
LynxSoftTM 1394 Software
Application Programmer

User’s Guide

SLLU003
February 24, 1998

Preliminary
Version 2.2

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all
parameters of each device is not necessarily performed, except those mandated by government
requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR
SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of
TI products in such applications requires the written approval of an appropriate TI officer. Questions
concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

This application programmer interface is derived from the Microsoft 1394 BUS Interfaces
document. Portions of this document are copyrighted by Microsoft in their 1394 BUS Interfaces
document and are reprinted here with the permission of Microsoft Corporation. The interfaces
described herein are not guaranteed to remain static in the future. Users should migrate to the
Microsoft Win32 DDK when it is available.

iii

Preface

Read This FirstRead This First

The LynxSoftTM Application Programmer User’s Guide discusses the theory of
operation for the LynxSoft Application Programmer Interface (API). The 1394 bus
driver API commands are also covered. The commands are given as API
functional descriptions or device function requests. Parameter titles for each
function always appears in italics within the parameter listing. An installation
procedure is provided followed by the test application and the source code
needed. The configuration ROM is also described in this user guide.

If You Need Assistance. . .

If you want to. . . Do this. . .

Order Texas Instruments
documentation

Call the TI Literature Response Center:
(800) 477-8924

Ask questions about product
operation or report suspected
problems

Call Texas Instruments Mixed
Technical Support: (972) 480-4546
E-Mail: ANSW@msg.ti.com

Trademarks

LynxSoft and TI are trademarks of Texas Instruments Incorporated.
Sony is a trademark of the Sony Corporation.

iv

ContentsContents

1 INTRODUCTION.. 1-1

2 THEORY OF OPERATION... 2-1

2.1 LYNXSOFT API DESCRIPTION... 2-2
2.2 ISOCHRONOUS TRANSMISSION... 2-3
2.3 ASYNCHRONOUS TRANSMISSION... 2-5
2.4 BUS ENUMERATION.. 2-6

2.4.1 Initial Bus Reset... 2-6
2.4.2 Bus Enumeration.. 2-6
2.4.3 Bus Reset After Initial Enumeration... 2-6

3 LYNXSOFT API.. 3-1

3.1 CLS1394INITIALIZE .. 3-2
3.2 CLS1394CREATEFILE ... 3-3
3.3 CLS1394GETLASTERROR ... 3-4
3.4 CLS1394TERMINATE .. 3-6
3.5 CLS1394CLOSEHANDLE.. 3-7
3.6 CLS1394DEVICEIOCONTROL... 3-8

3.6.1 cls1394AllocateAddressRange.. 3-9
3.6.2 cls1394FreeAddressRange.. 3-13
3.6.3 cls1394AsyncRead.. 3-14
3.6.4 cls1394AsyncWrite... 3-15
3.6.5 cls1394AsyncLock.. 3-16
3.6.6 cls1394IsochAllocateBandwidth... 3-18
3.6.7 cls1394IsochAllocateChannel... 3-20
3.6.8 cls1394IsochAllocateResources.. 3-21
3.6.9 cls1394IsochAttachBuffers... 3-22
3.6.10 cls1394IsochDetachBuffers.. 3-25
3.6.11 cls1394IsochFreeBandwidth... 3-26
3.6.12 cls1394IsochFreeChannel.. 3-27
3.6.13 cls1394IsochFreeResources.. 3-28
3.6.14 cls1394IsochListen... 3-29
3.6.15 cls1394IsochStop.. 3-30
3.6.16 cls1394IsochTalk.. 3-31
3.6.17 cls1394IsochQueryCurrentCycleNumber.. 3-32
3.6.18 cls1394Get1394AddressFromDeviceObject.. 3-33
3.6.19 cls1394SetDeviceSpeed.. 3-34

3.7 CLS1394SENDLINKONPKT ... 3-35
3.8 CLS1394GETHANDLEFROMNODEID ... 3-36
3.9 GETDEVICEINFO .. 3-37

v

3.10 GETADAPTERADDRESS .. 3-38
3.11 BREADPHYREG .. 3-39
3.12 CRCCALCULATE... 3-40
3.13 CTDELAY... 3-41
3.14 CTMILLISEC... 3-42
3.15 CTMICROSEC.. 3-43
3.16 LYNXHALSCATTERLOCK... 3-44
3.17 LYNXHALSCATTERUNLOCK .. 3-45
3.18 LYNXHALPAGEALLOCBUFFER... 3-46
3.19 LYNXHALPAGEFREEBUFFER.. 3-47

4 INSTALLATION... 4-1

5 TEST APPLICATION... 5-1

5.1 TEST UTILITY CONTROLS AND DIALOG BOXES .. 5-2
5.1.1 File Menu... 5-2
5.1.2 View Menu.. 5-3
5.1.3 Help Menu.. 5-3

5.2 DEVICE SELECTION DIALOG.. 5-4
5.3 HOST DEVICE SELECTED... 5-5

5.3.1 File Menu... 5-5
5.3.2 View Menu.. 5-6
5.3.3 PCILynx Menu... 5-6
5.3.4 Misc Menu.. 5-7
5.3.5 Async Menu.. 5-8
5.3.6 Isoch Menu Options.. 5-9
5.3.7 ISO Rx Menu.. 5-10
5.3.8 ISO Tx Menu.. 5-11
5.3.9 Camera Menu... 5-11

6 CONFIGURATION ROM...6-1

7 ERRATA.. 7-1

vi

TablesTables

TABLE 2-1 ISOCHRONOUS TRANSMISSION SEQUENCE.. 2-4
TABLE 2-2 ASYNCHRONOUS TRANSMISSION SEQUENCE.. 2-5
TABLE 3-1 CYCLE_TIME REGISTER.. 3-32
TABLE 6-1 CSR ROM VALUES... 6-1
TABLE 7-1 ERRATA... 7-1

FiguresFigures

FIGURE 2-1 1394 BUS STATES... 2-2
FIGURE 5-1 TEST APPLICATION MAIN WINDOW .. 5-2
FIGURE 5-2 DEVICE SELECTION DIALOG .. 5-4
FIGURE 5-3 HOST DEVICE ... 5-5
FIGURE 5-4 ALLOCATE ADDRESS RANGE DIALOG.. 5-7
FIGURE 5-5 FREE ADDRESS RANGE DIALOG .. 5-8

1-1

Chapter 1

IntroductionIntroduction

1 Introduction

This document describes the Texas Instruments (TITM) implementation of an Application
Programmer Interface (API) for the 1394 bus. This API closely follows the Microsoft bus
interface to allow easy migration of software applications to the new Win95/WinNT
Microsoft 1394 support. However, due to this interface being a monolithic driver set and
not based on the Windows Device Model, there are some differences, both additions and
deletions. The goal was to make the data structures, calling sequences, and control
mechanisms similar in order to make this transition easier.

2-1

Chapter 2

LynxSoft API Theory of OperationLynxSoft API Theory of Operation

2 Theory of Operation

This section describes the architecture of the LynxSoft software product. This
section also provides an overview of the services provided by the software, and a
description of initialization provided by the software. Also described are
operations required during asynchronous and isochronous transmissions.

LynxSoft API Description

2-2

2.1 LynxSoft API Description
The 1394 Lynx API performs the necessary functions required to do 1394
operations of both a synchronous and asynchronous nature. Hereafter the API
code is referred to as a bus driver. Device objects are created upon bus
initialization and 1394 bus resets that describe the currently known properties of
the 1394 bus, including device speed, device nodes, isochronous bandwidth, and
isochronous channel allocations. The use of callbacks allows the programmer to
have a method of controlling the 1394 bus without requiring a large amount of
polling. The states that the bus code exists in are Initialize, Bus Enumeration,
Function Request, Bus Reset and Terminate. The states with a short description
are shown in Figure 2–1.

Figure 2-1 1394 Bus States

The 1394 bus driver acts as a bus enumerator for the 1394 bus. The 1394
hardware tree is built by discovering hardware devices on the 1394 bus. The

Initialize. This state performs data initialization required by
the lower software levels.

Bus Enumeration. The bus code performs bus enumeration.
It creates device objects for each device on the 1394 bus.

Function Request. This state waits for
cls1394DeviceIOControl calls with specific bus codes for
different functions and then performs them.

Bus Reset. Upon a bus reset the bus code re-enumerates the
bus and reuses existing handles when possible. If the 1394
device does not have a World-Wide Unique Identification
(WWUID) then the handle is invalidated and the application
program is responsible for reopening the correct handle.

Terminate. This state unloads the device driver and disables
callbacks.

LynxSoft API Description

2-3

discovery of a device has the effect of creating a new device object for that
device. There is a device object created for every device that is found on the
1394 bus. Handles to the device objects created by the 1394 bus driver are used
by the application code to address the 1394 device for which a particular function
is targeted. The attempt is to shield the user application code from the inner-
workings of the 1394 bus. For example, when a bus reset occurs and the actual
device that is pointed to by the device object handle has a World-Wide User ID
(WWUID), then the handle stays valid and the application need not be concerned
that a bus reset has occurred. However, if the actual device has not implemented
a WWUID (non-compliant device), then the handle must be invalidated and the
application program must reopen a handle to the device object in question. In
this case the application would have to connect to the device by opening a
handle to a specific node and then either knowing the bus configuration or
interrogating the non-compliant device. Attempts to perform a function using an
invalid handle results in an error return.

The 1394 bus can be reset infinitely during the course of normal operations. The
bus driver does not attempt to reclaim isochronous resources through a bus
reset. The application programmer is responsible for returning bandwidth and
isochronous channels to the bus driver.

2.2 Isochronous Transmission
Isochronous transmission has a specific sequence that needs to be followed for
successful operation. The sequence of events is shown in Table 2–1, as well as
illustrated in the example code contained in this document.

Note:

It is very important to follow the sequence shown in Table 2–1; unpredictable
results can occur when the sequence is not followed. Bandwidth and Channel
allocation/de-allocation are sequence independent relative to each other.

Isochronous Transmission

2-4

Table 2-1 Isochronous Transmission Sequence

Operation Result

cls1394Initialize Initializes the device driver and LynxSoft API code.

Cls1394CreateFile Locates and obtains a handle to the device that is to be transmitted to and
received from.

Cls1394IsochAllocateBandwidth Ensures that there is enough bandwidth still available on the 1394 bus for
the operation that is to be performed.

Cls1394IsochAllocateChannel Ensures that there exists an isochronous channel for transmission.

Cls1394IsochAllocateResources Must perform this operation before the buffers are attached.

Cls1394IsochAttachBuffers Attaches buffers to be transmitted to or from. This function must follow
allocation of resources. The handle passed in must be valid.

