
March 28, 1996

EXAS
INSTRUMENTS

T

PCI-LYNX ASIC
F643950

Functional Specification

Revision 0.10

Revision 0.10, March 28, 1996 1

1. REVISION HISTORY 6

2. INTRODUCTION 8

2.1 Scope Of Document 8

2.2 Feature Set 8

2.3 Applicable Documents 8

3. PERFORMANCE REQUIREMENTS 10

4. MECHANICAL REQUIREMENTS 11

4.1 Packaging Requirements 11

4.2 Pin Assignment Requirements 11

5. HARDWARE FUNCTIONAL DESCRIPTION 12

5.1 System Overview 12

5.2 ASIC FUNCTIONAL PARTITIONING 13
5.2.1 PCI Bus Logic 14

5.2.1.1 PCI Master Logic 14
5.2.1.2 PCI Slave Logic 14
5.2.1.3 PCI Configuration Control and Status Registers 14
5.2.1.4 Serial EEPROM Interface 15
5.2.1.5 Local Bus Interface Logic 15

5.2.2 Autoboot Mode Option 20
5.2.3 Interrupt Logic 22
5.2.4 DMA Logic 23

5.2.4.1 DMA Engine 37
5.2.4.2 DMA Registers 48
5.2.4.3 DMA Channel Global Issues 48

5.2.5 FIFO Logic 49
5.2.5.1 General Receive FIFO 51
5.2.5.2 Asynchronous Transmit FIFO 51
5.2.5.3 Isochronous Transmit FIFO 51
5.2.5.4 FIFO Status Logic 51
5.2.5.5 Pointer Dual-Port Address Mapping Logic 52
5.2.5.6 Byte Pack Logic 52
5.2.5.7 Byte Unpack Logic 52
5.2.5.8 FIFO Control and Status Registers 53

5.2.6 1394 Link layer Logic 54
5.2.6.1 1394 Link Layer Control and Status Registers 55
5.2.6.2 1394 Packet Transmit Control Logic 57
5.2.6.3 DMA Channel Receive Packet Comparator Logic 58

Table Of Contents

Revision 0.10, March 28, 1996 2

5.2.6.4 1394 CRC Logic 59
5.2.6.5 1394 Packet Receiver Control Logic 59
5.2.6.6 Cycle Timer Logic 59
5.2.6.7 Cycle Monitor Logic 59
5.2.6.8 PHY-Link Interface Logic 60

6. HARDWARE REGISTER DEFINITIONS 61

6.1 Memory and Configuration Address Space Register Map 61

6.2 PCI Configuration and Miscellaneous Register Definitions 64
6.2.1 Device-Vendor ID @000 64
6.2.2 Command - Status @004 64
6.2.3 Class Code - Revision ID @008 66
6.2.4 Header Type- Latency Timer- Cache Line Size @00C 66
6.2.5 Memory Access Base Address 0 - PCI-Lynx Internal Registers @010 66
6.2.6 Memory Access Base Address 1 - External RAM Port @014 66
6.2.7 Memory Access Base Address 2 - AUX Port @018 66
6.2.8 SubSystem ID @02C 67
6.2.9 Expansion ROM Base Address @030 67
6.2.10 Max_Latency - Min_Grant - Int_Pin - Int_Line Register @03C 67
6.2.11 Miscellaneous Control @040 68
6.2.12 Serial EEPROM Control @044 68
6.2.13 PCI Interrupt Status @048 69
6.2.14 PCI Interrupt Enable @04C 69
6.2.15 PCI Test Register @050 71
6.2.16 Local Bus Control Register @0B0 { ROM, RAM, AUX, and ZV registers } 72
6.2.17 Local Bus Address Register @0B4 73
6.2.18 PCI_GPIO[1:0] Control Register A @0B8 73
6.2.19 PCI_GPIO[3:2] Control Register B @0BC 73
6.2.20 PCI GPIO DATA Read-Write Ports @0C0 thru @0FC 74

6.3 DMA Control and Status Register Definitions 74
6.3.1 DMA channel 0 thru 4 - Previous packet Control List Address/Temp @100 120 140 160 18074
6.3.2 DMA channel 0 thru 4 - Current packet Control List Address @104 124 144 164 184 75
6.3.3 DMA channel 0 thru 4 - Current Data Buffer Address @108 128 148 168 188 75
6.3.4 DMA channel 0 thru 4 - DMA channel status @10C 12C 14C 16C 18C 76
6.3.5 DMA channel 0 thru 4 - DMA channel control @110 130 150 170 190 78
6.3.6 DMA channel 0 thru 4 - DMA Ready Register @114 134 154 174 194 81
6.3.7 DMA channel 0 thru 4 - Current DMA state @118 138 158 178 198 81
6.3.8 DMA Diagnostic Test Control @900 82
6.3.9 Receive Packet Remaining Count Register @904 83
6.3.10 Global Register @908 83

6.4 FIFO Control and Status Register Definitions 84
6.4.1 FIFO Size @A00 84
6.4.2 PCI-Side FIFO Pointer Write-Read Port @A04 84
6.4.3 Link-Side FIFO Pointer Write-Read port @A08 84
6.4.4 FIFO Control Token Status Read-Port @A0C 85
6.4.5 FIFO Control and test Register @A10 85
6.4.6 Asynchronous and Isochronous Transmit FIFO Threshold Control @A14 86
6.4.7 General Receive FIFO Push-Pop Ports @A20 A24 86
6.4.8 Asynchronous Transmit FIFO Push-Pop Ports 0 and 1 @A30 A34 86

Revision 0.10, March 28, 1996 3

6.4.9 Isochronous Transmit FIFO Push-Pop Ports 0 and 1 @A40 A44 87

6.5 1394 Link Layer Control and Status Register Definitions 88
6.5.1 DMA Channel 0 - 4 Word 0 Receive Packet Compare Value Register @B00 B10 B20 B30
B40 88
6.5.2 DMA Channel 0 - 4 Word 0 Receive Packet Compare Enable Register @B04 B14 B24 B34
B44 88
6.5.3 DMA Channel 0 - 4 Word 1 Receive Packet Compare Value Register @B08 B18 B28 B38
B48 89
6.5.4 DMA Channel 0 - 4 Word 1 Receive Packet Compare Enable Register @ B0C B1C B2C B3C
B4C 89
6.5.5 Bus Number and Node Number @F00 91
6.5.6 1394 Link layer Control @F04 91
6.5.7 1394 Cycle Timer @F08 92
6.5.8 1394 Physical layer Access F0C 92
6.5.9 1394 Diagnostic Test Control @F10 93
6.5.10 1394 Link Layer Interrupt Status Register @F14 93
6.5.11 1394 Link Layer Interrupt Enable Register @F18 95
6.5.12 1394 Busy Retry Control Register @F1C 95
6.5.13 Link Layer Controller State Machine Vector Monitor Port @F20 96
6.5.14 Link Layer FIFO Under Flow - Over Flow Counters @F24 96

7. APPENDIX A - DESIGN METHODOLOGY AND CONVENTIONS 97

7.1 PURPOSE 97

7.2 Revision Control 97

7.3 File Names and Hierarchy 97

7.4 Signal naming conventions 97

7.5 Coding Guidelines 98
7.5.1 Code Comments 98

7.5.1.1 File headers/body 98
7.5.1.2 Signal definition: 98
7.5.1.3 Document logic: 98
7.5.1.4 Register definition: 99

7.5.2 Coding style -- use/placement of begin/end 99
7.5.3 Coding style - registers 99
7.5.4 Coding style - state machines 99
7.5.5 Clocks and Resets 101
7.5.6 Asynchronous Boundaries 101
7.5.7 Synthesizable Verilog. 102

8. APPENDIX B - SIGNAL TO PACKAGE PIN ASSIGNMENTS 103

9. APPENDIX C - ASIC PACKAGE OUTLINE DIMENSION DRAWING 106

10. APPENDIX D - FIFO PACKET ORGANIZATION FORMATS 107

Revision 0.10, March 28, 1996 4

11. APPENDIX E - FIFO CONTROL WORD AND TRANSMIT ACK
FORMATS 114

12. APPENDIX F - PROGRAM CONTROL LIST (PCL) EXAMPLES 119

12.1 APPENDIX F.1 - TRANSFER “AT ADDRESS” PROGRAM 119

12.2 APPENDIX F.2 - TRANSFER “CONTIGUOUS VIRTUAL MEMORY” PROGRAM 119

13. APPENDIX G - SERIAL EEPROM ADDRESS MAP 120

Revision 0.10, March 28, 1996 5

FIGURE 1. PCI-LYNX ASIC IN A TYPICAL SYSTEM CONFIGURATION.. 12
FIGURE 2: PCI-LYNX FUNCTIONAL PARTIONING ... 13
FIGURE 3: DMA CHANNEL TO 1394 TRANSFER MODE ASSIGNMENTS... 24
FIGURE 4: 1394 TRANSFER PACKET CONTROL LIST FORMAT ... 25
FIGURE 5: AUXILIARY COMMAND PACKET CONTROL LIST FORMAT .. 32
FIGURE 6: EXAMPLE PCL QUEUE... 36
FIGURE 7: DMA CHANNEL PRIORITY ASSIGNMENTS. .. 37
FIGURE 8: ISOCHRONOUS TRANSMIT PACKET FRAMING.. 46
FIGURE 9. FIFO ASSIGNMENTS TO A 1394 TRANSFER MODE.. 49
FIGURE 10. FIFO HIGH LEVEL FUNCTIONAL BLOCK DIAGRAM.. 50
FIGURE 11. READ-WRITE POINTER ADDRESS MAPPING LOGIC .. 52
FIGURE 12. HIGH LEVEL 1394 LINK LAYER CONTROLLER BLOCK DIAGRAM ... 54
FIGURE 13: HIGH LEVEL FUNCTIONAL BLOCK DIAGRAM OF DMA CHANNEL RECEIVE PACKET COMPARATOR LOGIC 58
FIGURE 14. MEMORY AND CONFIGURATION ADDRESS SPACE MAP.. 61
FIGURE 15. PCI ADDRESS OFFSET ASSIGNMENTS FOR PCI-LYNX REGISTERS ... 61
FIGURE 16. 176 PIN PLASTIC QUAD FLAT PACK (S-PQFP-G176) ... 106

List Of Figures

Revision 0.10, March 28, 1996 6

1. Revision History

Revision 0.02
Section Date Editor Changes Summary
Appendix E,
6.4, 6.1

02/07/95 Henry
Angulo

Changed FIFO register definitions to allow slave read or write access in normal operating
mode. Deleted test register bits which were used to enable FIFO read-write slave
accesses. Added master error status bit to the ASYNC and ISOCH transmit control token
formats.

Revision 0.03
Section Date Editor Changes Summary
Appendix D,E
5.2.2.1, 6.3, 6.5.6

02/20/95 Henry
Angulo

Deleted SNOOP packet format and associated FIFO control token definitions
Updated DMA section after state diagrams with text file received from Randy Pipho
and updated DMA control register definitions.
Removed Link interrupts from global interrupt status and Enable registers and replaced
 with single Link interrupt status and enable.
Added Link enable and Status registers to Link register definitions.

Revision 0.04
Section Date Editor Changes Summary
6.1, 6.5, 5.2.4.1,
5.2.4.2

5.2.4.3

APPENDIX C

APPENDIX B

5.2.1.6 , 6.2.15
5.2

4/3/95 Henry
Angulo

Added control registers for implementing busy-retry re-transmit control
Update PCL map in DMA section to show Alternate next PCL to branch to on async
transmit retry timeouts.

Added high level functional block diagram of DMA channel Receive Packet comparator
function.

Changed Package pictorial from 144pin to 176 pin QFP

Updated Aux port signals to match the current definition for this port. Changed pin-
assignments to reflect 176 pin package. Also Added a signal description list.

Update Functional Partition block diagram to show aux port and added aux port verbal
description hardware function description
Added Aux port Control and status register bit definitions

6.4

APPENDIX E

5.2.2 figures 4
and 5

4/3/95 Henry
Angulo

Re-worked FIFO control and status register definitions to simplify the PCI slave interface
required to control and monitor the FIFO functionality.

Added A table of ack codes returned to transmit DMA channel for ASYNC transmit
packets

Added GPIO ready condition to PCL control and byte count definition

Revision 0.05
Section Date Editor Changes Summary
5.0 6.0 and
Appendix E

5/4/95 Henry
Angulo

Changed FIFO architecture from 4 to 3 FIFO’s. This also impacted the DMA controller
to
some extent

Revision 0.06
Section Date Editor Changes Summary
5.0 and 6.0 7/6/95 Chuck

Storvik
Updated AUX port, added ZV port, misc changes to PCI

Revision 0.10, March 28, 1996 7

Revision 0.07
Section Date Editor Changes Summary
5.0 7/10/95 Chuck

Storvik
Added GPIO

8/7/95 Richard
Baker

Added Autoboot section, PCL coding examples appendix, misc register updates

8/10/95 Randy
Pipho

Modified PCL format to accommodate returned remaining transfer count and next buffer
address entries.

8/17/95 Henry
Angulo

Re-worked link-layer and FIFO control-status register definitions.

Revision 0.08
Section Date Editor Changes Summary
6.0, Appendix E 10/13/95 Henry

Angulo
Updated 1394 Link layer control-status register definitions and fifo control token formats.
Merged Busy Retry re-XMT Count and Interval Delay regs into 1 register @ F20.

* 10/24/95 Chuck
Storvik

Reworked AUX/Local Bus Control register/GPIO bits.

* 10/25/95 Mark
Young

Corrected errors and reversed many tables to list Bit 31 on top instead of Bit 00.
Removed 10us timer. Renamed LINK_INT bit in PCI and 1394 Interrupt registers.
Added Interrupt Logic section. Changed all fixed APPENDIX references to “inserted”.

* 1/11/96 Richard
Baker

Added appendix on Serial EEPROM address map

6.4, 6.5 1/18/96 Henry
Angulo

Implemented changes to FIFO and Link layer control register definition tables.

Revision 0.09
Section Date Editor Changes Summary
App B 01/26/96 Burke

Henehan
Updated pinout, etc

Revision 0.10
Section Date Editor Changes Summary
Title Sheet 03/28/96 Burke

Henehan
Corrected symbolized part number to F643950

Revision 0.10, March 28, 1996 8

2. Introduction

2.1 Scope Of Document

This document, upon acceptance and release, shall specify the requirements for the design of an Application Specific
Integrated Circuit (ASIC) to be implemented using Texas Instruments Inc TGC3000T ASIC technology. This device
shall perform the primary function of controlling the transfer of 1394 data packets between devices operating in a PCI
bus environment and devices operating in a ieee 1394 bus environment. The device here after shall be referred to as the
PCI-LYNX.

2.2 Feature Set

The PCI-LYNX device shall support the following features:

• Compliant with IEEE 1394-1995
• Compliant with PCI specification revision 2.0
• Performs function of 1394 cycle master
• Detect lost cycle start messages
• Generates 32 bit CRC for transmission of 1394 packets
• Performs 32 bit CRC checking on reception of 1394 packets
• Supports isolation barrier between the PCI-LYNX and the PHY layer
• Supports ieee 1394 transfer rates of 100, 200 and 400 mbps
• Provides three size programmable FIFO’s (ASYNC transmit + ISO transmit + General Receive)
• Programmable 5 channel address comparator logic for receiving incoming 1394 packets and assigning them to a

DMA channel.
• Provides 5 scatter-gather DMA channels where the 1394 operation of each channel can be programmed to
support:
 • Asynchronous Packet transmit
 • Isochronous Packet Transmit
 • Asynchronous Packet Receive
 • Isochronous Packet Receive
• Provides PCI bus master function for supporting DMA operations
• Provides PCI slave function for read-write access of internal registers
• Implements a 32-bit PCI address-data path.
• Provides PCI address-data parity checking
• Provides Software control of interrupt events
• Supports Plug and Play specification
• Provides a programmable external Local Bus for implementing a dedicated data path to external logic (i.e.
SRAM,

ROM, etc.)
• Provides an 8 / 16-bit Zoom Video (ZV) Port for the transferring of video data directly to an external motion

video memory area
• Operate from 3.3 Volt power while maintaining 5 Volt tolerant inputs

2.3 Applicable Documents

The following documents shall apply to the design of the PCI-LYNX ASIC.

• PCI Bus specification revision 2.0
• IEEE STD 1394 - 1995 High Performance Serial Bus

Revision 0.10, March 28, 1996 9

• IEEE STD 1212-1991, IEEE Standard Control and Status Register (CSR) Architecture for Microcomputer
Busses
• Texas Instruments Inc. TGC3000 ASIC Design Manual

Revision 0.10, March 28, 1996 10

3. Performance Requirements

The PCI-LYNX device shall meet the following performance requirements

• Maximum PCI Bus Acquisition Latency Allowed - TBD
• Maximum DMA read PCI Bus Transfer Rate - TBD
• Maximum DMA write PCI Bus Transfer Rate - TBD
• 1394 Serial Data transfer Rates - 100 mbps 200 mbps
• Phy Link Interface Clock Frequency - 50 MHz
• PCI Interface Clock rate - 0 to 33 MHz

Revision 0.10, March 28, 1996 11

4. Mechanical Requirements

4.1 Packaging Requirements

The PCI-LYNX ASIC shall be implemented as 176-pin plastic quad flat pack (PQFP) package. The outline dimensions
for this package are provided in APPENDIX C - ASIC Package Outline Dimension Drawing on page 106.

4.2 Pin Assignment Requirements

The PCI-LYNX ASIC shall implement the signal-to-pin assignments as shown in APPENDIX B - SIGNAL TO
PACKAGE PIN ASSIGNMENTS on page 103.

Revision 0.10, March 28, 1996 12

5. Hardware Functional Description

5.1 System Overview

The following diagram provides a system overview of the PCI-LYNX ASIC as it would appear in a typical system
configuration.

Figure 1. PCI-LYNX ASIC In A Typical System Configuration

PCI-LYNX
TO

PHY
INTERFACE

PCI
BUS

SERIAL
EEPROM

FLASH
PROM

(RPL ROM)

1394
CD ROM

1394
LASER

PRINTER

1394
DESKTOP
CAMERA

1394
DIGITAL

VCR

1394
VIDEO
CABLE

SET_TOP
BOX

1394
3 PORT

PHYSICAL
LAYER

I/F

PCI-
LYNX
ASIC

PCI Host
BRIDGE

HOST CPU LOCAL
MEMORY

PCI AGENT

HOST LOCAL BUS

PCI AGENT

 PERSONAL COMPUTER 1394 PERIPHERIAL DEVICES

DMA
CHANNEL
CONTROL

(SRAM)

USER
DEFINED

FUNCTION
(AUX)

AUX PORT LOCAL BUS

ZV
Port

(VIDEO)

Revision 0.10, March 28, 1996 13

5.2 ASIC FUNCTIONAL PARTITIONING

The following is a block diagram that shows the functional partitioning of the PCI-LYNX ASIC.

Figure 2: PCI-LYNX FUNCTIONAL PARTIONING

DMA
CONTROL

AND
STATUS

REGISTERS

DMA ENGINE

PCI
MASTER

PCI
SLAVE

PCI
CONFIGURATION

CONTROL AND
STATUS

REGISTERS

SERIAL
EPROM I/F

AD[31:0]

CBEz[3:0]

PAR

FRAMEz
IRDYz
TRDYz

DEVSELz
STOPz
IDSEL

PERRz
SERRz
REQz
GNTz

PCICLK

PCIRSTz
INTAz

ASYNC
XMIT
FIFO

GENERAL
RECV
FIFO

ISO
XMIT
FIFO

POINTER
ADDRESS
MAPPING
LOGIC

PLCTL[0:1
]PLD[0:7]

PLCLK50
PLREQ
ISOLATEDz

CYCLEIN

CYCLEOU
T

FIFO
CONTROL

AND
STATUS

REGISTERS

1394 PACKET
TRANSMIT
CONTROL LOGIC

1394 PACKET
RECEIVE CONTROL
LOGIC

CRC LOGIC

PHY-LINK
INTERFACE
LOGIC

PARALLEL-TO-
SERIAL

SERIAL-TO-
PARALLEL

1394 LLC
CONTROL AND
STATUS
REGISTERS

1394 LINK LAYER CONTROL(LLC) LOGIC

FIFO LOGIC

PCI BUS LOGIC DMA LOGIC

CYCLE
TIMER

CYCLE
MONITOR

DMA_RDYz

LOCAL BUS
INTERFACE
LOGIC

RAM
ROM
AUX

ZV

AUX_CLK

AUX_RSTz

AUX_INTz

GPIO[3:0]

AUX_ADR[15:0]

AUX_DATA[15:0]

AUX_OEz

AUX_WRz[1:0]

AUX_RDY

ZV_HSYNC, ZV_VSYNC, ZV_PIXEL_CLK

ZV_DATA_VALID
AUX_CSz, ROM_CSz, RAM_CSz

SER_PROM_DAT

SER_PROM_CLK

Revision 0.10, March 28, 1996 14

5.2.1 PCI Bus Logic

This functional block shall implement the logic required to interface the PCI-LYNX ASIC to the PCI bus. The PCI bus
logic shall be designed to meet the requirements of PCI specification rev2.0. The functional partitioning of the PCI bus
logic shall be as follows:

• Read and write slave interface control logic for accessing all of the PCI-LYNX control and status registers which are
required by application software to control the operation of the PCI-LYNX and monitor it operational status.

• Bus master logic to provide the DMA logic with capability to initiate data transfers over the PCI bus as a master
device.

• PCI configuration registers for use by system and application software for configuring and programming the PCI-
LYNX. This includes the PCI required control and base registers as well as PCI-LYNX interrupt control and status
and miscellaneous control and status registers.

• Auxiliary port to interface and control the RAM, ROM, AUX, ZV port, and GPIO interfaces.
• Serial EEPROM interface for power-up PCI configuration data and constant system control register information.

5.2.1.1 PCI Master Logic

This logic function shall implement the control logic required for the PCI-LYNX to operate on the PCI bus as a master
device. This logic function shall meet the functional requirements for a PCI bus master device as specified in PCI
specification rev2.0. As bus master, the following PCI Bus commands shall be supported:

PCI Bus Operation CMD[3:0] PCI-LYNX MASTER FUNCTIONS
Memory read 0110 DMA read from memory
Memory write 0111 DMA write to memory
Memory read line 1110 DMA read from memory
Memory write line and invalidate 1111 DMA write to memory

5.2.1.2 PCI Slave Logic

This function shall implement the control logic required for the PCI-LYNX device to operate on the PCI bus as a slave
device. The logic for this function shall meet the functional requirements for a PCI slave device as specified in PCI
specification rev 2.0. The PCI-LYNX as a slave device shall not decode the I/O read and write commands. The
following commands shall be supported:

PCI Bus Operation CMD[3:0] PCI-LYNX SLAVE FUNCTIONS
Memory Read 0110 Memory read of PCI-LYNX addressed resource
Memory Write 0111 Memory write to PCI-LYNX addressed resource
Configuration Read 1010 Configuration read of PCI-LYNX addressed resource
Configuration Write 1011 Configuration write to PCI-LYNX addressed resource
Memory Read Multiple 1100 Memory read multiple to PCI-LYNX addressed resource
Memory Read Line 1110 Memory read line to PCI-LYNX addressed resource
Memory write line and
invalidate

1111 Memory write to PCI-LYNX addressed resource

The PCI slave logic shall perform burst slave transfers when enabled by the ENA_SLV_BURST bit in the miscellaneous
control register (at offset 0x40). The PCI slave logic shall perform posted write operations when possible when enabled
by the ENA_POST_WR bit in the miscellaneous control register.

5.2.1.3 PCI Configuration Control and Status Registers

Revision 0.10, March 28, 1996 15

The LYNX PCI configuration register set is defined starting on page 64. These registers shall provide system and
application software with the capability to program the PCI operational configuration of the PCI-LYNX. The functional
behavior of these registers shall conform to the requirements of the PCI specification.

5.2.1.4 Serial EEPROM Interface

The serial EEPROM interface provides communication between the ASIC and an attached serial EEPROM. The serial
EEPROM resides on an industry standard 2 wire serial bus at slave address 0.

At power-up, the serial EEPROM interface initializes a small number of locations in the PCI configuration registers from
the EEPROM. While the serial EEPROM state machine is accessing the EEPROM, any incoming PCI slave access is
terminated with retry status. A software reset will also initiate a reload of the PCI configuration register values from the
serial EEPROM.

PCI Configuration Registers/fields initialized From the serial EEPROM:

1. PCI Subsystem ID
2. PCI Subsystem Vendor ID
3. PCI Maximum Latency
4. PCI Minimum Grant
5. ROM Control

 This serial EEPROM also contains configuration data required by the 1394 Command Status Registers as specified in
APPENDIX G - SERIAL EEPROM ADDRESS MAP on page 120 and optional manufacturing data. This information is
read and written by the host processor emulating the 2 wire serial bus protocol through the serial EEPROM control
register. The 2 wire serial bus is manipulated from the host processor by setting the serial EEPROM output enable bit to
a "1", and then accessing the DATA and CLOCK bits to emulate the 2 wire serial bus protocol. Please reference
“Phillips I2C Peripherals Manual”.

The 5us timer bit in the control register provide a timing reference for timing the 2 wire serial bus protocol events, if a
more accurate source is not available. Since this timer is based on the PCI clock, it may be longer than desired,
depending on the frequency of the PCI clock. After being written to 0, the timer bit will be set to 1 after the appropriate
time delay. Host software may poll this bit to determine when the required time has passed for implementing the 2 wire
serial bus protocol.

5.2.1.5 Local Bus Interface Logic

The PCI-LYNX Local Bus interface logic is a group of special I/O ports that share common logic. These ports are
accessible from either the PCI bus or the DMA engine; these ports cannot function as master devices. These ports shall
allow the PCI-LYNX to be connected to external devices or interfaces to provide for autonomous data transfers to/from
such devices.

All local bus interfaces, except the Zoom Video Port (ZV Port), are synchronous to the LOCAL_CLK (a buffered version
of PCI clock). The ZV Port clock is programmed to be based on versions of the PCI clock, 1394 clock, or an external
clock.

The local bus provides the following I/O ports:

• RPL ROM
° A 16 bit address bus and an 8 or 16 bit read or write data bus
° Byte addressable/writable
° programmable wait-states/ready

• RAM
° A 16 bit address bus and an 8 or 16 bit read or write data bus

Revision 0.10, March 28, 1996 16

° Byte addressable/writable
° programmable wait-states/ready

Revision 0.10, March 28, 1996 17

• AUX
° A 16 bit address bus and an 8 or 16 bit read or write data bus
° Byte addressable/writable
° programmable wait-states/ready

• ZV output port
° Sync outputs (hsync & vsync)
° Data valid indicator
° 8 bits of Y (luminance data)
° 8 bits of UV (chrominance data)
° programmable pixel clock output

• General Purpose Input/Output (GPIO)
° 4 general purpose I/O pins
° Programmable direction and polarity

• • Miscellaneous Signals
° Local bus clock output
° Reset output
° Interrupt input
° External ready input

The local bus operational configuration shall be programmable via control registers specified in section 6.2.16 page 72 of
this specification.

5.2.1.5.1 RPL ROM Interface

The Remote Program Load (RPL) ROM provides the host system with the capability of reading boot code from an
attached RPL ROM. This allows the system to boot from a 1394 device, even though the system may lack specific 1394
boot code at power-reset.

Additionally, this interface has been generalized to provide functionality beyond RPL ROM access. This interface will
support PCI slave and internal DMA machine read/write access to devices such as EEPROM, FLASH, and other RAM-
like devices.

ROM access is controlled by the standard PCI configuration RPL ROM base address register (offset 0x30) and is enabled
by writing a 1 to the LSB of this register.

The ROM interface may be configured as either 8-bit or 16-bit wide data, a specified number of wait-states or external
ready paced. ROM options are configured at power-reset via the serial EEPROM.

ROM Control Register [7:0]
Bit No. Bit Name Description
07-04 ROM_WS[3:0] # of wait states (0 through 14), 1111 = Pace transfer based on AUX_RDY

w/timeout
02-03 reserved Returns 0 when read
01 ROM_WR_EN Write Enable (writable non-volatile memory)
00 ROM_16/8 Data Width, 1= 16 bit data, 0= 8 bit data.

Revision 0.10, March 28, 1996 18

5.2.1.5.2 SRAM Interface

The Static RAM is accessed through a second PCI memory base address register (offset 0x14). This memory may be
used for DMA control structures or data buffers or a shared memory interface to other functions such as a DSP.

The RAM interface may be configured as either 8-bit or 16-bit wide data, a specified number of wait-states or external
ready paced.

RAM Control Register [15:8]
Bit No. Bit Name Description
15-12 RAM_WS[3:0] # of wait states (0 through 14), 1111 = Pace transfer based on AUX_RDY

w/timeout
11-09 reserved Returns 0 when read
08 RAM_16/8 Data Width, 1= 16 bit data, 0= 8 bit data.

5.2.1.5.3 AUX Interface

This generic I/O port is accessed through a third PCI memory base address register (offset 0x18). This port may be used
to implement a high speed data path to external dedicated resources such as compression/decompression logic, or video
processor/frame buffers.

If the ZV Port is enabled, addresses between 0xF000 and 0xFFFF are mapped to ZV Port space; otherwise, this space is
available as part of the AUX address space.

The AUX interface may be configured as either 8-bit or 16-bit wide data, a specified number of wait-states or external
ready paced.

AUX Control Register [23:16]
Bit No. Bit Name Description
23-20 AUX_WS[3:0] # of wait states (0 through 14), 1111 = Pace transfer based on AUX_RDY

w/timeout
19 reserved Returns 0 when read
18 AUX_INT_POL Interrupt polarity, 1= low true interrupt, 0=high true interrupt
17 AUX_RSTZ AUX port reset output (low_true)
16 AUX_16/8 Data Width, 1= 16 bit data, 0= 8 bit data.

