B

AFIPS

CONFERENCE
PROCEEDINGS

VOLUME 50

1981

NATIONAL
COMPUTER
CONFERENCE

AFIPS

ONFERENCE
'PROCEEDINGS

1961

NATIONAL
COMPUTER
ONFERENCE

May 4-7, 1981

Chicago, lllinois

The ideas and opinions expressed herein are solely those of the authors and are not
necessarily representative of or endorsed by the 1981 National Computer Confer-
ence or the American Federation of Information Processing Societies, Inc.

Library of Congress Catalog Card Number 81-65717
AFIPS PRESS
1815 North Lynn Street
Arlington, Virginia 22209

© 1981 by AFIPS Press. Copying is permitted without payment of royalty provided

that (1) each reproduction is done without alteration and (2) reference to the AFIPS

Proceedings and notice of copyright are included on the first page. The title and

abstract may be used without further permission in computer-based and other

information-service systems. Permission to republish other excerpts should be
obtained from AFIPS Press.

Printed in the United States of America

This edition of the Proceedings of the National Computer Conference is dedicated to J. Presper Eckert and
to the late John W. Mauchly, whose pioneering efforts extended the frontiers of technology for the good of
all mankind.

Preface

ALBERT K. HAWKES
1981 NCC Chairman

The National Computer Conference is an institution of the
U.S. computer industry. Each year at the NCC, thousands
representing companies, government agencies, and univer-
sities gather, and a forum is provided for hundreds of them.
Much of what occurs is of course ephemeral, a great deal is of
current and very practical value, and some lasts for many
years. The Proceedings of the NCC is a principal element of
that set of things from the conference with lasting value.

This 1981 Conference Proceedings, the fiftieth volume in
the series, is an exhibit of the labors of Dr. Alex Orden,
Program Chairman of the 1981 NCC. The myriad of details
connected with organizing a program of this scope are treated
in Professor Orden’s introduction, and the reader will be wise
to use that section as a road map before beginning to traverse
the extensive volume. Authors of papers appearing here have
contributed a greatet deal also, as have referees, session or-
ganizers, panelists, and other presenters of information at the
conference whose contributions could not be made fully ap-
parent in this volume. Another person who must be men-
tioned is the one who shepherded production of this Pro-
ceedings , Elizabeth G. Emanuel of AFIPS Press; her work
was excellent and in keeping with the fine tradition at AFIPS
established by Nelle W. Morgan many years ago.

It is an honor to prepare this preface to the lasting record
of the 1981 NCC. In the same sense, it also is a rare privilege
to be Conference Chairman. Having served on the NCC Com-
mittee starting nearly ten years ago, and serving as its chair-
man for two years covering the first and second NCCs, I did
induce a number of friends and colleagues to serve as confer-
ence chairmen—Stephen S. Yau in 1974 and Carl Hammer in
1976. Thus it was a signal duty this year to try to put a National
Computer Conference together for the Chicago area, which
has been my home for the best part of my life.

One realizes early in planning an NCC that appointing a
strong and able Conference Steering Committee is the only
way to assure that this NCC institution can renew itself each
year. These competent and willing volunteers who put this
NCC together include Drs. Orden, Yau, and Hammer and
Richard B. Wise (Director of Operations), Marvin W. Ehlers

(CSC Secretary and Special Projects Manager), M. Mildred
Wyatt (Communications and Promotion), Sam Papa (Per-
sonal Computing, whose cochairman James Gerdes produced
a companion PC Digest, which complements this volume for
NCC ’81), George Eggert (Professional Development Semi-
nars), Fred Harris (Special Activities, including a very great
step forward in NCCs by improving access to the conference
for handicapped persons), Robert C. Spieker (NCC Liaison),
Charles W. Schmidt (NCC 81 Fiscal Officer), Raymond Dash
and Anthony S. Wojcik (the two Chicago area Vice-Chairmen
of Professor Orden’s Program Committee serving on the NCC
’81 CSC), Joseph Leubitz (Registration), and Forest May-
berry (Conference Facilities). Serving ex-officio on the CSC
over the two years that work was done on this conference and
its planning were many AFIPS staff members. Principal
thanks are due particularly to Paul J. Raisig, Executive Direc-
tor; James H. Kroell, Director of Conferences, and his prede-
cessor Gerard Chiffriller; Betty Lou Cooke, Conference Man-
ager, and her predecessor Carol Sturgeon; Sam Lippman,
Conference Operations Manager; and Christopher Hoelzel,
AFIPS Press Manager. In addition, when trying to think of
those who contributed a great deal to this conference and to
establishing another mark in a excellent tradition, two of my
mentors from the National Computer Conference Committee
should be named. Over many years, Dr. Morton M. Astrahan
and Jerry L. Koory stand out for their encouragement, sup-
port, and kindly advice given freely.