Cls1394IsochListen Begins the operation and monitors the callback routines for status. The
callbacks must be handled in a timely fashion. If callbacks cannot be
handled they start to back up in the queue and eventually cause a system
crash. When the bandwidth is insufficient to perform all processing before
the next callback occurs, the amount of data transferred per buffer or the
packet size transferred should be decreased. The watermark callback also
can allow the processing to begin before the buffer has completely filled.

Cls1394IsochTalk Begins the operation and monitors the callback routines for status. The
callbacks must be handled in a timely fashion. If callbacks cannot be
handled correctly they back up in the queue and eventually cause a
system crash. When the bandwidth to perform all processing before the
next callback occurs, the amount of data transferred per buffer or the
packet size transferred should be decreased. The watermark callback also
can allow the processing to begin before the buffer has completely filled.

Cls1394IsochStop Halts the transfer. This must be done before the buffers or resources are
de-allocated.

Cls1394IsochDetachBuffers Detaches the buffers used in the transfer. This action must be completed
before the resource handle is freed. However, the allocate resource handle
can be reattached to another buffer.

Cls1394IsochFreeResources Frees the resources. This action must performed after the buffers have
been detached.

Cls1394IsochFreeBandwith Frees bandwidth

cls1394IsochFreeChannel Frees channel allocation

cls1394CloseHandle Releases the handle opened.

Cls1394Terminate Terminates the application.

Asynchronous Transmission

2-5

2.3 Asynchronous Transmission
Asynchronous transmission does not require as precise a calling order as
isochronous transmission. However there are a few rules that must be followed.
Table 2-2 below describes some asynchronous functions and some of the
required sequence considerations before using the functions.

Table 2-2 Asynchronous Transmission Sequence

Operation Result

cls1394Initialize Initializes the device driver and LynxSoft API code.

Cls1394CreateFile Locates and obtains a handle to the device that is to be
transmitted to or received from.

Cls1394AllocateAddressRange Provides a buffer to handle asynchronous traffic. The
application software can read/write to any configuration
status register (CSR) space that has been made available by
the target device. In the case of another LynxSoft API, the
target device must have allocated their address range for
writing.

Cls1394AsyncWrite,
cls1394AsyncRead

Performs a read/write to any CSR space that has been made
available by the target device. In the case of another
LynxSoft API, the target device must have allocated their
address range for writing.

Cls1394FreeAddressRange Frees the allocated address range.

Cls1394CloseHandle Releases the handle opened.

Cls1394Terminate Terminates the application.

Bus Enumeration

2-6

2.4 Bus Enumeration
The bus enumeration process allows the application programmer to
access a device without knowing the device characteristics (bus node,
speed...etc.). The enumeration process happens upon either a bus reset
or the execution of the cls1394Initialize function. This function causes a
bus reset to occur. Bus enumeration is needed to allow the LynxSoft API
the opportunity to become the bus manager and to find devices and
create device objects for them. The enumeration process is described
below.

2.4.1 Initial Bus Reset
Upon a bus reset the LynxSoft device driver begins receiving the self-ID
packets from all nodes on the 1394 bus. The API requests the topology
and speed maps from the bus manager functions.

2.4.2 Bus Enumeration
Query all nodes on the bus and request their Configuration Info Block.
This block contains the WWUID for each device. When a WWUID does
not exist then the bus enumeration classifies that device as non-
compliant (NC) and creates an NC device object. All of the device
objects are ordered depending on their WWUID and their bus node
addresses. For example, if two SonyTM cameras are on the bus they are
ordered as Sony camera #1 and #2. This allows the application software
to open a Sony camera device object and ask for #1 or #2. The
application can then open Sony camera #2 and perform reads of the
configuration block to determine if that is the type desired.

In the case of an NC device (one without a WWUID), the bus
enumeration puts it in a list according to its node ID. Therefore, an
application can open the nth NC device and communicate. This requires
a strong knowledge of the topology of the 1394 bus. After opening the
device, the application can then query the device, if possible, to
determine which device it is. As soon as all 1394 devices have a
WWUID then this is not necessary, the application can read the
information block.

2.4.3 Bus Reset After Initial Enumeration
When a bus reset occurs after the 1394 bus has been enumerated, the
devices that contained a WWUID retains the same handle returned
during the cls1394CreateFile function. This allows the application
software to continue operation without needing knowledge of the bus
reset. The handle would continue to point to the same 1394 device.
However, in the case of an NC device, the handle is no longer valid and
must be reopened for communication. In that case the LynxSoft API
returns an error upon attempting an operation with an invalid handle.

3-1

Chapter 3

1394 Bus Driver API1394 Bus Driver API

3 LynxSoft API

The LynxSoft API is a set of services that enable 1394 actions. Each
service consists of an input parameter to the class 1394 Device IO
Control function and a structure containing input parameters. Only
cls1394DeviceIOControl is actually used as a function call. Several
other functions provide information that will be needed for the call and
others provide utility type services.

cls1394Initialize

3-2

3.1 cls1394Initialize
Description Initializes the 1394 bus driver software

Action This function performs needed initialization of the 1394 bus driver software. The
function must be invoked to initiate the connection to the underlying device
drivers. No bus functions can operate if initialization has not taken place. This
function is invoked as follows:

Syntax typedef BusResetCB(pBusResetInfo InfoBlock)

BOOL cls1394Initialize(BusResetCB theProc);

Parameters theProc – Is a pointer to the Applications bus reset callback routine. This allows
the CLASS to indicate to the application that a bus reset has occurred. Can be
NULL. The application should minimize operations in this callback.

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394GetLastError

3-3

3.2 cls1394CreateFile
Description Finds and obtains a handle to a device object

Action This function finds a desired device on the enumerated 1394 bus and returns a
handle to the device. When the device has a WWUID then this handle lives
through a bus reset, otherwise it is invalidated and the application must reopen
the handle.

Syntax cls1394HANDLE cls1394CreateFile (ULONG VendorID_DeviceType, WORD
DeviceEntry);

Parameters VendorID_DeviceType –Is the IEEE vendor ID and vendor device type to open
the vendor ID for the device of interest. For example, a Sony desktop camera
Vendor ID is 08004602. If the VendorID_Device type is 0, then the function
returns a handle to a non-compliant device that is located at the device handle
specified by DeviceEntry. This handle would be used when communicating with
devices that may not have implemented a WWUID. This number is a
hexadecimal number. To open another PCILynx card the VendorID_DeviceType
is 08002850.

DeviceEntry - Is the nth entry for the device type requesting a handle. This
allows multiple devices of the same type to be opened. When the device ID is 0
and the VendorID_DeviceType is 08002850 then a handle to the PCILynx host
adapter is returned. This number is a hexadecimal number.

Return Status When the cls1394HANDLE is null then the last error code should be checked.

cls1394GetLastError

3-4

3.3 cls1394GetLastError
Description Obtains the error number upon a status failure. ACK codes (00-0F) see 1394

spec (6.2.5.2.2). LLC codes (10-1F) see PCILynx spec PCL status section

Action This function returns the last error set by any of the bus functions. This function
is invoked as follows:

Syntax ULONG cls1394GetLastError();

Error Codes CLASS1394_ACK_00 0x00 rsvd
CLASS1394_ACK_COMPLETE 0x01
CLASS1394_ACK_PENDING 0x02
CLASS1394_ACK_03 0x03 rsvd
CLASS1394_ACK_BUSY_X 0x04
CLASS1394_ACK_BUSY_A 0x05
CLASS1394_ACK_BUSY_B 0x06
CLASS1394_ACK_07 0x07 rsvd
CLASS1394_ACK_08 0x08 rsvd
CLASS1394_ACK_09 0x09 rsvd
CLASS1394_ACK_0A 0x0A rsvd
CLASS1394_ACK_0B 0x0B rsvd
CLASS1394_ACK_0C 0x0C rsvd
CLASS1394_ACK_DATA_ERROR 0x0D hardware error, data

unavailable
CLASS1394_ACK_TYPE_ERROR 0x0E incorrect request packet
CLASS1394_ACK_0F 0x0F rsvd
CLASS1394_LLC_RETRYOVERRUN 0x10
CLASS1394_LLC_TIMEOUT 0x11
CLASS1394_LLC_FIFOUNDERRUN 0x12
CLASS1394_LLC_13 0x13
CLASS1394_LLC_14 0x14
CLASS1394_LLC_NO_PKT_END 0x15
CLASS1394_LLC_PIPELINE_ERR 0x16
CLASS1394_LLC_17 0x17
CLASS1394_LLC_18 0x18
CLASS1394_LLC_19 0x19
CLASS1394_LLC_1A 0x1A
CLASS1394_LLC_1B 0x1B
CLASS1394_LLC_1C 0x1C
CLASS1394_LLC_1D 0x1D
CLASS1394_LLC_CORRUPT_HEADER 0x1E
CLASS1394_LLC_1F 0x1F
CLASS1394_SUCCESS 0x20 Class Operation
successful code
CLASS1394_GENERIC_FAILURE 0x21 Generic Fail code
CLASS1394_INVALID_REQUEST 0x22 DeviceIoControl
CLASS1394_WWUID_INVALID 0x23 CreateFile
CLASS1394_WWUID_NOTFOUND 0x24 CreateFile
CLASS1394_HANDLE_INVALID 0x25 CloseHandle
CLASS1394_HANDLE_NOTOPEN 0x26 CloseHandle
CLASS1394_SPEEDMAP_ERROR 0x27 Error accessing speed
map

cls1394GetLastError

3-5

CLASS1394_NUM_DESTINATIONS_ERR 0x28 Num of destinations for
speed < 0

CLASS1394_RESPONSE_UNEXPECTED 0x29 rsvd rCode in response
packet

CLASS1394_RESPONSE_CONFLICT 0x2A resource conflict, retry
request

CLASS1394_RESPONSE_DATAERR 0x2B HW error, data
unavailable
CLASS1394_RESPONSE_TYPEERR 0x2C Unsupported/invalid field,

invalid request
CLASS1394_RESPONSE_ADDRERR 0x2D address not accessible
CLASS1394_RESPONSE_ZERO_DATA 0x2E zero data in data payload

packet
CLASS1394_RESPONSE_TIMEOUT 0x2F Timeout - no response in

allotted time
CLASS1394_ISOALLOCRES_MEM_FAIL 0x30 Failed to allocate
Internal Class Resource
Struct
CLASS1394_SPEED_NOT_AVAIL 0x31 Failed to Acquire speed

requested by user
CLASS1394_INVALID_ADDR_RNG 0x32 Failed to Allocate/Free

1394 Address Range
CLASS1394_INTERNAL_DEV_OPEN 0x33 Failed to Open 1394 Host

Device
CLASS1394_INTERNAL_DEV_ADDR 0x34 Invalid 1394 Host Device

Address
CLASS1394_INTERNAL_CSC_SPACE 0x35 Failed to Allocate

CSR space
CLASS1394_INTERNAL_CSR_INIT 0x36 Failed to Initialize

CSR space
CLASS1394_BANDWIDTH_INVALID 0x37 Bandwidth request not

valid
CLASS1394_BANDWIDTH_UNAVAIL 0x38 Bandwidth request not

available
CLASS1394_CHANNEL_INVALID 0x39 Channel request not

valid
CLASS1394_CHANNEL_UNAVAIL 0x3A Channel request not

available
CLASS1394_ISO_PCL_MEMORY_FAIL 0x3B User Buffer Lock Down

failed
CLASS1394_ISO_SCATTERLOCK_FAIL 0x3C User buffer scatter lock

failed
CLASS1394_ISO_RESOURCE_INVALID 0x3D ISO resource is

invalid
CLASS1394_DMA_CHAN_NOT_FOUND 0x3E DMA channel is not

available
CLASS1394_TRANSMISSION_FAILURE 0x3F Transmission failure

occurred
CLASS1394_BUS_RESET_IN_PROGRESS 0x40 Bus reset

occurring

cls1394Terminate

3-6

3.4 cls1394Terminate
Description Close and terminate the 1394 bus driver software

Action This function terminates the bus driver software and releases resources back to
the operating system.

