National

Semiconductor

400093 Rev. 1

JOJONPUODIWSS |eUOlEN){OOC]E],BC] S105S9201d0401|\ 0002 E S°1I8S

. /‘ ‘.

Series 32000
Microprocessors

‘Databook

* Series 32000 Family
* NSC800 Family

MICROPROCESSOR

DATABOOK

® Series 32000
e NSC800

1988 Edition

Series 32000 Overview
CPU—Central Processing Units
Slave Processors

Peripherals

Board Level Family

Development Tools

Software Support
Application Notes

NSC800 Family

EHENEEEENEE

Physical Dimensions/Appendices

TRADEMARKS

Following is the most current list of National Semiconductor Corporation’s trademarks and registered trademarks.

Abuseable™ E-Z-LINK™ MST™ ShelfirChek™
Anadig™ FACT™ Naked-8™ SPIRE™
ANS-R-TRANT™ FAST™ National® STAR™
APPS™M 5-Star Service™ NAX 800T™ Starlink™
Auto-Chem Deflasher™ GAL® Nitride Plus™ STARPLEX™
BCP™ GENIX™ Nitride Plus Oxide™ STARPLEX lIT™
BI-FET™ GNX™ NMLT™ SuperChip™
BI-FET II™ HEX 3000™ NOBUS™ SuperScript™
BI-LINE™ HPC™ NSC800T™ SYS32™
BIPLANT™ ICM™™ NSX-16™ TapePak®
BLC™ INFOCHEX™ NS-XC-16™ TDS™

BLX™ Integral ISE™ NURAMTM TeleGate™
Brite-Lite™ Intelisplay™ OXISS™ The National Anthem®
BTL™ ISET™™ P2CMOS™ TimewChek™
CheckTrack™ ISE/06™ Perfect Watch™ TINAT™M

CIM™ ISE/08™ Pharmas*Chek™ TLC™
CIMBUS™ ISE/16™ PLANTM Trapezoidal™
ClocksrChek™ ISE32™™ PMP™™ TRI-CODE™
COMBO™ KeyScan™ Polycraft™ TRI-POLY™
COMBO I™ LMCMOS™ POSitalker™ TRI-SAFE™
COMBO lI™ M2CMOS™ Power & Control™ TRI-STATE®
COPS™ microcontrollers Macrobus™ QUAD3000™ TURBOTRANSCEIVER™
Datachecker® Macrocomponent™ QUIKLOOKT™ VIP™
DENSPAK™ MeatrChek™ RAT™ VR32™

DIB™ Microbus™ data bus RTX16™ WATCHDOG™
Digitalker® MICRO-DAC™ SABR™ XMOS™
DISCERN™ ptalker™ ScriptirChek™ XPUT™
DISTILL™ Microtalker™ SCX™ Z STAR™
DNR® MICROWIRE™ SERIES/800™ 883B/RETS™
DPVM™ MICROWIRE/PLUS™ Series 3000™ 883S/RETS™
ELSTAR™ MOLE™ Series 32000®

Postscript™ is a trademark of Adobe Systems Inc.

CCS-Page™ is trademark of Control-C Software Inc.

Laserjet™ and PCL™ are trademarks of Hewlett Packard

VERDIX and VADS are trademarks of the VERDIX Corporation

UNIX® and DWB are registered trademarks of AT&T.

IBM® is a registered trademark and IBM-PC, XT and AT™ are trademarks of International Business Machines Corporation
VisiCalc is a trademark of Visi Corporation

VAX™, VMS™, DEC™™, PDP-11™, RSX-11TM are trademarks of Digital Equipment Corporation
CP/M™ is a trademark of Digital Research Corporation

Z809 is a registered trademark of Zilog Corporation

MULTIBUS® is a registered trademark of Intel Corporation

Model 19 is a trademark of DATA 1/0 Corporation

VRTX®, I0X®, FMX® are registered trademarks of Hunter & Ready Corporation

TRACER™M is a trademark of Hunter & Ready Corporation

PAL® and PALASM™™ are trademarks of and are used under license from Monolithic Memories, Inc.
Opus5™ is a trademark of Opus Systems

LIFE SUPPORT POLICY

NATIONAL’'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORA-

TION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to per-
form, when properly used in accordance with instructions
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

2. A critical component is any component of a life support
device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support de-
vice or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

National
Semiconductor

Product Status Definitions

Definition of Terms

Data Sheet Identification Product Status Definition
Advance Information Formative or This data sheet contains the design specifications for product
In Design development. Specifications may change in any manner without notice.
Preliminary First This data sheet contains preliminary data, and supplementary data will
Production be published at a later date. National Semiconductor Corporation

reserves the right to make changes at any time without notice in order
to improve design and supply the best possible product.

No Full This data sheet contains final specifications. National Semiconductor
Identification Production Corporation reserves the right to make changes at any time without
Noted notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. National does not assume any liability arising out of the application or use of any product
or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

suonluiag snjejs 1onpoid

Table of Contents

Alphanumeric Index. e viii
Section 1 Series 32000 Overview
INtrodUCHiONo e e 1-3
Key Features of Series 32000ovviiiitiiittiitieeete et eiianannns 1-4
Series 32000 Component Descriptionsoovttt ettt 1-5
Hardware Chart ... e 1-6
Systems and Software Chartt 1-7
SUPPOM DBVICES . . . o ot ettt et e e e 1-8
Military Aerospace Programvuutiinitii et 1-9
Series 32000 Programs and ServiCesovuiuiieiirieenneeiieennennnnnn. 1-12
Section2 CPU—Central Processing Units
NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessors. . . 2-3
NS32332-10, NS32332-15 32-Bit Advanced Microprocessorc.oevvnnn. 2-94
NS32C032-10, NS32C032-15 High-Performance Microprocessors 2-168
NS32032-10 High-Performance MiCroprocessorcoveeiviiieeinnnenn... 2-233
NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processor 2-298
NS32C016-10, NS32C016-15 High-Performance Microprocessors 2-299
NS32016-10 High-Performance MiCroprocessorovuveiniii i 2-363
NS32008-10 High-Performance 8-Bit Microprocessorc.oveviievnneennn. 2-427
Section 3 Slave Processors
NS32382-10, NS32382-15 Memory Management Units (MMU) 3-3
NS32082-10 Memory Management Unit (MMU) ..., 3-42
NS32381-15, NS32381-20 Floating-Point Units, 3-81
NS32081-10, NS32081-15 Floating-PointUnitscooiiiiiiii e 3-111
NS32580-20, NS32580-25, NS32580-30 Floating-Point Controllers 3-128
Section 4 Peripherals
NS32C201-10, NS32C201-15 Timing Control Units 4-3
NS32202-10 Interrupt Control Unito e 4-25
NS32203-10 Direct Memory Access Controller (DMAC)vviiiiiiiniinnn... 4-50
Section 5 Board Level Products
VMES532 High Performance 32-Bit CPU VME Board with Cache, Memory Management
and FloatingPoint o 5-3
DB332-PLUS Development Boarduteiiiiniii e 5-6
DB32000 Development Board.cvvtttiriiiie e 5-10
DB32016 Development Board.oiuuntii it e 5-15
Section 6 Development Systems and Tools
SYS32/30 PC-Add-In Development Package.cooviiiiiiiiiinennn., 6-3
SYS32/20 PC Add-In Development Package............coviiviiiiiiiin ., 6-9
ISE32 NS32032 In-System Emulator ...t 6-12
SPLICE Development TOO!ottt i 6-21
Section 7 Software Support
Series 32000 GENIX Native and Cross-Support (GNX) Language Tools (Release 2) . . . 7-3
Series 32000 Ada Cross-Development System for SYS32/20 Host.................. 7-7
Series 32000 Ada Cross-Development System for VAX/VMSHost 7-11
GENIX V.3 Operating System e 7-16
Series 32000 Real-Time Software Components VRTX, IOX, FMX and TRACER. 7-19
Series 32000 EXEC ROMable Real-Time Multitasking Executive 7-39
Section 8 Application Notes
AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone
Configurationsot e 8-3

vi

Table of Contents contine)

Section 8 Application Notes (Continued)

AB-27 Use of the NS32332 with the NS32082 and the NS32201
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral
AN-404 10 MHz, No Wait States NS32016 Systemcoiiini i,
AN-405 Using Dynamic RAM with Series 32000 CPUScoiviiinenennn.
AN-406 Interfacing the Series 32000 CPUs to the MULTIBUS
AN-464 Effects of NS32082 Memory Management Unit on Processor Through Put
AN-513 Interfacing Memory tothe NS32532 i,
AN-524 Introduction to Bresenham'’s Line Algorithm Using the SBIT Instruction; Series

32000 NOtEe 5 .o it e
AN-526 Block Move Optimization Techniques; Series 32000 Graphics Note 2
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3.............
AN-528 Image Rotation Algorithm; Series 32000 Graphics Note 4...................
AN-529 80 x 86 to Series 32000 Translation; Series 32000 GraphicsNote 6
AN-530 Bit Mirror Routine; Series 32000 GraphicsNote 7 vuee.

Section9 NSC800

NSC800 High-Performance Low-Power CMOS Microprocessorc.o.u.
NSCBT10A RAM-l/ O-TimMer vttt ettt e ettt ettt
NSC831 Parallel 170 ... e e et et e
NSC888 NSC800 Evaluation Boardoiiiiiiii ittt eaean
Comparison Study NSC800 vs. 8085/80C85/Z280/Z80CMOS.........cvvvvenenn..
Software Comparison NSC800vs. 8085, Z80oiiiiiriennierenennneennens

Section 10 Physical Dimensions/Appendices

GlOSSANY Of TEIMS . . e et et e e e
Physical DIMENSIONSottt et e,
Bookshelf

Distributors

vii

Alpha-Numeric Index

AB-26 Instruction Execution Times of FPU NS32081 Considered for Stand-Alone Configurations.. 8-3
AB-27 Use of the NS32332 with the NS32082 and the NS32201ciiiiiiiieinannn, 8-4
AN-383 Interfacing the NS32081 as a Floating-Point Peripheral oo, 8-6
AN-404 10 MHz, No Wait States NS32016 Systemoviiiiiiii i i ittt iii i eeeen 8-14
AN-405 Using Dynamic RAM with Series 32000 CPUSttt 8-25
AN-406 Interfacing the Series 32000 CPUs to the MULTIBUSttt 8-32
AN-464 Effects of NS32082 Memory Management Unit on Processor ThroughPut 8-37
AN-513 Interfacing Memory to the NS32532 it s 8-41
AN-524 Introduction to Bresenham'’s Line Algorithm Using the SBIT Instruction;

Series 32000 NOtE 5ttt e e e 8-67
AN-526 Block Move Optimization Techniques; Series 32000 GraphicsNote 2 8-77
AN-527 Clearing Memory with the 32000; Series 32000 Graphics Note 3...............coovvna... 8-80
AN-528 Image Rotation Algorithm; Series 32000 GraphicsNote 4................c.coviiinn... 8-84
AN-529 80 x 86 to Series 32000 Translation; Series 32000 Graphics Note 6. 8-93
AN-530 Bit Mirror Routine; Series 32000 Graphics NOte 7. . ..o vviiii ettt iiiiiie e 8-99
Comparison Study NSC800 vs. 8085/80C85/Z80/Z80 CMOSouvviterevnnennennennnns 9-115
DB332-PLUS Development BOardcouuutettent it eei et it e en s 5-6
DB32000 Development Board.o. it e e e e 5-10
DB32016 Development Board.t e e e e 5-15
GENIX V.3 Operating SyStemottt ittt 7-16
ISE32 NS32032 In-System EmuIatorointir i e e 6-12
NS32C016-10 High-Performance MiCroproCeSSOrvvitt ittt i ainennn, 2-299
NS32C016-15 High-Performance MiCroproCessorcouivutiuiinriiiineenrenennnnn.. 2-299
NS32C032-10 High-Performance MiCroproCeSSOrovvviiiiini it 2-168
NS32C032-15 High-Performance MiCroproCessOorvuuvutinuriruenneneenneneennene. 2-168
NS32C201-10 Timing Control Unitcoo i e e e e 4-3
NS32C201-15 Timing Control UNitoouutti i i e ee s 4-3
NS32CG16-10 High-Performance Printer/Display Processorcovvirieiiieninennnnnn, 2-298
NS32CG16-15 High-Performance Printer/Display Processorcooiiiiiiiiiienee.n. 2-298
NS32008-10 High-Performance 8-Bit Microprocessorooviiiiii i, 2-427
NS32016-10 High-Performance MiCroproCessorc.vvuetiiit it iii e 2-363
NS32032-10 High-Performance MIiCroproCesSOrvvu vttt e it 2-233
NS32081-10 Floating-Point Unit e e e 3-111
NS32081-15 Floating-Point Unit e e 3-111
NS32082-10 Memory Management Unit (MMU) ...t 3-42
NS32202-10 Interrupt Control Unitot e e 4-25
NS32203-10 Direct Memory Access Controller (DMAC)ovv i 4-50
NS32332-10 32-Bit Advanced MiCroproCeSSOrottt eiienns 2-94
NS32332-15 32-Bit Advanced MIiCTOPrOCESSOr uvvut ettt e 2-94
NS32381-15 Floating-Point Unitovuiiiii i i 3-81
NS32381-20 Floating-Point Unitt e e 3-81
NS32382-10 Memory Management Unit (MMU)o i et 3-3
NS32382-15 Memory Management Unit (MMU)ttt 3-3
NS32532-20 High-Performance 32-Bit Microprocessorccooviiiiiiiiiiii e, 2-3
NS32532-25 High-Performance 32-Bit MiCroprocessorovviviniitiiiiiieiinneenns 2-3
NS32532-30 High-Performance 32-Bit Microprocessor ..o .. 2-3
NS32580-20 Floating-Point Controller. i e e 3-128
NS32580-25 Floating-Point Controller. . ..ot 3-128
NS32580-30 Floating-Point Controller 3-128
NSC800 High-Performance Low-Power CMOS MiCroproCessoro vvuveevnnieeineeineennnenns 9-3
NSCB10A RAM-I/O-TIMEN .« ottt ettt et ettt it et niernns 9-76

viii

Alpha-Numeric IndexX contineo)

NSC831 Parallel 170ot e e e et et e 9-97
NSC888 NSCB800 Evaluation Boardouunuutet ittt e 9-111
Series 32000 Ada Cross-Development System for SYS32/20Host, 7-7
Series 32000 Ada Cross-Development System for VAX/VMS Hostoooviiiiiiiiii . 7-11
Series 32000 EXEC ROMable Real-Time Multitasking Executivecoiviiiiae, 7-39
Series 32000 GENIX Native and Cross-Support (GNX) Language Tools (Release2) 7-3
Series 32000 Real-Time Software Components VRTX, IOX, FMXand TRACER................... 7-19
Software Comparison NSC800 vs. 8085, Z80vvittetttttttttenuniniananananennnnns 9-118
SPLICE Development TOO!ttt e et 6-21
SYS32/20 PC Add-In Development Packageovvvtieiit e 6-9
SYS32/30 PC-Add-In Development Packagec.ooviiiiiiiiiiiiiiiiii i 6-3
VMES532 High Performance 32-Bit CPU VME Board with Cache, Memory Management and

Floating Point e e 5-3

Section 1
Series 32000 Overview

Section 1 Contents

INtrOdUCHON. . . .o o e e 1-3
Key Features of Series 32000ttt e e 1-4
Series 32000 Component DesCriptionsvvit it e 1-5
Hardware Chart e e e e e 1-6
Systems and Software Chartottt e 1-7
SUPPOM DBVICES . ..ottt e e e e et 1-8
Military AGroSpace Programo. e ettt it 1-9
Series 32000 Programs and ServiCesouutiiiniiiiii ittt 1-12

Introduction

Series 32000 offers the most complete solution to your 32-bit micro-
processor needs via CPUs, slave processors, system peripherals,
evaluation/development tools and software.

We at National Semiconductor firmly believe that it takes a total family
of microprocessors to effectively meet the needs of a system design-
er.

This Series 32000 Databook presents technical descriptions of Series
32000 8-, 16- and 32-bit microprocessors, slave processors, peripher-
als, software and development tools. It is designed to be updated
frequently so that our customers can have the latest technical infor-
mation on the Series 32000.

Series 32000 leads the way in state-of-the-art microprocessor de-
signs because of its advanced architecture, which includes:

® 32-Bit Architecture

® Demand Paged Virtual Memory
® Fast Floating-Point Capability

® High-Level Language Support
* Symmetrical Architecture

When we at National Semiconductor began the design of the Series
32000 microprocessor family, we decided to take a radical departure
from popular trends in architectural design that dated back more than
a decade. We chose to take the time to design it properly.

Working from the top down, we analyzed the issues and anticipated
the computing needs of the 80’s and 90’s. The result is an advanced
and efficient family of microprocessor hardware and software prod-
ucts.

Clearly, software productivity has become a major issue in computer-
related product development. In microprocessor-based systems this
issue centers around the capability of the microprocessor to maximize
the utility of software relative to shorter development cycles, im-
proved software reliability and extended software life cycles.

In short, the degree to which the microprocessor can maximize soft-
ware utility directly affects the cost of a product, its reliability, and time
to market. It also affects future software modification for product en-
hancement or rapid advances in hardware technology.

Our approach has been to define an architecture addressing these
software issues most effectively. Series 32000 combines 32-bit per-
formance with efficient management of large address space. It facili-
tates high-level language program development and efficient instruc-
tion execution. Floating-point is integrated into the architecture.

This combination gives the user large system computing power at two
orders of magnitude less cost.

But we didn’t stop there. Advanced architecture isn’t enough. Our top-
down approach includes the hardware, software, and development
support products necessary for your design. The evaluation board, in-
system emulator, software development tools, including a VAX-11
cross-software package, and third party software are also available
now for your evaluation and development.

The Series 32000 is a solid foundation from which National Semicon-
ductor can build solutions for your future designs while satisfying your
needs today.

For further information please contact your local sales office.

Key Features of Series 32000

National
Semiconductor

Key Features of Series 32000®

Some of the features that set the Series 32000 family apart
as the best choice for 32-bit designs are as follows:

FAMILY OF MICROPROCESSOR CHIP SETS

Series 32000 is more than just a single chip set, it is a family
of chip sets. By mixing and matching Series 32000 CPUs
with compatible slave processors and support chips, a sys-
tem designer has an unprecedented degree of flexibility in
matching price/performance to the end product.

CLEANEST 32-BIT SUPER MINI COMPUTER
ARCHITECTURE

Series 32000 was designed around a 32-bit architecture
from the beginning. It has a fully symmetrical instruction set
so that all addressing modes and all data types can be oper-
ated on by all instructions. This makes it easy to learn the
architecture, easy to program in assembly language, and
easy to write code-efficient, high-level language compilers.

DEMAND-PAGED VIRTUAL MEMORY MANAGEMENT

Series 32000 provides hardware support for Demand-Paged
Virtual Memory Management. This allows use of low-cost
disk storage to increase the apparent size of main memory,
and is an efficient method of managing very large address
spaces. It is also the same popular memory management
method used by DEC and IBM in their minicomputers and
mainframes.

APPLICATION-SPECIFIC SLAVE PROCESSORS

Series 32000 architecture allows users to design their own
application-specific slave processors to interface with the
existing chip set. These processors can be used to increase
the overall system performance by accelerating customized
CPU instructions that would otherwise be implemented in
software. At the same time, software compatibility is main-
tained, i.e., it is always possible to substitute lower-cost soft-
ware modules in place of the slave processor.

FLOATING-POINT SUPPORT

The Series 32000 offers a complete set of floating-point
solutions. This includes the NS32081 Floating-Point Unit,
the NS32381 Floating-Point Unit and the NS32580 Floating-
Point Controller. The NS32081 provides high-speed arith-
metic computation with high precision and accuracy at low
cost. The NS32381 provides low power consumption and
even greater performance than the NS32081 while main-
taining high-precision and accuracy.

The NS32580 is a floating-point controller that provides a
direct interface between the Weitek WTL 3164 Floating-
Point Data Path and the NS32532 CPU. This two chip com-
bination, NS32580/WTL3164, provides optimum perform-
ance for speed critical floating-point applications.

OPERATING SYSTEM SUPPORT

Series 32000 features such as hardware support for De-
mand-Paged Virtual memory management, user software
protection and modular programming make it much easier
to implement powerful, reliable and efficient operating sys-
tems. These features along with its symmetrical architecture
and powerful instruction set make the Series 32000 the
most efficient and highest performance UNIX engine.

HIGH-LEVEL LANGUAGE SUPPORT

Series 32000 has special features that support high-level
languages, thus improving software productivity and reduc-
ing development costs. For example, there are special in-
structions that help the compiler deal with structured data
types such as Arrays, Strings, Records, and Stacks. Also,
modular programming is supported by special hardware reg-
isters, software instructions, an external addressing mode,
and architecturally supported link tables.

14

w
[}
- =.
National 2
- - m
Semiconductor 8
o
o
o
. . o
Series 32000® Component Descriptions S
=4
o
3
[
3
-
Bus Width o
®
Device Description External Process Package [
Internal Type Q
Address Data £l
CENTRAL PROCESSING UNITS (CPU’s) g
3
NS32532 High-Performance 32-Bit Microprocessor 32 32 32 M2CMOS 175-pinPGA | @
NS32332 32-Bit Advanced Microprocessor 32 32 32 XMOS 84-pin PGA
(NMOS)
NS32C032 High-Performance Microprocessor 32 24 32 CMOS 68-pin LCC
Leadless
Chip Carrier
NS32032 High-Performance Microprocessor 32 24 32 XMOS 68-pin LCC
(NMOS) Leadless
Chip Carrier
NS32C016 High-Performance Microprocessor 32 24 16 CMOS 48-pin DIP
Dual-In-Line
Package
NS32016 High-Performance Microprocessor 32 24 16 XMOS 48-pin DIP
(NMOS) Dual-in-Line
Package
NS32008 High Performance 8-Bit Microprocessor 32 24 8 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package
NS32CG16 | High Performance Printer/Display Processor 32 24 16 CMOS 68-pin PCC
SLAVE PROCESSORS
NS32382 Memory Management Unit 32 32 32 XMOS PGA
(NMOS)
NS32082 Memory Management Unit 32 24 16 XMOS 48-pin DIP
(NMOS) Package
NS32081 Floating-Point Unit 64 — 16 XMOS 24-pin DIP
Dual-In-Line
Package
NS32381 Floating-Point Unit 64 — 16 CMOS 68-pin PGA
NS32580 Floating-Point Controller 64 — 16 or 32 CMOS 172-pin PGA
PERIPHERALS
NS32C201 CMOS Timing Control Unit — — — CMOS 24-pin DIP
Dual-In-Line
Package
NS32202 Interrupt Control Unit 32 — 16 XMOS 40-pin DIP
(NMOS) Dual-In-Line
Package
NS32203 Direct Memory Access Controller — — 16 XMOS 48-pin DIP
(NMOS) Dual-In-Line
Package

1-5

Hardware Chart

National

Semiconductor

Hardware Chart

SLAVE
PROCESSORS PROCESSORS PERIPHERALS
NS32532 NS32382 NS32201
Advanced 32-Bit CMOS CPU Advanced 32=Bit Memory CMOS Timin Unit
with MMU ___Management Unit g Control Un
| | |
NS32082 NS32202

NS32332
32-Bit Data Bus/32=Bit CPU

Memory Management Unit

Interrupt Control Unit

NS320032 NS32381 NS32203
CMOS NS32032 Floating Point Unit DMA Controller
]] |
NS32032 NS32C081 NS16550
32-Bit Data Bus/32-8t CPU CMOS Flating Point Uit UART
A1]]
NS320016 NS32081 NS16450
OMOS NS32016 Floating Point Uni UART with FFO
| 1
o NS37580 with
16-Bit Data. Bus/32-Bit CPU WTL 3164 Ploating Point
]]
NS32008
88t Data Bus/32-Bit GPU CusToM

TL/XX/0084-1

National
Semiconductor

Systems and Software Chart

HOST

ey a1emyos pue swalsAs

BOARD LEVEL DEVELOPMENT
PRODUCTS SOFTWARE EMULATORS ENVIRONMENTS
s e)| [
IN 5325
CLUDES.N 32532 OPERATIN(:z SYSTEM SoTEN V'S U
| 1 I
VME332 GNX™ LANGUAGE TOOLS SYS32/20 PC ADD-IN
INCLUDES NS32332 'NCLU%EESBL;‘(?(?EE';‘SB'-ER' DEVELOPMENT SYSTEM
- SYSTEM V.3 UNIX
| 1 i
DB32332 COMPILERS FOR ™
INCLUDES NS32332 C, PASCAL, MODULA=2, VAX=11" SERIES
_ FORTRAN, ADA VMS, BSD = UNIX
' i
DB32032 REAL TIME
INCLUDES NS32032 OPERATING SYSTEMS
n VRTX™, EXEC
|
DB32016
INCLUDES NS32016

TL/XX/0083~1

1-7

Support Devices Chart

Support Devices Chart

SUPPORT
DEVICES

*

High Pr:frmance 0P84St 16-Bit Ezgs&o o-nflabk Error
Controllers Disk Data Synchronizer ChackerLIOorrector
T T i
e o e || pua B
L i DP;I409A
LAN Inte?fii?gontroller Disk Dta?gllﬂ'ﬂ“" “K/zgfm_;"._tzgw?d; DR
| l i
_ Dpe3gt Disk Datgpg;ls'nihronizer Nsszooa/wﬁnpiyb'f’%‘o%/ﬂ/ia/
Serial Network Interface For 2,7 RLL Code 19/28/29 Interface
| I |
DP8392 Disk gP? ﬁfcm NS32332 T?;Psuég}}gvﬂ/ta/
COAX Transceiver Interface Encoder /Decoder 19/28/29 Interface
i i |
1BM® 327%Pgi3p4l?ase Serial DPB464B Cbigh oo

Disk Pulse Detector

Encoder/Transmitter

256K High Speed DRAM

Controller/Driver

DP8341
1BM® 3270 Biphase Serial

DPB465

DP8428
1 Megabit High Speed DRAM

Decoder/Receiver Disk Date Separator Controller/Driver (32-Bit Systems
L]
DP8342 DPBA466 DP8429 oA
High Speed Serial Manchester 1 Megabit High Speed DRAM
Encoder/Transmitter Disk Data Controller Controller/Driver (16-Bit Systems)
| 1
DP8343 DP8468
High Speed Manchester Pulse Detector And
Decoder/gggeiver Embedded Servo
| |
DP8470
BIT=MAPPED
Floppy Data Separator &
GRAPHICS Write Precompensation
|
DP8472/74
Floppy Disk Controller/
Data Separator

TL/XX/0111-1

National
Semiconductor

Military/Aerospace Programs
from National Semiconductor

This section is intended to provide a brief overview of mili-
tary products available from National Semiconductor. For
further information, refer to our 1986 Reliability Handbook
which is expected to be available by mid 1986.

MIL-M-38510

The MIL-M-38510 Program, which is sometimes called the
JAN IC Program, is administered by the Defense Electronics
Supply Center (DESC). The purpose of this program is to
provide the military community with standardized products
that have been manufactured and screened to government-
controlled specifications in government certified facilities.
All 38510 manufacturers must be formally qualified and their
products listed on DESC’s Qualified Products List (QPL) be-
fore devices can be marked and shipped as JAN products.

There are two processing levels specified within MIL-M-
38510: Classes S and B. Class S is typically specified for
space flight applications, while Class B is used for aircraft
and ground systems. National is a major supplier of both
classes of devices. Screening requirements are outlined in
Table 1.

Tables | and Il explain the JAN device marking system.

Copies of MIL-M-38510, the QPL, and other related docu-
ments may be obtained from:

Naval Publications and Forms Center
5801 Tabor Avenue

Philadelphia, PA 19120

(212) 697-2179

DESC Specifications

DESC specifications are issued to provide standardized ver-
sions of devices which are not yet available as JAN product.
MIL-STD-883 Class B screening is coupled with tightly con-
trolled electrical specifications which have been written to
allow a manufacturer to use his standard electrical tests. A
current listing of National’s DESC specification offerings can
be obtained from our franchised distributors, sales repre-
sentatives, or DESC. DESC is located in Dayton, Ohio.

MIL-STD-883

Although originally intended to establish uniform test meth-
ods and procedures, MIL-STD-883 has also become the
general specification for non-JAN military product. Revision
C of this document defines minimum requirements for a de-
vice to be marked and advertised as 883-compliant. Includ-
ed are design and construction criteria, documentation con-
trols, electrical and mechanical screening requirements,
and quality control procedures. Details can be found in par-
agraph 1.2.1 of MIL-STD-883.

National offers both 883 Class B and 883 Class S product.
The screening requirements for both classes of product are
outlined in Table IIl.

As with DESC specifications, a manufacturer is allowed to
use his standard electrical tests provided that all critical pa-
rameters are tested. Also, the electrical test parameters,
test conditions, test limits, and test temperatures must be
clearly documented. At National Semiconductor, this infor-
mation is available via our RETS (Reliability Electrical Test
Specification) program. The RETS document is a complete
description of the electrical tests performed and is con-
trolled by our QA department. Individual copies are available
upon request.

Some of National’s older products are not completely com-
pliant with MIL-STD-883, but are still required for use in mili-
tary systems. These devices are screened to the same
stringent requirements as 883 product but are marked
“Mil”.

Military Screening Program (MSP)

National’s Military Screening Program was developed to
make screened versions of advanced products such as gate
arrays and microprocessors available more quickly than is
possible for JAN and 883 devices. Through this program,
screened product is made available for prototypes and
brassboards prior to or during the JAN or 883 qualification
activities. MSP products receive the 100% screening of
Table IlI, but are not subjected to group C and D quality
conformance testing. Other criteria such as electrical testing
and temperature range will vary depending upon individual
device status and capability.

1019NPUODIWaS [euoljeN Wwo.} sweihold asedsolay/Ateliy

Military/Aerospace Programs from National Semiconductor

TABLE 1. The MIL-M-38510 Part Marking

TABLE Il. JAN Package Codes

JM38510/XXXXXYYY 38510 . P
A7 A Lead Finish Package Microcircuit Industry
68 nisi s ge
A =Solder Dipped Designation Description
B=Tin Plate
C=Gold Plate A 14-pin 1/4" x 1/4" (metal) flat pack
X= ;‘s"gc'::;ai';fh above B 14-pin 3/16" x 1/4" flat pack
Device Package o] 14-pin 1/4" x 3/4" dual-in-line
(see Table IIl) D 14-pin 1/4" x 3/8" (ceramic) flat pack
Screening Level E 16-pin 1/4" x7/8" dual-in-line
S, B, or F 16-pin 1/4" x 3/8"
Device Number on (metal or ceramic) flat pack
Slash Sheet G 8-pin TO-99 can or header
Slash Sheet Number H 10-pin 1/4" x 1/4” (metal) flat pack
tF:," "aldi?‘“P" "ﬂ"’d d;"g“sm | 10-pin TO-100 can or header
is slash is replaced by the " " " s
Radiation Hardness Assurance J 24-pin1/2" x1-1/4" dual-in-line
Designator (M,D, R, or H per K 24-pin 3/8" x 5/8" flat pack
Bargyeen S413 of Mk L 24-pin 1/4” x 1-1/4” dual-in-line
MIL=M=38510 M 12-pin TO-101 can or header
JAN Prefix N (Note 1)
(which may be applied only to P 8-pin 1/4" x 3/8" dual-in-line
a fully <:or|;|fo:'|;r2t12nt1 dev(ljca!’ %e; " Q 40-pin 3/16" x 2-1/16" dual-in-line
Bilo-3gs10) oo e R 20-pin 1/4” x1-1/16" dualin-line
B11K15-1 S 20-pin 1/4” x 1/2" flat pack
T (Note 1)
U (Note 1)
\ 18-pin 3/8” x 15/16"” dual-in-line
W 22-pin 3/8" x 1-1/8" dual-in-line
X (Note 1)
Y (Note 1)
z (Note 1)
2 20-terminal 0.350” x 0.350" chip carrier
3 28-terminal 0.450"” x 0.450" chip carrier
Note 1: These letters are assigned to packages by individual detail specifi-
cations and may be assigned to different packages in different specifica-
tions.
TABLE Ill. 100% Screening Requirements
Class S Class B
Screen
Method Reqmt Method Reqmt
1. Wafer Lot Acceptance 5007 All Lots
2. Nondestructive 2023 o
Bond Pull 100%
3. Internal Visual (Note 1) 2010, Condition A 100% 2010, Condition B 100%
4, Stabilization Bake 1008, Condition C, o 1008, Condition C, o
Min, 24 Hrs. Min 100% Min, 24 Hrs. Min 100%
5. Temp. Cycling (Note 2) 1010, Condition C 100% 1010, Condition C 100%
6. Constant Acceleration 2001, Condition E (Min) 100% 2001, Condition E (Min) 100%
Y4 Orientation Only ° V4 Orientation Only °
7. Visual Inspection (Note 3) 100% 100%
8. Particle Impact Noise 2020, Condition A 100%
Detection (PIND) (Note 4) °
9. Serialization (Note 5) 100%
10. Interim (Pre-Burn-In) Per Applicable Device 100% Per Applicable Device
Electrical Parameters Specification (Note 13) Specification (Note 6)
11. Burn-In Test 1915 240 Hrs. at 125°C 100% 1015, 160 Hrs. at 125°C Min 100%
Min (Cond. F Not Allowed)

1-10

TABLE Ill. 100% Screening Requirements (Continued)

Screen Class S Class B
Method Regmt Method Reqmt
12. Interim (Post-Burn-In) Per Applicable Device 100%
Electrical Parameters Specification (Note 13) °
13. Reverse Bias Burn-In 1015; Test Condition A, C,
(Note 7) 72 Hrs. at 150°C Min 100%
(Cond. F Not Allowed)
14. Interim (Post-Burn-In) Per Applicable Device 100% Per Applicable Device 100%
Electrical Parameters Specification (Note 13) ° Specification °
15. PDA Calculation 5% Parametric (Note 14) 5% Parametric (Note 14)
3% Functional — 25°C AllLots AllLots
16. Final Electrical Test Per Applicable Device Per Applicable Device
a) Static Tests Specification Specification
1) 25°C (Subgroup 1, 100% 100%
Table |, 5005)
2) Max & Min Rated 100% 100%
Operating Temp
(Subgroups 2, 3,
Table |, 5005)
b) Dynamic Tests & 100% 100%
Switching Tests,
25°C (Subgroups 4, 9,
Table |, 5005)
c) Functional Test, 100% 100%
25°C (Subgroup 7,
Table |, 5005)
17. Seal Fine, Gross 1014 100% 1014 100%
(Note 8) (Note 9)
18. Radiographic (Note 10) 2012 Two Views 100%
19. Qualification or Quality (Note 11) (Note 11)
Conformance Inspection Samp. Samp.
Test Sample Selection
20. External Visual 2009 o o
(Note 12) 100% 100%

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or
following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g. bond strength requirements shall apply to
each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).

Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.

Note 3: At the manufacturer’s option, visual inspection for castastrophic failures may be conducted after each of the thermal/mechanical screens, after the
sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages or lids off.

Note 4: The PIND test may be performed in any sequence after step 9 and prior to step 16. See MIL-M-38510, paragraph 4.6.3.
Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.
Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.

Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in
may be inverted.

Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming
operations on the terminals.

Note 9: For Class B devices, the fine and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except
that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming
(e.g. flatpacks and chip carriers) the seal screen shall be done 100% prior to those operations and a sample test (LTPD = 5) shall be performed on each
inspection lot following these operations. If the sample fails, 100% rescreening shall be required.

Note 10: The radiographic screen may be performed in any sequence after step 9.

Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005.

Note 12: External visual shall be performed on the lot any time after step 19 and prior to shipment.

Note 13: Read and Record when post burn-in data measurements are specified.

Note 14: PDA shall apply to all static, dynamic, functional and switching measurements at either 25°C or maximum rated operating temperature.

1019NpUOo3IWSS [euOEN woJj sweiboid asedsolay /AledN

Series 32000 Programs and Services

National
Semiconductor

Series 32000 Programs and Services

Technical Support Engineering
Center (TSEC)

National Semiconductors Technical Support Engineering
Center offers full aftersales service support. The Technical
Support Staff is available to answer technical questions,
and has the ability to utilize all of the resources within the
company to resolve issues or problems. Extended mainte-
nance contracts are available extending the warranty period
of the product one full year, allowing full technical support,
software and/or hardware maintenance.

HIGHLIGHTS OF THE EXTENDED MAINTENANCE

PROGRAM

. Unlimited Technical Assistance—access to 24 hour Hot

Line and factory engineering staff.

2. Automatic Software Updates allowing customers to re-
ceive all software enhancements or bug fixes free of
charge whenever they become available for the products
covered.

3. Software Bulletin—Informative newsletter showing cur-
rent software revisions, bug listings, work arounds, and
new product information.

4. Equipment repairs—Factory repair for all products cov-
ered, including equipment on loan.

OBTAINING A MAINTENANCE CONTRACT

1. Determine which product(s) are to be placed under main-
tenance (refer to the Service Products Guide).

2. Fill out the Maintenance Contract and return to the Serv-
ice Center along with a purchase order, or call any of the
TSEC 800 numbers and a completed contract will be sent
to your attention for signature. Return the contract along
with a purchase order to us.

TOLL-FREE NUMBERS
(800) 538-1866 (Outside of California)
(800) 672-1811 (Inside California)
(800) 223-3248 (Canada)
(408) 749-7306 (Rest of World)
49-08141-103-0 (Europe)

FACTORY REPAIRS

The Service Center provides highly trained technicians and
a complete range of Depot Services to meet your service
needs. For more information on depot services and pricing,
call one of the Service Center phone numbers listed above.

EVALUATION PROGRAM

The Series 32000 Development hardware and software
products are available for a free 30 day evaluation. For full

-

details and qualifications on the evaluation program, please
call one of the Service Center phone numbers listed above
or your local sales office.

The University Program

Begun as merely a concept several years ago, National
Semiconductor’s University Program has now emerged as
one of the company’s most successful programs. The Uni-
versity Program was originally created to establish a rela-
tionship between National and the academic community
that would foster the exchange of information and keep stu-
dents abreast of modern advancements in technology.

The University Program catalog provides a complete, up-to-
date list of all student/university services as well as pro-
gram application forms and course materials to guide in-
structors in introducing students to advanced microproces-
SOrs.

Because tomorrow’s technology is dependent upon today’s
nurturing of up-and-coming scientists and engineers, Na-
tional is committed to supporting universities, particularly in
the area of microprocessor technology. National hopes that
more universities will share in this commitment by becoming
a part of the University Program.

For more information on any of these programs, contact the
Series 32000 University Program Manager, National Semi-
conductor Corporation, P.O. Box 58090, M/S D3-667, Santa
Clara, California 95052-8090, 408-721-7295.

Microcomputer Systems Division

The Microcomputer Systems Division’s goal is to become a
leading force in the microcomputer systems marketplace.

To achieve this goal, a total systems approach has been
taken on the Series 32000 program to provide the customer
with the necessary hardware and software support, evalua-
tion and development tools, training, service and technical
literature.

The focus is on upward migration paths, system integration
at all levels and the preservation of the user’'s software in-
vestment.

Three groups (Microprocessor, Software Products and De-
velopment Systems) offer a broad capability to solve cus-
tomer needs at various levels of performance and integra-
tion.

Section 2

CPU—Central Processing

Units

Section 2 Contents

NS32532-20, NS32532-25, NS32532-30 High-Performance 32-Bit Microprocessors. 2-3
NS32332-10, NS32332-15 32-Bit Advanced MiCroproCessoroovvvrveevneennnnen.. 2-94
NS32C032-10, NS32C032-15 High-Performance Microprocessors............c.o.oeevnue... 2-168
NS32032-10 High-Performance Microprocessorcoouuiviiet i, 2-233
NS32CG16-10, NS32CG16-15 High-Performance Printer/Display Processor 2-298
NS32C016-10, NS32C016-15 High-Performance Microprocessors............c.oeevnne... 2-299
NS32016-10 High-Performance Microprocessorcvritiit i, 2-363
NS32008-10 High-Performance 8-Bit MiCroprocessorocvviiiniieeiieennnen.. 2-427

National
Semiconductor

PRELIMINARY

NS32532-20/NS32532-25/NS32532-30
High-Performance 32-Bit Microprocessor

General Description

The NS32532 is a high-performance 32-bit microprocessor
in the Series 32000® family. It is software compatible with
the previous microprocessors in the family but with a greatly
enhanced internal implementation.

The high-performance specifications are the resuit of a four-
stage instruction pipeline, on-chip instruction and data
caches, on-chip memory management unit and a signifi-
cantly increased clock frequency. In addition, the system
interface provides optimal support for applications spanning
a wide range, from low-cost, real-time controllers to highly
sophisticated, general purpose multiprocessor systems.

The NS32532 integrates more than 370,000 transistors fab-
ricated in a 1.25 pm double-metal CMOS technology. The
advanced technology and mainframe-like design of the de-
vice enable it to achieve more than 10 times the throughput
of the NS32032 in typical applications.

In addition to generally improved performance, the
NS32532 offers much faster interrupt service and task
switching for real-time applications.

Features

@ Software compatible with the Series 32000 family
| 32-bit architecture and implementation

® 4-GByte uniform addressing space

® On-chip memory management unit with 64-entry
translation look-aside buffer

4-Stage instruction pipeline

512-Byte on-chip instruction cache

1024-Byte on-chip data cache

High-performance bus

— Separate 32-bit address and data lines

— Burst mode memory accessing

— Dynamic bus sizing

Extensive multiprocessing support

Floating-point support via the NS32381 or NS32580
1.25 pm double-metal CMOS technology

175-pin PGA package

Block Diagram

4 = STAGE
INSTRUCTION PIPELINE

1~ \

: A\r——_—: INSTRUCTION

1 < LOADER CACHE <__‘ @ CONTROL

:) %

! [Tl

: : X

| ADDRESS R

| € o > MEMORY L

1 V| e wanacuent > 7777 >ADDRESS
UNIT

. X (MMU) <}3 C>W

: :

! ! BUS

' ' INTERFACE

X . UNIT

X X L’ (BIV)

! | DATA

! REGISTER ! CACHE

I e T !)

1 !

T

: EXECUTION L DATA INTERFACE

I g T - <>

: E— 17////1///71/1/; S— 171171/, QYL

TTTTTTTooTTot ’ TL/EE/9354-1
FIGURE 1

0€-2€GCESN/G2-CESCESN/0C-CEGCESN

NS32532-20/NS32532-25/NS32532-30

1.0 PRODUCT INTRODUCTION
2.0 ARCHITECTURAL DESCRIPTION
2.1 Register Set

2.1.1 General Purpose Registers
2.1.2 Address Registers

2.1.3 Processor Status Register

2.1.4 Configuration Register

2.1.5 Memory Management Registers
2.1.6 Debug Registers

2.2 Memory Organization
2.2.1 Address Mapping
2.3 Modular Software Support

2.4 Memory Management

2.4.1 Page Tables Structure

2.4.2 Virtual Address Spaces

2.4.3 Page Table Entry Formats
2.4.4 Physical Address Generation
2.4.5 Address Translation Algorithm

2.5 Instruction Set

2.5.1 General Instruction Format
2.5.2 Addressing Modes
2.5.3 Instruction Set Summary

3.0 FUNCTIONAL DESCRIPTION

3.1 Instruction Execution
3.1.1 Operating States
3.1.2 Instruction Endings
3.1.2.1 Completed Instructions
3.1.2.2 Suspended Instructions
3.1.2.3 Terminated Instructions

Table of Contents

3.0 FUNCTIONAL DESCRIPTION (Continued)

3.1.3 Instruction Pipeline
3.1.3.1 Branch Prediction
3.1.3.2 Memory Mapped I/0
3.1.3.3 Serializing Operations

3.1.4 Slave Processor Instructions
3.1.4.1 Regular Slave Instruction Protocol
3.1.4.2 Pipelined Slave Instruction Protocol
3.1.4.3 Instruction Flow and Exceptions
3.1.4.4 Floating-Point Instructions
3.1.4.5 Custom Slave Instructions

3.2 Exception Processing

3.2.1 Exception Acknowledge Sequence
3.2.2 Returning from an Exception Service Procedure
3.2.3 Maskable Interrupts
3.2.3.1 Non-Vectored Mode
3.2.3.2 Vectored Mode: Non-Cascaded Case
3.2.3.3 Vectored Mode: Cascaded Case
3.2.4 Non-Maskable Interrupt
3.2.5 Traps
3.2.6 Bus Errors
3.2.7 Priority Among Exceptions

3.2.8 Exception Acknowledge Sequences:
Detailed Flow

3.2.8.1 Maskable/Non-Maskable Interrupt
Sequence

3.2.8.2 Abort/Restartable Bus Error Sequence

3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND
Trap Sequence

3.2.8.4 Trace Trap Sequence

3.1.2.4 Partially Completed Instructions

Table of Contents (continued)

3.0 FUNCTIONAL DESCRIPTION (Continued) 3.0 FUNCTIONAL DESCRIPTION (Continued)
3.2.8.5 Integer-Overflow Trap Sequence 3.5.8 Interfacing Memory-Mapped 1/0 Devices
3.2.8.6 Debug Trap Sequence 3.5.9 Interrupt and Debug Trap Requests
3.2.8.7 Non-Restartable Bus Error Sequence 3.5.10 Cache Invalidation Requests

3.3 Debugging Support 3.5.11 Internal Status

0€-2€SGCESN/SC-CESCESN/0C-CESCESN

3.3.1 Instruction Tracing 4.0 DEVICE SPECIFICATIONS
3.3.2 Debug Trap Capability 4.1 Pin Descriptions
3.4 On-Chip Caches 4.1.1 Supplies
3.4.1 Instruction Cache (IC) 4.1.2 Input Signals
3.4.2 Data Cache (DC) 4.1.3 Output Signals
3.4.3 Cache Coherence Support 4.1.4 Input/Output Signals
3.4.4 Translation Look-aside Buffer (TLB) 4.2 Absolute Maximum Ratings
3.5 System Interface 4.3 Electrical Characteristics

3.5.1 Power and Grounding 4.4 Switching Characteristics

3.5.2 Clocking 4.4.1 Definitions
3.5.3 Resetting 4.4.2 Timing Tables
3.5.4 Bus Cycles 4.4.2.1 Output Signals: Internal Propagation

Delays
4.4.2.2 Input Signal Requirements
4.4.3 Timing Diagrams

3.5.4.1 Bus Status
3.5.4.2 Basic Read and Write Cycles
3.5.4.3 Burst Cycles

3.5.4.4 Cycle Extension Appendix A: Instruction Formats
3.5.4.5 Interlocked Bus Cycles B: Compatibility Issues
3.5.4.6 Interrupt Control Cycles B.1 Restrictions on Compatibility
3.5.4.7 Slave Processor Bus Cycles B.2 Architecture Extensions
3.5.5 Bus Exceptions B.3 Integer-Overflow Trap
3.5.6 Dynamic Bus Configuration B.4 Self-Modifying Code
3.5.6.1 Instruction Fetch Sequences B.5 Memory-Mapped 1/0
3.5.6.2 Data Read Sequences C: Instruction Set Extensions
3.5.6.3 Data Write Sequences C.1 Processor Service Instructions
3.5.7 Bus Access Control C.2 Memory Management Instructions

C.3 Instruction Definitions

NS32532-20/NS32532-25/NS32532-30

List of lllustrations

CPU Block Diagram
NS32532 Internal REgIStersc.vuuin ittt ettt e et
Processor Status Register (PSR)
Configuration Register (CFG)

Page Table Base RegiSters (PTBN)cutintti ettt ettt et a ettt ettt n e e aenneaneenneanennens 2-4
Memory Management Control Register (MCR)u.tutirvnentenettnene et eaenteeenene e eeeeaneneneaeenenes 2-5
Memory Management Status Register (MSR)iiin ittt e ettt 2-6
Debug Condition Register (DCR)utit ittt ettt et et et e e et e a et et ee et e teeneaee et aaaenenes 2-7
Debug Status Register (DSR)ttt et e e ettt e et et e 2-8
NS32532 AdAress MapPINg ...« .vutttntit ettt ettt et e te et te e e ettt e e e et e e 2-9
NS32532 RUN-TIMe ENVIFONMENT . ..ottt ettt ettt et e e e et e et n et e et ee e eeeeaennanenen 2-10
Two-Level Page Tables

Page Table Entries (PTE’s)

Virtual to Physical Address Translationttt ittt et e et i ene e 2-13
General Instruction Formatot e 2-14
INdEX Byt FOrmMat ..ottt ittt ittt e e e e 2-15
DisplacemMent ENCOGINGS c vttt ittt ettt et e ettt e et e e et e e e et e 2-16
[0 2= =TT RS £ (=T 3-1
NS32532 Internal INStruction PIPEIINEttt et e et e e e e 3-2
Memory References for Consecutive INSITUCHIONSttt ittt et e et ie i ea ey 3-3
Memory References after Serialization

Regular Slave Instruction Protocol: CPU Actions

ID and OperationWord :

Slave Processor Status Word
Instruction Flow in Pipelined Floating-Point Mode
Interrupt Dispatch Table

Exception Acknowledge Sequence: Direct-Exception Mode Disabled ... 3-10
Exception Acknowledge Sequence: Direct-ExceptionMode Enabledo 3-11
Return From Trap (RETTn) Instruction Flow: Direct-Exception Mode Disabledc.cooiiiiiiiiiiiinnan.. 3-12
Return From Interrupt (RETI) Instruction Flow: Direct-Exception Mode Disabledo, 3-13
Exception Processing Flowchart

Service Sequence
Instruction Cache Structure
Data Cache StIUCIUIEttt ettt ettt ettt e et e et e et et et et et e e e ettt e
LI = 1., (e o)
Power and Ground Connections
Bus Glock SynChronizationiuuiiuiint ittt e e i e i e
Power-On Reset Requirements

General Reset TiMINgGu.utntt ittt et ittt ettt ettt ittt
Basic Read Cycle

WriteCycle

Burst Read cycles

Cycle Extension of aBasic Read CYCleiuutinutiittit ittt ittt i it a e 3-26
Slave Processor WHEE CYCIEo vttt ittt it ettt et ittt 3-27
Slave Processor REAA CYCIEuuttnt ittt ettt ettt e ettt ettt et ettt et et i e e e 3-28
Bus Retry Duringa Basic Read CyCleiuuiinutiiiiiii it ittt it ci e 3-29
Basic Interface for 32-Bit MEMONESo uinii i i i i e et e i e 3-30
Basic Interface for 16-Bit MEMONESottt ittt i ettt 3-31
Hold Acknowledge: (Bus Initially Idl€)ottt i e e e 3-32

Typical I/0 Device Interface

2-6

List of Illustrations (continued)

NS32532 INterface SIGNAISottt ittt et ettt 4-1
T75-PINPGA PACKAGE ...ttt ettt et e ettt e e e et et e e e e e e e s 4-2
Timing Specification Standard (Signal Valid after CIock EAge)ouiuiinn i e e 4-3
Timing Specification Standard (Signal Valid before CIock EAge)ovnininie i 4-4
Basic Read CyCIE TIMING . . . e ettt ettt et et e et e e et e e e et e et e et e et e e e e, 4-5
Write CyCle TIMING ..o et et ettt et e e et e e e e 4-6
Interlocked Read and WIHtE CYCIESttt et ettt ettt et e e e e ieaeans 4-7
BUISE REAA Gy ClES ..t ettt ittt ettt et et et e e e e e e e e e e e 4-8
External Termination Of BUrst CyClesottt e e et e et et e e e 4-9
Bus Error or Retry DUNg BUrSt CYCIESottt ettt ettt ettt i 4-10
Extended Retry TImMiNgttt e ettt ettt e e e e 4-11
HOLD Timing (Bus INIANY IAIE) . ..o\ttt ettt ettt et e e et e et e e e e e e e ettt e e e iie e e e e aeeans 4-12
HOLD Acknowledge Timing (Bus Initially NOEIIE)ttt ettt e e e e e et 4-13

Slave Processor Read Timing
Slave Processor Write Timing
SlaVe ProCeSSOr DONE . ..ottt ettt e ettt e e e e e e
FSSR SIGNal THMING « et e vttt ettt e e ettt et e e e ettt e e e et e e e e e e e e e
Cache Invalidation Request e e e e
TNT and NMI SIgnals SAMPING « .« o v v vttt ettt ettt et et e e ettt e e et ettt e e e 4-19
Debug Trap REQUEST ...ttt e e e et e e
PES SIGNAI THMING .+ .ottt ettt ettt et e e e e e e e e e e e e e
LS S T T 1
Break Point Signal Timing
ClOCK WaVE OMMISttt ettt it e et e et et et et e e e e e
Bus Clock Synchronization
POWEr-ON RESEE e e e

LPRi/SPRi Instruction Formats
CINVINStruction FOrMAtttt et e et et e e e et et i s
LMR/SMR Instruction Formats

Access ProtectionLevelso
NS32532 Addressing Modes
NS32532 Instruction St SUMMArYt e e 2-3
Floating-Point INStruction Protocolt e e e e e 3-1
Custom Slave INstruction ProtoCoISttt e e e e e 3-2
Summary of Exception Processing
L G q (W7 o S T=To Tt g o=
Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus
Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus
Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus
Cacheable/Non-Cacheable Data Reads from @ 32-Bit BUSoutiiiiii et
Cacheable/Non-Cacheable Data Reads from a 16-Bit BUSouutiriitiit it ii e
Cacheable/Non-Cacheable Data Reads from an 8-Bit BUSiutiiuiiiiiit ittt
DataWritestoa32-BitBus ...

Data Writes 10 @ 16-Bit BUS\ttt it it ettt et ettt i
Data WrteS t0 @n 8-Bit BUSttt ittt e ettt e e et e e e s

LPRi/SPRi New ‘Short’ Field ENCOAINGSottt ettt i et e e
LMR/SMR ‘Short’ Field ENcodingscoooiuiiii i A

2-7

0€-2ESCESN/G2-2EGCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

1.0 Product Introduction

The NS32532 is an extremely sophisticated microprocessor
in the Series 32000 family with a full 32-bit architecture and
implementation optimized for high-performance applica-
tions.

By employing a number of mainframe-like features, the de-
vice can deliver 15 MIPS peaks performance with no wait
states at a frequency of 30 MHz.

The NS32532 is fully software compatible will all the other
Series 32000 CPUs. The architectural features of the Series
32000 family and particularly the NS32532 CPU, are de-
scribed briefly below.

Powerful Addressing Modes. Nine addressing modes
available to all instructions are included to access data
structures efficiently.

Data Types. The architecture provides for numerous data
types, such as byte, word, doubleword, and BCD, which may
be arranged into a wide variety of data structures.
Symmetric Instruction Set. While avoiding special case
instructions that compilers can’t use, the Series 32000 ar-
chitecture incorporates powerful instructions for control op-
erations, such as array indexing and external procedure
calls, which save considerable space and time for compiled
code.

Memory-to-Memory Operations. The Series 32000 CPUs
represent two-address machines. This means that each op-
erand can be referenced by any one of the addressing
modes provided.

This powerful memory-to-memory architecture permits
memory locations to be treated as registers for all usefull
operations. This is important for temporary operands as well
as for context switching.

Memory Management. The NS32532 on-chip memory
management unit provides advanced operating system sup-
port functions, including dynamic address translation, virtual
memory management, and memory protection.

Large, Uniform Addressing. The NS32532 has 32-bit ad-
dress pointers that can address up to 4 gigabytes without
requiring any segmentation; this addressing scheme pro-
vides flexible memory management without added-on ex-
pense.

Modular Software Support. Any software package for the
Series 32000 family can be developed independent of all
other packages, without regard to individual addressing. In
addition, ROM code is totally relocatable and easy to ac-
cess, which allows a significant reduction in hardware and
software costs.

Software Processor Concept. The Series 32000 architec-
ture allows future expansions of the instruction set that can
be executed by special slave processors, acting as exten-
sions to the CPU. This concept of slave processors is
unique to the Series 32000 family. It allows software com-
patibility even for future components because the slave
hardware is transparent to the software. With future ad-
vances in semiconductor technology, the slaves can be
physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-
vide three primary performance advantages and character-
istics:

e High-level language support

e Easy future growth path

® Application flexibility

2.0 Architectural Description

2.1 REGISTER SET

The NS32532 CPU has 28 internal registers grouped ac-
cording to functions as follows: 8 general purpose, 7 ad-
dress, 1 processor status, 1 configuration, 7 memory man-
agement and 4 debug. All registers are 32 bits wide except
for the module and processor status, which are each 16 bits
wide. Figure 2-1 shows the NS32532 internal registers.

Address General Purpose
<« 32Bits — <« 32Bits —
PC RO
SPO R1
SP1 R2
FP R3
SB R4
INTBASE R5
MOD R6
R7
Processor Status
PSR
Debug
Memory Management DCR
PTBO DSR
PTB1 CAR
IVARO BPC
IVAR1
TEAR
MCR Configuration
MSR [CFG

FIGURE 2-1. NS32532 Internal Registers

2.0 Architectural Description (continueq)

2.1.1 General Purpose Registers

There are eight registers (R0-R7) used for satisfying the
high speed general storage requirements, such as holding
temporary variables and addresses. The general purpose
registers are free for any use by the programmer. They are
32 bits in length. If a general purpose register is specified for
an operand that is eight or 16 bits long, only the low part of
the register is used; the high part is not referenced or modi-
fied.

2.1.2 Address Registers

The seven address registers are used by the processor to
implement specific address functions. A description of them
follows.

PC—Program Counter. The PC register is a pointer to the
first byte of the instruction currently being executed. The PC
is used to reference memory in the program section.

SPO0, SP1—Stack Pointers. The SPO register points to the
lowest address of the last item stored on the INTERRUPT
STACK. This stack is normally used only by the operating
system. It is used primarily for storing temporary data, and
holding return information for operating system subroutines
and interrupt and trap service routines. The SP1 register
points to the lowest address of the last item stored on the
USER STACK. This stack is used by normal user programs
to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer
(see PSR S-bit), the terms ‘SP Register’ or ‘SP’ are used.
SP refers to either SPO or SP1, depending on the setting of
the S bit in the PSR register. If the S bit in the PSR is 0, SP
refers to SPO. If the S bit in the PSR is 1 then SP refers to
SP1.

The NS32532 also allows the SP1 register to be directly
loaded and stored using privileged forms of the LPRi and
SPRi instructions, regardless of the setting of the PSR S-bit.
When SP1 is accessed in this manner, it is referred to as
‘USP Register’ or simply ‘USP’.

Stacks in the Series 32000 family grow downward in memo-
ry. A Push operation pre-decrements the Stack Pointer by
the operand length. A Pop operation post-increments the
Stack Pointer by the operand length.

FP—Frame Pointer. The FP register is used by a procedure
to access parameters and local variables on the stack. The
FP register is set up on procedure entry with the ENTER
instruction and restored on procedure termination with the
EXIT instruction.

The frame pointer holds the address in memory occupied by
the old contents of the frame pointer.

SB—Static Base. The SB register points to the global vari-
ables of a software module. This register is used to support
relocatable global variables for software modules. The SB
register holds the lowest address in memory occupied by
the global variables of a module.

15

INTBASE—Interrupt Base. The INTBASE register holds
the address of the dispatch table for interrupts and traps
(Section 3.2.1).

MOD—Module. The MOD register holds the address of the
module descriptor of the currently executing software mod-
ule. The MOD register is 16 bits long, therefore the module
table must be contained within the first 64 kbytes of memo-
ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-
tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit
halves. The low order eight bits are accessible to all pro-
grams, but the high order eight bits are accessible only to
programs executing in Supervisor Mode.

C The C bitindicates that a carry or borrow occurred after
an addition or subtraction instruction. It can be used
with the ADDC and SUBC instructions to perform multi-
ple-precision integer arithmetic calculations. It may
have a setting of 0 (no carry or borrow) or 1 (carry or
borrow).

T The T bit causes program tracing. If this bitis setto 1, a
TRC trap is executed after every instruction (Section
3.3.1).

L The L bit is altered by comparison instructions. In a
comparison instruction the L bit is set to “1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as unsigned integers. Other-
wise, it is set to “0”. In Floating-Point comparisons, this
bit is always cleared.

V The V-bit enables generation of a trap (OVF) when an
integer arithmetic operation overflows.

F The F bit is a general condition flag, which is altered by
many instructions (e.g., integer arithmetic instructions
use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a
comparison instruction the Z bit is set to “1” if the sec-
ond operand is equal to the first operand; otherwise it is
set to ‘0",

N The N bit is altered by comparison instructions. In a
comparison instruction the N bit is set to *“1” if the sec-
ond operand is less than the first operand, when both
operands are interpreted as signed integers. Otherwise,
it is set to “0”.

U If the U bitis “1” no privileged instructions may be exe-
cuted. If the U bit is “0” then all instructions may be
executed. When U = 0 the processor is said to be in
Supervisor Mode; when U = 1 the processor is said to

| v [eplsfu

FIGURE 2-2. Processor Status Register (PSR)

2-9

0€-2€S2ESN/G2-CEGCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)

be in User Mode. A User Mode program is restricted
from executing certain instructions and accessing cer-
tain registers which could interfere with the operating
system. For example, a User Mode program is prevent-
ed from changing the setting of the flag used to indicate
its own privilege mode. A Supervisor Mode program is
assumed to be a trusted part of the operating system,
hence it has no such restrictions.

S The S bit specifies whether the SPO register or SP1
register is used as the Stack Pointer. The bit is automat-
ically cleared on interrupts and traps. It may have a
setting of 0 (use the SPO register) or 1 (use the SP1
register).

P The P bit prevents a TRC trap from occuring more than
once for an instruction (Section 3.3.1). It may have a
setting of 0 (no trace pending) or 1 (trace pending).

I If 1 = 1, then all interrupts will be accepted. If | = 0,
only the NMl interrupt is accepted. Trap enables are not
affected by this bit.

2.1.4 Configuration Register

The Configuration Register (CFG) is 32 bits wide, of which
nine bits are implemented. The implemented bits enable

F Floating-point instruction set. This bit indicates
whether a floating-point unit (FPU) is present to exe-
cute floating-point instructions. If this bit is 0 when the
CPU executes a floating-point instruction, a Trap
(UND) occurs. If this bit is 1, then the CPU transfers
the instruction and any necessary operands to the
FPU using the slave-processor protocol described in
Section 3.1.4.1.

M Memory management instruction set. This bit en-
ables the execution of memory management instruc-
tions. If this bit is 0 when the CPU executes an LMR,
SMR, RDVAL, or WRVAL instruction, a Trap (UND)
occurs. If this bit is 1, the CPU executes LMR, SMR,
RDVAL, and WRVAL instructions using the on-chip
MMU.

C Custom instruction set. This bit indicates whether a
custom slave processor is present to execute custom
instructions. If this bit is 0 when the CPU executes a
custom instruction, a Trap (UND) occurs. If this bit is
1, the CPU transfers the instruction and any neces-
sary operands to the custom slave processor using
the slave-processor protoco! described in Section
3.1.4.1.

various operating modes for the CPU, including vectoring of DE Direct-Exception mode enable. This bit enables the
interrupts, execution of slave instructions, and control of the Direct-Exception mode for processing exceptions.
on-chip caches. In the NS32332 bits 4 through 7 of the CFG When this mode is selected, the CPU response time
register selected between the 16-bit and 32-bit sIaye proto- to interrupts and other exceptions is significantly im-
::’S';g;dz between 512'|b)"$h angz4t;KbYt|e page srzes|. Thg proved. Refer to Section 3.2.1 for more information.
supports only the 32-bit slave protocol an DC Data Cache enable. This bit enables the on-chip Data
4-Kbyte page size: consequently these bits are forced to 1. Cache to be acc esé ed for data reads and writ eps. Re-
When the CFG register is loaded using the LPRi instruction, fer to Section 3.4.2 for more information.
p'ts 13 thrqugh 31 .ShOUId be set to 0. Bits 4 throug,h 7 are LDC Lock Data Cache. This bit controls whether the con-
ignored during loading, and are always returned as 1’s when tents of the on-chip Data Cache are locked to fixed
CFG is stored via the SPRi instruction. When the SETCFG memory locations (LDC= 1), or updated when a data
instruction is executed, the contents of the CFG register bits read is missing from the ca c':h e (LDC=0)
0 through 3 are loaded from the instruction’s short field, bits . L i
4 through 7 are ignored and bits 8 through 12 are forced to IC Instruction Cache enable. This bit enables the on-
0. chip Instruction Cache to be accessed for instruction
The format of the CFG register is shown in Figure 2-3. The e :‘_etcl;els. Refir toCSeztlorjrsA.;tfor rrt\orle m:‘o:nr':atl:):.
various control bits are described below. ock Instruction Cache. This bit controls whether the
. . contents of the on-chip Instruction Cache are locked
| Interrupt vectoring. This bit controls whether maska- to fixed memory locations (LIC=1), or updated when
ble interrupts are handled in nonvectored (1=0) or an instruction fetch is missing ,from the cache
vectored (1= 1) mode. Refer to Section 3.2.3 for more (LIC=0)
information. .

PF Pipelined Floating-point execution. This bit indicates
whether the floating-point unit uses the pipelined
slave protocol. When PF is 1 the pipelined protocol is
selected. PF is ignored if the F bit is 0. Refer to Sec-
tion 3.1.4.2 for more information.

31 14|13 8(7 . 0
Reserved | PF | Lic | 1c [wc|oc [oe | 1+ | 1+] 1] 1] c|m]|[F]

FIGURE 2-3. Configuration Register (CFG) Bits
13 to 31 are Reserved; Bits 4 to 7 are Forced to 1.

2-10

2.0 Architectural Description (continued)
2.1.5 Memory Management Registers

The NS32532 provides 7 registers to support memory man-
agement functions. They are accessed by means of the
LMR and SMR instructions. All of them can be read and
written except IVARO and IVAR1 that are write-only. A de-
scription of the memory management registers is given in
the following sections.

PTBO, PTB1—Page Table Base Pointers. The PTBn regis-
ters hold the physical addresses of the level-1 page tables
used in address translation. The least significant 12 bits are
permanently zero, so that each register always points to a
4-Kbyte boundary in memory.

When either PTBO or PTB1 is loaded by executing an LMR
instruction, the MMU automatically invalidates all entries in
the TLB that had been translated using the old value in the
selected PTBn register.

The format of the PTBn registers is shown in Figure 2-4.
31 12| 11 0

000000000000
FIGURE 2-4. Page Table Base Registers (PTBn)

Base Address

IVARO, IVAR1—Invalidate Virtual Address. The Invalidate
Virtual Address registers are write-only registers. When a
virtual address is written to IVARO or IVAR1 using the LMR
instruction, the translation for that virtual address is purged,
if present, from the TLB. This must be done whenever a
Page Table Entry has been changed in memory, since the
TLB might otherwise contain an incorrect translation value.

Another technique for purging TLB entries is to load a PTBn
register. Turning off translation (clearing the MCR TU and/
or TS bits) does not purge any entries from the TLB.

TEAR—Translation Exception Address Register. The
TEAR register is laoded by the on-chip MMU when a trans-
lation exception occurs. It contains the 32-bit virtual address
that caused the translation exception.

TEAR is not updated if a page fault is detected while pre-
fetching an instruction that is not executed because the pre-
vious instruction caused a trap.

MCR—Memory Management Control. The MCR register
controls the operation of the MMU. Only four bits are imple-
mented. Bits 4 to 31 are reserved for future use and must be
loaded with zeroes.

When MCR is read as a 32-bit word, bits 4 to 31 are re-
turned as zeroes. The format of MCR is shown in Figure 2-5.
Details on the control bits are given below.

TU Translate User. While this bit is 1, address translation
is enabled for User-Mode memory references. While
this bit is 0, address translations is disabled for User-
Mode memory references.

Translate Supervisor. While this bit is 1, address trans-
lation is enabled for Supervisor Mode memory refer-
ences. While this bit is 0, address translation is dis-
abled for Supervisor-Mode memory references.

TS

DS Dual Space. While this bit is 1, then PTB1 contains the
level-1 page table base address of all addresses spec-
ified in User-Mode, and PTBO contains the level-1
page table base address of all addresses specified in
Supervisor Mode. While this bit is 0, then PTBO con-
tains the level-1 page table base address of all ad-
dresses specified in both User and Supervisor Modes.

Access Level Override. When this bit is set to 1, User-
Mode accesses are given Supervisor Mode privilege.

