fast Cycle) 

T1 T2 TOO TDI TD2 TD3 TD4 

IDBIIR) 
----1Ir.-.., 

IDBIIW) 
I I 

FIGURE 2·6. Control Outputs (Peripheral Cycle) 

RWENISYNC 

.. 1.5V 

whiiii 

iiiii&iiii 
-----.. 1.5V _...;.. ....... r-+ 

FIGURE 2·7. Control Outputs (TRI·STATE Timing) 

4-22 

T4 

TL/EE/8524-24 

T3 T4 

TLlEE/8524-25 

TLlEE/8524-26 



.--------------------------------------------------------------------,z 
2.0 Device Specifications (Continued) 

TI THI (FIRST) THn (LAST) 

PHil 

PHI2 

ROY 

FIGURE 2-8. Cycle Hold 

FIGURE 2-9. Walt State (Fast Cycle) 

T1 T2 TOO TOI T02 T03 

PHil 

PHI2 

~AIT ____ ~~~~ ____ +-____ ~ 
OR 

WAIT" 

PER 

ROY 

FIGURE 2-10. Wait State (Peripheral Cycle) 

4-23 

T2 

ROY REMAINS LOW 
FOR SUBSEQUENT WAIT 

TD4 T3 T4 

TUEE/B524-27 

TL/EE/B524-2B 

TL/EE/B524-29 

U) 
Co) 
I\) 

o 
I\) 
o ..... • ..... 
~ 
z 
U) 
Co) 
I\) 

o 
I\) 
o ..... 
• ..... 

Ut 

• 



~ r--------------------------------------------------------------------------, .... • .... 
CI 

B 
z c; .... • .... 
~ 

~ o z 

2.0 Device Specifications (Continued) 

RWEN/SYNC 

CTlL t"jo- I -{ 
------1-.,.~b· .. -1----
-' \ ~ \'---

XIN 

TLlEE/8524-30 

FIGURE 2·11. Synchronization Timing 

4-24 



.----------------------------------------------------------------,z 

~National 
~ Semiconductor 
NS32202-10 Interrupt Control Unit 

General Description 
The NS32202 Interrupt Control Unit (ICU) is the interrupt 
controller for the Series 32000® microprocessor family. It is 
a support circuit that minimizes the software and real·time 
overhead required to handle multi·level, prioritized inter· 
rupts. A single NS32202 manages up to 16 interrupt sources, 
resolvesinterruptpriorities,andsuppliesasingle·byteinterrupt 
vector to the CPU. 

The NS32202 can operate in either of two data bus modes: 
16-bit or 8-bit. In the 16-bit mode, eight hardware and eight 
software interrupt positions are available. In the 8-bit mode, 
16 hardware interrupt positions are available, 8 of which can 
be used as software interrupts. In this mode, up to 16 addi· 
tional ICUs may be cascaded to handle a maximum of 256 
interrupts. 

Two 16-bit counters, which may be concatenated under pro· 
gram control into a single 32-bit counter, are also available 
for real·time applications. 

Basic System Configuration 

Features 
• 16 maskable interrupt sources, cascadable to 256 
• Programmable 8- or 16-bit data bus mode 
• Edge or level triggering for each hardware interrupt with 

individually selectable polarities 

• 8 software interrupts 
• Fixed or rotating priority modes 
• Two 16-bit, DC to 10 MHz counters, that may be con· 

catenated into a single 32-bit counter 
• Optional 8-bit 1/0 port available in 8-bit data bus mode 
• High·speed XMOSTM technology 

• Single, + 5V supply 
• 40·pin, dual in·line package 

~ iiif +-1 _ NON·CASCADED 

N832018 MASTER ..L. INTERRUPT SOURCES 
CPU N832202 

GROUP ICU 
I~ iNi' -
I· 

+;-
CASCADED · · N832202 · ICU · · · · ..:-

CASCADED 
INTERRUPT 
SDURCES 

'--- iNi' -+;-
CASCADED 
N832202 

ICU · · · · ..:-
TLlEE/5117-1 

4-25 

tJ) 
(0) 
I\) 
I\) 
o 
~ .... 
o 



C) r---------------------------------------------------------------------------------, ..... 
I 

C'I 
C) 
C'I 
C'I 
CO) 

en 
z 

Table of Contents 
1.0 PRODUCT INTRODUCTION 

1.1110 Buffers 

1.2 Read/Write Logic and Decoders 

1.3 Timing and Control 

1.4 Priority Control 

1.5 Counters 

2.0 FUNCTIONAL DESCRIPTION 

2.1 Reset 

2.2 Initialization 

2.3 Vectored Interrupt Handling 

2.3.1 Non-Cascaded Operation 

2.3.2 Cascade Operation 

2.4 Internal ICU Operating Sequence 

2.5 Interrupt Priority Modes 

2.5.1 Fixed Priority Mode 

2.5.2 Auto-Rotate Mode 

2.5.3 Special Mask Mode 

2.5.4 Polling Mode 

3.0 ARCHITECTURAL DESCRIPTION 

3.1 HVCT - Hardware Vector Register (RO) 

3.2 SVCT - Software Vector Register (Rl) 

3.3 EL TG - Edge/Level Triggering Registers (R2, R3) 

3.4 TPL - Triggering Polarity Registers (R4, R5) 

3.5 IPND - Interrupt Pending Registers (R6, R7) 

3.6 ISRV - Interrupt In-Service Registers (R8, R9) 

3.7IMSK - Interrupt Mask Registers (Rl0, Rll) 

3.8 CSRC - Cascaded Source Registers (R12, R13) 

3.0 ARCHITECTURAL DESCRIPTION (Continued) 

3.9 FPRT - First Priority Registers (R14, R15) 

3.10 MCTL - Mode Control Register (R16) 

3.11 OSCASN - Output Clock Assignment (R17) 

3.12 CIPTR - Counter Interrupt Pointer Register (R18) 

3.13 PDAT - Port Dada Register (R19) 

3.14 IPS - Interrupt/Port Select Register (R20) 

3.15 PDIR - Port Direction Register (R21) 

3.16 CCTL - Counter Control Register (R22) 

3.17 CICTL - Counter Interrupt Control Register (R23) 

3.18 LCSV/HCSV - L-Counter Starting Value/H-Counter 
Starting Value Registers (R24, R25, R26, and R27) 

3.19 LCCV/HCCV - L-Counter Current Value/H-Counter 
Current Value Registers (R28, R29, R30, and R31) 

3.20 Register Initialization 

4.0 DEVICE SPECIFICATIONS 

4.1 NS32202 Pin Descriptions 

4.1.1 Power Supply 

4.1.2 Input Signals 

4.1 .3 Output Signals 

4.1.4 Input/Output Signals 

4.2 Absolute Maximum Ratings 

4.3 Electrical Characteristics 

4.4 Switching Characteristics 

4.4.1 Definitions 

4.4.1.1 Timing Tables 

4.4.1.2 Timing Diagrams 

List of Illustrations 
NS32202 ICU Block Diagram .................................................................................... 1-1 
Counter Output Signals in Pulsed Form and Square Waveform for Three Differentlnitial Values ........................... 1-2 
Counter Configuration and Basic Operations ....................................................................... 1-3 
Interrupt Control Unit Connections in 16-Bit Bus Mode .............................................................. 2-1 
Interrupt Control Unit Connections in 8-Bit Bus Mode ............................................................... 2-2 
Cascaded Interrupt Control Unit Connections in 8-Bit Bus Mode ...................................................... 2-3 
CPU Interrupt Acknowledge Sequence ............................................................................ 2-4 
Interrupt Dispatch and Cascade Tables ........................................................................... 2-5 
CPU Return from Interrupt Sequence ............................................................................. 2-6 
ICU Interrupt Acknowledge Sequence ............................................................................ 2-7 
ICU Return from Interrupt Sequence .............................................................................. 2-8 
ICU Internal Registers .......................................................................................... 3-1 
HVCT Register Data Coding ..................................................................................... 3-2 
Recommended ICU's Initialization Sequence ...................................................................... 3-3 
NS32202 ICU Connection Diagram ............................................................................... 4-1 
Timing Specification Standard ................................................................................... 4-2 
READ/INTA Cycle ............................................................................................. 4-3 
Write Cycle .................................................................................................... 4-4 
Interrupt Timing in Edge Triggering Mode .......................................................................... 4-5 
InterruptTiming in Level Triggering Mode ......................................................................... 4-6 
Externallnterrupt-Sampling-Clock to be Provided at Pin COUT/SCIN When in Test Mode ............................... .4-7 
Internallnterrupt-Sampling-Clock to be Provided at Pin COUT ISCIN .................................................. 4-8 
Relationship Between Clock Input at Pin CLK and Counter Output Signals at Pins COUT/SCIN or GO/RO-G3/R6, 
in Both Pulsed Form and Square Waveform ....................................................................... 4-9 

4-26 



.-------------------------------------------------------------~z 

1.0 Product Introduction 
The NS32202 ICU functions as an overall manager in an 
interrupt-oriented system environment. Its many features 
and options permit the design of sophisticated interrupt sys­
tems. 

Figure 1-1 shows the internal organization of the NS32202. 
As shown, the NS32202 is divided into five functional 
blocks. These are described in the following paragraphs: 

1.11/0 BUFFERS AND LATCHES 

The I/O Buffers and Latches block is the interface with the 
system data bus. It contains bidirectional buffers for the 
data I/O pins. It also contains registers and logic circuits 
that control the operation of pins GO/IRO, ... ,G7/IR14 
when the ICU is in the a-bit bus mode. 

1.2 READ/WRITE LOGIC AND DECODERS 

The Read/Write Logic and Decoders manage all internal 
and external data transfers for the ICU. These include Data, 
Control, and Status Transfers. This circuit accepts inputs 
from the CPU address and control buses. In turn, it issues 
commands to access the internal registers of the ICU. 

1.3 TIMING AND CONTROL 

The Timing and Control Block contains status elements that 
select the ICU operating mode. It also contains state ma­
chines that generate all the necessary sequencing and con­
trol signals. 

GND vee sn Ifjf IRI 

1- 1- LV G7IIRI4 +-1> 
66/IRI2+-+ 

65/IR1D +-+ 
64/IRB +-1> 
G3/IR6+-+ 
G2IIR4 ..... 
Gl/IR2+-+ I/O BUFFERS 
GO/IRO+-+ AND 

1.4 PRIORITY CONTROL 

The Priority Control Block contains 16 units, one for each 
interrupt position. These units provide the following func­
tions. 

• Sensing the various forms of hardware interrupt sig­
nals e.g. level (highllow) or edge (rising/falling) 

o Resolving priorities and generating an interrupt re-
quest to the CPU 

o Handling cascaded arrangements 
o Enabling software interrupts 
• Providing for an automatic return from interrupt 
• Enabling the assignment of any interrupt position to 

the internal counters 
• Providing for rearrangement of priorities by assigning 

the first priority to any interrupt position 
• Enabling automatic rotation of priorities 

1.5 COUNTERS 

This block contains two 16-bit counters, called the H-coun­
ter and the L-counter. These are down counters that count 
from an initial value to zero. Both counters have a 16-bit 
register (deSignated HCSV and LCSV) for loading their re­
starting values. They also have registers containing the cur­
rent count values (HCCV and LCCV). Both sets of registers 
are fully described in Section 3. 

IR3 IR5 IR7 IR9 IRl1 IR13 IR15 

!!!!!!J. 
PftIORITY 
CONTROL 

i 
TIMING 

AND COUNTERS 

07+-+ LATCHES CONTROL B~'~ ClK 
06+-+ 

t 05+-1> 
04+-1> 

4-1 03+-+ READ/WRITE lOGIC 
02+-+ AND DECODERS 

01 ..... 

11 t i 
lE 

i i i i i DO ..... 

RST RD Wii cs AD AI A2 A3 A4 
TL/EE/5117-2 

FIGURE 1-1. NS322021CU Block Diagram 

4-27 

tJ) 
Co) 
N 
N 
Q 
N • ... 
Q 

II 



Q .-

~ 
N 
CO) 
U) 
Z 

1.0 Product Introduction (Continued) 

The counters are under program control and can be used to 
generate interrupts. When the count reaches zero, either 
counter can generate an interrupt request to any of the 16 
interrupt positions. The counter then reloads the start value 
from the appropriate registers and resumes counting. Figure 
1-2 shows typical counter output signals available from the 
NS32202. 

The maximum input clock frequency is 2.5 MHz. 

A divide-by-four prescaler is also provided. When the pre­
scaler is used, the input clock frequency can be up to 10 
MHz. 

When intervals longer than provided by a 16-bit counter are 
needed, the L- and H-counters can be concatenated to form 
a 32-bit counter. In this case, both counters are controlled 
by the H-counter control bits. Refer to the discussion of the 
Counter Control Register in Section 3 for additional informa­
tion. Figure 1-3 summarizes counter read/write operations. 

INPUT CLOCK 

COUNTER 
CONlENTS 

2.0 Functional Description 
2.1 RESET 

The ICU is reset when a logic low signal is present on the 
RST pin. At reset, most internal ICU registers are affected, 
and the ICU becomes inactive. 

2.2 INITIALIZATION 

After reset, the CPU must initialize the NS32202 to establish 
its configuration. Proper initialization requires knowledge of 
the ICU register's formats. Therefore, a flowchart of a rec­
ommended initialization sequence is shown in (Figure 3-3) 
after the discussion of the ICU registers. 

The operation sequence shown in Figure 3-3 ensures that 
all counter output pins remain inactive until the counters are 
completely initialized. 

2.3 VECTORED INTERRUPT HANDLING 

For details on the operation of the vectored interrupt mode 
for a particular Series 32000 CPU, refer to the data sheet for 

(INIT. VALUE=2) ___________ -, r--------...., 
OUTPUT IN U I r 

PULSED FORM U 

OUTPUT IN 
SQUARE WAVEFORM 

COUNTER 
CONlENTS 

'--__ ~I 

(INIT. VALUE =1) --------., r------, I"-----..,U-
OUTPUT IN U U 

PULSED FORM 

OUTPUT IN 
SQUARE WAVEFORM 

COUNTER 
CONTENTS 

(INIT. VALUE=O) ____ ...., 

OUTPUT IN 
PULSED FORM 

OUTPUT IN 
SQUARE WAVEFORM 

L 

TLlEE/5117-4 

FIGURE 1-2. Counter Output Signals in Pulsed Form and Square Waveform for Three Different Initial Values 

4-28 



2.0 Functional Description (Continued) 

that CPU. In this discussion, it is assumed that the NS32202 
is working with a CPU in the vectored interrupt mode. Sever­
al ICU applications are discussed, including non-cascaded 
and cascaded operation. Figures 2-1, 2-2, and 2-3 show 
typical configurations of the ICU used with the NS32016 
CPU. 

A peripheral device issues an interrupt request by sending 
the proper signal to one of the NS32202 interrupt inputs. If 
the interrupt input is not masked, the ICU activates its Inter-

I STARTING VALUE 
LCSV/HCSV 

~ COUNTER 

FREEZE COUNTER READINGS I 

I CURRENT VALUE 
LCCVlHCCV 

BASIC OPERATIONS: 

WRITING TO LCSV IHCSV 

READING LCSV IHCSV 

WRITING TO LCCVlHCCV 

rupt Output (INT) pin and generates an interrupt vector byte. 
The interrupt vector byte identifies the interrupt source in its 
four least significant bits. When the CPU detects a low level 
on its Interrupt Input pin, it performs one or two interrupt 
acknowledge cycles depending on whether the interrupt re­
quest is from the master ICU or a cascaded ICU. Figure 2-4 
shows a flowchart of a typical CPU Interrupt Acknowledge 
sequence. 

.......... :.., 

0. 
.. 
c =-
'" ::> 

'" 
0. ~ c .... 

"" :z 
"" ~ 
~ 

0: 
""'I ~ 

TLiEE/5117 -5 

(only possible when counters are halted) 

READING LCCV/HCCV 

~ - (lOB) 

~- (lOB) 

®- (lOB) 

@l- (lOB) 

@l- (lOB) 

(only possible when counter 
readings are frozen) 

COUNTER COUNTS AND READINGS ARE 
NOT FROZEN 

COUNTER RELOADS STARTING VALUE 

(occurs on the clock cycle following 
the one in which it reaches zero) 

FIGURE 1-3. Counter Configuration and Basic Operations 

4-29 

z en 
Co) 
N 
N 
Q 

~ .... 
Q 



o r-----------------------------------------------------------------------------~ ... 
N 2.0 Functional Description (Continued) 
~ 

i3 z 

All-AU AO-A23 
iiif 

LATCH I AII-M 
AII-M ~ N83201. I l HBE IR15 

T CPU 
iDS I::: J---. cs IR13 

an lTi IRU 
lIlT iii 

NS3UG2 IRS 
iiiiiN ICU 

BUFFER 
00-01S IR7 

AOO-AilIS 00-071 

PIIIl PHI2 
GOIlRO-G7I1Rl. 

IRS 

~ t 
PII" PIII2 ADS ODIN iiiL 1R3 

NS32201 -.1 
iii 

TeU Wli WI. IRI 

00-015 

FIGURE 2-1. Interrupt Control Unit Connections In 16-Blt Bus Mode 

A11-A23 AO-A23 

LATCH 
AI-AS 

AO-M G7I1Rl. -.I 
NS3201. GND--+ HBE IIII11R1Z 

T 

PII" 

t 
PII" 

CPU 

Ail I=: J---. cs 
m an 
iii' INT 

iiiiii 
BUFFfR 

DD-D7 
ADD-AD11 DD-D7 

PIII2 

t 
l'1li2 AG5 ODIN -.1 

NS32301 ~L iili 

TCU ~ WI 

DD-D15 

NOTE: In !he 8-Bn Bus Mode !he Master ICU Registers appear at even 
addresses (AO = 0) since the ICU communicates wi!h the least 8ig­
nRlcant byte of the CPU data bus. 

G5/IRlG 
8411R1 
G3/1R1 
0211114 
all1RZ 

NI3220Z GOIIRG 
leU IR15 

.. ,3 

"U 
IRS 
IRT 
IHI 
IR3 
IRI 

FIGURE 2-2. Interrupt Control Unit Connections In 8·Blt Bus Mode 

4-30 

+--

+--

+--

+-

+--

I+-
~ 

+-

TL/EE/5117 -6 

::: 
~ ..... ..... 
t:: 
+-
+-
+-
+-
+-
+-
+-
+-

TL/EE/5117 -7 



r--------------------------------------------------------------------------, Z 

2.0 Functional Description (Continued) 

AI-AS 
All-M 1171111' 

11111112 
GND--+ HIE 05/111D 

114/111 
113/111 
6Z/1R4 

Ci CASCADED 61/1H2 
STI NS32202 GO/IRQ 

ICU 1115 

DO-D7 1113 
1111 

IHI 
ID IR7 
WI 1115 

113 

liNT 111 

All-AD All-AD 

I AI-AS 

~ 
I 

LATCH All-M 07/111' 
N83201. I 111/1112 CPU 

f 8ND~ HIE 05/111D 
iii I=:r- 114/111 

Ci 113/111 
G2/1R4 

m Bn MASTER 01 11HZ 

lIT iii NS32202 GG/IRD 
ICU 11115 

iii :: IUffD I 1R13 DO-D7 
ADl-AD11 DO-D7 1111 

Pltn PHIZ IHI 

f f IR7 
IRS 

'"" PHIZ .... I11III iii iii IR3 
NS32201 ~I iii 1111 TCU Wli 

DO-D15 

FIGURE 2-3. Cascaded Interrupt Control Unit Connections In 8-Blt Bus Mode 

4-31 

~ 
~ 
~ 
~ 
~ 
~ 
::: 
::: 

::: 
::: ::: .... 
c-
::: 
~ 
4-
4-

::: 
TL/EE/Sl17-B 

en 
Co) 
I\) 
I\) 
Q 

~ .... 
Q 



o .,... 
S 2.0 Functional Description (Continued) 
C"I 
C"I 
CO) 

en z 

• Condo A is true if current instruction Is terminated 
or an interruptible point in a string Instruction is 
reached. 

FIGURE 2-4. CPU Interrupt Acknowledge Sequence 

4-32 

TL/EE/S117-Q 



2.0 Functional Description (Continued) 

In general, vectored interrupts are serviced by interrupt rou­
tines stored in system memory. The Dispatch Table stores 
up to 256 external procedure descriptors for the various 
service procedures. The CPU INTBASE register points to 
the top of the Dispatch Table. Figure 2-5 shows the layout 
of the Dispatch Table. This figure also shows the layout of 
the Cascade Table, which is discussed with ICU cascaded 
operation. 

2.3.1 Non-Cascaded Operation. Whenever an interrupt re­
quest from a peripheral device is issued directly to the mas­
ter ICU, a non-cascaded interrupt request to the CPU re­
sults. In a system using a single NS32202, up to 16 interrupt 
requests can be prioritized. Upon receipt of an interrupt re­
quest on the INT pin, the CPU performs a Master Interrupt­
Acknowledge bus cycle, reading a vector byte from address 
FFFE0016. This vector is then used as an index into the 
dispatch table in order to find the External Procedure De­
scriptor for the proper interrupt service procedure. The serv­
ice procedure eventually returns via the Return-from-Inter­
rupt (RET) instruction, which performs a Return-from-Inter­
rupt bus cycle, informing the ICU that it may re-prioritize any 
interrupt requests still pending. Figure 2-6 shows a typical 
CPU RETI sequence. In a system with only one ICU, the 
vectors provided must be in the range of 0 through 127; this 
can be ensured by writing OXXXXXXX into the SVCT regis­
ter. By providing a negative vector value, the master ICU 
flags the interrupt source as a cascaded ICU (see below). 

MEMORY 

l 
(INTBME-64)- CASCADED ICU ADDR~S D 

CASCADE TABLE 

2.3.2 Cascaded Operation. In cascaded operation, one or 
more of the interrupt inputs of the master leu are connect­
ed to the Interrupt Output pin of one or more cascaded 
ICUs. Up to 16 cascaded ICUs may be used, giving a sys­
tem total of 256 interrupts. 
Nate: The number of cascaded ICUs is practically limited to 15 because the 

Dispatch Table for the NS32016 CPU is constructed with entries 1 
through 15 either used for NMI and Trap descriptors, or reserved for 
future use. Interrupt position a of the master leu should not be cas­
caded, so it can be vectored through Dispatch Table entry 0, reserved 
for non-vectored interrupts. In this case, the non-vectored interrupt 
entry (entry 0) is also available for vectored interrupt operation, since 
the CPU is operating in the vectored interrupt mode. 

The address of the master ICU should be FFFEOOI6. (0) 
Cascaded ICUs can be located at any system address. A list 
of cascaded ICU addresses is maintained in the Cascade 
Table as a series of sixteen 32-bit entries. 
(")Note: The CPU status corresponding to both, master interrupt acknowl­

edge and return from interrupt bus cycles, as well as address bit 
AS, could be used to generate the chip select (CS) Signal for ac· 
cessing the master leu during one of the above cycles. In this case 
the master ICU can reside at any system address. The only limita­
tion is that the least significant 5 or 6 address bits (6 in the S·bit bus 
mode) must be zero. The address bit AS must be decoded to pre· 
vent an NMI bus cycle from reading the hardware vector register of 
the ICU. This could happen, since the NS32016 CPU performs a 
dummy read cycle from address FFFF0016. with the same status 
as a master INTA cycle, when a non-maskable-interrupt is acknowl­
edged. 

TH~E ADDR~S~ ARE 
USED BYTHE CPU DURING 
THE SECDND CYCLE OF 
AN INTA DR REII 
SEOUENCE TO GEr THE 
INTERRUPT VECTOR FROM 
A CMCADED ICU. 

CASCADED ICU ADDRESS 14 

~~ ______ ~_C_M_C_AD_ED __ IC_U_A_DD_R_~_S_15~r-
NVI D~CRIPTOR 

INTERRUPT 
DlSPIirCH TA8lE 

NMIANDTRAP 
DESCRIPTDRS· 

R~ERVED· 

INT. DESCRIPTOR 16 

I 
(INTBASE +4- VECTOR) 

I-_IN_T._D_ES_CR_IPT_O_R_N_~~ -- -- -- -- -- -- -- --

(ADDR~S FFF£IJOt.)-

INT. DESCRIPTDR 255 

MASTER ICU'S 
HVCT REGISTER 

-CPU READS THIS LOCATIDN DURING 
FIRST CYCLE OF INTA OR REII 
SEOUENCE TO GEr BTHER 
THE INTERRUPT VECTOR OR 
A CASCADE TABLE INDEX FROM 
THE MASTER ICU. TL/EE/5117 -10 

- Table entries 1 to 15 should not be used by the leu since they contain NMI and Trap DeSCriptors 
or are reserved for future use. (For more details refer to NS32016 data sheet.) 

FIGURE 2-5. Interrupt Dispatch and Cascade Tables 

4-33 

z 
(f) 
Co) 
N 
N o 
N • ...... 
o 



Q ,-------------------------------------------------------------------~ .... 
N 
~ 
N 
(II) 
tn 
Z 

2.0 Functional Description (Continued) 

or 

EXECUTE CASCADED 
ICU CYCLE AND READ 

VECTOR FROM 
CASCADED ICU 

TL/EE/5117-11 

FIGURE 2-6. CPU Return from Interrupt Sequence 

The master ICU maintains a list (in the CSRC register pair) 
of its interrupt positions that are cascaded. It also provides a 
4-bit (hidden) counter (in-service counter) for each interrupt 
position to keep track of the number of interrupts being 
serviced in the cascade ICUs. When a cascaded interrupt 
input is active, the master ICU activates its interrupt output 
and the CPU responds with a Master Interrupt Acknowledge 
Cycle. However, instead of generating a positive interrupt 
vector, the master ICU generates a negative Cascade Table 
index. 

The CPU interprets the negative number returned from the 
master ICU as an index into the Cascade Table. The Cas­
cade Table is located in a negative direction from the Dis­
patch Table, and it contains the virtual addresses of the 
hardware vector registers for any cascaded NS32202s in 
the system. Thus, the Cascade Table index supplied by the 
master ICU identifies the cascaded ICU that requested the 
interrupt. 

Once the cascaded ICU is identified, the CPU performs a 
Cascaded Interrupt Acknowledge cycle. During this cycle, 
the CPU reads the final vector value directly from the cas­
caded ICU, and uses it to access the Dispatch Table. Each 

4-34 

cascaded ICU, of course, has its own set of 16 unique inter­
rupt vectors, one vector for each of its 16 interrupt positions. 

The CPU interprets the vector value read during a Cascad­
ed Interrupt Acknowledge cycle as an unsigned number. 
Thus, this vector can be in the range 0 through 255. 

When a cascaded interrupt service routine completes its 
task, it must return control to the interrupted program with 
the same RETI instruction used in non-cascaded interrupt 
service routines. However, when the CPU performs a Mas­
ter Return From Interrupt cycle, the CPU accesses the mas­
ter ICU and reads the negative Cascade Table index identi­
fying the cascaded ICU that originally received the interrupt 
request. Using the cascaded ICU address, the CPU now 
performs a Cascaded Return From Interrupt cycle, informing 
the cascaded ICU that the service routine is over. The byte 
provided by the cascaded ICU during this cycle is ignored. 

2.4 INTERNAL ICU OPERATING SEQUENCE 

The NS32202 ICU accepts two interrupt types, software and 
hardware. 

Software interrupts are initiated when the CPU sets the 
proper bit in the Interrupt Pending (IPND) registers (R6, R7), 
located in the ICU. Bits are set and reset by writing the 
proper byte to either R6 or R7. Software interrupts can be 
masked, by setting the proper bit in the mask registers (R10, 
R11). 

Hardware interrupts can be either internal or external to the 
ICU. InternallCU hardware interrupts are initiated by the on­
chip counter outputs. External hardware interrupts are initia­
ted by devices external to the ICU, that are connected to 
any of the ICU interrupt input pins. 

Hardware interrupts can be masked by setting the proper bit 
in the mask registers (R10, R11). If the Freeze bit (FRZ), 
located in the Mode Control Register (MCTL), is set, all in­
coming hardware interrupts are inhibited from setting their 
corresponding bits in the I PND registers. This prevents the 
ICU from recognizing any hardware interrupts. 

Once the ICU is initialized, it is enabled to accept interrupts. 
If an active interrupt is not masked, and has a higher priority 
than any interrupt currently being serviced, the ICU acti­
vates its Interrupt Output (INT). Figure 2-7 is a flowchart 
showing the ICU interrupt acknowledge sequence. 

The CPU responds to the active INT line by performing an 
Interrupt Acknowledge bus cycle. During this cycle, the ICU 
clears the IPND bit corresponding to the active interrupt po­
sition and sets the corresponding bit in the Interrupt In-Serv­
ice Registers (ISRV). The 4-bit in-service counter in the 
master ICU is also incremented by one if the fixed priority 
mode is selected and the interrupt is from a cascaded ICU. 
The ISRV bit remains set until the CPU performs a RETI bus 
cycle and the 4-bit in-service counter is decremented to 
zero. Figure 2-8 is a flowchart showing ICU operation dur­
ing a RETI bus cycle. 

When the ISRV bit is set, the INT output is disabled. This 
output remains inactive until a higher priOrity interrupt posi­
tion becomes active, or the ISRV bit is cleared. 

An exception to the above occurs in the master ICU when 
the fixed priority mode is selected, and the interrupt input is 
connected to the INT output of a cascaded ICU. In this case 
the ISRV bit does not inhibit an interrupt of the same priority. 

This is to allow nesting of interrupts in a cascaded ICU. 



2.0 Functional Description (Continued) 

• Condo B is true if anyone of the following condi· 
tions is satisfied. 

1) No interrupt is being serviced 

2) There is a pending unmasked interrupt with 
priority higher than thai of the interrupt being 
serviced. 

3) There is a pending unmasked interrupt from a 
cascaded leu with priority higher or same as that 
of the highest priority interrupt position in the 
master leu with the ISRV bit sel ...--..:...-..., 

TL/EE/5117-12 

FIGURE 2-7. leu Interrupt Acknowledge Sequence 

4-35 

z 
(J) 
Co) 
N 
N 
C 
N . ..... 
C 



C) r---------------------------------------------------------------------------------, .,... 
N 2.0 Functional Description (Continued) 
C) 

'" '" C") 

en 
z 

RESET 
INTERRUPT ISRV BIT 
AND ASSIGN FIRST 
PftIDRITY TO NEXT 

INTERRUPT POSITION 

YES 

RESET 
INTERRUPT 
ISRV BIT 

FIGURE 2-8. leu Return from Interrupt Sequence 

4-36 

TL/EE/5117-13 



2.0 Functional Description (Continued) 

2.5 INTERRUPT PRIORITY MODES 

The NS32202 ICU can operate in one of four interrupt priori­
ty modes: Fixed Priority; Auto-Rotate; Special Mask; and 
Polling. Each mode is described below. 

2.5.1 Fixed Priority Mode 

In the Fixed Priority Mode (also called Fully Nested Mode), 
each interrupt position is ranked in priority from 0 to 15, with 
o being the highest priority. In this mode, the processing of 
lower priority interrupts is nested with higher priority inter­
rupts. Thus, while an interrupt is being serviced, any other 
interrupts of the same or lower priority are inhibited. The ICU 
does, however, recognize higher priority interrupt requests. 

When the interrupt service routine executes its RETI instruc­
tion, the corresponding ISRV bit is cleared. This allows any 
lower priority interrupt request to be serviced by the CPU. 

At reset, the default priority assignment gives interrupt IRO 
priority 0 (highest priority), interrupt IR 1 priority 1, and so 
forth. Interrupt IR15 is, of course, assigned priority 15, the 
lowest priority. The default priority assignment can be al­
tered by writing an appropriate value into register FPRT (L) 
as explained in Section 3.9. 
Nale: When the ICU generates an interrupt request to the CPU for a higher 

priority interrupt while a lower priority interrupt is still being serviced by 
the CPU, the CPU responds to the interrupt request only if its internal 
interrupt enable flag is set. Normally. this flag is reset at the beginning 
of an interrupt acknowledge cycle and set during the RETI cycle. If the 
CPU is to respond to higher priority interrupts during any interrupt 
service routine, the service routine must set the internal CPU interrupt 
enable flag, as soon during the service routine as desired. 

2.5.2 Auto-Rotate Mode 

The Auto Rotate Mode is selected when the NTAR bit is set 
to 0, and is automatically entered after Reset. In this mode 
an interrupt source position is automatically assigned lowest 
priority after a request at that position has been serviced. 
Highest priority then passes to the next lower priority posi­
tion. For example, when servicing of the interrupt request at 
position 3 is completed (ISRV bit 3 is cleared), interrupt po­
sition 3 is assigned lowest priority and position 4 assumes 
highest priority. The nesting of interrupts is inhibited, since 
the interrupt being serviced always has the highest priority. 

This mode is used when the interrupting devices have to be 
assigned equal priority. A device requesting an interrupt, will 
have to wait, in the worst case, until each of the 15 other 
devices has been serviced at most once. 

2.5.3 Special Mask Mode 

The Special Mask Mode is used when it is necessary to 
dynamically alter the ICU priority structure while an interrupt 
is being serviced. For example, it may be desired in a partic­
ular interrupt service routine to enable lower priority inter­
rupts during a part of the routine. To do so, the ICU must be 
programmed in fixed priority mode and the interrupt service 
routine must control its own in-service bit in the ISRV regis­
ters. 

4-37 

The bits of the ISRV registers are changed with either the 
Set Bit Interlocked or Clear Bit Interlocked instructions (SBI­
TIW or CBITIW). The in-service bit is cleared to enable low­
er priority interrupts and set to disable them. 
Note: For proper operation of the ICU, an interrupt service routine must set 

its ISRV bit before executing the RETI instruction. This prevents the 
RETI cycle from clearing the wrong ISRV bit. 

2.5.4 Polling Mode 

The Polling Mode gives complete control of interrupt priority 
to the system software. Either some or all of the interrupt 
positions can be assigned to the polling mode. To assign all 
interrupt positions to the polling mode, the CPU interrupt 
enable flag is reset. To assign only some of the interrupt 
positions to the polling mode, the desired interrupt positions 
are masked in the Interrupt Mask registers (IMSK). In either 
case, the polling operation consists of reading the Interrupt 
Pending (lPND) registers. 

If necessary, the IPND read can be synchronized by setting 
the Freeze (FRZ) bit in the Mode Control register (MCTL). 
This prevents any change in the IPND registers during the 
read. The FRZ bit must be reset after the polling operation 
so the IPND contents can be updated. If an edge-triggered 
interrupt occurs while the IPND registers are frozen, the in­
terrupt request is latched, and transferred to the IPND regis­
ters as soon as FRZ is reset. 

The polling mode is useful when a single routine is used to 
service several interrupt levels. 

3.0 Architectural Description 
The NS32202 has thirty-two a-bit registers that can be ac­
cessed either individually or in pairs. In 16-bit data bus 
mode, register pairs can be accessed with the CPU word or 
double-word reference instructions. Figure 3-1 shows the 
ICU internal registers. This figure summarizes the name, 
function, and offset address for each register. 

Because some registers hold similar data, they are grouped 
into functional pairs and assigned a single name. However, 
if a single register in a pair is referenced, either an L or an H 
is appended to the register name. The letters are placed in 
parentheses and stand for the low order a bits (L) and the 
high order a bits (H). For example, register R6, part of the 
Interrupt Pending (lPND) register pair, is referred to individu­
ally as IPND(L). 

The following paragraphs give detailed descriptions of the 
registers shown in Figure 3-1. 

3.1 HVCT - HARDWARE VECTOR REGISTER (RO) 

The HVCT register is a single register that contains the in­
terrupt vector byte supplied to the CPU during an Interrupt 
Acknowledge (INTA) or Return From Interrupt (RETI) cycle. 
The HVCT bit map is shown below: 

7 6 543 2 0 

B B B B V V V V 

z 
en 
Co) 
I\) 
I\) 
o 
~ ..... 
o 

• 



0 .-• 3.0 Architectural Description (Continued) C'\I 
0 
C'\I 
C'\I 
CO) 

en z 

REG. NUMBER AND REG. REG. FUNCTION 
ADDRESS IN HEX. NAME 

RO(0016) HVCT- HARDWARE VECTOR 

R1 (0116) SVCT- SOFTWARE VECTOR 

R3(0316) R2(0216) ELTG- EDGE/LEVEL TRIGGERING 

R5 (0516) R4(0416) TPL- TRIGGERING POLARITY 

R7 (0716) R6 (0616) IPND- INTERRUPTS PENDING 

R9 (0916) R8 (0816) ISRV- INTERRUPTS IN-SERVICE 

R11 (0816) R10 (OA16) IMSK- INTERRUPT MASK 

R13 (0016) R12 (OC16) CSRC- CASCADED SOURCE 

R15 (OF16) R14 (OE16) FPRT- FIRST PRIORITY 

R16(1016) MCTL- MODE CONTROL 

R17 (1116) OCASN- OUTPUT CLOCK ASSIGNMENT 

R18 (1216) CIPTR- COUNTER INTERRUPT POINTER 

R19 (1316) PDAT- PORT DATA 

R20 (1416) IPS- INTERRUPT/PORT SELECT 

R21 (1516) PDIR- PORT DIRECTION 

R22 (1616) CCTL- COUNTER CONTROL 

R23 (1716) CICTL- COUNTER INTERRUPT CONTROL 

R25 (1916) R24(1816) LCSV- L-COUNTER STARTING VALUE 

R27 (1816) R26(1A16) HCSV- H-COUNTER STARTING VALUE 

R29 (1016) R28 (1C16) LCCV- L-COUNTER CURRENT VALUE 

R31 (1F16) R30 (1E16) HCCV- H-COUNTER CURRENT VALUE 

FIGURE 3-1.ICU Internal Registers 

4-38 



3.0 Architectural Description (Continued) 

The BBBB field is the bias which is programmed by writing 
BBBB00002 to the SVCT register (R1). The VVVV field iden­
tifies one of the 16 interrupt positions. The contents of the 
HVCT register provide various information to the CPU, as 
shown in Figure 3-2: 
Note 1: The leu always interprets a fead of the HVCT register as either an 

INTA or RETI cycle. Since these cycles causa intarnal changas to 
the ICU, normal programs must never read the leu HVCT register. 

Nole 2: If the HVCT registar is raad with STt ~ a (INTA cycla) and no 
unmasked intarrupt is panding, tha binary valua BBBBllll is ra· 
turnad and any panding adga-triggered interrupt in position 15 is 
cleared. 

If the auto-rotate priority mode is selected, the FPRT register is also 
cleared, thus preventing any interrupt from being acknowledged. In 
this case a re-intialization of the FPRT register is required for the 
ICU to acknowledge interrupts again. 

If a read of the HVCT register is performed with STI ~ 1 (RETI 
CYcle), tha binary value BBBBll11 is returned. 

If the auto·rotate mode is selected, a priority rotation is also per­
formed. 

3.2 SVCT - SOFTWARE VECTOR REGISTER (R1) 

The SVCT register is a copy of the HVCT register. It allows 
the programmer to read the contents of the HVCT register 
without initiating a INTA or RETI cycle in the ICU. It also 
allows a programmer to change the BBBB field of the HVCT 
register. The bit map of the SVCT register is the same as for 
the HVCT register. 

During a write to SVCT, the four least significant bits are 
unaffected while the four most significant bits are written 
into both SVCT and HVCT (R1 and RO). 

The SVCT register is updated dynamically by the ICU. The 
four least significant bits always contain the vector value 
that would be returned to the CPU if a INTA or RETI cycle 
were executed. Therefore, when reading the SVCT register, 
the state of the CPU ST1 pin is used to select either pend­
ing interrupt data or in-service interrupt data. For example, if 
the SVCT register is read with ST1 = 0 (as for an INTA 
cycle), the VVVV field contains the encoded value of the 
highest priority pending interrupt. On the other hand, if the 
SVCT register is read with ST1 = 1, the VVVV field contains 
the encoded value of the highest priority in-service interrupt. 
Nole: If the CPU ST1 output is connected directly to the ICU STI input, the 

vector read from SVCT is always the RETI vector. If both the INTA 
and RETI vectors ara dasirad, additional logic must ba added to driva 
tha ICU STI input. A typical circuit is shown below. In this circuit, tha 
state of tha ICU ST1 input is controlled by both the CPU STI output 
and the selected address bit. 

BBBB 

VVVV 

INTA CYCLE (ST1 = 0) 

Highest priority pending interrupt is from: 

cascaded ICU I any other source 

1111 I programmed bias' 

encoded value of the highest 
priority pending interrupt 

sn _ 
CPU LAS OR A6 ] 

sn 
ICU 

TL/EE/5117-14 

3.3 ELTG - EDGE/LEVEL TRIGGERING 
REGISTERS (R2, R3) 

The EL TG registers determine the input trigger mode for 
each of the 16 interrupt inputs. Each input is aSSigned a bit 
in this register pair. An interrupt input is level-triggered if its 
bit in EL TG is set to 1. The input is edge-triggered if its bit is 
cleared. At reset, all bits in EL TG are set to 1. 

If odd·numbered interrupt positions must be used for soft­
ware interrupts, the edge triggering mode must be selected 
and the corresponding interrupt inputs should be prevented 
from changing state. 

3.4 TPL - TRIGGERING POLARITY 
REGISTERS (R4, R5) 

The TPL registers determine the polarity of either the active 
level or the active edge for each of the 16 interrupt inputs. 
As with the EL TG registers, each input is assigned a bit. 
Possible triggering modes for the various combinations of 
EL TG and TPL bits are shown below. 

ELTG BIT TPL BIT TRIGGERING MODE 
o 
o 
1 
1 

o 
1 
o 
1 

Falling Edge 
Rising Edge 
Low Level 
High Level 

Software interrupt pOSitions are not affected by their TPL 
bits. At reset, all TPL bits are set to O. 
Note 1: If edged-triggered interrupts ara to ba handlad, the TPL registar 

should ba programmed bafore tha ELTG ragistar. 

This prevents spurious interrupt requests from being generated dur· 
Ing tha ICU initialization from adga·triggarad intarrupt positions. 

Note 2: Hardwara interrupt inputs connected to cascaded ICUs must hava 
1heir TPL bits sat to O. 

3.5 IPND -INTERRUPT PENDING REGISTERS (R6, R7) 

The IPND registers track interrupt requests that are pending 
but not yet serviced. Each interrupt position is assigned a bit 
in IPND. When an interrupt is pending, the corresponding bit 
in IPND is set. The IPND data are used by the ICU to gener­
ate interrupts to the CPU. These data are also used in poll­
ing operations. 

RETI CYCLE (ST1= 1) 

Highest priority in-service interrupt was from: 

cascaded ICU I any other source 

1111 I programmed bias· 

encoded value of the highest 
priority in-service interrupt 

'Tha Programmed bias for tha master leu must ranga from 0000 to 01112 becausa tha CPU intarprets a one in the most significant bit position as a Cascada Table 
Index indicator for a cascaded ICU. 

FIGURE 3-2. HVCT Register Data Coding 

4-39 



C) r---------------------------------------------------------------------------------, .... 
N 
~ 
C'I 
CO) 

tn 
Z 

3.0 Architectural Description (Continued) 

The IPND registers are also used for requesting software 
interrupts. This is done by writing specially formatted data 
bytes to either IPND(L) or IPND(H). The formats differ for 
registers R6 and R7. These formats are shown below: 

IPND(L) (R6) - SOOOOPPP 

IPND(H) (R7) - S0001PPP 

Where: S = Set (S = 1) or Clear (S = 0) 

PPP = is a binary number identifying one of 
eight bits 

Note: The data read from either R6 or R7 are different from that written to 
the register because the leu returns the register contents, rather than 
the formatted byte used to set the register bits. 

The ICU automatically clears a setlPND bit when the pend­
ing interrupt request is serviced. All pending interrupts in a 
register can be cleared by writing the pattern 'X1 XXXXXX' 
to it (X = don't care). To avoid conflicts with asynchronous 
hardware interrupt requests, the IPND registers should be 
frozen before pending interrupts are cleared. Refer to the 
Mode Control Register description for details on freezing 
the IPND registers. 

At reset, all IPND bits are set to O. 
Note: The edge sensing mechanism used for hardware interrupts in the 

NS32202 ICU is a latching device that can be cleared only by ac­
knowiedging the interrupt or by changing the trigger mode to level 
sensing. Therefore, before clearing pending interrupts in the IPND 
registers, any edge·triggered interrupt inputs must first be switched to 
the level·triggered mode. This clears the edge·triggered interrupts; 
the remaining interrupts can then be cleared in the manner described 
above. This applies to clearing the interrupts only. Edge·triggered in· 
terrupts can be set without changing the trigger mode. 

3.6 ISRV -INTERRUPT IN-SERVICE 
REGISTERS (R8, R9) 

The ISRV registers track interrupt requests that are current­
ly being serviced. Each interrupt position is assigned a bit in 
ISRV. When an interrupt request is serviced by the ICU, its 
corresponding bit is set in the ISRV registers. Before gener­
ating an interrupt to the CPU, the ICU checks the ISRV reg­
isters to ensure that no higher priority interrupt is currently 
being serviced. 

Each time the CPU executes an RETI instruction, the ICU 
clears the ISRV bit corresponding to the highest priority in­
terrupt in service. The ISRV registers can also be written 
into by the CPU. This is done to implement the special mask 
priority mode. 

At reset, the ISRV registers are set to O. 
Note: If the ICU initialization does not follOW a hardware reset, the ISRV 

register should be cleared during initialization by writing zeroes into it. 

4-40 

3.7 IMSK -INTERRUPT MASK REGISTERS (R10, R11) 

Each NS32202 interrupt position can be individually 
masked. A masked interrupt source is not acknowledged by 
the ICU. The IMSK registers store a mask bit for each of the 
ICU internupt positions. If an interrupt position's IMSK bit is 
set to 1, the position is masked. 

The IMSK registers are controlled by the system software. 
At reset, all IMSK bits are set to 1, disabling all interrupts. 
Note: If an interrupt must be masked off, the CPU can do so by setting the 

corresponding bit in the IMSK register. However, if an interrupt is set 
pending during the CPU instruction that masks off that interrupt, the 
CPU may still perform an interrupt acknowledge cycle following that 
instruction since it might have sampled the INT line before the leu 
deasserted it. This could cause the leu to provide an invalid vector. 
To avoid this problem, the above operation should be performed with 
the CPU interrupt disabled. 

3.8 CSRC - CASCADED SOURCE 
REGISTERS (R12, R13) 

The CSRC registers track any cascaded interrupt positions. 
Each interrupt position is assigned a bit in the CSRC regis­
ters. If an interrupt position's CSRC bit is set, that position is 
connected to the INT output of another NS32202 ICU, i.e., it 
is a cascaded interrupt. 

At reset, the CSRC registers are set to O. 
Note I: If any cascaded ICU is used, the CSRC register should be cleared 

during initialization (if the initialization does not follow a hardware 
reset) by writing zeroes Into it. This should be done before setting 
the bits corresponding to the cascaded interrupt positions. This op­
eration ensures that the 4-bit in-service counters (aSSOCiated with 
each interrupt pOSition to keep track of cascaded interrupts) always 
get cleared when the leu is re-initialized. 

NOle 2: Only the Master ICU should have any CSRC bits set. If CSRC bits 
are set in a cascaded ICU, incorrect operation results. 

3.9 FPRT - FIRST PRIORITY REGISTERS (R14, R15) 

The FPRT registers track the ICU interrupt position that cur­
rently holds first priority. Only one bit of the FPRT registers 
is set at one time. The set bit indicates the interrupt position 
with first (highest) priority. 

The FPRT registers are automatically updated when the ICU 
is in the auto-rotate mode. The first priority interrupt can be 
determined by reading the FPRT registers. This operation 
returns a 16-bit word with only one bit set. An interrupt posi­
tion can be aSSigned first priority by writing a formatted data 
byte to the FPRT(L) register. The format is shown below: 

7 6 5 4 3 2 1 0 

X X X X F F F F 

Where: XXXX = Don't Care 

FFFF = A binary number from 0 to 15 indi­
cating the interrupt position as­
signed first priority. 

Note: The byte above Is written only to the FPRT(L) register. Any date writ· 
ten to FPRT(H) is ignored. 

At reset the FFFF field is set to 0, thus giving internupt posi­
tion 0 first priority. 

3.10 MCTL - MODE CONTROL REGISTER (R16) 

The contents of the MCTL set the operating mode of the 
NS32202 ICU. The MCTL bit map is shown below. 
76543210 



3.0 Architectural Description (Continued) 

CFRZ Determines whether or not the NS32202 coun­
ter readings are frozen. When frozen, the 
counters continue counting but the LCCV and 
HCCV registers are not updated. Reading of 
the true value of LCCV and HCCV is possible 
only while they are frozen. 

COUTD 

COUTM 

CLKM 

CFRZ = 0 = > LCCV and HCCV Not Frozen 

CFRZ = 1 = > LCCV and HCCV Frozen 

Determines whether the COUT ISCIN pin is an 
input or an output. COUT/SCIN should be 
used as an input only for testing purposes. In 
this case an external sampling clock must be 
provided otherwise hardware interrupts will not 
be recognized. 

COUTD = 0 = > COUT ISCIN is Output 

COUTD = 1 = > COUT/SCIN is Input 

When the COUT ISCIN pin is programmed as 
an output (COUTD = 0), this bit determines 
whether the output signal is in pulsed form or in 
square wave form. 

COUTM = 0 = > Square Wave Form 

COUTM = 1 = > Pulsed Form 

Used only in the 8-bit Bus Mode. This bit con­
trols the clock wave form on any of the pins 
GOIIRO, ... ,G3I1RS programmed as counter 
output. 

CLKM = 0 = > Square Wave Form 

CLKM = 1 = > Pulsed Form 

FRZ Freeze Bit. In order to allow a synchronous 
reading of the interrupt pending registers 
(lPND), their status may be frozen, causing the 
ICU to ignore incoming requests. This is of spe­
cial importance if a polling method is used. 

FRZ = 0 = > IPND Not Frozen 

NTAR 

T1SN8 

FRZ = 1 = > IPND Frozen 

Determines whether the ICU is in the AUTO­
ROTATE or FIXED Priority Mode. In AUTO­
ROTATE mode, the interrupt source at the 
highest priority position, after being serviced, is 
assigned automatically lowest priority. In this 
mode, the interrupt in service always has high­
est priority and nesting of interrupts is therefore 
inhibited. 

NTAR = 0 = > Auto-Rotate Mode 

NTAR = 1 = > Fixed Mode 

Controls the data bus mode of operation. 

T1SN8 = 0 = > 8-Bit Bus Mode 

T1SN8 = 1 = > lS-Bit Bus Mode 

At reset, all MCTL bits except COUTD, are reset to O. 
COUTD is set to 1. 

3.11 OCASN - OUTPUT CLOCK 
ASSIGNMENT REGISTER (R17) 

Used only in the 8-bit Bus Mode. The four least significant 
bits of this register control the output clock assignments on 
pins GOIIRO, ... ,G3I1RS. If any of these bits is set to 1, the 
clock generated by either the H-Counter or the H + L-Coun­
ter will be output to the corresponding pin. The four most 
significant bits of OCASN are not used. At Reset the four 
least significant bits are set to O. 

Note: The interrupt senSing mechanism on pins GOffRO •...• G3ffR6 is not 
disabled when any of these pins is programmed as clock output. 
Thus, to avoid spurious interrupts, the corresponding bits in register 
IPS should also be set to zero. 

3.12 CIPTR - COUNTER INTERRUPT 
POINTER REGISTER (R1B) 

The CIPTR register tracks the assignment of counter out­
puts to interrupt positions. A bit map of this register is shown 
below. 

7 S 5 43210 

H H H H L L L L 

Where: HHHH = A 4-bit binary number identifying the 
interrupt position assigned to the H­
Counter (or the H + L-counter if the 
counters are concatenated). 

LLLL = A 4-bit binary number identifying the 
interrupt position assigned to the L­
counter. 

Note: Assignment of a counter output to an interrupt position also requires 
control bits to be set in the CICTL register. If a counter output is 
assigned to an interrupt position, external hardware interrupts at that 
position are ignored. 

At reset, all bits in the CIPTR are set to 1. (This means both 
counters are assigned to interrupt position 15.) 

3.13 PDAT - PORT DATA REGISTER (R19) 

Used only in the 8-bit Bus Mode. This register is used to 
input or output data through any of the pins GOI 
IRO •... ,G711R14 programmed as I/O ports by the IPS reg­
ister. Any pin programmed as an output delivers the data 
written into PDAT. The input pins ignore it. Reading PDAT 
provides the logical value of all I/O pins, INPUT and OUT­
PUT. 

3.14 IPS - INTERRUPT IPORT SELECT REGISTER (R20) 

Used only in the 8-bit Bus Mode. This register controls the 
function of the pins GOIIRO, ... ,G711R14. Each of these 
pins is individually programmed as an I/O port, if the corre­
sponding bit of IPS is 0; as an interrupt source, if the corre­
sponding bit is 1. The assignment of the H-Counter output 
to GOIIRO, ... ,G311RS by means of reg. OCASN overrides 
the assignment to these pins as I/O ports or interrupt in­
puts. 

At Reset, all the IPS bits are set to 1. 
Note: Whenever a bit in the IPS register is set to zero, to program the 

corresponding pin as an 110 port, any pending interrupt on the corre­
sponding interrupt position will be cleared. 

3.15 PDIR - PORT DIRECTION REGISTER (R21) 

Used only in the 8-bit Bus Mode. This register determines 
the direction of any of the pins GOIIRO, ... ,G711R14 pro­
grammed as I/O ports by the IPS register. A logic 1 indi­
cates an input, while a logic 0 indicates an output. 

At Reset, all the PDIR bits are set to 1. 

3.16 CCTL - COUNTER CONTROL REGISTER (R22) 

The CCTL register controls the operating modes of the 
counters. A bit map of CCTL is shown below. 
7 S 5 43210 

lCCONlcFNPslcOUTllcOUTolcRUNHlcRUNLlcDCRHlcDCRLl 

CCON 

4-41 

Determines whether the counters are indepen­
dent or concatenated to form a single 32-bit 
counter (H + L-Counter). If a 32-bit counter is 
selected, the bits corresponding to the H-

• 



o .... . 
C'I o 
C'I 
C'I 
C") 
(/) 
z 

3.0 Architectural Description (Continued) 

Counter will control the H + L-Counter, while 
the bits corresponding to the L-Counter are not 
used. 

CFNPS 

COUT1& 

CCON = 0 = > Two 16-bit Counters 

CCON = 1 = > One 32-bit Counter 

Determines whether the external clock is 
prescaled or not. 

CFNPS = 0 = > Clock Prescaled (divided by 4) 

CFNPS = 1 = > Clock Not Prescaled. 

COUTO These bits are effective only when the COUT I 
SCIN pin is programmed as an OUTPUT 
(COUTO bit in reg. MCTL is 0). Their logic lev­
els are decoded to provide different outputs for 
COUT/SCIN, as detailed in the table below: 

CRUNH 

CRUNL 

CDCRH 

CDCRL 

FOUT1 COUTO COUT ISCIN Output Signal 

0 0 Internal Sampling Oscillator 
0 1 Zero Detect Of L-Counter 
1 0 Zero Detect Of H-Counter 
1 1 Zero Detect Of H + L-Counter* 

'If the H· and L·Counters are not concatenated and 
COUT1/COUTO are both I, the COUT ISCIN pin Is active 
when either counter reaches zero. 

Determines the state of either the H-Counter or 
the H + L-Counter, depending upon the status 
ofCCON. 

CRUNH = 0 = > H-Counter or H + L-Counter 
Halted 

CRUNH = 1 = > H-Counter or H + L-Counter 
Running 

Effective only when CCON = O. This bit deter­
mines whether the L-Counter is running or halt-
ed. 

CRUNL = 0 = > L-Counter Halted 

CRUNL = 1 = > L-counter Running 

Effective only when CRUNH =0 (Counter Halt­
ed). This bit is the single cycle decrement sig-
nal for either the H-Counter or the H + L-Coun­
ter. 

CDCRH = 0 = > No Effect 

CDCRH = 1 = > Decrement H·Counter or 
H + L-Counter 

Effective only when CRUNL = 0 and CCON = 
O. This bit is the single cycle decrement signal 
for the L-Counter. 

CDCRL = 0 = > No Effect 

CDCRL = 1 = > Decrement L-Counter 
Note: The bits CDCRL and CDCRH are set when a logic 1 is written into 

them, but, they are automatically cleared after the end of the write 
operation. This is needed to accomplish the decrement operation. 
Therefore, these bits always contain 0 when read. 

Reset does not affect the CCTL bits. 

3.17 CICTL - COUNTER INTERRUPT 
CONTROL REGISTER (R23) 

The CICTL register controls the counter interrupts and rec­
ords counter interrupt status. Interrupts can be generated 
from either of the 16-bit counters. When the counters are 
concatenated, the interrupt control is through the H-Counter 

4-42 

control bits. In this case the CIEL bit should be set to zero to 
avoid spurious interrupts from the L-Counter. A bit map of 
the CICTL register is shown following. 
76543210 

I CERH I CIRH I CIEH I WENH I CERL I CIRL I CIEL I WENL I 
CERH 

CIRH 

CIEH 

WENH 

CERL 

CIRL 

CIEL 

WENL 

H-Counter Error Flag. This bit is set (1) when a 
second interrupt request from the H-Counter 
(or H + L-Counter) occurs before the first re­
quest is acknowledged. 

H-Counter Interrupt Request. It is set (1) when 
an interrupt is pending from the H-Counter (or 
H + L-Counter). It is automatically reset when 
the interrupt is acknowledged. 

H-Counter Interrupt Enable. When it is set, the 
H-Counter (or H + L-Counter) interrupt is en­
abled. 

H-Counter Control Write Enable. When WEHN 
is set (1), bits CERH, CIRH, and CIEH can be 
written. 

L-Counter Error Flag. This bit is set (1) when a 
second interrupt request from the L-Counter 
occurs before the first request is acknowl­
edged. 

L-Counter Interrupt Request. It is set (1) when 
an interrupt is pending from the L-Counter. It is 
automatically reset when the interrupt is ac­
knowledged. 

L-Counter Interrupt Enable. When it is set (1), 
the L-Counter interrupt is enabled. 

L-Counter Control Write Enable. When WENL 
is set (1), bits CERL, CIRL, and CIEL can be 
written. 

Nole: Selling Ihe write enable bits (WENH or WENL) and writing any of the 
other CICTL bits are concurrent operations. That is, the ICU willig· 
nore any attempt to alter CICTL bits if the proper write enable bit is 
not set in the data byte. 

At reset, all CICTL bits are set to O. However, if the counters 
are running, the bits CIRL, CERL, CIRH and CERH may be 
set again after the reset Signal is removed. 

3.18 LCSV/HCSV - L·COUNTER STARTING VALUEI 
H·COUNTER STARTING VALUE REGISTERS 
(R24, R25, R26, AND R27) 

The LCSV and HCSV registers store the start values for the 
L-Counter and H-Counter, respectively. Each time a counter 
reaches zero, the start value is automatically reloaded from 
either LCSV or HCSV, one clock cycle after zero count is 
reached. Loading LCSV or HCSV from the CPU must be 
synchronized to avoid writing the registers while the reload­
ing of the counters is occurring. One method Is to halt the 
counters while the registers are loaded. 

When the 16-bit counters are concatenated, the LCSV and 
HCSV registers hold the 32-bit start count, with the least 
significant byte in R24 and the most significant byte in R27. 

3.19 LCCVlHCCV - L·COUNTER CURRENT VALUEI 
H·COUNTER CURRENT VALUE REGISTERS 
(R28, R29, R30, AND R31) 

The LCCV and HCCV registers hold the current value of the 
counters. If the CFRZ bit in the MCTL register is reset (0), 
these registers are updated on each clock cycle with the 
current value of the counters. LCCV and HCCV can be read 
only when the counter readings are frozen (CFRZ bit in the 



3.0 Architectural Description (Continued) 

HALJ COUNTERS 
BY CLEARING 

BITS CRUNL AND 
CRUNH IN 
REG. CCTL 

WRITE COUNTER'S 
STARTING VALUES 

INTO LCCV AND 
HCCV TO AVOID 
LONG INITIAL 

COUNTS 

o 

RESET COUTO BIT 
IN MCTL TO 

PROGRAM CaUT ISCtN 
PIN AS AN OUTPUT 
AND ENABLE THE 

INTERNAL INTERRUPT 
SAMPLING CLOCK 

START COUNTERS 
BY SETTING BITS 
CRUNL AND/OR 

CRUNH IN REG. CCTL 

FIGURE 3-3. Recommended leU's Initialization Sequence 

4-43 

TL/EE/5117-15 

z 
CJ) 
Co) 
N 
N o 
~ ..... 
o 



3.0 Architectural 
Description (Continued) 

MCTl register is 1). They can be written only when the 
counters are halted (CRUNl and/or CRUNH bits in the 
CCTl register are 0). This last feature allows new initial 
count values to be loaded immediately into the counters, 
and can be used during initialization to avoid long initial 
counts. 

When the 16-bit counters are concatenated, the lCCV and 
HCCV registers hold the 32-bit current value, with the least 
significant byte in R28 and the most significant byte in R31. 

3.20 REGISTER INITIALIZATION 

Figure 3-3 shows a recommended initialization procedure 
for the ICU that sets up all the ICU registers for proper oper­
ation. 

4.0 Device Specifications 
4.1 NS32202 PIN DESCRIPTIONS 

4.1.1 Power Supply 
Power (Vee): + 5V DC Supply 
Ground (GND): Power Supply Return 

4.1.2 Input Signals 
Reset (RST): Active low. This signal initializes the ICU. (The 
ICU initializes to the 8-bit bus mode.) 
Chip Select (CS): Active low. This signal enables the ICU to 
respond to address, data, and control signals from the CPU. 
Addresses (AO through A4): Address lines used to select 
the ICU internal registers for read/write operations. 
High Byte Enable (HBE): Active low. Enables data trans­
fers on the most-significant byte of the Data Bus. If the ICU 
is in the 8-bit Bus Mode, this signal is not used and should 
be connected to either GND or Vee. 
Read (RD): Active low. Enables data to be read from the 
ICU's internal registers. 
Write (WR): Active low. Enables data to be written into the 
ICU's internal registers. 

4-44 

Status (ST1): Status signal from the CPU. When the Hard­
ware Vector Register is read, this signal differentiates an 
INTA cycle from an RETI cycle. If ST1 =0 the ICU initiates 
an INTA cycle. If ST1 =1 an RETI cycle will result. 
Interrupt Requests (lR1, IR3 ••• , IR15): These eight in­
puts are used for hardware interrupts. Each may be individu­
ally triggered in one of four modes: Rising Edge, Falling 
Edge, low level, or High level. 
Counter Clock (ClK): External clock signal to drive the ICU 
internal counters. 

4.1.3 Output Signals 
Interrupt Output (INn: Active low. This signal indicates 
that an interrupt is pending. 

4.1.4 Input/Output Signals 
Data Bus 0-7 (DO through 07): Eight low-order data bus 
lines used in both 8-bit and 16-bit bus modes. 
General Purpose I/O lines (GO/IRO, GlIIR2, ••• ,G7/ 
IR14): These pins are the high-order data bits when the ICU 
is in the 16-bit bus mode. When the ICU is in the 8-bit bus 
mode, each of these can be individually assigned one of the 
following functions: 

• Additional Hardware Interrupt Input (IRO through 
IR14) 

• General Purpose Data Input 
• General Purpose Data Output 
• Clock Output from H-Counter (Pins GO/IRO through 

G3/IR6 only) 

It should be noted that, for maximum flexibility in assigning 
interrupt priorities, the interrupt positions corresponding to 
pins GO/IRO, ... ,G7/IR14 and IR1, ... ,IR15 are inter­
leaved. 

Counter or Oscillator Output/Sampling Clock Input 
(COUT/SCIN): As an output, this pin provides either a clock 
signal generated by the ICU internal oscillator, or a zero 
detect Signal from one or both of the ICU counters. As an 
input, it is used for an external clock, to override the internal 
oscillator used for interrupt sampling. This is done only for 
testing purposes. 



4.0 Device Specifications (Continued) 

4.2 ABSOLUTE MAXIMUM RATINGS 

Temperature Under Bias O·Cto +70·C Note: Absolute maximum ratings indicate limits beyond 

Storage Temperature -65·C to + 150·C which permanent damage may occur. Continuous operation 

All Input or Output Voltages with at these limits is not intended; operation should be limited to 

Respect to GND -0.5Vto +7.0V 
those conditions specified under Electrical Characteristics. 

Power Dissipation 1.5 Watt 

4.3 ELECTRICAL CHARACTERISTICS 

TA = o· to 70·C, Vee = +5V ± 5%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

VIL Input Low Voltage 0.8 V 

VIH Input High Voltage 2.0 V 

VOL Output Low Voltage IOL = 2mA 0.45 V 

VOH Output High Voltage IOH = -400 p.A 2.4 V 

IL Leakage Current 0.4 ,;; VIN ,;; Vee 
-20 20 p.A 

(Output and 1/0 Pins in TRI-STATE/lnput mode) 

II Input Load Current Vin=OtoVcc -20 20 p.A 

Icc Power Supply Current lout = 0, T = O·C 300 mA 

Connection Diagram 

-IRI5- 1 40 I--- Vee 
00-2 391---IR13 
STI- 3 38 I---IRl1 

G7/IR1C- 4 37 I---IR9 
G&/IRI2- 5 36 1---1R7 
G511Rl0- 6 35 I---IR5 
GC/IRB- 7 34 I---IR3 
G3/IR6- 8 33 I---IRI 
G2/IRC- 9 NS32202 32>-- cue 
Bl/IR2- 10 

ICU 
31 -Viii 

GO/IRO- 11 3O-iiii' 
07- 12 29 -toUT/SC,. 
06- 13 28 -HBE 
05- 14 27 -RST 
04- 15 26 -A4 
03- 16 25 -A3 
02- 17 24 -A2 
01-18 23 -AI 
00- 19 22 -AD 

GHO- 20 21 -C! 

Top View TL/EE/5117-3 

Order Number NS32202D-6, NS32202D·10 
See NS Package Number D40C 

FIGURE 4-1 

4-45 

z en w 
N 
N o 
~ .... 
o 



4.0 Device Specifications (Continued) 

4.4 SWITCHING CHARACTERISTICS 

4.4.1 Definitions Abbreviations: 

All the timing specifications given in this section refer to L.E.-Ieading edge R.E.-rising edge 

O.BV or 2.0V on the input and output signals as illustrated in T.E.-trailing edge F.E.-falling edge 
Figure 1, unless specifically stated otherwise. 

: 0.1 TElT POINTS 
::>(2.0 

TEST POINTS !:: x:: 
TUEE/5117 -16 

FIGURE 4-2. Timing Specification Standard 

4.4.1.1 Timing Tables 

Symbol Figure Description Reference/Conditions 
NS32202-10 

Units 
Min Max 

READ CYCLE 

tAhRDia 4-3 Address Hold Time After RD T.E. 10 ns 

tAsRDa 4-3 Address Setup Time Before AD L.E. 35 ns 

tCShRDia 4-3 CSHoldTime After RD T.E. 15 ns 

tCSsRDa 4-3 CS Setup Time Before RD L.E. 30 ns 

tDhRDla 4-3 Data Hold Time After RD T.E. 5 50 ns 

tRDaDv 4-3 Data Valid After RD L.E. 150 ns 

tROw 4-3 RD Pulse Width At O.BV (Both Edges) 160 ns 

tSsRDa 4-3 ST1 Setup Time Before RD L.E. 35 ns 

tShRDia 4-3 ST1 Hold Time After RD T.E. -30 ns 

WRITE CYCLE 

tAhWRla 4-4 Address Hold Time After WR T.E. 10 ns 

tAsWRa 4-4 Address Setup Time Before WR L.E. 35 ns 

!cShWRia 4-4 CSHoldTime After WR T.E. 15 ns 

tCSsWRa 4-4 CS Setup Time Before WR L.E. 30 ns 

tDhWRia 4-4 Data Hold Time After WR T.E. 10 ns 

tDsWRia 4-4 Data Setup Time Before WR T.E. 70 ns 

tWRiaPf 4-4 Port Output Floating After WR T.E. (To PDIR) 200 ns 

tWRiaPv 4-4 Port Output Valid After WR T.E. 200 ns 

tWRw 4-4 WR Pulse Width At O.BV (Both Edges) 160 ns 

4-46 



4.0 Device Specifications (Continued) 

4.4.1.1 Timing Tables (Continued) 

Symbol Figure Description Reference/Conditions 
NS32202-10 

Units 
Min Max 

OTHER TIMINGS 

tCOUTI 4-S Internal Sampling Clock At O.SV (Both Edges) 
50 

low Time 
ns 

tCOUTo 4-S Internal Sampling Clock Period 400 ns 

tSCINh 4-7 External Sampling Clock High Time At 2.0V (Both Edges) 100 ns 

tSCINI 4-7 External Sampling Clock low Time At O.SV (Both Edges) 100 ns 

tSCINp 4-7 External Sampling Clock Period SOO ns 

Ich 4-9 External Clock High Time At 2.0V (Both Edges) 
100 

(Without Prescaler) 
ns 

tChp 4-9 External Clock High Time At 2.0V (Both Edges) 
40 ns 

(With Prescaler) 

tCI 4-9 External Clock low Time At O.SV (Both Edges) 
100 ns 

(Without Prescaler) 

tClp 4-9 External Clock low Time At O.SV (Both Edges) 
40 ns 

(With Prescaler) 

tCy 4-9 External Clock Period 
(Without Prescaler) 

400 ns 

tCyp 4-9 External Clock Period 
(With Prescaler) 100 ns 

tGCOUTI 4-9 Counter Output Transition Delay After ClK F.E. 300 ns 

IcOUTw 4-9 Counter Output Pulse At O.SV (Both Edges) 
50 

Width in Pulsed Form 
ns 

tACKIR 4-5 Interrupt Request Delay After Previous Interrupt 
500 ns 

Acknowledge 

tlRld 4-5 INT Output Delay After Interrupt 
SOO 

Request Active 
ns 

tlRw 4-5 Interrupt Request Pulse At O.SV (Both Edges) 
50 ns 

Width in Edge Trigger 

tRSTw RST Pulse Width At O.SV (Both Edges) 400 ns 

4.4.1.2 Timing Diagrams 

ADDRESS ) l( 

sn:=) K 
!---IAsROI- IS.RD4 --

CS ~ICS""'- - ...... - -' 
-IS.ROI- IROw 0 ~tCS"RDII--+1 

iiD 

0 IROIIlv 0 Io.ROoo-1 

DATABUS------ - - ---- - J ----
DATA YAUD 

------------- ----
TL/EE/5117-17 

FIGURE 4-3. READIINTA Cycle 

4-47 

z 
(J) 
Co) 
N 
N o 
~ .... 
o 

• 



o ... 
N o 
C\I a z 

4.0 Device Specifications (Continued) 

ADDRESS 

-"'--

DATA BUS DATAVAUD 

OUTPUT PORT 
MU __________________________________________________ J 

FIGURE 4-4. Write Cycle 

iitiIINTA) 

FIGURE 4-5. Interrupt Timing in Edge Triggering Mode 

IR \~ ____________ ~t: 
r=,-1. ____ , r 

iiiiIINTA) \_---/ 
FIGURE 4-6. Interrupt TIming in Level Triggering Mode 

4-48 

TLlEE/5117-1S 

TLlEE/5117-19 

TLlEE/5117-20 



4.0 Device Specifications (Continued) 

cue 

TL/EE/5117-21 

Note: Interrupts are sampled on the rising edge of elK. 

FIGURE 4-7. External Interrupt-Sam pIIng-Clock to be Provided at Pin COUT/SCIN When in Test Mode 

seue 

TL/EE/5117-22 

FIGURE 4-8. Internal Interrupt-Sampling-Clock Provided at Pin COUT/SCIN 

CLK 

COUNTER OUTPUT 
IN SQUARE ---~ 
WAVEFORM 

TL/EE/5117-23 

FIGURE 4-9. Relationship Between Clock Input at Pin ClK and Counter Output Signals at Pins COUT /SCIN or 
GO/RO, ••• ,G3/R6, in Both Pulsed Form and Square Waveform 

4-49 

z en 
Co) 
N 
N o 
~ ..... 
o 

II 



o .-------------------------------------------------------------------------, .... 
~ 
C'II 

~ 
Z 

~National 
~ Semiconductor 

PRELIMINARY 

NS32203-10 Direct Memory Access Controller 

General Description 
The NS32203 Direct Memory Access Controller (DMAC) is 
a support chip for the Series 32000® microprocessor family 
designed to relieve the CPU of data transfers between 
memory and 1/0 devices. The device is capable of packing 
data received from 8-bit peripherals into 16-bit words to re­
duce system bus loading. It can operate in local and remote 
configurations. In the local configuration it is connected to 
the multiplexed Series 32000 bus and shares with the CPU, 
the bus control signals from the NS32201 Timing Control 
Unit (TCU). In the remote configuration, the DMAC, in con­
junction with its own TCU, communicates with 1/0 devices 
and lor memory through a dedicated bus, enabling rapid 
transfers between memory and 1/0 devices. The DMAC 
provides 4 16-bit 1/0 channels which may be configured as 
two complementary pairs to support chaining. 

Block Diagram 

A16-A23 

ADO-ADI5 

HBE 

ODIN 

ADS u 
6 

Cs g ... 
ROY u 

i::!: 
ClK "" ~ 

BREa ;;!; 
III 

BGRT :::J m 
HOLD 

HlDA 

lORD 

IOWR 

iNi 
RST/HlT 

Features 
• Direct or Indirect data transfers 
• Memory to Memory, 1/0 to 1/0 or Memory to 1/0 

transfers 
• Remote or Local configurations 
• 8-Bit or 16-Bit transfers 
• Transfer rates up to 5 Megabytes per second 
• Command Chaining on complementary channels 
• Wide range of channel commands 
• Search capability 
• Interrupt Vector generation 
• Simple interface with the Series 32000 Family of 

Microprocessors 
• High Speed XMOSTM Technology 
• Single + 5V Supply 
• 48-Pin Dual-In-Line Package 

REaO 

ACKO 

REal 

ACKI 

REa2 

ACK2 

REa3 

ACK3 

TUEE/8701-1 

4-50 



.--------------------------------------------------------------------------, z 

1.0 PRODUCT INTRODUCTION 
2.0 FUNCTIONAL DESCRIPTION 

2.2 Data Transfer Operations 
2.2.1 Indirect Data Transfers 
2.2.2 Direct (FLYBY) Data Transfers 

2.3 Local Configuration 
2.4 Remote Configuration 
2.5 Data Source (Destination) Attributes 
2.6 Word Assembly/Disassembly 
2.7 Auto Transfer 
2.8 Search 
2.9 Interrupts 
2.10 Transfer Modes 
2.11 Chaining 
2.12 Channel Priorities 

3.0 ARCHITECTURAL DESCRIPTION 
3.1 Global Registers 

3.1.1 CONF· Configuration Register 
3.1.2 HVCT • Hardware Vector Register 
3.1.3 SVCT - Software Vector Register 
3.1.4 STAT - Status Register 

3.2 Control Registers 
3.2.1 COM - Command Register 
3.2.2 SRCH - Search Register 

Table of Contents 
3.0 ARCHITECTURAL DESCRIPTION (Continued) 

3.3 Parameter Registers 
3.3.1 SRC - Source Address Register 
3.3.2 DST - Destination Address Register 
3.3.3 LNGT - Block Length Register 

4.0 DEVICE SPECIFICATIONS 
4.1 NS32203 Pin Descriptions 

4.1.1 Supplies 
4.1.2 Input Signals 
4.1.3 Output Signals 
4.1.4 Input/Output Signals 

4.2 Absolute Maximum Ratings 
4.3 Electrical Characteristics 
4.4 Switching Characteristics 

4.4.1 Definitions 
4.4.2 Timing Tables 

4.4.2.1 Output Signals: Internal Propagation 
Delays 

4.4.2.2 Input Signal Requirements 
4.4.2.3 Clocking Requirements 

4.4.3 Timing Diagrams 
Appendix A: Interfacing Suggestions 

List of Illustrations 
Power-on Reset Requirements ...............................................................•................... 2-1 
General Reset Timing .......................................................................................... 2-2 
Recommended Reset Connections ............................................................................... 2-3 
Indirect Read Cycle ............................................................................................ 2-4 
Indirect Write Cycle (Single Transfer Mode) ........................................................................ 2-5 
Direct Memory·To-IlO Data Transfer (Single Transfer Mode) ......................................................... 2-6 
Direct IIO-To-Memory Data Transfer (Single Transfer Mode) ......................................................... 2-7 
NS322031nterconnections ....................................................................................•. 2-8 
Write to NS32203 Internal Registers .............................................................................. 2-9 
Read from NS32203 Internal Registers .......................................................................... 2-10 
NS 32203 Internal Registers ..................................................................................... 3-1 
NS32203 Connection Diagram ..........................................................................•....•... 4-1 
Timing Specification Standard (Signal Valid After Clock Edge) ........................................................ 4-2 
Timing Specification Standard (Signal Valid Before Clock Edge) ...................................................... 4-3 
Write to DMAC Registers ....................................................................................... .4-4 
Read From DMAC Registers ..................................................................................... 4-5 
Clock Timing ................................................................................................. .4-6 
Indirect Write Cycle ............................................................................................ .4-7 
Indirect Read Cycle ........................................................................................... .4-8 
Direct 1I0-To-MemoryTransfer .............................................................................•.... 4·9 
Direct Memory-To-I/O Transfer ................................................................................. 4-10 
HOLD/HOLDA Sequence Start ................................................................................. 4-11 
HOLD/HOLDA Sequence End .................................................................................. 4-12 
Bus Request/Grant Sequence Start ............................................................................. 4-13 
Bus Request/Grant Sequence End .............................................................................. 4-14 
Ready Sampling .............................................................................................. 4-15 
REOn/ ACKn Sequence (DMAC Initially Not Idle) .................................................................. 4-16 
REOn/ ACKn Sequence (DMAC Initially Idle) ...................................................................... 4-17 
HaltedCycle ................................................................................................. 4-18 
Interrupt On Match/No Match .................................................................................. 4-20 
Interrupt On Halt .............................................................................................. 4-21 
Power-on Reset .............................................................................................. 4-22 
Non-Power-on Reset .......................................................................................... 4-23 
NS322031nterconnections in Remote Configuration ................................................................ A-1 

4·51 

CJ) 
w 
I\) 
I\) 
o 
tf .... 
o 



1.0 Product Introduction 
The NS32203 Direct Memory Access Controller (DMAC) is 
specifically designed to minimize the time required for high 
speed data transfers in a Series 32000-based computer 
system. It includes a wide variety of options and operating 
modes to enhance data throughput and system optimiza­
tion, and to allow dynamic reconfiguration under program 
control. 

The NS32203 can operate in two basic system configura­
tions: local and remote. In the local configuration, the DMAC 
and the CPU share the same bus (address, data and con­
trol) and only one of them can perform data transfers on the 
bus at anyone time. In this configuration, the DMAC and the 
CPU also share a Timing Control Unit (TCU) and a single set 
of address latches. Since this configuration yields a mini­
mum part-count system, it offers a good cost/performance 
trade-off in many situations. 

The remote configuration is intended to minimize the CPU 
bus use. In this configuration, the NS32203 I/O devices and 
optional buffer memory have their own dedicated bus (re­
mote bus) so that an I/O transfer may be performed without 
loading the CPU bus (local bus). 

Communication between the dedicated bus and the CPU 
bus may be initiated at any time by either the CPU or the 
NS32203. The DMAC accesses the CPU bus whenever a 
data transfer to/from memory or any I/O device residing on 
this bus is to be performed. The CPU, in turn, accesses the 
dedicated bus for reading status data or for programming 
either the DMAC or its I/O devices. 

The NS32203 internal organization consists of seven func­
tional blocks as illustrated in the block diagram. Descrip­
tions of these blocks are given below. 

DMA Channels. The NS32203 provides four channels. 
Each channel accepts a request from a peripheral I/O de­
vice and informs it when data transfer cycles are about to 

begin. A set of registers is provided for each channel to 
control the type of operation for that channel. 

Bus Interface Unit. The bus interface unit controls all data 
transfers between peripheral I/O devices and memory 
whenever the DMAC is in control of the bus. This unit also 
controls the transfer of data between the CPU and the 
DMAC internal registers. 

Timing and Control Logic. This block generates all the 
sequencing and control signals necessary for the operation 
of the DMAC. 

Priority Resolver. This block resolves contentions among 
channels requesting service simultaneously. 

2.0 Functional Description 
2.1 RESETTING 

The RST/HLT line serves both as a reset input for the on­
chip logic and as a DMAC HALT input. Resetting is accom­
plished by pulling RST /Hl T low for at least 64 clock cycles. 
Upon detecting a Reset, the DMAC terminates any Data 
transfer in progress, resets its internal logic and enters an 
inactive state. On application of power, RST /Hl T must be 
held low for at least 50 ,...S after Vee is stable. This is to 
ensure that all on-Chip voltages are stable before operation. 
Whenever reset is applied, the rising edge must occur while 
the clock signal on the ClK pin is high (see Figure 2-1 and 
2-2). The NS32201 TCU provides circuitry to meet the reset 
requirements. Figure 2-3 shows the recommended connec­
tions. The HALT function is accomplished when RST/HlT 
is activated for 1 or 2 clock cycles and then released. It can 
be used to stop any data transfer in progress in case of a 
bus error. As soon as HALT is acknowledged by the 
NS32203, the current transfer operation is terminated. See 
Figure 4-18. 

V 4.5V·'eo ________ 5~ .. ,....----cc---" _oJ 

eLK 
-~I----..I! ~ 

"-U <CO> omB} 
14------~50~.,---~-+I 

FIGURE 2-1. Power-On Reset Requirements 

4-52 

TLlEE/8701-2 



2.0 Functional Description (Continued) 

CLK~Jl-Il-
1---64 CLOCK CYCLES--....j 

RST/HLT--~'n'&",,~~m~ 55 r 
TL/EE/B701-3 

FIGURE 2·2. General Reset Timing 

p----------. 
I 
I_­
I RESET 
I 
I ._---------" EXTERNAL RESET 

(OPTIONAL) 

Vee 

RESET SWITCH 
(OPTIONAL) 

NS32201 
TCU 

HALT 
(OPTIONAL) 

NS32203 
DMAC 

SYSTEM RESET 

TLlEE/B701-4 

FIGURE 2·3. Recommended Reset Connections 

2.2 DATA TRANSFER OPERATIONS 

After the NS32203 has been initialized by software, it is 
ready to transfer blocks of data, containing up to 64 kbytes, 
between memory and I/O devices, without further interven­
tion required of the CPU. Upon receiving a transfer request 
from an I/O device, the DMAC performs the following oper­
ations: 

1) Acquires control of the bus 

2) Acknowledge the requesting I/O device which is con­
nected to the highest priority channel. 

3) Starts executing data transfer cycles according to the val­
ues stored into the control registers of the channel being 
serviced. 

4) Terminates data transfers and relinquishes control of the 
bus as soon as one of the programmed conditions is met. 

4-53 

Each channel can be programmed for indirect or direct data 
transfers. Detailed descriptions of these transfer types are 
provided in the fOllowing sub-sections. 

2.2.1 Indirect Data Transfers 

In this mode of operation, each byte or word transfer be­
tween source and destination requires at least two bus cy­
cles. The data is first read into the DMAC and subsequently 
it is written into the destination. The bus cycles in this case 
are similar to the CPU bus cycles when the MMU is not 
used. This mode is slower than the direct mode, but is the 
only one that allows some data manipulation like Byte 
Search or Word Assembly/Disassembly. Figure 2-4 and 2-5 
show the read and write cycle timing diagrams related to 
indirect data transfers. If a search operation is specified, 
extra clock cycles may be added fOllowing each read cycle. 



o ,-----------------------------------------------------------------------. ,... 
~ o 
N 
N 
('I) 

en z 

2.0 Functional Description (Continued) 

n n T1 12 T3 T4 

elK --rL-rL-rL-!Lf1--
r--

~ 

A16-23 L~r.tUUHli{III1IUJJ/J... ADDRESS VALID 

- - '-_100 

I ,~ }-I(fffL '(!I.. DATA IN}-I--
i""'-

ADO-15 

L' IV 
I 
I VALID 

ROY l 
L' 1\ II 

1 
[' \ II 

{. 

e-n 
NS*2201 SIGN AlS 

{ 1\ II 

FIGURE 2-4. Indirect Read Cycle 

4·54 

InORnl ... rL 
y:-~ - r-

.c: ~ t-

u 
II 

II 

TL/EE/8701-5 



2.0 Functional Description (Continued) 

CLK [ 

A16-23 [ 

ADO-15 [ 

ADS [ 

Ti Ti T1 T2 13 T4 I Tl OR Ti I 

'hVlIIIII!J 

h 

oorn[ ~ 1fI111111/, 

'II, HBE [ 

ROY [ li'flllllll, 

IOWR [ 

ACKn [ 

HOLD [ 

HLDA [ 

iVR[ 

/IIIIII!J 

'II. 

rI///////!J 

1 r-!If.. ADDRESS VALID ,-
- ~ ~1I. ADDR. X DATA OUT '-

U 

u \ 

'IX r-VALID '-+ 
VlIIIII VI, 'II, 

1\ I 

\ J 

I 

r 
NSi~OI SIGTS 

I 

FIGURE 2-5. Indirect Write Cycle (Single Transfer Mode) 
Note: If bUrst mode is selected, HOLD is released at the end of the transfer operation. 

4-55 

-
-
-
r-

~ 

I-

~j, 

-

TLlEE/8701-6 

z en 
~ 
I\) 
I\) 
o 
~ . ...... 
o 



C) r-------------------------------------------------------------------------------------~ .... 
~ 

~ 
C") 

en 
z 

2.0 Functional Description (Continued) 

2.2.2 Direct (Flyby) Data Transfers 

This mode of operation allows a very high data transfer rate 
between source and destination. Each data byte or word to 
be transferred requires only a single bus cycle instead of 
two separate read and write cycles, which are typical of the 
indirect mode. The DMAC accomplishes direct data trans­
fers by activating lORD, during memory write cycles, and 
10WR, during memory read cycles. 

An I/O device, in the direct mode, is usually enabled by the 
proper acknowledge signal (ACKn) from the DMAC. No 
search or word assembly/disassembly are possible during 

n n T1 

direct data transfers. Figures 2-6 and 2-7 show the timing 
diagrams of direct memory-to· I/O and I/O-to-memory trans­
fers respectively. 
Note 1: In the direct mode each channel can control only one 1/0 device 

because the 1/0 device Is hardwired to the ACKn output of the 
corresponding channel. In the Indirect mode. a channel can control 
multiple devices as long as each device is selected through its own 
address rather than the liCKn output. However. the possiblity of 
selecting a single 1/0 device by the liCKn output is maintained in 
the Indirect mode as well. 

Note 2: Whenever the DMAC is either idle or is performing indirect transfers. 
it generates the lORD and IOWR signals as a replica oi RD and WR. 
This simplifies the logiC required to access 1/0 devices wired for 
direct data transfers. 

T2 T3 T4 I Tl OR n I 
elK [_rurLrLiLfl--!L L-~ 

A16-23 I .--Z 'IIIIIIIINIIIIII/) fJI.. ADDRESS VALID L-_ 
- _ .... ..l-... _-

I .~ '"'"flI\-~)-I-- '"L_ ADD-15 

L' U 

I \ 

I VALID X 

ROY I 
L' 

IOWR [. 1\ II 

L' \ II 

I. I 

[-~ r ~ 

L' rOOT I 
TLfEEf8701-7 

FIGURE 2-6. Direct Memory-To-1/0 Data Transfer (Single Transfer Mode) 

4-56 



2.0 Functional Description (Continued) 

2.3 LOCAL CONFIGURATION 

As previously mentioned, in the local configuration the 
DMAC shares with CPU and MMU the multiplexed addressl 
data bus as well as the control signals from the NS32201 
TCU. A typical local configuration is shown in Figure 2·8. 
The DMAC, in the local configuration, must gain control of 
the bus whenever a data transfer cycle is to be performed, 

even though it is directed to an 110 device and is related to 
an indirect data transfer. This causes the system to be quite 
sensitive to the volume of data handled by the DMAC. Thus, 
the overall system performance decreases as the volume of 
data increases. A possible solution to this problem is to use 
the remote configuration, described in the following section. 
A significant advantage of the local configuration is its sim· 
plicity. 

CL{_HJ--U--LrL.r-L~~ 
I 

A16- 7.WllllllplIlIlI!.V>/. ADDRESS VALID Y ,-~ 

- • ""AOOR. I}.Qlh I?lJc DATA I II Vlllli }. rC ~ ,- - I-
ADO-

ADSl' IV 
-

01 i 17J i\ 

BE [ 7. VALID Y ,-~ 
H 

Dvl ,,, 
~ 

o l' r\ II 
-WRl 10 

Kn \ II 

u{ I 
'-

DAI. { ~ 

NS: ~2201 SIGN ~LS 

iYR[ r\ II 
TL/EE/8701-8 

FIGURE 2·7. Direct I/O· To·Memory Data Transfer (Single Transfer Mode) 

4·57 

z en 
Co) 

'" '" o 
Co) 

• .... 
o 



NMI INT 

Ar/SPC Ar/SPC 
FLT FLT 

RSTj ABT RSTI ABT 
PFS PFS 

NS32016 u/s u/s NS32082 
CPU ADS .:: ADS MMU 

STO-3 STO-3 
ROY ~ ROY 

HLDA HLDAI 
ODIN ODIN 
PHil PHil 
PHI2 PHI2 PAY f--

HOLD HOLD 

r---+ RSTI 
HBE .--- HLDAO DATA ,KA 

A16-23 DO-IS 

L ~1f-i}5 
BUFFERS 'I 

U ~~ 
~ >. 

I 
<-

ADDRESS 

D. IIII III D.iJ II 
v LATCHES 

A 

< ... a, 
(X) 

'I 

PHil tlJ I fr-,J). 11 

'~~~ L ~6-23 DO-I~ j PHI2 
HLDA HBE 

DECODER ADDR 00-15 

'--- HOLD CS 16-BIT I/O 
NS32201 ADS ADS DEVICE 

TCU 
RST RST ACKO L CS 

ODIN DDiN NS32203 --- -
RDY DMAC REOO REO 

RDY 
cm ACKI ---+ RiiViR 

CTIL 
ViR r--

U~I 
REal 

Ro ACK2 

~ RE02 

BREO ACK3 
~ RE03 

lORD 
10WR 

FIGURE 2-8. NS322031nterconnections In Local Configuration 
Note 1: The 16 Bit 110 device is wired for direct transfers. 
Note 2: The data buffers should not be enabled during direct data transfers or CPU accesses to the DMAC registers. 

HBE 

CS MEMORY 
--+ Rii 

... ~DR 00-15 

n° '" 7 DO-1St-. 

.< ~ 

AO - 23~1\. 

D. 
ADDR 00-7 

8-BIT I/O 
DEVICE 

r+CS 

REO Rii ViR 

NS32203-10 

TL/EE/8701-9 

N 
b 
." 
c::: 
::::I 
n -o· 
::::I 
e!. 
c 
CD 
(I) 
n 
~. 
"tl -o· 
::::I 

'§ 
::J 
g. 
c: 
CD 
.e, 



2.0 Functional Description (Continued) 

2.4 REMOTE CONFIGURATION 

The remote configuration is intended to minimize CPU Bus 
usage. In this configuration, the DMAC, buffer memory and 
110 devices reside on a dedicated bus. Communication be· 
tween the dedicated bus and the CPU bus is achieved by 
means of TRI·STATE buffers. Whenever the CPU needs to 
access the dedicated bus, it issues a bus request to the 
NS32203 by activating the BREQ signal. As the dedicated 
bus becomes idle, the DMAC pulls off the bus and acknowl· 
edges the CPU request by activating BGRT. This output is 
also used as a control signal for the interconnection logic of 
the two buses. 

eLK [ 

ADS [ 

ADO-15 [ 

DDIN [ 

HBE [ 

es[ 

Wil[ 

T1 T2 

The CPU can either be interrupted by BGRT or it can poll 
BGRT to determine when the dedicated bus can be ac· 
cessed. The DMAC, in turn, before accessing the CPU bus, 
has to gain control of it. This is accomplished through the 
usual request·acknowledge mechanism performed by 
means of the HOLD and HLDA signals. 

Figure A-1 in Appendix A shows an interconnection diagram 
of a basic remote configuration. Both TCUs are clocked by 
the same clock signal. They are synchronized during reset 
by the RWEN/SYNC signal so that their output clocks are in 
phase. Figures 2-9 and 2-10 show the timing diagrams for 
read and write accesses to the NS32203 internal registers. 

NS32201 SIGNALS 

TL/EE/B701-10 

FIGURE 2-9. Write to NS32203 Internal Registers 

T1 T2 T3 

ADO-15 [ 

DDIN[-r~ __ ~ ____ r-__ ~ ____ ~~ __ 4-

HBE [~r'-__ ~ __ ~~ ____ +-____ ~~ __ ~ 

es[ 
NS32201 SIGNALS 

Rii[ 
TLiEE/B701-11 

FIGURE 2-10. Read from NS32203 Internal Registers 

4-59 

z 
(f) 
Co) 
N 
N o 
~ .... 
o 



C) r---------------------------------------------------------------------------------, .... 
ch 
C) 
N 
N 

~ 
Z 

2.0 Functional Description (Continued) 

2.5 DATA SOURCE (DESTINATION) ATTRIBUTES 

Two types of data source (destination) are recognized: I/O 
device and memory. If the source (destination) is an I/O 
device, its address register is not changed after a data 
transfer; if it is memory, its address register is either incre­
mented or decremented after any data transfer, according 
to the value of the corresponding direction bit. In the remote 
configuration, any data source (destination) may reside ei­
ther on the CPU bus or on the dedicated bus. If it resides on 
the dedicated bus, the NS32203 does not activate the 
HOLD request line when an access to the source (destina­
tion) is performed, unless a direct transfer with a data desti­
nation (source) residing on the CPU bus is required. 

Data can be transferred in either B bit or 16 bit units. The 
DMAC always considers the memory to be 16 bits wide. 
Thus, if an a bit transfer is specified, address bit AO will 
determine the byte of the data-bus where the transfer takes 
place. If AO = 0, the transfer occurs on the low order byte. 
If AO = 1, it occurs on the high order byte. Different transfer 
widths can be specified for source and destination. Howev­
er, some limitations exist in specifying these transfer widths 
when certain operations must be performed. These limita­
tions are explained below. 

1) If a transfer block has an odd number of bytes or is not 
word aligned, an a bit width for source and destination 
should be selected. 

2) 16-bit I/O transfers can not be specified with a bit 
memory transfers. 

3) Memory to memory transfers should have the same 
width. 

Note 1: If source and destination are both memory. DMAC transfers can 
only be performed in indirect mode. 

Note 2: If source and destination are both 1/0 devices and direct mode is 
being used, the source device is accessed by lORD and ACKn; the 
destination device is accessed by WR (from the NS32201) and CS 
(from the address decoder). This allows a one direction data trans· 
fer only from one 1/0 device (source) to another. If data is to be 
transferred in both directions in direct mode between two 110 devio­
BS, two channels must be used (one for each direction of transfer). 
and extra hardware is required to control the read and write signals 
to the two 1/0 devices. 

Note 3: When an 8·bn transfer is related to an 1/0 device, the other half of 
the 16·bit data bus is considered as DON'T CARE, and the HBEI 
signal may be activated. 

2.6 WORD ASSEMBLY/DISASSEMBLY 

This feature is automatically enabled when indirect transfers 
are selected, with data transferred between an a-bit wide 
I/O device and a 16-bit I/O device or memory. For every 16-
bit I/O device or memory access, the DMAC accesses the 
a-bit I/O device twice, assembling two data bytes into a 16-
bit word or breaking a 16-bit word into two data bytes, de­
pending on the direction of transfer. The word assem­
bly/disassembly feature allows a Significant increase in the 
transfer speed and minimizes the CPU bus usage when the 
transfer occurs between an a-bit I/O device residing on the 
dedicated bus, and a 16-bit I/O device or memory residing 
on the CPU bus. Word assembly/disassembly is not possi­
ble during direct data transfers. 
Nole: Requests from other channels are not acknowledged in the middle of 

a word assembly/disassembly. If this is unacceptable, 8 bit transfers 
should be speCified for both source and destination. 

4-60 

2.7 AUTO TRANSFER 

The NS32203 initiates a data transfer as a result of a re­
quest from an I/O device. In some cases a data transfer 
may be necessary without the corresponding request signal 
being asserted. This can happen, for example, when a block 
of data is to be moved from one memory region to another. 
In such cases, the auto transfer mode can be selected by 
setting an appropriate bit in the command register. The 
DMAC will initiate a data transfer regardless of the REOn 
signal for that channel. 
Nole: For proper operation, when auto transfer is required, the low order 

byte of the command register (containing the auto·transfer enable bit) 
should be written Into aiter the other registers conirolling the channel 
operation have been initialized. 

2.8 SEARCH 

The NS32203 provides a search capability that can be used 
to detect the occurrence of a certain data pattern. The 
search is performed by comparing each data byte with the 
search register, in conjunction with the mask register. An 
appropriate bit in the command register indicates whether 
the search continues 'UNTIL' a match occurs, or 'WHILE' a 
match exists. The search operation does not necessarily 
involve a data transfer. The DMAC allows a block of data to 
be searched without requiring any data transfer between 
source and destination. When performing a search, the user 
can specify whether or not the matched byte will be trans­
ferred. If 'INCLUSIVE SEARCH' is specified (INC = 1), the 
matched byte will be transferred, and the channel parame­
ters will be updated accordingly. In this case, if a 16 bit word 
has been read from the data source and the search condi­
tion is satisfied by the low order byte, then the high order 
byte is transferred as well. If 'EXCLUSIVE SEARCH' is 
specified (INC = 0), the transfer will terminate with the last 
byte before the search condition was satisfied, and the pa­
rameters will pOint to the last transferred byte. 

Search is not possible during direct transfers. 

2.9 INTERRUPTS 

The NS32203 provides interrupt circuitry that can be used to 
generate an interrupt whenever a data transfer is completed 
or a search condition is met. If an NS32202 ICU is used, the 
INT signal from the DMAC should be connected to an inter­
rupt input of the ICU. When an interrupt occurs and the 
corresponding interrupt acknowledge (INTA) or return from 
interrupt (RETI) cycle is executed by the CPU, the NS32203 
supplies its own vector as if it were a cascaded ICU. For 
such operation the virtual address of the interrupt vector 
register should be placed in the ICU cascade table, de­
scribed in the NS32016 and NS32202 data sheets. See 
section 3.1.2. 

2.10 TRANSFER MODES 

When the NS32203 is in the inactive state and a channel 
requests service, the DMAC gains control of the bus and 
enters the active state. It is in this state that the data trans­
fer takes place in one of the following modes: 

SINGLE TRANSFER MODE 

In single transfer mode, the NS32203 makes a single byte 
or word transfer for each HOLD/HLDA handshake se­
quence. 

In this case the request signal from the I/O device is edge 
sensitive, that is, a single transfer is performed each time a 



2.0 Functional Description (Continued) 

falling edge on REOn occurs. To perform multiple transfers, 
it is therefore necessary to temporarily deassert REOn after 
each transfer is initiated. If auto transfer mode is selected, 
the bus is released between two transfers for at least one 
clock cycle. 

BURST (DEMAND) TRANSFER MODE 

In burst transfer mode the DMAC will continue making data 
transfers until REOn goes inactive. Thus, the I/O device 
requesting service may suspend data transfer by bringing 
REOn inactive. Service may be resumed by asserting REOn 
again. If the auto transfer mode is selected, the DMAC will 
perform a single burst of data transfers until the end-transfer 
condition is reached. 
Nole 1: In either of the transfer modes described above, data transfers can 

only occur as long as the byte count is not zero or a search condi· 
tion is not mel Whenever any of these conditions occur, the 
NS32203 terminates the current operation and releases the bus for 
at least one clock cycle. 

Note 2: Whenever the OMAC releases FiOD5, it waits for HLOA to go inae· 
tive for at least one clock cycle before reasserting HOLD again to 
continue the transfer operation. 

2.11 CHAINING 

The NS32203 provides a chaining feature that allows the 
four DMAC channels to be regarded as two complementary 
pairs. Channels 0 and 1 form the first pair, while channels 2 
and 3 form the second pair. Each pair is programmed inde­
pendently by setting the corresponding bit in the configura­
tion register. When two channels are complementary, only 
the even channel can perform transfer operations, while the 
odd one serves as temporary storage for the new control 
values and parameters loaded for the chaining operation. If 
an operation is being performed by the even channel of a 
pair and an end-condition is reached, the channel is not 
returned to the inactive state; rather, a new set of control 
values with or without parameters is loaded from the com­
plementary channel and a new operation is started. During 
the reload operation the bus is released for at least two 
clock cycles. At the end of the second operation the chan­
nel returns to the inactive state, unless a new set of values 
has been loaded into the complementary channel by the 
CPU. 

The chaining feature can be used to transfer blocks of data 
to/from non-contiguous memory segments. For example, 
the CPU can load channel 0 and 1 with control values and 
parameters for the first two blocks. After the operation for 
the first block is completed by channel 0, the control values 
and parameters stored in channel 1 are transferred to chan­
nel 0, during an update cycle, and a second operation is 
started. The CPU, being notified by an interrupt, can load 
channel 1 registers with control values and parameters for 
the third data block. 
Note 1: Whenever a reload operation occurs, the register values of the com· 

plementary channel are affected. Thus. the CPU must always load a 
new set of values into the complementary channel if another chain· 
ing operation Is required. 

Note 2: When the chain option is selected. the CPU must be given the op­
portunity to acquire the bus for enough time between DMAC opera· 
tions, in order for the complementary channel to be updated. 

2.12 CHANNEL PRIORITIES 

The NS32203 has four I/O channels, each of which can be 
connected to an I/O device. Since no dependency exists 
between the different I/O devices, a priority level is as­
Signed to each I/O channel, and a priority resolver is provid­
ed to resolve multiple requests activated simultaneously. 

4-61 

The priority resolver checks the priorities on every cycle. If a 
channel is being serviced and a higher priority request is 
received, the channel operation is suspended and control 
passes to the higher priority channel, unless the lock bit for 
the lower priority channel is set. If the lock bit is set, that 
channel operation is continued until completion before con­
trol passes to the higher priority channel. The bus is always 
released for at least two clock cycles when control passes 
from one channel to another. 

Two types of priority encodings are available as software 
selectable options. 

The first is fixed priority which fixes the channels in priority 
order based on the decreasing values of their numbers. 
Channel 3 has the lowest priority, while channel 0 has the 
highest. 

The second option is variable priority. The last channel that 
receives service becomes the lowest priority channel 
among all other channels with variable priority, while the 
channels which previously had lower priority will get their 
priorities increased. If variable priority is selected for all four 
channels, any I/O device requesting service is guaranteed 
to be acknowledged after no more than three higher priority 
services have occurred. This prevents any channel from 
monopolizing the system. Priority types can be intermixed 
for different channels. 

As an example, let channels 0, 2 and 3 have variable priority 
and channel 1 fixed priority. Channel 2 receives service first, 
followed by channel O. The priority levels among all chan­
nels will change as follows. 

Priority Initial Order Next Order Final Order 
High 3 ch.O ACK -+ ch.O ch.3 

2 ch.1 ch.1 ch.1 -+ fixed priority 
1 ACK-+ ch.2 ch.3 ch.2 

Low 0 ch.3 ch.2 ch.O 
Whenever the PT bit (priority type) in the command register 
is changed, the priority levels of all the channels are reset to 
the initial order. If only one channel has variable priority, 
then no change in priority will occur from the initial order. 
Note: If the lock bit is not set, three idle states are inserted between the 

write cycle of a previous burst indirect transfer and the next read 
cycle. 

3.0 Architectural Description 
The NS32203 has 128 8-bit registers that can be addressed 
either individually or in pairs, using the 7 least significant bits 
of the address bus and the high byte enable signal HBE. 
Seventy-one of these registers are reserved, while the rest 
are accessible by the CPU for read/write operations. Figure 
3-1 shows the NS32203 internal registers together with their 
address offsets. Detailed descriptions of these registers are 
given in the following sections. 

3.1 GLOBAL REGISTERS 

The global registers consist of one configuration, one status 
and two interrupt vector registers. They are shared by all 
channels, and they control the overall operation of the 
NS32203. 

3.1.1 CONF-Configuration Register 

This register controls the hardware configuration of the 
NS32203 as well as the chaining feature. 

z 
~ 
N 
N o 
Co:! . ..... 
o 

• 



Q .... 
cJ:. 3.0 Architectural Description (Continued) 
Q 
C\I The CONF register format is shown below: CO = 0 = > Channels not complementary 
C\I 
C") 7 6 5 4 3 2 1 0 CO = 1 = > Channel 1 complementary to chan-tn 
Z xxxxx I Cl I CO I CNF nelO 

CNF - Configuration Bit. Determines whether the Cl- Chaining bit for channels 2 and 3. Determines 

NS32203 is in local or remote configuration. whether or not channels 2 and 3 are complemen-

CNF = 0 = > local Configuration 
tary. 

Cl = 0 = > Channels not complementary 
CNF = 1 = > Remote Configuration 

Cl = 1 = > Channel 3 complementary to chan-
CO- Chaining bit for channels 0 and 1. Determines nel2 

whether or not channel 0 and 1 are complementa-
XXXXX - Reserved. These bits should be set to O. ry. 
At reset, all CONF bits are reset to zero. 
Note: The CNF bit should never be set by the software H the DMAC is wired 

for local configuration, otherwise bus conflicts will result 

{ 
23 16 15 8 7 0 

COM(H) (0216) COM(M) (01 16) COM(l) (0016) Command 
Channel 0 
Control SRCH (0416) Search Pattern 
Registers 

MSK (0816) Search Mask 

{ 
SRC(H) (OE16) SRC(M) (0016) SRC(l) (OC16) Source Address 

Channel 0 
Parameter DST(H) (1216) DST(M) (1116) DST(l) (1016) Destination Address 
Registers 

lNGT(H) (1516) lNGT(l) (1416) Block length 

{ COM(H) (2216) COM(M) (21 16) COM(l) (2016) Command 
Channell 
Control SRCH (2416) Search Pattern 
Registers 

MSK (2816) Search Mask 

{ 
SRC(H) (2E16) SRC(M) (2016) SRC(l) (2C16) Source Address 

Channell 
Parameter DST(H) (3216) DST(M) (31 16) DST(l) (3016) Destination Address 
Registers 

lNGT(H) (3516) lNGT(l) (3416) Block length 

{ 
COM (H) (4216) COM(M) (41 16) COM(l) (4016) Command 

Channel 2 
Control SRCH (4416) Search Pattern 
Registers 

MSK (4816) Search Mask 

{ 
SRC(H) (4E16) SRC(M) (4016) SRC(l) (4C16) Source Address 

Channel 2 
Parameters DST(H) (5216) DSC(M) 51 16) DST(l) (5016) Destination Address 
Registers 

lNGT(H) (5516) lNGT(l) (5416) Block length 

{ 
COM (H) (6216) COM(M) (61 16) COM(l) (6016) Command 

Channel 3 
Control SRCH (6416) Search Pattern 
Registers 

MSK (6816) Search Mask 

{ 
SRC(H) (6E16) SRC(M) (6016) SRC(l) (6C16) Source Address 

Channel 3 
Parameter DST(H) (7216) DST(M) (71 16) DST(l) (7016) Destination Address 
Registers 

lNGT(H) (7516) lNGT(l) (7416) Block length 

{ 
CONF (7816) Configuration 

Global SVCT (5C16) Software Vector 

Registers HVCT (7C16) Hardware Vector 

STAT(H) (7F16) STAT(l) (7E16) Status 

FIGURE 3-1. NS32203 Internal Registers 

4-62 



3.0 Architectural Description (Continued) 

3.1.2 HVCT - Hardware Vector Register 

This register contains the interrupt vector byte that is sup­
plied to the CPU during an interrupt acknowledge (lNT A) or 
return from interrupt (RETI) cycle. The HVCT register format 
is shown below. 

765432 0 

BIAS E CN 

CN - Channel number. Represents the number of the in­
terrupting channel 

E - Error code. Determines whether a normal operation 
completion or an error condition has occurred on 
the interrupting channel. 

E = 0 = > Normal Operation Completion 

E = 1 = > A second interrupt was generated by 
the same channel before the first inter­
rupt was serviced. 

BIAS - Programmable bias. This field is programmed by 
writing the pattern BBBBBOOO into the HVCT regis­
ter. 

The NS32203 always interprets a read of the HVCT register 
as either an interrupt acknowledge (INTA) cycle or a return 
from interrupt (RETI) cycle. Since these cycles cause inter­
nal changes to the DMAC, normal programs should never 
read the HVCT register (see next section). The DMAC dis­
tinguishes an INTA cycle from a RETI cycle by the state of 
an internal flip-flop, called Interrupt Service Flip-Flop, that 
toggles every time the HVCT register is read. This flip-flop is 
cleared on reset or when the HVCT register is written into. 
When an interrupt is acknowledged by the CPU, the INT 
signal is deasserted unless another interrupt from a lower 
priority channel is pending. In this case the INT signal is 
deasserted when the acknowledge cycle for the second in­
terrupt is performed. 

For this reason, if the INT signal is connected to an interrupt 
input of the NS32202 ICU, the triggering mode of that inter­
rupt position should be 'low level'. 

Furthermore, if that ICU interrupt input is programmed for 
cascaded operation and nesting of interrupts from other de­
vices connected to the ICU is to be allowed, then the ICU 
interrupt input connected to the DMAC should be masked 
off during the interrupt service routine, before the CPU inter­
rupt is reenabled. This is because the DMAC does not pro­
vide interrupt nesting capability. 

An interrupt from a certain channel can be acknowledged 
only after the return from interrupt from a previously ac­
knowledged interrupt is performed. 

3.1.3 SVCT - Software Vector Register 

The SVCT register is an image of the HVCT register. It is a 
read-only register used for diagnostics. It allows the pro­
grammer to read the interrupt vector without affecting the 
interrupt logic of the NS32203. The format of the SVCT reg­
ister is the same as that of the HVCT register. 

3.1.4 STAT - Status Register 

The status register contains status information of the 
NS32203, and can be used when the interrupts are not en­
abled. Each set bit is automatically cleared when a read 
operation is performed. The format of this register is shown 
in the following figure. 

4-63 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

IMElcHIMNITCIMElcHIMNITCIMElcHIMNITCIMElcHIMNITCI 
channel #3 channel #2 channel #1 channel #0 

The status of each channel is defined in a four-bit field as 
described below: 

TC- Transfer Complete. 

Indicates the completion of a channel operation, re­
gardless of the state of the length register or whether 
a match/no match condition occurred. 

MN - Match/No Match Bit. 

This bit is set when a match/no match condition oc­
curs. 

CH - Channel Halted. 

Set when a channel operation is halted by pulling the 
RST/HLT pin. 

ME - Multiple events. This bit is set when more than one of 
the above conditions have occurred. 

Note: If an interrupt is enabled, the corresponding bit in the status register is 
not cleared upon read, unless the interrupt is acknowledged. 

3.2 CONTROL REGISTERS 

Each of the four channels has three control registers, con­
sisting of a 24-bit command register, an S-bit search register 
and an S-bit mask register. 

3.2.1 COM - Command Register 

The command register controls the operation of the associ­
ated channel. It is divided into three separately addressable 
parts: COM(L), COM(M) and COM(H). The format of each 
part and bit functions are shown below. 

COM(L) - Command Register (Low-Byte) 
7 6 5 4 3 2 1 0 

I AT I LK I PT I UW I INC I 01 

CC - Command Code 

CC =00 = >Channel Disabled. 

CC =01 = > Search 

CC = 10 = > Data Transfer 

CC = 11 = > Data Transfer and Search 

01- Direct/Indirect Transfers 

01 = 0 = > Indirect Transfers 

01 = 1 = > Direct Transfers 

INC -Inclusive/Exclusive Search 

INC = 0 = > Exclusive Search 

INC = 1 = > Inclusive Search 

UW - Search type 

UW =0 = >Search UNTIL 

UW = 1 = > Search WHILE 

PT - Priority type 

PT =0 = > Fixed 

PT = 1 = > Variable 

LK - Priority lock 

LK = 0 = > Priority Unlocked 

LK = 1 = > Priority Locked 

cc I 

z 
(J) 

~ 
~ o 
(0) 

I ..... 
o 



C) r-------------------------------------------------------------------------------------~ .... 
~ 
N 

~ 
Z 

3.0 Architectural Description (Continued) 

AT - Auto transfer 

AT =0 = > Auto Transfer Disabled 

AT = 1 = > Auto Transfer Enabled 

At Reset, the CC bits in COM(L) are cleared, disabling the 
channel. 
Nole: The CC bits can be cleared by software during an Indirect data tran .. 

fer to stop the transfer. This, however, should not be done during 
direct data transfers. See section 3.3.3. 

COM(M) • Command Register (Middle·Byte) 
76543210 

lool~I~lwlwl_I&I~1 
ST - Source Type 

ST = 0 = > 1/0 Device 

ST =1 =>Memory 

SL - Source Location 

(Effective only in the remote configuration) 

SL =0 = > Local 

SL =1 = > Remote 

SW - Source Width 

SW =0 => a Bits 

SW =1 =>16 Bits 

SD - Source Direction 

SD =0 =>Up 

SD =1 =>Down 

DT - Destination Type 
DT =0 = > 1/0 Device 

SD =1 = > Memory 

DL - Destination Location 

(Effective only in the remote configuration) 

DL =0 = > Local 

DL =1 =>Remote 

DW - Destination Width 

DW =0 => a Bits 

DW =1 => 16 Bits 

DD - Destination Direction. 

DD =0 => Up 

DD =1 =>Down 

COM (H) • Command Register (High·Byte) 
7 6 5 4 3 2 1 0 

I HU' MNd TCI' AMN IATC' DM' X 

X - Reserved. (Should be set to 0) 

TM - Transfer Mode 

DM = 0 = > Single Transfer 

DM = 1 = > Burst Transfer 

ATC - Action after Transfer Complete 

ATC = 0 = > Disable Channel 

ATC = 1 = > Load Control Values and Parame· 
ters from Complementary Channel 
and Continue 

4·64 

AMN - Action after Match/No Match 

AMN = 00 = > Disable Channel 

AMN = 01 = > Continue 

AMN = 1 0 = > Load Control Values from Comple· 
mentary Channel and Continue 

AMN = 11 = > Load Control Values and Parame· 
ters from Complementary Channel 
and Continue 

TCI- Interrupt Mask on "Transfer Complete" 

TCI = 0 = > No Interrupt 

TCI = 1 = > Interrupt 

MNI- Interrupt Mask on "MatchlNo Match" 

MNI =0 = > No Interrupt 

MNI = 1 = > Interrupt 

HU- Interrupt Mask on "Channel Halted" 
HU = 0 = > No Interrupt 

HU = 1 = > Interrupt 

3.2.2 SRCH - Search Register 

This a·bit register holds the value to be compared with the 
data transferred during the channel operation. 

3.2.3 MSK - Mask Register 

The a·bit mask register determines which bits of the trans· 
ferred data are compared with corresponding search regis· 
ter bits. If a mask register bit is set to 0, the corresponding 
search register bit is ignored in the compare operation. At 
reset, all the MSK bits are set to O. 

3.3 PARAMETER REGISTERS 

Each channel has three parameter registers, conSisting of a 
24·bit source address register, a 24·bit destination address 
register and a 16·bit block length register. 

3.3.1 SRC - Source Address Register 

The source address register points to the physical address 
of the data source. When the data source is an I/O device, 
the register does not change during the transfer operation. 
When the data source is memory, the register is increment· 
ed or decremented by either one or two after each transfer. 

3.3.2 DST - Destination Address Register 

The destination address register points to the physical ad· 
dress of the data destination. When the data destination is 
an I/O device, the register does not change during the 
transfer operation. When the data destination is memory, 
the register is incremented or decremented by either one or 
two after each transfer. 

3.3.3 LNGT - Block Length Register 
The block length register holds the number of bytes in the 
block to be transferred. It is decremented by either one or 
two after each transfer. 
Note: A direct data transfer can be stopped by writing zeroes into the LNGT 

register. The number of bytes transferred can be determined in this 
case, from the value of either the SRC or the DST register. 



4.0 Device Specifications 
4.1. NS32203 PIN DESCRIPTIONS 

The following is a brief description of all NS32203 pins. The 
descriptions reference portions of the Functional Descrip­
tion, Section 2.0. 

Connection Diagram 

A22 

A21 

A20 

A19 BREQ 

A18 

A17 RST/HlT 

A16 iNi' 
AD15 HOLD 

AD14 HlDA 

AD13 REQ3 

AD12 ACK3 

AD11 REQ2 

AD10 ACK2 

AD9 REQ1 

AD8 ACKI 

AD7 REQD 

AD6 ACKD 

ADS HBE 

AD4 ODIN 

AD3 lORD 

AD2 IOWR 

ADI ADS 

ADO ROY 

GND ClK 

TL/EE/B701-12 

Top View 

FIGURE 4-1. NS32203 Dual-In-Line Package 

Order Number NS32203D or NS32203N 
See NS Package Number D48A or N48A 

4.1.1 SUPPLIES 

Power (Vee>: +5V positive supply. 

Ground (GND): Ground reference for on-chip logic. 

4.1.2 INPUT SIGNALS 

Reset/Halt (RST/HlT): Active low. If held active for 1 or 2 
clock cycles and released, this signal halts the DMAC oper­
ation on the active channel. If held longer, it resets the 
DMAC. Section 2.1. 

4-65 

Chip Select (CS): When low, the device is selected, en­
abling CPU access to the DMAC internal registers. 

Ready (ROY): Active high. When inactive, the DMA Control­
ler extends the current bus cycle for synchronization with 
slow memory or peripherals. Upon detecting RDY active, 
the DMAC terminates the bus cycle. 

Channel Request 0-3 (REQO - REQ3): Active low. These 
lines are used by peripheral devices to request DMAC serv-
ice. 

Bus Request (BREQ): Used only in the remote configura­
tion. This signal, when asserted, forces the DMAC to stop 
lransferring data and to release the bus. It must be activated 
by the CPU before any CPU access to the remote bus is 
performed. In the local configuration this Signal should be 
connected to Vee via a 4.7k resistor. Section 2.4. 

Hold Acknowledge (HlDA): Active low. When asserted, 
indicates that control of the system bus has been relin­
quished by the current bus master and the DMAC can take 
control of the bus. 

Clock (ClK): Clock signal supplied by the CTTL output of 
the NS32201 TCU. 

4.1.3 OUTPUT SIGNALS 

Address Bits 16-23 (AI6-A23): Most significant 8 bits of 
the address bus. 

Hold Request (HOLD): Active low. Used by the DMAC to 
request control of the system bus. 

Channel Acknowledge 0-3 (ACKO - ACK3): These lines 
indicate that a channel is active. When a channel's request 
is honored, the corresponding acknowledge line is activated 
to notify the peripheral device that it has been selected for a 
transfer cycle. Section 2.2.2. 

Bus Grant (BGRT): Used only in the remote configuration. 
This signal is used by the DMAC to inform the CPU that the 
remote bus has been relinquished by the DMAC and can be 
accessed by the CPU. Section 2.4. 

I/O Read (lORD): Active low. Enables data to be read from 
a peripheral device. Section 2.2.2. 

I/O Write (IOWR): Active low. Enables data to be written to 
a peripheral device. Section 2.2.2. 

Interrupt (I NT): Active low. Used to generate an interrupt 
request when a programmed condition has occurred. Sec­
tion 2.9. 

4.1.4 INPUT/OUTPUT SIGNALS 

Address/Data 0-15 (ADO-AD 15): Multiplexed Address/ 
Data bus lines. Also used by the CPU to access the DMAC 
internal registers. 