Syntax BOOL cls1394Terminate();

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394CloseHandle

3-7

3.5 cls1394CloseHandle
Description Returns a previously received handle to the bus driver

Action This function closes a previously allocated handle to a device object. This allows
the bus driver to free some resources for use.

Syntax BOOL cls1394CloseHandle(cls1394HANDLE hHnd);

Parameters hHnd - This parameter is a previously allocated handle that was obtained from
the cls1394FileOpen function.

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394AllocateAddressRange

3-8

3.6 cls1394DeviceIoControl
Description Performs a 1394 function request

Action All of the 1394 function requests are performed by invoking the
1394DeviceIORequest call. This call is meant to emulate the Microsoft
IORequestCalls that are used in the upcoming Win95 1394 support. The calls
are invoked by performing a cls1394DeviceIoControl call and setting the
dwIoControlCode to the appropriate function call.

Syntax BOOL cls1394DeviceIoControl (cls1394HANDLE hDevice
DWORD dwIoControlCode
LPVOID lpInBuffer
DWORD nInBufferSize
LPVOID lpOutBuffer
DWORD nOutBufferSize
LPDWORD lpBytesReturned
LPOVERLAPPED lpOverlapped)

Parameters: hDevice - Is the device object handle to which the operation is targeted. This
handle is obtained by a call to cls1394CreateFile.

dwIoControlCode - Determines which function of the bus library is invoked. Refer
to the particular function the user desires to be invoked for the correct input
value.

lpInBuffer - Is the input structure required by the function that is desired to be
invoked. The caller must cast this structure to the structure of interest.

nInBufferSize - Is not used

lpOutBuffer - Is not used

nOutBufferSize - Is not used

lpBytesReturned - Is not used

lpOverlapped - Is not used

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394AllocateAddressRange

3-9

3.6.1 cls1394AllocateAddressRange

Description Allocates 1394 virtual address space and maps it to a physical buffer on the host
node for asynchronous requests. An application cannot overlap 1394 addresses.

Action This function allocates a 1394 address range to be used in asynchronous
requests to the local 1394 node. The caller supplies a buffer, possibly a specific
1394 address, the type of access a remote device has to this memory, as well as
optional notification options so that the caller can be notified when this memory
has been accessed.

If the function call is successful, the API driver maps 1394 address(es) to the
caller-supplied memory region, and returns the newly mapped 1394 address to
the caller. The caller can then supply this address to remote 1394 nodes, thus
allowing the nodes to perform asynchronous requests to this memory region.

Callers of this API can elect to supply a specific 1394 address as pointed to by
the Required1394Offset parameter. This parameter is necessary to support
devices that issue asynchronous requests to hard coded 1394 addresses. When
RequiredP1394Offset specifies a required address, then this 1394 address is
always returned. An arbitrary 1394 address can be assigned by making the
Required1394Offset parameter NULL. The API will locate a region in 1394
virtual memory to contain the request. The virtual 1394 address as well as a list
of PHYSICAL address will be returned to the caller. An important point to
consider when using this API is that lp1394Address points to an array of
PHYSICAL addresses to be returned. The array of returned addresses holds the
physical memory locations spanned by the specified buffer. These PHYSICAL
addresses can be used for performing DIRECT DMA from remote node to
HOST.

Callers of this API can choose not to supply a buffer (i.e. lpBuffer == NULL). This
has the effect of allocating a 1394 address range that does not map to any real
PC memory. When incoming requests try to access this 1394 address range, the
lpCallback routine (must be specified for lpBuffer == NULL) is called and returns
a packet pointer to the transferred data. The application has the responsibility of
moving the data to the desired local-memory location.

This API is invoked by calling the 1394DeviceIOCtl function with the
dwIoControlCode equal to the published value of IOCTL_P1394_CLASS, the
FunctionNumber within the P1394_CLASS_REQUEST being equal to
CLS_REQUEST_ALLOCATE_ADDRESS_RANGE, and the request union field
filled in with the following structure:

Input struct {
QUADLET *lpBuffer;
ULONG nLength;
ULONG fulAccessType;
ULONG fulNotificationOptions;
LPVOID lpCallback;
LPVOID lpContext;
P1394_OFFSET Required1394Offset;
PULONG lpAddressesReturned;
PLARGE_INTEGER lp1394Address;

} clsAllocateAddressRange;

cls1394AllocateAddressRange

3-10

Parameters lpBuffer – When specified, points to the application’s buffer where asynchronous
operations are to be read, written, or locked. When NULL is specified, then
lpCallback must be provided as the caller is consulted in order to return whatever
results are requested from this address range.

nLength –Specifies the length in bytes of the 1394 address to map.

fulAccessType – When specified, dictates what type of access is allowed to the
specified memory region. This field is used to restrict access by specified
devices. These bit definitions can have an OR function performed to achieve the
desired access such as:

❏ AccessTypeRead - The memory region specified can be the target of a
read operation by the device.

❏ AccessTypeWrite - The memory region specified can be the target of a
write operation by the device.

❏ AccessTypeLock - The memory region specified can be the target of a
lock operation by the device.

fulNotificationOptions –Specifies what kind of post notification the application
callback needs when this region of memory is accessed. The different options
are enabled by using an OR function with the defines specified below into this
parameter. Multiple types of notification are allowed for the same 1394 address.
Types of notification are:

❏ NotifyAfterRead – This option notifies the application callback after
carrying out an AsyncRead operation. This serves only as a
notification to the application callback that their address space was
accessed.

❏ NotifyAfterWrite – This option notifies the application callback after
carrying out an AsyncWrite operation. This serves only as a
notification to the application callback that their address space was
written.

❏ NotifyAfterLock - This option notifies the application callback after carrying
out an AsyncLock operation. This serves only as a notification to the
application callback that their address was the target of an Atomic
operation.

lpCallback – Points to the application callback routine. This routine is called by
the 1394 class driver at deferred process (DPC) time for post notifications, and
possibly at the interrupt level on pre-notification. Pre-notification callbacks only
occur when the lpBuffer parameter (above) is NULL, which indicates that the
application wants to handle each request to this address range itself.

When using post notifications, the callback return code (RESPONSE_CODE) is
ignored. Modifying any of the other parameters also has no effect.

cls1394AllocateAddressRange

3-11

When using pre-notification callbacks in all asynchronous cases, the application
callback function must return an appropriate 1394 response code, which is put
into the 1394 response packet RCODE field.

If the incoming asynchronous request was a Read or Lock, then the application
callback function must also set lpData function (*lpData) to point at a buffer
containing the response data, as well as set lpLength to be the length of lpData.

If the incoming asynchronous request was a Write request, then lpData and
lpLength specify where the write data is contained in memory and how much is
present. The callback function for an Asynchronous Write request can do
whatever with lpData and lpLength as long as an appropriate response code is
returned.

Callback RESPONSE_CODE ddNotificationCallBack(
Syntax IN LPVOID lpBuffer,

IN ULONG ulOffset,
IN PVOID * lpData,
IN PULONG * lpLength,
IN DWORD dwSourceAddress,
IN ULONG fulNotificationOption,
IN LPVOID lpContext,
);

Callback
Parameters lpBuffer - is a pointer to the buffer that was originally submitted in the call to

cls1394AllocateAddress.

ulOffset - Specifies the byte offset within lpBuffer where the 1394 operation is
pending. This offset is from the base 1394 virtual address that was mapped.

lpData - Points to the pointer which in turn points to a buffer where
request/response data is stored. When the incoming asynchronous request is a
Write, then the Write request data is pointed at by lpData. When the incoming
asynchronous request is a Read or Lock, the callback function fills in lpData to
point at response data. This lpData field is only used to pre-notify
AllocateAddressRange conditions (i.e. original lpBuffer == NULL).

lpLength - Is a pointer which in turn points to the length in bytes of the requested
1394 operation. When incoming asynchronous request is a Write, then the Write
request length is pointed at by lpLength. If the incoming asynchronous request is
a Read or Lock, the callback function should fill in lpLength to point at the desired
length of data to be returned.

SourceAddress - Specifies the 1394 address (6-bit node number and 10-bit bus
number) that is requesting the operation.

fulNotificationOption - Is the notification option bit that triggers the notify callback
on an asynchronous operation.

lpContext - Points to the application supplied context data.

cls1394AllocateAddressRange

3-12

The application callback returns a RESPONSE_CODE that is used by the
miniport driver for the response code (RCODE) in the 1394 response packet.

lpContext – Points to the application context data that is passed to the
application callback routine when a notification event occurs.

Required1394Offset – If not equal to NULL, specifies a virtual 1394 address
being requested. This is not granted if previous callers have already allocated
this 1394 address. When NULL, an arbitrary virtual 1394 address is selected and
returned through this parameter. This means that after the call to this API
function, this parameter will no longer be NULL.

Note:

The user cannot allocate a 1394 memory address that, when combined with the
buffer length, exceeds a 32-bit address.

For example, a user could not allocate 0xFFFA FFFF FE00 and a buffer length
of 400H bytes since this would exceed a 32-bit address.

lpAddressesReturned – ONLY returned by the API if Required1394Offset is
NULL. Points to a location containing the number of addresses being returned in
lp1394Address (below).

lp1394Address – ONLY returned by the API if Required1394Offset is NULL. If
this call request completes successfully, points to an array of LARGE_INTEGER
(64 bits). This array contains the list of PHYSICAL addresses corresponding to
the user’s supplied buffer. The low part contains a PHYSICAL address while the
high part indicates the number of contiguous bytes at this physical location. This
list of PHYSICAL addresses can be converted to quasi 1394 addresses and
used by a remote node for DIRECT DMA addressing with Write Block request
only. See the LYNXHALScatterLock function for a more detailed description.

