
- , , ,

Zilog '\) ,
I

June 1988

Z8® Family
Design Handbook

, 2!ileg: "', "'.' ~", " , .
'u ~ " ~.." ' 1 : ~ .~

June 1988

Z8® Family
Design Handbook

INTRODUCTION

Zilog was founded in 1974, and within its first year
brought to market the most popular and best selling
microprocessor in the world, the Z80 8~bit
microprocessor.

With the unparalleled success of the Z80 CPU, the
name Zilog became synonomous with quality, design
integrity, and complete company support elements that
remain integral to Zilog today.

Headquartered in Campbell, California, Zilog draws
upon the services and skills of the most talented high
technology minds in the industry. Zilog's Nampa, Idaho
manufacturing facility, and assembly plant in the
Philippines are the best of their size today. They provide
Zilog customers with a total solution, from engineering,
to production, to worldwide on-time delivery of the
growing family of Zilog microprocessor and peripheral
products.

Z8 Family Design Handbook

Table of Contents

Z8 NMOS MCU Microcomputers

Z8600
Z8601111

Z8603/13
Z8671
Z8681 182
Z8691

MCU 2K 28-pin
MCU 2K!4K

MCU Protopak 2K!4K
MCU with Basic/Debug Interpreter
MCU ROMless
MCU ROMless

Z8 CMOS MCU Microcomputers

Z86C08
Z86COO/C10/C20
Z86C11/E11
Z86C21 IZ86E21 IC 12
Z86C91

MCU 2K 18-pin
MCU 4K8K 28-pin
MCU4K
MCU 8K!OTP (One lime Programmable MCU)
MCU ROMless

Z8 Application Notes and Technical Articles

Memory Space and Register Organization App Note
A Programmer's Guide to the Z8 MCU
Z8 Subroutine Ubrary

A Comparison of MCU Units
Z86xx Interrupt Request Registers
Z8 Family Framing

Z8 MCU Technical Manual

Super8 MCU Microcomputer

Z8800/01
Z8820
Z8822

MCU ROM less
MCU8K
MCU 8K Protopak

Super8 Application Notes and Technical Articles

Getting Started with the Zilog SuperS
Polled Asynchronous Serial Operation with the SuperS
Using the Super8 Interrupt Driven Communications
Using the SuperS Serial Port with DMA
Generating Sine Waves with Super8
Generating DTMF Tones with Super8
A Simple Serial Parallel Converter Using the Super8

Page

13
30
50
71

89
105
117
134
153

171
173
198
248
261
262

264

403
403
403

434
438
443
448
453
458
462

SuperS Technical Manual

Military Electrical Specifications

Z8611
Z8~81

MCU4K
MCU ROMless

Packaging Information

Ordering Information

470

609
632

645

651

FEATURES

[J Complete microcomputer, 2K bytes of ROM, 128 bytes of
RAM, and 221/0 lines.

o 144-byte register file, including 124 general-purpose
registers, four I/O port registers, and 14 status and
control registers.

o Vectored, priority interrupts for I/O and counter/timers.

o Two programmable 8-bit counter/timers, each with a 6-bit
programmable prescaler.

GENERAL DESC~IPTION

The Z8600 microcomputer introduces a new level of
sophistication to single-chip architecture. Compared to
earlier single-chip microcomputers, the Z8600 offers:

o faster execution

o more efficient use of memory

o more sophisticated interrupt, input/output, and bit
manipulation capabilities

TIMING (~ RESET +5V-
AND os -I CONTROL XTALl

~~.{~
CLOCr(

po. XTAL2

po,
po, PORT 3
po,

Z8S00
po. MCU
po.

~mm
P2,

P2,

P2,
PORTf

Pl.

P2. Pl.
P2. Pl, --<H> GND P17

Figure 1. Pin Functions

~$$@@~~®

lrviHi©ll'®©®!m!ln»uuft@!I

June 1937

o Register Pointer so that short, fast instructions can
access anyone of the nine working register groups.

o On-chip oscillator that accepts crystal or external
clade drive.

o 8MHz

o Single + 5 power supply-all pins TTL-compatible.

o Average instruction execution time of 2.2 !!S.
minimum 1.5 !!S.

o easier system expansion

Under progr~m control, the MCU can be tailored to the
needs of its user. It can be configured as a stand-alone
microcomputer with 2K bytes of internal ROM. In all
configurations, a large number of pins remain available for
110.

The MCU is offered in a28 pin Dual-In-Line-Package (DIP)
(Figures 1 and 2).

+5V P3,

XTAL2 P3,

XTALl P2.

RESET P2.

os P2,

P3. P2,

GND P2,

po. P17

PO, Pl,

PO, Pl.

PO, Pl.

PO • Pl,

PO. Pl,

Pl. Pl,

Figure 2. Pin Assignments

PIN DESCRIPTIONS

OS. Data Strobe (output. active Low). Data Strobe is
activated once for each memory transfer.

POo·POs• P10·P17. P21·P2S. P310 P3S. P36' liD Port lines
(bidirectional. TTL-compatible). These 22 110 lines are
grouped in four ports that can be configured under program
control for 1/0.

ARCHITECTURE

The MCU's architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure.
and a number of ancillary features that are helpful in many
applications. (Figure 3).

Microcomputer applications demand powerful I/O
capabilities. The MCU fulfills this with 22 pins dedicated to
input and output. These lines are grouped in four ports and
are configurable under software control to provide timing,
status signals, and parallel I/O.

110
(BIT PROGRAMMABLE)

RESET. Reset (input. active Low). RESET initializes the
MCU. When RESET is deactivated. program execution
begins from internal program location OOOCH.

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect a parallel-resonant 8 MHz
crystal to the on-chip clock oscillator and buffer.

Two basic internal address spaces are available to support
this wide range of configurations: program memory and the
register file. The 144-byte random-access register file is
composed of 124 general-purpose registers. four I/O port
registers, and 14 control and status registers.

To unburden the program from coping with real-time
problems such as counting/timing, two counter/timers with
a large number of user-selectable modes are offered
on-chip.

I/O 110
(BYTE PROGRAMMABLE)

Figure 3. Functional Block Diagram

2

ADDRESS SPACES

Program Memory. The 16-bit program counter addresses
2K bytes of program memory space as shown in Figure 4.

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain three 16-bit
vectors that correspond to the three available interrupts.

Register File. The 144-byte register file includes four I/O
port registers (Ro-R3), 124 general-purpose registers
(R4-R127) and 14 control and status'registers (R241-R255)'
These registers are assigned the address locations shown in
Figure 5.

2047

Instructions can access registers directly or indirectly with
an 8-bit address field. The MCU also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). In the 4-bit mode, the register file is
divided into nine working-register groups, each occupying
16 contiguous locations (Figure 6). The Register Pointer
addresses the starting location of the active working-register
group.

Stacks. An 8-bit Stack Pointer (R255) is used for the internal
stack that resides within the 124 general-purpose registers
(R4-R127)' .

ON·CHIP

LOCATION

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

127

·1

o

LOCATION OF
FIRST BYTE OF
INSTRUCTION

EXECUTED
AFTER RESET

INTERRUPT
VECTOR

(LOWEll BYTE)

INTERRUPT
VECTOR

(UPPER BYTE)

STACK POINTER (BITS 7-0)

RESERVED

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRES CALER

TIMER/COUNTER 1

TIMER MODE

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORTO

Figure 5. Register File

ROM

~ ~------------
11 IRQ5

10 IRQ5

9 IRQ4

8 IRQ4

7 RESERVED

8 RESERVED

5 "'.
IRQ2

4~ IRQ2·

3 RESERVED

2 RESERVED

1 RESERVED

0 RESERVED

Figure 4. Program Memory Map

IDENTIFIERS

SPL

RP

FLAGS

IMR

IRQ

IPR

POIM

P3M

P2M

PREO

TO

PREI

Tl

TMR

P3

P2

PI

PO

- ... {;,..;...;...;......L.._;........;..;.... 253

THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS
PROVIDED BY THE REGISTER POINTER SPECIFIES
THE ACTIVE WORKING-REGISTER GROUP.

--.

--.

--.

-,.

--.

--.

- ...

1 27

SPECIFIED WORKING·
REGISTER GROUP -!--

THE LOWER
NIBBLE OF
THE REGISTER
FILE ADDRESS
PROVIDED BY
THE INSTRUCTION
POINTS TO THE
SPECIFIED
REGISTER.

15

r---"i/OPORTs----- 3

Figure 6. Register Pointer

3

COUNTER/TIMERS

The MCU contains two a-bit programmable counter/timers
(To and T1), each driven by its own 6-bit programmable
prescaler. The T1 presca,ler can be driven by internal or
external clock sources; however, the To prescaler is driven
by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request-IR04 (To) or
IR05 (T1)-is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the'initial value. The counters can also be
programmed to stop upon reaching zero (single-pass

I/O PORTS

The MCU has 22 lines dedicated to input and output
grouped in four ports, Under software control, the ports can
be programmed to provide address outputs, timing, status
signals, and parallel I/O. All ports have active pull-ups and
pull-downs compatible with TIL loads.

Port 0 can be programmed as an 110 port.

Port 1 can be programmed as a byte 110 port.

INTERRUPTS

The MCU allows three different interrupts from three
sources, the Port 3 line P31 and the two counter/timers.
These interrupts are both. maskable and prioritized. The
Interrupt Mask register globally or individually enables or
disables the three interrupt requests. When more than one
interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All interrupts are vectored. When an interrupt request is
granted, an interrupt machine cycle is entered. This disables

CLOCK

The on-chip oscillator has a high-gain parallel-resonant
amplifier for connection to· a crystal or to any suitable
external clock source (XTAL 1 = Input, XTAL2 = Output).

Crystal source is connected across XTAL 1 and XTAL2 using
the recommended capacitors (C1 ~ 15 pf) from each pin to
ground. The specifications are as follows:

4

mode) or to automatically reload the initial value and
continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T 1 is user-definable and can be the
internal microprocessor clock (4 MHz maximum) divided by
four, or an external signal input via Port 3, The Timer Mode
register configures the external timer input as an external
clock (1 MHz maximum), a' trigger input that can be
retriggerable or non-retriggerable, or as a gate input for the
internal clock, The counter/timers can be programmably
cascaded by connecting the To output to the input of T1.
Port 3 line P36 also serves as a timer output (TOUT) through
which To, T 1 or the internal clock can be output.

Port 2 can be programmed independently as input or
output and is always available for I/O operations. In addition,
Port 2 can be configured to provide open'drain outputs.

Port 3 can be configured as 110 or control lines. P31 is a
general purpose input or can be used for an external
interrupt request signal (IR02)' P35 and P36 are general
purpose outputs. P36 is also used for timer input (TIN) and
output (TOUT) signals.

all subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory vector
locations reserved for that interrupt. This memory location
and the next byte contain the 16-bit address of the interrupt
service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accom­
modate a polled structure, any or all of the interrupt inputs
can be masked and the Interrupt Request register polled to
determine which of the interrupt requests needs service.

m AT cut, parallel resonant

III Fundamental type, a MHz maximum

III Series resistance, Rs ~ 10011

INSTRUCTION seT NOTATION

Addressing Modes. The fol/owing notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Irr Indirect working-register pair only
)(Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The fol/owing symbols are used in describing the
instruction set.

dst
src
cc
@

Destination location or contents
Source location or contents
Condition code (see list)
I ndirect address prefix

SP
PC
FLAGS
RP
IMR

Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

CONDITION CODES

Value Mnemonic

1000 Always true

0111 C Carry

1111 NC No carry

0110 Z Zero

1110 NZ Not zero

1101 PL Plus

0101 MI Minus

0100 OV Overflow
1100 NOV No overflow
0110 EQ Equal

1110 NE Not equal

Assignment of a value is indicated by the symbol "-': For
example,

dst - dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "n" of a given
location. For example,

dst (7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the fol/owing six
flags:

C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag

Affected flags are indicated by:

o Cleared to zero
1 Setto one
* Set or cleared according to operation

Unaffected
}(Undefined

Meaning Flags Set

C = 1

C=O

Z = 1

Z=O

S=O

S = 1

V = 1

V=O

Z = 1

Z=O

1001 GE Greater than or equal (S XOR V) = 0

0001 LT Less than (SXOR V) = 1

1010 GT Greater than [Z OR (SXOR V)] = 0

0010 LE Less than or equal [Z OR (S XOR V)] = 1

1111 UGE Unsigned greater than or equal C=O

0111 ULT Unsigned less than C=1

1011 UGT Unsigned greater than (C = OANDZ = 0) = 1

0011 ULE Unsigned less than or equal (CORZ) = 1

0000 Never true

5

INSTRUCTION FORMATS

OPC MODE

dstlsrc OR 11 1 1 01 dsllsre 1

OPC

lOR 11 1 101 dst dst

OPC
VALUE

OPC MODE
dst sre

dst/src OPC
src/dst OR 11 1 1 01 sre

dsl I OPC
VALUE

I dsUCC R~ OPC

OPC

dst OPC

CCF, DI, EI, IRET, NOP,
RCF, RET, SCF

INCr

One-Byte Instructions

CLR, CPL, DA, DEC,
DECW,INC,INCW, POP,
PUSH, RL, RLC, RR,
RRC, SRA, SWAP

OPC MODE ADC,ADD, AND, CP,

sre OR 1 1 1 0 sre LD, OR, SBC, SUB,

dst OR 1 1 1 0
TCM, TM, XOR

dst

JP, CALL (Indirect)

OPC MODE ADC, ADD, AND, cp,

SRP

dst ORj11101 dst LD, OR, SBC, SUB,

VALUE
TCM, TM, XOR

MODE OPC LD

ADC, ADD, AND,
CP, OR, SBC, SUB,

src OR r:-:....:...+..;::..:'--l
dst OR L!....:'--'-"-L.~'--I

TeM, TM, XOR

LD
LD, LDC, LDCI

LD
ee OPC JP

DAu
DAL

LD

CALL

DJNZ, JR

Two-Byte Instructions Three-Byte Instructions

Figure 7. Instruction Formats

INSTRUCTION SUMMARY

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte Instruction Byte
and Operation ' dst src (Hex) C ZS V 0 H and Operation dst src (Hex) CZSVDH

ADCdst,src (Note 1) 10 * * * * 0 * CP dst,src (Note 1) AD * * * *--
dst - dst + src + C dst - src

ADDdst,src (Note 1) 00 * * * * o * DAdst R 40 * *.* X--
dst - dst + src dst-OAdst IR 41

AND dst,src (Note 1) 50 -** 0-- DECdst R 00 -***--
dst - dstANOsrc dst-dst - 1 IR 01

CALLdst OA 06 ------ DECWdst RR 80 -***--
SP-SP - 2 IRR 04 dst - dst - 1 IR 81
@SP - PC; PC - dst

01
CCF EF *---;--- IMR(7)-0 8F ------
C-NOTC

DJNZr,dst RA rA ------
CLRdst R BO ------ r- r - 1 r = 0 - F
dst-O IR B1 if r;lo 0

COMdst R 60 -**0--
PC-PC + dst

dst NOT dst IR 61
Range: +127, -128

6

INSTRUCTION SUMMARY (Continued)

Instruction
and Operation

Addr Mode Opcode Flags Affected
Byte

dst src (Hex) C Z S V 0 H

EI
IMR(7)+-1

INCdst
dst+-dst + 1

INCWdst
dst +-dst + 1

R
IR

RR
IR

9F

rE - 1: 1: 1: --

r=O-F
20
21

AD - '" 1: 1: --

A1

IRET SF '* '" '* '* 1: '" FLAGS +- @SP; SP +- SP + 1
PC +-@SP; SP +- SP + 2; IMR (7) +-1

JPee,dst
ifee is true

PC +- dst

JRee,dst
if ee is true,

PC-PC + dst
Range: + 127, -128

LO dst,sre
dst-sre

LOCdst,sre
dst ""'sre

LOCI dst,sre
dst-sre
r+-r + 1; rr+-rr + 1

NOP

ORdst,sre
dst +- dst OR sre

DA

IRR

RA

r
R

r
X
r
Ir
R
R
R
IR
IR

r
Irr

Ir
Irr

1m
R

X
r
Ir
r
R
IR
1M
1M
R

Irr

Irr'
Ir

(Note 1)

POPdst R
dst +- @SP; IR
SP SP + 1

PUSHsre R
SP +- SP - 1; @SP +- sre IR

RCF
C+-O

RET
PC +- @SP; SP +- SP + 2

eD
e:'O-F

30

eS
e=O-F

rC
r8
r9

r = 0 - F
C7
D7
E3
F3
E4
E5
E6
E7
F5

C2
D2

C3
D3

FF

40

50

70
71

CF

AF

0-----

Instruction
and Operation

Addr Mode Opcode Flags Affected
Byte

dst src (Hex) C Z S V 0 H

RLdst r==I R
0~IR

RLC dst LE:J+E:iIJ R
c , 0 IR

RR dst LEI LE:3J R
C , 0 IR

RRC dst If:ri=!i:3J R
C , 0 IR

SBC dst,sre (Note 1)
dst +- dst +- sre +- C

90
91

10
11

EO
E1

CO
C1

3D

'" '" '" '"

SCF
C+-1

DF 1-----

SRA dst Lci] @J R
C , 0 IR

SRPsre
RP +-sre

SUBdst,sre
dst +- dst +- sre

1m

(Note 1)

SWAPdst S R
I, " oliR

TCM dst,sre
(NOT dst) AND sre

TM dst,sre
dstANDsre

XORdst,sre
dst +- dst XOR sre

(Note 1)

(Note 1)

(Note 1)

DO
D1

31

20

FO
F1

60

70

SO

'It '" '" 0

NOTE 1: These instructions have an identical set of addressing modes,
which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
symbolically by a 0 in this table, and its value is found in the
following table to the right of the applicable addressing mode
pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.

AddrMode

dst src

R

R

R

IR

Ir

R

IR

1M

1M

Lower
Opcode Nibble

7

REGISTERS (Continued)

R248 P01M
PORT 0 AND 1 MODE REGISTER

(F8H; Write Only)

PO'.PD'MODE~· ~-r POo.PO, MODE
OUTPUT"" 00 --.J L 00 = OUTPUT

INPUT = 01 01 = INPUT

RESERVED S~A:~N;i~~C:{ON

P10·P17MODE
00 = BYTE OUTPUT
01 = BYTe INPUT
11 = HIGH·IMPEDANCE os

R2491PR
INTERRUPT PRIORITY REGISTER

(F9H; Write Only)

I~I~I~I~I~I~I~I~I

"~"'. ~ I I III". TERRUPT GROUP PRIORITY RESERVED = 000
452 = 001

DON'T CARE 524 :: 010
542 = 011
245 = 100

DON'TeARE 425:: 101
254=110

DON'T CARE RESERVED = 111

R250lRQ
INTERRUPT REQUEST REGISTER

(FAH; Read/Write)

I~I~I~I~I~I~I~I~I

RESERVED =r c= IRQ2 = P3,INPUT (02 = IROS)
IRO'4 = To
lAOS == T,

R2511MR
INTERRUPT MASK REGISTER

(FBH; Read/Write)

I~I~I~I~I~I~I~I~I

II c= 1 ENABLES IROo-IROs
(00 = IROO)

'-------RESERVED

'--------1 ENABLES INTERRUPTS

REGISTER
POINTER

Figure 8. Control Registers (Continued)

8

R252 FLAGS
FLAG REGISTER
(FCH; Read/Write)

E~l§llli
LUSERFLAGF1 .

LUSER FLAG F2

HALF CARRY FLAG

DECIMAL ADJUST FLAG

OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY flAG

R253 RP
REGISTER POINTER

(FDH; Read/Write)

R255SPL
STACK POINTER
(FFH; Read/Write)

I~I~I~I~I~I~I~I~I

~I ____ ~~~~~s~~~~:~R LOWER

OPCODEMAP
Lower Nibble (Hex)

3 4 7 8 9 A B C o E F

6.5 6.5 6.5 6,5 10,5 10.5 10,5 10.5 6,5 6,5 '2/10,5 12/10.0 6,5 12/10.0 6,5
o DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC

R, IR, (1"2 '1. lr2 R2·R, IR2,R, R"IM IR"IM rl,R2 r2. Rl r,.RA cc.RA r"IM ccDA rl
-

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
RLC RLC ADC ADC ADC ADC ADC ADC
R, IR, '1,(2 '1, lr2 R2,R, IR2,R, R"IM IR"IM

-
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5

2 INC INC SUB SUB SUB SUB SUB SUB
R, IR, '1,(2 '1, lr2 R2,R, IR2,R, R"IM IR"IM

-
8,0 6,1 6,5 6,5 10,5 10,5 10.5 10,5
JP SRP SBC SBC SBC SBC SBC SBC

IRR, 1M '1,r2 '1, lt2 R2.R, IR2,R, R"IM IR"IM
-

8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5
4 DA DA OR OR OR OR OR OR

R, IR, '1,(2 '1, lr2 R2,R, IR2,Rl R"IM IR1,IM
~

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5
5 POP POP AND AND AND AND AND AND

R, IR, '1,'2 '1, lr2 R2,R, IR2,R, R"IM IR"IM
-

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
6 COM COM TCM TCM TCM TCM TCM TCM

R, IR, '1,(2 '1, lr2 R2,Rl IR2,R, R"IM IR1,IM
-

10/12,1 12/14,1 6,5 6,5 10,5 10,5 10,5 10,5
PUSH PUSH TM TM TM TM TM TM

i e 7
R2 IR2 '1,'2 '1, lr2 R2,R, IR2,R, R"IM IR"IM " :;;

10,5 10,5 -----e:1
.c
Z

DECW DECW DI
RR, IRI

t 8 c.
c.

:::> -
6,5 6,5 6.1

9 RL RL EI
Rl IR,

-
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 14.0

A INCW INCW CP CP CP CP CP CP RET
RR, IR, '1,(2 '1. lr2 R2,Rl IR2,R, R"IM IR"IN!

-
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 16.0

B CLR CLR XOR XOR XOR XOR XOR XOR IRET
R, IRI '1,{2 '1, lr2 R2,Rl IR2,Rl R"IM IR"IM

6,5 6,5 12,0 18,0 10,5
r----

6,5
C RRC RRC LDC LOCI LD RCF

R, IR, '1, lrr2 Ir1,lrr2 rj,x,R2
I---

6,5 6,5 12,0 18,0 20,0 20,0 10,5 6.5
0 SRA SRA LDC LOCI CALL' CALL LD SCF

R, IR, '2, lrr1 Ir2.lrr1 IRRI DA '2,x,Rl

6,5 6,5 6,5 10,5 10,5 10,5 10,5
I---

6.5
E RR RR LD LD LD LD LD CCF

R, IR, rl, IR2 R2,Rl IR2,R, R"IM IR"IM

8.5
I---

8,5 6,5 10,5 6.0
F SWAP SWAP LD LD NOP

R, IRI Irl,r2 R2,IR,

'-... ----..... v ----J'-... ----... v ----J'-... -----... v ... -..;....~--..... #~~
2

EXECUTION
CYCLES

FIRST
OPERAND

LOWER
OPCODE
NllLE

*2-byte instruction; fetch cycle appears as a 3-byte instruction

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

2 3

Legend:
R = 8-bi' address
r = 4-bit address
Rt or'1 = Dst address
R2 or'2 = Src address

Sequence:
Opcode, First Operand, Second Operand

NOTE: The blank areas are not defined.

9

REGISTERS

R241 TMR
TIMER MODE REGISTER

(F1 H; Read/Write)

To", MODES j US~o = NO FUNCTION NOT USED = 00 -.J 1 = LOAD To

. ~o g~~ : ~~ 0 = DISABLE To COUNT
INTERNAL CLocK OUT = 11 1 = ENABLE To COUNT

T MODES 0 = NO FUNCTION
EXTERNAL CLOCK IN~OT = 00 1 = LOAD Tl

GATE INPUT", 01 0 = DISABLE T, COUNT
TRIGGER INPUT", 10 1 = ENABLE 11 COUNT

(NON·RETRIGGERABLE)
TRIGGER INPUT = 11

(RETRIGGERABlE)

R242 T1
COUNTER TIMER 1 REGISTER

(F2H; Read/Write)

R243 PRE1
PRESCALER 1 REGISTER

(F3H; Write Only)

I D, I D,I D, I D.I D, I D, I D, I D, I

~LcaUNTMaDE
o = T\ SINGLE·PASS
1 =,11 MODUlO·N

CLOCK SOURCE
1 '" Tl INTERNAL

.
0 '" T 1 EXTERNAL TIMING INPUT

(TIN) MODE

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
COUNTER/TIMER 0 REGISTER

(F4H; Read/Write)

Tn INITIAL VALUE (WHEN WRITTEN)
'-----(RANGE: 1 256 DECIMAL 01 00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
PRESCALER 0 REGISTER

(F5H; Write Only)

~LcaUNTMaDE
o '" To SINGLE·PASS
1 = To MODULO·N

RESERVED

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246P2M
PORT 2 MODE REGISTER

(F6H; Write Only)

P21·P2S DEFINITION
'----- 0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247P3M
PORT 3 MODE REGISTER

(F7H; Write Only)

~~~ 
opaRT2 PULL·UPsaPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

RESERVED 

RESERVED 

RESERVED 

o P3l = INPUT (TIN) P36", OUTPUT (Tour> 

RESERVED 

'--------- RESERVED 

Figure 8. Control Registers 

10 



AC CHARACTERISTICS 
Timing Table 

Number Symbol 

1 TpC 

2 TrC,TIC 

3 TwC 

4 TwTinL 

5 TwTinH 

6 TpTin 

7 TrTin,TfTin 

S TwlL 

9 TwlH 

NarES: 

Figure 9. Timing 

Parameter 

Input Clock Period 

Clock Input Rise and Fall Times 

Input Clock Width 

Timer Input Low Width 

Timer Input High Width 

Timer Input Period 

Timer Input Rise and Fall Times 

Interrupt Request Input Low Time 

Interrupt Request Input High Time 

1. Clock timing references use 3.BVfor a logic "1" and O.BV for a logic "0': 
2. Timing references use 2.0Vfor a logic "1" and O.BV for a logic "a': 
3. Interrupt request via Port 3 (P31-P33)' 
• Units in nanoseconds (ns). 

,Z8600 
Min Max 

125 1000 

25 

37 

100 

3TpC 

STpC 

100 

100 

3TpC 

Notes· 

2 

2 

2 

2 

2,3 

2.3 

11 



ABSOLUTE MAXIMUM RATINGS 

Voltages on all pins with respect 
toGND ..... , .................... -0.3Vto +7.0V 

Operating Ambient 
Temperature .............. See Ordering Information 

Storage Temperature .............. - 65°C to + 150°C 

STANDARD TEST CONDITIONS 
I 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are: 

• +4.75V~Vee~ +5.25V 

• GND = OV 

DC CHARACTERISTICS 

Symbol Parameter Min 

VeH Clock Input High Voltage 3.8 

Vel Clock Input Low Voltage -0.3 

VIH Input High Voltage 2.0 

Vil I nput Low Voltage -0.3 

VRH Reset Input High Voltage 3.8 

VRl Reset Input Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 

III Input Leakage -10 

IOH Output Drive Current 

IOl Output Leakage -10 

IIR Reset Input Current 

lee Vee Supply Current 

12 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect . 
device reliability. 

+5V 

2.1K 

Figure 10. Test Load 1 

Max Unit Condition 

Vee V Driven by External Clock Generator 

0.8 V Driven by External Clock Generator 

Vee V 

0.8 V 

Vee V 

0.8 V 

V IOH = -250,..A 

0.4 V IOL = +2.0mA 

10 ,..A OV ~ VIN ~ + 5.25V 

1.5 rnA VOH = +2.4V 
2.50 ~A VOH = +4.0V 

10 ,..A OV ~ VIN ~ + 5.25V 

-50 ,..A Vee = + 5. 25V, VRl = OV 

150 mA 



~ ~,~ ., < ~ II' '" 'l' ' ". f 'X ,H __ " ~ }'" V' , • - "'" :'''~ ~ ~."'. ""~!"! 'tN' , , JI "'1'0 /, ".u, ~ '" \ 

Zilo, " . . '.prbdu'~t s,,~Cifica~ion .••...•. '. ':;:", 
, , ' 

June 1987 

Features 

General 
Description 

2037-001. 002 

I , "; 'I.; 

Z8601/Z8603 
Z86111Z8613 Z8® 

I!II Complete microcomputer, 2K (8601) or 4K 
(8611) bytes of ROM, 128 bytes of RAM, 32 
I/O lines, and up to 62K (8601) or 60K (8611) 
bytes addressable external space each for 
program and data memory. 

!lD 144-byte register file, including 124 general­
purpose registers,Jour I/O port registers, 
and 16 status and control registers. 

II!l Average instruction execution time of 1.5 /LS, 
maximum of 1 /LS. 

II Vectored, priority interrupts for I/O, 
counter/timers, and UART. 

The 28 microcomputer introduces a new level 
of sophistication to single-chip architecture. 
Compared to earlier single-chip micro­
computers, the 28 offers faster execution; more 
efficient use of memory; more sophisticated 
interrupt, input/output and bit-manipulation 
capabilities; and easier system expansion. 

Under program control, the 28 can be tailored 
to the needs of its user. It can be configured as a 

PORTO 
(NIBBLE 

PROGRAMMABLE) 
I/O OR Aa-A15 

PORT 1 
(BYTE 

PROGRAMMABLE) 
110 OR AD,-AD, 

PORT 3 
SERIAL AND 
PARALLEL 110 
AND CONTROL 

2860l Single-Chip MCU with 2K ROM 
28603 Prototyping Device with 2K EPROM Interface 
28611 Single-Chip MCU with 4K ROM . 
28613 Prototyping Device with 4K EPROM Interface 

iii Full-duplex UART and two programmable 
8-bit counter/timers, each with a 6-bit 
programmable prescaler. 

Il:l Register Pointer so that short, fast instruc­
tions can access any of nine working register 
groups in 1 /LS. 

tllI On-chip oscillator which accepts crystal or 
external clock drive. 

I!] Single + 5 V power supply-all pins TTL 
compatible. 

1:'1 12.5 MHz. 

stand-alone microcomputer with 2K or 4K bytes 
of internal ROM, a traditional-microprocessor 
that manages up to 124K bytes of external 
memory, or a parallel-processing element in a 
system with other processors and peripheral 
controllers linked by the 2-BUS® bus. In all 
configurations, a large number of pins remain 
available for I/O. 

+5V P3, 

XTAL2 P3, 

XTAl1 P2, 

P3, P2, 

P3, P2s 
RESET P2, 

RIW P2, 

os P2, 

AS P2, 

P3s P20 

GND P3, 

P3, P3, 

PO, P1, 

PO, P1. 

PO, P1, 

PO, P1, 

PO, P1, 

POs P1, 

PO, P1, 

PO, P1, 

Figure 2a. 40-pin Dual-In-Line Pacl,age (DIP). 
Pin Assignments 

13 



Pin 
Description 

14 

AS. Address Strobe (output, active Low). 
Address Strobe is pulsed once at the begin­
ning of each machine cycle. Addresses output 
via Port 1 for all external program or data 
memory transfers are valid at the trailing edge 
of AS. Under program control, AS can be 
placed in the high-impedance state along with 
Ports 0 and 1, Data Strobe and Read/Write. 

OS. Data Strobe (output, active Low). Data 
Strobe is activated once for each external 
memory transfer. 

POO-P07' PIo-PI7' P2o-P27' P30-P37. IIOPort 
Lines (input/outputs, TTL-compatible). These 
32 lines are divided into four 8-bit I/O ports 
that can be configured under program control 
for I/O or external memory interface. 

RESET. Reset (input, active Low). RESET ini­
tializes the Z8. When RESET is deactivated, 

program execution begins from internal 
program location OOOCH. 

ROMIess. (input, active LOW). This pin is only 
available on the 44 pin versions of the Z8601 and 
Z8611. When connected to GND disables the 
internal ROM and forces the part to function as a 
Z8681 ROMless Z8. When left unconnected or 
pulled high to Vee the part will function 
normally as a Z8601 or Z8611. 

R/W. Read/Write (output). R/W is Low when 
the Z8 is writing to external program or data 
memory. 

XTALl. XTAL2. Crystall, Crystal2 (time-base 
input and output). These pins connect a parallel 
resonant 12.5 MHz crystal or an external single­
phase 12.5 MHz clock to the on-chip clock 
oscillator and buffer. 

~ ... '::!!.-t), 

~CJ q"~<l"'.¢"'.¢"':if' q"~'l"''l''''<l''~'l'''~ 

RESET 7 

RrW 8 

os 9 

AS 10 

P3s 11 

GND 12 

P3, 13 

PO. 14 

PO, 15 

PO, 16 

ROMless 17 

6 5 4 3 2 t « ~ ~ ~ ~ 

Z8601/11 
MCU 

18 19 20 21 22 23 24 25 26 27 28 

qt:,~ q~::l" q0ft, qO'O q({\q"f:J <I. ...... q ........ q ... ~ ~l ... "" ~CJ 

39 NC 

38 P2. 

37 P2, 

36 P2, 

35 P2, 

34 P2. 

33 P3, 

32 P3. 

31 P17 

30 Pl. 

29 PIs 

Figure 2b. 44-pin Chip Carrier. Pin Assignments 

2037·002 



Architecture 28 architecture is characterized by a flexible Three basic address spaces are available to 
support this wide range of configurations: 
program memory (internal and external), data 
memory (external) and the register file (inter­
nal). The 144-byte random-access register file 
is composed of 124 general-purpose registers, 
four I/O port registers, and 16 control and 
status registers. 

2037-003 

I/O scheme, an efficient register and address 
space structure and a number of ancillary 
features that are helpful in many applications. 

Microcomputer applications demand power­
ful I/O capabilities. The 28 fulfills this with 32 
pins dedicated to input and output. These lines 
are grouped into four ports of eight lines each 
and are configurable under software control to 
provide timing, status signals, serial or parallel 
I/O with or without handshake, and an address/ 
data bus for interfacing external memory. 

Because the multiplexed address/data bus is 
merged with the I/O-oriented ports, the 28 can 
assume many different memory and I/O con­
figurations. These configurations range from 
a self-contained microcomputer to a micropro­
cessor that can address 124K (28601) or 120K 
(28611) bytes of external memory. 

OUTPUT 

To unburden the program from coping with 
real-time problems such as serial data com­
munication and counting/timing, an asynchro­
nous receiver/transmitter (UART) and two 
counter/timers with a large number of userse­
lectable modes are offered on-chip. Hardware 
support for the UART is minimized because one 
of the on-chip timers supplies the bit rate. 

XTAL AS 

2048 x 8·BIT 
28611 

} 
Z8601 

r...._-::=:~_..11 4096 x 8·BIT 

110 
(BIT PROGRAMMABLE) 

ADDRESS OR 110 
(NIBBLE PROGRAMMABLE) 

ADDRESS/DATA OR 110 
(BYTE PROGRAMMABLE) 

Figure 3. Functional Block Diagram 

15 



Address 
Spaces 

16 

Program Memory. The 16-bit program counter 
addresses 64K bytes of program memory space. 
Program memory can be located in two areas: 
one internal and the other external (Figure 4). 
The first 2048 (28601) or 4096 (28611) bytes 
consist of on-chip mask-programmed ROM. At 
addresses 2048 (28601) or 4096 (28611) and 
greater, the 28 executes external program 
memory fetches. 

The first 12 bytes of program memory are 
reserved for the interrupt vectors. These loca­
tions contain six 16-bit vectors that correspond 
to the six available interrupts. 

Data Memory. The 28 can address 62K (28601) 
or 60K (28611) bytes of external data memory 
beginning at location 2048 (28601) or 4096 
(28611) (Figure 5). External data memory may 

•• 53 • 

0 .. Z8601 2 
2047 

Location of 
Ilrst byte 01 
Instruction 

executed 
after reset 

IntelTUpt 
Vector 

(Lower Byte) 

'ci 
11 

10 

• 
8 

7 

• 
5 

EXTERNAL 
ROM OR RAM 

ON·CHIP 
ROM 

~------------
lAOS 

IR05 

IRQ4 

IRQ4 

IR03 

IR03 

IRQ2 

IntelTUpt 
Vector 

(Upper Byte) 

4~ IRQ2 

3 IRQ1 

2 IRQ1 

IROO 

0 IRQO 

~:~Z8611 4 

Figure 4. Program Memory Map 

LOCATION 

255 

254 

253 

252 

251 

250 

24. 

248 

247 

246 

24. 

244 

243 

242 

241 

240 

127 

STACK POINTER (BITS 7-0) 

STACK POINTER (BITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCAlER 
TIMER/COUNTER 0 

T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL 110 

NOT 
IMPLEMENTED 

i 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORTO 

Figure 6. The Register File 

IDENTIFIERS 

SPL 

SPH 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PRE1 

T1 

TMR 

SIO 

P3 

P2 

P1 
PO 

be included with or separated from the external 
program memory space. DM, an optional I/O 
function that can be programmed to appear on 
pin P34, is used to distinguish between data and 
program memory space. 

Register File. The 144-byte register file 
includes four IIO port registers (RO-R3), 124 
general-purpose registers (R4-R127) and 16 
control and status registers (R240-R255). These 
registers are assigned the address locations 
shown in Figure 6. 

28 instructions can access registers directly 
or indirectly with an 8-bit address field. The 28 
also allows short 4-bit register addressing using 
the Register Pointer (one of the control regis­
ters). In the 4-bit mode, the register file is 

EXTERNAL 
DATA 

MEMORY 

Z8601 ~~ 1-----------I=~Z8611 

NOT ADDRESSABLE 

Figure 5. Data Memory Map 

-_I I 
25 

rrr,rsr, o 0 0 0 25 

24 

The upper nibble of the register file addres 
;>--- provided by the register pointer specifies 

the active worklng·reglster group. 

12 --
--
----_. SPECIFIED WORKING· 

-f-REGISTER GROUP 

--
,...-

15 -- ~---'IO"O"TS----- 3 
0 

Figure 7. The Register Pointer 

The lower 
nibble of 
the register 
file address 
provided by 
the Instruction 
points to the 
specified 
register. 

2037-004.005.006.007 



Serial 
Input/ 
Output 

Counter/ 
Timers 

2037-009 

divided into nine working-register groups, each 
occupying 16 continguous locations (Figure 6). 
The Register Pointer addresses the starting 
location of the active working-register group .. 

Staclts. Either the internal register file or the 
external data memory can be used for the stack. 

Port 3 lines P30 and P37 can be programmed as 
serial I/O lines for full-duplex serial asynchro­
nous receiver/transmitter operation. The bit rate 
is controlled by Counter/Timer 0, at 12 MHz. 

The 28 automatically adds a start bit and two 
stop bits to transmitted data (Figure 8). Odd 
parity is also available as an option. Eight data 
bits are always transmitted, regardless of parity 

T 

Transmitted Data 
(No Parity) 

LSTARTBIT 

'------EIGHT DATA BITS 

TWO STOP BITS 

Transmitted Data 
(With Parity) 

ISplpl pl~I~I~I~I~I~I~lsij 

T I LSTART BIT 

'-----SEVEN DATA BITS 

'---------000 PARITY 

TWO STOP BITS 

A 16-bit Stack Pointer (R254 and R255) is used for 
the external stack, which can reside anywhere in 
data memory between locations 2048 (8601) or 
4096 (86U) and 65535. An 8-bit Stack Pointer 
(R255) is used for the internal stack that resides 
within the 124 general-purpose registers 
(R4-RI27). 

selection. If parity is enabled, the eighth bit is 
the odd parity bit. An interrupt request (IRQ4) is 
generated on all transmitted characters. 

Received data must have a start bit, eight data 
bits and at least one stop bit. If parity is on, bit 7 
of the received data is replaced by a parity error 
flag. Received characters generate the IRQ3 
interrupt request. 

Received Data 
(No Parity) 

Ipl~I~I~I~I~I~I~I~lsij 

LSTARTBIT 

'------EIGHT DATA BITS 

'----------ONE STOP BIT 

Received Data 
(With Parity) 

Iplpl~I~I~I~I~I~I~lal 

I L _LSTARTBIT 
'-------SEVEN OATA BITS 

PARITY ERROR FlAG 

'----------ONE STOP BiT 

Figure S. Serial Dala Formala 

The 28 contains two 8-bit programmable 
counter/timers (To and Tl), each driven by its 
own 6-bit programmable prescaler. The Tl 
prescaler can be driven by internal or external 
clock sources; however, the To prescaler is 
driven by the internal clock only. 

The 6-bit prescalers can divide the input fre­
quency of the clock source by any number from 
I to 64. Each prescaler drives its counter, which 
decrements the value (l to 256) that has been 
loaded into the counter. When the counter 
reaches the end of count, a timer interrupt 
request-IRQ4 (to) or IRQ5 (Tl)-is generated. 

The counters can be started, stopped, 
restarted to continue, or restarted from the 
initial value. The counters can also be pro­
grammed to stop upon reaching zero (single-

pass mode) or to automatically reload the initial 
value and continue counting (modulo-n contin­
uous mode). The counters, but not the presca­
lers, can be read any time without disturbing 
their value or count mode. 

The clock source for T I is user-definable and 
can be the internal microprocessor clock 
divided by four, or an external signal input via 
Port 3. The Timer Mode register configures the 
external timer input as an external clock, a 
trigger input that can be retriggerable or non­
retriggerable, or as a gate input for the internal 
clock. The counter/timers can be prog'rammably 
cascaded by connecting the To output to the 
input of T I. Port 3 line P36 also serves as a timer 
output (TOUT) through which To, TI or the inter­
nal clock can be output. 

17 



I/O Ports 

18 

The 28 has 32 lines dedicated to input and 
output. These lines are grouped into four ports of 
eight lines each and are configurable as input, 
output or address/data. Under software control, 
the ports can be programmed to provide address 

Port 1 can be programmed as a byte 1/0 port 
or as an addressldata port for interfacing 
external memory. When used as an I/O port, Port 
I may be placed under handshake con-
trol. In this configuration, Port 3 lines P33 and 
P34 are used as the handshake controls RDY J 
and DAV J (Ready and Data Available). 
\ Memory locations greater than 2048 (28601) or 
4096 (28611) are referenced through Port I. To 
interface external memory, Port I must be 
programmed for the multiplexed Address/Data 
mode. If more than 256 external locations are 
required, Port 0 must output the additional 
lines. 

Port I can be placed in the high-impedance 
state along with Port 0, AS, DS and RIW, 

Port 0 can be programmed as a nibble 1/0 
port, or as an address port for interfacing 
external memory. When used as an 1/0 port, 
Port 0 may be placed under handshake con­
trol. In this configuration, Port 3 lines P32 and 
P35 are used as the handshake controls DAVo 
and RDYo. Handshake signal assignment is 
dictated by the 1/0 direction of the upper nibble 
P04-P07· 

For external memory references, Port 0 can 
provide address bits As-AlJ (lower nibble) or 
As-AJ5 (lower and upper nibble) depending on 
the required address space. If the address range 
requires 12 bits or less, the upper nibble of Port 0 
can be prograrvmed independently as 1/0 while 

Port 2 bits can be programmed independently 
as input or output. The port is always available 
for 1/0 operations, In addition, Port 2 can be 
configured to provide open-drain outputs. 

Like Ports 0 and 1, Port 2 may also be 
placed under handshake control. In this con­
figuration, Port 3 lines P3J and P36 are used as 
the handshake controls lines DAV 2 and RDY 2. 
The handshake signal assignment for Port 3 lines 
P3J and P36 is dictated by the direction (input or 
output) assigned to bit 7 of Port 2. 

Port :3 lines can be configured as 1/0 or 
control lines. In either case, the direction of the 
eight lines is fixed as four input (P30-P33) and 
four output (P34-P37)' For serial I/O, lines P30 
and P37 are programmed as serial in and serial 
out respectively. 

Port 3 can also provide the following con­
trol functions: handshake for Ports 0, 1 and 2 
(DAVand RDY); four external interrupt 
request signals (IRQO-IRQ3); timer input and 
output signals (T~nd TOUT) and Data 
Memory Select (DM). 

outputs, timing, status signals, serial I/O, and 
parallel 1/0 with or without handshake. All ports 
have active pull-ups and pull-downs compatible 
with TTL loads. 

allowing the 28 to share common resources in 
multiprocessor and,DMA applications. Data 
transfers can be controlled by assigning P33 as a 
,Bus Acknowledge input and P34 as a Bus 
Request output. 

PORT 1 
(Ito OR ADo-AD1) 

Figure 9a. Pori 1 

the lower nibble is used for addressing. When 
'Port 0 nibbles are defined as address bits , they 
can be set to the highimpedance state along with 
Port 1 and the control signals AS, DS and RIW. 

Z8 
'Meu 

I PORT 0 
(110 OR A.-A1~ 

_ } ~:~~~~~~NTROLS 
(P32 AND P3S> 

Figure 9b. Pori 0 

PORT 2(110) 

} 
HANDSHAKE CONTROLS 
DAV2 AND RDYz 
(P3l AND P3S> 

Figure 9c. Port 2 

PORT 3 
(UO OR CONTROL) 

Figure 9d. Pori 3 

2037,008 



Interrupts 

Clock 

The 28 allows six different interrupts from 
eight sources: the four Port 3 lines P30-P33, 
Serial In, Serial Out, and the two counter/timers. 
These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally 
or individually enables or disables the six inter­
rupt requests. When more than one interrupt is 
pending, priorities are resolved by a pro­
grammable priority encoder that is controlled by 
the Interrupt Priority register. 

All 28 interrupts are vectored. When an inter­
rupt request is granted, an interrupt machine 

The on-chip oscillator has a high-gain, 
parallel-resonant amplifier for connection to a 
crystal or to any suitable external clock source 
(XTALl = Input, XTAL2 = Output). 

The crystal source is connected across XTALl 
and XTAL2, using the recommended capacitors 

cycle is entered. This disables all subsequent 
interrupts, saves the Program Counter and status 
flags, and branches to the program memory 
vector location reserved for that interrupt. This 
memory location and the next byte contain the 
16-bit address of the interrupt service routine for 
that particular interrupt request. 

Polled interrupt systems are also supported. To 
accommodate a polled structure, any or all of the 
interrupt inputs can be masked and the Interrupt 
Request register polled to determine which of the 
interrupt requests needs service. 

(Cl s 15 pF) from each pin to ground. The 
specifications for the crystal are as follows: 

III AT cut, parallel resonant 
III Fundamental type, 12.5 MHz maximum 
III Series resistance, Rs s 1000 

19 



Z8603113 
Protopack 
Emulator 

Instruction 
Set 
Notation 

20 

The Z8 Protopack is used for prototype 
development and preproduction of mask­
programmed applications. The Protopack is a 
ROMless version of the standard Z8601 or Z8611 
housed in a pin-compatible 40-pin package 
(Figure 11). 

To provide pin compatibility and interchange­
ability with the standard maskprogrammed 
device, the Protopack carries piggy-back a 24-
pin socket for a direct interface to program 
memory (Figure 1). The Z8603 24-pin socket is 
equipped with 11 ROM address lirtes, 8 ROM 
data lines and necessary control lines for inter­
face to 2716 EPROM for the first 2K bytes of pro­
gram memory. The Z8613 24-pi~ socket is 

Figure 11. The Z8 Microcomputer Protopack Emulator 

Addressing Modes. The following notation is used 
to describe the addressing modes and instruction 
operations as shown in the instruction summary. 

IRR 

Irr 
X 

DA 
RA 
1M 
R 

IR 

Ir 
RR 

Indirect register pair or indired working-register 
pair address 
Indirect working-register pair only 
Indexed addr,ess 
Direct address 
Relative address 
Immediate 
Register or working-register address 

WOI'king-register address only 
Indirect-register or indirect working-register 
address 
Indirect working-register address only 
Register pair or working register pair address 

Symbols. The follOWing symbols are used in 
describing the instruction set. 
dst Destination location or contents 
src Source location or cdntents 
cc Condition code (see list) 
@ Indirect address preHx 
SP Stack painter (control registers 254-255) 
PC Program counter 
FLAGS Flag register (control register 252) 
RP Register painter (control register 253) 
IMR Interrupt mask register (control register 251) 

equipped with 12 ROM address lines, 8 ROM 
data lines and necessary control lines for inter­
face to 2732 EPROM for the first 4K bytes of 
program memory. 

Pin compatibility allows the user to design the 
pc board for a final 40-pin maskprogrammed 
Z8, and, at the same time, allows the use of the 
Protopack to build the prototype and pilot 
production units. When the final program is 
established, the user can then switch over to the 
40-pin mask-programmed Z8 for large volume 
production: The Protopack is also useful in 
small volume applica tions where masked ROM 
setup time, mask charges, etc., are prohibitive 
and program flexibility is desired. 

Compared to the conventional EPROM 
versions of the single-chip microcomputers, the 
Protopack approach offers two main 
advantages: 

III Ease of developing various programs during 
the prototyping stage. For instance, in appli­
cations where the same hardware configura­
tion is used with more than one program, the 
Protopack allows economical program 
storage in separate EPROMs (or PROMs), 
whereas the use of separate EPROM-based 
single-chip microcomputers is more costly. 

II Elimination of long lead time in procuring 
EPROM-based microcomputers. 

Assignment of a value is indicated by the symbol 
"-", For example, 

dst - dst + src 
indicates that the source data is added to the 
destination data and the result is stored in the 
destination location. The notation "addr(n)" is used 
to refer to bit "n" of a given location. For example, 

dst (7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the follOWing 
six flags: 

C 
Z 
S 
V 

Carry flag 
Zero flag 
Sign flag 
Overflow flag 

D Decimal-adjust flag 
H Half carry flag 

Affect<;d flags are indicated by: 

o Cleared to zero 
I, Set to one 
* Set or cleared according to operation 

Unaffected 
X Undefined 



Condition 
Codes 

Instruction 
Formats 

2037·013 

Value 

1000 
a III 
1111 
0110 
1110 
1101 
0101 
0100 
1100 
0110 
1110 
1001 
0001 
1010 
0010 
1111 
0111 
1011 
0011 
0000 

Mnemonic 

C 
NC 
2 

N2 
PL 
MI 
OV 

NOV 
EQ 
NE 
GE 
LT 
GT 
LE 

UGE 
ULT 
UGT 
ULE 

dS! 

Always true 
Carry 
No carry 
Zero 
Not zero 
Plus 
Minus 
Overflow 
No overflow 
Equal 
Nat equal 

Meaning 

Greater than ar equal 
Less than 
Greater than 
Less than ar equal 
Unsigned greater than ar equal 
Unsigned less than 
Unsigned greater than 
Unsigned less than ar equal 
Never true 

ope 

ope 

CCF, 01, El, IRET, NOP, 
ReF, RET, SCF 

INCr 

One-Byte Instructions 

ope MODE eLR, CPL, OA, DEC, ope MODE 

dstlsrc OR h 1 1 01 dstlsrc I ~~~~'~~~Rt~~~ftOP. 

~="1 OR 11 1 1 at dst 

ope 
VALUE 

ope MODE 

d" 

MODe ope 
dsUsrc src/dst 

dstlsrc ope 
srcJdst OR 11 1 1 01 

RRC, SRA, SWAP 

JP, CALL (Indirect) 

SRP 

Ace, ADD, AND, 
CP, OR, sec, SUB, 
reM, TM, XOR 

LO, LOE, LOEI, 
LOC, lDCI 

LO 

dst lope LO 
VALUE 

I dsUCC R~ ope DJNZ, JR 

d" 

ope MODE 

dS! 

VALUE 

MODE ope 

d" 

MODE ope 
dstfsrc 

ADDRESS 

ope 
OA, 
DA, 

ope 
DA, 
DA, 

Two.Byte Instructions 

Figure 12. Instruction Formats 

OR 
OR 

C = I 
C = a 
2 = I 
Z = a 
s = a 
s = I 
V = I 
V = 0 
2 = I 
Z = a 

Flags Set 

(5 XOR V) = a 
(5XOR V) = I 
[2 OR (5 XOR V)) = a 
[Z OR (5 XOR V)) = I 
C=O 
C = I 
(C = 0 AND 2 = 0) 
(C OR Z) = I 

Ace, ADD, AND, CPt 

til 0 '" 
LO, OR, sac, SUB, 

1 1 1 0 d,' 
TeM, TM, XOR 

Ace, ADD, AND, CP, 

OR 11 1 1 01 d,' 
lO. OR, sac, SUB, 
TeM, TM, XOR 

LO 
OR 1 1 1 0 
OR 1 1 1 0 d" 

LO 

JP 

CAll 

Three-Byte Instructions 

21 



Instruction 
Summary 

22 

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst arc (Hex) C Z S V D H 

ADC dst,sre (Note 1) 
dst- dst + sre + C 

ADD dst,sre (Note I) 
dst - dst + sre 

AND dst,sre (Note 1) 
dst ..:. dst AND sre 

CALL dst DA 
SP - SP - 2 IRR 
@SP - PC; PC - dst 

CCF 
C - NOTC 

CLR dst 
dst - a 
COM dst 
dst - NOT dst 

CP dst,sre 
dst - sre 

DA dst 
dst - DA dst 

R 
IR 

R 
IR 

(Note I) 

R 
IR 

DEC dst R 
dst-dst-l IR 

DECW dst RR 
dst-dst-I IR 

DI 
IMR (7) - a 

DJNZ r,dst RA 
r - r - I 
if r ,. 0 

PC-PC+dst 
Range: + 127, ,128 

EI 
IMR (7) - I 

10 

00 

50 

D6 
D4 

EF 

BO 
Bl 

60 
61 

AD 

40 
41 

00 
01 

80 
81 

8F 

rA 
r=O-F 

9F 

* 0 * 

'" * 0 '" 

- '" '" 0 

- * * 0 - -

* * * X - -

INC dst rE _... - -
dst - dst + I r=O-F 

R . 20 
IR 21 

INCW dst RR AO -... - -
dst - dst + IR Al 

mET BF •••••• 
FLAGS - @SP; SP - SP + I 
PC - @SP; SP - SP + 2; IMR (7) - 1 

JP ee,dst DA 
if ee is true 

PC - dst IRR 

JR ee,dst RA 
if cc is true I 

PC-PC+dst 
Range: + 127, -128 

LD dst,sre 
dst - sre r 

R 

r 
X 
r 
Ir 
R 
R 
R 
IR 
IR 

LDC dst,sre r 
dst - sre Irr 

LDCI dst,sre Ir 
dst - sre Irr 
r - r + I; rr - rr + I 

1m 
R 

X 
r 
Ir 
r 
R 
IR 
1m 
1m 
R 

Irr 

Irr 
Ir 

eD 
e=O-F 

30 

eB 
e=O-F 

rC 
r8 
r9 

r=O-F 
C7 
D7 
E3 
F3 
E4 
E5 
E6 
E7 
F5 

C2 
D2 

C3 
D3 

Instruction 
and Operation 

Addr Mode Opcode Flags Affected 
Byte 

dst arc (Hex) CZSVDH 

LDE dst,sre 
dst - sre 

r' 
Irr 

LDEI dst,sre. Ir 
dst - sre Irr 
r-r+ 1; rr-rr+ 1; 

NOP 

Irr 

Irr 
Ir 

OR dst,sre (Note 1) 
dst - dst OR sre 

POPdst 
dst - @SP 
SP - SP + I 

R 
IR 

PUSH sre R 
SP - SP-I; @SP-sre IR 

82 
92 

83 
93 

FF 

40 

50 
51 

70 
71 

0--

RCF 
C-O 

CF o - - - - -

RET 
PC - @ SP; SP - SP + 2 

RL dst _ r:=:=l R 
~IR 

RLCdstl_ ~I R 
~IR 

RR dst I'~ I ~ I R 
~~IR' 

RRC dst LEl=C3J lJ.. 

SBC dst,sre (Note I) 
dst - dst-sre-C 

AF 

90 
91 

10 
11 

EO 
El 

CO 
CI 

3D • I • 

SCF 
C-I 

DF 1 - - - - -

SM dst LEi @ 1~ DO 
Dl 

'" '" '" 0 

SRP sre 
RP - sre 

1m 31 

SUB dst,sre 
dst - dst - sre 

(Note I) 20 ****1* 

SWAP dst ~. I~ Fa 
FI 

x**x--

TCM dst,sre (Note 1) 60 
(NOT dst) AND sre 

TM dst, sre (Note I) 70 
dst AND sre 

XOR dst,sre (Note 1) BO -**0--
dst - dst XOR sre 

Nolel 

These instructions have an identical set of addressing 
modes, which are encoded for brevity. The first opcode 
nibble is found in the instruction set table above. The 
second nibble is expressed symbolically by a 0 in this 
table, and its value is found in the following table to the 
right of the applicable addressing mode pair. 

For example, to determine the opcode of a ADC 
instruction use the addressing modes r (destination) and 
Ir {source}. The result is 13. 

Addr Mode 

dst src 

R 
R 
R 

IR 

Ir 

R 
IR 

1M 

1M 

Lower 
Opcode Nibble 

8085-003 



Registers R240 SIO 
Serial 110 Register 
(FOH; Read/Write) 

I~I~I~I~I~I~I~I~I 

c=_ SERIAL DATA (Do "" LSS) 

R241 TMB 
Timer Mode Register 

(FlH; Read/Write) 

NOT useD"" 00 ~ 1 "" LOAD To 

f~ g~~ : ~~ 0 ::: DISABLE To COUNT 

To", MODES j llli~Lo . NO FUNCTION 

INTERNAL CLOCK OUT = 11 1 = ENABLE To COUNT 

T MODES 0 = NO FUNCTION 
eXTERNAL CLOCK IN~UT = 00 1 = LOAD T t 

GATE INPUT = 01 0 = DISABLE 1, COUNT 

(NON.R~~~~g~~~~:~~ = 10 , 1 == ENABLE 1, COUNT 

TRIGGER INPUT = 11 
(RETRIGGERABLE) 

R242 TI 
Counter Timer 1 Register 

(F2H; Read/Write) 

TtlNITIAL VALUE (WHEN WRITTEN) 
'----'--(RANOE 1-256 DECIMAL 01-00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243 PREI 
Prescaler 1 Register 

(F3H; Write Only) 

~LCOUNTMODE 
. 

0:::: Tl SINGLE-PASS 
1 :: T t MODULQ·N 

CLOCK SOURCE 
1 = T 1 INTERNAL 
o = 11 EXTERNAL TIMING INPUT 

(TIN) MODE 

PRESCALER MODULO 
(RANGE: 1 ~64 DECIMAL 
01~OO HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H; Read/Write) 

R245 PREO 
Prescaler 0 Register 

(F5H; Write Only) 

~LCOUNTMODE 
. . - 0 = To SINGLE·PASS 

1 = To MonUlO·N 

RESERVED 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246 P2M 
Port 2 Mode Register 

(F6H; Write Only) 

P20-P27 1/0 DEFINITION 
'---- 0 DEFINES BIT AS OUTPUT 

1 DEFIN ES BIT AS INPUT 

R247 P3M 
Port 3 Mode Register 

(F7H; Write Only) 

E~Lo PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

RESERVED 

o P32 = INPUT P3S = OUTPUT 
1 P32 = I5AVO/RDYO P3S = RDYOIDAVO 

o 0 P33 = INPUT P34 = OUTPUT 

~ ~} P33 = INPUT P34 = D"M 
1 1 P33 = DAVilRDY1 P34 = RDY1/DJWi 

'-------~ ~i~ ~ I¥.l¥::R~~1 :~: ~ ~~~~~IIT) 

'--------~~~g ~ ~N~~rLIN ~i: ~ ~~~~~TOUT 
'-________ ~ :!=:~ g~F 

Figure 13. Control Registers 

2037·014 23 



Registers 
(Continued) 

R248 POIM 
Port 0 and I Mode Register 

(F8H; Write Only) 

OUTPUT .. 00 -.J L 00" OUTPUT 
INPUT = 01 01 = INPUT 

A12aA15 = 1X 1X ... A,-An 

PD.-PO, MODE:] ~-r PO,-PO, MODE 

EXTERNAL MEMORY TIMING ' ' STACK SELECTION 
NORMAL = 0 0 "" EXTERNAL 

EXTENDED .. 1 1 = INTERNAL 

Pia-Pir MODE 
00 = BYTE OUTPUT 
01 ... BYTE INPUT 
10 = ADD-AD, 
11 .. HIGH·IMPEDANCE ADo-ADr. 

AS, os. RIW, As-A11. A12-A15 
IF SELECTED 

R2491PR 
Interrup,t Priority Register 

(F~; Write Only) 

lo,l~I~I~lo,lo,lo,lo,l 

~.:J I I III ,.-".~"'~ . \ RESERVED = 000 
IRQ3, IRQS PRIORITY (GROUP A) C :> A :> B = 001 ' 

o = IRQS > IRQ3 A > B :> C = 010 
1=IRQ3:>IRQS, A>C>B=D11 

B :> C > A = 100 
IROO, IRQ2 PRIORITY (GROUP 8) ,I C :> B > A = 101 

0= IRQ2> lRQO B>A>C=110 
1 = IROO :> IRQ2 RESERVED = 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o = IRQ1 > IRQ4 
1 = IRQ4 > IRQ1 

R250mQ 
Interrupt Request Register 

(FAH; Read/Write) 

RESERVEDT C='ROO 
IRQ1 
IRQ2 
IRQ3 
IRQ4 
IRQS 

R251lMR 
Interrupt Mask Register 

(F~; Read/Write) 

P32 INPUT (Do .. IRQO) 
P33INPUT . 
P3-t INPUT 
P30 INPUT, SERIAL INPUT 
To. SERIAL OUTPUT 
T, 

I ' I c= 1 ENABLES IRQO-IRQS 
(Do"'" IRQO) 

L-------RESERVED 

"----'-----1 ENABLES INTERRUPTS' 

REGISTER 
POINTER 

Figure 13_ Control Registers (Continued) 

24 

R252 FLAGS 
Flag Register 

(FCH; Read/Write) 

LUSER FLAG F2 

. HALF CARRY FLAG ~m~
1 LUSER FLAG F" 

DECIMAL ADJUST FLAG 

OVERFLOW FLAG 

SIGN FLAG 

ZEnO FLAG 
, CARRY FLAG 

R253 RP 
Register, Pointer 

(FDti; Read/Write) 

LDON'TCARE 

R254 SPH 
Stack Pointer 

(FEH; Read/Write) 

R255 SPL 
Stack Pointer 

(FFH; Read/Write) 

2037-014 



Opcode 
Map 

o 

2 

3 

4 

5 

i 8 

!!!. 
~ 7 
:!I 
2: 
~ 

i 8 

9 

A 

B 

C 

D 

E 

F 

o 

6,5 
DEC 

R1 

6,5 
BLC 

R1 

6,5 
INC 
R1 

8,0 
IP 

IRB1 

8,5 
DA 
R1 

la,s 
POP 

R1 

6,5 
COM 

R1 

10/12,1 
PUSH 

R. 

la,S 
DECW 

RBI 

6,5 
RL 
R, 

la,S 
INCW 

RR1 

6,5 
CLR 
R1 

6,5 
RRC 
R, 

6,5 
SRA 

R1 

6,5 
RR 
R1 

Ii;s 
SWAP 

R1 

6,5 
DEC 
1R1 

6,5 
BLC 
1R1 

6,5 
INC 
1R1 

6,1 
SBP 

1M 

8,5 
DA 
1R1 

la,S 
POP 
'1R1 

6,5 
COM 

1R1 

12/14,1 
PUSH 

IR. 

la,S 
DECW 

IR1 

6,5 
RL 
1R1 

la,S 
!NCW 

1R1 

6,5 
CLR 
1R1 

6,5 
RRC 
1R1 

6,5 
SRA 
1R1 

6,5 
RR 
1R1 

~8,S 
SWAP 

1R1 

2 3 4 

6,5 6,5 la,S 
ADD ADD ADD 
n,Ia 1l,Iu R.,R, 

6,5 6,5 la,S 
ADC ADC ADC 
1l,IZ I1,II2 R.,R, 

6,5 6,5 10.5 
SUB SUB SUB 
n,la r1,II2 R.,R, 

6,5 6,5 la,S 
SBC SBC SBC 
11,Ia Z'l,IrZ R:i,R, 

6,5 6,5 la,S 
OR OR OR 

II,r2 u,lra . R.,R, 

6,5 6,5 la,S 
AND AND AND 
Il,l2 n,Ira R.,R, 

6,5 6,5 la,S 
TCM TCM TCM 
ll,Ia n,lrz R.,R, 

6,5 6,5 la,S 
TM TN TN 
n,la Il,II2 R.,R, 

12,0 18,0 
LDE LDEI 

r1,IIl2 Irl,Irrz 

12,0 18,0 
IDE LDEI 

lIn Ira, lIn 

6,5 6,5 la,S 
CP CP CP 

Il,r2 n,lI2 R.,R, 

6,5 6,5 la,S 
XOR XOR XOR 
1I,la Il,II2 R.,R, 

12,0 18,0 
LDC IDCI 

n,IrI2 Irl,Irl2 

12,0 18,0 20,0 
IDC IDCI CALL* 

l2,IIIl Ira, III I IRR1 

6,5 la,S 
LD LD 

n,Ir2 R.,R, 

6,5 
ID 

In,I2 

Lowor Nibble (Hex) 

5 6 7 8 9 A B C D E F 

la,S la,S la,S 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5 
ADD' ADD ADD LD LD DJNZ JR ID JP INC 
IR.,R, R"IM 1R1,IM Il,Rz la,Rl IIIRA ce,RA 1l,IM ce,DA II -la,S la,S la,S 
ADC ADC ADC 
IR.,R, R"IM 1R,,1M -
la,S la,S la,S 
SUB SUB SUB 

IR.,R, R"IM IR"IM -
la,S la,S la,S 
SBC SBC SBC 

IR.,R, R"IM IR"IM -
la,S la,S la,S 
OR OR OR 

IR.,R, R"IM 1R1,IM -
la,S la,S la,S 
AND AND AND 

IR.,R, R"IM IR 1, 1M -
la,S la,S la,S 
TCM TCM TCM 

IR.,R, R"IM 1R1,IM -
la,S la,S la,S 
TN TM TM 

IR.,R, R"IM IR 1, 1M -
6,1 
DI 

-
6,1 
EI 

-
la,S la,S la,S 14,0 
CP CP CP RET IR.,R, R"IM 1R1,IM -
la,S la,S la,S 16,0 
XOR XOR XOR IRET-

IR.,R, R"IM 1R1,IM -
la,S 6,5 
LD RCF 

II, x, Hz -
20,0 10,5 6,5 

CALL LD SCF 
DA l2, x, HI -

la,S la,S la,S 
6,5 LD ID LD CCF IR.,R, R"IM 1R1,IM 
~ 

la,S ,6,0 ID NOP 'R.,IR, 

Byles per 
Instruction 

~, ______ ~~ ~ ______ " ~, ______ ~~, ______ ,~ ~, ________ ~~~ ________ ,J ~ ~ 

2 3 2 3 

Lower 
Opcoc\e 
Nibble 

Execution • PlpeUne 
Cycles 4 Cycles 

_ Upper ~O'5 Opcode _ A CP Mnemonic 
Nibble ,R2,R, 

Flnl Second 
Operand Operand 

·2~byte instruction; fetch cycle appears as a 3-byte instruction 

8085·002 

Legend: 
R = 8·BII Address 
r = 4·BII Address 
Rl or rl = Dst Address 
R2 or .. = Sro Address 

Sequence: 
Opcode, First Operand, Second Operand 

Nole: The blank areas are not delined. 

25 



Absolute 
Maximum 
Ratings 

Standard 
Test 
Conditions 

DC 
Character-
istics 

26 

V oltages on all pins 
with respect to GND .......... -0.3 V to + 7.0 V 
Operating Ambient 
Temperature ........ See Ordering Information 

Storage Temperature ........ -65°C to + 150°C 

The DC characteristics listed below apply for 
the following standard test conditions, unless 
otherwise noted. All voltages are referenced to 
GND. Positive current flows into the reference 
pin. 

Standard conditions are: 

o +4.75 V :5 Vee :5 +5.25 V 
o GND = 0 V 

o O°C :5 TA :5 +70°C 

Symbol Parameter Min Max 

VeH Clock Input High Voltage 3.8 Vee 

VeL Clock Input Low Voltage -0.3 0.8 

VIH Input High Voltage 2.0 Vee 

VIL Input Low Voltage -0.3 0.8 

VRH Reset Input High Voltage 3.8 Vee 

VRL Reset Input Low Voltage I -0.3 0.8 

VaH Output !;Iigh Voltage 2.4 

VOL Output Low Voltage 0.4 

IlL Input Leakage -10 10 

1m Output Leakage -10 10 

IJR Reset Input Current -50 

Ice Vee Supply Current 150 

Stresses greater than those listed under Absolute Maxi­
mum Ratings may cause permanent damage to the device. 
This is a stress rating only; operation of the device at any 
condition above those indicated in the operational sections 
of these specifications is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

+5V 

2.1K 

Figure 14. Tes! Load I 

Unit Condition 

V Driven by External Clock Generator 

V Driven by External Clock Generator 

V 

V 

V 

V 

V loH = -250 p.A 

V loL = +2.0 rnA 

p.A 0 Vs VIN s +5.25 V 

p.A 0 Vs VIN S +5.25 V 

p.A Vee =' +5.25 V, VRL = 0 V 

rnA 



AC Characteristics 

External I/O 
or Memory 
Read and 
Write Timing 

Do-D70UT 

Figure IS. External 110 or Memory Read/Wrile 

No. Symbol Parameter 

TdA(AS) Address Valid to AS t Delay 

2 TdAS(A) AS t to Address Float Delay 

3 TdAS(DR) AS t to Read Data Required Valid 

4 TwAS AS Low Width 

5 TdAz(DS) Address Float to DS ~ 

6-TwDSR DS (Read) Low Width 

7 TwDSW DS (Write) Low Width 

8 TdDSR(DR) DS ~ to Read Data Required Valid 

9 ThDR(DS) Read Data to DS t Hold Time 

10 TdDS(A) DS t to Address Active Delay 

11 TdDS(AS) DS t to AS ~ Delay 

12 - TdRJW(AS) -- RIW Valid to AS t Delay 

13 TdDS(RIW) I5S t to RIW Not Valid 

14 TdDW(DSW) Write Data Valid to DS (Write) ~ Delay 

15 TdDS(DW) DS t, to Write Data Not Valid Delay 

Min Max Notes*tO 

35 

45 

55 

0 

185 

110 

0 

45 

55 

30 

35 

35 

45 

220 

2,3 

2,3 

1,2,3 

1,2,3 

-------1,2,3 

130 

.1,2,3 

1,2,3 

2,3 

2.3 

-------2,3 

16 TdA(DR) Address Valid to Read Data Required Valid 255 

2,3 

2,3 

2,3 

1,2,3 

2,3 17 TdAS(DS) AS t to DS ~ Delay 

NOTES: 
I. When using extended memory timing add 2 TpC. 
2. Timing numbers given are Jor minimum TpC. 
3. See clock cycle time depelldent characteristics table. 

2194·011 

55 

tTe.rtLoad I. 
o All timing references use 2.0 V for a logic" 1" and 0.8 V for a logIc "0". 
to All units in nanoseconds (ns). 

27 



AC Characteristics 

Additional 
Timing 
Table 

No. Symbol 

1 TpC 

2 TrC.TfC 

3 TwC 

4 TwTinL 

Figure 16. Additional Timing 

Parameter Min Max Notes* 

Input Clock Period 80 1000 

Clock Input Rise And Fall Times 15 

Input Clock Width 26 1 

Time Input Low Width 70 2 
5-TwTinH--- Timer Input High Width ----------------3TpC -------- 2 

6 TpTin Timer Input Period 8TpC 2 

7 TrTin. TfTin Timer Input Rise And Fall TimEls 

8a TwIL Interr~pt RequestInput Low Time 

8b TwIL Interrupt Request Input Low Time 

9 TwIH Interrupt Request Input High Time 

NOTES: 
1. Clock timing referencesuses3.8V for a logic "1" andO.8Vfor 

a logic "0", 
2. Timing reference uses 2.0 V for a logic "1" and 0.8 V for 

a 10gio"0". 

70 
3TpC 

3TpC 

3. Interrupt request via Port 3 (P3j-P33)' 
4. interrupt request via Port 3 (P3Q). 
* Units in nanoseconds (ns). 

100 

Memory Port 
Timing AO-A10 ~.. __________ A_DD_R_ES_S_VA_L_'D _________ -'l~ 

---Jr· 8 j ~.2 i~ 
Do-D7 DON'T CARE ~ DATA IN VALID ~ 

No. Symbol 

2 

NOTES: 

TdA(DI) 

ThDI(A) 

I. Test Load 2. 

Parameter 

Address Valid to Data Input Delay 

Data In Hold time 

2. This is a Clock-Cycle-Dependent parameter. For clock frequencies 
other than the maximum, use the follOWing formula: 5 tpc - 95 

Figure 17. Memory Port Timing 

Min Max 

320 

o 

*J1nits are n~no5ecortds unl~ss otherwise specified. 

2 

2.3 

2.4 
2.3 

Notes* 

1.2 

28 2194·012 2037·019 



Handshake 
Timing 

o.:::~ ____________ ~_. ____ ~~~---------
(OUTPUT) 

Figure ISa. Input Handshake 

DATA OUT 

DAV 
(OUTPUT) 

RDY 
(INPUT~ 

~ DATA OUT VALJD 

=-~--==' ~0 ~ 
No. Symbol Parameter 

TsDI(DAV) Data In Setup Time 

2 ThDI(DAV) Data In Hold time 

3 TwDAV Data Available Width 

Figure ISb. Output Handshake 

Min 

o 
160 

120 

Max Notes" 

4 TdDAVIf(RDY) DAV Hnputto RDY ~Delay 120 1,2 

5-TdDAVOf(RDY)-- DAV ~ Output to RDY ~ Delay -------------0 ----'-----1 ,3 

6 TdDAVIr(RDY) DAV i Input to RDY i Delay 120 1,2 

7' TdDAVOr(RDY) DAV i Output to RDY i Delay 0 1,3 

8 TdDO(DAV) Data Out to DAV ~ Delay 30 

9 TdRDY(DAV) Rdy ~ Input to DAV t Delay 0 

NOTES: 
1. Test load 1 
2. Input handshake 
3. Output handshake 
t All timing references use 2.0 V for a logic "1" and 0.8 V for 

a logic "0", 

Clock-
Cycle-Time- Number Symbol 
Dependent 

TdA(AS) Characteristics 
2 TdAS(A) 

3 TdAS(DR) 

* Units in nanoseconds (ns). 

Equation 

TpC-50 

TpC-40 

4TpC-llO* 

140 

4 TwAS TpC-30 
5--TwDSR--------------3TpC-65*--------------

2194·013 

7 TwDSW 2TpC-55* 

8 TdDSR(DR) 3TpC-120* 

10 Td(DS)A TpC-40 

II TdDS(AS) TpC-30 
12--TdR/W(AS) TpC-55------------

13 TdDS(RIW) TpC-50 

14 TdDW(DSW) TpC-50 

15 

16 

17 

TdDS(DW) 

TdA(DR) 

TdAS(DS) 

* Add 2TpC when using extended memory timing. 

TpC-40 

5TpC-160* 

TpC-30 

29 



" ' 

Zilog Product Specification 

FEATURES 

• The Z8671 MCU is a complete microcomputer 
preprogrammed with a BASIC/Debug interpreter, 
Interaction between the interpreter and its user is 
provided through an on-board UART 

III BASIC/Debug can directly address the Z8671's internal 
registers and all external memory. It provides quick 
examination and modification of any external memory 
location or I/O port. 

GENERAL DESCRIPTION 

The Z8671 Single-Chip Microcomputer (MCU) is one of a 
line of preprogrammed chips-in this case with a 
BASIC/Debug interpreter in ROM-offered by Zilog. As a 
member of the Z8 Family of microcomputers, it offers the 
same abundance of resources as the other Z8 
microcomputers. 

TIMING r ----. 
RESET +5V 

R/W GND 
AND I CONTROL os XTAL1 

As XTAL2 

POo P20 

PO, P2, 

po, P2, 
PORT 0 

P2, 
PORT 2 

(NIBBLE PO, (BIT PRO· 
PROGRAMMABLE) PO. P2. GRAMMABLE) 

110 or Aa~A15 110 
PO, Z8671 P2, 

PO, MCU P2, 

PO, P2, 

Pl 0 P30 

Pl, P3, 

P12 P3, 

Pl, P3, 
PORT 1 

P3. 110 OR ADc-ADl Pl. 

Pl, P3, 

Pl, P3, 

Pl, P3, 

Figure 1. Pin Functions 

30 

I 

Z8671, Z8® MCU 
with BASIC/Debug 
Interpreter 

June 1987 

III The BASIC/Debug interpreter can call machine 
language subroutines to increase execution speed. 

II The Z8671's auto start-up capability allows a program to 
be executed on power-up or Reset without operator 
intervention. 

II!l Single + 5V power supply-all I/O pins TIL-compatible. 

II 8MHz 

Because the BASIClDebug interpreter is already part of the 
chip circuit, programming is made much easier. The Z8671 
MCU thus offers a combination of software and hardware 
that is ideal for many industrial control applications. The 
Z8671 MCU allows fast hardware tests and bit-by-bit 
examination and modification of memory location, I/O ports, 

+5V P3, 

XTAL2 P3, 

XTAL1 P2, 

P3, P2, 

P30 P2, 

RESET P2. 

R/W P2, 

OS P2, 

!i.S P2, 

P3, P20 

GND P3, 

P3, P3. 

POo AD, 

PO, AD, 

PO, ADs 

PO, AD, 

PO, AD, 

PO, AD, 

PO, AD, 

PO, ADo 

Figure 2a. 40-pin Dual-In-Line Package (DIP), 
Pin Assignments . 



or registers. It also allows bit manipulation and logical 
operations. A self-contained line editor supports interactive 
debugging, further speeding up program development. 

The BASICIDebug interpreter, a subset of Dartmouth 
BASIC, operates with three kinds of memory: on-chip 
registers and external ROM or RAM. The BASIC/Debug 
interpreter is located in the 2K bytes of on-chip ROM. 

Additional features of the Z8671 MCU include the ability to 
call machine language subroutines to increase execution 
speed and the ability to have a program execute on 
power-up or Reset, without operator intervention. 

Maximum memory addressing capabilities include 62K 
bytes of external program memor'y and 62K bytes of data 
memory with program storage beginning at location 800H. 
This provides up to 124K bytes of useable memory space. 
Very few 8-bit microcomputers can directly access this 
amount of memory. 

Each Z8671 Microcomputer has 32 I/O lines, a 144-byte 
register file, an on-board UART, and two counter/timers. 

OUTPUT 

lUlUlt 
110 

(BIT PROGRAMMABLE) 

Vee GND 

! ~ 

ADDRESS OR 1/0 
(NIBBLE PROGRAMMABLE) 

RESET 

R/W 

os 
AS 

P3, 

GNO 

P3, 

PO. 

PO, 

PO, 

NC 

y .... '!v'" 
~v (:{'~ q":;\ -¢'~ -¢"~ x ~ q":/o <{I:," qtt.'\ 41,'0 q'}/'J 

6 5 4 3 2 1 44 43 42 41 40 

7 

8 

9 

10 

11 

12 
Z8671 
MCU 

13 

14 

15 

16 

17 

18 19 20 21 22 23 24 25 26 27 28 

q~~ q~t.. q~" qC:{O qt::)'\ q .... <:J q ........ q"'l-<l'''' q .... b. ~v 

Figure 2b. 44-pin Chip Carrier, 
Pin Assignments 

ADDRESSIDATA OR 110 
(BYTE PROGRAMMABLE) 

39 

38 

37 

3. 

35 

34 

33 

32 

31 

30 

29 

Figure 3. Functional Block Diagram 

NC 

P24 

P23 

P2, 

P2, 

P2. 

P33 

P3, 

P17 

Pl. 

PI, 

31 



ARCHITECTURE 

Z8671 architecture is characterized by a flexible I/O 
scheme, an efficient register and address space structure, 
and a number of ancillary features that are helpful in many 
applications. 

Microcomputer applications demand powerful I/O 
capabilities. The 2;:8671 fulfills this with 32 pins dedicated to 
input and output. These lines are grouped into four ports of 
eight lines each and are configurable under software control 
to provide timing, status signals, serial or parallel I/O with or 
without handshake, and an address/data bus for interfacing 
external memory. 

Because the multiplexed address/data bus is merged with 
the I/O-oriented ports, the Z8671 can assume many 
different memory and I/O configurations. These 
configurations range from a self-contained microcomputer 

PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning' of each machine cycle. 
Addresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. Under 
program control, AS can be placed in the high-impedance 
state along with Ports 0 and 1, Data Strobe, and ReadlWrite. 

OS. Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

POO·P07. P10·P17. P20·P27. P30·P37' 110 Port Lines 
(input/outputs, TTL-compatible). These 32 lines are divided 
into four 8-bit I/O ports that can be configured under 

ADDRESS SPACES 

Program Memory. The Z8671 's 16-bit program counter 
can address 64K bytes of program memory space. 
Program memory consists of 2K bytes of internal ROM and 
up to 62K bytes of external ROM, EPROM, or RAM. The first 
12 bytes of program memory are reserved for interrupt 
vectors (Figure 4). These locations contain six 16-bit vectors 
that correspond to the six available. interrupts. The 
BASIC/Debug interpreter is located in the 2K bytes of 
internal ROM .. The interpreter begins at address 12 and 
extends to 2047. 

32 

to a microprocessor that can address 124K bytes of external 
memory. 

. Three basic address spaces are available to support this 
wide range of configurations: program' memory (internal 
and external), data memory (external) and the register file 
(internal). The 144-byte random-access register file is 
composed of 124 general-purpose registers, four I/O port 
registers, and 16 control and status registers. 

To unburden the program from coping with real-time 
problems such as serial data communication and 
counting/timing, an asynchronous receiver/transmitter 
(UART) and two counter/timers with a large number of 
userselectable modes are offered on-chip. Hardware 
support for the UART is minimized because one of the 
on-chip timers supplies the bit rate. 

program control for I/O or external memory interface. 

RESET. Reset (input, active Low). RESET initializes the 
Z8671. When RESET is deactivated, program execution 
begins from internal program location OOOCH. 

R/W. ReadlWrite (output). R/W is Low when the Z8671 is 
writing to external program or data memory. 

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and 
output). These pins connect a parallel-resonant crystal (8 
MHz maximum) or an external single-phase clock (8 MHz 
maximum) to the on-Chip clock oscillator and buffer. 

5535 

EXTERNAL 
ROM OR RAM 

2048 
2047 

} 
BASICI 

Location 01 
lirs! byte 01 
instruction 

executed 
alter reset 

Interrupt 
Veclor 

(Lower Byte) 

Interrupt 
Vector 

tUpper Byte) 

ON·CHIP 
ROM DEBUG 

i2 ~------------
11 IRQ5 

10 IRQ5 

9 IRQ4 

8 IRQ4 

7 IRQ3 

6 IR03 

5~ IRQ2 

4~ IRQ2 

3 IRQ1 

2 IRQ1 

1 IROO 

0 IROO 

Figure 4. Program Memory Map 



Data Memory. The Z8671 can address up to 62K bytes of 
external data memory beginning at location 2048 (Figure 5). 
External data memory may be included with, or separated 
from, the external program memory space. DM, an optional 
I/O function that can be programmed to appear on pin P34, 
is used to distinguish data and program memory space. 

Register File. The 144-byte register file may be accessed 
by BASIC programs as memory locations 0-127 and 
240-255. The register file includes four I/O port registers 
(RO-R3), 124 general-purpose registers (R4-R127), and 16 
control and status registers (Figure 6). 

The BASIClDebug Interpreter uses many of the general­
purpose registers as pointers, scratch workspace, and 
internal variables. Consequently, these registers cannot be 
used by a machine language subroutine or other user 
programs. On power-up/Reset, BASIClDebug searches for 
external RAM memory and checks for an auto start-up 
program. In a non-destructive method, memory is tested at 
relative location xxFDH' When BASIC/Debug discovers 
RAM in the system, it initializes the pointer registers to mark 
the boundaries between areas of memory that are assigned 
specific uses. The top page of RAM is allocated for the line 
buffer, variable storage, and the GOSVB stack. Figure 7a 

65535 

EXTERNAL 
DATA 

MEMORY 

2048 
2047 

NOT ADDRESSABLE 

Figure 5. Data Memory Map 

illustrates the contents of the general-purpose registers in 
the Z8671 system with external RAM. When BASIC/Debug 
tests memory and finds no RAM, it uses an internal stack 
and shares register space with the input line buffer and 
variables. Figure 7b illustrates the contents of the 
general-purpose registers in the Z8671 syst,em without 
external RAM. 

Stacks. Either the internal register file or the external data 
memory can be used for the stack. A 16-bit Stack Pointer 
(R254 and R255) is used for the external stack, which can 
reside anywhere in data memory between location 2048 
and 65535. An 8-bit Stack Pointer (R255) is used for the 
internal stack that resides within the 124 general-purpose 
registers (R4-R 127). 

Register Addressing. Z8671 instructions can directly or 
indirectly access registers with an 8-bit address field. The 
Z8671 also allows short 4-bit register addressing using the 
Register Pointer, which is one of the control registers. In the 
4-bit mode, the register file is divided into nine 
working-register groups, each group consisting of 16 
contiguous registers (Figure 8). The Register Pointer 
addresses the starting location of the active working-register 
gro~p. 

LOCATION 

255 STACK POINTER (BITS 7-01 

254 STACK POINTER (BITS 15-8) 

253 REGISTER POINTER 

252 PROGRAM CONTROL FLAGS 

251 INTERRUPT MASK REGISTER 

250 INTERRUPT REQUEST REGISTER 

249 INTERRUPT PRIORITY REGISTER 

248 PORTS 0-1 MODE 

247 PORT 3 MODE 

246 PORT 2 MODE 

245 TO PRESCALER 

244 TIMER/COUNTER 0 

243 T1 PRES CALER 

242 TIMER/COUNTER 1 

241 TIMER MODE 

240 SERIAL I/O 

NOT 
IMPLEMENTED 

IDENTIFIERS 

SPL· 

SPH 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PREl 

T1 

TMR 

SIO 

Figure 6. Control and Status Registers 

33 



127 

104 
103 

86 
85 

64 
63 

34 

33 

32 

31 

30 

29 

28 
27 

24 
23 

22 
21 

20 
19 

18 
17 

16 
15 

14 
13 

12 
11 

10 
9 

SHARED BY EXPRESSION 
STACK AND LINE BUFFER 

GOSUB 
STACK 

SHARED BY GOSUB 
AND VARIABLES 

VARIABLES 

FREE, AVAILABLE 
FOR USR ROUTINES 

COUNTER 

USED INTERNALLY 

SCRATCH 

POINTER TO 
CONSTANT BLOCK 

USED INTERNALLY 

LINE NUMBER 

ARGUMENT FOR 
SUBROUTINE CALL 

ARGUMENT/RESULT FOR 
SUBROUTINE CALL 

SCRATCH 

POINTER TO NEXT 
CHARACTER 

POINTER TO LINE 
BUFFER 

POINTER TO GOSUB 

POINTER TO BASIC 
PROGRAM 

POINTER TO GOSUB 

FREE 

I/O PORTS 

127 

64 
63 

34 
33 

32 

31 

30 

29 

28 
27 

24 
23 

22 
21 

20 
19 

18 
17 

16 
15 

14 
13 

12 
11 

10 
9 

EXPRESSION 
EVALUA"\ION 

STACK 

FREE 

COUNTER 

USED INTERNALLY 

SCRATCH 

POINTER TO 
CONSTANT BLOCK 

USED INTERNALLY 

LINE NUMBER 

ARGUMENT FOR 
SUBROUTINE 

ARGUMENT/ROUTINE FOR 
SUBROUTINE CALL 

SCRATCH 

POINTER TO INPUT 
LINE BUFFER 

POINTER TO END OF 
LINE BUFFER 

POINTER TO STACK 
BOTTOM 

ADDRESS OF USER 
PROGRAM 

POINTER TO GOSUB 
STACK 

POINTER TO END 
OF PROGRAM 

I/O PORTS 

Figure 7a. General-Purpose Registers with External RAM Figure 7b. General-Purpose Registers without External RAM 

34 

- - { 1---'-'---'-------1 ::: 

THEU 'P"P--E-R-N-IB-S-LE-O--F--T--H--E-R--E--G--IS--TE--R--" 240 

FILE ADDRESS PROVIDED BY THE 
REGISTER POINTER SPECIFIES THE 
ACTIVE WORKING REGISTER GROU~ 

--{ 
1 27 

--{ 
~~{ 

--{ 
{ SPECIFIED WORKING· 

REGISTER GROUP --I-

THE LOWER 
NIBBLE OF 
THE REGISTER 
FILE ADDRESS 
PROVIDED BY 

--{ 
--{ 
--{ 

1 

1-- - -'/OPORTs----- 3 
0 

Figure 8. The Register Pointer 

THE INSTRUCTION 
POINTS TO THE 
SPECIFIED 
REGISTER. 



PROGRAM EXECUTION 

Automatic Start-up. The Z8671 has an automatic start-up 
capability which allows a program stored in ROM to be 
executed without operator intervention. Automatic 
execution occurs on power-on or Reset when the program is 
stored at address 1020H. 

Execution Modes. The Z8671's BASIC/Debug Interpreter 
operates in two execution modes: Run and Immediate. 

INTERACTIVE DEBUGGING 

Interactive debugging is accomplished with the self­
contained line editor which operates in the Immediate 
mode. In addition to changing program lines, the editor can 
correct an immediate command before it is executed. It also 
allows the correction of typing and other errors as a program 
is entered. 

BASICIDebug allows interruptions and changes during a . 

COMMANDS 

BASICIDebug recognizes 15 command keywords. For 
detailed instructions of command usage,. refer to the 
BASIC/Debug Software Reference Manual (#03-3149-02). 

FO The GO command unconditionally branches 
to a machine language subroutine. This 
statement is similar to the USR function 
except that no value is returned by the 
assembly language routine. 

GOSUB GOSUB unconditionally branches to a 
subroutine at a line number specified by the 
user. 

GOTO 

IFITHEN 

INPUTIIN 

GOTO unconditionally changes the se­
quence of program execution (branches to a 
line number). 

This command is used for conditional 
operations and branches. 

These commands request information from 
the user with the prompt "7", then read the 
input values (which must be separated by 
commas) from the keyboard, and store them 
in the indicated variables. INPUT discards 
any values remaining in the buffer from 
previous IN, INPUT, or RUN statements,and 
requests new data from the operator. IN uses 

Programs are edited and interactively debugged in the 
Immediate mode. Some BASICIDebug commands are 
used almost exclusively in this mode. The Run mode is 
entered from the Immediate mode by entering the 
command RUN. If there is a program in RAM, it is executed. 
The system returns to the Immediate mode when program 
execution is complete orinterrupted by an error. 

program run to correct errors and add new instructions 
without disturbing the sequential execution of the program . 

. A program run is interrupted with the use of the escape key. 
The run is restarted with a GOTO command, followed by the 
appropriate line number, after the desired changes are 
entered. The same procedure is used to enter corrections 
after BASIC/Debug returns an error. 

LET 

LIST 

NEW 

PRINT 

REM 

RETURN 

RUN 

STOP 

any values left in the buffer first, then requests 
new data. 

LET assigns the value of an expression to a 
variable or memory location. 

This command is used in the interactive mode 
to generate a listing of program lines stored in 
memory on the terminal device. 

The NEW command resets pointer R10-11 to 
the beginning of user memory, thereby 
marking the space as empty and ready to 
store a new program. 

PRINT lists its arguments, which may be text 
messages or numerical values, on the output 
terminal. 

This command is used to insert explanatory 
messages into the program. 

This command returns control to the line 
following a GOSUB statement. 

RUN initiates sequential execution of all 
instructions in the current program. 

STOP ends program execution and clears the 
GOSUB stack. 

35 



FUNCTIONS 

BASIClDebug supports two functions: AND and USR. 

The ANDfunction performs a logical AND. It can be used to 
mask, turn off, or isolate bits. This function is used in the 
following format: 

AND (expression, expression) 

The two expressions are evaluated, and their bit patterns are 
ANDed together. If only one value is included in the 
parentheses, it is ANDed with itself. A logical OR can also be 
performed by complementing the AND function. This is 
accomplished by subtracting each expression from -1 . For 
example, the function below is equivalent to the OR of A 
and B. 

-1-AND(-1-A, -1-B) 

SERIAL INPUT/OUTPUT 

Port 3 lines P30 and P37 can be programmed as serial I/O 
lines for full-duplex serial asynchronous receiver/transmitter 
operation. The bit rate is controlled by CounterlTimer 0, with 
a maximum rate of 62.5K bits/second. 

The Z8671 automatically adds a start bit and two stop bits to 
transmitted data (Figure 9). Odd parity is also available as an 
option. Eight data bits are always transmitted, regardless of 

LSTARTBIT 

'------EIGHT DATA BITS 

TWO STOP BITS 

TRANSMITTED DATA 
(No Parity) 

1·1·lpl~I~I~I~I~I~I~I~1 T I LSTART BIT 

'-
________ SEVEN DATA BITS 

. ODD PARITY 

TWO STOP BITS 

TRANSMITTED DATA 
(With Parity) 

The USR function calls a machine language subroutine and 
returns a value. This is useful for applications in which a 
subroutine can be performed more quickly and efficiently in 
machine language than in BASIC/Debug. 

The address of the first instruction of the subroutine is the 
first argument of the USR function. The address can be 
followed by one or two values to be processed by the 
subroutine. In the following example, BASIC/Debug 
executes the subroutine located at address 2000 using 
values literal 256 and variable C. 

USR(%2000,256,C) 

The resulting value is stored in Registers 18-19. 

N 
00 

~ .... 
parity selection. If parity is enabled, the eighth data bit is ~ 
used as the odd parity bit. An interrupt request (IRQ4) is .... 
generated on all transmitted characters. 

Received data must have a start bit. eight data bits, and at 
least one stop bit. If parity is on, bit 7 of the received data is 
replaced by a parity error flag. Received characters 
generate the IRQ3 interrupt request. 

I·I~I~I~I~I~I~I~I~I~I 

LSTART BIT 

'------EIGHT DATA BITS 

'----,--------ONE STOP BIT 

RECEIVED DATA 
(No Parity) 

II LSTART BIT 

'------SEVEN DATA BITS 

'----------PARITY ERROR FLAG 

L-. ---------ONE STOP BIT 

RECEIVED DATA 
(With Parity) 

Figure 9. Serial Data Formats 

36 



I/O PORTS 

The Z8671 has 32 lines dedicated to input and output. 
These lines are grouped into four ports of eight lines each 
and are configurable as input, output or address/data. 
Under software control, the ports can be programmed to 
provide address outputs, timing, status signals, serial 110, 
and parallel 110 with or without handshake. All ports have 
active pull-ups and pull-downs compatible with TTL loads. 

Port 1 can be programmed as a byte 110 port or as an 
address/data port for interfacing external memory. When 
used as an 110 port, Port 1 may be placed under handshake 
control. In this configuration, Port 3 lines P33 and P34 are 
used as the handshake controls RDY1 and DAV1 (Ready 
and Data Available). 

Memory locations greater than 2048 are referenced 
through Port 1. To interface external memory, Port 1 must be 
programmed for the multiplexed Address/Data mode. If 
more than 256 external locations are required, Port 0 must 
output the additional lines. 

Port 1 can be placed in the high-impedance state along with 
Port 0, AS, OS and R/W, allowing the Z8671 to share 
common resources in multiprocessor and DMA 
applications. Data transfers can be controlled by assigning 
P33 as a Bus Acknowledge input and P34 as a Bus Request 
output. 

Port 0 can be programmed as a nibble 110 port, or as an 
address port for interfaCing external memory. When used as 
an 110 port, Port 0 may be placed under handshake control. 
In this configuration, Port 3 lines P32 and P35are used as 
the handshake controls DAVO and RDYO. Handshake signal 
assignment is dictated by the 110 direction of the upper 
nibble P04-P07. 

Z8671 
MCU 

Z8671 
MCU 

PORT 1 
(I/O OR ADo-AD,) P10-Pl, 

} 
HANDSHAKE CONTROLS 
DAVI AND RDYI . 
(P3, AND P34) 

Figure 108. Port 1 

} 
P04-PO, } PORT 0 
POO-P03 (1/0 OR A8-A15 \ 

} 
HANDSHAKE CONTROLS 
DAVO AND RDYO . 
(P3, AND P35) 

Figure 10b. Port 0 

For external memory references, Port 0 can provide address 
bits A8-A11 (lower nibble) or A8-A15 (lower and upper nibble) 
depending on the required address space. If the address 
range requires 12 bits or less, the upper nibble of PortO can 
be programmed independently as 110 while the lower nibble 
is used for addressing. When Port 0 nibbles are defined as 
address bits, they can be set to the high-impedance state 
along with Port 1 and the control signals AS, OS and RtW. 

Port 2 bits can be programmed independently as input or 
output. The port is always available for 110 operations. In 
addition, Port 2 can be configured to provide open-drain 
outputs. 

Like Ports 0 and 1, Port 2 may also be placed under 
handshake control. In this configuration, Port 3 lines P31 
and P36 are used as the handshake controls lines DAV2 and 

. RDY2. The handshake signal assignment for Port 3 lines 
P31 and P36 is dictated by the direction (input or output) 
assigned to bit 7 of Port 2. 

Port 3 lines can be configured as 110 or control lines. In 
either case, the direction of the eight lines is fixed as four 
input (P30-P33) and four output (P34-P37)' For serial 110, 
lines P30 and P37 are programmed as serial in and serial out 
respectively. . 

Port 3 can also provide the following control functions: 
handshakei for Ports 0, 1 and 2 (DAV and ROY); four external 
interrupt request signals (IROO-IR03); timer input and 
output signals (TIN and Tour) and Data Memory Select 
(OM). 

Z8671 
MCU 

Z8671 
MCU 

P20 

PORT 2(1/0) 

P21 

} 
HANDSHAKE CONTROLS 
DAV2 AND RDY2 -
(P13 AND P3,) \ 

Figure 10c. Port 2 

PORT 3 
(UO OR CONTROL) 

Figure 10d. Port 3 

37 



COUNTER/TIMERS 

The Z8671 contains two 8-bit programmable counter/timers 
(TO and T1), each driven by its own 6-bit programmable 
prescaler. The T1 prescaler can be driven by internal or 
external clock sources; however, the TO prescaler is driven 
by the internal clock only. 

The 6-bit prescalers can divid.e the input frequency of the 
clock source by any number from 1 to 64. Each prescaler 
drives its counter, which decrements the value (1 to 256) that 
has been loaded into the counter. When the counter reaches 
the end of count, a timer interrupt request-IR04 (To) or 
IR05 (T1)-is generated. 

The counters can be started, stopped, restarted to continue, 
or restarted from the initial value. The counters can also be 
programmed to stop upon reaching zero (single-pass 

INTERRUPTS 

The Z8671 allows six different interrupts from eight sources: 
the four Port 3 lines P30-P33, Serial In, Serial Out, and the 
two counter/timers. These interrupts are both maskable and 
prioritized. The Interrupt Mask register globally or 
individually enables or disables the six interrupt requests. 
When more than one interrupt is pending, priorities are 
resolved by a programmable priority encoder that is 
controlled by the Interrupt Priority register. 

All Z8671 interrupts are vectored; however, the internal 
UART operates in a polling fashion. To accommodate a 
polled structure, any or all of the interrupt inputs can be 
masked and the Interrupt Request register polled to 
determine which of the interrupt requests needs service. 

The BASIC/Debug Interpreter does not process interrupts. 
Interrupts are vectored through locations in internal ROM 
which point to addresses 1000-1011H. To process 

38 

mode) or to automatically reload the initial value and 
continue counting (modulo-n continuous mode). The 
counters, but not the prescalers, can be read any time 
without disturbing their value or count mode. 

The clock source for T1 is user-definable; it can be either the 
internal microprocessor clock (4 MHz maximum) divided by 
four, or an external signal input via Port 3. The Timer Mode 
register configures the external timer input as an external 
clock, a trigger input that can be retriggerable or 
nonretrig(:Jerable, or as a gate input for the internal clock. 
The counter/timers can be programmably cascaded by 
connecting the TO output to the input of T1. Port 3 line P36 
also serves as a timer output (TOUT) through which TO, T1 or 
the internal clock can be output. 

interrupts, jump instructions can be entered to the interrupt 
handling routines at the appropriate addresses as shown in 
Table 1. 

Table 1. Interrupt Jump Instructions 

Hex Contains Jump Instruction and 

Address Subroutine Address for: 

1000-1002 IROO 

1003-1005 IR01 

1006-1008 IR02 

1009-1008 IR03 

100e-100E IR04 

1 OOF-1 011 IR05 



CLOCK 

The on-chip oscillator has a high-gain, parallel-resonant 
amplifier for connection to a crystal or to any suitable 
external clock source (XTAL 1 = Input, XTAL2 = Output). 

The crystal source is connectecfacross XTAL 1 and XTAL2, 
using the recommended capacitance (CL = 15 pf 
maximum) from each pin to ground. The specifications for 
the crystal are as follows: 

INSTRUCTION SET NOTATION 

Addressing Modes_ The following notation is used to 
describe the addressing modes and instruction operations 
as shown in the instruction summary. 

IRR Indirect register pair or indirect working-register 
pair address 

Irr Indirect working-register pair only 
X Indexed address 
DA Direct address 
RA Relative address 
1M Immediate 
R Register or working-register address 
r Working-register address only 
IR Indirect-register or indirect working-register 

address 
Ir Indirect working-register address only 
RR Register pair or working register pair address 

Symbols. The following symbols are used in describing the 
instruction set. 

dst 
src 
cc 
@ 

SP 
PC 
FLAGS 
RP 
IMR 

Destination location ,or contents 
Source location or contents 
Condition code (see list) 
Indirect address prefix 
Stack pointer (control registers 254-255) 
Program counter 
Flag register (control register 252) 
Register pointer (control register 253) 
Interrupt mask register (control register 251) 

III AT cut, parallel resonant 

Ii Fundamental type, 8 maximum 

• Series resistance, R "" 1 00 Q 

III 8 MHz maximum 

Assignment of a value is indicated by the symbol "9': For 
example, 

dst +- dst + src 

indicates that the source data is added to the destination 
data and the result is stored in the destination location. The 
notation "addr(n)" is used to refer to bit "n" of a given 
location. For example, 

dst(7) 

refers to bit 7 of the destination operand. 

Flags. Control Register R252 contains the following six 
flags: 

C 
Z 
S 
V 
D 
H 

Carry flag 
Zero flag 
Sign flag 
Overflow flag 
Decimal-adjust flag 
Half-carry flag 

Affected flags are indicated by: 

. 0 Cleared to zero 
1 Set to one 

Set or cleared according to operation 
Unaffected 

X Undefined 

39 



CONDITION CODES 

Value Mnemonic 

1000 
0111 C 

1111 NC 

0110 Z 

1110 NZ 

1101 PL 

0101 MI 

0100 bv 
1100 NOV 

0110 EQ 

1110 NE 

1001 GE 

0001 LT 

1010 GT 

0010 LE 

1111 UGE 

0111 ULT 

1011 UGT 

0011 ULE 

0000 

INSTRUCTION FORMATS 

OPC MODE 

dst/src OR 11 1 1 01 dsUsre I 

OPC 

lOR 11 1 101 dst dst 

OPC 
VALUE 

MODE OPC 
dstlsrc src/dst 

OR 11 1 1 01 sre 

dst I OPC 
VALUE 

I dsUCC I OPC 
RA ' 

Meaning 

Always true 

Carry 

No carry 

Zero 

Not zero 

Plus 

Minus 

Overflow 

No overflow 

Equal 

-Not equal 

Greater than or equal 

Less than 

Greater than 

Less than or equal 

Unsigned greater than or equal 

Unsigned less than 

Unsigned greater than 

Unsigned less than or equal 

Never true 

oPC CCF, DI, EI, IRET, NOP, 
ReF, RET, SCF 

dst OPC INCr 

ONE·BYTE INSTRUCTION 

CLR, CPL, DA, DEC, 
DECW, INC, INCW, POP" OR 1 1 1 0 PUSH, RL, RLC, RR, 
RRC, SRA, SWAP OR 1 1 1 0 

JP, CALL (I"dlreel) 

OR 11 1 1 01 

SRP 

MODE OPC 

sre OR 1 1 1 0 
ADC, ADD,-AND, 

dst OR 1 1 1 0 , CP, OR, SBC, SUB, 
TCM, TM, XOR 

LD, LDE, LDEI, 
LDC, LDCI 

LD 
OPC ee 

DAu 
DAL 

LD 

OPC 

DAu 

DJNZ, JR DAL 

Flags Set 

C = 1 
C=O 

Z = 1 

Z=O 

8=0 

8 = 1 

V = 1 
V=O 

Z = 1 

Z=O 

(SXORV) = 0 

(8XORV) = 1 

[ZOR (8XOR V)) = 0 
[Z OR (8 XOR V)) = 1 
C=O 

C=1 

(C = 0 AND Z = 0) = 1 

(CORZ) = 1 

ADC, ADD, AND, CP, 

sre LD, OR, SBC, SUB, 
TCM, TM, XOR 

dst 

ADC, ADD, AND, CP, 

dst LD, OR, SBC, SUB, 
TCM, TM, XOR 

LD 
sre 

dst 

LD 

JP 

CALL 

TWO·BYTE INSTRUCTION THREE· BYTE INSTRUCTION 

Figure 11. Instruction Formats 

40 



INSTRUCTION SUMMARY 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V 0 H and Operation dst src (Hex) C Z S V 0 H 

AOCdst.sre (Note 1) 10 * * * * o * JR ee,dst RA eB ------
dst ... dst + sre + C if ee is true, e=O-F 

00 11 11 0 '* PC -PC + dst 
ADD dst.sre (Note 1) 11 11 Range: +127, -128 
dst - dst + sre 

LOdst.sre 1m rC ------
AND dst.sre (Note 1) 50 -*11 0-- dst~sre R r8 r 
dst - dst ANO sre R r9 
CALL dst OA 06 ------ r = 0 - F 
SP-SP - 2 IRR 04 r X C7 
@SP - PC: PC ~ dst X r 07 

r Ir E3 
CCF EF ",-----

Ir r F3 
C-NOTC R R E4 
CLR dst R BO ------ R IR E5 
dst-O IR B1 R 1M E6 

IR 1M E7 
COMdst R 60 -1111 0-- IR R F5 
dst-NOTdst IR 61 

LOCdst,sre r Irr C2 ------
CPdst.sre (Note 1) AD * * '* *-- dst-sre Irr 02 
dst - sre 

LOCI dst,sre Ir Irr . C3 ------
OAdst R 40 '* 1t '* X-- dst-src Irr Ir 03 
dst-OAdst IR 41 r-r + 1; rr-rr + 1 

OECdst R 00 -,*,* 'f:-- LOEdst,sre r Irr 82 -----....!.... 
dst-dst - 1 IR 01 dst-sre Irr 92 
OECWdst. RR 80 -* **-- LOEI dst,sre Ir Irr 83 ------
dst-dst - 1 IR 81 dst-src Irr Ir 93 
01 r-r+ 1;rr-rr+ 1 
IMR(7)-O 8F ------ NOP FF ------
OJNZ r,dst RA rA ------ ORdst,sre. (Note 1) 40 -,'f: '* 0 --
r-r-1 r=O-F dst - dst OR src 
ifr",O 

PC-PC + dst POP dst R 50 ------
Range: + 127, -128 dst-@SP; IR 51 

EI 9F 
SP-SP + 1 

------
IMR(7)-1 PUSHsre R 70 ------

SP - SP - 1; @SP - src IR 71 
INCdst rE -*",*--
dst -dst + 1 r = 0 - F RCF CF 0-----

R 20 C-O 
IR 21 RET AF ------

INCWdst RR AO -.* **-- PC -@SP;SP-SP + 2 
dst -dst + 1 IR· A1 

RLdst ~I~ 90 * * ", *--
IRET BF * * * * '* * 91 
FLAGS - @SP; SP - SP + 1 

RLC dst cm:=::ciJ R 10 * * * * PC -@SP;SP-SP + 2; IMR (7)-1 C 7 0 IR 11 
JPee,dst OA cO ------

RRdst 
L{ij LbJI~ EO * * * * if ee is true e=O-F 

E1 
PC-dst IRR 30 

41 



INSTRUCTION SUMMARY (Continued) 

Addr Mode Opcode Flags Affected 
Byte Instruction 

and Operation dst src (Hex) C Z S V 0 H 

RRC dst liIHi::jJ R 
C 7 0 IR 

SBC dst,src (Note 1) 

dst.- dst - src - C· 

SCF 
C-1 

SRA dst l@i @ R 
IR 

SRP src 

RP - src 

1m 

SUB dst,src 

dst - dst - src 

(Note 1) 

SWAP dst 17 55 01 R 
IR 

TCM dst,src 
(NOT dst) AND src 

TM dst,src 
dst AND src 

42 

(Note 1) 

(Note 1) 

CO 
C1 

3D 

OF 

DO 
01 

31 

20 

FO 
F1 

60 

70 

* * * * 

1-----

***0--

X'* * X 

Instruction 
and Operation 

XOR dst,src 
dst - dst XOR src 

Addr Mode Opcode Flags Affected 
Byte 

dst src (Hex) C Z S V 0 H 

(Note 1) BO 

NOTE: These instructions have an identical set of addressing modes, 
which are encoded for brevity. The first opcode nibble is found in 
the instruction set table above, The second nibble is expressed 
symbolically by a 0 in this table, and its value is found in the 
following table to the left of the applicable addressing mode pair, 

For example, the opcode of an ADC instruction using the 
addressing modes r (destination) and Ir (source) is 13. 

AddrMode 
Lower 

dst src Opcode Nibble 

ill 
Ir m 

R R 0 
R IR [[] 
R 1M II] 
IR 1M 0 

N 
00 
~ 
1003 .... 
11 
n 
d 



REGISTERS R240 SIO 
Serial 110 Register 

(FOH; Read/Write) 

'-----SERIAL CATAlDo = LSB) 

R241 TMR 
Time Mode Register 

(F1 H; Read/Write) 

To",'MODES j lS~o = NO FUNCTION NOT useD:: 00 -.J 1 = LOAD To 

. i~ g~~ : ~J 0 = DISABLE To COUNT 
INTERNAL CLOCK OUT = 11 1 = ENABLE To COUNT 

T MODES 0 = NO FUNCTION 
EXTERNAL CLOCK INPI~T = 00 1 = LOAD T, 

GATE INPUT = 01 0 = DISABLE T, COUNT 

(NON.R~~~~g~~~~:~~) = 10 ' 1 = ENABLE T, COUNT 

TRIGGER INPUT = 11 
(RETRIGGERABLE) 

R242 T1 
Counter Timer 1 Register 

(F2H; Read/Write) 

T, INITIAL VALUE (WHEN WRITTEN) 
'-----(RANGE 1-256 DECIMAL 01-00 HEX) 

T, CURRENT VALUE (WHEN READ) 

R243 PRE1 
Prescaler 1 Register 

(F3H; Write Only) 

~LCOUNTMODE 
1 = T, MODULO·~~ 
o ;;: T, SINGLE·PASS 

CLOCK SOURCE 
1 =. T, INTERNAL 
o '" T, EXTERNAL 

TIMING INPUT 
(Tn~) MODE 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R244 TO 
Counter/Timer 0 Register 

(F4H; Read/Write) 

To INITIAL VALUE (WHEN WRITTEN) 
'-----(RANGE: 1-256 DECIMAL 01-00 HEX) 

To CURRENT VALUE (WHEN READ) 

R245PREO 
Prescaler 0 Register 

(F5H; Write Only) 

~lCOUNTMODE 
, 0 = To SINGLE·PASS 

1 = To MODULO·N 

RESERVED (MUST BE 0) 

PRESCALER MODULO 
(RANGE: 1-64 DECIMAL 
01-00 HEX) 

R246 P2M 
Port 2 Mode Register 

(F6H; Write Only) 

I~I~I~I~I~I~I~I~I 

R247P3M 
Port 3 Mode Register 

(F7H; Write Only) 

~. ~Lo PORT 2 PULL,UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

RESERVED (MUST BE 0) 

o P32 == INPUT P3s = OUTPUT 
1 P32 '" DAVOIRDYO P3s "" RDYOJDA'JO 

00 P3l == INPUT P3. == OUTPUT 

~~} P3l "" INPUT P3. = i5"M 
11 RESERVED 

'-------~ ~~~ ~ ~:vU;~ri~~ =~: ~ ~~~~~~V20UT) 

'-------- ~ =~~ ~ ~N~~!L IN :~~ ~ ~~;r~~T OU; '-________ ~ =~=:~~ g~F 
Figure 12. Control Registers 

43 



REGISTERS 
(Continued) 

R248 P01M 
Port 0 Register 
(F8H; Write Only) 

PO,_PO, MODE:] ~----r PO.-PO, MOOE OUTPUT", 00 ~ L 00::; OUTPUT 
INPUT = 01, 01 = INPUT 

A12-A1S = lX . lX = As-All 

EXTERNAL slACK SELECTION 
MEMORY TIMING 0 = EXTERNAL 

NORMAL = 0 1 = INTERNAL 
-EXTENDED = 1 

RESERVED (MUST BE 0) 

'ALWAYS EXTENDED TIMING AFTER RESET 

R2491PR 
Interrupt Priority Register 

(F9H; Write Only) 

I~I~I~I~I~I~I~I~I 

RESERVED = 000 
IR03, IROS PRIORITY (GROUP A) . C > A > B = 001 ""'~.~ I I III···-"",,,,",,·m 

o = lAOS> IRC3 A > B > C = 010 
1 = IRCJ > IROS, A> C > B = 011 

IROO, IRQ2 PRIORITY (GROUP 5) ~ ~ ~ ~ : ~ ~~~ 
o = IAQ2 > IROO B > A > C = 110 
1 = IROO > IRQ2 RESERVED = 111 

IRQ1, IRQ4 PRIORITY (GROUP C) 
o :::; IRQ1 > IRQ4 -
1 = IRQ4 > IRQ1 

R250lRQ 
Interrupt Request Register 

(FAH; Read/Write) 

I~I~I~I~I~I~I~I~I 

RESERVED (MUST BE O):::y-- c= IROO 
IRQ1 
IRQ2 
IRC3 
IRQ4 
lAOS 

R2511MR 
Interrupt Mask Register 

(FBH; Read/Write) 

I~I~I~I~!~I~I~I~I 

P32 INPUT (Do :: IRaO) 
P331NPUT 
P31 INPUT 
P30 INPUT, SERIAL INPUT 
To"SERlAL OUTPUT 
T, 

II c= 1 ENABLES IROO·IROS 
(Do = IROO) 

'-------RESERVED (MUST BE 0) 

'--------1 ENABLES INTERRUPTS 

REGISTER 
POINTER 

Figure 12. Control Registers (Continued) 

44 

R252 FLAGS 
Flag Register 

(FCH; Read/Write) 

~~~
I LUSERFLAGF1

LUSER FLAG F2

HALF CARRY FLAG

DECIMAL ADJUST FLAG

OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

R253 RP
Register Pointer
(FDH; Read/Write)

LOON'TCARE

R254SPH
Stack Pointer

(FEH; Read/Write)

R255SPL
Stack Pointer

(FFH; Read/Write)

OPCODEMAP
Lower Nibble (Hex)

o 2 5 6 7 8 9 A B C o E F

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5
o DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC

R, IR, (1 J2 (1, lr2 R2,R, IR2,R, R"IM 1R"IM r"R2 r2,R , r"RA cC,RA r"IM cC,DA r1

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
I----

RLC RLC ADC ADC ADC ADC ADC ADC
R, IR, (, ,r2 'l, lr2 R2,R, IR2,R, R"IM IR"IM

I--
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5

2 INC INC SUB SUB SUB SUB SUB SUB
R, IR, (1·(2 (1. lr2 R2,R, IR2,R, R"IM IR"IM

8,0 6,1. 6,5 6,5 10,5 10,5 10,5 10,5
I--

JP SRP SBC SBC SBC SBC SBC SBC
IRR, 1M r1,r2 r1, lr2 R2,R, IR2,R, R"IM IR"IM

8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5
I----

DA DA OR OR OR OR OR OR ..

R, IR, (1,r2 r1, lr2 R2,R, IR2,R, R"IM IR
"

IM
I--

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5
POP POP AND AND AND AND AND AND
R, IR, (1,(2 r1, lr2 R2,R, IR2,R, R"IM IR"IM

I----
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5

COM COM TCM TCM TCM TCM TCM TCM
R, IR, (1,(2 r1, lr2 R2,R, IR2,R, R"IM IR"IM

10/12,1 12/14,1 6,5 6,5 10,5 10,5 10,5 10,5
I----

PUSH PUSH TM TM TM TM TM TM
R2 IR2 r1,r2 r1, lr2 R2,R, IR2,R, R"IM IR

"
IM

i e. 7
" :;;

I--
10,5 10,5 12,0 18,0 6,1

.c
Z

DECW DECW LDE LDEI 01
RR, IR, rl, Jrr2 Ir1,lrr2

I----
6,5 6,5 12,0 18,0 6,1

Oi 8
Q.
Q.

:::>

9 RL RL LDE LDEI EI
R, IR, (2, lrr 1 Ir2,1rr1

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 ~
A INCW INCW CP CP CP CP CP CP RET

RR, IR, (1·(2 (1,1r2 R2,R, IR2,R, R"IM IR"IM
I--

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 16,0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET

R, IR, rl.r2 r1, lr2 R2,R, IR2,R, R"IM IR
"

IM
I----

6,5 6,5 12,0 18,0 10,5 6,5
C RRC RRC LDC LOCI LD RCF

R, IR, (1. lrr2 Ir1.lrr2 rl,x,R2
I--

6,5 6,5 12,0 18,0 20,0 20,0 10,5 6,5
0 SRA SRA LDC LOCI CALL" CALL LD SCF

R, IR, (2. lrr1 Ir2,lrr1 IRR, DA r2,x,Rl
I--

6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5
E RR RR LD LD LD LD LD CCF

R, IR, r" IR2 R2,R, 1R2,R, R
"

IM IR
"

IM

8,5 8,5 6,5 10,5 rs:o
F SWAP SWAP LD LD NOP

R, IR, Ir1.(2 R2, IR ,

~'--------~'r~--------~~~'--------~'r~--------~~~'----------~'r~----------~#~~
2

EXECUTION
CYCLES

FIRST
OPERAND

LOWER
OPCODE

NIBtLE

4

• 2·byte InstrucliOn: fetch cycle appears as a 3·byte Instruction

3

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

2

Legend:
R = 8·bit address
r = 4-bit address
Al or (1 =: Ost address
R20rr2 = Src address

Sequence:

3

Opcode, First Operand, Second Operand

NOTE: The blank areas are not defined.

45

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect
toGND -0.3Vto +7.0V

Operating Ambient
Temperature See Ordering Information

Storage Temperature - 65°C to + 150°C

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are:

.. +4.75V';;Vee';; +5.25V

.. GND = OV

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is 'a stress rating only;
operation of the device at ·any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

The Ordering Information section lists package temperature
ranges and product numbers. Package drawings are in the
Package Information section. Refer to the Literature List for
additional documentation.

+5V

2.1K

-: -:

Figure 13. Test Load 1

DC CHARACTERISTICS

Symbol Parameter

VeH Clock Input High Voltage

Vel Clock Input Low Voltage

VIH Input High Voltage

VIL Input Low Voltage

VRH Reset Input High Voltage

VRl Reset Input Low Voltage

VOH Output High Voltage

VOL Output Low Voltage

III Input Leakage

IOL Output Leakage

IIR Reset Input Current

lee Vee Supply Current

46

Min Max

3.8 Vee
-0.3 0.8

2.0 Vee
-0.3 0.8

3.8 Vee
-0.3 0.8

2.4

0.4

-10 10

-10 10

-50

180

Unit

V

V

V

V

V

V

V

V

/-lA

/-lA

/-lA
mA

Condition

Driven by External Clock Generator

Driven by External Clock Generator

IOH = -250/-lA

IOl = +2.0mA

OV"; VIN';; + 5.25V

OV ";VIN';; + 5.25V

Vee = +5.25V, VRl = OV

PORT 0,
OM

PORT 1

OS
(READ)

PORT 1

OS
(WRITE)

).
~

)(

)!
~

1----0--

16
J

Ao-A7 ~ <
-<D-

• 0 ~

~I. CD

~~
Ao-A7){ 00-07 OUT

I~I
'J:" (j)

Figure 16. External 110 or Memory ReadIWrite

AC CHARACTERISTICS
External 110 or Memory Read/Write Timing

No. Symbol Parameter

TeIA(AS) Address Valid to AS i Delay

2 TelAS(A) AS i to Address Float Delay

3 TelAS(DR) AS i to Read Data Required Valid

4 TwAS AS Low Width

5 . TelAz(DS) Address Float to OS ~

--®--I

K=
DO-07IN } <

-. 01-

~~
~~

---®--+-

~
-®-I

')

Min Malt

35

45

55

o

220

Notos*to

2,3

2,3

1,2,3

1,2,3

6-TwDSR OS (Read) Low Width --------------185-------1,2,3

7 TwDSW OS (Write) Low Width 110 1,2,3

8 TdDSR(DR) OS ~ to Read Data Required Valid 130 1,2,3

9 ThDR(DS) Read Data to OS i Hold Time o
10 TdDS(A) OS i to Address Active Delay 45 2,3

11 TdDS(AS) OS i to AS ~ Delay 55 2.3

12 - TdRIW(AS) -- RlWValid to AS i Delay --------------30------- 2,3

13 TdDS(RIW) OS i to RIW Not Valid 35 2,3

14 TdDW(DSW) Write Data Valid to OS (Write) ~ Delay 35 2,3
15 TdDS(DW) OS i to Write Data Not Valid Delay 45 2,3

16 TeIA(DR)

17 TdAS(DS)

Address Valid to Read Data Required Valid

AS i to OS ~ Delay 55

255 1,2,3

2,3

NOTES:
I. When using extended memory timing add 2 TpC.
2. Timing numbers given aTe for minimum TpC.
3. See clock cycle time dependent characteristics table.

I Tesl Lead 1.
o All timing references use 2.0 Viora logic "1" and O.S V for a logic "0",
.. All units in nanoseconds (ns).

47

Figure 17. Additional Timing

AC CHARACTERISTICS
Additional Timing

No. Symbol

2

3

TpC

TrC,TIC

TwC

Parameter

Input Clock Period

Clock Input Rise And Fall Times

Input Clock Width

MiD

80

26
4 TwTinL Time Input Low Width 70

Max

1000

15

NoteD·

2

5-TwTinH ---Timer Input High Width ----------------3TpC -------- 2

6 TpTin TimerlnputPeriod 8TpC

7 TrTin, TfTin Timer Input Rise And Fall Times

8a TwIL Interrupt Request Input Low Time

8b TwIL Interrupt Request Input Low Time

9 TwIH Interrupt Request Input High Time

NOTES:
1. Clock timing references uses 3.8 V for a logic "1 ".and 0.8 V for

a logic "0".
2. Timing reference uses 2.0 V for a logic "1" and 0.8 V for

a logic "0".

=-~_-J_~_ _-_____ --'._0_11-_-_-_-........ --.1
DON'T CARE ,Xj.. DO-D7

70

3TpC

3TpC

3. Interrupt request via Port 3 (P31-P33).
4. Interrupt request via Port 3 (P30)'
• Units in nanoseconds (ns).

ADDRESS VALID

UAIA IN VAlllJ

Figure 18. Memory Port Timing

AC CHARACTERISTICS
Memory Port Timing

No. Symbol

1 TdA(DI)

2 ThDI(A)

NOTES:

Parameter

Address Valid to Data Input Delay

Data In Hold time

MiD

o

100

Max

320

1. Test Load 2. • Units are nanoseconds unless otherwise specified.
2. This is a Clock·eyde·Dependent parameter. For clock frequencies

other than the maximum, use the following formula: 5 TpC - 95

48

2

2

2,3

2.4

2,3

Notes·

1,2

1

N
00
~ ..:a
D"'"

• n
CI

DATA IN ~ DATA IN VALID](

(I~P~~' 0.+J:=i =~::jj:4 ==:::~_:):::~~:~'-------
RDY ~~~~~~~~~~~~~~~~~~~~~ ~~~-----------

(OUTPUT)

Figure 18a.lnput Handshake

DATA OUT)f DATA OUT VALID

DAV
(OUTPUT)

RDY
(INPUT)

1~-8-i-, -----

---);-=-~CD~~~-H6~

AC CHARACTERISTICS
Handshake Timing

Figure 18b. Output Handshake

No. Symbol Paramoter Min Nolos"

1 TsD!(DAV)

2 ThDI(DAV)

Data In Setup Time

Data In Hold time

3 TwDAV Data Available Width

o
160

120

4 TdDAVIf(RDY) DAV !Input to RDY ~ Delay 120 1,2

5-TdDAVOf(RDY)-- DAV ~ Output to RDY ~ Delay------------- 0 --------1,3

6 TdDAVIr(RDY) DAV tInput to RDY t Delay 120 1,2

7 TdDAVOr(RDY)

8 TdDO(DAV)

9 TdRDY(DAV)

NOTES:
I. Test load I
2. Input handshake
3. Output handshake

DAV t Output to RDY t Delay

Data Out to DAV ~ Delay

Rdy ~ Input to DAV t Delay

t All timing references use 2.0 V fora logic "1" and 0.8 V for
• logic "0".

.. Units in nanoseconds (ns).

o
30

o

CLOCK CYCLE TIME-DEPENDENT CHARACTERISTICS

Z8671-8
Number Symbol Equation Number Symbol

1 TdA(AS) TpC - 75 13 TdDS(R/W)
2 TdAS(A) TpC - 55 14 TdDW(DSW)
3 TdAS(DR) 4TpC - 140* 15 TdDS(DW)
4 TwAS TpC - 45 16 TdA(DR)
6 TwDSR 3TpC - 125* 17 TdAS(DS)

7 TwDSW 2TpC - 90*
8 TdDSR(DR) 3TpC-175*

10 Td(DS)A TpC - 55
11 TdDS(AS) TpC - 55

12 TdR/W(AS) TpC - 75

* Add 2T pC when using extended memory timing

1,3

140

Z8671-8
Equation

TpC - 65
TpC - 75

TpC - 55

5TpC-215*

TpC - 45

49

, ,

Zilog' '~r~duct Specification _ '

, ~, '. " ,!<r' ,. '> \

FEATURES

• Complete microcomputer, 24 I/O lines, and up to 64K
bytes of addressable external space each for program
and data memory,

• 143-byte register file, including 124 general-purpose
registers, 3 I/O port registers, and 16 status and control
registers,

• Vectored, priority interrupts for I/O, counter/timers, and
UART.

• On-chip oscillator that accepts crystal or external clock
drive,

GENERAL DESCRIPTION

The Z8681 and Z8682 are ROM less versions of the Z8
single-chip microcomputer, The Z8682 is usually more cost
effective. These products differ only slightly and can be
used interchangeably with proper system design to provide
maximum flexibility in meeting price and delivery needs,

-- RESET +5V

R/W GND

os XTALl

AS XTAL2

PO, ,P2"

po, P2,

po, P2,
PORTO

P2,
PORT 2

(NIBBLE PO, (BIT PRO,
PROGRAMMABLE) PO, P2, GRAMMABLE)

110 OR Aa-A15 110
PO, Z8681182 P2,

PO, MCU P2,

PO, P2,

Pl, P3,

Pl, P3,

Pl, P3,
PORT 3 PORT 1

(BYTE Pl, P3, SERIAL AND

PROGRAMMABLE) Pl, P3, PARALLEL 110
ADo-AD? AND CONTROL

Pl, P3,

Pl, P3,

........ Pl, P3,

,
Figure 1. Pin Functions

50

Z8681/82 Z8®
ROMless MCU

June 1987

III Full-duplex UART and two programmable 8-bit
counter/timers, each with a 6-bit programmable
prescaler,

iii Register Pointer so that short, fast instructions can
access ary one of the nine working-register groups,

rn Single + 5V power supply-all I/O pins TTL compatible,

IS Z8681/82 available in 8 MHz, Z8681 also available
in 12 and 16 MHz.

The Z8681 /82 offers all the outstanding features of the Z8
family architecture except an on-chip program ROM, Use of
external memory rather than a preprogrammed ROM
enables this Z8 microcomputer to be used in low volume
applications or where code flexibility is required,

+5V P3,

XTAL2 P3,

XTAL1 P2,

P3, P2,

P3, P2,

RESET P2,

R/W P2,

os P2,

AS P2,

P3, P2,

GND P3,

P3, P3,

PO, Pl,

PO, Pl,

PO, Pl,

PO, Pl,

PO, Pl,

PO, Pl,

PO, Pl,

PO, Pl,

Figure 2a. 40-pin Dual-In-Line Package (DIP),
Pin ASSignments

The Z8681 /82 can provide up to 16 output address lines,
thus permitting an address space of up to 64K bytes of data
or program memory. Eight address outputs (ADo-AD7) are
provided by a multiplexed, 8-bit, Address/Data bus. The
remaining 8 bits can be provided by the software
configuration of Port 0 to output address bits As-A15.

Available address space can be doubled (up to 128K bytes
for the Z8681 and 124K bytes for the Z8682) by
programming bit 4 of Port 3 (P34) to act as a data memory
select output (OM). The two states of OM together with the
16 address outputs can define separate data and memory
address spaces of up to 64K/62Kbytes each.

There are 143 bytes of RAM located on-chip and organized
as a register file of 124 general-purpose registers, 16 control
and status registers, and three I/O port registers. This
register file can be divided into nine groups of 16 working
registers each. Configuring the register file in this manner
allows the use of short format instructions; in addition, any of
the individual registers can be accessed directly.

The pin functions and the pin assignments of the
Z8681/82 40- and 44-pin packages are illustrated in
Figures 1 and 2. respectively.

"v'" ,,'1-
~v q";,~ q~'\.¢-~ .:¢~ x<"~ qfl;,'O q~"" <:l"'\<l}'.'o 9,1-<-:'

OUTPUT

lUUUl
I/O

RESET

R/W

os
AS

P35

IGND

P3,

POo

PO,

P02

NC

7

8

9

10

11

12

13

14

15

16

17

6 5 4 3 2 1 44 43 42 41 40

ZB6B1
MCU

18 19 20 21 22 23 24 25 26 27 28

qf::J~ 4~~ q,t:;)'? qt:'}'O qt:>'\ q,,<;:J q q "" q''':J <l'e. ~v

Figure 2b. 44-pin Chip Carrier,
Pin Assignments

Vee GND

! !

39 NC

38 P2,

37 P2,

36 P2,

35 P2,

34 P20

33 P3,

32 P3,

31 Pl,

30 Pl,

29 P15

ADDRESS OR I/O ADDRESS/DATA OR I/O
(BIT PROGRAMMABLE) (NIBBLE PROGRAMMABLE) (BYTE PROGRAMMABLE)

'~--------------,,~,----------------~
Z·BUS WHEN USED AS

ADDRESS/DATA BUS

Figure 3. Functional Block Diagram

51

ARCHITECTURE

Z8681/82 architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful I/O
capabilities. The Z8681 /82 fulfills this with 24 pins available
for input and output. These lines are grouped into three
ports of eight lines each and are configurable under
software control to provide timing, status signals, serial or
parallel I/O with or without handshake, and an Address bus
for interfacing external memory.

Three basic address spaces are available: program

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS.

OS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer.

POO·P07. P20·P27. P30·P37' I/O Port Lines (input/outputs,
TIL-compatible). These 24 lines are divided into three 8-bit
I/O ports that can be configured under program control for
I/O or external memory interface (Figure 3).

P1o·P17' Address/Data Port (bidirectional). Multiplexed
address (Ao-A7) and data (00-07) lines used to interface with

memory, data memory and the register file (internal). The
143-byte random-access register file is composed of 124
general-purpose registers, three I/O port registers, and 16
control and status registers.

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate. Figure 3 shows the
Z8681/82 block diagram.

program and data memory.

RESET . Reset (input, active Low). RESET initializes the
Z8681/82. After RESET the Z8681 is in the extended
memory mode. When RESET· is deactivated, program
execution begins from program location OOOCH for the
Z8681 and 0812H for the Z8682.

R/W. Read/Write (output). R/W is Low when the Z8681/82 is
writing to external program or data memory.

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect a parallel-resonant crystal to the
on·chip clock oscillator and buffer.

SUMMARY OF Z8681 AND Z8682 DIFFERENCES

Feature Z868l

Address of first instruction executed after Reset 12

Addressable memory space 0-64K

Address of interrupt vectors 0-11

Reset input high voltage TIL levels *
Port 0 configuration after Reset Input, float after reset. Can be

programmed as Address bits.

Extemal memory timing start-up configurations Extended Timing

Interrupt vectors 2 byte vectors point directly to service

routines.

Interrupt response time 26 clocks

* B.OV VIN max.

52

Z8682

2066

2K-64K

2048-2065

7.35-8.0V

Output, configured as Address bit

AS-A15·

Normal Timing

2 byte vectors in internal ROM point to 3

byte Jump instructions, which point to

service routines.

36 clocks

ADDRESS SPACES

Program Memory·. The Z8681/82 addresses 64K/62K
bytes of external program memory space (Figure 4).

For the Z8681 , the first 12 bytes of program memory are
reserved for the interrupt vectors. These locations contain
six 16-bit vectors that correspond to the six available
interrupts. Program execution begins at location OOOCH
after a reset.

The Z8682 has six 24-bit interrupt vectors beginning at
address 0800H. The vectors consist of Jump Absolute
instructions. After a reset, program execution begins at
location 0812H for the Z8682.

Data Memory·. TheZ8681 /82 can address 64K/62K bytes
of external data memory. External data memory may be
included with or separated from the external program
memory space. OM, an optional I/O function that can be
programmed to appear on pin P34, is used to distinguish
between data and program memory space:

Register File. The 143-byte register file includes three I/O

port registers (RO, R2, R3), 124 general-purpose registers
(R4-R127) and 16 control and status registers (R240-R2SS).
These registers are assigned the address locations shown in
FigureS.

Z8681/82 instructions can access registers directly or
indirectly with an 8-bit address field. This also allows short
4-bit register addressing using the Register Pointer (oneaf
the control registers). In the 4-bit mode, the register file is
divided into nine working-register groups, each occupying
16 contiguous locations (Figure S). The Register Pointer
addresses the starting location of the active working-register
group (Figure 6).

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R2S4 and R2SS) is used for the external stack, which can
reside anywhere in data memory. An 8-bit Stack Pointer
(R2S5) is used for the internal stack that resides within the
124 general-purpose registers (R4-R127).

Z8681 Z8682

LOCATION OF FIRST
BYTE OF INSTRUCTION

EXECUTED AFTER
RESET (Z8681)

INTERRUPT
VECTOR

(LOWER-BYTE)

INTERRUPT
VECTOR

(UPPER BYTE)

5536

--

PROGRAM
MEMORY

PROGRAM
MEMORY

1------
~

f= IROS =
f= IR04 =
f= IR03 =
1= IR02 =
f= IRQl =
f= IAOO =

NOT
ADDRESSABLE ------......

- IROS -
- IR04 -
- IR03 -
~ IR02 -
- IR01 -
- " IROO -

6553

V
(812H
(811H

(800H
2047

12
11
10
9
8

LOCATION OF FIRST
BYTE OF INSTRUCTION
EXECUTED AFTER
RESET (Z8882)

) 2066
) 206S

3 BYTE INTERRUPT
JUMP INSTRUCTIONS

) 2048

7
6
S

2 BYTE
___ INTERRUPT

VECTORS
4
3
2
1
0

Figure 4. Z8681/82 Program Memory Map

'This feature differs in the Z8681 and Z8682.

53

DEC

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

127

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TlMERICOUNTER 0

T1 PRESCALER

TIMERICOUNTER 1

TIMER MODE

SERIAL 110

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

HEX

FF

FE

FD

FC

FB

FA

F9

F8

F7

F6

F5

F4

F3

F2

Fl

FO

7F

04

03

02

01

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRQ

IPR

P01M

P3M

P2M

PREO

TO

PREI

T1

TMR

SIO

P3

P2

PI

DO PO

i--rJ:==t=::::;;:::====::t 255

- 1 1-----'-_---'-___ -1 253

..... _________ 240

THE UPPER NIBBLE OF THE REGISTER
FILE ADDRESS PROVIDED BY THE
REGISTER POINTER SPECIFIES THE
ACTIVE WORKING·REGISTER GROUP.

- {
1 27

--I
--I
- {

{

- {
- {
- {

SPECIFIED WORKING·
REGISTER GROUP -

1

1-------------3
110 PORTS 0

THELOWER
NIBBLE OF
THE REGISTER
FILE ADDRESS
PROVIDED BY
THE INSTRUCTION
POINTS TO THE
SPECIFIED
R~GISTER.

Figure 5. The Register File Figure 6. The Register Pointer

SERIAL INPUT/OUTPUT

Port 3 lines P30 and P37 can be programmed as serial I/O
lines for full-duplex serial asynchronous receiver/transmitter
operation. The bit rate is controlled by CounterlTimer O.

The Z8681/82 automatically adds a start bit and two stop
bits to transmitted data (Figure 7). Odd parity is also
available as an option. Eight data bits are always

T LSTARTBIT

'--------EIGHT DATA BITS

TWO STOP BITS

Transmitted Data
(No Parity)

T I LSTART BIT

'-
__________ SEVEN DATA BITS

. ODD PARITY

TWO STOP BITS

Transmitted Data
(With parity)

transmitted, regardless of parity selection. If parity is
enabled, the eighth data bit is used as the odd parity bit. An
interrupt request (IRQ4) is generated on all transmitted
characters.

Received data must have a start bit, eight data bits, and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

I~I~I~I~I~I~I~I~I~IHI

I LSTARTBIT

'--------EIGHT DATA BITS

'-. -----------ONE STOP BIT

Received Data
(No Parity)

1~lpl~I~I~I~I~I~I~IHI

I L _LSTARTBIT

'--------SEVEN DATA BITS

PARITY ERROR FLAG

'------------ONE STOP BIT

Received Data
(With Parity)

Figure 7; Serial Data Formats

54

COUNTER/TIMERS

The Z8681/82 contains two 8-bit programmable
counter/timers (To and T1), each driven by its own 6-bit
programmable prescaler. The T 1 prescaler can be driven by
internal or external clock sources; however, the To prescaler
is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request-IR04 (To) or
IR05 (T1)-is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass

I/O PORTS

The Z8681/82 has 24 lines available for input and output.
These lines are grouped into three ports of eight lines each
and are configurable as input, output or address. Under
software control, the ports can be programmed to provide

Port 1 is a dedicated Z-BUS compatible memory interface.
The operations of Port 1 are supported by the Address
Strobe (AS) and Data Strobe (OS) lines, and by the
Read/Write (R/W) and Data Memory (OM) control lines. The
low-order program and data memory addresses (Ao-A7) are
output through Port 1 (Figure 8) and are multiplexed with
data in/out (00-07), Instruction fetch and data memory
read/write operations are done through this port.

Port 1 cannot be used as a register nor can a handshake
mode be used with this port.

Both the Z8681 and Z8682 wake up with the 8 bits of Port 1
configured as address outputs for external memory. If more
than eight address lines are required with the Z8681 ,
additional lines can be obtained by programming Port 0 bits
as address bits. The least-significant four bits of Port 0 can

Port O· can be programmed as a nibble 110 port, or as an
address port for interfacing external memory (Figure 9).
When used as an 110 port, Port 0 can be placed under
handshake control. In this configuration, Port 3 lines P32
and P35 are used as the handshake controls OAVo and
ROYo. Handshake signal assignment is dictated by the 110
direction of the upper nibble P04-P07.

For external memory references, Port 0 can provide address
bits As-A11 (lower nibble) or As-A15 (lower and upper
nibbles) depending on the required address space .. If the
address range requires 12 bits or less, the upper nibble of
Port 0 can be programmed independently as 110 while the
lower nibble is used for addressing.

/n the Z8681 *, Port 0 lines float after reset; their logic state is
unknown until the execution of an initialization routine that
configures Port O.
'This feature differs in the ZS6S1 and ZS6S2.

mode) or to automatically reload the initial value and
continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T 1 is user-definable; it can be either the
internal microprocessor clock divided by four, or an external
signal input via Port 3. The Timer Mode register configures
the external timer input as an external clock, a trigger input
that can be retriggerable or nonretriggerable, or as a gate
input for the internal clock. The counter/timers can be
programmably cascaded by connecting the To output to the
input of T1. Port 3 line P36 also serves as a timer output
(TOUT) through which To, T1 or the internal clock can be
output.

address outputs, timing, status signals, serial 110, and
parallel 110 with or without handshake. All ports have active
pull-ups and pull-downs compatible with TTL loads.

be configured to supply address bits As-A11 for 4K byte
addressing or both nibbles of Port 0 can be configured to
supply address bits As-A15 for 64K byte addressing.

ZB6B11B2
MCU

Jl--a-\ PORT 1
~ (110 OR ADO-AD7

TO EXTERNAL
MEMORY

Figure 8. Port 1

Such an initialization routine must reside within the first 256
bytes of executable code and must be physically mapped
into memory by forcing the Port 0 address lines to a known
state (Figure 10). The proper port initialization sequence is:

1. Write initial address (As-A15) of initialization routine to
Port 0 address lines.

2. Configure Port 0 Mode register to output As-A15 (or
As-A11)'

To permit the use of slow memory, an automatic wait mode of
two oscillator clock cycles is configured for the bus timing of
the Z8681 after each reset. The initialization routine could
include reconfiguration to eliminate this extended timing
mode.

55

The following example illustrates the manner in which an
initialization routine can be mapped in a Z8681 system with
4K of memory.

Example. In Figure 10, the initialization routine is mapped to
the first 256 bytes of program memory. Pull-down resistors
maintain the address lines at a logic 0 level when these lines
are floating. The leakage current caused by fanout must be
taken into consideration when selecting the value of the
pulldown resistors. The resistor value must be large enough
to allow the Port 0 output driver to pull the line to a logic 1 .
Generally, pulldown resistors are incompatible with TTL
loads. If Port 0 drives into TTL input loads (ILOW = 1.6 mAl
the external resistors should be tied to Vee and the
initialization routine put in address space FFOOwFFFFH'

In the Z8682*, Port 0 lines are configured as address lines
A8-A15 after a Reset. If one or both nibbles are needed for

1/0 operation, they must be configured by writing to the Port
o Mode register. The Z8682 is in the fast memory timing
mode after Reset, so the initialization routine must be in fast
memory.

Z8681/82
MCU

}
P04- P07 } PORT 0
POO-P03 (110 OR Aa-A1S

_I HANDSHAKE CONTROLS
DAVo AND RDYo
(P3, AN D P3,)

Figure 9. Port 0

pORn <
'ADD-AD, >

As, Os, RIW

Z8601/02 PROGRAM
MCU MEMORY

112 PORT 0 {

(4K BYTES)

-=- ;-=- -

Figure 10. Port 0 Address Lines Tied to Logic 0

Port 2 bits can be programmed independently as input or
output (Figure 11). This port is always available for 1/0
operations. In addition, Port 2 can be configured to provide
open-drain outputs.

Like Port 0, Port 2 may also be placed under handshake
control. In this configuration, Port 3 lines P31 and P36 are
used as the handshake controls lines OAV2 and ROY2. The
handshake signal assignment for Port 3 lines P31 and P36 is
dictated by the direction (input or output) assigned to bit 7 of
Port 2.

Port 3 lines can be configured as 1/0 or control lines (Figure
12). I n either case, the direction of the eight lines is fixed as
four input (P30-P33) and four output (P34'P37). For serial 110,
lines P30 andP37 are programmed as serial in and serial
out, respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0 and 2 (OAV and ROY); four external
interrupt request signals (IROO-IR03); timer input and
output signals (TIN and TOUT) and Data Memory Select
(OM).

'This feature differs in the Z8681 and Z8682.

56

~ P20 ----
Z8681182 ~ MCU __

PORT 2(110)

~ P27

-- 1 HANDSHAKE CONTROLS
DAV, AND RDY,
(P3, AND P3,)

Figure 11. Port 2

.......- PORT 3

Z8681182 (110 OR CONTROL)

MCU

Figure 12. Port 3

INTERRUPTS *

The Z8681/82 allows six different interrupts from eight
sources: the four Port 3 lines P30-P33' Serial In, Serial Out,
and the two counter/timers. These interrupts are both
maskable and prioritized. The Interrupt Mask register
globally or individually enables or disables the six interrupt
requests: When more than one interrupt is pending,
priorities are resolved by a programmable priority encoder
that is controlled by the Interrupt Priority register.

All Z8681 and Z8682 interrupts are vectored through
locations in program memory. When an· interrupt request is
granted, an interrupt machine cycle is entered. This disables
all subsequent interrupts, saves the Program Counter and
status flags, and accesses the program memory vector
location .reserved for that interrupt. In the Z8681 , this
memory location and the next byte contain the 16-bit
address of the interrupt service routine for that particular
interrupt request. The Z8681 takes 26 system clock cycles
to enter an interrupt subroutine.

The Z8682 has a small internal ROM that contains six 2-byte
interrupt vectors pointing to addresses 2048-2065, where
3-byte jump absolute instructions are located (Figure 4 and
Table 1). These jump instructions each contain a 1-byte

CLOCK

The on-chip oscillator has a high:gain, parallel-resonant
amplifier for connection to a crystal or to any suitable
external clock source (XTAL 1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL 1 and XTAL2,
using the recommended capacitance (CL = 15 pf
maximum) from each pin to ground. The specifications for
the crystal are as follows: .

Z8681/Z8682 INTERCHANGEABILITY

Although the Z8681 and Z8682 have minor differences, a
system can be designed for compatibility with both
ROM less versions. To achieve interchangeability, the design
must take into account the special requirements of each
device in the external interface, initialization, and memory
mapping.

7.35 TO S.O V

VAL ___Jlr----T"\-';--S V--;;-IN------ :::

4 6

.. ~r~~ ~r~~-...
MAX MIN

Figure 13. Z8682 RESET Pin Input Waveform

"This feature differs in the Z8681 and Z8682.

opcode and a 2-byte starting address for the interrupt
service routine. The Z8682 takes 36 system clock cycles to
enter an interrupt subroutine.

Table 1. Z8682 Interrupt Processing

Hex Contains Jump Instruction and

Address Subroutine Address For

800-802 IRQO

803-805 IRQ1

806-808 IRQ2

809-80B IRQ3

80C-80E IRQ4

80F-811 IRQ5

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

[J AT cut, parallel-resonant

iii Fundamental type

l1li Series resistance, Rs ~ 100Q

l1li For Z8682, 8 MHz maximum

II For Z8681-12, 16 MHz maximum

External Interface. The Z8682 requires a 7.5V positive
logic level on the RESET pin for at least 6 clock periods
immediately following reset, as shown in Figure 13. The
Z8681 requires a 3.8V or higher positive logic level, but is
compatible with the Z8682 RESET waveform. Figure 14
shows a simple circuit for generating the 7.5V level.

+V

Z8681
}---...... --I RESET OR

OPEN
COLLECTOR

TTL GATE

7.35 - S.O V Z8682

Figure 14. RESET Circuit

57

Initialization. The Z8681 wakes up after reset with Port 0
configured as an input, which means Port 0 lines are floating
in a high-impedance state. Because of this pullup or
pulldown, resistors must be attached to Port 0 lines to force
them to a valid logic level until Port 0 is configured as an
address port.

Port 0 initialization is discussed in the section on ports. An
example of an initialization routine for Z8681/Z8682
compatibility is shown in Table 2. Only the Z8681 need
execute this program.

Table 2. Initialization Routine

Address Opcodes Instruction Comments

OOOC E6 00 00 LDPO#%OO Set Aa-A15 to O.

OOOF E6 F8 96 LD P01M #%96 Configure Port 0 as

As-A15' Eliminate
extended memory
timing.

0012 800812 JP START Execute application

ADDRESS program.

58

65536

2066

2063

2060

2057

2054

2051

2048

2047

21

18

15

12

10

APPLICATION
PROGRAM

A.P. PROG START ADDRESS

JP IR05

JP IR04

JP IR03

JP IR02

JP IR01

JP IROO

NOT USED

JP %0812

LO P01M #%96

LD PO #%00

IR05

IR04

IR03

IR02

IR01

IROO

FFFFH

812H

Z8682 VECTORS
JUMP INSTRUCTIONS

800H

7FFH

15H

} Z8681
INITIALIZATION

CH

Z8681
VECTORS

OH

Figure 15. Z8681/82 Logical Program Memory Mapping

Memory Mapping. The Z8681 and Z8682 lower memory
boundaries are located at 0 and 2048, respectively. A single
program ROM can be used with either product if the logical
program memory map shown in Figure 15 is followed. The
Z8681 vectors and initialization routine must be starting at

17FF

1015
1014

1000
FFF

812
811

800
7FF

15
14

APPLICATION
PROGRAM

NOT USED

APPLICATION
PROGRAM

Z8682 VECTORS

NOT USED

Z8681 VECTORS
AND INITIALIZATION

LOGICAL
MEMORY

6K

4K

2K

0

address 0 and the Z8682 3-byte vectors Uump instructions)
must be at address 2048 and higher. Addresses in the range
21-2047 are not used. Figure 16 shows practical schemes
for implementing this memory map using 4K and 2K RqMs.

CHIP SELECT = (Al, + A11) . Al3 . A:;

PHYSICAL
MEMORY

. A1s
FFF

812
811

800
7FF

15
14

a. Logical to Physical Memory Mapping for 4K ROM

FFF

835
834

820
81F

812
811

800
7FF

15
14

APPLICATION
PROGRAM

NOT USED

APPLICATION
PROGRAM

Z8682 VECTORS

NOT USED

Z8681 VECTORS
AND INITIALIZATION

LOGICAL
MEMORY

i-.,..

r-

--
r-

CHIP SELECT = A11 . At; . A13 • A14

Al0 ::::D--- As TO ROM
As

PHYSICAL
MEMORY

b. Logical to Physical Memory Mapping for 2K ROM

7FF

35
34

20
lF

12
11

Figure 16. Practical Schemes for Implementing Z8681 and Z8682 Compatible Memory Map

59

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst
src
cc
@

Destination location or contents
Source location or contents
Condition code (see list)
Indirect address prefix

SP
PC
FLAGS
RP

Stack pointer (control registers 254-255)
Program counter

IMR

Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

CONDITION CODES

Value Mnemonic

1000 Always true

0111 C Carry

1111 NC No carry

0110 Z Zero

1110 NZ Not zero

1101 PL Plus

0101 MI Minus

0100 OV Overflow

1100 NOV No overflow

0110 EQ Equal

1110 NE Not equal

Assignment of a value is indicated by the symbol "--': For
example,

dst +- dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "n" of a given
location. For example,

dst(7)

refers to bit 7 of the destination operand.

Flags. Control.Register R252 contains the following six
flags:

C
Z
S
V
o
H

Carry flag
Zero flag
Sigriflag
Overflow flag
Decimal-adjust flag
Half-carry flag

Affected flags are indicated by:

, 0 Cleared to zero
1 Set to one
* Set or cleared according to operation

Unaffected
X Undefined

Meaning Flags Set

C = 1

C=O

Z = 1

Z=O
8=0

8 = 1

V = 1

V=O

Z = 1

Z=O
1001 GE Greater than or equal (8XORV) = 0

0001 . LT Less than (8 XOR V) = 1

1010 GT Greater than [ZOR(8XORV)] = 0
0010 LE Less than or equal [ZOR(8XORV)] = 1

1111 UGE Unsigned greater than or equal C=O

0111 ULT Unsigned less than C = 1

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1

0011 ULE Unsigned less than or equal (CORZ) = 1

0000 Never true

60

INSTRUCTION fORMATS '--1 -OP"""C---'

dst OPC

CCF, 01, EI, IRET, NOP,
RCF, RET, SCF

INC r

One-Byte Instruction

CLR, CPL, DA, DEC,

'--"'=-=-----' OR 11 1 1 01 dst/"c 1 g~~~, ~~~R~~~~R:OP'

OPC I
I----'::':ds-=t '----lOR 11 1 1 01 dst

OPC
VALUE

MODE OPC

dst/src src/dst

L-""'::="'----' OR 11 1 1 01 src

dst 1 OPC
VALUE

I dst/CC R~ OPC

RRC, SRA, SWAP

JP, CALL (Indirect)

SRP

ADC, ADD, AND,
CP, OR, SSC, SUB,
TCM, TM, XOR

LD, LDE, LDEI,
LDC, LOCI

LD

LD

DJNZ, JR

OR
OR

OR 111 1 01

MODE OPC

src OR 1 1 1 0

dst OR 1 1 1 0

cc OPC
DAu

DAL

Ace, ADD, AND, CP,
LD, OR, SSC, SUS,
TCM, TM, XOR

ADC, ADD, AND, CP,

dst LD, OR, SSC, SUS,
TCM, TM, XOR

LD

src

dst

LD

JP

CALL

Two-Byte Instruction Three-Byte Instruction

Figure 17. Instruction Formats

INSTRUCTION SUMMARY

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte Instruction Byte
and Operation dst src (Hex) C Z S V D H and Operation dst src (Hex) C Z S V D H

ADC dst,src (Note 1) 10 * * * o 'it DECdst R 00 -***--
dst - dst + src + C dst-dst - 1 IR 01

ADD dst,src (Note 1) 00 * * * * 0 * OECWdst RR 80 -***--
dst - dst + src dst - dst - 1 IR 81

ANDdst,src (Note 1) 50 - * * 0-- 01
dst - dst AND src IMR(7)-0 8F ------

CALLdst DA 06 ------ DJNZ r,dst RA rA ------

sp -sp - 2 IRR 04 r-r - 1 r = 0 - F
@sp - PC; PC - dst ifrofO

CCF EF
PC - PC + dst

*-----
Range: + 127, -128

C-NOTC

CLR dst R BO
EI 9F -------

IMR (7)-1

dst-O IR B1
INCdst rE

COMdst R 60 -**0--
-***--

dst - NOTdst IR 61
dst -dst + 1 r = 0 - F

R 20
CPdst,src (Note 1) AD ****-- IR 21
dst - src

INCWdst RR AO -***--
DAdst R 40 ***x-- dst - dst + 1 IR AI

dst - DAdst IR 41

61

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected
Byte Instruction

and Operation dst src (Hex) C Z S V D H

IRET SF
FLAGS - @SP; SP- SP + 1
PC -@SP;SP-SP + 2; IMR (7)-1

JP cC,dst
if cc is true

PC -dst

JR cC,dst
if cc is true,

PC-PC + dst
Range: + 127, -128

LD dst,src
dst -src

LDCdst,src
dst -src

LDCI dst,src
dst-src
r-r + 1;rr-rr + 1

LDEdst,src
dst-src

LDEI dst,src
dst -src
r - r + 1; rr - rr + 1

NOP

OR dst,src
dst - dst OR src

OA

IRR

RA

r
R

r
X
r
Ir
R
R
R
IR
IR

1m
R

X
r
Ir
r
R
IR
1M
1M
R

r Irr
Irr

Ir Irr
Irr Ir

r Irr
Irr

Ir Irr
Irr Ir

(Note 1)

POP dst R
dst-@SP; IR
SP-SP + 1

PUSH src '
SP - SP - 1; @SP - src

RCF
C-O

RET
PC - @SP; SP - SP + 2

RLdst

62

R
IR

cD
c = 0 - F

30

cS
c = 0 - F

rC
r8
r9

r = 0 - F
C7
07
E3
F3
E4
E5
E5

, E7
F5

C2
02

C3
03

82
92

83
93

FF

40

50
51

70
71

CF

AF

90
91

* * * * * *

0-----

Instruction
and Operation

Addr Mode Opcode Flags Affected
Byte

dst src (Hex) C Z S V D H

RLC dst L0=ciJ R
C 7 0 IR

RR dst em LciJ R
C 7 0 IR

RRC dst liil=fi:j}J R
C 7 0 IR

SBC dst,src (Note 1)

dst - dst - src - C

SCF
C-1

SRAdst em ~ R
Lrr'" IR

SRPsrc
RP -src

SUBdst,src
dst - dst - src

1m

(Note 1)

SWAPdst I ~ R .7~oIIR

TCM dst,src
(NOT dst) AND src

TM dst,src
dstANO src

XORdst,src
dst - dst XOR src

(Note 1)

(Note 1)

(Note 1)

10
11

EO
E1

CO
C1

3D

OF

DO
01

31

20

FO
F1

50

70

SO

* * * *

* * * *

1-----

NOTE: These instructions have an identical set of addressing modes,
which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
symbolically by a 0 in this table, and its value is found in the
following table to theleh of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.

AddrMode

dst src

R

R

R

IR

Ir

R

IR

1M

1M

Lower
Opcode Nibble

REGISTERS R240sI0
Serial I/O Register

(FOH; Read/Write)

L----SERIAL OATA(Oo::: LSB)

R241 TMR
Time Mode Register

(F1 H; Read/Write)

NOl useD = 00 -.J 1 = LOAD To

~~ g~~ : ~~ 0 "" DISABLE To COUNT

TO" MODES] US~o. NOFUNCTION

INTERNAL CLOCK OUT = 11 1 = ENABLE To COUNT

T MODES 0 = NO FUNCTION
EXTERNAL CLOCK INPnr = 00 1 ::: LOAD T,

GATE INPUT = 01 0 = DISABLE T, COUNT

(NON.R~~~~gci:~~:~i)::: 10 1 = ENABLE 1, COUNT
TRIGGER INPUT = 11

(RETRIGGERABLE)

R242 T1
Counter Timer 1 Register

(F2H; Read/Write)

R243PREl
Prescaler 1 Register

(F3H; Write Only)

~LCOUNTMODE
1 ::: T, MODULO·N
o = T, SINGLE·PASS

CLOCK SOURCE
1 = T,INTERNAL
o = T, EXTERNAL

TIMING INPUT
(TIN) MoDe

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
Counter/Timer 0 Register

(F4H; Read/Write)

R245 PREO
Prescaler 0 Register

(F5H; Write Only)

~LCOUNTMODE
o = To SINGLE·PASS
1 = To MOOULO·N

RESERVED (MUST BE 0)

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
Port 2 Mode Register

(F6H; Write Only)

R247P3M
Port 3 Mode Register

(F7H; Write Only)

E~O PORT 2 PULL·UPS OPEN DRAIN
1 PORT 2 PULl·UPS ACTIVE

RESERVED (MUST BE 0)

o P32 = INPUT P3s = OUTPUT
1 P32 = ifiWOlRDYO P3s = RDYO/DAVO

00 P33 = INPUT P34 = OUTPUT

~~} P33 = INPUT P34 = 1m
11 RESERVED

L ______ ~ :~~ ~ ~:VUJR~~~ :~: ~ ~~~~~UT)

L _______ ~ :~~ ~ ~N~~:l IN :~~~. ~~~~~T OUT

L ________ ~ ::=:~~ g~F

Figure 18. Control Registers

63

REGISTERS
(Continued)

R248 P01M
Port 0 Register
(F8H; Write Only)

po._po, MODE:] ~-r po,-po, MODE
OUTPUT", 00 -.J L 00 "" OUTPUT

INPUT", 01 01 '" INPUT
A'2-A'5 = 1X 1X = Aa-All

EXTERNAl. STACK SELECTION
MEMORY TIMING 0 = EXTERNAL

NORMAL = 0 1 = INTERNAL
"EXTENDED = 1

RESERVED (MUST BE 0)

·ALWAYS EXTENDED TIMING AFTER RESET

R2491PR
Interrupt Priority Register

(F9H; Write Only)

I~I~I~I~I~I~I~I~I

RESERVED = 000 .~",m:J I I III " ~"M
IR03, IROS PRIORITY (GROUP A). C > A > B = 001

o := IR05 > IR03 A > B > C = 010
, ::; IR03 > IR05 A > C > B = 011

IRao, IR02 PRIORITY (GROUP 8) ~ ~ ~ ~ ~ ~ ~~~
o ::;; IRQ2 > IRao B > A > C = 110
1 = IRao > IRQ2 RESERVED = 111

IRQ1, IRQ4 PRIORITY (GROUP 0)
o = IRQ1 > IRQ4
1 = IRQ4 > IRQ1

R250lRQ
Interrupt Request Register

(FAH; Read/Write)

I~I~I~I~I~I~I~I~I

RESERVED (MUST BE o)=.r- c== IRao
IRQ1
IRQ2
IR03
IRQ4
IA05

R2511MR
Interrupt Mask Register

(FBH; Read/Write)

I~I~I~I~I~I~I~I~I

P32 INPUT (Do = IROO)
P331NPUT
P3, INPUT
P30 INPUT, SERIAL INPUT
To. SERIAL OUTPUT
T,

II c== 1 ENABLES IROO-IR05
(Do = IROO)

'-------RESERVED (MUST BE 0)

'---------1 ENABLES INTERRUPTS

REGISTER
POINTER

Figure 18. Control Registers (Continued)

64

R252 FLAGS
Flag Register

(FCH; Read/Write)

~~ll§
' LUSERFLAGF1

LUSER FLAG F2

HALF CARRY flAG
. . DECIMAL ADJUST FLAG

OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

R253 RP
Register Pointer
(FDH; Read/Write)

R254SPH
Stack Pointer

(FEH; Read/Write)

R255SPL
Stack Pointer

(FFH; Read/Write)

I~I~I~I~I~IDJ~I~I

~I ____ ~~;~~s~~~~~~R LOWER

Z8681/82 OPCODE MAP
Lower Nibble (Hex)

o 4 6 7 8 9 A B C o E F

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5
DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC

R1 IR1 '1"2 (1, lr2 R2,R1 IR2,R1 R1,IM IR1,IM r1,R2 r2,R1 r1,RA cC,RA r1,IM cC,DA r1
'---

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
RLC RLC ADC ADC ADC ADC ADC ADC

R1 IR1 (1,r2 '1, lr2 R2,R1 IR2,R1 R1,IM IR1,1M
-

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
INC INC SUB SUB SUB SUB SUB SUB
R1 IR1 (1,(2 (1, lr2 R2,R1 IR2,R1 R1,IM IR1,IM

-
8,0 6,1, 6,5 6,5 10,5 10,5 10,5 10,5

3 JP SRP SBC SBC SBC SBC SBC SBC
IRR1 1M (1,r2 (1, lr2 R2,R1 IR2,R1 R1,IM IR1,IM

-
8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5

4 DA DA OR OR OR OR OR OR
R1 IR1 (1,r2 (1, lr2 R2,R1 IR2,R1 R1,IM IR),IM

-
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5

5 POP POP AND AND AND AND AND AND
R1 IR1 (1/2 '1.1r2 R2,R1 IR2,R1 R1,IM IR1,IM

-
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5

COM COM TCM TCM TCM TCM TCM TCM
R1 IR1 (1"2 '1, lr2 R2,R1 IR2,R1 R1,IM IR 1,IM

-
10/12,1 12/14,1 6,5 6,5 10,5 10,5 10,5 10,5
PUSH PUSH TM TM TM TM TM TM " " e. 7

R2 IR2 '1,(2 (1, lr2 R2,R1 IR2,R1 R1,IM IR1,IM .!!
,Q

10,5 10,5 12,0 18,0 6.1
,Q

Z
DECW DECW LDE LDEI 01

RR1 IR1 (1, lrr2 Ir1,lrr2
-

!i 8
Do
Do
:::l

6,5 6,5 12,0 18,0 6,1

9 RL RL LDE LDEI EI
R1 IR1 '2,lr(1 Ir2,lfr1

-
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 14,0

A INCW INCW CP CP CP CP CP CP RET
RR1 IR1 (1/2 (1, lr2 R2,R1 IR2,R1 R1,IM IR1,IM

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 ~
B CLR CLR XOR XOR XOR XOR XOR XOR IRET

R1 IR1 (1,f2 (1, lr2 R2,R1 IR2,R1 R1,IM 1R1,IM
-

6,5 6,5 12,0 18,0 10,5 6,5

C RRC RRC LDC LOCI LD RCF
R1 IR1 (1, lrr2 Ir1,lrr2 rl,x,R2

-
6,5 6,5 12,0 18,0 20,0 20,0 10,5 6,5

0 SRA SRA LDC LOCI CALL" CALL LD SCF
R1 IR1 (2, lrr1 Ir2,1((1 IRR1 DA '2,x,R,

6,5 6,5 6,5 10,5 10,5 10,5 10,5 -----e.s
E RR RR LD LD LD LD LD CCF

R1 IR1 r1, IR2 R2,R1 IR2,R1 R1,IM IR1,IM
-

8,5 8,5 6,5 10,5 6,0
F SWAP SWAP LD LD NOP

R1 IR1 1(1,(2 R2, IR1

...... ----... v .. -----",1 ----... oy-.. ---_-"J -----_v-.. ------J~"__v____"
2

EXECUTION
CYCLES

FIRST
OPERAND

LOWER
OPCODE
NllLE

'2-byte Instruction; fetch cycle appears as a 3-byte instruction

3

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

Legend:
R ~ 8-bit address
r = 4-bit address
At or (1 = Dst address
R2 or (2 = Src address

Sequence:

3

Opcode, First Operand, Second Operand

NOTE: The blank areas are not defined.

65

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins except RESET
with respectto GND - 0.3V to + 7.0V

Operating Ambient
Temperature See Ordering Information

Storage Temperature - 65°C to + 150°C

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are as follows:

Ell + 4. 75V ~ Vee ~ + 5.25V

iii GND = OV

III ooe ~ TA ~ + 70°C for S (Standard temperature)

III -40°C ~ TA ~ + 100°C for E (Extended temperature)

DC CHARACTERISTICS

Symbol Parameter Min

VeH Clock Input High Voltage 3.8

Vel Clock Input Low Voltage -0.3

VIH Input High Voltage 2.0

VIL Input Low Voltage -0.3

VRH Reset Input High Voltage 3.8

VRl Reset Input Low Voltage -0.3

VOH Output High Voltage 2.4

VOL Output Low Voltage

III Input Leakage -10

IOl Output Leakage -10

IIR Reset Input Current

ICC Vee Supply Current

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

+5V

2.1K

Figure 19. Test Load 1

Max Unit Condition

Vee V Driven by External Clock Generator

0.8. V Driven by External Clock Generator

Vee V

0.8 V

Vee V See Note

0.8 V

V IOH = - 25O IlA

0.4 V IOl = +2.0mA

10 IlA OV .; VIN'; + 5.25V

10 IlA OV .; VIN'; + 5.25V

-50 IlA Vee = + 5.25V, VRl = ov
150 mA All outputs and I/O pins floating

'The Reset line (pin 6) is used to place the Z8682 in external memory mode. This is accomplished as shown in Figure 13.

66

R/W

PORT 0,
DM

PORT 1

DS
(READ)

PORT 1

DS
(WRITE)

).
~

).

).
-<D-

1-<9--

• 16 0
Ao-A7

-<D--

..
~I •

--®-------t.
Ao-A7){

I-®--I
'i

J(
-®-I

)(

-
< 00-07 IN J < 01-

0 - ~1.
CD -y

-®--
00-07 OUT }(

-®-I
7

Y
Figure 20. External 110 or Memory ReadlWrite Timing

AC CHARACTERISTICS
External 110 or Memory Read and Write Timing

Z8681~B2 ZS6S1 ZS611
I M z 12 MHz 16 MHz

NumberSymbol Parameter Min Max Min Max Min Max

TdA(AS) Address Valid to AS iDelay 50 35 20

2 TdAS(A) AS i to Address Float Delay 70 45 30

3 TdAS(DR) AS i to Read Data Required Valid· 360 220 180

4 TwAS AS low Width 80 55 35

5 TdAz(DS) ·Address Roat to DS.L 0 0 0

6 TwDSR DS (Read) low Width 250 185 135

7 TwDSW DS (Write) low Width 160 110 80

8 TdDSR(DR) DS .L to Read Data Required Valid 200 130 75

9 ThDR(DS) Read Data to DS i HoldTime 0 0 0

10 TdDS(A) DS i to Address Active Delay 70 45

11 TdDS(AS) DS i to AS .LDelay 70 55 30

12 TdRIW(AS) RIW Valid to AS t Delay 50 30 20

13 TdDS(RIW) DS t to RIW Not Valid 60 35 30

14 TdDW(DSW) Write Data Valid to DS (Write).L Delay 50 35 25

15 TdDS(DW) DS i to Write Data Not Valid Delay 60 35 30

16 TdA(DR) Address Valid to Read Data Required Valid 410 255 200 - -
17 TdAS(DS) AS t to DS .L Delay 80 55 40

NOTES:
1. When using extended memory timing add 2 TpC. • All units in nanoseconds (ns).
2. Timing numbers given are for minimum TpC. t Test Load 1

Notes

2,3

2,3

1,2,3

2,3

1,2,3

1,2,3

1,2,3

2,3

2,3

2,3

2.3

2,3

2,3

2,3

1,2,3

2,3

3. See clock cycle time dependent characteristics table. o All timing references use 2.0Vfor a logic "1" and 0.8Vfor a logic "0':
4. 16 MHz tlminl is preliminary and subject to chan, •.

67

Figure 21. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

NumberSymbol Parameter

TpC Input Clock Period

2 TrC,TtC Clock Input Rise and Fall Times

3 'TwC Input Clock Width

4 TwTinL Timer Input Low Width

5 TwTinH Timer Input High Width

6 TpTin Timer Input Period

7 TrTin,TfTin Timer Input Rise and Fall Times

SA TwlL Interrupt Request Input Low Time

S8 TwlL Interrupt Request Input Low Time

9 /TwIH Interrupt Request Input High Time

, NOTES:
1. Clock timing references use 3.SVfor a logic "1" and O.SV for a logic "0':
2. Timing references use 2.0Vfor a logic "1" and O:SV for a logic "0':
3. Interrupt request via Port 3.
4. Interrupt request via Port 3 (P31-P33)
5. Interrupt request via Port 3 (P30)
6. 16 MHz timing is preliminary and subject to change.
* Units in nanoseconds (ns).

68

Z8681/82
8 MHz

Min ,Max

125 1000

25

37

100

3TpC

STpC

100

100

3TpC

3TpC

Z8681 Z8681
12 MHz 16 MHz

Min Max Min Max Notes

S3 1000 62.5 1000

15 10

70 21

70 50 2

3TpC 3TpC 2

STpC STpC 2

100 100 2

70 50 2,4

3TpC 3TpC 2,5

3TpC 3TpC 2,3

DATA IN)(DATA IN VALlO x
CD

DW-------------1~--~~--~~-----------------
(INPUT) ~ _.J: I

RDY
(OUTPUT) ,~------------~

Figure 22a. Input Handshake Timing

DATA OUT

DAV
(OUTPUT)

RDY
(INPUT)

DATA OUT VALlO

Figure 22b. Output Handshake Timing

AC CHARACTERISTICS
Handshake Timing

28681/82
8 MHz

NumberSymbol Parameter Min !\;tax

TsDI(DAV) Data In Setup Time 0

2 ThDI(DAV) Data In Hold Time 230

3 TwDAV Data Available Width 175

4 TdDAVIf(RDY) DAV .J.. Input to RDY .J.. Delay 175

5 TdDAVOf(RDY) DAV.J.. Output to RDY .J.. Delay 0

6 TdDAVlr(RDY) DAV i Input to RDY i Delay 175

7 TdDAVOr(RDY) DAV i Output to RDY i Delay 0

8 TdDO(DAV) Data Out to DAV .J.. Delay 50

9 TdRDY(DAV) Rdy .J.. Input to DAV i Delay 0 200

NOTES:
1. Test load 1
2. I nput handshake
3. Output handshake
4. 16 MHz timln, is preliminary and subject to change.
t All timing references use 2.0V for a logic "1" and 0.8'{ for a logic "0':
, Units in nanoseconds (ns).

Z8681
12 MHz

Min Max

0

160

120

120

0

120

0

30

0 140

Z8681
lEi MHz

Min Max

0

145

110

115

0

115

0

30

0 130

Notes

1,2

1,3

1,2

1,3

1

69

CLOCK CYCLE TIME-DEPENDENT
CHARACTERISTICS

Z8681/82 Z8681 182
8MHz 12MHz

Number Symbol Equation Equation

TdA(AS) TpC-75 TpC-50

2 TdAS(A) TpC-55 TpC-40

3 TdAS(DR) 4TpC-140* 4TpC-110*

4 TwAS TpC-45 TpC-30

6 TwDSR 3TpC-125* 3TpC-65*

7 TwDSW 2TpC-90* 2TpC-55*

8 TdDSR(DR) 3TpC-175* 3TpC-120 *

10 Td(DS)A TpC-55 TpC-40

11 TdDS(AS) TpC-55 TpC-30

12 TdRIW(AS} TpC-75 TpC-55

13 TdDS(RIW) TpC-65 TpC-50

14 TdDW(DSW) TpC-75 TpC-50

15 TdDS(DW) TpC-55 TpC-40

16 TdA(DR) 5TpC-215* 5TpC-160 *

17 TdAS(DS) TpC-45 TpC-30

* Add 2TpC when using extended memory timing

70

June 1987

FEATURES

m Complete microcomputer, 24 I/O lines, and up to 64K
bytes of addressable external space each for program
and data memory. .

[;I 143-byte register file, including 124 general-purpose
registers, 3 I/O port registers, and 16 status and control
registers.

Ii] Vectored, priority interrupts for I/O, counter/timers, and
UART.

Cl On-chip oscillator that accepts crystal or external clock
drive.

GENERAL DESCRIPTION

The Z8691 is a ROM less version of the Z8 single-chip
microcomputer. The Z8691 offers all the outstanding.
features of the Z8 family architecture except an on-chip
program ROM. Use of external memory rather than a

TIMING I- :/:Er

AND
CONTROL os

. AS

PORT 0
(NIBBLE

PROGRAMMABLE)
110 OR Aa-A15

PDRT 1
ADo-AD7

PO,

PO,

PO,

PO,

PO.

PO, ZB691
PO, MCU
PO,

Pl 0

+5V

GND

XTALl

XTAL2

P2.,

P2,

P2,

P2,

P2.

P2s
P2,

P2,

P30

P3,

P3,

P3,

P3.

P3s

P3,

P3,

Figure 1. Pin Functions

PORT 2
(BIT PRO·
GRAMMABLE)
1/0

PORT 3
SERIAL AND
PARALLEL 1/0
AND CONTROL

~~(ID~1~~®
~@Ules$ Ni©r®~@mpf!HaeIf

Il'l Full:duplex UART and two programmable 8-bit
counter/timers, each with a 6-bit programmable
prescaler.

o Register Pointer so that short, fast instructions can
access anyone of the nine working-register groups.

o Single + 5V power supply-all I/O pins TIL compatible.

o 8 MHz/12 MHz versions.

preprogrammed ROM enables this Z8 microcomputer to be
used in low volume applications or where code flexibility is
required.

+5V P3,

XTAL2 P3,

XTAL1 P2,

P3, P2,

P3, P2,

RESET P2.

R/W P2,

os P2,

AS P2,

P3s P20

GND P3,

P3, P3.

PO, Pl,

PO, Pl,

po, Pl s

po, Pl.

PO, Pl,

POs Pl,

PO, Pl ,

PO, Pl,

Figure 2a. 40-pin Dual-In-Line Package (DIP).
Pin Assignments

71

The Z8691 can provide up to 16 output address lines, thus
permitting an address space of up to 64K bytes of data or
program memory. Eight address outputs (AOO-A07) are
provided by a multiplexed, 8-bit, Address/Data bus. The
remaining 8 bits can be provided by the software
configuration of Port 0 to output address bits Aa-A15.

There are 143 bytes of RAM located on-chip and organized
as a register file of 124 general-purpose registers, 16 control
and status registers, and three 110 port registers. This
register file can be divided into nine groups of 16 working
registers each. Configuring the register file in this manner
allows the use of short format instructions; in addition, any of
the individual registers can be accessed directly.

Available address space can be doubled (up to 128K bytes)
by programming bit 4 of Port 3 (P34) to act as a data memory
select output (OM). The two states of OM together with the
16 address outputs can define separate data and memory
address spaces of up to 64K bytes each.

The pin functions and the pin assignments ,of the Z8691
40-pin and 44-pin packages are illustrated in Figures 1 and 2,
respectively.

72

=7
R/W 8

os 9

AS 10

P3, 11

GND 12

P3, 13

PO, 14

PO, 15

PO, 16

NC 17

~ ... :'VI}..

~CJ q":,'>'J qn;,~.¢~ ..¢-trt= x~ qt')'O 4';/' q'l-'I. qt),'O 9.ft,~

6 5 4 3 2 1 44 43 42 41 40

Z8691
MCU

18 19 20 21 22 23 24 25 26 27 28

qt::::>~ qt:Jb> </l~ qt::)b qt;::,'I. q r::, q " q '" q ", </,,,, ~(j

Figure 2b_ 44-pin Chip Carrier,
Pin Assignments

39

38

37

36

35

34

33

32

31

30

29

NC

P2,

P2,

P2,

P2,

P2,

P3,

P3,

P17

Pl,

Pl,

OUTPUT INPUT Vee GND

~~-~ -~ --",-----=----,

UART

COUNTER/
TIMERS

(2)

INTERRUPT
CONTROL

I/O ADDRESS/DATA
(BIT PROGRAMMABLE)

ADDRESS OR I/O
(!'IIBBlE PROGRAMMABLE)
C~ ____________ ~-.-~ ____________ ~

. Z·BUS WHEN USED AS
ADDRESS/DATA BUS

Figure 3_ Functional Block Diagram

ARCHITECTURE

Z8691 architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful I/O
capabilities. The Z8691 fulfills this with 24 pins available for
input and output. These lines are grouped into three ports of
eight lines each and are configurable under software control
to provide timing, status signals, serial or parallel I/O with or
without handshake, and an Address bus for interfacing
external memory.

Three basic address spaces are available: program memory,

PIN DESCRIPTION

AS_ Address Strobe (output, active LDw). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS.

OS. Data Strobe (output, active LDw). Data Strobe is
activated once for each external memory transfer.

POO·P07, P20·P27, P30·P37' //0 Port Lines (input/outputs,
TIL-compatible). These 24 lines are divided into three 8-bit
I/O ports that can be configured under program control for
I/O or external memory interface (Figure 3).

P10·P17. Address/Data Port (bidirectional). Multiplexed

data memory and the register file (internal). The 143-byte
random-access register file is composed of 124
general-purpose registers, three I/O port registers, and 16
control and status registers.

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate. Figure 3 shows the
Z8691 block diagram. '

addresS (Ao-A7) and data (00-07) lines used to interface with
program and data memory.

RESET. Reset (input, active LDw). RESET initializes the
Z8691. After RESET the Z8691 is in the extended memory
mode. When RESET is deactivated, program execution
begins from program location OOaCH.

R/W. Read/Write (output). R/W is Low when the Z8691
is writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, CrYstal 2 (time-base input and
output). These pins connect a parallel-resonant crystal to the
on-chip clock oscillator and buffer.

73

ADDRESS SPACES

Program Memory. The Z8691 addresses 64K/62K bytes of
external program memory space (Figure 4).

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts. Program
execution begins at location OOOCH after a reset.

Data Memory. The Z8691 can address 64K bytes of external
data memory. External data memory may be included with or
separated from the external program memory space. DM,
an optional 110 function that can be programmed to appear
on pin P34, is used to distinguish between data and program
memory space.

Register File. The 143-byte register file includes three 1/0
port registers (RO, R2, R3), 124 general-purpose registers
(R4-R127) and 16 control and status registers (R240-R255).
These registers are assigned the address locations shown in
Figure 5.

65 ,535

Z8691 instructions can access registers directly or indirectly
with an 8-bit address field. This also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). In the 4-bit mode, the register file is divided
into nine working-register groups, each occupying 16
contiguous locations (Figure 5). The Register Pointer
addresses the starting location of the active working-register
group (Figure 6).

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the external stack, which can
reside anywhere in data memory. An 8-bit Stack Pointer
(R255) is used for the internal stack that resides within the
124 general-purpose registers (R4-R127).