High Byte Enable (HBE): Active low. Enables data trans­
fers on the most significant byte of the data bus. 

Address Strobe (ADS): Active low. Controls address latch­
es and indicates the start of a bus cycle. 

Data Direction in (ODIN): Active low. Status signal indicat­
ing the direction of data flow in the current bus cycle. 

z 
CJ) 
Co) 
I\) 
I\) 
o 
Co) 

• .... 
o 



o ..... 

"" o 
N 
N 
C') 

en 
z 

4.0 Device Specifications (Continued) 

4.2 ABSOLUTE MAXIMUM RATINGS 

If Military/Aerospace specified devices are required, Note: Absolute maximum ratings indicate limits beyond 
contact the National Semiconductor Sales Office/ which permanent damage may occur. Continuous operation 
Distributors for availability and specifications. at these limits is not intended; operation should be limited to 

Temperature Under Bias O°Cto + 70°C those conditions specified under Electrical Characteristics. 

Storage Temperature -65°C to + 150°C 

All Input or Output Voltages with 
Respect to GND -0.5Vto +7V 

Power Dissipation 1.1 Watt 

4.3 ELECTRICAL CHARACTERISTICS T A = 0 to + 700C, Vee = 5V ± 5%, GND = OV 

Symbol Parameter Conditions Min Typ Max Units 

V,H High Level Input Voltage 2.0 Vee + 0.5 V 

V,L Low Level Input Voltage -0.5 O.B V 

VOH High Level Output Voltage IOH = -400/LA 2.4 V 

VOL Low Level Output Voltage IOL = 2mA 0.45 V 

I, Input Load Current 0< V,N';; Vee -20 20 /LA 

IL Leakage Current 0.4 ,;; Y,N ,;; Vee 
-20 20 /LA 

Output and I/O Pins in TRI-STATElinput Mode 

ICC Active Supply Current lOUT = 0, TA = 25°C 1BO 300 mA 

4.4 SWITCHING CHARACTERISTICS ABBREVIATIONS: 

4.4.1 Definitions L.E. - leading edge R.E. - rising edge 

All the timing specifications given in this section refer to 
T.E. - trailing edge F.E. - falling edge 

O.BV and 2.0V on all the input and output signals as illustrat-
ed in Figures 4-2 and 4-3, unless specifically stated other-
wise. 

- -ClK 1 2.0V ClK 2.0V 
_ O.BV O.BV -~tSIGI~ 

SIGI 

~. 
O.BV SIGI ,"O.BV 

ls'GIIi---

SIG2 2.0V 
lslG2ht==: 

SIG2 2.0V 
TL/EE/B701-13 

FIGURE 4·2. Timing Specification Standard 
(Signal Valid after Clock Edge) TLlEE/B701-14 

FIGURE 4·3. Timing Specification Standard 
(Signal Valid before Clock Edge) 

4-66 



4.0 Device Specifications (Continued) 

4.4.2 Timing Tables 

4.4.2.1 Output Signals: Internal Propagation Delays, NS32203-10 
Maximum Times Assume Capacitive Loading of 100 pF. 

Name Figure Description 

tALv 4-7 Address Bits 0-15 Valid 

tALh 4-9 Address Bits 0 -15 

Hold Time 

tAHv 4-7 Address Bits 16-23 Valid 

tAHh 4-7 Address Bits 16-23 Hold 

tALAOSs 4-8 Address Bits 0-15 Set Up 

tAHAOSs 4-8 Address Bits 16-23 Set Up 

tALAOSh 4-9 Address Bits 0-15 

Hold Time 

tAU 4-8 Address Bits 0-15 Floating 

toy 4-7 Data Valid (Write Cycle) 

tOh 4-7 Data Hold (Write Cycle) 

toOv 4-5 Data Valid (Reading 
DMAC Registers) 

tOOh 4-5 Data Hold (Reading 
DMAC Registers) 

tHBEv 4-7 HBE Signal Valid 

tHBEh 4-7 HBE Signal Hold 

tOOINv 4-8 DDIN Signal Valid 

tOOINh 4-8 DDIN Signal Hold 

tAOSa 4-7 ADS Signal Active 

tAOSia 4-7 ADS Signal Inactive 

tAOSw 4-7 ADS Pulse Width 

tALz 4-12.4-13 ADO-AD15 Floating 

tAHz 4-12,4-13 A16-A23 Floating 

tAOSz 4-12,4-13 ADS Floating 

tHBEz 4-12,4-13 HBE Floating 

tOOINz 4-12,4-13 DDiN Floating 

tHLOa 4-11 HOLD Signal Active 

tHLOia 4-12 HOLD Signal Inactive 

tlNTa 4-19,4-21 INT Signal Active 

tACKa 4-16,4-17,4-7 ACKn Signal Active 

tACKia 4-16,4-17,4-7 ACKn Signal Inactive 

4-67 

Reference! 
Conditions 

After R.E., CLK T1 

After R.E., CLK T2 

After R.E., CLK T1 

After R.E., CLK T1 

orTi 

Before ADS T.E. 

Before ADS T.E. 

After ADS T.E. 

After R. E., CLK T2 

After R.E., CLK T2 

After R.E., CLK T1 
orTi 

After R.E., CLK T3 

After R.E., CLK T 4 

After R.E., CLK T1 

After R.E., CLK T1 
orTi 

After R.E., CLK T1 

After R.E., CLK T1 

orTi 

After R.E., CLK T1 

After R.E., CLK T1 

atO.8V 
(Both Edges) 

After R.E., CLK Ti 

After R.E., CLK Ti 

After R.E., CLK Ti 

After R.E., CLK Ti 

After R.E., CLK Ti 

After R.E., CLK Ti 

After R.E., CLK Ti 

orT4 

After R.E., CLK Ti 

After R.E., CLK T1 

After F.E., CLK T4 

NS32203-10 

Min Max 

50 

5 

50 

5 

25 

25 

15 

25 

50 

0 

50 

10 

50 

0 

65 

0 

35 

40 

30 

55 

55 

55 

55 

55 

50 

50 

40 

50 

35 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

,","S 

ns 

ns 

ns· 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

z 
CJ) 
Co) 
N 
N o 
Co) 

• ..... 
o 



4.0 Device Specifications (Continued) 

Name Figure Description 
Referencel NS32203-10 

Units 
Conditions Min Max 

tSGRTa 4-13 BGRT Signal Active After R.E., ClK 65 ns 

tSGRTIa 4-14 BGRT Signal Inactive After R.E., ClK 65 ns 

tlORDa 4-B,4-9 lORD Active After R.E., ClK T2 40 ns 

tlORDia 4-B lORD Inactive (During After R.E., ClK T4 
40 

Indirect Transfers) 
ns 

tlORDia 4-9 lORD Inactive (During After F.E., ClK T4 
40 

Direct Transfers) 
ns 

tlOWRa 4-7,4-10 IOWRActive After R.E., ClK T2 40 ns 

tlOWRia 4-7 IOWR Inactive (During After R.E., ClK T4 
40 

Indirect Transfers) 
ns 

tlOWRdia 4-10 IOWR Inactive (During After F.E., ClK T3 
40 

Direct Transfers) 
ns 

4.4.2.2 Input Signal Requirements: NS32203-10 

tpWR 4-22 Power Stable to After Vee Reaches 
50 

RST IHl T R.E. 4.75V I1s 

tRSTw 4-23 RST IHl T Pulse Width at O.BV (Both Edges) 
64 tCp 

(Resetting the DMAC) 

tRSTs 4-24 RST IHl T Set Up Time Before F.E., ClK 
15 

(Resetting the DMAC) 
ns 

tHLTs 4-1B RST IHl T Setup Time Before R.E., ClK T3 
25 

(Halting a DMAC Transfer) 
ns 

tHLTh 4-19 RST IHl T Hold Time After R.E., ClK T4 
10 

(Halting a DMAC Transfer) 
ns 

tDls 4-6 Data in Setup Time Before R.E., ClK T3 15 ns 

tDlh 4-6 Data in Hold After R.E., ClK T4 3 ns 

tDls 4-6 Data in Setup Time After R.E., ClK T3 
15 

(Writing to DMAC Registers) 
ns 

tDih 4-6 Data in Hold After R.E., ClK T4 
3 

(Writing to DMAC Registers) 
ns 

tHLDAs 4-11,4-12 HOLDA Setup Time Before R.E., ClK 25 ns 

tHLDAh 4-11 HlDA Hold Time After R.E., ClK 10 ns 

tRDYs 4-15 RDY Setup Time Before R.E., 
20 

ClKT20rT3 
ns 

tRDYh 4-15 RDY Hold Time After R.E., ClK T3 5 ns 

tREQs 4-16,4-17 REOn Setup Time Before R.E., ClK 50 ns 

tREQh 4-16,4-17 REOn Hold Time After R.E., ClK 10 

tSREQs 4-13 BREO Setup Time Before R.E., ClK 25 ns 

4-6B 



4.0 Device Specifications (Continued) 

Name Figure Description 
Referencel NS32203-10 
Conditions Min Max 

tBREQh 4·13 BREQ Hold Time After R.E., ClK 10 

tALADSis 4·6 Address Bits 0-5 Setup Before ADS T.E. 20 

tALADSih 4·6 Address Bits 0-5 Hold After ADS T.E. 20 

tHBEs 4·6 HBE Setup Time Before R.E., ClK T1 10 

tHBEih 4·6 HBE Hold Time After R.E., ClK T4 40 

tADSs 4·6 ADS L.E. Setup Time Before R.E., ClK T1 40 

tADSiw 4·6 ADS Pulse Width ADS L.E. to ADS T.E. 35 

tCSs 4·6 CS Setup Time Before R.E., ClK T1 15 

tCSh 4·6 CSHoldTime After R.E., ClK T4 40 

tDDINs 4·6 DDIN Setup Time Before R.E., ClK T2 30 

tDDINh 4·6 DDIN Hold Time After R.E., ClK T 4 40 

4.4.2.3 Clocking Requirements: NS32203-10 

Name Figure Description 
Referencel NS32203-10 
Conditions Min Max 

tClKh 4·4 Clock High Time At 2.0V (Both Edges) 42 

tclKl 4·4 Clock low Time At 0.8V (Both Edges) 42 

tClKp 4·4 Clock Period R.E., ClK to Next 
100 

R.E. ClK 

4.4.3 Timing Diagrams 

r.--tCLJ(Pi 

~ 2.0V r 
elK...J C.BV 

tCLJ(1 
TLlEE/B701-17 

FIGURE 4-4. Clock Timing 

4·69 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Units 

ns 

ns 

ns 

z en 
Co) 
N 
N 
C) 

Cf ..... 
C) 

• 



o ,-----------------------------------------------------------------------------, .... • C") 

~ 
C'I 

~ 
Z 

4.0 Device Specifications (Continued) 

elK [ 

ADS [ 

ADO-IS [ 

11 12 13 14 

ODIN [ 

~[~,'---~----------+_------rl~ 
es[ 
FIGURE 4-5. Read from DMAC Registers 

11 12 13 14 I 11 OR n 

ODIN [ 

HBE[~~--~----------+_+_--+J 
es[ 

FIGURE 4-6. Write to DMAC Registers 

4·70 

TL/EE/B701-16 

TL/EE/6701-15 



4.0 Device Specifications (Continued) 

FIGURE 4-7. Indirect Write Cycle 

ROY [ (HIGH) 

I 
IOWR [ (HIGH) 

lORD [ 

ACKn [ 

FIGURE 4-8. Indirect Read Cycle 

4·71 

TL/EE/8701-18 

IIORDlo 

TLlEE/8701-19 

z en 
(,) ..., ..., 
o 
(,) 

I .... 
o 



C) ,---------------------------------------------------------------------------------, ,... 
I 

CO) 
C) 
N 
N 
CO) 

en z 

4.0 Device Specifications (Continued) 

I T1 

ClK[ 

T2 

ADO- 15 [~, ___ ~ 

T3 T4 

A 16- 23 [~r'-++_ ....... ~--+--+-fJ'­
ADS [ 

HBE [-+','-_-+-_____ +--+_+-''-

DDIN [ 

RDY [ 

lORD [ 

IOWR [ 

ACKn [ 

FIGURE 4·9. Direct 1/0 to Memory Transfer 

T1 T2 T3 T4 

ClK [ 

ADO-15 [ 

A16-23 [ 

ADS [ 

HBE [ 

DDIN [ 

RDY [ (HIGH) 

I 
lORD [ 

tlOWRdla 

IOWR [ 

ACKn [ 

FIGURE 4·10. Direct Memory to 110 Transfer 

4·72 

TUEE/8701-20 

TL/EE/8701-21 



z 
4.0 Device Specifications (Continued) 

en 
to) 
N 
N 
Q 

I n I n 

ClK[~ 
n n Tl T2 to) 

• ...... 
Q 

I 

_MtHlDO 

HOLD [ 

-- I- tHlDAh 

HlDA [ " 
tHLDAi, I-

- ---- ---_. ----- ------~ 
I 

A 16-23 [ - --- - ---- ---- ------< ADDRESS VALID 

ADS [ - ---- ----- ----- ---- rvf-
HBE [ - ---- ---- ---- ----- -< VALID 

ODIN [ - ---- ---- ----
I 

---.- -< VALID 

I 
TLlEE/8701-22 

FIGURE 4-11. HOLD/HOLDA Sequence Start 

ClK [ 

Tl I T2 T3 I T4 TI 

HOLD [ 

HlDA [ 

ADO-15 [ __ +-_D_A_TA+-__ +'I - - -1----­
tAHz 

A 16-23 [ '--+----+--+-----1-'1 - - - t ----­
tAOSz 

ADS [ ---~-----
tHBEz 

HBE[ '--+--+--+----+" - - -t -----
tODlNz 

ODIN [ '--+--+--+----+" - - -t -----
TL/EE/8701-23 

FIGURE 4-12. HOLD/HOLDA Sequence End 
Note 1: DMAC in local configuration, 

Note 2: The HOLD/HOLDA sequence shown above is related to the single transfer mode. 

In burst transfer mode HOLD is deactivated twa cycles later. 

4-73 



4.0 Device Specifications (Continued) 

I n I n I n I n 

CL{.n....r-\tfLf1--
~BREQ. BREQh 

BREQ [ 

BGRT [ 

ADO-15 [+ __ +_~~+ __ +' 

A16-23 [+ __ +_~I-+ __ +' 

ADS [ 

HBE[~ __ ~ __ ~~+-__ ~ 

DDIN[~ ____ +-~r+ ____ ~ 
TLlEE/8701-24 

FIGURE 4·13. Bus Request/Grant Sequence Start 

n I n n I TI T1 n 

BREO [+ ____ +-....I 
BGRTIo 

BGRT [+ __ ~ __ ~-J 

-----------~ 
I 

A 16-23 [. - - - - - - - - - - - - - - - - - - < ADDRESS VALID 

"[0 __________________ ~ 

HBE [. - - -- - --- ---- ----- -< VALID 

DDIN [. - - - - - - - - - - - - - - - - - - < VALID 

TL/EE/8701-25 

FIGURE 4·14. Bus Request/Grant Sequence End 
Note 1: DMAC in remote configuration. 

Note 2: If BREQ is asserted in the middle of a DMAC transfer, the transfer will always be completed. 

4·74 



4.0 Device Specifications (Continued) 

FIGURE 4·15. Ready Sampling 

T3 T4 Tl T2 I T3 T4 

REOn [ 

ACKn [ 

ADS [ 

FIGURE 4·16. REQn/ACKn Sequence (DMAC Initially Not Idle) 

T1 T2 I T3 T4 

ACKn[ 

FIGURE 4·17. REQn/ACKn Sequence (DMAC Initially Idle) 

4·75 

TL/EE/8701-26 

TL/EE/8701-27 

TL/EE/8701-28 

z en 
w 
N 
N o 
~ ...... 
o 



o ,-----------------------------------------------------------------------------, .... 
~ 
('II 

~ z 

4.0 Device Specifications (Continued) 

T1 T2 I T3 I T4 I n 

ADS [ 

FIGURE 4-18. Halted Cycle 
Nole 1: Halt may occur in previous T·States. It must be applied for 1 or 2 clock cycles. 

Nole 2: If BREQ is asserted in the middle of a DMAC transfer, the transfer will always be completed. 

T1 T2 I T3 I T4 I n 

ADS [ -rv 
t\ II -

IN{ l 
tiNT. 

I 
I 

FIGURE 4-19. Interrupt on Transfer Complete 

4·76 

TLlEE/8701-29 

n 

TL/EE/8701-30 



4.0 Device Specifications (Continued) 

CLK[ 
Tl T2 I T3 I T4 I n n I n 

ADS [ 

INrC 

FIGURE 4·20. Interrupt on MatchINo Match 
NDle: If inclusive search Is specified a write cycle Is performed before Jjijf Is activated. 

T1 T2 I T3 I T4 I n 

FIGURE 4-21. Interrupt on Halt 

4.SV V--------§~--

ClK - .... f-"" rL 
RST/HLT tPWR~ 

---------§~ 
TL/EE/8701 -33 

n 

tlNTa 
• MATCH ON 
'.HIGH BYTE 

TUEE/8701 -32 

TL/EE/8701 -31 

TL/EE/8701 -34 

FIGURE 4·22. Power on Reset FIGURE 4·23. Non Power on Reset 

4·77 

z en 
c.:I 
N 
N 
CI 
Cf .... 
CI 



.". 

ixl 

NS32203·10 

ADO-15 LOCAL DATA BUS ADO-IS 

~ > 
CPU 

A16-23 A16:.,ll t H8E LOCAL ADDRESS BUS a:. HBE 

_ i tf~:~~===:::l I I 
HOLD Hffii. RST/ ABT ~O DBE 

i:~~~~~~~~~~~~~~~~~n~X!IN~crR~::~li!11f~;i~~:;~~::::::~;l~~~~~~~~~~:::j~;;::j RESET 
ClOCK :~ '--~L,r= 

~
ru:oo 

: "CKO 

• REQ! 

ACKl 

iGRf 

RST/;;a~m§W ODiN 
ADS 
ClJ( 

RDY 

NS32203 

AOO-15 REWOTEDATABUS U ADO-'S ~C ~f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::::::::::::~~::~ 
n .-

"16-23 
.tHBE 

....... BUFFERS 

RElIOTE ADDRESS BUS 

A16-23 
4:iiBE 

:> 

> 
"C 
"C 
CD 
::s 
D. 
;C' 

r--
::s -CD ... -II) 
~, 
::s 

CO 
en 
c 

CO 
CO 
CD 
UI -0' 
::s 
UI 

TLlEE/8701-35 

FIGURE A-1. NS322031nterconnections in Remote Configuration. 
Note: This logic does not support direct (flyby) DMAC transfers. 



Section 5 
lBoard leve~ i?roducts 



Section 5 Contents 
VME532 High Performance 32-Bit CPU VME Board with Cache, Memory Management and 

Floating Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
DB332-PLUS Development Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 
DB32000 Development Board ....................................................... 5-1 0 
DB32016 Development Board....................................................... 5-15 

5-2 



~National 
~ Semiconductor 
VME532 
High Performance 32-Bit CPU VME Board with Cache, 
Memory Management and Floating Point 

Features 
• NS32532 Central Processing Unit (CPU) with internal 

cache and on-chip Memory Management Unit (MMU) 
• NS32381 Floating Point Unit (FPU) 
• Optional 32580 FPC+ Weitek WTL3164 
• NS32202 Interrupt Control Unit (ICU) 
• 20, 25 or 30 MHz operating frequency 
• Cache-64 kbytes of direct-mapped zero wait-state 

cache 
• Conforms to all VME Revision C.1 specifications 
• Supports multiprocessing system applications 
• 4-16 Mbytes of on-board Dual Port DRAM with parity, 

expandable to 256 Mbytes of cacheable address space 
over the VME bus 

• 64 kbytes of EPROM in one socket 
• Two RS-232C serial ports (2681 DUART) with adjusta­

ble baud rate 
• MON532 monitor firmware with power on diagnostics 

Product Overview 
The VME532 is National Semiconductor's VME based 
board featuring the high-end Series 32000® family cluster. 
The cluster consists of the NS32532 CPU with on-chip 
Memory Management Unit, and the NS32381 Floating Point 
Unit (FPU). 

Available in 20, 25 and 30 MHz operating speeds, the 
2-board set includes a 64 kbyte external cache with an aver­
age hit rate of over 90%. Expandable to % gigabyte of 
memory, and with up to 16 Mbytes of DRAM on-board, the 
VME532 provides cacheable memory address range of up 
to 256 Mbytes. 

The VME532 is a powerful CPU designed for systems de­
manding high performance in any environment, including 
UNIX®, real time operating systems, e.g., VRTX32®, and 
multiprocessing. 

The VME532 may also be used to evaluate the NS32532 
and NS32381 architecture, instruction set, timing, and per­
formance. In addition, the board provides a native debug 
and execution environment for programs developed on a 
host computer and is compatible with National's GNXTM 
software package. 

TL/EE/93BO-l 

FIGURE 1 

5-3 

< 
== m 
U1 
Co) 
N 

II 



~ r---------------------------------------------------------------------------------~ 
C') 
II) 
w 
::is 
> 

Hardware Description 
CENTRAL PROCESSING UNIT 

The NS32532 microprocessor is National Semiconductor's 
most powerful Central Processing Unit (CPU) that is com­
patible with other members of the Series 32000 family. The 
NS32532 CPU contains an on-chip Memory Management 
Unit (MMU) with a 64-entry translation buffer and is software 
compatible with the NS32382 MMU. 

Features of the NS32532 include 4 gigabytes of addressing 
capability, a 512-byte instruction cache, a 1024-byte data 
cache, 4-stage instruction pipeline, and dynamic bus sizing. 

FLOATING POINT UNIT 

The NS32381 Floating Point Unit (FPU) is a second genera­
tion CMOS, floating point slave processor, conforming to 
IEEE standard 754-1985 for binary floating point arithmetic. 
Functioning in a tightly coupled slave configuration with the 
NS32532 CPU, the NS32381 FPU operates significantly 
faster than the NS32081 FPU. Additionally, the NS32381 
and has an expanded floating point instruction repertoire, 
while preserving upward compatability. The NS323Bl FPU 
operates on 2 floating point data types: single-precision 
(32-bit) and double-precision (64-bit). 

OPTIONAL FLOATING POINT ACCELERATOR 

The VME532 is also available with a higher-performance 
(15 MFLOPS peak) floating point alternative. This floating 
point accelerator comprises the NS32580 Floating Point 
Controller (FPC) and Weitek WTL3164 Floating Point Data 
Path to create a compatible replacement for the standard 
NS32381 FPU. 

FOUR-LEVEL MEMORY HIERARCHY 

CPU Cache 

The VME532 employs a 4-level memory hierarchy design. 
The first level includes the 512-byte instruction cache and 
the l-kbyte data cache, integrated within the NS32532 CPU. 
This provides the CPU with an 80% internal cache hit rate 
minimizing external rnemory accesses. 

External Cache 

The second level memory hierarchy structure is composed 
of a 64-kbyte direct-mapped, zero wait-state external cache, 
allowing up to 256 Mbytes of cacheable address space. 
With the addition of the external cache, the overall cache hit 
rate increases to over 90%, allowing the NS32532 CPU to 
nearly operate at full performance. In case a cache rniss 
occurs, no time is wasted accessing local or external mem­
ory because memory accesses occur simultaneously with 
each cache access and is aborted upon a cache hit. 

The external cache is composed of very high speed 
SRAMs. The data portion of the cache is arranged as an 
array of 16k x 32 bits and is used to store 64 kbytes of data. 
The tag portion of memory is a 4k x 16-bit array. Each entry 
contains 12 bits of addressing information, 1 VALID bit, and 
3 spare bits. The tag is integrated with high speed compare 
logic to determine cache hit and miss. 

Local Memory 

Level three is the local dual-port parity-checking memory 
consisting of 4 Mbytes, expandable to 16 Mbytes, of DRAM. 
Accessing the third level through an independent local bus 
reduces traffic along the common system bus. The local 
dual-port memory allows access through the system bus, as 
well as the local bus. The path through the system bus 
serves to simplify the incorporation of peripheral devices by 
transferring 1/0 directly to local memory. 

5-4 

Global Memory 

The fourth level of the memory hierarchy is the global mem­
ory accessible to each processor through the system bus. 
Each processor's local memory can serve as global memo­
ry to other processors in the system. In addition, memory 
modules not local to any processor, can be used as global 
memory by all microprocessors in the system. The cache­
able address space is 256 Mbytes, of which 4 or 16 Mbytes 
is local on-board memory. 

THE GATEWAY 

In a typical CPU, more operations involve read cycles than 
write cycles to local memory. The efficiency of the internal 
cache of the NS32532 CPU together with the performance 
of the external cache creates an effective hit rate in excess 
of 90%, causing more write cycles than read cycles to 
memory to occur. Since RAM access may cause a bottle­
neck in CPU performance, due to frequent write cycies, the 
VME532 incorporates two custom gate array chips that 
make up the Gateway circuitry. The Gateway is a 72-bit by 8 
location deep write FIFO and read buffer allowing the CPU 
to write to main memory without wait-states. Analysis indi­
cates an 8-entry deep FI FO is sufficient to buffer, without 
filling up, 99% of all memory write operations, improving the 
performance of the VME532. 

MULTIPROCESSING 

Designed with multiprocessor applications in mind, the 
VME532 will couple to a total of 16 processors in a sepa­
rate-memory, shared-bus architecture. The VME532 pro­
vides the following multiprocessing features: 

• CPU number switch. This thumbwheel switch on the 
VME532 enables users to assign unique CPU identifica­
tion numbers, ranging from 0 to 15 for each CPU in the 
system. 

• Local memory can be accessed by other VME masters, 
including other CPUs. The memory of each CPU is 
mapped into a unique space of the VME address. 

• VME memory is shared among all bus masters, allowing 
"mailbox" communication. 

• Bus Watcher. The bus watcher circuitry is responsible for 
coherency between VME and cache-memory entries. 
The bus watcher traces the activity on the VME bus. 
Whenever cacheable memory is written by one of the 
other VME masters, the bus watcher latches the address 
of the memory, and a bus watch request signal is sent to 
the cache memory controller. When an address match 
occurs, the cache invalidates the entry. The bus watch­
er's FIFO of 8 entries prevents the loss of invalidation 
requests during heavy VME bus traffic. 

• Inter-processor interrupts. In addition to the normal VME 
interrupt system, the VME532 allows other processors to 
communicate with the VME532 using the inter-processor 
interrupts. Sixteen address ranges are allocated for this 
special purpose on the VME532. 

INTERRUPTS 

Included with the VME532 is National Semiconductor's 
NS32202 Interrupt Control Unit (ICU). The 16 channel ICU 
handles all on-board interrupts, all seven levels of VME in­
terrupts, and inter-processor interrupts. The interrupts are 
individually maskable, and the priority assignment may be 
customized to suit the needs of the user. 



r-----------------------------------------------------------------,< 
SERIAL 110 

A 2681 Dual-UART provides the user with two serial com­
munication ports to enable communication with a terminal 
and host processor, with RS-232C compatibility. The inter­
nal timer/counter of the DUART can be used as a watchdog 
timer or real-time clock. The serial ports are provided with 
Telco connectors, and DB-25 adapters for use as DTE or 
DCE. 

SOFTWARE OPTIONS 

MON532 (monitor) with diagnostics is included with the 
VME532. The VME532 supports National's GENIX® V.3°, 
and optimizing compilers for Ada, C, Pascal, Modula-2, and 
FORTRAN. The board also supports VRTX32 for real time 
applications. 

VME SPECIFICATIONS 

Master: A32:D32, UAT, RMW, IH7, ROR, RWD 

Slave: A32:D32, UAT, BLT, RMW, ADO, BERR 

Syscon: BR(0-3), (PRI, RRS, dyn.), BTC 1.6-12.8 dyn.), 
IACK,SYSRST,SYSCLK 

VME532 Block Diagram 

Local Interrupts 

ORDERING INFORMATION 

NSV-V532A-KF20 VME532 Development Kit, 20 mHz, 
32381 FPU 

NSV-V532A-KF25 VME532 Development Kit, 25 mHz, 
32381 FPU 

NSV-V532A-KF30 VME532 Development Kit, 30 mHz, 
32381 FPU 

NSV-V532A-KW20 VME532 Development Kit, 20 mHz, 
32580/WTL3164 FPU 

NSV-V532A-KW25 VME532 Development Kit, 25 mHz, 
32580/WTL3164 FPU 

NSV-V532A-KW30 VME532 Development Kit, 30 mHz, 
32580/WTL3164 FPU 

NSV-VXM532A-12M 12 Mbyte Local Memory Expansion 
(20, 25, or 30 mHz) 
'Derived from UNIX System V.a 

.III !li-

I Interprocessor 
Interrupt 

I Decoder 
7 Level ViolE Interrupts 

"" FPU J ICU J l I DUART I CPU 
32381 32201 PROM 10 No. 

Switch 

1 ~ _t T 
11--. CPU "'- Cache 

.... ... 
32532 " "' ... "' Gateway 

Bus 
Watcher 

FIGURE 2 

5-5 

DRAM 

~ ~ 

"'-~ r-.a. ViolE 
Bus ... "' Interlace 

~ ViolE I System 
Controllerj 

.... .. , r-

""I 

v 
M 

E 

8 

U 

s 

,. 
TL/EE/93BO-2 

:!: rn en 
Co) ...., 



~.-----------------------------------------------------------------------, 
:;) .... 
CL 
~ 
C") 
C") 

In 
C 

fa National Semiconductor ADVANCED INFORMATION 

DB332-PLUS Development Board 

• Includes the Series 32000® 
Microprocessor Family 
- NS32332 CPU 
- NS32382 MMU 
- NS32C201 TCU 
- NS32081 FPU 
- NS32202 ICU 

• MUL TIBUS® I compatible 
• 1 M or 2M bytes of dual ported DRAM 

Product Overview 
The DB332-Plus Development Board is a high per­
formance, 15 MHz, NS32332 based board that en­
ables evaluation of National Semiconductor's 
NS32332 computer cluster and Series 32000 family. It 
has a Multibus I interface, with either 1 or 2 MBytes of 
high-speed, dual-port dynamic RAM, serial and paral­
lel 1/0, interrupt controller, ROM socket, and 
NS32332 computer cluster. The cluster consists of 
the NS32332 Central Processing Unit, NS32382 
Memory Management Unit, NS32081 Floating Point 
Unit, NS32C201 Timing Control Unit, and NS32202 
Interrupt Control Unit. 
The instruction sets, cycle timing, bus interfacing, and 
internal architecture of the Series 32000 family can be 

5-6 

TL/C/9249-1 

• Up to 256K bytes for JEDEC type ROM/ 
PROM/EPROM 

• Two RS232 Serial Communication Ports 
• Programmable Serial Port Baud Rates 
• 16 interrupt sources that can be 

arranged via Wire-Wrap Matrix 
• Centronics parallel printer interface 
• MON332B monitor firmware with power­

on diagnostic 

examined using the DB332-Plus board. In addition, the 
DB332-Plus can provide a native debug and execution 
environment for programs developed on a host com­
puter. The DB332-Plus is compatible with National's 
GNX software package. 
The DB332-Plus board is shipped with the MON332B 
monitor and diagnostic firmware, serial and parallel 
printer cables, and user documentation. The board 
can be used in a Multibus I system, or as stand-alone 
board. In the stand-alone mode, the board needs a 
power supply, and terminal. 

CENTRAL PROCESSING UNIT 

The DB332-Plus incorporates a 15 MHz NS32332, 
which is a 32-bit, virtual memory microprocessor with 



r--------------------------------------------------------------------------, C 

a 4 GByte addressing capability. The NS32332 is fully 
object code compatible with other Series 32000 mi­
croprocessors, and has the added features of 32-bit 
addressing, higher instruction execution throughput, 
and expanded bus handling capabilities. The bus fea­
tures include bus error and retry support, dynamic bus 
sizing, burst mode memory accessing, and enhanced 
slave processor communication protocol. 

The NS32332, being a member of the Series 32000 
family, has powerful addressing modes, symmetric in­
struction set, modular software support, and linear ad­
dressing. The NS32332 is designed to work with both 
16- and 32-bit slave processors of the Series 32000 
family. They allow the processor to implement de­
mand-paged virtual memory system through the use 
of the memory management unit (MMU), and support 
for high-speed floating point processing through the 
floating point unit (FPU). 

SLAVE PROCESSORS 

The DB332-Plus contains both the NS32382 MMU, 
and the NS32081 FPU. In addition, the board incorpo­
rates a connector that allows the next generation 
FPU, the NS32381, to be added. The NS32381 FPU 
will need to be mounted on a module that will be 
plugged into the DB332-Plus's expansion connector. 

NS32382: 

The NS32382 MMU provides hardware support for de­
mand paged virtual memory management for the 
NS32332 CPU. The MMU has a 32-bit data path and 
translates 32-bit virtual addresses from the CPU into 
32-bit physical addresses. High-speed address trans­
lation is performed on-chip through a Translation Buff­
er which holds the address mappings for 32 pages. If 
the virtual address generated by the CPU has no cor­
responding entry in the translation buffer, the MMU 
will perform address translation using a two level page 
table algorithm. The memory page size of the 
NS32332 is 4 Kbytes. 

NS32081: 

The NS32081 FPU provides high-speed floating-point 
processing support, and is compatible with the IEEE 
754 standard for binary floating-point arithmetic. The 
NS32081 operates on two floating-point data types­
single preciSion (32-bits) and double precision (64-
bits). In addition, the FPU performs conversion be­
tween integer and floating-point data types. The 
NS32081 has eight, 32-bit floating point registers, a 
floating-point status register, and operates as a slave 
processor for transparent expansion of the NS32332 
CPU's basic instruction set. 

5-7 

Interrupts 
The DB332-PLUS development board incorporates 
the NS32202 Interrupt Control Unit (ICU). The ICU 
manages up to 16 maskable interrupt sources, re­
solves interrupt priorities, and supplies a single-byte 
vector to the CPU. In addition, two 16-bit counters are 
provided by the NS32202. 

Memory 
The DB332-PLUS comes with either 1 M or 2M bytes 
of 85 ns static column, dual ported DRAM. At 15 MHz 
it can be accessed with 1 wait state. Memory supports 
Burst access via either the CPU or external MUL TI­
BUS masters. Due to the MUL TlBUS I form factor, the 
memory module and its controller is mounted on a 
separate P.C. board which is plugged into the DB332-
PLUS. 
Up to 256K bytes are available for JEDEC type ROMI 
EPROMs via a 28 pin socket. This socket is normally 
occupied by the MON332B firmware PROM. 

Multibus Interface 
The DB332-PLUS incorporates a MUL TIBUS I inter­
face, allowing the user to configure larger systems. 
Most often, the DB332-PLUS would be used in con­
junction with MUL TIBUS compatible expansion RAM, 
disk controller, or serial controller boards. However 
there is no restriction, beyond MUL TIBUS compliance. 

The DB332-PLUS's MUL TIBUS compliance levels 
are: 
Master D16 M24 VO E1; indicating 16-bit data path, 

24-bit memory address path, 16-bit 1/0 ad­
dress path, and level or edge triggered non­
bus vectored interrupts. 

Slave D16 M24; indicating 16-bit data path and 
24-bit memory address path. 

Parallel 1/0 
A 40-pin connector (J3) and the necessary cable are 
provided to interface with a Centronix compatible prin­
ter. 

Serial 1/0 
The two serial interfaces (J1 and J2) are designed to 
provide a wide variety of asynchronous, RS232C-com­
patible communications. Jumper options are provided 
for altering the configuration of each interface. Appro­
priate cables are included with the package. 

Switches 
The DB332-PLUS board has a non-maskable interrupt 
push-button (NMI) designated S1, a RESET push­
switch designated S2 and a four- position DIP switch. 

m 
Co) 
Co) 

~ 
-a 
r c: en 



en 
;:) 

~ These three switches are located on the front edge of 
N the CPU board. The status of the DIP switch can be 
~ read by the DB332-PLUS software. 

~ Indicators 
The DB332-PLUS board has four LEDs designated 
DS1 through DS4. Led DS1 is controlled by the physi­
cal address valid signal (NPAV) from the CPU cluster 
and indicates that the CPU cluster is active. DS2 
through DS4 are software controlled and may be used 
as status or diagnostic indicators. 

User Modes 
The DB332-PLUS can operate stand-alone, with no 
assistance from the host computer system. Optionally, 
the board can be operated in conjunction with a host, 
taking advantage of more powerful software develop­
ment tools and 1/0 capabilities. Figure 1-2 represents 
the most common variations in user modes. 

Stand-Alone Mode 
From Figure 1-2, it is clear that the stand-alone user 
mode is the most simplistic and requires the least ad­
ditional equipment. In this case, only an RS232 com­
patible terminal and power supplies for the DB332-
PLUS are required to achieve effective operation. Us­
ing the monitor commands given in the Development 
Board Reference Manual, limited amounts of debug­
ging can be accomplished. 

Host Assisted Mode 
The DB332-PLUS can be connected to another com­
puter system or host. In this case, the user first devel­
ops Series 32000 software on the host system, then 
uses the RS232 communication link to download the 
software to the DB332-PLUS, which executes and de­
bugs the software in a native environment. Several 
development software packages are available for use 
in generating Series 32000 user programs. Among 
them is National's GENIX Native and Cross Support 
Tools (GNX) which includes assemblers, linkers, and 
debuggers. 

The DB332-PLUS is supplied with MON332B for inter­
facing between the host and terminal in this mode. 
The monitor software will provide: 

• Terminal Handler (for use in transparent mode) 

• Run-Time Environment (to permit execution of 
downloaded programs) 

• Debugger Execute Module (to permit operation 
with host's debugger) 

5-8 

Consult the Development Board Monitor Reference 
Manual for a complete description of capabilities. 

Two different configurations are available in host as­
sisted mode, transparent and stand-aside. Both are 
illustrated in Figure 1, and explained below. 

In transparent configuration, the user's communica­
tion with the host is conducted through the 
DB332-PLUS, which is transparent to the user. One 
advantage is that a single RS232 port on the host 
computer will support both the user's terminal and the 
DB332-PLUS. 

In stand-aside configuration, the user communicates 
directly with the host while the DB332-PLUS "stands 
aside". This mode is useful when the DB332-PLUS is 
connected to single-user hosts, notably those where 
the terminal and keyboard are integral to the host. Op­
tionally, stand-aside operation is possible with multi­
user hosts where two RS232 ports are available. 

Specifications 
Environment 

The DB332-PLUS is designed for operation in an of­
fice or laboratory environment. Sufficient air flow 
should be present to ensure all components are within 
their specified temperature ranges. 

Environment Description 

Temperature Operative 5·C to 50·C 

Inoperative -40·C to 60·C 

Humidity 10% to 90% relative, non-condensing 

Altitude Operative 15,000 feet 

Inoperative 25,000 feet 

Power Requirements 

The DB332-PLUS requires three regulated DC volt­
ages for operation. 

1. + 5V DC, ± 5%, 10 Amps (when utilizing 2 Mbytes 
of memory) 

2. +12V DC, ±10%, 100 mA 

3. -12V DC, ±10%, 100 mA 

Ordering Information 

Part Number Description 

NSV -32332B 1 M-15 15 MHz, 1 MB memory version. 

NSV-32332B2M-15 15 MHz, 2MB memory version. 



1. STAND-ALONE MODE 

2. HOST-ASSISTED MODES 
a) STAND-ASIDE, SINGLE-USER HOST 

(eg. SPX II) 

b) STAND-ASIDE MULTIUSER HOST 

c) TRANSPARENT, LOCAL HOST 

d) TRANSPARENT, REMOTE HOST 

'REQUIRES RECONFIGURATION 

TLlC/9249-2 

5-9 

c 
OJ 
(,) 
(,) 
N 

I 

"tJ .­
C en 



g 
~ II National Semiconductor 
C') 

ID 
Q 

DB32000 Development Board 

• Series 32000® Microprocessor Family 
- NS32032 Central Processing Unit 

(CPU) (can be replaced by NS32016 
CPU, or NS32008 CPU, for evaluation) 

- NS32082 Memory Management Unit 
(MMU) 

- NS32081 Floating Point Unit (FPU) 
- NS32202 Interrupt Controller Unit 

(ICU) 
- NS32201 Timing Control Unit (TCU) 

• 256K bytes DRAM expandable to 1 Mbyte 
• Up to 256K bytes of EPROM in two 

banks 

Product Overview 
National Semiconductor's D832000 Development 
Board is a complete microcomputer system. It is spe­
cifically designed to assist the user in evaluating and 
developing hardware and software for the NS32032 

5-10 

TL/EE/8523-1 

• Two RS-232 Serial Communication Ports 
• 24 Programmable Parallel 1/0 Lines 
• Two BLXTM Connectors 
• Wire-wrap area for user expansion 

- Bus interface 
- Dual port RAM 
- ROM expansion 
-1/0 expansion 
- RAM expansion 

• TDSTM firmware provides edit, assembly, 
and debug capabilities 

CPU, related slave processors (NS32081 FPU and 
NS32082 MMU) and support devices. With the 
D832000, the user may evaluate other CPUs such as 
the NS32016 and NS32008. The D832000 enables 



~----------------------------------------------------------------'C 

Product Overview (Continued) 
the user to examine the architecture, instruction set, 
cycle timing, and the bus interfaces for the Series 
32000® family of microprocessors. Small programs 
can be written, debugged, assembled, and executed 
with EPROM-based T08 (Tiny Oevelopment 8ystem) 
software. 
Optionally, the 0832000 can provide a native debug 
and execution environment for programs developed 
on a larger host computer system. In this case, the 
board complements capabilities provided by Nation­
al's Pascal, Fortran and C cross-software packages. 
The 0832000 includes the N832032 CPU, NS32082 
MMU, N832081 FPU, NS32202 ICU, support circuitry, 
dynamic RAM, extensive ROMIEPROM capacity, and 
serial and parallel 110. 110 capability can also be ex­
panded via 8LX interfaces. 

Central and Slave Processors 

The 0832000 is equipped with an N832032 CPU, fea­
turing 32-bit internal structure and 32-bit data bus. Op­
tionally, an N832016 or NS32008 CPU can be in­
stalled, with 32-bit internal structure and 16-bit or 8-bit 
data path. Each CPU provides a very powerful instruc­
tion set designed for high level language support. 
The 0832000 also includes the N832082 MMU and 
the NS32081 FPU. The N832082 Memory Manage­
ment Unit provides hardware support for demand­
paged virtual memory management. The NS32081 
provides high-speed floating-point instruction execu­
tion. 

Interrupts 

As part of factory configuration, the 0832000 comes 
with the NS32202 ICU installed. The NS32202 Inter­
rupt Control Unit manages up to 16 maskable interrupt 
sources, resolves interrupt priorities, and supplies a 
single-byte vector to the CPU. In addition, the ICU pro­
vides two, 16-bit counters. 

Memory 

Expandable to 1 Mbyte, 256K bytes of on-board dy­
namic RAM are provided. The wire-wrap area may be 
used in conjunction with the 0832000 circuitry to de­
velop dual port capability. 
Up to 256K bytes of ROMIEPROM space is provided 
in eight 28-pin sockets. The sockets are divided into 
two banks, each bank permitting installation of 24- or 
28-pin devices. All factory configurations include TOS 
firmware installed in the lower bank, with the upper 
bank vacant. 

Parallel 1/0 

Twenty-four parallel 110 lines are provided via an 
8255A Programmable Peripheral Interface. These 
may be divided into two 8-bit ports and two 4-bit ports. 

5-11 

Serial 1/0 

Two serial 110 ports are provided via 2651 Universal 
Synchronousl Asynchronous Receiver/Transmitters. 
These ports permit the 0832000 to communicate with 
R8232C compatible terminals or other computers. 
The baud rate for each port is software programma­
ble. 

BLX 1/0 Expansion 

Two connectors are provided for attachment of 8- or 
16-bit 8LX expansion modules. 8LX modules may be 
used to expand the 0832000's 110 capability; e.g., 
additional serial on parallel ports. 

Switches 

Two button switches (S3 and 84), and one 10-position 
DIP switch (81) are provided. 83, labeled NMI 0, will 
introduce a non-maskable interrupt to the 0832000's 
CPU when pressed. S4, labeled RESET, will reset the 
board when pressed. Switch 81 is a software readable 
dip switch that may be used to indicate defined op­
tions, e.g., baud rate, MMU present, etc. Each switch 
position function is defined by the on-board PROM­
based software. 

Indicators 

Four LEO indicators (02-05) are mounted near the 
lower left corner of the 0832000. 02-04 are con­
trolled by the contents of a program-addressed regis­
ter. They are used by the T08 power-on confidence 
test program to indicate test status. They may also be 
used to indicate any other information the user de­
sires. 05 is driven directly by a 15-millisecond 1-shot 
timer. 05 will be extinguished whenever there is no 
CPU memory or 110 access within this time. 05 is illu­
minated when the CPU is executing instructions. This 
LEO indicates whether or not the CPU is active. 

Wire-Wrap Expansion Area 

The wire-wrap expansion area provides the user with 
space that is drilled to accept integrated circuits. Sig­
nal pad terminators (stubs) are located at different lo­
cations on the board enabling the user to construct 
the following functions in the wire-wrap area: 
- External 8us Interface 
- Dual Port Memory Interface 
- ROM Expansion 
- 110 Expansion 
- DRAM Capacity Expansion Using the On-board 

DRAM Controller 

m 
Co) 
N o o o 

III 



o r-------------------------------------------------------------------------~ 
o 
~ 
Cf) 

III 
Q 

Tiny Development Systems (TDS) 
Functional Description 
The TOS firmware allows the user to create programs 
by entering source via the editor. This source is then 
assembled to produce executable code suitable for 
debugging. These functions have the following fea­
tures: 

Assembler: 

- Subset of existing Series 32000 assembler 

- Supports FPU by providing long and short format 
real number data initialization 

- Generates listings to either a printer at the parallel 
port, or any RS232 device connected via serial 
port 

- Symbolic definition of static base or PC segment 

Debugger: 

- Numerical arguments to commands can be in four 
bases: decimal, hex, long real and short real 

- Program flow visually traced by displaying source 
line at all breakpoints or step stops 

- Memory/register print or change commands 
- Step-through program commands: step "n" in-

structions, step while variable in range, step until 
variable reached 

Editor: 

- Commands to insert, replace, delete, type lines 
- Automatic line number maintenance 

- Save and retrieve source from audio cassette re-
corder 

- Upload/download to/from any RS232-equipped 
PC 

- Oebug data displayed by type command after as-
sembly 

User Program Run Time Support: 

- Accessed via a supervisor call instruction 
- Routines to do terminal I/O 
- Printer driver access to parallel port 

- Routine to convert binary value to ASCII string 

- Routine to convert ASCII string to binary value 

- Conversion in four bases: decimal, hex, long real 
and short real 

As shipped with the 0832000, TOS provides on-board 
hardware confidence test routines. These are invoked 
by power-on or manual reset. 

User Modes 
The 0832000 can operate stand-alone, with no as­
sistance from a host computer system. Optionally, the 
board can be operated in conjunction with a host, tak­
ing advantage of more powerful software develop­
ment tools and I/O capabilities. 

5-12 

Stand-Alone Mode (Factory Configuration) 

The stand-alone user mode (see Figure 1) requires 
only an RS232C-compatible terminal and power sup­
plies for the 0832000. 
TOS (Tiny Oevelopment System) software is supplied 
in on-board PROMs to support this user mode. TOS is 
used to edit, assemble, and execute small Assembly 
language programs. In addition, TOS can control the 
0832000's on-board I/O to provide cassette and prin­
ter interfaces, making the 0832000 a light duty devel­
opment vehicle. 

Host-Assisted Modes 
The 0832000 can be connected to another computer 
system or host (refer to Figure 1). In this case, the 
user first develops Series 32000 software on the host 
system, then uses the RS232 communication link to 
download the software to the 0832000, which exe­
cutes and debugs the software in a native environ­
ment. 
Several development software packages are available 
for use in generating Series 32000 user programs. 
Among them are: 
- Pascal, Fortran and C, operating under VAXIVMS 

- Pascal, Fortran and C, operating under VAX/ 
UNIX® 

In each case, the 0832000's factory-supplied, on­
board TOS software must be replaced. A suitable 
PROM-based monitor software package is supplied 
with the host development software. 
The basic modes of host-assisted 0832000 operation 
are "stand-aside" and "transparent". The terms 
"stand-aside" and "transparent" may be visualized by 
observing the communication configuration for each 
mode. Refer to Figure 1. 
The monitor software will provide: 

- Terminal Handler (for use in transparent mode) 
- Run-Time Environment (to permit execution of 

downloaded programs) 

- Oebugger Execute Module (to permit operation 
with the host's debugger) 

Consult the Oevelopment 80ard Monitor Reference 
Manual for a complete description of capabilities. 
In transparent mode, the user's communication with 
the host is conducted through the 0832000, which is 
transparent to the user. One advantage is that a single 
RS232 port on the host computer will support both the 
user's terminal and the 0832000. 
In stand-aside mode, the user communicates directly 
with the host while the 0832000 "stands aside". This 
mode is useful when the 0832000 is connected to 
single-user hosts, notably those where the terminal 
and keyboard are integral to the host. Optionally, 
stand-aside operation is possible with multi-user hosts 
where two RS232 ports are available. 



User Modes (Continued) 

STANDALONE MODE 
POWER 
SUPPLY I 

J6 

OB32000 

J2 Jl 

L..J 10CE 

HOST-ASSISTED MODES POWER 
SUPPLY I 

J6 

OB32000 

J2 Jl 

~ ""OTE" 

TERMINAL 

OTE 

POWER 
SUPPLY I 

J6 

OB32000 

J2 Jl 

HOST 
OCE 

OTE I 10CE 

POWER 
SUPPLY I 

J6 

OB32000 

J2 Jl 

HOST I-- MODEM ~ MODEM 
OCE 

OTE I 10CE 

'Requires Reconfiguration 
FIGURE 1.0832000 Configurations 

5·13 

TERMINAL 
OTE 

STANOASIOE 

OCE HOST 

OCE 

TRANSPARENT, LOCAL 

TERMINAL 
OTE 

TRANSPARENT, REMOTE 

TERMINAL 
OTE 

TUEE/8523-2 

c 
OJ 
(0) 
N o 
o 
o 



Q r-----~----------------------------------------------------------------------, 
Q 
Q 
C'I 
C') 

ID 
C 

Specifications 
Environment 

The DB32000 is designed for operation in an office or 
laboratory environment. Avoid confining the DB32000 
in a closed space, unless sufficient air flow is provided 
to ensure all components are operated within their 
specified temperature range. 

Temperature: Operating 

Nonoperating 

O°Cto + 55°C 

-40°C to + 75°C 

Humidity: 

Altitude: 

5% to 95% relative, 

non condensing 

Operating 

Nonoperating 

Power Requirements 

up to 15,000 ft. 

up to 25,000 ft. 

The DB32000 requires three regulated DC voltages 
for operation: 

+ 12 volts DC, ± 10%, 40 mA typical (50 mA max) 

-12 volts DC, ± 10%, 40 mA typical (50 mA max) 

+5 volts DC, ±5%, 5A typical (10A max) 

5-14 

Ordering Information: 
NSV-32032S6T-10 DB32000 Development Board 

All models are shipped with: 

Two RS232 cable sets 

Model DB32000-11 0 Includes NS32032-10 CPU 

NS32201-10 TCU 

NS32202-10 ICU 

NS320B1-10 FPU 

NS32082-10 MMU 

NSP-TDS-M Series 32000 TDS: Tiny Development 
System User's 
Manual 

NSP-DB32000-M Series 32000 DB32000 Develop­
ment Board User's Manual 

NSP-INST-REF-M Series 32000 Instruction 
Set Reference Manual 



,-----------------------------------------------------------------------, c 
II National Semiconductor 

08320116 Development Board 

• Series 32000® Microprocessor Family 
• NS32016 CPU (can be replaced by 

NS32008 CPU, for evaluation) 

• NS32082 MMU 

• NS32081 FPU 

• NS322021CU 

• NS32201 TCU 

• MUL TIBUS® mUlti-master bus interface 

• 128 Kbytes dual ported RAM 

Product Overview 
The DB32016 Development Board is a complete mi­
crocomputer using the National Semiconductor Series 
32000 family of advanced microprocessors. It is spe­
cifically designed to assist evaluation and develop­
ment of Series 32000 applications in a variety of envi­
ronments. 
By itself, the DB32016 can be used to examine the 
Series 32000 architecture and instruction set. Small 
programs can be written, debugged, and executed 
with EPROM-based TDS (Tiny Development System) 
software. 
Optionally, the DB32016 can provide a native debug 
and execution environment for programs developed 
on a larger host computer. In this case, the board 
complements capabilities provided by National's C 
and Pascal cross software packages. 

5-15 

TUR17083-1 

0 Up to 96 Kbytes PROM capacity 
0 Two RS232 serial communication ports 
0 24-programmable parallel 110 lines 
0 Three 16-bit programmable timer I 

counters 
0 One BLXTM expansion module connector 

for additional 110 capability 
0 TDSTM firmware provides edit, assembly, 

and debug capabilities 

Flexibility is further enhanced by the board's MUL TI­
BUS interface. This permits expansion of the 
DB32016 microcomputer system to include functions 
provided by other MUL TIBUS compatible boards; e.g. 
diskltape controllers, bulk RAM, etc. 
All models of the DB32016 include, as a minimum, the 
NS32016 CPU, support circuitry, serial and parallel 
lID, dynamic RAM, and extensive ROMIEPROM ca­
pacity. Optionally, the board can be populated with 
NS32082 Memory Management Unit, NS32081 Float­
ing-Point Unit, and NS32202 Interrupt Control Unit. In 
all cases, lID capability can be expanded via BLX and 
MUL TIBUS interfaces. 

m 
Co) 
N 
o .... 
Q) 



CD .... 
~ Hardware Function Description 
l3 (Refer to Figure 1-1) 
C 

TLfR17083-2 

FIGURE 1-1. OB32016 Topography 

Central and Slave Processors 

The OB32016 is equipped with a NS32016 CPU, fea­
turing 32-bit internal structure and 16-bit data bus. Op­
tionally, a NS32008 CPU can be installed, with 32-bit 
internal structure and 8-bit data path. Each CPU pro­
vides a very powerful instruction set designed for high 
level-language support. 
Included with each OB32016 is the NS32082 MMU 
and the NS32081 FPU slave processors. The 
NS32082 Memory Management Unit provides hard­
ware support for demand-paged virtual memory man­
agement. The NS32081 provides high-speed floating­
point instruction execution. 
If the OB32016 is purchased without slave proces­
sors, they may be installed by the customer, as re­
quired. 

Interrupts 

Also included with the OB32016 is the NS32202 ICU. 
The NS32202 Interrupt Control Unit manages up to 16 
maskable interrupt sources, resolves interrupt priori­
ties, and supplies a single-byte vector to the CPU. In 
addition, the ICU provides two, 16-bit counters, one of 
which can provide programmable baud rate capability 
for the OB32016's serial 1/0 ports. 
If the OB32016 is purchased without the ICU, it may 
be installed by the customer, as required. 

5-16 

Memory 

128 Kbytes of on-board, dual-ported dynamic RAM 
are provided. The MUL TIBUS starting address of 
RAM is mappable in 32K byte increments, across the 
entire 16M byte address space. 
Up to 96 Kbytes of ROMIEPROM space is provided in 
four 28-pin sockets. The sockets are divided into two 
banks, each bank permitting installation of 24 or 28-
pin devices. All factory configurations include TOS 
firmware installed in the lower bank, with the upper 
bank vacant. 

MULTIBUS Interface 

The OB32016 incorporates a MUL TIBUS interface, al­
lowing the user to configure larger systems. Most of­
ten, the OB32016 would be used in conjunction with 
MUL TIBUS compatible expansion RAM, disk control­
ler, or serial controller boards. However there is no 
restriction, beyond MUL TIBUS compliance. 
The OB32016's MULTIBUS compliance levels are: 
Master 016 M24 116 VOEL; indicating 8/16-bit 

data path, 24-bit memory address path, 8-
or 16-bit 1/0 address path, and level or 
edge triggered non-bus vectored inter­
rupts (if NS32202 is installed). 

Slave 016 M24; indicating 8/16-bit data path, 
and 24-bit memory address path. 



Parallel I/O 

24 parallel I/O lines are provided via an 8255A Pro­
grammable Peripheral Interface. These may be divid­
ed into two 8-bit ports and two 4-bit ports. 

Serial I/O 

Two serial I/O ports are provided via 8251A Universal 
Synchronous/ Asynchronous Receiver/Transmitters. 
These ports permit the OB32016 to communicate with 
RS232 compatible terminals or other computers. 
Port baud rates may be derived from a variety of 
sources: 

• a fixed, 9600 baud operation of both ports, if the 
NS32202 ICU is not installed. 

• single programmable baud rate for both ports, if 
the NS32202 ICU is installed. 

• Individually programmable baud rates for each 
port, via the OB32016's 8253-5 PIT. 

Timer/Counters 

As mentioned above, the NS32202 ICU provides two 
16-bit timer/counters, when installed. In addition, 
three 16-bit counters are provided by the OB32016's 
8253-5 Programmable Interval Timer. Each counter 
output is available for connection as an interrupt 
source for the ICU, or baud rate generation for the 
serial ports. 

BLX I/O Expansion 

A connector is provided for attachment of 8- or 16-bit 
BLX expansion modules. BLX modules may be used 
to expand the OB32016's I/O capability; e.g. addition­
al serial or parallel ports. 

Switches 

Two push button switches (S1 and S2), and one eight­
position OIP switch (S3) are provided. 
S1, labeled NMI, will introduce a non-maskable inter­
rupt to the 0832016's CPU when pressed. S2, labeled 
INIT, will reset the board when pressed. Both switches 
are located on the front edge of the board assembly. 
OIP switch S3 is used to set the Baud rate of the serial 
ports and other board configurations. 

Indicators 

Four LEO indicators (OS1-0S4) are mounted near the 
front edge of the board assembly. 
OS1-3 are controlled by the contents of a program 
addressed register. They are used by the TOS power­
on confidence test program to indicate test status. 
They may also be used to indicate any other informa­
tion the user desires. 
OS4 is driven directly by a one-shot timer, whose peri­
od is approximately 15 milliseconds. OS4 will be illumi­
nated whenever there is no memory or I/O access 

5-17 

completed by the CPU within this period. This is useful 
to indicate a MUL TIBUS timeout. 

Tiny Development Systems (TDS) 
Functional Description 
The TOS firmware allows the user to create programs 
by entering source via the editor. This source is then 
assembled to produce executable code suitable for 
debugging. These functions have the following fea­
tures: 

Assembler: 

- Subset of Series 32000 assembler 

- Supports FPU by providing long and short for-
mat real number data initialization 

- Generates listings to either a printer at the par­
allel port, or any RS232 device connected via 
serial port 

- Symbolic definition of static base or PC seg­
ment 

Debugger: 

- Numerical arguments to commands can be in 
four bases: decimal, hex, long real and short 
real 

- Program flow visually traced by displaying 
source line at all breakpoints or step stops 

- Memory/register print or change commands 

- Step-thru program commands: step un" in-
structions, step while variable in range, step un­
til variable reached 

Editor: 

- Command to insert, replace, delete, type lines 

- Automatic line number maintenance 
- Save and retrieve source from audio cassette 

recorder 

- Upload/download to/from any RS232 
equipped PC 

- Oebug data displayed by type command after 
assembly 

User Program Run Time Support: 

- Accessed via a supervisor call instruction 

- Routines to do terminal I/O 

- Printer driver access to parallel port 
- Routine to convert binary value to ASCII string 
- Routine to convert ASCII string to binary value 

- Conversion in four bases: decimal, hex, long 
real and short real 

As shipped with the 0832016, TOS provides on-board 
hardware confidence test routines. These are invoked 
following power on. 



User Modes 
The 0832016 can operate stand-alone, with no as­
sistance from a host computer system. Optionally, the 
board can be operated in conjunction with a host, 

1. Standalone Mode 

2. Host-assisted Modes 
a) Standaside, single-user host 

b) Standaside, multiuser host 

c) Transparent, Local host 

d) Transparent, Remote host 

·requires reconfiguration 

taking advantage of more powerful software develop­
ment tools and lID capabilities. 
Figure 1-2 represents the most common variations in 
user modes. 

P2 

TLlR/7083-3 

FIGURE 1-2.0832016 User Modes 

5-18 



Stand-Along Mode (Factory Configuration) 

From Figure 1-2 it is clear that the stand-alone user 
mode is the most simplistic; requiring the least addi­
tional equipment. In this case, only an RS232C com­
patible terminal and power supplies for the 0832016 
are required to achieve effective operation. 

TOS (Tiny Oevelopment System) software is supplied 
in on-board PROM to support this user mode. TOS is 
used to edit, assemble, and execute small assembly 
language programs. In addition, TOS can control the 
0832016's on-board I/O to provide cassette and prin­
ter interfaces; making the 0832016 a light duty devel­
opment vehicle. 

Host Assisted Modes 

Referring to Figure 1-2, the 0832016 can be connect­
ed to another computer system, or host. In this case, 
the user will first develop Series 32000 software on 
the host system, then utilize RS232 communication to 
download the software to the 0832016. The 0832016 
functions as a means of executing and debugging the 
software in a native environment. 

Several development software packages are available 
for use in generating Series 32000 user programs. 
Among them are: 

• Pascal and C for VAXIVMS environments 
o Pascal and C for VAX/UNIX environments 

Host assisted modes require the TOS PROMs to be 
replaced by a PROM-based monitor program, compat­
ible to the host development software. Monitor soft­
ware is bundled with National's Series 32000 software 
packages. The monitor provides: 

• a terminal handler, to control RS232 communi­
cations 

• run-time environment, to permit execution of 
downloaded programs 

• debugger execute module, to facilitate opera­
tion with the host's debugger software 

The basic host assisted modes are: 
• transparent 

• standaside 
The terms, transparent and standaside, may be visual­
ized by observing the communication configuration in 
each mode. (Refer to Figure 1-2) 

In transparent mode, the user's communication with 
the host is conducted through the 0832016; the 
0832016 is transparent to the user. An advantage 

5-19 

is that a single RS232 port on the host computer will 
support both the user's terminal, and the 0832016. 
In standaside mode, the user communicates directly 
with the host; the 0832016 "stands aside". This 
mode is useful when the 0832016 is connected to 
single-user hosts. Optionally, standaside operation is 
possible with multi-user hosts, where two RS232 ports 
are available. 

Specifications 
Environment 

The 0832016 is designed for operation in an office or 
laboratory environment. Avoid confining the 0832016 
in a closed space, unless sufficient air flow is provided 
to ensure all components are operated within their 
specified temperature range. 

o Temperature 
Operating O°C to 55°C 
Non Operating -40°C to 75°C 

o Humidity 
5% to 95% relative, non-condensing 

o Altitude 
Operating 15,000 ft. 
Non Operating 25,000 ft. 

Power Requirements 

The 0832016 requires three, regulated OC voltages 
for operation: 

+ 12 VOC, ±10%, 50 ma max 
-12 VOC, ±10%, 50 ma max 

+5 VOC, ±5%, 7.5A max 

All power connections are made via P1. These con­
nections are normally provided by a MUL TI8US com­
patible backplane. Optionally the user may elect to 
provide power, using one of the recommended con­
nectors listed for P1. 

Connectors 

Local bus 
expansion (P2)-

Parallel I/O (J1)-

COC VP801 830AOOA2 
AMP PES-14559 
TI H311130 

3M 3415-001 

AMP 2-86792-3 

Serial I/O (J2)- 3M 3462-0001 flat 
AMP 1-583715-1 round 

8us interface (P1)- SAE FUPH7212-86MTNE 

and Power Viking 2KH43/9AMK12 

c m w 
N o ...... 
Q) 

• 



~ r--------------------------------------------------------------------------, .,... 
re 
C") 

III 
C 

Ordering Information 
Model 0832016-110 (Order #NSV-32016P8T-10) 

Includes NS32016-10 CPU, NS32082-10 MMU, 
NS32081-10 FPU, NS32202-10 ICU, and 
NS32201-10 TCU for 10 MHz operation. 

All Models are shipped with: 

• Two RS232 cable sets 
• TDS: Tiny Development System User's Manual 

(Publication No. 420306440-001) 

• 0832016 Development 80ard User's Manual 
(Publication No. 420310111-001) 

Related Reference Material 
Series 32000 Instruction Set Reference Manual (Customer Order No. NSP-INST-REF-M) 

5-20 



Section 6 
Development Tools 



Section 6 Contents 
SYS32/30 PC-Add-In Development Package .......................................... 6-3 
SYS32/20 PC Add-In Development Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9 
ISE32 NS32032 In-System Emulator.................................................. 6-12 
SPLICE Development Tool .......................................................... 6-21 

6-2 



~ National Semiconductor 

SYS32/30 PC-Add-In 
Development Package 

• 15 MHz NS32332INS32382 Add-In board 
for an IBM® PC/AT® or compatible 
system 

• 2-3 MIP system performance 
• No wait-state, on-board memory in 4-, 8-

or 16-Mbyte configurations 
• Operating system derived from AT&T's 

UNIX® System V Release 3 
• Multi-user support 
• GENIXTM Native and Cross-Support 

(GNXTM) language tools. Includes­
assembler, linker, libraries, debuggers 

Product Overview 
The SYS32TM/30 is a complete, high-performance 
development package that converts an IBM PCI AT or 
compatible computer into a powerful multi-user sys­
tem for developing applications that use National 
Semiconductor Series 32000 microprocessor family 
components. The SYS32/30 add-in processor board 
containing the Series 32000 chip cluster with the 
NS32332 microprocessor allows programs to run on a 
personal computer at speeds greater than those of a 

6-3 

TLfEEf9420-1 

II Support for other Series 32000® 
development products: 
-SPLICE 
- National's Series 32000 Development 

Board family 
- Compilers: C, FORTRAN77, Pascal, 

Ada® 
• Easy to use DOS/UNIX interface 

VAXTM 780. The chip cluster on the processor board 
includes the NS32332 Central Processing Unit, 
NS32382 Memory Management Unit, NS32C201 Tim­
ing Control Unit and the NS32081 Floating-Point Unit. 
Along with the processor board, the SYS32/30 pack­
age contains the OpUS5™ operating system. This op­
erating system is a port of AT&T's UNIX System V 
Release 3, and is derived from GENIX V.3, National 

• 



o .---------------------------------------------------------------------------------~ 
C") ...... 
C'I 
C") 

~ 
Product Overview (Continued) 
Semiconductor's port of UNIX System V Release 3. 
Specially developed software is included to efficiently 
integrate the NS32332 processor board and the host 
PCI AT processor, allowing them to function as a com­
plete UNIX computer system. National's Series 32000 
GENIX Native and Cross-Support (GNX) language 
tools are included in the SYS32/30 package to pro­
vide stable and effective tools for software develop­
ment. Optional compilers are available for 
FORTRAN77, C, Pascal, and Ada. 

Functional Description 
15 MHz ADD-IN PROCESSOR BOARD FOR AN IBM PCI AT 
OR COMPATIBLE SYSTEM 

The SYS32/30 development package contains a 
processor board designed around the Series 32000 
chip set. This chip set includes the NS32332 Central 
Processing Unit, NS32382 Memory Management Unit, 
NS32C201 Timing Control Unit, and the NS32081 
Floating-Point Unit. 
This processor board forms the high-performance 
center of the computer system with the host PCI AT 
processor. Peripherals are under the control of the 
PCI AT's microprocessor and are located either on the 
PCI AT motherboard or on other boards in the AT 
chassis. The PCI AT handles all direct access to de­
vices and serves as an integral dedicated lID proces­
sor. 

SYS32/30 

A 

The SYS32/30 processor board plugs into the PCI AT 
bus, uses the standard control and data signals, and 
appears to the PCI AT as 16 bytes in the PCI AT In­
put/Output (lID) space. Communication between the 
PCI AT and the board is accomplished via this ad­
dress space. This architecture allows the board to in­
terface to the PCI AT in the same manner as any other 
AT peripheral. The PCIAT processes lID commands 
while the SYS32/30 processor board continues with 
regular operation. lID is requested via interrupt to the 
PCI AT, which then performs the data transfer using 
Direct Memory Access (DMA). (See Figure 1). 

The processor board requires two slots in the PCI AT 
motherboard and plugs into a single long 16-bit bus 
slot. The space of the second slot is needed to ac­
commodate ihe piggybacked memory board attached 
to the processor board. No additional connections are 
required. 

2-3 MIPS SYSTEM PERFORMANCE 

The NS32332 CPU and associated devices operating 
at 15 MHz provide computing power greater than that 
of a VAX 780. Sustained performance for the 
NS32332 device cluster is 2-3 VAX MIPS (Million In­
structions Per Second). An example of relative per­
formance using the widely recognized Dhrystone 
benchmark is shown in Figure 2. 

DOS 
UTILITIES 

"OW 
11_ " OPMON PROGRAM 
,~. 

SYS32/30 DRIVERS 'I DATA v 

1~ 11 AND 
CONTROL 

7 

PC Ift.-..J\ PC 
HARDWARE f'r;I PERIPHER-

ALS 

UNIX ENVIRONMENT DOS ENVIRONMENT 
TL/EE/9420-2 

FIGURE 1 

6-4 



r---------------------------------------------------------~0 

Cii Functional Description (Continued) 

DHRYSTONE 1.1 

SYS32/30 

VAX 780 

TL/EE/9420-3 

FIGURE 2. SYS32/30 Dhrystone Program 
Compiled with GNXr2 C Compiler 

VAX 780 Dhrystone Data Obtained from USENET 

ON-BOARD MEMORY CONFIGURATIONS 
OF 4, 8 OR 16 MBYTES 

The processor board is configured with either 4, 8, or 
16 Mbytes of zero wait-state physical memory. It is 
possible to upgrade the 4- or 8-Mbyte configuration to 
16 Mbytes through the purchase of an optional 16-
Mbyte memory card. 

OPERATING SYSTEM 

The SYS32/30 operating system is a port of AT&T's 
UNIX System V Release 3, and is derived from GENIX 
V.3, National Semiconductor's port of UNIX System V 
Release 3. 

The UNIX operating system is a powerful, multi-user, 
multitasking operating system that includes the follow­
ing key features: 

Demand Paged Virtual Memory 
Hierarchical file system 
Source Code Control System (SCCS) 
UNIX to UNIX copy (uucp) 
"make" utility 
Menu-driven system administration 

The UNIX operating system has a proven reputation 
as an effective and productive environment for effi­
cient software development. UNIX allows multiple us­
ers to work simultaneously on the same computer and 
project. The Source Code Control System (SCCS) au­
tomatically tracks program revisions as development 
work progresses. The "make" software saves valu-

6-5 

able time in regenerating complex software systems 
after changes are made. The uucp software allows 
users on different UNIX systems to communicate us­
ing electronic mail and to transfer files over dial-up or 
serial communications links. Menu-driven system ad­
ministration is available for system setup, adding us­
ers, controlling communication lines, installing soft­
ware packages, changing passwords, and other ad­
ministrative functions. 

ADDITIONAL SUPPORT UTILITIES 

Many of the popular utilities from the Berkeley 4.2 
UNIX operating system, not contained in AT&T's UNIX 
System V Release 3, are supplied as part of the pack­
age. These utilities are listed in Table I. 

TABLE I. Bsd 4.2 Utilities 

CShell apply banner 
bsu chsh clear 
ctags expand factor 
from head last 
leave more primes 
scrpt strings test 
unexpand whereis which 

The Tools for Documenters package, derived from the 
AT&T Documenter's WorkbenchTM Utility, provides 
the Series 32000 programmer with the tools to pre­
pare documentation. The major components of this 
package are shown in Table II. 

TABLE II. Tools for Documenters Utilities 

Name Description 

nroft A text formatter for line printers 

troft A text formatter for typesetters 

otroft A text formatter for typesetters 

mm A macro package 

mmt A macro package 

eqn A troft preprocessor for typesetting 
mathematics on a phototypesetter 

neqn A troft preprocessor for typesetting 
mathematics on a terminal 

tbl A preprocessor for formatting tables 

pic A preprocessor for graphic illustrations 

col A filter to nroft for processing multicolumn 
text output, as from tbl 

NETWORKING CAPABILITY 

The SYS32/30 based development system config­
ured to support networking using the TCP/IP protocol 
allows project development using multiple systems, in­
cluding SYS32/30 based systems, VAXIVMSTM (us­
ing TCP/IP), and VAX/4.2bsd. The compatibility de-

(,) 

~ 
(,) 
o 



c.---------------------------------------------------------~ 
C") 

~ 
C") 

~ 
Functional Description (Continued) 

sign of the GNX language tools allows software mod­
ules developed on these networked systems to be 
linked together on a single system for execution as 
one program. Networking requires that additional 
hardware and software be installed in the system. 
Third party products that enable networking are listed 
in the SYS32/30 configuration guide. 

MANUALS 

A complete manual set for the operating system and 
related software is included in the SYS32/30 pack­
age. This includes: 
Installation instructions for the PC Add-in board 
Installation instructions for software 
UNIX System V.3 reference manuals and user guides 
GNX Language Tools Manuals 
Tools for Documenters Reference Manual 
Berkeley Utilities Manual 

MULTI-USER SUPPORT 

The SYS32/30 operating system is an interactive, 
multi-user, multitasking operating system. Many activi­
ties or jobs can be performed simultaneously when 
serial ports are added to the host system. These addi­
tional serial ports are used for terminals, printers, mo­
dems, 1I0-to-development boards, I/O-to-target hard­
ware, or for communication with National's SPLICE 
debugging tool. Information about third party products 
that provide additional serial ports is contained in the 
SYS32/30 configuration guide. 

GNX LANGUAGE TOOLS 

The GENIX Native and Cross-Support (GNX) lan­
guage tools allow the user to compile, assemble, and 
link user programs to create executable files. These 
files can then be executed and debugged on a Series 
32000 development board, target system application 
hardware, or a 32000/UNIX-based system such as 
the SYS32/30. 
The GNX language tools include the assembler, link­
er, de buggers, libraries, and the monitor software for 
all Series 32000 development boards in both PROM 
and source code form. 
The Series 32000 GNX language tools are based on 
AT&T's Common Object File Format (COFF). Under 
COFF, object modules created by any of the GNX 
compilers or the GNX assembler may be linked to ob­
ject modules of any other translator in the GNX tools. 
Compilers available are FORTRAN77, C, and Pascal. 
The COFF file format also allows object modules that 
have been created by the GNX tools on other devel­
opment hosts (VAXIVMS or VAX/4.2bsd, for exam­
ple) to be linked with modules created on the 
SYS32/30 system. This flexibility is most valuable 
where non-centralized software development is de­
sired and the systems are able to transfer or share 

6-6 

files via a common network. Information for configur­
ing the SYS32/30 for integration into a network is 
contained in the configuration guide. 
Compilers are available as separate optional software 
to allow individual selection of the application lan­
guage. The C and FORTRAN compilers are the result 
of National's optimizing compiler project and reflect 
state-of-the-art compiler technology for optimizing ex­
ecution speed. Pascal and Ada compilers are also 
available. For additional details about the GNX tools 
consult the GNX tools data sheet, Literature Number 
114299. 
Real-time kernels such as National's EXEC or 
VRTX®/Series 32000 are supported by the GNX 
tools. With the appropriate command-line arguments, 
and when linked with appropriate libraries, the GNX 
tools are used to develop code for execution with 
these real-time kernels. More information on EXEC is 
contained in its data sheet in the Series 32000 Data­
book. The VRTX data sheet (Literature Number 
114269) provides more information about VRTX. 

ADA COMPILER 

The Series 32000 Ada cross-development system 
completely supports Ada language program develop­
ment on National's SYS32/30 host and is part of Na­
tional's Validated Ada Development Environment 
(NVADE). NVADE provides a high performance Ada 
compiler that supports all required features of the Ada 
language and is fully compliant with ANSI/MIL-STD-
1815A. Consult the data sheet (Literature Number 
114262) on the Ada cross-development system for 
additional details. 

SUPPORT FOR AN INTEGRATED DEVELOPMENT 
ENVIRONMENT 

The SYS32/30 contains the functionality and compati­
bility needed to utilize other tools available from Na­
tional Semiconductor for developing and debugging 
Series 32000-based applications. These tools include 
the SPLICE software debugger and National's Series 
32000 Development Board set. 
The SPLICE development tool provides a communica­
tion link between a Series 32000 target and a devel­
opment system host. This connection allows users to 
download and map their software onto target memory 
and then debug this software using National Semicon­
ductor's GNX debugger. Consult the SPLICE data 
sheet for more information. 
The Series 32000 development boards used with the 
SYS32/30 are complete microcomputer systems spe­
cifically designed to assist the user in evaluating and 
developing hardware and software for the Series 
32000 family of CPUs. More information on the Series 
32000 development boards is contained in the Series 
32000 Databook, Literature Number 400094. 



Functional Description (Continued) 

DOS/UNIX INTEGRATION 

The SYS32/30 PC add-in development package al­
lows easy transfer of data between DOS and the 
UNIX operating system. A system console user can 
switch between either operating system using only a 
few keystrokes. A shell interface allows DOS com­
mands to be executed from the UNIX shell, UNIX 
commands to be executed from DOS, and files to be 
transferred between the UNIX and DOS partitions on 
the system disk. In addition, the user can suspend the 
SYS32/30 operation, enter DOS, run an application, 
and then return to the SYS32/30 environment. 

Series 32000 Application Development 
The SYS32/30 with the PC/AT operates as a local 
host computer system for integrating application soft­
ware into target prototype boards containing Series 
32000 components. Programs can be written in as­
sembly language or in a higher level language. Option­
al compilers are available for C, FORTRAN, Pascal, 
and Ada. 

During compilation, the C, FORTRAN, and Pascal 
compilers generate assembly code which is assem­
bled by the GNX assembler. (See Figure 3.) The out­
put of the assembler is an object file which can be 

linked to other object files and/or libraries, resulting in 
an executable file. The Ada compiler generates exe­
cutable code without creating assembly language as 
an intermediate step. 
Since the SYS32/30 provides a Series 32000 native 
environment, the executable file may be run on the 
host SYS32/30 system or loaded into RAM on either 
a target system, SPLICE, or one of the Series 32000 
development boards. The source-level software de­
buggers in the GNX tools provide powerful facilities for 
debugging software on the target system. 
The GNX debugger, working in conjunction with 
SPLICE or with the monitor program on the target 
board, is capable of downloading and controlling the 
execution of software on the target system. Execut­
able monitor software is provided in PROMs in the 
SYS32/30 package for the Series 32000 develop­
ment boards. Monitor software is also provided in 
source form in the GNX language tools so application 
designers can modify and port the monitor to suit the 
needs of their target system. 
After debugging, the executable file created by linking 
can also be converted to PROM format using the GNX 
nburn utility. 

TO 
TARGET 
SYSTEM, 

SPLICE, OR 
DB BOARD 

TL/EE/9420-4 

FIGURE 3 

6-7 



C) r---------------------------------------------------------------------------------, 
C') ...... 
C'\I 
C') 

~ 
Configuring a System 
The SYS32/30 PC Add-In package supports a variety 
of configurations. Based on developer needs, the final 
configuration may need extra serial 1/0 ports, and/or 
networking capability. A hard disk of sufficient size is 
also an important part of the configuration. A configu­
ration guide that outlines available options and recom­
mended products for configuring the SYS32/30 devel­
opment system is available. 

Host system elements required for SYS32/30 opera­
tion are: 
- IBM PC/AT or compatible system 
- Two full length slots in the motherboard 

- 512 Kbytes of RAM 

- PC-DOS 3.1 or later 

- 1.2-Mbyte floppy disk drive 
- Adequate hard disk storage (see the next section 

on disk size) 
Note: The SYS32/30 processor board actually plugs into a single slot. 

The second slot is required to accommodate the space taken by 
the piggybacked memory board attached to the NS32332 proces· 
sor board. 

The SYS32/30 PC/AT Add-In Development Package 
runs on an IBM PC/AT or compatible computer. If an 
IBM PCI AT is not used for the host system, it is impor­
tant to remember that compatibility can vary between 
IBM PCI AT compatible systems. The SYS32/30 proc­
essor board may not be adequately supported by sys­
tems that lack full IBM PC/AT compatibility. The con­
figuration guide available contains a list of IBM PC/AT 
compatible systems that have the required compatibil­
ity. 

HARD DISK CAPACITY 

Several factors influence the size selected for a hard 
disk. Consideration should include the number of us­
ers for the system, space for user files, the size of the 
application to be developed, and extra software pack­
ages and compilers that must reside on the system. 

For example, a 40-Mbyte hard disk is the minimum 
size recommended for a SYS32/30-based develop­
ment environment. This provides sufficient space for a 
single-user account, the UNIX operating system and 
utilities, the GNX tools, compiler software, basic DOS 
software, and a moderate size application. If the sys­
tem is used for developing an Ada-based application, 
a minimum of 60 Mbytes of disk storage is recom­
mended. Disk drives with even greater capacity than 
the minimum sizes indicated here should be consid­
ered for additional users or software and to provide for 
growth of the system. 

When selecting hard disk drives or other peripheral 
devices, it is important that the device conform to the 
industry-standard for peripheral devices deSigned for 
use on the PCI AT bus. 

6-8 

Basic Kits 
The SYS32/30 Add-In Development package is avail­
able in three basic kits: 

NSS-SYS30-KIT1 For IBM-AT and compatible 
systems 

NSS-SYS30-KIT2 

NSS-SYS30-KIT3 

MEMORY UPGRADE 

PC Add-In coprocessor board 
with 4 Mbytes on-board memo­
ry 
UNIX System V.3 based operat­
ing system 
GNX Language Tools 
Tools for Documenters 
Berkeley Utilities 
Installation instructions for the 
PC Add-In board 
Installation instructions for soft­
ware 
UNIX System V.3 reference 
manuals and user guides 
GNX Language Tools Manuals 
Tools For Documenters Refer­
ence Manuals 
Berkeley Utilities Manual 
Same as KIT1 except with 
8 Mbytes of on-board memory 

Same as KIT1 except with 
16 Mbytes of on-board memory 

To upgrade the memory size to 16 Mbytes after the 
purchase of KIT1 or KIT2, the following 16-Mbyte 
memory board must be purchased to replace the ex­
isting memory board: 

NSS-SYS30-MEM16 16-Mbyte memory board. 

Optional Software Packages 
(A prerequisite for use is the purchase of one of the 
above basic kits). 

NSW-C-BHBF3 
NSW-F77 -BHBF3 

Optimizing C Compiler 

Optimizing FORTRAN77 com­
piler 

NSW-PAS-BHBF3 Pascal compiler 
NSW-ADA-BHBF Ada compiler 

NSW-NET-BHBF3 Networking software 

NSP-SYS321V3-MS Additional operating system 
manual set 



,--------------------------------------------------------------------------, w 

• National Semiconductor 

SYS32/20 PC Add-In Development Package 

• High Performance, 10 MHz, no-wait state, 
32-bit expansion board for an 
IBM-PC/AT or compatible system 

• An Operating System derived from 
AT&T's UNIX® System V.3 

• The Series 32000 GNX (GENIX Native 
and Cross-Support) Language tools 
including the Series 32000 assembler, 
linker, monitors and debuggers 

• Hardware that supports the NS32032 
CPU, NS32082 MMU, NS32201 TCU and 
the NS32081 FPU 

• Two available on-board memory 
configurations: 
- 2-Mbyte RAM 
-4-MByte RAM 

Description 
National Semiconductor's SYS32/20 is a complete, 
high performance development package that converts 
an IBM-PC/AT or compatible system into an ideal en­
vironment for the support of Series 32000®-based ap­
plications. The SYS32/20 PC Add-In Development 
Package allows mainframe-size programs to run on a 
personal computer at speeds similar to those of a 

6-9 

TL/C/9250-1 

• Software available on 1.2-MByte floppies 
• Complete support for the following 

application tools: 
-SPLICE 
- National's Series 32000 Development 

Board Family 
- Compilers for C, FORTRAN??, Pascal 

and Ada 
- Complete System V Documentation 
- 4.2 "bsd" Utilities 
- Tools for Documentors (TFD), a 

derivative of AT&T's DWBTM utilities 
- Multiuser environment 

VAX 780. The SYS32/20 consists of a 32-bit PC Add­
In board based on the Series 32000 chip set, a com­
plete port of AT&T's UNIX® System V.3 specially de­
veloped software that integrates the UNIX and DOS 
operating systems, and National's Series 32000 de­
velopment tools (GNX). 

-< w 
Co) 
N ...... 
N 
o 



~r-------------------------------------------------------------~ 

C\i 
CO) 

~ 
Hardware 
The SYS32/20 hardware consists of a Series 32000 
chip set on a single-slot co-processor board. The chip 
set includes an NS32032 CPU with either 2 or 4 
MBytes of on-board memory.· The hardware is an 
IBM PC Add-In board that plugs into the no-wait-state 
motherboard. No additional connections are required. 
Up to 8 serial ports can be used on all supported PCs. 
Parallel ports are also supported. The SYS32/20 Add­
In board supports a variety of Series 32000 family 
components including the high-performance, 10 MHz 
NS32032 Central Processing Unit, the NS32082 
Mem0r:Y Management Unit, the NS32201 Timing Con­
trol Unit and the NS32081 Floating-Point Unit. 

Software 
The SYS32/20 contains the OpUS5™ operating sys­
tem. Opus5 is a complete port of AT&T's UNIX 
System V Release 3 (V.3), and is derived from GE­
NIXIV.3, National Semiconductor's port of UNIX Sys­
tem V.3. 
System V is an advanced, proven programming envi­
ronment that fully supports the Series 32000 micro­
processor family, including Demand-Paged Virtual 
Memory (DPVM). System V's general-purpose, multi­
tasking, interactive system makes the programmer's 
computing environment simple, efficient and produc­
tive. 
The SYS32/20 Add-In board can also be used to exe­
cute object code under a native environment. Object 
files conform to a superset of the AT&T Common Ob­
ject File Format (COFF), and take full advantage of 
the advanced features of the Series 32000 architec­
ture. The GNX (GENIX Native and Cross-Support) 
software consists of an assembler, a linker, debug­
gers, monitors, basic I/O routines and other tools that 
support a group of optional compilers such as C, Pas­
cal and FORTRAN77. Other software features sup­
ported by the SYS32/20 include Tools for Document­
ers. 

Installation 
Installation of the SYS32/20 PC Add-In Package is 
straight-forward and well-documented. 
The SYS32/20 software occupies a PC fixed disk in 
one of two ways: it either uses a separate partition for 
the logical disk or it uses a large DOS file. The first 
method is necessary for file systems larger than 28 
Mbytes; the second method is recommended for fixed 
disks that don't use the ROM BIOS interface. 
Installation is divided into three general stages: parti­
tioning the fixed disk, installing the core system, and 

'Note: The hardware configuration does not allow the 2·Mbyte version 
to be upgraded to the 4-Mbyte version. 

6-10 

adding the desired software subsets. User-friendly 
software guides you easily through each stage of in­
stallation. 

Integrated Environment 
The SYS32/20 PC Add-In Development Package al­
lows data to be easily shared between DOS and the 
UNIX System V Operating system. A user can switch 
between either operating system using only a few key­
strokes. A shell interface allows DOS commands to 
be executed from the System V shell, System V com­
mands to be executed from DOS, and files to be 
transferred between the System V and DOS partitions 
on the system disk. In addition, the user can suspend 
the SYS32/20 operation, enter DOS, run an applica­
tion and then return to the SYS32/20 environment. 

Support for Hardware/Software Integra­
tion 
Two solutions are available for integrating application 
software, created under the PC-SYS32/20 develop­
ment environment with target prototype. The PC with 
SYS32/20 operates as a local host computer system 
for the environments of both solutions. Under the en­
vironment of both solutions, the high language soft­
ware debuggers provide powerful emulation facilities 
to test and shakeout the integrated hardware/soft­
ware target system until a proven product is achieved. 
Such facilities include setting of breakpoints and regis­
ters and memory data display and modifications. 
The first solution requires the use of an In-System Em­
ulator (ISE). The SYS32/20 Add-In Development 
Package supports National's ISE32 (In-System Emu­
lator for the NS32032). The ISE software consists of 
the ISE monitor firmware, which resides in PROMs in 
the emulator pod, and the ISE Debugger (IDBG), 
which is included with, and runs on the SYS32/20. 
The monitor firmware controls the ISE hardware. The 
IDBG is a high-level, user-friendly debugger program. 
It translates commands entered by the user, into low­
level instructions the ISE monitor uses to drive the 
hardware. IDBG also translates and sends ISE re­
sponses to the user. 
The second solution requires the use of monitor firm­
ware programs running in the user's target hardware 
and Debugger (DBG). DBG is a superset of the IDBG 
described in the first solution above, and, like IDBG, is 
included with, and runs on, the SYS32/20. DBG per­
forms the same functions as IDBG. The monitor 
downloads and controls the execution of the user's 
software. Monitor firmware programs include MON16 
(monitor firmware program for NS32016-based target 
hardware) and MON32 (monitor firmware program for 



NS32032-based target hardware). These monitor firm­
ware programs are provided in PROMs and included 
with SYS32/20. The monitors are also provided in 
source form so Series 32000 designers can modify 
the monitor to suit their target system requirements. 

Configuring a System 
The SYS32/20 PC Add-In package supports a variety 
of configurations. Based on developer needs, the final 
configuration may need extra serial I/O ports, and/or 
networking capability. A hard disk of sufficient size is 
also an important part of the configuration. A configu­
ration guide that outlines available options and recom­
mended products for configuring the SYS32/20 devel­
opment system is available. 

Minimum System Configuration 
The following list specifies the minimum configuration 
required to install a SYS32/20 PC Add-In Board: 

• 30-Mbyte hard disk. (40-Mbyte or larger is strongly 
recommended.) 

• 512 Kbytes of RAM. 
• PC/AT or compatible personal computer system. 
• PC-DOS 3.1 or later operating system. 

• Slots: 
-The 2-Mbyte board consists of 1 full board + 
1/2 piggyback board and may require 2 slots de­
pending on the arrangement of other expansion 
boards in the PC. 
-The 4-Mbyte board consists of 1 full board + 1 
full piggyback board and may require 2 slots de­
pending on the arrangement of other expansion 
boards in the PC. 

6-11 

BasiC Kits (Note: No Compiler Included.) 
NSS-SYS203-KIT1 For IBM-AT and compatible sys­

tems; 2MB on-board memory; 
UNIX System V.3 Operating Sys­
tem; GNX Assembler tools; "bsd" 
and Tools For Documenters utili­
ties; software on 1.2 MB high den­
sity floppy diskettes; a complete 
set of manuals, including AT&T 
UNIX System V.3 manuals. 

NSS-SYS203-KIT2 For IBM-AT and compatible sys­
tems; same as KIT1 except with 
4MB on-board memory. 

Optional Software Packages . 
(Prerequisite for use is purchase of the above basIc 
kits.) 
The following software should be ordered for execu­
tion on the System V.3-derived operating system. 
Available on high density diskettes only. 
NSW-C-BHAF3 Optimizing C compiler. 
NSW-F??-BHAF3 Optimizing FORTRAN?? com­

piler. 
NSW-PAS-BHAF3 Pascal compiler. 
NSW-ADA-BHBF Ada compiler. 
NSW-NET-BHAF3 
NSP-SYS321V3-MS 

Networking software. 
Additional V.3 operating sys­
tem manual sets. 

Note: For purchase of any and all software packages (NSW· ... ) user 
must show or demonstrate proof of prior purchase of one of the NSS· 
SYS203·KITx packages above. 



N r-------------------------------------------------------------------~ 

~ ~ National Semiconductor 

ISE32™ NS32032 In-System Emulator 

• Operation up to 10 MHz* 

• Emulation of NS32032 Central 
Processing Unit, NS32082 Memory 
Management Unit, NS32201 Timing 
Control Unit 

• Host resident debuggers 

• Generalized event driven system 

• Memory mapping, up to 128 kbytes 

• Read/write protection of 4 kbyte 
memory blocks 

• Program flow traCing, up to 1023 non-
sequential fetches 

Description 
The NS32032 In-System Emulator (ISE32) is a power­
ful tool for both hardware and software development 
of NS32032 microprocessor-based products. 
The ISE32 emulates the NS32032 Central Processing 
Unit (CPU), the NS32201 Timing Control Unit (TCU) 
and NS32082 Memory Management Unit (MMU). 
NS32082 MMU emulation can be disabled by a switch 
setting. The ISE32 allows users to test and debug 
both hardware and software in their own hardware en­
vironment. 

The ISE32 is a complete unit, including an internal 
clock oscillator that generates a choice of three clock 
signals: 10 MHz, 5 MHz, and 2.5 MHz; and 128 kbytes 
of dedicated user's ISETM memory. With the ISE32, 
users can easily stop emulation and examine the con­
tents of CPU registers, slave processor registers, and 
memory. 

The ISE32 consists of the ISE hardware, the ISE firm­
ware monitor, and RS232 cables. A host-dependent 
debugger software program is available as part of the 
appropriate Series 32000® software support package. 

6-12 

TL/R/8522-1 

• Complete bus activity trace 

• Qualified tracing 

• Pre-, post-, or center-triggering on trace 

• Two 32-bit execution counters 

• Supports Memory Management Unit 
functions 

• Supported under various host systems 
and operating systems 

• Hierarchical on-line help facility 

• Self-diagnostic 
'Refer to ISE speed consideration section. 

Each of the Series 32000 software support packages 
include software tools to produce code compatible 
with the debugger software. Refer to the section "Re­
quired User-Supplied Equipment". 

Hardware Description 

The ISE32 hardware is housed in three enclosures: 
the ISE Support Box; the Emulator Pod; and the TIL 
Status Pod. Figure 1 is a block diagram of ISE32 hard­
ware. 
The ISE Support Box is the largest enclosure. It con­
tains the emulation support circuits for trace, break­
points, and mapped memory; as well as the hardware 
for the RS232 serial ports, which are used to commu­
nicate with the host and the user's terminal. It also 
houses the power supplies and the ISE32 control 
switches and indicators. Figure 2 shows the location 
of the ISE32 control switches and indicators. Table I 
lists the functions of each switch and LED. 

The Emulator Pod contains the NS32032 CPU, 
NS32082 MMU, and NS32201 TCU required for target 
system emulation. It also contains the ISE Monitor 
firmware. 



.---------------------------------------------------------~0 

The Emulator Pod connects to the ISE Support Box 
via a four-foot flat cable assembly. Connections to the 
target system are made via three one-foot target ca­
bles. One target cable is provided for each member of 
the Series 32000 chip set (CPU, MMU, and TCU). 

The Status Pod is the smallest enclosure. It provides 
TTL-compatible input and output signals for use dur­
ing ISE operation. The Status Pod has ten leads and 
three binder posts that can be connected to either the 
target system or test equipment such as logic analyz­
ers or oscilloscopes. Table II lists the function of each 
lead and post of the Status Pod. The Status Pod con­
nects to the ISE Support Box via a six-foot cable. 

ISE32 Software Overview 

The ISE32 software consists of the ISE firmware mon­
itor, which resides in PROMs in the Emulator Pod, and 
the ISE Debugger, which runs on the host system. 

TLL 
STATUS POD 

POD 
.--=--, 

When the ISE32 unit is not running an emulation pro­
gram, it is running a program called the ISE monitor. 

The monitor communicates with the ISE Debugger 
and provides a command protocol that allows the host 
complete control of the ISE32 hardware. 

The ISE Debugger translates commands entered on 
the host system from a terminal, into low-level instruc­
tions that the ISE monitor uses to drive the hardware. 
The ISE Debugger also translates and sends ISE re­
sponses to the user via the terminal. All ISE monitor 
operation is transparent to the user. 

The ISE32 Debugger 

The ISE32 Debugger is user compatible with the stan­
dard non-ISE Series 32000 Debugger. Compatibility 

HOST 
SYSTEM 

TERMINAL 

AC 
INPUT 

TLlR/B522-4 

FIGURE 1. ISE32 Block Diagram 

IDLE EMUL FAIL RUN TAR 'SE 

ISE NO. 

111I'e21'1 
• • • .J [~w:J 

ON~OFF ~ 
~C,~ 

MMU STOP RESET 

FRONT PANEL 
TL/R/B522-3 

FIGURE 2. ISE32 Controls and Indicators 

6-13 

m 
~ 
N 



~ ,---------------------------------------------------------------------------------, 
CO) 
LLI 
~ 

minimizes the user's learning time of the various de­
velopment tools. The ISE32 Debugger fully supports 
all the powerful debugging and emulation facilities 
provided by the ISE32 hardware, and supplements 
these features with a very powerful software-based 
program debugging environment. 
The basic debugging features of the ISE32 are as fol­
lows: 

(1) Supports both high-level and assembly lan­
guages·. 

(2) Breakpoints can be set at the source code level, 
even when using high-level languages.· 

(3) Supports symbolic debugging; variables can be 
referenced by their source code names.· 

(4) Certain procedure parameters and variables are 
easily displayed. 

(5) Structured data types and pointers are easily dis­
played. 

(6) Supports both command and history files. 

(7) Memory can be displayed in many different ways, 
including a disassembly mode displaying memory 
as NS32032 instructions. 

(8) Supports all the emulation and debug facilities pro­
vided by the ISE32 hardware. 

• Depends on host environment and language. 

Modes of Operation 

ISE32 can be set-up to operate in either stand-aside 
mode or transparent mode. 
In stand-aside mode, one serial RS232 link from the 
host system is connected to the ISE32 while another 
serial RS232 from the host system is connected to the 
user's terminal. In this configuration, any of the host's 
users can access the ISE32. 
In transparent mode, one serial RS232 link from the 
host system is connected to one serial port on the 
ISE32 while the user terminal is connected to a sec­
ond serial port on the ISE32. In this configuration, only 
one serial port is required from the host system. In 
non-emulation mode, the ISE32 is transparent to the 
user, allowing normal communication between the 
user and the host system. 

ISE32 Operation 
Human Interface 

ISE32 is easy to learn and easy to use. The software 
includes a complete on-line help facility. Invoking the 

TABLE I. ISE32 Control and Indicator Functions 

Control/Indicator Function 

ISE NO. Switch Set to 0; other positions reserved. 
MMU Switch When ON, ISE32 enables MMU operation. 
STOP Switch Interrupts emulations, restores control to the ISE32 monitor. 
RESET Switch Resets the ISE32 hardware. 
IDLE Warning that POD CPU is in a wait state. (Time out) 
EMUL Indicates that ISE32 is executing the user's program. 
FAIL Warning that diagnostics have failed. 
RUN Indicates that ISE32 diagnostics are running. 
TAR Indicates that target power is on. 
ISE Indicates that ISE32 is on. 

TABLE II Status Pod Signal Description 

Status Pod Label ISE Function 

Leads 
1-WHT -USRCLK-U Not Used 
2-BLK-GND Common Ground 
3-BRN-EXTO-U EXTO (external input 0) 
4-RED-EXT1 EXT1 (external input 1) 
5-0RN-EXT2 EXT2 (external input 2) 
6-YEL-EXT3 EXT3 (external input 3) 
7-GRN-EXT4 EXT4 (external input 4) 
8-BLU-EXT5 EXT5 (external input 5) 
9-VIO-EXT6 EXT6 (external input 6) 
10-GRY-EXT7 EXT7 (external input 7) 
11-WHT -USEBRK/U IS (input sync) 

Posts 
TBRUN Not Used 
BKSYNCH/-U Output Sync 
TRSYNCH/-U Not Used 
GND Common Ground 
TSYNC31/ Not Used 
TSYNC21 Not Used 
GND Common Ground 

6-14 



"HELP" command gives a summary of alllSE32 com­
mands, an individual command, or an individual com­
mands parameters. This feature helps the user get his 
work done quickly with less frustration. 

Emulation 

The ISE32 unit has its own CPU, MMU, and TCU com­
ponents. These components are connected to the tar­
get system via cables. These components perform the 
same functions, with close to the same timing charac­
teristics as they would if mounted in the target 
system.' The ISE32 does not require wait states for 
operation. 

Emulation memory, resident in the ISE32, can be used 
instead of target system memory. This feature is im­
plemented by the mapping capabilities. With this fea­
ture, the ISE32 can run and debug programs without a 
working target system. User target memory from the 
entire address space of the CPU or MMU (whether it 
exists or not) can be mapped onto the ISE32 emula­
tion memory in 4 kbyte blocks. The total amount of 
mapped memory cannot exceed 32 4 kbyte blocks 
(128 kbytes). 

Associated with the emulation memory mapping 
scheme is a capability for read/write protection. Any 4 
kbyte block within the address space of the CPU or 
MMU can be protected. 

Generalized Events 

To provide a versatile way of observing and control­
ling the significant state changes on the microproces­
sor, ISE32 allows the use and definition of "events". 
In general, a simple event is a breakpoint, a bus 
change, or a significant observation. An event can 
also be a logical combination of simple events (an 
Event-Expression). 

Simple Event Definition 

The simple events are: 

- Breakpoints 

- Latched Events 

- Counter Done 
- Status Pod Inputs 

- Trace Done 

Breakpoint Events 

ISE32 provides four common breakpoint events, 
named A, B, C, and D. The breakpoint event can be 
used in two ways: 
(1) Execution Breakpoint-occurs just prior to execu­

tion of an instruction at a specified address. 

(2) Reference Breakpoint-occurs on a match when 
sampling: 

- Address Bits 
- Data Bits 

- External Status Bits 

- User/Supervisor Pin 
• Refer to ISE speed consideration section. 

6-15 

- Byte Enable Pins 

- Data Direction Pin 

- Status Bits 
- Interlock Bit 

- Masked combinations of any of the above options. 
Either virtual or physical addresses can be sampled. 
ISE32 also provides a range breakpoint event, R. The 
range breakpoint can be qualified by any of the above 
options within a specified address range. 

Any breakpoint can cause emulation to stop immedi­
ately. Also, if used with the No Stop option, break­
points can be combined with other events to cause a 
variety of action. 

Event-Expressions 

An event-expression is a Boolean expression made 
up of simple events, Le., a logical combination of sim­
ple events. This allows the user to generate many dif­
ferent event combinations, tailored to system activity 
of particular interest to the user. These generalized 
events are used by many ISE32 commands such as 
stop, trace, event counting, etc. Event-expressions 
provide creative and flexible debugging procedures. 
Event-expressions can be evaluated as either logically 
true or logically false. Valid logic operations for event 
expressions are: Negation (NOT), AND, and OR. 

Stopping Execution on Events 

A common debugging activity is to stop emulation on 
the occurrence of an event of interest. Stopping emu­
lation puts ISE32 in the monitor mode so the user can 
examine and alter the state of the CPU, memory, and 
ISE32 functions. Emulation can be stopped on either 
simple events or event-expressions. 

Flexible Tracing 

ISE32 maintains a 1023-entry trace memory. Trace 
memory captures bus activity in one of two trace 
modes: 

- Program Flow Trace 

- Memory Bus Trace 
Any combination of events can be used to qualify trac­
ing. When enabled, tracing in either mode continues 
until a specified terminating event occurs. The actual 
end of tracing can be delayed after the terminating 
event by a count of 1 to 1023. This allows trace data 
to be captured before, after, or around the terminating 
event. 

Program Flow Trace 

The Program Flow Trace mode captures the CPU Pro­
gram Counter address of 1023 non-sequential instruc­
tions. This mode also maintains a count of sequential 
instructions executed between each non-sequential 
instruction stored in the trace memory. 

Memory Bus Trace 

The Memory Bus Trace mode captures a summary of 
the following system parameters: 
- Address bus contents 

en m w 
N 



~ r---------------------------------------------------------------------------------, 
C") 
LLI 
!l - Data bus contents 

- CPU status (data transfer, non-sequential fetch, in-
terrupt acknowledge, etc.) 

- Time base counter contents 

- PFS counter contents 
- Status Pod external inputs 

- States of the following CPU pins: 
UNS-UserlNot Supervisor 
BEO-BE3-Byte Enable 
DDIN-Data Direction In 
NMI-Non-Maskable Interrupt 
ILO-Interlock 

Counters 

The ISE32 contains two 32-bit counters with an over­
flow flag that may be used to count events, instruction 
cycles, memory cycles, or clock cycles. The counters 
may be programmed to start and stop counting on 
specific events. This permits counters to be used as 
timers to determine relative timing differences be­
tween various events. One use of this feature is to 
measure software or hardware performance. The 
counters may also be used to generate other ISE32 
events upon completion of a count. 

Event Trigger for External Test Equipment 
ISE32 events can trigger external test equipment, 
such as oscilloscopes and logic analyzers. This test 
equipment can be used in conjunction with the 
ISE32's debugging features to solve system timing 
problems. The external trigger signal is available at 
the status pod output: 
- BKSYNCH/-U (Output Sync) 

Self-Test Diagnostics 

At power-up, ISE32 runs a diagnostic program to veri­
fy ISE firmware integrity and proper hardware function. 

ISE32 Timing Options 

ISE32 includes the following timing options: 
- Sampling time can be set to sample either virtual 

or physical addresses 
- Status Pod external lines can be sampled at either 

data valid or address valid times 

- The emulation clock frequency can be set to one 
of the following frequencies: 

2.5 MHz 
5.0 MHz 

10.0 MHz 
Target Board Frequency 

ISE Speed Considerations 

ISE32 utilizes standard, 10 MHz NS32032, NS32082 
and NS32201 devices to perform control and emula­
tion functions. When emulating, each device is con­
nected to customer hardware via a target cable and 
associated cable transceivers. This arrangement de­
lays the signal propagation between the Series 32000 
components in the ISE32 POD and Series 32000 
sockets in the customer hardware. These delays re-

6-16 

duce timing margins in that hardware; i.e., combined 
propagation paths are lengthened by the ISE32 target 
cable and transceiver delays. 
If sufficient timing margins are not restored, emulation 
may not be successful. In many cases, margin can be 
restored by reducing the emulation speed, lengthen­
ing the available time for signals to propagate. Howev­
er, the exact speed reduction necessary to regain 
margins will depend on how Series 32000 compo­
nents are used in the customer hardware. Tables III, 
IV and V list the combined cable and transceiver maxi­
mum propagation delay for each signal. It is the cus­
tomer's responsibility to factor these delays with those 
of his own circuitry. In doing so, it can be determined 
whether ISE32 can reliably emulate with that circuitry. 

Supported Configurations 

This product is designed to work in most target sys­
tems configurations. However, certain design restric­
tions may apply. Refer to the ISE32 User's Manual for 
further information. (See "Documentation section") 

Required User-Supplied Equipment 
For use with SYS32TM/GENIXTM Systems: 

- Included with the GENIX Operating System Soft­
ware Package. 

For use with VR32/System V /Series 32000 

- Included with the System V /32000 Operating Sys­
tem Software Package. 

For use with VAXTM/UNIXTM Systems: 

- Valid DEC VAX-11TM configuration with available 
RS232 port. 

- Berkeley UNIX 4.2 bsd Operating System. 

- NSW-C-4VXR Series 32000 Cross Software Pack-
age. 

For use with VAXIVMSTM Systems: 

• Valid DEC VAX/11 configuration with available 
RS232 port. 

• VMSTM Operating System, Version 4.2 or later. 

• NSW-ASSEMB-9VMR or NSW-PASCAL-9VMR Se­
ries 32000 Cross Software Package. 

Specifications 
Environmental Operating Temperature 

+10·Cto +40·C 
Storage Temperature 
- 20·C to + 65·C 

Power 2.5A @ 115 VAC, 50/60 Hz, single 
phase 1.5A @ 220 VAC, 50/60 Hz, 
single phase. Approximately 1170 
BTU. 

Physical 
ISE Support Box Height: 

Width: 
Depth: 

Emulation Pod Height: 
Width: 
Depth: 

5.8 in. (14.7 cm) 
18.5 in. (47.1 cm) 
12.3 in. (31.2 cm) 
2.1 in. (5.3 cm) 
9.3 in. (23.6 cm) 
10.0 in. (25.4 cm) 



Specifications (Continued) 

TTL Status Pod Height: 1.0 in. (2.5 cm) 
Width: 3.125 in. (7.9 cm) 

Target Interface 
Electrical 

Depth: 6.125 in. (15.6 cm) Characteristics- See Tables III through V. 
Cable Lengths ISE Support Box to Emulation Pod: 

4.0 ft. (1.22M) Order Information 
Complete ISE32 Units ISE Support Box to TTL Status 

Pod: 6.0 1t. (1.B3M) NSS-ISE32 ISE32 (NS32032), 115 VAC 
Emulation Pod to Target Board: 
1.0 ft. (0.30M) 

NSS-ISE32E ISE32 (NS32032), 220 VAC 

TABLE III. Electrical Characteristics for TCU Interface 

Signal Interface Input And/Or 
Propagation 

Name Device Output Current 
Delay Time 

Tpd* 

Outgoing Signals IOH IOL 

NTSO 74ALS244 15 mA t4BmA 12.4 ns 
CTTL 74ALS244 15 mA t4BmA 12.4 ns 
FCLK 74ALS244 15mA t4BmA 12.4 ns 
NDBE 74ALS244 15mA t4BmA 12.4 ns 
NRD 74ALS244 15 mA t4BmA 12.4 ns 
NWR 74ALS244 15mA t4BmA 12.4 ns 
NRSTO 74ALS244 15mA t4BmA 12.4 ns 
RDY 74ALS244 15mA t4BmA 12.4 ns 

Incoming Signals IIH IlL 

NPER 74F244 20 IlA 1.6mA 7.9 ns 
NCWAIT 74F244 20 }LA 1.6mA 7.9 ns 
NWAIT1 74ALS244 20 IlA 0.1 mA 12.4 ns 
NWAIT2 74ALS244 20 IlA 0.1 mA 12.4 ns 
NWAIT4 74F244 20 IlA 1.6mA 14.5 ns 
NWAITB 74ALS244 20 IlA 0.1 mA 12.4 ns 
XCTL1 74F244 20 IlA 1.6mA 7.9 ns 
NRWEN 74F244 20 IlA 1.6mA 7.9 ns 
NRST1 74ALS244 20 IlA 0.1 mA 12.4 ns 

'Interface device, plus cable. 
tFor Vee maintained between 4.75V and 5.25V. 

TABLE IV. Electrical Characteristics for MMU Interface 

Signal Interface 
Input AndlOr Propagation 

Name Device 
Output Current Delay Time 

IOH IOL IIH IlL Tpd* 

BIDIRECTIONAL SIGNAL 

NPAV 74ALS245 15mA t4BmA 20 IlA 0.1 mA 11.4 ns 

OUTGOING SIGNALS 

A24 74ALS244 15 rnA t4BmA - - 12.4 ns 
MMUINT 74ALS244 15mA t4BmA - - 12.4 ns 
NABT 74ALS244 15mA t4BmA - - 12.4 ns 
NFLT 74ALS244 15mA t4BmA - - 12.4 ns 
NHLDAO 74ALS244 15mA t4BmA - - 12.4 ns 

INCOMING SIGNALS 

NHOLD 74LS126 - - 20 IlA O.4mA 19.4 ns 

'Interface device, plus cable. 
tFor Vee maintained between 4.75V and 5.25V. 

6·17 



N r--------------------------------------------------------------------------, 
C') 

UJ 
!a TABLE V. Electrical Characteristics for CPU Interface 

Signal Interface 
Input AndlOr 

Name Device 
Output Current 

IOH IOL IIH IlL 

BIDIRECTIONAL SIGNAL 

NSPC 74ALS245 15 mA t48mA 20/LA 0.1 mA 

ADOO 74ALS245 15mA t48mA 20/LA 0.1 mA 
AD01 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD02 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD03 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD04 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
AD05 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD06 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
AD07 74ALS245 15mA N8mA 20/LA 0.1 mA 
AD08 74ALS245 15 mA t48mA 20,...A 0.1 mA 
AD09 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD10 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
AD11 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
AD12 74ALS245 15mA N8mA 20 ""A 0.1 mA 
AD13 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
AD14 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD15 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD16 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
AD17 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD18 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD19 74ALS245 15 mA N8mA 20/LA 0.1 mA 
AD20 74ALS245 15mA t48mA 20 ""A 0.1 mA 
AD21 74ALS245 15 mA t48mA 20/LA 0.1 mA 
AD22 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
AD23 74ALS245 15 mA N8mA 20/LA 0.1 mA 
D24 74ALS245 15mA t48mA 20 ""A 0.1 mA 
D25 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
D26 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
D27 74ALS245 15 mA t48mA 20/LA 0.1 mA 
D28 74ALS245 15 mA t48mA 20/LA 0.1 mA 
D29 74ALS245 15mA t48mA 20 ""A 0.1 mA 
D30 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
D31 74ALS245 15 mA t48mA 20 ""A 0.1 mA 

NNDIN 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
NADS 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
NBEO 74ALS245 15mA t48mA 20/LA 0.1 mA 
NBE1 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
NBE2 74ALS245 15 mA t48mA 20 ""A 0.1 mA 
NBE3 74ALS245 15 mA t48mA 20 ""A 0.1 mA 

'Interface device, plus cable. 
"tFor Vee maintained between 4.75V and 5.25V. 

6·18 

Propagation 
Delay Time 

Tpd* 

12 ns 

12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 

12 ns 
12 ns 
12 ns 
12 ns 
12 ns 
12 ns 



Signal Interface Input AndlOr Propagation 
Name Device Output Current Delay Time 

Outgoing signals 

NILO 74ALS244 
STO 74ALS244 
ST1 74ALS244 
ST2 74ALS244 
ST3 74ALS244 
NPFS 74ALS244 
UNS 74ALS244 
BB 74ALS244 
NOS 74ALS244 
NBRO 74F244 
NHLOA 74ALS244 

Incoming signals 

TGTPC -
NINTC 74ALS244 
NMI 74ALS244 
NBRI 74F244 
NHOLOC 74ALS244 

'Including internal logic, interface device, and cable. 
tFor Vee maintained between 4.75V and 5.25V. 

Documentation 

IOH 

15mA 
15mA 
15mA 
15mA 
15mA 
15 mA 
15 mA 
15 mA 
15mA 
15mA 
15mA 

IIH 

-
20mA 
20mA 
20mA 
20mA 

NSP-ISE32GNX-M ISE32 User's Manual for SYS32/ 
GENIX and VAX/UNIX operation. 
(Included with the appropriate 
Series 32000 support/cross-sup­
port software package.) 

NSP-ISE32COF-M ISE32 User's Manual for VR32/ 
System V /Series 32000 opera-

6-19 

IOL Tpd* 

t48mA 13.0 ns 
t48mA 13.0 ns 
t48mA 13.0 ns 
N8mA 13.0 ns 
t48mA 13.0 ns 
t48mA 13.0 ns 
t48mA 13.0 ns 
t48mA 13.0 ns 
t48mA 13.0 ns 
t48mA 8.5 ns 
t48mA 13.0 ns 

IlL 

- -
0.1 mA 13.0 ns 
0.1 mA 19.6 ns 
1.6mA 8.5 ns 
0.1 mA 19.6 ns 

tion. (Included with the appropri­
ate Series 32000 support soft­
ware package.) 

NSP-ISE32VMS-M ISE32 User's Manual for VAX/ 
VMS operation. (Included with 
the appropriate Series 32000 
cross-support software package.) 



~ r---------------------------------------------------------------------------------, 
CO) 
I.LI 
~ 

ISE32 Debugger Command Summary 
The following comprehensive list of ISE32 Debugger commands is in alphabetical order. Refer to the ISE32 
User's Manual for a detailed description of each command. 

Command Function Command Function 

Begin Load the program into Memory Move Moves memory content 
memory and initializes from address range to 
registers. address range. 

Breakpoint Create Creates breakpoint A, B, C, D Memory Search Searches for value. 
On Sets idbg32 response on 

condition. 
at specified address or, 
creates RANGE breakpoint 
at specified address range. Print Prints content of address 

Breakpoint Delete Deletes specified breakpoint. range or registers. 
Breakpoint Print Print address and conditions Print Address Prints absolute address and 

of specified breakpoints. module area associated 
Breakpoint Revive Revives specified breakpoint. with address. 
Indirect File Executes command file or Protection Create Creates protectionl 

debugger string. translation for pages 
Debugger String Sets debugger string. specified by address range. 

Protection Print Prints protection level 
status. 

Define Counter Defines set up for ISE 
counter 1 or 2. 

Define Latch Defines the latch 0 or latch 1 Quit Terminates session. 
event. Repeat Repeats previous 

Define Output Sync Defines output sync event. command. 
Replace Replaces content of 

address or register. 
Select Echo Selects echo mode. 

Define Stop Defines stop event. 
Define Trace Defines the end, delay, and 

trace mode parameter for 
trace. Select Full Selects full symbolic PC. 

Disassemble Disassembles instructions. Select History Selects history file. 
Go Starts execution of the Select Link Selects communication 

program. ·channel. 
Help Displays general help. Select Module Selects module. 
In Checks that the contents of Select Options Select current ISE operation 

address or register are within option. 
a specified range. Select Radix Select global radix. 

List Calls List entries in a call. Step Execute specified number 
List Definition Lists current definitions. of machine instructions. 
List Files Lists nine entries of a Step Call Executes until a call or 

selected file. return. 
List Information Lists current ISE status. Step Down Executes one instruction 
List Modules Lists modules in current inside a procedure, skips 

program. over call instructions. 
Step Instruction Executes specified number 

of instructions inside a 
List Strings Lists current debugger string 

values. 
List Trace Lists nine trace entries. module. 

Step Until Executes instructions until 
contents of address or 
register are within specified 
value. 

Step While Executes instructions while 
contents of address or 
register are within specified 

Map Create Maps and/or protects 4 
kbyte blocks in a specified 
address range. 

Map Print Prints current mapping. 
Memory Fill Fills specified address range 

with value. 

value. 

6·20 



.--------------------------------------------------------------------------00 
• National Semiconductor 

SPLICE Development Too~ 

• Download capabilities via serial 
connections 

• 256 Kbytes of mappable memory 
• Optional 1-Mbyte memory board, 

expands memory up to 8 Mbytes 
• On-board monitor with power-on 

diagnostics 
• Supports Series 32000 CPUs, 

including: NS32332 NS32CG16 
. NS32032 NS32C032 

NS32016 NS32C016 
NS32008 

1.0 Product Overview 
The SPLICE Development Tool provides a communi­
cation link between a Series 32000 target and a devel­
opment system host. This connection allows users to 
download and map their software onto target memory 
and then debug this software using National Semicon­
ductor's debuggers. 

SPLICE includes two RS232 serial ports for the sys­
tem host/terminal. These ports are particularly useful 
for target systems that have no serial ports, such as 
embedded controller designs. 

6-21 

TLlR/9347-1 

III Parallel I/O port reserved for future 
highspeed download capabilities 

[l Programmable serial port baud rates 
CI CPU bus status test pOints for logic 

analyzer connections 
Ill! 4 LED indicators for diagnostic results 

and general user applications 
rJ RESET and NMI push buttons 
m 15 MHz maximum operation 

SPLICE is also useful for designs with ROM-based 
software, or designs whose memory portion has not 
yet been built. SPLICE provides 256 Kbytes of SRAM 
which users can map into target memory. Using 
mapped memory considerably reduces software de­
velopment time. 
SPLICE also uses the target system's chipset. This 
cost-effective feature is achieved through the use of 
CPU and MMU target cables. 

"tJ 
r-
o m 
C 
CD 

~ 
0' 

"lJ 
3 
CD 
::::J -c} 
2. 



'0 
{!. -C 
CI) 

E 
Q, 
o 

~ 
C 
LU 
o 
::::i 
D. en 

2.0 Description of Features 
2.1 PHYSICAL DESCRIPTION 

The SPLICE logic board is a 7" by 9" printed circuit 
board that is the base unit for all operating configura­
tions. Accessory parts include an expansion memory 
board and target cables (see Sections 2.4 and 2.6). 
Figure 2 shows the physical layout of the SPLICE logic 
board. Each of these features are discussed in the 
following sections. 