NOTE: All requests from remote nodes using the virtual 1394 address contained
in the Required1394Offset parameter will be handled by the API and the
application will be notified. If the DIRECT DMA feature is used, the API has no
knowledge of the request as these are written straight into the user’s buffer.

Return Status If successful, a STATUS_SUCCESS code is returned an the application can
provide Required1394Offset to remote 1394 nodes for them to use in
subsequent asynchronous operations. It is the responsibility of the caller to
ensure that lpBuffer and lpCallback remain valid until the mapping is freed with
the cls1394FreeAddressRange function.

cls1394FreeAddressRange

3-13

3.6.2 cls1394FreeAddressRange
Description Frees previously allocated address range

Action This function releases a virtual 1394 address allocated by
cls1394AllocateAddressRange.

This API is invoked by submitting an IOCtl IRP with the dwIoControlCode equal
to the published value of IOCTL_P1394_CLASS, the function number within the
P1394_CLASS_REQUEST being equal to the
CLS_REQUEST_FREE_ADDRESS_RANGE, and the request union field filled in
with the following structure:

Input struct {
ULONG nAddressesToFree;
PLARGE_INTEGER lp1394Address;

} clsFreeAddressRange;

Parameters nAddressesToFree – Specifies how many virtual 1394 addresses are specified in
lp1394Address.

lp1394Address – Specifies a pointer to 1394 address(es) to be released. The
array pointed at by lp1394Address is an array of LARGE_INTEGER (64 bits),
however, only the lower 48 bits of each LARGE_INTEGER entry are inspected.
The extra 16 bits of each array element are unused, but are helpful for alignment
purposes. These address(es) were returned in a prior successful call to
cls1394AllocateAddress.

Return Status A STATUS_SUCCESS code is returned and the virtual 1394 addresses specified
in lp1394Address are now invalidated.

cls1394AsyncRead

3-14

3.6.3 cls1394AsyncRead
Description Performs the Asynchronous Read from the 1394 Node

Action This function performs an Asynchronous Read operation to the device specified.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ASYNC_READ, and the
lpInBuffer structure filled in with the following structure:

Input struct {
PLARGE_INTEGER DestinationAddress;
ULONG nNumberOfBytesToRead;
ULONG nBlockSize;
ULONG fulFlags;
PVOID lpBuffer;

} clsAsyncRead;

Parameters DestinationAddress – Specifies the P1394 48-bit destination address for this
Asynchronous Read operation.

nNumberOfBytesToRead – Specifies the number of bytes to be read from the
host/remote 1394 node.

nBlockSize – Is not used, this parameter should be set to 0.

fulFlags - Upper 16 bits are used to specify a “Wait” time different from the 1
second default wait time. This value is in milliseconds.

lpBuffer – Points to a user-allocated memory location for which data is received
from the remote node.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned along
with the received data placed into the linear address that the lpBuffer represents.
All other errors are reported using cls1394GetLastError.

cls1394AsyncWrite

3-15

3.6.4 cls1394AsyncWrite
Description Performs the Asynchronous Write to the 1394 Node

Action This function performs an Asynchronous Write operation to the device(s)
specified.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ASYNC_WRITE, and the
lpInBuffer structure filled in with the following structure:

Input struct {
PLARGE_INTEGER DestinationAddress;
ULONG nNumberOfBytesToWrite;
ULONG nBlockSize;
ULONG fulFlags;
PVOID lpBuffer;

} clsAsyncWrite;

Parameters DestinationAddress – Specifies the P1394 48-bit destination address for this
Asynchronous Write operation.

nNumberOfBytesToWrite – Specifies the number of bytes to write to the
host/remote 1394 node.

nBlockSize – If nonzero, specifies the size of each individual block within the
data stream that is written as a whole to the remote node. When this parameter
is zero, then the maximum packet size for the speed selected is used in breaking
up these write requests.

fulFlags - Upper 16 bits are used to specify a “Wait” time different from the 1
second default wait time. This value is in milliseconds.

lpBuffer – Points to a user-allocated memory location that is transmitted to the
remote node.

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394AsyncLock

3-16

3.6.5 cls1394AsyncLock

Description Performs the Asynchronous Lock to the 1394 Node

Action This function performs an Asynchronous Lock operation to the device specified.
This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ASYNC_LOCK and the
lpInBuffer structure filled in with the following structure:

Input struct {
PLARGE_INTEGER DestinationAddress;
ULONG nNumberOfArgBytes;
ULONG nNumberOfDataBytes;
ULONG fulTransactionType;
ULONG fulFlags;
ULONG Arguments[2];
ULONG DataValues[2];
PVOID lpBuffer;

} clsAsyncLock;

Parameters DestinationAddress – Specifies the P1394 48-bit destination offset for this lock
operation.

Note:

Unless the caller specified the 1394 class-driver Device Object, the upper 16
bits are ignored in addressing.

nNumberOfArgBytes – Specifies the number of argument bytes used in
performing this Asynchronous Lock operation.

nNumberOfDataBytes – Specifies the number of data bytes used in performing
this Asynchronous Lock operation.

fuTransactionType – Specifies which subfunction to use on the remote 1394
node. Currently, only the following operations are valid transaction types:

❏ MaskSwap - refer to IEEE 1394 specification for more details

❏ CompareSwap - refer to IEEE 1394 specification for more details

❏ FetchAdd - refer to IEEE 1394 specification for more details

❏ LittleAdd - refer to IEEE 1394 specification for more details

❏ BoundedAdd - refer to IEEE 1394 specification for more details

❏ WrapAdd - refer to IEEE 1394 specification for more details

fulFlags - Upper 16 bits are used to specify a “Wait” time different from the 1
second default wait time. This value is in milliseconds.

cls1394AsyncLock

3-17

Arguments – Specifies that this array contains the arguments used in this Lock
operation.

DataValues – Specifies that this array contains the data values used in this Lock
operation.

lpBuffer – Points to a buffer that lock data values are returned from the remote
node.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned along
with the results of the Lock returned to the location pointed at by lpBuffer. All
other errors are reported using cls1394GetLastError.

cls1394IsochAllocateBandwidth

3-18

3.6.6 cls1394IsochAllocateBandwidth
Description Allocates isochronous bandwidth

Action This function allocates isochronous bandwidth to be used in subsequent
operations.

The 1394 bus driver takes the nMaxBytesPerFrameRequested, rounds up to the
nearest quadlet, and adds in the overhead required before making the proper
allocation of bandwidth. If the bandwidth allocation was successful, a bandwidth
handle is assigned in order to free up bandwidth at some later time.

This function performs an Asynchronous Lock operation to the device specified.
This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ALLOCATE_BANDWIDTH
and the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nMaxBytesPerFrameRequested;
ULONG fulSpeed;
PHANDLE lpBandwidth;
PULONG lpBytesPerFrameAvailable;
PULONG lpSpeedSelected;

} clsIsochAllocateBandwidth;

Parameters nMaxBytesPerFrameRequested – Specifies the number of bytes per isochronous
frame requested. This value is rounded up to the nearest quadlet and the result
is added to the overhead required before the bus driver secures this bandwidth
from the isochronous resource manager.

fulSpeed – Specifies the speed flag to use in allocating bandwidth. Current speed
flags include:

❏ Speed100 - 98.304 Mbit/s

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

❏ SpeedFastest - Uses the fastest speed that the local transmitter
supports

lpBandwidth – Points to field that contains the returned bandwidth handle to be
used in releasing bandwidth resources at some later time.

lpBytesPerFrameAvailable – Points to field that contains the bytes per frame that
is available after the allocation succeeds or fails. Applications should not count
on this bandwidth being available, as another application could have allocated
bandwidth after this result is returned.

lpSpeedSelected – Points to the speed that was selected in allocating bandwidth.
Possible speed flags returned are:

❏ Speed100 - 98.304 Mbit/s

cls1394IsochAllocateBandwidth

3-19

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and an
isochronous bandwidth is secured. In either case, lpBytesPerFrameAvailable is
filled in. All other errors are reported using cls1394GetLastError.

cls1394IsochAllocateChannel

3-20

3.6.7 cls1394IsochAllocateChannel
Description Allocates isochronous channel number

Action This function allocates an isochronous channel to be used in subsequent
operations.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ALLOCATE_CHANNEL and
the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nRequestedChannel;
PULONG lpChannel;
PLARGE_INTEGER lpChannelAvailable;

} clsIsochAllocateChannel;

Parameters nRequestedChannel – Specifies a specific channel requested by the application.
If 0xffffffff (-1) is specified, then an arbitrary channel is returned. Hardware
should be able to use any channel number (0-63) specified.

lpChannel – Points to the field that contains the returned channel when the
allocation of the channel is successful. This channel can be used in subsequent
isochronous operations.

lpChannelAvailable – Points to the field that contains a bit mask of the available
Isochronous channels after the allocation succeeds or fails. Applications should
not count on these channels being available, as another application could have
allocated channels after this result is returned.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and an
isochronous channel is secured. In either case, lpChannelsAvailable is filled in.
All other errors are reported using cls1394GetLastError.

cls1394IsochAllocateResources

3-21

3.6.8 cls1394IsochAllocateResources
Description Allocates resources for an isochronous stream

Action This function allocates hardware/software resources associated with a given
isochronous stream. Successful hardware/software resource allocation must be
coupled with the attachment of buffers (see cls1394IsochAttachBuffers below)
before the talk or listen function can be performed on an isochronous stream.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ALLOCATE_RESOURCES
and the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG fulSpeed;
ULONG fulFlags;
PHANDLE lpResources;

} clsIsochAllocateResources;

Parameters fulSpeed – This field contains the requested speed for this resource handle.
Current speed flags include:

❏ Speed100 - 98.304 Mbit/s

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

❏ SpeedFastest - Uses the fastest speed that the local transmitter
supports

fulFlags – Specifies if the isochronous resource is to be used for Talking or
Listening operation.

❏ ResourceUsedInListening - Used in listening to an isochronous
stream

❏ ResourceUsedInTalking - Used in talking to an isochronous stream

lpResources – Points to a field which will contain the returned resource handle to
be used in releasing hardware/software resources at some later time.