PROGRAM DATA
MEMOAY MEMORY

LOCATION OF FIRST
BYTE OF INSTRUCTION

EXECUTED AFTER
RESET

74

INTERRUPT
VECTOR

(LOWER BYTE)

INTERRUPT
VECTOR

(UPPER BYTE)

i2 ...
~~-
:-
7 -........ 6

:~
---3 I-2

~I-

IR05 -
IROO -
IR03 -
IR02 -
IR01 -
IROO -

Figure 4. Program Memory Map

DEC

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

127

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

SERIAL 110

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

HEX

FF

FE

FD

FC

FB

FA

F9

F8

F7

F6

F5

F4

F3

F2

Fl

FO

7F

04

03

02

01

00

Figure 5. The Register File

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRQ

IPR

P01M

P3M

P2M

PREO

TO

PREl

T1

TMR

SIO

P3

P2

Pl

PO

SERIAL INPUT/OUTPUT

Port 3 lines P30 and P37 can be programmed as serial I/O
lines for full-duplex serial asynchronous receiver /transmitter
operation. The bit rate is controlled by Counter /Timer 0, with
a maximum rate of 62.5K bits/second at 8 MHz or 93.75K
bits/second at 12 MHz on the Z8691.

The Z8691 automatically adds a start bit and two stop bits to
transmitted data (Figure 7). Odd parity is also available as an
option. Eight data bits are always'transmitted, regardless of

T LSTART BIT

'------------EIGHT DATA BITS

TWO STOP BITS

Transmitted Data
(No Parity)

1~1~lpl~I~I~I~I~I~I~lml T L _LSTARTBIT
'------SEVEN DATA BITS

ODD PARITY

TWO STOP BITS

Transmitted Data
(With Parity)

r-_-~--ffl=~:J;:::~::~~;:=1:::
I 1-----'-------1

240
)

THE UPPER NIBBLE OF THE REGISTER
FilE ADDRESS PROVIDED BY THE
REGISTER POINTER SPECIFIES THE
ACTIVE WORKING·REGISTER GROUP,

--I
-~1
--I
--(

I
I

--I
--I

SPECIFIED WORKING·
REGISTER GROUP

1

--r--

1

-~1 r- - - -I/OPORTS -- - -- 3
0

27

THE LOWER
NIBBLE OF
THE REGISTER
FILE ADDRESS
PROVIDED BY
THE INSTRUCTION
POINTS TO THE
SPECIFIED
REGISTER.

Figure 6. The Register Pointer

parity selection. If parity is enabled, the eighth data bit is
used as the odd parity bit. An interrupt request (IRQ4) is
generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

1~1~1~1~1~1~1~1~1~lml

I LSTART BIT

'-------EIGHT DATA BITS

L.. -------------------ONE STOP BIT

Received Data
(No Parity)

1~lpl~I~I~I~I~I~I~I~1

I L _LSTARTBIT

'------SEVEN DATA BITS

PARITY ERROR FLAG

'---------------------ONE STOP BIT

Received Data
(With Parity)

Figure 7. Serial Data Formats

75

COUNTER/TIMERS

The Z8691 contains two 8-bit programmable counter /timers
(To and T1), each driven by its own 6-bit programmable
prescaler_ The T1 prescaler can be driven by internal or
external clock sources; however, the To prescaler is driven
by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request-IRQ4 (To) or
IRQ5 (T1)- is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass mode)

110 PORTS

The Z8691 has 24 lines available for input and output. These
lines are grouped into three ports of eight lines each and are
configurable as input, output or address. Under software
control, the ports can be programmed to provide address.

Port 1 is a dedicated Z-BUS compatible memory interface.
The operations of Port 1 are supported by the Address Strobe
(AS) and Data Strobe (DS) lines, and by the Read/Write
(R/W) and Data Memory (DM) control lines. The low-order
program and data memory addresses (Ao-A7) are'output
through Port 1 (Figure 8) and are multiplexed with data in/out
(Do-D7). Instruction fetch and data memory read/write
operations are done through this port.

Port 1 cannot be used as a register nor can a handshake
mode be used with this port.

The Z8691 wakes up with the 8 bits of Port 1 configured as
address outputs for external memory. If more than eight
address lines are required, additional lines can be obtained
by programming Port 0 bits as address bits. The

Port 0 can be programmed as a nibble I/O port, or as an
address port for interfacing external memory (Figure 9).
When used as an I/O port, Port 0 can be placed under
handshake control. In this configuration, Port 3 lines P32 and
P35 are used as the handshake controls DAVo and RDYo.
Handshake signal assignment is dictated by the I/O
direction of the upper nibble P04-P07.

For external memory references, Port 0 can provide address
bits Aa-A11 (lower nibble) or Aa-A15 (lower and upper nibbles)

. depending on the required address space. If the address
range requires 12 bits or less, the upper nibble of Port 0 can
be programmed independently as I/O while the lower nibble
is used for addressing.

Port 0 lines are configured as address lines As-A15 after a
reset. If one or both nibbles are needed for I/O operation,
they must be configured by writing to the Port 0 Mode
register.

76

or to automatically reload the initial value and continue
counting (modulo-n continuous mode). The counters, but not
the prescalers, can be read any time without disturbing their
value or count mode.

The clock source for T1 is user-definable; it can be either the
internal microprocessor clock divided by four, or an external
signal input via Port 3. The Timer Mode register configures
the external timer input as an external clock, a trigger input
that can be retriggerable or nonretriggerable, or as a gate
input for the internal clock. The counter/timers can be
programmably cascaded by connecting the To output to the
input of T1. Port 3 line P36 also serves as a timer output (TOUT)
through which To, T1 or the internal clock can be output.

outputs, timing, status signals, serial I/O, and parallel J/O
with or without handshake. All ports have active pull-ups and
pull-downs compatible with TIL loads.

least-significant four bits of Port 0 can be configured to
supply address bits Aa-A11 for 4K byte addressing or both
nibbles of Port 0 can be configured to supply address bits
As-A15 for 64K byte addressing.

Z8691
MCU

PORT 1
ADO-AD7

TO EXTERNAL
MEMORY

Figure 8. Port 1

To permit the use of slow memory, an automatic wait mode of
two oscillator clock cycles is configured for the bus timing of
the Z8691 after each reset. The initialization routine could
include reconfiguration to eliminate this extended timing
mode.

ZB691
MCU

}
P04-P07 } PORT 0
POO-P03 (110 OR Aa-A15

-.- \ HANDSHAKE CONTROLS

I DAVo AND ROYo
(PJ, AND P35)

Figure 9. Port 0

Port 2 bits can be programmed independently as input or I

output (Figure 10). This port is always available for I/O
operations. In addition, Port 2 can be configured to provide
open·drain outputs.

Port 2 may also be placed under handshake control. In this
configuration, Port 3 lines P31 and P3s are used as the
handshake controls lines DAV2 and RDY2. The handshake
signal assignment for Port 3 lines P31 and P3s is dictated by
the direction (input or output)assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines (Figure
11). In either case, the direction of the eight lines is fixed as
four input (P30·P33) and fouroutput (P34·P37)' For serial I/O,
lines P30 and P37 are programmed as serial in and serial out,
respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0 and 2 (DAV and RDY); four external
interrupt request signals (IRQO·IRQ3); timer input and output
signals (TIN and Tour) an9 Data Memory Select (DM).

INTERRUPTS

The Z8691 allows six different interrupts from eight sources:
the four Port 3 lines P3o·P33, Serial In, Serial Out, and the two
counter/timers. These interrupts are both mas~able and
prioritized. The Interrupt Mask register globally or
individually enables or disables the' six interrupt requests.
When more than one interrupt is pending, priorities are
resolved by a programmable priority encoder that is
controlled by the Interrupt Priority register.

All interrupts are vectored through locations in program
memory. When an interrupt request is granted, an interrupt
machine cycle is entered. This disables all subsequent

CLOCK

The on·chip oscillator has a high'gain, parallel·resonant
amplifier for connection to a crystal or to any suitable
external clock sC!urce (XTAL 1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL 1 and XTAL2,
using the recommended capacitance (el = 15 pf
maximum) from each pin to ground. The specifications for
the crystal are as follows:

Z8691
MCU

......- P20

)J PORT 2(1/0)

..--.. P27

...- \ HANDSHAKE CONTROLS

I (~~~i~~Dp~?Y2

Figure 10. Port 2

~ LRT3

MCU
ZSOD1 J (1/0 OR CONTROL)

Figure 11. Port 3

interrupts, saves the Program Counter and status flags, and
accesses the program memory vector location reserved for
that- interrupt. This memory location and the next ,byte
contain the 16·bit address of the interrupt service routine for
that particular interrupt request.The Z8691 takes 26 system
clock cycles to enter an interrupt subroutine.

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

[lJ AT cut, parallel-resonant

a Fundamental type

!'!lI Series resistance, Rs ~ 100 Q

II 8 or 12 MHz maximum

n

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working·register
pair address

Irr Indirect working-register pair only
X' Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working· register address
r Working-register address only
IR Indirect-register or indirect working·register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst
src
cc
@

Destination location or contents
Source location or contents
Condition code (see list)
Indirect address prefix

SP
PC
FLAGS
RP
IMR

Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

CONDITION CODES

Value Mnemonic

1000 Always true

0111 C Carry

1111 NC No carry

0110 Z Zero

1110 NZ Not zero

1101 PL Plus

0101 MI Minus

0100 OV Overflow

1100 NOV No overflow

0110 EQ Equal

1110 NE Not equal

Assignment of a value is indicated by the symbol "..-". For
example,

dst +- dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "n" of a given
location. For example,

dst (7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six
flags:

C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag

Affected flags are indicated by:

o Cleared to zero
1 Set to one
* Set or cleared according to operation

Unaffected
X Undefined

Meaning Flags Set

C = 1

C=O

Z=1

Z=O

8=0

8=1

V=1

V=O

Z=1

Z=O

1001 GE Greater than or equal (8 XOR V) = 0

0001 LT Less than (8XORV) = 1

1010 GT Greater than [ZOR(8XORV)] = 0

0010 LE Less than or equal [ZOR(8XORV)] = 1

1111 UGE Unsigned greater than or equal C=O

0111 ULT Unsigned less than C = 1

1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1

0011 ULE Unsigned less than or equal (C OR Z) = 1

0000 Never true

·78

INSTRUCTION FORMATS

OR 11 1 1 0 I dst/src I

OPC I OR 11 1 1 01 dst, dst

OPC

VALUE

OR 11 1 1 01 src

dst I OPC

VALUE

I dst/CCR~ OPC

OPC

dst OPC

CCF, DI, EI, IRET, NOP,
RCF, RET, SCF

INCr

One-Byte Instruction

CLR, CPL, DA, DEC,
DECW, INC. INeW, POP, OR PUSH, RL, RLC, RR,
RRC, SRA, SWAP OR

JP, CALL (Indirect)

OR 11 1 1 01

SRP

MODE OPC

src OR
ADC, ADD, AND,

dst OR cp, OR, SBC, SUB,
TCM, TM, XOR

LD, LDE, LOEI,
LDC, LOCI

LD
OPC cc

DAu

DAL

LD

OPC

DAu

OJNZ, JR DAL

ADC, ADD, AND, CP,
LOt OR, SBC, SUB.
TCM, TM, XOR

dst

ADC, ADD, AND, CP,

dst LD, OR, SBC, SUB,
TCM, TM, XOR

LD

LD

JP

CALL

Two-Byte Instruction Three-Byte Instruction

Figure 12, Instruction Formats

INSTRUCTION SUMMARY

AddrMode Opcode Flags Affected Addr Mode Opcode Flags Affected
Instruction Byte Instruction Byte
and Operation dst src (Hex) C Z S V 0 H and Operation dst src (Hex) C Z S V 0 H

AOC dst,src (Note 1) 1C * '* '* '* 0 '* OECdst R 00 ~'* '* '*~~
dst - dst + src + C dst -dst - 1 IR 01

ADD dst,src (Note 1) Or::: '* * '* '* 0 'it OECWdst RR 80 ~* 'it'*~~

dst - dst + src dst -dst - 1 IR 81

AND dst,src (Note 1) 50 ~'* '* 0 01
dst - dst AND src IMR(7)-0 8F ------

CALL dst DA D6 ------ OJNZ r,dst RA rA ------

sp -sp - 2 IRR D4 r-r - l' r = 0 - F
@sp- PC; PC - dst if r * 0

CCF EF
PC - PC + dst

'it~~~~~

Range: +127, -128
C-NOTC

CLR dst R BO
EI 9F --~-.----

IMR(7)-1

dst-O IR B1

COMdst R 60 ~'*'*O~~
INCdst rE ~'* 'it '* ~-

dst- NOT dst IR 61
dst -dst + r = 0 - F

R 20
CP dst,src (Note 1) ALI '* '* * '*~~ IR 21
dst - src

INCWdst RR AO ~'* '* 'it~~
OAdst R 40 '* '* '*

X~~ dst-dst + 1 IR A1
dst- DA dst IR 41

79

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected
Byte Instruction

and Operation dst src (Hex) C Z S V 0 H

IRET BF
FLAGS - @SP; sp - SP + 1
PC -@SP;SP-SP + 2; IMR (7)-1

JP cC,dst
if cc is true

PC -dst

JR cC,dst
if cc is true,

PC-PC + dst
Range: + 127, -128

LO dst,src
dst -src

LOCdst,src

dst - src

LOCI dst,src
dst -src

r - r + 1; rr - rr + 1

LOEdst,srC

dst -src

LOEI dst,src

dst-src

r - r + 1; rr - rr + 1

NOP

OR dst,src

dst - dst OR src

OA

IRR

RA

r
R

x
r
Ir
R

1m
R

X
r
Ir

r
R

R IR
R 1M
IR 1M
IR R

r Irr

Irr

Ir Irr

Irr Ir

r Irr

Irr

Ir Irr

Irr Ir

(Note 1)

POP dst R
dst-,@SP; IR

SP -SP + 1

PUSH src

SP - SP - 1; @SP - src

RCF
C-O

RET
PC - @SP; SP <- SP + 2

RLdst

80

R
IR

cD
c=O-F

30

cB
C = 0 - F

rC
r8
r9

r = 0 - F
C7
07
E3
F3
E4
E5
E6
E7
F5

C2
02

C3

03

82
92

83
93

FF

40

50
51

70
71

CF

AF

90
91

* * * * * *

0-----

****--

Addr Mode Opcode Flags Affected
Byte Instruction

and Operation dst src (Hex) C Z S V 0 H

RLCdst~R
C 7 0 IR

RR dst l@] ca R
C 7 0 IR

RRCdst~R
C 7 0

IR

SBCdst,src (Note 1)

dst - dst - src - C

SCF
C-1

SRA dst l@] @J R
IR

SRP src
RP -src

SUBdst,src

dst - dst - src

1m

(Note 1)

SWAPdst I ~ R
.7~oIIR

TCM dst,src
(NOT dst) AND src

TM dst,src
dstANOsrc

XOR dst,src

dst - dst XOR src

(Note 1)

(Note 1)

(Note 1)

10
11

EO
E1

CO
C1

3D

OF

DO
01

31

20

FO
F1

60

70

BO

* * * *

* * * *

x * * X

-**0--

NOTE: These instructions have an identical set of addressing modes,
which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
symbolically by a [J in this table, and its value is found In the
following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) IS 13.

AddrMode

dst src

R

R

R

IR

Ir

R

IR

1M

1M

Lower
Opcode Nibble

REGISTERS R240510
5eriaill0 Register

(FOH; Read/Write)

'----- SERIAL DATA (00 '" LSS)

R241 TMR
Time Mode Register

(F1 H; Read/Write)

NOT USED = 00 ~ 1 "" LOAD To

~~ g~~ : ~ri ' 0 "" DISABLE To COUNT

To" MODES j llli~o = NO FUNCTION

INTERNAL CLOCK OUT = 11 1 :: ENABLE To COUNT

T MODES 0 :: NO FUNCTION
EXTERNAL CLOCK INPDT "" 00 ,1 = LOAD T,

GATE INPUT;; 01 0 = DISABLE 1, COUNT

(NON.R~~~~g~:~~:~~) :: 10 1 '" ENABLE T, COUNT

TRIGGER INPUT:: 11
(AETRIGGERABlE)

R242 T1
Counter Timer 1 Register

(F2H; Read/Write)

R243 PRE1
Prescaler 1 Register

(F3H; Write Only)

~LCOUNTMODE
1 = T, MODULO·N
o '" 1, SINGLE·PASS

CLOCK SOURCE
1 = 1, INTERNAL
o '" T 1 EXTERNAL

TIMING INPUT
I (TIN) MODE

PRESCALER MODULO
, (RANGE: 1-64 DECIMAL

01-00 HEX)

R244 TO
Counter/Timer 0 Register

(F4H; Read/Write)

R245 PREO
Prescaler 0 Register

(F5H; Write Only)

~LCOUNTMODE •
o '" To SINGLE·PASS
1 = To MODULO·N

, RESERVEO (MUST BE OJ

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HE~1

R246 P2M
Port 2 Mode Register

(F6H; Write Only)

R247 P3M
Port 3 Mode Register

(F7H; Write Only)

I~I~I~I~I~I~I~I~I

100~o PORT 2 PULL·UPS OPEN ~RAIN
1 PORT 2 PULL·UPS ACTIVE

RESERVED (MUST BE 0)

o P32 '" INPUT P3s '" OUTPUT
1 P32 '" DAVO/RDVO P3s '" ROVO/DAva

00 P33 '" INPUT P3" = OUTPUT

~ ~ } P33 '" INPUT P3" := 9
11 RESERVED

'-______ ~ :~! : ~N:~J~~I~~ :~: : ~~~~~UT)

L _______ ~ :~~ ~ ~~~~lL IN :i~: ~~~~ULTOUT

'-________ ~ ::=:~~ g~F

Figure 13. Control Registers

81

REGISTERS
(Continued)

R24B P01M
Port 0 Mode Register

(F8H; Write Only)

PO,_PO, MODE:] ~-r PO,-PO, MODE
OUTPUT = 00 L 00 = OUTPUT

INPUT = 01 01 = INPUT
A'rA15 '" 1X 1X = A8-All

EXTERNAL STACK SELECTION
MEMORY TIMING 0 = EXTERNAL

NORMAL = 0 ' 1 =~INTERNAl
·EXTENDED = 1 ~

RESERVED (MUST BE 0)

"ALWAYS EXTENDED TIMING AFTER RESET

R2491PR
Interrupt Priority Register

(F9H; Write Only)

I~I~I~I~I~I~I~I~I

RESERVED = 000
IROJ, IROS PRIORITY (GROUP A) C > A > B == 001 "~"' .. ~ I I II j , •• ". '''"'""'"''

o "" IROS ;. IRQ3 A ;. B > C ::;: 010
1 = IRQ3 ;. IROS A > C ;. B = 011

B ;. C ;. A = 100
IRao, IRQ2 PRIORITY (GROUP B) C > B > A = 101

o '" IRQ2 ;. IROQ B ;. A ;. C = 110
1 ::; IROO;. IR02 RESERVED = 111

IRQ1. IR04 PRIORITY (GROUP C)
o = IRQ1 > IR04
1 = IR04 > IRQ1

R250lRQ
Interrupt Request Register

(FAH; Read/Write)

I~I~I~I~I~I~I~I~I

RESERVED (MUST BE 0) I c= IROO
IRQ1
IR02
IRQ3
IRQ4
IROS

R2511MR
Interrupt Mask Register

(FBH; Read/Write)

I~I~I~I~I~I~I~I~I

P32 INPUT (Do = IROO)
P331NPUT
P31 INPUT
P30 INPUT, SERIAL INPUT
To. SERIAL OUTPUT
T,

I' c== 1 ENABLES IRCO-IROS
(Do = IROO)

'-------- RESERVED (MUST BE 0)

'---------1 ENABLES INTERRUPTS

REGISTER
POINTER

Figure 13. Control Registers (Continued)

82

R252 FLAGS.
Flag Register

(FCH: Read/Write)

~~Ll§
' LUSERFLAG.,
LUSER FLAG F2

HALF CARRY FLAG

DECIMAL ADJUST FLAG

OVERFLOW FLAG .

SIGN FLAG

ZERO FLAG

CARRY FLAG

R253 RP
Register Pointer
(~DH; Read/Write)

R254SPH
Stack Pointer

(FEH; Read/Write)

R255SPL
Stack Pointer

(FFH; Read/Write)

I~I~I~I~I~I~I~I~I

I~ ___ :~~~'~s~~!~~~R LOWER

OPCODEMAP

2 3 4

6.5 6.5 6.5 6,5 10,5
DEC DEC ADD ADD, ADD
A, lA, '1·(2 (1,1r2 A2,A,

6,5 6,5 6,5 6,5 10,5
RLC RLC AOC AOC AOC
A, lA, '1,(2 '1, lr2 R2,A,

6,5 6,5 6,5 6,5 10,5
INC INC SUB SUB SUB
A, lA, '1,(2 '1, lr2 A2,A,

8,0 6,1 6,5 6,5 10,5
JP SRP SBC SBC SBC

IAA, 1M '1·(2 'l, lr2 A2,A,

8,5 8,5 6,5 6,5 10,5
OA OA OR OR OR
R, IR, '1,'2 '1,1(2 A2,R,

10,5 10,5 6,5 6,5 10,5
5 POP POP AND AND AND

R, lA, '1,(2 'l, lr2 R2,R,

6,5 6,5 6,5 6,5 10,5
6 COM COM TCM TCM TCM

R, IR, I '1·(2 'l, lr2 A2,R, e. 7 ..
:;;

10/12,1 12/14,1 6,5 6,5 10,5
PUSH PUSH TM TM TM

A2 IA2 '1,(2 'l, lr2 R2,R,
.a
Z 10,5 10,5 12,0 18,0
~ 8 a.
a.

::>

OECW OECW LOE LOEI
RR, IR, '1,lrr2 Ir1,lr(2

6,5 6,5 12,0 18,0
9 RL RL LOE LDEI

R, IR, (2, lrr1 Ir2.Ifr1

10,5 10,5 6,5 6,5 10,5
A INCW INCW CP CP CP

RR', IR, '1,(2 '1,1(2 R2,R,

6,5 6,5 6,5 6,5 10,5
B CLR CLR XOR XOR XOR

R, IR, '1,'2 '1,1(2 R2,R,

6,5 6,5 12,0 18,0
C RRC RRC LOC LOCI

R, IR, '1. lrr2 Ir1,1rr2

6,5 6,5 12,0 18,0 20,0
0 SRA SRA LOC LOCI CALL'

R, IR, '2,1((1 1'2,lrrl IRR,

6,5 6,5 6,5 10,5
E RR RR LO LO

A, IR, r" IR2 R2,R,

8,5 8,5 6,5
F SWAP SWAP LO

R, IR, Ir1"2

10,5 10,5
ADD ADD

IA2,A, R"IM

10,5 10,5
AOC ADC

IA2,A, R"IM

10,5 10,5
SUB SUB

IA2,A, R"IM

10,5 10,5
SBC SBC

IA2,A, A"IM

10,5 10,5
OR OR

IR2,R, R"IM

10,5 10,5
AND AND
IR2,R, A"IM

10,5 10,5
TCM TCM

iR2,R, R"IM

10,5 10,5
TM TM

IR2,R, R"IM

10,5' 10,5
CP CP

IR2,R, R"IM

10,5 10,5
XOR XOR

IR2,R, R"IM

20,0
CALL

DA

10,5 10,5
LD LO

IR2,R, R"IM

10,5
LD

R2,IR,

Lower Nibble (Hex)

7

10,5 6,5
ADD LO
IA"IM r"A2

10,5
ADC

IA"IM

10,5
SUB

IR"IM

10,5
SBC

IR"IM

10,5
OR

IR"IM

10,5
AND

IR"IM

10,5
TCM

IR"IM

10,5
TM

IR"IM

10,5
CP

IR"IM

10,5
XOR

IR"IM

10,5
LO

fl,X,R2

10,5
LO

f2,X,Rl

10,5
LO

IR"IM

9 A B C o E F

6,5 12/10,5 12/10,0 6,5 12/10,0 6,5
LO OJNZ JR LO JP INC

r2,A, r"AA cC,AA r"IM cC,DA rl
I--

f---

-

'----

-

--'--

-

-
6,1
01

-
6,1
EI

-
14,0
RET

-
16,0
IRET

~

6,5
RCF

-
6,5

SCF

-
6,5

CCF

-
6,0

NOP

"'" ----.... v-... -----'''' "'" ----v-... ----'" '-.... -----..... y--... ------",; ~'---....----'"

EXECUTION
CYCLES

FIRST
OPERAND

LOWER
OPCODE
NlllE

*2-byte instruction; fetch cycle appears as B 3·byte instruction

3 2 3

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

legend:
R = 8-bit address
r = 4·bit address
R 1 or r 1 = Dst address
R2 or'2 = Src address

Sequence:
Opcode, First Operand, Second Operand

NOTE: The blank areas are not defined.

83

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins except RESET
with respect to GND -0.3Vto + 7.0V

Operating Ambient
Temperature. , See Ordering Information

Storage Temperature - 65°C to + 150°C

STANDARD TEST CON DITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are as follows:

• -+- 4.75V'" Vee'" + 5.25V

1'1 GND = OV

• O°C'" TA'" + 70°C for S (Standard temperature) .

• - 40°C ... TA'" + 1 00 °C for E (Extended temperature)

DC CHARACTERISTICS

Symbol Parameter Min

VeH Clock Input High Voltage 3.8

Vel Clock Input Low Voltage -0.3

VIH Input High Voltage 2.0

Vil Input Low Voltage -0.3

VRH Reset Input High Voltage 3.8

VRl Reset Input Low Voltage -0.3

VOH Output High Voltage 2.4

VOL Output Low Voltage

III Input Leakage -10

IOL Output Leakage -10

IIR Reset Input Curre~t

lee Vee Supply Current

84

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

Max Unit

Vee V

0.8 V

Vee V

0.8 V

Vee V

0.8 V

V

0.4 V

10 ,.,A

10 ,.,A

-50 ,.,A

180 mA

+5V

2.1K

Figure 14. Test Load 1

Condition

Driven by External Clock Generator

Driven by External Clock Generator

IOH = - 250,.,A

IOL = +2.0mA

VIN = OV, 5.25V

VIN = OV,5.25V

Vee = + 5.25V, VRL = OV

All outputs and 1/0 pins floating

R/W

PORT 0,
OM

X
--®-

X
•

K
~I

)(
16 CD •

PORT 1) Ao-AT) 00-07 IN } <

os
(READ)

PORT 1

...-(!)-

I~

~

•
~I.

-@------~

Ao-A7 X
I---®----I

CD •
0

00-0, OUT

OS
(WRITE) \t" CD

Figure 15. Extemall/O Dr Memory Read/Write Timing

AC CHARACTERISTICS
External 1/0 or Memory Read and Write Timing

8MHz

Number Symbol Parameter Min Max

1 TdA(AS) Address Valid to AS t Delay 50

2 TdAS(A) AS t to Address Float Delay 70

3 TdAS(DR) AS t to Read Data Required Valid 360

4 TwAS AS Low Width 80

5 TdAz(DS) Address Float to DS ~ 0

6 TwDSR DS (Read) Low Width 250

7 TwDSW DS (Write) Low Width 160

8 TdDSR(DR) DS ~ to Read Data Required Valid 200

9 ThDR(DS) Read Data to DS t Hold Time 0

10 TdDS(A) DS t to Address Active Delay 70

11 TdDS(AS) DS t to AS ~ Delay 70

12 TdRIW(AS) R/W Valid to AS t Delay 50

13 TdDS(R/W) DS t to RIW Not Valid 60

14 TdDW(DSW) Write Data Valid to DS (Write) ~ Delay 50

15 TdDS(DW) DS t to Write Data Not Valid Delay 60

16 TdA(DR) Address Valid to Read Data Required Valid 410

17 TdAS(DS) AS t to DS ~ Delay 80

NOTES:
1. When using extended memory timing add 2 TpC. • All units in nanoseconds (ns).
2. Timing numbers given are for minimum TpC. t Test Load 1

...... 01

~

.y
-®--

](
~I

.,11

12MHz
Min Max

35

45

220

55

0

185,

110

130

0

45

55

30

35

35

35

255

55

,

Notes·tO

2,3

2,3

1,2,3

2,3

1,2,3

1,2,3

1,2,3

2,3

2,3

2,3

2,3

2,3

2,3

1,2,3

2,3

3. See clock cycle time dependent characteristics table. o All timing references use 2.0V for a logic" 1 " and 0.8V for a logic "0".

85

Figure 16. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

Number Symbol Parameter

TpC Input Clock Period

2 TrC,TfC Clock Input Rise and Fall Times

3 TwC Input Clock Width

4 TwTinL Timer Input Low Width

5 TwTinH Timer Input High Width

6 TpTin Timer Input Period

7 TrTin,TfTin Timer Input Rise and Fall Times

8A TwlL Interrupt Request Input Low Time

88 TwlL Interrup,t Request Input Low Time

9 TwlH Interrupt Request Input High Time

NOTES:
1. Clock timing references use 3.BV for a logic "1" and O.BV for a logic "0".
2. Timing references use 2.0V for a logic "1" and O.BV for a logic "0".
3. ,Interrupt request via Port 3.
4. Interrupt request via Port 3 (P31·P33)
5. Interrupt request via Port 3 (P30)
• Units in nanoseconds (ns).

86

8MHz
Min

125

37

100

3TpC

8TpC

100

3TpC

3TpC

12MHz
Max Min Max Notes·

1000 83 1000

25 15

70

70 2

3TpC 2

.8TpC 2

100 100 2

70 2,4

3TpC 2,5

3TpC 2,3

DATA IN

DAV
(INPUT)

RDY
(OUTPUT)

DATA IN VALID

------",'

Figure 17a, Input Handshake Timing

DATA OUT

DAV
(OUTPUT)

RDY
(INPUT)

DATA OUT VALID

Figure 17b', Output Handshake Timing

AC CHARACTERISTICS
Handshake Timing

Number Symbol

TsDI(DAV)

2 ThDI(DAV)

3 TwDAV

4 TdDAVlf(RDY)

5 TdDAVOf(RDY)

6 TdDAVlr(RDY)

7 TdDAVOr(RDY)

8 TdDO(DAV)

9 TdRDY(DAV)

NOTES:
1. Test load 1
2. Input handshake

Parameter

Data In Setup Time

Data In Hold Time

Data Available Width

DAV ~ Input to RDY ~ Delay

DAV ~ Output to RDY ~ Delay

DAV t Input to RDY t Delay

DAV t Output to RDY t Delay

Data Out to DAV ~ Delay

Rdy ~ Input to DAV t Delay

3. Output handshake ,
t All timing references use 2.0V for a logic "1" and O.BV for a logic "0".
* Units in nanoseconds (ns).

M,8MHZ M In ax

0

230

175

175

0

175

0

50

0 200

M,12 MHzM In ax

0

160

120

120

0

120

0

30

0 140

Notest*

1,2

1,3

1,2

1,3

87

CLOCK CYCLE TIME·DEPENDENT
CHARACTERISTICS

8MHz 12MHz
Number Symbol Equation Equation

TdA(AS) TpC-75 TpC-50

2 TdAS(A) TpC-55 TpC-40

3 TdAS(DR) 4TpC-140* 4TpC-110*

4 TwAS TpC-45 TpC-30

6 TwDSR 3TpC-125* 3TpC-65*

7 TwDSW 2TpC-90* 2TpC-55*

8 TdDSR(DR) 3TpC-175* 3TpC-120*

10 Td(DS)A TpC-55 TpC-40

11 TdDS(AS) TpC-55 TpC-30

12 TdR!W(AS) TpC-75 TpC-55

13 TdDS(RIW) TpC-65 TpC-50

14 TdDW(DSW) TpC-75 TpC-50

15 TdDS(DW) TpC-55 TpC-40

16 TdA(DR) 5TpC-215* 5TpC-160*

17 TdAS(DS) TpC-45 TpC-30

* Add 2TpC when using extended memory timing

88

April 1988

FEATURES:

• Complete microcomputer with 18-pin package, 14
I/O lines, and 2K bytes of on-chip ROM.

e 142-byte register file, including 124 general purpose
8-bit registers, 3 I/O port registers, and 15 status
and control registers.

6) Two programmable 8-bit counterltimers, each with a
6-bit programmable prescaler.

(') On-chip osillator that accepts a crystal or external
clock drive.

o 2 Volt "BROWN OUT" protection.

GENERAL DESCRIPTION:

The Z86C08 is a 2K ROM version of the Z8 single-qhip
microcomputer housed in an 18-pin DIP. It offers all the
outstanding features of the Z8 family architecture in a
low cost plastic DIP for price and size sensitive designs.

GND Vee

XTALIN P20

XTALOUT P21

P31/Anl P22

P32IAn2 P23

P33IREF P24

POD P25

P01 P26

P02 P27

Figure 1. Pin Functions

Z86C08 CMOS Z8
MICROCONTROllER

• Two analog comparators.

• Register pointer so that short fast instructions
access anyone of the eight working register groups

o Internal power on reset.

(!) Standby modes - HALT and STOP.

@ 12 MHz

o CMOS process.

Flexible 1/0 with low power (15mA max, 2mA HALT,
10uA STOP) operation make this an ideal microcom­
pLiter for hand-held and consumer applications. It has In­
struction compatibility with the entire Z8 family for easy
software migration.

P24 P23 18

P25 P22 17

3 P26 P21 16

4 P27 P20 15

5 Vee GND 14

6 XTALOUT P02 13

7 XTALIN POl 12

8 P31/An1 POD 11

9 P32IAn2 P33IREF 10

Figure 2. Pin Assignments

89

PIN DESCRIPTION:

POO-P02• I/O Port lines (inputs/outputs, CMOS compat­

ible). The three lines of Port 0 are programmable as inputs
or outputs on a group basis (Figure 3).

P2u-P~. I/O Port lines (inputs/outputs, CMOS compat­

ible). The eight lines of Port 2 are programmable as inputs
or outputs on a line by line basis (Figure 3).

I
P31-P33 • Input Port lines (inputs, CMOS compatible).

The three lines of Port 3 are programmable as digital or
analog comparator inputs on a group basis (Figure 3).

XTAL IN, XTAL OUT. Crystal In, Crystal Out (time-base
input and output): These pins connect a parallel-resonant
crystal (12 MHz maximum) or an external single-phase
clock (12 MHz maximum) to the on-chip clock oscillator
and buffer.

ADDRESS SPACES:

Program Memory. The program counter addresses 2K

bytes of program memory space as shown in Rgure 4.
The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts.

Register File: The register file indudes three 110 port reg­

isters , 124 general purpose registers (R4 - R127), and 15
control registers (R240 - R255). These
registers are aSSigned the address locations shown in
Figure 5.

I/O
(BIT PROGRAMMABLE) I/O

ARCHITECTURE:

Z86C08 architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications (Rgure 3).
Microcomputer applications demand powerful 110 capa­
bilities. The Z86C08 fulfills this with 14 pins dedicated to
input and output. These lines are grouped into three I/O
ports which are configurable under software control.
Two basic address spaces are available: program memory
and the internal register file. The register file is composed
of 124 general purpose 8-bit registers, three 110 port reg­
isters, and 15 control and status registers.
To unburden the program from coping with real-time
problems two counterltimers with a large number of user­
selectable modes are offered on-chip.

Instructions can access registers directly or indirectly with
an 8-bit address field. The Z86C08 also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). In the 4-bit mode, the register file is
divided into eight working register groups, each occupying
16 contiguous locations. The Register Pointer addresses
the starting location of the active working-register group
(Figure 6).
STACKS. An 8-bit Stack Pointer (R255) is used for the
internal stack that resides within the 124 general purpose
registers (R4 - R127).

Figure 3. Functional Block Diagram

90

C.OUNTER/TIMERS:

The ZS6COS contains two S-bit programmable counterl
timers (TO and T1), each driven by its own 6-bit program­
mable prescaler. The T1 prescaler can be driven by
internal or external clock sources; however, the TO pres­
caler is driven by the internal clock only.
The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrementthe value (1 to 256) that
has been loaded into the counter. When the counter
reaches the end of count, a timer interrupt request - IR04
(TO) or IR05 (T1) - is generated.
The counters can be started, stopped, restarted to con­
tinue, or restarted from the initial value. The counters can
also be programmed to stop upon reaching zero (single
pass mode) or to automatically reload the initial value and
continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read at any time
without disturbing their value or count mode.
The clock source for T1 is user-definable and can be
retriggerable or non-retriggerable, or a gate input for the
internal clock.

LOCATION

I/O PORTS:

The ZS6COS has 14 lines dedicated to input and output.
These lines are grouped into three ports and are configur­
able as input or output. All ports have active pull-ups and
pull-downs compatible with CMOS loads.
Port 0 can be programmed on either inputs or outputs. The
configuration is shown in Figure 7.
Port 2 bits can be programmed independently as input or
output. In addition, Port 2 can be configured to provide
open-drain outputs. The configuration is shown in Figure S.
Port 3 lines can be configured as digital inputs, analog
inputs, or control lines. In all cases, the direction of these
three lines is fixed as inputs.
Port 3 can also provide the following control functions:
four external interrupt request signals (IROO, IR01, IR02
and IR03) or timer input signal (TIN). The configuration of
Port 3 is shown in Figure 9.

IDENTIFIERS

255 STACK POINTER (BITS 7-0) 'PL
25'
253

252

251

250

249

248

247

246

245

244

20411---------, 243

242
ON·CHIP

LOCATION Of ROM 241
FIRST BYTE OF

'Ns::~gJi~~'::-b ___________ _
AFTER RESET 12 i-=-----::=------I

11 IROS

10 IROS

IR04

IRQ4

INTERRUPT IRoo

VECTOR • IRoo
(LOWER BYTE) , IR02

INTERRUPT 'I>- IRQ2

VECTOR 3 IRa1
(UPPER BYTE) IRQl

IRoo

IROO

Figure 4. Program Memory Map

Fi~ure 4. Program Memory Map

RESERVt;O

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK AEGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCAlER

TIMER/COUNTER 1

TIMER MODE

NOT
IMPLEMENTED

GENERAL· PURPOSE
REGISTERS

PORT 3

PORT2

RESERVED

PORTO

Figure 5. Register File

RP

FLAGS

IMR

IRa

IPR

P01M

P3M

P2M

PREO

TO

PRE1

T1

TMR

P3

P2

P1

PO

Figure 5. Register File

THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS
PROVIDED BY THE REGISTER POINTER SPECIFIES
THE ACTIVE WORKING·REGISTER GROUP.

I 127

- - 1----------------1

- -11----------------1

--I
- - (1----------------1

THE LOWER
NIBBLE OF

11--'-PE-CI-FlE-a-w-aR-K-'NG-.--I ~~i~~C;:~~~~
\

REGISTER GROUP ~~~r~~~~~~TION
1---------1 POINTS TO THE I SPECIFIED ---1 REGISTER.

--/1-----1
--I ,----"OPO.'5-----:'

Figure 6. Register Pointer

Figure 6. Register Pointer

91

INTERRUPTS:

The Z86C08 allows six different interrupts from five
sources: the three Port 3 lines P31 - P33, both the rising
and falling edge of P32 (AN2) , the falling edge of P31
(AN1) and P32 (REF - Figure 9), and the two counter!
timers. These interrupts are both maskable and priori­
tized. The Interrupt Mask Register globally or individually
enables or disables the six interrupt requests. When more
than one interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.
All Z86C08 interrupts are vectored through locations in
program memory. When an interrupt request is granted,
an interrupt machine cycle is· entered. This disables all
subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory vector
location reserved for that interrupt. This memory location
and the next byte contain the 16-bit address of the interrupt
service routine for that particular interrupt request.
Polled interrupt systems are also supported. To accom­
modate a polled structure, any or all of the interrupt inputs
can be masked and the interrupt request register polled to
determine which of the interrupt requests needs service.
Interrupt sources and corresponding interrupts are shown
in Table 2.

STANDBY MODE:

The Z86C08 has two standby modes which are entered by
executing either:

• STOP

• HALT

Figure 7. ZS6COS Port 0 Configuration

92

The STOP instruction stops the internal clock and external
crystal oscillation; theHALT instruction stops the internal
clock but not crystal oscillation.
The STOP mode can be released by two methods. The

first method is a RESET ofthe device by removing Vec. The
second method is if P27 is configured as an input line when
the device executes the STOP instruction. A low input
condition on P27 releases the STOP mode. Program exe­
cution under both conditions begins at· location
%OOOC(HEX). However, when P27 is used to release the
STOP mode the I/O port mode registers are not reconfig­
ured to their default power-on conditions. This prevents any
I/O, configured as output when the STOP instruction was
executed, from glitching to an unknown state.
The HALT mode is released by an interrupt on Port 3 input,
a time-out in Timer 0 or Timer 1, or by a RESET of the
device. To complete an instruction prior to entering standby
mode,use the instructions:

NOP
HALT or STOP
To use the P27 release approach with STOP mode, use the
following instructions:

OR P2,#%80
NOP
STOP

RESET:

Power-On Reset is in the Z86C08. The Z86C08 waits for 50
to 150 ms + 18 crystal clocks (Figure 10) while power is on,
and then jumps to the starting address %OOOC(HEX).
The control register Reset value is listed in Table 1.

1.S (-) 2.3V HYS'TD'ttSD3 J
:EN ___ -<.I.:7I _.,..... _____ .,.---+ -U~ ~ P2?

~L.RTCH

• NO H£S:IK LATO-I ON PZ7

Figure S. ZS6COS Port 2 Configuration

mDAT'"

L-------~~~~~r_------~~t_I::L~~

~Q e,l.a" F"~ EOGt: ~
:IRQ 3 = RDUNQ EDGE OCTECTION

Figure 9. Z86C08 Port 3 Configuration

INT. csc. XTAL osc.
!

CHIP RESET

Figure 10. Internal Reset Configuration

Figure 10. Internal Reset Configuration

Table 1. Z86C08 Control Registers
86coa control registers:

Addr. reg. Reset condition

Fl T"R 00000000

F2 T1 UUUUUUUU

F3 PRE! UUUUUUOO

F4 TO UUUUUUUU

F5 PREO UUUUUUUO

F6 • Pl" 11111111

F7 • F3M UUUUUUOO

FB • POlH UUUOUU01

F9 IPR UUUUUUUU

FA IRQ UUOOOOOO

FB '"R OUUUUUUU

FC FLAGS UUUUUUUU

FO RP 00000000

FE SPII UUUUUUUU

FF SPL UUUU'UUUU

* Not reset after a low on P27 to get out of stop mode

Commments

Inputs after
Reset

IR03 is
used for
pas. edge
detection

Not used,
stack always
internal

Table 2. Interrupt Types, Sources, and Vectors

93

WATCH DOG TIMER (WDT):

The Watch Dog Timer (WDT) should be refreshed within
15 ms. If not refreshed, then the ZS6COS resets itself.

WDT: 5F(HEX).

CLOCK:

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal, ceramic resonator, or
to any suitable external clock source (XT AL IN = Input,
XT AL OUT = Output).

XTALIN

- 5M Ohm

The crystal source is connected across XTAL IN and XTAL
OUT, using the recommended capacitors (Cl = 15 pF) from
each pin to ground. The specifications for the crystal are
as follows:

• AT cut, parallel resonant

• Fundamental type, 12 MHz max

• Series resistance, RS.< 100 ohm

The oscillator configuration is shown in Figure 11.

1/2 O:IVlDER

XTALOUT XTAL. CLOCK SYSTEM CLOCK

Figure 11 . Z86COS Crystal Input Config.

PORT 3 COMPARATORS:

The S6COS's port 3 inputs include two analog comparators
for added interface flexibility. Interrupts are generated on
either edge of comparator 2's output, or on the falling edge
of comparator 1's output. The block diagram is shown in
Figure 9. , Comparator outputs may be used for interrupt
generation, Port 3 data inputs, or Tininthe case of AN1
(P31). Alternatively, the comparators may be disabled,
freeing the reference input (P33) for use as IRQ1 and/or
P33input.

94

The dual comparator (common inverting terminal) fea­
tures a single power supply which discontinue.s power in
stop mode. The common voltage range is 0-4V; the power
supply and common mode rejection ratios are 90db and
60db, respectively. See comparator specifications for de­
tails (Page 16).
Typical applications for the on-board comparators include:
zero crossing detection, analog-to-digital conversion, volt­
age scaling, and threshold detection.

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or. indirect working-register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst Destination location or contents
src
cc
@

Source location or contents
Condition code (see list)
Indirect address prefix

- SP
PC
FLAGS
RP
IMR

Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

CONDITION CODES

Value Mnemonic

1000 Always true

0111 C Carry

1111 NC No carry

0110 Z Zero

1110 NZ Not zero

1101 PL Plus

0101 MI Minus
"-

0100 OV Overflow

1100 NOV No overflow

0110 EQ Equal

1110 NE· Not equal

Assignment of a value is indicated by the symbol "+-': For
example,

dst +- dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "n" of a given
location. For example,

dst (7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six
flags:

C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
o Decimal-adjust flag
H H~lf-carry flag

Affected flags are indicated by:

o Cleared to zero
1 Set to one
.. Set or cleared according to operation

Unaffected
X Undefined

Meaning Flags Set

C; 1

C;O

Z; 1

Z;O

8;0

8; 1

V; 1

V;O

Z; 1

Z;O

1001 GE Greater than or equal (8XORV); 0

0001 LT Less than (8XORV); 1

1010 GT Greater than [Z OR (8XOR V)] ; 0

0010 LE Less than or equal [Z OR (8 XORV)] ; 1

1111 UGE Unsigned greater than or equal C;O

0111 ULT Unsigned less than C;l

1011 UGT Unsigned greater than (C ; 0 AND Z ; 0) ; 1

0011 ULE Unsigned less than or equal (CORZ); 1

0000 Never true

95

INSTRUCTION FORMATS

OPC

dsl OPC

CCF, 01, EI, IRET, NOP,
RCF, RET, SCF

INCr

One-Byte Instructions

CLR, CPL, DA, DEC,

L--=='----' OR 11 1 1 01 dsl/sre I ~~~~'~~~Rl~~~R~OP, 1---=-----1 OR 1 1 1 0
L-_~_......J OR 1 1 1 0 dsl

OPC I
I--""":::d'--Sl::"""----j OR 11 1 1 0 I dsl

OPC

VALUE

L----=-='---' OR l' 1 1 01 sre

dsl I OPC

VALUE

I dSl/CC R~ OPC

RRC, SRA, SWAP

JP, CALL (Indirect)

SRP

ADC, ADD, AND,
CP, OR, SBC, SUB,
TCM, TM, XOR

LD, LDC, LOCI

LD

LD

DJNZ, JR

I----:-=",-c::----I OR It 1 1 0 I dsl

OPC

DAu

ADC, ADD, AND, CP,
LD, OR, SBC, SUB,
TCM, TM, XOR

ADC, ADD, AND, CP,
LD, OR: SBC, SUB,
TCM, TM, XOR

LD

LD

JP

CALL

Two-Byte Instructions Three-Byte Instructions

Figure 12. Instruction Formats

INSTRUCTION SUMMARY

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte Instruction Byte
and Operation dst src (Hex) C Z S V o H and Operation dst src (Hex) C Z S V 0 H

ADCdst,src (Note 1) 10 * * * * o * DECdst R 00 -***--
dst ~ dst + src + C dst ~dst - 1 IR 01

ADD dst,src (Note 1) 00 * * * * o * DECWdst RR 80 -***--
dst ~ dst + src dst ~dst - 1 IR 81

AND dst.src (Note 1) 50 -** 0 01
dst ~ dst AND src IMR (7) ~O 8F ------

CALL dst DA 06 ------ DJNZ r,dst RA rA ------

SP ~SP - 2 IRR 04 r~r-1 r = 0 - F
@SP ~ PC; PC ~ dst ifri'O

CCF EF
PC ~PC + dst

*----- Range: + 127, -128
C~NOTC

EI 9F ------
CLRdst R BO ------

IMR(7)~1
dst~O IR B1

HALT 7F
COM dst R 60 -**0--
dst~ NOTdst IR 61 INCdst rE -***--

dst~dst + 1 r = 0 - F
CP dst.src (Note 1) AD

'" * * '" R 20
dst - src IR 21

DAdst R 40 ***x-- INCWdst RR AO -***--
dsi~ DAdst IR 41 dst~ dst + 1 IR A1

96

INSTRUCTION SUMMARY (Continued)

Instruction
and Operation

Addr Mode Opcode Flags Affected
Byte

dst src (Hex) C Z S V 0 H

IRET BF
FLAGS <-- @SP; SP <-- SP + 1
PC <-- @SP; SP <-- SP + 2; IMR (7) <-- 1

JP cC,dst
if cc is true

PC <-- dst

JR cC,dst
if cc is true,

PC <-- PC + dst
Range: + 127, -128

LOdst,src
dst <-- src

LOCdst,src
dst <-- src

OA

IRR

RA

r
R

X

1m
R

x

r Ir
Ir r
R R
R IR
R 1M
IR 1M
IR R

r Irr
Irr

LOCI dst,src Ir Irr
dst <-- src Irr Ir
r <-- r + 1; rr <-- rr + 1

LOE dst,src r Irr
dst <-- src Irr

LOEI dst,src Ir Irr
dst <-- src Irr Ir
r<--r + 1; rr<--rr + 1

NOP

ORdst,src (Note 1)
dst <-- dst OR src

POP dst
dst <--@SP;
SP <-- SP + 1

PUSH src

R
IR

SP <-- SP - 1; @SP <-- src

RCF
C <-- 0

RET
PC <-- @SP; SP <-- SP + 2

RL dst r::1 r==I R
L.:..J~IR

RLCdst~R
C 1 0 IR

R
IR

cD
c=O-F

30

cB
c=O-F

rC
r8
r9

r = 0 - F
C7
07
E3
F3
E4
E5
E6
E7
F5

C2
02

C3
03

82
92

83
93

FF

40

50
51

70
71

CF

AF

90
91

10
11

* * * * * *

-**0--

0-----

* * * * -.-

Addr Mode Opcode Flags Affected
Byte Instruction

and Operation dst src (Hex) C Z S V 0 H

RR dst LEJ L6J R
C 1 0 IR

RRC dst r=--===:l R
~IR

SBC dst,src (Note 1)
dst <-- dst <-- src <-- C

SCF
C<--1

SRA dst 1:0-::;:;::;:::::; R
~IR

SRP src
RP <--src

STOP

SUB dst,src
dst <-- dst <-- src

1m

(Note 1)

SWAP dst I; 52 R
L... 'C:::J--""-,-.:J' II R

TCM dst,src
(NOT dst) AND src

TM dst,src
dstANOsrc

WDT

XORdst,src
dst <-- dst XOR src

(Note 1)

(Note 1)

(Note 1)

EO
E1

CO
C1

3D

OF

DO
01

31

6F

20

FO
F1

60

70

'* * .,. '*

***,*--

1-----

X * * X

-**0--

5F -- -- -- -- -- -

BO - * * 0 --

NOTE: These instructions have an identical set of addressing modes,
which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
symbolically by a 0 in this table, and its value is found in the
following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.

AddrMode

dst src

R

R

R

IR

Ir

R

IR

1M

1M

Lower
Opcode Nibble

97

OPCODE.MAP
Lower Nibble (Hex)

6 A B C o E

- _._- -- ----
'21'0 O·

I
65 6.5 65 6.5 10.5 '0.5 105 10.5 6.5 6.5 12110.5 12110 0 6.5 65

DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC
1 R, IR, f,.r2 f, Ir2 R2· R, IR2 R, R,IM IR,.IM f,.R2 f2· R , fl·RA cC.RA fl·IM cC.DA r1

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5
j---- -

RLC RLC ADC ADC ADC ADC ADC ACC
R, IR, f,.r2 f,.lf2 R2· R, IR2·R, R,.IM IR,.IM

I----
6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5
INC INC SUB SUB SUB SUB SUB SUB
R, IR, r,.r2 f,.lf2 R2·R, IR2·R, R,.IM IR,.IM

8.0 6.1 6.5 6.5 10.5 10.5 10.5 10.5
I----

JP SRP SBC SBC SBC SBC SBC SBC
IRR, 1M f,.r2 f,. lf2 R2·R, IR2·R, R,.IM IR,.IM

8.5 8.5 6.5 6.5 10.5 10.5 10.5 10.5
I----

DA DA OR OR OR OR OR OR
R, IR, f,.r2 f,. lf2 R2·R, IR2·R, R,.IM IR,.IM

10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5
I----

POP POP AND AND AND AND AND AND 6.0

R, IR, ".r2 f,.lf2 R2·R, IR2·R, R,.IM IR,.IM WDT

6.5 6.5 6.5 6.5 10.5
I----

'0.5 10.5 '0.5 6.0
COM COM TCM TCM TCM TCM TCM TCM STOP

R, IR, f,.f2 ".lr2 R2·R, IR2·R, R,.IM IR,.IM

10112.1 12/14.1 6.5 6.5 10.5 10.5 10.5 10.5
I----

7,0
PUSH PUSH TM TM TM TM TM TM HALT

R2 IR2 f,.r2 f,.lf2 R2·R1 IR2·R1 R,.IM IR,.IM
I----

10.5 10.5 6.1
CECW DECW 01

RR, IR,

6.5 6.5 ~
RL RL EI
R, IR,

-
10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5 14.0

A INCW INCW CP CP CP CP CP CP RET
RR, IR, f,J2 ".lf2 R2·R, IR2·R, R,.IM IR,.IM

6.5 6.5 6.5 6.5 10:5 10.5 10.5 10.5 --,;;-0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET

R1 IR, f,.f2 f,. lf2 R2·R, 1R2·R, R,.IM IR"IM
-

6.5 6.5 12.0 18.0 10.5 65
C RRC RRC LDC LOCI LD RCF

R, IR, fl·lrr2 Ir,. lrr2 f,.x.R2

6.5 6.5 12.0 18.0 20,0 20.0 10.5 ~
o SRA SRA LDC LOCI CALL· CALL LD SCF

R, IR, f2· lfr , Ir2·1rr, IRR, DA r2· x.R,
-

6,5 6.5 6,5 10.5 10.5 10.5 10.5 6.5
E RR RR· LD LD LD LD LD CCF

R, IR, rl· IA2 R2· R, IR2·R, R,.IM IR"IM
-

8.5 8.5 6,5 10.5 60
F SWAP SWAP LD LD NOP

R, IR, Jrp2 R2· IR ,

I.. ... ____ 'V ____ .;J I.. ... ____ ... 'V ____ ... J I.. ... -----..... 'V -----..;J~"____v__"

98

EXECUTION
CYCLES

FIRST
OPERAND

LOWER
OPCODE

NlrE

• 2·byte instruction; fetch cycle appears as a 3-byte instruction

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

Legend:
R = 8·bit address
r = 4·bit address
Ri or f1 = Dst address
R2 or f2 = Src a8dress

Sequence:

3

Opcode, Firsl Operand, Second Operand

NOTE: The blank areas are not defined.

R241 TMR
TIMER MODE REGISTER

(F1H; Read/Write)

~ 1 = lOAD To

X 0 = DISABLE To COUNT
1 = ENABLE To COUNT

j ~~o = NO FUNCTION

TIN MODES, 0 : NO FUNCTION
EXTERNAL CLOCK INPUT = 00 1 - LOAD T,

GATE INPUT = 01 0 = OISABLE T, COUNT
TRIGGER INPUT = 10 -, = ENABLE T, COUNT

(NON·RETRIGGERABLE)
TRIGGER INPUT = 11

(AETRtGqEAABlE)

R242 T1
COUNTER TIMER 1 REGISTER

(F2H; Read/Write)

Io.ID, I 0,1 D. I D,I 0,1 D, I Dol '

L T I INITIAL VALUE (WHEN WRITTEN)
---(RANGE 1 256 DECIMAL 01 00 HEX)

1, CURRENT VALUE (WHEN READ)

R243 PRE1
PRESCALER 1 REGISTER

(F3H; Write Only)

~LCOUNTMODE
o = T, SINGLE· PASS
1 = 1, MODUlO·N

CLOCK SOURCE
1 '" T, INTERNAL
o '" 1, EXTERNAL TIMING INPUT

(T'N) MODE

PRESCAlER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
COUNTER/TIMER 0 REGISTER

(F4H: Read/Write)

R245PREO
PRESCALER 0 REGISTER

(F5H; Write Only)

~I COUNT MODE
- 0 = To SINGLE PASS

1 '" To MODUlO·N

X

, PRESCAlER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246P2M
PORT 2 MODE REGISTER

(F6H; Write Only)

P2o-P21 110 DEFINITION
'------ 0 DEFINES BIT AS OUTPUT

1 DEFINES Bll AS INPUT

R247P3M
PORT 3 MODE REGISTER

(F7H; Write Only)

I~I~I~I~I~I~I~I~I

I L. ~." "." .. ~, ... '" 1 PORT 2 PUll·UPS ACTIVE

PORT 3 INTERRUPTS
o DIGITAL
1 ANALOG

'------X

To INITIAL VALUE (WHEN WRITTEN)
'-----(RANGE; 1 256 DECIMAL 01 00 HEX)

To CURRENT VALUE (WHEN READ)

NOTE: All "don't care" bits return a "1" when read.

Figure 16 Control Registers

99

100

R248 P01M
PORT 0 AND 1 MODE REGISTER

(C8H: Write Only)

I~I~I~I~I~I~I~I~I

XT~L. POgoP~'~,?r~~T 01 '" INPUT

X

MUSTBEO

R2491PR
INTERRUPT PRIORITY REGISTER

(F9H: Write Only)

I~!~!~!~'~:~~~I

• :J I I III '""""'" .~"' .. ~ RESERVED := 000
IRC3, IROS PRIORITY (GROUP A) C :> A :> B '" 001

o = IROS :> IRQ3 _ A:> B > C = 010
1 = IRQ) :> lAOS A :> C :> B = 011

- B ;> C :> A ':: 100
IROO, IRQ2 PRIORITY (GROUP B) 'c :> B :> A - 101

o = IR02 :> IROO B-> A :> C "" 110
1 = IROO > IRQ2 RESERVED = 111

IRC1,IRQ4 PRIORITY (GROUP C)
o = IRQl :> IRQ4
1 = IR04 :> IAQl

R250 IRQ
INTERRUPT REQUEST REGISTER

(FAH: Read/Write)

R252 FLAGS
FLAG REGISTER
(FCH: Read/Write)

U~ug
l LUSERFLAGFl

LUSER flAG F2

HALF CARRY flAG

DECIMAL ADJUST FLAG

OVERFLOW FLAG

SIGN FLAG

, ZERO FLAG

CARRY FLAG

R253 RP
REGISTER POINTER

(FOH: Read/Write)

REGISTER
POINTER

R255 SPL
STACK POINTER
(FFH: Read/Write)

LOON'TeARE

I~I~I~I~I~I~I~I~I 1~1~1~1~1~[~1~1~1

RESERVED T L IROO" P321NPUT
IROI _ P33 INPUT
IR02 _ P31 INPUT
IR03 " P32INPUT
IRQ4_ TO'
!R05_Tl

R2511MR
INTERRUPT MASK REGISTER

(FBH: Read/Write)

(00 "" IROO)

'-------- RESERVED

LI ____ ~~;~~s~~~~:~A LOWER

II c== 1 ENABLES IRCQ-IAOS

'--_______ 1 ENABLES INTERRUPTS

Figure 16 Control Re!ilisters (Continued)

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect
to GND - O.3V to + 7.0V

Orerating Ambient
Temperature See Ordering Information

Storage Temperature - 65°C to + 150°C

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin (Figure 13)

Standard conditions are as follows:

III +4.5 V <_ Vee <_ +5.5 V

GIl GND = OV

DC CHARACTERISTICS

Symbol Parameter

Vee = 5.0 V +.10%

Min Typ

StrEsses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating condilions for extended periods may affect
device reliability.

+5 V

2.1K

Figure 13 Test Load 1

Max Unit Condition

VeH Clock Input High Voltage
Vel Clock Input Low Voltage

Vee-0.2
-0.3

Vee V Driven by external CG

VIH Input High Voltage
Vll Input Low Voltage

VRH RESET Input High Voltage

VRl RESET Input Low Voltage
VOH Output High Voltage
VOl1 Output Low Voltage
VOl2 Output Low Voltage

III Input Leakage

IOl Output leakage

I'R RESET Input Current

Icc Supply Current

Iccl Standby Current

lee2 Standby Current

Vee-0.2
-0.3

Vee-0.2
-0.3

Vee-O.4

-10
-10

-10

Vss+O.2 V Driven by External CG

Vee V
Vss+O.2 V

Vee V
Vss+0.2 V

V IOH = -2.0mA
0.4 V IOl =+4.0mA
0.8 V IOl = + 12mA. 3 pins max.

10 uA VIN = OV. Vee
10 uA VIN = OV. Vec
-50 uA Vee = 4.5 to 5.5V. VRl = OV. P27
15 mA All Output & 1/0 pins float

2 mA HALT Mode Vin= OV. Vcc
10 uA STOP Mode Vin = OV. Vee

101

CLOCK

TIN

Figure 14. Additional Timing

AC CHARACTERISTICS

NUmber

1
2
3
4
5

6
7
8A
9

NOTES:

Symbol

TpC

TrC, TfC
TwC
TwTinL
TwTinH

TpTin
TrTin,Tffin

TwlL
TwlH

Parameter

Input Clock Period

Clock Input Rise and Fall Times
Input Clock Width

Timer Input Low Width
Timer Input High Width

Timer Input Period
Timer Input Rise and Fall Times
Int. Resquest Input Low Time
Int. Request Input High Time

Min

125

37
100
3TpC

8TpC

100
3TpC

1. Clock timing references use Vee for a logic "1" .and V ssfor logic "0".
2. Timing references use Vee for a logic "1" and V ss for a logic "0".
3. Interupt request via P31- P33
4. Interrupt request via P31-P33

·Units in nanoseconds (ns)

102

Max

100,000

25

100

Notes

1

1
1
2
2

2
2
2,4
2,3

PRELIMINARY Z86C08 COMPARATOR SPECIFICATIONS

CASE 1 CASE 2 CASE 3 CASE 4 CASE 5

S
VDD=2.5V VDD=2.5V VDD=5.5V VDD=5.5V VDD=5.0V
Temp=40Co Temp=85Co Temp=40Co Temp=85Co Temp=27Co

,

Parameters
Offset -+50 (est) _+50 (est) _+50 (est) _+50 (est) -+25 (typ)
Voltage (mv)
Open. Loop 60 (min) 60 (min) 60 (min) 60 (min) 75 (typ)
Gain (db)
CMRR (db) 60 (est) 60 (est) 60 (est) 60 (est) 70 (typ)

PSRR (db) 70 (est) 70 (est), 70 (est) 70 (est) I 80 (typ)

Internal 15 (max) 15 (max) 1. (max) 1.0(max) O.I(typ)
Delay Time (us) -+300 -+300 -+300 -+300 _+300
Overdri ve (mv)

CMR (+) 2.0 (max) 2.0 (max) 4.5 (max) 4.5 (max) 4.0 (max)

CMR (-) o (min) 0 (min) 0 (min) 0 (min) o (min)

I sia• (rna) 0.1 (max) 0.1 (max) 1. 0 (max 1.0 (max) 0.2 (typ)
Power (mw) 0.25 0.25 5.5 4.125 1.25

Power Down Yes Yes Yes Yes Yes

103

ORDERING INFORMATION

Z86C08 CMOS Microcontroller
Z86C0808PSC 8MHz'
Z86C0812P~C 12MHz

Codes
First letter is for package; second letter is for temperature.

C = Ceramic DIP
P ;= Plastic DIP
L = Ceramic LCC
V = Plastic PCC

TEMPERATURE
S = OOCto +70°C
E = -40°C to +85°C
M*= -55°C to +125°C

Example: PS is a plastic DIP, OOC to + 70°C.

PACKAGE DIMENSIONS

~:':~~:::::::I
0.300 0.030. MAX

R = Proto pack
T = Low Profile Protopack
DIP = Dual-In-Line Package
LCC = Leadless Chip Carrier
PCC = Plastic Chip Carrier (Leaded)

FLOW
B = 883 Class B
J = JAN 38510 Class B

0.025 11 0920~

r-0.320- -I 0.065-j]J .. -t--m ---l !---0.040 0.130 B-1 TTfNiffil¥mlr=
0.009 III I ~ 0.015. •

I.' 2.325 .1 O.osa--' I---II-- 0.100----1 I--, 0.125
r-_ .025-, ±.015 I I 0.018 II TYP I I MIN

.015 0.003'

18·Pin Plastic Package

NOTE: Package dimensions are giv$n in inches. To convert to millimeters. multiply by 25.4:

104

FEATURES

III Complete microcomputer, 2K (86COO), 4K (86Cl0), or 8K
(86C20) bytes of ROM, 124 bytes of RAM, and 22110 lines.

I!!I 144-byte register file, including 124 general-purpose
registers, four I/O port registers, and 14 status and
control registers.

Jill Average instruction execution time of 1.5 us,
maximum of 2.8 us.

L!J Vectored, priority interrupts for I/O and
counter/timers.

III Two programmable 8-bit counter/timers, each with
a 6-bit programmable prescaler.

GENERAL DESCRIPTION

Z86C10/C20 microcomputer (Figures 1 and 2) introduces a
new level of sophistication to single-chip architecture.
Compared to earlier single-chip microcomputers, the

TIMING (- RESET +5V -+-
AND

CONTROL os XTALI -I

~M'{~
CLOCK po. XTAL2

po,
PO, Z86COO PORT 3
P03 MCU
PO. Z86C10 Pl. --PO. MCU PI,

"M'm
P2, Z86C20 PI,
P22 MCU P13

PORT 1
P23 Pl.
P2. Pl. -P2. Pl. -..... GND P17

Figure 1. Pin Functions

Z86COO/C10/C20 CM OS
Z8@MCU

June 1987

I:J Register Pointer so that short, fast instructions can
access any of nine wO,rking-register groups in 1.0
us.

o On-chip oscillator which accepts crystal,' external
clock drive, lC, ceramic resonator.

o Standby modes -- Halt and Stop.

I1l Single +5V power supply ---' all pins TTl­
compatible.

I!!I 12 MHz.

IIlI CMOS process.

Z86C10/C200ffers faster execution; more efficient use of
memory; more sophisticated interrupt, input/output and
bit-manipulation capabilities; and easier system expansion.

+5V P3.

XTAL2 P3,

XTAU P2,

RESET P2.

os P23

P3. P2,

GND P2,

PO • P'7

PO, Pl.

P02 P"

P03 Pl.

PO. P13

PO. P12

Pl • PI,

Figure 2. Pin ASSignments

105

PIN DESCRIPTIONS

os. Oata Strobe (output, active Low). Data Strobe is
activated once for each memory transfer.

POo-POs, P1o-P17, P21-P2S, P31, P3s, P36.110 Port lines
(bidirectional, TTL-compatible). These 22 1/0 lines are
grouped in four ports that can be configured under program
control for I/O.

ARCHITECTURE
The MCU's architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure,
and a number of ancillary features that are helpful in many
applications. (Figure 3).

Microcomputer applications demand powerful I/O
capabilities. The MCU fulfills this with 22 pins dedicated to
input and output. These lines are grouped in four ports and
are configurable under software control to provide timing,
status signals, and parallel I/O.

OUTPUT

110
(BIT PROGRAMMABLE)

110

RESET. Reset (input, active Low). RESET initializes the
MCU. When RESET is deactivated, program execution
begins from internal program location OOOCH.

XTAL 1, XTAL2. Crystal 1, Crystal 2 (time-base input and
output). These pins connect a parallel-resonant
crystal to the on-chip .clock oscillator and buffer.

Two basic internal address spaces are available to support
this wide range of configurations: program memoryand the
register file. The 144-byte random-access register file is
composed of 124 general-purpose registers, four I/O port
registers, and 14 control and status registers.

To unburden the program from coping with real-time
problems such as counting/timing, two counter/timers with
a large number of user-selectable modes are offered
on-chip.

a...~~;;.;;,;~ (8192 lor C20)

110
(BYTE PROGRAMMABLE)

Figure 3. Functional Block Diagram

STANDBY MODE
The Z86COO/C10/C20's standby modes are:

• Stop

• Halt

The Stop instruction stops the internal clock and clock
oscillation; the Halt instruction stops the internal clock but
not clock oscillation.

106

A reset input releases the standby mode.

To complete an instruction prior to entering standby mode,
use the instructions:

LD TMR, #00
NCP
STOP or HALT

ADDRESS SPACES

Program Memory. The 16-bit program counter addresses
4K or 8K bytes of program memory space as shown in
Figure 4.

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain three 16-bit
vectors that correspond to the three available interrupts.

Register File. The 144-byte register file includes four I/O
port registers (Ro-R3), 124 general-purpose registers
(R4-R127) and 15 control and status registers (R241'R255).
These registers are assigned the address locations shown in
Figure 5.

4096

Instructions can access registers directly or indirectly with
an 8-bit address field. The MCU also allows short 4-bit
register addressing using the Register Pointer (one of the
control registers). I n the 4-bit mode, the register file is
cjivided into nine working-register groups, each occupying
16 contiguous locations (Figure 6). The Register Pointer
addresses the starting location of the active working-register
group.

Stacks. An 8-bit Stack Pointer (R255) is used for the internal
stack that resides within the 124 general-purpose registers
(R4-R127)'

ON·CHIP

LOCATION

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

127

ROM LOCATION OF
FIRST BYTE OF
INSTRUCTION

EXECUTED
AFTER RESET

:,;; ~------------

INTERRUPT
. VECTOR

(LOWER BYTE)

INTERRUPT
VECTOR

(UPPER BYTE)

STACK POINTER (BITS 7-0)

RESERVED

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

Figure 5. Register File

11 IRQ5

10 IRQ5

9 IRQ4

8 IRQ4

7 RESERVED

6 RESERVED

5f>'. IRQ2

4~ IRQ2

3 RESERVED

2 RESERVED

1 RESERVED

0 RESERVED

Figure 4. Program Memory Map

ID~NTIFIERS

SPL

RP

FLAGS

IMR

IRQ

IPR

P01M

P3M

P2M

PREO

TO

PREl

T1

TMR

P3

P2

Pl

PO

THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS
PROVIDED BY THE REGISTER POINTER SPECIFIES
THE ACTIVE WORKING-REGISTER GROUP.

--I
-

- {

{

- {

- {

- {

1 27

SPECIFIED WORKING·
REGISTER GROUP -+1-

THE LOWER
NIBBLE OF
THE REGISTER
FILE ADDRESS
PROVIDED BY

1

f----'/OPORTS----- 3

Figure 6. Register Pointer

THE INSTRUCTION
POINTS TO THE
SPECIFIED
REGISTER.

107

COUNTER/TIMERS

The MCU contains two 8-bit programmable counterltimers
(To and T1), each driven by its own 6-bit programmable
prescaler. The T 1 prescaler can be driven by internal or
external clock sources; however, the To prescaler is driven
by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request-IRQ4 (To) or
IRQ5 (T1)-is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass

I/O PORTS

The MCU has 22 lines dedicated to input and output
grouped in four ports. Under software control, the ports can
be programmed to provide address outputs, timing, status
signals, and parallel 110. All ports have active'pull-ups and
pull-downs compatible with TTL loads.

Port 0 can be programmed as an 1/0 port.

Port 1 can be programmed as a byte 1/0 port.

INTERRUPTS

The MCU allows three different interrupts from three
sources, the Port 3 line P31 and the two counter/timers.
These interrupts are both maskable and prioritized. The
Interrupt Mask register globally or individually enables or
disables the three interrupt requests. When more than one
interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All interrupts are vectored. When an interrupt request is
granted, an interrupt machine cycle is entered. This disables

CLOCK

The on-chip oscillator has a high-gain parallel-resonant
amplifier for connection to a crystal or to any suitable
external clock source (XTAL 1 = Input, XTAL2 = Output).

Crystal source is connected across XTAL 1 and XTAL2 using
the recommended capacitors (C1 '" 15 pf) from each pin to
ground. The specifications are as follows:

108

mode) or to automatically reload the initial value and
continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T1 is user-definable and can be the
internal microprocessor clock divided by
four, or an external signal input via Port 3. The Timer Mode
register configures the external timer input as an external
clock , a trigger input that can be
retriggerable or non-retriggerable, or as a gate input for the
internal clock. The counterltimers can be programmably
cascaded by connecting the To output to the input of T 1.
Port 3 line P36 also serves as a timer output (Tour) through
which To, T1 or the internal clock can be output.

Port 2 can be programmed independently as input or
output and is always available for 1/0 operations. In addition,
Port 2 can be configured to provide open-drain outputs.

Port 3 can be configured as 1/0 or control lines. P31 is a
general purpose input or can be used for an external
interrupt request signal (IRQ2)' P35 and P36 are general
purpose outputs. P36 is also used for timer input (TIN) and
output (Tour) signals.

all subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory vector
locations reserved for that interrupt. This memory location
and the next byte contain the 16-bit address of the interrupt
service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accom­
modate a polled structure, any or all of the interrupt inputs
can be masked and the Interrupt Request register polled to
determine which of the interrupt requests needs service.

III AT cut, parallel resonant

• Fundamental type, 16 MHz maximum.

• Series resistance, Rs", 1 00 n

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Irr . Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst Destination location or contents
src
cc
@

Source location or contents
Condition code (see list)
Indirect address prefix

SP
PC
FLAGS
RP
IMR

Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

CONDITION CODES

Value Mnemonic

1000 Always true
0111 C Carry
1111 NC No carry
0110 Z Zero
1110 NZ Not zero
1101 PL Plus
0101 MI Minus
0100 OV Overflow
1100 NOV No overflow
0110 EQ Equal
1110 NE Not equal

Assignment of a value is indicated by the symbol "<-': For
example,

dst <- dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "n" of a given
location. For example,

dst (7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six
flags:

C Carry flag
Z Zero flag
S Sign flag'
V Overflow flag
o Decimal-adjust flag
H Half-carry flag

Affected flags are indicated by:

o Cleared to zero
1 Set to one
* Set or cleared according to operation

Unaffected
X Undefined

Meaning. Flags Set

C = 1
C=O
Z = 1
Z=O
8=0
8 = 1
V = 1
V=O
Z = 1
Z=O

1001 GE Greater than or equal (8XORV) = 0
0001 LT Less than (8 XOR V) = 1
1010 GT Greater than [ZOR (8XOR V)] = 0
0010 LE Less than or equal [Z OR (8 XOR V)] = 1
1111 UGE Unsigned greater than or equal C=O
0111 ULT Unsigned less than C = 1
1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1
0011 ULE Unsigned less than or equal (CORZ) = 1
0000 Never true

109

INSTRUCTION FORMATS
OPC

dsl OPC

CCF, DI, EI, IRET, NOP,
RCF, RET, SCF

INCr

One-Byte Instructions

ClR, CPl, DA, DEC,

L--"'="----' OR 11 1 1 0 I dst/sre I ~~~~'~~~Rt~~~R~OP,.

OPC I
f---''''dS'':t---l OR 11 1 1 01 dst

OPC
VALUE

OPC MODE
dst src

dst/src ope
sre/dst OR 11 1 1 01 sre

dst I OPC
VALUE

I dst/CC R~ OPC

RRC,SRA, SWAP

JP, CALL (Indirect)

SRP

ADC, ADD, AND,
CP, OR, SBC, SUB,
TCM, TM, XOR

LD, LOC. LOCI

lD

lD

DJNZ, JR

Two-Byte Instructions

f---,,'::::':':::----l OR 11 1 1 0 I dst

1-_-",sr",e_-1 °ORR I-'-'--'--T-='-l
dst

cc ope
DAu

ADC, ADD, AND, CP,
lD, OR, SBC, SUB,
TCM, TM, XOR

ADC, ADD, AND, CP,
lD, OR, SBC, SUB,
TCM, TM, XOR

lD

lD

JP

CAll

Three-Byte Instructions

Figure 7. Instruction Formats

INSTRUCTION SUMMARY

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte Instruction Byte
and Operation dst src (Hex) C Z S V 0 H and Operation dst src (Hex) C Z S V 0 H

ADCdst,src (Note 1) 10 'It 'It 'It 'It 0 * CP dst,src (Note 1) AD ****--
dst - dst + src + C dst - src

ADDdst,src (Note 1) 00 * * * * 0 * DAdst R 40 * *' * X --
dst -- dst + src dst-- DAdst IR 41

AND dst,src (Note 1) 5(:] -**0-- DECdst R 00 -***--
dst -- dst AND src dst--dst - 1 IR 01

CALLdst DA D6 ------ DECWdst RR 80 -***--
SP--SP - 2 IRR D4 dst--dst - 1 IR 81
@SP -- PC; PC -- dst

01
CCF EF *----- IMR (7) +-: 0 8F ------
C--NOTC

DJNZ [,dst RA rA ------
CLR dst R BO ------ [-- [- 1 r=O-F
pst--O IR B1 if [* 0

COMdst R 60 -**0--
PC--PC + dst

dst-NOTdst IR 61 Range: +127, -128

110

INSTRUCTION SUMMARY (Continued)

Instruction
and Operation

EI
IMR(7)+-1

HALT

INCdst
dst +- dst + 1

INCWdst
dst +- dst + 1

Addr Mode Opcode
Byte

dst src (Hex)

R
IR

RR
IR

9F

7F

rE
r=O-F

20
21

AO
A1

IRET SF
FLAGS +- @SP; SP - SP + 1
PC - @SP; SP - SP + 2; IMR (7) - 1

JP cC,dst
ifcc is true

PC-dst

JRcc,dst
if cc is true,

PC-PC + dst
Range: + 127, -128

LO dst,src
dst - src

LOCdst,src
dst - src

OA

IRR

RA

1m
R

cD
c=O-F

30

cS
c=O-F

rC
r8

R r9
r=O-F

r X C7
X r 07
r Ir E3
Ir r F3
R R E4
R IR E5
R 1M E6
IR 1M E7
IR R F5

r Irr
Irr

C2
02

LOCI dst,src Ir Irr C3
03 dst - src Irr Ir

r - r + 1; rr - rr + 1

LOE dst,src r Irr
dst.,. src Irr

LOEI dst,src Ir Irr
dst - src Irr Ir
r - r + 1; rr - rr + 1

NOP

OR dst,src
dst - dst OR src

POPdst
dst-@SP;
SP-SP + 1

(Note 1)

R
IR

PUSH src R
SP +- SP - 1; @SP +- src IR

82
92

83
93

FF

40

50
51

70
71

Flags Affected

C Z S V 0 H

* * * * '" '"

Instruction
and Operation

Addr Mode Opcode
Byte

dst src (Hex)

RCF
C-O

RET
PC-@SP;SP-SP + 2

RL dst r::1 r===l R
L.:..J~IR

RLC dst lci]:ciJ R
, , 0 IR

RR dst LEi LE:::jJ R
C , 0 IR

RRC dst L@:ciJ R
C , 0 IR

SBC dst,src (Note 1)
dst -dst - src-C

SCF
C-1

SRAdstLEi~ R
, , 0 IR

SRP src
RP-src

STOp·

SUB dst,src
dst dst - src

.TCM dst,src
(NOT dst) AND src

TM dst,src
dstANO src

XORdst,src
dst - dst XOR src

1m

(Note 1)

(Note 1)

(Note 1)

(Note 1)

CF

AF

90
91

10
11

EO
E1

CO
C1

3D

OF

DO
01

31

6F

20

FO
F1

60

70

SO

Flags Affected

C Z S V 0 H

0-----

****--

****--

****--

****--

1-----

-**0--

NOTE: These instructions have an identical set of addressing modes.
which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
symbolically by a D in this table. and its value is found in the
following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.

AddrMode

dst src

R

R

R

IR

Ir

R

IR

1M

1M

Lower
Opcode Nibble

111

REGISTERS

R244 TO
COUNTER/TIMER 0 REGISTER

(F4H; Read/Write)

TO INITIAL VALUE (WHEN WRITTEN)
'-----(RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VAlUE (WHEN READ)

R241 TMR
TIMER MODE REGISTER

(F1 H; Read/Write)

NOT USED", 00 ~ 1 = LOAD To

i~ g~~ : ~~ 0 '" DISABLE To COUNT
INTERNAL CLOCK OUT", 11 1 '" ENABLE To COUNT

R245PREO
PRESCALER 0 REGISTER

(F5H; Write Only)

-. 0 = To SINGLE PASS
1 = To MODUlO·N

RESERVED

To" MODES j ~~o = ~O FUNCTION

T MODES 0 = NO FUNCTION
EXTERNAL CLOCK INPOT = 00 1 = LOAD T,

~l COUNT MODE

112

GATE INPUT = 01 0 = DISABLE T, COUNT

(NON'R~~~g~:~~:~~ = 10 , . 1 = ENABLE T, COUNT
TRIGGER INPUT", 11

(RETRIGGERABlE)

R242 T1
COUNTER TIMER 1 REGISTER

(F2H; Read/Write)

T, INITIAL VALUE (WHEN WRITTEN)
'----tRANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243PRE1
PRES CALER 1 REGISTER

(F3H; Write Only)

~LCOUNTMODE
o = T, SINGLE·PASS

, 1 = Tl MODULO·N

CLOCK SOURCE
1 = T 1 INTERNAL

" 0 = T, EXTERNAL TIMING INPUT
(TIN) MODE

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
D1~OD HEX)

R246P2M

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

PORT 2 MODE REGISTER
(F6H; Write Only)

R247P3M
PORT 3 MODE REGISTER

(F7H; Write Only)

I~I~!~I~I~I~I~I~I

La PORT 2 PULL·UPS OPEN DRAIN
1 PORT 2 PULL·UPS ACTIVE

'------- RESERVED (must be 0)

Figure 11. Control Registers

REGISTERS (Continued)

R248P01M
PORT 0 AND 1 MODE REGISTER

(~8H; Write Only)

po •• po, MODE:] ~~ po,-po, MODE OUTPUT = 00 --.J L 00 '" OUTPUT
INPUT", 01 01 = INPUT

RESERVED :':~P~::::E.(must be = I)

00 = DYTE OUTPUT
01 = BYTE INPUT

10 =} 11 = RESERVED

R2491PR
INTERRUPT PRIORITY REGISTER

(F9H; Write Only)

I~I~I~I~I~I~I~I~I

.",om:] I I III""""""'--~ RESERVED = 000

IR03, IRCS PR~O:IJ:d~~O::Q:) . i ~ : ~ ~ ~ ~~~
1 = IR03 > IROS A> C :::. B = 011

B> C > A = 100
IRQO, IR02 PRIORITY (GROUP 0) , C > B > A = 101

o = IRQ2 > IROO B > A > C = 110
1 = IRaQ:::. IRQ2' 'RESERVED = 111

IRQ1, IRQ4 PRIORITY (GROUP C)
o = IRQ1 > IR04
1 = IRQ4 > IRQ1

R250lRQ
INTERRUPT REQUEST REGISTER

(FAH; Read/Write)

I~I~I~I~I~I~I~I~I

RESERVED ::r-II I IRQ2 = P31 Input

IRQ4 = To

IRQ5 = T,

R2511MR
INTERRUPT MASK REGISTER

(FBH; Read/Write)

I~I~I~I~I~I~I~I~I

II c== 1 ENABLES lRaO-IROS
(Do = IROO)

L.. ______ RESERVED

L.. _______ 1 ENABLES INTERRUPTS

REGISTER
POINTER

Figure 11. Control Registers (Continued)

R252 FLAGS
FLAG REGISTER
(FCH; Read/Write)

ll!~~
1 LUSER FLAG F1

L USER FLAG F2

HALF CARRY FLAG

DECIMAL ADJUST FLAG

OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

R253RP
REGISTER POINTER

(FDH; Read/Write)

LOON'TCARE

R255SPL
STACK POINTER
(FFH; Read/Write)

113

OPCODEMAP
Lower Nibble (Hex)

o A B C o E F

.-'65 -~-6:5i6565'105- ,-'-- -----
f 10.5 10.5 '0.5 6.5 65 '2/10 5 12110 a 6.5 12/10 a 65 I !

DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC I

~IR' r, r2 r, If,? R2· R, IR2R, R,IM IR,IM f,.R,? r,? Rt f1 RA Cc RA f,.IM cc DA rl I
.-

6.5 65 6.5 65 105 10.5 10 5 10.5
RLC RLC ADC ADC ADC ADC ADC ADC
R, IR, f,.r2 f, ,lr2 R2· R, IR2 R, R,.IM IR,.IM

6.5 6.5 6.5 65 10 5 10.5 10.5 10.5
1---

INC INC SUB SUB SUB SUB SUB SUB
R, IR, f, ,[2 f,.lr2 R2· R, IR2·R, R,.IM IR,.IM

I--------
8.0 6.1 6.5 6.5 10 5 10.5 10.5 10 5

3 JP SRP SBC SBC SBC SBC SBC SBC
IRR, 1M f,.f2 f,. lr2 R2· R, IR2·R, R,.IM IR,.IM

8.5 8.5 6.5 6.5 10.5 10.5 10.5 10.5
r------

4 DA DA OR OR OR OR OR OR
R, IR, f,.f2 f,. lr2 R2· R, IR2·R, R,.IM IR,.IM

I--------
10.5 10.5 6.5 6.5 10.5 10.5 10.5 10.5
POP POP AND AND AND AND AND AND

I R, IR, f'·(2 f,. lr2 R2· R, IR2·R, R,.IM IR,.IM

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5
I--------

6,0

6 COM COM TCM TCM TCM TCM TCM TCM STOP

R, IR, f,.f2 f,. lr2 R2· R, IR2·R, R,.IM IR,.IM

10/12,1 12/14.1 6.5 6.5 10.5 10,5 10.5 10.5
I--------

7,0
PUSH PUSH TM TM TM TM TM TM HALT

R2 IR2 f, ,r2 f,. lr2 R2,R, IR2,R, R,.IM IR"IM

..
" e. 7

" :c
I--------

10.5 10.5 6 1
.c
Z

DECW DECW 01
RR, IR,

6.5 6.5 r~

~ 8
Co
Co
:>

9 RL RL 'EI
R, IR,

I--------
10,5 10,5 6,5 6.5 10.5 ,0.5 10,5 10.5 14 a

A INCW INCW CP CP CP CP CP CP RET
RR, IR, f,.f2 (,. lr2 R2,R, IR2·R, R,.IM IR,.IM

6,5 6,5 6.5 65 10 5 10.5 10.5 10.5 ~
B CLR CLR XOR XOR XOR XOR XOR XOR IRET

R, IR, f,.f2 f, ,lr2 R2,R, IR2,R, R
"

IM IR"IM
I--------

6.5 6.5 12,0 18,0 10.5 6,5
C RRC RRC LDC LOCI LD RCF

R, IR, f,.lrr2 Ir,.lrr2 f, x R2

6,5 6.5 12,0 18,0 20,0 20,0 10.5 ~
0 SRA SRA LDC LOCI CALL' CALL LD SCF

R, IR, f2· lrr1' Ir2·lrr, IRR, DA f2· x ,R,
I--------

6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5
E RR RR LD LD LD LD LD CCF

R, IRI r,.IR2 R2,R, IR2·R, R,.IM IR"IM

8.5 8.5 6,5 10.5 ---s-o
F SWAP SWAP LD LD NOP

R, IR, Ir,.f2 R2,IR,

....... ----...... 'V ... ----... .II... ... -----..v ... ----... /'-... ------v ... -------"J~'__v____"
2

EXECUTION
CYCLES

UPPER
OPCODE --iI> A

NIBBLE

FIRST
OPERAND

LOWER
OPCODE

NI~LE

-2-byte Instruction. fetch cycle appears as a 3·byte Instruction

114

3

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

Legend:
R ~ 8·bil address
r = 4-bit address
R, orr, = Dstaddress
R2 or f2 = Src address

Sequence:
Opcode, First Operand, Second Operand

NOTE: The blank areas are not defmed.

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect
to GND - 0.3V to + 7.0V

Orerating Ambient
Temperature See Ordering Information

Storage Temperature - 65°C to + 150°C

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are as follows:

III +4.5;5; Vee ;5; +5.5

III GND = OV

DC CHARACTERISTICS

Symbol Parameter

VCH Clock Input High Voltage

VCl Clock Input Low Voltage

VIH Input High Voltage

Vil Input Low Voltage

VRH Reset Input High Voltage

VRl Reset Input Low Voltage

VOH Output High Voltage

VOH Output High Voltage

VOL Output Low Voltage

III Input Leakage

IOl Output Leakage

IIR Reset Input Current

ICC Supply Current

ICCl Standby Current

ICC2 Standby Current

NOTE:

Min

3.8

-0.3

2.0

-0.3

3.8

-0.3

2.4

Vee -100 mV

-10

-10

Icc2 low power requires loading TMR (%F1)
with any value prior to stop execution.
Use sequence:

LD TMR, #01000.
Nap
STOP

Typ

5

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

+5V

2.1K

Figure 12. Test Load 1

Max Unit Condition

. VCC V Driven by External Clock Generator

0.8 V Driven by External Clock Generator

VCC V

0.8 V

VCC V

0.8 V

V IOH = -250/1A

V IOH = -1 OOIlA
0.4 V IOl = +2.0mA

10 /1A OV ~ VIN ~ + 5.25V

10 /1A OV ~ VIN ~ + 5.25V

-50 /1A VCC = + 5.25V, VRl =OV

2 mA All outputs and 1/0 pins floating

mA Halt Mode

10 /1A Stop Mode

115

AC CHARACTERISTICS
Additional Timing Table

Number Symbol

TpC

2 TrC,TIC

3 TwC

4 TwTinL

5 TwlL

NOTES:

Figure 14. Additional Timing

Paramete'r

Input Clock Period

Clock Input Rise and Fall Times

Input Clock Width

Timer Input Low Width

Interrupt Request Input Low Time

1. Clock timing references use 3.8V for a logic "1" and O.BV for a logic "0':
2. Timing references use 2.0V for a logic "1" and O.BV for a logic "0':
3. Interrupt request via Port 3 .
• Units in nanoseconds (ns).

116

Z86C10
Min Max

83 100,000

70

70

70

15

Notes'

2

2,3

FEATURES

m Complete microcomputer, 4K bytes of ROM, 256 bytes of
RAM, 32 I/O lines, and up to 6DK bytes addressable
external space each for program and data memory.

II! 256-byte register file, including 236 general-purpose
registers, four I/O port registers, and 16 status and
control registers.

(liJ Vectored, priority interrupts for 110, counter/timers, and
UART.

I:'!l Full-duplex UART and two programmable 8-bit counter/
timers, each with a 6-bit programmable prescaler.

GENERAL DESCRIPTION

The Z86C11 microcomputer (Figures 1 ~nd 2) introduces a
new level of sophistication to single-chip architecture.
Compared to earlier single-chip microcomputers, the

PORT 0
(NIBBLE

PROGRAMMABLE)
110 OR A 6-A15

,PORT 1
(BYTE

PROGRAMMABLE)
!IO OR ADo-AD7

117

RESET +5V

RfW GND

os XTAL1

AS XTAL2

PO, P20

po, P2,

po, P2,

PO, P2,

po. P2.

PO, Z86C11
P2,

po, MCU P2,

po, P2,

Pl, P3,

Pl, P3,

Pl, P3,

Pl, P3,

Pl. P3.

Pl, P3,

Pl, P3.

Pl,

Z86Cl1 CMOS
Z8® 4K ROM MCU

June 1987

El Register Pointer so that short, fast instructions can
access any of 16 working-register groups in 1.5 !ls.

I!!) On-chip oscillator which accepts crystal or external clock
drive.

C'.I Standby modes-Halt and Stop

o Single + 5V power supply-all pins TIL-compatible.

13 12 MHz, 16 MHz

o CMOS process

Z86C11 offers faster execution; more efficient use of
memory; more sophisticated interrupt, input/output and
bit-manipulation capabilities; and easier system expansion.

+5V P3.

XTAL2 P3,

XTAL1 P2,

P3, P20

P30' P2,

RESET P2.

R/W P2,

os P2,

AS P2,

P3, P20

GND P3,

P3, P3.

PO, Pl,

PO, Pl.

PO, Pl,

PO, Pl.

PO. Pl,

PO, Pl,

PO, Pl,

PO, P'o

Figure 2. 40-pin Dual-In-line Package (DIP), Pin ASSignments

Under program control, the Z86C11 can be tailored to the
needs of its user. It can be configured as a stand-alone
microcomputer with 4K bytes of internal ROM, a traditional
microprocessor that manages up to 120K bytes of external

.FIELD PROGRAMMABLE VERSION

The Z86E11 is a pin compatible "one time
programmable" version of the Z86C11. The Z86C11
contains 4K bytes of EPROM memory in place of the
4K bytes of masked ROM in the Z86C11. The
Z86E 11 also contains a programmable memory

ARCHITECTURE

Z86C11 architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful I/O
capabilities. The Z86C11 fulfills this with 32 pins dedicated
to input and output. These lines are grouped into four ports
of eight lines each and are configurable under software
control to provide timing, status signals, serial or parallel I/O
with or without handshake, and an address/data bus for
interfacing external memory.

Because the multiplexed address/data bus is merged with
the I/O-oriented ports, the Z86C11 can assume many
different memory and I/O configurations. These config­
urations range from a self-contained microcomputer to a

memory, or a parallel-processing element in a system with
other processors and peripheral controllers linked by the
Z-BUS® bus. In all configurations, a large number of pins
remain available for I/O.

protect feature to provide program security by
disabling all external accesses to the internal EPROM
array. This is preliminary information, and is subject to
change.

microprocessor that can address 120K bytes of external
memory (Figure 3).

Three basic address spaces are available to support this
wide range of configurations: program memory (internal
and external), data memory (external) and the register file
(internal). The 256-byte random-access register file is
composed of 236 general-purpose registers, four I/O port
registers, and 16 control and status registers.

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate.

110
(BIT PROGRAMMABLE)

ADDRESS OR 110
(NIBBLE PROGRAMMABLE)

ADDRESSIDATA OR 110
(BYTE PROGRAMMABLE)

Figure 3. Functional Block Diagram

118

STANDBY MODE

The Z86C11 's standby modes are:

o Stop

o Halt

POWER DOWN INSTRUCTIONS

The Z86C91 has two instructions to reduce power
consumption during standby operation. HALT turns off the
processor and UART while the counter/timers and external
interrupts IROO, IR01, and IR02 remain active.

When an interrupt occurs the processor resumes execution
after servicing the interrupt. STOP turns off the clock to the
entire Z86C91 and reduces the standby current to 10

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data
memory transfers are valid at the trailing edge of AS. Under
program control, AS can be placed in the high·impedance
state along with Ports 0 and 1, Data Strobe and Read/Write.

OS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer.

POO-po7, Plo-Pl7, P2o-P27, P3q-P3r I/0 Port
Lines (input/outputs, TTL-compatible). These 32 lines
are divided into four 8-bit I/0 ports that can be
configured under program control for I/0 or external

ADDRESS SPACE

Program Memory. The 16-bit program counter addresses
64K bytes of program memory space. Program memory
can be located in two areas: one internal and the other
external (Figure 4). The first 4096 bytes consist of on-chip
mask-programmed ROM. At addresses 4096 and greater,
the Z86C11 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts.

Data Memory. The Z86C11 can address 60K bytes of
external data memory beginning at location 4096 (Figure 5).
External data memory may be included with or separated
from the external program memory space. OM, an optional
I/O function that can be programmed to appear on pin P34,
is used to distinguish between data and program memory
space.

Register File. The 2S6-byte register file includes four 1/0
port registers (RO-R3), 236 general-purpose registers
(R4-R 239) and 16 control and status registers (R240-R255).

The Stop instruction stops the internal clock and clock
oscillation; the Halt instruction stops the internal clock but
not clock oscillation.

A reset input releases the standby mode.

microamps. The stop mode is terminated by reset, which
causes the processor to restart the application program at
address 12.

To complete an instruction prior to entering standby
mode, use the instructions:

memory interface (Figure 3).

lD TMR, #00
NOP
ST()P or HALT

RESET. Reset (input, active Low). RESET initializes the
Z86C11. When RESET is deactivated, program execution
begins from internal program location OOOCH.

R/W. ReadlWrite (output). R/Vii is Low when the Z86C11 is
writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base
input and output). These pins connect a parallel-
resonant crystal (12 MHz' maximum) or an external
single-phase clock (12 MHz maximum) to the on-chip
clock oscillator and buffer.

These registers are assigned the address locations shown in
Figure 6.

Z86C11 instructions can access registers directly or
indirectly with an 8-bit address field. The Z86C11 also
allows short 4-bit register addressing using the Register
Pointer (one of the ,control registers)_ In the 4-bit
mode, the register file is divided into 16 working register
groups, each occupying 16 contiguous locations (Figure
6) _ The Register Pointer addresses the starting location
of the active working-register group (Figure 7).

Note: Register Bank EO-EF can only be accessed through
working register and indirect addressing modes.

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the external stack, which can
reside anywhere in data memory between locations 4096
and 65535. An 8-bit Stack Pointer (R255) is used for the
internal stack that resides within the 124 general-purpose
registers (R4-R127).

119

120

5535

EXTERNAL
ROM OR RAM

4096
4095

ON·CHIP
ROM LOCATION OF

FIRST BYTE OF
INSTRUCTION

EXECUTED
AFTER RESET

,""--
: 12 ~------------

INTERRUPT
VECTOR

(LOWER BYTE)

INTERRUPT
VECTOR

(UPPER BYTE)

11

10

9

8

7

6

5t<-

4i>r"

3

2

1

0

IRQ5

IRQ5

IR04

IRQ4

IRQ3

IRQ3

IRQ2

IR02

IRQl

IR01

IROO

IROO

Figure 4. Program Memory Map

LOCATION

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

239

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REOUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCAlER

TIMER/COUNTER 0

Tl PRESCAlER

TIMER/COUNTER 1

TIMER MODE

SERIAL 1/0

GENERAl·PURPOSE
REGISTERS

PORT_,3

PORT 2

PORT 1

PORTO

Figure 6. The Register File

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRQ

IPR

P01M

P3M

P2M

PREO

TO

PREl

Tl

TMR

SIO

P3

P2

PI

PO

65535.-----------,

EXTERNAL
DATA

MEMORY

:g:~t------------I

NOT ADDRESSABLE

Figure 5. Data Memory Map

-~II r7 re rs r. I o 0 0 0
2

12
55
53

40 2

THE UPPER NIBBLE OF THE REGISTER FILE ADD RESS
S >-- PROVIDED BY THE REGISTER POINTER SPECIFIE

THE ACTIVE WORKING-REGISTER GROUP.

r--I 2

· · · · · ·
-

-

- SPECIFIED WORKING.
~r REGISTER GROUP

-~

-~

39

THE LOWER
NIBBLE OF
THE REGISTER
FILE ADDRESS
PROVIDED BY
THE INSTRUCTION
POINTS TOTHE
SPECIFIED
REGISTER.

15

-~

r---'/OPORTS----- 3

Figure 7. The Register Pointer

SERIAL INPUT/OUTPUT

Port 3 lines P30 and P37 can be programmed as serial I/O
lines for full-duplex serial asynchronous receiver/transmitter
operation. The bit rate is controlled by Counter/Timer 0, with
a maximum rate of 62.5K bits/second for 8 MHz.

The Z86C11 automatically adds a start bit and two stop bits
- to transmitted data (Figure 8). Odd parity is also available as
an option. Eight data bits are always transmitted, regardless

TRANSMITTED DATA
(No Parity)

T LSTARTBIT

'-------EIGHT OJ\TA BITS

TWO STOP BITS

TRANSMITTED DATA
(With Parity)

T L _LSTARTBIT
'------SEVEN DATA BITS

ODD PARITY

TWO STOP BITS

of parity selection. If parity is enabled, the eighth bit is the
odd parity bit. An interrupt request (IRQ4) is generated on all
transmitted characters.

Received data must have a start bit, eight data bits and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

RECEIVED DATA
(No Parity)

1~1~1~1~1~1~1~1~1~lsij

LSTAATBIT

'------EIGHT DATA BITS

L------_--ONESTOP BIT

RECEIVED DATA
(With Parity)

II LSTART BIT

'-----SEVEN DATA BITS L _______ ::~I~~::~: FLAG

Figure 8, Serial Data Formats

COUNTER/TIMERS

The Z86C11 contains two 8-bit programmable counter/
timers (To and T1), each driven by its own 6-bit
programmable prescaler. The T 1 prescaler can be driven by
internal or external clock sources; however, the To prescaler
is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request-IRQ4 (To) or
IRQ5 (T1)-is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and

continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The clock source for T 1 is user-definable and can be
the internal microprocessor clock divided by four, or an
external signal input via Port 3. The Timer Mode
register configures the external timer input as an
external clock (1 MHz maximum), a trigger input that
can be retriggerable or non-retriggerable, or as a gate
input for the internal clock. The counter/timers can be
programmably cascaded by connecting the TO output to
the input of T l' Port 3 line P36 also serves as a
timer output (TOUT) through which To, Tl or the
internal clock can be output.

121

1/0 PORTS

The Z86C11 has 32 lines dedicated to input and output.
These lines are grouped into four ports of eight lines each
and are configurable as input, output or address/data.
Under software control, the ports can be programmed to
provide address outputs, timing, status signals, serial 110,
and parallel I/O with or without handshake. All ports have
active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an
address/data port for interfacing external memory. When
used as an I/O port, Port 1 may be placed under handshake
control. In this configuration, Port 3 lines P33 and P34 are
used as the handshake controls RDY1 and DAV1 (Ready
and Data Available).

Memory locations greater than 4096 are referenced
through Port 1 . To interface external memory, Port 1 must be
programmed for the multiplexed Address/Data mode. If
more than 256 external locations are required, Port 0 must
output the additional lines.

Port 0 can be programmed as a nibble I/O port, or as an
address port for interfacing external memory. When used as
an I/O port, Port 0 may be placed under handshake control.
In this configuration, Port 3 lines P32 and P3s are used as
the handshake controls DAVo and RDYo. Handshake signal
aSSignment is dictated by the I/O direction of the upper
nibble P04-P07. .

For external memory references, Port 0 can provide address
bits As-A11 (lower nibble) or As-A1S (lower and upper nibble)
depending on the required address space. If the address
range requires 12 bits or less, the upper nibble,of Port 0 can
be programmed independently as I/O while the lower nibble

Port 2 bits can be programmed independently as input or
output. This port is always available for I/O operations. In
addition, Port 2 can be configured to provide open-drain
outputs.

Like Ports 0 and 1, Port 2 may also be placed under
handshake control. In this configuration, Port 3 lines P31
and P36 are used as the handshake controls lines DAV2 and
ROY 2. The handshake signal assignment for Port 3 lines P31
and P36 is dictated by the direction (input or output) assigned
to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either
case, the direction of the eight lines is fixed as four input
(P30-P33) and four output (P34-P37). For serial I/O, lines P30
and P37 are programmed as serial in and serial out
respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0, 1 and 2 (DAV and ROY); four external
interrupt request signals (IRQo-IRQ3); timer input and output
signals (TIN and TOUT) and Data Memory Select (OM).

122

Port 1 can be placed in the high-impedance state along with
Port 0, AS, OS and Riw, allowing the Z86C11 to share
common resources in multiprocessor and DMA
applications. Data transfers can be controlled by assigning
P33 as a Bus Acknowledge input, and P34 as a Bus Request
output.

PORT 1
(110 OR ADo-AD7)

Figure 9a. Port 1

is used for addressing. When Port 0 nibbles are defined as
address bits, they can be set to the high-impedance state
along with Port 1 and the control signals AS, OS and RfW.

286Cll

MCU

286Cll

MCU

ZI6CU

MCU

j PORT 0
(110 OR A.-A1S)

_ } ~!:~:~~~ED~~NTROLS
(P32 AND P3s)

Figure 9b. Port 0

PORT 2(1/0)

}
HANDSHAKE CONTROLS
5AV2 AND RDY2
(P31 AND P3S>

Figure 9c. Port 2

PORTa
(110 OR CONTROL)

Figure 9d. Port 3

INTERRUPTS

The Z86C11 allows six different interrupts from eight sources:
the four Port 3 lines P30-P33, Serial In, Serial Out, and the two
counter/timers. These interrupts are both maskable and
prioritized. The Interrupt Mask register globally or individually
enables or disables the six interrupt requests. When more
than one interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All Z86C11 interrupts are vectored. When an interrupt
request is granted, an interrupt machine cycle is entered. This
disables all subsequent interrupts, saves the Program

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal or to any suitable external
clock source (XTAL 1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL 1 and XTAL2,
using the recommended capacitors {C1 ~ 15 pD from each

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-regisier
pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst
src
cc
@

SP
PC
FLAGS
RP
IMR

Destination location or contents
Source location or contents
Condition code (see list)
Indirect address prefix
Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

Counter and status flags, and branches to the program
memory vector location reserved for that interrupt. This
memory location and the next byte contain the 16-bit address
of the interrupt service routine for that particular interrupt
request.

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

pin to ground. The specifications for the crystal are as follows:

fl!I AT cut, parallel resonant

III Fundamental type, 12 MHz maximum

I!!i Series resistance, Rs ~ 100 Q

Assignment of a value is indicated by the symbol "+-': For
example,

dst +- dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr{n)" is used to refer to bit "n" of a given
location. For example,

dst(7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six
flags:

C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag

Affected flags are indicated by:

o Cleared to zero
1 Set to one
* Set or cleared according to operation

Unaffected
X Undefined

123

CONDITION CODES

Value Mnemonic

1000

0111 C
1111 NC

0110 Z

1110 NZ

1101 PL

0101 MI

0100 OV

1100 NOV

0110 EQ

1110 NE

1001 GE

0001 LT

1010 GT

0010 LE

1111 UGE

0111 ULT

1011 UGT
0011 ULE

0000

INSTRUCTION FORMATS
OPC

dsl

Meaning

Always true

Carry

No carry

Zero

Not zero

Plus

Minus

Overflow
No overflow
Equal

Not equal

Greater than or equal

Less than

Greater than

Less than or equal

Unsigned greater than or equal

Unsigned less than

Unsigned greater than

Unsigned less than or equal

Never true

OPC

CCF, 01, EI, IRET, NOP,
RCF, RET, SCF

INCr

One-Byte Instructions

CLR, CPL, DA, DEC,

C=1

C=O

Z = 1

z=o
8=0

8 = 1
V = 1
V=O

Z = 1
Z=O

Flags Set

(8 XOR V) = a
(8 XOR V) = 1

[ZO~(8XORV)] = 0

[ZOR(8XORV)] = 1

C=O

C = 1
(C = 0 AND Z = 0) = 1

(CORZ) = 1

L---"="'--l OR 11 1 1 01 dsUsrc 1 ~G~~'~~~Rt~~~R~OP,
ADC, ADD, AND, CP,
LD, OR, SBC, SUB,
TCM, TM, XOR

124

OPC I
f--'-'dS..:t'-----i OR /11 1 01 dst

OPC
VALUE

OPC MODE

dst src

dstlsrc ope
sreldst OR 11 1 1 01 src

dst I OPC
VALUE

I dsUCC R~ OPC

RRC, SRA, SWAP

JP, CALL (Indirect)

SRP

ADC, ADD, AND,
CP, OR, SBC, SUB,
TCM, TM, XOR

LD, LDE, LDEI,
LDC, LOCI

LD

LD

DJNZ, JR

STOP/HALT

Two-Byte Instructions

I----:c~:=--I OR b 1 1 01 dst

I-_-,:sr",c_-I OR 1 1 1 0 src
L-_..::ds::!t_--, OR 1 1 1 0 dst

cc OPC
DAu

DAl

OPC

DAu
DAl

ADC, ADD, AND, CP,
LD, OR, SBC, SUB,
TCM, TM, XOR

LD

LD

JP

CALL

Three-Byte Instructions

INSTRUCTION SUMMARY

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected
Instruction Byte Instruction Byte
and Operation dst src (Hex) C Z S V 0 H and Operation dst src (Hex) C Z S V 0 H

AOCdst,src (Note 1) 10 '* '* '* '* o '* JP cC,dst OA cD ------
dst-dst + src + C it cc is true c=O-F

AOOdst,src (Note 1) 00 o *
PC-dst IRR 30

-:: * '* '*
dst - dst + src JRcc,dst RA cB ------

ANOdst,src (Note 1) 50 -,** 0--
it cc is true, c=;O-F

PC-PC + dst
dst - dst AND src

Range: + 127, -128
CALLdst OA 06 ------

LO dst,src 1m rC
SP-SP - 2 IRR 04

@SP <-- PC; PC - dst
dst -src r R r8

R r9
CCF EF *----- r = 0 - F
C-NOTC r X C7

CLRdst R BO
X r 07

Ir E3

dst-O IR B1
r
Ir r F3

COMdst R 60 -** 0-- R R E4
dst-NOTdst IR 61 R IR E5

R 1M E6
CP dst,src (Note 1) AD '* '* '* ,*-- IR 1M E7
dst - src IR R F5

OAdst R 40 '* *
",X-- LOC dst,src r Irr C2 ------

dst-OAdst IR 41
dst - src Irr 02

OECdst R 00 -** *-- LOCI dst,src Ir Irr C3 ------
dst-dst - 1 IR 01 dst -src Irr Ir 03

OECWdst RR 80 -"'* *-- r-r + 1; rr-rr + 1
dst-dst - 1 IR 81 LOE dst,src Irr 82 r ------
01 dst -src Irr 92
IMR (7)-0 8F ------ LOEI dst,src Ir Irr 83 ------
OJNZr,dst RA rA ------ dst -src Irr Ir 93
r- r - 1 r=O-F r - r + 1; rr - rr + 1
it r;O 0 NOP FF

PC-PC + dst

Range: +127, -128 OR cfst,src (Note 1) 40 -**0--

EI 9F
dst - dst OR src ------

IMR(7)-1 POPdst R 50 ------
dst-@SP; IR 51

HALT 7F Sp SP + 1

INCdst rE -*1:1:-- PUSH src R 70 ------
dst-dst + 1 r = 0 - F SP SP - 1; @SP src IR 71

R 20
IR 21 RCF CF 0-----

INCWdst RR AO
C O

-*'" *--
dst - dst + 1 IR A1 RET AF ------

IRET BF
PC-@SP;Sp SP + 2

1: 1: * * '" *
FLAGS - @SP; SP - SP + 1 RLdst ~~ R 90 ****--
PC @SP; SP SP + 2; IMR (7) 1 IR 91

125

INSTRUCTION SUMMARY (Continued)

Instruction
and Operation

Addr Mode Opcode / Flags Affected
Byte

dst src (Hex) C Z S V 0 H

RLC dst L{"i}:6J R 10
c , 0 IR 11

RR dst 4il LEjjJ R EO
c , 0 IR E1

RRCdst~R CO
c , 0 IR C1

SBCdst,src (Note 1) 3D
dst +- dst +- src +- C

SCF OF 1-----
C +-1

SRA dst4il@ R DO
C , 0 IR 01

SRPsrc 1m 31
RP +- src

STOP 6F

SUBdst,src (Note 1) 20 1< 1< 1< 1< 1 1t

dst +- dst +- src

SWAPdst S R FO X 1< 1< X--
F1 I' ., oliR

TCM dst,src (Note 1) 60 -1<1< 0--
(NOT dst) AND src

126

AddrMode Opcode Flags Affected
Instruction Byte
and Operation dst src (Hex) C Z S V 0 H

TM dst,src (Note 1) 70 -1<1< 0--
dstANO src

XORdst,src (Note 1) SO -1<1< 0--
dst +- dst XOR src

NOTE: These instructions have an identical set of addressing modes,
which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
symbolically by a 0 in this table, and its value is found in the
following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.

Addr Mode

dst src

Ir

R R

R IR

R 1M

IR 1M

Lower
Opcode Nibble

REGISTERS

R240SI0
SERIAL I/O REGISTER

(FOH; Read/Write)

I~I~I~I~I~I~I~I~I

,-I --SERIAL DATA to, = LSB)

R241 TMR
TIMER MODE REGISTER

(F1H; Read/Write)

To"MaDES j ~~O = NO FUNCTION NOT useD = DO ~ 1 ;:;: LOAD To

To OUT:: 01 0 = DISABLE T COUNT
T, OUT", 10 0

INTERNAL CLOCK OUT = 11. 1 = ENABLE To COUNT

T MODES 0 = NO FUNCTION
EXTERNAL CLOCK INPI~T = 00 1 = LOAD T,

GATE INPUT = 01 0 = DISABLE T, COUNT

(NON.R~~~3~~~~:~~ :: 10 1 = ENABLE T, COUNT

TRIGGER INPUT = 11
(RETAIGGERABLE)

R242T1
COUNTER TIMER 1 REGISTER

(F2H; Read/Write)

T, INITIAL VALUE (WHEN WRITTEN)
'----(RANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PRE1
PRESCALER 1 REGISTER

(F3H; Write Only)

~LcaUNTMaaE
o = T, SINGLE·PASS
1 = T, MODULO-N

CLOCK SOURCE
1 = T, INTERNAL
o = T, EXTERNAL TIMING INPUT

£TIN) MODE

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
COUNTERITIMER 0 REGISTER

(F4H; Read/Write)

To INITIAL VALUE (WHEN WRITTEN)
'-----(RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R245PREO
PRESCALER 0 REGISTER

(F5H; Write Only)

~LcaUNTMaDE
0.= To SINGLE·PASS
1 = To MODULO·N

RESERVED

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246P2M
PORT 2 MODE REGISTER

(F6H; Write Only)

. 10,10.10,10.10,1 0,1 0,10,1

R247P3M
PORT 3 MODE REGISTER

(F7H; Write Only)

EEO PORT 2 PULL·UPS OPEN DRAIN
1 PORT 2 PULL·UPS ACTIVE

RESERVED

o P32 :=. INPUT P3S = OUTPUT
1 P32 = DAVO/ROYO P3S ::: ROYOIDAVO

00 P33;= INPUT P34 ;= OUTPUT

~ ~ }P33 = INPUT P34 ;= OM
1 1 P33 = D'AViIRDY1 P34 = RDY11DAV'1

'-______ ~ ~~~ ~ ~N:VUJ~~~~ :~:: ~~~~~UT)

'-------- ~ ~~~ : ~~R~!L IN ~~~ ~ ~~~r..~T OUT

'-________ ~ ~:=:~ g~F

Figure 11. Control Registers

127

REGISTERS (Continued)

R248P01M
PORT 0 AND 1 MODE REGISTER

(F8H; Write Only)

PD'.PD'MODE~ ~.-r PD •• PD,MODE OUTPUT = 00 ' L 00 = OUTPUT
INPUT = 01 01 = INPUT

. A'2-A15 '" 1X 1X = AB-All
EXTERNAL MEMORY TIMING STACK SELECTION

NORMAL = 0 0 '" EXTERNAL
EXTENDED = 1 1 = INTERNAL

, P1 p-P1 , MODE
00 = BYTE OUTPUT
01 "" BYTE INPUT

, 10 = ADo-AD7
11 "" HIGH·IMPEDANCE ADo-AD,.

As, Os, AM. Aa-A11. A12-A15
IF SELECTED

R2491PR
INTERRUPT PRIORITY REGISTER

(F9H; Write Only)

l~t~t~t~t~t~t~I~1

"~",.:J I I III 0.'''." '-' ~ .. ~ RESERveD = 000
IR03, IROS PRIORITY (GROUP Al C > A > B = 001

o = IROS > IRQ3 A > B > C = 010
1 = IRQ3 > IROS A:> C > B = 011

B> C > A = 100
IRao, IRQ2 PRIORITY (GROUP B) C > B > A ::: 101

o = IRQ2 :> IRao B > A > C = 110
1 = lRao > JRQ2 RESERVED = 111

IRQ1, lRQ4 PRIORITY (GROUP C)
o = IRQ1 > IRQ4
1 = IRQ4 > IRQ1

R250lRQ
INTERRUPT REQUEST REGISTER

(FAH; ReadlWrite)

I~I~I~I~I~I~I~I~I

RESERVED ~ c== IRQO = P32 INPUT (Do "" IRQO)
IR01 = P33 INPUT
lRQ2 ::: P31 INPUT
IRQ3 ::: PJo INPUT, SERIAL INPUT
IRQ4 = To, SERIAL OUTPUT
IR05 = T1

R2511MR
INTERRUPT MASK REGISTER

(FBH; Read/Write)

II c== 1 ENABLES IROO-IR05
(Do::: IROO)

1-______ RESERVED

'--------1 ENABLES INTERRUPTS

REGISTER
POINTER

Figure 11. Control Registers (Continued)

128

R252 FLAGS
FLAG REGISTER
(FCH; ReadlWrite)

E~~
' LUSERFLAGF.

LUSER FLAG F2

HALF CARRY FLAG

DECIMAL ADJUST FLAG

OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

R253 RP
REGISTER POINTER

(FDH; ReadlWrite)

LOON'TCARE

R254SPH
STACK POINTER
(FEH; Read/Write)

R255SPL
STACK POINTER
(FFH; ReadlWrite)

OPCODEMAI?

o 4

6.5 6.5 6.5 6.5 10.5
DEC DEC ADD ADD ADD
R, IR, r1 J 2 f1· lr2 R2·R,

6.5 6.5 6,5 6,5 10,5
RLC RLC ADC ADC ADC
R, IR, (1,(2 f1.lr2 R2,R,

6,5 6,5 6,5 6,5 10,5
INC INC SUB SUB SUB
R, IR, (1,(2 (1, lr2 R2,R,

8_0 6,1 6,5 6,5 10,5
JP SRP SBC SBC SBC

IRR, 1M r1. r2 f1.lr2 R2,R,

8,5 8,5 6,5 6,5 10,5
DA DA OR OR OR
R, IR, (1,r2 '1, lr2 R2,R,

10.5 10,5 6,5 6,5 10,5
POP POP AND AND AND

R, IR, r1·(2 '1, lr2 R2,R ,

6,5 6,5 6,5 6,5 10,5
COM COM TCM TCM TCM

R, IR, '1.r2 (1.1r2 R2,R,

10/12,1 12/14,1 6,5 6,5 10,5
PUSH PUSH TM TM TM

R2 IR2 '1J2 '1, lr2 R2,Rr

10,5 10,5 12,0 18,0
DECW DECW LDE LDEI

RR, IR,
'" lrr2

Ir1,lrr2

6,5 6,5 12,0 18,0
RL RL LDE LDEI
R, IR, '2,lrr, Ir2·lrr1

10,5 10.5 6,5 6,5 10,5
A INCW INCW CP CP CP

RR, IR, (1,(2 '1, lr2 R2,R,

6,5 6,5 6,5 '6,5 "- 10,5
B CLR CLR XOR XOR XOR

R, IR, '1,(2 ",lr2 R2,R,

6,5 6,5 12,0 18,0
C RRC RRC LDC LDCI

R, IR, (1· lrr2 Ir1,lrr2

6,5 6,5 12,0 18,0 20,0
D SRA SRA LDC LDCI CALL·

R, IR, r2. lrr 1 Ir2,lrr, IRR,

6,5 6,5 6,5 10,5
E RR RR LD LD

R, IR, r" IR2 R2,R ,

8,5 8,5 6,5
F SWAP SWAP LD

R, IR, Ir1,r2

10.5 10.5
ADD ADD

IR2.R, R,.IM

10,5 10,5
ADC ADC

IR2,R, R"IM

10,5 10,5
SUB SUB

IR2,R, R,.IM

10,5 10,5
SBC SBC

IR2,R, R"IM

10,5 10,5
OR OR

IR2,R, R"IM

10,5 10,5
AND AND

IR2,R, R"IM

10,5 10,5
TCM TCM

IR2,R, R,.IM

10,5 10,5
TM TM

IR2,R, R,.IM

10,5 10,5
CP CP

IR2,R, R,.IM

10,5 10,5
XOR XOR

IR2·R, R,.IM

20,0
CALL

DA

10,5 10,5
LD LD

IR2,R, R,.IM

10,5
LD

R2.1R,

Lower Nibble (Hex)

8

10.5 6.5
ADD LD

IR,.IM rl,R2

10,5
ADC
IR"IM

10,5
SUB

IR"IM

10,5
SBC

IR"IM

10,5
OR

IR"IM

10,5
AND
IR"IM

10,5
TCM

IR"IM

10,5
TM

IR"IM

10,5
CP

IR"IM

10,5
XOR

IR"IM

10,5
LD

rl.x.R2

10,5
LD

r2,x,R,

10,5
LD

IR"IM

-6.5
LD

r2,R,

A B C D E F

--~

12/10.5 12/10.0 6.5 12/10.0 6.5
DJNZ JR LD JP INC
r, RA cC,RA r,.IM ccDA rl

i----

I----------

i----

i----

i----

i----
6,0

STOP

i----
7,0

HALT

I----------
61
or

i----
6.1
EI

i----
14.0
RET

i----
16.0
IRET

i----
6.5

RCF

-
6.5

SCF

-
6.5

CCF

- 6.0
NOP

'--... ----_-v-""-----".1 ,,'-----V-----~/ '--... -------v-""--------j '-v-' "---.....----'
2

EXECUTION
CYCLES

FIRST
OPERAND

LOWER
OPCODE
NIBBLE

~
4

*2-byte Instruction; fetch cycle appears as a 3-byte instruction

3

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

2

Legend:
R = 8-bit address
r "" 4-bit address
Rl or" = Dst address
R2 or'2 = Src address

Sequence:
Opcode, First Operand, Second Operand

NOTE: The blank areas are not defined.

129

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect
to GND - 0.3V to + 7.0V

Operating Ambient
Temperature See Ordering Information

Storage Temperature - 65°C to + 150°C

STANDARD TEST CONDITIONS

The DC characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are as follows:

III +4.5:S:; Vec :s:; + 5.5V

II GND = OV

II 0 C:S; T A :s; +70 C for S (Standard temperature)

III -40 C :s; T A :S;+100 C for E (Extended temperature)

DC CHARACTERISTICS

Symbol Parameter Min

VCH Clock Input High Voltage 3.8

VCl Clock Input Low Voltage -0.3

VIH Input High Voltage 2.0

Vil I nput Low Voltage -0.3

VRH Reset Input High Voltage 3.8

VRl Reset Input Low Voltage -0.3

VOH Output High Voltage 2.4

VOH Output High Voltage Vee -100mV

VOL Output Low Voltage

III Input Leakage -10

IOl Output Leakage -10

IIR Reset Input Current

Icc Supply Current

ICC1 Standby Current

ICC2 Standby Current

Typ

5

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

+5V

2.1K

Figure 12. Test Load 1

Max Unit Condition

Vcc V Driven by External Clock Generator

0.8 V Driven by External Clock Generator

VCC V

0.8 V

Vcc V

0.8 V

V IOH = -250)lA

V IOH = -100J.lA

0.4 V IOl = +2.0mA

10)lA OV ~ VIN ~ + 5.25V

10)lA OV ~ VIN ~ + 5.25V

-50)lA Vcc = + 5.25V, VRl = OV

30 mA All outputs and 110 pins floating, 12 MHz

mA Halt Mode

10)lA Stop Mode

Ice2 requires loading TMR (%F1) with any value prior to STOP execution.

Use the sequence:
LD TMR, #00
NOP
STOP

130

RlW

PORT O.
DM

PORT 1 Ao-Al

-<D---
AS CD

CD
liS

(READ)

PORT 1 Ao-A7 DD~Dl OUT

liS CD
(WRITE)

Figure 13. External I/O or Memory Read/Write

AC CHARACTERISTICS
External 110 or Memory Read and Write Timing

12MHz 16 MHz
Number Symbol Parameter Min Malt Min Max Notes·to

1 TdA(AS) Address Valid to AS t Delay 35 20 2.3

2 TdAS(A) AS t to Address Float Delay 45 30 2.3

3 TdAS(DR) AS t to Read Data Required Valid 220 180 1.2.3

4 TwAS AS Low Width 55 35 2.3

5 TdAz(DS) Address Float to OS ~ 0 0

6 TwDSR OS (Read) Low Width 185 135 1.2.3

7 TwDSW OS (Write) Low Width 110 80 1.2.3

8 TdDSR(DR) OS ~ to Read Data Required Valid 130 75 1.2.3

9 ThDR(DS) Read Data to OS t Hold Time 0 0

10 TdDS(A) OS t to Address Active Delay 45 20 2.3

11 TdDS(AS) OS t to AS ~ Delay 55 20 2.3

12 TdRIW(AS) RiW Valid to AS t Delay 30 20 2.3

13 TdDS(RIW) OS t to RIW Not.Valid 35 20 2.3

14 TdDW(DSW) Write Data Valid to OS (Write) ~ Delay 35 25 2.3

15 TdDS(DW) OS t to Write Data Not Valid Delay 35 20 2.3

16 TdA(DR)
I

Address Valid to Read Data Required Valid 255 200 1.2,3

17 TdAS(DS) AS t to OS j. Delay 55 40 2.3

NOTES:
1. When using extended memory timing add 2 TpC. • All units in nanoseconds (ns).
2. Timing numbers given are for minimum TpC. tTest Load 1
3. See clock cycle time dependent characteristics table. o All timing references use 2.0V for a logic "1" and O.BV for a logic "0".

131

Figure 14. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

Number Symbol

TpC

2 TrC.TfC

3 TwC

4 TwTinL

5 TwTinH

6 TpTin

7 TrTin,TfTin

8A TwlL

88 TwlL

9 TwlH

NOTES:

Parameter

Input Clock Period

Clock Input Rise and Fall Times

Input Clock Width

Timer Input Low Width

Timer Input High Width

Timer Input Period

Timer Input Rise and Fall Times

Interrupt Request Input Low Time

Interrupt Request Input Low Time

Interrupt Request Input High Time

1. Clock timing references use 3.BV for a logic "I" and O.BV for a logic "a".
2. Timing references use 2.0V for a logic "I " and O.BV for a logic "0".
3. Interrupt request via Port 3.
4. Interrupt request via Port 3 (P31·P33)'
5. Interrupt request via Port 3 (P30)'
• Units in nanoseconds (ns).

12MHz

Min

83

70

70

3TpC

8TpC

70

3TpC

3TpC

16 MHz
Max Min Max

1000 62.5 1000
15 10

21
50

3TpC

8TpC
100 100

50
3TpC
3TpC

DA:;'~; ____________ ~_' ___ ~'~::::: : ~ __________ _
RDY'

(OUTPUT)

132

DATA OUT

DAY
(OUTPUTI

RDY
(INPUT)

Figure 15a. Input Handshake

r- O~TAOUTVALID
----~~---------------------------------

__ . l=t ~®==~~
Figure 15b. Output Handshake

Notes·

1

2

2

2

2

2,4

2,5

2,3

AC CHARACTERISTICS
Handshake Timing

Number Symbol

TsDI(DAV)

2 ThDI(DAV)

3 TwDAV

4 TdDAVlf(RDY)

5 TdDAVOf(RDY)

6 TdDAVlr(RDY)

7 TdDAVOr(RDY)

8 TdDO(DAV)

9 TdRDY(DAV)

NOTES:
1. Test load 1
2. Input handshake
3. Output handshake

Parameter

Data In Setup Time

Data In Hold Time

Data Available Width

DAV + Input to RDY + Delay

DAV + Output to RDY + Delay

DAV t Input to RDY t Delay

DAV t Output to RDY t Delay

Data Out to DAV + Delay

RDY + Input to DAV t Delay

t All timing references use 2.0V for a logic "1" and O.BV for a logic "a".
* Units in nanoseconds (ns).

12MHz, '16MHz
Min

0

145

110

20

0

0

Tpc
0

Max Notest*

115 1,2

115

130

1,3

1,2

1,3

133

Z -I ADVANCED INFORMATION
1 01' , , . prOduct~SpeCifiC:,~tion

FEATURES

-, ~, 1,- ~"7'''''' - - .. ,~",\, ... ",'~M' __ r-.)~ ", ___ ~, _~ • ...".

Z86C21/Z86E21 CMOS
CMOS Z8® 8K ROM MCU

June 1987

• Complete microcomputer, 8K bytes of ROM, 256 bytes of
RAM, 32 I/O lines, and up to 56K bytes addressable
external space each for program and data memory.

.. Register Pointer so that short, fast instructions can
access any of 16 working-register groups in ,6 /-Is.

m On-chip oscillator which accepts crystal or external clock
.. 256-byte register file, including 236 general-purpose

registers, 4 I/O port registers, and 16 status and
control registers.

III Minimum instruction execution time of 0.6 /-Is,
average of 1.0 /-Is.

III Vectored, priority interrupts for I/O, counter/timers, and
UART. .

.. Full-duplex UART and two programmable 8-bit counter/
timers, each with a 6-bit programmable prescaler.

GENERAL DESCRIPTION

The Z86C21 microcomputer (Figures 1 and 2)
introduces a new level of sophistication to single­
chip architecture. Compared to earlier single-chip
microcomputers, the Z86C21 offers faster execution;

RESET +5V

R/Vi GND

os XTALl

AS XTAL2

PO, P2,

po, P2,

po, P2,
PORT 0

P2, (NIBBLE PO,
PROGRAMMABLE) PO, Z86C21 P2,

1/0 OR As-A15
PO, Z86E21 P2,

PO, MCU P20

PO, P2,

Pl, P3,

Pl, P3,

Pl, P3,
PORT 1

(BYTE Pl, P3,

PROGRAMMABLE) Pl, P3.
110 OR ADo-AD7

Pl, P3,

Pl, . P3s

Pl, P3,

PORT 2
(BIT PRO·
GRAMMABLE)
110

PORT 3
SERIAL AND
PARALlEllIQ
AND CONTROL

+5V

XTAL2

XTALl

P3,

P3,

RESET

R/Vi

os
AS
P3,

GND

P3,

PO,

po,
po,
po,
po,
po,
po,
po,

drive.

1!11 Standby modes-Halt and Stop

rn Single + 5V power supply-all pins TTL-compatible.

III 12 and 16 MHz.

1m CMOS process

1m Z86E21 compatible field-programmable version
same feature set.

more efficient use of memory; more sophisticated
interrupt, input/output and bit-manipulation
capabilities; and easier system expansion.

P3,

P3,

P2,

P20

P2,
II!SlT 7

P2, R/W •
P2, till •
P2, .. 10

P2, P', 11

GNO 12
P2, P" 13

P3, po, 14

P3. po, 15

P17
po, " NC 17

Pl,

Pl,

Pl,

Pl,

Pl,

Pl,

Pl 0

~v ~~<:J <l,"J'\ .¢.".~~~ qroJ> q"J' .(l-'\qtl,,'" q"'''
6 5 4 3 2 1 44 43 42 41 40

Z86C21
Z86E21

MCU

18 19 20 21 22 23 24 25 26 27 28

qt::l'>q~. q~"qt:::.b qt:::. q ... Q q q " ... "q ~v

Figure 2b. 44-pln Chip Carrier,
Pin Assignments

,.
38

'7
36

3S

34

33

3'

3'

'0
29

Figure 1. Pin Functions
Figure 2. 40-pin Dual-In-Line

Package (DIP), Pin Assignments

134

NC

P"

P"

P"
P2,

P2,

P3,

P3.

Ph

P"

P',

General Purpose Mlcroconlroller

Under program control, the ZB6C21 can be tailored
to the needs of its user. It can be configured as a
stand-alone microcomputer with 8K bytes of
internal ROM, a traditional microprocessor that
manages up to 112K bytes of external memory, or

Field Progrlllmmable "eralon

The Z86E21 is a pin compatible Onetime
Programmable version of the Z86C21. The Z86E21
contains 8K bytes of EPROM memory in place of the
8K bytes of masked ROM on the Z86C21. The

ARCHITECTURE

Z86C21 architecture is characterized by a flexible I/O
scheme, an efficient register and address space structure
and a number of ancillary features that are helpful in many
applications.

Microcomputer applications demand powerful I/O
capabilities. The Z86C21 fulfills this with 32 pins dedicated
to input and output. These lines are grouped into four ports
of eight lines each and are configurable under software
control to provide timing, status signals, serial or parallel I/O
with or without handshake, and an address/data bus for
interfacing external memory.

Because the multiplexed address/data bus is merged with
the I/O·oriented ports, the Z86C21 can assume many
different memory and I/O configurations. Jhese config­
urations range from a self-contained microcomputer to a

a parallel-processing element in a system with other
processors and peripheral controllers linked by the
Z-BUS bus. In all configurations, a large number
of pins remain available for I/O.

Z86E21 also contains a programmable memory
protect feature to provide program security by
disabling all external accesses to the internal EPROM
array.

microprocessor that can address 120K bytes of external
memory (Figure 3).

Three basic address spaces are available to support this
wide range of configurations: program memory (internal
and external)' data memory (external) and the register
file (internal). The 256-byte random-access register
file is composed of 236 general-purpose registers, 4 I/O
port registers, and 16 control and status registers.

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on-chip timers supplies the bit rate.

110
(BIT PROGRAMMABLE)

ADDRESS OR I/O
(NIBBLE PROGRAMMABLE)

ADDRESSIDATA OR I/O
(BYTE PROGRAMMABLE)

Figure 3. Functional Block Diagram

135

STANDBY MODE

The Z86C21's standby modes are:

III Stop

• Halt

The Stop instruction stops the internal clock and clock
oscillation; the Halt instruction stops the internal clock but
not clock oscillation.

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program·or data
memory transfers are valid at the trailing edge of AS. Under
program control, AS can be placed in the high-impedance
state along with Ports 0 and 1, Data Strobe and Read/Write.

OS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer.

POo·P07. P10·P17. P20·P27. P30·P37. 110 Port Lines
(inpuUoutputs, TTL-compatible). These 32 lines are divided
into four 8-bit 1/0 ports that can be configured under
program control for 1/0 or external memory interface (Figure 3).

ADDRESS SPACE

Program Memory. The 16-bit program counter addresses
64K bytes of program memory space. Program memory
can be located in two areas: one internal and the other
external (Figure 4). The first 8192 bytes consist of on-chip
mask-programmed ROM. At addresses 8192 and greater,
the Z86C21 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16-bit vectors
that correspond to the six available interrupts.

Data Memory. The Z86C21 - can address 56K bytes of
external data memory beginning at location 4096 (Figure 5).
External data memory may be included with or separated
from the external program memory space. OM, an optional
1/0 function that can be programmed to appear on pin P34,
is used to distinguish between data and program memory
space.

Register File. The 256-byte register file includes 4
I/O port registers (RO-R3), 236 general-purpose
registers (R4-R239) and 16 control and status registers
(R240-R255).

136

A reset input releases the standby mode.

To complete an instruction prior to entering standby mode,
use the instructions:

NOP(FFH) + STOP(6FH)
NOP(FFH) + HALT(7FH)

RESET. Reset (input, active Low). RESET initializes the
Z86C21 . When RESET is deactivated, program execution
begins from internal program location OOOCH.

R/W. ReadlWrite (output). RfifJ is Low when the Z86C21 is
writing to external program or data memory.

XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input
and output). These pins connect a parallel-resonant
crystal (12 or 20 MHz maximum) or an external single­
phaser clock (12 or 20 MHz maximum) to the on-chip
clock oscillator and buffer.

These registers are assigned the address locations shown in
Figure 6.

Z86C21 instructions can access registers directly or
indirectly with an 8-bit address field. The Z86C21 also
allows short 4-bit register addressing using the Register
Pointer (one of the control registers). In the 4-bit
mode, the register file is divided into 16 working register
groups, each occupying 16 contiguous locations (Figure'
6). The Register Pointer addresses the starting location
of the active working-register group (Figure 7). Note:
Register Bank EO-EF can only be accessed through
working register and indirect addressing mode.

Stack,s. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the external stack, which can
reside anywhere in data memory between locations 4096
and 65535. An 8-bit Stack Pointer (R255) is used for the
internal stack that resides within the 124 general-purpose
registers (R4-R127):·

LOCATION OF
FIRST BYTE OF
INSTRUCTION

EXECUTED
AFTER RESET

INTERRUPT
VECTOR

(LOWER BYTE)

INTERRUPT
VECTOR

(UPPER BYTE)

5535

EXTERNAL
ROM OR RAM

1n
191

ON·CHIP
ROM

i2 ~----....,-------
11 IRQ5

10 IR05

9 IRQ4

8 IR04

7 IR03

6 IRQ3

5 po... IR02

41>- IR02

3 IR01

2 IR01

1 IROO

0 IROO

Figure 4. Program Memory Map

LOCATION

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

239

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

SERIAL 110

NOT
IMPLEMENTED

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2",

PORT 1

PORT 0

Figure 6. The Register File

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRQ

IPR

P01M

P3M

P2M

PREO

TO

PRE1

11

TMR

510

P3

P2

P1

PO

65535 ----------.,

EXTERNAL
DATA

MEMORY

:~:~I----------;

NOT ADDRESSABLE

Figure 5. Data Memory Map

I_-...... -{J:=~J:;::;:=:;::=;::::;:::;:;::=I~::
t---'--'--'--'-------I 240

THE UPPER NIBBLE OF THE REGISTER FILE ADDRESS
PROVIDED BY THE REGISTER POINTER SPECIFIES
THE ACTIVE WORKING-REGISTER GROUP.

--I
--I
--I
--I

-

39 2_

SPECIFIED WORKING·
-I-REGISTER GROUP

15

I----"O'PO"TS----- 3

THELQWER
NIBBLE OF
THE REGISTER
FilE ADDRESS
PROVIDED BY
THE INSTRUCTION
POINTS TO THE
SPECIFIED
REGISTER.

Figure 7. The Register Pointer

137

SERIAL INPUT/OUTPUT

Port 3 lines P30 and P37 can be programmed as serial 1/0
lines for full-duplex serial asynchronous receiverltransmitter
operation_ The bit rate is c9ntrolled by CounterlTimer O.

The Z86C21 automatically adds a start bit and two stop bits
to transmitted data (Figure 8). Odd parity is also available as
an option. Eight data bits are always transmitted, regardless

TRANSMITTED DATA
(No Parity)

TRANSMITTED DATA
(With Parity)

1&1&1 pl~I~I~I~I~I~I~lsij

T I LSTART BIT

'----SEVEN DATA BITS

'-------000 PARITY

TWO STOP BITS

of parity selection. If parity is enabled, the eighth' bit is the
odd parity bit. An interrupt request (IRQ4) is generated on all
transmitted characters.

Received data must have a start bit, eight data bits and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

RECEIVED DATA
(No Parity)

I&I~I~I~I~I~I~I~I~I~I

I LSTART BIT

'-----EIGHT DATA BITS

'---~-----ONE STOP BIT

RECEIVED DATA
(With Parity)

II LSTART BIT

'----SEVEN DATA BITS

'--------~~~I:~~::~TR FLAG

Figure 8. Serial Data Formats

COUNTER/TIMERS

The Z86C21 contains two 8-bit programmable counterl
timers (To and T1), each driven by its own 6-bit
programmable prescaler. The T 1 prescaler can be driven by
internal or external clock sources; however, the To prescaler
is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request-IRQ4 (To) or
IRQ5 (T1)-is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass
mode) or to automatically reload the initial value and

138

continue counting (modulo-n continuous mode). The
counters, but not the prescalers, can be read any time
without disturbing their value or count mode.

The dock source for T 1 is user-definable and can be
the internal microprocessor dock divided by four. or an
external signal input via Port 3. The Timer Mode
register configures the external timer input as an
external dock (lMHz maximum). a trigger input that
can be retriggerable or non-retriggerable. or as a gate
input for the internal dock. The counter/timers can be
programmably cascaded by connecting the To .output to
the input of T 1. Port 3 line P36 also serves as a
timer output (TOUT) through· which To. Tl or the
internal dock can be output.

I/O PORTS

The Z86C21 has 32 lines dedicated to input and output.
These lines are grouped into four ports of eight lines each
and are configurable as input, output or address/data.
Under software control, the ports can be programmed to
provide address outputs, timing, status signals, serial I/O,
and parallel I/O with or without handshake. All ports have
active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an
address/data port for interfacing external memory. When
used as an I/O port, Port 1 may be placed under handshake
control. In this configuration, Port 3 lines P33 and P34 are
used as the handshake controls ROY 1 and OAV1 (Ready
and Data Available).

fylemory locations greater than 8192 are referenced
through Port 1. To interface external memory, Port 1 must be
programmed for the multiplexed AddresslData mode. If
more than 256 external locations are required, Port 0 must
output the additional lines.

Port 0 can be programmed as a nibble I/O port, or as an
address port for interfacing external memory. When used as
an I/O port, Port 0 may be placed under handshake control.
In this configuration, Port 3 lines P32 and P35 are used as
the handshake controls OAVo and ROYo. Handshake signal
assignment is dictated by the I/O direction of the upper
nibble P04-P07.

For external memory references, Port 0 can provide address
bits Aa-A11 (lower nibble) or Aa-A15 (lower and upper nibble)
depending on the required address space. If the address
range requires 12 bits or less, the upper nibble of Port 0 can
be programmed independently as I/O while the lower nibble

Port 2 bits can be programmed independently as input or
output. This port is always available for I/O operations. In
addition, Port 2 can be configured to provide open-drain
outputs.

Like Ports 0 and 1, Port 2 may also be placed under
handshake control. In this configuration, Port 3 lines P31
and P36 are used as the handshake controls lines OAV2 and
ROY 2. The handshake signal assignment for Port 3 lines P31
and P36 is dictated by the direction (input or output) assigned
to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either
case, the direction of the eight lines' is fixed as four input
(P30-P33) and four output (P34-P37)' For serial I/O, lines P30
and P37 are programmed as serial in and serial out
respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0, 1 and 2 (OAV and ROY); four external
interrupt request signals (IRQo-IRQ3); timer input and output
signals (TIN and TOUT) and Data Memory Select (OM).

Port 1 can be placed in the high-impedance state along with
Port 0, AS, OS and Riw, allowing the Z86C21 to share
common resources in multiprocessor and OMA
applications. Data transfers can be controlled by assigning

. P33 as a Bus Acknowledge input, and P34 as a Bus Request
output.

Z86C21
MCU

PORT 1
(110 OR ADo-AD7)

}
HANDSHAKE CONTROLS
DAV, AND ROY,
(P33 AND P3.)

Figure 9a_ Port 1

is used for addressing. When Port 0 nibbles are defined as
address bits, they can be set to the high-impedance state
along with Port 1 and the control signals AS, OS and R/W.

I PORTO
(110 OR As-A,s)

_ } ~!~oD~~~KRED~~NTROLS
(P~ AND P3s)

Figure 9b. Port 0

}
HANDSHAKE CONTROLS
OAV2 AND RCY2
(P31 AND P36)

Figure 9c. Port 2

= 1..AT3 Z86C21 I (110 OR CONTROL)

MCU

Figure 9d_ Port 3

. 139

INTERRUPTS

The Z86C21 allows six different interrupts from eight sources:
the four Port 3 lines P30-P33, Serial In, Serial Out, and the two
counter/timers. These interrupts are' both maskable and
prioritized. The Interrupt Mask register globally or individually
enables or disables the six interrupt requests. When more
than one interrupt is pending, priorities are resolved by a
programmable priority encoder that is controlled by the
Interrupt Priority register.

All Z86C21 interrupts are vectored through locations in
program memory. When an interrupt request is granted,
an interrupt machine cycle is entered. This disables all

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal or to any suitable external
clock source (XTAL 1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL 1 and XTAL2,
using the recommended capacitors (C1 "" 15 pI) from each

GENERAL DESCRIPTION

The Z86C12 development device allows users to proto­
type a system with an actual hardware device' and to
develop the code. This code is eventually mask-pro­
grammed into the on-Chip ROM for any of the 86Cxx
devices (except the 86C91). Development devices are
also useful in emulator appli-cations where the final sys­
tem configura-tion -- memory configuration, I/O, interr­
upt inputs, etc."- are unknown.The Z86C12 development
device is identical to its equivalent Z86C21 microcomputer
with the following exceptions:

• No internal ROM is provided, so that code is
developed in off-chip memory. Rve "size" inputs configure
the memory boundaries.

Z86C12 PIN DESCRIPTION

DO - 07 (Inputs, TTL compatible) Data bus_
These 8 lines provide the input data bus to access
external memory emulating on the on-Chip ROM.
During read cycles in the internal memory space the
data on these lines is latched in just prior to the rise of
the IMDS data strobe.

AO - A15 (Outpus TTL compatible) Address
bus. During T1 these lines output the current memory
address. All addresses, whether internal or external,
are output.

IMAS (Output, TTL compatible) Memory
Address Strobe. This line is active during every T1
cyc;:le. The rising edge of this signal may be used to
latch the current memory address on the lines AO -
A 15. This line is always valid; it is not tri-stated when
lAS is tri-stated.

140

subsequent interrupts, saves the Program Counter and
status flags, and branches to the program memory
vector location reserved for that interrupt. This memory
location and the next byte contain the 16-bit address
of the interrupt service routine for that particular
interrupt request.

Polled. interrupt systems are also supported. To
accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

pin to ground. The specifications for the crystal are as follows:

e AT cut, parallel resonant

.. Fundamental type, 16 MHz maximum

III Series resistance, Rs "" 1 00 Q

" The normally internal ROM address and data lines are
buffered and brought out to external pins to interface with
the external memory.

D Control lines (/MAS and IMDS) are added to interface
with external program memory.

The Timing and Control, I/O ports, and clock pins on
the Z86C 12 are identical in function to those on the
86C21. This section covers those pins that do not
appear on the Z86C21 8K ROM device. The pin
functions and pin aSSignments are shown on figure
00.

/MDS (Output, TTL compatible) Memory Data
Strobe. This is a timing signal used to enable the
external memory to emulate the on-Chip ROM. It is
active only during accesses to the on-Chip ROM
memory space, as selected by the configuration of the
SIZEn pins. .

/SCLK (Output, TTL compatible) System
Clock. This line is teh internal system clock.

/SYNC (Output TTL, compatible) Sync signal.
This Signal indicates the last clock cycle of the currently
executing instruction.

!lACK (Output TTL, compatible) Interrupt
Acknow-Iedge. This output, when low, indicates
that the Z86C12 is an interrupt cycle.

ISIZEO, ISIZE1, ISIZE2, ISIZE3, SIZE4 NOTE:
(Inputs, TTL compatible). The ISIZEn lines The SIZE pins may be configured to make the
control the emulation mode of the 86C12. Note that memory control signals (/MAS, IMOS, RIW,
ISIZEO - ISIZE3 are active low, while SIZE4 is active lAS, and lOS) look like the Z86C91 ROMless
high. The functions are defined as shown in figure 00. device, however on power-up or reset ports
The 86C12 should be in RESET when the state of o and 1 are configured as inputs, rather than
these lines are changed. A15 - A8 and A07 - AOO, respectively.

Table 1. Z86C12 Pin Assignments

NAME NAME PIN NAME PIN NAME PIN

lAS B2 A8 J5 P07 J1 P36 A7
lOS C4 A9 K4 P10 G8 P37 A5
IMAS E1 00 H3 P11 G9 RIW A1
IMOS G3 01 K2 P12 G10 SCLK G2
IRESET B3 02 J3 P13 F8 SIZE4 F10
ISIZEO A3 03 K3 P14 010 VCC A4
ISIZE1 C5 04 H8 P15 C10 VCC1 B6
ISIZE2 A6 05 J10 P16 B10 VCC2 F9
ISIZE3 C6 06 H9 P17 E9 VSS F3
ISYNC F1 07 H10 P20 C9 VSS1 E2
AD J9 lACK F2 P21 A10 VSS2 H6
A1 H7 NC J2 P22 B9 VSS3 E8
A10 J4 NC C3 P23 C8 Xtal1 B5
A11 H4 NC 08 P24 A9 Xtal2 A2
A12 K9 NC H2 P25 B8
A13 K7 NC Ki P26 A8
A14 K5 POO C1 P27 C7
A15 H5 POi 03 P30 B4
A2 KiO P02 02 P31 B7

A3 J8 P03 01 P32 C2

A4 J7 P04 E3 P33 09
A5 K6 P05 G1 P34 E10

A6 J6 P06 Hi P35 B1

A7 K8

2 3 4 5 6 7 8 9 10

Table 2. Memory Size Configuration A •

B · SIZE4 ISIZE3 ISIZE2 ISIZE1 ISIZEO MEMORY
C ·

0 1 1 1 1 ROM less D ·
E · 0 1 1 1 0 2K ROM

0 1 1 0 1 4K ROM
0 1 0 1 1 8K ROM F ·

G · 0 0 1 1 1 16K ROM
1 1 1 1 1 32K ROM

H ·
J ·
K ·

TOP VIEW

141

142

TIMING
AND
CONTROL

PORTO
(NIBBLE
PROGRAM·
MABLE) 1/0
OR A8-A15

PORT 1
(BYTE PRO·
GRAMMABLE)
1/0 OR
ADD-AD7

PROGRAM
MEMORY
DATA IN·
PUTS

ROM SIZE
INPUTS

STATUS AND
MEMORY CON·
TROL

GROUND

.. ..

.. ..
OIl(..

...

...

... ..

..

...

IRESET +5V
R/W GND
IDS

Xtall
POO Xtal2
POl
P02 P20
P03 P2l
P04 P22
P05 P23
P06 P24
P07 P25

P26
Pl0 P27
Pl1
P12 P30
P13 P3l
P14 P32
P15 P33
P16 P34
P17 P35

P36
DO P37
01
02 AO
03 Al
04 A2
05 A3

06 A4
07 A5

A6
ISIZEO A7
ISIZEl A8
ISIZE2 A9
ISIZE3 Al0
SIZE4 All

A12
IIACK A13

IMAS A14
IMDS A15
ISYNC
SCLK VCC

VCCl
VSS VCC2
VSSl
VSS2

Z86C12

Z86C12 Pin Functions

..
...

~

-< ~ ~

.....
lao

---i> ...
--Joo-.... ...

lao
~

OIl
-cE--
.....

CLOCK

PORT 2
(BIT PRO·
GRAMMABLE)

PORT 3
SERIAL AND
PARALLEL
1/0 CON­
TROL

PROGRAM
MEMORY
ADDRESS
OUTPUTS

POWER

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst
src
cc
@

Destination location or contents
Source location or contents
Condition code (see list)
Indirect address prefix

SP
PC
FLAGS
RP
IMR

Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

CONDITION CODES

Value Mnemonic

1000 Always true

0111 C Carry

1111 NC No carry

0110 Z Zero

1110 NZ Not zero

1101 PL Plus

0101 MI Minus

0100 OV Overflow
1100 NOV No overflow
0110 EO Equal

1110 NE Not equal

Assignment of a value is indicated by the symbol "+--': For
example,

dst <- dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "n" of a given
location. For example,

dst(7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six
flags:

C
Z
S
V
o
H

Carry flag
Zero flag
Sign flag
Overflow flag
Decimal-adjust flag
Half-carry flag

Affected flags are indicated by:

o Cleared to zero
1 Set to one
"" Set or cleared according to operation

Unaffected
X Undefined

Meaning Flags Set

C = 1
c=o
Z = 1
Z=O
8=0

8 = 1
V = 1
V=O
Z = 1

1001 GE Greater than or equal

Z=O
(8XORV) = 0

(8 XOR V) = 1 0001 LT
1010 GT

0010 LE
1111 UGE

0111 ULT

1011 UGT

0011 ULE
0000

Less than
Greater than

Less than or equal

Unsigned greater than or equal

Unsigned less than

Unsigned greater than

Unsigned less than or equal

Never true

[ZOR (8XOR V)] = 0

[ZOR(8XORV)] = 1

C=O
C = 1
(C = 0 AND Z = 0) = 1
(CORZ) = 1

143

INSTRUCTION FORMATS
OPC ~

dst OPC

CCF, 01, El, IRET, NOP,
RCF, RET, SCF

tNCr

One-Byte Instructions

OPC MODE CLR, CPL, DA, DEC,

dst'src OR 11 1 1 0 I dot'ore I g~~~'~~~Rt~?};'R:OP,

OPC I
l----'d7.7-t ----i OR 11 1 1 0 I dst

OPC
VALUE

MODE OPC
dst/src src/dst

I

l-.-"'=::':""'......J OR 11 1 1 01 ore

dst I oPy
VALUE

I dsUCC I OPC
RA .

FFH
6FH I 7FH

RRC, SRA, SWAP

JP, CALL (Indirect)

- SRP

ADC, ADD, AN D,
CP, OR, SBC, SUB,
TCM, TM, XOR

LD, LDE, LDEI,
LDC, LDCI

LD

LD

DJNZ, JR

STOP/HALT

Two-Byte Instructions

INSTRUCTION SUMMARY

AddrMode Opcode Flags Affected
Instruction Byte
and Operation dst src (Hex) CZSVDH

ADCdst,src (Note 1) 10 * * * * o 1r

dst-dst + src + C

ADDdst,src (Note 1) 00 * * * * o *
dst - dst + src

ANDdst,src (Note 1) 50 -** 0--
dst - dst AN D src

CALLdst DA D6 ------
SP-SP - 2 IRR D4
@SP - PC; PC - dst

CCF EF *-----
C-NOTC

CLRdst R BO ------
dst-O IR B1

COMdst 'R 60 -**0--
dst-NOTdst IR 61

CPdst,src (Note 1) AD 1: ***--
dst - src

144

1-_';;:'='_--1 OR 1-'-',-,-::+--=,-;
ADC, ADD, AN D, CP,
LD, OR, SBC, SUB,
TCM, TM, XOR

, ADC, ADD, AND, CP,

OR It 1 1 01 dst LD, OR, SBC, SUB,
TCM, TM, XOR

MODE OPC LD

ore OR 1 1 1 0 ore

dot OR 1 1 1 0 dst

LD

cc OPC JP
DAu
DAL

OPC CALL
DAu
DAL

Three-Byte Instructions

AddrMode Opcode Flags Affected
Instruction Byte
and Operation dst src (Hex) CZSVDH

JPcc,dst. DA cD ------
ifcc is true c=O-F

PC-dst IRR 30

JRcc,dst RA cB ------
if cc is true, c=O-F

PC-PC + dst
RoOonn,co .L 1')7 _ 1?R
I ,'~ I , I ,--
LDdst,src r 1m rC ------
dst-src r R r8

R r9
r = 0 - F

r X C7
X r D7
r Ir E3
Ir r F3
R R E4
R IR E5
R 1M E6
IR 1M E7
IR R F5

INSTRUCTION SUMMARY (Continued)

Instruction
and Operation

Addr Mode Opcode Flags Affected
Byte

dst src (Hex) C Z S V D H

DAdst
dst +- OA dst

DECdst
dst +-dst - 1

DECWdst
dst +- dst - 1

DI
IMR(7) <-0

DJNZr,dst
r+- r - 1
ifr*O

PC +-PC + dst
Range: + 127, -128

EI
IMR(7) +-1

HALT

INCdst
dst +- dst + 1

INCWdst
dst +- dst + 1

IRET

R
IR

R
IR

RR
IR

RA

R
IR

RR
IR

FLAGS +- @SP; SP +- SP + 1

40
41

00
01

80
81

8F

rA
r=O-F

9F

7F

rE
r = 0 - F

20
21

AO
A1

SF

PC +- @SP; SP +- SP + 2; IMR (7) +-1

RLCdst~R
" c,' IR

RR dst LEJ LDJ R
c , , IR

RRC dst L8-=DJ R
c , 'IR

SBCdst,src (Note 1)
dst +- dst +- src +- C

SCF
C +-1

SRA dst LEJ @ R c , ,
IR

SRPsrc
RP +-src

STOP

\

1m

SUBdst,src
dst +- dst +- src

(Note 1)

SWAP dst I; 52 R
1.:..." -rc=:::t-X...,....::.' II R

TCM dst,src (Note 1)
(NOT dst) ANO src

10
11

EO
E1

CO
C1

3D

OF

00
01

31

6F

20

FO
F1

60

-***--

-**,~--

-**w--

* * * * * *

,1 -----

***0--

x**x--

AddrMode Opcode Flags Affected

Instruction Byte
and Operation dst src (Hex) CZSVDH

LDCdst,src r Irr C2 ------
dst +- src Irr 02

LDCI dst,src Ir Irr C3 ------
dst +- src Irr Ir 03
r+-r + 1; rr+-rr + 1

LDEdst,src r Irr 82 ------
dst +- src Irr 92

LDEI dst,src Ir Irr 83 ------
dst +- src Irr Ir 93
r +- r + 1; rr +- rr + 1

NOP FF ------

OR dst,src (Note 1) 40 -**0--
dst +- dst OR src

POPdst R 50 ------
dst+-@SP; IR 51
SP +-SP + 1

PUSH src R 70 ------
SP +- SP - 1; @SP +- src IR 71

RCF CF 0-----
C+-O

RET AF ------
PC +- @SP; SP +- SP + 2

RLdst ~ R 90 ****--o 7 0
IR 91

TM dst,src (Note 1) 70 -** 0--

dstANOsrc

XORdst,src (Note 1) SO - '* * 0--

dst +- dst XOR src

NOTE: These instructions have an identical set of addressing modes,
which are encoded for brevity, The first opcode nibble is found in
the instruction set table above, The second nibble is expressed
symbolically by a 0 in this table, and its value is found in the
following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13,

AddrMode
Lower

dst src Opcode Nibble

0
Ir 0

R R 0
R IR W
R 1M [§J
IR 1M [I]

145

REGISTERS

R240SI0
SERIAL 1/0 REGISTER

(FOH; Read/Write)

'------SERIAl. DATA (Do "" LSS)

R241 TMR
TIMER MODE REGISTER

(F1 H; Read/Write)

T'",MODESj T US~o = NO FUNCTION NOT usee = 00 ~' 1 = LOAD To

~~ g~~ ~ ~~ , 0 = DISABLE To COUNT
INTERNAL CLOCK OUT:::: 11 1 = ENABLE,To COUNT

T MODES 0 = NO FUNCTION
EXTERNAL CLOCK INP~T = 00 1 =- lOAD 1,

GATE INPUT :c: 01 0 = DISABLE T, COUNT

(NON.R~~~~8~:~~:~~) = 10 1 = ENABLE T, COUNT

TRIGGER INPUT .. 11
(RETRIGGERABLE)

R242 T1
COUNTER TIMER 1 REGISTER

(F2H; Read/Write)

T, INITIAL VALUE (WHEN WRITTEN)
'-----(AANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243PRE1
PRESCALER 1 REGISTER

(F3H; Write Only)

~LCOUNTMODE
o ;; 1, SINGLE·PASS
1 = T, MODULC·N

CLOCK SOURCE
1 =: T, INTERNAL

. 0 = T, EXTERNAtTtMING INPUT
(TIN) MODE

, PRESCALER MODULO,
(RANGE: 1-64 DECIMAL
01-00 HEX)

R244 TO
COUNTERITIMER 0 REGISTER

(F4H; Read/Write)

To INITIAL VALUE(WHEN WRITIEN)
'------(RANGE: 1-256 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
PRES CALER 0 REGISTER

(F5H; Write Only)

-
QLCOUNTMOOE o = To SINGLE-PASS

1 = T(l MODULO-N

RESERVED

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
PORT 2 MODE REGISTER

(F6H; Write Only)

P2o-P27 110 DEFINITION
L-___ 0 DEFINES BIT AS OUTPUT

1 DEFINES BIT AS INPUT

R247P3M
PORT 3 MODE REGISTER

(F7H; Write Only)

~.~o PORT 2 PULL·UPS ~PEN DRAIN
1 PORT 2 PULL·UPS ACTIVE

RESERVED

o P32 := INPUT P3S ;= OUTPUT
1 P32 = DA'VOJROYO P3S '" RDYO/DAVO

00 P33 = INPUT P34 = OUTPUT

~ ~}P33 = INPUT P34 = I5"M
1 1 P33 '" IlAVirRDY1 P34 = RDY1rDAVl

L-______ ~ ~~~ ~ ~N:VU;~~I~~ =;~ : ~~~~~{ifUT)
L-_______ ~=~~ ~ ~N:R~rLIN =~~ ~ ~~~iAULTOUT '--________ ~ =~=:~~ g~F

Figure 11. Control Registers

146

REGISTERS (Continued)

R248 P01M
PORT 0 AND 1 MODE REGISTER

(F8H; Write Only)

PD.-PO, MOOE:] E~ PO,-PO, MOOE OUTPUT '" 00 -.J L 00 "" OUTPUT
INPUT = 01 01 = INPUT

. AI2-A,s "" 1X 1X "" A,_A"

EXTERNAL MEMORY TIMING STACK SELECTION
NORMAL "" 0 0 :c: EXTERNAL

EXTENDED = 1 1 = INTERNAL

P1o-P1 7 MODE
00 = BYTE OUTPUT
01 = BYTE INPUT
10 = ADo-AD7
11 = HIGH·IMPEDANCE ADo-AD7.

AS, OS, R/W, As-A,,, A,2-A,s
IF SELECTED

R2491PR
INTERRUPT PRIORITY REGISTER

(F9H; Write Only)

I~I~I~I~I~I~I~I~I .. -~ I I III ,~ .. ""O~ ... ~n RESERVED =; 000
IRQ3., IROS PRIORITY (GROUP A) C > A > 8 = 001

o " IRQS > IRQ3 _ A > B > C = 010
1 = IRQ3 > IR05 A > C > B = 011

B> C > A = 100
IRaQ, IRQ2 PRIORITY (GROUP B) c > B > A = 101

o = IRQ2 > IROO B > A > C = 110
1 = IROO > IRQ2 RESERVED'= 111

IRQt, IRQ4 PRIORITY (GROUP C)
o =: IRQ1 > IRQ4
1 =: IRQ4 > IRQ1

R250lRQ
INTERRUPT REQUEST REGISTER

(FAH; Read/Write)

I~I~I~I~I~I~I~I~I

RESERVED I c=-= IRoa "" P3z INPUT (00 = IRQO)
IRQ1 = P331NPUT
IRQ2 = P31 INPUT
IRQ3 = P30 INPUT. SERIAL INPUT
IR04 = To. SERIAL OUTPUT
IROS .. T1

R2511MR
INTERRUPT MASK REGISTER

(FBH; Read/Write)

·I~I~I~I~I~I~I~I~I

II c=-= 1 ENABLES IRQO-IRQS
(00 = IROO)

L-------RESERVED

L---------1 ENABLES INTERRUPTS

REGISTER
POINTER

Figure 11. Control Registers (Continued)

R252 FLAGS
FLAG REGISTER
(FCH; Read/Write)

ll!~~
1 LUSER FLAG F1

L USER FLAG F2

HALF CARRY FLAG

DECIMAL. ADJUST FLAG

OVERFLOW FLAG

SIGN flAG

ZERO FLAG

CARRY FLAG

R253 RP
REGISTER POINTER

(FDH; Read/Write)

LOON'TCARE

R254SPH
STACK POINTER
(FEH; Read/Write)

R255SPL
STACK POINTER
(FFH; Read/Write)

147

OPCODEMAP
Lower Nibble (Hex)

o 3 5 6 7 8 9 A B C D E F

o r

.. _,---- ---- ~--- .-~- ---- -
65 65 6.5 6.5 10.5 10.5 10.5 10.5 6.5 6.5 12/10.5 12110.0 6.5 12110.0 6.5

DEC DEC ADD ADD ADD ADD ADD ADD LD LD DJNZ JR LD JP INC
R, IR, f,.f2 f" lr2 R2·R, IR2·R, R,.IM IR,.IM f,.R2 r2· R , r,.RA cC.RA r1· IM cc.DA rl

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5
r-----

RLC RLC ADC ADC ADC ADC ADC ADC
R, 'R, f,.f2 f,.lr2 R2· R, IR2·R, R,.IM IR"IM

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5
r-----

INC INC SUB SUB SUB SUB SUB SUB
R, IR, f,.f2 f,. lr2 R2,R, IR2,R, R,.IM IR"IM

8,0 6,1 6,5 6,5 10,5 10,5 10,5 10,5
r-----

3 JP SRP SBC SBC SBC SBC SBC SBC
IRR, 1M ".f2 f,. lr2 R2,R, IR2,R, R"IM IR"IM

r-----
8.5 8.5 6,5 6,5 10,5 10,5 10,5 10,5 -

4 DA DA OR OR OR OR OR OR
R, IR, (,.f2 f,.tr2 R2,R, IR2,R, R"IM IR"IM

10,5 10,5 6.5 6,5 10,5 10,5 10,5 10,5
r-----

5 POP POP AND AND AND AND AND AND
R, IR, T,.f2 f" lr2 R2,R, IR2,R, R,.IM IR,.IM

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 tG,o
COM COM TCM TCM TCM TCM TCM TCM STOP

R, IR, r,.f2 r,,1r2 R2,R, 1R2,R, R,.IM IR"IM

6

10112,1 12114,1 6,5 6,5. 10,5 10,5 10,5 10,5
r-----

7,0
PUSH PUSH TM TM TM TM TM TM HALT

R2 IR2 r,.r2 f,. lr2 R2,R, IR2,R, R,.IM IR,.IM

10,5 10,5 12,0 18,0 ~

Ii'
~ 7 .. :c
,Q

z
DECW DECW LDE LDEI DI

RR, IR, f,.Irr2 Ir,. lrr2

6.5 6,5 12,0 18,0 ~

~ 8
D.
D.
:::>

9 RL RL LDE LDEI EI
R, lA, f2· lfr , Ir2·Jrr,

10,5 10,5 6,5 6.5 10,5 10.5 10,5 10,5 ~
A INCW INCW CP CP CP CP CP CP RET

RR, IR, ".f2 f,. lr2 R2,R, IR2,R, R"IM IR"IM

6.5 6,5 6,5 6,5 10,5 10.5 10,5 10,5 '16:0
B CLR CLR XOR XOR XOR XOR XOR XOR IRET

R, IR, ".f2 f,.lr2 R2,R, IR2,R, R,.IM IR"IM

6,5 6,5 12,0 18,0 10,5 ~
C RRC RRC LDC LDCI LD RCF

R, IR, f,.Irr2 Ir,.lrr2 f,.x.A2

6,5 6,5 12,0 18,0 20,0 20,0 10,5 ~
D SRA SRA LDC LDCI CALL" CALL LD SCF

R, IR, r2· 1rr , Ir2.lrr, IRR, DA r2· x,R,

6,5 6,5 6,5 10,5 10,5 10,5 10,5 ~
E RR RR LD LD LD LD LD CCF

R, IR, r" IR2 R2,R, IR2·R, R"IM IR"IM

8,5 8,5 6,5 10,5 ~
f SWAP SWAP LD LD NOP

R, lA, Ir,.f2 R2,IA,

1. ... ----.......... ".----... .1 '-.... -----v-".-----.I1. ------v-".------.I~"__..,..___'
2

EXECUTION
CYCLES

FIRST
OPERAND

LOWER
OPCODE

NllLE

'2-byte Instruction; fetch cycle appears as a 3·byte instruction

148

3

PIPELINE
CYCLES

MNEMONIC

SECOND
OPERAND

Bytes per Instruction

Legend:
R = 8-bil address
r = 4-bil address
Rl or f, = Ost address
R20"2 = Src address

Sequence:

3

Opcode, Firsl Operand, Second Operand

NOTE: The blank areas are not defined.

ABSOLUTE MAXIMUM RATINGS

Voltages on all pins with respect
to GND - O.3V to + 7.0V

Operating Ambient
Temperature See Ordering Information

Storage Temperature - 65 De to + 150 De >

STANDARD TEST CONDITIONS

The De characteristics listed below apply for the following
standard test conditions, unless otherwise noted. All
voltages are referenced to GND. Positive current flows into
the referenced pin.

Standard conditions are as follows:

. III + 4.SV ~ Vee ~ +S.SV

III GND = OV

!II oDe ~ TA ~ + 70 De for S (Standard Temperature)

DC CHARACTERISTICS

Symbol Parameter Min

VCH . Clock Input High Voltage 3.8

VCl Clock I nput Low Voltage -0.3

VIH Input High Voltage 2.4

Vil Input Low Voltage -0.3

VRH Reset Input High Voltage 3.8

VRl , Reset Input Low Voltage -0.3

VOH Output High Voltage 2.4

VOL Output Low Voltage

III Input Leakage -10

IOl Output Leakage -10

IIR Reset Input Current

ICC Supply Current

ICC1 Standby Current

ICC2 Standby Cwent

Stresses greater than those listed under Absolute Maximum Ratings may
cause permanent damage to the device. This is a stress rating only;
operation of the device at any condition above those indicated in the
operational sections of these specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect
device reliability.

Max

VCC

0.8

VCC

0.8

VCC

0.8

0.4

10

10

80
50

3

10

+5V

2.1K

Figure 12. Test Load 1

Unit

V

V

V

V

V

V

V

V

"A

"A

"A
mA

mA

"A

Condition

Driven by External Clock Generator

Driven by External Clock Generator

IOH =-250"A

IOl = +2.0mA

OV';;; VIN';;; + 5.25V

OV';;; VIN';;; + 5.25V

Vcc = + 5.25V, VRl = OV

All outputs and 1/0 pins floating

Halt Mode

Stop Mode

149

RIW

PORT 0,
0Ni

PORT 1

AS

Os
(READ)

PORT 1

00-07 IN

�.-----~®r----~~I

______ ~------------~I.~------~®r---------.I}_--~-----

DO-D7 0Ul

Os ------------------~----~I·~----~0r----~~I)~-------­
(WAITE)

Figure 13. External I/O or Memory Read/Write

AC CHARACTERISTICS
External 1/0 or Memory Read and Write Timing

12 MHz 16 MHz
NumberSymbol

TdA(AS)

2 TdAS(A)

3 TdAS(DR)

4 TwAS

5 TdAz(DS)

6 TwDSR

7 TwDSW

8 TdDSR(DR),

9 ThDR(DS)

10 TdDS(A)

11 TdDS(AS)

12 TdRIW(AS)

13 TdDS(RIW)

14 TdDW(DSW)

15 TdDS(DW)

16 TdA(DR)
17 TdAS(OS)

NOTES:

Parameter Min

Address Valid to AS iDelay 35

AS i to Address Roat Delay 45

AS i to Read Data Required Valid

AS Low Width 55

Address Roat to OS .1. 0

OS (Read) Low Width 185

OS (Write) Low Width 110

OS .1. to Read Data Required Valid

Read Data to OS i Hold Time 0

OS i to Address Active Delay 45

OS i to AS .1.Delay 55 - --
RIW Valid to AS i Delay 30

OS i to RIW Not Valid 35

Write Data Valid to OS (Write)! Delay 35

OS i to Write Data Not Valid Delay 35
Address Valid to Read Data Required Valid 255
AS to OS Delay 55

• All units in nanoseconds (ns).
t Test Load 1

Max Min Max

20

30

220 180

35

0

135

80

130 75

0

35

25

20

25

25

25
200

40

Notes

2,3

2,3

1,2,3

2,3

1,2,3

1,2,3

1,2,3

2,3

2,3

2,3

2,3

2,3

2,3

2,3
1,2,3

2,3

1. Delay times given are for a 16 MHz crystal input frequency. For lower
frequencies, the change in clock periods must be added to the delay
time. o All timing references use 2.0V for a logic "1" and O.BV for a logic "0':

2. Data Strobe Width is given for a 16 MHz' crystal input frequency. For
lower frequencies the change in three clock periods must be added to
obtain the minimum width. The Data Strobe Width varies according to
the instruction being executed.

3. Address Strobe and Data Strobe to Data In Valid delay times represent
memory system access times and are given for a 16 MHz crystal input
frequency. For lower frequencies, the change in four clock periods
must be added to TdAS (01) and the change in three clock periods
added t~_TdDS(DI).

15tJ

Figure 14. Additional Timing

AC CHARACTERISTICS
Additional Timing Table

NumberSymbol Parameter

TpC Input Clocl(Period

2 TrC,TIC Clock Input Rise and Fall Times

3 TwC Input Clock Width

4 TwTinl Timer Input low Width

5 TwTinH Timer Input High Width

6 TpTin Timer Input Period

7 TrTin,Tmn Timer Input Rise and Fall Times

SA Twll Interrupt Request Input low Time

S8 Twll Interrupt Request Input low Time

9 TwlH Interrupt Request Input High Time

NOTES:
1, Clock timing references use 3,8V for a logic "1" and 0,8Vfor a logic "0':
2, Timing references use 2,OV for a logic" 1" and 0,8V for a logic "0':
3, Interrupt request via Port 3, Z8 OTP
• Units in nanoseconds (ns),

7
28 D7
27 D6 6

5 26 D5

: 4
25 D4
24 D3 a 3
23 D2 c.. 2
22 Dl 1

0 21 DO

"I:
35 A12
34 AU

15 2
33 AlO
32 A9 c.. 1
31 A8 0
20 A7 7

6 19 A6

o 5
18 AS

~ 4 17 A4

£ 3
16 A3
15 A2

2 14 Al
1 13 AO
0

P31 39

P30 5
38

6 P27

~ RESET 30 3 XTAl1 P33
1 , vee
11 - GND

Z80TP

STpC

100

3TpC

3TpC

i Programm ng Adapter

19
18
17
16
15
13
12
11

2
23
21
24
25
3
4
5
6
7
8
9

10

22
20
27

1
28
14

12 MHz 16 MHz
Min Max Min Max Notes

S3 1000 62.5 1000

15 10

70 21

70 50 2

3TpC 3TpC 2

STpC STpC 2

100 100 100 2

70 50 2,4

3TpC 3TpC 2,5

3TpC 3TpC 2,3

2764A Adapter

07
06
05
04
03
02
01
00

A12
All
AID
A9
A8
A7
A6
AS
A4
A3
A2
Al
Ao

OE
eE
PGM

VPP
vee
GND

151

o.:::~ ------0£~, =~------
(OUTPUTI

FIGure 15a. Input Handshaka Timing

DATA OUT ~-
--~~----------------

DATA OUT VALID

DA'V
(OUTPUT)

RDY
!INPUT)

AC CHARACTERISTICS
Handshake Timing

)1'--; -0""-' -.~

Figura iSb. Output Hondahoke Timing

12 MHz 16 MHz
NumberSymbol Parameter Min Max Min Max

'TsDI(DAV) Data In Setup Time 0 0

2 ThDI(DAV) Data In Hold Time 160 145

3 TwDAV Data Available Width 120 110

4 TdDAVlf(RDY) DAV J.. Input to ROY! Delay 120 115

5 TdDAVOf(RDY) DAV.L Output to RDY.L Delay 0 0

6 TdDAVlr(RDY) DAV i Input to ROY i Delay 120 115

7 TdDAVOr(RDY) DAV i Output to ROY i Delay 0 0

8 TdDO(DAV) Data Out to DAV J.. Delay 30 30

9 TdRDY(DAV) Rdy .L Input to DAV i Delay 0 140 0 130

NOTES:
1. Test load 1
2. Input handshake
3. Output handshake
t All timing references use 2.0V for a logic "1" and O.BV for a logic "0':
• Units in nanoseconds (ns).

152

Notes

1,2

1,3

1,2

1,3

November 1987

FEATURES

[J Complete microcomputer, 24 I/O lines, and up to 64K
bytes of addressable external space each for program
and data rnernory.

l!lI 256-byte register file, including 236 general-purpose
registers, 3 I/O port registers, and 16 status and control
registers.

Cl Vectored, priority interrupts for I/O, counter/tirners, and
UART.

l:J On-chip oscillator that accepts crystal or external clock
drive.

GENERAL DESCRIPTION

The Z86C91 is a CMOS ROM less version of the Z8
single-chip microcomputer. It offers all the outstanding
features of the Z8 family architecture except an on-chip
program ROM. Use of external mernory rather than a

1
_ RESET

TI~:: R/VI
CONTROL os

AS

+5V

GND

XTAL'

XTAL2

PORTO
(NIBBLE

PROGRAMMABLE)
I/O OR Ae-A15

PORT'
(BYTE

PROGRAMMABLE)
ADo-AD7

PO,

po,
po,
PO,

po,
POs

po,
po,
P',

Z86C91
MCU

P~
P2,

P2,

P2,

P2,

P2s
P2,

P2,

P3,

P3,

P3,

P3,

P3,

P3s

P3,

P3,

Figure 1_ Pin Functions

PORT 2
(BIT PRO­
GRAMMABLE)
110

~16c~n (c:MOS
rni@Mll(p;ss !:~® Miiecm€C@rnmpTmier

13 Full-duplex UART and two
counter/timers, each with a
prescaler.

programmable 8-bit
6-bit programmable

[J Register Pointer so that short, fast instructions can
access anyone of the sixteen working-register groups.

[J Single + 5V power supply-all I/O pins TIL compatible.

[J 12 and 16 MHz

III CMOS process

o Standby modes-Halt and Stop

preprogramrned ROM enables this Z8 microcornputer to be
used in low volume applications or where code flexibility is
required.

+5V P3,

XTAL2 P3,

XTAL' P2,

P3, P2,

P3, P2s

RESET P2,

RIW P2,

os P2,

AS P2,

P3s P2,

GND P3,

P3, P3,

PO, P',

PO, P',

PO, P's

PO, P',

PO, P',

POs P',

PO, P',

PO, Pl,

Figure 2a. 40·pin Dual·ln-Line Package (DIP),
Pin Assignments

153

The Z86C91 can provide up to 16 output address lines, thus
permitting an address space of up to 64K bytes of data or
program memory. Eight address outputs (ADo-AD7) are
provided by a multiplexed, 8-bit, Address/Data bus. The
remaining 8' bits can be provided by the software
configuration of Port 0 to output address bits Aa-A15'

Available address space can be doubled (up to 128K bytes)
by programming bit 4 of Port 3 (P34) to act as a data memory
select output (OM). The two states of OM together with the
16 address outputs can define separate data and memory
address spaces of up to 64K bytes each.

There are 256 bytes of RAM located on-chip and organized
as a register file of 236 general-purpose registers, 16 control
and status registers, and three I/O port registers. This
register file can be divided into sixteen groups of 16 working
registers each. Configuring the register file in this manner
allows the use of short format instructions; in addition, any of
the individual registers can be accessed directly.

The pin functions and the pin assignments of the Z86C91
package are illustrated in Figures 1 and 2.

6 5 4 3 2 1 44 43 42 41 40

154

Il£SET
R/W

os
AS

P3s

GND

P3,

PO,

PO,

PO,

NC

110
(BIT PROGRAMMABLE)

7 39 NC

8 38 P2,

9 37 P23

10 36 P2,

11 35 P2,

12.
Z88C91

34 P2,
MCU

13

14

15

16

17

18 19 20 21 22 23 24 25 26 27 28

qt:;":1 qt:;~ q<:ltt, <l:'>~ qt:;'\<l,f:) q""'q"~ q"n:, 4'''" ~CJ

Figure 2b. 44-pin Chip Carrier,
Pin ASSignments

Vee GND

~ ~

ADDRESS OR 110
(NIBBLE PROGRAMMABLE)

33 P33

32 P3,

31 P1T

30 Pl.

29 P1s

ADDRESS/DATA

'~------------~~~--------------~~
Z·BUS WHEN USED AS

ADDRESS/DATA BUS

Figure 3. Functional Block Diagram

ARCHITECTURE

Architecture is characterized by a flexible I/O scheme, an
efficient register and address space structure and a number
of ancillary features that are helpful, in many applications.

Microcomputer applications demand powerful I/O
capabilities. The Z86C91 fulfills this with 24 pins available for
input and output. These lines are grouped into three ports of
eight lines each and are configurable' under software control
to provide timing, status signals, serial or parallel I/O with or
without handshake, and an address bus for interfacing
external memory,

Three basic address spaces are available: program memory,
data memory and the register file (internal). The 256-byte

POWER DOWN INSTRUCTIONS

The Z86C91 has two instructions to reduce power
consumption during standby operation. HALT turns off the
processor and UART while the counter/timers and external
interrupts IRQO, IRQ1, and IRQ2 remain active.

When an interrupt occurs the processor resumes execution

PIN DESCRIPTION

AS. Address Strobe (output, active Low). Address Strobe is
pulsed once at the beginning of each machine cycle.
Addresses output via Port 1 for all external program or data -
memory transfers are valid at the trailing edge of AS.

DS. Data Strobe (output, active Low). Data Strobe is
activated once for each external memory transfer.

POO·P07,. P20·P27, P30·P37. //0 Port Lines (input/outputs,
TTL·compatible). These 24 lines are divided into three 8·bit
I/O ports that can be configured under program control for
I/O or external memory interface (Figure 3).

P10·P17. Address/Data Port (bidirectional). Multiplexed

ADDRESS SPACES

Program Memory. The Z86C91 addresses 64K bytes of
external program memory space (Figure 4).

The first 12 bytes of program memory are reserved for the
interrupt vectors. These locations contain six 16·bit vectors
that correspond to the six available interrupts. Program
execution begins at location OOOCH after a reset.

Data Memory. The Z86C91 can address 64K bytes of
external data memory. External data memory may be
included with or separated from the external program
memory space. OM, an optional I/O function that can be
programmed to appear on pin P34, is used to distinguish
between data and program memory space.