5.2.1.5.4 ZV Interface

The Zoom Video (ZV) port is an output-only port designed to transfer data from 1394 video devices to an external device
on the LYNX’s ZV port. When correctly programmed, this interface provides a method to receive 1394 Digital Camera
packets and transfer the payload data to an external ZV-compliant device. The ZV port assumes quadlet data.

This port is accessed via a subset of the third PCI memory base address register (offset 0x18). When the ZV port is
enabled, AUX addresses between 0xF000 and 0xFFFF map into the ZV Port. The ZV port is enabled when 1 of 6
available clock sources is selected as the ZV pixel clock. If none of the 6 are selected, ZV is disabled and AUX claims
the entire address space. When the ZV port is disabled, all ZV-related outputs are tri-stated with the exception of the data
bus which will
still be driven during AUX, RAM, & ROM accesses.

Revision 0.10, March 28, 1996 19

A vertical sync is generated on detection of the 1394 header sync field bit 24 (little endian). Upon detection of this sync
bit, a vertical sync output is generated. For the remainder of the frame, a horizonal sync output is generated whenever a
special address is used for the PCL data buffer address. By properly programming the PCL, all 1394 Digital Camera
packets may be transferred via the ZV port.

ZV Control Register [31:24]
Bit No. Bit Name Description
31 CLK_GATE_ENB

L
Gate ZV pixel clock, 1=gate pixel clock, 0=free running

30-28 HSYNC_CNT[2:0] Horizontal sync count (Hsync count of 0 will still produce an hsync every frame,
i.e. during vsync)

27-25 ZV_CLK[2:0] ZV pixel clock select
24 ZV_16/8 Data Width, 1= 16 bit data, 0= 8 bit data.

5.2.1.5.5 GPIO Interface

The General Purpose I/O (GPIO) port consists of 4 general-purpose output ports. The operating mode of these 4 ports
are independent and fully S/W programmable via two 32 bit control registers (16 bits per GPIO port). GPIO port 0’s
control register bit definition is shown below.

GPIO[x] Control Register
Bit No. Bit Name Description
15-13 reserved Returns 0 when read
12-08 GPIO[x]_SRC[4:0] data bit mux select for output on GPIO[x]
07-03 reserved Returns 0 when read
02 GPIO_POL_OUT[x] output polarity control (0=non-inverted, 1=inverted)
01 GPIO_POL_IN[x] input polarity control (0=non-inverted, 1=inverted) NOTE: GPIO[2] & [3]

ONLY
00 GPIO_OUT_EN[x] output enable control (0=tristate, 1=enabled)

Revision 0.10, March 28, 1996 20

5.2.1.5.6 Local Bus Interface Block Diagram

aux_reg_data [31:0]

PACK/
UNPACK

State Machines

Address/Data/BE
Holding Registers

slv_be [3:0]

zv_pixel_clk

aux_adr_reg[17:16]

aux_adr [15:0]

aux_data [7:0]

Local Bus Interface Block Diagram

slv_ack / interrupt

GPIO [3:0]

zv_vsync

slv_wr

slv_adr[15:4]

pci_data_in [31:0]

PCI Config Registers
register_data[31:0]

GPIO_data[3:0]

GPIO

ZV Machine

aux[15:8]

zv_hsync

ZV Decode zv_data_valid

aux_read_data[31:0]

sclk/4
sclk/2
pciclk

pciclk/2

ext_clk

aux_data [15:8]

aux[7:0]

zv[15:8]

zv[7:0]

aux_adr_reg

slv_cfg_sel

Local Bus Interface
State Machine

aux_rdy_i

aux_sel
rom_sel
ram_sel

slv_read_dir

aux_we_oz [1:0]
aux_oe_oz

ram_cs_oz
rom_cs_oz

aux_cs_oz

slv_ack
slv_int aux_int_iz

slv_rd

ext_clk/2

5.2.2 Autoboot Mode Option

When the “autoboot” pin is active (i.e. tied high), the autoboot mode is selected. The Autoboot mode enables a number
of features which allow the LYNX to function autonomously:

1. After power reset, DMA channel 0 will fetch the address of the first PCL from address 0x00000000.

2. After power reset, DMA master access to the external RPL ROM is enabled, with its base address set to 0x00000000.

3. After power reset, DMA master access to internal LYNX registers is enabled, with its internal register base address set
to 0x00010000.

Revision 0.10, March 28, 1996 21

4. Once enabled as master on the PCI bus, the LYNX can issue PCI configuration, I/O, and memory read and write
commands on the PCI bus by specifying the appropriate address range in the controlling PCL. In AUTOBOOT mode,
the external PCI address space is limited to 30 bits; the two MS address bits are always zero. Internally, these 2 bits are
used to select the PCI command.

AUTOBOOT = 1
Internal PCI Address

adr[31] adr[30] Function
0 X PCI memory Command
1 0 PCI I/O Command
1 1 PCI Configuration Command

5. The state of the autoboot pin can be read from a special bit in the Miscellaneous control register for diagnostic
purposes.

Thus, with the autoboot mode selected, and an external ROM, the LYNX can perform as the local processor to setup all
the internal LYNX registers, to initialize other devices on the PCI bus, and to build and queue other PCLs. The various
DMA channels can be enabled to execute these PCLs to transfer data across the 1394 bus.

By adding external SRAM to the LYNX, PCI slave memory is provided for devices on the PCI bus to obtain control
information and have local memory for data transfers. PCL programs can then transfer device control/data via 1394 to
another system.

This environment could be used for peripheral devices, where there may not be a suitable processor available to manage
the LYNX environment. Autoboot allows this remote LYNX environment to be controlled by another agent on the 1394
bus.

PCI
BUS

PCI
BUS

LOCAL BUS

AUTOBOOT

“1”

LYNX 1394
BUS

RPL
ROM

SRAM

1394
PHY

PCI
DEVICE

#1

PCI
DEVICE

#2

Revision 0.10, March 28, 1996 22

5.2.3 Interrupt Logic

The interrupt logic provides control for interrupts to set the PCI bus interrupt signal INTAz from several sources. The
PCI Interrupt Status register bits are each capable of generating a PCI interrupt. Any one or more status bits, when set by
PCI-LYNX hardware sources, will generate a PCI interrupt and set the INT_PEND bit if the corresponding enable bit is
set to 1 in the PCI Interrupt Enable. IEEE 1394-1995 status bits can also generate interrupts from the 1394 LLC Interrupt
Status register bits if enabled similarly by the corresponding bit in the 1394 LLC Interrupt Enable register. If the
hardware sets any one or more bits of the 1394 LLC Interrupt status register, then the P1394_INT status bit will set in the
PCI Interrupt Status register.

When the hardware sets a status bit is set in either the PCI or LLC Interrupt Status registers, the status bit will set an
interrupt it the corresponding enable bit is set in the PCI or LLC Interrupt Enable registers. LLC status bits require that
the P1394_INT_EN bit also be set in order to generate an interrupt. Any status bit can be reset by writing a 1 to that
status register bit. Once a PCI interrupt is generated, the PCI Interrupt Status register INT_PEND bit can be read to see if
the interrupt was caused by the PCI-LYNX hardware. If INT_PEND is 1 (same bit can be read in either the PCI Interrupt
Enable register or PCI Interrupt Status register) then one or more bits in the PCI Interrupt Status register is the source of
the interrupt. Each status bit set can be cleared by writing a 1 to that bit (multiple bits can be written in one register
simultaneously).

If the P1394_INT bit is set then the 1394 LLC Interrupt Status register must be read to determine which LLC status bit(s)
are set. When the appropriate LLC Interrupt Status bits are cleared by writing with a 1, the LLC_INT_PEND bit in the
LLC Interrupt Status register will read 0 if no new interrupt sources have occurred. Even so, the P1394_INT bit may
still be set, so the P1394_INT bit must still be written with a 1 to clear P1394_INT. If an LLC Interrupt Status bit is to be
polled and not interrupt enabled , then the status bit can be cleared by writing a 1, and there is no need to also write the
P1394_INT bit. In other words, it is not necessary to access the PCI Interrupt Status register for any LLC Interrupt
Enable bits that are always zero.

The FRC_INT bit in the PCI Interrupt Status register can be used for testing purposes. By setting the SET_FORCE_INT
bit in the Miscellaneous Control register, the FRC_INT bit will be set simulating a hardware sourced condition. This
feature may be useful to check out interrupt software.

Note that some interrupt conditions occur very frequently (i.e. RXDTA) during normal operation and typically should not
be enabled. If all the interrupts are enabled the CPU performance could be adversely affected on typical operating
systems.

Revision 0.10, March 28, 1996 23

5.2.4 DMA Logic

This function shall be designed to implement a 5 channel DMA controller which shall be used for transferring 1394 data
packets between the host memory and the PCI-LYNX FIFO memory or between host memory and the AUX bus (refer to
AUX bus description). The DMA logic shall use the PCI master logic function to acquire the PCI bus and function as a
master device. The DMA logic shall be comprised of the following blocks:

• DMA engine contains a common state machine which shall be priority-time multiplexed over 5 DMA channels.
This block shall also contain arbitration logic for activating a channel based on its assigned priority level.

• Control and status registers for each DMA channel along with the PCI slave data path control for accessing these
registers from the PCI interface.

The DMA is controlled by data structures called Packet Control Lists or PCLs. The PCL contains command information
which the DMA fetches from memory as needed. These commands tell the DMA the sources and destinations for the
data and how many bytes it is to transfer. Some commands move chunks of data between the 1394 Transmit FIFOs and
the PCI and between the General Receive FIFO or GRF and the PCI. Another command moves data between the PCI and
the AUX bus. Other commands are for secondary functions and are called auxiliary commands. These auxiliary
commands allow the DMA to peek and poke quadlets of specified data to any PCI address and permit some conditional
branching (described in the section defining PCL queues). The intended use is to permit the DMA to function as a
standalone processor which can build PCLs during an autoboot sequence (refer to the aforementioned autoboot
description). The entire scope of this functionality is not regimented and further uses will evolve over time as
programming ensues.

Each DMA channel can execute several commands. A group of commands deal with moving data between the 1394 bus
and host memory. These transfer commands are XMT, UNFXMT, RCV, and RCV AND UPDATE. Only one channel of
the DMA be assigned to asynchronous transmits due to complications arising from retries on the 1394 bus. Two more
commands deal with moving data between the PCI bus and the auxiliary bus.
These transfer commands are called:

• XMT Transmit data from host memory to the 1394 bus.
• UNFXMT Same as XMT except that ‘unformatted’ data is passed through the Link Layer Controller
(LLC). This permits transmission of data with the CRC as part of the payload data and not
generated and appended by the LLC.
• RCV Receive data from the 1394 bus and transfer it to host memory.
• RCV_AND_UPDATE Same as RCV except that the remaining PCL transfer count and next data buffer
address for the current scatter table entry is returned to the PCL in offsets 0x10 and 0x14.
• LBUS _TO_PCI Move a block of data from Local bus to host memory. The beginning local bus
address is specified by the contents of the Local Bus Address Register and the beginning PCI
address is specified by the Data Buffer Address Pointer in the PCL.
• PCI_TO_ LBUS Move a block of data from host memory to the Local bus. The beginning local bus
address is specified by the contents of the Local Bus Address Register and the
beginning PCI address is specified by the Data Buffer Address Pointer in the PCL.

Seven other commands deal with branching and synchronization between DMA channels if one wishes to do so. These
auxiliary commands are:

• LOAD @SOURCE => TEMP
 Read quad data from a source address and store it in a DMA temp location. The intended use is
to permit a DMA channel to queue another DMA channel.
• STORE_QUAD 4 bytes from TEMP => @DESTINATION
 Move data from a DMA temp location to an address. The intended use is to permit a DMA

channel to queue another DMA channel.
• STORE_DOUBLE 2 bytes from TEMP => @DESTINATION
 Move data from a DMA temp location to an address. The intended use is to permit a DMA

channel to move a remaining transfer count from one PCL to the scatter table transfer count
field of another PCL without overwriting the command bits of the destination PCL.

Revision 0.10, March 28, 1996 24

• STORE0 00000000 => @DESTINATION
 Write all zeros to an address. The intended use is to allow one DMA channel to inform a
waiting DMA channel to continue execution.
• STORE1 FFFFFFFF => @DESTINATION

Write all ones to an address. The intended use is to allow one DMA channel to inform a waiting
DMA channel to continue execution.

• BRANCH DESTINATION => NEXT PCL ADDRESS if Condition True
Conditional branch. Used to alter channel execution.

• COMPARE Compare the current contents of the TEMP register to a 16 bit immediate value with a 16 bit
mask and store the equality result in the Ready register.
• ADD Add the current contents of the Temp register to a 3 bit immediate value and store the results
back into the Temp register.

DMA channel Transfer Mode DMA transfer direction
0 through 4 receive 1394 ISO / Async data

transmit 1394 ISO data
transmit 1394 async data *
transfer data from PCI bus to LOCAL
bus transfer data from LOCAL bus to
PCI bus
Auxiliary commands

From GRF FIFO to Host memory.
From Host memory to ISO transmit FIFO.
From Host memory to ASYNC transmit
FIFO.

ADD,BRANCH,COMPARE,LOAD,NOP,
STORE,STORE0,STORE1,STORE_DOUBL
E

* NOTE: Only one DMA channel shall be programmed for asynchronous transmits.
The application software shall program the operation of a DMA channel by using a Packet Control List (PCL) data
structure. This structure shall reside in host memory. Application software shall be responsible for constructing the
PCLs and allocating memory for their storage. A PCL shall be organized as a contiguous set of memory locations, that
shall contain the commands, control parameters, and data buffer pointers required by a DMA channel to transfer one
1394 data packet, to move data between the PCI bus and auxiliary bus, or to execute one or more auxiliary commands.
The total number of memory locations required to construct a PCL shall be limited to 32 quadlets. As a minimum
requirement, the PCL starting address shall be aligned to a quadlet boundary (2 address lsb’s = 00). For optimal DMA
performance, the PCL start address is recommended to be aligned on a cache line boundary. The data buffer pointers
shall as a minimum requirement, be address aligned on a byte boundary. For optimum DMA performance, it is
recommended to align data buffer pointers on a cache line boundary. If this is not possible, then align to a quadlet
boundary. The sum of the sizes of the data buffers pointed to by the PCL, shall not exceed 1k bytes (1394 bit
rate=100mbps) or 2k bytes (1394 bit rate=200mbps). The active DMA channel shall fetch the commands and control
parameters from the PCL, and use them to configure itself to perform the command or transfer. The format of a PCL for
the transfer commands is defined in Figure 4: 1394 TRANSFER Packet Control List Format. The format of a PCL
for auxiliary commands is defined in Figure 5: AUXILIARY Command Packet Control List Format.

Figure 3: DMA channel to 1394 transfer Mode Assignments

Revision 0.10, March 28, 1996 25

offset PCL contents DMA channel access performed
0x0 Next PCL address read
0x4 Next PCL address after an Async retry transmit overrun

or a Async transmit target timeout .
read

0x8 Reserved for use by software ignored
0xC PCL status and total transferred count Updated by the DMA upon completion of PCL
0x10 Remaining Transfer count for the current scatter table

entry.
Updated by the DMA upon completion of PCL
for RCV AND UPDATE commands. Ignored
by the DMA for other commands.

0x14 Next Data Buffer address for the current scatter table
entry.

Updated by the DMA upon completion of PCL
for RCV AND UPDATE commands. Ignored
by the DMA for other commands.

0x18 PCL
command

Data buffer0 control and byte count read.

0x1C Data buffer0 address pointer read
0x20 Data buffer1 control and byte count read
0x24 Data buffer1 address pointer read
0x28 Data buffer2 control and byte count read
0x2C Data buffer2 address pointer read

0x78 Data buffer12 control and byte count read
0x7C Data buffer12 address pointer read

Next PCL address
offset 0x0

Bit No. Bit Name Description
31-04 Address of Next PCL
03-02 These bits should be = 00 for maximum performance
01 0 The PCL is to be written on a 32 bit boundary, so this bit must be 0
00 Not Vld Next PCL address Valid.

 1= Not Valid, the DMA will pause after execution of this PCL . Resumption
of the DMA is caused by writing a valid Next PCL address and setting the
Link bit of the DMA Control register.
 0= Valid, the DMA will chain to the PCL pointed to by bits 31-02 and
continue.

Figure 4: 1394 TRANSFER Packet Control List Format

Revision 0.10, March 28, 1996 26

Next PCL Stream
offset 0x4

 Note: This PCL address points to an alternate PCL queue that the active DMA channel will switch to if a
1394 retry transmit packet timeout causes the channel to become blocked on the current PCL queue.

Bit No. Bit Name Description
31-04 Address of Next PCL
03-02 These bits should be = 00 for maximum performance
01 0 The PCL is to be written on a 32 bit boundary, so this bit must be 0
00 Not Vld Next PCL address Valid.

 1= Not Valid, the DMA will pause after execution of this PCL . Resumption
of the DMA is caused by writing a valid Next PCL address and setting the
Link bit of the DMA Control register.
 0= Valid, the DMA will chain to the PCL pointed to by bits 31-04 and
continue.

Reserved for Software use
offset 0x8

Bit No. Bit Name Description
31-00 This word is ignored by the DMA. Software may, for example, use these

locations for flags or pointers to the previous PCL in a PCL queue.

Revision 0.10, March 28, 1996 27

Status and transferred count
offset 0xC

Bit No. Bit Name Description
31 reserved Written with unknown data by the DMA.
30 ISO MODE The Received Packet was an ISO Packet.
29 Mst Err PCI Master Error. Set to a 1 by the DMA if it receives an error indication

(parity error, timeout, etc.) from the PCI Master during execution of this PCL.
In general this is a fatal condition which will cause the channel to stop, the
LINK, BSY, and ENA bit are cleared in the DMA Command register (see
register definitions) and an DMA_HLT interrupt (see Interrupt Status
Register)
will be generated if enabled.

28 Pkt Err Packet Error. Set to a 1 by the DMA for any transfer to or from the 1394 bus
in which the transfer had an error. The error can be determined from the
Ack_Type and Acks fields. Pkt Err may not be set if Mst Err is set since it
may be impossible for the DMA to update the PCL.

27 Pkt Cmp Packet Complete. Written by the DMA upon completion of this packet.
26-21 Receive

Dma_Cha[5:0]
Received DMA Channel number. This is the Channel number received from
the Link Controller via the receive FIFO control word. Valid only for
channels programmed for receive operations. These bits shall return zeros for
other commands.
Receive Dma_Cha[5:0] DMA Channel Number

0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 0 2
0 0 0 0 1 1 3
0 0 0 1 0 0

Others
4

reserved
20 - 19 Rcv_Speed[1:0] The speed at which the packet was received for Asynchronous or Isochronous

Transfers. Valid only for channels programmed for receive operations. These
bits shall return zeros for other commands.
00 = 100 Mbps.
01 = 200 Mbps

18 - 15 Acks Packet Acknowledge. Ack status returned from the Link Layer Controller for
this packet. Written by the DMA upon completion of this packet. These bits
are written with zeros after completion of Auxiliary commands. These bits
are written with 0x0001 after completion of an isochronous transmit or PCI
to/from local bus transfers.
These bit also contain a special code for internally (non 1394) related errors
when bit 14 (Ack_Type) is set. The encoding for these errors are as follows:
0000 = Link reported a Retry Overrun
0001 = Link reported a Timeout
0010 = Link reported a FIFO underrun
0101 = No expected End of receive Packet
0110 = Pipelined Async Transmit Command encountered a command other
than another Async Transmit.
1110 = Link reported a corrupted header before the packet was transmitted.

14 Ack_Type Acknowledge type returned by 1394 Transmitter logic
Ack_Type = 0 indicates a normal 1394 ack code is returned in bits 18 - 15
Ack_Type = 1 indicates a special ack code is returned in bits 18 - 15

13 reserved Written with unknown data by the DMA.
12-00 Transferred Count For all RCV and isochronous XMT commands, the DMA will update these

Revision 0.10, March 28, 1996 28

bits with the total number of bytes transferred for this packet. These bits are
indeterminate for asynchronous transmits due to the potentially pipelined
nature of asynchronous XMT commands. These bits are written with zeros
after completion of auxiliary commands.

Remaining Transfer Count
offset 0x10

Bit No. Bit Name Description
31-13 0 Written with zeros by the DMA for the RCV_AND_UPDATE command
12-00 Remaining count For a RCV_AND_UPDATE Command, these bits will be updated by the

DMA with the remaining transfer count for whatever scatter table
Control,Byte Count(n) the DMA was last using when the end of the incoming
receive packet was encountered. The intention is to provide this information
for receiving packet data into a contiguous receive buffer.

Next Buffer Address
offset 0x14

Bit No. Bit Name Description
31-00 Next Buffer

Address
For a RCV_AND_UPDATE Command, these bits will be updated by the
DMA with the next address of whatever scatter table Data Buffer (n) the
DMA was last using when the end of the incoming receive packet was
encountered. The intention is to provide this information for receiving
packet data into a contiguous receive buffer. See APPENDIX F.1 -
TRANSFER “AT ADDRESS” PROGRAM for a description.

Revision 0.10, March 28, 1996 29

Transfer Command Data Buffer0 Control, Byte Count
offset 0x18

Bit No. Bit Name Description
31-28 reserved These bits shall be set to all zeros.
27-24 CMD3-0 CMD3 CMD2 CMD1 CMD

0
Command

0 0 0 1 RCV. (1394 FIFO to
memory)

1 0 1 0 RCV_AND_UPDATE
0 0 1 0 XMT. (Memory to 1394

FIFO)
1 1 0 0 UNFORMATTED XMT
1 0 0 0 PCI_TO_LBUS
1 0 0 1 LBUS_TO_PCI

A packet control list queue must have consistent RCV or XMT commands.
I.E. the transfer direction must be consistent.

23 reserved This bit shall be set to zero.

Revision 0.10, March 28, 1996 30

22-20 Wait Sel 2-0 Wait Select. Written when the PCL is built. These bits control what
conditions have to be met before execution of the PCL will continue.
Wait Sel

2
Wait Sel

1
Wait Sel

0
Wait Condition

0 0 0 No Wait. Continue execution.
0 0 1 Wait for DMA Ready Register = 1
0 1 0 Wait for DMA Ready Register = 0
0 1 1 Wait for External Ready pin RDY = 1
1 0 0 Wait for External Ready pin RDY = 0
1 0 1 Wait for GPIO port 2 to go active
1 1 0 Wait for GPIO port 3 to go active

Others Reserved, do not use.
19 Int Generate an Interrupt. Written when the PCL is built. Is read by the DMA to

determine if an interrupt is to be posted when the DMA completes updating
the status for this PCL. An interrupt will be generated by the DMA regardless
of the state of this bit in the case of an error which results in a termination of
PCL execution by the DMA.

18 Last Buf Last Buffer indicator. Written when the PCL is built. Is read by the DMA to
determine the end of a packet during transmits or the ending buffer for a
PCI_TO_LBUS or LBUS_TO_PCI transfer.

17 Wait for Status Written when the PCL is built. Is used to ‘single thread’ asynchronous
transmits. Normally, transmits of asynchronous transmits are pipelined to
improve throughput. Setting this bit will cause the DMA to wait for transmit
completion status before continuing. This bit must be set in any asynchronous
transmit PCL that precedes a PCL with an auxiliary command.

16 Big Endian Byte ordering. Written when the PCL is built. Is read by the DMA to control
the byte ordering of the data buffer as it is read or written. This bit is only
used for RCV and XMT commands. It is ignored by the DMA at other times.
NOTE: The Big Endian flag may only be changed on quadlet boundaries. I.E.
between header and payload data.
0=Little Endian (3,2,1,0)
1=Big Endian (0,1,2,3)

15-14 xmt_spd_code[1:0] 1394 transmit speed code. Specifies the transmission speed of an
aynchronous or isochronous transmit packet. xmt_spd_code[1:0] = 00 -
100mbps
 xmt_spd_code[1:0] = 01 - 200mbps
The value of this field is only valid for DMA transmit commands.

13 Multi ISO Packet
per Cycle Start

Written when the PCL is built. This bit is relevant for an isochronous
Transmit DMA channel (ISO Mode = 1).
0=This isochronous packet should be sent with regard to cycle start bus
boundaries. One isochronous packet per isochronous DMA channel per cycle
start period.
1=This isochronous packet should be sent without regard to cycle start bus
boundaries. This implies multiple isochronous packets for the same DMA
channel may be transmitted during a cycle start period.

12 Transmit ISO Mode Written when the PCL is built. If the command specified by bits 24-27 is a
1394 transmit, then:
0= This DMA channel is to be configured for Transmit asynchronous
transfers.
1=This DMA channel is to be configured for Transmit isochronous transfers.

11-00 Transfer Count Data Buffer Transfer Length in bytes. Written when the PCL is built. Is read
by the DMA to determine the size of this buffer.

Revision 0.10, March 28, 1996 31

Transfer Command Data Buffer (0 to n) Address Pointer
offset 0x1C, 0x24... etc.

Bit No. Bit Name Description
31-00 DATA_BUF Address of this Data Buffer. This address may begin on any byte boundary

but for maximum PCI transfer rates this address should begin on a cache line
size boundary.
For RCV and XMT commands this represents the address of host data.
For LBUS_TO_PCI and PCI_TO_LBUS transfers, this represents the address
of the PCI bus data. The address of the LOCAL bus source or destination is
contained in the LOCAL bus base address register.

Transfer Command Data Buffer (1 to n) Control, Byte Count
offset 0x20, 0x28, etc.

Bit No. Bit Name Description
31-19 reserved These bits shall be set to all zeros.
18 Last Buf Last Buffer indicator. Written when the PCL is built. Is read by the DMA to

determine the end of a packet during transmits or the ending buffer for a
PCI_TO_LBUS or LBUS_TO_PCI transfer.

17 reserved These bits shall be set to all zeros.
16 Big Endian Byte ordering. Written when the PCL is built. Is read by the DMA to control

the byte ordering of the data buffer as it is read or written. This bit is only
relevant for transfers between the 1394 bus and host memory.
NOTE: The Big Endian flag may only be changed on quadlet boundaries. I.E.
between header and payload data.
0=Little Endian (3,2,1,0)
1=Big Endian (0,1,2,3)

15-12 reserved These bits shall be set to all zeros.
11-00 Transfer Count Data Buffer Transfer Length in bytes. Written when the PCL is built. Is read

by the DMA to determine the size of this buffer.

Revision 0.10, March 28, 1996 32

offset PCL contents DMA channel access performed
0x0 Next PCL address read
0x4 unused ignored
0x8 Reserved for use by software ignored
0xC PCL status Updated by the DMA upon completion of PCL
0x10 unused ignored
0x14 unused ignored
0x18 PCL auxiliary command 1 read.
0x1C parameter for auxiliary command 1 read

 Other auxiliary commands and parameters 2 - 13
(optional)

read

0x78 PCL status & auxiliary command 13 (optional) read
0x7C parameter for auxiliary command 13 (optional) read

Auxiliary Command
offset 0x18, 0x20... etc.

Bit No. Bit Name Description
31-28 0 These bits shall be set to all zeros.
27-24 CMD3-0 CMD3 CMD2 CMD1 CMD0 Command

0 0 0 0 NOP
0 0 1 1 LOAD (@DESTINATION => TEMP)
0 1 0 0 STORE QUAD

 (4 bytes TEMP => @SOURCE)
1 0 1 1 STORE DOUBLE

 (2 bytes TEMP => @SOURCE)
0 1 0 1 STORE0

 (00000000 => @DESTINATION)
0 1 1 0 STORE1

 (FFFFFFFF => @DESTINATION)
0 1 1 1 Conditional BRANCH to DESTINATION

if the conditions are met as specified in the
condition field. Status is updated and an
interrupt is generated, if enabled, prior to
the branch.

1 1 0 1 ADD (TEMP + BUFFER => TEMP)
1 1 1 0 Compare

 (TEMP ^ BUFFER => READY)
1 1 1 1 Reserved, do not use.

DESTINATION, @DESTINATION, and @SOURCE addresses are contained in the
next word.
TEMP is the DMA Previous Address register.

23 reserved This bit shall be set to zero.

Figure 5: AUXILIARY Command Packet Control List
Format

Revision 0.10, March 28, 1996 33

22-20 Wait Sel 2-
0

Wait Select. Written when the PCL is built. These bits control what conditions have
to be met before execution of the PCL will continue for the data movement auxiliary
commands of LOAD,STORE,STORE0, and STORE1.
Wait Sel 2 Wait Sel 1 Wait Sel 0 Wait Condition

0 0 0 No Wait. Continue execution.
0 0 1 Wait for DMA Ready Register = 1
0 1 0 Wait for DMA Ready Register = 0
0 1 1 Wait for External Ready pin RDY = 1
1 0 0 Wait for External Ready pin RDY = 0
1 0 1 Wait for GPIO port 2 to go active
1 1 0 Wait for GPIO port 3 to go active

Others Reserved, do not use.
22-20 Condition

Codes 2-0
Branch Command Condition codes. Written when the PCL is built. These bits select
what conditions have to be met during the execution of the BRANCH command to
cause the address contained in DESTINATION to be loaded into the NEXT PCL
ADDRESS and linked.
Condition

Code 2
Condition

Code 1
Condition

Code 0
Branch Condition

0 0 0 Don’t branch
0 0 1 Branch if DMA Ready Register = 1
0 1 0 Branch if DMA Ready Register = 0
0 1 1 Branch if External Ready pin RDY = 1
1 0 0 Branch if External Ready pin RDY = 0
1 0 1 Branch if GPIO port 2 is active
1 1 0 Branch if GPIO port 3 is active

Others Reserved, do not use.
19 Int Generate an Interrupt. Written when the PCL is built. Is read by the DMA to

determine if an interrupt is to be posted when the DMA completes updating the status
for this auxiliary command PCL. An interrupt will be generated by the DMA
regardless of the state of this bit in the case of an error resulting in Mst Err status
being set. This bit is only valid for the auxiliary command at offset 0x18.