2.2 SERIAL CONNECTORS 

SPLICE provides two serial ports (P5 and P6) for con­
nection to a terminal/host. SPLICE also supplies 
RS232 cables for connecting SPLICE to the hostlter­
minal (see Section 3 for connection diagrams). These 
ports are jumper configurable for DTE (Data Terminal 
Equipment) or DCE (Data Communication Equip­
ment). DSR/DTR or CTS/RTS handshaking may also 
be selected. 

2.3 MEMORY 

The SPLICE logic board contains 256 Kbytes of Static 
RAM. Each of the 32k x 8-bit memory devices has 150 
ns access times. The memory capacity of SPLICE 
may be increased by adding 1 MByte memory expan­
sion boards (see Section 2.4). When using memory 
expansion boards, the SPLICE on-board RAM is dis­
abled. 

Regardless of the amount of memory used, SPLICE 
divides the memory into 4 equal, separate banks. 
Each bank may be mapped at non-overlapping start­
ing addresses using the SPLICE, PROM-based moni­
tor or DBG commands. See the GNX Symbolic De­
buggers's Reference Manual (Publication No. 
42451 0899-001 A) or SPLICE Hardware Reference 
Manual for details. 

The SPLICE monitor and I/O addressing occupy 256 
Kbytes of memory. This block of memory will boot up 
at address zero. The user may relocate these 256 
Kbytes to any address; if this block of memory is relo­
cated, SPLICE requires 2 Kbytes of the first 64 Kbytes 
of RAM for a scratch pad area. 

2.4 MEMORY EXPANSION 

1-Mbyte memory expansion boards are available as 
an option to the user. SPLICE supports expansion up 
to 8 Mbytes, in the following configurations only: 

SPLICE with 1 memory board, 
with 2 memory boards, 

with 4 memory boards, 
or with 8 memory boards. 

The memory boards connect beneath the SPLICE log­
ic board to a 94-pin connector, P8. When using mem­
ory expansion boards, the SPLICE on-board memory 
is disabled. 

------------8.25"------------

SERIAL < 
1/0(2.2) 

PARALLEL 
I/o (2.7) 

(2.10) [ RESET 

Nt.ll 

000 
'---' 

1J P5 

0 LEOs 

P4 

(2.10) 

TEST POINTS 1-14 
(2.9) 

P3 Tlt.lING CONTROL 
(2.6) 

Numbers in parenthesis indicate text sections 

00 
P9 Pl0 

POWER CONNECTORS 

D 
DIP SWITCH #3 

BAUD RATE 
SELECTION (2.8) 

P2 NS32382 t.lt.lU 
(2.6) 

FIGURE 2. SPLICE Logic Board 

6-22 

P8 - EXPANSION t.lEt.lORY 
(2.4) 

PROt.l BASED t.lONITOR 
(2.5) 

256 KBYTES SRAt.l 
(2.3) 

TEST POINTS 15-60 
(2.9) 

PI CPU CONNECTOR 
(2.6) 

7.0" 

TL/R/9347-2 



r--------------------------------------------------------------------------, ~ 
2.0 Description of Features (Continued) 
2.5 MONITOR 

Four EPROMs contain the monitor firmware. When 
power is initially applied (cold boot) to SPLICE, the 
monitor performs four diagnostic tests. The diagnos­
tics test the ROM, RAM, mapping RAM and UART. 

If a failure is detected, a message code will appear on 
the LEDs and on the terminal. Refer to the SPLICE 
Hardware Reference Manual for explanation of error 
codes. 

The main function of the monitor is to interpret and 
handle commands from the terminal or debugger. The 
SPLICE monitor communicates with National's Sym­
bolic Debugger, DBG32. DBG32 resides on a devel­
opment system host, as part of the GENIXTM Native 
and Cross (GNX) Language Tools, Release 2, revision 
C, or a subsequent revision of GNX functions with 
SPLICE. 

Some of the features of DBG32 include: 

- Assembly and mixed-language program debug-
ging, 

- Symbolics 
- Source-level debugging 

- Single stepping, breakpoints 
- Multimodule program debugging 

- Variety of Radixes 

- Indirect files and History files 
- On-line help facility 

Refer to the GNX Symbolic Debugger's Reference 
Manual or the GNX datasheet for details. 

2.6 CABLE DESCRIPTION 

Two different cables are supplied to connect SPLICE 
with the target hardware: flexible printed circuit cable 
for CPU/MMU signals and a twisted pair, flying lead 
cable for timing control signals. Both types of cables 
are detailed in the following text. 

6-23 

CPU/MMU CABLES 

Depending on the target design, SPLICE requires one 
or more of the following cables: 

NS32332 CPU cable 
NS32032/C032 CPU cable 

NS32016/C016/008 CPU cable 

NS32CG16 CPU cable 

NS32382 MMU cable 
Figure 3 shows the basic layout of the flex cable. 

60140 PIN SPLICE 
CONNECTOR 

j DEVICE SOCKET rf' j 
u/~_......;I.;;;;;..;.=I_>- DEVICE CONNECTOR 

TLlR/9347-3 

Top View 
FIGURE 3. Flexible Printed Circuit Cable 

The "device connector" is inserted into the user's tar­
get socket, replacing the user's device. The user's de­
vice plugs into the "device socket." At the opposite 
end of the flex cable is a 60 pin connector for CPUs, 
or a 40 pin connector for the NS32382 MMU. These 
are installed on P1 and P2, respectively, on SPLICE. 
Targets using the NS32082 MMU do not require a ca­
ble. 
Refer to the Hardware Reference Manual for more 
details on the wiring, installation, and handling of ca­
bles. 
TIMING CONTROL CABLE 

The timing control cable is a twisted pair cable con­
sisting of 26 flying leads. The following table lists the 
signals, pin numbers, and functional decription of 
each signal. This cable connects to P3 on SPLICE. 
Section 3.2 describes how to connect this cable to the 
target. 

"tJ 
r-
(; 
m 
C 

~ 
0' 

"CI 
3 
CD 
~ -';} 
2. 



'0 
~ 2.0 Description of Features (Continued) -c 
Q) 

E a. o 

~ c 
w 
o 
::i a.. 
(f) 

Signal Pin I/O Functional Description 

PAV 1 I Used to latch the address information from the CPU's AD bus when the NS32082 
MMU is installed. NOTE: When the NS32382 MMU is used, the MMU's PAV pin is 
connected to SPLICE via the 382 MMU cable, and it is not necessary to connect this 
signal. 

CTTL 3 I A TTL compatible version of the PHI1 clock signal. 
082RDYIN 5 I When installing SPLICE, the signal that normally is connected to the ready input of 

the 082 MMU should be disconnected and connected to the SPLICE via P3-5. 
082RDOUT 7 0 The output generated from SPLICE, after receiving the 082 ready input and ANDing it 

with SPLICE's ready signal, is connected to the ready input of the 082 MMU. 
RSTIN 9 I A Schmitt triggered input connected to the reset circuitry of the target system. 
RSTOUT 11 0 An active low, CMOS level synchronous reset output generated by ANDing the 

RSTIN signal with the SPLICE's reset circuitry output. The RSTOUT signal should be 
used to reset the target's circuitry. 

BDEN 13 0 Active high Board Enable output. When asserted, the SPLICE ROM/IO or RAM is 
accessed. This Signal is connected to the user's target to disable the buffers and 
drivers of the CPU's address/data bus. 

BDEN 15 0 Complementary output of BDEN. 
BBDEN 17 0 CMOS level version of BDEN. 
BBDEN 19 0 Complementary output of BBDEN. 
INT 21 0 A CMOS level output generated by the DUART asserted whenever the DUART is 

ready to transmit or receive. 
DACK 23 0 An open-collector signal driven low when BDEN is asserted and SPLICE's data 

buffers are enabled. 
TRIG1 25 0 A TTL level output signal driven by the DUART's output port bit 2 on SPLICE. The 

user may program the state of this output using a special supervisory call. 
TRIG2 26 0 Like TRIG1, this is a TTL output signal driven by the DUART's output port 3 on 

SPLICE. The SPLICE monitor will drive this bit low during the monitor mode and set 
when running the user program. 

2.7 PARALLEL 1/0 INTERFACE 2.10 INDICATORS AND PUSH BUTTONS 

P4 has been reserved for a future high speed down­
load connection. 

2.8 PROGRAMMABLE BAUD RATES 

Various baud rates can be selected by setting posi­
tions 1, 2 and 3 of DIP switch 3 as follows: 

Baud Rate SW3-1 SW3-2 SW3-3 

19200 on on on 
9600 off on on 
4800 on off on 
2400 off off on 
1800 on on off 
1200 off on off 
600 on off off 
300 off off off 

2.9 TEST POINTS 

SPLICE has 60 test points which allow the user to 
trace, using a logic analyzer, the CPU's bus activity. 

Test Points Signals 

1-14 P3-Timing Control Signals 
15-46 AD Bus Signals 
47-60 Control Signals from CPU 

6-24 

SPLICE uses 4 LEDs to indicate failures during power­
on diagnostics. The programmer may also use these 
as general purpose indicators. 

Two push buttons are on the SPLICE logic board: NMI 
and RESET. The reset circuit is jumper configurable to 
originate from SPLICE reset or the target reset. 

2.11 OPERATING SPEEDS 

SPLICE operates at up to 15 MHz. When operating 
from target memory, full speed operation may be 
achieved. However, when accesses are made to 
SPLICE memory or the UART, wait states are re­
quired. The following is a table of required wait states: 

ROM/UART RAM FREQ.(MHz) 

1 0 6 
2 1 10 
3 1 15 



3.0 Required Operating Environment 
In addition to the logic board and CPU/MMU cables, 
SPLICE requires the following equipment: 

- A regulated + 5 VDC power supply capable of sup­
plying a 4A minimum 

- A host computer system with NSC's GENIX Native 
and Cross (GNX) Development Tools, Release 2, 
revision C or later 

- An RS232 compatible terminal 

The following sections describe how to connect 
SPLICE to the user's target and host. 

3.1 SPLICE/HOST INTERFACE 

SPLICE connects to the development host through 
RS232 cable(s). The monitor on SPLICE will interface 
with any host that has a DBG32. DBG32 is a symbolic 
debugger available in the GENIX Native and Cross 
Support (GNX) Development Tools software package. 
The SPLICE monitor functions with GNX Tools R2 rev. 
C or later. 

SPLICE can be connected to the host in one of two 
ways: Stand-aside mode or Transparent mode. Stand­
aside mode is used when only one serial port is avail­
able from the host for SPLICE operation (Figure 4). 
Stand-aside mode is also convenient when SPLICE 
needs to be shared by different users. 

TL/R/9347-4 

FIGURE 4. Stand-Aside Mode 

Transparent mode is useful for remote hosts. Trans­
parent mode uses both serial ports (P5 and P6), as 
shown in Figure 5. 

TL/R/9347 -5 

FIGURE 5. Transparent Mode 

6-25 

3.2 SPLICE/TARGET INTERFACE 

SPLICE connects to the user target through P1, P3, 
and if the NS32382 MMU is used, P2. P1 connects to 
the CPU cable which is, in turn, connected to the tar­
get CPU socket. P2 connects to the NS32382 MMU 
cable. P3 connects to the timing control cable. A mini­
mum of five timing control signals must be connected 
to operate with SPLICE: CTIL, RSTIN, RSTOUT, 
BDEN, and PAV. SPLICE taps onto CTIL and PAV 
directly. RSTIN and RSTOUT will require the designer 
to disconnect the target reset circuitry and route it 
through SPLICE. BDEN is the most important signal. 
An extra OR gate (see Figure 68, G1) is required to 
OR the target board enable with the SPLICE board 
enable. ORing these signals together prevents bus 
collisions. The target board enable is taken from the 
CPU data buffers; the SPLICE board enable is P3-13, 
-14, -15, or -16 of the timing control cable. 

IMPORTANT: The target's CPU data buffers must be 
disabled to operate with SPLICE. 

Other signals may be required, depending on the tar­
get design. (Refer to Section 2.6 for details on other 
timing control cable signals.) When designing a board 
for use with SPLICE, the designer should allow easy 
access to these signals. 

Figure 6 illustrates how to connect the timing control 
cable to a typical NS32016 target. Figure 6A shows a 
typical circuit, and Figure 68 shows the target con­
nected to SPLICE. 

4.0 Specifications/Characteristics 
Environment 

SPLICE is designed to operate in a laboratory environ­
ment. Sufficient air flow must be allowed to ensure all 
components stay within their specified temperature 
range. 

Temperature: Operative O°C to 55°C 

Humidity 

Altitude 

Non-operative - 40°C to + 60°C 

10% to 90% relative, non-condensing 
Operative 15,000 feet 

Power Requirements 

SPLICE requires a regulated + 5 VDC power source 
capable of supplying a 4A minimum. SPLICE has a 
DC-DC converter which generates the + 12 VDC and 
- 12 VDC required by the RS232 interface drivers. 

DC Characteristics 

Table 1 lists the DC characteristics for the logic cir­
cuits on SPLICE. 

AC Characteristics 

Table 2 lists the AC characteristics for the signals of 
the SPLICE circuits. Figure 1 illustrates SPLICE ac­
cess timing, RDY circuit timing, READ timing, NMI tim­
ing, and BACKOUT timing. 

(J) 
"tJ 
r-
(; 
m 
c 
~ 
0" 

"C 
3 
CD 
~ -c} 
2.. 



"0 
{!. 4.0 Specifications/Characteristics (Continued) -5i TABLE 1. DC Characteristics of I/O Signals 
E a. o 

~ 
LU 
o 
::i a. 
tn 

Max Input 
Signal Current (~A) 

IIH IlL 

ADO-AD16 25 105 

AD16-AD31 50 755 

PAO-PA15 20 100 

PA16-PA31 45 750 

PDO-PD7 50 500 

ADSPAV 20 500 

CTTL (1) 80 2000 
(2) 20 500 

RSTIN 20 600 

BWOBW1 20 600 

BE1 BE2 
50 700 

BE3 HBE 

FLT 25 250 

DDIN 1 1 

BACKIN 20 500 

NMIN 25 250 

MATNSATN 50 400 

MACK SACK 50 400 

RDYOUT - -
082RDYOUT - -
RSTOUT - -
BACKOUT - -
NMIOUT - -
INT - -
TRIG1 - -
TRIG2 - -
BDEN - -
BDEN - -
BBDEN - -
BBDEN - -
PDIR - -
PRESET - -

NOTE: (1) When W6 A-8 Is connected. 

(2) When W6 8-C is connected. 

Min Output 
Current (mA) 

IOH IOL 

6.0 6.0 

6.0 6.0 

- -
- -

15.0 64.0 

- -
- -
- -
- -
- -

- -

- -
- -
- -
- -

15.0 64.0 

15.0 64.0 

2.0 20.0 

2.0 20.0 

6.0 6.0 

2.0 20.0 

1.0 20.0 

6.0 6.0 

0.4 2.4 

0.4 2.4 

2.0 20.0 

2.0 20.0 

6.0 6.0 

6.0 6.0 

30.0 64.0 

30.0 64.0 

6·26 

Max Input 
Cap. (pF) 

30 

35 

5 

10 

5 

5 

20 
5 

5 

5 

5 

5 

10 

5 

5 

5 

5 

-
-
-
-
-
-
-
-
-
-
-
-
5 

5 



,--------------------------------------------------------------------------, 0 

4.0 Specifications/Characteristics (Continued) 

Name Figure 

tcp 7A 

tSDENAVa 7A 

tSDENa 7A 

lSDENa 7A 

tSSDENa 7A 

lSSDENa 7A 

tRDYia 7A 

t332RDYa 7B 

tRDYa 7B 

tAADSn 7A 

tRAMr 70 

tpROMr 70 

lDACKa 7B 

tNMi 7C 

lSACKOUTa 7E 

tSACKOUTia 7E 

'W8 A-8 connected 

"W8 8-C connected 

TABLE 2. AC Characteristics of SPLICE 

Description Ref/Conditions 

Clock Period Rising Edge CTTL to Next 
Rising Edge CTTL 

BDEN Active (High) After Address Valid 

BDEN Active (High) After ADS or PAV Active (Low) 

BDEN Active (Low) After BDEN Active (High) 

BBDEN Active (High) After BDEN Active (High) 

BBDEN Active (Low) After BDEN Active (High) 

RDYOUT Inactive (Low) After BDEN Active (High) 

RDYOUT Active (High) After Rising Edge CTTL 
for 32332 

RDYOUT Active (High) After Rising Edge CTTL 
for 32008/016/032 

Address Bits 0-31 Hold From After ADS Inactive (High) 

RAM Data Valid After Address Valid 

PROM Data Valid After Address Valid 

DACK Active (Low) After Rising Edge CTTL 

NMIOUT Active/Inactive After Rising Edge CTTL 

BACKOUT Active (Low) After BACKIN Active (Low) 

BACKOUT Inactive (High) After BACKIN Inactive (High) 

6-27 

Min Typ 

50.0 

27.0 

34.0 

6.0 

15.0 

21.0 

8.0 

9.0 
12.5 

7.5 
11.0 

4.5 

19.0 

15.0 

2.0 

1.0 

Max 

33.5 

44.0 

8.0 

25.0 

33.0 

10.5 

11.8* 
16.8*' 

10.5*' 
15.5" 

246 

348 

27.0 

25.0 

5.8 

5.8 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

." 
r-
(; 
m 
C 

~ 
0' 

"'CI 
3 
(I) 
:::J -d 
2. 



! 
1: 
CP 
E 
Q. o 
a:; 
~ 

Q 

w 
o 
::i 
D.. 
U) 

4.0 Specifications/Characteristics (Continued) 

TO OE OF 
NS32016 

CPU 
DATA ROY 

BUFFERS 

U! CTTL TCU 13 
-

RES 
...L. 

--0 

~" P 
ET DBE 1 ABT 

-[] 0 134 O-l RSTI 

ROY 9 

ADS 6 

RSTO 8 

NS32082 
MMU 28 

ROY ~ 

RST 
PAY 44 

ABT 

134 

FIGURE 6A. Typical Circuitry for a NS32016 Target 

NS32201 

16 CTTL 

P3-3 

CTTL 

TCU 

- - - - - - ORIGINAL WIRING, CUT FOR SPLICE 

TO OE OF 
DATA 

BUFFERS 

NS32D16 
CPU 

ROY 
28 

34 

P3-S 

082 RDYIN 

NS32082 
MMU 28 

ROY 

RST 
PAY 44 

ABT 

34 

082 RDYOUT 

FIGURE 6B. Modified NS32016 Target, with SPLICE Connections 

6·28 

TARGET 
CLOCK 

CLEAR 

1 

TL/R/9347-6 

TARGET 

CLOCK 

CLEAR 

P3-11 

RSTOUT 
1 SPLICE 

CONNECTIONS 

TL/R/9347 -7 



,--------------------------------------------------------------------------, W 

4.0 Specifications/Characteristics (Continued) 

~P-h ~ h r---1 r---1 
em ...J LI LI .. LI LI L 

ADO- 31 --+"I--","--.. n .. ----X'----
BDEN 

BBDEN ----+-....... 

RDYOUT "----illr------
FIGURE 7A. SPLICE Access Timing 

ADS ar PAY 
. 

ri-------4 'H--+------
BDEN ___ ....... • 

....... ---i 'H--+--_..I . 
.... r-tRDYa 

RDYOUT ----.... _ I ~ 
(32008/016/032) ...... --~l r-' 

r-t332RDYa 

RDYOUT(32332) ---......, H-J 
FIGURE 7B. ROY Circuil Timing 

6-29 

TL/R/9347-8 

TUR/9347-9 

"D 
r-
(; 
m 
c 
~ 
a 
-a 
3 
CD 
:::l -c} 
2. 



'0 
~ 4.0 Specifications/Characteristics (Continued) -c 
Q) 

E c. 
o 

~ 
C 
LU o 
::i a.. 
(J) 

eTTL FW4 {L-fl-

""'~~" 
NMIOUT ~ S r 

FIGURE 7C. NMI Timing 

- - ---, r--------i S 
ADSorPAV L.J 

TUR/9347-10 

S1-S----

ADO-AD31~ So- DATA VALID 

~ ~ 
I.VALID t RAM v _ 

tpROMv 
TL/R/9347-11 

FIGURE 70. READ Timing 

TUR/9347-12 

FIGURE 7E. Timing of BACKOUT when SPLICE is not Accessed 

6-30 



5.0 Ordering Information 
SPLICE Logic Boards: 

NSV-SPLlCE-256 SPLICE logic board and 256 
Kbytes of on-board memory. 

NSV-SPLlCE-1 MB SPLICE logic board with 1-
Mbyte memory expansion board 
instead of 256 Kbytes of on­
board memory. 

SPLICE logic boards ship with the following: 
SPLICE logic board 
2 RS232 connectors 
2 female-to-female connectors 
Power supply cable 
Timing control cable and clips 
Stand ofts 
SPLICE User's Manual 
SPLICE schematics 

6-31 

Note: Memory expansion boards disable 256 Kbytes of memory on the 
logic board. Users whose applications require more than 256 
Kbytes of memory should order part number NSV·SPLlCE·1 MS. 
This configuration ships without the 256 Kbytes of SRAM on the 
logic board and with a 1·Mbyte expansion board. 

ACCESSORIES 

NSV-SPLC-MEM-BD 1-Mbyte expansion memory 
board 

NSV-SPLCBL-016 SPLICE cable for the NS320161 
C016/008 CPU 

NSV-SPLCBL-032 SPLICE cable for the NS320321 
C032 CPU 

NSV-SPLCBL-CG16 SPLICE cable for the 
NS32CG16 CPU 

NSV-SPLCBL-332 SPLICE cable for the NS32332 
CPU 

NSV-SPLCBL-382 SPLICE cable for the NS32382 
MMU 

Note: The part numbers are the same for NS32016 and NS3200B CPU 
cables since both parts have the same pinouts. 

en 
"tI 
r 
o m 
c 
~ 
CD 
0" 
"0 
3 
CD 
::J -c} 
2. 





Section 7 
Software Support 



Section 7 Contents 
Series 32000 GENIX Native and Cross-Support (GNX) Language Tools (Release 2) . .. . .. .. . 7-3 
Series 32000 Ada Cross-Development System for SYS32/20 Host. .. .. .. . . .. .. . .. . . .. .. . 7-7 
Series 32000 Ada Cross-Development System for VAXIVMS Host. . . . . . . . . . . . . . . . . . . . . . . . 7-11 
GENIX V.3 Operating System........................................................ 7-16 
Series 32000 Real-Time Software Components VRTX, lOX, FMX and TRACER. . . . . . . . . . . . . 7-19 
Series 32000 EXEC ROMabie Real-Time Multitasking Executive. . . .. .. ... .. . .. .. . .. .. .... 7-39 

7-2 



r-------------------------------------------------------------------------~ W 

~ National Semiconductor 

Series 32000® GENIXTM Native and 
Cross-Support (GNXTM) Language Tools 

(Release 2) 

• Implements AT&T's standard Common 
Object File Format (COFF) 

• Optimizing C Compiler (optional) 
• Optimizing FORTRAN 77 Compiler 

(optional) 
• Pascal Compiler (optional) 
• Series 32000 assembler and linker 
• In-System Emulator Support 
• Interactive remote debugger with helpful 

command interface 

Product Overview 
The Series 32000 GNX Language Tools are a set of 
software development tools for the Series 32000 mi­
croprocessor family. Optional high-level language 
compilers work in conjunction with the standard com­
ponents to provide tools that can be combined to 
meet a variety of development needs. 

GENIX Native and Cross-Support (GNX) 
Language Tools 
The Series 32000 GNX Language Tools are based on 
AT&T's Gommon Object File Format (GOFF). With ap-

7-3 

TO 
ISE 

TliGG/B7BO-1 

III Available in binary for the VAXTM UNIX® 
4.3 bsd operating system under 
derivatives of the Berkeley operating 
system 

li!I Available in binary for the VAX/VMSTM 
operating system 

1.1 Available in binary on National 
Semiconductor Series 32000 Systems 

III Available in source for porting to other 
operating system environments 

propriate command-line arguments and when linked 
with appropriate libraries, code generated by the GNX 
language tools can be executed in any Series 32000 
target environment. In addition, these tools can be 
used to develop operating-system-independent code 
or code designed to run in conjunction with real-time 
kernels, such as National's EXEG and VRTX®/Series 
32000. All of National's new language tools conform 
to the GOFF file format, thereby ensuring that mod­
ules produced by anyone set of tools can be linked 
with objects produced by any other set of GNX tools. 

CD ... 
iii' 
til 
Co) 
N o 
o o 
c;) 
m 
z 
>< 
Z 
m -~. 
m 
::::II 
c. 
(") ... o 
til 
CfI 
W 
C 
'0 
't:J 
o 
~ 

Q 
z 
~ 
r­
m 
::::II 
cc 
c 
m 

CD 
CD 

c} 
o 
iii 

• 



Standard Components 
nasm an assembler for GNX assembly lan­

guage source code (produced either 
by a high-level language compiler or 
by an assembly language program­
mer) and produces an object file; 
supports NS32332 configuration 
register and 32-bit addressing; also 

nmeld 

nar 

nlorder 

libm.a 

idbg16, idbg32 

dbg16 

mon16, mon32, 
mon332, 
mon3328 

nburn 

db library 

supports NS32381, NS32382 chips; 
a linker that resolves references be­
tween object files and library rou-
tines and assigns relocated ad­
dresses to produce Series 32000 
executable code; 
an archiver used to store frequently 
referenced objects in a library for 
convenient retrieval by the linker; 
finds ordering relation for an object 
library; 
a library that includes math routines 
that can be called from code written 
in assembly or high level languages. 
This library includes Bessel func­
tions, exp, log, log10, pow, sqrt, 
floor, ceil, fmod, fabs, gamma, hy­
pot, sinh, cosh, tanh, sin, cos, tan, 
asin, acos, atan, and atan2; 
debuggers for use with National's 
ISE16TM and ISE32™, respectively; 
debuggers for downloading and de­
bugging code on boards that use the 
NS32008, NS32016, NS32032, or 
NS32332 CPU and associated moni­
tors. 
monitors for use with OB32016, 
OB32000, OB32332, and OB32332 
plus Oevelopment Boards. Provided 
in PROMs and in assembly lan-
guage source so the user can modi­
fy and install the monitor on user-de­
signed Series 32000 hardware. 
a PROM-programming utility that 
converts a COFF object file into AS-
CII hex, Intel hex, or Motorola S-rec­
ord format output file. Suitable for 
driving a OATA 1/0 Model 19 
PROM-programming. 
development board support rou­
tines, such as string, scanf, printf, 
atof, abs, regex, getc, putc, and 
puts; to be used with the develop­
ment board monitor; 

7-4 

A library of terminal 1/0 functions is also provided. 
These functions can be called by user-developed 
code· to allow a program running on a development 
board to print data to and accept data from the con­
sole terminal. Source to these routines is provided, 
should the user elect to expand or modify the func­
tionality of these routines. In addition, functions from 
the C library, "libc.a", that do not rely on the kernel for 
execution, are included. 
cvtasm utility to assist in converting previous 

assembler syntaxes to GNX assem­
bler syntax; 

nsize a utility for displaying the size of the 
text, uninitialized data, and initialized 
data segments of an object file; 

nstrip a utility to remove symbol table infor­
mation from an object file; 

nnm a utility to display the symbol table of 
an object file. 

The following two programs are available for configu­
rations designed for operation on a VAX under deriva­
tives of the Berkeley UNIX 4.3 bsd operating system. 
ddt a debugger specifically designed for 

kernel debugging; 
dbmon a monitor for use with ddt provided 

on PROM and in assembly language 
source so the user can modify and 
install the monitor on user-built Se­
ries 32000 hardware. 

Optional Components 
Optimizing C Compiler 

The Optimizing C Compiler is derived from the UNIX C 
Compiler and supports the C language as defined by 
Kernighan and Ritchie. Enhancements include pass­
ing structures as arguments to functions, long variable 
names, single-precision floating constants, signed and 
unsigned bitfields. The compiler generates Series 
32000 assembly code which is passed to the GNX 
assembler. 
The optimizer and code generator use state-of-the-art 
optimization techniques to process C code into as­
sembly statements that approach hand-optimized as­
sembly code in execution speed. Optimization tech­
niques include register allocation by coloring, constant 
folding, subexpression and assignment elimination, 
copy propagation, peephole optimizations, and others. 
Optimizer processing can be controlled with switches 
to request optimization for space instead of speed, 
perform partial optimizations, specify addressing 



Optional Components (Continued) 
modes and influence allocation of variables to regis­
ters. 
Code can be compiled with optimization disabled in 
order to generate debuggable code. 
C object modules can be linked with assembly, Pascal 
and FORTRAN 77 object modules for mixed-language 
development. 

Pascal Compiler 

The Pascal compiler is an ISO-standard Pascal com­
piler derived from the 4.2 bsd "pc" compiler. 
The Pascal compiler supports several extensions to 
the standard Pascal language that are designed to 
simplify program development, such as separate com­
pilation of individual modules. In addition, I/O of enu­
merated types, output of octal and hexadecimal num­
bers, and comparison of strings of unequal length are 
supported. The Pascal library, "libpc.a", includes sev­
eral useful procedures and functions, for example, a 
random number generator, file manipulation proce­
dures, and clock functions. 

Pascal object modules can be linked with assembly, 
C, and FORTRAN 77 object modules for mixed-lan­
guage development. Pascal programs can call the ter­
minal I/O functions described for the C Compiler. 

Optimizing FORTRAN 77 Compiler 

The Optimizing FORTRAN 77 Compiler is derived 
from the UNIX System V Release 2 "f77" Compiler. 
Enhancements include double-complex data types, 
recursion, hex constants, one-trip do loop option, 
short integers and bitwise Boolean operations. 

The compiler generates Series 32000 assembly code 
which is passed to the GNX assembler. 
The optimizer and code generator use state-of-the-art 
optimization techniques to process FORTRAN code 
into assembly statements that approach hand-opti­
mized assembly code in execution speed. Optimiza­
tion techniques include register allocation by coloring, 
constant folding, subexpression and assignment elimi­
nation, copy propagation, peephole optimizations and 
others. 
Optimizer processing can be controlled with switches 
to request optimization for space instead of speed, 
perform partial optimizations, specify addressing 
modes and influence allocation of variables to regis­
ters. 
Code can be compiled with optimization disabled in 
order to generate debuggable code. 

FORTRAN object modules can be linked with assem­
bly, Pascal, and C object modules for mixed-language 
development. 

7-5 

Source Products 
The assembler, associated tools, and the optional C, 
Pascal, and FORTRAN 77 Compilers are provided in 
binary form for use on a VAX under the 4.2 bsd oper­
ating system. The source to all programs that make up 
the Series 32000 GNX Language Tools is available for 
porting to other UNIX operating system environments. 

Customer Support 
National Semiconductor offers a full 90 day warranty 
period. Extended warranty provisions can be arranged 
by calling MCS Logistics at the toll-free numbers listed 
below. 
The MCS Service Technical Support Engineering Cen­
ter has highly trained technical specialists available to 
assist customers over the telephone with any product 
related technical problems. 
for more information, please call: 

(800) 538-1866, 

(800) 672-1811 for California, 

(800) 223-3248 for Canada. 

Licensing 
All binary versions of the Series 32000 GNX Lan­
guage Tools require the execution of National's Binary 
User Agreement. Because the language tools include 
AT&T proprietary code, a System V source license is 
a prerequisite for obtaining source versions of these 
language tools. 

Part Numbers 
Binaries for Cross-Support Mode hosted on VAX 
under 4.2 bsd: 

NSW-ASM-BRVX The assembler ("nasm"), linker 
("nmeld"), math library ("libm.a"), 
archiver ("nar"), ISE debugger 
("idbg16/32") development-board 
-support library, development board 
debuggers ("ddt" and "dbg16"), 
monitors in source ("dbmon" and 
"mon16/32"), monitors in PROM, 
the PROM-burning utility ("nburn"), 
dblibrary, cvtasm, nsize, nstrip, and 
nnm. 

NSW-C-BRVX Optional C compiler to be used in 
conjunction with NSW-ASM-BRVX 
described above. 

NSW-F77-BRVX Optional FORTRAN 77 Compiler to 
be used in conjunction with NSW­
ASM-BRVX described above. 

NSW-PAS-BRVX Optional Pascal Compiler to be 
used in conjunction with NSW­
ASM-BRVX described above. 

All binaries for VAX/4.2 bsd are delivered on 9-track 
reel tape in "tar" format. 

en 
CD 
:::!. 

m 
Co) 
N o o o 
G) 
m 
z 
>< 
z a 
~. 

I\) 
::l 
a. 
o a 
~ c 
"0 
"0 o 
~ 
G) 
z 
>< -

• 



o r-----------------------------------------------------------------------------, 

! 
CI) 
C) 
ca 
::s 
C) 
c 
~ 
>< z e. 
1:: o a. a. 
::s 

i 
o 
"C 
C ca 
~ 
i z 
>< 
Z 
w 
CJ 
C) 
C) 
C) 
N 
C') 

o 
CI) 
";: 
CI) 
U) 

Part Numbers (Continued) 

Binaries for Cross-Support Mode hosted on VAX 
under VMS: 
NSW-ASM-BRVM The assembler ("nasm"), linker 

("nmeld"), math library ("libm.a"), 
archiver ("nar"), ISE debugger 
("idbg16/32") development­
board-support library, develop­
ment board debugger ("dbg16"), 
monitor in source ("mon16/32"), 
monitor in PROM, the PROM­
burning utility ("nburn"), dblibrary, 
cvtasm, nsize, nstrip, and nnm. 

NSW-C-BRVM Optional C Compiler to be used in 
conjunction with NSW-ASM-
BRVM described above. 

NSW-F77-BRVM Optional FORTRAN 77 Compiler 
to be used in conjunction with 
NSW-ASM-BRVM described 
above. 

NSW-PAS-BRVM Optional Pascal Compiler to be 
used in conjunction with NSW­
ASM-BRVM described above. 

All binaries for VAXIVMS are delivered on 9-track reel 
tape in VMS BACKUP format. 

Binaries hosted on SYS32/20 under System V: 
NSW-C-BLAF Optional C Compiler to be used in 

conjunction with NSW-ASM-BLAF 
described above. 

NSW-F77-BLAF Optional FORTRAN 77 Compiler 
to be used in conjunction with 
NSW-ASM-BLAF described 
above. 

NSW-PAS-BLAF Optional Pascal Compiler to be 
used in conjunction with NSW­
ASM-BLAF described above. 

Above binaries for SYS32/20 are delivered on low­
density (360 kbyte) 5% inch PC-DOS floppy disks in 
MS-DOS format. 

7-6 

Source 

NSW-ASM-SRNN The source to NSW-ASM-BRVX, 
as described above. 

NSW-C-SRNN The source to NSW-C-BRVX, as 
described above. 

NSW-PAS-SRNN The source to NSW-PAS-BRVX, 
as described above. 

NSW-F77-SRNN The source to NSW-F77-BRVX, 
as described above. 

All source tapes are delivered on 9-track reel tape 
written in "tar" format. 
For future product releases contact your National 
Semiconductor sales representative or call Series 
32000 Software Marketing at (408) 721-5551. 

Manuals 
Each software package is delivered with one copy of 
each appropriate manual. 
NSP-ASM-M-MS: Manual Set included with NSW­

ASM-BRVM 
NSP-ASM-X-MS: Manual Set included with NSW­

ASM-BRVX 
NSP-C-M: Manual included with NSW-C­

BRVM and NSW-C-BRVX 
NSP-PASCAL-M: Manual included with NSW-PAS-

NSP-F77-M: 
CAL-BRVM and NSW-C-BRVX 
Manual included with NSW-F77-
BRVM and NSW-F77-BRVX 



r--------------------------------------------------------------------------.~ 

~ National Semiconductor 

Series 32000® 
Ada Cross-Development System 

for SVS32™ 120 Host 
SYS32/20 Host 

SYS 32/20 

Ada Complier 

Ada 

~ 

• Series 32000 cross-support development 
environment for SVS32/20 

• Validated under 1.8 ACVC 
• Derived from the VERDIXTM Ada 

Development System (VADSTM) 
• Compiler support for Ada Pragmas and 

Representation Attributes 
• Comprehensive Support Services 

available from National 

Product Overview 
The Series 32000 Ada cross-compiler supports full 
Ada language program development on National's 
SYS32/20 host and is part of National's Validated 
Ada Development Environment (NVADE). NVADE 
provides a high performance Ada compiler that sup­
ports all required features of the Ada language and is 

7-7 

~ 
lHlS PROIXJCI CONFORMS 

TO ANSI/MIL-STO-181SA AS 
DETIJlMINED BY lHE AJPO 

UNDER ns CURRENT 
lESllNG PROCEDURES 

TL/GG/9307-2 

• Generates GNXTM Common Object File 
Format (COFF) 

• Debugging Tools 
• Program Generation Utilities 
• SPLICE support 
• Extensive Ada Library Management 

Utilities 
• Run-time system to support bare-board 

environment 
• Ada VRTX® Interface Package (Optional) 
• Source to Ada Run-Time System 

(Optional) 

fully compliant with ANSI/MIL-STD-1B15A. NVADE 
also provides a comprehensive set of tools specifical­
ly tailored to provide the optimum Ada Programming 
Support Environment (APSE) for a host of application 
development. 

CD 
::::!. 
CD 
til 
Co) 
N o 
o o 

~ 
I» 
o 
(; 
til 
til 

6 
CD 

~ 
0' 
'0 
3 
CD 
:::l -1 
CD 
3 
0-...,. 

~ 
Co) 
N ....... 
N o 
::t: o 
til -

• 



1 
:::z::: 
C) 
C\I ...... 
C\I 
C') 

~ ... 
.e 
E 
CLI 

~ .... c 
CLI 
E 
D­o 

~ c 
:k 
e 
o 
CIS 

~ 
C) 
C) 
C) 
C\I 
C') 

II) 
CLI 
';:: 

~ 

Product Overview (Continued) 

The SYS32/20 Development system includes a high­
performance add-in card that converts an IBM-PCI AT 
or compatible system into a Series 32000-based de­
velopment environment. 
Once compiled, the Ada program will execute on ei­
ther a Series 32000 development board or a customer 
target board. This "production quality" Ada compiler 
focuses on high performance, and is intended for 
large-scale development of real-time, embedded con­
trol, or training simulator software applications. The 
Series 32000 Ada Cross-Development System in­
cludes the Ada compiler, program library utilities, pro­
gram generation utilities, library management and a 
complete run-time system. This product directly inter-

faces with GNX language tools provided with the 
SYS32/20 system, including GNX linker, DBG and 
IDBG debuggers, library management tools and other 
utility programs. 
The Series 32000 Ada Cross-Development System 
has been engineered and designed to run under 
OPUS5, the SYS32/20 Operating System derived 
from AT&T's UNIXTM System V. Therefore, rather 
than learning a new operating system, the program­
mer can immediately concentrate on Ada program de­
velopment. To aid the user, complete on-line manual 
entries are provided. These can be configured to use 
either the UNIX man utility or a separate interactive 
help command, supplied with the product. 

Series 32000 Ada Cross-Development System for SYS32/20 Host 

SYS32/20 
Host 

(IBM PC/AT) 

DEBUGGING 
TOOLS 

TUGG/9307 -3 

7-8 



NVADE Components 
Ada Compiler 

The Ada Compiler accepts as input Ada source and 
generates Series 32000 code that can be downloaded 
to, and executed on, a Series 32000-based target de­
velopment board. 

The Series 32000 Ada Compiler supports the full Ada 
language. Features include shared or unshared gener­
ics, separates, in-lines, bit representation, machine­
code insertion, monitor tasks and terminal I/O. The 
compiler generates GNX COFF (Common Object File 
Format) object files that can be linked with object files 
generated by other GNX compilers. The Ada compiler 
performs several optimizations, including value-track­
ing global register allocation, register assignment for 
commons and locals, common sub-expression remov­
al, branch and dead code analysis, some constraint 
check removal, and local peephole optimizations. The 
Ada compiler operates as a re-entrant shareable pro­
cess in the SYS32/20 host system, allowing the com­
piler to make full use of most operating system facili­
ties. 
In addition, the Ada compiler provides features to aid 
in the development of real-time, embedded control 
and training simulator software applications. Some of 
these include Ada Pragmas as specified in Chapter 13 
of the Ada Language Reference Manual (LRM), such 
as: Inline, Interface, Interface_Object, Pack, Page, 
Priority, Share_Body, and Suppress. Also included is 
a Machine Code Package which provides an interface 
for handling machine code insertion and generics (Un­
checked_Dealiocation and Unchecked_Conversion) 
for controlling storage and type conversions. 

Program Generation Utilities 
An Ada make utility, similar in operation to that found 
in the UNIX operating system, is provided to simplify 
program compilation by maintaining program unit de­
pendancy information. This utility determines which 
files must be recompiled to produce a current execut­
able file. This utility can also be used to ensure that 
the named unit is up-to-date, recompiling dependen­
cies as necessary. Also provided is a source code for­
matter, easily configurable for individual Ada coding 
standards. 

Program Library Utilities 
The Ada language imposes stringent requirements on 
an Ada Program Library. While the language provides 
for separate compilation of program units, each unit is 
compiled in the "context" of previously compiled 
units. The compiler must have access to this context, 
and the context must be carefully organized in the 
form of a Program Library. This library has been de­
signed to enhance the compiler performance. A set of 
utilities is provided to manage, manipulate, and dis­
play Program Library information. 

7-9 

In addition, the Series 32000 Ada Cross-Development 
System permits Ada Program Libraries to be hierarchi­
cally organized, so that units not local to one library 
can be found in other libraries. Thus, programmers 
can work without interference on local versions of indi­
vidual program units, while retrieving the remainder of 
the program from higher-level libraries. 

NVADE also uses DIANA (Descriptive Intermediate 
Attributed Notation for Ada), which generates an inter­
mediated representation for each unit. DIANA pro­
vides a tree-structured representation of an Ada pro­
gram encoding the complete syntactic and semantic 
information of each individual Ada unit. The presence 
of DIANA as an integrated mechanism makes possi­
ble powerful editing, debugging and program query fa­
cilities, thus providing the means for simple and effi­
cient incremental compilation. 

Debuggers 

The standard GNX debugger, DBG32, is used with the 
Series 32000 Ada Cross-Development System. 
DBG32 can be used to debug code on the SYS32/20 
host and/or to download and remotely debug or exe­
cute code on a Series 32000 development board. 
DBG32 supports the use of National's SPLICE soft­
ware debugging tool. Machine-level debug support is 
provided by the debugger. 

Linker 

Ada object files are linked by the standard GNX linker, 
which is called by the Ada compiler pre-linker. The 
GNX linker resolves references between object files 
and library routines and assigns relocated addresses 
to produce Series 32000 executable code. 

Ada Run-Time System 

The Series 32000 Ada Run-time System provides 
comprehensive support for tasking, debugging, excep­
tion handling and input/output. 
The Run-time System is linked with the user's gener­
ated Ada program. To facilitate resource utilization ef­
ficiency, major portions of the Run-time System have 
been optimized. Run-time source for customization is 
also available. 

Ada-VRTX Interface Package (Optional) 

The Ada Run-time System includes a large, rich, and 
elegant tasking system. VRTX (the Versatile Real­
Time Executive) provides a small, simple, compact 
and fast tasking system and may be a preferred alter­
native to using the Ada Run-time System, particularly 
for embedded microprocessor applications where 
space and timing are critical. The Ada-VRTX interface 
package (AVIP) offers Ada language users a conve­
nient means of interfacing with VRTX. AVIP allows 
Ada programmers the ability to call any VRTX service 
from their Ada program. (The exceptions are 

(J) 
CD ... 
CD' 
til 
Co) 
I\) 
o 
o 
o 
» c.. 
I» 
(") ... o 
til 
C{I 
C 
~ 
CD 
0' 

't:I 
3 
CD 
::::J -j 
3 -o ... 
~ 
(J) 
Co) 
I\) ..... 
I\) 
o 
::J: 
o 
!!L 

• 



E 

! -C 
G.I 
E a. o 

~ c 

= e o 
ca 

"CI 
<C 
o 
o o 
C'I 
C") 

If 
';: 
G.I 
(/) 

Program Library Utilities (Continued) 

Series 32000 Ada Cross-Development System for SYS32/20 Host 
NVADE Modules and Run-Time Environment 

SERIES 32000 
Ada COMPILER 

calls provided for the user-defined interrupt handlers 
and partition create and extend.) The actual opera­
tions performed by VRTX are identical in both assem­
bly language and Ada. Thus, this package gives users 
both the elegant features of the Ada language and 
VRTX's unique tasking system. 

Pre-Requisites 

- SYS32/20 KIT (KIT 2 is recommended) installed 
on an IBM PC/AT 

- DB32000, DB332-PLUS target development sys­
tem board with power supply 

- 60 mbyte hard disk capacity (minimum) 
- IBM PC/AT with 1.2 mbyte floppy drive or IBM 

PC/AT with Tape Cartridge Unit 

- A minimum of one available serial port 

Supported Hardware/Software 

:.... SYS32/20 HOST 

- SYS32/20 Operating System (OPUS5) 

- DB32000, DB332-PLUS target development sys-
tem board with power supply 

- In-System Emulator 

- SPLICE II 

7-10 

TL/GG/9307 -1 

Shipping Package 

- Series 32000 Installation Instructions and Release 
Letter 

- SYS32/20 Cartridge tape or high density floppy 
diskettes 

- Ada Language Reference Manual (ANSI/MIL-STD 
1815A) 

- Ada Compiler and support tools documentation 

Ordering Information 
- NSW-Ada-BHAF Ada Cross-Development System, 

binary high density diskettes, SYS32/20 
- NSW-Ada-BCAF Ada Cross-Development System, 

binary cartridge tape, SYS32/20 

- NSW-ARTS-SHAF Ada Run-time System, source, 
high density diskettes, SYS32/20 

- NSW-ARTS-SCAF Ada Run-time System, source, 
cartridge, SYS32/20 

- NSW-AVIP-BHAF Ada-VRTX-Interface Package, 
Binary high density diskettes, SYS32/20 

- NSW-AVIP-BCAF Ada-VRTX-Interface Package, 
Binary Cartridge tape, SYS32/20 

- NSP-Ada-MS Manual set for the Ada Development 
System 



,--------------------------------------------------------------------------, w 
• National Semiconductor 

Series 32000® 
Ada Cross-Development System 

for V AX™ IVMSTM Host 

VAX/VMS Host Environment 

Ada Compiler 

111.11111 1111111111111111 
[) 

IIIIIIIIU 111111111111 
THIS PROIlUCT CONfORMS 

TO ANSIjt.tIL-STO-1815A AS 
DETERMINED BY THE AJPO 

UNDER ITS CURRENT 
lESlING PROCEDURES 

• Series 32000 cross-support development 
environment for VAX/VMS host 

• Validated under 1.8 ACVC 

• Runs under VAX/VMS 4.4 Operating 
Systems and future revisions of VMS 

• Derived from the VERDIXTM Ada 
Development System (VADSTM) 

• Compiler Support for Ada Pragmas and 
Representation Attributes 

• Comprehensive Support Services 
available from National 

Product Overview 
The Series 32000 Ada cross-compiler supports full 
Ada language program development on Digital Equip­
ment Corporation's VAXIVMS hosts and is part of Na­
tional's Validated Ada Development Environment 
(NVADE). NVADE provides a high performance Ada 
compiler that supports all required features of the Ada 

7-11 

• 
• • • 
• 
• • • 

VAX 11/750-
89 XX 

TLlGG/9364-1 

Generates GNXTM Common Object File 
Format (COFF) 
Program Generation Utilities 
SPLICE support 
Extensive Ada Library Management 
Utilities 
Run-time system to support bare-board 
environment 
Debugging Tools 
Ada VRTX® Interface Package (Optional) 
Source to Ada Run-Time System 
(Optional) 

language and is fully compliant with ANSI/ 
MIL-STD-1815A. NVADE also provides a comprehen­
sive set of tools specifically tailored to provide the op­
timum Ada Programming Support Environment 
(APSE) for host application development. 

(I) ... 
CD· 
til 
c.:I 
N 
o 
o 
o 
l> 
a. 
III 

o ... o 
til 
If c 
(I) 

< 
(I) 

0" 
"t:I 
3 
(I) 
::I -1 
(I) 

3 -o ... 
;; 
>< ...... 
< :s:: 
w 
:::I: 
o 
~ 

,. 



Product Overview (Continued) 

Once compiled, the Ada program will execute on ei­
ther a Series 32000 development board or a customer 
target board. This "production quality" Ada compiler 
focuses on high performance, and is intended for 
large-scale development of Series 32000 real-time, 
embedded control, or training simulator software ap­
plications. The VAXIVMS Ada Cross-Development 
System includes the Ada compiler, program library 
utilities, program generation utilities, library manage­
ment utilities and a complete run-time system. This 

product directly interfaces with VAXIVMS GNX lan­
guage tools provided, including GNX linker, DBG and 
IDBG de buggers, library management tools and other 
utility programs. 

The VAXIVMS Ada Cross-Development System has 
been engineered and designed to run under VAX! 
VMS 4.4 or later Operating Systems. Therefore, rather 
than learning a new operating system, the program­
mer can immediately concentrate on Ada program de­
velopment. 

Series 32000 Ada Cross-Development System for VAX/VMS Host 

VAX/VMS 
Host 

DEBUGGING 
TOOLS 

TLlGG/9364-2 

7-12 



NVADE Components 
Ada Compiler 

The Ada Compiler accepts as input Ada source and 
generates Series 32000 code that can be downloaded 
to, and executed on, a Series 32000-based target de­
velopment board. 

The Series 32000 Ada Compiler supports the full Ada 
language. Features include shared or unshared gener­
ics, separates, in-lines, bit representation, machine­
code insertion, interrupt tasks, monitor tasks and 
terminal I/O. The compiler generates GNX COFF 
(Common Object File Format) object files that can be 
linked with object files generated by other GNX com­
pilers. The Ada compiler performs several optimiza­
tions, including value-tracking global register alloca­
tion, register assignment for commons and locals, 
common sub-expression removal, branch and dead 
code analysis, some constraint check removal, and 
local peephole optimizations. The Ada compiler oper­
ates as a re-entrant shareable process in the VAX/ 
VMS host system, allowing the compiler to make full 
use of most operating system facilities. 

In addition, the Ada compiler provides features to aid 
in the development of real-time, embedded control, 
and training simulator software applications. Some of 
these include Ada Pragmas as specified in Chapter 13 
of the Ada Language Reference Manual (LRM), such 
as: Inline, Interface, Interface_Object, Pack, Page, 
Priority, Share_Body and Suppress. Also included is 
a Machine Code Package which provides an interface 
for handling machine code insertion and generics (Un­
checked_Dealiocation and Unchecked_Conversion) 
for controlling storage and type conversions. 

Program Generation Utilities 

An Ada make utility, similar in operation to that found 
in the UNIX® operating system, is provided to simplify 
program compilation by maintaining program unit de­
pendency information. This utility determines which 
files must be recompiled to produce a current execut­
able file. This utility can also be used to ensure that 
the named unit is up-to-date, recompiling dependen­
cies as necessary. Also provided is a source code for­
matter, easily configurable for individual Ada coding 
standards. 

7-13 

Program Library Utilities 

The Ada Language imposes stringent requirements on 
an Ada Program Library. While the language provides 
for separate compilation of program units, each unit is 
compiled in the "context" of previously compiled 
units. The compiler must have access to this context, 
and the context must be carefully organized in the 
form of a Program Library. This library has been de­
signed to enhance the compiler performance. A set of 
utilities is provided to manage, manipulate, and dis­
play Program Library information. 

In addition, the Series 32000 Ada Cross-Development 
System permits Ada Program Libraries to be hierarchi­
cally organized, so that units not local to one library 
can be found in other libraries. Thus, programmers 
can work without interference on local versions of indi­
vidual program units, while retrieving the remainder of 
the program from higher-level libraries. 

NVADE also uses DIANA (Descriptive Intermediate 
Attributed Notation for Ada), which generates an inter­
mediated representation for each unit. DIANA pro­
vides a tree-structured representation of an Ada pro­
gram encoding the complete syntactic and semantic 
information of each individual Ada unit. The presence 
of DIANA as an integrated mechanism makes possi­
ble powerful editing, debugging and program query fa­
cilities, thus providing the means for simple and effi­
cient incremental compilation. 

Debuggers 

The standard GNX debugger, DBG32, is used with the 
Series 32000 Ada Cross-Development System. 
DBG32 can be used to debug code on the VAX host 
and/or to download and remotely debug or execute 
code on Series 32000 development board. DBG32 
supports the use of National's SPLICE software de­
bugging tool. Full machine-level debug support is pro­
vided by the debugger. 

Linker 

Ada object files are linked with the standard GNX link­
er, which is called by the Ada compiler pre-linker. The 
GNX linker resolves references between object files 
and library routines and assigns relocated addresses 
to produce Series 32000 executable code . 

(J) 
CD .... 
ii' 
e.,) 
I\) 
Q 
Q 
Q 

» c.. 
II) 

o .... 
o 
UI 
If c 
~ 
CD 
0' 
'C 
3 
CD 
::I -1 
CD 
3 -o .... 
~ 
>< ...... 
< :s:: 
(J) 

::::t 
g -

• 



8 
::I: NVADE Components (Continued) 
(J) 
:E Series 32000 Ada Cross-Development System for VAX/VMS Host 
::: NVADE Modules and Run-Time Environment 

>< 
~ 
l-.e 
E 
.! 

£ 

Ada Run-Time System 

SERIES 32000 
Ada COMPILER 

The Series 32000 Ada Run-Time System provides 
comprehensive support for tasking, debugging, excep­
tion handling and input/output. 
The Run-Time System is linked with the user's gener­
ated Ada program. To facilitate resource utilization ef­
ficiency, major portions of the Run-Time System have 
been optimized. Run-Time source code for customiza­
tion is also available. 

Ada-VRTX Interface Package (Optional) 

The Ada Run-Time System consists of a large, rich 
and elegant tasking system. VRTX (the Versatile Real­
Time Executive) provides a small, simple, compact 
and fast tasking system and may be a preferred alter­
native to using the Ada Run-Time System, particulary 
for embedded microprocessor applications where 
space and timing are critical. This Ada-VRTX interface 
package (AVIP) offers Ada language users a conve-

7-14 

EMBEDDED 
CJ 

TL/GG/9364-3 

nient means of interface with VRTX. AVIP allows Ada 
programmers the ability to call any VRTX service from 
their Ada program. (The only exceptions are the calls 
provided for user-defined interrupt handlers and for 
partition create and extend.) The actual operations 
performed by VRTX are identical in both assembly 
language and Ada. Thus, this package gives users 
both the elegant features of the Ada language and 
VRTX's unique tasking system. 

PRE-REQUISITES 

- VAXIVMS Host Computer 750-89XX 
- VMS Operating System 

- VAXIVMS GNX Assembler Package 

Supported Hardware/Software 

- All VAXIVMS computers 

- D832000, D8332-PLUS, VME532 target develop-
ment system board with power supply 



NVADE Components (Continued) 

Shipping Package 

- Series 32000 Installation Instructions and Applica­
tions Notes 

- 1600 bpi magnetic tape (9-track VMS copy format) 
- Ada Language Reference Manual 

(ANSI/MIL-STD 1815A) 
- Ada Compiler and support tools documentation 

Ordering Information 
Part Number 

NSW-Ada-BRVM-1 

NSW-Ada-BRVM-2 

NSW-Ada-BRVM-3 

NSW-Ada-BRVM-4 

NSW-Ada-BRVM-5 

Binary Ada Cross Dev. System 
Tape, Vax-11 /750, 11/780, 
82XX 
Binary Ada Cross Dev. System 
Tape, Vax-11 1785, 83XX 
Binary Ada Cross Dev. System 
Tape, Vax-8500, 8530, 8600 
Binary Ada Cross Dev. System 
Tape, Vax-8550, 8650, 8700 
Binary Ada Cross Dev. System 
Tape, Vax-88XX, 89XX 

NSW-AVIP-BRVM-1 Binary Ada VRTX Int. Pckg. 
Tape, Vax-11 /750, 11/780, 
82XX 

7-15 

NSW-AVIP-BRVM-2 Binary Ada VRTX Int. Pckg. 
Tape, Vax-11 1785, 83XX 

NSW-AVIP-BRVM-3 Binary Ada VRTX Int. Pckg. 
Tape, Vax-8500, 8530, 8600 

NSW-AVIP-BRVM-4 Binary Ada VRTX Int. Pckg. 
Tape, Vax-8550, 8650, 8700 

NSW-AVIP-BRVM-5 Binary Ada VRTX Int. Pckg. 
Tape, Vax-88XX, 89XX 

NSW-ARTS-SRVM-1 Source Ada RUNTIME SYS­
TEM Tape, Vax-11 1750, 
11/780, 82XX 

NSW-ARTS-SRVM-2 Source Ada RUNTIME SYS­
TEM Tape, Vax-11 1785, 83XX 

NSW-ARTS-SRVM-3 Source Ada RUNTIME SYS­
TEM Tape, Vax-8500, 8530, 
8600 

NSW-ARTS-SRVM-4 Source Ada RUNTIME SYS­
TEM Tape, Vax-8550, 8650, 
8700 

NSW-ARTS-SRVM-5 Source Ada RUNTIME SYS­
TEM Tape, Vax-88XX, 89XX 

NSP-Ada-VMS Additional Manual Sets for 
VAXIVMS Ada Development 
System 

en 
CD .... 
m" 
(,,) 
N o 
o 
o 

~ 
II) 

(") 

a en 
({I 
C 
CD c; 
0" 
"a 
3 
CD 
::J -
~ -CD 
3 -o .... 
< 
l> 
>< ..... 
< 
:s::: en 
::I: 
o 
!!L 

II 



~ ,---------------------------------------------------------------------------------, 
:> ...... 
>< z 
w 
CJ 

II National Semiconductor 

GENIXTM/V.3 Operating System' 
MULTI-USER, 

MULTI- TASKING. 
AND ASSIST 

TRANSPORT LEVEL 
INTERFACE AND 

TRANSPORT PROVIDER 
INTERFACE 

REMOTE 
FILE SHARING 

SHARED 
LIBRARIES 

BROAD SPECTRUM 
OF PROGRAM 
APPLICATIONS 

• Derived from AT&T's System V, Release 
3_0, UNIX® Operating System 

• Demand-paged Virtual Memory 
• Mandatory and Advisory File and Record 

Locking 
• Streams 

General Description 
GENIXIV.3 is a port of AT&T's System V, Release 
3.0, UNIX operating system for the Series 32000® mi­
croprocessor family. GENIXIV.3 is available in source 
form and can be adapted to serve as the operating 
system on customer-designed Series 32000-based 
systems. 
GENIXIV.3 is a multitasking, multiuser operating sys­
tem that provides an abundance of programs and utili­
ties for text processing, program development, and 
system administration. GENIXIV.3 supports a wide 
variety of applications ranging from databases to 
graphics packages available from independent soft­
ware vendors. 
GENIXIV.3 carries forward all of the enhancements 
from Systems V ISeries 32000, such as demand-

7-16 

DEMAND PAGED 
VIRTUAL MEMORY 

SHARED FILE 
AND RECORD 

LOCKING 

STREAMS 

DEVELOPMENT 
TOOLS AND 

COMPILER OPTIONS 

TL/R/9263-1 

• Transport Level Interface and Transport 
Provider Interface 

• Remote File Sharing 
• Shared Libraries 
• Assist 
• C Compiler and Associated Language 

Tools 

paged virtual memory and file and record locking, 
while introducing significant new features that support 
local area networking. 

GENIX/V.3 Features 
Streams 
Streams is a general, flexible facility for the develop­
ment of communications services within the UNIX op­
erating system. Streams provides a consistent frame­
work for the operation of network services (ranging 
from local area networks to individual device drivers) 
under the UNIX kernel. 



r-----------------------------------------------------------------------.Q 
Streams defines a standard interface for character in­
put and output within the kernel and between the ker­
nel and user programs. This standard interface en­
ables modular, portable program development and 
clean integration of network services. 
As a result of Streams, network architectures and 
high-level protocols are independent of underlying 
low-level protocols, device drivers, and media. 

Transport Level Interface (TLI) and Transport Provider 
Interface (TPI) 

GENIXIV.3 includes two significant libraries that help 
the protocol-developer produce protocols that con­
form to industry standards. The TLI library is com­
posed of user-level functions that provide access to 
standard protocol services as defined by the ISO 
Transport Service Interface. The TPI library specifies 
capabilities that must be supplied by a transport pro­
vider and the required interface to those capabilities to 
maintain consistency with the TLI library. 
Together, the TLI and the TPI libraries create the 
means by which network-independent applications 
can be written. An application written using the TLI 
library will work without modification over any network 
implemented according to the TPI specification. 
GENIXIV.3 includes a new version of 'uucp' (based 
on the Honey-Danber 'uucp') that is implemented us­
ing the TLI library. Remote File Sharing, described be­
low, is also implemented using the TLI library. 

Remote File Sharing (RFS) 

RFS is an example of the kind of network services 
that can be developed using Streams. RFS allows a 
group of computers to be linked together over a net­
work so that resources belonging to one system (e.g., 
disk files, printers, and tape drives), can be made 
available to users on other systems. This availability is 
transparent to the user; the user does not have to 
know or issue any special commands to access a re­
mote resource. 
RFS has built in security features as well. The local 
machine administrator decides which file systems will 
be available to the network and which remote resourc­
es the local users can access. 

Demand-Paged Virtual Memory 

The GENIXIV.3 operating system supports programs 
that access up to 15 Mbytes (if using the NS32082 
MMU) or % gigabyte (if using the NS32382 MMU) of 
virtual address space. In addition, the GENIXIV.3 op­
erating system takes advantage of the memory pro­
tection scheme afforded by the MMU's separate user 
and supervisor address space. 

CCompiler 

The GENIXIV.3 operating system includes a C com­
piler based on the Berkeley 4.2 bsd 'pcc' (portable C 
compiler). The C compiler and associated language 

7-17 

tools (assembler and linker) produce executable code 
whose addresses are resolved by relocation during 
the linkage process. The GENIXIV.3 language tools 
conform to a superset of AT&T's Common Object File 
Format (COFF). 

Shared Libraries 

A shared library is a library of subroutines that is ac­
cessed at run-time rather than being included in the 
program when the program is linked. As a result, pro­
grams that use shared libraries occupy less space on 
disk and in memory. In addition, when a library is mod­
ified, programs that use that library do not have to be 
recompiled to benefit from changes to that library. 
GENIXIV.3 binary is provided with a shared version of 
a subset of 'libc.a' and the Networking Services Li­
brary. Tools are provided for the user to generate ad­
ditional shared libraries. 

Assist 

'Assist' is a set of programs that provide on-line as­
sistance to users of the GENIXIV.3 operating system. 
'Assist' should not be confused with on-line manual 
pages; rather, 'Assist' is a menu-driven program that 
helps the user form correct command line syntax on a 
step-by-step basis. 'Assist' includes tools for building 
custom menus in addition to the menus provided as a 
part of the GENIXIV.3 operating system. 

File System Switch (FSS) 

FSS allows the operating system to support several 
different types of file systems simultaneously. For ex­
ample a file system type could be implemented to per­
mit users to access data stored on floppy diskettes 
created by other operating systems. 

Mandatory File and Record Locking 

Previous versions of the System V UNIX operating 
system supported voluntary file and record locking. 
Under voluntary file and record locking, a group of 
programs must voluntarily agree to honor locks that 
may have been placed on a file or a record. It was 
possible for a programmer to write a 'maverick' pro­
gram that refused to honor voluntary locks. 
With mandatory file and record locking, a database 
designer is guaranteed that any locks the program 
places on a file or record will be honored by every 
program in the system. Mandatory locks guarantee 
the security of database applications. 

Optional Software 
KornShell 

The Korn shell is an optional command interpreter 
compatible with the Bourne shell and offers many fea­
tures found in the C shell, such as 'aliases'. The Korn 
shell introduces new features such as 'vi editing 
mode', which allows the user to modify and enter pre­
viously entered commands with fewer keystrokes. 

m 
Z 
>< ....... 
< 
(,) 

• 



~ ,--------------------------------------------------------------------------, 
:> 
...... Tools for Documenters 

~ Tools for Documenters, derived from AT&T's Docu-
w menters Workbench 2.0, is an optional set of software 
~ that contains programs that help users prepare docu­

mentation. The programs include text processors 
('nroft', 'troff', and 'ditroff'), macro packages ('mm' 
and 'man'), preprocessors that prepare special kinds 
of text Ctbl' and 'eqn'), and postprocessors that pre­
pare documents for handling by a particular output de­
vice, such as a printer or phototypesetter. 

Machine Readable Documentation 

The optional Machine Readable Documentation in­
cludes source to all GENIXIV.3 manuals for those 
OEM's who plan to modify and print their own manual 
sets. 

Benefits 
AVAILABLE IN SOURCE FORM TO QUALIFIED CON­
TRACTORS OF NSC 

All source files required to produce a binary version of 
the GENIXIV.3 operating system are provided. These 
files include source code to the kernel (including de­
mand-paged virtual memory code), all utilities, device 
drivers, libraries, the C compiler, assembler and linker. 
Kernel source code is adaptable to the NS32016, 
NS32032, and NS32332 CPU and the NS32082 and 
the NS32382 MMU by compilation switches. The 
GENIXIV.3 operating system is designed to run on 
hardware configurations that include the NS32201 
Timing Control Unit, the NS32081 Floating Point Unit, 
and the NS32202 Interrupt Control Unit, a minimum of 
one RS232 serial port, 2 Mbytes of RAM, and a mini­
mum 40 Mbytes of disk storage for the binary operat­
ing system. 
In addition, the GENIXIV.3 operating system source 
product includes a binary image of the root and lusr 
file systems which was generated from the provided 
source files. 

7-18 

Customer Support 
The GENIXIV.3 operating system, whether provided 
in binary or source form, includes a 90-day warranty. 
During the warranty period, customers are entitled to 
toll-free telephone access to National's MCS Techni­
cal Support Engineering Center to receive assistance, 
report bugs and obtain workarounds. In addition, the 
customer will receive any update releases that be­
come available from National Semiconductor at no 
additional charge. 
After the 90-day warranty has expired, extended sup­
port can be contracted by calling MCS Logistics at the 
toll-free numbers below: 

(800) 538-1866 in the USA, except California 
(800) 672-1811 in California 
(800) 223-3248 in Canada 

Outside the USA and Canada: 
(408) 749-7306 

Licensing 
The GENIXIV.3 operating system is provided under 
license from National Semiconductor Corporation. 
The Source License under Contractor Provisions pro­
vides non-exclusive rights to use the GENIXIV.3 oper­
ating system source for internal purposes. A separate 
Binary Distribution License provides right to distribute 
binary copies and includes per copy royalty rates. To 
obtain licensing information, contact your National 
Semiconductor sales engineer. 

Ordering Information 
NSW-GV3-SRNX GENIXIV.3 source on reel-to­

reel 9-track tape 
NSW-GV3-SCNX GENIXIV.3 source on 9-track 

cartridge tape 



,--------------------------------------------------------------------------, ~ 
~ National Semiconductor 

Series 32000® Real-Time Software 
Components VRTX, lOX, FMX and TRACER 

VRTX/Series 32000 R&D Package 

APPLICATION PROGRAM 

BASIC SYSTEM I I/o SYSTEM USER-DEFINED 
CALL HANDLERS CALL HANDLERS SYS CALL HDLRS 

TASK MANAGEMENT, VRTX 
COMMUNICATION AND EXTENSIONS 

SYNCHRONIZATION, AND II I I MEMORY ALLOCATION ISR ISR ISR 

PROM I I MICRO- I CHAR I CLOCK I OTHER 
RAM PROCESSOR I/O DEV PERIPHERALS 

• Real-time executive for Series 32000 
embedded systems 

• Can be installed in any Series 32000 
hardware environment 

• Manages multitasking with priority-based 
scheduler 

• Manages memory pool, mailboxes, 
timing and terminal 1/0 

• Can reside in PROM and be located 
anywhere in memory 

The VRTX® ISeries 32000 executive is the central 
member of a set of silicon software building blocks 
used in Series 32000-based real·time embedded sys­
tems. The executive manages the multitasking envi­
ronment and responds to operating system service re­
quests from application tasks. 
The executive can be used alone or in combination 
with the other silicon software components to build a 
more complete operating system. The 10X® ISeries 
32000 and FMX® ISeries 32000 components support 
a file system that is media-compatible with PC-DOS. 
The TRACERTM/Series 32000 is an interactive multi-

7-19 

TLlGG/8781-1 

• No requirements for particular timers, 
interrupts or busses 

• Has hooks at key processing points for 
easy customization 

• Comprehensive manuals with many 
examples 

• Hot-line technical support 
• Integrated with interactive multitasking 

debugger (optional) 
• Integrated with PC-DOS compatible file 

system (optional) 

tasking debugger that can be used in VRTX-based 
systems for debug, download and test. 
All the components can reside in PROM's installed in 
the target system. They can be placed anywhere in 
the address space and make minimal assumptions 
about the hardware environment. Small user-written 
routines supply information about the local implemen­
tation of interrupts, timers, 1/0 devices, etc. Applica­
tion tasks interface to the components with Series 
32000 SVC (Supervisor Call) interrupts, thus code for 
the components does not require linking with user­
written code. 

CD ... 
gj" 
(.) 
I\) 
c c 
c 
:::c 
CD 
I» 

!4 
3' 
CD 
~ o 

~ 
C;; 
o o 
3 
"a o 
::J 
CD 
::J -en 
< :::c 
;! 
o 
,?< 
." s:: 
>< 
I» 
::J 
C. 
-I :::c » o m 
:::c 

,. 



~r---------------------------------------------------------~ 
1&.1 

~ 
I­
'a 
C 

'" >< 
::E 
II. 

a 
g 
> 
s c 
~ 
8. 
E 
[3 
! 

I 
CII 
E 
~ 
'" ~ 

Q 
Q 
Q 
IN 
('I) 

rn 
CII 
'i:: 
CII 
U) 

VRTX Features 
Task Management 

The basic logical unit controlled by VRTX is the task. 
The task is a logically complete path through user 
code that requires system resources. Each task has a 
priority level used by VRTX to determine how access 
to the CPU is allocated. Up to 256 priority levels are 
available. VRTX allocates the CPU sequentially to the 
highest priority task that is ready to execute. Tasks 
can create, delete, suspend, and modify the priority of 
themselves and other tasks. Task delays and time­
slicing are also available. 

Intertask Communication and Synchronization 

Tasks can communicate and synchronize with other 
tasks via exchange of pointer-length messages 
through mailboxes. These permit mutual exclusion 
and resource-locking. VRTX also has directives for dy­
namically building and managing message queues. 

Interrupt Services 

VRTX has directives for user-written interrupt handlers 
that provide the interface between tasks and devices. 
They permit the interrupt handler to influence the 
scheduling of critically important tasks. Additionally, 
almost all of the VRTX facilities are available to inter­
rupt routines, so system services can be performed 
immediately upon receipt of an interrupt. 

Memory Management 

VRTX provides directives for managing the free mem­
ory pool. To minimize fragmentation and overhead, 
storage is allocated and released as fixed size blocks 
from within memory partitions. Partitions can be built 
dynamically. There are no constraints on block size. 

Special Device Support 

Since many applications require a real-time clock and 
a character I/O device, support for them is integrated 
into VRTX. Designers need only supply a small hard­
ware-dependent interrupt service routine for each. 
VRTX will then manage all the logical operations to 
supply the clock management and character I/O serv­
ices to application tasks and interrupt handlers. 

Extensions 

VRTX accommodates applications with special re­
quirements by supplying three hooks at key points in 
its execution. They permit the designer to modify 
VRTX processing without having to modify VRTX it­
self. Whenever VRTX reaches a hook it checks for the 
presence of an application routine. VRTX hooks are 
called at task create, delete, and context switch. 
There are no constraints on hook use.They can be 
used for saving/restoring the floating-point environ-

7-20 

ment or for maintaining a counter in the task control 
block to monitor task execution. 
The VRTX/Series 32000 R&D Package contains the 
product, manuals and other documentation required 
to develop a real-time application using only the VRTX 
kernel. You can also purchase TRACER/Series 
32000, lOX/Series 32000 and FMX/Series 32000 as 
separate R&D Packages or as bundled combinations. 
When the development phase is complete, contact 
the National Semiconductor Series 32000 Software 
Products Marketing Group to purchase a license to 
incorporate VRTX into products in production vol­
umes. 
National also offers Host-Based Special Volume 
Agreements which include R&D Packages and the 
rights to make unlimited copies of VRTX on a desig­
nated workstation or CPU. Contact the Series 32000 
Product Marketing Group for details. 

Package Contents 
The VRTX/Series 32000 R&D Package contains: 
One master copy of VRTX in two 2732 PROM's 
A boxtop license to make five copies of VRTX (USA 
only) 
Five sets of Hunter & Ready Silicon Software copy­
right labels 
Five VRTX/Series 32000 User's Guides 
A binder containing R&D documentation: 

Getting Started with Silicon Software Components 
How to Write a Board Support Package for VRTX 
Interfacing a Language to Silicon Software Compo­
nents 
Application Notes 

Customer Support information 
VRTX Release Notes 

VRTX Timing Summary 

System Call 
32332 Time 

System Call 
(Cycles) 

SC.-ACCEPT 438 SC_QCREATE 
SC_GBLOCK 611 SC_QINQUIRY 
SC_GETC 508 SC_QPEND 
SC_GTIME 417 SC_QPOST 
SC_LOCK 431 SC_RBLOCK 
SC-YCREATE 951 SC_STIME 
SC_PEND 446 SC_TCREATE 
SC_PEXTEND 955 SC_TDELAY 
SC_POST 616 SC_TDELETE 
SC_PUTC 506 SC_TINQUIRY 
SC_QACCEPT 472 Rechedule 

32332 Time 
(Cycles) 

614 
470 
551 
622 
702 
415 
984 
1257 
917 
593 
671 



r--------------------------------------------------------------------------, 0 

VRTX System Calls 

Type Call Description 

Initialization VRT)LINIT Initialize VRTX 
VRT)LGO Start multitasking 

Task SC_TCREATE Create a task 
Management SC_TDELETE Delete a task 

SC_ TSUSPEND Suspend a task 
SC_TRESUME Resume execution of 

suspended task 
SC_TPRIORITY Change task priority 
SC_TINOUIRY Get task status 
SC_LOCK Disable task 

rescheduling 
SC_UNLOCK Enable task 

rescheduling 

Communica- SC_POST Post message to 
tions mailbox 
Services SC_PEND Pend for message at 

mailbox 
SCJCCEPT Accept message at 

mailbox 
SC_OCREATE Create message queue 
SC_OPOST Post message to 

queue 
SC_OPEND Pend for message 

from queue 
SC_OACCEPT Accept message from 

queue 
SC_OINOUIRY Get queue status 

Memory SC_GBLOCK Get memory block 
Management SC_RBLOCK Release memory block 

SC_PCREATE Create memory 
partition 

SC_PEXTEND Extend memory 
partition 

Timer SC_GTIME Get system time 
Services SC_STIME Set system time 

SC_TDELAY Suspend task 
temporarily 

SC_TSLICE Enable round-robin 
scheduling 

UI_TIMER Post time Increment 
from interrupt 

Character SC_GETC Get a character 
I/O SC_PUTC Put a character 

UI_RXCHR Post received 
character from 
interrupt 

UI_TXRDY Post transmit ready 
from interrupt 

SC_WAITC Wait for special 
character 

Interrupt ULENTER Enter interrupt handler 
Services 

UI_EXIT Exit from interrupt 
handler 

Customer Support 
National Semiconductor offers a one year complete 
technical support period, Extended support provisions 
can be arranged by calling MCS Logistics at the toll­
free numbers which follow. 

7-21 

The MCS Service Technical Support Engineering Cen­
ter has highly trained technical specialists to assist 
customers over the telephone with product related 
technical problems. 
For more information, please call: 

(800) 538-1866 in the USA except for California 
(800) 672-1811 within California 
(800) 223-3248 in Canada 
(408) 749-7306 for rest of world 

Licensing 
All R&D packages are licensed through a National 
Semiconductor Binary Software Licensing Agreement. 
In the United States, breaking the seal on the product 
package indicates acceptance of the terms of the li­
cense; no signature is required. For international sales 
a signed Binary Software License Agreement is re­
quired. If changes are required to the license agree­
ment, contact the National Semiconductor Series 
32000 Software Marketing Group before breaking the 
seal on the package. 

Ordering Information 
NSW-VRTX-BRVM VRTX/Series 32000 in two 2732 

EPROMs, and as files of S-rec­
ords and define-byte records on a 
1600 bpi 9-track VAXIVMS BACK­
UP tape, manuals and R&D docu­
mentation. 

NSW-VRTX-BRVX VRTX/Series 32000 in two 2732 
EPROMs, and as files of S-rec­
ords and define-byte records on a 
1600 bpi 9-track VAX/4.2 bsd 
"tar" tape, manuals and R&D doc­
umentation. 

NSW-VRTX-BLAF VRTX/Series 32000 in two 2732 
EPROMs, and as files of S-rec­
ords and define-byte records 
stored in MS-DOS format on a 5% 
inch PC-DOS floppy diskette, 
manuals and R&D documentation, 

NSW-VRTX-SPNN VRTX/Series 32000 source code 
listing. 

Documentation 
NSP-VRTX-M VRTX/Series 32000 User's Guide 

CD .. 
m' 
Co) 
N o o o 
::D 
CD 
I» 

~ 
3 
CD 
o o 

~ 
n; 
o 
o 
3 
'C 
o 
::I 
CD 
::I -til 
< 

~ 
o 
,?< 
'T1 

== >< 
I» 
::I 
C. 
-I 
::D 
l> o m 
::D 

• 



a: 
w 
0 
c:c a: 
I-
'C 
C 
C\:J 

>< 
::i 
IL 

>< 
Q 
>< I-a: 
> 
en -c 
II) 
c 
0 a. 
E 
0 
0 
II) ... 
C\:J 

== --0 
tn 
II) 

E 
i= 
..!. 
C\:J 
II) 
a: 
0 
0 
0 
C'I 
C') 

en 
II) 
'i: 
II) 
tn 

lOX/Series 32000 R&D Package 
I Application Tasks I 

Channel Module 

I Buffered I/O Module 

Direct I/o Module 

Request Management Module 

I Character I/O Module 

a....._DS_R _ ..... 1 ,-I __ IS_R _ ..... 1 ,-I ____ �S_R ___ ..... 

L-____ B_IO_Ck_-_T_ra_n_sf_er_D_ev_~_e ____ ~1 ~1 _______ ch_a_ra_c_te_r_De_vl_ce ______ ~ 

• • 
• 

• 

Input/Output Executive 
Provides device-level input/output 
facilities for VRTX-based software 
system 
Handles the translation of read and write 
commands from tasks into specific 
operations on particular devices 
Handles the allocation of devices to 
tasks 

lOX/Series 32000 is the Input/Output Executive, a 
companion software component for VRTX/Series 
32000. lOX provides embedded microprocessor appli­
cations with a powerful set of input/output (I/O) facili­
ties for use in a multitasking, real-time environment. 
Like VRTX, lOX is a silicon software component; it 
makes no assumptions about its target environment, 
and can thus be used unchanged in many different 
custom applications. lOX manages any number and 
kind of I/O devices in a real-time, multitasking applica­
tion. lOX services allow several tasks to share a single 
device, with requests on that device processed ac­
cording to an application-specified priority. Tasks can 
transfer data to or from devices in buffered or direct 
mode, using either sequential or random access. In 
buffered mode, lOX maintains one or more intermedi-

7-22 

TL/GG/8781-3 

• Handles the conversion of data from 
device-specific formats into user-defined 
formats 

• Can work with most types of 110 devices 
• Has hooks and extension services for 

easy customization 
• Comprehensive manuals with many 

examples 
• Hot-line technical support 

ate buffers for a task using a device, minimizing the 
time of task suspension by overlapping physical 1/0 
with task processing. Buffering isolates application 
tasks from the physical characteristics of devices, so 
that serial devices such as terminals can coexist with 
random access devices such as disks, both accessed 
by the same buffered lOX calls. 
lOX not only controls device resources, it integrates 
those devices into a unified framework, providing a 
consistent I/O interface with a large degree of device 
independence. Application code written using lOX's 
buffered I/O services can be transported with only mi­
nor modifications to other systems, even if those sys­
tems utilize completely different I/O devices. In fact, 
code written in a high-level language may require no 
change at all. 



r--------------------------------------------------------------------------.~ 

For applications that require close control over device 
operations, lOX's direct mode provides a set of serv­
ices that can transfer data or perform device-specific 
control operations and synchronization, yet still free 
the application programmer from some hardware-de­
pendent considerations such as device addresses, 
command codes and interrupt handling" 

lOX Features 
Buffered 1/0 

lOX's buffering services improve performance and 
free the application from device-specific data block 
sizes and formats by transferring data between the 
application and lOX-maintained buffers, overlapping 
physical 1/0 with application processing whenever 
possible. lOX manages the intermediate buffers to 
serve several purposes: 

Device Independence 

Application tasks can ignore the idiosyncrasies of de­
vice operation or block sizes and formats, and can 
transfer fixed or variable length records according to 
application needs, rather than device requirements. 

Overlapping 1/0 

Buffered 1/0 overlaps application processing with file 
110 operations, freeing the application from synchro­
nizing such operations. 

Caching 

For random-access devices such as disks, lOX's buff­
ering services improve performance by checking lOX 
buffers for the sector requested by the application, 
accessing the device only if the target sector is not 
buffer-resident. 

Variable record length support 

With lOX's buffering services, record size can be de­
termined by the presence of a delimiter character in 
the input or output stream, rather than being tied to a 
fixed block size. 

Direct 1/0 

Direct 1/0 allows the programmer to bypass lOX's 
buffering services whenever an application requires 
deterministic control over when and how an 1/0 oper­
ation occurs. 

Synchronous 1/0 

The calling task is suspended until the requested op­
eration is completed and either data or status or both 
have been returned. In this way a lock-step synchroni­
zation is enforced on an 1/0 operation. 

Asynchronous 1/0 

An application using direct 1/0 can initiate one or 
more 1/0 operations and then continue with other pro­
cessing, retrieving the results of the 1/0 later via a 
VRTX mailbox or message queue. This allows 1/0 to 
be overlapped with continued operation of the calling 
task. 

7-23 

Device Support 

lOX supports three device types-block, disk and 
character devices. For each device type lOX provides 
a number of salient features: 

Device sharing 
lOX supports shared devices through constructs 
called channels. A channel is a data structure that 
represents a logical conduit, or path to a device. lOX 
provides separate position and error indicators for 
each channel open to a device, thus facilitating device 
sharing, critical in a multitasking environment. 

Disk position support 

lOX maintains position indicators for disks (or any ran­
dom access devices), thus relieving the application 
from the responsibility for calculating or maintaining 
position. 

Terminal support 

lOX's terminal handling calls support echoing, type 
ahead and holding or disabling terminal output. 

Extensibility 

While lOX never has to be modified, it can nonethe­
less be extended to meet unique needs. 

A user-written 1/0 handler that directly manipulates 
hardware can be placed into the lOX higher-level 
functions. This facility can not only service unusual 
devices, but also emulate a physical device, such as a 
UNIX like "pipe" between separate processes. 

For less fundamental extensions lOX includes four 
software "hooks" that give the system programmer 
the capability to fine-tune lOX functionality so that it 
matches it's computer environment. 

lOX can also be extended by adding auxiliary file man­
agement software components (FMX). 

The IOXISeries 32000 R&D Package contains the 
product, manuals and other documentation required in 
conjunction with VRTXISeries 32000 to develop a 
real-time embedded application which requires ad­
vanced, multitasking, device-level 1/0 facilities for pe­
ripherals. You can also purchase TRACERISeries 
32000 and FMXISeries 32000 as separate R&D 
Packages or as bundled combinations. 

Package Contents 
The IOXISeries 32000 R&D Package contains: 

One master copy of lOX in two 27128 PROMs 

A boxtop license to make five copies of lOX (USA 
only) 

Five Hunter & Ready Silicon Software copyright labels 

Five 10XISeries 32000 User's Guides and Installation 
Guides 

Customer Support Information 

Release Notes 

CD ... 
CD" 
til 
Co) 
N 
C 
C c 
:::0 
CD 
DI 
!j 
3" 
CD 
~ g 
;i 
;;; 
o o 
3 
"0 
o 
::J 
CD 
::J 
fit 
< 
:::0 

;J 

~ 
." s: 
>< 
DI 
::J 
Q. 

~ m 
:::0 

• 



~ ,----------------------------------------------------------------------, 
U.I 

~ 
~ 
t­
"C 
C 
C'a 

>< 
:ill 
LL. 

>< 
Q 

g 
> 
J!! c 
Q) 
c o c. 
E o o 
~ 
C'a 

i 
Q) 

E 
i7 
iij 
Q) 

~ 
o o o 
C'II 
('I) 

~ 
";:: 

~ 

Customer Support 
National Semiconductor offers a one year complete 
technical support period. Extended support provisions 
can be arranged by calling MCS Logistics at the toll­
free numbers which follow. 
The MCS Service Technical Support Engineering Cen­
ter has highly trained technical specialists to assist 
customers over the telephone with product related 
technical problems. 
For more information, please call: 

(800) 538-1866 in the USA except for California 
(800) 672-1811 within California 
(800) 223-3248 in Canada 
(408) 749-7306 for rest of world 

Licensing 
All R&D packages are licensed through a National 
Semiconductor Binary software Licensing Agreement. 
In the United States, breaking the seal on the product 
package indicates acceptance of the terms of the li­
censes; no signature is required. For international 
sales a signed Binary Software License Agreement is 
required. If changes are required to the license agree­
ment, contact the National Semiconductor Series 
32000 Marketing Group prior to breaking the seal on 
the package. 
National also offers a Host-Based Package which in­
cludes the R&D packages ordered and the rights to 
make unlimited copies of VRTX, lOX, FMX and 
TRACER on a designated workstation or CPU or a 
Target-Based Package which includes the rights to 
make unlimited copies of the purchased R&D Pack­
ages (VRTX, lOX, FMX or TRACER) for a specific tar­
get product. 

Ordering Information 
NSW-IOX-BRVM lOX/Series 32000 in two 27128 

EPROMs, and as files of S-records 
and define-byte records on a 
1600 bpi 9-track VAXIVMS BACK­
UP tape, manuals and R&D docu­
mentation. 

NSW-IOX-BRVX lOX/Series 32000 in two 27128 
EPROMs, and as files of S-records 
and define-byte records on a 
1600 bpi 9-track VAX/4.2 bsd "tar" 
tape, manuals and R&D documen­
tation. 

NSW-IOX-BLAF lOX/Series 32000 in two 27128 
EPROMs, and as files of S-records 
and define-byte records stored in 
MS-DOS format on 51,4 inch PC­
DOS floppy diskette, manuals and 
R&D documentation. 

7-24 

NSW-IOX-SPNN lOX/Series 32000 source code list­
ing. 

Documentation 
NSW-IOX-MS lOX/Series 32000 Installation 

Guide and User's Guide. 

lOX System Calls 

Type Call Description 

Initialization 10lNIT Initialize lOX 

Channel 100PEN Open channel 
Control 10ClOSE Close channel 
Services 10POSN Set file position 

Buffered 1/0 10GET Read byles 
Services 10PUT Writebyles 

Direct 1/0 10READ Read block 
Services 10WRITE Write block 

10WAIT Wait for 1/0 completion 

10RESET Reset channel 
10CNTRl Perform device control 

Device 10DFBlK Define general-block 
Definition device 
Services 10DFCHR Define character device 

10DFDSK Define disk device 
10RMDEV Remove device 

definition 

Device 10POST Post 1/0 request 
Interface completion 
Services 10STMR Start device timer 

10CTMR Cancel device timer 
10TIMER Announce device 

timer interrupt 

10RXCHR Put character into 
input buffer 

10RXCHM Put multiple characters 
into input buffer 

10ECHO Put character into 
echo buffer 

10ECHOM Put multiple characters 
into echo buffer 

10TXRDY Get character from 
output buffer 

10TXRDM Get multiple characters 
from output buffer 

10EXCPT Call exception routine 

Extension 10ATCHC Attach 1/0 routine 
Services to lOX 



,--------------------------------------------------------------------------, 00 

FMX/Series 32000 R&D Package 
... r--+ 

Interrupt VRTX 
Dispatch VRTX Configuration 

Table Worl<space Table 

SVC Trap 

~ 
VRTX Module 
Table, Entry 

4 Stalic Base :--

Program Base ...... 4 

VRTX 
Code Componenl 

Dsoflware Veclor 
Componenls Table 

• Multitasking, real-time file manager 
• Works in conjunction with VRTX and lOX 
• Can be installed in any Series 32000 

hardware environment 
• Can reside in PROM and be located 

anywhere in memory 
• Allows multiple tasks to access files 

concurrently 

FMX/Series 32000 is the File Management Executive 
for real-time, multitasking microprocessor applications 
based on the VRTX real-time executive. FMX is de­
signed to provide disk file management services for 
VRTX- and lOX-based software systems. Like VRTX 
and lOX, FMX is a silicon software component; it 
makes no assumptions about the target environment. 
FMX permits the organization of related information 
into resources called files and allocates these re­
sources to tasks. The information managed by FMX 
has to be physically resident on a storage device (a 
magnetic disk). Its operations permit tasks to create 
and delete files, to assign attributes to these files, and 
to open lOX channels to them for subsequent use by 
lOX read and write operations. The lOX operations for 

... r--+ 
lOX lOX 

Workspace Code 

1 lOX Module J 
Table Entry 

~ Static Base 
r 

FMX Program Base - Workspace 

FMX Module 
I"""- Table Entry 

IL-+ Sialic Base -r FMX 
Program Base Code 

• Supports buffered and direct I/O 
operations 

TLlGG/8781-4 

• Supports sequential and random access 
for reads and writes 

• Comprehensive manuals with many 
examples 

• Hot-line technical support 
• Supports hierarchical file structure 

compatible with Version 2.0 of PC-DOS 

reading and writing data to devices can then be used 
to read and write data to files instead. 
FMX supports concurrent file accesses, along with 
other multitasking requirements and also supports 
both buffered and unbuffered direct read and write op­
erations. Both sequential and random access meth­
ods are provided. FMX provides operations for creat­
ing and deleting directories, for referencing files rela­
tive to a specifed directory, and operations for mount­
ing and dismounting volumes. 
FMX has a facility for formatting disks, and this facility 
may be used to produce PC-DOS-compatible formats. 

. FMX may be initialized so that it builds files on disks 
that are compatible with the file organization of PC­
DOS. 

7-25 

m ... 
CD' 
en 
Co) 
N o o o 
:XI 
m 
!j 
3' 
m 
00 o -i 
CiJ 
o o 
3 
"a o ::;, 
m 
::;, 
fir 
< 
:XI 

~~ 
(5 
~>< 
"TI 
i: 
>< 
III 
::;, 
C. 
~ 
:XI 

~ 
m 
:XI 

II 



~ r----------------------------------------------------------------------, 
UJ 

~ 
~ 
t­
'0 
C ca 
>< 
::::E 
L&. 

>< 
2 
>< 
li: 
> 
.!! c 
CP c o a. 
E o o 
~ 

~ 
U) 

CP 
E 
i7 
1i 
~ 
o o o 
~ 
:g 

".::: 
~ 

FMX Features 
File Management 

FMX provides system calls for creating and deleting 
files, renaming files, and for getting and setting certain 
file characteristics. The file management calls and the 
directory management calls are implementations of 
the "generic file management operations" defined by 
lOX. lOX provides a thin layer of code that identifies 
these calls, then routes them to FMX for interpretation 
and execution. 

Directory Management Services 

FMX supports a hierarchical directory tree structure. It 
provides calls for creating directories in given directo­
ries and for deleting directories. 

Volume Management Services 

A logical collection of directories on a disk is called a 
volume. FMX provides a set of system calls to deter­
mine the characteristics of a new disk and to intro­
duce the new disk to the system. These functions in­
clude evaluating volume parameters; mounting, dis­
mounting, and synchronizing volumes; and obtaining 
volume attributes. 

Formatting 

Formatting is the process of writing the data address­
ing scheme on the disk or sub-disk. This addressing 
scheme makes it possible for the system to access 
precise locations on the disk so that data can be reli­
ably written to and read from the disk. The FMX for­
mat system call, FDFMAT, provides the necessary 
tools to format disks in a variety of ways suitable for 
most. 

7-26 

Configuration 

FMX is initialized via a special call, FDINIT. Initializa­
tion is the process' by which FMX sets the starting 
values of all its internal data structures and variables. 
FMX must be initialized before it can perform any op­
erations. 
The FMX/Series 32000 R&D Package contains the 
product, manuals, and other documentation required 
in conjunction with VRTX/Series 32000 and IOX/Se­
ries 32000 to develop a real-time embedded applica­
tion which requires advanced, multitasking, file man­
agement services. You can also purchase TRACERI 
Series 32000 as a separate R&D Package. 

Package Contents 
The FMX/Series 32000 R&D Package contains: 

One master copy of FMX in two 27128 EPROMs 
A boxtop license to make five copies of FMX (USA 
only) 

Five Hunter & Ready Silicon Software copyright labels 

Five FMX/Series 32000 User's Guides 

Customer Support Information 
Release Notes 

Customer Support 
National Semiconductor offers a one year complete 
technical support period. Extended support provisions 
can be arranged by calling MCS Logistics at the toll­
free numbers which follow. 



,--------------------------------------------------------------------------, ~ 
The MCS Service Technical Support Engineering Cen­
ter has highly trained technical specialists to assist 
customers over the telephone with product related 
technical problems. 
For more information, please call: 

(800) 538-1866 in the USA except for California 
(800) 672-1811 within California 
(800) 223-3248 in Canada 
(408) 749-7306 for rest of world 

Licensing 
All R&D packages are licensed through a National 
Semiconductor Binary software Licensing Agreement. 
In the United States, breaking the seal on the product 
package indicates acceptance of the terms of the li­
censes; no signature is required. For international 
sales a signed Binary Software License Agreement is 
required. If changes are required to the license agree­
ment, contact the National Semiconductor Series 
32000 Marketing Group prior to breaking the seal on 
the package. 
National also offers a Host-Based Package which in­
cludes the R&D packages ordered and the rights to 
make unlimited copies of VRTX, lOX, FMX and 
TRACER on a designated workstation or CPU or a 
Target-Based Package which includes the rights to 
make unlimited copies of the purchased R&D Pack­
ages (VRTX, lOX, FMX or TRACER) for a specific tar­
get product. 

Ordering Information 
NSW-FMX-BRVM FMX/Series 32000 in two 27128 

EPROMs, and as files of S-rec­
ords and define-byte records on a 
1600 bpi 9-track VAXIVMS 
BACKUP tape, manuals and R&D 
documentation. 

NSW-FMX-BRVX FMX/Series 32000 in two 27128 
EPROMs, and as files of S-rec­
ords and define-byte records on a 
1600 bpi 9-track VAX/4.2 bsd 
"tar" tape, manuals and R&D doc­
umentation. 

7-27 

NSW-FMX-BLAF FMX/Series 32000 in two 27128 
EPROMs, and as files of S-rec­
ords and define-byte records 
stored in MS-DOS format on a 
5% inch PC-DOS floppy diskette, 
manuals and R&D documentation. 

NSW-FMX-SPNN FMX/Series 32000 source code 
listing. 

Documentation 
NSW-FMX-M FMX/Series 32000 User's Guide. 

FMX Service Calls 

Type Call Description 

Initialization FDINIT Initialize FMX 

File FMCREAT Create file 
Management FMDELET Delete file 
Services FMRENAM Rename file 

FMGATIR Get file attributes 
FMSATIR Set file attributes 

Directory FMMKDIR Make subdirectory 
Management FMRMDIR Remove subdirectory 
Services 

File I/O FMOPEN Open file 
Services 

Volume FDMOUNT Mount volume 
Management FDDISMT Dismount volume 
Services FDSYNC Synchronize volume 

FDEVOL Evaluate volume 
parameters 

FDQVOL Get volume attributes 

Formatting FDFMAT Format disk 

CD 
::::!. 
CD 
(II 

Co) 
I\) 
o 
o 
o 
:J:I 
IS 
!i 
3' 
CD 
~ o 

~ 
CiJ 
o o 
3 

"C o 
:::J 
CD 
:::J en 
< 
:J:I 
-I 
~>< 

~ 
." 
3: 
>< 
II) 
:::J 
C. 
-I 
:J:I » o 
m 
:J:I 



~ ,----------------------------------------------------------------------, 
LLI 

~ 
t­
"CI 
C ca 
>< 
== u.. 

~ 
g 
> 
J!! c 
CI) 
c 
o 
Co 
E 
o 
o 
e 

I 
CI) 

E 
i7 
m 
~ 
o o o 
C'I 
CO) 

en 
CI) 
'i: 
CI) 
U) 

VRTX/Series 32000 Board 
Support Package for National's 

Series 32000-Based Boards 

lOT 
CONFIGURATION 

TABLE 

U VRTX 

~ 
TIMER USART Rx 

INTERRUPT INTERRUPT 
HANDLER HANDLER 

• Board support routines for popular 
National Series 32000 boards 

• Brings up a tested VRTX, lOX, FMX and 
TRACER application immediately 

• Includes all code to initialize and run 
VRTX, lOX, FMX and TRACER 

The routines in this package provide all the code 
needed to build and run a simple VRTX application 
(with or without TRACER) on several of National's Se­
ries 32000 boards. The application, which is docu­
mented in the manual "How to Write a 80ard Support 
Package for VRTX", consists of two tasks, one of 
which receives characters from an interrupting char­
acter 1/0 device and posts them to a VRTX mailbox. 
The second task pends at the mailbox for the charac­
ters and outputs them to the 1/0 device using VRTX. 

The VRTX support routines for each board include: 
- Configuration table specific to the board, 

- Device initialization code for National's ICU chip 
(NS32202), 

- Initialization code for the timer and serial 110 chan­
nel, 

- Code to initialize the 32000 data structures includ­
ing the Interrupt Dispatch Table, Module Table and 
stack, 

- Receive and transmit interrupt handler code, 

- Timer interrupt handler code, 
- The application configuration table. 

7-28 

VRTX I TASK TASK 
WORKSPACE 1 2 

USART Tx 
INTERRUPT 
HANDLER 

TL/GG/B7B1 -2 

• Includes code for sample VRTX, lOX, 
and FMX application 

• Routines can be used as templates for 
other boards 

For designers wishing to have the TRACER debugger 
in the system, there are also board support routines 
with the code needed to run the application with 
TRACER. In addition to the code described above, 
these routines include: 

- TRACER configuration table, 
- TRACER initialization code, 

- TRACER character 1/0 handler code 

- VRTX/TRACER interface code. 
For lOX, an example device driver for a serial 1/0 de­
vice and a disk controller are provided, along with all 
of the necessary configuration support software. A 
FMX example is also provided which runs using either 
a ramdisk driver or a disk driver. Example disk drivers 
are provided for several disk controllers. 
VRTX, lOX, FMX and TRACER support routines are 
supplied for National's 0832016, 0832000 and 
08332 development boards. 



,--------------------------------------------------------------------, w 
Product Contents 
VRTX, lOX, FMX and TRACER board support routines 
(written in Series 32000 Assembly Language) for Na­
tional's Series 32000 development boards: DB32016, 
DB32000 and DB332 
Source code for sample tasks described in the manual 
Customer Support Information 
Installation Guide 
Release Documentation 

Prerequisites 
The syntax in the source code files in this product 
conform to the standards and conventions used in Na­
tional's GNX Language Tools Packages. Designers 
wishing to assemble the files will need the GNX Lan­
guage Tools or their equivalent. Users of other soft­
ware development tools may have to modify the 
source code in order to conform to the requirements 
of their tools. 
See the National Semiconductor datasheet titled "Se­
ries 32000 GENIX Native and Cross-Support (GNX) 
Language Tools" for information about National's 
tools. 

Customer Support 
National Semiconductor offers a one year complete 
technical support period. Extended support provisions 
can be arranged by calling MCS Logistics at the toll­
free numbers below. 
The MCS Service Technical Support Engineering Cen­
ter has highly trained technical specialists to assist 
customers over the telephone with product related 
technical problems. 

7-29 

For more information, please call: 
(800) 538-1866 in the USA except for California 
(800) 672-1811 within California 
(800) 223-3248 in Canada 
(408) 749-7306 for rest of world 

Licensing 
All R&D packages are licensed through a National 
Semiconductor Binary Software Licensing Agreement. 
In the United States, breaking the seal on the product 
package indicates acceptance of the terms of the li­
cense; no signature is required. For international sales 
a signed Binary Software License Agreement is re­
quired. If changes are required to the license agree­
ment, contact the National Semiconductor Series 
32000 Software Marketing Group before breaking the 
seal on the package. 

Ordering Information 
NSW-VBSP-SRVM VRTX, lOX and FMX/Series 

32000 Board Support Packages 
on 1600 bpi 9-track reel tape in 
VAXIVMS BACKUP format; 
manual and other documenta­
tion. 

NSW-VBSP-SRVX VRTX, lOX and FMX/Series 
32000 Board Support Packages 
on 1600 bpi 9-track reel tape in 
VAX/4.2 bsd "tar" format; manu­
al and other documentation. 

NSW-VBSP-SLAF VRTX, lOX and FMX/Series 
32000 Board Support Packages 
stored in MS-DOS format on a 
SYS32/20 5% inch PC-DOS 
floppy diskette; manual and other 
documentation. 

CD 
::::l. 
CD 
(II 

c;.) 
~ 
o 
o o 
:::D 
CD 
III 
!j 
3' 
CD 
w o 

~ 
Cil 
o o 
3 
'g 
o 
:::l 
CD 
:::l en 
< 

~ 
o 
.?< 
." 

== >< 
III 
:::l 
Co 
-I 
:::D 

~ m 
:::D 



~ r--------------------------------------------------------------------, 
w 
~ 
~ 
I­
'C 
C 
«I 

>< 
::E 
LL 

>< 
Q 

~ 
~ 
> 
.f!l 
c 
CII 
C o c.. 
E 
o 
(.) 

~ 

I o rn 
CII 
E 
i7 
m 
CII 
~ 
Q 
Q 
Q 
N 
CO) 

Xl 
'0: 
CII rn 

VRTX, lOX and FMX/Series 32000 
Support Libraries 

• Routines encourage writing VRTX, lOX 
and FMX applications in C or Pascal 

• Interface routines matched to National's 
GNX Language Tools 

• Package available on same media as 
National's GNX tools 

• C Run-Time Library extends C for 
concurrent programming 

This package provides libraries that simplify the writ­
ing of VRTX-based applications in C or Pascal rather 
than just Series 32000 Assembly Language. The 
VRTX, lOX and FMX Interface Library enables the de­
signer to make system calls to VRTX, lOX and FMX 
from C or Pascal programs. The C Run-Time Library 
supports the standard function calls made from C pro­
grams and, where appropriate, invokes services from 
VRTX, lOX or FMX. Some of the run-time library rou­
tines require lOX and FMX as well as VRTX. 

Interface Libraries 

Since requests for VRTX, lOX and FMX services are 
made with supervisor calls (SVCs) that can only be 
performed from assembly language programs, a high 
level language program must cali interface routines to 
use VRTX, lOX and FMX services. The interface li­
braries are collections of Series 32000 assembly lan­
guage routines that logically sit between a C or Pascal 
program and VRTX, lOX and FMX. When a function is 
called from the program, the appropriate library rou­
tine accepts the parameters from the caller and per­
forms a Series 32000 supervisor cali (SVC) to VRTX, 
lOX and FMX. When VRTX, lOX and FMX return from 
processing the call, the routine transforms the results 
into the form expected by the caller and returns con­
trol. 
The VRTX, lOX and FMX Interface Libraries contain 
routines to handle calls for task management, inter­
task communications, memory management, timing 
services, simple character 1/0, allocating device re­
sources, providing a consistent 1/0 interface, and disk 
file management. There are no routines for VRTX in­
terrupt handler calls because interrupt handlers are 
typically written in assembly language and can issue 
SVCs directly. 
The interface routines are written in Series 32000 as­
sembly language and delivered in source code form 
as well as in libraries of object modules (GNX "ar" 
format). The assembly language syntax and calling 
sequences conform to the conventions in National's 
GNX Language Tools packages. 

7-30 

• C Run-Time support for standard input­
output (stdio) functions 

• Integrates standard 1/0 run-time library 
(stdio) with real-time services of 
VRTX/OS 

• Hook routines included to add floating­
point support to VRTX 

The VRTX/Series 32000 C Run-Time Library 

The C Run-Time Library provides external run-time 
functions not provided by the C language, It contains 
character and file 1/0, string manipulation, floating­
point routines, storage allocation and file management 
functions. The library functions make calls to the 
VRTX kernel and, for certain 1/0 operations, to lOX 
and FMX. Library functions return an error code if a 
call is made to a VRTXIOS component absent from 
the system. 
If VRTX is operating in a Series 32000 hardware envi­
ronment with National's Floating-Point Unit 
(NS32081), the designer can use hook routines sup­
plied in the library to expand VRTX task management 
to handle the floating-point environment. 
All C Run-Time Library functions are re-entrant, that is, 
they can be used asynchronously by several tasks. 
Tasks can share a common copy of function code to 
save memory space. When a task using a function is 
interrupted by another task before it finishes with the 
function, the interrupting task can use the same copy 
of the function code without corrupting the original 
task's data. 
The C Run-Time Library is delivered as a library of 
object modules (GNX "ar" format). As a convenience 
for the VRTX system designer, the library also con­
tains the object modules for the C Interface Library 
and VRTX hook routines. Like the interface routines 
the hook routines are included in the package in 
source code form. 

Package Contents 
VRTX, lOX, and FMX C Interface Library source code 
(in GNX assembly language) 
VRTX, lOX, and FMX C Interface Library as object 
module library (GNX "ar" format) 
VRTX Pascal Interface Library source code (in GNX 
assembly language) 
VRTX Pascal Interface Library as object module li­
brary (GNX "ar" format) 
C Run-Time Library as object module library (GNX 
"ar" format) 



VRTX C Language User's Guide 
VRTX Pascal Language User's Guide 
lOX C User's Guide 
FMX C User's Guide 

C Run-Time Library User's Guide 
Customer Support Information 
Release Documentation & Installation Guide 

VRTX C Interface Routines and Calling Sequences 
Task Management 

sc_tcreate (task, tid, pri, &err) 
sc_tdelete (tid/pri, code, &err) 
sc_tsuspend (tid/pri, code, &err) 
sc_tresume (tid/pri, code, &err) 
sc_tpriority (tid, pri, &err) 
tcb = sc_tinquiry (info, tid, &err) 
sc_lock() 
sc_unlock( ) 

Communication and Synchronization 
sc_post (&mbox, msg, &err) 
msg = sc_pend (&mbox, timeout, &err) 
msg = sc_accept (&mbox, &err) 
sc_qcreate (qid, qsize, &err) 
sc_qpost (qid, msg, &err) 
msg=sc_qpend (qid, timeout, &err) 
msg=sc_qaccept (qid, &err) 

Memory Management 
block = sc_gblock (pid, &err) 
sc_rblock (pid, block, &err) 
sc_pcreate (pid, paddr, psize, bsize &err) 
sc_pextend (pid, paddr, psize, &err) 

Real-Time Clock 
time = sc_gtime ( ) 
sc_stime (time) 
sc_delay (ticks) 
sc_tslice (ticks) 

Character I/O 
char = sc_getc ( ) 
sc_putc (char) 
sc_waitc (char, &err) 

7-31 

Create Task 
Delete Task 
Suspend Task 
Resume Task 
Change Task Priority 
Task Inquiry 
Disable Rescheduling 
Enable Rescheduling 

Post Messge to Mailbox 
Pend for Message from Mailbox 
Accept Message from Mailbox 
Create Queue 
Post Message to Queue 
Pend for Message from Queue 
Accept Message from Queue 

Get Memory Block 
Release Memory Block 
Create Memory Partition 
Extend Memory Partition 

Get Time 
Set Time 
Delay Task 
Enable Timeslicing 

Get Character 
Put Character 
Wait for Special Character 

en 
(I) ... 
iii' 
III 
(,) 
I\J 
o 
o 
o 
::c 
(I) 
III 

~ 
3' 
(I) 

en 
o -i ... 
(I) 

o o 
3 
-c 
o 
::l 
(I) 
::l 
lil' 
< ::c 
--I 
.?< 
5 
~>< 
'TI 
:5: 
>< 
III 
::l 
c.. 
--I ::c 
~ o 
m 
::c 



a:: 
w 
~ 
J!: 
"C 
C 
ca 
>< 
:::E 
LL 

>< 
Q 
~~ 
a:: 
> 
J!! c 
CI) 
c 
8. 
E 
o o 
e 

I 
CI) 

E 
i7 
m a:: 
g 
o 
N 
M 

m 
';:: 

~ 

lOX C Interface Routines and Calling Sequences 
Direct lID Functions 

iocntrl (chnl, code, &info, opts, &err) 
bytes = ioread (chnl, buf, count, opts, &err) 
ioreset (chnl, opts, &err) 
iowrite (chnl, buf, count, opts, &err) 
iowait (chnl, opts, &arr) 

Buffered lID Functions 
bytes = iogat (chnl, buf, count, opts, &err) 
ioput (chnl, buf, count, opts, &err) 

Channel Control Functions 
chnl = ioopan (david, davtype, opts, &err) 
ioclose (chnl, opts, &arr) 
posn = ioposn (chnl, offsat, opts, &arr) 

lOX System Services-Block Devices 
iopost (&dsrb, opts, &err) 
iostmr (&dsrb, ticks, opts, &err) 
ioctmr (&dsrb, opts, &err) 
iotimer (opts, &err) 

lOX System Services-Character Devices 
rcnt = iorxchr (ddtep, chr, opts, &err) 

rcnt = iorxchm (ddtep, buf, len, opts, &err) 

rcnt = ioecho (ddtep, chr, opts, &err) 
rcnt = ioechom (ddtep, buf, len, opts, &err) 
chr = iotxrdy (ddtep, opts, &err) 

rcnt = iotxrdm (ddtep, buf, len, opts, &err) 

lOX System Services-Device Definition 
ddtep = iodfchr (devid, &desc, &info, opts, &err) 
iodfblk (devid, &desc, &info, opts, &err) 
iodfdsk (devid, &desc, &info, opts, &err) 
iormdev (devid, opts, &err) 

lOX System Services-Initialization, Extension, and Exception 
ioinit (&inipk, &err) 
ioatchc (&atcpk, &err) 
ioexcpt (ecode, opts, &err) 

System Call Function 
sc_call (fcode, &packet, &err) 

7-32 

Perform Device Control 
Read a Block 
Reset lID Channel 
Write a Block 
Wait for Outstanding lID 

Read Bytes 
Write Bytes 

Open a Channal 
Close a Channel 
Set Position 

Post lID Request Completion 
Start a Request Timer 
Cancel a Request Timer 
Announce lID Timer Interrupt 

Put a Character into Receiver 
or Typehead Buffer 
Put Characters into Receiver 
or Typehead Buffer 
Put a Character into Echo Buffer 
Put Characters into Echo Buffer 
Get a Character from Transmitter 
or Echo Buffer 
Get Characters from Transmitter 
or Echo Buffer 

Define a Character Device 
Define a Block Device 
Define a Disk Device 
Remove a Device Definition 

Initialize lOX 
Attach an lID Handler 
Raise an lID Exception 

Call a Component 



r--------------------------------------------------------------------------.w 

FMX C Interface Routines and Calling Sequences 
File Management Functions 

fmcreat (ref_chan, pathname, iniLalloc, options, &err) 
fmdelet (ref_chan, pathname, options, &err) 
fmgattr (ref_chan, pathname, &attr, &timpk, &file_len, options, &err) 
fmrenam (ref_chan, old, new, options, &err) 
fmsattr (ref_chan, path name, attr, &timpk, file_len, options, &err) 

Directory Management Functions 
fmmkdir (ref_chan, pathname, options, &err) 
fmrmdir (ref_chan, path name, options, &err) 

File liD Functions 
channel = fmopen (ref_chan, path name, devtype, options, &err) 
ioclose (channel, options, &err) 
bytes = ioget (channel, buffer, count, options, &err) 
position = ioposn (channel, offset, options, &err) 
ioput (channel, buffer, count, options, &err) 
bytes = ioread (channel, buffer, count, options, &err) 
ioreset (channel, options, &err) 
iowait (channel, options, &err) 
iowrite (channel, buffer, count, options, &err) 

Volume Management Functions 
fddismt (device, options, &err) 
fdevol (&volpk, &err) 
fdfmat (&volpk, &err) 
rooLchan = fdmount (&volpk, &err) 
fdqvol (&volpk, &err) 
fdsync (device, options, &err) 

Initialization Function 
fdinit (&inipk, &err) 

Extension Functions 
hooLaddr = fdhook (func, hbuf) 
sc_call (fcode, &packet, &err) 

7-33 

Create a File 
Delete a File 
Get File Attributes 
Rename a File 
Set File Attributes 

Create a Directory 
Remove a Directory 

Open a Channel to a File 
Close a Channel 
Read Bytes 
Set Position 
Write Bytes 
Read a Block 
Reset liD Channel 
Wait for Outstanding liD 
Write a Block 

Dismount a Volume 
Evaluate Volume Parameters 
Format a Volume 
Mount a Volume 
Query Volume Attributes 
Synchronize a Volume 

Initialize FMX 

Build Hook Routines 
Call a Component 

CD ... 
iii' 
UI 
(,) 
N o 
o o 
XI 
CD 
DI 
:!:j 
3' 
CD 
w 
o 

~ 
CiJ 
o o 
3 

't:I o 
::l 
CD 
::l -UI 

< 
XI 

~ 
(5 
.?< 
." 
iii: 
>< 
DI 
::l 
C. 
-t 
XI » o m 
XI 

• 



~ ,--------------------------------------------------------------------------, 
U.I 
o 
II( 
~ 
J­
'tJ 
C 
tV 

>< 
:::i!i 
LL. 

>< 
Q 
~~ 
~ 
> 
.!! 
c 
II) 
c 
o c.. 
E 
o o 
II) .. 
~ 
(/) 
II) 

E 
i7 
1U 
II) 

~ 
o 
o 
o 
N 
CI) 

fII 
II) 
';: 
II) 
(/) 

VRTX Pascal Interface Routines and Calling Sequences 
Task Management 

sctcreate (task, tid, pri, err) 
sctdelete (tid/pri, code, err) 
sctsuspend (tid/pri, code, err) 
sctresume (tid/pri, code, err) 
sctpriority (tid, pri, err) 
tcb: = sctinquiry (info, tid, err) 
sclock () 
scunlock () 

Communication and Synchronization 
scpost (mbox, msg, err) 
msg: = scpend (mbox, timeout, err) 
msg: = scaccept (mbox, err) 
scqcreate (qid, qsize, err) 
scqpost (qid, msg, err) 
msg: = scqpend (qid, timeout, err) 
msg: = scqccept (qid, err) 

Memory Management 
block: = scgblock (pid, err) 
scrblock (pid, block, err) 
scpcreate (pid, paddr, psize, bsize, err) 
scpextend (pid, paddr, psize, err) 

Real-Time Clock 
time: = scgtime ( ) 
scstime (time) 
scdelay (ticks) 
sctslice (ticks) 

Character I/O 
char: = scgetc ( ) 
scputc (char) 
scwaitc (char, err) 

7-34 

Create Task 
Delete Task 
Suspend Task 
Resume Task 
Change Task Priority 
Task Inquiry 
Disable Rescheduling 
Enable Rescheduling 

Post Message to Mailbox 
Pend for Message from Mailbox 
Accept Message from Mailbox 
Create Queue 
Post Message to Queue 
Pend for Message from Queue 
Accept Message from Queue 

Get Memory Block 
Release Memory Block 
Create Memory Partition 
Extend Memory Partition 

Get Time 
Set Time 
Delay Task 
Enable Timeslicing 

Get Character 
Put Character 
Wait for Special Character 



(J) 
(II 

C Run-Time Library Routines 
.... 
CD" 

Character and String Routines en 
Co) 

bcmp isalnum isdigit isxdigit strcpy strrchr N 
bcopy isalpha islower rindex strcrspn toascii 0 

0 
bfill is ascii isodigit sprintf strlen toint 0 
brev isblank isprint sscanf strncat tolower ::D 
bzero iscntrl ispunct strcat strncmp toupper (II 

I» 
ffs iscsym isspace strchr strncpy swab -;-
index iscsymf isupper strcmp strpbrk upper -t 
iswhite lower reverse strsave strspn 3" 

(II 

Integer Mathematical Routines (J) 

abs atol atoi min max sign 0 -labs rand srand -:s 
Floating-Point Mathematical Routines I» .... 
acos atof exp hypot modf tan (II 

asin cabs fabs Idexp pow sinh 0 
0 atan ceil floor log sin cosh 3 atan2 cos frexp log10 sqrt tanh "1:J 

square idexplo frexplo 0 
::s 

Exception Handling (II 
::s longjmp setjmp -en 

Miscellaneous Routines < 
abort swab exit ::D 

-t 
VRTX Memory Management ~>< 
calloc free malloc realloc rcopy (5 
VRTX 1/0 ,?< 
gets getchar puts printf putchar scanf .." 

lOX & FMX Buffered 1/0 :s::: 
>< clearerr fflush fputc fseek putc setlinebuf I» 

fclose fgetc fputs ftell putw ungetc ::s 
fdopen fgets fread fwrite rewind sscanf Q. 

-t feof fopen freopen getc setbuf xprintf ::D 
ferror fprintf fscanf getw setbuffer xscanf » 
fdreopen sprintf fileno frewind setnbf 0 m 

::D 

• 
7-35 



a: 
w 

~ 
'CI 

i 
>< 
::E u.. 
>< 
2 
~~ 
> 
.!! c 
III 
C o 
CL 
E o 
(.) 

i 
III 
E 
i7 
m 
a: 
C) 
C) 
C) 
C'\I 
C") 

Ie . ;:: 
~ 

Prerequisites 
Compiling source code files and linking members of 
object module libraries requires National's GNX lan­
guage tools (in native or cross support versions) on 
the host system. See the National Semiconductor da­
tasheet titled "Series 32000 GENIX Native and Cross­
Support (GNX) Language Tools" for information. 

Customer Support 
National Semiconductor offers a one year complete 
technical support period. Extended support provisions 
can be arranged by calling MCS Logistics at the toll­
free numbers below. 
The MCS Service Technical Support Engineering Cen­
ter has highly trained technical specialists to assist 
customers over the telephone with product related 
technical problems. 
For more information, please call: 

(800) 538-1866 in the USA except for California 
(800) 672-1811 within California 
(800) 223-3248 in Canada 
(408) 749-7306 for rest of world 

Licensing 
All R&D packages are licensed through a National 
Semiconductor Binary Software Licensing Agreement. 
In the United States. Breaking the seal on the product 
package indicates acceptance of the terms of the li­
cense; no signature is required. For international sales 
a signed Binary Software License Agreement is re­
quired. If changes are required to the license agree­
ment, contact the National Semiconductor Series 
32000 Software Marketing Group before breaking the 
seal on the package. 

Ordering Information 
NSW-VIL-SRVM VRTX/Series 32000 Support Li­

braries on 1600 bpi 9-track reel 
tape in VAXIVMS BACKUP format; 
manuals and other documentation. 

NSW-VIL-SRVX VRTX/Series 32000 Support Li­
braries on 1600 bpi 9-track reel 
tape in VAX/4.2 bsd "tar" format; 
manuals and other documentation. 

7-36 

NSW-VIL-SLAF VRTX/Series 32000 Support Li­
braries stored in MS-DOS format on 
a SYS32/20 5% inch PC-DOS flop­
py diskette; manuals and other doc­
umentation. 

NSW-IIL-SRVM lOX/Series 32000 Support librar­
ies on 1600 bpi 9-track reel tape in 
VAXIVMS BACKUP format; manu­
als and other documentation. 

NSW-IIL-SRVX lOX/Series 32000 Support librar­
ies on 1600 bpi 9-track reel tape in 
V AX/4.2 bsd "tar" format; manuals 
and other documentation . 