Register File. The 256-byte register file includes three I/O
port registers (RO, R2, R3), 236 general·purpose registers

random-access register file is composed of 236
general·purpose registers, three I/O port registers, and 16
control and status registers,

To unburden the program from coping with real-time
problems such as serial data communication and
counting/timing, an asynchronous receiver/transmitter
(UART) and two counter/timers with a large number of
user-selectable modes are offered on-chip. Hardware
support for the UART is minimized because one of the
on·chip timers supplies the bit rate. Figure 3 shows the block
diagram.

after servicing the interrupt. STOP turns off the clock to the
entire Z86C91 and reduces the standby current to 10
microamps. The stop mode is terminated by reset, which
causes the processor to restart the application program at
address 12.

address (Ao·A?) and data (00.07) lines used to interface with
program and data memory.

RESET. Reset (input, active Low). RESET initializes the
Z86C91. After RESET the MCU is in the extended memory
mode. When RESET is deactivated, program execution
begins from program location OOOCH.

RIW. ReadlWrite (output). RiW is Low when the Z86C91
is writing to external program or data memory.

XTAL 1, XTAL2. Crystal 1, Crystal 2 (time·base input and
output). These pins connect a parallel·resonant crystal to the
on·chip clock oscillator and buffer.

(R4-R239) and 16 control and status registers (R240-R255).
These registers are assigned the address locations shown in
Figure 5.

Z86C91 instructions can access registers directly or
indirectly with an 8-bit address field. This also allows short
4-bit register addressing using the Register Pointer (one of
the control registers). In the 4-bit mode, the register file is
divided into sixteen working·register groups, each
occupying 16 contiguous locations (Figure 5). The Register
Pointer addresses the starting location of the active
working·register group (Figure 6).

Note: Register Bank EO-EF can only be accessed through
working register and indirect addressing modes.

155

Stacks. Either the internal register file or the external data
memory can be used for the stack. A 16-bit Stack Pointer
(R254 and R255) is used for the exter~al stack, which can

65 ,535

PROGRAM
MEMORY

LOCATION OF FIRST
BYTE OF INSTRUCTION

EXECUTED AFTER
RESET ~

1------

INTERRUPT
VECTOR

(LOWER BYTE)

INTERRUPT
VECTOR

(UPPER BYTE)

i->--

~~I--
:r-
7 r-'-..6

!~
....- 3 r-2

~r-

IR05 -
IRQ4 -
IR03 -
IR02 -

IR01 -
IROO -

reside anywhere in data memory. An 8-bit Stack Pointer
(R255) is used for the internal stack that resides within the
236 general-purpose registers (R4-R239).

DATA
MEMORY

,

Figure 4. Z86C91 Program Memory Map

156

DECIMAL

255

254'

253

252

251

250

249

248

247

246

245

244

243

242

241

240

239

STACK POINTER (BITS 7-0)

STACK POINTER (BITS 15-8)

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REOUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

T1 PRESCALER

TIMER/COUNTER 1

TIMER MODE

SERIAL I/O

GENERAL·PURPOSE
REGISTERS

PORT 3

PORT 2

PORT 1

PORT 0

Figure 5. The Register File

HEX

FF

FE

FD

Fe

FB

FA

F9

F8

F7

F6

F5

F4

F3

F2

Fl

FO

EF

04

03

02

01

00

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRO

IPR

P01M

P3M

P2M

PREO

TO

PREl

T1

TMR

SIO

P3

P2

Pl

PO

1_-..... -{fJ:: t--=-,-=}_: =:... =.:.... =_~.J.. =_ =_ =_ =_=_ =_ =_=1;:::
~ ____________________ ~240

THE UPPER NIBBLE OF THE REGISTER
FILE ADDRESS PROVIDED BY THE
REGISTER POINTER SPECIFIES THE
ACTIVE WORKING-REGISTER GROUP.

---{
· · ·

2 39

SPECIFIED WORKING·
REGISTER GROUP --I-

THE LOWER
NIBBLE OF
THE REGISTER
FILE ADDRESS
PROVIDED BY

--+-

--
--{

1

~---I/OPORTS----- 3
0

Figure 6. The Register POinter

THE INSTRUCTION
POINTS TO THE
SPECIFIED
REGISTER.

SERIAL INPUT/OUTPUT

Port 3 lines P30 and P37 can be programmed as serial 1/0
lines for full-duplex serial asynchronous receiverltransmitter
operation. The bit rate is controlled by CounterlTimer D, with
a maximum rate of 93.75K bitslsecond at 12 MHz.

The Z86C91 automatically adds a start bit and two stop bits
to transmitted data (Figure 7). Odd parity is also available as
an option. Eight data bits are always transmitted, regardless

1 LSTART BIT

'------EIGHT DATA BITS

TWO STOP BITS

Transmitted Data
(No Parity)

1·1·1 pl~I~I~i~I~I~I~I~1 T L _LSTARTBIT

'------'-' SEVEN DATA BITS

ODD PARITY

TWO STOP BITS

Transmitted Data
(With Parity)

of parity selection. If parity is enabled, the eighth data bit is
used as the odd parity bit. An interrupt request (IRQ4) is
generated on all transmitted characters.

Received data must have a start bit, eight data bits, and at
least one stop bit. If parity is on, bit 7 of the received data is
replaced by a parity error flag. Received characters
generate the IRQ3 interrupt request.

I·I~I~I~I~I~I~I~I~I~I

I LSTART BIT

I '------EIGHT DATA BITS

L, ---------ONE STOP BIT

Received Data
(No Parity)

1·lpl~I~I~I~I~I~I~I~1

II, __ LSTARTBIT
'-------SEVEN DATA BITS

PARITY ERROR FLAG

'--------------ONE STOP BIT

Received Data
(With Parity)

Figure 7. Serial Data Formats

COUNTERITIMERS

The Z86C91 contains two 8-bit programmable
counterltimers (To and T1), each driven by its own 6-bit
programmable prescaler. The T1 prescaler can be driven by
internal or external clock sources; however, the To prescaler
is driven by the internal clock only.

The 6-bit prescalers can divide the input frequency of the
clock source by any number from 1 to 64. Each prescaler
drives its counter, which decrements the value (1 to 256) that
has been loaded into the counter. When the counter reaches
the end of count, a timer interrupt request-IRQ4 (To) or
IRQ5 (T1)-is generated.

The counters can be started, stopped, restarted to continue,
or restarted from the initial value. The counters can also be
programmed to stop upon reaching zero (single-pass mode)

I/O PORTS

The Z86C91 has 24 lines available for input and output.
These lines are grouped into three ports of eight lines each
and are configurable as input, output or address. Under
software control, the ports can be programmed to provide

or to automatically reload the initial value and continue
counting (modulo-n continuous mode). The counters, but not
the prescalers, can be read any time without disturbing their
value or count mode.

The clock source for T 1 is user-definable; it can be either the
internal microprocessor clock divided by four, or an external
signal input via Port 3. The Timer Mode register configures
the external timer input as an external clock, a trigger input
that can be retriggerable or nonretriggerable, or as a gate
input for the internal clock. The counterltimers can be
programmably cascaded by connecting the To output to the
input of T1. Port 3 line P36 also serves as a timer output
(TOUT) through which To, T1 or the internal clock can be
output.

address outputs, timing, status signals, serial 1/0, and
parallel 1/0 with or without handshake. All ports have active
pull-ups and pull-downs compatible with TIL loads.

157

Port 1 is a dedicated Z-8US® compatible memory
interface. The operations of Port 1 are supported by the
Address Strobe (AS) and Data Strobe (DS) lines, and by
the Read/Write (R/W) and Data Memory (DM) control
lines. The low-order program and data memory addresses
(Ao:A7) are output through Port 1 (Figure 8) and are
multiplexed with data in/out (Do-D7). Instruction fetch and
data memory readlwrite operations are done through this
port.

Port 1 cannot be used as a register nor can a handshake
mode be used with this port.

The Z86C91 wakes up with the 8 bits of Port 1 configured
as address outputs for external memory. If more than eight
address lines are required, additional lines can be
obtained by programming Port 0 bits as address bits. The

Port 0 can be programmed as a nibble 1/0 port, or as an
address port for interfacing external memory (Figure 9).
When used as an I/O port, Port 0 can be placed under
handshake control. In this configuration, Port 3 lines P32
and P35 are used as the handshake controls DAVo and
RDYo. Handshake signal assignment is dictated by the 1/0
direction of the upper nibble P04-P07'

For external memory references, Port 0 can provide
address bits Aa-A11 (lower nibble) or Aa-A15 (lower and
upper nibbles) depending on the required address space.
If the address range requires 12 bits or less, the upper
nibble of Port 0 can be programmed independently as 1/0
while the lower nibble is used for addressing.

Port 0 lines are configured as address lines As-A15 after a
Reset. If one or both nibbles are needed for I/O operation,
they must be configured by writing to the Port 0 Mode
register.

Port 2 bits can be programmed independently as input or
output (Figure 10). This port is always available for I/O
operations. In addition, Port 2 can be configured to
provide open-drain outputs.

Like Port 0, Port 2 may also be placed under handshake
control. In this configuration, Port 3 lines P31 and P3e are
used as the handshake controls lines DAV 2 and RDY 2.
The handshake signal assignment for Port 3 lines P31 and
P3e is dictated by the direction (input or output) assigned
to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines
(Figure 11). In either case, the direction of the eight lines is
fixed as four input (P30-P33) and four output (P34-P37)' For
serial I/O, lines P30 and P37 are programmed as serial in
and serial out, respectively.

Port 3 can also provide the following control functions:
handshake for Ports 0 and 2 (DAV and RDY); four external
interrupt request signals (IRQO-IRQ3); timer input and
output signals (TIN and TOUT) and Data Memory Select
(DM).

158

least-significant four bits of Port 0 can be configured to
supply address bits As-A11 for 4K byte addressing or both
nibbles of Port 0 can be configured to supply address bits
As-A15 for 64K byte addressing.

)----;---\ PORT 1
~ (I/O OR ADo·AD7)

TO EXTERNAL
Z86C91 MEMORY

MCU

Figure 8. Port 1

To permit the use of slow memory, an automatic wait'mode
of two oscillator clock cycles is configured for bus timing
after each reset. The initialization routine could include
reconfiguration to eliminate this extended timing mode.

Z66C91
MCU

Z86C91
MCU

Z88C91
MCU

}
P04- P07 } PORT 0
POo-POs (I/O OR A,-A15)

__ } HANDSHAKE CONTROLS
DAV, AND RDYo
(PS, AND P3s)

Figure 9. Port 0

- P20 -...........
PORT 2(1/0) -----........... P27

__) HANDSHAKE CONTROLS
DAV2 AND RDY2
(P3, AND PS,)

Figure 10. Port 2

--...- PORT 3
(1/0 OR CONTROL)

Figure 11. Port 3

INTERRUPTS

The Z86C91 allows six different interrupts from eight
sources: the four Port 3 lines P30-P33, Serial In, Serial Out,
and the two counter/timers. These interrupts are both
maskable and prioritized. The Interrupt Mask register
globally or individually enables or disables the six interrupt
requests. When more than one interrupt is pending, priorities
are resolved by a programmable priority encoder that is
controlled by the Interrupt Priority register.

All interrupts are vectored through locations in program
memory. When an interrupt request is granted, an interrupt
machine cycle is entered. This disables all subsequent

CLOCK

The on-chip oscillator has a high-gain, parallel-resonant
amplifier for connection to a crystal or to any suitable
external clock source (XTAL 1 = Input, XTAL2 = Output).

The crystal source is connected across XTAL 1 and XTAL2,
using the recommended capacitance (CL = 15 pf
maximum) from each pin to ground. The specifications for
the crystal are as follows:

interrupts, saves the Program Counter and status flags, and
accesses the program memory vector location reserved for
that interrupt. This memory location and the next byte
contain the 16-bit address of the interrupt service routine for
that particular interrupt request. The Z86C91 takes 26
system clock cycles to enter an interrupt subroutine.

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the interrupt
inputs can be masked and the Interrupt Request register
polled to determine which of the interrupt requests needs
service.

I!!J AT cut, parallel-resonant

El Fundamental type

Iii! Series resistance, Rs ~ 100Q

121 16 MHz maximum

159

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to
describe the addressing modes and instruction operations
as shown in the instruction summary.

IRR Indirect register pair or indirect working-register
pair address

Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
1M Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register

address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the
instruction set.

dst Destination location or contents
src
cc
@

Source location or contents
Condition code (see list)
Indirect address prefix

SP
PC
FLAGS
RP
IMR

Stack pointer (control registers 254-255)
Program counter
Flag register (control register 252)
Register pointer (control register 253)
Interrupt mask register (control register 251)

CONDITION CODES

Value Mnemonic

1000 Always true
0111 C Carry
1111 NC No carry
0110 Z Zero
1110 NZ Not zero
1101 PL Plus
0.101 MI Minus
0100 OV Overflow
1100 NOV No overflow
0110 EQ Equal
1110 NE Not equal

Assignment of a value is indicated by the symbol "<-': For
example,

dst <- dst + src

indicates that the source data is added to the destination
data and the result is stored in the destination location. The
notation "addr(n)" is used to refer to bit "n" of a given
location. For example,

dst(7)

refers to bit 7 of the destination operand.

Flags. Control Register R252 contains the following six
flags:

C Carry flag
Z Zero flag
S Sign flag
V Overflow flag
o Decimal-adjust flag
H Half-carry flag

Affected flags are indicated by:

o Cleared to zero
1 Set to one
* Set or cleared according to operation

Unaffected
X Undefined

Meaning Flags Set

C = 1
C=O
Z = 1
Z=O
8=0
8 = 1
V = 1
V=O
Z = 1
Z=O

1001 GE Greater than or equal (8 XOR V) = 0
0001 LT Less than (8XORV) = 1
1010 GT Greater than [ZOR(8XORV)] = 0
0010 LE Less than or equal [ZOR(8XORV)] = 1
1111 UGE Unsigned greater than or equal C;"O

0111 ULT Unsigned less than C = 1
1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 1
0011 ULE Unsigned less than or equal (CORZ) = 1
0000 Never true

160

OPC

dsl OPC

CLR, CPL, DA, DEC,

CCF, 01, EI, IRET, NOP,
RCF, RET, SCF

INC r

One-Byte Instructions

'----"'=-'-------' OR I, , , 01 dsllsre 1 ~~~~'~~~Rl~~:R;OP'

OPC I
f--::.:dS-','----l OR I, , ,01 ds'

OPC

VALUE

L---==:::':""-.-J OR I, , '01 sre

ds' 1 OPC
VALUE

I dsllCC 1 OPC
, RA

RRC, SRA, SWAP

JP, CALL (Indirect)

SRP

ADC, ADD, AND,
CP, OR, SBC, SUB,
TCM, TM, XOR

LD, LDE, LDEI,
LDC, LOCI

LD

LD

DJNZ, JR

STOP/HALT

f---=----1 OR I, , ,01 dst

ADC, ADD, AND, CP,
LD, OR, SBC, SUB,
TCM, TM, XOR

ADC, ADD, AND, cp,
LD, OR, SBC, SUB,
TCM, TM, XOR

LD

LD

JP

CALL

Two-Byte Instructions Three-Byte Instructions

INSTRUCTION SUMMARY

AddrMode Opcode
Instruction Byte
and Operation dst src (Hex)

ADCdst,src (Note 1) 1D
dst dst + src + C

ADDdst,src (Note 1) OD
dst dst + src

ANDdst,src (Note 1) 5D
dst dst AN D src

CALLdst DA D6
Sp Sp - 2 IRR D4
@sp +- PC; PC +- dst

CCF EF
C NOTC

CLRdst R 80
dst O IR 81

COM'dst R 60
dst +- NOT dst IR 61

CPdst,src (Note 1) AD
dst - src

DAdst R 40
dst DAdst IR 41

Figure 12. Instruction Formats

Flags Affected
Instruction

CZSVDH and Operation

'* '* '* * 0 *
DECdst
dst dst - 1

****0* DECWdst
dst dst - 1

-**0-- DI
IMR (7) +- 0

------ DJNZr,dst
r+- r - 1
ifr",O

*-----
PC"'" PC + dst

Range: + 127, -128

EI ------
IMR(7) 1

-**0--
HALT

INCdst

****--
dst dst + 1

***x-- INCWdst
dst +-dst + 1

AddrMode

dst src

R
IR

RR
IR

RA

R
IR

RR
IR

Opcode
Byte
(Hex)

00
01

80
81

8F

rA
r=O-F

9F

7F

rE
r = 0 - F

20
21

Flags Affected

C Z S V D H

-***--

-***--

-***--

161

INSTRUCTION SUMMARY (Continued)

Addr Mode Opcode Flags Affected
Byte Instruction

and Operation dst src (Hex) C Z S V D H

IRET BF
FLAGS @SP; Sp SP + 1
PC @SP; SP Sp + 2; IMR(7) 1

JP cC,dst
if cc is true

PC dst

JR cC,dst
if cc is true,

PC"" PC + dst
Range: + 127, -128

LDdst,src
dst src

LDCdst,src
dst src

LDCI dst,src
dst src
r r + 1; rr rr +
1

LDEdst,src
dst src

LDEI dst,src
dst src
r r + 1; rr <- rr + 1

NOP

ORdst,src
dst dst OR src

DA

IRR

RA

r
R

r
X
r
Ir
R
R
R
IR
IR

1m
R

X
r
Ir
r
R
IR
1M
1M
R

r Irr
Irr

Ir Irr
Irr Ir

r Irr
Irr

Ir Irr
Irr Ir

(Note 1)

POPdst R
dst @SP; IR
Sp Sp + 1

PUSH src
Sp Sp - 1; @Sp src

RCF
C O

RET
PC @SP; SP SP + 2

RL dst r-==l R
0~IR

162

R
IR

cD
c==O-F

30

cB
c==O-F

rC
r8
r9

r==O-F
C7
D7
E3
F3
E4
E5
E6
E7
F5

C2
D2

C3
D3

82
92

83
93

FF

40

50
51

70
71

CF

AF

90
91

-**0--

0-----

****--

Addr Mode Opcode Flags Affected
Byte Instruction

and Operation dst src (Hex) C Z S V D H

RLC dst r-=----=:=-l R
~IR

RR dst L[ri LEj]J R
, , , IR

RRC dst r=--==:=l R
~-~IR

SBCdst,src (Note 1)
dst dst src C

SCF
C 1

SRA dst LriJ @ R
IR

SRPsrc
Rp src

STOP

SUBdst,src
dst dst src

1m

(Note 1)

SWAPdst I' 52 R
"-. "",~-,--,-,-,'IIR

TCM dst,src
(NOTdst)ANDsrc

TM dst,src
dstAND src

XORdst,src
dst dst XOR src

(Note 1)

(Note 1)

(Note 1)

10
11

EO
E1

CO
C1

30

DF

DO
D1

31

6F

20

FO
F1

60

70

BO

****--

* * '* *
****--

1-----

* * '* 0

X**X--

-**0--

-**0--

-**0--

NOTE: These instructions have an identical set of addressing modes,
which are encoded for brevity. The first opcode nibble is found in
the instruction set table above. The second nibble is expressed
symbolically by a 0 in this table, and its value is found in the
following table to the left of the applicable addressing mode pair.

For example, the opcode of an ADC instruction using the
addressing modes r (destination) and Ir (source) is 13.

AddrMode

dst src

R

R

R

IR

Ir

R

IR

1M

1M

Lower
Opcode Nibble

REGISTERS R240SI0
Serial 110 Register

(FOH: Read/Write)

L-___ SERIAL DATA (Do "" lSB)

\
R241 TMR

Time Mode Register
(F1 H: Read/Write)

NOT USED'" 00 ~ 1 '" LOAD To

i~ g~i ~ ~~ 0 '" DISABLE To COUNT

To"MaDES j llii~o = NOFUNCTION

INTERNAL CLOCK OUT = 11 1 = ENABLE To COUNT

T MODES 0 "" NO FUNCTION
EXTERNAL CLOCK INPI~T = 00 1 = LOAD 1,

GATE INPUT = 01 0 = DISABLE 1, COUNT

(NON.R~~~~~~~~~:~~) = 10 1 '" ENABLE T, COUNT

TRIGGER INPUT = 11
(RETRIGGERABLE)

R242 T1
Counter Timer 1 Register

(F2H: Read/Write)

I, INITIAL VALUE (WHEN WRITTEN)
'----fRANGE 1 256 DECIMAL 01 00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PRE1
Prescaler 1 Register

(F3H: Write Only)

~LcaUNTMODE
1 '" 1, MODUlO·N
o = T! SINGlE·PASS

CLOCK SOURCE
1 Tl INTERNAL
o 1, EXTERNAL

TIMING INPUT
(T'N) MODE

PRESCAlEA MODULO . .." . ., ..• " ...
01~OO HEX)

R244 TO
Counter/Timer 0 Register

(F4H: Read/Write)

R245 PREO
Prescaler 0 Register

(F5H: Write Only)

~LcaUNTMaDE
o '" To SINGLE·PASS
1 = To MODUlO·N

RESERVED (MUST BE 0)

PAESCAlER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R246 P2M
Port 2 Mode Register

(F6H: Write Only)

R247 P3M
Port 3 Mode Register

(F7H: Write Only)

I ~L 0 PORT 2 PULL UPS OPEN DRA'N 1 PORT 2 PUll UPS ACTIVE

RESERVED (MUST BE 0)

~ ~~~ - ~:V~;RDYO ~~~ ~~~~I~~VO
00 P33 - INPUT P34 OUTPUT

~
1~}P33=INPUT P34 OM
1 1 RESERVED

o P3, INPUT (TIN) P36 = OUTPUT {Toud
1 P31 = DAV2/RDY2 P36 = RDY2/Dru

o P30 "' INPUT P37 OUTPUT
1 P30 -- SERIAL IN P37 SERIAL OUT

L-________ ~ ~:=:i~ g~F

Figure 13. Control Registers

163

164

R248P01M
Port 0 Mode RegIster

(F8H; Write Only)

PO •• PO, MODE~ ~----r PO,·po, MODE OUTPUT = 00 L 00 = OUTPUT
INPUT = 01 01 = INPUT

AI2-A ,S = lX lX = Aa-A\1

EXTERNAL STACK SELECTION
MEMORY TIMING 0 '" EXTERNAL

NORMAL = 0 1 = INTERNAL
*EXTENOEO = 1

RESERVED (MUST BE 0)

·ALWAYS EXTENDED TIMING AFTER RESET

R2491PR
Interrupt Priority Register

(F9H: Write Only)

l~t~t~t~I~I~t~t~1

"""" ~ I I III '""""" 0_ .. """ RESERVED '" 000
IRQJ, IROS PRIORITY (GROUP A) • C :;, A > B = 001

o " IROS > IRC3 A > B > C = 010
1 "- IRQ3 :;, IROS A > C > B = 011

B :;, C > A = 100
IROO, lRQ2 PRIORITY (GROUP B) . C > B :;, A = 101

o = IR02 :> IROO B :;, A > C = 110
1 IROO > IR02 . RESERVED = 111

IRQl, IR04 PRIORITY (GROUP C)
o ~ IRQ1 > IRQ4
1 = IRQ4 :> IR01

R250lRQ
Interrupt Request Register

(FAH; Read/Write)

RESERVED (MUST BE 0) T C::='RQO
IRQ1
IR02
IRoa
IR04
lAOS

R2511MR
Interrupt Mask Register

(FBH; Read/Write)

P32 INPUT (Do '" IRCO)
P331NPUT
P3l INPUT
PJo INPUT, SERIAL INPUT
To. SERIAL OUTPUT
T,

Il ___ C::= ___ 1 ENABLES IRCO-IROS
(00:: IROO)

RESERVED (MUST BE 0)

'--------1 ENABLES INTERRUPTS

Figure 13. Control Registers (Continued)