Return Status If this function call is successful, a STATUS_SUCCESS code is returned and
hardware/software resources are secured. All other errors are reported using
cls1394GetLastError.

cls1394IsochAttachBuffers

3-22

3.6.9 cls1394IsochAttachBuffers
Description Attach Isochronous buffers to a resource

Action This function attaches isochronous buffers to a resource. The buffer and
resources must be setup prior to performing any Talk or Listen operation on any
isochronous channel.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ATTACH_BUFFERS and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hResources;
DWORD Channel;
PISOCH_DESCRIPTOR lpIsochDescriptor;

} clsIsochAttachBuffers;

Parameters hResources – Specifies the resources that this buffer is to be associated with.

Channel - Specifies the channel number to attach this buffer to.

lpIsochBuffer – Points to an isochronous buffer to be used with this resource
handle. This descriptor should reside in locked memory as the 1394 driver stack
could potentially modify this descriptor at interrupt time. The definition of
ISOCH_DESCRIPTOR is as follows:

typedef struct _ISOCH_DESCRIPTOR {
struct _ISOCH_DESCRIPTOR *Next;
ULONG fulFlags;
PMDL lpBuffer;
ULONG ulLength;
ULONG ulSynchronize;
ULONG ulCycle;
LARGE_INTEGER SystemTime;
PVOID lpCallback;
PVOID lpWaterLineCallback;
DWORD ulWaterLine;
PVOID lpContext;
ULONG Status;
ULONG PacketSize;
ULONG ulReserved[4];

} ISOCH_DESCRIPTOR, *PISOCH_DESCRIPTOR;

ISOCH_DESCRIPTOR Parameters

_ISOCH_DESCRIPTOR - Is a singly linked list of isochronous
descriptors. The list is allowed to be circular.

cls1394IsochAttachBuffers

3-23

fulFlags - Are bit flags used for synchronizing packet acceptance and
packet header removal before moving the data to the user
buffer. Valid bit fields are:

FLAG_SYNCHRONIZE 0x01
FLAG_STRIP_HEADER 0x02

This is used to synchronize data collection with the synchronous
field in the isochronous header packet.

lpBuffer - This pointer represents a buffer in which the data is to be
contained.

ulLength - Contains the length of lpBuffer

ulSynchronize - Is the 4-bit field used to synchronize packet acceptance
with the “sy” field of the 1394 isochronous packet header.

ulCycle - Is not used

lpCallback - Specifies the device driver callback addresses (if supplied).
In this way applications can be notified when the descriptor has
finished being processed.

lpWaterLineCallback - Specifies the device drivers waterline callback
address (if supplied). In this way applications can be notified
when the waterline data mark has been reached.

ulWaterLine - Specifies the amount of data for the attached buffer to
process before the waterline callback is invoked. This is 0-100
percent of the attached buffer.

lpContext - Is user-supplied context parameter to be provided at callback
time. This is returned to the callback routine.

Status - Is not used

PacketSize - Specifies the size of the packet to transfer or receive. This
value is specified in bytes. If the packet encoder is not stripped
off, the packet header size must be included in the packet size.

ulReserved[4] - Is not used

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and this
isochronous buffer is associated with the resource handle. This isochronous
buffer must eventually be freed using cls1394IsochDetachBuffers. All other
errors are reported using cls1394GetLastError.

Callback The two callbacks both have the same calling sequence:
Examples

❏ extern "C" void WINAPI MyBuffCompCallback(DWORD Context)

❏ extern "C" void WINAPI MyWaterLnCallback(DWORD Context)

cls1394IsochAttachBuffers

3-24

Call Back
Parameters Context - Is a user supplied value. It is used by the application software to

determine which callback has been completed. For example, if the application
has attached three separate buffers, the context returned allows the application
to determine which buffer has completed processing.

cls1394IsochDetachBuffers

3-25

3.6.10 cls1394IsochDetachBuffers
Description Detaches previously attached buffers from a resource

Action This function detaches isochronous buffers previously using the
cls1394IsochAttachBuffers function.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_DETACH_BUFFERS and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hResources;
PISOCH_DESCRIPTOR lpIsochDescriptor;

} clsIsochDetachBuffers;

Parameters hResources – Specifies the resource handle that this buffer is to be detached
from.

lpIsochDescriptor - Is not used

Return Status If this function call is successful, a STATUS_SUCCESS code is returned and the
isochronous buffer descriptor is detached from the resource handle specified. All
other errors are reported using cls1394GetLastError.

cls1394IsochFreeBandwidth

3-26

3.6.11 cls1394IsochFreeBandwidth
Description Frees previously allocated isochronous bandwidth

Action This function releases isochronous bandwidth allocated using
cls1394IsochAllocateBandwidth.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_FREE_BANDWIDTH and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hBandwidth;

} clsIsochFreeBandwidth;

Parameters hBandwidth – Specifies the bandwidth handle to release.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous bandwidth is returned to the pool of available bandwidth. All other
errors are reported using cls1394GetLastError.

cls1394IsochFreeChannel

3-27

3.6.12 cls1394IsochFreeChannel
Description Frees a previously allocated isochronous channel

Action This function releases an allocated isochronous channel using
cls1394IsochAllocateChannel.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_FREE_CHANNEL and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;

} clsIsochFreeChannel;

Parameters nChannel – Specifies which allocated channel to release.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous channel is returned to the pool of available channels.

cls1394IsochFreeResources

3-28

3.6.13 cls1394IsochFreeResources
Description Frees prior allocated isochronous stream resources

Action This function releases isochronous hardware/software resources allocated using
cls1394IsochAllocateResources. All isochronous buffers that attach to this
resource must detach prior to issuing this call. When a device driver attempts to
free a resource handle with isochronous buffers still attached to it, the handle is
not freed and an error is returned.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_FREE_RESOURCES and the
lpInBuffer structure filled in with the following structure:

Input struct {
HANDLE hResources;

} clsIsochFreeResources;

Parameters hResources – Specifies the resource handle to release.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous hardware/software resources are returned to the pool of available
resources. All other errors are reported using cls1394GetLastError.

cls1394IsochListen

3-29

3.6.14 cls1394IsochListen
Description Begins listening on an isochronous channel

Action This function begins listening on an isochronous channel and the resource
handle is specified. Resource allocation and attachment of buffers to this
resource handle must have already been done prior to issuing this call.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_LISTEN and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;
HANDLE hResources;
ULONG fulFlags;
ULONG nStartCycle;
LARGE_INTEGER StartTime;
ULONG ulSynchronize;
ULONG ulTag;

} clsIsochListen;

Parameters nChannel – Specifies the channel to listen on.

hResources – Specifies the resource handle to listen on.

fulFlags - Is not used

nStartCycle - Is not used

StartTime - Is not used

ulSynchronize - Is not used

ulTag - Is not used

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394IsochStop

3-30

3.6.15 cls1394IsochStop
Description Stops isochronous operations on a channel

Action This function stops all isochronous operations on an isochronous channel.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_STOP and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;
HANDLE hResources;
ULONG fulFlags;
ULONG nStopCycle;
LARGE_INTEGER StopTime;
ULONG ulSynchronize;
ULONG ulTag;

} clsIsochStop;

Parameters nChannel – Specifies the channel to stop isochronous operations on.

hResources – Specifies the resource handle to stop isochronous operations on.

fulFlags - Is not used

nStopCycle - Is not used

StopTime - Is not used

ulSynchronize - Is not used

ulTag - Is not used

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous operation stops. All other errors are reported using
cls1394GetLastError.

cls1394IsochTalk

3-31

3.6.16 cls1394IsochTalk
Description Begins talking on an isochronous channel

Action This function begins transmitting data on an isochronous channel. Resource
allocation and attachment of buffers to this resource handle must have already
been done prior to issuing this call.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_TALK and the
lpInBuffer structure filled in with the following structure:

Input struct {
ULONG nChannel;
HANDLE hResource;
ULONG fulFlags;
ULONG nStartCycle;
LARGE_INTEGER StartTime;
ULONG ulSynchronize;
ULONG ulTag;

} clsIsochTalk;

Parameters nChannel – Specifies the channel on which to talk.

hResource – Specifies the resource handle on which to talk.

fulFlags - Is not used

nStartCycle - Is not used

StartTime - Is not used

ulSynchronize - Is not used

ulTag - Is not used

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394IsochQueryCurrentCycleNumber

3-32

3.6.17 cls1394IsochQueryCurrentCycleNumber
Description Gets the current cycle number

Action This function returns the current isochronous cycle number.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_ISOCH_QUERY_CYCLE_
NUMBER and the lpInBuffer structure filled in with the following structure:

Input struct {
PULONG lpCycleNumber;

} clsIsochQueryCurrentCycleNumber;

Parameters lpCycleNumber – Points to the returned current cycle number.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned and the
isochronous cycle number is returned as in the 1394-1995 specification. The
CYCLE_TIME register is shown in Table 3–1 below. The timer is 32 bits wide.
The low-order 12 bits (cycle_offset) counts as a modulo 3072 counter, which
increments once every 24.576 MHz (40.69 ns). The next 13 high-order bits
(cycle_count) are a modulo 8000 counter, which increments on a carry from
cycle_offset. The highest seven bits are a modulo 128 counter, which increments
on a carry from cycle_count. All other errors are reported using
cls1394GetLastError.

Table 3-1 CYCLE_TIME Register

bits 26 - 32 bits 13 - 25 bits 0 - 12
second_count cycle_count cycle_offset

cls1394Get1394AddressFromDeviceObject

3-33

3.6.18 cls1394Get1394AddressFromDeviceObject
Description Get the Node/Bus Number

Action This function returns a 1394 node address given a Device Object.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_1394_ADDRESS and the
lpInBuffer structure filled in with the following structure:

Input struct {
PP1394_NODE_ADDRESS lpNodeAddress;

} clsGet1394AddressFromDeviceObject;

Parameters lpNodeAddress – If successful, points to the field that contains the 6-bit/10-bit
Node Address and Bus Number.

Return Status If the function call is successful, a STATUS_SUCCESS code is returned with the
lpNodeAddress filled in. All other errors are reported using cls1394GetLastError.

cls1394SetDeviceSpeed

3-34

3.6.19 cls1394SetDeviceSpeed
Description Sets the transmission speed when given a Device Object

Action This function sets the speed at which the requests are transmitted to a particular
device. By default, the 1394 bus driver has access to a speed map that it uses to
determine what the maximum speed is when transmitting to a device. However,
when the device driver needs to specify a different speed, it can use this service.
This is applicable for asynchronous or isochronous requests.

This API is invoked by calling the 1394DeviceIOCntl function with the
dwIoControlCode being equal to CLS_REQUEST_SET_DEVICE_SPEED and
the lpInBuffer structure filled in with the following structure:

Input struct {
ULONG fulSpeed;

} clsSetDeviceSpeed;

Parameters fulSpeed –Sets the fastest speed for transmitting requests. Current speed flags
include:

❏ Speed100 - 98.304 Mbit/s

❏ Speed200 - 196.608 Mbit/s

❏ Speed400 - 393.216 Mbit/s

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

cls1394SendLinkOnPkt

3-35

3.7 cls1394SendLinkOnPkt
Description Sends Link-On packets to device objects.