NSW-IIL-SLAF lOX/Series 32000 Support librar­
ies stored in MS-DOS format on a 
SYS32/20 5% PC-DOS floppy disk­
ette; manuals and other documen­
tation. 

NSW-FIL-SRVM FMX/Series 32000 Support librar­
ies on 1600 bpi 9-track reel tape in 
VAXIVMS BACKUP format; manu­
als and other documentation. 

NSW-FIL-SRVX FMX/Series 32000 Support librar­
ies on 1600 bpi 9-track reel tape in 
VAX/4.2 bsd "tar" format; manuals 
and other documentation. 

NSW-FIL-SLAF FMX/Series 32000 Support librar­
ies stored in MS-DOS format on a 
SYS32/20 5% PC-DOS floppy disk­
ette; manuals and other documen­
tation . 

Documentation 
NSP-VC-M VRTX C User's Guide 
NSP-RTC-M C Run-Time Library User's Guide 
NSP-VPAS-M VRTX Pascal User's Guide 
NSP-IC-M lOX C User's Guide 
NSP-FC-M FMX C User's Guide 



.--------------------------------------------------------------------------,0 

TRACER/Series 32000 R&D Package 

• Operates without modification in any 
VRTX/Series 32000 hardware 
environment 

• Companion product to VRTX: displays 
VRTX TCB's, mailboxes, queues and 
buffers 

• Operates independently of VRTX; does 
not run as a task 

• Resides in PROM and can be located 
anywhere in memory 

• Allows breakpoints by task or in user-
written system code 

TRACER/Series 32000 is an interactive multitasking 
debugger designed for use with VRTX/Series 32000-
based systems. TRACER runs in parallel with the mUl­
titasking environment rather than as a task. This per­
mits it to monitor and control program execution with­
out competing with tasks for system resources like 
task control blocks and queues. It does not distort 
system behavior by affecting the competition of tasks 
for access to the CPU. Since TRACER has its own 
data structures, it does not depend on the correct exe­
cution of the VRTX-based system for its own execu­
tion. If bugs in an application task cause a system 
crash, TRACER survives and provides a means to di­
agnose the problem. 

There are no dependencies on the host system devel­
opment environment. TRACER is not linked with user 
task code. Installation in a system requires only plug­
ging the TRACER PROMs into the target board, build­
ing a configuration table to tell TRACER about the 
hardware environment, and supplying a small device­
specific interrupt handler for the TRACER communi­
cations I/O channel. TRACER can be hooked into a 
VRTX-based system during development, and re­
moved completely for production. 

TRACER commands are entered interactively via a 
character-oriented device, usually a terminal. When a 
spare I/O channel is available, TRACER can use it; 
otherwise, it can share the terminal associated with 
VRTX's character I/O facility. TRACER command pro-

7-37 

I!III Displays and modifies memory or 
registers by task 

• Provides single-stepping, downloading 
and disassembly 

III Can be extended to support user-
defined features .. Independent of software development 
environment 

• Comprehensive manual with many 
examples 

cessing can be extended by adding user-written rou­
tines (filters) at hooks called before command pro­
cessing, and before displays are sent to the output 
terminal. This permits changes to command syntax, 
macro-like command expansion and customized dis­
plays. 

TRACER supports up to 16 breakpoints, each with a 
unique iteration count. Breakpoints can be set by task, 
which is useful for debugging code shared between 
tasks. Since TRACER operates outside the multitask­
ing environment, it can set breakpoints in I/O routines, 
interrupt service routines, and in user-written system 
code. 

TRACER can display VRTX system structures such as 
task control blocks, mailboxes, queues and I/O buff­
ers in tabular form with their contents interpreted in 
easy-to-read format rather than as memory locations. 
TRACER can examine a range of memory locations 
and display them in hex, ASCII or as disassembled 
code. The contents of a location can be changed, or 
all locations in a range can be set to a value. Regis­
ters can be displayed and modified for any task. For 
non-executing tasks, TRACER can display and modify 
the register values directly in the TCB. A disassembler 
within TRACER can translate binary code into assem­
bly mnemonics. The TRACER on-line help facility also 
provides the programmer with a brief summary of 
TRACER command syntax and options. 

CD ... 
m' 
w 
N 
C) 
C) 
C) 

:xl 
m 
;;j 
3 
CD 
o o 

~ 
(i; 
n o 
3 
'a o 
::s 
CD ::s 
ur 
< 
:xl 

~ 
o 
.?< 
." 
iii: 
>< 
I» ::s 
Q. 

~ 
~ m 
:xl 

II 



~ r-----------------------------------------------------------------------, 
LLI 

~ 
I­
"D 
C ca 
>< 
::iii 
LL. 

>< 
Q 

g 
> 
.! c 
II) 
c o 
D.. 
E 
o 
o 
t!! 

~ o en 
II) 

E 
i7 
"ii 
II) 
~ 

g 
~ 
C') 

U) 
II) ·c 
II) 
en 

TRACER Command Summary 

Breakpoint Commands 
sb Set Breakpoint 
db Display Current Breakpoints 
rb Remove Breakpoint 

Memory and Register Commands 
sm Set Memory 
dm Display Memory in Hex and ASCII 
sr Set Registers for a Task 
dr Display Registers for a Task or System Routine 

Execution Control Commands 
rx Resume Execution 
xs Execute Single Step 
tc Switch to Command Mode 
tt Switch to Tasking Mode 

System Status Commands 
ds Display System Status 
dt Display Task Status 
dq Display Queue Status 
dx Display Mailbox Pends 
di Display Input Buffer Contents & Status 
do Display Output Buffer Contents & Status 

Other Commands 
dl Download Code from Host System 
Ii List Disassembled Code 
he Display TRACER Commands & Arguments 

Package Contents 
The TRACER/Series 32000 R&D package contains: 
One master copy of TRACER in two 27128 PROMs 
A boxtop license to make five copies of TRACER 
(USA only) 
Five sets of Hunter & Ready Silicon Software copy­
right labels 
Five TRACER/Series 32000 User's Guides 
Customer Support information 
TRACER 32000 release notes 

Customer Support 
National Semiconductor offers a one year complete 
technical support period. Extended support provisions 
can be arranged by calling MCS Logistics at the toll­
free numbers below. 
The MCS Service Technical Support Engineering Cen­
ter has highly trained technical specialists to assist 
customers over the telephone with product related 
technical problems. 

7-38 

For more information, please cali: 
(800) 538-1866 in the USA except for California 
(800) 672-1811 within California 
(800) 223-3248 in Canada 
(408) 749-7306 for rest of world 

Licensing 
Ali R&D packages are licensed through a National 
Semiconductor Binary Software Licensing Agreement. 
In the United States, breaking the seal on the product 
package indicates acceptance of the terms of the li­
cense; no signature is required. For international sales 
a signed Binary Software License Agreement is re­
quired. If changes are required to the license agree­
ment, contact the National Semiconductor Series 
32000 Software Marketing Group before breaking the 
seal on the package. 

Ordering Information 
NSW-TRAC-BRVM TRACER/Series 32000 in two 

27128 EPROMs, and as files of 
S-records and define-byte rec­
ords on a 1600 bpi 9-track VAX/ 
VMS BACKUP tape, manuals 
and R&D documentation. 

NSW-TRAC-BRVX TRACER/Series 32000 in two 
27128 EPROMs, and as files of 
S-records and define-byte rec­
ords on a 1600 bpi 9-track VAX/ 
4.2 bsd "tar" tape, manuals and 
R&D documentation. 

NSW-TRAC-BLAF TRACER/Series 32000 in two 
27128 EPROMs, and as files of 
S-records and define-byte rec­
ords stored in MS-DOS format 
on a SYS32/20 5% inch PC­
DOS floppy diskette, manuals 
and R&D documentation. 

NSW-TRAC-SPNN TRACERISeries 32000 source 
code listing. 

Documentation 
NSP-TRAC-M TRACER/Series 32000 User's 

Guide 



~ National Semiconductor 

Series 32000® EXEC 
ROMabie Real-Time Multitasking 

EXECUTIVE 

III Provides a multitasking executive for 
real-time applications 

II Supports all Series 32000 CPUs 
.. Complete Source Code Package 

- Fully user configurable 
- Hardware independent 

.. Extensive user implementation support 
- Unique demo, program introduction 
- C and Pascal interface libraries 
- Sample terminal drivers 
-Integrated with Series 32000 

development boards and monitor 

Product Overview 
EXEC is National Semiconductor's real-time, multi­
tasking executive for Series 32000 based applica­
tions. Its primary purpose is to simplify the task of de­
signing application software and provides a base 'Jpon 
which users can build a wide range of applicatio(1 sys­
tems. EXEC requires only 2K bytes of RAM and only 
4K bytes of ROM and is fully compatible with National 
Semiconductor's Series 32000 family and the Series 
32000 development board family. 

EXEC allows the user to monitor and control multiple 
external events that occur asynchronously in real-

7-39 

USER TASKS 

DEVICE FILE 
DRIVERS SYSTEM 

'User·definable interrupt handlers. 

TL/GG17291-1 

.. ROM able 
• Reconfigurable 
• Real-time clock support for time-of-day 

and event scheduling 
• Allows up to 256 levels of task priority 

which can be dynamically assigned 
• Up to 256 logical channels for task 

communication 
• Free-memory pool control 
• Available for VAXTM/VMSTM, VAX/UNIX® 

and SYS32™ development environments 

time, such as intertask communications, system re­
source access based upon task priority, real-time 
clock control, and interrupt handling. These functions 
greatly simplify application development in such areas 
as instrumentation and control, test and measure­
ment, and data communications. In these applica­
tions, EXEC provides an environment in which sys­
tems programmers can immediately implement soft­
ware for their particular application without regard to 
the details of the system interaction. 

en 
CD .... 
iii' 
III 
(,) 
I\) 
o 
o 
o 
m 
>< m 
(") 

::JJ 
o 
:5: 
II) 
e-
CD 
::JJ 
CD 
II) 

~ 
3' 
CD 

:5: 
s:::: 
;:;: 
;::;: 
II) 
III 
~ 
:5' 
cc 
m 
>< m 
(") 
c 
...... 
<: 
m 



~ r-----------------------------------------------------------------------------~ 

> 
i= 
;:, 
(.) 
~ 
>< 
~ 
0) 
c 

:52 

S 
:;:::l 

"S 
:::E 
Q) 

E 
i7 
1! 
a: 
Q) 

:is 
cu 

:::E o 
a: 
(.) 
~ 
>< 
~ 
o o o 
~ 
o 
Q) 
";: 
Q) 
(f) 

EXEC executive is fully modular and can be readily 
configured to suit application needs. It is both hard­
ware and location independent, thus providing a fun­
damental base on which to build a wide range of appli­
cations systems. In addition, it provides a buslike 
structure that helps to integrate software with the un­
derlying hardware through predefined data structures 
and interconnect procedures. This architecture en­
sures maximum standardization for both compatibility 
and future expansion. 

Features 
Structured Environment-The EXEC executive and 
its associated modules support and encourage modu­
lar, structured programming, thus providing a consist­
ent structure from application to application, which al­
lows experience gained and software written on one 
system to be easily transferred to another. Frequently, 
entire programs may be used in multiple applications, 
even if different CPU boards are involved. 

Hardware-Oriented Interface-The EXEC executive 
provides an intertask and task/executive communica­
tions architecture that is similar to hardware communi­
cations. Instead of an array of "mailboxes" (or "mes­
sage centers"), EXEC uses channels. This interface is 
consistent throughout the range of facilities offered, 
thus reducing the number of concepts to be learned, 
providing greater control at the task level, and increas­
ing the efficiency of the system and the programming 
effort. 
Wide Choice of CPUs-EXEC is compatible with the 
full line of 32-bit Series 32000 CPUs offered. These 
include the NS32008, NS32032, and the NS32C016. 
Users will be able to move a NS32016 system: 

• to an NS32008 for cost-effectiveness, 
• to an NS32032 for increased computing power, or 

• to an NS32C016 for low-power applications. 
Time-Of-Day Clock-The EXEC executive has an in­
tegral system/time-of-day clock. Included is a real­
time clock configurable to a resolution of 1 ms. This 
eliminates the need to allocate the extra memory oth­
erwise required for this feature. 

Small Nucleus-The EXEC nucleus was hand-coded 
in assembly language rather than being compiled from 
intermediate or high-level languages. The resulting 
product is therefore smaller and allows the incorpora­
tion of more features within an optimum size. 
Priority-Oriented Scheduler-The EXEC scheduler 
ensures that the highest priority task that is ready to 
execute is given control, so the system is responsive 
to its external world. Dynamic reprioritization of tasks 

7-40 

is supported for the most sophisticated of multitasking 
systems. 

Real-Time Speed-Because EXEC was hand-coded 
in assembly language, several advantages with regard 
to speed are gained. Task swapping, channel and 
message management, and I/O interfacing are exe­
cuted more quickly than could be expected of a sys­
tem written in a higher level language. 

Direct Interrupt Processing-The EXEC architec­
ture employs interrupt channels which allow device­
specific interrupt handling routines to interface directly 
with the interrupt source. This accomplishes servicing 
of interrupts without the overhead of task swapping, 
yet allows the operating system to maintain the integ­
rity of the system. Combining this interrupt service ar­
chitecture with a device-efficient nucleus results in an 
operating system that better supports demanding, 
real-time applications. 

User Configurability-EXEC executive-based appli­
cations may be configured from a wide range of facili­
ties, selecting only those that meet the specific re­
quirements of the application system. The resultant 
system contains only the modules necessary for its 
use, allowing the EXEC executive to fit a wide range of 
applications from small, special-purpose, dedicated 
applications to large, general-purpose systems. 

Event Driven-In the EXEC executive, each user task 
exists in its own "closed environment"-a virtual proc­
essor. Each virtual processor can synchronize with ex­
ternal/internal occurrences through events. EXEC 
supports a wide variety of events, including synchroni­
zation with task activities, external device operations, 
and the real-time clock. 
Memory Pool Manager-The EXEC executive has 
an integral memory pool manager. This feature not 
only reduces the amount of RAM required in an appli­
cation system (potentially reduces board count), but 
also allows active modules more buffer area within 
any given space constraint. 

Internal Structure 
EXEC may be viewed as composed of a set of func­
tions. These functions are: 
1. Nucleus- performs task and channel management 

and controls executing memory. 

2. Timer Manager-performs time-dependent control. 
3. Dynamic Task Dispatcher-performs dynamic crea­

tion and installation of tasks at run-time. 

4. Dynamic Channel Controller-performs dynamic 
creation and installation of software and interrupt 
channels at run-time. 

5. Memory Pool Manager-performs memory alloca­
tion and deallocation. 



~----------------------------------------------------------------------,~ 

The Timer Manager, Dynamic Task Dispatcher, Dy­
namic Channel Controller, and the Memory Pool Man­
ager all operate under direction of the Nucleus, which 
assigns tasks to run on the hardware CPU. 

System Functions 
EXEC controls CPU allocation by resolving conflicting 
needs of individual tasks, and monitors external 
events. The Event Manager, Task Manager, Channel 
Manager, Memory Manager, and Timer Manager pro­
vide system facilities that are directly accessible from 
the user task level. A representative sampling of sys­
tem functions are summarized below: 
• Task and Event Management 

1. TSKBD -Build a task and schedule it to run. 
2. SUSPD -Suspend a task. 
3. GTPRI -Get task priority. 
4. STPRI -Change run-time task priority. 
5. WAITE -Wait for an event or combination of 

6.TSTEV 

c 
P 
U 

event to occur before resuming task 
processing. 

-Test the current state of an event. 

c::J 
HARDWARE TIMER 
INTERRUPT INTERRUPT' 

* 
* 
* 
* -*-

RAM POOL 

• Mayor may not be from 32202 ICU. 

• Intertask Communication 
1. RECV(W) -Receive data from a channel and, 

optionally, wait for an event to occur. 
2. SEND(W) -Send a message to a channel and, 

optionally, wait for an event to occur. 
3. SIGNL -Synchronize with another task 

through event flags; signal completion. 
4. BLDSC -Build software channel. 

• Interrupt Handling 
1. INTEX -Interrupt exit from executive. 
2. BLDIC -Build an interrupt channel. 
• Memory Pool Management 

1. ALLOC -Allocate a block of pooled memory. 
2. DALOC -Deallocate memory back to pool. 
• Timer Management 
1. MRKT(W) -Mark a time delay and, optionally, wait 

for an event to occur. 
2. CMRKT -Cancel previously posted mark-time 

event. 
3. GTIMD -Get current time of day. 
4. STIMD -Set current time of day. 

- I--

DEVICE * 
DRIVERS 

USER TASKS 

FILE * 
SYSTEM 

- - -, 

_ _ _ _ _ _ _ FA.E!!-ITI~ 

TLlGG17291-2 

FIGURE 1. EXEC Structure 

7·41 

CD 
:::l. 
CD 
1/1 
Co) 
r.l 
o 
o 
o 
m 
>< m 
(") 

:::c o 
3: 
III 
C" 
CD 
:::c 
CD 
!!!. 
::t 
3 
CD 

3: 
c:: 
;:;: 
;:::;: 
III 
1/1 
;10;" 
S· 

CQ 

m 
>< m 
(") 
c: 
-I 
<: m 

• 



~ r-----------------------------------------------------------------------------, 
> 
i= 
;:) 

o 
~ 
>< 
~ 
0) 
c 
~ en 
S 
:;::: 
'3 
:E 
CP 
E 
i7 
1 a: 
CP :a 
CIS 
:E o a: 
o 
~ 
>< 
~ 
o o o 
~ 
m 
';: 
CP 

U) 

Ordering Information 
VAX/VMS Environment 

Order Number: NSW-EXEC-SRVM* 

Shipping Configuration: Software on 1600 bpi magnet­
ic tape (9-track VMS copy format). EXEC reference 
manual. 

Prerequisite: NSW-ASM-BRVM cross software pack­
age, at current revision level. 

VAX/UNIX Environment 

Order Number: NSW-EXEC-SRVX' 

Shipping Configuration: Software on 1600 bpi mag­
netic tape (UNIX tar tape format). EXEC reference 
manual. 

Prerequisite: NSW-ASM-BRVX' cross software pack­
age, at current revision level. 

7-42 

SYS32/20, SYS32/30 Environments 

Order Number: NSW-EXEC-SLAF 

Shipping Configuration: Software on SYS32 format 
streamer tape cartridge. EXEC reference manual. 
Prerequisite: SYS32/20 or SYS32/30 Development 
System with current revision level software. 

Documentation 
EXEC ROMabie Real-Time Multitasking EXECUTIVE 
Reference Manual. Included with software package. 
May also be ordered separately. 

Order Number: NSP-EXEC-M 
'Software license agreement must be signed prior to order entry. 



Section 8 
Application Notes 



Section 8 Contents 
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone 

Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
AB-27 Use of the NS32332 with the NS32082 and the NS32201 . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral. . . . . . . . . . . . . . • . . . . . . . . . . . . 8-6 
AN-404 10 MHz, No Wait States NS32016 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 
AN-405 Using Dynamic RAM with Series 32000 CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25 
AN-406 Interfacing the Series 32000 CPUs to the MUL TIBUS ........ . . . . . . . . . . . . . . . . . . . . 8-32 
AN-464 Effects of NS32082 Memory Management Unit on Processor Through Put. . . . . . . . . . 8-37 
AN-513 I nterfacing Memory to the NS32532 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-41 
AN-524 Introduction to Bresenham's Line Algorithm Using the SBIT Instruction; Series 32000 

Note 5.......................................................................... 8-67 
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2 .. .. .... ... . .. 8-77 
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3. . . . . . . . . . . . . . . . . . . 8-80 
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note 4. . . . . . . . . . . . . . . . . . . . . . . . . 8-84 
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6 . . . . . . . . . . . . . . . . 8-93 
AN-530 Bit Mirror Routine; Series 32000 Graphics Note 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-99 

8-2 



~ 
~ 

Instruction Execution National Semiconductor m • 
Application Brief 26 

1\:1 
Q) 

Times of FPU NS32081 Systems & Applications Group 

Considered for 
Stand-Alone Configurations 

The table below gives execution timing information for the 
Number of FPU NS32081. 

The number of clock cycles nCLK is counted from the last 
Operation Clock·Cycles 

SPC pulse, strobing the last operation word or operand into nClK 

the FPU, and the Done-SPC pulse, which signals the CPU Add, Subtract 63 
that the result is available (see Figure 1). The values are 

Multiply Float 37 therefore independent of the operand's addressing modes 
and do not include the CPU/FPU protocol time. This makes Multiply Long 51 
it easy to determine the FPU execution times in stand-alone 

Divide Float 78 configurations. 

The values are derived from measurements, the worst case Divide Long 108 
is always assumed. The results are given in clock cycles Compare 38 
(CLK). 

SPC 

CLK 

TL/EE/8760-1 

FIGURE 1 

8-3 



~ r---------------------------------------------------------------------------~ 

i Use of the NS32332 with 
the NS32082 and the 
NS32201 

Care should be taken when the NS32332 is designed in a 
system with the NS32201 and the NS320B2. Two configura­
tions need to be considered, one with MMU and one with­
out. 

In a configuration without an MMU, TCU and CPU both run a 
four clock cycle bus (Figure 1). The ROY signal is the only 
incompatible signal between the CPU and TCU and there­
fore the ROY output of the TCU should not be directly con­
nected to the ROY input of the NS32332. The NS32332 
samples its ROY input in the middle of T3 while the 
NS32201 asserts its ROY output shortly after the middle of 
T2 and removes it shortly after the middle of T3, thus the 
NS32332 ROY input hold time (tROYh) is not met. To meet 
tROYh, the ROY output of the NS32201 should be clocked 
by the rising edge of the CTTL using a Ootype flip-flop 
(74AS74) and then taken to the NS32332. It should be not­
ed that the NS32332 outputs the data in a write cycle in T3 
unless OT/SOONE pin is sampled low on the rising edge of 
the reset in which case the data is output during T2. The 
OT/SOONE pin is implemented as of revision B of the 
NS32332. 

TCU states 

NS32332 states 

PHil 

PHIU 
74AS74 

NS32332 ADS output 

WAIT STATES IF NEEDED-TCU ROY output 

TCU ROY a.OCKm BY em (Q) 

TLlEE/8761-2 TCU TSO 

TCU iiii. ViR 

TCU DOE 

National Semiconductor 
Application Brief 27 
Systems Applications Group 

In a configuration with MMU the NS32332 runs a four clock 
cycle bus while the NS320B2 runs a five cycle bus. Two 
options can be exercised. 

The first option is extending the NS32332 bus cycle to five 
clocks by adding a blind wait state that bypasses the 
NS32201 (Figure 2). This configuration generally requires 
the minimum hardware modification for a 320xx based de­
sign to run the NS32332. Here the NS32201 output Signals 
can be used to interface the NS32332 and the NS320B2 to 
the memory or 1/0. Additional wait states can be inserted by 
clocking the ROY output of the TCU. 

The second option is to have the NS32332 run a four clock 
cycle bus (Figure 3). In this configuration the NS32201 out­
put Signals cannot be used to interface the NS32332 to 
memory or 1/0; they can only be used to interface the 
NS320B2 to the memory. In this configuration a revision N 
of the NS320B2 should be used. 

T1 T2 T3 T4 

T1 12 T3 T4 

] WEETS THE NS32332 SPEC 

TL/EE/8761-1 

FIGURE 1. NS32332, TCU Timing Diagram, No Wait State, No MMU 

B-4 



TCUatat.s T1 12 " " 
NS32082 .... U statls T1 T .... u T2 " " 

N532332statlS T1 T .... U T3 T3 " 
PHil 

PHI 0 

14532332 ADS output 

.. wu iiiV output 

14532332 RDYlnput(bllnd walt) 

TCURDYoutput 

Teu RDY CLOCKED BY em 

TCUTSOoutput 

Teu Rii,WR outputs 

TLlEE/8761-3 

FIGURE 2. NS32332, MMU, TeU Timing Diagram when NS32332 is Run with 1 Wait State 
Similar to Timing Diagram of NS32332 Adapter to D832000 

Rii,Wi 

TCUslgnals TSO 

ODE ._.:I....-+-_+-,./ 
TL/EE/8761-4 

FIGURE 3. NS32332, MMU, TeU Timing Diagram with No Wait State 

8-5 

~ m . 
N ..... 



~ r----------------------------------------------------------------------------, 
CD 

~ 
cc 

Interfacing the NS32081 as 
a Floating-Point Peripheral 

This note is a guide for users who wish to interface the 
NS32081 Floating-Point Unit (FPU) as a peripheral unit to 
CPUs other than those of the Series 32000 family. This is 
not a particularly expensive procedure, but it requires some 
in-depth information not all of which is available in the 
NS32081 data sheet. Four basic topics will be covered here: 

An overview of the architecture of the NS32081 as seen 
in a stand-alone environment. 

The protocol used to sequence it through the execution 
of an instruction. 

Special guidelines for connecting and programming the 
NS32081 as a peripheral component. 

A sample application of these guidelines in the form of a 
circuit interfacing the NS32081 to the Motorola 68000 
microprocessor. 

References are made here to the NS32081 data sheet and 
the Series 32000 Instruction Set Reference Manual (Publi­
cation #420010099-001). The reader should have both 
these documents on hand. 

1.0 Architecture Overview 
1.1 REGISTER SET 

The register set internal to the NS32081 FPU is shown in 
Rgure 1. It consists of nine registers, each 32 bits in length: 

FSR The Floating-Point Status Register. As given in the 
data sheet, this register holds status and mode in­
formation for the FPU. It is loaded by executing the 
LFSR instruction and examined using the SFSR in­
struction. 

FO-F7 The Floating-Point Registers. Each can hold a sin­
gle 32-bit single-precision floating-point value. To 
hold double-precision values, a register pair is refer­
enced using the even-numbered register of the pair. 

+- 32 ~ 

+- 32 ~ Fo .... 1 _____ ...J 

I Floating PI. Status I FSR F11 

~======~ 

::I~==========~ 
F41 
:=:::============~ Fsi 
:========~ Fsi 

F7!:==============: 

FIGURE 1. FPU Registers 

National Semiconductor 
Application Note 383 
Microprocessor Applications 

Engineering 

Floating-point operands need not be held in registers; they 
may be supplied externally as part of the instruction se­
quence. Integer operands (appearing in conversion instruc­
tions) and values being transferred to or from the FSR must 
be supplied externally; they cannot be held in Floating-Point 
registers FO-F7. 

1.2 INSTRUCTION SET AND ENCODING 

The encodings used for NS32081 instructions are shown in 
Figure 2. They fall within two formats, labeled from Series 
32000 tradition "Format 9" and "Format 11". These for­
mats are distinguished by their least-significant byte (the "10 
Byte"). Execution of an FPU instruction starts by passing 
first the 10 Byte and then the rest of the instruction (the 
"Operation Word") to the FPU. 

Fields within an instruction are interpreted by the FPU in the 
same manner as documented in Chapter 4 of the Series 
32000 Instruction Set Reference Manual, with the exception 
of the 5-bit General Addressing Mode fields (gen1, gen2). 
Since the FPU does not itself perform memory accesses, it 
does not need to use these fields for addressing calcula­
tions. The only use it makes of these fields is to determine 
for each operand whether the value is to be found internal 
to the FPU (that is, within a register FO-F7, or whether it is 
to be transferred to and/or from the FPU. See Figure 3. A 
value of 0-7 in a gen field specifies one of the Floating­
Point registers FO-F7, respectively, as the location of the 
corresponding operand. Any greater value specifies that the 
operand's location is external to the FPU and that its value 
will be transferred as part of the protocol. Any non-floating 
operand is always handled by the FPU as external, regard­
less of the addressing mode specified in its gen field. It is 
illegal to reference an odd-numbered register for a double­
precision operand. If an odd register is referenced, the re­
sults are unpredictable. 

1.3 PINOUT 

The FPU is packaged in a 24-pin DIP (see Figure 4). The pin 
functions can be split into two groups: those that partiCipate 
in the communication protocol between the FPU and the 
host system, and those that reflect the familiar requirements 
of LSI components. 

The protocol uses the following pins of the FPU: 

8-6 

00-015 The 16-bit data bus. The DO pin holds the 
least-significant bit of data transferred on the 
bus. 

SPC A dual-purpose pin, low active. SPC is pulsed 
low from the host system as the data strobe 
for bus transfers. SPC is pulsed low by the 
FPU to signal that it has completed the inter­
nal execution phase of an instruction. 



r--------------------------------------------------------------------,~ 

1.0 Architecture Overview (Continued) 

STO, STl The status code. This 2-bit value is sampled 
by the FPU on the falling edge of SPC, and 
informs it of the current protocol phase. STO 
is the least-significant bit of the value. The 
need filled by the status code is most rele­
vant to Series 32000-based systems, where it 
serves to allow retry of aborted instructions 
and to disambiguate the protocol when the 
SPC signal is bussed among multiple slave 
processors. In microprocessor-based periph­
eral applications, the status code can gener­
ally be provided from the CPU's address 
lines. 

8 7 o 

i 001 1 1 1 1 0 

~----------~--------~}\ T ) 

OPERATION WORD ID BYTE 

Format 9: lFSRISFSR/Conversions 

o 

1 1 110 

'-----~-----'} 

OPERATION WORD ID BYTE 

Format 11: Movement/Calculation 

FIGURE 2. FPU Instruction Formats 

16 BIT 
DATA BUS 

AID 0-15 00-15 
SERIES STO 

... r, 
STO NS32081 

32000 S11 S11 FPU 
CPU SPC SPC rr RST r ClK 

RST CTn 

NS32201 
TCU 

TL/EE/B3BB-l 

The pins providing for standard requirements are: 

ClK The clock input. This is a TIL-level square 
wave which the FPU uses to sequence its in­
ternal calculations. 

RST The reset input. This signal is used to reset 
the FPU's internal logic. 

VCC The 5-volt positive supply. 

GNDB, GNDl The grounding pins. GNDB serves as ground 
for the FPU's output buffers, and GNDl is 
used for the rest of the on-chip logic. 

FPU Internal Register: Fn, n=O ... 7 
long Floating = Even Register Only 

10111xlxlxl 

111 X 1 X 1 X 1 xl 

External to FPU 
Note: All non~floating operands are always external. 

FIGURE 3. FPU Addressing Modes 

010 Vee 

09 STO 

08 S11 

07 SPC 

06 011 

05 012 

04 
NS32081 013 

FPU 
03 014 

02 015 

01 15 RST 

DO ClK 

GNDl 12 13 GNDB 

Top View 
TL/EE/B3BB-2 

FIGURE 4. NS32D81 FPU Connections 

8-7 

Z 
cA 
C» 
Co) 



2.0 Protocol 
The FPU requires a fixed sequence of transfers ("protocol") 
in its communication with the outside world. Each step of 
the protocol is identified by a status code (asserted to the 
FPU on pins sTO and sT1) and by its position in the se­
quence, as shown in Figure 5. 

Status Combinations: 
11: Write 10 Byte 
01: Transfer Operation/Operand 
10: Read Status Word 

Step Status Action 
1 11 CPU sends 10 Byte on least-significant 

byte of bus. 
2 01 CPU sends Operation Word, bytes 

swapped on bus. 
3 01 CPU sends required operands, gent 

first, least-significant word first. 
4 xx FPU starts internal execution. 
5 xx FPU pulses SPC low. 
6 10 CPU reads Status Word (Error/Com-

parison Result). 
7 01 CPU reads result (if any), least-signifi-

cant word first. 

FIGURE 5. FPU Instruction Protocol 

Steps 1 and 2 transfer the instruction to the FPU. Step 1 
transfers the first byte of the instruction (the 10 Byte) and 
Step 2 transfers the rest of the instruction (the Operation 
Word). In Step 2, the two bytes of the Operation Word must 
be swapped on the bus; i.e. the most-significant byte of the 
Operation Word must be presented on the least-significant 
byte of the bus. 

Step 3 is optional and repeatable depending on the instruc­
tion. It is used to transfer to the FPU any external operands 
that are required by the instruction. The operand specified 
by gen t is sent first, least-significant word first, followed by 
the operand specified by gen2. If an operand is only one 
byte in length, it is transferred on the least-significant half of 
the bus. 

The FPU initiates Step 4 of the protocol, internal computa­
tion, upon receiving the last external operand word or, if 
there are no external operands, upon receiving the Opera­
tion Word of the instruction. During this time, the data bus 
may be used for any purpose by the rest of the system, as 
long as the SPC pin is kept pulled up by a resistor and is not 
actively driven. 

Step 5 occurs when the FPU completes the instruction. The 
FPU pulses the SPC pin low to acknowledge that it is ready 
to continue the protocol. This pulse is called the "Done 
pulse". The bus is not used during this step, and remains 
floating. 

In Step 6, the FPU is polled by reading a Status Word. This 
word indicates whether an exception has been detected by 
the FPU. In the Compare instruction (CMPf), it also displays 
the relationship between the operands and serves as the 
result. This transfer is mandatory, regardless of whether the 
information presented by the FPU is intended to be used. 
See Figure 3-6 of the data sheet. 

B-B 

Step 7 is, like Step 3, optional and repeatable depending on 
the instruction. Any external result of an instruction is read 
from the FPU in this step, least-significant word first. If the 
result is a 1-byte value, it is presented by the FPU on the 
least-significant half of the bus (00-07). 

Note: If in Step 6 the FPU indicates that an error has oc­
curred, it is permissible, though not necessary, to con­
tinue the protocol through Step 7. No guarantee is 
made regarding the validity of the value read, but con­
tinuing through Step 7 will not cause any protocol 
problems. 

If at any time within the protocol another 10 byte is sent 
(sT = 11), the FPU will prepare itself internally to execute 
another instruction, throwing away the instruction that was 
in progress. This is done to support the Abort with Retry 
feature of the Series 32000 family. 

Because of this feature, however, there is an important con­
sideration when using the FPU in systems that support mul­
titasking: the operating system must not allow a task using 
the FPU to be interrupted in the middle of an instruction 
protocol and then transfer control to another task that is 
also using the FPU. The partially-executed instruction would 
be thrown away, leaving the first task with a garbage result 
when it continues. This situation can be avoided easily in 
software but, depending on the system, some cooperation 
may be required from the user program. Other solutions in­
volving some additional hardware are also possible. 

3.0 Interfacing Guidelines 
There are some special interfaCing considerations that are 
required (see Figure 6): 

1. The edges of the SPC pulse must have a fixed relation­
ship to the clock signal (ClK) presented to the FPU. 
When writing information to the FPU, the pulse must start 
shortly after a rising edge of ClK and end shortly after 
the next rising edge of ClK. Failing to do so can cause 
the FPU to fail, often by causing it to freeze and not gen­
erate the Done pulse. This synchronous generation of 
SPC is also important when reading information from the 
FPU, but the SPC pulse is allowed to be two clocks in 
width. These requirements will be expressed in future 
Ns320B1 data sheets as a minimum setup time require­
ment between each edge of the SPC pulse and the next 
rising edge of ClK, currently set at 40 nanoseconds on 
the basis of preliminary characterization. The propagation 
delay in generating SPC through a Schottky flip-flop (e.g. 
74574) and a low-power Schottky buffer (e.g. 74ls125A) 
is therefore acceptable at 10 MHz. ls technology is rec­
ommended for the buffer to minimize undershoot when 
driving SPC. 

2. After the FPU generates the Done pulse, it is necessary 
to leave the SPC pin high for an additional two cycles of 
ClK before performing the Read Status Word transfer. 

3. After performing the Read Status Word transfer, it is nec­
essary to wait for an additional three cycles of ClK be­
fore reading a result from the FPU. 



4.0 An Interface to the MC68000 
Microprocessor 
4.1 HARDWARE 
A block diagram of the circuitry required to interface the 
MC68000 MPU to the NS32081 is shown in Figure 7. 

First the easy part. Direct connections are possible on the 
data bus, which is numbered compatibly (DO-D15 on both 
parts), the status pins STO-STl (connected to address 
lines A4-A5 from the 68000), and the clock (CLK on both). 
The system reset signal (RESET to and/or from the 
MC68000) should be synchronized with the clock before 
presenting it as RST to the FPU. 

All that remains to be done is to generate SPC pulses that 
are within specifications whenever the 68000 accesses the 
FPU, and to detect the Done pulse from the FPU in a man· 
ner that will allow the 68000 to poll for it. 

The approach selected for generating SPC pulses uses an 
address decoder that recognizes two separate address 
spaces; one to transfer information to or from the FPU 
(XFER), and one to poll for the Done pulse (POLL). 

The 68000 signals AS (Address Strobe) and R/W (Read / 
not Write) are used to generate SPC timing. 

Figure 8 shows the timing generated when the 68000 is 
writing to the FPU. The SPC pin is kept floating (held high by 
a pullup resistor) until bus state S4, at which point it is pulled 
low. On the next rising edge of CLK, SPC is actively pulled 
high, and is set floating afterward. It is not simply allowed to 
float high, as the resulting rise time can be unacceptable at 
speeds above about 4 MHz. A timing chain, required due to 
the 10-MHz 68000's treatment of its AS strobe, generates 
the signals TA, TB and TC, from which the SPC signal's 
state and enable are controlled. 

Figure 9 shows the SPC timing for reading from the FPU. 
The basic difference is that SPC remains active for two 
clocks, so that the FPU holds data on the bus until it is 
sampled by the 68000. Again, SPC is actively driven high 
before being released. 

Note: Although SPC must be driven high before being re­
leased, it must not be actively driven for more than 
two clocks after the trailing edge of SPC. This is be­
cause the FPU can respond as quickly as three 
clocks after that edge with a Done pulse. 

A simpler scheme in which the SPC pulse is identical for 
both reading and writing (l-clock wide always, but starting 
% clock later with CLK into the FPU inverted) was consid­
ered, but was rejected because the data hold time present­
ed by the 68000 on a Write cycle would be inadequate 
at 10 MHz. 

Any SPC pulse appearing while the XFER Select signal is 
inactive is interpreted as a Done pulse, which is latched in a 

8-9 

flip-flop within the Done Detector block. When the 68000 
performs a Read cycle from the address that generates the 
POLL select signal, the contents of the flip-flop are placed 
on data bus bit D15. Since this is the sign bit of a l6-bit 
value, the 68000 can perform a fast test of the bit using a 
MOVE.w instruction and a conditional branch (BPL) to wait 
for the FPU. 

The schematic for the SPC generator and the Done pulse 
detector is given in Figures 10a and 10b. The flip-flop la­
beled SPC generates the edges of the SPC pulse (on the 
signal SPCT). The timing chain (TA, TB) provides the enable 
control to the buffer driving SPC to the FPU, as well as the 
signal to terminate the SPC pulse (either TB or TC, depend­
ing on the direction of the data transfer). Note that the tim­
ing chain assumes a full·speed memory cycle of four clocks 
in accessing the FPU, and will fail otherwise. The circuit 
generating the Data Acknowledge signal to the 68000 
(DTACK, not shown) must guarantee this. In any system 
that must use a longer access, some modification to the 
timing chain will be necessary. 

The flip-flop labeled DONE (Figure 10b) is the Done pulse 
detector. It is cleared by performing a data transfer into the 
FPU and is set by a Done pulse on SPC. A buffer, enabled 
by the POLL select signal, connects its output to data bus 
bit 15. 

4.2 SOFTWARE 
Some notes on programming the FPU in a 68000 environ­
ment: 

1. The byte addressing convention in the 68000 differs from 
that of the Series 32000 family. In particular, a byte with 
an even address is transferred on the most-significant 
half of the bus by the 68000, but the FPU expects to see 
it on the least-significant byte. When transferring a single 
byte to or from the FPU, either do so with an odd address 
specified, or transfer the byte as the least-significant half 
of a 16-bit value at an even address. 

2. The 68000 transfers 32-bit operands by sending the 
most-significant 16 bits first. The FPU expects values to 
be transferred in the opposite order. Make certain that 
operands are transferred in the correct order (the 68000 
SWAP instruction can be helpful for this). 

A sample program that sequences the FPU through the exe­
cution of an ADDF instruction is listed in Figure 11. As this 
example is intended for clarity rather than efficiency, im­
provements are possible. The XFER select is assumed to 
be generated by addresses of the form 06xxxx (hex) and the 
POLL select is assumed to be generated by addresses of 
the form 07xxxx. 



10 OPCOOE OPERANDS (DONE) STATUS RESULT 

14\ ' ; ,'--------.,---.: t:;\ '-r' =r 
WHEN WRITING INTO FPU. MUST BE 1 CLOCK WIDE 

\lI SPC PULSE WIDTH: CRITICAL - 1 W AT lEAST 2 CLOCKS HERE 

® AT LEAST 3 CLOCKS HERE 

ClK ~=i ( ® !!!LLONG DELAYS BETWEEN 
_ SPC PULSES ( > 10 MIll/SEC.' 
SPC ./ BUG IN REVISION D. 

TL/EE/8388-3 

FIGURE 6. Interfacing to FPU: Cautions 

A A , .. ~ 

IJL 
STO. ST1 

MC68000 
, 

~ NS32081 

..A XFER + FPU 

A'-~3 D ADDR. BUS , P POll 
SPC 10.0-.. 

TIMING SPC 
ADDR. STROBE .... 

Ai GEN. 

R/iii 
REAO/WRITE 

I DSC 

ClK 
t .... 

ClK ...... J 

RESET 
1-

RST 
LD 

Q 

Do - 0" Do - 0,. --.... .... .... .... 
SYSTEM 

RESET 
4 "DONE" 

:s.7 DETECTOR 

0" ... ~ .. 
) 

DATA BUS , 
TUEE/8388-4 

FIGURE 7_ 68000-32081 Interface Block Diagram 

8-10 



ClK 

ADDR ~-<",, ____ ST_n _AN_D_SE_l_EC_T _VA_Ll_D __ --'}---

R/W 

TA I \ 
TB I \... 
TC I \... 

SPC 
--------, r-

DATA -------------<: VALID }-
TLlEE/B3BB-6 

FIGURE 9. 68000 Read from FPU 

8·11 



('I) 
co 
('I) 

• z 
c( 

AS 

XFER 

CLKin 

74L5D4 

'::" 

+ 

+ 

74574 
5PC 

TO 

Q 

o 

+ 

TC 
Q 

745112 
TC 

ii 

RST 

74500 

FIGURE lOa. Schematic: SPC Timing Generator 

74LS04 

SPC >---d~----r~ 

XFER >-__________ ..1 

DONE 

R 

ii AS 

roll>-------------------4-----~_' 

74lS04 
S 

RESET _~ ....... ---. 0 Q 
74S74 

RST 

74LS02 

74lS125A 

015 >----+ (BUS) 

ii RST 
R 1-+-... ------------4..-------------. (TO FPU) 

L.-~"'" 
ClK 

5PC 
(TO FPUj 

TL/EE/B3BB-7 

~ ________________________________________ ~ClK 

(TO FPU) TL/EE/B3BB-B 

FIGURE lOb. Schematic: DONE Detector and RESET Synchronizer 

8-12 



Register Contents: 

AO = 00070000 
Al = 00060010 
A2 = 00060020 
A3 = 00060030 

DO = OOOOOOBE 
Dl = 00000184 
D2 = 3FBOOOOO 
D3 = 3F800000 
D4 
D5 
D7 

START MOVE.W DO, (A3) 
MOVE.W Dl, (Al) 
SWAP D2 
MOVE.L D2, (Al) 
SWAP D2 
SWAP D3 
MOVE.L D3, (Al) 
SWAP D3 

POLL MOVE.W (AO),D7 
BPL POLL 

MOVE.W (A2),D4 
MOVE.L (Al),D5 
SWAP D5 

Address of DONE flip-flop. 
Address for ST=l transfer (Transfer Operand) • 
Address for ST=2 transfer (Read Status Word). 
Address for ST=3 transfer (Broadcast ID). 

ID byte for ADDF instruction. 
Operation Word for ADDF. (Note bytes swapped.) 
First operand = 1.0. 
Second operand = 1.0. 
Receives Status Word from FPU. 
Receives result from FPU. 
Scratch register (for DONE bit test). 

Send ID byte. 
Send Operation Word. 
Send operands. The swapping 
is included because the 
FPU expects the least­
significant word first. 
(Can be avoided, with care.) 

Check the DONE flip-flop, 
loop until FPU is finished. 
(DONE bit is sign bit, tested 
by the MOVE instruction.) 

Read Status Word. 
Read result. 
Swap halves of result. 

FIGURE 11. Slngle·Preclsion Addition (Demo Routine) 

8-13 



~.---------------------------------------------~~~ 

~ 
~ 

10 MHz, No Wait States 
NS32016 System 

INTRODUCTION 

Recent microprocessor applications such as high resolution 
graphics, multiuser workstations, data communication, in­
dustrial automation, etc. have placed growing demands on 
microprocessor throughputs. Higher throughputs, together 
with increasing complexity of microprocessor systems, re­
quire slave support in addition to high speed, powerful mi­
croprocessors. 

The Series 32000® Microprocessor family serves the needs 
of high end microprocessor applications. The NS32016 
Central Processing Unit (CPU) has a powerful register and 
instruction set. The NS32082 Memory Management Unit 
(MMU) and the NS32081 Floating-Point Unit (FPU) function 
as slave processors for the CPU. All the chips in the family 
run at 10 MHz. Together, the chips provide the throughput 
required by high end microprocessor applications. This ap­
plication note discusses the design considerations for build­
ing a 10 MHz NS32016 system with no wait states. 

Series 32000 Chip Set: 

The NS32016 system described here, uses the Series 
32000 chip set consisting of: 

1. The NS32016 Central Processing Unit (CPU) 

2. The NS32082 Memory Management Unit (MMU) 

3. The NS32081 Floating-Point Unit (FPU) 

4. The NS32201 Timing Control Unit (TCU) 

5. The NS32202 Interrupt Control Unit (ICU) 

Details of the five chips are provided in the Series 32000 
Data Book. Figure 1 illustrates the interconnections of a 
simple NS32016 based system capable of running at 
10 MHz without wait states. As shown in Figure 1, the CPU, 
MMU and FPU are interconnected on a multiplexed Ad­
dress/Data Bus. The TCU provides the clocks and the con­
trol signals required by the system. The multiplexed bus is 
separated into Data and Address buses by using bidirection­
al Data bus drivers and fall-through Address latches. The 
ICU, being a peripheral, is interfaced to the demultiplexed 
Address and Data buses. The ICU Status input (ST1) is driv­
en by a logical combination of ST1 from the CPU and ad­
dress line A5. This allows the CPU to read both the INTA 
and RETI vectors from the SVCT register of the ICU. 

DESIGN CONSIDERATIONS 

The deSign of a 10 MHz Microprocessor system with no wait 
states requires system memory to run at comparable 
speeds. Typically, system memory consists of Read Only 
Memory (ROM) and Read/Write or Random Access Memo­
ry (RAM). A 10 MHz, NS32016-based system functioning 
without wait states requires careful memory timing consider­
ation. 

A read cycle without wait states requires data from memory 
to be valid prior to the falling edge of the PHI2 clock during 
the T3 state of the CPU. This allows about 155 nanosec­
onds following the leading edge of the read strobe for data 
to be stable. In a memory write cycle, the data is available to 

National Semiconductor 
Application Note 404 
Microprocessor Applications 

Engineering 

the memory for about 215 nanoseconds following the lead­
ing edge of the write strobe. It is assumed that the Address 
lines are valid at the memory pins at the time the read or 
write strobe goes active. 

SRAM INTERFACE: 

With high speed, 8K x 8-bit Static RAMs (SRAMs) such as 
the NMC6264s, which have a 120-nanosecond maximum 
access time, an interface without wait states is feasible. Be­
sides requiring no wait states, SRAMs do not require the 
refresh circuitry that Dynamic RAMs (DRAMs) need. Neither 
do they require the error checking and correcting circuitry 
that DRAMs need for correcting soft errors. The timing dia­
grams for SRAM Read and Write cycles with the MMU are 
illustrated in Figures 4 and 5 respectively. The SRAMs are 
organized into even and odd banks. The Write Enable (WE) 
Signals for the SRAMs are generated by logically combining 
address line AO and HBE with the WR signal from the TCU. 
Both even and odd SRAM banks are always enabled during 
Read cycles. 

EPROM INTERFACE: 

With current technology, EPROMs up to 64-Kbyte densities 
are available. In particular, the 27128 type EPROMs are 
available with 150-nanosecond maximum access times. 
These EPROMs can be used in the NS32016-based system 
without wait states. The timing diagram for the EPROM 
Read cycle, with the MMU is illustrated in Figure 3. The 
Output Enable (OE) inputs to the EPROMs are connected to 
the RD signal. This will cause both even and odd bytes of 
the set of EPROMs to be enabled for a byte or word read 
from the CPU. This does not affect the data as the CPU will 
read the appropriate byte(s). A single DMPAL 16L8A device 
is used to generate all the required chip select Signals. 

I/O INTERFACE: 

CPU accesses to the serial communications devices require 
the insertion of at least two wait states. This is accom­
plished by activating the TCU WAIT2 input during such ac­
cesses. 

Furthermore, the leading edges of the Read and Write 
strobes are delayed by one clock cycle. This is necessary 
since the time delays of the Read and Write strobes from 
Address Valid, required by the communications devices, are 
larger than the delays provided by the 32000 chip set during 
normal bus accesses. The system uses two NS16450s. This 
facilitates its use in stand-alone, stand-aside or transparent 
configuration. The two NS16450s have their oscillator pins 
(XTAL 1 and XTAL2) connected to the crystal circuit as illus­
trated in Figure 1. The two NS16450s are interfaced to stan­
dard RS232C communication ports with jumpers. The jump­
ers allow the configuration of either port as a data-terminal 
or as a data-set. 

8-14 



'f 
Ul 

+5V ST3 Fi ..--
10 k.o. ~~ STO ST 

U/S 
,.-.AO 

HilO~F~ PFS l-I-
A23 ~ 

....... ST3 A231-- 0151- A23 ~ 2M 2Y41= A23 

NS32016 ~ 
t:: I::: ~ST1 ~ ~ 2Al 2Yl1= 
L.- STO 1= L.....- STO ~ 

+5V CPU t:: ~ u/S 1= 1= ~ lA4 lY41= 

20 MHz 30~ 
A16 1= PFS A161= +5V NS320S1 ~ A16 ~]Al rrrl= A16 

r°t:-p.o. 4-:J-
BBG AD15 

1= 
AD151-- FPU I- ... lG 2G...., 

I-- 1= ~10k.o. ~ A15 ~ SO S0l= A15 
XIN XOUT 1000P~ i'fl ~F 1= I-- ~_ ~ 

GNDl 1= 
NS320S2 1= SPC I-- ~ ~ 1= 

MMU I-- .--. RST DO I-- ~ ~ 1= GNDB 

-23 EXT. RE 

:--+ RSTI L I::: 1= +5(t RWEN/SYNC 1= 
I-- ~ ClK ADS ~ !P ~ !Q~ AS 

1= 1= 
G OCh 

NS32201 I--
TCU I::: 1= AD7 ~ SO s0l= A7 

WAIT ... 

.... 

" 
HOLD 

.... 
" 

INT 

EXT NM ..... 

F 

~ PER 
FClK I- _AOll. I- FlT ADD I-

CWAIT PHil 
~FlT 

RST/ABT 115 
~ ~ 1= 

PHil RST I ABT ~ ~ 1= 
~ WAITS PHI2 PHI2 ADS ADS 

WAIT4 ROY ROY HlDA ~M ~ ~ .!p ~ !QI= AD 
Y WAITl RSTO Ar/SPC AT/sPC A24 G OCh 

WAIT2 TSO I-- HOLD HOLD oo~ ~ ~ AS BSI-~[ cm I-- ODIN llIi1N __ 4 lSO 74AlS32 AD15 
DBE I--

~ 
INT IlO 1-+ PHil HlDAO ~ 1= r ODIN iIDl--
NMI 

,--t PHI2 ~ 1= r1 ADS VIR HBE I--
r-i ROY PAY ..... 

~ I-r--t RRSTI ~ ~1 Bll= DB ADS 
G DlRI-~ 

0-15 

~+5V AD7 ~ AS BS I- 07 

~ 1= 
l..JvvIr..+ + 5V ~ 1= 
~_+5V 

~ I-
+5V 

J )JlSDS 

ADO t::: 
74LSOO I~ 

~ru~ 
-

Al Bl 
G DlR 

1= DO 
I--

em 
HBE 
RST 
Ro 
ViR 
6TSO ~~h Cl Cl Cl 

I ClK ClK ° ClK 

TUEE/B506-7 

FIGURE 1. Circuit Diagram for the 10 MHz No Walt States NS32016 Based System 

POP-NY 

II 



AN-404 

AlSO 
iii[ 

iii 

iiSi 

~ Sfl 

'" 

cm.>--/cu:- :ruu At--.,AO AIL--fAO A1L--fAO AI~AO 

TL/EE/8506-8 

FIGURE 1. Circuit Diagram for the 10 MHz No Wait States NS32016 Based System (Continued) 



One port can be used to communicate with a host comput­
er. The other can be used to interface the system to a termi­
nal. If MON16 software is used, it is possible to communi­
cate from the terminal to a host computer such as a Nation­
al Semiconductor SYSI32™ or a VAXTM. Files stored in the 
host can be down-loaded into the NS32016-based system 
memory and executed at 10 MHz without wait states. 

PAL16LBA 
Part # 
Chip Select Generation 
National Semiconductor 

A23 A22 A2l A20 A19 AlB A17 A16 A15 GND 
A14 SICU CSRl CSR2 CSR3 CSR4 CSIO AB CSE VCC 

The Non-Maskable Interrupt signal (NMI) is used to return 
from "runaway" programs to the monitor without destroying 
the contents of the Program Counter and Processor Status 
Register. The circuit shown in Figure 1 provides an NMI 
pulse signal to the CPU. 

ICSE = IA23 • IA22 • IA2l • IA20 • IA19 • IA1B • IA17 • IA16 • IA15 
ICSRl = IA23 • IA22 • IA2l • IA20 • IA19 • IA1B • IA17 • IA16 • A15 • IA14 
ICSR2 = IA23 • IA22 • IA2l • IA20 • IA19 • IA18 • IA17 • IA16 • A15 • A14 
ICSR3 = IA23 • IA22 • IA2l • IA20 • IA19 • IA18 • IA17 • A16 • IA15 • IA14 
ICSR4 = IA23 • IA22 • IA2l • IA20 • IA19 • IA18 • IA17 • A16 • IA15 • A14 
ICSIO = A23 • A22 • A2l • A20 • A19 • AlB • A17 • A16 • A15 • IA14 
ISICU = A23 • A22 • A2l • A20 • A19 • A18 • A17 • A16 • A15 • A14 • IA8 

FIGURE 2. PAL Equations in PALASMTM Format 

CONFIGURATION SWITCHES: 

Dip switches have been used in the circuit for system con­
figuration as illustrated in Figure 1. The CPU reads them at 
power-on or system reset to set the baud rate of the 1/0 
ports and the CPU configuration register. Switches S1, S2, 
S3 and S4 set the baud rate. Table I lists the various baud 
rates possible with MON16 software. Switch S5 indicates 
the presence of an FPU in the system and S6 indicates the 
presence of an MMU in the system [fable II). 

TABLE I 

S4 S3 S2 S1 Baud Rate 

ON ON ON ON 19200 
ON ON ON OFF 9600 
ON ON OFF ON 7200 
ON ON OFF OFF 4800 
ON OFF ON ON 3600 
ON OFF ON OFF 2400 
ON OFF OFF ON 2000 
ON OFF OFF OFF 1800 

OFF ON ON ON 1200 
OFF ON ON OFF 600 
OFF ON OFF ON 300 
OFF ON OFF OFF 150 
OFF OFF ON ON 134 
OFF OFF ON OFF 110 
OFF OFF OFF ON 75 
OFF OFF OFF OFF 50 

TABLE II 

S6 S5 Slave Processors 

ON ON MMU and FPU 
ON OFF MMU 
OFF ON FPU 
OFF OFF neither 

8-17 

RS232C JUMPER CONNECTIONS: 

If a particular port in the system is to be connected to a 
terminal, the associated jumpers need to be configured for a 
Data Set. With reference to Figure 1, the jumper connec­
tions for a Data Set configuration are as follows: 

a-c, b-d, e-g, f-h, i-j, k-1. 

If the port is to be connected to a host computer, the associ­
ated jumpers need to be configured for a Data Terminal. 
The jumper connections for a Data Terminal configuration 
are as follows: 

a-b, c-d, e-f, g-h, i-j, k-1. 
Note: a-b ~> connect node 'a' to node ·b·. 

MEMORY MAP 

The memory map of the system described in this note is 
slightly different from the memory map of the 0832016 CPU 
board. This has been done to simplify the chip-select gener­
ation logic. This requires minor changes to some 'equate' 
statements in the MON16 modules in addition to the I/O 
drivers changes to support the NS16450s instead of the 
8251s. Figure 2 shows the PAL equations. The memory 
map is shown in Table III. 

TABLE III 

Devices Memory Locations 

EPROMs $000000-$007FFF 
SRAMs $00BOOO-$017FFF 

Serial Port 1 $FFBOOO-$FFBOOF 
Serial Port 2 $FFB01 0-$FF801 F 

ICU-Registers $FFFEOO-$FFFE3F 
CNFG Switches $FF8003 



.. o .,. 
z 
<C 

TIOR 
T. OR TI Tl TMMU T2 T3 T4 TI OR T1 TMMU 

PHI1 [ 

All1-A23 [ 

ADo-A015 [ 

PAV[ 

Jilj [ 

EJlMM [ 
CS 

EPROM [ 
DATA-OUT -+--t---t---+'--+---( 

ROY [ 
TL/EE/8506-3 

FIGURE 3. Memory-Managed EPROM Read Cycle 

8-18 



PHil [ 

A16·A23 [ 

ADO·AD15 [ 

PAY [ 

SIJAM [ cs 

SIJA.M [ 
DE 

S!!!M [ 
WE 

SRAM [ 
DATA·OUT 

ROY [ 

TI OR 
T, OR TI T1 TMMU T2 T3 T4 TI OR Tl TMMU 

TLlEE/BS06-4 

FIGURE 4. Memory-Managed SRAM Read Cycle 

• 
8·19 



~ r---------------------------------------------------------------------------------, 
o 
~ • z 
c( 

Notes: 

PHil [ 

A16-A23 [ 

ADO-ADI5 [ 

PAV [ 

SMM [ 
CS 

S,!!M [ 
DE 

SMM [ 
WE 

SRAM [ 
DATA-IN 

ROY [ 

11 DR 
TI TMMU 12 T3 T4 11 DR 11 TMMU 

TL/EE/8506-5 

FIGURE 5. Memory-Managed SRAM Write Cycle 

I. In all memory and 110 cycles, if the MMU is not used, then the T mmu cycle Is absent. See Figures 3, 4 and 5. This will not change the memory or 110 cycle 
requirements. The PAV signal will be replaced by the ADS signal which is strobed by the CPU in the TI cycle. 

2. The chip selects for the ICU internal registers and the Configuration latch have been partially decoded in order to reduce the chip count for the system. 

DECOUPLING CAPACITOR REQUIREMENTS: 

Line to ground noise on the system can be eliminated by 
using decoupling capacitors. For the Series 32000 chip set, 
the decoupling capacitor details are given in the Series 
32000 Data Book. For the random logic used in the system, 
a 0.1 ,...F ceramic capacitor for each bipolar TTL device is 

6-20 

recommended. For MOS devices, a 0.1 ,...F ceramic capaci­
tor for every row of four to five devices may be used. At the 
power input to the system, a 100 ,...F tantalum capacitor in 
parallel with a 0.1 ,...F ceramic capacitor may be used. 



PORTING MON16: 

The changes made to MON16 to run on this system are in modules MONINT.ASM and MONSUB.ASM. All changes appear in 
lower-case letters in the listing. The code pertaining to the leu counters in MON16 has been removed as it is not used. 

MONINT** "' ... "' ... '" ** '" '" '" '" '" ** '" '" '" '" '" '" '" '" '" "' ... 
USART CONSTANTS 

iobeg: .equ @h'ffSOOO 
usrtl: .equ @h'ffSOOO 
usrtcsl: .equ @h'ffSOOa 
usrt2: .equ @h'ffS010 
usrtcs2: .equ @h'ffSOla 

;10 start address 
;UARTO 
;UARTO line status 
;UARTl 
;UARTl line status 

register 

register 
datap: .equ 0 ;UARTs rev/trans buffer registers 
out_rdy: • equ 5 
iIL-rdy: .equ 0 
switchp: .equ @h'ffS003 

RESET ROUTINE 

init UARTs 

save [r2, r3, r4, r5] 
addr usrtl, r4 
addr usrt2, r5 
movb h'SO, 6 (r4) 
movb h'SO, 6 (r5) 

;set UARTs baud rate 
movzbd switchp, r2 
andb h'Of, r2 
movb acetb:w[r2:w],O(r4) 
movb acetb+l:w[r2:w],2 (r4) 

;UARTs tx--rdy bit of the LSR 
;UARTs rx--rdy bit of the LSR 
;Dip switches port address 

;load switch for baud rate 

;set UARTO baud rate 

movb acetb:w[r2:w] ,O(r5) ;set UARTl baud rate 
movb acetb+l:w[r2:w],2 (r5) 

;"'for debugging only'" 
movb h'Oc,O (r4) ;set UARTO to 9600 baud 
movb h'O,2 (r4) 
movb 
movb 

h'lS,O (r5) 
h'O,2 (r5) 

;* ... "'.* ** '" ** * "' ... * ............ "' ... "' ......... '" 

movb 
movb 
movb 
movb 

h'3,6 (r4) 
h'3,6 (r5) 
h'Of,S (r4) 
h'Of,S (r5) 

movb 0 (r4), r3 
movb 0 (r5), r3 
restore[r2,r3,r4,r5] 

;set UARTl to 4S00 baud 

;set LCR of the UARTs 

Note: Version 2.00 of MON16 has been used for the NS32016 system. 

S-21 

reg. 
reg. 

» z . 
"'" o 

"'" 

• 



~ ,---------------------------------------------------------------------------------, 
o 
~ • z cc 

;the divisor values for UARTs with crystal frequency of 1.8432 MHz 

acetb: .word 6,12,16,24 ;19200, 9600, 7200, 4800 
.word 32,48,58,64 ;3600, 2400, 2000, 1800 
.word 96,192,384,768 ;1200, 600, 300, 150 
.word 857,1047,1536,2304 ;134.5, 110, 75, 50 

MOVD H'lBl0000,SVMSR 
MOVD H'90000,MNMSR 
movb switchp,rl 
COMB Rl,Rl 
ANDB SWJMU + SW_FPU, 
ASHB -3,Rl 
MOVZBD CFGN, R2 
MOVB PUTI,TOS 
MOVQD O,TOS 
CXP GETPUT 
TBITB CNFMMU,CONFIG 
BFC RSTl4:B 
LMR MSR,MNMSR 

RSTl4: CXP MAINLP 

• MODULE MONSUB'" •••••••• 

USART CONSTANTS 

iobeg: .equ @h'ff8000 
usrtl: .equ @h'ff8000 
usrtcsl: • equ @h'ff800a 
usrt2: .equ @h'ff8010 
usrtcs2: .equ @h'ff801a 
datap: .equ 0 
out_rdy:.equ 5 
iI1-rdy: • equ 0 
usrtoff: • equ h'a 

;INIT SVMSR SET TU BEN UB FT UT 
;MONITOR MSR: = TU,AO 
;GET MMU & FPU BITS FROM 
;CONVERT TO CFG BYTE 

Rl 

;PREPARE CALL TP GET_PUT 

; GET_PUT (GET ,O,CFG) ; 

;IF MMU THEN 

; LOAD MSR; 
;TYPE RESET MESSAGE 

;10 start address 
;UARTO 
;UARTO line status register 
;UARTl 
;UARTl line status register 

SWITCHES 

;line status reg offset from buffer reg 

8-22 



,--------------------------------------------------------------------, > 

R D C H R ( DUMMY READ CHAR PROCEDURE ) 

RDCHR: • PROC 
RD_CHR: .BLKB 
RD_WAIT :.BLKB 
RD_TRM: • BLKB 

; PROCEDURE RDCHR (WAIT,TRM) 
; PROCEDURE VALUE 
; WAIT/NOWAIT FLAG 

TERMINAL NUMBER 

RDCHRLP: 

RDCHR3: 

RDCHREX: 

• RETURNS 
.BLKW RETURN CHR,CHR-JRDY FLAG 
.VAR [Rl,R2] 
.BEGIN 
addr 
CMPQB 
BEQ 
addr 

tbitb 
BFS 
BR 
CMPQB 
BEQ 
BR 
MOVB 
MOVQB 

usrtl,rl 
TRMA,RD_TRM 
RDCHRLP:B 
usrt2,rl 

Rl: ADDRESS OF TRMINAL A 
IF TRMINJ\LNUM < > 0 THEN 

Rl: ADDRESS OF TRMINAL B 
DO WHILE IN~DY=O AND RD_WAIT=TRUE 

iDL-rdy,usrtoff(rl) INPUT IN~DY 
RDCHR3:B 
RDCHR3:B FOR DEBUG ONLY··· 
TRUE, RD_WAIT 
RDCHRLP END; 
RDCHREX:B 
O(Rl),RD_CHR ; RDCHR;=USART DATA 
TRUE,RD_WAIT ; RD_WAIT :=TRUE 

.ENDPROC 

P R C H R ( PRINT CHARACTER ) 

FUNCTION - SEND ONE CHARACTER TO TERMINAL 

CALLING SEQUENCE PRCHR(ENDF,WAIT,CHR,TRM) 

ENDF/WAIT 
BOOLEANO IN/OUT ON INPUT FLAGE WAIT TO END OF OPERATION 

OR REURN 
ON OUTPUT INDICATES END OF OPERATION 

CHR - CHARACTER INPUT CHARACTER TO BE PRINTED 
TRM INTEGER INPUT TERMINAL NUMBER 

PRCHR: • PROC 
WAIT_PR:.BLKB 
CHR PR: • BLKB 

; WAIT : BOOLEAN 
; ASCII CHR 

8·23 

Z 
I 

.j:o. 
C 
.j:o. 



TRLCHR:.BLKB TERMINAL NUMBER 
• RETURNS 
.BLKB OUTPUT WAIT WAIT:BOOLEAN 

PRCHRLP: 

.VAR [Rl,R2] 

.BEGIN 
addr usrtl,rl 
CMPQ.B TRMA, TRLCHR 
BEQ. PRCHRLP:B 
addr usrt2, rl 

;Rl: ADDRESS OF TERMINAL A 
;IF TERMINALJUM<>O THEN 

Rl: ADDRESS OF TERMINAL B 

tb1tb out __ rdY,usrtoff (rl) ;IF TX-RDY = 0 
BFS PRCHR3:B ;THEN 
BR PRCHR3:B ;···DEBUG ONLY"· 
CMPQ.B FALSE, WAIT __ PR IF WAIT THEN REPEAT 
BNE PRCHRLP 
BR PRCHREX:B ; ELSE WAIT:=FALSE 

PRCHR3: MOVB CHR-PR,O (Rl) 
MOVQ.B TRUE, WAIT __ PR ;ELSE WRITE (DATA-PORT, CHR) 

CONCLUSION 

This application note describes a method of designing a 10-
MHz, no-wait-state NS32016-based system with off-the­
shelf memory and I/O chips. The system has a powerful 
instruction set, suitable for high level language compilers. 
With available cross-support software (NSX16™) and firm­
ware (MON16), the NS32016 system can be used to com-

8-24 

municate with a host computer such as a SYS/32. Pro­
grams can be written in high level languages such as C on 
the SYS/32. These programs can then be compiled and 
assembled to be down-loaded into the NS32016-based sys­
tem memory to be executed. 



Using Dynamic RAM With 
Series 32000® CPUs 

Recent advances in semiconductor technology have led to 
high-density, high-speed, low-cost dynamic random access 
memories (DRAMs), making large high-performance memo­
ry systems practical. DRAMs have complex timing and re­
fresh requirements that can be met in different ways, de­
pending on the size, speed, and processor interface require­
ments of the memory being designed. For low or intermedi­
ate performance, off-the-shelf components like the DP8419 
can be used with a small amount of random logic. For high­
er performance, specialized high-speed circuitry must be 
designed 

This application note presents the results of a timing analy­
sis, and describes a DRAM interface for the NS32016 opti­
mized for speed, simplicity and cost. 

A future application note will discuss such features as error 
detection and correction, scrubbing, page mode and! or nib­
ble mode support, in conjunction with future CPUs, such as 
the NS32332. 

TIMING ANALYSIS RESULTS 

Figures 1 and 2 show the number of CPU wait states re­
quired during a DRAM access cycle, for different CPU clock 
frequencies and DRAM access times. 

Figure 1 is related to a DRAM interface using the DP8419 
DRAM controller. Descriptions of the circuitry for use with 
the DP8419 and related timing diagrams are omitted. See 
the "DP8400 Memory Interface Family Applications" book 
for details. 

Figure 2 shows the same data for a DRAM interface using 
standard TTL components, specially designed for the 
NS32016. 

The special-purpose interface requires fewer wait states 
than the DP8419-based interface, especially at high fre­
quencies. 

These results assume a minimum amount of buffering be­
tween DRAM and CPU. 

The results do not apply when CPU and DRAM reside on 
different circuit boards communicating through the system 
bus, since extra wait states may be required to provide for 
synchronization operations and extra levels of buffering. 

INTERFACE DESCRIPTION 

The DRAM interface presented here has been optimized for 
overall access time, while requiring moderate speed 
DRAMs, given the CPU clock frequency. 

This may be significant when a relatively large DRAM array 
must be designed since a substantial saving can be 
achieved. 

The result of these considerations has been the design of a 
high-speed DRAM interface capable of working with a CPU 
clock frequency of up to 15-MHz and 100-nsec DRAM 
chips, without wait states. 

The only assumption has been that the DRAM array is di­
rectly accessible through the CPU local bus. 

National Semiconductor 
Application Note 405 
Microprocessor Applications 
Engineering 

RAM 
Access 
Time CPU Wait States Required 
in nsec 

250 0 2 
200 0 0 1 1 2 2 
150 0 0 0 0 1 1 
120 0 0 0 0 0 
100 0 0 0 0 0 0 

6 7 8 9 10 11 12 13 CPU Clock 
Frequency in MHz 

FIGURE 1. Memory Speed vs. CPU Wait States When 

RAM 
Access 
Time 
in nsec 

Using the DP8419 DRAM Controller 

CPU Wait States Required 

250 0 0 1 1 
200 0 0 0 0 
150 0 0 0 0 0 0 1 1 
120 0 0 0 0 0 0 0 0 
100 0 0 0 0 0 0 0 0 0 0 

67891011 12131415 CPU Clock 
Frequency in MHz 

FIGURE 2. Memory Speed vs. CPU Wait States 
When Using Random Logic 

This configuration presents some speed advantages; for ex­
ample, the amount of buffering interposed between CPU 
and DRAM array is minimal. This translates into shorter 
propagation delays for address, data and other relevant sig­
nals. 

Another advantage is that the interface can work in com­
plete synchronization with the CPU. This significantly im­
proves performance since no time is spent for synchroniza­
tion. Reliability also improves since the possibility of meta­
stable states in synchronizing flip-flops is eliminated. 

A block diagram of the DRAM interface is shown in Figure 3. 
Figures 4 through 7 show circuit diagrams and timing dia­
grams. 

Interface operation details follow. 

RAS AND CAS GENERATION 

This is the most critical part of the entire interface circuit. To 
avoid wait states during a CPU read cycle, the DRAM must 
provide the data before the falling edge of clock phase 
PH12 during state T3. This requires that the RAS signal be 
generated early in the CPU bus cycle to meet the DRAM 
access time. On the other hand, the RAS signal can be 
asserted only after the row address is valid and the RAS 
precharge time from a previous CPU access or refresh cycle 
has elapsed. 

8-25 

l> 
z • ~ o 
U1 



~ r------------------------------------------------------------------------------------------, 
o 
'Ot' • Z 
cC 

The interface circuit shown in Figures 4 and 5 relies on two 
advanced clock signals obtained from CTTL through a delay 
line and some standard TTL gates. 

The advanced clock signals, CTTLA and CTTLB, are used 
to clock the circuit that arbitrates between CPU access re­
quests and refresh requests. The CTTLB signal is also used 
to enable an advanced RAS generation circuit, which caus­
es the RAS signal to be asserted earlier than the CPU ac­
cess-grant signal from the arbitration circuit. This speeds up 
the RAS signal by about 10 ns by avoiding the time required 
by the arbitration circuit to change state. 

A different delay line is used to generate the CAS signal and 
to switch the multiplexers for the column addresses. Note 
that the CAS signal during write cycles is delayed until the 
beginning of CPU state T3, to guarantee that the data being 
written to the DRAM is valid at the time CAS is asserted. 
The CAS signal is deasserted after the trailing edge of RAS 
to guarantee the minimum pulse width requirement. 

The timing diagrams in Figures 6 and 7 show the signal 
sequences for both read and write cycles. 

ADDRESS MULTIPLEXING 

The multiplexing of the various addresses for the DRAM 
chips is accomplished via four 74AS153 multiplexer chips in 
addition to some standard TTL gates used to multiplex the 
top two address bits needed for 256k DRAMs. The resulting 
nine address lines are then buffered and sent to the DRAMs 
through series damping resistors. The function of these re­
sistors is to minimize ringing. 

REFRESH 

The refresh circuitry includes an address counter, a timer 
and a number of flip-flops used to generate the refresh cy­
cle and to latch the refresh request until the end of the 
refresh cycle. 

The address counter is an 8-bit counter implemented by 
cascading the two 4-bit counters of a 74LS393 chip. This 
counter provides up to 256 refresh addresses and is incre­
mented at the end of each refresh cycle. 

The refresh timer is responsible for generating the refresh 
request signal whenever a refresh cycle is needed. This ti-

8-26 

mer is implemented by cascading two 4-bit counters. Both 
counters are clocked by the CTTLB signal; the first is a pre­
settable binary counter that divides the clock signal by a 
specified value; the second can be either a BCD or a binary 
counter depending on the CPU clock frequency. 

With this arrangement, a refresh request is generated after 
a fixed time interval from the previous request, regardless of 
the CPU activity. A more sophisticated circuit that generates 
requests when the CPU is idle could also be implemented. 
However, such a circuit has not been considered here be­
cause the performance degradation due to the refresh is 
relatively small (less than 3.3 percent), and the improve­
ment attainable by using a more sophisticated circuit would 
not justify the extra hardware required. 

CONCLUSIONS 

The DRAM interface described in this application uses two 
TTL-buffered delay lines to obtain speed advantages. One 
delay line is used to time the CAS signal and to enable the 
column address. The other is used to generate the ad­
vanced clock signals from CTTL. 

Below 10 MHz, the advanced clocks might not be required, 
and the related delay line can be eliminated. When this is 
done, however, higher speed DRAMs must be used. If, on 
the other hand, advanced clocks must be used for frequen­
cies lower than 10 MHz, a delay line with a larger delay (e.g. 
DDU-7J-100) might be needed. 

Delay lines are extremely versatile for this kind of applica­
tion due to their accuracy and the fact that different delays 
are easily available to accommodate different DRAM types. 

The savings attainable by using slower DRAM chips, in addi­
tion to the reliability improvement and cleaner design, make 
delay lines a valid alternative, even though their cost is rela­
tively high in comparison to standard TTL gates. 



..--- -<l-
RDAT (0:15) 

I+- ~ OAT (0:15) 
NS32000 

CPU 
GROUP 

AD (0:15) ADDRESS 
LATCHES A (1:18) 

A (16:23) AND 
BUFFERS 

r--
ex> 

'" "" 
~ 

r---i' 
~ fl- r ADS/PAY" ACCESS 

REQUEST 
TSO LDGIC 

RST" 

CLOCK I CTILB 
CTIL" ADVANCE CTILA 

LOGIC 

II 

COLSEL 

r 
.r 

~-
RAM 

ADDRESS 
~L. ~S 

~ I-I-{>-
REFRESH 

REFRESH REFRESH h --0 I SEQUENCE ADDRESS TIMER LOGIC L.....-r I- COUNTER 

1 t j 
RFREQ 1 

RFRAS 

RAS RFGNT 
BUFFERS 

ARBITER NRAS 

~ I DELAY LINE 

!~!~!Iml ADVRAS 
ADVANCED f-

RAS ? \ { 
LOGIC 

L 
L-....t 

CAS 
GEN. 
LOGIC 

FIGURE 3. DRAM Interface Block Diagram 

01 DO 01 00 

RAM RAM 
BANK BANK 
EVEN ODD 

I~ I~ 13 I~ I~ 13 
t t t t t 

~ 
CAS 

BUFFERS 

i.~ 

, , , 
ODIN AD HBE 

TUEE/B517-1 

S017-NV 



CD 

'" CD 

RASO 
~- -

:ASO I I I I I I I I I I I I I 
IASI 111111111111111111111111111111111111111111111111 
_ .lL 1::11::113 1::11::113 1::11::113 1::11::113 
~ASl ::::= Ai c.,) CC c.,) cc u a: u 

,--

WE ::= 
,--

~:~"g "g"g "g 

~ ~~I l I l I I I l I l ~ l ~ I ~ l ~ l I I I l I l I l I ~l ~I OAT 
RDAT15'-_ _>_ _ __''___~ _ __'~_~ _ _.l.. __ ''_ _ _>_ _ __''___~ _ __''___ ........ _ ___'' __ _''_ _ _.l.., 

(1:23) 

AIS 74AS32 74ASOO :::u 1)2!~ WI ~~ L ~ 
A17~·~ M 2Y IL~· I 220 

IC3 ~ A - b V r---, AS ROAT 

~ 2CO ~ B - 'i"Ai'1Y1 ~ 'i"Yi1A1' ....!L ~ 'iii'"""""Ai ~ 
r:::t:=I ~2G ~_ F =::::= ~ 
.. 2C3 lG UfFr2 lA4 ~ 1Y4 I--- lY4~ lA4 ~ ,-- ~ f---' 

D---I-..... --------I+-+-..:-===-....:...~ - 2Al :;: 2Yl I--- 2Yl ~2Al ~ ,-- ~ f---' 
~ ~ ~ ;--::; t:;:;: ::1 ;;:;;:;; :::;; ~ t;;:;;; f lCl ~ lY - -;:::::: 2A4 ~ 2Y4 .All ~ 2Y4"'2A4 """'" _ BS ~ AS """"" 
2ClM M2Y f G L ___ ...J I r- 2G - DIR 

FGNT ~20A L~ lC3 ~ A _ 2. r-+-1G _ G 
lA ~lOO 2CO~ B- ~ _"---12A", ~2G~ 

lOA 2C3 lG ~ 'i'Yi"""iAi ~ ~ 'i'1"""A1 .!!ill.. - - I--- t-- ____ ~ 

. 'S r:co- :::= lY4~1A4~ F ~ =:: 
::::::::Bt 1 1Y r- 2Yl ~ 2All-----' I--- ~ ---

- M 2Y i--- ::1 I-----' I--- ::1 ---
1t:=t~::;;;:flC3 ;;; A r-- ::Jl![ 2Y4"'2A4. I:JM: BB "' AS u:: 

A23 74AS27 ............ 2CO ~ B r--R r- 2g r-- OIR 
A22 "------l ROO 2G -- 1 G r-- G 
A21= 2C3 lG """-- -

A20 ~ -" 
MINH A19"-J ROI ~ lCO ,----....... >0-------+--------' 

,,5 r---- lY ~ 

:;~ 1 ~ lC3~2:_ I ~ ~LL,/C'-'aW/2?"tRO;;i2 t::ft 2CO ~ ~ - U=~ ..... ~~:[)c----..J Bii 

2C3 ~~:::l fib ~ RA 
(0:15) - ~ 
<>---------4------------~ RO 

C--

RA 

AD 

ODIN 

W ____ _ 

DIN 

MSEl 

(0:2) 

AN-405 

TLlEE/8517-2 

FIGURE 4. DRAM Interface Circuit Diagram (a) 



CD 

'" "" 

CTTL 

RO (0:2) 

ADS/PAV 
D--

RST 

TSO 

RAMSEL 
D-

CTTLB 

CTTLA 

74AS175 

~A~REO I 110 10 ~~(A) 

+5 
~--------------------.'~·~~+5 r-'VIIIr-+ + 5 

+5~ 

ACGNT ADVRAS 

RFGNT 
D 

74AS175 

40 40 
(B) 

4il .... 
COLSEL 

<> 

220 RASI 
~ 

220 RASO 
~ 

2211 CAS1 
IIII"---C> 

2211 CASD 
~ 

2211 WE 

CWAIT 

BODIN I d I W7 WAIT1 

~ 00 ~ HiE 1 2 +5 
AD 

TL/EE/8S17-3 

FIGURE 5. DRAM Interface Circuit Diagram (b) 

SO~-N" 



it) 
0 
'OS' 

I 
CTTL Z 

<C 

T1 T2 T3 TI Ti T1 T4 T2 T3 

-rLll---fL-ll-,.-L..JI-IL-IL--IL-
CTTLA I - r-I- __ Il-r-n-r-ILrLI ra-r-1L--JLr-t--

CTTLB L I-- r-- r-- r-- r----"--11-,... r--- IL-r---- l-I- "---- r-I- f-+- '-f- r-
ADS/PAV - h~ 

~ 

DDIN - ~ \ 

TSO 1\ 11 

CWAIT 

ATSO -
LATSO -11 1\ II 

RQ(0:2) LL/ Ll \/ '// ////// '/I 

ACREQ \ 

ACGNT \. IJ 

NRAS I 

ADVRAS r- V\ 1'--
RAS (0:1) \ I 

COLSEL 

RDCAS J 

DELCAS \ 

WRCAS II 

CAS (0:1) 

ROW 
A (0:8) LX J COLUMN ADDR X I REFRESH ADDR I 

ADDRI 

01 (0:15) DATA VALID 

RFREQ I :1 \ 

RFGNT 
f--r-

RFRAS II \ 

TL/EE/8517 -4 

FIGURE 6. Write Cycle Followed By a Refresh Cycle 

8-30 



r-----------------------------------------------------------~~ 
Z 

11 TI T1 T2 T3 TW TW TW T4 11 or T1 !; 
UI 

CTTL - I1--fl-ru~ rL rL 

S rL--1---~W-'L..r~ ~r-I--rLS- I"'"' L.S I--
CTTLA 

L W- r-- r--L r1L-IL r--- r---WL-I-- f-..JL '--- '-r- I--

\.f-J 
\ r-

1\ II 

1\ 

ATSO 1\ 

LATSO II 1\ 

RQ(0:2) J 

\ I 

II 

NRAS I 

AOVRAS r--
IL-

RAS (0:1) I 

I 

\ 

I 

CAS (0:1) 1\ 

ROW 
A (0:8) X REFRESH AODR I COLUMN ADDR I 

DO (0:15) 
ADDj 

DATA VALID 
I 

- -' '-RFREQ 

RFGNT • 
RFRAS I \ 

TLlEE/8517-5 

FIGURE 7. Refresh Cycle Followed Bya Read Cycle 

8-31 



~ ,---------------------------------------------------------------------, 
o .,. 
z 
<C 

Interfacing the 
Series 32000® CPUs 
to the MUL TIBUS® 

One of the key elements in a computer system is the sys­
tem bus which holds all the hardware components together. 
The bus contains the necessary signals to allow the hard­
ware components to interact with each other. Memory and 
1/0 transfers, system interrupts, etc., can all be handled by 
the system bus. 

A variety of alternatives is available to the designer whenev­
er an interface to a particular bus is to be designed. For 
example, for a low performance CPU, interface perform­
ance might not be of prime concern. In this case, the use of 
a standard LSI device implementing the interface functions 
might be recommended. If, on the other hand, a high per­
formance CPU is being used and the performance of the 
interface is critical to overall system performance, a beller 
approach might be to deSign special circuitry using standard 
TTL logic in conjunction with high speed PAL®s or gate-ar­
rays. This application note presents an implementation of 
the arbitration section of a MUL TIBUS interface, specially 
deSigned for the Series 32000 CPUs. 

CIRCUIT DESCRIPTION 

The MUL TIBUS arbitration circuitry described here uses a 
high-speed PAL and some standard TTL logic to implement 
the arbiter state machine and other control functions. This 
solution, in addition to speed advantages, also provides a 
higher degree of flexibility as opposed to one which relies 
on LSI devices. 

A detailed circuit diagram of this arbitration circuitry and the 
arbiter state diagram are shown in Figures 1 and 2. 

Figure 3 shows a timing diagram of a bus acquisition and 
release sequence. In this case a higher priority master was 
in control of the bus and a lower priority master issued a bus 
request during the current master bus transfer cycle. 

As the state diagram shows, the arbiter uses a non release 
philosophy, called "Parking." In this scheme, once the bus 
is acquired, it will not be released at the end of the access 
cycle unless the force-release signal FREL is low or a bus 
request has been issued by another master. The laller con­
dition is detected by monitoring the bus lines BPRN and 
CBRQ. A bus release sequence is started as soon as CBRQ 
is asserted low or BPRN goes high. The arbiter enters state 
S3 and asserts the end-cycle detection enable signal 
ECDEC to allow appropriate logic to detect the end of the 
current MUL TIBUS transfer cycle from the on-board CPU. 
When the end-cycle condition is detected, further MUL TI­
BUS accesses from the on-board CPU are inhibited, and the 
signal ECYC is asserted to notify the arbiter that the bus can 
be released. Note that if an interlocked operation is in prog­
ress, the end-cycle condition occurs at the end of the last 
cycle of the interlocked operation rather than at the end of 
the current cycle. 

This interlocked mechanism for the bus release is neces­
sary to guarantee proper operation of the arbitration circuit­
ry, regardless of the bus clock and CPU clock frequencies. 

National Semiconductor 
Application Note 406 
Microprocessor Applications 

Engineering 

The nonrelease philosophy is very effective in that it can 
save the bus exchange overhead for the current master 
when no other master is requesting the bus. An increase in 
reliability also results, since the number of synchronization 
operations required for bus arbitrations is minimized. 

In this application, particular care has been taken for the 
bus interlock. This is important, especially if a dual-port 
memory is used, since hardware deadlocks could result if 
interlocked cycles are not handled properly. 

Consider the case of interlocked operations involving multi­
ple access cycles, with the first access directed to the dual­
port memory and some or all of the subsequent accesses 
directed to the system memory. This could happen, for ex­
ample, when the MMU cycles are interlocked, the first-level 
page table resides in the dual-port memory, and some 
shared second-level page tables are kept either in the sys­
tem memory or in the dual-port memory of another master. 
In this case, if the dual-port memory control logic grants an 
interlocked access to the MMU (thus selling a locking 
mechanism to prevent accesses from external masters until 
the end of the interlocked operation), and in the meantime 
the bus is acquired by an external master trying to access 
the dual-port memory, a hardware deadlock will result. This 
is because the dual-port memory is not unlocked until the 
MMU accesses the system memory to complete its opera­
tion, while the MUL TIBUS is not released by the external 
master until the dual-port memory access is granted. 

This problem can be solved by requesting the bus at the 
beginning of the interlocked operation, even though the in­
terlocked cycle is not directed to the system memory, and 
delaying the first interlocked access to the dual-port memo­
ry until the bus has been acquired. 

Another relevant point is the generation of the MUL TIBUS 
read and write signals. These are derived from the TCU 
signals RD and WR. The leading edges of these signals are 
delayed to meet the MUL TIBUS timing requirements. The 
MUL TIBUS read signals MRTC and 10RC are delayed until 
the DBE signal becomes active, since only the address set­
up time requirement must be met. A larger delay is needed 
instead, for the MUL TIBUS write Signals MWTC and 10WC 
to meet the data set-up time requirement. Note that the de­
lay line serves this purpose only during the first bus access 
immediately following an arbitration sequence. 

SIGNALS DESCRIPTION 

Details on most signals used in the MUL TIBUS arbitration 
circuitry can be found in the appropriate MUL TIBUS specifi­
cation manuals and Series 32000 data sheets. A description 
of those signals not found in these documents follows. 

8-32 



W2 +5 
1 2 

74S115 
~ 1 

W3 1 2 -LJ ... 
+5 +5 j 

W11 2 

~ ) o 0-< ."........ 

74AS10 
I 

40 40 
74.1S175 

40 \; 74S24G 
74.\S27 r-------
~ 

... ..... 

~ L 
L ... .. ... L 

~ _ ..... 

lOUT 

~~ II ~ 
~ 

L 
I ------ .-

~ 3D 3Q 

74AS175 

~~ 3°h 
I 

] 

1 74AS10 

rU 
__ ~rn 

I 
-r D PR a j 

I" 50 ns:c DELAY 

74S74 
'--- CK Cl a L 

PAL18R8A 
2 

I "7 REO 

iiSi 

~L 
ECDEC 19 

ii 

2D 2Q 

74.1S175 74ASD4 74505 
18 .. .. 20 A 
5 I 74AS02 SECDEC BUSY 

74ASD4 74505 

~ 
17 .. ... i 

4 6 
r I 

lD 10 ECYC CBRO 
7 ~ 

74AS175 J BPRN 

~ ~ CK CLIO 1 2 
18 0-{) 

Y C 

I .. Wli +5 .. 1 15 

r ClK SREO I-- r W4 1 2 8 ~ 
P2 

FREl SECYC 74ASD4 

9 13 

FAIR N.C. I--

t 
12 

.". W5 +5 

1 
EN N.C. I--

em 

FIGURE 1.32000 MULTIBUS Interface Circuit Diagram 

8·33 

INTLK 

BUSAV 

TL/EE/B51B-l 

)I­
Z . .... 
o 
en 

• 



~ 
z 
c( 

Bus Override (OVERR): This signal is from an override flip­
flop and can be used to hold the bus during burst transfers. 
The maximum duration for this signal to be asserted must 
not exceed the shortest time-out setting in the system. Note 
that the signal LOCK is not activated when the bus is over­
ridden by the signal OVERR. This is because the LOCK 
signal can only be asserted for a maximum of 12 microsec­
onds, while the bus can be overridden for several millisec­
onds, depending upon the system requirements. 

10 Select (IOSL): This signal is generated by the address 
decoder and is asserted when the MUL TIBUS 1/0 space is 
accessed. 

MUL TIBUS Select (MULSL): MULSL is from the address 
decoder and is asserted when a MUL TIBUS memory or 1/0 
access is requested. 

Time-Out (TOUT): This signal is generated by a fail·safe 
timer and is used to terminate the cycle if a bus grant, a 

peripheral, or memory acknowledge is not generated within 
a certain period of time. 

Address Buffers Enable (AEN): When AEN is active, the 
MUL TIBUS address buffers are enabled. 

Data Buffers Enable (DEN): When DEN is active, the 
MUL TlBUS data buffers are enabled. 
Interlocked Cycle (INTLK): Active high. This signal, when 
active, indicates that an interlocked cycle either is being 
started or is in progress. INTLK is used by the dual-port 
memory control logic to control interlocked accesses. 

Bus Available (BUSAV): This signal is used to notify the 
dual-port memory control logic that the bus has been ac­
quired and an interlocked access can be granted. This is 
necessary to avoid hardware deadlocks. 

SREa • (BPRN + BUSY + SECYC) 

ERROR 
srATE 

SECYC 

FIGURE 2. MULTIBUS Arbiter State Diagram 

8-34 

BPRN • CBRQ • FREl 

TL/EE/B51B-2 



T1 12 13 TW TW TW TW TW TW TW TW TW T4 Tl 12 13 TW TW 
ClTl 

ADSIPiiV N ~ rL rL- I"l-..J ~ ~ rL rL..r 

\..... 

ISO 

MULSL ~ l\I\ 

CWAIT 

REO -
BCLI! ..rU-~~~---.r~~~'-:r-- ~ Lr ...r-:~~ Lf t-~ .... 

,.--
SREO 

BREO lr- '\ 

BUSY ,-1\ 1,.- '\ 

BPRN 1\ 

CD 
W CBRO r- "'\ 
01 

jj 

AEN 

CEN \ 

XACK \ 

ECDEC 

SECDEC 

ECYC 

SECYC 

I 
~ , 

BUSAV 

TL/EE/8518-3 

FIGURE 3. MUL TIBUS Acquisition and Release Timing Diagram 

90t·NY 

II 



~ r---------------------------------------------------------------~ 
o 
~ 
Z 
~ 

JUMPER SETTINGS 

The following explains how to use the different jumpers pro­
vided in the MUL TIBUS arbitration circuitry. 

W1: This jumper should be installed if MMU cycles must be 
interlocked. This may be necessary if some page tables 
must be shared by different masters. 

W2: W2 should be installed if W1 is installed and some 
shared page tables are kept in the dual-port memory of an­
other master. 

W3: If this jumper is not installed, an interlocked access 
cycle generates a MUL TIBUS request, even though the cy­
cle is not directed to the MUL TIBUS. This may be necessary 
to avoid deadlocks. This jumper can be installed if all the 
cycles of an interlocked operation are always directed to 
either the MUL TIBUS or the dual-port memory. This could 
improve the system performance by eliminating the need to 
acquire the bus when an interlocked operation only access­
es the dual-port memory. This jumper should not be in-

Arbiter Logic Equations 

stalled when using the present versions of the Series 32000 
CPUs because these CPUs can prefetch between the read 
and write cycles of an interlocked operation. 

W4: When this jumper is installed, the bus is released at the 
end of each cycle. This should be avoided if all the masters 
in the system support CBRQ, since a significant perform­
ance degradation would result. However, if some lower pri­
ority master does not support CBRQ, W4 must be installed, 
otherwise the lower priority master (not supporting CBRQ) 
will not be able to acquire the bus. 

W5: When W5 is installed, a "fairness" arbitration mecha­
nism is activated. In this case a new bus request is issued 
only when all other external requests have been serviced. 
This allows a serial arbitration scheme to be used with three 
masters (or more, if the bus clock frequency is reduced) 
heavily using the bus, without the risk of the bus being mo­
nopolized by the two top priority masters. 

W6: W6 must be installed when a serial (daisy chain) arbitra­
tion scheme is used. It must be removed when using a par­
allel scheme. 

SO : = SO • (SREQ + FAIR' CBRQ) + S1 • SREQ + S3 • SECYC + RST + ERRST 

S1 : = (SO· SREQ • (FAIR + CBRQ) + S1 • SREQ • (BPRN + BUSY + SECYC)) • RST 

S2 : = (S1 • SREQ • BPRN • BUSY· SECYC + S2 • BPRN • CBRQ • FREL) • RST 

S3 : = (S2 • (BPRN + CBRQ + FREL) + S3 • SECYC) • RST 

State Encodings 

SO = AoBoCoO 

S1 = AoaoCoO 

S2 = AoBoCoO 

S3 = AoBoCojj 

Error state 

ERRST = AoBoCoO 

PAL16R8A 

PART # 

MUL TIBUS ARBITER 

NATIONAL SEMICONDUCTOR 

FIGURE 4. Arbiter Logic Equations and State Encodings 

CLK REQ RST ECYC BUSY CBRQ BPRN FREL FAIR GNO 

EN NC NC SECYC SREQ C BAD VCC 

IA:= A' IB • C • 0 • ISREQ' IBPRN • BUSY' SECYC· RST + IA' B • C • 0 • RST 

+ I A • B • C • 10 • SECYC • RST 

IB := A' B • IC • 0 • ISREQ • FAIR· RST + A· B • IC • 0 • ISREQ • CBRQ • RST 

+ A • IB • C • 0 • ISREQ • BPRN • RST + A • IB • C • 0 • ISREQ • IBUSY • RST 

+ A • IB • C • 0 • ISREQ • ISECYC • RST 
IC:= A • B • IC • 0 • SREQ + A' B • IC • 0 • IFAIR • ICBRQ + A • IB • C • O· SREQ 

+ I A • B • C • 10 • ISECYC + IRST + A • B • C • 0 

10:= IA' B • C • 0 • BPRN • RST + IA' B • C • 0 • ICBRQ' RST 

+ I A • B • C • 0 • IFREL • RST + I A • B • C • 10 • SECYC • RST 

ISREQ:= REQ 

ISECYC : = ECYC 
FIGURE 5. PAL Equations in "PALASM" Format 

8-36 



Effects of NS32082 Memory National Semiconductor 

~ Application Note 464 

Management Unit on Chris Siegl 

Processor Through Put 

INTRODUCTION is compatible with National's OBG16 debugger and allows 

The purpose of this application note is to give a satisfactory downloading of code from a host computer through the de-

answer to the question, "How great is the performance pen- bugger using an RS-232 link therefore allowing the host ma-

alty for using the NS320B2 memory management unit?" To chine to be remote from the development environment. This 

arrive at a satisfactory answer a number of benchmarks can even be done over a modem line to the host. 

have been run on the OB32000 board using the NS32032 A timing routine using the counters in the ICU was linked to 
with and without the NS320B2 as well as the NS32016 with the compiled benchmark programs before they were down-
and without the NS320B2. The benchmarks were compiled loaded to the OB32000. A command to the debugger then 
on two different compilers to show the differing effects of started the timing program executing which in turn called 
the MMU based on the degree of code optimization. The the compiled benchmark after starting the ICU counters. Af-
results are tabulated in a table along with the percent per- ter the benchmark completes, it returns to the timing routine 
formance penalty. where the counters are stopped and the execution time is 

The results show that the percentages vary over the wide read from the registers. This set-up and the timing program 

range of 6% to lB.5% with generally a greater MMU impact used are covered in detail in another application note titled 

with higher levels of code optimization in the compiler. The "Using the OB32000 Evaluation Board for Benchmarking". 

Whetstone benchmark has also been included to show the The SYS-32 Multi-User development system was used as 
effects of the MMU on floating-point instructions. As can be the host. This system is based on the Series 32000 family, 
seen in the tables the effects are much smaller with longer runs GENIXTM (National's version of Berkley 4.1 UNIXTM) 
instructions such as the floating-point instructions. The last operating system in a demand paged virtual memory envi-
section of this ap-note rationalizes the differences in per- ronment. The system supports up to eight simultaneous us-
formance under varying conditions and gives some rules of ers, C and Pascal high level language compilers, a Series 
thumb to use in applying this data to a specific case. 32000 assembler, symbolic debugger and supports in-sys-

THE TEST SET·UP 
tem emulation for the 32000 family. The minimum system 
configuration consists of 1.25 megabytes of RAM (expand-

To run this set of tests the OB32000 board was used. This able to 3.25 megabytes) 70 megabytes of hard disk (ex-
board is a complete microprocessor system specifically de- pandable to 490 megabytes) and a streamer tape drive for 
signed to assist the user in evaluating and developing hard- backup. For more detailed information on the SYS-32, 
ware and software for the NS32032 CPU, related slave please refer to the SYS-32 data sheet. The details of the 
processors (NS320Bl FPU and NS320B2 MMU) and sup- OBG16 symbolic debugger's usage for down loading and 
port devices. Through the use of on board multiplexers the execution of the benchmaks is covered in the ap-note "Us-
NS32016 and NS3200B CPU's can also be run on this ing the OB32000 Evaluation Board for Benchmarks". 
board. The configuration of this board used for these tests 
consist of the NS320Bl FPU (floating point unit), the RESULTS 

NS32202 ICU (interrupt control unit), 256K of dynamic RAM, TABLES I, II and III show the results of running the bench-
extensive ROM/EPROM capability, and two serial RS-232 marks under the four different part combinations. As can be 
ports as well as a parallel I/O port. See the OB32000 data seen in tables the MMU penalty varies considerably from 
sheet for more detailed information. benchmark to benchmark and especially from one compiler 

The TOS monitor (shipped installed on the OB32000 board) to another. To set an understanding of why the variations 

was then removed and replaced with MON32. This monitor are so big, we must look at how the 32000 family of CPU's 
operate in memory. 

TABLE I 
Benchmarks Executed on DB32000-AII Processors Running 

at 10 MHz with no Wait States using Genix 4.1 C Compiler 

Benchmark 
NS32032 NS32032 MMU NS32016 NS32016 MMU 
WMMU W/OMMU Penalty WMMU W/OMMU Penalty 

Ackerman. c 4.72 4.32 9.3% 6.03 5.27 14.4% 

BenchE. c B.B9 B.12 9.5% 11.97 10.50 14.0% 

Puzzle. c 20.59 19.10 7.B% 26.96 23.65 14.0% 

Sieve. c 19.42 18.09 7.4% 22.15 19.62 12.9% 

Fibonacci. c 22.13 20.28 9.1% 26.31 23.61 11.4% 

Longsearch. c 7.36 6.71 9.7% 10.31 8.70 18.5% 

8-37 



TABLE II 
Benchmarks Executed on DB32000-AII Processors Running at 10 MHz 

with no Walt States using Greenhill's C-32000 1.6.8 Complier 

Benchmark 
NS32032 NS32032 MMU NS32016 NS32016 MMU 
WMMU W/OMMU Penalty WMMU W/OMMU Penalty 

Ackerman.c 3.75 3.30 13.6% 5.06 4.37 15.B% 

BenchE. c 4.44 4.00 11.0% 4.76 4.4B 6.3% 

Puzzle. c 7.B2 7.09 10.3% 9.61 B.57 12.1% 

Sieve.c 17.71 16.41 7.9% 19.65 17.B9 9.9% 

Fibonacci. c 1B.34 16.47 11.4% 24.B7 21.17 17.5% 

Longsearch. c 6.77 5.97 13.4% B.75 7.4B 17.0% 

TABLE III 
Benchmarks Executed on DB3200D-AII Processors Running at 10 MHz 

with no Walt States using Genlx 4.1 Pascal Complier 

Benchmark 
NS32032 NS32032 MMU NS32016 NS32016 MMU 
WMMU W/OMMU Penalty WMMU W/OMMU Penalty 

Whetstone. P 5.0B 4.B3 5.2% 6.17 5.63 9.6% 

Both the NS32032 and the NS32016 have an eight byte This is why. even though the MMU lengthens each memory 
queue for instruction prefetching. As a result of this queue cycle by 25% (memory cycle goes from 4 t·states to 5) the 
having an MMU in the system has little effect on instruction net effect on performance is typically less than 10 %. The 
fetching. An interesting test that helps in understanding this penalty comes primarily from the lengthening of operand 
is to add wait states only to the code segment while using fetches. The NS32032 takes a much smaller penalty if the 
no waitstate RAM for the stacks and static data segments. operands are primarily 32 bits or more in length. In that case 
These tests show a performance degradation of only 2 or the NS32032 is only dOing half as many operand fetches as 
3% per waitstate. Another approach to demonstrating the the NS32016, which has to do two accesses to get 32 bit 
same effect which is not dependent on a special hardware operands. Another thing to note is that the performance 
setup (controlling the number of wait states on different ar· times between NS32032 and the NS32016 is less than 1 % 
eas of memory space is done in hardware) is to generate a in our software program loop test (see Table IV). This is 
software loop which only uses the registers and immediate because both processors are internally identical except in 
data for holding operands. A short example of such a pro· the queue and bus interface. If the queue keeps up and 
gram is shown in listing 1. Table IV shows the results ob· there are no stack or memory reference operations the exe· 
tained from timing this program both with and without the cution time would be identical. The difference in time in this 
MMU. As can be seen from the times the penalty is very test is due to the queue not quite keeping up and the branch 
small. much less than 1 %. This example clearly demon· which purges the queue which the NS32032 reloads twice 
strates that the queue is dOing a good job of minimizing the as fast. 
effects of the MMU or waitstates on intruction fetching. 

B-38 



r--------------------------------------------------------------------.~ 

TABLE IV 
Benchmarks Executed on DB32000-AII Processors Running at 10 MHz with No Wait States 

(times are in microseconds) 

Benchmark 
NS32032 NS32032 
WMMU W/OMMU 

Progloop.b.s 12622 12559 

Progloop.w.s 13344 13291 

Progloop.d.s 14988 14939 

Tables I and II are the results of two different compilers 
using the same source files for input but generating code at 
different levels of optimization. The compiler in Table II opti­
mizes to a much greater degree resulting in a much smaller 
ratio of instruction fetches to operand fetches while the ta­
ble one compiler generates more code to do the same work. 
The number of operands does not decrease through opti­
mization but extraneous code is eliminated, driving down the 
code to operand fetch ratio. As a result the penalty rises but 
is still in the neighborhood of 10%. The greater the com­
plexity of the instruction the smaller the MMU penalty be­
cause the queue is more likely to keep up and a larger ratio 
of execution time to operands fetched especially with the 
NS32032. Table III gives the results of the Whetstone 
benchmark which illustrates this. The Whetstone bench­
mark is primarily floating point, the big NS32032 advantage 
comes from the operands being 32 or 64 bits in length. The 
NS32016 is making two times as many operand memory 
references as the NS32032 and therefore gets two times 
the MMU penalty. 

CONCLUSIONS 
After studying the above tests we can see the major factor 
effecting the performance penalty due to the MMU is the 

LISTING 1 

MMU NS32016 NS32016 MMU 
Penalty WMMU W/OMMU Penalty 

0.50% 12750 12668 0.65% 

0.40% 13432 13350 0.61% 

0.33% 15075 14992 0.55% 

number of operand references and stack operations per unit 
of time. If operands are typically longer than 16 bits or the 
stack is heavily used, the NS32032 will show a much lower 
MMU penalty than the NS32016. However, even for the 
NS32016 the MMU penalty is seldom greater than 15% and 
typically half that for the NS32032. This penalty being so 
small makes a strong case for using the MMU even in sys­
tems not using a bulk memory device and benefiting from 
the page replacement aspects. The MMU can be useful in 
these non bulk memory applications for protection at the 
page level as well as for system debugging and program 
maintenance. If portions of the ROM based code require 
changes only the ROM holding the effected page table 
needs to be replaced with the new code being addable in 
any available ROM socket. The MMU with the on board 
breakpoint resistors and counter can often greatly simplify 
isolating bugs in the field where system disassembly on an 
ISE (In System Emulator) would be out of the question or 
inconvenient. 

In bulk memory based systems there is no question that the 
performance improvements due to the MMU far outweigh 
the performance lost due to a longer memory cycle. For 
more details in this area see the technical note entitled "Se­
ries 32000 The Benefits of Demand Paged Virtual Memory". 

:######################################################################## 
; INLINE CODE LOOP 
; 12-10-85 by Chris Siegl 
; all operands in registers 
;######################################################################## 
; progloop.b.s = 
: 
; progloop.w.s = 
: 
; progloop.d.s = 
; 

• program 
-main: : 

movi O,rO 
movi 9,r3 
movi 9,r4 
movi r3,rl 
movi r3,r2 
movi r3,r5 
movl r3,r6 

i's replaced by b at end of instructions - operands 
are bytes (8 bits) 

i's replaced by w at end of instructions - operands 
are words (16 bits) 

i's replaced by d at end of instructions - operands 
are double-words (32 bits) 

;set loop counter to 0 for 256 loops 
;put bcd values in r3 & r4 

8-39 

Z . 
"" c» 

"" 



..,. 
CD loop: ..,. . 
Z absi rl,r2 
III( addi rl,r2 

addci rl,r2 
addpi r3,r4 
subpi r3,r4 
addqi 4,rl 
ashi 4,rl 
lshi 5,rl 
roti 6,rl 
andi r2,r5 
comi r2,rl 
ori r2,rl 
xori r2,rl 
nop 
muli r5,r6 
absi rl,r2 
addi rl,r2 
addci rl,r2 
addpi r3,r4 
subpi r3,r4 
addqi 4,rl 
ashi 4,rl 
lshi 5,rl 
roti 6,rl 
andi r2,r5 
comi r2,rl 
ori r2,rl 
xori r2,rl 
nop 
muli r5,r6 
acbb l,rO,loop 
rxp 0 
.endseg 

8·40 



Interfacing Memory to the 
NS32532 

The overall throughput of microprocessor systems often de­
pends on the performance of the memory subsystem. To 
achieve optimum throughput with a high-performance mi­
croprocessor such as the NS32532, memory should oper­
ate with few or no wait states. The processor's clock fre­
quency and the speed of memory components determine 
the number of wait states. This Application Note discusses 
design considerations for interfacing DRAM and SRAM to 
the NS32532. It covers four topics: 

• An overview of NS32532 memory interface requirements 

• A simple SRAM interface 

• An interleaved SRAM interface 

• A simple DRAM interface 

BACKGROUND 

The NS32532 microprocessor communicates with its envi­
ronment via parallel busses and signals. These include a 
32-bit data bus, a 32-bit address bus, a number of control 
signals, and five bus status pins. 

The processor has instruction and data caches as well as 
an on-chip Memory Management Unit (MMU) to reduce bus 
utilization, thereby increasing throughput. The MMU uses 
page tables in external memory to perform logical-to-physi­
cal address translation. In order to minimize page table ac­
cesses, the NS32532 maintains a Translation Look-aside 
Buffer (TLB) containing information about frequently-used 
addresses. When the TLB does not contain needed infor­
mation, the NS32532 fetches it from the external page ta­
bles. The on-chip caches duplicate a subset of external 
memory. The contents of an on-chip cache are acquired in 
one clock cycle, while it takes a minimum of two clocks to 
fetch data from external memory. Therefore, on-chip caches 
substantially reduce average memory access time when 
they contain the code and data the processor needs. 

On each memory access, the processor initiates a memory 
access cycle while searching the internal cache. This reduc­
es access time, since the memory cycle is already in pro­
cess when the cache does not contain the needed informa­
tion. During a read that fails to find the data in the cache (a 
cache miss), the memory cycle continues and the processor 
fetches the data from external memory. Unless declared 
non-cacheable, the information is placed in the internal in­
struction or data cache for future reference. Conversely, 
when the instruction or data cache contains the sought in­
formation (a cache hit), the processor cancels the memory 
access cycle. 

A memory write is always treated as a cache miss, so that 
external memory is updated; this is a "write through" cache 
policy. When an internal cache contains a copy of the mem­
ory location being updated, the processor also updates the 
cache using a "write allocate" cache policy, thus ensuring 
that both copies of the data are the same. 

MEMORY ORGANIZATION 

The 32-bit address bus of the NS32532 provides up to 
4 Gbytes of memory in a uniform linear address space start­
ing at zero and ending at 232 -1. Each memory location 
contains an eight-bit byte. Two contiguous bytes form a 

National Semiconductor 
Application Note 513 
Tony Radi 

word, and two contiguous words are a double-word. A word 
or double-word can start at any address, since there are no 
memory alignment requirements with the Series 32000® 
processors. Although addressable as bytes, memory is or­
ganized as double-words, where the address of a double­
word is the address of its least significant byte. 

While the NS32532 has no address alignment require­
ments, alignment affects the time to access a word or dou­
ble-word. The processor more quickly accesses a double­
word whose address is a multiple of four than one whose 
address is otherwise; it takes two memory cycles to fetch 
non-double-word aligned data. 

The NS32532 supports the memory mapping of peripheral 
devices and coprocessors. Such devices can be located 
anywhere in the address space except for the upper 8 MB 
(addresses FF80000016 through FFFFFFFFI6), which are 
reserved. The following section describes the bus signals 
required for memory or 1/0 interfacing. 

BUS INTERFACE 

The NS32532 performs six types of bus operations: 

1. Instruction fetch 

2. Memory or I/O read 

3. Memory or I/O write 

4. Read or update page table entries 

5. Acknowledge interrupt or completion of interrupt serv­
ice routine 

6. Transfer information to/from Slave Processor 

Cases 1 through 5 have identical bus timing characteristics 
and are discussed below. The only external difference 
among these cases is a six-bit code placed on the bus 
status pins (ST o-ST 5) during bus cycles for the purpose of 
identifying which operation is occurring. Case 6 has sepa­
rate control signals; Slave Processor operation is not rele­
vant to this Application Note and is not discussed here. 

The NS32532 can "burst read" up to four consecutive dou­
ble-words from memory. This feature reduces the amount of 
time the processor spends on the memory bus while in­
creasing the hit rate of internal caches. Details of burst op­
eration appear later in this document. 

The I/O signals of the NS32532 support interfacing to mem­
ory, memory-mapped devices, slave processors, and exter­
nal caches. The following control signals implement RAM 
interfacing on any system without the external cache: 

• 00-031: Bidirectional data bus. Either 8,16, or 32 bits of 
data are transferred at a time. Do is the least Significant 
bit. 

• Ao-A31: Address bus. Ao is the least Significant bit. 

• ADS: Address strobe. Indicates that a bus cycle has be­
gun and a valid address is on the bus. This signal is the 
earliest indication of a bus cycle in progress. The bus 
cycle may potentially be cancelled in event of an internal 
cache hit. 

• BEo-BE3: Byte enable. These signals indicate which 
bytes should be selected for transfer. During write cycles, 
BEo-BE3 enable the memory banks for writing. During 
reads, they select the appropriate banks of an I/O device 

8-41 

J> 
z . 
UI .... 
Co) 



~ .-------------------------------------------------------------------~ .... 
~ 
z 
<C 

that may exhibit undesired effects of reading intended 
only for some banks. During cacheable read cycles, .the 
processor reads all bytes regardless of how the byte 
enable signals are encoded. Thus all memory banks 
should be selected for a cacheable read cycle, disre­
garding BEo-BEa. 

• BMT: Begin memory transaction. This signal indicates 
that a bus cycle has begun. The processor may cancel 
the bus cycle and negate BMT if there is an internal 
cache hit. This signal cannot be used as a strobe in read 
cycles. However, in a write cycle due to "write through" 
implementation of the internal caches, this signal can be 
used as a strobe to start a bus cycle. 

• CONF: Confirmation. Indicates that a bus cycle initiated 
by ADS is valid and has not been cancelled. This signal 
should be used to start a memory transfer or proceed 
with a memory transfer that has already been initiated. 

• ST o-ST 5: Bus status. These six bits indicate the type of 
bus cycle currently in progress. If the processor is idle on 
the bus, these outputs indicate why. 

• U/S: User or supervisor. Specifies the address space 
(user or supervisor) of the current bus cycle. 

• ODIN: Data direction in. Indicating the direction of data 
transfer, this signal is used to generate read and write 
strobes. 

• BOUT: Burst out. The processor asserts this signal to 
request a burst cycle. Due to the timing of BOUT activa­
tion, it should not be used as a burst request or to gener­
ate the BIN signal (described next). Instead, it should be 
monitored to continue or terminate a burst that has al­
ready been initiated. 

ANY 
IT-STATE I Tl I T2 ITlORTI, 

BCLK[~ 

-IX AO-3{ 

00-3{ 
ODIN [ 

AOS[ 

BMT [ 

-
,/'I/. 

I\. 

I~ 

-r-
r//. 

V 

CONF [ 

ROY [ 

BOUT [ 

ZrLL. (fL 

[I, rll, Vf, 

X 

i}-

~ 

I\. 

I~ 

If 

(fL 

I 

VI, 

iiEii-3,STO-4, 
uiS [: +X 

f0-
X r--

X 

-- ~- ~>- -- _. 

II 

V \. ~ 

t-V i0 
\. II 

- -'II, rl/, fA /J 'II VII 

'I. '/ Vf, VI. 'f, '1/ 

X I-- X-... ~ -
TLlEE/9452-1 

FIGURE 1. Basic Read Cycle 

8-42 

• BIN: Burst in. Notifies the processor if the memory sup­
ports burst cycles. The memory controller should not wait 
for BOUT before asserting this signal. The address de­
coder should determine whether or not to assert BIN. 

• ROY: Ready. Notifies the processor when memory or a 
peripheral device is ready to transfer data. If this signal is 
not active, the processor inserts wait states to extend the 
current bus cycle, thus supporting slow memory and pe­
ripheral devices. 

• BER: Bus error. Indicates that an error has occurred dur­
ing the bus cycle. The processor treats BER as the high­
est priority exception after reset, and executes the BER 
exception routine. 

• BRT: Bus retry. Indicates that the current bus cycle 
should be retried. The processor will reexecute the bus 
cycle. 

• CLK: Input clock signal. The 32000 series requires a sin­
gle-phase clock signal running at a frequency twice that 
of the processor's operating speed in MHz. CLK is inter­
nally divided to generate two non-overlapping clock sig­
nals, BCLK and BCLK. 

• BCLK: Bus clock. One of the clock output signals derived 
from CLK. 

• BCLK: Complementary bus clock. This signal should be 
used for timing reference and for synchronization of ex­
ternal devices with the processor. 

Figure 1 is the timing diagram for a read cycle, and Figure 2 
for a write. Both figures assume that the selected memory 
or peripheral device is capable of communicating with the 
processor at full speed. 

ANY 

BClK[1iJi.JifLr 
x 

Z ,//, I)- --< 

i/ 

AO-3{ 

DO-3{ 

ODIN [ 

ADS [ 

BMT [ 

CONF[ 

I\. V I\.. V 

BEO-3, 
STO-4,U/S 

[~ 

[ 
[t-

[: 

~ 

,/1 

V/, 

1)( 

~ ~ 

V \. 

(I/. 'I/, r//. 

i/ 

rll. r/l, VI. 

i--
X 

I--

X 

DATA OUT 

I\, 

I\. 

V I~ 

1/ 

r//, fA /J 

VI. VI, VI. 

X 

FIGURE 2. Basic Write Cycle 

V 

t-V 
\. I--

~ 7Ji 

'I, VI/ 

TLlEE/9452-2 



.-----------------------------------------------------~~ 

z A full-speed bus access occurs during two cycles of BClK, 
T1 and T2. The processor asserts ADS during the first half 
of T1 to indicate the start of a bus cycle for both reads and 
writes. From the beginning of T1 until completion of the bus 
cycle, the processor drives the address bus and other rele­
vant control signals as the timing diagrams indicate. The 
processor asserts CONF in the middle of T1 if the bus cycle 
is not cancelled and T2 will be entered with the next clock 
cycle. BMT may be asserted at the start of the cycle and 
then deasserted before the time it is guaranteed valid. This 
is caused by an internal cache hit, which cancels the initiat­
ed bus cycle. A confirmed bus cycle completes at the end of 
T2 unless ROY is high, in which case the processor inserts 
additional T2 (wait) states. 

For write bus cycles, valid data is output from the middle of 
T1 until the end of the cycle (T2). Due to write-through im­
plementation of the internal caches, write cycles are not 
cancelled. When one write cycle immediately follows anoth­
er, the processor continues driving the bus with data from 
the previous operation until the middle of state T1 of the 
second bus cycle. 

Following state T2 is either state T1 of the next bus cycle or 
an idle T-state if the processor has no bus cycle to perform. 

BCLK [ 

AO-3{ 

00-31 [ 

ODIN [ 

ADS [ 

BMT [ 

Ij 

[ 
[~ 

[ 
[~ 

[ 
STO-4,U/S [ 

1/1 IL, 

I~ 

~ tl'h 

~ VII 

X 

\. 

I\. V 

I~ - I 

l/ \. 

VII rt1L rt1L 

IX 

Vh VR ~ 

I\, 

IX 

BURST CYCLES 

The NS32532 is capable of performing burst transfers, 
which increase bus efficiency and tend to raise the internal 
cache hit rate. Burst is only available in instruction fetch and 
data read cycles from 32-bit memories. Figure 3 is the burst 
cycle timing diagram, which assumes no wait states. 

A burst cycle consists of two parts. The first is a regular 
(opening) cycle, in which the processor outputs its status 
and asserts the relevant control signals. The processor as­
serts BOUT to indicate that it wants to perform burst cycles. 
If the selected memory supports burst mode, it notifies the 
processor via BIN low. If the memory does not allow burst 
(BIN high) and the cycle extension has not been requested 
via ROY, the memory cycle terminates at the end of T2 and 
the processor deasserts BOUT. If the memory supports 
burst and the processor has not deasserted BOUT, the sec­
ond part of the burst cycle occurs and BOUT remains active 
until termination of the operation. 

The second part of the burst consists of up to three nibbles 
in state T2B. In each of these nibbles, the processor reads a 
32-bit data item. After each data read, address bits Ao-Al 
go to zero and A2-AS increment, and all byte enable out-

T2B T2B T2B I Tl OR Tl I 

X f-- IX l"-De -.x - r-- r--

(l~ k! P-~ p-K! h 
f'" 

/ 

I\.. V 

I~ f--V 

l/ \.. -
~ h ~ Ii ~ -"-~ /, VII III 

I\, / 

Li ~ Jj V\ LL VfL VLf, ~/h '(fh VI. 