AO

3 a3 0
AolpslTs|Ty

FIGURE 2-5. Memory Management
Control Register (MCR)

Reserved

MSR—Memory Management Status. The MSR register
provides status information related to the occurrence of a
translation exception. Only eight bits are implemented. Bits
8 to 31 are ignored when MSR is loaded and are returned
as zeroes when it is read as a 32-bit word. MSR is only
updated by the MMU when a protection violation or page
fault is detected while translating an address for a reference
required to execute an instruction. It is not updated if a page
fault is detected during either an operand or an instruction
prefetch, if the data being prefetched is not needed due to a
change in the instruction execution sequence. The format of
MSR is shown in Figure 2-6. Details on the function of each
bit are given below.

TEX Translation Exception. This two-bit field specifies the
cause of the current address translation exception.
(Trap(ABT)). Combinations appearing in this field
are summarized below.

00 No Translation Exception

01 First Level PTE Invalid

10 Second Level PTE Invalid

11 Protection Violation

During address translation, if a protection violation
and an invalid PTE are detected at the same time,
the TEX field is set to indicate a protection violation.
Data Direction. This bit indicates the direction of the
transfer that the CPU was attempting when the
translation exception occurred.

DDT = 0 => Read Cycle

DDT = 1 => Wirite Cycle

User/Supervisor. This bit indicates whether the
Translation Exception was caused by a User-Mode
or Supervisor Mode reference. If UST is 1, then the
exception was caused by a User-Mode reference;
otherwise it was caused by a Supervisor Mode refer-
ence.

DDT

usT

0€-2ESZESN/G2-2ESCESN/02-CEGCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
31 8

Reserved

T T

STT
| | |

UST | DDT

T
TIIEX

FIGURE 2-6. Memory Management Status Register (MSR)

STT CPU Status. This four bit field is set on an address
translation exception according to the following en-
codings.

1000 Sequential Instruction Fetch

1001 Non-Sequential Instruction Fetch

1010 Data Transfer

1011 Read Read-Modify-Write Operand

1100 Read for Effective Address

If a reference for an Interrupt-Acknowledge or End-
of-Interrupt bus cycle (either Master of Cascaded)
causes a Translation Exception, then the value of
the STT-field is undefined.

2.1.6 Debug Registers

The NS32532 contains 4 registers dedicated for debugging
functions.

These registers are accessed using privileged forms of the
LPRi and SPRi instructions.

DCR—Debug Condition Register. The DCR Register en-
ables detection of debug conditions. The format of the DCR
is shown in Figure 2-7; the various bits are described below.
A debug condition is enabled when the related bit is set to 1.
CBEO Compare Byte Enable 0; when set, BYTEO of an
aligned double-word is included in the address com-
parison

Compare Byte Enable 1; when set, BYTE1 of an
aligned double-word is included in the address com-
parison

Compare Byte Enable 2; when set, BYTE2 of an
aligned double-word is included in the address com-
parison

Compare Byte Enable 3; when set, BYTE3 of an
aligned double-word is included in the address com-
parison

Compare virtual address (VNP = 1) or physical ad-
dress (VNP = 0)

Address-compare enable for write references
Address-compare enable for read references

CBE1

CBE2

CBE3

VNP

CWR
CRD

PCE PC-match enable

ub Enable debug conditions in User-Mode

sD Enable debug conditions in Supervisor Mode

DEN Enable debug conditions

The following 3 bits control testing features that can be

used during initial system debugging. These features are

unique to the NS32532 implementation of the Series 32000

architecture; as such, they may not be supported in future

implementations. For normal operation these 3 bits should

be set to 0.

BF Bus interface unit FIFO disable. When this bit is 1,
all data references, including Data Cache hits, ap-
pear on the system interface.

Sl Single-Instruction mode enable. This bit, when set
to 1, inhibits the overlapping of instruction’s execu-
tion.

BCP Branch Condition Prediction disable. When this bit is

1, the branch prediction mechanism is disabled. See
Section 3.1.3.1.

DSR--Debug Status Register. The DSR Register indicates
debug conditions that have been detected. When the CPU
detects an enabled debug condition, it sets the correspond-
ing bit (BC, BEX, BCA) in the DSR to 1. When an address-
compare condition is detected, then the RD-bit is loaded to
indicate whether a read or write reference was performed.
Software must clear all the bits in the DSR when appropri-
ate. The format of the DSR is shown in Figure 2-8; the vari-
ous fields are described below.
RD Indicates whether the last address-compare condi-
tion was for a read (RD = 1) or write (RD = 0)
reference

BPC PC-match condition detected
BEX External condition detected
BCA Address-compare condition detected

CAR—Compare Address Register. The CAR Register
contains the address that is compared to operand reference
addresses to detect an address-compare condition. The ad-
dress must be double-word aligned; that is, the two least-
significant bits must be 0. The CAR is 32 bits wide.

CAE Address-compare enable
TR Enable Trap (DBG) when a debug condition is de-
tected
15 9] 8 |7 0
Reserved BF | CAE | CRD l CWR | VNP | CBE3 | CBE2 l CBE1 ' CBEO
31 24| 23 16
Reserved DENT SD l ub | PCE l TR l BCP l SI I Res
FIGURE 2-7. Debug Condition Register (DCR)
31 28(27 0
RD | BPC | BEX | BCA Reserved

FIGURE 2-8. Debug Status Register (DSR)

2-12

2.0 Architectural Description (continued)
BPC—Breakpoint Program Counter. The BPC Register

contains the address that is compared with the PC contents

to detect a PC-match condition. The BPC Register is 32 bits

wide.

2.2 MEMORY ORGANIZATION

The NS32532 implements full 32-bit virtual addresses. This
allows the CPU to access up to 4 Gbytes of virtual memory.
The memory is a uniform linear address space. Memory lo-
cations are numbered sequentially starting at zero and end-
ing at 232—1. The number specifying a memory location is
called an address. The contents of each memory location is
a byte consisting of eight bits. Unless otherwise noted, dia-
grams in this document show data stored in memory with
the lowest address on the right and the highest address on
the left. Also, when data is shown vertically, the lowest ad-
dress is at the top of a diagram and the highest address at
the bottom of the diagram. When bits are numbered in a
diagram, the least significant bit is given the number zero,
and is shown at the right of the diagram. Bits are numbered
in increasing significance and toward the left.

7 0

Byte at Address A

Two contiguous bytes are called a word. Except where not-
ed, the least significant byte of a word is stored at the lower
address, and the most significant byte of the word is stored
at the next higher address. In memory, the address of a
word is the address of its least significant byte, and a word
may start at any address.

15 8|7 0
A+1 A
MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except
where noted, the least significant word of a double-word is

stored at the lowest address and the most significant word
of the double-word is stored at the address two higher. In
memory, the address of a double-word is the address of its
least significant byte, and a double-word may start at any
address.

31 24|23 16|15 8|7 0
A+3 A+2 A+1 A

MSB LSB

Double-Word at Address A

Although memory is addressed as bytes, it is actually orga-
nized as double-words. Note that access time to a word or a
double-word depends upon its address, e.g. double-words
that are aligned to start at addresses that are multiples of
four will be accessed more quickly than those not so
aligned. This also applies to words that cross a double-word
boundary.

2.2.1 Address Mapping
Figure 2-9 shows the NS32532 address mapping.

The NS32532 supports the use of memory-mapped periph-
eral devices and coprocessors. Such memory-mapped de-
vices can be located at arbitrary locations in the address
space except for the upper 8 Mbytes of virtual memory (ad-
dresses between FF800000 (hex) and FFFFFFFF (hex), in-
clusive), which are reserved by National Semiconductor
Corporation. Nevertheless, it is recommended that high-per-
formance peripheral devices and coprocessors be located
in a specific 8 Mbyte region of virtual memory (addresses
between FF000000 (hex) and FF7FFFFF (hex), inclusive),
that is dedicated for memory-mapped i1/0. This is because
the NS32532 detects references to the dedicated locations
and serializes reads and writes. See Section 3.1.3.3. When
making |/0 references to addresses outside the dedicated
region, external hardware must indicate to the NS32532
that special handling is required.

In this case a small performance degradation will also re-
sult. Refer to Section 3.1.3.2 for more information on memo-
ry-mapped 1/0.

Address (Hex)
00000000

Memory and I/0
FF000000

Memory-Mapped |/0
FF800000

Reserved by NSC
FFFFFEOO

Interrupt Control
FFFFFFFF

FIGURE 2-9. NS32532 Address Mapping

0€-2EGCESN/S2-CEGCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
2.3 MODULAR SOFTWARE SUPPORT

The NS32532 provides special support for software mod-
ules and modular programs.

Each module in a NS32532 software environment consists
of three components:

1. Program Code Segment.

This segment contains the module’s code and constant
data.

2. Static Data Segment.

Used to store variables and data that may be accessed
by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute
Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing
mode, in conjunction with a displacement and the current
MOD Register contents to compute the effective address
of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro-
cedure (CXP) instruction to compute the address of an
external procedure.

Normally, the linker program specifies the locations of the
three components. The Static Data and Link Table typically
reside in RAM; the code component can be either in RAM or
in ROM. The three components can be mapped into non-
contiguous locations in memory, and each can be indepen-
dently relocated. Since the Link Table contains the absolute
addresses of external variables, the linker need not assign
absolute memory addresses for these in the module itself;
they may be assigned at load time.

To handle the transfer of control from one module to anoth-
er, the NS32532 uses a module table in memory and two
registers in the CPU.

‘1>, MODULE TABLE 0 r

31
STATIC BASE fe==-===e==
“‘%ﬁ'éti LINK TABLE BASE
entry | | PROGRAM BASE |

RESERVED

1
C
b1
C

SB REGISTER

The Module Table is located within the first 64 kbytes of
virtual memory. This table contains a Module Descriptor
(also called a Module Table Entry) for each module in the
address space of the program. A Module Descriptor has
four 32-bit entries corresponding to each component of a
module:

e The Static Base entry contains the address of the begin-
ning of the module’s static data segment.

* The Link Table Base points to the beginning of the mod-
ule’s Link Table.

® The Program Base is the address of the beginning of the
code and constant data for the module.

e A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the
Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static
Base entry in the Module Descriptor of the currently execut-
ing module, i.e., it points to the beginning of the current
module’s static data area.

This register is implemented in the CPU for efficiency pur-
poses. By having a copy of the static base entry or chip, the
CPU can avoid reading it from memory each time a data
item in the static data segment is accessed.

In an NS32532 software environment modules need not be
linked together prior to loading. As modules are loaded, a
linking loader simply updates the Module Table and fills the
Link Table entries with the appropriate values. No modifica-
tion of a module’s code is required. Thus, modules may be
stored in read-only memory and may be added to a system
independently of each other, without regard to their individu-
al addressing. Figure 2-10 shows a typical NS32532 run-
time environment.

STATIC DATA
SEGMENT

DISP

LINK TABLE

lecccccace=d

OFFSET =~ *@4‘“

DISP1 x 4

PROGRAM CODE
SEGMENT

A 4

ABSOLUTE ADDRESS
ABSOLUTE ADDRESS

OFFSET | MODULE
ABSOLUTE ADDRESS

A ~

EXTERNAL MODULE

Ly

PC REGISTER

'

EXT. VARIABLE 1«

TL/EE/9354-2

Note: Dashed lines indicate information copied to registers during transfer of control between modules.

FIGURE 2-10. NS32532 Run-Time Environment

2-14

2.0 Architectural Description (continued)
2.4 MEMORY MANAGEMENT

The Memory Mangement Unit of the NS32532 provides
support for demand-paged virtual memory. The MMU trans-
lates 32-bit virtual addresses into 32-bit physical addresses.
The page size is 4096 bytes.

The mapping from virtual to physical addresses is defined
by means of sets of tables in physical memory. These tables
are found by the MMU using one of its two Page Table Base
registers: PTBO or PTB1. Which register is used depends on
the currently selected address space. See Section 2.4.2.
Translation efficiency is improved by means of an on-chip
64-entry translation look-aside buffer (TLB). Refer to Sec-
tion 3.4.4 for details.

If the MMU detects a protection violation or page fault while
translating an address for a reference required to execute
an instruction, a translation exception (Trap (ABT)) will re-
sult.

2.4.1 Page Tables Structure

The page tables are arranged in a two-level structure, as
shown in Figure 2-11. Each of the MMU’s PTBn registers
may point to a Level-1 page table. Each entry of the Level-1
page table may in turn point to a Level-2 page table. Each
Level-2 page table entry contains translation information for
one page of the virtual space.

The Level-1 page table must remain in physical memory
while the PTBn register contains its address and translation
is enabled. Level-2 Page Tables need not reside in physical
memory permanently, but may be swapped into physical
memory on demand as is done with the pages of the virtual
space.

The Level-1 Page Table contains 1024 32-bit Page Table
Entries (PTE’s) and therefore occupies 4 Kbytes. Each entry
of the Level-1 Page Table contains a field used to construct
the physical base address of a Level-2 Page Table. This
field is a 20-bit PFN field, providing bits 12-31 of the physi-
cal address. The remaining bits (0-11) are assumed zero,
placing a Level-2 Page Table always on a 4-Kbyte (page)
boundary.

+~— R BITS——>

|

1024
ENTRIES

LEVEL-1
PAGE TABLE

1024

ENTRIES

Level-2 Page Tables contain 1024 32-bit Page Table en-
tries, and so occupy 4 Kbytes (1 page). Each Level-2 Page
Table Entry points to a final 4-Kbyte physical page frame. In
other words, its PFN provides the Page Frame Number por-
tion (bits 12-31) of the translated address (Figure 2-13).
The OFFSET field of the translated address is taken directly
from the corresponding field of the virtual address.

2.4.2 Virtual Address Spaces

When the Dual Space option is selected for address transla-

tion in the MCR (Section 2.1.5) the on-chip MMU uses two

maps: one for translating addresses presented to it in Su-
pervisor Mode and another for User Mode addresses. Each
map is referenced by the MMU using one of the two Page

Table Base registers: PTBO or PTB1. The MMU determines

the map to be used by applying the following rules.

1) While the CPU is in Supervisor Mode (U/S pin = 0), the
CPU is said to be generating virtual addresses belonging
to Address Space 0, and the MMU uses the PTBO regis-
ter as its reference for looking up translations from mem-
ory.

2) While the CPU is in User Mode (U/S pin = 1), and the
MCR DS bit is set to enable Dual Space translation, the
CPU is said to be generating virtual addresses belonging
to Address Space 1, and the MMU uses the PTB1 regis-
ter to look up translations.

3) If Dual Space translation is not selected in the MCR,
there is no Adress Space 1, and all virtual addresses gen-
erated in both Supervisor and User modes are consid-
ered by the MMU to be in Address Space 0. The privilege
level of the CPU is used then only for access level check-
ing.

Note: When the CPU executes a Dual-Space Move instruction (MOVUS;i or
MOVSgi). it temporarily enters User Mode by switching the state of
the U/S pin. Accesses made by the CPU during this time are treated
by the MMU as User-Mode accesses for both mapping and access
level checking. It is possible, however, to force the MMU to assume
Supervisor Mode privilege on such accesses by setting the Access
Override (AO) bit in the MCR (Section 2.1.5).

<+—— 32 BITS —

4K BYTES

XXX X}

MEMORY

LEVEL-2
PAGE TABLES

TL/EE/9354-3

FIGURE 2-11. Two-Level Page Tables

2-15

0€-2EGCESN/S2-2ESCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)

2.4.3 Page Table Entry Formats R Referenced. This is a status bit, set by the MMU and
Figure 2-12 shows the formats of Level-1 and Level-2 Page cleared by the operating system, that indicates
Table Entries (PTE’s). whether the page mapped by this PTE has been ref-
The bits are defined as follows: erenced within a period of time determined by the
) . ’ operating system. It is intended to assist in imple-
V Valid. The V bit is set and cleared only by software. menting memory allocation strategies. In a Level-1
V =1=>The PTE is valid and may be used for PTE, the R bit indicates only that the Level-2 Page
translation by the MMU. Table has been referenced for a translation, without
V = 0 => The PTE does not represent a valid trans- necessarily implying that the translation was suc-
lation. Any attempt to use this PTE to trans- cessful. In a Level-2 PTE, it indicates that the page
late and address will cause the MMU to mapped by the PTE has been sucessfully referenced.
generate an Abort trap. R = 1 => The page has been referenced since the
PL Protection Level. This two-bit field establishes the R bit was last cleared.
types of accesses permitted for the page in both User R = 0 => The page has not been referenced since
Mode and Supervisor Mode, as shown in Table 2-1. the R bit was last cleared.
The PL field is modified only by software. In a Level-1 M Modified. This is a status bit, set by the MMU when-
PTE, it limits the maximum access level allowed for all ever a write cycle is successfully performed to the
pages mapped through that PTE. page mapped by this PTE. It is initialized to zero by
. the operating system when the page is brought into
TABLE 2-1. Access Protection Levels physical memory.
Mode u/s Protection Level Bits (PL) M = 1 => The page has been modified since it was
00 01 10 11 last brought into physical me.n.wry.
M = 0 => The page has not been modified since it
User 1 no no read full was last brought into physical memory.
access | access | only | access In Level-1 Page Table Entries, this bit po-
Supervisor | 0 read full full full sition is undefined, and is unaltered.
only | access | access | access USR User bits. These bits are ignored by the MMU and
i R their values are not changed.
NU Not Used. These bits are reserved by National for They can be used by the user software
future enhancements. Their values should be set to Y cal u Y . T
zero. PFN Page Frame Number. This 20-bit field provides bits
Cl Cache Inhibit. This bit appears only in Level-2 PTE’s. 12-31 of the physical address. See Figure 2-13.
It is used to specify non-cacheable pages.
31 12|11 9(8 0
[I | | I I
PFN USR NU R NU PL \
1 1 1 | | |
First Level PTE
31 12|11 8 9 0
T T T T T
PFN USR M R Cl NU PL \
I I | | |

Second Level PTE

FIGURE 2-12. Page Table Entries (PTE’s)

2-16

2.0 Architectural Description (continued)

VIRTUAL ADDRESS
22 21

31 121 0

INDEX 1 l INDEX 2 l OFFSET

E—-:
INDEX 1 I UD—I—Q
21 0

(1) SELECT 1ST PTE
IF DS =0 THEN
n=0
ELSE
n=1FOR USER MODE
n=0 FOR SUPV MODE

LEVEL-1 PAGE TABLE

LEVEL-1 PTE

PFN | USR | NU—[R |NU|PL Vi
1 0

l PTBn

3 zn

3

4 BYTES

1024
PTEs

LEVEL-2 PAGE TABLE

LEVEL-2 PTE

PFN |
FIETEE 21 0

INDEX 2

(2) SELECT 2ND PTE

PHYSICAL ADDRESS “ OFFSET

31 121 0

(3) GENERATE PHYSICAL
ADDRESS

TL/EE/9354-4

FIGURE 2-13. Virtual to Physical Address Translation

2.4.4 Physical Address Generation

When a virtual address is presented to the MMU and the
translation information is not in the TLB, the MMU performs
a page table lookup in order to generate the physical ad-
dress.

The Page Table structure is traversed by the MMU using
fields taken from the virtual address. This sequence is dia-
grammed in Figure 2-13.

Bits 12-31 of the virtual address hold the 20-bit Page Num-
ber, which in the course of the translation is replaced with
the 20-bit Page Frame Number of the physical address. The
virtual Page Number field is further divided into two fields,
INDEX 1 and INDEX 2.

Bits 0-11 constitute the OFFSET field, which identifies a
byte’s position within the accessed page. Since the byte
position within a page does not change with translation, this
value is not used, and is simply echoed by the MMU as bits
0-11 of the final physical address.

The 10-bit INDEX 1 field of the virtual address is used as an
index into the Level-1 Page Table, selecting one of its 1024
entries. The address of the entry is computed by adding
INDEX 1 (scaled by 4) to the contents of the current Page
Table Base register. The PFN field of that entry gives the
base address of the selected Level-2 Page Table.

The INDEX 2 field of the virtual address (10 bits) is used as
the index into the Level-2 Page Table, by adding it (scaled

by 4) to the base address taken from the Level-1 Page Ta-
ble Entry. The PFN field of the selected entry provides the
entire Page Frame Number of the translated address.

The offset field of the virtual address is then appended to
this frame number to generate the final physical address.
2.4.5. Address Translation Algorithm

The MMU either translates the 32-bit virtual address to a 32-
bit physical address or generates an abort trap to report a
translation error. The algorithm used by the MMU to perform
the translation is compatible with that of the NS32382. Re-
fer to Appendix C for differences between the two MMUs.

In the description that follows, the symbol ‘U’ takes the val-
ue 1 for a User-Mode memory reference. A reference is a
User-Mode reference in the following cases:

1. The reference is performed while executing in User-
Mode.

2. The reference is for the source operand of a MOVUS
instruction.

3. The reference is for the destination operand of a MOVSU
instruction.

The following notations are used in the algorithm.

e Al[B — A concatenated with B

e A.B — B is a field inside register A

e (A) — object pointed to by address A

e (A).B — B field of the object pointed to by address A

2-17

0€-2€SCESN/G2-CESCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
Each access is associated with one of two Address Spaces
(AS), defined as follows:

AS = U AND MCR.DS

If AS = 1, Page Table Base Register 1 (PTB1) is used to
select the first-level page table. If AS = 0, PTBO is used to
select the first-level page table.

The access-level is a 2-bit value used to specify the privi-
lege level of an access. It is determined as follows:

e BIT1 = U AND (NOT(MCR.A0))
® BITO = 1 for write, or read with ‘RMW’ status
0 otherwise
START TRANSLATION:
If (U =0ANDMCR.TS = 00OR U = 1 AND MCR.TU = 0)
then

/* address translation disabled */

(physical address <«— virtual address; CIOUT pin = 0);
/* Note: CIOUT = 0 in all MMU generated accesses */
else BEGIN /* (see also Figure 2-13) */

1. Select PTB:

e |f (MCR.DS = 1 AND U = 1) then
— PTB = PTBf1,

— AS = 1;

e else (PTB = PTBO, AS = 0);

2. Fetch first level PTE:

* PTE Pointer = PTB.BASE ADDRESS||INDEX1]|00;
e PTE <« (PTE Pointer); /* Fetch PTE1 */
e Effective PL «— PTE.PL

3. Validate First Level PTE:

e [f (PTE.PL < access level) then

® /* Protection Exception */

— TEAR < virtual address,

— clock MSR with MSR.TEX = 11,

— terminate translation;

If (PTE.V = 0) then

/* PTE1 Invalid */

— TEAR < virtual address,

— clock MSR with MSR.TEX = 01,
terminate translation;

If (PTE.R = 0) then

— Wirite a Byte (PTE Pointer) .R = 1;

e Effective PL «— PTE.PL

4. Fetch second level PTE:

e PTE Pointer = PTE.PFN||INDEX2]|00;
¢ PTE <« (PTE Pointer); /* Fetch PTE2 */
e If (PTE.PL < effective PL) then

— Effective PL «— PTE.PL;

5. Validate Second Level PTE:

e If (PTE.PL < access level) then

® /* Protection Exception */

o |

— TEAR < virtual address,

— clock MSR with MSR.TEX = 11,

— terminate translation;

If (PTE.V = 0) then

e /* PTE2 Invalid */

— TEAR < virtual address,

— clock MSR with MSR.TEX = 10,

— terminate translation;

¢ If ((read AND NOT interlocked) AND PTE.R = 0) then
Read-Modify-Write a double-word interlocked (PTE
Pointer).R = 1;

e |f ((write OR interlocked read) AND (PTE.R = 0 OR
PTE.M = 0) then Read-Modify-Write a double-word in-
terlocked (PTE Pointer).R = 1, (PTE Pointer).M = 1;

6. Generate Physical address:

o physical address < PTE.PFN||OFFSET

e CIOUT pin «— PTE.CI

7. Update Translation Buffer:

® Select entry for replacement;

e TLB. Virtual Page Number <«— INDEX1|| INDEX2;

® TLB.AS <« AS;

e TLB. Physical Frame Number <— PTE.PFN

e TLB.PL <«— Effective PL

e TLB.Cl « PTE.CI

e TLB.M <« (PTE Pointer) .M

e Enable entry

END

Note 1: The TEAR and MSR are only updated when a Trap (ABT) occurs. It
is possible that the MMU detects a page fault or protection violation
on a reference for an instruction that is not executed, for example
on a prefetch. In that event, Trap (ABT) does not occur, and the
TEAR and MSR are not updated.

Note 2: If the MMU is translating a virtual address to check protection while
executing a RDVAL or WRVAL instruction, then Trap (ABT) occurs
only if the level-1 PTE is invalid and the access is permitted by the
PL-field.

2.5 INSTRUCTION SET

2.5.1 General Instruction Format

Figure 2-14 shows the general format of a Series 32000
instruction. The Basic Instruction is one to three bytes long
and contains the Opcode and up to two 5-bit General Ad-
dressing Mode (“Gen”) fields. Following the Basic Instruc-
tion field is a set of optional extensions, which may appear
depending on the instruction and the addressing modes se-
lected.

Index Bytes appear when either or both Gen fields specify
Scaled Index. In this case, the Gen field specifies only the
Scale Factor (1, 2, 4 or 8), and the Index Byte specifies
which General Purpose Register to use as the index, and
which addressing mode calculation to perform before index-
ing. See Figure 2-15.

2-18

2.0 Architectural Description (continued)

OPTIONAL BASIC
EXTENSIONS INSTRUCTION
N
4 e I
mspz:F)lsm DISP2|DISP1
IMPLIED INDEX INDEX GEN GEN
IMMEDIATE DISP DISP B ADDR ADDR OPCODE
OPERAND(S) BYTE TE MC;DE M%DE
IMM IMM
-
TL/EE/9354-5
FIGURE 2-14. General Instruction Format
7 3f2 [}

GEN. ADDR. MODE

REG. NO.

TL/EE/9354-6

FIGURE 2-15. Index Byte Format

Following Index Bytes come any displacements (addressing
constants) or immediate values associated with the select-
ed addressing modes. Each Disp/Imm field may contain
one or two displacements, or one immediate value. The size
of a Displacement field is encoded with the top bits of that
field, as shown in Figure 2-16, with the remaining bits inter-
preted as a signed (two’s complement) value. The size of an
immediate value is determined from the Opcode field. Both
Displacement and Immediate fields are stored most signifi-
cant byte first. Note that this is different from the memory
representation of data (Section 2.2).

Some instructions require additional, ‘implied” immediates
and/or displacements, apart from those associated with ad-
dressing modes. Any such extensions appear at the end of
the instruction, in the order that they appear within the list of
operands in the instruction definition (Section 2.5.3).

2.5.2 Addressing Modes

The CPU generally accesses an operand by calculating its
Effective Address based on information available when the
operand is to be accessed. The method to be used in per-
forming this calculation is specified by the programmer as
an “addressing mode.”

Addressing modes are designed to optimally support high-
level language accesses to variables. In nearly all cases, a
variable access requires only one addressing mode, within
the instruction that acts upon that variable. Extraneous data
movement is therefore minimized.

Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-
eral Purpose Registers. In certain Slave Processor instruc-
tions, an auxiliary set of eight registers may be referenced
instead.

Register Relative: A General Purpose Register contains an
address to which is added a displacement value from the
instruction, yielding the Effective Address of the operand in
memory.

Memory Space: |dentical to Register Relative above, ex-
cept that the register used is one of the dedicated registers

PC, SP, SB or FP. These registers point to data areas gen-
erally needed by high-level languages.

Byte Displacement: Range —64 to +63

0 SIGNED DISPLACEMENT

Word Displacement: Range —8192 to +8191

v

| l

o

Double Word Displacement:
Range —(229 — 224) to + (229 — 1)*

o

&

&

o

TL/EE/9354-7

FIGURE 2-16. Displacement Encodings
*Note: The pattern “11100000" for the most significant byte of the displace-
ment is reserved by National for future enhancements. Therefore, it
should never be used by the user program. This causes the lower
limit of the displacement range to be —(229—224) instead of —229,

2-19

0€-2€SZESN/G2-2EGCESN/02-2ES2ESN

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)

Memory Relative: A pointer variable is found within the
memory space pointed to by the SP, SB or FP register. A
displacement is added to that pointer to generate the Effec-
tive Address of the operand.

Immediate: The operand is encoded within the instruction.
This addressing mode is not allowed if the operand is to be
written.

Absolute: The address of the operand is specified by a
displacement field in the instruction.

External: A pointer value is read from a specified entry of
the current Link Table. To this pointer value is added a dis-
placement, yielding the Effective Address of the operand.
Top of Stack: The currently-selected Stack Pointer (SPO or
SP1) specifies the location of the operand. The operand is
pushed or popped, depending on whether it is written or
read.

Scaled Index: Although encoded as an addressing mode,
Scaled Indexing is an option on any addressing mode ex-
cept Immediate or another Scaled Index. It has the effect of
calculating an Effective Address, then multiplying any Gen-
eral Purpose Register by 1, 2, 4 or 8 and adding it into the
total, yielding the final Effective Address of the operand.
Table 2-2 is a brief summary of the addressing modes. For a
complete description of their actions, see the Instruction Set
Reference Manual.

2.5.3 Instruction Set Summary

Table 2-3 presents a brief description of the NS32532 in-
struction set. The Format column refers to the Instruction

Format tables (Appendix A). The Instruction column gives
the instruction as coded in assembly language, and the De-
scription column provides a short description of the function
provided by that instruction. Further details of the exact op-
erations performed by each instruction may be found in the
Instruction Set Reference Manual.
Notations:
i = Integer length suffix: B = Byte

W = Word

D = Double Word
f = Floating Point length suffix: F = Standard Floating

L = Long Floating

gen = General operand. Any addressing mode can be
specified.
short = A 4-bit value encoded within the Basic Instruction
(see Appendix A for encodings).

imm = Implied immediate operand. An 8-bit value append-
ed after any addressing extensions.

disp = Displacement (addressing constant): 8, 16 or 32
bits. All three lengths legal.

reg = Any General Purpose Register: R0O-R7.

areg = Any Processor Register: Address, Debug, Status,
Configuration.

mreg = Any Memory Management Register.

creg = A Custom Slave Processor Register (Implementa-
tion Dependent).

cond = Any condition code, encoded as a 4-bit field within
the Basic Instruction (see Appendix A for encodings).

2-20

=
2.0 Architectural Description (continued) ‘ﬁ
TABLE 2-2, NS32532 Addressing Modes §
U
ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS 8
Register E
00000 Register 0 RO or FO None: Operand is in the ch
00001 Register 1 R1 orF1 specified register. N
00010 Register 2 R2 or F2 (7]
00011 Register 3 R3orF3 o
00100 Register 4 R4 or F4 Q
00101 Register 5 R5 or F5 =
00110 Register 6 R6 or F& @
00111 Register 7 R7 or F7 N
Register Relative S
01000 Register 0 relative disp(RO) Disp + Register. &
01001 Register 1 relative disp(R1) ©
01010 Register 2 relative disp(R2)
01011 Register 3 relative disp(R3)
01100 Register 4 relative disp(R4)
01101 Register 5 relative disp(R5)
01110 Register 6 relative disp(R6)
01111 Register 7 relative disp(R7)
Memory Relative
10000 Frame memory relative disp2(disp1(FP)) Disp2 + Pointer; Pointer found at
10001 Stack memory relative disp2(disp1(SP)) address Disp1 + Register. “SP” is either
10010 Static memory relative disp2(disp1(SB)) SPO or SP1, as selected in PSR.
Reserved
10011 (Reserved for Future Use)
Immediate
10100 Immediate value None. Operand is input from
instruction queue.
Absolute
10101 Absolute @disp Disp.
External
10110 External EXT(disp1) + disp2 Disp2 + Pointer; Pointer is found
at Link Table Entry number Disp1.
Top of Stack
10111 Top of stack TOS Top of current stack, using either
User or Interrupt Stack Pointer,
as selected in PSR. Automatic
Push/Pop included.
Memory Space
11000 Frame memory disp(FP) Disp + Register; “SP” is either
11001 Stack memory disp(SP) SPO or SP1, as selected in PSR.
11010 Static memory disp(SB)
11011 Program memory *+disp
Scaled Index
11100 Index, bytes mode[Rn:B] EA (mode) + Rn.
11101 Index, words mode[Rn:W] EA (mode) + 2 X Rn.
11110 Index, double words mode[Rn:D] EA (mode) + 4 X Rn.
11111 Index, quad words mode[Rn:Q] EA (mode) + 8 X Rn.
“Mode’ and ‘n’ are contained
within the Index Byte.
EA (mode) denotes the effective
address generated using mode.

2-21

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
TABLE 2-3. NS32532 Instruction Set Summary

MOVES
Format Operation Operands
4 MOVi gen,gen
2 MOVQi short,gen
7 MOVMi gen,gen,disp
7 MOvzZBW gen,gen
7 MOVzZiD gen,gen
7 MOVXBW gen,gen
7 MOVXiD gen,gen
4 ADDR gen,gen
INTEGER ARITHMETIC
Format Operation Operands
4 ADDI gen,gen
2 ADDQiI short,gen
4 ADDCi gen,gen
4 SUBi gen,gen
4 SUBCi gen,gen
6 NEGi gen,gen
6 ABSi gen,gen
7 MULi gen,gen
7 QUOI gen,gen
7 REMi gen,gen
7 DIVi gen,gen
7 MODi gen,gen
7 MEIi gen,gen
7 DEli gen,gen
PACKED DECIMAL (BCD) ARITHMETIC
Format Operation Operands
6 ADDPi gen,gen
6 SUBPi gen,gen
INTEGER COMPARISON
Format Operation Operands
4 CMPi gen,gen
2 CMPQi short,gen
7 CMPMi gen,gen,disp
LOGICAL AND BOOLEAN
Format Operation Operands
4 ANDi gen,gen
4 ORi gen,gen
4 BICi gen,gen
4 XORi gen,gen
6 COMi gen,gen
6 NOTi gen,gen
2 Scondi gen
SHIFTS
Format Operation Operands
6 LSHi gen,gen
6 ASHi gen,gen
6 ROTi gen,gen

Description

Move a value.

Extend and move a signed 4-bit constant.
Move Multiple: disp bytes (1 to 16).

Move with zero extension.

Move with zero extension.

Move with sign extension.

Move with sign extension.

Move Effective Address.

Description

Add.

Add signed 4-bit constant.
Add with carry.

Subtract.

Subtract with carry (borrow).
Negate (2's complement).
Take absolute value.
Multiply.

Divide, rounding toward zero.
Remainder from QUO.
Divide, rounding down.
Remainder from DIV (Modulus).
Multiply to Extended Integer.
Divide Extended Integer.

Description
Add Packed.
Subtract Packed.

Description

Compare.

Compare to signed 4-bit constant.
Compare Multiple: disp bytes (1 to 16).

Description

Logical AND.

Logical OR.