The idea of the NCC as an institution, which I mentioned
previously, does remind one of what Benjamin Disraeli said
over a century ago: “Individualities may form communities,
but it is institutions alone that can create a nation.” This great
nation is known for its industry, and there are few more telling
examples of American ingenuity producing something good
and possibly great than what computer science and technology
are today. The NCC, as an institution, has helped computing
in the United States and in the world. May it go on, ever
eclipsing those of us honored to be part of the tradition, so
that NCCs always serve what is best in the U.S.A.

Introduction

ALEX ORDEN
1981 NCC Program Chairman

Since 1951 the National Computer Conferences have pro-
vided a forum for presentation of advances on all fronts of the
computer field: research, development, and application. The
Proceedings of the meetings give an unparalleled history of
the field.

The Proceedings of 1976 include an interesting memoir by
Herb Grosch on the history of the conferences, entitled
“Conference Maketh a Ready Man, or Twenty-Five Years in
the Better Joints.” From 1954 to 1972, except in 1965, there
were two conferences a year. From time to time the name has
been changed—from 1951 to 1981 the series has consisted of

2 Joint Computer Conferences

1 Western Computer Conference

9 Eastern Joint Computer Conferences
8 Western Joint Computer Conferences
10 Spring Joint Computer Conferences
11 Fall Joint Computer Conferences

9 National Computer Conferences

—>50 in all.

In recent years important developments in the history of
digital computation have been commemorated by conference
sessions and other special events on a day designated “Pioneer
Day.” This year’s theme for that day is the completion 30
years ago of the first UNIVAC I system. Two historic events
thereby coincided: (1) The emergence of computers from the
laboratory machines of those days into the marketplace
marked the birth of the computer industry. (2) Since the
UNIVAC was the first machine designed for data processing
rather than for mathematical computation, its development
was the first major step toward the enormous development in
computer-based data processing that has since occurred. It’s
all too easy in the 1980’s to overlook the difficulties and
doubts that had to be overcome back then. On that account,
this volume is dedicated to J. Presper Eckert and the late John
Mauchly, whose vision in the development of the UNIVAC
made possible the penetration of computers into almost every
field of human endeavor.

For 30 years, as the computer industry and the computer
field have become ever larger and more complex, the National
Computer Conferences have had a unique role in bringing
together the computer R&D community, industry representa-
tives, educators, application and facility systems analysts, DP
managers, and end users to survey ongoing developments and
examine new directions. Each year the formation of a new
Program Committee sets the stage for a fresh assessment of
trends in the field and an independent effort to assemble a
well-balanced program. Drawing on several hundred paper
submissions and session proposals—some invited by the mem-
bers of the Committee, some independently submitted—the
Committee sets up a program, which tends to consist of about
one-third refereed papers, which appear in the Proceedings;
one-third prepared talks on topics that do not lend themselves
well to formal publication; and one-third panel discussions on
trends and opinions.

vi

For this year’s NCC, in order to provide a framework in
which all aspects of the computer field might be considered,
the Program Committee was initially organized (about a year
before the Conference) as five groups, each covering a wide
area: (1) computer hardware and architecture, (2) software,
(3) information processing management, (4) applications, and
(5) social and economic implications. We knew of course that
some important topics would straddle two or more of these
areas. Indeed, as development of the program progressed,
some members of the Committee freely ignored the area
boundaries.

The identification of significant current trends emerged in
part when we converted the initial five broad areas into a
ten-track program. In the hardware/architecture area we
found emphasis on microcomputer design, on developments
in microprogramming, and on fault-tolerant computing; and
from that general area we spun off five sessions as a separate
track on network technology, with developments in local nets
predominant. In the software area we found a strong emphasis
on reliability, software validation techniques, and quality con-
trol. From software we extracted a six-session track on data-
base systems, with emphasis on distributed databases. In in-
formation processing management we developed coordinated
groups of sessions on DP project management, on manage-
ment of transitions to new technology and methodology, on
application systems audit and quality control, on the DP pro-
duction process, and on personnel; and we formed a separate
five-session track, Capacity and Performance Analysis. In the
Applications area we separated out a track called Visuals,
Natural Language Processing, and Artificial Intelligence,
leaving—under the rubric Computers at Work—sessions in
such still budding application areas as law, hospitals, energy,
and simulation modeling. Since there seemed to be no clear
dividing line between sessions on diverse issues in computer
education and sessions on computer-related social issues, and
since most social issues have much to do with the diffusion of
knowledge, we formed a track called Education and Societal
Issues. Finally, although there is now an annual AFIPS Con-
ference on Office Automation, those rapid developments
should nevertheless be included in the NCC. Therefore we
provided the track entitled Automating the Office.