18 Last
Command

Last Command indicator. Written when the PCL is built. Is read by the DMA to
determine the last auxiliary command in a PCL.

17-00 reserved These bits shall be set to all zeros.

Revision 0.10, March 28, 1996 34

Auxiliary Command Parameter
offset 0x1C, 0x24... etc.

These bits are loaded by the DMA into the Current Data Buffer Address Register and are used by the DMA
during the execution of the following auxiliary commands as follows:

NOP
Bit No. Bit Name Description
31-00 Don’t Care Read but not used by the DMA

LOAD
Bit No. Bit Name Description
31-00 @SOURCE Address of the data that is to be stored in a temporary location in the DMA.

This temporary location is the DMA’s Previous Pointer/Temp Register.
STORE QUAD

Bit No. Bit Name Description
31-00 @DESTINATION Address where the data stored in the temporary location in the DMA will be

written. This temporary location is the DMA’s Previous Pointer/Temp
Register.

STORE DOUBLE
Bit No. Bit Name Description
31-00 @DESTINATION Address where the data stored in the temporary location in the DMA will be

written. This temporary location is the DMA’s Previous Pointer /Temp
Register.

STORE0
Bit No. Bit Name Description
31-00 @DESTINATION Address where data of 00000000 will be written.

STORE1
Bit No. Bit Name Description
31-00 @DESTINATION Address where data of FFFFFFFF will be written.

COMPARE
Bit No. Bit Name Description
31-16 Compare Enable Each bit set to 1 here will enable the corresponding bit compare in bits 15-00

respectively. Each bit set to 0 here will mask the the corresponding bit
compare in bits 15-00 respectively.

15-00 Compare Value This value is bit-wise compared against bits 15-00 respectively of the current
contents of the DMA’s Previous Pointer /Temp Register. The logical result
(1=equal, 0=not equal) is written to the Ready Register’s bit 0.

ADD
Bit No. Bit Name Description
31-03 Don’t Care Read but unused
02-00 Addend Added to the current 32 bit contents of the DMA Previous Pointer /Temp

Register and the result stored back into the Previous Pointer /Temp Register.

BRANCH
Bit No. Bit Name Description
31-00 DESTINATION This address is loaded into the CURENT PCL ADDRESS if the conditions

are met as specified in the condition code field.

Revision 0.10, March 28, 1996 35

Application software shall program a DMA channel to transfer multiple 1394 data packets by chaining together multiple
PCLs into a Packet Control List Queue. A queue shall be constructed by setting the next address field of each PCL, to
point to the starting address in memory of the next PCL. The Last PCL in the queue can be programmed to either halt
DMA processing, point back to the start of the queue, or point to a new queue. See Figure 6: Example PCL Queue.
PCLs containing auxiliary command(s) may be embedded anywhere in a PCL queue but a given PCL may only contain
transfer commands or auxiliary commands but not both. A PCL queue may mix RCV and XMT and auxiliary commands
together
however, an asynchronous transmit command must be followed by another asynchronous transmit commands due to the
potential piplined nature transmits and the possibility of a packet retry. Setting the “Wait for Status” bit in the command
word of an asynchronous transmit precludes this requirement.

Revision 0.10, March 28, 1996 36

Figure 6: Example PCL Queue

Next Stream Adr

Reserved (SW)

Data Buffer 0 Address

data buf1 ctl/byte_cnt

Data Buffer 1 Address

Next List Adr

data buf0 ctl/byte_cnt/cmd

Status
Data

Buffer
1

Data
Buffer

2

Data
Buffer

14

0x0

0x4

0x8

0xC

0x18

0x20

0x24

0x28

data buf13 ctl/byte_cnt

Data Buffer 13 Address

0x78

0x7C

Data

Start Address

Packet Control List 0
Packet Control List 0

Auxiliary Command(s)
Packet Control List 1

Transfer Command Packet
Control List 0

Packet Control List 0

 Dummy Packet Control
List

Next List Adr

0x0

0x0

Reserved (SW)

Reserved (SW)

Source Address

Store 1 Command

Destination Address

Next List Adr

Load Command

Status

0x0

0x4

0x8

0xC

0x18

0x20

0x24

0x28

Conditional Branch Cmd

If True Destination Addr

0x78

0x7C

Data
Buffer

1

Next Stream Adr

Reserved (SW)

Data Buffer 0 Address

Next List Adr

data buf0 ctl/byte_cnt/cmd

Status

0x0

0x4

0x8

0xC

0x18

0x20

DMA
Register

Memory

FFFFFFF
F

Data
Buffer

1

Transfer Command
Packet Control List 2 if

Branch Condition is True

Next Stream Adr

Reserved (SW)

Data Buffer 0 Address

Next List Adr

data buf0 ctl/byte_cnt/cmd

Status

0x0

0x4

0x8

0xC

0x18

0x20

Transfer Command
Packet Control List 2 if

Branch Condition is False

Other PCL(s)Other PCL(s)

Revision 0.10, March 28, 1996 37

5.2.4.1 DMA Engine

The DMA engine function shall implement the state machine logic for fetching the control parameters and data buffer
pointers from the PCL. The state machine logic or packet processor shall use these parameters to control the transfer of
data to or from the data buffers. The DMA channel priority assignment is as defined in Figure 7: DMA channel priority
assignments. The overall flow of each DMA channel is as defined in Error! Reference source not found..

DMA channel priority 1394 transfer type
X (highest) channel currently active on the 1394 bus
0 transfer commands or auxiliary commands
1 transfer commands or auxiliary commands
2 transfer commands or auxiliary commands
3 transfer commands or auxiliary commands
4 (lowest) transfer commands or auxiliary commands

Figure 7: DMA channel priority assignments.

Figure 8: State Machine Control Flow Diagram

Revision 0.10, March 28, 1996 38

D MA P AC K ET P R O C E SS O R

R ES ET

C H E N A?

PA C K ET L IST V ALID ?

1 => B SY

G ET P AC K ET W OR D S 0x18 ,0x1c

C M D = XM T ?

 D M A B U F F E R T R A N S F E R C O U N T = 0 ?

T H IS C H A N N E L 'S R X F IF O H A V E
C A C H E L IN E S IZ E W O R T H O F D A T A
O R P A C K E T C O U N T > = 1 ?

F IF O = > P C I

P A C K E T C O U N T - M A S T E R B Y T E C O U N T

D A T A B U F F E R A D D R E S S + M A S T E R B Y T E C O U N T

U P D A T E S T A T U S & A C K

G E T N E X T P C L A D D R E S S

V A L ID ?

Y

N

N

Y

N

R E T R Y S T A T U S ?

G E T_P C L

Y

 0 => LIN K
E N D

Y

N E X T P C L A D D = > C U R R P C L A D D

L A S T B U F F E R ?

G E T N E X T B U F F E R & C O U N T

1 = > P C K T ER R

G ET _PC L

G ET _PC L

Y

X MIT

ID LE

ID LE

L O AD PA C KE T C O U N T

NC H E N A?

EM PT Y ? Y

N C H EN A ?

F IF O => N U L L

E N D O F P A C K E T T O K E N ?

N

Y

E N D

E N D

IN T = 1? N

1 => PK T C M P

LIN K = 1? N

G E T N E X T P C L A D D R E S S

V A L ID ? N

N E X T P C L A D D => C U R R P C L A D D 0 => L IN K

C M D = R C V ? N D O _A U X

G O _LIN K

N C H E N A?E N D

R EA D Y ? N

C H K_IN T

C H K_IN T

1 => D M A H A LT IN T ER R U PT

BE GIN O F PA C K ET TO KE N ? N

E N D O F P A C K E T T O K E N ?

1 = > D MA H A LT IN T ER R U P T

M A ST ER ER R O R S TA TU S ? Y

1 => D M A PK T IN T ER R U P T

R ET U R N

G ET _N E XT _ST R E AM

C H E N A?

PA C K ET L IS T VA LID ?

N

N

LIN K = 1? N

G E T N E X T S T R E A M P C L A D D R E S S

V A L ID ? N

N E X T S T R E A M P C L A D D => C U R R P C L A D D 0 = > L IN K ; 0 => B S Y

1 = > D M A H A LT IN T ER R U PT

M AS T ER E R R OR ST AT U S? Y

GE T _PC L

C M D = LBU S to /from PC I? Y LBU S < => P C I

0 => B S Y

Revision 0.10, March 28, 1996 39

C U R R E N T D M A B U F F E R T R A N S F E R C O U N T = 0 ?

T H I S C H A N N E L 'S T X F I F O H A V E
C A C H E L I N E S I Z E W O R T H O R
R E M A I N D E R W O R T H O F R O O M ?

P C I = > F I F O

T R A N S F E R C O U N T - M A S T E R B Y T E C O U N T

C U R R E N T D A T A B U F F E R A D D R E S S + M A S T E R B Y T E C O U N T

N

L A S T B U F F E R ?

G E T N E X T B U F F E R & C O U N T

S E N D E N D O F P A C K E T
T O K E N

Y

N

P A C K E T C O U N T + 1

P A C K E T C O U N T = 1 ? Y

G E T P A C K E T W O R D S 0 x 1 8 , 0 x 1 c

Y I S O C H R O N O U S ?I S O _ X M I T

X M I T

0 = > R E T R Y

C U R R P C L A D D = > P R E V I O U S P C L A D D

0 = > P R E V I O U S V A L I D

1 = > P R E V I O U S V A L I D

P R E V I O U S V A L I D ?

B U S Y S T A T U S ?

0 = > L I N K

0 = > B S Y

N E X T P C L A D D = > C U R R P C L A D D

C H A E N A = 1 ?N

S T A T U S & A C K = > P R E V I O U S P C L

N

N E X T P C L A D D R E S S V A L I D ?

P A C K E T C O U N T = 1 ? Y

C H A E N A = 1 ?N

S T A T U S & A C K F I E L D = > C U R R E N T

N

1 = > F L U S H

Y

Y

0 = > F L U S H

 P R E V I O U S P C L A D D = > C U R R P C L A D D

N C H A E N A = 1 ?

C M D = X M T ? N

0 = > P R E V I O U S V A L I D

D O _ A U X

W A I T F O R S T A T U S ?Y

N E X T P C L A D D R E S S V A L I D ? Y

G O _ L I N K

R E T R Y ? Y

R E A D Y ? N

1 = > R E T R Y

C H K _ I N T

C H K _ I N T

S E N D B E G I N O F P A C K E T
T O K E N

0 = > R E T R Y

B U S Y S T A T U S ?

YB U S Y S T A T U S ?

1 = > D M A H A L T I N T E R R U P T

P 1 3 9 4 T I M E O U T o r R E T R Y O V E R R U N ?N

1 = > P K T E R R

YP K T E R R ?

YM A S T E R E R R O R o r P 1 3 9 4 T I M E O U T ?

G E T _ N E X T _ S T R E A MI D L E

Revision 0.10, March 28, 1996 40

CURRENT DMA BUFFER TRANSFER COUNT = 0?

THIS CHANNEL'S TX FIFO HAVE
CACHE LINE SIZE WORTH OR
REMAINDER WORTH OF ROOM?

PCI => FIFO

TRANSFER COUNT - MASTER BYTE COUNT

BUFFER ADDRESS + MASTER BYTE COUNT

N

LAST BUFFER?

GET NEXT BUFFER & COUNT
SEND END OF PACKET
TOKEN

Y

N

0 => LINK

0 => BSY

NEXT PCL ADD => CURR PCL ADD

NEXT PCL ADDRESS VALID?N

N CHA ENA = 1?

ISO_XMIT

CYCLE START OK? N

UPDATE STATUS => CURR PCL

CHK_INT

READY? N

SEND BEGIN OF PACKET
TOKEN

PACKET COUNT +1

GET_PCL

1 => DMA HALT INTERRUPT

IDLE

Revision 0.10, March 28, 1996 41

LAST COMMAND?

GET NEXT COMMAND

N

0 => LINK

0 => BSY

NEXT PCL ADDRESS VALID? Y

DO_AUX

CMD = LOAD?

N

@SOURCE => PREV ADDRESS REGISTER

CMD = STORE?

PREV ADDRESS REGISTER => @DESTINATION

N

N CMD = STORE 0?

00000000 => @DESTINATION

N CMD = STORE 1?

FFFFFFFF => @DESTINATION

GET_PCL

UPDATE STATUS

CHK_INT

N CONDITION = TRUE?

DESTINATION => CURRENT PCL

NCMD = BRANCH?

YWAIT?

N CH ENA?

1 => BRANCH

0 => BRANCH

BRANCH = 1? Y DESTINATION ADDRESS VALID? Y

GO_LINK

1 => DMA HALT INTERRUPT

IDLE

Revision 0.10, March 28, 1996 42

CURRENT DMA BUFFER TRANSFER COUNT = 0?

TRANSFER COUNT - MASTER BYTE COUNT

BUFFER ADDRESS + MASTER BYTE COUNT

LAST BUFFER?

GET NEXT BUFFER & COUNT

Y

N

0 => LINK

0 => BSY

NEXT PCL ADD => CURR PCL ADD

NEXT PCL ADDRESS VALID?N

N CHA ENA = 1?

UPDATE STATUS => CURR PCL

CHK_INT

READY? N

GET_PCL

1 => DMA HALT INTERRUPT

LBUS <=> PCI

LBUS to PCI? N

PCI => LBUS LBUS => PCI

0001 => ACK STATUS

IDLE

Revision 0.10, March 28, 1996 43

One can think of the DMA Packet processor as 5 independent DMA channels all running concurrently. The actual
implementation utilizes one main control state machine which multiplexes between the 5 DMA channels over time.
Priority supervisor logic continuously examines the current context of all channels and assigns the channel with the
highest priority of pending activity to the state machine for execution.

A DMA channel initializes after reset to a static condition where it is waiting for a valid PCL pointer to be written to the
Packet control list start address register , and the CH ENA and Link bits to be set in the DMA control register. A
valid PCL pointer is determined by the state of bit 0 of the Packet control list start address register . A 1 indicates an
invalid address, a 0 indicates a valid address. The DMA will then go to the address pointed to by the Packet control list
start address register, get the next address and if valid will make this the current PCL address and begin execution. If
this address is invalid the Link bit is cleared in the DMA control register, a DMA halted interrupt is generated for this
channel with associated status (DMA_HLT[x]) in the Interrupt Status register (see configuration register definitions)
and the channel goes inactive. This mechanism provides a sanity check on the PCL memory structures as well as
provides a relatively easy way to continue channel PCL execution in the event a next address link is missed. When a
valid next PCL address is detected the DMA will then set the BSY bit in the DMA control register, get the words at
PCL offset 0x18 and 0x20. A check is then made to determine whether the command is a receive, transmit, PCI to/from
LBUS, or auxiliary command.

5.2.4.1.1 DMA Receive Operation
A receive operation for isochronous and asynchronous data in the GRF will proceed by checking to see if a wait
condition exists. The wait condition is determined by the Wait Select bits of the Data Buffer Control Word 0 at PCL
offset 0x18.
 Once the wait condition no longer exists, the processor enters a data movement phase. Here a loop is entered where the
current transfer count is checked to see if it has gone to zero. If so, a check is made to see if this is the last data buffer of
the PCL buffer list. If it is the last buffer and a packet boundary has not been indicated by the Link Layer Controller
writing a special control token word in the GRF FIFO, then an error has occurred because more packet data is to be
transferred than the buffer can hold. In this case the PKT ERR bit is set in the DMA status register and the DMA will
flush the remaining data up to the packet boundary. If the current transfer count has decremented to zero and there is
another buffer in the PCL list then the DMA will acquire the new buffer address and transfer count and proceed with the
transfer. While moving data from the receive FIFO to the PCI interface, the DMA will wait for the FIFO to have
sufficient data before requesting the PCI bus master to perform a transfer. This transfer threshold is reached whenever one
of two conditions is met. The DMA will request a transfer of the PCI master whenever the number of bytes in the receive
FIFO reaches a ‘high water mark’. This highwater mark is equal to the greater of the cache line size register or the lower
bound field of the DMA Global register. The DMA gets information of a packet’s data size from the link when the
packet is first being written into the FIFO by the Link Layer Controller. It uses this transfer count to determine if the data
in the FIFO is the remaining data in the packet and if so and the size is less than the high water mark, it will request a
transfer of the PCI Master where the transfer count is equal to this remainder. While the DMA is transferring data, the
Data buffer start address register and the data buffer transfer length bits in the DMA control register are updated
to reflect the current state of the transfer.

When the Link Layer Controller encounters the end of a packet it writes a special control token word into the FIFO to
mark the end of a packet. Embedded in this control word are status bits that indicate the completion state of the packet on
the bus. The DMA uses this end of packet marker to terminate the transfer of data from the FIFO to the PCI bus. If the
end of packet marker indicates a 1394 busy acknowledge, the DMA re-acquires the PCL’s first buffer address and
transfer count and starts the packet’s transfer all over. If there was no busy status indicated from the end of packet
marker then the DMA status register is loaded with the acknowledge status passed from the Link Layer Controller in the
end of packet marker, the PKT CMP is set, and it is then written to memory in the PCL status word at PCL offset 0xC
along with the number of bytes transferred for this PCL. If the INT bit is set in the data buf0 ctl/byte_cnt/cmd at PCL
offset 0x18 then an interrupt is signaled and latched in the corresponding (DMA_PCL[x]) bit in the Interrupt Status
register. If the command was a RCV AND UPDATE command then the remaining transfer count and next buffer address
are written to PCL offsets 0x10 and 0x14 respectively.

Revision 0.10, March 28, 1996 44

The DMA then determines whether another PCL has been linked to the current PCL by fetching the Next List Adr (PCL
offset 0x00). If it is valid as indicated by bit 0 = 0 then the DMA will make this the current PCL address and continue
execution as shown. If another PCL had not been linked to the current PCL as indicated by bit 0 = 1 then the Link and
BSY bits are cleared in the DMA control register, a DMA halted interrupt is generated for this channel with associated
status (DMA_HLT[x]) in the Interrupt Status register, and the channel becomes idle.

5.2.4.1.2 DMA Asynchronous Transmit Operation
Asynchronous transmits are determined after a valid PCL pointer has been written to the Packet control list start
address register and the CH ENA and Link bits have been set as shown in the flow chart. The overall goal of the
asynchronous packet processor is to remain 1 packet ahead of the current packet being transferred from the FIFO to the
1394 bus by the Link Layer Controller. From the DMA’s point of view, this packet on the bus was the previous packet.
Any status reported by the Link Layer Controller is assumed to be for this previous packet however, setting the Wait For
Status bit in the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18 will prevent this pipelining operation. The DMA keeps
the address of the previous packet control list start address in the Previous Packet control list start address/Temp
register. A flag called ‘Previous PCL Valid’ is kept by the DMA in the DMA Global register to keep track of whether
it has stored a valid address.
A transmit operation for an asynchronous channel will proceed by checking to see if a wait condition exists. The wait
condition is determined by the Wait Select bits of the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18. A flag called
‘retry’ is kept by the DMA in the DMA Global register. This flag is used by the DMA to keep track of when the wait
conditions should be evaluated as these wait conditions are ignored during retries.

 Once the wait condition no longer exists, the processor writes a control token to the FIFO indicating the beginning of a
packet and enters a data movement phase. Here a loop is entered where the current transfer count is checked to see if it
has gone to zero. If so, a check is made to see if this is the last data buffer of the PCL buffer list. If there is another buffer
in the PCL list then the DMA will acquire the new buffer address and transfer count and proceed with the transfer. While
moving data into the asynchronous transmit FIFO from the PCI interface, the DMA will wait for the FIFO to have
sufficient room before requesting the PCI bus master to perform a read transfer. The DMA will request a transfer of the
PCI master with the byte count equal to the high water mark as defined in the aforementioned DMA receive operation.
While the DMA is transferring data, the Data buffer start address register and the data buffer transfer length bits in
the DMA control register are updated to reflect the current state of the transfer.

When the last byte of data from a buffer has been transferred to the asynchronous transmit FIFO and the buffer is the last
of the PCL list as indicated by the LAST BUF bit of the ctl/byte_cnt PCL word then the DMA knows that the end of a
packet has been reached. If the previous packet address is valid, the DMA will delay checking status until there is a full
packet queued in the transmit FIFO. This way returned status is always for the previous packet unless the Wait For
Status bit is set. If there is only one packet in the transfer, then the previous and current packets are the same. If the
previous packet address is valid then the DMA will look at the packet counter. When a packet has been transmitted to the
1394 bus by the Link Layer Controller and status for this packet is valid, the Link Layer Controller will decrement the
packet counter. The DMA will spin waiting for packet counter to go to zero indicating valid status is available for the
previous packet. If the status indicates that the previous packet is to be retried, then the DMA sets a flush FIFO request to
the Link Layer Controller and then waits for the Link Layer Controller to indicate the completion of the FIFO flush by
the removal of the retry indication. The DMA then “backs up to” the previous packet and starts the transfer all over. If no
retry occurred, then the DMA will update the DMA status register with the acknowledge status passed from the Link
Layer Controller, the PKT CMP is set, and it is then written to memory in the previous PCL status word at PCL offset
0xC along with the number of bytes transferred for the currently active PCL which may not be relevant for the previous
PCL. If the INT bit is set in the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18 then an interrupt is signaled and latched
in the corresponding (DMA_PCL[x]) bit in the Interrupt Status register.

When the status has been checked, the DMA will write a special control token to the transmit FIFO to mark the end of
the packet. The packet count in incremented to 1 to indicate to the Link Layer Controller that the end of packet has been
written by the DMA. The current PCL address is saved as the previous PCL address in the Previous Packet control list
start address register and a “Previous Valid” flag is set in the DMA Global register.
The DMA then determines whether another PCL has been linked to the current PCL by fetching the Next List Adr (PCL
offset 0x00). If it is valid as indicated by bit 0 = 0 then the DMA will make this the current PCL address and continue

Revision 0.10, March 28, 1996 45

execution as shown. If it is not valid, or if the Wait For Status bit is set then the DMA waits for the current packet to be
transferred by the Link Layer Controller. When valid status is available as indicated by the packet counter decrementing
to zero, the DMA will check to see if the packet is to be retried as indicated by a 1394 busy status. If so, the FIFO is
flushed as aforementioned and the transmit is attempted again.

If there was a transmit timeout, retry overrun, or FIFO underrun as indicated by the Link Layer Controller then the PKT
ERR bit is set in the DMA status register along with the acknowledge status and the status is updated in the PCL (offset
0xC). In the event of a transmit timeout or retry overrun it may be possible that the target node is no longer responding .
The DMA provides for the capability in this case to skip around the PCL(s) which form the stream of data to this device.
Software can set the Next PCL Stream entry of the PCL at offset 0x4 to point to the first PCL of the next stream of
transmit data (next async transmit node). If the Next PCL Stream address is valid, then the DMA will continue
execution with that PCL. If this address is not valid, then the DMA channel will go idle the same way as any time it
encounters a next PCL address marked invalid. If this next stream feature is not to be used then one should set this entry
to the same value as the Next List Adr (PCL offset 0x00). If the DMA halts due to DMA_HLT[x], and the Next PCL
Stream entry was invalid, then re-writing the Next PCL Stream entry is necessary since the DMA is in the
GET_NEXT_STREAM state of Error! Reference source not found. and the DMA State Machine is ignoring the Next
List Adr. Always settting the Next List Adr and the Next PCL Stream to the same address is therefore required if the
next stream feature is not to be used to prevent a hang in any Async XMT channel that invokes the Next PCL Stream
entry due to an error.

 If there was no retry, timeout, or FIFO underrun the DMA will update the DMA status register with the 1394
acknowledge status passed from the Link Layer Controller, the PKT CMP is set, and it is then written to memory in the
PCL status word at PCL offset 0xC. If the INT bit is set in the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18 then an
interrupt is signaled and latched in the corresponding (DMA_PCL[x]) bit in the Interrupt Status register.
If another PCL had not been linked to the current PCL as indicated by bit 0 = 1, the Link and BSY bits are cleared in the
DMA control register, a DMA halted interrupt is generated for this channel with associated status (DMA_HLT[x]) in
the Interrupt Status register, and the channel becomes idle.

Revision 0.10, March 28, 1996 46

5.2.4.1.3 DMA Isochronous Transmit Operation
Isochronous transmits are determined after a valid PCL pointer has been written to the Packet control list start address
register and the CH ENA and Link bits have been set as shown in the flow chart in Error! Reference source not
found.. The overall goal of the isochronous packet processor is to keep the isochronous transmit FIFO full. This means
there may be a number of packets queued up in the FIFO especially if the packets are small. Since isochronous packets
are “unreliable” in that there is no return status, the DMA will mark the packet complete as soon as it has been transferred
to the FIFO.
A transmit operation for isochronous will proceed by checking to see if a wait condition exists. The wait condition is
determined by the Wait Select bits of the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18. Since only one packet per
channel is allowed during a cycle start period on the bus, the DMA will also optionally wait for a indication from a “cycle
start framer”. Its job is to watch the isochronous transmit channels and generate a FIFO control word used by the Link
Layer Controller to determine the grouping of packets during a cycle start period. This concept is illustrated in Figure 8:
Isochronous Transmit Packet Framing. The waiting for the cycle start framer can be disabled by the Multi ISO
Packet per Cycle Start bit in the PCL data buf0 ctl/byte_cnt/cmd word. The effect of setting the Multi ISO bit is
global and can affect other ISO transmit channels so all ISO channels should set the Multi ISO bit set to the same value to
prevent otherwise unpredicatable behavior.

Ch 0
Packet

Control
WordCh 3

Packet
Ch 0
PacketEnd

of
Pckt

Control
WordCh 2

PacketEnd
of
Pckt

Control
WordCh 1

Packet. . . LINK LAYER CONTROLLERDMA

ISOCHRONOUS TRANSMIT FIFO

1394 BUS

Cycle
Start
Packet

Cycle
Start
Packet

Cycle
Start
Packet

Ch 0 Ch 3 Ch 0 Ch 2 Ch 1 . . .

Last
ISO
Pckt

Control
Word

Last
ISO
Pckt

Control
Word

Last
ISO
Pckt

When the wait conditions no longer exist, the DMA writes a beginning of packet control word into the transmit DMA
and enters a data transfer phase. Here a loop is entered where the current transfer count is checked to see if it has gone to
zero. If so, a check is made to see if this is the last data buffer of the PCL buffer list. If there is another buffer in the PCL
list then the DMA will acquire the new buffer address and transfer count and proceed with the transfer. While moving
data into the asynchronous transmit FIFO from the PCI interface, the DMA will wait for the FIFO to have sufficient room
before requesting the PCI bus master to perform a read transfer. Refer to the aforementioned high water mark definition
in the receive operation description. While the DMA is transferring data, the Data buffer start address register and
the data buffer transfer length bits in the DMA control register are updated to reflect the current state of the transfer.

When the last byte of data from a buffer has been transferred to the isochronous transmit FIFO and the buffer is the last of
the PCL list as indicated by the LAST BUF bit of the ctl/byte_cnt PCL word then the DMA knows that the end of a
packet has been reached. The DMA will write a special control word token to the transmit FIFO to mark the end of the
packet. The packet count in incremented by 1 to indicate to the Link Layer Controller that a full packet has been loaded
into the isochronous transmit FIFO by the DMA. The DMA will update the DMA status register with status of 0x0001,
the PKT CMP is set, and it is then written to the PCL status word at PCL offset 0xC along with the number of bytes
transferred. If the INT bit is set in the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18 then an interrupt is signaled and
latched in the corresponding (DMA_PCL[x]) bit in the Interrupt Status register.

The DMA then determines whether another PCL has been linked to the current PCL by fetching the Next List Adr (PCL
offset 0x00). If it is valid as indicated by bit 0 = 0 then the DMA will make this the current PCL address and continue
execution as shown. If another PCL had not been linked to the current PCL as indicated by bit 0 = 1 the Link and BSY

Figure 8: Isochronous Transmit Packet Framing

Revision 0.10, March 28, 1996 47

bits are cleared in the DMA control register, a DMA halted interrupt is generated for this channel with associated status
(DMA_HLT[x]) in the Interrupt Status register, and the channel becomes idle.

5.2.4.1.4 DMA PCI to LOCAL Bus and LOCAL Bus to PCI Transfers
PCI to/from LOCAL Bus transfer commands transfers data between the PCI bus and the LOCAL Bus. The PCI address
and the number of bytes to transfer is derived from the PCL data buf ctl/byte_cnt/cmd word(s) in the PCL as for other
transfer commands such as transmits. The difference is that the destination or source of the transfer is not the FIFO but
rather the LOCAL bus. The LOCAL bus address is generated from the AUX_ADR register (see hardware register
definitions).

 A PCI to/from LOCAL operation will proceed by checking to see if a wait condition exists. The wait condition is
determined by the Wait Select bits of the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18. When the wait conditions no
longer exist, the DMA enters a loop where the current transfer count is checked to see if it has gone to zero. If so, a
check is made to see if this is the last data buffer of the PCL buffer list. If there is another buffer in the PCL list then the
DMA will acquire the new buffer address and transfer count and proceed with the transfer. While the DMA is
transferring data, the Data buffer start address register and the data buffer transfer length bits in the DMA control
register are updated to reflect the current state of the transfer.

When the last byte of data from a buffer has been transferred to/from the LOCAL bus and the buffer is the last of the PCL
list as indicated by the LAST BUF bit of the ctl/byte_cnt PCL word then the DMA knows that the end of the transfer
has been reached. The DMA will update the DMA status register with status of 0x0001, the PKT CMP is set, and it
is then written to the PCL status word at PCL offset 0xC along with the number of bytes transferred. If the INT bit is
set in the data buf0 ctl/byte_cnt/cmd at PCL offset 0x18 then an interrupt is signaled and latched in the corresponding
(DMA_PCL[x]) bit in the Interrupt Status register.