Clear selected bits.

Logical Exclusive OR.

Complement all bits.

Boolean complement: LSB only.

Save condition code (cond) as a Boolean variable of size i.

Description

Logical Shift, left or right.
Arithmetic Shift, left or right.
Rotate, left or right.

2-22

2.0 Architectural Description (continued)
TABLE 2-3. NS32532 Instruction Set Summary (Continued)

BITS
Format Operation Operands Description
4 TBITi gen,gen Test bit.
6 SBITi gen,gen Test and set bit.
6 SBITIi gen,gen Test and set bit, interlocked.
6 CBITi gen,gen Test and clear bit.
6 CBITIi gen,gen Test and clear bit, interlocked.
6 IBITi gen,gen Test and invert bit.
8 FFSi gen,gen Find first set bit.
BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in
Pascal. “Extract” instructions read and align a bit field. “Insert” instructions write a bit field from an aligned source.

0€-2EGCESN/G2-2EGCESN/02-CESTESN

Format Operation Operands Description
8 EXTi reg,gen,gen,disp Extract bit field (array oriented).
8 INSi reg,gen,gen,disp Insert bit field (array oriented).
7 EXTSi gen,gen,imm,imm Extract bit field (short form).
7 INSSi gen,gen,imm,imm Insert bit field (short form).
8 CVTP reg,gen,gen Convert to Bit Field Pointer.
ARRAYS
Format Operation Operands Description
8 CHECK:i reg,gen,gen Index bounds check.
8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
STRINGS
String instructions assign specific functions to Options on all string instructions are:
the General Purpose Registers: B (Backward): Decrement string pointers after each step
R4 - Comparison Value rather than incrementing.
R3 - Translation Table Pointer U (Until match): End instruction if String 1 entry
R2 - String 2 Pointer matches R4.
R1 - String 1 Pointer W (While match): End instruction if String 1 entry
RO - Limit Count does not match R4.
All string instructions end when RO decrements to zero.
Format Operation Operands Description
5 MOVSi options Move String 1 to String 2.
MOVST options Move string, translating bytes.
5 CMPSi options Compare String 1 to String 2.
CMPST options Compare translating, String 1 bytes.
5 SKPSi options Skip over String 1 entries.
SKPST options Skip, translating bytes for Until/While.

2-23

NS32532-20/NS32532-25/NS32532-30

2.0 Architectural Description (continued)
TABLE 2-3. NS32532 Instruction Set Summary (Continued)

Operands
gen

disp

disp

gen
short,gen,disp
gen

disp

disp

gen

[reg list],disp
[reg list]
disp

disp

disp

Operands
[reg list]
[reg list]
areg,gen

areg,gen

gen
gen
gen
[option list]

Operands
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen,gen
gen

JUMPS AND LINKAGE
Format Operation

3 JUMP

0 BR

0 Bcond

3 CASEi

2 ACBi

3 JSR

1 BSR

1 CXP

3 CXPD

1 SVC

1 FLAG

1 BPT

1 ENTER

1 EXIT

1 RET

1 RXP

1 RETT

1 RETI
CPU REGISTER MANIPULATION
Format Operation

1 SAVE

1 RESTORE

2 LPRi

2 SPRi

3 ADJSPi

3 BISPSRIi

3 BICPSRi

5 SETCFG
FLOATING POINT
Format Operation

11 MOvf

9 MOVLF

9 MOVFL

9 MOVfi

9 ROUNDfi

9 TRUNCHi

9 FLOOR(i

11 ADDf

11 SuBf

1 MULf

1 DIVf

1" CMPf

1 NEGf

1 ABSf

9 LFSR

9 SFSR

gen

Description

Jump.

Branch (PC Relative).

Conditional branch.

Multiway branch.

Add 4-bit constant and branch if non-zero.

Jump to subroutine.

Branch to subroutine.

Call external procedure.

Call external procedure using descriptor.

Supervisor Call.

Flag Trap.

Breakpoint Trap.

Save registers and allocate stack frame (Enter Procedure).
Restore registers and reclaim stack frame (Exit Procedure).
Return from subroutine.

Return from external procedure call.

Return from trap. (Privileged)

Return from interrupt. (Privileged)

Description

Save General Purpose Registers.

Restore General Purpose Registers.

Load Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

Store Processor Register. (Privileged if PSR, INTBASE, USP, CFG
or Debug Registers).

Adjust Stack Pointer.

Set selected bits in PSR. (Privileged if not Byte length)

Clear selected bits in PSR. (Privileged if not Byte length)

Set Configuration Register. (Privileged)

Description

Move a Floating Point value.

Move and shorten a Long value to Standard.
Move and lengthen a Standard value to Long.
Convert any integer to Standard or Long Floating.
Convert to integer by rounding.

Convert to integer by truncating, toward zero.
Convert to largest integer less than or equal to value.
Add.

Subtract.

Multiply.

Divide.

Compare.

Negate.

Take absolute value.

Load FSR.

Store FSR.

2-24

=
2.0 Architectural Description (continued) §
TABLE 2-3. NS32532 Instruction Set Summary (Continued) §
MEMORY MANAGEMENT o
Format Operation Operands Description Q
14 LMR mreg,gen Load Memory Management Register. (Privileged) =
14 SMR mreg,gen Store Memory Management Register. (Privileged) 8
14 RDVAL gen Validate address for reading. (Privileged) ¢_Mn
14 WRVAL gen Validate address for writing. (Privileged) 3
8 MOVSUi gen,gen Move a value from Supervisor r
Space to User Space. (Privileged) &
8 MOVUSI gen,gen Move a value from User Space czn
to Supervisor Space. (Privileged) K;
MISCELLANEOUS 8
Format Operation Operands Description N
1 NOP No Operation. g
1 WAIT Wait for interrupt.
1 DIA Diagnose. Single-byte “Branch to Self” for hardware
breakpointing. Not for use in programming.
14 CINV options,gen Cache Invalidate. (Privileged)
CUSTOM SLAVE
Format Operation Operands Description
15.5 CCALOc gen,gen Custom Calculate.
15.5 CCAL1c gen,gen
15.5 CCAL2c gen,gen
15.5 CCAL3c gen,gen
15.5 CMOVO0c gen,gen Custom Move.
15.5 CMOV1ic gen,gen
155 CMOV2c gen,gen
15.5 CMOV3c gen,gen
15.5 CCMPOc gen,gen Custom Compare.
15.5 CCMP1c gen,gen
15.1 CCVOci gen,gen Custom Convert.
15.1 CCVici gen,gen
15.1 CCVZaci gen,gen
15.1 CCV3ic gen,gen
15.1 CCv4DQ gen,gen
151 CCV5QD gen,gen
15.1 LCSR gen Load Custom Status Register.
15.1 SCSR gen Store Custom Status Register.
15.0 LCR creg,gen Load Custom Register. (Privileged)
15.0 SCR creg,gen Store Custom Register. (Privileged)

2-25

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description

This chapter provides details on the functional characteris-
tics of the NS32532 microprocessor.

The chapter is divided into five main sections:

Instruction Execution, Exception Processing, Debugging,
On-Chip Caches and System Interface.

3.1INSTRUCTION EXECUTION

To execute an instruction, the NS32532 performs the fol-
lowing operations:

® Fetch the instruction

® Read source operands, if any (1)
e Calculate results

® Write result operands, if any

® Modify flags, if necessary

® Update the program counter

Under most circumstances, the CPU can be conceived to
execute instructions by completing the operations above in
strict sequence for one instruction and then beginning the
sequence of operations for the next instruction. However,
due to the internal instruction pipelining, as well as the oc-
currence of exceptions, the sequence of operations per-
formed during the execution of an instruction may be al-
tered. Furthermore, exceptions also break the sequentiality
of the instructions executed by the CPU.

Details on the effects of the internal pipelining, as well as

the occurrence of exceptions on the instruction execution,

are provided in the following sections.

Note: 1 In this and following sections, memory locations read by the CPU to
calculate effective addresses for Memory-Relative and External ad-
dressing modes are considered like source operands, even if the

effective address is being calculated for an operand with access
class of write.

3.1.1 Operating States

The CPU has five operating states regarding the execution
of instructions and the processing of exceptions: Reset, Ex-
ecuting Instructions, Processing An Exception, Waiting-For-
An-Interrupt, and Halted. The various states and transitions
between them are shown in Figure 3-1.

Whenever the RST signal is asserted, the CPU enters the
reset state. The CPU remains in the reset state until the
RST signal is driven inactive, at which time it enters the
Executing-Instructions state. In the Reset state the contents
of certain registers are initialized. Refer to Section 3.5.3 for
details.

In the Executing-Instructions state, the CPU executes in-
structions. It will exit this state when an exception is recog-
nized or a WAIT instruction is encountered. At which time it
enters the Processing-An-Exception state or the Waiting-
For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves
the PC, PSR and MOD register contents on the stack and
reads the new PC and module linkage information to begin
execution of the exception service procedure (see note).

Following the completion of all data references required to
process an exception, the CPU enters the Executing-In-
structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-
cial status identifying this state is presented on the system
interface (Section 3.5). When an interrupt or a debug condi-

RST ACTIVE

RST INACTIVE
BUS ERROR, INTERRUPT

PROCESSING
AN
EXCEPTION

SERVICE CALL
COMPLETE

BUS ERROR
OR ABORT

WAIT INTERRUPT
INSTRUCTION OR DEBUG
EXECUTED CONDITION

WAITING
FOR AN
INTERRUPT

TL/EE/9354-8

FIGURE 3-1. Operating States

tion is detected, the CPU enters the Processing-An-Excep-
tion state.

The CPU enters the Halted state when a bus error or abort
is detected while the CPU is processing an exception, there-
by preventing the transfer of control to an appropriate ex-
ception service procedure. The CPU remains in the Halted
state until reset occurs. A special status identifying this state
is presented on the system interface.
Note: When the Direct-Exception mode is enabled, the CPU does not save
the MOD Register contents nor does it read the module linkage infor-

mation for the exception service procedure. Refer to Section 3.2 for
details.

3.1.2 Instruction Endings

The NS32532 checks for exceptions at various points while
executing instructions. Certain exceptions, like interrupts,
are in most cases recognized between instructions. Other
exceptions, like Divide-By-Zero Trap, are recognized during
execution of an instruction. When an exception is recog-
nized during execution of an instruction, the instruction ends
in one of four possible ways: completed, suspended, termi-
nated, or partially completed. Each type of exception caus-
es a particular ending, as specified in Section 3.2.

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is
completed, the CPU has performed all of the operations for
that instruction and for all other instructions executed since
the last exception occurred. Result operands have been
written, flags have been modified, and the PC saved on the
Interrupt Stack contains the address of the next instruction
to execute. The exception service procedure can, at its con-
clusion, execute the RETT instruction (or the RETI instruc-
tion for vectored interrupts), and the CPU will begin execut-
ing the instruction following the completed instruction.

2-26

3.0 Functional Description (continued)
3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-
tions or a restartable bus error is detected during execution
of the instruction. A suspended instruction has not been
completed, but all other instructions executed since the last
exception occurred have been completed. Result operands
and flags due to be affected by the instruction may have
been modified, but only modifications that allow the instruc-
tion to be executed again and completed can occur. For
certain exceptions (Trap (ABT), Trap (UND), Trap (ILL), and
bus errors) the CPU clears the P-flag in the PSR before
saving the copy that is pushed on the Interrupt Stack. The
PC saved on the Interrupt Stack contains the address of the
suspended instruction.

For example, the RESTORE instruction pops up to 8 gener-
al-purpose registers from the stack. If an invalid page table
entry is detected on one of the references to the stack, then
the instruction is suspended. The general-purpose registers
due to be loaded by the instruction may have been modified,
but the stack pointer still holds the same value that it did
when the instruction began.

To complete a suspended instruction, the exception service
procedure takes either of two actions:

1. The service procedure can simulate the suspended in-
struction’s execution. After calculating and writing the in-
struction’s results, the flags in the PSR copy saved on the
Interrupt Stack should be modified, and the PC saved on
the Interrupt Stack should be updated to point to the next
instruction to execute. The service procedure can then
execute the RETT instruction, and the CPU begins exe-
cuting the instruction following the suspended instruction.
This is the action taken when floating-point instructions
are simulated by software in systems without a hardware
floating-point unit.

2. The suspended instruction can be executed again after
the service procedure has eliminated the trap condition
that caused the instruction to be suspended. The service
procedure should execute the RETT instruction at its con-
clusion; then the CPU begins executing the suspended
instruction again. This is the action taken by a debugger
when it encounters a BPT instruction that was temporarily
placed in another instruction’s location in order to set a
breakpoint.

Note 1: Although the NS32532 allows a suspended instruction to be execut-
ed again and completed, the CPU may have read a source operand
for the instruction from a memory-mapped peripheral port before
the exception was recognized. In such a case, the characteristics of
the peripheral device may prevent correct reexecution of the in-
struction.

Note 2: It may be necessary for the exception service procedure to alter the
P-flag in the PSR copy saved on the Interrupt Stack: If the exception
service procedure simulates the suspended instruction and the P-
flag was cleared by the CPU before saving the PSR copy, then the
saved T-flag must be copied to the saved P-flag (like the floating-
point instruction simulation described above). Or if the exception
service procedure executes the suspended instruction again and
the P-flag was not cleared by the CPU before saving the PSR copy,
then the saved P-flag must be cleared (like the breakpoint trap de-
scribed above). Otherwise, no alteration to the saved P-flag is nec-
essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset or a
nonrestartable bus error occurs. Any result operands and
flags due to be affected by the instruction are undefined, as

is the contents of the PC. The result operands of other in-
structions executed since the last serializing operation may
not have been written to memory. A terminated instruction
cannot be completed.

3.1.2.4 Partially Completed Instructions

When a restartable bus error, interrupt, abort, or debug con-
dition is recognized during execution of a string instruction,
the instruction is said to be partially completed. A partially
completed instruction has not completed, but all other in-
structions executed since the last exception occurred have
been completed. Result operands and flags due to be af-
fected by the instruction may have been modified, but the
values stored in the string pointers and other general-pur-
pose registers used during the instruction’s execution allow
the instruction to be executed again and completed.

The CPU clears the P-flag in the PSR before saving the
copy that is pushed on the Interrupt Stack. The PC saved on
the Interrupt Stack contains the address of the partially
completed instruction. The exception service procedure
can, at its conclusion, simply execute the RETT instruction
(or the RETI instruction for vectored interrupts), and the
CPU will resume executing the partially completed instruc-
tion.

3.1.3 Instruction Pipeline

The NS32532 executes instructions in a heavily pipelined
fashion. This allows a significant performance enhancement
since the operations of several instructions are performed
simultaneously rather than in a strictly sequential manner.

The CPU provides a four-stage internal instruction pipeline.
As shown in Figure 3-2, a write buffer, that can hold up to
two operands, is also provided to allow write operations to
be performed off-line.

| stage 1

S T

: 8 Byte Queue : Buffer

Lot

I Fetch Instruction

I Decode Instruction 1 Stage 2

N T

: 1 Decoded Instruction § Buffer

e e

Calculate Addresses Stage 3
Read Source Operands
Calculate Results Stage 4
Write Destination Operands
I S
: 2 Memory Results : Buffer

toocvcececneomnececceond
TL/EE/9354-9
FIGURE 3-2. NS32532 Internal Instruction Pipeline
Due to the pipelining, operations like fetching one instruc-
tion, reading the source operands of a second instruction,
calculating the results of a third instruction and storing the
results of a fourth instruction, can all occur in parallel.

2-27

0€-2€GCESN/GC-2€S2ESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

The order of memory references performed by the CPU may
also differ from that related to a strictly sequential instruc-
tion execution. In fact, when an instruction is being execut-
ed, some of the source operands may be read from memory
before the instruction is completely fetched. For example,
the CPU may read the first source operand for an instruction
before it has fetched a displacement used in calculating the
address of the second source operand. The CPU, however,
always completes fetching an instruction and reading its
source operands before writing its results. When more than
one source operand must be read from memory to execute
an instruction, the operands may be read in any order. Simi-
larly, when more than one result operand is written to mem-
ory to execute an instruction, the operands may be written
in any order.

An instruction is fetched only after all previous instructions
have been completely fetched. However, the CPU may be-
gin fetching an instruction before all of the source operands
have been read and results written for previous instructions.

The source operands for an instruction are read only after
all previous instructions have been fetched and their source
operands read. A source operand for an instruction may be
read before all results of previous instructions have been
written, except when the source operand's value depends
on a result not yet written. The CPU compares the physical
address and length of a source operand with those of any
results not yet written, and delays reading the source oper-
and until after writing all results on which the source oper-
and depends. Also, the CPU ensures that the interlocked
read and write references to execute an SBITIli or CBITli
instruction occur after writing all results of previous instruc-
tions and before reading any source operands for subse-
quent instructions.

The result operands for an instruction are written after all
results of previous instructions have been written.

The description above is summarized in Figure 3-3, which
shows the precedence of memory references for two con-

secutive instructions.
INSTRUCTION N INSTRUCTION N+ 1

INSTRUCTION FETCH smmm———————— INSTRUCTION FETCH

\

DATA READ DATA READ

DATA WRITE

—p DATA WRITE
TL/EE/9354-10
FIGURE 3-3. Memory References for
Consecutive Instructions
(An arrow from one reference to another indicates that
the first reference always precedes the second.)

Another consequence of overlapping the operations for sev-
eral instructions, is that the CPU may fetch an instruction
and read its source operands, even though the instruction is
not executed (e.g., due to the occurrence of an exception).
In such a case, the MMU may update the R-bit in Page
Table Entries used in referring to the fetched instruction and
its source operands.

Special care is needed in the handling of memory-mapped
1/0 devices. The CPU provides special mechanisms to en-
sure that the references to these devices are always per-

formed in the order implied by the program. Refer to Section
3.1.3.2 for details.

It is also to be noted that the CPU does not check for de-
pendencies between the fetching of an instruction and the
writing of previous instructions’ results. Therefore, special
care is required when executing self-modifying code.

3.1.3.1 Branch Prediction

One problem inherent to all pipelined machines is what is
called “Pipeline Breakage”.

This occurs every time the sequentiality of the instructions is
broken, due to the execution of certain instructions or the
occurrence of exceptions.

The result of a pipeline breakage is a performance degrada-
tion, due to the fact that a certain portion of the pipeline
must be flushed and new data must be brought in.

The NS32532 provides a special mechanism, called branch
prediction, that helps minimize this performance penalty.
When a conditional branch instruction is decoded in the ear-
ly stages of the pipeline, a prediction on the execution of the
instruction is performed.

More precisely, the prediction mechanism predicts back-
ward branches as taken and forward branches as not taken,
except for the branch instructions BLE and BNE that are
always predicted as taken.

Thus, the resulting probability of correct prediction is fairly

high, especially for branch instructions placed at the end of

loops.

The sequence of operations performed by the loader and

execution units in the CPU is given below:

e Loader detects branches and calculates destination ad-
dresses

® Loader uses branch opcode and direction to select be-
tween sequential and non-sequential streams

® |oader saves address for alternate stream
* Execution unit resolves branch decision
Due to the branch predicition, some special care is required

when writing self-modifying code. Refer to the appropriate
section in Appendix B for more information on this subject.

3.1.3.2 Memory-Mapped 1/0

The characteristics of certain peripheral devices and the
overlapping of instruction execution in the pipeline of the
NS32532 require that special handling be applied to memo-
ry-mapped 1/0 references. 1/0 references differ from mem-
ory references in two significant ways, imposing the follow-
ing requirements:

1. Reading from a peripheral port can alter the value read
on the next reference to the same port or another port in
the same device. (A characteristic called here ‘“‘destruc-
tive-reading”.) Serial communication controllers and
FIFO buffers commonly operate in this manner. As ex-
plained in “Instruction Pipeline” above, the NS32532 can
read the source operands for one instruction while the
previous instruction is executing. Because the previous
instruction may cause a trap, an interrupt may be recog-
nized, or the flow of control may be otherwise altered, it is
a requirement that destructive-reading of source oper-
ands before the execution of an instruction be avoided.

2-28

3.0 Functional Description (continued)

2. Writing to a peripheral port can alter the value read from
another port of the same device. (A characteristic called
here “'side-effects of writing”). For example, before read-
ing the counter’s value from the NS32202 Interrupt Con-
trol Unit it is first necessary to freeze the value by writing
to another control register.

However, as mentioned above, the NS32532 can read the
source operands for one instruction before writing the re-
sults of previous instructions unless the addresses indicate
a dependency between the read and write references. Con-
sequently, it is a requirement that read and write references
to peripheral that exhibit side-effects of writing must occur in
the order dictated by the instructions.

The NS32532 supports 2 methods for handling memory-
mapped 1/0. The first method is more general; it satisfies
both requirements listed above and places no restriction on
the location of memory-mapped peripheral devices. The
second method satisfies only the requirement for side ef-
fects of writing, and it restricts the location of memory-
mapped 1/0 devices, but it is more efficient for devices that
do not have destructive-read ports.

The first method for handling memory-mapped I/0 uses two
signals: [OINH and IODEC. When the NS32532 generates a
read bus cycle, it asserts the output signal IOINH if either of
the 1/0 requirements listed above is not satisfied. That is,
IOINH is asserted during a read bus cycle when (1) the read
reference is for an instruction that may not be executed or
(2) the read reference occurs while a write reference is
pending for a previous instruction. When the read reference
is to a peripheral device that implements ports with destruc-
tive-reading or side-effects of writing, the input signal
IODEC must be asserted; in addition, the device must not
be selected if IOINH is active. When the CPU detects that
the IODEC input signal is active while the IOINH output sig-
nal is also active, it discards the data read during the bus
cycle and serializes instruction execution. See the next sec-
tion for details on serializing operations. The CPU then gen-
erates the read bus cycle again, this time satisfying the re-
quirements for I/0 and driving IOINH inactive.

The second method for handling memory-mapped 1/0 uses
a dedicated region of virtual memory. The NS32532 treats
all references to the memory range from address FFO00000
to address FFFFFFFF inclusive in a special manner.

While a write to a location in this range is pending, reads
from locations in the same range are delayed. However,
reads from locations with addresses lower than FFO00000
may occur. Similarly, reads from locations in the above
range may occur while writes to locations outside of the
range are pending.

It is to be noted that the CPU may assert IOINH even when
the reference is within the dedicated region. Refer to Sec-
tion 3.5.8 for more information on the handling of I/0O devic-
es.

3.1.3.3 Serializing Operations

After executing certain instructions or processing an excep-
tion, the CPU serializes instruction execution. Serializing in-
struction execution means that the CPU completes writing
all previous instructions’ results to memory, then begins
fetching and executing the next instruction.

For example, when a new value is loaded into the PSR by
executing an LPRW instruction, the pipeline is flushed and a

serializing operation takes place. This is necessary since
the privilege level might have changed and the instructions
following the LPRW instruction must be fetched again with
the new privilege level and possibly with a different MMU
mapping. See Section 2.4.2.

The CPU serializes instruction execution after executing one
of the following instructions: BICPSRW, BISPSRW, BPT,
CINV, DIA, FLAG (trap taken), LMR, LPR (CFG, INTBASE,
PSR, UPSR, DCR, BPC, DSR, and CAR only), RETT, RETI,
and SVC. Figure 3-4 shows the memory references after
serialization.

Note 1: LPRB UPSR can be executed in User Mode to serialize instruction

execution.

Note 2: After an instruction that writes a result to memory is executed, the
updating of the result's memory location may be delayed until the
next serializing operation.

Note 3: When reset or a nonrestartable bus error exception occurs, the CPU
discards any results that have not yet been written to memory.

INSTRUCTION N INSTRUCTION N+ 1
INSTRUCTION FETCH INSTRUCTION FETCH
DATA READ DATA READ
DATA WRITE DATA WRITE

TL/EE/9354-11
FIGURE 3-4. Memory References after Serialization

3.1.4 Slave Processor Instructions

The NS32532 recognizes two groups of instructions being
executable by external slave processors:

® Floating Point Instructions
© Custom Slave Instructions

Each Slave Instruction Set is enabled by a bit in the Configu-
ration Register (Section 2.1.4). Any Slave Instruction which
does not have its corresponding Configuration Register bit
set will trap as undefined, without any Slave Processor com-
munication attempted by the CPU. This allows software sim-
ulation of a non-existent Slave Processor.

Note that the Memory Management Instructions, like Float-
ing Point and Custom Slave Instructions, have to be en-
abled through an appropriate bit in the configuration register
in order to be executable.

However, they are not considered here as Slave Instruc-
tions, since the NS32532 integrates the MMU on-chip and
the execution of them does not follow the protocol of the
Slave Instructions.

3.1.4.1 Regular Slave Instruction Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1) It identifies the instruction as being a Slave Processor
instruction.

2) It specifies which Slave Processor will execute it.

3) It determines the format of the following Operation Word
of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-5. While applying

Status code 11111 (Broadcast ID Section 3.5.4.1), the CPU

transfers the ID Byte on bits AD24-AD31, the operation

2-29

0€-2ESZESN/G2-CESCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

START

(BUS STATU

BROADCAST
ID AND OPERATION WORD

S=11111)

T0 Sl

?

Fy

END

SEND OPERAND
(BUS STATUS = 11101)

READ SLAVE STATUS
(BUS STATUS = 11110)

A

N, Z,L

UPDATE

FLAGS

READ RESULT
(BUS STATUS = 11101)

PROCESS
TRAP (SLAVE)

TRAP

PROCESS

(UND)

>
»

&
€

A

4

END

FIGURE 3-5. Regular Slave Instruction Protocol: CPU Actions

TL/EE/9354-12

2-30

3.0 Functional Description (continued)

31 0
IDBYTE | OPCODE(ow) | OPGODE (HIGH) | xxxoxxxx
FIGURE 3-6. ID and Operation Word
31 15 7 0
| zero |1s| zemo [N]z[o|o]of[L]o]a

FIGURE 3-7. Slave Processor Status Word

word on bits AD8-AD23 in a swapped order of bytes and a
non-used byte XXXXXXXX (X = don't care) on bits ADO-
AD7 (Figure 3-6).

All slave processors observe the bus cycle and inspect the
identification code. The slave selected by the identification
code continues with the protocol; other slaves wait for the
next slave instruction to be broadcast.

After transferring the slave instruction, the CPU sends to the
slave any source operands that are located in memory or
the General-Purpose registers. The CPU then waits for the
slave to assert SDN or FSSR. While the CPU is waiting, it
can perform bus cycles to fetch instructions and read
source operands for instructions that follow the slave in-
struction being executed. If there are no bus cycles to per-
form, the CPU is idle with a special Status indicating that it is
waiting for a slave processor. After the slave asserts SDN or
FSSR, the CPU follows one of the two sequences described
below.

If the slave asserts SDN, then the CPU checks whether the
instruction stores any results to memory or the General-Pur-
pose registers. The CPU reads any such results from the
slave by means of 1 or 2 bus cycles and updates the desti-
nation.

If the slave asserts FSSR, then the NS32532 reads a 32-bit
status word from the slave. The CPU checks bit 0 in the
slave’s status word to determine whether to update the PSR
flags or to process an exception. Figure 3-7 shows the for-
mat of the slave’s status word.

If the Q bit in the status word is 0, the CPU updates the N, Z
and L flags in the PSR.

If the Q bit in the status word is set to 1, the CPU processes
either a Trap (UND) if TS is 1 or a Trap (SLAVE) if TS is 0.

Note 1: Only the floating-point and custom compare instructions are allowed
to return a value of 0 for the Q bit when the FSSR signal is activat-
ed. All other instructions must always set the Q bit to 1 (to signal a
Trap), when activating FSSR.

Note 2: While executing an LMR or CINV instruction, the CPU displays the
operation code and source operand using slave processor write bus
cycles, as described in the protocol above. Nevertheless, the CPU
does not wait for SDN or FSSR to be asserted while executing
these instructions. This information can be used to monitor the con-
tents of the on-chip TLB, Instruction Cache, and Data Cache.

Note 3: The slave processor must be ready to accept new slave instruction
at any time, even while the slave is executing another instruction or
waiting for the CPU to read results. For example, the CPU may
terminate an instruction being executed by a slave because a non-
restartable bus error is detected while the MMU is updating a Page
Table Entry for an instruction being prefetched.

Note 4: If a slave instruction stores a result to memory, the CPU checks
whether Trap (ABT) would occur on the store operation before read-
ing the result from the slave. For quad-word destination operands,
the CPU checks that both double-words of the destination can be
stored without an abort before reading either double-word of the
result from the slave.

3.1.4.2 Pipelined Slave Instruction Protocol

In order to increase performance of floating-point instruc-
tions while maintaining full software compatibility with the
Series 32000 architecture, the NS32532 incorporates a
pipelined floating-point protocol. This protocol is designed
to operate in conjunction with the NS32580 FPC, or any
other floating-point slave which conforms to the protocol
and the Series 32000 architecture. The protocol is enabled
by the PF bit in the CFG register.

The basic methods of transferring data and control informa-

tion between the CPU and the FPC, are the same as in the

regular slave protocol.

However, in pipelined mode, the CPU may send a new float-

ing-point instruction to the FPC before the previous instruc-

tion has been completed.

Although the CPU can advance as many as four floating-

point instructions before receiving a completion pulse on

SDN for the first instruction, full exception recovery is as-

sured. This is accomplished through a FIFO mechanism

which maintains the addresses of all the floating-point in-
structions sent to the FPC for execution.

Pipelined execution can occur only for instructions which do

not require a result to be read from the FPC.

In cases where a result is to be read back, the CPU will wait

for instruction completion before issuing the next instruc-

tion. Instructions can be divided into three groups, depend-
ing on the amount of pipelining permitted.

Group A. Fully-Pipelined Instructions

Instructions in this group can be sent to the FPC before

previous group A instructions are completed. No instruction

completion indication from the FPC is required in order to
continue to another group A or group B instruction.

Group A contains floating-point instructions satisfying all of

the following conditions.

1. The destination operand is in a floating-point register.

2. The source operand is not of type TOS or IMM.

3. The instruction format is either 11 or 12.

Group B. Half-Pipelined Instructions

Group B instructions can begin execution before previous

group A instructions are completed. However, they cannot

complete before the FPC signals completion of all the previ-
ous floating-point instructions.

Group B contains floating-point instructions satisfying at

least one of the following conditions.

1. The destination operand is either in memory or in a CPU
register (this includes the CMPf instruction which modifies
the PSR register).

2. The source operand is of type TOS or IMM.

3. The instruction format is 9.

2-31

0€-2€S2ESN/52-2ESCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

TRAP
INDICATION
?

INSTRUCTION
COMPLETED

START

REMOVE
INSTRUCTION

GROUP A or B
INSTRUCTION
?

TRAP
INDICATION
?

ADDRESS
FROM FIFO

INSTRUCTION
COMPLETED
?

PROCESS
INSTRUCTION

v

PROCESS TRAP.
GET

INSTRUCTION
ADDRESS
FROM FIFO

v

| FLUSH FIFO I

>

REMOVE
INSTRUCTION
ADDRESS
FROM FIFO

SEND
OPERAND

GROUP A

>

A4

INSTRUCTION
?
3 REMOVE
PUSH INSTRUCTION
INSTRUCTION N ADDRESS
ADDRESS FROM FIFO
INTO FIFO FIFON N
EMPTY »>
?
Y

GET
INSTRUCTION
ADDRESS
FROM FIFO

PROCESS TRAP.

FLUSH FIFO

A

INSTRUCTION
COMPLETED

INSTRUCTION
COMPLETED

TRAP
INDICATION
?

MY PROCESS TRAP.
- GET
L 4 INSTRUCTION
READ ADDRESS
RESULT FROM FIFO
FROM SLAVE
FLUSH FIFO

FIGURE 3-8. Instruction Flow in Pipelined Floating-Point Mode

TL/EE/9354-73

2-32

3.0 Functional Description (continued)
Group C. Non-Pipelined Instructions

Group C instructions can begin execution only after all other
instructions have been completed. The CPU cannot pro-
ceed to other instructions before their execution is complet-
ed.

Group C contains all the floating-point/integer conversion
instructions.

3.1.4.3 Instruction Flow and Exceptions

When operating in pipelined mode, the CPU will push the
address of group A instructions into a five-entry FIFO after
the ID, opcode and source operands have been sent to the
FPC. The address will be pushed into the FIFO only if no
exception is detected during the transfer of the source oper-
ands needed for the execution of the instruction.

Group A instructions are only stalled when the FIFO is full,
in which case the CPU will wait before sending the next
instruction. Group B instructions can begin execution while
some entries are still in the FIFO, but cannot complete be-
fore the FIFO is empty (i.e., before all previous instructions
are completed). Group C instructions cannot begin execu-
tion until the FIFO is empty. When a normal completion indi-
cation is received, the instruction address at the bottom of
the FIFO is dropped. If a trap indication is received and the
FIFO is not empty, the instruction address at the bottom of
the FIFO is copied to the PC register and the floating-point
exception is serviced. The remaining entries in the FIFO are
discarded.

A floating-point exception may be received and serviced at
any time after the CPU has sent the ID and opcode for the
first instruction and until the FPC has signalled completion
for the last instruction.

Other exceptions may occur while the FIFO is not empty.
This may be the case when an interrupt is received or a
translation exception is detected in the access of an oper-
and needed for the execution of the next floating-point in-
struction. These exceptions will be processed as soon as
the FIFO becomes empty, and after any floating-point ex-
ception has been acknowledged.

In the event of a non-restartable bus error, the acknowledge
will occur immediately. The CPU will flush the internal FIFO
and will reset the FPC by performing a dummy read of the
slave status word. This operation is performed for both the
regular and pipelined floating-point protocol and regardless
of whether any floating-point instruction is pending in the
FPC instruction queue.

The CPU may cancel the last instruction sent to the FPC by
sending another ID and opcode, before the last source op-
erand for that instruction has been sent. Figure 3-8 shows
the instruction flow in pipelined floating-point mode.

3.1.4.4 Floating Point Instructions

Table 3-1 gives the protocols followed for each Floating
Point instruction. The instructions are referenced by their
mnemonics. For the bit encodings of each instruction, see
Appendix A.

The Operand class columns give the Access Class for each
general operand, defining how the addressing modes are
interpreted (see Instruction Set Reference Manual).

The Operand Issued columns show the sizes of the oper-
ands issued to the Floating Point Unit by the CPU. “D” indi-
cates a 32-bit Double Word. “i”” indicates that the instruction
specifies an integer size for the operand (B = Byte, W =
Word, D = Double Word). “f” indicates that the instruction

specifies a Floating Point size for the operand (F = 32-bit
Standard Floating, L = 64-bit Long Floating).