Action This function provides the capability to send link-on packets to device objects.
See section 4.3.4.2 Link-on packet in the IEEE 1394-1995 specification.

Syntax BOOL cls1394SendLinkOnPkt(cls1394HANDLE hDev);

Parameters hDev - Is the device object handle to which the operation is targeted. This handle
is obtained by a call to cls1394CreateFile.

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

Error Codes If the function call is not successful, a call to cls1394GetLastError will return one
of two possible error conditions:

CLASS1394_BUS_RESET_IN_PROGRESS (bus reset occurring)

CLASS1394_TRANSMISSION_FAILURE (transmission failure)

cls1394GetHandleFromNodeID

3-36

3.8 cls1394GetHandleFromNodeID
Description Determines the HANDLE associated with a specific node ID.

Action This function provides provides the capability to send link-on packets to device
objects. See section 4.3.4.2 Link-on packet in the IEEE 1394-1995 specification.

Syntax BOOL cls1394GetHandleFromNodeID(WORD NodeID, cls1394HANDLE * hDevice);

Parameters NodeID - the 16 bit Node ID composed of the 10 bit Bus number and the 6
bit node ID.
hDevevic - Is a pointer to the location to store the device object handle of the
node requested.

Return Status A STATUS_SUCCESS code signifies successful completion of this function. All
other errors are reported using cls1394GetLastError.

GetDeviceInfo

3-37

3.9 GetDeviceInfo
Description Retrieves internal class information about a device on the bus.

Action This function retrieves data from the internal class structures that is being
maintained for each device object.

Input typedef struct{
 BOOL Active; // True if currently on bus
 WORD DeviceEntry; // Entry number for this type device
 WORD NodeID; // Current node id on the bus
 ULONG VendID_DevType; // Vendor/Device ID from device
 ULONG SerialNo; // Serial number from device
 VendorName Vendor; // Textual vendor name
 ModelName Model; // Textual device model name
} DeviceInfo;

Syntax BOOL GetDeviceInfo(WORD DeviceEntry, DeviceInfo* sDevInfo);

Parameters DeviceEntry – Is a zero based index into the class device list . This value is not
related to the DeviceEntry parameter for the cls1394CreateFile function.

sDevInfo - A pointer to the structure to contain the returned data.

Return Status If the function returns TRUE, the data is valid, if FALSE, there are no more
devices on the bus. The VendID_DevType and DeviceEntry fields of the
structure may be used in the cls1394CreateFile call to open a specific device.

GetAdapterAddress

3-38

3.10 GetAdapterAddress
Description Returns a pointer to the 1394 host adapter card

Action This function returns a pointer to the PCI host-adapter card. The pointer can be
cast using the structure defined in the file PCILYNX.H. The base structure is
defined below showing sub structure fields that may not be complete.

Syntax PVOID GetAdapterAddress();

Example typedef struct {
union {

QUADLET LynxArr[0x1000 / 4];
struct {
LynxPCICfgSpace PCIRegs;
LynxAuxPortRegs AUXRegs;
LynxDMACtrlRegs DMARegs;
LynxFIFORegs FIFORegs;
LynxLLCRegs LLCRegs;

} PCILynxRegStruct, *pPCILynxRegStruct;

Parameters LynxArr – Is an array of quadlets that maps over all PCILYNX registers

LynxPCICfgSpace - Is a struct that maps the peripheral component interface
(PCI) Configuration registers (000 - 03C)

LynxAuxPortRegs - Is a struct that maps the auxiliary (AUX)-port registers (040 -
0FC)

LynxDMACtrlRegs - Is a struct that maps the direct-memory access (DMA)-
control registers (100 - 9FC)

LynxFIFORegs - Is a struct that maps the first-in, first-out (FIFO) control
registers (A00 - AFC)

LynxLLCRegs - Is a struct that maps the link-layer control registers (B00 - FFF)

bReadPhyReg

3-39

3.11 bReadPhyReg
Description Retrieves the requested PHY register.

Action This function retrieves data from the link layer controller phy access register. It
will return the 8 bit phy register requested.

Syntax BOOL bReadPhyReg(DWORD dwReadPhy, DWORD *pdwParam);

Parameters dwReadPhy – The desired phy register to be read (ie 0, 1, .. 7).

pdwParam - A pointer to store the data read from the phy.

Return Status If the function returns TRUE, the data is valid, if FALSE, there was an error
reading the phy register.

CrcCalculate

3-40

3.12 CrcCalculate
Description Calculate 16-bit CRC value for given data.

Action This function computes the 16-bit CRC value over the given data quadlets per
the IEEE 1394-1995 specification. This functions provides both the 1991
calculation as well as the 1994 corrected version of the algorithm. Some devices
may still exist that use the 1991 version. See section 6.2.4 Primary Packet
Components in the IEEE 1394-1995 specification.

Syntax WORD CrcCalculate(DWORD* pQuadData, int nNumQuads, BOOL CRC1991);

Parameters pQuadData – A pointer to the quad array containing the data to compute the
CRC value over..

nNumQuads - The number of elements in the array of data.

CRC1991 - If false, calculate CRC based on 1994 spec, if true, calculate CRC
based on 1991 spec..

Return Status Returns the calculated 16-bit CRC value.

ctDelay

3-41

3.13 ctDelay
Description Provides a delay using the Cycle Timer of the link layer controller.

Action This function provides a delay based on ISO cycles or 125 usec time periods.

Syntax void ctDelay(ULONG N_x_125usecs);

Parameters N_x_125usecs – The number of ISO cycles to delay.

Return Status No return status available.

ctMillisec

3-42

3.14 ctMillisec
Description Provides a delay using the Cycle Timer of the link layer controller.

Action This function provides an accurate delay in Millisecond intervals.

Syntax void ctMillisec(ULONG Millisecs);

Parameters Millisecs – The number of milliseconds to delay.

Return Status No return status available.

ctMicrosec

3-43

3.15 ctMicrosec
Description Provides a delay using the Cycle Timer of the link layer controller.

Action This function provides an accurate delay in Microsecond intervals.

Syntax void ctMicrosec(ULONG Microsecs);

Parameters Microsecs – The number of microseconds to delay.

Return Status No return status available.

LYNXHALScatterLock

3-44

3.16 LYNXHALScatterLock
Description Locks the user’s buffer into physical memory and retrieves the list of PHYSICAL

addresses associated with the memory buffer.

Action This function provides the list of PHYSCIAL addresses and lengths associated
with a caller’s memory buffer.

Syntax BOOL LYNXHALScatterLock(LPVOID buffer, DWORD length,
 PULONG lpAddressesReturned, LPVOID lp1394Address);

Parameters buffer - the memory buffer being requested to be mapped to PHYSICAL memory
locations.

length - Is the length in bytes the memory buffer occupies.

lpAddressesReturned – Address of a location to contain the number of
addresses being returned in lp1394Address (below).

lp1394Address – If this call request completes successfully, points to an array
of LARGE_INTEGER (64 bits). This array contains the list of PHYSICAL
addresses corresponding to the user’s supplied buffer. The low part contains a
PHYSICAL address while the high part indicates the number of contiguous bytes
at this physical location. This list of PHYSICAL addresses can be converted to
quasi 1394 addresses and used by a remote node for DIRECT DMA addressing
with Write Block request only.

To convert the PHYSICAL address to a virtual 1394 address to be used for
DIRECT DMA, simply set the upper 16 bits of the 48 bit 1394 address to 0x0000
and use the 32 bit physical address for the lower 32 bits. The length would then
imply the size of the buffer at this virtual 1394 address.

Return Status If TRUE, signifies successful completion of this function. All other errors are
reported using cls1394GetLastError. Possible errors are:

ERROR_OUT_OF_MEMORY
ERROR_SCATTERLOCK_FAILED

LYNXHALScatterUnLock

3-45

3.17 LYNXHALScatterUnLock
Description Unlocks the user’s memory buffer from physical memory.

Action This function frees the user’s memory from being locked down in physical
memory. It undoes the effects of LYNXHALScatterLock.

Syntax BOOL LYNXHALScatterUnLock(LPVOID lpAddrList);

Parameters lpAddrList - The array of physical addresses that was returned by the call to
LYNXHALScatterLock.

Return Status If TRUE, signifies successful completion of this function.

LYNXHALPageAllocBuffer

3-46

3.18 LYNXHALPageAllocBuffer
Description Obtains memory that is physically contiguous in memory.

Action This function provides the capability to allocate large chunks of memory that are
physically contiguous in memory. This is useful for creating large buffers to be
used in DIRECT DMA accesses by remote nodes.

Syntax BOOL LYNXHALPageAllocBuffer(VOID** buffer, DWORD length,
 PHANDLE memHandle, DWORD* PhysAddr);

Parameters buffer - The address to store the pointer to the newly allocated memory.

Length - The length in bytes of memory to be allocated.

MemHandle - The handle associated with this memory buffer.

PhysAddr - The PHYSCIAL address associated with the starting location of the
memory allocated.

Return Status If TRUE, signifies successful completion of this function.

LYNXHALPageFreeBuffer

3-47

3.19 LYNXHALPageFreeBuffer
Description Releases memory that was obtained through a call to LYNXHALPageAllocBuffer.

Action This function provides the capability to free up the memory that was allocated by
a call to the LYNXHALPageAllocBuffer function.

Syntax BOOL LYNXHALPageFreeBuffer(HANDLE memHandle);

Parameters MemHandle - The handle associated with the memory buffer to be freed and was
returned by a call to LYNXHALPageAllocBuffer.

Return Status If TRUE, signifies successful completion of this function.

 4-1

Chapter 4

InstallationInstallation

4 Installation

The installation procedure for the LynxSoft API software is defined
below. Additional information is contained in the readme.txt file supplied
with this software.

NOTE: Do not run both versions of the code. LynxSoft versions 1.x and
Version 2.x are not compatible with each other.

IMPORTANT

• If you are currently a user of LynxSoft 1.0 or 1.1, you must do the
following steps before installing LynxSoft 2.0.

1. Open up the system.ini file in the Windows directory. Remove
the following line from the [386Enh] section:

 [386Enh]
 device=c:\lynxsoft\pcilynx.vxd

 Where \lynxsoft\ is the path to where you put the PCILynx.VxD

file.

2. Go into the Win95 Device Manager (Start | Control Panel |
System, Device Manager tab). Make sure the “View by Device
Type” radio button is selected. Double-click on the “Other
Devices” section (with the question mark icon) to display all
devices in that section. The PCILynx card will show up as “PCI
Card”. Click on “PCI Card” to highlight it, and then click on
“Remove” to remove the card from the system.