R252 FLAGS
Flag Register

(FCH; Read/Wnte)

~~~
I LUSERFLAG" 

LUSER FLAG F2 

HALF CARRY FLAG 

DECIMAL ADJUST FLAG 

OVERFLOW FLAG 

SIGN FLAG 

ZERO FLAG 

CARRY FLAG 

R253 RP 
Register Pointer 
(FDH; Read/Write) 

LOON'TCARE 

i 

R254SPH 
Stack Pointer 

(FEH; Read/Write) 

R255SPL 
Stack Pointer 

(FFH; Read/Write) 



OPCODEMAP 
Lower Nibble (Hex) 

2 7 A B C o E F 

6.5 6.5 6.5 6.5 10.5 10.5 10.5 10.5 6.5 6.5 12/10.5 12/10.0 6.5 12/10.0 6.5 
o DEC DEC ADD ADD ADD ADD ADD ADD LO LO OJNZ JR LO JP INC 

R, IR, f1· f2 [1.1r2 R2·R, IR2,R, R"IM IR"IM f,.R2 f2·Rl r"RA cc,RA f1·IM cC.DA rl 
-

6,5 6.5 6,5 6,5 10,5 10,5 10,5 10,5 
RLC RLC AOC AOC AOC AOC AOC AOC 
R, IR, '1·'2 [1,1r2 R2,R, IR2,R, R"IM IR"IM 

-
6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 

2 INC INC SUB SUB SUB SUB SUB SUB 
R, IR, f1·'2 f1,1r2 R2,R, IR2,R, R"IM IR"IM 

-
8,0 6,1 6,5 6,5 10,5 10,5 10,5 10,5 

3 JP SRP SBC SBC SBC SBC SBC SBC 
IRR, 1M f1.r2 f1.1r2 R2,R, IR2,R, R"IM IR"IM 

-~ 

8,5 8,5 6,5 6,5 10,5 10,5 10,5 10,5 
4 OA OA OR OR OR OR OR OR 

R, IR, '1,(2 f1.lr2 R2,R, IR2,R, R"IM IR"IM 

10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 
:----

5 POP POP AND AND AND AND AND AND 
R, IR, f1.(2 f1, lr2 RZ,R, IR2,R, R"IM iR"IM 

-
6,5 6,5 6,5 6,5 - 10,5 10,5 10,5 10,5 6,0 

6 COM COM TCM TCM TCM TCM TCM TCM STOP 
R, IR, rl.r2 '1. lr2 A2,R, IR2,R, R"IM IR"IM 

-
10112,1 12114,1 6,5 6,5 10,5 10,5 10,5 10,5 7,0 
PUSH PUSH TM TM TM TM TM TM HALT 

R2 IR2 (1. r2 f1, lr2 R2,R, IRZ,R, R"IM IR"IM 

.. ., 
e.. 7 
.!! 
'" '" -z 10,5 10,5 12,0 18,0 6.1 

OECW OECW LOE LOEI DI 
RR, IR, f1, lrr2 If1,lrr2 

6,5 6,5 12,0 18,0 ~ 

~ 8 
D-
C. 

:::> 

9 RL RL LOE LOEI EI 
R, IR, '2, lrr1 Ir2,lrr, 

-
10,5 10,5 6,5 6,5 10,5 10,5 10,5 10,5 14,0 

A INCW INCW CP CP CP CP CP CP RET 
RR, IR, f1,f2 fl.tr2 R2,R, IR2,R, R"IM IR"IM 

6,5 6,5 6,5 6,5 10,5 10,5 10,5 10,5 ---;(3.() 
B CLR CLR XOR XOR XOR XOR XOR XOR IRET 

R, IR, '1,(2 (1, lr2 R2,R, IR2,R, R"IM IR"IM 
-

6,5 6,5 12,0 18,0 10,5 6,5 
C RRC RRC LOC LOCI LO RCF 

R, IR, '1. lrr2 Ir1.lrr2 fl,X,R2 

6,5 6,5 12,0 18,0 20,0 20,0 10,5 ~ 
0 SRA SRA LOC LOCI CALL" CALL LO SCF 

R, iR, f2. lfr , Ir2,lrr, IRR, DA f2,x,Rl 
-

6,5 6,5 6,5 10,5 10,5 10,5 10,5 6,5 
E RR RR LO LO LO LO LO CCF 

R, IR, r" IR2 RZ,R, IR2,R, R"IM IR"IM 
,..----

8,5 8,5 6,5 10,5 6,0 
F SWAP SWAP LO LO NOP 

R, IR, Ir,.r2 R2,IR, 

'-.... ----... v_".---~-",1'-.... ----... v_".-----",1'-.... ------v_,.------",1~.~ 
2 

EXECUTION 
CYCLES 

FIRST 
OPERAND 

LOWER 
OPCODE 
NllLE 

"2·byte instruction: fetch cycle appears as a 3·byte instruction 

3 

PIPELINE 
CYCLES 

MNEMONIC 

SECOND 
OPERAND 

Bytes per Instruction 

2 3 

Legend: 
R = 8-bit address 
r = 4·bit address 
R, orr, = OS! address 
R2 or r2 = Src address 

Sequence: 
Opcode, First Operand, Second Operand 

NOfE: The blank areas are not defined, 

165 



ABSOLUTE MAxiMUM RATINGS 

Voltages on all pins except RESET 
with respect to GND ............... - 0.3V to + 7.0V 

Operating Ambient 
Temperature ............... See Ordering Information 

Storage Temperature .............. - 65°C to + 150°C 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND. Positive current flows into 
the referenced pin. 

Standard conditions are as follows: 

• +4.5V"; Vcc"; +5.5V 

Ill! GND = OV 

• O°C"; TA"; + 70°C for S (Standard temperature) 

• -40°C"; TA"; + 100°C for E (Extended temperature) 

DC CHARACTERISTICS 

Symbol Parameter Min Typ 

VCH Clock Input High Voltage 3.8 

VCl Clock I nput Low Voltage -0.3 

VIH Input High Voltage 2.0 

Vil I nput Low Voltage -0.3 

VRH Reset Input High Voltage 3.8 

VRl Reset Input Low Voltage -0.3 

VOH Output High Voltage 2.4 

VOH Output High Voltage Vee -100mV 

VOL Output Low Voltage 

III Input Leakage -10 

IOl Output Leakage -10 

IIR Reset Input Current 

ICC Supply Current 

ICCt Standby Current 5 

ICC2 Standby Current 

166 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

Max Unit 

Vcc V 

0.8 V 

VCC V 

0.8 V 

Vcc V 

0.8 V 

V 

V 

0.4 V 

10 ~ 
10 ~ 

-50 I1A 

30 mA 

rnA 

10 ~ 

+5V 

Figure 14. Test Load 1 

Condition 

Driven by External Clock Generator 

Driven by External Clock Generator 

IOH = -250~ 

lee = -100IlA 

IOl = +2.0rnA 

VIN = OV, 5.25V 

VIN = OV, 5.25V 

Vcc = + 5.25V, VRL = OV 

All outputs and 1/0 pins floating 

Halt Mode 

Stop Mode 



PORT 0, 
DM 

PORT 1 

DS 
(READ) 

PORT 1 

DS 
(WRITE) 

). 

~ 
)l 

)l 
kD+ 

I-<D--

16 
3 

AO-A7 ~ 

-<D--

~ 

~I .. 
~ 

Ao-A7 )( 
.~ 

't 

I 

Do-D7 IN 

...... 

® • 
® .~ 

Do-D7 OUT 

I -y 

Figure 15. ExtemalliO Dr MemDry Read/Write Timing 

AC' CHARACTERISTICS 
External 1/0 or Memory Read and Write Timing , 

K 
-®-I 

)( 

} < 
01--

~1\ 

--®-
.}( 

....-@-I 

12 MHz lG MHz 
Number Symbol Parameter Min Max Min Max 

1 TdA(AS) Address Valid to AS iDelay 35 20 

2 TdAS(A) AS i to Address Aoat Delay 45 30 

3 TdAS(DR) AS i to Read Data Required Valid 220 180 

4 TwAS AS low Width 55 35 

5 TdAz(DS) Address Float to OS J. 0 o . 

6 TwDSR OS (Read) low Width 185 135 

7 TwDSW OS (Write) low Width 110 80 

8 TdDSR(DR). OS J. to Read Data Required Valid 130 75 

9 ThDR(DS) Read Data to OS i Hold Time 0 0 

10 TdDS(A) OS i to Address Active Delay 45 35 

11 TdDS(AS) OS i to AS J.Delay 55 25 
12 TdRIW(AS) RIW Valid to AS i Delay 30 20 

13 TdDS(RIW) OS i to RIW Not Valid 35 25 
14 TdDW(DSW) Write Data Valid to OS (Write) J. Delay 35 25 

15 TdDS(DW) OS t to Write Data Not Va'lid Delay 35 25 

16 TdA(DR) Address Valid to Read Data Required Valid 255 200 
- -

17 TdAS(DS) AS i to OS J. Delay 55 40 

NOTES: 
1. When using extended memory timing add 2 TpC. • All units ,in nanoseconds (ns). 
2. Timing numbers given are for minimum TpC. t Test Load 1 

Notes 

2.3 

2,3 

1.2,3 

2,3 

1,2,3 

1,2,3 

1.2,3 

2,3 

2,3 

2,3 

2.3 

2.3 

2,3 

2.3 

1,2,3 

2.3 

3. See clock cycle time dependent characteristics table. o All timing references use 2.0V for a logic" 1" and O.BV for a logic "0': 
4. 16 MHz tlmin, is preliminary and subject to chance. 

167 



CLOCK \""'_--J)-4 -~ 
TIN 

Figure 16. Additional Timing 

AC CHARACTERISTICS 
Additional Timing Table 

NumberSymbol Parameter 

TpC Input Clock Period 

2 TrC.TlC Clock Input Rise and Fall Times 

3 TwC Input Clock Width 

4 TwTinL Timer Input Low Width 

5 TwTinH Timer Input High Width 

6 TpTin Timer Input Period 

7 TrTin,Tmn Timer Input Rise and Fall Times 

BA TwlL Interrupt Request Input Low Time 

BB TwlL Interrupt Request Input Low Time 

9 TwlH Interrupt Request Input High Time 

NOTES: 
1. Clock timing references use 3.BV for a logic "1" and O.BV for a logic "0': 
2. Timing references use 2.0V for a logic "1" and O.BV for a logic "0': 
3. Interrupt request via Port 3. 
4. Interrupt request via ~ort 3 (P31-P33) 
5. Interrupt request via Port 3 (P30) 
6. 16 MHz timln; I. p,.!lmir ... IY zn<l .ubj..:t to chzn, •. 
• Units in nanoseconds (ns). 

168 

8 MHz 
Min Max 

125 1000 

25 

37 

100 

3TpC 

BTpC 

100 

100 

3TpC 

3TpC 

12 MHz 16 MHz 
Min Max Min Max Notes 

B3 1000 62.5 1000 

15 10 

70 21 

70 50 2 

3TpC 3TpC 2 

BTpC BTpC 2 

100 100 2 

70 50 2,4 

3TpC 3TpC 2,5 

3TpC 3TpC 2,3 



DATA IN x DATA IN VALID ]( 
(i) 

DAY ----------iJ----{ )-------tr--------
(INPUT) 0 .r. 

RDY 
(OUTPUT) ,'-------~ 

DATA OUT 

DAY 
(OUTPUT) 

Figure 17a. Input Handshake Timing 

DATA OUT VALID 

RDY----~---------------------------1.~--~~ 
(INPUn 

Figure 17b. Output Handshake Timing 

AC CHARACTERISTICS 
Handshake Timing 

8, 12, 
Number Symbol Parameter Min 

TsDI(DAV) Data In Setup Time 0 

2 ThDI(DAV) Data In Hold .Time 145 

3 TwDAV Data Available Width 110 

4 TdDAVH(RDY) DAV .J.lnputto RDY.J. Delay 

5 TdDAVOf(RDY) DAV .J. Output to ROY .J. Delay 0 

6 TdDAVlr(RDY) DAV i Input to ROY i Delay 

7 TdDAVOr(RDY) DAV i Output to ROY i Delay 0 

8 TdDO(DAV) Data Out to DAV .J. Delay Tpc 
9 TdRDY(DAV) Rdy .J. Input to DAV i Delay 0 

NOTES: 
1. Test load 1 
2. Input handshake 
3. Output handshake. 
4. 16 MHI tim... is pnl/mlnaty and subject to chane', 
t All timing references use 2.0V for a logic "1" and O.BVfor a logic "0': 
• Units in nanosecqnds (ns). 

16 MHz 
Max 

115 

115 

130 

Notes 

1,2 

1,3 

1,2 

1,3 

169 



Zilog , Application NoteS{Technic~1 Articles 

Z8 Family 
Design Handbook 

170 



MFMJRY SPACE AND REGISTER 

ORGANIZATION 

Memory Space 

The Z8 can address up to. 126K bytes of 
program and data memory separately from the on 
chip registers. The 16-bit program counter 
provides for 64K bytes of program memory, the 
first 2K bytes of which are internal to the Z8. 
The remaining 62K bytes of program memory are 
located externally and can be implemented with 
Rl:l>I, EPRl:l>I, or RAM. 

The 62K bytes of data memory are also loc­
ated external to tne 28 and begin with location 
2048. The two address spaces, program memory 
and data memory, are individual.!r. selected by 
the Data Memory Select output (IM) which is 
available from 'Port 3. 

The Program Memory Map and the Data Memory 
(>lap are shown in Figure 2. ' 

Program Memory Map Data Memory Map 

LOCATION OF FIRST 
BVTE OF INSTRUCTION 

EXECUTED AFTER RESET 

INTERRUPT VECTOR 
ilOWER BYTE) 

INTERRUPT VECTOR 
(UPPER BYTE , 

65535 

EXTERNAL 
ROM OR RAU 

""" 2." 
ON-CHIP 

~ 
ROM 

12 
F.;------------

11 IROS ,. IROS 

• IROt 

• IRO .. 

7 IRa3 

• IRQ3 

• r- IRQ2 · IRQ2 , IROl 

2 IR01 

1 IROO 

• 'ROO 

65535'------, 

EXTERNAL 
DATA 

UEt.lQRV 

~:~ 1------.....; 

NOT ADDRESSABLE 

Figure 2 Program Memory Map And Data Memory Map 

External memory access is accomplished by 
the Z8 through its !f0 Ports. When less than 
256 bytes of external memory are required, Port 
1 is programmed for the multiplexed address/data 
mode LAD0-AD7). In this configurat10n 8-bits qf 
address and 8-bits of data are time multiplexed 
on the 8 I/O lines for memory transfers. Tne 
memory "nandshake" control lines are provided by 
tne Address Strobe %J, Data Strobe (US), and 
the Read/Wri te (R/W) pins on tne Z8. If program 
and data are included in the external memory 
space, the Data Memory Select (rn) function may 
be programmed into the Port 3 MOde register. 
When this is done, the m signal is available on 

line 4 of tne Port 3 (P34) to select between 
program and data memory for external memory oper­
ations. 

Port 0 is used to provide the addit10nal 
address bits for external memory beyond the 
first 256 locations up to a full l6-bits of 
external memory address. It becomes immediately 
obvious that the first 8-bits of external memory 
address from Port 1 must be latched externally 
to the Z8 so that program or data may be trans­
ferred over the same 8 lines during the external 
memory transaction machine cycle. The 7iJJ, IlS", 
and R/W control lines simplify the required 
interface logic. The timing for external memory 
transactions is given in Figure 3. 

Reg1sters 

The Z8 has 144 a-bit registers including 
four Port registers (RO-R3), 124 general purpose 
registers (R4-R127), and 16 control and status 
register (R240-R255). The 144 registers are all 
located in the same 8-bit address space to allow 
any Z8 instruction to operate on them. The 124 
general purpose registers can function as accum­
ulators, address pointers, or index registers. 
The registers are read When they are referenced 
as source registers, and written when they are 
referenced as destination registers. Registers 
may be addressed directly with an 8-bit address, 
or indirectly through another register with an 
8-bit address, or W1th a 4-oit address and Reg­
ister Pointer. 

The entire Z8 register space may be divided 
into 16 contiguous Working Register Areas, each 
having 16 registers. A control register, called 
the Register Pointer, may be loaded with the 
most significant nibble of a·Working Register 
Area address. The Register P01nter provides for 
the selection of the WorKing Register Area, and 
allows registers within that area to be selected 
with a 4-bit address. 

The Z8 register organization is shown in 
Figure 4. 

Stacks 

The Z8 provides for stack operations 
through the use of a stack pointer, and the 
stack may be located 1n the internal register 
space or in the external data memory space. The 
"stack select1on" bit (D2) in the Port 0-1 Mode 
control register selects an internal or external 
stack. When the stack is located internally, 
register 255 contains an 8-bit stack pointer and 
register 254 is available as a general purpose 
register. If an external stack is used, register 
255 or registers 254 and 255 may be used as tne 
stack pointer depending on the anticipated 
"depth" of the stack. When registers 254 and 
255 are both used, the stack pointer is a full 
16-bits wide. The CALL, lRET, RET, PUSH, and 

171 



172 

pop instructions are Z8 instructions which in­
clude implicit stack operations. 

I/O S1RUcruRE 

Parallel I/O 

The Z8 microcomputer has 32 lines of I/O 
arranged as four 8-bit ports. All of the I/O 
ports are TTL compatible and are configurab1e as 
input, output, input/output, or address/data. 
The handshake control lines for Ports 0, 1, and 
2 are bits from Port 3 that have been'programmed 
through a MOde control register, except for ~, 
~, and R/Wwhich are available as separate Z8 
pins. The I/O ports are accessed as separate 
internal registers by the Z8. Ports 0 and I 
share one Mode control register, and Ports 2 
and 3 each have a Mode control register for 
configuring the port. 

Port 0 can be programmed to be an I/O port 
or as an ~dress output port. MOre specifically 
Port 0 can be configured to be an 8-bit, I/O port, 
or a 4-bit address output port (A8-AlI) for 
external memory and one 4"bit I/O port, or an 
8-bit address output port (A8-Al5) for external 
memory. 

Port I can be progra/l1lled as an I/O port 
(with or without handshake), or an address/data 
port (ADI'-AD7) for interfacing with external 
memory. If Port I is programmed to be an add­
ress/data port, it cannot be accessed as a reg­
ister. 

Port 2 can be configured as individual 
input or output bits, and Port 3 can be program­
med to be parallel I/O bits, and/or serial I/O 
bits, and/or handshake control lines for the 
other ports. Figure 5 shows the port Mode 
registers. 

The off chip expansion capability USing 
Ports 0 and 1 offers the added feature of being 
Z-Bus compatible. All Z-Bus compatible peri­
pheral chips that are available now, and will be 
available in the future, will interface directly; 
Wl.th the Z8 multiplexed address/data bus. 

Serial I/O 

As memtioned in the last section, Port 3 
can be programmed to be a serial I/O port with 
bits 0 and 7, the serial input and serial out­
~ut line~ respectively. The serial I/O capabil­
Ity proVldes for full duplex asynchronous serial 
data at rates up to 62.5K bits per second. The 
transmitted format is one start bit, eight data 
bits including odd parity lif parity is enab­
led), and two stop bits. '!he received data 
format is one start bit, eight data bits and at 
least one stop bit. If parity is enabled, the 
eighth data bit received (bit 7) is replaced by 

a parity error flag which indicates a parity 
error if it is set to a ONE. 

Timer/Count~r TO is the baud rate generator 
and runs' at lb times the serial data bit rate 
The receiver is double duffered and an inte~l 
interrupt (IRQ3) is generated when a character 
is loaded into the receive buffer register. A 
different internal interrupt (IRQ4) is generated 
when a character is transmitted. 

COUNI'ER/TIMERS 

The Z8 has two 8-bit programmable counter/ 
timers, each of which is driven by a program­
mable 6-bit prescaler. The T1 pres caler can be 
driven by internal or externa clock sources, 
and the TO pres caler is driven by the internal 
clock only. The two pre scalers and the two 
counters ar~ loaded through four control regis­
ters (see FIgure 4) and when a counter/timer 
reaches the "end of count" a timer, interrupt is 
generated (IRQ4 for TO' and IRQ5 for T). The 
counter/timers can be programmed to stAp upon 
reaching the end of count, or to reload and 
continue counting. Since either counter (one at 
a time) can have its output available external 
to the Z8, and Counter/Timer T 1 can have an 
external input, the two counters can be cas­
caded. 

Port 3 can be programmed to provide timer 
outputs for external time base generation or 
trigger pulses. 

INTERRUPT S1RUcruRE 

The Z8 provides for six interrupts from 
eight different sources including four Port 3 
lines (P30-P33), serial in, serial out, and two 
counter/timers. These interrupts can be masked 
and prioritized using the Interrupt Mask Regis­
ter (register 251) and the Interrupt Priority 
Register (register 249). All interrupts can be 
disabled with the master interrupt enable bit 
in the Interrupt Mask Hegister. 

Each of the six interrupts has a l6-bit 
interrupt vector that points to its interrupt 
service routine. These six 2-byte vectors are 
placed in the first twelve locations in the pro­
gram memory space (see Figure 2). 

When simultaneous interrupts oc= for 
enabled interrupt sources, the Interrupt Priore 
ity RegIster determines which interrupt is ser­
viced first. The priority is programmable in a 
way that is described by Figure 6. 

When an interrupt is recognized by the Z8, 
all other interrupts are disabled, the program 
counter and program control flags are saved, and 
the program counter is loaded with the corres­
ponding interrupt vector. Interrupts must be 
re-enabled by the user upon enterIng the service 



~ 
Zilog 

SECTION 
]I. 

Introduction 
The Z8 is the first microcomputer to offer 

both a highly integrated microcomputer on a 
single chip and a fully expandable micropro­
cessor for I/O-and memory-intensive applica­
tions. The Z8 has two timer/counters, a UART, 
2K bytes internal ROM, and a 144-byte inter­
nal register file including 124.bytes of RAM, 
32 bits of I/O, and 16 control and status reg­
isters. In addition, the Z8 can address up to 
124K bytes of external program and data 
me~ory, which can provide full, memory­
mapped I/O capability. 

Accessing Register Memory 
The Z8 register space consists of four I/O 

ports, 16 control and status registers, and 124 
general-purpose registers. The general­
purpose registers are RAM areas typically used 
for accumulators, pointers, and stack area. 
This section describes these registers and how 
they are used. Bit manipul~tion and stack 
operations affecting. the register space are 
discussed in Sections 4 and 5, respectively. 

2.1 Registers and Register Pairs. The Z8 sup­
ports 8-bit registers and 16-bit register pairs. 
A register pair consists of an even-numbered 
register concatenated with the next higher 
numbered register (%00 and %01, %02 and 
%03, ... %7E and %7F, %FO and %Fl, ... 
%FE and %FF). A register pair must be 
addressed by reference to the even-numbered 
register. For example, 

%Fl and %F2 is ;"ot a valid register pair; 
, %FO and %Fl is a valid register pair, 

addressed by reference to %FO. 

Register pairs may be incremented (INCW) 
and decremented (DECW) and are useful as 
pOinters for accessing program and external 
data memory. Section 3 discusses the use of 
register pairs' for this purpose: 

Ii Programmer's Guide 10 
the ISTM Microcomputer 

Application. 
Note 
Doll Freund 

October 1980 

This application note describes the important 
features of the Z8, with software examples that 
illustrate its power and ease of use. It is 
divided into sections by topic; the reader need 
not read each section sequentially, but may 
skip around ti:> the sections of current interest. 

It is assumed that the reader is familiar with 
the Z8 and its assembly language, as 
described in the following documents: 

IiiI Z8 Technical Manual (03-3047-02) 

t:J Z8 PLZlASM Assembly Language Program­
ming Manual (03-3023-02) 

Any instruction which can reference or 
modify an 8-bit register can do so to any of the 
144 registers in the Z8, regardless of the 
inherent nature of that register. Thus, I/O 
ports, control, status, and general-purpose 
registers may all be accessed and manipulated 
without the need for special-purpose instruc- ' 
tions. Similarly, instructions which reference 
or modify a 16-bit register pair can do so to 
any of the valid 72 register pairs. The only 
exceptions to this rule are: 

III The DJNZ (decrement and jump if non-zero) 
instruction may successfully operate on the 
general-purpose RAM registers (%04-%7F) 
only. 

III Six control registers are write-only registers 
and therefore, may be modified only by 
such instructions as LOAD, POP, and 
CLEAR. Instructions such as OR and AND 
require that the current contents of the 
operand be readable and therefore will not 
function properly on the write-only 
registers. These registers are the following: 
the timer/counter pres caler registers PREO 
and PRE1, the port mode registers P01M, 
P2M, and P3M, the interrupt priority 
register IPR. 

173 



2. Accessing 
Register 
Memory 
(Continued) 

174 

2.2 Register Pointer. Within the register 
addressing modes provided by the Z8, a regis­
ter may be specified by its full8-bit address 

. (O-%7F, %FO-%FF) or by a short 4-bit 
address. In the latter case, the register is 
viewed as one of 16 working registers with-
in a working register group. Such a group 
must be aligned on a 16-byte boundary and is 
addressed by Register Pointer RP (%FD). As 
an example, assume the Register Pointer con­
tains %70, thus pointing to the working reg­
ister group from %70to %7F. The LD instruc­
tion may be used to initialize register %76 to 
an immediate value in one of two ways: 

LD %76,#1 !8-bit register 'address is given 
by instruction (3 byte instruc­
tion)! 

or 
LD R6,#1 !4-bit working register address 

is given by instruction; 4-bit 
working register group 
address is given by Register 
Pointer (2 byte instruction)! 

The address calculation for the latter case 
is illustrated in Figure 1. Notice that 4-bit 
working-register addressing offers code com­
pactness and fast execution compared to its 
8-bit counterpart. 

To modify the contents of the Register 
POinter, the Z8 provides the instruction 

SRP #value 

Execution of this instruction will load the 
upper four bits of the Register Pointer; the 
lower four bits are. always set to zero. Although 
a load instruction such as 

LD RP,#value 

could be used to perform the same function, 
SRP provides execution speed (six vs. ten' 
cycles) and code space (two vs. three bytes) 
advantages over the LD instruction. The 
instruction 

SRP #%70 

is used to set the Register Pointer for the above 
example. 

Figure 1. Address Calculation Using the Register Pointer 

2.3 Context Switching. A typical function 
performed during an interrupt service routine 
is context switching. Context switching refers 
to the saving and subsequent restoring of the 
program counter, status, and registers of the 
interrupted task. During an interrupt machine 
cycle, the Z8 automatically saves the Program 
Counter. and status flags on the stack. It is the 
responsibility of the interrupt service routine to 
preserve the register space. The recommended 
means to this end is to allocate a specific por­
tion of the register file for 'use by the service 
routine. The service routine thus preserves the 
register space of the interrupted task by avoid­
ing modification of registers not allocated as its 
own. The most efficient scheme with which to 
implement this function in the Z8 is to allocate 
a working register group (or portion thereof) to 
the interrupt service routine. In this way, the 
preservation of the interrupted task's registers 
Is solely a matter of saving the Register Pointer 
on entry to the service routine, setting the 
Register Pointer to its own working register 
group, and restoring thE! Register Pointer prior 
to exiting the service routine. For example, 

assume such a register allocation scheme has 
been implemented in which the interrupt ser" 
vice routine for IRQO may access only working 
register Group 4 (registers %40-%4F). The 
service routine for IRQO should be headed by 
the code sequence: 

PUSH RP (preserve Register Pointer of 
interrupted task! 

SRP #%40 !address working register 
group4( 

Before exiting, the service routine should 
execute the instruction 

POP RP 

to restore the Register Pointer to its entry 
value. 

It should be noted that the technique 
described above need not be restricted to 
interrupt service routines. Such a technique 
might prove efficient for use by a subroutine 
requiring intermediate registers to produce its 
outputs: In this way, the calling task can 
assume that its environment is intact upon 
return from the subroutine. 



2. Accessing 
Register 
Memory 
(Continued) 

2.4 Addressing Mode. The Z8 provides three 
addressing modes for accessing the register 
space: Direct Register, Indirect Register, and 
Indexed. 

2.4.1 Direct Register Addressing. This 
addressing mode is used when the target regis­
ter address is known at assembly time. Both 
long (8-bit) register addressing and short 
(4-bit) working register addressing are sup­
ported in this mode. Most instructions sup­
porting this mode provide access to single 
8-bit registers. For example: 

LD %FE,#HI STACK 
!Ioad register %FE (SPH) with 
the upper 8-bits of the label 
STACK! 

AND O,MASKJEG 
!AND register 0 with register 
named MASKJEG! 

OR I,R5 !OR register I with working 
register 5! 

Increment word (INCW) and decrement 
word (DECW) are the only two Z8 instructions 
which access 16,bit operands. These instruc­
tions are illustrated below for the direct reg­
ister addressing mode. 

INCW RRO !increment working register 
pair RO, RI: 

DECW %7E 

RI"- RI + 
RO .. - RO + carry! 

!decrement working register 
pair %7E, %7F: 
%7F <3- %7F 
%7E <3- %7E - carry! 

Note that the instruction 

INCW RR5 

will be flagged as an error by the assembler 
(RR5 not even-numbered). 

2.4.2 Indirect Register Addressing. In this 
addressing mode, the operand is pointed to by 
the register whose 8-bit register address or 
4-bit working register address is given by the 
instruction. This mode is used when the target 
register address is not known at assembly time 
and must be calculated during program execu­
tion. For example, assume registers %60-%7F 
contain a buffer for output to the serial line via 
repetitive calls to procedure SERIAL_OUT. 
SERIAL_OUT expects working register 0 to 
hold the output character. The following 
instructions illustrate the use of the indirect 
addressing mode to accomplish this task: 

LD RI,#%20 
!working register 1 is the byte 
counter: output %20 bytes! 

LD R2,#%60 
!working register 2 is the buf­
fer pointer register! 

out_again: 
LD RO,@R2 

!load into working register 0 
the byte pointed to by working 
register 2! 

INC R2 !increment pOinter! 
CALL SERIAL_OUT 

!output the byte! 
DJNZ Rl,out _again 

! loop till done! 

Indirect addressing may also be used for 
accessing a 16-bit register pair via the INCW 
and DECW instructions. For example, 

INCW @RO !increment the register pair 
whose address is contained in 
working register O! 

DECW @%7F 
!decrement the register pair 
whose address is contained in 
register %7F! 

The contents of registers RO and %7F should 
be even numbers for proper access; when 
referencing a register pair, the least significant 
address bit is forced to the appropriate value 
by the Z8. However, the register used to pOint 
to the register pair need not be an even­
numbered register. 

Since the indirect addressing mode permits 
calculation of a target address prior to the 
desired register access, this mode may be used 
to simulate other, more complex addressing 
modes. For example, the instruction 

SUB 4,BASE(R5) 

requires the indexed addressing mode which is 
not directly supported by the Z8 SUBtract 
instruction. This instruction can be simulated 
as follows: 

LD R6,#BASE 
!working register 6 has the 
base address! 

ADD R6,R5 !calculate the target address! 
SUB 4,@R6 !now use indirect addressing to 

perform the actual subtract! 

Any available register or working register 
may be used in place of R6 in the 
above example. 

2.4.3 Indexed Addressing. The indexed 
addressing mode is supported by the load 
instruction (LD) for the transference of bytes 
between a working register and another regis­
ter. The effective address of the latter register 
is given by the instruction which is offset by 
the contents of a designated working (index) 

175 



2. Accessing 
Register 
Memory 
(Continued) 

SECTION 

3 

176 

register. This addressing mode provides 
efficient memory usage when addressing 
consecutive bytes in a block of register 
memory, such as a table or a buffer. The 
working register used as the index in 
the effective address calculation. can 
serve the additional role of counter for 
control of a ioop's duration. 

For example, assume an ASCII character 
buffer exists in register memory starting at 
address BUF for LENGTH bytes. In order 
to determine the logical length of the char­
acter string, the buffer should be scanned 
backward until the first nonoccurrence of a 
blank character. The followin'g code 
sequence may be used to accomplish 
this task: 

LD RO,#LENGTH 

loop: 

!length of buffer! 
! slarting at buffer end, look for 
1st non-blank! 

LD 
CP 
JR. 

RI,BUF -I(RO) 
Rl,#, ' 
ne,found 

!found non-blank! 
DJNZ RO,loop 

all_blanks: 
found: 

. !look at next! 
!length = O! 

5 instructions 
12 bytes 
1 .5 /lS over head 
10.5 /lS (average) per character tested 

At labels "all_blanks" and "found," RO 
contains the length of the character 
string. These labels may refer to the same 
location, but they are shown separately for 
an application where special processing is 
required for a string of zero length. To per­
form this task without indexed address-
ing would require a code sequence 
such as: 

Accessing Program and External Data 
Memory 

In a single instruction, the Z8 can transfer a 
byte between register memory and either pro­
gram or external data memory. Load Constant 
(LDC) and Load Constant and Increment 
(LDCI) reference program memory; Load 
External (LDE) and Load External and Incre­
ment (LDEI) reference external data memory. 
These instructions require that a working 
register pair contain the address of the byte in 
either program or external d<;lta memory to be 
accessed by the instruction (indirect working 
register pair addressing mode). The register 
byte operand is specified by using the direct 
working register addressing mode in LDC and 

LD R!,#BUF + LENGTH - I 
LD RO,#LENGTH 

! starting at buffer end, look for 
1st non-blank! 

loop 1 : 
CP 
JR 

@Rl,#' , 
ne,foundl 

!found non-blank! 
DEC Rl !dec pOinter! 
DJNZ RO,loopl 

!are we done?! 
all_blanksl: !Iength = O! 
foundl: 

6 instructions 
13 bytes 
3 /lS over head 
9.5 /lS (average) per character tested 

The latter method requires one more byte of 
program memory than the former, but is faster 
by four execution cycles (1 /ls) per character 
tested. 

As an alternate example, assume a buffer 
exists as described above, but it is desired to 
scan this buffer forward for the first occur­
rence of an ASCII carriage return. The follow­
ing illustrates the code to do this: 

LD RO,#-LENGTH 
!starting at buffer start, look for 
1st carriage return (= %OD)! 

next: 

cr: 

LD 
CP 
JR 
INC 
JR 

r 1 ,BUF + LENGTH(RO) 
Rl,#%OD 
eq,cr !found it! 
RO !update counterlindex! 
nZ,next 

!tryagain! 

ADD RO,#LENGTH 

7 instructions 
16 bytes 

!RO has length to CR! 

1.5 /lS overhead 
12 /lS (average) per character tested 

LDE or the indirect working register address­
ing mode in LDCI and LDEI. In addition to 
performing the designated byte transfer, LDCI 
and LDEI automatically increment both the 
indirect registers specified by the instruction. 
These instructions are therefore efficient for 
performing block moves between register and 
either program or external data memory. Since 
the indirect addressing mode is used to specify 
the operand address within program or exter­
nal data memory, more complex addressing 
modes may be simulated as discussed earlier 
in Section 2.4.2. For example, the instruction 

LDC R3,BASE(R2) 

requires the indexed addressing mode, where 



3. Accessing 
Program and 
External Data 
Memory 
(Continued) 

BASE is the base address of a table in program 
memory and R2 contains the offset from table 
start to the desired table entry. The following 
code sequence simulates this instruction with 
the use of two additional registers (RO and RI 
in this example). 

LD RO,HHI BASE 
LD RI,HLO BASE 

!RRO has table start address! 
ADD RI,R2 
ADC RO,HO 

!RRO has table entry address! 
LDC R3,@RRO 

!R3 has the table entry! 

3.1 Configuring the Z8 for 1/0 Applications 
'vs. Memory Intensive Applications. The 28 
offers a high degree of flexibility in memory 
and I/O intensive applications. Thirty-two port 
bits are provided of which 16, 12, eight, or 
zero may be configured as address bits to 
external memory. This .allows for addressing of 
62K, 4K or 256 bytes of external memory, 
which can be expanded to 124K, 8K, or 512 
bytes if the Data Memory Select output (DM) is 
used to distinguish between program and data 
memory accesses. The.following instructions 
illustrate the code sequence required to con­
figure the 28 with 12 external addressing lines 
and to enable the Data Memory Select output. 

Z8ASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

1 SCAN MODULE 
2 CONSTANT 

LD POIM,H'Vo(2)0001001O 
!bit 3-4: enable ADo-AD7; 
bit 0-1: enable As-All! 

LD P3M,H%(2)00001000 
!bit 3-4: enable DM! 

The two bytes following the mode selection of 
ports 0 and I should not reference external 
memory due to pipelining of instructions within 
the 28. Note that the load instruction to P3M 
satisfies this requirement (providing that it 
resides within the internal 2K bytes of 
memory). 

3.2 LDC and LDE. To illustrate the use of the 
Load Constant (LDC) and Load External (LDE) 
instructions, assume there exists a hardware 
configuration with external memory and Data 
Memory Select enabled. The follOWing module 
illustrates a program for tokenizing an ASCII 
input buffer. The program assumes there is a 
list of delimiters (space, comma, tab, etc.) in 
program memory at address DE LIM for 
COUNT bytes (accessed via LDC) and that an 
ASCII input buffer exists in external data' 
memory (accessed via LDE). The program 
scans the input buffer from the current location 
and returns the start address of the next token 
(Le. the address of the first nondelimiter 
found) and the length of that token (number of 
characters from token start to next delimiter). 

3 COUNT . _ 6 

P 0000 20 3B 2C 
P 0003 2E QA OD 

P 0006 

P 0006 BO E2 

P 0008 82 30 
P OOOA AO EO 
P OOOC D6 002E' 
P OOOF FD 0015' 
P 0012 8D 0018' 

P 0015 8D 0008' 

4 GLOBAL 
5 $SECTION PROGRAM 
6 DELIM ARRAY [COUNT BYTE] 

~, 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

[, r , '; I r ' I , .' , %OA , %OD] 

scan PROCEDURE 
!w*************u******************u********** •• ** ••• UH 
Purpose To find the next token within an 

ASCII buffer. 

Input 

Output 

RRO = address of current location 
within input buffer in external 
memory. 

RR4 = address of start of next token 
RRO address of new token's ending 

delimiter 
R2 length of token 
R3 = ending delimiter 
R6,~7,R8,R9 destroyed 

*****************************************************1 
ENTRY 

clr R2 
DO 

LDE R3,@RRO 
incw RRO 
call check 
IF C THEN 

EXIT 
FI' 

OD 

linit. length counterl 

Iget byte from input bufferl 
lincrement, pointerl 
!look fo~ non_delimiter I 

Ifound token start! 



3. Accessing 
Program and 
External Data 
Memory 
(Continued) 

178 

P 0018 48 
P 001A 58 

P 001C 2E 
P 001D 82 
P 001F D6 
P 0022 7D 
P 0025 8D 

P 0028 AO 
P 002A 8D 

P 002D AF 
P 002E 

P 002E 

P 002E 6C 
P 0030 7C 

P 0032 8c 

P 0034 C2 
P 0036 AO 
P 003lt A2 
P 003A 6B 
P 003C 8A 
P 003E DF 

P 003F AF 
P 0040 

EO 
El 

30 
002E' 
0028' 
002D' 

EO 
001C' 

00'* 
00* 

06 

96 
E6 
93 
03 
F6 

o ERRORS 
ASSEMBLY COMPLETE 

27 instructions 
58 bytes 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

ld 
ld 

DO 
inc 
LDE 
call 
IF NC 

EXIT 
FI 
incw 

OD 

ret 
END scan 

R4,RO 
R5, R1 

R2 
R3,@RRO 
check 
THEN 

RRO 

!RR4 = token starting addr! 

!inc. length counter! 
!get next input byte! 
!look for delimiter! 

!found token e~d! 

!point to next byte! 

check PROCEDURE 
!***************************************************** 
Purpose = compare current character with 

delimiter table until table 
end or match found 

input 

output 

DELIM = start address of table 
COUNT = length of that table 
R3 = byte to be scrutinized 

Carry flag = 1 => input byte 
is not a delimiter (no match found) 

Carry flag = 0 => input byte 
is a delimiter (match found) 
R6,R7,R8,R9 'destroyed 

*****************************************************! 
ENTRY 

here: 

bye: 

ld 
ld 

ld 

LDC 
incw 
cp 
jr 
djnz 
scf 

ret 
END check 
END SCAN 

R6,IIHI DELIM 
R7,IILO DELIM 

R8,IICOUNT 

R9,@RR6 
RR6 
R9,R3 
eq,bye 
R8,here 

!RR6 points to 
delimiter 1 ist! 

!R8 = length of list! 

!get table entry! 
!point to next entry! 
!R3 = delimiter?! 
ryes. carry = O! 
!next entry! 
!table done. R3 

nO,t a delimiter! 

Execution time is a function of the number of leading delimiters 
before token start (x) and the number of characters in the 
taken (y); 123 p:; overhead + 59x p:; + l02y p:;' 
(average) per token 

3.3 LOCI. A common function performed in 28 
applications is the initialization of the register 
space. The most obvious approach to this func­
tion is the coding of a sequence of "load 
register with immediate value" instructions 
(each occupying three program bytes for a 

register or two program bytes for a working 
register). This approach is also the most effi­
cient technique for initializing less than eight 
consecutive registers or 14 consecutive work­
ing registers. For a larger register block, the 



3. Accessing 
Program and 
External Data 
Memory 
(Continued) 

SECTiON 

<4 

LDCI instruction provides an economical 
means of initializing consecutive registers from 
an initialization table in program memory. The 
folloWing code excerpt ilhistrates -this tech­
nique of initialiZing control registers %F2 
through %FF from a l4-byte array (INIT_tab) 
in program memory: 

SRP #%00 
!RP not %FO! 

LD R6,#HI INIT_tab 
LD R7,#LO INIT_tab 
LD R8,#%F2 

! 1st reg to be initialized! 
LD R9,#14 

!length of register block! 
loop: 

LDCI @R8,@RR6 
!load a register from the 
init table! 

DJNZ R9,100p 

7 instructions 
14 bytes 

!continue till done! 

7.5 /.Is overhead 
7.5 /.Is per register initialized 

Bit Manipulations 
Support of the test and modification of an 

individual bit or group of bits is required by 
most software applications suited to the Z8 
microcomputer. InitialiZing and modifying the 
Z8 control registers, polling interrupt requests, 
manipulating port bits for control of or com­
munication with attached devices, and manipu­
lation of software flags for internal control pur­
poses are all examples of the heavy use of bit 
manipulation functions. These examples illus­
trate the need for such functions in all areas of 
the Z8 register space. These functions are sup­
ported in the 28 primarily by six instructions: 

I!l Test under Mask (TM) 

15 Test Complement under Mask (TCM) 

I!II AND 

IiII OR 

m XOR 

III Complement (COM) 

These instructions may access any 28 register, 
regardless of its inherent type (control, 1/0, or 
general purpose), with the exception of the six 
write-only control registers (PREO, PREI, 
POIM, P2M, P3M, IPR) mentioned earlier in 
Section 2.1. Table I summarizes the function 
performed on the destination byte by each of 
the above instructions. All of these instruc­
tions, with the exception of COM, require a 
mask operand. The "selected" bits referenced 
in Table I are those bits in the destination 
operand for which the corresponding mask bit 
is a logic I. 

3.4 LDEI. The LDEI instruction is useful for 
moving blocks of data between external and 
register memory since auto-increment is per­
formed on both indirect registers designated 
by the instruction. The following code excerpt 
illustrates a register buffer being saved at 
address %40 through %60 into external 
memory at address SAVE: 

LD RlO,#HI SAVE 
!external memory! 

LD Rll,#LO SAVE 
!address! 

LD R8,#%40 
lstarting register! 

LD R9,#%21 
!number of registers to save in 
'external data memory! 

loop: 
LDEI @RRlO,@R8 

linit a register! 
DJNZ R9,100p 

6 instructions 
12 bytes 

!until done! 

6 /.Is overhead 
7.5 /.Is per register saved 

Opcode Use 

TM To test selected bits for logic 0 

TCM To test seh,cted bits for logic I 

AND To reset all but select"J bits to logic 0 

OR To set s.·lected bits to logic I 

XOR To complem.mt selected bits 

COM To complement all bits 

Table I. Bit Manipulation Instruction Usage 

The instructions AND, OR, XOR, and COM 
have functions common to today's micro­
processors and therefore are not described in 
depth here. However, examples of the use of 
these instructions are laced throughout the 
remainder of this document, thus giving an 
integrated view of their uses in common func­
tions. Since they are unique to the 28, the 
functions of Test under Mask and Test Comple­
ment under Mask, are discussed in more detail 
next. 

4.1 Test under Mask (TM). The Test under 
Mask instruction is used to test selected bits for 
logic O. The logical operation performed is 

destination AND source 

Neither source nor destination operand is 
modified; the FLAGS control register is the 
only register affected by this instruction. The 
zero flag (2) is set if all selected bits are logic 
0; it is reset otherwise. Thus, if the selected 
destination bits are either all logic I or a com­
bination of Is and Os, the zero flag would be 
cleared by this instruction. The sign flag (S) is 
either set or reset to reflect the result of the 

179 



4. Bit 
Manipu­
lations 
(Continued) 

SECTION 

5 

180 

AND operation; the overflow flag (V) is always 
reset. All other flags are unaffected. Table 2 
illustrates the flag settings which result from 
the TM instruction on a variety of source and 
destination operand combinations. Note that a 
given TM instruction will never result in both 
the Z and S flags being set. 

4.2 Test Complement under Mask. The Test 
Complement under Mask instruction is used to 
test selected bits for logic 1. The logical opera­
tion performed is 

(NOT destination) AND source. 

Destination Source Flags 

(binary) (binary) Z S V 

10001100 01110000 I 0 0 

01111100 01110000 0 0 0 

10001100 11110000 0 0 

11111100 11110000 0 I 0 

00011000 10100001 0 0 

01000000 10100001 0 0 

Table 2. Effects of the TM Instruction 

Stack Operations 
The Z8 stack resides within an area of data 

memory (internal or external). The current 
address in the stack is contained in the stack 
pointer, which decrements as bytes are pushed 
onto the stack, and increments as bytes are 
popped from it. The stack pointer occupies two 
control register bytes (%FE and %FF) in the 
Z8 register space and may be manipulated like 
any other register. The stack is useful for 
subroutine calls, interrupt service routines, 
and parameter passing and saving. Figure 2 
illustrates the downward growth of a stack as 
bytes are pushed onto it. 

5.1 Internal vs. External Stack. The location 
of the stack in data memory may be selected to 
be either internal register memory or external 
data memory. Bit 2 of control register POIM 
(%FS) controls this selection. Register pair 
SPH (%FE), SPL (%FF) serves as the stack 
pointer for an external stack. Register SPL is 
the stack pointer for an internal stack; In the 

x sp_ 

As in Test under Mask, the FLAGS control 
register is the only register affected by this 
operation. The zero flag (Z) is set if all selected 
destination bits are 1; it is reset otherwise. The 
sign flag (S) is set or reset to reflect the result 
of the AND operation; the overflow flag (V) is 
always reset. Table 3 illustrates the flag set­
tings which result from the TCM instruction on 
a variety of source and destination operand 
combinations. As with the TM instruction, a 
given TCM instruction will never result in both 
the Z and S flags being set. 

Destination Source Flags 

(binary) (binary) Z S V 

10001100 01110000 0 0 0 

011ll1O0 01110000 I 0 0 

10001100 11110000 0 0 0 

11111100 11110000 0 0 

00011000 10100001 0 0 

01000000 10100001 0 0 

Table 3. Effects of the TeM Instruction 

latter configuration, SPH is available for use as 
a data register. The following illustrates a code 
sequence that initializes external stack opera­
tions: 

LD POIM,#%(2)OOOOOOOO 
!bit 2: select external stack! 

LD SPH,#HI STACK 
LD SPL,#LO STACK 

5.2 CALL. A subroutine call causes the cur­
rent Program Counter (the address of the byte 
following the CALL instruction) to be pushed 
onto the stack. The Program Counter is loaded 
with the address specified by the CALL 
instruction. This address may be a direct 
address or an indirect register pair reference. 
F or example, 

LABEL 1: CALL %4F98 
!direct addressing: PC is 
loaded with the hex value 
4F98; 
address LABEL 1 + 3 is pushed 
onto the stack! 

LABEL 2: CALL @RR4 
!indirect addressing: PC is 

x-1 sp_ loaded with the contents of 
x-2 

x-3 

x-4 

working register pair R4, R5; 
SP- address LABEL 2 + 2 is pushed 

INITIAL 
STATE 

FOLLOWING FOLLOWING 
PUSH R1 CALL 

Figure 2. Growth of a Stack 

onto the stack! 



5. Stack 
Operations 
(Continued) 

LABEL 3: CALL @%7E 
!indirect addressing: PC is 
loaded with the contents of 
registerpair %7E, %7F; 
address LABEL 3 + 2 is pushed 
onto the stack! 

5.3 RET. The return (RET) instruction causes 
the top two bytes to be popped from the stack 
and loaded into the Program Counter. Typi­
cally, this is the last instruction of a subroutine 
and thus restores the PC to the address follow­
ing the CALL to that subroutine. 

5.4 Interrupt Machine Cycle. During an inter­
rupt machine cycle, the PC followed by the 
status flags is pushed onto the stack. (A more 
detailed discussion of interrupt processing is 
provided in Section 6.) 

5.5IRET. The interrupt return (IRET) instruc­
tion causes the top byte to be popped from the 
stack and loaded into the status flag register, 
FLAGS (%FC); the next two bytes are then 
popped and loaded into the Program Counter. 
In this way, status is restored and program 
execution continues where it had left off when 
the interrupt was recognized. 

5.6 PUSH and POP. The PUSH and POP 
instructions allow the transfer of bytes between 

Interrupts 
The 28 recognizes six different interrupts' 

from four internal and four external sources, 
including internal timer/counters, serial I/O, 
and four Port 3 lines. Interrupts may be indi­
vidually or globally enabled/disabled via Inter­
rupt Mask Register IMR (%FB) and may be 
prioritized for simultaneous interrupt resolution 
via Interrupt Priority Register IPR (%F9). 
When enabled, interrupt request processing 
automatically vectors to the designated service 
routine. When disabled, an interrupt request 
may be polled to determine when processing is 
needed. 

6.1 Interrupt Initialization. Before the 28 can 
recognize interrupts following RESET, some 
initialization tasks must be performed. The ini­
tialization routine should configure the 28 
interrupt requests to be enabled/disabled, as 
'required by the target application and 
assigned a priority (via IPR) for simultaneous 
enabled-interrupt resolution. An interrupt 
request is enabled if the corresponding bit in 
the IMR is set (= I) and interrupts are 
globally enabled (bit 7 of IMR = I). An inter­
rupt request is disabled if the corresponding 
bit in the IMR is reset (= 0) or interrupts are 
globally disabled (bit 7 of IMR = 0). 

A RESET of the 28 causes the contents of the 
Interrupt Request Register IRQ (%FA) to be 
held to zero until the execution of an EI 

the stack and register memory, thus providing 
program access to the stack for saving and 
restoring needed values and passing 
parameters to subroutines. 

Execution of a PUSH instruction causes the 
stack pointer to be decremented by 1; the 
operand byte is then loaded into the location 
pOinted to by the decremented stack pOinter. 
Execution of a POP instruction causes the byte 
addressed by the stack pointer to be loaded 
into the operand byte; the stack pointer is then 
incremented by 1. In both cases, the operand 
byte is designated by either a direct register 
address or an indirect register reference. For 
example: 

PUSH RI !direct address: push working 
register 1 onto the stack! 

POP 5 !direct address: pop the top 
stack byte into register 5! 

PUSH @R4 !indirect address: pop the top 
stack byte into the byte 
pointed to by working reg­
ister 4! 

PUSH @17 !indirect address: push onto 
the stack the byte pointed to 
by register 17! 

instruction. Interrupts that occur while the 28 
is in this initial state will not be recognized, 
since the corresponding IRQ bit cannot be set. 
The EI instruction is specially decoded by the 
28 to enable the IRQ; simply setting bit 7 of 
IMR is therefore not sufficient to enable inter­
rupt processing following RESET. However, 
subsequent to this initial EI instruction, inter­
rupts may be globally enabled .either by the 
instruction 

EI !enable interrupts! 

or by a register manipulation instruction 
such as 

OR IMR,#%80 

To globally disable interrupts, execute the 
instruction 

or !disable interrupts! 

This will cause bit 7 of IMR to be reset. 
Interrupts must be globally disabled prior to 

any modification of the IMR, IPR or enabled 
bits of the IRQ (those corresponding to 
enabled interrupt requests), unless it can be 
guaranteed that an enabled interrupt will not 
occur during the processing of such instrucc 

lions. Since interrupts represent the occur­
rence of events asynchronous to program exe­
cution, it is highly unlikely that such a 
guarantee can be made reliably. 

181 



6. Interrupts 
(Continued) 

182 

6.2 Vectored Interrupt Processing. Enabled 
interrupt requests are processed in an 
automatic vectored mode in which the inter­
rupt service routine address is retrieved from' 
within the first 12 bytes of program memory. 
When an enabled interrupt request is 
recognized by the Z8, the Program Counter is 
pushed onto the stack (low order 8 bits first, 
then high-order 8 bits) followed by the FLAGS 
register (#%FC). The corresponding interrupt 
request bit is reset in IRQ, interrupts are 
globally disabled (bit 7 of IMR is reset), and 
an indirect jump is taken .on the word in loca­
tion 2x, 2x + 1 (x = interrupt request number, 
0~x~5). For example, if the bytes at 
addresses %0004 and %0005 contain %05 and 
%78 respectively, the interrupt machine cycle 
for IRQ2 will cause program execution to con­
tinue at address %0578. 

When interrupts a're sampled, more than one 
interrupt may be pending. The Interrupt Prior­
ity Register OPR) controls the selection of the 
pending interrupt with highest priority. While 
this interrupt is being serviced, a higher­
priority interrupt may occur. Such interrupts 

CONSTANT 
INT_MASL3 

GLOBAL 
IRQ3_service PROCEDURE 
!service routine for IRQ3! 

may be allowed service within the current 
interrupt service routine (nested) or may be 
held until the current service routine is com­
plete (non-nested). 

To allow nested interrupt processing, inter­
rupts must be selectively enabled upon entry 
to an interrupt service routine. Typically, only 
higher-priority interrupts would be allowed to 
nest within the current interrupt service. To do 
this, an interrupt routine must "know" which 
interrupts have a higher priority than the cur­
rent interrupt request. Selection of such nest­
ing priorities is usually a reflection of the 
priorities established in the Interrupt Priority 
Register (IPR). Given this data, the first 
instructions executed in the service routine 
should be to save the current Interrupt Mask 
Register, mask off all interrupts of lower and 
equal priority, and globally enable interrupts 
(EI). For example, assume that service of inter­
rupt requests 4 and 5 are nested within the ser­
vice of interrupt request 3. The follOWing illus-
trates the code required to enable IRQ4 . 
and IRQ5: 

%(2) 00110000 

ENTRY 

PUSH IMR !save Interrupt Mask Register! 
!interrupts were globally disabled during the interrupt 
machine cycle - no DI is needed prior to modification of IMR! 

AND 
EI 

IMR,#INL_MASK_3 !disable all but IRQ4 & 5! 

!. .. ! ! service interrupt! 
!interrupts are globally enabled now - must disable them prior to 
modification of IMR! 

DI 
POP IMR 
IRET 

END IRQ3_service 

Note that IRQ4 and IRQ5 are enabled by the 
above sequence only if their respective IMR 
bits = 1 on entry to IRQ3_service. 

The service routine for an interrupt whose 
processing is to be completed without interrup­
tion should not allow interrupts to be nested 
within it. Therefore, it need not modify the 
IMR, since interrupts are disabled automati­
cally during the interrupt machine cycle. 

The service routine for an enabled interrupt 
is typically concluded with an IRET instruc­
tion, which restores the FLAGS register and 
Program Counter from the top of the stack and 
globally enables interrupts. To return from an 
interrupt service routine without re-enabling 

!restore entry IMR! 

interrupts, the following code sequence could 
be used: 

POP FLAGS 
!FLAGS"'- @SP! 

RET !PC ... - @SP! 

This accomplishes all the functions of IRET, 
except that IMR is not affeded. 

6.3 Polled Interrupt Processing Disabled 
interrupt requests may be processed in a 
polled mode, in which the corresponding bits 
of the Interrupt Request Register (IRQ) are 
examined by the software. When an interrupt 
request bit is found to be a logiC 1. the inter­
rupt should be processed by the appropriate 



6. Interrupts 
(Continued) 

SECTION 

7 

service routine. During such processing, the 
interrupt request bit in the IRQ must be 
cleared by the software in order for subsequent 
interrupts on that line to be distinguished from 
the current one. If more than one interrupt 
request is to be processed in a polled mode, 
polling should occur in the order of estab-

1. .. I 

Ipoll interrupt inputs here I 
TCM IRQ, #%(2)00010000 
JR N2, TESTO 
CALL IRQ4_service 

TESTO: TCM IRQ, #%(2)00000001 
JR N2, TESTI 
CALL IRQO-J;ervice 

TESTl: TCM IRQ, #%(2)00000010 
JR N2, DONE 
CALL IRQ I_service 

DONE: 1. .. 1 

IRQ4_service 
1. .. I 
AND 
1. .. I 
RET 

END IRQ4_service 

IRQO_service 
1. .. I 
AND 
1. .. I 
RET 

END IRQO_service 

IRQ I_service 
1. .. I 
AND 
1. .. I 
RET 

END IRQ I_service 
1. .. I 

PROCEDURE 

IRQ, #%(2)11101111 

PROCEDURE 

IRQ, #%(2)1111111O 

PROCEDURE 

IRQ, #%(2)11111101 

Timer/Counter Functions 
The 28 provides two 8-bit timer/counters, To 
and T 1, which are adaptable to a variety of 
application needs and thus allow the software 
(and external hardware) to be relieved of the 
bulk of such tasks. Included in the set of such 
uses are: 

III Interval delay timer 

iii Maintenance of a time-of-day clock 

m! Watch-dog timer 

I!iI External event counting 

III Variable pulse train output 

III Duration measurement of external event 

III Automatic delay following external event 
detection 

Iished priorities. For example, assume that 
IRQO, IRQl, and IRQ4 are to be polled and 
that established priorities are, from high to 
low, IRQ4, IRQO, IRQl. An instruction 
sequence like the following should be used to 
poll and service the interrupts: 

ENTRY 

ENTRY 

ENTRY 

IIRQ4 need service?I 
Inol 
Iyesl 
IIRQO need service?I 
Inal 
Iyesl 
IIRQl need service?I 
Inal 
Iyesl 

Iclear IRQ4I 

Iclear IRQOI 

Iclear IRQI! 

Each timer/counter is driven by its. own 6-bit 
prescaler, which is in turn driven by the inter­
nal 28 clock divided by four. For T 1, the inter­
nal clock may be gated or triggered by an 
external event or may be replaced by an exter­
nal clock input. Each timer/counter may 
operate in either single-pass or continuous 
mode where, at end-of-count, either counting 
stops or the counter reloads and continues 
counting. The counter and prescaler registers 
may be altered individually while the timer/ 
counter is running; the software controls 
whether the -new values are loaded immedi­
ately or when end-of-count-(EOC) is reached. 

Although the timer/counter prescaler 
registers (PREO and PREl) are write~only, 
there is a technique by which the timer/ 

183 



7. Timer/ 
Counter 
Functions 
(Continued) 

184 

counters may simulate a readable prescaler. 
This capability is a requirement for high 
resolution measurement of an event's duration. 
The basic approach requires that one timer/ 
counter be initialized with the desired counter 
and prescaler values. The second timer/ 
counter is initialized with a counter equal to 

. the pres caler of the first timer/counter and a 
prescalerof I. The second timer/counter must 
be programmed for continuous mode. With 
both timer/counters driven by the internal 
clock and started and stopped simultaneously, 
they will run synchronous to one another; thus, 
the value read from the second counter will 
always be equivalent to the pres caler of 
the first. 
7.1 Time/Count Interval Calculation To 
determine the time interval (i) until EOC, the 
equation 

i=txpxv 

characterizes the relation between the 
prescaler (p), counter (v), and clock input 
period (t); t is given by 

l/(XTAL/8) 

where XTAL is the Z8 input clock frequency; 
p is in the range 1 - 64; v is in the range 
1 - 256. When programming the prescaler and 
counter registers, the maximum load value is 
truncated to six and eight bits, respectively, 
and is therefore programmed as zero. For an 
input clock frequency of 8 MHz, the prescaler 
and counter register values may be pro­
grammed to time an interval in the range 

1 p.s X 1 xl::;; i ::;; 1 p.s X 64 X 256 

1 p.s ::;; i ::;; 16.384 ms 

To determine the count (c) until EOC for TI 
with external clock input, the equation 

c = p X v 

characterizes the ,relation between the T I 
prescaler (p) and the TI counter (v). The 
divide-by-8 on the input frequency is bypassed 
in this mode. The count range is 

x 1::;; c::;; 64 x 256 

1 ::;; c ::;; 16,384 

7.2 TOUT Modes. Port 3, bit 6 (P36) may be 
configured as an output (TOUT) which is 
dynamically controlled by one of the following: 

.. To 

.. TI 

.. Internal clock 

When driven by To or TI, TOUT is reset to a 
logic 1 when the corresonding load bit is set in 
timer control register TMR (%Fl) and toggles 
on EOC from the corresponding counter. 

When TOUT is driven by the internal clock, 
that clock is directly output on P36. 

While programmed as TouT. P36 is disabled 
from being modified by a write to port register 
%03; however, its current output may be 
examined by the Z8 software by a read to port 
register %03. 

7.3 TIN Modes. Port 3, bit 1 (P31) may be con­
figured as an input (TIN) which is used in con­
junction with TI in one of four modes: 

.. External clock input 

.. Gate input for internal clock 

l1li Nonretriggerrable input for internal clock 

Ell Retriggerable input for internal clock 

For the latter two modes, it should be noted 
that the l;!xistence of a synchronizing circuit 
within the Z8 causes a delay of two to three 
internal clock periods folloWing an external 
trigger before clocking of the counter actually 
begins. 

Each High-to-Low transition on TIN will 
generate interrupt request IRQ2, regardless of 
the selected TIN mode or the enabled/disabled 
state of Tj. IRQ2 must therefore be masked or 
enabled according to the needs of the 
application. 

The "external clock input" TIN mode sup­
ports the counting of external events, where an 
event is seen as a High-to-Low transition on 
TIN. Interrupt request IRQ5 is generated on 
the nth occurrence (single-pass mode) or on 
every nth occurrence (continuous mode) of 
that event. 

The "gate input for internal clock" TIN mode 
provides for duration measurement of an exter­
nal event. In this mode, the TI prescaler is 
driven by the Z8 internal clock, gated by a 
High level on TIN. In other words, TI will 
count while TIN is High and stop counting 
while TIN is Low. Interrupt request IRQ2 is 
generated on the High-to-Low transition on 
TIN. Interrupt request IRQ5 is generated on TI 
EOC. This mode may be used when the width 
of a High-going pulse needs to be measured. 
In this mode, IRQ2 is typically the interrupt 
request of most importance, since it signals the 
end of the pulse being measured. If IRQ5 is 
generated prior to IRQ2 in this mode, the 
pulse width on TIN is too large for TI to 
measure in a single pass . 

The "nonretriggerable input" TIN mode pro­
vides for automatic delay timing following an 
external event. In this mode, TI is loaded and 
clocked by the Z8 internal clock follOWing the 
first High -to-Low transi lion on TIN after T I is 
enabled. TIN transiiions that occur after this 
point do not affect TI. In single-pass mode, the 



7. Timer/ 
Counter 
Functions 
(Continued) 

enable bit is reset on EOC; further TIN transi­
tions will not cause TI to load and begin count­
ing until the software sets the enable bit again. 
In continuous mode, EOC does not modify the 
enable bit, but the counter is reloaded and 
counting continues immediately; IHQS is 
generated every EOC until software resets the 
enable bit. This TIN mode may be used, for 
example, to time the line feed delay following 
end of line detection on a printer or to delay 
data sampling for some length of time follow­
ing a sample strobe. 

The "retriggerable input"TIN mode will load 
and clock T I with the 28 internal clock on 
every occurrence of a High-to-Low transition 
on TIN. TI will time-out and generate interrupt 
request IRQS when the programmed time 
interval (determined by TI pres caler and load 
register values) has elapsed since the last 
High-to-Low transition on TIN. In single-pass 
mode, the enable bit is reset on EOC; further 
TIN transitions will not cause TI to load and 
begin counting until the software sets the 
enable bit again. In continuous mode, EOC 
does not modify the enable bit, but the counter 
is reloaded and counting continues immedi-

Z8ASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

1 TIMER1 MODULE 
2 CONSTANT 
3 HOUR 0_ 

4 MINUTE 0-

5 SECOND 0_ 

6 HUND 0_ 

ately; IRQS is generated at every EOC until 
the software resets the enable bit. This TIN 
mode may provide such functions as watch-dog 
timer (e.g., interrupt if conveyor belt stopped 
or clock pulse missed), or keyboard time-out 
(e:g., interrupt if no input in x ms). 

7.4 Examples. Several possible uses of the 
timer/counters are given in the following four 
examples. 

7.4.1 Time of Day Clock. The following 
module illustrates the use of TI for 
maintenance of a time of day clock, which is 
kept in binary format in terms of hours, 
minutes, seconds, and hundredths of a second. 
It is desired that the clock be updated once 
every hundredth of a second; therefore, TI is 
programmed in continuous mode to interrupt 
100 times a second. Although TI is used for 

.this example,To is equally suited for the task. 
The procedure for initializing the timer 

(TOD_INIT), the interrupt service routine 
(TOD) which updates the clock, and the inter­
rupt vector for TI end-of-count (IRQ_S) are 
illustrated below. XTAL = 7.3728 MHz is 
assumed. 

R12 
R13 
R14 
R15 

7 $SECTION PROGRAM 
8 GLOBAL 
9 IIRQ5 interrupt vectorl 

10 $ABS 10 
P 0000 OOOF' 11 IRQ_5 ARRAY [1 WORD) . - [TOD) 

12 
13 $REL 

P OOOC 14 TOD_INIT PROCEDURE 
15 ENTRY 

P 0000 E6 F3 93 16 LD PRE1, 11%(2) 10010011 
17 Ibit 2-7: prescaler = 36; 
18 bit 1: internal clock; 
19 bit 0: continuous model 

P 0003 E6 F2 00 20 LD Tl ,110 1(256) time-out = 
21 1/100 secondl 

P 0006 46 F1 DC 22 OR TMR,II%OC !load, enable T11 
P 0009 8F 23 DI 
P OOOA 46 FB 20 24 OR IMR,II%20 lenable T1 interrupti 
P DODD 9F 25 EI 
P OOOE AF 26 RET 
P OOOF 27 END TOD_ INIT 

28 
P OOOF 29 TOD PROCEDURE 

30 ENTRY 
P OOOF 70 FD 31 PUSH RP 

32 IWorking register file %10 to %1F contains 
33 the time of day clock I 

P 0011 31 10 34 SRP 11%10 
P 0013 FE 35 INC HUND ! 1 more .01 secl 
P 0014 A6 EF 64 36 CP HUND,11100 Ifull second yet?1 
P 0017 EB 13 37 JR NE, TOD_EXIT I jump if no I 
P 0019 BO EF 38 CLR HUND 
P 001B EE 39 INC SECOND ! 1 more second I 
P 001C A6 EE 3C 40 CP SECOND,1160 Ifull minute yet?1 
P 001F EB DB 41 JR NE,TOD_EXIT Ijump if not 

185 



'7. Timer/ 
Counter 
Functions 
(Continued) 

186 

P 0021 BO EE 42 CLR SECOND 
P 0023 DE 43 INC MINUTE 11 more minute! 
P 0024 A6 ED 3C 44 CP MINUTE,1160 ! full hour yet?! 
P 0027 EB 03 45 JR NE,TOD_EXIT ! jump if no! 
P 0029 BO ED 46 CLR MINUTE 
P 002B CE 47 INC HOUR 

48 TOD_EXIT : 
P 002C 50 FD 49 POP RP Irestore entry RPI 
P 002E BF 50 IRET 
P 002F 51 END TOD 

52 END TIMERl 

o ERRORS 
ASSEMBLY COMPLETE 

TOD_INIT: TOD: 
7 instructions 
15 bytes 

17 instruction 
32 bytes 

16 ps 19.5 ps (average) including interrupt response time 

7.4.2 Variable Frequency, Variable Pulse 
Width Output. The following module 
illustrates one possible use of TOUT. Assume it 
is necessary to generate a pulse train with a 
10% duty cycle, where the output is repetitive­
ly high for 1.6 ms and then low for 14.4 ms. To 
do this, TOUT is controlled by end-of-count 

-from II, although To could alternately be 
chosen. This ';'xample makes use of the 28 
feature that allows a timer's counter register to 
be modified without disturbing the count in 
progress. In continuous mode, the new value is 
loaded when TI reaches EOC. TI is first 
loaded and enabled with values to generate 
the short interval. The counter register is then 
immediately modified with the value to 
generate the long interval; this value is loaded 
into the counter automatically on TI EOC. The 
prescaler selected value must be the same for 
both long and short intervals. Note that the 

Z8ASM 2.0 
LOC OBJ CODE STMT SOURCE .STATEMENT 

MODULE 

initial loading of the T I counter register is 
followed by setting the TIload bit of timer con­
trol register TMR (%Fl); this action causes 
TOUT to be reset to a logic I output. Each 
subsequent modification of the TI counter 
register does not affect the current TOUT level, 
since the TI load bit is NOT altered by the 
software. The new value is loaded on EOC, 
and TOUT will toggle at that time. The TI inter­
rupt service routine should simply modify the 
T I counter register with the new value, alter­
nating between the long and short interval 
values. 

In the example which follows, bit 0 of 
register %04 is used as a software flag to indi­
cate which value was loaded last. This module 
illustrates the procedure for T I/ToUT initializa­
tion (PULSE_INIT), the TI interrupt service 
routine (PULSE), and the interrupt vector for 
TI EOC (IRQ_5). XTAL = 8 MHz is assumed. 

1 TIMER2 
2 $SECTION PROGRAM 

P 0000 0017 ' 

P OOOC 

P 0000 E6 F3 03 

P 0003 E6 F7 00 
P 0006 E6 F2 19 
P 0009 8F 
P OOOA 46 FB 20 
P OOOD E6 Fl 8C 

paOlO E6 F2 El 

3 
4 
5 
6 
7 
8 
9 

10 
11' 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

GLOBAL 
!IRQ5 interrupt vector! 

$ABS 10 
ARRAY [1 WORD] 

$REL 
PULSE_INIT 
ENTRY 

PROCEDURE 

[PULSE] 

LD PRE1,H%(2)00000011 

LD 
LD 
DI 
OR 
LD 

P3M,HOO 
Tl ,1125 

Ibit 2-7: prescaler = 64; 
bit 1: internal clock; 
bit 0: continuous model 

Ibit 5: let P36 be Toutl 
Ifor short intervall 

IMR,f%(2)00100000 lenable Tl interrupti. 
TMR,H%(2)10001100 

Ibit 6-7: Tout controlled 
by T1; 

bit 
bit 

!Set long interval counter, to 

3: enable Tl; 
2: load Tl I 
be loaded on Tl EOC! 

LD Tl, 11225 
IClear alternating flag" for PULSE! 



7. Timer/ 
Counter 
Functions 
(Continued) 

P 0013 BO 04 27 CLR $04 ! = 0 25 next; 
28 1 225 next 

P 0015 9F 29 EI 
P 0016 AF 30 RET 
P 0017 31 END PULSE_ INIT 

32 
33 

P 0017 34 PULSE PROCEDURE 
35 ENTRY 

P 0017 E6 f2 E1 36 LD Tl ,11225 !new load valuel 
P 001A B6 04 01 37 XOR %04,111 !which value next?! 
P 001D 6B 03 38 JR z, PULSE_EXIT !should be 2251 
P'OOlF E6 F2 19 39 LD Tl ,1125 ! should be 251 

40 PULSE_ EXIT: 
P 0022 BF 41 IRET 
P 0023 42 END PULSE 

43 END TIMER2 

o ERRORS 
ASSEMBLY COMPLETE 

PULSE_lNIT: PULSE: 
10 instructions S instructions 
23 bytes 12 bytes 
23 p.s 25 p.s (average) including inrerrupt response time 

7,4.3 Cascaded Timer/Counters, For some 
applications it may be necessary to measure a 
greater time interval than a single timer/ 
counter can measure (16,384 ms), In this case, 
TIN and TOUT may be used to cascade To and 

XTAl 

TO INTE~RUPT LOGIC (IRQ4) 

TO INTERRUPT LOGIC (IRQ5) 

Figure 3. Cascaded Timer/Counters 

TI to function as a single unit. TOUT. program­
med to toggle on To end-of-count, should be 
wired back to TIN, which is selected as the 
external clock input for T I, With To program­
med for continuous mode, TOUT (and therefore 
TIN) goes through a High-to-Low transition 
(causing TI to count) on every other To EOC, 
Interrupt request IRQ5 is generated when the 
programmed time interval has elapsed. Inter­
rupt requests IRQ2 (generated on every TIN 
High-to-Low transition) and IRQ4 (generated 
on To EOC) are of no importance in this 
application and are therefore disabled, 

To determine the time interval (i) until EOC, 
the equation 

i=t xpO x va x (2 x pI x vI-I) 

characterizes the relation between the To 
prescaler (pO) and counter (va). the TI 
prescaler (pI) and counter (vI), and the 'clock 
input period (t); t is defined in Section 7.1. 
Assuming XTAL = 8 MHz, the measurable 
time interval range is 

I I'S X I x 1 x (2 x 1 - 1) :s i :s 
I I's x 64 x 256 x (2 x 64 x 256 - 1) 

1 I'S :s i :s 536,854528 s 

Figure 3 illustrates the interconnection 
between To and TI. The following module 
illustrates the procedure required to initialize 
the timers for a 1.998 second delay interval: 

187 



7. Timer/ 
Counter 
Functions 
(Continued) 

188 

Z8ASM 2.0 
LOC OBJ CODE 

P 0000 

P 0000 E6 F3 28 

P 0003 E6 F7 00 
P 0006 E6 F2 64 
P 0009 E6 F5 29 

( 

P OOOC E6 F4 64 
P OOOF 8F 
P 0010 56 FB 2B 

p 0013 ~6 FB 20 
P 0016 9F 
P 0017 E6 Fl ~F 

P 001A AF 
P 001B 

o ERRORS 
ASSEMBLY COMPLETE 

11 instructions 
27 bytes 
26.5 ps 

STMT SOURCE STATEMENT 

1 TIMER3 MODULE 
2 GLOBAL 
3 TIMER_16 
~ ENTRY 
5 LD 
6 
7 
8 
9 LD 

10 LD 
11 LD 
12 
13 
14 LD 
15 DI 
16 AND 
17 
18 OR 
19 EI 
20 LD 
21 
22 
23 
24 
25 
26 
27 
28 
29 RET 
30 END TIMER_16 
31 END TIMER3 

7.4.4 Clock Monitor. TI and TIN may be used 
to monitor a clock line (in a diskette drive, for 
example) and generate an interrupt request 
when a clock pulse is missed. To accomplish 
this, the clock line to be monitored is wired to 
P31 (TIN). TIN should be programmed as a 
retriggerable input to TI, such that each fall­
ing edge on TIN will cause TI to reload and 
continue counting. If T I is programmed to 
time-out after an interval of one-and-a-half 
times the clock period being monitored, T I 
will time-out and generate interrupt request 
IRQ5 only if a clock pulse is missed. 

Z8ASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

1 TIMER4 MODULE 

PROCEDURE 

PRE1,U%(2)00101000 
!bit 2-7: pres caler = 10; 
bi t 1: external clock; 
bit 0: single-pass mode! 

P3M,1100 Ibit 5: let P36 be Toutl 
T1,11100 ! Tl counter register! 
PREO,#%(2)00101001 

!bit 2-7: prescaler = 10; 
bit 0: continuous mode! 

TO,Ul00 !TO counter register!· 

IMR,#%(2)00101011 !disable IRQ2 (Tin); 
and IRQ~ (TO) ! 

IMR,U%(2)00100000 ! ena bl e IRQ5 (Tl) ! 

TMR,U%(2)01001111 
Ibit 6-7: Tout controlled 

by TO; 
bit ~-5: Tin mode is ext. 

clock input; 
bit 3 : enable Tl; 
bit 2: load Tl; 
bit 1 : enable TO; 
bit 0: load TO ! 

The following module illustrates the pro­
cedure for initializing T I and TIN 
(MONITOR_INIT) to monitor a clock with a 
period of 2 p.s. XTAL = 8 MHz is assumed. 
Note that this example selects single-pass 
rather than continuous mode for T I. This is to 
prevent a continuous stream of IRQ5 interrupt 
requests in the event that the monitored clock 
fails completely. Rather, the interrupt service 
routine (CLK_ERR) is left with the choice of 
whether or not to re-enable the monitoring. 
Also shown is the TI .interrupt vector (IRQ_5). 

2 $SECTION PROGRAM 
3 GLOBAL 
~ !IRQ5 interrupt vectorl 
5 $ABS 10 

P 0000 0015' 6 IRQ_5 ARRAY [1 WORD] . - [CLK_ERR] 
7 
8 $REL 

P OOOC 9 MONITOR_INIT PROCEDURE 
10 ENTRY 

P 0000 E6 F3 O~ 11 LD PRE1,U%(2)00000100 
12 !bit 2-7: prescaler = 1; 
13 bit 1 external clock; 
14 bit 0 single-pass model 

P 0003 E6 F7 00 15 LD P3M,1100 Ibit 5 let P36 be Tout! 
P 0006 E6 F2 03 16 LD Tl ,113 Tl load register, 

17 1.5 * 2 use c I 



7. Timer/ 
Counter 
Functions 
(Continued) 

SEC'ii'1I0N 

8 

P 0009 8F 18 DI 
P OOOA 56 FB 3B 19 AND IMR,U%(2)00111011 ! di sa bl e IRQ2 (Tin) I 
P OOOD 46 FB 20 20 OR IMR,U%(2)00100000 I enable IRQ5 (T1) ! 
P 0010 9F 21 EI 

22 
P 0011 E6 F1 38 23 LD TMR,U%(2)00111000 

24 Ibit 4-5: Tin mode is 
25 retrig. input; 
26 bit 3: enable T1 ! 

P 0014 AF 27 RET 
P 0015 28 END MONITOR_ INIT 

29 
30 

P 0015 31 CLK_ERR PROCEDURE 
32 ENTRY 
33 ! •.. ! !handle the missed clock! 
34 
35 !if clock monitoring should continue ..• ! 

P 0015 46 F1 08 36 OR TMR,U%(2)00001000 
r 37 !bit 3: enable T1 I 

P 0018 BF 38 IRET 
P 0019 39 END CLK_ERR 

40 END TIMER4 

o ERRORS 
ASSEMBLY COMPLETE 

MONITOR_IN IT: eLK_ERR: 
9 instructions 2 + instructions 
21 bytes 4 + bytes 
21.5 p.s 18.5 +, p.s including interrupt response time 

110 Functions 
The 28 provides 32 I/O lines mapped inio 

registers 0-3 of the internal register file. Each 
nibble of port 0 is individually programmable 
as input, output, or address/data lines 
(Als-AI2, All-As). Port 1 is programmable as 
a single entity to provide input, output, or 
address/data lines (AD7-ADo). The operating 
modes for the bits of Ports 0 and 1 are selected 
by control register P01M (%F8). Selection of 
I/O lines as address/datCl lines supports access 
to external program and data memory; this is 
discussed in Section 3. Each bit of Port 2 is 
individually programmable as an input or an 

Function Bit Signal 

P3] DAV2/RDY2 
P32 I5AVO/RDYO 

Handshake P33 DAVI/RDYI 
P34 RDYI/DAVI 
P35 RDYO/lSAVO 
P36 RDY2/I5AV2 

r30 

IRQ3 
Interrupt P3] IRQ2 
Request P32 IRQO 

P33 IRQ I 

Counter! { P3] TIN 
Timer P36 TOUT 

Data Memory 
{ P34 Select m 

Status Out 

Serial 1/0 { P30 Serial In 
P37 Serial Out 

Table 4. Port 3 Special Functions 

output bit. Port 2 bits programmed as outputs 
may also be programmed (via bit 0 of P3M) to 
all have active pull-ups or all be open-drain 
(active pull-ups inhibited). In Port 3, four bits 
(P30-P33) are fixed as inputs, and four bits 
(P34-P37) are fixed as outputs, but their func­
tions are programmable. Special functions pro­
vided by Port 3 bits are listed in Table 4. Use 
of the Data Memory select output is discussed 
in Section 3; uses of TIN and TOUT are dis- -
cussed in Section 7. 

8.1 Asynchronous Receiver/Transmitter 
Operation. Full-duplex, serial asynchronous 
receiver/transmitter operation is proVided by 
the 28 via P37 (output) and P30 (input) in con­
junction with control register SIO (%FO), 
which is actually two registers: receiver buffer 
and transmitter buffer. Counter/Timer To pro­
vides the clock for control of the bit rate. 

The 28 always receives and transmits eight 
bits between start and stop bits. However, if 
parity is enabled, the eighth bit (D7) is 
replaced by the odd-parity bit when trans­
mitted and a parity-error flag ( = I if error) 
when received. Table 5 illustrates the state of 
the parity bit/parity error flag during serial 
I/O with parity enabled. 

Although the 28 directly supports either odd 
parity or no parity for serial I/O operation, 
even parity may also be prov;ided with addi­
tional software support. To receive and 
transmit with even parity, the 28 should be 
configured for serial I/O with odd parity 
disabled. The 28 software must calculate parity 

189 



8. I/O 
Functions 
(Continued) 

190 

Character Loaded Transmitted To Received From Character 
Into SIO Serial Line Serial Line Transferred To SIO Note* 

11000011 01000011 01000011 01000011 no error 

11000011 01000011 01000111 11000111 error 

01111000 11111000 11111000 01111000 no error 

01111000 11111000 01111000 11111000 error 

Table 5. Serial 1/0 With Odd Parity • Left·most bit is 07 

and modify the eighth bit prior to the load of a 
character into SIC) and then modify a parity 
error £lag following the load of a character 
from SIO. All other processing required for 
serial 110 (e.g. buffer management, error 
handling, etc.) is the same as that for odd 
parity operations. 

To configure the Z8 for Serial 110, it is 
necessary to: 

ID Enable P30 and P37 for serial 1/0 and select 
parity, 

• Set up To for the desired bit rate, 

R Configure IRQ3 and IRQ4 for polled or 
automatic interrupt mode, 

II Load and enable To. 

To enable P30 and P37 for serial 110" bit 6 of 
P3M (R247) is set. To enable odd parity, bit 7 
of P3M is set; to disable it, the bit is reset. For 
example, the instruction 

LD P3M,#%40 

will enable serial 110, but disable parity. The 
instruction 

LD P3M,#%CO 

will enable serial 1/0, and enable odd parity. 
In the following discussions, bit rate refers to 

all transmitted bits, including start, stop, and 
parity (if enabled). The serial bit rate is given 
by the equation: 

bit rate = 
input clock frequency 

(2 x 4 x TO prescaler x TO counter x 16) 

The final divide-by-16 is incurred for serial 
communications, since in this mode To runs at 
16 times the bit rate in order to synchronize 
the data stream. To configure the Z8 for a 
specific bit rate, appropriate values must first 
be selected for To prescaler and To counter by 
the above equation; these values are then pro­
grammed into registers To (%F4) and PREO 
(%F5) respectively. Note that PREO also con­
trols the continuous vs. single-pass mode for 
To; continuous mode should be selected for 
serial 1/0. For example, given an input clock 
frequency of 7.3728 MHz and a selected bit 
rate of 9600 bits per second, the equation is 

satisfied by To counter 2 and prescaler = 3. 
The following code sequence will configure the 
To counter and To prescaler registers: 

LD To,#2 !To counter = 2! 
LD PREO,#%(2)00001101 

!bit 2-7: prescaler = 3; bit 0: 
continuous mode! 

Interrupt request 3 (IRQ3) is generated 
whenever a character is transferred into the 
receive buffer; interrupt request 4 (IRQ4) is 
generated whenever a character is transferred 
out of the transmit buffer. Before accepting 
such interrupt requests, the Interrupt Mask, 
Request, and Priority Registers (IMR, IRQ, and 
IPR) must be programmed to configure the 
mode of interrupt response. The section on 
Interrupt Processing provides a discussion of 
interrupt configurations. 

To load arid enable To, set bits 0 and lof 
the timer mode register (TMR) via an instruc­
tion such as 

OR TMR,#%03 

This will cause the To prescaler and counter 
registers (PREO and To) to be transferred to the 
To prescaler and counter. In addition, To is 
enabled to count, and serial 1/0 operations 
will commence. 

Characters to be output to the serial line 
should be written to serial 1/0 register SIO 
(%FO). IRQ4 will be generated when all bits 
have been transferred out. 

Characters input from the serial line may be 
read from SIO. IRQ3 will be generated when a 
full character has been transferred into SIO. 

The following module illustrates the receipt 
of a character and its immediate echo back to 
the serial line. It is assumed that the Z8 has 
been configured for serial 1/0 as described 
above, with IRQ3 (receive) enabled to interrupt, 
and IRQ4 (transmit) configured to be polled. 
The received character is stored in a circular 
buffer in register memory from address %42 to 
%5F. Register %41 contains the address of 
the next available buffer position and should 
have been initialized by some earlier routine 
to #%42. 



8. I/O 
Functions 
(Continued) 

Z8ASM 2.0 
LOC OBJ CODE 

P 0006 0000' 

P 0000 

P 0000 E4 FO FO 

P 0003 F5 FO 41 
P 0006 20 41 
P 0008 A6 41 60 

P OOOB EB 03 
P OOOD E6 41 42 

P 0010 66 FA 10 
P 0013 EB FB 

P 0015 56 FA EF 
P 0018 BF 
P 0019 

o ERRORS 
ASSEMBLY COMPLETE 

10 instructions 
25 bytes 

STMT SOURCE STATEMENT 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

SERIAL_IO 
CONSTANT 
next_addr 
start 

MODULE 

length ._ 
$SECTION PROGRAM 
GLOBAL 
!IRQ3 vector! 

$ABS 6 

%41 
%42 
%1E 

ARRAY [1 WORD] ._ [GET_CHARACTER] 

$REL 
GET_CHARACTER 

o 
PROCEDURE ENTRY 

!Serial 1/0 receive interrupt service! 
!Echo received character and wait for 
echo completion! 

ld SIO,SIO !echo! 

!save it in 
ld 
inc 
cp 

jr 
ld 

!now, wait 
echo_wait: 

tcm 
jr 

circular buffer! 
@next_addr,SIO !save in buffer! 
next_addr !point to next position! 
next_addr,#start+length 

!wrap-around yet?! 
ne,echo_wait !no.! 
next_addr,#start ryes. point to start! 

for echo complete! 

IRQ,#%10 
nz, eCho_wai t 

!transmitted yet?! 
! not yet! 

and IRQ,#%EF !clear IRQ4! 

END 
END 

IRET 
GET_CHARACTER 
SERIAL_IO 

!return from interrupt! 

35.5 Ps +,5.5 Ps for each additional pass through the echo_wait loop, 
including interrupt response time 

8.2 Automatic Bit Rate Detection. In a typical 
system, where serial communication is 
required (e.g. system with a terminal), the 
desired bit rate is either user-selectable via a 
switch bank or nonvariable and "hard-coded" 
in the software. As an alternate method of bit­
rate detection, it is possible to automatically 
determine the bit rate of serial data received 
by measuring the length of a start bit. The 
advantage of this method is that it places no 
requirements on the hardware design for this 
function and provides a convenient (automatic) 
operator interface. 

uishing between the bit rates shown in Table 6 
and assumes an input clock frequency of 
7.3728 MHz, a To prescaler of 3, and serial I/O 
enabled with parity disabled. This example 
requires that a character with its low order 

In the technique described here, the serial 
channel of the 28 is initialized to expect a bit 
rate of 19,200 bits per second. The number of 
bits (n) received through Port pin P30 for each 
bit transmitted is expressed by 

n = 19,200/b 

where b = transmission bit rate. For example, 
if the transmission bit rate were 1200 bits per 
second, each incoming bit would appear to the 
receiving serial line as 19,20011200 or 16 bits. 

The following example is capable of disting-

bit = I (such as a carriage return) be sent to 
the serial channel. The start bit of this 
character can be measured by counting the 
number of zero bits collected before the low 
order I bit. The number of zero bits actually 
collected into data bits by the serial channel is 
less than n (as given in the above equation), 
due to the detection of start and stop bits. 
Figure 4 illustrates the collection (at 19,200 

ST = START BIT SP = STOP BIT On = DATA BIT n 

EACH INTERVAL SHOWN = 1 BIT TIME 
AT 19,200 BITS PER SECOND 

Figure 4. Collection of a Start Bit Transmitted at 
at 19,200 BPS 

191 



8. 1/0 
Functions 
(Continued) 

192 

Number 01 Bits Received Number 01 0 Bits Collected 
Bit Rate Per Bit Transmitted as Data Bits To Counter 

dec binary dec binary 

19200 1 0 00000000 1 00000001 
9600 2 1 00000001 2 00000010 
4800 4 3 00000011 4 00000100 
2400 8 7 00000111 8 00001000 
1200 16 13 00001101 16 00010000 
600 32 25 00011001 32 00100000 
300 64 49 00110001 64 01000000 
150 128 97 01100001 128 10000000 

Table 6. Inputs to the Automatic Bit Rate Detection·Algorlthm 

bits per second) of a zero bit transmitted to the 
28 at 1,200 bits per second. Notice that only 13 ' 
of the 16 zero bits received are collected as 
data bits. 

Once the number of zero bits in the start bit 
has been collected and counted, it remains to 
translate this count into the appropriate To 
counter value and program that value into To 
(%F4). The patterns shown in the two binary 
columns of Table 6 are utilized in the 
algorithm for this translation. 

As a final step, if incoming data is to com­
mence immediately, it is advisable to wait until 
the remainder of the current "elongated" 

ZBASM 2.0 
LOC OBJ CODE STMT SOURCE STATEMENT 

1 bi t_rate 
2 EXTERNAL 

character has been received, thus "flushing" 
the serial line. This can be accomplished 
either via a software loop, or by programming 
T 1 to generate an interrupt request after 
the appropriate amount of time has elapsed. 
Since a character is composed of eight bits 
plus a minimum of one stop bit follOWing the 
start bit, the length of time to delay may be 
expressed as 

(9 x n)/b 

where nand b are as defined above. The 
following module illustrates a sample program 
for. automatic bit rate detection. 

MODULE 

3 DELAY PROCEDURE 
4 GLOBAL 

P 0000 5 main PROCEDURE 
6 ENTRY 

\ P 0000 BF 7 di Idisable interrupts I 
p 0001 56 FB 77 8 and IMR,II%77 IIRQ3 polled model 
p 0004 56 FA F7 9 and IRQ,II'foF7 Iclear IRQ3! 
p 0007 E6 F7 40 10 Id P3M,II%40 !enable serial 1/01 
P OOOA E6 F4 01 11 Id TO,lll 
P OOOD E6 F5 OD 12 Id PREO, II( 3 SHL 2)+1 Ibit rate = 19,200; 

13 continuous count model 
P 0010 BO EO 14 clr RO linit. zero byte counter! 
P 0012 E6 Fl 03 15 .ld TMR,1I3 Iload and enable TOI 

16 
17 !collect input bytes by counting the number of null 
lB characters received. Stop when non-zero byte received I 
19 collect: 

P 0015 76 FA oB 20 TM IRQ,II%OB !character received?1 
P 0018 6B FB 21 jr z,collect Inot yet! 
P 001 A 18 FO 22 Id Rl,SIO '!get the character! 
P 001C 56 FA F7 23 and IRQ,II'foF7 Iclear interrupt request I 
P 001 F 1 E 24 inc Rl Icompare to 0 ••• 1 
P 0020 1 A 05 25 djnz Rl,bitloop ! ••• (in 3 bytes of code)1 
P 0022 06 EO OB 26 add RO,118 !update count of 0 bits! 
p 0025 BB EE 27 jr collect. 

28 bitloop: ladd in zero bits from low 
29 end of 1st non-zero by tel 

P 0027 EO El 30 RR Rl 
P 0029 7B 03 31 jr c,count_done 
P 002B OE 32 inc RO 
P 002C BB F9 33 jr bitloop 

34 
35 I RO has number of zero bits collected! 
36 I translate RO to the appropriate TO counter val ue I 
37 count_done: !RO has count of zero bits! 

P 002E lC 07 3B Id Rl ,117 
p 0030 2C BO 39 Id R2,II%BO IR2 will have TO counter value I 
p 0032 90 EO 40 RL RO 

41 
p 0034 90 EO 42 loop: RL RO 



8. 1/0 
Functions 
(Continued) 

P 0036 7B 04 43 jr c,done 
P 0038 EO E2 44 RR R2 
P 003A 1A F8 45 djnz r1,loop 

46 
P 003C 29 F4 47 done: Id TO,R2 lloa1 value for detected 

48 bit rate! 
49 !Delay long enough to clear serial line of bit stream! 

P 003E D6 0000l! 50 call DELAY 
51 !clear receive interrupt request! 

P 0041 56 FA F7 

P 0044 

o ERRORS 
ASSEMBLY COMPLETE 

30 instructions 
68 bytes 

52 and 
53 
54 END main 
55 END bit_rate 

Execution time is variable based on transmission bit rate. 

8.3 Port Handshake. Each of Ports 0, I and 2 
may be programmed to function under input or 
output handshake control. Table 7 defines the 
port bits used for the handshaking and the 
mode bit settings required to select handshak­
ing. To input data under handshake control, 
the 28 should read the input port when the 
DA V input goes Low (signifying that data is 
available from the attached device). To output 
data under handshake control, the 28 should 
write the output port when the RDY input goes 
Low (signifying that the previously output data 
has been accepted by the attached device). 
Interrupt requests IRQO, IRQI, and IRQ2 are 
generated by the falling edge of the handshake 
signal input to the 28 for Port 0, Port I, and 
Port 2 respectively. Port handshake operations 
may therefore be processed under interrupt 
control. 

Consider a. system that requires communica­
tion of eight parallel bits of data under hand­
shake control from the 28 to a peripheral 
device and that Port 2 is selected as the output 
port. The following assembly code illustrates 
the proper sequence for initializing Port 2 for 
output handshake. 

Pori 0 

Input handshake lines {P32 ~ DAY 
P3s ~ RDY 

Output handshake lines {P32 ~ RDY 
P3s ~ DAY 

{ set bit 6 & reset bit 7 of 
POIM (program high 
nibble as input) 

To select input handshake: 

{reset bits 6, 7 of POIM 
(program high nibble as 
output) 

To selec! output handshake: 

To enable handshake: {set bit 5 of Port 3 (P3S); 
set bit 2 of P3M 

IRQ,II%F7 

CLR P2M !Port 2 mode register: all Port 
2 bits are outputs! 

OR %03,#%40 
!set DAV2: data not available! 

LD P3M,#%20 
!Port 3 mode register: enable 
Port 2 handshake! 

LD %02,DATA 
! output first data byte; DA V2 
will be cleared by the 28 to 
indicate data available to 
the peripheral device! 

Note that following the initialization of the out­
put sequence, the software outputs the first 
data byte without regard to the state of the 
RDY2 input; the 28 will automatically hold 
DA V2 High until the RDY2 input is High. The 
peripheral device should force the 28 RDY2 
input line Low after it has latched the data in 
response to a Low on DAV2. The Low on RDY2 
will cause the 28 to automatically force DA V2 
High until the next byte is output. Subsequent 
bytes should be output in response to interrupt 
request IRQ2 (caused by the High-to-Low tran­
sition on RDY2) in either a polled or an 
enabled interrupt mode. 

Pori I Pori 2 

P33 ~ row P3] ~ IiAV 
P34 ~ RDY P36 ~ RDY 

P33 ~ RDY 
P34 ~ IiAV 

P3] ~ RDY 
P36 ~ IiAV 

set bit 3 & reset bit 4 of set bit 7 of P2M 
POIM (program byte as (program high bit as input) 
input) 

reset bits 3, 4 of POIM reset bit 7 of P2M 
(program byte as output) (program high bit as output) 

set bit 4 of Port 3 (P34); set bit 6 of Port 3 (P36); 
set bits 3, 4 of P3M set bit 5 of P3M 

Table 7. Pori Handshake Selection 

193 



SECTION 

9 

194 

Arithmetic Routines 
This section gives examples of the arithmetic 

and rotate instructions for use iI1 multiplica­
tion, division, conversion, and BCD arithmetic 
algorithms. 

cessed one nibble at a time from left to right, 
beginning with the high-order nibble of the 
lower memory address. %30 is added to each 
nibble if it is in the range 0 to 9; otherwise 
%37 is added. In this way, %0 is converted to 
%30, %1 to %31, ... %A to %41, ... %F to 
%46. Figure 5 illustrates the conversion of RRO 
(contents = %F2BE) to its hex ASCII 
equivalent; the destination buffer is pointed to 
by RR4. 

9.1 Binary to Hex ASCII. The following 
module illustrates the use of the ADD and 
SWAP arithmetic instructions in the conversion 
of a 16-bit binary number to its hexadecimal 
ASCII representation. The 16-bit number is 
viewed as a string of four nibbles and is pro-

BIT 0, 4 3 Do 0, 4 3 

I ""'"F""" "1:, '2; I I, ::"u, I< " e: 
REGISTER R' R1 

Do 

I 

Do Dr . 3 Do 

RR4 -

Z8ASM 2.99 
LOC OBJ CODE 

P 0000 

P 0000 6C 04 
P 0002 FO EO 
P 0004 28 EO 
P 0006 56 E2 OF 

P 0009 06 E2 30 
P OOOC A6 E2 3A 
P OOOF 7B 03 
P 0011 06 E2 07 
P 0014 92 24 
P 0016 AO E4 

P 0018 A6 E6 03 
P 001B EB 02 
P 001D 08 El 

P 001F 6A El 
P 0021 AF 
P 0022 

o errors 
Assembly complete 

15 instructions 
34 bytes 
120.5 /lS (average) 

4 : I' , ',2 1 ',~' 

'" 
; '5', : 

Figure 5. Conversion of (RRO) to Hex ASCII 

iNTERNAL RELEASE 
STMT SOURCE STATEMENT 

MODULE 

PROCEDURE 

1 ARITH 
2 GLOBAL 
3 BINASC 
4 !***************************************************** 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2'1 

Purpose To convert a 16-bit binary 
number to Hex ASCII 

Input 

Output 

RRO 16-bit binary number. 
RR4 = pointer to destination 

buffer in external memory. 

Resulting ASCII string (4 bytes) 
in desoination buffer. 
RR4 incremented by 4 • 
RO,R2,R6 destroyed. 

*****************************************************! 
ENTRY 

again: 
ld 
SWAP 
Id 

R6,#104 !nibble count! 
RO !look at next nibble! 
R2, RO 

22 and 
23 !convert to 
24 

R2,IIIOF !isolate 4 bits! 
ASCII :R2 + #%30 if. RO in ranBe 0 to 9 

else R2 + #137 (in range OA to OF) 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

skip: 

ADD 
cp 
jr 
ADD 
Ide 
incw 

cp 
jr 
Id 

same_byte: 

END 
END 

djnz 
ret 
BINASC 
ARITH 

R2 , 11130 
R2, #%3A 
ul t, skip 
R2,11107 
@RR4, R2 
RR4 

R6,II%03 !time 
ne,same_byte 
RO, Rl 

R6,again 

!save ASCII in buffer! 
!point to next 
buffer position! 

for second byte?! 
!no. ! 
!2nd byte! 

I 



9. Arithmetic 
Routines 
(Continued) 

9.2 BCD Addition. The following module illus­
trates the use of the add with carry (ADC) and 
decimal adjust (DA) instructions for the addi­
tion of two unsigned BCD strings of equal 
length. Within a BCD string, each nibble 
represents a decimal digit (0-9). Two such 
digits are packed per byte with the most 

significant digit in bits 7-4. Bytes within a 
BCD string are arranged in memory with the 
most significant digits stored in the lowest 
memory location. Figure 6 illustrates the 
representation of 5970 in a 6-digit BCD string, 
starting in register %33. 

BIT ~ . ~ . 
rc'i"o:"<P'F:C:' iF"OCcc ""1''''''''''='i,,,,:,·'7I''''c c""cc'c.,,","~""'\!"':ii~:I· 

D, Do 

REGISTER 

Z8ASM 2.0 
LOC OBJ CODE 

P 0000 

P 0000 02 12 
P 0002 02 02 
P 0004 CF 

P 0005 00 E1 

P 0007 00 EO 

P 0009 E3 31 
P OOOB 13 30 
P OOOD 40 E3 
P OOOF F3 03 
P 0011 2A F2 

P 0013 AF 

P 0014 

o ERRORS 
ASSEMBLY COMPLETE 

11 instructions 
20 bytes 

°/,,33 %34 

I"ic'!,': '::ii;:?,:'c:~I:i:,g!c CO" ;;,cc;'1 
%35 

Figuro 6. Unsignod BCD Reprosentation 

STMT SOURCE STATEMENT 

1 ARITH MODULE 
2 CONSTANT 
3 BCD_SRC. _ R1 
4 BCD_DST: = RO 
5 BCD_LEN: = R2 
6 GLOBAL 
7 BCDADD PROCEDURE 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

1***************************************************** 
Purpose = To add two packed BCD strings of 

equal length. 

Input 

Output 

dst <-- dst + src 

RO 
R1 
R2 

pointer to dst BCD string. 
pointer to src BCD string. 
byte count in BCD string 
(digit count = (R21*2 1. 

BCD string 
the sum. 
Carry FLAG 
RO , R1 as 
R2 = 0 

pOinted to by RO is 

= 1 if overflow. 
on entry. 

*****************************************************! 
ENTRY 

add 
add 
rcf 

add_again: 
dec 

END 
END 

dec 

ld 
ADC 
DA 
ld 
djnz 

ret 

BCDADD 
ARITH 

BCD_SRC,BCD_LEN !start at least •.• ! 
BCD_DST,BCD~LEN !significant digits! 

!carry = O! 

!point to next two 
src digits! 

!point to next two 
dst digits! 

R3,@BCD_SRC ! get src digi ts! 
R3,@BCD_DST !add dst digits! 
R3 !decimal adjust! 
@BCD_DST,R3 !move to dst! 
BCD_LEN, add_again !loop for next 

digits! 
fall done! 

Execution time is a function of the number of bytes (n) in input BCD string: 
20 I'" + 12.5 (n - 1) I'" 

195 



9. Arithmetic 
Routines 
(Continued) 

196 

9.3 Multiply. The following module illustrates 
an efficient algorithm for the multiplication of 
two unsigned 8-bit values, resulting in a 16-bit 
product. The algorithm repetitively shifts the 
multiplicand right (using RRC), with the low­
order bit being shifted out (into the carry flag). 
If a one is shifted out, the multiplier is added 

Z8ASM 2.99 
LOC OBJ CODE 

INTERNAL RELEASE 
STMT SOURCE STATEMENT 

1 ARITH MODULE 
2 CONSTANT 
3 MULTIPLIER 
4 PRODUCT_LO 
5 PRODUCT_HI 
6 COUNT 
7 GLOBAL 

to the high-order byte of the partial product. 
As the high-order bits of the multiplicand are 
vacated by the shift, the resulting partial­
product bits are rotated in. Thus, the multipli­
cand and the low byte of the product occupy 
,the same byte, which saves register space, 
code, and execution time. 

Rl 
R3 
R2 
RO 

P 0000 8 MULT PROCEDURE 
9 1***************************************************** 

10 Purpose To perform an 8-bit by 8-bit unsigned 
11 binary multiplication. 

Input = 

Output = 

Rl = multiplier 
R3 = multiplicand 

RR2 = product 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

RO destroyed 
*****************************************************! 

P 0000 OC 09 
P 0002 BO E2 
P 0004 CF 
P 0005 CO E2 
P 0007 CO E3 
P 0009 FB 02 
P OOOB 02 21 
P OOOD OA F6 
P OOOF AF 
P 0010 

o errors 
Assembly complete 

9 instructions 
16 bytes 
92.5 p.s (average) 

ENTRY 

LOOP: 

NEXT: 

END 
END 

ld 
clr 
RCF 
RRC 
RRC 
jr 
ADD 
djnz 
ret 
MULT 
ARITH 

9.4 Divide. The follOWing module illustrates 
an efficient algorithm for the division of a 
16-bit unsigned value by an 8-bit unsigned 
value, resulting in an 8-bit unsigned quotient. 
The algorithm repetitively shifts the dividend 
left (via RLC). If the high-order bit shifted out 
is a one or if the resulting high-order dividend 
byte is greater than or equal to the divisor, the 

COUNT,I/9 
PRODUCT_HI 

PRODUCT_HI 
PRODUCT_LO 

18 BITS + 1! 
IINIT HIGH RESULT BYTE! 
!CARRY = O! 

NC,NEXT 
PRODUCT_HI,MULTIPLIER 
COUNT,LOOP 

divisor is subtracted from the high byte of the 
dividend. As the low-order bits of the dividend 
are vacated by the shift left, the resulting 
partial-quotient bits are rotated in. Thus, the 
quotient and the low byte of the dividend 
occupy the same byte, which saves register 
space, code, and execution time. 



9. Arithmetic 
Routines 
(Continued) 

SECTION 

10 

Z8ASM 2.0 
LOC OBJCODE 

P 0000 

P 0000 DC 08 

P 0002 A2 12 
P 0004 BB 02 

P 0006 DF 
P 0007 AF 

P 0008 10 E3 
P OOOA 10 E2 
P OOOC 7B 04 
P OOOE A2 12 
paOlO BB 03 
P 0012 22 21 
P 0014 DF 
P 0015 OA Fl 

P 0017 10 E3 

P 0019 AF 
paOlA 

a ERRORS 
ASSEMBLY COMPLETE 

15 instructions 
26 bytes 
124.5 p.s (average) 

Conclusion 

STMT SOURCE STATEMENT 

1 ARITH MODULE 
2 CONSTANT 
3 COUNT 
4 DIVISOR 
5 DIV IDEND_HI 
6 DIVIDEND_LO 
7 GLOBAL 
8 DIVIDE PROCEDURE 

RO 
Rl 
R2 
R3 

9 !***************************************************** 
10 Purpose To perform a 16-bit by 8-bit unsigned 
11 binary division. 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

Input = 

Output = 

Rl = 8-bit divisor 
RR2 16-bit dividend 

8-bit quotient R3 
R2 8-bit remainder 
Carry flag = 1 if overflow 

. = a if .no overflow 
*****************************************************! 
ENTRY 

ld COUNT ,118 !LOOP COUNTER! 

!CHECK IF RESULT WILL FIT IN 8 BITSI 
cp DIVISOR, DIVIDEND_HI 
jr UGT,LOOP !CARRY a (FOR RLC)! 

!WON'T FIT. OVERFLOW! 
SCF !CARRY 1 ! 
ret 

LOOP: IRESULT WILL FIT. GO AHEAD WITH DIVISION! 
! DIVIDEND * 2! RLC DIVIDEND_LO 

RLC DIVIDEND_HI 

subt: 

next: 

IALL 

jr 
cp 
jr 
SUB 
SCF 
djnz 

DONE! 
RLC 

ret 
END DIVIDE 
END ARITH 

c,subt 
DIVISOR,DIVIDEND_HI 
UGT, ne xt ! CARRY = O! 
DIVIDEND_HI,DIVISOR 

!TO BE SHIFTED INTO RESULT! 
COUNT,LOOP Ino flags affected I 

!CARRY 0: no overflow! 

This Application Note has focused on ways 
in which the 28 microcomputer can easily yet 
effectively solve various application problems. 
In particular, the many sample routines 

illustrated in this document should aid the 
reader in using the 28 to greater advantage. 
The major features of the 28 have been 
described so that the user can continue to 
expand and explore the 28's repertoire of uses. 

197 



Zilog 

INTROOUCTION 

This application note describes a preprogrammed 
Z8601 MCU that contains a bootstrap to external 
program memory and a collection of general-purpose 
subroutines. Routines in this application note 
can be implemented with a ZB Protopack and a 2716 
EPROM programmed with the bootstrap and subroutine 
library. 

In a system, the user's software resides in 
external memory beginning at hexidecimal address 
0800. This software can use any of the 

Z8® Subroutine Library 

Application 
Note 

April 1982 

subroutines in the library wherever appropriate 
for a given application. This application example 
makes certain assumptions about the environment; 
the reader should exercise caution when copying 
these programs for other cases. 

Following RESET, software within the subroutine 
librarY'is executed to initialize the control 
registers (Table 1) • The control register 
selections can be subsequently modified by the 
user's program (for example, to use only 12 bits 
of Ports 0 and 1 for addressing external memory). 
Following control register initialization, an EI 

Table 1. Control Register Initialization 

Control Register 
Name Address 

TMR F1H 

P2M F6H 

P3M F7H 

P01M FBH 

IRQ FAH 

IMR FBH 

RP FDH 

SPL FrH 

198 

Initial Value 

OOH 

FFH 

10H 

D7H 

OOH 

OOH 

OOH 

65H 

Meaning 

TO and T1 disabled 

P20-P27 : inputs 

P2 pull-ups open drain; 
P30-P33 - inputs; 
P35-P37 outputs; 
P34 DM 

P10-P17 ADO-AD7; 
POO-P07 AB-A15 ; 
normal memory timing; 
internal stack 

no interrupt requests 

no interrupts enabled 

working register file 
OOH-OFH 

1st byte of stack is 
register 64H 



instruction is executed to enable interrupt 
processing, and a jump instruction is executed to 
transfer control to the user's program at location 
OB12H• The interrupt vectors for IRQO through 
IRQ5 are rerouted to locations OBOOH through 
OBOFH' respectively, in three-byte increments, 
allowing enough room for a jump instruction to the 
appropriate interrupt service routine. That is, 
IRQO is routed to location OBOOH, IRQ1 to 
OB03H' IRQ2 to OB06H, IRQ3 to OB09H, IRQ4 to 
OBOCH' and IRQ5 to OBOFH' Figure 1 illus­
trates the allocation of ZB memory as defined by 
this application note. 

The subroutines available to the user are refer­
enced by a jump table begir.ning at location 
001BH. Entry to a subroutine is made via the jump 
table. The 32 subroutines provided in the library 
are grouped into six functional classifications. 
These classifications are described belo~l, each 
with a brief overview of the functions provided by 
each category~ Table 2 defines one set of entry 
addresses for each subroutine in the library. 

D Binary Arithmetic: Multiplication and division 
of unsigned B- and 16-bit quantities. 

o BCO Arithmetic: . Addition and subtraction of 
variable-precision floating-point BCD values. 

FF 

FO 
EF 

80 
7F 

7. 
7A 

6E 
60 

65 
64 

REGISTER 

CONTROl. 
REGISTERS 

UNIMPLEMENTED 

1. 

2. 

3. 

STACK 

----------

FFF 

081 

081 

F 

2 
1 

o Conversion Algorithms: BCD to and from decimal 
ASCII, binary to and from decimal ASCII, binary 
to and from hex ASCII. 

o Bit Manipulations: Packs selected bits into 
the low-order bits of a byte, and optionally 
uses the result as an index into a jump table. 

o Serial I/O: Inputs bytes under vectored inter­
rupt control, outputs bytes under polled inte­
rrupt control. Options provided include: 

odd or even parity 
BREAK detection 
echo 
input editing (backspace, delete) 
auto line feed 

o Timer/Counter: Maintains a time-of-day clock 
with a variable number of ticks per second, 
generates an interrupt after a specified delay, 
generates variable width, variable frequency 
pu lse output. 

The listings in the "Canned Subroutine Library" 
provide a specification block prior to each sub­
routine, explain the subroutine's purpose, lists 
the input and output parameters, and gives pertin­
ent notes concerning the subroutines. The follow­
ing notes provide additional information on data' 
formats and algorithms used by the subroutines. 

PROGRAM 

USER 
DEFINED 

START 

EXTERNAL DATA 
FFFFr----------. 

USER 
DEFINED 

INTERRUPT VECTORS 

04 
03 

00 

USER 
DEFINED 

I/O PORTS 

REGISTERS useD BY SUBROUTINES: 

1. USED BY MOST ROUTINES 
2. USED BY SERIAL ROUTINES ONLY 
3. USED BY TIMER/COUNTER ROUTINES ONLY 

0 060 
07F F 

000 0 

(3 BYTElIRQx) 

INTERNAL 
SUBROUTINES 

0000 ..... _______ ....... 

figure 1. "ROOess lBa Subrcutirm Library Me!cory Usage Map , 

199 



1. Although the user is free to modify the condi­
tions selected in the Port 3 t-bde register 
(P3M, F7H)' P3M is a write-only register. 
This subroutine library maintains an image of 
P3M in its register P3M __ save (7FH)' If 
software outside of the subroutine package is 
to modify P3M, it should reference and modify 
P3M save prior to modificat ion of P3M. For 
example, to select P32/P35 for handshake, the 
following instruction sequence could be used: 

OR 
LD 

P3M_save, fl04H 
P3M, P3M save 

2. For many of the subroutines in this library, 
the location of the operands (source/destina­
tion) is flexible between register memory, 
external memory (code/data), and the serial 
channel (if enabled). The description of each 
parameter in the specification blocks tells 
what the location options are. 

• The location designation "in reg/ext 
memory" implies that the subroutine allows 
the operand to exist in register or in 
external data memory. The address of such 
an operand is contained in the designated 
register pair. If the high byte of that 
pair is 0" the operand is in register 
memory at the address held in the low byte 
of the register pair. Otherwise, the 
operand is in external data memory 
(accessed via LDE). 

• The location designation "in ~eg/ext/ser 

memory" implies the same considerations as 
above with one enhancement: if both bytes 
of the register pair are 0, the operand 
exists in the serial channel. In this 
case, the register pair is not modified 
(updated). For example, rather than stor­
ing a destination ASCII string in memory, 
it might be ,desirable to output the string 
to the serial line. 

3. The BCD format supported by the following 
arithmetic and conversion routines allows rep­
resentation of signed variable-precision BCD 
numbers. A BCD number of 2n digits is repre­
sented in n+1 consecutive bytes, where the 
byte at the lowest memory address (byte 0) 
represents the sign and post-decimal digit 
count, and the bytes in the n higher memory 
locations (bytes 1 through n) represent the 
magnitude of the BCD number. The address of 
byte 0 and the value n, are passed to the sub­
routines in specified working registers. 

200 

Digits are packed two per byte with the most­
significant digit in the high-order nibble of 
byte 1 and the least-significant digit in the 
low-order nibble of byte n. Byte 0 is organ­
ized as two fields: 

Bit 7 represents sign: 
1 = negative; 
o = positive. 

Bits 0-6 represent post-decimal digit count. 

For example: 

byte 0 05H = positive, with five post-
dec imal digits 

= BOH negative, with no post-
decimal digits 

= 90H = negative, with 16 post-
decimal d igi ts 

4. The format of the decimal ASCII character 
string expected as input to the conversion 
routines "dascbcd" and "dascwrd" is defined 
as: 

( + 1 -) ( <digit» [( <digit> ) ] 

in which 
( ) Parentheses mean that the enclosed 

times or can be omitted. 
[ ] Brackets denote that, the enclosed 

element is optional. 

Table 3 illustrates how various input strings 
are interpreted by the conversion routines. 

5. The format of the decimal ASCII character 
string output from the conversion routine 

'''bcddasc'' operating on an input BCD string of 
2n digits is 

sign of character ( + 1 - ) 
2n-x pre-decimal digits 
1 decimal point if x does not equal 0 
x post-decimal digits 

6. The format of the decimal ASCII character 
string output from the conversion routine 
"wrddassc" is 

1 sign character (determined by bit 15 of 
input word) 

6 pre-decimal digits 
no decimal point 
no post-decimal digits ' 



Table 2. Subroutine Entry Points 

Address NIIIIIe 

Binary Arithmetic Routines 

001B divide 
001E div 16 
0021 multiply 
0024 mult 16 

BCD Arithmetic Routines 

0027 
002A 

bcdadd 
bcdsub 

COnversion Routines 

0020 bcddasc 
0030 dascbcd 
0033 bcdwrd 
0036 wrdbcd 
0039 bythasc 
003C wrdhasc 
003F hascwrd 
0042 wrddasc 
0045 dascwrd 

Bit Manipulation Routines 

0048 
004B 

clb 
tmj 

Serial Routines 

004E ser init 
0051 ser_input 
0054 ser rlin 
0057 ser rabs 
005A ser break 
0050 ser flush 
0060 ser-wlin 
0063 ser wabs 
0066 ser_wbyt 
0069 ser disable 

Timer/COunter Routines 

006C tod i 
006F tod 
0072 delay 
0075 pulse_i 

. 0078 pulse 

Description 

16/8 unsigned binary division 
16/'16 unsigned binary division 
8x8 unsigned binary multiplication 
16x16 unsigned binary multiplication 

, BCD addition 
BCD subtraction 

BCD to decimal ASCII 
Decimal ASCII to BCD 
BCD to binary word 
Binary word to 8CD 
Binary byte to hexadecimal ASCII 
Binary word to hexadecimal ASCII 
Hexadecimal ASCII to binary word 
Binary word to decimal ASCII 
Decimal ASCII to binary word 

Collect bits in a byte 
Table jump under mask 

Initialize serial I/O 
IRQ3' (receive) service 
Read line 
Read absolute 
Transmit BREAK 
Flush (clear) input buffer 
Write line 
Write absolute 
Write byte 
Disable serial I/O 

Initialize for time-of-day clock 
Time-of-day IRQ service 
Initialize for delay interval 
Initialize for pulse output 
Pulse IRQ service 

201 



7. Procedure name: ser ___ input The register pair SERhtime, SER1time was 
initialized during ser in it to equal the 
'product of the prescaler and the counter 
selected for the baud rate clock. That is, 

The conclusion of the algorithm for BREAK 
detection requires the Serial Receive Shift 
register to be cleared of the character 
currently being collected (if any). This 
requires a software wait loop of a 
one-character duration. ,The following 
explains the algorithm used (code lines, 464 
through 472, Part II): 

1 character time 

= 

(12BxPREOxTO) sec 10 ,~ 
XT AL bIT x char 

1280xPREOxTO 
XTAL 

sec 
CiiBr, 

A software loop equal to one character time is 
needed: 

1 character time =.3... ~ x n cycle 
XTAL cycle loop 

Solve for n: 

2n 
= XTAL 

sec 
loop 

SERhtime, SER1time = PREO x TO 

The instruction sequence 

inlop: ld rSERtmpl, 853 (6 cycles) 

lpl: djnz rSERtmpl, lpl (12/10 cycles 
taken/not taken) 

executes in 

6 + (52 x 12) + 10 cycles = 640 cycles 

(1280 x PREO x TO) 
XTAL 

2n 
= Xfii[ 

8. BREAK detection on the serial input line 
requires that the receive interrupt service 
routine be entered within a half-a-bit time, 
since the routine reads the, input line, to 
detect a true (=1) or false (=0) stop bit. 
Since the interrupt request is generated 
halfway through reception of the stop bit, 
half-a-bit time remains in which to read the 
stop bit level. Interrupt priorities and 
interrupt nesting should be established 
appropriately to ensure this requirement. 

202 

n = 640 x PREO x TO 

Table ,. 

Input Stfing 

+1234.567, 

+---+.789+ 

1234 •• 

4976-

1/2 bit time = 
(128 x PREO x TO) 

XTAL x 2 

Deemsl ASCII Character String Interpretation 

Result 
Sign Pre-Deciasl Post-Deciaal Terllinstor 

Digits Digits 

+ 1234 567 

789 + 

+ 1234 

+ 4976 

NOTE: The terminator can be any ASCII character that is not a valid ASCII string 
character. 

sec 



Zf\ASM 3.02 
LOC OBJ CODE 

ROMLESS Z8 SUBROUTINE LIBRARY PART I 

STMT SOURCE STATEMENT 

1 
2 
3 
II 

PART I MODULE 

5 
6 
7 
8 

!'ROMLESS Z8' SUBROUTINE LIBRARY PART I 

Initialize: a) Port 0 & Port 1 set up to address 
611K external memory; 9 

10 
11 
12 
13 
111 
15 
16 
17 
18 
19 
20 
21 
22 
23 
211 
25 
26 
27 
28 
29 
30 
31 
32 
33 
311 
35 
36 
37 
38 

Note: 

39 
110 
111 
112 I 

b) internal stack below allocated 
RAM for subroutines; 

c) normal memory timing; 
d) IMR, IRQ, TMR, RP cleared; 
e) Port 2 inputs open-drain pull-ups; 
f) Data Memory select en~bled; 
g) EI executed to' 'unfreeze' IRQ; 
h) Jump to %0812. 

The user is -free to modify 
conditions selected for a, 
via direct modification of 
Mode register (P01M, %F8). 

the initial 
b, and c above, 
the PortO & 1 

The user is free to modify the conditions 
selected in the Port 3 Mode register (P3M, %F7). 
However, please note that P3M is a write-only 
register. This subroutine library maintains 
an im'lge of P3M in its register P3M_save (%7F). 
If software outside of the subroutine package 
is to modify P3M, it should reference and modify 
P3M save, prior to modification of P3M. For 
example, to sel,ect P32/P35 for handshake, use 
an instruction sequence such as: 

OR 
LD 

P3M save,UOIi 
P311,P3M _save 

This is important if 'the serial and/or timerl 
counter subroutines are to be used, since these 
routines may modify P3M. 

203 



204 

44 IAccess to GLOBAL subroutines in this library should 
45 be made via a CALL to the corresponding entry in the 
46 jump table which begins at address SOOOF. The jump 
47 tab~e should be referenced rather than a CALL to the 
48 actual entry point of the subroutine to avoid future 
49 conflict in the event such entry points change in 
50 potential future revisions. 
51 
52 Each GLOBAL subroutine in this listing is headed by a 
53 comment block specifying its PURPOSE .and calling 
54 sequence (INPUT and OUTPUT.parameters). For many of 
55 the subroutines in this library, the location of the 
56 operands (s6urces/destinations) is ~uite flexible 
57 between register memory, external memory (code/data), 
58 and the serial channel (if enabled). The description 
59 of each parameter specifies what th~ location choices 
60 are: 
61 
62 - The location designation 'in reg/ext memory' 
63 implies that the subroutine allows that the operand 
64 exist in eith.r register or external data memory 
65 The address of such an operand is contained ' 
66 in the designated register pair. If the high byte of 
67 that pair is zero, the operand is in register memory 
68 at the address given by the low byte of the register 
69 pair. Otherwise, the operand is in external data 
70 memory (accessed via LDE). 
71 
72 - The location designation 
73 'in reg/ext/ser memory' implies the same 
74 considerations as above with one enhancement: if both 
75 bytes of the reg. pair are zero, the operand exists 
76' in'the serial channel. In this case, the register 
77 pair is not modified (updated). For example, rather 
78 than storing a destination ASCII string in memory, it 
79 might be desirable to output such to the serial line. 
80 ! 



82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 

CONSTANT 
! Register Usage! 

RAM START · - %7F 

P3M save · - RAM START 
TEMP 3 · - P3M-save-l 
TEMP-2 · - TEM'P' 3-1 
TEMP-l · - TEMP-2-1 
TEMP-4 · - TEMP-l-l 

!The following registers are modified/referenced 
by the Serial Routines ONLY. They are 
available as general registers to the user 
who does not intend to make use of'the 
Serial Routines! 

:= TEMP 4-1 
._ SER char-l 
._ SER-tmp2-1 
'- SER-tmpl-l 
._ SER-put-l 
._ SER-len-2 
._ SER-buf-l 
:= SER-imr-l 

Configuration Data -
=1 => odd parity on 

SER char 
SER-tmp2 
SER-tmpl 
SER-put 
SER-len 
SER-buf 
SER-imr 
SER-cfg 
! Serial 
bit 7 
bit 6 : =1 => even parity on 
(bit 

bit 5 
bit 4 
bit 3 
bit 2 
bit 1 
bit 0 

6,7 = 11 => undefined) 
undefined 
undefined 
=1 => input editting on 
=1 => auto line feed enabled 
=1 => BREAK detection enabled 
=1 => input echo on 

117 
118 op 
119 ep 
120 ie 
121 al 
122 be 
123 
124 
125 
126 

ec 
SER get 
SER-flg 
! Serial 
bit 7 
bit 6 
bit 5 
bit 4 
bit 3 
bit 2 
bit 1 
bit 0 

· - %80 
· - %40 
· - %08 
.'- %04 
· - %02 
· - %01 · -

: = 
Status Flags 

SER cfg-l 
SER=get-l 

127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 

! 
sd 
pe 
bd 
bo 
bne 
bf 

RAM TMR 

SERltime 

=1 => serial I/O disabled 
undefined 
undefined 
=1 => parity error 
=1 => BREAK detected 
=1 => input buffer overflow 
=1,=> input buffer not empty 
=1 => input buffer full 

%80 
= $10 
= %08 
= %04 
= %02 
= %01 

: = RAM_START-%10 

: = SER_flg-l 

205 



206 

146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 

SERhtime SERltime-l 

!The following registers are modified/referenced 
by the Timer/Counter Routines ONLY. They are 
available as general registers to the user 
who does not intend to make use of the 
Timer/Counter Routines! 

TOD tic 
TOD-imr 
TOD-hr 
TOD-min 
TOD-sec 
TOD-tt 
PLS-l 
PLS-tmr 
PLS-2 

RAM END 
STACK 

RAM TMR-2 
TOD-tic-1 
TOD-imr-1 
TODnr-1 
TOD-min-1 
TOD-sec-1 
TOD-tt-1 
PLS-1-1 
PLS-tmr-1 

!Equivalent working register equates 
for above register layoutl 

!register file %70 - ~7F! 
RAM STARTr . _ %70 

rP3Msave 
rTEMP 3 
rTEMP 2 
rTEMP-1 
rrTEMP 1 
rTEMP1h 
rTEMP-ll 
rTEMP-4 
rSERchar 
rSERtmp2 
rSERtmp1 
rrSERtmp 
rSERtmpl 
rSERtmph 
rSERput 
rSERlen . 
rrSERbuf 
rSERbufh 
rSERbufl 
rSERimr 
rSERcfg 
rSERget 
rSERflg 

!register 
RAM TMRr 
rTOTItic 
rTODimr 
rTODhr 
rTODmin 
rTODsec 
rTODtt 
rPLS 1 
rPLStmr 
rPLS 2 

: = 
: = 

: = 

:= 

: = 

: = 

: = 
: = 

file %60 
: = 
!= 

: = 
: = 
: = 
: = 
: = 

R15 
R14 
R13 
R12 
RR12 
R12 
R13 
R 11 
Rl0 
R9 
R8 
RR8 
R9 
R8 
R7 
R6 
RR4 
R4 
R5 
R3 
R2 
R1 
RO 

- %6F! 
%60 
R13 
R12 
R 11 
R10 
R9 
R8 
R7 
R6 
R5 

I for SRPI 

I for SRPI 



210 EXTERNAL 
211 ser init PROCEDURE 
212 ser-input PROCEDURE 
213 ser-rlin PROCEDURE 
214 ser-rabs PROCEDURE 
215 ser-break PROCEDURE 
216 ser-flush PROCEDURE 
217 ser-wlin PROCEDURE 
218 ser-wabs PROCEDURE 
219 ser-wbyt PROCEDURE 
220 ser-disable PROCEDURE 
221 ser-get PROCEDURE 
222 ser-output PROCEDURE 
223 tod-i PROCEDURE 
224 tod- PROCEDURE 
225 delay PROCEDURE 
226 pulse i PROCEDURE 
227 pulse - PROCEDURE 
228 
229 
230 $.SECTION PROGRAM 
231 GLOBAL 
232 
233 
234 !Interrupt vectors! 

P 0000 0800 235 IRQ 0 ARRAY [ 1 word] = [~OBOO] 
P 0002 OB03 236 IRQ-1 ARRAY [ 1 word] = [%0803] 
p 0004 0806 237 IRQ-2 ARRAY [ 1 word] = [%0806] 
P 0006 OB09 23B IRQ-3 ARRAY [ 1 word] = [%OB09] 
p 0008 080C 239 IRQ-4 ARRAY [ 1 word] = [%OBOC] 
p OOOA 080F 240 IRQ=5 ARRAY [ 1 word] = [~080F] 

241 
242 

207 



244 GLOBAL 
245 
246 !Jump Table! 

P OOOC 247 ENTER PROCEDURE 
248 ENTRY 

P OOOC 80 007B' 249 JP INIT 
P OOOF 250 END ENTER 

251 
252 

P OOOF 28 43 29 253 copyright ARRAY [* BYTE] : = '(C)1980ZILOG' 
P 0012 31 39 38 
P 0015 30 5A 49 
P 0018 4C 4F 47 

254 
255 !Subroutine Entry Points! 

P 001B 256 JUMP PROCEDURE 
257 ENTRY 
258 
259 !Binary Ar i thmet ic Routines! 
260 

P 001B 80 0099' 261 JP divide !16/8 unsigned binary 
262 division! 

P 001E 80 00B7' 263 JP div 16 !16/16 unsigned binary 
264 division! 

P 0021 80 00E2' 265 JP multiply !8x8 unsigned binary 
266 multiplication! , 

P 0024 80 00F6' 267 JP mult 16 !16x16 unsigned binary 
268 multiplication! 
269 
270 !BCD Arithmetic Routines! 
271 

P 0027 80 011A' 272 JP bcdadd !BCD addition! 
273 

P 002A 80 0117 ' 274 JP bcdsub !BCD subtraction! 
275 
276 ! Conversion Routines! 
277 

P 0020 80 0205' 278 JP bcddasc !BCD to decimal ASCII! 
279 

P 0030 80 0363' 280 JP dascbcd ! Decimal ASCII to BCD! 
281 

P 0033 80 0284' 282 JP bcdwrd !BCD to binary word! 
283 

P 0036 80 02CD' 284 JP wrdbcd !binary word to BCDI 
285 

P 0039 80 025C' 286 JP bythasc IBin. byte to Hex ASCII! 
287 

P 003C 80 0257' 288 JP wrdhasc IBin. word to hex ASCIII 
289 

P 003F 80 0319' 290 JP hascwrd ! Hex ASCII to bin wordl 
291 

P 0042 80 03BE' 292 JP wrddasc ! Bin. word to dec ASCIII 
293 

P 0045 80 0340' 294 JP dascwrd I dec ASCII to bin wordl 
295 
296 ! Bit Manipulation Routinesl 
297 

P 0048 80 OIlA l' 298 JP 
299 

clb !collect bits In a by tel 

P OOIlB 80 01lB9' 300 JP 
301 

tjm I Table Jump Under Mask I 

302 !Serial Routines! 
303 

P 001l~ 80 0000· 3011 JP ser in it !initialize serial I/OI 

208 



305 
P 0051 80 0000· 306 JP ser _input !IRQ3 (receive) service! 

307 
p, 0054 80 0000· 308 JP ser rlin tread line! 

309 
P 0057 80 0000· 310 JP ser rabs tread absolute! 

311 
P 005A 80 0000· 312 JP ser break 1 transmit BREAK! 

313 
P 0050 80 0000 0 314 JP ser flush ! flush (clear) 

315 input buffer! 
P 0060 80 0000 0 316 JP ser wlin !write line! 

317 
P 0063 80 0000 11 318 JP ser wabs !write absolute! 

319 
P 0066 PO 0000· 320 JP ser_wbyt !write byte! 

321 
P 0069 80 0000· 322 JP ser disable !disable serial I/O! 

323 
324 1 Timer/Counter Routines 1 
325 

P 006C 80 0000· 326 JP tod i !init for time of day! 
327 

P 006F PO 0000· 328 JP tod !tod IRQ service! 
329 

P 0072 80 0000· 330 JP delay !inij; for delay interval 
331 

P 0075 80 0000 11 332 JP pulse i !init for pulse output! 
333 -

P 0078 80 0000· 334 JP pulse !pulse IRQ servicel 
335 

P 007B 336 END JUMP 

338 !Initialization! 
007B 339 INIT PROCEDURE 

340 ENTRY 
341 

P 007B E6 F8 07 342 LO P01M,II~(2)11010111 
343 !internal stack; 
344 AOO-A15; 
345 normal memory 
346 timing ,I 

P 007E E6 7F 10 347 LO P3M_save,II~(2)00010000 
348 !P3M is write-only, 
349 so keep a copy in 
350 'RAM for later 
351 reference ! 

P 0081 E4 7F F7 352 LO P3M,P3M save ! set up Port 3 
P 0084 E6 FF 65 353 LO SPL,IISTACK !stack pOinter 
P 0087 BO Fl 354 CLR TMR !reset timers! 
P 0089 E6 F6 FF 355 LO P2M, II~FF ! all inputs 1 
P 008C BO FA 356 CLR IRQ !reset into requests! 
P 008E BO FB 357 CLR IMR !disable interrupts 1 
P 0090 BO FO 358 CLR RP !register pointer! 
P 0092 E6 70 80 359 LO SER flg, 1I~80 !serial disabled! 
P 0095 9F 360 EI - !globally enable 

361 interrupts ! 
P 0096 80 0812 362 JP %0812 

363 
P 0099 364 END INIT 

209 



Binary Arithmetic RouUnes 

397 CONSTANT 
398 div LEN R10 
399 DIVISOR R11 
400 dividend HI R12 
401 dividend-La R13 
402 GLOBAL 

P 0099 403 divide PROCEDURE 
404 , ••••••••••••• **** ••••• * •••••••• * ••••••• * ••••••••••••• 
405 Purpose = To perform a 16-bit by 8-bit unsigned 
406 binary division. 
407 
408 Input = Rll. = 8-bit divisor 
409 RR12 16-bit dividend 
410 
411 Output = R13 = 8-bit quotient 
412 R12 = 8-bit remainder 
413 Carry flag = 1 if overflow 
414 = 0 if no overflow 
415 R 11 unmod ifi ed 
416 ••••••••••••••••••••••••••••••••••••••••••••••• **.***! 
417 ENTRY 

P 0099 A9 7C 418 ld TEMP 1,div LEN ! save caller's R101 
P 009B AC 08 1119 ld div_LEN,1/8- ILOOP COUNTER! 

420 
421 ICHECK IF RESULT WILL FIT IN 8 BITS! 

P 009D A2 BC 422 cp DIVISOR,dividend HI 
P 009F BB 02 423 jr UGT,LOOP TCARRY 0 (FOR RLC)! 

424 !overflow! 
P OOAl DF 425 SCF !CARRY 11 
P 00A2 AF 426 , ret 

427 
!DIVIDEND P 00A3 10 ED 428 LOOP: RLC dividend LO II 2! 

P OOA5 10 EC 429 RLC dividend-HI 
P 00A7 7B 04 430 jr c,subt 
P 00A9 A2 BC 431 cp DIVISOR,dividend_HI 
P OOAB BB 03 432 jr UGT,next !CARRY = 01 
P OOAD 22 CB, 433 subt: SUB dividend_HI,DIVISOR 
P OOAF DF 434 SCF !TO BE SHIFTED INTO RESULT! 
P OOBO AA Fl 435 next: djnz div_LEN,LOOP Ino flags affectedl 

436 
437 IALL DONEI 

P 00B2 10 ED 438 RLC dividend LO 
439 !CARRY = 0: no overflowl 

P 00B4 A8 7C 440 ld div_LEN,TEMP_ !restore caller's R101 
P 00B6 AF 441 ret 
P 00B7 442 END divide 

210 



P 00B7 

P 00B7 79 7C 
P 00B9 7C 10 
P OOBB CF 
P OOBC BO EA 
P OOBE BO EB 
P OOCO 10 ED 
P 00C2 10 EC 
P OOCII 10 EB 
P 00C6 10 EA 
P 00C8 7B OA 
P OOCA A2 8A 
P OOCC BB OB 
P OOCE 7B 011 
P OODO A2 9B 
P 00D2 BB 05 
P OODII 22 B9 
P 00D6 32 A8 
P 00D8 DF 
P 00D9 7A E5 
P OODB 10 ED 
P OODD 10 EC 
P OODF 78 7C 
P OOEl AF 
P 00E2 

P 00E2 

P 00E2 A9 7C 
P OOEII AC 09 
P 00E6 BO EC 
P 00E8 CF 
P 00E9 CO EC 
P OOEB CO ED 
P OOED FB 02 
P OOEF 02 CB 
P OOFl AA F6 
P 00F3 A8 7C 
P 00F5 AF 
P 00F6 

CONSTANT 
d16 LEN 
dvsr hi 
dvsr-lo 
rem hi 
rem-lo 
quot hi 
quot-lo 

GLOBAl: 
div 16 PROCEDURE 

= 
= 

= 
= 

R7 
R8 
R9 
Rl0 
Rll 
R12 
R13 

111111 
11115 
11116 
11117 
448 
449 
450 
451 
452 
1153 
11511 
455 
456 
457 

I··T •••••••••••••••••••••••••••••••••••••••••••••••••• 
Purpose = To perform a 16-bit by ,16-bit unsigned 

binary division. 

458 Input = 
459 
460 
1161 Output = 
462 

RR8 = 16-bit divisor 
RR12 = 16-bit dividend 

RR12 = 16-bit quotient 
RR10 16-bit remainder 
RR8 unmodified 463 

464 
465 

.................. a ....... a··························1 
ENTRY 

1166 ld 
467 ld 
468 rcf 
1169 clr 
470 clr 
1171 dlp 16: rlc 
472 - rlc 
473 rlc 
474 rlc 
475 jr 
476 cp 
477 jr 
478 jr 
479 cp 
480 jr 
481 subt 16: sub 
482 - sbc 
483 scf 
484 skp_16: djnz 
485 rlc 
486 rlc 
487 ld 
488 ret 
489 END div_16 

491 CONSTANT 
492 MULTIPLIER 
493 PRODUCT LO 
494 PRODUCT-HI 
495 mul LEN 
496 GLOBl"L 

TEMP 1,d16 LEN 
d16_tEN,fll'O 

rem hi 
rem-lo 
qUOt 10 
quot-hi 
rem To 
rem-hi 
c ,siTht 16 
dvsr hi,rem hi 
ugt,Skp 16 -
ult,subt ,16, 
dvsr lo,rem 10 
ugt,skp 16-
rem lo,avsr 10 
rem=hi,dvsr=hi 

d16 LEN,dlp 16 
quot 10 -
quot-hi 
d16_t:EN,TEMP_l 

:= 
:= 
:= 

,Rll 
R13 
R12 
Rl0 

Isave caller's Rl0! 
ILOOP COUNTER! 
Icarry = O! 

Ino flags affectedl 

497 multiply PROCEDURE 
498 1············a.ou.Duu ••••• D •• U •• UD.UU ••••• uD.D ••• DD.UD 
499 Purpose = To perform an 8-bit by 8-bit unsigned 
500 binary multiplication. 
501 
502 Input = 
503 
504 

Rl1 = multiplier 
R13 = multiplicand 

505 Output = RR 12 = product 
Rl1 unmodified 506 

507 
508 
509 

·····················································1 ENTRY 

510 
511 
512 
513 LOOP1: 
514 
515 
516 
517 NEXT: 
518 
519 
520 END 

ld 
ld 
clr 
RCF 

TEMP 1,mul LEN 
mul t:EN,fl9-
PRODUCT HI 

RRC PRODUCT HI 
RRC PRODUCT-LO 
jr NC,NEXT-

Isave caller's Rl0f 
! 8 BITS! 
IINIT HIGH RESULT BYTE! 
ICARRY = 01 

ADD PRODUCT HI,MULTIPLIER 
djnz mul_LEN~LOOPl 
ld mul LEN,TEMP 1 Irestore caller's Rl01 
ret - -
multiply 

211 



P 00F6 

P 00F6 79 7C 
P 00F8 7C 11 
P OOFA BO EA 
P OOFC BO EB 
P OOFE CF 
P OOFF CO' EA 
P 0101 CO EB 
P 0103 CO EC 
P 0105 CO ED 
P 0107 FB 04 
P 0109 02 B9 
P 010B 12 A8 
P 010D 7A FO 
P 010F 78 7C 
P 0111 A9 7C 
P 0113 44 EB 7C 
P 0116 AF. 
P 0117 

212 

522 CONSTANT 
523 m16 LEN 
524 prier hi 
525 plier-lo 
526 prod lii 
527 prod-lo 
528 mult-hi 
529 mult-lo 
530 GLOMI: 

:= 
: = 

:= 
:= 
:= 

531 mult 16 PROCEDURE 

R7 
R8 
R9 
R10 
R11 
R12 
R13 

532 I···T ................................................ . 
533 Purpose To perform an 16-bit by 16-bit unsigned 
534 binary multiplication. 
535 
536 ~nput = 
537 
538 

RRe = multiplier 
RR12 = multiplicand 

539 Output = RQ10 = product (R10, R11, R12, R13) 
540 RR8 unmodified 
541 Zero FLAG = 0 if result> 16 bits 
542 = 1 if result fits in 16 
543. (unsigne~) bits (RR12 = result) 

544 ·····················································1 545 ENTRY 
546 
547 
548 
549 
550 

ld 
ld 
clr 
clr 
rcf 

551 100p16: rrc 
552 rrc 
553 rrc 
554 rrc 
555 jr 
556 add 
557 adc 
558 next16: djnz 
559 ld 
560 ld 
561 
562 
563 END 

or 
ret 
mult 16 

TEMP 1,m16 LEN 
m16 1:EN,1I1'T 
prod hi 
prod:lo 

prod hi 
prod-lo 
multoi 
mult-lo 
nc,next16 

!save calle~'s R71 
116 BITSI 

linit product! 
ICARRY = O! 

Ibit 0 to carry 1 
!multiplicand I 21 

prod lo,plier 10 
prod~i,plieroi 
m16 LEN,loop16 Inext bit! 
m16-LEN,TEMP 1 Irestore caller's 
TEMP 1,prod hi Itest product .•• 1 
TEMP:1,prod:lo I ••• bits 31 - 161 

R71 



BCD Arithmetic Routines 

P 0117 

P 0117 B7 EE 80 

P 011A 

593 !The BCD format supported by the following arithmetic 
594 and conversion routines allows representation 
595 of signed magnitude variable precision BCD 
596 numbers. A BCD number of 2n digits is 
597 represented in n+1 consecutive bytes where 
598 the byte at the lowest memory address 
599 ('byte 0') represents the sign and post-
600 decimal digit count, and the bytes in the 
601 next n higher memory locations ('byte l' 
602 through 'byte n') represent the magnitude 
603 of the BCD number. The address of 'byte 0' 
604 and the value n are passed to the subroutines 
605 in specified working registers. Digits are 
606 packed two per byte with the most 
607 significant digit in the high order nibble 
608 of 'byte l' and the least significant digit 
609 in the low order nibble of ' byte n'. 'Byte 0' 
610 is organized as two fields: 
611 bit 7 represents sign: 
612 = 1 => negative 
613 = 0 => positive 
614 bit 6-0 represent post-decimal digit 
615 count 
616 For example: 
617 'byte 0'= 105 => positive, with 5 post-decimal digits 
61e 180 => negative, with no post-decimal digits 
619 %90 => negative, with 16 post-decimal digits 
620 

622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
646 
647 
648 
649 
650 
651 

CONSTANT 
bcd LEN := R12 
bcd-SRC ._ R14 
bcd-DST ._ R15 

GLOBAL 
bcdsub PROCEDURE 
!unu*unnnnunnu*nnftnnnunnnnnunnnuununnnununnuuaununn*** 

Purpose = To subtract two packed BCD strings of 
equal length. 

Input 

Output 

dst <-- dst - src 

R15 address of destination BCD 
string (in register memory). 

R14 = address of source BCD 
string (in register memory). 

R12 BCD digit count I 2 

Destination BCD string contains the 
difference. 
Source BCD string may be modified. 
R12, R14, R15 unmodified if no error 
R 13 modified. 
Carry FLAG = 1 if underflow or format 

error. 
*n*******nn*unnn*****u*******u********u**************! 
ENTRY 

xor 

!fall into bcdadd! 
END bcdsub 

!complement sign of 
subtrahend! 

213 



P 011A 

P011AE6 
P 011D D8 
P011FC9 
P 0121 04 
P 0124 E5 
P 0127 56 
P 012A 24 
P 012D 7D 
P 0130 6B 
P 0132 70 
P 0134 C7 
P 0137 76 
P 013A 50 
P 013C EB 
P 013E BO 
P 0140 D6 
P 0143 21 
P 0145 4D 
P 0148 00 
P 014A EB 
P 014C D8 
P 014E 00 
P 0150 EB 

7E 02 
EE 
7B 
7B 7B 
ED 7D 
7D 7F 
7D 7B 
0203' 
1A 
EC 
CD 01 
EC FO 
EC 
DE 
7C 
0463 ' 
ED 
0203' 
7B 
E6 
EF 
7E 
CD 

P 0152 E3· DF 
P 0154 56 ED 7F 
P 0157 E5 EE 7D 
P 015A 56 7D 7F 
P 015D A4 7D ED 
P 0160 70 ED 
P 0162 7B 39 
P 0164 BB 18 

P 0166 D8 EC 
. P 0168 E9 7C 
P 016A F9 7B 
P 016C 20 7C 
P 016E 20 7B 
P 0170 E5 7C 7E 
P 0173 A5 7B 7E 

214 

653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 
697 
698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 
7111 
715 
716 

GLOBAL 
bcdadd PROCEDURE 
1****************··*···**·*·······**··*·*······.····*· Purpose = To add two packed BCD strings of 

Input 

equal length. 
dst <-- dst + src 

R15 address of destination BCD 
string (in register memory). 

R111 address of source BCD 
string (in register memory). 

R12 = BCD digit count / 2 

Output Destination BCD string contains the sum. 
Source BCD string may be modified. 
R12, R111, R15 unmodified if no error 
R13 modified. 
Carry FLAG = 1 if overflow or format 

error . •• ** •••••••• ** •••• *.* •••••••••••••••••••••••••••••• *.! 
ENTRY 
!delete all leading pre-decimal zeroes! 

ba 2: 

ba 1: 

Id TEMP 3,#2 
Id R13,~cd SRC 
Id TEMP II,Dcd LEN 
add TEMP-II,TEMP II 
Id TEMP-2,@R13-
and TEMP-2,#%7F 
sub TEMP-4,TEMP 2 
jp ult,oa err -
jr z,ba 1-
push R12 -
Id R12,1(R13) 
tm R12,II%FO 
pop R 12 
jr nz,ba 1 
clr TEMP T 
call rdl 
inc @R13 
jp ov,ba err 
dec TEMP li 
jr nz,ba 2 
Id R13,bcd DST 

!total digit count! 
!ge~ sign/post dec #! 
!isolate post dec #! 
!pre-dec digit cnt! 
! format error! 
Ino pre-dec. digits! 
! save! 
!leading byte! 
!test leading digit! 
Irestore! 
Ino more leading O's! 

!rotate left! 
!update post dec #1 
loops! 
!dec pre-dec II! 
! loop! 

dec TEMP 3 - !SRC and DST done?! 
jr nz,ba 3 !do DST! 

!leading zero deletion complete! 
!insure DST is > or = SRCj exchange if necessary! 

Id R13,@bcd DST 
and R13,11%7F- !isolate post dec #! 
Id TEMP 2,@bcd SRC 
and TEMP-2,#%7F- !isolate post dec #! 
cp H13,TEMP 2 
push R13 - !save! 
jr ult,ba II !DST > SHC! 
jr ugt,ba-5 !DST < SRC! 

!decimal points in same position. 
must compare magnitude! 

Id R13,bcd LEN 
Id TEMP 1,Dcd SHC 
Id TEMP-II,bcd-DST 
inc TEMP-1 -
inc TEMP-II 
Id TEMP-3,@TEMP 1 !get SRC byte! 
cp TEM~3,@TEMP=1I !compare DST byte! 



P 0176 BB 
P 0178 7B 
P 017A OA 
P 017C 8B 

P 017E 08 
P 0180 OE 
P 0181 02 
P 0183 02 
P 0185 00 
P 0187 00 
P 0189 E5 
P 018C E5 
P 018F F5 
P 0192 F5 
P 0195 OA 
P 0197 08 
P 0199 50 
P 019B 70 

P 0190 50 

P 019F 24 
P 01A2 CO 
P 01A4 FB 

P 01A6 08 
P 01A8 01 
P 01AA BO 
P 01AC 06 

P OlAF E5 
P 01B2 B5 

P 01B5 08 
P 01B7 24 
P 01BA 6B 
P 01BC 02 
P 01BE 02 

P 01CO CF 
P 01Cl E5 
P 01C4 76 
P 01C7 6B 
P 01C9 35 
P 01CC BB 
P 01CE 15 
P 0101 40 
P 0103 F5 
P 0106 00 
P 0108 00 
P 010A OA 

P 010C 08 
P 010E OE 
P 010F OA 
P 01El 8B 
P 01E3 17 
P 01E6 41 
P 01E8 00 
P OlEA OA 

06 
23 
FO 
1F 

EC 

EO 
FO 
EE 
EF 
EE 7C 
EF 7B 
7B EE 
7C EF 
EE 
70 
70 
EO 

EO 

EO 70 
70 
09 

EE 
EO 
7C 
0485' 

EE 7B 
EF 7B 

EC 
70 EO 
45 
EO 
FC 

EF 7C 
7B 80 
05 
EE 7C 
03 
EE 7C 
7C 
7C EF 
EF 
EE, 
E5 

70 

02 
09 
EF 00 
EF 
EF 
F7 

717 jr ugt,ba 5 
718 jr ult,ba-4 
719 djnz R13,ba-6 
720 jr ba 4 -

!SRC > 
!SRC < 
!loopl 
lOST > 

OST! 
OSTI 

or = SRCI 
721 Iswap source and destination operandsl 
722 ba_5: ld R13,bcd LEN 
723 inc R 13 - !include flag/size by tel 
724 add bcd SRC,R13 
725 add bcd-OST,R13 
726 ba_7: dec bcd-SRC 
727 dec bcd-OST 
728 ld TEMP 1,@bcd SRC 
729 ld TEMP-4,@bcd-OST 
730 ld @bcd-SRC,TEMP 4 
731 ld @bcd-OST,TEMP-l lone byte swapped! 
732 djnz R13,oa 7 -
733 ld R13,TENP 2 
734 pop TEMP 2 -
735 push R13 -
736 !exchange complete I 
737 ba 4: pop R13 !restorel 
738 IR13 = OST post decimal digit count 
739 TEMP 2 = SRC post decimal digit count 
740 R13 ~< TEMP 2 
741 sub -
742 rrc 
743 jr 

TEMP 2,R13 
TEMP-2 
nc,ba 8 

!alignment offset I 
!digits word aligned! 

744 !rotate out least significant 
R13,bcd SRC 
@R13 -

SRC post decimal digitI 
745 ld 
746 dec !dec post dec digit #1 
747 clr TEMP 1 
748 call rdr 
749 !determine if 
750 ba_8: ld 

addition or subtraction! 

751 xor 
TEMP 4,@bcd SRC !sign of SRCI 
TEMP-4,@bcd-OST !sign of OSTI 

752 !get starting 
753 ld 
754 sub 
755 jr 
756 add 
757 add 
758 !ready! I! 
759 rcf 

addresses! -
R13,bcd LEN 
R13,TEMP 2 
z,ba 14 -
bcd SRC,R13 
bcd:OST,bcd_LEN 

760 ba 11: ld TEMP 1,@bcd OST 
761 tm TEMP-4,#~80-
762 jr z,ba-9 
763 sbc TEMP-l,@bcd SRC 
764 jr ba 10 -
765 ba 9: adc TEMP 1,@bcd SRC 
766 ba-l0: da TEMP-l -
767 ld @bcd-OST,TEMP 1 
768 dec bcd UST -
769 dec bcd-SRC 

!done already I 

!carry = O! 

ladd or sub?! 
!addl 

770 djnz R13-;Da 11 
771 Ipropagate carry thru ~EMP 2 bytes of OSTI 
772 ld R 13, TEMP 2-
773 inc R13 - !may be zero! 
774 djnz R13,ba 12 
775 jr ba 13 -
776 ba 12: adc @bcd OST,#O 
777 da @bcd-OST 
778 dec bcd UST 
779 djnz R13~ba_12 

215 



780 Icarry propagate completel 
P 01EC FB 13 781 ba 13: jr nc,ba 14 Idonel 

782 IRotate out least significant post decimal OST 
783 digit to make room for carry at high endl 

P 01EE E5 EF 7C 784 ld TEMP_1,@bcd_OST 
P 01F1 56 7C 7F 785 and TEMP 1, 11'f,7F 
P 01F4 60 0203' 786 jp z,ba-err Ino post dec digit~i 
P 01F7 E6 7C 10 787 ld TEMP1,11$10 
P 01FA 08 EF 788 ld R13,Dcd OST 
P 01FC 06 0485' 789 call rdr -
P 01FF 01 EF 790 dec @bcd_OST Idec digit cntl 
P 0201 CF 791 ba 14: rcf 
P 0202 AF 792 ret 

793 
P 0203 OF 794 ba err: scf 
P 0204 AF 795 ret 
P 0205 796 END bcdadd 

216 



ConverSl.on 

P0205 

P 0205 E6 
P 0208 77 
P 020B EB 
P 020D E6 
P 0210 E5 
P 0213 56 
P 0216 02 
P 0218 70 
P 021A 24 
P 021D 50 
P 021F 7B 
P 0221 D6 
P 0224 7B 
P 0226 A6 
P D229 6B 
P 022B 76 
P 022E EB 
P 0230 DE 
P 0231 E5 
P 0234 FO 
P 0236 E4 
P 0239 56 
P 023C A6 
P 023F BB 
P 0241 06 
P 0244 D6 
P 0247 00 
P 0249 6B 
P 024B CA 
P 024D E6 
P 0250 D6 
P 0253 8B 
P 0255 DF 
P 0256 AF 
P 0257 

P 0257 

P 0257 D6 
P 025A C8 

P 025C 

Routl.nes 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 

7C 2D 
ED 80 
03 
7C 
ED 
7E 
CC 
EC 

2B 
7E 
7F 

7E EC 
7E 
35 
03F4 ' 
30 
EC 00 
22 
7E 01 
04 

ED 7D 
7D 
7D 
7C 
7C 
14 

7C 
OF 
09 

7C 30 
03F4 ' 
7E 
OB 
DE 
7C 2E 
03F4' 
D6 

025C' 
ED 

844 
845 
846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 
878 
879 

881 
882 
883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 

CONSTANT 
bca LEN 
bca-SRC 

GLOBAL 

R12 
R13 

bcddasc PROCEDURE 
!UUnaUDUUUftUUauuunuunnuuuuuu*.aauuu*.u*uuuuuauuuuuuuuu 
Purpose To convert a variable length BCD 

string to decimal ASCII. 

Input RR14 = address of destination ASCII 
string (in reg/ext/ser memory). 

R13 address of source BCD 
string (in register memory). 

R12 BCD digit count / 2 

Output ASCII string in designated 
destination buffer. 
Carry FLAG = 1 if input format error 

or serial disabled, 
= 0 if no error. 

R12, R13, R14, R15 modified. 
Input BCD string ummodified. 

uuuuanuuuufuuu*unuuu*uHUUuuDuuunnuuu*uuu*u*uuu*uuuUUU! 
ENTRY 

ld 
tm 
jr 
ld 

bcd d1: ld 
and 
add 
push 
sub 
pop 
jr 
call 
jr 
cp 

bcd d4: 
jr 
tm 
jr 
inc 
ld 

bcd_d3: swap 
ld 
and 
cp 
jr 
add 
call 
dec 
jr 

bcd d6: 

bcd d5: 
bcd-d2: 
END-

GLOBAL 

djnz 
ld 
call 
jr 
scf 
ret 
bcddasc 

TEMP 1,1/'-' 
@bca-SRC,II%80 
nz,bed d1 
TEMP 1-;-11' +' 
TEMP-3,@bca SRC 
TEMP-3,1I%7F­
bca LEN, bca LEN 
bca-LEN -
bca -LEN, TEMP 3 
TEMP 3 -
ul t, bcd d2 
put dest" 
c,bed d2 
bca LEN,IIO 
z,bed d6 
TEMP 3,1/1 
nz,bcd d3 
bca SRt" 
TEMP 2,@bca SRC 
TEMP-2 -
TEMP-1,TEMP 2 
TEMP-l ,II%OF­
TEMP-l,119 
ugt,bcd d5 
TEMP 1,1%30 
put (fest 
TEMP 3 
z, bed d2 
bca LEN, bed d4 
TEMP 1, II ' • ' 
put (fest 
bcd-d4 

!minus" sign! 
!src negative?! 
ryes! 
Ipositive sign! 

lisolate post dec cnt! 
!total digit count! 

!pre-dec digit cnt! 
!total digit count! 
! format error! 
!sign to dest.! 
!serial errorl 
!any pre-dec digits?! 
!no. start with '.'! 
Ineed next byte?1 
! not yet.! 
! update pointer! 
!get next byte! 

!isolate digit! 
Iverify bcd! 
Ino good! 
!convert to ASCII! 
Ito destination! 
!digit count! 
!all donel 
Inext digitI 
!time for dec. pt.! 
Ito destination! 
!continue! 
!set error return! 

wrdhasc PROCEDURE 
!*nuuu*uu***uun*u*uuDuu*D*unn*uuuuftUUuu*uu*uu**nuuuuuu 
Purpose = To convert a binary word to Hex ASCII. 

Input = RR12 = source binary word. 
RR14 = address of destination ASCII 

string (in reg/ext/ser memory). 

Note = All other details same as for bythasc. 
**u***.*u*.*uuuu* •• UUU***H**_***uuu*uuu.* ••••• I·*···*1 
ENTRY 

call bythasc !convert R121 
ld R12,R13 

!fall into bythascl 
END wrdhasc 

217 



898 CONSTANT 
899 bna SRC . - R12 
.goo GLOBAL 

P 025C 901 bythasc PROCEDURE 
902 ! ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
903 Purpose To convert a binary byte to Hex ASCII. 
9011 
905 Input = RR111 = address of destination ASCII 
906 string (in reg/ext/ser memory). 
907 R12 = Source binary byte. 
908 
909 Output ASCII string in designated 
910 destination buffer. 
911 Carry = 1 if error (serial only). 
912 R111, R15 modified. 
913 ••••••••••••••••••••••••••••••••••••••••••••••••••••• ! 
9111 ENTRY 

P 025C BO 7E 915 clr MODE !flag => binary to ASCII! 
P 025E E6 70 02 916 bca go: ld TEMP 2,112 
P 0261 FO EC 917 bca:go 1: SWAP - bna SRC !look at next nibble! 
P 0263 C9 7C 918 ld TEMP' 1,bna SRC 
P 0265 56 7C OF 919 and TEMP-1 ,II%OF !isolate low nibble! 
P 0268 06 7C 30 920 ADD TEMP-1 ,11%30 !convert to ASCII! 
P 026B A6 7C 3A 921 cp TEMP-1,II%3A !>9?! 
P 026E 7B 09 922 jr ult ,skip !no! 
P 0270 OF 923 SCF lin case error! 
P 0271 76 7E 01 9211 TM MODE,111 !inpiJt is BCD?! 
P 02711 EB 00 925 JR NZ,bca ex ! yes. error.! 
P 0276 06 7C 07 926 ADD TEMP 1-;11%07 !input hex. adjust! 
P 0279 06 03FII' 927 skip: call put dest !put byte in dest! 
P 027C 7B 05 928 jr c,bca ex terror! 
P 027E 00 70 929 dec TEMP '2 
P 0280 EB OF 930 jr nz,bca_g01 !loop till done! 
P 0282 CF 931 RCF !carry = 0: no error! 
P 0283 AF 932 bca ex: ret !done! 
P 02811 933 END- bythasc 

218 



P 0284 

P 0284 BO 
P 0286 BO 
P 0288 E5 
P 028B 56 
P 028E 02 
P 0290 24 
P 0293 7B 
P 0295 E5 
P 0298 E6 
P 029B EE 
P 029C E5 
P 029F A6 
P 02A2 6B 
P 02A4 FO 
P 02A6 E4 
P 02A9 D6 
P 02AC 7B 
P 02AE 00 
P 02BO 00 
P 02B2 EB 
P 02B4 8B 
P 02B6 DF 
P 02B7 76 
P 02BA EB 
P 02BC 76 
P 02BF 6B 
P 02C 1 60 
P 02C3 60 
P 02C5 06 
P 02C8 16 
P 02CB CF 
P 02CC AF 
P 02CD 

EC 
ED 
EE 7B 
7B 7F 
FF 
7B EF 
37 
EE 7B 
7E 02 

EE 7D 
EF 00 
12 
7D 
7D 7C 
042C' 
1E 
EF 
7E 
EB 
E2 

EC 80 
10 
7B 80 
OA 
EC 
ED 
ED 01 
EC 00 

935 
936 
937 
938 
939 
940 
941 
942 
943 
944 
945 
946 
947 
948 
949 
950 
951 
952 
953 
954 
955 
956 
957 
958 
959 
960 
961 
962 
963 
964 
965 
966 
967 
968 
969 
970 
971 
972 
973 
974 
975 
976 
977 
978 
979 
980 
981 
982 
983 
984 
985 
986 
987 
988 

CONSTANT 
bcd adr 
bcd-cnt 

GLOBAL 

R14 
R15 

b'cdwrd PROCEDURE 
! ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Purpose = To convert a variable length BCD 

. string to a signed binary word. Only 
pre-decimal digits are converted. 

Input R14 

R15 

address of source BCD 
string (in register m~mory). 
BCD digit count / 2 

Output = RR12 = binary word 
Carry FLAG = 1 if input format error 

or dest overflow, 
= 0 if no error. 

R14,R15 modified • •••••••••••••••••••••••••••••• ** ••••••••••••••••••••• ! 
ENTRY 

bcd w1: 

bcd,-w4: 

clr 
clr 
ld 
and 
add 
sub 
jr 
ld 
ld 
inc 
ld 
cp 
jr 
swap 
ld 
call 
jr 
dec 
dec 
jr 
jr 
scf 
tm 
jr 

bcd_w5: tm 
jr 
com 
com 
add 

bcd w6: 
bcd-w2: 
END-

adc 
rcf 
ret 
bcdwrd 

R12 
R13 
TEMP 4,@bcd adr 
TEMP-4,1I'/.7F­
bcd ent,bcd cnt 
bcd-cnt,TEMP 4 
ult-;bcd w2 -
TEMP 4,lbcd adr 
TEMP-3,112 -
bcd adr 
TEMP 2,@bcd adr 
bcd ent,IIO -
z,bcd w4 
TEMP '2" 
TEMP-1, TEMP 2 
bcd Din -
c ,bed w2 
bcd cot 
TEMP 3 
nz,bcd w1 
bcd_W3-

H12,11'/.80 
nz,bcd w2 
TEMP 4-;11'/.80 
z, bca w6 
R12 -
R13 
R13,1I1 
R12,110 

!init destination 1 

Iget sign/post length! 
!isolate post Tength! 
!II bcd digitsl 
!II pre-dec digits! 
! format error! 
!remember sign! 
!digits per byte! 
!src address! 
!get next src byte! 
!digit count = O?! 
Iconversion complete! 
!next digit! 

laccumulate in binaryl 
!overflow or format err! 
lupdate digit count! 
!nextbyte?! 
!no. same.! 
!next byte! 
! in case! 
!result > 15 bits?! 
!overflow! 
!spurce negative?! 
!no. done.! 

!RR12 two's complement! 
!carry = 01 

219 



990 GLOBAL 
PROCEDURE P 02CD 991 wrdbcd 

992 ! ••••• ** ••••••••••••••••• *** ••••••••• *** •••• ** •••••••• 
993 ' Purpose To convert a signed binary word 
9911 to a variable length BCD string. 
995 
996 Input = R111 = address of destination BCD 
997 string (in register memory) 
998 RR12 = source binary word 
999 R15 = BCD digit count / 2 

1000 
1001 Output = BCD string in destination buffer 
1002 Carry FLAG = 1 if dest overflow 
1003 = 0 if no error. 
10011 R12,R13,R111,R15 modified. 
1005 ·····················································1 1006 ENTRY 

P 02CD B1 EE 1007 clr @bcd adr linit sign/post dec cntl 
P 02CF 76 EC 80 1008' tm R12,n80 lis input word nega~ive? 
P 02D2 6B OD 1009 jr z,wrd bO 
P 02DII 117 EE 80 1010 or @bcd_adr ,11%80 Iset result negativel 
P 02D7 60 ED 1011 com R13 
P 02D9 60 EC 1012 com R12 
P 02DB 06 ED 01 1013 add R 13,111 
P 02DE 16 EC 00 10111 adc R12,110 IRR12 two's complement I 
P 02E1 10 ED 1015 wrd bO: rlc R13 
P 02E3 10 EC 1016 rlc R12 Ibit 15 not magnitude! 
P 02E5 EE 1017 inc bcd adr lupdate dest pointer! 
P 02E6 E9 7C 1018 ld TEMtr_1, bcd_adr 
P 02E8 F9 7D 1019 ld TEMP 2,bcd cnt Idest byte countl 
P 02EA 011 EF 7C 1020 add TEMP:1 ,bcd:cnt 
P 02ED 00 7C 1021 dec TEMP 1 1= bcd end addrl 
P 02EF B1 EE 1022 wrd b1: clr @bcd-adr !initialize destl 
P 02F 1 EE 1023 inc bcd adr 
P 02F2 FA FB 10211 djnz bcd:cnt,wrd_ b1 
P 02FII E6 7E OF 1025 ld TEMP 3,1115 !source bit count! 
P 02F7 70 7E 1026 wrd_b3: push TEMP:3 
P 02F9 10 ED 1027 1'lc R13 
P 02FB 10 EC 1028 rlc R12 Ibit 15 to carry! 
P 02FD E8 7C 1029 ld bcd adr,TEMP !start at endl 
P 02FF F8 7D 1030 ld bcd-cnt,TEMP-2 !dest byte count I 

1031 !(dest bcd string) <-- (dest-bcd string. 2) + carry! 
P 0301 E5 EE 7E 1032 wrd b2: ld TEMP _3 ,@bcd_adr 
P 03011 15 EE 7E 1033 adc TEMP 3,@bcd adr !. 2 + carry! 
P 0307 40 7E 1034 da TEMP-3 -
P 0309 F5 7E EE 1035 ld @bcd-adr,TEMP 3 
P 030C 00 EE 1036 , dec bcd adr - Inext two digits! 
P 030E FA F1 1037 ,djnz bcd-cnt,wrd b2 Iloop for all digits I 
P 0310 50 7E 1038 pop TEMP 3 - Irestore src bit cntl 
P 0312 7B 04 1039 jr c,wrd ex !dest. overflowl 
P 0314 00 7E 1040 dec TEMP '3" 
p 0316 EB DF 1041 jr nz,wrd_b3 !next bitl 
P 0318 AF 1042 wrd ex: ret 
P 0319 10113 END- wrdbcd 

220 



1045 GLOBAL 
P 0319 1046 hascwrd PROCEDURE 

1047 !****I*.**********************.*.**.**o****** ••• ****** 
1048 Purpose To convert a variable length Hex 
10119 ASCII string to binary. 
1050 
1051 Input = RR14 addres& of source ASCII 
1052 string (in reg/ext/ser memory) . 
1053 
1054 Output RR12 = binary word (any overflow 
1055 high order digits are truncated 
1056 without error). 
1057 Carry FLAG = 1 if input error 
1058 (serial only) 
1059 (SER fIg indicates cause) 
1060 =-0 if no error 
1061 R14, R15 modified 
1062 
1063 Note = The ASCII input string processing is 
1064 terminated with the occurrence of a 
1065 non-hex ASCII character. 
1066' **************************************I**************! 
1067 ENTRY 

P 0319 BO 7E 1068 clr TEMP_3 
P 031B BO EC 1069 clr R12 
P 031D BO ED 1070 clr R13 linit output! 
P 031F D6 03DA' 1071 has c,l: call get src !get input! 
P 0322 7B 28 '.1072 jr c ,has_ex 1 terror! 
P 0324 D6 040D' 1073 call ver asc !verify hex ASCII! 
P 0327 7B 22 1074 jr c,has ex lend conversion! 
P 0329 A6 7C 39 1075 cp TEMP",II%39 
P 032C 3B 03 1076 jr ule,nas_c2 
P 032E 26 7C 37 1077 sub TEMP 1,11%37 

1078 ! Shift left one nibbTe! 
1079 ! In sert new nibble in least significant nibble! 

P 0331 FO ED 1080 has c2: swap R13 
P 0333 D9 7D 1081 ld TEMP 2,R13 
P 0335 56 ED FO 1082 and R13,7J%FO 
P 0338 56 7C OF 1083 and TEMP 1, II'J,OF 
P 033B 44 7C ED 1084 or R13,'l'EMP_l 
P 033E FO EC 1085 swap R12 
P 0340 56 EC FO 1086 and R 12, II%FO 
P 0343 56 7D OF 1087 and TEMP 2, II%OF 
p 0346 44 7D EC 1088 or R12,TEMP_2 
P 0349 8B D4 1089 jr has cl !loop! 
P 034B CF 1090 has ex: rcf Ino el'ror! 
P 034C AF 1091 has-exl :ret 
P 034D 1092 END- hascwrd 

221 



P 0340 

P 0340 CC 
P 034F DC 
P 0351 04 
P 0354 06 
P 0357 7B 
P 0359 EC 
P 035B 04 
P 035E FC 
P 0360 80 
P 0363 

222 

03 
08 
FD ED 
0363' 
F3 
08 
FD EE 
03 
0284' 

1094 
1095 
1096 
1097 
1098 
1099 
1100 
1101 
1102 
1103 
1104 
1105 
1106 
1107 
1108 
1109 
1110 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
1120 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 

GLOBAL 
dascwrd PROCEDURE 
!***********.*.******* •• ***.,.* •••• *******,.** •• ****** 
Purpose To convert a variable length decimal 

ASCII string to signed binary. 

Input = 

Output 

RR14 = address of source ASCII 
string (in reg/ext/ser memory). 

RR12 = binary word 
R8,R9,R10,R11 holds the packed BCD 
version of the result. 
Carry FLAG = 1 if input error 

(serial only) 
(SER flg indicates cause) 

- or dest overflow 
= 0 if no error 

R14, R15 modified 

Note The ASCII input string processing is 
terminated with tlie occurrence of a 
non-decimal ASCII character. 
Decimal ASCII string may be no more 
than 6 digits in length, else Carry 
will be returned. 
Post decimal digits are not included 
in the binary result. 

••• * ••• * •••••••••••• *** •••••••••••••••••••••••••••••• ! 
ENTRY 

ld R 12,113 !6 digitsl 
ld R13,118 Itemp addr =! 
add R 13, RP ! R8 thru R11! 
call dascbcd !convert to bcd! 
jr c,has ex1 !errorl 
ld R 14, II'S" 
add R14,RP 
ld R15,113 
jp bcdwrd Iconvert to binary! 

END dascwrd 



P 0363 

P 0363 70 
P 0365 70 
P 0367 B1 
P 0369 DE 
P 036A CA 
P 036C B1 
P 036E 50 
P 0370 50 
P 0372 E6 
P 0375 BO 

P 0377 D6 
P 037A 7B 
P 037C 56 
P 037F 76 
P 0382 EB 
P 0384 A6 
P 0387 6B 
P 0389 A6 
P 038C EB 
P 038E B7 
P 0391 8B 
P 0393 5B 
P 0395 A6 
P 0398 EB 
P 039A 46 
P 039D 8B 
P 039F D6 
P 03A2 7B 
P 03A4 46 
P 03A7 D6 
P 03AA EB 
P 03AC 76 
P 03AF 6B 

EC 
ED 
ED 

FB 
ED 
ED 
EC 
7E 01 
7B 

03DA' 
41 
7C 7F 
7B 03 
OF 
7C 2B 
EE 
7C 2D 
07 
ED 80 
E4 
OA 
7C 2E 
05 
7B 03 
D8 
040D' 
16 
7B 01 
0463' 
09 
7B 02 
C6 

1134 
1135 
1136 
1137 
1138 
1139 
1140 
1141 
1142 
1143 
1144 
1145 
1146 
1147 
1148 
1149 
1150 
1151 
1152 
1153 
1154 
1155 
1156 
1157 
1158 
1159 
1160 
1161 
1162 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
1171 
1172 
1173 
1174 
1175 
1176 
1177 
1178 
1179 
1180 
1181 
1182 
1183 
1184 
1185 
1186 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 

CONSTANT 
dab LEN 
dab-DST 

GLOBAL 

R12 
R13 

dascbcd PROCEDURE 
!UUUU*UfUUUUUUHUUUUUUUUUUUUHU****URUU***************** 
Purpose To convert a variable length decimal 

ASCII string to BCD. 

Input = 

Output 

R13 = address of destination BCD 
string (in register memory). 

RR14 = address of source ASCII 
string (in reg/ext/ser memory). 

R12 = BCD digit count I 2 

BCD string in designated destination 
buffer (any overflow high order 
digits are truncated without error). 
Carry FLAG = 1 if input error 

(serial only) 
(SER fIg indicates cause) 

- or overflow 
R14, R15 modified. 

Note = The ASCII input string processing is 
terminated with the occurrence of a 
non-decimal ASCII character. 

uuuuuuuo*uuuu*uuounuuDuuuuuuauuauunu******DDHDU**D*UO! 
ENTRY 

.push 
push 

das_g1: clr 
inc 
djnz 
clr 
pop 
pop 
ld 
clr 

das_g2: call 
jr 
and 
tm 
jr 
cp 
jr 
cp 
jr 
xor 

das g5: 
das=g4: 

jr 
jr 
cp 
jr 
or 
jr 
call 
jr 
or 
call 
jr 
tm 
jr 

dab LEN 
dab-DST 
@dab DST 
dab nST 
dab-LEN,das g1 
@dao DST -
dab OST 
dab-LEN 
TEMP 3,111 
TEMP-4 

get src 
c,dab ex1 
TEMP 1", 11%7F 
TEMP-4 ,11%03 
nz,das g5 
TEMP 1~/1'+' 
z,das g2 
TEMP 1,11'-' 
nz,das g4 
@dab D"ST,II%80 
das &2 
mi ,das g6 
TEMP 1~UI.1 
nz,das g6 
TEMP 4~11%03 
das3"2 
ver asc 
c,dab ex 
TEMP 4,11%01 
rdl -
nz,das g7 
TEMP 4~1I%02 
z,das_g2 

! save! 

!init. destination! 

! init.! 
!restore! 

! for ver asc! 
!bit 0 => digit seen; 
bit 1 => dec pt seen; 
bit 7 => overflow! 

!get input byte! 
!serial error! 
!7-bit ASCII! 
'check status! 
sign char not valid! 
positive?! 
yes. no affect! 
negative? ! 
not sign chari 
complement sign! 
get next input! 
dec pt has been seen! 
is char dec pt?! 
nope .! 
dec pt and digit seen! 
get next input! 
is bcd digit?! 

lend conversion.! 
!digit seen! 
!new digit to dest! 
!overflow! 
!post dec digit?! 
!no. get next input! 

223 



P 03B1 21 ED 1198 inc @dab DST Iinc post dec cnt! 
P 03B3 8B C2 1199 jr das g2 !get next input! 
P 03B5 46 7B 80 1200 das_g7: or TEMP 4,0%80 !set overflow! 
P 03B8 8B BD 1201 jr das_g2 !get next input! 

1202 
P 03BA E4 7B FC 1203 dab ex: ld FLAGS,TEMP_4 !carry = 0 or 1! 
P 03BD AF 1204 dab-ex1: ret 
P 03BE 1205 END- dascbcd 

1207 GLOBAL 
P 03BE 1208 wrddasc PROCEDURE 

1209 1 ••••••••••• 11 ••• ** ••••••••••••••••••••••••••••••••••• 
1210 Purpose = To convert a signed binary word to 
1211 decimal ASCII 
1212 
1213 Input RR12 source binary word. 
1214 RR14 = address of dest (in reg/ext/ser 
1215 memory). 
1216 
1217 Output Decimal ASCII in dest buffer. 
1218 R8,R9,R10,R11 holds the packed BCD 
1219 version of the result. 
1220 R12, R13, R14, R15 modified. 
1221 ·····················································1 1222 ENTRY 

P 03BE 70 EE 1223 push R14 
P 03CO 70 EF 1224 push R15 !save dest addr! 
P 03C2 EC 08 1225 ld R14,118 
P 03C4 04 FD EE 1226 add R14,RP IR8,9,10 & 11 tempI 
P 03C7 FC 03 1227 ld R15,113 Itemp byte length I 
P 03C9 06 02CD' 1228 call wrdbcd Iconvert input word! 
P 03CC 50 EF 1229 pop R15 
P 03CE 50 EE 1230 pop R14 Irestore dest addr! 
P 03DO CC 03 1231 ld R12,113 Ilength of temp! 
P 03D2 DC 08 1232 ld R13,118 
P 03D4 04 FD ED 1233 add R13,RP laddr of tempI 
P 03D7 8D 0205' 1234 jp bcddasc Iconvert to ASCII I 
P 03DA 1235 END wrddasc 

224 



P 03DA 

P 03DA CF 
P 03DB EE 
P 03DC EA 
P 03DE FE 
P 03DF FA 
P 03E1 8D 
P 03E4 70 
P 03E6 82 
P 03E8 B9 
P 03EA 50 
P 03EC AO 
P 03EE AF 
P 03EF E5 
P 03F2 FE 
P 03F3 AF 
P 03F4 

P 03F4 

P 03F4 EE 
P 03F5 EA 
P 03F7 FE 
P 03F8 FA 
P 03FA 8D 
P 03FD 70 
P 03FF B8 
P 0401 92 
P 0403 50 
P 0405 AO 
P 0407 AF 
P 0408 F5 
P 040B FE 
P040C AF 
P 040D 

06 

OE 
OOOOu 
EB 
BE 
7C 
EB, 
EE 

EF 7C 

06 

OE 
0000· 
EB 
7C 
BE 
EB 
EE 

7C EF 

1237 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 
1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
1268 
1269 
1270 
1271 
1272 
1273 
1274 
1275 
1276 
1277 
1278 
1279 
1280 
1281 
1282 
1283 
1284 
1285 
1286 
1287 
1288 
1289 

GLOBAL !for PART II only! 
get src PROCEDURE 
!~*vu************v*a****** ••• *****u****.*.u* •• ****.*** 
Purpose To get source byte from 

reg/ext/ser memory into TEMP_1. 

Output Carry FLAG = 1 if e~ror (serial) 
= 0 if all ok 

TEMP 1 = source byte. 
RR 14-updated. 

uUUUUUUIUUUUUuu*uu*nnuuunuluu*.U*.*uuu*u**u***.***.**! 
ENTRY 

rcf 
inc 
djnz 
inc 
djnz 
jp 
push 
Ide 
ld 
pop 
incw 
ret 

get_52: ld 
inc 

END 
ret 
get_src 

R14 
R14,get s1 
R15 -
R15,get 52 
ser get­
R11-
R11,@RR14 
TEMP 1,R11 
R11 -
RR14 

TEMP 1,@R15 
R15 -

!set good return code! 
!test R14 = O! 
!src in ext memory! 
!test R15 = O! 
!src in reg memory! 
!src in ser memory! 
!save user's! 
!get byte! 
Imove to common! 
!restore pser'sl 
! update src ptr! 

!get byte! 
!update src ptr! 

GLOBAL !for PART II only! 
put dest PROCEDURE 
t**T** •• fuuun*n*uuuuuiI*uuuuu* •• *u*****.**u**** •• ****nu 
·Purpose = To store destination byt~ from TEMP 1 

into reg/ext/ser memory 

Output = RR14 updated. 
UUU***UUilnnu*uunuuu*nnuuanauuuanUUilnuuuunuuu*u***uuu*t 
ENTRY . 

inc 
djnz 
inc 
djnz 
jp 
push 
ld 
Ide 
pop 
incw 
ret 

put_52: ld 
inc 

END 
ret 
put_dest 

R14 
R14,put 51 
R15 -
R15,put s2 
ser output 
R11-
R11, TEMP 1 
@RR14,R1T 
R11 
RR14 

@R15,TEMP 
R15 -

Itest R14 = O! 
!dest in ext memory! 
!test R15 = O! 
!dest in reg memoryl 
Idest in ser memory! 
!save user's! 

!restore user's! 

225 



P 040D 

P 040D 56 
P 0410 A6 
P 0413 7B 
P 0415 A6 
P 0418 7B 
P 041A 76 
P 041D EB 
P 041F 56 
P 0422 A6 
P 0425 7B 
P 0427 A6 

P 042A EF 
P 042B AF 
P 042C 

P 042C 

P 042C 56 
P 042F A6 
P 0432 BB 
P 0434 02 
P 0436 12 
P 0438 7B 
P 043A 70 
P 043C 70 
P 043E 02 
P 0440 12 
P 0442 7B 
P 0444 02 
P 0446 12 
P 0448 7B 
P 044A 04 
P 044D 16 
P 0450 7B 
P 0452 50 
P 0454 04 
P 0457 50 
P 0459 14 
P 045C AF 

P 045D 50 
P 04'5F 50 
P 0461 DF 
P 0462 AF 
P 0463 

226 

7C 
7C 
16 
7C 
10 
7E 
OB 
7C 
7C 
04 
7C 

7C 
7C 
2D 
DD 
CC 
27 
EC 
ED 
DD 
CC 
19 
DD 
CC 
13 
7C 
EC 
OB 
7C 
7C 
7C 
7C 

7C 
7C 

7F 
30 

3A 

01 

DF 
41 

47 

OF 
09 

ED 
00 

ED 

EC 

1291 
1292 
1293 
1294 
1295 
1296 
1297 
1298 
1299 
1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 
1313 
1314 
1315 
1316 
1317 
1318 
1319 
1320 
1321 
1322 

1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
1351 
1352 
1353 
1354 
1355 
1356 
1357 
1358 
1359 
1360 
1361 

CONSTANT 
MODE 
char 

INTERNAL 

TEMP 3 
TEMP-1 

ver asc PROCEDURE 
I··T ••••••• ** ••• * •• *, •••••••••••• *** •••••• **.*.* •••••• 
Purpose To verify input character as valid 

hex or decimal ASCII. 

Input 

Output = 

'TEMP 1 8-bit input 
TEMP=3 = 0 => test for hex, 

1 => test for decimal 

Carry FLAG = 0 if no error 
1 if error. 

**** •• *.*.* •• *'*'*.**'* •••••• *.*.' ••• '.*.'** ••• ' •• '.'! 
ENTRY 

ver ok: 

and 
ep 
jr 
ep 
jr 
tm 
jr 
and 
cp 
jr 
ep 

ver ere: eef 
ver-err: ret 
END- ver ase 

INTERNAL 

char,U%7F 17-bit ASCII! 
char,II'O' !range start: 'O'! 
ult,ver err !no good! 
char,H'9'+1 Idee range end: '9'! 
ult,ver ok fall's weIll 
MODE,H1- !dec or hex?! 
nz,ver ere !no goodl 
char,IILNOT('a'-'A') !insure upper case! 
char,H'A' Icheck A-F range I 
ult,ver err Ino good! 
ehar,U'F'+1 lend hex range! 

Icomplement carry! 

bcd bin PROCEDURE 
!**T.* •• *.*** ••••••••••• *.** ••••••••••• * ••••• * •••• ** •• 
Purpose To convert next bed digit to binary. 

Input = TEMP_1 = digit 

Output = RR12 = RR12 • 10 + digit ••••••••••••••••••••••••••• *.** •••••••••••••••••• ***.! 
ENTRY 

and 
ep 
jr 
add 
ade 
jr 
push 
push 
add 
ade 
jr 
add 
ade 
jr 
add 
ade 
jr 
pop 
add 
pop 
ade 
ret 

bed b2: pop 
pop 

bed b1: sef 
ret 

END bed bin 

TEMP 1, H%OF 
TEMP-1,119 
ugt,bcd b1 
R13,R13-
R12,R12 
e,bed b1 
R12 -
R13 
R13, R13 
R12,R12 
e,bed b2 
R13,RT3 
R12, R12 
e,bed b2 
R13, TEMP 
R12,110 -
e,bed b2 
TEMP T 
R13,TEMP 
TEMP 1 -
R12,TEMP_1 

TEMP 1 
TEMP-1 

!isolate digitI 
!verify validl 
terror! 

12x! 
! overflow! 

!4xl 
!overflow! 

!8x! 
! overflow! 

!8x + dl 
!overflowl 

! 10x + d! 

!restore stack! 
terror! 



1363 CONSTANT 
1364 s len . - R12 
1365 s-adr . - R13 
1366 INTERNAL 

P 0463 1367 rdl PROCEDURE 
1368 !v.*u***un.*.***ua.**a.*uuuau**.*au*uu*.u**.uu*uauaa** 
1369 Rotate Digit Left 
1370 
1371 Input = R12 = BCD string length 
1372 R13 = BCD string address 
1373 TEMP 1 bit 3-0 = new digit 
1374 
1375 Output BCD string rotated left one digiti ' 
1376 new digit inserted in units positlon. 
1377 TEMP 1 bit 3-0 = digit rotated out 
1378 of high order digit position 
1379 bit 7-4 = 0 
1380 Zero FLAG = 1 if TEMP_l <>0 
1381 R12, R13 unmodified 
1382 **.*.uu*u* ••• *u •• uI.*.ufuau*unuueuuuu*u*u*.* •••• e •• u*1 
1383 ENTRY 

P 0463 70 EC 1384 push s len 
P 01165 02 DC 1385 add s-adr,s len !address of units place! 
P 0467 Fl ED 1386 rdl 01: swap @s adr -
P 0469 E5 ED 7D 1387 Id TEMP 2,@s adr 
P 046C 57 ED FO 1388 and @s adr,n:F'O ! isolate digiti 
P 046F 56 7C OF 1389 and TEMP 1, 1110 OF !isolate new digit! 
P 0472 45 ED 7C 1390 or TEMP-l,@s adr 
P 0475 F5 7C ED 1391 Id @s adr, TEMP 1 ! save new byte I 
P 0478 E4 7D 7C 1392 Id TERp _1 , TEMP:2 
P 047B 00 ED 1393 dec s adr !back-up pointer! 
P 047D CA E8 1394 djnz s-len,rdl 01 Iloop till donel 
P 047F 56 7C OF 1395 and TEMP 1,1/100F told high order digitI 
P 0482 50 EC 1396 pop s len Irestore R12! 
P 0484 AF 1397 ret 
P 0485 1398 END rdl 

1400 INTERNAL 
P 0485 1401 rdr PROCEDURE 

1402 !***************u***************************.***e.**** 
1403 Rotate Digit Right 
1404 
1405 Input = R12 = BCD string length 
1406 R13 = BCD string address 
1407 TEMP_l bit 7-4 = new digit 
1408 
1409 Output BCD string rotated right one digit; 
141.0 new digit inserted in high order 
141.1 position. 
1412 R12 unmodified 
1413 R13 modified 
1414 fuuunuuuunuu*.*uu*uuuu**uuuuuuuuuuuuu**uuunnnuuuuuuu*1 
1415 ENTRY 

P 0485 70 EC 1416 push s len 
P 0487 DE 1417 rdr 01: inc s-adr 
P 0488 Fl ED 1418 swap @s adr 
P 048A E5 ED 7E 1419 Id TEMP 3,@s adr 
P 048D 57 ED OF 1420 and @s adr,11100F !isolate d igi t! 
P 0490 56 7C FO 1421 and TEMP 1,111oFO !isolate new digit! 
P 0493 45 ED 7C 1422 or TEMP:1,@s_adr 
P 0496 F5 7C ED 1423 Id @s adr,TEMP 1 ! save new byte! 
P 0499 E4 7E 7C 1424 Id TEMP _ 1 , TEMP:3 
P 049C CA E9 1425 djnz s len,rdr 01 !loop till done I 
P 049E 50 EC 1426 pop s-len - !restore R12! 
P 04AO AF 1427 ret 
P 04A1 1428 END rdr 

227 



B~t Manipulation Routines 

P 04A 1 

P 04Al E6 7C 08 
P 04A4 BO 70 
P 04A6 go EC 
P QUA8 90 ED 
P 04AA FB 06 
P 04AC EO EC 
P 04AE 90 EC 
P 04BO 10 70 

P 04B2 00 7C 
P 04B4 EB FO 
P 04B6 C8 70 
P 04B8 AF 
P 04B9 

228 

R12 
R13 

1460 
1461 
1462 
1463 
1464 
1465 
1466 
1467 
1468 
1469 
1470 
1471 
1472 
1473 
1474 
1475 
1476 
1477 
1478 
1479 
1480 
1481 
1482 
1483 
1484 
1485 
1.486 
1487 
1488 
1489 
1490 
1491 
1492 no 
1493 
1494 
1495 
1496 
1497 

PROCEDURE· 

CONSTANT 
tjm bits 
tjm-mask 

GLOBAL 
clb 
!**.** •••• ****~.*** •• *.**.***** •••• *** ••• * •• **.***.*** 
Purpose = To collect selected bits in a byte 

into adjacent bits in the low order 
end of the byte. Upper bits in byte 
are set to zero. 

Input 

Output 

Note = 

R12 
R13 

input byte 
mask. Bit = 1 => corresponding 

input bit is selected. 

R12 = collected bits 

For example: 
Input; R12 

R13 
%(2)01110110 
%(2)10000101 

Output : R12 %(2)00000010 
***************************** ••• *********************! 
ENTRY 

ld 

next 1: 
clr 
rl 
rl 
jr 
rr 
rl 
rIc 

END 

select: 
dec 
jr 
ld 
ret 
clb 

TEMP 1,118 
TEMP-2 
tjm iii ts 
tjm-mask 
nc,no select 
tjm bTts 
tjm-bits 
TEM1\" 2 

TEMP 1 
nz,nextl 
R12,TEMP"':2 

!bit count! 
!bits collected here! 
!bit 7 to bit 01 
!bit7 to carry! 
!don't use this bit! 

!bit 7 to 0 and carry! 
!collect source bit! 

Irepeat! 



P 04B9 

P 04B9 D6 04A l' 
P 04BC 02 CC 
P OUBE 16 EE 00 
P 04C1 02 FC 
P 04C3 16 EE 00 
P 04C6 C2 DE 
P 04Ce AO EE 
P 04CA C2 FE 
P 04CC E8 ED 

P 04CE 30 EE 

P 0400 

o er!"ors 
Assembly complete 

1499 
1500 
1501 
1502 
1503 
1504 
1505 
1506 
1507 
1508 
1509 
1510 
1511 
1512 
1513 
1514 
1515 
1516 
1517 
1518 
1519 
1520 
1521 
1522 
1523 
1524 
1525 
1526 
1527 
1528 
1529 
1530 
1531 
1532, 
1533 
1534 
1535 
1536 

CONSTANT 
tjm tabh 
tjm-tabl 
tjm-tab 

GLOBAL 

R14 
R15 
RR14 

tjrn PROCEDURE 
!*****n**u********n****uun****u****unu*uu************* 
Purpose = To take a jump to a routine address 

determined by the state of selected 
bits in a source byte. A bit 

Input 

is 'selected' by a one in the 
corresponding position of a mask. 
The 'selected' bits are packed into 
adjacent bits in the low order end of 
the byte. This value is then doubled, 
and used as an index into the jump 
table. 

RR14 = address of jump table in 
program memory. 

R12 = input data 
R13 = mask 

*****************************************************1 
ENTRY 

call 
add. 
adc 
add 
adc 
ldc 
incw 
ldc 
ld 

jp 

END tjm 
END PART I 

clb !~ollect select~d bits! 
tjm bits,tjm bits !collected bits U 21' 
tjm-tabh,#O - lin case carry! 
tjm-tabl,tjm bits 
tjm-tabh,#O - !tjm tab points to .•• ! 
tjm-mask,@tjm tab !.~.table entry! 
tjm-tab -
tjm-tabl,@tjm tab !get table entry ... ! 
tjm=tabh,tjm_mask ! ..• into tjm_tab!' 

!byel 

229 



Z8ASM 3.02 
LOC OBJ CODE 

230 

ROMLESS Z8 SUBROUTINE LIBRARY P~RT II 

STMT SOURCE STATEMENT 

1 
2 
3 PART II MODULE 
4 
5 
6 !'ROMLESS Z8' 
7 
9 CONSTANT 

10 !Register Usage! 
11 
12 RAM START 

P3M save 
TEMP 3 
TEMP-2 
TEMP-1 
TEMP-4 

SUBROUTINE LIBRARY 

: = 

%7F 

RAM START 
P3M-save-1 
TEMP" 3-1 
TEMP-2-1 
TEMP-1-1 

PART II 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

IThe following registers are modified/referenced 
by the Serial Routines ONLY. They are 
available as general registers to the user 
who does not intend to make use of the 
Serial Routines! 

26 SER char . _ TEMP 4-1 
27 SER tmp2 
28 SER-tmp1 
29 SER-put 
30 SER-len 
31 SER-buf 
32 SER-imr 

._ SER char-1 

._ SER-tmp2-1 

._ SER-tmp1-1 

._ SER-put-1 

._ SER-len-2 

._ SER-buf-1 

._ SER-imr-1 
Configuration Data 
=1 => odd parity on 

: =1 => even parity on 

33 SER-c fg 
34 ! Serial 
35 bit 7 
36 bit 6 
37 (bi t 
38 bit 5 
39 bit 4 
40 bit 3 
41 bit 2 
42 bit 1 
43 bit 0 
44 I 

6,7 = 11 => undefined) 

45 op 
46 ep 
47 ie 
48 al 
49 be 
50 ec 
51 SER get 
52 SER-flg 
53 !Serial 
54 bit 7 
55 bit 6 
56 bit 5 
557 bit 4 

8 bit 3 
59 bit 2 
60 bit 1 
61 bit 0 
62 I 
63 sd 
64 pe 
65 bd 
66 bo 
67 bne 
68 bf 
69 

undefined 
undefined 
=1 => input editting on 
=1 => auto line feed enabled 
=1 => BREAK detection enabled 
=1 => input echo on 

: = 

%80 
%40 
%08 
%04 
%02 
%01 

Status Flags 

SER cfg-1 
SER:=get-1 

=1 => serial I/O disabled 
undefined 
undefined 
=1 => parity error 
=1 => BREAK detected 
=1 => input buffer overflow 
=1 => input buffer not empty 
=1 => input buffer full 

= 
= 

= 

%80 
%10 
%08 
%04 
%02 
%01 



70 RAM TMR 
71 
72 SERltime 
73 SERhtime : = 

SER flg-1 
SERltime-1 

711 
75 
76 
77 
78 
79 
80 

!The following registers are modified/referenced 
by the Timer/Counter Routines ONLY. They are 
available as general registers to the user 
who does not intend to make use of the 
Timer/Counter Routines! 

81 TOD,tic 
82 TOD-imr 
83 TOD-hr 
811 TOD-min 
85 TOD-sec 
86 TOD-tt 
87 PLS-1 
88 PLS-tmr 
89 PLS-2 
90 -
91 RAM END 
92 STACK 
93 

. := 
:= 

:= 

: = 

RAM TMR-2 
TOD-tic-1 
TOD-imr-1 
TODnr-1 
TOD-min-1 
TOD-sec-1 
TOD-tt-1 
PLS-1-1 
PLS=:tmr-1 

911 IEquivalent working register equates 
95 for above register layout! 
96 
97 Iregister file $70 - $7F! 
98, RAM STARTr ' : = $70 
99 

100 rP3Msave 
101 rTEMP 3 
102 rTEMP-2 
103 rTEMP-1 
1011 rrTEMP 1 
105 rTEMP 1h 
106 rTEMP-U 
107 rTEMP-1I 
108 rSERcnar 
109 rSERtmp2 
110 rSERtmp 1 
111 rrSERtmp 
112 rSERtmpl 
113 rSERtmph 

,1111 rSERput 
115 rSERlen 
116 rrSERbuf 
117 rSERbufh 
118 rSERbufl 
119 rSERimr 
120 rSERcfg 
121 rSERget 
122 rSERflg 
123 
1211 

, 125 
T26 
127 
128 
129 
130 
131 
132 
133 
1311 
135 

Iregister 
RAM TMRr 
rTO'Utic 
rTODimr 
rTODhr 
rTODmln 
rTODsec 
rTODtt 
rPLS 1 
rPLStmr 
rPLS_2 

:= 

: = 

: = 

: = 
:= 

:= 
:= 
:= 
:= 

:= 
:= 

:= 
:= 
: = 

file f60 

:= 
: = 
:= 
: = 

!= 

R15 
R111 
R13 
R12 
RR12 
R12 
R13 
R11 
R10 
R9 
R8 
RR8 
R9 
R8 
R7 
R6 
RRII 
HII 
R5 
R3 
R2 
R1 
RO 

- $6F! 
$60 
R13 
R12 
R 11 
R10 
R9 
R8 
R7 
R6 
R5 

! for SRP! 

I for SRP! 

231, 



Serial Routines 

P 0000 

P 0000 EE 
P 0001 EA 04 
P 0003 EC 00' 
P 0005 FC 51' 
P 0007 BC 72 
P 0009 DC 05 
P OOOB C3 BE 
P 0000 DA FC 
P OOOF 56 73 F7 

232 

164 CONSTANT 
165 si PTR 
166 sCTMPl 
167 sCTMP2 
168 GLOBAL 

= 
= 
= 

RR14 
R 11 
R13 

169 ser init PROCEDURE 
170 I"~""""""""""""""""""""""""" 
171 serial initialize 
172 -
173 Purpose = 
174 
175 
176 
177 
178 Input = 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 

. 190 
191 
192 Output = 
193 
194 
195 Note = 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
2111 

To initialize the serial channel and 
RAM fl.ags for serial 1/0. Serial 
input occurs under interrupt control. 
Serial output occurs in a polled mode. 

RR14 = address of parameter list in 
program memory (if R14 = 0, 
use defaults): 

byte = Serial Configuration Data 
(see definition of SER cfg) 

byte = IMR mask for nestable 
interrupts 

word = address of circular input 

byte 
byte 
byte 

buffer (in reglext memory) 
Length of input buffer 

= Baud rate counter value 
= Baud rate prescaler value 

(unshifted) 

Serial 1/0 operations initialized. 
Rl1, R12, -R13, R14, R15 modified. 

Defaults: 
Input echo on 
Input editting on 
BREAK detection enabled 
No parity 
Auto line feed on 
Input Buffer Address = SER char 
Input buffer length = 1 byte 
Baud Rate = 9600 (assuming 

XTAL = 7.3728 MHz) 

The instruction at ~0809 must result 
in a jump to the jump table entry for 
ser _input. 

If BREAK detection is disabled, and a 
BREAK occurs, it will be received as a 
continuous string of null characters. 

The parameter lis·t is not referenced 
following initialization. 215 

216 
217 
218 
219 

·····················································1 ENTRY 

220 
221 
222 si_1: 
223 
224 si_2: 
225 
226 
227 

inc 
djnz 
ld 
ld 
ld 
ld 
ldci 
djnz 
and 

R14 luse defaults?1 
R14,si 1 Ino. given by caller.1 
R14,OHI ser def laddress of default ••• 1 
R15,DLO ser-def I ••• parameter list. I 
si TMP1,OSER cfg 
sCTMP2,05 - -
@S1 TMP1,@si PTR Iget initialization ••• 1 
si TMP2,si 2- I ••• parametersl 
SER_imr,O~F7 linsure no self-nesting I 



228 ,!initialize Port 3 Mode Register for serial I/O! 
P 0012 56 F1 FC 229 AND TMR,II~FC !disable TOI 
P 0015 B8 72 230 ld si TMP1,SER cfg Iconfiguration datal 
P 0017 56 EB 80 231 AND si-TMP1,H~80 !odd parity select! 
P 001A 116 EB 110 232 OR sCTMP1 ,H~1I0 IP30/7 = Sin/Soutl 
p 001D 56 7F 3F 233 AND P3R save, U3F Imask off old settings I 
P 0020 1111 EB 7F 2311 OR P3~save,si TMP1 !new selection I 
P 0023 Ell 7F F7 235 LD P 3M-;P 3M_save Ito write-only register I 

236 
237 I initialize TOI 

P 0026 BC FII 238 ld si TMP1,HTO 
P 0028 C2 DE 239 ldc si-TMP2,@si PTR Isave counter I 
P 002A C3 BE 2110 ldci @sl TMP1,@sl PTR linit counterl 
P 002C C2 BE 2111 ldc si TMP1,@si ~TR Iget prescalerl 
P 002E D6 0000· 2112 call multiply - ITO x PREOI 
P 0031 C9 6E 2113 ld SERhtime,R12 ! save for BREAK ••• I 
P 0033 D9 6F 21111 ld SERltime,R13 I ••• detection 
P 0035 90 EB 2115 rl si TMP1 ISHL 11 
P 0037 DF 2116 scf Icontinuous model 
P 0038 10 EB 2117 rlc si TMP1 !SHL 21 
P 003A B9 F5 2118 ld PR~O,si TMP1 

2119 I ini tiali ze RAM flags and pointers! 
P 003C 8F 250 DI Idisable interrupts! 
P 003D BO 71 251 clr SER get I input buffer ••• 1 
P 003F BO 77 252 clr SER-put I ••• empty! 
P 00111 BO 70 253 clr SER=flg I no ~rrorsl 

2511 
255 !initialize interrupts! 

P 00113 56 FA E7 256 AND IRQ,HU7 Iclear IRQ3 &: II!' 
P 00116 56 FB EF 257 and IMR,UEF !disable IRQII (xmt)1 
P 00119 116 FB 08 258 or IMR,HS08 lenable IRQ3 (rcv)! 
P DOIIC 9F 259 EI 

260 !gol 
P OOIlD 116 F1 03 261 or TMR,n03 Iload/enable TOI 
P 0050 AF 262 ret 
P 0051 263 END ser init 

2611 
265 
266 
267 !Defaults for serial initialization! 
268 

P 0051 OF 00 269 ser def RECORD [cfg_, imr BYTE 
P 0053 007A 01 -
P 0056 02 03 

270 buf WORD 
271 len=, ctr _, pre_ BYTE] 
272 := 
273 [ec+al+ie+be, ~OO, SER_char, 1, ~02, ~O3] 

233 



P 0058 

P 0058 BO 

P 005A 70 
P D05C 70 
P 005E 70 
P 0060 D6 
P 0063 7B 
P 0065 76 
P 0068 6B 
P 006A 76 
P 006.D 6B 

234. 

7E 

EE 
EF 
ED 
0170' 
118 
72 CO 
08 
7C 80 
03 

275 
276 
277 
278 
279 
280 
281 
282 
283 
2811 
285 
286 
287 
288 
289 
290 
291 
292 
293 
2911 
295 
296 
297 
298 
299 
300 
301 
302 
303 
3011 
305 
306 
307 
308 
309 
310 
311 
312 
313 
3111 
315 
316 
317 
318 
319 
320 
321 
322 
323 
3211 
325 
326 
327 
328 
329 
330 
331 
332 
333 

- 3311 
335 
336 
337 
338 

CONSTANT 
rli len := R13 

GLOBAL 
ser rlin PROCEDURE 1·· ... ·······*·········································· read line 

Purpose = 

Input = 

Output 

Note = 

To return input from serial channel 
up to 'carriage return' character ~r 
maximum length requested or BREAK. 

RR111 = address of destination buffer 
(in reg/ext memory) 

R13 = maximum length 

Input charact'ers is destination buffer. 
RR111·= unmodified 
R13 = length returned 
Carry Flag = 1 if any error, 

= 0 if no error. 
R12 indicates read status 

1. Return will be made to the calling 
program only after the requisite 
characters have-been received from 
the serial line. 

2. If input editting is enabled, a 
'backspace' character will cause 
the previous character (if any) in the 
the destination buffer to be deleted; 
a 'delete' character will cause all 
previous characters (if any) in the 
destination buffer to be deleted. 

3. If parit~ (odd or even) is enabled, 
the parity error flag (R111). will be set 
if any character returned had a parity 
error. (Bit 7 of each character may 
then be examined if it is desirable to 
know which character(s) had the error). 

II. The status flags 'BREAK detected", 
'parity error', and 'input buffer 
overflow' will be returned 
as part of R12, but will be cleared in 
SER_stat. 

5. The staus flags: 'input buffer full' 
and 'input buffer not empty' will be 
updated in SER stat. 

..... ·· ... ···············*···· ... ······················1 ENTRY 
clr 

ser read: 
- push 

push 
push 

rli II: call 
jr 
tm 
jr 
tm 
jr 

TEMP..,:3 

R111 
R15 
rli len 
ser-get 
c,rTi 3 
SER cTg,fJop 
z,rli 1 
TEMP ." #$80 
z,rlT_1 

!flag => read liner 

!save original ••• 1 
I ••• dest. pointer! 
I ••• and lengthl 
Iget input character I 
lerrorl 

LOR ep Iparity enabled?1 
Inol 
!parityerror?1 
Inol 



P 006F 116 
P 0072 06 
P 0075 A6 
P 0078 EB 
P 007A 56 
P 0070 16 
P 0080 6B 

P 0082 A6 
P 0085 6B 
P 0087 A6 
.p 008A EB 
P 008C 50 
P 008E 10 
P 0090 All 
P 0093 6B 
P 0095 DE 
P 0096 26 
P 0099 EE 
P 009A EA 
P 009C 8B 
P 009E 36 
P OOAl 8B 

P 00A3 00 
P 00A5 A6 
P 00A8 6B 
P OOAA DE 
P OOAB DA 
P OOAD 50 
P OOAF 211 
P 00B2 08 
P OOBII C8 
P 00B6 56 

P 00B9 CF 
P OOBA 16 
P OOBD 6B 
P OOBF OF 
P OOCO 50 
P 00C2 50 
P OOCII AF 

P 00C5 50 
P 00C1 50 
P 00C9 50 
P OOCB 8B 
P OOCD 

P OOCD 

P OOCD E6 
P 0000 8B 
P 0002 

10 10 
0000· 
1E 00 
31 
1C 1F 
12 08 
21 

7C 1F 
3E 
1C 08 
11 
1C 
1C 
ED 1C 
30 

EF 02 

02 
C2 
EE '00 
BD 

ED 
1C 00 
03 

B3 
1C 
ED 1C 
7C 
10 
10 .. E3 

EC 9C 
01 

EF 
EE 

ED 
EF 
EE 
80 

7E 01 
88 

339 
3110 
3111 
3112 
3113 
3114 
3115 
346 
3111 
3118 
3119 
350 
351 
352 
353 
3511 
355 
356 
351 
358 
359 
360 
361 
362 
363 
364 
365 
366 
361 
368 
369 
310 
371 
312 
313 
3111 
315 
316 
317 
318 
319 
380 
381 
382 
383 
3811 
385 
386 

linput 

r11 2: 
rl(): 

r11 6: 

END 

or SER flg,Dpe 
call put-dest 
cp TEMP 3,/10 
jr nz,rTi 2 
and TEMP 1~D~1F 
tm SER efg ,llie 
jr z,rTi 9 

edittingl -
cp TEMP 1,/I~1F 
jr z,rlT 6 
cp TEMP 1~D~08 
jr nz,rli 9 
pop TEMP 1-
push TEMP-l 

I yes. set error fl ag! 
Istore in buffer! 
I read line? I 
Inol . 
!ignore parity bit! 
linput editting on?1 
Ino.1 

!char = delete?1 
Iyesl 
Ichar = backspace?1 
!no. continue I 
Iget original lengthl 

cp TEMP-l,rli len lany characters?1 
Inonel jr eq,rTi 6 -

inc rli len 
sub R15~/l2 
inc R 111 
djnz Rll1,rli 1 
jr rli II -
sbc Rll1~#O 
jr r11_11 

dec 
cp 
jr 
inc 
djnz 
pop 
sub 
Id 
Id 
and 

rcf 
tm 
jr 
scf 
pop 

·pop 
ret 

rli len 
TEMP 1,nOD 
z,rlT 3 
rli len 
r.li-len ,r11 II 
TEM]!" 1 -
TEMP-l, r11 len 

.1"11 Ten, TERp 1 
R12~SER flg ,­
SERJlg~#LNOT 

R12,/lpe LOR bd 
z,rli_5 

R15 
R111 

pop rli len 
pop R15-
pop R111 
jr ser read 
ser rlin 

lundo last decrement! 
!backspace & previous I 
Ireg or ext mem?1 
lextl 
Iregl 

lin case crt 
!carriage return?1 
I.end input I 
Irestorel 
Iloop for max lengthl 
loriginal lengthl 
!O chars returned I 
I tell calle'rl 
Ireturn read statusl 

(pe LOR bd LOR bo) 
Ireset for next time! 
Igood return codel 

LOR bo LOR sd 
Ino error I 
!set error returnl 

loriginal buffer addr! 

Istart over! 

::Sllll uLUtlAL 
389 ser rabs PROCEDURE 
390 I····*·····*··u ••••••• * ••••••••••••••••••••••••••••••• 
391 read absolute 
392 
393 
3911 
395 
396 
391 
398 
399 
1100 
1101 
402 
1103 
11011 

Purpose = To return input from serial channel 
of maximum length requested. (Input 
is not terminated with the receipt of 
a 'carriage return'. BREAK will 
termina.te read.) 

Note =. All other details are as for 'ser rlin'. 
•••••••••••••• a •••• a ••••••••••••••••••••••••••••• T···1 
ENTRY . 

ld TEMP 3,#1 Iflag => read absolutel 

END 
.j!" ser read 
ser_rabs -

235 



P OOD2 

P 00D2 E4 
P 00D5 70 
P 00D7 54 
P OODA 9F 
P OODB 70 
P OODD 31 
P OODF A8 
P 00E1 76 
P 00E4 6B 
P 00E6 BO 
P 00E8 76 
P OOEB 6B 
P OOED 9C 
P·OOEF A2 
P 00F1 EB 
P 00F3 76 
P 00F6 EB 

P 00F8 46 
P OOFB 76 
P OOFE 6B 

P 0100 70 
P 0102 70 
P 0104 8C 
P 0106 8A 
P 0108 80 

236 

03 
FB 
73 

FD 
70 
FO 
E2 
2F 
E9 
E2 
02 
80 
A9 
22 
E8 
1D 

EO 
03 
FB 

6E 
6F 
35 
FE 
6E 

78 

FB 

02 

80 

01 

08 
01 

406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 

GLOBAL 
ser input PROCEDURE 
!*****************************.*********************** 
Interrupt service - Serial Input 

Purpose = 

Input = 

Output 

Note 

To service IRQ3 by inputting current 
character into next available position 
in circular buffer. 

None. 

New character inserted in buffer. 
SER_stat , SER_put updated. 

1. If even parity enabled, the software 
replaces the eigth data bit with a 
parity error flag. 

2. If BREAK detection is enabled, and 
the received character is null, 
the serial input line is monitored to 
detect a potential BREAK condition. 
BREAK is defined as a zero start bit 
followed by 8 zero data bits and a 
zero stop bit. 

3. If 'buffer full' on entry, 'input 
buffer overflow' is flagged. 

4. If input echo is on, the character is 
immediately sent to the output serial 
channel. 

5. IMR is modified to allow selected 
nested interrupts (see ser init). 

******************************************V**********I ENTRY . . 
ld 
push 
and 
ei 
push 
srp 
ld 
tm 
jr 
clr 
tm 
jr 
ld 

SER tmp 1, %03 
imr-
imr ,SER_imr 

rp 
IIRAM STARTr 
rSERchar,SIO 
rSERcfg ,llbe 
z,ser 30 
rSERtiiip2 
r SERc fg ,llop 
z,ser 23 
rSERtiiip2,11%80 

tread stop bit level! 
!save entry imr! 
! allow nesting! 

!save user's! 

!capture input! 
!break detect enabled?! 
!nope. ! 

todd parity enabled?! 
Ino. ! 

rSERchar,rSERtmp2 !8 received bits = O?! 
ne,ser 30 !no! 
rSERtmp1,1I1 !test stop bit! 

jr nz,ser 30 !not BREAK! 
lis BREAK. Wait for marking! 

or 
ser 24: tm 

jr 
!wait 1 char 

push 
push 

in loop: ld 
Ip1: djnz 

decw 

rSERflg,lIbd !set BREAK flag! 
%03,111 !marking yet?! 
z,ser 24 !not yet! 

time to Tlush receive shift register! 
SERhtime 
SERltime 
rSERtmp 1,1153 
rSERtmp1,lp1 
SERhtime 

! save PREO x TO I 

!delay 640 cycles! 



P 010A EB F8 470 jr nz, in_loop I delay (128x10xPREOxTO)! 
471 I ----------------! 
472 I 2 I 

P 010C 50 6F 473 pop SERltime 
P 010E 50 6E 474 pop SERht1me I restore PREO x TOI 
P 0110 56 FA F7 475 and IRQ,IILNOT ~08 ' I clear int req I 
P 0113 8B 49 476 jr ser_i5 Ibyel 

477 
P 0115 76 EO 01 478 ser_30: tm rSERflg,lIbf I buffer full? I 
P 0118 EB 4A 479 jr nz,ser il I yes .overflowl 
P 011A 76 E2 01 480 tm r SERc fg , lIec lecho on?1 
P 011D 6B OA 481 jr z,ser iO Inol 
P 011F A9 FO 482 Id SIO, r'SERchar lechol 
P 0121 66 FA 10 483 ser_16,: tcm IRQ,II~10 Ipolll 
P0124 EB FB 484 jr nz,ser i6 !loop I 
P 0126 56 FA EF 485 and IRQ,IILNOT ~10 Iclear irq ,bit! 
P 0129 76 E2 40 486 ser iO: tm rSERcfg,llep leven parity?1 
P 012C 6B 14 487 jr z,ser 22 Ino parityl 

488 !calculate parity error flagl 
P 012E 8C 07 489 Id rSERtmpl,117 
P 0130 BO E9 490 clr rSERtmp2 Icount l's herel 
P 0132 CO EA 491 ser 20: rrc rSERchar !bit to carryl 
P 0134 16 E9 00 492 adc rSERtmp2,110 lupdate l's count! 
P 0137 8A F9 493 djnz rSERtmp1,ser 20 Iloop till done! 
P 0139 56 E9 01 494 and rSERtmp2,lIl - 11's count even or odd?1 
P 013C B2 Ag', 495 xor rSERchar,rSERtmp2 
P 013E CO EA 496 rrc rSERchar !parity error flag ••• 1 
P 01110 CO EA 497 rrci rSERchar I ••• to bit 71 
P 0142 88 E4 498 ser 22: Id rSERtmph,rSERbufh 
P 01114 98 E5 499 Id rSERtmpl,rSERbufl 
P 0146 02 97 500 add rSERtmpl,rSERput Inext char address I 
P 0148 8E 501 inc rSERtmph lin external memory?1 
P 01119 8A lE 502 djnz rSERtmph,ser i2 lyes.1 
P 0111B F3 9A 503 Id @rSERtmpl ,rSi:Rchar Istore char in buff 
P 014D 116 EO 02 504 ser_i 3: or r SERfl g ,lIbne Ibuffer not emptyl 
P 0150 7E 505 inc rSERput lupdate put ptrl 
P 0151 A2 76 506 cp rSERput,rSERlen !wrap-around?1 
P 0153 EB 02 507 jr ne,ser i4 Inol 
P 0155 BO E7 508 clr rSERput !set to startl 

fuli! P 0157 A2 71 509 ser ill: cp rSERput,rSERget !if equal, then 
P 0159 EB 03 510 jr ne,ser i5 
P 015B 116 EO 01 511 or rSERflg,lIbf 
P 01SE 50 FD ,512 ser_i5: pop rp Irestore user's! 
P 0160 8F 513 qi 
P 0161 50 FB 514 pop imr Irestore entry imrl 
P 0,163 BF 515 iret 

516 
p 0164 46 EO 04 517 ser 11: or rSERflg,lIbo !buffer overflowl 
P 0167 8B F5 518 jr ser _i5 

519 
P 0169 16 E8 00 520 ser i2: adc rSERtmph,IIO 
p 016C 92 A8 521 Ide @rrSERtmp,rSERchar I store in bufl 
p 016E 8B DD 522 jr ser_i 3 
p 0170 523 END ser _input 

237 



P 0170 

P 0170 70 FD 
P 0172 31 70 
P 01711 DF 
P 0175 76 EO 

P 0178 EB 211 
P 017A 76 EO 
P 017D 6B F6 
P 017F D8 E5 
P 0181 C8 Ell 
P 0183 8F 
P 01811 02 D1 
P 0186 CE 
P 0187 CA 18 

P 0189 E3 CD 
P 018B 56 EO 
P 018E 1E 
P 018F A2 16 
P 0191 EB 02 
P 0193 BO E1 
P 0195 A2 17 
P 0197 EB 03 
P 0199 56 EO 
P 019C CF 
P 019D 9F 
P 019E 50 FD 
P 01AO AF 

P 01 A 1 16 EC 
P 01AII 82 CC 
P 01A6 8B E3 
P 01A8 

238 

8C 

02 

FE 

FD 

00 

525 
526 
527 
528 
529 
530 
531 
532 
533 
5311 
535 
536 
537 
538 
539 
5110 
5111 
5112 
5113 
51111 
5115 
5116 
5117 
5118 
5119 
550 
551 
552 
553 
5511 
555 
556 
557 
558 
559 
560 
561 
562 
563 
5611 
565 
566 
567 
568 
569 
570 
571 
572 
573 
5711 
575 
576 
577 

GLOBAL Ifor PART II 
ser get PROCEDURE 
! •• T •••••••••••••••••••••••••••••••••••••••••••••••••• 
Purpose To return one serial input character. 

Input = 

Output = 

None. 

Carry FLAG = if BREAK detected or 
serial not enabled 
or buffer overflow 

o otherwise 
TEMP_1 = character 

Note = This routine will not return control 
until a character is available in the 
input buffer or an error is detected. 

·····················································1 ENTRY 
push 
srp 
scf 

ser_g1: tm 

jr 
tm 
jr 
ld 
ld 
di 
add 
inc 
djnz 

ld 
ser_gll: and 

inc 
cp 
jr 
clr 

ser_g2: cp 
jr 
and 

ser_g5: rcf 
ei 

ser _g6: p'op 
ret 

rp Isave caller's rpl 
nRAM_STARTr Ipoint to subr. RAMI 

lin case errorl 
rSERflg,nsd LOR bd LOR bo 

Iserial disabled or 
BREAK detected or 
buffer overflow? I 

nZ,ser g6 lyes.1 
rSERflg,nbne Ibuffer not empty? I 
z,ser g1 lempty. waitl 
rTEMP-1l,rSERbufl 
rTEMP-1h,rSERbufh 

- Iprevent IRQ3 conflict! 
rTEMP 1l,rSERget Inext char address I 
rTEMP-1h I input buffer in •.• 1 
rTEMP-1h,ser g3 I •. I.external memory! 

- - I ••• register memoryl 
rTEMP 1,@rTEMP 11 Iget char! 
rSER'fTg,nLNOT of Ibuffer not full! 
rSERget lupdate get pointerl 
rSERget,rSERlen Iwrap-around?1 
ne,ser g2 Ino.1 
rSERget Iyes. set to startl 
rSERget,rSERput Ibuffer empty if get •.• 1 
ne,ser g5 I .•• and put =1 
rSERfl'g,nLNOT bne Ibuffer empty nowl 

Iset good returnl 
Ire-enable interrupts I 

r.p Irestore caller's rpl 

ser_g3: adc rTEMP 1h,nO IrrTEMP 1 has char addr! 
Ide rTEMP-1,@rrTEMP 1 Iget CharI 
jr ser_g4 -I clean upl 

END ser_get 



P 01A8 

P 01AS BO FO 
P 01AA 80 EE 
P 01AC EB FA 

P 01AE 80 0238' 
P 01Bl 

P 01Bl 

P 01Bl 8F 

P 01B2 BO 
P 01BII BO 
P 01B6 56 
P 01B9 9F 
P 01BA AF 
P 01BB 

71 
77 
70 80 

579 GLOBAL 
580 ser break PROCEDURE 
581 ! ••••••••••••••••••••••••••••••••••••••••••••••••••••• 
582 break transmission 
583 
5811 Purpose 
585 

To transmit BREAK, on the serial line. 

586 Input = 
587 
588 Output = 
589 
590 Note = 
591 

RR111 = break length 

None. 

BREAK is defined as: 
. serial out (P37) = 0 for 

592 2 x 28 cycles/loop x RR111 loops 
593 
5911 
595 
596 
597 
598 
599 
600 
601 
602 
603 

XTAL 

RR111 should yield at least 1 bit 
so that the last 'clr SIO' will 
have been preceded by at least 1 
time of spacing. Therefore, RR111 
be greater than or equal to 

II x 16 x PREO x, TO 

time 

bit 
should 

6011 
605 
606 
607 
608 
609 

28 
••••••••••••••••••••••••••••••••••••••••••••••••••••• ! 
ENTRY 
ser bl: 

clr SIO 
decw RR111 

610 jr nZ,ser bl 
611 ! wait 
612 

for last null to~e fully transmitted! 
jp ser 01 

613 END ser break 

615 
616 
617 
618 
619 
620 
621 
622 
623 
6211 
625 
626 

GLOBAL 
ser flush PROCEDURE 

I············································.···.·· .. input flush 

Purpose = 

Input = 

Output = 

To flush (clear) the .serial input 
buffer of characters. 

None 

Empty input buffer. 

627 Note = This routine might be useful to clear 
628 all past input after a BREAK has been 
629 detected on the line. 

630 ·····················································1 631 ENTRY 
632 di Idisable interrupts! 
633 !(to avoid collision with 
6311 serial input) 1 
635 clr SER_get I buffer start I , 
636 clr SER put I = buffer end! 
637' and SER-flg,HJ80 !clear statusl 
638 ei - Ire-enable interrupts 1 
639' ret 
6110 END ser flush 

239 



P 01BB 

P 01BB BO 

P 01BD DF 
P 01BE 76 
P 01C1 EB 
P 01C3 70 
P 01C5 D6 
P 01C8 D6 
P 01CB 7B 
P 01CD A6 
P 01DO EB 
P 0.1D2 56 
P 01D5 A6 
P 01D8 EB 
P 01DA 00 
P 01DC 76 
P 01 DF 6B 
P 01E1 E6 
P 01E4 D6 
P 01E7 8B 
P 01E9 DA 
P 01EB 50 
P 01ED 24 
P 01FO D8 
P 01F2 CF 
P 01F3 AF 
P 01F4 

240 

7E 

70 80 
30 
ED 
0000' 
020B' 
1E 
7E 00 
17 
7C 7F 
7C OD 
OF 
ED 
72 04 
OA 
7C OA 
020B' 
02 
DA 
7C 
ED 7C 
7C 

642 
643 
644 
645 
646 
647 
648 
649 
650 
651 
652 
653 
654 
655 
656 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 
696 

CONSTANT 
wli len 

GLOBAL 
: = R13 

ser wlin PROCEDURE 
! •• T •••••••••••••••••••••••••••••••••••••••••••••••••• 
write line 

Purpose = 

Input 

Output 

To output a character string to serial 
line, ending with either a 'carriage 
return' character or the maximum length 
specified. 

RR14 = address of source buffer 
(in reg/ext memory) 

R13 = length 

RR14 = updated 
Carry Flag = 1 if serial not enabled, 

= 0 if no error. 
R13 = U bytes output (not including 

auto line feed) 

Note = If auto line feed is enabled"a 
line feed character will be output 
following each carriage return 
(ser wlin only). 

•••••••••••••••••••••••••••••••••••• **.** •• ****** •••• 1 

ENTRY . 

write: 

wli 4: 

wli 1: 
END-

clr 

scf 
tm 
jr 
push 
call 
call 
jr 
cp 
jr 
and 
cp 
jr 
dec 
tm 
jr 
ld 
call 
jr 
djnz 
pop 
sub 
ld 
rcf 
ret 
ser wlin 

SER flg, Iisd 
nz,wli 1 
wli len 
get-src 
ser-output 
c ,wTi 2 
TEMP j,IIO 
nz,wlr 5 
TEMP 1-;-II%7F 
TEMP-1,nOD 
nz,wli 5 
wli len 
SER-c fg, Iial 
z,wli 2 
TEMP",II%OA 
ser 'Output 
wl1-2 
wli-len,wli 4 
TEKP 1 -
TEMP-1,wli len 
wli_len,TERP_1 

!flag => write line! 

lin case error! 
!serial disabled?! 
! yes. error! 

!write the character! 
!serial disabled! 
!write line?! 
! no, absolute.! 
!mask off parity! 
!line done?! 
!yes. ! 

!auto line feed?! 
!disabled! 
!output line feed! 

!loop! 
!original length! 

!return output count! 
!no error! 



P 01F4 

P 01F4 E6 
P 01F7 8B 
P 01F9 

P 01F9 

P 01F9 C9 
P 01FB D6 
P 01FE 76 
P 0201 6B 
P 0203 A6 
P 0206 EB 
P 0:?08 E6 

P 020B 

7E 
C4 

01 

7C 
020B' 
72 04 
3E 
EC OD 
39 
7C OA 

698 
699 
700 
701 
702 
703 
704 
705 
706 
707 
708 
709 
710 
711 
712 
713 

715 
716 
717 
718 
719 
720 
721 
722 
723 
724 
725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 
736 
737 
738 

GLOBAL 
ser wabs PROCEDURE 
!UUV&UUUUUUuuuuuuuu*uuuuuuuuuuuu*u.*uuuuuuuvuuu*nvuuuu 
write absolute 

Purpose = To output a character string to serial 
line for the length specified. (Output 
is not terminated with the output of 
a 'carriage return'). 

Note = All other details are as for 'ser wlin'. 
uu.~uuu*uuuuuuuuuuuuuuUUUU.UHUUUUUUuuuuu**uunHuuu.uUU! 

ENTRY 
Id TEMP 3,#1 
jr write 

END ser wabs 

ser wbyt PROCEDURE. 
!UUvuuuuununuuunuuuuuuUHUUHUfUUUUU*UUU*UluuuuunuuRuuuU 
write byte 

Purpose = To output a given character to the 
serial line. If the character is a 
carriage return and auto line feed 

In put = 

is enabled, a line feed will be output 
as well. 

R12 = character to output 

Note = Equivalent to ser wlin with length = 1. 
uuuuuuuuuuuuuuuuuuuuuuu*UUUUUHUD~.uuuuuunuuuuU&UUUUHU! 

ENTRY 
Id TEMP 1,R12 
call ser output 
tm SER-cfg,IJal 
jr z,ser 05 
cp R12,IJIOD 
jr nZ,ser 05 
Id TEMP l~#~OA 

!fall into ser outpu~! 
END ser_wbyt 

!output it! 
lauto line feed?! 
!not enabled! 
!char = car. ret?! 
Inopel 
!output line feed! 

241 



P 020B 

P 020B DF 
P 020C 76 
P 020F EB 
P 0211 76 
P 0214 6B 

P 0216 70 
P 0218 E6 
P 021B BO 
P 021D CO 
P 021F 16 
P 0222 00 
P 0224 EB 
P 0226 56 
P 0229 56 
P 022C 44 
P 022F CO 
P 0231 CO 
P 0233 50 
P 0235 E4 
P 0238 66 
P 023B EB 
P 023D 56 
P 0240 CF 
P 0241 AF 
P 0242 

P 0242 

P 0242 8F 
P 0243 46 

P 0246 56 

P 0249 56 

P 024C 56 

P 024F E4 
P 0252 9F 
P 0253 AF 
P 0254 

242 

70 80 
30 
72 40 
1F 

7E 
7E 07 
7D 
7C 
7D 00 
7E 
F7 
7D 01 
7C FE 
7D 7C 
7C 
7C 
7E 
7C FO 
FA 10 
FB 
FA EF 

70 

F1 

FB 

7F 

7F 

80 

FC 

E7 

BF 

F7 

740 
741 
742 
743 
7411 
745 

GLOBAL !for PART I! 
ser output PROCEDURE 
1**T**************************.********** ••• ****.****. 
Purpose To output one character to the serial 

line. 

746 Input = 
747 

TEMP 1 = character 

748 Output 
749 
750 
751 Note 
752 
753 
754 
755 
756 

Carry FLAG = 1 if serial disabled 
= 0 otherwise. 

1. If even parity is enabled, the eigth 
data bit is modified prior to character 
output to SIO. 

2. IRQII is polled to wait for completion 
of character transmission before control 
returns to the calling program. 757 

758 **********.I*** ••• * •••••••• """"""""""*""*! 
759 ENTRY 
760 scf lin case errorl 

lserial disabled?! 
lyes. errorl 

761 
762 
763 
7611 
765 
766 
767 
768 

tm, SER flg,Usd 
jr nz,ser 05 
tm SER cfg,Uep 
jr z,ser 02 

!calculate parityl -
push TEMP 3 
ld TEMP-3,U7 
clr TEMP-2 

leven parity enabled?! 
!no. just output! 

769 ser 04: 
770 

rrc TEMP-1 
adc TEMP-2,UO 

!character bit to carry! 
!count 1'sl 

771 
772 
773 
774 
775 
776 
777 
778 
779 
780 
781 
782 
783 

dec TEMP-3 
jr nz,ser 04 
and TEMP 2~U01 
and TEMP-1,il%FE 
or TEMP-1,TEMP 2 
rrc TEMP-1 -
rrc TEMP-1 
pop TEMP-3 

ser 02: ld SIO,7EMP 
ser-01: tcm IRQ,U%10-

jr nz,ser 01 
and IRQ,II%t:F 
ref 

!next bit! 
!1's count odd/even! 

!parity bit in DOl 

!parity bit in D7! 

!output character! 
!check IRQII! 
!wait for complete! 
lclear IRQ4! 
! all ok! 

784 ser 05: 
785 'END-

ret 
ser_output 

787 
788 
789 
790 
791 
792 
793 
7911 
795 
796 
797 
798 
799 
800 
801 
802 
803 
8011 
805 
806 
807 
808 
809 
810 
811 

GLOBAL 
ser disable PROCEDURE 
1··T •••• **.*.* ••••••••• * •• * ••••••••••••••••••••••• * ••• 
disable ' 

Purpose To disable serial I/O ~perations. 

Input = None. 

Output = Serial I/O disabled . 
••••••••••••••••••••••••••••••••••••••••••••••••••••• ! 
ENTRY 

di !avoid IRQ3 conflictl 
or SER flg,Usd 

- !set serial disabl"edl 
and TMR, il%FC 

!disable TOI 
and IMR,il%E7 

!disable IRQ3,4! 
and P3M save,U%BF 

- !P30/7 normal i/o pins! 
ld P3M,P3M save 
ei -Ire-enable interrupts I 
ret 

END ser disable 



Timer/Counter Routines 
840 
841 
842 
843 

P 0254 

P 0254 DC 
P 0256 C3 
P 0258 C3 
P 025A E6 
P 0250 80 
P 0260 

6C 
DE 
DE 
7B 6C 
02B2' 

844 
845 
846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 
878 
879 
880 
881 
882 
883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 
897 

CONSTANT 
TMP 
PTR 
PTRh 

GLOBAL 

= 
= 

R13 
RR14 
R14 

tod i PROCEDURE 
1**T,*.U._* ••••• * •••••• *,.'u*** ••• **** •• * ••• *u •••••••• 
time of day initialize 

Purpose = 

Input 

Output = 

Note = 

To initialize TO or Tl to function as 
a time of day clock. 

RR14 = 
byte 

byte 
byte 

byte 
byte 

address of parameter list in 
program memory: 
= IMR mask for nestable 
interrupts 

# of clock ticks per second 
counter # : = %F4 => TO 

= %F2 => T1 
= Counter value 
= Prescaler value (unshifted) 

TOO hr, TOO min, TOO sec, TOO tt 
inItialized to the starting time of 
hours,minutes, seconds, and ticks 
respectively. 

Selected timer is loaded and 
enabled; corresponding interrupt 
is enabled . 
.R13, R14, R15.modified. 

The cntr and prescaler values provided 
are those values which will generate an 
interrupt (tick) the designated # of 
times per second. 

For example: 
for XTAL = 8 MHZ, cntr = 250 and 
prescaler = 40 yield a .01 sec interval; 
the 2nd byte of the parameter list 
should = 100 • 

For TO the instruction at %080C or 
for Tl the instruction at %080F must 
result in a jump to the jump table entry 
for 'tod'. 

The parameter list is not referenced 
following initialization. 

•• UUUuDu*ulnu.*.* •• uuu.unnnuuu.*.IUUIU ••• uooeunuDu •• U! 
ENTRY 

END 

ld 
ldci 
ldci 
ld 
jp 
tod i 

TMP,IITOD imr 
@TMP,@PT~ limr maskl 
@TMP,@PTR !ticks/second! 
TEMP 4, IITOD ' imr 
pre_ctr - Ictr & prescalerl 

243 



899 GLOBAL 
P 0260 900 tod PROCEDURE 

901 !v*****************.****IH*****************R.**** ••• ** 
902 Interrupt service - time of day 
903 
904 Purpose To update the time of daY'clock. 
905 •• *.*.*.c~a~~*~**~*~e**~~~e~*~~!**~***~**.*~*********! 
906 ENTRY 

P 0260 70 FB 907 push imr ! save entry imr! 
P 0262 54 6C FB 908 and imr, TOD_ imr ! allow nested interrupts 
P 0265 9F 909 ei tenable interrupts! 
P 0266 70 FD 910 push rp !save rp! 
P 0268 31 60 911 srp IIRAM TMRr !point to our set! 
P 026A 8E 912 inc rTODCt !ticks/second! 
P 026B A2 8D 913 cp r TODtt, rTODtic !second complete? ! 
P 026D EB 13 914 jr ne,tod ex !nope. ! 
P 026F BO E8 915 clr rTODtC 
P 0271 9E 916 inc rTODsec !seconds! 
P 0272 A5 E9 3C 917 cp r TODsec ,1160 !minute complete?! 
P 0275 EB OB 918 jr ne,tod ex !nope. ! 
P 0277 BO E9 919 clr rTODsec 
P 0279 AE 920 inc rTODmin !minutes! 
P D27A A5 EA 3C 921 cp rTODmin ,1160 !hour complete?! 
P 027D EB 03 922 jr ne,tod ex !nope.! 
p 027F BO EA 923 clr rTODmin 
P 0281 BE 924 inc rTODhr ! hour s! 

925 
P 0282 50 FD 926 tod ex: pop rp restore rp! 
P 0284 8F 927 di disable interrupts! 
P 0285 50 FB 928 pop imr restore entry imr! 
P 0287 BF 929 iret 
P 0288 930 END tod 

/ 

244 



932 GLOBAL 
P 0288 933 pulse i PROCEDURE 

934 !****************.*u**u*******u.u**.*.**.********u**u* 
935 .Purpose = To initialize one of the timers 
936 to generate a variable frequency/ 
937 variable pulse width output. 
938 
939 Input = RR14 = address of parameter list in 
940 program memory: 
941 byte cntr value for low interval 
942 byte counter 1/ : = %F4 => TO 
943 = %F2 => T1 
944 byte cntr value for high interval 
945 byte prescaler (unshifted) 
946 
947 Output Selected timer is loaded and 
948 enabled; corresponding interrupt 
949 is enabled. P36 is enabled as Tout. 
950 R13, R14, R15 modified. 
951 
952 Note The parameter list is not referenced 
953 following initialization. 
954 
955 The value of Prescaler x Counter 
956 must be > 26 (=%1A) for proper 
957 operation. 
958 *nnnuunnu*nuunuuuuuuun.nuuunuu.nnuunnn** •• nn ••• nn •••• ! 
959 ENTRY 

P 0288 DC 65 960 LD TMP,I/PLS 2 
P 028A C3 DE 961 ldci @TMP,@PTR !low interval cntr! 
P 028C C3 DE 962 ldci @TMP,@PTR !timer addr! 
P 028E C3 DE 963 ldci @TMP,@PTR !high interval cntr! 
P 0290 80 EE 964 decw PTR 
P 0292 80 EE 965 decw PTR ! back to flag! 
P 0294 56 F1 3F 966 and TMR,I/%3F !will be modifying TMR! 
P 0297 56 7F DF 967 and P3M save, I/%DF !P36 = Tout! 
P 029A E4 7F F7 968 ld P3M"";P3Msave 
P 029D E6 7B 01 969 ld TEMP 4,0%1 ! flag for pre ctr! 
P 02AO 8D 02B2' 970 jp pre_ctr !set up timerT 
P 02A3 971 END pulse i 

972 -
973 
974 GLOBAL 

P 02A3 975 pulse PROCEDURE 
976 ! ••• *unnu.unu ••• *n.n****u •• nn •• u.n •• uuuuu •••• u.nAu**.u 
977 Purpose = To modify the counter load value 
978 to continue the pulse output generation. 
979 
980 u.u ••• u.nuun.u ••• n*uu.n •• uununun.uuun •••••• un •• u •• uUU! 
981 ENTRY 
982 !exchange values! 

P 02A3 B4 65 67 983 xor PLS_1, PLS_2 
P 02A6 B4 67 65 984 xor PLS 2,PLS 1 
P 02A9 B4 65 67 985 xor PLS-1,PLS-2 

986 !exchange complete!- -
P 02AC F5 67 66 987 ld @PLS_tmr,PLS_ !load new value! 
P 02AF BF 988 iret 
P 02BO 989 END pulse 

245 



P 02BO 

P 02BO BO 

P 02B2 

246 

7B 

991 
992 
993 
994 
995 
996 
997 
998 
999 

1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 
1011 
1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 

GLOBAL 
delay PROCEDURE 

1**********··········································· Purpose = To generate an interrupt after a 

Input = 

Output 

Note = 

designated amount of time. 

RR14 = address of parameter list in 
program memory: 

byte = counter # : = $F4 => TO 
- = $F2 => T1 

byte = Counter ~alue 
byte = Prescaler value and count mode 

(to be loaded as is into 
PREO or PRE1). 

Selected timer is loaded and 
enabled; corresponding interrupt 
is enabled. 
R13, R14, R15 modified. 

This routine will initialize the timer 
for single-pass or continuous mode 
as determined by bit 0 of byte 3 in 
the parameter list. 
The caller is responsible for provid­
ing the interrupt service routine. 

The parameter list is not referenced 
following initialization. 

·····················································1 ENTRY 
clr TEMP 4 

!fall into pre ctrl -
END delay -



1026 INTERNAL 
P 02B2 1027 pre ctr PROCEDURE 

1028 ! •••••• ****§ ••••••••• * •••• u*u ••••••••••••••••••••••••• 
1029 'Purpose = To get counter and prescaler values 
1030 from parameter list and modify control 
1031 registers appropriately. 
1032 
1033 Input TEMP 4 = 0 => for 'delay' 
1034 = 1 => f<lr 'pulse' 
1035 = TOO imr => for 'tod' 
1036 u*uuu •• uu*nnnnu*DnnnDftn&DDnnU~unUnUDnftUUnUnnftnDnUDUUn! 
1037 ENTRY 

P 02B2 C2 DE 1038 ldc TMP,@PTR !TO or TlI 
P 02B4 AD EE 1039 incw PTR 
P 02B6 E6 70 8C 1040 ld TEMP 2,II'f,aC I for TMRI 
P 02B9 E6 7E 20 1041 ld TEMP-3,11'f,20 I for IMR! 
P 02BC A6 ED F2 1042 cp TMP ,7fT 1 
P 02BF 6B 06 1043 jr eq,pre 1 !i_s for Tl! 
P 02Cl E6 70 4, 1044 ld TEMP 2-;11%43 ! for TMRI 
P 02C4 E6 7E 10 1045 ld TEMP-3, 11% 1 0 I fOr IMRI 
P 02C7 C3 DE 1046 pre 1 : lctcl @TMP-;@PTR !init counterl 
P 02C9 C2 EE 1047 - ldc PTRh,@PTR !prescaler! 
P 02CB A6 7B 00 1048 cp TEMP 4,110 !shift prescaler?1 
P 02CE 6B 12 1049 jr eq,pre_2 !no! 
P 0200 OF 1050 scf !internal clock! 
P 0201 10 EE 1051 rIc PTRh 
P 0203 OF 1052 scf !continuous mode! 
P 0204 10 EE 1053 rIc PTRh 
P 0206 A6 7B 6C 1054 cp TEMP 4,IITOO imr 
P 0209 EB OA 1055 jr ne,pre 3 ! for 'pulse'! 
P 020B 60 7E 1056 com TEMP 3-
P 0200 54 7E 6C 1057 and TOO Tmr,TEMP_3 !insure no self-nesting! 
P 02EO 60 7E 1058 com TEMP 3 
P 02E2 56 70 OF 1059 pre 2: and TEMP-2,II'f,OF ' !no Tout mode mod! 
P 02E5 F3 DE 1060 pre=3: ld @TMP-;PTRh !init prescaler! 
P 02E7 44 70 Fl 1061 or TMR,TEMP_2 !init tmr mode! 
P 02EA 8F 1062 di 
P 02EB 44 7E FB 1063 or imr,TEMP_3 tenable interrupt! 
P 02EE 9F 1064 ei 
P 02EF AF 1065 ret 
P 02FO 1066 ENO pre ctr 

1067 ENO PART n-

O errors 
Assembly complete 

247 



Zilog 

INTRODUCTION 

The microcomputer industry has recently developed 
single-chip microcomputers that incorporate on one 
chip functions previously performed by periph­
erals. These microcomputer units (MCUs) are aimed 

A Comparison of 
Microcomputer Units 

Benchmark Report 

May 1981 

at markets requ1r1ng a dedicated computer. This 
report describes and compares the most powerful 
MCUs in today's market: the Zilog ZB611, the 
Intel B051, and the Motorola MC6B01. Table 1 
lists facts that should be considered when com­
paring these MCUs. 

Table 1. MCU Comparison 

Zilog Intel Motorola 
fEATURES ZB611 B051 MC6801 

On-Chip ROM 4KxB 4KxB 2KxB 

General-Purpose 
Registers 124 12B 12B 

Special-function 
Registers 

Status/Control 16 16 17 
I/O ports 4 4 4 

I/O 
Parallel lines 32 32 29 
Ports four B-bit four B-bit Three B-bit,one 5-bit 
Handshake Hardwar~ on None Hardware on 

three ports one port 

Interrupts 
Source B 5 7 
External source 4 2 2 
Vector 6 5 7 
Priority 4B Programmable 2 Programmable Nonprogrammable 

orders orders 
Maskable 6 5 6 

External 
Memory 120K bytes 124K bytes 64K bytes 

Stack 
Stack pointer 16-Bit B-Bit 16-Bit 
Internal stack Yes, uses Yes Yes 

B-bits 
External stack Yes No Yes 

248 



FEATURES 

Counter/ 
Tin:ers 

Counters 

Prescalers 

Addressing 
Modes 

Register 
Indirect Register 
Indexed 
Direct 
Relative 
Immediate 
Implied 

Index 
Registers 

Serial 
ClJIIlmunication 
Interface 

Full duplex 
UART 

Interrupts 
for transmit 
and receive 

Registers 
Double buffer 

Serial Data Rate 

Speed 
Ins truct ion 

execution average 

Longest 
instruction 

Clock Frequency 

Power Down 
Mode 

Context 
Switching 

Table 1. MCU Compariaon 
(Continued) 

Zilog Intel 
Z8611 8051 

Two 8-bit Two 16-bit 
or two 8-bit 

Two 6-bit No prescale 
with 16-bits; 

5-bit prescale 
with 8-bits 

Yes Yes 
Yes Yes 
Yes Yes 
Yes Yes 
Yes Yes 
Yes Yes 
Yes Yes 

124, Any 1, Uses the 
general- accumulator 
purpose for 8-bit 
register offset 

Yes Yes 

One for each One for both 

Receiver Receiver 
62.5K b/s 187.5K b/s 

@8 MHz ®12 MHz 
93.5K b/s 
@12 MHz 

2.2 Usec 1.5 Usec 
1.5 Usec ®12 MHz 

4.25 Usee 4 Usee 
2.8 Usee ®12 MHz 

8 and 12 MHz 12 MHz 

Saves first Saves first 
124 registers 128 registers 

Saves PC Saves PC; 
and flags proqrammer 

must save all 
registers 

Motorola 
MC6801 

One 16-bit 

None 

No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

1, Uses 
16-bit index 
register 

Yes 

One for both 

Transmi tter/Receiver 
62.5K b/s 

@4 MHz 

3.9 Usec 

10 Usec 

4 MHz 

Saves first 
64 registers 

Saves PC, PSW, 
ae cu mula to rs , 
and Index 
register 

249 



Table 1. HCU Comparison 
(Continued) 

lilcg 
fEATURES IB611 

Development 40-Pin 
ProtDpack (B613) 

64-Pin (B612) 
40-Pin ROM less 

(IB6B1 ) 

Eprom 4K bytes (2732) 
2K bytes (2716) 

Availability NDW 

ARCHITECTURAl OVERVIEW 

This sectiDn examines three chips: the .on-chip 
functiDns and data areas manipulated by the ZilDg, 
Intel and MDtDrDla MCUs. The three chips have 
sDmewhat similar architectures. There are, hDW­
ever, fundamental differences in design criteria. 
The B051 and the MC6B01 were designed tD maintain 
cDmpatability with .older prDducts, whereas the 
ZB611 design was free frDm such restrictiDns and 
cDuld experiment with new ideas. Because .of this, 
the accumulatDr architectures .of the MC6B01 and 
the B051 are nDt as flexible as that .of the ZB611, 
which allDws any register tD be used as an accumu­
latDr. 

Memory Spaces 

The ZB611 CPU manipUlates data in fDur memDry 
spaces: 

• 60K bytes .of external data memDry 
• 60K bytes Df'external prDgram memDry 
• 4K bytes .of int,ernal program memDry (ROM) 
• 144-byte register file 

The B051, CPU manipUlates data in fDur memDry 
spaces: 

• 64K bytes .of external data memDry 
• 60K bytes .of external prDgram memDry 
• 4K bytes .of internal prDgram memDry 
~ 14B-byte register file 

The MC6B01 manipulates data in three memDry 
spaces: 

• 62K bytes, .of external memDry 
• 2K bytes .of internal prDgram memory 
• 149-byte register file 

On-Chip ROM. All three chips have internal ROM 
fDr prDgram memDry. The ZB611 and the B051 have 
4Kbytes .of internal ROM, and the MC6B01 has 2K 
bytes. In SDme cases, external memDry may be 

250 

Intel Motorola 
B051 MC6B01 

40-Pin (B751 ) 40- Pin (6B701) 

4K bytes 2K bytes 

TBA NDW 

required with the MC6B01 that is nDt necessary 
with the ZB611 Dr the B051. 

On Chip RAM. All three chips use internal RAM as 
registers. These registers are divided intD tWD 
catagDries: general-purpDse registers and special 
functiDn registers (SFRs). 

The 124 general-purpDse registers in the ZB611 are 
divided intD eight grDups .of 16 registers each. 
In the first grDup, the lDwest fDur registers are 
the I/O pDrt registers. The .other registers are 
general purpDse and can be accessed with an B-bit 
address Dr a shDrt 4-bit address. Using the 4-bit 
address saves bytes and executiDn time. FDur-bit 
shDrt addresses are discussed later. The general­
purpDse registers can be used as accumulatDrs, ad-
dress pDinters, Dr Index registers.' , 

The 12B general-purpDse registers in the 8051 are 
grDuped intD tWD sets. The IDwer 32 bytes are 
allDcated as fDur B-register banks, and the upper 
registers are used fDr the stack Dr fDr general 
purpDse. The registers cannot be used fDr index­
ing Dr as address pDinters. 

The MC6B01 alsD has a 12B-byt e, general-purpDse 
register bank, which can be used as a stack Dr as 
address pDinters, but nDt as Index registers. 

As pDinted .out in Table 1, any of the ZB611 
general-purpDse registers can be used fDr index­
ing; the MC6B01 and the 8051 cannDt use registers, 
this way. The ZB611 can use any register as an 
accumulatDr; the MC6801 and the B051 have fixed 
accumulatDrs. The use .of registers as mem.ory 
p.ointers is very valuable, and .only the Z8611 can 
use its registers in this way. 

The number .of general-purp.ose'registers .on each 
chip is c.omparable. H.owever, because .of its 
flexible design, the ZB611 clearly has a mDre 
p.owerful register architecture. 



The ZB611 has 20 special function registers used 
for status, control, and I/O. These registers 
include: ' 

• Two registers for a 16-bit Stack Pointer (sPH, 
SPL) 

• One register used as Register Pointer for 
working registers (RP) 

e One register for the status flags (FLAGS) 
III One register for interrupt priority (lPR) 
III One register for interrupt mask (IMR) 
e One register for interrupt request (IRQ) 
• Three'mode registers for the four ports (P01M, 

P2M, P3M) 
• Serial communications port used like a 

register (SID) 
• Two couhter/timer registers (TO, Tl) 
• One Timer Mode Register (TMR) 
• Two prescaler registers (PREO, PRE1) 
• Four I/O ports accessed as registers (PORTO, 

PORT1, PORT2, PORT3) 

The B051 also has 20 special function registers 
used for status, control, and I/O. They include: 

• One register for the Stack Pointer (SP) 
8 Two accumulators (A,B) 
• One register for the Program Status Word 

(PSW) 
III Two registers for pointing to data memory 

(DPH, DPL) 
Q Four registers that serve as two 16-bit 

counter/timers (THO, TH1, TLO, TL1) 
• One mode register for the counter/timers 

(TMOD) 
8 One control register for the counter/timers 

(TCON) 
III One register for interrupt enable (lEC) 
III One register for interrupt priority (IPC) 
III One regi ster for serial communications buffer 

(sBUF) 
• One register for serial communications control 

(sCON) 
o Four registers used as the four I/O ports (PO, 

P1, P2, P3) 

The MC6B01 has 21 special function registers used 
for status, control, and I/O. These include: 

• One register for RAM/EROM control 
o One serial receive register 
• One serial transmit register 
III One register for serial control and status 
III One serial rate and mode register 
III One register for status and control of port 3 
• One register for status and control of the 

timer 
III Two registers for the 16-bit timer 
III Two registers' for 16-bit input capture used 

with timer 
III Two registers for 16-bit output compare used 

with timer 
• Four data direction registers associated with 

the four I/O ports 
III Four I/O ports 

The special function registers in the three chips 
seem comparable in number and function. However, 
upon closer examination, the sFRs of the p.£6B01 
prove less efficient than those of the ZB611. The 
MC6B01 has five registers associated with the I/O 
ports, whereas the ZB611 uses only three registers 
for the same funct ions. The MC6B01 uses four 
registers to perform the serial communication 
function, whereas the ZB611 uses only one register 
and part of another. 

The B051 uses two registers for the accumulators; 
the ZB611 is not limited by this restriction. The 
B051 also uses two registers for the serial com­
munication interface, whereas the ZB611 accom­
plishes the same job with one register. Another' 
two registers in the B051 are used for data 
pointers; these are not necessary in the ZB611 
since any register can be used as an address 
pointer. 

The ZB611 uses registers more efficiently than 
either the MC6B01 or the B051. The registers saved 
by this opt imal design are used to perform the 
functions needed for enhanced interrupt handling 
and for register pointing with short addresses. 
The ZB611 also supplies the extra register re­
quired for the external stack. These features are 
not available on the B051 or the MC6B01. 

External Memory. All three chips can access 
external memory. The ZB611 and the B051 can gen­
erate signals used for selecting either program or 
data memory. The Data Memory st robe (the signal 
used for selecting data or program memory) gives 
the ZB611 access to 120K bytes of external memory 
(60K byt es in both program and data memory). The 
B051 can use 124K bytes of external memory (64K 
bytes of external dat a memory and 60K bytes of 
external program memory). The MC6B01 .can access 
only 62K bytes of external memory and does not 
distinguish between program and data memory. Thus, 
the ZB611 and the B051 are clearly able to access 
more external memory than the MC6B01. 

On-Chip Peripheral Functions 

In addition to the CPU and memory spaces, ail 
chips provide an interrupt system and extensive 
I/O facilities including I/O pins, parallel I/O 
ports, a bidirectional address/ data bus, and a 
serial port for I/O expansion. 

Interrupts. The Z.B611 acknowledges interrupts 
from eight sources, four are external from pins 
IRQO-IRQ3, and four are internal from serial-in, 
serial-out, and the two counter/timers. All 
interrupts are maskable, and a wide variety of 
priorities are realized with the Interrupt Mask 
Register and the Interrupt Priority Registers (see 

,Table 1). All ZB611 interrupts are vectored, with 
six vectors located in the on-chip ROM. The 
vectors are fixed locations, two bytes long, that 
contain the memory address of the service routine. 

251 



The 8051 acknowledges interrupts from five 
sources: two external sources (from INTO and 
INT1) and three internal sources (one from each of. 
the internal counters and one from the serial I/O 
port). All intcrrupts can be disebledindi vidual­
ly or globally. Each of the five sources can be 
assigned one of two priorities: high or low. All 
8051 interrupts are vectored. There are five 
fixed locations in memory, each eight bytes long, 
allocated to servicing the interrupt. 

The MC6801 has one external interrupt, one non­
maskable interrupt, an internal interrupt request, 
and a software interrupt. The internal interrupts 
are caus~d by the serial I/O port, timer overflow, 
timer output compare, and timer input capture. 
The pr iori ty of each interrupt is preset and can­
not be changed. The external interrupt can be 
masked in the Condition Code register. The MC6801 
vectors the interrupts to seven fixed addresses in 
ROM where the 16-bit address of the service 
routine is located. 

When an interrupt occurs in the 8051, only the 
Program Counter is saved; the user must save the 
flags, accumulator, and any registers that the 
interrupt service routine might affect. The 
MC6801 saves the Program Counter, acumulators, 
Index register, and the PSW; the user must save 
all registers that the interrupt service routine 
might affect. The Z8611 saves the Program Counter 
and the Flags register. To save the 16 working 
registers, only the Register Pointer register need 
be pushed onto the stack and another set of work­
ing registers is used for the service routine. 
For more detail on working registers and interrupt 
context switching, see the Z8 Technical Manual 
(03-3047-02). 

With regard to interrupts, the Z8611 is clearly 
superior. The Z8611 requires only one command to 
save all the working registers, which greatly 
increases the efficiency of context switching. 

I/O Facilities. The Z8611 has 32 lines dedicated 
to I/O functions. These lines are grouped into 
four ports with eight lines per port. The ports 
can be configured individually under software 
control to provide input, output, multiplexed 
address/data lines, timing, and status. Input and 
output can be serial or parallel, with or without 
handshake. One port can be configured for serial 
transmission and four ports can be configured for 
parallel transmission. With parallel transmis­
sion, ports 0, 1, and 2 can transmit data with the 
handshake provided by port 3. 

The 8051 also has 32 I/O lines grouped together 
into four ports of eight lines. each. The ports can 
be configured under program control for parallel 
or serial I/O. The ports can also be configured 
for multiplexed address/data lines, timing, and 
status. Handshake· is provided by user software. 

The MC6B01 has 29 lines for I/O (three 8-bit ports 
and one 5-bit port). One port has two lines for 

252 

handshake. The ports provide all the signals 
needed to control input and output either serially 
or in parallel, with or' without multiplexed 
address/data lines. They can be used to interface· 
with external memory. 

The main differences in I/O facilities are the 
number of 8-bit ports and the hardware handshake. 
The Z8611 and the B051 have four 8-bit ports, 
whereas the MC6801 has three 8-bit ports and an 
additional 5-bit port. The Z8611 has hardware 
handshake on three ports, the MC6B01 has hardware 
handshake on only one port, and the 8051 has no 
hardware handshake. 

Counter/timers. The Z8611 has two 8-bit counters 
and two 6-bit programmable prescalers. One pre­
scaler can be driven internally or externally; the 
other prescaler is driven internally only. Both 
timers can interrupt the CPU when counting is 
completed. The counters can operate in one of two 
modes: t hey can count down until interrupted, or 
they can count down, reload the initial value, and 
start counting down again (continuously). The 
counters for the Z8611 can be used for measuring 
time intervals and pulse widths, generating vari­
able pulse widths, counting events, or generating 
periodic interrupts. 

The 8051 has two 16-bit counter/timers for measur­
ing time intervals and pulse widths, generating 
pulse widths, counting events, and generating 
periodic interrupts. The counter/timers have 
several modes of operation. They can be used as 
8-bit counters or timers with two 5-bit program­
mable prescalers. They can also be used as 16-bit 
counter/timers. Finally, they can be set. as B-bit 
modulo-n counters with the reload value held in 
the high byte of the 16-bit register. An interrupt 
is generated when the counter/timer has completed 
counting. 

The MC6801 has one 16-bit counter which can be 
used for pulse-width measurement and generation. 
The counter/timer actually consists of three 
16-bit registers and an 8-bit control/status reg­
ister. The timer has 'an input capture register, 
an output compare register, and a free-running 
counter. All three 16-bit registers can generate 
interrupts. 

Serial Communications Interface. The Z8611 has a 
programmable serial communication interface. The 
chip contains a UART for full-duplex, asynchron­
ous, serial receiver/ transmitter operation. The 
bit rate is controlled by counter/timer 0 and has 
a maximum bit rate of 93.500 b/s. An interrupt is 
generated when an assembled character is transfer­
red to the receive buffer. The transmitted 
character generates a separate interrupt. The 
receive register is do~ble-buffered. A hardware 
parity generator and detector are optional. 

The 8051 handles serial I/O using one of its 
parallel ports. The 8051 bit rate is controlled 



by counter/timer 1 and has a maximum bit rate of 
187,500 b/s. The 8051 generates one interrupt for 
both transmission and receipt. The receive reg­
ister is double-buffered. 

The MC6801 contains a full-duplex, asynchronous, 
serial communication interface. The bit rate is 
controlled by a rate register and by the MCU's 
clock or an external clock. The maximum bit rate 
is 62,500 b/s. Both the transmit and the receive 
registers are double-buffered. The MC6B01 gener­
ates only one interrupt for both transmit and 
receive operations. No hardware parity generation 
or detection is available, although it does have 
automatic detection of framing errors and overrun 
condit ions. 

The 8051 and the MC6B01 generate only one inter­
rupt for both transmit and receive, whereas the 
ZB611 has a separate interrupt for each. The 
ability to generate separate interrupts greatly 
enhances the use of serial communications, since 
separate service routines are often required for 
transmitting and receiving. 

Other differences between the lB611, MC6B01, and 
the B051 occur in the hardware parity detector, 
the double-buffering of registers, framing error 
detectors and overrun conditions. The 8051 has a 
faster data rate than either the ZB611 or the 
MC6B01. The MC6801 has the advantage of a hard­
ware framing error detector and aut omat ic detec­
tion of overrun conditions. The MC6B01 also has 
both its transmit and receive registers 
double-buffered. The ZB611 has a hardware parity 
detector. For detection of framing errors and 
overrun conditions, a simple, low-overhead soft­
ware check is available that uses only· two 
instructions. See Z8600 Software Framing Error 
Detection Application Brief (document #617-1B81-
0004). 

INSTRUCTION ARCHITECTURE 

The architecture of the ZB611 is designed specif­
ically for microcomputer applications. This fact 
is manifest in the instruction composition. The 
arduous task of programming the MC6B01 and the 
B051 starkly contrasts that of programming the 
ZB611. 

Addressing Modes 

The ZB611 and the B051 both have six addressing 
modes: Register, Indirect Register, Indexed, 
Direct, Relative, and Immediate. The MC6801 has 
five addressing modes: Accumulator, Indexed, 
Direct, Relative, and Immediate. A quick compar­
ison of these addressing modes reveals the ve rs a­
tility of the Z8611 and the 8051. The addressing 
modes of the MC6801 have several restrictions, as 
shown in Table 1. While the B051 has all the 
addressing modes of the Z8611, its use of them is 
restricted. The Z8611 allows many more combina-

tions of addressing modes per instruction, because 
any of its registers can be used as an accumula­
tor. For example, the instructions to clear, 
complement, rotate, and swap nibbles are all 
accumulator oriented in the 8051 and operate on 
the accumulator only. These same commands in the 
Z8611 can use any register and access it either 
directly, with register addressing, or with in­
direct register addressing. 

Indexed Addressing. All three chips differ in 
their handling of indexing. The Z8611 can use any 
register for indexing. The 8051 can use only the 
accumulator as an Index register in conjunction 
with the data pointer or the Program Counter. The 
MC6801 has one 16-bit Index register. The address 
located in the second byte of an instruction is 
added to the lower byte of the Index register. 
The carry is added to the upper byte for the com­
plete address. The MC6801 requires the index 
value to be an immediate value. 

The MC6B01 has only one 16-bit Index register and 
an immediate 8-bit value from the second byte of 
the instruction. Hence, the Indexed mode of the 
MC6801 is much more restrictive than that of the 
Z861" • The 8051 must use the accumulator as its 
only Index register, loading the accumulator with 
the register address each time a reference is 
made. Then, using indexing, the data is moved 
into the accumulator, eradicating the previous 
index. This forces a stream of data through the 
accumulator and requires a reload of the index 
before access can be made again. The Z8611 is 
clearly superior to both the MC6801 and the 8051 
in the flexibility of its indexed addressing mode. 

Short and Long Addressing. Short addressing helps 
to optimize memory space and execution speed. In 
sample applications of short register addressing, 
an eight percent decrease in the number of bytes 
used was recorded. 

All three chips have short addressing modes, but 
the ZB611 has short addressing for both external 
memory and register memory. The 8051 has short 
addressing for the lowest 32 registers only. 

The Z8611 has two different modes for register 
addressing. The full-byte address can be used to 
provide the address, or a 4-bit address can be 
used with the Register Pointer. To use the work­
ing registers, the Register Pointer is set for a 
particular bank of 16 registers, and then one of 
the 16 registers is addressed with four bits. 
Another feature for addressing external memory is 
the use of a 12-bit address in place of a full 
16-bit address. To use the 12-bit address, one 
port supplies the eight multiplexed address/data 
lines and another port supplies four bits for the 
address. The remaining four bits of the second 
port can be used for I/O. This feature allows 
access to a maximum of 10K bytes of memory. 

253 



The 8051 uses short addresses by organizing its 
lowest 32 registers into four banks. The bank 
select is located in a 2-bit field in the PSW, 
with three bits addressing the register in the 
bank. 

The MC6801 uses extended addressing for addressing 
external memory. With a special, nonmultiplexed 
expansion mode, 256 bytes of external memory can 
be accessed without the need for an external 
address latch. The MC6801 uses one 8-bit port for 
the address and another port for the data. 
Stacks 

The Z8611 and the MC6801 provide for external 
stacks, which require a 16-bit Stack Pointer. 
Internal stacks use only an 8-bit Stack Pointer. 
The 8051 uses only a limited internal stack re­
quiring an 8-bit Stack Pointer. Using an external 
stack saves the internal RAM registers for 
general-purpose use. 

Summary 

The stack structure of the Z8611 and the MC6801 is 
better than that of the 8051. In most applica­
tions, the 8051 is more flexible and easier to 
program than the MC6801. The Z8611 is easier to 
use than either the 8051 or the MC6801 because of 
its register flexibility and its numerous combina­
tions of addressing modes. The 8051 features a 
unique 4~n multiply and divide command. The 
MC6801 has a multiply, but it takes 10)('s to per­
form it. 

In summary, the Z8611 has the most flexible 
addressing modes, the most advanced indexing capa­
bilities, and superior space- and time-saving 
abilities with respect to short addressing. 

DEVELOPMENT SUPPORT 

All three vendors provide development support for 
their products. This section discusses the di f­
ferent support features, including development 
chips, software, and modules. 

Chips 

Zilog offers an entire family of microcomputer 
chips for product development and final product. 
The Z8611 is a single-chip microcomputer with 4K 
bytes of mask-programmed ROM. For development, two 
other chips are offered. The Z8612 is a 64-pin, 
development version with full interface to ex­
ternal memory. The Z8613 is a prototype version 
that uses a functional, piggy-back, EPROM proto­
pak. The Z8613 can use either a 4K EPROM (2732) 
or a 2K EPROM (2716). Zilog also offers a ROMless 
version in a 40-pin package that has all the fea­
tures of the Z8611 except on-board ROM (Z8681). 

Intel offers a similar line of development chips 

254 

with its 8051 family. The 8031 has no internal 
ROM and the 8751 has 4K of internal EPROM. 

Motorola offers the MC6801, MC6803, MC6803NR, and 
MC68701. These are all similar except the MC68701 
has 2K bytes of EPROM and the MC6801 has 2K bytes 
of ROM. The MC6803 has no internal ROM and the 
MC6803NR has neither ROM nor RAM on board. 

The Z8613 and the MC68701 are both available now, 
but the 8751 is still unavailable (as of April 
1981) • 

Software 

Development software includes assemblers, and 
conversion programs. All manufacturers offer some 
or all of these features. 

Since the MC6801 is compatible with the 6800, 
there is no need for a new assembler. The Z8611 
and the 8051 both offer assemblers for their 
products. The Zilog PLZ/ASM assembler generates 
relocatable and absolute object code. PLZ/ASM 
also supports high-level control and data state­
ments, such as IF ••• THEN ••• ELSE. Intel offers an 
absolute macroassembler, ASM51 , with their 
product. They also offer a program for converting 
8048 code to 8051 code. 

Modules 

The Z8611 development module has two 64-pin 
development versions of the 40-pin, ROM-masked 
Z8611. Intel offers the EM-51 emulation board, 
which contains a modified 8051 and PROM or EPROM 
in place of memory. Motorola has the MEX6801EVM 
evaluation board for program development. All 
three development boards are available now. 

ADDITIONAL FEATURES 

Additional features include Power Down mode, self­
testing, and family-compatibility. 

POlfer Down Mode 

All three microcomputers offer a Power Down mode. 
The Z8611 and the 8051 save all of their regis­
ters with an auxilary power supply. The MC6801 
uSeS an auxiliary power supply to save only the 
first 64 bytes of its register file. 

The Z8611 uses one of the crystal input pins for 
the external power supply to power the registers 
in Power Down mode. Since the XTAL2 input must be 
used, an external clock generator is necessary and 
is input via XTAL1. The 8051 and the MC6801 both 
have an input reserved for this function. The 
MC6801 uses the Vcc standby pin, and the 8051 uses 
the Vpd pin. 



Femily Compatibility 

Another strength of the Z8611 is its expansion 
bus, which is completely compatible with the Zilog 
Z-BUSTM. This means that all Z-BUS peripherals 
can be used directly with the Z8611. 

The MC6B01 is fully compat ible with all MC6800 
family products. The 8051 is software compatible 
with the older 804B series and all others in that 
family. 

BENCH~lARI(S 

The following benchmark tests were used in this 
report to compare the Z8611, 8051, and MC6801: 

o Generate CRC check for 16-bit word. 
o Search for a character in a block of memory. 
o Execute a computed GOTO - jump to one of eight 

locations depending on which of the eight bits 
is set. 

o Shift a 16-word five places to the right. 
o Move a 64-byte block of data from external 

memory to the register file. 
o Toggle a single bit on a port. 
o Measure the subroutine overhead time. 

These programs were selected because of their 
importance in microcomputer applications. Algo­
rithms that reflect a unique function or feature 
were excluded for the sake of comparison. Al­
though programs can be optimized for a particular 
chip and for a particular attribute (code density 
or speed) these programs were not. 

The figures cited in this text are taken directly 
from the vendor's documentation. Therefore, the 
cycles given below for the MC6801 and the B051 are 
in machine cycles and the l8611 figures are gi ven 
in clock cycles. The ZB611 clock cycles should be 
divided by six to give the instruction time in 
microseconds. The 8051 and MC6801 machine cycle 
is 1 ).(.s, and the ZB611 clock cyc Ie is .166,«.s at 
12 MHz. 

Because of the lack of availability of the MC6801 
and the B051, the benchmark programs listed here 
have not yet been run. When these products are 
readily available, the programs will be run and 
later editions of this document will reflect any 
changes in the findings. 

Program Listings 

8051 

LOOP: 

Mt::6B01 

LOOP: 

ZB611 

LOOP: 

CRC Generation 

MOV 
MDV 
XRL 
RLC 
MOV 
XRL 
RLC 
MOV 
MOV 
XRL 
RLC 
MOV 
CLR 
MOV 
RLC 
MOV 
DJNl 
RET 

INDEX, 118 
A, DATA 
A, HCHECK 
A 
A, LCHECK 
A, LPDLY 
A 
LCHECK, A 
A, HCHECK 
A, HPOLY 
A 
HCHECK, A 
C 
A, DATA 
A 
DATA, A 
INDEX, LOOP 

N = 3+17XB = 139 cycles 
®12 MHz = 1 39 As 
Instructions = 1B 
Bytes = 31 

LDAA 
STAA 
LDAA 
EORA 
RDLA 
LOAD 
EORA' 
EORB 
ROLB 
ROLA 
STAD 
ASL 
DEC 
BNE 
RTS 

11$08 
mUNT 
HCHECK 
DATA 

POLY 
HCHECK 
LCHECK 

LCHECK 
DATA 
COUNT 
LOOP 

N = 45X8+7 = 367 cycles' 
®4 MHz = 3674s 
Instructions = 15 
Bytes = 2B 

Machine 
Cycles 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 

Machine 
Cycles 

2 
3 
3 
3 
2 
4 
3 
3 
2 
2 
4 
6 
6 
4 
5 

Clock 
Cycles 

LD INDEX, #8 6 
LD R6, DATA 6 
XOR R6, HCHECK 6 
RLC R6 6 
XOR LCHECK, LPOLY 6 
RLC LCHECK 6 
XOR HCHECK, HPOL Y 6 
RLC HCHECK 6 
RCF 6 
RLC DATA 6 
DJNZ INDEX, LOOP 12 or 10 
RET 14 
N = 20+66X7+64 = 546 cycles 

®12 MHz = 91 '«'s 
Instructions = 12 
Bytes = 22 

Bytes 
2 
2 
2 
1 
2 
2 
1 
2 
2 
2 
1 
2 
1 
2 
1 
2 
3 
1 

Bytes 
2 
2 
2 
2 
1 
2 
2 
2 
1 
1 
2 
3 
3 
2 
1 

Bytes 
2 
2 
2 
2 
2 
2 
2 
2 
1 
2 
2 
1 

255 



Character Search Through Block of 40 By tea Shift 16-Bit Word to Right 5-Bits 

8051 Machine 8051 Machine 
Cycles Bytes Cycles Bytes 

MOV INDEX, 1141 1 2 MOV INDEX 115 1 2 
MOV DPTR, flTABLE 2 3 LOOP: CLR C 

LOOP1: DJNZ INDEX, LOOP 2 2 2 MOV A, WORD + 1 2 
SJMP OUT 2 2 RRC A 

LOOP2: MOV A, INDEX 2 MOV WORD + 1, A 2 
MOVC A, @A+DPTR 2 MOV A, WORK 2 
CJNE A, CHARAC, LOOP1 2 3 RRC A 1 

OUT:. MOV WORD, A 2 
N = 3+39X7+4 = 2BO cycles DJNZ INDEX, LOOP 2 2 

®12 ·MHz = 280.u.s N = 1+9X5 = 46 Cycles 
Instructions = 7 @12 MHz = 46#8 
Bytes = 15 Instructions = 9 

Bytes = 15 

MC6B01 Machine 
Cycles Bytes MC6801 Machine 

LDAB 11$40 2 2 Cycles Bytes 
LDAA IICHARAC 2 2 LOX 115 6 3 
LOX IITABLE 3 3 LOAD WORK 4 2 

LOOP: CMPA $0, X 4 2 LOOP: LSRD 3 
BEQ OUT 4 2 DEX 3 
INX 3 1 BNE LOOP 4 2 
DECB 2 STAD WORD 4 2 
BNE LOOP 4 2 N = 10X5+11 = 61 Cycles 

OUT: - ®4 MHz = 61_ 
Instructions = 6 
Bytes = 11 

N = 7+40X17 = 687 cycles 
®4 MHz = 687.u..s 
Instructions = 8 Z8611 Clock 
Bytes = 15 Cycles Bytes 

LD INOEX, 115 6 2 
ZB611 Clock LOOP: CCF. 6 

Cycles Bytes RRC WORD + 1 6 2 
LD INDEX, 1140 6 2 RRC WORD 6 2 

LOOP: LD DATA, TABLE (INDEX) 10 3 DJNZ INDEX, LOOP 12 or 10 2 
CP DATA, CHARAC 6 2 N = 6+4X30+28 = 154 Cycles 
JR Z, OUT 12 or 10 2 ®12 MHz = 264s 
DJNZ INDEX, LOOP 12 or 30 2 Instructions = 5 

OUT: - Bytes = 9 

N = 6+38X40 = 1524 cycles 
®12 MHz = 2541(..s 
Instructions = 5 
Bytes = 11 

256 



CG:01puted GOTO Hove 64-Byte Block 

B051 Hachine B051 Machine 
Cycles Bytes Cycles Bytes 

MOV INDEX, 1140 1 2 MOV INDEX, ilCOUNT 1 2 
LOOP: MOV A, DATA 2 LOOP: MOV DPTR, #ADDR1 2 3 

RLC A 1 MOVX A, IIDPTR 2 
JC OUT 2 2 INC IIADDR1 
MOV A, INDEX 1 MOV ®ADDR2,A 
ADD A, #3 2 INC ADDR2 
MOV INDEX, A DJNZ INDEX, LOOP 2 
SJMP LOOP 2 2 N = 1+9X64 = 577 Cycles 

OUT: MOV DPTR, IITABLE 2 3 ®12 MHz = 577~s 
MOV A, INDEX 1 1 Instructions = 7 
JMP ®A+DPTR 2 Bytes = 10 

TABLE: LCALL ADDR1 3 

t·;c6801 ~lachine 

LCALL ADDRN 2 Cycles Bytes 
N = 1+9X7+11 = 75 Cycles LDAB ilCOUNT 2 2 

®12 MHz = 75.a.s LOOP: LDX ADDR1 4 3 
Instructions = 12 LDAA 0, X 4 2 
Bytes = 21 INX 3 1 

STAA ADDR1 4 2 
LDX ADDR2 4 3 

tt.C6B01 ~~::china STAA 0, X 4 2 
Cycles Bytes INX 3 1 

LDAB 112 2 2 STX ADDR2 4 2 
LDX TABLE 3 3 DECB 2 

LOOP: RORA 2 BNE .LOOP 4 2 
BCS OUT 4 2 N = 64X36+2 = 2306 Cycles 
ABX 3 1 ®4 MHz =2306 4s 
JMP LOOP 3 2 Instructions = 11 

OUT: LDX 0, X 5 3 Bytes = 21 
JMP 0, X 4 3 
N = 8X12+14 = 110' Cycles 

®4 MHz. = 110,u.s ZB611 Clock 
Instructions = 8 Cycles Bytes 
Bytes = 17 LD INDEX, IICOUNT 6 2 

LOOP: LDEl ®ADDR2, ®ADDR1 18 2 
DJNZ INDEX, LOOP 12 or 10 2 

Z8611 Clock N = 6+63X30+2B = 1924 Cycles 
Cycles Bytes ®12 MHz = 321~s 

CLR INDEX 6 2 Instructions = 3 
LOOP: INC INDEX 6 Bytes = 6 

RLC DATA 6 2 
JR NC, LOOP 12 or 10 2 
LD ADDR,TABLE 1, (INDEX) 10 3 
LD ADDR+1,TABLE 2, (INDEX) 10 3 
JP @ADDR 12 2 
N = 6+24X7+54 = 22B Cycles 

®12 MHz = 38«..s 
Instructions = 7 
Bytes :: 15 

257 



8051 

MC6801 

Z8611 

258 

Toggle a Port Bit 

XRL PO, I!YY 
N = 2 Cycles 

®12 MHz = 2MS 
Instruct ions = 
Bytes = 3 

LDAA PORTO 
EORA I!YY 
STAA PORTO 
N = 8 Cycles 

®II MHz = 8 ","s 
Instructions = 3 
Bytes = 6 

XOR PORTO, UYY 
N = 10 Cycles 

®12-MHz = 1.7 4-S 
Instructions = 1 
Byte = 2 

Machine 
Cycles 

2 

Machine 
Cycles 

3 
2 
3 

Clock 
Cycles 

10 

Bytes 
3 

Bytes 
2 
2 
2 

Bytes 
2 

Subroutine Call/Return Overhead 

8051 

LCALL SUBR 

SUBR: -

MC6801 

REf 
N 4 Cycles 

®12 MHz = 4"'s 
Ins truct ions 2 
Bytes = 4 

JSR SUBR 

SUBR: -

Z8611 

RTS 
N 14 Cycles 

®4 MHz = 14.«.s 
Ins truct ions 2 
Bytes = 3 

CALL ®SUBR 

SUBR: -

Machine 
Cycles 

2 

2 

Mschine 
Cycles 

9 

5 

Clock 
Cycles 
. 20 

REf 14 
N = 34 Cycles 

Results 

®12 MHz = 5.7 Ms 
Ins truct ions = 2 
Bytes = 3 

Bytes 
3 

Bytes 
2 

Bytes 
2 

Table 2 summarizes the results of this comparison. 
The relative performance column lists the speeds 
of the MC6801 and 8051 divided by the Z8611 speeds 
(12 MHz). The overall performance averages the 
separate relative performances. The higher the 
number, the faster the Z8611 as compared to the 
MC6801 and the B051. 

The relative performance figures show that the 
ZB611 runs 50 percent faster than the 8051 and 250 
percent faster than the MC6B01. Although speed is 
not necessarily the most important criterion for 
select ing a particular product, the ZB611 proves 
to be an undeniably superior product when speed is 
added to the advantages of programming ease, code 
density, and flexibility. 



Table 2. Benchmark Program Results 

MC6801 8051 Z8 Z8 
Benchmark (414Hz) (12 MHz) (8 MHz) (12 tJjHz) Relative Performance 
Test cycles time cycles time cycles time cycles time MC6801 8051 

CRC 
Generation 367 367 139 139 546 137 546 91 4.03 1.53 

Character 
Search 687 687 280 280 1524 382 1524 254 2.70 1.10 

Computed 
GOTO 110 110 75 75 228 57 228 38 2.89 1.97 

Shift Right 
5 Bits 61 61 46 46 154 38 154 26 2.35 1.78 

Move 
64-byte 
block 2306 2306 577 577 1924 481 1924 321 7.18 1.80 

Subroutine 
Overhead 14 14 4 4 34 8.5 34 5.7 2.46 0.70 

Toggle a 
Port Bit 8 8 2 2 10 2.5 10 1.7 4.71 1.18 

Overall 
Performance 3.76 1.44 

Note: All times are given in microseconds. 

Table 3. Byte/Instruction/Time Comparison 

Bytes Instructions Time (microseconds) 
MC6801 8051 Z8611 MC6801 8051 Z8611 MC6B01 8051 Z8611 

CRC Generation 28 31 22 15 18 12 367 139 91 

Character Search 15 15 11 8 7 5 687 280 254 

Shift Right 5 Bits 11 15 9 6 9 5 61 46 26 

Computed GOTO 17 21 15 8 12 7 110 75 38 

Move Block 21 10 6 11 7 3' 2306 577 321 

Toggle Port Bit 6 3 2 3 1 1 8 2 1.7 

Subroutine Call 3 4 3 2 2 2 14 4 5.7 

259 



SUMMARY 

The hardware of the three chips compared is very 
similar. The Z8611, however', has several advan­
tages, the most important of which is its inter­
rupt structure. It is more advanced than the 
interrupt structures of both the 8051 and the 
Me6801. Other advantages of the Z8611 over either 
the Me6801 or the 8051 include I/O facilities with 
parity detection and hardware handshake and a 
larger amount of internal ROM (the Me6801 has only 
2K bytes). 

Substantial differences are apparent with regard 
to software architecture. The addressing modes of 

260 

the Z8611 are more flexible than those of either 
the Me6801 or the 8051. The Z8611 can use byte­
saving addressing with working registel'S, and it 
has short external addresses for saving I/O lines. 
It can also provide for an external stack. The 
register architecture (as opposed to the accumu­
lator architecture) of the Z8611 saves execution 
time and enhances programming speed by reducing 
the byte count. 

The Z8611 microcomputer stands out as the m6st 
powerful chip of the three, and concurrently, it 
is the easiest to program and configure. 



~ 
Zilog 

The Interrupt Request Register (IRQ, R250) 
stores requests from the six possible Inter­
rupt sources ( IRQO_IRQ5) In the Z8600 series 
microcomputer. In addition to other func­
tions, a hardware reset to the Z8600 disables 
the IRQ register and resets Its request bits. 
Before the IRQ will register requests, It 
must first be enabled by executing an Enable 
Interrupts (EI) Instructl~n. Setting the 
Enable Interrupt bit In the Interrupt Mask 
Register (IMR, R251) Is not an equivalent 
operation for this purpose; to enable the 
IRQ, an EI Instruction Is required. The 
function of this EI Instruction Is distinct 
from Its task ofglobelly enabling the Inter­
rupt system. Even In a pol led system where 
IRQ bits are tested In software, It Is 
necessary to execute the EI. 

EI INSTRUCTION 

RESET -~------' 

Z86 Interrupt 
Request Register 

Application Brief 

October 1980 

The designer must ensure that unexpected and 
undesirable Interrupt requests will not occur 
after the EI Is executed. One method of 
doing this Is to reset all Interrupt enable 
bits In the IMRJor levels that are possible 
Interrupt sources; the EJ Instruction may 
then be safely executed. Once EI Is exe­
cuted, the program may Immediately execute a 
Disable Interrupts (01) Instruction. The 
code nec.essary to perform these operations Is 
as fol lows: 

RESET: LD 
EI 

IMR, 6'f,XX ISET INTERRUPT MASK! 
!ENABLE GLOBAL INTER­
RUPT, ENABLE IRQI 

where XX has a ~ In each bit position cor­
responding to the Interrupt level to be 
disabled. If al I IMR bits are to be reset, a 
CLR IMR Instruction may be used. 

INTERRUPT REQUEST REG. 
(IRQ, R250) 

Z8600 

Figure 1 -'IRQ Reset FunctIonal LogIc DIagram 

261 



~. 
Zilog 

I NTROOUcr I ON 

METHOD 

'\ 

The Zllog ZB600 UART mlcrocanputer Is a hlgh- , 
performance, single-chip device that Incor­
porates on-chip ROM, RPM, parallel I/O, 
serial I/O, and a baud rate generator. The 
UART Is capable of full-duplex, asynchronous 
serial communication at nine standard 
software-selectable baud rates fran 110 to 
19.2K baud; other nonstandard rates can also 
be.obtalned under software control. Odd 
parity generation and checking 'lan also be 
selected. 

18 Family Software 
Framing Error Detection 

Applicaftion Brief 

October 1980 

Three possible error conditions can occur 
during reception of serial data: framing 
error, parity error, and overrun error. A 
framing error condition occurs when a stop 
bit Is not received at the proper time 
(Figure I). This can result fran noise In 
the data channel, caus I ng erroneous detect ion 
of the previous start bit or lack of detec­
tion of a properly transmitted stop btt. The 
Z8600 UART does not Incorporate hardware 
framing error detection but does facilitate a 
simple, low-overhead software detection 
method. 

START 
BIT DATA BITS (8) 

PARIIY STOP 
(IF BIT 

ENABLED) 

Fig. 1 - Asynchronous Data Format 

In the midd Ie of the stop bit time, the Z8600 
UART automatical'y posts a serial Input 
Interrupt request on IRQ3. The serial Input 
can a I so be teSted by r,ead I ng Port 3 bl t 0 
(P30) as shown In Figure 2. Thus, within 
,the interrupt service routine or polling 
loop, it is only necessary to test P30 in 
order to Identify a framing error. If P30 Is 
Low when IRQ3 goes High, a framing error con-

ditlon exists and the following code Is used 
to test this: 

1M P3, 6%01 
JR Z, FERR 

I TEST FOR P30 = I I 
I ELSE FRAMING ERROR I 

The execution time of this framing error test, 
is only 5.5A(.s at 8 MHz. In the worst case 
(19.2K baud), this would result in 1% over­
head. Only five program bytes are required. 

SERIAL _ 
DATA IN P30 

ZB600 

Fig. 2 - ZB600 Serial Input COnnection 

Z8 is a·trademark of Zllog, Inc. 

262 



CONCLUSION While the Z8600 UART does not incorporate 
hardware framing error detection, this 
feature can be Implemented In software with a 

Reprinted with permission of Synertek, Inc. 

maximum penalty of 1% at 19.2K baud using no 
additional hardware and only five bytes of 
program memory. 

263 



- - - --- ~,~ - '"'- '"" -- - --..... ---to -,-.--,- -..,......:;..-~- .... "'"'.~ •• ~ ~~ ...... 

Zilog , Technica,1 ~~nual·e.: ", '., ~ '" ;; , L >'"" :~,~.~ 
• • ~ -T' _ ~ I ...-"~ H'" _ L _~_ ~ __ ,,-..;I, ~_ : '.;;I,.;_ .. ~ .. ;...-o>_.~:LJ.:-,,,,,,~l_' ... :J~~ 

November 1984 

264 



Table Of Contents 

Chapter 1. Z8 fanily Overview 

1.1 Introduction 
1.2 Features 

'1.2.1 Instruction Set 
1.2.2 Architecture •• 

1.3 Microcomputers (Z8601/11) 

1.4 Development Device (Z8612) 

1.5 Protopack Emulator (Z8603/13) 

1.6 8ASIC/Debug Interpreter (Z8671) • 

1.7 ROMless Microcomputer (Z8681/82) 

1.8 Applications •••• 

Chapter 2. Architectural Overvi~ 

2.1 Introduction. 
2.2 Address Spaces 
2.3 Register File • 

2.3.1 Register Pointer 
2.3.2 Instruction Set 
2.3.3 Data Types ••• 
2.3.4 Addressing Modes 

2.4 I/O Operations 

2.4.1 
2.4.2 

Timers. 
Interrupts 

2.5 Oscillator, 
2.6 Protopack. 

Chapter 3. Addresa Spaces 

3.1 Introduction •• 
3.2 CPU Register File 

3.2.1 Error Conditions 

3.3 
3.4 
3.5 
3.6 

CPU Control and Peripheral Registers 
CPU Program Memory 
CPU Data Memory 
CPU Stacks • • • • 

" 

• 261 
• 261 

261 
261 

• 262 

262 

264 

264 

264 

. . 264 

2 
• 266 

266 
267 

267 
267 
267 
267 

.267 

.267 

.267 

.' .268 
.268 

3 
• 269 
• 269 

.270 

.271 
·271 

" 
.273 
.274 

265 



Table Of Contents (Continued) 

Chapter 4. Address Modes 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 
4.7 

Introduction • • 
Register Addressing (R). ••• 
Indirect Register Addressing (IR) 
Indexed Addressing (X) 
Direct Addressing (DA) 
Relative Addressing (RA) 
Immediate Data Addressing (1M) 

Chapter 5. Instruction Set 

5.1 Functional Summary 
5.2 Processor Flags. 

5.2.1 Carry Flag (C) 
5.2.2 Zero Flag (Z) 
5.2.3 Sign Flag (S) 
5.2.4 Overflow Flag (V) 
5.2.5 Decimal-Adjust Flag (D) 
5.2.6 Half-Carry Flag (H) 

5.3 Condition Codes •••••• 
5.4 Notation and Binary Encoding 

5.4.1 Assembly Language Syntax ••••• 
5.4.2 Condition Codes and Flag Settings 

5·.5 Instruction Summary • • • • • • • • • 
5.6 Instruction Descriptions and Formats 

Chapter 6. External Interface (Z8601. Z8611) 

6.1 Introduction.· •••••••• 
6.2 Pin Description •••••••• 
6.3 Configuring for External Memory 
6.4 External Stacks 
6.5 Data Memory • 
6.6 8us Operation • 

6.6.1 Address Strobe (AS) 
6.6.2 Data Strobe (OS) • • 

6.6.3 External Memory Operations 

6.7 Shared Bus •••• 
6.8 Extended Bus Timing 
6.9 Instructioh· Timing 
6.10 Reset Conditions 

266 

275 
275 
276 
276 
277 
277 
278 

279 
280 

280 
280 
280 
281 
281 
281 

281 
281 

282 
282 

284 
285 

329 
329 
330 
331 
331 
331 

332 
332 
332 

333 
334 
335 
338 

4 

5 

6 



Chapter 7. External Interface (Z8681, Z8682) 

7.1 Introduction 
7.2 Pin Descriptions 
7.3 Configuring Port 0 

7.3.1 ZB6B1 Initialization 
7.3.2 ZB6B2 Initialization 
7.3.3 Readtnrite Operations 

7.4 External Stacks 
7.5 Data Memory. 
7.6 Bus Operation. 

7.7 
7.B 
7.9 
7.10 

7.6.1 Address Strobe (AS) 
7.6.2 Data Strobe (OS) 

Extended Bus Timing • 
Instruction Timing 
ZB6B1 Reset Conditions 
ZB6B2 Reset Conditions 

Ch;ipter 8. Reset and Clock 

B.1 Reset. • •• 
B.2 Clock. • 
B.3. Power-down Operation 
B.4 Test Mode • • 

B.4.1 Interrupt Testing 
8.4.2 ROMless Operation 

Chapter 9. I/O Ports 

9.1 

9.2 

9.3 

Introduction • 

9.1.1 Mode Registers 
9.1.2 Input and Output Registers 

Port 0 

9.2.1 Read/Write Operations, 
9.2.2 Handshake Operation 

Port 1 

9.3.1 Read/Write Operations 
9.3.2 Handshake Operation • 

339 
339 
340 

340 
341 
342 

342 
342 
343 

343 
343 

343 
344 
344 
344 

345 
346 
347 
348 

349 
349 

• 350 

·350 
·350 

.350 

.352 
352 

353 

• 353 
·353 

7 

267 



Table Of COBlenls (Continued) 

9.4 

9.5 

Port 2 

9.4.1 Read/'~rite Operations 
9.4.2 Handshake Operation 

Port 3 

9.5.1 Read/Write Operations 
9.5.2 Special Functions 

9.6 Port Handshake •• 
9.7 I/O Port Reset Conditions 

Chapter 10. Interrupts 

10.1 Introduction • • 
10.2 Interrupt Sources 

10.2.1 External Interrupt Sources 
10.2.2 Internal Interrupt Sources 

10.3 Interrupt Request Register Logic and Timing 
10.4 Interrupt Initialization • • • • • 

10.4.1 , Interrupt Priority Register Initialization 
10.4.2 Interrupt Mask Register Initialization • 
10.4.3 Interrupt Request Register Initialization 

10.5 IRQ Software Interrupt Generation 
10.6 Vectored Processing • • • • • • • 

10.6.1' Vectored Interrupt Cycle Timing 
10.6.2 Nesting of Vectored Interrupts 

10.7 Polled Processing 

10.8 Reset Conditions 

268 

• 354 9 
.354 
.354 

.355 

• 355 
356 

357 
• 358 

'10 
361 
361 

361 
363 

363 
363 

364 
365 
365 

365 
366 

366 
366 

366 

. '. 367 



Chapter 11. Counter/T imers 

11.1 Introduction . 
11.2 Prescalers and Counter/Timers 
11.3 Counter/Timer Operation. . 

11.3.1 Load and Enable Count Bits 
11.3.2 Prescaler Operations 

11.4 TOUT Modes. 
11.5 TIN Modes. 

11.5.1 External Clock Input Mode 
11.5.2 Gated Internal Clock Mode 
11.5.3 Triggered Input Mode 
11.5.4 Retriggerable Input Mode ., . 

11.6 Cascading Counter/Timers. 
11.7 Reset Conditions . 
Chapter 12. Serial I/O 

12.1 Introduction 
12.2 Bit Rate Generation 
12.3 Receiver Operation 

12.3.1 Receiver Shift Register 
12.3.2 Overwrites' 
12.3.3 Framing Errors 
12.3.4 Parity . 

12.4 Transmitter Operation 

12.4.1 Overwrites . 
12.4.2 Psrity 

12.5 Reset Conditions 

Appendix A. Pin Descriptions and Functions 

A.1 Development Device (Z8612) 
A.2 PIotopack Emulator (Z8603/13) 

Appendix B. Control Registers 

Appendix C. Opcode Hap • • • • 

369 
370 
371 

371 
371 

372 
373 

374 
374 
376 
376 

376 
376 

378 
378 
380 

380 
381 
381 
381 

381 

382 
382 

383 

385 
385 

387 

390 

11 

12 

269 



1.1 INTROOUCTII:t.I 

This chapter provide~ an overview of the architec­
ture and features of the Z8 Fainily of products, 
with particular emphasis. on those features that 
set this microcomputer apart from earlier micro­
computers. Detailed information about the archi­
tecture, address spaces and. modes, instruction 
set, external interface, timing, input/output 
operations, and interrupts can be found in subse­
quent chapters of this manual. 

1.2 FEATURES 

The Z8 microcomputer introduces a new level of 
sophistication to single-chip architecture. Com­
pared to earlier single-chip microcomputers, the 
Z8 offers faster execution; more efficient use of 
memory; more sophisticated interrupt, input/output 
and bit-manipulation capabilities; and easier. sys­
tem expansion. 

Z8 products offer the standard on-chip functions 
of earlier microcomputers, including: 

• 2K or 4K bytes of ROM 
• 144 8-bit registers 
• 3.2 li~es of programmable I/O 
• Clock oscillator 
• Arithmetic logic unit 
• Parallel and serial ports 

Beyond these basic features, the Z8 Family offers 
such advanced characteristics as: 

• Two counter/timers 
• Six vectored interrupts 
• UART for serial I/O communication 
• Stack functions 
• Power-down option 
• TTL compatibility 
• Optimized instruction set 
• BASIC/Debug interpreter 

All members of the Z8 Family are variations of the 
basic Z8 microcomputer, the Z8601/11. The Z8 
Family includes a development device (Z8612), a 
ROMless device (Z8681/82), BASIC/Debug Interpreter 
(Z8671), a Protopack emulator (Z8603/13), as well 

270 

Chapter I 
Z8 Family Overview 

as the basic microcomputer. These products offer. 
all the parts and development tools necessary for 
systems development (both hardware and software 
prototyping), field trials (pre-production) and 
fun production. For prototyping and preproduc­
tion, or where code flexibility is important, the 
Z8603/13 Protopack, 2K and 4K EPROM-based parts 
are the most appropriate. The ROM-bssed Z8601/11 
microcomputers are used in high-volume production 
applications after the softwsre has been per­
fected. For ROM less applications, two versions of 
the Z8 microcomputer are available: the 40-pin 
Z8681/82 and the 64-pin Z8612. In addition, there 
is a military version of the Z8611 4K ROM device, 
available in both 40-pin ceramic and 44-pin lead- . 
less chip carrier packages. 

The Z8671 MCU is a complete microcomputer prepro­
grammed with a BASIC/Debug Interpreter. This 
device, operating with both external ROM or RAM 
and on-chip memory registers, is suitsble for most 
industrial control applications, or whenever fast 
and efficient program development is necessary. 

The Z8 microcomputer is' well-suited for dedicated 
control applications in real-time mode. Since 
speed is a key consideration in such applications, 
the Z8 Family is available in both 8 and 12 MHz 
versions, supported by either of two development 
modules: the Development Module (OM) or the 
Z-SCAN 8. The Z-SCAN module provides (ICE) in­
circuit emulation capability. 

1.2.1 Instruction Set 

The Z8 imltruction set, consisting of 43 basic 
instructions, is optimized for high-code density 
and reduced execution time. The 47 instruction 
types and six addressing modes--togetherwith the 
ability to operate on bits, 4-bit words, BCD 
digits, 8-bit bytes, and 16-bit .words--make for a 
code-efficient, flexible microcomputer. 

1.2.2 Architecture 

Z8 architecture offers more flexibility and per­
formance than previous A/B accumulator designs. 
All 128 general-purpose registers, including 



dedicated I/O port registers, can be used as 
accumulators. This eliminates the bottleneck com­
monly found in A/B devices, particularly in high­
speed applications such as disk dri ves, printers 
and terminals. In addition, the registers can be 
used as address pointers for indirect addressing, 
as index registers or for implementing an on-chip 
stack. Speed of execution and smooth programming 
are supported by a "working register area"--short 
4-bit register addresses. 

The za cen be a stand-alone microcomputer with 
either 2K bytes (ZB601) or 4K bytes (ZB611)of 
internal ROM, a treditional microprocessor that 
can manage up to 124K bytes (ZB601) or 120K bytes 
(ZB611) of external memory, or a parallel proces­
sing element in a system ~Iith other processors and 
peripheral controllers linked bya Z-BUS. In all 
configurations, a large number of device pins are 
available for I/O. Key features of the ZB601/11 
microcomputer include: 

a il~ :h1-byto (ZiWl1) CJr C!tc-byto (IB611) \'>lrngro 
~ry. This ROM is mask-progrelmned during 
production with user-provided programs. 

The internal 
register organization of the ZB microcomputer 
centers around a 144-byte ·file composed of 124 
general-purpose registers, 16 status and 
control registers, and 4 I/O port registers. 
Either an B-bit or a 4-bit address mode can be 
used to access the register file. tlhen the 
4-bit mode is used, the register file is 
divided into 9 groups of 16 working registers 

.each. A Register Pointer uses short-format 
instructions to quickly access anyone of the 
nine groups. Use of the 4-bit addreSSing mode 
decreases access time and improves throughput. 

o PlrIUJlrEZOEhle Counter/T.ir:::ars. Two B-bit· coun­
ter/timer circuits are provided, each driven by 
its own preacaler. Both the counter/timers and 
their prescaler circuits are programmable. 

o UART (Ilniversal Asym:hranous Receiver TrEn!!lilit­
tor). A full-duplex UART is provided to 
control serial data communications. One of the 
on-chip counter/timer circuits provides the 
required bit rate input to enable the UART to 
operate at a maximum data transfer rate of 
93.75K bits per second at a crystal frequency 
of 12 MHz. 

20 F~ily Overvie~ 

Table 1-1 lists the basic characteristics of the 
members of the Z8 Family. As shown, the major 
differences between the products are in their 
physical packaging and the manner in which address 
space is handled. An overall description for each 
Z8 type is given in the following sections. 
Variations within each group are specified where 
applicable. 

a H/O lines/Ports. The ZB microcomputer provides 
32 input/output lines, arranged as 4 B-bit 
ports. Under sofblSre control, the I/O ports 
(Ports 0, 1, 2, 3) can be programmed as input, 
output, or additional address lines. The I/O 
ports can also be programmed to provide timing, 
status signals, interrupt inputs and serial or 
parallel I/O (with or without handshake). 

o Vcmtored InterrL~B. The ZB MPU permits the 
use of six different interrupts from any of 
eight different cources. Four Port 3 lines 
(P30-P33), serial input pin (P30)' the serial 
output pin (P37) end both counter/timer 
circuits may be interrupt cources. All 
interrupts are vectored end are both maskable 
and prioritized. 

o Occillator C~uit. An oscillator circuit that 
csn be driven from an external clock or crystal 
is provided on the ZB microcomputer. The 
oscillator will accept an input frequency of up 
to 12 MHz on the XTAL1 and XTAt2 pins provided. 

o (lptianal Potrer-Do= Feature. This option 
permits normal input potter to be removed from 
the chip without affecting the contents of the 
register file. The power-down function 
requires an external battery backup system. 

Pin functions and descriptions for the ZB601/11 
microcomputer can be found in Chapter 6. 

A development device allows users to prototype a 
system with an actual hardware device and to 
develop the code that is eventually mask-pro­
grammed into the on-Chip ROM of the ZB601 or Z8611 
microcomputer. Oevelopment devices are also use-
ful in applications where production volume 
not justify the expense of a Rot~ system. 
ZB612 development device is identical to 
equivalent microcomputer, the ZB611, with the 
lowing exceptions: 

does 
The 
its 

f01-

271 



• No internal ROM is provided, so that code is 
developed in an off-chip memory. 

• The normally internal ROM address and data 
lines are buffered and brought out to external 
pins to interface with the external memory. 

• Control lines are added to interface with 
external program memory. 

o The device package is enlarged in order to 
accommodate the new control, address, and data 
lines. 

Pin functions and descriptions for the development 
device can b,e found in the Appendix. 

Table 1-1. ZS Family of Products 

ROM 
Part Capacity Progr8lllllable Dedicated PCB 

Product Number (Bytes) I/O Pins I/O Pins Footprint CDlllllBnts 

2K ROM Z8601 2K 32, 4 ports 8 Power, 40 Pin Masked ROM part, uaed 
Control primarily for high volume 

production. 

2K Protopack Z8603 0 32, 4 ports 8 Power, 40 Pin Piggyback part used where 
Control program flexibility is 
plus required (prototyping). 
24 EPROM 

4K ROM Z8611 4K 32, 4 ports 8 Power, 40 Pin Masked ROM part, used 
Control primarily for high volume 

production. 

4K Oevelop- Z8612. 0 32, 4 ports 8 Power, 64 Pin ROlHess part used primarily 
ment part Control in development systems. 

plus 24 
external 
memory 

4K Protopack ZB613 0 32, 4 ports 8 Power, 40 Pin Piggyback part used where 
Control program flexibility is 

. plus required (prototyping) • 
24 EPROM 

BASIC/ ZB671 2K 32, 4 ports. 8 Power, 40 Pin BASIC/Debug part used in 
Debug Control low volume applications. 

ROM less ZB681/82 0 24, 3 ports 8 Power, 40 Pin Low cost ROM lees production 
Control part with reduced I/O. 
plus 8 Program memory is external. 
external 
memory 

272 



ZB Family Overview 

1.5 PROTOPACK Er.:uLATOR (Z8603/n) 

The Protopack emulator devices, ZB603 and ZB613, 
are ROMl,ess versions of their equivalent microcom­
puters (ZB601 and ZB611, respectively). The emu­
lators differ from development devices in two 
ways: they use the same pinout as the microcom­
puters, and an external ROM or EPROM can be 
plugged into the top of the package. The emulator 
package allows for flexibility of application, 
since it can be used in either prototype or final 
pc boards, yet still allows for program develop­
,ment. 

When the final program is developed, it can be 
mask-programmed into the ZB601/11 which then 
replaces the emulator. The emulator is also use­
ful in small volume applications where the cost of 
mask-programming is prohibitive or where program 
flexibility is desired. 

Physical description for the Protopack emulator is 
found in the Appendix. 

1.6 BASIC/DEHUG INTERPRETER (Z8671) 

The ZB671 MCU is a complete microcomputer prepro­
grammed with a BASIC/Debug interpreter. BASIC/ 
Debug can directly address the ZB671 , s internal 
registers and all external memory. It can quickly 
examine and modify any external memory location' or 
I/O port, and can call machine language subrou­
tjnes to increase execution speed. 

The ZB671 MCU has a combination of software and 
hardware that is ideal for most industrial' control 
'applications. Along with the functions mentioned 
above, this microcomputer has a self-contained 
line editor for interactive debugging which fur­
ther speeds program development. In addition the 
BASIC/Debug Interpreter allows program execution 
on power-up or reset, without operator interven­
tion. 

Two kinds of memory exist in the ZB671 device: 
on-chip registers and external ROM or RAM. The 
BASIC/Debug interpreter is located in the 2K bytes 
of on-chip ROM. Maximum addressing capability is 
62K bytes of external program memory and .62K bytes 
of data memory. In addition, 32 I/O lines, a 144-
byte register file, on-board UART and two coun­
ter/timers are provided. 

Pin descriptions 
those for the 
(Chapter 6). 

and functions are the same as 
ZB601/11 basic microcomputer 

1 .7 Rm.a.ESS MICROCOl-IPUTER (Z8681/82) 

The ZB6B1 and ZB6B2 ROM less microcomputers provide 
virtually all of the functions of the standard ZB 
microcomputer without the need to mask-program 
on-chip ROM. This microcomputer is similar to the 
ZB601 version except that there is no on-chip pro­
gram memory. Unlike the ROMless development and 
Protopack devices the ZB681/B2 has no additional 
address or address control lines nor does it ,carry 
a plug-in piggyback memory module. Use of exter­
nal memory rather than internal ROM enables this 
ZB device to be used in low volume applications or 
where code flexibility is required. The use of 
Ports 0 and 1 to interface external memory leaves 
16 to 24 lines for I/O. 

Since Port 1 is dedicated as an B-bit multiplexed 
Address/Data bus, and Port 0 lines can be pro­
grammed as address bits, the resulting' 16-bit 
addresses can 'directly address up to' 64K bytes of 
memory for the ZB6B1 and 62K bytes for the ZB6B2. 
(The ZB6B2 MCU cannot address the, lower 2K bytes 
of memory). 

The address capabllUy of the ZB6B1/B2 can be 
doubled by programming output P34 of Port 3 as 
Data Memory (OM) se lect signal. The two states of 
this signal can be used with the 16-bit addresses 
to identify two separate external address spaces, 
thus increasing external address space to 12BK 
bytes for the ZB6B1 and 124K bytes for the ZB,6B2. 

Pin functions and descriptions for the ZB6B1/B2 
microcomputer ca~ be found in Chapter 7. 

1.8 APPLICATI~~S 

ZB microcomputers are most often used in high-per­
formance, dedicated applications. Such special­
ized functions were previously accomplished with 
TTL logic, TTL logic plus a low-end MCU, or a 
microprocessor and peripherals. Some typical 
applications include: 

o Disc drive controller 
o Printer controller 
II Terminals 
o Modems 
o Industrial controllers 
o Key telephones 
o Telephone switching systems 
o Arcade games and intelligent home games 
o Process control 
a Intelligent instrumentation 
o Automotive mechanisms 

273 



Following are brief descriptions for a few ZA 
applications. 

Printers. Input data (typically transmitted via a 
terminal or computer) can be sent to the Z8 on 
either a serial or parallel port. The ZB then 
transfers the data into the external RAM buffer 
via another parallel port, where it can operate on 
the data before output to the printing mechanism. 

274 

ZB Family Overview 

Disk. Disk operations are read or write, with 
input recehed from either the disk or the compu­
ter. Data is transferred to the buffer memory a 
sector (12B, 256, 512, 1024 bytes) at a time via 
the ZB, operated on as required, and subsequently 
output to the disk or computer. 

Ter.inal. Input is received from either the key­
board or a computer. The ZB device must maintain 
at least an input buffer and often the screen RAM. 



2.1 INTRODUCTION 

The Z8 is a versatile single-chip microcomputer. 
Because its multiplexed address/data bus is merged 
with several I/O-oriented ports, the Z8 can func­
tion as either an I/O-intensive or a memory­
intensive microcomputer. One key advantage to 
this organization is that external memory can be 
addressed while maintaining many of the I/O 
lines. Figure 2-1 shows the Z8 block diagram. 

2.2 ADDRESS SPACES 

To provide for both I/O-intensive and memory­
intensive applications, the Z8 supports three 
basic address spaces: 

OUTPUT Vee GND 

! ! 

©lhltm!p>ft<el! ~ 
~l!«:llilfifie«:ftlJIlIl'm1R @w(pnrwfieW'J 

o Program memory (internal and external) 
o Data memory (external) 
o Register file (internal) 

A maximum of 64K bytes of program memory are 
directly addressable. In the Z8601 and Z8611 
microcomputers, internal program memory consists 
of a mask-programmed ROM. The size of this 
internal ROM is 2K bytes for the Z8601 and 4K 
bytes for the Z8611. In one member of the Z8 
family, the ZB681, all of the program memory is 
externally addressable. 

Data memory space is always external to the Z8 
microcomputer and is 62K bytes in size for the 
Z8601 and ZB682, and 60K and 641< bytes in size 
respectively for the Z8611 and ZB681. 

UART 1=1 
~ PROGRAM 

MEMORY 
2048 x a·BIT TIMERI 

COUNTERS 
(2) 

INTERRUPT 
CONTROL 

PORT 2 

llltlltl 
1/0 

(BIT PROGRAMMABLE) 

REG. POINTER 

ADDRESS OR 1/0 
(NIBBLE PROGRAMMABLE) 

figure 2-1. Z8 Block Diagrmm 

ADDRESSIDATA OR 1/0 
(BYTE PROGRAMMABLE) 

275 



Architectural Overview 

2.3 REGISTER FILE 

The ze's register-oriented architecture centers 
around an internal register file composed of 124 
general-purpose registers, 16 CPU and peripheral 
control registers, and 4 I/O port registers. All 
registers are eight bits. Any general-purpose 
register can be used as an accumulator, an address 
pointer, or an index, data, or stack register. 

2.3.1 Register Pointer 

A Register Pointer logically divides the register 
file into 9 working register groups of 16 regis­
ters each, which allows for fast context switching 
and shorter instruction formats. 

2.3.2 Instruction Set 

The ZB CPU has an instruction set designed for the 
large register file. The instruction set provides 
a full complement of B-bit arithmetic and logical 
operations. BCD operations are supported using a 
decimal adjustment of binary values, and 16-bit 
quantities for addresses and counters can be 
incremented and decremented. Bit manipulation and 
Rotate and Shift instructions complete the data 
manipulation capabilities of the ZB system. No 
special I/O instructions are necessary since the 
I/O is mapped into the register file. 

2.3.3 Data Types 

The ZB CPU supports operations on bits, BCD 
digits, bytes, and 2-byte words. 

Bits in the register file can be tested, set, 
cleared, and complemented. Bits within a byte are 
numbered from 0 to 7 with bit 0 being the least 
significant (right-most) bit (Figure 2...:2). 

Figure 2-2. Bits in Register 

Manipulation of BCD digits packed two-to-a-byte is 
accomplished by a Decimal Adjust instruction and a 
Swap instruction. Decimal Adjust is used after a 
binary addition or subtraction on BCD digits. 

276 

Logical, Shift, Rotate and Load instructions oper­
ate on bytes in the register file. Bytes in data 
memory are only affected by Load instructions. 

Sixteen-bit arithmetic instructions (Increment 
Word and Decrement Word) operate on words in the 
register file. 

2.3.4 Addressing Hodes 

The addressing modes of the Z8 CPU are: 

• Register 
• Indirect Register 
• Immediate 
• Direct Address 
• Indexed (with a short B-bit displacement) 
• Program Counter Relative 

Register, Indirect Register, and Immediate 
addressing modes are available for Load, Arith­
metic, Logical, Shift, Rotate, and Stack instruc­
tions. Conditional Jumps use both Direct Address 
and Program Counter Relative, while Jump and Call 
instructions use Direct Address and Indirect Reg­
ister addreSSing modes. 

2.4 I/O OPERATIONS 

The ZB has 32 pins dedicated to input and output. 
These lines are grouped into four ports of eight 
lines each. Ports can be programmed as input, 
output, or bidirectional. Under software control, 
the ports provide timing, status signals, address 
outputs, and serial or parallel I/O with or with­
out handshake. Multiprocessor system configura­
tions are also supported. 

2.4.1 Timers 

To unburden the program from real-time problems 
such as serial data communications and counting/ 
timing, the ZB contains an on-chip universal asyn­
chronous receiver/transmitter (UART) and two coun­
ter/timers with a large nu~ber of user-selectable 
modes. One \on-chip timer provides the bit rate 
input to the UART during communications. 

2.4.2 Interrupts 

I/O operations can be interrupt-driven or polled. 
The Z8 supports six vectored interrupts that can 
be masked and prioritized. 



2.5 OSCILLATOR 

The lB offers an on-chip oscillator and an 
optional power-down mechanism that can be used to 
maintain the contents of the register file with a 
low-power battery. 

Architectural Overview 

2.6 PROTOPACK 

The lB Protopack allows the user to prototype 
system hardware and develop-software that is 
eventually to be mask-programmed into the on-chip 
ROM of the 2K byte (lB601) or the 4K byte (lB611) 
version of the lB. 



3.1 INTRODUCTION DEC 

255 

Three address spaces are available in the Z8 254 

microcomputer: 253 

252 

g The CPU Register rile contains addresses for 251 

all general-purpose, peripheral, control, and, 250 

I/O port registers. 249 

248 

o The CPU Program Memory contains addresses for 247 

all memory locations having executable code 246 

and/or data. 245 

244 

• The CPU Data Memory contains addresses for all 243 

memory locations that hold data only. 242 

241 

These address spaces are described in detail in 240 

the following sections. 

3.2 CPU REGISTER FILE 

The register file totals 256 consecutive bytes, of 
which 144 have been implemented. (Unused register 
space is reserved for future expansion.) The reg­
ister file consists of 4 I/O ports (RO-R3), 124 
general-purpose registers (R4-R127), 9 peripheral 
registers (R240-R248), and 7 control registers 
(R249-R255). Figure 3-1 shows the layout of the 
register file, including register names, loca­
tions, and identifiers. 

Registers can be accessed as either 8- or 16-bit 
registers using Direct, Indirect, or Indexed 
addressing. All 144 registers can be refere'nced 
or modified by any instruction that accesses an 
B-bit register, without the need for special 
instructions. Registers accessed as 16-bits are 
treated as even-odd register patrs (there are 72 
valid pairs). In this case, the data's MSB is, 
stored in the even-numbered register, wnile the 
LSB goes into the next higher ( odd-numbered 
register (Figure 3-2). 

278 

127 

4 

3 

2 

o 

Chapier 3 
Address Spaces 

STACK POINTER (BITS 7-0) 

STACK POINTER (BITS 15-8) 

REGISTER POINTER 

PROGRAM CONTROL FLAGS 

INTERRUPT MASK REGISTER 

INTERRUPT REQUEST REGISTER 

INTERRUPT PRIORITY REGISTER 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

Tl PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

SERIAL I/O 

NOT 
IMPLEMENTED 

GENERAL·PURPOSE 
REGISTERS 

PORT 3 

PORT 2 

PORT 1 

PORTO 

HEX 

FF 

FE 

FD 

FC 

FB 

FA 

F9 

F8 

F7 

F6 

F5 

F4 

F3 

F2 

Fl 

FO 

7F 

04 

03 

02 

01 

00 

Figure 3-1. Register File 

IDENTIFIERS 

SPL 

SPH 

RP 

FLAGS 

IMR 

IRQ 

IPR 

P01M 

P3M 

P2M 

PREO 

TO 

PREl 

Tl 

TMR 

SIO 

P3 

P2 

Pl 

PO 

..... ..,;"M ... S_B_L-_LS_B_..III n = EVEN ADDRESS 

Rn Rn+l 

Figure 3-2. 16-Bit Register Addressing 



Address Spaces 

By using logical instructions and a Mask, indivi­
dusl bits within registers csn be accessed for bit 
set, bit clesr, bit complement, or bit test opers­
tions. for example, the instruction AND R, MASK 
performs s bit clesr operstion. 

When instructions are executed, registers are read 
when defioed ss sources snd written when defined 
ss destinations. All genersl-purpose registers 
function as accumulstors, address pointers, index 
registers, stack areas, or acrstchpad memory. 

ZB instructions can sccess B-bit registers' and 
register pairs (16-bit) using either 4-bit or 
B-bit address fields. With 4-bit addressing, the 
register file is logically divided into 9 groups 
of 16 working registers as shown in figure 3-3. A 
Register Pointer (one of the control registers) 
contains the base address of the active working 
register group. 

When accessing one of the working registers, the 
4-bit address is concatensted with the upper four 
bits of the Register POinter, thus forming an 
B-bit address. figure 3-4 illustrates this opera­
tion. Since working registers are typically 
apecified by short format instructions, -there are 
fewer bytes of code needed, which reduces execu­
tion time. In addition, when processing interrupts 
or changing tasks, the Register Pointer speeds 
context awitching. A special Set Register Pointer 
(SRP) instruction sets the contents of the Regis­
ter Pointer. 

}.2.1 Error Conditions 

Registers must be correctly used because certain 
conditions produce inconsistent results and should 
be svoided: 

REGISTER R253 

I 0 

I 0 I 0 

R6 

J 

• Registers R243 and R245-R249 are write-only 
registers. If an attempt is Made to read these 
registers, Iff is returned (I ia a prefix that 
indicates hexadecimal notation). 

• When register R253 (Register Pointer) is resd, 
all Os are returned in the least signif:icant 
four bita. 

r-_-..... -~{~.:_:_ :_r~7~r:e~_r-5_ -_r-._ -_ -_ -... -_ -_ -_ -_o~~o~-o_ -_o~~~: ::: 
11-___________ ... 240 

--{ 
--{ 
--{ 
- ..... { 

{ 

--{ 
--{ 
- ..... { 

-

1-------------I/O PORTS 

1 27 

The lower 
nibble of 

-
the register 
file oddross 
provided by 
the Instruction 
points to the 
specified 
register. 

1 5 

3 

0 

figure l-3. Working Register Groups 

OPC 

o I o I INSTRUCTION 
(INC R6) 

o I REGISTER ADDRESS (Rl18) 

'Figure}..4. Working Register Addressing 

279 



Cl When registers RO and Rl (Ports 0 and 1) are 
defined as address outputs, they will return 
ls in each address bit location when read. 

o Writing to bits which are defined as address 
output, timer output, serial output, or hand­
shake output will have no effect. 

c Instruction DJNZ uses a general register as a 
counter. Only registers R4-R127 can be used 
with this instruction. 

3~3 CPU CONTROL AM) PERIPHERAl REGISTERS 

The Z8 control registers govern the operation of 
the CPU. Any instruction that references the 
register file can access these control registers. 
Available control registers are: 

c Interrupt Prio~ity register (IPR) 
III Interrupt Mask register (IMR) 
0 Interrupt Request register (IRQ) 
0 Program Control flags (FLAGS) 
c Register Pointer (RP) 
III Stack Pointer - high-byte (SPH) 
c Stack Pointer - low-byte (SPL) 

The Z8 uses a 16-bit Program Counter (PC) to 
determine the sequence of current program instruc­
tions. The PC is not an addressable register. 

Peripheral registers are used to transfer data, 
configure the operating mode, and control the 
operation. of the on-chip peripherals. Any 
instruction that references the register file can 
access peripheral registers. The peripheral regis­
ters are: 

0 Serial I/o (510) 
c Timer Mode (TMR) 
c Timer/Counter 0 (TO) 
c TO Prescaler (PREO) 
0 Timer/Counter 1 (Tl) 
Cl Tl Prescaler (PREl ) 
D Port 0-1 Mode (P01M) 
Cl Port 2 Mode (P2M) 
D Port 3 Mode (P314) 

In addition, the four port registers (PO-P3) are 
considered to be peripheral registers. 

The functions and applications of control and 
peripheral registers are described in subsequent 
sections of this manual. 

280 

Address Spaces 

3.4 CPU PROGRAM MEKURY 

The Z8 can access 64K bytes of program memory with 
the 16-bit Program Counter. In the Z8601, the 
lower 2K bytes of the program memory address space 
are internal ROM, while in the Z8611 the lower 4K 
bytes are internal ROM. In the Z8682 the lower 2K 
bytes are not accessible. 

To access program memory outside the on-board ROM 
space, Port 0 and Port 1 can be configured as a 
memory interface. For example, Port 1 as a multi­
plexed Address/Data port (ADO-AD7) provides 
Address lines AO-A7 and Data lines DO-D7' Port D 
can be configured for an additIonal four or eight 
address lines (A8-Al1 or A8-A15)' This memory 
interface is supported by the control lines AS 
(Address Strobe), OS (Data Strobe) and R/W 
(Read/Write). 

In the ROMless Z8681 version, Port 1 is automati­
cally a multiplexed Address/Data port. Port 0 
must be configured for additional address lines as 
needed. 

The first 12 bytes of program memory are reserved 
for the interrupt vectors. Addresses 0.;.11 contain 
six 16-bit vectors that correspond to the six 
available interrupts. Figure 3-5 illustrates the 
order of l6-bit data stored in program memory. 

6 

f 
f 

location 0 
first byte 0 

instruction 

5535 

2048 
2047 

EXTERNAL 
ROM OR RAM 

ON-CHIP 
ROM 

j~ executed 
after rese ~------------

Interrupt 
Vector 

(Lower Byte ) 

Interrupt 
Vector 

(Upper Byte) 

11 

10 

9 

8 

7 

6 

5~ 
41:9' 

3 

2 

0 

IR05 

IR05 

IR04 

IR04 

IR03 

IRQ3 

IR02 

IR02 

IR01 

IR01 

IROO 

IROO 

Figure 3-5a. Z8601 Program Memory Map 



Address Spaces 

6 

Location of 
first byte of 
Instruction 

5535 

4096 

4095 

EXTERNAL 
ROM OR RAM 

ON·CHIP 
ROM 

executed 
after resot ~ ~------------

Interrupt 
Vector 

(Lower Byte) 

Interrupt 
Vector 

(Upper Byte) 

11 

10 

9 

8 

7 

6 

5~ 
4Pr 

3 

2 

0 

IR05 

IR05 

IR04 

IR04 

IR03 

IR03 

IR02 

IR02 

IR01 

IR01 

IROO 

IROO 

Figure J-5b. Z8611 Progra~ M~Dry Map 

6 

Location of 
first byte of 
Instruction 

executed 
after reset 

Interrupt 
Vector 

(Lower Byte) 

Interrupt 
Vector 

(Upper Byte) 

5535 

EXTERNAL 
ROM OR RAM 

~ ~------------
11 IR05 

10 IR05 

9 IR04 

8 IR04 

7 IR03 

6 IR03 

5~ IR02 

41#" IR02 

3 IR01 

2 IR01 

IROO 

0 IROO 

Figure J-5c. Z8681 Program Memory Map 

LOCATION OF 
FIRST BYTE OF 

INSTRUCTION 
EXECUTED 

AFTER RESET 

65535 

~ 
2065 

2056 

2055 

2054 

2053 

2052 

2051 

2050 

2049 

2048 

2047 

EXTERNAL 
ROM OR RAM 

:::;.----------
IR05 

IR05 

JP 

IR04 

IR04 

JP 

IR03 

IR03 

JP 

IR02 

IR02 

JP 

IR01 

IR01 

JP 

IROO 

IROO 

JP 

NOT ADDRESSABLE 

Figure J-5d. Z8682 Program Memory Map 

When an interrupt occurs, the address stored in 
the interrupt's vector location points to a ser­
vice routine. This routine assumes program con­
trol. 

The first 2K bytes, of program memory are not 
addressable in the Z8682 ROMless version. 
Beginning at address 2048 the first 18 bytes 
contain interrupt vectors which are Jump Direct 
instructions. When an interrupt occurs, the Z8682 
executes the corresponding Jump to interrupt. 

The first address available for a user program is 
location 12. This address is loaded into the 
Program Counter after a hardware reset. 

The first address available for a user program in 
I the Z8632 is location 2066 (Hexadecimal 16812). 
This address is loaded int.o the Program Counter 
after a hardware reset. 

281 



3.5 CPU DATA MEMORY 

Up to 64K bytes of external data memory can be 
accessed in the Z8 microcomputer. As shown in 
Figure 3-6, the origin, and hence, the actual size 
of data memory is device-dependent. The origin of 
data memory is the same as the starting address of 
external program memory. 

Like external program memory, external data memory 
Address/Data lines are provided by Port 1 for 
8-bit addresses, and by Ports 0 and 1 for 12-bit 
and 16-bit addresses. 

External data memory can be included with or sep­
arated from the external program memory addressing 
space. When data memory is separated from program 
memory, the Data Memory output (OM) is used to 
select between data and program memories. 

282 

65535 _-----------.., 

EltTERNAL 
DATA 

MEMORY 
(62«. BYTES) 

~~:~ !-------------! 

NOT ADDRESSABLE 

O~ ____________________ ~ 

Figure 3-6a. Z8601 or Z868Z Data Memory Map 

Address Spaces 

65535 r-----------...... 

EltTERNAL 
DATA 

MEMORY 
(6DK BYTES) 

:~~~~------------i 

NOT ADDRESSABLE 

O~ ____________________ ~ 

Figure 3-6b. Z8611 Data Memory Map 

6553511""'-------=---=a 

EXTERNAL 
DATA 

MEMORV 
(64K bytes) 

Ob-..... __ ..... ____________ -d 

Figure 3-6c. Z8681 Data Memory Map 



Address Spaces 

3.6 CPU STACKS 

Stack operations can occur in either the register 
file or data memory. Under software control, 
Port 0 and 1 Mode register (R258) selects stack 
location. 

The register pair R254 and R255 forms the 16-bit 
Stack Pointer (SP) which is used for all stack 
operations. The stack address is stored with the 
MSB in R254 and LSB in R255 (Figure 3-7). 

R255 

'-___ l.O_W.E.R.B_Y.T_E __ .... 1 STACK ~OINTER lOW 

R254 

u.. ___ U.P.P.E.R_BY.T.E ___ .a1 STACK POINTER HIGH 

Figure 3-7. Stack Pointer 

Q 

o 
" 

PCl 

TOPOF- PCH 
STACK 

STACK CONTENTS 
AFTER A CAll 
INSTRUCTION 

Figure3-B. 

The stack address is decremented prior to a Push 
operat ion and incremented a fter a Pop operation. 
The stack address always points to the data stored 
on the top-of-stack. The Z8 stack is a return 
stack for Call instructions and interrupts as well 
as a data stack. During a Call instruction, the 
contents of the PC are saved on the stack. The PC 
is restored during a Return instruct ion. Inter­
rupts cause the contents of the PC and Flag regis­
ter to be saved on the stack. The IRET instruc­
tion restores them (Figure 3-8). 

When the Z8 is configured for an internal stack 
(i.e., using the register file), register R255 
serves as the Stack Pointer. The value in R254 is 
ignored and can be used as a general-purpose 
register. However, an overflow or underflow can 
occur when stapk address is incremented or 
decremented during normal stack operations. 

TOP OF_ 
STACK 

Stack Operations 

I> 

" 0 

PCl 

PCH 

FLAGS 

STACK CONTENTS 
AFTER AN 

INTERRUPT 
CYCLE 

283 



4.1 INTRODUCTION 

The Z8 microcomputer prov ides six addressing 
modes: 

• Register (R) 
• Indirect Register (IR) 
• Indexed (X) 
• Direct (D) 
• Relative (RA) 
• Immediate (H1) 

With the exception of immediate data and condition 
codes, all operands are expressed as register 
file, program memory, or data memory addresses. 
Registers are accessed using 8-bit addresses in 
the range 0-127 and 240-255. 

Working registers are accessed using 4-bit 
addresses in the range 0-15. The address of the 
register being accessed is formed by the concate­
nation of the upper four bits in the Register 

8·BIT REGISTER 
FILE ADDRESS 

PROGRAM MEMORY 

" 

Chapter 4 
Address Modes 

Pointer (R253) with the 4-bit working register 
address supplied by the instruction. 

Registers can be used in pairs to designate 16-bit 
values or memory addresses. A register pair must 
be specified as an even-numbered address in the 
range 0, 2, •••• , 14. 

Addressing modes are instruction-specific. 
Sect ion 5.4 discusses each addressing mode as it 

corresponds to particular instructions. 

In the following definitions, the use of 
"register" also implies register pair, working 
register, or working register pair. 

4.2 REGISTER ADDRESSING (R) 

In the Register "ddres'sing mode, the operand value 
is the contents of the specified register or 
register pair (Figures 4-1 and 4-2). 

REGISTER FILE 

dst OPERAND # 
POINTS TO ONE REGISTER 

OPCODE / 

284 

ONE·OPERAND 
INSTRUCTION 

EXAMPLE 

4·BIT WORKING 
REGISTER 

TWO·OPERAND 
INSTRUCTION 

EXAMPLE 
, 

.; 

PROGRAM MEMORY 

, dst I sre 

J OPCODE 

IN REGISTER FILE 

VALUE USED IN 
INSTRUCTION EXECUTION 

/ 
Figure 4-1. Register Addressing 

REGISTER FILE 

RP 

OPERAND 
, POINTS TO THE 

WORKING REGISTER 

Figure 4-2. Working-Register Addressing 

.. 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 



Address Modes 

4.3 IMlIRECT REGISTER ADDRESSII'£ (IR) 

In the Indirect Register addressing mode, the con­
tents of the specified register is the address of 
the operand (Figures 4-3 and 4-4). 

Depending upon the instruction selected, the 
address points to a register, program memory, or 
an external data memory location. 

When accessing program memory or external data 
memory, register pairs or working register pairs 
are used to hold the 16-bit addresses. 

8·BIT REGISTER 
FILE ADDRESS 

PROGRAM MEMORY 

4.4 IMlEXED ADDRESSING (X) 

The Indexed addressing mode is used only by the 
Load (LD) instruction. An indexed address consists 
of a register address offset by the contents of a 
designated working register (the Index). This 
offset is added to the register address to obtain 
the address of the operand. Figure 4-5 illus­
trates this addressing convention. 

REGISTER FILE 

ONE·OPERAND 
INSTRUCTION 

EXAMPLE 

dst 

OPCODE 
POINTS TO ONE REGISTER 

IN REGISTER FILE 

ADDRESS OF 
OPERAND USED 

BY INSTRUCTION 

VALUE USED IN 
INTRODUCTION 

EXECUTION 

OPERAND 

Figure 4-3. Indirect Register Addressing to Register File 

Figure 4-4. Indirect Register Addressing to Program or Data Memory 

285 



4.5 DIRECT ADDRESSING (DAr 

The Direct addressing mode, as shown in Figure 
4,..6, specifies the address of the next instruction 
to be executed. Only the Conditional Jump (JP) 
and Call (CALL) instructions use this addressing 
mode. 

4.6 RELATIVE ADDRESSING (RA) 

In the Relative addressing mode, illustrated in 
Figure 4-7, the instruction specifies a 

PROGRAM MEMORY 

TWO·OPERAND 

Address Modes 

two's,..complement signed displacement in the range 
of -128 to +127. This is added to the contents of 
the PC to obtain the address of the next 
instruction to be executed. The PC (prior to the 
add) consists of the address of the instruction 
following the Jump Relative (JR) or Decrement and 
Jump if Nonzero (DJNZ) instruction. JR and DJNZ 
are the only instructions that use this addressing 
mode. 

RP 

INSTRUCTION-~t=~~~~~~~~--~lJK~noON~~~~~t~~~~~==~ EXAMPLE 

POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

286 

VALUE USED IN 
INSTRUCTION 

Figure 4-5. Indexed Addressing 

OPERAND 

PROGRAM MEMORY PROGRAM MEMORY 

LOWER ADDR BYTE 

UPPER ADDR BYTE 

OPCODE 

PROGRAM MEMORY 
ADDRESS USED 

JRORDJNZ_ 

NEXT OPCODE 

DISPLACEMENT 

OPCODE 

PROGRAM MEMORY 
ADDRESS USED 

SIGNED 
DISPLACEMENT 
VALUE 

Figure 4-6. Direct Addressing Figure 4-7. Relative Addressing 



4.7 IMMEDIATE DATA ADDRESSING (1M) 

Immediate data is considered an "addressing mode" 
for the purposes of this discussion. It is the 
only addressing mode that does not indicate a reg­
ister or memory address as the source operand; the 
operand value used by the instruction is the value 
supplied in the operand field itself. Because an 
immediate operand is part of the instruction, it 
is always located in the program memory address 
space. 

WORD(S) 

THE OPERAND VALUE IS IN THE INSTRUCTION. 

figure 4-8. Immediate Data Addressing 

287 



5.1 fUNCTIONAL SUMMARY 

ZB instructions can be divided functionally into 
the following eight groups: 

• Load 
• Arithmetic 
• Logical 
• Program Control 
• Bit Manipulation 
D Block Transfer 
• Rotate and Shift 
• CPU Control 

The following summary shows the instructions 
belonging to each group and the number of operands 
required for each. The source operand is "src", 
"dst" is the destination operand, and "cc" is a 
condit ion code. 

load Instructions 

Mnemonic Operands Instruction 
CLR dst Clear 
LD dst,src Load 
LDC dst,src Load Constant 
LDE dst,src Load External 
POP dst Pop 
PUSH src Push 

Arithmetic Instructions 

Mnemonic Operands Instruction 
ADC dst,src Add With Carry 
ADD dst,src Add 
CP dst,src Compare 
DA dst Decimal Adjust 
DEC dst Decrement 
DECW dst Decrement Word 
INC dst Increment 
INCW dst Increment Word 
SBC dst,src Subtract With Carry 
SUB dst,src Subtract 

288 

Chapter 5 
Instruction Set 

Logical Instructions 

Mnemonic 
AND 
COM 
OR 
XOR 

Operands 
dst,src 
dst 
dst,src 
dst,src 

Program-Control 

Mnemonic Operands 
CALL dst 
DJNZ r,dst 
IRET 
JP cc,dst 
JR cc,dst 
RET 

Bit-Manipulation 

Mnemonic Operands 
TCM dst,src 
TM dst,src 
AND dst,src 
OR dst,src 
XDR dst,src 

Ins~ruction 

Logical And 
Complement 
Logical Or 
Logical Exclusive Or 

Instructions 

Instruction 
Call Procedure 
Decrement and Jump NonO 
Interrupt Return 
Jump 
Jump Relative 
Return 

Instructions 

Instruction 
Test Complement Under Mask 
Test Under Mask 
Bit Clear 
Bit Set 
Bit Complement 

Block-Transfer Instructions 

Mnemonic Operands Instruction 
LOCI dst,src Load Constant Auto-

increment 
LDEI dst,src Load External Auto-

increment 

Rotate and Shi ft Instructions 

Mnemonic Operands Instruction 
RL dsl Rotate Left 
RLC dst Rotate Left Through Carry 
RR dst Rotate Right 
RRC dst Rotate Right ThroughCBrry 
SRA dst Shift Right Arithmetic 
SWAP dst Swap Nibbles 



Instruction Set 

CPU Control Instructions 

Mnemonic Operand Instruction 
CCF Complement Carry Flag 
DI Disable Interrupts 
EI Enable Interrupts 
NOP No Operation 
RCF Reset Carry Flag 
SCF Set Carry Flag 
SRP src Set Register Pointer 

5.2 PROCESSOR flAGS 

The Flag register (R252) informs the user about 
the current' status of the ZB. The flags and their 
bit positions in the Flag register are shown in 
Figure 5-1. 

R252 FLAGS 
Flag Register 

(FCH; Read/Write) 

l§~LuSER FLAG F1 

LUSER FLAG F2 

HALF CARRY FLAG 

, DECIMAL ADJUST FLAG 

OVERFLOW FLAG 

L--------SIGN FLAG 

~--------ZEROFLAG 

~----------CARRYFLAG 

Figure 5-1. Hag Register 

The ZB Flag register contains six bits of status 
information which are set or cleared by CPU opera­
tions. Four of the bit.s (C, V, Z and S) can be 
tested for use with conditional Jump instruc­
tions. Two flags (H, D) cannot be tested and are 
used for BCD arithmetic. 

The two remaining bits in the Flag register (F1, 
F2) are' available to the user, but they must be 
set or cleared by instruction and are not usable 
with conditional Jumps. 

As with bits in the other control registers, Flag 
register bits can be set or reset by instructions; 
however, only those instructions that do not 
affect the flags as an outcome of the execution, 
should be used (e.g., load Immediate). 

5.2.1 Carry flag (C) 

The Carry flag is set to 1 whenever the result of 
an arithmet ic operation generates a carry out of 
or a borrow into the high order bit 7; otherwise, 
the Carry flag is cleared to O. 

Following Rotate and Shift instructions, the Carry 
flag contains the last value shifted out of the 
specified register. 

An instruction can set, reset, or complement the 
Carry flag. 

RETI changes the value of the Carry flag when the 
saved Flag register is restored. 

5.2.2 Zero flag (Z) 

For arithmetic an,d logical operations, the Zero 
flag is set to 1 if the result is zero; otherwise, 
the Zero flag is cleared. 

If the result of testing bits in a register is 0, 
the Zero flag is set to 1; otherwise the flag is 
cleared. 

If the result of a Rotate or Shift operation is 0, 
the Zero flag is set to 1; otherwise, the flag is 
cleared. 

RET! changes the value of the Zero flag when the 
saved Flag register is restored. 

5.2.3 Sign flag (S) 

The Sign flag stores the value of the most signif­
icant bit of a result following arithmetic, logi­
cal, Rotate, or Shift operatIons. 

When performing arithmet ic ope rat ions ,on signed 
numbers, binary two's complement notation is used 
to represent and process information. A positive 
number is identified by a 0 in the most signifi­
cant bit positIon, and therefore, the Sign flag is 
also O. 

A negative number is identified by a 1 in the most 
significant bit pO,sition, and therefore, the Sign 
flag is also 1. 

RETI changes the value of the Zero flag when the 
saved Flag register is restored. 

289 



5.2.4 Overflow Flag (V) 

For signed arithmetic, Rotate, and Shift opera­
tions, the Overflow flag is set to 1 when the 
result is greater than the maximum possible number 
( > 127) or less than the minimum possible number 
( < -128) that can be represented in two's comple­
ment form. The flag is set to 0 if no overflow 

Instruction Set 

encoded in a 4-bit field called the condition code 
(CC), which forms bits 4-7 of the conditional 

o instructions. 

Section 5.4.2 lists the condition codes and the 
flag settings they represent. 

occurs. 5.4 NOTATION AM> BINARY ENCODING 

Following logical operations, the Overflow flag is 
set to O. 

REf I changes the value of the Overflow flag when 
the saved Flag register is restored. 

5.2.5 Decimal-Adjust Flag (D) 

The Decimal-adjust flag is used for BCD arith­
metic. Since the algorithm for correcting BCD 
operations is different for addition and subtrac­
tion, this flag specifies what type of instruction 
was last executed so that the subsequent Decimal 
Adjust (DA) operation can function properly. Nor­
mally, the Decimal-adjust flag cannot be used as a 
test condition. 

A fter a subtraction, the Decimal-adjust flag iso 
set to 1; following an addition it is cleared to 
O. 

RETI changes the value of the Decimal-adjust flag 
when the saved Flag register is restored. 

5.2.6 Half-Carry Flag (H) 

The Hal f-carry flag is 0 set to 1 whenever an addi­
tion generates a carry out of bit 3 (Overflow), or 
a subtraction generates a borrow into bit 3. The 
Half-carry flag is used by the Decimal Adjust (DA) 
instruction to convert the binary result of a pre-
v ious addit ion 
decimal (BCD) 
Decimal-adjust 

Or subtract ion 
resul t. As in 
flag, the user 

access this flag. 

into the correct 
the case of the 
does not normally 

RETI changes the value of the Half-carry flag when 
the saved Flag register is restored. 

5.3 CONDITION CODES 

Flags C, Z, S, and V control the operation of the 
"conditional" Jump instructions. Sixteen fre­
quently useful functions of the flag settings are 

290 

In the detailed instruction descriptions that make 
up the rest of this chapter, operands and status 
flags are represented by a notational shorthand. 
Operands (condition codes and address modes) and 
their notations are as follows: 

Notation Address Hade Actual Operand/Range 

cc 

r 

R 

RR 

Ir 

IR 

Irr 

IRR 

Condition Code See condition code 
list below 

Working register Rn: where n 
only 

0-15 

Register or 
working register 

Register pair or 
working register 
pair 

Indirect working 
register only 

Indirect register 
or working 
register 

Indirect working 
register pair 
only 

Indirect register 
pair or working 
register pair 

reg: where reg repre­
sents a number in the 
range 0-127, 240-255 

Rn: where n = 0-15 

reg: where reg repre­
sents an even number 
in the range 0-126, 
240-254 

RRp: where p 0, 
2, ••• ,14 

@ Rn: where n 0-15 

@ reg: where reg re­
presents a number in 
the range 0-127" 
240-255 

@ Rn: where n = 0-15 

@ RRp: where p = 0, 
2, ••• ,14 

® reg: where reg re­
sents an even number 
in the range 0-126, 
240-254 

® RRp: where p 0, 
2, ••• ,14 



Instruction Set 
! 

Notation Address Mode Actual Operand/Range 

x Indexed 

DA Direct Address 

RA Relative Address 

1M Immediate 

reg (Rn): where reg 
represent a number in 
the range 0-127, 
240-255 and n = 0-15 

addrs: where addrs 
represents a number 
in the range 0-65,535 

addrs: where addrs 
represents a number 
in the range +127, 
-128 which is an 
offset relative to 
the address of the 
next instruction 

Iidata: where data is 
a number between 
o and 255 

Additional symbols used are: ' 

Symbol Meaning 
dst Destination operand 
src Source operand 
® Indirect address prefix 

SP Stack Pointer 
PC Program Counter 
FLAGS Flag register (R252) 
RP Register Pointer (R253) 
IMR Interrupt mask register (251) 
II Immediate operand prefix 

% Hexadecimal number prefix 
OPC Opcode 

Assignment of a value is indicated by the symbol 
"<-". For example, 

dst <- dst + src 

indicates that the source data is added to the 
destination data and the result is stored in the 
destination location. The notation "addr(n)" is 
used to refer to bit "n" of a given location. For 
example, 

dst (7) 

refers to bit 7 of the destination operand. 

5.4.1 Assembly Language Syntax 

For proper instruction execution, ZB PLZ/ASM 
assembly language syntax requires that "dst, src" 
be specified, in that order. The following 
instruction descriptions show the format of the 
object code produced by the assembler. This binary 
format should be followed by users who prefer 
manual program coding or who intend to implement 
their own assembler. 

Example: If the contents of registers %43 and ~~OB 

are added and the result stored in ~~43, the 
assembly syntax and resulting object code are: 

ASM: 
OBJ: 

ADD %43, %08 
04 08 43 

(ADD dst, src) 
(OPC src, dst) 

In general, whenever an instruction format 
requires an! 8-bit register address, that address 
can speci fy any register location in the range 
0-127, 240-255 or a working register RD-R15. If, 
in the above example, register %08 is a working 
register, the assembly syntax and resulting object 
code would be: 

ASM: 
OBJ: 

ADD 
04 

%43, RB 
E8 43 

(ADD dst src) 
(OPC src dst) 

For a more complete description of assembler syn­
tax' refer to the Z8 PLZ/ASM Assembly Language 
Manual (publication no. 03-3023-03) and ZSCAN B 
User's Tutorial (publication no. 03-B200-01). 

5.4.2 Condition Codes and Flag Settings 

The condition codes and flag settings are sum­
marized in the following tables. Notation for the 
flags and how they are affected are as follows: 

C Cany flag 0 Cleared to 0 
Z Zero flag 1 Set to 1 
S Sign flag * Set or cleared 

according to 
V Overflow flag operation 
0 Decimal-adjust flag Unaffected 
H Half-carry flag X Undefined 

291 



Coodition Codes 

Binary Mnellllllic Meaning Hags Settings 

0000 F Always false 
1000 (blank) Always true 
0111 C Carry C = 1 
1111 NC No carry C = 0 
0110 Z Zero Z = 1 
1110 NZ Not iJ Z = 0 
1101 PL Plus S = 0 
0101 MI Minus S = "1 
0100 OV Overflow V = 1 
1100 NOV No overflow V = 0 
0110 EQ Equal Z = 1 
1110 NE Not equal Z = 0 
1001 GE Gre~ter than or (S XOR V) = 0 

equal 
0001 LT Less than (S XORV) = 1 
1010 GT Greater Than (Z OR (S XOR V»=O 
0010 LE Less than or equal (Z OR (S XOR V»=1 
1111 UGE Unsigned greater than C = 0 

or equal 
0111 ULT Unsigned less than C = 1 
1011 UGT Unsigned greater than (C=O AND Z=O) = 
0011 LJLE Unsigned less than or (C OR Z) = 1 

equal 

292 



Instruction AddrMode Opcode Flags Affected Instruction Addr Mode Opcode Flag. Affected 
and Operation clst 

Byte and Operation clst 
Byte 

IIrC (Hex) CZSVDH arc (Hex) CZSVDH 

ADC ds!,src (No!e'l) ID ...... 0 * LDE ds!,src r Irr 82 ------

ds! - ds! + src +'C dst - src Irr 92 

ADD ds!,src (No!e I) 00 .. '" .... 0 * LDEI ds!,src Ir Irr 83 ------

ds! - dB! + src dst - src Irr Ir 93 
r- r + 1; rr-rr+l 

AND ds!,Brc (No!e I) 50 0--
ds! - ds! AND src NOP FF ------

CALL ds! DA D6 ------ OR ds!,src (No!e I) 40 -**0--
SP-SP-2 IRR D4 ds! - ds! OR src 
@SP - PC; PC - ds! POP ds! R 50 ------
CCF EF *----- ds! - @SP JR 51 
C - NOTC SP-SP+I 

CLR ds! R BO PUSH src R 70 ------

ds! - 0 IR BI SP-SP-I; @SP-src JR 71 

COM ds! R 60 0-- RCF CF 0-----

ds! - NOT ds! JR 61 C-O 

CP ds!,src (No!e I) AD RET AF ------
ds! - src PC - @SP; SP - SP + 2 

DA ds! R 40 ***x-- RL ds! 0~ R 90 ****--

ds! - DA ds! IR 41 JR 91 

DEC ds! R 00 - * * * -- RLCds!~I~ JO 

ds! - ds!- I JR OJ 
II 

DECW ds! RR 80 - * * *-- RR ds! lEIlc::::3-1 I~ EO 

ds!-ds!-I IR 81 
EI 

DI 8F RRCds!~I~ CO ------ CI 
IMR (7) - 0 

SBC ds!,src (No!e I) 30 • I . 
DJNZ r,ds! RA rA - - - - -.- dst - dst-src-C 
r - r - I r=O-F 
ifr ;<0 SCF DF I - - -

PC-PC+dst C - I 
Range: + 127, -128 SRA ds! 1EI~1~ DO .... '" 0 
EI 9F ------ DI 
IMR(7) - I SRP src 1m 31 ------
INC ds! rE -***-- RP - src 
ds!-ds!+1 r=O-F SUB dst,src (No!e I) 20 •• I . 

R 20 dst - ds! - src 
IR 21 

SWAP dst ~ R FO X • • X 
INCW dst RR AO , JR FI 
ds! - cis! + JR AI 

TCM ds!,src (Note I) 60 - • • 0 
mET BF (NOT dst) AND src 
FLAGS -@SP; SP - SP + I 

TM ds!,src 70 PC - @SP; SP - SP + 2; IMR (7) -I (Note I) - • • 0 
dst AND src 

JP cc,ds! DA cD ------
XOR'ds!,src if cc is true c=O-F (Note I) BO • 0 - -

PC - ds! IRR 30 dst - ds! XOR src 

JR cc,dst RA cB ------ Note 1 if cc is true, c=O-F 
Thes~ instructions have a'n identical set of addressing PC-PC+ds! 

Range: + 127, - 128 modes, which are encoded for brevity. The first opcode 
nibble is found in the instruction set table above. The 

LD ds!,src 1M rC ------ second nibble is expressed symbolically by a L: in this 
dst - src r R r8 table, and its value is found in the following table to the 

R r9 left of the applicable addressing mode pair. 
r=O-F For example, to determine the opcode of an ADC 

r X C7 instruction using the addressing modes r (destination) and 
X r D7 Ir (source) is 13. 
r Ir E3 
Ir r F3 

Addr Mode R R E4 Lower 
R IR E5 dBt src Opcode Nibble 
R 1M E6 
IR 1M 'E7 :, 
IR R F5 

Ir d: 
LDC ds!,src r Irr C2 ------ R R ~ ds! - src Irr D2 

R IR :I 
LDCI ds!,src Ir Irr C3 ------

R 1M :I dst - src Irr Ir D3 
r-r+l; rr-rr+ 1 IR 1M :I 

293 



5.6 Z8 
Instruction 
Descriptions 
and Formats 

AIlC dst,src 

Instruction foraat: 

I OPC 

I OPC 

I OPC 

Operation: 

flags: 

Example: 

Note: 

294 

ADC 
Add With Carry 

OPe Address Hode 
Cycles (Hex) dst arc 

I I dst arc I 6 12 r r 
13 r Ir 

I I arc I I dst 10 14 R R 
15 R IR 

I I dst I I arc 10 16 R 1M 
17 IR 1M, 

dst <-- dst + arc + c 

The aource operand, along with the aetting of the C flag, is added to the destination 
operand and the sum is stored in the destination. The contents of the source are not 
affected. Two's complement addition ia performed. In multiple precision arithmetic, 
this instruction permits the carry from the addition of low-order operands to be 
carried into the addition of high-order operands. 

c: Set if there is a carry from the most-significant bit of the result; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign, 

and the result is of the opposite sign; cleared otherwise 
D: Always cleared 
H: Set if there is a carry from the mo'st-significant bit of the low-order four bits 

of the result; cleared otherwise 

If the register named SUM contains %16, the C flag is set to 1, working register 10 
contains %20 (32 decimal), and register 32 contains %10, the statement 

AOC SUM,aR10 

leaves the value %27 in Register SUMo 
cleared. 

The C, Z, S, V, 0, and H flags are all 

When used to apeci fy a 4-bit working-register address,' address modes R or I R use the 
format: 

E ,src/dst 



ADD 
Add 

ADD dst,src 

Instruction foraat: 

I oPc 

I ope 

I ope 

Operation: 

flsgs: 

EXlIIIIPle : 

Note: 

OPc Address Hade 
Cyclss (lfex) dst src 

I I dst src I 6 02 r r 
03 r Ir 

I I src I I dst 10 04 R R 
05 R IR 

I I dst I I src 10 06 R 1M 
07 IR 1M 

dst <-- dst + src 

The source opersnd is added to the destination operand and the sum is stored in the 
destination. The contents of the source are not· sffected. Two's complement addition 
is performed. 

C: Set if there was a carry from the most-significant bit of the result; cleared 
otherwise 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if both opersnds are of the same sign 

and the result is of the opposite sign; cleared otherwise 
S: Set if the result is negstive; cleared otherwise 
H: Set if a carry from the low-order nibble occurs 
0: Always reset to 0 

If the register named SUM contains %44 and the register named AUGEND contains %11, 
,the statement 

, ADD SUM,AUGEND 

leaves the value %55 in register SUM and leaves all flags cleared. 

When used to specify a 4-bit working-registar address, address modes R or IR use the 
format: 

E src/dst 

295 



AN> dst,src 

Instruction for.at: 

OPC 

OPC 

oPC 

Operation: 

flags: 

Example: 

Note: 

296 

AND 
Logical 

III'C Address Mode 
Cycles (Hex) dst src 

I I dst src I 6 52 r r 
53 r IR 

I I src I I dst 10 54 R R 
55 R IR 

I I dst I I src 10 56 R 1M 
57 IR 1M 

dst <-- dst AND src 

The source operand is logically ANDed with the destination operand. The result is 
stored in the destination. The AND operation results in a 1 bit being stored 
whenever the corresponding bits in the two opersnds sre both 1s; otherwise a 0 bit is 
stored. The contents of the source bit are not affected. 

C: Unaffected 
Z: Set if the result is zero; cleared 'otherwise 
V: Always reset to 0 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the source operand is the immediate value %78 (01111011) and the register named 
TARGET contains %C3 (11000011), the statement 

AND TARGET, #%78 

leaves the value %43 (01000011) in register TARGET. 
cleared. 

The Z, V, and 5 flags are 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 



CALL 
Call Procedure 

CAlL dst 

Instruction Format: 
Cycles 

OPC 
(Hex) 

Address Mode 
dst 

~ _____ O_P_C ______ ~II ~ _______________ d_s_t ______________ ~ 20 06 OA 

L-_____ O_PC ______ ~I ~I ______ d_s_t ____ ~ 20 04 IRR 

Operstion: 

Hags: 

Example: 

Note: 

SP <-- SP - 2 
SSP <-- PC 
PC <-- dst 

The current contents of the PC are pushed onto the top of the stack. The PC value 
is the address of the first instruction following the CALL instruction. The 
speci fied destination address is then loaded into the PC and points to the first 
instruction of a procedure. 

At the end of the procedure a RETurn instruction can be used to return to the 
original program flow. RET pops the top of the stack back into the PC. 

No flags sffected. 

If the contents of the PC are %lA47 snd the contents of the SP (control registers 
254-5) are %3002, the statement 

CALL %3521 

causes the SP to be decremented to %3000, %1A4A (the address following the 
instruction) is stored in external data memory %3000-%3001, and the PC is loaded with 
%3521. The PC now points to the address of the first statement in the procedure to 
be executed. 

When used to specify a 4-bit working-register pair address, address mode IRR uses the 
format: 

E dst 

297 



CCf 

Instruction Fomat: 

OPC 

Operation: 

Flags: 

EXlIIIPle: 

298 

C <- NOT C 

CCF 
Complement Carry Flag 

Cyclea 

6 

OPC 
(Hex) 

EF 

The C flag is cbmplemented; if C = 1, it ia changed to C = 0, and vice-versa. 

C: Complemented 
No other flags affected 

Tf the C flag contains a, 0, the statement 

CCF 

will change the 0 to 1. 



ClR 
Clear 

CLR dst 

Instruction Format: 
Cycles 

OPC 
(Hex) 

Address I-lode 
dst 

~ _____ O_p_C ____ -J11 L ______ d_s_t ____ -J 6 BO 
B1 

R 
IR 

Operation: 

Flags: 

EXSlIlple: 

Note: 

dst <-- 0 

The destination location is cleared to O. 

No flags affected. 

If working register 6 contains %AF, the statement 

CLR R6 

will leave the value 0 in that register 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dst 

299 



COM dst 

Instruction r onult: 
Cycles 

OPC 
(Hex) 

COM 
Complement 

Address Mode 
dst 

~ _____ O_P_C ______ ~I ~I ______ d_s_t ______ ~ 6 60 
61 

R 
IR 

Operation: 

nags: 

EXlllllple: 

Note: 

300 

. dst <-- NOT dst 

The contents of the destination location are complemented (one's complement); all 1 
bits are changed to 0, and vice-versa. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
S: Set if result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If working register B contains %24 (00100100), the statement 

COM RB 

leaves the value %DB (11011011) in that register. The Z and V flags are cleared and 
the 5 flag is set. 

When used to specify a 4-bit working-register sddress, address modes R or IR use the 
format: 

E dst 



CP 
Compare 

CP dst,src 

Instruction Foraat: 

OPC 

OPC 

OPC 

Operation: 

Flags: 

Exaq>le: 

Note: 

II'C Address Mode 
Cycles (Hex) dat arc 

I I dst src I 6 A2 r r 
A3 r Ir 

I I src I I dst 10 A4 R R 
A5 R IR 

I I dst I I src 10 A6 R 1M 
A7 IR 1M 

dst - src 

The source operand is compared to (subtracted from) the destination operand, and the 
appropriate flags set accordingly. The contents of both operands are unaffected by 
the comparison. 

C: Cleared if there is a carry from the most significant bit of the result; set 
otherwise, indicating a "borrow" 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow o'ccurs; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the register named TEST contains %63, working register 0 contains %30 (4B 
decimal), and register 4B contains %63, the statement 

CP TEST, IIIRO 

sets (only) the Z flag. If this statement is followed by "JP EQ, true_routine", the 
jump is taken. 

When used to specify a 4-bit working-register addreas, address modes R or IR use the 
format: 

E src/dst 

301 



DA dst 

Instruction forDBt: 
Cycles 

DA 
Decimal Adjust 

OPC 
(Hex) 

Address Mode 
dst 

~ _____ O_P_C ______ ~1 I~ ______ d_s_t ______ ~ B 40 
41 

R 
IR 

Operation: 

Flags: 

302 

dst <-- DA dst 

The destination operand is adjusted to form two 4-bit BCD digits following a binary 
addition or subtraction operation on BCD encoded bytes. for addition (ADD, ADC), or 
subtraction (SUB, SBC), the following table indicates the operation performed: 

Bits 4-7 Bits 0-3 NUllber 
Carry Value H Flag Value Added Carry 

Instruction Before DA (Hex) Before DA (Hex) To Byte After DA 

0 0-9 0 0-9 00 0 
0 O-B 0 A-f 06 0 

ADD 0 0-9 1 0-3 06 0 
ADC 0 A-f 0 0-9 60 1 

0 9-f 0 A-f 66 1 
0 A-f 1 0-3 66 1 
1 0-2 0 0-9 60 1 
1 0-2 0 A-f 66 1 
1 0-3 1 0-3 66 1 

SUB 0 0-9 0 0-9 00 0 
SBC 0 O-B 1 6-f fA 0 

1 7-F 0 0-9 AO 1 
1 6-f 1 6-f 9A 1 

If the destination operand is not the result of a valid addition or subtrsction of 
BCD digits, the operation is undefined. 

C: Set if there is a carry from the most significant bit; cleared otherwise (see 
t able above) 

Z Set if the result is 0; cleared otherwise 
V Undefined 
S Set if the result bit 7 is set; cleared .otherwise 
H Unaffected 
D Unaffected 



EXlllllple: 

Note: 

If addition is performed using the BCD values 15 and 27, the result should be 42. 
The sum is incorrect, however, when the binary representations are added in the 
destination location using sta~dard·binary arithmetic. 

0001 0101 
+ 0010 0111 

li!fiT IT!lli = \\I3C 

The DA statement adjusts this result .ao that the correct BCD representation is 
obtained. 

0011 1100 
+ 0000 0110 

lJ'I1m l!U'f'O 42 

The C, Z, and 5 flags are cleared and V ia undefined. 
I 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E 'dst 

303 



DEC dst 

Instruction For.st: 
Cycles 

oPe 
(Hax) 

DEC 
Decrement 

Address Mode 
dst 

~ _____ O_P_C ____ ~1 ~I ______ d_s_t ____ ~ 6 00 
01 

R 
IR 

Operation : 

Flags: 

EXSllPle,: 

Note: 

304 

dst <-- dst - 1 

The destinstion 'operand's contents sre decremented by one. 

C: Unsffected 
Z: Set if the result is zero; clesred otherwise 
V: Set if arithmetic overflow occurred; cleared otherwise 
5: Set if the result is negative; cleared otherwise 
H: Unaffected 
0: Unaffected 

If working register 10 contains ~2A, the ststement 

DEC R10, 

leaves the value ~29 in that register. The Z, V, and S flags are cleared. 

When used to specify a 4-bit working-register address, address modes ,R or IR use the 
format: 

E dst 



IOECW 
Decrement Word 

DEDI dst 

Instruction FOrQat: 
Cycles 

OPC 
(Hex) 

Addresa Mode 
dat 

~ _____ O_P_C ______ ~I I~ ______ d_s_t ______ ~ 10 80 
81 

RR 
IR 

Operation: 

Flaga: 

Example: 

dst <-- dst - 1 

The contents of the destination location (which rust be an even address) and the 
operand following that location are treated as a single 16-bit value which ia 
decremented by one. 

C: Unaffected_ 
Z: Set if the result is zero; cleared otherwise 
V: Set if srithmetic ovsrflow occurred; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
H: Unaffected 
D: Unaffected 

If working register 0 contains %30 (48 decimal) snd registers 48-49 contain the value 
%fAf3, the statement 

OECW ORO 

leaves the value %fAf2 in registers 48 and 49. The Z and V flags are cleared and S 
is set. 

305 



DI 

Instruction For.at: 

ope 

Operation: 

Flags: 

EXBIIPle: 

306 

IMR (7) <-- 0 

01 
Disable Interrupts 

OPC 
Cycles (Hex) 

6 SF 

Bit 7 of control register 251 (the Interrupt Mask Register) is reset to O. All 
interrupts are disabled, although they remain potentially enabled (i.e., the Global 
Interrupt Enable is cleared--not the individual interrupt level enables.) 

No flags affected 

If control register 251 contains %SA (10001010, that is, interrupts IRQ1 and IRQ3 are 
enabled), the statement 

DI 

sets control register 251 to %OA and disables these interrupts. 



DJNZ 
Decrement and Jump if Nonzero 

DJNZ r,dst 

Instruction format: 
Cycles 

OPC 
(Hex) 

Address Mode 
dst 

~ __ r __ ~~_o_p_C __ ~1 ~I ______ d_s_t ______ ~ 12 if jump taken 
10 if jump not taken 

rA RA 

Operation: 

flags: 

Exemple: 

Note: 

r=Oto F 

r (-- r - 1 
If r F 0, PC (-- PC + dst 

The working register being used as a counter is decremented. If the contents of the 
register are not zero after decrementing, the relative address is added to the 
Program Counter (PC) and control passes to the statement whose address is now in the 
PC. The range of the relative address is +127, -12B, and the original value of the 
PC is the address of the instruction byte following the DJNZ statement. When the 
working register counter reaches zero, control falls through to the statement 
following DJNZ. 

No flags affected 

DJNZ is typically used to control a "loop" of instructions. In this example, 12 
bytes are moved -from one buffer area in the register file to snother. The steps 
involved are: 

o load 12 into the counter (working register '6) 
o Set up the loop to perform the moves 
o End the loop with DJNZ 

lD R6, 1112 
lOOP: lD R9,OlDBUF (R6) 

lD NEWBUF (R6),R9 
DJNZ R6, lOOP 

!load Counter! 
!Move one byte to! 
! New location! 
!Decrement and ! 
!loop until counter O! 

The working register being used as a counter must be one of the registers 04-7F. 
Use of one of the I/O ports, control or peripheral registers will have undefined 
results. 

307 



EI 

Instruction for.at: 

OPC 

Operstion: 

flags: 

EXBllple: 

308 

Cycles 

6 

IMR (7) <-- 1 

EI 
Enable Interrupts 

OPC 
(Hex) 

9F 

Bit 7 of control register 251 (the Interrupt Mask Register) is set 10 to 10 This 
allows any potentially enabled interrupts to become enabled. 

No flags sffected 

If control register 251 contains \'GOA (00001010, that is, interrupts IRQ1 snd IRQ3 
potentislly enabled), the statement 

EI 

sets control register 251 to \'GSA (10001010) and enables these interrupts. 



INC 
Increment 

INC dst 

Instruction Format: OPC Address Mode 
Cycles (Hex) dst 

dst OPC 6 rE r 
r=O to F 

~ _____ O_P_C ______ ~I ~I ______ d_s_t ______ ~ 6 20 R 
21 IR 

Operation: 

Flags: 

[xmmple: 

Note: 

dst <-- dst + 1 

The destination operand's contents are incremented by one. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurred; cleared otherwise 
5: Set if the result is negative; cleared otherwise 
H: Unaffected 
0: Unaffected 

If working register 10 contains %2A, the statement 

INC R10 

leaves the value %29 in that register. The Z, V, and S flags are cleared. 

When used to specify a 4-bit working-register address, address modes R or IRuse the 
format: 

E dst 

309 



It«:W dst 

Instruction format: 
Cycles 

INew 
Increment Word 

OPC 
(Hex) 

Address Mode 
dst 

~~_op_e __ ~11 ~ ____ ds_t __ ~1 10 AO 
A1 

RR 
IR 

Operstion: 

Hsgs: 

EXBqlle: 

310 

dst <-- dst + 

The contents of the destination (which must be an even address) and the byte 
following that location are treated as a single 16-bit value which is incremented by 
one. 

C: Unaffected 
Z: Set if the reault is zero; cleared otherwise 
V: Set if arithmetic overflow occurred; cleared otherwise 
S: Set if the result is negative; cleared otherwise 
H: Unaffected 
0: Unaffected 

If working-register pair 0-1 contains the value %FAF3, the statement 

!New RRO 

leaves the value %FAF4 in working-register pair 0-1. The Z and V flags are cleared 
and S is set. 



IRET 
Interrupt Return 

IRET 

Instruction Format: 

OPC 

Operstion: 

Flags: 

FLAGS <-- asp 
SP <-- SP + 1 
PC <-- asp 
SP <-- SP + 2 
IMR (7) <-- 1 

Cycles 

16 

OPC 
(Hex) 

SF 

This instruction is issued at the end of an interrupt service routine. It restores 
the Flag register (control register 252) and the PC. It also reenables any 
interrupts that are potentially enabled. 

All flags are restored to original settings (before interrupt occurred). 

311 



JP 
Jump 

JP cc,dst 

Instruction For.at: 
OPC Addreaa Mode 

Conditional Cyclea (Hex) dat 

~_c_c __ ~~_O_p_C __ ~1 I~ ___________ d_st __________ -J 
12 if jump taken ccO OA 
10 if jump not taken 

Unconditional cc=O to F 

~ _____ O_P_C ______ ~1 IL ______ d_s_t ______ ~ 8 30 IRR 

Operation: 

Flags: 

EXBq>le: 

Note: 

312 

If cc is true, PC <-~ dst 

A conditional jump transfers Progrsm Control to the destination address if the 
condition specified by "cc" is true; otherwise, the instruction following the JP 
instruction is executed. See Section 6.4 for a list of condition codes. 

The unconditional jump simply replaces the contents of the Program Counter with the 
contents of the specified register pair. Control then passes to the statement 
addressed by the PC, decremented by one. 

No flags affected 

If the carry flag is set, the statement 

JP C,%1520 

replaces the contents of the Program Counter with %1520 and transfers control to that 
location. Had the carry flag not been set, control would have fallen through to the 
statement following the JP. 

When used to specify a 4-bit working-register pair address, address mode IRR uses the 
format: 

E dst 



JR 
Jump Relative 

JR cc,dst 

Instruction format: OPC , Address Mode 
Cycles (Hex) dst 

~_c_c __ ~ ___ O_p_C __ ~1 I~ _____ d_s_t ______ ~ 12 If jump taken ccB RA 
10 If jump not taken 

Operation: 

flags: 

Example: 

cc=O to F 

If cc is true, PC <-- PC + dst 

If the condition specified by "cc" is true, the relative address is added to the 
PC and control passes to the statement whose address in now in the PC; otherwise, the 
instruction following the JR instruction is executed. (See Section 5.3 for a list of 
condition codes). The range of the relative address is +127, -12B, and the original 
value of the PC is taken to be the address of the first instruction byte following 
the JR statement. 

No flags affected 

If the result of the last arithmetic operation executed is negative, the following 
four statements (which occupy a total of seven bytes) are skipped with the statement 

JR MI,$+9 

If the result is not negative, exec~tion continues with the statement following the 
JR. A short form of a jump to label LO is 

JR LO 

where LO must be within the allowed range. The condition code is "blank" in this 
case, and is assumed to be "always true." 

313 



LD 
Load 

LD dst,src 

Instruction fOrlllat: OPC Addreas Mode 
Cycles (Hex) dst src 

dst OPC I I src I 6 rC r 1M 
6 r8 r R 

arc OPC I I dst I 6 r9 R* r 
r=O to F 

OPC II dst src I 6 E3 r Ir 
6 F3 Ir r 

OPC I I src I I dst 10 E4 R R 
10 E5 R IR 

OPC I I dst I I src 10 E6 R 1M 
10 E7 IR 1M 

OPC I I src I I dst 10 F5 IR R 

OPC I I dst x I I src 10 C7 r X 

OPC I I src x I I dst 10 07 X r 

*In this instance only a full 8-bit register address can be used. 

Operation: 

flags: 

Example: 

Note: 

314 

dst <-- src 

The contents of the source are loaded into the destination. 
source are not affected. 

No flags affected 

The contents of the 

If working register 0 contains %08 (11 decimal) and working register 10 contains %83, 
the statement 

LO 240(RO),R10 

will load the value %83 into register 251 (240 + 11). Since this is the Interrupt -
Mask register, the Load statement has the effect of enabling IRQO and IRQ1. The 
contents of working register 10 are unaffected by the load. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 



lDC 
Load Constant 

lDC dst,src 

Instruction For.at: 
Cyclea 

OPC 
(Hex) 

Addreaa Mode 
dat arc 

~ _____ O_P_C ______ ~1 I~_d_s_t __ ~ __ s_r_c __ ~ 12 C2 r Irr 

~ ______ o_p_c ______ ~1 ~I ___ s_r_c __ ~ ___ ds_t __ ~ 12 02 In r 

Operation: 

Flaga: 

Example: 

dst <-- src 

This instruction is used to load a byte constant from program memory into a working 
register, or vice-versa. The address of the program memory location is specified by 
a working register pair. The contents of the source are not affected. 

No flags affected 

If the working-register pair 6-7 contains %30A2 and program-memory location %30A2 
contains the value %22, the statement 

LDC R2, IlRR6 

loads the value %22 into working reqister 2. 
unchanged by the load. 

The value of location %30A2 is 

315 



LOCI dat,arc 

Instruction For.at: 

OPC 

OPC 

Operation: 

flags: 

Exa.ple: 

316 

LOCI 
Load Constant Autoincrement 

I I dst 

I I src 

dst <-- src 
r <-- r + 1 
rr <-- rr + 

Cycles 

arc 18 

dst .18 

OPC Addreas Mode 
(Hex) dst src 

C3 Ir Irr 

03 Irr Ir 

This instruction is used for block tranafera of data between program memory and the 
register file. The address of the program-memory location ia apecified by a 
working-register pair, and the address of the register-file location is specified by 
a working register. The contents of the source location are loaded into the 
destination location. Both addresses are then incremented automatically. The 
contents of the source are not affected. 

No flags affected 

I f the working-register pair 6-7 contains %30A2 and program-memory locations %30A2 
and %30A3 contain %228C, and if working register RZ contains %ZO (32 decimal), the 
statement 

LOCI OR2, IIRR6 

loads the value %22 into register 3Z. A second 

LOCI IIRZ, IIRR6 

loads the value %BC into register 33. 



LDE 
Load External Data 

LDE dst,src 

Instruction format: 
Cycles 

OPC 
(He,d 

Address Mode 
dat arc 

~ ______ O_P_C ______ -JII ~ ___ d~s_t __ -L ___ sr_c __ -J 12 82 r Irr 

~ ______ O_P_C ______ -JI ~I ___ s_rc __ ~ ___ d_s_t __ -J 12 92 Irr, r 

Operation: 

flags: 

EXaElple: 

dst <-- src 

This instruction is used to load a byte from external data memory into a working 
register or vice-versa. The address of the external data-memory location is 
specified by a working-register pair. The contents of the source are not affected. 

No flags affected 

If the working-register pair 6-7 contains %404A and working register 2 contains %22, 
the statement 

l.DE aRR6,R2 

loads the value %22 into external data-memory location %404A. 

317 



LOCI dst,src 

Instruction f anat: 

ope 

OPC 

Operstion: 

flags: 

Example: 

Note: 

318 

LDEI 
Load External Data Autoincrement 

I I dst 

I I arc 

dst <-- src 
r <-- r + 1 
rr <-- rr + 

Cycles 

arc 18 

dat 18 

OPC Address Mode 
(Hex) dst src 

83 Ir Irr 

93 Irr Ir 

This instruction is used for blo.ck transfers of data between external data memory 
and the register file. The address of the external data-memory location is specified 
by a working-register pair, and the address of the register file location is 
specified by a working register. The contents of the source location are loaded into 
the destination location. Both addresses are then incremented automatically. The 
contents of the source are not affected. 

No flags affected 

If the working-register pair 6-7 contains %404~, working register 2 contains %22 (34 
decimal), and registers 34-35 contain %~BC3, the statement 

LOEI flRR6, flR2 

loads the value %~B into external location %404~. ~ second 

LOEI flRR6,flR2 

loads the value %C3 into external location %404B. 
When used to specify a 4-bit working-register pair address, address modes RR or IR 
use the format: 

E dst 



NOP 
No Operation 

NOP 

Instruction foraat: 

ope 

Operation: 

flags: 

Cyclea 

6 

OPC 
(Helt) 

ff 

No action is performed by this instruction. It ia typically used for timing delays. 

No flags affected 

319 



OR dst,src 

Instruction foraat: 

OPC 

OPC 

OPC 

Operation: 

flags: 

Example: 

Note: 

320 

OR 
Logical Or 

OPC Address Mode 
Cycles (Hex) det src 

I I dst src I 6 42 r r 
6 43 r Ir 

I I src I I dst 10 44 R R 
10 45 R lR 

I I dst I I src 10 46 R 1M 
10 47 lR 1M 

dst <-- dst OR src 

The source operand is logically ORed with the destination opersnd and the result is 
stored in the destinstion. The contents of the source are not affected. The OR 
operation results in a one bit being atored whenever either of the corresponding bits 
in the two operands is 1; otherwise a 0 bit is stored. 

C: Unaffected 
Z: Set if result is zero; cleared otherwise 
V: Always reset to 0 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the source operand is the immediate value %7B (01111011) and the register named 
TARGET contains %C3 (11000011), the statement 

ORTARGET,fI%7B 

leaves the value %FB (11111011) in register TARGET. The Z and V flags are cleared 
and S is set. 

When used to specify a 4-bit working-register address, address modes Rand IR use the 
format: 

E src/dst 



POP 
Pop 

POP dst 

Instruction format: 
Cy~les 

OPc 
(Hex) 

Addreaa Mode 
dat 

~ _____ O_P_C ______ ~11 L~~ __ d_s~t ______ ~ 10 
10 

50 
51 

R 
IR 

Oparotion: 

flags: 

EXlIIllple: 

Note: 

dst <-- asp 
sp <-- sp + 

The contents of the location addressed by the SP are loaded into the destination. 
The SP is then incremented automatically. 

No flags affected 

If the SP (control registers 254-255) contsins %1000, external data-memory location 
%1000 contains %55, and working register 6 contains %22 (34 decimal), the statement 

POP 3R6 

loads the value %55 into register 34. After the POP operation, the SP contains 
%1001. 

\'/hen used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dst 

321 



PUSH 
Push 

PUSH src 

Instruction for.at: OPC Address Mode 
Cycles (Hex) src 

~ ______ oP_c ______ ~1 I~ ______ sr_c ______ ~ 10 Internal stack 70 R 
12 External stack 

Operstion: 

flags: 

EXlIIII(lle: 

/ Note: 

322 

SP <-- SP - 1 
asp <-- src 

12 
14 

Internal 
External 

stack 71 IR 
stack 

The contents of the SP are, decremented, then the contents of the source are loaded 
into the location addressed by the decremented SP, thus adding a new element to the 
top of the stack. 

No flags affected 

If the SP contains %1 n01, the statement 

PUSH FLAGS 

stores the contents of the register named FLAGS in location %1000. After the PUSH 
operation, the SP contains %1000. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src 



ReF 
Reset Carry Flag 

ReF"' 

Instruction for.at: , 
Cycles 

OPC 6 

Operation: C <-- 0 

The C flag is reset to 0, regardless of its previous value. 

Flags: C: Reset to 0 
No other flags affected 

OPC 
(Hex) 

CF 

323 



RET 

Instruction forMSt: 

OPC 

Operation: 

flags: 

EXlIIIIPle: 

324 

PC <-- asp 
sp <-- SP + 2 

OPC 
Cycles (Hax) 

14 Af 

RET 
Return 

This instruction is normally used to return to the previoualy executed procedure at 
the end of a procedure entered by a CAll instruction. The' contents of the location 
addreased by the SP are popped into the PC. The next statement executed is that 
addressed by the new contents of the PC. 

No flags affected 

If the PC contains %3564, the SP containa %2000, external data-memorY,location %2000 
contains %18, and location %2001 contains %65, then the statement 

RET 

leaves the value %2002 in the SP and the PC contains %16B5, the address of the next 
instruction. 



RL 
Rotate leU 

RL dst 

Instruction Format: 
Cyclea 

OPC 
(Hex) 

Address Mode 
dat 

~ _____ O_P_C ______ ~11 ~ _______ d_st~ ____ ~ 6 
6 

90 
91 

R 
IR 

Operation: 

Flags: 

Example: 

Note: 

C <-- dst(7) 
dst(O) <-- dst(7) 
dst(n + 1) <-- dst(n) n = 0 - 6 

The contents of the destination operand are rotated left one bit position. The 
initial value of bit 7 is moved to the bit 0 position and also replaces the carry 
flag. 

c: Set if the bit rotated from the most significant bit position was 1; i.e., bit 7 
was 1 .., 

Z: Set if the result is zero; cleared otherwise. 
V: Set if arithmetic overflow occurred; that is, if the sign of the destination 

changed during rotation; cleared otherwise. 
5: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the contents of the register named SHIFTER are %88 (10001000), the statement 

RL SHIFTER 

leaves the value %11 (00010001) in that register. The C flag and V flags are set to 
1 and the Z flag is cleared. 

When used to specify a 4-bit working-register address, address modes R or IR Use the 
format: 

E dst 

325 



RLC dst 

Instruction Fo~t: 

RLC 
Rotate Left Through Carry 

Cycles 
OPC 

(Hex) 
Address Mode 

dst 

~ _____ O_P_C ____ ~1 ~I ______ d_s_t ____ ~ 6 
6 

10 
11 

R 
IR 

Operation: 

Flags: 

Example: 

Note: 

326 

dst (0) <-- C 
C <-- dst (7) 
dst(n + 1) <-- dst(n) n = 0 - 6 

The contents of the destination operand with the C flag are ·rotated left one bit 
position. The initial value of bit 7 replacea the C flag; the initial value of the C 
flag replaces bit O. 

C: Set if the bit rotated from the most significant bit position was 1; i.e., bit 7 
was 1 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurs, that is, if the sign of the destination 

changed during rotation; cleared otherwise 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the C flag is reset (to 0) and the register named SHIFTER contains'%BF (10001111), 
the statement 

RLC SHIFTER 

sets the C flag and the V flag to 1 and SHIFTER contains %1E (00011110). 

When used to specify a 4-pit working-register address, address modes R or IR use the 
format: 

E dst 



RR 
Rotate Right 

RR dst 

Instruction for.at: 
Cycles 

OPC 
(Hex) 

Address Hade 
dst 

~ _____ O_PC ______ ~1 I~ _____ d_st ______ ~ 6 
6 

EO 
E1 

R 
IR 

Operation: 

flags: 

Example: 

Note: 

C <-- dst(O) 
dst(7) <-- dst(O) 
dst(n) <-- dat(n + 1) n = 0 - 6 

The contents of the destination operand are rotated right one bit position. The 
initial value of bit 0 is moved to bit 7 and also replaces the C flag. 

C: Set if the bit rotated from the least significant bit position was 1; i.e., bit 0 
was 1 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurred, that is, if the sign of the destination 

changed during rotation; cleared otherwise 
5: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the contents of working register 6 are %31 (00110001), the statement 

RR R6 

sets the Cflag to- 1 and leaves the value %98 (10011000) in working register 6. 
Since bit 7 now equals 1, the S flag and the V flag are also set. 

When used to specify a 4-bit working-register address, address modes R-or IR use the 
format: 

E dst 

327 



RRC dst 

Instruction For.at: 

RRC 
Rotate Right Through Carry 

Cycles 
oPC 

(Hex) 
Address Mode 

dst 

~ _____ o_P_C ______ ~1 ~I ______ d_s_t ______ ~ 6 
6 

CO 
C1 

R 
IR 

Operation: 

Hags: 

Example: 

Note: 

328 

dat(7) <-- C 
C <-- dst(o) 
daten) <-- dst(n + 1) n = 0 - 6 

The contents of the destination operand with the C flag are rotated right one bit 
position. The initial value of bit 0 replaces the C flag; the initisl value of the 
C flag replaces bit 7. 

C: Set if the bit rotated from the least significant bit position was 1; i.e., bit 0 
was 1 

Z: Set if the result is zero; cleared otherwise 
Y: Set if arithmetic overflow occurred, that is, the sign of the destination changed 

during rotation; cleared otherwise 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the contents of the register named SHIFTER are %00 (11011101) and the Carry flag 
is reset .to 0, the statement 

RRC SHIFTER 

sets the C flag and the V flag and leaves the value %6E (01101110) in the register. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E dst 



SBC 
Subtract With Carry 

sec dst,src 

Instruction Foraat: 

OPC 

OPC 

OPC 

Operstion: 

flags: 

Example: 

Note: 

OPC Address Mode 
Cycles (Hex) dst src 

6 32 r r 
6 33 r Ir I I dst src 

10 34 R R 
10 35 R IR I I src I I dst 

10 36 R 1M 
10 37 IR 1M I I dst I I src 

dst <-- dst - src - C 

The source operand, along with the setting of the C flag, is subtracted from the 
destination oparand and the rasult ie stored in the destination. The contente of the 
source are not affected. Subtraction is performed by adding the two's complement of 
the source operand to the destination operand. In multiple precision arithmetic, 
this instruction permits the carry ("borrQw") from the subtraction of low -order 
operands to be subtracted from the subtraction of high-order operands. 

C: Cleared if there is s carry from the most significsnt bit of the result; set 
otherwise, indicating a "borrow" 

Z: Set if the result is 0; cleared otherwise 
V: Set if arithmetic overflow occurred, thst is, if the operands were of opposite 

sign and the sign of the result is the ssme BS the sign of the source; reset 
otherwise 

S: Set if the result is negative; cleared otherwise 
H: Cleared if there is e carry from the most significant bit of the low-order four 

bits of the result; set otherwise indicating a "borrow." 
D: Always set to 1 

If the register named MINUEND contains %16, the Carry flag is set to 1, working 
register 10 contains %20 (32 decimal), and register 32 contains %05, the statement 

SBC MINUEND, OR10 

leaves the value %10 in register MINUEND. The C, Z, V, S and H flags are cleared and 
D is set. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 

329 



SCf 

Instruction Format: 

oPc 

Operation: 

Flaga: 

330 

Cycles 

6 

,c <-- 1 

The C flag is set to 1, regardless of its previous value. 

c: Set to 1 
No other flags affected 

SCF 
Set Carry Flag 

OPC 
(Hex) 

OF 



'SRA 
Shift Right Arithmetic 

SRA dst 

Instruction format: 
Cycles 

OPC 
(Hex) 

Address Mode 
dst 

~ _____ O_P_C ______ ~1 ~I ______ d_a_t ______ ~ 6 
6 

DO 
01 

R 
IR 

Operstion: 

flags: 

EXsq:lle: 

Note: 

dst(7) <-- dst(7) 
c <-- dst(O) 
dst(n) <-- dat(n + 1) n = 0 - 6 

An arithmetic shift right ~ne bit position is performed on the deatination operand. 
Bit 0 replaces the C flag. Bit 7 (the Sign bit) is unchanged, and its value is also 
shifted into bit position 6. 

7 o 

C: Set if the bit shifted from the least significant bit position was 1; i.e., bit 0 
was 1 

Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
S: Set if the result is negative; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the register named 'SHIFTER contains ~BB (10111000), the statement 

SRA SHIFTER 

resets the C flaq to 0 and leaves .the value IDC (11011100) in register SHIFTER. The 
S flag is set to 1. 

When uaed to specify a 4-bit working-register address, addresa modes R or IR use the 
format: 

E dst 

331 



SRP src 

Instruction For.at: 

SRP 
Set Register Pointer 

Cycles 
OPC 

(Hex) 
Address Mode 

arc 

L-_____ O_P_c ______ ~1 IL ______ s_r_c ______ ~ 6 31 1M 

Operation: 

Hags: 

EX8lllPle : 

332 

RP <-- src 

The specified, vslue is, losded into bits 4-7 of the Register Pointer (RP) (control 
register 253). Bits 0-3 of the RP sre always set to O. The source data (with bits 
0-3 forced to 0) is the starting address of a working-register group. The 
working-register group starting addreases are: 

Hex Decimal 

~OO 0 
"110 16 
~20 32 
~30 48 
~40 64 
~50 80 
~60 96 
~70 112 

~FO 240 (control and peripheral registers) 

Values in the range ~80-EO are invalid. 

No flags affected 

Assume the RP currently addresses the ,control and peripheral register group and the 
program has just entered an interrupt service routine. The statement 

SRP #~70 

saves the contents of the control and peripheral registers by setting the RP to ~70 
(01110000), or 112 decimal. Any reference to wO,rking registers in the interrupt 
routine will point to registers 112-127. 



SUB 
Subtract 

, 
SUB dst,src 

Instruction r orllllt: 

OPC 

OPC 

OPC 

Operation: 

Hags: 

Example: 

Note: 

OPC Add'reaa Mode 
Cycles (Hex) . dat arc 

I I dst src I 6 22 r r 
6 23 r Ir 

I I srt; I I dst 10 24 R R 
10 2S R IR 

I I dst I I src 10 26 R 1M 
10 27 IR 1M 

. dst <-- dst - src 

The source operand is subtracted from the destination operand and the reault is 
stored in the destination. The contents of the source are not affected. Subtraction 
is performed by adding the two's complement of the source operand to the destination 
operand. 

C: Cleared if there is a carry from the most Significant bit of the result; set 
otherwise, indicating a "borrow" 

Z: Set if the result is zero; cleared otherwise 
V: Set if arithmetic overflow occurred, that is, if the operands were of opposite 

signs and the sign of the result is the same as the sign of the source operand; 
cleared otherwise . 

·S: Set if the result is negative; cleared otherwise 
H: Cleared if there is a carry from the most significant bit of the low-order four 

bits of the result; set otherwise indicating a "borrow." 
0: Always set to 1 

If the register named MINUEND contains 11129, the statement 

SUB MINUEND, #\\111 

will leave the value 11118 in the register. The C, Z, V, Sand H flags are cleared and 
o is set. 

When used to specify a 4-bit working-register address, eddress modes R or IR use the 
format: 

E src/dst 

333 



SWAP dst 

Instruction For.at: 
Cycles 

SWAP 
Swap Nibbles 

oPC 
(Hax) 

Address Mode 
dst 

~ _____ O_P_C ____ ~1 ~I ______ d_s_t ____ ~ B 
B 

ro 
F1 

R 
IR 

Operation: 

Flags: 

EXlIIIIPle: 

Note: 

334 

dst(O - 3) <--> dst(4 - 7) 

The contents of the lower four bits and upper four bits of the destination operand 
are swapped. 

C: Undefined 
Z: Set if the result is zero; clesred otherwise 
V: Undefined 
5: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unsffected 

Suppose the register named BCD~perands contsins %B3 (10110011). The ststement 

SWAP BCD_Operands 

wili leave the vslue %3B (00111011) in·the register. The Z and S flags are cleared. 

When used to specify a 4-bit working-register address, address modes·R or IR use the 
format: 

E dst 



TeM 
Test Complement Under Mask 

TCH dst,src 

Instruction F Dl'IIBt: 

ope 

ope 

ope 

Operation: 

Flags: 

EXlIIIIPle : 

Note: 

OPC Address Mode 
Cycles (Hex) dst Dre 

6 62 r r 
6 63 r lr I I dst src I 

10 64 R R 
10 65 R lR I I src I I dst 

src 10 66 R 1M 
10 67 lR 1M I I dst I I 

(NOT dst) AND src 

This instruction tests selected bits in the destination operand fo!, a logical "1" 
vslue. The bits to be tested are apecified by aetting a 1 bit in the corresponding 
p~sition of the aource operand (mask). The TeM atatement complementa the destination 
operand, which ia then ANDed with the source mask. The Zero (Z) flag can then be 
checked to determine the result. When the TeM operation is complete, the destination 
location still contains its original value. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the register named TESTER contsins %f6 (11110110) and the register named MASK 
contains %06 (00000110), that is, bits 1 and 2 are being teste~ for a 1 value, the 
statement 

TeM TESTER, MASK 

complements TESTER (to" 00001001) and then do a logical AND with register MASK, 
resulting in %00. A subsequent test of the Z flag, 

JP Z,plabel 

causes a transfer of program control. At the end of this aequence, TESTER still 
contains %f6. 

When used to specify a "4-bit working-regiater address, address modes R or lR use the 
format: 

E src/~st 

335 



TM dst,src 

Instruction For.at: 

ope 

ope 

ope 

Operation: 

Flags: 

Example: 

Note; 

336 

TM 
Test Under Mask 

OPC Addreaa Mode 
Cyclea (Hex) dat arc 

I I dst src I 6 72 r r 
6 73 r Ir 

I I arc I I dst 10 74 R R 
10 75 R lR 

I I dst I I src 10 76 R 1M 
10 77 lR 1M 

dst AND src 

This instruction tests selected bits in the destination operand for a logical "0" 
value. The bits to be tested are specified by setting a 1 bit in the corresponding 
position of the source operand (mask), which is ANDed with the destination operand. 
The Z flag can be checked to determine the reault. When the TM operation is 
complete, the destination location still contains its original value. 

C: Unaffected 
Z: Set if the result is ~ero; cleared otherwise 
V: Always reset to 0 
S: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
D: Unaffected 

If the register named TESTER contains %F6 (11110110) and the register 'named MASK 
contains %06 (00000110), that is, bits 1 and 2 are being tested for aO value, the 
statement 

TM TESTER, MASK 

results in the value %06 (00000110). A subsequent test for nonzero 

JP NZ, plabel 

causes a transfer of program control. At the end of this sequence, TESTER still 
contains %F6. The Z and S flags are cleared. 

When used to specify a 4-bit working-register address, address modes R or lR use the 
format: 

E src/dst 



XOR 
logical Exclusive OR 

XOR dBt,Brc 

Instruction Foreat: 

OPC 

OPC 

OPC 

Operation: 

Flags: 

ElC!!::ple: 

Note: 

OPC Addreas Node 
Cycles (l!9lC) dst' ore 

6 B2 r r 
6 . B3 r Ir I I dat arc I 

dBt 10 B4 R R 
10 B5 R IR I I src I I 
10 B6 R 1M 
10 B7 IR 1M I I dBt I I arc 

dst <-- dst XOR src 

The source operand is iogically EXCLUSIVE ORed with the destination operand and the 
result' stored in the destination. The EXCLUSIVE OR operation results in a one bit 
being stored whenever the corresponding bits in the operands are different; 
otherwise, a 0 bit is stored. 

C: Unaffected 
Z: Set if the result is zero; cleared otherwise 
V: Always reset to 0 
5: Set if the result bit 7 is set; cleared otherwise 
H: Unaffected 
0: Unaffected 

If the source operand is the immediate value %7B (011111011) and the register named 
TARGET contains %C3 (11000011), the statement 

OR TARGET, #%7B 

leaves the value %BB (10111000) in the register. 

When used to specify a 4-bit working-register address, address modes R or IR use the 
format: 

E src/dst 

337' 



Chapter 6 
External Interface 

,'(Z8601, Z8611) 

6.1 INTRIDUCTHW 

The ROM versions of the ZB microcomputer have 40 
external pins, of which 32 are programmable I/O 
pins. The remaining B pins are_used for power and 
control. Up to 16 I/O pins can be configured as 
an external memory interface. This interface 
function is the subject of this chapter. The I/O 
mode of these pins is described in Chapter 9. 

6.2 PIN DESCRIPTIONS 

AS. Address Strobe (output, active Low, J-state, 
pin 9). Address Strobe is pulsed Low'once at the 
beginning of each machine cycle. The ~ising edge 
of AS indicates that addresses, Read/Write (R/W) , 
and Data Memory (OM) signals, are valid when out­
put for external program or data memory trans­
fers. Under program control, AS can be placed in 

ffiE'i' +5V 

RIW GND 

Os XTAL1 

AS XTAL2 

POo P20 

PO, P2, 

P~ P2:z 
PORTO PORT 2 
(NIBBLE P03 P2a (BIT PRO· 

a high-impedance state along with Ports 0 and 1, 
Oata Strobe (DS),'and R/W; 

os. Data Strobe (output, active Low, J-state, 
pin 8). Data Strobe provides the timi~g for data 
movement to or from Port 1 for each external 
memory transfer. During a Write cycle, data out, 
is valid at the leading edge of 55. During a Read 
cycle, data in must be valid prior to the trailing 
edge of OS. OS can be placed in a high-impedance 
state along with Ports 0 and 1, AS, and R/W. 

R!W. Read/Write. (output, J-state, pin 7). 
Read/Write determines the direction of data trans­
fer for external memory transactions. R/W is Low 
when writing' to external program or data memory, 
and High for all other transactions. R/W can be 
placed in a high-impedance state along with Ports 
o and 1, AS, and OS. 

+5V P3s 

XTAL2 2 P3, 

XTAL1 3 P27 

P~ 4 P2s 

P30 5 P2. 

RESET 6 P2. 

RIW 7 P23 

OS B P22 PROGRAMMABLE) PO. P20 GRAMMABLE) 
1/0 OR As-A,. 1/0 ,6;S 9 P2, 

POs Z8601/11 P2s P3s 10 Z8601/11 31 P20 
POs MCU P2s MCU GND 11 P33 
P07 P27 

P32 12 P3. 
P10 P30 

POo 13 P1 7 
P1, P3, 

PO, 14 P1 6 
P12 P32 PORTa 

P02 15 P1 s PORT 1 (FOUR INPUT; 
(BYTE P13 P33 FOUR OUTPUT) POa 16 P1. 

PROGRAMMABLE) P1. P3, SERIAL AND 
1/0 OR ADo-AD7 PARALLEL I/O PO, 24 P1 3 

P1s P3s AND CONTROL 
POs 23 P1 2 

P1s P3a 
POs 22 P1, 

P17 P37 
P07 P10 

Figure 6-2. 18601/11 Pin Assignments 

338 



External Interface (ZS601,ZS611) 

P0o-P07' P10-P17' P20-P27' P3o-P37" I/O port 
lines (inputs/outputs. TTL-compatible. pins 
12-40). These 32 I/O lines are divided into four 
S-bit I/O ports that can be configured under pro­
gram control for I/O or external memory inter­
face. Individual lines of a port are denoted by 
the second digit of the port number. For example, 
P30 refers to bit 0 of Port 3. Ports 0 and 1 can 
be placed in a high-impedance state along with AS, 
155, and R/W. 

RESET. Reset (input, active LOIt, pin 6). RESET 
initializes the ZS. When RESET is deact,ivated, 
program execution begins from internal program 
location %C. If held Low, RESET acts as a regis­
ter file protect during power-down and power-up 
sequences. RESET also enables the ZS Test mode. 

XTAL1, XTAL2. Crystal 1, Crystal 2 (oscillator 
input and output, pins 3 and 2). These pins con­
nect a parallel-resonant crystal (12 MHz maximum) 
or an external source (12 MHz maximum) to the 
on-board clock oscillator and buffer. 

6.3 CONFIGURING FOR EXTERNAL MEMORY 

Before interfacing with external memory, the user 
must configure Ports 0 and 1 appropriately,. The 

minimum bus configuration uses Port 1 as a multi­
plexed Address/Oata port (AOO-A07), allowing 
access to 256' bytes of external memory. In this 
configuration, the eight lower order address bits 
(AO-A7) are multiplexed with the data (00-07)' 

Port 0 can be programmed to provide four addi­
tional address lines (AS-A11)' which increaaes the 
externally addressable program memory to 4K 
bytes. Port 0 can, also be programmed to provide 
eight additional address lines (AS-A15), which 
increases the externally addressable memory to 62K 
bytes for the ZS601 or 60K bytes for the ZS611. 
Refer to Chapter 3, Figures 3-5 and 3-6, for 
external memory maps. 

Ports 0 and 1 are ,configured for external memory 
operation by writing the appropriate bits in the 
Port 0-1 Mode register (Figure 6-3). 

F or example, Port , can be defined as a mult i­
pIe xed Address/Oata port (AOO-A07) by setting 04 
to 1 and 03 to O. The lower nibble of Port O'can 
be defined as address lines AS-A11' by setting 01 
to 1. Similarly, setting D7 to ,1 defines the upper 
nibble of Port 0 as address lines A12-A15' When­
ever' Port 0 is configured to output address ,lines 
A12-A15' AS-A11 must also be, selected as address 
lines. 

R248 P01M 
Port 0-1 Mode Register 

(% Fa; Write Only) 

~04-P07 MODE --r­
OUTPUT = 00 ~ 

INPUT = 01 
A'2-A,. = 1X 

-r POO-P03 MODE L 00 = OUTPUT 
01 = INPUT 
1X = A.-A" 

P10-P17 MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD7 
11 = HIGH·IMPEDANCE ADo-ADr, 

AS, OS, R/W, As-A", A'2-A'5 

Figure 6-3. Ports 0 and 1 External HllIIIOry Operation 

339 



Once Port 1 is configured as an Address/Data port, 
it can no longer be used as a register. Attempt­
ing to read Port 1 returns FF; writing has no 
effect. Similarly, if Port 0 is configured for 
address lines AB-A15 , it can no longer be used as 
a register. However, if only the lower nibble is 
defined as address lines AB-A11 , the upper nibble 
is still addressable as an I/O register. Reading 
Port 0 with only the lower nibble defined as 
address outputs returns XF, where X equals the 
data in bits 04-07, Writing to Port 0 transfers 
data to the I/O nibble only. 

An instruction to change the modes of Ports 0 or 1 
should not be immediately followed by an instruc-. 
tion that performs a stack operation, because this 
may cause indeterminate program flow. In addi­
tion, after setting the modes of Ports 0 and 1 for 
external memory, the next three bytes must be 
fetched from internal prog['am memory. 

6.4 EXTERNAL STACKS 

ZB architecture supports stack operations in 
either the register file or data memory. A 
stack I s locat ion is determined by bit O2 in the 
Port 0-1 Mode register. For example, if O2 is set 
to 1, the stack is in internal data memory 
(Figure 6-4). 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

LSTACK SELECTION 
0= EXTERNAL 
1 = INTERNAL 

Figure 6-4. Ports 0 and 1 Stack Selection 

The instruction used to change the stack selection 
bit should not be immediately followed by the 
instructions RET or IRET, because this will cause 
indeterminate program flow. 

340 

External Interface (ZB601,ZB611) 

6.5 OATA MEMORY 

The two external memory spaces, data and program, 
can be addressed as a single memory space or as 
two separate spaces of equal size; i.e., 62K bytes 
each for the ZB601 and 60K bytes each for the 
ZB611. If the memory spaces are separated, 
program memory and data memory are logically 
se lected by the Data Memory select output (OM). 
OM is available on Port 3, line 4 (P34) by setting 
bits 04 and 03 in the Port 3 Mode register to 10 
or 01 (Figure 6-5). OM is active Low during the 
execution' of the LOE, LDEI instructions. OM is 
also adive during the execution of CALL, POP, 
PUSH, RET and IRET instructions if the stack 
resides in external memory. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o 0 P33 = INPUT 
o 1 P33 = INPUT 
1 0 P33 = INPUT 
1 1 P33 = OAV1/ROY1 

P34 = OUTPUT 
P34 = OM 
P34 = OM 
P34 = ROY1/0AV1 

Figure 6-5. Data Memory Operation 

6.6 BUS OPERATION 

The timing for typical data transfers between the 
ZB and external memory is illustrated in Figure 
6-6. Machine cycles can vary from six to twelve 
clock periods depending on the operation being 
performed. The notations used to describe the 
basic timing periods of the ZS are: machine cycles 
(Mn), timing states (Tn), and clock periods. All 
timii1g references are made with respect to the 
output signals AS and OS. The clock is shown for 
clarity only and does not have a specific timing 
relationship with other signals. 



External Interface (ZB601,ZB611) 

~1'~----T-l--------MACH::CYCLE--------T-3-----"11 

CLOCK 

PO X Aa-A15 X 
P1 X Ao-A7 ) (00-07 IN) C 

'---I '---
\ / 

R/W I C 

X X 
14 READ CYCLE ' 1 

Figure 6-6a. External Instruction Fetch, or Memory Read Cycle 

6.6.1 Address Strobe (AS) 

All transactions start with AS driven Low and then 
raised High by the ZB. The rising edge of AS 
indicates that R/W, OM, and the addresses output 
from Ports 0 and 1 afe valid. The addresses 
output via Port 1 remain valid only during MnT1 
and typically need to be latched using AS, whereas 
Port 0 address outputs remain stable throughout 
the machine cycle. 

6.6.2 Data Strobe 

The ZB uses OS to time the actual data transfer. 
For Write operations (R/W = Low), a Lo~ on OS 
indicates that valid data is on the'Port 1 AOO-A07 
lines. For Read operations, (R/W = High), the 
Address/Data bus is placed in a high-impedance 
'state before driving OS Low so that the addressed 
device can put its data on the bus. The ZB sam­
ples this data prior to raising OS High. 

6.6.3 External Memory Operations 

Whenever the ZB is configured for external memory 
operation, the addresses of all internal program 
memory references appear on the external bus. 
This should have no effect on the external system 
since the bus control lines, OS and R/W, remain in 
their inactive High state. OS and R/W become 
active orily during external memory references. 

CAUTION 

00 not use LOC, LOCI, LOE or LOEI to 
wr ite to internal program memory. The 
execution of these instructions causes 
the Z8 to assume that an external 'write 
operation is being performed and this 
will activate control signals OS and 
R/W. 

341 



External Interface ( ZB601 ,Z8611) 

I' 
MACHINE CYCLE 

'I Tl T2 Ta 

CLOCK 

PO X As-AI5 X 
P1 X Ao-A7 X 00-07 OUT X 

LI L 
\ / 

R/W \ 
________ x ___________________ ~x ___ 

I'"" ,;--------WRITE CYCLE --------i,1 

Figure 6-6b. External Memory Write Cycle 

6.7 SHARID BUS 

Port 1, along with AS, DS, R/W, and Port 0 nibbles 
configured as address lines, can be placed in a 
high-impedance state, allowing the ZB601 or th~ 
ZB611 to share common resources with other bus 
masters. This shared bus mode is under software 
control and is programmed by setting Port 0-1 Mode 
register bits D4 and D} both to 1 (Figure 6-7). 

Data transfers can be controlled by assigning, for 
example, P3} as a Bus Acknowledge input and P34 as 
a Bus Request output. Bus Request/Acknowledge 
control sequences must be software driven. 

342 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

P1 o-P1 7 MODE 
, 00 = BYTE OUTPUT 

01 = BYTE INPUT 
10 = ADo-AD7 
11 = HIGH·IMPEDANCE ADo-AD7, 

AS, OS, RiW, As-All. A12-A15 

Figure 6-7. Shared Bus Operation 



External Inter face (ZB601, zB61.11 

6.8 EXTENDED BUS TIMING 

The ZB601 and ZB611 can accommodate slow memory 
access times by automat ically inserting an addi­
tional state time (Tx) into the bus cycle. 'This 
stretches the OS timing by two clock periods, 
though internal memory access time is not 
affected. Timing is extended by setting bit D5 in 
the Port 0-1 Mode register to 1 (Figure 6-8). 

Figures 6-9a and 6-9b illustrate extended memory 
Read and Write cycles. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

EXTERNAL MEMORY TIMINGJ 
NORMAL = 0 

,·EXTENDED = 1 

"ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 6-8. Extended Bus Tilling 

r 
MACHINE CYCLE 

'I Tl T2 Tx T3 

CLOCK 

PO ==x A8-A15 >C 
P1 '=x Ao-A7 ) ( Do-D7 IN >--C 

AS \----.I L 
DS \ / 

R/W -.--J C 
DM ==x >C 

I,' READ CYCLE 'I 

figure 6-9a. Extended External Instruction Fetch, or Memory Read Cycle 

343 



6.9 INSTRUCTION TIMING 

The high throughput of the ZB is due, in part, to 
the use of instruction pipe lining , in which the 
instruction fetch and execution cycles are over­
lapped. During the execution of an instruction 
the opcode of the next instruction is fetched. 
This is illustrated in Figure 6-10.. 

Figures 6-11· and 6-12 show typical instruction 
. cycle timing for instructions fetched from exter­

nal memory. (It should be noted that ·all instruc-

External Inter face (ZS60.1, ZS.6.U> 

tion fetch cycles have the same machine timing 
regardless of whether memory is internal or exter­
nal. > F or those instructions that require execu­
tion time longer then that of the overlapped 
fetch, or instructions that reference program or 
data memory as part of their execution, the pipe 
must be flushed. In order·to calculate the execu­
tion time of a program, the internal clock periods 
shown in the cycles column of the instruction for­
mats in Section·5.4 should be added together. The 
cycles are equal to one-half the crystal or input 
clock rate. 

I' Tl 

1-----------
T
-
2 

MACHINE CYCLE-
T
-

X

-------

T
-
3

----I· I 

C.LOCK 

PO ~ 
P1~ Ao-A7 X 

AS.~ 

OS \_------
R/W \ 
OM ~ 

i------------WRITE CYCLE----------..,.--I' 

figure 6-9b. Extended External Memory Write Cycle 

344 



* 

INTERNAL 
CLOCK 

INSTRUCTION 
N 

INSTRUCTION 
N+1 

INSTRUCTION 
1\1+2 

Ml M2 ---1- ------M-l ---- r- M2 Ml M2 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 

OPERAND 
FETCH(ES) ALU STORE 

l-------EXECUTION CYCLE " 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 

I <I EFFECTIVE 1>1 ~ HIDDEN DELAY 
EXECUTION TIME UNTIL COMPLETION 

I CiI INSTRUCTION COMPLETION TIME E> I 

Figure 6-10. Instruction Pipelining 

OPERAND 
FETCH(ES) ALU STORE 

_-----EXECUTION CYCLE------j 

INSTRUCTION 
FETCH 1 

INSTRUCTION 
FETCH 2 

f"'1 
X ,.... 
(1) .., 
:l 
III ..... 
...... 
:l ,.... 
(1) .., ...., 
III 

" (1) 

N 
CD 

'" ~ 
N 
CD 

'" 
~ 



~ en 
M, M2 M, 

,- - -- T, T2 L_ n_T3 T, T2 T3 T, T2 T3 

CLOCK 

PO X As-A, 5 X AS-A'5 c= 
Pl ___ J-J An-A7 ) --€9---< An A7 } ~ 

rn IN 

AS ~ \..J \....f 
OS 7~ I \ I 

RIW __ --JI 

,. FETCH INSTRUCTION -I' FETCH 1ST BYTE OF NEXT INSTRUCTION ., 

Figure 6-11. Instruction Cycle Timing (One Byte Instructions) 

) I M, M2 M, OR M3 r -- T, T2 T3 T, T2 T3 T, T2 T3 

CLOCK LJUL..nSU' 
PO _____ -----y:-,J -----p·;;=A;5----- - . ==x As-A, 5 X A.-A'5 

Pl ____ ~x AD-A7 >- ~ AD A7 ) ~ AD A7 ) ~ 

AS ------- '~ ~ 

~ / \ / -----,\.., / \ os 

R/W __ --'7 
FETCH 3RD BYTE (3·BYTE INSTR.) 

\. FETCH 1ST BYTE .\. FETCH 2ND BYTE .\. FETCH 1ST BYTE (lor 2 BYTE INSTR.) 

figure 6-12. Instruction Cycle TiJling (Two and Three Byte Instructions) 

,.., 
x .... 
CD .., 
:J ., 
..... 
..... 
:J .... 
CD .., 
;;;' 
o 
CD 

~ 

III 
'" ~ 
N 
Q) . 

~ .... 



External Interface (Z8601,Z8611) 

6.10 RESET CONDITIONS 

After a hardware reset, Ports 0 and 1 are con­
fjgured_ as input ports, memory and stack are 

internal, extended timing is set and DM is 
inactive. Figure 6-13 shows the binary values 
reset into P01M. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO.-P07 MODE:] 
OUTPUT = 00 ~ 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

I [ ""!,;~~.:;~~, 
01 = INPUT 
1X = A8-A11 

STACK SELECTION 
- . 0 = EXTERNAL 

'EXTENDED = 1 1 = INTERNAL 

P1 o-P17 MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD7 
11 = HIGH·IMPEDANCE ADo-AD7, 

AS, OS, Riw, As-A", A'2-A'5 

'ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 6-13. Ports 0 and 1 Reset 

347 



7.1 INTRODUCTION 

The ROM less versions of the Z8 microcomputer have 
40 external pins, of which 24 are programmable I/O 
pins. Of the remaining 16 pins, 8 form an 
Address/Data bus and the others are used fop power 
and control. Up to 8 I/O pins can be programmed 
as additional address lines to be used for 
external memory interface. 

7.2 PIN DESCRIPTIONS 

AS. Address Strobe (output, active low, pin 9). 
Address Strobe is pulsed Low once at the beginning 
of each machine cycle. The rising edge of AS 
indicates that addresses, Read/Write (R/W), and 
Data Memory (OM) signals are valid when output for 
program or data, memory transfers. 

RESET +5V 

RiW GND 

OS XTALl 

AS XTAL2 

POo P20 

PO, P2, 

PO. P2, 
PORTO PORT 2 
(NIBBLE PO, P2, (BIT PRO' 

Chapter 7 
External Interface 
(Z8681, Z8682) 

Os. Data Strobe (output, active low, pin 8). 
Data Strobe provides the timing for data movement 
,to or from Port 1 for each memory transfer. 
During a Write cycle, data out is valid at the 
leading edge of 55. During a Read cycle, data in 
must be valid prior to the trailing edge of 55. 

R/K. Readf\olrite. (output, pin 7). Read/Write 
determines the direction of data transfer for 
memory transactions. R/W is Low when writing to 
program or data memory, and High for all other 
transactions. 

P01-P07. Address/Oata Port (inputs/outputs, TTl­
cOIIIpatible, pins 13-20). Port 1 is permanently 
configured as a multiplexed Address/Data memory 
interface. The lower eight address lines (AO-A7) 
are multiplexed with data (00-07). 

+5V P3. 

XTAL2 2 P3, 

XTALl 3 P2T 

P3T 4 P2. 

P30 5 P2s 

RESET 6 P2. 

RIW 7 P2, 

OS 8 P2. PROGRAMMABLE) PO, P2. GRAMMABLE) 
AS 1/0 OR Aa-A,s r 9 P2, 

POs Z8681182 P2S P3s 10 Z8681182 31 P20 
PO. MCU P20 

GND 11 MCU P3, 
POT P2T 

P3. 12 P3. 
Pl0 P30 

POo 13 P1 T 
Pl, P3, 

PO, 14 Pl. 
Pl. P3. PORT 3 

PO. 15 Pl s (FOUR INPUT; 
PORT 1 Pl, P3, FOUR OUTPUT) PO, 16 Pl. 
ADo-AD7 Pl. P3. SERIAL AND 

PARALLEL 110 PO. 17 24 Pl, 
Pls P3s AND CONTROL 

POs 18 23 Pl. 
Pl. P3. 

PO. 19 22 Pl, 
P17 P3T 

POT 20 21 Pl 0 

348 



External Interface (Z8681,ZB6B2) 

POO-P07. P20-P27. P30-P~. I/O Port lines 
(inputs/outputs, TTl-compatible). These 24 I/O 
lines are divided into 3 8-bit I/O ports that can 
be configured under program control for I/O or 
memory interface. Individual lines of a port are 
denoted by the second digit of the port number. 
for example, P30 refers to bit 0 of Port 3. 

RESET. Reset (input. active low. pin 6). RESET 
initializes the ZB6B1/B2. When RESET is 
deactivated, program execution begins from 
external program location %C for the ZB6B1 and 
location %B12 for the Z86B2. If held low, RESET 
acts as a register file protect during power-down 
and power-up sequences. 

XTAl1. XTAl2. Crystal 1. Crystal 2 (oscillator 
input and output. pins 3 and 2). These pins 
connect a parallel resonant crystal or an. external 
source to the on-board clock osci llator, and buf­
fer. 

7.3 CONfIGURING PORT 0 

The minimum bus configuration uses Port 1 as a 
multiplexed Address/Data port (ADO-AD7) allowing 
access to 256 bytes of memory. In this configura-

tion, the eight low order address bits (AO-A7) are 
multiplexed with the data (00-07)' 

Port 0 can be programmed to provide either four 
additional address lines (AB-A11) which increases 
the addressable memory to 4K bytes, or eight 
additional address lines (AB-A15) which increases 
the addressable memory to 64K bytes for the Z86B1 
and 62K bytes for the ZB6B2. Refer to Chapter 3, 
figures 3-5 and 3-6, for the memory maps. 

In the ZB6B1, Port 0 lines intended for use as 
address lines are 
inputs after a Reset. 

automatically configured as 
These lines therefore float 

and their logic state remains unknown until an 
initialization routine configures Port O. In the 
ZB6B2, Port 0 lines are configured as address 
lines AB-A15 following a ReseL 

7.3.1 Z8681 Initialization 

The initialization routine must reside within the 
first 256 bytes of executable code and must be 
physically mapped into memory by forcing the port 
o address lines to a known state. figures 7-3 and 
7-4 illustrate how a 4K byte memory space can be 
addressed. 

PORT1 < ADo-AD7 > 
As, 05, RlW 

Z8681 
POD As 

PROGRAM 
MCU MEMORY 

1/2 PORT 0 I POl Ag (4K BYTES) 

P02 Al0 

P03 All 

?-

Vee 

The initialization routine is mapped in the top 256 bytes of program memory. Depending on the 
application, the interrupt vectors may need to be written in the first 12 byte locations of program 
memory by the initialization routine. 

figure 7-3. 'Example Z8681/Me.ary Interface 

349 



A 
PORT 1 ( ADa-AD7 \ 

V ~ 
AS,OS,RiW 

POa 
18 

As - lb 
PROGRAM 

Z8681 MEMORY 
POl 

28 
Ag 

14K BYTES) 

1/2 PORT O~ -- 2b 
P02 LS157 Ala 

38 -- 3b 
P03 

48 
All -- 4b 

~TROBE SELECT 
~ 

R/W 
R Q 

T S 

The initialization routine is mapped in the first 256 bytes of program memory. Any memory write 
operation will cause the flip-flop to select Port 0 outputs as addresses. 

Figure 7-4. Example Z8681/HeaDry Interface 

Port 0 is programmed for memory operation by writ­
ing the appropriate bits in the Port 0-1 Mode reg­
ister (Figure 7-5). The proper port initializa­

tion sequence is: 

• Load Port 0 with initial address value. 

• Configure Port 0~1 Mode register. 

= Fetch the next three bytes without changing the 
address in Port O. (This is necessary due to 
instruction pipelining.) 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO.-P07 MODE I" 
OUTPUT = 00 ~ 

INPUT = 01 

-r POa-PO. MODE L 00 = OUTPUT 
01 = INPUT 
lX = A8-All A12-A15 = lX 

Figure 7-5. Z8681 Port 0 Memory Operation 

350 

The lower nibble of Port 0 can be defined as 
address lines A8-A11' by setting D1 to 1. 
Similarly, setting 07 to 1 defines the upper nib­

ble of Port 0 as address lines A12-A15' 

Whenever Port 0 is configured to output address 

lines A1Z-A15' A8-A11 must also be selected as 
address lines. 

7.3.2 Z8682 Initialization 

The Z86B2 must be operated in Test mode only. 
Section 8.4 gives a complete description of the 
proper technique for entering Test mode. 

The user initialization routine must begin at 
location %812 and must reside 

. enough for normal memory timing. 
in memory fast 

I n the Z8682, 
the user is not protected from reconfiguring 
Port 1 by writing to R248 (P01M). Therefore 
whenever a write is made to P01M, the value 10 
(binary) must be written to bits 04 and D3' Any 
other value wi 11 cause complete loss of program 
control. 



External Interface (ZB6B1,ZB6B2) 

The lower nibble of Port 0 can be defined as 
address lines AB-A11' by setting 01 to 1. Simi­
larly, setting 07 to 1 defines the upper nibble of 
Port 0 as address lines A12-A15' 

Whenever Port 0 is configured to output address 
lines Al2-A15' AB-A11 must also by selected as 
address lines. 

7.3.3 Read/Write Operations 

If Port 0 is configured for address lines ArA15' 
it can no longer be used as a register; however, 
if only the lower nibble of Port 0 is defined as 
address lines AB-A11' the upper nibble is still 
addressable as an I/O register. When only the 
lower nibble is defined as address outputs, read­
ing Port 0 returns XF, where X equals the data in 
bits 04-D7. Writing to Port 0 transfers data to 
the I/O nibble only. 

The instruction used to change the mode of Port 0 
should not be immediately followed by an instruc­
tion that performs a stack operation, because this 
will cause indeterminate program flow. In addi­
tion, after setting the mode of Port 0 for memory, 
the next three bytes must be fetched without 
changing the value of the upper byte of the Pro­
gram Counter (PC). 

7.4 EXTERNAL STACKS 

The ZB681/B2 architecture supports stack opera­
tions in either the register file or data memory. 
A stack's location is determined by bit 02 in the 
Port 0-1 Mode register. For example, if D2 is set 
to 0, the stack is in external data memory 
(Figure 7-7). 

The instruction used to change the stack selection 
bit should not be immediately followed by the 
instructions RET or IRET, because this will cause 
indeterminate program flow. 

7.5 DATA MEMORY 

The two memory spaces, data and program, can be 
addressed as a single memory space or as two 
separate spaces of equal size; i.e. 64K bytes each 
for the ZB6B1 and. 62K bytes each for the ZB6B2. 
If the memory spaces are separated, program memory 
and data memory are logically selected by Data 
Memory select output (OM). OM is made available 
on Port 3, line 4 (P34) by setting bits 04 and 03 
in the Port 3 Mode register to 10 or 01 (Figure 
7-B). OM is active Low during the execution of 
the LOE, LOEI instructions. OM is also active Low 
during the execution of CALL, POP, PUSH, RET and 
IRET instructions if the stack resides in memory. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO.-P07 MODEI 
OUTPUT = 00 

INPUT = 01 
A12-A '5 = 1X 

-r- POO-P03 MODE L 00 = OUTPUT 
01 = INPUT 
1X = A.-A" 

'-_____ P1 o-P1 7 MODE 
10 = ADo-AD7 

Figure 7-6. Z8682 Port 0 Memory Operation 

351 



R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

LSTACK SELECTION 
0= EXTERNAL 
1 = INTERNAL. 

Figure 7-7. External Stack Operation 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o 0 P3a =' INPUT 
o 1 P3a = INPUT 
1 0 P3a = INPUT 
1 1 P3a = DAV1/RDY1 

P34 = OUTPUT 
P34 = OM 
P34 = OM 
P34 = RDY1/DAV1 

figure 7-8. Port J Data Met.ory Operation 

7.6 BUS OPERATION 

Typical data transfers between the ZB6B1/B2 and 
memory are illustrated in Figure 6-6. Machine 
cycles can vary from six to twelve clock periods 
depending on the operation being performed. The 
notations used to describe the basic timing 
periods of the ZB6B1/B2 are: machine cycles (Mn), 
timing states (Tn), and clock periods. All timing 
references are made with, respect to the output 
signals AS and 55. The clock is shown for clarity 
only and does not have a specific timing relation­
ship with other signals. 

352 

External Interface (ZB6B1,ZB6B2) 

7.6.1 Address Strobe (AS) 

All transactions start with AS driven Low and then 
raised High by the ZB6B1/B2. The rising edge of 
As indicates that R/W, DM (if used), and the 
addresses output from Ports 0 and 1 are valid. 
The addresses output via Port 1 remain valid only 
during MnT1 and typically need to be latched using 
AS, whereas Port 0 address outputs remain stable 

. throughout the machine cycle. 

7.6.2 Data Strobe (OS) 

The ZB6B1/B2 uses 55 to time the actual data 
transfer. For Write operations (R/W = Low), a Low 
on 55 indicates that valid data is on the Port 1 
ADO-AD7 lines. For Read operations (R/W = High), 
the Address/Data bus is placed in a high-impedance 
st.ate before driving 55 Low so that the addressed 
device can put its data on the bus. The ZB6B1/B2 
samples this data prior to raising OS High. 

7.7 EXTENDED BUS TIMING 

The ZB6B1/82 accommodates slow memory access times 
by automatically inserting an additional software­
controlled state time (Tx). This stretches the 55 
timing by two clock periods. Timing is extended 
by setting bit D5 in the Port 0-1 Mode register to 
1 (Figure 7-9). 

Refer to Section 6.7 for other figures pertaining 
to extended bus timing. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

EXTERNAL MEMORY TlMINGJ· 
NORMAL = 0 

"EXTENDED = 1 

"ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 7-9. Extended Bus Timing 



External Interface (Z8681,Z8682) 

7.8 INSTRUCTION TIMING 

The high throughput of the Z8681/82 is due, in 
part, to the use of instruction pipelining, in 
which the instruction fetch and execution cycles 
are overlapped. During the execution of the cur­
rent instruction the opcode of the next instruc­
tion is fetched as illustrated in Figure 6-10. 

Figures 6-11 and 6-12 show typical instruction 
cycle timing for instructions fetched from mem­
ory. For those instructions that require execu­
tion time longer than that of the overlapped 
fetch, or reference program or data memory as part 
of their execution, the pipe must be flushed. In­
order to calculate the execution time of _ a pro­
gram, the internal clock periods shown in the 
cycles c,olumn of the instr.uction formats in Sec­
tion5.6 should be added together. The cycles are 
equal to one-half the crystal or input clock rate. 

7.9 Z8681 RESET CONDITIONS 

A fter a hardware reset, Port 0 is configured as 
input port, extended timing is set to accommodate 
slow memory access during the configuration 
routine, DM is inactive, and the stack resides in 
the register file. Figure 7-10 shows the binary 
values reset into P01M. 

7.10 Z8682 RESET mNDITIONS 

After a hardware reset, Port .0 is configured as 
address lines A8-A15' memory timing is normal, DM 

.. is inactive, and the stack resides in the register 
file. Figure 7-11 shows the binary values reset 
into P01M. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

P04-P07 MODE:] 
OUTPUT = 00 --l 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

"EXTENDED = 1 

~ POII-P03 MODE L 00 = OUTPUT 
01 = INPUT 
1X = As-A" 

STACK SELECTION 
0= EXTERNAL 
1 = INTERNAL 

·ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 7-10. Z8681 Port 0 and 1 Reset Conditions 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

P04-P07 MODE:] 
OUTPUT = 00 --l 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

EXTENDED = 1 . 

I L"'!o':!' :.lW.~. 01 = INPUT 
1X = As-A" 

STACK SELECTION 
0= EXTERNAL 
1 = INTERNAL 

P1o-P17 MODE 
'------ 10 = ADo-AD7' 

Figure 7-11. Z8682 Porta 0 and 1 Reset Conditions 

353 



8.1 RESET 

This section describes ZB reset conditions, reset 
timing, and register initialization procedures. 

A system 'reset overrides all other operating con­
ditions and puts the ZB int.o a known state. To 
initialize the chip's internal logic, the reset 
input must be held Low for at least 1 B clock 
periods. 

While RESEr is Low, AS is output at ,the internal 

Chapter 8 
Reset aDd Clock 

clock rate (XTAL frequency divided by 2), OS is 
forced Low and R/W remains High. (Zilog Z-BUS com­
patible peripherals use the AS and OS coincident 
Low state as a peripheral reset function.) In 
addition, interrupts are disabled, Ports 0, 1, and 
2 are put in input mode, and %C is loaded into the 
Program Counter. 

The hardware Reset initializes the control and 
peripheral registers, as shown in Table B.l. 
Specific reset values are shown by ls ,or Os, while 
bits whose states are unknown a~e indicated by the 

Table B-1. Control and Peripheral Register Reset Values 

354 

Register 

%FO Serial I/O 
%fl Timer Mode 

%f2 Counter/Timer 

%F3 Tl Prescaler 

%f4'Counter/Timer 
%f5 TO Prescaler 

%f6 Port 2 Mode 
%f7 Port 3 Mode 

%fB Port 0-1 Mode 
ZB601/ZB611 

%fB Port 0-1 Mode 
ZB6B1 

%fB Port 0-1 Mode 
ZB6B2 

0 

%f9 Interrupt Priority 
%fA Interrupt Request 
%fB Interrupt Mask 
%fC flags 
%fD Register Pointer 
%fE Stack Pointer 
%ff Stack Pointer 

0., D6 ~ D4 0, Dz D1 Do 

undefined 
0 0 0 0 0 0 0 0 

undefined 

u u u ,u u u 0 0 

undefined 
u u u u u u u 0 

' 1 
0 0 0 0 0 0 u 0 

o 1 o o 

o 1 o o 1 

o 0 o o 

undefined 
,u u 0 0 0 0 0 0 
0 u u u u u u u 
undefined 
undefined 
undefined 
undefined 

Counter/Timers stopped 

Single Pass count mode, 
eKternal clock source 

Single Pass count mode 

All lines input 
Port 2 open-drain 
P30-P33 input; P34-P37 outpu,t 

Ports 0 and 1 inputs;, internal stack; 
eKtended eKternal memory timing 

Port 0 inputs 
Port ,1 Address/Data; internal stack; 
e,Ktended eKternal memory timing 

Port 0 Address 
Port 1 Address/Data 
internal stack; normal eKternal 
memory timing 

Reset all interrupt disabled 
Interrupts disabled 

Most significant byte 
Least significant byte 



Reset and Clock 

letter u. Registers that are not predictable are 
listed as undefined. 

Program execution starts four clock cycles after 
RESET has returned High. The initial instruction 
fetch is from location %C. Figure 8-1 shows reset 
timing. 

After a reset, the first program executed should 
be a routine that initializes the control regis­
ters to the required system configuration. The 
Interrupt Request register remains inactive until 
an EI instruction is executed. This 
that program execution can proceed 
interrupts. 

guarantees 
free from 

RESET is the input of a Schmitt trigger circuit. 
To form the internal reset line, the output of the 
trigger is synchronized with the internal clock 
(xtal frequency divided by 2). The clock must 
therefore be running for RESET to function. For a 
power-up reset operation, the RESET input must be 
held Low for at least 50 ms after the power supply 
is within tolerance. This allows the on-board 
clock oscillator to stabilize. An internal 
pull-up combined~ with an external capacitor of 
1 eF provides enough time to properly reset the Z8 
(Figure B-2). 

R/W 

Figure B-1. 

B.2 CLOCK 

The ZB derives its timing from on-board clock 
circuitry connected to pins XTAL1 and XTAL2. The 
clock circuitry consists of an oscillator, a 
divide-by-2 shaping circuit, and a clock buffer. 
Figure 8-3 illustrates the clock circuitry. The 
oscillator's input is XTAL1; its output is XTAL2. 
The clock can be driven by a crystal, a ceramic 
resonator, or an external clock source. 

Crystals and ceramic resonators should have the 
following characteristics to ensure proper oscil­
lator operation: 

Cut: AT (crystal only) 
Mode: Parallel, Fundamental 
Output Frequency: 1 MHz - 12 MHz 
Resistance: 100 ohms max 

Depending on operation frequency, the oscillator 
may require the addition of capacitors C1 and C2 
(shown in Figure B-4). The ral')ge of recommended 
capacitance values is dependent on crystal speci­
fications but should not exceed 15 pF. The ratio 
of the values of C1 to C2 can be adjusted to shift 
the operating frequency of the circuit by approxi­
mately :1:.005%. 

Reset T iJIIing 

FIRST MACHINE CYCLE 

I 
I-- FIRST INSTRUCTION FETCH 
I 

355 



Reset and Cloc k 

+5V 

100 
KQ 

XTAL1 o-i OSC H +2 ~INTERNAL 
XTAL2 D--i" ___ 

001 
' " ___ 001~ CLOCK 

•• BUFFER 

1K RESET 

figure 8-2. Pmmr-Up Reset Circuit 

When an external frequency source is used, it must 
drive both XTAL1 and XTAL2 inputs. This differen­
tial drive requirement arises from the loading on 
the oscillator output (XTAL2) without the reactive 
feedback network of a crystal or resonator. A 
typical clock interface circuit is shown in Figure 
8-5. 

The capacitors shown represent the maximum para­
sitic loading when using a 74LS04 driver. The 
pull-up resistors can be eliminated by using a 
74He04 driver. 

8.} PONER-OOWN OPERATION 

The ZB has a power-down option which can be used 
to maintain the contents of the register file with 
a low-power battery. The circuitry has its XTAL2 
output replaced by a power supply input (VMM ). 
VMM powers the general-purpose registers %04 -
?7F as well as a portion of the reset logic that 
protects the vegister file. When Vt.lt.1 is main­
tained at 3 to 5 V, this power-down option pre­
serves the contents of the general-purpose regis­
ters whenever Vce is removed. During normal 
operation, VMM provides +5 V along with, Vec' 

The following sequence is necessary to preserve 
data: 

• Power failure must be externally detected early 
enough for a software routine to store the 
required data that is not already in the regis­
ter file. An interrupt is typically used for 
this purpose. 

• RESET must be held Low after data is saved and 
during the removal of Vec' RESET is a write 
protect input to the register file. 

356 

Figure 8-}. Z8 Clock Circuit 

ZB 

Figure 8-4. Crystal/Ceramic Resonator Oscillator 

CLOCK 
IN 

+5V +5V 

1.5k 1.5k 

74LS04 74LS04 

:><>-.... - ... -DI>O--..... -..- XTAL2 

I CSTRAY = 
15 pF MAX 

'--------1r XTAL1 

I CSTRAY = 
15 pF MAX 

Figure 8-5. External Clock Interface 

• RESE T must be held Low during the power-up 
sequence. Again, RESET is a wr ite protect 
input to the register file. 

As Vec powers down, on-board circuitry 
associated with RESET automatically protects the 
general-purpose registers. The circuit shown in 
Figure B-2 satisfies the power-up requirement of 
holding RESET Low to protect the register file 
data. 



Reset and Clock 

Figure 8-6 shows the recommended circuit configu­
ration for a battery-backed supply system. 

Since XTAL2 'is replaced by VMM , an external 
clock generator must ,be used to input the Z8 clock 
via the XTAL1 input. 

+5V 
TRICKLE 
CHARGEfi 

-=-.3.6V I NiCAD 

Vee 

Z8 

VMM 

Figure 8-6. Battery-Backed Register Supply 

ACCESS NORMAL 
ROM ATOOCH 

8.4 TEST til)[ 

Test mode ill a special mode of operation that 
facil i.tates testing of Z8 devices containing 
on-board 'ROM (Z8601 and Z8611). Test mode must 
also be used to reset the Z8682. When Test mode is 
invoked, an additional on-board ROM is mapped into 
the first 64 locations of program memory. Figure 
8-7 shows the di fference between Normal and Test 
modes of operation. 

Test mode is entered by driving the RESET input to 
a voltage level of VCC + 2.5 V after a normal 
Reset cycle (Figure B-B). This voltage is 
absolutely essential for proper operation. 

After entering Test mode, instructions are fetched 
from the internal test ROM. Port 1 is configured 
for Address/Data operation, followed by a JUMP to 
external memory location :\l812 for the ZB601 and 
Z8682, or :\l1012 for the Z8611. Once in external 
memory, diagnostic routines, invoked via the 

ACCESS TEST 
ROMATOOCH 

ON·CHIP 
PROGRAM 

ROM 

%3F',,--~----"--------"------~%3F 

%OC USER 
ROM 

%00 ... -------

TEST 
ROM 

%OC 

.. ----%00 

Figure 8-7. Normal and Test Mode Flow 

357 



Address/Data bus, verify the Z8' s funct ionalit.y. 
Since Port 1 is used only in Address/Data mode in 
this process, additional routines in the test ROM 
verify Port 1's I/O and Handshake modes. 

Programs run with lest mode act.ive can use the LDE 
instruct ion to access contents of the test ROM. 
The' LDC instruction accesses the normal program 
ROM. 

The Z8 stays in the Test mode until a normal reset 
occurs. 

8.4.1 Interrupt Testing 

To test the interrupt structure, the first twelve 
locations of test ROM contain interrupt vectors. 
Interrupt vectors in the Z8601 and Z8682 point to 
external memory locations %800, %803, %806, %809, 

Vee +2.5V------

RESET PIN 

VRL-----
4 

_XTAl_ 
ClKS 
MAX 

Reset and Clock 

%80C, and %80F; interrupt vectors in the Z8611 
point to external memory locations %1000, %1003, 
1~1006, %1008. %100C, and %100F. These interrupt 
vectors allow the external program to have a 2- or 
3-byte JUMP instruction to each interrupt service 
routine. 

Programs that are run with Test mode active can 
use the LDE instruction for accessing the contents 
of the Test ROM. The LDC instruction can be used 
for accessing the program ROM as normal. 

8.4.2 ROHless Operation 

ROMless operation of the Z8601 or Z8611 can be 
achieved by always entering Test mode after a 
reset. Execution begins at %812 or %1012, respec­
tively. (The Z8682 is a modified Z8601 sold as a 
ROMless part.) 

6 
_XTAlClKS_ 

MIN 

____ VRH 

Note the maximum ramp for application of 

358 

+ 7.5 VDC to RESET pin. After a minimum of 
6 XTAl ClK cycles, the RESET voltage can be 
relaxed to VRH. 

figure 8-8. Voltage Waveform for Test Mode 



9.1 INTRODUCTION 

The ZB has 32 lines dedicated to inpul and out­
put. These lines are grouped into four B-bit 
ports and are configurable as input, output, or 
address/data. Under software control, the ports 
can be programmed to provide address/data, timing, 
status, serial, and parallel input/output with or 
without handshake. 

All' ports have active pull-ups and pull-downs 
compatible with TTL loads. In addition, the 
pull-ups of Port 2 can be turned off for 
open-drain operation. 

9.1.1 Mode Registers 

Each port has an associated mode register which 
determines the port's functions and allows dynamic 
change in port functions during program execu­
tion. Ports and mode registers are mapped into 
the register file as shown in Figure 9-1. 

Because of their close association, ports and mode 
registers are treated like any other general-pur­
pos,e register. There are no special instructions 
for port manipulation; any instruction that 
addresses a register can address the ports. Data 
can be directly accessed in the port register, 
with no extra moves. 

DEC 

248 

247 

246 

4 

3 

2 

1 

o 

PORTS 0-1 MODE 

PORT 3 MODE 

PORT 2 MODE 

PORT 3 

PORT 2 

PORT 1 

PORTO 

HEX IDENTIFIERS 

F6 P01M 

F7 P3M 

F6 P2M 

04 

03 P3 

02 P2 

01 P1 

00 PO 

figure 9-1. I/O Port and Port Mode Registers 

Chapter 9 
1/0 Ports 

9.1.2 Input and Output. Registers 

Each bit of Ports 0, 1, and 2 has an input regis­
ter, an output register, associated buffer, and 
control logic. Since there are separate input and 
output registers associated with each port, writ­
ing to bits defined as inputs. stores the data in 
the output register. This data cannot be read as 
long as the bits are defined as inputs. However, 
if the bits are reconfigured as output, the data 
stored in the output register is reflected on the 
output pins and can then be read. This mechanism 
allows the user to initialize the outputs prior to 
driving their loads. 

Since port inputs are asynchronous to the ZB' s 
internal clock, a Read operation could occur 
during an input transition. In this case, the 
logic level might be uncertain--somewhere between 
a logic 1 and O. To eliminate this ·nieta-stable 
condition, the ZB latches the input data two clock 
perioda prior to the execution of the current 
instruction. The input register uses these two 
clock periods to stabilize to a legitimate logic 
level before the instruction reads the data. 

9.2 PORT 0 

This section deals only with the I/O operation of 
Port O. Refer to Sections 6.2 and 7.2 for a 
description of the port's external' memory' inter­
face ·operation. 

Port 0 is a general I/O port. Bits within each 
nibble can be independently programmed as inputs, 
outputs or address. lines; Figure 9-2 shows a 
block diagram of Port O. This diagram also 
applies to Ports 1 and 2. 

359 



~ 

A 
8 

... 

READ 
PORT 

-

-

8 WRITE 
PORT 

8 

INTERNAL BUS 

INPUT REGISTER INPUT BUFFER 

A Vi-
r-,. 8 

... :1 

EQ-f 
~ INTERNAL 

TIMING 

HANDSHAKE SELECTED 
HANDSHAKE 

LOGIC 

~ 

h. ~ 

') 8 

r r 

OUTPUT ENABLE_ 

--------J -.----

OUTPUT REGISTER OUTPUT BUFFER 

Figure 9-2. Ports 0, 1, and 2 Block Diagr_ 

~ 
8' 

./"~ r 

1 

8 

PORT UO 
LINES 

DAV/RDY 

RDY/DAY 

.... 
....... 
o 
.... 
o ... 
("I" 
en 



9.2.1 Re~rite Operations 

In the nibble I/O mode, Port 0 is accessed as gen­
eral-purpose register PO (%00). The port is writ­
ten by specifying PO as an instruction's destina­
tion register. Writing the port causes data to be 
stored in the port's output register. 

The port is read by specifying PO as the source 
register of an instruction. When an output nibble 
is read, data on the external pins is returned. 
Under normal loading conditions this is equivalent 
to'reading the output register. Reading a nibble 
defined as input also returns data on the external 
pins. However, input bits under handshake control 
return dilta latched into the input register via 
the input strobe. 

The Port 0-1 Mode register bits D1DO and D7D6 are 
used to configure Port 0 nibbles (Figure 9-3). 
The lower nibble (POO-P03) can be defined as 
inputs by setting bits D1 to 0 and DO to 1,'or as 
outputs by setting both D1 and DO to O. Likewise, 
the uppe,r nibble (P04-P07) can be defined as 
inputs by setting bits D7 to 0 and D6 to 1, or as 
outputs by' setting both D6,and D7 to O. 

9.2.2 Handshake Operation 

When used as an I/o port, Port 0 can be placed 
under handshake control by programming the Port 3 
Mode register bitD2 to 1 (Figure 9-4). In this 
configuration, handshake control lines are DAVO 
(P32) and RDYO (P35) when Port 0 is\an input port, 
or RDYO (P32) and DAVO (P35) when Port 0 is an 
output port. 

Handshake direction is determined by the configu­
ration (input or output) assigned to Port O's 
upper nibble, P04-P07. The lower nibble must have 
the same I/O configuration as the upper nibble to 
be under handshake control. Figure 9.,.5 illus­
trates the Port 0 upper and lower nibbles, and the 
associated handshake lines of Port 3. 

Handshake operation is 'discussed in detail in Sec­
tion 9.6. 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

I/O Ports 

PO.-P07 MODE -r 
. OUTPUT = 00 ~ 

INPUT = 01 

--r- POO-P03 MODE . L 00 = OUTPUT 
01 = INPUT 
1X = As-A11 A'2-A'6 = 1X 

figure 9-3. Port 0 I/O Operation 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

I 

L, ..... "." 
1 P32 = DAVO/RDYO 

P3s = OUTPUT 
P3s = RDYO/DAVO 

figure 9-4. Port 0 Handshake Operation 

} 
P04-P07 } PORT 0 
POO-P03 (UO OR AS-A15) 

} 
HANDSHAKE CONTROLS 
DAVo AND RDYo 
(pa. AND P3S> 

figure 9-5. Port 0 

361 



I/O Ports 

9.3 PORT 1 

This section deals only with the I/O operation of 
Port 1 and does not apply to the Z8681/82 ROMless' 
devices. Refer to Sections 6.2 and 7.2 for a 
description of the port's external memory inter­
face operation. 

Port 1 is a general-purpose I/O port that can be 
programmed as a byte I/O port with or without 
han!fshake, or as an address/data port for inter­
facing with external memory. Refer to Figure 9-2 
for a block diagram of Port 1. 

9.3.1 Read/Write Operations 

In byte input or' byte output mode, the port is 
acces.sed as general-purpose register P1 (%01). 
The port is written by specifying P1 as an· 
instruction's destination register. Writing the 
port causes data to be stored in the port's output 
register. 

The port is' read by specifying P1 as the source 
register of an instruction. When an output is 
read, data on, the external pins is returned. 
Under normal loading conditions, this is equiva­
lent to reading the output register. When Port 1 
is defined as an input, reading also returns data 
on the external pins. However, inputs under hand­
shake control return data latched into the input 
register via the input strobe. 

Using the Port 0-1 Mode register, Port 1 is con­
figured as an ou~put port by setting bits 04 and 
03 to Os, or as an input port by setting 04 to 0 
and 03 to 1 (Figure 9-6). 

R248 POiiiJi 
Port 0-1 Mode Register 

(% F8; Write Only) 

362 

P1o-P1 7 MODE 
00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD7-

11 = HIGH·IMPEDANCE ADo-AD7. 
. AS. OS. RtW. As-All. A12-A15 

figure 9-6. Port 1 I/O'Operation 

9.3.2 Handshake Operations 

When used as an I/O port, Port 1 can be placed 
under handshake control by programming the Port 3 
Mode register bits 04 and 03 both to 1 (Figure 
9-7). In this configuration, handshake control 
lines are OAV1 (P33) and ROY1 (P34)·when Port 1 is 
an input port, or ROY1 (P33) and OAV1 (P34) when 
Port 1 is an output port. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o 0 P33 = INPUT 
o 1 P33 = INPUT' 
1 0 P33 = INPUT 
1 1 P33 = DlWi/RDY1 

P34 = OUTPUT 
P34 = OM 
P34 = OM 
P34 = RDY1/DAVl 

Figure 9-7. Port 1 Handshake Operation 

Handshake direction is determined by the configu­
ration (input or output) assigned to Port 1. For 
example, if Port 1 is an output port then hand­
shake is defined as output. Figure 9-8 illus­
trates the Port 1 lines and the associated hand­
shake lines of Port 3. 

Handshake operation is discussed in detail in Sec­
tion 9.6. 

PORT 1 
(I/O OR ADo-AD7) P1o-P17 

} 
HANDSHAKE CONTROLS 
DAV1 AND RDY1 
(P3s AND P341 

figure 9-8. Port 1 



9." PORT 2 

Port 2 is a general-purpose port. Each of its 
lines can be independently programmed as input or 
output via the Port 2 Mod~ register (Figure 9-9). 
A bit set to a 1 in P2M configures the correspond­
ing bit in Port 2 as an input, while a bit set to 
o determines an output line. 

R246 P2M 
Port 2 Mode Register 

(%F6; Write Only) 

1~1~1~1~1~1~1~1~1 

, .... 1 _____ P20-1''27 MODE 
, 0 OUTPUT 

1 INPUT 

Figure 9-9. Port 2 I/O Operation 

9.".1 Read/Write Operations 

Port Z is accessed as general-purpose register PZ, 
(%OZ). The port is written by specifying P2 as an 
instruction's destination register. Writing the 
port causes data to be stored in the port's output 
register, and reflected externally on any bit con~ 
figured as an output. 

The port is read by specifying PZ as the source 
register of an instruction. When an output bit is 
read, data on the external pin is returned. Under 
normal loading conditions, this is equivalent to 
reading the output register. However, if a bit of 
Port Z is defined as an open-drain output, the 
data returned is the value' forced on the output 
pin by the external system. This may not' be the 
same as the data in the output regi~ter. 

Reading input bits of Port Z also returns data on 
the external pins. However, inputs under hand­
shake control return data latched into the input 
register via the input strobe. 

I/O Ports 

9.4.2 Handshake Operation 

Port 2 can be placed under handshake control by 
programming the Port 3 Mode register (Figure 
9-10). In this configuration, Port 3 lines P31 
and P36 are used as the handshake control lines 
OAVZ and RDYZ for input handshake, or RDYZ and 
DAVZ for output handshake. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o P3l = INPUT (TIN) P3s = OUTPUT (TOUT) 
1 P3l = iiAii2JRDY2 P3s = RDY2Im2 

Figure 9-10. Port 3 Handshake Operation 

Handshake direction is determined by the configu­
ration (input or output) assigned to bit '7 of Port 
Z. Only those bits with the same configuration as 
PZ7 will be under handshake control. Figure 9-11 
illustrates Port Z's bit lines and the associated 
handshake lines of Port 3. 

P20 

PORT 2(1/0) 

P27 ' 

} 
HANDSHAKE CONTROLS 
DAVz AND RDYz 
(P3l AND P3e) 

Figure 9-11. Port 2 

363 



Port 2 can also by configured to provide open­
drain outputs by programming Port 3 Mode register 
(P3M) bit DO to 0 (Figure 9-12). 

Regardless of the bit input/output configuration, 
Port 2 is always written and read as a byte-wide 
port. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

,L 0 PORT 2 PULL·UPS OPEN DRAIN 
1 PORT 2 PULL·UPS ACTIVE 

Figure 9-12. Port 2 IlpeJH)rain Outputs 

INPUT INPUT 
REGISTER BUFFER 

READ _ 

A PORT A 
4 4 

~ 'i , 

9.5 PORT' 

Port J differs structurally from the other three 
ports. Port J lines are fixed as four input 
(PJO-P3J) and four output (P34-P37) and do not 
have an input and output register for each bit. 
Instead, all the input lines have one input r~gis­
ter, and output lines have an output register. 
Under software control, the lines can be con­
figured as input or output, special control lines 
for handshake, or as I/O lines for the o,n-board 
serial and timer facilities. Figure 9-13 is a 
block diagram of Port 3. 

9.5.1 Read/Write Operations 

Port 3 is accessed as general-purpose register P' 
(%03). The port is written by specifying P3 as an 
instruction's destination register. 

A 
4 

'i 

However, 

PORT 
INPUT 
LINES 
(P30-P3a) 

I 1\ 
TO INTERRUPT TIMER, HANDSHAKE LOGIC 

A 
( 

'4 

INTERNAL 
BUS 

364 

4 

OUTPUT 
REGISTER 

WRITE ~ 
PORT ~ 

4 :) 
... 

~I 

OR SERIAL 110 
... 

READ _ 
PORT ) OUTPUT 

DATA 0r-RETURN 
BUFFER 

-4 

FROM TIMER, HANDSHAKE LOGIC 
OR SERIAL 1/0 

Figure 9-13. Port' Block Oiagran 

OUTPUT 
BUFFER 

~ 
'", 

r 

... 
4 

y 

PORT 
OUTPUT 
LINES 
(P34-P37) 



I/O Ports 

Port 3 outputs cannot be written if they are used 
for special functions. When writing to Port 3, 
data is stored in the output register. 

Table 9.1 Port JLine functions 

The port is read by specifying P3 as the source 
register of an instruction. When reading from 
Port 3, the data returned is both the data on the 
input pins and in the output register. 

9.5.2 Special functions 

Special functions for Port 3 are defined by pro­
gramming the Port 3 Mode register. By writing Os 
in 02-06' lines P30-P37 ar configured in input/ 
output pairs (Figure 9-14). Table 9-1 shows 
available functions for Port 3. The special 
functions indicated in the table are discussed in 
detail in their corresponding sections in this 
manual. 

Port 3 input lines P30-P33 always function as 
interrupt requests regardless of the configuration 
specified in the Port 3 Mode register. Unwanted 
interrupts must be masked 0 ff as described in 
Chapter 10. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

I 06 1 05 1 0.1 03 1 02 1 

function 

Input 
Output 

Handshake 
Inputs 

Handshake 
Outputs 

Interrupt 
Requests 

Serial Input 
Output 

Counter/Timer 

Status 

Line Signal 

P30-P33 Input 
P34-P37 Output 

P31 OAV2/ROYZ 
P32 OAVO/ROYO 
P33 OAV1/ROY1 
P34 RDY1/DAV1 
P35 RDYO/DAVO 
P36 ROYZ/ crAV2 

P30 IRQ3 
P31 IRQZ 
P32 IRQO 
P33 IRQ1 

51 

SO 

L, "" -""" 1 P32 = DAVO/RDYO 
P3s = OUTPUT 
P3s = RDYO/DAVO 

o 0 P33 = INPUT P34 = OUTPUT 

'------~ ~}P33 = INPUT P34 = OM 
1 1 P33 = DAV1/RDY1 P34= RDY1/DAV1 

o P31 = INPUT (TIN) P3s = OUTPUT (TOUT) 
'---------1 P31 = OAV2/RDY2 P3s = RDY2IDAV2 

o P30 = INPUT P37 = OUTPUT 
'--------- 1 P30 = SERIAL IN P37 = SERIAL OUT 

figure 9-14. Port J I/O Operation 

365 



I/O Ports 

9.6 PORT HANDSHAKE 

When Ports 0, 1, or 2 are configured for hand­
shake operation, a pair of lines from Port 3 is 
used for handshake controls for each. port. The 
handshake controls are interlocked to properly 
time asynchronous data transfers between the ZS 
and its peripheral. One control line (DAV n) func­
tions as a strobe from the sender to indicate to 
the receiver that' data is available. The second 
control line (ROYn ) acknowledges receipt of the 
sender's data, and indicates when the receiver is 
ready to accept another data transfer. 

In the input mode, data is latched into the port's 
input register by the first OAV signal, and is 
protected from being overwritten if additional 
pulses occur on the OAV line. This overwrite pro­
tection is maintained until the port data is 
read. In the output mode, data written to the 
port is not protected and can be overwritten by 
the ZS during the handshake sequence. To avoid 
losing data, the software must not overwri,te the 
port until the corresponding interrupt request 
indicates that the external device has latched the 
data. 

The software can always read Port 3 output. and 
input handshake lines, but cannot write to the 
output handshake lines. 

DAV 
(INPUT TO Z8) 

2 

RDY 
(OUTPUT FROM Z8) --+-, 

DATA ON PORT 
(INPUT TO Z8) 

Following is the recommended setup sequence when 
configuring a port for handshake operation for 
the first time after a reset: 

• Load P01M or P2M to configure the port for 
input/output. 

• Load P3 to set the Output Handshake bit to a 
logic 1. 

• Load P3M to se lect the Handshake mode for the 
port. 

Once a data transfer begins, the configuration of 
the handshake lines should not be changed until 
handshake is completed. 

Figures 9-15 and 9-16 show detailed operation 
for the handshake sequence. 

In applications requiring a strobed signal instead 
of the interlocked handshake, the ZS can satisfy 
this requirement as fo 11ows: 

• In the Strobed Input mode, data can be latched 
in the port input register using the OAV 
input. The data transfer rate must allow 
enough time for the software to read the port 
before strobing in the next character. The ROY 
output is ignored. 

• In the Strobed Output mode, the ROY input 
should be tied to the OAV output. 

3 4 5 

State 1. Port 3 Ready output is High, indicating that the Z8 is ready to accept data. 
State 2. The 1/0 device puts data on the port and then activates the rJlW input. This causes 

the data to be latched into the port input register and generates an interrupt reo 
quest. 

366 

State 3. The Z8 forces th.e Ready (RDY) output Low, Signaling to the 1/0 device that the 
data has been latched. 

State 4. The 1/0 device returns the DAV line High in response to RDY going Low . 
. State 5. The Z8 software must respond to the interrupt request and read the contents of 

the port in order for the handshake sequence to be completed. The RDY line goes 
High if and only if the port has not been read and rJlW is High. This returns the in· 
terface to its initial state. 

Figure 9-15. Z8 If1Jut Handshake 



2 3 4 5 

ROY 
(INPUT TO Z8) 

DAV 
(OUTPUT FROM Z8) 

DATA ON PORT 
VALID DATA (OUTPUT FROM Z8) 

State 1. ROY input Is High indicating that the 110 device is ready to accept data. 
State 2. The Z8 writes to the port register to initiate a data transfer. Writing the port outputs 

new data and forces ~ Low if and only if ROY is High. 
State 3. The 110 device forces ROY Low after latching the data. ROY Low causes an inter­

rupt request to be generated. The Z8 can write new data in response to ROY going 
Low; however. the data is not output until State 5. 

State 4. The OAV output from the Z8 is driven High in response to ROY going Low. 
State 5. After OAV goes High, the 110 device is free to raise ROY High thus returning the in­

terface to its initial state. 

Figure 9-16. Z8 Output Handshake 

I/O Ports 

Figures 9-17 and 9-18 illustrate the strobed 
handshake connections. 

9.7 I/O PORT RESET CONDITIONS 

P2o-P27 I ~ 
~ 

Z8 1/0 
DEVICE 

DAV 
P3l 

Figure 9-17. Input Strobed Handshake 
using Port 2 

.... 
P2o-P27 ) 

.-
Z8 1/0 

DAV DEVICE 
P3s 

ROY 1 
P3l 

Figure 9-18. Output Strobed Handshake 
using Port 2 

After a hardware reset, mode registers P01M, P2M, 
and P3M are set as shown in Figures 9-19 - 9-22. 
Ports 0, 1 and 2 are configured for input opera­
tion on all bits, except Port 1 in the Z8681 and 
Ports 0 and 1 in the Z86B2 as shown. 

The pull-ups of Port 2 are set for open-drain. If 
acti ve pull-ups are desired for Port 3 outputs, 
remember to configure them using P3M (Figure 
9-22) • 

All special I/O functions of Port 3 are inactive, 
with P30-P33 set as inputs and P34-P37 set as 
outputs (Figure 9-23) • 

367 



I/o Ports 

368 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO,-P07 MODE:] 
OUTPUT = 00 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

"EXTENDED = 1 

I [ ,~,~, ~~,'!,~, 
01 = INPUT 
1X = As-A" 

STACK SELECTION . ~,~ F~J::~:C 
P1 o-P1 7 MODE 

00 = BYTE OUTPUT 
01 = BYTE INPUT 
10 = ADo-AD7 
11 = HIGH·IMPEDANCE ADo-AD7. 

AS. OS. R/W. As-A". A'2-A'5 

'ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 9-19. Z8601/11 Port 0 and 1 Reset 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO,-P07 MODE:] 
OUTPUT = 00 

INPUT = 01 . 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

"EXTENDED = 1 

I [ '":;;'~' ~.:;~~, 
01 = INPUT 
1X = As-A" 

STACK SELECTION 
0= EXTERNAL 
1 = INTERNAL 

'ALWAYS EXTENDED TIMING AFTER RESET EXCEPT Z8682 

Figure 9-20. Z8681 Ports 0 and 1 Reset 

R248 P01M 
Port 0-1 Mode Register 

(% F8; Write Only) 

PO,-P07 MODE:] 
OUTPUT = 00 

INPUT = 01 
A'2-A'5 = 1X 

EXTERNAL MEMORY TIMING 
NORMAL = 0 

EXTENDED = 1 

I [ "'80~~~~, 
01 = INPUT 
1X = As-A" 

STACK SELECTION 
0= EXTERNAL 

, 1 = INTERNAL 

P1 o-P1 7 MODE 
'------ 10 = ADo-AD7 

Figure 9-21. Z8682 Ports 0 and 1 Reset 



I/O Ports 

R246 P2M 
Port 2 Mode Register 

(% F6; Write Only) 

11111111111111111 

I P2o-P27 MODE 
L... ---- 0 OUTPUT 

1 INPUT 

Figure 9-22. Port 2 Reset ' 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

1 0 10 1 0 1 0 1 0 1 0 1 ? 1 0 1 

II L, "'"' """'" 0'''',. .. " 1 PORT 2 PULL·UPS ACTIVE 

RESERVED 

o P32 = INPUT P3s = OUTPUT 
1 P~ = DAVO/RDYO P3s = RDYO/DAVii 

o 0 P3a = INPUT P34 = OUTPUT 

1..--'--___ ~ ~} P3a = INPUT P34 = DM 

1 1 P3a = DAV1/RDY1 P34 = 'RDY1/DAV1 

I..-_____ ~O P3l = INPUT (TIN) P3s = OUTPUT (Tour) 
1 P3l = DAV2IRDY2 P3s = RDY2IDAV2 

o PSQ = INPUT P37 = OUTPUT 
'~-------1 P30 = SERIAL IN P30 = SERIAL OUT '--_________ ~ ~~=:~~ g~F 

figure 9-23. Port 3 Reset 

369 



10.1 INTRODUCTION 

The 'Z8 microcomputer allows six different inter­
rupt levels from eight sources: the four Port 3 
lines P30-P33 make up the external interrupt 
sources while serial in. serial ·out. and the two 
counter/timers make up the internal sources. 
These interrupts can be masked and their prior­
ities set by using the Interrupt Mask and the 
Interrupt Priority registers. All six interrupts 
can be globally disabled by resetting the master 
Interrupt Enable bit 07 in the Interrupt Mask reg­
ister with a Disable Interrupt (Dl) instruction. 
Interrupts are globally enabled by setting 07 with 
an Enable Interrupt (El) instruction. 

There are three interrupt control regieters: the 
Interrupt Requeat register (IRQ). the Interrupt 
Mask. register (lMR). and the Interrupt Priority 
register (IPR) • Figure 10-1 shows addresses and 
identifiers for the interrupt control registers. 
figure 10-2 is a block diagram· showing the 
Interrupt Mask and Interrupt Priority logic. 

The Z8 family' supports both vectored and polled 
interrupt handling. Details on vectored and 
polled interrupts can be found in Sections 10.6 
and 10.7. 

DEC _-----...... HEX IDENTIFIERS 

251 INTERRUPT MASK FB IMR 

250 INTERRUPT REQUEST FA IRQ 

249 INTERRUPT PRIORITY F9 IPR 

figure 10-1. Interrupt Control Registers 

.370 

Chapter 10 
. Interrupts 

10.2 INTERRUPT SOURCES 

Table 10-1 presents the interrupt types. sources. 
and vectors available in the Z8 family of 
processors. 

10.2.1 External Interrupt Sources 

External sources invol ve interrupts request lines 
IRQO-IRQ3- IRQO' IRQ1' and IRQ2 are always gen­
erated by a negative edge Signal on the corre­
sponding Port 3 pin (P32' P33. PJ1 correspond to 
IRQO' IRQ1. and 1RQ2. respectively). Figure 10-3 
is a block. diagram for interrupt sources IRQO. 
IRQ1. and IRQZ. 

When the ·Port. 3 pin (PJ1 • P32• or PJ3) goes Low. 
the first flip-flop is set. The next t.wo flip­
flops synchronize the request to the internal 
clock and delay it· by four external clock 
periods. The 'output of the last flip-flop (IRQO' 
IRQ1. or IRQ3) goes to the corresponding Interrupt 
Request register. 

INTERRUPT 
REQUEST 

GLOBAL 
INTERRUPT 

ENABLE 

IRQO-IRQ5 

VECTOR SELECT 

figure 10-2. Interrupt Block Diagr_ 

6 



Table 10-1. 
Interrupt Types, Sources, and Vectors 

Vector 
Name Source location COIIIIIents 

IRQO DAVO' IRQO 0,1 External (P32)' t Edge Triggered 

IRQ1 DAV1' IRQ1 2,3 External (P33)' t Edge Triggered 

IRQ2 DAV2' IRQz, TIN 4,5 External (P31), V Edge Triggered 

IRQ3 6,7 External (P30), t Edge Triggered 
IRQ3 

Serial In 6,7 Internal 

TO 8,9 Internal 
IRQ4 

Serial Out 8,9 Internal 

IRQS T1 10,11 Internal 

IRQ3 can be generated from an external source only 
if Serial In is not enabled; otherwise, its source 
is internal. The external request is generated by 

a negative edge signal on P30 as shown in Figure 
10-4. Again, the external request is synchronized 
and delayed before reaching IRQ. 

iI---<P------I S 

R 

Q o Q o 

CLOCK--~----------~ 
(INTERNAL) 

Q 

Figure 10-3. Interrupt Sources IRlJo-IRQ2 Block Diagralil 

(lRQ3 
SERIAL IN) 

CLOCK--+-----~ 

1RQ3 EXTERNAL SOURCE 

SERIAL RECEIVER 1---.... 

IRQ3 
INTERNAL 
SOURCE 

Figure 10-4. Interrupt Source I1tQ3 Block Diagrllll 

IRQm 

m = 0,1,2 

IRQ3 

371 



10.2.2 Internal Interrupt Sources 

Internal sources involve interrupt requests 
IRQrIRQs. If Serial In is enabled, IRQ3 gen­
erates an interrupt request whenever the receiver 
atlsembles a complete byte. Interrupt level IRQ4 
has two mutually exclusive sources, Counter/Timer 
o (TO) and the Serial Out transmitter. If Serial 
Out is enabled, an interrupt request is generated 
when the transmit buffer is empty. If TO is 
enabled, an interrupt request is generated at TO 
end-of-count. IRQS generates an interrupt request 
at Counter/Timer 1's (T1) end-of-count. 

F or more details on the interne 1 interrupt 
sources, refer to the chapters describing serial 
I/O and the counter/timers. 

10.} INTERRUPT REQUEST (IRQ) REGISTER lOGIC AND 
TIMING 

Figure 10-S shows the logic diagram for the 
Interrupt Request register. The leading edge of 
the request will set the first flip-flop, which 
will remain set until interrupt requests are 
tlampled. 

IRQo-IRQ5 

R SAMPLE 
CLOCK 

Interrupts 

~equests are sampled internally during the last 
clock cycle before an opcode fetch (Figure 10-6). 
External requests are sampled two internal clocks 
earlier, due to the synchronizing flip-flops shown 
in Figures 10-3 and 10-4. 

At sample time the request is transferred to the 
second fEp-flop in Figu,re 10-S, which drives the 
interrupt mask and priority logic. When an 
interrupt cycle occurs, this flip-flop will be 

,reset only for the highest priority level that is 
enabled. 

The user has direct access to the second flip-flop 
by reading and writing the IRQ register. IRQ is 
read by specifying it atl the source register of an 
instruction and written by specifying it as the 
destination register. 

10.4 INTERRUPT INITIAlIZATION 

After reset, all interrupts are disabled and must 
be initialized before vectored or polled interrupt 
processing can begin. The Interrupt Priority reg­
ister (IPR), Interrupt Mask register (IMR) and 
Interrupt Request register (IRQ) must be initial­
ized, in that order, to start the interrupt 
process. However, IPR need not be initialized for 
polled processing. 

S 
Q 

R 

TO MASK 
AND 
PRIORITY 
LOGIC 

FROM PRIORITY 
LOGIC 

Figure 10-5. IRQ Register Logic 

~ ____________ EXTERNALINTERRUPT 
REQUESTS SAMPLED 

Figure 10-6. Interrupt Request T:Uling 

372 



Interrupts 

10.4.1 Interrupt Priority Register (IPR) 
Initialization 

IRQ3 (Sl/P30) and IRQ5 (T 1)' another 
contains 1RQO (P3Z) and IRQZ (P31), and the 
group contains IRQl (P33) and IRQ4 (SO/TO). 

group 
third 

IPR (Figure 10-7) is a write-only register that 
sets priorities for the six levels of vectored 
interrupts in order to resol ve simultaneous 
interrupt requests. (There are 48 sequence 
possibilities for interrupts.) The six interrupt 
levels IRQO-IRQS are divided into three' groups ,of 
two interrupt requests each. One group contains 

Priorities can be set both within and between 
groups as shown in Table 10-Z. Bits 01' 0Z' and 
Os define the priority of the individual members 
within the three grou'ps. Bits 00' 03' and 04 are 
encoded to define six priority orders between the 
three groups. Bits 06 and 07 are not used. 

Group 

C 

B 

A 

R2491PR 
Interrupt Priority Register 

(% F9; Write Only) 

I Dsl D_I D31 D21 D, IDol 

~ T INTERRUPT GROUP PRIORITY 
RESERVED = 000 

IR03, IR05 PRIORITY (GROUP A) L_+-I__ C > A > B 001 
o = IR05 > IR03 A > B > COlO 
1 = IR03 > IR05 A > C > BOll 

B> C > A 100 
IROO, IR02 PRIORITY (GROUP B) C > B > A 101 

o = IR02 > IROO B > A > C 110 
1 = IROO > IR02 RESERVED 111 

IR01, IR04 PRIORITY (GROUP C) 
o = IROl > IR04 --------..... 
1 = IR04 > IROl 

Figure 10-7. Interrupt Priority Register 

Table 10-2. Interrupt Priority 

Bit Priority 
Highest lowest 

Bit Pattern Group Priority 
Highest --> lowest 

°1=0 IRQl IRQ4 °4 
1 IRQ4 IRQl 

0 

°Z=O IRQZ IRQO 0 
1 1RQO IRQZ 0 

0 

°5=0 IRQS IRQ3 1 
1 IRQ3 1RQS 

°z °0 

0 0 
0 

0 
1 

0 0 
0 
1 0 

'1 

NOT USED 
CAB 
ABC 
A C 8 

B C A 
C B A 
B A C 

NOr USED 

373 



10.4.2 Interrupt Mask Register (IMR) 
Initialization 

IMR (Figure 10-B) individually or globa~ly enables 
or disables the six interrupt requests. When bits 
~O-OS' are set to 1, th,: correspo'nding interrupt 
requests are, enabled. 07 is the master enable and 
must be set before any of the individual interrupt 
requests can be recognized. Resetting 07 globally 
disables all of the interrupt requests. 07 is set 
and reset by the El and 01 instructions. It is 
automatically reset during an interrupt machine 
cycle and Bet following the execution of an 
'Interrupt Return (IRET) instruction. 

NOTE 
07 must be reset by the 01 instruction 
before the contents of the Interrupt 
Mask register or the Interrupt Priority 
register are changed except: 

• Immediately after a hardware, reset, 
or 

• Immediately after executing an inter­
rupt cycle and before 1MR7 has been 
set by any instruction. 

10.4.3 Interrupt ,Request (IRQ) Register 
Initialization 

IRQ (Figure 10-9) is a read/write register that 
stores the interrupt requests for both vectored 
and polled interrupts. When an interrupt is made 
on any of the six levels, the corresponding bit 
position in the register is set to 1. Bits 00-05 
are assigned to interrupt requests lRQO-IRQ5' 
respectively. 

R2511MR 
Interrupt Mask Register 

(% FB; Read/Write) 

1 ENABLES IRQO 

1 ENABLES IRQ1 

1 ENABLES IRQ2 

1 ENABLES IRQ3 

1 ENABLES IRQ4 

1 ENABLES IRQ5 

1 ENABLES INTERRUPTS 

figure 10-8. Interrupt Hask Register 

374 

IRQ is held in a Reset state until an EI instruc­
tion is executed. For polled processing, IRQ must 
still be initialized by an EI instruction, but IMR 
should first be cleared to 0 to individually 
inhibit all interrupt requests while interrupts 
are globally enabled: 

CLR IMR 
El 
01 

10.5 IRQ SOFTWARE INTERRUPT GENERATION 

IRQ can be used to generate software interrupts by 
specifying IRQ as the destination of any instruc­
tion referencing the register file. These Soft­
ware Interrupts (SWI) are controlled in the same 
manner as hardware-generated requests, i.e., the 
IPR and the IMR control the priority and enabling 
of each SWI level. 

To generate an SWI, the desired request bit in the 
IRQ is set as follows: 

OR IRQ,HIRQLVL 

where the immediate data, IRQLVL, has a 1 in the 
bit position corresponding to the level of the SWI 
desired. For example, if an SWI on level 5 is 
desired, IRQLVL would have a 1 in the bit 5 posi­
tion: 

OR IRQ ,1/%200100000 ' 

where the immediate data is preceded by %2 to 
indicate a binary constant. With this instruc­
tion, if the interrupt system is globally enabled, 
level 5 is enabled, and there are no higher prior­
ity pending requests, control is transferred to 
the service routine pointed to by the level 5 
vector. 

R250 IRQ 
Interrupt Request Register 

(% FA; Read/Write) 

1 Ds 1 D_I D31 D21 D, 1 Do I 

~I L'RQO 

L..=IRQ1 

IRQ2 

IRQ3 

'-----___ IRQ4 L-_______ IRQ5 

Figure 10-9. Interrupt Request Register 



Interrupts 

SPANO STACK 
BEFORE INTERRUPT 

TOP OF STACK 

I SP 

SP AND STACK 
AFTER INTERRUPT 

~ 
PCL 

PCu 

FLAGS 

figure 10-10. Effect of Interrupt on Stack 

64Kr-------------~ 

0------"" 
Z8 PROGRAM MEMORY 

INTERRUPT 
SERVICE 
ROUTINE 

VECTOR SELECTED BY 
PRIORITY LOGIC 

Figure 10-11. Interrupt Vectoring 

10.6 V[CTORED PROCESSING 

Each ZB interrupt level has its own vector. When 
an interrupt occurs, control passes to the service 
routine pointed to by the interrupt's location in 
program memory. The sequence of events for vec­
tored interrupts is as follows: 

• PUSH PC lower byte on stack 
• PUSH PC upper byte on stack 
• PUSH FLAGS on stack 
D Fetch upper byte of vector 
• Fetch lower byte of vector 
• Branch to service routine specified by vector 

Figures 10-10 and 10-11 show the vectored 
interrupt operation. 

10.6.1 Vectored Interrupt Cycle Tiaing 

Interrupt cycle timing for all ZB devices except 
the ZB6B1 is diagrammed in Figure 10-12. Timing 
for the Z86B1 ROMless device is different and is 
shown in Figure 10-13. 

10.6.2 Nesting of Vectored Interrupts 

Nesting of vectored interrupts allows higher 
priority requests to interrupt a lower priority 
request. To initiate vectored interrupt nesting, 
do the following during the interrupt service 
routine: 

o Push the old IMR on the stack. 
• Load IMR with a new mask to disable lower 

priority interrupts. 
• Execute EI instruction. 
• Proceed with interrupt processing. 
• After processing is complete, execute DI 

instruction. 
• Restore the IMR to its original value by 

returning the previous mask from the stack. 
• Execute IRET. 

Depending on the application, some simplification 
of the above procedure may be possible. 

10.7 Plum PROCESSING 

Polled interrupt processing is supported by 
masking off the IRQ levels to be polled. This is 
accomplished by clearing the corresponding bit in 
the IMR to O. 

375 



To initiate polled processing, check the bits of 
interest in the IRQ using the Test Under Mask (TM) 
instruction. If the bit is set, call or branch to 
the service routine. The service routine services 
the request, resets its Request bit in the IRQ, 
and branches or returns back to the main program. 
An example of a polling routine is'as follows: 

TM IRQ,ilMASK 
JR Z NEXT 
CALL SERV [CE 

NEXT: 

SERVICE: 

!Test for request 
!If no request go to NEXT 
!If request is there 
! then service it 

!Process Request 

AND IRQ,UMASK_ !Clear Request bit 
RET !Return to next 

In this example, if IRQ2 is being polled, MASK 
will be 1~200000100 (in binary) and MASK_ will be 
%211111011. 

376: 

Interrupts 

10.8 RESET CONDITIONS 

During a reset, all bits in IPR are undefined. 

In IMR, bit D7 is 0 and bits DO-D5 are undefined. 
Bit D6 is not implemented, though reading this bit 
returns O. 

IRQ bits DO-D5 are held at 0 until an EI instruc­
tion is executed. Bits D6 and D7 are not implc­
.llented, but reading these bits returns O. 



U) 

::j 

INTERNAL 
CLOCK 

Os 

ADO~AD7 OUT 

ADO·AD7 IN 

RlW 

!_Mt_j...----M2_I_M3_I_STACKPUSH_!-STACKPUSH_I_STACK PUSH~I~7_l-Ml_I_M2-

L-1 I·· -- 1_______ LJ. 1 ~I r---L.=J L ~ 
(ro"~,"~, ~=~ .. ,,~ ~_""" = ..... ,," '--ro .. __ .m .. .. "CJ 

G B G' SP-1 , PCL , SP-2' PC, SP-3' FLAGS 'FLAGS' , VEcd D 
_ OPCODE (DISCARDED) FIRST INSTRUCTION OF INTERRUPT _II 

. SERVICE ROUTINE L....--I 

..... _______________________ .... I-FOA STACK EXTERNAL ONLY 

Figure 10-12. ROM Z8 Interrupt Timing (shrink parts) 

I-Ml_I_M2-------+-l-M3_!-STACK PUSH_I_STACK pusH_I_STACK pusH-.I_VEC~~;~IGH_I_VEciTEJ~~ow-.I_Ml~_M2_ 
INTERNAL 

CLOCK 

Os 

ADo-AD7 OUT G 

ADO-AD7IN 

RlW 

8 o 
D-OPCODE (DISCARDED) 

1 SP-1 1 PCl 1 SP-21 pc, 1 SP-3' FLAGS 1 1--.. r-1-
EVEN VECTOR ADDRESS----- ODD VE~DRES~ 

I VEer I D~ 
VECT+1 

'VECT., 'VECTL' D~ 
FIRST INSTRUCTION OF INTERRUPT SERVICE ROUTINE--'" 

[----- I--FOR STACK EXTERNAL ONLY 

Figure 10-13. Z8681 ROHless Z8 Interrupt Tieing 

..... 
:l ..... 
CD .., .., 
c: 
"0 ..... 
til 



11.1 INTRODUCTION 

The Z8 provides two 8-bit counter/timers, TO and 
r l' each driven by its own 6-bit prescaler, PREO 
and PRE1• Both counter/timers are independent of 
the processor instruction sequence, which relieves 
software from time-critical operations such_ as 
interval timing or event counting. 

WRr ~1. 
OSC PREO 

INITIAL VALUE 
REGISTER 

~ 

~ .,.2 

.,.4 - 6·BIT 
DOWN COUNTER 

INTERNAL 
CLOCK 

EXTERNAL CLOCK 

CLOCK 
LOGIC 

L=D- 6·BIT 

1\ 
.,.4 DOWN COUNTER 

_ll INTERNAL CLOCK 
GATED CLOCK 

TRIGGERED CLOCK 

PRE1 
INITIAL VALUE 

REGISTER 

TIN P31 

WRtE II 

Chapter 11 
Counter/Timers 

Each counter/timer operates in either Single-Pass 
or Continuous mode. At the end-of-count, counting 
either stops or the initial value is reloaded and 
counting cant inues. Under software control, new 
values are loaded immediately or when the end-of­
count is reached. Software also controls counting 
mode, how a counter/timer is started or stopped, 
and its use of I/O lines. Both the counter and 
prescaler registers can be altered while the 
counter/timer is running. 

INTERNAL DATA BUS 

WRr ~j.. 
TO 

INITIAL VALUE 
REGISTER 

~ 
r- 8·BIT 

DOWN COUNTER 

r-- 8·BIT _ 
DOWN COUNTER 

II 
T1 

INITIAL VALUE 
REGISTER 

WJTE II 
INTERNAL DATA BUS 

RErl1 

TO 
CURRENT VALUE 

REGISTER 

f~ 

.,.2 

~7 
T1 

CURRENT VALUE 
REGISTER 

REt jJ. 

IRQ 4 

SE 
CL 

RIAL 110 
OCK 

To UT 
P3s 

IR Q5 

r igure 11.,.1. Counter/T ilIIer Block Oiagrllll 

378 



Counter/Timers 

Counter/timers 0 and 1 are driven by a timer clock 
generated by dividing the internal clock by four. 
The divide-by-four stage, the 6-bit prescaler, and 
the a-bit counter/timer form a synchronous 16-bit 
divide chain. Counter/timer 1 can also be driven 
by an external input (TIN) via Port 3 line P31• 
Port 3 line P36 can serve as a timer output 
(TOUT) through which TO' T1, or the internal 
clock can be output. The timer output will toggle 
at the end-of-count. Figure 11-1 is a block 
diagram of the counter/timers. 

The counter/timer, prescaler, and associated mode 
registers are mapped into the register file as 
shown in Figure 11-2. This allows the software to 
treat the counter/timers as general-purpose 
registers, and eliminates the need for special 
instructions. 

11.2 PRESCAlERS AND COUNTER/TIMERS 

The prescalers, PREO (%F5) and PRE1 (%F3), each 
consist of an a-bit register and a 6-bit 

down-counter as shown in Figure 11-1. The 
prescaler registers are write-only registers. 
Reading the prescalers returns the value %FF. 
Figures 11-3 and 11-4 show the prescaler 
registers. 

The six most significant bits (02-07) of PREO or 
PRE1 hold the prescalers count modulo, a value 
from 1 to 64 decimal. The prescaler registers 
also contain control bits that specify fO and T1 
counting modes. These bUs also indicate whether 
the clock source for T 1 is internal or external. 
These control bits will be discussed in detail 
throughout this chapter. 

The' counteritimers, TO (%F4) and T1 (%F 2)' each 
consist of an a-bit down-counter, a write-only 

DEC 

247 

245 

244 

243 

242 

241 

PORT 3 MODE 

TO PRESCALER 

TIMER/COUNTER 0 

T1 PRESCALER 

TIMER/COUNTER 1 

TIMER MODE 

HEX IDENTIFIERS 

F7 P3M 

F5 PREO 

F4 TO 

F3 PRE1 

F2 T1 

F1 TMR 

register which holds the initial count value, and 
a read-only register which holds the current count 
value (Figure 11-1). The initial value can range 
from 1 to 256 decimal (%01,%02, •• ,%00).. Figure 
11-5 illustrates the counter/timer registers. 

R245 PREO 
Prescaler 0 Register 

(% F5; Write Only) 

0= ToSINGLE·PASS 
1 = To MODULO·N l COUNTMODE 

RESERVED (MUST BE 0) 

PRESCALER MODULO 
'--------(RANGE: 1-64 DECIMAL 

01-00 HEX) 

Figure 11-3. Preacaler 0 Register 

R243 PRE1 
Prescaler 1 Register 

(% F3; Write Only) 

[

COUNT MODE 
1 = T, MODULO·N 
o = T, SINGLE·PASS 

CLOCK SOURCE 
1 = T, INTERNAL 
o = T, EXTERNAL (TIN) 

PRESCALER MODULO 
'-------(RANGE: 1-64 DECIMAL 

01-00 HEX) 

figure 11-4. Preacaler 1 Register 

R242 T1 
CounterlTimer 1 Register 

(% F2; Read/Write) 
R244 TO 

CounterlTimer 0 Register 
(% F4; Read/Write) 

I~I~I~I~I~I~I~I~I 

L INITIAL VALUE WHEN WRITIEN 
(RANGE 1·256 DECIMAL, OHIO HEX) 
CURRENT VALUE WHEN READ 

379 



11.} aJJN1ER/TII£R OPERATIlfI 

Under software control, counter/timers are started 
and stopped via the Timer Mode register (%F1) bits 
DO-D} (Figure 11-6). Each counter/timer is asso­
ciated with a Load bit and an Enable Count bit. 

11.}.1 load and Enable Count Bits 

Setting the Load bit (DO to 1 for TO and'D2 to 1 
for T 1) transfers the inHial value in the pre­
scaler and the counter/timer registers into their 
respective down-counters. The next internal clock 
resets bits DO and D2 to 0, readying the Load bit 
for the next load operation. The initial values 
may be loaded into the down-counters at any time. 
IF the counter/timer is running, it continues to 
do so and starts the count over with the initial 
value. Therefore, the Load bit actually Functions 
as a software re-trigger. 

The counter/timers remain at rest as long as the 
Enable Count bits D1 and D} are both O. To enable 
counting, the Enable Count bit (D1 For TO and D3 
for T 1) must be set to 1. Counting actually 
starts when the Enable Count bit is written by an 
instruction. The first decrement occurs four 
internal clock periods after the Enable Count bit 
has been set. 

The Load and Enable Count bits can be set at the 
same time. For example, using the instruction OR 
TMR I!%O} sets both DO and D1 of TMR to 1. This 
loads the initial values of PREO and TO into their 
respective counters and starts the count after the 
M2T2 machine state after the operand is fetched 
(Figure 11-7). 

11.}.2 Prescaler Operations 

During counting, the programmed clock source 
dr i ves the presca ler 6-bit counter. The counter 
is counted down from the value specified by bits 
D2-D7 of the corresponding prescaler register, 
PREO or PRE1 (Figure 11-8). When the prescaler 
counter reaches its end-oF-count, the initial 
value is reloaded and counting continues. The 
prescaler never actually reaches O. For example, 
if the prescaler is set to divide by 3, the ~ount 
sequence is: 

3-2-1-3-2-1-3-2 •••• 

Each time the prescaler reaches its end-of-count a 
carry is generated, which allows the counter/timer 
to decrement by one on the next timer clock 
input. When the counter/timer and the prescaler 

380 

Counter /Timer s 

both reach their end-of-count, an interrupt 
request is generated -- IRQ4 for r 0 and IRQ5 For 
T 1. Depending on the counting mode selected, the 
counter/timer will either come to rest with its 
value at %00 (Single-Pass mode) or the initial 
value will be automatically reloaded and counting 
will continue (Continuous mode). 

R241 TMR 
Timer Mode Register 

(% F1; Read/Write) 

~L 0 = NO FUNCTION 
1 = LOAD To 

. 0 = DISABLE To COUNT 
1 = ENABLE To COUNT 

o = NO FUNCTION 
1 = LOAD T, 

L.. ____ 0 = DISABLE T, COUNT 
1 = ENABLE T, COUNT 

Figure 11-6. Timer Hode Register 

TMR IS WRITIEN 
COUNTERITIMERS 

ARE LOADED 

1ST DECREMENT 
OCCURS FOUR 

CLOCKS LATER 

Figure 1;-7. Starting The Count 

R243 PRE1 
Prescaler 1 Register 

(% F3; Write Only) 
R245 PREO 

Prescaler 0 Register 
(% F5; Write Only) 

LCOUNT MODE 
1 = T, MODULO·N 
o = T, SINGLE·PASS 

Figure 11-8. Counting Hodes 



Counter/Timers 

The counting modes are controlled by bit DO of 
PREO and PRE1, with DO cleared to 0 for 
Single-pass counting mode or set to 1 for 
Continuous mode. 

The counter/timers can be stopped at any time by 
setting the Enable Count bit to 0, and restarted 
by setting it back to 1. The counter/timer will 
continue its count value at- the time it was 
stopped. The current value in the counter/timer 
(TO or T1) can be read at any time without 
afFecting the counting operation. 

New initial values can be written to the prescaler 
or the counter/timer registers at any time. These 
values will be transferred to their respective 
down-counters on the next load operation. IF the 
counter/timer mode is Continuous, the next load 
occurs on the timer clock following an 
end-oF-count. New initial values should be 
written beFore the desired load operation, since 
the prescalers always effectively operate in 
Continuous count mode. 

The time interval (i) until end-of-count, is give!) 
by the equation 

i=txpxv 

in which t is 6 divided by XTAL Frequency, p is 
the prescaler value (1 - 64), and v is the 
counter/timer value (1 - 256). It should be 
apparent that the prescaler and counter /timerare 
true divide-by-n counters. 

11.4 TOUT HODES 

The Timer Mode register TMR (%Fl) (Figure 11-10) 
is used in conjunction with the Port 3 Mode 

register P3M (%F7) (Figure 11-9) to conFigure P36 
For TOUT operation. In order For TOUT to 
Function, P36 must be deFined as an output line by 
setting P3M bit D5 to O. Output is controlled by 
one of the counter/timers (TO or T 1) or the 
internal clock. 

The counter/timer to be output is selected by TMR 
bits D7 and D6• TO is selected to drive the 
TOUT line by setting D7 to 0 and D6 to 1. 
Likewise, T1 is selected by setting D7 and D6 to 1 
and 0 respectively. The counter/timer TOUT mode 
is turned oFf by setting TMR bits D7 and D6 both 
to 0, freeing P36 to be a data output line. 

TOUT is initialized to a logic 1 whenever the 
TMR Load bit (DO for TO or D2 for T1) is set to 1. 

R247 P3M 
Port 3 Mode Register 

(% F7; Write Only) 

o P3, = INPUT (TIN) P3& = OUTPUT (TOUT) 
1 P3, = DAV2JRDY2 P3& = RDY2J1iAI12 

Figure 11-9. 
Port 3 Mode Register TOUT Operation 

R241 TMR 
Timer Mode Register 
, (% F1; Read/Write) 

TOUTMODESJ 
TOUT OFF = 00 

To OUT = 01 
Tl OUT = 10 

INTERNAL CLOCK OUT = 11 
L 0 = NO FUNCTION 

1 = LOAD To 

o = NO FUNCTION 
1 = LOAD T, 

Figure 11-10. Tiller Hode Register TOOT Operation 

381 



Counter/Timers 

IR04 TMR 
(TO ENO·OF·COUNT) ------. 07-06 = 01 ..--", & TOUT +2 

IROS -.-J TMR 
(T1 ENO·OF·COUNT) 07-06 = 10 

Figure 11-11. Counter/Tiaers Output Via TOUT 

INTERNAL 
CLOCK 

TMR 06 --r-'\.....J 
TMR07~ 

figure 11-12. Internal Clock' Output Via TOUT 

At end-oF-count, the interrupt request line (IRQ4 
or IRQ5)' clocks a toggle flip-flop. The output 
of this Flip-Flop drives the TOUT line, P36• In 
all cases, when the selected counter/timer reaches 
its end-oF-count, TOUT toggles to its opposite 
state (Figure 11-11). If, For example, the 
counter/timer is in Continuous counting mode, 
T OUT will have a 50% duty cycle output. This 
duty cycle can easily be controlled by varying the 
initial values aFter each end-oF-count. 

The internal clock can be selected as output 
instead of TO or T1 by setting TMR bits D7 and D6 
both to 1. The internal clock (XTAL Frequency/2) 
is then directly output on P36 (Figure 11-12). 

While programmed as TOUT> P36 cannot be modified 
by a writ~ to port register P3. However, the ZB 
soFtware can examine P36 's current output by 
reading the port register. 

R241 TMR 
Timer Mode Register 

(% F1; Read/Write) 

T'N MODES 
EXTERNAL CLOCK INPUT = 00 

GATE INPUT = 01 
TRIGGER INPUT = 10 

(NON·RETRIGGERABLE) 
TRIGGER INPUT = 11 

(RETRIGGERABLE) 

figure 11-13. Tilller Mode Register TIN Operation 

R243 PRE1 
Prescaler 1 Register 

11.5 TIN tmES (% F3; Write Only) 

The Timer Mode register TMR (%F1) (Figure 11-13) 
is used in conjunction with the Prescaler register 
PRE1 (%F3) (Figure 11-14) to conFigure P31 as 
TIN. TIN is used in conjunction with T1 in 
one of Four modes: 

• External clock input 
• Gated internal clock 
• Triggered internal clock 
• Retriggerable internal clock 

382 

L CLOCK SOURCE 
1 = Tl INTERNAL 
o = Tl EXTERNAL (TIN) 

Figure 11-14. Prescaler 1 TIN Operation 



Counter/Timers 

The counter/timer clock source must be configured 
for external by setting PRE1 bit D2 to O. The 
Timer Mode register bits D5 and D4 can then be 
used to select the desired TIN operation. 

For T 1 to start counting as a result of a TIN 
input, the Enable Count bit D3 in TMR must be set 
to 1. When using T IN as an external clock or a 
gate input, the initial values must be loaded into 
the down-counters by setting the Load bit D2 in 
TMR to a 1 before counting begins. In the 
descriptions of TIN that follow, it is assumed 
that the programmer has performed these opera­
tions. Initial values are automatically loaded 
in Trigger and Retrigger modes so software loading 
is unnecessary. 

It is suggested that P31 be configured as an input 
line by setting P3M bit D5 to 0 although T IN is 
still functional if P31 is configured as a hand­
shake input. 

Each High-to-Low transition on TIN generates 
interrupt request IRQ2' regardless of the selected 
T IN mode or the enabled/disabled state of T 1. 
IRQ2 must therefore be masked or enabled according 
to the needs of the application. 

11.5.1 External Clock Input Hode 

The T IN External Clock Input mode (TMR bits D5 
and D4 both set to 0) supports counting of 
external events, where an event is considered to 
be a High-to-Low transition on TIN (Figure 
11-15). occurrence (Single-Pass mode) or on every 
nth occurrence (Continuous mode) of that event. 

11.5.2 Gated Internal Clock Mode 

The TIN Gated Internal Clock mode (TMR bits D5 
and D4 set to 0 and 1 respectively) measures the 
duration of an external event. In this mode, the 
T 1 prescaler is driven by the internal timer 
clock, gated by a High level on TIN (Figure 
11-16). T1 counts while TIN is High and stops 
counting while TIN is Low. Interrupt request 
IRQ2 is generated on the High-to-Low transition of 
TIN' signaling the end of the gate input. 
Interrupt request IRQ5 is generated if T1 reaches 
its end-of-count. 

TMR 
D5-D4 = 00 