The published record of recent advances in the computer
field, as seen at NCC ’81, resides in the papers appearing in
this volume. Since there was much more to the Conference, a
condensed view of the entire program—in the “Conference at
a Glance” form that appeared in the Program Brochure—is
attached to this introduction.

It has been a challenging experience to coordinate this
complex activity. It would not have been possible without
the devotion and hard work of the Program Committee, the
referees of the papers, and the AFIPS staff. Their names
appear elsewhere in this volume. I particularly thank Liz
Emanuel, who managed the editorial work on the Proceedings
at AFIPS with great competence; and Martha Evens of the
Illinois Institute of Technology, who joined me in dealing with
the refereeing and selection of papers.

MONDAY, MAY 4 — NATIONAL COMPUTER CONFERENCE

PRINCIPAL TRACKS 1:30 to 3:00 PM 3:18 to 4:48 PM
1.1 Design Tools for System 1.2 Innovative Architecture &
WT:BE Architectures Commercial Computers
George Kraft Krishna M. Kavi
NETWORK TECHNOLOGY 2.1 '.I:ranspoﬁ and Session Protocols in
AND the Context of the IS0 Reference 2.3]l)’acketcs%)leech
CAPACITY & Model anny Lohen
PERFORMANCE ANALYSIS Leslie Jill Miller
5 3.1 Programming Languages for Small 3.2 Software Development Tools
SOFTWARE o Systems R. Stockton Gaines
Q Leon Levy
-
~
o
INFORMATION g 4.1 System Implementation Strategy 4.8 Audit and Control in a Database
PROCESSING - Ken Zoline Environment
MANAGEMENT B Steven Ross
8
8 8.1 Survey and Comparison of Model 8.8 Joint Business-University
EDUCATION & & Curricula for Information Systems Professional Development and
SOCIETAL ISSUES Education Research Programs
E Thomas Ho Robert A. Rouse
2
AUTOMATING THE OFFICE E 8.1 Integrated Word- and Data- 6.2 Office Automation Technology:
AND Processing Systems Futures
COMPUTERS AT WORK Robert Elliott James Carlisle
DATA BASE SYSTEMS T e o anagement | 7.3 Database Machines
AND Environment C. Robert Carlson
COMPUTERS AT WORK James Swager
VISUALS, NATURAL 8.1 Image Analysis 8.8 Pictorial Database Models & Query
LANGUAGE PROCESSING X.S. Fu Languages
& ARTIFICIAL T K. S Fu
INTELLIGENCE T

vii

TUESDAY, MAY § — NATIONAL COMPUTER CONFERENCE

PRINCIPAL TRACKS 8:30 to 10:00 AM 10:18 to 11:48 AM
HARDWARE & 1.3 Microprocessor Architectures — 1.4 Perspectives on the History of
ARCHITECTURE What Next? Computing

i K. Vairavan and Tadao Ichikawa Paul Armer
NETWORK THCHNOLOGY | 2.5 Local Networks and the ETHERNETin | 3.4 Local Networks and the ETHERNET in
CAPACITY & Particular (I) Particular (n)
PERFORMANCE ANALYSIS Gregory T. Hopkins Gregory T. Hopkins

3.3 Functional Capabilities of Dictionary 3.4 Operating Systems
SOFTWARE Systems Joseph Leung
Belkis Leong-Hong

INFORMATION 4.3 Technology Transfer: 4.4 Planning for Technology Transfer
PROCESSING Management Issues Robert Scheer
MANAGEMENT Conrad Weisert
EDUCATION & 8.3 Computers and the Future of Literacy 8.4 Issues Concerning National Computer
SOCIETAL ISSUES Frederick Goodman Literacy in 1888

Robert Seidel

AUTOMATING THE OFFICE | 6.3 Word Processing in Litigation & 6.4 Computer Applications in Law Firm
AND Information Retrieval Management
COMPUTERS AT WORK Haley Fromholz Haley Fromholz
7.3 Distributed Database Architecture 7.4 Database Practicum

DATA BASE SYSTEMS
AND
COMPUTERS AT WORK

Hal Uhrbach

Susan Rosenbaum

VISUALS, NATURAL

8.3 Inte ent Computer-Aided 8.4 Computer-Based Educational Aids
LANGUAGE PROCESSING Instilégtion Arthur Melmed
& ARTIFIC. Mark Fox
INTELLIGENCE
1:30 to 3:00 PM 3:18 to 4:48 PM
1.8 Fault-Tolerant Computing Systems 1.6 Contemporary Fault-Tolerant
Gerald Masson Computer Designs
‘William C. Carter
2.8 Management of Capacity Planning 2.6 Network Capacity Planning
Leonard Lipner Jeffrey A. Bloom
3.8 Software Reliability in Real-Time 3.6 PASCAIL: Standardization and Extension
Systems A. Winsor Brown
Bharat Bhargava and David Clapp
4.8 Implementing Technology Transfer 4.6 Systems Assurance: A Step Beyond
Denny O. Wallace EDP Audit
James Krause
PLENARY SESSION