The Returned Value Type and Destination column gives the
size of any returned value and where the CPU places it. The
PSR-Bits-Affected column indicates which PSR bits, if any,
are updated from the Slave Processor Status Word (Figure
3-7).

Any operand indicated as being of type “f” will not cause a
transfer if the Register addressing mode is specified. This is
because the Floating Point Registers are physically on the
Floating Point Unit and are therefore available without CPU
assistance.

3.1.4.5 Custom Slave Instructions

Provided in the NS32532 is the capability of communicating
with a user-defined, “Custom” Slave Processor. The in-
struction set provided for a Custom Slave Processor defines
the instruction formats, the operand classes and the com-
munication protocol. Left to the user are the interpretations
of the Op Code fields, the programming model of the Cus-
tom Slave and the actual types of data transferred. The pro-
tocol specifies only the size of an operand, not its data type.

Table 3-2 lists the relevant information for the Custom Slave
instruction set. The designation “c” is used to represent an
operand which can be a 32-bit (“D”") or 64-bit (*Q”’) quantity
in any format; the size is determined by the suffix on the
mnemonic. Similarly, an “i”” indicates an integer size (Byte,
Word, Double Word) selected by the corresponding mne-
monic suffix.

Any operand indicated as being of type “c” will not cause a
transfer if the register addressing mode is specified. It is
assumed in this case that the slave processor is already
holding the operand internally.

For the instruction encodings, see Appendix A.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of
instruction execution. The CPU recognizes three basic types
of exceptions: interrupts, traps and bus errors.

An interrupt occurs in response to an event signalled by
activating the NMI or INT input signals. Interrupts are typi-
cally requested by peripheral devices that require the CPU’s
attention.

Traps occur as a result either of exceptional conditions
(e.g., attempted division by zero) or of specific instructions
whose purpose is to cause a trap to occur (e.g., supervisor
call instruction).

A bus error exception occurs when the BER signal is acti-
vated during an instruction fetch or data transfer required by
the CPU to execute an instruction.

When an exception is recognized, the CPU saves the PC,
PSR and optionally the MOD register contents on the inter-
rupt stack and then it transfers control to an exception serv-
ice procedure.

Details on the operations performed in the various cases by
the CPU to enter and exit the exception service procedure
are given in the following sections.

It is to be noted that the reset operation is not treated here
as an exception. Even though, like any exception, it alters
the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-
cantly different way than it does for exceptions.

Refer to Section 3.5.3 for details on the reset operation.

2-33

0€-2€S2ESN/G2-CESCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
TABLE 3-1. Floating Point Instruction Protocols

Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
ADDf read.f rmw.f f f fto Op.2 none
SuUBf read.f rmw.f f f fto Op.2 none
MULf read.f rmw.f f f fto Op.2 none
DIVf read.f rmw.f f f fto Op.2 none
MOVF read.f write.f f N/A ftoOp.2 none
ABSf read.f write.f f N/A ftoOp.2 none
NEGf read.f write.f f N/A fto Op.2 none
CMPf read.f read.f f f N/A N, Z, L
FLOORfi read.f write.i f N/A itoOp.2 none
TRUNCHi read.f write.i f N/A itoOp.2 none
ROUNDfi read.f write.i f N/A itoOp.2 none
MOVFL read.F write.L F N/A LtoOp.2 none
MOVLF read.L write.F L N/A F to Op.2 none
MOVif read.i write.f i N/A ftoOp.2 none
LFSR read.D N/A D N/A N/A none
SFSR N/A write.D N/A N/A DtoOp.2 none
TABLE 3-2. Custom Slave Instruction Protocols
Mnemonic Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits
Class Class Issued Issued Type and Dest. Affected
CCALOc read.c rmw.c c c ctoOp.2 none
CCAL1c read.c rmw.c c c ctoOp.2 none
CCAL2c read.c mw.c c c ctoOp.2 none
CCAL3c read.c rmw.c c c ctoOp.2 none
CMOVoOc read.c write.c c N/A ctoOp.2 none
CMOV1ic read.c write.c c N/A ctoOp.2 none
CMOVac read.c write.c c N/A ctoOp.2 none
CMOV3c read.c write.c c N/A ctoOp.2 none
CCMPOc read.c read.c c c N/A N,Z,L
CCMP1c read.c read.c c c N/A N,Z,L
CCVOci read.c write.i c N/A itoOp.2 none
CCV1ci read.c write.i c N/A itoOp.2 none
CCVaci read.c write.i c N/A itoOp.2 none
CCV3ic read.i write.c i N/A ctoOp.2 none
CCv4DQ read.D write.Q D N/A QtoOp.2 none
CCvsQD read.Q write.D Q N/A D to Op.2 none
LCSR read.D N/A D N/A N/A none
SCSR N/A write.D N/A N/A DtoOp.2 none
LCR* read.D N/A D N/A N/A none
SCR* write.D N/A N/A N/A D to Op.1 none
Note:

D = Double Word

i = Integer size (B,W,D) specified in mnemonic.

¢ = Custom size (D:32 bits or Q:64 bits) specified in mnemonic.
* = Privileged instruction: will trap if CPU is in User Mode.

N/A = Not Applicable to this instruction.

2-34

3.0 Functional Description (continued)
3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through

three major steps:

1) Adjustment of Registers. Depending on the source of the
exception, the CPU may restore and/or adjust the con-
tents of the Program Counter (PC), the Processor Status
Register (PSR) and the currently-selected Stack Pointer
(SP). A copy of the PSR is made, and the PSR is then set
to reflect Supervisor Mode and selection of the Interrupt
Stack. Trap (TRC) and Trap (OVF) are always disabled.
Maskable interrupts are also disabled if the exception is
caused by an interrupt, Trap (DBG), Trap (ABT) or bus
error.

2) Vector Acquisition. A vector is either obtained from the
data bus or is supplied internally by default.

3) Service Call. The CPU performs one of two sequences
common to all exceptions to complete the acknowledge
process and enter the appropriate service procedure.
The selection between the two sequences depends on
whether the Direct-Exception mode is disabled or en-
abled.

Direct-Exception Mode Disabled

The Direct-Exception mode is disabled while the DE bit in
the CFG register is 0 (Section 2.1.4). In this case the CPU
first pushes the saved PSR copy along with the contents of
the MOD and PC registers on the interrupt stack. Then it

reads the double-word entry from the Interrupt Dispatch ta-
ble at address ‘INTBASE + vector X 4'. See Figures 3-9
and 3-70. The CPU uses this entry to call the exception
service procedure, interpreting the entry as an external pro-
cedure descriptor.

A new module number is loaded into the MOD register from
the least-significant word of the descriptor, and the static-
base pointer for the new module is read from memory and
loaded into the SB register. Then the program-base pointer
for the new module is read from memory and added to the
most-significant word of the module descriptor, which is in-
terpreted as an unsigned value. Finally, the result is loaded
into the PC register.

Direct-Exception Mode Enabled

The Direct-Exception mode is enabled when the DE bit in
the CFG register is set to 1. In this case the CPU first
pushes the saved PSR copy along with the contents of the
PC register on the Interrupt Stack. The word stored on the
Interrupt Stack between the saved PSR and PC register is
reserved for future use; its contents are undefined. The CPU
then reads the double-word entry from the Interrupt Dis-
patch Table at address ‘INTBASE + vector X 4'. The CPU
uses this entry to call the exception service procedure, inter-
preting the entry as an absolute address that is simply load-
ed into the PC register. Figure 3-11 provides a pictorial of
the acknowledge sequence. It is to be noted that while the

FTJ) .
MEMORY { 3 o
NVI NON-VECTORED INTERRUPT
CASCADE ADDR 0
NMI NON-MASKABLE INTERRUPT
CASCADE TABLE .
hd ABT ABORT
CASCADE ADDR 14 SLAVE SLAVE PROCESSOR TRAP
INTERRUPT BASE CASCADE ADDR 15 L ILLEGAL OPERATION TRAP
REGISTER - FIXEDINTERRUPTS | 5| svc SUPERVISOR CALL TRAP
I~ AND TRAPS N~ TABLE
DISPATCH TABL
C VECTORED L 6| pvz DIVIDE BY ZERO TRAP
~ INTERRUPTS ~~
- 7| fe FLAG TRAP
C
s| epr BREAKPOINT TRAP
o| tre TRACE TRAP
10| unp UNDEFINED INSTRUCTION TRAP
11| mee RESTARTABLE BUS ERROR
12| NBE NON-RESTARTABLE BUS ERROR
13| ovr INTEGER OVERFLOW TRAP
14| pBG DEBUG TRAP
15 | RESERVED
16 VECTORED
INTERRUPTS
e ~

FIGURE 3-9. Interrupt Dispatch Table

TL/EE/9354-13

2-35

0€-2EGCESN/S2-2ESTESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

1 LOWER
28ITS ADDRESSES
RETURN ADDRESS (PUSH)
PC
STATUS MODULE PSR MOD
(PUSH)
PSR Mop INTERRUPT
STACK HIGHER
| ADDRESSES
e -
CASCADE TABLE
INTBASE REGISTER
| INTERRUPT BASE jl DISPATCH
TABLE
VECTOR GD 5
DESCRIPTOR (32 BITS)
—
DESCRIPTOR
1 16
OFFSET MODULE
MOD REGISTER MODULE TABLE
NEW MODULE
MODULE TABLE ENTRY
MODULE TABLE ENTRY
STATIC BASE POINTER
LINK BASE POINTER
® PROGRAM BASE POINTER
(RESERVED)
PROGRAM COUNTER SB REGISTER
;l—— ENTRY POINT ADDRESS NEW STATIC BASE

FIGURE 3-10. Exception Acknowledge Sequence.
Direct-Exception Mode Disabled.

TL/EE/9354-14

TL/EE/9354-15

2-36

3.0 Functional Description (continued)

RETURN ADDRESS

(PUSH)

LOWER
ADDRESSES

.
32 BITS ——

STATUS

PC

(PUSH)

PSR

INTBASE REGISTER

L INTERRUPT BASE]

PSR

N\

INTERRUPT
STACK

HIGHER
ADDRESSES

TL/EE/9354-16

CASCADE TABLE

VECTOR x4 .D

DISPATCH
TABLE

ABSOLUTE ADDRESS

)

PROGRAM COUNTER

ENTRY POINT ADDRESS

TL/EE/9354-17

FIGURE 3-11. Exception Acknowledge Sequence.
Direct-Exception Mode Enabled.

direct-exception mode is enabled, the CPU can respond
more quickly to interrupts and other exceptions because
fewer memory references are required to process an excep-
tion. The MOD and SB registers, however, are not initialized
before the CPU transfers control to the service procedure.
Consequently, the service procedure is restricted from exe-
cuting any instructions, such as CXP, that use the contents
of the MOD or SB registers in effective address calcula-
tions.

3.2.2 Returning from an Exception Service Procedure
To return control to an interrupted program, one of two in-
structions can be used: RETT (Return from Trap) and RETI
(Return from Interrupt).

RETT is used to return from any trap, non-maskable inter-
rupt or bus error service procedure. Since some traps are
often used deliberately as a call mechanism for supervisor

mode procedures, RETT can also adjust the Stack Pointer
(SP) to discard a specified number of bytes from the original
stack as surplus parameter space.

RET! is used to return from a maskable interrupt service
procedure. A difference of RETT, RETI also informs any
external interrupt control units that interrupt service has
completed. Since interrupts are generally asynchronous ex-
ternal events, RETI does not discard parameters from the
stack.

Both of the above instructions always restore the Program
Counter (PC) and the Processor Status Register from the
interrupt stack. If the Direct-Exception mode is disabled,
they also restore the MOD and SB register contents. Fig-
ures 3-12 and 3-13 show the RETT and RETI instruction
flows when the Direct-Exception mode is disabled.

2-37

0€-2€52ESN/G2-CESCTESN/02-TESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

LOWER
32BITS | ADDRESSES
PROGRAM COUNTER
1 (POP)
RETURN ADDRESS 1 PC
(POP)
STATUS MODULE PSR MoD
PSR MoD HIGHER
L INTERRUPT L ADDRESSES
STACK
0
MODULE
TABLE
MODULE TABLE ENTRY
J
MODULE TABLE ENTRY
STATIC BASEPOINTER ~ —
LINK BASE POINTER
LOWER
PROGRAM BASE POINTER ADDRESSES
(RESERVED)
PARAMETERS
n
BYTES
SBREGISTER
L STATIC BASE STACK SELECTED
INNEWLY-
POPPED PSR. HIGHER
| | ADDRESSES
POP AND
DISCARD

TL/EE/9354-18

FIGURE 3-12. Return from Trap (RETT n) Instruction Flow.
Direct-Exception Mode Disabled.

3.2.3 Maskable Interrupts

The TNT pin is a level-sensitive input. A continuous low level
is allowed for generating multiple interrupt requests. The in-
put is maskable, and is therefore enabled to generate inter-
rupt requests only while the Processor Status Register | bit
is set. The | bit is automatically cleared during service of an
INT, NMI, Trap (DBG), Trap (ABT) or Bus Error request, and
is restored to its original setting upon return from the inter-
rupt service routine via the RETT or RET! instruction.

The INT pin may be configured via the SETCFG instruction
as either Non-Vectored (CFG Register bit | = 0) or Vec-
tored (bit | = 1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT
pin will cause an Interrupt Acknowledge bus cycle, but the
CPU will ignore any value read from the bus and use instead
a default vector of zero. This mode is useful for small sys-
tems in which hardware interrupt prioritization is unneces-
sary.

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control
Unit (ICU) to prioritize many interrupt requests. Upon receipt
of an interrupt request on the INT pin, the CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Section
3.5.4.6) reading a vector value from the low-order byte of
the Data Bus. This vector is then used as an index into the
Dispatch Table in order to find the External Procedure De-
scriptor for the proper interrupt service procedure. The serv-
ice procedure eventually returns via the Return from Inter-
rupt (RETI) instruction, which performs an End of Interrupt
bus cycle, informing the ICU that it may re-prioritize any in-
terrupt requests still pending. The ICU provides the vector
number again, which the CPU uses to determine whether it
needs also to inform a Cascaded ICU (see below).

In a system with only one ICU (16 levels of interrupt), the
vectors provided must be in the range of 0 through 127; that
is, they must be positive numbers in eight bits. By providing

2-38

3.0 Functional Description (Continued)

“END OF INTERRUPT"
BUS CYCLE
INTERRUPT
CONTROL
UNIT
T Lower
ADDRESSES
PROGRAM COUNTER 32BITS
1 (POP)
L RETURN ADDRESS i pe
J (POP)
L STATUS MODULE ~ PSR MoD
PSR MoD
INTERRUPT
HIGHER
L STACK 1 ADDRESSES
0
MODULE
TABLE
MODULE TABLE ENTRY
'(J
MODULE TABLE ENTRY
STATIC BASEPOINTER ~ —
LINK BASE POINTER
PROGRAM BASE POINTER

(RESERVED)
STATIC BASE
SBREGISTER

TL/EE/9354-19
FIGURE 3-13. Return from Interrupt (RETI) Instruction Flow.
Direct-Exception Mode Disabled.

2-39

0€-2€GCESN/G2-2€GCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

a negative vector number, an ICU flags the interrupt source
as being a Cascaded ICU (see below).

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow more levels of interrupt, provision is made
in the CPU to transparently support cascading. Note that
the Interrupt output from a Cascaded ICU goes to an Inter-
rupt Request input of the Master ICU, which is the only ICU
which drives the CPU INT pin. Refer to the ICU data sheet
for details.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU
must be informed of the line number on which it receives
the cascaded requests.

2) A Cascade Table must be established in memory. The
Cascade Table is located in a NEGATIVE direction from
the location indicated by the CPU Interrupt Base (INT-
BASE) Register. Its entries are 32-bit addresses, pointing
to the Vector Registers of each of up to 16 Cascaded
ICUs.

Figure 3-9 illustrates the position of the Cascade Table. To
find the Cascade Table entry for a Cascaded ICU, take its
Master ICU line number (0 to 15) and subtract 16 from it,
giving an index in the range —16 to — 1. Multiply this value
by 4, and add the resulting negative number to the contents
of the INTBASE Register. The 32-bit entry at this address
must be set to the address of the Hardware Vector Register
of the Cascaded ICU. This is referred to as the “Cascade
Address.”

Upon receipt of an interrupt request from a Cascaded ICU,
the Master ICU interrupts the CPU and provides the nega-
tive Cascade Table index instead of a (positive) vector num-
ber. The CPU, seeing the negative value, uses it as an index
into the Cascade Table and reads the Cascade Address
from the referenced entry. Applying this address, the CPU
performs an “Interrupt Acknowledge, Cascaded” bus cycle,
reading the final vector value. This vector is interpreted by
the CPU as an unsigned byte, and can therefore be in the
range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-
dure executes the Return from Interrupt (RETI) instruction,
as it would for any Maskable Interrupt. The CPU performs
an “End of Interrupt, Master” bus cycle, whereupon the
Master ICU again provides the negative Cascade Table in-
dex. The CPU, seeing a negative value, uses it to find the
corresponding Cascade Address from the Cascade Table.
Applying this address, it performs an “End of Interrupt, Cas-
caded” bus cycle, informing the Cascaded ICU of the com-
pletion of the service routine. The byte read from the Cas-
caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the interrupt mask register of the interrupt con-
troller.

However, if an interrupt is set pending during the CPU instruction that
masks off that interrupt, the CPU may still perform an interrupt ac-
knowledge cycle following that instruction since it might have sampled
the INT line before the ICU deasserted it. This could cause the ICU to
provide an invalid vector. To avoid this problem the above operation
should be performed with the CPU interrupt disabled.

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling
edge is detected on the NMI pin. The CPU performs an
“Interrupt Acknowledge, Master” bus cycle (Section

3.5.4.6) when processing of this interrupt actually begins.
The Interrupt Acknowledge cycle differs from that provided
for Maskable Interrupts in that the address presented is
FFFFFF0016. The vector value used for the Non-Maskable
Interrupt is taken as 1, regardless of the value read from the
bus.

The service procedure returns from the Non-Maskable In-
terrupt using the Return from Trap (RETT) instruction. No
special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-
rect results of the execution of an instruction.

The return address saved on the stack by any trap except
Trap (TRC) and Trap (DBG) is the address of the first bye of
the instruction during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-
abled except for the case of Trap (ABT) and Trap (DBG).

There are 11 trap conditions recognized by the NS32532 as
described below.

Trap (ABT): An abort trap occurs when an invalid page ta-
ble entry or a protection level violation is detected for any of
the memory references required to execute an instruction.

Trap (SLAVE): An exceptional condition was detected by

the Floating Point Unit or another Slave Processor during

the execution of a Slave Instruction. This trap is requested
via the Status Word returned as part of the Slave Processor

Protocol (Section 3.1.4.1).

Trap (ILL): lilegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U = 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. (The FPU trap is used for Floating Point division by

zero.)

Trap (FLG): The FLAG instruction detected a “1” in the

PSR F bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An Undefined-Instruction trap occurs when an

attempt to execute an instruction is made and one or more

of the following conditions is detected:

1. The instruction is undefined. Refer to Appendix A for a
description of the codes that the CPU recognizes to be
undefined.

2. The instruction is a floating point instruction and the F-bit

in the CFG register is 0.
. The instruction is a custom slave instruction and the C-bit
in the CFG register is 0.

4. The instruction is a memory-management instruction and
the M-bit in the CFG register is 0.

5. An LMR or SMR instruction is executed while the U-flag
in the PSR is 0 and the most significant bit of the instruc-
tion’s short field is 0.

6. The reserved general adressing mode encoding (10011)
is used.

7. Immediate addressing mode is used for an operand that
has access class different from read.

w

2-40

3.0 Functional Description (continued)

8. Scaled Indexing is used and the basemode is also Scaled
Indexing.

9. The instruction is a floating-point or custom slave instruc-
tion that the FPU or custom slave detects to be unde-
fined. Refer to Section 3.1.4.1 for more information.

Trap (OVF): An Integer-Overflow trap occurs when the V-bit
in the PSR register is set to 1 and an Integer-Overflow con-
dition is detected during the execution of an instruction. An
Integer-Overflow condition is detected in the following cas-
es:

1. The F-flag is 1 following execution of an ADDi, ADDQi,
ADDGCi, SUBI, SUBCI, NEGi, ABSi, or CHECKIi instruction.

2. The product resulting from a MULI instruction cannot be
represented exactly in the destination operand'’s location.

3. The quotient resulting from a DElIi, DIVi, or QUQOi instruc-
tion cannot be represented exactly in the destination op-
erand’s location.

4. The result of an ASHi instruction cannot be represented
exactly in the destination operand’s location.

5. The sum of the ‘INC’ value and the ‘INDEX’ operand for
an ACBi instruction cannot be represented exactly in the
index operand’s location.

Trap (DBG): A debug trap occurs when one or more of the

conditions selected by the settings of the bits in the DCR

register is detected. This trap can also be requested by acti-

vating the input signal DBG. Refer to Section 3.3.2 for more

information.

Note 1: Following execution of the WAIT instruction, then a Trap (DBG) can
be pending for a PC-match condition. In such an event, the Trap
(DBG) is processed immediately.

Note 2: If an attempt is made to execute a memory-management instruction
while in User-Mode and the M-bit in the CFG register is 0, then Trap
(UND) occurs.

Note 3: If an attempt is made to execute a privileged custom instruction
while in User-Mode and the C-bit in the CFG register is 0, then Trap
(UND) occurs.

Note 4: While operating in User-Mode, if an attempt is made to execute a
privileged instruction with an undefined use of a general addressing
mode (either the reserved encoding is used or else scaled-index or
immediate modes are incorrectly used), the Trap (UND) occurs.

Note 5: If an undefined instruction or illegal operation is detected, then no
data references are performed for the instruction.

Note 6: For certain instructions that are relatively long to execute, such as
DEID, the CPU checks for pending interrupts during execution of the
instruction. In order to reduce interrupt latency, the NS2532 can
suspend executing the instruction and process the interrupt. Refer
to Section B.5 in Appendix B for more information about recognizing
interrupts in this manner.

3.2.6 Bus Errors

A bus error exception occurs when the BER signal is assert-
ed in response to an instruction fetch or data transfer that is
required to execute an instruction.

Two types of bus errors are recognized: Restartable and
Non-Restartable. Restartable bus errors are recognized dur-
ing read bus cycles, except for MMU read cycles (from Page
Tables) needed to translate the address of a result being
stored into memory. All other bus errors are non-restartable.
The CPU responds to restartable bus errors by suspending
the instruction that it was executing. When a non-restartable
bus error is detected, the CPU responds immediately and
the instruction being executed is terminated.

In this case, any results that have not yet been written to
memory are discarded, and any pending traps other than

Trap (DBG) for external condition, are eliminated. The PC
value saved on the stack is undefined.

The NS32532 does not respond to bus errors indicated for
instructions that are not executed. For example, no bus er-
ror exception occurs in response to asserting the BER sig-
nal during a bus cycle to prefetch an instruction that is not
executed because the previous instruction caused a trap.

An exception to this rule occurs if the bus error is detected
during an MMU write cycle to update the R-bit in a page
table entry.

In this case the CPU recognizes the bus error and considers
it as non-restartable even though the bus cycle that caused
it belongs to a non-executed instruction.

If a bus error is detected during a data transfer required for
the processing of another exception or during the ICU read
cycle of a RETI instruction, then the CPU considers it as a
fatal bus error and enters the ‘HALTED’ state.

Note 1: If the address and control signals associated with the last bus cycle
that caused a bus error are latched by external hardware, then the
information they provide can be used by the service procedure for
restartable bus errors to analyze and resolve the exception recog-
nized by the CPU. This can be accomplished because upon detect-
ing a restartable bus error, the NS32532 stops making memory ref-
erences for subsequent instructions until it determines whether the
instruction that caused the bus error is executed and the exception
is processed.

Note 2: When a non-restartable bus error is recognized, the service proce-
dure must execute the CINV and LMR instructions to invalidate the
on-chip caches and TLB. This is necessary to maintain coherence
between them and external memory.

3.2.7 Priority Among Exceptions

The CPU checks for specific exceptions at various points
while executing an instruction. It is possible that several ex-
ceptions occur simultaneously. In that event, the CPU re-
sponds to the exception with highest priority.

Figure 3-14 shows an exception processing flowchart. A
non-restartable bus error is assigned highest priority and is
serviced immediately regardless of the execution state of
the CPU.

Before executing an instruction, the CPU checks for pend-
ing Trap (DBG), interrupts, and Trap (TRC), in that order. If a
Trap (DBG) is pending, then the CPU processes that excep-
tion, otherwise the CPU checks for pending interrupts. At
this point, the CPU responds to any pending interrupt re-
quests; nonmaskable interrupts are recongized with higher
priority than maskable interrupts. If no interrupts are pend-
ing, then the CPU checks the P-flag in the PSR to determine
whether a Trap (TRC) is pending. If the P-flag is 1, a Trap
(TRC) is processed. If no Trap (DBG), interrupt or Trap
(TRC) is pending, the CPU begins executing the instruction.

While executing an instruction, the CPU may recognize up

to four exceptions:

1. trap (ABT)

2. restartable bus error

3. trap (DBG) or interrupt, if the instruction is interruptible

4. one of 7 mutually exclusive traps: SLAVE, ILL, SVC, DVZ,
FLG, BPT, UND

Trap (ABT) and restartable bus error have equal priority; the

CPU responds to the first one detected.

If no exception is detected while the instruction is executing,

then the instruction is completed and the PC is updated to

point to the next instruction. If a Trap (OVF) is detected,

then it is processed at this time.

2-41

0€-2EGCESN/GC-2EGCESN/0C-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

INITIALIZE

A 4

TRAP (DBG) ~YES

NON=RESTARTABLE
BUS ERROR

TERMINATE
INSTRUCTION

EXECUTION

PENDING
2

INTERRUPT YES

PENDING
2

P=0

BEGIN
INSTRUCTION
EXECUTION

v

p=T

RAP (ABT. YES

RESTARTABLE
BUS ERROR,
2

NO

TRAP (ILL] YES

A 4

OR TRAP (UND)
2

TRAP (DBG)
OR INTERRUPT
PENgING

NO

INTERRUPTIBLE
INSTRUCTION

SLAVE, SVC,

DVZ, FLG, BPT
TRAP
2
NO

A 4

COMPLETE
INSTRUCTION

EXECUTION

SUSPEND
INSTRUCTION
EXECUTION

v

UPDATE PC

YES

A 4

v

TRAP (OVF)

PROCESS
EXCEPTION

FIGURE 3-14. Exception Processing Flowchart

TL/EE/9354-20

2-42

3.0 Functional Description (continued)

While executing the instruction, the CPU checks for enabled
debug conditions. If an enabled debug condition is met, a
Trap (DBG) is held pending until after the instruction is com-
pleted (see Note 3). If another exception is detected before
the instruction is completed, the pending Trap (DBG) is re-
moved and the DSR register is not updated.

Note 1: Trap (DBG) can be detected simultaneously with Trap (OVF). In this

event, the Trap (OVF) is processed before the Trap (DBG).

Note 2: An address-compare debug condition can be detected while pro-
cessing a bus error, interrupt, or trap. In this event, the Trap (DBG)
is held pending until after the CPU has processed the first excep-
tion.

Note 3: Between operations of a string instruction, the CPU responds to
pending operand address compare and external debug conditions
as well as interrupts. If a PC-match debug condition is detected
while executing a string instruction, then Trap (DBG) is held pending
until the instruction has completed.

3.2.8 Exception Acknowledge Sequences: Detailed Flow
For purposes of the following detailed discussion of excep-
tion acknowledge sequences, a single sequence called
“service” is defined in Figure 3-15.

Upon detecting any interrupt request, trap or bus error con-
dition, the CPU first performs a sequence dependent upon
the type of exception. This sequence will include saving a
copy of the Processor Status Register and establishing a
vector and a return address. The CPU then performs the
service sequence.

3.2.8.1 Maskable/Non-Maskable Interrupt Sequence
This sequence is performed by the CPU when the NMI pin
receives a falling edge, or the INT pin becomes active with
the PSR | bit set. The interrupt sequence begins either at
the next instruction boundary or, in the case of an interrupt-
ible instruction (e.g., string instruction), at the next interrupt-
ible point during its execution.
1. If an interruptible instruction was interrupted and not yet
completed:
a. Clear the Processor Status Register P bit.
b. Set “Return Address” to the address of the first byte of
the interrupted instruction.
Otherwise, set “Return Address” to the address of the
next instruction.
2. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and .
. If the interrupt is Non-Maskable:
a.Read a byte from address FFFFFF004¢, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set “Vector” to 1.

c. Go to Step 8.

. If the interrupt is Non-Vectored:

a.Read a byte from address FFFFFEOO4g, applying
Status Code 00100 (Interrupt Acknowledge, Master).
Discard the byte read.

b. Set “Vector” to 0.

c. Go to Step 8.

. Here the interrupt is Vectored. Read “Byte” from address
FFFFFEOO4g, applying Status Code 00100 (Interrupt Ac-
knowledge, Master).

6. If “Byte” > 0, then set “Vector” to “Byte” and go to Step

8.

w

»

(4]

7. If “Byte” is in the range —16 through —1, then the inter-
rupt source is Cascaded. (More negative values are re-
served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The
address is calculated as INTBASE + 4* Byte.

b. Read “Vector,” applying the Cascade Address just
read and Status Code 00101 (Interrupt Acknowledge,
Cascaded).

8. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.2 Abort/Restartable Bus Error Sequence

1. Suspend instruction and restore the currently selected
Stack Pointer to its original contents at the beginning of
the instruction.

2. Clear the PSR P bit.

3. Copy the PSR into a temmporary register, then clear PSR
bits T, V, U, S and I.

4. Set “Vector” to the value corresponding to the exception
type:
Abort: Vector = 2
Restartable Bus Error: Vector = 11

5. Set “Return Address” to the address of the first byte of
the suspended instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.3 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND Trap

Sequence

1. Restore the currently selected Stack Pointer and the
Processor Status Register to their original values at the
start of the trapped instruction.

2. Set “Vector” to the value corresponding to the trap type.
SLAVE: Vector = 3.
ILL: Vector = 4.
SVC: Vector = 5.
DVZ: Vector = 6.
FLG: Vector =7.
BPT: Vector = 8.
UND: Vector = 10.

w

. If Trap (ILL) or Trap (UND)
a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S and P.

. Set “Return Address” to the address of the first byte of
the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-15.

o

3.2.8.4 Trace Trap Sequence
1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR
bits T, V, U and S.

3. Set “Vector” to 9.

4. Set “Return Address” to the address of the next instruc-
tion.

5. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.5 Integer-Overflow Trap Sequence

1. Copy the PSR into a temporary register, then clear PSR
bits T, V, U, S and P.

2. Set “Vector” to 13.

2-43

0€-2EGCESN/S2-CESTESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

3. Set “Return Address” to the address of the next instruc-
tion.

4. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.6 Debug Trap Sequence

A debug condition can be recognized either at the next in-
struction boundary or, in the case of the String instructions,
at the next interruptible point during its execution.

1. If PC-match condition, then go to Step 3.

2. If a String instruction was interrupted and not yet com-
pleted:

a. Clear the Processor Status Register P bit.

b. Set “Return Address” to the address of the first byte of
the instruction.

¢. Go to Step 4.

3. Set “Return Address” to the address of the next instruc-
tion.

4, Set “Vector” to 14.
5. Copy the Processor Status Register (PSR) into a tempo-

3.3 DEBUGGING SUPPORT

The NS32532 provides serveral features to assist in pro-
gram debugging.

Besides the Breakpoint (BPT) instruction that can be used
to generate soft breaks, the CPU also provides instruction
tracing as well as debug trap (or hardware breakpoints) ca-
pabilities. Details on these features are provided in the fol-
lowing sub-sections.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used
during debugging to single-step through selected portions of
a program. Tracing is enabled by setting the T-bit in the PSR
Register. When enabled, the CPU generates a Trace Trap
(TRC) after the execution of each instruction.

At the beginning of each instruction, the T bit is copied into
the PSR P (Trace “Pending”) bit. If the P bit is set at the end
of an instruction, then the Trace Trap is activated. If any
other trap or interrupt request is made during a traced in-
struction, its entire service procedure is allowed to complete

before the Trace Trap occurs. Each interrupt and trap se-
quence handles the P bit for proper tracing, guaranteeing
only one Trace Trap per instruction, and guaranteeing that
the Return Address pushed during a Trace Trap is always
the address of the next instruction to be traced.

Due to the fact that some instructions can clear the T and P
bits in the PSR, in some cases a Trace Trap may not occur
at the end of the instruction. This happens when one of the
privileged instructions BICPSRW or LPRW PSR is executed.

rary register, then clear PSR bits T, V, U, S, P and I.
6. Perform Service (Vector, Return Address), Figure 3-15.

3.2.8.7 Non-Restartable Bus Error Sequence
1. Set “Vector” to 12.
2. Set “Return Address” to “Undefined”.

3. Copy the Processor Status Register (PSR) into a tempo-
rary register, then clear PSR bits T, V, U, S, P and I.

4. Perform a dummy read of the Slave Status Word to reset
the Slave Processor.

5. Perform Service (Vector, Return Address), Figure 3-15.

TABLE 3-3. Summary of Exception Processing

Instruction Cleared Before Cleared After
Exception Ending Saving PSR Saving PSR
Restartable Bus Error Suspended P TVUSI
Nonrestartable Bus Error Terminated Undefined TVUSPI
Interrupt Before Instruction None/P* TVUSPI
ABT Suspended P TVUSI
ILL, UND Suspended P TVUS
SLAVE, SVC, DVZ, FLG, BPT Suspended None TVUSP
OVF Completed None TVUSP
TRC Before Instruction P TVUS
DBG Before Instruction None/P* TVUSPI

*Note: The P bit of the saved PSR is cleared in case the exception is acknowledged before the instruction is completed (e.g., interrupted string instruction). This is
to avoid a mid-instruction trace trap upon return from the Exception Service Routine.

Service (Vector, Return Address):
1) Push the PSR copy onto the Interrupt Stack as a 16-bit value.
2) If Direct: mode is d, then go to step 4.
3) Push MOD Register into the Interrupt Stack as a 16-bit value.
4) Read 32-bit Interrupt Dispatch Table (IDT) entry at address ‘INTBASE + vector X 4.
5) If Direct-E mode is d, then go to Step 10.
6) Move the L.S. word of the IDT entry (Module Field) into the MOD register.