3. Click the OK button to close the System Properties dialog box.

Installation

4-2

Software Installation Procedure

1. If you have installed a previous version of LynxSoft, then execute
Windows Explorer and delete the LynxSoft directory. Also be sure
that you remove the device statement in the SYSTEM.INI as
explained above. Bring up a DOS box on the screen display.

2. Insert disk 1 into the floppy drive. If down loaded from the WEB, go
to next step.

3. Select the "Run" command off the WINDOWS "Start" menu.

4. Execute the “SETUP" program from the floppy disk or in the
directory that you downloaded the code to install the LynxSoft files.
This will create the LynxSoft directory structure.

C:\LYNXSOFT - Test Application runtime files
C:\LYNXSOFT\1394DOC - Documentation provided
C:\LYNXSOFT\1394TST - Test App source and build files
C:\LYNXSOFT\1394TST inc\1394api.h - LynxSoft API interface file.

Installation

Hardware / Driver Installation Procedure

1. If you have already installed the PCILynx EVM card in your system and told
Win95 there was no driver for the card when prompted, you must remove the
card from the Win95 system.

 To remove the card from the system, Go into the Win95 Device Manager (Start |

Control Panel | System, Device Manager tab). Make sure the “View by Device
Type” radio button is selected. Double-click on the “Other Devices” section (with
the question mark icon) to display all devices in that section. The PCILynx card
will show up as “PCI Card”. Click on “PCI Card” to highlight it, and then click on
“Remove” to remove the card from the system.

2. Shut down Win95, power off the machine, and insert the PCILynx EVM card into

any available PCI slot. If the EVM kit contents list includes a power cable, then
you should have a TSBKPCI card that requires external power. Make sure to
plug the power cable provided into the PCILynx EVM card and into an available
lead from your PC’s power supply. If the kit contents list does not include a
power cable then the TSBKPCI card is powered from the PCI bus and external
power is not required. Power up the machine.

3. During boot, windows will find the PCILynx card in the system. When it does, it

will present the following dialog box.

4. Select “Driver from disk provided by hardware manufacturer” and click “OK”

5. Select “Browse” and go to the directory “C:\LYNXSOFT”. The filename

“PCILYNX.INF” should appear, select and click “OK”.

6. Win95 will then copy PCILynx.VxD to the windows system directory and fill in the

windows system registry as needed.

Installation

4-4

7. Win95 will prompt you to reboot your PC to complete the installation, choose

“Yes” to reboot your PC. Win95 will now load the PCILynx driver on boot. Upon
successful installation, the Device Manager should show the PCILynx EVM as
below.

And double-clicking on the PCILynx device should show a working status as
shown in the figure below.

Installation

5-1

Chapter 5

Test ApplicationTest Application

5 Test Application

The LynxSoft diskette contains a test application for use as well as the source
code for that application. It is a Windows application that exercises all of the API
functions. Some discussion of what happens initially with the application helps
when using it the first time.

In the LynxSoft-to-LynxSoft test application, both applications must be running to
have their CSR space enabled. Therefore, as each LynxSoft application is
brought up and tries to enumerate the 1394 bus, it may or may not see the other
LynxSoft application as a 1394-compliant device. In this case it declares the
other LynxSoft application to be a non-compliant device and only allows it to be
opened by using the non-compliant utilities of the 1394CreateFile function. To
ensure that both applications can “see” the other application as a compliant
device, each application should be brought up and then the first application
restarted independently of each other. This allows the LynxSoft API to recognize
the other LynxSoft application as a compliant device.

The test utility only allows communication with one device object at a time.
Therefore, if the user has LynxSoft applications running, to switch from one
target to another, the user would have to activate the window of the device object
or open a window to the device from the device selection dialogue.

To use the isochronous portion of the test utility the computer must be in 16-bit,
65000 color mode. This is due to the transferred data being in YUV format and is
converted to 16bit RGB before it is output to the screen.

Note:

The generated callbacks can stack up when the computer cannot perform the RGB
conversion and output to the screen in a timely manner. The system should be a
Pentium-class machine running at 90 MHz (preferably 133 MHz) to allow this software
to keep displaying data at 30 frames per second. If the computer cannot keep up with
the speed, ultimately the operating system (OS) stacks up too many requests and
hangs.

Test Utility Controls

5-2

5.1 Test Utility Controls and Dialog Boxes

The main test utility menu contains the File, View, and Help pulldown menus as shown in
Figure 5-1 if there are no devices opened by the application. The following paragraphs
gives a short explanation of the functionality of these menus.

Figure 5-1 Test Application Main Window

5.1.1 File Menu

5.1.1.1 New
This menu item will create an empty Text Document window. This is equivalent to the
“New Document” toolbar button.

5.1.1.2 Open
This menu item will open a file and create Text Document window. This is equivalent to
the “File Open” toolbar button.

Test Utility Controls

Test Application 5-3

5.1.1.3 Device
This menu item will call the Device Selection Dialog and allow you to open a connection
to a device. This will create a Text Document window for messages. This is equivalent
to the “New Device” toolbar button.

5.1.1.4 Print Setup
This menu item will call the Printer Setup Dialog to allow you to set printer options.

5.1.1.5 Exit
This menu item will Exit the application closing any open devices.

5.1.2 View Menu

5.1.2.1 Tool bar
This menu item will hide/display the toolbar as shown below.

5.1.2.2 Status bar
This menu item will hide/display the status bar as shown below.

5.1.3 Help Menu

5.1.3.1 Help Topics
This menu item will open the help engine.

5.1.3.2 About
This menu item displays the version information about the test code.

Test Utility Controls

5-4

5.2 Device Selection Dialog

This device selection dialog will appear as shown in Figure 5-2 when the App is run and
devices are available on the bus, or when the File|Device menu option is chosen or the
Device toolbar button is selected. This will establish a connection to the selected device
and provide a Text Document window associated with the device for messages. The
active window is the device all menu options are applied to.

Figure 5-2 Device Selection Dialog

Test Utility Controls

Test Application 5-5

5.3 Host Device Selected
The App screen will appear as in Figure 5-3 when the HOST device is selected from the
Device Selection dialog or if no devices are attached to the bus when the App is brought
up. All menus for other devices are a subset of the HOST menu

Figure 5-3 Host Device

5.3.1 File Menu

5.3.1.1 Device | New
This menu item will call the Device Selection Dialog and allow you to open a connection
to a device. This will create a Text Document window for messages. This is equivalent
to the “New Device” toolbar button.

5.3.1.2 Device | Link to
This menu item will allow you to link to any device. This provides all menu options of the
HOST device for the “linked” device. All actions will be applied to the node that has been
linked to. To resume actions on the HOST, simply perform the “link” operation again on
the HOST device. This is equivalent to the “Link Device” toolbar button.

Test Utility Controls

5-6

5.3.2 View Menu

5.3.2.1 Color
This menu item will allow you to change the color of the background for the active
window.

5.3.2.2 Video (565/555)
This menu item will change the color table mapping from a 555 to a 565 mode. This is
needed if your video driver interprets 16 bit RGB as 565 instead of the default mode of
555. The video will look grainy with green and black flecks

5.3.2.3 Beta (2-3/4...)
This menu item will allow you to change the Video “Offset” for the color table mapping.
The early Beta cameras from SONY sent data with a different offset. This may be
needed if the video looks fluorescent.

5.3.3 PCILynx Menu

5.3.3.1 PCI Regs
This menu item will display the PCI Configuration registers for the TSBKPCI card in the
document window.

5.3.3.2 AUX Regs
This menu item will display all of the PCILynx registers in the document window.

5.3.3.3 DMA Regs
This menu item will display all of the PCILynx registers in the document window.

5.3.3.4 FIFO Regs
This menu item will display all of the PCILynx registers in the document window.

5.3.3.5 LLC Regs
This menu item will display all of the PCILynx registers in the document window.

5.3.3.6 PHY Regs
This menu item will display all of the PCILynx registers in the document window.

5.3.3.7 ALL Regs
This menu item will display all of the PCILynx registers in the document window.

5.3.3.8 Bus Reset
This menu item will force a HW bus reset to occur on the bus.

Test Utility Controls

Test Application 5-7

5.3.4 Misc Menu

5.3.4.1 Address Range | Allocate
This menu item brings up a dialog box as shown in Figure 5-4 that allows the user to
allocate an address range that an external 1394 device can access. This dialog box
allows the user to specify the 1394 address, the buffer length, the access type and the
notification method for the operation. A list of currently allocated ranges will appear in
the area below the address/length entry fields. By double clicking on a listed range the
data for the range will appear in the list box on the right hand side of the dialog. The API
call used for this menu item is defined in section cls1394AllocateAddressRange. HOST
only.

Figure 5-4 Allocate Address Range Dialog

5.3.4.2 Address Range | Free
This menu item brings up a dialog box as shown in Figure 5-5 that allows the user to de-
allocate an address range that was previously allocated. HOST only.

Test Utility Controls

5-8

Figure 5-5 Free Address Range Dialog

5.3.4.3 Query Cycle Number
This menu item returns the current 1394 cycle number. HOST only.

5.3.4.4 Get 1394 Address
This menu item returns the 1394 node number of the current device object.

5.3.4.5 Set Speed
This menu item allows you to set a lower speed when communication with a remote
node.

5.3.5 Async Menu

5.3.5.1 Quadlet
This menu item allows the user to perform quadlet reads and writes to remote 1394
devices. The user is allowed to enter the 1394 address and a field is provided for the
data. The address may either be read or written. If the HOST device is selected, this will
cause a read or write to HOST allocated memory.

5.3.5.2 Block
This menu item allows the user to perform block reads and writes to remote 1394
devices. The user is allowed to enter the 1394 address, a data length and a field is
provided for the data. The addresses may either be read or written. If the HOST device is
selected, this will cause a read or write to HOST allocated memory

Test Utility Controls

Test Application 5-9

5.3.5.3 Lock
This menu item allows the user to perform lock functions on 1394 devices. The user is
allowed to enter the 1394 address, the lock-transaction type, the number of argument
bytes, the number of data bytes, and fields that are provided for entering the lock
arguments and data values. The API calls used for this menu item is cls1394AsyncLock
in Section 3.12.

5.3.5.4 Test Block
This menu item brings up a dialog to allow you to send pre-defined async block packets.
You give the starting 1394 address for the first block, the number of blocks to send and
the number of quadlets per packet. Each async packet will have the block number in the
first quad of the packet, each successive quadlet will contain the quadlet number base 0,
and the final quadlet will contain 0xDEADBEEF.

5.3.5.5 Broadcast
This menu item will allow you to send async quadlet or block “broadcast” packets. Currently
not implemented.