12:00 NOON-1:00 PM

Effects of Computers on Personal Life
Abbe Mowshowitz

8.6 Where is the Story?: A Journalists
Panel on Trends in Computing
Brad Schultz

6.8

Simulation of Natural Systems
Roger M. Firestone

6.6 Future Office Systems
Tom Sinopoli

7.8

Research & Development in
Distributed Database Systems
Cory Devor

7.6 Database Systems Advances in
Medical Systems
Meera Blattner

8.8

Communicating with Computers in

Natural Languages —
Current Capabilities
Martha Evens

8.6 Communicating with Computers in
Natural Language — Future Promises

Norman K. Sondheimer

viii

WEDNESDAY, MAY 6 — NATIONAL COMPUIER CONFERENCE

PRINCIPAL TRACKS 8:30 to 10:00 AM 10:18 to 11:48 AM
HARDWARE & 1.7 Hicropm,gramm:lng—!l‘he Challenge of 1.8 uicropm’gramming—'rhe Challenge of
ARCHITECTURE the 1980s (1) the 1980’s (IT)
Samir S. Husson Samir S. Husson
NETWORK TECHNOLOGY 3.7 Capacity Planning in a Production 2.8 Simulation of Computer Systems:
AND & Environment Software & Hardware
CAPACITY J C i
PERFORMANCE ANALYSIS ames Booper Norman Schneidewind
3.7 Software Maintenance 3.8 Quantitative Measures for the Quality
SOFTWARE Stephen S. Yau of Systems and Programs
Carma McClure
INFORMATION 4.7 Production Process in the Eighties 4.8 Business Communication; Security &
PROCESSING Russ Melton Vulnerability
MANAGEMENT John Donovan
EDUCATION & 8.7 Protection of Proprietary Interests 8.8 Planning Agenda for a National Health
SOCIETAL ISSUES in Software Information System
Susan Nycum Marion Ball
AUTOMATING THE OFFICE 6.7 Combining Office Automation and Data 8.8 Form Processing in the Office
AND Processing — 4 Usefuln Environment
COMPUTERS AT WORK Its Technology and Usefulness Mitch Zolliker
Dan Zatyko
DATA BASE SYSTEMS 7.7 The Impact of Computing on the 7.8 Simulation: A Tool for Business
AND Handicapped in the Eighties Decision-Making
COMPUTERS AT WORK Samuel C. Lee Suresh K. Jain
VISUALS, NATURAL 8.7 Artificial Intelligence Applications to 8.8 Prospects for Artificial Intelligence
LANGUAGE PROCESSING Electronic Circuit Desig Application in Industry
& mmgﬁm Tom Mitchell N. S. Sridharan
1:30 to 3:00 PM 3:18 to B:18 PM
1.9 Higher Level Microprogramming 1.10 Higher Level Microprogramming
Languages and Optimization (I) Languages and Optimization (II)
Bruce Shriver Bruce Shriver
2.9 Special Session: Pioneer Day — 2.10 Special S8ession: Pioneer Day —
Univac I Univac I
Carl Hammer Nancy Stern and Henry Tropp
3.9 Maintenance of Programs & Systems 3.10 Software Development Facilities
Ned Chapin Louis Brocato
4.9 Data Entry Productivity 4.10 Special Project Management
Lawrence Feidelman Clifton Merry
PLENARY SESSION
13:00 NOON-1:00 PM -
8.9 Private Sector Policy Issues on the 8.10 Alternmative Data Processing
Use of Computer Technology in the Strategies for Hospital Information
Healthcare Industry Systems
Karen Duncan David Mishelsvich
6.9 Definition & Measurement of 6.10 Electronic Mail: Current
Application Software Productivity Developments
Benn Konsynski Walter Ulrich
7.9 Computer-Assisted Analysis in t:
Energy/Economic Models 7.10 %}.:;g;es;:;?k Database Applications
Harvey Greenberg
" », 1
8.9 Imaging & Computers 8.10 Bduc o ony 1 Uses of ¥
Diana Merry Michael Temnpel