The DMA then determines whether another PCL has been linked to the current PCL by fetching the Next List Adr (PCL
offset 0x00). If it is valid as indicated by bit 0 = 0 then the DMA will make this the current PCL address and continue
execution as shown. If another PCL had not been linked to the current PCL as indicated by bit 0 = 1 the Link and BSY
bits are cleared in the DMA control register, a DMA halted interrupt is generated for this channel with associated status
(DMA_HLT[x]) in the Interrupt Status register, and the channel becomes idle.

Revision 0.10, March 28, 1996 48

5.2.4.2 DMA Registers
This function shall implement a control and status register set for controlling and monitoring the status of each DMA
channel. The register set shall be implemented for each DMA channel as specified in the register definition section of
this specification. The functionality of the register set is defined as follows:

• Previous Packet control list start address/Temp register- Updated by the DMA as it processes a queue of packets
during asynchronous transmits to keep track of the previous PCL in order to post completion status. It is also used
during auxiliary commands as a temporary holding register for load and store data.

• Packet control list start address register- Initialized by application software to point to the start of the first
(dummy) PCL in a PCL chain. The DMA will use the Next Address loaded in this PCL to link to the first actual
PCL. Updated by the active DMA channel as PCLs are processed.

• Data buffer start address register- This register is loaded with the data buffer pointers fetched from the PCL as
the active DMA channel processes the PCL.

• DMA status register- Stores an ongoing count of the number of bytes transferred during this PCL. Contains the
completion status of the transfer. After processing of the PCL is completed, the active DMA channel writes the
status information of this register back into PCL at offset 0xC.

• DMA control register- Contains control bits to allow application software to enable or disable the operation of the
DMA channel and re-fetch the next address of a PCL for linkage. Stores the data buffer transfer control, transfer byte
count, and commands that are fetched from the PCL .

• DMA ready register- The least significant bit of this register can cause the DMA channel to wait for a ready
condition before it continues execution of a XMT, RCV, LOAD, STORE, STORE0 or STORE1 command. This
ready condition is selected by the control word(s) of the PCL. The least significant bit of this register can cause the
DMA channel to conditional branch to during execution of a BRANCH command. This condition is selected by the
control word(s) of the PCL.

• • Current DMA state- Stores the state vector of the DMA channel. This register is updated during the active time of
the DMA channel and maintains the last state vector generated when the channel goes inactive.

• • Receive Packet Count Register- This is a global register that contains the current received packet count. The DMA
loads this register with the receive packet count passed in the receive FIFO token words. This count is then
decremented as the data is transferred to the PCI bus.

• • DMA Global Register- This is a global register that contains some state flags used by the state machine to keep
track of the execution of an async transmit packet. It also stores the lower bound bits used in conjunction with the
cache line size register to determine the burst size requested of the PCI master.

5.2.4.3 DMA Channel Global Issues

There are several global issues dealing with the DMA channel programming.

• Only one DMA channel may be programmed for ASYNC Transmits due to complications with 1394 retries.
• If any ISO transmit channel has the MULTI ISO bit set in the command word of any of its PCL’s then all other

ISO transmit channels should also have this bit set for proper operation.
• PCL_TO_AUX and AUX_TO_PCL commands use the same AUX address register, so

⇒ Only one channel should be permitted to use these commands and
⇒ PCL’s using these commands must reload the AUX addr register as necessary.

Revision 0.10, March 28, 1996 49

5.2.5 FIFO Logic

This function shall be designed around a single 256 X 33 clocked dual-port ram. The RAM shall be partitioned into three
logical FIFO’s. Each FIFO shall be programmable in size from 0 to 256 words. For a given combination of FIFO sizes,
the sum total of the 3 FIFO sizes shall be less than or equal to 256 words. Each FIFO shall be assigned to a 1394 transfer
mode as shown in the table of Figure 9. Figure 10 provides a high level functional block diagram of the FIFO.

FIFO 1394 Receiver 1394 transmitter active DMA channel
General receive FIFO
(GRF)

writes ASYNC or
ISOCH packets
received from the
1394 bus to the
FIFO

NOP reads the ASYNC or ISOCH packets
from the FIFO and writes them to
host memory

Asynchronous transmit
FIFO (ATF)

NOP reads ASYNC
packets from the
FIFO and transmits
them over the 1394
bus

reads the ASYNC packets from host
memory and writes them into the
FIFO

Isochronous transmit FIFO
(ITF)

NOP reads ISO packets
from the FIFO and
transmits them over
the 1394 bus

reads the ISO packets from host
memory and writes them into the
FIFO

 Figure 9. FIFO Assignments to a 1394 Transfer Mode

Revision 0.10, March 28, 1996 50

Figure 10. FIFO High level Functional Block Diagram

8

general_recv
write pointer

async_xmit
read pointer

isoch_xmit
read pointer

general_recv
read pointer

async_xmit
write pointer

isoch_xmit
write pointer

mux mux

256 x 33 dual-
port ram

adrA
AAA

adrB

dinA dinB

clkA clkB

doutA doutB

wr/rdA wr/rdB

byte_pack

byte_unpack

pci_clk
0 - 33
mhz

link_clk
25mhz

ctl from 1394
xmit/recv
logic

ctl from DMA
logic

data in from
1394 receive
logic

data to 1394
transmit logic

33

33

33

33

ctl from 1394
recevier and
addr mapping
logic

ctl from
1394
transmitter
and addr
mapping
logic

dma read data
from host
mem

dma write data
to host mem

1394 FIFO
transmitter

and
receiver

occupancy
status logic

pci-to-link
clock

domain
pointer

translation
logic

DMA
FIFO

occupancy
status logic

link-to-pci
clock

domain
pointer

translation
logic

3(8) 3(8)

8

8

8 8

 8

8

8

3(8) 3(8)

ctl from
dma logic
and addr
mapping
logic

pci_clk pci_clk

link_clk link_clk

FIFO
status to
DMA
logic

FIFO status to
1394 transmit-
receive logic

LINK-SIDE CLOCK
DOMAIN

PCI-SIDE CLOCK
DOMAIN

Fifo size, test
control and status
registers

Pointer
address
mapping logic

ram address mapping offsets
to fifo read-write pointer pairs

slave write data

slave read data

read-write ctrl

Revision 0.10, March 28, 1996 51

5.2.5.1 General Receive FIFO

The General Receive FIFO (GRF) shall be comprised of the read and write pointer pair as shown in Figure 10. These
pointers shall be used in accessing the dual-port RAM. Each pointer shall count in the range from 0 to it’s
fifo_size_value minus 1. The ram addressing range for each pointer shall be set by logic which generates an offset value.
The offset shall be added to the value of the pointer to map it to a unique range of ram addresses. The read pointer shall
be used by the active DMA channel to read asynchronous or isochronous packets from the PCI-side of the RAM, and
write them into host memory. The write pointer shall be used by the 1394 receiver to write asynchronous or isochronous
packets -received over the 1394 bus- into the link-side of the RAM. The two pointers shall be connected to their
respective sides of the RAM thru a multiplexer network.

5.2.5.2 Asynchronous Transmit FIFO

The Asynchronous Transmit FIFO (ATF) shall be comprised of the read and write pointer pair as shown in Figure 10.
These pointers shall be used in accessing the dual-port RAM. Each pointer shall count in the range from 0 to it’s
fifo_size_value minus 1. The ram addressing range for each pointer shall be set by logic which generates an offset value.
The offset shall be added to the value of the pointer to map it to a unique range of addresses. The write pointer shall be
used by the active DMA channel to write asynchronous packets -that it reads from host memory- into the PCI-side of the
RAM. The read pointer shall be used by the 1394 transmitter to read asynchronous packets from the link-side of the
RAM, and transmit them over the 1394 bus. The two pointers shall be connected to their respective sides of the RAM
thru a multiplexer network.

5.2.5.3 Isochronous Transmit FIFO

The Isochronous Transmit FIFO (ITF) shall be comprised of the read and write pointer pair as shown in Figure 10. These
pointers shall be used in accessing the dual-port RAM. Each pointer shall count in the range from 0 to it’s
fifo_size_value minus 1. The ram addressing range for each pointer shall be set by logic which generates an offset value.
The offset shall be added to the value of the pointer to map it to a unique range of addresses. The write pointer shall be
used by the active DMA channel to write isochronous packets -that it reads from host memory- into the PCI-side of the
RAM. The read pointer shall be used by the 1394 transmitter to read isochronous packets from the link-side of the
RAM, and transmit them over the 1394 bus. The two pointers shall be connected to their respective sides of the RAM
thru a multiplexer network.

5.2.5.4 FIFO Status Logic

This function shall implement the logic required to generate an occupancy status for each logical FIFO. In computing the
PCI-side FIFO status, the link-to-PCI clock domain translation logic shall sample the current value of each pointer on
the link side of the fifo and translate these samples from the link clock domain over to the PCI clock domain. Each
translated Link-side pointer shall be compared to its corresponding PCI-side pointer to generate an occupancy status for
each FIFO. This status shall be used by the DMA logic to pace the transfer of data between host memory and the FIFO.
In computing the link-side FIFO status, the PCI-to-link clock domain translation logic shall sample the current value of
each pointer on the PCI-side of the FIFO and translate these samples from the pci clock domain over to the link clock
domain. Each translated PCI-side pointer shall be compared to its corresponding link-side pointer to compute an
occupancy status for each FIFO. This status shall be used by the 1394 transmit-receive logic to pace the transfer of data
between the1394 bus and the FIFO.

Revision 0.10, March 28, 1996 52

5.2.5.5 Pointer Dual-Port Address Mapping Logic

This function shall use the three size values from the FIFO size register, to map each of the FIFO read-write pointer
pairs, to a unique range of addresses in the dual-port RAM. The pointer address mapping function shall be generated in
accordance with the equations as shown in Figure 11 below.

 let ITF = Isochronous Transmit FIFO
 let ATF = Asynchronous Transmit FIFO
 let GRF = General Receive FIFO

 ITF pointer RAM address = ITF _ pointer_ value(0 to (ITF_size - 1)) + 0x00
 ATF pointer RAM address = ATF_ pointer _value(0 to (ATF_size - 1)) + ITF_ size
 GRF pointer RAM address = GRF _pointer_ value(0 to (GRF_size - 1)) + (ITF_size + ATF_size)

5.2.5.6 Byte Pack Logic

This function shall implement the logic required to assemble a full quadlet using data read from host memory on byte
aligned addresses, by the active DMA channel. The logic shall consist of four 8 bit wide registers and four 8-to-1
multiplexers. Each register-mux pair shall correspond to a byte lane. The input of each register shall connect to an input
byte lane which is switched by the active DMA channel to host memory. The output of each mux shall connect to an
output byte lane, which drives the FIFO. For each 8-to-1 multiplexer, four inputs shall connect in a one-to-
correspondence to each register output. The remaining four inputs shall connect in a one-to-one correspondence to each
register input. This configuration shall allow byte-aligned DMA read data from the 4 input byte lanes, to be cross-point
switched in a different order to the 4 output byte lanes. The control of the byte lane multiplexers shall be performed by
the active DMA read channel.

5.2.5.7 Byte Unpack Logic

This function shall implement the logic required to disassemble the quadlet data read from the FIFO, into individually
selectable bytes, for writing to host memory on byte aligned addresses by the active DMA channel. This logic shall
consist of four 8 bit wide registers and four 8-to-1 multiplexers. Each register-mux pair shall correspond to a byte lane.
The input of each register shall connect to an input byte lane, which is driven from the FIFO. The output of each
multiplexer shall connect to a output byte lane which is switched by the DMA channel to the host memory. For each of
the 8-to-1 multiplexers, four inputs shall connect in a one-to-correspondence to each register output. The remaining four
inputs shall connect in a one-to-one correspondence to each register input. This configuration shall allow the quadlet read
from the FIFO, to be cross-point switched in a different order onto the output byte lanes. The control of the byte lane
multiplexers shall be performed by the active DMA write channel.

Figure 11. Read-Write Pointer Address Mapping Logic

Revision 0.10, March 28, 1996 53

5.2.5.8 FIFO Control and Status Registers

This function shall implement the control and status register set of the FIFO logic. These registers shall be implemented
as specified in section 6.4 on page 84 of this specification. The functionality of the register set is summarized as follows:

• FIFO size register- used by application software for setting the size of each logical FIFO. This register shall provide
three size parameters for programming the size of the ITF, ATF, GRF. This register shall be accessed via a PCI-
slave read or write operation.

• PCI-side FIFO pointer Write-Read port- shall provide a PCI-slave write-read port for software to fetch the
current value of the PCI-side pointers or write a value to them.

• LINK-side FIFO pointer Write-Read port- shall provide a PCI-slave read port for software to fetch the current
value of the link-side pointers or write a value to them.

• • General Receive FIFO POP-PUSH port- A 32 bit slave write to this port shall cause the data quadlet to be pushed
onto the top of the GRF. A 32 bit slave read from this port shall cause a data quadlet to be popped off the top of the
GRF.

• • Asynchronous Transmit FIFO POP-PUSH port- A 32 bit slave write to this port shall cause the data quadlet to be
pushed onto the top of the ATF. A 32 bit slave read from this port shall cause a data quadlet to be popped off the top
of the ATF.

• • Isochronous Transmit FIFO POP-PUSH port- A 32 bit slave write to this port shall cause the data quadlet to be
pushed onto the top of the ITF. A 32 bit slave read from this port shall cause a data quadlet to be popped off the top
of the ITF.

• FIFO Control Token Status Read Port- A slave read from this port shall return the value of bit 33 of the last data
quadlet that was popped from one of the three FIFO’s that was previously accessed.

• FIFO Diagnostic test and control register- shall provide a PCI-slave read-write port for software to configure the
FIFO logic for diagnostic testing and control it’s operation.

• Transmit FIFO Threshold register- Shall provide a PCI-slave read-write port for software to set the Transmit
threshold for the ASYN and ISO transmit FIFO’s.

Revision 0.10, March 28, 1996 54

5.2.6 1394 Link layer Logic

This function shall implement the 1394 Link Layer Control Logic (LLC) as specified in section 6.0 of the IEEE 1394-
1995 standard. This function shall control the transmission and reception of 1394 packet data between the PCI-LYNX
FIFO and other devices on the 1394 bus. Figure 12 below provides a high level functional block diagram of the Link
Layer Controller logic.

CYCLETIMER

CYCLE

MONITOR

TRANSMITTER

CRC

GENERATOR

RECEIVER

 CRC

 GENERATOR

 1394

CONTROL

ANS

STATUS

REGISTERS

1394

TRANSMITTER

LOGIC

1394 RECEIVER LOGIC

 AND

DMA CHANNEL ADDRESS

COMPARATOR LOGIC

PHY

INTERFACE

LOGIC

PHY-LINK

INTERFACE

SIGNALS

1394 LINK LAYER CONTROL FUNCTIONAL BLOCK DIAGRAM

33

33

XMIT STATUS TO

DMA CONTROL

DATA FROM FIFO

DUAL-PORT RAM

ASYNC XMIT FIFO CNTL

DATA TO FIFO

DUAL-PORT RAM

GENERAL RECV
 FIFO CNTL

32

32

32
32

32
32

32

32

SLAVE

WRT

DATA

SLAVE

READ

DATA

SLAVE

RD/WR

CNTL

ISOCH XMIT FIFO CNTL

Figure 12. High Level 1394 Link Layer Controller Block Diagram

Revision 0.10, March 28, 1996 55

5.2.6.1 1394 Link Layer Control and Status Registers

This function shall implement the control and status register logic required by application software to control the
operation of the LLC and monitor it’s operation. This register set shall be implemented as specified in the control and
status register definition section of this specification on page 88. The following register set shall be implemented.

 • 1394 Bus Number - Node Number register: Shall provide the interface for application software to program the
bus and node numbers.

 • 1394 Link Layer Control Register: Shall provide the interface for application software to control the operating
mode of the LLC.

 • 1394 Link Layer Interrupt Status Register: Shall provide the interface for application software to decode the
cause of interrupts generated by the LLC and provide a mechanisim for clearing the interrupt status.

 • 1394 Link Layer Interrupt Enable register: Shall provide the interface for application software to selectively
enable the status bits in the interrupt status register to generate a LLC interrupt or disable them from generating a
LLC interrupt.

 • 1394 Cycle Timer Register: Shall provide the interface for application software to program the cycle timer with
an initial value or to read its current value. When the LLC is operating as a cycle master, this timer shall be used
to time the transmission of cycle start packets every 125 usec.

 • 1394 Physical Layer Access Register: Shall provide the interface for application software to write data to or
read data from the Physical Layer control and status registers

 • 1394 Diagnostic test Control: This register shall provide the interface for application software to perform
diagnostic testing of the 1394 LLC logic.

 • • DMA Channel 3-0 Word 0 Receive Packet Compare Value Registers: Their shall be 4 of these registers.
Each register shall be assigned to a DMA channel comparator logic function. The DMA channel comparator
shall match a selected set of bit positions in the compare value register, to corresponding bit positions of the
first quadlet (word 0) of the incoming packet. The bit positions to match shall be specified by the mask value
contained in the Word 0 Receive Packet Compare Mask Register.

 • • DMA Channel 3-0 Word 0 Receive Packet Compare Mask Register: Their shall be 4 of these registers. Each
register shall be assigned to corresponding DMA channel comparator. The DMA channel compare logic shall
use the mask value in this register to select the bit positions in word 0 that will be matched against
corresponding bit positions in the Word 0 Receive Compare Value Register.

 • • DMA Channel 3-0 Word 1 Receive Packet Compare Value Registers: Their shall be 4 of these registers.
Each register shall be assigned to a DMA channel comparator logic function. The DMA channel comparator
shall match a selected set of bit positions in the compare value register, to corresponding bit positions of the
first quadlet (word 1) of the incoming packet. The bit positions to match shall be specified by the mask value
contained in the Word 1 Receive Packet Compare Mask Register.

 • • DMA Channel 3-0 Word 1 Receive Packet Compare Mask Register: Their shall be 4 of these registers. Each
register shall be assigned to corresponding DMA channel comparator. The DMA channel compare logic shall
use the mask value in this register to select the bit positions in word 1 that will be matched against
corresponding bit positions in the Word 1 Receive Compare Value Register.

 • • Busy Retry Count Register: The contents of this register shall specify the number of times the 1394 transmitter
should re-try the transmission of an ASYNC packet when a busy acknowledge is received from the destination
node. This register shall be read-write by application software via PCI slave access.

 • • Busy Retry Transmit Time Interval Register: The contents of this register shall specify the time interval that
the transmitter must delay between successive re-try attempts, when a busy ack is received for each attempt.
This register shall be read-write by application software via PCI slave access.

 • • State Machine Vector Register: The register shall provide software with the capability to monitor the state
vector of each state machine implemeted in the LLC.

 • • FIFO Error Counters- These counters shall count the under-runs that occur on the ASYNC and ISO transmit
FIFO’s During packet transmissions and the Over-runs occuring on the GRF during packet reception.

Revision 0.10, March 28, 1996 56

Revision 0.10, March 28, 1996 57

5.2.6.2 1394 Packet Transmit Control Logic

This function shall implement the logic required to control the movement of 1394 packets from either the ITF or ATF to
the PHY interface logic for transmission over the 1394 bus. The design of the transmit control logic shall conform to the
detail functional requirements as specified in section 6.3 of specification IEEE 1394-1995. The Transmit control logic
shall be designed to format the transmit packet formats listed in APPENDIX D - FIFO PACKET ORGANIZATION
FORMATS, and the FIFO control token formats listed in APPENDIX E - FIFO CONTROL WORD AND TRANSMIT
ACK FORMATS. The following is high-level summary of the functions to be performed.

 • Unload quadlets from the asynchronous transmit FIFO and correctly format them into a 32 bit parallel 1394
asynchronous packet stream as specified in section 6.2 of specification IEEE 1394-1995.

 • Unload quadlets from the isochronous transmit FIFO and correctly format them into a 32 bit parallel 1394
isochronous packet stream as specified in section 6.2 of specification IEEE 1394-1995.

 • Use the CRC logic to compute a CRC code for the header and payload sections of a packet and insert these codes
into packet stream in the time slot as required by the format of the packet being transmitted.

 • Inputs the parallel packet streams to the PHY-interface logic for conversion from a parallel to a serial data stream
format for transmission to the PHY.

 • Transmit the cycle start packet when the LLC is programmed to operate as the cycle master.
 • Send the 1394 transmit bus requests to the PHY. The PHY layer will arbitrate for the bus and send the indication

to the transmitter to start transmitting when the BUS grant is received.
 • Execute re-try transmissions using the single phase retryX protocol as specified in IEEE 1394-1995.
 • Set the speed of packet transmission

Revision 0.10, March 28, 1996 58

5.2.6.3 DMA Channel Receive Packet Comparator Logic

This function shall implement the logic required to determine if an incoming packet is to be accepted and loaded into the
General Receive FIFO. Figure 13 provides a high level functional block diagram of the comparator logic. This function
shall implement 4 software programmable comparators. Each comparator shall be assigned to service a DMA channel. A
comparator shall be comprised of a word 0 field select register, a word1 field select register, a word 0 compare value
register, a word 1 compare value register and the comparison logic. The two field select mask registers shall specify the
bit fields in word 0 and word 1 of the incoming packet, that will be matched to an expected value by the comparator
logic. The 2 compare value registers shall specify the expected bit patterns that will be matched against the selected bit
fields in word 0 and word 1 of the incoming packet. The priority encoder collects the DMA channel match indication
from each comparator, and generates a 5 bit code that maps the incoming packet to a DMA channel. The OR gate shall
combine the select indications from the four comparators and generate a single comparator match indication to the 1394
receiver logic. The 1394 receiver logic shall use the 5 bit DMA channel number, and comparator match indication to
determine if the incoming packet is to be received into the GRF. Refer to Section 6.5 for a detailed definition of the
compare value and field select mask registers.

DMA_CH_SEL[0]

DMA_CH_SEL[1]

DMA_CH_SEL[2]

DMA_CH_SEL[3]

PRIORITY
ENCODER

DMA_CHANNEL 0
RECEIVE PACKET
COMPARATOR LOGIC

DMA_CHANNEL 1
RECEIVE PACKET
COMPARATOR

DMA_CHANNEL 2
RECEIVE PACKET
COMPARATOR

DMA_CHANNEL 3
RECEIVE PACKET
COMPARATOR

DMA_CH_SEL[0]

DMA_CH_SEL[1]

DMA_CH_SEL[2]

DMA_CH_SEL[3]

32 bit packet data
stream from PHY-LINK
logic.

32 32

32

32

32

32

DMA_CHANNEL[2:0]

COMPARATOR_MATCH
TO RECEIVER CONTROL
LOGIC

1394 RECEIVER LOGIC GRF LOGIC

0 = no_match 1 = match

SLAVE_WRDAT[31:0]

SLAVE_RDDAT[31:0]

SLAVE RD/WR
CONTROL

RECV FIFO
CONTROL

RECV_DATA

DMA_CH_SEL[0]

DMA_CH_SEL[1]

DMA_CH_SEL[2]

DMA_CH_SEL[3]

OR

Figure 13: High Level Functional Block Diagram of DMA Channel Receive Packet Comparator Logic

Revision 0.10, March 28, 1996 59

5.2.6.4 1394 CRC Logic

This function shall implement the logic for performing the following functions.

 • Generates a 32 bit auto-DIN CRC error code on the header part of the packet data stream generated by the
transmitter logic. The transmitter inserts this code into data stream after the header.

 • For packets which have a data payload, Generates a 32 bit auto-DIN CRC error code on the data payload portion
of the packet stream generated by the transmitter logic. The transmitter inserts this code at the end of the packet
stream.

 • Generates a 32 bit auto-DIN CRC error code on the header part of an incoming packet data stream. If the
computed code is equal to the header CRC code sent with the packet, then the receiver considers the header
correct.

 • Generates a 32 bit auto-DIN CRC error code on the payload section of an incoming packet data stream. If the
computed code is equal to the data CRC code sent with the packet, then the receiver considers the data payload
correct.

5.2.6.5 1394 Packet Receiver Control Logic

This function shall implement the logic required to receive incoming 1394 packets. The design of the receiver control
logic shall conform to the detail functional requirements as specified in section 6.0 of specification IEEE 1394-1995.
The following is high-level summary of the functions to be performed.

 • Use the bus and node ID registers and-or the DMA channel Receive Packet Comparators to determine if an
incoming asynchronous or isochronous packet is to be accepted.

 • Use the CRC logic function to verify correct reception of an incoming packet by checking the header CRC. If the
packet has a payload, the data CRC shall be checked.

 • Load received packets into the General Receive FIFO if the packet passes the addressing and CRC checks.
 • Generate acknowledge on asynchronous receive packets
 • Receives cycle start packets.
 • Receive self-ID packets and load them into the General Receive FIFO.

5.2.6.6 Cycle Timer Logic

This function shall implement the logic for performing the cycle timer function. The design of this function shall conform
to the requirements of a cycle timer function as specified in section 8.0 of the IEEE 1394-1995 standard. The cycle timer
shall contain the cycle counter and the cycle offset timer. The offset timer shall either be free running, or reloaded on a
low to high transition on the CYCLEIN signal pin, or shall take a reload value from the receiver, based on the state of
the CYCLEMASTER and CYCLESOURCE bits in the 1394 LLC control register. This timer shall also be enabled or
disabled using the CYCLE_TIMER_ENABLE bit in the 1394 LLC control registers. The Cycle Timer shall be used to
support isochronous data transfers. The Cycle Timer shall be 32 bits wide. The low order 12 bits shall count as a
modulo 3072 counter, which shall increment once every 24.576 MHz clock period, or (40.69ns). The next 13 high order
bits shall be a count of 8khz (or 125usec), and the highest 7 bits shall count in seconds.

5.2.6.7 Cycle Monitor Logic

This function shall implement the logic for performing the cycle monitor function. The cycle monitor shall be used to
support isochronous data transfers. It shall monitor the LLC activity and handle the scheduling of isochronous activity.
When a cycle start packet is received or transmitted, the cycle monitor shall indicate the occurrence of these events by
generating a cycle started or cycle received interrupt. The cycle monitor shall also detect missing cycle start packets and
shall generate a cycle lost interrupt. When an isochronous cycle is completed, the cycle monitor shall assert a cycle done
interrupt. The cycle monitor shall signal the transmitter to send a cycle start packet when the CYCLEMASTER enable bit
is asserted in the 1394 LLC control register.

Revision 0.10, March 28, 1996 60

5.2.6.8 PHY-Link Interface Logic

This function shall implement the logic for interfacing the PCI-LYNX to the physical layer chip. The design of this logic
shall conform to the requirements of the LINK-PHY interface specification in annex J of the IEEE 1394-1995 standard.
This function shall provide the PCI-LYNX with access to the physical layer services. The following high level functions
shall be performed.

 • Use the packet speed code from the transmitter, to select the number of serial data streams to generate. If the
speed code is set for 100mbps, the parallel data stream is converted into 2 serial data streams each running at
50mbps. If the speed code is set for 200mbps, the parallel data stream is converted into 4 serial data streams each
running at 50mbps.

 • Use the PHY receive speed indication to convert the incoming serial data streams from the PHY into a parallel
data stream for input into the receiver control logic. For any incoming packet, the phy will generate 2 serial data
streams to the PCI-LYNX if it is receiving the packet at100 mbps or 4 serial data streams if it is receiving the
packet at 200mbps. The serial data streams are each clocked at 50 MHz.

 • Detect and receive serial status responses from the PHY and convert them into a parallel format . The status
responses shall convey PHY interrupt indications and-or return data in response to a PHY register read access
request.

 • Detect and receive serial acknowledge packets and convert them into a parallel format
 • Accept transmitter packet transmit requests or phy register read-write access requests and format them into a serial

request stream for transmission to the PHY.
 • Operate with an electrical isolation barrier between the PHY and PCI-LYNX devices.