~~~~ ~~~~ 

TIN
CLOCK D D PRE1 T1 IRQS

INTERNAL
CLOCK ~----------------~IRQ2

figure 11-15. External Clock Input Hode

-2 INTERNAL
CLOCK

TMR
D5-D4 = 01

~I I ~ -D- ..,.4 PRE1 T1

I
V

D D

figure 11-16. Gated Clock Input Mode

IRQS

IRQ2

383

~

TIN
TRIGGER -

J'L
P31 0

INTERNAL
CLOCK

EOGE
TRIGGER

0

TMR
05-D4 = 11

figure 11-17. Triggered Clock Mode

I"~I m~
IRQ4

P3s
TOUT TIN

figure 11-18. Cascaded Counter/Ti.aers

IRQ5

IRQ2

P31 -<~ PRE1 T1 IRQS'

("")
a -c:
::J ...
(1) ,..,
"­--I
3
(1) ,..,

'"

Counter/Timers

11.5.3 Triggered Input Mode

The TIN Triggered Input mode (TMR bits Os and
04 s~t to 1 and 0 respectively) causes T1 to start
counting as the result of an external event
(Figure 11-17). T1 is then loaded and clocked by

the internal timer clock following the first High­
to-Low transition on the TIN input. Subsequent
T IN transitions do not afFect T 1. In the Sin­
gle-Pass mode, the Enable bit is reset whenever Tl
reaches its end-oF-count. Further TIN transi­
tions will have no efFect on T 1 until software
sets the Enable Count bit again. In Continuous
mode, once Tl is triggered
until software resets the
Interrupt request IRQS is
reaches its end-of-count.

counting continues
Enable Count bit.
generated when T1

11.5.4 Retrig~erable Input MOde

The TIN Retriggerable Input mode (TMR bits Os
and 04 both set to 1) causes Tl to load and start
counting on every occurrence of a High-to-Low
transition on TIN (Figure 11-17). Interrupt
request IRQS will be generated if the programmed
time interval (determined by T1 prescaler and
counter/timer register initial values) has elapsed
since the last High-to-L9W transition on TIN.
In Single,..Pass mode, the end-oF-count resets the
Enable Count bit. Subsequent TIN transitions
will not cause T1 to load an~ start counting until
software sets the Enable Count bit again. In Con­
tinuous mode, counting continues once Tl is trig­
gered until software resets the Enable Count bit.
When -enabled, each High-to-Low TIN transition
causes T 1 to reload and restart counting. Inter­
rupt request IRQS is generated on every end-oF­
count.

11.6 CASCADING COUNTER/TIMERS

For some applications, it may be necessary to mea­
sure a time interval greater than a single coun­
ter/timer can measure. In this case, TIN and
T OUT can be used to cascade TO and T 1 as a sin­
gle unit (Figure 11-18). TO should be configured_
to operate in Continuous mode and to drive
TOUT. TIN should be configured as an external
clock input to -T 1 and wired back to TOUT. On
every other TO end-of-count, TOUT undergoes a
High-to-Low transition which causes T 1 to count.
Tt can operate in either Single-Pass or Continuous

mode. Each time T I' s end-of-count is reached,
interrupt requ~st IRQS is generated. Interrupt
requests IRQ2 (TIN High-to-Low transitions) and

IRQ4 (TO end-oF-count) are also generated but are
most likely of no importance in this configuration
and should be disabled.

11.7 RESET CONDITIONS

A fter a hardware reset, the counter/timers are
disabled and the contents of both the _ counter/
timer registers and the pres caler modulos are
undefined. However, the counting modes are
configured For Single-Pass and T I' s clock source
is set for external. TIN is set for External
Clock mode, and the TOUT mode is ofF. Figures
11-19 ttirough 11-22 show the binary reset values
of the Prescaler, Counter/Timer, and Timer Mode
registers.

R242 T1
Counter/Timer 1 Register

(% F2; Read/Write)
R244 TO

Counter/Timer 0 Register
(% F4; Read/Write)

L INITIAL VALUE WHEN WRITTEN
(RANGE 1·256 DECIMAL, 01·00 HEX)
CURRENT VALUE WHEN READ

Figure 11-19. Counter/Til;aer Reset

R243 PRE1
Prescaler 1 Register

(% F3; Write Only)

~COUNTMODE
1 = T, MODULO·N
o = T, SINGLE·PASS

CLOCK SOURCE
1 = T, INTERNAL
o = T, EXTERNAL (TIN)

PRESCALER MODULO
'-----.,.---(RANGE: 1-64 DECIMAL

01-00 HEX)

Figure 11-20. Prescaler 1 Register Reset

385

386

R245 PREO
Prescaler 0 Register

(% F5; Write Only)

1?1?1?1?1?1?1?lol

[
C~~NJo ~~ELE.PASS
1 = To MODULO·N

RESERVED

PRESCALER MODULO
'-------(RANGE: 1-64 DECIMAL 01-00 HEX)

Figure 11-21. Prescaler 0 Reset

R241 TMR
Timer Mode Register

(% F1; Read/Write)

10101010101010101

TOUT MODES T
TOUT OFF = 00 .

To OUT = 01
T, OUT = 10

INTERNAL CLOCK OUT = 11
~L 0 = NO FUNCTION

1 = LOAD To

T'N MODES
EXTERNAL CLOCK INPUT = 00

GATE INPUT = 01
TRIGGER INPUT = 10

(NON·RETRIGGERABLE)
TRIGGER INPUT = 11

(RETRIGGERABLE)

o = DISABLE To COUNT
. 1 = ENABLE To COUNT

o = NO FUNCTION
1 = LOADT,

'--___ 0 = DISABLET, COUNT
1 = ENABLE T, COUNT

Figure11-22. Ti8er Mode Register Reset

Counter/Timers

12.1 INTRIIlUCTIIIN

The Z8 microcomputer contains an on-board
full-duplex receiver/transmitter for asynchronous

data communications. The receiver/transmitter
consists of a Serial I/O register SID (%F1) and
its associated control logic (Figure 12-1). The
SID is actually two registers--the receiver buffer
and the transmitter buffer--which are used in
conjunction with counter/timer TO and Port 3 I/O
lines P30 (input) and P37 (output). Counter/timer
r 0 provides the clock input for control of the
data rates.

Configuration of the serial I/O is controlled by
the Port 3 Mode register, P3M. The Z8 always
transmits 8 bits between the start and stop bits;
that is, 8 data bits or 7 data bits and 1 parity
bit. Odd parity generation a~d detection is
supported.

The Serial I/O register and its associated Mode
Control registers are mapped into the register
file as shown in Figure 12-2. This organization

Chapter 12
Serial 1/0

allows the software to access the serial I/O as
general-purpose registers, eliminating the need
for special instructions.

12.2 BIT RATE GENERATION

When Port 3· Mode register bit D6 is set to 1, the
serial I/O is enabled and TO automatically becomes
the bit rate generator (Figure 12-3). TO I S end­
of-count signal no longer generates interrupt
request IRQ4; instead, the Signal is used as the
input to the divide-by-16 counters (one each for
the receiver and the transmitter) which clock the
data stream.

The divide chain that generates the bit rate is
shown in Figure 12-4. The bit rate is given by
the following equation:

bit rate = XTAL frequency/(2 x 4 x P x t x 16)

where p and t are the initial values in the
Prescaler and Cou~ter/Timer registers,
respectively.

J 'J INTERNAL DATA BUS J

P3

SERIAL
110 CLOCK
(FROM TO)

0-

-

READ%FO~ II
RECEIVER TRANSFER

BUFFER

WRITE %FO

II ... 7-

RECEIVER TRANSMITTER
SERIAL t-p-oo SHIFT I--'" CHAR

I- SHIFT
IN DETEGT

REGISTER r REGISTER

+
t SHIFT

SHIFT CLOCK

CLOCK RESET
START

4 PARITY +16 BIT
CHECK DETECT

+ START

CLOCK
CONTROL f---- +6

t STOP

Figure 12-1. Serial I/O Block Diagran

STOP
BIT IR04

DETECT

MARK

t-- ~D-- SERIAL r---OUT

PARITY
GEN

IR03

387

Serial I/O

The final divide-by-16 is required since TO runs
at 16 times the bit rate in order to synchronize
on the incoming data.

To configure the Z8 for a speci fic bit rate,
appropriate values as determined by the above
equation must be loaded into registers PREO (%F5)
and TO (%F4). PREO also controls the counting
mode for TO and should therefore be set to the
Continuous mode (01 set to 1).

For example, given· an input clock frequency
(fXTAL) of 11.9808 MHz and a selected bit rate of
1200 bits per second, the equation is satisfied by
p=39 and t:2. Counter /timer TO shou ld be set to
%02. With TO in Continuous mode, the value of
PREO becomes %90 (Figure 12-5).

Table 12-1 lists several commonly used bit rates
and the values of fXTAL, p, and t required to
derive them. This list is presented for conven­
ience and is not intended to be exhaustive.

The bit rate generator is started by setting the
Timer Mode register TMR (%F1) bits 01 and DO both
to 1 (Figure 12-6). This transfers the contents
of the Prescaler and Counter/Timer registers to
their corresponding down-counters. In addition,
counting is enabled so that serial I/O operations
begin.

DEC

247

245

244

240

PORT 3 MODE

TO PRESCALER

TIMER/COUNTERO

SERIAL 110

HEX IDENTIFIERS

F7 P3M

F5 PREO

F4 TO

FO SIO

Figure 12-2. Serial I/O Register Hap

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

L. eo" = "'" 1 P30 = SERIAL IN
P37 = OUTPUT
P37 = SERIAL OUT

Figure 12-3. Port 3 Mode Register
and Bit Rate Generation

fXTAL~r:l.-.--.~ +4 r:-L-~. t .~ +16.· =~TE
~U---~CLOCK

PREO TO

Figure 12-4. Bit Rate Divide Chain

Table 12-1. Bit Rate

7,3728 7,9872 9,8304 11,0592 11,6736 11,9808 12,2880
Bit
Rate p t p t P t P t P t P t P t

19200 3 1 -- -- 4 1 -- -- -- -- -- -- 5 1
9600 3 2 -- -- 4 2 9 1 -- -- -- -- 5 2
4800 3 4 13 1 4 4 9 2 19 1 -- -- 5 4
2400 3 B 13 2 4 B 9 4 19 2 39 1 5 B
1200 3 16 13 4 4 16 9 B 19 4 39 2 5 16

600 3 32 13 B 4 32 9 16 19 8 39 4 5 32
300 3 64 13 16 4 64 9 32 19 16 39 8 5 64
150 3 12B 13 32 4 12B 9 64 19 32 39 16 5 128
110 3 175 3 189 4 175 5 157 4 207 17 50 8 109

388

R245 PREO
Prescaler 0 Register

(% F5; Write Only)

1110101111111 111

LCOUNTMODE
o = To SINGLE·PASS
1 = To MODULO·N

1..-______ PRESCALER MODULO
0=64

Figure 12-5. Prescaler 0 Register
and Bit Rate Generatioo

R241 TMR
Timer'Mode Register

(% F1; Read/Write)

~ 0 = NO FUNCTION
1 = LOAD To

o ,= DISABLE To COUNT
1 = ENABLE To COUNT

Figure 12-6. Timer Made Register
and Bit Rate Generation

(R)
RCVR
DATA

SHIFT
CLO,CI(---"

Serial I/O

12.3 RECE[VER OPERATION

The receiver consists of a receiver buffer (510
[%FO]), a serial-in, parallel-out Shift register,
parity checking, and data synchronizing logic.
The receiver block diagram is shown as part of
Figure 12-1.

12.3.1 Receiver Shift Register

A fter a hardware reset 'or after a character has
been received, the Receiver ShiFt register is
initialized to all 1s and the shift clock is
stopped. Serial data, input through Port 3 pin
P30, is synchronized to the internal clock by two
D-type flip flops before being input to the Shift
register and the start bit detection circuitry.

The start bit detection circuitry monitors the
incoming data, stream, looking for a start bit, (a
High-to-Low input transition). When a start bit'
is detected, the shift clock logic is enabled.
The TO input is ~i v ided by 16 and, when the count
equals a, the divider outputs a shift clock. This
clock shifts the' start bit into the Receiver Shift
register at the center of the bit time. Before
the shift actually occurs, the input is rechecked
to ensure that the start bit is valid. I f the
detected start bit is' false, the receiver is reset
and the process of looking for a start bit is
repeated. If the ~tart bit is valid, the data is
shiFted into the Shift register every sixteen
counts until a full character is assembled (Figure
12-7).

- 8 TO COUNTS LATER SHIFTING STARTS

RCVR_-----------------------------~ f IRQ3

Figure 12-7. Receiver Tilling

SHIFT REGISTER CONTENTS
TRANSFERRED TO RECEIVER

BUFFER AND IRQ3 IS
GENERATED

389

Serial I/O

After a full character has been assembled in the
Shift register, the data is transferred to the
receiver's buffer, S10 (%FO), and interrupt
request 1RQ3 is generated. The shift clock is
stopped and 'the Shift register reset to all 1s.
The start'bit detection circuitry begins monitor­
ing the data input for the next start bit. This
cycle allows the receiver to synchronize on the
center of the bit time for each incoming charac­
ter.

12.3.2 Overwrites

Although the receiver is buffered, it is not pro­
tected from being overwritten, so the software
must read the SIO register within one character
time after the interrupt request. The ZB does not
have a flag to indicate this overrun condition.
If polling is used, the IRQ3 bit in the Interrupt
Request register'must be reset by software.

12.3.3 fraaing Errors,

Framing error detection is not supported by the
receiver hardware, but by responding to the inter­
rupt request within one character bit time, the
software can test for a stop bit at PJO. Port 3
bits are always readable, which facilitates break
detection. For example, if a null character is
received, testing PJO results in a 0 being read.

Received Data
(No Parity)

12.3.4 Parity

The data format supported by the receiver must
have a start bit, eight data bits, and at least
one stop bit. If parity is on, bit 07 of the data
received will be replaced by a Parity Error flag.
A parity error sets 07 to 1; otherwise, 07 is set
to O. Figure 12-B shows these data formats.

The ZB hardware supports odd parity only, which is
enabled by setting Port 3 Mode register bit 07 to
1 (Figure 12-9). If even parity is required, the
Parity mode should be'disabled (i.e. P3M 07 set to
0), and software must calculate the received
data's parity.

12.4 TRANSMITTER OPERATION

The transmitter consists of a transmitter buffer
(510 (%FO», a parity generator, and associated
control logic. The transmitter block diagram is
shown as part of Figure 12-1.

After a hardware reset or after a character has
been transmitted, the transmitter is forced to a
marking atate (output always High) until a charac­
ter is loaded into the transmitter buffer, 510
(%FO). The transmitter is loaded by specifying
the 510 as the destination register of any
instruction.

I~I~I~I~I~I~I~I~I~I&I

390

Received Data
(With Parity)

LSTARTBIT

L-------EIGHT DATA BITS

L----------'---ONE STOP BIT

1~lpl~I~I~I~I~I~I~I&1

I L _LSTARTBIT
L------SEVEN DATA BITS

PARITY ERROR FLAG

L-------------ONE STOP BIT

figure 12-8. Receiver Data forats

R247 P3M
Port 3 Mode Register

(% F7; Write Only)

o PARITY OFF
1 PARITY ON

Figure 12-9. Parity and Port 3 Hade Register

TO's output drives a divide-by-16 counter which in
turn generates a shift clock every 16 counts.
This counter is reset when the transmitter buffer
is written by an instruction. This reset
synchronizes the shift clock to the software. The
transmitter then outputs one bit per shift clock,
through Port 3 pin P37 , until a start bit, the
character written to the buffer, and two stop bits
have been transmitted. After,the second stop bit
has been transmitted, the output is again forced
to a marking state. ! Interrupt request IRQ4 is

Transmitted Data
(No Parity)

Transmitted Data
(With Parity)

T

Serial I/O

generated and this notifies the processor that the
transmitter is ready to accept another character.

12.4.1 Overwrites

The user is not protected from overwr iting the
transmitter, so it is up to the software to
respond to IRQ4 appropriately. I f polling is
used, the IRQ4 bit in the Interrupt Request regis­
ter must be reset.

12.4.2 Parity

The data format supported by the transmitter has a
start bit, eight data bits, and ,at least two stop
bits. If parity is on, bit °7 of the data trans­
mitted will be replaced by an odd parity bit.
Figure 12-10 shows the transmitter data formats.

Parity is enabled by setting Port 3 Mode register
bit 07 to 1. If even parity is required, the
parity mode should be disabled (i.e. P3M 07 set to

0), and software must modify the data to include
even parity.

Since the transmitter can be overwritten, the user
is able to generate a break signal. This is done
by writing null characters to the transmitter buf­
fer (SID, %FO) at a rate which does not allow the
stop bits to be output. Each time the SID is
loaded, the divide-by-16 counter is re-synchro­
nized and a new start bit is output followed by
data.

LSTART BIT

'--------EIGHT DATA BITS

TWO STOP BITS

T I LSTART BIT

L.
____ '--______ SEVEN DATA BITS

, ODD PARITY

TWO STOP BITS

Figure 12-10. Transmitter Data Formats

391

Serial I/O

12.5 RESEr COtlHTIIINS

After a hardware reset, the Serial I/O register
contents are undefined, and Serial mode and parity
are disabled. Figures 12-11 and 12-12 show the
binary reset values of the Serial I/O register and
its associated mode register P3M.

R240 SIO
Serial I/O Register
(% FO; Read/Write)

I?I?I?I?I?I?I?I?I
I _____ SERIAL DATA (Do = LSB)

392

Figure 12-11. Serial I/O Register Reset

R247 P3M
Port :3 Mode Register

(% F78; Write Only)

1010101010101 /01

L=0 PORT 2 PULL·UPS OPEN DRAIN
1 PORT 2 PULL·UPS ACTIVE

o P32 = INPUT P35 = OUTPUT
1 P32 = DAVO/RDYO P35 = RDYOIDAVO

00 P33 = INPUT P34 = OUTPUT

L-____ ~ ~} P33 = INPUT P34 = OM

1 1 P33 = DlWI/RDY1 P34 = RDY1/DAV1

L-_______ O P31 = INPUT (T'N) P36 = OUTPUT (Tour)
1 P31 = DAV2IRDY2 P36 = RDY2/DAV2

L-________ ~ ~~~ ~ ~N~~lL IN ~~~ ~ ~~~iA~T OUT

L-_________ ~ ~~=:+~ g~F

Figure 12-12. Port ~ Register Reset

A

393

This appendix contains pin information and physi­
cal descriptions for the ZB development device
(ZB612) and Protopack emulator (ZB603/13). Pin
descriptions for the ZB601/11 and ZB6B1/B2 micro­
computers can be found in Chapters 6 and 7,
respectively.

A.1 D£VElOPl£NT DEVICE (Z8612)

The pin mnemonics and descriptions presented for
the ZB microcomputers (Chapter 6) also apply to
the development device. Additional pin descrip­
tions are as follows:

AO-A11 • Progr_ Hellory Address (outputs).
lines are used to access the first 4K bytes
external program memory.

These
of the

DO~' Program Data (inputs). Data from the
external program memory is input through these
pins.

lACK. Interrupt Acknowledge (output, active
High). lACK is driven High in response to an
interrupt during the interrupt machine cycle.

HOS. Progrllll HeIIIory Data Strobe (output, active
Low). MDS is Low during an instruction fetch

394

Appendix A
Pin Descriptions
and Functions

cycle when the first 4K bytes of program memory
are being accessed.

SCLK. Systea Clock (output). SCLK is the inter­
nal clock output ,through a buffer. The clock rate
is equal to one-half the crystal frequency.

SYNC. Instruction Sync (output, active Low).
This strobe output is forced Low during the inter­
nal clock period preceding an opcode fetch.

A.2 PROTOPACK EMULATOR (Z8603/13)

Both the ZB603 and ZB613 devices use a 40-pin
package that also has a 24-pin "piggy-back" soc­
ket. An EPROM or ROM can be installed on the back
of the emulator's standard 40-pin package via the
socket (Figure A-3). A single +5 V dc power source
is required. Figure A-4 illustrates the pinout for
the socket carried piggyback. The socket is
designed to accept a 2716 EPROM for the ZB603 and
a 2732 EPROM for the ZB613 device.

P in mnemonics and descr iptions are the same as
those for the Z8601/11 microcomputer (Chapter 6).
Descriptions for the additional (24-pin socket)
memory interface lines are the same as those given
for the development devices above.

Pin Descriptions and Functions

- RESET +5V
TIMING { RtW GND -AND

CONTROL DS

AS XTAL1 - } CLOCK
XTAL2

POO

POI P20 --P02 P2l -PORTO POs
(NIBBLE

PROGRAMMABLE) -- P04 PORT 2
1/0 OR As-AIS -- POS (BIT PROGRAMMABLE) POs -- P07

- P10

P11

PORT oj P12 P31

(BYTE P1s
PROGRAMMABLE) P14

28612 PORT 3
1/0 OR ADo-AD7 SERIAL AND PARALLEL

P1s 110 CONTROL

P1s P3s

P17 P36

P37

Do

Dl Ao

PROGRAM D2 Al

MEMORY Ds

DATA D4
INPUTS

Ds - D6 PROGRAM MEMORY - D7 ADDRESS OUTPUTS

INTERRUPT ACKNOWLEDGE lACK As

MEMORY DATA STROBE MDS Ag

INSTRUCTION SYNC SYNC Al0

SYSTEM CLOCK SCLK All

Figure A-1. Z8612 Pin functions

395

Vee 64 P3S

XTAL2 2 63 P31

XTAL1 3 62 P21

P31 4 61 P2&

_!30 5 60 P2s

RESET 6' 59 P24
. ,

RIW 7 58 P23

OS 8 57 P22

AS 9 56 P21

P3S 10 55 P20

P32 11 54 P33

POO 12 53 P34

POl 13 52 P11

P02 14 51 P1&

P03 15
Z8812

50 P15

P04 16 49 P14

GNO 17 48 P13

POs 18 47 P12

POs 19 46 P11

P01 20 45 P10

lACK 21 44 01

SYNC 22" 43 06

SCLK 23 42 05

24 41 04

25 40 Ao
01 26 39 Al

27 38 A2

28 37 A3

Ali 29 36 A4

30 35 A5

31 34 As

32 33 A7

Figure A-2. Z8612 Pin Assign.ents

396

B

397

Appendix B
Control Registers

Registers R240 SIO
Serial I/O Register
(FOH; ReadlWrite)

R244 TO
Counter/Timer 0 Register

(F4H; ReadlWrite)

398

'----- SERIAL DATA (Do = LSD)

R241 TMR
Timer Mode Register

(FlH; ReadlWrite)

I~I~I~I~I~I~I~I~I

To"MODES j us· ~o.= NO FUNCTION NOT useD = 00 --1 1 = LOAD To

~~ g~~ : ~~, 0 = DISABLE To COUNT
INTERNAL CLOCK OUT = 11 1 = ENABLE To COUNT

T MODES 0 ." NO FUNCTION
EXTERNAL CLOCK IN~~T = 00 1 "" LOAD T,

GATE INPUT = 01 0 :::: DISABLE T, COUNT

(NON.R~~8~~J::~~) = 10 1 = ENABLE T, COUNT
TRIGGER INPUT = 11

(RETRIGGERABlE)

R242 Tl
Counter Timer 1 Register

(F2H; ReadlWrite)

T,INITIAL VALUE (WHEN WRlnEN)
L-----I(RANGE 1-256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R243 PREI
Prescaler 1 Register

(F3H; Write Only)

I~I~I~I~I~I~I~I~I

~LCOUNTMODE ,
o = .T., .SINGLE.PASS
1 = T, MODULO·N

CLOCK SOURCE
1 = T,INTERNAl
o = T, EXTERNAL TIMING INPUT

(TIN') MODE

PRESCALER MODULO
(RANGE: 1-64 DECIMAL
01-00 HEX)

R2451'REO
Prescaler 0 Register

(F5H; Write Only)

I~I~I~I~I~J~I~I~I

~LCOUNTMODE
o = To SINGLE·PASS
1 ;:: To MODULO·N

RESERVED

PRESCALER MODULO
," ... "~.,, ...
01-00 HEX)

R246 P2M
Port 2 Mode Register

(F6H; Write Only)

I~I~I~I~I~I~I~I~I

R247 P3M
Port 3 Mode Register

(F7H; Write Only)

10, I 0.1 0,1 0,1 0,1 0,1 0,100 1

E~Lo PORT 2 PULLOUPSOP.EN DRAIN
1 PORT 2 PUll·UPS ACTIVE

i RESERVED

o P32 = INPUT P3S =- OUTPUT
1 P32 = DAVOIRDYO P3S = ROYO/DiWO

00 P33 = INPUT P34 = OUTPUT

~ 61 P33 = INPUT P34 '" tfM
1 1 P33:::; DAV1IRDY1 P34 = RDY1/DAV1

L.. ______ ~ ~~~ ~ ~N:vU~to~1 =;: ~ ~~~~/~~4k\JT)
L.. _______ ~ ~~g ~ ~N:R~!lIN ~~~ ~ ~~~iA~T OUT

L.. ________ ~ ~~~:~~ g~F

Control Registers

Registers
(Continued)

R24B POIM
Port 0 and I Mode Register

(F8H; Write Only)

I~I~I~I~I~I~I~I~I

OUTPUT ;::: 00 L 00:; OUTPUT
INPUT:; 01 01 = INPUT

A'2-A,S = 1X 1X = Aa-Att

PD,_PO, MOOE:] ~~ po,-po, MOOE

EXTERNAL MEMORY TIMING STACK SELECTION
NORMAL:; 0 0 :; EXTERNAL

EXTENDED = 1 1 = INTERNAL

P1o-P1 1 MODE
00 ;::: BYTE OUTPUT
01 = BYTe INPUT
10 = ADo-ADT
11 = HIGH·IMPEDANCE ADo-ADt.

R249IPR
Interrupt Priority Register

(F9H; Write Only)

I~I~I~I~I~I~I~I~I

As, OS. Am, ,\a-A", AI2-A'5
IF SELECTED

., :J I I 1[1 ,~"""" .~ .. "-RESERVED::: 000

IRQ3, IROS PR~O~IJ~d~~o.::ra~) , '~ ~ : ~ ~ ~ g~~
1 = IRQ3 > IROS A > C > B = 011

B > C > A = 100
IRao, IRQ2 PRIORITY (GROUP 8) C > B > A = 101

o = IRQ2 > IRCO B > A > C = 110
1 ::: IRCO > IHQ2 RESERVED = 111

IRQ1, IRQ4 PRIORITY (GROUP C)
o = IRQ1 > IRQ4
1 = IRQ4 > IRQt

R250 IRQ
Interrupt Request Register

(FAH; ReadIWrite)

I~I~I~I~I~I~I~I~I

RESERVEO:::r- c= IRQO
IRQt
IRQ2
IRQ3
IRQ4
IROS

R251 IMR
Interrupt Mask Register

(FBH; ReadIWrite)

P32 INPUT (Do = IROO)
P331NPUT
P311NPUT
P3g INPUT, SERIAL INPUT
To, SERIAL OUTPUT

"

Il ____ c= ___ 1 ENABLES IROO-IROS
(Do = IROO)

RESERVED

'---------1 ENABLES INTERRUPTS

R252 FLAGS
Flag Register

(FCH; ReadIWrite)

LUSER FLAG F2

HALF CARRY FLAG ll!m~
1 LUSERFLAGF1

, DECIMAL ADJUST FLAG

R253 RP
Register Pointer

(FDH; ReadIWrite)

OVERFLOW FLAG

SIGN FLAG

ZERO FLAG

CARRY FLAG

LooN'TeARE

R254 SPH
Stack Pointer

(FEH; ReadIWrite)

I~I~I~I~I~I~I~I~I

R255 SPL
Stack Pointer

(FFH; ReadIWrite)

1~1~I~t~I~I~I~t~1

399

. 400

c

... -,.- ',.. -~. 4RL.

7;1", ..
. Zilog

Opcode
Map

o

3'

5

~ 6
CD
;;

:a 7
:9 z
~

::>

A

B

C

o

E

F

o

6,5
DEC

Rl
6,5

RLC
Rl
6,5
INC
Rl
8,0

IP
IHHI
8,5

OA
HI

10,5
POP
Rl
6,5

COM
Rl

10/12,1

PUSH
R2

10,5
OECW

HHI
6,5
RL
HI

10,5
INCW

RRI
6,5
CLR
HI
6,5

RRC
Rl
6,5

SRA
Rl
6,5
RR
Rl
8,5

SWAP
Rl

6,5
DEC
IRI
6,5

RLC
IRI
6,5
INC
IRI
6,1

SRP
1M
8,5
OA
IRI

10,5
POP
IRI
6,5

COM
IRI

12/14,1

PUSH
IR2

10,5
OECW

IHI
6,5
RL
IHI

10,5
!NCW

IRI
6,5

CLR
IRI
6,5

RRC
IRI
6,5

SRA
IRI

6,5
RR
IHI
8,5

SWAP
IRI

3 4

6,5 6,5 10,5

ADD ADD ADD
[1, [2 Il,II:Z R2,Rl

6,5 6,5 10,5
ADC ADC ADC
II, [2 II, Ir:z R2,RI

6,5 6,5 10,5

SUB SUB SUB
II, [2 [1, III R2,RI

6,5 6,5 10,5
SBC SBC SBC
II, [2 n,Ir:z R2,RI
6,5 6,5 10,5
OR OR OR

II, [2 I1,Ir2 R2,Rl

6,5 . 6,5 10,5
ANO ANO ANO
II, [2 II, Ir:z R2,Rl

6,5 6,5 10,5
TCM TCM TCM
[1, [2 [l,II:Z R2,RI

6,5 6,5 10,5
TM TM TM

II, [2 [l.II:Z R2,RI

12, ° 18, °
LOE LOEI

[l,lrrz Il1.lrr:z

12,0 18,0
LOE LDEI

I2, Irn 112. Irq

6,5 6,5 10,5
CP CP CP

n,l2 II, Ir:z R2,HI
6,5 6,5 10,5

XOR XOR XOR
II, [2 Il,112 R2,RI

12, ° 18,0
LOC LOCI

II, tIl:Z In,IIl:Z

12,0 18,0 20,0
LOC LOCI CALL"

I2, hIl hz, Irn IRRI

6,5 10,5
LO LO

II, Irz H2,RI

6,5
LO

Irl, [i

Opcode .Mall

Lower Nibble (Hex)

6 7 9 A B C o E F

10,5 10,5 10,5 6,5 6,5 12/10,5 12/10,0 6,5 12/10,0 6,5

ADD ADD ADD LO LD OJNZ JR LO JP INC
IR2, Rl RI,IM IRI,IM I!, R2 I2, Rl [l,RA cc,RA I:l,IM cc,DA fl

f---
10,5 10,5 10,5

ADC ADC ADC
IR2,RI RI,IM IRI,IM

I---
10,5 10,5 10,5
SUB SUB SUB

IR2,RI RI,IM IRI,IM
f---

10,5 10,5 10,5
SBC SBC SBC

IR2, HI RI,IM IRI,IM
f---.,---

10,5 10,5 10,5

OR OR OR
IR2, Rl HI,IM IRI,IM I---

10,5 10,5 10,5
ANO ANO ANO

IR2,RI RI,IM IRI,IM I---
10,5 10,5 10,5
TCM TCM TCM

IR2,RI RI,IM IHI,IM I---
10,5 10,5 10,5

TM TM TM
IR2,HI RI,IM IRI,IM

f---

6,1
DI

f---
6,1
EI

f---
10,5 10,5 10,5 14,0
CP CP CP r RET

IR2,RI RI,IM IRI,IM
f---

10,5 10,5 10,5
16, °

XOR XOR XOR IRET
IH2,HI RI,IM IRI,IM I---

10,5 6,5
LD RCF

II, x, H:z -
20,0 10,5 6,5

CALL LD SCF
DA I2, X, Rl -

10,5 10,5 10,5 6,5
LO LO LD CCF

IR2,RI RI,IM IRI,IM
-

10,5 6,0
LO NOP

H2,IRI

\.. \.. ,/ " .I
Bytes per 'v" V' '---------~~~----------~# ~ ~
Instruction 3

Lowor
Opcode
Nibble

Execution + Plpelino
Cycles Cycles

Upper
Opcodo- A Mnomonic
Nibblo

First Second
Operand Operand

*2-byte instr~uction; fetch cycle appears as a 3-byte instruction

Logend:
R = 8-Bit Address
r = 4-Bit Address
R 1 or fl =, Dst Address
Hz or [2 = Src Address

Sequenco:

3

Opcode, First Operand, Second Operand

Noto: The blank areas are not defined.