THURSDAY, MAY 7 — NATIONAL COMPUTER CONFERENCE

PRINCIPAL TRACKS

8:30 to 10:00 AM

10:18 to 13:18 PM

HARDWARE &

1.11 Adaptable Architectures
Svetlana Kartashev and

1.128 Architecture of 8pecialized Hardware
Systems

ARCHITECTURE Steven I. Kartashev William E. Farley
NETWORK TECHNOLOGY | 211 Implementations of Experimental 2.12 Local Networks: The Fundamental
CAPACITY & Local Networks Technology of Office Automation
PERFORMANCE ANALYSIS William Lidinsky Harvey Fréeman
3.11 Quality Assurance —An Emerging 3.13 The User Interface
SOFTWARE Technology Howard Lee Morgan
Gene Altshuler
INFORMATI 4.128 Recruitment, Retention, &
oN 4.11 Motivation of Computer Personnel Certification of Data Processing
PROCESSING i Professionals
MANAGEMENT J. Daniel Couger ‘ession.
Thomas A. Browdy
EDUCATION & 8.11 Computer Professional as an Expert 8.128 Library & Business Computer Use:
SOCIETAL ISSUES Witness What’s the Difference?
Alex Hoffman Peter Lykos

AUTOMATING THE OFFICH
AND

6.11 The Electronic Office: A Futuristic

6.128 Office Automation: The Federal

Forecast Experience
COMPUTERS AT WORK Richard Federico Ira W. Cotton
DATA BASE SYSTEMS 7.11 Computing & Energy Technology 7.18 Automated Testing for Increased
AND Assessment Productivity
COMPUTERS AT WORK Ellen M. Leonard Leonard Gardner and John Savage

VISUALS, NATURAL

8.11 Recent Computer Advances in

8.12 Applications of Artificial

AN OUAGE PROCESSING Legislative Reapportionment Intelligence to Law
INTELLIGENCE Lee Papayanopoulos L. Thorne McCarty
PRINCIPAL TRACKS 1:30 to 3:00 PM 3:18 to 4:456 PM

HARDWARE &

1.13 Single Chip Computers — Where Are

1.14 The Application of Peripheral Array

d They Headed? Processors
ARCHITECTURE K.S. Padda Walter J. Karplus
NETWAO::% TECHNOLOGY 2.13 Use of Models in Capacity Planning
CAPACITY & Satish K. Tripathi 2.14

PERFORMANCE ANALYSIS

3.13 The Public Release of Smalltalk-80

3.14 Computer-Based Tools for Software &

SOFTWARE Daniel H. Ingalls, Jr. Systems Engineering
Gerald Estrin and Ray Houghton

INFORMATION 4.14 A Survey of Project Management
PROCESSING e e e Analysis Software Packages
MANAGEMENT ; Linda Taylor
EDUGATION & 8.13 Developing Software Engineers in ' 8.14 Developing Software Engineers in
SOCIETAL ISSUES Industry the Universities

Pei Hsia Frederick E. Petry

AUTOMATING THE OFFICE

6.13 Choosing a Computer Language for a

AND First Problem-Solving Course 6.14
COMPUTERS AT WORK Robert J. MeGlinn
DATA BASE SYSTEMS 7.13 Computing Applications in Magnetic 7.14 Computational Methods in Inertial
AND Fusion Energy Research Confinement Nuclear Fusion
COMPUTERS AT WORK John T. Hogan Keith A. Taggart

VISUALS, NATURAL
LANGUAGE PROCESSING
& ARTIFICIAL
INTELLIGENCE

8.13 Expert Systems and Knowledge

Engineering
N. 8. Sridharan

8.14

CONTENTS

0 (=) 1o LR A
Albert K. Hawkes

010 o Yo L1 L1 o s WA O vi
Alex Orden

COMPUTER HARDWARE AND ARCHITECTURE

Software sympathetic chip set design........ ... 3
Richard F. Hobson

A computer-aided VLSI layout SYStEM vutntttnt ittt ettt ettt et 11
W. A. Dees, K. M. Parmar, A. Goyal, R. Y. Tsui, B. D. Rathi, and R. J. Smith, II

A multiprocessor description language. i i e 19
William T. Overman, Stephen D. Crocker, and Vittal Kini

Fault tolerance by means of external monitoring of computer systems oo ittt 27
Algirdas AviZienis

The fault-tolerant 3B-20 Processorttt it i e e 41
L. E. Gallaher and W. N. Toy

Firmware engineering: Methods and tools for firmware specification and design.............................. 49
Wolfgang K. Giloi, Reinhold Gueth, and Bruce D. Shriver

New directions for micro- and system architectures inthe 1980s oo, 57
Harold W. Lawson, Jr.