Revision 0.10, March 28, 1996 61

6. Hardware Register Definitions

6.1 Memory and Configuration Address Space Register Map

PCI Configuration, Miscellaneous,
and Local Bus Registers

PCI Configuration, Miscellaneous,
and Local Bus Registers

DMA Control and Status Registers

FIFO Control and Status Registers

1394 Link Layer and Physical Layer
Status and Control Registers

PCI Interface and AUX Port Registers
000 Device ID = 8000 Vendor ID = 0x104C = TI
004 Status Command
008 Class Code = 0x0C0000 Revision ID
00C BIST Header Type Latency Timer Cache Line Size
010 Memory Base Address Register 0 - Internal PCI-Lynx Registers
014 Memory Base Address Register 1 - External SRAM on Local Bus
018 Memory Base Address Register 2 - AUX Port on Local Bus
01C Zero
020 Zero
024 Zero
028 Zero
02C SubSystem ID SubSystem Vendor ID
030 RPL ROM Base Address Register
034 Zero
038 Zero
03C Max_Latency Min_Grant Int_Pin Int_Line
040 Miscellaneous Control
044 Serial EEPROM Control Register
048 PCI Interrupt Status Register
04C PCI Interrupt Enable Register
050 PCI Test Register
054 Zero
058 Zero

Figure 14. Memory and Configuration Address Space Map

Figure 15. PCI Address Offset Assignments For PCI-LYNX Registers

00

FC

100

9FC

A00

AFC

B00

FFC

PCI Memory Access Address Space PCI Configuration Access Address Space

Offset from
Memory Base

Register 0

Revision 0.10, March 28, 1996 62

0B0 Local Bus Control Register
0B4 Local Bus Address Register
0B8 PCI_GPIO[1:0] Control Register A
0BC PCI_GPIO[3:2] Control Register B
0C0 PCI_GPIO_DATA_0000 Read-Only Port
0C4 PCI_GPIO_DATA_0001 Read-Write Port
0C8 PCI_GPIO_DATA_0010 Read-Write Port
0CC PCI_GPIO_DATA_0011 Read-Write Port
0D0 PCI_GPIO_DATA_0100 Read-Write Port
0D4 PCI_GPIO_DATA_0101 Read-Write Port
0D8 PCI_GPIO_DATA_0110 Read-Write Port
0DC PCI_GPIO_DATA_0111 Read-Write Port
0E0 PCI_GPIO_DATA_1000 Read-Write Port
0E4 PCI_GPIO_DATA_1001 Read-Write Port
0E8 PCI_GPIO_DATA_1010 Read-Write Port
0EC PCI_GPIO_DATA_1011 Read-Write Port
0F0 PCI_GPIO_DATA_1100 Read-Write Port
0F4 PCI_GPIO_DATA_1101 Read-Write Port
0F8 PCI_GPIO_DATA_1110 Read-Write Port
0FC PCI_GPIO_DATA_1111 Read-Write Port

DMA Controller Registers
100 DMA Channel 0 Previous Packet Control List Address/Temp
104 DMA Channel 0 Current Packet Control List Address
108 DMA Channel 0 Current Data Buffer Address
10C DMA Channel 0 Status
110 DMA Channel 0 Control
114 DMA Channel 0 Ready Register
118 DMA Channel 0 Current State
120 DMA Channel 1 Previous Packet Control List Address/Temp
124 DMA Channel 1 Current Packet Control List Address
128 DMA Channel 1 Current Data Buffer Address
12C DMA Channel 1 Status
130 DMA Channel 1 Control
134 DMA Channel 1 Ready Register
138 DMA Channel 1 Current State
140 DMA Channel 2 Previous Packet Control List Address/Temp
144 DMA Channel 2 Current Packet Control List Address
148 DMA Channel 2 Current Data Buffer Address
14C DMA Channel 2 Status
150 DMA Channel 2 Control
154 DMA Channel 2 Ready Register
158 DMA Channel 2 Current State
160 DMA Channel 3 Previous Packet Control List Address/Temp
164 DMA Channel 3 Current Packet Control List Address
168 DMA Channel 3 Current Data Buffer Address
16C DMA Channel 3 Status
170 DMA Channel 3 Control
174 DMA Channel 3 Ready Register
178 DMA Channel 3 Current State
180 DMA Channel 4 Previous Packet Control List Address/Temp

Revision 0.10, March 28, 1996 63

184 DMA Channel 4 Current Packet Control List Address
188 DMA Channel 4 Current Data Buffer Address
18C DMA Channel 4 Status
190 DMA Channel 4 Control
194 DMA Channel 4 Ready Register
198 DMA Channel 4 Current State
1A0
to

8E0

This range of address offsets shall be reserved for future use in
implementing status and control registers for DMA channels 5 thru 63

900 DMA Diagnostic Test Control Register
904 DMA Receive FIFO Packet Count Registers
908 DMA Global Register

FIFO Registers
A00 FIFO Size Register
A04 PCI-Side FIFO Pointer Write-Read Port
A08 Link-Side FIFO Pointer Write-Read Port
A0C FIFO Control Token Status Read-Port
A10 FIFO Control Token Enable and Test Mux Control Register
A14 ATF-ITF Transmit Data Ready Threshold Control Register
A20 General Receive FIFO Pop-Push Port0 FIFO bit32 set to 0 on write
A24 General Receive FIFO Pop-Push Port1 FIFO bit32 set to 1 on write
A28 Not Used
A2C Not Used
A30 Asynchronous Transmit FIFO Pop-Push Port0 FIFO bit32 set to 0 on

write
A34 Asynchronous Transmit FIFO Pop-Push Port1 FIFO bit 32 set to 1 on

write
A38 Not Used
A3C Not Used
A40 Isochronous Transmit FIFO Pop-Push Port0 FIFO bit32 set to 0 on

write
A44 Isochronous Transmit FIFO Pop-Push Port1 FIFO bit 32 set to 1 on

write
A48
 to
AFC

Reserved

Link Layer Controller Registers
B00 DMA channel 0 Word 0 Receive Packet Comparator Value Register
B04 DMA channel 0 Word 0 Receive Packet Comparator Mask Register
B08 DMA channel 0 Word 1 Receive Packet Comparator Value Register
B0C DMA channel 0 Word 1 Receive Packet Comparator Mask Register
B10 DMA channel 1 Word 0 Receive Packet Comparator Value Register
B14 DMA channel 1 Word 0 Receive Packet Comparator Mask Register
B18 DMA channel 1 Word 1 Receive Packet Comparator Value Register
B1C DMA channel 1 Word 1 Receive Packet Comparator Mask Register
B20 DMA channel 2 Word 0 Receive Packet Comparator Value Register
B24 DMA channel 2 Word 0 Receive Packet Comparator Mask Register
B28 DMA channel 2 Word 1 Receive Packet Comparator Value Register
B2C DMA channel 2 Word 1 Receive Packet Comparator Mask Register
B30 DMA channel 3 Word 0 Receive Packet Comparator Value Register
B34 DMA channel 3 Word 0 Receive Packet Comparator Mask Register
B38 DMA channel 3 Word 1 Receive Packet Comparator Value Register

Revision 0.10, March 28, 1996 64

B3C DMA channel 3 Word 1 Receive Packet Comparator Mask Register
B40 DMA channel 4 Word 0 Receive Packet Comparator Value Register
B44 DMA channel 4 Word 0 Receive Packet Comparator Mask Register
B48 DMA channel 4 Word 1 Receive Packet Comparator Value Register
B4C DMA channel 4 Word 1 Receive Packet Comparator Mask Register
B50
to

EF0

This range of address offsets shall be reserved for future use in
implementing comparator control registers for DMA channels 5 thru 63

F00 1394 Bus Number - Node Number Register
F04 1394 Link Layer Control Register
F08 1394 Cycle Timer
F0C 1394 Physical Layer Access Control
F10 1394 Diagnostic Test Control Register
F14 1394 Link Layer Interrupt Status Register
F18 1394 Link Layer Interrupt Enable Register
F1C 1394 Busy Retry Count and retry interval register
F20 LLC State Machine Vector Monitor Port 1
F24 FIFO Overrun-Underrun Error Counters

6.2 PCI Configuration and Miscellaneous Register Definitions

6.2.1 Device-Vendor ID @000

This register provides application software access to the Vendor ID and Device ID numbers that are assigned to the PCI-
LYNX ASIC. This register is read-only.

Bit No. Bit Name Dir Description
31 - 16 DEVICE_ID[15:0] r Identification number for PCI LYNX = 0x8000 (fixed) Read Only
15 - 00 VENDOR_ID[15:0] r Identification Number of Manufacturer = 0x104C = TI (fixed) Read

Only

6.2.2 Command - Status @004

This register provides application software with an interface for controlling the PCI-LYNX PCI operating behavior and
monitoring the PCI slave and master operation status. This register shall be initialized to 0 on power-up reset. Status bits
31-16 are cleared by writing a “1” to the bit position to be cleared.

Bit No. Bit Name Dir Description
31 PARERR r/w PCI-LYNX detected a parity error. parity_detected = 1 no_error = 0
30 SYSERR r/w PCI-LYNX asserted SERR# signal. asserted = 1 not_asserted = 0
29 MSTABT r/w PCI-LYNX as master aborted PCI transaction. abort = 1
28 TGTABT1 r/w PCI-LYNX as master was aborted by the target. abort = 1
27 TGTABT0 r/w PCI-LYNX asserted target abort as a target. abort = 1
26 - 25 DEVSEL[1:0] r/w Devsel# timing setting. 01=medium Read Only
24 MSTR_PAR r/w PCI-LYNX as master deteced a data parity error or received a PERR

signal from the target. data parity error = 1 no data parity error =
0

23 FST0 r target fast back-to-back capable. not capable = 0 Read
Only

22 - 10 reserved r Returns 0 when read Read

Revision 0.10, March 28, 1996 65

Only
09 FST r Enable fast back-to-back transaction. disabled = 0 Read

Only
08 SEER_ENA r/w Enable system error driver. enable = 1 disable = 0
07 WAIT r Address/data stepping enable. disabled = 0 Read

Only
06 PAR_ENA r/w Respond to parity error enable. enable = 1 disable = 0
05 VGA r VGA palette snooping enable. disabled = 0 Read

Only
04 MWI_ENA r/w memory write-invalidate command enable. enable = 1 disable = 0
03 SPC r Special cycle operation enable. disabled = 0 Read

Only
02 MSTR_ENA r/w PCI-LYNX bus master mode enable. enable = 1 disable = 0
01 MEM_ENA r/w Memory address space enable. enable = 1 disable = 0
00 I_O_ENA r I/O address space access enable. disabled = 0 Read

Only

Revision 0.10, March 28, 1996 66

6.2.3 Class Code - Revision ID @008

This register provides an interface for application software to obtain the class and revision code parameters assigned to
the PCI-LYNX.

Bit No. Bit Name Dir Description
31 - 08 CLASS_CD[23:0] r PCI class code = 0x0C0000 (serial bus / 1394) (fixed) Read

Only
07 - 00 REV_ID[7:0] r PCI revision code. Set to 0x00 (fixed) Read

Only

6.2.4 Header Type- Latency Timer- Cache Line Size @00C

This register provides an interface for application software to program the PCI cache line size, PCI latency timer, PCI
header type, and PCI built-in-test parameters. This register shall be set to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 -24 BIST[7:0] r PCI built-in-test(BIST) = 0x00 (no BIST) Read

Only
23 - 16 HDR_TYPE[7:0] r PCI header type parameter = 0x00 (fixed) Read

Only
15 - 08 LAT_TIMER[7:0] r/w PCI latency timer parameter
07 - 00 CACHE_LINE_SZ[7:0] r/w PCI cache line size parameter

6.2.5 Memory Access Base Address 0 - PCI-Lynx Internal Registers @010

This register provides the interface for application software to set the memory access base address of the internal PCI-
Lynx register set. This register shall be set to 0x00000000 on power-up reset (or 0x00010000 on power-up reset if
auto_boot is enabled).

Bit No. Bit Name Dir Description
31 - 12 MEMBASE0[31:12] r/w Memory access base address register. MEMBASE0[31:12] = PCI LYNX

internal register base address
11 - 00 MEMBASE0[11:0] r Memory access base address register. MEMBASE0[11:0] = 0x000

6.2.6 Memory Access Base Address 1 - External RAM Port @014

This register provides the interface for application software to set the memory access base address of the external RAM
attached to the LYNX Local Bus. This register shall be set to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 - 16 MEMBASE1[31:16] r/w Memory access base address register. MEMBASE1[31:16] = External

RAM base address
15 - 00 MEMBASE1[15:0] r Memory access base address register. MEMBASE1[15:0] = 0x0000

6.2.7 Memory Access Base Address 2 - AUX Port @018

This register provides the interface for application software to set the memory access base address of the AUX port on
the LYNX local bus. This register shall be set to 0x00000000 on power-up reset. The ZV port occupies upper 4K
(0xF000 - 0xFFFF) of the AUX port address space when CLK is set to a valid clk in Local Bus Control Register (@0B0).

Bit No. Bit Name Dir Description

Revision 0.10, March 28, 1996 67

31 - 16 MEMBASE2[31:16] r/w Memory access base address register. MEMBASE1[31:16] = AUX port
base address

15 - 00 MEMBASE2[15:0] r Memory access base address register. MEMBASE1[15:0] = 0x0000

6.2.8 SubSystem ID @02C

This register provides a method for the subsystem vendor to uniquely identify his device. The SubSystem Vendor ID is
assigned by the PCI SIG to ensure uniqueness. These ID’s are loaded from the Serial EEPROM after power reset. This
register is set to 0x00000000 on power-up reset

Bit No. Bit Name Dir Description
31 - 16 SubSystem_ID[15:0] r unique subsystem ID (initialized from serial EERPOM)
15 - 00 SubSystem Vendor

ID[15:0]
r unique subsystem Vendor ID (initialized from serial EERPOM)

6.2.9 Expansion ROM Base Address @030

This register provides an interface for application software to set the memory access base address of the PCI-LYNX
external expansion ROM. To access this address space, both the base address should be set to an appropriate PCI address
and the ROM enable bit (bit 0) set to “1”. This register shall be set to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 -16 ROMBASE[31:16] r/w PCI-LYNX expansion ROM base address
15 - 01 reserved r return 0’s for these bits on read
00 ROMEN r/w Enable expansion ROM access. enable = 1 disable = 0

6.2.10 Max_Latency - Min_Grant - Int_Pin - Int_Line Register @03C

This register shall be implemented to provide the an interface for application software to read values for the max_latency,
min_grant, and interrupt pin parameters, and to write/read values for the interrupt line. The interrupt line register shall be
set to 0x00 on power-up reset; the interrupt pin register is read only and fixed at a value of 0x01; the minimum grant and
maximum latency registers are loaded from serial EEPROM on power reset. The PCI interface shall return retry status to
any accesses while the serial EERPOM machine is active initializing these locations.

Bit No. Bit Name Dir Description
31 - 24 MAX_LAT[7:0] r Maximum latency (initialized from serial EERPOM)
23 - 16 MIN_GNT[7:0] r Minimum grant time (initialized from serial EERPOM)
15 - 08 INT_PIN[7:0] r Interrupt pin used. INTPIN = 0x01 = INTAz
07 - 00 INT_LINE[7:0] r/w Interrupt line - indicates which interrupt PCI-LYNX is connected to (set

by system software)

Revision 0.10, March 28, 1996 68

6.2.11 Miscellaneous Control @040

This register provides an interface for application software to perform miscellaneous control operations. This register
shall also supply operational status information. This register shall be set to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 - 16 reserved r return 0x0000 on a read
15 - 12 MAXRTY_CNT[3:0] r/w maximum no. of retries that PCI-LYNX master will attempt when a retry

termination status occurs. (0 = infinite number of retries)
11 ENA_MST_RTY r/w enable PCI-LYNX master cycle retry count. enable = 1 disable = 0
08 - 10 reserved r return 0’s on read
07 ENA_POST_WR r/w Enable PCI slave posted writes. enable = 1 disable = 0
06 ENA_SLV_BURST r/w Enable PCI slave burst. enable = 1 disable = 0
05 - 04 reserved r return 0’s on read
03 PAUSE_MSTR r/w Pause the PCI master on the next access pause = 1 no pause = 0
02 AUTOBOOT_IN r Read the value of the autoboot pin. (autoboot = 1)
01 SET_FORCE_INT w Set forced interrupt. set = 1. This bit always reads 0.
00 SWRST w Software reset. set to 1 to reset. This bit always reads 0.

6.2.12 Serial EEPROM Control @044

This register provides an interface for application software to control the read of the PCI-LYNX external serial EEPROM.
This register shall be set to 0x00000000 on power-up reset. Since this register cannot be read until after the internal
Serial EEPROM state machine has completed initializing configuration register locations, the value read immediately
after power up may not be 0.

The 5 usec timer may be used to time Serial EEPROM accesses. Start the timer by writing a 0 to the timer bit, then poll
the register until the timer bit is 1, which will be approximately 5us after starting the timer.

Bit No. Bit Name Dir Description
31 - 10 reserved r return zeros on a read
09 EEPERR r Serial EEPROM format error
08 EEPCHKERR r Serial EEPROM checksum error
07 NOTPRS r Serial EEPROM is not present. present = 0 not_present = 1
06 EEPCLK r/w Write: Output serial EEPROM clock. high = 1 low = 0

Read: read value of serial EEPROM clock signal
05 EEPENA r/w Select serial EEPROM interface output. Serial EEPROM Control reg = 1

PCI-LYNX internal state machine = 0
04 EEPDAT r/w Write: Output serial EEPROM data. high = 1 low = 0

Read: read value of serial EEPROM data signal
03 reserved r return 0 on read
02 EEPSTARTRD w restarts Serial EEPROM read state machine
01 reserved r return 0 on read
00 TIMER_5USEC r/w 5 usec Timer. Time expired = 1 Start timer = 0

Revision 0.10, March 28, 1996 69

6.2.13 PCI Interrupt Status @048

This register provides the interface for application software to determine the events which generate an INTA# interrupt.
This register shall be set to 0x00000000 on power-up reset. Interrupt status is cleared by writing a “1” to the bit to be
cleared; the interrupt status bit is cleared only if the interrupting condition no longer exists.

Bit No. Bit Name Dir Description
31 INT_PEND r Interrupt pending
30 FRC_INT r/w forced interrupt set from miscellaneous force interrupt bit
29 Reserved r Return 0 on a read.
28 SLV_ADR_PERR r/w Slave address parity error
27 SLV_DAT _PERR r/w Slave data parity error
26 MST_DAT_PERR r/w Master data parity error
25 MST_DEV_TO r/w Master Device Timeout
24 MST_RETRY_TO r/w Master Retry Timeout
23 INTERNAL_SLV_TO r/w Internal slave bus access Timeout
22-19 Reserved r Zero Returned on a read for these bits.
18 AUX_TO r/w LOCAL BUS Time out
17 AUX_INT r/w LOCAL BUS interrupt
16 P1394_INT r/w 1394 interrupt from Link Layer
10-15 reserved r Returns 0 when read
09 DMA4_PCL r/w DMA channel 4 Packet Control List caused interrupt. Interrupt = 1.

Writing a 1 to this bit clears this interrupt.
08 DMA4_HLT r/w DMA 4 channel was halted. Interrupt = 1. Writing a 1 to this bit clears

this interrupt
07 DMA3_PCL r/w DMA channel 3 Packet Control List caused interrupt. Interrupt = 1.

Writing a 1 to this bit clears this interrupt.
06 DMA3_HLT r/w DMA 3 channel was halted. Interrupt = 1. Writing a 1 to this bit clears

this interrupt
05 DMA2_PCL r/w DMA channel 2 Packet Control List caused interrupt. Interrupt = 1.

Writing a 1 to this bit clears this interrupt.
04 DMA2_HLT r/w DMA 2 channel was halted. Interrupt = 1. Writing a 1 to this bit clears

this interrupt
03 DMA1_PCL r/w DMA channel 1 Packet Control List caused interrupt. Interrupt = 1.

Writing a 1 to this bit clears this interrupt.
02 DMA1_HLT r/w DMA 1 channel was halted. Interrupt = 1. Writing a 1 to this bit clears

this interrupt
01 DMA0_PCL r/w DMA channel 0 Packet Control List caused interrupt. Interrupt = 1.

Writing a 1 to this bit clears this interrupt.
00 DMA0_HLT r/w DMA 0 channel was halted. Interrupt = 1. Writing a 1 to this bit clears

this interrupt

6.2.14 PCI Interrupt Enable @04C

This register provides an interface for application software to selectively enable the events which can cause an interrupt to
occur. This register shall be set to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 INT_PEND r Interrupt pending
30 FRC_INT_EN r/w Enable forced interrupt
29 reserved r Returns 0 when read.
28 SLV_ADR_PERR_EN r/w Enable Slave address parity error interrupt

Revision 0.10, March 28, 1996 70

27 SLV_DAT _PERR_EN r/w Enable Slave data parity error interrupt
26 MST_DAT_PERR_EN r/w Enable Master data parity error interrupt
25 MST_DEV_TO_EN r/w Enable Master Device Timeout interrupt
24 MST_RETRY_TO_EN r/w Enable Master Retry Timeout interrupt
23 INT_SLV_TO_EN r/w Enable Internal Slave Timeout interrupt
22-19 reserved r Enable Zero Returned on a read for these bits.
18 AUX_TO_EN r/w Enable LOCAL BUS Time out interrupt
17 AUX_INT_EN r/w Enable LOCAL BUS interrupt
16 P1394_INT_EN r/w Enable Link Layer interrupt. Input fed by LINK_INT in 1394 Interrupt

Status Register, masked by LLC_INT_EN in 1394 Interrupt Enable Reg.
15-13 reserved r Returns 0 when read
09 DMA4_PCL_EN r/w DMA ch4 Packet Control List interrupt enable. enable = 1 disable = 0
08 DMA4_HLT_EN r/w DMA ch4 halted interrupt enable. enable = 1 disable = 0
07 DMA3_PCL_EN r/w DMA ch3 Packet Control List interrupt enable. enable = 1 disable = 0
06 DMA3_HLT_EN r/w DMA ch3 halted interrupt enable. enable = 1 disable = 0
05 DMA2_PCL_EN r/w DMA ch2 Packet Control List interrupt enable. enable = 1 disable = 0
04 DMA2_HLT_EN r/w DMA ch2 halted interrupt enable. enable = 1 disable = 0
03 DMA1_PCL_EN r/w DMA ch1 Packet Control List interrupt enable. enable = 1 disable = 0
02 DMA1_HLT_EN r/w DMA ch1 halted interrupt enable. enable = 1 disable = 0
01 DMA0_PCL_EN r/w DMA ch0 Packet Control List interrupt enable. enable = 1 disable = 0
00 DMA0_HLT_EN r/w DMA ch0 halted interrupt enable. enable = 1 disable = 0

Revision 0.10, March 28, 1996 71

6.2.15 PCI Test Register @050

This register provides the interface for application software to enable various test modes and functions in the LYNX.
This register shall be set to 0x00000000 on power-up reset. Normal application software should not write this register.
TEST_REG_EN must be set before SET_OUTPUT_FF or DISABLE_DRIVERS are functional.

Bit No. Bit Name Dir Description
31-14 reserved r Returns 0 when read
13 TEST_OUTPUT r Test output from test mux.
12-08 TEST_MUX_SEL r/w Test mux select.
07-04 reserved r Returns 0 when read
02 SET_OUTPUT_FF r/w Set output flip-flops. set = 1 normal = 0
01 DISABLE_DRIVERS r/w Tri-states normally output-only drivers. Tri-stated = 1, normal = 0
00 TEST_REG_EN r/w Test register enable. enable = 1 disable = 0

TEST_MUX_SELECT [4:0] (hex) Selected Signal
0 test_nand_chain output
1 dma_test_mux output
2 fifo_test_mux output
3 link_test_mux output
4 PCI module - mstr_act
5 PCI module - mstr_err
6 PCI module - mstr_req
7 PCI module - mstr_xfr
8 PCI module - mstr_ack
9 PCI module - mstr_internal_cyc
A PCI module - my_slv_cyc
B PCI module - slv_data
C PCI module - slv_rd
D PCI module - slv_wr
E PCI module - int_slv_xfr
F PCI module - int_pci_slv_act
10 PCI module - internal_mstr_act
11 PCI module - pci_mstr_st
12 PCI module - aux_pci_act
13 PCI module - m_addr
14 PCI module - m_data
15 PCI module - pci_mstr_xfrq
16 PCI module - mstr_byte_cnt_eq_0
17 PCI module - pci_xfr_cnt_eq_0
18 PCI module - in_buf_full
19 PCI module - wr_buf_full
1A PCI module - wr_buf_empty
1B PCI module - mstr_fifo_rdy
1C PCI module - aux_busy
1D PCI module - zv_busy
1E PCI module - retry_slv
1F PCI module - reserved

Revision 0.10, March 28, 1996 72

6.2.16 Local Bus Control Register @0B0 { ROM, RAM, AUX, and ZV registers }

This register provides an interface for application software to control the pacing of data transferred on the Local Bus
to/from attached external devices. This register shall also specifies the data bus width required for each external device
type and the polarity of incoming interrupts. This register shall be initialized to 0x00000000 on power up reset. Each
byte controls a different area - ROM, RAM, AUX and ZV.

Bit No. Bit Name Dir Description
31 GATE_PIXEL_CLK r/w ZV pixel clock gateing enable, 1=gateing enabled, 0=free running pixel

clk
30 - 28 HSYNC_CNT[2:0] r/w Horizontal sync count

 0 0 0 Cirrus mode (target contains internal hsync
counter)
 Hsync will still be generated for every frame.
 0 0 1 hsync cnt = 1
 . .
 1 1 1 hsync cnt = 15

27 - 25 ZV_CLK[2:0] r/w ZV pixel clock select, Note: ONLY those denoted with a “*” are valid
selections for 8-bit mode. AUX address space F000 - FFFF is allocated to
ZV (ZV is enabled) when one of the 6 available ZV pixel clock sources
are selected.

 0 0 X ZV port disabled
 0 1 0 external clock
 0 1 1 external clock / 2*
 1 0 0 sclk / 2 (25.0 MHz)
 1 0 1 sclk / 4 (12.5 Mhz)*
 1 1 0 pci_clk
 1 1 1 pci_clk / 2*

24 ZV_16/8 r/w Data Width, 1= ZV access is 16 bits wide, 0= ZV access is 8 bits wide
23 - 20 AUX_WS[3:0] r/w Number of wait states to insert for External AUX access
19 Reserved r Zero returned on read
18 AUX_INT_POL r/w AUX interrupt polarity, 1= invert, 0=don’t invert
17 AUX_RST r/w AUX port reset output
16 AUX_16/8 r/w Data Width, 1= AUX access is 16 bits wide, 0= AUX access is 8 bits

wide
15 - 12 RAM_WS[3:0] r/w Number of wait states to insert for External RAM access
11 - 09 Reserved r Zeros returned on read
08 RAM_16/8 r/w Data Width, 1= RAM access is 16 bits wide, 0= RAM access is 8 bits

wide
07 - 04 ROM_WS[3:0] r/w Number of wait states to insert for External ROM access
03 - 02 Reserved r Zeros returned on read
01 ROM_WR_EN r/w ROM Write Enable (writable non-volatile memory)
00 ROM_16/8 r/w Data Width, 1= ROM access is 16 bits wide, 0= ROM access is 8 bits

wide

Revision 0.10, March 28, 1996 73

6.2.17 Local Bus Address Register @0B4

This port provides application software with an interface to specify the Local Bus address to be used for DMA transfers
from the Local Bus to the PCI Bus. This address auto increments every time it is used. This address must be specifically
written to reinitialize. This register shall be initialized to 0x00000000 on power up reset.

Bit No. Bit Name Dir Description
31 - 18 Reserved r Zeros returned on read
17 - 02 AUX_ADR[17:02] r/w AUX address to use during slave reads and writes. Address

autoincrements every time it is used and the high byte enable (3) is valid.
Must be re-written to reinitialize.

01 - 00 Reserved r Zeros returned on read

6.2.18 PCI_GPIO[1:0] Control Register A @0B8

This register provides application software with an interface for configuring the operating mode of GPIO[1:0] port pins.
This register shall be initialized to 0x00000000 on power up reset. Normally each 16 bit register half is accessed
separately.

Bit No. Bit Name Dir Description
31 - 29 reserved r Zeros returned on read
28 - 24 GPIO_SRC1[4:0] r/w Data bit mux select for output on GPIO[1]
23 - 19 reserved r Zeros returned on read
18 GPIO_POL_OUT1 r/w GPIO[1] output polarity control (0 = non-inverted 1 = inverted)
17 reserved r Zero returned on read
16 GPIO_OUT_EN1 r/w GPIO[1] output enable control (0 = tri-state; 1 = enabled)
15 - 13 reserved r Zeros returned on read
12 - 08 GPIO_SRC0[4:0] r/w Data bit mux select for output on GPIO[0]
07 - 03 reserved r Zeros returned on read
02 GPIO_POL_OUT0 r/w GPIO[0] output polarity control (0 = non-inverted 1 = inverted)
01 reserved r Zero returned on read
00 GPIO_OUT_EN0 r/w GPIO[0] output enable control (0 = tri-state; 1 = enabled)

6.2.19 PCI_GPIO[3:2] Control Register B @0BC

This register provides application software with an interface for configuring the operating mode of GPIO[3:2] port pins.
This register shall be initialized to 0x00000000 on power up reset. Normally each 16 bit register half is accessed
separately.

Bit No. Bit Name Dir Description
31 - 29 reserved r Zeros returned on read
28 - 24 GPIO_SRC3[4:0] r/w Data bit mux select for output on GPIO[3]
23 - 19 reserved r Zeros returned on read
18 GPIO_POL_OUT3 r/w GPIO[3] output polarity control (0 = non-inverted 1 = inverted)
17 GPIO_RDY_POL3 r/w GPIO[3] input polarity control (0 = non-inverted 1 = inverted)
16 GPIO_OUT_EN3 r/w GPIO[3] output enable control (0 = tri-state; 1 = enabled)
15 - 13 reserved r Zeros returned on read
12 - 08 GPIO_SRC2[4:0] r/w Data bit mux select for output on GPIO[2]
07 - 03 reserved r Zeros returned on read
02 GPIO_POL_OUT2 r/w GPIO[2] output polarity control (0 = non-inverted 1 = inverted)
01 GPIO_RDY_POL2 r/w GPIO[2] input polarity control (0 = non-inverted 1 = inverted)

Revision 0.10, March 28, 1996 74

00 GPIO_OUT_EN2 r/w GPIO[2] output enable control (0 = tri-state; 1 = enabled)

6.2.20 PCI GPIO DATA Read-Write Ports @0C0 thru @0FC

The PCI address offsets indicated in the following table, shall be used by the application software to perform PCI read or
writes from or to various combinations of GPIO ports.

The PCI address offset written to, shall determine exactly the combination of GPIO ports that are actually written. PCI
address bit 2 enables GPIO[0] writes, bit 3 enables GPIO[1] writes, bit 4 enables GPIO[2] writes, and address bit 5
enables GPIO[3] writes.

PCI slave writes to these address offsets must write to at least byte 0 to write to any GPIO port.

The data bit value that is written to a GPIO port shall be selected from the 32 bit PCI slave write data value using a 32:1
data bit mux. There are four of these muxes, one for each GPIO port. The bit select control for each of the muxes, shall
be set by the value of the GPIO_SRCx[4:0] mux select field. These fields are specified in the GPIO[1:0] and
GPIO[3:2] control registers.

A read of the GPIO register always returns the value read from all four GPIO ports.