1/ 

IX 
TL/EE/9452-3 

FIGURE 3. Burst Read Cycle 

8-43 

• U1 .... 
Co) 

• 



~ r------------------------------------------------------------------------------------------, .,... 
II') 

z 
c:( 

puts BEo-BE3 are activated. If the RDY pin is high at the 
end of each T2B, the processor inserts additional T2B 
states to allow slow memories to work with the burst cycle. 

The following sections discuss three simple designs. The 
first two work at up to 30 MHz, and the third at 30 MHz. The 
first design is a simple SRAM interface that requires no wait 
states on regular memory cycles. However, it requires one 
wait state in each nibble access at speeds higher than 20 
MHz. The second design shows an interleaved memory im­
plementation on burst access cycles, eliminating the single 
wait state of the first design and thus operating with memory 
at full speed. The third design shows a simple DRAM inter­
face to the NS32532. This design inserts three wait states in 
a regular memory cycle, but only one wait state in each 
nibble transfer at 30 MHz. 

All three designs use PAL ® devices for address decoding. 
Standard driver, 74AS1034, are used to increase drive 

T1 T2 Tl 

BCLK 

A<O-31> 

D<O-31> OUT 

BMT 

CONF 

DDIN 

BREQ 

where the processor address bus lacks the necessary drive 
capability. High speed 8-bit transceivers, 74PCT245, pro­
vide isolation and additional drive capability for the data bus. 

SIMPLE SRAM MEMORY INTERFACE TO THE NS32532 

This section presents the results of a timing analysis and 
describes an SRAM interface for the NS32532 optimized for 
simplicity and cost. The interface does not utilize the proc­
essor's Bus Error and Bus Retry features. 

This design allows all memory writes and the opening cycle 
of memory reads to proceed without wait states at any fre­
quency up to 30 MHz. It also supports the NS32532's burst 
mode without wait states at up to 20 MHz. For burst trans­
fers at 25 MHz and 30 MHz, one wait state is inserted in 
each nibble via jumper WI. Figure 4 shows the timing dia­
gram of the interface. 

T2 T2B T2B T2B 

TLlEE/9452-4 

FIGURE 4_ Timing Diagram of the Simple SRAM Interface 

8-44 



The basis of the design is a state machine implemented by 
PAL 16R4D (see Appendix A for state diagram PAL equa­
tions and schematics). This PAL keeps track of the proces­
sor state and drives the RDY signal high if a wait state 
needs to be inserted in the nibble transfer. The processor 
increments A2-A3 during burst access cycles. 

Another PAL (16L8D) generates the write strobe for memo­
ry banks. The memory write strobe is generated by BMT 
during write cycles (DDIN high) and terminated by the rising 
edge of BCLK during T2. The memory write strobe is quali­
fied with BEo-BE3 before being routed to the memory 
banks. ~ second PAl16L8D provides address decoding, 
generating the MEMRD signal when the memory is ad­
dressed in a read cycle with burst allowed. 

This SRAM interface uses 25 ns static RAMs, Fast or Ad­
vanced Schottky TTL gates, and D type PALs to achieve no 
wait state operation during regular memory cycles. During 
burst m~mory transfers at processor speeds over 20 MHz, 
one walt state is required in each nibble cycle for correct 

T1 T2 Tl 

operation. This wait state causes only a 3% performance 
degradation on average. 

INTERLEAVED SRAM MEMORY 
INTERFACE TO THE NS32532 

This section presents the results of a timing analysis and 
describes an NS32532 SRAM interface optimized for speed 
and Simplicity. The interface does not utilize the processor's 
Bus Error and Bus Retry features. Memory banks are ac­
cessed concurrently and the data is read in an interleaved 
fashion during burst transfers, thus eliminating the need for 
wait states during nibble cycles. 

This design provides for operation of the NS32532 at up to 
30 MHz without wait states during regular and burst memory 
accesses. The latched A2 bit of the processor enables 
memory banks for read or write. Reads from memory banks 
are interleaved during burst access cycles. This way the 
address setup for one bank overlaps with the data read 
from another. Figure 5 shows the interface's timing diagram. 

T2 T2B T2B T2B 

CSN ~~ ____________________________ ~;-

TL/EE/9452-5 

FIGURE 5. Timing Diagram of the Interleaved SRAM Interface 

8-45 



~.-------------------------------------------------------------------~ .... 
II) 

• z 
cc 

Four PALs implement the design: two for the processor 
state machine and specific memory control signals, one for 
generating write strobes, and one for address decoding 
(see Appendix B for state diagram PAL equations and sche­
matics). PAL16R4D implements the state machine. It uses 
the latched A2-Aa bits to control the selection of memory 
banks during a burst access, alternating the assertion of 
RDL and RDU in successive cycles. The Aa value is set up 
in a given cycle, for a bank that will be enabled in the subse­
quent cycle via RDL or RDU inputs. Aa should fall through 
the D flip-flops in order to meet the address setup time for 
the SRAM in the opening cycle. To do this,a pulse is gener­
ated by qualifying a skewed clock (DCLK) with ADS. This 
pulse clocks Aa in the D flip-flops. For proper operation at 
different processor frequencies, the jumpers should be in­
stalled as follows: 

• 1-2 for 30 MHz 

• 3-4 for 25 MHz 
• 5-6 for 20 MHz 

After the opening cycle, the Set and Clear inputs of the D 
flip-flops change the As value under control of the state 
machine PAL. 

PAL 16L8D generates the memory write strobe from BMT 
during write cycles (DDIN high) and terminates it on the ris-

t.tA<O-9> 

MD<O-31> 

WE ~ / 
",-. ----_ ..... 

ing edge of BCLK during T2. The memory strobe is qualified 
with BEo-BEa before being routed to the memory banks . 

The third PAL (16L8D) is the address decoder. It generates 
MEMRD when the memory is addressed in read cycles and 
burst is allowed. 74AS1034 is used as the buffer driver 
where the processor output pins lack the necessary drive 
capability. 

This SRAM interface uses 25 ns static RAMs, Fast or Ad­
vanced Schottky TTL gates, and type D PALs to achieve no 
wait state operation during regular memory cycles. During 
burst transfers, the interleaving of memory banks allows no 
wait state operation of the processor up to 30 MHz. 

SIMPLE DRAM INTERFACE TO THE NS32532 

This section presents the results of a timing analysis and 
describes a DRAM interface to the NS32532 optimized for 
speed and simplicity. The interface, which operates at 
30 MHz and does not utilize the Bus Error and Bus Retry 
features of the processor, uses 80 ns DRAMs to minimize 
the number of wait states. All RAS signals are activated 
during a normal DRAM access and refresh cycle. During 
write cycles, only the CAS signals corresponding to the en­
abled bytes are active, while all CAS signals are active dur­
ing reads. Figure 6 shows the interface timing diagram. 

A<2-11> REfRESH ADDRESS 

,'-------
TLlEE/9452-6 

FIGURE 6. Timing Diagram of the Simple DRAM Interface 

8-46 



The design uses five PALs: two for generating refresh ad­
dress and refresh request, one for the state machine, one 
for generating CAS strobes, and one for address decoding 
(see Appendix C for state diagram PAL equations and sche­
matics). 

PAL 16R8D implements the state machine. It keeps track of 
the processor state and drives the RDY signals high when 
wait states are inserted into bus cycles. This design uses 
static column DRAM, although it could use nibble mode 
DRAM with a simple modification to the state machine. Stat­
ic column DRAM simplifies the design since the processor 
drives and increments A2-A3 during burst access cycles 
without the need to toggle CAS. With nibble mode DRAM, 
the CAS lines must be toggled during nibble cycles. 

Two PAL20X10s generate the refresh address and refresh 
request. One PAL is the refresh address counter, which in­
crements at the end of each refresh period. Its outputs drive 
the address lines of the DRAMs (row address) during the 
refresh period. The other PAL is the refresh interval counter, 
generating a refresh request (RFRQ) approximately every 

8-47 

eight /Ls. Clocked by BCLK, it must be modified if this inter­
face operates at speeds other than 30 MHz. To make the 
PAL accommodate different speeds, a load term can be 
used in the PAL equations, with PAL inputs jumpered to 
ground or Vee. 

PAL16L8D generates the CAS strobes for the memory 
banks. In read cycles, all CAS strobes are asserted on the 
assumption that memory is cacheable, whereas in write cy­
cles, the CAS strobes are qualified with BEo-BE3 before 
being routed to the memory banks. The memory write 
strobe is derived from DDIN. The data transceivers estab­
lish their direction from DDIN and are enabled by CONF. 
The data transceivers are recommended, but not necessary 
to have this interface operating. 

This DRAM interface uses 80 ns column DRAMs, Fast or 
Advanced Schottky TIL gates, and type D PALs. It achieves 
regular memory transfers in five cycles and burst nibbles in 
two cycles. It is possible to operate the NS32532 with fewer 
wait states by employing RAS prediction. A future Applica­
tion Note will discuss features such as RAS prediction and 
error detection and correction. 



~ r---------------------------------------------------------------------------------, .,... 
II) 

• z 
c( 

Appendix A 
State Diagram of the Simple SRAM Interface 

AS 

Note 1: This condition is a subset of I AS'BREO condition. 

PAl16R4D 

STATE MACHINE PAL 

STATE MACHINE PAL, WAIT STATE GENERATOR 

NATIONAL SEMICONDUCTOR CORP, SANTA CLARA, CALIFORNIA 

ClK NC NC WAIT RST BURST NC AS BREQ GND 

OE NC ABC D NC NC NC VCC 
A : = A' B • ID • IBREQ • IWAIT' RST + A • C • ID • IBREQ • IWAIT • RST 

B := A' B' ID' IBREQ' WAIT' RST + A' C' ID' IBREQ' WAIT' RST 
+ IA' B' C' D' RST 

C : = A' B • C • ID • AS • IBURST • RST 

D := A' B' C' AS' IBURST' RST + A' B' ID' AS' IBURST' RST 
+ A • B • ID • IBREQ • WAIT' RST + A • C • ID • IBREQ • WAIT' RST 
+ 1 A • B • C • D • RST 

8-48 

TL/EE/9452-7 



PAL16L8D 

WRITE STROBE GENERATOR 

WRITE STROBE GENERATOR FOR SRAM BANKS 

NATIONAL SEMICONDUCTOR. SANTA CLARA. CALIFORNIA 

BED BE1 BE2 BE3 BODIN A 16 CONF BMT NC GND 

BCLK WLD WL2 WL3 WUD WU1 WU2 WU3 WL 1 VCC 
fWLD fBMT • BODIN' fBED • fA 16 + BCLK • fCONF • BODIN' fBED • fA 16 

fWL1 fBMT' BODIN' fBE1 • fA16 + BCLK' fCONF' BODIN' fBE1 • fA16 

fWL2 fBMT • BODIN' fBE2 • fA 16 + BCLK • fCONF • BODIN' fBE2 • fA 16 

fWL3 fBMT' BODIN' fBE3' fA16 + BCLK' fCONF * BODIN * fBE3 * fA16 

fWUD fBMT' BODIN' fBED' A16 + BCLK' fCONF * BODIN * fBED' A16 

fWU1 fBMT' BODIN * fBE1 * A16 + BCLK' fCONF' BODIN' fBE1 * A16 

fWU2 fBMT' BODIN * fBE2' A16 + BCLK' fCONF' BODIN' fBE2' A16 

fWU3 fBMT' BODIN' fBE3 * A16 + BCLK * fCONF * BODIN * fBE3' A16 

PAL16L8D 

ADDRESS DECODE PAL 

ADDRESS DECODER FOR THE SRAM BANKS 

NATIONAL SEMICONDUCTOR. SANTA CLARA. CALIFORNIA 

F1 F2 F3 A17 A16 NC NC NC NC GND 

BODIN NC CSL CSU NC NC NC BURST NC VCC 
fCSL F1 • F2' F3' fA16' fA17 

fCSU F1 • F2' F3' A16' fA17 

fBURST = F1' F2' F3' fA17' fBDDIN 

8-49 

l> 
z . 
U1 .... 
Co) 



0(0-31> 

8-50 

AI 
A2 
A3 
A4 
A5 
A6 
A7 
AS 
A9 

Al0 
All 

NS32532 A12 
A13 
A14 
A15 
A16 
A17 
AIS 
A19 
A20 
A21 
A22 
A23 
A24 
A25 
A26 
A27 
A2S 
A29 
A30 
A31 

BCLK ir.-..... +­
BCLK 

PFS 
ifS 
US 

HLOA 
CASEC 

AOS 
BMT 

CONr 
0Q!t! If.!'''-IH-++-­
-'lJ! 
BO.!!I~Cm+: BIN It 

SPC 
SON 

rSSR 
10lNH 
IOOEC 
ClOUT 

ROY 
BWI BEO BEl BE2 BE3 

TUEE/9452-10 



A(2-15> 

2· -Y!ot..;.' '40+_-;H p-_. 

iOi 13 
i02 14 
i03 15 
i04 16 

iDs 17 BURST ili6 18 

8-51 

74AS1034 
2 

D(D-31> ~ 

AL(2-15> 

TLfEEf9452-11 

:J> 
z . 
CJ'I ..... 
Co) 

• 



~ r---------------------------------------------------------------------------------, .... 
an • Z 
c( 

AL<2-15> 

0<0-31> 

AU<2-15> 

0<0-3> 0<4-7> 0<8-11> 0<12-15> 

TUEE/9452-12 

8·52 



0<16-19> 0<20-23> 0<24-27> 

8-53 

0<28-31> 

TL/EE/9452-13 

» z 
I c.n .... 

Co) 



~ ,---------------------------------------------------------------------------------, .... 
~ 

:i 
AppendixB 

State Diagram of the Interleaved SRAM Interface 

Note 1: This condition Is a subset of I AS • BREa condition. 

8-54 

As°BREQ(NOT A BURST CYCLE) 
+AS°t.lEt.lRD (NOT A t.lREAD CYCLE) 

+As°CONr<I) (IDLE fOLLOWS A HIT) 

TL/EE/9452-8 



PAL16R4D 

STATE MACHINE PAL 

STATE MACHINE ENCODING TO CONTROL SRAM BANKS 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

CLK LA3 LA2 NC RST IMEMRD CONF AS BREQ GND 
OE RASO RA31 ABC D OE1 OEO VCC 

IA A' B' C' ID' AS '/MEMRD' RST + A' B' IC' D' IBREQ' RST 

IB ,= B' C' ID' RST 

IC ,= A • IB • C • 0 • IBREQ • RST 

ID A • B • C • AS • IMEMRD • RST + B • C • ID • AS • IMEMRD • RST 

IOEO ,= B • C • ID • ILA2 • ICONF • RST + A • B • IC • D • lLA2 • RST + A • IB • C • D • LA2 • RST 
+ IA' B' C' D' LA2' RST 

IOE1 A • IB • C • D • ILA2 • RST + I A • B • C • D • lLA2 • RST + B • C • ID • LA2 • ICONF • RST 
+ A • B • IC • D • LA2 • RST 

IRA30 lLA3 • LA2 • A • B • IC • D • RST + LA3' lLA2 • A • IB • C • D • RST 
+ LA3 • LA2 • B • C • ID • RST 

IRA31 ,- lLA3' lLA2' A' B' IC' D' RST + LAS' LA2' A+ lB' C' D' RST 

PAL16L8D 

ADDENDUM TO STATE MACHINE 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

LA2 LA3 NC NC NCA BCD GND 

RST SASO NC NC NC NC NC NC SA31 VCC 
ISA30 lLA3 • ILA2 • A • IB • C • D • RST + lLA3 • LA2 • B • C • ID • RST 

+ LA3 • LA2 • A • B • IC • D • RST 

ISA31 ILA3 • lLA2 • A • B • IC • D • RST + ILA3 • LA2 • A • IB • C • D • RST 

PAL16L8D 

WRITE STROBE PAL 

WRITE STROBE GENERATOR FOR SRAM BANKS 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

BEO BE1 BE2 BE3 BDDIN LA2 CONF BMT EBMT GND 

BCLK WLO WL2 WL3 WUO WU1 WU2 WU3 WL 1 VCC 
IWLO IBMT' BDDIN • IBEO • lLA2 • + EMBT' ICONF • BDDIN • IBEO • ILA2 

+ BCLK • ICONF • BDDIN • IBEO • lLA2 
IWL 1 IBMT' BODIN' IBE1 • ILA2 + EBMT • ICONF • BODIN' IBE1 • lLA2 

+ BCLK' ICONF • BODIN' IBE1 • ILA2 

IWL2 IBMT' BODIN' IBE2 • lLA2 + EBMT' ICONF' BDDIN • IBE2 • lLA2 
+ BCLK • ICONF • BODIN' IBE2 • lLA2 

IWLS IBMT' BDDIN • IBE3 • lLA2 + EBMT • ICONF • BODIN' IBE3 • lLA2 
+ BCLK • ICONF • BDDIN • IBE3 • ILA2 

IWUO IBMT' BODIN' IBEO • LA2 + EBMT' ICONF • BODIN' IBEO • LA2 
+ BCLK' ICONF • BODIN' IBEO • LA2 

IWU1 IBMT • BDDIN • IBE1 • LA2 + EBMT' ICONF • BODIN' IBE1 • LA2 
+ BCLK • ICONF • BODIN' IBE1 • LA2 

IWU2 IBMT' BODIN' IBE2 • LA2 + EBMT' ICONF • BODIN' IBE2 • LA2 
+ BCLK' ICONF • BODIN' IBE2 • LA2 

IWU3 IBMT' BODIN' IBE3 • LA2 + EBMT' ICONF • BODIN' IBE3 • LA2 
+ BCLK • ICONF • BODIN' IBE3 • LA2 

PAL16L8D 
ADDRESS DECODE PAL 

ADDRESS DECODE PAL 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

F1 F2 F3A17 NC NC NC NC NCGND 

BDDIN NC CS NC NC NC NC MEMRD NC VCC 

ICS F1' F2' F3' IA17 
IMEMRD = F1' F2 • F3 • IBDDIN 

8·55 

» z 
I 

U1 .... 
W 



C") ,.. 
L? z 
<C 0<0-31> 

TL/EE/9452-14 

8-56 



D<0-31> ~ 

Al<4-16>__.,. 
AS1034 

�-----',2 

~~~~5311A lYp 5~ ~~~ 
_____ ~I~V2~~ AU.<.4.-I.6.>--.,.~

' _____ -¥-I3 ~ ~~~

1~ 4A 4YI~O ~
13 SA SY rr2-,

I'~---""""i~""""_

ASI034
1~~

1~~~~~312A 2Y 14----' ~ 3A 3Y I~ ~
114A 4Y~
13JLJ}p:LJ

I ~ ____ ...!',' 10
A<4-16>

A<0-31>

A<I7-31>

' ___ --;HS 3A 3yI6 ~
'----...,I,;t~ 4A 4Yrfo-,
'------,1 3 SA SYt'1'2"""",
'-------''''I~........-

~ -----;.!~ lA IY tH
' -------iSH2A 2Y rs---,
'-----i9H3A 3YI'8""""""',
'----.,.;11i14A 4Y~
'----.;,13i1SA SYp
~

_----~I~3~
V A<4-16> -v----

~ 74F260 PAll6l8D

~).~_S::::::::::~1~12
\.----:T2J ~ 2 12 QII±t 74AS1034 ~ ~13 02 I 2

~ -i:~ m!lLiilll+~")'~----....,'"'1
\.--;-Q"T 6 ~ 16 m Ii 3
I-. -m -4 17 I§l~ ,.. --no ~ 18 -ilL
'" ""'---t'2' ..,ll 19 10SI"fij" imlRii ."-1'---n:74F260 ,...........1! 110 106

1-~~~~~:~~r-~I7~===S==~-+ ___ -----__ ~~_1-______ ~~2~D P:O~~:~
3 CCl Q 6 A3 18 ~3~1~9_--!oLA~3H-'"

'\..AL....g 06 06i~I~6"-....... LA",,2"t-1 ~1
~ DS OS ~ 10

~ D4 04 ¥- LJ..--I.-----+tt'92 D PR 0 9 A3U

~ D3 03 t r:::l±~====::f~=:jlL -J 3 II r C -0 8 -! D2 02 I%- fI 'f"'-"""!+,-J1.'I) Cl -4 Dl Ol~
..... DO .lt0 fL "'""'"74AS08 13

~OE ~

11 1 +t::::::::::~~+t==i1'1"jj'""""""=l 12 2 12 QI .!.L -4 13 02 00U-4F 2' - -,"I ~ -4 14 _ ,13
1 IN 02~1L.0-4:4';':_)(_>''!.3-+-HL..L.1_-i-I' elK iOi ~ -i IS !Q! '#

03 6 6· - - 'S ~ ~ 11 ~ -It-w H 16 m il* 12 01 °04S 8 8·--·7 --1'2 ~tt- H 17 ~iJg
-- .. i 13 104 f'-"- m8 18 !lM 17 ----.::~===;:==-+J ~ 14 Oi ~ Uf9 19 ~ %

~4AS04 ~:~ ;;;02'Ll':~l--I-+-I-' 1'~1J.2.

I 2 ~--iI---4-4I-HI-r--*-8ii117~ 1i'03UtI7~:t~~~f=I=========R~D~l::: ,l! 18 04 11

I 1--.2.Wt.1 ROU

8-57

TLlEE/9452-15

» z .
U1
W

•

~ r---, ..-
~

~ AL<4-16>

,A3L

ROL
CWLO
~ WL1
~ WL2
... WL3

... 0<0-31>
,

... AU<4-16>

A3U

ROU
WUO
WUl

0<0-3>

I CY7C166A

.... f AO 1/00 I§

..: 9 AI 1/01

..: 0 A2 1/02 ..:.;7 A3 1/03

AS ~.-'t A4

A6 WE lL-
.... 4 A7
..... """! AS
c ~ A9
~ Al0

~m ~~
- ... A_13 ___ CE 1J

0<0-3>

I CY7C166A

~ AO 1/00 ~
~ :~ :~g~
..: A3 1/03
i....- A4
L -. AS
~ A6 WE ilL-

~ !~
A9
Al0

~ All OE~ A12 C-E
A13

0<4-7>

I CY7CI66A

.... ,f AO 1/00 ~
~'"" AI 1/01
i...."": A2 1/02
i....- A3 1/03
i....- A4
L -. AS N A6 WEilL-
L - A7
~S AS
i....6 A9
i....7 Al0
i....8 All OE~ 1......9 A12 CE

- ... A_13 __ --'

0<4-7>

l CY7CI66A

..... ¥s AO 1/00 ~
i.... -B. AI 1/01
~ 0 A2 1/02
i....-21 A3 1/03
~A4

~l'--i ~ WE ,.
A7 -
AS
A9
Al0

~m :~

8·58

O<S-II>
l CY7C166A

.... Lft AO 1/00 ~ 19 AI 1/01

....::i ~ 1/02
~ A4 1/03
:---.JAS
~ A6 WElL-
.... 'A7

~
.5AS

A9
Al0

~ All OE~ A12 C-E
A13

0<S-11>
L CY7C166A

~'ti AO 1/00 ~
9 AI 1/01

.... 20 A2 1/02
~ ~ 1/03

~~ WElL-N 4 A7
I-.. -5 AS

N A9

~ !1~ ~~ A12 CE
A13

0<12-15>
t_ CY7CI66A

.... ~AO I/OO~
i....19 AI 1/01

~L 20 A2 1/02
A3 1/03

..... 1 A4
~AS
N:; WEilL-

~ ~!~ OE~ A12 CE
... A_13 __ --'

0<12-15>
L CY7C166A

~'ti AO 1/00 U§
AI 1/01

~o A2 1/02
1 A3 f'03 A4 I

"-....,l AS
~ A6 WElL-
..... 'A7
.... 5 AS
~A9

~~~!1~ ~~ A12 CE 
A13 

TL/EE/9452-16 



,--------------------------------------------------------------------, ~ 

TLlEE/9452-17 

8-59 

z • UI .... 
W 



~ r------------------------------------------------------------------------------------------, .... 
It) 

Z 
<C 

AppendixC 
State Diagram of the Simple DRAM Interface 

CONF*RFRQ 

Note 1: MXDIS and COLSEL are Don't Care in these states. 

8·60 

TL/EE/9452-9 



,--------------------------------------------------------------------,> 
PAL16R8D 

STATE MACHINE PAL 

STATE MACHINE FOR DRAM CONTROLLER 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

CLK RFRO CONF BREO RAM NC IRST NC NC GND 

OE A B NC C D E F G VCC 
I A A • B • IC • D • E • F • G • iRFRO + A * B * IC • D • E • IF * IG * IRFRO 

IB 

IC 

ID 

IE 

IF ,-

+ I A • B • IC • D • E' F' G + I A • B • C • ID • E * F' G 

A • B • IC • D • E • F' G • ICONF • RFRO • IRAM + A * IB • C * ID • E' IF' G * BREO 
+ A • IB • C • D • E • F • G + A • IB • C • D • E • IF * IG + A • IB • C * ID • IF • G • IBREO 

A • B * IC • D • E • IF • IG • RFRO + A • B • IC • D • E * F * G • CONF • RFRO + IRST 
+ A' B' ID • E • F' G + A' IB • C • D • IE • IF * G + A' IB • C • ID • IE • IF' G • BREO 
+ A' B • IC • D' E * F' G • IRFRO + A' B • IC • D' E * IF • IG * IRFRO 

A • IB • C • D • E • F * G + A • IB • C • D • E • IF • IG + I A * B * IC • D • E • F • G 
+ I A * B • C • D * IE * F • G + A * B • C • ID • E • F • G 

A • IB • C • ID • E • IF • G • BREO + A • IB • C • D • E • IF * IG + I A • B * C • ID • E • F • G 

A • IB • C • D * E • F • G + A' IB • C • IE • IF' G + A' IB • C • D * E' IF * IG 
+ A' IB • C • ID • IF' G 

IG A • IB • C • IE • IF • G + A' IB • C • ID • IF • G • IBREO 

PAL 16L8D 

ICASnPAL 

GENERATES ICASn FOR DRAM BANKS 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

NC CASI DDIN NC BEO BE1 BE2 BE3 NC GND 

NC NC CASO CAS1 CAS2 CAS3 NC NC NC VCC 

ICASO 

ICAS1 
ICAS2 
ICAS3 

PAL16L8D 

ICASI • IDDIN + ICASI • IBEO • DDIN 

ICASI * IDDIN + ICASI • IBE1 • DDIN 

ICASI * IDDIN + ICASI • IBE2 • DDIN 

ICASI • IDDIN + ICASI * IBE3 • DDIN 

ADDRESS DECODE PAL 

ADDRESS DECODER FOR DRAM INTERFACE 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

A31 A30 A29 A28 A27 A26 A25 A24 A23 GND 

A22 RAM RAML RAMU NC NC NC NC NC VCC 

IRAM = IA31 */A30 */A29 */A28 */A27 */A26 * IA25 */A24 '/A23 

IRAML = IA31 */A30 */A29 * IA28 */A27 '/A26 '/A25' IA24 '/A23 */A22 
IRAMU = IA31' IA30 */A29' IA28' IA27 * IA26 '/A25 */A24 */A23' IA22 

8-61 

z 
I 

U1 ..... 
Co) 

• 



~ ,---------------------------------------------------------------------------------, ... 
II) 

:Z cc 
PAL20X10A 

REFRESH INTERVAL COUNTER 

SO MHZ REFRESH INTERVAL COUNTER PAL 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 

BCLK NC NC NC NC NC NC NC NC NC RFACK GND 

OE 00 01 02 OS 04 OS 06 07 NC RFRO VCC 
100 100 + 107 * 106 * lOS 

:+:VCC 

101 ,= 101 + 107 * 106 " lOS 
:+: 107" 106 * lOS + 100 

102 ,= 102 + 107 * 106 * lOS 
:+: 107' 106' lOS + 101 + 100 

lOS ,= lOS + 107 • 106 * lOS 
:+: 107' 106 * lOS + 102 * 101 * 100 

104 104 + la7 * la6 • las 
:+: la7' la6" las + lOS' 102" 101 * lao 

lOS las + la7 * la6 • las 
: +: la7 • 106 * las + la4 * las * la2 • la1 * lao 

la6 la6 + la7 * 106 * lOS 
:+: 107' la6 * lOS + lOS * 104 * las * la2 * la1 * 100 

la7 ,= la7 + la7 • la6 * las 
:+: la7 * la6 * las + la6' las * 104 * las * la2 * la1 * lao 

IRFRO ,= RFRO * a7 * a6 * as * a4 * as * a2 * 01" ao + IRFRa * IRFACK 
:+: IRFRa 

PAL20X10A 

REFRESH ADDRESS COUNTER 

REFRESH ADDRESS GENERATOR FOR DRAM BANKS 

NATIONAL SEMICONDUCTOR, SANTA CLARA, CALIFORNIA 
ClK NC NC NC NC NC NC NC NC NC NC GND 

OE AO A1 A2 AS A4 AS A6 A7 AS A9 VCC 

IAO:= lAO :+: VCC 

IA1 := IA1 :+: AO 

IA2:= IA2 :+: A1 * AO 

IAS:= lAS :+: A2*A1*AO 

IA4:= IA4 :+: AS*A2"A1*AO 

IAS:= lAS :+: A4*AS*A2*A1*AO 

IA6:= IA6 :+: AS*A4*AS*A2*A1*AO 

IA7:= IA7 :+: A6*AS*A4*AS*A2*A1*AO 

MS:= MS:+:~*M*M*A4"~'~'M"M 

IA9:= IA9 :+: AS*A7*A6*AS*A4*AS"A2*A1*AO 

S-62 



~----------------------------------------------------~~ 

.lillilll 
~ 

I!~ ?~ ~ ~~ ~ ~~ 

lOA ~~ ~ 
0<0-7> 

~ 
!./ 

.ill£illl 

~ I?: ~~ 
~ I~~ 
~ I~~ 
~~ 119f"" 

~ ~ 
~~ ~ 
ii ~ t: 0<16-23> 

~ 
lilliW 

~ ~ ;: 
~:::H~ ~: 
~ I~ ~: 
P I~~. 2: 

1~ 
0<0-31>. 

.iffi ~ 
Jiii 
:NMi 

.jOt;1 . 

• ili 
: RDY 

0<0-31> 

~ 
nn STO sn ST2 ST3 ST4 iiP AO 

AI no A2 
n. A3 

A4 
A5 

06 A6 
A7 
A8 
A9 

Al0 ~,u 

All V NS32532 A12 
n A13 

A14 
A15 
A16 
A17 
A18 
A19 
A20 
A21 
A22 
A23 
A24 
A25 
A26 
A27 
A28 
A29 
A30 ;;; A31 

r I~ BCLK 
BCLK 

~ PFS 
~ 
~ 

J~ ~ 
HLOA 

CASEC 
~ ADS 

BMT 

I",. 
CONf 

ODIN 
jj] 

1~, .. BOUT 
I~,': BiN 

~i 
~~~ 

fSSR
IOINH
IOOEC
ClOUT

+5~ ~.Ilcn~ ROY
BWO BWI BEO BEl BE2 BE3

JP~RI3~12~0~"tl0

1..r-'\3

~

8-63

~
18 nl!-

2~1L-
3Y~

IFL~

~
~ ~ P E li~ ~~ P r-I!~
~ ,.- 15 I

~ 16 I

P i- I!~
~ I~ I P DI!!.2.

~ -
r--~ p

~
~
P
P
~
P
~

'2 74AS1034

i-rt?~ r I

... '-
r
Ii ,-.

TL/EE/9452-1 B

Z
I

U1
Co)

•

D<0-31> ~

MA<0-9>

MA<0-3>

MA<8-9>

74AS10D4

74AS1004
2 RASO

RASI

RAS2

1 PAL16L8D RAS3
2 11 ii1 12
3 12 02 19 74AS1034
4 13

CASO BEii 5 14
BE. 6 15

7 16 CASI
BEl 8 17

9 18 CAS2
11 :~O

8 CAS3

TLIEEI9452-'9

8·64

RASO
CASO

1.40<0-7>
~0-9> BMA<O-9>
~ ~IA lY~ rC511002

~ 2A 2Y~

~ AO DIN h:::: 9 3A 3Y~
~ 4A 4Y~ N !i DOUr
'-ll SA 5Y ~

~ A3 ~ A4

~ ~ AS

~IA lY~ ~ A6 CAS 1.2....-

~ A7 L ~ 2A 2Y~ -...1 A8 RAS
~3A 3Y B A9 WEl ~ 4A 4YIfo'\

SA 5Y It'r"
'-ll2.......!!~

AS1034

N~~ ~ 4 l'42A 2Y ~ MD<B-15>
~ 3A 3Y t..; BMA<O-9> 4A 4Y i'li" NJ. SA 5Y ~ i'J.l 6A 6Y ll-. rC511002 .-............ 5

AO DIN ~ ~ - ~ t:::t lA lY P ~ !i Dour
2A 2Y ~ A3

~3A 3Y.g....I A4
~4A 4Y~ ~ AS
~ SA 5Y:1Y ~ A6 CAS f1L-

~ ~ ~
A7 RAS tL A8

~ ~ A9 WE1 ~IA lYp
2A 2Y

~ 3A 3Y It'" NJ. 4A 4Y Ifli'.
~ SA 5Y~
~ 1.40<16-23>
AS1034 BMA<0-9>

Nr;t"'1yth
N2A 2Y~ rC511002
~ 3A 3Y tt-.. N AO t.,..-: N4A 4Y~ ~Al DINJ.l....;' NJ. SA 5Y~ A2 Dour
"-!l~~ ~A3

WEI ~!~
RASI ~A6 CAS 1.2....-

'- CASI ~A7 RAS L
~A8 WEl MD<0-31> A9

WE2
RAS2

, CAS2

MD<24-31>

BMA<O-9>

rC511002

~ AD DIN ~ Al Dour
A2

~ A3
A4

t---+.l AS
~ A6 CAS rLL-
~ A7 L ~ AS RAS
~ A9 WEi

WE3
'- RAS3

CAS3

8-65

rC511002

~ AO DIN h:::: ~
~ !i Dour N
~ A3 ~ A4
~ AS ~
~ A6 CAS 1.2....- ~
~ A7 L ~
~ A8 RAS ~ -......J.a A9 WEl ~

rC511002

~ AD DIN ~ ~ N !i Dour N

~
A3 ~ A4
AS ~ Nf A6 CAS f1L- ~ ~ A7 RAS tL ~ AB ~

~ A9 WE1 ~

rC511002

~AO DINk/ ~ N Al Dour J.l....;'
~A2

~ ~A3 A4
2 AS ::::#. ~A6 CAS 1.2....-

~ :--44 A7 RAS L :--44
"-ll !~ WEi "-ll

rC511002

;:::i AO DIN ~ ~ !i Dour ~ N

~ A3 ~ A4
AS ~

~ A6 CAS rLL- ~
N4 A7 L ~

AB RAS ~ "-ll A9 WE1 ~

rC511002

AO DIN
!i Dour h::::
A3
A4
AS
A6 CAS rLL-
A7 L
A8 RAS

A9 WEl

rC511002

AO DIN !i Dour ~
A3
A4
AS
A6 CAS f1L-
A7

"::~ A8
A9

rC511002

AO DIN

!~ Dour ~
A3
A4
AS
A6 CAS 1.2....-
A7 RAS tL AS

WEi A9

rC511002

AO DIN
!i Dour ~
A3
A4
AS
A6 CAS 1.2....-
A7 L
A8 RAS

A9 WEi

TLlEE/9452-20

» z
I en ...

CAl

TL/EE/9452-21

8-66

Introduction to
Bresenham's Line
Algorithm Using the SBIT
Instruction; Series 32000®
Graphics Note 5

1.0 INTRODUCTION

Even with today's achievements in graphics technology, the
resolution of computer graphics systems will never reach
that of the real world. A true real line can never be drawn on
a laser printer or CRT screen. There is no method of accu­
rately printing all of the points on the continuous line
described by the equation y = mx + b. Similarly, circles,
ellipses and other geometrical shapes cannot truly be imple­
mented by their theoretical definitions because the graphics
system itself is discrete, not real or continuous. For that
reason, there has been a tremendous amount of research
and development in the area of discrete or raster mathemat­
ics. Many algorithms have been developed which "map"
real-world images into the discrete space of a raster device.
Bresenham's line-drawing algorithm (and its derivatives) is
one of the most commonly used algorithms today for de­
scribing a line on a raster device. The algorithm was first
published in Bresenham's 1965 article entitled "Algorithm
for Computer Control of a Digital Plotter". It is now widely
used in graphics and electronic printing systems. This appli­
cation note will describe the fundamental algorithm and
show an implementation on National Semiconductor's Se­
ries 32000 microprocessor using the SBIT instruction, which
is particularly well-suited for such applications. A timing dia­
gram can be found in Figure 8 at the end of the application
note.

2.0 DESCRIPTION

Bresenham's line-drawing algorithm uses an iterative
scheme. A pixel is plotted at the starting coordinate of the
line, and each iteration of the algorithm increments the pixel
one unit along the major, or x-axis. The pixel is incremented
along the minor, or y-axis, only when a decision variable
(based on the slope of the line) changes sign. A key feature
of the algorithm is that it requires only integer data and sim­
ple arithmetic. This makes the algorithm very efficient and
fast.

Y-axis f-t-t-t-t-t-t-t-l-l-l-l-I-

.. ~

Yi +l ~ J:...o.
Yi • ... ~.

~Itlt

X-axis

TL/EE/9665-1

FIGURE 1

National Semiconductor
Application Note 524
Nancy Cossitt

The algorithm assumes the line has positive slope less than
one, but a simple change of variables can modify the algo­
rithm for any slope value. This will be detailed in section 2.2.

2.1 Bresenham's Algorithm for 0 < slope < 1

Figure 1 shows a line segment superimposed on a raster
grid with horizontal axis X and vertical axis Y. Note that Xi
and Yi are the integer abscissa and ordinate respectively of
each pixel location on the grid.

Given (Xi, Yi) as the previously plotted pixel location for the
line segment, the next pixel to be plotted is either (Xi + 1, Yi)
or (Xi + 1, Yi + 1). Bresenham's algorithm determines
which of these two pixel locations is nearer to the actual line
by calculating the distance from each pixel to the line, and
plotting that pixel with the smaller distance. USing the famil­
iar equation of a straight line, y = mx + b, the y value
corresponding to Xi + 1 is

Y = m(xi + 1) + b

The two distances are then calculated as:

dl = y - Yi

and,

dl = m(xi + 1) + b - Yi

d2 = (Yi + 1) - Y

d2 = (Yi + 1) - m(xi + 1) - b

dl - d2 = m(xi + 1) + b - Yi - (Yi + 1) + m(xi + 1) + b

dl - d2 = 2m(xi + 1) - 2Yi + 2b - 1

Multiplying this result by the constant dx, defined by the
slope of the line m = dy/dx, the equation becomes:

dx(dl-d2) = 2dY(Xi) - 2dx(Yi) + c

where c is the constant 2dy + 2dxb - dx. Of course, if d2
> dl, then (dl-d2) < 0, or conversely if dl > d2, then (dl­
d2) > O. Therefore, a parameter Pi can be defined such that

Pi = dx(dl-d2)

Pi = 2dY(Xi) - 2dx(Yi) + c

TLlEE/9665-2

Distances d1 and d2 are compared.
The smaller distance marks next pixel to be plotted.

FIGURE 2

8-67

~ r---~
N
LI)

:Z
c(

If Pi > 0, then d1 > d2 and Yi + 1 is chosen such that the
next plotted pixel is (Xi + 1, Yi). Otherwise, if Pi < 0, then d2
> d1 and (Xi + 1, Yi + 1) is plotted. (See Figure 2.)

Similarly, for the next iteration, Pi + 1 can be calculated and
compared with zero to determine the next pixel to plot. If
Pi + 1 < 0, then the next plotted pixel is at (Xi + 1 + 1,
Yi + 1); if Pi + 1 > 0, then the next point is (Xi + 1 + 1,
Yi + 1 + 1). Note that in the equation for Pi + 1, Xi + 1 = Xi
+ 1.

Pi + 1 = 2dY{Xi + 1) - 2dx{Yi + 1) + c
Subtracting Pi from Pi + 1, we get the recursive equation:

Pi + 1 = Pi + 2dy - 2dx{Yi + 1 - Yi)
Note that the constant c has conveniently dropped out of
the formula. And, if Pi < 0 then Yi + 1 = Yi in the above
equation, so that:

Pi+1=Pi+ 2dy
or, if Pi> 0 then Yi + 1 = Yi + 1, and

Pi + 1 = Pi + 2{dy-dx)
To further simplify the iterative algorithm, constants c1 and
c2 can be initialized at the beginning of the program such
that c1 = 2dy and c2 = 2{dy-dx). Thus, the actual meat of
the algorithm is a loop of length dx, containing only a few
integer additions and two compares (Figure 3).

2.2 For Slope < 0 and ISlopel > 1

The algorithm fails when the slope is negative or has abso­
lute value greater than one (Idyl> Idxl). The reason for this
is that the line will always be plotted with a positive slope if
xi and Yi are always incremented in the positive direction,
and the line will always be "shorted" if Idxl < Idyl since the
algorithm executes once for every X coordinate (i.e., dx
times). However, a closer look at the algorithm must be tak­
en to reveal that a few simple changes of variables will take
care of these special cases.

For negative slopes, the change is simple. Instead of incre­
menting the pixel along the positive direction (+ 1) for each
iteration, the pixel is incremented in the negative direction.
The relationship between the starting point and the finishing
point of the line determines which axis is followed in the
negative direction, and which is in the positive. Figure 4
shows all the possible combinations for slopes and starting
points, and their respective incremental directions along the
X and V axis.

do while count < > dx

Another change of variables can be performed on the incre­
mental values to accommodate those lines with slopes
greater than 1 or less than -1. The coordinate system con­
taining the line is rotated 90 degrees so that the X-axis now
becomes the V-axis and vice versa. The algorithm is then
performed on the rotated line according to the sign of its
slope, as explained above. Whenever the current position is
incremented along the X-axis in the rotated space, it is actu­
ally incremented along the V-axis in the original coordinate
space. Similarly, an increment along the V-axis in the rotat­
ed space translates to an increment along the X-axis in the
original space. Figure 4a., g. and h. illustrates this transla­
tion process for both positive and negative lines with various
starting pOints.

3.0 IMPLEMENTATION IN C

Bresenham's algorithm is easily implemented in most pro­
gramming languages. However, C is commonly used for
many application programs today, especially in the graphics
area. The Appendix gives an implementation of Bresen­
ham's algorithm in C. The C program was written and exe­
cuted on a SVS32/20 system running UNIX on the
NS32032 processor from National. A driver program, also
written in C, passed to the function starting and ending
points for each line to be drawn. Figure 6 shows the output
on an HP laser jet of 160 unique lines of various slopes on a
bit map of 2,000 x 2,000 pixels. Each line starts and ends
exactly 25 pixels from the previous line.

The program uses the variable bit to keep track of the cur­
rent pixel position within the 2,000 x 2,000 bit map (Figure
5). When the Bresenham algorithm requires the current po­
sition to be incremented along the X-axis, the variable bit is
incremented by either + 1 or -1, depending on the sign of
the slope. When the current position is incremented along
the V-axis (I.e., when p > 0) the variable bit is incremented
by + warp or -warp, where warp is the vertical bit displace­
ment of the bit map. The constant last bit is compared with
bit during each iteration to determine if the line is complete.
This ensures that the line starts and finishes according to
the coordinates passed to the function by the driver pro­
gram.

if (p < 0) then p+ = cl
else

p+ = c2
next_y = prev_y + y_inc

next_x = prev_x + x_inc
plot (next_x,next_y)
count + = 1

/* PSEUDO CODE FOR BRESENHAM LOOP */

FIGURE 3

8-68

p2

m=lnf

pI

pI

start p1: unc = y' _inc = 0
y_inc = x'~nc = + 1

start p2: >L-inc = y' _inc = a
y~nc = x'~nc = - 1

a.

start p1: ,,--inc ~ + 1
y_inc ~ -1

start p2: ><-inc ~ - 1
y_inc = +1

p2

c.

TL/EE/966S-3

TL/EE/966S-S

start p1: "--inc ~ + 1
y-inc ~ -1

p~ start P2:;-inc ~ -1

~_inC~+1

pI

-1<m<O p2

p2

TLlEE/9665-7

e.

startp1:x....jnc = y'~nc = +1
y_inc = x'~nc = -1

start p2: ><-inc ~ y' -inc ~ -1
y~nc = x'-inc = +1

TLlEE/9665-9

g.

pI p2

m=O

b.

p2

pI

d.

start p1: ><-inc ~ + 1
y_inc ~ 0

start p2: ><-inc ~ -1
y_inc ~ 0

TL/EE/966S-4

start p1: ,,--inc ~ + 1
y-inc ~ +1

start p2: ><-inc ~ -1
y-inc ~ -1

TL/EE/966S-6

p2

~

start p1: ,,--inc ~ + 1
y-inc ~ +1

start p2: "--inc ~ -1
y-inc ~ -1

pI

f.

m>1

pI

h.

TLlEE/966S-8

start p1: ,,--inc ~ y' -incl ~ -1
y_inc = x' -inc = + 1

start p2: x._jne = y' --inc = + 1
y--inc = x'_inc = -1

TLlEE/966S-10

Note: a., g., and h. are rolated 90 degrees left and x'. y' refer to the original axis.

FIGURE 4

8-69

blt=O ~IIIIIIIIIIIP piIII!IIIII ~~bit= 1,999

I--t--t-+-+-I-HH---t-+-+-+-+-+-++++-t",,~~-+-+-+_>warp = 2,000

~

bit = starting .: .. , ~ r--
position 1--+-r-.-+-+++-+.tiiiI-"",d'io""""""'-+-+-+-+-+-+--+-+-+-+-+--+--HH-I""""- bit = current

~ position

Bit Map is 500 kbytes, 2k x 2k Bits
Base Address of Bit Map is 'Bit-Map'

FiGURE 5

8-70

TL/EE/9665-11

Graphics Image (2000 x 2000 Pixels), 300 DPI

TLlEE/9665-12

FIGURE 6. Star-Burst Benchmark-This Star-Burst Image was done on a 2k x 2k pixel bit map.
Each line is 2k pixels in length and passes through the center of the image, bisecting

the square. The lines are 25 pixel units apart, and are drawn using the LINE_DRAW.S routine. There
are a total of 160 lines. The total time for drawing this Star-Burst is 2.9 sec on 10 MHz NS32C016.

8-71

:I>
z • U1
N
.a:o.

~ r---,
C\oI
"9 z
4(

4.0 IMPLEMENTATION IN SERIES 32000 ASSEMBLY:
THE SBIT INSTRUCTION

National's Series 32000 family of processors is well·suited
for the Bresenham's algorithm because of the SBIT instruc­
tion. Figure 7 shows a portion of the assembly version of the
Bresenham algorithm illustrating the use of the SBIT instruc­
tion. The first part of the loop, handles the algorithm for p <
o and .CASE2 handles the algorithm for p > O. The main
loop is unrolled in this manner to minimize unnecessary
branches (compare loop structure of Figure 7 to Figure 3).
The SBIT instruction is used to plot the current pixel in the
line.

The SBIT instruction uses bit-fllap as a base address from
which it calculates the bit position to be set by adding the
offset bit contained in register r1. For example, if bit, or R 1 ,
contains 2,000', then the instruction:

sbitd r1,@ biLmap

will set the bit at position 2,000, given that biLmap is the
memory location starting at bit 0 of this grid. In actuality, if
base is a memory address, then the bit position set is:

offset MOD8

within the memory byte whose address is:

base + (offset DIV 8)

So, for the above example,

2,000 MOD 8 = 0

bit-fllap + 2,000 DIV 8 = bit-fllap + 250

Thus, bit 0 of byte (bit-fllap + 250) is set. This bit corre­
sponds to the first bit of the second row in Figure 5.

• All numbers are in decimal.

Main loop of Bresenham algorithm

.LOOP: #p < 0: move in x direction only

cmpqd $0,r4

ble .CASE2

addd rO,r4

addd

sbitd

cmpd

bne

exit

ret

.align 4

r5,rl

rl,@_bit_map

r3,rl

.LOOP

[r3,r4,r5,rS,r7]

$0

.CASE2: #P > 0: move in x and y direction

addd

addd

addd

sbitd

cmpd

bne

exit

ret

r2,r4

r7,rl

r5,rl

rl,@_biLmap

rl,r3

.LOOP

[r3,r4,r5,rS,r7]

$0

The SBIT instruction greatly increases the speed of the al­
gorithm. Notice the method of setting the pixel in the C pro­
gram given in the Appendix:

bit-fllap[bitl8] I = biLpos[(bit & 7)]

This line of code contains a costly division and several other
operations that are eliminated with the SBIT instruction. The
SBIT instruction helps optimize the performance of the pro­
gram. Notice also that the algorithm can be implemented
using only 7 registers. This improves the speed perform­
ance by avoiding time·consuming memory accesses.

5.0 CONCLUSION

An optimized Bresenham line·drawing algorithm has been
presented using the SYS32/20 system. Both Series 32000
assembly and C versions have been included. Figure 8
presents the various timing results of the algorithm. Most of
the optimization efforts have been concentrated in the main
loop of the program, so the reader may spot other ways to
optimize, especially in the set-up section of the algorithm.

Several variations of the Bresenham algorithm have been
developed. One particular variation from Bresenham himself
relies on "run·length" segments of the line for speed opti­
mization. The algorithm is based on the original Bresenham
algorithm, but uses the fact that typically the decision vari­
able p has one sign for several iterations, changing only
once in-between these "run·length" segments to make one
vertical step. Thus, most lines are composed of a series of
horizontal "run· lengths" separated by a single vertical jump.
(Consider the special cases where the slope of the line is
exactly 1, the slope is 0 or the slope is infinity.) This algo­
rithm will be explored in the NS32CG1S Graphics Note 5,
AN-522, "Line Drawing with the NS32CG1S", where it will
be optimized using speCial instructions of the NS32CG16.

Register and Memory

Contents

rO = cl constant

rl = bit current

position

r2 = c2 constant

r3 = lasLbit

r4 = p decision var

r5 = x_inc increment

rS = unused register

r7 = y_inc increment

_bit_map = address of

first byte in bit map

FIGURE 7
Note: Instructions followed by the letter 'd' indicate '"double word'" operations.

8-72

Timing Performance
2k x 2k Bit Map

2k Pix/Vector 160 Lines per Star-Burst

Version NS32000 Assembly with SBIT

Parameter NS32C016-10 NS32C016-15

Set-up Time Per Vector 45/Ls 30".5

Vectors/Sec 54 82

Pixels/Sec 109,776 164,771

Total Time
2.9s

1.9s
Star-Burst Benchmark

FIGURES

8-73

Set-up time per line is measured from the start of
LINE-DRAW.S only. The overhead of calling the LINE­
DRAW routine, starting the timer and creating the endpoints
of the vector are not included in this time. Set-up time does
include all register set·up and branching for the Bresenham
algorithm up to the entry pOint of the main loop.

Vectors/Second is determined by measuring the number
of vectors per second the LINE-DRAW routine can draw,
not including the overhead of the DRIVER.C and START.C
routines, which start the timer and calculate the vector end­
points. All set-up of registers and branching for the Bresen­
ham algorithm are included.

Pixels/Second is measured by dividing the Vectors/Sec­
ond value by the number of pixels per line.

Total Time for the Star-Burst benchmark is measured from
start of benchmark to end. It does inClude all overhead of
START.C and DRIVER.C and all set-up for
L1NE-DRAW.S. This number can be used to approximate
the number of pages per second for printing the whole Star­
Burst image.

National Semiconductor Corporation.
CTP version 2.4 -- line_draw.s --

• file "line draw.sM
.comm-_bit map,4997S,
.globl lIne draw
.set WARP ,I",
.align 4

line_draw:
enter • initialize

t r5~ys

.LL2:

.LL3:

.LL4:

.LL5:

.LL1:

.LL7:

.LL8:

.LL9:

.LL6:

.LLl1:

movd
movd
movd
muld
addd
movd
subd
absd
l1lDvd
subd
abad
cmpd
ble
cmpqd

~~r
br
• align

addr

cmpqd
bge
movqd
br
• align

movqd

movd
addd
subd
addr
movd
aubd
movd
muld
addd
br
• align

cmpqd
bge
addr
br
• align

addr

cmpqd
bge
movqd
br
• align

movqd

addr
movd
subd
addd
movd
subd
movd
muld
addd

4

4

4

4

4

cmpqd
ble
addd
addd
sbitd
cmpd
bne
exit
ret
.align 4

addd
addd
addd
sbitd
cmpd
bne
exit
ret

[r3,r4,rS,r6,r71,l2
l2!~),r5
B(p ,r6
r5,rl
$(WARP),rl
r6,rl
2,(fp),r4
r5,r4
r4,r3
l6(fp) ,r2
r6,r2
r2,r6
r3,r6
.LLl
$(,),r4
.LL2
WARP,rS
.LL3

-WARP,rS

$(,),r2
.LL4
$(1),r7
.LLS

$(-l),r7

r6,r,
r"r,
rl,r6
,[r6:wl,r2
r"r4
r3,r4
2, (fp) ,r3
$(WARP),r3
l6(fp),r3
.LL6

$(,),r4
.LL7
WARP,r7
.LLB

-WARP,r7

$(,),r2
.LL9
$(l),rS
.LLl,

$(-l),rS

jI[r3:wl,rjl
r3,r2
r6,r2
r2,r2
r"r4
r6,r4
2,(fp),r3
$ (WARP) ,r3
l6(fp) ,r3

$('),r4
.LLll
rjl,r4
r5,rl
rl,@ bit_map
r3,rI
.LL6
[r3,r4,r5,r6,r7)
$(111)

t r6~s
t initialize starting 'bit'
t bitmwarp*ys+xs
• rl=bit
• r4-yf
• r4a dy : ~~:k~YI
• r2=dx
• r6-ldXl
• branch if slope<l
• must rotate axis for slope>l
• if dy<, want x_inc<,
• else x inc is pos
• x_inc~+/-warp because of rotate

if dx<jI want y inc<,
else y inc is pos
y_inc=+/-l becaue of rotate

calculate cl,c2 and p

f r,-cl=2*ldxl because of rotate
t r6=ldx-dyl r2=2*r6~c2
this muls r6 by 2 and puts in r2

r4=c2-ldyl-p in rotated space
calculate last_bit

r3=last_bit

slope<l use original axis
dy determines y_inc

dy>, then y_inc=+warp

r2-2*ldy-dxl=C2

~~~~r;~:-r:st_bitar3 

, main loop for algorithm 
• check sign of p 
• branch if pos 
• add cl to p t inc bit by x_inc only 
t plot bit 
t end only if bit=last_bit 

p>, then inc in y dir 
add c2 to p 

• add y inc to bit 
• add x-inc to bit 
• plot fiit , snd only when bit-last_bit 

8-74 

TUEE/9885-13 

TUEE/8885-14 



'* This program calculates points on a line using Bresenham's iterative *' 
'* method. *' 

'include<stdio.h> 
'define xbytes 25_ '* number of bytes along x-axis*, 
'define warp xbytes * 8 '* number of bits along x axis*, 
'define maxy 1999 '* number of lines in y axis*, 
unsigned char bit_map[xbytes*maxyj; '* array contains bit map*, 
static unsigned char bit-pos[]=ll,2,4,8,16,32,64,128); 

'* look-up table for setting bit *' 

line_draw(xs,ys,xf,yf) '* starting Is) and finishing If) points *' 
int xs,ys,xf,yf; 

int ~t~r~~tigrt~_inc, 
p,Cl,C2;-

'* deltas and increments *' 
'* current and last bit positions *' '* decision variable p and constants *' 

dxaxf-xs; 

~rt~~;~:~arp)+xs; 
last_bit= (yf*warp) +xf; 

'* initialize bit to first bit pos *' 
'* calculate last bit on line *' 

if (abs(dy) > abs(dx» 
I '* abs(slope»1 must rotate space *' 

'* see Figure 5 a.,g.,and h. *' 

) 
else 

if (dy>_) 
x_inc=warp; 

else 
x_inelll -warp; 

if (dx>_) 
y_inc=l; 

else 
y inc= -II 

cl=2*abs(iIx)I 
c2=2*(abs(dx)-abs(dy»I 
p=2*abs(dx)-abs(dy)I 

'* x_axis is now original y_axis */ 

/* y_axis is now original x_axis */ 

/* calculate Bresenham's constants */ 

1* p is decision variable now rotated */ 

'* abs(slope)<1 use original axis *' 
if (dy>_) 

y_inc=warp; 
else 

'* y_inc is +/-warp number of bits */ 

y_inc= -warp; 
if (dx>_) 

x inca l; 
else -

'* move forward one bit *' 

x 1nc= -1; /* or backward one bit */ 
Cl=2*abs(iIy)I '* calculate constants and p *' 
c2=2*(abs(dy)-abs(dx»I 
p=2*abs(dy)-abs(dx)I 

'* Bresenham's Algorithm *' 
do '* do once for each x increment, i.e. dx times */ 
I 

if (p<_) '* no y movement if p<_ */ 
p+=cl; 

else ( '* move in y dir if p>_ */ 

~t~~bnc, 
/* always increment x */ 

'* bit is set by calculating bit MOD 8, which is */ 

'* same as bit & 7, then looking up appropriate */ 
'* bit in table bit-pos. This bit pos is then set *' 
/* in byte bit/8 *' 

bit map[bit/8] 1- bit-pos[(bit&7)]I 
while (bitl-last_bit); 

8-75 

TL/EE/9665-1 5 

TUEE/9665-1 6 

» z . en 
N 

"'" 



1* Program driver.c feeds line vectors to LINE_DRAW.S forming Star-Burst. 

#include <stdio.h> 
#define xbytes 25~ 
#define maxx 1999 
#define maxy 1999 

unsigned char bit_map[xbytes*maxY]i 

main() 

int i,counti 

1* generate Star-Burst image *1 

for (count=l;count<=l~~~;test++)( 

for (i=~;i<=maxy;i+=25) 
line draw(~,i,maxx,maxy-i)i 

for (i=~ii<=maxx;i+=25) 
line_draw(i,maxy,maxx-i,~}; 

I~ start timer and call main procedure of DRIVER.C to draw lines *1 

start() ( 
long "timer (long") 
*timer = J'; 1* 

main(~,~); 
return(*timer) ; 1* 

~x6~~; 
write a zero to timer location *1 

j" Show argc as zero, argv ->~ *j 
return, in r~, the current time *1 

8-76 

"j 

TL/EE/9665-17 

TLlEE/9665-18 



Block Move Optimization 
Techniques Series 32000® 
Graphics Note 2 

1.0 INTRODUCTION 

This application note discusses fast methods of moving 
data in printer applications using the National Semiconduc­
tor Series 32000. Typically this data is moved to or from the 
band of RAM representing a small portion (or slice) of the 
total image. The length of data is fixed. The controller de­
sign may require moving data every few milliseconds to im­
age the page, until a total of 1 page has been moved. This 
may be (at 300 OPI, for example) (8.5 x 300) X (11 X 300), 
or 1,051,875 bytes. In current controller designs the width is 
often rounded to a word boundary (usually 320 bytes at 300 
OPI). This technique uses 1,056,000 bytes, or 528,000 
words. 

; Version 1.0 Sun Mar 29 12:57:20 1987 

National Semiconductor 
Application Note 526 
Dave Rand 

2.0 DESCRIPTION 

The move string instructions (MOVSi) in the 32000 are very 
powerful, however, when all that is needed is a string copy, 
they may be overkill. The string instructions include string 
translation, conditionals and byte/word/double sizes. If the 
application needs only to move a block of data from one 
location to another, and that data is a known size (or at least 
a multiple of a known size), using unrolled MOVO instruc­
tions is a faster way of moving the data from A to 8 on the 
NS32032 and NS32332. 

3.0 IMPLEMENTATION 

A code sample follows which makes use of a block size of 
128 bytes. To move 256 bytes, for example, RO should con­
tain 2 on entry. 

;A subroutine to move blocks of JTeIl1Ory. Uses a granularity of 

;128 bytes. 

Inputs: 

rO = number of 128 byte blocks to move 

rl = source block address 

r2 = destination block address 

;Listing continues on following page 

8-77 

TLIEE19696-1 

:J> z . 
U1 
I\) 
en 



CD 
N 
II) 

• OutputS: Z 
c( 

rO = 0 

rl = source block address + (128 * blocks) 

r2 = destination block address + (128 * blocks) 

;Notes: 

This algorithn corresponds closely to the MOVSD instruction, 

except that rO contains the number of 128 byte blocks, not 

4 byte double words. The output values are the same as if a 

MOVSD instruction were used. 

movmem: cmpqd O,rO ; if no blocks to move 
beq mvexit ;exit now . 
. align 4 

mvlpl: movd O(rl).O(r2) ;move one block of data 
movd 4(rl) ,4(r2) 
movd 8(rl),8(r2) 

movd 12(rl) ,12(r2) 

movd 16(rl).16(r2) 
movd 20(rl) ,20(r2) 

movd 24(rl).24(r2) 
movd 28(rl) ,28(r2) 
movd 32(rl) ,32(r2) 
movd 36(rl) ,36(r2) 
movd 40(rl),40(r2) 
movd 44(rl),44(r2) 
movd 48(rl) ,48(r2) 
movd 52(rl) ,52(r2) 
movd 56(rl) ,56(r2) 
movd 60(rl) ,60(r2) 
movd 64(rl).64(r2) 

movd 68(rl),68(r2) 
movd 72(rl).72(r2) 

movd 76(rl).76(r2) 

movd 80(rl).80(r2) 

movd 84(rl),84(r2) 

movd 88(rl) ,88(r2) 

movd 92(rl).92(r2) 

movd 96(rl) ,96(r2) 

movd lOO(rl).100(r2) 

movd 104( rl ).104( r2) 

movd 108(rl).108(r2) 

movd 112(rl).112(r2) 
movd U6( rl ).116( r2) 
movd 120(rl),120(r2) 

movd 124(rl).124(r2) 
addr 128( rl). rl ;quick way of adding 128 
addr 128(r2),r2 

acbd -l,rO,mvlpl ;loop for rest of blocks 
mvexit: ret $0 

TLlEE/9696-2 

8-78 



4.0 TIMING 

All timing assumes word aligned data (double word aligned 
for 32·bit bus). Unaligned data is permitted, but will reduce 
the speed. 

On the 32532 (no wait states, @ 30 MHz, 32-bit bus), this 
code executes in 204 clocks, assuming burst mode access 
is available. To move 256 bytes, this routine would take 
13.6 p.s. The MOVSD instruction takes about 156 clocks to 
move a 128-byte block. The MOVSD instruction is the best 
choice, therefore, on the 32532. 

On the 32332 (no wait states, @ 15 MHz, 32-bit bus), this 
code executes in 458 clocks per 128-byte block. Thus, to 
move 256 bytes, this algorithm takes 61.1 p.s. The loop 
overhead (the ADDR and ACBD instructions) is about 10%. 
Doubling the block size (to 256 bytes) would reduce the 
loop overhead to 5%, and reducing the block size (to 64 
bytes) would increase the loop overhead to 20%. In com­
parison, the 32332 MOVSD instruction takes about 721 
clocks to move a 128-byte block. 
On the 32032 (no wait states. @ 10 MHz, 32-bit bus), this 
code executes in 634 clocks per 128-byte block. Thus, to 

8-79 

move 256 bytes, this algorithm takes 126.8 /-'S. The loop 
overhe.ad (the AD DR and ACBD instructions) is about 5%. 
Doubling the block size (to 256 bytes) would reduce the 
loop overhead to 2.5%, and reducing the block size (to 64 
bytes) would increase the loop overhead to 10%. In com­
parison, the 32032 MOVSD instruction takes about 690 
clocks to move a 128-byte block. 
On the 32016 (1 wait state. @ 10 MHz, 16-bit bus), this code 
executes in 1150 clocks per 128-byte block. Thus, to move 
256 bytes, this algorithm takes 230.0 p.s. The loop overhead 
on the 32016 is about 2.5%. In comparison, the 32016 
MOVSD instruction would take about 1,074 clocks. Thus, 
the MOVSD instruction is faster, and makes better use of 
the available bus bandwidth of the NS32016. 

5.0 CONCLUSIONS 
The MOVSi instructions on the NS32016 provide a very fast 
memory block move capability, with variable size. On the 
NS32332 and NS32032, however, unrolled MOVD instruc­
tions are faster due to the larger bus bandwidth of the 
NS32332 and NS32032. 

J> 
z . 
UI 
~ en 



r-. 
N 
It) 

• Z 
c( 

Clearing Memory with the 
32000; Series 32000® 
Graphics Note 3 

1.0 INTRODUCTION 

In printer applications, large amounts of RAM may need to 
be initialized to a zero value. This application note describes 
a fast method. 

2.0 DESCRIPTION 

While several different methods of initializing memory to all 
zeros are available, here is one that works very well on the 
Series 32000. While the current version clears memory only 
in blocks of 128 bytes, other block sizes are possible by 
extending the algorithm. 

; Version 1.1 Sun Mar 2910:22:191987 

National Semiconductor 
Application Note 527 
Dave Rand 

3.0 IMPLEMENTATION 

This routine is written to clear blocks of 128 bytes. This 
provides an optimal tradeoff between loop size (granularity) 
and loop overhead. This can be modified to use a different 
size. For example, to use a block size of 64 bytes, simply 
delete 16 of the MOVQD O,TOS instructions from the listing. 
As well, since the value of r1 is now the number of 64 byte 
groups, one of the ADDD R2,R2 instructions (prior to the 
loading of the stack pointer) must be removed. Since the 
32000 has two stacks, interrupts will be handled properly 
using this code. If only a fixed buffer size needs to be 
cleared, the code can be further unrolled to clear that area 
(i.e., increase the number of MOVQD O,TOS instructions.) 

;Subroutine to clear a block of memory. The granularity of this 

;algoriti"m is 128 bytes. to reduce the looping overhead. 

Inputs: 
rO = start of block 
r1 = number of 128-byte groups to clear 

Outputs: 
All regi sters preserved. 

;Listing continues on following page 

TL/EE/9697-1 

8·80 



» 
z 

cl ram: cmpqd D, rl ;any blocks to clear? • c.n 
beq clexit:w ;no, exit now. N ..... 
save [rD, rl, r2] ; save our work j ng regi sters 
IOOvd rl,r2 ;here we set rD = rD + (rl * 128) + 4 
addd r2,r2 ;length *= 2 
addd r2,r2 ;*4 
addd r2,r2 ;*8 
addd r2,r2 ;*16 
addr 4(rD)[r2:q].rD ;get starting point + 4 
sprd sp,r2 ; save current stack 
lprd sp,rD ;move to last double 
.align 4 

c12: IOOvqd D,tos ;clear a double 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd D, tos 
IOOvqd O,tos 
IOOvqd D, tos 
IOOvqd D,tos 
movqd D,tos 
movqd 0, tos 
movqd D,tos 
movqd D,tos 
IOOvqd D,tos 
IOOvqd O,tos 
IOOvqd D,tos 
IOOvqd D,tes 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd 0, tos 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd O,tos 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd D,tos 
IOOvqd D,tos 
movqd D, tos 
IOOvqd D,tos 
IOOvqd D,tos 
acbd -l,rl,c12 
lprd sp,r2 ; restore stack poi nter 
restore [rD, rI, r2] ; restore our saved regi sters 

clexit: ret 0 
TLlEE/9697 -2 

FIGURE 1 [II 

8-81 



..... 
C'I 
II) clram: cmpqd O.rl ;any blocks to clear? • Z beq clexit:w ;no. ex1 t now. e 

.align 4 
c12: movqd O.OO(rO) ;clear a double 

movqd O.04(rO) 
movqd O.08(rO) 
movqd O.12(rO) 
movqd O.16(rO) 
movqd O.20(rO) 
movqd O.24(rO) 
movqd O.28(rO) 
movqd O.32(rO) 
movqd O.36(rO) 
movqd O.40(rO) 
movqd O.44(rO) 
movqd O.48(rO) 
movqd O.52(rO) 
movqd O.56(rO) 
movqd O.60(rO) 
movqd O.64(rO) 
movqd O.68(rO) 
movqd O.72(rO) 
movqd O.76(rO) 
movqd O.80(rO) 
movqd O.84(rO) 
movqd O.sa(rO) 
movqd O.92(rO) 
movqd O.96(rO) 
I1Ilvqd O.IOO(rO) 
movqd O.I04(rO) 
movqd O.I08(rO) 
I1Ilvqd O.1l2(rO) 
movqd O.116(rO) 
movqd O.120(rO) 
movqd O.124(rO) 
addd $128.rO 
acbd -1.rl.c12 

clexlt: ret 0 
TL/EE/9697-3 

FIGURE 2 

8·82 



r----------------------------------------------------------------.~ 

4.0 TIMING RESULTS 
On the NS32016, NS32032 and NS32332, 4 clock cycles 
per write are required. To clear one page of 300 DPI 
8% x 11 (1,056,000 bytes), for example, requires 264,000 
double words to be written. The optimal time for this, using 
100% of the bus bandwidth on a 16 bit bus, would be 
528,000' 400 ns, or 211.2 ms, @ 10 MHz. All timing data 
assumes word aligned data (double word aligned for 32 bit 
bus). Unaligned data is permitted, but will reduce the speed 
somewhat. 

On the NS32332 (no wait states. @15 MHz, 32 bit bus), this 
code clears the full page image in 178 ms. 

On the NS32032 (no wait states. @10 MHz, 32 bit bus), this 
code clears the full page image in 324 ms. 

On the NS32016 (1 wait state. @10 MHz, 16 bit bus), this 
code clears the full page image in 509 ms. 

Doubling the block size (to 256 bytes) would increase the 
speed by 1%-2%, on the code sample. 

On the NS32532, a better approach is to use the register 
indirect method of referencing memory, as is shown in Fig­
ure 2. With this approach, the page memory can be cleared 
in 19 ms, assuming a no wait state 30 MHz system, with a 
32 bit bus. The optimal time, using 100% of the bus band­
width of the NS32532 (2 clock bus cycle) would be 264,000 
• 66.6 ns, or 17.6 ms. 

8-83 

Z 
U, 
I\) 
...... 

• 



co ,--------------------------------------------------------------------------------, 
N 
In 

~ Image Rotation Algorithm 
Series 32000® Graphics 
Note 4 

1.0 INTRODUCTION 

Fast image rotation of 90 and 270 degrees is important in 
printer applications, since both Portrait and Landscape ori­
entation printing may be desired. With a fast image rotation 
algorithm, only the Portrait orientation fonts need to be 
stored. This minimizes ROM storage requirements. 

This application note shows a fast image rotation algorithm 
that may be used to rotate an 8 pixel by 8 line image. Larger 
image sizes may be rotated by successive application of the 
rotation primitive. 

2.0 DESCRIPTION 

This Rotate Image algorithm (developed by the Electronic 
Imaging Group at National Semiconductor) does a very fast 
8 by 8 (64 bit) rotation of font data. Note also that this algo­
rithm does not exclusively deal with fonts, but any 64 bit 
image. Larger images can be rotated by breaking the image 
down into 8 x 8 segments, and using a 'source warp' con­
stant to index into the source data. 

The source data is pOinted to by RO on entry. A 'source 
warp' is contained in R 1, and is added to RO after each read 
of the source font. This allows the rotation of 16 by 16, 32 
by 32 and larger fonts. 

ROTIMG deals with the 8 by 8 destination character as 8 
sequential bytes in two registers (R2 and R3), as follows: 

Destination Font Matrix 

Low Address 

2 

3 
4 

5 

6 

7 

B 

High Address 

= R2 

= R3 

4 3 2 

8 7 6 5 

ROTIMG uses an external table (a pOinter to the start of the 
table is located in register R4) to speed the rotation and to 
minimize the code. This table consists of 256 64 bit entries, 
or a total of 2,048 bytes. The table may be located code 
(PC) or data (SB) relative. The complete table is at the end 
of this document (see Figure 1). A few entries of the table 
are reproduced above. 

National Semiconductor 
Application Note 528 
Dave Rand 

Entry Definition 

0 OxOOOOOOOO 00000000 
1 OXOOOOOOOO 00000001 
2 OxOOOOOOOO 00000100 
3 OxOOOOOOOO 00000101 

253 Ox0101010101010001 
254 Ox0101010101010100 
255 Ox0101010101010101 

The bytes in the table are standard LSB to MSB format. 
Since there is no quad-byte assembler pseudo-op (other 
than LONG, which is floating point), we must reverse the 
'double' declaration to get the correct byte ordering, as is 
shown below: 

Entry Definition 

o double 0,0 
1 double 1,0 
2 double 256,0 
3 double 257,0 

253 double 16842753,16843009 
254 double Ox01010100,Ox01010101 
255 double Ox01010101,Ox01010101 

Each byte within each eight byte table entry represents one 
bit of output data. By indexing into the table, and ORing the 
table's contents with R2 and R3, we set the destination byte 
if the corresponding source bit is set. In this manner, the 
character is rotated. 

3.0 IMPLEMENTATION 

What we are doing is setting the LS Bit of the destination 
byte if the source bit corresponding to that byte is set. We 
then shift the entire 64 bit destination left one bit, and repeat 
this process until we have set all eight bits, and processed 
all eight bytes of source information. 

The source data for an 8 by 8 character ">" appears be­
low: 

Character Table for' >' 

Bit Number Hex Value 
01234567 

Byte 001000000 02 
100100000 04 
200010000 08 
300001000 10 
400001000 10 
500010000 08 
600100000 04 
701000000 02 

8-84 



The ROTIMG algorithm, expressed in 32000 code, appears below: 

I , 
IRotate image emul ation code , 
, Inputs: 
, RO = Source font address 
, RI = Source font warp 
, R4 = Rotate table address , 
, Outputs: 
, R2 = Destination font low 4 bytes (lsb->msb, 0 - 3) 
, R3 = Destination font high 4 bytes (lsb->msb, 4 - 7) , 
ROTIfotG: save [rO,rS,r6,r7] 'save regi sters we wi 11 use 

movqd O,r2 'clear destination font 
movd r2,r3 'clear high bits of dest. 
movd r2,rS 'clear high bits of temp. 
addr 8,r6 Ideal with 8 bytes of src. 

rot1p: movb O(rO). rS #get a byte of source 
addd rl,rO #add source warp 
addd r2,r2 'shift destination left one bit 
addd r3,r3 'top 32 bi ts too 
addrd r4[rS:q] ,r7 'get poi nter to table 
ord O(rl}, r2 lor in low bits 
ord 4(r7). r3 'or in high bits 
acbd -l.r6,rotlp land back for more 
restore [rO,rS,r6,r7] 'restore regi sters 
ret $0 'and return 

Now, let's look at what happens to the data, given the example lont 01 '>'. 
Loop # Source Font R3 R2 

0 00000000 00000000 
02 hex 00000000 00000100 

2 04 00000000 00010200 
3 08 00000000 01020400 
4 10 00000001 02040800 
5 10 00000003 04081000 
6 08 00000006 09102000 
7 04 OOOOOOOC 12214000 
8 02 00000018 24428100 

Now, arranging this in the appropriate order gives us: 

TL/EE/969B-l 

;0 destination 
;Iirst bits in 
;next bits in 
;and so on 

;Iast iteration 

Destination Character Table for' > " 90 degree Destination Character Table for' >', 270 degree 

Bit Number Hex Value Bit Number Hex Value 
01234567 01234567 

Byte 000000000 00 Byte 000000000 00 
110000001 81 100000000 00 
201000010 42 200000000 00 
300100100 24 300011000 18 
400011000 18 400100100 24 
500000000 00 501000010 42 
600000000 00 610000001 81 
700000000 00 700000000 00 

Note that by re-ordering the output data, we may rotate 90 or 270 degrees. This may also be accomplished by using a different 
table (see Figure 2). 

8-85 

» z 
I 

UI 
N 
CD 

• 



4.0 TIMING 

With unrolled 32000 code, the time for this algorithm is about 588 clocks on the 32016. Subtracting the font read time from this 
(about 113 clocks), the actual time for rotation is 475 ciJcks. On the 32332, the time is about 388 clocks. On the 32532, the 
unrolled loop time is 120-180 clocks, depending on burst mode availability. Repetition of the character data also affects the 
32532, due to the data cache. See Figure 3 for an unrolled code listing. 

This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes' 256 = 2048 bytes). There are two entries per 
line. This table is used for 90· rotation. 

rottab1: .double 0x00000000,0x00000000,0x00000001,0x00000000 ;0,1 
.double 0x000001OO,0x00000000,0x0000010t,0x00000000 ;2,3 
.double 0x0001OOOO,0x00000000,0x0001OOOl,0x00000000 ;4,5 
.double OxOOOlOlOO,OxOOOOOOOO,OxOOOlOlOl,OxOOOOOOOO ;6,7 
.double OxOlOOOOOO,OxOOOOOOOO,OxOlOOOOOl,OxOOOOOOOO ; ••• 
. double OxOlOOOlOO,0x00000000,0x01OOOlOl,0x00000000 
.double OxOlOlOOOO,0x00000000,OxOl01OOO1,0x00000000 
.double OxOlOlOlOO,0x00000000,OxOl010101,0x00000000 
.double OxOOOOOOOO,OxOOOOOOOl,OxOOOOOOOl,OxOOOOOOOl 
.double OxOOOOOlOO,0x00000001,OxOOOOOlOl,0x00000001 
.double OxOOOlOOOO,OxOOOOOOOl,OxOOOlOOO1,0x00000001 
.double 0x00010100,OxOOOOOOOl,OxOOOlO101,0x00000001 
.double OxOlOOOOOO,0x00000001,0x01OOOOO1,0x00000001 
.double 0x01OOO1OO,OxOOOOOOOl,0x01OOO10l,0x00000001 
.double OxOlOlOOOO,OxOOOOOOOl,0x01010001,0x00000001 
.double OxOlOlOlOO,OxOOOOOOOl,OxOlOl010l,0x00000001 
.double 0x00000000,0x000001OO,OxOOOOOOOl,OxOOOOOlOO 
.double OxOOOOOlOO,OxOOOOOlOO,OxOOOOOlOl,OxOOOOOlOO 
.double OxOOOlOOOO,OxOOOOOlOO,OxOOOlOOOl,OxOOOOOlOO 
.double OxOOOlOlOO,OxOOOOOlOO,OxOOOlOlOl,OxOOOOOlOO 
.double OxOlOOOOOO,OxOOOOOlOO,0x01OOOOOl,OxOOOOOlOO 
.double OxOlOOOlOO,0x000001OO,OxOlOOOlOl,OxOOOOOlOO 
.double OxOlOlOOOO,OxOOOOOlOO,OxOlOlOOOl,OxOOOOOlOO 
.double OxOlO10100,0x000001OO,OxOlOlOlOl,OxOOOOOlOO 
.double OxOOOOOOOO,OxOOOOOlOl,OxOOOOOOOl,OxOOOOOlOl 
.double OxOOOOOlOO,OxOOOOOlOl,OxOOOOO101,OxOOOOOlOl 
.double OxOOOlOOOO,OxOOOOOlOl,OxOOOlOOOl,OxOOOOOlOl 
.double 0x00010100,OxOOOOOlOl,OxOOOlO101,OxOOOOOlOl 
.double OxOlOOOOOO,OxOOOOOlOl,OxOlOOOOOl,OxOOOOOlOl 
.double OxOlOOOlOO,OxOOOOOlOl,OxOlOOOlOl,OxOOOOOlOl 
.double 0x01010000,OxOOOOOlOl,OxOlOlOOOl,OxOOOOOlOl 
.double 0x0101O100,OxOOOOOlOl,OxOlOlO101,OxOOOOOlOl 
.double OxOOOOOOOO,OxOOOlOOOO,OxOOOOOOOl,OxOOOlOOOO 
.double OxOOOOOlOO,OxOOOlOOOO,OxOOOOOlOl,OxOOOlOOOO 
.double OxOOOlOOOO,OxOOOl0000,OxOOOlOOOl,OxOOOlOOOO 
.double 0x00010100,OxOOOlOOOO,OxOOOlOlOl,OxOOOlOOOO 
.double OxOlOOOOOO,OxOOOlOOOO,OxOlOOOOOl,OxOOOlOOOO 
.double OxOlOOOlOO,OxOOOlOOOO,OxOlOOOlOl,OxOOOlOOOO 
.double 0x01010000,OxOOOlOOOO,OxOlOlOOOl,OxOOOlOOOO 
.double 0x01010100,OxOOOlOOOO,0x01010101,OxOOOlOOOO 
.double 0x00000000,OxOOOl0001,OxOOOOOOOl,OxOOOlOOOl 
.double OxOOOOOlOO,OxOOOlOOOl,OxOOOOOlOl,OxOOOlOOOl 
.double OxOOOlOOOO,OxOOOlOOOl,OxOOOlOOOl,OxOOOlOOOl 
.double OxOOOlOlOO,0x0001OOO1,0x00010101,OxOOOlOOOl 
.double 0x01OOOOOO,0x0001OOO1,0x01OOOOOl,OxOOOlOOOl 
.double 0x01OOO1OO,0x0001OOO1,0x01OOO10l,OxOOOlOOOl 
.double 0x0101OOOO,0x0001OOOl,0x0101OOOl,0x0001OOOl 
.double OxOl0101OO,0x0001OOO1,0x01010101,OxOOOlOOOl 
.double OxOOOOOOOO,OxOOOlOlOO,OxOOOOOOOl,OxOOOlOlOO 

FIGURE 1 

8-86 

TL/EE/969B-2 



r----------------------------------------------------------------------, ~ 

.double OxOOOOOlOO,OxOOOlOlOO,OxOOOOOlOl,OxOOOlOlOO 

.double OxOOOlOOOO,0x00010100,OxOOOlOOOl,OxOOOlOlOO 

.double OxOOOlOlOO,OxOOOlOlOO,OxOOOlO101,OxOOOlOlOO 

.double OxOlOOOOOO,OxOOOlOlOO,OxOlOOOOOl,OxOOOlOlOO 

.double OxOlOOOlOO,OxOOOlOlOO,OxOlOOOlOl,OxOOOlOlOO 

.double 0x0101OOOO,0x000101OO,0x010lOOO1,0x000101OO 

.double OxOlOlOlOO,OxOOOl01OO,OxOlOlOlOl,OxOOOl01OO 

.double 0x00000000,OxOOOl010l,0x00000001,OxOOOlO101 

.double OxOOOOOlOO,OxOOOlOlOl,OxOOOOOlOl,OxOOOlO101 

.double OxOOOlOOOO,OxOOOlOlOl,OxOOOlOOOl,OxOOOlOlOl 

.double OxOOOlOlOO,OxOOOlOlOl,OxOOOlOlOl,OxOOOlO101 

.double OxOlOOOOOO,OxOOOlOlOl,OxOlOOOOOl,OxOOOlOlOl 

.double OxOlOOOlOO,OxOOOlOlO1,OxOlOOO101,OxOOOlO101 

.double 0x01010000,OxOOOlOlOl,OxOlOlOOOl,OxOOOlO101 

.double OxOlO10100,OxOOOlOlOl,OxOlOlOlOl,OxOOOlOlOl 

.double OxOOOOOOOO,OxOlOOOOOO,OxOOOOOOOl,OxOlOOOOOO 

.double OxOOOOOlOO,OxOlOOOOOO,OxOOOOOlOl,OxOlOOOOOO 

.double OxOOOlOOOO,OxOlOOOOOO,OxOOOlOOOl,OxOlOOOOOO 

.double 0x00010lOO,OxOlOOOOOO,0x00010101,OxOlOOOOOO 

.double OxOlOOOOOO,OxOlOOOOOO,OxOlOOOOOl,OxOlOOOOOO 

.double OxOlOOO1OO,OxOlOOOOOO,OxOlOOO101,OxOlOOOOOO 

.double OxOlOlOOOO,OxOlOOOOOO,OxOlOlOOOl,OxOlOOOOOO 

.double OxOlO10100,OxOlOOOOOO,OxOlO10101,OxOlOOOOOO 

.double OxOOOOOOOO,OxOlOOOOOl,OxOOOOOOOl,OxOlOOOOOl 

.double OxOOOOOlOO,OxOlOOOOOl,OxOOOOOlOl,OxOlOOOOOl 

.double OxOOOlOOOO,OxOlOOOOOl,OxOOOlOOOl,OxOlOOOOOl 

.double 0x00010100,OxOlOOOOOl,OxOOOlO101,OxOlOOOOOl 

.double OxOlOOOOOO,OxOlOOOOOl,OxOlOOOOOl,OxOlOOOOOl 

.double OxOlOOOlOO,OxOlOOOOOl,OxOlOOO101,OxOlOOOOOl 

.double 0x01010000,OxOlOOOOOl,OxOlOlOOOl,OxOlOOOOOl 

.double 0x01010100,OxOlOOOOOl,OxOl010101,OxOlOOOOOl 

.double 0x00000000,0x01OOO1OO,OxOOOOOOOl,0x01OOO1OO 

.double OxOOOOOlOO,OxOlOOOlOO,OxOOOOOlOl,OxOlOOOlOO 

.double OxOOOlOOOO,OxOlOOOlOO,OxOOOlOOOl,OxOlOOOlOO 

.double OxOOOlOlOO,OxOlOOOlOO,OxOOOl010l,OxOlOOOlOO 

.double OxOlOOOOOO,OxOlOOOlOO,OxOlOOOOOl,OxOlOOOlOO 

.double OxOlOOOlOO,OxOlOOOlOO,OxOlOOO101,OxOlOOOlOO 

.double OxOlOlOOOO,OxOlOOOlOO,OxOlOlOOOl,OxOlOOOlOO 

.double OxOlOlO100,OxOlOOOlOO,OxOlOlOlOl,OxOlOOOlOO 

.double 0x00000000,OxOlOOOlOl,OxOOOOOOOl,OxOlOOO101 

.double OxOOOOOlOO,OxOlOOO10l,OxOOOOOlOl,OxOlOOOlOl 

.double OxOOOlOOOO,OxOlOOOlOl,OxOOOlOOOl,OxOlOOOlOl 

.double OxOOOlOlOO,OxOlOOOlOl,OxOOOlO101,OxOlOOO101 

.double OxOlOOOOOO,OxOlOOOlOl,OxOlOOOOOl,OxOlOOOlOl 

.double OxOlOOO1OO,OxOlOOOlOl,OxOlOOO101,OxOlOOO101 

.double OxOlOlOOOO,OxOlOOOlOl,OxOlOlOOOl,OxOlOOO101 

.double 0x01010100,OxOlOOO101,OxOlOlO101,OxOlOOOlOl 

.double 0x00000000,OxOl01OOOO,OxOOOOOOOl,0x010lOOOO 

.double OxOOOOOlOO,OxOlOlOOOO,0x0000010l,OxOlOlOOOO 

.double OxOOOlOOOO,OxOlOlOOOO,OxOOOlOOOl,OxOlOlOOOO 

.double OxOOOlO100,OxOlOlOOOO,0x00010101,OxOlOlOOOO 

.double OxOlOOOOOO,OxOlOlOOOO,OxOlOOOOOl,OxOlO10000 

.double OxOlOOOlOO,0x01010000,OxOlOOOlOl,OxOlOlOOOO 

.double OxOlOlOOOO,OxOl01OOOO,OxOlOlOOOl,OxOlOlOOOO 

.double OxOlOlOlOO,OxOlOlOOOO,OxOlOlO101,OxOlOlOOOO 

FIGURE 1 (Continued) 

8-87 

TL/EE/9698-3 

z , 
U1 
N 
CIO 

• 



co r---------------------------------------------------------------------------------, 
N 
1.1) 

• z 
<C 

.double OxOOOOOOOO,OxOlOlOOOl,OxOOOOOOOl,OxOlOlOOOl 

.double OxOOOOOlOO,OxOlOlOOOl,OxOOOOOlOl,OxOlOlOOOl 

.double OxOOOlOOOO,OxOlOlOOOl,OxOOOlOOOl,OxOlOlOOOl 

.double OxOOOlOlOO,Ox01010001,OxOOOlOlOl,Ox01010001 

.double OxOlOOOOOO,OxOlOlOOOl,OxOlOOOOOl,OxOlOlOOOl 

.double OxOlOOOlOO,OxOlOlOOOl,OxOlOOOlOl,OxOlOlOOOl 

.double OxOlOlOOOO,OxOlOlOOOl,OxOlOlOOOl,OxOlOlOOOl 

.double OxOlOlOlOO,OxOlOlOOOl,OxOlOlOlOl,OxOlOlOOOl 

.double OxOOOOOOOO,OxOlOlOlOO,OxOOOOOOOl,OxOlOlOlOO 

.double OxOOOOOlOO,OxOlOlOlOO,OxOOOOOlOl,OxOlOlOlOO 

.double OxOOOlOOOO,OxOlOlOlOO,OxOOOlOOOl,OxOlOlOlOO 

.double OxOOOlOlOO,OxOlOlOlOO,OxOOOlOlOl,OxOlOlOlOO 

.double OxOlOOOOOO,OxOlOlOlOO,OxOlOOOOOl,Ox01010100 

.double OxOlOOOlOO,OxOlOlOlOO,OxOlOOOlOl,0x010lOlOO 

.double OxOl01OOOO,OxOlOlOlOO,OxOlOlOOOl,OxOlOlOlOO 

.double OxOl010100,OxOlOlOlOO,OxOlOlOlOl,OxOlO10100 

.double OxOOOOOOOO,0x01010lOl,OxOOOOOOOl,OxOlOlOlOl 

.double OxOOOOOlOO,OxOlOl010l,OxOOOOOlOl,OxOlO10101 

.double OxOOOlOOOO,Ox01010101,OxOOOlOOOl,OxOlOlOlOl 

.double 0x00010lOO,0x0101010l,0x00010lOl,OxOlO10101 

.double OxOlOOOOOO,OxOl010lOl,0x01OOOOOl,OxOlO10101 

.double OxOlOOO1OO,OxOl01010l,OxOlOOOlOl,OxOlO10101 ;250,251 

.double OxOl01OOOO,OxOlOlOlOl,Ox01010001,OxOlOlOlOl ;252,253 

.double OxOl0101OO,0x01010101,0x01010lOl,0x010lOlOl ;254,255 

FIGURE 1 (Continued) 
TL/EE/9698-4 

This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes· 256 = 2048 bytes). There are two entries per 
line. This gives a 270· rotation. 

rottab2: .double OxOOOOOOOO,OxOOOOOOOO,OxOOOOOOOO,OxOlOOOOOO 
.double OxOOOOOOOO,OxOOOlOOOO,OxOOOOOOOO,OxOlOlOOOO 
.double OxOOOOOOOO,OxOOOOOlOO,OxOOOOOOOO,OxOlOOOlOO 
.double OXOOOOOOOO,0X000101OO,OXOOOOOOOO,OX01010100 
.double OxOOOOOOOO,OxOOOOOOOl,OxOOOOOOOO,OxOlOOOOOl 
.double OxOOOOOOOO,OxOOOlOOOl,OxOOOOOOOO,0x010lOOOl 
.double OxOOOOOOOO,OxOOOOOlOl,OxOOOOOOOO,OxOlOOOlOl 
.double OxOOOOOOOO,OxOOOlOlOl,OxOOOOOOOO,Ox01010101 
.double OxOlOOOOOO,OxOOOOOOOO,OxOlOOOOOO,OxOlOOOOOO 
.double OxOlOOOOOO,OxOOOlOOOO,OxOlOOOOOO,Ox01010000 
.double OxOlOOOOOO,OxOOOOOlOO,OxOlOOOOOO,OxOlOOOlOO 
.double OxOlOOOOOO,OxOOOlOlOO,OxOlOOOOOO,OxOlOlOlOO 
.double OxOlOOOOOO,OxOOOOOOOl,OxOlOOOOOO,OxOlOOOOOl 
.double OxOlOOOOOO,OxOOOlOOOl,OxOlOOOOOO,OxOlOlOOOl 
.double OxOlOOOOOO,OxOOOOOlOl,OxOlOOOOOO,OxOlOOOlOl 
.double OxOlOOOOOO,OxOOOl010l,OxOlOOOOOO,0x010lOlOl 
.double OxOOOlOOOO,OxOOOOOOOO,OxOOOlOOOO,OxOlOOOOOO 
.double OxOOOlOOOO,OxOOOlOOOO,OxOOOlOOOO,OxOlOlOOOO 
.double OxOOOlOOOO,0x000001OO,0x0001OOOO,OxOlOOO1OO 
.double OxOOOlOOOO,OxOOOlOlOO,OxOOOlOOOO,OxOlOlOlOO 
.double OxOOOlOOOO,OxOOOOOOOl,OxOOOlOOOO,OxOlOOOOOl 
.double OxOOOlOOOO,0x0001OOOl,OxOOOlOOOO,OxOlOlOOOl 
.double OxOOOlOOOO,OxOOOOOlOl,OxOOOlOOOO,OxOlOOOlOl 
.double OxOOOlOOOO,OxOOOlOlOl,OxOOOlOOOO,OxOlOlOlOl 

FIGURE 2 

8-88 

TLlEE/9698-5 



r----------------------------------------------------------------------,~ 

.double OxOlOl()()()(),OxOOOOOOOO,OxOlOl()()()(),OxOlo()()()()o 

.double 0x0101()()()(),OxOOOl()()()(),OxOlOl()()()(),OxOlOl()()()() 

.double OxOlOl()()()(),OxOOOOOlOO,0x0101()()()(),OxOlOOOlOO 

.double OxOlOl()()()(),OxOOOlOlOO,OxOlOl()()()(),OxOlOlOlOO 

.double 0x0101()()()(),0xQ0()()()()01,OxOlOl()()()(),OxOlo()()()()l 

.double OxOlOl()()()(),OxOOOlOOOl,OxOlOl()()()(),OxOlOlOOOl 

.double OxOlOl()()()(),OxOOOOOlOl,OxOlOlOOOO,OxOlOOOlOl 

.double OxOlOl()()()(),0x00010101,OxOlOlOOOO,0x0101O101 

.double OxOOOOOlOO,OxOOOOOOOO,OxOOOOOlOO,OxOlo()()()()o 

.double OxOOOOOlOO,OxOOOlOOOO,OxOOOOOlOO,OxOlOlOOOO 

.double OxOOOOOlOO,OxOOOOOlOO,OxOOOOOlOO,OxOlOOOlOO 

.double OxOOOOOlOO,OxOOOlOlOO,OxOOOOOlOO,0x01010100 

.double OxOOOOOlOO,OxQO()()()()Ol,OxOOOOOlOO,OxOlo()()()()l 

.double OxOOOOOlOO,OxOOOlOOOl,OxOOOOOlOO,OxOlO10001 

.double OxOOOOOlOO,OxOOOOOlOl,OxOOOOOlOO,OxOlOOOlOl 

.double OxOOOOOlOO,OxOOOlOlOl,OxOOOOOlOO,OxOlO10101 

.double OxOlOOOlOO,OxOOOOOOOO,OxOlOOOlOO,OxOlo()()()()o 

.double OxOlOOOlOO,OxOOOlOOOO,OxOlOOOlOO,0x01010000 

.double OxOlOOOlOO,OxOOOOOlOO,OxOlOOOlOO,OxOlOOOlOO 

.double OxOlOOOlOO,OxOOOlOlOO,OxOlOOOlOO,OxOlO10100 

.double OxOlOOOlOO,OxQO()()()()Ol,OxOlOOOlOO,OxOlo()()()()l 

.double OxOlOOOlOO,OxOOOlOOOl,OxOlOOOlOO,OxOlOlOOOl 

.double OxOlOOOlOO,OxOOOOOlOl,OxOlOOOlOO,OxOlOOOlOl 

.double OxOlOOOlOO,0x00010101,OxOlOOOlOO,OxOlOlO101 

.double OxOOOlOlOO,OxOOOOOOOO,OxOOOlOlOO,OxOlO()()()()O 

.double 0x00010100,OxOOOl()()()(),0x00010100,OxOlOlOOOO 

.double OxOOOlOlOO,OxOOOOOlOO,OxOOOlOlOO,OxOlOOOlOO 

.double 0x00010100,OxOOOlOlOO,OxOOOlOlOO,OxOlOlOlOO 

.double 0x00010100,0xQ0()()()()01,OxOOOlO100,OxOlo()()()()l 

.double 0x00010100,OxOOOlOOOl,OxOOOlOlOO,OxOlOlOOOl 

.double OxOOOlOlOO,OxOOOOOlOl,0x00010100,OxOlOOOlOl 

.double OxOOOlOlOO,OxOOOlO101,OxOOOlOlOO,OxOlO10101 

.double 0x01010100,0x00000000,OxOl010100,OxOlo()()()()o 

.double OxOlOlOlOO,OxOOOl()()()(),OxOlOlOlOO,OxOlOl()()()() 

.double OxOlOlOlOO,OxOOOOOlOO,OxOlOlOlOO,OxOlOOOlOO 

.double 0x01010100,0x00010100,OxOlOlOlOO,OxOlOlOlOO 

.double OxOlOlO100,OxQO()()()()Ol,OxOlOlOlOO,OxOlo()()()()l 

.double OxOlOlOlOO,OxOOOlOOOl,OxOlO10100,OxOlOlOOOl 

.double OxOlOlOlOO,OxOOOOOlOl,OxOlOlOlOO,OxOlOOO101 

.double OxOlOlOlOO,OxOOOlOlOl,OxOlOlOlOO,OxOlOlO101 

.double OxQO()()()()Ol,OxOOOOOOOO,OxQO()()()()Ol,OxOlo()()()()o 

.double OxQO()()()()Ol,OxOOOlOOOO,OxQO()()()()Ol,OxOlOl()()()() 

.double OxQO()()()()Ol,OxOOOOOlOO,OxQO()()()()Ol,OxOlOOOlOO 

.double OxQO()()()()Ol,OxOOOlOlOO,OxQO()()()()Ol,OxOlOlOlOO 

.double OxOOOOOOOl'OxQO()()()()Ol,OxOO()()()()Ol,OxOlo()()()()l 

.double OxOOOOOOOl,OxOOOlOOOl,OxOO()()()()Ol,OxOlOlOOOl 

.double OxOOOOOOOl,OxOOOOOlOl,OxQO()()()()Ol,OxOlOOOlOl 

.double OxOOOOOOOl,OxOOOlO101,0xQ0()()()()01,OxOlOlO101 

.double OxOlo()()()()l,OxOOOOOOOO,OxOlQ()()()()l,OxOlo()()()()o 

.double OxOlo()()()()l,OxOOOlOOOO,OxOlQ()()()()l,OxOlOlOOOO 

.double OxOlo()()()()l,OxOOOOOlOO,OxOlQ()()()()l,OxOlOOOlOO 

.double OxOlo()()()()l,OxOOOlOlOO,OxOlQ()()()()l,OxOlOlOlOO 

.double OxOlo()()()()l,OxOOOOOOOl,OxOlQ()()()()l,OxOlQ()()()()l 

.double OxOlo()()()()l,OxOOOlOOOl,OxOlQ()()()()l,OxOlOlOOOl 

.double OxOlo()()()()l,0x00000101,OxOlQ()()()()1,OxOlOOOlOl 

FIGURE 2 (Continued) 

8·89 

TL/EE/9698-6 

Z . 
U1 
N 
co 



co r-------------------------------------------------------------------------______ --, 
N 
L9 z c:c 

.double OxOlOOOOOl,OxOOOlOlOl,OxOlOOOOOl,OxOlOlOlOl 

.double OxOOOlOOOl,OxOOOOOOOO,OxOOOlOOOl,OxOlOOOOOO 

.double OxOOOlOOOl,OxOOOlOOOO,OxOOOlOOOl,OxOlOlOOOO 

.double OxOOOlOOOl,OxOOOOOlOO,OxOOOlOOOl,OxOlOOOlOO 

.double OxOOOlOOOl,OxOOOlOlOO,OxOOOlOOOl,OxOlOlOlOO 

.double OxOOOlOOOl,OxOOOOOOOl,OxOOOlOOOl,OxOl000001 

.double OxOOOlOOOl,OxOOOlOOOl,OxOOOl000l,OxOlOlOOOl 

.double 0x00010001,0x00000101,0x00010001,0x01000101 

.double 0x00010001,0x00010101,0x00010001,0x01010101 

.double 0x01010001,0x00000000,OxOlOlOOOl,OxOlOOOOOO 

.double OxOlOlOOOl,OxOOOlOOOO,OxOlOlOOOl,OxOl010000 

.double 0x01010001,0x000001OO,0x010lOOOl,0x01OOOlOO 

.double OxOlOlOOOl,OxOOOlOlOO,OxOlOlOOOl,OxOlOlOlOO 

.double OxOlOlOOOl,OxOOOOOOOl,OxOlOlOOOl,OxOlOOOOOl 

.double OxOlOlOOOl,OxOOOlOOOl,OxOlOlOOOl,OxOlOlOOOl 

.double OxOlOlOOOl,OxOOOOOlOl,OxOlOlOOOl,OxOlOOOlOl 

.double OxOlOlOOOl,OxOOOlOlOl,OxOlOlOOOl,OxOlOlOlOl 

.double OxOOOOOlOl,OxOOOOOOOO,OxOOOOOlOl,OxOlOOOOOO 

.double OxOOOOOlOl,OxOOOlOOOO,OxOOOOOlOl,OxOlO10000 

.double OxOOOOOlOl,OxOOOOOlOO,OxOOOOOlOl,OxOlOOOlOO 

.double OxOOOOOlOl,OxOOOlOlOO,OxOOOOOlOl,OxOlO10100 

.double OxOOOOOlOl,OxOOOOOOOl,OxOOOOOlOl,OxOlOOOOOl 

.double OxOOOOOlOl,OxOOOlOOOl,OxOOOOOlOl,OxOlOlOOOl 

.double OxOOOOOlOl,OxOOOOOlOl,OxOOOOOlOl,OxOlOOOlOl 

.double OxOOOOOlOl,OxOOOlOlOl,OxOOOOOlOl,OxOlOlOlOl 

.double OxOlOOOlOl,OxOOOOOOOO,OxOlOOOlOl,OxOlOOOOOO 

.double OxOlOOOlOl,OxOOOlOOOO,OxOlOOOlOl,OxOlOlOOOO 

.double OxOlOOOlOl,OxOOOOOlOO,OxOlOOOlOl,OxOlOOOlOO 

.double OxOlOOOlOl,OxOOOlOlOO,OxOlOOOlOl,OxOlO10100 

.double OxOlOOOlOl,OxOOOOOOOl,OxOlOOOlOl,OxOlOOOOOl 

.double OxOlOOOlOl,OxOOOlOOOl,OxOlOOOlOl,OxOlOlOOOl 

.double OxOlOOOlOl,OxOOOOOlOl,OxOlOOOlOl,OxOlOOOlOl 

.double OxOlOOOlOl,OxOOOlOlOl,OxOlOOOlOl,OxOlOlOlOl 

.double OxOOOlOlOl,OxOOOOOOOO,OxOOOlOlO1,OxOlOOOOOO 

.double OxOOOlOlOl,OxOOOlOOOO,0x00010101,0x01010000 

.double OxOOOlOlOl,OxOOOOOlOO,OxOOOlOlOl,OxOlOOOlOO 

.double 0x00010101,OxOOOlOlOO,0x00010101,OxOl010100 

.double OxOOOlOlOl,OxOOOOOOOl,0x000101O1,OxOlOOOOOl 

.double OxOOOlOlOl,OxOOOlOOOl,OxOOOlOlOl,OxOlOlOOOl 

.double OxOOOlOlOl,OxOOOOOlOl,OxOOOlOlOl,OxOlOOOlOl 

.double OxOOOlOlOl,OxOOOlOlOl,OxOOOlOlOl,OxOlOlOlOl 

.double OxOlOlOlOl,OxOOOOOOOO,OxOlOlOlOl,OxOlOOOOOO 

.double OxOlOlOlOl,OxOOOlOOOO,OxOlO10101,OxOlOlOOOO 

.double OxOlOlOlOl,OxOOOOOlOO,OxOlOl0101,OxOlOOOlOO 

.double OxOlOlOlOl,OxOOOlOlOO,OxOlOlOlOl,OxOlOlOlOO 

.double OxOlOlOlOl,OxOOOOOOOl,OxOlOlOlOl.OxOlOOOOOl 

.double OxOlOlOlOl,OxOOOlOOOl,OxOlOlOlOl.OxOlOlOOOl 

.double OxOlO10101,OxOOOOOlOl.0x01010101.0x01OOOlOl 

.double OxOlOlOlOl,OxOOOlOlOl,OxOlOlOlOl,OxOlOlOlOl 

FIGURE 2 (Continued) 

8-90 

TL/EE/9698-7 



The following is an unrolled version of the rotate image algorithm. For the NS32532, the address computation, currently 
done with a separate addr instruction, may be done with the ORO instruction. This makes the execution time slightly faster. 

I 
I 
IRotate image emulation code , 
I Inputs: 
I RO = Source font address 
I Rl = Source font warp 
, R4 = Rotate table address 
I 
, Outputs: 
, R2 = Destination font low 4 bytes (lsb->msb, 0 - 3) 
, R3 = Destination font high 4 bytes (lsb->msb, 4 - 7} , 
ROTlMG: 

movqd D,r2 'clear destination font 
movd r2,r3 'clear high bits of dest. 
movd r2,rS 'clear high bits of temp. 
movb O(rD), rS Iget a byte of source 
addd rl,rO #add source warp 
addd r2,r2 Ishift destination left one bit 
addd r3,r3 #top 32 bi ts too 
addr r4[r5:q] ,r6 'get poi nter to table 
ord O(r6),r2 lor in low bits 
ord 4(r6),r3 lor in high bits 
movb O(rO),rS 'get a byte of source 
addd rl,rO 'add source warp 
addd r2,r2 'shift destination left one bit 
addd r3,r3 #top 32 bits too 
addr r4 [rS: q] ,r6 'get poi nter to table 
ord O(r6),r2 'or in low bits 
ord 4(r6), r3 lor in high bits 
movb O(rD),r5 Iget a byte of source 
addd rl,rO ladd source warp 
addd r2,r2 Ishift destination left one bit 
addd r3,r3 #top 32 bi ts too 
addr r4 [r5:q]. rS 'get poi nter to table 
ord O(rS),r2 'or in low bits 
ord 4(rS),r3 'or in high bits 
movb O(rO),r5 'get a byte of source 
addd rl,rO ladd source warp 
addd r2,r2 Ishi ft destination left one bit 
addd r3,r3 Itop 32 bi ts too 
addr r4[r5:q] ,rS Iget poi nter to table 
ord O(rS),r2 lor in low bits 
ord 4(r6),r3 lor in high bits 
movb O(rO), r5 Iget a byte of source 
addd rl,rO ladd source warp 

FIGURE 3 

8-91 

TL/EE/969B-B 

» z • C1I 
N 
Q) 



co 
C'I 
In . 
Z addd r2,r2 'shift destination left one bit 
<C addd r3,r3 'top 32 bi ts too 

addr r4[rS:q] ,r6 'get poi nter to table 
ord 0(rS).r2 'or in low bits 
ord 4(rS).r3 lor in high bits 
movb O( rO). rS 'get a byte of source 
addd rl, rO #add source warp 
addd r2,r2 #Shift destination left one bit 
addd r3,r3 'top 32 bi ts too 
addr r4[rS:q] ,r6 Iget poi nter to table 
ord O( rS). r2 for in low bits 
ord 4(r6).r3 liar in high bits 
movb O( rO). rS 'get a byte of source 
addd rl,rO , add source wa rp 
addd r2,r2 #Shift dest i nat i on 1 eft one bi t 
addd r3,r3 'top 32 bi ts too 
addr r4 [rS: q] ,rS #get pointer to table 
ord 0(r6).r2 'or in low bits 
ord 4(r6).r3 lor in high bits 
movb O(rO).rS #get a byte of source 
addd rl,rO 'add source warp 
addd r2,r2 'shift destination left one bit 
addd r3,r3 ,top 32 bi ts too 
addr r4[rS:q] ,rS 'get poi nter to table 
ord 0(rS).r2 'or in low bits 
ord 4(r6).r3 lor in high bits 
ret $0 'and return 

TL/EE/9698-9 

FIGURE 3 (Continued) 

8·92 



r----------------------------------------------------------------.~ 

~; 80x86 to Series 32000® 
Translation; Series 32000 
Graphics Note 6 

1.0 INTRODUCTION 

This application note discusses the conversion of Intel 
8088, 8086, 80188 and 80186 (referred to here as 80x86) 
source assembly language to Series 32000 source code. As 
this is not intended to be a tutorial on Series 32000 assem­
bly language, please see the Series 32000 Programmers 
Reference Manual for more information on instructions and 
addressing modes. 

2.0 DESCRIPTION 

The 80x86 model has 6 general purpose registers (AX, BX, 
CX, DX, SI, DI), each 16 bits wide. 4 of these registers can 
be further addressed as 8-bit registers (AL, AH, BL, BH, CL, 
CH, DL, DH). Series 32000 has 8 general purpose registers 
(RO-R?). each 32 bits wide. Each Series 32000 register 
may be accessed as an 8-, 16- or 32-bit register. Two spe­
cial purpose registers on the 80x86, SP and BP, are 16-bit 
stack and base pointers. These are represented in Series 
32000 with the SP and FP registers, each 32-bit. 

The 80x86 model is capable of addressing up to 1 Mega­
byte of memory. Since the 16-bit register pointers are only 
capable of addressing 64 kbytes, 4 segment registers (CS, 
DS, ES, SS) are used in combination with the basic registers 
to pOint to memory. Series 32000 registers and addressing 
modes are all full 32-bit, and may point anywhere in the 
16 Megabyte (or 4 Gigabyte, depending on processor mod­
el) addressing range. 

80x86 

ADD AX,1234 Immediate 
ADD AX,LAB1 Direct 
ADD AX,16[SI] Direct Indexed 
ADD AX,[SI] Implied 
ADD AX, [BX] Base Relative 

National Semiconductor 
Application Note 529 
Dave Rand 

Device ports are given their own 16-bit address on the 
80x86, and there is a complement of instructions to handle 
input and output to these ports. Device ports on Series 
32000 are memory mapped, and all instructions are avail­
able for port manipulation. 

There are 6 addressing modes for data memory on the 
80x86: Immediate, Direct, Direct indexed, Implied, Base rel­
ative and Stack. There are 9 addressing modes on Series 
32000: Register, Immediate, Absolute, Register-relative, 
Memory space, External, Top-of-stack and Scaled index. 
Scaled index may be applied to any of the addressing 
modes (except scaled index) to create more addressing 
modes. The following figure shows the 80x86 addressing 
modes, and their Series 32000 counterparts. 

Series 32000 assembly code reads left-to-right, meaning 
source is on the left, destination on the right. As you can 
see, most of the 80x86 addressing modes fall into the regis­
ter-relative class of Series 32000. Also note that the ADDW 
could have been ADDD, performing a 32-bit add instead of 
only a 16-bit. 

Series 32000 also permits memory-to-memory (two ad­
dress) operation. A common operation like adding two vari­
ables is easier in Series 32000. Series 32000 has the same 
form for all math operations (multiply, divide, subtract), as 
well as all logical operators. 

Series 32000 

ADDW $1234,RO 
ADDW LAB1,RO 
ADDW 16(R6),RO 
ADDW 0(R6),RO 
ADDW 0(R1 ),RO 

ADD AX,[BX + SI] Base Relative Implied ADDW R1 [R6:BI,RO 
ADD AX,12[BX+SI] Base Relative Implied Indexed ADDW 12(R1j[R6:B],RO 
ADD AX,4[BP] Stack (Relative) ADDW 4(FP),RO 
PUSH AX Stack MOVWRO,TOS 

80x86 Series 32000 

MOVAL,LAB1 ADDB LAB1,LAB2 8-Bit Add Operation 
ADD LAB2,AL 

MOVAX,LAB3 ADDW LAB3,LAB4 16-Bit Add Operation 
ADDLAB4,AX 

MOV AX,LAB5L AD[)D LAB5,LAB6 32-Bit Add Operation 
ADD LAB6L,AX 
MOV AX,LAB5H 
ADDC LAB6H,AX 

8-93 



Most BOxB6 instructions have direct Series 32000 equiva­
lents-with a major difference. Most BOxB6 instructions af­
fect the flags. Most Series 32000 instructions do not affect 
the flags in the same manner. For example, the SOxS6 ADD 
instruction affects the Overflow, Carry, Arithmetic, Zero, 
Sign and Parity flags. The Series 32000 ADD instruction af­
fects the Overflow and Carry flags. Programs that rely on 
side-effects of instructions which set flags must be changed 
in order to work correctly on Series 32000. 

Table I gives a general guideline of instruction correlation 
between SOxS6 and Series 32000. Many of the common 

subroutines in SOxS6 may be replaced by a single instruction 
in Series 32000 (for example, 32-bit multiply and divide rou­
tines). Many special purpose instructions exist in Series 
32000, and these instructions may help to optimize various 
algorithms. 

3.0 IMPLEMENTATION 

As an example, we will show some small SOxS6 programs 
which we wish to convert to Series 32000. The first program 
reads a number of bytes from a port, waiting for status infor­
mation. Below is the program in BOxS6 assembly language: 

; Thi s program reads count bytes from port i oport, wa i t i ng for bit 7 of 
;statport to be active (1) before reading each byte. 

xor bX,bx ; zero checkslll1 
mov ex ,count ; get count of bytes 
mov es,bufseg ; get buffer se!J11E!nt 
lea di ,buffer ;pol nt to buffer offset 

11: mov dx, sta tport ;get status port address 
12: in a1,dx ; read status port 

rcl a1,1 ;move bi t 7 to carry 
jnc 12 ;loop until status available 
mov dX,loport ; poi nt to data port 
in a1,dx ;read port 
stosb ;store byte 
xor ah,ah ;zero hi gh part of ax 
add bX,ax ;add to checkslll1 
loop 11 ;loop for all bytes 
ret 

TUEE/9699-1 

A direct translation of this program to Series 32000 using Table I, appears below. Note that this program will not work directly, 
due to the side effect of the rcl instruction being used. 

IThl s program reads count bytes from port I oport, wa I t I ng for bit 7 of 
#statport to be active (1) before reading each byte. , 
, Before optimization 

xord rl,rl , zero checksum 
movw $count, r2 # get count of bytes 
addr buffer, rS # poi nt to buffer 

111: addr stat port , r3 II get status port address 
112: movb O(r3),rO # read status port 

rotb $l,rO II move bi t 7 to carry «- does not work 
bec 112 /I branch I f carry c1 ear 
addr ioport,r3 , poi nt to data port 
movb O(r3). rO # read port 
movb rO,O(rS) , store byte 
addqd l,rS 
movzbw rO,rO # zero hi gh part of ax 
addw rO,rl , add to checksum 
acbw -1,r2,l11 # loop for all bytes 
ret $0 

S-94 

TUEE/9699-2 



By using some of the special Series 32000 instructions, we 
can make this program much faster. The ROTB wil not work 
to test status, so we will replace that with a TBITB instruc· 
tion. Since TBITB can directly address the port, there is no 
need to read the status port value at all. We will remove the 
read status port line, and the register load of r3. Reading 

the 10 port as well can be done directly now, and we use a 
zero extension to ensure the high bits are cleared in prepa· 
ration for the checksum addition. Note that it is easy to do a 
32·bit checksum instead of only a 16·bit. Below is the 'opti· 
mized' code: 

IThi s program reads count bytes fran port ioport. waiting for bit 7 of 
'statport to be active (1) before reading each byte. , 
, After optimization 

xord rl.rl , zero checksum 
movw $count.r2 , get count of bytes 
addr buffer.rS , poi nt to buffer 

111: 
112: tbitb $7. statport , is bit 7 of status port val id? 

bfc 112 , no. loop until it is 
movzbd 10port.rO , read i 0 port 
moyb rO.O(rS) , store in buffer 
addqd l.rS 
addw rO.rl , add to checksum 
acbw -l.r2.111 # loop for all bytes 
ret $0 

TL/EE/9699-3 

A second program shows, in 80x86 assembler, a method to copy and convert a string from mixed case ASCII to all upper case 
ASCII. This program is shown below: 

;Thls program translates a null terminated ASCII string to uppercase 

moy ds .buflseg ;poi nt to input segnent 
lea si .bufl ;point to input string 
moy es.buf2seg ; poi nt to output segment 
lea dl.buf2 ; pol nt to output stri ng 
cld ;clear direction flag (increasing add) 

11: lodsb ;get a byte 
cmp al,'a' ; I s the char 1 ess than . a'? 
jb 12 ;yes. branch out 
cmp al. 'z' ;is the char greater than 'z'? 
ja 12 ; yes. branch out 
and al.Sfh ;and with Sf to make uppercase 

12: stosb ;store the character 
or al.al ; I s thi s the 1 ast char? 
jnz 11 ;no. loop for more 
ret ;yes. exit 

TL/EE/9699-4 

8·95 

» z 
I 

c.n 
N 
CQ 

• 



en 
~ A direct translation to Series 32000 works fine, as is shown below: 
Z 
« #This program translates a null terminate ASCII string to uppercase 

/I 

1/ Before optimization 

addr bufl.r4 

addr buf2. r5 
11 1: IOOvb 0(r4), rO 

addqd I, rO 
cmpb $'a' ,rO 

blo 112 

cmpb $'z' .rO 

bhi 112 

an db $Ox5f, rD 

11 2: IOOvb rO,O(r5) 

addqd I, r5 

cmpqb D,rO 

bne 111 

ret $0 

This program allows us to exploit another Series 32000 in­
struction, the MOVST (Move and String Translate). With a 
256 byte external table, we can translate any byte to any 
other byte. In this example, we simply use the full range of 
ASCII values in the translation table, with the lower case 
entries containing uppercase values. 

Watch for other optimization opportunities, especially with 
multiply and add sequences (the INDEXi instruction could 
be used), and possible memory to memory sequence 
changes. When optimizing Series 32000 code, it is impor­
tant to fully utilize the Complex Instruction Set. Allow the 

1/ poi nt to input stri ng 

# point to output string 

1/ get a byte 

II is the char less than 'a'? 

II yes, branch out 
II is the char greater than 'z'? 

1/ yes, branch out 

II and wi th Sf to make uppercase 

/I store the cha racter 

II is this the last char? 

II no, loop for more 

TL/EE/9699-5 

TLlEE/9699-6 

fewest number of instructions possible to do the work. Use 
the advanced addressing modes where possible. Try to em­
ploy larger data types in programs (Series 32000 takes the 
same number of clocks to add Bytes, Words or Double 
words). 

4.0 CONCLUSION 

Series 32000 assembly language offers a much richer com­
plement of instructions when compared to the 80x86 as­
sembly language. Translation from 80x86 to Series 32000 is 
made much easier by this full instruction set. 

#Thi s program transl ates a null terminate ASCII stri ng to uppercase 

II 
II After optimization 

IOOvqd -l,rO II number of bytes in stri ng max. 

addr bufl,r1 II poi nt to input stri ng 

addr buf2, r2 II poi nt to output st ri ng 

addr ctable,r3 II address of conyers i on table 

IOOvqd D, r4 II match on a zero 

movst II move string, translate, unti 1 

movqb O,O(r2) II move a zero to output stri ng 

ret $0 
TL/EE/9699-7 

8-96 



TABLE I 

The following is a conversion table from 80x86 mnemonics to Series 32000. Note that many of the conversions are not 
exact, as the 80x86 instructions may affect flags that Series 32000 instructions do not. A * marks those instructions that may 
be affected most by this change in flags. The i in the Series 32000 instructions refers to the size of the data to be operated 
on. It may be B for Byte, W for Word or D for Double. Most arithmetic instructions also support F for single-precision Floating 
Point, and L for double-precision Floating-Point. 