Microprogramming—The challenges of VLSI.iuiuin ittt enenennennnns 63
Alice C. Parker and Wayne T. Wilner

Vertical and outboard migration—A Progress rePOTto.utn ittt it e 69
Andrew Heller and Andries van Dam

Firmware testing and test data selection i e e 75
Helmut K. Berg

Specifying target resources in a machine independent higher level language 81
Scott Davidson and Bruce D. Shriver

The design of a firmware engineering tool: the microcode compiler............ ..o, 87
Perng-Yi Ma

Microcode compaction: Looking backward and looking forward oo oo, 95

Joseph A. Fisher, David Landskov, and Bruce D. Shriver

V-Compiler: A next-generation tool for microprogramming...............ueeiueeninueeunnnneeeernneneeennn. 103
Dave Patterson, Ross Goodell, Michael D. Poe, and Simon G. Steely, Jr.

Adaptable pipeline system with dynamic architecture. o i e 111
Svetlana P. Kartashev and Steven I. Kartashev

Modular crossbar switch for large-scale multiprocessor systems—Structure and implementation................. 125
Bernhard Quatember

Some potential deadlocks in layered communications architectures.ottt ennrnreenna, 137
Joseph Hellerstein and Wesley W. Chu ‘

General-purpose integrated indexing circuits—A proposal i e e 141
A. C. D. de Figueiredo

xi

The VALI (Variable Language INterPreter) vu v ettt ttete et etete e aetee et aaneraraeaeennn. 145
James D. Mooney

The architecture of MANIP—A parallel computer system for solving NP-
complete Problems. N 149
Benjamin W. Wah and Y. W. Ma

Parallel sorting machines: Their speed and efficiency........... ... it 163
Leon E. Winslow and Yuan-Chieh Chow

NETWORK TECHNOLOGY

Packet communication of online speechoi i e e e 169
Danny Cohen

Highlights of a group effort in algorithmic development for packet-switched voice networks.................... 177
J. D. Markel

A modular approach to packet voice terminal hardware design............. o i i, 183
G. C. O’Leary, P. E. Blankenship, J. Tierney, and J. A. Feldman

Engineering computer network (ECN): A hardwired network of UNIX computer systems 191
Kai Hwang, Benjamin W. Wah, and Fayé A. Briggs

A protocol for a new. double-loop computer network and its implementation.0oiviiinn.... 203
S. Leventis, G. Papadopoulos, S. Koubias, and J. Constantinides

ILLINET—A 32 Mbits/sec. local-area networkttt ittt e ieereneenanns 209
W. Y. Cheng, S. Ray, R. Kolstad, J. Luhukay, R. Campbell, and J. W-S. Liu

SOFTWARE

A survey of currently implemented Pascal Xtensions.ovini it i e i e 217
T. N. Turba and S. H. Costello

A standard tool for information resource management i A 225
Michael E. Meyer

SAGA: A system to automate the management of software production. e 231
R. H. Campbell and P. G. Richards

The development facility approach to improved software development 235
David W. Johnson

CARL—Experience of an application using cluSters.couiiuiuiiiiiiiiii ittt it 241
E. Levinson, L. S. Levy, and J. B. Salisbury

The software configuration management databaseottt e 249
Edgar H. Sibley, P. Gerard Scallan, and Eric K. Clemons

EUCLID—A language for compiling quality softwareottt eeaeannns 257
David B. Wortman, Richard C. Holt, James R. Cordy, David R. Crowe, and Ian H. Griggs

The design and implementation of a new UNIX KEITEL . . oot e 265
Charles Crowley

A security policy for a profile-oriented operating SYstem.oiiuuiiiiiii it e e 273
Charles R. Young

Distributed task force scheduling in multi-microcomputer networks oo i i, 283

André M. van Tilborg and Larry D. Wittie

The assignment of computational tasks among processors in a distributed system 291
Camille C. Price

Software reliability in real-time SYStEIMS. ittt e e e 297
Bharat Bhargava

A state- and time-dependent error occurrence-rate software reliability model with imperfect debugging 311
J. G. Shanthikumar

Xii

On the complexity of measuring software compleXity...........oviiuiiiiiiiiii it iiiiaeennn. 317
G. Michael Schneider, Robert L. Sedlmeyer, and Joe Kearney

Quantitative measures of MIS quality assurance during hardware conversion.........«~...................... 323
John W. Center

Taking the measure of program complexityooiuuiiiiiiiiiiiiiii ittt eaaanneen 329
Jean Cochrane Zolnowski and Dick B. Simmons

Salvaging your software asset (tools based maintenance)...............oooiiiiii il 337
Michael J. Lyons

Maintenance is a management problem and a programmer’s OpPOTtUNMItY ~vnutiireiineiinerenneennnn., 343

~ John Reutter, III

Productivity in sOftware maintenance.vuuinut ittt i i i i 349
Ned Chapin

Improving software testing in large data processing organizations................o i, 353
M. A. Holtheuse-and C. W. Lybrook