7) Read the Program Base pointer from memory address ‘MOD + 8’, and add to it the M.S. word of the IDT entry (Offset Field), placing the result in the
Program Counter.

8) Read the new Static Base pointer from the memory address contained in MOD, placing it into the SB Register.
9) Go to Step 11.

10) Place IDT entry in the Program Counter.

11) Push the Return Address onto the Interrupt Stack as a 32-bit quantity.

12) Serialize: Non-sequentially fetch first instruction of Exception Service Routine.

Note: Some of the Memory Accesses indicated in the service sequence may be performed in an order different from the one shown.
FIGURE 3-15. Service Sequence

2.44

3.0 Functional Description (continued)

In other cases, it is still possible to guarantee that a Trace
Trap occurs at the end of the instruction, provided that spe-
cial care is taken before returning from the Trace Trap Serv-
ice Procedure. In case a BICPSRB instruction has been ex-
ecuted, the service procedure should make sure that the T
bit in the PSR copy saved on the Interrupt Stack is set be-
fore executing the RETT instruction to return to the program
begin traced. If the RETT or RETI instructions have to be
traced, the Trace Trap Service Procedure should set the P
and T bits in the PSR copy on the Interrupt Stack that is
going to be restored in the execution of such instructions.

Note: If instruction tracing is enabled while the WAIT instruction is executed,
the Trap (TRC) occurs after the next interrupt, when the interrupt
service procedure has returned.

3.3.2 Debug Trap Capability

The CPU recognizes three different conditions to generate a
Debug Trap:

1) Address Compare
2) PC Match
3) External

These conditions can be enabled and monitored through
the CPU Debug Registers.

An address-compare condition is detected when certain
memory locations are either read or written. The double-
word address used for the comparison is specified in the
CAR Register. The address-compare condition can be sep-
arately enabled for each of the bytes in the specified dou-
ble-word, under control of the CBE bits of the DCR Register.
The VNP bit in the DCR controls whether virtual or physical
addresses are compared. The CRD and CWR bits in the
DCR separately enable the address compare condition for
read and write references; the CAE bit in the DCR can be
used to disable the compare-address condition indepen-
dently from the other control bits. The CPU examines the
address compare condition for all data reads and writes,
reads of memory locations for effective address calcula-
tions, Interrupt-Acknowledge and End-of-Interrupt bus cy-
cles, and memory references for exception processing. An
address-compare condition is not detected for MMU refer-
ences to Page Table Entries.

The PC-match condition is detected when the address of
the instruction equals the value specified in the BPC regis-
ter. The PC-match condition is enabled by the PCE bit in the
DCR.

Detection of address-compare and PC-match conditions is
enabled for User and Supervisor Modes by the UD and SD
bits in the DCR. The DEN-bit can be used to disable detec-
tion of these two conditions independently from the other
control bits.

An external condition is recognized whenever the DBG sig-
nal is activated.

When the CPU detects an address-compare or PC-match
condition while executing an instruction or processing an
exception, then Trap (DBG) occurs if the TR bit in the DCR
is 1. When an external debug condition is detected, Trap
(DBG) occurs regardless of the TR bit. The cause of the
Trap (DBG) is indicated in the DSR Register.

When an address-compare or PC-match condition is detect-
ed while executing an instruction, the CPU asserts the BP
signal at the beginning of the next instruction, synchronous-

ly with PFS. If the instruction is not completed because a
higher priority trap (i.e., ABORT) is detected, the BP signal
may or may not be asserted.

Note 1: While executing the MOVUS and MOVSU instructions, the com-
pare-address condition is enabled for the User space memory refer-
ence under control of the UD-bit in the DCR.

Note 2: When the LPRi instruction is executed to load a new value into the
BPC, CAR or DCR, it is undefined whether the address-compare
and PC-match conditions, in effect while executing the instruction,
are detected under control of the old or new contents of the loaded
register. Therefore, any LPRi instruction that alters the control of the
address-compare or PC-match conditions should use register or im-
mediate addressing mode for the source operand.

3.4 ON-CHIP CACHES

The NS32532 provides three on-chip caches: the Instruc-
tion Cache (IC), the Data Cache (DC) and the Translation
Look-aside Buffer (TLB).

The first two are used to hold the contents of frequently
used memory locations, while the TLB holds address-trans-
lation information.

The IC and DC can be individually enabled by setting appro-
priate bits in the CFG Register (See Section 2.1.4); the TLB
is automatically enabled when address-translation is en-
abled.

The CPU also provides a locking feature that allows the
contents of the IC and DC to be locked to specific memory
locations. This is accomplished by setting the LIC and LDC
bits in the CFG register.

Cache locking can be successfully used in real-time applica-
tions to guarantee fast access to critical instruction and data
areas.

Details on the organization and function of each of the
caches are provided in the following sections.

Note: The size and organization of the on-chip caches may change in future
Series 32000 microprocessors. This however, will not affect software
compatibility.

3.4.1 Instruction Cache (IC)

The basic structure of the instruction cache (IC) is shown in
Figure 3-16.

The IC stores 512 bytes of code in a direct-mapped organi-
zation with 32 sets. Direct-mapped means that each set
contains only one block, thus each memory location can be
loaded into the IC in only one place.

Each block contains a 23-bit tag, which holds the most-sig-
nificant bits of the physical address for the locations stored
in the block, along with 4 double-words and 4 validity bits
(one for each double-word).

A 4-double-word instruction buffer is also provided, which is
loaded either from a selected cache block or from external
memory. Instructions are read from this buffer by the loader
unit and transferred to an 8-byte instruction queue.

The IC may or may not be enabled to cache an instruction
being fetched by the CPU. It is enabled when the IC bit in
the CFG Register is set to 1 and either the address transla-
tion is disabled or the CI bit in the Level-2 PTE used to
translate the virtual address of the instruction is set to 0.

If the IC is disabled, the CPU bypasses it during the instruc-
tion fetch and its contents are not affected. The instruction
is read directly from external memory into the instruction
buffer.

2-45

0€-2€SCESN/G2-CESCESN/02-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

TAG 52
MEMORY N

32

moooOomo
A

INSTRUCTION 32]
MEMORY ” s

VALID 32

4
mooomo

>
g

23

I F

| te-avie wsrrucrion aurrer |

| wres |

128 &4

e CACHE
INVALIDATE
COMPARE — s o] RS
] 5 12
-)
3 98 43210

INSTRUCTION ADDRESS

INSTRUCTION DOUBLE=WORD

TL/EE/9354-21

FIGURE 3-16. Instruction Cache Structure

When the IC is enabled, the instruction address bits 4 to 8
are used to select the IC set where the instruction may be
stored. The tag corresponding to the single block in the set
is compared with the 23 most-significant bits of the instruc-
tion’s physical address. The 4 double-words in this block are
loaded into the instruction buffer and the 4 validity bits are
also retrieved. Bits 2 and 3 of the instruction’s physical ad-
dress select one of these double-words and the associated
validity bit.

If the tag matches and the selected double-word is valid, a
cache ‘hit' occurs and the double-word is directly trans-
ferred to the instruction queue for decoding; otherwise a
cache ‘miss’ will result.

In the latter case, if the cache is not locked, the CPU will
take the following actions.

First, if the tag of the selected block does not match, the tag
is loaded with the 23 most-significant bits of the instruction
address and all the validity bits are cleared. Then, the in-
struction is read from external memory into the instruction
buffer.

If the CIIN input signal is not active during the fetching of the
missing instruction, then the IC is updated and the instruc-
tion double-words fetched from memory are stored into it
with the validity bits set.

If the cache is locked, its contents are not affected, as the
CPU reads the missing instruction from external memory.

Whenever the CPU accesses external memory, whether or
not the IC is enabled, it always fetches instruction double-
words in a non-wrap-around fashion. Refer to Sections
3.5.4.3 and 3.5.6 for more information.

The contents of the instruction cache can be invalidated by

software through the CINV instruction or by hardware

through the appropriate cache invalidation input signals.

Clearing the IC bit in the CFG Register also invalidates the

instruction cache. Refer to Sections 3.5.10 and C.3 for de-

tails.

Note: If the IC is enabled for a certain instruction and a ‘miss’ occurs due to
a tag mismatch, the CPU will update the tag and clear all the validity
bits before fetching the instruction from external memory. If the CIIN
input signal is activated during the fetching of that instruction, the
validity bits are not set and the IC is not updated.

3.4.2 Data Cache (DC)

The Data Cache (DC) stores 1,024 bytes of data in a two-
way set associative organization as shown in Figure 3-17.
Each of the 32 sets has 2 cache blocks. Each block con-
tains a 23-bit tag, which holds the most-significant bits of
the physical address for the locations stored in the block,
along with 4 double-words and 4 validity bits (one for each
double-word).

The DC is enabled for a data read when all of the following
conditions are satisfied.

® The DC bit in the CFG Register is set to 1.

o Either the address translation is disabled or the ClI bit in
the Level-2 PTE used to translate the virtual address of
the data reference is set to 0.

® The reference is not an interlocked read resulting from
executing a CBIT! or SBITI instruction.

If the DC is disabled, the CPU bypasses it during the data
read and its contents are not affected. The data is read
directly from external memory. The DC is also bypassed for
MMU reads from Page Table entries during address transla-
tion and for Interrupt-Acknowledge and End-of-Interrupt bus
cycles.

When the DC is enabled for a data read, the address bits 4
to 8 are used to select the DC set where the data may be
stored.

The tags corresponding to the two blocks in the set are
compared to the 23 most-significant bits of the physical ad-
dress. Bits 2 and 3 of the address select one double-word in
each block and the associated validity bit.

If one of the tag matches and the selected double-word in
the corresponding block is valid, a cache ‘hit’ occurs and
the data is used to execute the instruction; otherwise a
cache ‘miss’ will result. In the latter case, if the cache is not
locked, the CPU will take the following actions.

2-46

3.0 Functional Description (continueq)

32 32 32
6 fe— 16 leo<] pecone |ep] oara b—pt oara | VALD — VALD {e{ pecone
MEMORY MEMORY MEMORY MEMORY [o
0 1 0 1 0 1
r S
128 128 4 4 5
23 23 A A 4 A 4 A
—> seect || seeer f—»f seecr | seecr |
A 4 A 4
32 32
a6 A 4 4 4 4 CACHE
o INVALIDATE
COMPARE * SELECT 1 SELECT | loowess
32
h 5 2 A 4
ALIGN
23
32
31 S8 43 21
DATA ADDRESS DATA

TL/EE/9354-22

FIGURE 3-17. Data Cache Structure

First, if the tag of either block in the set matches the data
address, that block is selected for updating. Otherwise, if
neither tag matches, then the least recently used block is
selected; its tag is loaded with the 23 most-significant bits of
the data address, and all the validity bits are cleared.

Then, the data is read from external memory; up to 4 dou-
ble-word bits are read into the cache in a wrap-around fash-
ion. Refer to Sections 3.5.4.3 and 3.5.6 for more informa-
tion.

If the CIIN and IODEC input signals are both inactive during
the bus cycles performed to read the missing data, then the
DC is updated, as each double-word is read from memory,
and the corresponding validity bit is set. If the cache is
locked, its contents are not affected, as the CPU reads the
missing data from external memory.

The DC is enabled for a data write whenever the DC bit in
the CFG Register is set to 1, including interlocked writes
resulting from executing the CBITI and SBITI instructions,
and MMU writes to Page Table entries during address trans-
lation.

The DC does not use write allocation. This means that, dur-
ing a write, if a cache ‘hit’ occurs, the DC is updated, other-
wise it is unaffected. The data is always written through to
external memory.

The contents of the data cache can be invalidated by soft-

ware through the CINV instruction or by hardware through

the appropriate cache invalidation input signals. Clearing
the DC bit in the CFG Register also invalidates the data
cache. Refer to Sections 3.5.10 and C.3 for details.

Note: If the DC is enabled for a certain data reference and a “miss” occurs
due to tag mismatch, the CPU will update the tag of the least recently
used block and clear all the validity bits before reading the data from
external memory. If either CIIN or IODEC are activated during the data
read bus cycles, the validity bits are not set and the DC is not updat-
ed.

3.4.3 Cache Coherence Support

The NS32532 provides several mechanisms for maintaining
coherence between the on-chip caches and external mem-

ory. In software, the use of caches can be inhibited for indi-
vidual pages using the Cl-bit in the level-2 Page Table En-
tries. The CINV instruction can be executed to invalidate
entriely the Instruction Cache and/or Data Cache; the CINV
instruction can also be executed to invalidate a single
16-byte block in either or both caches.

In hardware, the use of the caches can be inhibited for indi-
vidual locations using the CIIN input signal. A cache invali-
dation request can cause the entire Instruction Cache and/
or Data Cache to be invalidated; a cache invalidation re-
quest can also cause invalidation of a single set in either or
both caches. Refer to Section 3.5.7 for more information.

An external “Bus Watcher” circuit can also be used to help
maintain cache coherence. The Bus Watcher observes the
CPU’s bus cycles to maintain a copy of the on-chip cache
tags while also monitoring writes to main memory by DMA
controllers and other microprocessors in the system. When
the Bus Watcher detects that a location in one of the on-
chip caches has been modified in main memory, it issues an
invalidation request to the CPU. The CPU provides the nec-
essary information on the system interface to help maintain
an external copy of the on-chip tags.

The status codes differentiate between instruction fetches
and data reads.

The set, affected during the bus access (if CIOUT is low), as
well as the tag can be determined from the address bits A4
through A8 and A9 through A31 respectively.

During a data read the CPU also indicates, by means of the
CASEC signal, which block in the set is being updated.

Whenever a CINV instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, invalidations of the on-
chip caches by software can be monitored externally.
Note, however, that the software is responsible for commu-
nicating to the external circuitry the values of the cache en-
able and lock bits in the CFG Register, since the CPU does
not generate any special cycle (e.g., Slave Cycle) when the
CFG Register is loaded.

2-47

0€-2E€GCESN/SC-2ESTESN/0C-CEGCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
3.4.4 Translation Look-aside Buffer (TLB)

The Translation Look-aside Buffer is an on-chip fully asso-
ciative memory. It provides direct virtual to physical mapping
for 64 pages, thus minimizing the time needed to perform
the address translation.

The efficiency of the on-chip MMU is greatly increased by
the TLB, which bypasses the much longer Page Table look-
up in over 99% of the accesses made by the CPU.

Entries in the TLB are allocated and replaced automatically;
the operating system is not involved. The TLB entries can-
not be read or written by software; however, they can be
purged from it under program control.

Figure 3-18 shows a model of the TLB. Information is
placed into the TLB whenever a Page Table lookup is per-
formed. If the retrieved mapping is valid (V = 1 in both
levels of the Page Tables), and the access attempted is
permitted by the protection level, an entry of the TLB is
loaded from the information retrieved from memory.

The on-chip MMU places the Virtual Page Number (VPN)
and the Address Space qualifier (AS) into the tag portion of
the TLB entry.

The value portion of the entry is loaded from the Page Ta-
bles as follows:

® The PFN field (20 bits) as well as the Cl and M bits are
loaded from the Level-2 Page Table Entry (PTE2).

® The PL field (2 bits) is loaded to reflect the most restric-
tive of the protection levels imposed by the PL fields of
the Level-1 and Level-2 Page Table Entries (PTE1 and
PTE2).

Not shown in the figure is an additional bit associated with
each TLB entry which indicates whether the entry is valid.

Address translation can be either enabied or disabled for a
memory reference. If translation is disabled, then the TLB is
bypassed and the physical address is identical to the virtual
address.

When translation is enabled and a virtual address needs to
be translated, the high-order 20 bits (VPN) and the Address
Space qualifier are compared associatively to the corre-
sponding fields in all entries of the TLB.

For a read reference, if the tag portion of a valid TLB entry,
completely matches the input values, then the value portion
of the entry is used to complete the address translation and
protection checking.

For a write reference, if a valid entry with a matching tag is
present in the TLB, then the M bit is examined. If the M bit is
1, the value portion of the entry is used to complete the
address translation and protection checking. If the M bit is O,
the entry is invalidated.

In either case, if a protection level violation is detected, a
translation exception (Trap (ABT)) is generated. When no
matching entry is found or a matching entry is invalidated
because the M bit is 0 in a write reference, a Page Table
lookup is performed. The virtual address is translated ac-
cording to the algorithm given in Section 2.4.5 and the
translation information is loaded into the TLB.

The recipient entry is selected by an on-chip circuit that im-
plements a First-In-First-Out (FIFO) algorithm.

Note that for a translation to be loaded into the TLB it is
necessary that the Level-1 and Level-2 Page Table Entries
be valid (V bit = 1). Also, it is guaranteed that in the pro-
cess of loading a TLB entry (during a Page Table lookup)
the Level-1 and Level-2 R bits will be set in memory if they

were not already set. For these reasons, there is no need to
replicate either the V bit or the R bit in the TLB entries.

Whenever a Page Table Entry in memory is altered by soft-
ware, it is necessary to purge any matching entry from the
TLB, otherwise the corresponding addresses would be
translated according to obsolete information. TLB entries
may be selectively purged by writing a virtual address to one
of the IVARN registers using the LMR instruction. The TLB
entry (if any) that matches that virtual address is then
purged, and its space is made available for another transla-
tion. Purging is also performed whenever an address space
is remapped by altering the contents of the PTBO or PTB1
register. When this is done, all the TLB entries correspond-
ing to the address space mapped by that register are
purged. Turning translation on or off (via the MCR TU and
TS bits) does not affect the contents of the TLB.

It is possible to maintain an external copy of the valid con-
tents of the on-chip TLB by observing the CPU’s system
interface during the replacement and invalidation of TLB en-
tries. Whenever the CPU replaces a TLB entry, the page
tables are accessed in external memory using bus cycles
with a special Status. Because a FIFO replacement algo-
rithm is used, it is possible to determine which entry is being
replaced by using a 6-bit counter that is incremented when-
ever a Level-1 PTE is accessed. The contents of the new
entry can be found as follows:

® VPN appears on A2 through A11 during the PTE1 and
PTE2 accesses. The most-significant 10 bits appear dur-
ing the PTE1 access, and the least-significant 10 bits
appear during the PTE2 access.

® AS can be determined from the U/S signal during the
PTE1 access.

¢ PFN, M and CI can be determined from the PTE2 value
read on the Data Bus. PL can be determined from the
most restrictive of the PTE1 and PTE2 values read on
the Data Bus.

Whenever a LMR instruction is executed, the operation
code and operand appear on the system interface using
slave processor bus cycles. Thus, the information is avail-
able externally to determine the translation modes con-
trolled by the MCR and to identify that a TLB entry has been
invalidated.

When the PTBO register is loaded by executing the ‘LMR
PTBO src’ instruction, the internal FIFO pointer is also reset
to point to the first TLB entry.

Note that the contents of the TLB maintained externally in-
clude copies of all valid entries in the on-chip TLB, but the
external copy may include some entries that are invalid in
the on-chip TLB. For example, when the TLB is searched
for a write reference and a matching entry is found with the
M bit clear, then the on-chip entry is invalidated and a miss
is processed. It is not possible to detect externally that the
old matching entry on-chip has been invalidated.

3.5 SYSTEM INTERFACE

This section provides general information on the NS32532
interface to the external world. Descriptions of the CPU re-
quirements as well as the various bus characteristics are
provided here. Details on other device characteristics in-
cluding timing are given in Chapter 4.

3.5.1 Power and Grounding

The NS32532 requires a single 5-volt power supply, applied
on 21 pins. The logic voltage pins (VCCL1 to VCCL6) supply

2.48

3.0 Functional Description (continued)

TAG VALUE
AS*| VPN (20 BITS)| PL | M | CI | PFN (20 BITS)
VIRTUAL 0 XXX 1Mj]ofo mmm TRANSLATED
ADDRESS ADDRESS
(u/s, 222) 1 yyy 1mjofo nnn (PPP)
COMPARISON
0 222 Mmyp1 i1 PPP
1 www 0| 1 0 qqq

*AS represents the virtual address space qualifier.

TL/EE/9354-23

FIGURE 3-18. TLB Model

the power to the on-chip logic. The buffer voltage pins
(VCCB1 to VCCB14) supply the power to the output drivers
of the chip. The bus clock power pin (VCCCLK) is the power
supply for the on-chip clock drivers. All the voltage pins
should be connected together by a power (VCC) plane on
the printed circuit board.

The NS32532 grounding connections are made on 20 pins.
The logic ground pins (GNDL1 to GNDLS6) are the ground
pins for the on-chip logic. The buffer ground pins (GNDB1 to
GNDB13) are the ground pins for the output drivers of the
chip. The bus clock ground pin (GNDCLK) is the ground
connection for the on-chip clock drivers. All the ground pins
should be connected together by a ground plane on the
printed circuit board.

Both power and ground connections are shown in Figure
3-19.

+5V
0
5/
Veer1-6 7
14/
Vecst - 14 |7
OTHER Vg
Veoowk » CONNECTIONS
(Voo PLANE)
NS32532
CcPU
6/
GNDL1 = 6 [t
13
oNoBY - 13 |—4
OTHER GROUND
GNDCLK » CONNECTIONS
(GND PLANE)

TL/EE/9354-24
FIGURE 3-19. Power and Ground Connections

3.5.2 Clocking

The NS32532 requires a single-phase input clock signal
(CLK) with frequency twice the CPU’s operating frequency.

This clock signal is internally divided by two to generate two
non-overlapping phases PHI1 and PHI2. One single-phase
clock signal BCLK in phase with PHI1 and its complement
BCLK, are also generated and output by the CPU for timing
reference.

Following power-on, the phase relationship between BCLK
and CLK is undefined. Nevertheless, in some systems it
may be necessary to synchronize the CPU bus timing to an
external reference. The SYNC input signal can be used to
initialize the phase relationship between CLK and BCLK.
SYNC can also be used to stretch BCLK (Low) while CLK is
toggling.

SYNC is sampled on each rising edge of CLK. As shown in
Figure 3-20, whenever SYNC is sampled low, BCLK stops
toggling and stays low. On the first rising edge that SYNC is
sampled high, BCLK is driven high and then toggles on each
subsequent rising edge of CLK.

Every rising edge of BCLK defines a transition in the timing
state (“T-State”) of the CPU.

One T-State represents the execution of one microinstruc-
tion within the CPU and/or one step of an external bus
transfer.

Note: The CPU requirement on the maximum period of BCLK must be satis-
fied when SYNC is asserted at times other than reset.

3.5.3 Resetting

The RST input pin is used to reset the NS32532. The CPU
samples RST synchronously on the rising edge of BCLK.
Whenever a low level is detected, the CPU responds imme-
diately. Any instruction being executed is terminated; any
results that have not yet been written to memory are dis-
carded; and any pending bus errors, interrupts, and traps
are eliminated. The internal latches for the edge-sensitive
NMI and DBG signals are cleared.

_ |
|

TL/EE/9354-25

FIGURE 3-20. Bus Clock Synchronization

2-49

0€-2EGCESN/S2-2ESCESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

The CPU stores the PC contents in the RO Register and the
PSR contents in the least-significant word of R1, leaving the
most-significant word undefined. The PC is then cleared to 0
and so are all the implemented bits in the PSR, MSR, MCR
and CFG registers. The DEN-bit in the DCR Register is also
cleared to 0. After reset, the remaining implemented bits in
DCR and the contents of all other registers are undefined.
The CPU begins executing the instruction at Address 0.

On application of power, RST must be held low for at least
50 us after Vgg is stable. This is to ensure that all on-chip
voltages are completely stable before operation. Whenever
a Reset is applied, it must also remain active for not less
than 64 BCLK cycles. See Figures 3-21 and 3-22.

While in the Reset state, the CPU drives the signals ADS,
BE0-3, BMT, CONF and HLDA inactive. The data bus is
floated and the state of all other output signals is undefined.
Note: If SYNC is asserted while the CPU is being reset, then BCLK does not

toggle. Consequently, SYNC must be high for at least 200 CLK cycles
while RST is low.

- £C

Veo 4.5V 4 e},
R

BCLK

RST

=50 us
TL/EE/9354-26
FIGURE 3-21. Power-On Reset Requirements

iglplpfplinl

= 100 CLOCK
“\\{— CYCLES —7
ER)

TL/EE/9354-27
FIGURE 3-22. General Reset Timing

3.5.4 Bus Cycles

The NS32532 CPU will perform bus cycles for one of the
following reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or peripheral
devices. Peripheral input and output are memory mapped
in the Series 32000 family.

3. To read and update Page Table Entries in memory to
perform memory management functions.

4. To acknowledge an interrupt and allow external circuitry
to provide a vector number, or to acknowledge comple-
tion of an interrupt service routine.

5. To transfer information to or from a Slave Processor.

In terms of bus timing, cases 1 through 4 above are identi-

cal. For timing specifications, see Section 4. The only exter-

nal difference between them is the 5-bit code placed on the

Bus Status pins (ST0-ST4). Slave Processor cycles differ in

that separate control signals are applied (Section 3.5.4.7).

3.5.4.1 Bus Status

The CPU presents five bits of Bus Status information on
pins STO-ST4. The various combinations on these pins in-
dicate why the CPU is performing a bus cycle, or, if it is idle
on the bus, then why is it idle.

The Bus Status pins are interpreted as a five-bit value, with
STO the least significant bit. Their values decode as follows:
00000 The bus is idle because the CPU does not yet need
to access the bus.

The bus is idle because the CPU is waiting for an
interrupt following execution of the WAIT instruc-
tion.

The bus is idle because the CPU has halted after
detecting an abort or bus error while processing an
exception.

The bus is idle because the CPU is waiting for a
Slave Processor to complete executing an instruc-
tion.

Interrupt Acknowledge, Master.

The CPU is reading an interrupt vector to acknowl-
edge an interrupt request.

Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl-
edge a maskable interrupt request from a Cascad-
ed Interrupt Control Unit.

End of Interrupt, Master.

The CPU is performing a read cycle to indicate that
it is executing a Return from Interrupt (RETI) in-
struction at the completion of an interrupt's service
procedure.

End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cascad-
ed Interrupt Control Unit to indicate that it is execut-
ing a Return from Interrupt (RETI) instruction at the
completion of an interrupt’s service procedure.
Sequential Instruction Fetch.

The CPU is fetching the next double-word in se-
quence from the instruction stream.
Non-Sequential Instruction Fetch.

The CPU is fetching the first double-word of a new
sequence of instruction. This will occur as a result
of any JUMP or BRANCH, any exception, or after
the execution of certain instructions.

Data Transfer.

The CPU is reading or writing an operand for an
instruction, or it is referring to memory while pro-
cessing an exception.

Read RMW Class Operand.

The CPU is reading an operand with access class
of read-modify-write.

Read for Effective Address Calculation.

The CPU is reading a pointer from memory in order
to calculate an effective address for Memory Rela-
tive or External addressing modes.

Access PTE1 by MMU.

The CPU is reading or writing a Level-1 Page Table
Entry while the on-chip MMU is translating virtual
address.

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

2-50

3.0 Functional Description (continued)

01110 Access PTE2 by MMU. ANY
The CPU is reading or writing a Level-2 Page Table IT=STATE| T | T2 (11 ORTH
Entry while the on-chip MMU is translating a virtual BCLK [I | I | I | I | l
address.

11101 Transfer Slave Processor Operand.
The CPU is transferring an operand to or from a A°‘3'[

Slave Processor.
11110 Read Slave Processor Status.
The CPU is reading a status word from a slave

///5-----65.-- L=
processor after the slave processor has activated

the FSSR signal. _[\

X
7

0€-2E€GCESN/S2-2ESCESN/0C-CESCESN

DIN
11111 Broadcast Slave Processor ID + OPCODE.
The CPU is initiating the execution of a Slave In- -
struction by transferring the first 3 bytes of the in- ADS _ / _ _/ _

struction, which specify the Slave Processor identi- L
fication and operation.

BUT /
3.5.4.2 Basic Read and Write Cycles BMT [
The sequence of events occurring during a basic CPU ac-

cess to either memory or peripheral device is shown in Fig- ONF / \

ure 3-23 for a read cycle, and Figure 3-24 for a write cycle. L

The cases shown assume that the selected memory or pe-

ripheral device is capable of communicating with the CPU at RGY [/ 7777777777777,

full speed. If not, then cycle extension may be requested / / / /’ / /’ / / ,})‘ / /// ///

through the RDY line. See Section 3.5.4.4.
A full speed bus cycle is performed in two cycles of the srr | /7YY Y, V//V/
BCLK clock, labeled T1 and T2. For both read and write bus [&4 / /// /// /// //// ‘6 // ///
cycles the CPU asserts ADS during the first half of T1 indi-

cating the beginning of the bus cycle. From the beginning of BER [' //V//Y// 1/ Y,

T1 until the completion of the bus cycle the CPU drives the /A / 4 / // / // / // / /4
Address Bus and other relevant control signals as indicated

N
N
N

/7

in the timing diagrams. For cacheable data read cycles the Bout [/

CPU also drives the CASEC signal to indicate the block in K

the DC set where the data will be stored. If the bus cycle is _

not cancelled (e.g., state T2 is entered in the next clock W /(/ / 4 // // // //r / // //
cycle), the confirm signal (CONF) is asserted in the middle K 777

of T1. Note that due to a bus cycle cancellation, the BMT _

signal may be asserted at the beginning of T1, and then BWO-1,| 7 V777777
deasserted before the time in which it is guaranteed valid CIIN, [ODEC | // // // // /)CX / /// 4 / A
(see Section 4.4.2). _

A confirmed bus cycle is completed at the end of T2, unless BEO - 3,ST0=-4, [= X X:
a cycle extension is requested. Following state T2 is either U/S, CIOUT, OINH | e

state T1 of the next bus cycle, or an idle T-state, if the CPU _

has no bus cycle to perform. CASEC X X

In case of a read cycle the CPU samples the data bus at the L

end of state T2. TL/EE/9354-28
If a bus exception is detected, the data is ignored. FIGURE 3-23. Basic Read Cycle

For write bus cycles, valid data is output from the middie of
T1 until the end of the cycle. When a write bus cycle is
immediately followed by another write cycle, the CPU keeps
driving the bus with the data related to the previous cycle
until the middle of state T1 of the second bus cycle.

The CPU always inserts an idle state before a write cycle

when the write immediately follows a read cycle.

Note: The CPU can initiate a bus cycle with a T1-state and then cancel the
cycle, such as when a TLB miss or a Cache hit occurs. In such a case,
the CONF signal remains High and the BMT signal is driven High; the
T1-state is followed by another T1-state or an idle T-state.

2-51

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

ANY

|T=STATE; T | T2 TIORT

BCLK

AD=31 X

o -31| 72—

DATA OUT

N

DO /

ADS

o | 272N | 777

R | ULy | N

SR | LI | N

gouT 7

WLV//’///////'//
7

L

swo-1|7//////, i

8Eo -3, [=
ST0=-4,U/5

TL/EE/9354-29
FIGURE 3-24. Write Cycle

3.5.4.3 Burst Cycles

The NS32532 is capable of performing burst cycles in order
to increase the bus transfer rate. Burst is only available in
instruction fetch cycles and data read cycle from 32-bit wide
memories. Burst is not supported in operand write cycles or
slave cycles.

The sequence of events for burst cycles is shown in Figure
3-25. The case shown assumes that the selected memory is
capable of communicating with the CPU at full speed. If not,
then cycle extension can be requested through the RDY
line. See Section 3.5.4.4.

A Burst cycle is composed of two parts. The first part is a
regular cycle (opening cycle), in which the CPU outputs the
new status and asserts all the other relevant control signals.
In addition, the Burst Out Signal (BOUT) is activated by the
CPU indicating that the CPU can perform Burst cycles. If the
selected memory allows Burst cycles, it will notify the CPU
by activating the burst in signal (BIN). BIN is sampled by the
CPU in the middle of T2 on the falling edge of BCLK. If the
memory does not allow burst (BIN high), the cycle will termi-
nate at the end of T2 and BOUT will go inactive immediate-
ly. If the memory allows burst (BIN low), and the CPU has
not deasserted BOUT, the second part of the Burst cycle
will be performed and BOUT will remain active until termina-
tion of the Burst.

The second part consists of up to 3 nibbles, labeled T2B. In
each of them a data item is read by the CPU. For each
nibble in the burst sequence the CPU forces the 2 least-sig-
nificant bits of the address to 0 and increments address bits
2 and 3 to select the next double-word; all the byte enable
signals (BEO-3) are activated.

As shown in Figures 3-25 and 4-8 (in Section 4), the CPU

samples RDY at the end of each nibble and extends the

access time for the burst transfer if RDY is inactive.

The CPU initiates burst read cycles in the following cases.

1. An instruction must be fetched (Status = 01000 or
01001), and the instruction address does not fall within
the last double-word in an aligned 16-byte block (e.g.,
address bits 2 and 3 are not both equal to 1).

2. A data item must be read (Status = 01010, 01011 or
01100), and all of the following conditions are met.

e The data cache is enabled and not locked. (DC = 1
and LDC = 0 in the CFG register.)

® The addressed page is cacheable as indicated in the
Level-2 Page Table Entry.

® The bus cycle is not an interlocked data access per-
formed while executing a CBITI or SBITI instruction.

The Burst sequence will be terminated when one of the

following events occurs.

1. The last instruction double-word in an aligned 16-byte
block has been fetched.

. The CPU detects that the instructions being prefetched
are no longer needed due to an alteration of the flow of
control. This happens, for example, when a Branch in-
struction is executed or an exception occurs.

3. 4 double-words of data have been read by the CPU. The
double-words are transferred within an aligned 16-byte
block in a wrap-around order. For example, if a source
operand is located at address 104, then the burst read
cycle transfers the double-words at 104, 108, 112, and
100, in that order.

n

2-52

=

3.0 Functional Description (continued) @
ANY 8;

\T=STATE; T | 72 | T26 | T2B | T2B |TIORTi| 1N

BCLK 5
=

&

A0- 31 [X X X 0
<

-3 777G 3
2

DDIN / 0
wW

- »

705 L/ L/ &

| T 7

N
S
S
]

o | ZZZTZTITTITTN | L2 L7N. L0\ L7777,

0
3
1
o™
L7

s | 7777777777777\ | LTON | L7, LITT 770770

s | 2T <l Tl T L

= 27777 | T T L

s | 0TI R LTI T T,
st0-4,U/5["
CIOUT, I0INH L

aasec[X1 X1

TL/EE/9354-30
FIGURE 3-25. Burst Read Cycles

2-53

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

4. The BIN signal is deasserted.

5. BRT is asserted to signal a bus retry.

6. IODEC is asserted or the BWO-1 signals indicate a bus
width other than 32-bits. The CPU samples these signals
during state T2 of the opening cycle. During T2B-states
BWO-1 are ignored and IODEC must be kept HIGH.