5.3.6 Isoch Menu Options

5.3.6.1 Allocate | Bandwidth
This menu item allows the user to allocate bandwidth from the bus manager. The user is
allowed to select a speed and the number of bytes of bandwidth desired. This function
returns a bandwidth handle. The user should save this handle for use when the
bandwidth is freed.

5.3.6.2 Allocate | Channel
This menu item allows the user to allocate an isochronous channel from the bus
manager. The user is allowed to select a channel number desired.

5.3.6.3 Allocate | Resources
This menu item allows the user to allocate isochronous resources. The user is allowed to
specify whether the resources are send or receive resources and the speed desired.

5.3.6.4 Free | Bandwidth
This menu item allows the user to free a previously allocated bandwidth. The user should
input the bandwidth handle previously allocated.

5.3.6.5 Free | Channel
This menu item allows the user to free a previously allocated channel.

Test Utility Controls

5-10

5.3.6.6 Free | Resources
This menu item allows the user to free previously allocated isochronous resources. The
user is asked to enter whether the resources were send or receive resources. The
resource handle is imbedded in the application and is not required for this call.

5.3.6.7 Buffers | Attach
This menu item allows the user to attach isochronous buffers to an isochronous channel.
The user is allowed to set the direction for the buffer, the buffer type (linear or circular),
the isochronous flags that allow the headers to be stripped, and synchronize with the
synchronous field and set the watermark for this buffer. Also the isochronous channel,
number of buffers, buffer size and packets per buffer are input. The API call for this
menu item is cls1394IsochAttachBuffers in Section 3.16.

5.3.6.8 Buffers | Detach
This menu item allows the user to detach previously allocated isochronous buffers.

5.3.6.9 Listen
This menu item begins listening on an isochronous channel. Application callbacks begin
occurring and data begins to be transferred to isochronous buffers already allocated and
attached.

5.3.6.10 Talk
This menu item begins the talking on an isochronous channel. Application callbacks
begin occurring and data begins to be transferred using an isochronous channel to a
remote node.

5.3.6.11 Stop
This menu item stops all isochronous transmission.

5.3.7 ISO Rx Menu

5.3.7.1 Lynx->Lynx
This menu item performs all of the necessary function calls to begin receiving
isochronous data from another PCILynx. The data transmitted is a frame of video
captured from a Sony desktop camera or a generated color bar pattern. The data is
received, converted, and transmitted to the user screen.

5.3.7.2 Stop
This menu item halts the reception of isochronous data from an external lynx.

5.3.7.3 Snapshot
This menu item will take a snapshot of the current image being displayed and send it to
the printer. If the printer output is directed to “FILE:”, then the output will go across the
bus to the Epson printer. If the output is directed to the default windows printer, output
will be sent out the parallel bus to the default printer.

Test Utility Controls

Test Application 5-11

5.3.8 ISO Tx Menu

5.3.8.1 Still Image
This menu item performs all of the necessary function calls to begin transmitting
isochronous data to another PCILynx. The data transmitted is a frame of video captured
from a Sony desktop camera. Two files, ISODATA.1 or ISODATA.2 , are provided. The
.1 file contains 3 frames of data and the .2 contains 2 frames of data.

5.3.8.2 Color Bar
This menu item performs all of the necessary function calls to begin transmitting
isochronous data to another PCILynx. The data transmitted is a vertical color bar pattern.

5.3.8.3 Stop
This menu item halts the transmission of isochronous data to an external PCILynx card.

5.3.9 Camera Menu

5.3.9.1 ON
This menu item sends an ASYNC command that turns on the Sony desktop camera to
transmit isochronous data across the bus.

5.3.9.2 Rx
This menu item performs all of the necessary function calls to begin receiving data from a
Sony desktop camera. The data is received, converted, and transmitted to the user
screen.

5.3.9.3 Stop
This menu item halts the reception of isochronous data from an external camera.

5.3.9.4 Auto WB
This menu item will do a white balance operation on a SONY ds250 camera. This
function improves the quality of the image being seen.

5.3.9.5 Controls
This menu item will provide a set of control buttons so that the cameras focus, hue,
brightness and so forth could be manually controlled. Currently not implemented.

5.3.9.6 Snapshot
This menu item will take a snapshot of the current image being displayed and send it to
the printer. If the printer output is directed to “FILE:”, then the output will go across the
bus to the Epson printer. If the output is directed to the default windows printer, output
will be sent out the parallel bus to the default printer.

Configuration ROM 6-1

Chapter 6

Configuration ROMConfiguration ROM

6 Configuration Rom

The configuration ROM installed in the Texas Instruments evaluation
cards is described in Table 6–1. This ROM configuration may or may not
be implemented in actual ROM, it can be implemented as a software
service but is transparent to the user or remote node.

CSR ROM Description for Texas Instruments 1394 card

The offsets below are added to the start of the CSR ROM offset 0x10
when actually written to the serial EEPROM.

The last hex quad address is 0xFC minus 0x10 from the starting offset,
which means that the last possible quad address in this file is 0EC.

Note:

QUADLET is big endian to match specification and makes the ASCII strings
appear more readable.

Table 6-1 CSR ROM Values

Offset 0 - 7 8 - 15 16 - 23 24 - 31 Comments
400h 04h 04h rom crc value

Bus 404h 31h 33h 39h 34h ‘1394’
Info 408h 1 1 1 1 0h 64h 70h 00h

Block 40Ch 08h 00 28 50
51

TSBKPCITST
TSBKPCI

410h 00h 00h xx xx xxxx = Serial #

414h 00h 09h xx xx xxxx = CRC
418h 03h 08h 00h 28h Module Vendor ID
41Ch 81h 00h 00h 09h Textual Descriptor
420h 0Ch 00h 02h 00 Node_Capabilities

Root 424h 8Dh 00h 00h 0Eh Node_Unique_ID
Directory 428h C7h 00h 00h 10h Module_Independent_Info

42Ch 04h 00h 00h 00h Module_Hardware_Version
430h 81h 00h 00h 26h Textual_Descriptor
434h 09h 00h 00h 00h Node_Hardware_Version
438h 81h 00h 00h 26h Textual_Descripton

CS ROM Values

6-2

Table 6-1 CSR ROM Values (continued)

Offset 0-7 8-15 16-23 24-31 Comments
Leaf 1 43Ch 00h 08h xx xx Leaf Len, xxxx = Leaf CRC
Module 440h 00h 00h 00h 00h
Vendor 444h 00h 00h 00h 00h

Id 448h 54h 45h 58h 41h “Texas Instruments”
Textual 44Ch 53h 20h 49h 4Eh

Descriptor 450h 53h 54h 52h 55h
454h 4Dh 45h 4Eh 54h
458h 53h 00h 00h 00h

45Ch 00h 02h xx xx Leaf_Len, xxxx = Leaf CRC
Leaf 2 460h 08h 00h 28h 01h Node_Vendor_ID, Chip_ID_Hi

464h 00h 00h 00h 00h Chip_Id_Lo

468h 00h 06h xx xx Dir_len, Dir_Crc
Dir. 1 46Ch B8h 00h 00h 06h TI_Module_Name

Module 470h 81h 00h 00h 04h Textual Descriptor
Dependent 474h 39h 00h 40h 00h TI_SRAM_QUADS

Info. 478h 3Ah 00h 40H 00h TI_AUXRAM_QUADS
47Ch 3Bh 00h 00h 00h TI_AUX_DEVICE

480h 00h 05h xx xx leaf_len, xxxx = leaf_crc
Dir 1 484h 00h 00h 00h 00h

Leaf 1 488h 00h 00h 00h 00h
TI 48Ch 54h 53h 42h 31h “TSB12LV21”

Module 490h 32h 4Ch 56h 32h
Name 494h 31h 00h 00h 00h

498h 00h 06h xx xx leaf_len, xxxx = leaf_crc
Dir 1 49Ch 00h 00h 00h 00h

Leaf 2 4A0h 00h 00h 00h 00h
Part 4A4h 39h 38h 30h 36h “980600x-0001”

Number 4A8h 30h 30h 34h 2Dh
4ACh 30h 30h 34h 31h
4B0h 20h xxh xxh xxh Revision

Dir 1 4B4h 00h 05h xx xx leaf_len, xxxx = leaf_crc
Leaf 3 4B8h 00h 00h 00h 00h
Module 4BCh 00h 00h 00h 00h

Hardware
Version

4C0h 54h 53h 42h 4Bh “TSBKPCITST”,
”TSBPKPCI”

Textual 4C4h 50h 43h 49h 54h
Descriptor 4C8h 53h 54h 00h 00h

Dir 1 Leaf 4 4CCh 00h 05h xx xx leaf_len, xxxx = leaf_crc
Node 4D0h 00h 00h 00h 00h

Hardware 4D4h 00h 00h 00h 00h
Version 4D8h 54h 53h 42h 32h “TSB21LV03”
Textual 4DCh 31h 3Ch 56h 30h

Descriptor 4E0h 33h 00h 00h 00h

7-1

Chapter 7

ErrataErrata

7 Errata

Table 7–1 is a list of un-implemented functions/limitations of the current
software suite along with a schedule for incorporation.

Table 7-1 Errata

Item Description Schedule for
incorporation

Packets from a
MULTIBLOCK
transmit

 (Class/BusMgr), ie do all blocks have same tLabel or different.
Currently VxD sends all packets w/same tLabel if block
exceeds max size.

BusMgr not react to
access on CSR space.

BusMgr needs to implement action to some CSR space
Some addresses are not implemented.

BusMgr could send
pkts to large for a
node to handle.

Reorganize code so that the BusMgr performs the enumeration
of devices so that it can track the "max_rec" field of each node.
This is needed to send "response" pkts back to a node.

Attach Buffer call fails Need a function in the VxD to allow it to clear all "Allocated"
PCLs. Used by Class/BusMgr when initializing for 1st time.
This would be used if APP crashes and does not free resources.

Transaction time out
for a node.

SPLIT_TIMEOUT register needs to be implemented. CLASS
needs to add this info to the device object (read, wait up to
8secs) and use this on ASYNC read/writes to the device.

Async Tx not ended
when bus reset.

Async Tx not terminated by DMA control when bus reset
occurs. Need to check for this and terminate the process. This
is internal to VxD, just queues events that won’t process.

Need to be able to
report ISO Tx fails

Need to report a packet failure on ITF underflow.

Hang looking for
Top/Spd map data

Timing issue when class enumerates and looking for Top/Spd
maps. IsoMgrId might be invalid, never get response.

Busy Off Packets Need GR PCLs to set busy bit when queue is full.
Parser Need parser for Config Rom of remote nodes
Gapcount est. Add Gapcount est. when generate speedmap and determine

maximum number of hops between nodes.