401

Zilog Product Specification

January 1988

FEATURES

• Improved Z8t!) instruction set includes multiply and
divide instructions, Boolean and BCD operations.

• Additional instructions support threaded-code
languages, such as "Forth."

• 325 byte registers, including 272 general:purpose
registers, and 53 mode and control registers.

• Addressing of up to 12SK bytes of memory.

• Two register pOinters allow use of short and fast
instructions to access register groups within 600 nsec.

• Direct Memory Access con~roller (DMA).

• Two 16-bit counter Itimers.

GENERAL DESCRIPTION

The Zilog SuperS single-chip MCU can be used for
development and production. It can be used as I/O- or
memory-intensive computers, or configured to address
external memory while still supporting many I/O lines.

Ne 10

Vee 11

~~~~~~~~~#~~~~~~~ 
9 8 7 6 5 4 3 2 1 U ~ H e U Q H 81 

60 Ne 

ROMIe .. 12 

59 Ne 

. 58 Vee 

402 

"" I. 
,." 14 

57 .... 

P24 15 

P20 16 

Vee 17 

GND 18 

Vee 19 

XTAL2 20 

XTAU 21 

P4< 22 

P4s 2. 
P4e .4 
N7 25 

Ne 26 

SUPERa 

56 

55 

54 

53 

52 

51 

50 

4. 

48 

47 

46 

45 

44 

~~~~~~~~~~~~~~~/~ 

Figure 1a_ Pin Assignments - 68-pln PLCC

po,

P3<

P3,

AS

DS

P40
po,

OND

OND

po,

P43

R/W

Ne

Super8™ MCU ROMless,
ROM, and Prototyping Device
with EPROM Interlace

Z8800,Z8801,Z8820,Z8822

• Up to 32 bit-programmable and S byte-programmable 110
lines, with 2 handshake channels.

.• Interrupt structure supports:
o 27 interrupt sources
o 16 interrupt vectors (2 reserved for future versions)
o S interrupt levels .
o Servicing in 600 nsec. (1 level only)

• Full-duplex UARTwith special features.

• On-chip oscillator.

• 20 MHz clock.

• SK byte ROM for ZSS20

The SuperS features a full-duplex universal asynchronous
receiver Itransmitter (UART) with on-chip baud rate
generator, two programmable counter /timers, a direct
memory access (DMA) controller, and an on-chip oscillator.

The SuperS is also available as a 4S-pin and 6S-pin ROM less
microcomputer with four byte-wide 110 ports plus a
byte-wide address/data bus. Additional address bits can be

, configured, up to a total of 16.