The CPU uses only the values of the above signals sampled

during the last state of the transfer when the cycle is ex-

tended. See Section 3.5.4.4.

Note: A burst sequence is not stopped by the assertion of BER. See Note 3
in Section 3.5.5.

3.5.4.4 Cycle Extension

To allow sufficient access time for any speed of memory or
peripheral device, the NS32532 provides for extension of a
bus cycle. Any type of bus cycle except a slave processor
cycle can be extended.

A bus cycle can be extended by causing state T2 for a
normal cycle or state T2B for a Burst cycle to be repeated.

At the end of each T2 or T2B state, on the rising edge of
BCLK, the RDY line is sampled by the CPU. If RDY is active,
then the transfer cycle will be completed. If RDY is inactive,
then the bus cycle is extended by repeating the T-state for
another clock cycle. These additional T-states inserted by
the CPU in this manner are called ‘WAIT’ states.

During a transfer the CPU samples the input control signals
BIN, BER, BRT, BWO0-1, CIIN and IODEC.

When wait states are inserted, only the values of these sig-
nals sampled during the last wait state are significant.
Figures 3-26 and 4-8 (in Section 4) illustrate both a normal
read cycle and a Burst cycle with wait states added through
the RDY pin.

Note: If RST is asserted during a bus cycle, then the cycle is terminated
without regard of RDY.

3.5.4.5 Interlocked Bus Cycles

The NS32532 supports indivisible read-modify-write trans-
actions by asserting the ILO signal during consecutive read
and write operations. See Figure 4-7 in Section 4.

Interlocked transactions are always preceded and followed
by one or more idle T-states.

The TLO signal is asserted in the middle of the idle T-state
preceding state T1 of the read operation, and is deasserted
in the middle of one of the idle T-states following completion
of the write operation, including any retried bus cycles.

No other bus operations (e.g., instruction fetches) will occur
while an interlocked transaction is taking place.

Interlocked transactions are required in multiprocessor sys-
tems to handle shared resources. The CPU uses them to
reference data while executing a CBITli or SBITli instruction,
during which a single byte of data is read and written. They
are also used when the on-chip MMU is updating a Level-2
Page Table Entry during a Page Table Lookup.

In this case a double-word is read and written. If the Level-2
Page Tables are located in a memory area whose width is
other than 32 bits, multiple interlocked reads followed by
multiple interlocked writes will result. The TLO signal is al-
ways released for one or more clock cycles in the middle of
two consecutive interlocked transactions.

Note 1: If a bus error is detected during an interlocked read cycle, the sub-

sequent interlocked write cycle will not be performed, and ILO is
deasserted before the next bus cycle begins.

Note 2: The CPU may assert ILO before a read cycle that is cancelled (for
example, due to a TLB miss). In such a case, the CPU deasserts
L0 before performing any additional bus cycles.

3.5.4.6 Interrupt Control Cycles

The CPU generates Interrupt-Acknowledge bus cycles in re-
sponse to non-maskable interrupt and enabled maskable
interrupt requests.

The CPU also generates one or two End-of-Interrupt bus
cycles during execution of the Return-from-Interrupt (RETI)
instruction.

The timing for the interrupt control cycles is the same as for
the basic memory read cycle shown in Figure 3-23; only the
status presented on pins ST0-4 is different. These cycles
are single-byte read cycles, and they always bypass the
data cache.

Table 3-4 shows the interrupt control sequences associated
with each interrupt and with the return from its service pro-
cedure.

3.5.4.7 Slave Processor Bus Cycles

The NS32532 performs bus cycles to transfer information to
or from slave processors while executing floating-point or
custom-slave instructions.

The CPU uses slave write bus cycles to broadcast the iden-
tification and operation codes of a slave instruction as well
as to transfer operands from memory or general purpose
registers to a slave.

Figure 3-27 shows the timing for a slave write bus cycle.
The CPU asserts SPC during T1; the status is valid during
T1 and T2. The operation code or operand is output on the
data bus from the middle of T1 until the end of T2. The
address line A9 is used during the transfer of the operation
code to communicate to the slave the value of the | bit in the
PSR register. A9 is high when the | bit is 1.

The CPU uses a slave read bus cycle to transfer a result
operand from a slave to either memory or a general purpose
register. A slave read cycle is also used to read a status
word when the FSSR signal is asserted. Figure 3-28 shows
the timing for a slave read bus cycle.

During T1 and T2 the CPU drives the status lines and as-
serts SPC. The data from the slave is sampled at the end of
T2.

The CPU will never perform another slave cycle immediately
following a slave read cycle. In fact, the T-state following
state T2 of a slave read cycle is either an idle T-state or the
T1 state of a memory cycle.

Slave processor data transfers are always 32 bits wide. If
the operand is a single byte, then it is transferred on DO
through D7. If it is a word, then it is transferred on DO
through D15.

When two operands are transferred, operand 1 is trans-
ferred before operand 2. For double-precision operands, the
least-significant double-word is transferred before the most-
significant double-word.

During a slave bus cycle the output signals BEO-3 are un-
defined while the input signals BWO-1 and RDY are ig-
nored.

BER and BRT must be kept high.

2-54

3.0 Functional Description (continued)

ANY
_ I T=STATE; Tt | T2 | T2(W) |T1 ORTi|

BCLK

A0=31 :::X X
wmzmwwmr"T"@

0€-2€SZESN/S2-2ESCESN/02-CEGZESN

AN Y X

| ZZITITITIT <N L7,

W[ZV// LI | LU

BER :’ iy | N

gout 7

S

oo [2T 7
e XX X
CASEC [X1 X X

3-26. Cycle Extension of a Basic Read Cycle

TL/EE/9354-31

2-55

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
TABLE 3-4. Interrupt Sequences

DataA Bus
4 N\
Cycle Status Address DDIN BE3 BE2 BE1 BE0O Byte3 Byte2 Bytel Byte 0
A. Non-Maskable Interrupt Control Sequences
Interrupt Acknowledge
1 00100 FFFFFF004g 0 1 1 1 0 X X X X
Interrupt Return
None: Performed through Return from Trap (RETT) instruction.
B. Non-Vectored Interrupt Control Sequences
Interrupt Acknowledge
1 00100 FFFFFEOO¢g 0 1 1 1 0 X X X X
Interrupt Return
1 00110 FFFFFEOO¢g 0 1 1 1 0 X X X X
C. Vectored Interrupt Sequences: Non-Cascaded
Interrupt Acknowledge
1 00100 FFFFFEO0O¢g 0 1 1 1 0 X X X Vector:
Range: 0-127

Interrupt Return
1 00110 FFFFFEOO4g 0 1 1 1 0 X X X

D. Vectored Interrupt Sequences: Cascaded
Interrupt Acknowledge
1 00100 FFFFFEOO¢g 0 1 1 1 0 X X X

(The CPU here uses the Cascade Index to find the Cascade Address)

2 001101 Cascade 0 See Note
Address data bus.
Interrupt Return
1 00110 FFFFFEOO4g 0 1 1 1 0 X X X
(The CPU here uses the Cascade Index to find the Cascade Address)
2 00111 Cascade 0 See Note X X X
Address
X = Don't Care

Note: BEO-BES signals will be activated according to the cascaded ICU address

Vector: Same as
in Previous Int.
Ack. Cycle

Cascade Index:
range —16to —1

Vector, range 16-255; on appropriate byte of

Cascade Index:
Same asin
previous Int.
Ack. Cycle

X

2-56

3.0 Functional Description (continued)

ANY
IT=STATE; Tt) T2 Tl orTi)
BCLK]
- |

o-31|, > pata out|)

$PC L/

o0 / \
ST0-4 X X

TL/EE/9354-32
FIGURE 3-27. Slave Processor Write Cycle

3.5.5 Bus Exceptions

The NS32532 has the capability of handling errors occurring
during the execution of a bus cycle. These errors can be
either correctable or incorrectable, and the CPU can be no-
tified of their occurrence through the input signals BRT and/
or BER.

Bus Retry

If a bus error can be corrected, the CPU may be requested
to repeat the erroneous bus cycle. The request is done by
asserting the BRT signal. BRT is sampled at the end of
state T2 or T2B.

When the CPU detects that BRT is active, it completes the
bus cycle normally, but ignores the data read in case of a
read cycle, and maintains a copy of the data to be written in
case of a write cycle. Then, after a delay of two clock cy-
cles, it will start executing the bus cycle again.

If the transfer cycle is multiple (e.g., for non-aligned data),
only the problematic part will be repeated.

For instance, if a non-aligned double-word is being trans-
ferred and the second half of the transfer fails, only the
second part will be repeated.

The same applies for a retry during a burst sequence. The
repeated cycle will begin where the read operation failed
(rather than the first address of the burst) and will finish the
original burst.

Figures 3-29 and 4-10 (in Section 4) show the BRT timing
for a basic access cycle and for burst cycles respectively.
The CPU always waits for BRT to be HIGH before repeating
the bus cycle. While BRT is LOW, the CPU places all the
output signals shown in Figure 4-11in a TRI-STATE® condi-
tion.

Bus Error

If a bus error is incorrectable the CPU may be requested to
interrupt the current process and branch to an appropriate
procedure to handle the error. The request is performed by

ANY

IT=STATE} T | T2 TlorTi)

BCLK

i

DO =31 JDATA IN,‘

SPC \ /

N

0D AN /[

sw-4L X

TL/EE/9354-33
FIGURE 3-28. Slave Processor Read Cycle

activating the BER signal. BER is sampled by the CPU at
the end of state T2 or T2B on the rising edge of BCLK.
When BER is sampled active, the CPU completes the bus
cycle normally. If a bus error occurs during a bus cycle for a
reference required to execute an instruction, then a bus er-
ror exception is recognized. However, if an error occurs dur-
ing an acknowledge cycle of another exception or during
the ICU read cycle of a RET! instruction, the CPU interprets
the event as a fatal bus error and enters the ‘halted’ state.

In this state the CPU floats its address and data buses and
places a special status code on the STO-4 lines. The CPU
can exit this condition only through a hardware reset. Refer
to Section 3.2.6 for more details on bus error.

Note 1: If the erroneous bus cycle is extended by means of wait states, then
the CPU uses the values of BRT and/or BER sampled during the
last wait state.

Note 2: If the CPU samples both BRT and BER active, BRT has higher
priority. The bus error indication is ignored, and the bus cycle is
repeated.

Note 3: If BER is asserted during a bus cycle of a multi-cycle data transfer,
the CPU completes the entire transfer normally, but the data will be
ignored. The CPU also ignores any subsequent assertion of BER
during the same data transfer.

Note 4: Neither BRT nor BER should be asserted during the T2 state of a
slave processor bus cycle.

3.5.6 Dynamic Bus Configuration

The NS32532 is tuned to operate with 32-bit wide memory
and peripheral devices. The bus also supports 8-bit and
16-bit data widths, but at reduced efficiency. The CPU can
switch from one bus width to another dynamically; the only
restriction is that the bus width cannot change for locations
within an aligned 16-byte block.

The CPU determines the bus width in effect for a bus cycle
by using the values of the BWO and BW1 signals sampled
during the last T2 state. Values of BWO and BW1 sampled
before the last T2 state or during T2B states are ignored.
Whenever a bus width other than 32-bit is sampled by the
CPU, the bus remains idle for 2 clock cycles before the next
bus cycle can be initiated.

2-57

0€-2ESCESN/G2-2EGCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

ROY

BRT

BER

BWO-1,
CIIN, I0DEC

BEO-3,5T0- 4,
U/, ciou, ioiNH

CASEC

- XD-1<

CONF
T | 7777777 ZI77I7700N [7777,
T | 77707777070 <.
2777 NI
o
WL
T XTI T2 XTI,
[IXIX X IXIX X

ANY

_ |T=STATE; T | T2 JTMORTi; Ti [| T2 1 TlorTiy

T - -1 =A@y - =F = 1= 2= =F =1 = 1K) - -
\ / \
ms| (N N\ _/ ANV
' / / / 7
71\ / | /TN

XX X

FIGURE 3-29. Bus Retry During a Basic Read Cycle

TL/EE/9354-34

2-58

3.0 Functional Description (continued)

The various combinations for BWO and BW1 are shown be-
low.

BW1 BWO
0 0 Reserved
0 1 8-Bit Bus
1 0 16-Bit Bus
1 1 32-Bit Bus

The bus width must always be 32 bits during slave cycles.
An important feature of the NS32532 is that it does not
impose any restrictions on the data alignment, regardless of
the bus width.

Bus accesses are performed in double-word units. Access-
es of data operands that cross double-word boundaries are
decomposed into two or more aligned double-word access-
es.

The CPU provides four byte enable signals (BEO-3) which
facilitate individual byte accessing on either a 32-bit or a
16-bit bus.

Figures 3-30 and 3-31 show the basic interfaces for 32-bit
and 16-bit memories. An 8-bit memory interface (not shown)
is even simpler since it does not use any of the BE0-3
signals and its single bank is always enabled whenever the
memory is selected. Each byte location in this case is se-
lected by address bits A0-31.

The NS32532 does not keep track of the bus width used in
previous instruction fetches or data accesses. At the begin-
ning of every memory transaction, the CPU always assumes
that the bus is 32-bit wide and the BEO-3 signals are acti-
vated accordingly.

The BOUT signal is also asserted during instruction fetches
or data reads if the conditions for bursting are satisfied. If
the bus is other than 32-bit wide, the BIN signal is ignored
and BOUT is deasserted at the beginning of the T state
following T2, since burst cycles are not allowed for 8-bit or
16-bit buses.

5 G2 B B
A ——e | l
(NoTE)
8 BITS 8 BITS 8 BITS 8 BITS
A2=-31

LG
)

£
)
rqs
)
)
L6
pb

BYTE BYTE BYTE BYTE
#3 #2 # #0
D0 - 31 <
TL/EE/9354-35

FIGURE 3-30. Basic Interface for 32-Bit Memories
Note: The CACH signal must be asserted during cacheable read accesses.

The following subsections provide detailed descriptions of

the access sequences performed in the various cases.

Note: Although the NS32532 ignores the BIN signal for 8-bit and 16-bit bus
widths, it is recommended that BIN be asserted only if the system
supports burst transfers. This is to ensure compatibility with future
versions of the CPU that might support burst transfers for 8-bit and
16-bit buses.

A
3]
BEO
BE3

_BEl
CACH

8 BITS 8 BITS

Al=31

LG

BYTE BYTE
#1 #0
DO=-15

TL/EE/9354-36
FIGURE 3-31. Basic Interface for 16-Bit Memories

3.5.6.1 Instruction Fetch Sequences

The CPU performs two types of instruction fetch cycles: se-
quential and non-sequential. These can be distinguished
from each other by the differing status combinations on pins
STO0-4. For non-sequential instruction fetches the CPU
presents on the address bus the exact byte address of the
first instruction in the instruction stream that is about to be-
gin; for sequential instruction fetches, the address of the
next aligned instruction double-word is presented on the ad-
dress bus. The CPU always activates all byte enable signals
(BE0-3) for both sequential and non-sequential fetches.
BOUT is also asserted during T2 if the addressed double-
word is not the last in an aligned 16-byte block. Tables 3-5
to 3-7 show the fetch sequence for the various bus widths.
32-Bit Bus Width

The CPU reads the entire double-word present on the data
bus into its internal instruction buffer.

If BOUT and BIN are both active, the CPU reads up to 3
consecutive double-words using burst cycles. Burst cycles
are used for instruction fetches regardless of whether the
accesses are cacheable.

2-59

0€-2E€GCESN/S2-2€S2ESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

Example: JUMP @5

* The CPU performs a fetch cycle at address 5 with BEO-3
all active.

* Two burst cycles are then performed and addresses 8 and
12 are output while BEO-3 are kept active.

16-Bit Bus Width

The word on the least-significant half of the data bus is read

by the CPU. This is either the even or the odd word within

the required instruction double-word, as determined by ad-

dress bit 1.

The CPU then complements address bit 1, clears address

bit 0 and initiates a bus cycle to read the other word, while

keeping all the BEO-3 signals active.

These two words are then assembled into a double-word

and transferred into the instruction buffer.

In case of a non-sequential fetch, if the access is not cache-

able and the instruction address selects the odd word within

the instruction double-word, the even word is not fetched.

Example JUMP @6

e A fetch cycle is performed at address 6 with BEO-3 all
active.

* The word at address 4 is then fetched if the access is
cacheable.

8-Bit Bus Width

The instruction byte on the bus lines DO-7 is fetched. The
CPU performs three consecutive cycles to read the remain-
ing bytes within the required double-word, while keeping
BEO-3 all active. The 4 bytes are then assembled into a
double-word and transferred into the instruction buffer. For
a non-sequential fetch, if the access is not cacheable, the
CPU will only read the upper bytes within the instruction
double-word starting with the byte at the instruction ad-
dress.

Example: JUMP @7

e The CPU performs a fetch cycle at address 7 with BEO-3
all active.

® Bytes at addresses 4, 5 and 6 are then fetched consecu-
tively if the access is cacheable.

TABLE 3-5. Cacheable/Non-Cacheable Instruction Fetches from a 32-Bit Bus
1. In a burst access four bytes are fetched with the L.S. bits of the address set to 00.

2. A ‘C’ onthe data bus refers to cacheable fetches and indicates that the byte is placed in the instruction cache. An ‘I’ refers
to non-cacheable fetches and indicates that the byte is ignored.

Number Address Address j—
of Bytes LSB Bytes to be Fetched Bus E0-3 Data Bus
1 11 BO — — — A LLLL BO C/1 C/I C/I
2 10 B1 BO — — A LLLL B1 BO C/I C/i
3 01 B2 B1 BO — A LLLL B2 B1 BO (o7]]
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-6. Cacheable/Non-Cacheable Instruction Fetches from a 16-Bit Bus
1. A bus access marked with **' in the ‘Address Bus’ column is performed only if the fetch is cacheable.
Number Address Address —
of Bytes LSB Bytes to be Fetched Bus BE0-3 Data Bus
1 11 BO — — — A LLLL — — BO C/
*A—3 LLLL — — C C
2 10 B1 BO — — A LLLL — — B1 BO
*A—2 LLLL — — C C
3 01 B2 B1 BO —_ A LLLL — — BO C/I
A+1 LLLL — — B2 B1
4 00 B3 B2 B1 BO A LLLL — — B1 BO
A+2 LLLL — — B3 B2

2-60

3.0 Functional Description (continued)
TABLE 3-7. Cacheable/Non-Cacheable Instruction Fetches from an 8-Bit Bus

Number Address Address —
of Bytes LSB Bytes to be Fetched Bus BEO-3 Data Bus
1 11 BO — — — A LLLL — — BO
*A—-3 LLet — — C
*A-2 LLLL — — C
*A—-1 LLLL — — C
2 10 B1 BO — — A LLLL — — BO
A+ 1 LLLL — — B1
*A-2 LLLL — — C
*A—1 LLLL — — C
3 01 B2 B1 BO — A LLLL — — BO
A+1 LLLL — — B1
A+2 LLLL — —_ B2
*A—-1 LLLL — — C
4 00 B3 B2 B1 BO A LLLL — — BO
A+1 LLLL — — B1
A+2 LLLL — — B2
A+3 LLLL — — B3

3.5.6.2 Data Read Sequences

The CPU starts a data read access by placing the exact
address of the operand on the address bus. The byte en-
able lines are activated to select only the bytes required by
the instruction being executed. This prevents spurious ac-
cesses to peripheral devices that might be sensitive to read
accesses, such as those which exhibit the characteristic of
destructive reading. If the on-chip data cache is internally
enabled for the read access, the BOUT signal is asserted at
the beginning of state T2. BOUT will be deasserted if the
data cache is externally inhibited (through CIIN or IODEC),
or the bus width is other than 32 bits. During cacheable
accesses the CPU always reads all the bytes in the double-
word, whether or not they are needed to execute the in-
struction, and stores them into the data cache. The external
memory, in this case, must place the data on the bus re-
gardless of the state of the byte enable signals.

If the data cache is either internally or externally inhibited
during the access, the CPU ignores the bytes not selected
by the BEO-3 signals. Data read sequences for the various
bus widths are shown in tables 3-8 to 3-10.

32-Bit Bus Width

The entire double-word present on the bus is read by the

CPU. If the access is cacheable and the memory allows

burst accesses, the CPU reads up to 3 additional double-

words within the aligned 16-byte block containing the first

byte of the operand. These burst accesses are performed in

a wrap-around fashion within the 16-byte block.

Example: MOVW @5, RO

® The CPU reads a double-word at address 5 while keeping
BE1 and BE2 active.

o |f the access is not-cacheable, BOUT is deasserted and
the data bytes 0 and 3 are ignored.

o If the access is cacheable, the CPU performs burst cycles
with BEO-3 all active, to read the double-words at ad-
dresses 8, 12, and 0.

16-Bit Bus Width

The word on the least-significant half of the data bus is read
by the CPU. The CPU can then perform another access
cycle with address bit 1 complemented and address bit 0
cleared to read the other word within the addressed double-
word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU ignores the bytes in

the double-word not selected by BEO-3. In this case, the

second access cycle is not performed, unless selected
bytes are contained in the second word.

Example: MOVB @5, RO

e The CPU reads a word at address 5 while keeping BE1
active.

o If the access is not cacheable, the CPU ignores byte 0.

e If the access is cacheable, the CPU performs another ac-
cess cycle, with BEO-3 all active, to read the word at
address 6.

8-Bit Bus Width

The data byte on the bus lines D0-7 is read by the CPU.

The CPU can then perform up to 3 access cycles to read

the remaining bytes in the double-word.

If the access is cacheable, the entire double-word is read

and stored into the cache.

If the access is not cacheable, the CPU will only perform

those access cycles needed to read the selected bytes.

Example: MOVW @5, RO

® The CPU reads the byte at address 5 while keeping BE1
and BE2 active.

¢ |f the access is not cacheable, the CPU activates BE2 and
reads the byte at address 6.

¢ If the access is cacheable, the CPU performs three bus
cycles with BEO-3 all active, to read the bytes at address-
es 6, 7 and 4.

2-61

0€-2ESCESN/G2-2ESCESN/02-2ESCESN

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)

TABLE 3-8. Cacheable/Non-Cacheable Data Reads from a 32-Bit Bus
1. In a burst access four bytes are read with the L.S. bits of the address set to 00.

2. A 'C’ on the data bus refers to cacheable reads and indicates that the byte is placed in the data cache. An ‘I’ refers to non-

cacheable reads and indicates that the byte is ignored.

Number Address Address ==
of Bytes LSB Bytes to be Read Bus BE0-3 Data Bus
1 00 — — — BO A HHHL G/l C/l G/l BO
1 01 — — BO — A HHLH (7]} C/\ BO C/\
1 10 — BO — —_ A HLHH (o7]] BO C/1 C/1
1 11 BO — — — A LHHH BO (o7]] C/1 C/I
2 00 — — B1 BO A HHLL G/l G/l B1 BO
2 01 — B1 BO — A HLLH C/l B1 BO C/1
2 10 B1 BO — — A LLHH B1 BO C/1 G/l
3 00 — B2 B1 BO A HLLL C/1 B2 B1 BO
3 01 B2 B1 BO — A LLLH B2 B1 BO C/
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-9. Cacheable/Non-Cacheable Data Reads from a 16-Bit Bus
1. A bus access marked with **’ in the ‘Address Bus’ column is performed only if the read is cacheable.
Number Address Data to be Read Address BEO-3 Data Bus
of Bytes LSB Bus Cach. | NonCach.
1 00 — — — BO A HHHL HHHL — — C/l BO
*A+ 2 LLLL — — C C
1 01 — — BO — A HHLH HHLH — — BO C/1
*A+ A1 LLLL — — C C
1 10 — BO — — A HLHH HLHH — — C/1 BO
*A-2 LLLL — — C C
1 11 BO — — — A LHHH LHHH — — BO G/l
*A—3 LLLL — — C C
2 00 — —_ B1 BO A HHLL HHLL — — B1 BO
*A+2 LLLL — — C C
2 01 — B1 BO — A HLLH HLLH — — BO C/1
A+1 LLLL HLHH — — C/1 B1
2 10 B1 BO —_ —_ A LLHH LLHH —_ —_ B1 BO
*A-2 LLLL — — C (o}
3 00 — B2 B1 BO A HLLL HLLL — — B1 BO
A+2 LLLL HLHH — — C/1 B2
3 01 B2 B1 BO — A LLLH LLLH — — BO (o7]]
A+ LLLL LLHH — — B2 B1
4 00 B3 B2 B1 BO A LLLL LLLL — — B1 BO
A+2 LLLL LLHH — — B3 B2

2-62

=
. . 2u (2]
3.0 Functional Description (continued) 8
13
TABLE 3-10. Cacheable/Non-Cacheable Data Reads from an 8-Bit Bus D8-12 %
U
BEO- N
Number Address Data to be Read Address BEO-3 Data Bus Q
of Bytes LSB Bus Cach. | NonCach. =2
[7]
1 00 — — — BO A HHHL HHHL — — — BO 3
A+ 1 LLLL — — — C 8
A+ 2 LLLL — — — o] N
*A+3 LLLL - — — ¢ |®
S~
1 01 — — BO — A HHLH HHLH — — — BO =
A+ 1 LLLL - — —- ¢ |&
*A+2 LLLL - - = ¢ |®
*A—1 LLLL — — — C S
1 10 - B — - A HLHH | HLHH [— — — B0 |Q
A+ 1 LLLL — — — C
*A—-2 LLLL — — — C
*A—1 LLLL — — — C
1 11 BO — — — A LHHH LHHH — — — BO
*A—3 LLLL — — — C
*A-2 LLLL — — — C
*A—1 LLLL — — — C
2 00 — — B1 BO A HHLL HHLL — —_ — BO
A+1 LLLL HHLH — — — B1
*A+2 LLLL — — — C
*A+ 3 LLLL — — — C
2 01 — B1 BO —_ A HLLH HLLH — — — BO
A+ LLLL HLHH — — — B1
*A+ 2 LLLL — — — C
*A—1 LLLL —_ —_ —_ C
2 10 B1 BO — — A LLHH LLHH — — — BO
A+1 LLLL LHHH — — — B1
*A-2 LLLL — — — C
*A -1 LLLL —_ — — C
3 00 — B2 B1 BO A HLLL HLLL — — — BO
A+1 LLLL HLLH — — — B1
A+2 LLLL HLHH — — — B2
*A+ 3 LLLL — — — C
3 01 B2 B1 BO —_ A LLLH LLLH —_ —_ —_ BO
A+1 LLLL LLHH — — — B1
A+2 LLLL LHHH — — — B2
*A—1 LLLL — — — C
4 00 B3 B2 B1 BO A LLLL LLLL — — — BO
A+1 LLLL LLLH — — — B1
A+2 LLLL LLHH — — — B2
A+3 LLLL LHHH — — — B3
3.5.6.3 Data Write Sequences 32-Bit Bus Width
In a write access the CPU outputs the operand address and The CPU performs only one access cycle to write the se-
asserts only the byte enable lines needed to select the spe- lected bytes within the addressed double-word.
cific bytes to be written. Example: MOVB RO, @6
In addition, the CPU duplicates the data to be written on the The CPU duplicates byte 2 of the data bus into byte 0 and
appropriate bytes of the data bus in order to handle 8-bit performs a write cycle at address 6 with BE2 active.
and 16-bit buses. 16-Bit Bus Width
The various access sequences as well as the duplication of .
data are summarized in tables 3-11 to 3-13. lc.’lge:c;t:;v: access cycles are needed to complete the write

2-63

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (continued)
Example: MOVW RO, @5
* The CPU duplicates byte 1 of the data bus into byte 0 and

performs a write cycle at address 5 with BE1 and BE2
active.

® A write at address 6 is then performed with BE2 active
and the original byte 2 of the data bus placed on byte 0.

8-Bit Bus Width

Up to 4 access cycles are needed in this case to complete

the write operation.

Example: MOVB RO, @7

® The CPU duplicates byte 3 of the data bus into bytes 0

ﬂd 1, and then performs a write cycle at address 7 with
BES3 active.

3.5.7 Bus Access Control

The NS32532 has the capability of relinquishing its control
of the bus upon request from a DMA device or another CPU.
This capability is implemented with the HOLD and HLDA

signals. By asserting HOLD, an external device requests ac-
cess to the bus. On receipt of HLDA from the CPU, the
device may perform bus cycles, as the CPU at this point has
placed all the output signals shown in Figure 3-32 into the
TRI-STATE condition.

To return control of the bus to the CPU, the external device
sets HOLD inactive, and the CPU acknowledges return of
the bus by setting HLDA inactive.

The CPU samples HOLD in the middle of each T-state on
the falling edge of BCLK. If HOLD is asserted when the bus
is idle between access sequences, then the bus is granted
immediately (see Figure 3-31). If HOLD is asserted during
an access sequence, then the bus is granted immediately
after the access sequence, including any retried bus cycles,
has completed (see Figure 4-13). Note that an access se-
quence can be composed of several bus cycles if the bus
width is 8 or 16 bits.

TABLE 3-11. Data Writes to a 32-Bit Bus

1. Bytes on the data bus marked with ‘®’ are undefined.

:lfu:;::; Ad:sr;ss Data to be Written Ad;l:sass BEO0-3 Data Bus
1 00 — — — BO A HHHL . . . BO
1 01 — — BO — A HHLH . . BO BO
1 10 —_ BO — — A HLHH J BO . BO
1 11 BO — — — A LHHH BO] BO BO
2 00 _ — B1 BO A HHLL . . B1 BO
2 01 — B1 BO — A HLLH . B1 BO BO
2 10 B1 BO — — A LLHH B1 BO B1 BO
3 00 — B2 B1 BO A HLLL . B2 B1 BO
3 01 B2 B1 BO — A LLLH B2 B1 BO BO
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
TABLE 3-12. Data Writes to a 16-Bit Bus
:'f";'::; Adfsr;ss Data to be Written Ad:;:ss BE0-3 Data Bus

1 00 — — — BO A HHHL]] L BO
1 01 — — BO — A HHLH U] BO BO
1 10 — BO — — A HLHH U BO] BO
1 1 BO — — — A LHHH BO] BO BO
2 00 — — B1 BO A HHLL . . B1 BO
2 01 — B1 BO — A HLLH . B1 BO BO
A+ HLHH . * ° B1

2 10 B1 BO — — A LLHH B1 BO B1 BO
00 — B2 B1 BO A HLLL L3 B2 B1 BO

A+2 HLHH . . . B2

3 01 B2 B1 BO — A LLLH B2 B1 BO BO
A+1 LLHH . . B2 B1

4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+2 LLHH . . B3 B2

2-64

=
. . . n
3.0 Functional Description (continued) 8
[3,)
TABLE 3-13. Data Writes to an 8-Bit Bus "g
U
Number Address . Address == 3
of Bytes LSB Data to be Written Bus BEO-3 Data Bus E
1 00 — — — BO A HHHL . . . Bo |8
N
1 01 — — BO — A HHLH . . BO BO a
1 10 — BO — - A HLHH . BO . B |
1 11 B0 — — — A LHHH | BO . B0 B0 §
2 00 — — B1 BO A HHLL . . B1 BO €
A+ HHLH o . . B1 n
2 01 — B1 BO — A HLLH o B1 BO BO «
A+1 HLHH D . . B1 '8
2 10 B1 BO — — A LLHH B1 BO B1 BO
A+ LHHH . . o B1
3 00 — B2 B1 BO A HLLL o B2 B1 BO
A+1 HLLH . . o B1
A+2 HLHH . . . B2
3 01 B2 B1 BO — A LLLH B2 B1 BO BO
A+1 LLHH . . . B1
A+2 LHHH o . . B2
4 00 B3 B2 B1 BO A LLLL B3 B2 B1 BO
A+1 LLLH . . . B1
A+2 LLHH . . . B2
A+3 LHHH o . . B3

2-65

NS32532-20/NS32532-25/NS32532-30

3.0 Functional Description (Continued)
oo T T

Ti

TE 1 Ti yTlorTi)

Peeeen -

lat-10X

-r-448

R Y CE

ssb-1]

if

s5p-as

$et-as

$5p-as

35 +-4

S5t

£C

eh)
{C

A0-3|[

D0 - 31 -:>---------~---
m).
i
m \
s .
m \
m \
m \

B‘:‘d-s: >

CASEc: >

STO-4[

7

TL/EE/9354-37

FIGURE 3-32. Hold Acknowledge. (Bus Initially Idle.)

Note: The status indicates ‘IDLE’ while the bus is granted. If the cause of the IDLE changes (e.g., CPU starts waiting for an interrupt), the status also changes.

The CPU will never grant the bus between interlocked read
and write bus cycles.
Note: If an external device requires a very short latency to get control of the

bus, the bus retry signal (BRT) can be used instead of hold. See
Section 3.5.5.

3.5.8 Interfacing Memory-Mapped 1/0 Devices

In Section 3.1.3.2 it was mentioned that some special pre-
cautions are needed when interfacing 1/0 devices to the
NS32532 due to its internal pipelined implementation. Two
special signals are provided for this purpose: TOINH and
IODEC. The CPU asserts IOINH during a read bus cycle to
indicate that the bus cycle should be ignored if an I/0 de-
vice is selected. The system responds by asserting IODEC
to indicate to the CPU that an /0O device has been select-
ed. IODEC is sampled by the CPU in the middle of state T2.
If the cycle is extended, then the CPU uses the TODEC val-
ue sampled during the last wait state. If a bus error or a bus
retry occurs, the sampled IODEC value is ignored. IODEC
must be kept high during burst transfer cycles.

When IODEC is active during a bus cycle for which IOINH is
asserted, the CPU discards the data and applies the special
handling required for I/0 devices. Figure 3-33 shows a pos-
sible implementation of an /0 device interface where the
address mapping of the 1/0 devices is fixed.

In an open system configuration, IODEC could be generated
by the decoding logic of each 1/0 device subsystem.
When the on-chip MMU is enabled, the CIOUT signal could
also be used for this purpose, since I/0 devices are located
in noncacheable areas. In this case however, a small per-
formance degradation could result, due to the fact that the
special 1/0 handling is also applied on references to non-
cacheable program and/or data areas.

Note 1: When TODEC is active in response to a read bus cycle, the CPU
treats the reference as noncacheable.

Note 2: IOINH is kept inactive during write cycles.