PCI
Address
Offset

GPIO Ports Written to GPIO Ports Read

0C0 None - NOP GPIO[3:0]
0C4 GPIO[0] GPIO[3:0]
0C8 GPIO[1] GPIO[3:0]
0CC GPIO[1,0] GPIO[3:0]
0D0 GPIO[2] GPIO[3:0]
0D4 GPIO[2,0] GPIO[3:0]
0D8 GPIO[2,1] GPIO[3:0]
0DC GPIO[2,1,0] GPIO[3:0]
0E0 GPIO[3] GPIO[3:0]
0E4 GPIO[3,0] GPIO[3:0]
0E8 GPIO[3,1] GPIO[3:0]
0EC GPIO[3,1,0] GPIO[3:0]
0F0 GPIO[3,2] GPIO[3:0]
0F4 GPIO[3,2,0] GPIO[3:0]
0F8 GPIO[3,2,1] GPIO[3:0]
0FC GPIO[3,2,1,0] GPIO[3:0]

6.3 DMA Control and Status Register Definitions

6.3.1 DMA channel 0 thru 4 - Previous packet Control List Address/Temp @100 120 140 160 180

This register contains the address of the previous packet control list which is being processed by the active DMA channel
when programmed for asynchronous transmit operations. This register is also used during the execution of auxiliary
commands to temporarily hold data during a load or store command. This register shall be initialized to 0x00000000 on
power-up reset.

Revision 0.10, March 28, 1996 75

Bit No. Bit Name Dir Description
31 - 00 PPLADR[31:0] r/w Previous Packet control list address or temporary data during auxiliary

store or load commands.

6.3.2 DMA channel 0 thru 4 - Current packet Control List Address @104 124 144 164 184

This register shall specify the address of the current packet control list which is being processed by the active DMA
channel. This register shall be initialized by application software to point to a PCL with a valid next address pointing to
the start of the first packet control list which is the first in a queue of control lists to be processed. The active DMA
channel shall update this register with start of a packet control list as it steps thru the queue. This register shall be
initialized to 0x00000001 on power-up reset in non-autoboot mode. This register shall be initialized to 0x00000000 on
power-up reset in autoboot mode.

Bit No. Bit Name Dir Description
31 - 04 CPLADR[31:4] r/w Packet control list address - High order address bits.
03 - 01 CPLADR[3:1] r/w Packet control list boundary - set = 000 to be on cache line boundary
00 CPLVALID r/w Packet control list address not valid. not_valid = 1 valid = 0

6.3.3 DMA channel 0 thru 4 - Current Data Buffer Address @108 128 148 168 188

This register shall contain the start address of the host memory data buffer that is being processed by the active DMA
channel. The active DMA channel loads this register with the data buffer start address that is obtained from the current
packet control list. This register is used by the DMA to read in the next PCL address for validation. As a result it may
change during a PCL link operation. This register shall be initialized to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 - 00 CDBADR[31:0] r/w data buffer start address currently being processed by the active DMA

channel.

Revision 0.10, March 28, 1996 76

6.3.4 DMA channel 0 thru 4 - DMA channel status @10C 12C 14C 16C 18C

This register contains ongoing status and byte count logging during the execution of a PCL. The active DMA channel
shall store status from this register back at packet control list offset 0xC. This register shall be initialized to 0x000000000
on power-up reset. This is roughly the same information as appears in in the PCL’s Status. The PCL should be
consulted instead if DMA is still running since this register can be changing as the DMA processes multiple PCL’s.

Status
Bit No. Bit Name Description
31 reserved Written with unknown data by the DMA.
30 ISO MODE The Received Packet was an ISO Packet.
29 Mst Err PCI Master Error. Set to a 1 by the DMA if it receives an error indication

(parity error, timeout, etc.) from the PCI Master during execution of this PCL.
In general this is a fatal condition which will cause the channel to stop, the
LINK, BSY, and ENA bit are cleared in the DMA Command register (see
register definitions) and an DMA_HLT interrupt (see Interrupt Status
Register)
will be generated if enabled. Cleared by writing a 1 by software. Also
writeable with the opposite of write data when DMATESTEN is 1.

28 Pkt Err Packet Error. Set to a 1 by the DMA for any transfer to or from the 1394 bus
in which the transfer had an error. The error can be determined from the
Ack_Type and Acks fields. Pkt Err may not be set if Mst Err is set since it
may be impossible for the DMA to update the PCL.

27 Pkt Cmp Packet Complete. Written by the DMA upon completion of this packet.
26-21 Receive

Dma_Cha[5:0]
Received DMA Channel number. This is the Channel number received from
the Link Controller via the receive FIFO control word. Valid only for
channels programmed for receive operations. These bits shall return zeros for
other commands.

Dma_Cha[5:0] DMA Channel Number
0 0 0 0 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 0 2
0 0 0 0 1 1 3
0 0 0 1 0 0

Others
4

reserved
20 - 19 Rcv_Speed[1:0] The speed at which the packet was received for Asynchronous or Isochronous

Transfers. Valid only for channels programmed for receive operations. These
bits shall return zeros for other commands.
00 = 100 Mbps.
01 = 200 Mbps

Revision 0.10, March 28, 1996 77

18 - 15 Acks Packet Acknowledge. Ack status returned from the Link Layer Controller for
this packet. Written by the DMA upon completion of this packet. These bits
are written with zeros after completion of Auxiliary commands. These bits
are written with 0x0001 after completion of an isochronous transmit or PCI
to/from local bus transfers.
These bit also contain a special code for internally (non 1394) related errors
when bit 14 (Ack_Type) is set. The encoding for these errors are as follows:
0000 = Link reported a Retry Overrun
0001 = Link reported a Timeout
0010 = Link reported a FIFO underrun
0101 = No expected End of receive Packet
0110 = Pipelined Async Transmit Command encountered a command other
than another Async Transmit.
1110 = Link reported a corrupted header before the packet was transmitted.

14 Ack_Type Acknowledge type returned by 1394 Transmitter logic
Ack_Type = 0 indicates a normal 1394 ack code is returned in bits 18 - 15
Ack_Type = 1 indicates a special ack code is returned in bits 18 - 15

13 reserved Written with unknown data by the DMA.
12-00 Transferred Count For all RCV and isochronous XMT commands, the DMA will update these

bits with the total number of bytes transferred for this packet. These bits are
indeterminate for asynchronous transmits due to the potentially pipelined
nature of asynchronous XMT commands. These bits are written with zeros
after completion of auxiliary commands.

Revision 0.10, March 28, 1996 78

6.3.5 DMA channel 0 thru 4 - DMA channel control @110 130 150 170 190

 This register shall provide the interface for application software to initiate the operation a DMA channel and to
monitor its operational status. This register shall be initialized to 0x000000000 on power-up reset in non-autoboot mode
or 0xa0000000 (CH ENA and LINK) in autoboot mode. This is roughly the same information as appears in in the PCL’s
Control. The PCL should be consulted instead if DMA is still running since this register can be changing as the DMA
processes multiple PCL’s.

Bit
No.

Bit Name Dir Description

31 CH ENA r/w Write 1: Starts the DMA packet processing engine.
 Write 0: DMA packet processing engine will stop at the end of the current
packet and go idle.

30 BSY r 1= DMA packet processing engine is currently processing a PCL queue.
0= DMA packet processing engine is idle waiting for a valid PCL to process.

29 LINK r/w 1= DMA is to fetch or re-fetch the Next Address entry of the current PCL
and perform a check on the valid bit. If the valid bit is set, the DMA will
make the Next Address entry the Current PCL and continue execution.
0= The DMA clears this bit when it encounters an invalid Next Address or
Next Stream Address entry in the Current PCL. The DMA will stop at this
point and wait for a valid Current PCL address, LINK set to a 1, and a valid
Next Address entry in the Current PCL.

28 reserved r These bit shall be ignored when read and written with 0.
27-24 CMD3-0 r Command Select. These bits control what command the DMA channel will

execute. Loaded by the DMA from PCL offset 0x18.
CMD[3:0] Command

0000 NOP. (NOP parameter fetched but ignored)
0001 RCV. (1394 FIFO to memory)
0010 XMT. (Memory to 1394 FIFO)
0011 LOAD. (@DESTINATION => TEMP)
0100 STORE_QUAD (4 bytes TEMP => @SOURCE)
0101 STORE0. (00000000 => @DESTINATION)
0110 STORE1. (FFFFFFFF => @DESTINATION)
0111 Conditional BRANCH to DESTINATION if the conditions are

met as specified in the condition field. Status is updated and
an interrupt is generated, if enabled, prior to the branch.

1000 PCI_TO_LBUS.
1001 LBUS_TO_PCI.
1010 RCV_AND_UPDATE.
1011 STORE _DOUBLE. (2 bytes TEMP => @SOURCE)
1100 UNFORMATTED_XMT.
1101 ADD.
1110 COMPARE.
1111 reserved

23 reserved r These bit shall be ignored when read and written with 0.

Revision 0.10, March 28, 1996 79

22-20 Condition Codes 2-0
(branch command)

r Branch Command Condition codes. These bits select what conditions have
to be met during the execution of the BRANCH command to cause the
address contained in DESTINATION to be loaded into the NEXT PCL
ADDRESS and linked. Loaded by the DMA from PCL offset 0x18.
(..0x24, 0x30...0x78)
Condition Code [2:0] Branch Condition

000 Don’t Branch
001 Branch if DMA Ready Register = 1 (this chan)
010 Branch if DMA Ready Register = 0 (this chan)
011 Branch if External Ready pin RDY = 1 (this chan)
100 Branch if External Ready pin RDY = 0 (this chan)
101 Branch if GPIO port 2 is active (this chan)
110 Branch if GPIO port 3 is active (this chan)
111 Reserved

22-20 Wait Sel 2-0
(all commands except
branch)

r Wait Select. These bits control what conditions have to be met before
execution of the PCL will continue. Loaded by the DMA from PCL offset
0x18.

Wait Select [2:0] Wait Condition
000 Don’t Wait, Continue execution.
001 Wait for DMA Ready Register = 1 (this chan)
010 Wait for DMA Ready Register = 0 (this chan)
011 Wait for External Ready pin RDY = 1 (this chan)
100 Wait for External Ready pin RDY = 0 (this chan)
101 Wait for GPIO port 2 to go active (this chan)
110 Wait for GPIO port 3 to go active (this chan)
111 Reserved

19 INT r Generate interrupt to host upon completion of packet control list. An
interrupt will be generated by the DMA regardless of the state of this bit in
the case of an error resulting in Pkt Err or Mst Err status being set.
interrupt enabled = 1 disabled = 0 Loaded by the DMA from PCL offset
0x18.

18 LAST BUF r Last Buffer indicator. Indicates the end of a packet.
Loaded by the DMA from the PCL.

17 WAIT FOR STATUS r Is used to ‘single thread’ asynchronous transmits. Normally, transmits of
asynchronous transmits are pipelined to improve throughput. Setting this bit
will cause the DMA to wait for transmit completion status before continuing.
Loaded by the DMA from PCL offset 0x18.

16 BIG ENDIAN r Byte ordering. Controls the byte ordering of the data buffer as it is read or
written.
NOTE: The Big Endian flag may only be changed on quadlet boundaries.
I.E. between header and payload data.
0=Little Endian (3,2,1,0)
1=Big Endian (0,1,2,3)
Loaded by the DMA from PCL offset 0x18.

15-14 xmt_spd_code[1:0] r 1394 transmit speed code. Specifies the transmission speed of an
asynchronous or isochronous transmit packet. xmt_spd_code[1:0] = 00 -
100mbps
 xmt_spd_code[1:0] = 01 - 200mbps
The value of this field is only valid for DMA transmit commands.

Revision 0.10, March 28, 1996 80

13 Multi ISO Packet per
Cycle Start

r This bit is relevant for an isochronous DMA channel (ISO Mode = 1).
0=This isochronous packet should be sent with regard to cycle start
boundaries. One isochronous packet per isochronous DMA channel per cycle
start period.
1=This isochronous packet should be sent without regard to cycle start
boundaries. This implies multiple isochronous packets for the same DMA
channel may be transmitted during a cycle start period. The effect of setting
this bit is global and can affect other ISO transmit channels so all ISO
channels should set the Multi ISO bit set to the same value to prevent
otherwise unpredicatable behaviour. Loaded by the DMA from PCL offset
0x18.

12 Transmit ISO Mode r 0= This DMA channel is to be configured for transmit asynchronous
transfers.
1=This DMA channel is to be configured for transmit isochronous transfers.
Loaded by the DMA from PCL offset 0x18. Also must be written (1 or 0)
whenever this channel’s LINK bit is set. This is required to insure proper
fairness of ISO XMT’s if more than one DMA channel is to be used for ISO
XMT’s.

11 - 00 DBXXFRLEN[11:0] r Remaining count to be transferred of the current buffer. Loaded by the DMA
from the PCL.

Revision 0.10, March 28, 1996 81

6.3.6 DMA channel 0 thru 4 - DMA Ready Register @114 134 154 174 194

This register shall be implemented to provide a mechanism for pacing the DMA. The wait select bits in the PCL data
buf0 ctl/byte_cnt/cmd at PCL offset 0x18 can select the contents of this register to be used in a decision to halt this
channel until the wait condition no longer exists. Writes to this register by software or by another channel’s auxiliary
store commands can modify the wait condition.
The auxiliary branch command can also use this register to conditionally branch. The condition select bits in the PCL
data buf0 ctl/byte_cnt/cmd at PCL offset 0x18 can select the contents of register to be used in a decision to branch to
another PCL. This register is set to 0x000000000 on power-up reset.

Bit No. Bit Name Dir Description
31-01 unused r/w return 0 when read, ignored when written
00 CONDITION r/w This bit is used for wait or branch conditional checks.

6.3.7 DMA channel 0 thru 4 - Current DMA state @118 138 158 178 198

This register shall be implemented to provide an interface for application software to read the state_vector of a DMA
channel. The active DMA channel shall us this register to store its state vector and other flag bits used during its active or
idle period. This register is intended for debug purposes only.

Bit No. Bit Name Dir Description
31 - 24 STATE_VEC[7:0] r State vector of the DMA channel. The current state of the main DMA

control state machine.
23 - 21 unused r returns 0 when read
20 LOCK r The DMA state machine is executing a sequence of states which can not

be interrupted by a higher priority channel.
19 - 16 LIST_OFFSET[4:0] r/w Current list offset. When written to in test mode (Test enable and channel

n selected in the Test Register) the current list offset will increment.
15 STATE FLAG r Miscellaneous flag used by the state machine.
14 - 06 unused r returns 0 when read
05 - 00 CURRENT CONTEXT r Current channel context selected by the Priority Encoder and executing

by the State Machine.

Revision 0.10, March 28, 1996 82

6.3.8 DMA Diagnostic Test Control @900

This register shall provide an interface for software to setup and perform diagnostic testing of the DMA control logic.

Bit No. Bit Name Dir Description
31-24 MASTER BYTE COUNT r This is the computed number of bytes that the DMA will request during a

PCI master cycle. The master byte count is equal to the lesser of the
current HIGH WATER MARK, the current receive transfer count, and the
DBXXFRLEN bits of the DMA channel control word. The selected
channel is determined by the Channel Select bits of this register.

23-16 HIGH WATER MARK r This is the computed FIFO threshold which must be met before the DMA
will request a PCI master cycle. In general, it is equal to HIGH WATER
MARK which is equal to the greater of the cache line size +3 or the lower
bound field of the DMA Global Register. In those cases where the HIGH
WATER MARK value falls outside of the upper and lower bounds of 16
and 128 bytes. The lowest high water mark is 19 bytes, the highest is 131
bytes.

15 0 r Return 0 when read.
14 ADDERTEST r/w Puts the DMA in a mode where the adder logic for the complete count

bits of the Channel Status register, the list offset bits of the Current State
register, and the remaining count bits of the Receive Packet Count register
are in a test mode. The behavior of the registers are as follows:
• Status register complete count bits: Any slave write to these bits

while in the test mode will cause the current master byte count to be
added to the contents of this register.

• Current State list offset bits: Any slave write to these bits while in the
test mode will cause these bits to increment.

• Receive Packet Count register: Any slave write to these bits while in
the test mode will cause the current master byte count to be
subtracted from the contents of this register.

 The value of master byte count is the lesser of the high water mark (cache
line size +3), the receive transfer count register, and the DBXXFRLEN
bits of the DMA channel control register.

13 DMA Test Mux Select
Out

r Read back of the signal selected by the above DMA test mux.

12-08 DMA Test Mux Sel [4:0] r/w Select DMA signal for to drive input mux of PCI Test Register.
Sel 4 Sel 3 Sel 2 Sel 1 Sel 0 DMA Signal

0 0 0 0 0 rcv_link_active
0 0 0 0 1 itf_link_active
0 0 0 1 0 atf_link_active
0 0 0 1 1 async_xmt_pkt_cnt_1
0 0 1 0 0 rcv_pkt_cnt_gt_0
0 0 1 0 1 async_xmt_ok
0 0 1 1 0 iso_xmt_ok
0 0 1 1 1 iso_xmt_in_progress
0 1 0 0 0 rcv_fifo_empty
0 1 0 0 1 iso_xmt_wait
0 1 0 1 0 xmt_p1394rty
0 1 0 1 1 rcv_req
0 1 1 0 0 active_selq
0 1 1 0 1 idle_selq
0 1 1 1 0 rcv_link_active

Revision 0.10, March 28, 1996 83

: rcv_link_active
1 1 1 1 1 rcv_link_active

07 unused r Returns 0 when read.
06 - 01 CHANNEL SELECT[5:0] r/w Select the DMA Channel for test. These bits select which channel context

is selected when bit 00 DMATESTEN is set. The priority selection logic
forces the selected context. One may then write to the current state bits of
the current state register and force state machine execution starting at the
loaded state.

CHANNEL SELECT[5:0] DMA Channel Number
0 0 0 0 0 0 0
0 0 0 0 0 1 1

: :
0 0 0 1 0 0 4

others reserved
00 DMATESTEN r/w Enable DMA diagnostic test mode. enable = 1 disable = 0. When

enabled,
all DMA channel registers are readable and writable from the PCI bus.

6.3.9 Receive Packet Remaining Count Register @904

This register contains the current received packet count. The DMA loads this register with the receive packet count
passed in the receive FIFO token words. This count is then decremented as the data is transferred to the PCI bus.

Bit No. Bit Name Dir Description
31-13 unused r Return 0 when read.
12-00 REMAINING PACKET

COUNT
r The current remaining packet count.

6.3.10 Global Register @908

This register contains some flags and misc information the DMA uses during an asynchronous transmit operation.

Bit No. Bit Name Dir Description
31- 30 unused r Return 0 when read.
29-24 LOWER BOUND r/w The burst transfer count requested by the DMA of the PCI master will be

the greater of the value of these bits or the value of the cache line size
register. The value of this register is expressed as a number of quadlets to
transfer per burst request. These bits will be set to 0x4 upon reset.

23 - 03 unused r Return 0 when read.
02 FIFO FLUSH r Request the link to flush the async transmit FIFO.
01 PREVIOUS VALID r A PCL is currently pipelined and awaiting a status update.
00 RETRY r An ASYNC transmit retry is in progress.

Revision 0.10, March 28, 1996 84

6.4 FIFO Control and Status Register Definitions

6.4.1 FIFO Size @A00

This register shall be implemented to provide the application software with an interface for programming the size of each
of the Logical FIFO’s described in section 5.2.5, page 49 of this specification. Each FIFO shall be programmable in
size from 0 to 255 quadlets. For any given combination, the sum of all 3 FIFO sizes shall be less than or equal to 256
quadlets. This register shall be initialized to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 - 24 Not used r All zeros returned on a read
23 - 16 ITF_FIFOSZ[7:0] r/w isochronous transmit FIFO size 0x00 <= size <= 0xff
15 - 08 ATF_FIFOSZ[7:0] r/w Asynchronous transmit FIFO size 0x00 <= size <= 0xff
07 - 00 GRF_FIFOSZ[7:0] r/w General receive FIFO size. 0x00 <= size <= 0xff

6.4.2 PCI-Side FIFO Pointer Write-Read Port @A04

This register shall be implemented to provide the application software with a PCI slave access port for writing to or
reading from the FIFO pointers which are used in accessing the PCI-side of the FIFO..

Bit No. Bit Name Dir Description
31 - 27 Not used r All zeros returned on a read
26 ITF_WAB_L r/w PCI-side ITF write pointer Wrap-around bit
25 ATF_WAB_L r/w PCI-side ATF write pointer Wrap-around bit
24 GRF_WAB_L r/w PCI-side GRF read pointer Wrap-around bit
23 - 16 PCI_ITF_WPTR[7:0] r/w PCI-side isochronous transmit FIFO write pointer

value returned on read = grf pointer contents
15 - 08 PCI_ATF_WPTR[7:0] r/w PCI-side asynchronous transmit FIFO write pointer

value returned on read = grf pointer contents + (ITF_size)
07 - 00 PCI_GRF_RPTR[7:0] r/w PCI-side general revive FIFO read pointer.

value returned on read = grf pointer contents + (ATF_ size +
ITF_size)

6.4.3 Link-Side FIFO Pointer Write-Read port @A08

This register shall be implemented to provide the application software with a PCI slave access port for writing to or
reading from the FIFO pointers which are used in accessing the Link-side of the FIFO.

Bit No. Bit Name Dir Description
31 - 27 Not used r All zeros returned on a read
26 ITF_WAB_L r/w Link-side ITF read pointer Wrap-around bit
25 ATF_WAB_L r/w Link-side ATF read pointer Wrap-around bit
24 GRF_WAB_L r/w Link-side GRF write pointer Wrap-around bit
23 - 16 LINK_ITF_RPTR[7:0] r/w LINK-side isochronous transmit FIFO read pointer

value returned on read = ITF pointer contents
15 - 08 LINK_ATF_RPTR[7:0] r/w LINK-side asynchronous transmit FIFO read pointer

value returned on read = ATF pointer contents + (ITF_size)
07 - 00 LINK_GRF_WPTR[7:0] r/w LINK-side general receive FIFO write pointer

value returned on read = GRF pointer contents + (ATF_ size +
ITF_size)

Revision 0.10, March 28, 1996 85

6.4.4 FIFO Control Token Status Read-Port @A0C

This port shall be implemented to provide an interface for application software to obtain the value of bit 32(MSB) of the
33 bit data data value from the last fifo that was popped.

Bit
No.

Bit Name Function

31-02 Not Used All zero’s returned on a read
01 GRF_FCT32 bit 32 data value of last pop operation from the GRF
00 TF_FCT32 bit 32 data value of last pop operation from the ITF or ATF

6.4.5 FIFO Control and test Register @A10

This register shall be implemented to provide the application software with an interface for test control and flushing of a
selected FIFO. This register shall be initialized to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 - 10 not used r return 0 for these bits on a read
11 - 08 TEST_MUX[3:0] r/w Test mux. Selects 1 of 16 test points within the FIFO logic for observation

at external TEST_OUT pin

TEST_MUX
 [3:0] Test Point Selected
----------------- ------------------------------------
 hex0 GRF output register data bit32
 hex1 ATF output register data bit32
 hex2 ITF output register data bit 32
 hex3-F To be Assigned Later. logic 0 will be outputted

07 - 05 not used r 0 returned on a read for these bits
04 GRF_FLUSH r/w GRF flush. When set to a 1, this bit will flush the contents of the GRF by

setting the GRF read and write pointers to 0. This bit shall be self-clearing
03 ITF_FLUSH r/w ITF flush. When set to a 1, this bit will flush the contents of the ITF by

setting the ITF read and write pointers to 0. This bit shall be self-clearing
02 ATF_FLUSH r/w ATF flush. When set to a 1, this bit will flush the contents of the ATF by

setting the ATF read and write pointers to 0. This bit shall be self-clearing
01 FORCE_BIG_ENDIAN r/w When set to a Logic 1, Slave data written to the ATF or ITF will be stored

in big endian byte order (bytes are not swapped). When set to a 0, data will
be stored in little endian order (bytes are swapped).

00 FCT33_WR r/w The 32 bit PCI slave write data that will be pushed onto a selected FIFO
will be pushed to fifo bit positions (31 - 00). The current value of
FCT33_WR will be pushed into bit position 32. When FCT33_WR = 1,
the data pushed to bits (31- 00) will be interrepted as a FIFO control token.
FCT33_WR = 0 indicates that data pushed to bits (31 - 00) are normal data.

Revision 0.10, March 28, 1996 86

6.4.6 Asynchronous and Isochronous Transmit FIFO Threshold Control @A14

This register shall be implemented to provide the application software with an interface for setting the ATF or ITF data
ready threshold levels. When the number of data quadlets written into the ATF or ITF is greater than or equal to
threshold setting, a ready signal is issued to the 1394 link transmitter which indicates that the ATF or ITF has enough
data to begin a packet transmission. This register shall be initialized to 0x0000ffff on power-up reset.

Bit No. Bit Name Dir Description
31 - 16 Reserved r 0’s returned in these bit positions on a read
15 - 08 ATF_TRSHLD[7:0] r/w ATF Transmit ready threshold in bytes. Valid range= hex00 to hexff
07 - 00 ITF_TRSHLD[7:0] r/w ITF Transmit ready threshold in bytes. Valid range= hex00 to hexff

6.4.7 General Receive FIFO Push-Pop Ports @A20 A24

This port shall be implemented to provide an interface for application software to write and-or read 32 bit data qaudlets
to-from from the 33 bit wide General Receive FIFO, via a PCI slave access. A write (PUSH port 0) to address offset
0xA20 shall cause the 32 bit data quadlet to be written to the 33 bit wide FIFO memory location with MSB bit 32 set to a
0 and the 32 bit data quadlet written to bits 31 to 00. A write (PUSH port 1) to address offset 0xA24 shall cause the 32
bit data quadlet to be written to the 33 bit wide FIFO memory location with MSB bit 32 set to a 1 and the 32 bit data
quadlet written to bits 31 to 00. A read (POP) from either address offset will return to the software the data quadlet
stored in bits 31-00 of FIFO memory location being accessed. The read shall cause MSB bit 32 of the FIFO memory
location to be stored in the FIFO control token status register at offset 0xA0C . Software can then read the control token
status register to determine the value that was read from bit 32 of of the FIFO memory location. Bit 32 can also be
switched to the test mux output of the chip by programming the FIFO and PCI macro test muxes to select this bit for
observation. When the read (POP) is performed, the value of bit 32 will appear at the test mux output of the CHIP
during the active portion of the slave read cycle.

6.4.8 Asynchronous Transmit FIFO Push-Pop Ports 0 and 1 @A30 A34

This port shall be implemented to provide an interface for application software to write and-or read 32 bit data qaudlets
to-from from the 33 bit wide Asynchronous Transmit FIFO, via a PCI slave access. A write (PUSH port 0) to address
offset 0xA30 shall cause the 32 bit data quadlet to be written to the 33 bit wide FIFO memory location with MSB bit 32
set to a 0 and the 32 bit data quadlet written to bits 31 to 00. A write (PUSH port 1) to address offset 0xA34 shall
cause the 32 bit data quadlet to be written to the 33 bit wide FIFO memory location with MSB bit 32 set to a 1 and the 32
bit data quadlet written to bits 31 to 00. A read (POP) from either address offset will return to the software the data
quadlet stored in bits 31-00 of FIFO memory location being accessed. The read shall cause MSB bit 32 of the FIFO
memory location be stored in the FIFO control token status register at offset 0xA0C . Software can then read the control
token status register to determine the value that was read from bit 32 of of the FIFO memory location. Bit 32 can also
be switched to the test mux output of the chip by programming the FIFO and PCI macro test muxes to select this bit for
observation. When the read (POP) is performed, the value of bit 32 will appear at the test mux output of the CHIP
during the active portion of the slave read cycle.

Revision 0.10, March 28, 1996 87

6.4.9 Isochronous Transmit FIFO Push-Pop Ports 0 and 1 @A40 A44

This port shall be implemented to provide an interface for application software to write and-or read 32 bit data qaudlets
to-from from the 33 bit wide Isochronous Transmit FIFO, via a PCI slave access. A write (PUSH port 0) to address
offset 0xA30 shall cause the 32 bit data quadlet to be written to the 33 bit wide FIFO memory location with MSB bit 32
set to a 0 and the 32 bit data quadlet written to bits 31 to 00. A write (PUSH port 1) to address offset 0xA34 shall
cause the 32 bit data quadlet to be written to the 33 bit wide FIFO memory location with MSB bit 32 set to a 1 and the 32
bit data quadlet written to bits 31 to 00. A read (POP) from either address offset will return to the software the data
quadlet stored in bits 31-00 of FIFO memory location being accessed. The read shall cause MSB bit 32 of the FIFO
memory location to be stored in the FIFO control token status register at offset 0xA0C . Software can then read the
control token status register to determine the value that was read from bit 32 of of the FIFO memory location. bit 32
can also be switched to the test mux output of the chip by programming the FIFO and PCI macro test muxes to select this
bit for observation. When the read (POP) is performed, the value of bit 32 will appear at the test mux output of the
CHIP during the active portion of the slave read cycle.

Revision 0.10, March 28, 1996 88

6.5 1394 Link Layer Control and Status Register Definitions

6.5.1 DMA Channel 0 - 4 Word 0 Receive Packet Compare Value Register @B00 B10 B20 B30 B40

This register shall be implemented to provide the interface for application software to program the compare-to-value
which shall used by the channel address comparator logic to match against the first word in the received packet. Bit
position 31 is the MSB.

Bit No. Bit Name Dir Description
31 - 16 CMP0_FIELD1[15:0] r/w Specifies a 16 bit value to match against the destination ID field of an

incoming ASYNC or ISO packet
15 - 08 CMP0_FIELD2[7:0] r/w Specifies an 8 bit value to match against the transaction label and retry

fields on an incoming ASYNC packet or the CHANNEL number field of
an incoming ISO packet.

07 - 04 CMP0_FIELD3[3:0] r/w Specifies an 4 bit value to match against the tcode field on an incoming
ASYNC or ISO packet.