BOxB6 Series 32000 

AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 
BOUND 
CALL 
CBW 
CLC 
CLD 
CLI 
CMC 
CMP 
CMPS 
CWD 
DAA 
DAS 
DEC 
DIV 
ENTER 
ESC 
HLT 
IDIV 
IMUL 
IN 
INC 
INS 
INT 
INTO 
IRET 
JAlJNBE 
JAE/JNB 
JB/JNAE 
JBE/JNA 
JCXZ 
JE/JZ 
JG/JNLE 
JGE/JNL 
JLlJNGE 
JLE/JNG 
JMP 
JNE/JNZ 
JNO 
JNP 
JNS 
JO 
JP 
JPE 
JPO 
JS 
LAHF 
LDS 
LEA 
LEAVE 
LES 
LOCK 
LODS 
LOOP 

ADDCi 
ADDi 
ANDi 
CHECKi 
BSR/JSR 
MOVXBW 
BICPSRB$1 

BICPSRW $Ox800 

CMPi 
CMPSi 
MOVXWD 

ADDQi-1* 
DIVi 
ENTER[reglistl,d 

WAIT 
DIVi/QUOi 
MUll 

ADDQi 1* 

SVC 
FLAG 
RETI $0 
BHI 
BHS 
BLT 
BLS 

BEQ 
BGT 
BGE 
BLT 
BLE 
BR/JUMP 
BNE 

AD DR 
EXlT[reglistl 

MOVilADDQD 
ACBi-1 

Comments 

Suggest changing algorithm to use ADDPi 
Suggest changing algorithm to use ADDPi/SUBPi 

Suggest changing algorithm to use SUBPi 

You may directly sign-extend data while moving 
Usually not required 
Direction encoded within string instructions 
Supervisor mode instruction 
Usually not required 

Many options available 
You may directly sign-extend data while moving 
Suggest changing algorithm to use ADDPi 
Suggest changing algorithm to use SUBPi 
Watch for flag usage 
Note: Series 32000 uses signed division 
Builds stack frame, saves regs, allocates stack space 
Usually used for Floating Point-see Series 32000 FP instructions 

DIVi rounds towards -infinity, QUOi to zero 

Series 32000 uses memory-mapped I/O 
Watch for flag usage 
Series 32000 uses memory mapped I/O 
Not exact conversion, but usually used to call O/S 
Trap on overflow 
Causes Interrupt Acknowledge cycle 
Unsigned comparison 
Unsigned comparison 
Unsigned comparison 
Unsigned comparison 
Use CMPQi 0, followed by BEQ 
Equal comparison 
Signed comparison 
Signed comparison 
Signed comparison 
Signed comparison 

Not Equal comparison 
Subroutines should be used for these instructions 
as most Series 32000 code will not need these 
operations. 

SPRB UPSR,xxx may be useful 
Segment registers not required on Series 32000 

Restores regs, unallocates frame and stack 
Segment registers not required 
SBITli, CBITIi interlocked instructions 
MOV instruction followed by address increment 
ACBi may use memory or register 

8-97 

l> 
z . 
U1 
N 
CD 

• 



G) 

'" TABLE I (Continued) II) 
• Z 80x86 Series 32000 Comments 

CC 
LOOPE BEQ followed by ACBi may be used 
LOOPNE BNE followed by ACBi may be used 
LOOPNZ BNE followed by ACBi may be used 
LOOPZ BEQ followed by ACBi may be used 
MOV MOVi 
MOVS MOVSi Many options available 
MUL MULi Series 32000 uses signed multiplication 
NEG NEGi Two's complement 
NOP NOP 
NOT COMi One's complement 
OR ORi 
OUT Series 32000 uses memory mapped 1/0 
OUTS Series 32000 uses memory mapped 1/0 
POP MOViTOS, TOS addressing mode auto increments/decrements SP 
POPA RESTORE [rO,r1 .• r7] Restores list of registers 
POPF LPRB UPSR,TOS User mode loads 8 bits, supervisor 16 bits of PSR 
PUSH MOVixx,TOS Any data may be moved to TOS 
PUSHA SAVE [rO,r1 .. r7] Saves list of registers 
PUSHF SPRB UPSR,TOS User mode stores 8 bits, supervisor 16 bits of PSR 
RCL ROTio Does not rotate through carry 
RCR ROTi" Does not rotate through carry 
REP Series 32000 string instructions use 32-bit counts 
RET RET 
ROL ROTi 
ROR ROTi Rotates work in both directions 
SAHF LPRB UPSR,xx may be useful 
SAL ASHi Arithmetic shift 
SAR ASHi Arithmetic shift works both directions 
SBB SUBCi 
SCAS SKPSi Many options available 
SHL LSHi Logical shift 
SHR LSHi Logical shift works both directions 
STC BISPSRB$1 
STD Direction is encoded in string instructions 
STI BISPSRW $Ox800 Supervisor mode instruction 
STOS MOVilADDQD MOV instruction followed by address increment 
SUB SUBi 
TEST TBITi may be used as a substitute 
WAIT 
XCHG MOVi x,temp; MOVi y,x; MOVi temp,y 
XLAT MOVi x[RO:b], Scaled index addressing mode 
XOR XORi 

8-98 



r------------------------------------------------------------------o~ 

~~ Bit Mirror !RolUlitoll1le; 
Series 32000® Gli"a~hDcs 
Note 7 

1.0 INTRODUCTION 

National Semiconductor 
Application Note 530 
Dave Rand 

The bit mirror routine is designed to reorder the bits in an image. The bits are swapped around a fixed point, that being one 
half of the size of the data, as is shown for the byte mirror below. These routines can be used for conversion of 68000 based 
data. 

2.0 DESCRIPTION 

Hex 
Bit Number Value 

7 6 5 4 3 2 0 

Source I 0 I 1 0 0 1 0 B2 
Result of Mirror 0 I 0 0 I 1 0 1 4D 

The "mirror", in this case, is between bits 3 and 4. 

Several different algorithms are available for the mirror operation. The best algorithm to mirror a byte takes 20 clocks on a 
NS32016 (about 2.5 clocks per bit), and uses a 256 byte table to do the mirror operation. The table is reproduced at the end 
of this document. To perform a byte mirror, the following code may be used. The byte to be mirrored is in RO, and the 
destination is to be Rl. 

MOVB mirtab[rO:b] ,rl or·ti rror a byte 
TLlEE/9700-1 

An extension of this algorithm is used to mirror larger amounts of data. To mirror a 32·bit block of data from one location to 
another, the following code may be used. Register RO points to the source block, register R I points to the destination. R2 is 
used as a temporary value. 

MOYlBO O(rO).r2 #get fi rst byte 
MOVB mirtab[r2:b] ,3(rt) iJstore in last place 
MOVB l(rO). r2 #get next byte 
MOVB mi rtab [r2: b] ,2 (rl) tlstore in next place 
MOVB 2(rO).r2 #get the thi rd byte 
MOVB mirtab[r2:b] ,l(rl) Ustore in next place 
MOVB 3(rO),r2 Uget the 1 ast byte 
MOVB mirtab[r2:b] .O(rl) Ilfirst place 

TL/EE/9700-2 

This code uses 33 bytes of memory, and just 169 clocks to execute. Larger blocks of data can be mirrored with this method 
as well, with each additional byte taking about 40 clocks. 

Registers can also be mirrored with this method, with just a few more instructions. To mirror RO to RI, for example, the 
following code could be used. R2 is used as a temporary variable. 

MOVlBO 
MOVa 
LSHD 
LSHD 
MOVa 
MOVB 
LSHD 
LSHD 
MOVB 
MOVB 
LSHD 
LSHD 
MOVB 
MOYB 

rO. r2 ;1get 1 sbyte 
mi rtab [r2: bJ, rl Urni rror the byte 
$8.rl (!move into higher byte of destination 
$-B. rO (land of source 
rO. r2 #get 1 sbyte 
mi rtab [r2: b] ,rl I,'mi rror the byte 
$8. rl (!move into higher byte of destination 
$-8. rO Hand of source 
rO. r2 Hget 1 sbyte 
mi rtab [r2: b] • rl Urni rror the byte 
SB.rl #move into higher byte of destination 
$-8. rO #and of source 
rO. r2 #get 1 sbyte 
mi rtab [r2: b] • rl ~'mi rror the byte 

8·99 

TL/EE/9700-3 



C) r---------------------------------------------------------------------------------~ 
C") 
II) 
• z cc 

This code occupies 49 bytes, and executes in 286 clocks on an NS32016. 

If space is at a premium, a shorter table may be used, at the expense of time. Each nibble (4 bits) instead of each byte is 
processed. This means that the table only requires 16 entries. To mirror a byte in RO to R1, the following code can be used. R2 
is used as a temporary variable. 

MOVB rO,r2 'get 1sbyte 
ANOO $15, r2 #mask to get 1s nibble 
MOVB ml rtb16[r2:b], rl #ml rror the nl bb 1 e 
LSHD $4,rl 'high nibble of destination 
LSHO $-4, rO land of souree 
MOVB rO,r2 'get 1sbyte 
ANDD $15, r2 #mask to get 1s nibble 
ORB mi rtb16[r2:b], rl #mIrror the ni bb1e 

TL/EE/9700-4 

This code requires 32 bytes of memory, and executes in 125 clock cycles on an NS32016. A slightly faster time (100 clocks) 
may be obtained by adding a second table for the high nibble, and eliminating the LSHD 4,r1 instruction. 

TABLES 

MIRTAB is a table of all possible mirror values of 8 bits, or 256 bytes. MIRTB16 is a table of all possible mirror values of 4 bits, or 
16 bytes. These tables should be aligned for best performance. They may reside in code (PC relative), or data (S8 relative) 
space. 

mirtab: 

mlrtb16: 

• byte OxOO,Ox80, Ox40,OxeO, Ox20, OxaO, Ox60,OxeO, OxlO, 0x90, OxSO 
• byte OxdO,Ox30,OxbO,Ox70,OxfO 
• byte OxOO , Ox88 , Ox48 ,OxeB, Ox2B, Oxa8, Ox6B ,0xeB, OxlB, Ox9B, OxSB 
• byte Oxd8 ,Ox38, OxbB,Ox7B,Oxf8 
• byte Ox04, Ox84, Ox44 , Oxe4, Ox24 , Oxa4 , Ox64 , Oxe4, Ox14, Ox94, Ox54 
• byte Oxd4, Ox34, Oxb4, Ox74, Oxf4 
• byte OXOC, Ox8e, Ox4c, Oxee, Ox2e, Oxae, Ox6c, Oxee, Oxle, Oxge, Ox5c 
• byte Oxdc, Ox3e, Oxbc, Ox7e, Oxfe 
• byte Ox02 ,OxB2, Ox42 , Oxe2, Ox22 ,Oxa2, Ox62 ,Oxe2, Ox12, Ox92 , OxS2 
• byte Oxd2 ,Ox32, Oxb2, Ox72, Oxf2 
• byte OxOa ,OxBa, Ox4a, Oxea, Ox2a, Oxaa, Ox6a ,Oxea, Oxla, Ox9a, OxSa 
• byte Oxda,Ox3a, Oxba, Ox7a, Ox fa 
• byte Ox06 ,OxB6, Ox46 , Oxe6, Ox26, Oxa6, Ox66 , Oxe6, Ox16, Ox96, OxS6 
• byte Oxd6,Ox36,Oxb6,Ox76,Oxf6 
• byte OxOe, OxBe, Ox4e, Oxee, Ox2e ,Oxae, Ox6e ,Oxee, Oxle, Oxge, OxSe 
• byte Oxde, Ox3e, Oxbe, Ox7e, Oxfe 
• byte OxOl,OxBl, Ox4l ,Oxel ,Ox2l ,Oxal,Ox6l,Oxel,Oxll ,0x9l, Ox5l 
• byte Oxdl,Ox3l, Oxbl, Ox71, Oxfl 
. byte Ox09 ,OxB9, Ox49 , Oxe9, Ox29 ,Oxa9, Ox69 ,Oxe9, Oxl9, Ox99 , OxS9 
• byte Oxd9, Ox39 , Oxb9, Ox79, Oxf9 
• byte OxOS, OxBS, Ox45, OxeS, Ox2S ,Oxa5, Ox65, Oxe5, OxlS, Ox9S, OxSS 
• byte OxdS,Ox35,OxbS,Ox75,Oxf5 
• byte OxOd,OxBd, Ox4d, Oxed, Ox2d, Oxad, OxSd, Oxed, Oxld, Ox9d, OxSd 
. byte Oxdd,Ox3d,Oxbd,Ox7d,Oxfd 
. byte Ox03 ,Ox83, Ox43 , Oxe3, Ox23 , Oxa3, Ox63 , Oxe3, Ox13, Ox93, OxS3 
• byte Oxd3, Ox33, Oxb3, Ox73, Oxf3 
• byte OxOb,Ox8b, Ox4b, Oxeb, Ox2b, Oxab, Ox6b,Oxeb, Oxlb, Ox9b, OxSb 
• byte Oxdb,Ox3b,Oxbb,Ox7b,Oxfb 
• byte Ox07 ,OxB7, Ox47 ,Oxe7 ,Ox27 ,Oxa7 ,Ox67 ,Oxe7, Oxl7 ,Ox97, Ox57 
. byte Oxd7 ,Ox37 ,Oxb7 ,Ox77 ,Oxf7 
. byte OxOf, Ox8f, Ox4f ,Oxef, Ox2f, Oxaf, Ox6f ,Oxef, Oxl f, Ox9f, OxSf 
. byte Oxdf,Ox3f,Oxbf,Ox7f,Oxff 

• byte 
. byte 

OxO, Ox8, Ox4, Oxe, Ox2, Oxa, Ox6, Oxe, Oxl, Ox9, Ox5 
Oxd,Ox3,Oxb,Ox7, Oxf 

8-100 

TL/EE/9700-5 



Section 9 
NSC800 Family 



Section 9 Contents 
NSC800 High-Performance Low-Power CMOS Microprocessor. . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
NSC810A RAM-I/O-Timer........................................................... 9-76 
NSC831 Parallel 1/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-97 
NSC888 NSC800 Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-111 
Comparison Study NSC800 vs. 8085/80C85/Z80/Z80 CMOS............................ 9-115 
Software Comparison NSC800 vs. 8085, Z80 .......................................... 9-118 

9·2 



~National 
~ Semiconductor 

microCMOS 

NSC800™ High-Performance 
Low-Power CMOS Microprocessor 

General Description 
The NSC800 is an 8-bit CMOS microprocessor that func­
tions as the central processing unit (CPU) in National Semi­
conductor's NSC800 microcomputer family. National's 
microCMOS technology used to fabricate this device pro­
vides system designers with performance equivalent to 
comparable NMOS products, but with the low power advan­
tage of CMOS. Some of the many system functions incorpo­
rated on the device, are vectored priority interrupts, refresh 
control, power-save feature and interrupt acknowledge. The 
NSC800 is available in dual-in-line and surface mounted 
chip carrier packages. 

The system designer can choose not only from the dedicat­
ed CMOS peripherals that allow direct interfacing to the 
NSC800 but from the full line of National's CMOS products 
to allow a low-power system solution. The dedicated periph­
erals include NSC810A RAM I/O Timer, NSC858 UART, 
and NSC831 1/0. 

All devices are available in commercial, industrial and mili­
tary temperature ranges along with two added reliability 
flows. The first is an extended burn in test and the second is 
the military class C screening in accordance with Method 
5004 of MIL-STD-883. 

Block Diagram 

ClK 
OUT RFSH iiii 

XIN_ 

TIMING AND CONTROL 
XoUT_ 

Features 
• Fully compatible with Z801i> instruction set: 

Powerful set of 158 instructions 
10 addressing modes 
22 internal registers 

• Low power: 50 mW at 5V Vee 
• Unique power-save feature 
• Multiplexed bus structure 
• Schmitt trigger input on reset 
• On-chip bus controller and clock generator 
• Variable power supply 2.4V-6.0V 
• On-Chip 8-bit dynamic RAM refresh circuitry 
• Speed: 1.0 '"'S instruction cycle at 4.0 MHz 

NSC800-4 4.0 MHz 
NSC800-3 2.5 MHz 
NSC800-1 1.0 MHz 

• Capable of addressing 64k bytes of memory and 256 
1/0 devices 

• Five interrupt request lines on-chip 

F' 181 
H" 181 l' 181 
D'I81 E' 181 
B'IBI C' IBI 

A IBI F 181 
H 181 l 181 
D 181 E 181 
B 181 C 181 REGISTER 

ARRAY 

IX 1161 
IY 1161 

1181 R 181 
STACK POINTER 1161 

PROGRAM COUNTER 1161 

INCREMENTER 
oECREMENTER (16) 

ADDRESS LATCH 

WR ALE Pi SO BACK RESET RESET ADDRESS 8US ADDRESS/DATA BUS 
iN OUT 

TL/C/5171-73 

9-3 

z 
~ 
CD 
Q 
Q 



Table of Contents 

1.0 ABSOLUTE MAXIMUM RATINGS 

2.0 OPERATING CONDITIONS 

3.0 DC ELECTRICAL CHARACTERISTICS 

4.0 AC ELECTRICAL CHARACTERISTICS 

5.0 TIMING WAVEFORMS 

NSC800 HARDWARE 

6.0 PIN DESCRIPTIONS 

6.1 Input Signals 

6.2 Output Signals 

6.3 Input/Output Signals 

7.0 CONNECTION DIAGRAMS 

8.0 FUNCTIONAL DESCRIPTION 

8.1 Register Array 

8.2 Dedicated Registers 

8.2.1 Program Counter 

8.2.2 Stack Pointer 

8.2.3 Index Register 

8.2.4 Interrupt Register 

8.2.5 Refresh Register 

8.3 CPU Working and Alternate Register Sets 

8.3.1 CPU Working Registers 

8.3.2 Alternate Registers 

8.4 Register Functions 

8.4.1 Accumulator 

8.4.2 F Register-Flags 

8.4.3 Carry (C) 

8.4.4 Adds/Subtract (N) 

8.4.5 Parity/Overflow (PIV) 

8.4.6 Half Carry (H) 

8.4.7 Zero Flag (Z) 

8.4.8 Sign Flag (S) 

8.4.9 Additional General Purpose Registers 

8.4.10 Alternate Configurations 

8.5 Arithmetic Logic Unit (ALU) 

8.6 Instruction Register and Decoder 

9.0 TIMING AND CONTROL 

9.1 Internal Clock Generator 

9.2 CPU Timing 

9.3 Initialization 

9.4 Power Save Feature 

9-4 

9.0 TIMING AND CONTROL 

9.5 Bus Access Control 

9.6 Interrupt Control 

NSC800 SOFTWARE 

10.0 INTRODUCTION 

11.0 ADDRESSING MODES 

11.1 Register 

11.2 Implied 

11.3 Immediate 

11.4 Immediate Extended 

11.5 Direct Addressing 

11.6 Register Indirect 

11.7 Indexed 

11.8 Relative 

11.9 Modified Page Zero 

11.10 Bit 

12.0 INSTRUCTION SET 

12.1 Instruction Set Index/Alphabetical 

12.2 Instruction Set Mnemonic Notation 

12.3 Assembled Object Code Notation 

12.4 8-Bit Loads 

12.5 16-Bit Loads 

12.6 8-Bit Arithmetic 

12.7 16-Bit Arithmetic 

12.8 Bit Set, Reset, and Test 

12.9 Rotate and Shift 

12.1 0 Exchanges 

12.11 Memory Block Moves and Searches 

12.12 Input/Output 

12.13 CPU Control 

12.14 Program Control 

12.15 Instruction Set: Alphabetical Order 

12.16 Instruction Set: Numerical Order 

13.0 DATA ACQUISITION SYSTEM 

14.0 NSC800M/883B MIL STD 883/CLASS C 
SCREENING 

15.0 BURN-IN CIRCUITS 

16.0 ORDERING INFORMATION 

17.0 RELIABILITY INFORMATION 



1.0 Absolute Maximum Ratings (Note 1) 2.0 Operating Conditions 
If Military/Aerospace specified devices are required, NSC800-1 ~ TA = O'C to +70'C 
contact the National Semiconductor Sales Office/ TA = -40'C to +85'C 
Distributors for availability and specifications. 

NSC800-3 ~ TA = O'C to +70'C 
Storage Temperature -65'Cto + 150'C 

TA = -40'C to +85'C 
Voltage on Any Pin 

TA = -55'C to + 125'C 
with Respect to Ground -0.3V to Vee +0.3V 

Maximum Vee 7V 
NSC800-4 ~ TA = O'C to +70'C 

Power Dissipation 1W TA = - 40'C to + 85'C 

lead Temp. (Soldering, 10 seconds) 300'C 
TA = -55'Cto +125'C 

3.0 DC Electrical Characteristics Vee = 5V ± 10%, GND = OV, unless otherwise specified. 

Symbol Parameter Conditions Min Typ Max Units 

VIH logical 1 Input Voltage 0.8 Vee Vee V 

VIL logical 0 Input Voltage 0 0.2 Vee V 

VHY Hysteresis at RESET IN input Vee = 5V 0.25 0.5 V 

VOHl logical 1 Output Voltage lOUT = -1.0 mA 2.4 V 

VOH2 logical 1 Output Voltage lOUT = -10/LA Vee -0.5 V 

VaLl logical 0 Output Voltage lOUT = 2mA 0 0.4 V 

VOL2 logical 0 Output Voltage lOUT = 10 /LA 0 0.1 V 

IlL Input leakage Current 0:;;; VIN:;;; Vee -10.0 10.0 /LA 

IOL Output leakage Current 0:;;; VIN:;;; Vee -10.0 10.0 /LA 

lee Active Supply Current lOUT = 0, f(XIN) = 2 MHz, T A = 25'C 8 11 rnA 

lee Active Supply Current lOUT = 0, f(XIN) = 5 MHz, T A = 25'C 10 15 rnA 

lee Active Supply Current lOUT = 0, f(XIN) = 8 MHz, T A = 25'C 15 21 rnA 

IQ Quiescent Current lOUT = 0, PS = 0, VIN = OorVIN = Vee 2 5 rnA 
f(XIN) = 0 MHz, T A = 25'C, XIN = 0, ClK = 1 

Ips Power-Save Current lOUT = 0, PS = 0, VIN = 0 orVIN = Vee 
5 7 mA 

f(XIN) = 5.0 MHz, T A = 25' 

CIN Input Capacitance 6 10 pF 

COUT Output Capacitance 8 12 pF 

Vee Power Supply Voltage (Note 2) 2.4 5 6 V 

Note 1: Absolute Maximum Ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and should be 
limited to those conditions specified under DC Electrical Characteristics. 

Note 2: CPU operation at lower voltages will reduce the maximum operating speed. Operation at voltages other than 5V ± 10% is guaranteed by design, not 
tested. 

9-5 

z 
(J) 
(") 
«XI o 
o 



o o 

~ 
Z 

4.0 AC Electrical Characteristics Vcc = 5V ± 10%, GND = OV, unless otherwise specified 

Symbol Parameter 
NSC800·1 NSC800 NSC800·4 

Units Notes 
Min Max Min Max Min Max 

Ix Period at XIN and XOUT 500 3333 200 3333 125 3333 ns 
Pins 

T Period at Clock Output 1000 6667 400 6667 250 6667 ns 

(= 2tx) 

tR Clock Rise Time 110 110 80 ns Measured from 10%-90% of 
signal 

IF Clock Fall Time 70 60 50 ns Measured from 10%-90% of 
signal 

tL Clock Low Time 435 150 85 ns 50% duty cycle, square wave 
input on XIN 

tH Clock High Time 450 145 75 ns 50% duty cycle, square wave 
inputonXIN 

tACC(OP) ALE to Valid Data 1340 490 300 ns Add t for each WAIT STATE 

tACC(MR) ALE to Valid Data 1875 620 375 ns Add t for each WAIT STATE 

tAFR AD(0-7) Float after 0 0 0 ns 
RD Falling 

tBABE BACK Rising to Bus 1000 400 250 ns 
Enable 

tBABF BACK Falling to Bus Float 50 50 50 ns 

tBACL BACK Fall to CLK 425 125 55 ns 
Falling 

tSRH BREQ Hold Time 0 0 0 ns 

tSRS BREQ Set-Up Time 100 50 45 ns 

tCAF Clock Falling ALE 0 70 0 65 0 55 ns 
Falling 

leAR Clock Rising to ALE 0 100 0 100 0 80 ns 
Rising 

leRO Clock Rising to 100 90 80 ns 
Read Rising 

leRF Clock Rising to 80 70 60 ns 
Refresh Falling 

tOAI ALE Failing to INTA 445 160 85 ns 
Falling 

tOAR ALE Falling to RD Falling 400 575 160 250 90 160 ns 

tOAW ALE Falling to WR Falling 900 1010 350 420 200 255 ns 

to(BACK)1 ALE Falling to BACK 2460 975 600 ns Add t for each WAIT state 
Falling Add t for opcode fetch cycles 

to(BACK)2 BREQ Rising to BACK 500 1610 200 700 125 475 ns 
Rising 

to(l) ALE Falling to INTR, NMI, 1360 475 250 ns Add t for each WAIT state 
RSTA-C, PS, BREQ, Inputs Add t for opcode fetch cycles 
Valid 

tOPA Rising PS to Falling ALE 500 1685 200 760 125 500 ns See Figure 14 also 

to(WAIn ALE Falling to WAIT Input 550 250 125 ns 
Valid 

9-6 



4.0 AC Electrical Characteristics Vcc = 5V ± 10%, GND = OV, unless otherwise specified (Continued) 

Symbol Parameter 
NSC800-1 NSC800 NSC800-4 

Units Notes 
Min Max Min Max Min Max 

TH(ADH)1 A(8-15) Hold Time During 0 0 0 ns 
Opcode Fetch 

TH(ADH)2 A(8-15) Hold Time During 400 100 60 ns 
Memory or 10, RD and WR 

TH(ADL) AD(0-7) Hold Time 100 60 30 ns 

THfWD) Write Data Hold Time 400 100 75 ns 

tlNH Interrupt Hold Time 0 0 0 ns 

tiNS Interrupt Set-Up Time 100 50 45 ns 

tNMI Width of NMllnput 50 30 20 ns 

tRDH Data Hold after Read 0 0 0 ns 

tRFLF RFSH Rising to ALE 60 50 40 ns 
Falling 

tRL(MR) RD Rising to ALE Rising 390 100 45 ns 
(Memory Read) 

\s(AD) AD(0-7) Set-Up Time 300 45 40 ns 

\s(ALE) A(8-15), SO, 51, 101M 350 70 50 ns 
Set-UpTime 

\sfWD) Write Data Set-Up Time 385 75 30 ns 

tW(ALE) ALE Width 430 130 100 ns 

tWH WAIT Hold Time 0 0 0 ns 

tw(l) Width of INTR, RSTA-C, 500 200 125 ns 
PS,BREQ 

tW(INTA) INTA Strobe Width 1000 400 200 ns Add two t states for first INTA of 
each interrupt response string 

Add t for each WAIT state 

tWL WR Rising to ALE Rising 450 130 70 ns 

tw(RD) Read Strobe Width During 960 360 185 ns Add t for each WAIT State 

Opcode Fetch Add t/2 for Memory Read Cycles 

tw(RFSH) Refresh Strobe Width 1925 725 395 ns 

tws WAIT Set-Up Time 100 70 55 ns 

tW(WAIT) WAIT Input Width 550 250 175 ns 

tW(WR) Write Strobe Width 985 390 220 ns Add t for each WAIT state 

tXCF XIN to Clock Falling 25 100 20 95 5 80 ns 

tXCR XIN to Clock Rising 25 85 20 85 5 80 ns 

Note 1: Test conditions: t = 1000 ns for NSC800·1, 400 ns for NSC800, 250 ns for NSC800·4. 
Note 2: Oulputtlmings are measured with a purely capacitive load of 100 pF. 

9-7 

z 
~ 
CD o o 



C) .-------------------------------------------------------------------------------~ 
C) 

~ 5.0 Timing Waveforms 
(J) 
z 

Opcode Fetch Cycle 

~-------------------------Ml------------------------~ 
------I~----T2 -----I-----T3 ------t------·T4 __ 

X1N 

ClK 

ALE 

A(8-15) ---"1'---+--....:.-~+_--+_"f'--~-------------+__ 

101M. 50.51 .............. --~ ....... ~ ..................... -+~~~~ ....... ~ ............................................................................. --

·~-~w~-----------------------------------------WAIT 
-----!-:---',.. 

Memory Read and Write Cycle 

ClK 

ALE 

A(8-15) ---'1'---+---+--+-.;........;..-:.-------!-"["'\,---

Rii 

AD(0-7) ---....... L-l::~~!G;::l=~~===~~~~~,l---
(WRITE) ----'l''--''''"'''":'-.;..-..:....If1'o-+_---------''fI'+---

WAIT __ ............................ +--....... -J.~ 

---.!!R~il0 
INTA. RST AC 

PS-

101M. SO. 51 IO/ij=O.SO=~=.SI=~= 
____ -J~ .............. --....... --....... --.............. ~~~ ..................... ~ 

9·8 

TLlC/5171-3 

Tl/C/5171-4 



5.0 Timing Waveforms (Continued) 

Interrupt-Power-Save Cycle 

eLK 

ALE 

INTEl, HSTA, 

RSTB.RSTC~~::::~~::~~::~::~=+~:::::::::::E~~r==;,;rr.~=rj:::::::::: 
iNTA 

INDTE 21 

Note 1: This t state is the last t state of the last M cycle of any instruction. 

Note 2: Response to INTR inpul. 

Note 3: Response to PS inpul. 

Bus Acknowledge Cycle 

ANY t.1 CYClE--<+---- BUS AVAILABLE STATES ---.. 

ClK 

AD (0 - 7) I:::r_t_BA_BE __ _ 
A(B-15) ____ I-_____ -+_~ -- -- - -- - -------- ~L. ____ _ 

101M. RD. ViR 1-

ALE' 

"Waveform not drawn to proportion. Use only for specifying test pOints. 

AC Testing Input/Output Waveform AC Testing Load Circuit 

TL/C/5171-7 

TLlC/5171-5 

TL/C/5171-6 

TL/C/5171-8 

9-9 

z en o 
CI) 
o o 



o r--------------------------------------------------------------------------, 
o 
CO o 
(J) 
z 

NSC800 HARDWARE 

6.0 Pin Descriptions 
6.1 INPUT SIGNALS 

Reset Input (RESET IN): Active low. Sets A (8-15) and AD 
(0-7) to TRI-STATE® (high impedance). Clears the con­
tents of PC, I and R registers, disables interrupts, and acti­
vates reset out. 

Bus Request (BREQ): Active low. Used when another de­
vice requests the system bus. The NSC800 recognizes 
BREQ at the end of the current machine cycle, and sets 
A(8-15), AD(0-7), 10/M, RD, and WR to the high imped­
ance state. RFSH is high during a bus request cycle. The 
CPU acknowledges the bus request via the BACK output 
signal. 

Non-Maskable Interrupt (NMI): Active low. The non-mask­
able interrupt, generated by the peripheral device(s), is the 
highest priority interrupt. The edge sensitive interrupt re­
quires only a pulse to set an internal flip-flop which gener­
ates the internal interrupt request. The NMI flip-flop is moni­
tored on the same clock edge as the other interrupts. It 
must also meet the minimum set-up time spec for the inter­
rupt to be accepted in the current machine instruction. 
When the processor accepts the interrupt the flip-flop resets 
automatically. Interrupt execution is independent of the in­
terrupt enable flip-flop. NMI execution results in saving the 
PC on the stack and automatic branching to restart address 
X'0066 in memory. 

Restart Interrupts, A, B, C (RSTA, RSTB, RSTC): Active 
low level sensitive. The CPU recognizes restarts generated 
by the peripherals at the end of the current instruction, if 
their respective interrupt enable and master enable bits are 
set. Execution is identical to NMI except the interrupts vec­
tor to the following restart addresses: 

Name 

RSTA 
RSTB 
RSTC 
INTR (Mode 1) 

Restart 
Address (X') 

0066 
003C 
0034 
002C 
0038 

The order of priority is fixed. The list above starts with the 
highest priority. 

Interrupt Request (INTR): Active low, level sensitive. The 
CPU recognizes an interrupt request at the end of the cur­
rent instruction provided that the interrupt enable and mas­
ter interrupt enable bits are set. INTR is the lowest priority 
interrupt. Program control selects one of three response 
modes which determines the method of servicing INTR in 
conjunction with INTA. See Interrupt Control. 

Wait (WAIT): Active low. When set low during RD, WR or 
INTA machine cycles (during the WR machine cycle, wait 
must be valid prior to write gOing active) the CPU extends its 
machine cycle in increments of t (wait) states. The wait ma­
chine cycle continues until the WAIT input returns high. 

The wait strobe input will be accepted only during machine 
cycles that have RD, WR or INTA strobes and during the 
machine cycle immediately after an interrupt has been ac­
cepted by the CPU. The later cycle has its RD strobe sup­
pressed but it will still accept the wait. 

Power-Save (PS): Active low. PS is sampled during the last 
t state of the current instruction cycle. When PS is low, the 

9-10 

CPU stops executing at the end of current instruction and 
keeps itself in the low-power mode. Normal operation re­
sumes when PS returns high (see Power Save Feature de­
scription). 

CRYSTAL (XIN, XOUT): XIN can be used as an external 
clock input. A crystal can be connected across XIN and 
XOUT to provide a source for the system clock. 

6_2 OUTPUT SIGNALS 

Bus Acknowledge (BACK): Active low. BACK indicates to 
the bus requesting device that the CPU bus and its control 
signals are in the TRI-STATE mode. The requesting device 
then commands the bus and its control signals. 

Address Bits 8-15 [A(8-15)1: Active high. These are the 
most significant 8 bits of the memory address during a 
memory instruction. During an I/O instruction, the port ad­
dress on the lower 8 address bits gets duplicated onto A(8-
15). During a BREQ/BACK cycle, the A(8-15) bus is in the 
TRI-STATE mode. 

Reset Out (RESET OUT): Active high. When RESET OUT 
is high, it indicates the CPU is being reset. This signal is 
normally used to reset the peripheral devices. 

Input/Output/Memory (101M): An active high on the 101M 
output signifies that the current machine cycle is an input! 
output cycle. An active low on the 10/M output signifies that 
the current machine cycle is a memory cycle. It is TRI­
STATE during BREQ/BACK cycles. 

Refresh (RFSH): Active low. The refresh output indicates 
that the dynamic RAM refresh cycle is in progress. RFSH 
goes low during T3 and T4 states of all M1 cycles. During 
the refresh cycle, AD(0-7) has the refresh address and 
A(B-15) indicates the interrupt vector register data. RFSH is 
high during BREQ/BACK cycles. 

Address latch Enable (ALE): Active high. ALE is active 
only during the T1 state of any M cycle and also T3 state of 
the M1 cycle. The high to low transition of ALE indicates 
that a valid memory, 1/0 or refresh address is available on 
the AD(0-7) lines. 

Read Strobe (RD): Active low. The CPU receives data via 
the AD(0-7) lines on the trailing edge of the RD strobe. The 
RD line is in the TRI-STATE mode during BREQ/BACK cy­
cles. 

Write Strobe (WR): Active low. The CPU sends data via the 
AD(0-7) lines while the WR strobe is low. The WR line is in 
the TRI-STATE mode during BREQ/BACK cycles. 

Clock (elK): ClK is the output provided for use as a sys­
tem clock. The ClK output is a square wave at one half the 
input frequency. 

Interrupt Acknowledge (INTA): Active low. This signal 
strobes the interrupt response vector from the interrupting 
peripheral devices onto the AD(0-7) lines. INTA is active 
during the M1 cycle immediately following the t state where 
the CPU recognized the INTR interrupt request. 

Two of the three interrupt request modes use INTA. In 
mode 0 one to four INTA signals strobe a one to four byte 
instruction onto the AD(0-7) lines. In mode 2 one INTA sig­
nal strobes the lower byte of an interrupt response vector 
onto the bus. In mode 1, INTA is inactive and the CPU re­
sponse to INTR is the same as for an NMI or restart inter­
rupt. 



6.0 Pin Descriptions (Continued) 

Status (SO, S1): Bus status outputs provide encoded infor­
mation regarding the current M cycle as follows' 

Machine Cycle 
Status Control 

SO S1 101M RD WR 

Opcode Fetch 1 1 0 0 1 
Memory Read 0 1 0 0 1 
Memory Write 1 0 0 1 0 
1/0 Read 0 1 1 0 1 
1/0 Write 1 0 1 1 0 
Halt' 0 0 0 0 1 
Internal Operation' 0 1 0 1 1 
Acknowledge of Int" 1 1 0 1 1 

• ALE is not suppressed in this cycle . 

• ·This is the cycle that occurs immediately after the CPU accepts an inter­
rupt (RSTA. RSTB. RS'fC. INTR. NMI). 

Note 1: During halt, CPU continues to do dummy opcode fetch from location 
following the halt instruction with a halt status. This is so CPU can continue 
to do its dynamic RAM refresh. 

Note 2: No early status is provided for interrupt or hardware restarts. 

7.0 Connection Diagrams 

Dual·ln·Line Package 

AB vee 
A9 PS 

AID WAif 
All RESET OUT 
A12 BREO 
A13 BACK 

A14 101M 
A15 RESET IN 

eLK iiii 
XDUT 10 31 Viii 

XIN 11 
N5CBDD 

30 ALE 

ADO 12 29 50 

ADI 13 2B iiFSi1 
AD2 14 27 51 

AD3 15 26 INTA 
AD4 16 25 INTR 
AD5 17 24 R5TC 

AD6 lB 23 R5TB 
AD7 19 22 R5TA 
GND 20 21 Jm1 

Top View 
TLlC/5171-10 

Order Number NSC800D or N 
See NS Package D40C or N40A 

9-11 

6.3INPUT/OUTPUT SIGNALS 

Multiplexed Address/Data [AD(O-7)]: Active high 
At RD Time: Input data to CPU. 
At WR Time: Output data from CPU. 
At Falling Edge Least significant byte of address 
of ALE Time: during memory reference cycle. a-bit 

port address during I/O reference 
cycle. 

During BREQ/ High impedance. 
BACK Cycle: 

Chip Carrier Package 

RESET 
AI2 All AID A9 A8 Vee PS WAIT OUT BRED 

\ NC J 
AI3 7 6 5 4 3 2 I 4443 42 414~9 BACK 

AI4 B 3B 101M 
AI5 9 37 RESET IN 
ClK 10 36 iiii 

XDUT II 35 Viii 
NC 12 NSCBOO 34 NC 

XIN 13 33 ALE 
ADO 14 32 SO 
ADI 15 31 RFSH 
AD2 16 3D SI 
AD3 17 29 INTA 

1819202122232425262728 

NC t \ 
AD4 A05 AD6 AD7 GND NMI iiS'fl\' RSTB HSTC INTH 

Top View 
TLlC/5171-11 

Order Number NSC800E or V 
See NS Package E44B or V44A 

z en 
o 
co 
Q 
Q 



C) r------------------------------------------------------------------------------------------, 
C) 
co 
(.) 
(1) 
z 

8.0 Functional Description 
This section reviews the CPU architecture shown below, fo­
cusing on the functional aspects from a hardware perspec­
tive, including timing details. 

{~VCC POWER 
SUPPLY (20) 