Compiler validation—An @SSESSIMENTttt vttt ittt ettt e ettt 361

George N. Baird and L. Arnold Johnson

An approach to transfer verification and validation technology oo i, 367
Mark K. Smith, Leonard L. Tripp, Leon J. Osterweil, Richard N. Taylor, and William E. Howden

Easy interactive access to batch image analysis software i 375
Ronald L. Danielson

A unified approach to online assistance.ttt e e 383
Nathan Relles, Norman K. Sondheimer, and Giorgio Ingargiola

An experimental system to support a very high level userinterfaceol 389
William L. Batchelor and Lucian J. Endicott, Jr.

Principles of good software specification and their implications for specification languages 393
Robert Balzer and Neil Goldman

Modular documentation: A software development tool o ittt e 401
Roy E. Anderson

Specification technique for parallel processing: Process-data representationol 407
Ken Hirose, Kiyoshi Segawa, Nobuo Saito, Norihisa Doi, Masahiro Hirata, Toshiharu Yamasaki,
and Masayuki Takata

A tiny portable language-independent macroprocessor and some applicationscoeeerunnnn.n. 415
Robert C. Gammill

CAPACITY AND PERFORMANCE ANALYSIS

Finite queueing approximation techniques for analysis of computer systems. P e e 423
Dimitris A. Protopapas

Throughput-response measurements in a distributed CAD/CAM processing network.c..covvuvnn. .. 431
J. R. Rao and W. L. Hanna

DATABASE SYSTEMS

Effective inference control mechanisms for securing statistical databases........................, 443
Vangalur S. Alagar, Bernard Blanchard, and David Glaser

Using partitioned databases for statistical data analysiso iiiiiiiit ittt annnann 453
Ruven Brooks, Meera Blattner, Zdzislaw Pawlak, and Eamon Barrett

Development of an automatic sieep EEG analysis and staging system ..., 459
M. W. Vannier, E. Othmer, S. Othmer, and P. Fishman

xiii

Embedding an information system within a generalized network environment................................ 463
Darrell L. Ward

The design of the Clinical and Research Information System for Psychiatry 469
Ruven Brooks

A concurrency control algorithm in a distributed environment. 473
Paul Decitre

An alternative approach to distributed database updating............... o il 481
Richard J. Greene

Multibase—integrating heterogeneous distributed database systemso i, 487
John Miles Smith, Philip A. Bernstein, Umeshwar Dayal, Nathan Goodman, Terry Landers,
Ken W. T. Lin, and Eugene Wong

Architecture of a distributed database information reSoUrCe.ttt tiiiie ittt e, 501
James R. Swager

Optimization of the file access method in content-addressable database access machine (CADAM) 507
Sadayuki Hikita, Haruaki Yamazaki, Kiyoshi Hasegawa, and Yutaka Matsushita

Parallel sort and join for high speed database machine operations i, 515
Mamoru Maekawa

Highly parallel associative search and its application to cellular database machine design 521
Sakti Pramanik

A generalized database access pathmodel i e 529
Georges S. Nicolas

Database programming with data abstractions........ ...t 537
Burt Leavenworth

Feature analysis of selected database recovery techniques........... i iiiiiiiiiiiiinnennnn, 543
Bharat Bhargava and Leszek Lilien

Data compression procedures utilizing the similarity of data........................ oL, e 555
Yahiko Kambayashi, Narao Nakatsu, and Shuzo Yajima

INFORMATION PROCESSING MANAGEMENT

Choosing application development tools and techniques ii it 565
V. Kevin Whitney and Jane G. Morse

A software requirements analysis and definition methodology for business data processing..................... 571
Isao Miyamoto and Raymond T. Yeh

A methodology for information system design.ot e 583
Colette Rolland

EDUCATION AND SOCIETAL ISSUES

CSDP: A model for continuing education in data processing e 593
Dennis M. Oliver, Robert A. Rouse, and Robert J. Benson

People teaching people: A cooperative education venture. e 597
Edwin F. Kerr

Computers and the future of Hteracyt i i e e e e 601
Frederick L. Goodman

COMPUTERS AT WORK

Keeping CAI humane in the humanities i e 605
Helen J. Schwartz

Xiv

Richard W. Boss

Libraries as local database ProOQUCETS.vvt ittt ittt ittt ettt ietieeereneeananaaeeas :

Robin Crickman

Data files as library materials: Policies, procedures, and politicscoiiiiiiiiiiii ...

Richard C. Roistacher

Computerized weighted voting reapportionment AP

L. Papayanopoulos

Hospital information systems tutorial: A guide for computer scientists and practitioners....................