03 - 00 CMP0_FIELD4[3:0] r/w Specifies a 4 bit value to match against the PRIORITY field of an
incoming ASYNC packet or the SYSTEM field of an incoming ISO
packet

6.5.2 DMA Channel 0 - 4 Word 0 Receive Packet Compare Enable Register @B04 B14 B24 B34 B44

This register shall be implemented to provide the interface for software to program the address comparator field select
mask. This value shall be use to specify the bit fields that will be checked by the comparator logic when matching the
value of the word 0 comparator register to the first word of the incoming packet. Bit position 31 is the MSB.

Bit No. Bit Name Dir Description
31 - 16 CMP0_FIELD1

_
MASK[15:0]

r/w Specifies a 16 bit enable value to select the CMP0_FIELD1[15:0] bits for matching
against the destination ID field of an incoming ASYNC packet. A 0xFFFF mask value
enables the match. 0x0000 disables the match.

15 - 08 CMP0_FIELD2
_MASK[7:0]

r/w Specifies an 8 bit mask value to select the CMP0_FIELD2[7:0] bits for matching
against the transaction label and retry fields of an incoming ASYNC packet, or the
channel no. field of an ISO packet A 0xFF mask enables the match. 0x00 disables the
match.

07 - 04 CMP0_FIELD3
_MASK[3:0]

r/w Specifies a 4 bit code for programming the tcode compare function mode which shall
select the GRF for receiving the incoming packet.
0000 - Disable tcode compariaion always equal -> GRF
0001 - ISO tcode matches CMP0_FIELD3[3:0] -> GRF
0010 - ISO tcode does not match CMP0_FIELD3[3:0] -> GRF
0011 - ASYNC tcode matches CMP0_FIELD3[3:0] -> GRF
0100 - ASYNC tcode does not match CMP0_FIELD3[3:0] -> GRF
0101 - New ISO tcode match CMP0_FIELD3[3:0] + “normal iso encode” -> GRF
0110 - New ASYNC tcode match CMP0_FIELD3[3:0] + “normal async encode” ->
GRF
0111 - New ISO tcode does not match CMP0_FIELD3[3:0] + “normal iso encode” ->
GRF
1000 - New ASYNC tcode does not match CMP0_FIELD3[3:0] + “normal async
encode” -> GRF
1001 - 1394 Iso tcode encoding (“normal”) -> GRF
1010 - 1394 Async tcode encoding (“normal”) -> GRF
1011 - 1111 Reserved - always equal

Revision 0.10, March 28, 1996 89

03 - 00 CMP0_FIELD4
_MASK[3:0]

r/w Specifies a 4 bit mask value to select the CMP0_FIELD4[3:0] for matching against the
PRIORITY field of an incoming ASYNC packet or the SYSTEM field of an incoming
ISO packet. A 0xF mask enables the match. 0x0 disables the match.

6.5.3 DMA Channel 0 - 4 Word 1 Receive Packet Compare Value Register @B08 B18 B28 B38 B48

This register shall be implemented to provide the interface for application software to program a compare-to-value which
shall used by the channel address comparator logic to match against the second word in an incoming packet. This
register shall be initialized to 0x00000000 on power-up reset. Bit position 31 is the MSB.

Bit No. Bit Name Dir Description
31 - 16 CMP1_FIELD1[15:0] r/w Specifies a 16 bit value to match against the source ID field of an

incoming ASYNC packet
15 - 00 Reserved r Return 0’s on read

6.5.4 DMA Channel 0 - 4 Word 1 Receive Packet Compare Enable Register @ B0C B1C B2C B3C B4C

This register shall be implemented to provide the interface for software to program the address comparator field select
mask. This value shall be use to specify the bit fields that will be checked by the comparator logic when matching the
value of the word 1 comparator register to the second word of the incoming packet. EN_CH_COMPARE and
WRITE_REQ_ACK_SEL bits shall be initialized to 0 on power-up reset. Bit position 31 is the MSB

Bit No. Bit Name Dir Description
31 - 16 CMP1_FIELD1_MASK[15:0

]
r/w Specifies a 16 bit mask value to select the CMP1_FIELD1[15:0] bits for

matching against the source ID field of an incoming ASYNC packet.
15 - 11 DEST_ID_SEL[4:0] r/w Specifies the operating mode of the destination ID comparator logic.

packet_wdo[31:0] is the first quadlet of the incoming packet.

xxxx1 match packet_wd0[31:22] to Bus_Number register and
 packet_wd0[21:16] to Node_Number register

xxx1x match packet_wd0[31:22] to 3FF and
 packet_wd0[21:16] to Node_Number register

xx1xx match packet_wd0[31:22] to Bus_Number register and
 packet_wd0[21:16] to 3F

x1xxx match packet_wd0[31:22] to 3FF
 packet_wd0[21:16] to 3F

1xxxx match packet_wd0[31:22] to not equal to Bus_Number register
and
 packet_wd0[31:22] to not equal to hex3FF

10 RCV_SELF_ID_EN r/w Enable reception of self-ID packets. Enable = 1 Disable = 0
09 EN_DIRECT_ADR r/w If bits 15-0 of word 1 are all zeros, the destination offset specified in word

2 will be used by the DMA controller as the starting address in PCI
memory space for the data transfer operation specified by the incoming
async packet.
enable = 1. disable = 0

08 EN_CH_COMPARE r/w Channel comparator master enable. Enable = 1 channel comparator is
enabled for normal operation. Disable = 0 channel comparator always
returns a no-match indication on incoming packet.

07 WRITE_REQ_ACK_SEL r/w Write Request Acknowledge select. When set to 1 an incoming non-

Revision 0.10, March 28, 1996 90

broadcast write request packet will be ack’ed with an ack complete
(hex0001). When set to 0 ack pending will be used (hex0010).

06 - 00 Reserved r/w Return 0’s on a read

Revision 0.10, March 28, 1996 91

6.5.5 Bus Number and Node Number @F00

This register shall be implemented to provide the interface for application software to program the 1394 bus and node
identification numbers that are assigned to the PCI-LYNX by the 1394 bus management layer. This register shall
initialize to 0x00000000 on power-up reset. Bit position 31 is the MSB.

Bit No. Bit Name Dir Description
31 - 22 BUS_ID[9:0] r/w 1394 bus identification number
21 - 16 NODE_ID[5:0] r/w 1394 Node identification number
15 - 00 Reserved r return 0’s for this bits on a read

6.5.6 1394 Link layer Control @F04

This register shall be implemented to provide the interface for application software to program the operation of the 1394
link layer control logic for controlling the transmission and reception of 1394 data packets. This register shall initialize
to 0x00000000 on power-up reset. Bit position 31 is the MSB.

Bit No. Bit Name Dir Description
31 - 30 reserved r return 0’s on a read
29 BUSY_CNTRL r/w Controls what busy status the LLC will return on incoming packets that

cannot be received.
0 = Use single phase busy protocol to busy incoming packets addressed to
this node only when the GRF is unavailable.

1 = Use single phase busy protocol to unconditionally busy all incoming
packets addressed to this node until software sets this bit to 0.

28 - 27 Reserved r Return 0’s on a read
26 TX_ISO_EN r/w Enable transmitter to send 1394 ISO packets. enable = 1 disable = 0
25 RX_ISO_EN r/w Enable receiver to receive 1394 ISO packets. enable = 1 disable = 0
24 TX_ASYNC_EN r/w Enable transmitter to send 1394 ASYNC packets. enable = 1 disable = 0
23 RX_ASYNC_EN r/w Enable receiver to receive 1394 ASYNC packets. enable = 1 disable = 0
22 Reserved r Return 0’s on a read
21 RSTTX r/w Reset 1394 transmitter. Reset = 1 causes synchronous reset of transmitter

logic. This bit shall be self-clearing.
20 RSTRX r/w Reset 1394 receiver. Reset = 1 causes synchronous reset of receiver logic.

This bit shall be self-clearing.
19 - 12 Reserved r Return 0’s on a read
11 CYCMASTER r/w Enable PCI-LYNX to be the cycle master. When set to 1 and the PCI-

LYNX is attached to the ROOT PHY, the LLC 1394 transmit logic shall
send a cycle start packet each time the cycle count field of the cycle timer
register enable increments

10 CYCSOURCE r/w Enable cycle source. When set to 1, the cycle count field of the cycle timer
register will increment and the cycle offset field will reset for each rising
edge of transition applied to the CYCLIN pin of the PCI-LYNX ASIC.
When set to 0. the cycle_count field will increment when the cycle_offset
field rolls over.

09 CYCTIMEREN r/w Enable cycle timer to increment. enable = 1 disable = 0
08 Not used r/w 0 returned on read
07 RCV_COMP_VALID r/w RCV_COMP_VALID = 1. Bus number-node number register and rcv

comparator registers have been programmed with valid data.
06-00 not used r Return 0’s on a read

Revision 0.10, March 28, 1996 92

6.5.7 1394 Cycle Timer @F08

This register shall be implemented to provide the interface for application software to program 1394 cycle timer counters
with an initial value or read the current state of the counters. This register shall initialize to 0x00000000 on power-up
reset. Bit position 31 is the MSB.

Bit No. Bit Name Dir Description
31 - 12 CYCLE_NUMBER[19:0] r/w ISO Cycle number . Increments every 125usec
11 - 00 CYCLE_OFFSET[11:0] r/w 24.576 MHz cycle timer counter - cycle offset rollsover every 125usec

6.5.8 1394 Physical layer Access F0C

This register shall be implemented to provide the interface for application software to access the control and status
registers located in the Physical layer chip. This register shall be initialized to 0x000000000 on power-up reset. Bit
position 31 is the MSB.

Bit No. Bit Name Dir Description
31 RDPHY r/w Read PHY register request. When set to 1 the LLC logic shall send a read

request to the PHY to return the value of the PHY register whose address
is specified by bit field 07-04 of this register definition. This bit shall be
self-clearing.

30 WRPHY r/w Write PHY register request. When set to a 1, the LLC logic shall send a
write request to the PHY layer to write the 8 bit values specified in bit
field 15-08, to the PHY address specified in bit field 07-04. This bit shall
be self-clearing.

29 - 28 not used r return 0 for these bits on a read
27 - 24 PHY_REG_ADR[3:0] r/w Address of the PHY register to be written to or read from. valid address

from 0x0 to 0x8
23 - 16 PHY_REG_DAT[7:0] r/w Data to be written to the PHY register specified in bit field 07-04
15 - 12 not used r Return 0 for these bits on a read
11 - 08 PHY_REGRD_ADR[3:0] r/w Address of PHY register which was read. This address is returned by the

PHY in the status message in sends in response to a PHY register read
request.

07 - 00 PHY_REGRD_DAT[7:0] r/w Data read from a selected PHY register. This data is returned by the PHY
in the status message in sends in response to a PHY register read request.

Revision 0.10, March 28, 1996 93

6.5.9 1394 Diagnostic Test Control @F10

This register shall be implemented to provide the interface for application software to perform diagnostic testing of the
1394 LLC functionality. This register shall initialize to 0x00000000 on power-up reset.

Bit No. Bit Name Dir Description
31 - 15 Reserved r Return 0’s on read
14 CH_MATCH r This test point shall be the channel match indication generated by the link

core address comparator logic
13 - 08 DMA_CH_NO[5:0] r This test point shall be the 6 bit DMA channel number generated by the

link core address comparator logic
07 GRF_UFLOW_TST_STB r/w GRF underflow counter test increment. When a 1 is written to the Bit, a

one clock wide pulse shall be generated to the GRF underflow counter.
This pulse shall cause the counter to increment by 1. This bit shall be
self-clearing

06 ATF_UFLOW_TST_STB r/w ATF underflow counter test increment. When a 1 is written to the Bit, a
one clock wide pulse shall be generated to the ATF underflow counter.
This pulse shall cause the counter to increment by 1. This bit shall be
self-clearing

05 ITF_UFLOW_TST_STB r/w ITF underflow counter test increment. When a 1 is written to the Bit, a
one clock wide pulse shall be generated to the ITF underflow counter.
This pulse shall cause the counter to increment by 1. This bit shall be
self-clearing

04 - 01 TESTMUXSEL[3:0] r/w Select internal test point for observation at the external TEST_OUT pin
00 DIAG1394EN r/w Enable 1394 diagnostic test mode. When set to 1, the 1394 diagnostic test

mode is enabled. Set to 0 to enable normal operating mode. The setting of
this bit to 1 shall enable the specific diagnostic test modes defined in this
register definition

6.5.10 1394 Link Layer Interrupt Status Register @F14

This register shall be implemented to provide the interface for application software to determine the interrupt that is
caused by a 1394 link event. This register shall be set to 0x00000000 on power up reset. An interrupt bit shall be
asserted when it is set to a logic 1. The interrupt Status bits defined in the following tabled shall be cleared by writing a
“1” to a selected bit position. Bit position 31 is the MSB

Bit No. Bit Name Dir Description
31 LINK_INT r/w Link logic interrupt. This signal is the “OR” of all link interrupt sources.
30 PHY_TIME_OUT r/w The Phy has stayed in a particular state for to long.
29 PHY_REG_RCVD r/w The contents of a Phy register has been received from the Phy.
28 PHY_BUSRESET r/w The Phy has entered the bus reset state.
27 Reserved r Return 0’s on a read
26 TX_RDY r/w The transmitter is ready to transmit a packet.
25 RX_DATA_RDY r/w The receiver has received a packet.
24 - 21 Reserved r Return 0’s on a read
20 IT_STUCK r/w Transmitter stuck on ISO transfer from ITF.
19 AT_STUCK r/w Transmitter stuck on ASYNC transfer from ATF.
18 Reserved r Return 0’s on a read
17 SNTRJ r/w The receiver was force to send a busy acknowledge to a packet addressed

to this node because the GRF overflowed.
16 HDR_ERR r/w The receiver detected a header CRC error on an icoming packet that may

have been addressed to this node.

Revision 0.10, March 28, 1996 94

15 TC_ERR r/w the Transmitter detected an invalid transaction code in the packet that it
was attempting to transmit.

14 - 12 Reserved r Return 0’s on a read
11 CYC_SEC r/w Cycle timer in seconds has incremented.
10 CYC_STRT r/w Cycle start packet was sent or received.
09 CYC_DONE r/w A sub-action gap has been detected on the bus after the transmission or

reception of a cycle start packet. This indicates that the ISO cycle is over.
08 CYC_PEND r/w Cycle pending is asserted when cycle timer offset is set to zero (rolled

over or reset) and statys asserted until the ISO cycle has ended.
07 CYC_LOST r/w Cycle timer has rolled over twicw without receiving a cycle start packet.
06 CYC_ARB_FAILED r/w The arbitration to send the cycle start packet has failed.
05 GRF_OVER_FLOW r/w GRF over_flow detected during packet reception
04 ITF_UNDER_FLOW r/w ITF under flow detected during ISO packet transmission
03 ATF_UNDER_FLOW r/w ATF underflow detected during ASYNC packet transmission
02 - 01 Reserved r/w Return 0’s on a read
00 IARB_FAILED r/w Arbitration to send an ISO packet has failed.

Revision 0.10, March 28, 1996 95

6.5.11 1394 Link Layer Interrupt Enable Register @F18

This register shall be implemented to provide the interface for application software to enable the interrupt specified in the
1394 link layer interrupt status register. This register shall be set to 0x00000000 on power up reset. Bit position 31 is
the MSB. Setting an enable bit to a logic 1 enables the interrupt. Setting the enable bit to logic 0 disables the interrupt.

Bit No. Bit Name Dir Description
31 Reserved r Return 0 on a read
30 PHY_TIME_OUT_EN r/w Enable Phy time out interrupt.
29 PHY_REG_RCVD_EN r/w Enable Phy register data received interrupt.
28 PHY_BUSRESET_EN r/w Enable Phy bus reset interrupt.
27 Reserved r Return 0’s on a read
26 TX_RDY_EN r/w Enable Transmitter sent packet interrupt.
25 RX_DATA_RDY_EN r/w Enable Receiver received packet interrupt.
24 - 21 Reserved r Return 0’s on a read
20 IT_STUCK_EN r/w Enable Transmitter stuck on ISO interrupt.
19 AT_STUCK_EN r/w Enable Transmitter stuck on ISO interrupt.
18 Reserved r Return 0’s on a read
17 SNTRJ_EN r/w Enable receiver sent busy ack interrupt.
16 HDR_ERR_EN r/w Enable receiver header error interrupt.
15 TC_ERR_EN r/w Enable transmitter invalid Tcode interrupt.
14 - 12 Reserved r Return 0’s on a read
11 CYC_SEC_EN r/w Enable cycle timer seconds interrupt.
10 CYC_STRT_EN r/w Enbale cycle start interrupt.
09 CYC_DONE_EN r/w Enable cycle done interrupt.
08 CYC_PEND_EN r/w Enable cycle pending interrupt.
07 CYC_LOST_EN r/w Enable cycle lost interrupt.
06 CYC_ARB_FAILED_EN r/w Enable cycle start arbitration failed interrupt.
05 GRF_OVER_FLOW_EN r/w Enable GRF over flow interrupt
04 ITF_UNDER_FLOW_EN r/w Enable ITF under flow interrupt
03 ATF_UNDER_FLOW_E

N
r/w Enable ATF under flow interrupt

02 - 01 Reserved r Return 0’s on a read
00 IARB_FAILED_EN r/w Enable ISO arb failed interrupt.

6.5.12 1394 Busy Retry Control Register @F1C
This register shall be implemented to provide the interface for application software to set the number of times that the
1394 transmitter is to retry an asynchronous packet that was ack’ed with a busy or error condition. This register also
provides the the means to program the time interval to delay between succesive retrys. Bit position 31 is the MSB. This
register shall be cleared to all zeros on power-up reset. Bit position 31 is the MSB.

Bit No. Bit Name Dir Description
31-16 Reserved r Returns all zero’s on read.
15-08 BUSY_RETRY_DLY[7:0] r/w A number between 0 and 255 that shall specify the time that the 1394

transmitter must delay between successive retries. This time shall be
equal to BUSY_RETRY_DLY[7:0] times ISO_INTERVAL(125usec)

07-00 BUSY_RETRY_CNT[7:0] r/w A number between 0 and 255 that shall specify the maximum number
of times to re-transmit a packet, when the destination node continues
to return busy acknowledge status. The 1394 transmitter shall notify
the active DMA channel when the maximum number of transmit retries
have been attempted without a successful transmission occurring.

Revision 0.10, March 28, 1996 96

6.5.13 Link Layer Controller State Machine Vector Monitor Port @F20

This register shall be implemented to provide application software with an I/O port to read the value of the state vector
for each state machine in the Link Layer Control logic. This register is read only.

Bit No. Bit Name Dir Description
31 - 28 TRANSMIT_IFC_STATE[3:0] r TransmitIfc state machine vector
27 - 25 RXSTATUS_IFC_STATE[2:0] r RxdStatIfc state machine vector
24 - 22 RXDDATA_IFC_STATE[2:0] r RxdDataIfc state machine vector
21 - 19 RCV_ACK_STATE[2:0] r RcvAck state machine vector
18 - 15 LREQ_STATE[3:0] r Request state machine vector
14 - 09 RECEIVE_STATE[5:0] r Receive state machine vector
08 - 03 TRANSMIT_STATE[5:0] r Transmit state machine vector
02 - 00 CM_STATE[2:0] r CycleMonitor state machine vector

6.5.14 Link Layer FIFO Under Flow - Over Flow Counters @F24

These counters shall be implemented to provide application software with an I/O port to monitor the number of ATF and
ITF underflows that have occurred during packet transmissions and the number of over flows that have occurred during
packet reception. These counters are cleared to logic 0’s on power-up reset. Bit 31 is MSB

Bit No. Bit Name Dir Description
31 - 24 Not used r 0’s returned on read
23 - 16 ITF_UNDER_FLOW[7:0] r/w Increments by 1 on each ITF under flow detected by 1394

transmitter or when a 1 is written to the test increment bit in
the diagnostic test register. Counting Stops and holds when
counter == hexFF. Subsequent undeflows will not
increment the counter. The counter is enabled when
software loads it with any value that is less than hexFF.
Counting will proceed from that value until hexFF is
reached.

15 - 08 ATF_UNDER_FLOW[7:0] r/w Increments by 1 on each ATF under flow detected by 1394
transmitter. Counting Stops and holds when counter ==
hexFF. Subsequent undeflows will not increment the
counter. The counter is enabled when software loads it
with any value that is less than hexFF. Counting will
proceed from that value until hexFF is reached.

07 - 00 GRF_OVER_FLOW[7:0] r/w Increments by 1 on each GRF over flow detected by 1394
transmitter. Counting Stops and holds when counter ==
hexFF. Subsequent undeflows will not increment the
counter. The counter is enabled when software loads it
with any value that is less than hexFF. Counting will
proceed from that value until hexFF is reached.

Revision 0.10, March 28, 1996 97

7. APPENDIX A - Design Methodology and Conventions

7.1 PURPOSE
The purpose of this appendix is to suggest uniform design methodologies and conventions for the PCI-LYNX ASIC
development. This should facilitate the development team working together in an efficient and cohesive manner.
The general intent of the conventions is to improve the readability and understandability of the source code. To this end,
meaningful names and commented code should be emphasized.
Major logic blocks of source code imported into this design from other sources may not conform to this document. Such
source files may be changed to conform if it is convenient and useful to change.

7.2 Revision Control
Source file revision control is maintained by a manual system of appending a final “.n” to the file name. The “n” is a
sequential number representing the revision level of the file. Thus, revision “0” of a file will be named “filename.v.0”,
the next revision, “filename.v.1”, “filename.v.2”, “filename.v.3”, and so forth. It is up to the designer to decide when
changes dictate a new revision, and when out-dated revisions are deleted from the database.
With this scheme, multiple designers can continue to work with a known snapshot of each other’s work while the
modules all continue to evolve.

7.3 File Names and Hierarchy
There should be one Verilog module in each source file.
Verilog source file names should be the same as the Verilog module name with a ".v" suffix appended.
File names should use lower case letters only, and should use underscores ("_") to provide separation of phrases.
File names should be as descriptive as possible of the function of the module.
There is no maximum length for file names; however, over about 16 characters starts becoming awkward.
The current hierarchy is intended to be a basic structure to work from:

pci_link /design /pci /verilog_src
/scripts
/

/dma
/fifo
/link
/top

/good_database
/spec
/schedule

7.4 Signal naming conventions
Signal and variable names should use lower case letters only, and should use underscores ("_") to provide separation of
phrases.
Each signal name should be as descriptive as possible of its function.
Try to avoid signal names that are very similar or easily confused.
There is no maximum length for signal names; however, over about 10 characters starts becoming awkward and over
about 16 becomes painful.
Low active signals should end with a "z" suffix. examples: resetz, loadz, data_busz[3:0].
Constants and parameters should use all upper case name, and should use underscores to provide separation of phrases.
Where it improves readability and understandability, (primarily to signify synchronization), a trailing “q” may be added
to the signal name. example: rcv_dataqz, inputq
For most of the design, the global asynchronous reset "resetz" should be used. This signal is asynchronous on assertion,
and synchronous with pck_clk on de-assertion. Each module should synchronize to the local clock domain, as required.

Revision 0.10, March 28, 1996 98

7.5 Coding Guidelines

7.5.1 Code Comments

7.5.1.1 File headers/body

7.5.1.2 Signal definition:

7.5.1.3 Document logic:

//---//
// Description: PCI Output Path Prefetch Registers
//
// Filename: out_path_regs.v
//
// Author: Brian Karguth
// Richard Baker
//
// Revision: 12/5/94 first version
// 12/12/94 rtb added comments
//---//
// Synthesis notes/critical pathes:
//---//
// Functional Description:
//
//---//

//----- CONNECTING DEVICE SIGNALS (from connecting device -----//
input load_mstr_cmd; // load a cmd to the PCI MASTER
input [31:0] master_adr; // PCI master address
input [5:0] mstr_xfr_length; // Transfer byte count
input mstr_req, // Transfer request from DMA
 mstr_write, // Write = 1 Read = 0 (alias wr_not_rd)
 big_endian; // from DMA cntl word - do byte swap
input [31:0] master_data; // PCI master write data

output mstr_read_en; // reading new burst data to connecting device
//---//

// load output data pipeline:
// swapped_mstr_data ==>next1_master_data==>curr_mast

Revision 0.10, March 28, 1996 99

7.5.1.4 Register definition:

7.5.2 Coding style -- use/placement of begin/end
Generally, begin/end pairs should only be used where required.

7.5.3 Coding style - registers
Redundant code (i.e. else eep_cntl_reg[7:0] = eep_cntl_reg[7:0]; is not required and makes the source code harder to
read.

7.5.4 Coding style - state machines
State machine combinatorial next state logic should be in a separate process from the clocked process that loads the
next_state to the current_state registers.

//---//
// Address 0x44 -- Serial EEPROM Control Register [31:0]
//
// 31 24 | 23 16
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 |
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
//
// 15 12 8 | 7 0
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
// | 0 0 0 0 0 0 0 0 |NOT|EEP|EEP|EEP| 0 0 |10U| 5U|
// | |PRS|CLK|ENA|DAT| |TIM|TIM|
// +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
//
//---//

//---//
// eep register
//---//
always @(posedge pb_clk or negedge resetz)
 begin
 if (~resetz)
 eep_cntl_reg <= #`DELAY 32'b0;
 else
 begin
 if (ltchd_addr[5:2] == 4'b0001 && cmd_type_wrz
 && ~intreg_beginz && ~intreg_endz)
 begin
 if (~ltchd_bez[0]) // byte enable[0]
 eep_cntl_reg[7:0] <= #`DELAY p2slv_data[7:0];
 end
 end
 end
//---//

Revision 0.10, March 28, 1996 100

//---//
// state definitions
//---//
reg [3:0] current_state, next_state;
parameter RESET = 0;
parameter CHECK = 1;
parameter OFFBUS = 2;
parameter START1B = 3;

//---//
// assignment of state register
//---//
always @(posedge pb_clk or negedge resetz)
 begin
 if (~resetz)
 current_state <= #`DELAY RESET;
 else
 current_state <= #`DELAY next_state;
 end

//---//
// next state logic
//---//
always @(input1 or input2 or input3)
 begin
 case (current_state)

//==================//
// R E S E T
//==================//
 RESET:
 if (input1)
 next_state <= #`DELAY CHECK;
//==================//
// C H E C K
//==================//
 RESET:
 next_state <= #`DELAY OFFBUS;
//

 endcase

//---//

Revision 0.10, March 28, 1996 101

7.5.5 Clocks and Resets
As much as possible, the entire design should be a synchronous machine with an asynchronous reset. The registered part
of the definition should use one clock and one reset in the sensitivity list:

7.5.6 Asynchronous Boundaries
There are 2 major clock domains in the design: pci_clk (up to 33MHz), sclk (49.152Mhz clock from the physical
interface) and link_clk (24.576MHz from sclk/2). Note that sclk and link_clk are closely related, thus basically in the
same clock domain.

The design should minimize the number of modules containing more than one clock.

The asynchronous boundaries are:

1. LINK block: sclk to link_clk. The sclk to link_clk boundary is limited to a very few modules located at the
PHY/LINK interface. These modules produce link_clk, which is the sclk divided by 2.

//---//
// synchronous outputs
//---//
always @(posedge pb_clk or negedge resetz)
 begin
 if (~resetz)
 outputs <= #`DELAY reset;
 else
 begin
 case (next_state)
 RESET:
 out1<=#`DELAY 0;out2<=#`DELAY 0;out3<=#`DELAY 0;out4<=#`DELAY 0;
 STATE1:
 out1<=#`DELAY 1;out2<=#`DELAY 0;out3<=#`DELAY 0;out4<=#`DELAY 0;
//

 endcase
//

// alternate to case statement
 if(next_state == RESET || next_state == EXIT)
 out1 <= #`DELAY 0;
 else
 out1 <= #`DELAY 1;
//

 end
 end

//---//
// asynchronous outputs
//---//
always @(in1 or in2 or in3 or in4)
 begin
 case (current_state)
 RESET:
 out1<=#`DELAY 0;out2<=#`DELAY 0;out3<=#`DELAY 0;out4<=#`DELAY 0;
 STATE1:
 out1<=#`DELAY 1;out2<=#`DELAY 0;out3<=#`DELAY 0;out4<=#`DELAY 0;
//

 endcase
 end
//---//

always @(posedge pci_clk or negedge resetz)

Revision 0.10, March 28, 1996 102

2. LINK block: link_clk to pci_clk. The link_clk to pci_clk boundary in the LINK block is limited to synchronizing PCI
slave register reads and writes.

The link_clk is used in the remainder of the link logic.

3. FIFO block: link_clk to pci_clk. The FIFO block is the primary asynchronous boundary between the PCI clock
domain and the sclk/link_clk clock domain.

7.5.7 Synthesizable Verilog.

Use case statements where convenient, cover all cases with a default statement.

Avoid use of arithmetic’s unless needed.

Keep source code as simple as possible.

Describe synthesizable hardware with code (as opposed to complex software constructs) as much as possible.

Synthesize sample code constructs to understand relation of source code to resulting synthesized gates.

For registered logic, limit process sensitivity list to the clock and the (one) asynchronous reset.

For combinatorial logic, the process sensitivity list should include only the required signals. The process sensitivity list
should include all input signals; but should not include extra, unused inputs.

Simulate with synthesis checks enabled.