_GND 

~~~)~ 
XOUT

(10)

(25) (26)
INTR INTA

elK

(23) (24) (21)
Am liSfC NMI

OUT RFSH iiii
(9) (28) (32)

TIMING AND CONTROL

As illustrated in Figure 1, the NSC800 is an 8-bit parallel
device, The major functional blocks are: the ALU, register
array, interrupt control, timing and control logic, These areas
are connected via the 8-bit internal data bus, Detailed de­
scriptions of these blocks ae provided in the following sec­
tions.

F' (8)
H' (8) l' (8)
0' (8) E' (8)

8' (8) C' (8)

A (8) (8)
(8) l (8)
(8) (8)

8 (8) (8) REGISTER
ARRAY

IX (16)

IY (16)

(8) R (8)
STACK POINTER (16)

PROGRAM COUNTER (16)

INCREMENTER
DECREMENTER (16)

ADDRESS LATCH

Wii ALE PS SO Sl 10/M BRED 8ACK iiESE'i RESET A(8-15)
ADDRESS BUS

AD(0-7)
ADDRESS/DATA BUS ~) ~ • ~ ~ ~ • • m M

Note: Applicable pinout for 40·pin
dual-in-line package within parentheses

(33) (37)

FIGURE 1. NSC800 CPU Functional Block Diagram

9-12

TLiC/5171-9

8.0 Functional Description (Continued)

8.1 REGISTER ARRA V

The NSC800 register array is divided into two parts: the
dedicated registers and the working registers, as shown in
Figure 2.

Main 'teg. Set
(

Alternate Reg. Set
\(. \

Accumulator Flags Accumulator Flags

A F A'

B C B'

D E D'

H L H'

Interrupt I Memory
Vector I Refresh R

Index Register IX

Index Register IV

Stack Pointer SP

Program Counter PC

F'

C'

E'

L'

}
Working
Registers

Dedicated
Registers

FIGURE 2. NSC800 Register Array

8.2 DEDICATED REGISTERS

There are 6 dedicated registers in the NSC800: two 8·bit
and four 16·bit registers (see Figure 3).

Although their contents are under program control, the pro·
gram has no control over their operational functions, unlike
the CPU working registers. The function of each dedicated
register is described as follows:

CPU Dedicated Registers
Program Counter PC (16)
Stack Pointer SP (16)
Index Register IX (16)
Index Register IY (16)
Interrupt Vector Register I (8)
Memory Refresh Register R (8)

FIGURE 3. Dedicated Registers
8.2.1 Program Counter (PC)

The program counter contains the 16·bit address of the cur·
rent instruction being fetched from memory. The PC incre·
ments after its contents have been transferred to the ad·
dress lines. When a program jump occurs, the PC receives
the new address which overrides the incrementer.

There are many conditional and unconditional jumps, calls,
and return instructions in the NSC800's instruction reper·
toire that allow easy manipulation of this register in control·
ling the program execution (i.e. JP NZ nn, JR Zd2, CALL
NC, nn).

9-13

8.2.2 Stack Pointer (SP)

The 16·bit stack painter contains the address of the current
top of stack that is located in external system RAM. The
stack is organized in a last-in, first-out (UFO) structure. The
pointer decrements before data is pushed onto the stack,
and increments after data is popped from the stack.

Various operations store or retrieve, data on the stack. This,
along with the usage of subroutine calls and interrupts, al­
lows simple implementation of subroutine and interrupt
nesting as well as alleviating many problems of data manip­
ulation.

8.2.3 Index Register (IX and IV)

The NSC800 contains two index registers to hold indepen­
dent, 16-bit base addresses used in the indexed addressing
mode. In this mode, an index register, either IX or IY, con­
tains a base address of an area in memory making it a point­
er for data tables.

In all instructions employing indexed modes of operation,
another byte acts as a signed two's complement displace­
ment. This addressing mode enables easy data table ma­
nipulations.

8.2.4 Interrupt Register (I)

When the NSC800 provides a Mode 2 response to INTR,
the action taken is an indirect call to the memory location
containing the service routine address. The pointer to the
address of the service routine is formed by two bytes, the
high-byte is from the I Register and the low·byte is from the
interrupting peripheral. The peripheral always provides an
even address for the lower byte (LSB=O). When the proc­
essor receives the lower byte from the peripheral it concate­
nates it in the following manner:

I I Register I External byte

8 bits

i
The LSB of the external byte must be zero.

FIGURE 4a. Interrupt Register

The even memory location contains the low·order byte, the
next consecutive location contains the high-order byte of
the painter to the beginning address of the interrupt service
routine.
8.2.5 Refresh Register (R)

For systems that use dynamic memories rather than static
RAM's, the NSC800 provides an integral 8-bit memory re­
fresh counter. The contents of the register are incremented
after each opcode fetch and are sent out on the lower por­
tion of the address bus, along with a refresh control signal.
This provides a totally transparent refresh cycle and does
not slow down CPU operation.

The program can read and write to the R register, although
this is usually done only for test purposes.

z en o
Q)
o o

8.0 Functional Description (Continued)

B.3 CPU WORKING AND ALTERNATE REGISTER SETS

B.3.1 CPU Working Registers

The portion of the register array shown in Figure 4b repre­
sents the CPU working registers. These sixteen 8-bit regis­
ters are general-purpose registers because they perform a
multitude of functions, depending on the instruction being
executed. They are grouped together also due to the types
of instructions that use them, particularly alternate set oper­
ations.

The F (flag) register is a special-purpose register because
its contents are more a result of machine status rather than
program data. The F register is included because of its inter­
action with the A register, and its manipulations in the alter­
nate register set operations.

B.3.2 Alternate Registers

The NSC800 registers designated as CPU working registers
have one common feature: the existence of a duplicate reg­
ister in an alternate register set. This architectural concept
simplifies programming during operations such as interrupt
response, when the machine status represented by the con­
tents of the registers must be saved.

The alternate register concept makes one set of registers
available to the programmer at any given time. Two instruc­
tions (EX AF, A'F' and EXX), exchange the current working
set of registers with their alternate set. One exchange be­
tween the A and F registers and their respective duplicates
(A' and F') saves the primary status information contained in
the accumulator and the flag register. The second exchange
instruction performs the exchange between the remaining
registers, B, C, D, E, H, and L, and their respective alter­
nates B', C', D', E', H', and L'. This essentially saves the
contents of the original complement of registers while pro­
viding the programmer with a usable alternate set.

CPU Main Working Register Set
Accumulator A (8) Flags F (8)
Register B (8) Register C (8)
Register D (8) Register E (8)
Register H (8) Register L (8)

CPU Alternate Working Register Set
Accumulator A' (8) Flags F' (8)
Register B' (8) Register C' (8)

Register D' (8) Register E' (8)
Register H' (8) Register L' (8)

FIGURE 4b. CPU Working and Alternate Registers

9-14

8.4 REGISTER FUNCTIONS

8.4.1 Accumulator (A Register)

The A register serves as a source or destination register for
data manipulation instructions. In addition, it serves as the
accumulator for the results of 8-bit arithmetic and logic op­
erations.

The A register also has a special status in some types of
operations; that is, certain addressing modes are reserved
for the A register only, although the function is available for
all the other registers. For example, any register can be
loaded by immediate, register indirect, or indexed address­
ing modes. The A register, however, can also be loaded via
an additional register indirect addressing.

Another special feature of the A register is that it produces
more efficient memory coding than equivalent instruction
functions directed to other registers. Any register can be
rotated; however, while it requires a two-byte instruction to
normally rotate any register, a single-byte instruction is
available for rotating the contents of the accumulator (A reg­
ister).

B.4.2 F Register - Flags

The NSC800 flag register consists of six status bits that
contain information regarding the results of previous CPU
operations. The register can be read by pushing the con­
tents onto the stack and then reading it, however, it cannot
be written to. It is classified as a register because of its
affiliation with the accumulator and the existence of a dupli­
cate register for use in exchange instructions with the accu­
mulator.

Of the six flags shown in Figure 5, only four can be directly
tested by the programmer via conditional jump, call, and
return instructions. They are the Sign (S), Zero (Z), Parity/
Overflow (PlY), and Carry (C) flags. The Half Carry (H) and
Add/Subtract (N) flags are used for internal operations re­
lated to BCD arithmetic.

BIT7 BIT 0

1 S I z I" H I" P/V 1 N 1 C 1

I I LCARRY

L--ADO/SUBTRACT
"-----PARITY OVERFLOW

L..-------HALF CARRY
L..----------ZERO

"-------------SIGN

TLIC/5171-23

FIGURE 5. Flag Register

8.0 Functional Description (Continued)

8.4.3 Carry (C)

A carry from the highest order bit of the accumulator during
an add instruction. or a borrow generated during a subtrac­
tion instruction sets the carry flag. Specific shift and rotate
instructions also affect this bit.

Two specific instructions in the NSC800 instruction reper­
toire set (SCF) or complement (CCF) the carry flag.

Other operations that affect the C flag are as follows:

• Adds
• Subtracts

• Logic Operations (always resets C flag)

• Rotate Accumulator

• Rotate and Shifts

• Decimal Adjust

• Negation of Accumulator

Other operations do not affect the C flag.

8.4.4 Adds/Subtract (N)

This flag is used in conjunction with the H flag to ensure that
the proper BCD correction algorithm is used during the deci­
mal adjust instruction (DAA). The correction algorithm de­
pends on whether an add or subtract was previously done
with BCD operands.

The operations that set the N flag are:

• Subtractions

• Decrements (8-bit)

• Complementing of the Accumulator

• Block I/O

• Block Searches

• Negation of the Accumulator

The operations that reset the N flag are:

• Adds

• Increments

• Logic Operations

• Rotates

• Set and Complement Carry

• Input Register Indirect
0 Block Transfers

• Load of the I or R Registers

• Bit Tests

Other operations do not affect the N flag.

8.4.5 Parity/Overflow (P/V)

The Parity/Overflow flag is a dual-purpose flag that indi­
cates results of logic and arithmetic operations. In logic op­
erations, the P IV flag indicates the parity of the result; the
flag is set (high) if the result is even, reset (low) if the result
is odd. In arithmetic operations, it represents an overflow
condition when the result, interpreted as signed two's com­
plement arithmetic, is out of range for the eight-bit accumu­
lator (Le. -128 to + 127).

9-15

The following operations affect the PIV flag according to
the parity of the result of the operation:

Logic Operations

• Rotate and Shift
Rotate Digits

Decimal Adjust

Input Register Indirect

The following operations affect the PIV flag according to
the overflow result of the operation.

o Adds (16 bit with carry, 8-bit with/without carry)

• Subtracts (16 bit with carry, 8-bit with/without carry)

• Increments and Decrements

• Negation of Accumulator

The PIV flag has no significance immediately after the fol­
lowing operations.

Block I/O

o Bit Tests

In block transfers and compares, the PIV flag indicates the
status of the BC register, always ending in the reset state
after an auto repeat of a block move. Other operations do
not affect the PIV flag.

8.4.6 Half Carry (H)

This flag indicates a BCD carry, or borrow, result from the
low-order four bits of operation. It can be used to correct the
results of a previously packed decimal add, or subtract, op­
eration by use of the Decimal Adjust Instruction (DAA).

The following operations affect the H flag:

• Adds (8-bit)

Subtracts (8-bit)

o Increments and Decrements

Decimal Adjust

o Negation of Accumulator

o Always Set by: Logic AND

Complement Accumulator

Bit Testing

o Always Reset By: Logic OR's and XOR's

Rotates and Shifts

Set Carry

Input Register Indirect

Block Transfers

Loads of I and R Registers

The H flag has no significance immediately after the follow­
ing operations.

o 16-bit Adds with/without carry

o 16-Bit Subtracts with carry

o Complement of the carry

o Block I/O

o Block Searches

Other operations do not affect the H flag.

z en o
Q)
o o

C) r---~
C)
co o en
z

8.0 Functional Description (Continued)

8.4.7 Zero Flag (Z)

Loading a zero in the accumulator or when a zero results
from an operation sets the zero flag.

The following operations affect the zero flag.

• Adds (16·bit with carry, 8·bit with/without carry)

• Subtracts (16·bit with carry, 8-bit with/without carry)

• Logic Operations

• Increments and Decrements

• Rotate and Shifts

• Rotate Digits

• Decimal Adjust

• Input Register Indirect

• Block I/O (always set after auto repeat block I/O)

• Block Searches

• Load of I and R Registers

• Bit Tests

• Negation of Accumulator

The Z flag has no signficance immediately after the follow­
ing operations:

• Block Transfers

Other operations do not affect the zero flag.

8.4.8 Sign Flag (S)

The sign flag stores the state of bit 7 (the most-signifi­
cant bit and sign bit) of the accumulator following an arith­
metic operation. This flag is of use when dealing with signed
numbers.

The sign flag is affected by the following operation accord­
ing to the result:

• Adds (16-bit with carry, 8-bit with/without carry)

• Subtracts (16-bit with carry, 8-bit with/without carry)

• Logic Operations

• Increments and Decrements

• Rotate and Shifts

• Rotate Digits

• Decimal Adjust
• Input Register Indirect

• Block Search

• Load of I and R Registers

• Negation of Accumulator

The S flag has no significance immediately after the follow­
ing operations:

• Block I/O

• Block Transfers

• Bit Tests
Other operations do not affect the sign bit.

9-16

8.4.9 Additional General-Purpose Registers

The other general-purpose registers are the B, C, D, E, H
and L registers and their alternate register set, B', C', D', E',
H' and L'. The general-purpose registers can be used inter­
changeably.

In addition, the Band C registers perform special functions
in the NSC800 expanded I/O capabilities, particularly block
I/O operations. In these functions, the C register can ad­
dress I/O ports; the B register provides a counter function
when used in the register indirect address mode.

When used with the special condition jump instruction
(DJNZ) the B register again provides the counter function.

8.4.10 Alternate Configurations

The six 8-bit general purpose registers (B,C,D,E,H,L) will
combine to form three l6-bit registers. This occurs by con­
catenating the Band C registers to form the BC register, the
D and E registers form the DE register, and the Hand L
registers form the HL register.

Having these l6-bit registers allows 16·bit data handling,
thereby expanding the number of l6-bit registers available
for memory addressing modes. The HL register typically
provides the pointer address for use in register indirect ad­
dressing of the memory.

The DE register provides a second memory pointer register
for the NSC800's powerful block transfer operations. The
BC register also provides an assist to the block transfer
operations by acting as a byte-counter for these operations.

8.5 ARITHMETIC-LOGIC UNIT (ALU)

The arithmetic, logic and rotate instructions are performed
by the ALU. The ALU internally communicates with the reg­
isters and data buffer on the 8-bit internal data bus.

8.6 INSTRUCTION REGISTER AND DECODER

During an opcode fetch, the first byte of an instruction is
transferred from the data buffer (i.e. its on the internal data
bus) to the instruction register. The instruction register feeds
the instruction decoder, which gated by timing signals, gen·
erates the control signals that read or write data from or to
the registers, control the ALU and provide all required exter­
nal control signals.

9.0 Timing and Control
9.1 INTERNAL CLOCK GENERATOR

An inverter oscillator contained on the NSC800 chip pro·
vides all necessary timing signals. The chip operation fre­
quency is equal to one half of the frequency of this oscilla­
tor.

The oscillator frequency can be controlled by one of the
following methods:

1. leaving the XOUT pin unterminated and driving the XIN
pin with an externally generated clock as shown in Figure
6. When driving XIN with a square wave, the minimum
duty cycle is 30% high.

f,.
EXTERNAL

CLOCK
ClK fIX'N)

2

TLlG/5171-13

FIGURE 6. Use of External Clock

2. Connecting a crystal with the proper biasing network be­
tween XIN and XOUT as shown in Figure 7. Recommend­
ed crystal is a parallel resonance AT cut crystal.
Note 1: If the crystal frequency is 2 MHz or less a series resistor, Rs.

(470n to 1500n) should be connected between XOUT and R.
XTAL and Cz. Additionally. the capacitance of Cl and C2 should
be increased by 2 to 3 times the recommended value.

NSC800 (PIN 9)
CLOCK OUT

+5V

5K

1" Z1pF l' Z1pF

1"

ClK

XIN XOUT

RS
NOTE 1 .-J\N'Ir-"

f(XTAl)
2

FIGURE 7. Use Of Crystal

2 MHz < f(XTAL)
2

R~IM!l

Cl ~20 pF

C2~34 pF

(Recommended)

Tl/C/5171-14

The CPU has a minimum clock frequency input (@ XIN) of
300 kHz, which results in 150 kHz system clock speed. All
registers internal to the chip are static, however there is
dynamic logic which limits the minimum clock speed. The
input clock can be stopped without fear of losing any data or
damaging the part. You stop it in the phase of the clock that
has XIN low and ClK OUT high. When restarting the CPU,
precautions must be taken so that the input clock meets
these minimum specification. Once started, the CPU will
continue operation from the same location at which it was
stopped. During DC operation of the CPU, typical current
drain will be 2 mA. This current drain can be reduced by
placing the CPU in a wait state during an opcode fetch cycle
then stopping the clock. For clock stop circuit, see Figure 8.

TO NSC800
X'N

TLlC/5171-36

FIGURE 8. Clock Stop Circuit

9·17

z en o
CCI o
o

•

g
o en
z

9.0 Timing and Control (Continued)

9.2 CPU TIMING

The NSC800 uses a multiplexed bus for data and address·
es. The 16·bit address bus is divided into a high·order 8·bit
address bus that handles bits 8-15 of the address, and a
low·order 8·bit multiplexed address/data bus that handles
bits 0-7 of the address and bits 0-7 of the data. Strobe
outputs from the NSC800 (ALE, RD and WR) indicate when
a valid address or data is present on the bus. 10/M indio
cates whether the ensuing cycle accesses memory or I/O.

During an input or output instruction, the CPU duplicates the
lower half of the address [AD(0-7)] onto the upper address
bus [A(8-15)1. The eight bits of address will stay on A(8-
15) for the entire machine cycle and can be used for chip
selection directly.

Figure 9 illustrates the timing relationship for opcode fetch
cycles with and without a wait state.

TLlC/5171-15

FIGURE 9a. Opcode Fetch Cycles without WAIT States

TL/C/5171-16

FIGURE 9b. Opcode Fetch Cycles with WAIT States

9·18

9.0 Timing and Control (Continued)

During the opcode fetch, the CPU places the contents of
the PC on the address bus. The falling edge of ALE indi­
cates a valid address on the AD(O-7) lines. The WAIT input
is sampled during t2 and if active causes the NSC800 to
insert a wait state (tw). WAIT is sampled again during tw so

eLK

ALE

AD(O-7)

iiii

ADI0-7)

A(B-15)
101M. so. S1

that when it goes inactive, the CPU continues its opcode
fetch by latching in the data on the rising edge of RD from
the AD(O-7) lines. During t3, RFSH goes active and AD(O-
7) has the dynamic RAM refresh address from register R
and A(8-15) the interrupt vector from register I.

Tl/C/S171-17

FIGURE 10a. Memory Read/Write Cycles without WAIT States

TL/C/S171-18

FIGURE 10b. Memory Read and Write with WAIT States

9-19

z
tJ)
o
CI)
o o

•

g
u
U)
z

9.0 Timing and Control (Continued)

Figure 10 shows the timing for memory read (other than
opcode fetchs) and write cycles with and without a wait

_ t
state. The RD stobe is widened by "2 (half the machine

state) for memory reads so that the actual latching of the
input data occurs later.

Figure t 1 shows the timing for input and output cycles with
and without wait states. The CPU automatically inserts one
wait state into each I/O instruction to allow sufficient time
for an 110 port to decode the address.

TLlC/5171-19

FIGURE 11a.lnput and Output Cycles without WAIT States

TL/C/5171-20

'WAIT state automatically inserted during 10 operation.

FIGURE 11b.lnput and Output Cycles with WAIT States

9-20

.---~z

(I)
o
01)
o o

9.0 Timing and Control (Continued)

9.3 INITIALIZATION

RESET IN initializes the NSC800; RESET OUT initializes the
peripheral components. The Schmitt trigger at the RESET
jjiJ input facilitates using an R-C network reset scheme dur­
ing power up (see Figure 12).

To ensure proper power-up conditions for the NSC800, the
following power-up and initialization procedure is recom­
mended:

1. Apply power (Vee and GND) and set RESET IN active
(low). Allow sufficient time (approximately 30 ms if a crys­
tal is used) for the oscillator and internal clocks to stabi­
lize. RESET IN must remain low for at least 3t state (ClK)
times. RESET OUT goes high as soon as the active
RESET IN signal is clocked into the first flip-flop after the
on-chip Schmitt trigger. RESET OUT signal is available to
reset the peripherals.

2. Set RESET IN high. RESET OUT then goes low as the
inactive RESET IN signal is clocked into the first flip-flop
after the on-chip Schmitt trigger. Following this the CPU
initiates the first opcode fetch cycle.

Note: The NSC800 initialization includes: Clear PC to
X'OOOO (the first opcode fetch, therefore, is from memory
location X'OOOO). Clear registers I (Interrupt Vector Base)
and R (Refresh Counter) to X'OO. Clear interrupt control reg­
ister bits lEA, IEB and IEC. The interrupt control bit lEI is set
to 1 to maintain INS8080AlZ80A compatibility (see INTER­
RUPTS for more details). The CPU disables maskable inter­
rupts and enters INTR Mode O. While RESET IN is active
(low), the A(8-15) and AD(0-7) lines go to high impedance
(TRI-STATE) and all CPU strobes go to the inactive state
(see Figure 13).

POWER-ON RESET ACTIVE

RESET OUT

RESET (INTERNAL) __ +..1

R
10k

Vee

Vee

NSCBOO

RESET IN RESET OUT

GND

INDICATES WHEN CPU
IS BEING RESET

TLIC15171-21

FIGURE 12. Power-On Reset

9.4 POWER-SAVE FEATURE

The NSC800 provides a unique power-save mode by the
means of the PS pin. PS input is sampled at the last t state
of the last M cycle of an instruction. After recognizing an
active (low) level on PS, The NSC800 stops its internal
clocks, thereby reducing its power dissipation to one hal'. of
operating power, yet maintaining all register values and in­

ternal control status. The NSC800 keeps its oscillator run­
ning, and makes the ClK signal available to the syst~m.
When in power-save the ALE strobe will be stopped high
and the address lines [AD(0-7), A(8-15)) will indicate the
next machine address. When PS returns high, the opcode
fetch (or M1 cycle) of the CPU begins in a normal manner.
Note this M1 cycle could also be an interrupt acknowledge
cycle if the NSC800 was interrupted simultaneously with PS
(i.e. PS has priority over a simultaneously occurring inter­
rupt). However, interrupts are not accepted during power
save. Figure 14 illustrates the power save timing.

MANUAL RESET ACTIVE FiRST ADDRESS

CPU OUTPUT "'ZW2~t7ll~m~---+---.:~;::==~:~====i--i---tJr=== SIGNALS Z

ALE I I

I 1----t----k~~[:~!~;:===~--r_--_tI(OP!C~-~OO~OOE:: ADRR~ij~ l/ffmununnJ:/H1 I' -
RISIN~R~lo~R~I;~ -I

TLlC15171-74

FIGURE 13. NSC800 Signals During Power-On and Manual Reset

9-21

c c
co

~
Z

9.0 Timing and Control (Continued)

AO(O-7)----+-----+'"\ ~--,-+----_+---+_+----_1:__----I_---
so. sf(~o)~ ____ -;-____ -T ... ,---+----_+----f:-+===~ I_----I_---

ALE

TL/C/5171-2S

FIGURE 14. NSC800 Power-Save

elK

AD(O-7)--+----.... r-----,..."
~-.rn .. -----RD, WR_-+ _____ r-____ ,...J

ALE

50,51

TL/C/5171-22

'SO, SI during BREO will indicate same machine cycle as during the cycle when Bi'fEQ was accepted.

tz = time states during which bus and control signals are in high impedance mode.

FIGURE 15. Bus Acknowledge Cycle

In the event BREa is asserted (low) at the end of an instruc­
tion cycle and PS is active simultaneously, the following oc­
curs:

1. The NSC800 will go into BACK cycle.

2. Upon completion of BACK cycle if PS is still active the
CPU will go into power-save mode.

9.5 BUS ACCESS CONTROL

Figure 15 illustrates bus access control in the NSC800. The
external device controller produces an active BREa signal
that requests the bus. When the CPU responds with BACK
then the bus and related control strobes go to high imped­
ance (TRI-STATE) and the RFSH signal remains high. It
should be noted that (1) BREa is sampled at the last t state
of any M machine cycle only. (2) The NSC800 will not ac­
knowledge any interrupt/restart requests, and will not pe­
form any dynamic RAM refresh functions until after BREa
input signal is inactive high. (3) BREa Signal has priority
over all interrupt request signals, should BREa and interrupt
request become active simultaneously. Therefore, interrupts
latched at the end of the instruction cycle will be serviced
after a simultaneously occurring BREa. NMI is latched dur­
ing an active BREa.

9-22

9.6 INTERRUPT CONTROL

The NSC800 has five interrupt/restart inputs, four are mask­
able (RSTA, RSTB, RSTC, and INTR) and one is non-mask­
able (NMI). NMI has the highest priority of all interrupts; the
user cannot disable NMI. After recognizing an active input
on NMI, the CPU stops before the next instruction, pushes
the PC onto the stack, and jumps to address X'0066, where
the user's interrupt service routine is located (I.e., restart to
memory location X'0066). NMI is intended for interrupts re­
quiring immediate attention, such as power-down, control
panel, etc.

RSTA, RSTB and RSTC are restart inputs, which, if enabled,
execute a restart to memory location X'003C, X'0034, and
X'002C, respectively. Note that the CPU response to the
NMI and RST (7\, S, C) request input is basically identical,
except for the restored memory location. Unlike NMI, how­
ever, restart request inputs must be enabled.

Figure 16 illustrates NMI and RST interrupt machine cycles.
Ml cycle will be a dummy opcode fetch cycle followed by
M2 and M3 which are stack push operations. The following
instruction then starts from the interrupts restart location.
Nole: Ali does not go low during this dummy opcode fetch. A unique indica-

tion of INTA can be decoded using 2 ALEs and RD.

9.0 Timing and Control (Continued)

LAST M CYCLE OF INSTRUCTION M1------------.j

~'tr~~i-I--Il 12 13 14 16-

CLK --ururururururu--
NMiDR ---, I r--- ------

RSTA,ii,c -----'-1-'-------------
ALE

---4---.j...t

------ ------ ------ ------ --~~ OF THE -------. -------. -------. --------1--- PROGRAM
COUNTER
ONTO

'-+----+----4-- ~~~I~~ACK

AD(O-7) ___ +-___ +-.tX\,;,A;;..D(:;.O_-7;.:.)-r~------I-(AD(D-7))------- -------

A(8-1S) _____ I-__ +X"-_~I_--_+"IX---!_---I----_r,-1-.

WAIT ------------. ------r-~-· ------ ------ ------~OOE1)----- ____________ ~ ~ ____________________ _

/

-
IOIM,SO,SI ___ -+ ___ -!II'IX .. ___ r-__ ..;,IO;,:./,;;;M_=.:,O,:.:S.:.O_=.;,;I,:,:S;.,1 =;-:..1 ---+-----4)(,'--

I I
TLiC/5171-24

Note ,: This is the only machine cycle that does not have an RD, WR, or INTA strobe but will accept a wait strobe.

FIGURE 16. Non-Maskable and Restart Interrupt Machine Cycle

The NSC800 also provides one more general purpose inter­
rupt request input, INTR. When enabled, the CPU responds
to INTR in one of the three modes defined by instruction
IMO, IMI, and 1M2 for modes 0, I, and 2, respectively. Fol­
lowing reset, the CPU automatically enables mode O.

Interrupt (INTR) Mode 0: The CPU responds to an interrupt
request by providing an INTA (interrupt acknowledge)
strobe, which can be used to gate an instruction from a
peripheral onto the data bus. The CPU inserts two wait
states during the first INTA cycle to allow the interrupting
device (or its controller) ample time to gate the instruction
and determine external priorities (Figure 18). This can be
any instruction from one to four bytes. The most popular
instruction is one-byte call (restart instruction) or a three­
byte call (CALL NN instruction). If it is a three-byte call, the
CPU issues a total of three INTA strobes. The last two
(which do not include wait states) read NN.
Nole: If the instruction stored in the ICU doesn't require the PC to be

pushed onto the stack (eq. JP nn), then the PC will not be pushed.

Interrupt (INTR) Mode 1: Similar to restart interrupts ex­
cept the restart location is X'0038 (Figure 18).

Interrupt (INTR) Mode 2: With this mode, the programmer
maintains a table that contains the 16-bit starting address of
every interrupt service routine. This table can be located
anywhere in memory. When the CPU accepts a Mode 2
interrupt (Figure 17), it forms a 16-bit pOinter to obtain the
desired interrupt service routine starting address from the
table. The upper 8 bits of this pointer are from the contents
of the I register. The lower 8 bits of the pointer are supplied
by the interrupting device with the LSB forced to zero. The
programmer must load the interrupt vector prior to the inter­
rupt occurring. The CPU uses the pOinter to get the two
adjacent bytes from the interrupt service routine starting ad­
dress table to complete 16-bit service routine starting ad-

9-23

dress. The first byte of each entry in the table is the least
significant (low-order) portion of the address. The program­
mer must obviously fill this table with the desired addresses
before any interrupts are to be accepted.

Note that the programmer can change this table at any time
to allow peripherals to be serviced by different service rou­
tines. Once the interrupting device supplies the lower por­
tion of the pointer, the CPU automatically pushes the pro­
gram counter onto the stack, obtains the starting address
from the table and does a jump to this address.

The interrupts have fixed priorities built into the NSC800 as:
NMI 0066 (Highest Priority)
RSTA 003C
RSTB 0034
RSTC 002C

0038 (Lowest Priority)

Interrupt Enable, Interrupt Disable. The NSC800 has two
types of interrupt inputs, a non-maskable interrupt and four
software maskable interrupts. The non-maskable interrupt
(NMI) cannot be disabled by the programmer and will be
accepted whenever a peripheral device requests an inter­
rupt. The NMI is usually reserved for important functions
that must be serviced when they occur, such as imminent
power failure. The programmer can selectively enable or
disable maskable interrupts (INT, RSTA, RSTB and RSTC).
This selectivity allows the programmer to disable the mask­
able interrupts during periods when timing constraints don't
allow program interruption.

There are two interrupt enable flip-flops (IFF, and IFF2) on
the NSC800. Two instructions control these flip-flops. En­
able Interrupt (EI) and Disable Interrupt (01). The state of
IFF, determines the enabling or disabling of the maskable
interrupts, while IFF2 is used as a temporary storage loca­
tion for the state of IFF,.

z
en o co o o

o o
CO
(.)
tn
Z

9.0 Timing and Control (Continued)

A reset to the CPU will force both IFF, and IFF2 to the reset
state disabling maskable interrupts. They can be enabled by
an EI instruction at any time by the programmer. When an EI
instruction is executed, any pending interrupt requests will
not be accepted until after the instruction following EI has
been executed. This single instruction delay is necessary in
situations where the following instruction is a return instruc­
tion and interrupts must not be allowed until the return has
been completed. The EI instruction sets both IFF, and IFF2

SUPPLIED BY I REGISTER

15 8 7

to the enable state. When the CPU accepts an interrupt,
both IFF, and IFF2 are automatically reset, inhibiting further
interrupts until the programmer wishes to issue a new EI
instruction. Note that for all the previous cases, IFF, and
IFF2 are always equal.

The function of IFF2 is to retain the status of IFF, when a
non-maskable interrupt occurs. When a non-maskable inter­
rupt is accepted, IFF, is reset to prevent further interrupts
until reenabled by the programmer. Thus, after a non-mask­
able interrupt has been accepted, maskable interrupts are
disabled but the previous state of IFF, is saved by IFF2

TL/C/5171-27

FIGURE 17. Interrupt Mode 2

9-24

elK

TIlT

ALE

ADIO-7}

AIB-1S)

<0

'"
INTA

U1

RFSH

WAIT

101M. SO. 51

Rli

I

'tw is the CPU generated WAIT state in response to an interrupt request.

Note 1: t5 wilt only occur in mode 1 and mode 2. During t5 the stack pointer is decremented.

Note 2: A jump to the appropriate address occurs here in mode 1 and mode 2. The CPU continues gathering data from the interrupting peripheral in mode 0 for a total of 2-4
machine cycles. In mode 0 cycles M2-M4 have only 1 wait state.

FIGURE 18. Interrupt Acknowledge Machine Cycle

NOTE 2

co o
::!
3
::J

CC
$I)
::J
Q.

C')
o
::J -~ o
"0
o :a
S'
c
CD
.e

TL/C/5171-25

OOSOSN

0
0
CO 9.0 Timing and Control (Continued) 0
(J) so that the complete state of the CPU just prior to the non- Operation IFF1 IFF2 Comment Z

maskable interrupt may be restored. The method of restor- Initialize 0 0 Interrupt Disabled
ing the status of IFF1 is through the execution of a Return • Non-Maskable Interrupt (RETN) instruction. Since this in-
struction indicates that the non-maskable interrupt service •
routine is completed, the contents of IFF2 are now copied •
back into IFF1, so that the status of IFF1 just prior to the EI Interrupt Enabled after
acceptance of the non-maskable interrupt will be automati- • next instruction
cally restored. •
Figure 19 depicts the status of the flip flops during a sample •
series of interrupt instructions. INTR 0 0 Interrupt Disable and INTR
Interrupt Control Register. The interrupt control register Being Serviced
(JCR) is a 4-bit, write only register that provides the program- •
mer with a second level of maskable control over the four •
maskable interrupt inputs. •
The ICR is internal to the NSCBOO CPU, but is addressed EI Interrupt Enabled after
through the I/O space at I/O address port X'BB. Each bit in next instruction
the register controls a mask bit dedicated to each maskable

RET Interrupt Enabled
interrupt, RSTA, RSTB, RSTC and INTR. For an interrupt
request to be accepted on any of these inputs, the corre- •
sponding mask bit in the ICR must be set (= 1) and IFF1 •
and IFF2 must be set. This provides the programmer with •
control over individual interrupt inputs rather than just a sys- NMI 0 Interrupt Disabled
tern wide enable or disable. •

•
•

lEA lED lEG lEI RETN Interrupt Enabled

•
TLlC/5171-26

INTR 0 0 Interrupt Disabled
Bit Name Function •
0 lEI Interrupt Enable for INTR •

IEC Interrupt Enable for RSTC •
2 IEB Interrupt Enable for RSTB NMI 0 0 Interrupt Disabled and NMI
3 lEA Interrupt Enable for RSTA • Being Serviced

For example: In order to enable RSTB, CPU interrupts must
be enabled and IEB must be set.

•
•

At reset, lEI bit is set and other mask bits lEA, IEB, IEC are
RETN 0 0 Interrupt Disabled and INTR

cleared. This maintains the software compatibility between • Being Serviced

NSCBOO and ZBOA. •
Execution of an I/O block move instruction will not affect •
the state of the interrupt control bits. The only two instruc- EI Interrupt Enabled after

tions that will modify this write only register are OUT (C), r next instruction
and OUT (N), A. RET Interrupt Enabled

•
•
•

FIGURE 19.IFF1 and IFF2 States Immediately after the
Operation has been Completed

9-26

.--,z
NSC800 SOFTWARE

10.0 Introduction
This chapter provides the reader with a detailed description
of the NSC800 software. Each NSC800 instruction is de­
scribed in terms of opcode, function, flags affected, timing,
and addressing mode.

11.0 Addressing Modes
The following sections describe the addressing modes sup­
ported by the NSC800. Note that particular addressing
modes are often restricted to certain types of instructions.
Examples of instructions used in the particular addressing
modes follow each mode description.

The 10 addressing modes and 158 instructions provide a
flexible and powerful instruction set.

11.1 REGISTER
The most basic addressing mode is that which addresses
data in the various CPU registers. In these cases, bits in the
opcode select specific registers that are to be addressed by
the instruction.

Example:

Instruction: Load register B from register C

Mnemonic: LD B,C

Opcode:

10111 0,0,0 10,0,1 I t ·a..----Selects register C
L---------Selects register B

L.------------Deflnesopcode
TL/C/5171-50

In this instruction, both the Band C registers are addressed
by opcode bits.

11.2 IMPLIED
The implied addressing mode is an extension to the register
addressing mode. In this mode, a specific register, the accu­
mulator, is used in the execution of the instruction. In partic­
ular, arithmetic operations employ implied addressing, since
the A register is assumed to be the destination register for
the result without being specifically referenced in the op­
code.

Example:

Instruction: Subtract the contents of register D from the
Accumulator (A register)

Mnemonic: SUB D

Opcode:

111°1°111°1°111°1 t t ... ----Selects register D
L.---------Oefines opcode

TUC/5171-51

In this instruction, the D register is addressed with register
addressing, while the use of the A register is implied by the
opcode.

9-27

11.3 IMMEDIATE

The most straightforward way of introducing data to the
CPU registers is via immediate addressing, where the data
is contained in an additional byte of multi-byte instructions.

Example:

Instruction: Load the E register with the constant value

X'7C.

Mnemonic: LD

Opcode:

E,X'7C

I 0 , 0 I 0 , 1 , tit , t , 0 l- First Byte

+ L.--------Selects register E

I 0 , 1 , 1 , 1 , t , t , 0 , 0 l- Second Byte

..... -------X'7C
TL/C/5171-52

In this instruction, the E register is addressed with register
addressing, while the constant X'7C is immediate data in the
second byte of the instruction.

11.4 IMMEDIATE EXTENDED

As immediate addressing allows 8 bits of data to be sup­
plied by the operand, immediate extended addressing al­
lows 16 bits of data to be supplied by the operand. These
are in two additional bytes of the instruction.

Example:

Instruction: Load the 16-bit IX register with the constant

value X' ABCD.

Mnemonic: LD IX,X'ABCD

Opcode:

11 I t I 0 I tIt It, 0 I 1 l-Defines opcode f (First Byte)
L.--------Selects I X register

I 0 I 0 It, 0 I 0 I 0, 0, 1 l- Defines opcode
(Second Byte)

I t I 1 I 0 I 0 I tIt I 0 I t l- Constant CD
(Third Byte)

It, 0 I 1 I 0 , 1 I 0 I 1 I t l- Constant AB
(Fourth Byte)

TL/C/5171-53

In this instruction, register addressing selects the IX regis­
ter, while the 16-bit quanity X'ABCD is immediate data sup­
plied as immediate extended format.

en o
CD
Q
Q

•

o
o
CIO o
CJ)
z

11.0 Addressing Modes (Continued)

11.5 DIRECT ADDRESSING

Direct addressing is the most straightforward way of ad·
dressing supplies a location in the memory space. Direct
addressing, 16·bits of memory address information in two
bytes of data as part of the instruction. The memory address
could be either data, source of destination, or a location for
program execution, as in program control instructions.

Example:

Instruction: Jump to location X'0377

Mnemonic: JP X'0377

Opcode:

11 , 1 , 0 , 0 , 0 , 0 , 1 , 1 -Defines jump opcode

:=10=, 1=, =1 :!::' =1 =' =0=, =1 =,=1=,=1::;1] -Constant X'0377

10,0,0,0,0,0,1,11

This instruction loads the Program Counter (PC) is loaded
with the constant in the second and third bytes of the in·
struction. The program counter contents are transferred via
direct addressing.

11.6 REGISTER INDIRECT

Next to direct addressing, register indirect addressing pro·
vides the second most straightforward means of addressing
memory. In register indirect addressing, a specified register
pair contains the address of the desired memory location.
The instruction references the register pair and the register
contents define the memory location of the operand.

Example:

Instruction: Add the contents of memory location X'0254 to
the A register. The HL register contains X'0254.

Mnemonic: ADD A,(HL)

Opcode

11,0,0,0,0,1,1,01

This instruction uses implied addressing of the A and HL
registers and register indirect addressing to access the data
pointed to by the HL register.

11.7 INDEXED

The most flexible mode of memory addressing is the in·
dexed mode. This is similar to the register indirect mode of
addressing because one of the two index registers (IX or IY)
contains the base memory address. In addition, a byte of
data included in the instruction acts as a displacement to
the address in the index register.

9·28

Indexed addressing is particularly useful in dealing with lists
of data.

Example:

Instruction: Increment the data in memory location X'1020.
The IY register contains X'1000.

Mnemonic: INC (IY + X'20)

Opcode:

r--------Selects I Y register

Defines increment
opcode

I 0 I 0 I 1 I 0 I 0 I 0 I 0 I 0 I- Displacement to I Y
index register
(Th Ird Byte)

TLlC/5171-54

The indexed addressing mode uses the contents of index
registers IX or IY along with the displacement to form a
pointer to memory.

11.8 RELATIVE

Certain instructions allow memory locations to be ad·
dressed as a position relative to the PC register. These in·
structions allow jumps to memory locations which are off·
sets around the program counter. The offset, together with
the current program location, is determined through a dis·
placement byte included in the instruction. The formation of
this displacement byte is explained more fully in the "In·
structions Set" section.

Example:

Instruction: Jump to a memory location 7 bytes beyond the
current location.

Mnemonic: JR

Opcode:

$+7

I 0 0 0 1 1 0 0 0 I-Defines relative jump
L~' __ ~'~'~~' __ ~' __ '~~'~. opcode

I 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 I-DiSPlacement to be
applied to the PC

The program will continue at a location seven locations past
the current PC.

11.0 Addressing Modes (Continued)

11.9 MODIFIED PAGE ZERO

A subset of NSCSOO instructions (the Restart instructions)
provides a code·efficient single-byte instruction that allows
CALLs to be performed to anyone of eight dedicated loca­
tions in page zero (locations X'OOOO to X'OOFF). Normally, a
CALL is a 3-byte instruction employing direct memory ad­
dressing.

Example:

Instruction: Perform a restart call to location X'002S.

Mnemonic: RST X'2S

Opcode:

I Defines restart operation

I I

11,111,0,111,1,11
I I

t L..------Selects one of eight
resta rt locations

TLlC/5171-55

I p I OOH I OSH I 10H I 1SH I 20H I 2SH I 30H I 3SH I
I t I 000 I 001 I 010 I 011 I 100 I 101 I 110 I 111 I

9-29

Program execution continues at location X'002S after exe­
cution of a single-byte call employing modified page zero
addressing.

11.10 BIT

The NSCSOO allows setting, resetting, and testing of individ­
ual bits in registers and memory data bytes.

Example:

Operation: Set bit 2 in the L register

Mnemonic: SET 2,L

Opcode:

11 I 1 I 0 J 0 I 1 J 0 I 1 I 1 I- Defines set bit
opcode

11,110,1,011,0,11

t t Selects L register
Selects bit 2 of selected byte

TLlC/5171-56

Bit addressing allows the selection of bit 2 in the L register
selected by register addressing.

z en o
CD o o

o o
CO
(.)
en
z

12.0 Instruction Set
This section details the entire NSC800 instruction set in
terms of

The instructions are grouped in order under the following
functional headings:

• Opcode • 8-Bit Loads

• Instruction • 16-Bit Loads

• Function • 8-Bit Arithmetic

• Timing • 16-Bit Arithmetic

• Addressing Mode • Bit Set, Reset, and Test

• Rotate and Shift

• Exchanges

• Memory Block Moves and Searches

• Input/Output

• CPU Control

• Program Control

12.1 Instruction Set Index
Alphabetical

Assembly
Mnemonic

ADCA,ml
ADCA,n
ADCA,r
ADC HL,pp
ADDA,m1
ADDA,n
ADDA,r
ADDHL,pp
ADD IX,pp
ADD IY,pp
ADDss,pp

ANDml
ANDn
ANDr

BITb,ml
BITb,r

CALLcc,nn
CALLnn
CCF
CPm1
CPn
CPr
CPD
CPDR

CPI
CPIR

CPL

DAA
DECm1
DECr
DECrr

Operation

Add, with carry, memory location contents to Accumulator
Add, with carry, immediate data n to Accumulator
Add, with carry, register r contents to Accumulator
Add, with carry, register pair pp to HL
Add memory location contents to Accumulator
Add immediate data n to Accumulator
Add register r contents to Accumulator
Add register pair pp to HL
Add register pair pp to IX
Add register pair pp to IY
Add register pair pp to contents of register pair ss
Logical 'AND' memory contents to Accumulator
Logical 'AND' immediate data to Accumulator
Logical 'AND' register r contents to Accumulator

Test bit b of location ml
Test bit b of register r

Call subroutine at location nn if condition cc is true
Unconditional call to subroutine at location nn
Complement carry flag
Compare memory contents with Accumulator
Compare immediate data n with Accumulator
Compare register r to contents with Accumulator
Compare location (HL) and Accumulator, decrement HL and BC
Compare location (HL) and Accumulator, decrement HL and BC;

repeat until BC = 0
Compare location (HL) and Accumulator, increment HL, decrement BC
Compare location (HL) and Accumulator, increment HL, decrement BC;

repeat until BC = 0
Complement Accumulator (1 's complement)

Decimal adjust Accumulator
Decrement data in memory location ml
Decrement register r contents
Decrement register pair rr contents

9-30

Page

9-42
9-40
9-38
9-45
9-42
9-40
9-38
9-45
9-45
9-45
9-45
9-43
9-41
9-38

9-47
9-46

9-58
9-58
9-40
9-44
9-42
9-39
9-52
9-53

9-52
9-53

9-39

9-40
9-44
9-39
9-46

12.1 Instruction Set Index (Continued)

Alphabetical
Assembly
Mnemonic

DI
DJNZ,d

EI
EX (SP),ss

EXAF,A'F'
EXDE,HL
EXX

HALT

IMO
IM1
1M2
INA,(n)
INr,(C)

INCm1
INCr
INCrr
IND
INDR

INI

INIR

JPcc,nn

JPnn
JP(ss)

JRd
JR kk,d

LDA,I

LDA,m2
LDA,R
LDI,A

LDm1,n

LDm1.r
LDm2.A
LD (nn),rr

LDr,m1
LDr,n
LDR,A

LD rd,rs
LD rr,(nn)

LD rr,nn

LDSP,ss
LDD

LDDR
LDI
LDIR

NEG
NOP

Operation

Disable interrupts
Decrement B and jump relative B oF 0

Enable interrupts

Exchange the location (SP) with register ss
Exchange the contents of AF and A'F'

Exchange the contents of DE and HL
Exchange the contents of BC, DE and HL with the contents

of B'C, D'E' and H'L', respectively

Halt (wait for interrupt or reset)

Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2

Load Accumulator with input from device (n)
Load register r with input from device (C)

Increment data in memory location m1
Increment register r
Increment contents of register pair rr
Load location (HL) with input from port (C), decrement HL and B
Load location (HL) with input from port (C), decrement HL and B; repeat until B = 0
Load location (HL) with input from port (C), increment HL, decrement B
Load location (HL) with input from port (C), increment HL, decrement B;

repeat until B = 0

Jump to location nn, if condition cc is true

Unconditional jump to location nn
Unconditional jump to location (ss)

Unconditional jump relative to PC + d
Jump relative to PC + d, if kk true

Load Accumulator with register I contents
Load Accumulator from location m2

Load Accumulator with register R contents
Load register I with Accumulator contents
Load memory with immediate data n

Load memory from register r
Load memory from Accumulator

Load memory location nn with register pair rr
Load register r from memory

Load register with immediate data n
Load register R from Accumulator

Load destination register r d from source register r s
Load register pair rr from memory location nn

Load register pair rr with immediate data nn
Load SP from register pair ss
Load location (DE) with location (HL), decrement DE, Hl. and BC

Load location (DE) with location (HL), decrement DE, HL and BC; repeat until BC = 0
Load location (DE) with location (HL), increment DE and HL, decrement BC
Load location (DE) with location (HL), increment DE and HL, decrement BC;

repeat until BC = 0

Negate Accumulator (2's complement)

No operation

9-31

z
(I)
0
CD
0
0

Page

9-56
9-58

9-56
9-52
9-51
9-51
9-52

9-56

9-56
9-57
9-57
9-54
9-54
9-44
9-39
9-45
9-54
9-56
9-54
9-55

9-57
9-57
9-57
9-57
9-57

9-34
9-35
9-34
9-34
9-35
9-34
9-35
9-36
9-35
9-34
9-34
9-34
9-37
9-36
9-36
9-52
9-53
9-52
9-53

9-40 II
9-56

g
U
tn
Z

12.1 Instruction Set Index (Continued)

Alphabetical
Assembly Operation
Mnemonic

ORml
ORn
ORr
OTOR
OTIR

OUT (C),r
OUT (n),A
OUTO
OUTI

POPqq
PUSHqq

RESb,ml
RESb,r
RET
RETcc
RETI
RETN
RLml
RLr
RLA

RLCml
RLCr
RLCA
RLD

RRml
RRr
RRA

RRCml
RRCr
RRCA
RRD
RSTP

SBCA,ml
SBCA,n
SBCA,r
SBCHL,pp
SCF
SETb,ml
SETb,r

SLAml
SLAr

SRAml
SRAr

SRLml
SRLr

SUBml
SUBn
SUBr

XORml
XORn
XORr

Logical 'OR' of memory location contents and accumulator
Logical 'OR' of immediate data n and Accumulator
Logical 'OR' of register r and Accumulator
Load output port (C) with location (HL), decrement HL and B; repeat until B = 0
Load output port (C) with location (HL), increment HL, decrement B;

repeat until B = 0
Load output port (C) with register r
Load output port (n) with Accumulator
Load output port (C) with location (HL), decrement HL and B
Load output port (C) with location (HL), increment HL, decrement B

Load register pair qq with top of stack
Load top of stack with register pair qq

Reset bit b of memory location ml
Reset bit b of register r
Unconditional return from subroutine
Return from subroutine, if cc true
Unconditional return from interrupt
Unconditional return from non-maskable interrupt
Rotate memory contents left through carry
Rotate register r left through carry
Rotate Accumulator left through carry
Rotate memory contents left circular
Rotate register r left circular
Rotate Accumulator left circular
Rotate digit left and right between Accumulator and memory (HL)
Rotate memory contents right through carry
Rotate register r right through carry
Rotate Accumulator right through carry
Rotate memory contents right circular
Rotate register r right circular
Rotate Accumulator right circular
Rotate digit right and left between Accumulator and memory (HL)
Restart to location P

Subtract, with carry, memory contents from Accumulator
Subtract, with carry, immediate data n from Accumulator
Subtract, with carry, register r from Accumulator
Subtract, with carry, register pair pp from HL
Set carry flag
Set bit b in memory location ml contents
Set bit b in register r
Shift memory contents left, arithmetic
Shift register r left, arithmetic
Shift memory contents right, arithmetic
Shift register r right, arithmetic
Shift memory contents right, logical
Shift register r right, logical
Subtract memory contents from Accumulator
Subtract immediate data n from Accumulator
Subtract register r from Accumulator

Exclusive 'OR' memory contents and Accumulator
Exclusive 'OR' immediate data n and Accumulator
Exclusive 'OR' register r and Accumulator

9-32

Page

9-42
9-41
9-39
9-56
9-55

9-54
9-55
9-55
9-54

9-37
9-37

9-46
9-46
9-58
9-58
9-58
9-59
9-49
9-47
9-47
9-49
9-47
9-47
9-51
9-50
9-48
9-50
9-49
9-47
9-48
9-51
9-59

9-42
9-41
9-38
9-45
9-40
9-46
9-46
9-50
9-48
9-50
9-48
9-50
9-48
9-42
9-41
9-38

9-44
9-41
9-39

12.0 Instruction Set (Continued)

12.2 INSTRUCTION SET MNEMONIC NOTATION

In the following instruction set listing, the notations used are
shown below.

b: Designates one bit in a register or memory location.
Bit address mode uses this indicator.

cc: Designates condition codes used in conditional
Jumps, Calls, and Return instruction; may be:

NZ = Non-Zero (Z flag = 0)

Z = Zero (Z flag=1)

NC = Non-Carry (C flag = 0)

C = Carry (C flag = 1)

PO = Parity Odd or No Overflow (PIV=O)

PE = Parity Even or Overflow (P IV = 1)

P = Positive (S = 0)

M = Negative (S = 1)

d: Designates an 8-bit signed complement displace­
ment. Relative or indexed address modes use this
indicator.

kk: Subset of cc condition codes used in conjunction with
conditional relative jumps; may be NZ, Z, NC or C.

m1: Designates (HL), (IX+d) or (IY+d). Register indirect
or indexed address modes use this indicator.

m2: Designates (BC), (DE) or (nn). Register indirect or di-
rect address modes use this indicator.

n: Any 8-bit binary number.

nn: Any 16-bit binary number.

p: Designates restart vectors and may be the hex values
0, 8, 10, 18, 20, 28, 30 or 38. Restart instructions
employing the modified page zero addressing mode
use this indicator.

pp: Designates the BC, DE, SP or any 16-bit register used
as a destination operand in 16-bit arithmetic opera­
tions employing the register address mode.

qq: Designates BC, DE, HL, A, F, IX, or IY during opera­
tions employing register address mode.

r: Designates A, B, C, 0, E, H or L. Register addreSSing
modes use this indicator.

rr: Designates BC, DE, HL, SP, IX or IY. Register ad­
dreSSing modes use this indicator.

ss: Designates HL, IX or IY. Register addressing modes
use this indicator.

XL: Subscript L indicates the lower-order byte of a 16-bit
register.

XH: Subscript H indicates the high-order byte of a 16-bit
register.

(): parentheses indicate the contents are considered a
pointer address to a memory or 1/0 location.

9-33

z en
0
0)

12.3 ASSEMBLED OBJECT CODE NOTATION 0
0

Register Codes:
Register rp Register rs Register

000 B 00 BC 00 BC
001 C 01 DE 01 DE
010 0 10 HL 10 HL
011 E 11 SP 11 AF

100 H pp Register qq Register
101 L 00 BC 00 BC
111 A 01 DE 01 DE

10 IX 10 HL
11 SP 11 AF

Conditions Codes:
cc Mnemonic True Flag Condition

000 NZ Z=O
001 Z Z=1

010 NC C=O
011 C C=1

100 PO PIV=O
101 PE PIV=1
110 P S=O
111 M S=1

kk Mnemonic True Flag Condition
00 NZ Z=O

01 Z Z=1
10 NC C=O
11 C C=1

Restart Addresses:
t T

000 X'OO
001 X'08
010 X'10
011 X'18
100 X'20

101 X'28
110 X'30
111 X'38

gr---~

CD o
tI)
z

12.4 8-Bit Loads
REGISTER TO REGISTER

LD rd, ra
Load register r d with r s:

rd - rs
7654321

No flags affected
o

10 , 1 1 ,rd,

Timing:

Addressing Mode:

LD A,I

I fs !

M cycles-1
Tstates-4

Register

Load Accumulator with the contents of the I register.

A - I S: Set if negative result
Z: Set if zero result
H: Reset

PIV: Set according to IFF2 (zero if
interrupt occurs during opera­
tion)

N: Reset

C: Not affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,1,0,1,1,11

Timing: M cycles - 2

T states - 9 (4, 5)

Addressing Mode: Register

LD I,A
Load Interrupt vector register (I) with the contents of A.

I - A No flags affected
7 6 5 432 1 0

11,1,1,0,1,1,0,11

10,1,0,0,0,1,1,11

Timing: M cycles - 2

T states - 9 (4, 5)

Addressing Mode: Register

LD A,R
Load Accumulator with contents of R register.

A - R S: Set if negative result
Z: Set if zero result
H: Reset

PIV: Set according to IFF2 (zero if
interrupt occurs during opera­
tion)

N: Reset

C: Not affected

9-34

765 4 321 0

11,1,1,0,1,1,0,11

10, 1 ,0, 1 , 1 , 1 , 1 , 1 I
Timing: M cycles - 2

T states - 9 (4, 5)

Addressing Mode: Register

LD R,A
Load Refresh register (R) with contents of the Accumulator.

R - A No flags affected
765 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,1,1,1,11

Timing: M cycles - 2

T states - 9 (4, 5)

Addressing Mode: Register

LD r,n

Load register r with immediate data n.

r - n No flags affected
7 6 5 4 3 2 1 0

10,01 r, 11, 1 ,01

1 n 1

Timing:

Addressing Mode:

REGISTER TO MEMORY

LD m" r

M cycles-2

T states - 7 (4, 3)

Source - Immediate
Destination - Register

Load memory from reigster r.

m1 - r No flags affected
7 6 5 4 3 2 1 0

1 0 , 1 , 1 , 1 , 0 1 r, 1 LD (HL), r

Timing:

Addressing Mode:

M cycles- 2

T states - 7 (4,3)

Source - Register

Destination - Register Indirect
76543210
I LD (IX + d), r(for Nx = 0)

1 1 Nx 1 1 1 0 1 I
" '" , 'LD(IY+d),r(forNx=1)

10,1, ,1,01 r,

d

Timing:

Addressing Mode:

M cycles- 2

T states - 19 (4, 4, 3, 5, 3)

Source - Register
Destination - Indexed

12.4 8-Bit Loads (Continued)

LD m2,A

'Load memory from the Accumulator.

m2 +- A No flags affected

7 6 5 4 3 2 1 0 LD (BC), A

I ° ° ° 0 ° ° 1 ° I LD (DE), A

10,0,0,1,0,0,1

Timing:
, ° I

M cycles-2

T states - 7 (4, 3)

Addressing Mode: Source - Register (Implied)

Destination - Register Indirect
7 6 543 2 1 0

I ° , ° , 2 , 2 , ° , ° , 1 , ° I LD (nn), A

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

LD ml,n

M cycles-4

T states - 3 (4, 3, 3, 3)
Source - Register (Implied)

Destination - Direct

Load memory with immediate data.

ml +- n No flags affected
7 6 5 4 3 2 1 0

I ° , ° , 1 , 1 , ° , 1 , 1 , ° I LD(HL), n

n

Timing:

Addressing Mode:

7 6 5 43210

11,l,NX,l,l,l,O,l

10,0,

d

n

Timing:

Addressing Mode:

M cycles-3

T states-10 (4, 3, 3)

Source-Immediate

Destination-Register Indirect

LD (IX + d), n(for Nx = 0)

LD (IV + d), n(for Nx = 1)

M cycles-5

T states-19 (4,4,3,5,3)

Source-Immediate

Destination-Indexed

9-35

MEMORY TO REGISTER

LD r,ml

Load register r from memory location ml.

r +- m1 No flags affected
7 6 5 4 3 2 1 0

I ° , 1 I r, 11, 1 , ° 1 LD R, (HL)

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indirect

Destination-Register

7 6 5 4 3 2 1 0 LDr, (IX + d)(forNx=O)

11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1 LD r, (IV + d)(for Nx= 1)

d

Timing:

Addressing Mode:

LD A,m2

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Register

Load the Accumulator from memory location m2.

A +- m2 No flags affected

7 6 5 4 3 2 1 0 LDA, (BC)

I ° , ° , ° , ° , 1 , ° , 1 , ° 1 LD A, (DE)

10,0,0,1,1,0,1,01

Timing: M cycles-2

T states-7 (4, 3)

Addressing Mode: Source-Register Indirect

Destination-Register (Implied)
7 6 5 4 3 2 1 0

I ° , ° , 1 , 1 , 1 , ° , 1 , ° 1 LD A, (nn)

n (low-order byte) 1

n (high-order byte) 1

Timing:

Addressing Mode:

M cycles-4

T states-13 (4, 3, 3, 3)

Source-Immediate Extended

Destination-Register (Implied)

z
~
CD
I:)
I:)

12.5 16-Bit Loads
REGISTER TO REGISTER

LD rr, nn
Load 16-bit register pair with immediate data.

rr, +- nn No flags affected
76543210 LDBC,nn

I ° , ° I rp I ° , ° , ° , 1 I LD DE, nn
LD HL, nn

1 n (low-order byte) 1 LD SP, nn

n (high-order byte)

Timing:

Addressing Mode:

M cycles-3
T states-10 (4, 3, 3)

Source-Immediate Extended

Destination-Register
7 6 5 43210

LD IX, nn (for NX = 0)

LD IV, nn (for NX = 1)

0,0,1,0,0,0,0,1

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

LD SP,55

M cycles-4

T states-14 (4, 4, 3, 3)
Source-Immediate Extended
Destination-Register

Load the SP from 16-bit register ss.

SP +- ss No flags affected
765 4 3 2 1 0

11 , 1 , 1 , 1 , 1 , ° , ° , 1 1 LD SP, HL

Timing:

Addressing Mode:

M cycles-1

Tstates-6
Source-Register
Destination-Register (Implied)

7 6 5 43210
LD SP, IX (for NX = 0)

Timing:

Addressing Mode:

LD SP,IV (for Nx = 1)

M cycles-2
T states-10 (4, 6)

Source-Register

Destination-Register (Implied)

9-36

REGISTER TO MEMORY

LD (nn), rr
Load memory location nn with contents of 16-bit register, rr.

(nn) +- rrL No flags affected

(nn + 1) +- rrH
765 432 1 0

LD (nn), HL
10,0,1,0,0,0,1,01 (note an alternate

opcode below)

n (low-order byte)

n (high-order byte)

Timing: M cycles-5
T states-16 (4, 3, 3, 3, 3)

Addressing Mode: Source-Register
Destination-Direct

7 6 5 4 3 2 1 0 LD (nn), BC

1 , 1 , 1 , ° , 1 , 1 , ° , 1 LD (nn), DE
LD (nn), HL

° , 1 I rp I ° , ° , 1 ,1 LD (nn), SP

n (low-order byte)

n (high-order byte)

Timing: M cycles-6
T states-20 (4, 4, 3, 3, 3, 3)

Addressing Mode: Source-Register

Destination-Direct
7 6 5 43210

LD (nn), IX (for Nx = 0)

LD (nn) IV (for Nx = 1) 1 , 1 , NX , 1 , 1 , 1 , ° , 1

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

M cycles-6
T states-20 (4, 4, 3, 3, 3, 3)

Source-Register
Destination-Direct

12.5 16-Bit Loads (Continued)

PUSH qq

Push the contents of register pair qq onto the memory
stack.

(SP - 1) ~ qqH No flags affected
(SP - 2) ~ qqL
SP ~ SP - 2
7 6 5 4 3 2 1 0 PUSH BC

11 1 1 rs 1 0 1 ° 1 1 PUSH DE
. , . , . , , , . PUSH HL

Timing:

Addressing Mode:

PUSHAF

M cycles-3
T states-11 (5, 3, 3)

Source-Register
Destination-Register Indirect
(Stack)

7 6 5 4 3 2 1 ° PUSH IX (for Nx=O)

PUSH IV (for Nx= 1) 11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1

Timing:

Addressing Mode:

MEMORY TO REGISTER

LD rr, (nn)

M cycles-3

T states-15 (4, 5, 3, 3)

Source-Register
Destination-Register Indirect
(Stack)

Load 16-bit register from memory location nn.
rrL ~ (nn) No flags affected

rrH ~ (nn + 1)
7 6 5 4 3 2 1 0

LD HL, (nn)
10,0,1,0,0,0,1,01 (note an alternate

opcode below)
n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

M cycles-5
T states-16 (4, 3, 3, 3, 3)

Source-Direct
Destination-Register

9-37

7 654 3 2 1 0 LD BC, (nn)
LD DE, (nn)

LD HL, (nn)
LD SP, (nn)

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

M cycles-6
T states-20 (4, 4, 3, 3, 3, 3)

Source-Direct

Destination-Register
7 6 5 43210

LD IX, (nn)(for Nx = 0)

LD IV, (nn) (for Nx = 1)

n (low-order byte)

n (high-order byte)

Timing: M cycles-6

Addressing Mode:

POP qq

T states-20 (4, 4, 3, 3, 3, 3)

Source-Direct
Destination-Register

Pop the contents of the memory stack to register qq.

qqL ~ (SP) No flags affected

qqH ~ (SP + 1)

SP ~ SP + 2
7 6 5 4 3 2 1 0 POP BC

1111 10 ° ° 1 1 POP DE . , . r,s . , , , . POP HL

Timing:

Addressing Mode:

POPAF

M cycles-3
T states-10 (4, 3, 3)
Source-Register Indirect
(Stack)

Destination-Register
7 6 5 43210

POP IX (for Nx=O)
11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1 POP IV (for Nx= 1)

Timing:

Addressing Mode:

M cycles-4
T states-14 (4,4,3,3)

Source-Register Indirect
(Stack)
Destination-Register

z en
n
co o o

CI
CI
CD
(,)
rn
Z

12.6 a-Bit Arithmetic
REGISTER ADDRESSING ARITHMETIC

Hex Hex
Value Value Number

C H C
Op Before

In
Before

In Added After
Upper Lower To

DAA
Digit

DAA
Digit Byte

(Bits 7-4) (Bits 3.0)

0 0-9 0 0-9 00
0 0-8 0 A-F 06
0 0-9 1 0-3 06

ADD 0 A-F 0 0-9 60
ADC 0 9-F 0 A-F 66
INC 0 A-F 0-3 66

0-2 0 0-9 60
0-2 0 A-F 66
0-3 0-3 66

SUB 0 0-9 0 0-9 00
SBC 0 0-8 6-F FA
DEC 7-F 0 0-9 AO
NEG 6-F 6-F 9A

ADD A,r
Add contents of register r to the
Accumulator.

A +- A + r S: Set if negative result

Z: Set if zero result

H: Set if carry from bit 3
PIV: Set according to overflow

condition

N: Reset

C: Set if carry from bit 7
7 6 5 432 1 0

11,0,0,0,01 ,r, 1

Timing:

Addressing Mode:

ADC A,r

M cycles-1

T states-4

Source-Register

Destination-Implied

DAA

0
0
0

0
0

Add contents of register r, plus the carry flag, to the Accu­
mulator.

A +- A + r + CY S: Set if negative result

Z: Set if zero result

H: Set if carry from bit 3

PIV: Set if result exceeds 2's com­
plement range

N: Reset

C: Set if carry from bit 7

9-38

7 6 5 4 3 2 1 0

11,o,o,o,l1,r, I
Timing:

Addressing Mode:

SUB r

M cycles-1

Tstates-4

Source-Register

Destination-Implied

Subtract the contents of register r from the Accumulator.

7 6 543 2

Timing:

Addressing Mode:

SBC A,r

S: Set if result is negative
Z: Set if result is zero

H: Set if borrow from bit 4

P IV: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow
1 0

I r! I
M cycles-1

Tstates-4

Source-Register

Destination-Implied

Subtract contents of register r and the carry bit C from the
Accumulator.
A +- A - r - CY S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds 8-bit 2's
complement range

N:Set
c: Set according to borrow

765 4 3 2 1 0

Timing:

Addressing Mode:

AND r

M cycles-1

T states-4
Source-Register

Destination-Implied

Logically AND the contents of the r register and the Accu­
mulator.

A +- A 1\ r S: Set if result is negative

Z: Set if result is zero

H:Set

P IV: Set if result parity is even

N: Reset

C: Reset

12.6 8-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

11,0,1,0,01 r,

Timing:

Addressing Mode:

OR

M cycles-1

T states-4

Source-Register

Destination-Implied

Logically OR the contents of the r register and the Accumu­
lator.

A +- A V r S: Set if result is negative

Z: Set if result is zero

7 6 543 2

Timing:

Addressing Mode:

XOR r

H: Reset

P/V: Set if result parity is even

N: Reset

C: Reset
1 0

r, 1

M cycles-1

T states-4

Source-Register

Destination-Implied

Logically exclusively OR the contents of the r register with
the Accumulator.

S: Set if result is negative

Z: Set if result is zero

H: Reset

P/V: Set if result parity is even

N: Reset

C: Reset
7 6 5 432 1 0

11 , 0, ,0, r ,

Timing: M cycles-1

T states-4

Addressing Mode:

INC

Increment register r.

Source-Register

Destination-Implied

r +- r + 1 S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

P/V: Set only if r was X'7F before
operation

N: Reset

C:N/A

9-39

7 6 5 4 3 2 1 0

10,01 r, ,0,01

Timing:

Addressing Mode:

CP r

M cycles-1

T states-4

Source-Register

Destination-Register

Compare the contents of register r with the Accumulator
and set the flags accordingly.

A - r S: Set if result is negative

Z: Set if result is zero

7 6 5 4 3 2

Timing:

Addressing Mode:

DEC r

H: Set if borrow from bit 4

P/V: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow
1 0

r ,

M cyc1es-1

T states-4

Source-Register

Destination-Implied

Decrement the contents of register r.

S: Set if result is negative

Z: Set if result is zero

H: Set according to a borrow from
bit 4

P/V: Set only if r was X'80 prior to
operation

N: Set

C:N/A
7 6 5 4 3 2 1 0

10, 0 1 r , , 0 , 1 1

Timing:

Addressing Mode:

CPL

M cycles-1

T states-4

Source-Register

Destination-Register

Complement the Accumulator (1 's complement).

A +- A S:N/A

Z: N/A
H: Set

P/V: N/A
N: Set

C: N/A

z
CJ)
o
Q)
o
o

•

C) r--
C)
co
o
(/)
z

12.6 8-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

10,0,1,0,1,1,1,11

Timing:

Addressing Mode:

NEG

M cycles-1

Tstates-4

Implied

Negate the Accumulator (2's complement).

A - 0 - A S: Set if result is negative

Z: Set if result is zero

H: Set according to borrow from
bit 4

PIV: Set only if Accumulator was
X'80 prior to operation

N:Set

C: Set only if Accumulator was not
X'OO prior to operation

7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,0,1,0,01

Timing: M cycles-2

T states-8 (4, 4)

Addressing Mode: Implied

CCF

Complement the carry flag.

CY-CY S:N/A

Z:N/A
H: Previous carry

PIV:N/A

N: Reset

C: Complement of previous carry
7 6 5 4 3 2 1 0

10,0,1,1,1,1,1,11

Timing:

Addressing Mode:

SCF

Set the carry flag.

CY - 1

M cycles-1

T states-4

Implied

S:N/A

Z:N/A
H: Reset

PIV:N/A

N: Reset

C: Set
7 6 5 4 3 2 1 0

10,0, 1 , 1 , 0 , 1 , 1 , 1 1

Timing:

Addressing Mode:

M cycles-1

T states-4

Implied

9-40

DAA
Adjust the Accumulator for BCD addition and subtraction
operations. To be executed after BCD data has been oper­
ated upon the standard binary ADD, ADC, INC, SUB, SBC,
DEC or NEG instructions (see "Register Addressing Arith­
metic" table).

S: Set according to bit 7 of result

Z: Set if result is zero

H: Set according to instructions

P IV: Set according to parity of result

N:N/A

C: Set according to instructions
7 6 5 4 3 2 1 0

10,0,1,0,0,1,1,11

Timing:

Addressing Mode:

M cycles-1

Tstates-4

Implied

IMMEDIATELY ADDRESSED ARITHMETIC

ADD A,n

Add the immediate data n to the Accumulator.

A - A + n S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

PIV: Set if result exceeds 8-bit 2's
complement range

N: Reset

C: Set if carry from bit 7
7 6 5 4 3 2 1 0

11,1,0,0,0,1,1,01

n 1

Timing:

Addressing Mode:

ADC A,n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Add, with carry, the immediate data n and the Accumulator.

A - A + n + CY S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

PIV: Set if result exceeds 8-bit 2's
complement range

N: Reset

C: Set according to carry from bit
7

12.6 8-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

11,1,0,0,1,1,1,01

n

Timing:

Addressing Mode:

SUB n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Subtract the immediate data n from the Accumulator.

A +- A - n S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

P IV: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow
condition

7 6 5 432 1 0

11,1,0,1,0,1,1,01

n

Timing:

Addressing Mode:

SBC A,n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Subtract, with carry, the immediate data n from the Accumu­
lator.

A +- A - n - CY S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow
condition

7 6 5 4 3 2 1 0

11,1,0,1,1,1,1,01

n

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

9-41

AND n
The immediate data n is logically AND'ed to the Accumula­
tor.

A +- A 1\ n S: Set if result is negative

Z: Set if result is zero

H: Set

PIV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

11,1,1,0,0,1,1,01

n

Timing:

Addressing Mode:

OR n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

The immediate data n is logically OR'ed to the contents of
the Accumulator.

A +- A V s S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

11,1,1,1,0,1,1,01

n 1

Timing:

Addressing Mode:

XOR n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

The immediate data n is exclusively OR'ed with the Accu­
mulator.

A +- A (!l n S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset

z
(J)
o
CD o o

C)
C)
co
o
U)
z

12.6 8-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

11,1,1,0,1,1 ,01

n

Timing:

Addressing Mode:

CP n

M cycles-2

T states-7 (4, 3)

Source-Immediate

Destination-Implied

Compare the immediate data n with the contents of the Ac­
cumulator via subtraction and return the appropriate flags.
The contents of the Accumulator are not affected.

A - n S: Set if result is negative

7 6 5 4 3 2

n

Timing:

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow condi­
tion

1 0

M cycles-2

T states-7 (4, 3)

Addressing Mode: Immediate

MEMORY ADDRESSED ARITHMETIC

ADD A,m1

Add the contents of the memory location m1 to the Accumu­
lator.

A - A + m1 S: Set if result is negative

Z: Set if result is zero

765 432

H: Set if carry from bit 3

PIV: Set if result exceeds 8-bit 2's
complement range

N: Reset

C: Set according to carry from bit
7

1 0

LI_1...1'_0-,-, _0...1,_0-,-, _0..J,~1--,-, _l..J'L...0--,1 ADD A, (HL)

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied

9-42

7 6 5 4 3 2 1 0 ADD A, (IX + d)(for Nx = 0)

11 , 1 , Nx , 1 , 1 , 1 , ° , 1 I ADD A, (lY + d) (for Nx = 1)

11,0, ° ,0,0,1,1,01

d

Timing:

Addressing Mode:

ADC A,m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Add the contents of the memory location m1 plus the carry
to the Accumulator.

A - A + m1 + CY S: Set if result is negative

Z: Set if result is zero

7 6 543 2

H: Set if carry from bit 3

PIV: Set if result exceeds 8-bit 2's
complement range

N: Reset

C: Set according to carry from bit
7

1 0

11,0,0,0,1,1,1

Timing:

, ° I ADC A, (HL)

M cycles-2

Addressing Mode:

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied
76543210

11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1
ADC A, (IX + d) (for Nx= 0)

ADCA, (lY + d) (for Nx=l)

11,0, ° ,0,1,1,1,01

d

Timing:

Addressing Mode:

SUB m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Subtract the contents of memory location m1 from the Ac­
cumulator.

A - A - m1 S: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds 8-bit 2's
complement range

N:Set

C: Set according to borrow condi­
tion

12.6 8-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

11 , 0 , 0 , 1 , 0 , 1 , 1 , 0 I SUB (HL)

Timing: M cycles-2

T states-7 (4, 3)

Addressing Mode: Source-Register Indirect

Destination-I mplied
76543210

SUB (IX + d) (for Nx=O)

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 I SUB (IY + d) (for Nx = 1)

11 ,0, 0 ,1 ,0,1 ,1 ,01

d

Timing:

Addressing Mode:

SBC A,m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Subtract, with carry, the contents of memory location m1
from the Accumulator.

A ~ A - m1 - CY S: Set if result is negative

Z: Set if result is zero

H: Set if carry from bit 3

PIV: Set if result exceeds 8-bit 2's
complement range

N: Set

C: Set according to borrow
condition

7 6 5 4 3 2 1 0

11 , 0 , 0 , 1 , 1 , 1 , 1 , 0 I SBC A, (HL)

Timing:

Addressing Mode:

76543210

11,1, NX, 1,1,1,0,11

11,0,0,1,1,1,1,01

d

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied

SBC A, (IX + d) (for Nx = 0)

SBCA, (IV + d) (forNx=1)

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

9-43

AND m1
The data in memory location m1 is logically AND'ed to the
Accumulator.

A ~ A 1\ m1 S: Set if result is negative

Z: Set if result is zero

H: Set

PIV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

11 , 0 , 1 , 0 , 0 , 1 , 1 , 0 I AND (HL)

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indirect

Destination-Implied
7 6 5 43210

AND (IX + d) (for Nx = 0)
11,1, Nx, 1 ,1 ,1 ,0,1 I

AND (IY + d) (for Nx= 1)

d

Timing:

Addressing Mode:

OR m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

The data in memory location m1 is logically OR'ed with the
Accumulator.

A ~ A V m1 S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset
7 6 5 4 3 2 1 0

11 , 0 , 1 , 1 , 0 , 1 , 1 , 0 I OR (HL)

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indexed

Destination-Implied
7 6 5 43210

OR (IX + d) (for Nx=O)

OR (IY + d) (for Nx= 1)

,1 ,0 ,1 , 1 ,0 I
d

Timing:

Addressing Mode:

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

z
en
(")
CO
o
o

•

12.6 8-Bit Arithmetic (Continued)

XOR m1

The data in memory location m1 is exclusively OR'ed with
the data in the Accumulator.

A - A ED m1 5: Set if result is negative
Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Reset
76543 2 1 0

11 , 0 , 1 , 0 , 1 , 1 , 1 , 0 1 XOR (HL)

Timing:

Addressing Mode:

M cycles-2

T states-7 (4, 3)

Source-Register Indexed

Destination-Implied
7 6 5 43210

XOR (IX + d) (for Nx = 0)
11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 1

XOR (IV + d)(for Nx= 1)

d

Timing:

Addressing Mode:

CP m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Compare the data in memory location m1 with the data in
the Accumulator via subtraction.

A - m1 5: Set if result is negative

Z: Set if result is zero

H: Set if borrow from bit 4

PIV: Set if result exceeds S-bit 2's
complement range

N: Set

C: Set according to borrow
condition

7 6 5 4 3 2 1 0

11 , 0 , 1 , 1 , 1 , 1 , 1 , 0 1 CP (HL)

Timing: M cycles-2

T states-7 (4, 3)

Addressing Mode: Source-Register Indirect

Destination-Implied
43210 7 6 5

CP (IX + d)(for Nx = 0)
11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 1

CP (IV + d) (for Nx= 1)

,1,1,1,1,01

d

9-44

Timing:

Addressing Mode:

INC m1

M cycles-5

T states-19 (4, 4, 3, 5, 3)

Source-Indexed

Destination-Implied

Increment data in memory location m1.

5: Set if result is negative

Z: Set if result is zero

H: Set according to carry from bit
3

PIV: Set if data was X'7F before op­
eration

N: Reset

C:N/A
7 6 5 4 3 2 1 0

I 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 1 INC (HL)

Timing:

Addressing Mode:

M cycles-3

T states-11 (4, 4, 3)

Source-Register Indexed

Destination-Register Indexed
7 6 5 43210

INC (IX + d)(for Nx = 0)

10,0,

d

Timing:

Addressing Mode:

DEC m1

INC (IV + d) (for Nx= 1)

M cycles-6

T states-23 (4, 4, 3, 5, 4, 3)

Source-Indexed

Destination-Indexed

Decrement data in memory location m1.

5: Set if result is negative

Z: Set if result is zero

H: Set according to borrow from
bit 4

PIV: Set only if m1 was X'SO before
operation

N:Set

C:N/A

r---, ~
12.6 8-Bit Arithmetic (Continued)
7 6 5 4 3 2 1 0

I a , a , 1 , 1 , a , 1 , a , 1 I DEC (HL)

Timing:

Addressing Mode:

M cycles- 3

T states - 11 (4, 4, 3)

Source - Register Indexed

Destination - Register In·
dexed

7 6 5 43210
DEC (IX + d) (for Nx = 0)

11 , 1 , Nx , 1 , 1 , 1 , a , 1 I
DEC (lY + d) (for Nx = 1)

10 , 0 ,

d

Timing:

Addressing Mode:

M cycles- 6

T states - 23 (4, 4, 3, 5, 4, 3)

Source - Indexed

Destination - Indexed

12.7 16-Bit Arithmetic
ADD sS,pp

Add the contents of the 16·bit register pp to the contents of
the 16·bit register ss.

ss+-ss+pp S:N/A

Z:N/A

H: Set if carry from bit 11

PIV:N/A

N: Reset

C: Set if carry from bit 15
7 6 5 432 1 0

I 0 , a I pp 11, 0 , a , 1 I ADD HL, pp

Timing:

Addressing Mode:

M cycles- 3

T states - 11 (4, 4, 3)

Source - Register

Destination - Register
76543210

,-------------------, ADD IX, pp (for NX = 0)

11 , 1 , Nx , 1 , 1 , 1 , 0 , 1 I ADD IY, pp (for Nx = 1)

10,01 pp 11,0,0,11

Timing:

Addressing Mode:

ADC HL,pp

M cycles-4

T states -15 (4, 4, 4, 3)

Source - Register

Destination - Register

The contents of the 16·bit register pp are added, with the
carry bit, to the HL register.

HL +- HL + pp + CY

S: Set if result is negative

Z: Set if result is zero

H: Set according to carry out of bit
11

9·45

PIV: Set if result exceeds 16·bit 2's
complement range

N: Reset

C: Set if carry out of bit 15
765 4 3 2 1 0

11,1,1,0,1,1,0,11

I a , 1 I pp 11, 0, ,0 I
Timing:

Addressing Mode:

SBC HL,pp

M cycles- 4

T states - 15 (4, 4, 4, 3)

Source - Register

Destination - Register

Subtract, with carry, the contents of the 16·bit pp register
from the 16·bit H L register.

HL +- HL - pp - CY

S: Set if result is negative

Z: Set if result is zero

H: Set according to borrow from
bit 12

P IV: Set if result exceeds 16·bit 2's
complement range

765432

pp 10 , a ,
Timing:

Addressing Mode:

INC rr

N:Set

C: Set according to borrow condi·
tion
o

, a I
M cycles-4

T states - 15 (4, 4, 4, 3)

Source - Register

Destination - Register

Increment the contents of the 16·bit register rr.

rr +- rr + 1 No flags affected
7 6 5 4 3 2 1 0 INC BC

1 0 , 0 I

Timing:

rp I 0 a 1 1 I INC DE
, . , , , .INCHL

INCSP

M cycles-1

T states- 6

Addressing Mode: Register
76543210

11 , 1 , NX , 1 , 1 , 1 , a , 1 I
INC IX (for Nx = 0)

INC IY (for Nx= 1)

10 , a ,
Timing: M cycles- 2

T states - 10 (4, 6)

Addressing Mode: Register

U)
o
00 o
o

•

s z
12.7 16-Bit Arithmetic (Continued)

DEC rr
Decrement the contents of the HI-bit register rr.

rr - rr - 1 No flags affected
7 6 5 4 3 2 1 0 DEC BC

1001 ;p 1101 11DECDE
. , . _ . , , , . DEC HL

Timing:

DECSP

M cycles-1

Tstates - 6

Addressing Mode: Register
76543210

DEC IX (for Nx=O)

DEC IV (for Nx= 1)

10 ,0 ,

Timing: M cycles-2

T states -10 (4, 6)

Addressing Mode: Register

12.8 Bit Set, Reset, and Test
REGISTER

SET b,r

Bit b in register r is set.

Rb - 1 No flags affected
76543210

11,1,0,0,1,0,1,11

Timing:

Addressing Mode:

RES b,r

, r I

M cycles-2

T states - 8 (4, 4)

Bit/Register

Bit b in register r is reset.

rb - ° No flags affected
76543210

11,1,0,0,1,0,1,11

11 , ° 1 ,b, , r ,

Timing:

Addressing Mode:

BIT b,r

M cycles-2

T states - 8 (4, 4)

Bit/Register

Bit b in register r is tested with the result put in the Z flag.

Z - ib S: Undefined
Z: Inverse of tested bit

H:Set

P/V: Undefined

N: Reset

C:N/A

9-46

7 6 5 432 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 1

10, 1 1 ,b, r ,

Timing:

Addressing Mode:

MEMORY

SET b,m1

M cycles-2

T states - 8 (4, 4)

Bit/Register

Bit b in memory location m1 is set.

m1b - 1 No flags affected
7 6 5 432 1 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 1 SET b, (HL)

Timing: M cycles-4

T states -15 (4, 4, 4, 3)

Addressing Mode: Bit/Register Indirect
76543210

1,1, ° ,0,1,0,1,1

d

Timing:

Addressing Mode:

RES b,m1

SET b, (lX+d) (for Nx=O)

SET b, (lV+d) (for Nx= 1)

M cycles-6

T states - 23 (4, 4, 3, 5, 4, 3)

Bitllndexed

Bit b in memory location m1 is reset.

m1b - ° No flags affected
7 6 5 4 3 2 1 0

11 , 1 , ° , 0, ,0, ,1 1 RES b, (HL)

b, , ° 1

Timing: M cycles-4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Bit/Register Indirect
76543210

1 , 1 , Nx , 1 , 1 , 1 , ° , 1

d

1 ,0 , , b, , 1 ,1 , °
Timing:

Addressing Mode:

RES b, (IX+d) (for Nx=O)

RES b, (IV+d) (for Nx= 1)

M cycles-6

T states - 23 (4, 4, 3, 5, 4, 3)

Bitllndexed

12.8 Bit Set, Reset, and Test (Continued)

BIT B,m1

Bit b in memory location m1 is tested via the Z flag.

Z - m1b S: Undefined
Z: Inverse of tested bit

H:Set

PIV: Undefined

N: Reset

C:N/A
7 6 5 4 3 2 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 I BIT b, (HL)

Timing: M cycles- 3

T states -12 (4, 4, 4)

Addressing Mode: Bit/Register Indirect
76543210

BIT b, (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1 BIT b, (IY+d) (for Nx= 1)

1,1, ° ,0,1,0,1,1

d

° , 1 1

Timing: M cycles-5

T states - 20 (4, 4, 3, 5, 4)

Addressing Mode: Bit/Indexed

12.9 Rotate and Shift
REGISTER

RLC
Rotate register r left circular.

r
TL/C/5171-57

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 7 of r
7 6 5 4 3 2 1 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 I RLC r

10 , ° , ° , ° , ° , I (Note alternate for
L--'--'---'---J'--'--'--'---J A register below)

Timing: M cycles- 2

T states - 8 (4, 4)

Addressing Mode: Register

9-47

7 6 5 4 3 2 1 0

1 ° , ° , ° , ° , ° , 1 , 1 , 1 I RLCA

Timing: M cycles - 1

T states- 4

Addressing Mode: Implied

(Note RLCA does not affect S, Z, or PIV flags.)

RL r
Rotate register r left through carry.

~~7-.------0""~
r

TLlC/5171-56

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 7 of r
7 6 5 4 3 2 1 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 I RL r

10 , ° , ° ,1 , ° 1 r, I (Note alternate for
L--'--'--'---'-_'--'--'-....J A register below)

Timing: M cycles-2

T states - 8 (4, 4)

Addressing Mode: Register
7 6 5 4 3 2 1 0

1 ° , ° , ° , 1 , ° , 1 , 1 , 1 I RLA

Timing: M cycles-1

Tstates- 4

Addressing Mode: Implied

(Note RLA does not affect S, Z, or PIV flags.)

RRC r
Rotate register r right circular.

r
TL/C/5171-59

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit ° of r

z
U)
o
CD o
o

C) r---,
C)
co o
(/)
z

12.9 Rotate and Shift (Continued)
765432 0

11 , 1 , 0 , 0, ,0, 1 RRC r

10 , 0 , 0 , 0 , 1

Timing:

(Note alternate for
A register below)

M cycles - 2

T states - 8 (4, 4)

Addressing Mode: Register
76543210

LI_0~,_0_L,_0~,_0~,_1_L_J __ ~,_1~1 RRCA

Timing: M cycles - 1

T states- 4

Addressing Mode: Implied

(Note RRCA does not affect S, Z, or PIV flags.)

RR

Rotate register r right through carry.

t=:i~7------------~--O~
r

TL/C/5171-60

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit 0 of r
7 6 5 4 3 2 1 0

o 0

o 0 0

Timing:

o 0 RRr

(Note alternate for
A register below)

M cycles- 2

T states - 8 (4, 4)

Addressing Mode: Register
765432 0

LI0~,_0_L,_0~,_1~ __ L_~_L,_1~1 RRA

Timing: M cycles - 1

T states-4

Addressing Mode: Implied

(Note RRA does not affect S, Z, or PIV flags.)

SLA r
Shift register r left arithmetric.

~77.4======~O~r--O
r

TLiC/5171-61

S: Set if result is negative

Z: Set if result is zero

H: Reset

9-48

PIV: Set if result parity is even

N: Reset

C: Set according to bit 7 of r
7 6 5 4 3 2 1 0

11,1,0,0,1,0,1,1

10 , 0, ,0 , 0 I

Timing:

Addressing Mode:

SRA

r ,

M cycles - 2

T states - 8 (4, 4)

Register

Shift register r right arithmetic.

TLiC/5171-62

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit 0 of r
7 6 5 4 3 2 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 ,

Timing:

Addressing Mode:

SRL

r ,

M cycles - 2

T states - 8 (4, 4)

Register

Shift register r right logical.

r

S: Reset

Z: Set if result is zero

H: Reset

TL/C/5171-63

P IV: Set if result parity is even

N: Reset

C: Set according to bit 0 of r
7 6 5 4 3 2 1 0

11 , 1 , 0 , 0 , 1 , 0 , 1 , 1 1

10 , 0 , 1 , 1 , 1 r, 1

Timing:

Addressing Mode:

M cycles- 2

T states - 8 (4, 4)

Register

12.9 Rotate and Shift (Continued)

MEMORY

RLC ml
Rotate date in memory location ml left circular.

TLlC/5171-64

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 7 of ml
7 6 5 432 1 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 I RLC (HL)

10,0,0,0,0, , 1 , ° 1

Timing: M cycles- 4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register indirect
76543210

RLC (IX+d) (for Nx=O)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1 1

1,1, ° ,0,1,0,1,11

RLC (IY+d) (for Nx= 1)

d

Timing:

Addressing Mode:

RL ml

M cycles-6

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

Rotate the data in memory location ml left though carry.

TL/C/5171-65

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 7 of ml

9-49

7 6 5 4 321 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 1 RL (HL)

10,0,0, , ° , 1 , 1 , ° 1

Timing: M cycles - 4

T states -15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

RL (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1 RL (IY+d) (for NX= 1)

1,1, ° ,0,1,0,1,1

d

0,0, ° ,1,0,1,1,0

Timing: M cycles - 6

T states - 23 (4, 4, 3, 5, 4, 3)

Addressing Mode: Indexed

RRC ml
Rotate the data in memory location ml right circular.

TL/C/5171-66

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit ° of ml
7 6 5 4 3 2 1 0

11 , 1 , ° , ° , 1 , ° , 1 , 1 1 RRC (HL)

10 ,0,0,0,1,1,1,01

Timing: M cycles - 4
T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

1 , 1 , Nx , 1 , 1 , 1 , ° , 1

1 , 1 , ° ,0, 1 , 0,1 , 1

d

0,0, ° ,0,1,1,1,0

Timing:

Addressing Mode:

RRC (IX + d) (for Nx = 0)

RRC (IY + d) (for Nx = 1)

M cycles - 6

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

z en o co
C)
C)

C) r---,
C)

~ z
12.9 Rotate and Shift (Continued)

RR ml

Rotate the data in memory location ml right through the
carry.

TL/C/5171-67

S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit ° of ml
76543210

11,1,0,0,1,0,1,11

10,0,0,1,1,1,1,01

RR(HL)

Timing: M cycles-4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

RR (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1

1,1, ° ,0,1,0,1,1

RR (IV + d) (for Nx = 1)

d

0,0, ° ,1,1,1,1,0

Timing: M cycles-6

Addressing Mode:

SLA ml

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

Shift the data in memory location ml left arithmetic.

TL/C/5171-68

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit 7 of ml
7 6 5 432 1 0

11,1,0,0,1,0,1,11

10,0,1,0,0,1,1,01

SLA(HL)

Timing:

Addressing Mode:

M cycles-4

T states -15 (4, 4, 4, 3)

Register Indirect

9·50

76543210

11 , 1 , Nx , 1 , 1 , 1 , ° , 1 I
11,1,0,0,1,0,1,11

SLA (IX + d) (for Nx = 0)

SLA (IV + d) (for Nx = 1)

I d

10,0, ,0,0,1,1,01

Timing: M cycles- 6

Addressing Mode:

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

SRA ml

Shift the data in memory location ml right arithmetic.

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C: Set according to bit ° of ml
7 6 5 4 3 2 1 0

11,1,0,0,1,0,1,11

10,0,1,0,1,1,1,01

SRA(HL)

Timing: M cycles-4

TL/C/5171-69

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

SRA (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , 0 , 1

1,1,0,0,1,0,1,1

SRA (IV + d)(for Nx = 1)

d

0,0, ,0,1,1,1,0

Timing: M cycles-6

Addressing Mode:

T states - 23 (4, 4, 3, 5, 4, 3)

Indexed

SRL ml

Shift right logical the data in memory location mI.

ml

S: Reset

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

C: Set according to bit 0 of ml

TL/C/5171-70

r--,z
12.9 Rotate and Shift (Continued)
7 6 5 4 3 2 1 0

11,1,0,0,1,0,1,11 SRL(HL)

1o, ° , 1 , 1 , 1 , 1 , 1 , ° 1

Timing: M cycles-4

T states - 15 (4, 4, 4, 3)

Addressing Mode: Register Indirect
76543210

SRL (IX + d) (for Nx = 0)
1 , 1 , Nx , 1 , 1 , 1 , ° , 1

1,1, ° ,0,1,0,1,1

SRL (IY + d) (for Nx = 1)

d

0,0, , 1 , 1 , 1 , 1 , °
Timing:

Addressing Mode:

REGISTER/MEMORY

RLD

M cycles-6

T states - 23 (4, 4, 3, 5, 4, 3)
Indexed

Rotate digit left and right between the Accumulator and
memory (HL).

17-41 + 1 ACC 1 Tii30 1 (HL)

765432

1o , 1 , ° ,
Timing:

Addressing Mode:

TL/C/5171-71

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C:N/A
0

, ° ,1 1

,1 , 1 1

M cycles- 5

T states - 18 (4, 4, 3, 4, 3)

Implied/Register Indirect

9-51

RRD

Rotate digit right and left between the Accumulator and
memory (HL).

17-4 I + 1 ACC 1 i:.§]o 1 (HL)

TL/C/5171-72

S: Set if result is negative

Z: Set if result is zero

H: Reset

PIV: Set if result parity is even

N: Reset

C:N/A
7 6 5 4 3 2 0

11,1,1,0,1,1,0,1

10,1,1,0,0,1,1,1

Timing: M cycles- 5

Addressing Mode:

T states - 18 (4, 4, 3, 4, 3)

Implied/Register Indirect

12.10 Exchanges
REGISTER/REGISTER

EX DE,HL

Exchange the contents of the 16-bit register pairs DE and
HL.

DE - HL
765432

Timing:

Addressing Mode:

EX AF,A'F'

No flags affected
o

M cycles-1

T states-4

Register

The contents of the Accumulator and flag register are ex­
changed with their corresponding alternate registers, that is
A and F are exchanged with A' and F'.

A - A' No flags affected

F - F'
76543210

10,0,0,0,1,0,0,01

Timing:

Addressing Mode:

M cycles-1

T states - 4

Register

~
CD o
o

•

C) .---,
C)

~ z
12.10 Exchanges (Continued)

EXX

Exchange the contents of the BC, DE, and HL registers with
their corresponding alternate register.

BC - B'C' No flags affected

DE - D'E'

HL - H'L'
765 4 3 2 1 0

11,1,0,1,1,0,0,11

Timing:

Addressing Mode:

REGISTER/MEMORY

EX (SP),55

M cycles-1

T states- 4

Implied

Exchange the two bytes at the top of the external memory
stack with the 16-bit register ss.

(SP) - SSL No flags affected

(SP + 1) - SSH
7 6 5 4 320

11 , 1 , 1 , 0 , 0 , 0 , 1 , 1 1 EX (SP), HL

Timing: M cycles - 5

T states - 19 (4, 3, 4, 3, 5)

Addressing Mode: Register/Register Indirect
76543210

EX (SP), IX (for NX = 0)
11 , 1 , NX , 1 , 1 , 1 , 0 , 1 1

EX (SP),IY (for Nx = 1)

,0 , 0 ,0,1 , 1 1

Timing:

Addressing Mode:

M cycles- 6

T states - 23 (4, 4, 3, 4, 3, 5)

Register/Register Indirect

12.11 Memory Block Moves and
Searches
SINGLE OPERATIONS

LOI

Move data from memory location (HL) to memory location
(DE), increment memory pointers, and decrement byte
counter BC.

(DE) - (HL) S: N/ A

DE - DE + 1

HL - HL + 1
BC-BC-1

Z: N/A

H: Reset

P/V: Set if BC -1 *0, other­
wise reset

N: Reset

C: N/A
76543210

11,1,1,0,1,1,0,11

11,0,1,0,0,0,0,01

Timing:

Addressing Mode:

M cycles-4

T states - 16 (4, 4, 3, 5)

Register Indirect

9-52

LOO

Move data from memory location (HL) to memory location
(DE), and decrement memory pointer and byte counter BC.

(DE) - (HL) S: Nt A

HL - HL - 1

Z: N/A

H: Reset

P/V: Set if BC -1 *0, other­
wise reset

N: Reset

C:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,0,1,0,0,01

Timing:

Addressing Mode:

CPI

M cycles-4

T states -16 (4, 4, 3, 5)

Register Indirect

Compare data in memory location (HL) to the Accumulator,
increment the memory pointer, and decrement the byte
counter. The Z flag is set if the comparison is equal.

A - (HL) S: Set if result of comparison sub-
HL _ HL + 1 tract is negative

BC - BC - 1 Z: Set if result of comparison is
Z-1

if A = (HL)
zero

H: Set according to borrow from
bit 4

P/V: Set if BC - 1* 0, otherwise
reset

N: Set

C:N/A
76543210

11,1,1,0,1,1,0,11

11,0,1,0,0,0,0,11

Timing:

Addressing Mode:

CPO

M cycles-4

T states - 16 (4, 4, 3, 5)

Register Indirect

Compare data in memory location (HL) to the Accumulator,
and decrement the memory pointer and byte counter. The Z
flag is set if the comparison is equal.

A - (HL) S: Set if result is negative

HL - HL - 1
BC-BC-1

Z-1
if A = (HL)

Z: Set if result of comparison is
zero

H: Set according to borrow from
bit 4

P/V: Set if BC - 1 * 0, otherwise
reset

N:Set

C:N/A

12.11 Memory Block Moves and Searches (Continued)
765432 0

11,1,1,0,1,1,0,

11 ,0, 1 ,0, 1 ,0,0,

Timing: M cycles - 4

T states - 16 (4, 4, 3, 5)

Addressing Mode: Register Indirect

REPEAT OPERATIONS

LOIR
Move data from memory location (HL) to memory location
(DE), increment memory painters, decrement byte counter
BC, and repeat until BC = o.
(DE) - (HL) 5: NI A

DE - DE + 1

HL - HL + 1
BC - BC - 1
Repeat until

BC = 0

Z:N/A
H: Reset

P/V: Reset

N: Reset

C:N/A
765 4 3 2 0

11,1, ,0,1,1,0,11

11,0, ,1,0,0,0,01

Timing: For BC"",,O M cycles - 5
T states - 21 (4, 4, 3, 5, 5)

For BC=O M cycles - 4

T states - 16 (4, 4, 3, 5)

Addressing Mode: Register Indirect

(Note that each repeat is accomplished by a decrement of

the BC, so that refresh, etc. continues for each cycle.)

LOOR
Move data from memory location (HL) to memory location
(DE), decrement memory pointers and byte counter BC, and
repeat until BC = o.
(DE) - (HL) 5: NI A

DE-DE-1

HL - HL - 1
BC-BC-1

Repeat until

BC = 0

Z:N/A
H: Reset

P/V: Reset

N: Reset

C:N/A
7 6 5 4 3 2 0

11,1, ,0,1,1,0,11

11,0, ,1,1,0,0,01

Timing: For BC"",,O M cycles - 5

T states - 21 (4, 4, 3, 5, 5)

For BC=O M cycles - 4

T states - 16 (4, 4, 3, 5)

Addressing Mode: Register Indirect

(Note that each repeat is accomplished by a decrement of

the BC, so that refresh, etc. continues for each cycle.)

9-53

CPIR
Compare data in memory location (HL) to the Accumulator,
increment the memory, decrement the byte counter BC, and
repeat until BC = 0 or (HL) equals A.

A - (HL) 5: Set if sign of subtraction per-
HL _ HL + 1 formed for comparison is nega­

BC-BC+1

Repeat until BC = 0

or A = (HL)

tive

Z: Set if A = (HL), otherwise reset

H: Set according to borrow from
bit 4

P/V: Set if BC - 1 """ 0, otherwise
reset

N:Set

C:N/A
765432 0

11,1,1,0,1,1,0,1

11,0,1,1,0,0,0,1

Timing: ForBC"",, 0

ForBC = 0

Addressing Mode:

M cycles- 5
T states - 21 (4, 4, 3, 5, 5)

M cycles-4

T states - 16 (4, 4, 3, 5)

Register Indirect

(Note that each repeat is accomplished by a decrement of
the PC, so that refresh, etc. continues for each cycle.)

CPOR
Compare data in memory location (HL) to the contents of
the Accumulator, decrement the memory pointer and byte
counter BC, and repeat until BC = 0, or until (HL) equals
the Accumulator.

A - (HL)

HL - HL - 1

BC - BC - 1
Repeat until BC = 0

or A = (HL)

5: Set if sign of subtraction per­
formed for comparison is nega­
tive

Z: Set according to equality of A
and (HL), set if true

H: Set according to borrow from
bit 4

P/V: Set if BC - 1 """ 0, otherwise
reset

N: Set

C:N/A
765432 0

11,1,1,0,1,1,0,1

11,0,1,1,1,0,0,1

Timing: ForBC"",, 0

ForBC = 0

Addressing Mode:

M cycles- 5

T states - 21 (4, 4, 3, 5, 5)

M cycles- 4

T states - 16 (4, 4, 3, 5)

Register Indirect

(Note that each repeat is accomplished by a decrement of
the BC, so that refresh, etc. continues for each cycle.)

z en o
01)
o
o

or---~ o

~
Z

12.12 Input/Output
IN A,(n)

Input data to the Accumulator from the I/O device at ad­
dress N.

A - (n)
765

No flags affected
43210

11 , 1 ,0, 1 , 1 ,0, 1

n

Timing:

Addressing Mode:

IN r,(C)

M cycles- 3

T states - 11 (4, 3, 4)

Source - Direct

Destination - Register

Input data to register r from the I/O device addressed by the
contents of register G. If r = 110 only flags are affected.

r - (G) S: Set if result is negative

Z: Set if result is zero

H: Reset

P IV: Set if result parity is even

N: Reset

G:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,11 10,0,01

Timing: M cycles - 3

T states - 12 (4, 4, 4)

Addressing Mode: Source - Register Indirect

Destination - Register

OUT (C), r
Output register r to the I/O device addressed by the con­
tents of register G.

(C) - r
7 6 5 4 3 2

No flags affected
o

10,0,

Timing:

Addressing Mode:

INI

M cycles-3

T states - 12 (4, 4, 4)

Source - Register

Destination - Register Indirect

Input data from the I/O device addressed by the contents of
register G to the memory location pointed to by the contents
of the HL register. The HL pOinter is incremented and the
byte counter 8 is decremented.

(HL) - (G) S: Undefined

8 - 8-1
HL - HL + 1

Z: Set if 8 -1 = 0, otherwise reset

H: Undefined

9-54

PIV: Undefined

N:Set

G:N/A
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

11,0,1,0,0,0,1,01

Timing: M cycles - 4

Addressing Mode:

OUTI

T states -16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

Output data from memory location (HL) to the I/O device at
port address (G), increment the memory pointer, and decre­
ment the byte counter 8.

(C) - (HL) S: Undefined

8 - 8-1
HL - HL + 1

Z: Set if 8-1 =0, otherwise reset

H: Undefined

PIV: Undefined

N: Set

G:N/A
7 6 5 432 1 0

11,1,1,0,1,1,0,11

11,0,1,0,0,0,1,11

Timing: M cycles - 4

Addressing Mode:

INO

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

Input data from I/O device at port address (G) to memory
location (HL), and decrement HL memory pointer and byte
counter 8.

(HL) - (G) S: Undefined

HL - HL - 1

8 - 8 - 1

Z: Set if 8 -1 = 0, otherwise reset

H: Undefined

PIV: Undefined

N:Set

G:N/A
7 6 5 4 321 0

11,1,1,0,1,1,0,11

11,0,1,0,1,0,1,01

Timing: M cycles - 4

Addressing Mode:

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

12.12 Input/Output (Continued)

OUT (n),A

Output the Accumulator to the I/O device at address n.

(n) ~ A No flags affected
7 6 5 4 3 2 1 0

11 1 1 , 0 , 1 ,0,0, 1

n

Timing:

Addressing Mode:

aUTO

M cycles- 3

T states - 11 (4, 3, 4)

Source - Register

Destination - Direct

Data is output from memory location (HL) to the I/O device
at port address (C), and the HL memory pointer and byte
counter B are decremented.

(C) ~ (HL)

B ~ B-1

HL ~ HL - 1

S: Undefined

Z: Set if B-1 = 0, otherwise reset

H: Undefined

P/V: Undefined

N: Set

C:N/A
7 6 5 4 3 2 1 0

11 1 1 1 1 , 0 , 1 1 1 ,0, 1

11 1 0 1 1 , 0 , 1 1 0 1 1

Timing: M cycles - 4

T states - 16 (4, 5, 3, 4)

Addressing Mode: Implied/Source - Register In­
direct

Destination - Register Indirect

INIR

Data is input from the I/O device at port address (C) to
memory location (HL), the HL memory pointer is increment­
ed, and the byte counter B is decremented. The cycle is
repeated until B = O.

(Note that B is tested for zero after it is decremented. By
loading B initially with zero, 256 data transfers will take
place.)

(HL) ~ (C)

HL ~ HL + 1

S: Undefined

Z: Set

B ~ B-1 H: Undefined

Repeat until B = 0 P/V: Undefined

N: Set

C: N/A

9-55

7 6 5 4 3 2 1 0

11 1 1 1 1 0 1 1 1 1 1 0 1 1 1

11 , 0 , 1 1 1 , 0 , 0 , 1 ,01

Timing: For B oF 0

ForB = 0

Addressing Mode:

M cycles- 5

T states - 21 (4, 5, 3, 4, 5)

M cycles - 4

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that at the end of each data transfer cycle, interrupts
may be recognized and two refresh cycles will be per­
formed.)

OTIR

Data is output to the I/O device at port address (C) from
memory location (HL), the HL memory pointer is increment­
ed, and the byte counter B is decremented. The cycles are
repeated until B = O.

(Note that B is tested for zero after it is decremented. By
loading B initially with zero, 256 data transfers will take
place.)

(C) ~ (HL) S: Undefined

HL ~ HL + 1

B ~ B-1

H: Undefined

Z: Set

Repeat until B = 0 P/V: Undefined

N: Set

C:N/A
7 6 5 4 3 2 1 0

11 1 1 1 1 , 0 , 1 1 1 , 0 , 1 1

11 1 0 , 1 1 1 1 0 1 0 1 1 1 1 I
Timing: For B oF 0 M cycles - 5

T states - 21 (4, 5, 3, 4, 5)

For B = 0 M cycles - 4

Addressing Mode:

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that at the end of each data transfer cycle, interrupts
may be recognized and two refresh cycles will be per­
formed.)

z
UJ o
QI)
o
o

o
o
ClCI o en
z

12.12 Input/Output (Continued)

INOR

Data is input from the I/O device at address (C) to memory
location (HL), then the HL memory pointer is byte counter B
are decremented. The cycle is repeated until B = O.

(Note that B is tested for zero after it is decremented. By
loading B initially with zero, 256 data transfers will take
place.)

(HL) +- (C)

HL +- HL - 1

B +- B-1

S: Undefined

Z: Set

H: Undefined

Repeat until B = 0 PIV: Undefined

N: Set

C: N/A
7 6 5 4 3 2 1 0

11 , 1 , 1 , 0 , 1 , 1 , 0 , 1 1

11 ,0, 1 , 1 ,0,0, 1 ,01

Timing: For B * 0

ForB = 0

Addressing Mode:

M cycles - 5

T states - 21 (4, 5, 3, 4, 5)

M cycles-4

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that after each data transfer cycle, interrupts may be
recognized and two refresh cycles are performed.)

OTOR

Data is output from memory location (HL) to the I/O device
at port address (C), then the H L memory pointer and byte
counter B are decremented. The cycle is repeated until B =
O.

(Note that B is tested for zero after it is decremented. By
loading B initially with zero, 256 data transfers will take
place.)

(C) +- (HL)

HL +- HL - 1

S: Undefined

Z: Set

B +- B-1 H: Undefined

Repeat until B = 0 PIV: Undefined

N: Set

C:N/A
7 6 5 4 3 2 1 0

11 , 1 , 1 , 0 , 1 , 1 , 0 , 1

11 ,0, 1 , 1 , 1 ,0, 1 , 1

Timing: ForB * 0

For B = 0

Addressing Mode:

M cycles - 5

T states - 21 (4, 5, 3, 4, 5)

M cycles - 4

T states - 16 (4, 5, 3, 4)

Implied/Source - Register In­
direct

Destination - Register Indirect

(Note that after each data transfer cycle the NSC800 will
accept interrupts and perform two refresh cycles.)

9-56

12.13 CPU Control
NOP

The CPU performs no operation.

No flags affected
7 6 5 4 3 2 1 0

10,0,0,0,0,0,0,01

Timing:

Addressing Mode:

HALT

M cycles-1

T states - 4

N/A

The CPU halts execution of the program. Dummy op-code
fetches are performed from the next memory location to
keep the refresh circuits active until the CPU is interrupted
or reset from the halted state.

No flags affected
7 6 5 4 3 2 1 0

10, 1 , 1 , 1 ,0, 1 , 1 ,01

Timing:

Addressing Mode:

01

M cycles-1

T states - 4

N/A

Disable system level interrupts.

IFF1 +- 0 No flags affected

IFF2 +- 0
7 6 5 4 3 2 1 0

11 , 1 , 1 , 1 , 0 , 0 , 1 , 1 1

Timing:

Addressing Mode:

EI

M cycles - 1

T states - 4

N/A

The system level interrupts are enabled. During execution of
this instruction, and the next one, the maskable interrupts
will be disabled.

IFF1 +- 1 No flags affected

IFF2 +- 1
7 6 543 2 1 0

11 , 1 , 1 , 1 , 1 , 0 , 1 , 1 1

Timing:

Addressing Mode:

1M 0

M cycles-1

T states - 4

N/A

The CPU is placed in interrupt mode O.

No flags affected
7 6 543 2 1 0

11 , 1 , 1 , 0 , 1 , 1 , 0 , 1 1

Timing:

Addressing Mode:

M cycles - 2

T states - 8 (4, 4)

N/A

12.13 CPU Control (Continued)

1M
The CPU is placed in interrupt mode 1.

No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,1,0,1,1,01

Timing:

Addressing Mode:

1M 2

M cycles- 2

T states - B (4, 4)

N/A

The CPU is placed in interrupt mode 2.

No flags affected
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,1,1,1,1,01

Timing:

Addressing Mode:

M cycles-2

T states - B (4, 4)
N/A

12.14 Program Control
JUMPS

JP nn
Unconditional jump to program location nn.

PC - nn No flags affected
7 6 5 4 3 2 1 °

11,1,0,0,0,0,1,11

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

JP (ss)

M cycles- 3

T states - 10 (4, 3, 3)

Direct

Unconditional jump to program location pOinted to by regis­
ter ss.

PC - ss No flags affected
7 6 5 4 321 0

11 , 1 , 1 , ° , 1 , ° , ° , 1 1 JP (HL)

Timing:

Addressing Mode:

M cycles-1

Tstates-4

Register Indirect

9-57

76543210

11 , 1 , Nx , 1 , 1 , 1 , ° , 1 1
JP (IX) (for Nx = 0)

JP (IY) (for Nx = 1)

Timing:

Addressing Mode:

JP cC,nn

M cycles- 2

T states - B (4, 4)

Register Indirect

Conditionally jump to program location nn based on testable
flag states.

If cc true,

PC - nn,
otherwise continue

No flags affected

7 6 5 4 3 2 1 0

1o , 1 , ° 1

n (low-order byte)

n (high-order byte)

Timing:

Addressing Mode:

JR d

M cycles-3

T states - 10 (4, 3, 3)

Direct

Unconditional jump to program location calculated with re­
spect to the program counter and the displacement d.

PC - PC + d No flags affected
7 654 3 2 1 0

10,0,0,1,1,0,0,01

d-2

Timing:

Addressing Mode:

JR kk,d

M cycles- 3
T states -12 (4, 3, 5)

PC Relative

Conditionally jump to program location calculated with re­
spect to the program counter and the displacement d,
based on limited testable flag states.

If kk true, No flags affected

PC - PC + d,
otherwise continue
7 6 5 4 3 2 1 0

10,0,11 ~k 10,0,01

Timing:

d-2

ifkk met

(true)

if kk not met
(not true)

Addressing Mode:

M cycles- 3

T states - 12 (4, 3, 5)

M cycles - 2
T states - 7 (4, 3)

PC Relative

z
~
CD o
o

12.14 Program Control (Continued)

DJNZ d
Decrement the B register and conditionally jump to program
location calculated with respect to the program counter and
the displacement d, based on the contents of the B register.

B - B-1 No flags affected
If B = 0 continue,

else PC - PC + d
7 6 5 432 1 0

10,0,0,1,0,0,0,01

d-2

Timing: IfB #0 0

IfB = 0

Addressing Mode:

CALLS

CALL nn

M cycles-3

T states -13 (5, 3, 5)

M cycles-2

T states - 8 (5, 3)

PC Relative

Unconditional call to subroutine at location nn.

(SP - 1) - PCH No flags affected

(SP - 2) - PCl

SP - SP - 2

PC - nn
7 6 5 4 321 0

11,1,0,0,1,1,0,11

n (low-order byte) 1

n (high-order byte)

Timing: M Cycles-5

T states - 17 (4, 3, 4, 3, 3)

Addressing Mode: Direct

CALL cc,nn
Conditional call to subroutine at location nn based on test­
able flag stages.

If cctrlJe,

(SP -1) - PCH

(SP - 2) - PCl
SP-SP-2

PC - nn,
else continue

No flags affected

7 6 5 4 3 2 1 0

n (low-order byte)

n (high-order byte)

Timing: If cc true M cycles-5

T states 17 (4, 3, 4, 3, 3)

If cc not true M cycles - 3

T states - 10 (4, 3, 3)

Addressing Mode: Direct

9-58

RETURNS

RET
Unconditional return from subroutine or other return to pro­
gram location pointed to by the top of the stack.

PCl - (SP) No flags affected

PCH - (SP + 1)

SP - SP + 2
7 6 5 4 3 2 1 0

11 , 1 ,0,0, 1 ,0,0, 1 1

Timing:

Addressing Mode:

RET cc

M cycles-3

T states - 10 (4, 3, 3)

Register Indirect

Conditional return from subroutine or other return to pro­
gram location pointed to by the top of the stack.

If cc true, No flags affected

PCl - (SP)

PCH - (SP + 1)

SP - SP + 2,
else continue
765 4 321 0

11,11 ,cc, 10,0,01

Timing: If cc true M cycles-3

If cc not true

T states - 11 (5, 3, 3)

M cycles-l
Tstates- 5

Addressing Mode: Register Indirect

RETI
Unconditional return from interrupt handling subroutine.
Functionally identical to RET instruction. Unique opcode al­
lows monitoring by external hardware.

PCl - (SP) No flags affected

PCH - (SP + 1)

SP - SP + 2
7 6 5 4 3 2 1 0

11,1,1,0,1,1,0,11

10,1,0,0,1,1

Timing:

Addressing Mode:

, 0 , 1 1

M cycles - 4

T states - 14 (4, 4, 3, 3)

Register Indirect

~--~z

~ 12.14 Program Control (Continued)

RETN

Unconditional return from non-maskable interrupt handling
subroutine. Functionally similar to RET instruction, except
interrupt enable state is restored to that prior to non-mask­
able interrupt.

PCl +- (SP) No flags affected

PCH +- (SP + 1)

SP +- SP + 2

IFF1 +- IFF2
7 6 5 4 321 0

11,1,1,0,1,1,0,11

10,1,0,0,0,1,0,11
Timing: M cycles - 4

T states - 14 (4, 4, 3, 3)

Addressing Mode: Register Indirect

9-59

RESTARTS

RST P

The present contents of the PC are pushed onto the memo­
ry stack and the PC is loaded with dedicated program loca­
tions as determined by the specific restart executed.

(SP - 1) +- PCH No flags affected

(SP - 2) +- PCl

SP +- SP - 2

PCH +- 0

PCl +- P
7 6 5 432 1 0

11 11 , 1 , 1 1
Timing: M cycles- 3

T states - 11 (5, 3, 3)

Addressing Mode: Modified Page Zero

CD
Q
Q

•

0
0
CO 12.15 Instruction Set: Alphabetical Order 0
rn

ADC A,(HL) BE BIT O,B CB40 Z
ADC A,(lX+d) DDBEd BIT o,C CB41
ADC A,(IY+d) FDBEd BIT 0,0 CB42
ADC A,A BF BIT O,E CB43
ADC A,B BB BIT O,H CB44
ADC A,C B9 BIT O,L CB45
ADC A,D BA BIT 1, (HL) CB4E
ADC A,E BB BIT 1,(lX+d) DDCBd4E
ADC A,H BC BIT 1,(IY+d) FDCBd4E
ADC A, L BD BIT 1,A CB4F
ADC A,n CEn BIT 1, B CB4B
ADC HL,BC ED4A BIT 1,C CB49
ADC HL, DE ED5A BIT 1,0 CB4A
ADC HL,HL ED6A BIT 1, E CB4B
ADC HL,SP ED7A BIT 1,H CB4C
ADD A,(HL) B6 BIT 1, L CB4D
ADD A,(IX+d) DDB6d BIT 2, (HL) CB56
ADD A,(IY+d) FDB6d BIT 2,(lX+d) DDCBd56
ADD A,A B7 BIT 2,(IY+d) FDCBd56
ADD A,B BO BIT 2,A CB57
ADD A,C B1 BIT 2,B CB50
ADD A,D B2 BIT 2,C CB51
ADD A,E B3 BIT 2,0 CB52
ADD A,H B4 BIT 2,E CB53
ADD A, L B5 BIT 2,H CB54
ADD A,n C6n BIT 2,L CB55
ADD HL, BC 09 BIT 3,(HL) CB5E
ADD HL,DE 19 BIT 3, (lX+d) DDCBd5E
ADD HL, HL 29 BIT 3,{IY+d) FDCBd5E
ADD HL,SP 39 BIT 3,A CB5F
ADD IX,BC DD09 BIT 3,B CB5B
ADD IX,DE DD19 BIT 3,C CB59
ADD IX,IX DO 29 BIT 3,0 CB5A
ADD IX,SP 0039 BIT 3,E CB5B
ADD IY,BC FD09 BIT 3,H CB5C
ADD IY,DE FD19 BIT 3,L CB5D
ADD IY,IY FD29 BIT 4,(HL) CB66
ADD IY,SP FD39 BIT 4,(IX+d) DDCBd66
AND (HL) A6 BIT 4,(IY+d) FDCBd66
AND (IX+d) DDA6d BIT 4,A CB67
AND (IY+d) FDA6d BIT 4,B CB60
AND A A7 BIT 4,C CB61
AND B AO BIT 4,0 CB62
AND C A1 BIT 4,E CB63
AND D A2 BIT 4,H CB64
AND E A3 BIT 4,L CB65
AND H A4 BIT 5,(HL) CB6E
AND L A5 BIT 5,(lX+d) DDCBd6E
AND n E6n BIT 5,(IY+d) FDCBd6E
BIT O,(HL) CB46 BIT 5,A CB6F
BIT O,(IX+d) DDCBd46 BIT 5,B CB6B
BIT 0, (IY+d) FDCBd46 BIT 5,C CB69
BIT O,A CB47 BIT 5,0 CB6A

(nn) ~ address of memory location d ~ signed displacemenl

nn~Data (16 bil) d2~d-2

n ~ Dala (8 bit)

9-60

z
12.15 Instruction Set: Alphabetical Order (Continued)

en
0
CII)

BIT 5,E CB6B DEC A 3D 0
0

BIT 5,H CB6C DEC B 05
BIT 5,L CB6D DEC BC OB
BIT 6, (HL) CB76 DEC C OD
BIT 6,(IX+d) DDCBd76 DEC D 15
BIT 6, (IY+d) FDCBd76 DEC DE lB
BIT 6,A CB77 DEC E 10
BIT 6,B CB70 DEC H 25
BIT 6,C CB71 DEC HL 2B
BIT 6,D CB72 DEC IX DD2B
BIT 6,E CB73 DEC IY FD2B
BIT 6, H CB74 DEC L 2D
BIT 6,L CB75 DEC SP 3B
BIT 7, (HL) CB7E DI F3
BIT 7,(1X+d) DDCBd7E DJNZ d2 10d2
BIT 7,(IY+d) FDCBd7E EI FB
BIT 7,A CB7F EX (SP),HL E3
BIT 7,B CB7B EX (SP), IX DDE3
BIT 7,C CB79 EX (SP),IY FDE3
BIT 7,D CB7A EX AF,A'F' OB
BIT 7,E CB7B EX DE,HL EB
BIT 7,H CB7C EXX D9
BIT 7,L CB7D HALT 76
CALL C,nn DCnn 1M 0 ED 46
CALL M,nn FCnn 1M 1 ED56
CALL NC,nn D4nn 1M 2 ED5E
CALL nn CDnn IN A, (C) ED7B
CALL NZ, nn C4nn IN A, (n) DBn
CALL P,nn F4nn IN B,(C) ED40
CALL PE,nn ECnn IN C,(C) ED4B
CALL PO, nn E4nn IN D,(C) ED50
CALL Z,nn CCnn IN E,(C) ED5B
CCF 3F IN H,(C) ED60
CP (HL) BE IN L, (C) ED6B
CP (IX+d) DDBEd INC (HL) 34
CP (IY+d) FDBEd INC (IX+d) DD34d
CP A BF INC (IY+d) FD34d
CP B BB INC A 3C
CP C B9 INC B 04
CP D BA INC BC 03
CP E BB INC C OC
CP H BC INC D 14
CP L BD INC DE 13
CP n FEn INC E lC
CPD EDA9 INC H 24
CPDR EDB9 INC HL 23
CPI EDAl INC IX DD23
CPIR EDBl INC IY FD23
CPL 2F INC L 2C
DAA 27 INC SP 33
DEC (HL) 35 IND EDAA
DEC (IX+d) DD35d INDR EDBA
DEC (IY+d) FD35d INI EDA2

(nn) = Address of memory location d = signed displacement • nn = Data (16 bit) d2=d-2

n = Data (8 bit)

9-61

0
0
CO 12.15 Instruction Set: Alphabetical Order (Continued) (J
(/)

INIR EDB2 LD A,(HL) 7E z
JP (HL) E9 LD A,(IX+d) DD7Ed
JP (IX) DDE9 LD A,(IV+d) FD7Ed
JP (IV) FDE9 LD A, (nn) 3Ann
JP C,nn DAnn LD A,A 7F
JP M,nn FAnn LD A,B 78
JP NC,nn D2nn LD A,C 79
JP nn C3nn LD A,D 7A
JP NZ,nn C2nn LD A,E 7B
JP P,nn F2nn LD A,H 7C
JP PE,nn EAnn LD A,I ED 57
JP PO, nn E2nn LD A, L 7D
JP Z,nn CAnn LD A,n 3En
JR C,d2 38d2 LD B,(HL) 46
JR d2 18d2 LD B,(IX+d) DD46d
JR NC,d2 30d2 LD B,(IV+d) FD46d
JR NZ,d2 20d2 LD B,A 47
JR Z,d2 28d2 LD B,B 40
LD (BC),A 02 LD B,C 41
LD (DE), A 12 LD B,D 42
LD (HL),A 77 LD B,E 43
LD (HL), B 70 LD B,H 44
LD (HL),C 71 LD B,L 45
LD (HL), D 72 LD B,n 06n
LD (HL), E 73 LD BC,(nn) ED4B
LD (HL), H 74 LD BC,nn 01nn
LD (HL), L 75 LD C,(HL) 4E
LD (HL),n 36n LD C,(IX+d) DD4Ed
LD (IX+d),A DD77d LD C,(IV+d) FD4Ed
LD (IX+d),B DD70d LD C,A 4F
LD (IX+d),C DD71d LD C,B 48
LD (lX+d),D DD72d LD C,C 49
LD (IX+d),E DD73d LD C,D 4A
LD (lX+d),H DD74d LD C,E 4B
LD (IX+d), L DD75d LD C,H 4C
LD (IX + d), n DO 36dn LD C,L 40
LD (IV+d), A FD77d LD C,n OEn
LD (IV+d),B FD70d LD D,(HL) 56
LD (IV+d),C FD71d LD D,(lX+d) DD56d
LD (IV+d),D FD72d LD D,(IV+d) FD56d
LD (IV+d), E FD73d LD D,A 57
LD (IV+d),H FD74d LD D,B 50
LD (IV+d), L FD75d LD D,C 51
LD (IV+d), n FD36dn LD D,D 52
LD (nn),A 32nn LD D,E 53
LD (nn),BC ED 43nn LD D,H 54
LD (nn),DE ED 53nn LD 0, L 55
LD (nn),HL 22nn LD D,n 16 n
LD (nn),IX DO 22nn LD DE,(nn) ED5Bnn
LD (nn),IV FD22nn LD DE,nn 11nn
LD (nn),SP ED 73nn LD E,(HL) 5E
LD A,(BC) OA LD E,(IX+d) DD5Ed
LD A,(DE) 1A LD E,(IV+d) FD5Ed

(nn) ~ Address of memory location d ~ signed displacement

nn ~ Data (16 bit) d2~d-2

n ~ Data (8 bit)

9-62

z
12.15 Instruction Set: Alphabetical Order (Continued)

en
0
01)

LD E,A 5F OR C B1 0
0

LD E,B 58 OR D B2
LD E,C 59 OR E B3
LD E,D 5A OR H B4
LD E,E 5B OR L B5
LD E, H 5C OR n F6 n
LD E,L 5D OTDR EDBB
LD E,n 1E n OTIR EDB3
LD H, (HL) 66 OUT (C),A ED79
LD H,(IX+d) DD66d OUT (C), B ED41
LD H,(IY+d) FD66d OUT (C),C ED49
LD H,A 67 OUT (C), D ED51
LD H,B 60 OUT (C),E ED59
LD H,C 61 OUT (C),H ED61
LD H,D 62 OUT (C),L ED69
LD H,E 63 OUT n,A D3n
LD H,H 64 OUTO EDAB
LD H,L 65 OUTI EDA3
LD H,n 26 n POP AF F1
LD HL, (nn) 2Ann POP BC C1
LD HL, nn 21nn POP DE D1
LD I,A ED47 POP HL E1
LD IX, (nn) DD2Ann POP IX DDE1
LD IX, nn DD 21nn POP IY FD E1
LD IY, (nn) FD2Ann PUSH AF F5
LD IY, nn FD21nn PUSH BC C5
LD L,(HL) 6E PUSH DE D5
LD L,(lX+d) DD6Ed PUSH HL E5
LD L,(lY+d) FD6Ed PUSH IX DDE5
LD L,A 6F PUSH IY FDE5
LD L, B 68 RES O,(HL) CB86
LD L,C 69 RES O,(IX+d) DDCBd86
LD L,D 6A RES O,(IY+d) FDCBd86
LD L,E 6B RES O,A CB87
LD L, H 6C RES O,B CB80
LD L,L 6D RES O,C CB81
LD L,n 2En RES O,D CB82
LD SP, (nn) ED7Bnn RES O,E CB83
LD SP,HL F9 RES O,H CB84
LD SP,IX DDF9 RES O,L CB85
LD SP,IY FDF9 RES 1, (HL) CB8E
LD SP,nn 31nn RES 1, (IX+d) DDCBd8E
LDD EDA8 RES 1,(lY+d) FDCBd8E
LDDR EDB8 RES 1,A CB8F
LDI EDAO RES 1, B CB88
LDIR EDBO RES 1,C CB89
NEG EDn RES 1,D CB8A
NOP 00 RES 1, E CB8B
OR (HL) B6 RES 1, H CB8C
OR (lX+d) DDB6d RES 1, L CB8D
OR ' (IY+d) FDB6d RES 2,(HL) CB96
OR A B7 RES 2,(IX+d) DDCBd96
OR B BO RES 2, (IY+d) FDCBd96

(nn) = Address of memory location d = signed displacement • nn=Data (16 bit) d2=d-2

n = Data (8 bit)

9-63

«:)
«:)
CD 12.15 Instruction Set: Alphabetical Order (Continued) (.)
tn

RES 2,A CB97 RES 7,D CBBA Z
RES 2,B CB90 RES 7,E CBBB
RES 2,C CB91 RES 7,H CBBC
RES 2,D CB92 RES 7,L CBBD
RES 2,E CB93 RET C9
RES 2,H CB94 RET C D8
RES 2,L CB95 RET M F8
RES 3,(HL) CB9E RET NC DO
RES 3,(IX+d) DDCBd9E RET NZ CO
RES 3,(lY+d) FDCBd9E RET P FO
RES 3,A CB9F RET PE E8
RES 3,B CB98 RET PO EO
RES 3,C CB99 RET Z C8
RES 3,D CB9A RETI ED4D
RES 3,E CB9B RETN ED45
RES 3,H CB9C RL (HL) CB16
RES 3,L CB9D RL (IX+d) DDCBd16
RES 4,(HL) CBA6 RL (IY+d) FDCBd16
RES 4,(IX+d) DDCBdA6 RL A CB17
RES 4,(IY+d) FDCBdA6 RL B CB10
RES 4,A CBA7 RL C CB 11
RES 4,B CBAO RL D CB12
RES 4,C CBA1 RL E CB13
RES 4,D CBA2 RL H CB14
RES 4,E CBA3 RL L CB15
RES 4, H CBA4 RLA 17
RES 4,L CBA5 RLC (HL) CB06
RES 5, (HL) CBAE RLC (IX+d) DDCBd06
RES 5, (IX+d) DDCBdAE RLC (IY+d) FDCBd06
RES 5,(lY+d) FDCBdAE Rl,.C A CB07
RES 5,A CBAF RLC B CBOO
RES 5,B CBA8 RLC C CB01
RES 5,C CBA9 RLC D CB02
RES 5, D CBAA RLC E CB03
RES 5,E CBAB RLC H CB04
RES 5,H CBAC RLC L CB05
RES 5,L CBAD RLCA 07
RES 6,(HL) CBB6 RLD ED6F
RES 6,(IX+d) DDCBdB6 RR (HL) CB1E
RES 6,(IY+d) FDCBdB6 RR (IX+d) DDCBd1E
RES 6,A CBB7 RR (IY+d) FDCBd1E
RES 6,B CBBO RR A CB1F
RES 6,C CBB1 RR B CB18
RES 6,D CBB2 RR C CB19
RES 6,E CBB3 RR D CB1A
RES 6,H CBB4 RR E CB1B
RES 6,L CBB5 RR H CB1C
RES 7, (HL) CBBE RR L CB1D
RES 7, (IX+d) DDCBdBE RRA 1F
RES 7, (lY+d) FDCBdBE RRC (HL) CBOE
RES 7,A CBBF RRC (IX+d) DDCBdOE
RES 7,B CBB8 RRC (IY+d) FDCBdOE
RES 7,C CBB9 RRC A CBOF

(nn) = Address of memory location d = signed displacement

nn = Data (t6 bit) d2=d-2

n = Data (8 bit)

9-64

z
12.15 Instruction Set: Alphabetical Order (Continued)

en
n
01:1

RRC B CB08 SET 2, (IX+d) DDCBdD6 0
0

RRC C CB09 SET 2, (IY+d) FDCBdD6
RRC D CBOA SET 2,A CBD7
RRC E CBOB SET 2,B CBDO
RRC H CBOC SET 2,C CBD1
RRC L CBOD SET 2, D CBD2
RRCA OF SET 2,E CB D3
RRD ED67 SET 2,H CBD4
RST 0 C7 SET 2,L CB D5
RST 08H CF SET 3,(HL) CBDE
RST 10H D7 SET 3, (IX+d) DDCBdDE
RST 18H DF SET 3, (IY+d) FDCBdDE
RST 20H E7 SET 3,A CBDF
RST 28H EF SET 3,B CBD8
RST 30H F7 SET 3,C CBD9
RST 38H FF SET 3,D CBDA
SBC A,(HL) 9E SET 3,E CBDB
SBC A,(IX+d) DD9Ed SET 3,H CBDC
SBC A,(IY+d) FD9Ed SET 3,L CBDD
SBC A,A 9F SET 4, (HL) CBE6
SBC A,B 98 SET 4, (IX+d) DDCBdE6
SBC A,C 99 SET 4, (IY+d) FDCBdE6
SBC A,D 9A SET 4,A CBE7
SBC A,E 9B SET 4,B CB EO
SBC A,H 9C SET 4,C CBE1
SBC A, L 9D SET 4, D CBE2
SBC A, n DEn SET 4,E CBE3
SBC HL, BC ED42 SET 4, H CBE4
SBC HL,DE ED52 SET 4,L CBE5
SBC HL,HL ED62 SET 5, (HL) CBEE
SBC HL,SP ED72 SET 5,(IX+d) DDCBdEE
SCF 37 SET 5,(IY+d) FDCBdEE
SET O,(HL) CBC6 SET 5,A CBEF
SET O,(IX+d) DDCBdC6 SET 5,B CB E8
SET O,(IY+d) FDCBdC6 SET 5,C CBE9
SET O,A CBC7 SET 5,D CBEA
SET O,B CBCO SET 5,E CBEB
SET O,C CBC1 SET 5,H CBEC
SET O,D CBC2 SET 5,L CBED
SET O,E CBC3 SET 6, (HL) CBF6
SET O,H CBC4 SET 6, (IX+d) DDCBdF6
SET O,L CBC5 SET 6, (IY+d) FDCBdF6
SET 1, (HL) CBCE SET 6,A CBF7
SET 1, (IX+d) DDCBdCE SET 6,B CBFO
SET 1, (IY+d) FDCBdCE SET 6,C CB F1
SET 1,A CBCF SET 6, D CBF2
SET 1, B CBC8 SET 6,E CBF3
SET 1, C CBC9 SET 6,H CBF4
SET 1, D CBCA SET 6,L CBF5
SET 1, E CBCB SET 7, (HL) CBFE
SET 1,H CBCC SET 7, (IX+d) DDCBdFE
SET 1, L CBCD SET 7, (IY+d) FDCBdFE
SET 2, (HL) CBD6 SET 7,A CBFF

(nn)~Address of memory location d ~ displacement • nn~ Data (16 bit) d2~d-2

n ~ Data (8 bit)

9-65

Q
Q
CD 12.15 Instruction Set: Alphabetical Order (Continued) CJ
U)

SET 7,B CBF8 SRL A CB3F Z
SET 7,C CBF9 SRL B CB38
SET 7,D CBFA SRL C CB39
SET 7,E CBFB SRL D CB3A
SET 7,H CBFC SRL E CB3B
SET 7,L CBFD SRL H CB3C
SLA (HL) CB26 SRL L CB3D
SLA (lX+d) DDCBd26 SUB (HL) 96
SLA (IY+d) FDCBd26 SUB (IX+d) DD96d
SLA A CB27 SUB (IY+d) FD96d
SLA B CB20 SUB A 97
SLA C CB21 SUB B 90
SLA D CB22 SUB C 91
SLA E CB23 SUB D 92
SLA H CB24 SUB E 93
SLA L CB25 SUB H 94
SRA (HL) CB2E SUB L 95
SRA (IX+d) DDCBd2E SUB n D6n
SRA (IY+d) FDCBd2E XOR (HL) AE
SRA A CB2F XOR (IX+d) DDAEd
SRA B CB28 XOR (lY+d) FDAEd
SRA C CB29 XOR A AF
SRA D CB2A XOR B A8
SRA E CB2B XOR C A9
SRA H CB2C XOR D M
SRA L CB2D XOR E AB
SRL (HL) CB3E XOR H AC
SRL (IX + d) DDCBd3E XOR L AD
SRL (IY+d) FDCBd3E XOR n EEn

12.16 Instruction Set: Numerical Order
OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic

00 NOP 15 DECD 2Ann LD HL,(nn)
01nn LDBC,nn 16n LDD,n 2B DECHL
02 LD(BC),A 17 RLA 2C INCL
03 INCBC 18d2 JRd2 2D DECL
04 INCB 19 ADDHL,DE 2En LDL,n
05 DECB 1A LDA,(DE) 2F CPL
06n LDB,n 1B DEC DE 30d2 JRNC,d2
07 RLCA 1C INCE 31nn LDSP,nn
08 EXAF,A'F' 10 DECE 32nn LD(nn),A
09 ADDHL,BC 1En LDE,n 33 INCSP
OA LDA,(BC) 1F RRA 34 INC (HL)
OB DECBC 20d2 JR NZ,d2 35 DEC (HL)
OC INCC 21nn LDHL,nn 36n LD(HL),n
OD DECC 22nn LD(nn),HL 37 SCF
OEn LDC,n 23 INCHL 38 JRC,d2
OF RRCA 24 INCH 39 ADDHL,SP
10d2 DJNZd2 25 DECH 3Ann LDA,(nn)
11nn LD DE,nn 26n LDH,n 3B DECSP
12 LD(DE),A 27 DAA 3C INCA
13 INC DE 28d2 JRZ,d2 3D DECA
14 INCD 29 ADDHL,HL 3En LDA,n

(nn) = Address of memory location d = displacement

nn=Data (16 bit) d2=d-2

n=Data (8 bit)

9-66

z
12.16 Instruction Set: Numerical Order (Continued)

en
0
Q)

OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic Q
Q

3F CCF 74 LD(HL),H A9 XORC
40 LDB,B 75 LD(HL),L AA XORD
41 LDB,C 76 HALT AB XORE
42 LDB,D 77 LD (HL),A AC XORH
43 LDB,E 78 LDA,B AD XORL
44 LDB,H 79 LDA,C AE XOR(HL)
45 LDB,L 7A LDA,D AF XORA
46 LD B,(HL) 7B LDA,E BO ORB
47 LDB,A 7C LDA,H B1 ORC
48 LDC,B 7D LDA,L B2 ORD
49 LDC,C 7E LDA,(HL) B3 ORE
4A LDC,D 7F LDA,A B4 ORH
4B LDC,E 80 ADDA,B B5 ORL
4C LDC,H 81 ADDA,C B6 OR (HL)
4D LDC,L 82 ADDA,D B7 ORA
4E LDC,(HL) 83 ADDA,E B8 CPB
4F LDC,A 84 ADDA,H B9 CPC
50 LDD,B 85 ADDA,L BA CPD
51 LDD,C 86 ADDA,(HL) BB CPE
52 LDD,D 87 ADDA,A BC CPH
53 LDD,E 88 ADCA,B BD CPL
54 LDD,H 89 ADCA,C BE CP(HL)
55 LDD,L 8A ADCA,D BF CPA
56 LDD,(HL) 8B ADCA,E CO RETNZ
57 LDD,A 8C ADCA,H C1 POPBC
58 LDE,B 8D ADCA,L C2nn JPNZ,nn
59 LDE,C 8E ADCA,(HL) C3nn JPnn
5A LDE,D 8F ADCA,A C4nn CALL NZ,nn
5B LDE,E 90 SUBB C5 PUSHBC
5C LDE,H 91 SUBC C6n ADDA,n
5D LDE,L 92 SUBD C7 RSTO
5E LDE,(HL) 93 SUBE C8 RETZ
5F LDE,A 94 SUBH C9 RET
60 LDH,B 95 SUBL CAnn JP Z,nn
61 LDH,C 96 SUB (HL) CBOO RLCB
62 LDH,D 97 SUBA CB01 RLCC
63 LDH,E 98 SBCA,B CB02 RLCD
64 LDH,H 99 SBCA,C CB03 RLCE
65 LDH,L 9A SBCA,D CB04 RLCH
66 LD H,(HL) 9B SBCA,E CB05 RLCL
67 LDH,A 9C SBCA,H CB06 RLC(HL)
68 LDL,B 9D SBCA,L CB07 RLCA
69 LDL,C 9E SBCA,(HL) CB08 RRCB
6A LDL,D 9F SBCA,A CB09 RRCC
6B LDL,E AO ANDB CBOA RRCD
6C LDL,H A1 ANDC CBOB RRCE
6D LDL,L A2 ANDD CBOC RRCH
6E LD L,(HL) A3 ANDE CBOD RRCL
6F LDL,A A4 ANDH CBOE RRC(HL)
70 LD(HL),B A5 ANDL CBOF RRCA
71 LD(HL),C A6 AND (HL) CB10 RLB
72 LD(HL),D A7 ANDA CB11 RLC
73 LD(HL),E A8 XORB CB12 RLD • (nn) = Address of memory location d = displacement

nn~Data (16 bit) d2~d-2

n ~ Data (B-bit)

9-67

Q
Q
co 12.16 Instruction Set: Numerical Order (Continued) (,)
en

OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic Z
CB13 RLE CB4F BIT1,A CBS3 RESO,E
CB14 RLH CB50 BIT2,B CBS4 RESO,H
CB15 RLL CB51 BIT2,C CBS5 RESO,L
CB16 RL(HL) CB52 BIT 2,0 CBS6 RESO,(HL)
CB17 RLA CB53 BIT2,E CBS7 RESO,A
CB1S RRB CB54 BIT2,H CBSS RES 1,B
CB19 RRC CB55 BIT2,L CBS9 RES1,C
CB1A RRD CB56 BIT2,(HL) CBSA RES 1,0
CB1B RRE CB57 BIT2,A CBSB RES 1,E
CB1C RRH CB5S BIT3,B CBSC RES 1,H
CB1D RR L CB59 BIT3,C CBSD RES 1,L
CB1E RR(HL) CB5A BIT3,D CBSE RES 1,(HL)
CB1F RRA CB5B BIT3,E CBSF RES 1,A
CB20 SLAB CB5C BIT3,H CB90 RES2,B
CB21 SLAC CB5D BIT3,L CB91 RES2,C
CB22 SLAD CB5E BIT3,(HL) CB92 RES2,D
CB23 SLAE CB5F BIT3,A CB93 RES2,E
CB24 SLAH CB60 BIT4,B CB94 RES2,H
CB25 SLAL CB61 BIT4,C CB95 RES2,L
CB26 SLA(HL) CB62 BIT4,D CB96 RES2,(HL)
CB27 SLAA CB63 BIT4,E CB97 RES2,A
CB2S SRAB CB64 BIT4,H CB98 RES3,B
CB29 SRAC CB65 BIT4,L CB99 RES3,C
CB2A SRAD CB66 BIT4,(HL) CB9A RES3,D
CB2B SRAE CB67 BIT4,A CB9B RES3,E
CB2C SRAH CB6S BIT5,B CB9C RES3,H
CB2D SRAL CB69 BIT5,C CB9D RES3,L
CB2E SRA(HL) CB6A BIT5,D CB9E RES3,(HL)
CB2F SRAA CB6B BIT5,E CB9F RES3,A
CB38 SRLB CB6C BIT5,H CBAO RES4,B
CB39 SRLC CB6D BIT5,L CBA1 RES4,C
CB3A SRLD CB6E BIT5,(HL) CBA2 RES4,D
CB3B SRLE CB6F BIT5,A CBA3 RES4,E
CB3C SRLH CB70 BIT6,B CBA4 RES4,H
CB3D SRLL CB71 BIT6,C CBA5 RES4,L
CB3E SRL(HL) CB72 BIT6,D CBA6 RES4,(HL)
CB3F SRLA CB73 BIT6,E CBA7 RES4,A
CB40 BITO,B CB74 BIT6,H CBA8 RES5,B
CB41 BITO,C CB75 BIT6,L CBA9 RES5,C
CB42 BITO,D CB76 BIT6,(HL) CBAA RES5,D
CB43 BITO,E CB77 BIT6,A CBAB RES5,E
CB44 BITO,H CB78 BIT7,B CBAC RES5,H
CB45 BITO,L CB79 BIT7,C CBAD RES5,L
CB46 BITO,(HL) CB7A BIT7,D CBAE RES5,(HL)
CB47 BITO,A CB7B BIT7,E CBAF RES5,A
CB48 BIT1,B CB7C BIT7,H CBBO RES6,B
CB49 BIT1,C CB7D BIT7,L CBB1 RES6,C
CB4A BIT1,D CB7E BIT7,(HL) CBB2 RES6,D
CB4B BIT 1,E CB7F BIT7,A CBB3 RES6,E
CB4C BIT1,H CB80 RESO,B CBB4 RES6,H
CB4D BIT1,L CBS1 RESO,C CBB5 RES6,L
CB4E BIT 1,(HL) CB82 RES 0,0 CBB6 RES6,(HL)

(nn) ~ Address of memory location d ~ displacement

nn ~ Data (16 bit) d2~d-2

n ~ Data (8-bit)

9-68

z
12.16 Instruction Set: Numerical Order (Continued)

en
(")
CD

OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic 0
0

CBB7 RES6,A CBEC SET5,H DD66d LDH,(IX+d)
CBB8 RES7,B CBED SET5,L DD6Ed LDL,(IX+d)
CBB9 RES 7,C CBEE SET5,(HL) DD70d LD(IX+d),B
CBBA RES 7,D CBEF SET5,A DD71d LD(IX+d),C
CBBB RES 7,E CBFO SET6,B DD72d LD(IX+d),D
CBBC RES7,H CBF1 SET6,C DD73d LD (IX+d),E
CBBD RES7,L CBF2 SET6,D DD74d LD(IX+d),H
CBBE RES 7,(HL) CBF3 SET6,E DD75d LD(IX+d),L
CBBF RES 7,A CBF4 SET6,H DD77d LD(IX+d),A
CBCO SETO,B CBF5 SET6,L DD7Ed LD A,(IX+ d)
CBC1 SETO,C CBF6 SET6,(HL) DD86d ADD A,(IX + d)
CBC2 SETO,D CBF7 SET6,A DDSEd ADCA,(lX+d)
CBC3 SETO,E CBF8 SET 7,B DD96d SUB (IX+d)
CBC4 SETO,H CBF9 SET7,C DD9Ed SBC A,(IX + d)
CBC5 SETO,L CBFA SET7,D DDA6d AND (IX+d)
CBC6 SETO,(HL) CBFB SET7,E DDAEd XOR(IX+d)
CBC7 SETO,A CBFC SET7,H DDB6d OR (lX+d)
CBC8 SET1,B CBFD SET7,L DDBEd CP(IX+d)
CBC9 SET1,C CBFE SET7,(HL) DDCBd06 RLC(lX+d)
CBCA SET1,D CBFF SET7,A DDCBdOE RRC(IX+d)
CBCB SET1,E CCnn CALLZ,nn DDCBd16 RL(IX+d)
CBCC SET1,H CDnn CALLnn DDCBd1E RR(IX+d)
CBCD SET1,L CEn ADCA,n DDCBd26 SLA(IX+d)
CBCE SET 1,(HL) CF RST8 DDCBd2E SRA(IX+d)
CBCF SET1,A DO RETNC DDCBd3E SRL(IX+d)
CBDO SET2,B D1 POP DE DDCBd46 BIT O,(IX + d)

CBDl SET2,C D2nn JP NC,nn DDCBd4E BIT 1 ,(IX + d)
CBD2 SET2,D D3n OUT (n),A DDCBd56 BIT 2,(IX + d)
CBD3 SET2,E D4nn CALL NC,nn DDCBd5E BIT 3,(IX + d)
CBD4 SET2,H D5 PUSH DE DDCBd66 BIT 4,(IX + d)
CBD5 SET2,L D6n SUBn DDCBd6E BIT 5,(IX + d)
CBD6 SET2,(HL) D7 RST10H DDCBd76 BIT6,(IX+d)
CBD7 SET2,A D8 RETC DDCBd7E BIT7,(IX+d)
CBD8 SET3,B D9 EXX DDCBd86 RES O,(IX + d)

CBD9 SET3,C DAnn JP,C,nn DDCBd8E RES 1,(IX+d)
CBDA SET3,D DBn INA,(n) DDCBd96 RES 2,(IX + d)
CBDB SET3,E DCnn CALLC,nn DDCBd9E RES 3,(IX + d)
CBDC SET3,H DD09 ADDIX,BC DDCBdA6 RES 4,(IX + d)
CBDD SET3,L DD19 ADDIX,DE DDCBdAE RES 5,(IX + d)
CBDE SET3,(HL) DD21nn LD IX,nn DDCBdB6 RES 6,(IX + d)
CBDF SET3,A DD22 LD(nn),IX DDCBdBE RES 7 ,(IX + d)

CBEO SET 4,B DD23 INCIX DDCBdC6 SET O,(IX + d)
CBE1 SET4,C DD29 ADDIX,IX DDCBdCE SET 1,(IX+d)
CBE2 SET 4,D DD2Ann LD IX,(nn) DDCBdD6 SET2,(IX+d)
CBE3 SET 4,E DD2B DEC IX DDCBdDE SET3,(lX+d)
CBE4 SET 4,H DD34d INC (IX+d) DDCBdE6 SET 4,(IX + d)
CBE5 SET 4,L DD35d DEC (IX+d) DDCBdEE SET 5,(IX + d)
CBE6 SET 4,(HL) DD36dn LD (IX+d),n DDCBdF6 SET6,(lX+d)
CBE7 SET 4,A DD39 ADDIX,SP DDCBdFE SET 7 ,(IX + d)
CBE8 SET5,B DD46d LDB,(IX+d) DDE1 POP IX
CBE9 SET5,C DD4Ed LDC,(IX+d) DDE3 EX (SP),IX

CBEA SET5,D DD56d LDD,(IX+d) DDE5 PUSH IX
CBEB SET5,E DD5Ed LD E,(IX+d) DDE9 JP(IX) II (nn) ~ Address of memory location d = displacement

nn~Data (16 bit) d2~d-2

n ~ Data (a-bit)

9-69

0
0
CO 12.16 Instruction Set: Numerical Order (Continued) (.)
tJ)

OpCode Mnemonic OpCode Mnemonic OpCode Mnemonic Z
DDF9 LDSP,IX ED7Bnn LDSP,(nn) FD73d LD(IY+d),E
DEn SCBA,n EDAO LDI FD74d LD(IY+d),H
DF RST18H EDA1 CPI FD75d LD(IY+d),L
EO RET PO EDA2 INI FD77d LD(IY+d),A
E1 POPHL EDA3 OUTI FD7Ed LDA,(IY+d)
E2nn JP PO,nn EDA8 LDD FD86d ADD A,(IY + d)
E3 EX (SP),HL EDA9 CPD FD8Ed ADC A,(IY + d)
E4nn CALLPO,nn EDAA IND FD96d SUB (IY+d)
E5 PUSH HL EDAB OUTO FD9Ed SBC A,(IY + d)
E6n ANDn EDBO LDIR FDA6d AND (IY+d)
E7 RST20H EDB1 CPIR FDAEd XOR(IY+d)
E8 RETPE EDB2 INIR FDB6d OR (IY+d)
E9 JP(HL) EDB3 OTIR FDBEd CP(IY+d)
EAnn JP PE,nn EDB8 LDDR FDE1 POPIY
EB EXDE,HL EDB9 CPDR FDE3 EX (SP), IY
ECnn CALLPE,nn EDBA INDR FDE5 PUSHIY
ED40 IN B,(C) EDBB OTDR FDE9 JP(IY)
ED41 OUT (C),B EEn XORn FDF9 LDSP,IY
ED42 SBC HL,BC EF RST28H FDCBd06 RLC(IY+d)
ED43nn LD (nn),BC FO RETP FDCBdOE RRC(IY+d)
ED44 NEG F1 POPAF FDCBd16 RL(IY+d)
ED45 RETN F2nn JP P,nn FDCBd1E RR (IY+d)
ED46 IMO F3 DI FDCBd26 SLA (IY+d)
ED47 LDI,A F4nn CALLP,nn FDCBd2E SRA(IY+d)
ED48 INC,(C) F5 PUSHAF FDCBd3E SRL(IY+d)
ED49 OUT (C),C F6n ORn FDCBd46 BIT O,(IY + d)
ED4A ADCHL,BC F7 RST30H FDCBd4E BIT 1,(lY+d)
ED4Bnn LDBC,(nn) Fa RETM FDCBd56 BIT 2,(IY + d)
ED4D RETI F9 LDSP,HL FDCBd5E BIT 3,(IY + d)
ED50 IND,(C) FAnn JPM,nn FDCBd66 BIT4,(IY+d)
ED51 OUT (C),D FB EI FDCBd6E BIT 5,(IY + d)
ED52 SBCHL,DE FCnn CALLM,nn FDCBd76 BIT6,(IY+d)
ED53nn LD (nn),DE FD09 ADDIY,BC FDCBd7E BIT7,(lY+d)
ED56 1M 1 FD19 ADDIY,DE FDCBd86 RESO,(IY+d)
ED57 LDA,I FD21nn LD IY,nn FDCBd8E RES 1 ,(IY + d)
ED58 INE,(C) FD22nn LD (nn),IY FDCBd96 RES 2,(IY + d)
ED59 OUT (C), E FD23 INCIY FDCBd9E RES3,(lY+d)
ED5A ADCHL,DE FD29 ADDIY,IY FDCBdA6 RES4,(lY+d)
ED5Bnn LDDE,(nn) FD2Ann LD IY,(nn) FDCBdAE RES 5,(lY+d)
ED5E 1M2 FD2B DECIY FDCBdB6 RES 6,(IY + d)
ED60 INH,(C) FD34d INC (lY+d) FDCBdBE RES7,(IY+d)
ED61 OUT (C),H FD35d DEC (IY+d) FDCBdC6 SET O,(IY + d)
ED62 SBCHL,HL FD36dn LD(IY+d),n FDCBdCE SET 1 ,(IY + d)
ED67 RRD F039 ADDIY,SP FDCBdD6 SET 2,(IY + d)
ED68 INL,(C) FD46d LDB,(IY+d) FDCBdDE SET3,(lY+d)
ED69 OUT (C),L FD4Ed LDC,(IY+d) FDCBdE6 SET 4,(IY + d)
ED6A ADCHL,HL FD56d LDD,(lY+d) FDCBdEE SET 5,(IY + d)
ED6F RLD FD5Ed LD E,(IY+d) FDCBdF6 SET 6,(IY + d)
ED72 SBC HL,SP FD66d LDH,(IY+d) FDCBdFE SET7,(IY+d)
ED73nn LD(nn),SP FD6Ed LD L,(IY+d) FEn CPn
ED78 INA,(C) FD70d LD(IY+d),B FF RST38H
ED79 OUT (C),A FD71d LD(IY+d),C
ED7A ADCHL,SP FD72d LD(IY+d),D

(nn) = Address of memory localion d = displacemenl

nn=Dala (16 bil) d2=d-2

n = Data (a-bil)

9-70

13.0 Data Acquisition System
A natural application for the NSC800 is one that requires
remote operation. Since power consumption is low if the
system consists of only CMOS components, the entire
package can conceivably operate from only a battery power
source. In the application described herein, the only source
of power will be from a battery pack composed of a stacked
array of NiCad batteries (see Figure 20).

The application is that of a remote data acquisition system.
Extensive use is made of some of the other LSI CMOS com­
ponents manufactured by National: notably the ADC0816
and MM58167. The ADC0816 is a 16-channel analog-to­
digital converter which operates from a 5V source. The
MM58167 is a microprocessor-compatible real-time clock
(RTC). The schematic for this system is shown in Figure 20.
All the necessary features of the system are contained in six
integrated circuits: NSC800, NSC810A, NSC831, HN6136P,
ADC0816, and MM58167. Some other small scale integra­
tion CMOS components are used for normal interface re­
quirements. To reduce component count, linear selection
techniques are used to generate chip selects for the
NSC810A and NSC831.lncluded also is a current loop com­
munication link to enable the remote system to transfer data
collected to a host system.

In order to keep component count low and maximize effec­
tiveness, many of the features of the NSC800 family have
been utilized. The RAM section of the NSC810A is used as
a data buffer to store intermediate measurements and as
scratch pad memory for calculations. Both timers contained
in the NSC810A are used to produce the clocks required by
the AID converter and the RTC. The Power-Save feature of
the NSC800 makes it possible to reduce system power con­
sumption when it is not necessary to collect any data. One
of the analog input channels of the AID is connected to the
battery pack to enable the CPU to monitor its own voltage
supply and notify the host that a battery change is needed.

In operation, the NSC800 makes readings on various input
conditions through the ADC0816. The type of devices con­
nected to the AID input depends on the nature of the re­
mote environment. For example, the duties of the remote
system might be to monitor temperature variations in a large
building. In this case, the analog inputs would be connected
to temperature transducers. If the system is situated in a
process control environment, it might be monitoring fluid
flow, temperatures, fluid levels, etc. In either case, operation
would be necessary even if a power failure occurred, thus

9-71

the need for battery operation or at least battery backup. At
some fixed times or at some particular time durations, the
system takes readings by selecting one of the analog input
channels, commands the AID to perform a conversion,
reads the data, and then formats it for transmission; or, the
system checks the readings against set points and trans­
mits a warning if the set paints are exceeded. With the addi­
tion of the RTC, the host need not command the remote
system to take these readings each time it is necessary.
The NSC800 could simply set up the RTC to interrupt it at a
previously defined time and when the interrupt occurs, make
the readings. The resultant values could be stored in the
NSC810A for later correlation. In the example of tempera­
ture monitoring in a building, it might be desired to know the
high and low temperatures for a 12-hour period. After com­
piling the information, the system could dump the data to
the host over the communications link. Note from the sche­
matic that the current for the communication link is supplied
by the host to remove the constant current drain from the
battery supply.

The required clocks for the two peripheral devices are gen­
erated by the two timers in the NSC810A. Through the use
of various divisors, the master clock generated by the
NSC800 is divided down to produce the clocks. Four exam­
ples are shown in the table following Figure 20.

All the crystal frequencies are standard frequencies. The
various divisors listed are selected to produce, from the
master clock frequency of the NSC800, an exact 32,768 Hz
clock for the MM58167 and a clock within the operating
range of the AID converter.

The MM58167 is a programmable real-time clock that is
microprocessor compatible. Its data format is BCD. It allows
the system to program its interrupt register to produce an
interrupt output either on a time of day match (which in­
cludes the day of the week, the date and month) and/or
every month, week, day, hour, minute, second, or tenth of a
second. With this capability added to the system, precise
time of day measurements are possible without having the
CPU do timekeeping. The interrupt output can be connect­
ed, through the use of one port bit of the NSC810A, to put
the CPU in the power-save mode and reenable it at a preset
time. The interrupt output is also connected to one of the
hardware restart inputs (RSTB) to enable time duration
measurements. This power-down mode of operation would
not be possible if the NSC800 had the duties of timekeep-

z en o
co o
o

I r
4-

*
Vee

T
-:!:

M"74HC041

RSTA

co
.!..J

'"

20pF
XIN

E ~EE TEXT FOR A(8-15) I-
FREQUENCIES

T
NScaOO

1" AD(0-7)

XOUT

E 1.SK RO

WR

60pf

ALE

Vee 0- lojil
,--- RESET OUT

RSTB CIK I-
PS

I~
Ii I.lIoI74HC32

MM74HC04

Vee

INO Vee
roc EXPAND

TC
Al0 ADC0816

I: Al0 ADA
INl

A9 I
A9 AD8

I I: A8 I AS ADC
I-

A12 I I: 15 CSO P8
ADD A13 I I- ANALOG

CSl
START I: CHANNElS

ALE
I I:

; AO(o-~~ca31 I I: VSAT1

c: COMMON
1N1J I-

COMPARATOR
REFERENCE

IN
.---- IO/iA PA(o-7) 0(0-7) V,,~+)

GENERATOR
(SEE ADC0816

.--- ALE
ClK

V~_) DATA SHEET)

...-ViR PCO

iffi P03I--
-=

rvee

.---20
XMIT S.lK

2N2222 TO

MM74HC04
REMOTE

mA

RD TOOUT ~ +--l WR TIIN ~ V-= -=

5.~ ~---201 ALE l10UT I-- CSC IN

IOTjiA 2N2222
RECV

AO(O-7) PA(0-7) ~ 0(0-7) 2500 R~~~

-= .,f-----2-NSC810A MM58167

i--- AD

I-- Al V
I-- A2 AO(o-7) ~
i--- A3

74H0373

PB i--- A4 ft-;;; '. H i--- cs 0(1-8) 0(0-7)
A13

CS i--- iffi Q(1-8) I--
I--- ViR Vee GND h HN6136P 0(1 PCl PCO TOIN

I lf~ ~~ -= _ A(~12)H
INT OUT

POWER DOWN RO oro ~~
OE2

...... _ A15 _

7)

MM74HC04
A15 CS GND

-=

FIGURE 20. Remote Data Acquisition
TL/C/5171-34

NSC800

....
w
b
c a
m
»
()

.Q
c:::
0"
::;
0"
~

~ -CD
3
'§
3-
5'
t:

J!

13.0 Data Acquisition System (Continued)

ing. When in the power-save mode, the system power re­
quirements are decreased by about 50%, thus extending
battery life.

Communication with the peripheral devices (MM58167 and
ADC0816) is accomplished through the 1/0 ports of the
NSC810A and NSC831. The peripheral devices are not con­
nected to the bus of the NSC800 as they are not directly
compatible with a multiplexed bus structure. Therefore, ad­
ditional components would be required to place them on the
microprocessor bus. Writing data into the MM58167 is per­
formed by first putting the desired data on Port A, followed
by selecting the address of the internal register and applying
the chip select through the use of Port B. A bit set and clear
operation is performed to emulate a pulse on the bit of Port
B connected to the WR input of the MM58167. For a read
operation, the same sequence of operations is performed
except that Port A is set for the input mode of operation and
the RD line is pulsed. Similar techniques are used to read
converted data from the AID converter. When a conversion
is desired, the CPU selects a channel and commands the
ADC0816 to start a conversion. When the conversion is
complete, the converter will produce an End-of-Conversion

signal which is connected to the RST A interrupt input of the
NSC800.

When operating, the system shown consumes about 125
mw. When in the power-save mode, power consumption is
decreased to about 70 mw. If, as is likely, the system is in
the power-save mode most of the time, battery life can be
quite long depending on the amp-hour rating of the batteries
incorporated into the system. For example, if the battery
pack is rated at 5 amp-hours, the system should be able to
operate for about 400-500 hours before a battery charge or
change is required.

As shown in the schematic (refer to Figure 20), analog input
INO is connected to the battery source. In this way, the CPU
can monitor its own power source and notify the host that it
needs a battery replacement or charge. Since the battery
source shown is a stacked array of 7 NiCads producing
8.4V, the converter input is connected in the middle so that
it can take a reading on two or three of the cells. Since
NiCad batteries have a relatively constant voltage output
until very nearly discharged, the CPU can sense that the
"knee" of the discharge curve has been reached and notify
the host.

Typical Timer Output Frequencies

Crystal Frequency CPU Clock Output Timer 0 Output Timer 1 Output

2.097152 MHz 1.048576 MHz 262.144 kHz 32.768 kHz
divisor = 4 divisor = 8

3.276800 MHz 1.638400 MHz 327.680 kHz 32.768 kHz
divisor = 5 divisor = 10

4.194304 MHz 2.097152 MHz 262.144 kHz 32.768 kHz
divisor = 8 divisor = 8

4.915200 MHz 2.457600 MHz 491.520 kHz 32.768 kHz
divisor = 5 divisor = 15

9-73

Z
tn o
CD o o

g
B en
z

14.0 NSC800M/883B MIL-STD-833
Class C Screening
National Semiconductor offers the NSC800D and NSC800E Electrical testing is performed in accordance with
with full class 8 screening per MIL-STD-883 for Military! RESTS800X, which tests or guarantees all of the electrical
Aerospace programs requiring high reliability. In addition, performance characteristics of the NSC800 data sheet. A
this screening is available for all of the key NSC800 periph- copy of the current revision of RETS800X is available upon
eral devices. request.

100% Screening Flow

Test MIL-STD-883 Method/Condition Requirement

Internal Visual 20108 100%
Stabilization Bake 1008 C 24 Hrs. @ + 150'C 100%
Temperature Cycling 1010 C 10 Cycles - 65'C! + 150'C 100%
Constant Acceleration 2001 E 30,000 G's, Yl Axis 100%
Fine Leak 1014AorB 100%
Gross Leak 1014C 100%
Burn-In 1015160 Hrs. @ + 125'C (using 100%

burn-in circuits shown below)
Final Electrical + 25'C DC per RETS800X 100%
PDA 10% Max

+ 125'C AC and DC per RETS800X 100%
- 55'C AC and DC per RETS800X 100%
+ 25'C AC per RETS800X 100%

QA Acceptance 5005 Sample Per
Quality Conformance Method 5005
External Visual 2009 100%

15.0 Burn-In Circuits
5240HR 5241HR

NSC800D/883B (Dual-in-Line) NSC800E/883B (Lead less Chip Carrier)

55. , .. 1D ,
tiH

5.5V

I 1D

• 31

• " "i, • IS 44143142 411.0 7 .. . , 4 I , ,
• 33 51 1.5kHz I .. ,

" (NOTfZI • 3B

NC-T, 31
, 3751 1.5 kHz

100kHz 51 30 10 .. (NOTE 2)

1'07£'1 " " NC-¥.
3B

11 " NC-;; 44-PINLfADLESS -li-'c
" "

100kHz 51 PACKAGE

" "
(NOTEZ) " "

" " " 31

11 " " 30

1B 23 11 "
" " r "

1819 20 21 21:3 24rSre 21ra
'c

TL/C/5171-32

Top View
....

TUC/5171-33
All resistors 2.7 kll unless marl<ed otherwise.

Nole 1: All resistors are y.W ± 5% unless otherwise specified.

Nole 2: All clocks OV to av, 50% duty cycle, in phase with < 1 pos rise and fall time.

Nole 3: Device to be cooled down under power after burn-in.

9-74

16.0 Ordering Information

NSC800X X X X 11 : /A + "A + .. ,,""'" S,,~"g 1883 = MIL-STD-BB3 Screening (Note 1)

I = Industrial Temperature (- 40°C to + B5°C)
M = Military Temperature (- 55°C to + 125°C)
No Designation = Commercial Temperature (O°C to 70°C)

I -1 = 1 M Hz Clock Output
L-------i -4=4 MHz Clock Output

I - 3 = 2.5 MHz Clock Output

D = Ceramic Package
L-______ --j N = Plastic Package

E = Ceramic Leadiess Chip Carrier (LCC)

V = Plastic Leaded Chip Carrier (PCC)

Note 1: Do not specify a lemperalure option; all parts are screened 10 mililary lemperalure.

17.0 Reliability Information
Gate Count 2750

Transistor Count 11.000

9-75

TL/C/5171-35

z
(J)
n co o o

~National
~ Semiconductor
NSC810A RAM-I/O-Timer'

General Description
The NSCB10A, the luxury model of our NSCBOOTM peripher­
al line, sports triple ported I/O, dual 16-bit timers and a
1024-bit static storage area. The three ports can be com­
bined for a total of 22 general purpose I/O lines. In addition,
port A has several strobed mode operations. Note the sin­
gle instruction I/O bit operations for quick and efficient data
handling from the ports. The timers feature 6 modes of op­
eration and prescalers for those complicated timing tasks.
The NSCB10A comes in two models: the Dual-In-Line (DIP)
and the surface mount chip carrier (LCC). It also comes in
three exciting temperature ranges (Commercial, Industrial,
and Military) and two reliability flows (extended burn-in and
military class B in accordance with Method 5004 of MIL­
STD-BB3). This is brought to you through the microCMOS
silicon gate technology of National Semiconductor.

NSC810A Connection Diagram

(8)

18)

RIi

Wi!

vcc~ Mt -

Features
• Three programmable I/O ports
• Dual 16-bit programmable counter/timers
• 2.4V-6.0V power supply
• Very low power consumption
• Fully static operation
• Single-instruction I/O bit operations
• Timer operation-DC to 5 MHz
• Bus compatible with NSCBOOTM family
• Speed: compatible with NSCBOO

NSCB10A-4 -+ NSCBOO-4 @ 4.0 MHz

NSCB10A-3 -+ NSCBOO @ 2.5 MHz

NSCB10A-1 -+ NSCBOO-1 @ 1.0 MHz

AOO-7

A13
CE NSC81DA

RIi
RAM
110

WI!
TIMER

ALE

10T/M

RESET

9-76

(8) PORTA
8BITS

(8) PORT 8
881TS

PORTC
68IT.

TL/C/5517-1

Table of Contents
1.0 ABSOLUTE MAXIMUM RATINGS

2.0 OPERATING CONDITIONS

3.0 DC ELECTRICAL CHARACTERISTICS

4.0 AC ELECTRICAL CHARACTERISTICS

5.0 TIMER AC ELECTRICAL CHARACTERISTICS

6.0 TIMING WAVEFORMS

7.0 PIN DESCRIPTIONS

7.1 Input Signals

7.2 Output Signals

7.3 Power Supply Signals

7.4 Input/Output Signals

8.0 CONNECTION DIAGRAMS

9·77

9.0 FUNCTIONAL DESCRIPTION

9.1 Random Access Memory (RAM)

9.2 Detailed Block Diagram

9.3 I/O Ports

9.3.1 Registers

9.3.2 Modes

9.4 Timers

9.4.1 Registers

9.4.2 Timer Pins

9.4.3 Timer Modes

9.4.4 Timer Programming

10.0 NSC810/883 MIL·STD·883/CLASS B SCREENING

11.0 BURN·IN CIRCUIT

12.0 TIMING DIAGRAM

13.0 ORDERING INFORMATION

14.0 RELIABILITY INFORMATION

z en o co
~

1.0 Absolute Maximum Ratings 2.0 Operating Conditions
(Note 1) Vee = SV ± 10%

If Military/Aerospace specified devices are required, NSC810A-1 - O'C to +70'C
contact the National Semiconductor Sales Office/ -40'C to +8S'C
Distributors for availability and specifications. NSC810A-3 - O'C to +70'C
Storage Temperature Range -6S'Cto +150'C -40'C to +85'C

Voltage at Any Pin with Respect - SS'C to + 12S'C

to Ground -0.3V to Vee + 0.3V NSC810A-4 - O'C to +70'C

Vee 7V -40'C to +8S'C

Power Dissipation 1W
-55'C to + 12S'C

Lead Temperature (Soldering, 10 seconds) 300'C

3.0 DC Electrical Characteristics Vee= 5V ± 10%, GND= OV, unless otherwise specified.

Symbol Parameter Conditions Min Typ Max Units

VIH Logical 1 Input Voltage 0.8 Vee Vee V

VIL Logical 0 Input Voltage 0 0.2 Vee V

VOH Logical 1 Output Voltage IOH = -1.0mA 2.4 V

lOUT = -10 /LA Vee-0.5 V

VOL Logical 0 Output Voltage IOL = 2mA 0 0.4 V

lOUT = 10 /LA 0 0.1 V

IlL Input Leakage Current 0';: VIN s: Vee -10.0 10.0 /LA

IOL Output Leakage Current 0,;: VIN';: Vee -10.0 10.0 /LA

lee Active Supply Current lOUT = 0, Timer = Mode 1, TOIN = T11N = 2.S Mhz, 8 10 mA

twey = 750 ns, T A = 2S'C

IQ Quiescent Current No Input Switching, T A = 2S'C, 10 100 /LA
RESET = 0, 101M = 1, RD = 1, WR = 1, ALE = 1,

VIN = Vee, tiN = 0 Hz, tOUT = 0

CIN Input Capacitance 4 7 pF

COUT Output Capacitance 6 10 pF

Vee Power Supply Voltage (Note 2) 2.4 S 6 V

VDRV Data Retention Voltage 1.8 V

Note 1: Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. Continuous operation at these limits is not
intended; operation should be limited to those conditions specified under DC Electrical Characteristics.
Note 2: Operation at lower power supply voltages will reduce the maximum operating speed. Operation at voltages other than 5V ± 1 0% is guaranteed by design,
not tested.

ICC vs Speed
10

MAXI~ C
So

i ~2:: '" :::I
5 ..

"/ ~

I II:
:::I

'1

/ ~

0
4500 3000 1500 1000 750

lWey (ns)

0 1 2 3 4

NSC800 CLOCK SPEED" (MHz)
TL/C/5517-2

'When NSC810A is used with NSC800

9-78

4.0 AC Electrical Characteristics Vcc=5V ±10%,GND=OV

Symbol Parameter Conditions
NSC810A-1 NSC810A-3 NSC810-4

Units
Min Max Min Max Min Max

tACC Access Time from ALE CL = 150pF 1000 400 300 ns

tAH ADO-7, CE, IOTIM Hold Time 100 60 30 ns

tALE ALE Strobe Width (High) 200 125 100 ns

tARW ALE to RD or WR Strobe 150 120 75 ns

tAS ADO-7, CE, IOT/M Set-Up Time 100 45 25 ns

tOH Data Hold Time 150 90 40 ns

too Port Data Output Valid 350 310 300 ns

tos Data Set-Up Time 100 80 50 ns

tpE Peripheral Bus Enable 320 200 200 ns

tpH Peripheral Data Hold Time 150 125 100 ns

tps Peripheral Data Set-Up Time 100 75 50 ns

tpz Peripheral Bus Disable (TRI-STATE®) 150 150 150 ns

tRB RD to BF Invalid 300 300 300 ns

tRO Read Strobe Width 400 320 185 ns

tROD' Data Bus Disable 0 100 0 100 0 75 ns

tRI RD to INTR Output 320 320 300 ns

tRWA RD or WR to Next ALE 125 100 75 ns

tSB STB to BF Valid 300 300 300 ns

tSH Peripheral Data Hold with Respect to STB 150 125 100 ns

tSI STB to INTR Output 300 300 300 ns

tss Peripheral Data Set-Up with Respect to STB 100 75 50 ns

tsw STBWidth 400 320 220 ns

tWB WR to BF Output 340 340 300 ns

tWI WR to INTR Output 320 320 300 ns

tWR WR Strobe Width 400 320 220 ns

tWCY Width of Machine Cycle 3000 1200 750 ns

Note: Test conditions: !wCY ~ 3000 ns for NSC810A-l, 1200 ns for NSC810A-3, 750 ns for NSC810A-4

5.0 Timer AC Electrical Characteristics
Symbol Parameter Conditions Min Typ Max Units

Fc Clock Frequency DC 2_5 MHz

Fcp Clock Frequency Prescale Selected DC 5_0 MHz

lew Clock Pulse Width 150 ns

lewp Clock Pulse Width Prescale Selected 75 ns

!Gs Gate Set-Up Time With Respect to Negative Clock Edge 100 ns

tGH Gate Hold Time With Respect to Negative Clock Edge 250 ns

tco Clock to Output Delay CL = 100 pF 350 ns

AC TESTING INPUT/OUTPUT WAVEFORM AC TESTING LOAD CIRCUIT

=:X0•8VCC O.8VC~ I DEVICE
0.2 Vee Q,2Vc UNDER

TLlC/5517-3 TEST
~ lDDpF

TL/C/5517-4

9-79

z
(/)
o
00
o »

6.0 Timing Waveforms
Timer Waveforms

GATE

OUTPUT -------------:...,
(ACTIVE LOW)

TL/C/5517-5

Read Cycle (Read from RAM, Port or Timer)

TUC/5517-6

Note: Diagonal lines indicate interval of Invalid data.

Write Cycle (Write to RAM, Port or Timer)

TL/C/5517-7

Note: Diagonal lines indicate interval of invalid data.

9-80

6.0 Timing Waveforms (Continued)

Strobed Mode Input

PERIPHERAL _""",..j!m, __ ~--I--"'-,_""~rmrm=,",rmrm=,",,",rm==,",rmrm

(PORT A) BUS --"""I""'--'-~-t--.. '","","'(f,I.J.=-"'""""'=-""""""'---~-"f"""'"
BF

10T/1il ,",m'f:m'f:"""'''''''',"",""m'f:m'f:'''''''''''''',"""",;m;,",,~ ,..----,. ""~".".,oJm"""''I'm.

CE ~~""~~""~~~~""~~~~

ALE
PORT A;!I------+---

AO (0-7) -
TL/C/5517-8

Note: Diagonal lines indicate interval of invalid data.

Strobed Mode Output

IOT/C~~ _

AO(0-7) ~ PORTAAODR ~ DATA IN _

ALE \ r;
-' ~I iwl- -tSI

BF

~ ~
iw,- ISB~

-'
,~ISW~

ACTIVE (MODE 2) 100-x
OLO DATA NEW DATA

IPE- r-- Ipz--J
TRI·STATE (MOOE 3) ... '"'t-------------------.. -{---"'""'} -----

TLiC/5517-9

Note: Diagonal lines indicate interval of invalid data.

9-81

z en o
0)
o »

7.0 Pin Descriptions
The function and mnemonic for the NSC810A signals are
described below:

7.1 INPUT SIGNALS

Reset (RESEn: RESET is an active-high input that resets
all registers to 0 (low). The RAM contents remain unaltered.

Input/Output Timer or RAM Select (IOTlM): lOT /fii1 is an
I/O memory select input line. A logic 1 (high) input selects
the I/O-timer portion of the chip; a logic 0 (low) input selects
the RAM portion of the chip. lOT /M is latched at the falling
edge of ALE.

Chip Enable (CE): CE is an active-high input that allows
access to the NSC81 OA. CE is latched at the falling edge of
ALE.

Read (RD): The RD is an active-low input that enables a
read operation of the RAM or I/O-timer location.

Write (WR): The WR is an active-low input that enables a
write operation to RAM or I/O-timer locations.

Address Latch Enable (ALE): The falling edge of the ALE
input latches ADO-AD7, CE and 10T/M inputs to form the
address for RAM, I/O or timer.

Timer 0 Input (TOIN): TOIN is the clock input for timer O.

7.2 OUTPUT SIGNALS

Timer 0 Output (TOOUn: TOOUT is the programmable out­
put of timer O. After reset, TOOUT is set high.

7.3 POWER SUPPLY SIGNALS

Positive DC Voltage (VcC>: Vee is the 5V supply pin.

Ground (GND): Ground reference pin.

8.0 Connection Diagrams
Dual-In-Llne Package

PC3ITG 1. 40 Vee
PC4/T1IN 39 PC2I5fii

TOIN 38 PCl/8F
RESET 37 PCo/lIlTli

PC5/Tl0UT 36 PB7
TOOUT 35 PB6
lOT/iii 34 PB5

CE 33 P84
liii 32 PB3

WR 10 NSC810A 31 PB2
ALE 11 30 P81
ADO 12 29 P80
ADl 13 28 PA7
AD2 14 27 PA6
AD3 15 26 PA5
AD4 16 25 PA4
AD5 17 24 PA3
AD6 18 23 PA2

AD7 19 22 PAl
GND 20 21 PAO

TLiC/5517-10

Top View

Order Number NSC810AD or NSC810AN
See NS Package Number D40C or N40A

9-82

7.4 INPUT/OUTPUT SIGNALS

Address/Data Bus (ADO-AD7): The multiplexed bidirec­
tional address/data bus; ADO-AD7 pins, are in the high im­
pedance state when the NSC810A is not selected.
ADO-AD7 will latch address inputs at the falling edge of
ALE. The address will deSignate a location in RAM, 110 or
timer. WR input enables 8·bit data to be written into the
addressed location. RD input enables 8-bit data to be read
from the addressed location. The RD or WR inputs occur
while ALE is low.

Port A, 0-7 (PAO-PA7): Port A is an 8-bit basic mode in·
put/output port, also capable of strobed mode 110 utilizing
three control signals from port C. Strobed mode of opera­
tion on port A has three different modes; strobed input,
strobed output with active peripheral bus, strobed output
with TRI-STATE peripheral bus.

Port B, 0-7 (PBO-PB7): Port B is an 8-bit basic mode in·
put/ output port.

Port C, 0-5 (PCO-PCS): Port C is a 6-bit basic mode 110
port. Each pin has a programmable second function, as fol­
lows:

PCOIINTR: INTR is an active-low, strobed mode interrupt
request to the Central Processor Unit (CPU).

PClIBF: BF is an active-high, strobed mode, buffer full
output to peripheral devices.

PC2/STB: STB is an active·low, strobed mode input from
peripheral devices.

PC3/TG: TG is the timer gating signal.

PC4/T1IN: T11N is the clock input for timer 1.

PCS/T10UT: T10UT is the programmable output of tim­
er 1.

Chip Carrier

PC3/
PC5/T1DUT TOIN TG vee PC1/BF

~~\IN 11C ~ PCI~B7
6 5 4 3 2 1 44 43 42 41 40

TDDUT 7 • 39 PB6
IDT/M 8 3B PB5

CE 9 37 PB4
liii 10 36 PB3
Wii 11 35 PB2
NC 12 NSC810A 34 NC

ALE 13 33 PBl
ADO 14 32 PBO
ADl 15 31 PA7
AD2 16 30 PA6
AD3 17 29 PA5

18 1920 21 22 23242526 27 28

///// f t \ \\ "'" AD4 AD5 AD6 AD7 GND NC PAO PAl PA2 PA3 PA4
TL/C/5517-11

Top View
NC= no connect

Order Number NSC810AE or NSC810AV
See NS Package Number E44B or V44A

9.0 Functional Description
Figure 1 is a detailed block diagram of the NSC810A. The
functional description that follows describes the RAM, 1/0
and TIMER sections.

9.1 RANDOM ACCESS MEMORY (RAM)

The memory portion of the RAM·I/O·timer is accessed by a
7·bit address input to pins ADO through ADS. The 10T/fiij

9.2 DETAILED BLOCK DIAGRAM

8
CE---+

Wii~

iiil...!.... CONTROL

10T/M..!.....
LOGIC

11
ALE---+

RESET~

RAM
102481TS
(128 x81

ADO·ADT
.... 12-19 II.

ADDRESS I
DATA

BUFFERS AND " '" LATCHES

TIMER MOD~ I
REGISTERS

T1 COMMAND

TO COMMAND

L

• 3
TOIN_ TO PRESCALE

PRESCALE

Vee.!!..

GND..!!..

..oL
"I

"'-

INTERNAL
DATA
BUS

..oil

"

....
"I

--"0..
I'

....

" --...
1"'11 -,..

....

~
,.. ...
Ito..

.... ,..
"

"'-
"

..oL
....

... , ,..,

--"0..' 1',

... ,
"'.

........ ,..,

..
'"

Jo..
I'

--...
I'

--... ,..

11

11

input must be low (RAM select) and the CE input must be
high at the falling edge of ALE to address the RAM. Address
bit AD7 is a "don't care" for RAM addressing. Timing for
RAM read and write operations is shown in the timing dia·
grams. The RAM is 128 x 8.

MOR

l
HANDSHAKE ~ LOGIC

--"0.. 21-28 ...
PORT A ,.. "'II ,.. PAD-PAT

DOR J-+ A

... ,..

PGRT B
.... 29-36 ...

.... ,.. P8D-PST

ODR ~ B

... ,..
3T-39. 1.2. 5
.... II.

PORT C

.... PCO-Pcs"
ODR ~ HANDSHAKE
C AND TIMER

FUNCTIONS

~
HIGH -ORDER

LOW +-i T1 I OROER PRESCALE

_i !
TO HIGH 6

ORDER r..:... TODUT

TO LOW
ORDER

TLlC/5517-12

FIGURE 1

9·83

9.0 Functional Description (Continued)

9.3 1/0 PORTS

The three 1/0 ports, labeled A, B, and C, can be pro·
grammed to be almost any combination of Input and Output
bits. Ports A and B are configured as 8 bits wide, while port
C is 6 bits. There are four different modes of operation for
the ports. Three of the modes are for timed transfer of data
between the peripheral and the NSC810A, this is called
strobed 1/0. The fourth mode is for direct transfer without
handshaking with the peripheral.

The NSC810A can be programmed to operate in four differ·
ent modes. One of these modes (Basic 1/0) allows direct
transfer of 1/0 data without any handshaking between the
NSC810A and the peripheral. The other three modes
(Strobed 1/0) provide for timed transfers of 1/0 data with
handshaking between the NSC810A and the peripheral.

The determination of the mode, data direction and data is
done by five registers which are, handily, under program
control. The Mode Definition Register (MDR), oddly enough,
determines which mode the device will operate in, while the
Data Direction Register (DDR) establishes the direction of
the data transfer. The Data register contains the data that is
being sent or has been received. The other two registers
(bit-set, bit-clear) allow the individual bits in the data register
to be set or cleared without affecting the other bits. Each
port has its own set of these registers, except the MDR
which affects ports A and Conly.

In the strobed 1/0 modes, port C bits 0, 1 and 2 function as
INTR (for the processor), BF, and STB respectively.

9.3.1 Registers

As can be seen in Table I, all the registers affecting 1/0
transfer are grouped at the lower address locations, this
allows quicker handling and more maneuverability in tight
data transfers. Also note in Table I that the NSC810A uses
23 1/0 addresses out of a block of 26. The upper three bits
of the address are determined by the chip enable address.

• Mode Definition Register (MDR)

As noted above this register defines the operating mode for
ports A and C (port B is always in the basic 1/0 mode). The
upper 3 bits of port C will also be in the basic 1/0 mode
even when the lower 3 bits are being used for handshaking.

The four modes are as follows:

Mode O-Basic 1/0 (Input or Output)

Mode 1-Strobed Mode Input

Mode 2-Strobed Mode Output (Active Peripheral Bus)

Mode 3-Strobed Mode Output (TRI-STATE Peripheral
Bus)

The address assignment of the MDR is xxx00111 as shown
in Table I. Table II specifies the data that must be loaded
into the MDR to select the mode.

• Data Direction Registers (DDR)

Each port has a DDR that determines whether an individual
port bit will be an input or an output. This can be considered
the traffic light for the transfer of data between the CPU and
the peripheral. Each port bit has a corresponding bit in this
register. If the DDR bit is set (1) the port bit is an output; if it
is cleared (0) the port bit is an input. The DDR bits cannot
be written to individually. The register as a whole must be
set to be consistent with all desired port bit directions.

9-84

TABLE I. 110 and Timer Address Designations

8-Bit Address Field
Bits

7 6 5 4 3 2

x x x 0 0 0
x x x 0 0 0
x x x 0 0 0
x x x 0 0 0
x x x 0 0 1
x x x 0 0 1
x x x 0 0 1
x x x 0 0 1
x x x 0 1 0
x x x 0 1 0
x x x 0 1 0
x x x 0 1 0
x x x 0 1 1
x x x 0 1 1
x x x 0 1 1
x x x 0 1 1

x x x 1 0 0
x x x 1 0 0
x x x 1 0 0
x x x 1 0 0
x x x 1 0 1
x x x 1 0 1
x x x 1 0 1
x x x 1 0 1
x x x 1 1 0
x x x 1 1 0

x x x 1 1 0
x x x 1 1 0
x x x 1 1 1
x x x 1 1 1
x x x 1 1 1
x x x 1 1 1

x = don't care

LB ~ low-order byte

HB ~ high-order byte

1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
1
1
0
0
1
1
0
0

1
1
0
0
1
1

Designation R(Read)

0
1/0 Port, Timer, etc. W(Wrlte)

0 Port A (Data) R/W
1 Port B (Data) R/W
0 Port C (Data) R/W
1 Not Used ..
0 DDR- PortA W
1 DDR - PortB W
0 DDR- PortC W
1 Mode Definition Reg. W
0 Port A - Bit-Clear W
1 Port B - Bit-Clear W
0 Port C - Bit-Clear W
1 Not Used ..
0 Port A - Bit-Set W
1 Port B - Bit-Set W
0 Port C - Bit-Set W
1 Not Used ..
0 Timer 0 (LB) · 1 Timer 0 (HB) · 0 Timer 1 (LB) · 1 Timer 1 (HB) •
0 STOP Timer 0 W
1 START Timer 0 W
0 STOP Timer 1 W
1 START Timer 1 W
0 Timer 0 Mode R/W
1 Timer 1 Mode R/W

0 Not Used ..
1 Not Used ..
0 Not Used ..
1 Not Used ..
0 Not Used ..
1 Not Used ..

• A write accesses the modulus register, a read the read buffer .

•• A read from an unused location reads invalid data. a write does not affect
any operation of NSCB10A.

TABLE II. Mode Definition Register Bit Assignments

Mode
Bit

7 6 5 4 3 2 1 0

0 x x x x x x x 0
1 x x x x x x 0 1
2 x x x x x 0 1 1
3 x x x x x 1 1 1

9.0 Functional Description (Continued)

Any write or read to the port bits contradicting the direction
established by the DDR will not affect the port bits output or
input. However, a write to a port bit, defined as an input, will
modify the output latch and a read to a port bit, defined as
an output, will read this output latch. See Figure 2.

• Data Registers

These registers contain the actual data being transferred
between the CPU and the peripheral. In Basic 1/0, data
presented by the peripheral (read cycle) will be latched on
the falling edge of RD. Data presented by the CPU (write
cycle) will be valid after the rising edge of WR (see AC char­
acteristics for exact timing).

During Strobed 1/0, data presented by the peripheral must
be valid on the rising edge of STB. Data received by the
peripheral will be valid on the rising edge of STB. Data
latched by the port on the rising edge of STB will be pre­
served until the next CPU read or STB signal.

• Bit Set-Clear Registers

The 1/0 features of the RAM-I/O-timer allow modification of
a single bit or several bits of a port with the Bit-Set and Bit­
Clear commands. The address selected indicates whether a
Bit-Set or Clear will take place. The incoming data on the
addressl data bus is latched at the trailing edge of the WR
strobe and is treated as a mask. All bits containing 1s will
cause the indicated operation to be performed on the corre­
sponding port bit. All bits of the mask with Os cause the
corresponding port bits to remain unchanged. Three sample
operations are shown in Table III using port B as an ex­
ample.

INTERNAL
DATA BUS

MODE

WRISET)

TABLE III. Bit-Set and Clear Examples

Operation SetB7
CiearB2 SetB4, B3

PortB andBO and B1

Address xxx01101 xxx01001 xxx01101

Data 10000000 00000101 00011010

Port Pins
Prior State 00001111 10001111 10001010
Next State 10001111 10001010 10011010

9.3.2 Modes

Two data transfer modes are implemented: Basic 1/0 and
Strobed 1/0. Strobed 1/0 can be further subdivided into
three categories: Strobed Input, Strobed Output (active pe­
ripheral bus) and Strobed Output (TRI-STATE peripheral
bus). The following descriptions detail the functions of these
categories.

• Basic 1/0

Basic I/O mode uses the RD and WR CPU bus signals to
latch data at the peripheral bus. This mode is the permanent
mode of operation for ports Band C. Port A is in this mode if
the MDR is set to mode o. Read and write byte operations
and bit operations can be done in Basic 1/0. Timing for
these modes is shown in the AC Characteristics Table and
described with the data register definitions.

When the NSC810A is reset, all registers are cleared to
zero. This results in the basic mode of operation being se­
lected, all port bits are made inputs and the output latch for
each port bit is cleared to zero. The NSC810A, at this pOint,
can read data from any peripheral port without further set­
up. If outputs are desired, the CPU merely has to program
the appropriate DDR and then send data to the data ports.

TLIC15517-13

FIGURE 2

9-85

z en o
QC)
o »

9.0 Functional Description (Continued)

• Strobed 1/0
Strobed 1/0 Mode uses the STB, BF and INTR signals to
latch the data and indicate that new data is available for
transfer. Port A is used for the transfer of data when in any
of the Strobed modes. Port B can still be used for Basic 1/0
and the lower 3-bits of port C are now the three handshake
signals for Strobed 1/0. Timing for this mode is shown in the
AC Characteristic Tables.

Initializing the NSC810A for Strobed 1/0 Mode is done by
loading the data shown in Table IV Into the specified regis­
ter. The registers should be loaded in the order (left to right)
that they appear in Table IV.

TABLE IV. Mode Definition Register Configurations

DDR DDR
PortC

Mode MDR
PortA PortC

Output
Latch

Basic I/O xxxxxxxO Port bit directions are
determined by the bits of

each port's DDR

Strobed Input xxxxxx01 00000000 xxx011 xxx1xx

Strobed Output xxxxx011 11111111 xxx011 xxx1xx
(Active)

Strobed Output xxxxx111 11111111 xxx011 xxx1xx
(TRI-STATE)

• Strobed Input (Mode 1)

During strobed input operations, an external device can load
data into port A with the STB signal. Data is input to the

Example Mode 1 (Strobed Input):

Action Taken INTR BF

INITIALIZATION

Reset NSC810A H L
Load 01 'H into H L

MDR

Load OO'H into H L
DDRA

Load 03'H into H L
DDRC

Load 04'H into H L
Port C Bit-Set
Register

OPERATION

STB pulses low L H

CPU reads Port A H L

PAO-7 input latches on the leading (negative) edge of STB,
causing BF to go high (true). On the trailing (positive) edge
of STB the data is latched and the interrupt signal, INTR,
becomes valid indicating to the CPU that new data is avail­
able. INTR becomes valid only if the interrupt is enabled,
that is the output data latch for PC2 is set to 1.

When the CPU reads port A, address x'OO, the trailing edge
of the RD strobe causes BF and INTR to become inactive,
indicating that the strobed input cycle has been completed.

• Strobed Output-Active (Mode 2)

During strobed output operations, an external device can
read data from port A using the STB signal. Data is initially
loaded into port A by the CPU writing to I/O address x'OO.
On the trailing edge of WR, INTR is set inactive and BF
becomes valid indicating new data is available for the exter­
nal device. When the external device is ready to accept the
data in port A it pulses the STB signal. The rising edge of
STB resets BF and activates the INTR signal. INTR be­
comes valid only if the interrupt is enabled, that is the output
latch for PC2 is set to 1. INTR in this mode indicates a
condition that requires CPU intervention (the output of the
next byte of data).

• Strobed Output-TRI-STATE (Mode 3)

The Strobed Output TRI-STATE Mode and the Strobed Out­
put active (peripheral) bus mode function in a similar man­
ner with one exception. The exception is that the data sig­
nals on PAO-7 assume the high impedance state at all
times except when accessed by the STB signal. Strobed
Mode 3 is identical to Strobed Mode 2, except as indicated
above.

Results of Action

Basic input mode all ports.
Strobed input mode entered; no byte loads to port C
after this step; bit-set and clear commands to INTR
and BF no longer work.
Sets data direction register for port A to input;
data from port A peripheral bus is available
to the CPU if the STB signal is used, other
handshake signals aren't initialized, yet.
Sets data direction register of port C; buffer full
signal works after this step and it is unaffected
by the bit-set and clear registers.
Sets output latch (PC2) to enable INTR; INTR will
latch active whenever STB goes low; INTR can be
disabled by a bit-clear to PC2.·

Data on peripheral bus is latched into port A;
INTR is cleared by a CPU read of port A or a
bit-clear of STB.
CPU gets data from port A; INTR is cleared;
peripheral is signalled to send next byte via
an inactive BF signal. Repeat last two steps until
EaT at which time CPU sends bit-clear to the
output latch (PC2) .

• Port C can be read by the CPU at anytime, allowing polled operation instead of interrupt driven operation.

9-86

9.0 Functional Description (Continued)

Example Mode 2 (Strobed Output-active peripheral bus):

Action Taken INTR BF

INITIALIZE

Reset NSC810A H L
Load 03'H into H L

MDR

Load FF'H into H L
DDRA

Load 03'H into H L
DDRC

Load 04'H into L L
Port C Bit-Set
Register

OPERATION

CPU writes to H H
PortA

STB pulses low L L

Results of Action

basic input mode all ports.
strobed output mode entered; no byte loads to
port C after this step; bit-set and clear
commands to INTR and BF no longer work.
Sets data direction register for port A to output;
data from port A is available to the peripheral
if the STB signal is used other handshake
signals aren't initialized, yet.
Sets data direction register of port C; buffer
full signal works after this step and it is
unaffected by the bit-set and clear registers
Sets output latch (PC2) to enable INTR;
active INTR indicates that CPU
should send data; INTR becomes inactive
whenever the CPU loads port A; INTR can
be disabled by a bit-clear to STB. *

Data on CPU bus is latched into port A;
INTR is set by the CPU write to port A; active
BF indicates to peripheral that
data is valid; Peripheral gets data from port A;
INTR is reset active; The active INTR signals the
CPU to send the next by1e. Repeat last two
steps until EOT at which time CPU sends
bit-clear to the output latch (PC2).

'Port C can be read by the CPU at any time, allowing polled operation instead of interrupt driven operation.

In addition to its timing function, STB enables port A outputs
to active logic levels. This Mode 3 operation allows other
data sources, in addition to the NSC810A, to access the
peripheral bus.

• Handshaking Signals

In the Strobed mode of operation, the lower 3-bits of port C
transmit/receive the handshake signals (PCO = INTR,
PC1 = BF, PC2 = STB).

INTR (Strobe Mode Interrupt) is an active-low interrupt from
the NSC810A to the CPU. In strobed input mode, the
CPU reads the valid data at port A to clear the inter­
rupt. In strobed output mode, the CPU clears the inter­
rupt by writing data to port A.

The INTR output can be enabled or disabled, thus
giving it the ability to control strobed data transfer. It is
enabled or disabled, respectively, by setting or clear­
ing bit 2 of the port C output data latch (STB).

PC2 is always an input during strobed mode of opera­
tion, its output data latch is not needed. Therefore,
during strobed mode of operation it is internally gated
with the interrupt signal to generate the INTR output.
Reset clears this bit to zero, so it must be set to one to
enable the INTR pin for strobed operation.

Once the strobed mode of operation is programmed,
the only way to change the output data latch of PC2 is
by using the Bit-Set and Clear registers. The port C
by1e write command will not alter the output data latch
of PC2 during the strobed mode of operation.

9-87

STB (Strobe) is an active low input from the peripheral de­
vice, signalling a data transfer. The NSC810A latches
data on the rising edge of STB if the port bit is an input
and the peripheral should latch data on the rising
edge of STB if the port bit is an output.

BF (Buffer Full) is a high active output from the NSC810A.
For input port bits, it indicates that new data has been
received from the peripheral. For output port bits, it
indicates that new data is available for the peripheral.

Note: In either input or output mode the BF may be
cleared by rewriting the MDR.

9.4 TIMERS

The NSC810A has two timers. These are independently
programmable, 16-bit binary down-counters. Full count is
reached at n + 1, where n is the count loaded into the modu­
lus registers. Timer outputs provide six distinct modes of
operation and allow the CPU to check the present count at
any1ime. Each timer has an independent clock input and
output. Start and stop words from the CPU can individually
start and stop the timers in any of the modes. A common
gate signal can start and stop both timers in three of the six
modes. Timer 0 has three possible input clock prescalers
-;- 1, -;- 2 and -;- 64. Timer 1 has two possible input clock
prescalers -;- 1 and -;- 2.

Primary components of one timer are shown in Figure 3 .
The timer mode register is a read/write register providing •

< ,---~
o
CO o
(J)
z

9.0 Functional Description (Continued)

the primary characterization of the timer output. The start!
stop logic and prescaler block divides the clock input by the
prescale factor, passing the output (INTCLK) to the binary
down-counter. This block also gates the clock input signal
(TIN) with the timer gate signal (TG). The timer block loads
the modulus from the modulus register and uses (INTCLK)
to count to zero. It loads the current count into the read
buffer block where the CPU can access it at anytime. This
timer block also indicates to the output control logic when
the modulus is loaded (or reloaded) and when the count
reaches O. The output control logic block drives the output
pins according to the timer mode register and the timer
block. The output of the timer block (Figure 3) (terminal
count) is related to the input TIN by:

. TIN
terminal count = [

p 2(m + 1)1

where:

TIN = the input frequency

p = the programmed prescale

m = the modulus

This relationship can be seen directly (TOUT) in Mode 5
(square wave) as it is not masked by the subsequent output
logic.

9.4.1 Registers

There are five control registers for each timer. These are
shown in the second group of Table I. They determine all
timer functions and outputs.

• Modulus Registers and Read Buffer

There are two modulus registers per timer (low byte, high
byte). These are write only registers, and the two 8-bit val­
ues loaded by the CPU are combined into a 16-bit modulus
for the timer's down counter.

When the CPU reads from the modulus register addresses,
it actually accesses the read buffers. These contain the low
and high byte of the decremented modulus. This count is
constantly updated by the timer block on the falling edge of

TIN(CLKI
TG(GATEI

WR-+

CONTROL

INTClK

INTCLK and can be read without stopping the timers (see
single/ double precision).

• Timer Mode Register

The timer mode register determines the operating configu­
ration and the active input and output signal levels. Each
timer has its own timer mode register, allowing independent
operation.

The timer mode register (TMR) may be written or read at
any time; however, to assure accurate timing it is important
to modify the mode only when the timer is stopped (see
Timer Programming). The timer mode is selected from one
of six modes by TMR bits 0, 1, and 2 (see Table V). Bits 3
and 4 select the prescale value if the prescaler is to be
used. Bits 5, 6 and 7 select the modulus width (8- or 16-
bits), gate input polarity, and timer output polarity (active­
high or low), respectively. The bit functions of the TMR are
illustrated in Figure 4.

Bit

TIMER

('61

TERMINAL
COUNT

OUTPUT
CONTROL

TMR 7 6 5 4 3 2 , 0

2

0
0
0
0
1
1
1
1

ll§~~TlMINGMOOE ~ PRESCALE VALUE

SINGLE/DOUBLE PRECISION

GATE INPUT POLARITY

TIMER OUTPUT POLARITY
TLIC/5517-15

FIGURE 4. Timer Mode Register

TABLE V. Mode Selection

1 0 - Timer Function

0 0 - Timer Stopped and Reset
0 1 - Event Counter
1 0 - Event Timer (Stopwatch)
1 1 - Event Timer (Resetting)
0 0 - One Shot
0 1 - Square Wave
1 0 - Pulse Generator
1 1 - Timer Stopped and Reset

READ BUFFER

'6

LOGIC TOUT

CONTROL
TLiC/5517-,4

FIGURE 3. Timer Internal Block Diagram (One of Two Timers)

9-88

9.0 Functional Description (Continued)

- Timer Prescaler

There is a prescale function associated with each timer. It
serves as an additional divisor to lengthen the counts for
each timer circuit. The value of the divisor is fixed and se­
lectable in each TMR, as shown below.

Bits
TMRO 4 3 Prescale

a a +1
a +2

+64

The +64 is not available on timer 1; TMR1 bit 4 is a "don't
care,"

TMR1
Bits

4 3

x
x

a
Prescale

+1
+2

The timer prescale divides the input clock (TIN) and pro­
vides the output (INTCLK) to the drive the timer block (Fig­
ure 3).

- Single/Double Precision

Bit 5 of the TMR determines whether a single or double byte
can be accurately read from the read buffer. This option
does not affect the use of the modulus registers by the timer
block (i.e., the modulus used is always a double byte regard­
less of the precision mode selected).

The read buffer keeps track of the count and is constantly
being updated by the timer block. In order to allow the CPU
to read the read buffer, the NSC810A must discontinue up­
dates to this buffer during the read. The precision bit deter­
mines whether one or two bytes in the read buffer will be
frozen during the read process. In double precision mode,
the NSC810A freezes high and low bytes in the read buffer
for two consecutive read cycles. In the single precision
mode, the NSC810A freezes the read buffer for only one
read cycle. Read accesses should be done as follows.

When the TMR bit 5 is:

0- (double byte) read or write the low byte first, then
the high byte to maintain proper read/write com­
munications.

1- (single byte) In this mode either the high or low byte
of the count can be read at any given instant but
not both bytes consecutively. Always write the low
byte first, then the high byte to load the modulus.

The following example illustrates this point. If the read buffer
had a value of 0200 when the low byte was read and the
down-counter decremented to 01FF before the high byte
was read, then in the double precision mode the CPU would
have read 00 and 02, respectively. In the single precision
mode the CPU would have read 00 and 01.
NOTE: In the double precision mode, the high byte should be read immedi­

ately after the low byte. Do not access any other registers or unused
address locations between the reads.

- Gate Input Polarity

In modes 2, 3 and 4, the TG input is the common hardware
control for starting and stopping the timers.

The polarity of the gate input may be selected by the con­
tents of bit 6 of the TMR. If bit 6 equals 0, the gate signal will
be active-high or positive edge for mode 4; if bit 6 equals 1 ,
the gate polarity will be active-low or negative edge for
mode 4. Modes 2 and 3 are level sensitive. Mode 4 is edge
sensitive.

9-89

- Timer Output Polarity

Like the gating function, the polarity of the output signal is
programmable via bit 7 of the TMR. A zero will cause an
active-low output; a one will generate an active-high output.

The output for T1 is multiplexed with port C, bit 5. (Similarly
T11N is multiplexed with port C, bit 4.) When any timer mode
other than a or 7 is specified for T1, or when mode 2, mode
3, or mode 4 is specified for TO, the three port C pins, bit 3,
bit 4, and bit 5, become TG, T11N and T10UT, respectively.

• Start and Stop Registers

This is the software start and stop for the timers. There is
one start and one stop register for each timer. Writing any
data to the start register of a timer starts that timer or trans­
fers start and stop control to TG (in the gated modes 2, 3
and 4). Writing any data to the stop register stops the timer
and removes start and stop control from TG (in the gated
modes 2, 3 and 4). Restarting the timers causes the modu­
lus to be reloaded for all gated timer modes (2, 3 and 4).

During software restarts of the timers (write to the STOP
register and then to the START register) the modulus will be
reloaded only if the internal clock signal (INTCLK) is in the
high level or makes at least one transition to the high level
between the time that the STOP and START registers are
written. If INTCLK doesn't meet one of these criteria then
the modulus will not be reloaded and the timer will continue
to count down from where it was stopped.·

Since it is difficult, if not impossible, to know the level of
INTCLK in non-gated modes the recommended practice for
restart operation is to reload the modulus after stopping the
timer using the 4 step programming procedure in the Timer
Programming section of this datasheet. In gated modes
INTCLK always stops high.
'NOTE: INTCLK is coupled via the prescaler to TIN and reacts to the TIN

clock input regardless of whether the timer is started or stopped.

- Start/Stop Timing

Figure 5 shows the relationships between the WR signal
(start register), TIN and INTCLK for both the non-gated and
gated modes. The TG signal is only sampled during the pos­
itive half of the TIN cycle. This means that when the gated
modes are used the internal clock (INTCLK) is never
stopped in the low state. Hence, when TG goes active high
INTCLK is restarted on the next high-to-Iow transition of
TIN. When TG goes inactive low INTCLK will stop as soon
as TIN is high.

9.4.2 Timer Pins

TIN, TOUT, and TG

Timer a has dedicated pins for its clock, TOIN, and its out­
put, TOOUT. Timer 1 must borrow its input and output pins
from port C. This is accomplished by writing to the TMR for
timer 1. If mode 1, 2, 3, 4, 5 or 6 is specified in TMR1, the
pins from port C (PC3, PC4 and PC5) are automatically
made available to the timer(s) for gating (TG), T11N and
T10UT, respectively. These pins are also taken from port C
any time timer a is in mode 2, 3, 4, so that it has a TG pin. In
order to change pins PC3, PC4 and PC5 back to their origi­
nal configuration as Basic I/O, the timer mode registers
must be reset by selecting mode a or 7.

TG (PC3), the timer gate, is used for hardware control to
start/stop (or trigger) the timers. The timer gate may be
used individually by either timer or simultaneously by both
timers.

For modes 2 and 3, the timer starts on the gate-active tran­
sition assuming the start address was previously written. If

z
tJ)
o co
~

CD
cO
o

TIN

Wii

ADDRESS

INTCLKFOR
NON-GATED

MODES (1, 5, 6)

TO
(TMAS.O) ,

INTCLKFOR
GMED MODES 12, 3, 4)

FIGURE 5. Start/Stop Timing

Note: Diagonal lines indicate interval of invalid data.

For mode 4 (one shot), only start-timing applies.

tws-r-WR set-up for starting timer 150 ns.

twsp-WR set-up for stopping timer 150 ns.

tGs-r-TG (gate) set-up for starting timer 100 ns.

tGSp-TG (gate) set-up for stopping timer 100 ns.

NSC810A

CD o
."
C
~
n -o·
~

!.
c
CD en
n ...
is· -o·
~

1;>
~
'" c:
CD .e.

TLlC/5517-16

CD

~

II

ONE CYCLE

INltLK

Wi! -------....,
START REGISTER

~--+------------,
READ BUFFER

(ACTI~~~~~ --------------------------"'1:=1

FIGURE 6a. Event Counter Mode (Mode 1)

INltLK

Viii ----...
START REGISTER

w-------------t-----------------------+------~--,
READ BUFFER

GATE
(ACTIVE-HIGH) _________ ..1

OUTPUT ----------------------+..,
(ACTIVE-LOW

INTClK

ViA
START REGISTER

FIGURE 6b. Accumulative Timer (Mode 2)

w------------4--------------------1-------t~
READ BUFFER

GATE
IACTIVE-HIGHI _________

OUTPUT
IACTIVE-lOWI

FIGURE 6c. Restartable Timing

TLlC/5517-17

TLlC/5517-18

TLlC/5517-19

CD
(:)
."
C
:::l
() -O·
:::l
~
C
CD
til
()

~.
"C -O·
:::l

o
o
;a.
:r
c:
<D
S

VO~8~SN

c(
0 .,...
CO
0
(I)
Z

9.0 Functional Description (Continued)

TABLE VI. Timer Programming Selection Example

Mode Register Bit Timer Timer
Mode Description

(TMR) Output Gate
Polarity Polarity

7 6 5 4 3 2 1 0 Active Active
L/H L/H

TIMER 0

x x x x x 0 0 0 x x
0 x 0 0 0 0 0 1 L x
1 x 0 1 1 1 1 0 H x
1 0 0 0 1 1 0 0 H H
0 1 1 0 0 0 1 0 L L

TIMER 1

x
0
1
0

x x x x 1 1 1 x x
x 0 x 0 0 0 1 L x
0 1 x 1 1 0 1 H H
1 0 x 0 0 1 1 L L

the timer gate makes an active transition prior to a write to
the start register's address, the trailing edge of the WR
strobe starts the timer. However, for mode 4 the timer al­
ways waits for an active gate edge following a write to the
start address before it begins counting.

The DDR for port C must be programmed with the correct
1/0 direction for TG, T11N and T1 OUT of timer 1. See Table
VI for programming examples.

9.4.3 Timer Modes

The low-order three bits (bits 0, 1, 2) of the timer mode
registers (TMR) define the mode of operation for the timers.
Each TMR may be written to, or read from, at any time.
However, to ensure accurate timing, it is important to modify
the mode of the timer only when the timer is stopped. Inputs
of 000 or 111 define a NOP (no operation) mode. In either of
these modes (0 or 7) the timer is stopped, INTCLK is high,
and the output is inactive. Inputs of 001 through 110 will
select one of six distinct timer functions.

In the explanations that follow, assume that the modulus
register for the timer was loaded with the appropriate value
(0004) by writing to the low and high bytes of each timer
modulus register. Assume also, that the prescale is + 1.

• Event Counter (mode 1 TMR bits = 001)

In this non·gated mode the count is decremented for each
clock period (INTCLK) input to the timer block (see Figure
68). When the count reaches zero, the output goes valid
and remains valid, until the read buffer is read by the CPU or
the timer stop register is written.

At the terminal count (0) the modulus is reloaded into the
timer block and the count continues even when the output is
valid. This mode can be used to cause periodic interrupts to
the CPU.

Single/Double Prescale Timing PortC DDR
Precision Value Mode 543210

9-92

SID

x x 0 x x x x x
D +1 1 x x x x x
D +64 6 x x x x x
D +2 4 1 0 0 x x
S +1 2 1 0 0 x x

x x 7 x x x x x
D +1 1 1 0 0 x x
S +2 5 1 0 0 x x
D +1 3 1 0 0 x x

• Accumulative Timer (mode 2, TMR bits = 010)

In this gated mode, the counter will decrement only when
the gate input is active (see Figure 6b). If the gate becomes
inactive, the counter will hold at its present value and con­
tinue to decrement when the gate again becomes active.
When the count decrements to zero, the output becomes
valid and remains valid until the count is read by the CPU or
the timer is stopped.

At the terminal count the timer is reloaded and the count
continues as long as the gate is active.

This mode can be used to time processor independent
events and to interrupt the CPU when they occur. The pre­
scale and modulus need to be longer than the expected
event duration and the gate should go inactive at the event,
to preserve the read buffer count for the CPU.

• Restartable Timer (mode 3, TMR bits = 011)

In this gated mode, the counter will decrement only when
the gate input is active. If the gate becomes inactive, the
counter will reload the modulus and hold this value until the
gate again becomes active (see Figure 6e). If the timer is
read when the gate is inactive, you will always read the
value the timer has counted down to, not the value the timer
has been reloaded with.

At terminal count the output becomes valid and the timer is
reloaded. The timer will continue to run as normal, the only
difference is the output is valid. The output remains valid
until the count is read by the CPU or the timer stop register
is written.
NOTE: The gate inactive time must be longer than the high time of the

internal clock (INTCLK) on the chip. Therefore. with -;. 64 prescale
selected the gate inactive time must be 33 input clocks or greater.

x
x
x
x
x

x
x
x
x

'" cO
V)

iii

INTCLK

Wii ----..,
START REGISTER

GATE
(ACTIVE-HIGH) '<

OUTPUT > <
(ACTIVE-LOW)

INTCLK

Wii
START REGISTER

OUTPUT
(ACTIVE LOW)

INTClK

Wii
START REGISTER

OUTPUT
{ACTIVE LOW}

!----r- ONE CYCLE

FIGURE Sd. One Shot (Mode 4)

FIGURE Se. Square Wave (Mode 5)

FIGURE Sf. Pulse Generator (Mode S)

TLiC/5517-20

TLiC/5517-21

TLiC/5517-22

co
(:)
"T1
C
::l
() .. o·
::l e..
C
(I)
en
()
:!.

" .. o·
::l
o o
3-
:i­
t:
CD
S

"O~8~SN

~ .,...
co
U
t/)
Z

9.0 Functional Description (Continued)

• One Shot Mode (mode 4, TMR bits = 100)

In this gated mode, the timer holds the modulus count until
the active gate edge (see Figure 6d). The output immedi­
ately becomes valid and remains valid as the counter decre­
ments. The gating signal may go inactive without affecting
the count. If TG (the gate) becomes inactive and returns
active prior to the terminal count, the modulus will be reload­
ed, retriggering the one shot period. When the timer reach­
es the terminal count, the output becomes inactive (see
NOTE). The gate, in this mode, is edge sensitive; the active
edge is defined by the TMR.
NOTE: The one shot cannot be retriggered during its last internal count

(INTCLK) regardless of prescaler selected. Therefore, using the di­
vide by 1 prescaler, it cannot be retriggered during the last clock
(TIN), using the divide by 2 prescaler during the last two clocks (TIN)
and using the divide by 64 prescaler during the last 64 clocks (TIN).

• Square Wave Mode (mode 5, TMR bits = 101)

In this non-gated mode, the output will go active as soon as
the timer is started. The counter decrements for each clock
period (INTCLK) and complements its output when zero is
reached (see Figure 6e). The modulus is then reloaded and
counting continues. Assuming a regular clock input, the out­
put will then be a square wave with a period equal to twice
the prescale value times the value loaded into the modulus
+ 1 (see equation Timer section intro.). Therefore, varying
the modulus will vary the period of the square wave.

• Pulse Generator (mode 6, TMR bits = 110)

In this non-gated mode, the counter decrements for each
period of INTCLK (see Figure 61). When the terminal count
is reached the output becomes valid for % of the TIN clock
width for a prescale of + 1, for one full TIN clock width for a
prescale of + 2 and for 32 TIN clock widths for a pre scale of
+ 64. The modulus is then reloaded and the sequence is
repeated. Varying the prescale and modulus varies the fre­
quency of the pulse.

9.4.4 Timer Programming

The following is the proper sequence to program the timer
and should always be used:

1. Write timer mode register selecting mode 0 or 7. This
stops the timer, resets the prescaler, and sets internal
clock high.

9-94

2. Write timer mode register again, this time loading it for
your requirements.

3. Write the modulus values, low byte first, high byte
second.

4. Start the timers.

The timer read buffer is only updated when the internal tim­
er clock (INTCLK) makes a negative-going transition. There­
fore, enough input clock cycles (TIN) must occur to cause a
transition of INTCLK given the programmed pre-scaler. Af­
ter the first transition, the new modulus will be loaded into
the read buffer and it can then be read by the CPU.

To guarantee the integrity of the data during a read opera­
tion, updates to the timer read buffer are blocked out. If an
update is blocked out due to a read, the read buffer will not
be updated until the next active transition of INTCLK. Thus,
it would appear as if a count was skipped between reads.
For example, if the output latches were FF when a block out
(read) occurred, the next update could occur at FD, thereby
giving an appearance that the count FE was skipped. In
actuality the correct number of clocks has occurred for the
read buffer to hold FD.

Writing the modulus value when the timer is running does
not update the timer immediately. The new value written will
get into the timer when the timer reaches its terminal count
and reloads its value. If the timer is stopped and a modulus
is written the new modulus value will get into the timer when
the internal clock is high during the modulus write or on the
next low to high internal clock transition. The next time the
timer reaches its terminal count it will load the new modulus
into the timer. One way to guarantee the new modulus will
get into the timer is to follow steps 1 through 4. Although
this procedure guarantees that the data will get into the tim­
er you will not be able to read it back until you get a nega­
tive-going transition on the internal clock.

Rewriting modulus does not reset the prescaler. The only
way to reset the prescaler is to write the mode register and
have the internal clock signal be high for some period be­
tween the write of the mode register and the start of the
timer. Once again, steps 1 through 4 will reset the prescaler.

10.0 NSC810A/883 MIL-STD-883 Class B Screening

National Semiconductor offers the NSCS10AD and
NSCS10AE with full class B screening per MIL-STD-SS3 for
Military/ Aerospace programs requiring high reliability. In ad­
dition, this screening is available for all of the key NSCSOO
peripheral devices.

Electrical testing is performed in accordance with
RETSS10AX, which tests or guarantees all of the electrical
performance characteristics of the NSCS10A data sheet. A
copy of the current revision of RETSS10AX is available
upon request. The following table is the MIL-STD-S83 flow
as of the date of publication.

Test MIL-STD-883 Method/Condition Requirement

Internal Visual 2010 B 100%
Stabilization Bake 100S C 24 Hrs. @ + 150·C 100%
Temperature Cycling 1010Cl0Cycies -65·C/ +150·C 100%
Constant Acceleration 2001 E 30,000 G's, Yl Axis 100%
Fine Leak 1014AorB 100%
Gross Leak 1014C 100%
Burn-In 1015160Hrs.@ +125·C(using 100%

burn-in circuits shown below)
Final Electrical + 25·C DC per RETS81 OAX 100%
PDA 5% Max

+ 125·C AC and DC per RETS81 OAX 100%
-55·CACand DC per RETS810AX 100%
+25·C AC per RETSS10AX 100%

QA Acceptance 5005 Sample per
Quality Conformance 5056 Method 5005
External Visual 2009 100%

11.0 Burn-In Circuit 12.0 Timing Diagram
5242HR

NSC810AD/883B (Dual-In-Line)

5.5 Vac
10

40 I-"VVI

CLOCK 1 -r-r5 ... 1 INri

39

38
37
36
35

CLDCK3
51

CLDCK 2
51

":"

10
11

12
13

14
15

16
17

18
19

20

34 1-".,..,...
33L...JOCAA_

32
31
30 1-".,..,...
29
28
27

261-"VVI

251-"VVI
241-"VVI
23 1-".,..,...
22,..,...
21 1-".,..,....-41

TL/C/5517-23

9-95

CLOCK 3

Input Clocks

av
3".

4.5V -+-..... _..,
DV-

TL/C/5517-24

Note 1: All resistors ±5%, V. watt unless otherwise deSignated, 12S'C op·
erating life circuit.

Note 2: E package burn·in circuit 5244HR is functionally identical to the 0
package.

Note 3: All resistors 2.7 kO unless marked otherwise.

Note 4: All clocks OV to 4.5V.

Note 5: Device to be cooled down under power after burn-in.

z
en
(')
Q)
~

13.0 Ordering Information

NSC810A X X X X 11 rA+ =A+ "";obm"s,_,,, 1883= MIL·STD·883 Screening (Note 1)

I = Industrial Temperature (- 40'C to + 85'C)
M = Military Temperature (- 55'C to + 125'C)
No Designation = Commercial Temperature (O'C to 70'C)

1-1 = 1 MHz Clock Output
'---------; -3=2.5 MHz Clock Output

1- 4 = 4 MHz Clock Output

0= Ceramic Package
L.... ________ -/ N = Plastic Package

E = Ceramic Leadless Chip Carrier (LCC)

V = Plastic Leaded Chip Carrier (PCC)

TUC/5517-25

Note 1: Do not specify a temperature option; all parts are screened to military temperature.

14.0 Reliability Information
Gate Count

Transistor Count

4000

14,000

9·96

~National
~ Semiconductor
NSC831 Parallel 1/0

General Description
The NSC831 is an I/O device which is fabricated using
microCMOS silicon gate technology, functioning as an in­
put/output peripheral interface device. It consists of 20 pro­
grammable input/output bits arranged as three separate
ports, with each bit individually definable as an input or out­
put. The port bits can be set or cleared individually and can
be written to or read from in bytes. Several types of strobed
mode operations are available through Port A.

For military applications the NSC831 is available with class
B screening in accordance with methods 5004 of MIL-STD-
883.

Features
II Three programmable I/O ports
III Single 5V Power Supply

1:11 Very low power consumption
EI Fully static operation

microCMOS

III Single-instruction I/O bit operations

• Directly compatible with NSC800 family
• Strobed modes available on Port A

Microcomputer Family Block Diagram

~
INTR ADD·AD7

RSTA, B. C
NMI

AB·A15
INTA
so
51

ftij

RFSH NSCBDD
WR

BRED CPU ALE

BACK 101M

WAIT RESET OUT

PS

Vee

RESET IN
PORT A

"*
B BITS

A13 CSii NSCB31 PORT B
A12

CSf 1/0 B BITS
ftij

WR PORT C
ALE 4 BITS

RESET

TL/C/5594-1

9-97

z
en o
QC)
Co)

~ r---,
Cf)
co
~
Z 1.0 ABSOLUTE MAXIMUM RATINGS

2.0 OPERATING RANGE

3.0 DC ELECTRICAL CHARACTERISTICS

4.0 AC ELECTRICAL CHARACTERISTICS

5.0 TIMING WAVEFORMS

6.0 PIN DESCRIPTIONS

6.1 Input Signals

6.2 Input/Output Signals

7.0 CONNECTION DIAGRAMS

Table of Contents

9·98

8.0 FUNCTIONAL DESCRIPTION

8.1 Block Diagram

8.2 1/0 Ports

8.3 Registers

8.4 Modes

9.0 NSC8311NSC883B MIL·STD-883/CLASS B
SCREENING

10.0 BURN·IN CIRCUIT

11.0 TIMING DIAGRAM

12.0 ORDERING INFORMATION

13.0 RELIABILITY INFORMATION

1.0 Absolute Maximum Ratings 2.0 Operating Range Vee = 5V ±10%

If Military/Aerospace specified devices are required, NSC831-1: O'C to +70'C
contact the National Semiconductor Sales Office/ -40'C to +85'C
Distributors for availability and specifications. NSC831·3: -40'C to + 85'C
Storage Temperature Range -65'Cto + 150'C - 55'C to + 125'C
Voltage at Any Pin With NSC831·4: O'C to +70'C

Respect to Ground -0.3V to Vee + 0.3V -40'C to +85'C

Vee 7V -55'C to + 125'G

Lead Temp. (Soldering, 10 seconds) 300'C

Power Dissipation 1W

Note: Absolute maximum ratings are those values beyond
which the safety of the device cannot be guaranteed Con-
tinuous operation at these limits is not intended; operation
should be limited to those conditions specified under DC
Electrical Characteristics.

3.0 DC Electrical Characteristics Vee = 5V ± 10%, GND = OV, unless otherwise specified

Symbol Parameter Test Conditions Min Typ Max Units

VIH Logical 1 Input Voltage 0.8 Vee Vee V

VIL Logical 0 Input Voltage 0 0.2 Vee V

IOH = -1.0mA 2.4 V
VOH Logical 1 Output Voltage

lOUT = -10 JJ-A 4.0V V

IOL = 2mA 0 0.4 V
VOL Logical 0 Output Voltage

lOUT = 10 JJ-A 0 0.1 V

IlL Input Leakage Current 0,;; VIN';; Vee -10.0 10.0 JJ-A

IOL Output Leakage Current 0,;; VIN';; Vee -10.0 10.0 JJ-A

lee Active Supply Current lOUT = 0, twey = 750 ns 15 20 mA

10 Quiescent Current RESET =0, RD = 1, WR = 1, 10 100 JJ-A
ALE = X, VIN = 0, or VIN = Vee
No Input Switching, T A = 25'C

GIN Input Capacitance 4 7 pF

COUT Output Capacitance 6 10 pF

Vee Power Supply Voltage (Note 1) 2.4 5 6 V

Note 1: Operation at lower power supply voltages will reduce the maximum operating speed. Operation at voltages other than 5V ± 1 0% Is guaranteed by design,
not tested.

ICC vs. SPEED
10

..1.~ .. /~ .s ...
15
a::
a::

5 8

~ V '/ =>
'"
~

.V
4500 3000 1500 1000 750

twev (ns)

0 1 2 3 4

NSC 800 CLOCK SPEED' (MHz)
TL/C/5594-2

'When NSe831 is used with NScaOO

9-99

z en o
CO
Co:I

4.0 AC Electrical Characteristics Vcc = 5V ± 10%, GND = OV

Test NSC831-1 NSC831-3 NSC831-4
Symbol Parameter

Conditions
Units

Min Max Min Max Min Max

tACC Access Time from ALE CL = 150 pF 1000 400 250 ns

tAH ADO-AD7, CE, 101M Hold Time 100 60 30 ns

tALE ALE Strobe Width (High) 200 130 75 ns

tARW ALE to RD or WR Strobe 150 120 75 ns

tAS ADO-AD7, CE, 101M Setup Time 100 45 40 ns

tOH Data Hold Time 150 90 40 ns

too Port Data Output Valid 350 320 300 ns

tos Data Setup Time 100 80 50 ns

tpE Peripheral Bus Enable 320 200 200 ns

tpH Peripheral Data Hold Time 150 125 100 ns

tps Peripheral Data Setup Time 100 75 50 ns

tpz Peripheral Bus Disable (TRI-STATE®) 150 150 150 ns

tR8 RD to BF Output 300 300 300 ns

tRO Read Strobe Width 400 320 220 ns

tROD Data Bus Disable 0 100 0 75 0 75 ns

tRI RD to INTR Output 320 300 300 ns

tRWA RD or WR to Next ALE 125 100 45 ns

Isa STB to BF Valid 300 300 300 ns

tSH Peripheral Data Hold With Respect to STB 150 125 100 ns

lSI STB to INTR Output 300 300 300 ns

tss Peripheral Data Setup With Respect to STB 100 75 50 ns

Isw STBWidth 400 320 220 ns

twa WR to BF Output 340 300 300 ns

tWI WR to INTR Output 320 300 300 ns

tWR WR Strobe Width 400 320 220 ns

twCY Width of Machine Cycle 3000 1200 750 ns

Nole: Test conditions: twCY ~ 3000 ns for NSC831-1, 1200 ns for NSC831-3, 750 ns for NSC831-4

AC TESTING INPUT/OUTPUT WAVEFORM AC TESTING LOAD CIRCUIT

===x: 0.8 Vee 0.8 Vee x= I DEVICE
0.2 Vee 0.2 Vee UNDER

TEST
TLlC/5594-3 1'100 PF

TL/C/5594-4

9-100

5.0 Timing Waveforms

101M
CE

AD (0-71

ALE

no

PERIPHERAL
(PDRT) BUS

Note: Diagonal lines indicate interval of invalid data.

Note: Diagonal lines indicate interval of invalid data.

Read Cycle (Read from Port)

Write Cycle (Write to Port)

9-101

TLlC/5594-5

TLlC/5594-6

z en o
CXI
Co) ...

~ ,---,
CO)

B 5.0 Timing Waveforms (Continued)
U)
Z Strobed Mode Input

PERIPHERAL
(PORT A) BUS

BF

INTR

101M
CE

ALE

AD (D-7)

Note: Diagonal lines indicate interval of invalid data.

IOJM~
CE 'I11I//////II/

PORT A

-

TL/C/5594-7

Strobed Mode Output

AD (0-7) B< PDRTAADDR ~OATAIN _

ALE \ I':~:---------------------

BF

m

-ID0:to-+----+---_

X NEW DATA
{

ACTIVE (MDDE 2) DlD DATA

PORTA BUS

_ !!!-~T~M~E:!L _____ _
lPEt

- - ------'--{
Note: Diagonal lines indicate interval of invalid data.

TLlC/5594-B

9-102

r--, Z

6.0 Pin Descriptions
The following describes the function of all NSC831 input/
output pins. Some of these descriptions reference internal
circuits.

6.1 INPUT SIGNALS

Master Reset (RESET): An active-high input on the RESET
pin initializes the chip causing the three 1/0 ports (A, Band
C) to revert to the input mode. The three ports, the three
data direction registers and the mode definition register are
reset to low (0).

Chip Enable (CEo, CE1): The CE inputs must be active at
the falling edge of ALE. At ALE time, the CE inputs are
latched to provide access to the NSC831.

Read (RD): when the RD input is an active low, data is read
from the ADO-AD? bus.

Write (WR): When the CE inputs are active an active low
WR input causes the selected output port to be written with
the data from the ADO-AD? bus.

Address Latch Enable (ALE): The trailing edge (high to
low transition) of the ALE input signal latches the addressl
data present on the ADO-AD? bus, plus the input control
signals on CEo and CE1.

Power (Vecl: 5V power supply.

Ground (Vss): Ground reference.

6.2 INPUT /OUTPUT SIGNALS

Bidirectional Address/Data Bus ADO-AD7: The lower 8
bits of the 1/0 address are applied to these pins, and
latched by the trailing edge of ALE. During read operations,
8 bits are present on these pins, and are read when RD is
low. During an 1/0 write cycle, Port A, B, or C is written with
the data present on this bus at the trailing edge of the WR
strobe.

Ports A, B, C (PAO-PA7, PBO-PB7, PCO-PC3): These are
general purpose 1/0 pins. Their input/output direction is de­
termined by the contents of the Data Direction Register
(DDRs).

9-103

7.0 Connection Diagrams
Dual-In-Line Package

PAD 40 Vee

39 PAl

38 PA2
37 PA3

RESET 36 PA4

CSO 3S PA5

Vee 34 PA6

CS1 33 PA7

jjjj 32 PCoIINTR
WR 10 NSC831 31 PC1/BF
ALE 11 30 PC2/STB

12 29 PC3 ADO
ADl 13 28 PBo

:~: :: 27 PBl

26 PB2

AD4 25 PB3

ADS 17 24 PB4
AD6 18 23 PBS

AD7 19 22 PB6
V 20 21 PB7 ss

TL/C/5594-9

Top View
*Tie pins 2, 3, and 4 to either Vee or Vss.

Order Number NSC831D or N
See NS Package Number D40C or N40A

Leadless Chip Carrier

RESET PAD NC Vee PAl PA2 PA3 PA4

/
CSO PAS

Vee PA6

CS1 PA7
Ali PCOJlNTR

WR PClI8F

NC NC

ALE PC2/STB
ADO PC3

ADl PBO
AD2 PBl
AD3 PB2

AD4 AD5 AD6 AD7 Vss NC PB7 PB6 PBS PB4 PB3

NC = NO CONNECT

Top View

Order Number NSC831E
See NS Package Number E44A

TL/C/5594-10

en o
(1)
c.)

,.. r---~
CO)
co
U
U)
Z

8.0 Functional Description
Refer to Figure 1 for a detailed block diagram of the
NSC831, while reading the following paragraphs.

Input/Output (1/0): The 110 of the NSC831 contains three
sets called Ports. There are two ports (A and B) which con­
tain 8 bits each and one port (Port C) which has 4 bits. Any
bit or combination of bits in a port may be addressed with
Set or Clear commands. A port can also be addressed as an

8.1 BLOCK DIAGRAM

(Z-41

A8-AID •• iiiI.~

(lZ-191

ADD-AD7 4111i1iliil~

(40)
Vcc~
GND~

CONTROL
LOGIC

ADDRESS
8UFFERS

ADDRESSI
DATA

BUFFERS
AND

LATCHES

INTERNAL
DATA
BUS

Note: Applicable pinout for 40 pin dual-in·line package within parentheses.

8-bit word (4 bits for Port C). When reading Port C, bits 4-7
will be read as ones. All ports share common functions of
Read, Write, Bit-Set and Bit-Clear. Additionally, Port A is
programmable for strobed (handshake mode input or out­
put. Port C has a programmable second function for each
bit associated with strobed modes. Table I defines the ad·
dress location of the ports and control registers.

PORT A

PORT 8

PORT C

(1.33·391

PAO-PA7

(Zl-Z8)

PBD-PB7

(29-32)

PCO-PC3
HANDSHAKE

TL/C/5594-11

FIGURE 1

9-104

8.0 Functional Description (Continued)

8.2 1/0 PORTS

There are three 1/0 ports (labeled A, Band C) on the
NSC831. Ports A and Bare 8-bits wide; port C is 4-bits wide.
These ports transfer data between the CPU bus and the
peripheral bus and vice versa. The way in which these trans­
fers are handled depends upon the currently programmed
operating mode.

The NSC831 can be programmed to operate in four differ­
ent modes. One of these modes (Basic 1/0) allows direct
transfer of 1/0 data without any handshaking between the
NSC831 and the peripheral. The other three modes
(Strobed 1/0) provide for timed transfers of 1/0 data with
handshaking between the NSC831 and the peripheral.

Determination of the NSCB31 port's mode, data direction
and data is done by five registers which are under program
control. The Mode Definition Register determines in which
of the four 1/0 modes the chip will operate. Another register
(Data Direction Register) establishes the data direction for
each bit in that port. The Data Register holds data to be
transferred or that which was received. The final two regis­
ters per port allow individual data register bits to be cleared
(Bit-Clear Register) or data register bits to be set (Bit-Set
Register).

Operation during Strobed 1/0 utilizes two of the port C pins
for handshaking and one port C pin to interrupt the CPU.

8.3 REGISTERS

As indicated in the overview, programmable registers con­
trol the flow of data through the ports. Table I shows the
registers of the NSC831. All registers affecting 1/0 transfers
are in the first grouping of this table.

• Mode Definition Register (MDR)

The MDR determines the operating mode for port A and
whether or not the lower 3-bits of port C will be used for
handshaking (Strobed 1/0). Port B always transfers data via
the Basic 1/0 mode, regardless of how the MDR is pro­
grammed.

The four modes are as follows:

Mode O-Basic 1/0 (Input or Output)

Mode 1-Strobed Mode Input

Mode 2-Strobed Mode Output (Active Peripheral Bus)

Mode 3-Strobed Mode Output (TRI-STATE Peripheral
Bus)

9-105

The address assignment of the MDR is xxx00111 as shown
in Table I. The upper 3 "don't care" bits are determined by
the users decode logic (chip enable address). Table II speci­
fies the data that must be loaded into the MDR to select the
mode.

• Data Direction Registers (DDR)

Each port has a DDR that determines whether an individual
port bit will be an input or an output. If DDR for the port bit is
set to a 1, then that port bit is an output. If its DDR is reset to
a 0, then it is an input. The DDR bits cannot be individually
written to; the entire DDR register is affected by a write to
the DDR. Thus, all data bits written must be consistent for
all desired port bit directions.

TABLE I. 1/0 and Timer Address Designations

8-Bit Address Field
Bits

7 6 5 4 3 2

x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 1
x x x x 0 1
x x x x 0 1
x x x x 0 1
x x x x 1 0
x x x x 1 0
x x x x 1 0
x x x x 1 0
x x x x 1 1
x x x x 1 1
x x x x 1 1
x x x x 1 1

x = don't care

LB ~ low-order byte

HB ~ high-order byte

1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

Designation R (Read)

0
1/0 Port, Timer, etc. W(Write)

0 PortA (Data) R/W
1 Port B (Data) R/W
0 Port C (Data) R/W
1 Not Used **
0 DDR - PortA W
1 DDR- Port B W
0 DDR- PortC W
1 Mode Definition Reg. W
0 Port A - Bit-Clear W
1 Port B - Bit-Clear W
0 Port C - Bit-Clear W
1 Not Used "
0 Port A - Bit-Set W
1 Port B - Bit-Set W
0 Port C - Bit-Set W
1 Not Used '*

" A write accesses the modulus register, a read the read buffer.

"'" A read from an unused location reads invalid data, a write does not affect
any operation of NSC831.

TABLE II. Mode Definition Register Bit Assignments

Mode
Bit

7 6 5 4 3 2 1 0

0 x x x x x x x 0
1 x x x x x x 0 1
2 x x x x x 0 1 1
3 x x x x x 1 1 1

z
(f)
o
IX)
C.:I

-r---~
CO)
ClCI

~
Z

8.0 Functional Description (Continued)

Any write or read to the port bits contradicting the direction
established by the DDR will not affect the port bits output or
input. However, a write to a port bit, defined as an input, will
modify the output latch and a read to a port bit, defined as
an output, will read this output latch. See Figure 2.

• Data Registers

These registers contain the actual data being transferred
between the CPU and the peripheral. In Basic I/O, data
presented by the peripheral (read cycle) will be latched on
the falling edge of RD. Data presented by the CPU (write
cycle) will be valid after the rising edge of WR (see AC char­
acteristics for exact timing).

During Strobed I/O, data presented by the peripheral must
be valid on the rising edge of STB. Data received by the
peripheral will be valid on the rising edge of STB. Data
latched by the port on the rising edge of STB will be pre­
served until the next CPU read or STB signal.

• Bit Set-Clear Registers

The I/O features of the RAM-I/O-timer allow modification of
a single bit or several bits of a port with the Bit-Set and Bit­
Clear commands. The address selected indicates whether a
Bit-Set or Clear will take place. The incoming data on the
address/data bus is latched at the trailing edge of the WR
strobe and is treated as a mask. All bits containing 1 s will
cause the indicated operation to be performed on the corre­
sponding port bit. All bits of the mask with Os cause the
corresponding port bits to remain unchanged. Three sample I

operations are shown in Table III using port B as an exam­
ple.

INTERNAL
DATA BUS

MODE

WR(SET)

TABLE III. Bit-Set and Clear Examples

Operation
SetB7

CiearB2 SetB4,B3
Port B andBO and B1

Address xxx01101 xxx01001 xxx01101

Data 10000000 00000101 00011010

Port Pins
Prior State 00001111 10001111 10001010
Next State 10001111 10001010 10011010

8.4 MODES

Two data transfer modes are implemented: Basic I/O and
Strobed I/O. Strobed I/O can be further subdivided into
three categories: Strobed Input, Strobed Output (active pe­
ripheral bus) and Strobed Output (TRI-STATE peripheral
bus). The following descriptions detail the functions of these
categories.

• Basic 1/0
Basic I/O mode uses the RD and WR CPU bus signals to
latch data at the peripheral bus. This mode is the permanent
mode of operation for ports Band C. Port A is in this mode if
the MDR is set to mode O. Read and write byte operations
and bit operations can be done in Basic I/O. Timing for
these modes is shown in the AC Characteristics Table and
described with the data register definitions.

When the NSCB31 is reset, all registers are cleared to zero.
This results in the basic mode of operation being selected,
all port bits are made inputs and the output latch for each
port bit is cleared to zero. The NSCB31, at this pOint, can
read data from any peripheral port without further set-up. If
outputs are desired, the CPU merely has to program the
appropriate DDR and then send data to the data ports.

TL/C/5594-12

FIGURE 2

9-106

8.0 Functional Description (Continued)

• Strobed 1/0 causing BF to go high (true). On the trailing (positive) edge
of STB the data is latched and the interrupt signal, INTR,
becomes valid indicating to the CPU that new data is avail­
able. INTR becomes valid only if the interrupt is enabled,
that is the output data latch for PC2 is set to 1.

Strobed lID Mode uses the STB, BF and INTR signals to
latch the data and indicate that new data is available for
transfer. Port A is used for the transfer of data when in any
of the Strobed modes. Port B can still be used for Basic lID
and the lower 3-bits of port C are now the three handshake
signals for Strobed lID. Timing for this mode is shown in the
AC Characteristic Tables.

When the CPU reads port A, address x'OO, the trailing edge
of the RD strobe causes BF and INTR to become inactive,
indicating that the strobed input cycle has been completed.

• Strobed Output-Active (Mode 2) Initializing the NSC831 for Strobed lID Mode is done by
loading the data shown in Table IV into the specified regis­
ter. The registers should be loaded in the order (left to right)
that they appear in Table IV.

During strobed output operations, an external device can
read data from port A using the STB signal. Data is initially
loaded into port A by the CPU writing to lID address x'OO.
On the trailing edge of WR, INTR is set inactive and BF
becomes valid indicating new data is available for the exter­
nal device. When the external device is ready to accept the
data in port A it pulses the STB signal. The rising edge of
STB resets BF and activates the INTR signal. INTR be­
comes valid only if the interrupt is enabled, that is the output
latch for PC2 is set to 1. INTR in this mode indicates a
condition that requires CPU intervention (the output of the
next byte of data).

TABLE IV. Mode Definition Register Configurations

DDR DDR
PortC

Mode MDR
PortA PortC

Output
Latch

Basic 110 xxxxxxxO Port bit directions are
determined by the bits of

each port's DDR

Strobed Input xxxxxxOl 00000000 xxxOll xxxI xx

Strobed Output xxxxxOll 11111111 xxxOll xxxI xx
• Strobed Output-TRI-STATE (Mode 3)

(Active)

Strobed Output xxxxxlll 11111111 xxxOll xxxI xx
(TRI-STATE)

• Strobed Input (Mode 1)

The Strobed Output TRI-ST ATE Mode and the Strobed Out­
put active (peripheral) bus mode function in a similar man­
ner with one exception. The exception is that the data sig­
nals on PAO-7 assume the high impedance state at all
times except when accessed by the STB signal. Thus, in
addition to its timing function, STB enables port A outputs to
active logic levels. This Mode 3 operation allows other data
sources, in addition to the NSC831, to access the peripheral
bus. Strobed Mode 3 is identical to Strobed Mode 2, except
as indicated above.

During strobed input operations, an external device can load
data into port A with the STB signal. Data is input to the
PAO-7 input latches on the leading (negative) edge of STB,

Example Mode 1 (Strobed Input):

Action Taken INTR SF Results of Action

INITIALIZATION

Reset NSC831 H L Basic input mode all ports.
Load 01'H into H L Strobed input mode entered; no byte loads to port C

MDR after this step; bit-set and clear commands to INTR
and BF no longer work.

Load OO'H into H L Sets data direction register for port A to input;
DORA data from port A peripheral bus is available

to the CPU if the STB signal is used, other
handshake signals aren't initialized, yet.

Load 03'H into H L Sets data direction register of port C; buffer full
DDRC signal works after this step and it is unaffected

by the bit-set and clear registers.
Load 04'H into H L Sets output latch (PC2) to enable INTR; INTR will

Port C Bit-Set latch active whenever STB goes low; INTR can be
Register disabled by a bit-clear to PC2.·

OPERATION

STB pulses low L H Data on peripheral bus is latched into port A;
INTR is cleared by a CPU read of port A or a
bit-clear of STB.

CPU reads Port A H L CPU gets data from port A; INTR is cleared;
peripheral is signalled to send next byte via
an inactive BF signal. Repeat last two steps until
EDT at which time CPU sends bit-clear to the
output latch (PC2).

*Port C can be read by the CPU at anytime, allowing polled operation instead of interrupt driven operation.

9-107

z
~
CO
Co)

- r---~
CW)

~ 8.0 Functional Description (Continued)

Z Example Mode 2 (Strobed Output-active peripheral bus):

Action Taken INTR BF Results of Action

INITIALIZE

Reset NSC831 H L Basic input mode all ports.
Load 03'H into H L Strobed output mode entered; no byte loads to

MDR port C after this step; bit -set and clear
commands to I NTR and BF no longer work.

Load FF'H into H L Sets data direction register for port A to output;
DDRA data from port A is available to the peripheral if

the STB signal is used other handshake signals
aren't initialized, yet.

Load 03'H into H L Sets data direction register of port C; buffer full
DDRC Signal works after this step and it is unaffected

by the bit-set and clear registers
Load 04'H into L L Sets output latch (PC2) to enable INTR; active

Port C Bit-Set INTR indicates that CPU should send data;
Register I NTR becomes inactive whenever the CPU

loads port A; INTR can be disabled by a bit-clear
to STB.·

OPERATION

CPU writes to H H Data on CPU bus is latched into port A; INTR is
PortA set by the CPU write to port A; active BF

STB pulses low L L indicates to peripheral that data is valid;
Peripheral gets data from port A; INTR is reset
active; The active INTR Signals the CPU to send
the next byte. Repeat last two steps until EOT at
which time CPU sends bit-clear to the output
latch (PC2).

·Port C can be read by the CPU at any time, allowing polled operation instead of interrupt driven operation.

• Handshaking Signals

In the Strobed mode of operation, the lower 3-bits of port C
transmit/receive the handshake signals (PCO= INTR,
PC1 =BF, PC2=STB).

INTR (Strobe Mode Interrupt) is an active-low interrupt from
the NSC831 to the CPU. In strobed input mode, the
CPU reads the valid data at port A to clear the inter­
rupt. In strobed output mode, the CPU clears the inter­
rupt by writing data to port A.

The INTR output can be enabled or disabled, thus
giving it the ability to control strobed data transfer. It is
enabled or disabled, respectively, by setting or clear­
ing bit 2 of the port C output data latch (STB).

PC2 is always an input during strobed mode of opera­
tion, its output data latch is not needed. Therefore,
during strobed mode of operation it is internally gated
with the interrupt Signal to generate the INTR output.
Reset clears this bit to zero, so it must be set to one to
enable the INTR pin for strobed operation.

9-108

Once the strobed mode of operation is programmed,
the only way to change the output data latch of PC2 is
by using the Bit-Set and Clear registers. The port C
byte write command will not alter the output data latch
of PC2 during the strobed mode of operation.

STB (Strobe) is an active low input from the peripheral de­
vice, signalling a data transfer. The NSC831 latches
data on the rising edge of STB if the port bit is an input
and the peripheral should latch data on the rising
edge of STB if the port bit is an output.

BF (Buffer Full) is a high active output from the NSC831.
For input port bits, it indicates that new data has been
received from the peripheral. For output port bits, it
indicates that new data is available for the peripheral.

Note: In either input or output mode the SF may be cleared by rewriting the
MOR.

9.0 NSC831/883B MIL-STD-883 Class B Screening

National Semiconductor offers the NSC831 D and NSC831 E
with full class B screening per MIL-STD-883 for Military/
Aerospace programs requiring high reliability. In addition,
this screening is available for all of the key NSC800 periph­
eral devices.

Electrical testing is performed in accordance with
RETS831X, which tests or guarantees all of the electrical
performance characteristics of the NSC831 data sheet. A
copy of the current revision of RETS831X is available upon
request. The following table is the MIL-STD-883 flow as of
the date of publication.

Test

Internal Visual
Stabilization Bake
Temperature Cycling
Constant Acceleration
Fine Leak
Gross Leak
Burn-In

Final Electrical
PDA

QA Acceptance
Quality Conformance
External Visual

10.0 Burn-In Circuit

CLOCK 1

CWCK2

CLOCK 3

';:-

5242HR
NSC831AD/883B (Dual-In-Llne)

1 40

2 39

3 38
51

4 37
'A, 5 36

6 35

7 34

8 33
51

9 32
10 31

51
11 30

12 29
-", 13 28

14 27

15 26
-" 16 25

17 24

18 23

19 22

20 21

100% Screening Flow

MIL-STD-883 Method/Condition Requirement

2010 B 100%
1 008C 24 Hrs. @ + 150'C 100%
1010C 10 Cycles -65'C/ + 150'C 100%
2001 E 30,000 Gs, Y1 Axis 100%
1014AorB 100%
1014C 100%
1015160 Hrs. @ + 125'C (using 100%
burn-in circuits shown below)
+ 25'C DC per RETS831X 100%
5% Max
+ 125'C AC and DC per RETS831X 100%
-55'C AC and DC per RETS831X 100%
+ 25'C AC per RETS831X 100%
5005 Sample per

Method 5005
2009 100%

11.0 Timing Diagram
Input Clocks

5.5 Voc 2"s I· ·1· 8"s ·1· ·12 ps
10 4.5V Tl- n

'.
TLIC15594-13

9-109

CWCKl OV
-~---! ~....,...-r2 ps+I·>-·+1 .--8 PSt1=t2 pS

4.5V -- --n rL
CLOCK 2

OV-+-~ 3 PS+--! 1-3 PS++7 ps---j

,-. ': __ ~~y .~" L
!---10pS

TLIC15594-14

Note 1: All reSistors ±5%, % watt unless otherwise deSignated, 125°C op·
erating life circuit.

Note 2: E package burn-in circuit 5244HR is functionally identical to the 0
package.

Note 3: All resistors 2.7 kfi unless marked otherwise.

Note 4: All clocks OV to 4.5V.

Note 5: Device to be cooled down under power after burnain.

... ,---,
(I)
co
~
Z

12.0 Ordering Information

NSC831 X X X x

11 ifA + = A + R,II •• IIIIy .''""'" 1883 = MIL-8TO·883 Screening (Note 1)

I = Industrial Temperature (_40DC to + 85DC)
M = Military Temperature (-55 DC to = + 125DC)
No Designation = Commercial Temperature (ODC to + 70 DC)

1-1 = 1 MHz Clock Output '------l,-3 = 2.5 MHz Clock Output
-4 = 4 MHz Clock Output

I 0 = Ceramic Package
'---------1 N = Plastic Package I E = Ceramic Leadless Chip Carrier (LCC)

Note 1: Do not specify a temperallJre option: all parts are screened to military temperature.

13.0 Reliability Information (NSC831)
Gate Count 1900
Transistor Count 7400

9-110

TL/C/5594-15

,--, z
R National Semiconductor

NSC888
NSC800™ Evaluation Board

microCMOS

.~.'

• NSC800 8-Bit microCMOS CPU
• Executes Z80® Instruction Set
• 20 programmable parallel I/O lines
• Two 16-Bit programmable

counters/timers
• Powerful 2k x 8 monitor program
• Five levels of vectored prioritized

interrupts
• RS232 Interface

Product Overview
The NSC888 is a self-contained microprocessor
board which enables the user to quickly evaluate the
performance and features of the NSC800 product
family. This fully assembled, tested board requires
only the addition of a ± 5V supply and an RS232 inter­
face cable to the user's terminal to begin NSC800
evaluation.
A powerful system monitor is provided on the board
which controls serial communications via the RS232
port. The monitor also includes command functions to
load, execute and debug NSC800 programs.

9-111

TL/C/8533-1

II 1 k x 8 microCMOS RAM with sockets for
up to 4k x 8 RAM

[J Socket for additional 2k x 8, 2716
compatible memory component

~ Wire wrap area
II Edge connectors for system expansion
eI Single-step operation mode
II!iI Fully assembled and tested

The board includes an NSC800 CPU plus RAM,
EPROM, 110, Timers and interface components yet
draws only 30 mA from the + 5V supply and 3 mA
from the - 5V supply.

Although designed primarily as an assessment vehi­
cle, the NSC888 can be readily programmed and
adapted to a variety of uses. Wire wrap area is provid­
ed on-board for the user to build up additional circuitry
or interfaces, thus tailoring this high-performance, low­
power microprocessor board to meet individual needs.

(J)
o
Q)
Q)
Q)

m .---~
m m
~
Z

Functional Description
Figure 1 and Figure 2 provide information on the orga­
nization of the NSC888 board. Please refer to these
figures for the following discussion.

Central Processor

The powerful NSC800 is the central processor for the
NSC888. It provides bus control, clock generation and
extensive interrupt capability. Featuring a multiplicity
of programmable registers and sophisticated address­
ing modes, the NSC800 executes the Z80 instruction
set.

Memory

-128 bytes of RAM are provided by the NC810A
RAM-I/O-Timer and are used by the monitor pro­
gram for the system stack.

- 1024 bytes of RAM are provided by two 1 k x 4
NMC6514's. Sockets are provided for six additional
NMC6514's, for a total of 4k bytes of RAM.

- A 2k byte EPROM system monitor is provided on­
board which includes facilities to load, execute and
debug a users program.

Block Diagram

EXTERIIAL
COIITROL

BUS

IIscaoo
CPU

iii

SINGLE
STEP
MODE

Ala·151

ADDRESS

• An additional EPROM socket is also on-board which
accepts a 2k byte 2716 compatible memory compo­
nent.

Input/Output

• Parallel I/O
The NSC888 provides 20 programmable parallel 1/0
lines implemented using the 1/0 ports of the
NSC810A RAM-I/O-Timer. The port bits may be in­
dividually defined as input or output, and can also be
written to or read from in bytes. The 1/0 lines are
conveniently brought to a 50 contact edge connec­
tor for user interface.

• Serial I/O
An RS232 connector and accompanying support cir­
cuitry are provided on-board. Two 1/0 lines from the
NSC810A RAM-I/O-Timer are used for the serial
communications function, which is controlled exclu­
sively by software. The baud rate is determined
upon system initialization by the character bit rate
from the users terminal. The maximum baud rate is
2400 baud.

R/W
MEMORY
4Kx 8

DEMUl·
TlPLEXER
82PCI2

COMMUIII·
CATION

INTERFACE

A 10·71

DATA

DATA
XMIT

4K
READ
DNLY

MEMORY

}.-I/O

TLICIBS33-2

FIGURE 1

9-112

Functional Description (Continued)

Timers

The NSC888 provides two fully programmable binary
16-bit counters/timers utilizing the NSC810A RAM-II
O-Timer. These signals are also brought to the paral­
lel I/O connector. Each timer may operate in any of
six different modes:

• Event Counter
o Accumulative Timer
o Restartable Timer
• One Shot
• Square Wave
• Pulse Generator

Connectors

• Parallel I/O

The parallel I/O lines and timer lines from the
NSC810A RAM-I/O-Timer, plus interrupt lines from
the CPU are brought to this 50 contact edge con­
nector.

• System Bus

All NSC800 CPU lines except XIN are brought to this
86 contact edge connector. In addition, the -5V line
is also brought to the system bus connector.

• RS232
This connector is provided for system interface to
the users terminal.

Interrupts

The NSC888 utilizes the powerful interrupt processing
capability of the NSC800 CPU. Interrupts are routed
via a jumper matrix to the five interrupt inputs of the
NSC800. Each input, which may be from the
NSC810A I/O ports, NSC810A timers or off board via
the system bus connector, generates a unique memo­
ry address (see Table I). All interrupts with the excep­
tion of NMI can be masked via software. Interrupt
lines are also brought to the parallel I/O connector.

TABLE I.

Interrupt Memory
Type Priority

Input Address

NMI 0066H Non-maskable Highest
RSTA 003CH Maskable
RSTB 0034H Maskable
RSTC 002CH Maskable
INTR 0038H* Maskable Lowest

'mode 1

NSC888 Firmware

The NSC888 system monitor is provided by a prepro­
grammed EPROM. This comprehensive monitor in­
cludes facilities to load, execute and debug programs.
The monitor allows the user to examine and modify
any RAM memory location or CPU register. It permits
the insertion of break points to facilitate debugging.
Programs can be executed starting at any location.

The commands supported by the NSC888 system
monitor are as follows:
a B - Select a new baud rate

a D - Display memory

o F - Fill memory between ranges
a G - Execute program with break points
a H - Hexadecimal math routine

a J - Non-destructive memory test

o K - Store 16-bit value in memory

o M - Move a block of data
a P - Put ASCII characters in memory

a Q - Query I/O ports

aS - Substitute and/or examine memory

a T - Type memory contents in ASCII

a V - Verify two blocks of data
a X - Examine or modify CPU registers

o Y - Memory search for string

These commands are fully explained in the NSC888
Hardware/Software Users Manual.

Single Step/Power Save

The NSC888 provides a unique single-step mode, uti­
lizing the Power Save input of the NSC800 CPU. This
input, when activated, reduces CPU power consump­
tion from 50 mW to only 25 mW. It also allows the user
to single-step through a program, checking and modi­
fying code. This function is controlled via a switch on
the board.

9-113

Specifications
Microprocessor

CPU-

Data Word­
Instruction Word­

Cycle Time-

System Clock­
Registers-

Number of
I nstructions-

Address
Capability-

Memory

RAM-

ROM/EPROM-

Access Time-

NSC800
8 bits

8, 16, 24, 32 bits

2.00 JLs (minimum instruction
time)

2.00 MHz
14 general purpose (8-bit)

2 index registers (16-bit)

1 stack pointer (16-bit)
1 program counter (16-bit)

158

64k bytes

1152 bytes on-board plus
sockets for an additional 3k
bytes

Sockets for 4k bytes
on-board

625 ns for opcode fetch
875 ns for memory read

z en o
OCI
OCI
OCI

~ ,---,
~
~
o
U)
z

Specifications (Continued)
Connectors

System Bus

Parallel I/O

Serial I/O

Power

Physical

Height
Width

86-pin double-sided card
cage edge connector on
0.156 inch centers

50-pin double-sided edge
connector on 0.1 inch centers
Recommended mating
connector:
3M 3415-0001
AMP 2-86792-3

Standard RS232 connector

+ 5V 30 mA (27C16 EPROM
monitor) or 90 mA (2716
EPROM monitor)
-5V3 mA

6.75 (17.15 cm)
7.85 (19.94 cm)

Order Information
NSC888 Includes CPU, 1152 bytes of

RAM, sockets for additional
3k bytes of RAM, 2k byte
monitor with additional socket
for 2k byte ROM/EPROM, 20
I/O lines, RS232 interface,
wire wrap area.

Documentation
The NSC888 Hardware/
Software Users Manual and
NSC800 Microprocessor
Family Handbook are shipped
with the NSC888 Evaluation
Board

TL/C/B533-3

FIGURE 2. NSC888 Evaluation Board

9-114

Comparison Study NSC800 vs.
808S/80C8S Z80® /Z80 CMOS

Introduction
The NSC800 is an 8-bit parallel processor with a Z80 com­
patible instruction set manufactured using National's micro­
CMOS process. This process combines the speed of silicon
gate NMOS with the low power inherent to CMOS.

The NSC800 has a 16-bit address bus which consists of the
upper eight address bits (A8-A15) and the lower eight ad­
dress bits (ADO-AD?). Address bits AO-A? are time multi­
plexed on the 8-bit bidirectional address/data bus (ADO­
AD?).

There are several advantages to using a multiplexed ad­
dress/data bus. Multiplexing frees pins on the CPU and pe­
ripheral packages for other purposes, such as status out­
puts, DMA control lines, and multiple interrupts. This can
reduce system component count. Fewer bus signal lines are
required for device interconnections in most applications
(16 lines for multiplexed bus systems vs. 24 lines for non­
multiplexed systems). This reduces PC board complexity.

Peripherals of the NSC800 Family include:

NSC810A RAM I/O Timer

NSC831 I/O

NSC858 UART

In addition to the above parts, a complete family of low pow­
er speed compatible logic and interface parts is also avail­
able.

NSC800 VS. 8085
In terms of bus structure, the N8CBOO is similar to the 8085.
Both processors utilize a multiplexed bus and timing rela­
tionships are approximately the same. The 80B5 does not
guarantee that output data on ADO-AD? are valid on both
the leading and trailing edges of WR. For the N8C800, data
are valid on both the leading and trailing edges of WR.

Both the NSC800 and the BOB5 use ALE, SO, 81, and 10/M
to indicate status. The lower eight address bits are guaran­
teed to be valid on the data bus at the trailing edge (high to
low transition) of ALE (Address Latch Enable). This signal is
used by the external system components to separate the
address and data buses. When the only components uti­
lized in the system are members of the NSCBOO family
(which contain on-chip demultiplexers), ALE needs only to
be connected to the enable inputs. If non-N8C800 family
components are used, ALE can be used to enable an B-bit
latch to perform the function of bus separation.

Decoding status bits 80 and 81, in conjunction with 10/M,
notifies the external system of the type of the ensuing M
cycle. TABLE I shows a truth table of the encoded informa­
tion. During a halt status the N8CBOO will continue to refresh
dynamic RAM.

Z80® is a registered trademark of Zllog Corporation.

9-115

TABLE I.
Machine Cycle Status - N5C800 and 8085

50 S1 101M Status

1 0 0 Memory Write
0 1 0 Memory Read
1 0 1 I/O Write
0 1 1 I/O Read
1 1 0 Opcode Fetch
0 1 0 Bus Idle'
0 0 0 Halt

'ALE not suppressed during Bus Idle

Direct Memory Access (DMA) control Signals BREQ and
BACK of the NSC800 perform the same functions as HOLD
and HLDA on the 80B5. The NSCBOO allows simple wire
ORing by using active low states for the DMA control sig­
nals. An active low on the BREQ (Bus Request) line, tested
during the last T state of the current M cycle, initiates a
DMA condition. The N8C800 will then respond with an ac­
tive low BACK (Bus Acknowledge) Signal causing the ad­
dress, data and control buses (TRI-STATE® circuits) to go
to the high impedance state, and notifies the interrupting
device that the system bus is available for use. There is a
difference in the timing relationship between these functions
for the two processors. The BOB5 responds with HLDA, one­
half T state after it recognizes HOLD. The N8C800 re­
sponds with BACK, one T state after it recognizes BREQ.

During Input/Output cycles for peripherals, the N8C800 au­
tomatically inserts one wait state. This reduces the external
hardware required for slow peripherals. The BOB5 does not
insert its own wait state during these I/O cycles. When they
are needed, the 60B5 user must design his system to con­
tain the additional hardware required to do the wait state
insertion. When more than one wait state is required, addi­
tional wait states can be added to the 1/0 cycles in a similar
way on both the N8CBOO and the 8085. On the N8CBOO,
this is accomplished by bringing the WAIT control signal
active low during T2 of an I/O or memory cycle. The 80B5 is
controlled in the same way through the use of the READY
line.

The N8CBOO instruction set is Z80 compatible and more
powerful than the 80B5's. The N8CBOO does not support
the RIM and 81M instructions of the 8085 (RIM and 81M can
be emulated with I/O instructions), but has an improved in­
struction set for enhanced system performance. The
NSCBOO has two functions, RFSH and PS, instead of the
two serial I/O lines SOD and SID. RFSH (Refresh) is a
status signal which indicates that an eight bit refresh ad­
dress is present on the address/data bus (ADO-AD?). The
refresh address occurs during T3 of each M1 (opcode fetch)
cycle. The internal refresh counter is incremented after

(')
o
3
"C
QI ...
(ii'
o
:::I

~
I:
C.
'<
Z en
(')
Q:)
o o

~
Q:)
o
Q:)
UI
"­Q:)
o
(')
Q:)
UI
N
Q:)
o
"­
N
Q:)
o
(')

== o en

•

o r--,
o
:E
o
I:)

~
I:)

~
\I)
co g
CO
\I)
CO
I:)
CO

g!
I:)
I:)
co o o
z
>­
'C :s
U;
c o
U)
.;::
ca
a..
E
8

each instruction cycle. This counter output can be employed
by the user's dynamic RAM refresh circuits. The PS (Power
Save) control input, when active, causes the CPU to stop all
intemal clocks at the end of the current instruction, which
reduces power consumption. The on-chip oscillator and
ClK remain active for any required extemal timing. The
NSCaOO leaves all buses unchanged during this time, which
has the effect of reducing power consumption on other

CMOS parts in the system since the buses are not changing
states. All intemal registers and status conditions are main­
tained, and when PS subsequently goes high, the opcode
fetch cycle begins in a normal fashion.

TABLE II indicates the major differences between the
NSCaOO and the aoa5 presented in tabular form for quick
reference.

TABLE II.
NSC800 vs. 8085/80C85 Comparison

Ite'm NSC800 8085 80C85

Power Consumption
Bus Drive Capacity

Dynamic RAM Refresh Counter
Automatic WAIT State on 110
Number of instruction types
Number of Programmer

Accessible Registers
Block 110 and Search

Nscaoo VS. zao/zao CMOS

50mW@5V

1 std. TIL
(100 pF)
Yes, a-bit

Yes
15B

22
Yes

The NSCaOO contains the same complement of intemal reg­
isters as the zao and maintains instruction set and opcode
compatibility.

Machine cycle timing for the standard speed version of the
NSCaOO compares directly with the zao. Although the soft­
ware execution speeds are comparable, the NSCBOO offers
architectural advantages.

The bus structures of the NSCaOO and the ZBO are quite
different. The NSCBOO uses a multiplexed address/data
bus. The zao has separate address and data buses. As
stated earlier, the separate bus structure requires additional
signal lines for interconnection and gives up some package
pins which could be used for other purposes.

The main differences between the NSCBOO and the zao, in
addition to the bus structures, are the refresh counter, on­
chip clock generation, and the interrupt capability.

1. The NSCaOO contains an a-bit refresh counter as op­
posed to a 7 -bit refresh counter in the zao. (This enables
refresh of a 64K dynamic RAM system memory). The re­
fresh timing of the NSCaOO is functionally identical to that
of the zao.

2. The on-chip clock generation reduces the system compo­
nent count. In place of an extemal clock generator chip,
the NSCaOO needs only a crystal or RC circuit to produce
the system clock.

a50mW@5V
1 std. TIL
(100 pF)

No
No
ao

10
No

50mW@5V

1 std. TIL
(150 pF)

No
No
ao

10
No

S. The NSCBOO provides three interrupts that are not avail­
able on the zao: RSTA, RSTB, RSTC. This gives the
NSCBOO five levels of vectored, prioritized interrupts with
no external logic. The general purpose interrupt (INTR)
and Non-maskable Interrupt (iiIMi) are identical to the
za~. INTR has the same three modes of operation in
both processors: Modes 0, 1, and 2. Upon initialization,
the NSCaOO is in mode 0 to maintain BOBO code compati­
bility. NMI, when active, causes a restart to location X'66
as is the case with the zao. Being a non-maskable inter­
rupt, NMI cannot be disabled. The additional interrupts
RSTA, RSTB, and RSTC cause restarts to locations
X'SC, X'S4, and X'2C respectively. The priority levels of
the five interrupts are: NMI (highest), RSTA, RSTB,
RSTC, and INTR (lowest). For the NSCaOO, Interrupt ac­
knowledge (lNTA) is provided on a dedicated output pin
and need not be decoded extemally.asis the case with
the ZBO. With the status outputs (SO, Sl, 10/M), early
read/write information is obtainable. This is impossible to
derive from the zao.

Refer to TABLE III for comparison of the major differenc­
es between the NSCBOO and the zao.

TABLE III.

Item

Power Consumption
Instruction Execution
(Minimum)
On-Chip Clock Generator
Number of On-Chip Vectored
Interrupts
Early Read/Write Status
Dynamic RAM Refresh Counter

NSC800 vs. Z80/Z80 CMOS Comparison

NSC800 Z80

50mW@5V

1 /-Ls

Yes

5
Yes

Yes, a-bit

9-116

750mW@5V

1 /-Ls

No

2
No

Yes,7-bit

Z80CMOS

75mW@5V

l/-Ls

No

2
No

Yes,7-bit

NSC800 Family Devices
(microCMOS)

MMB2PCOB B-Bit Bidirectional Transceiver

MMB2PC121nputiOutput Port
Not.: The above devices are pin for pin and function compatible with the

standard TIL, CMOS or NMOS versions currently available.

9-117

SUMMARY
National's NSCBOO has a ZBO compatible instruction set,
which is more powerful than the BOB5. NSCBOO external
hardware requirements are less because of on-chip auto­
matic wait state insertion, clock generation and five levels of
vectored prioritized interrupts.

The BOB5 and the NSCaOO have similar bus structures, and
timing. The key advantages of the NSCBOO over the BOB5
are the larger instruction set, more registers accessible to
programmers, low power consumption, and a dynamic RAM
refresh counter.

The main advantages of the NSCBOO compared to the zao
are the multiplexed address/data bus, an B·bit refresh coun­
ter for dynamic RAMs, on-chip clock generation, and five
interrupts. The speed of the NSCBOO and ZBO is the same
but, the NSCBOO has very low power consumption.

o o
3

"CI
III ..
U'j'
o
:::J

~
C
C.
'<
Z
fJ)
o co o o
pi
co o co
S:!! co o o co
U1
N co o
N co
o
o
:s: o
fJ)

•

g
N
."

8 co

~
o o
co

~
Z
c o
II)

-;::
as
CL.
E
o
o
~

~ o en

Software Comparison NSC800 vs. 8085, Z80®

Introduction
The NSCBOO is an B-bit parallel microprocessor fabricated
using National's microCMOS process. This process allows
fabrication of a microprocessor family that has the perform­
ance of silicon gate NMOS along with the low power inher­
entto CMOS. The NSCBOO instruction set is a superset of
the BOBO's instruction set. It comprises over 900 operation
codes falling into 15B instruction types. The instruction cate­
gories are:

• Load and Exchange
• Arithmetic and Logie
• Rotate and Shift
• Jump and Call
• Input/Output
• Bit manipulation (set, test, reset)
• Block Transfer and Search
• CPU control
The load instructions allow the movement of data into and
out of the CPU, between internal registers, plus the capabili­
ty to load immediate data into internal registers. The ex­
change instructions allow swapping of data between two
registers.

The arithmetic and logic instructions operate on the data in
the accumulator (primary working register) and in the other
registers. Status flags are set or reset depending on the
result of the particular operation executed. This group in­
cludes B·bit and 16·bit operations.

The rotate and shift instructions allow any register or memo­
ry location to be rotated or shifted, left or right, with or with­
out carry. These can be either an arithmetic or logic type.

The jump and call group includes several different types:
one byte calls, two byte relative jumps, conditional branch­
ing, and three byte calls and jumps, which can reach any
location in memory. Calls push the current contents of the
Program Counter onto the stack before branching to the
new program address to facilitate subroutine execution.

Input/Output instructions allow communications between
the NSCBOO and external peripheral devices. There are 255
(location X'BB is used for an interrupt mask) unique periph­
eralllO locations available to the NSCBOO. 1/0 instructions
can move data between any memory location or internal

9-11B

register and any 110 location. There are also block 1/0 in­
structions which allow moving data blocks of up to 256
bytes directly from memory to any peripheral location or
from any peripheral location to a block of memory.

Bit manipulation instructions can set, test or reset any bit in
the accumulator, any general purpose register or any mem­
ory location.

The block transfer instructions allow a single instruction to
move any size block of memory to any other location in
memory. Through the use of the block search instructions,
any size block of memory can be searched for a particular
byte of data.

Finally, the CPU control group allows user control over the
various modes of CPU operation, such as enabling and dis­
abling interrupts or selling modes of interrupt response.

The following sections will compare the instruction set of
the NSCBOO with those of the 8085 and the Z80.

NSC800 vs. 8085
The 8085 instruction set consists of 246 op codes falling
into 80 instruction types. With the exception of RIM and
SIM, the NSC800 is instruction and op code compatible with
the 80B5. The RIM and SIM instructions are not supported
because the NSC800 does not have the SID and SOD serial
1/0 lines. The interrupt mask on the NSC800 is accessible
by writing the mask word to 1/0 location X'BB. The bit posi­
tions for the interrupt enables are shown below:

Location X'BB Bit Assignments
Bit Interrupt Enable for
7 N/A
6
5
4
3
2

o
NI A = not used: a don't care bit.

N/A
N/A
N/A

RSTA
RSTB
RSTC
INTR

r---, (n

As an example. to enable interrupts on the RSTA input, a
logic '1' is written into bit 3 of 110 location X'SS. If the mas­
ter interrupt enable has been set by executing the Enable
Interrupt (El) instruction, interrupts will now be accepted on
RSTA only.

Other than the method of enabling and disabling individual
interrupts and the RIM and SIM instructions themselves, the
NSC800 instruction set is a superset of the 8085's instruc­
tion set.

The following benchmark demonstrates the code reduction
and throughtput improvement obtained by using one of the
special NSC800 instructions over the same function imple­
mented with the limited 8085 instruction set. The function is
to move a 512-byte block of data from one section of mem­
ory to another.

Bytes
3
3
3
1

1
3

Total: 19

Bytes
3
3
3
2

Total: 11

LOOP:

LD
LD
LD

LDIR

8085

Mnemonics Cycles
LXI H,SOURCE 10

LXI D,DEST 10
LXI B,COUNT 10

MOV A,M 7
STAX D 7
INX H 6
INX D 6
DCX B 6
MOV A,C 4
ORA B 4
JNZ LOOP 10

Total: 80

NSC800

Mnemonics Cycles
HL,SOURCE 10

DE,DEST 10

BC,COUNT 10

21

Total: 51

The use of the LDIR instruction of the NSC800 results in a
47.5% increase in throughput and a 42% decrease in the
number of bytes required to implement the function when
compared with the 8085 implementation. The time required
to make the move is approximately 2.69 ms for the NSCBOO
and approximately 5.12 ms for the 80B5. Note that even
though the BOBS runs at a faster cycle time (200 ns vs. 250
ns), the improved instruction set of the NSCBOO produces
an increase in system performance.

The NSC800 includes all 8085 flags plus some additional
flags. The flag formats for the NSCBOO and 80B5 are:

NSC800 Flags (Z80 Flags)

I : I : I ~ I : I ~ I P~V I N I ~ I
8085 Flags

o
CY

9-119

The differences between the flag registers on the NSCBOO
and the 80B5 are identified below:

1. Sit position D1 (additional on the NSCBOO) contains an
add/subtract flag that is used internally for proper operation
of SCD instructions.

2. In the NSC800, the PIV flag will not match the B085's P
flag after an B-bit arithmetic operation, since it acts as an
overflow bit for the NSC800, but acts as a parity bit for these
operations in the BOBS.

3. Sit position D2 (changed for the NSC800) is a dual pur­
pose flag; it indicates the parity of the result in the accumu­
lator when logical operations are performed and also repre­
sents overflow when Signed two's complement arithmetic
operations are performed. An overflow occurs when the re­
sult of a two's complement operation within the accumulator
is out of range.

4. For general Compare operations, the NSC800 uses the
P IV flag as an overflow bit, while the 8085 uses the P flag
for parity.

5. The H flag (bit position D4) on the NSCBOO is functionally
the same as the auxiliary carry on the 8085.

6. For Double Precision Addition, the NSCBOO leaves the H
flag undefined, while the BOBS does not affect the AC flag
for this operation (DAD).

7. For Rotate operations, the NSCBOO resets the H flag,
while the 80B5 leaves the AC flag unaffected for these oper­
ations.

B. When Complementing the Accumulator, the NSCBOO sets
the H flag (H = 1), while the 80B51eaves the AC flag unaf­
fected.

9. When Complementing Carry, the NSC800 leaves the H
flag undefined, while the 80B5 leaves the AC flag unaffect­
ed.

10. When Setting the Carry, the NSCBOO clears the H flag
(H = 0), while the 80B5 leaves the AC flag unaffected.

Nscaoo Vs. zao
The instruction set and op codes of the NSCBOO are identi­
cal to those of the ZBO. Software written for the ZBO will run
on the NSCBOO without change, unless 110 location X'SS is
used. Another location should be assigned since location
X'SS is an on-chip write-only register used for the interrupt
mask. Since the NSCBOO executes code at the same cycle
time as the Z80, any software timing loops will also remain
the same, and no change is necessary. The NSC800 ex­
panded interrupt capability is transparent to the user unless
specifically evoked by the user software.

The NSCBOO has B-bit refresh rather than the 7 -bit refresh
scheme of the Z80. Therefore, the state of the 8th bit will be
indeterminate since it is part of the R Register and so includ­
ed in refresh operations.

The status flags on the NSCBOO are identical to those on
the ZBO. There is no difference between the positions of the
individual bits in the flag register, nor in the manner in which
the flags are set or reset due to an arithmetic or logical
operation. Testing of the flags is also the same.

o

~ ...
CD
o o
3

'1:J
I» ...
iii'
o
:::l
Z
(n
o
co
o
o

~
co o co
U1
N co o

Section 10
Physical Dimensionsl
Appendices

Section 10 Contents
Glossary of Terms. 10-3
Physical Dimensions. 10-10
Bookshelf
Distributors

10·2

Glossary
In our efforts to be concise and precise, we often invent new words or acronyms to use as shorthand representations of "things"
that require much longer names if the jargon is not used. Being humans, we then become very impressed with our ability to
exclude those not in "the know" and another "in" group is formed. This glossary has been developed to help bridge this
language gap. We know it will help. We hope you will use it.

Abort-The first step of recovery when an instruction or its operand(s) is not available in main memory. An Abort is initiated by
the Memory Management Unit (MMU) and handled by the CPU.

Absolute Address-An address that is permanently aSSigned to a fixed location in main memory. In assembly code, a pattern
of characters that identifies a fixed storage location.

Access Time-The time interval between when a request for information is made and the instant this information is available.

Access Class-The five Series 32000 access classes are memory read, memory write, memory read-modify-write, memory
address, and register address. The access class informs the Series 32000 CPU how to interpret a reference to a general
operand. Each instruction assigns an access class to each of it two operands, which in turn fully defines the action of any
addressing mode in referencing that operand.

Accumulator-A register which stores the result of an ALU operation.

Ada-A high level language deSigned for the Department of Defense. It gives preference to full English words. It is meant to be
the standard military language.

Address-An expression, usually numerical, which designates a specific location in a storage or memory device.

Address-Data Reglster-A register which may contain either address or data, sometimes referred to as a general-purpose
register.

Address Strobe-Control signal used to tell external devices when the address is valid on the external address bus.

Address Translation-The process by which a logical address emanating from the CPU is transformed into a physical address
to main memory. This is performed by the Memory Management Unit (MMU) in Series 32000 systems. Logical address to
Physical address mapping is established by the operating system when it brings pages into main memory.

Addressing Mode-The manner in which an operand is accessed. Series 32000 CPUs have nine addressing modes: Register,
Register Relative, Memory Relative, Immediate, Absolute, External, Top-of Stack, Memory Space, and Scaled Indexing.

Algorithm-A set of procedures to which a given result is obtained.

Alignment-The issue of whether an instruction must begin on a byte, double byte, or quad byte address boundary.

ALU-Arithmetic Logic Unit. A computational subsystem which performs the arithmetic and logical operations of a digital
system.

Array-A structured data type conSisting of a number of elements, all of the same data type, such that each data element can
be individually identified by an integer index. Arrays represent a basic storage data type used in all high-level languages.

ASCII-(American National Standard Code for Information Interchange, 1968). This standard code uses a character set gener­
ally coded as 7-bit characters (8-bits when using parity check). Originally defined to allow human readable information to be
passed to a terminal, it is used for information interchange among data processing systems, communication systems, and
associated equipment. The ASCII set consists of alphabetic, numeric, and control characters. Synonymous with USASCII.

Assemble-To prepare a machine language program (also called machine code or object code) from a symbolic language
program by substituting absolute operation codes for symbolic operation codes and absolute or relocatable addresses for
symbolic addresses. Machine code is a series of ones and zeros which a computer "understands".

Assembler-This program changes the programmer's source program (written in English assembly language and understand­
able to the programmer) to the 1's and O's that the machine "understands". In particular, the Assembler converts assembly
language to machine code. This machine code output is called the OBJECT file.

Assembly Language-A step up in the language chain. This is a set of instructions which is made up of alpha numeric
characters which, with study, are understandable to the programmer. Different type of machines have different assembly
languages, so the assembly language programmer must learn a different set of instructions each time s/he changes machine.

Associative Cache-A dual storage area where each data entry has an associated "tag" entry. The tags are simultaneously
compared to the input value (a logical address) in the case of the MMU, and if a matching tag is found, the associated data entry
is output. An associative cache is present within the MMU in Series 32000 systems to provide logical-to-physical address
translation.

Asynchronous Device-A device in which the speed of operation is not related to any frequency in the system to which it is
connected.

BASIC-This acronym stands for Beginner's All-purpose Symbolic Instruction Code. BASIC is one of the most "English like" of
the high level languages and is usually the first programming language learned.

Baud Rate-Data transfer rate. For most serial transmission protocols, this is synonymous with bits-per-second (bps).

BCD-Binary Coded Decimal. A binary numbering system for coding decimal numbers. A 4-bit grouping provides a binary value
range from 0000 to 1001, and codes the decimal digits "0" through "9". To count to 9 requires a single 4-bit grouping; to count
to 99 takes two groupings of 4 bits; to count to 999 takes three groupings of 4 bits, etc.

Benchmark-In terms of computers, this refers to a software program designed to perform some task which will demonstrate
the relative processing speed of one computer versus another.

10-3

Glossary (Continued)

Bit-An abbreviation of "binary digit". It is a unit of information represented by either a one or a zero.

Bit Field-A group of bits addressable as a single entity. A bit field is fully specified by the location of its least significant bit and
its length in bits. In Series 32000 systems, bit fields may be from one to 32 bits in length.

Branch-A nonsequential flow in a software instruction stream.

Breakpoint-A place in a routine specified by an instruction, instruction digit, or other condition, where the software program
flow will be interrupted by external intervention or by a monitor routine.

Buffer-An isolating circuit used to avoid reaction of a driven circuit on the corresponding driver circuit. Buffers also supply
increased current drive capacity.

Bus-A group of conductors used for transmitting signals or power.

Bus Cycle-The time necessary to complete one transfer of information requiring the use of external address, data and control
buses.

Byte-Eight bits.

Byte Enable-BEO to BE3. CPU control signals which activate memory banks, each bank providing one byte of data per
address.

C-A highly structured high level language developed by Bell Laboratories to optimize the size and efficiency of the program.
This language has gained much popularity because it allows the prograrnmer to get close to the hardware (low level) as well as
being a high level language. Before C, the programmer who had to address the hardware had to use assembly language or
machine code.

Cache-See Associative Cache.

Cache Hit-In the MMU, logical-to-physical address translation takes place via the associative cache. For this to happen, the
addressed page must be resident in physical memory such that a logical address tag is present in the MMU's translation cache.

Cache Miss-When a logical address is presented to the MMU, and no physical address translation entry is found in the MMU's
associative cache.

Cascaded-Stringing together of units to expand the operation of the unit. Interrupt Control Units present in a Series 32000
system which are in addition the Master ICU are referred to as "cascaded" ICUs; i.e., interrupts cascade from a second-level
ICU through the master ICU to the CPU.

Clock-A device that generates a periodic signal used for synchronization.

Clock Cycle-After making a low-to-high transition, the clock will have completed one cycle when it is about to make another
low-to-high transition. This time is equal to Iff where f = the clock frequency.

COBOL-This acronym stands for "Common Business Oriented Language". It is a language especially good for bookkeeping
and accounting.

COFF-COMMON OBJECT FILE FORMAT is a standard way of constructing files developed by AT&T for the express purpose of
making all files similar. This will help reduce the situation where large files developed by one organization won't run on another
organization's equipment simply because the software interfaces are different. It provides a great potential for savings in both
time and money.

Compile-To take a program written in a High-Level Language such as C, Pascal, or FORTRAN and convert it into an object­
code format which can be loaded into a computer's main memory. During compilation, symbolic HLL statements, called source
code, are converted into one or more machine instructions which the CPU "understands". A compiler also calls the assemble
function.

Compiler-The program that converts from Source to Machine Code. The conversion is from a particular high level language to
machine code. For example, the C compiler will convert a C source program written by a programmer to machine code. This
machine code output is in the same format as that of the assembler and is also called an OBJECT file.

CPU-Central Processing Unit. The portion of a computer system that contains the arithmetic logic unit, register file, and other
control oriented subsystems. It performs arithmetic operations, controls instruction processing, and provides timing signals and
other housekeeping operations.

Cross Support-The alternative to using a "Native" development like SYS32 to develop your programs is to use Cross Support
software. "Native" means that the CPU in the development system is the same as the CPU in the system being developed.
Cross support software is all of the necessary programs for development that operate on one CPU, but generate code for
another CPU. Use of the VAX to generate Series 32000 code is a good example of cross support.

Demand-Paged Virtual Memory-A virtual memory method in which memory is divided into blocks of equal size which are
referred to as pages. These pages are then moved back and forth between main memory and secondary storage as required by
the CPU. Demand paging reduces the problem of memory fragmentation which results in unused memory space.

Dispatch Table-In Series 32000 systems, this is an area of memory which contains interrupt descriptors for all possible
hardware interrupts and software traps. The interrupt descriptor directs the CPU to the module descriptor for the procedure
which is designed to handle that particular interrupt.

Dlsplacement-A numerical offset from a known point of reference. Displacements are used in programming to facilitate
position independent code, such that a given program can be loaded anywhere in memory. In Series 32000 processors, a
displacement is contained in the instruction itself.

10-4

.--.Q
Glossary (Continued)

DMA-Direct Memory Access. A method that uses a small processor (DMA Controller) whose sole task is that of controlling
input-output or data movement. With DMA, data is moved into or out of the system without CPU intervention once the DMA
controller has been initialized by the CPU and activated.

Double-Precislon-With reference to 32000 floating-point arithmetic, a double-precision number has a 52-bit fraction field, 11-
bit exponent field and a sign bit (64-bits total).

Double Word-Two words, i.e., 32 bits.

Editor-A program which allows a person to write and modify text. This program can be as complicated as the situation
requires, from the very simple line editor to the most complicated word processor. Letters, numbers and unprintable control
characters are stored in memory so that they can be recalled for modification or printing. The programmer uses this device to
enter the program into the computer. At this stage, the program is recognizable to both the programmer and the computer as
lines of English text. This English version of the program is known as the SOURCE.

Emulate-To imitate one system with another, such that the imitating system accepts the same data, executes the same
programs, and achieves the same results as the imitated system.

Exception-An occurrence which must be resolved through CPU intervention. An exception results in the suspension of normal
program flow. In Series 32000 systems, exceptions occur as a result of a hardware reset, interrupt or software traps. Execution
of floating-point instructions may also result in occurrences which must be resolved through CPU intervention.

Exponent-In scientific notation, a numeral that indicates the power to which the base is raised.

EXEC2-NSC's Real Time Executive for Series 32000.

FIFO-First-in first-out. A FIFO device is one from which data can be read out only in the same order as it was entered, but not
necessarily at the same rate.

Floating-Point-A method by which computers deal with numbers having a fractional component. In general, it pertains to a
system in which the location of the decimal/binary point does not remain fixed with respect to one end of numerical expressions,
but is regularly recalculated. The location of the point is usually given by expressing a power of the base.

FORTRAN-A high level language written for the scientific community. It makes heavy use of algebraic expressions and
arithmetic statements.

FP-Frame Pointer. CPU register which pOints to a dynamically allocated data area created at the beginning of a procedure by
the ENTER instruction.

FPU-Floating-Point Unit is a slave processor in Series 32000 systems which implements in hardware all calculations needed to
support floating-point arithmetic, which otherwise would have to be implemented in software. The NS32081 FPU provides high­
speed floating point instructions for single (32-bit) and double (64-bit) precision. Supports IEEE standard for binary floating point
arithmetic. Compatible with NS32032, NS32C032, NS32016, NS32C016 and NS32008 CPUs.

Fragmented-The term used to describe the presence of small, unused blocks of memory. The problem is especially common
in segmented memory systems, and results in inefficient use of memory storage.

Frame-A block of memory on the stack that provides local storage for parameters in the current procedure.

GENIX-The NSC version of the UNIX operating system, ported to work with the Series 32000. It also has all of the necessary
utilities added so that program development can be accomplished.

Hardware-Physical equipment, e.g., mechanical, magnetic, electrical, or electronic devices, as opposed to the software
programs or method in which the hardware is used.

High Level Languages-These are languages which are not dependent on the type of computer on which they run. A program
written in a high level language will generally run on any computer for which there is a compiler for that language. This feature
makes high level languages "Portable", i.e., the same program will run on many different types of computers. A HLL requires a
compiler or interpreter that translates each HLL statement into a series of machine language instructions for a particular
machine.

ICU-Interrupt Control Unit. A memory-mapped microprocessor support chip in Series 32000 systems which handles external
interrupts as well as additional software traps. The ICU provides a vector to the CPU to identify the servicing software procedure.

Indexing-In computers, a method of address modification that is by means of index registers.

Index Register-A register whose contents may be added to or subtracted from the operand address.

Indirect Addressing-Programming method where the initial address is the storage location of a word which is the actual
address. This indirect address is the location of the data to be operated upon.

Instruction-A statement that specifies an operation and the values or locations of its operands, i.e., it tells the CPU what to do
and to what.

Instruction Cycle-The period of time during which a programmed system executes a particular instruction.

Instruction Fetch-The action of accessing the next instruction from memory, often overlapped by its partial execution.

Instruction Queue-With Series 32000 CPUs, this is a small area of RAM organized as a FIFO buffer which stores prefetched
instructions until the CPU is ready to execute them.

Interpreter-A program which translates HLL statements into machine instructions at run time, i.e., while the program is
executing, and is co-resident with the user program.

10-5

0'
m

.:c!

Glossary (Continued)

Interrupt-To signal the CPU to stop a software program in such a way that it can be resumed and branch to another section of
code. Interrupts can be caused by events external or internal to the CPU, and by either software or hardware.

INTBASE-Interrupt Base Register. In the Series 32000, a 32-bit CPU register which holds the address of the dispatch table
containing addresses for interrupts and traps.

ISE-In-System Emulator. A computer system which imitates the operation of another in terms of software execution. In
microprocessor system development, the ISE takes the place of the microprocessor by means of a connector at the end of an
umbilical cable. Not only does the ISE perform all the functions of the microprocessor, but it also allows the engineer to debug
his system by setting breakpoints on various conditions, permits tracing of program flow, and provides substitution memory
which may be used in place of actual target system memory.

ISV-Independent Software Vendor. A vendor, independent from National Semiconductor, who ports or develops software for
Series 32000 components. They in turn sell this software to our customers who are designing Series 32000 based products.

Kernel-This is the name given to the core of the operating system. Other programs are added to the kernel to provide the
features of the operating system. The kernel provides control and synchronization.

Language-A set of characters and symbols and the rules for using them. In our context, it is the "English like" format of the
instructions which are understood by both the programmer and the computer.

Library-High level languages as well as assembly language contain many routines which are used over and over again. To
prevent the programmer from having to write the routine every time it is needed, these routines are stored in libraries to be
referenced each time they are needed. These libraries are also OBJECT files.

Linear Address Space-An address space where addresses start at location zero and proceed in a linear fashion (i.e., with no
holes or breaks) to the upper limit imposed by the total number of bits in a logical address.

Link Base-In the Series 32000, Module Descriptor entry which pOints to a table in memory containing entries which reference
variables or entry points in Modules external to the one presently executing.

Linker-Large programs are generally broken down to component parts and farmed out to several programmers. Each one of
these parts is called a MODULE. Each programmer will develop the module using either high level or assembly language, then
"assemble" assembly language modules or "compile" high level language modules. A programmer tells the linker how to
connect these modules to make the program run. The linker makes these connections, resolves all questions about data
needed by one module, but contained in another, finds all library routines, and cleans up any other loose ends. The output from
the linker is called BINARY file and is the file that will run on the computer.

Logical Address Space-The range of addresses which a programmer can assign in a software program. This range is
determined by the length of the computer's address registers.

LSB-Least Significant Bit. The bit in a string of bits representing the lowest value.

Machine Code-The code that a computer recognizes. Specifies internal register files and operations that directly control the
computer's internal hardware.

Machine Language-The ones and zeros which are "understood" by the machine. This is often called "Binary Code." The
programmer must be able to understand the bit patterns to be able to decipher the language. Each machine has a unique
machine language.

Main Memory-The program and data storage area in a computer system which is physically addressed by the microprocessor
or MMU address lines.

Mantissa-In a floating-point number, this is the fractional component.

Mapping-The process whereby the operating system assigns physical addresses in main memory to the logical addresses
assigned by the software.

Memory-Mapped-Referring to peripheral hardware devices which are addressed as if they were part of the computer's
memory space. They are accessed in the same manner as main memory, i.e., through memory read/write operations.

Microcode-A sequence of primitive instructions that control the internal hardware of a computer. Their execution is initiated by
the decoding of-a software instruction. Microcode is maintained in special storage and often used in place of hardwired logic.

Microcomputer-A computer system whose Central Processing Unit is a Microprocessor. Generally refers to a board-level
product.

Minicomputer-A "box-level" computer with system capabilities generally between that of a microcomputer and a mainframe.

MMU-Memory Management Unit. This is a slave processor in Series 32000 which aids in the implementation of demand-paged
virtual memory. It provides logical to physical address translation and initiates an instruction abort to the CPU when a desired
memory location is not in main memory.

MOD-Mod Register. In the Series 32000, a 16-bit CPU register which holds the address of the Module Descriptor of the
currently executing software module.

Module-An independent subprogram that performs a specific function and is usually part of a task, i.e., part of a larger
program.

Module Descriptor-In the Series 32000, a set of four 32-bit entries found in main memory. Three are currently defined and
point to the static data area, link table, and first instruction of the module it describes. The fourth is reserved.

10-6

Glossary (Continued)

Modularlty-A software concept which provides a means of overcoming natural human limitations for dealing with programming
complexity by specifying the subdivision of large and complex programming tasks into smaller and simpler subprograms, or
modules, each of which performs some well-defined portion of the complete processing task.

MSB-Most Significant Bit. The bit in a string of bits representing the highest value.

NET-Short for NETWORK and describes a number of computers connected to each other via phone or high speed links. A net
is convenient for exchanging common information in the form of "mail" as well as for data exchange.

NMI-Nonmaskable Interrupt. A hardware interrupt which cannot be disabled by software. It is generally the highest priority
interrupt.

Object Code-Output from a compiler or assembler which is itself executable machine code (or is suitable for processing to
produce executable machine code).

Operand-In a computer, a datum which is processed by the CPU. It is referenced by the address part of an instruction.

Operating System-A collection of integrated service routines used by the computer to control the sequence of programs. The
operating system consists of software which controls the execution of computer programs and which may provide storage
assignment, input/output control, scheduling, data management, accounting, debugging, editing, and related services. Their
sophistication varies from small monitor systems, like those used on boards, to the large, complex systems used on main
frames.

Operating System Mode-In this mode, the CPU can execute all instructions in the instruction set, access all bits in the
Processor Status Register, and access any memory location available to the processor.

Operator-In the description of an instruction, it is the action to be performed on operands.

Page Fault-A hardware generated trap used to tell the operating system to bring the missing page in from secondary storage.

Page Swap-The exchange of a page of software in secondary storage with another page located in main memory. The
operating system supervises this operation, which is executed by the CPU and involves external devices such as disk and DMA
controllers.

Page Table-A 1 K-byte area in main memory containing 256 entries which describe the location and attributes of all pointer
tables, i.e., a list of pointer table addresses.

Perlpheral-A device which is part of the computer system and operates under the supervision of the CPU. Peripheral devices
are oiten physically separated from the CPU.

Pascal-A high level language designed originally to teach structured programming. It has become popular in the software
community and has been expanded to be a versatile language in industry.

Physical Address-The address presented to main memory, either by the CPU or MMU.

Pointer Table-A 512-byte page located either in main memory or secondary storage containing 128 entries. Each entry
describes an individual page of the software program. Each page of the software program may reside in main memory or in
secondary storage.

Pop-To read a datum from the top of a stack.

PORT-To port an operating system is to cause that particular operating system to operate with a defined hardware package.
GENIX is the NSC version of UNIX which has been ported to SYS32. The operating system for other Series 32000 based
systems will differ in some degree from SYS32 and the NSC GENIX binary will not operate. It is now necessary to modify GENIX
to fit the situation caused by the new hardware. The GENIX SOURCE is used because this is the program that is most readily
understood by the programmer. The source is changed, compiled, and linked to get a new binary for that particular machine.

Primitive Data Type-A data type which can be directly manipulated by the hardware. With Series 32000, these are integers,
floating-point numbers, Booleans, BCD digits, and bit fields.

Procedure-A subprogram which performs a particular function required by a module, i.e., by a larger program; an ordered set
of instructions that have a general or frequent use.

Process-A task.

Program Base-Module Descriptor entry which pOints to the first instruction in the module being described.

Program Counter-CPU register which specifies the logical address of the currently executing instruction.

Protection-The process of restricting a software program's access to certain portions of memory using hardware mecha­
nisms. Typically done at the operating system and page level.

PSR-Processor Status Register. A 16-bit register on Series 32000 CPU's which contains bits used by the software to make
decisions and determine program flow.

Push-to write a datum to the top of a stack.

Quad word-Four words, i.e., 64 bits.

Queue-A First-In-First-Out data storage area, in which the data may be removed at a rate different from that at which it was
stored.

Real Time-The actual time in human terms, related to a process. In a UNIX system, real time is total elapsed time, CPU time is
the percent of time a process is actually in the CPU. Sys time is the time spent in system mode, and user time is the time spent in
user mode.

10-7

Glossary (Continued)

Real Time Operating Systems-An operating system which operates with a known and predictable response time limit; so that
it can control a physical event.

Record-A structured data type with multiple elements, each of which may be of a different data type, e.g., strings, arrays,
bytes, etc.

Register-A temporary storage location, usually in the CPU, which holds digital data.

Relative Address-The number that specifies the difference between the base address and the absolute address.

Relocatable-In reference to software programs, this is code which can be loaded into any location in main memory without
affecting the operation of the program.

Return Address-The address to which a subroutine call, interrupt or trap subroutine will return after it is finished executing.

Routine-A procedure.

Royalty-Royalty is money paid to the inventor for each item of product sold. A good analogy to use is the music business. Any
time a song is used, the songwriter is paid a royalty. Think of UNIX as a song and GENIX or SYSTEM V as special arrangements.
For each shipment of GENIX or SYSTEM V, the customer pays a royalty to NSC who, in turn, pays a royalty to AT&T.

S8-ln the Series 32000 Static Base Register. Points to the start of the static data area for the currently executing module.

Secondary Storage-This is generally slow-access, nonvolatile memory such as a hard-disk which is used to store the pages
of software programs not currently needed by the CPU.

Segmented Address Space-Term used to describe the division of allocatable memory space into blocks of segments of
variable size.

Setup Time-The minimum amount of time that data must be present at an input to ensure data acceptance when the device is
clocked.

Slave Processor-A processor which cooperates with the main microprocessor in executing certain instructions from the
instruction stream. A slave processor generally accelerates certain functions which increases overall system throughput. Exam­
ples of slave processors are the FPU and MMU of Series 32000.

Software-Programs or data structures that execute instructions or cause instructions to be executed and that will cause the
computer to do work.

Software License-NSC does not sell software. Rather, we license the right to use our software. A software license is required
for all Series 32000 software. We use the license to protect NSC's interests and to assist in honoring our commitment to AT&T.
The license is also the vehicle which we use to track customers so that updates can be issued in a timely manner.

Software Q/ A-It is the charter of the Quality Assurance people to ensure that when a software product reaches the customer
that it is "bug" free. In the real world, it is impossible to test every combination of functions, so some bugs do get through. The
Q/ A engineer develops test programs which rigorously test the product prior to its introduction to the market place.

SP1-ln the Series 32000, User Stack Pointer. Points to the top of the User Stack and is selected for all stack operations while
in User Mode.

SPO-In the Series 32000, Interrupt Stack Pointer. Points to the top of the interrupt stack. It is used by the operating system
whenever an interrupt or trap occurs.

Stack-A one-dimensional data structure in which values are entered and removed one datum at a time from a location called
the Top-of-Stack. To the programmer, it appears as a block of memory and a variable called the Stack Pointer (which points to
the top of the stack).

Stack Pointer-CPU register which pOints to the top of a stack.

Static Base Register-A 32-bit CPU register which pOints to the beginning of the static data area for the currently executing
module.

String-An array of integers, all of the same length. The integers may be bytes, words, or double words. The integers may be
interpreted in various ways (see ASCII).

Subroutine-A self-contained program which is part of a procedure.

Symmetry-A computer architecture is said to be symmetrical when any instruction can specify any operand length (byte, word
or double word) and make use of any address-data register or memory location while using any addressing mode.

Synchronous-Refers to two or more things made to happen in a system at the same time, by means of a common clock
signal.

Tag-A label appended to some data entry used in a look-up process whereby the desired datum can be identified by its tag.

Task-The highest-level subdivision of a user software program. The largest program entity that a computer's hardware directly
deals with.

TCU-Timing Control Unit. A device used to provide system clocks, bus control signals and bus cycle extension capability for
Series 32000.

Trap-An internally generated interrupt request caused as a direct and immediate result of the encounter of an event.

T·State---One clock period. If the system clock frequency is 10 MHz, one T-State will take 100 ns to complete. Operations
internal and external to the CPU are synchronized to the beginning and middle of the T-States. There are four T-States in a
normal Series 32000 CPU bus cycle.

10-8

Glossary (Continued)

UNIXTM-An operating system developed at Bell Laboratories in the early 1970s. Software programs that run under UNIX are
written in the high-level language C, making them highly portable. UNIX systems do not distinguish user programs from operat­
ing system programs in either capability or usage, and they allow users to route the output of one program directly into the input
of another. This operating is unique and is becoming very popular in the microcomputer world.

USENET-A net to which UNIX systems in the United States connect. Some systems in Europe and Australia also use this net
for the purpose of passing information.

User-A software program. The total set of tasks (instructions) that accomplish a desired result. Tasks are managed by the
operating system.

User Mode-Machine state in which the executing procedure has limited use of the instruction set and limited access to
memory and the PSR.

uucp--Software which allows UNIX computers to pass information to other UNIX systems.

Varlable-A parameter that can assume any of a given set of values.

Vector-Byte provided by the ICU (Interrupt Control Unit) which tells the CPU where within the DeSCriptor table the descriptor is
located for the interrupt it has just requested.

Virtual Address-Address generated by the user to the available address space which is translated by the computer and
operating system to a physical address of available memory.

Virtual Memory-The storage space that may be regarded as addressable main storage by the system. The operating system
maps Virtual addresses into physical (main memory) addresses. The size of virtual memory is limited by the method of memory
management employed and by the amount of secondary storage available, not by the actual number of main storage locations,
so that the user does not have to worry about real memory size or allocation.

VMS-This is the operating system designed by Digital Equipment Corporation for their VAX series of computers. The original
Series 32000 software was developed on a VAX which was being controlled by the VMS Operating System.

Wait-State-An additional clock period added to a CPU memory cycle which gives an external memory device additional time to
provide the CPU with data. Also used by bus arbitration circuitry to hold the CPU in an idle state until access to a shared
resource is gained.

Wlnchester-Small, hard-disk media commonly found in personal computers.

Word-A character string or bit string considered as the primary data entity. For historical reasons, a word is a group of 16 bits
in Series 32000 systems.

10-9

! o
"iii
c
CD
E
Q
1j

i
D.

~National
~ Semiconductor All dimensions are in inches (millimeters)

ND.1IDENT

0.050 ± 0.005

(1.270 ± 0.127)
TYP

1.230
1--------(31.24'--------1

MAX

0.568-0.605

0.165

(4.1911
MAX

-L-~ __ ~========c=~~-t ---, I I
0.020-0.060 r (0.508-1.524)

0.008-0.015

(0.2113-0.3811 - I--

0.005

(0.127)
MIN

~ ~
YP

0.590-0.620

(14.99-15.7&)

0.005
(0.127)­

MIN

0.098

(2.489) -
MAX TVP

D.100 to.Ol0 _I
(2.540.0.254)

TVP

NS Package D24C

1.008
1---(25.60)--1
I MAX I

-I

0.150

(3.810)
MIN

0.125-0.200

(3.175-5.080)

024C {REV GI

0.610
116M)

PIN NO.1 r;;r"T':T"1":T"=...,.."r-r.,i=;:;;::;;;::::;:;;:::;:;;::;;;;::;:;;:~;:::;:;r::;;;;..=.".,...",:r_r.,.,....,.",JJMAX IDENT .,

r- 0.045
11.143)

MAXTYP

D.D0I~.015

0.590~.&20 TVP V!0.201-0.3lll

1----114.99-15.15)-1 ~~~!~~~TlCAL
REF OUlWARD TVP

0.100 ±a.Ol0 _I
12.540 ±O.254) 1

TVP

NS Package D40C

10-10

0.D15-0m _11_
10.311-0.584111

TYP

0.125
13.175)
MIN

lMOClREY'HI

r---,~

.. ., II

)
IPIN N •• lI.'NT

TOP VIEW

lAM
(81.11I MAX .. " " " 31 " " 33 D " " " II " " ..

11
O.IBO D.l10

(14.13) I1UI)

~
.1 '1 n 11 M I' tl n II .1 m n H U ~

0.110-0200

I--..!:!!!.MAX~~ 1 (lUll) 1----.1

NS Package D48A

(~:~) MAX TV.

o
~TYP
to.zG3-OlIU

11.510-1.&20
(14..at-1S.lS)

REF

0.020 (REf}
(0.508) x 45'

0.065-0.076

~rv~rv~~(1~.6~51~-~1, ... ~ r--

BonaMVlEW

0.650±0.010
(16.51 ±0.254)

sa

NS Package E44A

D
TOP VIEW SIDE

VIEW

e ... AIRevCl

LEADS
VERTICAL
TD 110 MAX
OUTWARD
TV'

1 1-0.050
I (1~)

t
D.050±D.OO8
ji1iij"ffiDij

(1.753-2.159) I ·· .. ·_·· ... ll-
PIN NO.1 INDEX

Lo o .. ,.
iITsiIT.i5ii

o.L
(•• 203)

RAD &8 PlC'S

BOTTOM VI!W

NS Package E68B

10·11

j

TYP

-~ (1.O05± •• 254)
TV'

Sill(
VIEW

EMBtllEIIC)

~
~
c
3"
CD
:l
til
0"
:l
til

U)
c o
"iii
c
cu
E
is
1j

I-
D.

t-------I!:.::=~~:)------... ·-ll
13

0.0&2
(1.575)

RAD
11 (±) (±) I 0.540.0.005