P1S

P17

P24

P25

vee
GNO

lCTAl2

lCTALl

P47

o

Z8801

~~~~~-n-n~~~Tr~ 

vee 
POe 

P07 

P.!4 

P35 

AS 

os 
GNO 

RIW 



Pl. PD. 

Pl, PO, 

PI, PO, 

P13 P03 

PI, PO, 

Pl. PD. 

Pl. PD. 

P17 41 P07 

P2, P3, 

P2. P3. 

+5V 38 AS 
XTAL2 

SUPER8 
37 Os 

XTALl 36 P4. 

P4, 35 P4, 

P4S 34 GND 

P4. 33 P4, 

P47 32 P43 

P2, 31 ANi 
P3, 3D REsET 
P33 29 P3. 

P23 28 P3, 

P2. 27 P27 

P2, 26 P2. 

P3, 25 P3. 

Figure 1b. Pin Assignments - 48-pin DIP 

+5 +5 

A" +5 

A7 A'3 
A. A. 

As A. 

A, An 

A3 OE 
A, A,. 

A, CE 
A. D, 

D. D. 
D, D. 

D, D, 

GND D3 

Figure 3. Pin Assignments-28-Pin Piggyback Socket 

Protopack 

This part functions as an emulator for the basic 
microcomputer. It uses the same package and pin-out as 
the basic microcomputer but also has a 28-pin "piggy back" 
socket on the top into which a ROM or EPROM can be 
installed. The socket is designed to accept a type 2764 
EPROM. 

This package permits the protopack to be used in prototype 
and final. PC boards while still permitting user program 

DATA 

SUPER8 

11 
+5V ) 
GND 3. 

13 
XTALI _) 

12 
XTAL2 

P20~ 
P21~ 
P22.1!... 

P23~ 
9 

POWER 

CLOCK 

PORT 2 

PORT 3 

Figure 2. Pin Functions 

PROTOPACK 
EPROM ADDRESS 
SOCKET 

Figure 4. Pin Functions-28-Pin Piggyback Socket 

development. When a final program is developed, it can be 
mask-programmed into the production microcomputer 
device, directly replacing the emulator. The protopack part 
is also useful in situations where the· cost of mask­
programming is prohibitive or where program flexibility is 
desired. 

403 



110 
(BIT PROGRAMMABLE) 

UtttUt 
PORT4 I 

UART I 
ADDRESS 

~------------v~------------
110 

ADDRESS OR 110 
(BIT PROGRAMMABLE) ADDRESSIDATA OR 110 

, (BYTE PROGRAMMABLE) 
(BIT PROGRAMMABLE) 

OR CONTROL ~------V~-----~ 
Z·BUS WHEN USED AS 
ADDRESSIDATA BUS 

Figure 5. Functional Block Diagram 

ARCHITECTURE 

The SuperS architecture includes 325 byte-wide internal 
. registers. 272 of these are available for general purpose 

use; the remaining 53 provide control and mode functions. 

The instruction set is specially designed to deal with this 
large register set. It includes a full complement of 8-bit 
arithmetic and logical operations, including multiply and 
divide instructions and provisions for BCD operations. 
Addresses and counters can be incremented and 
decremented as 16-bit quantities. Rotate, shift, and· bit 
manipulation instructions are provided. Three new 
instructions support threaded-code languages. 

PIN DESCRIPTIONS 

The Super8 connects to external devices via the following 
TIL-compatible pins: 

AS. Address Strobe (output, active Low). AS is pulsed 
Low once~t the beginning of each machine cycle. The 
rising edge indicates that addresses Riw and DM, when 
used, are valid. 

OS. Data Strobe (output, active Low). DS provides timing 
for data movement between the address/data bus and 
external memory. During write cycles, data output is valid at 
the leading edge of DS. During read cycles, data input 
must be valid prior to the trailing edge of DS. 

The UART is a full-function mUltipurpose asynchronous 
serial channel with many premium features . 

The 16-bit counters can operate independently or be 
cascaded to perform 32·bit counting and timing operations. 
The DMA controller handles transfers to and from the 
register file or memory. DMA can use the UART or one of two 
ports with handshake capability. 

The architecture appears in the block diagram (Figure 5). 

POO·P07. P10·P17. P20·P27. P30·P37. P40·P47' Port 110 
Lines (input/output). These 40 lines are divided into five 8-bit 
I/O ports that can be configured under program control for 
I/O or external memory interface. 

In the ROMless devices, Port 1 is dedicated as a 
multiplexed address/data port, and Port 0 pins can be 
assigned as additional address lines; Port 0 non-address 
pins may be assigned as I/O. In the ROM and protopack, 
Port 1 can be assigned as input or output, and Port 0 can be 
assigned as input or output on a bit by bit basis. 

------...,-----------_._-_._---
404 



Ports 2 and 3 can be assigned on a bit-for-bit basis as 
general I/O or interrupt lines. They can also be used as 
special-purpose I/O lines to support the UART, 
counter/timers, or handshake channels. 

Port 4 is used for general I/O. 

During reset, all port pins are configured as inputs (high 
impedance) except for Port 1 and Port 0 in the ROM less 
devices. In these, Port 1 is configured as a multiplexed 
address/data bus, and Port 0 pins POO-P04 are configured 
as address out, while pins POS-PO? are configured as inputs. 

RESET. Reset (input, active Low). Reset initializes and starts 
the SuperB. When it is activated, it halts all processing; when 

REGISTERS 

The SuperB contains a 256-byte internal register space. 
However, by using the upper 64 bytes of the register space 
more than once, a total of 325 registers are available. 

Registers from 00 to BF are used only once. They can be 
accessed by any register command. Register addresses CO 
to FF contain two separate sets of 64 registers. One set, 
called control registers, can only be accessed by register 
direct commands. The other set can only be addressed by 
register indirect, indexed, stack, and DMA commands. 

SET ONE 

I 

it is deactivated, the SuperB begins processing at address 
0020H· 

ROMless. (input, active High). This input controls the 
operation mode of a 6B·pin SuperB. When connected to Vee, 
the part will function as a ROM less ZBBOO. When connected 
to GND, the part will function as a ZBB20 ROM part. 

R/W. Read/Write (output). R/W determines the direction of 
data transfer for external memory transactions. It is Low 
when writing to program memory or data memory, and High 
for everything else. 

XTAL 1, XTAL2. (Crystal oscillator input.) These pins 
connect a parallel resonant crystal or an external clock 
source to the on-board clock oscillator and buffer. 

The uppermost 32 register direct registers (EO to FF) are 
further divided into two banks (0 and 1), selected by the 
Bank Select bit in the Flag register. When a Register Direct 
command accesses a register between EO and FF, it looks at 
the Bank Select bit in the Flag register to select one of the 
banks. 

The register space is shown in Figure 6. 

SET TWO 

.1-
FFH _--------, 

BANKI 

CONT~g~~:~I~TERS .. 
(REGISTER ADDRESSING ONLY) 

SYSTEM REGISTERS: 
STACK, FLAGS, PORTS, ETC. 

(REGISTER ADDRESSING ONLY) 

WORKING REGISTERS 
(WORKING REGISTER 
ADDRESSING ONLY) 

1--1-

~ 

BANKO 

DATA REGISTERS 
(INDIRECT REGISTER, INDEXED, 

STACKORDMA 
ACCESS ONLY) 

COH~ _______ ~ 

BFH _--------, 

256 
BYTES 

DATA REGISTERS 192 
(ALL ADDRESSING MODES) BYTES 

OOH~ _______ ~ 

Figure 6. SuperS Registers 

405 



Working Register Window 

Controi registers R214 and R215 are the register pOinters, 
RPO and RP1. They each define a moveable, 8-register 
section of the register space. The registers within these 
spaces are called working registers. 

Working registers can be accessed using short 4-bit 
addresses. The process, shown in section a of Figure 4, 
works as follows: 

• The high-order bit of the 4-bit address selects one of the 
two register pointers (0 selects RPO; 1 selects RP1). 

• The five high-order bits in the register pointer select an 
8-register (contiguous) slice of the register space. 

S The three low-order bits of the 4-bit address select one of 
the eight registers in the slice. 

I I I I I I I I 
SELECTS 
RPOORRPl 

ADDRESS OPCDDE 

I RPO(R214) 

RPl (R215) 

,...----'"---.,~ 

I I I I I I I I I 

REGISTER POINTER PROVIDES 
5 HIGH·ORDER BITS 

4·BIT ADDRESS PROVIDES 3 LOW·ORDER BITS 

~------~~~------~ 
TOGETHER THEY CREATE 
8·BIT REGISTER ADDRESS 

a.4-Bit Addressing 

The net effect is to concatenate the five bits from the register 
pointer to the three bits from the address to form an 8-bit 
address. As long as the address in the register pointer 
remains unchanged, the three bits from the address will 
always point to an address within the same eight registers. 

The register pointers can be moved by changing the five 
high bits in control registers R214 for RPO and R215 for RP1. 

The working registers can also be accessed by using full 
8-bit addressing. When an 8-bit logical address in the range 
192 to 207 (CO to CF) is specified, the lower nibble is used 
similarly to the 4-bit addressing described above. This is 
shown in section b of Figure 7. 

I I I I I I I I 
SELECTS 
RPOORRPl ADDRESS 

I RPO(R214) 

RPl (R215) 

~ 

L----_~-_-_~-..... : ___ ILOW.ORDERBITS REGISTER POINTER PROVIDES 
5 HIGH·DRDER BITS 

-------~~~-------...-
8-BIT PHYSICAL ADDRESS 

b. 8-Bit Addressing 

Figure 7. Working Register Window 

406 



Since any direct access to logical addresses 192 to 207 
involves the register pointers, the physical registers 192 to 
207 can be accessed only when selected by a register 
pointer. After a reset, RPO points to R192 and RP1 points to 
R200. 

Register List 

Table 1 lists the SuperS registers. For more details, see 
FigureS. 

Table 1. Super-8 Registers 

Address 
Decimal Hexadecimal 

General-Purpose Registers 
000-192 OO-BF 
192-207 CO-CF 
192-255 CO-FF 

Mode and Control Registers 
208 DO 
209 01 
210 02 
211 03 
212 04 
213 05 
214 06 
215 07 
216 08 
217 09 
218 DA 
219 DB 
220 DC 
221 DO 
222 DE 
224 EO BankO 

Bank 1 
225 EI BankO 

Bank 1 
226 E2 BankO 

Bank 1 
227 E3 BankO 

Bank 1 
228 E4 BankO 

Bank 1 
229 E5 BankO 

Bank 1 
235 EB BankO 
236 EC BankO 
237 ED BankO 
239 EF BankO 
240 FO BankO 

Bank 1 
241 FI BankO 

Bank 1 
244 F4 BankO 
245 F5 BankO 
246 F6 BankO 
247 F7 BankO 
248 F8 BankO 

Bank 1 

Mnemonic 

PO 
PI 
P2 
P3 
P4 
FLAGS 
RPO 
RPI 
SPH 
SPl 
IPH 
IPl 
IRQ 
IMR 
SYM 
COCT 
COM 
CICT 
CIM 
COCH 
CTCH 
COCl 
CTCl 
CICH 
cnCH 
CICl 
cnCl 
UTC 
URC 
UIE 
UIO 
POM 
DCH 
PM 
DCl 
HOC 
HIC 
P4D 
P40D 
P2AM 
UB'GH 

Function 

General purpose (all address modes) 
Working register (direct only) 
General purpose (indirect only) 

Port 0 1/0 bits 
Port 1 (1/0 only) 
Port 2 
Port 3 
Port 4 
System Flags Register 
Register Pointer 0 
Register Pointer 1 
Stack Pointer High Byte 
Stack Pointer low Byte 
Instruction Pointer High Byte 
Instruction Pointer low Byte 
Interrupt Request 
Interrupt Mask Register 
System Mode 
CTR 0 Control 
CTRO Mode 
CTR 1 Control 
CTR 1 Mode 
CTR 0 Capture Register, bits 8-15 
CTR 0 Timer Constant, bits 8-15 
CTR 0 Capture Register, bits 0-7 
CTR 0 Time Constant, bits 0-7 
CTR 1 Capture Register, bits 8-15 
CTR 1 Time Constant, bits 8-15 
CTR 1 Capture Register, bits 0-7 
CTR 1 Time Constant, bits 0-7 
UART Transmit Control 
UART Receive Control 
UART Interrupt Enable 
UARTData 
PortO Mode 
DMA Count, bits 8-15 
Port Mode Register 
DMA Count, bits 0-7 
Handshake Channel 0 Control 
Handshake Channell Control 
Port 4 Direction 
Port 4 Open Drain 
Port 2/3 A Mode 
UART Baud Rate Generator, bits 8-15 

407 



Table 1. Super-a Registers (Continued) 

Address 
Decimal Hexadecimal 

Mode and Control Registers (Continued) 

249 F9 BankO 

Bank 1 
250 FA BankO 

Bank 1 

251 FB BankO 

Bank 1 

252 FC BankO 

253 FD BankO 

254 FE BankO 
Bank 1 

255 FF BankO 

Bank 1 

MODE AND CONTROL REGISTERS 

R2l3 (05) FLAGS 
SYSTEM FLAGS REGISTER 

Mnemonic 

P2BM 

UBGL 

P2CM 
UMA 

P2DM 

UMB 

P2AIP 

P2BIP 

EMT 
WUMCH 

IPR 

WUMSK 

CARRYFLAGg)J~ ZEROFLAG~ 
SIGN FLAG 

OVERFLOW flAG 

ugl L BANK ADDRESS 

L FAST INTERRUPT STATUS 

HALF-CARRY FLAG 

DECIMAL ADJUST 

R2l. (06) RPO 
REGISTER POINTER 0 

[fr71 0,1 051 041 031 021 0, I Do I 
(RP3.RP7)~ 

R2l5 (07) RPl 
REGISTER POINTER 1 

(RP3'RP7)~ 

R2l6 (OS) SPH 
STACK POINTER 

LNOTUSEO 

LNOTUSED 

I~I~I~I~I~I~I~I~I 

1'------HIGH BYTE (SPS.SP15) 

R217 (09) SPL 
STACK POINTER 

I~I~I~I~I~I~I~I~I 

,-I ----_LOW BYTE (SPO-SP7) 

Function 

Port 2/3 B Mode 

UART Baud Rate Generator, bits 0-7 
Port 2/3 C Mode 

UART Mode A 

Port 2/3 0 Mode 

UART ModeB 

Port 2/3 A Interrupt Pending 

Port 2/3 B Interrupt Pending 

External Memory Timing 
Wakeup Match Register 

Interrupt Priority Register 

Wakeup Mask Register 

R21S (DA) IPH 
INSTRUCTION POINTER HIGH 

I~I~I~I~I~I~I~I~I 

I'-----_HIGH BYTE (IPS.IP15) 

R2l9 (DB) IPL 
INSTRUCTION POINTER LOW 

I~I~I~I~I~I~I~I~I 

IL--____ LOW BYTE (IPO·IP7) 

R220 (DC) IRQ 
INTERRUPT REQUEST (READ ONLY) 

I~I~I~I~I~I~I~I~I 

LEVEL 7J~ I Llli' L LEVEL 0 
LEVEL 6:=....J L LEVEL 1 

LEVEL 5 LEVEL 2 

LEVEL. LEVEL 3 

R221 (DO) IMR 
INTERRUPT MASK 

I~I~I~I~I~I~I~I~I 

LEVEL7~J I Llli' LLEVELO 
LEVEL 6 =-.J L LEVEL 1 

LEVEL 5 LEVEL 2 

LEVEL. LEVEL 3 

Figure a. Mode and Control Registers 

408 



MODE AND CONTROL REGISTERS (Continued) 

R222 (DE) SYM 
SYSTEM MODE 

I~I~I~I~I~I~I~I~I 

-r TIL 1 = GLOBALINTER"RUPTENABLE 

NOT USED ~ L 1 = FAST INTERRUPT ENABLE 

R224, BANK 0 (EO) COCT 
COUNTER 0 CONTROL 

FAST INTERRUPT SELECT 

000 LEVEL 0 
001 LEVEL 1 
010 LEVEL2 
011 LEVEL 3 
100 LEVEL4 
101 LEVELS 
110 LEVEL6 
111 LEVEL 7 

o = SINGLECYCLE~~ 1 = CONTINUOUS ~ 

o = COUNT DOWN 
1 = COUNT UP 

1 = LOAD COUNTER 

1 = SOFTWARE TRIGGER 

~I L 1 = ENABLE COUNTER L READ 1 = END OF COUNT 
WRITE 1 = RESET END OF COUNT 

1 = ZERO COUNT INTERRUPT ENABLE 

" 1 = SOFTWARE CA~TURE 

INPUT PIN ASSIGNMENTS: 

o 0 110 
o 0 110 
o 0 GATE 
o 0 GATE 
o 1 110 
o 1 TRIGGER 
o 1 GATE 
o 1 GATE/ 

P2, 

110 
TRIGGER 
110 
TRIGGER 
CO INPUT 
CO INPUT 
CO INPUT 

TRIGGER CO INPUT 
CO OUTPUT 110 
CO OUTPUT TRIGGER 
CO OUTPUT GATE 
CO OUTPUT GATE/TRIGGER 
CO OUTPUT CO INPUT 
--- UNDEFINED ---
--- UNDEFINED ---
- CASCADE COUNTERS -

R224 BANK 1 (EO) COM 
COUNTER 0 MODE 

I L~!:~Si:"",", EDGE OF P27 
10 = BI·VALUE MODE 
11 = CAPTURE ON BOTH 

EDGES OFP27 

0= EXTERNAL 

R225 BANK 0 (E1) C1CT 
COUNTER 1 CONTROL 

UP/DOWN CONTROL P27 
1 = PROGRAMMED 

UP/DOWN CONTROL 

1 = ENABLE RETRIGGER 

o = SINGLECYCL"E~ JJ 1 = CONTINUOUS 

o = COUNT DOWN 
1 = COUNT UP 

1 = LOAD COUNTER 

1 = SOFTWARE TRIGGER 

~I L 1 = ENABLE COUNTER L READ 1 = END OF COUNT 
WRITE 1 = RESET END OF COUNT 

1 = ZERO COUNT INTERRUPT ENABLE 

1 = SOFTWARE CAPTURE 

Figure 8. Mode and Control Registers (Continued) 

409 



MODE AND CONTROL REGISTERS (Continued) 

INPUT PIN ASSIGNMENTS: 

00001/0 
o 0 0 1 1/0 
0010GATE 
0011GATE 
o 1 0 0 1/0 
o 1 0 1 TRIGGER 
0110GATE 
0111GATEI 

P3. 

110 
TRIGGER 
110 
TRIGGER 
CO INPUT 
COINPUT 
CO INPUT 

TRIGGER CO INPUT 

R226 BANK 0 (E2) COCH 
COUNTER 0 CAPTURE 

CO OUTPUT 1/0 
CO OUTPUT TRIGGER 
CO OUTPUT GATE 
CO OUTPUT GATEITRIGGER 
CO OUTPUT CO INPUT 
--- UNDEFINED ---
--- UNDEFINED ---
--- UNDEFINED ---

L-_____ HIGH BYTE (COCO.COC,15) 

R226 BANK 1 (E2) COTCH 
COUNTER 0 TIME CONSTANT 

L-_____ HIGH BYTE (COTCo.COTC'5) 

R227 BANK 0 (E3) COCL 
COUNTER 0 CAPTURE 

R227 BANK 1 (E3) COTCL 
COUNTER 0 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

1'-_____ LOW BYTE (COTC •• COTC,) 

R22S BANKO (E4) C1CH 
COUNTER' CAPTURE 

R22SilANK 1 (E4) 'C1TCH 
COUNTER 1 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

... 1 ______ HIGH BYTE (C1TCo·CHC,,) 

R225 BANK 1 (E1) C1M 
COUNTER 1 MODE 

I L~;",=="",", EDGEOFP3, ' 
10 = BI·VAWE MODE 
11 = CAPTURE ON BOTH 

EDGES OF P3, 

0= EXTERNAL 
UP/DOWN CONTROL P3, 

1 = PROGRAMMED 
UP/DOWN CONTROL 

1 = ENABLE RETRIGGER 

R229 BANKO (E5) C1CL 
COUNTER 1 CAPTURE 

I~I~I~I~I~I~I~I~I 

1 ... ______ LOW BYTE (C1C.·C1C,) 

R229 BANK 1 (E5) CHCL 
COUNTER 1 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

LI ______ LOW BYTE (CHC.·CHC,) 

R235 BANK 0 (EB) UTC 
UART TRANSMIT CONTROL 

TRANSMIT DATA SELECT: ~ I 
o = OUTPUT P3, DATA 

1 = OUTPUT TRANSMIT DATA 

1 = SEND BREAK 

STOP BITS: 
0= 1 STOP BIT 

1 = 2 STOP BITS 

1 = WAKE·UP ENABLE ---:----' 

~I L, = TRANSMIT DMA ENABLE 

L 1 = TRANSMIT BUFFER EMPTY 

1 = ZERO COUNT 

1 = TRANSMIT ENABLE 

R236 BANK 0 (EC) URC 
UART RECEIVE CONTROL 

1 = WAKE'UPDETECT~ JJ ' II 
1 = CONTROL CHARACTER DETECT ~ 

1 = BREAK DETECT 

1 = FRAMING ERROR 

~~L 1 = R, ECEIVECHARACTER 
AVAILABLE , 

1 = RECEIVE ENABLE 

1 = PARITY ERROR 

1 = OVERRUN ERROR 

Figure 8. Mode and Control Registers (Continued) 

410 



MODE AND CONTROL REGISTERS (Continued) 

R237 BANK 0 (ED) UIE 
UART INTERRUPT ENABLE 

1 = WAKE.UP INTERRUPT ENABLE~ JJ I 
1 = CONTROL CHARACTER ~ 

INTERRUPT ENABLE 
1 = BREAK INTERRUPT ENABLE 

1 = RECEIVE ERROR INTERRUPT 
ENABLE 

R239 BANK 0 (EF) UIO 
UART TRANSMIT DATA (WRITE) 

UART RECEIVE DATA (READ) 

L _____ DATA (Do = LSB) 

R240 BANK 0 (FO) POM 
PORTO MODE 

P07MDDE~J I Uhl' LpOOMODE 
PO, MODE ~ L PO, MODE 

POS MODE PO, MODE 

PO. MODE P03 MODE 

o = I/Oj 1 = ADDRESS 

R240 BANK 1 (FO) DCH 
DMACOUNT 

'------ HIGH BYTE (DCS·DC,,) 

R241 BANK 0 (F1) PM 
PORT MODE (WRITE ONLY) 

NOTUSEDT T ~~PORTODIRECTION ~ 0= OUTPUT 

PORT 1 MODE o~~~~'l..~N PORT 0 
00 OUTPUT 0 = PUSH·PULL 
01 INPUT 1 = OPEN·DRAIN 
1X ADDRESS/DATA OPEN DRAIN PORT 1 

o = PUSH·PULL 
1 = OPEN·DRAIN 

ENABLE OM P3s 

R241 BANK 1 (F1) DCL 
DMACOUNT 

0= DISABLE 
1 = ENABLE 

'------ LOW BYTE (DCo·DC7) 

II ~ 1 = RECEIVE CHARACTER "'.WAILABLE INTERRUPT ENABLE 
1 = RECEIVE DMA ENABLE 

1 = TRANSMIT INTERRUPT ENABLE 

1 = ZERO COUNT INTERRUPT ENABLE 

R244 BANK 0 (F4) HOC 
HANDSHAKE 0 CONTROL (WRITE ONLY) 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ==:J 
(RANGE 1·16) 

II L .. _,"M'~~ 
L PORT SELECT: 

1 = PORT1;0 = PORT4 

DMAENABLE: 
1 = ENABLED 
0= DISABLED 

'------ MODE: 

R245 BANK 0 (F5) H1C 
HANDSHAKE 1 CONTROL (WRITE ONLY) 

1 = FULLY INTERLOCKED 
0= STROBED 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ==:J 
(RANGE '·16) 

I I L.._," __ ~ 
NOT USED 

MODE: 

R246 BANK 0 (F6) P4D 
PORT 4 DIRECTION 

1 = FULLY INTERLOCKED 
0= STROBED 

'------P40·P47110 DIRECTION 
o = OUTPUT; 1 = INPUT 

R247 BANK 0 (F7) P40D 
PORT 4 OPEN·DRAIN 

R248 BANK 0 (F8) P2AM 
PORT 2/3 A MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH·PULl 
11 OUTPUT,OPEN·DRAIN 

Figure 8. Mode and Control Registers (Continued) 

411 



MODE AND CONTROL REGISTERS (Continued) 

412 

R24S BANK 1 (FS) UBGH 
UART BAUD-RATE GENERATOR 

I~I~I~I~I~I~I~I~I 

LI ______ HIGH BYTE (UBG.-UBG15) 

R249 BANK 0 (F9) P2BM 
PORT 2/3 B MODE (WRITE ONLY) 

R250 BANK 0 (FA) P2CM 
PORT 2/3 C MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN-DRAIN 

R250 BANK 1 (FA) UMA 
UARTMODEA 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN-DRAIN 

R~49 BANK 1 (F9) UBGL 
UART BAUD-RATE GENERATOR 

CLOCKRATE:J 
D7 0 6 
DO=Xl . 
o 1 = XIG . 
1 0 = X32 
1 1 = X64 

llli. I L TRANSMIT WAKE-UP VAWE 

L RECEIVE WAKE-UP VALUE 

1 = EVEN PARITY 

1 = PARITY ENABLE 

L-_____ LOW BYTE (UBG,-UBG,) 

BITS PER CHARACTER 

05 0 4 

00 =5BITS 
01 =GBITS 
1 0 =7BITS 
11 =SBITS 

R251 BANK 0 (FB) P2DM 
PORT 2/3 D MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN-DRAIN 

R251 BANK 1 (FB) UMB 
UARTMODEB 

CLOCK OUTPUT SELECT ==r--
07 D6 

o 0 = P2, DATA 
o 1 = SYSTEM CLOCK (XTALl2) 
1 0 = BAUD-RATE GENERATOR 

OUTPUT ' 
1 1 = TRANSMIT DATA CLOCK 

E' L 1 = LOOPBACKENABLE 

L. 1 = BAUD-RATE GENERATOR ENABLE 

BAUD-RATE GENERATOR SOURCE: 
o = P2, (EXTERNAL) 
1 = INTERNAL (XTAL/4) 

TRANSMIT CLOCK INPUT SELECT: 
o c P21 1 = AUTO-ECHO ----' 

RECEIVE CLOCK INPUT SELECT: ------' 
0= P20 
1 = BAUD-RATE GENERATOR 

OUTPUT 

1 " BAUD-RATE GENERATOR OUTPUT 

Figure 8. Mode and Control Registers (Continued) 



MODE AND CONTROL REGISTERS (Continued) 

R252 BANK 0 (FC) P2AIP 
PORT 2/3 A INTERRUPT PENDING (READ ONLY) 

I~I~I~I~I~I~I~I~I 

R253 BANK 0 (FD) P2 BIP 
PORT 2/3 B INTERRUPT PENDING (READ ONLY) 

I~I~I~I~I~I~I~I~I 

:~~: 
P26 P3s 

R254 BANKO (FE) EMT 
EXTERNAL MEMORY TIMING REGISTER 

1+ I.":.tllli' I~ :':" .. ~~"~ 
1 = DATA MEMORY 

STACK SELECT: 
o = REGISTER FILE 
1 = DATA MEMORY 

DATA MEMORY AUTOMATIC WAITS 
00 = NO WAITS 
01 = 1 WAIT 
10 = 2 WAITS 
11 = 3 WAITS 

'-------- PROGRAM MEMORY AUTOMATIC WAITS 
00 = NO WAITS ' 
01 = 1 WAIT 
10 = 2 WAITS 
11 = 3 WAITS 

'----------- SLOW MEMORY TIMING 
0= DISABLED 
1 = ENABLED 

'------------ EXTERNAL WAIT INPUT 
o = P341S NORMAL 110 
1 = P34 IS EXTERNAL WAIT INPUT 

R254 BANK 1 (FE) WUMCH 
WAKE-UP MATCH REGISTER 

I~I~I~I~I~I~I~I~I 

LI ______ THIS BYTE, MINUS MASKED BITS, 
IS USED FOR WAKE-UP MATCH 

GROUP PRIORITY 

07 0 4 0 1 

= UNDEFINED 
=B>C>A 
= A>B>C 
=B>A>C 
:::;:C>A>B 
= C>B>A 
= A>C>B 
= UNDEFINED 

I 

R255 BANK 0 (FF) IPR 
INTERRUPT PRIORITY REGISTER 

I I L GROUP A 
o ~ IRQO> IRQ1 
1 = IRQ1 > IRQO 

GROUPB 
o = IRQ2 > (IRQ3,IRQ4) 
1 = (IRQ3,IRQ4) > IRQ2 

SUBGROUPB 
o = IRQ3 > IRQ4 
1 = IRQ4 > IRQ3 

GROUPC 
o = IRQ5 > (IRQ6,IRQ7) 
1 = (IRQ6,IRQ7) > IRQS 

SUBGAOUPC 
o = IRQS > IRQ7 
1 = IRQ7 > IRQ6 

R255 BANK 1 (FF) WUMSK 
WAKE-UP MASK REGISTER 

'------ THESE BITS CORRESPOND TO BITS 
IN WAKE-UP MATCH REGISTER; Os 
MASK CORRESPONDING MATCH BITS 

Figure 8_ Mode and Control Registers (Continued) 

413 



1/0 PORTS 

The SuperS has 40 I/O lines arranged into five S-bit ports. 
These lines are all TTL-compatible, and can be configured 
as inputs or outputs. Some can also be configured as 
address/data lines. 

Each port has an input register, an output register, and a 
register address. Data coming into the port is stored in the 
input register, and data to be written to a port is stored in the 
output register. Reading a port's register address returns the 
value in the input register; writing a port's register address 
loads the value in the output register. If the port is configured 
for an output, this value will appear on the external pins. 

When the CPU reads the bits configured as outputs, the 
data on the external pins is returned. Under normal output 
loading, this has the same effect as reading the output 
register, unless the bits are configured as open-drain 
outputs. 

The ports can be configured as shown in Table 2. 

Port 

a 

2 and 3 

Table 2_ Port Configuration 

Configuration Choices 

Address outputs and/or general I/O 
Multiplexed address/data(or I/O, only for ROM 
and Proto pack) 
Control I/O for UART, handshake channels, and 
counter/timers; also general 110 and external 
interrupts 

4 General 110 

Port 0 

Port 0 can be configured as an I/O port or an output for 
addressing external memory, or it can be divided and used as 
both. The bits configured as I/O can be either all outputs or all 
inputs; they cannot be mixed. If configured for outputs, they 
can be push-pull or open-drain type. 

Any bits configured for I/O can be accessed via R208. To write 
to the port, specify R20S as the destination (dst) of an 
instruction; to read the port, specify R208 as the source (src). 

Port 0 bits configured as I/O can be placed under handshake 
control of handshake channel 1. 

Port 0 bits configured as address outputs cannot be accessed 
via the register. 

In ROM less devices, initially the four lower bits are configured 
as address eight through twelve. 

414 

Port 1 

In the ROM less device, Port 1 is configured as a byte-wide 
address/data port. It provides a byte-wide multiplexed 
address/data path. Additional address lines can be added 
by configuring Port O. 

The ROM and Protopack Port 1 can be configured as above 
or as an I/O port; it can be a byte-wide input, open-drain 
output, or push-pull output. It can be placed under 
handshake control or handshake channel O. 

Ports 2 and 3 

Ports 2 and 3 provide external control inputs and outputs for 
the UART, handshake channels, and counter/timers. The 
pin assignments appear in Table 3. 

Bits not used for control I/O can be configured as 
general-purpose I/O lines and/or external interrupt inputs. 

Those bits configured for general I/O can be configured 
individually for input or output. Those configured for output 
can be individually configured for open-drain or push-pull 
output. 

All Port 2 and 3 input pins are Schmitt-triggered. 

The port address for Port 2 is R21 0, and for Port 3 is R211. 

Table 3. Pin Assignments for Ports 2 and 3 

Port 2 Port 3 

Bit Function Bit Function 

a UART receive clock a UART receive data 
UART transmit clock UART transmit data 

2 Reserved 2 Reserved 
3 Reserved 3 Reserved 
4 Handshake a input 4 Handshake 1 input/WAIT 

5 Handshake a output 5 Handshake 1 output/OM 

6 Counter a input 6 Counter 1 input 
7 Counter a 110 7 Counter 1110 

Port 4 

Port 4 can be configured as I/O only. Each bit can be 
configured individually as input or output, with either 
push-pull or open-drain outputs. All Port 4 inputs are 
Schmitt-triggered. 

Port 4 can be placed under handshake control of 
handshake channel O. Its register address is R212. 



UART 

The UART is a full-duplex asynchronous channel. It 
transmits and receives independently with 5 to 8 bits per 
character, has options for even or odd bit parity, and a 
wake-up feature. 

Data can be read into or out of the UART via R239, Bank O. 
This single address is able to serve a full-duplex channel 
because it contains two complete 8-bit registers-one for 
the transmitter and the other for the receiver. 

Pins 

The UART uses the following Port 2 and 3 pins: 

Port/Pin 

2/0 
3/0 
2/1 
3/1 

Transmitter 

UART Function 

Receive Clock 
Receive Data 
Transmit Clock 
Transmit Data 

When the UART's register address is specified as the 
destination (dst) of an operation, the data is output on the 
UART, which automatically adds the start bit, the 
programmed parity bit, and the programmed number of 
stop bits. It can also add a wake-up bit if that option is 
selected. 

If the UART is programmed for a 5-, 6-, or 7 -bit character, the 
extra bits in R239 are ignored. 

Serial data is transmitted at a'rate equal to 1, 1/16, 1/32 or 
1/64 of the transmitter clock rate, depending. on the 
programmed data rate. All data is sent out on the falling 
edge of the clock input. 

When the UART has no data to send, it holds the output 
marking (High). It may be programmed with the Send Break 
command to hold the output Low (Spacing), which it 
continues until the command is cleared. 

Receiver 

The UART begins receive operation when Receive Enable 
(URC, bit 0) is set High. After this, a Low on the receive input 
pin for longer than half a bit time is interpreted as a start bit. 
The UART samples the data on the input pin in the middle of 
each clock cycle until a complete byte is assembled. This is 
placed in the Receive Data register. 

Ifthe 1 X clock mode is selected, external bit synchronization 
. must be provided, and the input data is sampled on the 
rising edge of the clock. 

For character lengths of less than eight bits, the UART 
inserts ones into the unused bits, and, if parity is enabled, 
the parity bit is not stripped. The data bits, extra ones, and 
the parity bit are placed in the UART Data register (UIO). 

While the UART is assembling a byte in its input shift register, 
the CPU has time to service an interrupt and manipulate the 
data character in UIO. 

Once a complete character is assembled, the UART checks 
it and performs the following: 

IIil If it is an·ASCIl control character, the UART sets the 
Control Character status bit. 

Ii! It checks the wake-up settings and completes any 
indicated action. 

!i:! If parity is enabled, the UART checks to see if the 
calculated parity matches the programmed parity bit. If 
they do not match, it sets the Parity Error bit in URC 
(R236 Bank 0), which remains set until reset by software. 

II It sets the Framing Error bit (URC, bit 4) if the character is 
assembled without any stop bits. This bit remains set until 
cleared by software. 

Overrun errors occur when characters are received faster 
than they are read. That is, when the UART has assembled a 
complete character before the CPU has read the current 
character, the UART sets the Overrun Error bit (URC, bit 3), 
and the character currently in the receive buffer is lost. 

The overrun bit remains set until cleared by software. 

415 



ADDRESS SPACE 

The Super8 can access 64K bytes of program memory and 
64K bytes of data memory. These spaces can be either 
combined or separate. If separate, they are controlled by the 
OM line (Port P3s), which selects data memory when Low 
and program memory when High. 

Figure 9 shows the system memory space. 

CPU Program Memory 

Program memory occupies addresses 0 to 64K. External 
program memory, if present, is accessed by configuring 
Ports 0 and 1 as a memory interface. 

The address/data lines are controlled by AS, OS and RiW. 

The first 32 program memory bytes are reserved for 
interrupt vectors; the lowest address available for user 
programs is 32 (deCimal). This value is automatically loaded 
into the program counter after a hardware reset. 

ROMless 

Port 0 can be configured to provide from 0 to 8 additional 
address lines. Port 1 is always used as an 8-bit multiplexed 
address/data port. 

e5535 r-------., 

THIS BOUNDARY } 
MAY BE AT 0, OR 

EXTERNAL 
PROGRAM 
MEMORY 

ROM and Proto pack 

Port 1 is configured as multiplexed address/data or as I/O. 
When Port 1 is configured as address/data, Port 0 lines can 
be used as additional address lines, up to address 15. 
External program memory is mapped above internal 
program memory; that is, external program memory can 
occupy any space beginning at the top of the internal ROM 
space up to the 64K (16-bit address) limit. 

CPU Data Memory 

The external CPU data memory space, if separated from 
program memory by the OM optional output, can be 
mapped anywhere from 0 to 64K (full 16-bit address space). 
Data memory uses the same address/data bus (Port 1) and 
additional addresses (chosen from Port 0) as program 
memory. Data memory is distinguished from program 
memory by the OM pin (P3s), and by the fact that data 
memory can begin at address OOOOH. This feature differs 
from the Z8. 

65535 r------..., 

EXTERNAL 
DATA 

MEMORY 

8192 DEPEN:~~GS~z~ t----------1 } ON-CHIP 

ROMOR 

32 t----------1 ~~~:ACK 
INTERRUPT VECTORS 

PROGRAM MEMORY DATA MEMORY 

Figure 9. Program and Data Memory Address Spaces 

416 



INSTRUCTION SET 

The Super8 instruction set is designed to handle its large 
register set. The instruction set provides a full complement 
of 8-bit arithmetic and logical operations, including multiply 
and divide. It supports BCD operations using a decimal 
adjustment of binary values, and it supports incrementing 
and decrementing 16-bit quantities for addresses and 
counters. 

It provides extensive bit manipulation, and rotate and shift 
operations, and it requires no special 1/0 instructions-the 
1/0 ports are mapped into the register file. 

Instruction Pointer 

A special register called the Instruction Pointer (IP) provides 
hardware support for threaded-code languages. It consists 
of register-pair R218 and R219, and it contains memory 
addresses. The MSB is R218. 

Threaded-code languages deal with an imaginary 
higher-level machine within the existing hardware machine. 
The IP acts like the PC for that machine. The command 
NEXT passes control to or from the hardware machine to the 
imaginary machine, and the commands ENTER and EXIT 
are imaginary machine equivalents of (real machine) CALLS 
and RETURNS. 

If the commands NEXT, ENTER, and EXIT are not used, the 
IP can be used by the fast interrupt processing, as 
described in the Interrupts section. 

Flag Register 

The Flag register (FLAGS) contains eight bits that describe 
the current status of the Super8. Four of these can be tested 
and used with conditional jump instructions; two others are. 
used for BCD· arithmetic. FLAGS also contains the Bank 
Address bit and the Fast Interrupt Status bit. 

The flag bits can be set and reset by instructions. 

CAUTION 

Do not specify FLAGS as the destination of an 
instruction that normally affects the flag bits or the 
result will be unspecified. 

The following par~graphs describe each flag bit: 

Bank Address_ This bit is used to select one of the register 
banks (0 or 1) between (decimal) addresses 224 and 255. It 
is cleared by the SBO instruction and set by the SB1 
instruction. 

Fast Interrupt Status. This bit is set during a fast interrupt 
cycle and reset during the IRET following interrupt servicing. 
When set, this bit inhibits all interrupts and causes the fast 
interrupt return to be executed when the IRET instruction is 
fetched. 

Half-Carry. This bit is set to 1 whenever an addition 
generates a carry out of bit 3, or when a subtraction borrows 
out of bit 4. This bit is used by the Decimal Adjust (DA) 
instruction to convert the binary result of a previous addition 
or subtraction into the correct decimal (BCD) result. This 
flag, and the Decimal Adjust flag, are not usually accessed 
by users. 

Decimal Adjust. This bit is used to specify what type of 
instruction wa!1 executed last during BCD operations, so a 
subsequent Decimal Adjust operation can function 
correctly. This bit is not usually accessible to programmers, 
and cannot be used as a test condition. 

Overflow Flag. This flag is set to 1 when the result of a 
twos·complement operation was greater than 127 or less 
than-128, It is also cleared to 0 during logical operations. 

Sign Flag. Following arithmetic, logical, rotate, or shift 
operations, this bit identifies the state of the MSB of the 
result. A 0 indicates a positive number and a 1 indicates a 
negative number. . 

Zero Flag. For arithmetic and logical operations, this flag is 
set to 1 if the result of the operation is zero. 

For operations that test bits in a register, the zero bit is set to 1 
if the result is zero. 

For rotate and shift operations, this bit is set to 1 if the result is 
zero. 

·Carry Flag. This flag is set to 1 ifthe result from an arithmetic· 
operation generates a carry out of, or a borrow into, bit 7. 

After rotate and shift operations, it contains the last value 
shifted' out of the specified register. 

It can be set, cleared, or complemented by instructions. 

417 



Condition Codes 

The flags C, Z, S, and V are used t.o centrel the eperatien .of 
cenditienal jump instructiens. 

The epcede .of a cenditienal jump centains a 4-bit field 
called the cenditien cede (cc). This specifies under which 
cenditiens it is te execute the jump. Fer example, a 
cenditienal jump with the cenditien cede fer "equal" after a 
cempare eperatien .only jumps if the two .operands are 
equal. 

The cenditien cedes and their meanings are given in 
Table 4. 

Addressing Modes 

All .operands except fer immediate data and cenditien 
cedes are expressed as register addresses, program 
memery addresses, .or data memery addresses. The 
addressing medes and their designatiens are: 

Register (R) 
Indirect Register (IR) 
Indexed (X) 
Direct (DA) 
Relative (RA) 
Immediate (1M) 
Indirect (IA) 

Table 4. Condition Codes and Meanings 

Binary Mnemonic Flags Meaning 

0000 F Alvvays false 
1000 Always true 
0111' C C=1 Carry 
1111' NC C=O No carry 
0110' Z Z=1 Zero 
1110' NZ Z=O Not zero 
1101 PL 8=0 Plus 
0101 MI 8=1 Minus 

0100 OV V=1 Overflow 
1100 NOV V=O No overflow 

0110' EQ Z=1 Equal 
1110' NE Z=O Not equal 
1001 GE (8XORV)=0' Greater than or equal 

0001 LT (SXORV)=1 Less than 
1010 GT (Z OR(8XORV))=0 Greater than 

OOto LE (Z OR (8XOR V))= 1 Less than or equal 
1111' UGE C=O Unsigned greater than or equal 

0111' ULT C=1 Unsigned less than 
1011 UGT (C=OANDZ=O)= 1 Unsigned greater than 

0011 ULE (CORZ)=1 Unsigned less than or equal 

NOTE: Asterisks ('J indicate condition codes that relate to two different mnemonics buttestthe same flags. For example, Z and EO are both True ifthe 
Zero flag is set, but after an ADD instruction, Z would probably be used, while after a CP instruction, EO would probably be used. 

418 



Registers can be addressed by an 8-bit address in the range 
of 0 to 255. Working registers can also be addressed using 
4-bit addresses,. where five bits contained in a register 
poi nter (R218 or R219) are concatenated with th ree bits 
from the 4-bit address to form an 8-bit address. 

Notation and Encoding 

The instruction set notations are described in Table 5. 

Functional Summary of Commands 

Registers can be used in pairs to generate 16-bit program or 
data memory addresses. 

Figure 10 shows the formats followed by a quick reference 
guide to the commands. 

Table 5. Instruction Set Notations 

Notation Meaning Notation Meaning 

cc Condition code (see Table 4) DA. Direct address (between 0 and 65535) 

Working register (between 0 and 15) RA Relative address 
rb Bit of working register 1M Immediate 

rO Bit 0 of working register IML Immediate long 

R Register or working register dst Destination operand 

RR Register pair or wqrking register pair (Register pairs src Source operand 

always start on an even-number boundary) @ Indirect address prefix 

IA Indirect address SP Stack pointer 

Ir Indirect working register PC Program counter 

IR Indirect register or indirect working register IP Instruction pointer 
Irr Indirect working register pair FLAGS Flags register 

IRR Indirect register pair or indirect working register pair RP Register pointer 

X Indexed # Immediate operand prefix 

XS Indexed, short offset % Hexadecimal number prefix 

XL Indexed, long offset OPC Opcode 

One-Byte Instructions 

dst I OPC I INC 

lWo-Byte Instructions 

OPC dst 
Ace, ADD. AND·, CP, LO, LOCo LOCI. LOCO, 
lOE, LOED, OR, sac. SUB, TCM. TM, XOR 

OPC dst LOC, LDCPD, LoePI, lOE, LDEPO. tOEPI 

OPC CALL. CA, DEC, DECW, INC, INew, JP, POP, 
dst RL, RLe, RR. ARC. SWAP, elR. SRA, COM 

OPC PUSH, SAP, SRPO, $RP1 

OPC dst b 10 BITe, BITR 

OPC dst b 11 BITS 

r loPC dst DJNZ 

cc loPC dst JR 

dst loPC 

loPC dst LO 

Figure 10. Instruction Formats 

419 



Three-Byte I structions 

OPC dsl sre ADC, ADD, AND, CP, LD, OR, PUSHUD, 
PUSHUI, SBC, SUB, TCM, TM, XOR 

OPC sre dsl ADC, ADD, AND, CPo DIV. LO, LOW, MULT, 
OR, POPUD, PO~UI, sac, SUB, reM, TM. XOR 

OPC dsl bioi sre BAND, BCP, BOR, BXOR, LOB 

OPC sre bi'l dsl BAND, BOR, BT JAT, BXOA, LOB 

OPC sre bioi dsl BTJRF 

OPC sre dsl RA CPIJE, CPIJNE 

OPC dsl x I src LD, LOC, LDE 

OPC sre x I dsl LO, L~C, LOE 

OPC dsl CALL 

ee loPC dsl JP 

Four-Byte Instructions 

OPC dst IX'i"'Oor11 sre sre LOC, LOE 
} FOR LOC, x = EVEN 

FOR lDE, x = ODD 
OPC src Ix*Oor1 dsl dsl LOC, LOE 

OPC dsl I 0000 src sre LOC' 

OPC src I 0000 dsl dsl LOC 

OPC dsl I 0001 sre sre LDE 

OPC dsl I 0001 dsl dsl LOE 

OPC dsl sr LOW 

Figure 10. Instruction Formats (Continued) 

INSTRUCTION SUMMARY 

AddrMode Opcode Flags Affected ~ AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z 5 V D H and Operation dst src (Hex) CZSVDH 

ADCdst,src (Note 1) 10 1r 1r 1r - a 1r BORdst, src rO rB 07 -1r a u-"":' 
dst .... dst + src + C dst .... dst OR src Rb rO 

ADDdst,src (Note 1) 00 1r 1r 1r 1r a 1r BTJRF RA rb 37 ------
dst - dst + src ifsrc = 0, PC = PC + dst 

ANDdst,src (Note 1) 50 -1r1r 0-- BTJRT RA rb 37 ----....!....-
dst .... dst AND src if src = '1, PC = PC + dst 

BAND dst,src rO Rb 67 -1r a u-- BXOR dst, src rO Rb 27 -1rOU--
dst .... dst AN D src Rb rO 67 . dst - dst XOR src Rb rO 27 

BCP dst, src rO Rb 17 -1r a U-- CALLdst DA F6 ------
dst - src SP-SP - 2 IRR F4 

BITCdst rb 57 -1rOU--
@SP-PC IA D4 

dst .... NOidst 
PC .... dst 

CCF EF 
BITRdst rb 77 

1r-----------
C = NOTC 

dst .... O 
CLRdst R BO 

BITSdst rb 77 
------

------
dst .... a IR B1 

dst .... 1 

420 



INSTRUCTION SUMMARY (Continued) 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V D H and Operation dst src (Hex) C Z S V D H 

COMdst R 60 -** 0-- INCWdst RR AO -***--
dst- NOTdst IR 61 dst-l + dst IR A1 

CP dst,src (Note 1) AD * * * *-- IRET(Fast) BF Restored to 
dst - src PC-IP before interrupt 

CPIJE Ir C2 
FLAG-FLAG' 

------
FIS-O 

if dst - src = O,then 
PC -PC + RA IRET (Normal) BF Restored to 
Ir-Ir, + 1 FLAGS - @SP; SP - SP + 1 before interrupt 

CPIJNE Ir 02 ------
PC - @SP; SP - SP + 2; SMR (0) - 1 

if dst - src = O,then JPcc,dst OA ccO ------
PC-PC + RA if cc is.true, (cc=Oto F) 
Ir-Ir + 1 PC-dst IRR 30 

DAdst R 40 * 'If *U-- JRcc,dst RA ccB ------
dst- OAdst IR 41 if cc is true, (cc=OtoF) 

DECdst R 00 
PC-PC + d 

-'If **--
dst-dst - 1 IR 01 LD dst,src 1M rC ------

DECWdst RR 80 
dst-src r 'R r8 

-'If *'If-- R r9 
dst-dst - 1 IR 81 

(r=Oto F) 
DI 8F ------ r IR C7 
SMR(O)-O IR r 07 

R R E4 
DIV dst, src R IR E5 
dst ~ src RR R 94 ****-- R 1M E6 . 
dst (Upper) - RR IR 95 IR 1M 06 

Quotient IR R F5 
dst (Lower) - RR 1M 96 87 x 

Remainder x 97 
DJNZ r,dst RA rA ------ LDBds\, src rO Rb 47 ------
r - r - 1 (r= 0 to F) 

dst - src Rb rO 47 
if r = a 

PC-PC + dst LDC/LDE r Irr C3 ------

EI 9F 
dst -src Irr 03 

------ E7 
SMR(0)-1 

xs 
xs r F7 

ENTER 1F ------ r x1 A7 
SP-SP - 2 x1 r B7 
@SP-IP OA A7 
IP-PC OA B7 
PC-@IP 

LDCD/LDED ds\, src Irr E2 ------
IP-IP + 2 

dst -src 
EXIT 2F ------ rr - rr - 1 
IP-@SP 

LDEI/LDCI dst, src Irr E3 ------
SP-SP + 2 

dst- src 
PC-@IP 

r(- rr + 1 
IP-IP + 2 

INCdst rE 
LDCPD/LDEPD dst,src 

-'If**-- rr - rr - 1 Irr F2 ------
dst -dst + 1 (r=OtoF) 

dst -src 
R 20 
IR 21 

421 



INSTRUCTION SUMMARY (Continued) 

AddrMode Opcode Flags Affected AddrMode Opcode Flags Affected 
Instruction Byte Instruction Byte 
and Operation dst src (Hex) C Z S V D H and Operation dst src (Hex) CZSVOH 

LDCPIILDEPI dsl, src RLCdst R 10 ****--
rr - rr + 1 Irr F3 ------ dSI(O) -C IR 11 
dsl - src C-dsl(7) 

LOW dsl, src RR RR C4 ------
dsl (N + 1)- dsl (N) 
N = 0106 

dsl - src RR IR C5 
RR IMM C6 RRdsl R EO ****--

MULT dst, src RR R 84 *0**--
C-dsl(O) IR E1 

RR IR 85 
dsl (7) - dsl (0) 

RR 1M 86 
dsl (N) - dsl (N + 1) 
N = 0106 

NEXT OF ------

PC-@IP RRCdsl R CO * * *.* --

IP-IP + 2 
. C-dsl(O) IR C1 
dst(7) -C 

NOP FF ------ dsl (N) - dsl (N + 1) 

OR dsl,src (Nole 1) 40 -**0--
N = 0106 

dsl - dsl OR src SBO 4F ------

POPdsl R 50 
BANK-O ------

dsl-@SP; IR 51 SBl 5F ------
SP -SP + 1 BANK-1 

POPUD dst, src R IR 92 ------ SBCdsl,src (Nole 1) 30 * * * * 1 * 
dsl-src dsl - dsl - src - C 
IR-IR - 1 

SCF OF 1-----
POPUI dsl, src R IR 93 ------ C-1 
dsl - src 

SRAdsl R 00 IR-IR + 1 ***0--
dsl (7) - dsl (7) IR 01 

PUSH src R 70 ------- C-dsl(O) 
SP-SP - 1;@SP-src IR 71 dsl (N) - dsl(N + 1) , 

N = 0106 
PUSHUO dsl, src IR R 82 ------
IR-IR - 1 SRP src 1M 31 ------
dsl-src RPO-IM 

PUSHUI dsl, src IR R 83 
RP1-IM + 8 ------

IR-IR + 1 SRPO 1M 31 ------
dsl-src RPO-IM 

RCF CF 0----- SRPl 1M 31 ------
C-O RP1 +-' 1M 

RET AF ------ SUB dsl,src (Nole 1) 20 * * * * 1 * 
PC-@SP;SP-SP + 2 dsl - dsl ;- src 

RLdsl R 90 ****--
C-dsl(7) IR 91 
dsl (0) - dsl (7) 
dsl (N + 1) - dsl (N) 
N = 0106 

422 



INSTRUCTION SUMMARY (Continued) 

AddrMode Opcode Flags Affected 
Instruction Byte 
and Operation dst src (Hex) CZSVDH 

SWAPdst R FO -** U--
dst (0-3) .... dst (4-7) IR F1 

TCMdst,src (Note 1) 60 -** 0--
(NOT dst) AND src 

TMdst,src (Note 1) 70 -** o -'-
dstANDsrc 

WFI 3F ------

XORdst,src (Note 1) BO -**0--
dst - dst XOR src 

NarE 1: These instructions have an identical set of addressing modes, 
, which are encoded for brevity. The first opcode nibble identifies 

the command, and is found in the table above. The second 
nibble, represented by a 0, defines the addressing mode as 
shown in Table 6.: 

Table 6. Second Nibble 

AddrMode 
Lower 

dst src Opcode Nibble 

rn 
Ir @] 

R R [II 
R IR III 
R 1M [§] 

For example, to use an opcode represented as xo with an "RR" 
addressing mode, use the opcode "x4." 

o = Cleared to Zero 
= Set to One 
= Unaffected 

* = Set or reset, depending on result of operation. 
U = Undefined 

423 



SUPER-80PCODEMAP 

o 2 3 

6 6 6 6 
o DEC DEC ADD ADD 

Rl IRI '1,'2 rl, lr2 

6 6 6 6 
RLC RLC ADC ADC 
Rl IRI '1.'2 rl, lr2 

6 6 6 6 
2 INC INC SUB SUB 

Rl IRI '1,'2 rl, lr2 

10 
NOTE 

6 6 
JP 

C 
SBC SBC 

IRRI r1,f2 rl, lr2 
3 

6 6 6 6 
4 DA DA OR OR 

Rl IRI (1,(2 (1. lr2 

10 10 6 6 
5 POP POP AND AND 

Rl IRI '1,'2 rl, lr2 
r---

6 6 6 6 
COM COM TCM TCM 

Rl IRI '1.'2 rl, lr2 

10/12 12/14 6 6 
PUSH PUSH TM TM 

'if 6 

e. 
CD :c 7 

R2 IR2 'l,r2 (1, lr2 

10 10 10 10 

.a 
Z .. 

DECW DECW PUSHUD PUSHUI 
RRI IRI IR1,R2 IR1,R2 

CD 8 D. 
D. 

::> 
6 6 10 10 

9 RL RL POPUD POPUI 
Rl IRI IR2,Rl IR2,Rl 

10 -,10 6 6 
A INCW INCW CP CP 

RRI IRI '1,'2 rl, lr2 

6 6 6 6 
B CLR CLR XOR XOR 

Rl IRI fl.r2 rl, lr2 

6 6 16/18 12 
C RRC RRC CPIJE LDC· 

Rl IRI Ir,r2,RA (1, lrr2 

6 6 16/18 12 
0 SRA SRA CPIJNE LDC· 

Rl IRI Irp2,RA '2, Irr1 

6 6 16 16 
E RR RR LDCD· LDCI· 

Rl IRI (1. lrr2 (1. lrr2 

8 8 16 16 
F SWAP SWAP LDCPD· LDCPI· 

Rl IRI (2, lrr1 '2. lrr1 

NOTE A NOTEB 

NOTED 

424 

Lower Nibble (Hex) 

4 5 6 7 8 

10 10 10 10 6 
ADD ADD ADD BOR· LD 
R2,Rl IR2,Rl Rl,IM rO-Rb rl,R2 

10 10 10 10 
ADC ADC ADC BCP 
R2,Rl IR2,Rl Rl,IM rl,b,R2 

10 10 10 10 
SUB SUB SUB BXOR· 
R2,Rl IR2,Rl Rl,IM rO-Rb 

10 10 10 
NOTE 

SBC SBC SBC 
A 

R2,Rl IR2,Rl Rl,IM 

10 10 10 10 
OR OR OR LOB· 

R2,Rl IR2,Rl Rl,I,M rO-Rb 

10 10 10 8 
. AND AND AND BITC 

R2,Rl IR2,Rl Rt,IM rl,b 

10 10 10 10 
TCM TCM TCM BAND· 
R2,Rl IR2,Rl Rl,IM rO-Rb 

10 10 10 
NOTE TM TM TM 

B 
R2,Rl IR2,Rl Rl,IM 

24 24 24 10 
MULT MULT MULT LD 

R2,RRI IR2,RRI IM,RRI rl,x,r2 

28/12 28/12 28/12 10 
DIV DIV DIV LD 

R2,RRI IR2,RRI IM,RRI '2,x,rl 

10 10 10 
NOTE CP CP CP 

D 
R2,Rl IR2,Rl Rl,IM 

10 10 10 
NOTE XOR XOR XOR 

R2,Rl IR2,Rl .Rl,IM E 

10 10 12 6 
LDW LOW LDW LD 

RR2,RRI IR2,RRI RR1,IML rl, lr2 

20 10 ,6 
CALL LD. LD 

IAI IR1,IM Irl,r2 

10 10 10 18 
LD LD LD LDC· 

R2,Rl IR2,Rl Rl,IM rl. lrr2,xs 

18 10 18 18 
CALL LD CALL LDC· 
IRRI R2, IR I DAI r2, lrrl,xs 

NOTEC 

NOTEE 

Figure 11. Opcode Map 

9 

6 
LD 

r2,Rl 

A B 

12/10 12/10 6 
DJNZ JR LD 
rl,RA cc,RA rl,IM 

Legend: 
r ~ 4·bit address 
R ~ 8-bit address 
b ~ bit number 
Rl arrl ~ dst address 
R2 or'2 = src address 

Sequence: 

o E F 

12/10 6 14 
JP ·INC NEXT 

cc,DA r1 

-----w-
ENTER 

-
22 

EXIT 

----:s-
WFI 

-
6 

SBO 

~ 
SBI 

-

-

-
6 
01 

~ 
EI 

~ 
RET 

16i6 
IRET 

~ 
RCF 

~ 
SCF 

~ 
CCF 

~ 
NOP 

·Examples: 
BOR rO·R2 

is BOR rl ,b,R2 
or BOR r2,b,Rl 

LDCrl,trr2 
i.s LOC (1,lrr2 = program 
or LDE rl,lrr2 = data 

Opcode, first. second, third operands 

NOTE: The blank areas are not defined. 



INSTRUCTIONS 

Table 7. Super81nstructions 

Mnemonic Operands Instruction Mnemonic Operands Instruction 

Load Instructions Program Control Instructions 

CLR dst Clear BTJRT dst, src Bit test jump relative on True 

LD dst, src Load BTJRF dst, src Biltest jump relative on False 

LOB dst, src Load bit CALL dst Call procedure 

LDC dst, src Load program memory CPIJE dst, src Compare, increment and jump on 

LDE dst, src Load data memory equal 

LOCO dst, src Load program memory and CPIJNE dst, src Compare, increment and jump on 

decrement non-equal 

LDED dst, src Load data memory and DJNZ r, dst Decrement and jump on non-zero 

decrement ENTER Enter 

LOCI dst, src Load program memory and EXIT Exit 

increment IRET Return from interrupt 

LDEI dst, src Load data memory and increment JP cc, dst Jump on condition code 

LDCPD dst, src ' Load program memory with JP dst Jump unconditional 

pre-decrement JR cc, dst Jump relative on condition code 

LDEPD dst, src Load data memory with JR - dst Jump relative unconditional 

pre-decrement NEXT Next -

LDCPI dst, src Load program m~mory with RET Return 

pre-increment WFI Wait for interrupt 

LDEPI dst, src Load data memory with Bit Manipulation Instructions 
pre-increment BAND dst, src ' BitAND 

LOW dst, src Load word BCP dst, src Bit compare 
POP dst Pop stack BITC dst Bit complement 
POPUD dst, src Pop user stack (decrement) BITR dst Bit reset 
POPUI dst, src Pop user stack (increment) BITS dst Bit set 
PUSH src Push stack BOR dst; src BitOR 
PUSHUD dst, src Push user stack (decrement) BXOR dst, src Bit exclusive OR 
PUSHUI dst, src Push user stack (increment) TCM dst, src Test complement under mask 

TM dst, src Test under mask 

Arithmetic Instructions 
Rotate and Shift Instructions 

ADC dst, src Add with carry RL dst Rotate left 
ADD dst, src Add RLC dst Rotate left through carry 
CP dst, src Compare RR dst Rotate right 
DA dst Decimal adjust RRC dst Rotate right through carry 
DEC dst Decrement SRA dst Shift right arithmetic 
DECW dst Decrement word SWAP dst Swap nibbles 
DIV dst, src Oivide. 
INC dst Increment CPU Control Instructions 

INCW dst Increment word CCF Complement carry flag 

MULT dst, src Multiply 01 Disable interrupts 

SBC dst, src Subtract with carry EI Enable interrupts 

SUB dst, src Subtract NOP Do nothing 
RCF Reset carry flag 
SBO Set bank 0 

Loglcalltlstructions SB1 Set bank 1 
AND dst, src Logical AND SCF Set carry flag 
COM dst Complement SRP src Set register pointers 
OR ,ds!. src Logical OR SRPO src Set register pointer zero 
XOR dst, src Logical exclusive SRP1 src Set register pointer one 

425 



INTERRUPTS 

The SuperS interrupt structure contains S levels of interrupt, 
16 vectors, and 27 sources. 

Interrupt priority is assigned by level, controlled by the 
Interrupt Priority register (IPR). Each level is masked (or 
enabled) according to the bits in the Interrupt Mask register 
(IMR), and the entire interrupt structure can be disabled by 
clearing a bit in the System Mode regisfer (R222). 

. The three major components of the interrupt structure are, 
sources, vectors, and levels. These are shown in Figure 10 
and discussed in the following paragraphs. 

Sources 

A source is anything that generates an interrupt. This can be 
internal or external to the SuperS MCU. Internal sources are 
hardwired to a particular vector and level, while external 
sources can be assigned to various external events. 

Vectors 

The 16 vectors are divided unequally among the 'eight 
levels. For example, vector 12 belongs to level 2, while level 
3 contains vectors 0, 2, 4, and 6. 

The vector number is used to generate the address of a 
particular interrupt servicing routine; therefore all interrupts 
using the same vector must use the same interrupt handling 
routine. 

Levels 

Levels provide the top level of priority assignment. While the 
sources and vectors are hardwired within each level, the 
priorities of the levels can be changed by using the Interrupt 
Priority register (see FigureS for bit details). 

If more than one interrupt source is active, the source from 
the highest priority level will be serviced first. If both sources 
are from the same level, the source with the lowest vector will 
have priority. For example, if the UART Receive Data bit and 
UART Parity Error bit are both active, the UART Parity Error 
bit will be serviced first because it is vector 16, and UART 
receive data is vector 20. 

The levels are shown in Figure 12. 

INTERRUPT SOURCES POLLING VECTORS LEVELS --,- --,-
-r;;2 COUNTER 0 ZERO COUNT i 1'2 EXTERNAL INTERRUPT (P2.) I I 

EXTERNAL INTERRUPT (P2,) I I 
I 

1,4 
I 

COUNTER 1 ZERO COUNT I I'R05 
EXTERNAL INTERRUPT (P3,) I 

I I EXTERNAL INTERRUPT (P3,) I I 
I I I 

~:~~~~:~,~~~~~~~~ ?P24) I I 128 ,'R04 

EXTERNAL INTERRUPT (P2s) I I I 

, ~:~~~~:LK,~~~~~~~~ (~341 I 
I I I 

I 130 I'R07 
I 

EXTERNAL INTERRUPT (P3s) I 
I 

I '0 
RESERVEO 

I 

RESERVED 
12 

IR03 
I 

EXTERNAL INTERRUPT (P32) 
1'4 

'6 
EXTERNAL INTERRUPT (P22) I 

I I 
18 I 

EXTERNAL INTERRUPT (P23) i 10 
,'ROO 

EXTERNAL INTERRUPT (P33) I 
I 

UART RECEIVE OVERRUN 
I 

16 I 
UART FRAMING ERROR I 
UART PARITY ERROR I 
UART WAKEUP DETECT I 
UART BREAK DETECT 

18 
I'R06 

UART CONTROL CHAR DETECT 
I 

UART RECEIVE DATA 20' I 
EXTERNAL INTERRUPT (P3D) I 

I 
EXTERNAL INTERRUPT (P2D) 22 I 

I 
UART ZERO COUNT I I 

---,C 24 I 
EXTERNAL INTERRUPT (P2,) IIROI 
UART TRANSMIT DATA 26 I 
EXTERNAL INTERRUPT (P3,) I 

I 
I I 

Figure 12. Interrupt Levels and Vectors 

426 



Enables 

, Interrupts can be enabled or disabled as follows: 

II Interrupt enable/disable. The entire interrupt structure 
can be enabled or disabled by setting bit 0 in the System 
.Mode register (R222). 

m Level enable. Each level can be enabled or disabled by 
setting the appropriate bit in the Interrupt Mask register 
(R221). 

l:I Level priority. The priority of each level can be controlled 
by the values in the Interrupt Priority register (R255, Bank 
0). 

Ei1 Source enable/disable. Each interrupt source. can be 
enabled or disabled in the sources' Mode and Control 
register. 

Service Routines 

Before an interrupt request can be granted, a) interrupts 
must be enabled, b) the level must be enabled, c) it must be 
the highest priority interrupting level, d) it must be enabled at 
the interrupting source, and e) it must have the highest 
priority within the level. 

If all this occurs, an interrupt request is granted. 

The SuperB then enters an interrupt machine cycle that 
completes the following sequence: 

[J It resets the Interrupt Enable bit to disable all subsequent 
interrupts. 

f! It saves the Program Counter and status flags on the 
stack. 

c It branches to the address contained within the vector 
location for ihe interrupt. 

1& It passes control to the interrupt servicing routine. 

When the interrupt servicing routine has serviced the 
interrupt, it should issue an interrupt return (IRET) 
instruction. This restores the Program Counter and status 
flags and sets the Interrupt Enable bit in the System Mode 
register. 

Fast Interrupt Processing 

The SuperB provides a feature' called fast interrupt 
processing, which completes the interrupt servicing in 6 
clock periods instead of the usual 22. 

Two hardware registers support fast interrupts. The 
Instruction Pointer (IP) holds the starting address of the 
service routine, and saves the PC value when a fast interrupt 
occurs. A dedicated register, FLAG', saves the contents of 
the FLAGS register when a fast interrupt occurs. 

To use this feature, load the address of the service routine in 
the Instruction Pointer, load the level number into the Fast 

'Interrupt Select field, and turn on the Fast Interrupt Enabl,e 
bit in the System Mode register. 

When an interrupt occurs in the level selected for fast 
interrupt processing, the following occurs: 

I!l The contents of the Instruction Pointer and Program 
Counter are swapped. 

I1l The contents of the Flag register are copied into FLAG: 

III The Fast Interrupt Status Bit in FLAGS is set. 

III The interrupt is serviced. 

[J When IRET is issued after the interrupt service outline is 
completed, the Instruction Pointer and Program Counter 
are swapped again. . 

&lI The contents of FLAG' are copied back into the Flag 
register. 

III The Fast Interrupt Status bit in FLAGS is cleared. 

The interrupt servicing routine selected for fast processing 
should be written so that the location after the IRET 
instruction is the entry point the next time the (same) routine 
is used. 

Level or Edge Triggered 

Because internal interrupt requests are levels and interrupt 
requests from the outside are (usually) edges, the hardware 
for external interrupts uses edge-triggered flip-flops to 
convert the edges to levels. 

The level-activated system requires that interrupt-serving 
software perform some action to remove the interrupting 
source. The action involved in serving the interrupt may 
remove the source, or the software may have to actually 
reset the flip-flops by Writing to the corresponding Interrupt 
Pending register. 

427 



STACK OPERATION 

The SuperB architecture supports stack operations in the 
register file or in data memory. Bit 1 in the external Memory 
Timing register (R254 bank 0) selects between the two. 

Register pair 216-217 forms the Stack Pointer used for all 
stack operations. R216 is the MSB and R217 is the LSB. 

The Stack Pointer always points to data stored on the top of 
the stack. The address is decremented prior to a PUSH and 
incremented after a POP. 

The stack is also used as a returnstack for CALLs and 
interrupts. During a CALL, the contents of the PC are saved 
on the stack, to be restored later. Interrupts cause the 
contents of the PC and FLAGS to be saved on the stack, for 
recovery by IRET when the interrupt is finished. 

When the SuperB is configured for an internal stack (using 
the register file), R217 contains the Stack Pointer. R216 may 

COUNTER/TIMERS 

The SuperB has two identical independently programmable 
16-bit counter/timers that can be cascaded to produce a 
single 32-bit counter. They can be used to count external 
events, or they can obtain their input internally. The internal 
input is obtained by dividing the crystal frequency by four. 

The counter/timers can be set to count up or down, by 
sqftware or. external events. They can be set for single or 
continuous cycle counting, and they can be set with a 

, bi-value option, where two preset time constants alternate in 
loading the counter each time it reaches zero. This can be 
used to produce an output pulse train with a variable duty 
cycle. 

DMA 

The SuperB features an on-chip Direct Memory Access 
(DMA) channel to provide high bandwidth data 
transmission capabilities. The DMA channel can be used by 
the UART receiver, UART transmitter, or handshake channel 
O. Data clm be transferred between the peripheral and 
contiguous locations in either the register file or external 

428 

be used as a general-purpose register, but its contents will 
be changed if an overflow or underflow occurs as the result 
of incrementing or decrementing the stack address during 
normal stack operations. 

User-Defined Stacks 

The SuperB provides for user-defined stacks in both the 
register file and program or data memory. These can be 
made to increment or decrement on a push by the choice of 
opcodes. For example, to implement a stack that grows 
from low addresses to high addresses in the register fil~, use 
PUSHUI and POPUD. For a stack that grows from high 
addresses to low addresses in data memory; use LDEI for 
pop and LDEPD for push. 

The counter/timers can also be programmed to capture the 
count value at an external event or generate an interrupt 
whenever the count reaches zero. They can be turned on 
and off in response to external events by using a gate and/or 
a trigger option. The gate option enables counts only when 
the gate line is Low; the trigger option turns on the counter 
after a transient High. The gate and trigger options used 
together cause the counter/timer to work in gate mode after 
. initially being triggered. . 

The control and status register bits for the counter/timers are 
shown in Figure 5. 

data memory. A 16-bit count register determines the 
number oftransactions to be performed; an interrupt can be 
generated when the count is exhausted. DMA transfers to or 
from the register file require six CPU clock cycles; DMA 
transfers to or from external memory take ten CPU clock 
cycles, excluding wait states. 



ABSOWTE MAXIMUM RATINGS 

Voltage on all pins with respect 
to ground ....................... -O.3Vto +7.0V 

Ambient Operating 
. Temperature .............. See Ordering Information 

Storage Temperature .............. - 65°C to + 150°C 

STANDARD TEST CONDITIONS 

Figure 14 shows the setup for standard test conditions. All 
voltages are referenced to ground, and positive current 
flows into the reference pin. 

Standard conditions are: 

II + 4. 75V ~ Vec~ + 5.25V 

• GND = OV 

DC CHARACTERISTICS 

Symbol Parameter-

VeH Clock Input High Voltage 

Vel Clock Input Low Voltage 

VIH Input High Voltage 

Vil Input Low Voltage 

VRH Reset Input High Voltage 

VRl Reset Input Low Voltage 

VOH Output High Voltage 

VOL Output Low Voltage 

III Input Leakage 

IOl Output Leakage 

IIR Reset Input Current 

lee Vee Supply Current 

Min 

3.8 
-0.3 

2.2 
-0.3 

3.8 
-0.3 

2.4 

-10 
-10 

Stresses greater than these may cause permanent damage to the device. 
This is a stress rating only; operation of the device under conditions more 
severe than those listed for operating conditions may cause permanent 
damage to the device. Exposure to absolute maximum ratings for 
extended periods may also cause permanent damage. 

Max Unit 

Vee V 
0.8 V 

Vee V 
0.8 V 

Vee V 
0.8 V 

V 
0.4 V 

10 JJA 
10 JJA 

-50 fJA 
320 rnA 

+5V 

lK 

TEST LOAD (FOR ALL PINS) 

Standard Test Load 

Condition 

Driven by External Clock Generator·­
Driven by External Clock Generator 

IOH = -400fJA 
IOl =' + 4.0 rnA 

429 



INPUT HANDSHAKE TIMING 

_'N. ~_~16 
RDYOUT .~ 

Fully Interlocked Mode 

AC CHARACTERISTICS (20 MHz) 
Input Handshake 

Number Symbol Parameter 

1 TsDI(DAV) . Data In to Setup Time 

2 TdDAVIf(RDY) . DAV ~ Input to RDY ~ Delay 

3 ThDI(RDY) Data In Hold Time from RDY ~ 

4 TwDAV DAVlnWidth 

5 ThDI(DAV) Data In Hold Time from DAV ~ 

6 TdDAV(RDY) DAV t Input to RDY t Delay 

7 TdRDYf(DAV) RDY ~ Output to DAV t Delay 

NOTES: 
1. Standard Test Load 

Min 

o 

o 
45 

130 

o 

Strobed Mode 

Max 

200 

100 

2. This time assumes user program reads data before DlW Input goes high. ROY will not go high before data is read. 
+Times given are in ns. 
"Times are preliminary and subject to change. 

430 

Notes·; 

2· 



OUTPUT HANDSHAKE TIMING 

DATA OUT ~'--'~--j--1~------6--------------
DAY OUT - 'k...J' 

Fully Interlocked Mode 

AC CHARACTERISTICS (12 MHz, 20 MHz) 
Output Handshake 

Number Symbol Parameter 

TdDO(DAV) Data Out to DAV + Delay 

'2 TdRDYr(DAV) RDY t Input to DAV + Delay 

3 TdDAVOf(RDY) DAV + Output to RDY + Delay 

4 TdRDYf(DAV) RDY +Inputto DAV t Delay 

5 TdDAVOr(RDY) DAV t Output to RDY t Delay 

6 TwDAVO DAV Output Width 

NOTES: 
1. Standard Test Load 

Strobed Mode 

Min Max 

90 

0 110 

0 

0 110 

0 

150 

2. Time given is for zero value in Deskew Counter. For nonzero value of n where n = 1, 2, ... 15 add 2 x n x TpC to the given time. 
:j:Times given are in ns. 
"Times are preliminary and subject to change. 

AC CHARACTERISTICS (12 MHz) 
Read/Write 

Normal Timing Extended Timing 
Number Symbol Parameter Min Max Min Max 

TdA(AS) Address Valid to AS t Delay 35 115 

2 TdAS(A) AS t to Address Float Delay 65 150 

3 TdAS(DR) AS t to Read Data Required Valid 270 600 

4 TwAS AS Low Width 65 150 

5 TdA(DS) Address Float to DS + 20 20 

6a TwDS(Read) DS (Read) Low Width 225 470 

6b TwDS(Write) DS (Write) Low Width 130 295 

7 TdDS(DR) DS + to Read Data Required Valid 180 420 

8 ThDS(DR) Read Data to DS t Hold Time 0 0 

9 TdDS(A) DS t to Address Active Delay 50 135 

10 TdDS(AS) DS t to AS + Delay 60 145 

11 TdDO(DS) Write Data Valid to DS (Write) + Delay 35 115 

12 TdAS(W) AS t to Wait Delay 220 600 

13 ThDS(W) DS t to Wait Hold Time 0 0 

14 TdRW(AS) R ,iii Valid to AS t Delay 50 135 

NOTES: 
1. WAIT states add 167 ns to these times. 
2. Auto-wait states add 167 ns to this time. 
:I: All times are in ns and are for 12 MHz input frequency . 
• Timings are preliminary and subject to change. 

Notes·:!: 

1,2 

1 

2 

Notest* 

2 

431 



AC CHARACTERISTICS (20 MHz) 
Read/Write 

Number Symbol Parameter 

1 TdA(AS) Address Valid to AS t Delay 

2 TdAS(A) AS t to Address Float Delay 

3 TdAS(DR) AS t to Read Data Required Valid 

4 TwAS AS Low Width 

5 TdA(DS) Address Float to DS ~ 

6a TwDS(Read) DS (Read) Low Width 

6b TwDS(Write) DS (Write) Low Width 

7 TdDS(DR) DS ~ to Read Data Required Valid 

8 ThDS(DR) Read Data to DS t Hold Time 

9 TdDS(A) DS tto Address Active Delay 

10 TdDS(AS) DS t to AS ~ Delay 

11 TdDO(DS) Write Data Valid to DS (Write) ~ Delay 

12 TdAS(W) AS t to Wait Delay 

13 ThDS(W) DS t to Wait Hold Time 

14 TdRW(AS) R/IN Valid to AS t Delay 

NOTES: 
1. WAIT states add 100 ns to these times. 
2. Auto·wait states add 100 ns to this time. 
t All times are in ns and are for 20 MHz input frequency . 
• Timings are preliminary and subject to change. 

PORTO 

Normal Timing Extended Timing 
Min Max Min Max 

20 50 

35 85 

150 335 

35 85 

0 0 

125 275 

65 165 

80 225 

0 0 

20 70 

30 80 

10 50 

90 335 2 

0 0 

20 70 

DM ____ -J~------~----------------------------------------------------~~ 

PORT 1 

.... ------------------{12)-----~--------_!.11------"']1~ 

External Memory Read and Write Timing 

432 



ADDRESS OUT ~ ___________ ~~ __ A_~_A1_3 ______ ~ ______ -J)(~ ________ __ 
---J1~~--------~0r--------~1 

DATAIN======~==========================~r--D~-D-7-IN~)(~ __________ _ 

AC CHARACTERISTICS (20 MHz) 
EPROM Read Cycle 

Number Symbol Parameter 

EPROM Read Timing 

TdA(DR) Address Valid to Read Data Required 
Valid 

NOTES: 
1. WAIT states add 167 ns to these times. 
:j:A1I times are In ns and are for 12 MHz input frequency. 
·TImlngs are preliminary and subject to change. 

Min Max 

170 

433 



Zilog Application Note 

August 1987 

Any time an engineer switches to a new processor, he 
usually begins the time consuming process of learning 
the quirks of the new part. This article is the first of a 
series of articles written to speed that transition time from 
any other processor to the Zilog Super8. 

Getting started is the most difficult part of switching to a 
strange new processor and development tools. Weeks 
can be spent just getting the first lines of initialization 
code written and successfully assembled. Testing the 
code becomes another problem. The soft ,re from this 
article series has been tested and it should be possible 
to copy most of the software directly to a user's applica­
tion. All of the software is available in machine readable 
form as noted at the end of the article. 

This first article demonstrates the proper initialization of 
the Zilog Super8 microcontroller. It sets up a Z8800 
ROMLESS for 64K,bytes of external program memory, 
although most typical applications probably do not re­
quire more than maybe 4K or 8K bytes. Ports 2 and 3, 
which are bit'mappable as inputs or outputs, are set into 
the output mode. Port 4, also bit mappable, is set into 
the input mode. A hardware ,schematic has been in­
cludedas an example. 

The hardware schematic shown defi~es a simple SuperS 
implementation that was used to test the code in this 
series oj articles. This example defines a simple evalua­
tion board that contains ,32K bytes of programable 
EPROM, and up to 32K bytes of RAM. The design con­
tains a simple RS-232 interface that is used in future ar­
ticles of the series. The entire board, including the 
RS-232 interface,is powered from 5 volts. The RAM 
battery option allows the software to be downloaded into 
the RAM and saved if power fails. Additional logic on the 
design allows a user to protect the lower half of RAM 
with a simple jumper change. This prevents the proces­
sor from destroying executable code if it goes off into 
space on a power failure. 

Specifically, the ROM LESS SuperS is used as the core. 
The Super8 requires a latch to demuHiplex the address 
from the data bus. A 74LS373 fits nicely here, requiring 
only an inverter to correct for the address strobe. The 
'LS373 with inverter is preferred here rather than a single 
'LS374 because the 'LS373 is a transparent latch and 

434 

GETTING STARTED 
WITH THE ZILOG SUPERS 
by Charles M. Link, II 

will present the address earlier than the 'LS374. JU1 
selects the EPROM size, correcting for thelPGM pin on 
2764 and 27128 EPROMs. It is necessary to use pull 
down resistors on the upper 4 bits of the address bus be-

cause on reset, the ROMLESS Super8 defines only 12 
bits for address; the other 4 are set as inputs. Since LS­
TIL devices require more current to pull down the inputs, 
this pull down trick will only work for MOS and CMOS in­
puts, hence the requirement for the logic chips in this 
design to be HCT type devices. 

The remaining logic is required to select the EPROM or 
RAM. JU2 selects the half-RAM protect mode. JU3 is 
set to determine what size ram to protect. This circuit al­
lows the lower half of CMOS battery backed RAM to be 
read only, and removes chip select on any writes to that 
address space. Of course, that exact circuitry and the 
battery is optional, and might be replaced by a power 
threshold detector. On the other front, a Maxim MAX 
232 provides the RS-232 interface requiring only 5 volts. 

To make the software initialization more interesting, a 
few other typical initialization tasks are demonstrated. 
The entire block of registers (user ram) is cleared to 
zero, and one of the counter timer units is initialized to 
provide a periodic interrupt to form the heart of a real 
time clock function. ' 

The program shows the typical pseudo-op usage 
demonstrated. This article series uses a cross as­
sembler available from Zilog for either an IBM PC or a 
VAX operating under VMS. The program bElgins by 
defining the registers used as general purpose storage. 
This is done so the user does not have to refer to register 
numbers, but may refer to a name equated to the 
register. 

The first 32 bytes of every program (beginning at OOOOH) 
always contain the interrupt vectors for the different sour­
ces. Using the Zilog assembler, the .wORD pseudo-op 
defines a pair of bytes for each of the 16 sources. 
Program execution begins at location 0020H. Since 
copyright requirements usually require the notice as 
close to the beginning as possible, it becomes necessary 
to jump around an ASCII string. The .ASCII pseudo-op 
generates the necessary string for this notice. 



The source code describes almost completely, without 
further explaination, the entire initialization. Once initial­
ized, the processor loops in a WAIT loop waiting on the 
periodic interrupt generated by the counterllimer. . The 
counter timer interrupts 60 times per second, and the in­
terrupt bumps ram storage locations representing 
seconds, minutes, and hours. Each time a location is 
bumped, an external port line is toggled so that those 
without emulators can see some activity with an oscIllo­
scope. 

In the next article of this series, we will take the same 
basic initialization routine and modify it to support the 
serial UART. That article will demonstrate polled serial 
communications using the Zilog Super 8. 

One point of notice, is the interrupt service routine for the 
timer. One must reset the end of count interrupt bit (the 
source of interrupt) before exiting the interrupt service 
routine. 

[Editors note: The sofware for this series is available on 
an IBM PC diskette and is included with the Super 8 
Emulator package available from Creative Technology 
Corporation, 5144 Peachtree Road, Suite 30'1, Atlanta, 
GA 30341. (404) 455-8255. Any Zilog Field Application 
engineer should also be able to provide copies of the 
software on a user provided diskette.] 

.TITLE Sample Zilog super 8 Initialization 

;===--=====================================================~= 
;= 
;= 
;= 
;= 

TITLE: 
DATE: 
PURPOSE: 

INIT.S8 
JUNE 17, 1986 
TO DEMONSTRATE INITIALIZATION 
OF THE ZILOG SUPER 8-USING THE 
ZILOG ASMS8 ASSEMBLER ;= 

;= PROGRAMMER: CHARLES M. LINK, II 
;=========================================================== 

• PAGE 55 ;set maximum page size to 55 lines 

;*********************************************************** 
i* If 

REGISTER EQUATE TABLE * :* * 
;*********************************************************** 
, 
period: 
second: 
minute: 
hours: 

.equ 

.equ 

.equ 

.equ 

o 
1 
2 
3 

;period timer 
,; seconds timer 
;minutes timer 
;hours timer 

; * ***** ********* *** ****** 'A'** ******* .... '* '* ** ** .. *** ** it-... '* *. **.* .. 
;* \ '* 

INTERRUPT VECTOR TABLE * 
:* '* 
;*********************************************************** 
; 
INTRO: • WORD 
INTR1: • WORD 
INTR2: • WORD 
INTR3 : , • WORD 
INTR4 : • WORD 
INTR5: • WORD 
INTR6: • WORD 
INTR7: • WORD 
INTR8: .WORD 
INTR9: .WORD 
INTR10: .WORD 
INTRll: .WORD 
INTR12: .WORD 
INTR13: .WORD 
INTR14: .• WORD 
INTR15: .WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 

;this area should always be defined 
;as' it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here. 

;*********************************************************** 
:* '* ; * START OF PROGRAM EXECUTION * 

* '*********************************************************** 

435 



436 

START: jr 

• ASCII 

START1: di 
sbO 
ld 

ld 
ld 
ld 
ld 

START 1 

'REL 0 6/16/86' 

EMT,I/OOOOOOOOB 

PO,I/OOH 
POM, #11111111B 
PM, #00110000B 
H1C,1/00000000B 

;program execution unconditionally 
;begins at this location after reset 
;and power up. 
;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin . 
;se1ect register bank 0 
;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
;and DMA internal 
;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

. 

ld 
ld 
ld 
ld 
ld 
ld 

ld 
ld 
ld 

P2,J/00H 
P3,J/00H 
P2AM,j/10101010B 
P2BM,#10101010B 
P2CM,#10101010B 
P2DM,#10101010B 

P4,#00000000B 
P4D, #11111111B 
NOD,I/OOOOOOOOB 

;port 2 outputs low 
;port 3 outputs low 
;p30,31,20,21 as output 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull [not necessary since all 
; bits are,inputs 

;basic Super 8 I/O is initialized, now internal registers 

ld 
ld 
ld 

RPO,#OCOH 
RP1,j/OC8H 
SPL,J/OFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here ,that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
;as stack operation. SPH is general purpose 
;storage. 

;now clear the internal memory and stack area 

ld SPH,J/OFFH ;point to top of general purpose register 
ZERO: clr @SPH ;zero it 

dec SPH 
jr nz,ZERO ;do it until register set is all cleared 
clr @SPH ;zero last register 

;now everything except working registers is cleared 

cpu and memory now initialized, set up timer for real time clock 

ld SYM,#OOOOOOOOB ;disable fast interrupt response 
ld IPR, #00000010B ; interrupt priority \ 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQi 
ld IMR,#00000100B ;enable only interrupt 2 
sb1 ;select bank 1 
ld COTCH,#AHB(50000) ;high byte of time constant 
1d COTCL,I/ALB(50000) ;low byte of time constant 

;12,000,000 hertz / 4 / 50,000 = 60 hertz 
;12 Mhz is xtal freq, 4 is internal divider 

ld COM,1/00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 

sbO ;select bank 0 
ld COCT,J/10100101B ;continuous, count down, load counter, 

;zero count interrupt enable, enable counter 

timer is initialized, now lets enable interrupts and wait 

;enable interrupts 
WAIT: 

ei 
nop 
nop 
nop 
nop 
jr WAIT ;loop back .. 



nop 
nop 
nop 

TIMERO: inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
clr 

NOROLL: or 
nop 
nop 

INTRET: iret 

• END 

period 
period, #60 
ne,NOROLL 
P2,#00000001B 
period 
second 
second, #60 
ne,NOROLL 
P2,#00000010B 
second 
minute 
minute, #60 
ne,NOROLL 
P2,i/00000100B 
minute 
hours 
hours, #24 
ne,NOROLL 
hours 
COCT,#OOOOOOlOB 

;bump periodic counter (60 hertz) 
;one second yet? 
;no rollover 
;complement the second bit 
;start it over again 
;bump the seconds timer 
;reached maximum 
;no rollover 
;complement the minute bit 
;start it over again 
;bump the minutes timer 
;reached maximum 
;no rollover 
;complement the hour bit 
;start it over again 
;bump the hours timer 
;reached maximum 
;no rollover 
;start it over again 
;reset end of count interrupt 

;and return from interrupt 

437 



• ~ - - • __ ".,1 ,_ 

Zilog- ".' "-'. . - -. . " --Application Notif . -. 
- . , , 

, ~" "' ,,," , ~ < • 

August 1987 

The transition from one processor to another often invol­
ves many hours oftrial-and-error software development 
to determine the quirks (manufacturers call it features) of 
the part. Once the real features are discovered, 
programming the processor to perform as described can 
be hazardous to one's health. This article, the second in 
a series of eight, attempts to introduce the Zilog Super8 
user to the serial communications port, and its initializa­
tion in a polled serial environment. 

The universal asynchronous receiver/transmitter (UART) 
on the Super8 is a fairly unique implementation among 
single chip microcomputers in that it supports all of the 
functions generally available only on chip level UARTs. 
The UART is a close approximation of the Z80 DART 
device in one channel. It supports independent 
receiver/transmitter clocking, 5 to 8 bits per character, 
plus optional odd or even parity, and even an optional 
wake-up bit. ,The UART can serve full duplex com­
munications via polled, interrupt, or DMA modes of 
operation. Auto-echo and intemal loopback can be 
programmed as options. The most unique of the UART 
features is the character match and interrupt option. 

The following article describes the initialization and use 
of the UART in a polled environment. This software has 
been tested and provides several routines that may be 
copied into a user's software. Although the demonstra­
tion software does not do much, it is fully functional as a 
stand~alone program, and may be "burned" into eprom 
as a test. 

The basic software is almost the same general purpose 
initialization software from the first article in the series. 
Routines set-up counter/timer 0 for a real time clock op­
tion, Note, however, the change to configuration register 
P2AM. It is necessary to configure port 30 as input for 
receive data and p31 as output for transmit data. 

The UART initialization sequence begins by setting the 
functions in the UART MODE A register. Since the UMA 
register is in the alternate bank, the instruction SB1 must 
be executed to gain access to the following registers. 
The loaded data selects a X16 clock, 8 bits per charac­
ter, no parity, and no wake up values. Note that the 
clock options are X1, X16, X32, and X64. For true 
asynchronous operation, a clock multiplier option of at 
least X16 is required. The X1 mode could be used for 
externally syncing the received data to the UART. The 
transmitter is not affected. 
438 

POLLED ASYNCHRONOUS 
SERIAL OPERATION 
WITH THE ZILOG SUPERB 
by Charles M. Link, II 

Next, the baud rate generator must be loaded. The for­
mula for determining the baud rate is shown below: 

TIME CONSTANT = (XTAL FREQ I 8 I CLOCK MULT I 
DESIRED RATE) - 1 

where TIME CONSTANT is a 16 bit value, XTAL FREQ 
is the crystal ifrequency in hertz, CLOCK MUL T is the 
clock rate loaded into UART MODE A register (as above 
X1, X16, X32, and X64), and DESIRED rate is the 
desired bit rate in bits per second. Note that the baud 
rate generator may be used as an additional counter, 
and may be loaded with any value permitting just about 
any crystal frequency to operate the Super8. 

The cross-assembler permitted a single 16-bit decimal 
number to be loaded into the UART BAUD RATE GEN­
ERATOR, high and low byte, without unnecessary figur­
ing using the high/low byte pseudo-op. 

The initialization sequence continues, with the UART 
MODE B register next. This example sends port 21 data 
to the port 21 pin. An option allows different clocks to be 
sent out from this pin. It could be used for clocking exter­
nal logic, or for diagnostic purposes to make sure the 
baud rate generator is running. Auto-echo is not 
selected in this application, as that is primarily what the 
example software does. The receive and transmit clock 
input is the baud rate generator and the generator source 
is the internal clock;' the crystal divided by four. Since 
the baud rate generator has been loaded, it is enabled, 
and the UART is set for normal operation (without loop­
back). Loopback operation permits transmitting and 
receiving data without any external logic in front of the 
Super8. 

The UART TRANSMIT CONTROL register is initialized 
next in the sequence. Select transmit data out on port 31 
and transmit enable. The stop bits are optional, and the 
DMA and WAKE-UP enables are for features discussed 
in future application articles. At this point, the transmitter 
is operational, and except for housekeeping, is usable. 
The housekeeping is in reference to selecting the bank 0 
by executing the SBO instruction. 

Since polled mode communications are desired, all of the 
UART interrupts are disabled by loading the UART IN­
TERRUPT ENABLE with all zeros. Lastly, the receiver 
must be enabled by setting bit 0 of the UART RECEIVE 
CONTROL register., 



This program primarily sends a message to the console 
and then accepts input from the console and echos it 
upon receiving a carriage return. It is necessary to delay 
sending data to the console after initialization because 
the transmit data line is in the SPACE state when idle. 
Alternately, add a pull-up resistor to the output, and while 
idle and before initialized, it would exibit the MARK state. 

The receive character routine "GETC" monitors the 
RECEIVE CHARACTER AVAILABLE bit of the UART 
RECEIVE CONTROL register. When this bit is a "1", a 
new character has been received by the UART. 

The transmit character routine "SENDC" monitors the 
TRANSMIT BUFFER EMPTY bit of the UART TRANS­
MIT CONTROL register. When this bit is a "1", the trqns­
mit buffer is empty and may be loaded with a new 
character for' transmission. To transmit a character, load 
the character into the UART data register (UIO) . 

The polled mode of UART operation is simple. Making 
the UART operate in an interrupt mode requires a few 
minor modifications, and DMA mode requires a few more 
modifications. Those modes are the subject of future ap­
plication articles in this series. 

• TITLE samp~e Zilog super 8 Serial Port Initialization 

;=========================================================== 
j= TITLE: UARTl.S 
j= DATE: JULY 17, 1986 
j= PURPOSE: TO DEMONSTRATE INITIALIZATION 
;= AND USAGE OF SERIAL PORT IN 
j= POLLED MODE. 
j= ASSEMBLER: ZILOG ASMS8 ASSEMBLER 
;= PROGRAMMER: CHARLES M. LINK, II 
j=========================================================== 

• PAGE 55 ;set maximum page size to 55 lines 
;~**.*.*.*~*~*6.** •• **.************************************* 
j* * 
;'* GENERAL EQUATES 
i* * 
; 1:********,'ll************************************************* 
CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

, 
:*********************************************************** 
i* * 

REGISTER EQUATE TABLE '* 
i* * 
i***************************************************** ****** 
, 
period: .equ 0 ;period timer 
second: .equ 1 ;seconds timer 
minute: .equ 2 ;minutes timer 
hours: .equ 3 ;hours timer 
;working register equates 
MPTR: . equ RR8 ;message pointer for external memory 
, 
i***************************************************** ****** 
:* * 

INTERRUPT VECTOR TABLE * 
* 

:*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10 
INTRll 
INTR12 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
. WORD 
. WORD 
• WORD 
• WORD 
. WORD 
• WORD 
. WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMER!! 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 

this area should always be defined 
as it reserves the lower 32 bytes 
for the interrupt table. the name 
of the subroutine for each particular 
interrupt service would normally be 
named here. 

439 



440 

INTR13 
INTR14 
INTR15 

• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 

, 
;*********************************************************** 
;* * 
; * START OF PROGRAM EXECUTION * 
:* * 
;*********************************************************** 

START: jr START 1 ;program execution unconditionally 
;begins at this location after reset 
;and power up. 

• ASCII 'REL 0 7/17/86' 

START1: di 
sbO 
ld EMT,I/OOOOOOOOB 

;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
;select register bank 0 
;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
;and DMA internal 

, 

ld 
ld 
ld 
ld 

PO,I/OOH 
POM,1/11111111B 
PM,I/00110000B 
HIC,#OOOOOOOOB 

;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

, 

ld 
ld 
ld 

ld 
ld 
ld 

ld 
ld 
ld 

P2,#00H 
P3,#00H 
P2AM,#10001010B 

P2BM,#10101010B 
P2CM,#10101010B 
P2DM,#10101010B 

P4,/lOOOOOOOOB 
P4D, #11111111B 
P40D,#00000000B 

;port 2 outputs low 
;port 3 outputs low 
;p31,20,21 as output,p30 input 
;it is necessary here to configure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull [not necessary since all 
; bits are inputs 

;basic Super 8 I/O is initialized, now internal registers 

; now 

ZERO: 

; now 

; cpu 

ld 
ld 
ld 

clear 

ld 
clr 
dec 
jr 
clr 

the 

everything 

and memory 

RPO,#OCOH 
RPl,#OC8H 
SPL,#OFFH 

internal memory 

SPH,/IOFFH 
@SPH 
SPH 
nZ,ZERO 
@SPH 

except working 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
;as stack operation. SPH is general purpose 
; storage. ' 

and stack area 

;point to top of general purpose register 
;zero it 

;do it until register set is all cleared 
;zero last register 

registers is cleared 

now initialized, set up timer for real time clock 

ld SYM,#OOOOOOOOB ;disable fast interrupt response 
ld IPR,/l00000010B ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
ld IMR, #00000100B ; enable only interrupt, 2 
sbl ;select bank 1 
ld COTCH,#AHB(50000) ;high byte of time constant 
ld COTCL,#ALB(50000) ;low byte of time constant 

, ;12,000,000 hertz / 4 / 50,000 = 60 hertz 
;12 Mhz is xtal freq, 4 is internal divider 

ld COM,#00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 



sbO select bank 0 
ld COCT,#l0100101B continuous, count down, load counter, 

zero count interrupt enable, enable counter 
, 
;timer is set, now lets initialize the UART for polled operation 

sb1 ;bank 1 
ld UMA,#01110000B 

;tim~ constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

ld UBGH,#AHB(00009) ;high byte of time constant 
ld UBGL,#ALB(00009) ;low byte of time constant 
ld UMB,#00011110B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
;is disabled 

sbO ;select bank 0 
ld UTC,#10001000B ;select p31 as transmit data out, 1 stop bit 

;and transmit enable 
ld UIE,#OOOOOOOOB ;disable all interrupts, no OMA 
ld URC,#00000010B ;enable receive 

;UART is initialized, enable interrupts for real time clock 

ei ;enable interrupts 
, 
;wait 1 full second for serial line to mark before sending anything 

WAIT: cp 
jr 

second,#1 
ne,WAIT 

;display the logon message 

LOGON: ldw 
call 

MPTR,#MSG 
SENOM 

;wait 1 second 

;load the address of MSG into word reg MPTR 
;send the message 

;iogon message displayed, get response from console 
;and move to upper register memory 

GET: ld 
ld 

GETN: call 
and 
call 
ld 
cp 
jr 
inc 
djnz 

, 

r1,#80 
r2,#80H 
GETC 
rO,#7fH 
SENOC 
@r2,rO 
rO, #CR 
eq,ECHO 
r2 
r1,GETN 

;maximum character count 
;point to first location in upper register bank 
;get input from console 
;remove upper parity bit 
;echo to console 
;move to upper internal ram in Super8 
;was the received character a carriage return 
;if so, echo it to console 
;bump pointer 
;get next character if not done 

;if carriage return typed, or 80 characters exceeded, echo message 

ECHO: 

ECH01: 

, 

ldw 
call 
ld 
ld 
ld 
call 
cp 
jr 
inc 
djnz 
jr 

; subroutines 
, 
;send message 
SENOM: ldci 

call 
cp 
jr 
ret 

MPTR, #MSG1 
SENOM 
r1,#80 
r2,#80H 
rO,@r2 
SENOC 
ro, #CR 
eq,LOGON 
r2 
r1,ECH01 
LOGON 

at MPTR until 
rO,@MPTR 
SENOC 
rO,#'$' 
ne,SENOM 

'$' 

;load the address of MSG1 in word reg MPTR 
;send the message 
;maximum character count 
;first location of character buffer 
;get character from buffer 
;send the character to console 
;carriage return? 
;if so, end message display 
;bump pointer 
;display next character if not done 

character found 
;get the character 
;otherwise send character 
;last character? 
;and loop back to send next one 

441 



442 

;send character 
SENDC: tm 

in rO 
UTC,#OOOOOOlOB 
z,SENDC 

transmit buffer empty yet 
if not, wait until it is 

;get a 
GETC: 

, 

jr 
ld UIO,rO 
ret 

character from the uart, 
tm URC,#OOOOOOOlB 
jr z,GETC 
ld rO, UIO 
ret 

load the character into the transmitter 

return in rO 
;character available 
;if not, wait until it is 
;get the character from the receiver 

;real time interrupt running in background 

TIMERO: inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
clr 

NOROLL: or 
nop 
nop 

INTRET: iret 

MSG: • ASCII 
• ASCII 

MSG1: • ASCII 

.END 

period ibump periodic counter (60 hertz) 
period, #60 ione second yet? 
ne,NOROLL ino rollover 
P2,#00000001B icomplement the second bit 

. period istart it over again 
second ibump the seconds timer 
second,#60 ireached maximum 
ne,NOROLL . ino rollover 
P2,#00000010B icomplement the minute bit 
second istart it over again 
minute ibump the minutes timer 
minute, #60 ireached maximum 
ne,NOROLL ino rollover 
P2,#00000100B icomplement the hour bit 
minute istart it over again 
hours ibump the hours timer 
hours, #24 ireached maximum 
ne,NOROLL ino rollover 
hours istart it over again 
COCT,#OOOOOOlOB ireset end of count 

iand !eturn from interrupt 

CR,LF, 'SuperB Uart test program. ',CR,LF 
'Enter up to one full line followed by return',CR,LF,'$' 
CR,LF,'Echoed back, your line was ••• ',CR,LF,'$' 



August 1987 

The power of the Super8 microcomputer lies in its on 
board peripherals. One of those peripherals is the full 
duplex UART. The UART can operate under program 
control in polled mode, or under interrupt control, and in 
a DMA mode. This article, the third in a series, discus­
ses using the UART in a fully interrupt driven system. 
Since it is assumed that the reader has access to the 
eariler article discussing the UART and the polled mode· 
of operation, this article will only discuss the differences. 

The Zilog Super8 contains an on board interrupt control­
ler that is tightly linked to the other on-board peripherals. 
The UART, being on-board, can be operated in an inter­
rupt mode permitting very little execution overhead time 
while monitoring the UART for incomming characters and 
waiting for the UART to send outgoing characters. 

Operation of an interrupt driven system demands more 
software logic to control the interrupt. Although more 
software is present, less time is spent executing it, be­
cause most of the overhead is in the setup for interrupt 
transfers. Generally, interrupt driven serial 1/0 overlaps 
some other process or processes, and therefore enhan­
ces total system speed and operation. Interrupt driven 
1/0 has no advantages in a system that must wait on the 
serial port. In the example program, no real advantage 
has been gained by interrupt operation. The program 
displays a simple message to the console, and accepts 
input responses anq echos them. For program 
simplicity, the main program waits on the interrupt to 
complete before starting the next phase of the program. 

In any interrupt driven system, the central processor 
must know what to do when an interrupt occurs. The 
SuperS is no exeception. An interrupt vector table 
directs the processor to begin execution at certain ad­
dresses for particular interrupt inputs. The UART can be 
the source for up to five different interrupts and therefore 
up to five of the sixteen vectors can be designated for it. 
This sample program ignores errors and special condi­
tion interrupts, and therefore only two vectors are used; 
one for transmit buffer empty and one for receive charac­
ter available. These vectors are programmed into the 
vector table by setting interrupt vector 10 (zero 
reference) to the address for the receive data service 
routine, and setting interrupt vector 13 to the address for 
the transmit data service routine. 

USING THE ZllOG SUPERS 
IN INTERRUPT DRIVEN 
COMMUNICAT~ONS . 
by Charles M. Link, II 

The setup of the SuperS is essentially the same as that 
of the serial port in a polled mode of operation. The 

proper priority for the interrupts are assigned arbitrarily. 
The real time clock as highest priority, the receive 
character available as second priority, and transmit 
character buffer empty as the lowest priority. Generally, 
the transmit interrupt should be the lowest in an 
asynchronous system because if it does not get serviced 
iimmediately, no major problems occur. If the real time 
interrupt took more time in relationship to the time re­
quired to transmit a single character, then maybe the 
receive should be put higher. If the receiver is not ser­
viced, that character would be lost. 

Enabling the interrupts is a two stage process. First the 
mask in the INTERRUPT MASK REGISTER must be 
enabled for each level of the interrupts used. Next, it is 
necessary to enable the individual transmit and receive 
interrupts. In the example program, a character is 
loaded into the transmit buffer and then the interrupt is 
enabled by setting bit 2 in the UART INTERRUPT 
ENABLE (UIE) register. Each successive transmit inter­
rupt indicates an empty buffer, and the next character is 
loaded into the buffer. When the last character is loaded 
into the buffer, the transmit interrupt is disabled to 
prevent further interruptions by clearing bit 2 of the UIE 
register. 

The receiver interrupt is enabled to allow the processor 
to accept incoming characters by setting bit 0 of the UIE 
register. Once set, any received character will cause the 
processor to transfer control to the "RXDATI" routine. In 
this example, the receive service routine reads, echos, 
and stores each received character until a carriage 
routine is received. The input is then repeated. 

The example program does not fully utilize the interrupt 
system, as· it waits for each routine to complete before 
moving to the next. However, it does however work, and 
demonstrates interrupt. service routines. Serial interrupt 
software is not complex, and could lead to very powerful 
user programs. With the addition of the on board DMA to 
automaticlly transfer characters, the SuperS can com­
plete many tasks that previously would require complex 
hardware and software. The next article in the series 
demonstrates using the DMA controller with the serial 
port. 

443 



444 

.TITLE Sample Zilog Super 8 Serial Interrupt Mode Operation 

:=========================================================== 
~= TITLE: UART2.S 
i= DATE: JULY 17, 1986 
j= PURPOSE: TO DEMONSTRATE INTERRUPT 
i= DRIVEN SERIAL PORT 
;= COMMUNICATIONS 
;= ASSEMBLER: ZILOG ASMS8 ASSEMBLER 
i= PROGRAMMER: CHARLES M. LINK, I! 
i=========================================================== 

• PAGE 55 ;set maximum page size to 55 lines 
;*********************************************************** 
i* * 
; * GENERAL EQUATES * 
i* * 
;***************************~**~**************************** 

CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

, 
;*********************************************************** 
i* * 
; * REGISTER EQUATE TABLE * 
i* * 
i***************************************************** ****** 
, 
period: .equ 0 ;period timer 
second: • equ 1 ; seconds timer 
minute: .equ 2 ;minutes timer 
hours: .equ 3 ;hours ,timer 
;working register equates 
MPTR: .equ RR8 ;message pointer for external memory 
, 
;*********************************************************** 
i* * 

INTERRUPT VECTOR TABLE * 
i* * 
;*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10: 
INTRll: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
. WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
TXDATI 
INTRET 
INTRET 

;this area should always be defined 
las it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt se~!ice would normally be 
;named here. 

, 
;*********************************************************** 
:* * ; * START OF PROGRAM EXECUTION * 
;* * 
i***************************************************** ****** 
START: jr 

• ASCI! 

START1: di 
sbO 

START 1 ;program execution unconditionally 
;begins at this location after reset 
land power up. 

'REL 0 7/17/86' ;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
:select register bank 0 



ld 

ld 
ld 
ld 
ld 

EMT,J/OOOOOOOOB 

PO,lIOOH 
POM, #11111111B 
PM,#00110000B 
H1C,#00000000B 

;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
;and DMA internal 
;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

port 1 is defined in romless part as address/data. it is not necessary 
here to initialize that port 

. 

ld 
ld 
ld 

ld 
ld 
ld 

ld 
ld 
ld 

P2,l/00H 
P3,j/00H 
P2AM,#10001010B 

P2BM, #10101010B 
P2CM,#10101010B 
P2DM,#10101010B 

P4,j/00000000B 
P4D, j/11111111B 
P40D,j/00000000B 

;port 2 outputs low 
;port 3 outputs low 
;p31,20,21 as output,p30 input 
;it is necessary here to configure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull [not necessary since all 
; bits are inputs 

;basic Super 8 I/O is initialized, now internal registers 

ld 
ld 
ld 

RPO,j/OCOH 
RP1,j/OC8H 
SPL,j/OFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
;as stack operation. SPH is general purpose 
;storage. 

;now clear the internal memory and stack area 

ZERO: 

inow 

; cpu 

ld 
clr 
dec 
jr 
clr 

everything 

and memory 

ld 
ld 

ld 
sb1 
ld 
ld 

ld 

sbO 
ld 

SPH,l/OFFH ;point to top of general purpose register 
@SPH izera it 
SPH 
nz,ZERO ;do it until register set is all cleared 
@SPH ;zero last register 

except working registers is cleared 

now initialized, set up timer for real time clock 

SYM,#OOOOOOOOB ;disable fast interrupt response 
IPR,j/OOOOOOlOB ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
IMR,j/01000110B ;enable counter, rx and tx interrupts 

;select bank 1 
COTCH,j/ A HB(50000) ;high byte of time constant 
COTCL,j/ A LB(50000) ;low byte of time constant 

;12,000,000 hertz / 4 / 50,000 = 6Q hertz 
;12 Mhz is xtal freq, 4 is internal divid~r 

COM,j/00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 
;select bank 0 

COCT,#10100101B ; continuous, count down, load counter, 
;zero count interrupt enable, enable counter 

timer is set, now lets initialize the UART for polled operation, 

sb1 ;bank 1 
ld UMA,j/01110000B 

;time constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

ld UBGH,j/ A HB(00009) ;high byte of time constant 
ld UBGL,j/ A LB(00009) ;low byte of time constant 
ld UMB,'00011110B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
;is disabled 

445 



446 

sbO 
ld 

ld 
ld 

UTC,#10001000B 

UIE,#OOOOOOOOB 
URC,#00000010B 

;select bank 0 
;select p31 as transmit data out, 1 stop bit 
;and transmit enable 
;no interrupts, no DMA 
;enable receive 

;UART is initialized, enable interrupts for real time clock 

ei ;enable interrupts 
, 
;wait 1 full second of serial line mark before sending anything 

WAIT: cp 
jr 

second,#l 
ne,WAIT 

;display the logon message 

LOGON: ldw 

, 

call 
call 

MPTR, #MSG 
SENDM 
TXWAT 

;wait 1 second 

;load the address of MSG into word reg MPTR 
;send the message 
;wait for transmitter to complete 

;logon message displayed, get response from console 
;and move to upper register memory 

GET: ld 
ld 
di 
or 
ei 

r1,#80 
r2,j/80H 

UIE,#OOOOOOOlB 

;maximum character count 
;point to first location in upper register bank 
;stop interrupts 
;receive character enable 

inow 
GW: 

wait for input to be completed 
tm UIE,j/00000001B ;wait for interrupt to be disabled 

enabled jr nZ,GW ;if interrupt still 

, 
;if carriage return typed, or 80 characters exceeded, echo message 

ECHO: ldw 
call 

MPTR, j/MSG1 
SENDM 

;load the address of MSGl in word reg MPTR 
;send the message 

;since messages are interrupt driven, we must wait for message to 
;complete before transmitting next message 

call 
ld 
ld 

ECH01: ld 
call 
cp 
jr 
inc 
djnz 
jr 

; sUbroutines 
, 

TXWAT 
r1,#80 
r2,j/80H 
rO,@r2 
SENDC 
rO,#CR 
eq,LOGON 
r2 
r1,ECH01 
LOGON 

;send message 
SENDM: ldci 

at MPTR until '$' 
rO,@MPTR 

call 
di 
or 
ei 
ret 

;send character 
SENDC: tm 

jr 
ld 
ret 

SENDC 

UIE,j/00000100B 

in rO 
UTC,#00000010B 
z,SENDC 
Ulo,ro 

;wait on transmitter 
;maximum character count 
;first location of- character buffer 
;get character from buffer 
;send the character to console 
;carriage return? 
;if so, end message displ?y 
;bump pointer 
;display next character if not done 

character found 
;get the character 
;start UART transmitting 
;no interrupts 
;enable transmit interrupts 

;transmit buffer empty yet 
;if not, wait until it is 
;load the character into the transmitter 

;transmit buffer available interrupt 
TXDATI: ldci rO,@MPTR 

ld UIO, rO 
cp rO,#'$' 
jr eq,LASTT 
iret 

LASTT: and 
iret 

; transmitter 
TXWAT: tm 

jr 
ret 

UIE, #11111011B 

wait routine 
UIE,j/00000100B 
nz,TXWAT 

;get next character to transmit 
;load the character in transmitter 
;last character 
;if last transmit character 

;disable transmit interrupts 
;ignore it if no character to transmit 

;wait until interrupts disabled 
;wait if bit set 



;receive character available interrupt 
RXDATI: ld rO,UIO 

and rO,#7fH 
call SENDC 
ld @r2,ro 
cp rO, #CR 
jr eq,LASTR 
inc r2 
djnz rl,RXR 

LASTR: and UIE,#lllllllOB 
RXR: iret 

;get input from console 
;remove upper parity bit 
;echo to console 
;move to upper internal ram in SuperB 
;lvas the received character a carriage return 
;if so, disable interrupts 
;bump pointer 
;exit if not last 
;disable the receive interrupts 

;real time interrupt running in background 

TIMERO: 

NOROLL: 

INTRET: 

MSG: 

~ISGl: 

.END 

inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
clr 
or 
nop 
nop 
iret 

• ASCII 
• ASCII 
. ASCII 

period ;bump periodic counter (60 hertz) 
period, #60 ;one second yet? 
ne,NOROLL ;no rollover 
P2,#OOOOOOOlB ;complement the second bit 
period ;start it over again 
second ;bump the seconds timer 
second, #60 ;reached maximum 
ne,NOROLL ;no rollover 
P2,#OOOOOOlOB ;complement the minute bit 
second ;start it over again 
minute ;bump the minutes timer 
minute, #60 ;reached maximum 
ne(NOROLL ;no rollover 
P2,#OOOOOlOOB ;complement the hour bit 
minute ; start it over again 
hours ;bump the hours timer 
hours, #24 ;reached maximum 
ne,NOROLL ;no rollover 
hours ; start it over again 
COCT,#OOOOOOlOB ;reset end of count 

;and return from interrupt 

CR,LF, 'SuperB Uart test program.',CR,LF 
'Enter up to one full line followed by return',CR,LF, '$' 
CR,LF, 'Echoed back, . your line 'vas ••. ' ,CR,LF, '$' 

447 



-.Zilog -- , -- Application Note _ _ 

August 1987 

With the increasing integration available today, 
microprocessor manufacturers are incorporating new 
peripherals that typically were off board in previous 
products, and sometimes required a large amount of ex­
ternallogic to utilize. The direct memory access function 
is a good example. Zilog has incorporated a very power­
ful DMA in the new Super8 microcontroller. It has the 
capability of linking to several on board peripherals, in­
cluding the serial port, and can control data transfers to 
the different memory mediums. ' 

The Super8, with its on-board DMA can reduce proces­
sor overhead in data transfer tasks. It allows direct 
transfer of serial input characters to either intemal 
register memory (256 bytes) or external ram memory. 
For example, this transfer can be set to transfer a 
specific number of input characters, then interrupt the 
processor. Processor program service overhead is mini­
mal. Serial output characters can be transfered from ex­
ternal EPROM or ram memory, or the internal register 
memory. 

The required setup for the DMA transfers are much the 
same as that of interrupt or polled operation. This 
program example uses the DMA to interrupt upon ter­
mination of data transfers so that approopriate vectors 
and routines are required. Since the program links to the 
serial port, the DMA uses the serial port receive and 
transmit interrupt vectors 10 and 13, respectively. Upon 
completion of a receive DMA transfer, the service routine 
defined by the receive vector is executed. Upon comple­
tion of the transmit DMA transfer, service routine defined 
by the transmit vector is executed. 

It is necessary to define the memory source/destination 
by setting the appropriate state of bit 0 in the EXTERNAL 
MEMORY TIMING (EMT) register. Initially, the example 
program selects external memory as the source/destina­
tion. A special note: read the fine print in the technical 
manual. Many hours were spent debugging the DMA 
mode of operation, with the final realization that internal 
rom does not qualify as external memory. Only that 
memory that would be selected if the /DM line was true 
would be a valid source/destination. Since this article 
uses the hardware defined from the first of the series, 
and uses a Z8800 with external EPROM, it will work per­
fectly. ROM and PIGGYBACK or prototype type parts 
will not work. Neither will emulators. 

USING THE SUPERB 
SERIAL PORT WITH DMA 
by Charles M. Link, II 

This sample uses the DMA mode to transmit a few lines 
of ASCII data to a console. The DMA requires a total 

byte count to properly transfer the data and terminate. 
Be careful to recognize that the ASCIL pseudo-op in the 
Zilog assembler, or many other assemblers, is not an 
easy way to generate the byte count. Warning! The 
Zilog assembler generates a length for each subgroup, 
e.g., "MSG" generates a separate length for each group 
separated by commas, not one total length. 

Initially, the DMA transfers from EPROM. The address 
from which to transfer is CO and C1 as defined by the 
working register pointers. It is necessary to set RPO to 
CO to access the register, and it is accessed as RO and 
R1 or RRO. The count for the transfer is taken from DMA 
COUNT HIGH and DMA COUNT LOW. For each trans­
fer, initialize the address and count values. Upon com­
pletion of the DMA transmit process, when the count 
goes to -1, a transmit interrupt is generated. The ex­
ample program disables transmit interrupts and DMA, 
and returns. The main line program was polling the inter­
rupt enable bit for completion. 

Next, the DMA is set up to transfer 25 characters into the 
internal register memory. One must select internal 
memory in the EMT register by clearing bit O. The ad­
dress for transfer requires only one byte, so that working 
register I (RI), when RPO equals CO, is the aooi6ss 
pointer. The DMA count must also be loaded, in this 
case with 25. For demonstration purposes, the auto­
echo bit of the UART MODE B register is selected. This 
causes any characters received to be automatically 
looped back to the transmit port. Finally, the receive in­
terrupt and DMA enable bits (BITS 0 and 1) are set to 
enable and begin DMA operation. When 25 characters 
have been input to the Super8, a receive interrupt will be 
generated, and control will be transfered to the "RXDATI" 
routine, where interrupts and DMA are disabled. 

The last routine in the example software sends another 
message from EPROM to the console and then sends 
the characters from the internal memory buffer that were 
previously entered. The prime consideration is to 
remember to select the source/destination memory in the 
EMT register. 

-----------------
In this DMA example, the code is simple for DMA opera­
tion. It is important to note that this example does not 

448 



fully utilize the functionality of the DMA transfer. The ex­
ample purposely waits in a software loop while the DMA 
transfer occurs. This prevents the supporting code from 
becoming too complex to follow for an example. Normal 
operation might have the UART receiving characters 

under DMA controls and transmitting characters under 
interrupt control with processing occurring somewhere in 
the middle. 

.TITLE Sample Zilog Super 8 Serial DMA M~de operation 

;========================================~================== 
;= 
j= 

j= 

:= 
:= 
j= 

i= 

TITLE: 
DATE: 
PURPOSE: 

ASSEMBLER: 
PROGRAMMER: 

UART3.S 
JULY 17, 1986 
TO DEMONSTRATE DMA 
DRIVEN SERIAL PORT 
COMMUNICATIONS 
ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II 

:=========================================================== 

• PAGE 55 ;set maximum page size to 55 lines 
;*********************************************************** 
i* '* 
;"1< GENERAL EQl!ATES * 
i* * 
i***************************************************** ****** 

CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

i***************************************************** ****** 

REGISTER EQUATE TABLE 
"I< 

"I< 

i* * 
i***************************************************** ****** 
period: .equ 0 ;period timer 
second: .equ 1 ;seconds timer 
minute: .equ 2 ;minutes timer 
hours: .equ 3 ;hours timer 
;working register equates 
MPTR: "equ RRO ;message pointer for external memory 
, 
;***********.*******************~*************************** 
i* * 
;"1< INTERRUPT VECTOR TABLE * 
i* '* 
:*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10: 
INTRll: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 

• WORD 
• WORD 
. WORD 
• WORD 
. WORD 
• WORD 
.WORD 
. WORD 
• WORD 
;WORD 
. WORD 
. WORD 
. WORD 
.WORD 
• WORD 
. WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET' 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
TXDATI 
INTRET 
INTRET 

;this area should always be defined 
;as it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here • 

~***************************************************** ****** 

START OF PROGRAM EXECUTION 
* 
* 
* 

i***************************************************** ****** 

START: jr STARTl ;program execution unconditionally 

449 



450 

.ASCII 'REL 0 7/17/86' 

START1: di 
sbO 
ld EMT,#OOOOOOOlB 

1d PO,I/OOH 
ld POM, #11111111B 
ld PM,1/00ll0000B 
ld H1C,#00000000B 

;begins at this location after reset 
;and power up. 
;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
;select register bank 0 
;external memory timing=no wait input, normal 
;memory timing, no \'lait states, stack internal, 
;and DMA external 
;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

, 

ld 
ld 
ld 

ld 
ld 
ld 

ld 
ld 
ld 

P2,1/00H 
P3,1/00H~ 
P2AM,#10001010B 

P2BM,1I10101010B 
P2CM,1/10101010B 
P2DM,#10101010B 

P4,#00000000B 
P4D, #11111111B 
P40D,1/00000000B 

;port 2 outputs low 
;port 3 outputs low 
;p31,20,21 as output,p30 input 
;it is necessary nere to configure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22,23 as output 
;p34,35,24,25 as output 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as inputs 
;active push/pull [not necessary since all 
; bits are inputs 

;basic Super 8 I/O is initialized, now internal registers 

ld 
ld 
ld 

RPO,1/0COH 
RP1,#OC8H 
SPL,#OFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;'for stack pointer. location OFFH is wasted 
;as stack operation. SPH is general purpose 
;storage. 

;now clear the internal memory and stack area 

ld SPH,1/0FFH ;point to top of general purpose register 
ZERO: clr @SPH ;zero it 

dec SPH 
jr nz,ZERO' ;do it, until register set is all cleared 
clr @SPH ;zero last register 

;now everything except working registers 1s cleared 

;cpu and memory now initialized, set up timer for real time clocle 

ld SYM,#OOOOOOOOB ;disable fast interrupt response 
ld IPR,1/00000010B ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
ld IMR,I/Ol000ll0B ;enable counter, rx and tx interrupts 
sbl ;select bank 1 
ld COTCH,1/"HB(50000) ;high byte of time constant 
ld COTCL,1/"LB(50000) ;low byte of time constant 

;12,000,000 hertz / 4 / 50,000 = 60 hertz 
;12 Mhz is xtal freq, 4 is internal divider 

ld COM,#00000100B ;p27,37 is I/O, programmed up/down, no capture 
;timer mode is selected 

sbO ;select bank 0 
ld COCT,1/10100101B ;continuous, count down, load counter, 

;zero count interrupt enable, enable counter 

;timer is set, now lets initialize the UART for polled operation 

sbl ;bank 1 
ld UMA,I/Oll10000B 

;time constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 



ld UBGH, #AHB(00009) ;high byte of time constant 
ld UBGL,#ALB(00009) ;10\'1 byte of time constant 
ld UMB,#00011110B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock I 2, 
;baud rate generator is enabled, 100pback 
;is disabled 

sbO ;se1ect bank 0 
ld UTC,#10001000B ;select p31 as transmit data out, 1 stop bit 

;and transmit enable 
ld UIE,#OOOOOOOOB ;no interrupts, no DMA 
ld URC,#00000010B ;enable receive 

;UART is initialized, enable interrupts for real time clock 

ei ;enable interrupts 
, 
;because uart was just enabled, allow data line to mark for at least 1 second 

WAIT: 

, 

cp 
jr 

second, ill 
ne,WAIT ;wait 1 second 

;display the logon message 

LOGON: ldw 
call 
call 

MPTR, #MSG 
SENDM 
TXWAT 

;load the address of MSG into word reg MPTR 
;send the message 
;wait for transmitter to complete 

;logon message displayed; get response from console 
;and move to upper register memory 

GET: 

, 

di 
ldw 
and 
sb1 
ld 
ld 
or 
sbO 
or 
ei 
call 

MPTR,#OOSOH 
EMT, #11111110B 

DCH,#O 
DCL,#25 
UMB,#00100000B 

UIE,#OOOOOOl1B 

RXWAT 

;no interrupts while setting up for DMA 
;first character receive location 
;select register file for receiving character 
;select bank one 
;DMA count high byte 
;DMA count low byte 
;auto echo enable 
;restore to bank zero 
;receive character DMA link, interrupt enable 

;wait for receiver to complete receiving input 

;receive characters in buffer, restore SuperS non D~~ state 

di ;no interrupts while cleaning up 
sb1 ;bank 1 
and UMB,#11011111B ;disable auto echo 
sbO ;restore bank 0 
or EMT,#OOOOOOOlB ;select data memory for DMA transfers 
ei 

;25 characters received via DMA, now display "ECHO" message 

ECHO: ldw 
call 
call 

MPTR, ilMSG1 
SENDM 
TXWAT 

;load the address of MSG1 in word reg MPTR 
;send the message 
;wait on transmitter 

;message sent, now replay typed input 

di 
ldw 
and 
sb1 
ld 
ld 
sbO 
or 
or 
Eli 
call 
di 
or 
ei 

MPTR,#OOSOH 
EMT, #11111110B 

DCH,#O 
DCL,#25 

UIE,#00000100B 
UTC,#OOOOOOOlB 

TXWAT 

EMT,#OOOOOOOlB 

;point to beginning of buffer 
;se1ect register bank for DMA transfer 
;select bank 1 
;DMA count high byte 
;DMA count low byte 
;select bank 0 
;enable transmit interrupts 
;transmit DMA enable 
;enable interrupts 
;wait on transmitter 

;select external data memory for DMA transfer 

replay complete, loop back and do it again 

jr LOGON 

451 



452 

, 
; subroutines 
, 
;send message 
SENDM: ldci' 

dec 
di 
or 
sb1 
ld 
ld 
sbO 
or 
or 
ei 
ret 

;transmit DMA 
TXDATI: and 

and 
iret 

at MPTR for 
r7,@MPTR 
r7 

length in first byte 
;get the character 
;count actually should be n-1 for n 'bytes 
;no interrupts while setting up 

EMT,#00000001B ;select external data memory for DMA transfer 

DCH,#O 
DCL,r7 

;select bank 1 
;DMA count high byte is 0 
;move the count DMA count low byte 
;select bank 0 

UIE,#00000100B ;enable transmit interrupts 
UTC,#00000001B ;transmit DMA enable 

complete 
UlE, #11111011B 
UTC, # 11111110B 

;disable transmit interrupts 
;disable transmitDMA 
;ignore it if no character to transmit 

;transmitter wait routine 
TXWAT: tm UIE,#00000100B ;wait until interrupts disabled 

;wait if bit set jr nz,TXWAT 
ret 

;receive character available interrupt 
RXDATI: and UIE,i/11111100B ;disable the receive interrupts 

iret 
;receive wait 
RXWAT: tm 

jr 
ret 

routine 
UlE,i/00000001B 
nz,RXWAT 

;wait until interrupts disabled 
;wait if bit still set 

;real time interrupt running in background 

TlMERO: inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
xor 
clr 
inc 
cp 
jr 
clr 

NOROLL: or 
nop 
nop 

lNTRET: iret 

MSG: . BYTE 
• ASCII 
• ASCII 

MSG1: • BYTE 
• ASCII 

.END 

period ;bump periodic counter (60 
period, #60 lone second yet? 
ne,NOROLL ;no rollover 
P2,#00000001B ;complement the second bit 
period ;start it over again 
second ;bump the seconds timer 
second, #60 ;reached maximum 
ne,NOROLL ;no rollover 
P2,i/00000010B ;complement the minute bit 
second ;start it over again 
minute ;bump the minutes timer 
minute,i/60 ;reached maximum 
ne,NOROLL ;no rollover 
P2,i/00000100B ;complement the hour bit 
minute ;start it over again 
hours ;bump the hours timer 
hours, #24 ireached maximum 
ne,NOROLL ;no rollover 
hours ; start it over again 
COCT,#00000010B ; reset· end of count 

land return from interrupt 

56 
CR,LF,'Super8 Uart DMA test program.',CR,LF 
'Enter 25 characters',CR,LF,'$' 
34 

hertz) 

CR,LF, 'Echoed back,. your line was ••• ',CR,LF, '$' 



August 19S7 

Generally digital microprocessors are thought of as only 
being able to generate digital signals ... that is either on or 
off. With the simple addition of a digital-to-analog con­
verter (DAC),' more complex waveforms may be 
generated. Since the advent of the microprocessor and 
the DAC, many methods have been used by hardware 
and software designers to generate sine waves, includ­
ing some that involve precise instruction and clock cyCle 
calculations. This example is different. 

The Zilog SuperS microcomputer is a single chip device 
requiring only a latch and EPROM to operate in its ROM­
LESS state. Leaving 24 1/0 lines for user configuration, 
it is extremely easy to interface with peripherals, includ­
ing, in this' case, the DAC- OS. The hardware in this ap­
plication ex~ple is essentially the same base hardware 
as the previous application articles. Since it is assumed 
that the reader has access to those articles, detailed ex­
plaination of the base will not be made here. Only the 
additions to the base will be explained. 

The base SuperS microprocessor has ports 2, 3 and 4 
available for user connection. For this example; the 
DAC-OS is connected to port 4 (P4). The DAC-OS is tied, 
with the least significant bit tied to P40 and the most sig­
nificant bit tied to P47. The other connections to the 
DAC-OS are mostly out of the test circuit description 
shown in the data manuals associated with it. The DAC 
requires -12 volts for proper operation. The output for 
this example is tied to a simple op- amp filter with a 
sharp roll off at about 3500 hertz. This type filter might 
be quite suitable for telecommunications applications, but 
may not be so good for many others. An oscilloscope 
displays the resultant wavefOrm. 

The software to operate the SuperS is in the original in­
itialization software from eariler in this article series. In­
itialization is essentially the same. Port 4 must be set up 
as output, with active push-pull drivers. The main con­
sideration for this program is the software "~ample· rate. 
For this example, SOOO samples per second was chosen. 
Any other rate may be chosen, and the author has suc­
cessfully used values up to 16000 samples per second 
without timing problems. Higher base clock rates are 
possible with the recently introducecd 20 megahertz 
SuperS chips available. With the sample method used, 
the sample rate does not vary with the different sine 
wave frequencies generated. 

GENERATING SINE WAVES 
WITH THE ZllOG SUPERS 
by Charles M. Link, II 

The sample method requires a sine wave table stored in 
ROM or EPROM. This example uses 256 values, al-

though 64, 12S or more values are quite acceptable. 
The BASICA program that generated the sine table is in­
cluded for user modification. Once the values were 
generated, they were manually typed into the program. 
Using the Zilog macro assembler would have signigicant­
Iy slowed assembling. Note that the' comments in the 
BASICA program imust be removed before the PC can 
execute. 

The values generated by the BASICA program are 
, values ranging from 01 H to OFEH. Since the DAC repre­
sents OOH as zero volts and OFFH as 5 volts, this table 
will product sine outputs from almost zero to almost five 
volts. 

The principle of operation requires that a sixteen bit fre­
quency increment be maintained. This increment is. 
generated by the simple formula 

FREQUENCY INCREMENT = (TABLESTEP X 256 X FRE­
QUENCY) I SAMPLE 

where FREQUENCY INCREMENT is a sixteen bit value 
saved in an increment register, TABLESTEP is the num­
ber of values in the sine wave table, FREQUENCY is the 

. desired frequency of generation in hertz, and SAMPLE is 
the number of samples per second. In the example 
program, this increment is stored in "FINCR". 

A current offset into the sine table is maintained in the 
register pair labeled "INCR".At each periodic interrupt, 
FINCR must be added to INCR and saved in INCA. This 
sixteen bit value remains the offset into the table. The 
upper byte of the offset is used to point to the value in 
the 256 byte sine table that is loaded into the DAC. In 
the sample program, the value, loaded into the DAC is 
generated in the previous interrupt and saved until the 
first instruction of the next interrupt., This allows the inter­
rupt to perform some other varying length transactions, 
'without introducing bit jitter into the sine wave. 

Changing the "FINCR" by program control causes dif­
ferent frequencies to be generated. In this case, the sine 
wave may be turned off by disabling the counter 0 inter­
rupt. Depending upon the number of steps in the sine 

453 



table and the sample frequency, very accurate sine fre­
quencies may be generated. Calculate the actual error 
by using the following formula: 

With the addition of a filter with sharp cutoff just above 
the highest desired frequency, the SuperB serves quite 
well as a programmable sine wave generator. In addition 
to sine waves, complex waveforms may be easily 
generated by the SuperB with the addition of the low-cost 
DAC. The next article in this series will describe how to 
generate some of these more complex waveforms. 

[ ABS ( REAL FREQI - INTEGER FREQI) I REAL FREQI I X 
100=% ERROR ' 

where REAL FREOI is the actual calculated frequency 
increment, INTEGER FREOI is the nearest rounded in­
teger of the calculated frequency increment, and the 
result is the actual percent error form the desired value . 

454 

• TITLE Super8 Example Sine Wave Generation 

;============================~============================== 
~= 

;= 
:= 
;= 
:= 

TITLE: 
DATE: 
PURPOSE: 

SINE.S 
JUNE 17, 1986 
TO DEMONSTRATE USING SUPER8 
TO GENERATE HIGH QUALITY SINE 
WAVES. 

:= 
;= 
;= 
:= 

HARDWARE: DAC-08 ON PORT 4 
SEE DIAGRAM 

ASSEMBLER: ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II PROGRAMMER: 

;=========================================================== 

• PAGE 55 ;set maximum page size to 55 lines 
, 
:*********************~************************************* 
:* * 
;. REGISTER 'EQUATE TABLE • 
;. • ; ••••••••••••••••••••••••••••••••••••••••••• * ••••••••••••••• 
, 
INCR: 
INCRH: 
INCRL: 
FINCR: 
FINCRH: 
FINCRL: 
POINT: 
POINTH: 
POINTL: 
CVAL: 
, 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

rrO 
rO 
r1 
rr2 
r2 
r3 
rr4 
r4 
r5 
r6 

;current increment in sine table 
;high byte of current increment value 
;low byte of current increment value 
;increment in sine table for frequency 
;high byte of frequency increment value 
;low byte of frequency increment value 
;pointer into sine table 
;high byte of sine table pointer 
;low byte of sine table painter 
;current value to output to DAC-08 

; .......................................................... . 
i* * 
; • GENERAL EQUATES • 
i* * 
:*********************************************************** 

XTAL: .equ 
SAMPLE: • equ 
CTVAL: .equ 
TABSTP: .equ 
FREQ: -.equ 
FREQI: .equ 

12000000 ;crystal freq in hertz 
8000 ;sample frequency in hertz 
XTAL/4/SAMPLE ;counter load value 
256 ,;number of values in sine table 
697 ;desired sine wave frequency 
(TABSTP·256·FREQ)/SAMPLE 

; ..........................................•................ 
;* * 
;. INTERRUPT VECTOR TABLE • 
;. ~ 
; .......................................................... . 
INTRO 
INTR1 
INTR2 
INTR3 
INTR4 
INTR5 
INTR6 
INTR7 

• WORD 
: WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET 

this area should always be defined 
as it reserves the lower 32 bytes 
for the interrupt table. the name 
of the subroutine for each particular 
interrupt seryice would'normally be 
named here. 



INTR8: 
INTR9: 
INTR10: 
INTRll: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET . 

;*~********************************************************* 
;* * 

START OF PROGRAM EXECUTION 
;* * 
;************************~********************************** 

START: jr 

• ASCII 

START1: di 
.sbO 
ld 

ld 
ld 
ld 
ld 

STARTl 

'REL 0 6/16/86' 

EMT,1I00000000B 

PO,/IOOH 
POM,'II111ll111B 
PM,J/OOllOOOOB 
H1C,1I00000000B 

;program execution unconditionally 
;begins at this location after reset 
land power up. 
;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
;select register bank 0 
;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
land DMA internal 
;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable porto as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

. 

ld 
ld 

'ld 
ld 
ld 
ld 

P2,/IOOH 
P3,/IOOH 
P2AM,1I10101010B 
P2BM,1I1010l010B 
P2CM,1I10101010B 
P2DM,1I10101010B 

;port.2 outputs low 
;port 3 outputs low 
;p30,31,20,21 as output 
;p32,33,22,23 as output 
;p34,35,24,~5 as output 
;p36,37,26,27 as output 

ld P4,J/IOOOOOOOB ;set midpoint for DAC inputs 
ld P4D,1I00000000B ;set all bits of P4 as output 
ld P40D,1I00000000B ;active push/pull 

;basic Super 8 I/O is initialized, now internal registers 

ld 
ld 
ld 

RPO,/IOCOH 
RP1,/lOC8H 
SPL,IIOFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
las stack operation. SPH is general purpose 
; storage. 

;now clear the internal memory and stack area 

ZERO: 

; now 

; cpu 

ld 
clr 
dec 
jr 
clr 

everything 

and memory 

ld 
ld 

ld 
·sbl. 
ld 
ld 
ld 

sbO 
ld 

SPH,i/OFFH ;point to top of general purpose register 
@SPH ;zero it 
SPH 
nz,ZERO ;do it until register set is all cleared 
@SPH ;zero last register 

except working registers is cleared 

now initialized, set up timer for real time clock 

SYM,/lOOOOOOOOB ;disable fast interrupt response 
IPR,i/00000010B ;interrupt priority 

;IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQl 
IMR,i/00000100B ;enable only interrupt 2 

;select bank 1 
COTCH,i/AHB(CTVAL) ;high byte of time constant 
COTCL,II ALB(CTVAL) ;low byte of time constant 
COM,I/00000100B ;p27,37 is I/O, programmed up/down, no. capture 

;timer mode is selected 
;select bank 0 

COCT,1I10100101B ;continuous, count down, load counter, 

455 



456 

, 
;timer is initialized, now lets 

;zero count interrupt enable, enable counter 

enable interrupts and wait 

WAIT: 

, 

ldw INCR,#l 
ldw FINCR,#FREQI 
ldw POINT,#SINTAB 
ld CVAL,#OSOH 
ei 
nop 
nop 
nop 
nop 
jr WAIT 

;start at the beginning of sine table 
;load frequency of increment 
;pointer points to sine table 
;initial value to prevent glitch at start 
;enable interrupts 

;loop back 

;Timer interrupt. Occurs SAMPLE times per second 
;interrupt outputs value to DAC-OS and then determines value for next 
; interrupt. This assures no bit jitter. 

TIMERO: ld p4,CVAL :write new value to DAC-OS 
rcf ;clear carry flag 
add INCRL,FINCRL :find next position in sine table 
adc INCRH,FINCRH ;by adding frequency offset to last position 
ld POINTL,INCRH ;set new pointer into sine table 

;upper byte ok since on boundary 
ldc CVAL,@POINT :get value from sine table 
or COCT,#00000010B :reset end of count interrupt 

INTRET: iret land return from interrupt 
: 
;*********************************************************** 
:* * 
; * SINE WAVE LOOKUP * 
:* * 
:*********************************************************** 
, 
:sine table for sine wave generation using DAC-OS. Table based upon 
;case of waveform with minumum amplititude = 0 volts and maximum 
:amplititude = 5 volts. DAC-OS input for 0 volts = OOH 
;5 volts = OFFH. Table generated using following BASICA program, 
:then typed into program. 

. ; 

, 

10 CLS 
20 PI=3.141593 
30 FOR 1=0 TO 255 
40 C=360/256 
50 D=C*I 
60 E=D*PI/1S0 
70 F=SIN(E) 
SO G=F*127 
90 H=12S+G 
100 J=CINT(H) 
110 A$=HEX$(J) 
120 PRINT A$ 
130 LPRINT A$ 
140 NEXT 
150 END 

:clear screen 
;define PI 
;256 total values 
;define basic interval value 
;value from zero on sine wave 

:figure sine for interval from 0 
:sine range should be from -127 to 127 
;make result from 0 to 255 
:round to nearest integer 
:convert to hex 
Ion screen 
Ion printer 
;do next inverval 

:*note-remove comments, BASICA will not accept ; a~ comment delimiter 

SINTAB: .ORG 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 

0400H :begin sine table .on even byte boundary 
OSOH,OS3H,OS6H,OS9H,OSCH,090H,093H,096H,099H,09CH,09FH,OA2H 
OA5H,OASH,OABH,OAEH,OB1H,OB3H,OB6H,OB9H,OBCH,OBFH,OC1H,OC4H 
OC7H,OC9H,OCCH,OCEH,OD1H,OD3H,OD5H,ODSH,ODAH,ODCH,ODEH,OEOH 
OE2H,OE4H,OE6H,OESH,OEAH,OEBH,OEDH,OEFH,OFOH,OF1H,OF3H,OF4H 
OF5H,OF6H,OFSH,OF9H,OFAH,OFAH,OFBH,OFCH,OFDH,OFDH,OFEH,0FEH 
OFEH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFEH,OFEH,OFEH,OFDH 
OFDH,OFCH,OFBH,OFAH,OFAH,OF9H,OFSH,OF6H,OF5H,OF4H,OF3H,0F1H 
OFOH,OEFH,OEDH,OEBH,OEAH,OESH,OE6H,OE4H,OE2H,OEOH,ODEH,ODCH 
ODAH"ODSH, OD5H, OD3H, OD1H, OCEH, OCCH, OC9H, OC7H, OC4H, OC1H, OBFH 
OBCH,OB9H,OB6H,OB3H,OB1H,OAEH,OABH,OASH,OA5H,OA2H,09FH,09CH 



• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 

• END 

099H,096H,093H;090H,08CH,089H,086H,083H,080H,07DH,07AH,077H 
074H,070H,06DH,06AH,067H,064H,061H,05EH,05BH,058H,055H,052H 
04FH,·04DH, 04AH, 047H, 044H, 041H, 03FH, 03CH, 039H, 037H, 034H, 032H 
02FH,02DH,02BH,028H,026H,024H,022H,020H,OlEH,OlCH,OlAH,018H 
016H,015H,013H,OllH,OlOH,OOFH,OODH,OOCH,OOBH,OOAH,008H,007H 
006H,006H,005H,004H,003H,003H,002H,002H,002H,OOlH,OOlH,OOlH 
OOlH,OOlH,OOlH,OOlH,002H,002H,002H,003H,003H,004H,005H,006H 
006H,007H,008H,OOAH,OOBH,OOCH,OODH,OOFH,OlOH,OllH,013H,015H . 
016H,018H,OlAH,OlCH,OlEH,020H,022H,024H,026H,028H,02BH,02DH 
02FH,032H,034H,037H,039H,03CH,03FH,041H,044H,047H,04AH,04DH 
04FH,052H,055H,058H,05BH,05EH,061H,064H,067H,06AH,06DH,O70H 
074H,077H,07AH,07DH 

457 



.. Zilog --,. --', -- ------_ -Application-Note - , -

• 1 \ ~, ."ii • ~ > 

August 1987 

In the previous article, a sine wave generation example 
was demonstrated. Sine waves are great, but, some­
times, more complex waveforms must be generated. 
One of the most widely used complex waveforms is the 
DTMF tone. The DTMF tone is used on millions of 
telephones under the AT&T registered name "TOUCH 
TONE". Generally, telecommunications designers pur­
chase one of the many DTMF encoder chips and hang it 
beside a microprocessor. This application article con­
tains an example of a DTMF generation, scheme that 
produces nearly as pure and probably as accurate a tone 
as the extemal Chip method. 

Generating sine waves requires some type of digital-to­
analog converter to interface to the microprocessor. For 
this application, a DAC-08 is used. This DAC-08 is tied 
to port 4 of the SupeRJ. Since it is assumed that the 
reader has access to the previous article, a detailed 
description of the hardware will be left to that article. 
Why not use the DTMF generator chip, when it might be 
just as inexpensive as the DAC- 08? The answer is that 
the DTMF generator chip requires an external crystal or 
clock, and it might not be convenient to pick a processor 
frequency that is a direct multiple of the one required by 
the generator. The second and more important reason is 
that the DAC-08 can be used to generate other call 
progress tones such as ringback and busy, or any other 
complex waveform. 

Since the previous article discussed the method for 
generating sine wave tones, this article will only discuss­
how to turn that into the DTMF tone. The DTMF tone is 
actually a combination of two tones, hence, the name 
DUAL TONE MULTI-FREQUENCY. ,The tones are ar­
ranged such that each row and each column has a cor­
responding single frequency tone assigned. An 
additional, normally unseen column, contains an eighth 
tone frequency. A simple diagram below shows the'ar­
rangement. 

DTMF TONE ASSIGNMENT 

697 
770 
852 
941 

458 

1209 
1 
4 
7 

1336 
2 
5 
8 
o 

1477 ' 
3 
6 
9 
# 

1633 
A 
B 
C 
D 

GENERATING DTMF TONES 
WITH THE ZILOG SUPER8 
by Charles M. Link, II 

The method used to combine the two tones into one 
single complex waveform is simple: add the two i,n­
dividual tones together. Adding the tones together is 

usually what happens when analog circuitry produces the 
DTMF tODe. In fact, most of the DTMF encoder chips 
usually add the tones together either internally or exter­
nally to produce; the single waveform; 

Generating the two tones is no task for the Super8 
microcomputer. Just set up two current table offset 
values and two different frequency increments. At each 
periodic interrupt the 16 bit frequency increment is added 
to the current table offset producing a new current table 
offset. The upper byte of each current table offset (one 
for the row frequency and one for the column) is used as 
a pointer into a 256 byte table. The sine values retrieved, 
from the table are then added together and loaded into 
the DAC-08. 

Since the DAC input of OOH corresponds to an output of 
o volts and the input of OFFH corresponds to an output of 
5 volts, adding two values that could possibly be OFFH 
presents a problem. Since two sines must add to, no 

, more 5 volts, the maximum for orie single sine value 
must be one half of 5 volts, or 80H. The sine table has 
been adjusted so that the 2.5 volt value is mid-range. 
The maximum or mimumum for the sine wave is plus or 
minus 1.25 volts. 

The interrupt service routine is almost exactly the same 
, as the interrupt routine for the sine wave, except that two 
sine waves are calculated. The final values are added 
together and stored for the first instruction of the next in­
terrupt. In order to change tones, or disable the tone 
generation, additional software logic could enable or dis­
able the interrupt,' and modify the two values "CINCR", 
and "RINCR". 

It is clear from the example, that ringback, busy, MF, and 
other signaling tones can be easily generated without ad­
ditional hardware. Increased sampling rates could be 
used to generate tones of much higher frequencies and 
accuracies. The accuracy, using the above m~thod and 
sampling frequencies, is much less than one percent, to­
tally suitable for telecommunications needs. 



.TITLE Super8 Example DTMF Generation 

i=========================================================== 
;= 
;= 
;= 
;= 
i= 
i= 
;= 
i= 
;= 

TITLE: 
DATE: 
PURPOSE: 

HARDWARE: 

ASSEMBLER: 
PROGRAMMER: 

DTMF.S 
JUNE 17, 1986 
TO DEMONSTRATE USING SUPER8 
TO GENERATE HIGH QUALITY DTMF 
WAVES. 
DAC-08 ON PORT 4 
SEE DIAGRAM 
ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II 

i=========================================================== 

. PAGE 55 ;set maximum page size to 55 lines 
, 
i*********************************************************** 
i* * 
; * REGISTER EQUATE TABLE * 
i* * 
i******************************************************.*.*. 
, 
;column tone equates 
CINCR: .equ rrO 
CINCRH: .equ rO 
CINCRL: .equ r1 
CFINCR: .equ rr2 
CFINCH: .equ r2 
CFINCL: .equ r3 
POINT: .equ rr4 
POINTH: .equ r4 
POINTL: .equ r5 
;row tone equates 
RINCR: .equ rr6 
RINCRH: .equ r6 
RINCRL: .equ r7 
RFINCR: .equ rrS 
RFINCH: .equ rS 
RFINCL: .equ r9 
CVAL: .equ r10 
RVAL: .equ r11 

;current increment in sine table 
;high byte of current increment value 
;low byte of current increment value 
;increment in sine table for frequency 
;high byte of frequency increment value 
;low byte of frequency increment value 
;pointer i~to sine table 
;high byte of sine table pointer 
;low byte of sine table pointer 

;current increment in sine table 
;high byte of current increment value 
; low byte of current incr,ement value 
;increment in sine table for frequency 
;high byte of frequency increment value 
;low byte of frequency increment value 
;current value to output to DAC-08 
;current row value 

, 
;*********************************-*******************~***** 
;* * 
;* GENERAL EQUATES * 
i* * 
;*********************************************************** 

XTAL: .equ 12000000 ;crystal freq in hertz 
SAMPLE: .equ 8000 ;sample frequency in hertz 
CTVAL: .equ XTAL/4/SAMPLE ;counter load value 
TABSTP: .equ 256 , ;number of values in sine table 
CFREQ: .equ 1209 ;desired column frequency 
RFREQ: .equ 697 ;desired row frequency 
CFREQI: .equ (TABSTP*256*CFREQ)/SAMPLE 
RFREQI: .equ (TABSTP*256*RFREQ)/SAMPLE 
;note dtmf frequencies are 697,770,852,941,1209,1336,1477,1633 
, , 
;******************************************************.** •• 
;* * 
; * INTERRUPT VECTOR TABLE * 
;* ~ * 
;*********************************************************** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10: 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
. WORD 
• WORD 

.INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
TIMERO 
INTRET 
INTRET 
INTRET 
INTRET 

;this area should always be defined 
;as it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here. 

459 



460 

INTR11 
INTR12 
INTR13 
INTR14 
INTR15 

• WORD 
• WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 

, 
~*********************************************************** 
;* * 
: * START OF PROGRAM EXECUTION * 
i* ,* 
:*********************************************************** 

START: jr START1 :program execution unconditionally 
:begins at this location after reset 
:and power up. 

• ASCII 'REL 0 6/16/86' 

START1: di 
sbO 
ld EMT,#OOOOOOOOB 

:jump around optional ascii string 
:containing release info, copyright, etc. 
:begin 
:select register bank 0 
:external memory timing=no wait input, normal 
:memory timing, no wait states, stack internal, 
:and DMA internal 

ld 
ld 
ld 
ld 

PO,#OOH 
POM, #11111111B 
PM, #00110000B 
H1C,#00000000B 

:address begins at OOOOh, set upper byte 
:select all lines as address 
:enable port 0 as upper 8 bits address 
:handshake not enabled port 0 

:port 1 is defined in rouiless part as address/data. it is not necessary 
:here to initialize that port 

: 

ld 
ld 
ld 
ld 
ld 
ld 

ld 
ld 
ld 

P2,#00H 
P3,#00H 
P2AM,-#10101010B 
P2BM,#10101010B 
P2CM,#10101010B 
P2DM, /I10101010B 

:port 2 outputs low 
:port'3 outputs low 
:p30,31,20,21 as output 
:p32,33,22,23 as output 
:p34,35,24,25 as output 
:p36,37,26,27 as output 

P4,#10000000B :set midpoint for DAC inputs 
P4D,#00000000B :set all bits of P4 as output 
P40D,#00000000B :active push/pull 

:ba'sic Super 8 I/O is initialized, now internal registers 

ld 
ld 
ld 

RPO,#OCOH 
RP1,/lOC8H 
SPL,#OFFH 

:set working register low to lower 8 bytes 
:set working register high to upper 8 bytes 
:set stack pointer to start at top of set two 
:note here that only lower 8 bits are used 
:for stack pointer. location OFFH is wasted 
:as stack operation. SPH is general purpose 
:storage. " 

:now clear the internal memory and stack area 

ld SPH,#OFFH :point to top of general purpose register 
ZERO: clr @SPH :zero it 

dec SPH 
jr nz,ZERO :do it until register set is all cleared, 
clr @SPH :zero last register 

: now everything except working registers is cleared 

: cpu and memory now initialized, set up 'timer for real time clock 

ld SYM,#OOOOOOOOB :disable fast interrupt response 
ld IPR,#00000010B :interrupt priority , 

:IRQ2>IRQ3>IRQ4>IRQ5>IRQ6>IRQ7>IRQO>IRQ1 
ld IMR,'00000100B :enable only interrupt 2 
sb1 :select bank 1 
ld COTCH,#AHB(CTVAL) :high byte of time,constant 
ld COTCL,#ALB(CTVAL), :low byte of time constant 
ld COM,#00000100B :p27,37 is I/O, programmed up/down, no capture 

:timer mode is selected 
sbO :select bank 0 
ld COCT,#10100101B :continuous, countdown, load counter, 

:zero count interrupt enable, enable counter 

;timer is initialized, noW lets enable interrupts and wait , 
ldw eINCR,ll ;start column at beqinninq of sine table 
ldw RINCR"l ;start ,row at beqinninq of sine table 



this example.loads the tones for digit III 

user software would, of course have to manipulate these registers for 
proper tone control 

CFINCR,#CFREQI 
RFINCR,#RFREQI 
POINT,#SINTAB 
CVAL,#080H 

;load column frequency increment 
:load row frequency increment 
:pointer points to sine tabl~ 
;initial value to prevent glitch at start 
tenable interrupts 

WAIT: 

ldw 
ldw 
ldw 
ld 
ei 
nop 
nop 
nop 
nop 
jr WAIT ;loop back 

; 
;Timer interrupt. Occurs SAMPLE times per second 
;interrupt outputs value to CAe-os and then determines value for next 
; interrupt. This assures no bit jitter. 

TlMERO: ld 
rcf 
add 
adc 
ld 
ldc 
add 
adc 

·ld 
ldc 
add 
or 

INTRET: iret 

p4,CVAL 

CINCRL,CFINCL 
CINCRH,CFINCH 
POINTL,CINCRH 
CVAL,@POINT 
RINCRL,RFINCL 
RINCRH,RFINCH 
POINTL,RINCRH 
RVAL,@POINT 
CVAL,RVAL 
COCT,#OOOOOOIOB 

:write new value to CAe-OS 
;clear carry flag 
;find next position in sine table 
;by adding frequency offset to last position 
:set new pointer into sine table 
;get value from sine table 
;find next position in sine table 
;by adding frequencty offset to last position 
:set new pointer into sine table 
:get second value from sine table 
:form a complex Maveform from two sine values 
;reset end of count interrupt 
land return from interrupt 

: * * * ** ** * ** * * * ** * * * * * * * * * * ~** *** * * ** * ** * * ** * * * * * *.* * *** *** * * * 
SINE WAVE LOOKUP * 

* 
:****** •• **.**.*.***.* •••• ******************* •• ***.****** ••• 
; 
;sine table for DTMF generation using DAC-OB. Table based upon 
lease of waveform ~onsisting of two sine waves summed to provide a single 
:co~plex waveform with minumum amplititude = a volts and maximum 
;amplititude = 5 volts. DAC-OB input for 0 volts = OOH 
;5 volts = .OFFH. Both waves must total rio more than OFFH, therefore 
;maximum for one wave must be 1/2 5 volts or OBOH. 
;Table generated using following BASICA program, 
;then typed into program. 

; 

10 CLS 
20 PI=3.141593 
30 FOR 1-0 TO 255 
40 C,;,360/256 
50 D=C*I 
60 E-D*PI/180 
70 F-SIN(E) 
80.G=F*63 
90 H=64+G 
100 J=CINT(H) 
110 A$=HI!X$(J) 
120 PRINT A$ 
130 LPRINT A$ 
140 NEXT 
150 END 

:clear screen 
;define PI 
;256 total values 
:define basic interval value 
;value from zero on sine wave 

; figure sine for interval' from 0 
:sine range should be from -63 to 63 
;make result from 0 to 127 
:round to nearest integer 
:convert to hex 
ion screen 
ion printer 
;do next inverval 

;*note~remove comments, BASlCA will not accept ; as comment delimiter 

SINTAB: .ORG 
• byte 
• byte 
• byte 
• byte. 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
• byte 
.ENO 

0400H ;begin sine table on even byte boundary' 
·040H,042H,043H,045H,046H,048H,049H,04BH,04CH,04EH,04FH,051H 
052H,054H,055H,057H,058H,O~AH,05BH,05CH,05EH,05FH,060H,O62H 
063H,064H,066H,067H,068H,069H,06AH,06BH,06DH,06EH,06FH,O70H 
071H,072H,073H,074H,074H,075H,076H,077H,078H,078H,079H,07AH 
07AH,07BH,07BH,07CH,07CH,07DH,07DH,07DH,07EH,07EH,07EH,07FH 

07FH,07FH,07FH,07FH,07FH,07FH,07FH,07FH,07FH,07FH,07EH,07EH 
07EH, 070H, 070H, 070H, 07CH, 07CH,'07BH, 07BH, 07AH, 07AH, 079H, 078H 
078H,077H,076H,075H,074H,074H,073H,072H,071H,070H,06FH,06EH 
060H,06BH,06AH,069H,068H,067H,066H,064H,063H,062H,060H,05FH 
05EH,05CH,05BH,05AH,058H,057H,055H,054H,052H,051H,04FH,04EH 
04CH,04BH,049H,048H,046H,045H,043H,042H,040H,03EH,030H,03BH 
03AH,038H,037H,035H,034H,032H,031H,02FH,02EH,02CH,02BH,029H 
028H,026H,025H,024H,022H,021H,020H,01EH,010H,OlCH,01AH,019H 
018H,017H,016H,015H,013H,012H,011H,010H,00FH,00EH,00DH,OOCH 
00CH,00BH,00AH,009H,008H,008H,007H,006H,006H,005H,005H,004H 
004H,003H,003H,003H,002H,002H,002H,001H,001H,001H,001H,001H 
001H,001H,001H,001H,001H,001H,002H,002H,002H,003H,003H,003H 
004H,004H,005H,005H,006H,006H,007H,008H,008H,009H,OOAH,OOBH 
00CH,00CH,00DH,00EH,00FH,010H,011H,012H,013H,015H,016H,017H 
018H,019H,01AH,OlCH,01DH,OlEH,020H,021H,022H,024H,025H,026H 
028H,029H,02BH,02CH,02EH,02FH,031H,032H,034H,035H,037H,038H 
03AH,03BH,030H,03EH 

461 



August 19S7 

A SIMPLE SERIAL TO 
PARALLEL CONVERTER 
USING THE ZILOG SUPERS 
by Charles M. Link, II 

The Zilog SuperS has many on-board peripherals that 
provide multiple user applications. Earlier articles have 
demonstrated simple application "stubs" or short test 
programs. This article and the next article demonstrate a 
useful application for the SuperS. Although it 
underutilizes the SuperS's power, the simple serial to 
parallel converter in this application and the print buffer in 
the next application demonstrate the ease at which 
applications are developed with the SuperS. 

Hardware for this application is fairly simple. Port 4 is 
buffered and hooked to the data lines, as shown, to 
interface to a centronics type printer connector. The 
strobe from P25 provides the strobe (pin 1) to the printer. 
The acknowledge line from the printer is inverted and 
tied to P24 of the SuperS. The busy signal from the 
printer is buffered and tied to P23 of the SuperS. The 
design was tested on an Okidata printer and is not 
guaranteed to work on all printers. 

The Zilog SuperS has several features that enhance its 
use as a communication controller. The interrupt or DMA 
driven serial port are helpful, but the handshaking 
parallel pro Is finish the job. In the serial to parallel 
converter, the 256 byte internal register memory is used 
as a small.circular queue. 

Software is fairly straightforward. The serial port is 
initialized just like it was in the application article. on the 
interrupt driven serial port. Port 4 must be set-up as 
outputs with active push-pull drivers. Port 2, bits 3 and 4, 
are set up as input with P24 set to enable interrupts. P25 
is set as output and handshake 0 is set in HOC to provide 
a strobe of 16 clock periods in length . 

462 

• TITLE Sample Zilog Super 8 Serial to Parallel Converter 

;=========================================================== 
;= TITLE: 
;= DATE: 
;= PURPOSE: 
;= 
;= 
;= 
:= 
;= 
:= 
;= ASSEMBLER: 
;= PROGRAMMER: 

SERPAR.S 
JULY 17, 1986 
TO DEMONSTRATE INTERRUPT 
DRIVEN SERIAL PORT IN A 
REALISTIC APPLICATION. 
THIS APPLICATION RECEIVES 
SIMPLE SERIAL DATA A SENDS IT 
OUT THE PARALLEL PORT TO A 
PRINTER. 
ZILOG ASMS8 ASSEMBLER 
CHARLES M. LINK, II 

;=========================================================== 

. PAGE 55 ;set maximum,page size to 55 lines 
:*********************************************************** 
i* * 
; 'I< GENERAL EQUATES * 
:* * 
:*********************************************************** 

CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

;carriage return 
;line feed 

, 
:*********************************************************** 
i* * ; * REGISTER EQUATE TABLE * 
:* * 
:*********************************************************** 
, 
;working register equates 
INPNT: .equ R3 ;input character poiriter 
OUTPNT: .equ R4 ;output character pointer 



MPTR: .equ 
ACKB: .equ 
ACKBIT: .equ 

RR6 
R5 
o 

;message pointer for external memory 
;byte containing ackno~lledge bit 
;bit set = ~o acknowledge yet 
;bit clear = not 11aiting on ackno~lledge 

, 
i**************·*********·*******·******************** ****** 

INTERRUPT VECTOR TABLE " 
i* * 
i*·*************************************************** ****** 

INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10: 
INTR11: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 

• WORD 
. WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
.WORD 
• WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
INTRET 
ACKSTB 
INTRET 

;this area should always be defined 
;as it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
; interrupt service 110uld normally be 
;named here. 

;receive data interrupt 

;acknowle9ge strobe interrupt 

i***************************************************** ****** 
i* * 
;" START OF PROGRAM EXECUTION " 
;" " i***************************************************** ****** 

START: jr 

• ASCII 

START1: di 
sbO 
ld 

ld 
ld 
1d 
1d 

START 1 

'REL 0 7/17/86' 

EMT,IIOOOOOOOOB 

PO,#OOH 
POM, # 11l1l1l1B 
PM,#00110000B 
H1C,#00000000B 

;program execution unconditionally 
;begins at this location after reset 
;and pO~ler up. 
;jump around optional ascii string 
;containing release info, copyright, etc. 
;begin 
;select register ban]c 0 
;external memory timing=no wait input, normal 
;memory timing, no Ivait states, stack internal, 
;and DMA internal 
;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handsha]ce not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

ld 
ld 
ld 

ld 
ld 
ld 

ld 
ld 
ld 
ld 

, 
;basic Super 8 

ld 
ld 
ld 

P2,1/00100000B 
P3,1I00H 
P2AM,1/l0001010B 

P2BM,1/l0100010B 
P2CM,1/l0101001B 
P2or~, jl10101010B 

P4,1I00000000B 
P4D,i/00000000B 
P40D,1I00000000B 
HOC, #11110001B 

;port 2 outputs low, except strobe bit 
;port 3 outputs low 
;p31,20,21 as output,p30 input 
;it is necessary here to configure p30 as input 
;for the'receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22 as output, 23 as input 
;p34,35,25 as output, 24 as input, interrupt en 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as outputs 
;active push/pull 
;handshake enable for port 4, 16 clock pulse 

I/O is initialized, now internal registers 

RPO,#OCOH 
RP1,#OC8H 
SPL,ilOFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;set stack pointer to start at top of set two 
;note here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
;as stack operation. SPH is general purpose 
; storage. 

;nOII clear the internal memory and stac]c area 

463 



464 

ZERO: 
ld 
clr 
dec 
jr 
clr 

SPH, #OFFH 
@SPH 
SPH 
nz,ZERO 
@SPH 

;point to top of general purpose register 
;zero it 

;do it until register set is all cleared 
;zero last register 

;now everything except working registers is cleared 

;cpu and memory now initialized, set up timer for real time clock 

ld 
ld 

ld 

SYM,#OOOOOOOOB 
IPR, #10111111B 

IMR,#01010000B 

;disable fast interrupt response 
;interrupt priority 
;IRQ6>IRQ7>IRQ5>IRQ4>IRQ3>IRQ2>IRQ1>IRQO 
;rx interrupts, acknowledge strobe 

timer is set, now lets initialize the UART for polled operation 

sb1 ;bank 1 
ld UMA,#01110000B 

;time constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

ld UBGH,#AHB(00009) ;high byte of time constant 
ld UBGL,j/ALB(00009) ;low byte of time constant 
ld UMB,#00011110B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
lis disabled 

sbO ;select bank 0 
ld UTC,#10001000B ;select p31 as transmit data out, 1 stop bit 

land transmit enable 
ld UIE,#OOOOOOOlB ;receive interrupts, no DMA 
ld URC,#00000010B ;enable receiver 

UART is initialized, reset acknowledge bit and begin 

bitr 
ld 
ei 

WAIT: ldw 
call 
ld 
ld 

WAIT1: call 
jr 

SENOM: tm 
jr 
btjrt 

bits 
ldci 
ld 
nop 
nop 
nop 
cp 
jr 
ret 

SNOBUF: cp 
jr 
ret 

SC1: tm 
jr 
btjrt 

di 
bit;s 
ld 
tm 

ACKB,#ACKBIT ;reset acknowldege bit if set 
P2BIP,#00000001B ;reset interrupt input flip-flop 

MPTR,#MSG 
SENOM 
INPNT, #0 
OUTPNT,#O 
SNOBUF 
WAIT1 

;enable interrupts 
;point to message 
;send the message 
;set input pointer to register 0 
;set output pointer to register 0 
;send any characters in buffer 
;loop back 

P2,#00001000B ;printer busy 
nZ,SENOM ;wait for printer unbusy 
SENOM,ACKB,#ACKBIT ;see if the acknowledge has occurred 

;from possible last byte 
ACKB, #ACKBIT ;set acknowledge bit before writing to output 
rO,@MPTR ;get the character 
P4, rO ; send to printer 

rO,#'$' 
ne,SENOM 

INPNT,OUTPNT 
ne,SC1 

;allow 18 clocks for strobe 

;last character? 
;loop back for next 

;compare inpointer to outpointer 
;send character if any to send 
;otherwise return 

P2,#00001000B ;printer busy? 
nz,SC1 ;if so, wait until it is not busy 
SC1,ACKB,#ACKBIT ' ;see if acknowledge has occurred 

ACKB, #ACKBIT 
P4,@OUTPNT 
P2, .#OOOOOOOlB 

;from possible last byte 

;set acknowledge bit before writing to output 
;send the character 



jr 
ld 
xor 
cp 
jr 
and 

HON: nop 
inc 
ei 
ret 

i 
isend character 
SENDC: tm 

z,HON 
rO,OUTPNT 
rO,UOOOOOOOB 
INPNT,rO 
ne,HON 
P2,1/11111110B 

OUTPNT 

iif host is on 
iget the output pointer 
iadd 128 to it 
iturn host back on when 128 bytes left 
iotherwise keep sending 
ihost back on 

ibump pointer 
ito make sure pointer, not changed 

itransmit buffer empty yet 
iif not, wait unt~l it is 

in 

jr 
ld 

in rO 
UTC,/l00000010B 
z,SENDC 
UIO,rO iload the character into the transmitter 

ret 
ireceivecharacter available 
RXDATI: ld rO,UIO 

and rO,1/7fH 
call SENDC 
ld @INPNT,rO 
inc INPNT 
cp INPNT,OUTPNT 
jr ne,RXIT 

interrupt 
iget input from console 
iremove upper parity bit 
iecho to console 
isave the character 
ibump input pointer 
ihas the input made a complete loop? 

ireceive character buffer full, stop sending device 

or 
INTRET: 
RXIT: iret 

ACKSTB: tm 
bitr 

ACKSl: tm 
jr 

P2,1/0000000lB 

P2,i/00010000B 
ACKB,I/ACKBIT 

iraise DTR to stop host sending 

iis line low or high now 
ireset acknowledge bit in register 

P2,#00010000B itest ack bit 
Z,ACKSl iwait here till end of strobe 

buf 

ld P2BIP,1/00000001B ireset p24 interrupt pending register 

MSG: 

iret 

• ASCII 
• ASCII 

• END 

iand return 

CR,LF,'Super8 serial/parallel test program.',CR,LF 
'Second line test data',CR,LF,'$' 

.TITLE Sample zilog Super 8 Serial to Parallel Converter with XON/XOFF 

;=========================================================== 
;= 
;= 
;= 
;= 
i= 
;=, 
;= 
i= 
;= 
;= 
;= 
;= 
;= 

TITLE: 
DATE: 
PURPOSE: 

ASSEMBLER: 
PROGRAMMER: 

SERPARl.S 
JULY 17, 1986 
TO DEMONSTRATE INTERRUPT 
DRIVEN SERIAL PORT IN A 
REALISTIC APPLICATION. 
THIS APPLICATION RECEIVES 
SIMPLE SERIAL DATA A SENDS IT 
OUT THE PARALLEL PORT TO A 
PRINTER. FLOW CONTROL IS BY 
XON/XOFF COMMANDS ON THE BACK 
CHANNEL TO THE HOST 
ZILOG ASMS8 ASSEMBLER 
CHARLES .M. LINK, II 

;=========================================================== 

• PAGE 55 iset maximum page size to 55 lines 
i*********************************************************** 

GENERAL EQUATES * 
* ;* * 

i*********************************************************** 
CR: 
LF: 

.equ 

.equ 
OdH 
OaH 

icarriage return 
i11ne feed 

465 



466 

XON: 
XOFF: 

.equ 

.equ 
11H 
13H 

;control-Q or DC1 
;control-S or DC3 

:**~********************************~*********************** 
;* .. 

REGISTER EQUATE TABLE * 
* :*********************************************************** 

;working register equates 
INPNT: .equ R3 ;input character pointer 
OUTPNT: .equ R4 ;output character pointer 

-MPTR: .equ RR6 ;message pointer for external memory 
ACKB: .equ R5 ;byte containing acknowledge bit 
ACKBIT: .equ 0 ;bit set = no acknowledge yet 

;bit clear = not waiting on acknowledge 
XBIT: .equ 1 ;XOFF send to host 

;*********************************************************** 
;* * 
; +. INTERRUPT VECTOR TABLE * 
;* .. 
i***************************************************** ****** 
INTRO: 
INTR1: 
INTR2: 
INTR3: 
INTR4: 
INTR5: 
INTR6: 
INTR7: 
INTR8: 
INTR9: 
INTR10: 
INTR11: 
INTR12: 
INTR13: 
INTR14: 
INTR15: 
, 

• WORD 
• WORD 
. WORD 
• WORD 
• WORD 
• WORD 
• WORD 
. WORD 
• WORD 
. WORD 
• WORD 
• WORD 
• WORD 
. WORD 
• WORD 
• WORD 

INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
INTRET 
RXDATI 
INTRET 
INTRET 
INTRET 
ACKSTB 
INTRET 

;this area should always be defined 
las it reserves the lower 32 bytes 
;for the interrupt table. the name 
;of the subroutine for each particular 
;interrupt service would normally be 
;named here . 

;receive data interrupt 

;acknowledge strobe interrupt 

; *** * *** *** .-* * * * .. * * ** .. * .. 'It * ...... * ** .. '* * .. * *** ~ * .. * * .. * * .. '* '* .... 'It .... * * .... 
:* '* 
; * START OF PROGRAM EXECUTION * 
:* .. 
;~********************************************************** 

START: di 
jr 

• ASCII 

START1: sbO 
ld 

ld 
ld 
ld 
ld 

START 1 

'RBL 0 7/17/86' 

EMT,#OOOOOOOOB 

PO,i/OOH 
POM, #l1l1l1l1B 
PM,#00110000B 
H1C,#OOOOOOOOB 

;for emulation if nothing else 
;program execution unconditionally 
;begins at this location after reset 
land power up. 
;jump around optional ascii string 
;containing release info, copyright, etc. 
;select register bank 0 
;external memory timing=no wait input, normal 
;memory timing, no wait states, stack internal, 
land DMA internal 
;address begins at OOOOh, set upper byte 
;select all lines as address 
;enable port 0 as upper 8 bits address 
;handshake not enabled port 0 

;port 1 is defined in romless part as address/data. it is not necessary 
;here to initialize that port 

ld P2,i/OO100000B 
ld P3,i/OOH 
ld P2AM,#10001010B 

ld P2BM,#10100010B 
ld P2CM,#10101001B 
ld P2DM,#10101010B 

ld P4,#OOOOOOOOB 
ld P4D,#OOOOOOOOB 

;port 2 outputs low, except strobe bit 
;port 3 outputs low 
;p31,20,21 as output,p30 input 
lit is necessary here to configure p30 as input 
;for the receive data, and p31 as output for 
;transmit data for UART 
;p32,33,22 as output, 23 as input 
;p34,35,25 as output, 24 as input, interrupt en 
;p36,37,26,27 as output 

;clear port 4 register 
;set all bits of P4 as outputs 



ld P40D,i/00000000B ;active push/pull 
ld HOC,i/1111000IB ;handshake enable for port 4, 16 clock pulse 

basic Super 8 I/O is initialized, now internal registers 

ld 
ld 
ld 

RPO,i/OCOH 
RP1,I/OC8H 
SPL,i/OFFH 

;set working register low to lower 8 bytes 
;set working register high to upper 8 bytes 
;'set stack pointer to start at top of set two 
;note,here that only lower 8 bits are used 
;for stack pointer. location OFFH is wasted 
;as stack operation. SPH is general purpose 
; storage. 

;now clear the internal memory and stack area 

ld SPH,i/OFFH ;point to top of general purpose register 
ZERO: clr @SPH ;zero it 

dec SPH 
jr nZ,ZERO ;do it until register set is all cleared 
clr @SPH ;zero last register 

now everything except working registers is cleared 

cpu and memory now initialized, set up timer for real time clock 

ld 
ld 

ld 

SYM,ilOOOOOOOOB 
IPR, #10111111B 

IMR,i/01010000B 

;disable fast interrupt response 
;interrupt priority 
;IRQ6>IRQ7>IRQ5>IRQ4>IRQ3>IRQ2>IRQ1>IRQO 
;rx interrupts, acknowledge strobe 

timer is set, now lets initialize the UART for polled operation 

sb1 ;bank 1 
ld UMA,il01110000B 

;time constant = (12,000,000/4/16/9600/2)-1= 
;8.76 rounded to 9. 
;note that a 12 Mhz does not make a very 
;accurate baud rate source. error is large 

ld UBGH,II~HB(00009) ;high byte of time constant 
ld UBGL, #~LB(00009) ;low byte of time constant 
ld UMB,i/00011110B ;p21=p21data,auto-echo is off, transmit and 

;receive clock is baud rate generator output, 
;baud rate generator input is system clock / 2, 
;baud rate generator is enabled, loopback 
; is disabled ' 

sbO ;select bank 0 
ld 'UTC,i/1000l000B ;select p31 as transmit data out, 1 stop bit 

land transmit enable 
ld UIE,i/00000001B ;receive interrupts, no DMA 
ld URC,i/00000010B ;enable receiver 

UART is initialized, reset acknowledge bit and begin 

bitr 
bitr 
ld 
ei 

WAIT: ldw 
call 
ld 
ld 

WAITl: call 
jr 

SENDM: tm 
jr 
btjrt 

bits 
ldci 
ld 
nop 
nop 
nop 
cp 
jr 
ret 

ACKB,i/ACKBIT ;reset acknowldege bit if set 
ACKB,i/XBIT ;reset XON/XOFF bit 
P2BIP,i/00000001B ;reset interrupt input flip-flop 

MPTR,i/MSG 
SENDM 
INPNT,i/O 
OUTPNT,i/O 
SNDBUF 
WAITl 

;enable interrupts 
;point to message 
;send the message 
;set input pointer to register 0 
;set output pointer to register 0 
;send any characters in buffer 
;loop back 

P2,i/00001000B ;printer busy 
nZ,SENDM ;wait for printer unbusy 
SENDM,ACKB,/IACKBIT ;see if the acknowledge has occurred 

;from possible last byte 
ACKB,#ACKBIT ;set acknowledge bit before writing to output 
rO,@MPTR ;get the character 
P4,rO ;send to printer 

rO,/I'$' 
ne,SENDM 

;allow 18 clocks for strobe 

;last character? 
;loop back for next 

467 



468 

, 
;timer is initialized, now lets enable interrupts and wait 

ldw CINCR, #1 
ldw RINCR, #1 

;start column at beginning of sine table 
;start row at beginning of sine table 

, 
;this exa~ple loads the tones for digit '1' 
;user software would, of course have to manipulate these registers for 
;proper tone control 

;load column frequency increment 
;load row frequency increment 
;pointer points to sine table 

ldw 
ldw 
ldw 
ld 
ei 
nop 
nop 
nop 
nop 
jr 

CFINCR,#CFREQI 
RFINCR,#RFREQI 
POINT,I/SINTAB 
CVAL,I/OSOH ;initial value to prevent glitch at start 

;enable interrupts 
WAIT: 

WAIT ;loop back 
, 
;Timer interrupt. Occurs SAMPLE times per second 
;interrupt outputs value to DAC-OS and then determines value for next 
; interrupt. This assures no bit jitter.' 

TIMERO: ld p4,CVAL ;write new value to DAC-OS 
rcf ;clear carry flag 
add CINCRL,CFINCL ;find next position in sine table 
adc CINCRH,CFINCH ;by adding frequency offset to last position 
ld POINTL,CINCRH ;set new pointer into sine table 
ldc CVAL,@POINT ;getvalue from sine table 
add RINCRL,RFINCL ;find next position in sine table 
adc RINCRH,RFINCH ;by adding frequencty offset to last position 
ld POINTL,RINCRH ;set new pointer into sine table 
ldc RVAL,@POINT ;get second value from sine table 
add CVAL,RVAL ;form a complex waveform from two 
or COCT,#00000010B ;reset end of count interrupt 

INTRET: iret land return from interrupt 

;*********************************************************** 
i* * 
;* 
;* 

SINE WAVE LOOKUP * 
* i***************************************************** ****** 

;sine table for DTMF generation using DAC-OS. Table based upon 

sine values 

;case of waveform consisting of two sine waves summed to provide a single 
;complex waveform with minumum amplititude = 0 volts and maximum 
;amplititude = 5 volts. DAC-OS input for 0 volts = OOH 
;5 volts = OFFH. Both waves must total no more than OFFH, therefore 
;maximum for one wave must be 1/2 5 volts or .OSOH. 
;Tablegenerated using following BASICA program, 
;then typed into program. 

, 

10 CLS 
20 PI=3.141593 
30 FOR 1=0 TO 255 
40 C=360/256 
50 D=C*I 
60 E=D*PI/1S0 
70 F=SIN(E) 
SO G=F*63 
90 H=64+G 
100 J=CINT(H) 
110 A$=HEX${J) 
120 PRINT A$ 
130 LPRINT A$ 
140 NEXT 
150 END 

;clear screen 
;define PI 
;256 total values 
;define basic interval value 
;value from zero on sine wave 

;figure sine for interval from 0 
;sine range should be from -63 to 63 
;make result from 0 to 127 
;round to nearest integer 
;convert to hex 
ion screen 
ion printer 
;do next inverval 

;*note-remove comments, BASICA will not accept ; as comment delimiter 

SINTAB: .ORG 
• byte 
• byte 
• byte 
• byte 
• byte 

0400H ;begin sine table on even byte boundary 
040H,042H,043H,045H,046H,04SH,049H,04BH,04CH,04EH,04FH,051H 
052H,054H,055H,057H,058H,05AH,05BH,05CH,05EH,05FH,060H,062H 
063H,064H,066H,067H,06SH,069H,06AH,06BH,06DH,06EH,06FH,070H 
071H,072H,073H,074H,074H,075H,076H,077H,07SH,07SH,079H,07AH 
07AH,07BH,07BH,07CH,07CH,07DH,07DH,07DH,07EH,07EH,07EH,07FH 



SNDBUF: cp 
jr 
ret 

INPNT,OUTPNT 
ne,SCl 

compare inpointer to outpointer 
send character if any to send 
otherwise return 

SCI: tm P2,#OOOOlOOOB printer busy? 

HON: 

jr 
btjrt 

di 
bits 
ld 
btjrf 
ld 
xor 
cp 
jr 
ld 
call 
bitr 
nop 
inc 
ei 
ret 

nz,SCl if so, wait until it is not busy 
SCl,ACKB,I/ACKBIT ;see if acknowledge has occurred 

ACKB,#ACKBIT 
P4,@OUTPNT 
HON,ACKB,#XBIT 
rO,OUTPNT 
rO,1I10000000B 
INPNT,rO 
ne,HoN 
rO,XoN 
SENDC 
ACKB,#XBIT 

OUTPNT 

;from possible last byte 

;set acknowledge bit before .writing to output 
;send the character 
;host is still sending 
;get the output pointer 
;add 128 to it 
;turn host back on when 128 bytes left in buf 
;otherwise keep sending , 
;send XON to host to start it sending again 

;reset XOFF bit 

;bump pointer 
Ito make sure pointer not changed 

;send character 
SENDC: tm 

in rO 
UTC,I/OOOOOOlOB 
z,SENDC 

;transmit buffer empty yet 
;if not, wait until it is jr 

ld UIO,rO ;load the character into the transmitter 
ret 

;receive character available interrupt 
RXDATI: ld rO,UIO ;get input from console 

;remove upper parity bit 
;echo to console 

and rO, #7fH 
call SENDC 
ld @INPNT,rO 
inc INPNT 
ld rO,INPNT 
add rO,#5 
cp rO,OUTPNT 
jr ne,RXIT 

, 

;save the character 
;bump input pointer 
;get the input pointer 
;allow 5 characters after XOFF 
;has the input made a complete loop? 

;receive character buffer full, stop sending device 

ld 
call 
bits 

INTRET: 
RXIT: iret 

ACKSTB: tm 
bitr 

ACKSl: tm 
jr 
ld 
iret 

rO,#XOFF 
SENDC 
ACKB,#XBIT 

P2,I/OOOlOOOOB 
ACKB,I/ACKBIT 

;send XOFF to host 
;send it 
;set the XOFF bit 

lis line low or high now 
;reset acknowledge bit in register 

P2,I/OOOlOOOOB ;test ack bit 
z,ACKSI ;wait here till end of strobe 
P2BIP,#OOOOOOOlB ;reset p24 interrupt pending register 

land return 

MSG: .ASCII CR,LF,'Super8 serial/parallel test program. ' ,CR,LF 
.ASCII 'Second line test data',CR,LF,'$' 

.END 

469 



_ ~ ~ J_ ~ 

~~Zil~g" ., ,,~.,~~~ _., ... ,'~ .. _., 'Technical Manual ' 

';. 4\~ ~"I;/'~'~ "~, ' 

SuperS™ Microcomputer 

470 



Contents 

Chapter 1. SuperB Overvier1 

1.1 Introduction 
1.2 Features 
1.3 Basic Microcomputers 
1.4' Protopack Microcomputers 
1.5 ROMless Microcomputers 

Chapter 2. Architectural Overviet1 

2.1 Introduction 
2.2 Address Spaces 
2.3 Register File • 

2.3.1 Register Pointer 
'2.3.2 Instruction Pointer 

2.4 Instruction Set • 

2.4.1 Addressing Modes 
2.4.2 Data Types 

2.5 I/O Operations 

2.5.1 Interrupts 
2.5.2 On-Chip Peripherals 

2.6 Oscillator 

Chapter 3. Address Spaces 

3.1 Introduction • • • • • 
3.2 CPU Register File • • • • • • • 
3.3 System Registers and Mode and Control Registers 
3.4 Program and Data Memory • 
3.5 CPU and User Stacks 
3.6 Instruction Pointer (IP) 

Chapter 4. Addressing 1-1odas 

4.1 Introduction •••••••••• 
4.2 Register Addressing (R) • • • • • 
4.3 Indirect Register Addressing (IR) 
4.4 Indexed Addressing (IA) • 
4.5 Direct Addressing (DA) 
4.6 Indirect Addressing (IA) 
4.7 Relative Addressing (RA) 
4.8 Immediate Addressing (1M) 

Chapter 5. Instruction Set 

5.1 Functional Summary 
5.2 Processor Flags • • 

465 
465 
465 
465 
465 

466 
466 
467 

467 
467 

467 

467 
467 

468 

468 
468 

468 

469 
469 
472 
472 
474 
475 

476 
476 
478 
478 
480 
480 
480 
481 

482 
482 

4 

5 

471 



Contents (Continued) 

5.3 Condition Codes • • • • • • • 
5.4 Notation and Binary Encoding 

5.4.1 Notational Shorthand 
5.4.2 Flag Settings 

5.5 Instruction Descriptions and Formats 

Chapter 6. Interrupts 

6.1 Introduction 

6.1.1 Sources 
6.1.2 Vectors 
6.1.3 Levels. 
6.1.4 Enables 
6.1.5 The Interrupt Routine 

6.2 Fast Interrupt Processing •• 
6.3 Clearing the Interrupt Source 
6.4 Interrupt Control Registers • 

6.4.1 System Mode Register 
6.4.2 Interrupt Request Register • 
6.4.3 Interrupt Mask Register 
6.4.4 Interrupt Priority Register 
6.4.5 Fast Interrupt Status Bit (FIS of Flags Register) 

6.5 Interrupts and the DMA Channel ••••••••••••• 

Chapter 7. Reset and Clock 

7.1 Reset 
7.2 Clock 
7.3 Test Mode 

Chapter 8. I/O Ports 

8.1 Introduction 
8.2 General Structure 
8.3 Port 0 
8.4 Port 1 
8.5 Ports 2 and 3 
B.6 Port 4 
8.7 Port Mode and Control 

., 

Registers 

8.7.1 Port Mode Register ••• 
8.7.2 Port 0 Mode Register •• 
B.7.3 Port 2/3 Mode Registers 

472 

485 5 485 

487 
487 

489 

6 
543 

543 
543 
544 
546 
546 

547 
547 
547 

548 
548 
549 
549 
549 

549 

7 
550 
556 
556 

8 
557 
557 
557 
557 
558 
559 
559 

559 
560 
560 



8.7.4 Port 2/3 Interrupt Pending Registers 
8.7.5 Port 4 Direction Register 
B.7.6 Port 4 Open-Drain Register 

B.B Handshaking Channels 

B.B.1 Pin Descriptions 
B.B.2 Handshake Control Registers 

Olapter 9. Counter/Timers 

9.1 Introduction 

9.1.1 Bi-Value Mode 
9.1.2 Capture 
9.1.3 External Gate and Trigger 

9.2 Counter/Timer Control and Mode Registers 

9.2.1 Counter/Timer Control Registers 
9.2.2 Counter/Timer Mode Registers 
9.2.3 Time Constant Register 
9.2.4 Capture Register • • • • •• 

Olspter 10. UART 

10.1 Introduction 
10.2 Transmitter • 
10.3 Receiver 
10.4 Wake-Up Feature 
10.5 Auto-Echo/Loopback 
10.6 Polled Operation 
10.7 Baud-Rate Generator 
10.B UART Interface Pins 
10.9 UART Control/Mode and Status Registers 

10.9.1 UART Data Register (UIOT & UIOR) 
10.9.2 Wake-Up Match Register (WUMCH) • 
10.9.3 Wake-Up Mask Register (WUt1SK) 
10.9.4 UART Receive Control Register (URC) 
10.9.5 UART Interrupt Enable Register (UIE) 
10.9.6 UART Mode A Register (UMA) •• 
10.9.7 UART Transmit Control Register (UTC) 
10.9.B UART Mode B Register (UMB) •• 

.. .' 

10.9.9 UART Baud-Rate Generator Time Constant Register (UBG) 

Olapter 11. DHA Olannel 

11.1 Introduction 
11.2 DMA Control Registers •• 
11.3'DMA and the UART Register 
11.4 DMA and the UART Transmitter 

561 8 561 
561 

561 

563 
563 

9 
565 

566 
566 
566 

567 

567 
568 
570 
570 

10 
571 
571 
571 
572 
574 
575 
575 
576 
576 

576 
576 
576 
576 
576 
578 
579 
580 
581 

11 
582 
582 
583 
583 

473 



Contents (Continued) 

11.5 DMA and Handshake Channel o • 583 11 
11.5.1 DMA Write (Input Handshake 0) 583 
11.5.2 DMA Read (Output Handshake 0). 584 

11.5.2.1 Fully Interlocked Mode 584 
11.5.2.2 Strobed Mode 584 

Olapter 12. External Interface 12 
12.1 Introduction 590 
12.2 Pin Descriptions 590 
12.3 Configuring for External Memory 591 
12.4 External Stacks 592 
12.5 Data Memory • 592 
12.6 8us Operation. 592 

12.6.1 Address Strobe (AS) 593 
12.6.2 Data Strobe (DS) 593 
12.6.3 External Memory Operations 593 

12.7 Extended 8us Timing 593 

12.7.1 Software Pro·grammable Wait States 593 
12.7.2 Slow Memory Timing 594 
12.7.3 Hardware Wait States 594 

12.8 Instruction Timing 594 

\ Glossary. 597 

474 



1.1 INTRODUCTION 

The SuperB family consists of basic microcom­
puters, protopack emulators, and ROM less microcom­
puters. The various fami Iy members differ in the 
amount of on-chip ROM and the physical packaging. 

All of the SuperS family members offer a full­
duplex universal asynchronous receiver/transmitter 
(uART) with an on-r.hip baud-rate generator, t.wo 
16-bit programmable counter/timers, a direct 
memory access (DMA) controller, and an on-chip 
osci llator. 

1.2 fEATURES 

SuperS microprocessor features include: 

o 325 byte-wide registers, including 272 general­
purpose registers and 53 mode and control 
registers 

o Full-duplex UART with special features 

II Up to 32 bit-programmab Ie and S byte­
programmable I/O lines, with 2 handshake chan­
nels 

o Addressing of up to 128K byes of memory 

o An interrupt structure that supports: 

" 27 interrupt sources 

" 16 interrupt vectors (2 reserved for future 
versions) 

o B interrupt levels 
o Servicing in 6 CPU clock cycles 

" Two Register 'Pointers that allow use of short 
and fast instructions to access register groups 
within 600 ns. 

o An instruction set that includes multiply and 
divide instructions, Boolean and BCD operations 

o Additional instructions that support threaded­
code languages, such as Forth 

ChapteO" 1 
Su~eD'8 Oven/Hew 

1.3 BASIC MICROCm.lPUTERS 

These parts are the core of the SuperB family of 
products. They have various amounts of mask­
programmable on-chip ROM, are suitable fur high 
volume applications, and require a single +5 Vdc 
power supply. 

1.4 PROTOPACK MICROCOMPUTERS 

These parts function as emulators for the basic 
microcomputer versions. They use the same package 
and pin-out as the basic microcompute r but a Iso 
have a 2B-pin "piggy back" socket on the top into 
which a ROM or EPROM can be installed, to replace 
the on-chip ROM of the basic microcomputer. 

This package permits the protopack to be used in 
prototype and final PC boards while sti II permit­
ting user program development. I1hen a final 
program is deve loped, it can be mask-programmed 
into the production microcomputer device, directly 
replacing the emulator. The protopack parts are 
also useful in situations where the cost of mask­
programming is prohibitive or where program flex­
ibility is desired. 

1.5 ROi'lLESS MICROCO:~PUTERS 

The ROMless microcomputers are simi lar to the 
basic microcomputer parts, but have no interns I 
ROM. Port 1 is dedicated as an B-bit address/data 
bus and POO-P04 are dedicated address ,lines. Up to 
64K bytes of external memory can be addressed by 
configuring Port 0 as address bits. The address 
capability can be doubled to 12BK bytes by 
programming P35 of Port 3 as the Data Memory 
select signal TIM. The two states of this signal 
can be used with the 16-bit address bus to address 
two separate banks of external memory, each with 
up to 64K bytes. 



2.1 INTROOUCTION 

The SuperB is a versatile single-chip micro­
computer that can be programmed for many different 
memory and I/O configurations. This flexibility 
has been achieved by merging a mult iplexed 
address/data bus with several I/O-oriented ports. 
This provides the user with large amounts of 
external memory while maintaining many I/O lines. 
Figure 2-1 shows the SuperB block diagram. 

2.2 ADDRESS SPACES 

To provide for both I/O and memory intensive 
applications, the SuperB supports three basic 
address spaces: 

110 
(BIT PROGRAMMABLE) 

PORT 4 

I/O 
(BIT PROGRAMMABLE) 

OR CONTROL 

UART 

. Chapter 2 
Architectural Overview 

• Program memory. (internal and external) 
• Data memory (external) 
• Register file (internal) 

A maximum of 64K bytes of program memory is 
directly addressable. When present, internal 
program memory normally consists of mask­
programmed ROM. The data memory space is 64K 
bytes in size. 

The ease of interfacing with external memory is 
enhanced with options for programmable wait states 
and half-speed memory timing, as we 11- as an 
optional external wait input. 

ADDRESS OR I/O 
(BIT PROGRAMMABLE) 

XTAL AS os 

ADDRESS/DATA OR I/O 
(BYTE PROGRAMMABLE) 

Z-BUS WHEN USED AS 
ADDRESS/DATA BUS 

Figure 2-1_ Functional Block Diagram 

476 



Architectural Overview 

2.3 REGISTER FILE 

The SuperB architecture centers around an internal 
register file composed of 325 registers. All 
registers are eight bits wide. Of the 272 
general-purpose registers, 20B can be used as an 
accumulator", address pointer, index regi'ster, dsta 
register, or stack register. The 64 remaining 
general-purpose registers sre limited to Indirect 
or Indexed addressing mode functions such as 
stacks, data buffers, and look-up tables. Fifty­
three registers are dedicated to special control 
and status operations. 

2.3.1 Register Pointer 

The register file is logically div ided into 32 
working register groups of B registers each when 
using 4-bit register addressing. Two groups may 
be active at anyone time and the two Register 
Pointers (RPO and RP1) contain the base addresses 
of these two working register groups. This allows 
fast context switching and shorter instruction 
formats. 

2.3.2 Instruction Pointer 

The SuperB hardware includes features that facili­
tate the implementation of threaded-code languages 
such as Forth. These include a special 16-bit 
register called the Instruction Pointer (Ip) and 
three special CPU instructions called NEXT, ENTER, 
and EX IT. The IP can also be used to support the 
fast interrupt processing mode. 

2.4 INSTRUCTION SET 

The CPU has an instruction set designed for its 
large register file. This 
ment of B-bit arithmetic 
including multiply and 
Decimal (BCD) operations 

includes a full comple­
and logical operations, 

divide. Binary-Coded 
are supported using a 

decimal adjustment of binary values. Incrementing 
and decrementing 16-bit quantities for addresses 
and counters are also supported. Extensive bit 
manipulation', including Rotate and Shift instruc­
tions, round out the data manipulation capabili­
ties of the SuperB. No special I/O instructions 
are necessary since I/O is mapped, into the regis­
ter file. 

2.4.1 Addressing ItJdes 

The addressing modes of the SuperB Central 
Processing Unit (CPU) are: 

• Register (R) 
• Indirect Register (IR) 
• Indirect Address (IA) 
• Immediate (1M) 
• Direct Address (DA) 
• Indexed (X) 
• Relative Address (RA) 

Register, Indirect Register, and Immediate 
addressing modes are available for Load, Arith­
metic, Logical, Shift, Rotate, and Stack instruc­
tions. Conditional jumps support both the Direct 
and Relative addressing modes, while Jump and Call 
instructions support the Direct, Indirect, and 
Indirect Register addressing modes. Onl y Load 
instructions support Indexed addressing. 

2.4.2 Data Types 

The SuperB CPU supports operations on bits, bytes, 
BCD digits, and 2-byte words. 

Bits in the register file can be set, cleared, 
complemented, and tested. Bits within a byte are 
numbered from 0 to 7; bit 0 is the least signifi­
cant (right-most) bit. 

Bytes in the register file can be operated on by 
Arithmetic, Logical, Shift and Rotate, and Load 
instructions. Bytes in memory can be operated on 
only by load or stack instructions. 

Manipulation of BCD digits, packed two to a byte, 
is accomplished by a Decimal Adjust instruction 
and a Swap instruction. Decimsl Adjust is used 
after either a binary addition or subtraction on 
BCD digits. 

Words in the register file can be loaded, incre­
mented, and decremented with the 16-bit Load Word, 
Increment Word, and Decrement Word instructions. 

477 



2.5 I/o OPERATIONS 

The Super8 has 1/0 lines grouped into five ports 
of eight lines each. Ports are configurable as 
input, output, or bidirectional. Under software 
control, the ports can provide timing, status 
signals, address outputs, and 1/0 ports with or 
without handshaking. Multiprocessor system 
configurations are also supported. 

2.5.1 Interrupts 

r/o operations can be interrupt-driven or polled. 
The SuperB supports 16 vectored interrupts on 
eight different levels from 27 interrupt sources. 

Each level can be masked and prioritized. 
Optiona 1 high-speed interrupt processing can be 
used on anyone of the levels for minimum latency. 

478 

Architectural Overview 

2.5.2 On-Chip Peripherals 

To help cope with real-time problems such as 

counting/timing, the SuperB contains two counter/ 
timers with a large number of user selectable 

modes. It also contains an on-Chip universal 
asynchronous receiver/transmitter (UARf) which has 
its own built-in baud-rate generator that can be 
used as a counter when not being used to generate 
baud rates. 

A DMA channel is provided that allows high-speed 
data transfers between on-Chip peripherals and the 
register file or external memory. 

2.6 OSCILLATOR 

In addition to these features, the SuperB offers 
an on-chip oscillator requiring only an external 
crystal for operation. 



3.1 INTRODUCTION 

The SuperB microprocessor supports the following 
address spaces: 

II CPU register file 
e Program memory 
II Data memory 

3.2 CPU REGISTER fILE 

Registers within the SuperB CPU's internal regis­
ter file are identified with an B-bit address, 
yielding 256 possible register addresses. However, 
the upper 64 addresses are used more than once, as 
described below. A total of 325 registers is 
available, including 272 general-purpose registers 
and 53 special control and status registers. Two 
of these registers are Register Pointers. 

SET ONE 

I 
.1-

CONT~g~~:~I~TERS .-
1--1-

(REGISTER ADDRESSING ONLY) --
SYSTEM REGISTERS: 

STACK, FLAGS, PORTS, ETC. 
(REGISTER ADDRESSINGONLY) 

WORKING REGISTERS 
(WORKING REGISTER 
ADDRESSING ONLY) , 

Chapter 3 
Address Spaces 

A total of 325 registers is accessible with 192 
registers (OOH-BFH) accessible in all address­
ing modes. These can be used as accumulators, 
working registers, data buffers, internal stack, 
and so forth. It is possible to set up a 256-byte 
data buffer and still have 16 registers remaining 
as accumulators and working registers. 

Figures 3-1 and 3-2 show layouts of the register 
file address space. The upper 64 bytes- of the 
address space (COH-FFH) contain. two sets of 
registers. The first set can be accessed only by 
the Register addressing mode; the second set can 
be accessed by the Indirect Register and Indexed 
addressing modes, stack operations, and DMA 
accesses. The registers in the secdnd set are 
usable as data buffers or as an internal stack 
area. 

SET TWO 
FFH r-----------. 

BANK1 

BANKO 

DATA REGISTERS 
(INDIRECT REGISTER, INDEXED, 

STACKORDMA 
ACCESS ONLY) 

COHL-_____________ -J 

BFH r----------, 256 
BYTES 

DATA REGISTERS 192 
(ALL ADDRESSING MODES) BYTES 

OOH ~ _________ ~ 

Figure 3-1. SuperB Registers 

8257-001 479 



Address Spaces 

SPECIAL PURPOSE 
ADDRESS REGISTERS 

~-r"'----''''-'''''----' 
GENERAL PURPOSE REGISTERS 

BANKO BANK1 

: ==== ==== }:;::,~ 
OF 

1==;.==1 } SYSTEM 

~ ; ; ; I = = = =·~:'~·IL.S--t~~ __ -_--+_=_=_=_=--If-___ ...J 

07 I RP1 I } REGISTER ' 

06 I RPO I POINTERS 

Each Register Pointer (RP) can Independently point 10 any of 32 
a-byte blocks of set one. The block selected by RPO is accessed 
in address space eO-C7, while the block selected by RP1 is 
accessed in address space C8-CF. Memory space from CO-CF 
can only be accessed if pointed to by the RPs. 

08 ---------------------07 00-:--------:--------; ~~ 
REGISTER ADDRESSING ONLY ALL 

1 
ADDRESSING 

MODES 

~ ..... ------------_r--------------' 
MAY BE POINTED TO BY REGISTER POINTER INDIRECT REGISTER, 

INDEXED, 
STACK, OR 

DMAMODES 

Figure 3-2. SuperS Register File Address Spaces 

The first set consists of three subsets of regis­
ters. The bottom sixteen registers (COH-CFH) 
are available for use as accumulators or working 
registers. The middle sixteen registers (DOH­
DFH) are used for system registers--Stack 
Pointer, Flag register, I/O ports, and so forth. 
The upper 32 bytes (EOH-FFH) consist of two 
banks of registers. Each bank is selected by a 
bit located in the Flag register called the Bank 
Address bit. These two banks, a total of 64 
bytes, are used for Mode and Control registers. 
Only 38 of these 64 bytes are currently used. The 
remaining 26 bytes are reserved for future 
expansion. 

Registers can be accessed as either 8- or 16-bit 
registers using Register, Indirect Register, or 
Indexed addressing modes. For register addresses 
COH to FFH' the addressing mode used deter­
mines the actual register being accessed. 
Registers accessed as 16-bit registers are treated 
as even-odd register pairs, with the most signifi-

480 

cant byte of data stored in the even-numbered 
register and the least significant byte stored in 
the next higher odd-numbered register (Figure 
3-3). 

MSB LSB I n = EVEN ADDRESS 

Rn Rn+1 

Figure 3-3. 16-Bit Register Addressing 

With few exceptions, all instructi'ons that refer­
ence or modify a register may do so to any of the 
325 8-bit registers or 176 16-bit register pairs, 
regardless of the particular register, as long as 
the proper addressing mode is used. The instruc­
tions operate on I/O ports, system registers, mode 
and control registers, and general-pu,rpose regis­
,-1'8 without the need for special-purpose instruc­
t;.ons. 

1j'3age and access are shown in Table 3-1. 



Address Spaces 

Table 3-1. SuparB Register file 

Registers Usage Access 

OO-BF General-purpose registers Register, Indirect Register, or 
Indexed modes, via on-chip DMA 
operations, or as part of inter­
nal stack 

CO-FF Set Two General-purpose registers Indirect Register or Indexed 
modes, via on-Chip DMA opera­
tions, or as part of internal 
stack 

CO-FF Set One Working registers only Register mode 

DO-DF Set One System registers Register mode 

EO-FF Set One Mode and control registers Register mode 

The instructions can access a-bit registers or 
16-bit register pairs using either 4-bit or a-bit 
address fields. When using 4-bit register 
addressing, the register file is logically divided 
into 32 groups of a working registers, as shown in 
Figure 3-4. All the registers in a working regis­
ter set have the same value for their five rnost­
significant address bits. The two Register 
Pointers (RPO and RP1) are system registers that 
contain the base addresses of two active working 
register groups. 

111111 xxxr----­
RPO 

100000 xxx~ 
RPI 

GROUP32 

I 
I 
I 
I 
I 
I 
I 
I 
I 

GROUP 1 

Figure 3-4. Working Register Groups 

FF 
Fa 
F7 
FO 

10 
F 
a 
7 
o 

Note that 4-bit register addressing (Figure 3-5) 
is a Register addressing mode so that the regis­
ters accessible by this mode include the mode and 
control registers, system registers, and working 
register groups. 

RPI (R21S) 

o 1 1 1 a 1001010001 

ope 

Figure 3-S. Working Register Addressing 

Working registers are typically specified by short 
format instructions; when a working register 
destination is used in the instruction, only four 
bits of address are needed to specify the regis­
ter; one bit selects the appropriate Register 
Pointer and three bits provide the least-signifi­
cant bits of the register address. The 
five most-significant bits of the address come 
from the selected Register Pointer and together 
they form an a-bit address. Applications using 
working registers require fewer bytes and have a 
reduced execution time. 

The Register Pointer also speeds context switching 
when processing interrupts or changing tasks. A 
special Set Register Pointer (SRP) instruction is 
provided for setting the Register Pointer 
contents. 

481 



Address Spaces 

RPO(R214) 

0110110001 

SELECTSRP1 

- R11 

RP1 (R215) 

1010010001 

'---v----" 

L!: 1 0 0 I 1 0 1 1 I, 8.BIT ADDRESS , 

FROM INSTRUCTION 
SPECIFIES WORKING 

REGISTER ADDRESSING '--____ "'-____ + __ -, 

REGISTER ADDRESS (R163>1 1 0 1 0 0 I 0 1 1 

Figure 3-6. a-Bit Working Register Addressing 

Not all instructions have 4-bit addressing modes, 
but the active working registers can still be 
accessed using B-bit addressing without having to 
know the contents of the Register Pointers. 
Figure 3-6 shows how this works. The upper four 
bits of the B-bit address contain 1100 to specify 
working register addressing. Bit 3 selects Regis­
ter Pointer 0 or 1, which supplies the upper five 
bits of the final address while the lower three 
bits come from bits 0-2 of the original 8-bit 
address. 

Any address in the range COH-CFH (R192-R207) 
wi 11 invoke working register addressing. There­
fore the registers physically located at these 
addresses can only be accessed when selected by a 
Register Pointer (see Figure 3-2). 

After Reset, the register pointers will be set to 
RPO = COH and RP1 = CBH. 

Table 3-2. 

Decilllal Hexadecilllal 

3.3 SYSTEM REGISTERS AND MODE AND 
CONTROL REGISTERS 

The system registers govern the operation of the 
CPU and can be accessed using any of the instruc­
tions that reference the register file using 
Register addressing mode. These registers can be 
accessed as working registers. Table 3-2 shows 
the system registers. 

The SuperB uses a 16-bit Program Counter (PC) to 
control the sequence of instructions in the 
currently executing program. The PC is not an 
addressable register. 

Mode and control registers are used to transfer 
data, configure the mode of operation, and control 
the operation of the on-chip peripherals. These 
registers are accessed using Register addressing 
mode and are shown in Table 3-3. These registers 
can be accessed as working registers. The current 
"bank" is determined by bit DO in the Flag 
register (R213). 

3.4 PROGRAM AND DATA MEMORY 

Program memory is memory that can hold code or 
data. Instruction code can be fetched from 
program memory, data can be read from program 
memory and,. if external program memory is imple­
mented in RAM, data or code can be written to 
program memory. Memory addresses are 16 bits 
long, allowing a maximum of' 64K bytes of program 

Syst_ Registers 

Address Address Register Name Identifier 

222 DE System Mode SYM 
221 DD Interrupt Mask Register IMR 
220 DC Interrupt Request Register IRQ 
219 DB Instruction Pointer (Bits 7-0) IPl 
21B DA Instruction Pointer (Bits 15-B) IPH 
217 D9 Stack Pointer (Bits 7-0) SPl 
216 DB ' Stack Pointer (Bits 15-B) SPH 
215 D7 Register pointer 1 RP1 
214 D6 Register Pointer 0 RPO 
213 D5 Program Control Flags FLAGS 
212 D4 Port 4 P4 
211 D3 Port 3 P3 
210 D2 Port 2 P2 
209 D1 Port 1 P1 
20B DO Port 0 PO 

482 



Table 3-3. MOde and COntrol Registers 

Decimal 
Address 

Hexadehimal 
Address 

Bank 0 Registers 

255 FF 
254 FE 
253 FD 
252 FC 
251 FB 
250 FA 
249 F9 
24B F8 
247 F7 
246 F6 
245 F5 
244 Fti 
241 F1 
240 ro 
239 EF 
237 ED 
236 EC 
235 EB 
229 E5 
228 E4 
227 E3 
226 E2 
225 E1 
224 EO 

Bank 1 Registers 

255 FF 
254 FE 
251 FB 
250 FA 
249 F9 
248 F8 
241 F1 
240 FO 
229 E5 
228 E4 
227 E3 
226 E2 
225 E1 
224 EO 

Register Name Identifier 

Interrupt Priority IPR 
External Memory Timing EMT 
Port 2/3B Interrupt Pending P2BIP 
Port 2/3A Interrupt Pending P2AIP 
Port 2/3D Mode P2DM 
Port 2/3C Mode P2CM 
Port ?/3B Mode P2BM 
Port 2/3A Mode P2AM 
Port 4 Open-Drain P40D 
Port 4 Direction P4D 
Handshake 1 Control H1C 
Handshake 0 Control HOC 
Port Mode PM 
Port 0 Mode POM 

. UART Data UIO 
UART Interrupt Enable UIE 
UART Receive Control URC 
UART Transmit Control UTC 
Counter 1 Capture Low C1CL 
Counter 1 Capture High C1CH 
Counter 0 Capture Low COCL 
Counter 0 Capture High COCH 
Counter 1 Control C1CT 
Counter 0 Control COCT 

Wake-Up Mask WUMSK 
Wake-Up Match WUMCH 
UART Mode B UMB 
UART Mode A UMA 
UART Baud-Rate Generator Low UBGL 
UART Baud-Rate Generator High UBGH 
DMA Count Low DCL 
DMA Count High. DCH 
Counter 1 Time Constant Low CHCL 
Counter 1 Time Constant High C1TCH 
Counter 0 Time Constant Low COTCL 
Counter 0 Time Constant High COTCH 
Counter Mode C1M 
Counter 0 Mode COM 

Address Spaces 

The bottom of memory. program memory is in the 
on-chip ROM; the remaining program memory can be 
implemented external to the SuperB. 

Extemal data memory can be incorporated with or 
separated from the external program memory ~ddress 
space. To implement separate program and data 
memory address spaces external to the Super8, a 
port output pin (P35) must be defined as the Data 
Memory select (m:!) output. This output remains 
high when fetching instructions or accessing data 
in the program memory address space and goes low 
when accessing data in the data memory address 
space. Thus, this signal can be used to segregate 

Data memory is .memory that can hold only data 'to 
be read or written, not instruction code; instruc­
tion fetches never reference data memor y. Data 
memory is always implemented external to the 
Super8. 

483 



Address Spaces 

65535 r--------..., 

EXTERNAL 
PROGRAM 
MEMORY 

THIS BOUNDARY} 

DEP:~~~~~ ..... ---------i} ON.CHIP 

32~ _______ -i ROM 

INTERRUPT VECTORS 

PROGRAM MEMORY 

65535 r--------..., 

EXTERNAL 
DATA 

MEMORY 

DATA MEMORY 

Figure 3-7. Program and Data Memory Address Spaces 

the program and data spaces external to the 
SuperB. Separate forms of Load instructions are 
used to access the two memory address spaces: the 
LDC instruction and its derivatives access program 
memory, and the LDE instruction and its deriva­
tivea access data memory. 

Program and data memory maps are illustrated in 
Figure 3-7. 

To access memory beyond the on-Chip ROM, Ports' 0 
and 1 must be configured as a memory interface. 
Port 1 can be configured as a multiplexed 

address/data bus (ADO-AD7)' thus providing address 

lines AO-A7 and data lines DO-D7' Port 0 can be 
configured on an individual bit basis for up to 
eight additional address lines (AB-A15)' Both 
parts are supported by the control lines Address 
Strobe (~ , Data Strobe (~ , and Read/Write 
(R/W') • 

In the ROM less version, Port 1 is automatically 
configured as a multiplexed address/data bus. 
Port 0 bits 0-4 will be configured as address bits 
AB-A12 at Reset, but any Port 0 bit may be defined 
as either 1/0'01' address as needed. 

For more details on external memory interface, see 
section 12.3. 

No matter, which version of the SuperB is used, the 
first 32 bytes of program memory are reserved for 
the interrupt vectors. Thus the first address 
available for a user program is location 32. This 
address is automaticall y loaded into the Program 
Counter whenever a hardware Reset occurs. 

:J.5 CPU AN) USER STACKS 

The SuperB uses a stack for implementing 
subroutine calls and returns, interrupt process-

484 

ing, and general dynamic storage (via the Push and 
Pop instructions). The SuperB provides hardware 
support for stack operations from either the 
register file or data memory. Stack location 
selection is under software control via the 
External Memory Timing register (R254, Bank O). 

Register 
Pointer, 
address 
in R216 
3-B} • 

pair RR216 forms the 16-bit Stack 
used for CPU stack operations. The 

is stored with the most significant byte 
and least significant in, R217 (Figure 

R217 (09) SPL 

.... __ L_O_W_E_R_B_Y_T_E __ ... I STACK POINTER LOW 

R216 (DB)SPH 

.... ___ U_PP_E_R_B_Y_T_E __ ... I STACK POINTER HIGH 

Figure 3-8. Stack Pointer 

The Stack Pointer is decremented before a Push 
operation and incremented after a Pop operation. 
The stack address always points to the last data 
stored on the top-of-stack. 

The stack is used to hold the return address for 
CALL instructions and interrupts, as we 11 as 
data. The contents of the Program Counter are 
saved on the stack during a CALL instruction ahd 
restored during a RET instruction. During inter­
rupts, the contents of the Program Counter and 
Flag register are saved on the stack. The IRE T 
instruction restores them (Figure 3-9). 

Wilen the SuperB is configured to use an internal 
slack (t.he register file), register R217 serves as 
t.he Stack Pointer and register R216 is a general­
purpose register. However, if an overflow or 
underflow condition occurs due to the incrementing 



Address Spaces 

HIGH ADDRESS 

~CL 
TOPOF- PCH 
STACK 

TOP OF_ 
STACK 

PCL 

PCH 

FLAGS 

STACK CONTENTS 
AFTER A CALL 
INSTRUCTION LOW ADDRESS STACK CONTENTS 

AFTER A NORMAL 
INTERRUPT CYCLE 

Figure 3-9. Stack Operations 

Table 3-4. User Stack Operations Sw.ary 

- Stack Location --, 
Register Progr- Data 

stack Type- Operation rUe Iaory Iaory 

Ascending PUSH to stsck PUSHUI LDCPI LDEPI 
POP from stack POPUD LOCO LDED 

Daecending PUSH to stack PUSHUD LDCPD LDEPD 
POP from steck POPUI LDCI LDEI 

* ~scending stack goes from low to high 
register file. ' Descending ateck goes 
within memory or register file. 

addresses within memory or 
from high to low addresses 

and decrementing of normal si&ck operations, the 
contents of register R216 are affected. 

The SuperB also provides for user-defined stecks 
in both the register file and in program or data 
memory. Thesestecks can be made to increment or 
decrement on Push and Pop. Table 3-4 sl.llMlarizes 
the kinds of stacks 'and, t~e instructions used. 

J.6 INSTRUCTION POINmER {IP) 

The SuperB provides hardware suppod for implemen­
tation of threaded-code languagee such ae forth. 
An ,important pert of that support is in the form 
of a special regieter called the Instruction 
Pointer UP) (figure 3-10). The Instruction 
Pointer is made up of register pair RR21B, with 
R21B hOlding the most significant byte of a memory 
address and R219 the least significant byte. 

A threaded-code language may be considered to have 
created a higher level imaginary machine within 
the actual hardware machine. for comparison 
purposes, the IP is to the imaginary machine as 
the Program Counter is to the actual hardware 
machine. 

8257·008,009 

R218 (OA) IPH 
INSTRUCTION POINTER HIGH 

I~I~I~I~I~I~I~I~I 

IL -----HIGH aVTE(IP8.IP15) 

R219 (OS) IPL 
INSTRUCTION POINTER LOW 

1~1~1~1~1~1~I~f~1 

LI _____ LOW SYTE (IPO·IP7) 

Figure 3-10. Instruction Poln~er 

The IP is used by three special instructions 
c~lled NEXT, ENTER, and EXIT. The instruction 
NEXT passes control fr,om the hardware machine to 
the imaginary machine, while ENTER and EXIT are 
the imaginary machine equivalents of subroutine 
CALLS and RETURNs in the hardware machine. 

The, IP can also be used in the fast interrupt 
pr~cessing mode for special interrupt handling 
(see section 6.2). It can be used either for 
interrupt processing or imaginsry machine process­
ing, but not for both at the same time. 

485 



4.1 INTROOUCfION 

Instructions are stored as lists of bytes in 
program memory that are fetched via instruction 
fetches using the Program Counter. Instructions 
will indicate both the action to be performed and 
the data to be operated on. The method used to 
determine the location of the data operand is 
called the addressing mode. 

Operands specified in SuperB instructions are 
either condition codes, immediate data, or the 
designation of a register file, program memory, or 
data memory location. 

For 
ing 
the 

• 
• 
• 
• 
• 
• 
• 

the SuperB, there are seven explicit address­
modes (i.e., addressing modes designated by 
programmer): 

Register (R) 
Indire'ct Register (IR) 
Indexed (X) 
Direct Address (DA) 
Indirect Address (IA) 
Relative Address (RA) 
Immediate (lM) 

Not a 11 modes are avaUable with each instruction 
(refer to the individual instruction descriptions 
in section 5.5). 

8·BIT REGISTER 
FILE AODRESS 

PROGRAM MEMORY 

Chapter 4 
Addressing Modes 

Accessing an individual register requires specify­
ing an B-bit address in the range 0-Z55 or a 
working register's 4-bit address. The most signi­
ficant bit of the 4-bit working register address 
selects one of two Register Pointers: if this bit 
is 0, then RZ14' (RPO) is, selected; if it is 1, 
then RZ15 (RP1) is selected. The address of the 
actual register being accessed is formed by the 
concatenation of the high order five bits of the 
value contained in the selected Register Pointer 
with the remaining three bit address supplied by 
the instruction. 

A register pair can be used to specify a 16-bit 
value or memory address. The Load Constant 
instruction and its derivatives (LOC, LDCD, LDCI, 
LDCPD, LDCPI) load data from program memory; the 
Load External instruction and its derivatives 
(LDE, LDED, LDEI, LDE~D, LDEPl) load from program 
memory. See the instruction set in Chapter 5 for 
further details. 

4.2 REGISTER ADDRESSING (R) 

In the Register addressing mode, the operand value 
is the contents of the specified register or 
register pair (Figures 4-1 and 4-Z). 

Registers COH-FFH (set one) can only be 
accessed with the Register addressing mode. 

REGISTER FILE 

I' dst OPERAND, 
POINTS TO ONE REGISTER 

OPCODE / 

486 

ONE·OPERAND 
INSTRUCTION 

EXAMPLE 

4·BIT WORKING 
REGISTER 

TWO·OPERAND 
INSTRUCTION 

EXAMPLE 

# IN REGISTER FILE 

,/ 
VALUE USED IN 

INSTRUCTION EXECUTION 

Figure 4-1. Register Addressing 

REGISTER FILE 

MSB POINTS TO 
RPOORRP1 

RPOOR RP1 

L 

PROGRAM MEMORY 

3LSBs 
OPERAND dst src 

OPCODE 
POINT TO THE 

WORKING REGISTER 
(10F8) 

Figure 4-2. Working Register AddreSSing 

SELECTEDRP 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 



Addressing Modes 

a·BIT REGISTER 
FILE ADDRESS 

PROGRAM MEMORY REGISTER FILE 

~~==~d~S~'~==~~~~~~~~ws,fER--·~~~~~~==~ ~~~:?:UE~T~~~ OPCODE POI~~SR~~~~~RR~~~TER 
EXAMPLE ADDRESS OF 

OPERAND USED 

BYI'NSTRUCTION~ 
OPERAND 

VAWE USED IN 
INSTRUCTION 

EXECUTION 

4·BIT WORKING 
REGISTER ADDRESS 

Figure 4-3. Indirect Register Addressing to Register File 

PROGRAM MEMORY 

-flo- ds' src 

OPCODE 

0 MSB POINTS T 
RPOOR RPI 
r--~-

I 
I 
I 
I 
I 
I 

__ ..L .2~B!... -POINT TO WORKIN 
REGISTER (1 OF 8 

G 
) 

VAWEUSEDIN 
INSTRUCTION --

REGISTER FILE 

RPOORRPI .. 

I' 

ADDRESS ~l/ 

~ 
r' 

, .. OPERAND 

SELECTEDRP 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

Figure 4-4. Indirect Working Register Addressing to Register File 

EXAMPLE INSTRUCTION 
REFERENCES PROGRAM 

MEMORY 
--~ 

ds. 
OPCODE -POINTS TO 

REGISTER PAIR 

VAWEUSEDIN 
INSTRUCTION ;--

REGISTER FILE 

REGISTER 

PAIR ~ 

1\ 
PROGRAM MEMORY I 

~ OPERAND 

Figure 4-5. Indirect Register Addressing to Program Memory 

lS·BIT 
ADDRESS 
POINTS TO 
PROGRAM 
MEMORY 

487 



Addressing Modes 

4. J It.DIRECJ REGISTER IIIlDRESSING (IR) 4.4 It.DEXED ADDRESSING (X) 

In the Indirect Register addressing mode, the 
content of the specified register or register pair 
is the address of the operand (Figures 4-3, 4-il" 
4-5, and 4-6). Depending on the instruction used, 
the actual address may point to a register, 
program memory, or data memory. 

The Indexed addressing mode involves adding an 
offset to a base address during instruction execu­
tion to calculate the effective address of ,the 
operand. The Indexed addressing mode can be usea 
to access registers or memory areas. 

Any general-purpose byte register can be used to 
indirectly ad,dress another register; any general­
purpose register pair can be used to indirectly 
address a memory location. 

For register accesses, an a-bit base address given 
in the ins"truction is added to an a-bit offset 
given in a working register (Figure 4-7). 
General-purpose registers COH-FFH (set two) 
can be accessed only with the Indirect Register 
and Indexed addressing modes. The LD instruction 
is the only instruction that allows Indexed 
addressing of the registers! 

General-purpose' registers COH-FFH (set two) 
can be accessed only with the Indirect Register 
and Indexed addressing modes. 

4·BIT WORKING 
REGISTER ADDRESS 

EXAMPLE 
INSTRUCTION 

REFERENCES EITHER 
PROGRAM MEMORY 

OR DATA MEMORY 

, 
I' 

PROGRAM MEMORY 

dst sre 
OPCODE 

MSB POINTS TO 
RPOORRPI 

NEXT 2 BITS POINT 
TO WORKING REGISTER 

PAIR (I OF4) 

LSBSELECTS 

REGISTER FILE 

RPOORRPI 

REGISTER 

PAIR 

PROGRAM MEMORY 
OR 

DATA MEMORY 

~ 
I 

~ ) 

SELECTEORP 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 

16·BIT 
ADDRESS 
POINTS TO 
PROGRAM 
OR DATA 
MEMORY 

~ OPERAND 
VALUE USED IN/A'--===----i 

INSTRUCTION _ 

488 

Figure 4·6. Indirect Working Register Addressing to Program or Data Memory 

TWO·OPERAND 
INSTRUCTION _ 

EXAMPLE 

PROGRAM MEMORY 

BASE ADDRESS 

dst/src x 
OPCODE 

, 

MSB POINTS TO 
RPOORRPI 

r----
I 
I 
I 
I 
I 
I 
I ~~:t:~~~il~~ 

-
\ 

:/ 

REGISTER FILE 

RPOORRPI .. 

I' 

.... OPERANO 

I ,~ 

Y3LSB~~ .L ___ ~ _ INDEX 

POINT TO ONE OF , 
THE WORKING 

REGISTERS (I OF 8) " 

f/ 
Figure 4·7. Indexed Addressing to Register File 

SELECTEDRP 
POINTS TO 
ORIGIN OF 
WORKING 
REGISTER 
GROUP 



Addressing Modes 

For memory accesses, the base address is held in 
the working register pair designated in the 
instruction and an 8-bit or 16-bit offset given in 
the instruction is added to that base address 
(Figures 4-8 and 4-9). In the short offset 

Indexed addressing mode, the 8-bit displacement is 
treated as a signed integer in the range -128 to 
+127. Only the LDC and LDE instructions allow 
Indexed addressing of memory. 

4-BIT WORKING 
REGISTER ADDRESS -

PROGRAM MEMORY 

OFFSET 

~ dst/src x 
OPCODE 

r--. 
i-

MSB POINTS TO 
RPOOR RP1 
('---

.J!::X~~T~ 

I ~~~~I~~ 

L 

I REGISTER 

I rtb~4) 
I 
..... --~ 

SBSELECTS 

REGISTER FILE 

RPOORRP1 

REGISTER 

PAIR 

PROGRAM MEMORY 
OR 

DATA MEMORY 

... ~ 

) 

SE LECTEDRP 
INTSTO 
IGINOF 

ORKING 
GISTER 
OUP 

PO 
OR 
W 
RE 
GR 

h 
16-BIT 
ADDRESS 
ADDED TO 
OFFSET 

4.. 

."m ~'""': ~VALUEUSED ' 
16 BITS ~ININSTRUCTION 

Figure 4-8_ Indexed Addressing to Program or Data Memory with Short Offset 

4-BIT WORKING 
REGISTER ADDRESS -

PROGRAM MEMORY 

OFFSET 

OFFSET 

.... dstlsrc x 
OPCODE 

t-----
I-

" 

MSB POINTS TO 
RPOORRP1 
('---

.J!::X~~T~ 

I ~~~~I~~ 

L 

I REGISTER 
I PAIR 

I 
'- - - --a-. 

SBSELECTS 

--.... 

REGISTER FILE 

RPOOR RP1 

REGISTER 

PAIR 

PROGRAM MEMORY 
OR 

DATA MEMORY 

o-~ 

I' 

) 

SE LECTEDRP 
INTSTO 

RIGINOF 
ORKING 
GISTER 

ROUP 

PO 
0 
W 
RE 
G 

h 
16-BIT 
ADDRESS 
ADDED TO 
OFFSET 

, .. ,m 1';"': . 
, .. ~ ~::::I!~::~"" 

Figure 4-9. Indexed Addressing to Program or Data Memory with Long Offset 

489 



4.5 DIRECT ADDRESSING (DA) 

In Direct addressing mode, as seen in Figures 4-10 
and 4-11, the 16-bit memory address of the operand 
is given in the instruction. This mode is used by 
the Jump and Can instructions to specify the 
16-bit destination that is loaded into the Program 
Counter to implement the Jump or Call. This mode 
is also supported by the LDE and LDC instructions 
to specify the source or destination memory 
address for a.load between a register and a memory 
location. Memory loads with LDC and LDE can use 
the Direct or Ind!rect Register addressing modes. 

MEMORY 

dstlsrc 

OPCODE 

MEMORY 
ADDRESS USED 

LSBSELECTS 
PROGRAM OR 
DATA MEMORY 
o = PROGRAM MEMORY 
1 = DATA MEMORY 

Figure 4-10. Direct Addressing for Load Instructions 

PROGRAM MEMORY 

NEXTOPCODE 

LOWER ADDR BYTE 
UPPER ADDR BYTE 

OPCODE 

PROGRAM MEMORY 
ADDRESS USED 

Figure 4-11. Direct Addressing for Call and' 
. Jump Instructions 

4.6 IN)lRECT ADDRESSING(IA) 

In the Indirect addressing mode (Figure 4-12), the 
instruction specifies a pair of memory locations 
found in the lowest 256 bytes of program memory. 
The selected pair, in turn, contains the actual 
address of the next instruction to be executed. 

Since the Indirect addressing mode assumes that 
the operand is located in the lowest 256 bytes of 
memory, only an 8-bit address is supplied in the 
instruction; the upper bytes of the destination 
address are assumed to be aliOs. 

490 

Only the CALL instruction 
mode. 

, 
uses 

Addressing Modes 

this addressing 

PROGRAM MEMORY 

~---",~,=,~"~~ 

L SB MUST BE ZERO 

dBt .~ r--
OPCODE 

LOWER ADDR BYTE 
UPPER ADDR BYTE 1- )

, PROGRAM MEMORY 
LOCATIONS 0-255 

Figure 4-12. Indirect Addressing 

4.7 RELATIVE ADDRESSING (RA) 

In the Relative addressing mode (Figure 4-13), a 
twos-complement signed displacement in the range 
-128 to +127 is specified in the instruction and 
added to the value contained in the Program 
Counter. The result is the address of the next 
instruction to be executed. Prior to, the add, the 
Program Counter contains the address of the 
instruction following the current 'inatruction. 

The Relative addressing mode is aupported by 
several program contro~ type inatructions: BTJRF, 
BTJRT, DJNZ, CPIJE, CPIJNE, and JR. 

PROGRAM MEMORY 

NEXTOPCODE 

DISPLACEMENT 

INST~~'l:~~~~ --I-_...:o,,-P,;;.CO,;;.D;;,;E"-_-l SIGNED 
DISPLACEMENT 
VALUE 

Figure 4-13. Relative Addressing 



Addressing Modes 

4.8 IMMEDIATE ADDRESSING (1M) 

In the, Immediate addressing mode (Figure 4-14), 
the operand value used in the instruction is the 
value supplied in the operand field itself. The 
operand may be a byte or word in length, depending 
on the instruction. The Immediate addressing mode 
is useful for loading constant values into 
registers. 

PROGRAM MEMORY 

OPERAND 

OPCODE 

THE OPERAND VAWE IS IN THE INSTRUCTION 

\ 
Figure 4·14. Immediate Addressing 

491 



S.1 FlN:TlONAL SlIItARY 

SuperB instr,uctions can be divided functionally 
into the following seven groups: 

• Load 
• Aritl'lnetic 
• Logical 
• Program Control 
• Bit Manipulation 
• Rotate and Shift 
• CPU Control 

Table 5-1 shows the instructions belonging to each 
group and the number of operands required for 
each, where "arc" is the source operand, 'idst" is 
the destination operand, and _"cc" is the condition 
code. 

With few exceptiona, all instructions that refer­
ence a register may do so to any of the 325 B-bit 
registers or 176 16-bit register pairs. Thus, the 
same instructions are used to 'operate on I/o 
ports, system registers, mode and control regis­
ters, and general-purpose registers. 

The exceptions to the above are as follo'ws: 

• The Oecrement and Jump Dn Non-Zero (OJNZ) 
instruction's register Dperand must be a 
general~purpose byte register. 

• The following control regiaters are write-only 
regiatera: Port Mode, Port 2/3 A Mode, Port 2/3 
B Mode, PDrt 2/3 C Mode, Port 2/3 0 Mode, 
Handahake 0 Control, and Handahake 1 Control. 

• The Flaga register (R213) cannot be the destin­
ation for an instruction that alters the flags 
as part of its operation. 

S.2 PROCESSOR ~ 

Flag register R213 supplies the status of the 
SuPerB CPU at anytime. The flags and their bit 
positions are shown in Figure 5-1. 

492 

ChapterS 
Instruction Set 

R213 (05) FLAGS 
SYSTEM FLAG REGISTER 

I~I~I~I~I~I~I~I~I 

CARRYFLAGJ~~· 
ZERDFLAG~ 
SIGN FLAG. 

OVERFLOW FLAG 

Llli' L BANK ADDRESS 

, LFAS~INTI'RRUPTSTATUS 
HALF-CARRY FLAG 

DECIMAL ADJUST 

Figure 5-1. Flag Register 

This register cDntains eight bits Df status infor­
mation that are set Dr cleared by CPU operations. 
FDur of the bits (C, V, Z, and S) are testable for 
use with conditional Jump' instructions. Two of 
the flags (H and D) are not testable and are used 
only for BCD aritl'lnetic. All flags are restored to 
the pre-interrupt value by a return frDm 
interrupt. 

Bank Address Flag (BA). This bit selects which of 
the two groups of mDde and cDntrol registers is 
active. 

Carry Flag (C). This" flag is set to 1 whenever 
the result of an arithmetic operation generates a 
carry-out of or borrow intD the high order bit 7. 
It is cleared to 0 whenever an operation' does not 
generate a carry or bDrrow condition. This flag 
can be set, cleared, and complemented by the Set 
Carry Flag (scF) , Reset Carry Flag (RCF) , and 

, Complement Carry Flag (CC'F) instructions. ' 

Deciaal-Adjust Flag (D). The Decimal-Adjust flag 
is used for BCD arithmetic. It 'is set to 1 
following a subtraction operation and cleared to 0 
following an addition operation. Since the 
algoritl'lns for correcting BCD addition and 
subtraction are different, this flag is used to 
specify the type of instruction last executed so 
that the subsequent Decimal Adjust (DA) operation 
can function properly. It is not normally used as 
a test flag by the programmer. 

Fast Interrupt Status Flag (ns). This bit is set 
to 1 during a I:ast Interrupt and cleared to 0 
during the Interrupt Return (IRET). 



Instruct ion Set 

Table 5-1. Instruction Group S~ary 

thDonic Operands Instruction 

Load Instructions 

CLR dst Clear 
LD dst,src Load 
LDB dst,src Load Bit 
LDE dst,src Load Data Memory 
LDC dst ,src Load Program memory 
LDED dst ,src Load Data Memory and Decrement 
LDCD dst,src Load Program Memory and Decrement 
LDEI dst,src Load Data Memory and Increment 
LDCI dst ,~rc Load Program Memory and Increment 
LDEPD dst,src Load Data Memory with Pre-Decrement 
LDCPD dst ,src Load Program Memory with Pre-Decrement 
LDEPI dst,src Load Data memory with Pre-Increment 
LDCPI dst,src Load Program Memory with Pre-Increment 
LDW dst,src Load Word 
POP dst Pop 
POPUD d~st,src Pop User Stack (Decrementing) 
POPUI dst,src Pop User Stack (Incrementing) 
PUSH src Push 
PUSHUD dst,src Push User Stack (Decrementing) 
PUSHUI dst,src Push User Stack (Incrementing) 

Arithaletic Instructions 

ADC dst ,src Add with Carry 
ADD dst,src Add 
CP dst,src Compare 
DA dst Decimal Adjust 
DEC dst Decrement 
DECW dst Decrement Word 
DIV dst,src Divide 
INC dst Increment 
INCW dst Increment Word 
MULT dst,src Multiply 
SBC dst,src' Subtract with Carry 
SUB dst,src Subtract 

Logical Instructions 

AND dst ,src L~gical AND 
COM dst Complement 
OR dst,src Logical OR 
XOR dst,src Logical Exclusive OR 

Progr_ Control Instructions 

BTJRF dst,src Bit Test and Jump Relative on False 
BTJRT dst,src Bit Test and Jump Relative on True 
GALL dst Call Procedure 
CPIJE dst,src Compare, Increment and Jump on Equal 

493 



494 

Table 5-1. Instruction GroUp Summary (Continued) 

It1eaonic Operands Instruction 

Progrmn Control Instructions (Cont inued) 

CPIJNE dst,src 
DJNZ r,dst 
ENTER 
EXIT 
IRET 
JP cc,dst 
JP dst 
JR cc,dst 
JR dst 
NEXT 
RET 
WFI 

Bit Manipulation Instructions 

BAND 
BCP 
BITC 
BITR 
BITS 
BDR 
BXOR 
TCM 
TM 

dst,src 
dst,src 
dst 
dst 
dst 
dst,src 
dst,src 
dst,src 
dst,src 

Rotate and Shift Instructions 

RL 
RLC 
RR 
RRC 
SRA 
SWAP 

dst 
dst 
dst 
dst 
dst 
dst 

CPU Control Instructions 

CCF 
01 
EI 
NOP 
RCF 
SBO 
SB1 
SCF 
SRP 
SRPO 
SRP1 

src 
src 
src 

Compare, Increment and Jump on 
Decrement Register and Jump on 
Enter 
Exit 
Interrupt Return 
Jump on Condition Code 
Jump Unconditional 
Jump Relative on Condition Code 
Jump Relative Unconditional 
Next 
Return 
Wait for Interrupt 

Bit AND 
Bit Compare 
Bit Complement 
Bit Reset 
Bit Set 
Bit OR 
Bit XOR 
Test Complement Under Mask 
Test Under Mask 

Rotate Left 
Rotate Left through Carry 
Rotate Right 
Rotate Right through Carry 
Shift Right Arithmetic 
Swap Nibbles 

Complement Carry Flag 
Disable Interrupts 
Enable Interrupts 
No Operation 
Reset Carry Flag 
Set Bank 0 
Set Bank 1 
Set Carry Flag 
Set Register Pointers 
Set Register Pointer 0 
Set Register Pointer 1 

Non-Equal 
Non-Zero 

Ins 



Instruction Set 

Half-Carry flag (H). The Half-Carry flag is set 
to ,1 whenever an addition generates a carry-out of 
bit 3 or subtraction generates a borrow into bit 
3. The Half-Carry flag is used by the Decimal 
Adjust (DA) instruction to convert the binary 
result of a previous addition or subtraction into 
the correct decimal (BCD) result. It is not 
normally used as a test flag by the programmer. 

Overflow Flag (V). This flag is set to 1 dur ing 
arithmetic, rotate, or shift operations that 
result in a value ,greater than +127 or less than 
-128 (the maximum and minimum numbers that can be 
represented in twos-complement form); it is 
cleared to 0 whenever the result is a value within 
these ranges. This flag is also cleared to 0 
following logical operations. 

Sign Flag (S). When performing arithmetic opera­
tions on signed numbers, : binary twos-complement 
notation is used to represent and process informa­
tion. A positive number is identified by a 0 in 
the most significant bit position; when this 
occurs, the Sign flag is also cleared to O. A 
negative number is identified by a 1 in the most 
significant bit position and therefore the Sign 
flag would be set to 1. 

Zero Flag (Z). During arithmetic and logical 
operations, the Zero flag is set to 1 if the 
result is zero and cleared to 0 if the result is 
non-zero. When testing bits in a register or when 
shifting,or rotating, the Zero flag is set to 1 if 
the result is zero; if the result is not zero, the 
flag is cleared to O. 

5.3 CONDITION CODES 

Flags C, Z, 5, 'and V control the operation of the 
"condi tional" Jump instructions. Sixteen 
frequently used combinations of flag settings 
are encoded in a 4-bit field called the condition 
code (cc), which forms a part of the conditional 
instructions (bits 4-7). 

The condition codes and the flag settings they 
represent are listed in Table 5-2. 

5.4 NOTATION AND BINARY ENCODING 

The following sections describe the symbols used 
for operands and status flags, and the flag 
settings and their meanings. 

Table 5-2. Condition Codes 

Binary Hneaonic Meaning nags Set 

0000 F Always False 
1000 Always True 
0111* C Carry C = 1 
1111* NC No Carry C 0 
0110* Z Zero Z 1 
1110* NZ Not Zero Z 0 
1101 PL Plus 5 0 
0101 MI Minus 5 = 
0100 OV Overflow V 
1100 NOV No Overflow V = 0 
0110* EQ Equal Z = 1 
1110* NE Not Equal Z 0 
1001 GE Greater than or equal (5 XOR V) = 0 
0001 LT Less than (5 XOR V) = 1 
1010 GT Greater than (Z OR (5 XOR V» 0 
0010 LE Less than or equal (Z OR (5 XOR V» 
1111 * UGE Unsigned greater than or equal C = 0 
0111* ULT Unsigned less than C = 1 
1011 UGT Unsigned greater than (C = 0 AND Z = 0) = 
0011 ULE Unsigned less than or equal (C OR Z) = 1 

*Indicates condition' codes that relate to two different mnemonics but test 
the same flags. For example, Z and EQ are both True if the Zero flag is 
set, but after an ADD instruction, Z would probably be used, While after a 
CP instruction, EQ would probably be used. 

495 



496 

NOtation 

cc 
r 
rb 
rO 
rr 
R 

Rb 

RR 

IA 

Ir 
IR 

In 

IRR 

x 

XS 

XL 

DA 

RA 

1M 
IML 

Instruction Set 

Table 5-'. NOtation and Binary Encoding 

Meaning 

Condition code 
Working register only 
Bit b of working register 
Bit 0 of working register 
Working regi~ter pair 
Register or working register 

Bit b of register or working 
register 

Register pair or working 
register pair 

Indirect addressing mode 

Indirect working register only 
Indirect register or working 

register 

Indirect working register only 
Indirect register pair or 

working register pair 

Indexed addressing mode 

Indexed (Short Offset) 
addressing mode 

Indexed (Long Offset) 
addressing mode 

Direct addressing mode 

Relative addressing mode 

Immediate addressing mode 
Immediate (Long) 

addressing mode 

Actual Operand/Range 

See condition code list (Table 5-2) 
Rn: where n = 0-15 
Rn Db: where n = 0-15 and b = 0-7 
Rn: where n = 0-15 
RRp: where p = 0,2,4, ••• ,14 
Reg: where reg represents a number in the range 

0-255 
Rn: where n = 0-15 
Reg Db: where reg represents a number in the 

range 0-255 and. b = 0-7 
Rn Db: where n = 0-15 and b = 0-7 
Reg: where reg reprsents an even number in the 

range 0-254 
RRp: where p = 0,2, ••• ,14 
D addrs: where addrs represents an even number 

in the range 0-254 
®Rn: where n = 0-15 
®reg: where reg represents a number in the range 

0-255 
@Rn: where n = 0-15 
®RRp: where p = 0,2, ••• ,14 
®reg: where reg represents an even number in the 

range 0-254 
®RRp: where p = 0,2, •••• 14 
reg (Rn): where reg represents a number in the 

range 0-255 and n = 0-15 
addrs (RRp): where addrs represents a number in 

the range -128 to +127 and p = 0,2, ••• ,14 
addrs (RRp): where addrs'represents a number in 

the range 0-65,535 and p = 0,2, ••• ,14 
addrs: where addrs represents a number in the 

range 0-65,535 
addrs: where addrs represents a number in the 

range +127,-128 that is an offset relative to 
the address of the next instruction 

Ddata: where data is a number between 0 and 255 
Ddata: where data is a number between 0 and 

65,535 



Instruct ion Se~ 

5.4.1 Notational Shorthand 

Operands and status flags are represented by a 
notational shorthand in the detailed instruction 
descriptions of section 5.5.2. The notation for 
operands (condition codes and addressing modes) 
and the actual operands they represent are shown 
in Table 5-3. 

Additional Syrebols Used: 

Symbol 

dst 
src 
@ 

SP 
PC 
IP 

FLAGS 
RPO 
RP1 
IMR 
II 

OPC 

Meaning 

Destination operand 
Source operand 
Indirect Register address prefix 
Stack Pointer (R216 and R217) 
Program Counter 
Instruction Pointer (R218 and 
R219) 
Flag register (R213) 
Register Pointer 0 (R214) 
Register Pointer 1 (R215) 
Interrupt Mask register (R221) 
Immediate operand or Register 
address prefix 
Hexadecimal number prefix 
Opcode 

Assignment of a value is indicated by the symbol 
"<--"; for example, 

dst <-- dst + src 

indicates that the source data is added to the 
destination data and the result is stored in the 
destination location. The notation "addr (n)" is 
used to refer to bit "n" of a given location. For 
example, 

dst (7) 

refers to bit 7 of the destination operand. 

5.4.2 flag Settings 

Notation for the flags is shown below. 

flag Meaning 

C Carry flag 
Z Zero flag 
S Sign flag 
V Overflow flag 
D Decimal-Adjust flag 
H Half-Carry flag 
0 Cleared to 0 

Set to 1 

* Set or Cleared according to operation 
Unaffected 

X Undefined 

Figure 5-2 provides a quick reference guide to the 
commands. 

497 



SUPERS OPCODE MAP 

o 3 

6 6 6 6 
o DEC DEC ADD ADD 

Rl IRI r1,r2 r1, lr2 

6 6 6 6 
RLC RLC AOC AOC 
Rl IRI r1,r2 r1, lr2 

6 6 6 6 
INC INC SUB SUB 
Rl IRI 'l,r2 r1, lr2 

10 NOTE 6 6 
JP 

C 
SBC SSC 

IRRI r1/2 r1, lr2 

6 6 6 6 
4 OA OA OR OR 

Rl IRI r1,r2 r1, lr2 

10 10 6 6 
5 POP POP AND AND 

Rl IRI r1,r2 r1, lr2 

6 6 6 6 
6 COM COM TCM TCM 

" 
Rl IRI r1,f2 r1, lr2 .. 

:E. 10/12 12/14 6 6 
PUSH PUSH TM TM 

R2 IR2 r1,r2 'l, lr2 

.. 7 :c 
.c 
Z 
:;; 10 10 10 10 

OECW OECW PUSHUO PUSHUI Co 8 
Co 
:> RRI IRI IR1,R2 IR1,R2 

6 6 10 10 
9 RL RL POPUO POPUI 

Rl IRI IR2,Rl IR2,Rl 

10 10 6 6 
A INCW INCW CP CP 

RRI IRI r1,r2 'l, lr2 

6 6 6 6 
S CLR CLR XOR XOR 

Rl IRI r1,r2 r1, lr2 

6 6 16/18 12 
C RRC RRC CPIJE LOC" 

Rl IRI Ir,f2,RA r1, lrr2 

6 6 16118 12 
0 SRA SRA CPIJNE LOC" 

Rl IRI Irl,r2,RA r2, lrr1 

6 6 16 16 
E RR RR LOCO" LOCI" 

Rl IRI r1, lrr2 r1, lrr2 

8 8 16 16 
F SWAP SWAP LOCPO" LOCPI" 

Rl IRI r2,lrrl r2, lrr1 

NOTE A NOTEB 

NOTED 

498 

Lower Nibble (Hex) 

4 5 6 7 8 9 

10 10 10 10 6 6 
ADD ADD ADD BOR" LO LO 
R2,Rl IR2,Rl Rl,IM ro-Rb fl,R2 r2,Rl 

10 10 10 10 

I AOC AOC AOC BCP 
R2,Rl IR2,Rl Rl,IM fl,b,R2 

10 10 10 10 
SUB SUB SUB SXOR" 
R2,Rl IR2,Rl Rl,IM ro-Rb 

10 10 10 NOTE SSC SBC SBC 
A 

R2,Rl IR2,Rl Rl,IM 

10 10 10 10 
OR OR OR LOB" 

R2,Rl IR2,Rl Rl,IM fo-Rb 

10 10 10 8 
AND AND AND BITC 
R2,Rl IR2,Rl Rl,IM rl,b 

10 10 10 10 
TCM TCM TCM BAND" 
R2,Rl IR2,Rl Rl,IM ro-Rb 

10 10 10 
TM TM TM NOTE 

B 
R2,Rl IR2,Rl Rl,IM 

24 24 24 10 
MULT MULT MULT LO 

R2,RRl IR2,RRl IM,RRj rl,x,r2 

28/12 28/12 28/12 10 
DlV DlV OIV LO I 

R2,RRl IR2,RRl IM,RRI r2,x,rl 

10 10 10 NOTE CP CP CP 
0 

R2,Rl IR2,Rl Rl,IM 

10 10 10 NOTE XOR XOR XOR 
E 

R2,Rl IR2,Rl Rl,IM 

10 10 12 6 
LOW LOW LOW LO 

RR2,RRl IR2,RRl RR1,IML 'l, lr2 

20 10 6 
CALL LO LO 

IAI IR1,IM Irl,r2 

10 10 10 18 
LO LO LO LOC" 

R2,Rl IR2,Rl Rl,IM rl,lrr2,xs 

18 10 18 18 
CALL LO CALL LOC" 
IRRI R2, IR l DAI r2,lrrl,x8 

NOTEC 

NOTEE 

Figure 5-2. SuperS Opcode Map 

A B C 

12/10 12/10 6 
OJNZ JR LO 
rl,RA cc,RA rl,IM 

Legend: 
r := 4-bit address 
R ~ 8-blt addfess 
b = bit number 
R1 or'l = dst address 
R2 or r2 = src address 

Sequence: 

Instr.uct ion Set 

o E F 

12/10 6 14 
JP INC NEXT 

cc,DA rl 

~ 
ENTER 

~ 
EXIT 

~ 
WFI 

~ 
SBO 

~ 
,SBI 

r------------

r------------

r----
6 
01 

~ 
EI 

t----;4 
RET 

~ 
IRET 

~ 
RCF 

~ 
SCF 

~ 
CCF 

~ 
NOP 

"Examples: 
BOR fo-R2 

is BOR fl ,b,R2 
or BOR r2,b,Rl 

LDCrl,lrr2 
is LOC r1 ,lrr2 = program 
or LDE fl ,lrf2 = data 

Opcode, first, second, third operands 

NOTE: The blank areas are not defined. 



5.5 
Instruction 
Descriptions 
and Formats 

ADC dst,src 

Operation: 

Flags: 

Instruction 
format: 

EXlIlIlple: 

Ace 
Add With Carry 

dst ~- dst + src + C 

The source operand ,along with the setting of the Carry flag, is added to the destination 
operand and the sum is stored in the destination. The contents of the source are unaffect­
ed. Twos-complement addition is performed. In multiple precision arithmetic, this instruc­
tion permits the carry from the addition of low-order operands to be carried into the 
addition of high-order operands. 

C: Set if there is a carry from the most significant bit of the result; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurs, that is, if both operands are of the sam~ sinn and 

the result is of the opposite sign; cleared otherwise. 
5: Set if the result is negative; cleared otherwise. 
D: Always cleared 
H: Set if there is a carry from the most significant bit of the low-order four bits of the 

result; cleared otherwise. 

Opcode Addressing Mode 
Cycles (Hex) dst src 

Opcode I I dst src 6 12 r r 
13 r Ir 

Opcode I I src I I dst 10 14 R R 
15* R IR 

Opcode I I dst I I src 10 16 R 1M 

*This format is used in the example. 

I f the register named SUM contains %16, the Carry flag is set to 1, working regi,ster 10 
contains %20 (32 decimal), and register 32 contains %10, the statement 

ADC SUM, ~R1D 

leaves the value %27 in register SUM. 

499 



AND dst ,src 

Operation: 

Flags: 

Instruction 
For_t: 

Exallple: 

500 

AND 
Logical 

dst ~- dst AND src 

The source operand is logically ANDad with the destination operand. The rCGult is stored in 
the destination. The AND operation results in a 1 bit being stored whenever the correspond­
ing bits in the two operands are both 1s; otherwise a 0 bit is stored. The contents of the 
source are unaffected. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Always cleared to O. 
5: Set if the result bit. 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Opcode Addressing Mode 
Cycles (Hex) dst src 

Opcode I I dst src 6 52 r r 
53 r Ir 

Opcode I I src I I dst 10 54 R R 
55 R IR 

Opcode I I dst I I src 10 56* R 1M 

*This format is used in the example. 

If the source operand is the immediate value %76 (01111011) and the register named TARGET 
contains %C3 (11000011), the statement 

AND TARGET, #%76 

leaves the value 1;43 (01000011) in register TARGET. 



BAND 
Bit And 

BAND dst,src,b 
BAND dst,b,src 

Operation: 

Flags: , 

Inatruction 
for.at: 

[x_pIe: 

dst(O) ~- dst(O) AND src(b) 
or 

dst(b) ~- dst(b AND arc(O) 

The specified bit of the source (or the destination) is logically ANDed with bit 0 of the 
destination (or source). The resultant bit is stored in the specified bit of the 
destination. No other bits of the destination are affected. The source is unaffected. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Undefined 
s: 0 
H: Unaffected 
D: Unaffected 

Opcode Addressing Mode 
Cycles (Hex) dst src 

Opcode Idstl b 
1°1 I 

src 10 67* rO Rb 

Opcode I Isrc I b 
111 I 

dst 10 67 Rb rO 

*This format is used in the example. 

I f the register named BYTE contains %73 (01110011) and working register J contains %01, the 
statement 

BAND RJ,BYTE,117 

leaves the value %00 in working register 3. 

501 



BCP dst,src,b 

Operation: 

Flags: 

Instruction 
Forlll3t: 

Example: 

BITC dst,b 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

502 

BCP 
Bit Compare 

dst(O) - src(b) 

The specified bit of the source is compared to (subtracted from) bit 0 of the destination. 
The Zero flag is set if the bits are the same; otherwise it is cleared. The contents of 
both operands are unaffected by the comparison. 

C: Unaffected 
Z: Set if the two bits are the same; cleared otherwise. 
V: Undefined 
5: 0 
H: Unaffected 
0: Unaffected 

Opcode 1 dst I biD I \.-1 _s_rc----' 10 

Opcode 
(Hex) 

17 

Addressing Mode 
dst .!!!:£. 

ro 

I f working register 3 contains %01 and register 64 (%40) contains ?~FF, the statement 

BCP R3,64,IIO 

sets the Zero flag bit in Flag register R213. 

BITC 
Bit Complement 

dst(b) ~- NOT dst(b) 

This instruction complements the specified bit within the destination without affecting any 
other bits in the destination. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Undefined 
5: 0 
H: Unaffected 
0: Unaffected 

Opcode 

If working ~egister 3 contains %FF, the statement 

BITC R3,117 , 

leaves the value %7F in that 'register. 

B 

Opcode 
(Hex) 

57 

Addressing Mode 
dst 



BITR 
Bit Reset 

BITR dst,b 

Operation: 

Flags: 

Instruction 
format: 

Example: 

B~TS 
Bit Set 

BITS dst,b 

Operation: 

Flags: 

Instruction 
format: 

Example: 

dst (b) ~- 0 

This instruction clears the specified bit within the destination without affecting any other 
bits in the destination. 

No flags affected 

,---Opc_od_e --,I Idstl bi oi 

If working register 3 contains %80, the statement 

BITR R3,117 

leaves the value %00 in that register. 

dst(b) ~- 1 

8 

Opcode 
(Hex) 

77 

Addressing Hode 
dst 

This instruction sets the specified bit within the destination without affecting any other 
bits in the destination. 

No flags affected 

Opcode 

If working register 3 contains %00, the statement 

BITS R3,117 

leaves the value ~~BO in that register. 

Opcode 
(Hex) 

77 

Addressing Hode 
dst 

503 



BOR dst,src,b 
BOR dst,b,src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

504 

dst(O)_- dst(O) OR src(b) 
or 

dst(b) .. - dst(b) OR src(O) 

BOR 
Bit OR 

The specified bit of the source (or the destination) is logically ORed with bit 0 of the 
destination (or the source). The resultant bit is stored in the specified bit of the 
destination. No other bits of the destination are affected. The source is unaffected. 

c: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Undefined 
5: 0 
H: Unaffected 
0: Unaffected 

,--_o_pc_o_d_e_ ..... 1 I dst I b 

,--_o_p_c_o_d_e_ ..... 1 I src I b 

10 I I<--_src ----I 

1111 '--_d_Sl---l 

10 

10 

Opcode. 
(Hex) 

07 

07* 

Addressing Hode 
dst !!!:E. 

rO 

ro 

*This format is used in the example. 

If register 32 (%20) contains %OF and working register 3 contains %01, the statement 

BOR 32,117 ,R3 

leaves the value %8F in register 32. 



IBTJRF 
Bit Test and Jump Relative on False 

BTJRf dst,src,b 

Operation: 

flags: 

Instruction 
Format: 

Example: 

STJAT 

If src(b) is a 0, PC ~- PC + dst 

The specified bit within the source operand is tested. If it is a 0, the relative address 
is added to the Program Counter and control passes to the statement whose address is now in 
the PC; otherwise the instruction following the BTJRF instruction is executed. 

No flags affected 

,-_o_p_c_o_d_e_-,I I src b 101 ... l __ d_s_t_--, 

If working register 6 contains %7F,the statement 

BTJRF SKIP,R6,U7 

16/1B* 

Opcode 
(Hex) 

37 

Addressing Mode 
dst src 

RA 

* 18 if jump taken, 16 if not 

causes the Program Counter to jump to the memory location pointed to by SKIP. The memory 
location must be within the allowed range of +127,-128. 

Bit Test and Jump Relative on True 

BTJRT dst,src,b 

Operation: 

flags: 

Instruction 
format: 

Example: 

Note: 

If src(b) is a 1, PC ~- PC + dst 

The specified bit within the source operand is tested. If it is a 1, the relative address 
is added to the Program Counter and control passes to the statement whose address is now in 
the PC; otherwise the instruction following the BTJRT instruction is execut.ed. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) dst src 

Opcode J I src 1 b 111 I dst 16/18* 37 RA rb 

* 18 if jump taken, 16 if not 

If working register 6 contains %80, the statement 

BT JRT $+8 ,R6, /17 

causes the next five bytes in memory to be skipped. 

The $ refers to the address of the first byte of the instruction currently being executed. 

505 



BXOR dst,src,b 
BXOR dst,b,src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

506 

dst(O) .-- dst(O) 
or 

dst(b) -- dst(b) 

XOR 

XOR 

src(b) 

src(O) 

BXOR 
BitXOR 

The specified bit of the source (or the destination) is logically EXCLUSIVE ORed with bit 0 
of the destination (or source). The resultant bit is stored in the specified bit of the 
destination. No other bits of the destination are affected. The source is unaffected. 

c: Unaffected 
Z: Set if the result is 
Y: Undefined 
S: ° H: Unaffected 
D: Unaffected 

Opcode I Idstl b 

Opcode I Isrcl b 

0; cleared otherwise. 

10 1 I src' 

111 I dst 

10 

10 

Opcode 
(Hex) 

27* 

27 

Addressing Mode 
dst src 

ro 

ro 

*This format is used in the example. 

If working register 6 contains %rF and working register 7 contains %FO, the statement 

BXOR R6, R7, 114 

leave\; the value roFE in working register 6. 



CAll 
Call Procedure 

CAll dst 

Operation: 

Flags: 

Instruction 
format: 

Examples: 

SP 4-- SP -
:!'!SP 4-- PCl 
SP _- SP -
l~SP _- PCH 
PC .... - dst 

The current contents of the Program Counter are pushed onto the top of the stack. The 
Program Counter value used is the address of the first instruction following the CAll 
instruction. The specified destination address is then loaded into the Program Counter and 
points to the first instruction of a procedure. 

At the end of the procedure the Return (RET) instruction can be used to return to the 
original program flow. RET pops the top of the stack back into the Program Counter. 

No flags affected 

Opcode Addressing Hode 
Cycles (Hex) dst 

Opcode I I dst 18 F6 DA 

Opcode I I dst 18 F4 IRR 

Opcode I I dst 20 D4 IA 

(1) I f the contents of the Program Counter are ~~1A47 and the contents of the Stack Pointer 
(control registers 216-217) are %3002, the statement 

CALL %3521 

causes the Stack Pointer to be decremented to %3000, %1A4A (the address following the 
instruction) to' be stored in external data memory locations ~~3000 and ?~3001 (%4A in ~~30001, 
?~1A in %3000), and the Program Counter to be loaded with %3521. The Program Counter now 
points to the address of the first statement in the procedure to be executed. 

(2) If the content.s of the Program Counter and Stack Pointer are the same as in Example 1, 
working register 6 contains %35, and working register 7 contains ?~21, the statement 

CALL @RR6 

produces the same result as Example 1 except that %49 is stored in external data memory 
locat ion ~~3000. 

(3) I f the contents of the Program Counter and Stack Pointer are the same as in Example 1, 
address %0040 contains ~~35, and address %0041 contains %21, the st.atement 

CALL 11?~40 

produces the same result as Example 2. 

507 



ADD 
Add 

ADO dst,src 

Operation: 

flags: 

Instruction 
Format: 

Example: 

508 

dst ~- dst + src 

The source operand is added to the destination operand and the sum is stored in the 
destination. The contents of the source are unaffected. Twos-complement addition, is 
performed. 

C: Set if there was a carry from the most significant bit of the result; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if both operands were of the same sign and 

the result is of the opposite sign; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Set if a carry from the low-order nibble occurred. 
0: Always cleared to O. 

Opcode 
Cycles (Hex) 

Opcode I I dst src 6 02 
03 

Opcode I I src I I dst 10 04* 
05 

Opcode I I dst I I src 10 06 

*This format is used 

Addressing, Hode 
dst src 

r r 
r Ir 

R R 
R IR 

R 1M 

in the example. 

I f the register named SUM contains %44 and the register named AUGEND contains ~'11, the 
statement 

ADD SUM, I\UGEND 

leaves the value ~'55 in Register SUM. 



Operation: 

Flags: 

Instruction 
Forlllat: 

Ex .... ple: 

CLR dst 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

CCF 
Complement Carry Flag 

C .... - NOT C 

The Carry flag is complemented; if C 1, it is changed to C 0, and vice-versa. 

C: Complemented 

No other flags affected 

Opcode 

If the Carry flag contains a 0, the statement 

CCF 

changes the a to 1. 

dst .... - a 

The destination location is cleared to o. 

No flags affected 

~_o_pc_o_d_e __ ~1 I~ __ d_s_t __ ~ 

If working register 6 contains ~~F, the statement 

CLR R6 

leaves the value a in that register. 

6 

6 

Opcode 
(Hex) 

EF 

Opcode 
(Hex) 

80* 
81 

CLR 
Clear 

Addressing Hode 
dst 

R 
IR 

*This format is used in the example. 

509 



COM 
Complement 

COM dst 

Operation: 

Flags: 

Instruction 
Forc:at: 

Example: 

510 

dst 4-- NOT dst 

The contents of the destination location are complemented (ones complement); all 1 bits are 
changed to 0, and vice-versa. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Always reset to 0 
S: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

L-_o_p_c_o_d_e __ ~1 IL-___ d_s_t __ ~ 
Cycles 

6 

Opcode 
(Hex) 

60* 
61 

Addressing Mode 
dst 

R 
IR 

*This format is used in the example. 

If working register B contains %24 (00100100), the statement 

COM RB 

leaves the value ~mB (11011011) in that register. 



CP dst,src 

Operation: 

flags: 

Instruction 
Format: 

Example: 

CIP 
Compare 

dst - src 

The source operand is compared to (subtracted from) the destination operand, and the 
appropriate flags are set accordingly. The contents of both operands are unaffected by the 
compar ison • 

C: Set if a "borrow" occurred (src > dst); cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, cleared otherwise. 
5: Set if the result is negative; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Cycles 

Opcode I I dst src 6 

Opcode I I src I I dst 10 

Opcode I I dst I I src 10 

Opcode Addressing Mode 
(Hex) dst src 

A2 r 
A3 r Ir " 

A4 R R 
A5" R IR 

A6 R 1M 

"This format is used in the example. 

If the register named TEST contains %63, working register 0 contains %30 (46 decimal), and 
register 46 contains %63, the statement 

CP TEST, ijRO 

sets (only) the Z flag. If this statement is followed by "JP EQ, true_routine," the jump 
will be taken. 

511 



DA dst 

Operation: 

Instruction 

ADO 
AOC 

SUB 
S8C 

Flags: 

Instruction 
for.at: 

Example: 

512 

DA 
Decimal Adjust 

dst 4-- DA dst 

The destination operand is adjusted to form two 4-bit BCD digits following an addition or 
subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following 
table indicates the operation performed: 

Carry Bits 4-7 H Flag Bits 0-3 Nuntler Added Carry 
Before DA Value (Hex) Before OA Value (Hex) To Byte After DA 

0 0-9 0 0-9 00 0 
0 0-8 0 A-F 06 0 
0 0-9 1 0-3 06 0 
0 A-F 0 0-9 60 1 
0 9-F 0 A-F 66 1 
0 A-F 1 0-3 66 1 
1 0-2 0 0-9 60 1 
1 0-2 0 A-F 66 1 
1 0-3 1 0-3 66 

0 0-9 0 0-9 00 -00 0 
0 0-8 1 6-F FA -06 0 
1 7-F 0 0-9 AD -60 1 
1 6-F 1 6-F 9A -66 1 

The operation is undefined if the destination operand was not the result of a valid addition 
or subtraction of BCD digits. 

C: Set if there was a carry from the most significant bit; cleared otherwise (see table 
above). 

Z: Set if the result is 0; cleared otherwise. 
V: Undefined 
S: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

,-_o_pc_o_d_e_...,1 '<-_d_s_t_--, 6 

Opcode 
(Hex) 

40* 
41 

Addressing Mode 
, dst 

R 
IR 

*This format is used in the example. 

If working register RO contains %15 and working register R1 contains %27, the statements 

ADD R1, RO 
DAB R1 

leave 1;42 in working register R1. 

If addition is performed using the BCD values 15 and 27, the result should be 42. The sum 
is incorrect, however, when the binary representations are added in the destination location 
using standard binary arithmetic. 

0001 
+ 0010 

0011 

0101 
0111 

1100 = %3C 

The DA statement adjU!3~s this result so that the correct BCD r~presentat.ion is obtained. 

0011 1100 
+ 0000 0110 

0100 0010 42 



CPIJE 
Compare Increment and Jump on Equal 

CPIJE dst,src,RA 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

CPIJNE 

If dst - src = zero, PC _- PC + RA 
I r ..... - I r + 1 

The source operand is compared to (subtracted from) the destination operand. If the result 
is 0, the relative address is added to the Program Counter and control passes to the 
statement whose address is now in the Program Counter; otherwise the instruction following 
the CPIJE instruction is executed. In either case the source pointer is incremented by one 
before the next instruction. 

No flags affected 

,-_D_P_c_o_d_e"'-...J1 ! src dst I !L-__ R_A __ -, 

Cycles 

16/18* 

Opcode 
(Hex) 

C2 

Addressing Mode 
dst src 

r Ir 

* 18 if jump taken, 16 if not 

If working register 3 contains %AA, working register 5 contains %10, and register %10 
contains ~,AA, the statement 

CPIJE R3,ijR5, $ 

puts the value %11 in working register 5 and then executes the same instruction again. 

Compare Increment and Jump on Non Equal 

CPIJNE dst,src,RA 

Operation: 

Flags: 

Instruction 
Format: 

Exemple: 

Note: 

If dst - src ; zero, PC _- PC + RA 
Ir ..... - Ir + 1 

The source operand is compared to (subtracted from) the destination operand. If the result 
is not 0, the relat i ve address is added to the Program Counter and cont rol passes to the 
statement whose address is now in the Program Counter; otherwise the instruction following 
the CPIJNE instruction is executed. In either case, the source pointer is incremented by 
one before the next instruction. 

No flags affected 

!.-_o_pc_o_d_e_..J1 I src dst I I..I __ R_A_--, 

Opcode 
(Hex) 

16/18* . 02 

Addressing Mode 
dst src 

Ir 

* 18 if jump taken, 16 if not 

If working register 3 contains %M, working register 5 contains %10, and register %10 
contains %AA, the statement 

CPIJNE R3,@R5,$ 

puts the value %11 in working register 5 and then executes the next instruction following 
this instruction. 

The $ refers to the address of the first byte of the instruction currently being executed. 

513 



DEC 
Decrement 

DEC dst 

Ope~ation: 

flags: 

Inst~uction 
ro~ .. at: 

Example: 

514 

dst 40- dst - 1 

The content.s of the destination operand are decremented by one. 

C: Unaffected 
Z: Set if the result is 0; 'cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
5: Set if result is negative; cleared otherwise. 
H: Unaffected ' 
0: Unaffected 

L-_o_pc_o_d_e __ ~1 I~ __ d_s_t __ ~ 6 

Opeade 
(Hex) 

00* 
01 

Add~essing Mode 
dst 

R 
IR 

*This format is used in the example. 

If working register 10 contains 1~2A, the statement 

DEC R10 

leaves the value %29 in that register.' 



[)£CII dst 

Operation: 

Flags: 

Instruction 
Format: 

EX8IIIple: 

01 

Operation: 

Flags: 

Instruction 
ForlQat: 

Example: 

DECW 
Decrement Word 

dst .. - dst - 1 

The cont.ents of the destination location (which must be an even address) and the operand 
following that location are treated as a single 16-bit value which is decremented by one. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
5: Set if the result is negative; cleared otherwise. 
H: Unaffected 
0: Unaffected 

~_o_p_c_o_d_e __ ~1 I, _____ d_s_t __ ~ 10 

Opcode 
(Hex) 

80 
81 * 

Addressing Mode 
dst 

RR 
1R 

*This format is used in the example. 

If working register a contains %30(48 decimal) and registers 48-49 contain the value %FAF3, 
the statement 

DECW ~RO 

leaves the value ~~FAF2 in registers 48 and 49. 

DI 
Disable Interrupts 

SMR (0) .. - a 

Bit a of control register 222 (the System Mode register) is cleared to O. All interrupts 
are disabled; they can still set their respective interrupt status latches, but the CPU will 
not directly service them. > 

No flags affected 

Opcode 6 

Opcode 
(Hex) 

8F 

If control register 222 contains ?m1, that is, interrupts are enabled, the statement 

D1 

sets control register 222 to laO, disabling all interrupts. 

515 



Divide (Unsigned) 

DIY dst,src 

Operation: 

Flags: 

Instruction 
format: 

EX8lllple: 

516 

dst ... src 
dst (UPPER) ~- REMAINDER 
dst (LOWER) ~- QUOTIENT 

The destination operand (16 bits) is divided by the source operand (8 bits). The quotient 
(8 bits) is stored in the lower half of the destination. The remainder (8 bits) is stored 
in the upper half of the destination. When the quotient is~28, the numbers stored in the 
upper and lower halves of the destination for quotient and remainder are incorrect. 80th 
operands are treated as unsigned integers. 

C: Set if V is set and quotient is between 28 and 29 - 1; cleared otherwise. 
Z: Set if divisor or quotient = 0; cleared otherwise. 
V: Set if quotient is ~,28 or divisor = 0; cleared otherwise. 
5: Set if MSB of quotient = 1; cleared otherwise. 
H: Unaffected 
D: Una ffected 

Opcode Addressing Mode 

,Opcode I I src I I dst 

Cycles (Hex) dst !!!:£ 

28/12* 94** RR R 
2B/12* 95 RR IR 
2B/12* ' 96 RR If~ 

* 12 if divide by zero is attempted 
** This format is used in' the' example 

I f working register pair 6-7 (dividend') contains %10 in register 6 and %03 in register 7, 
and working register 4 (divisor) contains %40, the statement 

DIV RR6,R4 

leaves the value %40 in working register 7 (quotient) and the value ~OO3 in working register 
6 (remainder). 



DJNZ r,dst 

Operation: 

Flags: 

Instruction 
Format: 

EXBJllple: 

Note: 

DJNZ 
Decrement and Jump if Nonzero 

r __ - r -1 

If r 'I 0, PC -- PC + dst 

The working register being used as a counter is decremented. If the contents of the 
register are not 0 after decrementing, the relative address is added to the Program Counter 
and control passes to the statement whose address is now in the Program Counter. The range 
of the relative address is +127 to -128, and the original value of the Program Counter is 
taken to be the address of the instruction byte following the DJNZ statement. When the 
working register counter reaches zero, control falls through to the statement following the 
DJNZ statement. 

No flags affected 

Cycles 

r I Opcode I dst 12 if jump taken 

10 if jump not taken 

DJNZ is typically used to control a "loop" of instructions. 
moved from one buffer area in the register file to another. 

a Load 12 into the counter (working register 6) 
o Set up the loop to perform the moves 
o End the loop with DJNZ 

LD R6,1I12 
LOOP: LD R9,OLDBUF (R6) 

LD NEWBUF (R6),R9 
DJNZ R6,LOOP 

!Load Counter! 
!Move one byte to! 
!New location! 
!Decrement and ! 
!Loop until counter O! 

Dpcode Addressing Mode 
(Hex) dst 

rA RA 
r = 0 to F 

In this example, 12 bytes are 
The steps involved are: 

The working register being used as a counter must be one of the registers OO-CF. Using one 
of the 1/0 ports, control or peripheral registers will have undefined results. 

517 



EI 
Enable Interrupts 

El 

Operation: 

Flags: 

Instruction 
Forllat: 

Example: 

ENTER 
Enter 

ENTER 

Operation: 

Flags: 

Instruction 
Format: 

518 

SMR (O) -+- 1 

Bit 0 of control register 220 (the System Mode register) is set to 1. This allows any 
interrupts to be serviced when they occur (assuming they have highest priority) or, if their 
respective interrupt status latch was previously enabled by its interrupt, then its 
interrupt can also be serviced. 

No flags affected 

Opcode 6 

Opcode 
(Hex) 

9F 

If control register 222 contains 1~OO, (I.e., interrupts are disabled), the statement 

EI 

sets control register 222 to 1~01, enabling all interrupts. 

SP -- SP - 2 
~SP .... - IP 
IP -- PC 
PC -- 'iiIP 
IP : -- IP + 2 

This instruction is useful for the implementation of threaded-code languages. The contents 
of the Instruction Pointer are pushed onto the stack. The value in the Program Counter is 
then transferred to the Instruction Pointer. The program memory word painted to by the 
Instruction Pointer is loaded into the Program Counter. The Instruction Pointer is then 
incremented by two. 

No flags affected 

Opcode 20 

Opcode 
(Hex) 

1F 



EX8IIple: 

IPI 0050 1 

PC 100401 

S 100221 

Before ~----------~---+----------~. After 

Address .--____ -, Data 

Memory 

1F 
01} 
10 

Address .--____ ,Dat a 

IP~043 40 ENTER 
41 Addr H 
42 Addr l 

~ 43 Addr H 

~~ Address~Data 
Stack 

20 IPH 00 
~------+--21 IPl 50 

22 Data 
Address Data 

Stack 

EXIT 

Operation: IP ... - !lSP 
SP ... - SP + 2 
PC ... - IiIIP 
IP .... - IP + 2 

ENTER 
Enter (Continued) 

EXIT 
Exit 

This instruction is useful for the implementation of ' threaded-code languages. The stack is 
POPed and the Instruction Pointer is loaded. The program memory word pointed t.o, by the 
Instruction Pointer is loaded into the Program Counter. The Instruction Pointer is then 
incremented by two. 

Flags: 

Instruction 
Format: 

No flags affected 

Opcode 

Cycles 

22 

Opcode 
(Hex) 

2F 

519 



EXIT 
Exit (Continued) 

Example: 

IP I 0050 

pcl 0140 

~ 

Before 

Address .-__ ..,Data 

IP I 
pcl 

140 EXIT 2f 

After 

Address Data 

1..-/" 
00~2 

Main 

0060 I 

(20D} old OO} 
21 IPL 50 

Memory Memory 

22 Oata 

Address Stack Oata Address Stack Oata 

Note: 

INC 
Increment 

INC dst 

Operation: 

flags: 

Instruction 
for_t: 

Example: 

520 

The examples for ENTER, EXIT, and NEXT illustrate how these instructions could actually be 
used together in a program. ' 

dst _- dst + 1 

The contents of the destination operand are incremented by one. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Cycles 

dstlOPcodel 6 

Opcode I I _ dst 6 

Opcode Addressing Mode 
(Hex) dst 

rE* r 
r =,0 to f 

20 R 
21 IR 

*This format is'used in the axample. 

If working register 10 contains r,2A, the statement 

INC R10 

leaves the value r,2B in that register. 



INC" dsl 

Operation: 

Flags: 

Instruction 
Format: 

INCW 
Increment Word 

dst _- dst + 1 

The contents of the destination (which must be an even address) and the byte following that 
location are treated as a single 16-bit value which is incremented by one. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Unaffected 
D: Unaffected 

~_o_pc_o_d_e __ ~1 I~ ___ d_s_t __ ~ 10 

Opcode 
(Hex) 

AO* 
A1 

Addressing Mode 
dst 

RR 
IR 

*This format is used in the example. 

If working register pair 0-1 contains the value %FAF3, the statement 

INCW RRO 

leaves the value %FAF4 in working register pair 0-1. 

521 



IRET 
Interrupt Return 

Operation: 

flags: 

Instruction 
format: 

EXalllple: 

Note: 

522 

IRET (Normal) 

Flags -+- @SP 
SP _- SP + 1 
PC _- !!SP 
SP _- SP + 2 
SYM(O) -.- 1 

IRET (fast) 

PC __ IP 
Flag _- Flag' 
FIS _- 0 

This ,instruction is issued at the end of an interrupt service routine. It restores the Flag 
register and t.he Program Counter. It also reenables global interrupts. 

Normal IRET is executed only if the Fast Interrupt Status bit (nS, bit 1 of the Flags 
register R2Ul is cleared. Fast IRET is executed if FrS is set, indicating that a fast 
interrupt is being ser,viced. 

All ,flags are restored to original settings (before interrupt occurred). 

Opcode 
IRET (Normal) Cycles (Hex) 

Opcode 16 BF 

Opcode 
IRET (fast) Cycles (Hex) 

Opcode 6* BF 

*This format is used in the example. 

In the figure below, the Instruct ion Pointer is initially loaded with %100 in the main 
program before interrupts are enabled. When an interrupt occurs, the Program Counter and 
Instruction Pointer are swapped. This causes the Program Counter to jump to address %100 
and the Instruction Pointer to keep the return address. The last instruction in the service 
routine normally is a Jump to !RET at address %FF. This causes the Instruction Pointer to 
be loaded with %100 "again" and the Program Counter to jump back to t.he main program. Now 
the next, interrupt can occur and the Instruction Pointer is still correct at %100. 

0 

FF IRET 

100 
Interrupt 
Service 
Routine 

JP1; to FF 

FFFF 

for the Fast Interrupt example above, if the last instruction 
care must be taken with the order of the last two instructions. 
be immediately preceded by a clear of interrupt status (such 
Pending register/. 

is not a Jump to IRET, then 
The instruction IRET cannot 

as a reset of the Interrupt 



JP e.e.,dst 
JP dst 

Operation: 

Flags: 

Instruction 
ForlllBt: 

Conditional 

Um:onditional 

Example: 

JP 
Jump 

If e.e. is true, PC 4P- dst 

The e.onditional Jump transfers program e.ontrol to the destination address if the e.ondition 
spee.ified by "e.e." is true; otherwise, the instrue.tion following the JP instruction is 
exee.uted. See section 5.3 for a list of e.ondition codes. 

The unconditional Jump simply replaces the contents of the Program Counter with the contents 
of the specified register pair. Control then passes to the statement addressed by the 
Program C~unter. 

No flags affected 

cc I Opcode I ."I _____ ds_t _____ _' 

~_o_pc_o_d_e __ _'I ~I ___ d_s_t __ --, 

If the Carry flag is set to 1, the statement 

JP t,:II1520 

Cycles 

10/12* 

10 

Opc:ode 
(Hex) 

ccD** 

Addressing Mode 
dst 

DA 
cc = 0 to F 

30 IRR 

*12 if jump taken, 10 if not 
**This format is used in the example. 

replaces the contents of the Program Counter with :111520 and transfers control to that 
location. Had the Carry flag not been set, e.ontrol would have fallen through to the 
statement following the JP. 

523 



JR 
Jump Relative 

JR cc ,dst 

Operation: 

Flags: 

Instruction 
Format: 

EXlllllple: 

Note: 

524 

If cc is true, PC -+- PC + dst. 

If the condition specified by "ee" is true, the relative address is added to the Program 
Counter and control passes to t.he statement whose address is now in the Program Counter; 
ot.herwise, the instruction following the JR instruction is execut.ed. (See section 5.3 for a 
list of condition codes.) The range of the relative address is +127, -12B, and the original 
value of the Program Count.er is taken to be the address of the first instruct ion byte 
following the JR statement. 

No flags affected 

cc iOPcodei dst 

Cycles 

10/12" 

Opcode 
(Hex) 

ccB 

Addressing Mode 
dst 

RA 
ee = 0 to F 

" 12 if jump taken, 10 if not 

If the result of the last arithmetic operation executed is negative, then the four following 
statements (which occupy a total of seven bytes) are skipped with the statement 

JR MI,$+9 

If the result is not negative, execution continues with the statement, following the JR. A 
short form of a jump to label LO is 

JR LO 

where LO must be within t.he allowed range. The condit ion code is "blank" in this case, and 
JR has the effect of an unconditional JP instruction. 

The $ refers to the address of the first byte of the instruction currently being executed. 



LD dst,src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

lD 
Load 

dst _- src 

The contents of the source are loaded into the destination. The contents of the source are 
unaffected. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) ~ src 

dst10PcodeI src 6 rC r 1M 
6 r8 r R 

srclOPcodel dst 6 r9 R r 
r=O to F 

Opcode dst I ~rc 6 C7 r lr 
6 07 lr 

Opcode src dst 10 E4 R R 
10 E5 R lR 

Opcode dst src 10 E6 R 1M 
10 06 IR 1M 

Opcode src dst 10 F5 lR R 

Opcode dst src x 10 87 r x(r) 

Opcode src dst x 10 97* x(r) r 

*This format is used in the example. 

If working register 0 contains %08 (11 decimal) and working'register 10 contains %83, the 
statement 

LO 240 (RO),R 10 

loads the value %83 into register 251 (240 +11). The contents of working register 10 are 
unaffected by the load. 

525 



LOB 
Load Bit 

lOB dst,src,b 
LOO dst,b,src 

Operation: 

Flags: 

Instruction 
format: 

526 

dst(O) ~- src(b) 
or 

dst(b) ~- src(O) 

The specified bit of the source is loaded into bit 0 of the destination, or bit 0 of the 
source is loaded into the specified bit of the destination. No other bits of the 
dest'inat ion are affected. The source is unaffected. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) . .!!:!!,. .!!!£ 

Opcode I I dst b 
1°1 I src 10' 47 ro Rb 

Opcode I I src b 111 I dst 10 47 Rb ro 

I f working register '3 contains 1mO and working register 5 contains %rF, the statement 

LOB R3,R5,1I7 

leaves the value %01 in working register 3. 



LDE/LDe 
Load Memory 

lDE/LDC dst,src 

Operation: 

Flags: 

Instruction 
format: 

Example: 

Note: 

dst ..... - src 

This instruction is used t.o load a byt.e from program or data memory into a working register 
or vice-versa. The contents of the source are unaffected. 

No flaqs affected 

Opcoda Addressing Marla 
Cycles (Hex) dst src 

Opcode I I dst src 12 C3 r Irr 

Opcode I src dst 12 03** Irr 

Opcode I dst src I xs 18 E7 xs( rr) 

Opcode I src dst I xs 18 F7 xs( rr) 

Opcode I dstl src* I x\ x1 H 20 A7 xl( rr) 

Opcode I srcl dst* I I x1 L x1 H 20 B7 x1( rr) 

Opcode I I dst 00001 I DA L DAH 20 A7 r 
DA \ Proqram 

Memory 
Opcode I I src 00001 I OA L DAH 20 87 DA r 

Opcode I I dst 0001 1 I DA DA H 20 A7 
DA \ L Data 

Memory 
Opcode I I src 0001 1 I DA L DA H 20 B7 DA 

*The src or (rr) cannot use register pair 0-1. 
**This format is used in the example. 

I f the working register pair 6-7 contains %404A and working register 2 contaills %22, the 
statement 

LDE ~RR6,R2 

will load the value ~~22 into data memory locat ion ~~404A. 

LDE refers to data memory. 
LDC refers to program memory. 

The assembler makes Irr or rr even for program memory and odd for data memory. In the 
example above, the assembler produces this code: D3 27. 

527 



LDED/LDCD 
Load Memory and Decrement 

LDEO/LDCD dst,src 

Operation: dst ~- src 
rr _- rr -1 

Flags: 

Instruction 
Format: 

Example: 

Note: 

528 

This instruction is used for user stacks or block transfers of data from program or data 
memory to the register file. The address of the memory location is specified by a working 
register pair. The content.s of the source location are loaded into the destination 
location. The memory address is then decremented. The contents of the source are 
unaffected. 

No flags affected 

L-_D_Pc_O_d,-e_..J11 dst src 16 

Opcode 
(Hex) 

E2 

Addressing Mode 
dst src 

Irr 

If working register pair 6-7 contains %3DA3 and data memory locations %30A2 and ?~3DA3 
contain %22BC, the statement 

lOED R2, ijRR6 

loads the value ?mC into working register 2 and the value %30A2 into working register pair 
6-7. A second statement 

lOED R2, !lRR6 

loads the value %22 into working register 2 and the value %30A 1 into working register pair 
6-7. 

lOEO refers to data memory. 
lOCO refers to program memory. 

The assembler makes Irr even for program memory and odd' for data memory. In the example 
above, the assembler produces this code: E2 27. 

This instruction is the equivalent of a PDPUD with the stack in memory rather than in the 
register file. 



lDEl/lDCI 
Load Memory and Increment 

lOEI/lDCI dst,src 

Operation: dst ~- src 
rr <1-- rr + 

flags: 

Instruction 
Format: 

Example: 

Note: 

This instruction is used for user stacks or block transfers of data from program or data 
memory to the register file. The address of the memory location is specified by a working 
register pair. The contents of t.he source location are loaded into the destinat ion 
location. The memory address is then incremented automatically. The contents of the source 
are unaffected. 

No flags affected 

,--_o_pc_o_d_e_....J1 I dst src 16 

Opcode 
(Hex) 

E3 

Addressing Hode 
dst src 

Irr 

If working register pair 6-7 contains %30A2 and program memory locations ~nOA2 and %30A3 
contain %22BC, the statement 

LOCI R2,~RR6 

loads the value %22 into working register 2, and working register pair 6-7 is incremented 
to %30A3. A second 

lOCI R2,~RR6 

loads the value %BC into register 2, and working register pair 6-7 is incremented to %30A4. 

lOEI refers to data memory. 
LOCI refers to program' memory. 

The assembler makes Irr even for program memory and odd for data memory. In the example 
above, the assembler produces this code: E3 26. 

This instruction is the equivalent of a POPUI with the stack in memory rather than the 
register file. 

529 



LDEPD/LDCPD 
Load Memory with Pre-Decrement 

lDEPD/LDCPO dst,src 

Operation: 

Flags: 

Instruction 
Format: 

Ex .... ple: 

Note: 

530 

rr ~- rr -
dst +- src 

This instruct ion is used for block transfers of data to program or data memory from the 
register file. The address of the memory location is specified by a working regist.er pair 
and is first decremented. The contents of the source location are loaded into the 
destination location. The contents of the source are unaffected. 

No flags affected 

~_o_p_c_o_d_e __ -JI I src I dst I 16 

Opcode 
(Hex) 

F2 

Addressing Hode 
dst src 

Irr 

If working\ register pair 6-7 contains 1~404B and ,working register 2 contains %22 (34 
decimal), the statement 

LDEPD !lRR6,R2 

loads the value %22 into data memory Iocation%404A and the value %404A into working 
register pair 6-7. 

LDEPD refers to data memory. 
LDCPD refers to program memory. 

The assembler makes Irr even for program memory and odd for data memory. 

This instruction is the equivalent of' a PUSHUD with the stack in memory rather t.han the 
register file. 



lDEPUlDCPI 
Load Memory with Pre-Increment 

LD£PI/lOCPI dst,src 

Operation: 

Flags: 

Instruction 
format: 

Example: 

Note: 

rr ... - rr + 
dst .... - src 

This instruction is used for block transfers of data to program or data memory from the 
register file. The address of the memory location is specified by a working register pair 
and is first incremented. The contents of the source location are loaded into the 
destination locat ion. The content.s 'of the source are unaffected. 

No flags affected 

,-_D_P_c_o_d_e_..J1 I src dst 16 

Opcode 
(Hex) 

F3 

Addressing Mode 
dst src 

Irr 

I f working register pair 6-7 contains %404A and working register 2 contains ~,22 (34 
decimal), the statement 

LDEP I ~RR6, R2 

loads the value ~,22 into external data memory location %4048 and the value ~,404B into 
working register pair 6-7. 

LDEPI refers to data memory. 
LDCPI refers to program memory. 

The assembler makes Irr even for program memory and odd for data memory. 

This instruction is the equivalent of a PUSHUI with the stack in memory rather than the 
regist.er file. 

531 



LOW 
Load Word 

LDII dst,src 

Operation: 

flags: 

Instruction 
format: 

Example: 

MUlT 

dst -+- src 

The contents of the source (a word) are loaded into the destination. The contents of the 
source are unaffected. 

No flags affected 

Opcude Addressing Hode 
Cycles (Hex) dst .:!!£ 

Opcode I I src I I dst 10 C4 RR RR 
10 C5 RR IR 

Opcode I I dst I I src I 12 C6* RR IHL 

*This format is used in the example. 

If the source operand is the immediate value %5AA5, the statement 

LDW RR6,11%5AA5 

leaves the value %SA in working register 6 and the value %A5 in working register 7. 

Multiply (Unsigned) 

Hl"-T dst,src 

Operation: 

flags: 

Instruction 
format: 

Example: 

532 

dst ~- dst x src 

The 8-bit dest inat ion operand (even register of the register pair) is multiplied by the 
source operand (8 bits) and the product (16 bits) is stored in t.he register pair' specified 
by the destination address. Both operands are treated as unsigned integers. 

C: Set if result is > 255; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Cleared 
5: Set if MSB ~f the result is a 1; cleared ,otherwise. 
H: Ul;laffected 
D: Unaffected 

Opcode 
Cycles (Hex) 

Opcode I I src I I dst 24 84* 
24 85 
24 86 

*This format is used 

Addressing Hode 
dst src 

RR R 
RR IR 
RR 1M 

in the example. 

If working register 6 contains ~,40 (64 decimal) and working register 4 contains %42 (66 
decimal), the statement 

MULT RR6, R4 

leaves the value %10 in working register 6 and ~,80 in working register 7 (%1080 is 4224 
decimal) • 



NEXT 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

NEXT 
Next 

PC .- !:1IP 
IP .... - IP + 2 

This inst ruction is useful for the implement.ation of threaded-code languages. The program 
memory word pointed to by the Instruct ion Pointer is loaded into the Program Counter. The 
Instruction Pointer is then incremented by two. 

No flags affected 

Opcode 

BeFore 

Address Data 

14 

AFter 

Address 

Opcode 
(Hex) 

OF 

Data 

~" 
Addr H 01 } 43 Addr H 

44 Addr L 30 44 Addr L 
45 Addr H ~45 Addr H 

IP 0043 IP 0045 . 

Note: 

~~ 
120 NEXT 

~~ 
130 Routine 

Memo,y Memory 

The examples for ENTER, EXIT, and NEXT illustrate how they could actually be used together 
in a program. 

533 



NOP 
No Operation 

Operation: 

flags: 

Instruction 
Format: 

OR 
Logical OR 

OR dst,src 

Operation: 

flags: 

Instruction 
Format: 

Exaiaple: 

534 

No action is performed by this instruction. It is typically used for timing delays. 

No flags affected 

Opcode 

dst ~- dst OR src 

Opcode 
(Hex) 

FF 

Tl),e source opera"nd is logically ORed, with the destination, operand and the result is stored 
in the destination.' The contents of the source are unaffected. The OR operation results in 
a 1 bit being stored whenever either of the corresponding bits in the two operands is 1; 
otherwise a 0 bit is stored. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Always cleared to 0 ' 
S: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Opcode I I dst src I 
Opcode II src I I dst 

Opcode I I dst I I src 

Opcode Addressing Mode 
Cycles (Hex) .!!!!.. ~ 

6 42 r r 
6 43 r Ir 

10 44 R R 
10 45 R IR 

10 46* R 1M 

*This format is used in the example. ' 

If the source operand is the immediate value 1,;7B (01111011) and the register named TARGET 
contains 1,;C3 (11000011), the statement 

OR TARGET, !/'If,7B 

leaves the value %FB (11111011) in register, TARGET. 



POP dst 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

POPIJD dst,src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

dst _- @SP 
SP _- SP ... 

POI? 
Pop 

The contents of the' location addressed by the Stack Pointer are loaded into the 
destination. The Stack Pointer is then incremented by one. 

No flags affected 

,--_o_p_c_o_d_e_....I1 ''--__ d_s_t_--' 

Cycles 

10 
10 

Opcode 
(Hex) 

50 
51· 

Addressing Hade 
dst 

R 
IR 

*This format is used in the example. 

I f the Stack Pointer (control registers 216-217) contains ~~1000, external data memory 
location %1000 contains %55, and working register 6 cont,ains %22 (34 decimal), the statement 

POP @!R6 

loads the value ?~55 into register 34. A fter the POP operation, the Stack Pointer contains 
%1001. 

dst _- src 
IR ... - IR -

IPOpuro 
POp User Stac!{ (Decrementing) 

This instruction is used for user-defined stacks in the register file. The contents of the 
register file location addressed by the user Stack Pointer are loaded into the destination. 
The user Stack Pointer is then decremented. 

No flags affected 

Opcode I , src I , dst 

Cycles 

10 

Opccde 
(Hex) 

92 

Addressing Hode 
dst src 

R IR 

I f the user Stack Pointer (register ~~42, for example) contains ~~80 and register ~~BO contains 
5A, the statement 

POPUD R2,~42 

loads the value %5A into working register 2. 
Pointer contains ~~7F. 

A fter the POP operation, the user Stack 

535 



POPUI 
Pop User Stack (Incrementing) 

POPUI dst,src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

PUSH 
Push 

PUSH src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

536 

dst .. - src 
IR _- IR + 

This instruction is used for user-defined stacks in the register file. The contents of the 
register file location addressed by the user Stack Pointer are loaded into the destination. 
The user Stack Pointer is then incremented. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) ~ !!!:£ 

Opcode I I src I I dst 10 93 R IR 

If the user Stack Pointer (register 1,42, for example) contains 1,80 and register %80 contains 
1,5A, the statement 

POPUI R2,~42 

loads the value %5A into working register 2. 
Pointer contains %81. 

A fter the POP operation, the user Stack 

SP _- SP - 1 
~SP _- src 

The contents of the Stack Pointer are decremented, then the contents of the source are 
loaded into the locat ion addressed by the decremented Stack Pointer, thus adding a new 
element to the top of the stack. 

No flags affected 

Opcode Addressing Mode 
Cycles (Hex) src 

Opcode I I src 10 Internal stack 70* R 
12 External stack 
12 Internal stack 71 IR 
14 External stack 

*This format is used in the example. 

If the Stack Pointer contains %1001, the statement 

PUSH FLAGS 

stores the contents of the register named FLAGS in location %1000. 
operation, the Stack Pointer contains %1000. 

After the PUSH 



PUSHUD dst,src 

Operation: 

Flags: 

Instruction 
format: 

Exa.-:lple: 

IR .... - IR -
dst _- src 

PUSHUD 
Push User Stack (Decrementing) 

This instruction is used for user-defined stacks in the register file. The user Stack 
Pointer is decremented, then the contents of the source are loaded into the register file 
location addressed by the decremented user Stack Pointer. 

No flags affected 

Opcode I I dst I I src 10 

Opcode 
(Hex) 

82 

Addressing Mode 
~ src 

IR R 

I f the user Stack Pointer (%42, for example) contains' %81, the statement 

PUSHUD 11I%42,R2 

stores the contents of working register 2, in location %80. After the PUSH operation, the 
user Stack Pointer contains %80. 

PUSHU~' 
Push User Stack (Incrementing) 

Push User Stack (Incrementing) 

PUSHUI dst,src 

Operation: 

Flags: 

Instruction 
format: 

Example: 

IR .... - IR + 1 
dst _- src 

This instruction is used for user-defined stacks in the register file. The user Stack 
Pointer is incremented, then the contents of the source are loaded into the register file 
location addressed by the incremented user Stack Pointer. 

No, flags affected 

Ope ode I I dst I I src 

Cycles 

10 

Opcode 
(Hex) 

83 

If the user Stack Pointer (?~42, for example) contains ?~81, the statement 

PUSHUI ~%42,R2 

Addressing Mode 
dst src 

IR R 

store~ the contents of working register 2 in location %82. After the PUSH 'operation, the 
user Stack Pointer contains %82. 

537 



ReF 
Reset Carry Flag 

ReF" 

Operation: 

Flags: 

Instruction 
Format: 

RET 
Return 

RET 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

538 

C -+- 0 

The Carry flag is cleared to 0, regardless of its previous value. 

'c: Cleared to 0 

No other flags affected 

Opcode 

PC 4-- {lSP 
SP .... - SP + 2 

6 

Opcode 
(Hex) 

CF 

This instruction is normally used to return to the previously executing procedure at the end 
of a procedure entered by a CALL instruction. The contents of the location addressed by the 
Stack Pointer are popped 'into the Program Counter. The next statement executed is that 
addressed by the new contents of the Program Counter. 

No flags affected 

Opcode 14 

Opcode 
(Hex) 

AF 

If the Program Counter contains %3584, the Stack Pointer contains %2000, external 
data memory location ~'2000 contains %18, and location %2001 contains %85, then the statement 

RET 

leaves the value %2002 in the Stack Pointer and %1885, the address of the next instruction, 
in the Program Counter. 



Rl dst 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

RL 
Rotate Left 

C -+- dst (7) 
dst (0) ..... - dst (7) 
dst (n + 1) -+- dst (n) n = 0 - 6 

The contents of the destination operand are rotated left one bit position. The initial 
value of bit 7 is moved to the bit 0 position and also replaces the Carry flag. 

c: Set if the bit .rotated from the most significant bit position was 1, i.e., bit 7 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred; cleared otherwise. 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

~_o_pc_o_d_e __ ~1 I~ ___ d_s_t __ ~ 6 
6 

Opcode 
(Hex) 

90* 
91 

Addressing Mode 

~ 

R 
IR 

*This format is used in the example. 

I f the contents of the register named SHIFTER are ~m8 (10001000), the st.atement 

RL SHIFTER 

leaves the value ?11 (00010001) in that register and the Carry and Overflow flags are set to 
1. 

539 



RLe 
Rotate Left Through Carry 

RlC dst 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

540 

dst (0) _- C 
C 4-- dst (7) 
dst (n + 1) _- dst (n) n = 0 - 6 

The contents of the dest ination operand with the Carry flag are rotated left one bit 
position. The initial value of bit 7 replaces the Carry flag; the initial value of the 
Carry flag replaces bit O. 

~~7 _p 
C: Set if the bit rotated from the most significant bit position was 1, i.e., bit 7 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if the- sign of the destination changed 

during rotation; cleared otherwise. 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

I Opcode I 1L. __ d_s_t_--l 6 
6 

Opcode 
(Hex) 

10* 
11 

Addressing Mode 
dst 

R 
IR 

*This format is used in the example. 

If the Carry flag is cleared to 0 and the register named SHIfTER contains %8F (10001111), 
the statement 

RLC SHIFTER 

sets the Carry and Overflow flags to 1 and leaves the value %1E (00011110) in SHIFTER. 



RR dst 

Operation: 

Flags: 

Instruction 
format: 

Example: 

RR 
Rotate Right 

C _- dst (0) 
dst (7) .... - dst (0) 
dst (n) .... - dst (n + 1) n = 0 - 6 

The contents of the destination operand are rotated right one bit position. The initial 
value of bit 0 is moved to bit 7 and also replaces the Carry flag. 

c: Set if the bit rotated from the least significant bit position was 1, i.e., bit 0 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed 

during rotation; cleared otherwise. 
S: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

L-_o_pc_o_d_e __ ~1 ~I ___ d_s_t __ ~ 6 
6 

Opcode 
(Hex) 

EO* 
E1 

Addressing Hode 
dst 

R 
IR 

*This format is used in the example. 

If the contents of register 6 are %31 (00110001), the statement 

RR R6 

sets the Carry flag to 1 and leave the value %98 (10011000) in working register 6. Since 
bit 7 now equals 1, the Sign and Overflow flags are also set to 1. 

541 



RRC 
Rotate Right Through Carry 

RRC dst 

Operation: 

Flags: 

Instruction 
Format: 

[xllftlple: 

542 

dst (7) .... - C 
C .... - dst (0) 
dst (n) .... - dst (n + 1) n = 0 - 6 

The content.s of the destination operand and the Carry flag are rotated right one bit 
position. The initial value of bit 0 replaces the Carry flag; the initial value of the 
Carry flag replaces bit 7. 

C: Set if the bit rotated from t.he least significant bit position was 1, i.e., bit 0 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occurred, that is, if the sign of the destination changed 

during rotation; cleared otherwise. 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

~_o_pc_o_d_e_....J1 ',--_d_s_t_--, 
6 
6 

Opcode 
(Hex) 

CO* 
C1 

Addressing Mode 
dst 

R 
IR 

*This format is used in the example. 

If the content.s of the register named SHIFTER are %OD (11D11101), and the Carry flag is 
cleared to 0, the statement 

RRC SHIFTER 

sets the Carry and Overflow flags to 1 and leaves the value ~;6E (01101110) in the register. 



580 

Operation: 

Flags: 

Instruction 
Format: 

581 

Operation: 

Flags: 

Instruction 
format: 

SSO 
Set BankO 

BANK -+- 0 

This instruction causes the Bank Address flag (bit 0) of Flag register 213 to be cleared to 
O. 

No flags affected 

Opcode 6 

BANK -+- 1 

Opcode 
(Hex) 

4F 

SB1 
Set Bank 1 

This instruction causes the Bank Address flag (bit 0) of Flag register 213 to be set to 1. 

No flags affected 

Opcode 6 

Opcode 
(Hex) 

SF 

543 



SSC 
Subtract With Carry 

soc dst,src 

Operation: 

Flags: 

Instl'uction 
format: 

EX8IIple: 

544 

dst ~- dst - src - C 

The source operand, along with the setting of the Carry flag, is subtracted from the 
destination operand and the result is stored in the destination. The contents of the source 
are unaffected. Subtraction is performed by adding the twos complement of the source 
operand to the destination operand. In multiple precision arithmetic, this instruction 
permits the carry ("borrow") from the subtraction of low-order operands to be subtracted 
from the subtraction of high-order operands. 

C: Set if a borrow occurred (src > dst); cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. , 
V: Set if arithmetic overflow occured, that is, if the operands were of opposite sign and 

the sign of the result is the same as the sign of the source; cleared otherwise. 
S: Set if the result is negative; cleared otherwise. 
H: Cleared if there is a carry from the most. signi ficant bit of the low-order four bits of 

the result; set otherwise, indicating a "borrow." 
D: Always set to 1. 

Opcode Addressing Hode 
Cycles (Hex) dst src 

Opcode I I dst src I 6 32 r r 
6 33" Ir 

Opcode I I src I I dst 10 34 R R 
10 35 R IR 

Opcode I I dst I I src 10 36 R 1M 

"This format is used in the example. 

If the register named MINUEND contains %16, the Carry flag is set to 1, working register 10 
contains ~;20 (32 decimal), and register 32 contains ~m5, the statement 

SBC MINUEND, ~R10 

leaves the value ~;10 in register MINUEND. 



SCf 

Operation: 

flags: 

Instruction 
forlll8t: 

SRA dst 

Operation: 

flags: 

Instruction 
format: 

Example: 

C ..... - 1 

The Carry flag is set to 1, regardless of its previous value. 

- C: Set to 1 

No other flags affected 

Opcode 

dst (7) ..... - dst (7) 
C ...... - dst (0) 
dst (n) ..... - dst (n + 1) n = 0 - 6 

6 

Opcode 
(Hex) 

OF 

selF 
Set Carry Flag 

SfRA 
Shift Right Arithmetic 

An arithmetic shift right one bit position is performed on the destination operand. Bit 0 
replaces the Carry flag. Bit 7 (the sign bit) is unchanged, and its value is also shifted 
into bit position 6. 

7 6 

C: Set if the bit shifted from the least significant bit position was 1, i.e:, bit 0 was 1. 
Z: Set if the result is 0; cleared otherwise. 
V: Always cleared to 0 
S: Set if the result is negative; cleared otherwise. 
H: Unaffected 
D:- Unaffected 

~_o_p_co_d_e __ ~1 LI ___ d_s_t __ ~ 6 
6 

Opcode 
(Hex) 

OO*' 
01 

Addressing Mode 
dst 

R 
IR 

*This format is used in the example. 

If the register named SHIFTER contains %B8 (10111000), the s~atement 

SRA SHIFTER 

clears the Carry flag to 0 and leaves the value %OC (11011100) in the register-SHIFTER. The 
Sign flag is set to 1. 

545 



SRP/SRPO/SRP1 
Set Register Pointer 

SRP/SRPO/SRP1 

Operation: 

Flags: 

Instruction 
Format: 

Examples: 

546 

src 

If src (1) = 1 and src (0) = 0 them RPO (3-7) .. - src 0-7 ) 

If src (1) = 0 and src (0 ) = 1 then: RP1 0-7) .. - src (3-7) 

If src (1) = 0 and src (0) = 0 then: RPO (4-7) .. - src (4-7), 
RPO (3) .. - 0 
RP1 (4~7) .. - src (4-7), 
RP1 (3) .. - 1 

The source data bits 1 and 0 determine if one or both of the Register Pointers is to be 
written. Bits 3-7 of the selected Register Pointer are written unless both Register 
Pointers are selected. Then bit 3 of RPO is forced to a 0 and bit 3 of RP1 is forced to a 
1. 

No flags affected 

~_o_pc_o_d_e __ ~1 I~ ___ s_r_c __ ~ 

(1) The statement 

SRPO 11~~50 

sets Register Pointer 0 (control register 214) to ~~50. 
The assembler produces this code: 31 52. 

(2) The statement 

SRP1 11%68 

sets Register Pointer 1 (control regist~ 215) to ~~68. 
The assembler produces this code: 31 69. 

(3) The statement 

SRP 11%40 

6 

sets Register Pointer 0 to ~~40 and Register Pointer 1 to ~~4B. 
The assembler produces this code: 31 40. 

Opcode 
(Hex) 

31 

Addressing Mode 
src 

1M 



SUB dst,src 

Operation: 

flags: 

Instruction 
Format: 

Example: 

SUB 
Subtract 

dst ~- dst - src 

The source operand is subtracted from the destination operand and the result is st.oreej in 
the destination. The contents of the source are unaffected. Subtraction is performed by 
add{ng the twos complement of the source operand to the destination operand. 

C: Set if ,a "borrow" occurred; cleared otherwise. 
Z: Set if the result is 0; cleared otherwise. 
V: Set if arithmetic overflow occured, that is, if the operands were of opposite signs and 

the sign of the result is the same as the sign of the source operand; cleared otherwise. 
5: Set if the result is negative; cleared otherwise. 
H: Cleared if there is a carry 'from the most significant bit of the low-order four bits of 

the result; set otherwise indicating a "borrow." 
0: Always set to 1. 

Opcode Addressing Hode 
Cycles (Hex) dst src 

I Opcode I I dst src 6 22 r r 
6 23 r Ir 

Opcode I I src I I dst 10 24 R R 
10 25 R IR 

Opcode I I dst, I I src 10 26* R 1M 

*This format is used in the example. 

If the register named MINUEND contains %29, the statement 

SUB MINUEND, #%11 

leaves the value %18 in the register. 

547 



SWAP 
Swap Nibbles 

SlfAP- dst 

Operation: 

Flags: 

Instruction 
Format: 

Exaaople: 

548 

dst (0 - 3) ~~ dst (4 - 7) 

The contents of the lower four bits and upper four bits of the destination operand are 
swapped. 

7 

c: Undefined 
Z: Set if the result is 0; 
V: Undefined 
5: Set if the result bit 7 
H: Unaffected 
0: Unaffected 

~_o_pc_o_d_e __ ~1 I~ ___ d_s_t __ ~ 

4 3 

cleared 

is set; 

o 

otherwise. 

cleared otherwise. 

Opcode 
(Hex) 

Addressing Mode 
dst 

8 FO" R 
8 F1 IR 

"This format is used in the example. 

If the register named BCD_Operands co,ntains %B3 (10110011), then t.he statement 

SWAP BOC_Operands 

leaves the value %3B (00111011) in the r~gister. 



TCH dst,src 

Operation: 

Flags: 

Instruction 
ForllBt: 

Example: 

TCM 
Test Complement Under Mask 

(NOT dst) ANO' src 

This instruct ion tests selected bits in the dest inat ion operand for a logical "1" value. 
The bits to be tested are specified by setting a 1 bit in the corresponding position of the 
source operand (mask). The TCM statement complements the de,stination operand, which is then 
ANDed with the' source mask. The Zero (Z) flag can then be checked to determine the result. 
The destination and source operands are unaffected. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Always cleared to O. ' 
S:' Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Opcode Addressing Mode 
Cycles (Hex) \ ~ !!£ 

Opcode I I dst src 6 62* r r 
6 63 r Ir 

Opcode I I' src I I dst 10 64 R R 
10 65 R IR 

Opcode I I dst I I src 10 66 R 1M 

*This format is used in the example. 

If the register named TESTER contains ror6 (11110110) and the register named MASK contains 
%06 (00000110), that is, bits 1 and 2 are being tested for a 1 value, then the statement 

TCM TESIER, MASK 

complements TESTER (to 00001001) and then does a logical AND with register MASK, resulting 
in %00. A subsequent test of the Z flag 

JP Z, label 

causes a transfer of program control. At the end of this sequence, TESTER still contains 
%F6. 

549 



TM 
Test Under Mask 

1M dst,src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

550 

dst ANO src 

This instruction tests selected 'bits in the destination operand for a logical "0" value. 
The bits to be tested are specified by setting a 1 bit in the corresponding position of the 
source operand (mask), which is ANOed with the destination operand. The Zero (Z) flag can 
then be checked to determine the result. The destination and source operands are 
unaffected. 

C: Unaffected 
Z: Set if the result' is 0; cleared otherwise. 
V: Always reset to O. 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
D: Unaffected 

Opcode I I dst src I 
Opcode I I src I I dst 

Opcode I I dst I I arc 

Opcode Addressing Mode 
Cycles (Hex) dst !!£. 

6 72* r r 
6 73 r Ir 

10 74 R R 
10 75 R IR 

10 76 R 1M 

*This format is used in the example. 

If the register named TESTER contains r.r6 (11110110) and the register named MASK contains 
%06 (00000110), that is, bits 1 and 2 are being tested for a 0 value, then the state,ment 

TM TESTER, MASK 

results in the value %06 (00000110). A subsequent test for nonzero 

JP NZ, label 

causes a,transfer of program control. At the end of this sequence, TESTER still,contains 
,%F6. 



WFI 

Operation: 

Flags: 

Instruction 
format: 

Example: 

WFI 
Wait For Interrupt 

The CPU is effectively halted until an interrupt occurs, except that DMA transfers still 
take place in the halt state. Either a fast interrupt or normal interrupt can take the CPU 
out of the halt state. 

-No flags affected 

Opcode 

Main Program 

EI 
WFI 
(next instruction) 

~nterrupt occurs 

(Enable Global Interrupt) 
(Wait for Interrupt) 

Interrupt Service Routine 

Clear Interrupt Flag 
IRET 

serv ice routine 

6n 

Opcode 
(Hex) 

3F 

n = 1,2,3, ••• 

551 



XOR 
Logical Exclusive OR 

XOR dst,src 

Operation: 

Flags: 

Instruction 
Format: 

Example: 

552 

dst ..-- dst XoR src 

The source operand is logically EXCLUSIVE oRed, with t.he destination operand and the result 
is stored in the destination. The EXCLUSIVE OR operation results in a 1 bit being stored 
whenever the corresponding bits in the operands are different; otherwise, a 0 bit is stored. 

C: Unaffected 
Z: Set if the result is 0; cleared otherwise. 
V: Always reset to o. 
5: Set if the result bit 7 is set; cleared otherwise. 
H: Unaffected 
0: Unaffected 

Opcode Addressing Hode 
Cycles (Hex) dst src 

opcode I I dst src I 6 82 r r 
6 83 Ir 

opcode I I src I I dst 10 84 R R 
10 85 R IR 

opcode I I dst I I src 10 86" R It1 

"This format is used in the example. 

If the source is the immediate value %78 (01111011) and the register named TARGET contains 
%C3 (11000011), the statement 

XoR T ARGE T, 1/%78 

leaves the value ~m8 (10111000) in the register'. 



,6.1 INTRODUCTION 

The interrupt structure of the, SuperB consists of 
27 different interrupt sources, 16 vectors, and B 
levels (ri~ure 6-1). Two of the vectors are 
reserved for future members of the SuperB family. 

Interrupt priority is assigned by level, which is 
controlled by the Interrupt Priority register 
(IPR). Each level is masked (or enabled) accord­
ing to the bits in the Interrupt Mask register 
(IMR) , and the entire interrupt structure can be 
disabled by clearing bit 0 in the System Mode 
register (R222). The three major components of 
the interrupt structure are sources, vectors, and 
levels. 

INTERRUPT SOURCES 

COUNTER 0 ZERO COUNT 
EXTERNAL INTERRUPT (P2,) 
EXTERNAL INTERRUPT (P27) 

COUNTER 1 ZERO COUNT 
EXTERNAL INTERRUPT (P3,) 
EXTERNAL INTEI'IRUPT (P37) 

~;~~~::~,~~~~~~~i ?P2,) I 
EXTERNAL INTERRUPT (P2s) 

HAN'DSHAKE CHANNEL 1 I 
EXTERNAL INTERRUPT (P3,) 
EXTERNAL INTERRUPT (P3s) 

RESERVED 

RESERVED 

EXTERNAL INTERRUPT (P3,) 

EXTERNAL INTERRUPT (P2,) 

EXTERNAL INTERRUPT (P23) 

EXTERNAL INTERRUPT (P33) 

UART RECEIVE OVERRUN 
UART FRAMING ERROR 
UART PARITY ERROR 
UART WAKEUP DETECT 
UART BREAK DETECT 
UART CONTROL CHAR DETECT 

WlRT RECEIVE DATA 
EXTERNAL INTERRUPT (P3D) 

EXTERNAL INTERRUPT (P2D) 

UART ZERO COUNT 
EXTERNAL INTERRUPT (P2,) 
UART TRANSMIT DATA 
EXTERNAL INTERRUPT (P3,) 

ChapteB' 6 
~nteB'B'upts 

A source is anything that generates an interrupt. 
This can be internal or external to the Super8. 
Internal sources are hardwired to a particular vector 
and level. while external sources can be assigned to 
various external events. External interrupts are 
flillin9 edge triggered. 

6.1.2 Vectors 

The vector number is used to generate the address 
of a particular interrupt serv~c~ng routine; 
therefore all interrupts using the same vector 
must use the same interrupt handling routine. 

POliNG 
VECTORS LEVELS --,--

! 12 IRQ2 

I 
I 

I 
1,4 

I I 
I 
I 

I I 

I 128 
I 
I 

I I 

! 
130 
I , 
! 

IRQ5 

IRQ4 

IRQ7 

IRQ3 

,'RQO 

IRQ6 

IRQl 
I 

Figure 6-1. Interrupt Structure 

553 



Interrupts 

When more than one vector shares an interrupt 
level, the priorities of the vectors on that level 
are fixed. Figure 6-1 lists the vectors within a 
level in the order of decreasing priority (i.e •. , 
the top vector in each level has the highest 
priority). for example, for IRQ6, vector 16 
always 'has priority over vectors 18, 20, and 22. 

6.1.' levels 

While the sources and vectors are hardwired within. 
each level, the priorities of the levels can be 
changed by using the Interrupt Priority register 
(R255, Bank 0) (Figure 6-2). 

Although it does not cover all possible combina­
tions, the Interrupt Priority register does 
provide the capability of assigning 192 different 
combinations of priority among the interrupt 
levels. for example, an IPR with the co1ntents 
01101011 would have the following priority order 
(Figure 6-3): 

If more than one interrupt source is active, the 
source from the highest priority level is serviced 
first. If both sources are from the same' level, 
the source with the lowest vector number has 
priority. for example, if the UART Receive Data 
bit and UART Parity Error bit are both active, the 
UART Parity Error is serviced first because it is 
vector 16 and the UART Receive Data bit is vector 
20. 

R2SS BANK 0 (FF) IPR 
INTERRUPT PRIORITY REGISTER 

AI 

IROO 

554 

GROUP A 

A2 Bl 

IROI IR02 IR03 

GROUP PRIORITY 

07 0 4 0 1 
UNOEFINEO 
B>C>A 
A>B>C 
B>A>C 
C>A>B 
C>B>A 
A>C>B 
UNDEFINED 

I I I L GROUP A 
0= IROO>IROI 
1 = IROI > IROO 

GROUPB 
o = IR02 > (IR03,IR04) 
1 = (IR03,IR04» IR02 

SUBGROUPB 
0= IR03 > IR04 
1 = IR04 > IR03 

GROUPC 
o = IROS > (IR06,IR07) 
1 = (IR06,IR07) > IROS 

SUBGROUPC 
o = IR06 >·IR07 
1 = IR07 > IR06 

Figure 6-2. Interrupt Priority Register 

Cl 

B22 C22 

IR04 IROS IR06 IR07 

EXAMPLE: An IPR with thecontents01101011 would have 
the following priority order: 

HIGHEST IR02 } 
IR04 GROUPB 
IR03 

IRO?1 
IR06 GROUpe 
IROS' I~I~I~I~I~I~I~I~I 

IR01 } GROUPA 
, IROO 

I lSI 
Al>A2 

000 UNDEFINED 
A2>Al 

001 B>C>A Bl>B2 LOWEST 
010 A>B>C B2>Bl 
011 B>A>C B21>B22 
100 C>A>B B22>B21 
101 C>B>A 

Cl>C2 110 A>C>B 
111 UNDEFINED 1 C2>Cl 

0 C21>C22 
1 C22>C21 

Figure 6-3, Interrupt Priority Tree 



When an interrupt occura, the software is auto­
matically vectored' to one of 16· possible service 
routines. If more than one active source ahares 
that vector, the software must poll the individual 
sources connected with that vector to find the 
interrupting source or sources. Each interrupt 
source has its own Interrupt Enable bit located in 
the mode and control registers of the r/o section 

Interrupts 

associated with the source. The software has 
complete control over which sources are allowed to 
cause interrupts. If only one source associated 
with a particular vector is enabled, then when an 
interrupt occurs that uses that vector, no polling 
is required and the software is automatically 
vectored to the appropriate service routine. 

Table 6-1. ~B Vector Address Table 

Vectors 
(Decilllal MeiIory Address) Levels 

30,31 IRQ7 

28,29 IRQ4 

26,27 IRQ1 

24,25 IFiQ1 

22,23 IRQ6 

20,21 IRQ6 

18,19 IRQ6 

16,17 IRQ6 

14,15 IRQ5 

12,13 IRQ2 

10,11 IRQO 

8,9 IRQO 

6,7 IRQ3 

4,5 IRQ3 

2,3 IRQ3 

0,1 IRQ3 

Interrupt Sources 

P34 External Interrupt or HS1 / 
P35 External Interrupt 

P24 External Interrupt or HSO / 
P25 External Interrupt 

UART Transmit Data / 
P31 Extern~l Interrupt 

I UART Zero Count / 
P21 External Interrupt 

P20 External Interrupt 

UART Receive Data / 
P30 External Interrupt 

UART Break / Control Character / 
Wake-Up 

uAin Overrun / Framing / 
Pilrity 

Counter 1 Zero Count / 
P36 External Interrupt / 

,P37 External Interrupt 

Counter 0 Zero Count / 
P26 External Interrupt / 
P27 External Interrupt 

P33 External Interrupt , 

P23 Externsl Interrupt 

P22 External Interrupt 

P32 External Interrupt 

Reserved 

Reserved 

555 



Interrupts 

6.1.4 Enables 

Interrupts can be enebled or disabled es follows: 

• Interrupt enable/disable. The entire interrupt 
structure can be enabled or diaabled by aetting 
bit 9 in the System Mode register (R222). 

• level enable. Each level can be enabled or 
disabled by setting the appropriate bit in the 
Interrupt Mask register (R221). 

• level priority. The priority of each level can 
be controlled by the values in the Interrupt 
Priority register (R255, BankO). 

• Source enable/disable. Each interrupt source 
can be enabled or disabled in the source's Mode 
and Control register. 

6.1.5 The Interrupt Routine 

Interrupts are sampled at the end of each instruc­
tion. Before an interrupt request can be granted 
a) interrupts must be enabled, b) the level must 
be enabled and must be the highest priority inter­
rupting level, and c) the interrupt request must 
be enabled at the interrupting source and must 
have the highest priority within the level. 

If all this occurs, an interrupt reques~ is 
granted. 

EI 

HW RESET OR 
POWER·UP RESET 

IPR=%FF 
INTERRUPT PRIORITY 

REGISTER 

SYM=%DE 

The SuperB then enters an interrupt machine cycle 
that completes the following sequence: 

• Resets the Interrupt Enable bit to disable all 
subsequent interrupts 

e Saves the Program Counter and status flags on 
the stack 

• Branches to the address contained within the 
vector location for the interrupt 

• Passes control to the interrupt servicing 
routine 

Interrupts can be re-enabled by the interrupt 
handling routine (EI instruction),' which allows 
interrupt nesting. First, however, the contents 
of the Interrupt Mask register should be saved and 
a new mask loaded which disables the present level 
being serviced and all lower levels. 

When the interrupt handling routine is finished, 
it should issue an Interrupt Return (IRET) 
instruction. This instruction restores the 
Program Counter and status flags from the stack 
and sets the Global Interrupt Enable bit. If 
nesting was used, "the interrupt handling routine 
should firat execute a Disable Interrupt (01) 
instruction and 
executing the 
illustrates the 

restore the saved mask before 
IRET instruction. Figure 6-4 

interrupt cycle process that 
occurs when an interrupt request occurs. 

- P2AIP=%FC 
P2BIP= %FO 

SYSTEMMDDE 

VECTOR 
INTERRUPT 
CYCLE 

Figure 6-4. Interrupt Cycle Process 

556 



6.2 FAST INTERRIJ'T PROCESSING 

The SuperB provides a feature called fast inter­
rupt processing, which completes the interrupt 
servicing in 6 clock periods instesd of the usual 
22. 

Anyone of the eight interrupt levels can be 
programmed to use this feature by loading the fast 
interrupt select field of the System Mode register 
(R222) with the level number and setting the fast 
Interrupt Enable bit. 

Two hardware regi~ters support fast interrupts. 
ThE! Instruction Pointer (IP) holds the starting 
address of the service routine and saves the 
Program Counter (PC) value when a fast interrupt 
occurs. A dedicated register, flag', saves the 
contents of the nag register when a fast inter­
rupt occurs. 

To use, this feature, software must first set the 
Instruction Pointer to the starting location of 
the interrupt service routine during initializa­
tion and before interrupts are enabled for the 
first time. Then the level, number is loaded into 
the fast Interrupt Select field and the fast 
Interrupt Enable bit in the System Mode register 
is turned on. 

Nhen an interrupt occurs in the level selected for 
fast interrupt processing, the following occurs: 

II -The contents of the Instruction Pointer and the 
Program Counter are swapped. 

• The contents' of the Flag register are copied 
into Flag'. 

II lhe fast Interrupt Status bit in the Flag 

Interrupts 

interrupt routine. While fast interrupt process­
ing is enabled, normal interrupt processing still 
functions for the unselected levels. 

The SuperB supports both polled and interrupt­
driven systems or a combination of both. To 
accommodate a polled structure or a partially 
polled structure, any or all of the interrupt 
levels can be masked and the individual bits of 
the IRQ register polled. 

6.3 CLEARING THE INTERRIJ'T SOURCE 

Internally, the interrupt requests are ,represented 
as levels. This level-activated system requires 
that the software that services an interrupt must 
perform some action that removes the interrupting 
source before re-enabling that interrupt. 

for external interrupt inputs on the Port 2 and 3 
pins, edge-triggered "interrupt pending" flip­
flops are used to convert an edge-triggered input 
to a level-activated interrupt. Thus, the service 
routine must reset the interrupt pending flip-flop 
to clear the interrupt request by writing to the 
Port 2/3 Interrupt pending register. 

for receive character available interrupts from 
the UART receiver, emptying the Receive Data 
register CUIOR) will automatically clear 
the interrupt aource. for receiver interrupts due 
to a receive ,error, detection of a control charac­
ter, or detection of the wake-up condition, reset­
ting the appropriate status bit in the Receive 
Control register CURC) will clear the interrupt 
source. for interrupts from the UART transmitter, 
filling the Transmit Data register (uroT) wi.ll 
automatically clear the interrupt source~ 

register is set. for end-of-count interrupts from the counter/ 
timers, resetting the Reset/End of Count Status 

• The interrupt is serviced. bit (01) in the Counter Control register will 
clear the interrupt source. 

II When fRET is issued sfter the interrupt service 
routine is completed" the Instruction Pointer 
and the Program 'Counter are swapped again. ' 

• The contents of flag' are ~opied back into the 
flag register. 

o The fast Interrupt Status bit in the flag 
register is cleared. 

After the .Interrupt Return OREn of a fast 
interrupt, the Instruction Pointer (IP) will point 
to the next byte following the IRET. Before using 
the fast interrupt again, the IP ahould be re­
initialized to point to the beginning of the 

for interrupts from the on-chip DMA channel, load­
ing a non-zero value into the OMA Count register 
will clear the interrupt source. 

6.4 INTERRIJ'T IDITROL REGISTERS 

The interrupt hardware is controlled by fields in 
the System Mode register (R222), the Interrupt 
Request register IRQ (R220), the Interrupt Mask 
register IMR (R221), th~ Interrupt Priority 
register .IPR (R255, Bank 0), and the f aat Inter­
rupt Status bit (fIS) of the flags register 
(R213) • 

557 



Interrupts 

6.4.1 System MOde Register 

The System Mode register (R222) controls the mode 
of operation of the interrupt hardware. The 
format of the System Mode register is shown in 
Figure 6-5. 

The fields in this register pertaining to the 
interrupt hardware are: 

Global Interrupt Enable (DO)' When this bit is 
set to 1, interrupts are enabled. When this bit 
is cleared to 0, all interrupts are disabled 
regardless of the state of individual interrupt 
enable or mask bits. This bit is automatically 
cleared during an interrupt machine cycle and can 
also be cleared by the 01 instruction. It can be 
set by using an EI or IRET instruction. A hard­
ware reset clesrs this bit. 

Fast ,Interrupt Enable (D1)' When this bit is a'1, 
the fast interrupt processing feature is enabled 
for the selected interrupt level. When this bit is 
a 0, fast interrupt processing is disabled. When 
fast interrupt processing is used, the Interrupt 
Mask Register bit for the selected level must also­
be set. 

Fast Interrupt Select (Dz-D4)' The value of this, 
3-bit field se lects the interrupt level for fast 
interrupt processing. All other levels stilL 
operate in the normal interrupt mode. 

(Bit 7 relates to external memory and not to 
interrupts. For more details on bit 7, see 
section 12.3.) 

R222 (DE) SYM 
SYSTEM MODE 

I~I~I~I~I~I~I~I~I 

1 = 3-STATE MEMORY ~ TIL 1 = GLOBAL INTERRUPT ENABLE 
INTERFACE 

NOT USED 1 = FAST INTERRUPT ENABLE 

FAST INTERRUPT SELECT 
000 LEVELO 
001 LEVEL 1 
010 LEVEL2 
011 LEVEL3 
100 LEVEL4 
101 LEVELS 
110 LEVEL6 
111 LEVEL 7 

Figure 6-5. System Mode Register 

6.4.2 Interrupt Request Register Writing to the IRQ has no effect. The interrupt 
request must be renewed at the source, such as the 
UART or a port. The Interrupt Request (IRQ) register (R220) 

indicates which interrupt levels have pending 
interrupts. It takes a snapshot once for each 
instruction near the end of execution. Each bit in 
the register corresponds to one interrupt level. 
Software can use the IRQ for polling those levels 
that are not using hsrdware interrupts and hsve 
been'masked off by the IMR., Even when polling, 
the software is responsible for removing the 
interrupting source when servicing that source. 

External interrupts are disabled by a reset and 
must be enabled via execution of an EI instruction 
before bits in the Port 213 Interrupt Pending 
registers can be set and external hardware inter­
rupts can occur. 

The format of the Interrupt Request register is 
ahown in Figure 6-6. 

R220 (DC) IRQ 
INTERRUPT REQUEST (READ ONLY) 

I~I~I~I~I~I~I~I~I 

LEVEL7gJJ~J" ~I' LLEVELO 
LEVEL 6::::.J L LEVEL 1 

LEVEL 5 LEVEL 2 

LEVEL 4 LEVEL 3 

Figure 6-6, Interrupt Request Register 

558 



6.4.3 Interrupt Mask Register 

The Interrupt Mask (IMR) register (R221) is used 
to mask individual interrupt levels, thus prevent­
ing interrupts at that level. A 1 enables inter­
rupts at that level, a 0 disables them. 
Interrupts should be globally disabled before 

-writing to this register. 

The format of the Interrupt Mask register is shown 
in Figure 6-7. 

R221 (~O) IMR 
INTERRUPT MASK 

I~I~I~I~I~I~I~I~I 

LEVEL7~J I . ~I LLEVELO 
LEVEL 6 ~ L LEVEL 1 

LEVEL 5 . LEVEL 2 

LEVEL 4 LEVEL 3 

Figure 6-7. Interrupt Mask Register 

6.4.4 Interrupt Priority Register 

The Interrupt Priority (IPR) register (R255, Bank 
0) defines. the priority order of the interrupt 
levels. The coding of this register is defined in 
Figure 6-2. Interrupts should be globally dis­
abled before writing to this register •. 

Interrupts 

6.4.5 Fast Interrupt Status Bit (ns of nags 
Register) 

This is a status bit; when it is set to 1, it 
indicates that a fast interrupt has occurred. 
This bit determines what type of action is taken 
during an IRET. If it is a 1, then an IRET causes 
a swap between the Program Counter and the 
Instruction Pointer, and the Flags' register to be 
written into the Flag register. If it is a 0, 
then IRET causes a normal interrupt return. A 
hardware reset clears this bit to.O. 

The format of the Flags register is shown in 
Figure' 5-1, Chapter 5. 

6.5. INTERRUPTS AND THE DHA CHANNEl 

When the DMA channel is enabled to work with a 
handshake-driven I/O port or the UART, the in~er­

rupt request from the specific device is replaced 
by an interrupt request from the DMA channel when 
the specified number of transfers has been com­
pleted (see Figure.6-8). 

OMA 
ENABLE -I==;::=r:~[}----- OMA REQUEST 

END OFCO~~* -.Q.-----l..J 

TO IRQ 
REGISTER 

Figure 6-8. Interrupts and the DMA 

559 



7.1 RESET 

A system reset, activated by a low level on the 
I!rnn' input, overrides all other operating condi­
tions and puts the SuperB into a known state. The 
I!rnn' input is internslly synchronized with the 
internal clock of the SuperB to form the internal 
reset line. ror a power-up reset operation when 
using the on-chip oscillator, the ~ input must' 
be held low for at least 50 llJilliseconds after the 
power supply is within tolerance to allow the on­
chip clock oacillator to stabilize. If an exter­
nal clock oscillator is used or power has been 
applied long enough for the on-chip oscillator to 
stabilize, then the mrr input must be held low 
for at least 1B c lock periods to cause a system 
reset. 

While I!rnn' is active low, the ~ output is forced 
low while ~ pulses low once every four clock 
cycles and R/W' remains high. Z-BUS-compatible 
peripherals use the ~ and ~ coincident low state 
as a peripheral reset function. 

560 

Chapter 7 
Reset and Clock 

Resets also reault in the following: 

• Interrupts are disabled ( the Global Interrupt 
Enable bit is cleared and the Interrupt Request 
register is disabled) 

• Ports 2, 3, and 4 are placed in input mode 

• 

• 

In parts with '~n-chip ROM, Ports' 0 and 1 are 
placed in input mode; in ROM leas parts, Port 1 
is configured as an address/data bus to exter­
nal memory whfle Port 0 bits 0-4 are configured 
as address' bits B-12 and bits 5-7 are in input 
mode 

The on-Chip peripherals are all disabled 

• The Program Counter is loaded with 0020H 

Table 7-1 shows' the reset values of the control 
and peripheral registers. Specific reset values 
are ,shown by 1s or Os, while an x indicates bits 
whos'e ststes sre not defined snd t indicates not 
used. 



Reset and Clock 

Table 7-1. Control and Peripheral Register Reset Values 

Register Na.'Je 
t.:rlecanic. DacitJol. Hall 

General Registers 

Program Control Flags 
FLAGS, R213, D5 

Register Pointer 0 
RPO, R214, D6 

Register Pointer 
RP1, R215, D7 

Stack Pointer 
SP, R216-7, D8-D9 

Instruction Pointer 
IP, R218-9, DA,D8 

Interrupt Request 
IRQ, R220, DC 

Interrupt Mask 
IMR, R221, DD 

System Mode 
SYM, R222, DE 

External Memory Timing 
EMT, R254, FE 
(Bank 0) 

Interrupt Priority 
IPR, R255, FF 
(Bank 0) 

Port Registers 

x x x x 

0 0 

0 0 

x x x x 

x x x x 

0 0 0 0 

l( l( x x 

0 t t x 

0 

x l( x x 

Comments 

x x 0 0 Bank 0, no fast interrupts 

0 0 0 0' Working register CO 

0 0 0 ~/orking register C8 

x x x x 

x x x x 

0 0 0 0 Interrupts disabled 

x x x x 

l( x 0 0 Disable interrupts 
disable 3-state 

0 0 3 wait states for Program 
and Data, Slow memory 

l( x x x 

Port 0 x x x x x x x x 
PO, R208, DO 

Port 1 x x x x x x x x 
P1, R209, D1 

Key Reset value of 1 
o Reset value of 0 

l( bits whose states are not defined 
t not used 

561 



562 

Reset and Clock 

Table 7-1. Control and Peripheral Register Reset Vslues (Continued) 

Register 

Port Registers (Continued) 

Port 2 
P2, R210, 02 

Port 3 
P~, R211, 03 

Port 4 
P4, R212, 04 

Handshake 0 Control 
HOC, R244, F4 

Handshake 1 Control 
H1C, R245, F5 

Port 4 Direction 
P40, R246, F6 

Port 4 Open-Drain 
P400, R247, F7 

1 

x x x x x x x x 

x x x ·x x 0 x 0 

x x x x. x x x 0 

o 0 0 0 0 0 0 0 

Port 2/3 Mode 0 0 0 0 0 0 0 0 
P2AM, R248-251, F8,F9,FA,FB 
(Bank 0) 

Port 2/3 Interrupt 0 0 0 0 0 0 0 0 
Pending 

P2AIP, R252-3, FC,FD 

Port 0 Mode 0 0 0 0 0 0 0 0 
POM, R240, FO 0 0 0 1 1 1 1 
(Bank 0) 

Port Mode t t 0 0 0 0 
PM, R241, F1 
(Bank 0) t t 0 0 0 0 

Key: = Reset value of 1 x bits whose 
o = Reset value of 0 t = not used 

Co_ants 

Output register = 1 
Value will not be 
observable until ports 
are configured as output 

Output register = 1 
Value will not be 
observable until ports 
are configured as output 

Disable handshake 
Ports 1 and 4, disable DMA, 
(write only) 

Disable handshake 
Port 0 (write only) 

Inputs 

Push-pull 

Inputa (write only) 
(P2AM, P2BM, P2CM, P2DM) 

(Write only) software 
reset (P2AIP, P2BIP) , 

With ROM: input/output 
ROMless: 1 = Address 

With ROM: Port 0/1, inputs 
(write only) 
ROMless: Port 0/1 outputs 

states are not defined 



Reset and Clock 

Table 7-1. COntrol and Peripheral Register Reset Values (Continued) 

Register 

IlART and DHA Registers 

UART Transmit Control 
UTC, R235, EB 

UART Receive Control 
URC, R236, EC 

UART Interrupt Enable 
UIE, R237, ED 

UART Data 
UIO, R239, EF 

000 0 001 0 

000 0 0 0 0 0 

000 0 0 0 0 0 

x x x x x x x x 

UART Baud-Rate Generator x x x x x x x x 
UBG, R24B-9, FB,F9 
(Bank 1) 

UART Mode A 
UMA, R250, FA 
(Bank 1) 

UART Mode B 
UMB, R251, FB 
(Bank 1) 

\~ake-Up Match 
WUMCH, R254, FE 
(Bank 1) . 

Wake-Up Mask 
WUMSK, R255, FF 
(Bank 1) 

DMA Count 
DC, R240-1, FO,F1 
(Bank 1) 

COunter Registers 

Counter 0 Control 
COCT, R224, EO 
(Bank 0) 

x x x x x x x x 

o 0 0 0 0 0 0 0 

x x x x x x x x 

x x x x x x x x 

x x x x x x x x 

x xO 0 0 0 0 0 

Oisable transmitter, 
transmit buffer empty 

Disable receiver 
No character received 

Disable interrupts 

Disable baud-rate generator 

Disable counter 0, 
interrupts, software 
capture 

Key: Reset value of 1 
o Reset value of 0 

x bits whose states are not defined 
t not used 

563 



564 

Table 7-1. COntrol and Peripheral Regiater Reset Values (Continued) 

Register 

COunter Registers (Continued) 

Counter 1 Control 
C1CT, R225, E1 
(Bank 0) 

Counter 0 Capture 
COC, R226-7, E2,E3 
(Bank 0) 

Counter 1 Capture 
C1C, R22B-9, E4,E5 
(Bank 0) 

Counter 0 Mode 
COM, R224, EO 
(Bank 1) 

Counter 1 Mode 
C1M, R225, E1 
(Bank 1) 

Counter 0 Time Constant 
COTC, R226-7, E2,E3 
(Bank 1) 

Counter 1 Time Constant 
C1TC, R22B-9, E4,E5 
(Bank 1) 

Key: = Reset value 
0 Reset value 

x x 0 0 0 0 0 0 

x x x x x x x x 

x x x x x x x x 

o 0 0 0 x x x x 

o 0 0 0 x x x x 

x x x x x x x x 

x 1( x x x 1( x x 

of 1 x = bits whose 
of 0 t not used 

CoaDents 

Disable counter 1, 
interrupts, software 
capture 

Port 2 I/O 

Port 3 I/O 

states are not defined 

Reset and Clock 



Reset and Clock 

Eight clock cycles after ~ has returned high, 
the SuperB starts program execution, The initial 
instruction fetch is from location 0020H, The 
first program segment executed is typically a 

routine to initialize the control registers to the 
required system configuration, Figures 7-1 and 7-2 
show the reset. timing, 

I 6 1 7 '" Ml 
.....--T1~T2~j..-T3~ 

XTAL1 

RESET --11'------.,--.,--.,....---,----1""""--....,.------1;' f 

AS 

ADDRESS 

DS 

DATA 

XTAL1 

'ADDRESS 

--------------~~ 

________________ ~ __ -J 

f ,F-' ---'--....... \ 

"------1- C-' __ ...J'f - )./-' 

opc 

Figure 7-1, Reset Timing for ROM less Devices 

1 1 1 2 13 1 4 

i , 

! ) ! 
, , 
, I , , 

r--M1 .r--M2~ 
6 I 7 f.- T1 ---+-1--- 12 ~I--- 13 ----.f.- 11 ~ T2 ~ T3 ---i>1 

i , 
, 

\..Y 
I 0020 

i , v,..----..... \ 
DS _________ """'/ __ ..17 

'DATA 

.. Internal signals except for proto packs 

Figure 7-2. Reset Timing for ROM and Protopack Devices 

565 



7.2 ClOCK 

The SuperB derives its timing from on-board clock 
circuitry connected to pins XTAl1 and XTAl2. The 
clock circuitry conaists of an oscillator, a 
divide-by-two shaping circuit, and ,a clock 
buffer. figure 7-3 illustrates the clock 
circuitry. 

The oscillator's inputs are XTAl1 and XTAl2, which 
can be driven by a crystal, a ceramic resonator, 
or an external clock source. The divide-by-two 
circuit can also be driven directly from a TTL 
level on the XTAl1 pin. 

Figure 7-3. SuperB Clock Circuit 

Crystals and ceramic resonators would be connected 
across XTAL1 and XTAl2 and should have the follow­
ing characteristics to ensure proper osci llator 
operation: 

Cut: 
ttJde: 
output frequency: 
Resistance: 
Capacitance: 

AT (crystal only) 
Parallel, fundamental 
1 MHz-1Z MHz 
100 ohms maximum 
30 pf maximum 

used, only 
Any TTL-

When an external frequency source is 
the XTAL1 input needs to be driven. 
compatible driver can be used for this 
The XTAL2 input can be left floating. 

function. 

Vee +2.SV------

RESET PIN 

VRH-----' 
2 

....- XTAL---... 
ClKS 
MAX 

Reset and Clock 

7.' TEST MIl)[ 

Test mode is a special mode of operation designed 
to facilitate testing of SuperB devices that 
contain on-board ROM. Test mode consists of a 
special 12B-byte "shadow" ROM that is mapped into 
the first 12B locations of program memory and 
accessible only when test mode is invoked. 

Test mode is entered by driving the ~ input to 
a voltage level of VCC + Z.5V upon terminating a 
normal reset cycle. The voltage waveform needed 
to enter test mode is shown' in figure 7-4 and must 
be adhered to for proper operation. 

After entering test mode, instructions are fetched 
from the internal test ROM and are used to 
configure Ports 0 and 1 as an external memory 
interface and then jump to external memory 
location 4030H• Once in external memory, 
diagnostic routines used to verify the 
functionality of the SuperB are invoked by the 
test system via the address/data bus. During this 
process, Port 1 is used only in its address/data 
mode; therefore, additional routines are provided 
in the test ROM which the test system uses to 
verify the I/O and handshake modes of Port 1. 

To support testing the interrupt structure, the 
first 32 locations of test ROM contain interrupt 

, vectors. Interrupt vectors point to locations 

4000H for IRQO, 4003H for IRQ1 , 4006H for 
IRQZ, and so on in external memory. This allows 
the external program to have a Z- or 3-byte jump 
instruction for each interrupt service routine. 

The SuperB stays in test mode until' a normal reset 
occurs. 

6 
_XTAlClKS_ 

MIN 

Note the maximum ramp for application of + 7.SV de to RESET pin. After a 
minimum of 6 XTAL eLK cycles, the RESET voltage can be relaxed to VRM. 

Figure 7-4. Voltage Waveform for Test Mode 

566 



B.1 INTRODUCTION 

The Super8 has 40 lines dedicated to input and 
output. These are grouped into five ports of 
eight lines each. All the lines can be conf 19ured 
as inputs or outputs; some can be configured as 
address/data lines. All ports have TTL-compatible 
input and output characteristics and can drive two 
standard TTL loads. 

B.2 GENERAL STRUCTURE 

In general, each bit of the five ports has an 
associated input register, output register, and 
buffer and control logic. When the CPU writes to 
a port, it causes data to be stored in the output 
register. Those bits of that port configured as 
outputs enable the output buffer, and the output 
register contents are present on the external 
pin. If those bits configured as outputs are read 
by the CPU, the data present on the externa I pin 
is returned. Under normal output loading, this is 
the equivalent of reading the output register. 
However, if a bit of the port is configured as an 
open-drain output, the data returned may not be 
the value contained in the output register; rather 
it ,is the value forced on the input pins by the 
external system. 

When a bit of any port is defined as an input, 
reading that bit causes data present on the exter­
nal pin to be returned. Ports that are under 
handshake control are an exception; Reading a 
handshake-driven input bit returns the data last 
latched into the input register by the input 
strobe. 

Bits configured ,as inputs can be written to by the 
CPU, but in this case, the data is stored in the 
output register and cannot be read back because 
the output buffer is disabled. However, if the 
input bits are reconfigured as output bits, the 
data stored in the output register is then 
reflected on the output pins. This mechanism 
allows the user to initialize outputs prior to 
driving their loads. 

ChapterS 
1/0 Ports 

B.3 PORT 0 

Port 0 (R208) can be configured as I/O or as an 
address output port for addressing external memory 
on a bit basis. Those bits selected as 1/0 can be 
configured as all inputs or all outputs. When 
configured as outputs, the option exists to select 
open-drain outputs. The open-drain option does 
not apply to those bits configured as address 
lines. 

Accesses to Port 0 are made by reading and writing 

to register R208 (DOH in set one). When a Port 
o bit is configured as an address output, it 

cannot be accessed as a register (writes have no 
~ effect, reads return the state of the external 
pin) • When used as an 1/0 port, Port 0 may be 
placed under handshake control by using the facil­
ities of Handshake Channell (see section 8.8). 

The following control registers are associated 
with configuring Port 0: 

D Port Mode register (RZ41 , Bank 0). Controls 
direction of 1/0 lines and selection of open­
drain or push-pull outputs. 

o Port 0 Mode register (R240, Bank 0). Config­
ures each bit as I/O or address bit. 

D Handshake 1 Control register (R245, Bank 0). 
Controls enabling and configuration of hand­
shake signals. 

B.4 PORr 1 

Port 1 (R209) can be configured as an address/data 
port for interfacing external memory ~ or as a byte 
I/O port. The configuration is set using the Port 
I~ode register (R241, 8ank 0). (For a description 
of Port 1 as part of the external memory inter­
face, see section 12.3.) \~hen configured as a 
byte output port, there is an option to se lect 
open-drain outputs on the entire port. In the 
ROMless parts, Port' 1 is always an address/data 
bus and cannot be programmably configured. 

567 



I/O Ports 

When configured as an input or output port, 
accesses are made to Port 1 via reads or writes to 
register R209 (D1H in set one). When Port 1 is 
configured as a multiplexed address/data port, it 
cannot be accessed as a register; writes have no 
effect and reads return an ff H' When used as an 
I/O port, Port 1 can be placed under handshake 
control by using the facilities of Handshake 
Channel 0 (see section 8.8). 

The following control registers are associated 
with configuring Port 1: 

D Port Mode register (R241. Bank 0). Controls 
Port 1 configuration (input port, output port, 
or address/data bus) and selection of open­
drain or push-pull outputs. 

• Handshake 0 Control register (R244. Bank 0). 
Controls the enabling and configuration of the 
handshake signals. 

8.5 PORTS 2 AND 3 

Ports 2 and 3 (R210 and R211) are used to provide 
the external control inputs and outputs for the 
UART, the handshake channels, and the counter/ 
timers. The relationship between port pins and 
their control function is shown in Table 8-1. 
When Port 2 and 3 bits are not used for control 
inputs and outputs, they are available for use as 
general-purpose I/O lines and/or external inter­
rupt inputs. Each bit is individually configured 
as to its function. 

Wh~n·Ports 2 and 3 are used as general-purpose I/O 
lines, the direction of each bit can be configured 
indiVidually. Each bit selected as an output can 
also be configured individ,ually as an open-drain 
or push-pull output. All inputs of Ports 2 and 3 
are Schmidt-triggered. 

Table 8-1. Ports 2 

-~Port 2 -
Bit function 

0 UART Receive Clock 
1 UART Transmit Clock 
2 Reserved 
3 Reserved 
4 Handshake o Input 
5 Handshake o Output 
6 Counter 0 Input 
7 Counter 0 I/O 

568 

The following control registers are associated 
with configuring ports 2 and 3: 

D Port 2/3 A Mode register (R248. Bank 0). 
Controls the configuration of bits 0 and 1 
(input, input with interrupt enabled, push-pull 
input, open-drain output). 

o Port 2/3 B Mode register (R249. Bank 0). 
Controls configuration of bits 2 and 3. 

D Port 2/3 C Mode r~ister (R250. Bank 0). 
Controls configuration of bits 4 and ? 

• Port 2/3 0 Mode register (R251. Bank 0). 
Controls configuration of bits 6 and 7. 

The various control functions are enabled in the 
control register for the associated device (Hand­
shake Control register, Counter Mode register, 
etc.) • When using Port 2 .and 3 pins as control 
signals, the Port 2/3 Mode registers must still be 
programmed to specify which bits are inputs and 
which bits are outputs. 

Each bit of Ports 2 and 3 can be used as an exter­
nal interrupt input. Each bit used as an external ' 
interrupt input must be configured as an input, 
but may still be used as an external control input 
or as a general-purpose input line. Each external 
interrupt bit has an edge-tr iggered "interrupt­
pending" flip-flop that captures the external 
int.errupt requests. Software can read and reset 
t.he edge-triggered flip-flops without affecting 
the normal I/O operation of the bit. Each external 
interrupt has its own interrupt enable control 
that determines if that bit is allowed to cause an 
interrupt. The edge-triggered flip-flops still 
capture edges when the interrupt enable control is 
disabled. Port 2 is accessed as general register 
R210, Port 3 as general register R211. 

and 3 Control functions 

- Port 3 --
8it function 

0 UART Receive Data 
UART Transmit Data 

2 Reserved 
3 Reserved 
4 Handshake 1 Input!WAYi 
5 'Handshake 1 Output/DM 
6 Counter 1 Input 
7 Counter 1 I/O 



Two registers are directly associated with the 
interrupt flip-flops: 

a Port 2/3 A Interrupt Pending register (R252 , 
Bank 0). Controls interrupt flip-flops for 
bits 0, 1, 2 and 3 of Ports 2 and 3. 

o Port 2/3 B Interrupt Pending register (R253, 
Bank 0). Controls interrl,lpt flip-flops for 
bits 4, 5, 6, and 7 of Ports 2 and 3. 

These registers can be used to poll the external 
interrupts and to reset the interrupt pending bits 
(the flip-flops). Reading these registers returns 
the state of the interrupt pending flip-flop. 
When writing to these registers, writing a 1 to a 
bit position clears that flip-flop and writing a 0 
to a bit position has no effect. 

The Interrupt Mask register (R221) and Port 2/3 
Mode registers determine which interrupts are 
enablecj. 

8.6 PORT 4 

Port 4 (R212) is always an I/O port whose direc­
tion can be configured on a bit-by-bit basis. 
Each bit configured as an output can be configured 
individually as an open-drain or push-pull output. 

Port 4 I/O lines are accessed via reads and ~Irites 

to register R212 (D4H in set one). 

Port 4 can be placed under handshake control by 
using the facilities of Handshake Channel 0 (see 
section B.B). 

The following control registers are associated 
with configuring Port 4: 

o Port Ii Direction register (R246 , Bank 0). 
Controls direction of each bit of Port 4. 

0" Port 4 Open-Drain register (R247. Bank 0). 
Selects open-drain or push-pull for each Port 4 
output. 

CI Handshake 0 Control register (R244, Bank 0). 
Controls the enabling and configuration of the 
handshake signals. 

I/O Ports 

8.7 PORT MODE AND CONTROL REGISTERS 

The ports" are configured and controlled by the 
following set of registers: 

III Port Mode 
III Port o Mode 
0 Port 2/3 A Mode 
0 Port 2/3 B Mode 
Q Port 2/3 C Mode 
0 Port 2/3 D Mode 
0 Port 2/3 A Interrupt Pending 
0 Port 2/3 B Interrupt Pending 
D Port 4 Direction 
II Port 4 Open-Drain 

8."7.1 Port Mode Register 

The Port Mode register provides some additional 
mode control for Ports 0 and 1. The fields in 
this register are (Figure B-1): 

R241 BANKO(F1)PM 
PORT MODE (WRITE ONLY) 

NOTUSED:=J I 
PORT 1 MODE 

00 OUTPUT 
01 INPUT 
1X ADDRESS/DATA 

~~ PORTO DIRECTION 
0= OUTPUT 
1 = INPUT 

OPEN-DRAIN PORT 0 
o = PUSH-PULL 
1 :::: OPEN-DRAIN 

OPEN DRAIN PORT 1 
o = PUSH-PULL 
1 = OPEN-DRAIN 

ENABLE DM P3s 
0= DISABLE 
1 = ENABLE 

Figure 8-1. Port Mode Register 

Port 0 Direction (DO) • If this bit is a 1, all 
bits of Port 0 configured as I/O will be inputs. 
If this bit is a 0, then the I/O lines will be 
outputs. A hardware reset forces this bit to a 1. 

Open-Drain Port 0 (01)' If this bit is a 1, all 
bits of Port 0 configured as outputs will be 
open-drain outputs; if 0, they will be push-pull 
outputs. This bit has no effect on those bits not 
configured as outputs. A hardware reset forces 
this bit to a O. 

Open-Drain Port 1 (02) ~ If Port 1 is configured 
as an output port and this bit is a 1, then all of 
the port-will be open-drain outputs. If this bit 
is.a 0, they will be push-pull outputs. This bit 
has no effect if Port \ 1 is not configured as an 
output port or A/DO- 7' A hardware reset forces 
this bit to a O. 

569 



I/O Ports 

Enable m (0,>. If this bit is a 1, Port 35 is 
configured as Data Memory output line (m:f). A 
hardware reset forces this bit to a O. 

Port 1 Mode (04-05). This field selects the 
configuration of Port 1 as an output port, input 
port, or address/data port as part of the external 
memory interface. The coding for this field is as 
follows: 

field 

00 
01 
1X 

function 

Output port 
Input port 
Address/data 

A hardware reset forces this field to the 01 
(input port) state. The ROMless part has this 
field forced to 1X. 

8.7.2 Port 0 Mode Register 

The Port 0 Mode reqister programs each bit of Port 
o as an address output (part of an external memory 
interface) or as an I/O bit (Figure B-2). When a 
bit of this reqister is a 1, the correspondinq bit 
of Port 0 is defined as an address output. When a 
0, the corresponding bit of Port 0 is defined as 
an 1/0 bit. For ROMless parts, a hardware reset 
forces this reqister to all 1 s for pins POO-P04 
and Os for pins P05-P07; for parts with on-chip 
ROM, a hardware reset forces all pins to O. 

R240 BANK 0 (FO) POM 
PORTOMOOE 

::::~I I I ~:::: 
P05MODE~ EpOZMOOE 

PO, MOOE PO, MODE 

o = 1/0; 1 = ADDRESS 

Figure 8·2. Port 0 Mode Register 

8.7.' Port 2;' Mode Registers 

The Port 2/3 A Mode, Port 2/3 B Mode, Port 2/3 C 
Mode, and Port 2/3 D Mode registers control the 
modes of Ports 2 and 3 (Figures 8-3, 8-4, 8-5, and 
8-6). A separate 2-bit field for each of the bits 

570 

of Ports 2 and 3 configures the bit as input or 
output. The field also controls whether the bit 
is enabled as an external interrupt source and 
selects the output as open-drain or push-pull. 
The field is coded as follows: 

field function 

00 
01 
10 
11 

Input 
Input and interrupt enabled 
Output, push-pull drivers 
,Output, open-drain 

A hardwBre reset forces all bits of the four 
registers to the 0 state. 

R248 BANK 0 (F8) P2AM 
PORT 2/3 A MODE (WRITE ONLY) 

00 INPUT 
01 INPUT,INTERRUPT ENABLEO 
10 OUTPUT, PUSH·PULL 
11 OUTPUT, OPEN·DRAIN 

Figure 8-3. Port 2/3 A Mode Register 

R249 BANK 0 (F9) P2BM 
PORT 2/a B MODE (WRITE ONLY) 

00 INPUT 
01 INPUT,INTERRUPT ENABLEO 
10 OUTPUT, PUSH·PULL 
11 OUTPUT,OPEN·DRAIN 

Figure 8-4. Port 2/3 B Mode Register 

R250 BANK 0 (FA) P2CM 
PORT 2/3 C MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLEO 
10 OUTPUT, PUSH·PULL 
11 OUTPUT, OPEN·DRAIN 

Figure 8-5. Port 2/3 C Mode Register 



R251 BANK 0 (FB) P2DM 
PORT 2/3 0 MODE (WRITE ONLY) 

00 INPUT 
01 INPUT, INTERRUPT ENABLED 
10 OUTPUT, PUSH-PULL 
11 OUTPUT, OPEN-DRAIN 

Figure 8-6_ Port 2/3 0 Mode Register 

8.7.4 Port 2/3 Interrupt Pending Registers 

The Port 2/3 A Interrupt Pending and Port 2/3 B 
Interrupt Pending registers represent the software 
interface to the edge-triggered flip-flops 
associated with external interrupt inputs. Each 
bit of these registers corresponds to an interrupt 
generated by an external SDurce. When one of 
these registers is read, the value of each bit 
represents the state Df the corresponding inter­
rupt. When Dne of these registers is written tD, 
a 1 in a bit position causes the correspDnding 
edge-triggered flip-flDp to be reset to 0; a O. 
causes no action. 

The software interfaces with these registers to 
pDIl the interrupts and also tDreset pending 
intenupts as they are prDcessed. The relation­
ship between these registers and the correspDnding 
externally generated interrupts is shown in 
Figures 8-7 and 8-8. A hardware reset fDrces all 
interrupt edge-triggered flip-flops tD the 0 
state. 

R252 BANK 0 (FC) P2AIP 
PORT 2/3 A INTERRUPT PENDING 

Figure 8-7. Port 2/3 A Interrupt Pending Register 

R253 BANK 0 (FD) P2 BIP 
PORT 2/3 B INTERRUPT PENDING 

Figure 8-S. Port 2/3 B Interrupt Pending Register 

8257-041, 042, 043, 044. 045 

I/O Ports 

8.7.5 Port 4 Direction Register 

The Port 4 Direction register defines the I/O 
direction Df Port 4 Dn a bit basis (Figure 8-9). 
If a bit in this register is a 1, the correspond­
ing hit of Port 4 is configured as an input line. 
If the bit is a 0, the correspDnding bit Df Port 4 
is configured as an output line. A hardware reset 
forces this register tD the all 1s state. 

R246 BANK 0 (F6) P4D 
PORT 4 DIRECTION 

'------- P4,-P47 110 DIRECTlDN 
o = DUTPUT; 1 = INPUT 

Figure 8-9. Port 4 Direction Register 

8.7.6 Port 4 Open-Drain Register 

The Port 4 Open-Drain register defines the Dutput 
driver type for PDrt 4 (Figure 8-10). If a bit of 
Port 4 has been cDnfigured as an output and the 
correspDnding bit in the PDrt 4 Open-Drain 
register is a 1, then the PDrt 4 bit will have an 
open-drain output driver; if it is a 0, 'then the 
Port 4 bit will have a push-pull output driver. 
If the bit Df Port 4 has been configured as an 
input, then the corresponding bit in the Port 4 
Open-Drain register has no effect. A hardware 
reset forces this register tD the alIOs state. 

R247 BANK 0 (F7) P40D 
PORT 4 OPEN-DRAIN 

I~I~I~I~I~I~I~I~I 

LI ______ ~~-~~~~:pE~l~;~A~N OPEN-DRAIN 

Figure S-10. Port 4 Open-Drain Register 

8.8 HANDSHAKING CHANNELS 

The SuperB has tWD handshaking channels. Channel 
"0" is associated with PDrts 1 or 4; Channel "1" 
is associated with Port O. They are identical in 
function except Channel 0 also has DMA capability. 

There are tWD basic modes Df operatiDn. The first 
is the "fully interlocked" or two-wire mode. ,In 
this mode. there is an incDming control wire and 
an outgoing cDntrol wire. Each transition on a 
control wire must be answered by a transition 011 

the other cDntrDl wire befDre the first can make 
anDther transition. Thus both the sender and 
receiver control the data transmission rate. 
Figures B-11 and 8-12 illustrate the operatiDn Df 
the "fully interlDcked handshake." 

571 



· I/O Ports 

DAV 
(INPUT TO SUPERB) 

(OUTPUT FROM SUP:~~ ---+-""" 

DATA ON PORT 
(INPUT TO SUPERB) 

State 1. Ready output is high indicating that the SuperB is ready to accept data. 
State 2. The 1/0 device puts data on the port and then activates the DAV input. This causes ~he 

data to be latched into the port input register and generales an interrupt or DMA request. 
State 3. The SuperB forces the Ready (ROY) output low. signaling to the 110 device that the data 

has been latched 
State 4. The 1/0 device returns the DAV line high in response to ROY going low. 
State 5. The SuperB DMA or interrupt software must respond to the service request and read the con­

tents of the port in order for the handshake sequence to be completed. The ROY line goes high 
if, and only if, the port has been read and DAV is high. This returns the interface to its initial state. 

Figure 8-11. Super81nput Handshake-Fully Interlocked Mode 

RDY 
(INPUT TO SUPERB) 

DAV 
(OUTPUT FROM SUPERB) 

DATA ON PORT 
(OUTPUT FROM SUPERB) 

SET·UP 

VALID DATA 

State 1. ROY input is high indicating that the 1/0 device is ready to accept data. 
State 2. The SuperB writes to ~ort register to initiate a data transfer. Writing the port outputs 

new data and forces DAY low if, and only if, ROY is high and set·up time is done. 
State 3. The 1/0 device.forces ROY low after latching the data. ROY low causes an interrupt or DMA 

request to be generated. The SuperB can write new data in response to ROY going low. 
State 4. The DAY output from the SuperB is driven high in response to ROY going low 
State 5. After DAY goes high, the I/O device is free to raise ROY high thus returning the interface 

to its initial state. 

Figure 8-12. Super8 Output Handshake-Fully Interlocked Mode 

The second mode is the "strobed" or single-wire 
mode. In this mode there isa single control wire 
and it is generated by the sender. Figures 8-13 
and 8-14 illustrate the operation of "strobed" 
handshaking. 

Each channel has a 4-bit counter, called the 
Deskew Counter, that is used to count processor 
clocks. In the "strobed" mode, this counter is 
used to generate the set-up time and strobe width 
for the output handshake. In the "fully inter-

DAV ------ I I (INPUT TO SUPERB) ""N.--STROBE_, 

SET·UP -1-1 1--- HOLD -I 
DATA ON PORT --v- X· 

(INPUT TO SUPERB) -A- VALID DATA \-___ _ 

I 

Figure 8-13. Super81nput Handshake-Strobed Mode 

572 



I/O Ports 

r~STROBE 
DAV 

(OUTPUT FROM SUPERB) -----~""\ I I j---------
1\...-1 

I-f-SET-UP 

DATA ON PORT ~ 
(OUTPUT FROM SUPERB) ---'\;.......;. ___ ._V_A_Ll_D_D_A"_A _____ _ 

THE SET-UP AND STROBE MINIMUM TIMES ARE DETERMINED 
BY THE VALUE IN THE DESKEW COUNTER. 

Figure 8-14. Super8 Output Handshake-Strobed Mode 

locked" mode, the counter generates the set-up 
time. This set-up time is the delay between 
outputting valid data at the port and activating 
the Data Available handshake signal. The Deskew 
Counter can be loaded with a value from 1 to 16 
that represents the minimum number of CPU clock 
cycles in the data set-up and strobe times. 

The direction of data transfer during handshake is 
determined by the selected direction of bit 0 of 
the paralle 1 port associated with the handshake 
channel. This also controls the DMA direction 
when used. 

8.8.1 Pin Descriptions 

The handshake channels each use two pins of Ports 
2 and 3 (bits 4 and 5) for interfacing \~ith the 
external world: 

G 
Handshake Channel 0 Input P24 
Handshake Channel 0 Output P25 

Handshake Channel Input P34 
Handshake Channel Output PJ5 

The individual Port 2 and 3 pins should be con­
figured for the appropriate I/O direction as 

needed by the handshake function. Note that the 
open-drain options of Ports 2 and J can be applied 
to the handshake outputs. Note also that Port 2 
and J pins used by the handshake channels as 
inputs can still be used as external interrupt 
pins to drive the handshake service routines. 

Handshake Input. This input provides the IDW 
signal for input handshaking or the ROY signal for 
output handshaking. 

Handshake Output. This output provides the ROY 
signal for input handshaking or the IDW signal for 
output handshaking. 

8.8.2 Handshake Control Registers 

Each handshake channel is. controlled by an 8-bit 
control register (Figures 8-15 and 8-16). Hand­
shake 0 Control register (R244) and Handshake 1 
Control register' (R245) include the controls for 
enabling handshakes, selecting the associated port 
(Channel 0 only), selecting the handshake type, 
enabling DMA capability (Channel 0 only), and 
initializing the Deskew Counter. The fields in 
these registers are: 

R244 BANK 0 (F4) HOC 
HANDSHAKE 0 CONTROL (WRITE ONLY) 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ~ 
(RANGE 1-16) II L .. ~"~~ 

PORT SELECT: 
1 = PORT1;O = PORT 4 

DMAENABLE: 
1 = ENABLED 
0= DISABLED 

'----- MODE: 
1 = FULLY INTERLOCKED 
0= STROBED 

Figure 8-15. Handshake 0 Control Register 

573 



I/O Ports 

, R245 BANK 0 (F5) H1C 
HANDSHAKE 1 CONTROL (WRITE ONLY) 

I~I~I~I~I~I~I~I~I 

DESKEW COUNTER ==oJ 
(RANGE 1·16) 

I I L,""~,"~,,,",, 
NOT USED 

MODE: 
1 = FULLY INTERLOCKED 
0= STROBED 

Figure 8-16. Handshake 1 Control Register 

Handshake Enable (00). When this bit is set to 1, 
the handshake function is enabled. 

Port Select (Channel 0 only)(O,). This bit 
selects which port is controlled by Handshake 
Channel O. When it is set to 1, Port 1 is 
se lected and when it is cleared to 0, Port 4 is 
selected. 

DMA Enable (Channel 0 only)(OZ). When this bit is 
set to 1, the DMA function is enab led for Hand­
shake Channel O. When it is cleared to 0, the DMA 
function is not used by the handshake channel and 
may be used by the UART. 

574 

Mode (03). When this bit is set to 1, the "fully 
interlocked" mode is enabled. When it is cleared 
to 0, the "strobed" mode is enabled. 

Deskew Counter (04-07). This 4-bit field is used 
to select a count value from 1 to 16 (0000-1111). 
This value is the number of processor clocks used 
to generate the set-up and strobe when using the 
"strobed" mode, or the set-up when using the 
"fully-interlocked" mode. 



9.1 INTRODUCTION 

The SuperS has two identical 16-bit counter/timers 
that can be programmed independently. They can be 
cascaded to produce a counter 32 bits in length 
and can operate from internal inputs (as timers) 
or external inputs (counters). When used as 
timers, the internal input is the internal. CPU 
clock divided by two, which is the XTAL divided by 
four. Figure 9-1 shows the counter/timer block 
diagram. 

o 
A 
T 
A 

B 
U 
5 

T 
I 
M 
E 

C 
0 
N 
5 
T 
A 
N 
T 

t 

¢=; 

CPU 
CLOCK 

Chapter 9 
Counter/Timers 

The counter/timers can count up or down. The 
direction can be controlled on the fly by either 
software or an external event. 

The counter/timers have the option of single cycle 
or continuous counting capability. In the single 
cycle mode, the counters count to zero (up or 
down) from the preset time-constant value and then 
stop. In the continuous mode, counting is 
continuous and each time the counter reaches zero, 
it is reloaded with the preset time-constant value 
from the Time Constant register (or the Capture 
register in bi-value mode). 

¢=l 

Figure 9-1. Counter/Timer Block Diagram 

575 



Counter /Timers 

9.1.1 Bi-Value MDde 

Another option allows either a single or dual 
(bi-value) preset time constant value. In 
bi-value mode, both the Time Constant register and 
Capture register are used to supply load values to 
the counter/ timer. The two registers alternate 
in loading the counter/timer each time the 
counter/timer makes a transition between a count 

of 0 and a count of FFFFH when counting down, or 
between a count of FFFFH and 0 when counting up 
(assuming continuous mode operation), or when a 
trigger causes the ,counter/timer to be reloaded. 
This can be used to produce an output pulse train 
with a variable duty cycle. The bi-value feature 
is not available when the capture feature is 
enabled and vice versa. Upon enabling a 
counter/timer in bi-value 'mode from a previously 
disabled condition, the initial load of the 
counter/timer is from the Time Constant register. 

9.1.2 Capture 

Another feature, called "capture on external 
event," takes a snapshot of the counter when a 
specific event occurs. The external event can be 
simulated by software. When "captured," the 
current value in the counter is loaded into a 
special register that can subsequently be 
read via software. The capture feature is needed 
to look at counters on the fly, especially 
cascaded counters. 

GATE INPUT 

COUNTER OR 
TIMER INPUT 

A COUNT OCCURS HERE: 

The external event can be either the rising edge 
of the counter/timer I/o line (P27 for C/TO, P37 
for C/T1) or both edges. On the rising edge, the 
current count value is loaded into the Capture 
register. If capture on both edges is enabled, the 
current count value is loaded into the Time 
Constant register on the falling edge, overwriting 
the initial load value for that counter. 

The capture feature is not available when the 
bi-value counting feature is being used and vice 
versa. 

If interrupts are enabled, the interrupt request 
is generated on the transition from a count of 0 
to a count of FFFF H or from a count of FFFF H 
to a count of 0, and/or on an external event. If 
configured for an external output, the output pin 
toggles at this same count change. 

9.1.3 External Gate and Trigger 

The counter/timers have an external gate capabil­
ity. When this feature is selected, an external 
input line (GATE) is monitored. The counting or 
timing operation is performed only when this line 
is low. The gate facility is illustrated in 
Figure 9-2. 

Figure 9·2. Gate Facility 

576 

TRIGGER INPUT 

COUNTER OR n II JL-' 
TIMER'INPUT 

. ..... -----'. .....­
A COUNT OCCURS HERE: 

GATE/TRIGGER 
INPUT 

Figure 9-3. Trigger Operation 

COUNTER OR TIMER INPUT 

A COUNT OCCURS HERE: 

Figure 9-4. Gate/Trigger Function 



An ex ternal input can be used as a 'tr igger input 
to a counter~timer. ~Ihen this feature is selected, 
an external line is monitored. A software trigger 
is also present in a control register. The 
trigger input to the Counter/Timer is an OR of the 
software and hardware triggers. Prior to a low­
to-high transition on the ,trigger, the Counter is 
disabled. After the low-to-high transition on the 
trigger, counting is enabled. Retriggerable or 
non-retriggerable mode can be selected. 

Clearing the Counter Enable bit in the Control 
register also resets the triggered condition; a 
new trigger must be received' afte,r the Counter 
Enable bit is set again before counting will 
resume. The trigger operation is illustrated in 
Figure 9-3. 

One input line (GATE/TRIGGER) can be used for both 
the gating and the triggering functions. An 
initial low-to-high transition, on this line acts 
as a trigger and subsequent low signals on this 
line function as gate signals (Figure 9,-4). 

9.2 cn~ER/TI~ cn~TROL AreD ~nnE REGISTERS 

Each counter/timer has an a-bit Mode register, an 
a-bit Control register, a 16-bit Time Constant 
register, and a 16-bit Capture register. 

Counter/Timers 

The Mode and Control registers determine the 
counter/timer operations. Th~ Mode register 
selects the configuration of the counter/timers 
and is generally loaded only at initialization 
time, while the Control register handles those 
features that are likely to be dynamically 
changed. 

The Time 'Constant register contains the initiali­
zation value for the counter/timer and also holds 
the counter value saved on the falling edge of 
P27/P37 when capture on both edges is enabled. 

The Capture register holds the counter value saved 
when using the "capture on external event" func­
tion. When capture on both edges is enabled, it 
holds' the value saved on the rising edge of 
P27/P37. It also holds a second initialization 
value when using the bi-value counting feature. 

9.2.1. Counter/Ticer Control Registers 

The fields in these registers, as shown in Figures 
9-5 and 9-6, are: 

R224, BANK 0 (EO) COCT 
COUNTER 0 CONTROL 

o = SINGLECYCLE'~~ 1 = CONTINUOUS 

o = COUNT DOWN 
1 = COUNT UP 

1 = LOAD COUNTER 

1 = SOFTWARE TRIGGER 

'llli' L 1 = ENA~LECOUNTER L READ 1 = END OF COUNT 
WRITE 1 = RESET END OF COUNT 

, 1 = ZERO COU~T INTERRUPT ENABLE 

1 = SOFTWARE CAPTURE 

Figure 9-5. Counter 0 Control Register 

R225 BANK 0 (El)C1CT 
COUNTER 1 CONTROL 

o = SINGLECYCLE~~ , 1 = CONTINUOUS 

o = COUNT DOWN 
. 1 = COUNT UP 

1 = LOAD COUNTER 

1 = SOFTWARE TRIGGER 

llli' ,L 1 = ENABLE COUNTER , L READ 1 = END OF COUNT 
WRITE 1 = RESET END OF COUNT 

1 = ZERO COUNT INTERRUPT ENABLE 

1 = SOFTWARE CAPTURE 

Figure 9-6. Counter 1 Control Register 

577 



Counter/Timers 

Enable Counter (Do). When this bit is set to 1, 
the counter/timer is enabled; operation begins on 
the rising edge of the first processor clock 
period following the setting of this bit from a 
previously cleared value. Writing a 1 in this 
field when the previous value was 1 has no effect 
on the operation of the counter/timer. When this 
bit is cleared to 0, the counter/timer performs no 
'operation during the next (ard subsequent) 
processor clock periods. A hardware reset forces 

-this bit to O. 

Reset/End of Count Status (01). This bit is set 
to 1 each ~ime the counter reaches O. Writing a 1 
to this bit resets it, while writing a 0 has no 
effect. 

,Zero Count Interrupt Enable (Dz). When this bit 
is set to 1, the counter/timer generates an inter­
rupt request ,when it counts to o. A hardware reset 
forces this bit to O. 

Software Capture (0,). When this bit is set to 1, 
the current counter value is loaded into the 
capture register. This bit is automatically 
cleared following the capture. 

Software Trigger (D~). This bit is effectively 
"ORed" with the external rising-edge trigger input 
and can be used by the software to force a trigger 
signal. This bit produces a trigger signal 
regardless of the setting of the Input Pin Assign­
ment 'field of the Mode register. This bit is 
automatically cleared following the trigger. 

load Counter (05). The contents of the Time 
Constant register are transferred to the Counter 
prescaler one clock period after this bit is set. 

This operation alone does not start the Counter. 
This bit is automatically cleared following the 
load. 

Count Up/bown (06). This bit determines the count 
direction if internal up/doWn control is specified 
in the Mode register. A 1 indicates up, a 0 down. 

ContinllDus/Single Cycle (D7)., When this bit is 
set to 1 and the count reaches 0, the countdown 
sequence is automatically restarted by loading the 
time-constant value into the counter. When this 
bit is cleared to 0, no reloading occurs. 

9.2.2 Counter/Tiaer Mode Registers 

The fields in these registers, as shown in Figure 
9-7 and 9-8, are: 

Capture Mode (01. DO). This 2-bit field selects 
the capture or bi-value count mode. A value of 01 
enables capture on the rising edge of the I/O pin, 
a value of 11 enables capture on both edges of the 
I/O pin, a value of 10 enables the bi-value count 
mode and disables capture, and a value of 00 
disables both capture and bi-value load. 

Programed/External Up/Dowl Control (Dz) • A 1 
enables programmed up/down control and a 0 enables 
external up/down control. If external up/down is 
enabled, a 0 on P27/P37 indicates _ down- and a 1 
indicates up. 

Enable Retrigger (0,). When this bit is set to 1, 
the time-constant value is automatically loaded 
into the Counter/Timer register when a trigger 

R224 BANK 1 (EO) COM 
COUNTER 0 MODE 

578 

INPUT PIN ASSIGNMENTS: 

00001/0 
o 0 0 1 1/0 
0010GATE 
0011GATE 
o 1 0 0 1/0 
o 1 0 1 TRIGGER 
0110GATE 
0111GATE/ 

P2. 

1/0 
TRIGGER 
1/0 
TRIGGER 
CO INPUT 
CO INPUT 
CO INPUT 

TRIGGER CO INPUT 
CO OUTPUT 1/0 
CO OUTPUT TRIGGER 
CO OUTPUT GATE 
CO OUTPUT GATE/TRIGGER 
CO OUTPUT CO INPUT 
--UNDEFINED--
--UNDEFINED--
- CASCADE COUNTERS -

I L~=,_, 
EDGE OF P27 

10 = BI·VAWE LOAD 
11 = CAPTURE ON BOTH 

EDGESOFP27 

, 0 = EXTERNAL 
UPIDOWN CONTROL P27 

1 = PROGRAMMED 
UPIDOWN CONTROL 

'------ 1 = ENABLE RETRIGGER 

Figure 9·1. Counter 0 Mode Register 



INPUT PIN ASSIGNMENTS: 

o 0 0 0 110 
o 0 0 1 110 
o 0 1 0 GATE 
0011GATE 
o 1 0 0 110 
o 1 0 1 TRIGGER 
all0GATE 
0111GATE/ 

P3, 

110 
TRIGGER 
110 
TRIt;GER 
CllNPUT 
CllNPUT 
CllNPUT 

TRIGGER Cl INPUT 
Cl0UTPUT 110 
Cl OUTPUT TRIGGER 
Cl OUTPUT GATE 
Cl OUTPUT GATE/TRIGGER 
Cl OUTPUT Cl INPUT 
--UNDEFINED--
--UNDEFINED--
--UNDEFINED--

R225 BANK 1 (El) C1M 
COUNTER 1 MODE 

I L ~'1:"5C::".," 
EDGE OF P37 

10 = BI-VALUE MODE 
11 = CAPTURE ON BOTH 

EOGESOFP37 

0= EXTERNAL 
UP/DOWN CONTROL P37 

1 = PROGRAMMED 
UP/DOWN CONTROL 

1 = ENABLE RETRIGGER 

Counter/Timers 

Figure 9-8_ Counter 1 Mode Register 

input is received while the counter/timer is 
counting (Counter/Timer not equal to 0). When 
this bit is cleared to 0, no reloading occurs. 

Input Pin Assiglllllents (D4-o7)' This 4-bit field 
specifies the functionality of the port lines 
associated with the counter/timer. It also deter­
mines whether the counter/timer will monitor an 
external input (counting operation) or use the 
scaled internal processor clock (timing opera­
tion). The four bits in the field select the 
following options: enab Ie output (EO), external 
signal or internal clock (C/T), enable gate facil­
ity (G), and enable triggering facility (T). The 

selected options determine the functions asso­
ciated with each external line of the counter/ 
timer as illustrated in Table 9-1. A hardware 
reset forces these four pins to O. 

If 1111 is coded in this fie ld in the Counter 0 
Mode register, then the two counter/timers are 
linked together as a 32-bit counter with Counter 0 
as the low-order 16 bits and Counter 1 as the 
high-order 16 bits. Counter 1 se lects the mode 
and control options for the 32-bit counter and 
external accesses are made through the lines 
associated with Counter 1 (P36 and P37)' 

Table 9-1. IPA Field Encoding in Counter Made Registers 

IPA Field Pin Functionality --
EO CIT G T Counter/Timer I/O Counter/Tilller Input 
0., D6 D5 D4 (P27 or P~)" (P26 or P36 )i> Notes 

0 0 0 0 I/O I/O Timer 
0 0 0 I/O Trigger Timer 
0 0 0 Gate I/O Timer 
0 0 1 Gate Trigger Timer 
0 0 0 I/O Input Counter 
0 0 1 Trigger Input Counter 
0 0 Gate Input Counter 
0 1 Gate/tr igger Input Counter 
1 0 0 0 Output I/O Timer 
'1 0 0 1 Output Trigger Timer 

0 0 Output Gate Timer 
0 1 Output Gate/trigger Timer 
1 0 0 Output Input Counter 

0 Undefined Undefined Reserved 
0 Undefined Undefined Reserved 
1 Undefined Undefined Reserved for Counter 1, 

Cascade for Counter 0 

.. Counter/timer 0 - P27 and P26 
Counter/timer - P37 and P36 

8257-059 579 



Counter/Timers 

The counter/timer I/o line (P27 for C/TO, P37 for 
C/T1) is also used as the external capture input 
if the capture feature is enabled, and the up/down 
control input (O=down, 1=up) if external up/down 
control is enabled. 

9.2.~ TiDe Constant Register 

This 16-bit register pair holds the value that is 
automatically loaded into the counter/timer 1) 
when the counter/timer is enabled, 2) in contin­
uous mode, when the count reaches zero, or 3) in 
re-trigger mode, when the. trigger is asserted. If 
capture on both edges is enabled, then this regis­
ter captures the contents of the counter on the 
falling edge of the I/O pin. 

The format of the Time Constant register is 
illustrated in Figure 9-9. 

580 

R226 BANK 1 (E2) COTCH 
COUNTER 0 TIME CONSTANT 

1~1~1~1~I~l~I~I~1 

LI _____ HIGH BYTE (COTCa-COTC,s) 

R227 BANK 1 (E3) COTCl 
COUNTER 0 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

LI _____ lOW BYTE (COTCo-COTC,) 

R22B BANK 1 (E4) CHCH 
COUNTER 1 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

... 1 _____ HIGH BYTE (CHCa-CHC,s) 

R229 BANK 1 (ES) CHCl 
COUNTER 1 TIME CONSTANT 

I~I~I~I~I~I~I~I~I 

... 1----- lOW BYTE (CHCo-CHC,) 

Figure 9~9_ Time Constant Register Format 

9.2.4 Capture Register 

This 16-bit register pair is used to hold the 
counter val ue saved when using the "cBpture on 
external event" function. This register will 
capture at the rising edge of the I/O pin or when 
software capture is asserted. When the bi-value 
mode of operation is enabled, this register is 
used as a second Time Constant register and the 
counter is. alternately loaded from each. 

The format of the Capture Register is shown in 
Figure 9-10. 

R226 BANK 0 (E2) COCH 
COUNTER 0 CAPTURE 

I~I~I~I~I~I~I~I~I 

LI ______ HIGH BYTE (COCa-COC,s) 

i R227 BANK 0 (E3) COCl 
COUNTER 0 CAPTURE 

I~I~I~I~I~I~I~I~I 

LI ______ lOW BYTE (COCo-COC,) 

R228 BANK 0 (E4) C1CH 
COUNTER 1 CAPTURE 

R229 BANK 0 (ES) Cl Cl 
COUNTER 1 CAPTURE 

I~I~I~I~I~I~I~I~I 

LI ______ lOW BYTE (C1Co-C1C,) 

Figure 9-10. Capture Register Format 



10.1 INTRODUCTION 

The universal asynchronous receiver/transmitter 
(UART) is a full-duplex asynchronous channel. 
Transmission ahd reception can. be accomplished 
independently with 5 to B data bits per character, 
plus optional even or odd parity, and an optional 
wake-up bit. 

Data can be read into or out of the UART via 
R239. This single address is able to serve a 
full-duplex channel be,cause it contains two com­
plete B-bit registers--one for ,the transmitter and 
the other' for the receiver. 

10.2 TRANSMITTER 

When the UART' s register address is spec i fied as 
the destination (dst) of an operation, the data is 
output ,on the UART. The UART automatically adds 
the start bit, th~, programmed parity bit (odd, 
even, or no parity), and the programmed number of 
stop bits to the data character to be trans­
mitted. The transmitter can also add a Wake-Up 
bit (optional) between the parity bit (or the last 
bit in the character if parity is disabled) and 
the first stop bit, as shown in Figure 10-1. When 
the character is five, six, or seven bits long, 
the unused bits in the Transmit Data register 
(UIO) are automatically ignored by the UART. 

Serial data is shifted from the transmitter at a 
rate equal to 1, 1/16th, 1/32nd, or 1/64th of ,the 
clock rate supplied to the transmitter clock input 
(as determined by the clock-rate field in the UMA 
register). Serial data is shifted out on the 
falling edge of the transmitter clock. 

MARKING LINE PARITY 

DATA 

• NOTES: 1. Parity, wake-uP. and second stop bit are optional 
2. Data can be anywhere fro~ 510 8 bits 

Chapter 10 
UART 

The Transmit Data output (P31) ,line is 'held mark­
ing (high) when the transmitter has no data to 
send. If the Send Break (SENBRK) bit of the UART 
Tran~it Control (UTC) register is set to 1, the 
Data Output line will, be held spacing (low) until 
it is cleared. 

10.3 RECEIVER 

An asynchronous receive operation begins when the 
Receive Enable bit (RENB) in the UART Receive 
Control register (URC) is set. A low (spacing) 
condition on the Receive Data line (P30) indicate a 
a start bit. If this low persists for at least 
one-half of a bit time, the start bit is assumed 
to be valid and the data input is then'sampled at 
the middle of each bit ,time until the entire 
character is assembled and placed in the Receive 
Data (UIOR) register. This method of detecting a 
start bit improves, error rejection when noise 
spikes exist on an otherwise marking line. 

If X1 clock mode is selected, bit synchronization 
must be accomplished externally, and the received' 
data is sampled on the rising edge of the clock 
input. 

A received character can be read from the B-bit 
Receive Data register (UIOR). The receiver 
inserts 1s into the unused bits when a character 
length of other than eight bits is used. If 
parity is enabled, the parity bit is not stripped 
from the assembled charscter for character lengths 
less thsn eight bits;'i.e., for lengths less than 
eight'bits, the receiver assembles a character for 
the required number of data bits, plus a parity 
bit, wake-up bit, and 1s for any unused bits, and 
places it in the UART Data register (UIO). 

PARITY 

DATA 

Figure 10-1. Asynchronous Transmission Data Format 
" 

581 



UART 

Since the receiver is buffered by one B-bit 
register in addition to the Receive Data register, 
the CPU haa enough time to service an interrupt 
and to accept the data character aasembled by the 
UART. The receiver also has a buffer that stores 
error flags for each data character in the receive 
buffer. These error flags are loaded at the same 
time as the data character. 

After a character is received, it is checked for' 
the following conditions: 

• If the received character is an ASCII control' 
character, it sets the Control Character Detect 
(ceO) bit in the UART Receive Control (URC) 
register. (An ASCII control character is any 
character that has bits 5 and 6 cleared to 0.) 
It can also cause an interrupt if the Control 
Character Interrupt Enable (CCIE) bit in the 
UART Interrupt Enable (UIE) register is set to 
1. Once this bit is set, it remains set until 

, cleared by so ftware. 

• The wake-up settings are checked and any 
indicated action is completed. , In wake-up 
mode, the CPU can be selecbvely interrupted on 
a match condition that includes all of the 
eight bits in the received character and a 
Wake-Up bit. The Wake-Up bit match and charac­
ter match can be enabled sim~ltaneously or 
individually. Each bit in this character match 
can also be masked individually. (for more 
discussion of this feature, see section 10.4.) 
Once this bit is set, it remains set until 
cleared by software. 

RECEIVER 