Revision 0.10, March 28, 1996 103

8. APPENDIX B - SIGNAL TO PACKAGE PIN ASSIGNMENTS

Signal Name Pin
#

Signal Name Pin
#

Signal Name Pin
#

Signal Name Pin
#

 3.3V VCC 1 GND 45 GND 89 seeprom_clk 133
N/C (spare) 2 N/C (reserved) 46 aux_data5 90 seeprom_data 134
 pci_ad25 3 pci_ad8 47 aux_data4 91 5V 135
 pci_ad24 4 pci_cbez0 48 aux_data3 92 link_isoz 136
 pci_cbez3 5 3.3V VCC 49 3.3V VCC 93 link_cyclein 137
 GND 6 pci_ad7 50 aux_data2 94 3.3V VCC 138
 pci_idsel 7 GND 51 GND 95 link_cycleout 139
 3.3V VCC 8 pci_ad6 52 aux_data1 96 test_out 140
 pci_ad23 9 pci_ad5 53 aux_data0 97 GND 141
 pci_ad22 10 pci_ad4 54 aux_adr15 98 phy_ctl0 142
 pci_ad21 11 pci_ad3 55 aux_adr14 99 phy_ctl1 143
 5.0V VCC 12 3.3V VCC 56 3.3V VCC 10

0
 phy_lreq 144

 pci_ad20 13 pci_ad2 57 aux_adr13 10
1

 3.3V VCC 145

 GND 14 pci_ad1 58 GND 10
2

 phy_data0 146

 pci_ad19 15 pci_ad0 59 aux_adr12 10
3

 phy_data1 147

 pci_ad18 16 5.0V VCC 60 aux_adr11 10
4

 phy_data2 148

 pci_ad17 17 aux_intz 61 aux_adr10 10
5

 phy_data3 149

 pci_ad16 18 aux_rdy 62 aux_adr9 10
6

 GND 150

 3.3 VCC 19 5.0V VCC 63 3.3 VCC 10
7

 phy_data4 151

 pci_cbez2 20 aux_clk 64 aux_adr8 10
8

 phy_data5 152

 GND 21 GND 65 5.0V VCC 10
9

 phy_data6 153

 pci_framez 22 aux_rstz 66 aux_adr7 11
0

 phy_data7 154

 pci_irdyz 23 ram_csz 67 aux_adr6 11
1

 GND 155

 pci_trdyz 24 rom_csz 68 aux_adr5 11
2

 phy_clk50 156

 pci_devselz 25 aux_csz 69 aux_adr4 11
3

 3.3V VCC 157

 3.3V VCC 26 3.3 VCC 70 GND 11
4

 test_enable 158

 pci_stopz 27 aux_wez1 71 aux_adr3 11
5

 auto_boot 159

 GND 28 GND 72 3.3V VCC 11
6

 GND 160

GROUND PINS = 24; 3.3 VOLT VCC PINS = 23; 5.0 VOLT REFERENCE PINS = 4; SIGNAL PINS = 121
 NOT CONNECTED = 4; TOTAL PINS = 176

Revision 0.10, March 28, 1996 104

N/C (reserved) 29 aux_wez0 73 aux_adr2 11
7

 pci_clk 161

 pci_perrz 30 aux_oez 74 aux_adr1 11
8

 5.0V VCC 162

 pci_serrz 31 3.3V VCC 75 aux_adr0 11
9

 pci_resetz 163

 pci_par 32 aux_data15 76 N/C (spare) 12
0

 pci_gntz 164

 3.3V VCC 33 aux_data14 77 GND 12
1

 3.3V VCC 165

 pci_cbez1 34 aux_data13 78 gpio_data3 12
2

 pci_intaz 166

 GND 35 GND 79 gpio_data2 12
3

 pci_reqz 167

 pci_ad15 36 aux_data12 80 gpio_data1 12
4

 GND 168

 pci_ad14 37 aux_data11 81 gpio_data0 12
5

 pci_ad31 169

 pci_ad13 38 aux_data10 82 zv_pix_clk 12
6

 pci_ad30 170

 pci_ad12 39 aux_data9 83 zv_vsync 12
7

 pci_ad29 171

 5.0V VCC 40 5.0V VCC 84 3.3V VCC 12
8

 3.3V VCC 172

 pci_ad11 41 aux_data8 85 zv_ext_clk 12
9

 pci_ad28 173

 3.3V VCC 42 3.3V VCC 86 GND 13
0

 pci_ad27 174

 pci_ad10 43 aux_data7 87 zv_hsync 13
1

 GND 175

 pci_ad9 44 aux_data6 88 zv_data_valid 13
2

 pci_ad26 176

Revision 0.10, March 28, 1996 105

Signal Name Dir Functional Description
GND I Ground
3.3V VCC I 3.3 Volt Power
5V I 5 Volt Tolerance Input
pci_clk I PCI- System clock. 0-33 MHz
pci_ad[31:0] I/O PCI- Multiplexed address/data bus signals
pci_cbez[3:0] I/O PCI- Multiplexed command/byte enable signals
pci_par I/O PCI- Parity signal. Parity is even across pci_ad [31:0] and pci_cbez[3:0] signals
pci_framez I/O PCI- frame signal
pci_irdyz I/O PCI- Initiator ready signal
pci_trdyz I/O PCI- Target ready signal
pci_devselz I/O PCI- Device select
pci_stopz I/O PCI- Stop
pci_idselz I/O PCI- Initialization device select
pci_perrz I/O PCI- Data parity error
pci_serrz OD PCI- System error. This is an open drain signal.
pci_reqz O PCI- Master bus request to PCI bus arbiter
pci_gntz I PCI- Bus grant from PCI bus arbiter
pci_resetz I PCI- System reset
pci_intaz OD PCI- System interrupt A. This is an open drain signal
seeprom_data I/O External Serial EEPROM read-write data line
seeprom_clk I/O External Serial EEPROM data clock
aux_clk O Auxiliary port clock out (output at frequency of PCI Clock)
aux_rstz O Auxiliary port reset out
aux_intz I Auxiliary port interrupt in
gpio_data[3:0] I/O Auxiliary port general purpose programmable i/o signals
aux_adr[15:0] O Auxiliary port address lines out to external logic
aux_data[15:0] I/O Auxiliary port bi-directional data bus to external logic
aux_oez O Auxiliary port output enable to enable external logic data on to the aux_data bus
aux_wrz[1:0] O Auxiliary port write strobes to external logic
aux_rdy I Auxiliary port ready indication from external logic
aux_csz O Auxiliary port chip select to external logic
rom_csz O external ROM chip select
ram_csz O external RAM chip select
phy_ctl[0:1] I/O Phy-link bi-directional control lines
phy_data[0:7] I/O Phy-link bi-directional data lines
phy_clk50 I 50 Mhz System clock from PHY chip.
phy_lreq O Phy-link request signal generated by the PCI-lynx chip
link_isoz I Phy-link isolation barrier mode
link_cyclein I Optional external 8Khz clock for use as the cycle clock.
link_cycleout O Cycle timer 8Khz cycle clock out
zv_ext_clk I Zoom port external clock input
zv_vsync O Zoom port vertical sync output
zv_hsync O Zoom port horizonal sync output
zv_data_valid O Zoom port data valid signal
test_out O Test mux out. Internal test point selected by the test multiplexer for observation.
test_enable I Test enable. Enables factory test features.
autoboot I Autoboot. Selects autoboot mode.

PCI-LYNX I/O SIGNAL FUNCTIONAL DESCRIPTION

Revision 0.10, March 28, 1996 106

9. APPENDIX C - ASIC Package Outline Dimension Drawing

Figure 16. 176 pin Plastic Quad Flat Pack (S-PQFP-G176)

1 44

45

88

89132

133

176

21.50 max SQ

24.20 max SQ
23.80 min

26.20 max SQ
25.80 min SQ

1.60 max

0.27 max
0.17 min

0.50

NOTE: All
dimensions are in
millimeters

Revision 0.10, March 28, 1996 107

10. APPENDIX D - FIFO PACKET ORGANIZATION FORMATS

32 31 0
1 START_OF_PACKET_CONTROL_WORD
0 DESTINATION_ID TLABEL RT TCODE PRIORITY
0 SOURCE_ID DESTINATION OFFSET HI
0 DESTINATION OFFSET LOW
0 QUADLET DATA (for write request and read response)
1 END_OF_PACKET_CONTROL_WORD

Field Name Bit Positions Description
START_OF_PACKET
CONTROL_WORD

31 - 0 FIFO start control word. Marks the start of the packet in the
FIFO. Contains control information that is set up by the DMA
channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in APPENDIX E
on page 114

DESTINATION_ID 31 - 16 This is the concatenation of the 10-bit bus number and the 6-bit
node number which forms the destination address of the node
which this packet is being sent to.

TLABEL 15 - 10 This field is the transaction label, which is a unique tag for each
outstanding transaction between two nodes. This is used to pair
up a response packet with a corresponding request packet.

RT 9 - 8 Retry code field
TCODE 7 - 4 The transaction code for this packet. (See table 6-9 of IEEE

1394-1995 Standard)
PRIORITY 3 - 0 The priority level for this packet. For cable implementation the

value of the bits must be zero.
SOURCE_ID 31 - 16 This is the concatenation of the 10-bit bus number and the 6-bit

node number which forms the destination address of this packet
DESTINATION OFFSET HI
DESTINATION OFFSET
LOW

15 - 0
31 - 0

The concatenation, of these two fields addresses a quadlet in the
destination node address space. This address must be quadlet-
aligned(modulo-4)

QUADLET DATA 31 - 0 For write requests and read responses, this field holds the data
to be transferred. For write responses and read requests, this
field is not used and should not be written into the FIFO.

END_OF_PACKET
CONTROL_WORD

31 - 0 FIFO end control word. Marks the end of the packet in the
FIFO. Contains control information that is set up by the DMA
channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in APPENDIX E
on page 114

ASYNCHRONOUS TRANSMIT FIFO SINGLE DATA QUADLET PACKET FORMAT

Revision 0.10, March 28, 1996 108

32 31 0
1 START_OF_PACKET_CONTROL_WORD
0 DESTINATION_ID TLABEL RES TCODE PRIORITY
0 SOURCE_ID DESTINATION OFFSET HI
0 DESTINATION OFFSET LOW
0 DATA LENGTH EXTENDED_TCODE
0 BLOCK DATA (for write request and read response)
1 END_OF_PACKET_CONTROL_WORD

Field Name Bit Positions Description
START_OF_PACKET
CONTROL_WORD

31 - 0 FIFO start control word. Marks the start of the packet in the
FIFO. Contains control information that is set up by the DMA
channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in APPENDIX E
on page 114

DESTINATION_ID 31 - 16 This is the concatenation of the 10-bit bus number and the 6-bit
node number which forms the destination address of the node
which this packet is being sent to.

TLABEL 15 - 10 This field is the transaction label, which is a unique tag for each
outstanding transaction between two nodes. This is used to pair
up a response packet with a corresponding request packet.

RES 9 - 8 Reserved
TCODE 7 - 4 The transaction code for this packet. (See table 6-9 of IEEE

1394-1995 Standard)
PRIORITY 3 - 0 The priority level for this packet. For cable implementation the

value of the bits must be zero.
DESTINATION ID 31 - 16 This is the concatenation of the 10-bit bus number and the 6-bit

node number which forms the destination address of this packet
DESTINATION OFFSET HI
DESTINATION OFFSET
LOW

 15 - 0
 31 - 0

The concatenation, of these two fields addresses a quadlet in the
destination node address space. This address must be quadlet-
aligned(modulo-4)

DATA LENGTH 31 - 16 The number of bytes of data to be transmitted in the packet.
EXTENDED TCODE 15 - 0 The block extended tcode to be performed on the data in this

packet. See table 6-11 of the IEEE 1394-1995
BLOCK DATA 31 - 0 The data to be sent. If data length is 0, no data should be written

into the FIFO for this field. Regardless of the destination or
source alignment of the data, the first byte of the block must
appear in byte 0 of the first quadlet.

END_OF_PACKET
CONTROL_WORD

31 - 0 FIFO end control word. Marks the end of the packet in the
FIFO. Contains control information that is set up by the DMA
channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in APPENDIX E
on page 114

ASYNCHRONOUS TRANSMIT FIFO MULTIPLE DATA QUADLET FORMAT

Revision 0.10, March 28, 1996 109

32 31 0
1 START_OF_PACKET_CONTROL_WORD
0 DESTINATION_ID TLABEL RT TCODE PRIORITY
0 SOURCE_ID DESTINATION OFFSET HI
0 DESTINATION OFFSET LOW
0 QUADLET DATA (for write request and read response)
1 END_OF_PACKET_CONTROL_WORD

Field Name Bit Positions Description
START_OF_PACKET
CONTROL_WORD

31 - 0 FIFO start control word. Marks the start of a packet in the
FIFO. Contains control information that is set up by the DMA
channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in APPENDIX E
on page 115

DESTINATION_ID 31 - 16 This is the concatenation of the 10-bit bus number and the 6-bit
node number which forms the destination address of the node
which this packet is being sent to.

TLABEL 15 - 10 This field is the transaction label, which is a unique tag for each
outstanding transaction between two nodes. This is used to pair
up a response packet with a corresponding request packet.

RT 9 - 8 The retry code for this packet. 00 = new, 10 = retryA, 11 =
retryB

TCODE 7 - 4 The transaction code for this packet. (See table 6-9 of IEEE
1394-1995 Standard)

PRIORITY 3 - 0 The priority level for this packet. For cable implementation the
value of the bits must be zero.

SOURCE_ID 31 - 16 This is the concatenation of the 10-bit bus number and the 6-bit
node number which forms the destination address of this packet

DESTINATION OFFSET HI
DESTINATION OFFSET
LOW

15 - 0
31 - 0

The concatenation, of these two fields addresses a quadlet in the
destination node address space. This address must be quadlet-
aligned(modulo-4)

QUADLET DATA 31 - 0 For write requests and read responses, this field holds the data
to be transferred. For write responses and read requests, this
field is not used and should not be written into the FIFO.

END_OF_PACKET
CONTROL_WORD

31 - 0 FIFO end control word. Marks the end of the packet in the
FIFO. Contains control information that is set up by the DMA
channel for use by the 1394 transmitter logic. The bit field
definitions for this control word are specified in APPENDIX E
on page 115

ASYNCHRONOUS RECEIVE FIFO SINGLE DATA QUADLET FORMAT

Revision 0.10, March 28, 1996 110

32 31 0
1 START_OF_PACKET_CONTROL_WORD
0 DESTINATION_ID TLABEL RT TCODE PRIORITY
0 SOURCE_ID DESTINATION OFFSET HI
0 DESTINATION OFFSET LOW
0 DATA_LENGTH EXTENDED_TCODE
0 BLOCK DATA (for write request and read response)
1 END_OF_PACKET_CONTROL_WORD

Field Name Bit
Positions

Description

START_OF_PACKET
CONTROL_WORD

31 - 0 FIFO start control word. Marks the start of a packet in the FIFO.
Contains control information that is set up by the DMA channel
for use by the 1394 transmitter logic. The bit field definitions for
this control word are specified in APPENDIX E on page 115

DESTINATION ID 31 - 16 This is the concatenation of the 10-bit bus number and the 6-bit
node number which forms the destination address of the node
which this packet is being sent to.

TLABEL 15 - 10 This field is the transaction label, which is a unique tag for each
outstanding transaction between two nodes. This is used to pair
up a response packet with a corresponding request packet.

RT 9 - 8 The retry code for this packet. 00 = new, 10 = retryA, 11 =
retryB

TCODE 7 - 4 The transaction code for this packet. (See table 6-9 of IEEE
1394-1995 Standard)

PRIORITY 3 - 0 The priority level for this packet. For cable implementation the
value of the bits must be zero.

SOURCE ID 31 - 16 This is the node ID of the sender of this packet.
DESTINATION OFFSET HI
DESTINATION OFFSET
LOW

 15 - 0
 31 - 0

The concatenation, of these two fields addresses a quadlet in the
destination node address space. This address must be quadlet-
aligned(modulo-4). The upper 4 bits of the destination offset
high field are used as the response code for lock response
packets.

DATA_LENGTH 31 - 16 For write requests, read responses, and locks, this field indicates
the number of bytes being transferred. For read requests, this
field indicates the number of bytes of data to be read. A write
response packet does not use this field.

EXTENDED TCODE 15 - 0 The block extended tcode to be performed on the data in this
packet. See table 6-11 of the IEEE 1394-1995 serial bus
specification.

BLOCK DATA 31 - 0 This field contains any data being transferred for this packet.
Regardless of the destination address or memory alignment, the
first byte of the data appears in byte 0 of the first quadlet of this
field. the last quadlet of this field is padded with zeros out to 4
bytes, if necessary.

END_OF_PACKET
CONTROL_WORD

31 - 0 FIFO end control word. Marks the end of the packet in the FIFO.
Contains control information that is set up by the DMA channel
for use by the 1394 transmitter logic. The bit field definitions for
this control word are specified in APPENDIX E on page 115

ASYNCHRONOUS RECEIVE FIFO MULTIPLE DATA QUADLET
FORMAT

Revision 0.10, March 28, 1996 111

Revision 0.10, March 28, 1996 112

32 31 0
1 START_OF_PACKET_CONTROL_WORD
0 DATA LENGTH TAG CHANNEL_NO TCODE SY
0 ISOCHRONOUS DATA
1 END_OF_PACKET_CONTROL_WORD

Field Name Bit
Positions

Description

START_OF_PACKET
CONTROL_WORD

31 - 0 FIFO start control word. Marks the start of the packet in the FIFO.
Contains control information that is set up by the DMA channel for use
by the 1394 transmitter logic. The bit field definitions for this control
word are specified in APPENDIX E on page 116

DATA LENGTH 31 - 16 Indicates the number of bytes in the ISO packet.
TAG 15 - 14 TBD
CHANNEL_NO 13 - 8 The channel number that this packet is being transmitted to.
TCODE 7 - 4 Transaction code = 1010
SY 3 - 0 Transaction layer specific synchronization bits
ISOCHRONOUS DATA 31 - 0 The data to be transmitted in this packet. The first byte of data must

appear in byte 0 of the first quadlet of this field. If the last quadlet does
not contain four bytes of data, the unused bytes should be padded with
zeroes.

END_OF_PACKET
CONTROL_WORD

31 - 0 FIFO end control word. Marks the end of the packet in the FIFO.
Contains control information that is set up by the DMA channel for use
by the 1394 transmitter logic. The bit field definitions for this control
word are specified in APPENDIX E on page 116

ISOCHRONOUS TRANSMIT FIFO PACKET FORMAT

Revision 0.10, March 28, 1996 113

32 31 0
1 START_OF_PACKET_CONTROL_WORD
0 DATA LENGTH TAG CHANNEL_NO TCODE SY
0 ISOCHRONOUS DATA
1 END_OF_PACKET_CONTROL_WORD

Field Name Bit
Positions

Description

START_OF_PACKET
CONTROL_WORD

31 - 0 FIFO start control word. Marks the start of a packet in the FIFO.
Contains control information that is set up by the DMA channel for use
by the 1394 transmitter logic. The bit field definitions for this control
word are specified in APPENDIX E on page 114

DATA LENGTH 31 - 16 Indicates the number of bytes in the ISO packet.
TAG 15 - 14 TBD
CHANNEL_NO 13 - 8 The channel number that this packet is being transmitted to.
TCODE 7 - 4 Transaction code = 1010
SY 3 - 0 Transaction layer specific synchronization bits
ISOCHRONOUS DATA The data to be transmitted in this packet. The first byte of data must

appear in byte 0 of the first quadlet of this field. If the last quadlet does
not contain four bytes of data, the unused bytes should be padded with
zeroes.

END_OF_PACKET
CONTROL_WORD

31 - 0 FIFO end control word. Marks the end of the packet in the FIFO.
Contains control information that is set up by the DMA channel for use
by the 1394 transmitter logic. The bit field definitions for this control
word are specified in APPENDIX E on page 114

ISOCHRONOUS RECEIVE FIFO PACKET FORMAT

Revision 0.10, March 28, 1996 114

11. APPENDIX E - FIFO CONTROL WORD AND TRANSMIT ACK
FORMATS

32 31 30 27 26 25 24 23 18 17 16 15 13 12 0
FCW PKTBD RCV_STAT RES RCV_SPD DMA_CH ISO SELF_ID RES PACKET_SIZE

Bit Field Function Description
FCW Control word specified. FCW = 1 indicates that bits 31 - 0 of the quadlet are to be

interpreted
 as a FIFO packet control word. The bit fields defined for this
control
 word shall only be valid when FCW = 1.

PKTBD Packet delimiter. PKTBD = 0 indicates start of packet
 PKTBD = 1 indicates end of packet

RCV_STAT Packet receive status. This field is valid when PKTBD = 1
 0001 - Packet was successfully received. If the packet was a request
 subaction, the destination node has successfully completed the transaction and
 no response subaction shall follow.
 1101 - The receiver could not accept the packet because a CRC error occurred or the
 length of the data block payload did not match the length contained in the data
 length field of the packet header

RCV_SPEED The speed at which the packet was received. 00 = 100 mbps 01 = 200 mbps.
This field valid when PKTBD= 0 and 1

DMA_CH The DMA channel number assigned to the packet. The value of this number shall be from
000000 to 111111. This field valid when PKTBD = 0 and 1

ISO ISO = 1 Isochronous Packet Type
SELF_ID SELF_ID = 1 indicates that this packet is a self_id packet
PACKET_SIZE The total size of the packet in bytes (header + data payload). This field valid when

PKTBD = 0 and 1

General Receive FIFO Isochronous Packet Control Token Format Definition

Revision 0.10, March 28, 1996 115

32 31 30 27 26 25 24 23 18 17 16 15 13 12 0
FCW PKTBD ACK_SENT RES RCV_SPD DMA_CH ISO SELF_ID RES PACKET_SIZE

 Bit Field Function Description
FCW Control word specified. FCW = 1 indicates that bits 31 - 0 of the quadlet are to be

interpreted
 as a FIFO packet control word. The bit fields defined for this
control
 word shall only be valid when FCW = 1.

PKTBD Packet delimiter. PKTBD = 0 indicates start of packet
 PKTBD = 1 indicates end of packet

ACK_SENT Packet receive status. This field is only valid when PKTBD = 1.
 0001 - Packet was successfully received. If the packet was a request
 subaction, the destination node has successfully completed the transaction and
 no response subaction shall follow.
 0010 - Ack Pending. Packet was successfully received. If the Packet was a request
 subaction, a subaction response will follow at a later time.
 0100 - The packet could not be accepted. The destination transaction layer may accept
 the packet on a retry X of the subaction.
 0101 - The packet could not be accepted. The destination transaction layer will accept
the
 packet when the node is not busy during the next occurrence of retry phase A.
 0110 - The packet could not be accepted. The destination transaction layer will accept
the
 packet when the node is not busy during the next occurrence of retry phase B.
 1101 - The receiver could not accept the packet because a CRC error occurred or the
 length of the data block payload did not match the length contained in the data
 length field of the packet header.
 1110 - A field in the request packet header was set to an unsupported or incorrect value,
 or an invalid transaction was attempted.

RCV_SPD The speed at which the packet is received at. 00 = 100 mbps 01 = 200 mbps.
This field valid for PKTBD = 0 and 1

DMA_CHANNE
L

The DMA channel number assigned to the packet. The value of this number shall be from
000000 to 111111. This field is valid when PKTBD = 0 and 1

ISO ISO = 0 Asynchronous Packet Type
SELF_ID SELF_ID = 1 This packet is a self id packet type
PACKET_SIZE The total size of the packet in bytes (header + data payload). This field valid for

PKTBD = 0 and 1

General Receive FIFO Asynchronous Packet Control Token Format Definition

Revision 0.10, March 28, 1996 116

32 31 30 29 28 27 26 25 24 - 0
FC
W

PKTBNDRY SPD_CODE MSTR_ER
R

RESERVE
D

UNFORMATTED
XMT

RESERVED

Bit Field Function Description
FCW Control word specified. FCW = 1 indicates that bits 31 - 0 of the quadlet are to be

interpreted
 as a FIFO packet control word. The bit fields defined for this
control
 word shall only be valid when FCW = 1.

PKTBNDRY Packet delimiter. PKTBNDRY = 00 indicates start of packet
 PKTBNDRY = 10 indicates end of packet
 PKTBNDRY = 11 indicates end of packet and the last packet to be
 transmitted for the current isochronous interval.

SPD_CODE Transmit speed code. SPD_CODE = 00 - 100mbps SPD_CODE = 01 - 200mbps
This field is valid for PKTBNDRY = 00

MSTR_ERR Master Error. Indicates if an error occurred during the transfer of the packet from host
memory to the Asynchronous transmit FIFO. Error occurred if set to 1.
 No error occurred if set to 0

UNFORMATTE
D
XMT

When set to logic 1, the transmitter shall transmit the data quadlets between the packet start
and end control tokens without performing the normal packet formatting checks and header-
data CRC insertions.

Isochronous Transmit FIFO Control Word Format

Revision 0.10, March 28, 1996 117

32 31 30 29 28 27 26 25 24 - 0
FC
W

PKTBNDRY SPD_CODE MSTR_ER
R

RT UNFORMATTE
D

XMT

RESERVED

Bit Field Function Description
FCW Control word specified. FCW = 1 indicates that bits 31 - 0 of the quadlet are to be

interpreted
 as a FIFO packet control word. The bit fields defined for this
control
 word shall only be valid when FCW = 1.

PKTBNDRY Packet delimiter. PKTBNDRY = 00 indicates start of packet
 PKTBNDRY = 10 indicates end of packet

SPD_CODE Transmit speed code. SPD_CODE = 00 - 100mbps SPD_CODE = 01 - 200mbps
This field is valid for PKTBNDRY = 00

RT Transmit Packet Retry
MSTR_ERR Master Error. Indicates if an error occurred during the transfer of the packet from host

memory to the Asynchronous transmit FIFO. Error occurred if set to 1.
 No error occurred if set to 0

UNFORMATTE
D
XMT

When set to logic 1, the transmitter shall transmit the data quadlets between the packet start
and end control tokens without performing the normal packet formatting checks and header-
data CRC insertions.

Asynchronous Transmit FIFO Control Word Format

Asynchronous Transmit Acknowledge Codes Returned to DMA channel After
an Asynchronous packet Transmission completes.

Revision 0.10, March 28, 1996 118

Acknowledge codes Returned To
Active Transmit DMA channel

ack3 ack2 ack1 ack0 ack_type Functional Description
 0 0 0 1 0 Ack_Complete- packet was successfully transmitted
 0 0 1 0 0 Ack_Pending- packet successfully transmitted but a response

transaction will follow at a later time
 0 1 0 0 0 Ack_busy_X Received- The receiving node could not accept the

packet. Retry the packet transmission using BUSY_X retry code.
 0 1 0 1 0 Ack_busy_A Received- The receiving node could not accept the

packet. Retry the packet transmission using BUSY_X retry code.
 0 1 1 0 0 Ack busy_B Received- The receiving node could not accept the

packet. Retry the packet transmission using BUSY_X retry code.
 1 1 0 1 0 Ack Data Error Received- The receiving node could not accept the

block packet because the data field CRC check failed, the number of
data bytes received did not match the data byte count of the packet.

 1 1 1 0 0 Ack Type Error Received- The receiving node detected a field in the
request packet header was set to an unsupported or incorrect value, or an
invalid transaction was attempted (e.g., a write to a read-only address).

 0 0 0 0 1 Retry time out- The current ASYNC packet transmission retry count
has timed out without a successful transmission occurring.

 0 0 0 1 1 No Ack Received- An ack was expected but not received within the
1394 gap time allowed.

 0 0 1 0 1 Transmit FIFO Underrun- The entire packet was not transmitted
because the PCI bus was not able to keep up with the 1394 bus.

 1 1 1 0 1 Improper Packet Format- Packet was not transmitted because of a
malformed header.

Revision 0.10, March 28, 1996 119

12. APPENDIX F - Program Control List (PCL) Examples

12.1 APPENDIX F.1 - TRANSFER “AT ADDRESS” PROGRAM

The LYNX PCL can be coded such that the payload data is transferred to the host address contained in the 1394
packet header address field. This is accomplished by simply transferring the header quadlet containing the
address into its own PCL such to modify the data buffer address for the payload data.

For example:

Next PCL Address
Error Exit Next PCL Address
Reserved
Reserved
Reserved
cntl/xfr count
header address 1
cntl/xfr count
header address 2
cntl/xfr count
header address 3
cntl/xfr count
Payload Address (over written)

12.2 APPENDIX F.2 - TRANSFER “CONTIGUOUS VIRTUAL MEMORY” PROGRAM

 Transfer payload to address loaded from header

 Last part of header

 transfer 1 quadlet to the Payload Address

 First part of header

PCL

Revision 0.10, March 28, 1996 120

13. APPENDIX G - SERIAL EEPROM ADDRESS MAP

The PCI LYNX loads certain internal configuration registers from serial EEPROM immediately after power reset.
During the time the registers are being loaded, any PCI slave access to the PCI LYNX will be terminate with a
retry disconnect. This ensures that the system software will always read the values loaded from Serial EEPROM
whenever the PCI LYNX is first accessed.

The first 8 bytes of the Serial EEPROM address space are reserved for use by the PCI LYNX after power reset.
These bytes are loaded into internal registers by the PCI LYNX are described in the following table. All remaining
bytes in the Serial EEPROM are available for software to read and write via the Serial EEPROM Control Register.
These bytes might be used for information such as 1394 unique ID, assembly part number, manufacture,
assembly revision information, manufacturing data, etc. The size of the Serial EEPROM address space depends
on which serial EEPROM device is selected to be used with the PCI LYNX.

Byte Adr Byte Description
00 PCI max_lat (Configuration Reg 3F)
01 PCI min_gnt (Configuration Reg 3E)
02 Local Bus Control Register - ROM Control (Configuration Reg

B0)
03 PCI SubSystem Vendor ID (lsbyte) (Configuration Reg 2C)
04 PCI SubSystem Vendor ID (msbyte) (Configuration Reg 2D)
05 PCI SubSystem ID (lsbyte) (Configuration Reg 2E)
06 PCI SubSystem ID (ms byte) (Configuration Reg 2F)
07 Checksum (bytes 0-6)
08 User Defined
09 .
10 .
. .
. .

255 User Defined

Table 1 - Serial EEPROM Address Map