2-66

3.0 Functional Description (continued)

o CHIP
OINA
o Dc seeet | 1/0
ADDRESS :

DEVICE

I0DEC

NS32532

CPY DECODE

&
<

TL/EE/9354-38
FIGURE 3-33. Typical I/0 Device Interface

3.5.9 Interrupt and Debug Trap Requests

Three signals are provided by the CPU to externally request
interrupts and/or a debug trap. INT and NMI are for maska-
ble and non-maskable interrupts respectively. DBG is used
for requesting an external debug trap.

The CPU samples INT and NMI on every other rising edge
of BCLK, starting with the second rising edge of BCLK after
RST goes high.

NMI is edge-sensitive; a high-to-low transition on it is detect-
ed by the CPU and stored in an internal latch, so that there
is no need to keep it asserted until it is acknowledged.

INT is level-sensitive and, as such, once asserted, it must
be kept asserted until it is acknowledged.

The DBG signal, like NMI, is edge-sensitive; it differs from
NMI in that the CPU samples it on each rising edge of
BCLK. DBG can be asserted asynchronously to the CPU
clock, but it should be at least 1.5 clock cycles wide in order
to be recognized.

If DBG meets the specified setup and hold times, it will be
recognized on the rising edge of BCLK deterministically.

Refer to Figures 4-19 and 4-20 for more details on the tim-
ing of the above signals.

Note: If the NMI signal is pulsed to request a non-maskable interrupt, it may
be necessary to keep it asserted for a minimum of two clock cycles to
guarantee its detection, unless extra logic ensures that the pulse oc-
curs around the BCLK sampling edge.

3.5.10 Cache Invalidation Requests

The contents of the on-chip Instruction and Data Caches
can be invalidated by external requests from the system. It
is possible to invalidate a single set or all sets in the Instruc-
tion Cache, Data Cache or both. The input signals INVIC
and INVDC request invalidation of the Instruction Cache
and Data Cache respectively. The input signal INVSET indi-
cates whether the invalidation applies to a single set (16
bytes for the Instruction Cache and 32 bytes for the Data
Cache) or to the entire cache. When only a single set is
invalidated, the set number is specified on CIAO-CIAS.

INVIC, INVDC, INVSET and CIA0-CIA6 are all sampled
synchronously by the CPU on the rising edge of BCLK. The
CPU can respond to cache invalidation requests at a rate of
one per BCLK cycle.

As shown in Figures 3-16 and 3-77, the validity bits of the
on-chip caches are dual-ported. One port is used for ac-
cessing and updating the caches, while the other port is
used independently for invalidation requests. Consequently,
invalidation of the on-chip caches occurs with no interfer-
ence to on-going cache accesses or bus cycles.

A cache invalidation request can occur during a read bus
cycle for a location affected by the invalidation. In such a
case, the data will be invalid in the cache if the invalidation
request occurs during or after the T2- or T2B-state of the
bus cycle.

Refer to Figure 4-18 in Section 4 for timing details.

3.5.11 Internal Status

The NS32532 provides information on the system interface
concerning its internal activity.

The U/S signal indicates the Address Space for a memory
reference (See Section 2.4.2).

Note that U/S does not necessarily reflect the value of the
U bit in the PSR register. For example, U/S is high during
the memory access used to store the destination operand of
a MOVSU instruction.

The PFS signal is asserted for one BCLK cycle when the
CPU begins executing a new instruction. The ISF signal is
driven High along with PFS if the new instruction does not
follow the previous instruction in sequence. More specifical-
ly, ISF is High along with PFS after processing an exception
or after executing one of the following instructions: ACB
(branch taken), Bcond (branch taken), BR, BSR, CASE,
CXP, CXPD, DIA, JSR, JUMP, RET, RETT, RETI, and RXP.

The BP signal is asserted for one BCLK cycle when an ad-
dress-compare or PC-match condition is detected. If the BP
signal is asserted one BCLK cycle after PFS, it indicates
that an address-compare debug condition has been detect-
ed. If BP is asserted at any other time, it indicates that a PC-
Match debug condition has been detected.

While executing an LMR or CINV instruction, the CPU dis-
plays the operation code and source operand using slave
processor write bus cycles. This information can be used to
monitor the contents of the on-chip TLB, Instruction Cache
and Data Cache.

During idle bus cycles, the signals ST0O~ST4 indicate wheth-
er the CPU is waiting for an interrupt, waiting for a Slave
Processor to complete executing an instruction or halted.

2-67

0€-2EGCESN/SC-CESTESN/0C-CESCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications

—>|CLK
—>|SWNC
<+——{BCLK

<+— BCIK
BUS ACCESS {—> HOLD

CLOCKING

CONTROL | =g HLDA

RESET e RST

EXCEPTION >IN
REQUEST] —P|NM!
—

<+—]PFs
+«—FF
U5
+«——|5F

INTERNAL
STATUS

—)
—>|iNVSET
—>{iNVDC
INVIC
<—]CAsEC
<+—]ciout
—>|CIN

CACHE CONTROL

NS32532

A0~ 31

D0 31 ;‘::)

I

STO- 4

fOINH
i0DEC

iniininilin

s

ADDRESS

DATA

BUS TIMING AND
CONTROL OUTPUTS

BUS CONTROL
INPUTS

SLAVE TIMING
AND CONTROL

} BURST CONTROL

} 1/0 CONTROL

TL/EE/9354-39

FIGURE 4-1. NS32532 Interface Signals

4.1 NS32532 PIN DESCRIPTIONS
Descriptions of the NS32532 pins are given in the following

sections.

Included are also references to portions of the functional
description, Section 3.

Figure 4-1 shows the NS32532 interface signals grouped
according to related functions.

Note: An asterisk next to the signal name indicates a TRI-STATE condition
for that signal when HOLD is acknowledged or during an extended

retry.
4.1.1 Supplies
VCCL1-6 Logic Power.
+ 5V positive supplies for on-chip logic.
VCCB1-14 Buffers Power.
+5V positive supplies for on-chip output
buffers.
VCCCLK Bus Clock Power.
+ 5V positive supply for on-chip clock driv-
ers.
GNDL1-6 Logic Ground.
Ground references for on-chip logic.
GNDB1-13 Buffers Ground.
Ground references for on-chip output buffers.
GNDCLK Bus Clock Ground.

Ground reference for on-chip clock drivers.

4.1.2 Input Signals

CLK

SYNC

HOLD

Clock.

Input Clock used to derive all CPU Timing.
Synchronize.

When SYNC is active, BCLK will stop tog-
gling. This signal can be used to synchronize
two or more CPUs (Section 3.5.2).

Hold Request.

When active, causes the CPU to release the
bus for DMA or multiprocessing purposes
(Section 3.5.7).

Note:

If the HOLD signal is generated asynchronously, its set
up and hold times may be violated. In this case it is rec-
ommended to synchronize it with CLK to minimize the
possibility of metastable states.

The CPU provides only one synchronization stage to min-
imize the HLDA latency. This is to avoid speed degrada-
tions in cases of heavy HOLD activity (i.e. DMA controller
cycles interleaved with CPU cycles).

Reset.

When RST is active, the CPU is initialized to
a known state (Section 3.5.3).

Interrupt.

A low level on this signal requests a maska-
ble interrupt (Section 3.5.9).

Nonmaskable Interrupt.

A High-to-Low transition of this signal re-
quests a nonmaskable interrupt (Section
3.5.9).

2-68

4.0 Device Specifications (continued)

DBG

CIA0-6

INVSET

CIIN

FSSR

@
z

|

3]
=]
<|

BWO0-1

Debug Trap Request.

A High-to-Low transition of this signal re-
quests a debug trap (Section 3.5.9).

Cache Invalidation Address Bus.

Bits 0 through 4 specify the set address to
invalidate in the on-chip caches. CIAQ is the
least significant. Bits 5 and 6 are reserved
(Section 3.5.10).

Invalidate Set.

When Low, only a set in the on-chip cache(s)
is invalidated; when High, the entire cache(s)
is (are) invalidated.

Invalidate Data Cache.

When Low, the Data Cache contents are in-
validated. INVSET determines whether a sin-
gle set or the entire Data Cache is invalidat-
ed.

Invalidate Instruction Cache.

When Low, the Instruction Cache contents
are invalidated. INVSET determines whether
a single set or the entire Instruction Cache is
invalidated.

Cache Inhibit In.

When active, indicates that the location refer-
enced in the current bus cycle is not cache-
able. CIIN must not change within an aligned
16-byte block.

1/0 Decode.

Indicates to the CPU that a peripheral device
is addressed by the current bus cycle. The
value of IODEC must not change within an
aligned 16-byte block (Section 3.5.8).

Force Slave Status Read.

When asserted, indicates that the slave
status word should be read by the CPU (Sec-
tion 3.1.4.1). An external 10 kQ resistor
should be connected between FSSR and
Vee.

Slave Done.

Used by a slave processor to signal the com-
pletion of a slave instruction (Section
3.1.4.1). An external 10 kQ} resistor should be
connected between SDN and Vgc.

Burst In.

When active, indicates to the CPU that the
memory supports burst cycles (Section
3.5.4.3).

Ready.

While this signal is not active, the CPU ex-
tends the current bus cycle to support a slow
memory or peripheral device.

Bus Width.

These lines define the bus width (8, 16 or 32
bits) for each data transfer; BWO is the least
significant bit. The bus width must not
change within an aligned 16-byte block—en-
codings are:

00—Reserved

01—8 Bits

2]
m
T

10—16 Bits

11—32 Bits

Bus Retry.

When active, the CPU will reexecute the last
bus cycle (Section 3.5.5).

Bus Error.

When active, indicates that an error occurred
during a bus cycle. ltis treated by the CPU as
the highest priority exception after reset.

4.1.3 Output Signals

BCLK

CLK

LDA

I

o
|
[/

CASEC

ClouT

Bus Clock.

Output clock for bus timing (Section 3.5.2).
Bus Clock Inverse.

Inverted output clock.

Hold Acknowledge.

Activated by the CPU in response to the
HOLD input to indicate that the CPU has re-
leased the bus.

Program Flow Status.

A pulse on this signal indicates the beginning
of execution for each instruction (Section
3.5.11).

Internal Sequential Fetch.

Indicates along with PFS that the instruction
beginning execution is sequential (ISF Low)
or non-sequential (ISF High).
User/Supervisor.

User or supervisor mode status.

Break Point.

This signal is activated when the CPU de-
tects a PC or operand-address match debug
condition (Section 3.3.2).

*Cache Section.

For cacheable data read bus cycles indicates
the Section of the on-chip Data Cache where
the data will be placed; undefined for other
bus cycles. This signal can be used for exter-
nal monitoring of the data cache contents.
Cache Inhibit Out.

This signal reflects the state of the Cl bit in
the second level page table entry (PTE). Itis
used to specify non-cacheable pages. It is
held low while address translation is disabled
and for MMU references to page table en-
tries.

170 Inhibit.

Indicates that the current bus cycle should
be ignored if a peripheral device is ad-
dressed.

Slave Processor Control.

Data strobe for stave processor transfers.
*Burst Out.

When active, indicates that the CPU is re-
questing to perform burst cycles.
Interlocked Operation.

When active, indicates that interlocked cy-
cles are being performed (Section 3.5.4.5).

2-69

0€-2€GCESN/S2-2€S2ESN/02-¢ESCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)
DDIN *Data Direction.

Indicates the direction of a data transfer. It is
low for reads and high for writes.
*Confirm Bus Cycle.
When active, indicates that a bus cycle initia-
ted by ADS is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).
BMT *Begin Memory Transaction.
When Stable Low indicates that the current
bus cycle is valid; that is, the bus cycle has
not been cancelled (Section 3.5.4.2).
ADS *Address Strobe.
When active, indicates that a bus cycle has

begun and a valid address is on the address
bus.

(o]
O
4
-

BE0-3 *Byte Enables.
Used to selectively enable data transfers on
bytes 0~3 of the data bus.

ST0-4 Status.

Bus cycle status code; STO is the least signif-
icant. Encodings are:

00000—Idle: CPU Inactive on Bus.
00001—Idle: WAIT Instruction.
00010—Idle: Halted.

00011—Idle: The bus is idle while the slave
processor is executing an instruction.

00100—Interrupt Acknowledge, Master.

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Temperature Under Bias 0°Cto +70°C
Storage Temperature —65°Cto +150°C

00101—Interrupt Acknowledge, Cascaded.
00110—End of Interrupt, Master.
00111—End of Interrupt, Cascaded.
01000—Sequential Instruction Fetch.
01001—Non-Sequential Instruction Fetch.
01010—Data Transfer.

01011—Read Read-Modify-Write Operand.
01100—Read for Effective Address.
01101—Access PTE1 by MMU.
01110—Access PTE2 by MMU.

01111

. Reserved.

L]

11100

11101—Transfer Slave Operand.
11110—Read Slave Status Word.
11111—Broadcast Slave ID.
*Address Bus.

Used by the CPU to output a 32-bit address
at the beginning of a bus cycle. AO is the
least significant.

A0-31

4.1.4 Input/Output Signals
D0-31 *Data Bus.

Used by the CPU to input or output data dur-
ing a read or write cycle respectively.

All Input or Output Voltages with

Respect to GND —0.5Vto +7V
Power Dissipation 4 W
Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS Tp = 0° to +70°C, Vgg = 5V 5%, GND = 0V

Symbol Parameter Conditions Min Typ Max Units
Vin High Level Input Voltage 2.0 Vgc + 0.5 \2
ViL Low Level Input Voltage —0.5 0.8 v
" Vou High Level Output Voltage loq = —400 pA 2.4 \"
VoL Low Level Output Voltage
A0-11, D0-31, DDIN loL = 4mA 0.4 \
CONF, BMT loL = 6mA 0.4 \
BCLK, BCLK loL = 16 mA 0.4 \
All Other Outputs loL=2mA 0.4 \
I Input Load Current 0<V|N<Vce —-20 20 BA
IL Leakage Current (Output and 0.4 <V|N < Vco —20 .20 pA
170 pins in TRI-STATE/Input Mode)
lcc Active Supply Current lout = 0,TA = 25°C 750 mA

=
- aps . wn
4.0 Device Specifications (continued) @
[3]
Connection Diagram S
N
S(EPPPPEPRPPEEEEE G G O) s
4 [CXOXOXOXOXOXOXOXOXOXOXOXOXOXOXC), @
4 [OXONOXOXOXOXOXOXOXOXOXOXOXOXOXO) P
] OIOXONOXOXOXOXOROJOROROXOXOXOKO) g
MO O @O P
LI®® © @O0 >
Ko © ©O 0 %
J
©e® NS32532 OJORO o
HOE O ©@e 0 N
J[cJoXo] @O0 8
Floe® ®O 0
3[CJoXO) ©O0
l[cJoXeJoleJeloleleloreloleyelele)
4 [OXOXOXOXOJOXOXOXOXOROXOJOXOXOXO)
l0ePEPEPEPEOPOO®O OO
N (cJoJoJojoXoJoJoJoJoXoJoJoJoXo
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TL/EE/9354-40
Bottom View
FIGURE 4-2. 175-Pin PGA Package
NS32532 Pinout Descriptions
Desc Pin Desc Pin Desc Pin Desc Pin Desc Pin | Desc Pin
Reserved A1 | D26 B16 | GNDB13 | D14 GNDL6 J14 | GNDL5 N9 | AO R6
Reserved A2 | Reserved | C1 | VCCB14 | D15 VCCL5 J15 | CONF N10 | VCCB9 R7
Reserved A3 | Reserved | C2 | D23 D16 D13 J16 | RDY N11 | CIOUT R8
BP A4 | VCCL2 C3 | IOINH E1 VCCB6 K1 HOLD N12 | SPC R9
ISF A5 | Reserved | C4 | ILO E2 A23 K2 | vCCBi11 N13 | BE3 R10
RST A6 | PFS C5 | GNDB3 E3 GNDL4 K3 | GNDB10 | N14 | VCCB10 | R11
NMI A7 | SDN C6 | D24 E14 GNDB11 | K14 | D4 N15 | ADS R12
GNDBH1 A8 | Reserved | C7 | D22 E15 D11 K15 | D6 N16 | BW1 R13
Reserved A9 | BCLK C8 | D20 E16 D12 K16 | A16 P1 | BER R14
VCCB2 A10 | VCCCLK | C9 | A30 F1 A22 L1 VCCB7 P2 | CIIN R15
INVIC A11 | SYNC C10 | CASEC F2 A21 L2 | GNDB6 P3 | D2 R16
Reserved (1) | A12 | CIAO C11 | Reserved | F3 VCCL3 L3 | A10 P4 | A13 Si
CIA1 A13 | CIA6 C12 | D21 F14 D8 L14 | A6 P5 A8 82
ClA4 A14 | VCCL6 C13 | D19 F15 D9 L15 | A2 P6 A5 S3
VCCB1 A15 | D29 C14 | D18 F16 D10 L16 | ST3 P7 A3 S4
Reserved B1 | D27 C15 | A29 G1 A20 M1 | GNDB8 P8 | Al S5
VCCB4 B2 | D25 C16 | A31 G2 GNDBS5 M2 | VCCL4 P9 | ST2 S6
Reserved B3 | U/S D1 | VCCB5 G3 A17 M3 | BE1 P10 | ST1 s7
Reserved B4 | Reserved | D2 | GNDB12 | G14 D5 M14 | GNDB9 P11 | STO S8
VCCB3 B5 | Reserved | D3 | D17 G15 D7 M15 | BWO P12 | BOUT S9
FSSR B6 | GNDL3 D4 | D16 G16 VCCB12 | M16 | BIN P13 | DDIN S10
INT B7 | GNDB2 D5 | A27 H1 A19 N1 | Reserved | P14 | BE2 S11
VCCLA B8 | DBG D6 | A28 H2 A18 N2 | DO P15 | BEO S12
GNDL2 B9 | Reserved | D7 | GNDB4 H3 Al4 N3 | D3 P16 | BM S13
INVSET B10 | BCLK D8 | VCCB13 | H14 A1 N4 A15 R1 BRT S14
INVDC B11 [GNDCLK | D9 | D15 H15 VCCB8 N5 | A12 R2 | IODEC S15
CIA3 B12 | CLK D10 | D14 H16 GNDB7 N6 | A9 R3 | D1 S16
CIA5 B13 | CIA2 D11 | A26 J1 ST4 N7 | A7 R4
D30 B14 | D31 D12 | A25 J2 HLDA N8 | A4 R5
D28 B15 | GNDLT D13 | A24 J3 Note 1: This pin should be grounded.
All other reserved pins should be left open.

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)
4.4 SWITCHING CHARACTERISTICS
4.4.1 Definitions

All the timing specifications given in this section refer to
0.8V or 2.0V on all the signals as illustrated below, unless
specifically stated otherwise.

/ 2.0V
BCLK
\o.sv
r — —————\— 24V
SIG1
tsIG11
0.8V
0.45V
24V
tSiG2h
20v
SIG2
b — o e e e e —— 0.45V

TL/EE/9354-41
FIGURE 4-3. Timing Specification Standard
(Signal Valid after Clock Edge)

4.4.2 Timing Tables

ABBREVIATIONS:

L.E.—leading edge
T.E.—training edge

BCLK

SIG1

SIG2

R.E.—rising edge
F.E.—falling edge

2.0V\

o0.8v 7

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30
Maximum times assume capacitive loading of 100 pF on the clock signals and 50 pF on all the other signals. A minimum
capacitance load of 50 pF on BCLK and BCLK is also assumed.

i tSIG1I

tsiG2nh

F— — 24V

0.45V
24V

TL/EE/9354-42
FIGURE 4-4. Timing Specification Standard
(Signal Valid before Clock Edge)

Name | Figure | Description | Reference/Conditions NS32532-20 NS32532-25 NS32532-30 | ynits
Min Max Min Max Min Max
tsc 4-24 | Bus Clock Period | R.E., BCLK to Next
P RE. BCLK 50 100 40 100 33.3 100 ns
tac, 4-24 | BCLK High Time | At2.0V on BCLK 05 tac, 0.5 tag,, 0.5 tag,,
(Both Edges) —5ns —4ns —3ns
tag, 4-24 | BCLK Low Time | At0.8V on BCLK 0.5 tac,, 05 tac,, 0.51gc,,
(Both Edges) —5ns —4ns —3ns
tsc 4-24 | BCLKRise Time | 0.8Vt02.0Von
' R.E., BCLK 5 4 8 s
tBCy 4-24 | BCLK Fall Time 2.0Vto 0.8Von
F.E., BCLK 5 4 38 | s
tNBCh 4-24 | BCLK High Time | At2.0VonBCLK 0.5 tNBCp 0.5 tNBCp 0.5 tNBCp
(Both Edges) —5ns —4ns —3ns
tnag, 4-24 | BCIK Low Time | At0.8V on BCLK 0.5 tnac, 0.5 tnec, 0.5 tNcp
(Both Edges) —5ns —4ns —3ns
tNBC 4-24 | BCLK Rise Time | 0.8V to2.0Von
' R.E., BCLK 5 4 3| nms
NBG; 4-24 | BCLKFallTime | 2.0Vt00.8Von
F.E, BCLK 5 4 3 | ns
tcacy | 4-24 | CLKtoBCLK 2.0V onRE., CLK to
' R.E. Delay 2.0V on RE., BCLK i 1 121 ns
tceegs 4-24 | CLKto BCLK 2.0VonR.E, CLK to
F.E. Delay 0.8V on F.E., BCLK 7 14 124 ns
toneCy, | 4-24 | CLK1o BCLK 2.0V on R.E., CLK to
' R.E. Delay 0.8V on R.E., BCLK 17 14 12| ns

2-72

4.0 Device Specifications (continueq)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued)

NS32532-20

NS32532-25

NS32532-30

Name Figure Description Reference/Conditions Units
Min | Max [Min | Max | Min | Max
teNBCyt 4-24 CLK to BCLK 2.0VonR.E, CLK to
F.E. Delay 0.8V on F.E., BCLK 7 1 121 ns
tBCNBC 4-24 Bus Clocks Skew 2.0VonR.E.,, BCLK to _ _ _
0.8V on F.E., BCLK 2| *2 2| *2 T
tBCNBC, 4-24 Bus Clocks Skew 0.8VonF.E, BCLKto _ _ _
2.0V on R.E., BCLK 2| *2 2 *2 L R
tay 4-5,4-6 Adc’iress Bits 0-31 After R.E., BCLK T1 1 8 7 ns
Valid
ta, 4-5,4-6 | Address Bits 0~31 After R.E., BCLK T1 or Ti 0 0 0 ns
Hold
tag 4-11,4-12 Addn'ess Bits 0~31 After F.E., BCLK Ti 21 17 13 ns
Floating
tang 4-11,4-12 | Address .BltS 0-31 After F.E., BCLK Ti 0 0 0 ns
Not Floating
tABv 4-8 Adc.iress Bits A2, A3 After R.E., BCLK T2B 1 8 7 ns
Valid (Burst Cycle)
taBy, 4-8 Address Bits A2, A3 | After R.E., BCLK T2B 0 0 0 ns
Hold (Burst Cycle)
tpo, 4-6,4-15 | Data Out Valid After F.E., BCLK T1 13 12 11 ns
tboy, 4-6,4-15 | Data Out Hold After R.E.,,BCLK T1 or Ti 0 0 0 ns
tDOspc 4-15 Data Out getup Before SPCT.E. 8 6 5 ns
(Slave Write)
tpo; 4-7 Data Bus Floating After R:E., BCLK 21 17 13 ns
T1orTi
tDon¢ 4-7 Data Bus After F.E., BCLK T1 0 0 0 ns
Not Floating
tamTy 4-5,4-7 | BMT Signal Valid After R.E., BCLK T1 32 27 23 ns
tBMTh 4-5,4-7 | BMT Signal Hold After R.E., BCLK T2 0 0 0 ns
tBMT¢ 4-11,4-12 | BMT Signal Floating | After F.E., BCLK Ti 21 17 13 ns
tamTy; | 4-11,4-12 | BMT Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tCONF, 4-5,4-8 | CONF Signal Active | After F.E., BCLKT1 11 9 8 ns
tCONFia 4-5,4-8 | CONF Signal Inactive | After R.E., BCLK T1 or Ti 11 9 8 ns
tconr; | 4-11,4-12 | CONF Signal Floating | After F.E., BCLK Ti 21 17 13 ns
tconF,s | 4-11,4-12 | CONF Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tADS, 4-5,4-8 | ADS Signal Active After R.E., BCLK T1 11 8 7 ns
tADS;y 4-5,4-8 | ADS Signal Inactive | After F.E., BCLK T1 11 8 7 ns
taDs,, 4-6 DS Pulse Width At 0.8V (Both Edges) 15 12 10 ns
tADS; 4-11,4-12 | ADS Signal Floating | After F.E., BCLK Ti 21 17 13 ns

2-73

0€-2€S2ESN/G2-2ESTESN/02-CEGCESN

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)

4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued)

Name Figure Description Reference/Conditions NS32532-20 | NS32532-25 | NS32532-30 Units
Min | Max | Min | Max | Min | Max
taDsys | 4-11,4-12 | ADS Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tBE, 4-86,4-8 | BE, Signals Valid After R.E., BCLK T1 1 9 8 ns
tBE;, 4-6,4-8 | BE, Signals Hold After R.E., BCLK T1, 0 0 0 ns
TiorT2B
tBE; 4-11,4-12 | BE, Signals Floating After F.E., BCLK Ti 21 17 13 ns
tggy; | 4-11,4-12| BE, Signals After F.E., BCLK Ti 0 0 0 ns
Not Floating
topiy, | 4-5,4-6 | DDIN Signal Valid After R.E., BCLK T1 11 8 7 ns
topiNg | 4-5,4-6 DDIN Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns
toping | 4-11,4-12 DDIN Signal Floating After F.E., BCLK Ti 21 17 13 ns
toDINg | 4-11,4-12 | DDIN Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tspc, |4-14,4-15 SPC Signal Active After R.E., BCLK T1 19 15 12 ns
tspci, | 4-14,4-15 | SPC Signal Inactive After R.E., BCLK Ti, T1 or T2 19 15 12 ns
topspc 4-14 _g%NA\é:l‘llc; to Before SPC L.E. 0 0 0 ns
tHLDA, |4-12,4-13 HLDA Signal Active After F.E., BCLK Ti 15 1 10 ns
tHLDAS 4-12 HLDA Signal Inactive | After F.E., BCLK Ti 15 1 10 ns
tsTy 4-5,4-14 | Status (ST0-4) Valid After R.E., BCLK T1 1 8 7 ns
tsT), 4-5,4-14 | Status (STO-4) Hold After R.E., BCLK T1 or Ti 0 0 0 ns
tgouT, | 4-8,4-9 |BOUT Signal Active After R.E., BCLK T2 15 12 11 ns
touT;, | 4-8,4-9 | BOUT Signal Inactive f:::g::'ﬁ%ﬁi 15 12 11 ns
tgout; |4-11,4-12 BOUT Signal Floating | After F.E., BCLK Ti 21 17 13 ns
tgouTy | 4-11,4-12 | BOUT Signal After F.E., BCLK Ti 0 0 0 ns
Not Floating
tiLo, 4-7 Interlock Signal Active | After F.E., BCLK Ti 1 9 8 ns
Yo, 4-7 Interlock Signal Inactive | After F.E., BCLK Ti 1 9 8 ns
tprs, 4-21 PFS Signal Active After F.E., BCLK 15 11 10 ns
tPFS;y 4-21 PFS Signal Inactive After F.E., Next BCLK 15 11 10 | ns
sk, 4-22 ISF Signal Active After F.E., BCLK 15 11 10 ns
YUsFiy 4-22 ISF Signal Inactive After F.E., Next BCLK 15 11 10 ns
tBp, 4-23 BP Signal Active After F.E., BCLK 15 11 10 ns
B8P, 4-23 BP Signal Inactive After F.E., Next BCLK 15 11 10 ns
tus, 4-5 U/S Signal Valid After R.E., BCLK T1 1 9 8 ns
tusy, 4-5 U/S Signal Hold After R.E., BCLK T1 or Ti 0 0 0 ns

2-74

=
. aps . [72]
4.0 Device Specifications (continued) ©
N
[
4.4.2.1 Output Signals: Internal Propagation Delays, NS32532-20, NS32532-25, NS32532-30 (Continued) ‘Is’
U
N
Name Figure Description Reference/Conditions NS32632-20 | NS32532-25 | NS32532-30 Units 3
Min | Max | Min | Max | Min | Max -
p— w
tcas, 4-5 CASEC Signal Valid After F.E., BCLK T1 15 1 10 ns g
tcasy 4-5 CASEC Signal Hold After F.E, BLCK T1 or Ti 0 0 0 ns _3
pe— N
tcass | 4-11,4-12 | CASEC Signal Floating | After F.E., BLCK Ti 21 17 13 ns (3
f ~
tcasy | 4-11,4-12 'C\:lAtSFEIC Slgnal After F.E., BLCK Ti 0 0 0 ns &
ot Floating g
tcioy 4-5 CIOUT Signal Valid After R.E., BLCK T1 15 11 10 ns g
1)
tciop, 4-5 CIOUT Signal Hold After R.E., BLCK T1 or Ti 0 0 0 ns 8
tiol, 4-5 IOINH Signal Valid After R.E., BLCK T1 15 11 10 ns
I tion, 4-5 TOINH Signal Hold After RE.,BLCKTiorTi| 0 0 0 ns
4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, NS32532-30
Name Figure Description Reference/Conditions NS32532-20 | NS32532-25 | NS32532-30 Units
Min | Max | Min | Max | Min | Max
tc, 4-24 Input Clock Period | R.E., CLK to Next
P
RE. CLK 25 100 20 100 | 16.6 | 100 ns
tch 4-24 CLK High Time At 2.0V on CLK 0.5 tcp 0.5 tcp 0.5 tcp
(Both Edges) —5ns —5ns —4ns
tg 4-24 CLK Low Time At 0.8V on CLK 0.5 tcp 0.5 th 0.5 th
(Both Edges) —5ns —5ns —4ns
tc, 4-24 CLK Rise Time 0.8V to 2.0VonR.E, CLK 5 4 3 ns
tey 4-24 CLK Fall Time 2.0Vto 0.8VonF.E.,, CLK 5 4 3 ns
tDIg 4-5,4-14 | Data In Setup Before R.E., BLCK T1 or Ti 13 11 9 ns
DI 4-5,4-14 | Data In Hold After R.E., BCLK T1 or Ti 1 1 1 ns
tRDY, 4-5 RDY Setup Time Before B.E., BCLK T2(W), 22 18 15 ns
TiorTi
tRDYy, 4-5 DY Hold Time Ater RE BCLK T2(W), 1 1 1 ns
TiorTi
tBw, 4-5 BWO0-1 Setup Time | Before F.E.,BCLK T2or T2(W) | 21 17 14 ns
tBwp 4-5 BWO-1 Hold Time | After F.E., BCLK T2 or T2(W) 1 1 1 ns
tHoLDg | 4-12, 4-13 | HOLD Setup Time | Before F.E., BCLK 21 17 14 ns
tHoLDy, 4-12 HOLD Hold Time After F.E., BCLK 1 1 1 ns
tBINg 4-8 BIN Setup Time Before F.E.,, BCLK T2orT2(W) | 21 17 14 ns
tBINg 4-8 BIN Hold Time After F.E., BCLK T2 or T2(W) 1 1 1 ns

2-75

NS32532-20/NS32532-25/NS32532-30

4.0 Device Specifications (continued)

4.4.2.2 Input Signal Requirements: NS32532-20, NS32532-25, NS32532-30 (Continued)

Name | Figure Description Reference/Conditions NS32532-20 | NS32532-25 | NS32532-30 Units
Min | Max | Min [Max | Min | Max
tBER 4-6, 4-8 | BER Setup Time Before R.E., BCLK T1 or Ti 21 17 14 ns
tgER, | 4-6,4-8 BER Hold Time After R.E.,BCLKT1or Ti 1 1 1 ns
tgRTs | 4-6,4-8 BRT Setup Time Before R.E., BCLK T1 or Ti 21 17 14 ns
tgRT, | 4-6,4-8 BRT Hold Time After R.E.,, BCLK T1 or Ti 1 1 1 ns
tioDg 4-5 | TODEC Setup Time | Before F.E., BCLK T20r T2(W) [21 17 14 ns
tiopp, 4-5 | TODEC Hold Time | After F.E., BCLK T2 or T2(W) 1 1 1 ns
tpwR 4-26 ;cgzrf it%t;le to After VCC Reaches 4.5V 50 40 30 ps
tRsT, 4-27 | RST Setup Time Before R.E., BCLK 14 12 1 ns
tRSTyy 4-27 | RST Pulse Width At 0.8V (Both Edges) 64 64 64 thp
tellg 4-5 CIIN Setup Time Before F.E., BCLK T2 21 17 14 ns
tei, 4-5 CIIN Hold Time After F.E., BCLK T2 1 1 1 ns
tNT, 4-19 | INT Setup Time Before R.E., BCLK 14 12 1" ns
HINTy, 4-19 | INT Hold Time After R.E., BCLK 1 1 1 ns
tNMIg 4-19 | NMI Setup Time Before R.E., BCLK 20 17 16 ns
INMI, 4-19 | NMI Hold Time After R.E., BCLK 1 1 1 ns
tsDg 4-16 | SDN Setup Time Before R.E., BCLK 14 12 11 ns
tspy, 4-16 | SDN Hold Time After R.E., BCLK 1 1 1 ns
tFssSRg 4-17 | FSSR Setup Time Before R.E., BCLK 14 12 1 ns
trssr, | 4-17 | FSSRHoldTime | After R.E., BCLK 1 1 1 ns
tsyNcs | 4-25 | SYNC Setup Time | Before R.E., CLK 10 8 7 ns
tsync, | 4-25 | SYNCHold Time After R.E., CLK 1 1 1 ns
tciag 4-18 | CIAO-6 Setup Time | Before R.E., BCLK 16 13 11 ns
tcian 4-18 | CIA0-6 Hold Time | After R.E., BCLK 1 1 1 ns
tiNvsg 4-18 | INVSET Setup Time | Before R.E., BCLK 16 13 11 ns
tiNvsy 4-18 | INVSET Hold Time | After R.E., BCLK 1 1 1 ns
tiNvig 4-18 | INVIC Setup Time | Before R.E., BCLK 14 12 11 ns
tinvi, 4-18 | INVIC Hold Time After R.E., BCLK 1 1 1 ns
tiNvDg 4-18 | INVDC Setup Time | Before R.E., BCLK 16 13 11 ns
tinvp, | 4-18 | INVDCHold Time | After<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>