~~~~i\'~ ~.------
VAWE

RECEIVED
WAKE-UP

BIT

• If parity is enabled, the Parity Error bit
(PERR) in the UART Receive Control (~RC) regis­
ter is set to 1 whenever the parity bit of the
character does not match the programmed
parity. Once ,this bit is set, it remains set
until cleared by software.

• The framing Error bit (fERR) in the URC regis­
ter is set to 1 if the character is assembled
without any stop bits (Le., a low level is
detected for a stop bit) and it is set with the
character on which it occurs. It stays latched
until cleared by software.

• If the CPU fails to read a data character when
more than one character has been received, the
Receive Overrun Error bit (OVERR) in the URC is
set to 1. When this occurs, the new character
assembled raplaces the previous character in
the Receive Data register. 'With this arrange­
ment, only the over.writing charscter is flagged
with the Receive Overrun Error. Like the
Parity Error bit, this bit can be cleared only
by software command from the C~U.

10.4 MAKE-UP FEATURE

The SuperB offers a powerful scheme to configure
the UART receiver to interrupt only on certain
special match conditions. figure 10-2 shows the
logic diagram for the scheme. '

Figure 10-2. Logic Diagram for Wake-Up Feature

582

The pattern match logic can be used with or with­
out the Wake-Up bit. The Wake-Up Match register
and 'Wake-Up Mask register determine the character
or characters that will generate a pattern match
when detected at the receiver. If the Wake-Up bit
is enabled, the pattern match occurs if the
Wake-Up bit in the received character matches a
pre-determined value, and the received character
matches the' value(s) specified in the Wake-Up
Match and ~/ake-Up Mask registers. If the Wake-Up
bit is disabled, the pattern match depends only on
the character's value.

The Receive Data (UIOR) regiater is the receive
buffer that is loaded if a new character i.s
received and the previous character has been read
by the CPU. The Wake-Up Match (WUMCH) register
contains the match value. The Wake-Up Mask (WUMSK)
register is used to mask out any selected bit

Case 1: tflJEMI = 1 (tlake-Up bit is enabled)

UART

positions in the WUMCH register. The Wake-Up
Enable (WUENB) bit in the UART Transmit Control
(UTC) register is enabled only if'a match for the
Wake-Up bit is also desired. If this is disabled,
the scheme can still be used to·look for a charac­
ter match. The Receive Wake-Up Value (RWUVAL) bit
in UART Mode A (UMA) register is the expected
value of the Wake-Up bit; the Received Wake-Up bit
(RWUIN) is the Wake-Up bit value received by the
receiver.

The following cases sho~1 how the Wake-Up Detect
(~/UD) bit in the UART Receive Control (URC) regis­
ter can be set by a match condition. However, the
CPU is interrupted only if the Wake-Up Interrupt
Enable (WUIE) bit in the UART Interrupt Enable
(UIE) register is set to 1.

a) If Wake-Up bit match snd WUMCH match (all 8 bits) is.desirad:

Set WUMSK = 1111 1111 (%FF)
WUMCH = (desired match value)

If WUMCH (bits 7-0) = UIO (bits 7-0) snd
RWUVAL = R~/UIN

Then Wake-Up Detect (WUD) flag is' set.

b) If Wske-Up bit match and WUMCH match (selected bit, i.e., bits
5, 4, 1, 0) is desired:

Set WUMSK = 0011 0011 (%33)
WUMCH = XX __ XX __ (desired match bits 5, 4, 1, '0)

If WUMCH (bits_5, 4, 1, 0) = UIO (bits 5, 4, 1, 0) snd
RWUVAL = RWUIN

Then Wake-Up Detect (WUD) flag is set.

c) If only a Wake-Up bit match is desired:

Set WUMSK = 0000 0000 (%00)
WUMCH =XXXX XXXX (don't csre)

If RWUVAL = RWUIN

Then I"ake-Up Detect (WUD) flag is set.

583

UART

Case 2: tlUENB = 0 (Ha!te-Up bit is igllQred)

a) If a match is desired for WUMCH· (sll 8 bits):

Set WUMSK = 1111 '1111 (%FF)
WUMCH = ____ (desired match value)

If WUMCH (bits 7-0) = UfO (bits 7-0)

Then Wake-Up Detect (WUD) flag is set.

b) If a match is desired on WUMCH (selected bits only, i.e., bits 4, 3, 2):

Set WUMSK
WUMCH

0001 1100 (%1C)
XX~ ___ XX (desired match bits 4, 3, 2)

If WUMCH (bits 4, 3, 2) = UIO (bits 4, 3, 2)

Then Wake-Up Detect (WUD) flag is set.

c) If a match is always desired:

Set WUMSK = 0000 0000 (%00)
WUMCH = XXXX XXXX (don't care)

If this character is received, the Wake-Up Detect (WUD) flag is always
set'. However, this will be ignored if the Wake-Up Interrupt Enable
(WUIE) bit in the UART Interrupt Enable (UIE) register is disabled.

10.5 AUTO-ECHD/LUUl'BACI(register must be set to 1 for this mode to work
c~rrectly.

As shown in Figure 10-3, the UART can be configur­
ed to automatically transmit any data coming in at
the Receive Data input pin (P30) RXD. This auto­
echo mode of operation is enabled by setting the
Auto-Echo (AE) bit in the UART Mode B (UMB) regis­
ter to 1. In addition; the Transmit Data Select
(TXDTSEL) bit in the UART Transmit Control (UTC)

Similarly, the UART can ·be set in the local loop­
back mode by setting the Loopback Enable (LBENB)
bit in the UMB register to 1. In loopback mode,
the output of the transmitter is automatically
routed to the.receiver.

r RECEIVE DATA IN (RxIN)
RECEIVE DATA (RxD)

P" -----....:...---'--~-1.,........!'-----;~11 RECEIVER I

584

LOOPBACK

AUTO.EC::J
ENABLE ~ [UMB[

LOOPBAClt

TRANSMIT
DATA SELECT

E1 [UTe] AUTO·ECHD
P3l (AE) iUMBI

'-TRANSMIT DATA (TxD) 0--+--"---1 __ --11

(TxDTSEL = 1)

RxD_RxIN
TxDATO - RxlN

RxD-AxIN
TxDATO - RxlN

TxDATO_TxD
TxDATO-TxD

RxD-TxO
RxD-TxO

Figure 10-3. Auto-Echo/Loopbacl(

In auto-echo mode, the transmitter can still be
enabled; however, the transmitter data goes
nowhere unles~ loopback is also enabled.

10.6 POLLED OPERATION

In a polled environment, the Receive Character
Available (RCA) bit in the URC register must be
monitored so the CPU can decide ~Ihen to read a
character. This bit is automatically cleared when
the UIOR is read.

To prevent overwriting-data in polled operations,
the transmit buffer status must be checked before
writing to the transmit buffer (UIOT). The
Transmit Buffer Empty (TBE) bit in the UTC is set
to 1 after completing the sending of a character.

10.7 BAUD-RATE GENERATOR

The UART has its own on-chip programmable baud­
rate generator implemented as a 16-bit down­
counter. The transmitter can receive its clocking
signal from an external source (P21) or the baud­
rate generator (BRG); the receiver clock can come
from an external source (P20) or the on-chip
baud-rate generator.

If P21 is not used as a Transmit Clock input, it
can be used to output the transmit clock, the CPU
clock, the output of the baud-rate generator, or
as an I/O line.

P2o,I---..... ------------,

UART

The baud-rate generator consists of two a-bit Time
Constant registers, a 16-bi t downcounter, and a
flip-flop on the counter's output that produces a
square wave.

On startup, the flip-flop is set to a high state,
'the value in the Time Constant registers is loaded
into the Counter, and the Counter starts counting
down. The output of the baud-rate generator
t09\'lles on reaching zero, the value in the Time
Constant registers is again loaded into the
Counter, and the process is repeated. The time
constant can be changed at any time, but the new
value does not take effect until the next load of
the Counter.

As shown in Figure 10-4, the output of the baud­
rate generator can be used as -the receive clock,
the transmit clock, or both. The transmitter and
receiver can handle data at a rate of 1, 1/16th,
1/32nd, or 1/64th of the clock rate supplied to
the receive and transmit clock inputs.

If P21 (Port 2, Bit 1) is riot used as transmit
clock input, it may be used as an output. A
multiplexer (MUX) prov ided at P21 can be used to
output various clocks or-P21 data; bits 6 and 7 of
the UMB register determine the function of P2 when
it is used as an output.

RECEIVE CLOCK SELECT
(UMB)

TRANSMIT CLOCK SELECT
(UMB)

TRANSMITTER
CLOCK

Figure 10·4. Baud-Rate Generator

585

UART

10.8 lIART INTERfACE PINS

The UART uses up to four Port 2 and 3 pins for
interfacing with the external world. These are:

P20 Receive Clock
P30 Receive Data
P21 Trsnsmit Clock
P31 Transmit Data

10.9 OART CONTROl/MODE AND STATUS REGISTERS

The following sections and figures describe the
UART Control/Mode and Ststus registers.

10.9~1 OART Data Register (UIOT & UIOR)

Writing to this register automatically writes the
data 'in the Transmit Data register (UlOl); a read
from this register gets the data from the UART
Receive 'Data register (UlOR). 'The formst of this
register is shown in Figure 10-5.

R239 BANK 0 (EF) UIO
UART TRANSMIT DATA (WRITE)

UART RECEIVE OATA (READ)

'------ DATA (Do = LSB)

Figure 10-5. UART Data Register

10.9.4 lIART Receive Control Register (URC)

The fields in this register (Figure 10-B) are:

RCA. Receive Character Available (DO)' This is a
status bit that is set to a 1 when data is avail­
able in the receive buffer (UlOR). When the CPU
reads the receive buffer, it automatically clears

10.9.2 Wake-Up Match Register (MUMCH)

Any chsracter up to eight bits can be written into
this register. The receiver detects a match
between the received character and this charac­
tel'. The fDrmat of this register is shown in
Figure 10-6.

R254 BANK 1 (FE) WUMCH
WAKE·UP MATCH REGISTER

I~I~I~I~I~I~I~I~I

LI ______ THIS BYTE, MINUS MASKED BITS,
IS USEO FOR WAKE·UP MATCH

Figure 10-S. Wake-Up Match Register,

10.9.' Wake-Up Mask Register (WUMSK)

Any bit in the WUMCH register can be masked by
writing a 0 into the corresponding bit in this
register. The format of this register is shown in
Figure 10-7.

R255 BANK 1 (FF) WUMSK
WAKE·UP MASK REGISTER

I~I~I~I~I~I~I~I~I

1.1 _____ THESE BITS CORRESPOND TO BITS
IN WAKE·UP MATCH REGISTER; Os
MASK CORRESPONDING MATCH SITS

Figure 10-7. Wake-Up Mask Register

this bit to O. A write to this bit position has
no effect. A hardware reset forces this bit to O.

RENO. Receive Enable (01)' When this bit is set
to 1, the receive operation begins.' This bit
should be set only after all other receive para­
meters are established and the receiver is com­
pletely initialized. This bit is cleared to a 0 by
a hardware reset, which disables the receiver.

R236 BANK 0 (EC) URC
UART RECEIVE CONTROL

1 = WAKE.UI'DETECT2J~
1 = CONTROL CHARACTER DETECT ~

1 = BREAK DETECT
, ,

1 = FRAMING ERROR

III L .. -,,~~"-~
1 = RECEIVE ENASLE

1 = PARITY ERROR

1 = OVERRUN ERROR

Figure 10-8., UART Receive Control Register

586

PERR. Parity Error (Dz). This is a status bit.
When parity is enabled, this bit is set to 1 and
buffered with the character whose parity does not
match the programmed parity (even/odd). This bit
is latched so that once an error occurs, it
remains set until it is cleared to 0 by writing a
1 ,to this bit position. A hardware reset forces
this bit to O.

OVERR. OVerrun Error (0,). This status bit indi­
catea that the rece i ve buffer has not been read
and another character has been received. Only the
character that has been written over is flagged
with this error; once set, this bit remains set
until cleared to 0 by writing a 1 to this bit '
position. A hardware reset forces this bit to O.

FERR. Fraaing Error (04)' This is a status bit.
If a framing error occurs (no stop bit where
expected), this bit is set for the receive charac­
ter in which the framing error occurred. This bit
remains set until cleared to 0 by writing a 1 to
this bit position. A hardware reset forces this
bit to O.

IIRICD. Break Detect (05)' This is a status bit
that is set at the beginning and the end of a
break sequence in the receive data stream. It
stays set to 1 until cleared to 0 by writing a 1

UART

to this bit position. A hardware reset forces this
bit to O. See note in section 10.9.5 for .more
information.

ceo. Control Character Detect (0,). This status
bit is set any time an ASCII control character is
received in the receive data stream. It stays set
until cleared to 0 by writing a 1 to this bit
position. (An ASCII control character is any
character that has bits 5 and 6 set to, 0.) A hard­
ware reset forces this bit to O.

VUD. Make-Up Detect (07)' This status bit is set
any time a valid wake-up condition is detected at
the receiver. It stays set until cleared to 0 by
writing a 1 to this bit position. The wake-up
condition can be satisfied in many possible ways
by the Wake-Up bit, Wake-Up Match register, and
Wake-Up Mask register. See the Wake-Up Feature
section (section 10.4) for a more detailed explan­
ation. A hardware reset forces this bit to O.

10.9.5 UART Interrupt Enable Register (UIE)

This register contains the individual status and
data interrupt enables (Figure 10-9). The fields
in this register are:

R237 BANK 0 (EO) UIE
UART INTERRUPT ENABLE

1 = WAKE.UP INTERRUPT ENABLE~ JJ I '
1 = CONTROL CHARACTER ~

INTERRUPT ENABLE
1 = BREAK INTERRUPT ENABLE

1 = RECEIVE ERROR INTERRUPT '
ENABLE '

III L,._,~~~ INTERRUPT ENABLE
1 = RECEIVE OMA ENABLE

1 = TRANSMIT INTERRUPT ENABLE

1 = ZERO COUNT INTERRUPT ENABLE

Figure 10-9. UART Interrupt Enable Register

RCAIE. Receive Dteracter Available Interrupt
Enable (DO), If this bit is set to 1, then a
Receive Character Available status in the URC
register wi II cause an interrupt request; In a
DMA receive operation, if this bit is se,t to 1,
then an interrupt request will be issued only if
an End-of-Process (EOP) of the DMA counter is also
set. If it is nol set, ,a Receive Character
Available status causes no interrupt. A hardware
reset forces this bit to O.

ROMAENB. Receive DNA Enable (01)' When this bit
is set to 1, the DMA function is enabled for the
UART receiver. Whenever a Receive Character
Available signal in the URC register is true, a
DMA request will be made. When the DMA channel
gains control of the bus, it will transfer the

received data to the register file or the external
memory. A hardware reset forces this bit to O.

TIE. Transmit InterrUpt Enable (Dz). 'If this bit
is set to 1, then a, Transmit Buffer Empty signal
in the UTC register wi 11 cause an interrupt
request. In a DMA transmit operation, if this bit
is set to 1, then an inte rrupt request wi II be
issued only if an End-of-Process (EOP) of the DMA
counter is also set. If it is not set, a Transmit
Buffer Empty signal causes no interrupt. A
hardware reset forces this bit to O.

/

ZCIE. Zero COla'll; Interrupt Enable (0,). I f this
bit is set to 1, a baud-rate'generator Zero Count
status in the UTC register will cause an interrupt
request. A hardware reset forces this bit to O.

587

UART

REIE. Receive Error Interrupt Enable (O~). If
this bit is set to 1, any receive error condition
will cause an interrupt request. Possible receive
error conditions include parity error, overrun
error, and framing error. A hardware reset forces
this bit to o.

BRKIE. Break Interrupt Enable (OS). If this bit
is set to 1, a transition in either direction on
the break signal will cause an interrupt request.
A hardware reset, forces this bit to o.

Note: A break siqnal is a sequence of Os. When
all the' required bits" parity bit, wake-up
'bit, and stop bits are Os, the receiver
immediately recoqnizes a break condition (not
a framinq error) and causes Break Detect
(BRKD) to be set and an interrupt request. At
the end of the break signal, a zero character
is loaded into the Receive Data reqister
(UIOR) and Break Detect (BRKD) is set again,
alonq with another interrupt request.

CCIE. Control Character Interrupt Enable (06). If
this bit is set to 1, then an ASCII Control
Character Detect signal in the URC register will
cause an interrupt. A hardware reset forces this
bit to O.

VUIE. Make-Up Interrupt Enable (0,). If this bit
is eet to 1, then any of the wake-up conditions
that, set the Wake-Up Detect bit (WOO) in the URC
register will cause an interrupt request. A hard­
ware reset 'forces this bit to O.

10.9.6 UARf Mode A Register (UHA)

'This register controls the configurations of the
receiver/transmitter that are not likely to change
on a dynamic basis. The fields in this register
(Figure 10-10) are:

R250 BANK 1 (FA) UMA
UARTMOOEA

CWCKRME:J 0706
""0"0 = X 1
o 1 = X16.
1 0 = X32
1 1 = X64

BITS PER CHARACTER

0504
o 0 =5BITS·
o 1 =6BITS
1 0 =7BITS
1 1 =8BITS

lllil L TRANSMITWAKE.UP VA,WI

L RECEIVE WAKE·UP VAWE

1 = EVEN PARITY

1 = PARITY ENABLE

Figure 10-10. UART Mode A Register

TlllNAL. fr_it Vake-up Value (DO). If the
wake-up mode is enBbled, then the value in this
bit position is transmitted along with the charac­
ter at the appropriate time by the transmitter.

RVUVAL. Receive Make-Up Value (D1). If the wake­
up mode'is enabled, then the receiver expects a
wake-up bit after the parity bit in the incoming
data stream and the value is compared with this
bit value. For further explanation of how this is
used, see the Wake-Up Feature section (Section
10.4).

EVNPAR. Even,Parity (Dz>. This bit determines the
type of parity used 'by both the receiver and the

588

transmitter. If this bit is set to 0, odd parity
is used; if this bit is set to 1, then even parity
is used. If the Parity Enable (PARENB) bit in this
register is not enabled, then this bit has no
effect.

PARENB. Parity Enable (0,). When this bit is set
to 1, an additional bit position beyond those
specified in the bits/character control is added
to the transmitted data and is expected in the
received data'. The received parity bit is trans­
ferred to the CPU as a part of the data unless
eight bits per character are used. If this bit is
set to 0, the parity feature is disabled.

~PC1. BPCD. Bits Per Character (05. 04)' This
field determines the number of bits per character
for both the. transmit and the receive sections.
The character bits Ilre right-justified with the
least significant bit transmitted or received
first. The field is coded as shown in Table
10-1.

Table 10-1. Character Size Field Encoding

05 04 Charecter Size in Bits

0 0 5
0 6
1 0 7
1 B

UART

OR1, CRO. Clock Rate (07. 06)' This field
specifies the multiplier behleen the clock and the
data rates. Table 10-2 shows how this field is
coded.

Table 10-2. Clocle Rate Field Encoding

1>J 06 ~de ilascription

0 0 1 x Clock rate = 1 x data rate
0 16 x Clock rate 16 x data rate
1 0 32x Clock rate = 32 x data rate

1 64 x Clock rate 64 x data rate

R235 BANK 0 (EB) UTe
UART TRANSMIT CONTROL

TRANSMIT DATA SELECT:~ J I
o = OUTPUT P3, DATA

1 = OUTPUT TRANSMIT DATA

1 = SEND BREAK

STOP BITS:
0= 1 STOP BIT

1 = 2 STOP BITS

1 = WAKE·UP ENABLE -----'

~I L 1 = TRANSMITDMA ENABLE

L. 1 = TRANSMIT BUFFER EMPTY

1 = ZERO COUNT

1 = TRANSMIT ENABLE

Figure 10-11. UART Transmit Control Register

10.9.7 UART Tr~it Control Register (UTC)

This register contains the status and command bits
needed to control the transmit section of the
UART. The fields in this register (Figure 10-11)
are:

IDlW:NB. Transait OWl Enebla (DO), Vlhen this bit
is set to 1, it enables the DMA function for the
UART transmit section. If this bit is .set and the
Transmit Buffer Empty signal becomes true, then a
DMA request is made. When .the DMA channel gains
control of the bus, it transfers bytes from the
external memory or the register file to the UART
transmit section. A hardware reset forces this
bit to O.

TBE. Tr~it Buffer Empty (01)' This status bit
is set to 1 whenever the transmit buffer is
empty. It is ~leared to 0 when a data byte· is
written in the transmit buffer. A hardware re~et
forces thia bit to 1.

IC. Zero Count (Dz>. Thia statua bit is set to 1
and latched when the. Counter in the baud-rate
generator reaches the count of O. This bit can be
cleared to 0 by writing a 1 to this bit poaition.
A hardware reset forces this bit to O.

TErm. TrOlsrnit Enable (0,). Data is not
transmitted until this bit is set to 1. When
cleared to 0, the Transmit Data pin continuously
outputs 1s unless Auto-Echo mode is selected.
This bit should be cleared only after the desired
transmission of data in the buffer is completed.
A hardware reset forces this bit to O.

taJIll:B. \1elce-Up Enable (04)' If this bit is set to
1, wake-up mode is enabled for both the transmit­
ter and the receiver. The transmitter adds a bit
beyond those specified by the bits/character and
the parity. This added bit has the value specified
in the Transmit Wake-Up Value (TWUVAL) in the UMA
register. The receiver expects a Wake-Up bit
value in the incoming data. stream after the parity
bit and compares this value with that specified in
the Received Wake-Up Value (RWUVAL) bit in the UMA
register. The resulting action depends on the
configuration of the Wake-Up feature. Amore
complete description is given in the Wake-Up
Feature section (section 10.4). A hardware reset
forces this bit to.O.

STPBTS. Stop Bits (05)' This bit determines the
number of stop bits added to each character trans­
mitted f~om the UART transmit section. If this bit
is a 0, then one stop bit is added. If this bit

589

UART

is a 1, then t.wo stop bits are added. The
receiver always checks for at least one stop bit.
A hardware reset forces this bit to O.

SENBRK. Send Break (06)' When set to 1, this bit
forces the transmit section to continuously output
Os, beginning with the' follo'lling transmit clock,
regardless of any data being transmitted at the
time. This bit functions whether or not the
transmitter is enabled. When this bit is cleared
to 0, the transmit section continues to send the
contents of the Transmit Oata register. A hard­
ware reset forces this bit to O.

TlIDJSEL. Transmit Data Select (07)' This bit has
an effect only if port pin P31 is confiQured as an

output. If this bit is set to 1, the serial data
coming out of the transmit section is reflected on
the P31 pin. 1 f this bit is set to 0, then P31
acts as a normal port and P31 data is reflected on
the P31 pin. A hardware reset forces this bit to
O.

10.9.8. UART Mode B Register (UHB)

This register (Figure 10-12) contains the neces­
sary status and command bits for the baud-rate
generator, transmit clock select, auto-echo and
loopback enable. The fields are as follows:

R251 BANK 1 (FB) UMB
UARTMODEB

CLOCK OUTPUT SELECT ~
0706
o 0 = P2, DATA
o 1 = SYSTEM CLOCK (XTALl2)
1 0 = BAUD-RATE GENERATOR

OUTPUT
1 1 = TRANSMIT DATA CLOCK

1 = AUTO-ECHO ------:--'

RECEIVE CLOCK INPUT SELECT: -------'
0= P20
1 = BAUD-RATE GENERATOR

OUTPUT

E' L 1 = LOOPBACKENABLE

L 1 = BAUD-RATE GENERATOR ENABLE

BAUD-RATE GENERATOR SOURCE:
o = P20 (EXTERNAL)
1 = INTERNAL (XTALl4)

TRANSMIT CLOCK INPUT SELECT:
0= P21
1 = BAUD-RATE GENERATOR OUTPUT

Figure 10-12_ UART Mode B Register

LBENB. Loopback Enable (DO), Setting this bit to
1 selects the local loopback mode of operation. In
this mode, the data output from the transmit
section is also routed back to the receive
section. For meaningful 'results, the fr,equency of
the transmit and receive clocks must be the same.
A'hardware reset forces this bit to o.

BRGENB. Baud-Rate Generator Enable (01)' This bit,
controls the operation of ,the baud-rate genera­
tor. The Counter in the baud-rate generator is
enabled for counting when this bit is set to 1 and
disabled for counting when this bit is set to O.
A hardware reset forces this bit to O.

BRGSRC. Baud-Rate Generator Source (~). This bit
selects the source of the clock for the baud-rate
generator •. If this bit is set to 0, the baud-rate
generator clock comes from the receive clock pin
(P20)' If this bit is set to 1, the clock for the
baud-rate generator is the CPU clock divided by
two (XTAL clock divided by four). A hardware reset
forces this bit to O.

590

TCIS. Transmit Clock· Input Select (0,), This bit
se lects the source for the t,ransmit section clock
input. If rCIS is'cleared to 0, the source is the
transmit clock pin (P21)' If it is set to 1, then
the source is the baud-rate generator output. A
hardware reset forces this bit to O.

ReIS. Receive Clock Input Select (04)' This bit
selects the source for the receive section clock
input. If this bit is cleared to 0, the source is
the receive clock pin (P20)' If it is set to 1,
then the source is the baud-rate generator out­
put •. A hardware reset forces this bit to O.

Ar. - Auto-Echo (05)' Auto-echo mode of operation
is enabled by setting this bit to 1. In this
mode, the: data coming in on the receive data pin
is reflected out on the transmit data pin. The
receive section still listens to .the receive data
input; however, the data from the transmit section
goes nowhere. See section 10.6 for a more detail­
ed description of this function. A hardware reset
forces this bit to O.

COS1, COSO. Clock Output Select (D,06)' This
field determines the source that drives the
transmit clock pin if P21 is configured as an

UART

output. A hardware reset forces this field to
00. Table 10-3 shows the coding of this field.

Table 10-3. Transmit Clock Source field Encoding

I? D6 Output Sourc:e

0 0 P21 Data
0 System clock (XTAL frequency divided by 2)

1 0 Baud-rate generator output
1 Transmit data rate

10.9.9 UART Baud-Rate Generator Tillle Coootant
Register (UBG)

This register contains the high and low bytes
(Figure 10-13) for the 16-bit time constant used
to \lenerate the desired baud rate. The time
constant can be changed at any time, but the new

value does not take effect. until the next time
constant is loaded into the downcounter.

The formula for determining the appropriate time
constant for a given baud rate is shown below,
with the desired rate in bits per second and the
baud-rate clock period in seconds.

time constant: ___________________ _ -1
(2 x baud rate x n x BRG input clock period)

where n:1,16,32,or 64 x the clock rate selected in UMA register R250

R24B BANK 1 (FB) UaGH
UART BAUO-RATE GENERATOR

R249 BANK 1 (F9) UBGL
UAnT BAUD-RATE GENERATOR

I~I~I~I~I~I~I~I~I I~I~I~I~I~I~I~I~I

1'------- HIGH BYTE (UBG.-UBG15) LI _____ LOW BYTE (UBGo-UBG,)

Figure 10-13_ UART Baud-Rate Generator Time Constant Register

8257-074 591

11.1 INTRODUCTION

The SuperB has an on-chip Direct Memory Access
(DMA) channel to provide high bandwidth data
transmission capabilities that can be used by the
UART receive or transmit section or by Handshake
Channel O.

The DMA channel can transfer data between the
peripheral device and contiguous locations in
either the register file or external data memory.

UART Receiver

UART Transmitter

------> Register file or
data memory

<------ Register file or
data memory

Handshake Channel 0 <------ Register file or
data memory

Handshake Channel 0 ------> Register file or
data memory

Prior to enabling the DMA channel, the starting
register address for the block to be transferred
must be present in register C1H or the starting
memory address must be present in register COH
(high' byte) and C1 H (low byte). Registers COH
and C1 H th~msel ves can only be' accessed as part
of the working register group. The address is
auto-incremented after each DMA-controlled
transfer.

R254 (aANKO) EMT
EXTERNAL MEMORY TIMING REGISTER

I~I~I~I~I~I~I~I~I

Chapter 11
DMAChannel

The DMA Count registers (RZ40 and RZ41 , Bank 1)
hold the 16-bit count that determines the number
of transactions the DMA channel is to perform. The
count loaded should be n-1 to perform n byte
transfers. An interrupt can be generated when the
count is eXhausted.

DMA transfers to or from the register file take
six CPU clock cycles; DMA transfers to or from
memory take ten CPU clock cycles, excluding wait
states.

11.2 DMA CONTROl REGISTERS

The control bits that, link the DMA channel to the
UART or an I/O port are the Transmit OMA Enable
(TOMAENB) bit in the UART Transmit Control (UTC)

register for the transmitter, the Receive DMA
Enable (ROMAENB) bit in the UART Interrupt Enable
(UIE) register for the receiver, and the OMA
Enable bit (OZ) in the Handshake 0 Control regis­
ter for the I/O ports. Oniy one of these three
enable bits should be set at a given time. If

Handshake Channel 0 is linked to the DMA channel,
the data transfer direction is determined by the
direction of the handshake.

A bit in the External Memory Timing register,
called OMA INT/EXT, controls whether OMA transfers
access the register file or external data memory.
When this bit is cleared to 0, transfers are to/
from the register file. When this bit is set to
1, transfers are to/from external data memory.
See Figure 11-1.

L OMAINT/EXT

592

R240 (BANK1) OCH
OMA COUNT HIGH

R241 (BANK1) DCl
DMA COUNT lOW

1 = EXTERNAL MEMORY
o = REGISTER FilE

R192 (CO) RPO = CO
DMA AOORESS HIGH

R193 (Cl) RPO = CO
OMA ADDRESS lOW

Figure 11-1. DMA Control Registers

DMA Channel

11.3 Dl.m AND THE UART RECEIVER

The Receive DMA Enable bit (RDMAENB) in the UlE
register (R237) of the UART is first set"to 1 to
link the DMA to the UART receiver.

Data received at the UART receiver is handled by
the DMA as soon'as the Receive Character Available
(RCA) status bit of the URC register (R236) of the
UART is set to 1. The DMA reads data from the
UIO register of the UART and then clears the RCA
bit to prepare the UART receiver to receive new
data. The data is then stored at the location
whose address is contained in the DMA address reg­
ister, (RR192). The DMA count at RR240, Bank 1, is
decreased by 1 and the DMA addreas register is in­
creased by 1. When the DMA count is" negative, an
interrupt request (IRQ6, vector address 20, 21) is
generated at the UART Receive - section if the,
Receive Character Available Interrupt Enable bit
of the UIE register of the UART (R237) is set to
1.

The UART continues to receive new data and the DMA
responds to the RCA bit as described above until
an interrupt is generated due to a negative DMA
count.

11.4 D~ AKD THE UART TRANSMITTER

First, the Transmit DMA Enable (TDMAENB) bit of
the UTC register (R235) of the UART is enabled to
link the DMA to the UART "transmitter.

Upon transmit, the Transmit Buffer Empty status
bit (TBE) in the UTC register (R235) of the UART
is set to 1. The DMA then transfers the date at
the location whose address is contained in the DMA
address register (RR192) to the UIO register
(R239) of the UART.

The TBE bit is then cleared to O. The DMA count
at RR240, Bank 1, is decreased by 1 and the DMA
address register is increased by 1. When the DMA
count is negative, the DMA issues an End-of­
Process (EOP) signal to the UART. The UART grants
an interrupt request (IRQ1, vector address 26, 27)
to the SuperB if the' Transmit Interrupt Enable
(TIE) bit of the UIE register (R237)of the UART
is set to 1.

The UART transmitter continues its operation with
the new data in the UlD register a,nd the DMA re­
sponds to the TBE bit as described above until an
interrupt is generated due to a negative DMA
count.

11.5 I»lA AND IfANDSHAl(E CHANNEL 0

The DMA can be configured with Handshake Channel D
to transfer data frum register fi Ie or data memory
to I/O devices or vice versa through Port 1 or
Port 4. Handshake Channel 0 can be in either
fully inter locked mode or strobed mode as con­
trolled by the Handshake 0 Control register
(R244). The direction of DMA transfer is deter­
mined by the handshake direction, which is the
direction of the chusen port.

11.5.1 DNA HRITE (INPUT HANDSHAKE CHANNEL 0)

The I/O device transfers data to register file or
data memory thr"ough Handshake Channel 0 and the
DMA channel.

593

The Handshake, Channe I 0 tnab Ie and OMA Enab Ie bits
of the Handshake 0 Control (HOC) register (R244)
should be first set to 1. When the 1/0 device
puts data on the port specified in the HOC regis­
ter and activates TIAV to go from high to low as in
figures 8-11 and 8-13, the OMA transfers data on
the port to the specified address in the DMA
address register (RR192). The OMA count' at RR240,
Bank 1, is decreased by 1 and the OMA address reg­
ister is increased by 1. When the OMA count is
negative, the DI~A issues an End-of-Process (EOP)
signa I to Handshake Chaillle 1 O. Handshake Channe I
o grants an interrupt request (lRQ4) to the
Super8. The handshake output at pin 25 is the
same as described in Figures a-11 and 8-13 and the
OMA is waiting for the I/O device to put data on
the port and activate the 151W signal again.

11.5.2 DNA READ (OUTPUT HAN>SHAKE CHANNEL 0)

Data is transferred from register file or data
memory to the I/O device through the DMA channel
and Handshake Channel O.

, The Handshake Channe I 0 Enable and OMA Enable bits
,of the Handshake 0 Control (HOC) register' (R244)
should be first set to 1. The handshake direction
should be set by choosing the direction of the
port specified in the HOC register.

The DMA sequence should always begin by writing
the first byte of data to the port to start the
DMA. This is en important process, otherwise the
OMA \ is not activated when Handshake Channel 0 is
not yet activated. The DMA starting address in
,the mlA address register (RR192) should now be set
at the second byte of the data block. The I/O de­
vice should then read that first byte of data and
store it away as in figures 8-12 and 8-14. The
DMA is then activated.

594

DMA Channel

11.5.2.1 FULLY INTERLOCKED MODE

At State 3 of Figure 8-12, the DMA reads the data
at the address specified in the DMA address regis­
ter (RR192) and transfers it to the port. The DMA
count at RR240, Bank 1, is decreased by 1 and the
DMA address register is increas,ed by ,1. When the
DMA count is negative, the DMA issues an End-of­
Process (EOP) signal to Handshake Channel O.
Handshake Channe I 0 then grants an interrupt re­
quest (IRQ4) to the SuperB.

,The DMA and, handshake process continues as in
Figure 8-12 until an interrupt is caused by a
negative DMA count.

11.5.2.2 STROBED MODE

After the first writing of the first byte of data
to the port as ,in Figure B-14, the DMA is'activat­
ed at the end of strobe time. The DMA reads the
data at the address specified in the DMA address
register (RR192) and transfers it to the port.
The DMA count at RR240, Bank 1, is decreased by 1
and the DMA address register is increased by 1.
When theDMA count is negative, the DMA issues an
End-of-Process (EOP) signal to Handshake Channel
O. Handshake Channel 0 then grants an interrupt
request (IRQ4) to the SuperB.

The handshake operation continues as in Figure
B-14 and the DMA transfers new data to the port
only at the end of strobe time. The DMA stops
when an interrupt is activated by a negative DMA
count.

12.4 EXTERNAL STACKS

The SuperB architecture supports stack operations
in either the register file or in data memory. A
stack's location is determined by setting bit 1 in
the External Memory Timing register, R254, Bank 0
(Figure 12-5).

R254 BANKO (FE) EMT
EXTERNAL MEMORY TIMING

1071 061 051 041 0,1 021 0, I 00 I
~ STACK SELECTION

o = REGISTER FILE
1 = OATA MEMORY

Figure 12·5. External Memory Timing

The instruction used to change the stack selection
bit should not be immediately followed by an
instruction that uses the stack, since this will
cause indeterminate program flow. Interrupts
should be disabled when changing the stack
se lection bit.

12.6 BUS OPERATION

Typical data transfers between the SuperB and
external memory are illustrated in Figures 12-7
and 12':'B. Machine cycles can vary from six to
twelve external clock periods depending on the
operation being performed. The notations used to
describe the basic timing periods of the SuperB

EXTERNAL
CLOCK

PO X
P1 X Ao~A70UT)

AS '---I
os \

RIW I
OM X

I_

External Interface

12.5 DATA MEMORY

The two external memory spaces, data and program,
can be addressed as a single memory space or as
two separate spaces. If the memory spaces are
separated, program memory and data memory are
logically selected by the Data Memory select out­
put (mf). 1m" is made available on Port 3, line 5
(P35) by setting bit D3 in the Port Mode register
to 1 (Figure 12-6).

R241 aANKO (Fl) PM
PORT MODE REGISTER

I~I~I~I~I~I~I~I~I
T o = P35 MODE DETERMINED BY PORT 2/3

C MODE REGISTER
1 = P3s = DM OUTPUT

Figure 12-6. Data Memory

are machine cycles (Mn), timing states (Tn), and
clock periods. All timing references are made
with respect to the output signals ~ and rg. The
clock is shown for clarity only and does not have
speci fic timing re lationships with other signals;
the clock signal shown is the external clock,
which has twice the frequency of the internal CPU
clock.

AE,·A15 >C
8---C

"-
r

"-
>C

READ CYCLE -I
Figure 12-7. External Instruction Fetch or Memory Read C~cle

8257-082,083,084 595

External Interface

i-r --
T
-,--- MACHIN:

2

CYCLE----
T
-,--..... ·o-I1

EXTERNAL
CLOCK

PO X Aa-A15 >C
Pl X Ao·A7IN X Do-D, OUT >C

AS \J '--
OS \ !

R/W ~ r-
OM ~ >C

I- WRITE CYCLE -I

Figure 12-B. External Memory Write Cycle

12.6.1 Address Strobe ~

All transactions start with Address Strobe (AS)
being driven low and then raised high by the
SuperB. The rising edge of m;' indicates that
Read/~Ir ite (R/IV) , Data Memory <DR), and the
addresses output from Ports 0 and 1 are valid.
The addresses output via Port 1 typically need to
be latched during m;', whereas Port 0 address
outputs, if used, remain stab Ie throughout the
machine cycle.

12.6.2 Data Strobe ~

The SuperB uses Data Strobe (~ to time the
actual data transfer. For write operations (R~ =
low), a low on US indicates that valid data is on
the Port 1 ADO-AD7 lines. F or read operations
(R/IV = high), the address/data bus is placed in a
high-impedance state before driving US low so that
the addressed device can put its data on the bus_
The SuperS samples this data prior to raising ~
high.

12.6.3 External ~~Dry Operations

Whenever the SuperB is configured for external
memory operations, the addresses of all internal

596

program memory references appear on the external
bus. This should have no effect on the external
system since the bus control line rn;- remains in
its inactive high state. DS" becomes active only
during external memory references.

12.7 EXTENDED BUS TIMING

The SuperS can accommodate slow memory access and
cycle times by three different methods that give
the user much flexibility in the types of memory
available.

12.7.1 Software Programmable Wait States

The SuperB can stretch the Data Strobe (~ timing
automatically by adding one, two, or three
internal clock periods. This is under program
control and applies only to external memory
cycles. Internal memory cycles still operate at
the maximum rate. The software has independent
control over stretched Data Strobe for external
memory (Le., the software can set up one timing
for program memory and a different timing for data
memory). Thus, program and data memory may be
made up of different kinds of hardware chips, each
requiring its own timing.

12.7.2 51011 ~lecory Tieing

Another feature of the SuperB that is useful in
interfacing with slow memories is the Slow Memory
Timing option. When this option is enabled, the
normal external memory timing is slowed by a
factor of two (bus clock = CPU clock divided by
two). All memory times for set-up, duration,
hold, and access times are essentially doubled.
This feature can also be used with the programmed
automatic wait states described above. Programmed
wait states can still be used to stretch the Data
Strobe time by one, two, or three internal clock
times (not two, four, or six) when Slow Memory
Timing is enabled.

12.1.3 Hardware Hait States

Still another SuperB feature is an optional exter­
nal mrrr input using port pin P34' The VIiiTi input
function can be used with either or both of the
above two features. Thus the Data Strobe width
will have a minimum value determined by the number
of programmed wait states selected and/or by Slow
Memory Timing. The VIiiTi input provides the means
to stretch it even further. The mrrr input is
sampled each internal clock time and, if held low,
can stretch the Data Strobe by adding one internal
clock period to the Data Strobe time for an
indefinite period of time.

INTERNAL
CLOCK

INSTRUCTION
N

INSTRUCTION
FETCH 1

INSTRUCTION
OPERAND

FETCH 2
FETCH(ES)

External Interface

All of the extended bus timing features are
programmed by writing the appropriate bits in the
External Memory Timing register (Figure 12-9).

R254 BANKO (FE) EMT
EXTERNAL MEMORY TIMING REGISTER

I~I~I~I~I~I~I~I~I L DATA MEMORY AUTOMATIC WAITS
00 = NO WAITS
01 = 1 WAIT
10 = 2 WAITS .
11 = 3 WAITS "

PROGRAM MEMORY AUTOMATIC WAITS
00 = NO WAITS
01 = 1 WAIT
10 = 2 WAITS
11 = 3 WAITS

'---------- SLOW MEMORY TIMING
0= DISABLED
1 = ENABLED

'------------ EXTERNAL WAIT INPUT
o = P341S NORMAL 110
1 = P341S EXTERNAL WAIT INPUT

Figure 12-9. Ellternal Memory Timing Register

12.8 I~JSTRUCTInN TI~I~G

The high throughput of the SuperB is due, in part,
to the use of instruction pipelining, where the
instruction fetch and execution cycles are over­

,lapped. During the execution of, the current
instruction, the opcode of the next instruction is
fetched, as illustrated in Figure 12-10.

. J 'ALU STORE

EXECUTION CYCl.E .
INSTRUCTION

N+1

INSTRUCTION
N+2

INSTRUCTION INSTRUCTION
FETCH 1 FETCH 2 .

1 1 EFFECTIVE ----... , I CI HIDDEN DELAY .. I
EXECUTION TIME UNTIL COMPLETION

1 ----------INsTRucTION COMPLETION T'ME----------_.I

Figure 12-10. Instruction Pipelining

OPERAND
FETCH(ES) AlU STORE

EXECUTION CYCLE .
INSTRUCTION' INSTRUCTION

FETCH 1 FETCH 2

597

External Interface

Figures 12-11 through 12-14 show typical instruc­
tion cycle timing for instructions fetched from
external memory. All instruction fetch cycles
have the same machine timing regardless of whether
the memory is internal or external except when
external memory timing is extended. In order to
calculate the execution time 0 f a program, the

T, T, T3 T,

CLOCK

internal clock periods shown in the cycles column
of the instruction formats in the Instruction Set
(Chapter 5) should be added. Pipeline cycles are
transparent to the user and should be ignored.
Each cycle represents two cycles of the crystal or
input clock.

M,

T, T3 T, T, T3

PO ________ ~~ _________ A~.~~A~1~5 ________ _JX~ ____________________ ~A~.~~A~15~ ____________________ ~
P1 ________ ~X~A~o~A~1==~------~~==A~o~A~1==»---------------------------------~

rn rn
'__J~------------~'__J

\\-___ ...JI \\-____________________ -'1

R/W ____________ /

I-FETCH INSTRUCTION -II-------FETCH 1ST BYTE OF NEXT INSTRUCTION-------I

Figure 12-11. Typical Instruction Cycle Timing (One Byte Instruction)

M, M,

T, T, T3 T, T, T3 T, T, T3

CLOCK

Aa-A'5 X PO ________ _JX~ ________ ~A~.~_A~15~ ______ _JX~ ________ ~~~ ________ ~ Aa-A'5

P1 ________ -JXC~Ao~~A~1==)~------~~==~Ao~A~1~)~--------~ Ao A7) ~

'---I \.......J
\ __ --JJ 1 \ I

R/W ________ --'/

j.---FETCH 1ST BYTE ----.+I---FETCH 2ND BYTE---.+I.- FETCH 1ST BYTE OF NEXT INSTRUCTION

Figure 12-12. Typical Instruction Cycle Timing (Two Byte Instruction)

598

External Interface

M, M, M,

T, T, T, T, T, T, T, T, T, T,

CLOCK

PO. Aa-A'5 Aa-A,5 Aa-A'5

PI Ao-A7 Ao-A1 00-01

AS ~ '-
os \ I \ I \ I

A/W 1
!-FETCH 1ST BYTE FETCH 2ND BYTE FETCH 3RD BYTe

Figure 12'-13. Typical Instruction Cycle Timing (Three Byte Instruction)

M,

PO ___ ...JI.. ___ .-:.;!:.= ___ ...JI.. ___ -'-':.= ___ ...JI... ___;;:...;.;::'--___ H ... ___;;:...;.;::'--__ _

PI ==~"D---<

\\...........,...._-...JI \\.... __ -...JI \\....· __ -...JI \'-__ -11
R'W ___ ---'I

!-FETCH 1ST BYTE ---t---FETCH 2ND BYTE---!-FETCH 3RD BYTE ---!-FETCH4TH BYTe----t

Figure 12-14. Typical Instruction Cycle Timing (Four Byte Instruction)

599

12.1 INTRODUCTION

The 4B-pin SuperB has 40 programmable I/O pins,
aome of which are configurable as an external
memory interface. A description of the pins and
their functions follows (see Figure 12-1).

12.2 PIN DESCRIPTIONS

~. Address Strobe (output, active low, 3-state).
)ffi' is pulsed low once at the beginning of each
machine cycle. For external memory accesses, the.
rising edge of ms indicates that addresses, R/W',
and DR signals are valid. Under program control,
AS' can be placed in a high impedance state along
with Ports 0 and 1, ITS, R/W', and DR if used.

m. Data Strobe (output. active low, J-state).
crs provides timing for data movement to or from
Port 1 for each external memory transfer. During a

PORTO

PO.

PO,

PO,

PO,

po,
po.
po,
P07 ,

~P10
2

~P11
3

~P12

...,!... P13
PORT f 5

.............. P14
6

~P15
~P16

~P17

{7 P4
'

PORT 4 P4,

('/0) ~ P4,
32

P4,

SUPERS

11
+5V -34 POWER
GNO

'3
XTAL1 -'2 CLOCK
XTAL2

P2.
22 -P2,
23 .-

P2, ~
P2, ..!!.....

9 PORT 2

PORT 3

Chapter 1.2
Externallnteriace

write cycle, data out is valid at the . leading edge
of crs; during a read cycle, data in is valid prior
to the trailing edge of crs. crs can be placed in a
high-impedance state along with Ports 0 and 1,
iiS", R/W', and DR if used.

R/W. Read/Write (output, J-state). R/W' deter­
mines the direction of data transfer for external
memory transactions. R/W' is low during write
operations and high during all other operations.
R/W' can be placed in a high-impedance state along
with Ports 0 and 1, iiS", OS, and DR if used.

POu-I'OJ. P1o-P17. Plo-Pl7' PJo-PlJ. Pilo-P47' I/o
Port Lines (inputs/outputs. TTL-coapatible).
These I/O lines provide five B-bit I/O ports that

, can be configured under program control for I/O or
external memory interfacing. Ports 0 and 1 can be
placed in a high-impedance state under program
control, along with iiS", OS, R/W', and DR if used.

P" PO.

P" PO,

P" PO,

P" po,

P" PO,

P" PO.

P" PO,

Ph P07

P2, P3,

P2. P3.

Vee AS
XTAL2

SUPERS
OS

XTAL1 P4,

P4, P4,

P4 • Vss

P4, P4,

P47 P4,

P2, Riw
P3, RESET

P3, P3,

P2, P37

P2, P27

P2, P2,

P3, P3.

Figure 12-1. Pin Functions and ASSignments

600

External Interface

~. Reset (input, active IOH). ~ is used
to initialize the SuperB. When ~ is
deactivated, program execution begins from program
address 0020H• ~ is also used to enable the
SuperB test mode.

XTAl1 , XTAl2. Crystal (osci lIator input/output).
XTAL 1 and XTAL2 are used to connect a parallel
resonant crystal or external c lock source to the
on-board clock osci llator and buffer.

12.3 cn~TIGURING fOR EXTERNAl MEMORY

Before external memory can be referenced in a
ROM-based part, Ports 0 and 1 must be properly
configured. The minimum bus configuration uses
Port 1 as a multiplexed address/data bus (AOO-A07)
with access to 256 bytes of external memory. In
this configuration, the eight lower order address
bits (AO-A7) are multiplexed with the eight data

bits (°0-°7)'

Additional address lines can be output on the Port
o pins, where bit 0 of that port corresponds to

AB, bit 1 to A9' and so on. The pins of Port 0
can be defined as memory address lines or 1/0
lines on a bit-by-bit basis, via programming of
the Port 0 Mode register (R240, Bank 0). This
ensures the efficient use of the I/O pins, allow­
ing the SuperB to address various sizes of
external memory using no more pins than neces­
sary. Port 0 pins not confi'gured for address
lines can be used as I/O lines.

Configuring Port 1 for external memor y is accom­
plished by writing the appropriate bits in the
Port Mode register, R241 in Bank 0 (Figure 12-2).

R241 BANKO (F1) PM
PORT MODE REGISTER

I~I~I~I~I~I~I~I~I
-C PORT 1 MODE

00 = OUTPUT
01 = INPUT
1 X = ADo-AD7·

Figure 12-2. Configuring Port 1 for External Memory

R240 BANKO (FO) POM
PORT 0 MODE REGISTER

L.. _____ PORT 0 MODE

o DEFINES BIT AS I/O
1 DEFINES BIT AS ADDRESS

Figure 12-3. Configuring Port 0 for External Memory

Configuring Port 0 for external memory is accom­
plished in a simi lar manner, using Port 0 Mode
Register, R240 in Bank 0 (Figure 12-3).

Once Port 1 is configured as an address/data port,
H is no longer usable as a general-purpose 1/0
port. Attempting to read Port 1 returns "FF H";
writing has no effect. Similarly, if Port 0 is
configured for address lines AB-A15' it is no
longer usable as a general-purpose I/O port; how­
ever, if not all of the bits are defined as
address lines, the remaInIng bits are still
accessible as an I/O port. Reading Port 0 wi 11
return the port data in those positions defined as
I/O. The positions defined as address will return
the value on the external pins which, under normal
loading, will be the address.

After setting the modes of Ports 0 and 1 for
external memory, the next three bytes must be
fetched from internal memory.

An external memory interface may be 3-stated under
program control by setting bit 7 of the System
Mode register, R222 (Figure 12-4).

R222 (DE) SYM
SYSTEM MODE REGISTER

I~I~I~I~I~I~I~I~I
TL ___________ 3·STATE EXTERNAL MEMORY INTERFACE

Figure 12-4. 3-State External Memory Interface

When th i s bi tis set to 1, the externa l memory
interface, including AS, OS, R/W and OM, is 3-stated.
A hardware reset forces this bit to a O. 'The external
memory interface can but should not be tri - stated in
the ROM less parts.

In SuperB parts with on-Chip ROM, a hardware reset
configures Ports 0 and 1 as input ports and
instruction execution begins at location 0020H,
which is within the on-chip ~OM.

In the ROM less parts, a hardware reset configures

Port 0 pins POO-P04 as address out and pins
P05-P07 as inputs; Port 1 is configured as an
address/data port, allowing access to B Kbytes of
memory. If externa I memory greater than B Kbytes
is desired, additional address lines must be'
configured in Port O. Since Port 0 lines are
initially configured as inputs, they will float
and their logic state wi 11 be unknown unti I an
initialization routine is executed that configures
Port O. This initialization routine must reside
within the first B Kbytes of executable code and
must be physically mapped into memory by

externally forcing the Port 0 address lines to a
known state.

601

602

12.4 EXTERNAl STACKS

The SuperB architecture supports stack operations
in either the register file or in data memory. A
stack's location is determined by setting bit 1 in
the External Memory Timing register, R254. Bank 0
(Figure 12-5).

R2S' BANKO (FE) EMT
EXTERNAL MEMORY TIMING

I~I~I~I~I~I~I~I~I
L-STACK SELECTION

o = REGISTER FILE
1 = DATA MEMORY

Figure 12·5. External Memory Timing

The instruction used to change the stack se lection
bit should not be immediately followed by an
instruction that uses the stack, since this will
cause indeterminate program flow. Interrupts
should be disabled when changing the stack
se lection bit.

12.6 BUS OPERATION

Typical data transfers between the SuperB and
external memory are illustrated in Figures 12-7
and 12-8. Machine cycles can vary from six to
twelve external clock periods depending on the
operation being performed. The notations used to
describe the basic timing periods of the SuperB

External Interface

12.5 DATA MEMORY

The two external memory' apaces, data and program,
can be addressed as a sing Ie memory space or as
two separate spacea. I f the memory spsces are
separated, program memory ~d data memory sre
logically aelected by the Data Memory select out­
put (1m') , 1m' is made a~ailable on Port J, line 5
(P35) by aetting bit D3 in the Port Mode regiater
to 1 (Figure 12-6).

R241 BANKO (F1) PM
PORT MODE REGISTER

I~I~I~I~I~I~I~I~I
T o = P3, MODE DETERMINED BY PORT 2/3

C MODE REGISTER
1 = P3, = OM OUTPUT

Figure 12·6. Data Memory

are machine cycles (Mn), . timing statea (Tn), and
clock periods. Aq timing ~eferences are made
with respect to the output signsls '1m' and \~. The
clock is shown for clarity only and does not have
specific timing relationships with other signale;
the clock sigrial shown is the external clock,
which has twice the frequency of the internal CPU
clock. r 1'-----T-

1
----MACHI:.E CYCLE----T-3--.... ·~1

EXTERNAL
CLOCK

PO

PI

RlW

X A.-A1' x=
X Ao-A70UT > B---C
\.J '---

\ I

/ C
X x=
I- READ CYCLE -,

Figure 12·7. External Instruction Fetch or Memory Read Cycle

External Interface

1-1 ""' ---T-,---- MACHIN:, CYCLE ~----T3---t·1

EXTERNAL
CLOCK

PO X Aa-A15 >C
Pl

><
Ao·A7 IN)(0 0-0, OUT >C

M '---I "-
OS \ I

R/W \ /
liM X >C

I· WRITE CYCLE .. I

Agure 12·8. External Memory Write Cycle

12.6.1 ~reas Strahe (A§)

All transactions start with Address Strobe (7I'!D
being driven low and then raised high by the
SuperB. The rising edge of ~ indicates that
Read/Write (Rf\iT), Data Memory (1m), and the
addresses output from Ports 0 and 1 are valid.
The addresses output via Port 1 typically need to
be latched during ~, whereas Port 0 address
outputs, if used, remain stable throughout the
machine cycle.

12.6.2 Data Strobe ~

The SuperB uses Data Strobe (mD to time the
actual data transfer. For write operations (R~ =
low), a low on 1'i!r indicates that valid data is on
the Port 1 ADO-AD7 lines. For read operations
(R/W = high); the address/data bus is placed in a
high-impedance state before driving 1'i!r low so that
the addressed device can put its data on the bus.
The SuperB samples this data prior to raising ~
high.

12.6.1 External ~ory Operations

Whenever the SuperB is configured for external
memory operations, the addresses of all internal

program memory references appesr on the externsl
bus. This should have no effect on the external
system since the bus control line 1'i!r remains in
its inactive high state. 1'i!r becomes active only
during external memory references.

12~7 ElCTEPIDrD BUS lINING

The SuperB can accommodate slow memory access and
cycle times by three different methods that give
the user much flexibility in the types of memory
available.

12.7.1 Soft~e Progrs=mable Wait States

The SuperB can stretch the Data Strobe (~ timing
automatically by adding one, two, or three
internal 'clock periods. This· is under program
control and app 1 ies only to external memory
cycles. Internal memory cycles still operate at
the maximum rate. The software has independent
control over stretched 'Data Strobe for external
memory (i.e., the software can set up one timing
for program memory and a different timing for data
memory). Thus, program and data memory may be
made up of different kinds of hardware chips, each
requiring its own timing.

603

12.7.2 Slow Meoory Timing

Another feature of the SuperB that is useful in
interfacing with slow memories is the Slow Memory
Timing option. When this option is enabled, the
normal external memory timing is slowed by a
factor of two (bus clock = CPU. clock divided by
two). All memory times for set-up, duration,
hold, and access times are essentia11 y doubled.
This feature can also be used with the pr~grammed
automatic wait states described above. Programmed
wai t states can st i 11· be used to stretch the Data
Strobe time by one, two, or three internal clock
times (not two, four, or six) when Slow Memory
Timing is enabled.

12.7.3 Hardware tlait States

Still another SuperB feature is an optional exter­
nal VIAfT input using port pin P34' The VIAfT input
function can be used with either or both of the
above two features. Thus the Data Strobe width
will have a minimum value determined by the number
of programmed wait states selected. and/or by Slow
Memory Timing. The mITT input provides the means
to stretch it even farther. The VIAfT input is
sampled each internal clock time and, if held low,
can stretch the Data Strobe by adding one internal
clock period to the Data Strobe time for an
indefinite period of time.

IHTERftAL
CLOCK

External Interface

All of the extended bus timing features are
programmed by writing the appropriate bils in the
Externa I Memory Timing register (Figure 12-9).

A2S. BANKO (FE) EMT
EXTERNAL MEMORY TIMING REGISTER

I~I~I~I~I~I~I~I~I
.- r:=. DATA MEMOAY AUTOMATIC WAITS

00 = NO WAITS
01 = 1 WAIT
10 = 2 WAITS
11 = 3 WAITS

PROGRAM MEMORY AUTOMATIC WAITS
00 = NO WAITS
01 = 1 WAIT
10 = 2 WAITS
11 = 3 WAITS

'---,--------- SLOW MEMORY TIMING
0= DISABLED
1 = ENABLED

'----------- EXTEANAL WAIT INPUT
o = P3,IS NOAMAL 110
1 = P34 ,IS EXTERNAL WAIT INPUT

Figure 12·9. EKternal Memory Timing Register

12.8 INSTRUCTION TIMING

The high throughput of the SuperB is due, in part,
to the use of instruction pipelining, where the
instruction fetch and execution cycles are over­
lapped. During the execution of the current
instruction, the opcode of the next instruction is
fetcned, as illuatrated in Figure 12-10.

INSTRUCTION
N

INSTRUCTION
FETCH 1

INSTRUCTION I
FETCH 2

OPERAND J
FETCH(ES) ALU STORE . , EXECUTION CYCLE .

604

INSTRUCTION
"+1

INSTRUCTI014
"+2

INSTRUCTION INSTRUCTION
FETCH 1 FETCH 2

I • . EFFECTIVE ----.... 1 Q HIDDEN DELAY .. I
EXECUTION TIME UNTIL COMPLETION

11 ---------'NsTRucT,ON COMPLETION T,MEo----------__ ,1

Figure 12·10. Instruction Pipelining

OPERAND
FETCH{ES) ALU STORE . EXECUTION CYCLE .

INSTRUCTION INSTRUCTION
FETCH 1 FETCH 2

External Interfgce

figures 12-11 through 12-14 show typicel instruc­
tion cycle timing for instructions fetched from
external memory. All instruction fetch cycles
have the seme machine timing regardless of whether
the memory is internal. or external' except when
external memory timing is extended. In order to
calculate the execution time of a program, the

M,

T, T, T, T,

CLOCK

PO -----'

i~ternal clock periods shown in the cycles column
of the instruction formats in the Instruction Sat
(Chapter 5) should be added. Pipeline cycles are
transparent to the user and should be ignored.
Each cycle represents two cycles of the cryatal or
input clock.

M,

T, T, T, T3

PI ________ -JXC~~~A~7~~------~~~--------------------------------~
m m

\1-----/ \~------~--------------~/
RtW ___ --'1

/---FETCH INSTRUCTION ----+-------FETCH 1ST BYTE OF NEXT INSTRUCTlON------!

Figure 12-11. lYplcallnstructlon Cycle Timing (One Byte Instruction)

M, M,

CLOCK

PO _______ --i~ ________ A~8:..-A..;,::., _______ ~ ... _________ .;,;A:...-.;,;A.:.:,, ________ ~ ... __________ ..;A.::..-_A,:::, ________ __

PI ________ ~~r~A;~~A;7~~------~~~-------~::~~A~7~)--------~~.

\'---~/ \ -----~/ \,-__ ~r--
RiW ____ ...,,1

i--FETCH 1ST BYTE ---+t----FETCH 2ND BYTE--~+- FETCH 1ST BYTE OF NEXT INSTRUCTION

Figure 12-12. 1\tplcallnstructioi'l Cycle Timing (lWo Byte Instruction)

605

External Interface

PO ______ -J~ ______ ~~ ______ _"~ ______ ~~~ ____ __J~ ________ ~~~ ________ ~

P1 ==~=>____<

\,-__ ~f \,-__ ~f \'-__ --1f
R/W ____ --'7

I---FETCH 1ST BYTE -----t---FETCH 2ND BYTE If-,.~----FETCH 3RD BYTE -----

Figure 12~13. Typical Instruction Cycle Timing (Three Byte Instruction)

M, M, M,

PO ___ -' '-___ --'-''-'''' ___ _"'-___ --''-'-'''--__ -J'-_---'_-'-''-''--__ _" '-___ --"'=-_-,-__

P1 ==~=>____<

os \'-__ --'f \'-__ --1f \,-__ ~f \,-__ ~I
R/W ____ --'7

I---FETCH 1ST BYTE --1 ___ FETCH 2ND BYTE---I----FETCH 3RD BYTE ---I----FETCH4TH BYTE--I

Figure 12·14. Typical Instruction Cycle Timing (Four Byte Instruction)

606

addressing w~de: The way in which the location of
an operand is specified. There are seven address­
ing modes: Register, Indirect Register, Indexed,
Direct Address, Indirect Address, Relative
Address, and Immediate.

auto-echo code: In this UART mode, the data
coming in on the Receive Data pin is reflected out
on the Transmit Data pin. The receive section
still listens to the receive data input; however,
the data from the transmit section goes nowhere.

base address: The address used, along with an
index and/or displacement value, to calculate the
effective address of an operand. The base address
is located in "a general-purpose register, the
Program Counter, or the instruction.

baud-rate generator: The UART has its own on-chip
programmable baud-rate gen~rator that consists of
two B-bit Time Constant registers that hold the
time constant value, a 16-bit Timer/Counter that
counts down, and a flip-flop at the output
producing a square wave.

bi-value code: A SuperB counter/timer operating
mode wherein the Time Constant and Capture
registers alternate in loading the counter.

byte: A data item containing B contiguous bits.
A byte is the basic data unit for addressing
memory and peripherals.

capture: A "capture on external event" feature of
the SuperB that takes a snapshot of the counter
when a certain event occurs.

data memory: A memory address space that can hold
only data to be read or written, not instruction
code; data memory is always external to the
SuperB.

Deskew Counter: A 4-bit counter in each hand­
shaking channel that is used to count processor
clocks between the time that valid data is avail­
able at the port and the handshake signal indi­
cates that data is available.

Direct Address (DA) addressin!:/' mode: In this
mode, the effective address is contained in the
instruction.

G~ossary

Direct ~ry Access (OMAhAn on-chip channel
that provides high-speed transfers of data direct­
ly between memory and peripheral devices.

exception: A condition or event that alters the
usual flow of instruction processing. The SuperB
CPU supports two types" of exception: reset and
interrupts.

extended bus tieing: The SuperB has the capabil­
ity of stretching the Data Strobe timing by 1, 2,
or 3 internal clock periods during external memory
accesses. The software can set up one timing for
program memory and a different timing for data
memory.

fESt interrupt processing: Fast interrupt
processing completes the interrupt servicing in 6
clock periods instead of the usual 22.

flag register: This register is used to suppl y
the status of the SuperB CPU at any time.

flag': A dedicated register that saves the
contents of the Flag register when a fast inter­
rupt occurs.

ganeral-purpnse registers: The 325 registers that
can be used as accumulators, address pointers,
index registers, data registers, or stack regis­
ters.

handshaking channels: The SuperB has two identi­
cal handshaking channels which operate in two
modes--"fuUy interlocked" or two-wire mode, and
"strobed" or single-wire mode.

Im=ediate (1M) addressing mode: In this mode, the
operand is contained in the instruction.

Indexed (X) addressing !::Ode: In this mode, the
contents of an index register are added to the
contents of a specified working register or work­
ing register pair, which holds the index value
desired.

Indirect Address (IA) addressing lOOde: In this
mode, the instruction specifies a pair of memory
locations and this se lected pair, in turn, con­
tains the actual address of the instruction to be
executed.

607

Glossary

Indirect Register (IR) addressing mode: In this
mode, the contents of the specified register or
register pair is the address of the operand.

Instruction Pointer: A 16-bit register that acts
as Program Counter for a threaded-code language,
such as Forth, or can be used ,in the fast inter­
rupt processing mode for' special interrupt
handling.

interrupt: An asynchronous exception generated by
a peripheral device that needs attention. The
interrupt structure of the SuperB contains 27 dif­
ferent interrupt sources, 16 vectors, and B
levels.

interrupt level: Interrupt levels provide the top
level of priority assignment and can be changed by
programming the Interrupt Priority register.

Interrupt Priority register (IPR): This register
assigns 192 different combinations of priority
when more than one interrupt level is pending.

interrupt source: An interrupt source is anything
that generates an interrupt, internal or external
to the SuperB.

interrupt vector: The vector number is used to
generate the address of a particular, interrupt
servicing routine.

local loopback mode: In this mode, the data out­
put from the transmit section of the UART is also
routed back to the receive section.

pipelining: Instruction pipelining is a c~mputer
design technique in which the inst ruction fetch
and execution cycles are overlapped. ,Thus, duri~g
the execution of the current instruction, the
opcode of the next instruction is fetched, result­
ing in high throughput.

Program Counter (PC): The 16-bit Program Counter
controls the sequence of instructions in the
currently executing program and is not an address­
able register.

progrlllll memory: A memory address space that can
hold code or data; program memory can be internal
or external to the SuperB.

read access: The type of memory access used by
the CPU for fetching data operands and instruc­
tions.

608

Register (R) addressing mode: In this mode, the
operand value is the contents of the specified
register or register pair.

register file: One of the three types of address
spaces supported by the SuperB CPU. Register file
address space is an internal register file compos­
ed of 325 B-bit wide registers that are logically
div ided into 32 working register groups of eight
registers each.

Register Pointer (RP): The two register pointers
are system registers that contain t~e base address
of the two active working register groups of the
register file.

Relative Address (RA) addressing IJOde: In this
mode, the displacement in the instruction is added
to the contents of the Program Counter to obtain
the effective address.

reset: A CPU operating state or exception that
results when a reset request is signaled on the
mrr line. A reset initializes the Program
Status registers.

51011 t~emory timing: An optional feature of the
SuperB in which normal external memory timing is
'slowed by a factor of two.

Stack Pointer (SP): A 16-bit register pair indi­
cating the top (lowest address) of the processor
stack and used by the Call instruction and
interrupts to hold the return address.

systec registers: System registers govern the
operation of the CPU and may be accessed using any
of the instructions that reference the register,
file using the Direct addressing mode.

Universal
(UART):

Asynchronous Receiver/Transmitter
A full duplex asynchronous channe 1 that

transmits and receives independently with 5 to B
bits per character, options for even or odd
parity, and an optional wake-up feature.

wake-up feature: A feature of the UART wherein
pattern match logic detects, a pre-sped Hed data
pattern at the receiver; the pattern can include
both the received character and a special wake-up
bit.

write access: The type of memory access used by
the CPU for storing data operands.

." . ~, . W:r \.:~'''~;r:r :'jr ·"II,,;r I;) "'·5~.,,~~·;,t!\·;S tc~~:'~!.~~j:j::.\~,1'1,,'"'t;~Y::"'f:~';'7~~WCi}~ ,. m """';', PBE'bllVl!N'A,RY:\'I1VIpO'R[VIA\Ti/0'N~'~i;"t:;": : 't" ni" , Zl.lo:'l.' 'I' '~:'ftP'rO:drr~rS'p~c!1"j'~i1ti'fn""""\' er:" 't' 1 ,,,',' ';

,. "," I', , r~' ~"'" ",".-\",(~"""'''''''4","·¥~J;FI<"~fii~'1\''''!''~·V''1,?,)'!'".~~,r~""",,~:w,.<~,,,,,,~'ff"""',!!~""""""If¥i."'.k-"'~''''-;'''-1'~~
, ~~,.(." '" 6- 1.",",- 1~ it\. "'t:,~,~ ~~Ii' I ~ ~~ _:,'/e "}~:&':tiJ:i1~4

June 1987

Features

General
Description

ZS®ZS611 MeU
Military Electrical Specification

• Complete microcomputer, 2K (8601) or 4K
(8611) bytes of ROM, 128 bytes of RAM, 32
I/O lines, and up to 62K (8601) or 60K (8611)
bytes addressable external space each for
program and data memory.

IllI 144-byte register file, including 124 general-,
purpose registers, four I/O port registers,
and 16 status and control registers.

III Average instruction execution time of 1.5 /Ls,
maximum of 1 /LS.

IiiI Vectored, priority interrupts for I/O,
counter/timers, and UART.

The Z8 microcomputer introduces a new level
of sophistication to single-chip architecture.
Compared to earlier single-chip micro­
computers, the Z8 offers faster execution; more
efficient use of memory; more sophisticated
interrupt, input/output and bit-manipulation
capabilities; and easier system expansion.

Under program control, the Z8 can be tailored
to the needs of its user. It can be configured as a

PORT 1
(BYTE

PROGRAMMABLE)
110 OR ADo-AD,

Flguro I. Pin Functiollll

PORT 2
(BITPRc)'
GRAMMABLE)
110

, Z8603 Prototyping Device with 2K EPROM Interface

1\1 Full-duplex UART and two programmable
8-bit counter/timers, each with a 6-bit
programmable prescaler.

E:l Register Pointer so that short, fast instruc­
tions can access any of nine working register
groups in 1 /LS.

C On-chip oscillator which accepts crystal or
external clock drive.

III Single + 5 V power supply-all pins TTL
compatible.

13, 12.5 MHz.

stand-alone microcomputer with 4K bytes
of internal ROM, a traditional microprocessor
that manages up to 124K bytes of external
memory, or a parallel-processing element in a
system with other processors and peripheral
controllers linked by the Z-BUS<!l bus. In all
configurations, a large number of pins remain
available for I/O.

+5V P30

XTAL2 P3,

XTAL1 P2,

P3, P2e

P30 P2,

IiRET P2.

RJW P2.

liS P2,

'" P2,

P3s P20

GND P3,

P3, P3.

POo P1,

PO, P1,

PO, P1,

PO. P1.

PO. P1.

PO, P1,

PO, P1,

PO, P1.

Flguro 2a. 'O·pln Dual·ln-Llno Pac:lzago (DIP).
Pin Assignments

609

Pin
Description

610

AS. Address Strobe (output, active Low).
Address Strobe is pulsed once at the begin­
ning of each machine cycle. Addresses output
via Port 1 for all external program or data
memory transfers are valid at the trailing edge
of AS. Under program control, AS can be
placed in the high-impedance state along with
Ports 0 and I, Data Strobe and Read/Write.

OS. Data Strobe (output, active Low). Data
Strobe is activated once for each external
memory transfer.

POO-P07' PIo-P17' P20-P27' P30-P37' I/O Port
Lines (input/outputs, TTL-compatible). These
32 lines are divided into four 8-bit I/O ports
that can be configured under program control
for I/O or external memory interface.

RESET. Reset (input, active Low). RESET ini­
tializes the Z8. When RESET is deactivated,

program execution begins from internal
program location OOOCH.

ROMless. (input, active LOW). This pin is only
available on the 44 pin versions of the Z8611.
When connected to GND disables the
internal ROM and forces the part to function as a
Z8681 ROMless Z8. When left unconnected or
pulled high to Vee the part will function
normally as a Z8611.

R/W. Re'ad/Write (output). R/W is Low when
the Z8 is writing to external program or data
memory.

XTALI. XTAL2. Crystal1, Crystal 2 (time-base
input and output). These pins connect a parallel
resonant 12.5 MHz crystal or an external single­
phase 12.5 MHz clock to the on-chip clock
oscillator and buffer.

Architecture 28 architecture is characterized by a flexible Three basic address spaces are available to
support this wide range of configurations:
program memory (internal and external), data
memory (external) and the register file (inter­
nal). The 144-byte random-access register file
is composed-of 124 general-purpose registers,
four I/O port registers, and 16 control and
status registers .

2037·003

I/O scheme, an efficient register and address
space structure and a number of ancillary
features that are helpful in many applications.

Microcomputer applications demand power­
ful I/O capabilities. The 28 fulfills this with 32
pins dedicated to input and output. These lines
are grouped into four ports of eight lines each
and are configurable under software control to
provide timing, status signals, serial or parallel
I/O with or without handshake, and an address/
data bus for interfacing external memory.

Because the multiplexed address/data bus is
merged with the I/O-oriented ports, the 28 can
assume many different memory and I/O con­
figurations. These configurations range from
a self-contained microcomputer to a micropro­
cessor that can address 124K (28601) or 120K
(28611) bytes of external memory.

OUTPUT

UART

COUNTERI
TIMERS

(2)

INTERRUPT
CONTROL

. To unburden the program from coping with
real-time problems such as seriaLdata com­
munication and counting/timing, an asynchro­
nous receiver/transmitter (UART) and two
counter/timers with a large number of userse­
ledable modes are offered on-chip. Hardware
support for the UART is minimized because one
of the on-chip timers supplies the bit rate.

XTAL AS

}
20.JS:OiBIT

za6ll
"-_~~_..!I 4096. 8·BIT

1/0
(BIT PROGRAMMABLE)

ADDRESS OR 1/0
(NIBBLE PROGRAMMABLE)

ADDRESS/DATA OR 1/0
(BYTE PROGRAMMABLE)

Flguro 3. Functional Bloch Diagram

611

Address
Spaces

612

Program Memory. The 16-bit program counter
addresses 64K bytes of program memory space.
Program memory can be located in two areas:
one internal and the other external (Figure 4).
The first 4096 (Z8611) bytes consist of on-chip
mask-programmed ROM. At addresses
4096 (Z8611) and greater, the Z8 executes
external program memory fetches.

The first 12 bytes of program memory are
reserved for the interrupt vectors. These loca­
tions contain six l6-bit vectors that correspond
to the six available interrupts.

Data Memory. The Z8 can address 60K (Z86ll)
bytes of external data memory beginning at
location 4096 (Z8611) (Figure 5). External data
memory may be included with or separated

65 535

Z1III11 4006
,",,5

Location of
first byte of
instruction

EXTERNAL
ROM OR RAM

ON·CHIP
ROM

executed
affer reset

;, ~------------

Interrupt
Vector

(Lower Byto)

Interrupt
Vector

(Upper Byte)

11 I.
•
8

7

8

5i'o-

4i<'
..... 3

2

•

lADS

IRQS

IRO •

IRQ4

IR03

IRC3

IRQ2

IRQ2

IRQ1

IRQ1

IROO

IROO

Flguro 4. Program Memory Map

LOCATION

255

254

253

252

251

250

24.

248 ..,
248

245

244

243

242

241

240

127

STACK POINTER (BITS 7~O)

STACK POINTER (BITS 15-8) ,

REGISTER POINTER

PROGRAM CONTROL FLAGS

INTERRUPT MASK REGISTER

INTERRUPT REQUEST REGISTER

INTERRUPT PRIORITY REGISTER

PORTS 0-1 MODE

PORT 3 MODE

PORT 2 MODE

TO PRESCALER

TIMER/COUNTER 0

11 PRESCALER

TIMER/COUNTER 1

TIMER MODE

SERIAL tiD

NOT
IMPLEMENTED

GENERAL· PURPOSE
REGISTERS

PORT 3

POR12

PORT 1
PORTO

Figure 6. The Register File

IDENTIFIERS

SPL

SPH

RP

FLAGS

IMR

IRQ

IPR

P01M

P3M

P2M

PREO

T.
PRE1

Tl

TMR

510

P3

P2

PI

PO

from the external program memory space.
DM, an optional I/O function that can be
programmed to appear on pin P34, is used to
distinguish between data and
program memory space.

Register File. The 144-byte register file
includes four I/O port registers (RO-R3), 124
general-purpose registers (R4-RI27) and 16
control and status registers (R240-R255). These
registers are assigned the address locations
shown in Figure 6.

Z8 instructions can access registers directly
or indirectly with an 8-bit address field. The Z8
also allows short 4-bit register addressing using
the Register Pointer (one of the control regis­
ters). In the 4-bit mode, the register file is

EXTERNAL
DATA

MEMORY

1------------f:g:ZIlO11

NOT ADDRESSABLE

Figure S. Data Memory Map

--11 '1', fS r, 000 0
2 55
53

40

2

2

The upper nibble of the register file address
~ provided by the register pointer specifies

--
--
--
--
r-
f---

f---

'---

the active wonting-register group.

127

SPECIFIED WORKIN(&. -' -REGISTER GROUP

15

~------------3
110 PORTS 0

Figure 7. The Register Pointe.

The lower
nibble of
the register
file address
provided by
the instruction
points to the
specified
register.

Serial
Input/
Output

Counter/
Timers

divided into nine working-register groups, each
occupying 16 continguous locations (Figure 6).
The Register Pointer addresses the starting
location of the active working-register group
(Figure 7).
Stacks. Either the internal register file or the
external data memory can be used for the stack.

Port 3 lines P30 and P37 can be programmed as
serial I/O lines for full-duplex serial asynchro­
nous receiver/transmitter operation. The bit rate
is controlled by Counter/Timer 0, at 12 MHz.

The Z8 automatically adds a start bit and two
stop bits to transmitted data (Figure 8). Odd
parity is also available as an option. Eight data
bits are always transmitted, regardless of parity

Transmitted Data
(No Parity)

LSTART BIT

'------EIGHT DATA BITS

TWO STOP BITS

Transmitted Data
(With Parity)

T I LSTART BIT

L
_____,.. __ SEVEN DATA OITS

. 000 PARITY

TWO STOP BITS

A l6-bit Stack Pointer (R254 and R255) is used for
the external stack, which can reside anywhere in
data memory between locations 2048 (8601) or
4096 (8611) and 65535. An 8-bit Stack Pointer
(R255) is used for the internal stack that resides
within the 124 general-purpose registers
(R4-RI27).

selection. If parity is enabled, the eighth bit is
the odd parity bit. An interrupt request (IRQ4) is
generated on all transmitted characters.

Received data must have a start bit, eight data
bits and at least one stop bit. If parity is on, bit 7
of the received data is replaced by a parity error
flag. Received characters generate the IRQ3
interrupt request.

ROCGlved Data
(No Parity)

1~1~1~1~1~1~1~:~~lsij

I LSTARTBIT

'------E1GHT DATA BITS

'----------ONE STOP BIT

Rocolvod Data
(With Parity)

II LSTART BIT

L _____ --' __ :::~~ ~~:~:I:~Q
L. ---------ONE STOP BIT

Figure O. Serial Data F ormata

The Z8 contains two 8-bit programmable
counter/timers (To and TI), each driven by its
own 6-bit programmable prescaler. The T I
prescaler can be driven by internal or external
clock sources; however, the To prescaler is
driven by the internql clock only.

The 6-bit prescalers can divide the input fre­
quency of the clock source by any number from
1 to 64. Each pres caler drives its counter, which
decrements the value (l to 256) thathas been
loaded into the counter. When the counter
reaches the end of count, a timer interrupt
request-IRQ4 (to) or IRQs (TI)-is generated.

The counters can be started, stopped,
restarted to continue, or restarted from the
initial value. The counters can also be pro­
grammed to stop upon reaching zero (single-

pass mode) or to automatically reload the initial
value and continue counting (modulo-n contin­
uous mode). The counters, but not the presca­
lers, can be read any time without disturbing
their value or count mode.

The clock source for T I is user-definable and
can be the internal microprocessor clock
divided by four, or an external signal input via
Port 3. The Timer Mode register configures the
external timer input as an external clock, a
trigger input that can be retriggerable or non­
retriggerable, or as a gate input for the internal
clock. The counter/timers can be programmably
cascaded by connecting the To output to the
input of T I. Port 3 line P36 also serves as a timer
output (TOUT) through which To, TI or the inter­
nal clock can be output.

613

I/O Ports

614

The Z8 has 32 lines dedicated to. input and
eutput. These lines are greuped into. feur perts ef
eight lines each and are cenfigurable as input,
eutput er address/data. Under seftware centrel,
the perts can be pregrammed to. previde address

Port 1 can be pregrammed as a byte I/O pert'
er as an addressldata pert fer interfacing
external memery. When used as an I/O pert, Pert
1 may be placed under handshake cen-
trel. 'In this cenfiguratien, Pert 3 lines P33 and
P34 are used as the handshake centrels RDY 1
and DAV 1 (Ready and Data Available).

Memery lecatiens greater than 2048 (Z8601) er
4096 (Z8611) are referenced threugh Pert 1. To.
interface external memery, Pert I must be
pregrammed fer the multiplexed Address/Data
mede. If mere than 256 externallecatiens are
required, Pert 0 must eutp~t the additienal
lines.

Pert 1 can be placed in the high-impedance
state aleng with Pert 0, AS, DS and RIW,

Port 0 can be pregrammed as a nibble 1/0
pert, er as an address pert fer interfacing
external memery. When used as an I/O pert,
Pert 0 may be placed under handshake cen­
trel. In this cenfiguratien, Pert 3 lines P32 and
P35 are used as the handshake centrels DAVo
and RDYo. Handshake signal aSSignment is
dictated by the 1/0 directien ef the upper nibble
P04-P07·

Fer external memery references, Pert 0 can
previde address bits As-All (lewer nibble) er
As-A15 (lewer and upper nibble) depending en
the required address space. If the address range
requires 12 bits er less, the upper nibble ef Pert 0
can be pregrammed independently as 1/0 while

Port 2 bits can be pregrammed independently
as input er eutput. The pert is always available
fer 1/0 eperatiens. In additien, Pert 2 ~an be
cenfigured to. previde epen-drain eutputs.

Like Perts 0 and I, Pert 2 may also. be .
placed under handshake centreI'. In this cen­
figuratien, Pert 3 lines P31 and P3s are used as
the handshake centrels lines DAV 2 and RDY 2.
The handshake signal assignment fer Pert 3 lines
P31 and P3s is. dictated by the directien (input er
eutput) assigned to. bit 7 ef Pert 2.

Port 3 .Jines can be cenfigured as I/O er
centrellines. In either.case, the directien ef the
eight lines is fixed as feur input (P30-P33) and
feur eutput (P34-P37).Fer serial 1/0, lines P30
and P37 are pregrammed as serial in and serial
eut respectively. '

Pert 3 can also. previde the fellewing cen­
trel functiens: handshake fer Perts 0, 1 and 2
(DAVand RDY); feur external interrupt .
request signals (IRQO-IRQ3): timer input and'
eutput signals (T~nd TOUT) and Data
~emery Select (DM).

eutputs, timing, status signals, serial 1/0, and
parallel I/O with er witheut handshake. All perts
have active pull-ups and pull-dewns cempatible
with TTL leads.

allewing the Z8 to. share cemmen resources in '
multiprecesser and DMA applicatiens. Data
transfers can be centre lied by assigning P33 as a
Bus Acknewledge input and P34 as a Bus
Request eutput. '

Z8611

Meu

PORTt
(OOO.A"-.o,,

Figure 9a. Port 1

the lewer nibble is used fer addressing. Wh,en
'Po.rt 0 nibbles are defined as address bits, they
can be set to. the.highimpedance state aleng with
Pert 1 and the centrel signals AS, DS and RIW.

j PORT 0
(110 OR A.-AI,)

Figure 9b. Port 0

I-'~
l HANDSHAKE CONTROLS

i5AV2 AND RDY2
(pO, AND P3,)

Figure 9c:. Port 2

PORT.
Z8611 (00 a. CONTROL)

MCU

Figure 9d. Port 3

Interrupts

Clock

The Z8 allows six different interrupts from
eight sources: the four Port 3 lines P30-P33,
Serial In, Serial Out, and the two counter/timers.
These interrupts are both maskable and
prioritized. The Interrupt Mask register globally
or individually enables or disables the six inter­
rupt requests. When more than one interrupt is
pending, priorities are resolved by a pro­
grammable priority encoder that is controlled by
the Interrupt Priority register.

All Z8 interrupts are vectored. When an inter­
rupt request is granted, an interrupt machine

The on-chip oscillator has a high-gain,
parallel-resonant amplifier for connection to a
crystal or to any suitable external clock source
(XTALl = Input, XTAL2 = Output).

The crystal source is connected across XTALl
and XTAL2, using the recommended capacitors

cycle is entered. This disables all subsequent
interrupts, saves the Program Counter and status
flags, and branches to the program memory
vector location reserved for that interrupt. This
memory location and the next byte contain the
IS-bit address of the interrupt service routine for
that particular interrupt request.

Polled interrupt systems are also supported. To
accommodate a polled structure, any or all of the
interrupt inputs can be masked and the Interrupt
Request register polled to determine which of the
interrupt requests needs service.

(C 1 :S IS pF) from each pin to ground. The
specifications for the crystal are as follows:

Dr AT qut, parallel resonant
fiJ Fundamental type, 12.5 MHz maximum
III Series resistance, Rs :S 100 0

615

Instruction
Set

, Notation

616

Addressing Modes. The following notation is used
to describe the addressing modes and instruction
operations as shown in the instruction summary.

IRR

Irr
X

" DA
RA
1M
R

Indirect register pair or indirect working· register
pair address
Indirect working-register pair only
Indexed address
Direct address
Relative address
Immediate
Register or working-register address
Working-register address only

IR Indirect-register or indirect working-register
address

If Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in
describing the instruction set. '
cist Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack pointer (control registers 254~255)
PC Program counter
FLAGS Flag register (control register 252)

RP Register pointer (control register ·253)

IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol
"-It. For example,

dst - dst + src
indicates that the source data is added to the
destination data and the result is stored in the
destination location. The notation "addr(n)" is used
to refer to bit "n" of a'given location. For example,

dst (7)
refers to bit 7 of the destlnation operand.

Flags. Control Register R252 contains the following
six flags:

C Carry flag
Z Zero !lag
S Sign !lag
V Overflow flag
D Decimal-adjust flag
H Half-carry flag

Affected flags are indicated by:

0 Cleared to zero
Set to one

* Set or cleared according to operation
Unaffected

X Undefined

Condition
Codes

Instruction
Formato

Valuo

1000
0111
1111
0110
1110
1101
0101
0100
1100
0110
1110
1001
0001
1010
0010
1111
0111
1011
0011
0000

Mnomonic

C
NC
Z

NZ
PL
MI
OV

NOV
EO
NE
GE
LT
GT
LE

UGE
ULT
UGT
ULE

...

Always true
Carry
No carry
Zero
Not zero
Plus
Minus
Overflow
No overflow
Equal
Not equal

Moaning

Greater than or equal
Less than
Greater than
Less than or equal
Unsigned greater than or equal
Unsigned less than
Unsigned greater than
Unsigned less than or equal
Never true

ope

ope

CCF. DI, EI, IRET. NOP,
ReF, RET, SCF

INCr

One-Byte tllSlructioos

ope MODE eLR. CPL, DA. DEC, ope MODE

dstlsrc OR It 1 1 01 dsUsrc I ~~~:'·~~~R~~~A.POP.
RRC, SRA. SWAP .. ,

ope I t---. ...:.::.::-,--! OR 11 t 1 01 dst
JP, CALL (Indirect)

ope MODE .. ,
ope SRP

VALUE

VALUE
MODE ope .. , ope MODe ADC, ADD, AND,

.11 CPo OR, sac. SUB,
TeM, TM, XOR

MODE 'ope LO, LDE. LOEI,
dstlsrc sreld., LDC, LOCI

MODe ope
dstlsrc

ADDRESS

dstlslc ope LD
srelds' OR It 1 1 01 ope

DA,

DA, ... I ope LD
VALUE ope

DA,

I dstlCC R~ ope DJNZ.JR OA,

Two-Byte IIIIItructioDS

Figure 12. Instruction Formals

OR
OR

C = 1
C = 0
Z = 1
Z = 0
5 = 0
5 = I
V = 1
V = 0
Z = I
Z = 0

Flagu Sol

(5 XOR V) = 0
(5XOR V) = 1
[Z OR (5 XOR V» = 0
[Z OR (5 XOR V» = 1
C=O
C = I
(C = 0 AND Z = 0)
(COR Z) = I

ADC, ADD. AND. CP,
tIl 0 LO, OR, sac. SUB.

TCM, TM. XQR
1 1 1 0 ...

ADC, ADD, AND, CP,

OR I' 1 1 01 .11 LO, OR, S8C, SUB.
TeM, TU, XOR .

LD
OR 11 1 0
OR tIl a ...

LD

J'

CALL

617

Instruction laslructloD Addr Mode Opcode ' Flagll Affected laslructloD AddrMode Opcode Flagll Affected

Summary aDd OporatioD dill
Byte aDd OperatioD dill

Byte
IIrC (Hox) CZSVDH ore (HDx) CZSVDH

ACe dst,src (Note I) 10 ·0· LDE dst,src r Irr 82 ------
dst-dst+src+C dst - src Irr 92

ADD dst,src (Note I) 00 o • LDEI dst,src Ir Irr 83 ------
dst - dst + src dst - src Irr Ir 93

AND dst,src (Note I) 50 - • • 0 - -
r - r + I; rr - rr + I

dst - dst AND src NOP FF ------

CAU dst DA D6 ------ OR dst,src (Note I) 40 - .. • 0 - -
SP-SP-2 IRR D4 dst - dBt OR src
@SP - PC; PC - dst

POP dst R 50 ------
CCF EF * - - - - - dst - @SP IR 51
C - NOTC SP - SP + I

CLR dst R BO ------ PUSH Brc R 70 ------
dBt - 0 IR BI SP-SP-I; @SP';"src IR 71

COM dst R 60 • 0 - - RCF CF 0-----
dst - NOT dst IR 61 C -,0

CP dst,src (Note I) AD - - RET AF ------
dst - src PC-@SP; SP-SP+2

DA dst R 40 • X - - RL dst ~ R 90
dst - DA dst IR 41 IR 91

DEC dst R 00 - * .*-- RLC dst LiII=E:3J R 10
dst-dst-I IR 01 c t 0 IR 11

DECW dst RR 80 -***-- RR dst L:m '-E:::!fJ I~ EO · . .
dst-dst-I IR 81 EI

RRC dst cm:::::a R CO
DI, t , 0 IR CI
IMR (7) - 0 8F ------ SBC dst,src (Note I) 30 •• I .
DJNZ r,dst RA rA

dst-dst-src-C ------
r - r - I r=O-F SCF DF I - - - - -
if r '* 0 C-l

PC-PC+dst
SRA dst 4IJ~I~ DO Range: + 127, -128 • ... 0 - -

DI
EI 9F ------ SRP Brc 1m 31 ------
IMR(7) - I RP - src
INC dst rE - - - SUB dBt,src (Note I) 20 • 1 .
dBt-dBt+1 r=O-F dst - dBt - src

R 20
IR 21 SWAPdst~ R FO X X - -

IR FI
INCW dst RR AO - - -
dst - dst + IR Al TCM dst,src (Note I) 60 -*·0--

IRET BF * * ..
(NOT dst) AND ore

FLAGS - @SP; SP - SP + I 1M dBt, Brc (Note I) 70 -**0--
PC-@SP; SP-SP+2; IMR(7)-1 dst AND src

JP cc,dst DA cD ------ XOR dst,sre (Note I) BO ~ . ·0--
il cc is true c=O-F dst - dBt XOR src

PC - dst IRR 30

JR cc,dst' RA cB ------ Not. I
if cc is true, c=O-F

These instructions have an identical set of addressing PC-PC+dst
,Range: + 127, -128 modes. which are encoded for brevity. The first opcode

nibble 1s found in the instruction set table above. The
LD dst,ore r 1m rC ------ second nibble Is expressed symbolically by a 0 In this
dst - arc r R r8 table, and its value is found in the following table to the

R r9 right of the applicable addressing mode pair.
r=O-F For example, t~ determine the opcode of a ADC

r X C7 instruction use the addressinq modes r (destination) and

X r D7 Ir (source). The result Is 13.

r Ir E3
Ir r F3
R R E4 Addr Modo Lower
R IR E5 Opcode Nibble
R '1m E6 dill ore
IR 1m E7

111 IR R F5

LOC. dst,sre r Irr C2 ------ Ir lID
dst - src Irr D2 R R ~
LOCI dst,src Ir Irr C3 ------ R ' IR @]
dst - src Irr Ir D3 R 1M [§]
r - r + I; rr - rr + 1

IR 1M III

618

Registers R240SI0
Soriall/O Registor
(FOH; ReadIWrite)

'-----SERIALDATAIDa = LSD)

R241 TMR
Timer Mode Register

(FIH; ReadIWrite)

NOT USED = DO -.J ' 1 = LOAD fa

~~ g~~ : ~~ 0 "" DISABLE To COUNT

To"MODES j ~~O' NO FUNCTION

INTERNAL CLOCK DUY :0 11 1 = ENABLE To COUNT

T MODES 0 .. NO FUNCTION
EXTERNAL CLOCK lN~UT = 00 1 = LOAD T,

GATE INPUT = 01 0 = DISABLE T, COUNT
TRIGGER INPUT"" 10 1 ... ENABLE T, COUNT

(NON·RETRIGGERABlE) ,
TRIGGER INPUT .. 11

IRETRIGGERABLE)

R242 TI
Counter Timor I Reglstor

(F2H; ReadlWrite)

T, INITIAL VALUE (WHEN WRITTEN)
'-----(RANGE t -256 DECIMAL 01-00 HEX)

T, CURRENT VALUE (WHEN READ)

R20 PREI
Presc:aler I Register

(F3H; Write Only)

~LCOUNTMODE
o .. Tl SINGLE·PASS
1 .. T, MODULO.N

CLOCK SOURCE
1 :::: T 1 INTERNAL
o = !1 EXTERNAL TIMING INPUT

IrIM) MODE

PRESCALER MODULO
(RANGE: 1·64 DECIMAL
01-00 HEX)

R244 TO
Counter/Timor 0 Rogistor

(F4H; ReadlWrite)

To INITIAL VALUE (WHEN WRITTEN)
'------"(RANGE: 1·258 DECIMAL 01-00 HEX)

To CURRENT VALUE (WHEN READ)

R245 PREO
Presc:aler 0 Register
(F~; Write Only)

1~1~1~1~I~i~!~I~1 13LCOUHTMODE
o = To SINGLE·PASS
1 = To MODULO·N

RESERVED

~R~e:8::L,E.:~M~:C~~'iL
01-00 HEX)

R246 P2M
Port 2 Modo Register

(F6j:j; Write Only)

Pfo-P2, 110 DEFINITION
'---- 0 DEFINES BrT AS OUTPUT

1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register

(F7H; Write Only)

BELOPOAT2PULLOUPSOPENDRAIH
1 PORT 2 PULL-UPS ACTIVE

RESERVED

o P32 '" INPUT P35 = OUTPUT
1 P32 '" tiAV&RDYO P35 = RDYOIOffl

, ~ ~ P33 = INPUT P34 = OUTPUT

1 0}P33 '" INPUT P34 '" OR
_ 1 1 P33 = i5JV'l/RDY1 P34 :: RDY1/0m

o P31 = lli!Y,T (TltJ P38 = OUTPUT (TOUT)
1 P31 = DAV2IRDY2 P38 '" RDY2IC)~

'--------~:: ~ ~:R~lL IN :;~ ~ ~~~~~T OUT

'-_______ ..,..~ ~:::~ g:F

Figura 13. Control Registers

619

Registers
(Continl.!ed)

R248 POIM
Port 0 aDd 1 Mode Register

(F8H; Write Only)

OUTPUT ,.. 00 -.J Lao .. OUTPUT
INPUT = 01 01 • INPUT

Au·AIS ." 1)(. 1)(.. Ae~An

P •• _PO,MODE:] ~LP"_P.'MODE
EXTERNAL MEMORY TIMING . STACK SELECTION

NORUAL • 0 0 .. EXTERNAL
EXTENDED .. 1 1 = INTERNAL

P10·P1, MODE
00 ,_ BYTE OUTPUT
01 = BYTE INPUT
10 ." ADo-AD,
11 .. HIGH·IMPEDANCE ADo-ADr.

is, Os, AtW, "'-Au. A,:2-A15
IF SELECTED

R249IPR
Interrupt Priority Register

(F%; Write Only)

ID,! D,: D, D.: D, :D, ,.g, i D, I

~.:J 1·1 II' ' M ... _
RESERVED = 000

IRQ3, IRQS PRIORITY (GROUP A) C :> A :> B = 001
0=IRQ5:>IRQ3 A:>8>C=010
1 = IRQ3 :> IRQ5 A :> C :> B = 011

8 :> C :> A ." 100
IRao, IRQ2 PRIORITY (aROUP B) c :> B > A = 101

o = IRQ2 > IRDO B:> A:> C = 110
1 '" IROO > IRQ2 RESERVED = 111

IRQ1, IRQ4 PRIORITY (GROUP C))
o .: IRQ1 > IRQ4 ,
1 ::: IRQ4 > IRQ1

R2somQ
Interrupt Request Register

(FAH; ReadIWrite)

l~i~:~i~f~I~I~!~1

RESERVED :::r- L=-: tROO .. ~ INPUT (00 .. IRQO)
I' IRQl .. P33 INPUT

IRQ2 = P31 INPUT
IRQ3 .. P30 INPUT. SERIAL INPUT
IRQ4 .. To. ,SERIAL OUTPUT
IRQS .. T1

R251lMR
Interrupt Mask Register

(FBH; ReadIWrlte)

.IIL-
____ L=-: __ -,' ENABLES IRCO-IRQS 100·,RCO,

RESERVED

'--------1 ENABLES INTERRUPTS

REGISTER
POINTER

Figure 13. Control Registers (Continued)

620

R252 FLAGS
Flag Register

(FCH; ReadIWrite)

~~~
I LUSERFLAGFl 

. LUSER FLAG F2 

HALF CARRY FLAG 

. 

DECIMAL ADJUST fLAG 

OVERFLOW FLAG 

SIGN FlAG 

ZERO FLAG 

CARRY FLAG 

R253 RP 
Register Pointer 
(F~; ReadIWrite) 

LDON'TCARE 

R254 SPH 
Stac:k Pointer 

(FEH; ReadIWrite) 

R255 SPL 
Stac:k Pointer 

(FFH; ReadIWrite) 

IL--_ STACK POINTER LOWER 
BYTE fSPD~SPP) 



Opcode 
Map 

o 

:I 

3 

4 

5 

.. B 
0 

0 
~ 7 
:9 z 
~ 
Do 0 
Do 

t:) 

9 

Ii 

B 

C 

0 

E 

F 

o 

6,5 
DEC 

HI 

6,5 
RLC 

HI 

6,5 
INC 
Rl 

8,0 
JP 

lRRl 

8,5 
OA 
HI 

10,5 
POP 

HI 

6,5 
COM 

HI 

10112,1 
PUSH 

H. 

10,5 
OECW 

HHI 

6,5 
RL 
HI 

10,5 
!NCW 

HHI 

6,5 
CLR 
HI 

6,5 
RRC 
HI 

6,5 
SM 

HI 

6,5 
RR 
HI 

8,5 
SWAP 

HI 

6,5 
DEC 
lRl 

6,5 
RLC 
lRl 

6,5 
INC 
lRl 

6,1 
SRP 

1M 

8,5 
OA 
lRl 

10,5 
POP 
lRl 

6,5 
COM 

lRl 

12114,1 
PUSH 

lR. 

10,5 
OECW 

lRl 
6,5 . 

RL 
lRl 

10,5 
INCW 

lRl 

6,5 
CLR 
lRl 

6,5 
RRC 
lRl 

6,5 
SM 
lRl 

6,5 
RR 
lRl 

8,5 
SWAP 

lRl 

:I 3 

6,5 6,5 
llDD llDD 
II, [2 n,Iu 
6,5 6,5 

llDC llDC 
n,12 II, III 

6,5 6,5 
SUB SUB 
n,l2 r},Irz 

6,5 6,5 
SBC SBC 
II. r:z Il,Il:Z 

6,5 6,5 
OR OR 
n.r: Il,Irz 

6,5 6,5 
AND AND 
II, [2 ll,Irz 

6,5 6,5 
TCM TCM 
n,I:Z Il,I12 

6,5 6,5 
TM TM 

II, 12 ll,I12 

12,0 18,0 
LDE LDEI 

n,IIll III,rIll 

12,0 18,0 
LOE LDEI 

lIn IU/lrr! 

6,5 6,5 
CP CP 

II,12 Il,Irz 

6,5 6,5 
XOR XOR 
II, f3 Il.lu 

12,0 18,0 
LDC LDCI 

n , b I 2 Irl,Irr2 

12,0 18,0 
LDC LOCI 

12. lIn Iu"Irrl 

6,5 
LD 

Illlu 

6,5 
LD 

Ill, 12 

Lowor Nlbblo (Holt) 

5 G 7 o 9 D C D E F 

10,5 10,5 10,5 10,5 6,5 6,5 12110,5 12110,0 6,5 12110,0 6,5 
llDD llDD llDD llDD LD LD OJNZ JR LD JP INC 
H.,Hl lR.,Hl Hl,lM lRl,lM [1,R2 I2,Rl n,RA cc,HA n,lM cc,DA n 
10,5 10,5 10,5 10,5 I---

llDC llDC llDC llDC 
H.,Hl lR.,Hl Hl,lM lRl,lM r---
10,5 10,5 10,5 10,5 
SUB SUB SUB SUB 
H.,Hl lR.,Rl Hl,lM lRl,lM 

I---
10,5 10,5 10,5 10,5 
SBC SBC SBC SBC 
R.,Rl lR.,Hl Hl,lM lRl,lM 'I---
10,5 10,5 10,5 10,5 
OR OR OR OR 

H.,Hl lR.,Hl Hl,lM lRl,lM r---
10,5 10,5 10,5 10,5 
AND AND AND AND 
R.,Hl lR.,Hl Hl,lM lRl,lM r---
10,5 10,5 10,5 10,5 
TCM TCM TCM TCM 
H.,Hl lR.,Hl Hl,lM lRl,lM 

I---
10,5 10,5 10,5 10,5 
TM TOO TOO TM 

H2,Hl lR.,Hl Hl,lM IHl,1M 
r---

6,1 
01 
~ 

6,1 
EI 

10,5 10,5 10,5 10,5 
r---

14,0 
CP CP CP CP RET 

H.,Hl lR.,Hl Hl,lM lRl,lM 
I---

10,5 10,5 10,5 10,5 16,0 
XOR XOR XOR XOR IRET 
H.,Hl IR:z.RI Hl,lM lRl,lM 

'---
10,5 6,5 
LD RCF 

nil:. Rz -
20,0 20,0 10,5 6,5 

CALL" CALL LD SCF 
lRHl DA r2,::, HI -
10,5 10,5 10,5 10,5 

6,5 
LO LD LD LO CCF 

H.,Hl lR.,Hl Hi,IM IHl,1M -
10,5 6,0 
LD NOP 

H.,lRl 

\. --v== ., '= ..I "-
ByloD por 'V" "'==-~-"'v-"'~~---"';"" -- --
IDIluuctioD 2 3 

LowCl' 
Opcodo 
Nlbblo 

E:tOCUliOD ~ Plpollno 
CyclC!l CyclC!l 

Upper 
Opcodo-A Mnemonic 

Nlbblo 

Fint 
Operand 

"'2·byte instruction; fetch cycle appears as a 3·byte instruction 

:I 

LagoDd: 
R = 8-Blt Addr.so 
r = 4-Blt Addre .. 
R I or", = Dst Address 
H, or .. = Src Addresa 

SequODCO: 

3 

Opcode, First Operand, Second Operand 

Note: The blanlt areas are not defined_ 

621 



Absolute 
Maximum 
Ratings 

Standard 
Test 
Conditions 

DC 
Character-
istics 

622 

Voltages on all pins 
with respect to GND .......... -0.3 V to +7.0 V 
Operating Ambient 
Temperature ........ See Ordering Information 

Storage Temperature ........ -65°C to + 150 °C 

The DC characteristics listed below apply for 
the following standard test conditions, unless' 
otherwise noted. All voltages are referenced to 
GND. Positive current flows into the reference 
pin. 

Standard conditions are: 

o +4.75 V :S Vee :S +5.25 V 

o GND = 0 V 

o O°C :S TA :S +70°C 

Symbol Parametor Min Max 

VeH Clock Input High Voltage 3.8 Vee 

VeL Clock Input Low Voltage -0.3 0.8 

V1H Input High Voltage 2.0 Vee 

VIL Input Low Voltage -0.3 0.8 

VRH Reset Input High Voltage 3.8 Vee 

VRL Rese! Input Low Voltage -0.3 0.8 

VOH Output High Voltage 2.4 

VOL Output Low Voltage 0.4 

IlL Input Leakage -10 10 

IOL Output Leakage -10 10 

IIR Reset Input Current -50 

Icc Vee Supply Current 150 

Stresses greater than those listed under Absolute Maxi· 
mum Ratings may cause permanent damage to the device. 
This is a stress rating only; operation of the device at any 
condition above those indicated in tr.e operational sections 
of- these specifications is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

+5V 

2.11( 

Figure 14. Test Load 1 

Unit COndition 

V Driven by External Clock Generator 

V Driven by External Clock Generator 

V 

V 

V 

V 

V IoH = -250 p.A 

V IoL = +2.0 rnA 

p.A 0 V:s VIN :S +5.25 V 

p.A 0 V:s VIN :S +5.25 V 

p.A Vee = +5.25 V, VRL = 0 V 

rnA 



AC Characteristics 

External I/O 
or Memory 
Read and 
Write Timing PORT 0, 

DiI 

POATi 

iii 
(READ) 

__ ~~~~ __ ~~~I~------~0r---~Ir-__ +-__ _ 

PORT 1 

iii 
(WRITE) 

Do .. Dr OUT 

Figuro 15. External I/O or Memory Road/Writo 

No. Symbol Parameter 

1 TdA(AS) Address Valid to AS t Delay 

2 TdAS(A) AS t to Address Float Delay 

3 TdAS(DR) AS t to Read Data Required Valid 

4 TwAS AS Low Width 

5 TdAz(DS) Address Float to DS ~ 

6-TwDSR DS (Read) Low Width 

7 TwDSW DS (Write) Low Width 

8 TdDSR(DR) DS ~ to Read Data Required Valid 

9 ThDR(DS) Read Data to i'5S t Hold Time 

10 TdDS(A) DS t to Address Active Delay 

11 TdDS(AS) DS t to AS ~ Delay 

12 - TdR!W(AS) -- RlWValid to AS t Delay 

13 TdDS(RIW) i'5S t to RIW Not Valid 

14 TdDW(DSW) Write Data Valid to DS (Write) ~ Delay 

15 TdDS(DW) i'5S t. to Write Data Not Valid Delay 

Min Max Notes .. tO 

35 

45 

55 

0 

185 

110 

0 

45 

55 

30 

35 

35 

45 

220 

2,3 

2,3 

1,2,3 

q,3 

-------1,2,3 

130 

1,2,3 

1,2,3 

2,3 

2.3 

-------2,3 

16 TdA(DR) Address Valid to Read Data Required Valid 255 

2,3 

2,3 

2,3 

1,2,3 

2,3 17 TdAS(DS) AS t to DS ~ Delay 

NOTES: 
1. When using extended memory timing add 2 TpC. 
2. Tbll:ing numbers given are for minimum TpC,' 
3. See' clock cycle time dependent characteristics table. 

55 

t Test Load I. 
• AU timing references use 2.0 V lora logic "I" and 0.8 V fora logic '0". 
* All units in nanoseconds (ns). 

623 



AC Characteristics 

Additional 
Timing 
Table 

No. Symbol 

TpC 

2 TrC,TlC 

3 TwC 

CLOCK 

T,. 

IRQN 

Figure 16. Additional Timing 

Parameter Min Max Notes· 

Input Clock Period 80 1000 

Clock Input Rise And Fall Times 15 

Input Clock Width 26 

4 TwTinL Time InputLow Width 70 2 

5-TwTinH --- Timer Input High Width -----------------3TpC --------- 2 

6 TpTin Timer Input Period 8TpC 2 

7 TrTin,TfTin Timer Input Rise And Fall Times 100 2 

8a TwIL Interrupt Request Input Low Time 70 2,3 

8b TwIL 

9 TwIH 

NOTES: 

Interrupt Request Input Low Time 

Interrupt Request Input High Time 

1. Clock timing references uses 3.8 V for a logic "1" emd 0.8 V for 
a logic "0". 

2. Timing reference uses 2.0 V for a logic "1" dnd 0.8 V for 
a logic "0". ' 

Memory Port 
Timing 

No. Symbol 

2 

NOTES: 

TdA(DI) 

ThDI(A) 

1. Test Load 2. 

DON'T CoUll 

Parameter 

Address Valid to Data Input Delay 

Data In Hold time 

2. This is a Clock-eyde-Dependent parameter. For clock frequencies 
other than the maximum, use the following formula: 5 TpC - 95 

624 

3TpC 2.4 

3TpC 2,3 

3. Interrupt request via Port 3 (P3r-P33). 
4. Interrupt request via Port 3 (P30)' 
.. Units in nanoseconds (ns). 

ADDRESS VALID 

DATA IN VALID 

Figure 17. Memory Port Timing 

Min 

a 

Max 

320 

"Units are nanoseconds unless otherwise specified. 

Notes· 

1,2 



Handshalte 
Timing 

No. Symbol 

TsDI(DAV) 

2· ThDI(DAV) 

OA~;'~; __________ ~~-'----~-:;;.".: .~ __________ _ 
ROY 

'{OUTPUT) 

Flguro 18a. IDput Haudshaho 

DATA OUT VALID DATA OUT ~ 
--~~----------------

__ )!=~0 ~g~~ 
DAV 

(OUTPUT) 

ROY 
(INPUT) 

Parameter 

Data In Setup Time 

Data In Hold time 

Figure l8b. Output Haudshaho 

Min Max 

3 TwDAV Data Available Width 

o 
160 

120 

Notoa'" 

4 TdDAVIf(RDY) DlW! Input to RDY ! Delay 120 1,2 

S-TdDAVOf(RDY)--DAV ! Output to RDY ! Delay------------. 0 ----,------1,3 

6 TdDAVIr(RDY) DAV tInput 10 RDY i Delay 120 1,2 

7 TdDAVOr(RDY) 

8 TdDO(DAV) 

9 TdRDY(DAV) 

NOTES: 
I. Test1""d1 
2. Input handshake 
3. Output handshake 

DAV i Output 19 RDY i Delay 

Data Out to DAV ! Delay 

Rdy ! Input to DAV i Delay 

t All timing references use 2.0 V for a logic "I" and O.B V for 
a logic "0". 

Clock-
Cycle-Time- Number Symbol 
Dependent 

TdA(AS) Characteristics 
2 TdAS(A) 

3 TdAS(DR) 

.. Units -in nanoseconds (ns). 

Equation 

TpC-SO 

TpC-40 

4TpC-110* 

o 
30 

o 140 

1,3 

4 TwAS TpC-30 
S--TwDSR-------------3TpC-6S*-------------

7 TwDSW 2TpC-SS* 

8 TdDSR(DR) 3TpC-120* 

10 Td(DS)A TpC-40 

11 TdDS(AS) TpC-30 

12--TdRIW(AS) TpC-SS -----------

13 TdDS(RIW) . TpC-SO 

14 

IS 

16 

17 

TdDW(DSW) 

TdDS(DW) 

TdA(DR) 

TdAS(DS) 

• Add 2TpC when using extended memory timing. 

TpC-SO 

TpC-40 

STpC-160* 

TpC-30, 

625 



MIL·STD·883 MILITARY PROCESSED PRODUCT 

• Mil-Std-883 establishes uniform methods and proce­
dures for testing microelectronic devices to insure the 
electrical, mechanical, and environmental integrity and 
reliability that is required for niilitary applications. 

• Mil-Std-883 Class B is the industry standard product 
assurance level for military ground and aircraft· 
application. 

• The total reliability of a system depends upon tests that 
are designed to stress specific quality and reliability 
concelins that affect microelectronic products. 

• The following tables detail the 100% screening and elec­
trical tests, sample electrical tests, and Qualificationl 
Quality Conformance testing required. 

Zilog Military Product Flow 

626 

ENVIRONMENTAL SCREENING 
.. STABILIZATION BAKE 
• TEMPERATURE CYCLE 
D CENTRIFUGE 



Table I 
MIL-STO-883 Class B Screening Requirements 

Method 5004 

Mil-Std-883 
Test Method Test Condition Requirement 

Internal Visual 

Stabilization Bake 

Temperature Cycle 

Constant Acceleration (Centrifuge) 

Initial Electrical Tests 

Burn-In 

Interim Electrical Tests 

PDA Calculation 

Final Electrical Tests 

Fine Leak 
Gross Leak 

Quality Conformance Inspection (QCI) 
Group A Each Inspection Lot 
Group B Every Week 
Group C Periodically (Note 3) 
Group D Periodically (Note 3) 

External Visual 

QA-Ship 

NOTES: 

2010 Condition B 

1008 Condition C 

1010 Condition C 

2001 Condition E or D(Note 1), Y1 Axis Only 

1015 

1014 
1014 

5005 
5005 
5005 
5005 

2009 

Zilog Military Electrical Specification 
Static/OC Tc = + 25°C 

Condition D(Note 2), 160 hours, 
TA = + 125°C 

Zilog Military Electrical Specification 
Static/DC Tc = + 25°C 

PDA = 5% 

Zilog Military Electrical Specification 
Static/DC Tc = + 125°C, - 55°C 
Functional, Switching/AC Tc = + 25°C 

Condition A2 
ConditionC 

(See Table II) 
(See Table III) 
(See Table IV) 
(See Table V) 

1. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package 
mass of ;;>5 grams. 

2. In process of fully implementing of Condition D Burn·ln Circuits. Contact factory for copy of specific burn·in circuit available. 
3. Performed periodically as required by Mil·Std·883, paragraph 1.2.1 b(17). 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 
100% 

Sample 
Sample 
Sample 
Sample 

100% 

100% 

627 



Table II Group A 
Sample Electrical Tests 

. MIL-STD-883 Method 5005 
~ 

LTPD 
Subgroup Tests Temperature (T c) Max Accept = 2 

Subgroup 1 StaticlDC +25°C 2 

Subgroup 2 StaticlDC + 125°C 3 

Subgroup 3 StaticlDC -55°C 5 

Subgroup 7 Functional +25°C 2 

Subgroup 8 Functional -55°C and + 125°C 5 

Subgroup 9 SWitching/AC +25°C 2 

Subgroup 10 Switching/AC + 125°C 3 

Subgroup 11 Switching/AC -55°C 5 

NOTES: 
• The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail electrical specification. Where no 

parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup orteS!. 
• A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspection shall'be allowed. 
• Group A testing by subgroup or within subgroups may be performed in any sequence unless otherwise specified. 

628 



Table III Group B 
Sample Test Performed Every Week to 

Test Construction and Insure Integrity of Assembly Process. 
MIL-STD-883 Method 5005 

Subgroup 

Subgroup 1 
Physical Dimensions 

Subgroup 2 
Resistance to Solvents 

Subgroup 3 
Solderability 

Subgroup 4 
Internal Visual and Mechanical 

Subgroup 5 
Bond Strength 

Subgroup s(Note 3) 

Internal Water Vapor Content 

Subgroup 7(Note 4) 

Seal 
7a)Fine Leak 

, 7b) Gross Leak 

Subgroup 8(Note 5) 

Electrostatic Discharge Sensitivity 

NOTES: 

Mil-Std-883 
Method 

2016 

2015 

2003 

2014 

2011 

1018 

1014 

3015 

1. Number of leads inspected selected from a minimum of 3 devices. 
2. Number of bond pulls selected from a minimum of 4 devices. 
3. Test applicable only if the package contains a dessicant. 

Test Condition 

Solder Temperature 
+ 245°C ± 5°C 

C 

1000 ppm. 
maximum at + 100°C 

7a) A2 
7b) C 

Zilog Military Electrical 
Specification 

Static/DC Tc = + 25°C 
A = 20-2000V 
B = >2000V 

Zilog Military Electrical 
Specification 

Static/DC Tc = + 25°C 

Quantity or 
LTPD/Max Accep~ 

2/0 

4/0 

15(Note 1) 

1/0 

15(Note2) 

3/0 or 5/1 

5 

15/0 

4. Test not reqUired if either 100% or sample seal test is performed between final electrical tests and external visual during Class B screening. 
5. Test required for initial qualification and product red~sign. . 

629 



Table IV Group C 
Sample Test Performed Periodically to Verify Integrity of the Die. 

Subgroup 

Subgroup 1 
Steady State Operating Life 

End Point Electrical Tests 

Subgroup 2 
Temperature Cycle 

Constant Acceleration (Centrifuge) 

Seal 
2a) Fine Leak 
2b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

NOTE: 

MIL-STD-883 Method 5005 

Mil-Std-883 
Method 

1005 

1010 

2001 

1014 

10100r1011 

Test Condition 

Condition o(Note 1), 1000 hours at 
+125°C 

Zilog Military Electrical Specification 
Tc = +25°~, + 125°C, -55°C' 

Condition C 

Condition E or o(Note 2), Y 1 Axis Only 

2a) Condition A2 
2b) Condition C 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C 

1. In process of fully implementing Condition 0 Burn-In Circuits. Contact factory for copy of specific burn-in circuit available. 

Quantity or 
LTPD/Max Accept 

5 

15 

2. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package 
mass of ;>5 grams. 

630 



Table V Group D 
Sample Test Performed Periodically to Insure Integrity of the Package. 

MIL·STD·883 Method 5005 

Subgroup 

Subgroup 1 
Physical Dimensions 

Subgroup 2 
Lead Integrity 

Subgroup 3 
Thermal Shock 

Temperature Cycling 

Moisture Resistance 

Seal 
3a) Fine Leak 
3b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

Subgroup 4 
Mechanical Shock 

Vibration Variable Frequency 

Constant Acceleration (Centrifuge) 

Seal 
4a) Fine Leak 
4b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

Subgroup 5 
Salt Atmosphere 

Seal 
5a) Fine Leak 
5b) Gross Leak 

Visual Examination 

Subgroup 6 
Internal Water Vapor Content 

Subgroup 7(Note 3) 

Adhesion of Lead Finish 

Subgroup 8(Note 5) 

Lid Torque 

NOTES: 

MiI·Std·883 
Method 

2016 

2004 

1011 

1010 

1004 

1014 

10040r1010 

2002 

2007 

2001 

101.4 
\ 

1010 or 1011 

1009 

1014 

1009 

1018 

2025 

2024 

1. Lead Integrity Condition 0 for leadless chip carriers. 
2. Applies to larger packages which have an inner seal or cavity 

perimeter of two inches or more in total length or have a package 
mass of ;;'5 grams. 

Test Condition 

Condition B2 or D(Note 1) 

Condition B minimum, 
15 cycles minimum 

Condition C, 100 cycles minimum 

3a) Condition A2 
3b) Condition C 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C 

Condition B minimum 

Condition A minimum 

Condition E or D(Note 2), Y 1 Axis Only 

4a) Condition A2 
4b) Condition C 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C 

Condition A minimum 

5a) Condition A2 
5b) Condition C 

5,000 ppm. maximum water 
content at + 100°C 

3. Not applicable to leadless chip carriers. 
4. LTPD based on number of leads. 
5. Not applicable for solder seal packages. 

Quantity or 
LTPD/Max Accept 

15 

15 

15 

15 

15 

3/0 or 5/1 

15(Note4) 

5/0 

631 



FEATURES 

III Complete microcomputer, 24 I/O lines, and up to 64K 
bytes of addressable external space each for program 
and data memory. 

I1l 143-byte register file, including 124 general-purpose 
registers, three I/O port registers, and 16 status and 
control registers. 

E:l Vectored, priority interrupts for I/O, counter/timers, and 
UARl 

IJl On-Chip oscillator that accepts crystal or external clock 
drive. 

GENERAL DESCRIPTION 

The Z8681 is the ROM less version of the Z8 single-chip 
microcomputer. The Z8681 offers all the outstanding 
features of the Z8 family architecture except an on-chip 
program ROM. Use of external memory rather than a 
preprogrammed ROM enables this Z8 microcomputer to be 
used in low volume applications or where code flexibility is 
reqlJired .. 

The Z8681 can provide up to 16 output address lines, thus 
permitting an address space of up to 64K bytes of data or 
program memory. Eight address outputs (ADo-AD?) are 
provided by a multiplexed, 8-bit, Address/Data bus. The 
remaining 8 'bits can be provided by the software 
configuration of Port a to output address bits A8-A15. 

632 

Z8® Z8681 Military 
ROM less Microcomputer 

June 1987 

BI Full-duplex UART and two programmable 8-bit 
counter/time~s, each with a 6-bit programmable 
prescaler. 

I!II Register Pointer so that short, fast instructions can 
access anyone of the nine working-register groups. 

Ii] Single + 5V power supply-all I/O pins TIL-compatible. 

Iii! Available in 8 MHz. 

Available address space can be doubled (up to 128K bytes) 
by programming bit 4 of Port 3 (P34) to act as a data memory 
select output (OM). The two states of OM together with the 
16 address outputs can define separate data and memory 
address spaces of up to 64Kbytes each. 

There are 143 bytes of RAM located on-chip and organized 
as a register file of 124 general-purpose registers, 16 control 
and status registers, and three I/O port registers. This 
register file can be divided into nine groups of 16 working 
registers each. Configuring the register file in this manner 
allows the use of short format instructions; in addition, any of 
the individual registers can be accessed directly. 



ABSOLUTE MAXIMUM RATINGS 
Guaranteed by characterization/design 

Voltages on all pins except RESET 
with respecttoGND .. , ...... , ..... -0.3Vto + 7.0V . 

Operating Case Temperature ........ - 55°C to + 125°C 
Storage Temperature Range ........ - 65°C to + 150°C 
Absolute Maximum Power Dissipation. , .......... 1.7 W 

STANDARD TEST CONDITIONS 

The DC characteristics listed below apply for the following 
standard test conditions, unless otherwise noted. All 
voltages are referenced to GND (OV). Positive current flows 
into the referenced pin. 

Military Operating Temperature Range (Tc) 
-55°Cto +125°C 

Standard Military Test Condition 
+4.5 ~ VCC ~ +5.5V 

DC CHARACTERISTICS 

Symbol Parameter 

VCH Clock Input High Voltage 

VCl Clock Input Low Voltage 

VIH Input High Voltage 

Vil Input Low Voltage 

VRH Reset Input High Voltage 

VRl Reset Input Low Voltage 

VOH Output High Voltage 

VOL Output Low Voltage 

III I nput Leakage 

IOl Output Leakage 

IIR Reset Input Current 

ICC VCC Supply CUrrent 

CAPACITANCE 

Min 

3.8a 

-0.3b 

2.0a 

-0.3b 

3.8a 

-0.3b 

2.4a 

-10a 

-lOa 

Symbol Parameter 

TA = 25°C, f = 1 MHz. 

Parameter Test Status: 

a Tested 
b Guaranteed 
c Guaranteed by Characterization/Design 

Maximum Capacitance 

Stresses greater than those listed under Absolute Maximum Ratings may 
cause permanent damage to the device. This is a stress rating only; 
operation of the device at any condition above those indicated in the 
operational sections of these specifications is not implied. Exposure to 
absolute maximum rating conditions for extended periods may affect 
device reliability. 

Max Unit 

VCcb V 

0.8a V 

VCcb V 

0.8a V 

VCcb V 

0.8a V 

V 

O.4a V 

10a flA 

10a flA 

-50a flA 

230a mA 

+5V 

Test Load 

Condition 

Driven by External Clock Generator 

Driven by External Clock Generator 

IOH = -250flA 

IOl = +2.0mA 

VIN = OV, 5.5V 

VIN = OV,5.5V 

Vce = MAX, VRl = OV 

All outputs and I/O pins floating 

Max 

15c 

Unit 

pi 

'633 



PORT 0, 
OM 

PORT 1 

as 
(READ) 

PORT 1 

as 
(WRITE) 

x 
~ 

)( 

)! 
~ 

I--<D--

4 16G) 

Ao-A, ) 

--<:D--

4 

~I~ 

--®-------~ 

Ao-A7 X 
I--®-----I 

\1:" 

~I 

)( 

-
< Do-D,IN } < .... 011-

0 - ~T\ 
CD } 

-®-
00-0, OUT ~ 

-®---Il 
CD ~jI 

Figure 1. External I/O or Memory Read/Write Timing 

AC CHARACTERISTICS 
External 1/0 or Memory Read and Write Timing 

Number Symbol Parameter 

TdA(AS) Address Valid to AS t Delay 

2 TdAS(A) AS t to Address Float Delay 

3 TdAS(DR) AS t to Read Data Required Valid 

4 TwAS AS Low Width 

5 TdAz(DS) Address Float to DS ~ 

6 TwDSR DS (Read) Low Width 

7 TwDSW DS (Write) Low Width 

8 TdDSR(DR) DS • to Read Data Required Valid 

9 ThDR(DS) Read Data to DS t Hold Time 

10 TdDS(A) DS t to Address Active Delay 

11 TdDS(AS) DS.t to AS ~ Delay 

12 TdR/W(AS) R/W Valid to AS t Delay 

13 TdDS(R/W) DS t to R/W Not Valid 

14 TdDW(DSW) Write Data Valid to DS (Write) ~ Delay 

15 TdDS(DW) DS t to Write Data Not Valid Delay 

16 TdA(DR) Address Valid to Read Data Required Valid 

17 TdAS(DS) AS t to DS ,j, Delay 

NOTES: 
1. When using extended memory timing add 2 TpC. Parameter Test Status: 

a Tested 2. Timing numbers given are for minimum TpC. 
3. See clock cycle time dependent characteristics table. b Guaranteed 

Z8681 
8MHz 

Min Max 

50a 

70a 

420a 

80a 

Ob 

250a 

160a 

200a 

oa 

70a 

70a 

50a 

60a 

50a 

60a 

410a 

80a 

• All units in nanoseconds (ns). c Guaranteed by Characterization/Design 

o All timing references use 2.DV for a logic "1" and D.BV for a logic "0': 

634 

Notes' 0 

2.3 

2,3 

1,2,3 

2,3 

1,2,3 

1,2,3 

1,2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

2,3 

1.2,3 

. 2,3 



AC CHARACTERISTICS 
Additional Timing Table 

Number . Symbol 

TpC 

2 TrC,TfC 

3 TwC 

4 TwTinL 

5 TwTinH 

6 TpTin 

7 TrTin,TfTin 

8A TwlL 

88 TwlL 

9 TwlH 

NOTES: 

Parameter 

Input Clock Period 

Clock Input Rise and Fall Times 

Input Clock Width 

Timer I nput Low Width 

Timer Input High Width 

Timer Input Period 

Timer Input Rise and Fall Times 

Interrupt Request Input Low Time 

Interrupt Request Input Low Time 

Interrupt Request Input High Time 

1. Clock timing references use 3.8V for a logic "1" and 0.8V for a logic "0': 
2. Timing references use 2.0V for a logic" 1" and 0.8V for a logic "0". 
3. Interrupt request via Port 3. 

Parameter Test Status: 

a Tested 
b Guaranteed 
c Guaranteed by Characterization/Design 

Z8681 
8MHz 

Min 

125a 

37b 

100b 

3TpCb 

8TpCb 

100b 

3TpCb 

3TpCb 

4. Interrupt request via Port 3 (P31-P33) 
5. Interrupt request via Port 3 (P30) 
• Units in nanoseconds (ns). 

Mal( 

1000a 

25b 

100b 

Notes' 

1 

2 

2 

2 

2 

2,3,4 

2,3,5 

2,3 

635 



DATA IN 

DAY 
(INPUT) 

RDY 
(OUTPUT) 

DATA OUT 

DAY 
(OUTPUT) 

RDY 
(INPUT) 

AC CHARACTERISTICS 
Handshake Timing 

Number Symbol 

1 TsDI(DAV) 

2 ThDI(DAV) 

3 TwDAV 

4 TdDAVlf(RDY) 

S TdDAVOf(RDY) 

6 TdDAVlr(RDY) 

7 TdDAVOr(RDY) 

8 TdDO(DAV) 

9 TdRDY(DAV) 

NOTES: 
1. Input handshake 
2. Output handshake 

DATA IN VALID 

Figure 3a. Input Handshake Timing 

DATA OUT VALID 

Figure 3b. Output Handshake Timing 

Parameter Min 

Data In Setup Time oa 

Data In Hold Time 230a 

Data Available Width 17Sa 

DAV ~Input to RDY ~ Delay 

DAV ~ Output to RDY ~ Delay oa 

DAV t Input to RDY t Delay 

DAV t Output to RDY t Delay oa 

Data Out to DAV ~ Delay soa 

Rdy ~ Input to DAV t Delay Ob 

t All timing references use 2.0V for a logic "1" and O.SV for a logic "0" . 
• Units in nanoseconds (ns). 

Parameter Test Status: 

a Tested 
b Guaranteed 
c Guaranteed by CharacterizationlDesign 

636 

Z8681 

Max 

17Sa 

17Sa 

200a 

Notest* 

1 

2 

2 



CLOCK CYCLE TIME-DEPENDENT 
CHARACTERISTICS 

Z8G8l 
8MHz 

Number Symbol Equation 

TdA(AS) TpC-75 

2 TdAS(A) TpC-55 

3 TdAS(DR) 4TpC-140* 

4 TwAS TpC-45 

6 TwDSR 3TpC-125* 

7 TwDSW 2TpC-90* 

8 TdDSR(DR) 3TpC-175* 

10 Td(DS)A TpC-55 

11 TdDS(AS) TpC-55 

12 TdR/w(AS) TpC-75 

13 TdDS(R/W) TpC-65 

14 TdDW(DSW) TpC-75 

15 TdDS(DW) TpC-55 . 

16 TdA(DR) 5TpC-215* 

17 TdAS(DS) TpC-45 

* Add 2TpC when using extended memory timing 

637 



PIN DESCRIPTION 

AS. Address Strobe (output, active Low). Address Strobe is 
pulsed once at the beginning of each machine cycle. 
Addresses output via Port 1 for all external program or data 
memory transfers are valid at the trailing edge of AS. 

OS. Data Strobe (output, active Low). Data Strobe is 
activated once for each external memory transfer. 

POO-P07. P2o-P27. P30-P37' I/O Port Lines (inputloutputs, 
TIL-compatible). These 24 lines are divided into three 8-bit 
1/0 ports that can be configured under program control for 
1/0 or external memory interface. 

P1o-P17' Address/Data Port (bidirectional). Multiplexed 
address (Ao-A7) and data (00-07) lines used to interface with 
program and data memory. 

PACKAGE PINOUTS 

TIMING 1---"" RESET +5V 

R/IN GND 
AND j CONTROL 55 XTAL1 

AS XTAL2 

PO, P20 

po, P2, 

po, P2, 
PORTO 
(NIBBLE PO, P2, 

PROGRAMMABLE) 
PO. P2. 

I/O OR As-A,:, 
PO, ZB681 P2, 

PO, MCU P2, 

PO, P2, 

P1 0 P30 

P1, P3, 

P1, P3, 
PORT 1 

P1, P3, (BYTE 
PROGRAMMABLE) P1. P3. 

ADo-AD? 
P1, P3, 

P1, P3, 

P1, P3, 

Figure 4. Pin Functions 

638 

PORT 2 
(BIT PRO· 
GRAMMABLE) 
I/O 

PORT 3 
SERIAL AND 
PARALLEL I/O 
AND CONTROL 

RESET. Reset (input, active Low). RESET initializes the 
Z8681. After RESET the Z8681 is in the extended memory 
mode. When RESET is deactivated, program execu­
tion begins from program location OOaCH. 

·R/W. Read/Write (output). RtW is Low when the Z8681 is 
writing to external program or data memory. 

XTAL 1. XTAL2. Crystal 1, Crystal 2 (time-base input and 
output). These pins connect a parallel-resonant crystal to the 
on-chip clock oscillator and buffer. 

+5V P3, 

XTAL2 P3, 

XTAl1 P2, 

P3, P2, 

P30 P2, 

RESET P2. 

RfW P2, 

os P2, 

AS P2, 

P3, P20 

GND P3, 

P3, P3. 

POo P1, 

PO, P1, 

PO, P1, 

P1. 

PO. 1'1, 

PO, P1, 

PO, P1, 

PO, P1 0 

Figure 5. 40-pin Dual-In-Line Package (DIP), 
Pin Assignments 



MIL-STD-883 MILITARY PROCESSED PRODUCT 

iJ Mil-Std-883 establishes uniform methods and proce­
dures for testing microelectronic devices to. insure the 
electrical, mechanical, and environmental integrity and 
reliability that is required for military applications. 

IJI Mil-Std-883 Class B is the industry standard product 
assurance level for military ground and aircraft 
application. 

[J The total reliability of a system depends upon tests that 
are designed to stress specific quality and reliability 
concerns that affect microelectronic products. 

III The following tables detail the 100% screening and elec­
trical tests, sample electrical tests, and Qualification! 
Quality Conformance testing required. 

ENVIRONMENTAL SCREENING 
II STABILIZATION BAKE 
a TEMPERATURE CYCLE 
II CENTRIFUGE 

639 



Table I 
MIL-STD-883 Class B Screening Requirements 

Method 5004 

Mil-Std-883 
Test Method Test Condition Requirement 

Internal Visual 

Stabilization Bake 

Temperature Cycle 

Constant Acceleration (Centrifuge) 

Initial Electrical Tests 

Burn-In 

Interim Electrical Tests 

PDA Calculation 

Final Electrical Tests 

Fine Leak 
Gross Leak 

Quality Conformance Inspection (QCI) 
Group A Each Inspection Lot 
Group B Every Week . 
Group C Periodically (Note 3) 
Group D Periodically (Note 3) 

External Visual 

QA-Ship 

NarES: 

2010 Condition B 

1008 Condition C 

1010 ,Condition C 

2001 Condition E or D(Note 1), Y1 Axis Only 

1015 

1014 
1014 

5005 
5005 
5005 
5005 

2009 

Zilog Military Electrical Specification 
Static/DC Tc = + 25°C 

Condition D(Note 2), 160 hours, 
TA = +125°C 

Zilog Military Electrical Specification 
Static/DC T c = + 25°C 

PDA = 5% 

Zilog Military Electrical Specification 
Static/DC Tc' = + 125°C, - 55°C 
Functional, Switching/AC Tc = + 25°C 

Condition B 
Condition C 

(See Table II) 
(See Table III) 
(See Table IV) 
(See Table V) 

1, Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package 
mass of ~5 grams. 

2. In process of fully implementing of Condition D Burn-In Circuits. Contact factory for copy of specific burn-in circuit available. 
3. Performed periodically as required by Mil-Std-883, paragraph 1.2.1 b(17), 

640 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 

100% 
100% 

Sample 
Sample 
Sample 
Sample 

100% 

100% 



Table II Group A 
Sample Electrical Tests 

MIL-STD-883 Method 5005 

LTPD 
Subgroup Tests Temperature (T c> Max Accept = 2 

Subgroup 1 Static/DC +25°C 2 

Subgroup 2 Static/DC +125°C 3 

Subgroup 3 Static/DC -55°C 5 

Subgroup 7 Functional +25°C 2 

Subgroup 8 . Functional -55°C and + 125°C 5 

Subgroup 9 Switching/AC +25°C 2 

Subgroup 10 Switching/AC +125°C 3 

Subgroup 11 Switching/AC -55°G 5 

NOTES: 
• The specific parameters to be included for tests in each subgroup shall be as specified in the applicable detail electrical specification. Where no 

parameters have been identified in a particular subgroup or test within asubgroup, no Group A testing is required for that subgroup or test. 
• A single sample may be used for all subgroup testing. Where required size exceeds the lot size, 100% inspection shall be allowed. 
• Group A testing by subgroup or within subgroups may be performed in any sequence unless otherwise specified. 

641 



Table III Group B 
Sample Test Performed Every Week to 

Test Construction and Insure Integrity of Assembly Process. 
MIL-STD-883 Method 5005 

Subgroup 

Subgroup 1 
Physical Dimensions 

Subgroup 2 
Resistance to Solvents 

Subgroup 3 
Solderability 

Subgroup 4 
Internal Visual and Mechanical 

SubgroupS 
Bond Strength 

Subgroup s(Note 3) 

Internal Water Vapor Content 

Subgroup 7(Note 4) 

Seal 
7a) Fine Leak 
7b) Gross Leak 

Subgroup 8(Note 5) 

Electrostatic Discharge Sensitivity 

NOTES: 

Mil-Std-883 
Method 

2016 

2015 

2003 

2014 

2011 

1018 

1014 

3015 

1. Number of leads inspected selected from a minimum of 3 devices. 
2. Number of bond pulls selected from a minimum of 4 devices. 
3. Test applicable only if the package contains a dessicant. 

Test Condition 

Solder Temperature 
+245°C ± 5°C 

C 

1000 ppm. 
maximum at +100°C 

7a) B 
7b) C 

Zilog Military Electrical 
Specification 

Static/DC Tc = + 25°C 
A = 20-2000V 
B = >2000V 

Zilog Military Electrical 
Specification 

StaticlDC T c = + 25°C 

Quantity or 
LTPD/Max Accept 

2/0 

4/0 

15(Note 1) 

1/0 

15(Note 2) 

3/0 or 5/1 

5 

15/0 

4. Test not required if either 100% or sample seal test is performed between final electrical tests and external visual during Class B screening. 
5. Test required for initial qualification and product redesign. 

642 



Table IV Groi.Jp C 
Sample Test Performed Periodically to Verify Integrity of the Die. 

Subgroup 

Subgroup 1 
Steady State Operating Life 

End Point Electrical Tests 

Subgroup 2 
Temperature Cycle 

Constant Acceleration (Centrifuge) 

Seal 
2a) Fine Leak 
2b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

NOTE: 

MIL-STD-883 Method 5005 

Mil-Std-SS3 
Method 

1005 

1010 

2001 

1014 

1010or1011 

Test Condition 

Condition D(Note 1), 1000 hours at 
+ 125°0 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C 

Condition C 

Condition E or D(Note 2), Y1 Axis Only 

2a) Condition B 
2b) Condition C 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, ...,.55°C 

1. In process of fully implementing Condition D Burn-In Circuits. Contact factory for copy of specific burn-in circuit available. 

Quantity or 
LTPD/Max Accept 

5 

15 

2 .. Applies to larger packages which have an inner seal or cavity perimeter of two inches or more in total length or have a package 
mass of ~5 grams. 

643 



Table V Group D 
Sample Test Performed Periodically to Insure Integrity of the Package. 

MIL-STD~883 Method 5005 

Subgroup 

Subgroup 1 
Physical Dimensions 

Subgroup 2 
Lead Integrity 

Subgroup 3 
Thermal Shock 

Temperatur~ Cycling 

Moisture Resistance 

Seal 
3a) Fine Leak 
3b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

Subgroup 4 
Mechanical Shock 

Vibration Variable Frequency 

Constant Acceleration (Centrifuge) 

Seal 
4a) Fine Leak 
4b) Gross Leak 

Visual Examination 

End Point Electrical Tests 

SubgroupS 
Salt Atmosphere 

Seal 
5a) Fine Leak 
5b) Gross Leak 

Visual Examination 

Subgroup 6 
Internal Water Vapor Content 

Subgroup 7(Note 3) 

Adhesion of Lead Finish 

Subgroup 8(Note 5) 

Lid Torque 

NarES: 

Mil-Std-883 
Method 

2016 

2004 

1011 

1010 

1004 

1014 

1004 or 1010 

2002 

2007 

2001 

1014 

1010or1011 

1009 

1014 

1009 

1018 

2025 

2024 

1. Lead Integrity Condition D for leadless Chip carriers. 

644 

2. Applies to larger packages which have an inner seal or cavity 
perimeter of two inches or more in total length or have a package 
mass of ~5 grams. . 

Test Condition 

Condition B2 or D(Note 1) 

Condition B minimum, 
15 cycles minimum 

Condition C, 100 cycles minimum 

3a) Condition B 
3b) Condition C 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55"C 

Condition B minimum 

Condition Aminimum 

Condition E or D(Note 2), Y1 Axis Only 

4a) Condition B 
4b) Condi~ion C 

Zilog Military Electrical Specification 
Tc = +25°C, +125°C, -55°C 

Condition A minimum 

5a) Condition B 
5b) Condition C 

5,000 ppm. maximum water 
content at + 100°C 

3. Not applicable to leadless chip carriers. 
4. LTPD based on number of leads. 
5. Not applicable for solder seal packages. 

Quantity or 
LTPD/Max Accept 

15 

15 

15 

15 

15 

3/0 or 5/1 

15(Note4} 

5/0 



PACKAGE INFORMATION 

18 10 

18·Pin Ceramic Package 

!:~~~~'~:::::::I 
0.025 ~0.920~ 

0.300 0.030 MAX 
1-0.320- -I. 0.065~ ~ --11--0.040 0.130 B-1. if~n'M?l 

0.009 ~I. 1£ 0.015, , 

I--~'~~~-i. 0.050 r- :.:1t- 0.100-1 r- 0.125 
-:015' =.015 g:g~~ TYP MIN 

18·Pin Plastic Package 

NC?T~: Package dimensions are giv~n il') inches. To convert to millimeters. multiply by 25.4 

645 



PACKAGE INFORMATION (Continued) 

646 

C-I.4~ I MAX .007 

,;:--, ~WJ~ ~~ · 
~ ~t ~ ~ ~ 
1.--..... --1 "'21 L.·... --I L.m --IL.·02' 

AEF MIN D.OD O]ib 6liil 
0.010 SOTH ENDS 
~ 

28·PIIl CeramI. Paaa;. 

~=~=L~ ~lli- . I I I~+ '; 
0150' 0121 - 0100MAX 0.100 I 0.01' 1---...... --'--------1 M'N (...iOTH END • ....I (...·m --I(...·m 

,0.040 
•• 020 

28-PIIl Cercllp Pae.kap 

28-PIIl Plastl. Pae.kap 

NOTE: PacltaQe di.meNionl ant qiven In Inebel. To convert to millimeter'll, multiply by 25,4. 



PACKAGING INFORMATION 

40 21 

T 
0.560 

I ~;:::;=r=;==r=r=::;:=;=;==;=;=rr=n==;=;==r;::::;=r=;=;=;=r:::;=;=;=,=n=n=;=:l 
20 

40-pin Plastic DIP 

'~I· 21 

~~-n-rrrrTTO"rr"TTTT-n-rrrrrrT,,'-rr"TTTT,-J 
20 r' ----~o.:----

0230 0.056 

'AAL~ 
.t I j 1.-11.\', ",ji'oo 'I.-~.~ -4l.-t~! 
MIN TYP TYP 

0.040 
±.020 

40-pin Cerdip Pacltage 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

647 



PACKAGE INFORMATION (Continued) 

1 
0_453 l'I 
J or 0.200 

j 
0_987.11 1.. 

IT; 
IDENTI F1CA~:~~y 

SOCKET A 
'F1CATION IDENT 

CERAMICLlD\ 

G-10 
EPOXY/GLASS\ \-_-+_---, 

4PL . SOCKET 
P'NSTAND-OFF/ I U"-~~F'LE 

1- 0_200 0_300-1 

r-0.30D--O.400 

• • • • • • • • • • • • • • • • • • • 
-6-00000000000 

1-
• • • • • • • • • • • • • • • • • • 

0000000000 CD 

~O.100 x 11"= 1.100 __ 0.520 __ 0.330_ 

I 1.690 I 

I 
0.100 x 19 = 1.9DO . 

. 2.311 

4O-pln Low Profile Protopack 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

648 

1 
0.540 

j 



PACKAGE INFORMATION (Continued) 

45° x 0.45 MAX PINI 
IDENTIFICATION 

45· x 0.045MAX"'}9.tt· ~~~4Dm 
0.026.J... 7 " 

NOMINALT 

0.650 

.·Ii 
45. x 0.010MAXJf-C;.,..,=== ........... ::!..=o=!,=-....L 

3 PLACES 

VIEW TOWARD PC BOARD 

"DIMENSION FROM CENTER TO CENTER OF RADU 

0.010 
-.. -±.002 

TYP 

44-pinPCC 

40 

ffiDDDDDDDDDDDD 

=.~) D D o 
M AX MAX 

j ~DDDDDDDDDDDD 
~~1 CATION IDENTIFI 

SOCKE TA _ 

2.020 MAX 

1-'-0.050 ± .020 . 1.220 MAX '1 

21 

F 
20 . 

O.ra- r-0.530 sa.----! 
MAX 

MAX u~d 
±.020 0.04;]" 1-. t 

I I II 0.016 l--r 
- iO.050±.015 BOTH ENDS. -+I-±.003 . 0.125 

_ 1--0.100 ± .010 TYP TYP _ _0.040 + .007 TYP MIN 
I~OR~9~_1 

+. ________ -'-._~~~ -.002. 

40-pln Pro~opack 

649 



PACKAGING INFORMATION (Continued) 

0.062 
RADIUS 

25 

IS" r-~::~~==J 0.180 
4 PLACESfil r- MAX ' 

0.018/D.01SRAD.TYP·1,'( = ~ o.tt~~::;:;::::;:;:::;:;:::::::~~~~;;:::-. ::::::::=::::;:;::~ 
~ 0.0151- REF d= 
1_0.650'~1 o.lLJ - _0.090 0.100 _11_0.0119 

0.610 MIN. 0.060 , TYP. 0.040 

48-Pln Dual-In-Line Package (DIP), 
'Plastlc 

@ @ @ @ @ @ @ @ @ @ @ @ @ 

©©©©©©©©©©©©© 

1.063-1--l-+--+-

@ @ @ @ @ @ @ @ @ @ @ @ @ 

, , ©©©©©©©©©©©©, 

f-/-----0.l00'13=1.300----+I 

1--+---------1.830---------1 

t----------0.l00x23=2.300-~-------____i 

1--'-----------2.470-----------_1 

ENCA~rr,;LASS ~~7 rrmrru= rr ~ I,t~ [ ~i~ '---...... w--+---.t;r-.dr-...J , ------------'-- ., 

I 'i' I I ~r:FILE ~~ ~ IT~~~ 0.06' 

650 

~ 0.200 0.300 1 I~~~~AND-OFF . -Ij.-0.018DIA ' . 0.126 0.,197 

_0.300 _O.400~' 4PL TYP. 0.040 

48-Pin Low Profile 

Protopack (T) 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 



ORDERING INFORMATION 

ZO MCU, 2K ROM, 0 MHz 
20-pin DIP 

Z0860008PSCRXX 
Z0860000PECRXX 

ZOMCU 
40-pin DIP 44-pin PCC 

2KROM 

40-pin Protopak 

2KXROM 

Z0860112PSCRXXX Z0860112VSCRXXX Z0860312TSF 
Z0860112DSERXXX 
Z0860112PECRXXX 
Z0860112DEERXXX 

4KROM 4KXROM 

Z0861112PSCRXXX Z0861112VSCRXXX Z0861312TSF 
Z0861112PECRXXX 
Z0861112DSERXXX 

ZO MCU wit" BASIC/Debug Interpreter, 0 MHz 
40-pin DIP 

Z0867108PSCR002 
Z0867108PECR002 

Z0601 ROMless MCU 
. 4D-pin DIP 44-pin PCC 

o MHz 
Z0868108PSC 
Z0868100DSE 
Z0868108PEC 
Z0868108DEE 

12 MHz 
Z08f)8112PEC 
Z0868112PSC 
Z0868112DSE 
Z0868112DEE 

16 MHz 
Z0868116PSC 

Z0868108VSC 

Z0868112VSC 
Z0868112VEC 

Z0868116VSC 

Low Cost ROMless MCU, 8 MHz 
Z0868208PSC 
Z0868408PSC 

Low Power ROM less MC·U, 0 MHz 
4D-pin DIP 44-pin PCC 

Z0869108PSC Z0869108VSC 

ZO ROMless MCU, 12 MHz 
4D-pin DIP 44-pin PCC 

Z0869112PSC 
Z0869112PEC 

Z0869112VSC 

ZO ROMless MCU, 16 MHz 
40-pin DIP 44-pln PCC 

Z0869116PSC Z0869116VSC 

Z8 MCU, 4K ROM, 
12 MHz 
40-pinDIP 

Z8 MCU, 4K ROM, 
16 MHz 
4D-pin DIP 

Z86C1112PECRXXX Z86C1116PSCRXXX 

44-pinPLCC 44-pinPLCC 

Z86C1112VECRXXX Z86C1116VSCRXXX 

Z8 MCU, OK ROM 
40-pin DIP 

Z86C2112PECRXXX 
Z86C2116PSCRXXX 
Z86C2112CEARXXX 

ZO MCU, OK PROM 
40-pln DIP 44-pin PLCC 

Z86E2112PEC Z86C2112VECRXXX 
Z86E2116PSC Z86C2116VSCRXXX 
Z86E2112CEA 

44-pln'PLCC 

Z86E2112VEC 
Z86E2116VSC 

Z8 ROMless MCU 
4D-pin DIP 44-pln PCC 

Z86C9112PEC 
Z86C9116PSC 

Z86C9112VEC 
Z86C9116VSC 

ZO 4K ROM MCU, 12 MHz 

Z0861112CMBRXXX 

Z8 ROMless MCU, 8 MHz 
4D-pin DIP 

Z0868108CMB 

Z8 MCU, 4K ROM, 12 MHz 
28-pin DIP 

Z86C1012PSC 

.ZO MCU, OK flOM, 12 MHz 
20-pin DIP 

Z86C2012PSC 

651 



Codes 

PACKAGE 
Preferred 
D = Cerdip 
P = Plastic 
V = Plastic Chip Carrier 

Longer Lead Time 
C = Ceramic 
F = Plastic Quad Flat Pack 
G = Ceramic PGA (Pin Grid Array) 
L = Ceramic LCC 
Q = Ceramic Quad-in-Line 
R = Protopack 
T = Low Profile Proto pack 

TEMPERATURE 
Preferred 
S = O°C to +70°C 

Longer Lead Time 
E = -40°C to +85°C 
M = -55°C to + 125°C 

Example: 

ENVIRONMENTAL 
Preferred 
C = Plastic Standard 
E = Hermetic Standard 
F = Proto pack Standard 

Longer Lead Time 
A = Hermetic Stressed 
B = 833 Class B Military 
D = Plastic Stressed 
J = JAN 38510 Military 

Z0869112PSC is a 12 MHz 8691 (ROMless Z8) in a plastc DIP, 0° C to +700 C, Standard 
Flow. 
Z 08691 12 P S C RXXX 

\1 L----I _L 

652: 

ROM Mask Number 
Environmental Flow 
Temperature 
Package 
Speed 
Product Number 
Zilog Prefix 





ZiLOG DOMESTiC SALES OFFICES AND 
TECHNICAL CENTERS 

CALIFORNIA 
Agoura ...................................................... 818-707-2160 
Campbell .................................................. 408-370-8120 
TU51in ...................................................... 714-838-7800 

COLORADO 
Boulder .................................................... 303-494-2905 

FLORIDA 
Largo ...................................... , ................. 813~585-2533 

GEORGIA 
Norcross ...................... : ........................... 404-923-8500 

ILLINOIS 

Schaumburg ............................... : ............ 312-885-8080 

NEW HAMPSHIRE 
Nashua .................................................... 603-888-8590 

MINNESOTA 
Edina ........................................................ 612-831-7611 

NEW JERSEY 
Hasbrouck Hts. . ....................................... 201-288-3737 

OHIO 
Seven Hills .............................................. 216-447-1480 

PENNSYLVANIA 
Ambler ...................................................... 215-653-0230 

TEXAS 

Richardson .............................................. 214-231-9090 

1988 by Zilog, Inc. All rights reserved. no part of this 
publication may be reproduced, stored in a retrieval sys­
tem, or transmitted, in any form or by any means, elec­
tronic, mechanical, photocopying, recording, or other­
wise, without the prior written permission of Zilog. 

The information contained herein is subject to change 
without notice. Zilog assumes no responsibility for the 
use of any circuitry embodied in a Zilog prOduct. No other 
circuit patent licenses are implied. 

All specifications (parameters) are subject to change 
without notice. The applicable Zilog test documentation 
will specify which parameters are tested. 

Zilog, Inc. 210 Hacienda.,Ave., Campbell, CA 95008-6609 
Telephone (408) 370-8000 TWX 910-338-7621 

03·8275~2 Printed in USA 

INTERNATIONAL SALES OFFICES 

CANADA 
Toronto .: ................................................ 416-673-0634 

GERMANY 
Munich .................................................... 49-89-672-045 

JAPAN 
Tokyo ...................................................... 81-3-5870528 

HONG KONG 
Kowloon......... ........ ............................... 852-3-7238979 

R.O.C. 
Taiwan .................................................. 886-2-7312420 

UNITED KINGDOM 
Maidenhead................... ......................... 44-628-39200 