~~~~~~~T.M=r.~~~~~~fT.w=~~!::Jl.O'121) 
1 Z 

PIN NO. IIDENT 

DDnED OUTLINES 
REFLECT ALTERNATE 

MOLDED BODY CONFIGURATION 

0.030 
(0.7&2) 
MAX 

8S"±S" 

1_ 0.625 ~::: _I 
r--(16.875+O·63S)~ 

-o.3BI 

0.0&2 
".5151 

RAD 

PIN NO. IIDENT 

0.030 
(0.162) 
MAX 

0.16OtO.00S 

N24A (REV E) 

NS Package N24A 

1 @ G ~~ 

~rr9f,F~9F.~rr9F.F~9F.~ff=~T.W=ffiFT.W9~~=ffiFT.i9~T.a=rn~:::l0'I~) 

0.050 

.... ""'. NS Package N40A 

10-12 



r------------j~~:~~I-------------t 
4J , 45 43 42 ., 3635 

" 3 " , , 

0.U5-D.1" 

:E-. tt 
.. ~ ~ .... 
iiiiii ~I-~~ 0.050 TYP 

Mo. 11.21±D.3I1) 12.&4±a2s.) (Un±o.D1&) jiiijTYP .!:1!!=.!!:!!! . 
(3.175-3.113) 

NS Package N48A 

1.162 
1' •. 51) 

1·.0----- "I~i'·~=o"'!:~::=~~;,)-------.I 
0.561 _1'4.40)-1 

I-I~~)-.-I 
MAX [ 

0.100 
1-11.540) 

TYP 

~U 
CHIP 

CAPACITOR 
'PICS 

~iW1]-L~ 
".270) (2.&&7-3.5561 

TYP 

NS Package U68D 

10-13 



I---I~:::::::~----
1+-----1~7~::::~-

~ 

·-·I~ rLrJt 
~-./ CliP CAPAClIlJR 3 PLC3 

1+------ 1,3110,.0,029, _____ -1 
133,OhO,1081 

@o 
M @ ~ 0 

9.728",0.015 
j1i.ii';i.ii1f 

~----~~I--~~I 

L@@ @@ 
K@@ @@ 
J@@ @@ 
H@@ @@ 
a@@ @@ 
F@@ @@ 
E@@ @@ 
D@@ @@ 
C@@O @@ 
.@~@@@@@@@@@~@ 

1.2110 
i3D.iii 

@@@@@@@@ @@-f---L 
Z 3 

NS Package U84C 

10·14 

4 & ~ 

ORIENTATION"N 

1r 11 

0.016-0.0z0 
10.4011 -0.1081 



a.430±D.lIl0 
(10.U:!:O.2$ot) 

0.43D±O.OI0 
il~) 

~ 
CHI'cm.t1T01 

n 
uoounza 

(35.SS±O.5QI) 

45')( {::::, TYP-O ....... --.-.I-OO-.-•. ,-.. -++-....;·;..;"";;:;...----L--'­
~I 

2PlC. 

0014-0096 
IWIIATOR all' (lUll 24311 0.119-0.151 

':~t'TI il ul'~n ~ ~ ~ ~ ~ ~ Tn ~" ttT 
t~:~=~':I- - (~.~~=:::)-ll- 0.t2 11.m-t.3f1) 

4PlCS TYP (0.0511 
RADMIH 

TYP 

STlNDOFFPlH 

.m'~~~=-~~~~~~~~~~~~ 
®®®®®®®®®®®® 

.®O®®®®®®®®®®@® 
C®® ®®®®®®®®O®® 

D®®®'O"®®® ®®® ®®® 
F ®®® ®®® 
G®®® ®®® 
H®®® ®®® 
J ®®® ®®® 
,®®® ®®® 
L ®®® ®®® 
.®® ®®®®®®®® ®® 
.®@®®®®®®®®®®@O 

®®®®®®®®®®®O 

..... 
(WUj 

T1P 

14 13 12 11 10 8 & 1 & 5 4 3 Z 1 
0.100--1 I+­

lU401 

NS Package U125A 

D 
INWIII,.. 

O.I00-D.US 
~ 

~ t 

"·BJ~I~ InnrnTIfl~~ 
(1.271, Tn 
41'tCS 

Alll10El 

. 1.l111-U\2 
(3U8-3U., - I ... 00 _jUij1YP 

· ®®®®®®®®®®®®® 
• ®@®®®®®®®®®®®@® , ®®®®®®®®®®®®®®® · ®®®®®®®®®®®®®®® 
L ®®®® I~~~~ , ®®®® ®®®® 
J ®®®® ®®®® 
H ®®®® ®®®® · ®®®® ®®®® 
F ®®®® ®®®® , ®®®® 1(0)(0)(0)(0) 

D ®®®®®®®®®®®®®®® 
c ®®®®®®®®®®®®®~~ 
• ®@®®®®®®®®®®®@® 
Alp ® ® ® ® ® ® ® ® ® ® ® ® ® 

I , . . . , , I • II It 11 " II II 

NS Package U172B 

10-15 

.1 .. -(11. .. " 
liT' 

['--jUl.-a. 
(11. -0 . 



o r-----------------------------------------------------------------------------, 
C o 
'iii 
c 
CD 
E 
is 
li 
'i-
.e 
a. ~ ~ 

rrll==========~II==~~~ 

• @@@@@@@@@@@@@@@@ 
I @@@~@@@@@@@@~@@@ 
,@@@~@@@@@@@@~@@@ 
• @@@~@@@@@@@@~@@@ 
• @@@ 
L @@@ 
, @@@ 
• @@@ 
• @@@ 
• @@@ 
f @@@ 

• @ @ @ ~~~""""",,=:=;~~~~~~~=I=d---1 

1 Z 3 • I I 1 I • 10 

""' .... CHIP~R 

"LCI 

I+-----------~~;:·:I-----------I 

NS Package U175A 

r "1 
0.126 Q 0.0lIl=0.8011 

(10.98) (1.210=10.82) 

N10M o~~I~M 
(I.ZlD) 

0.330 Ref 
(1.382) ! 

OIANOM -L 
PEDESTAL 

44.,'r'\.n.n.r;.n..r,..,.,..".,,",",",n-rH'H'H"H"'T' 2& 

43 21 

~ ..... _______ 0.826 ____ --< .. ~I 
(20.98) 

NOM 

NS Package V68A 

10·16 

0.020 
iD.5oii 

MIN 
0,104-0.118 

(2.642-2.997) 

.!!!i!!. 
(24.13) 
REF SO 

0.818-0." 
(211.02-21.27) 

SQUARE 

VEl8AIREVQ) 



0.032-0.040 ~ 
(D.BI3 1.018) (0.5OB) 

MAX MIN 

(0.127-0.3Bl) 
MAX 

0.526 
(13.3S) 

NOM F ~~0~~!~5~~~ 
(1.270-12.70) 

J 0.230 C (5.B42) 
OIA NOM 

18 (PBlESTAL) 2B 

(1.143) 

(17.40-17.65) 
SQUARE 

0.026 - 0.032 
(D.860 -0.813) 

TYP 

NS Package V44A 

10·17 

0.104-0.118 
(2.642 - 2.997) 

V.UA(REYHI 



NOTES 



NOTES 



~National 
D Semiconductor 
Bookshelf of Technical Support Information 
National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical 
literature. 

This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and 
section contents for each book. 

Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this 
bookshelf. 

We are interested in your comments on our technical literature and your suggestions for improvement. 

Please send them to: 

Technical Communications Dept. M/S 23-200 
2900 Semiconductor Drive 
P.O. Box 58090 
Santa Clara, CA 95052-8090 

For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation, 
please call (408) 749-7378. 

ALS/AS LOGIC DATABOOK-1987 
Introduction to Bipolar logic • Advanced low Power Schottky. Advanced Schottky 

ASIC DESIGN MANUAL/GATE ARRAYS & STANDARD CELLS-1987 
SSI/MSI Functions. Peripheral Functions. lSllVlSI Functions. DeSign Guidelines. Packaging 

CMOS LOGIC DATABOOK-1988 
CMOS AC Switching Test Circuits and Timing Waveforms. CMOS Application Notes. MM54HC/MM74HC 
MM54HCT/MM74HCT. CD4XXX. MM54CXXX/MM74CXXX. Surface Mount 

DATA CONVERSION/ACQUISITION DATABOOK-1984 
Selection Guides. Active Filters. Amplifiers. Analog Switches. Analog-to-Digital Converters 
Analog-to-Digital Display (DVM) • Digital-to-Analog Converters • Sample and Hold • Sensors/Transducers 
Successive Approximation Registers/Comparators. Voltage References 

DATA COMMUNICATION/LAN/UART DATABOOK-Rev. 1 
lAN IEEE 802.3 • High Speed Serial/IBM Data Communications • ISDN Components. UARTs 
Modems • Transmission Line Drivers/Receivers 

INTERFACE DATABOOK-1988 
Transmission Line Drivers/Receivers· Bus Transceivers. Peripheral Power Drivers • Display Drivers 
Memory Support. Microprocessor Support. level Translators and Buffers. Frequency SynthesiS • Hi-Rei Interface 

INTERFACE/BIPOLAR LSI/BIPOLAR MEMORY/PROGRAMMABLE LOGIC 
DATABOOK-1983 
Transmission Line Drivers/Receivers. Bus Transceivers. Peripheral/Power Drivers 
level Translators/Buffers. Display Controllers/Drivers. Memory Support. Dynamic Memory Support 
Microprocessor Support. Data Communications Support. Disk Support. Frequency Synthesis 
Interface Appendices. Bipolar PROMs. Bipolar and ECl RAMs. 2900 Family/Bipolar Microprocessor 
Programmable logic 

INTUITIVE IC CMOS EVOLUTION-1984 
Thomas M. Frederiksen's new book targets some of the most significant transitions in semiconductor technology since the 
change from germanium to silicon. Intuitive IC CMOS Evo/ution highlights the transition in the reduction in defect densities and 
the development of new circuit topologies. The author's latest book is a vital aid to engineers, and industry observers who need 
to stay abreast of the semiconductor industry. 



INTUITIVE IC OP AMPS-1984 
Thomas M. Frederiksen's new book, Intuitive Ie Op Amps, explores the many uses and applications of different IC op amps. 
Frederiksen's detailed book differs from others in the way he focuses on the intuitive groundwork in the basic functioning 
concepts of the op amp. Mr. Frederiksen's latest book is a vital aid to engineers, designers, and industry observers who need to 
stay abreast of the computer industry. 

LINEAR APPLICATIONS HANDBOOK-1986 
The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit 
applications using both monolithic and hybrid circuits from National Semiconductor. 

Individual application notes are normally written to explain the operation and use of one particular device or to detail various 
methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by 
keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index. 

LINEAR 1 DATABOOK-1988 
Voltage Regulators • Operational Amplifiers. Buffers. Voltage Comparators. Instrumentation Amplifiers. Surface Mount 

LINEAR 2 DATABOOK-1988 
Active Filters. Analog Switches/Multiplexers. Analog-to-Digital. Digital-to-Analog. Sample and Hold 
Sensors. Voltage References. Surface Mount 

LINEAR 3 DATABOOK-1988 
Audio Circuits. Radio Circuits. Video Circuits. Motion Control • Special Functions • Surface Mount 

LINEAR SUPPLEMENT DATABOOK-1984 
Amplifiers. Comparators • Voltage Regulators. Voltage References. Converters. Analog Switches 
Sample and Hold. Sensors. Filters. Building Blocks. Motor Controllers. Consumer Circuits 
Telecommunications Circuits. Speech. Special Analog Functions 

LS/S/TTL DATABOOK-1987 
Introduction to Bipolar logic. low Power Schottky. Schottky. TTL • low Power 

MASS STORAGE HANDBOOK-Rev. 2 
Winchester Disk Preamplifiers. Winchester Disk Servo Control. Winchester Disk Pulse Detectors 
Winchester Disk Data Separators/Synchronizers and ENDECs • Winchester Disk Data Controller 
SCSI Bus Interface Circuits. Floppy Disk Controllers 

MEMORY SUPPORT HANDBOOK-1986 
Dynamic Memory Control. Error Checking and Correction • Microprocessor Interface and Applications 
Memory Drivers and Support 

NON-VOLATILE MEMORY DATABOOK-1987 
CMOS EPROMs • EEPROMs • Bipolar PROMs 

SERIES 32000 DATABOOK-1986 
Introduction. CPU-Central Processing Unit. Slave Processors. Peripherals. Data Communications and LAN's 
Disk Control and Interface • DRAM Interface • Development Tools. Software Support • Application Notes 

RANDOM ACCESS MEMORY DATABOOK-1987 
StatiC RAMs. TTL RAMs. TTL FIFOs • ECl RAMs 



RELIABILITY HANDBOOK-1986 
Reliability and the Die. Internal Construction. Finished Package. MIL-STD-883 • MIL-M-3851 0 
The Specification Development Process. Reliability and the Hybrid Device. VLSIIVHSIC Devices 
Radiation Environment. Electrostatic Discharge • Discrete Device • Standardization 
Quality Assurance and Reliability Engineering. Reliability and Documentation. Commercial Grade Device 
European Reliability Programs. Reliability and the Cost of Semiconductor Ownership 
Reliability Testing at National Semiconductor. The Total Militaryl Aerospace Standardization Program 
883B/RETSTM Products. MILS/RETSTM Products. 883/RETSTM Hybrids. MIL-M-3851 0 Class B Products 
Radiation Hardened Technology. Wafer Fabrication. Semiconductor Assembly and Packaging 
Semiconductor Packages. Glossary of Terms. Key Government Agencies. ANI Numbers and Acronyms 
Bibliography. MIL-M-3851 0 and DESC Drawing Cross Listing 

TELECOMMUNICATIONS-1987 
Line Card Components. Integrated Services Digital Network Components. Modems 
Analog Telephone Components. Application Notes 

THE SWITCHED-CAPACITOR FILTER HANDBOOK-1985 
Introduction to Filters. National's Switched-Capacitor Filters • Designing with Switched-Capacitor Filters 
Application Circuits. Filter Design Program. Nomographs and Tables 

TRANSISTOR DATABOOK-1982 
NPN Transistors. PNP Transistors. Junction Field Effect Transistors. Selection Guides. Pro Electron Series 
Consumer Series • NAiNB/NR Series • Process Characteristics Double-Diffused Epitaxial Transistors 
Process Characteristics Power Transistors. Process Characteristics JFETs • JFET Applications Notes 

VOLTAGE REGULATOR HANDBOOK-1982 
Product Selection Procedures. Heat Flow & Thermal Resistance • Selection of Commercial Heat Sink 
Custom Heat Sink Design. Applications Circuits and Descriptive Information • Power Supply Design 
Data Sheets 

48-SERIES MICROPROCESSOR HANDBOOK-1980 
The 48-Series Microcomputers. The 48-Serles Single-Chip System. The 48-Series Instruction Set 
Expanding the 48-Series Microcomputers. Applications for the 48-Series • Development Support 
Analog I/O Components. Communications Components. Digital I/O Components • Memory Components 
Peripheral Control Components 



~ National 
D Semiconductor 