David J. Mishelevich

VISUALS, NATURAL LANGUAGE PROCESSING, AND ARTIFICIAL INTELLIGENCE

Issues in the development of natural language front-ends o it

James Hendler, Thomas P. Kehler, Paul Roller Michaelis, Brian Phillips, Kenneth M. Ross,
and Harry R. Tennant

Text-critiquing with the EPISTLE system: An author’s aid to bettersyntax

Lance A. Miller, George E. Heidorn, and Karen Jensen

Shifting to a higher gear in a natural language system o i i i

Bozena Henisz Thompson and Frederick B. Thompson

Computer speech for people with cerebral palsy ... e

Jay Hewitt

GRASS3, a language for interactive graphics.ooiiuiiniiiiiiiiiii it

Nola Donato

VISION II: A dynamic raster-scan displayoouuutiiiiiiiiiiiiiiii ittt iieess

Robert Rocchetti

The development of the reactor safety film o i

Nancy N. Sheheen and Patrick J. Hodson
The MODEL/IMAGES? system: An application of computer graphics and three-dimensional

geometric modeling to the jet impingement problem ol

W. R. Winfrey and S. R. Ricketts

The applications of artificial intelligence to law: A survey of six current projects..................cc.ouv....

Sandra Cook, Carole D. Hafner, L. Thorne McCarty, Jeffrey A. Meldman, Mark Peterson,
N. S. Sridharan, James A. Sprowl, and D. A. Waterman

An automated reasoning system e e e e

L. Wos, S. K. Winker, and E. L. Lusk

XV

609
613
617
623

631

643

649
657
663
665
671

677

681

689

697

COMPUTER HARDWARE
AND ARCHITECTURE

Software sympathetic chip set design

by RICHARD F. HOBSON

Simon Fraser University
Burnaby, British Columbia

ABSTRACT

The current status of special function unit (SFU) use in micro-
computer systems is reviewed. Also outlined are areas where
more sophisticated SFUs can be used to improve low- and
high-level software environments in a microcomputer system.
A structured machine model is presented to help containerize
and control classes of software and hardware artifacts.

INTRODUCTION

With the 1980’s comgs an era wherein hardware modularity,
specialization, and structure are closing in on the software
territory of the 1970’s. To simplify and speed up complex
microcomputer software systems, more functionality and con-
trol are being packaged in hardware or firmware controlled
specialized function units (SFUs). SFUs are appearing either
as isolated performance enhancement devices or as part of an
announced chip set. Ad hoc microcomputer hardware module

expansion may lead to more of the architecture irregularities

plaguing software engineers. To avoid this, we should look
seriously at architectures based on a coherent structure of
such modules.

In this article we review the current status of SFU use in
microcomputer systems. We also outline areas where more
sophisticated SFUs can be used to improve low- and high-
level software environments in a microcomputer system. To
this end, a model system is described. The model is partially
motivated by an evaluation of the potential of a scientific
arithmetic processor chip relative to a typical first-generation
microcomputer (see Appendix I). While a performance factor
increase of 3 or 4 was expected, the actual factor was closer to
10. More recently, the Intel 8087 has raised this factor to 100.
Speed notwithstanding, we must strive to avoid strikingly
awkward software sequences, whether to perform operations
on data types that are not natural to a microprocessor (e.g.,
floating-point data) or to interface one chip with another. One
cannot just glue LSI chips together and retain, at the VLSI
level, the same software appeal that each chip may have en-
joyed individually.

The status of language-oriented computer design is briefly
reviewed in Appendix II.

CURRENT TRENDS

LSI specialized function units have become the dominant
choice for arithmetic processing, floppy- and hard-disk con-
trol, CRT refresh and control, communication protocol,
DMA control, and memory management.' Single-chip com-
puters with on chip ROM and RWM also fall into this catego-
ry. The latter are best suited for small dedicated tasks.” With
such “support staff” potential, a central processor can have
more time to execute higher-level control functions for an
operating system or an application package. Code sections
will also be shorter, more to the point, and more reliable.

The latest microprocessors have been enhanced in a variety
of ways over their precursors.>” Prominent 16-bit contenders
portray traditional register architecture philosophy more than
HLL architecture philosophy (see Table I). Their new bus-
sharing protocols are significant because multiple SFUs can be
set up with a variety of processor interconnection schemes.

The main mode of communication between microproces-
sors and special devices is via I/O sequences of the type de-
scribed in Appendix I (see also Wakerly®). The next most
common mode would be a message buffer, with cooperating:
processors either sharing the same buses or separated by bus
arbitration hardware.® Ultimately we would like to be able to
configure a microcomputer system with a collection of SFUs
in such a way that the instruction set can be dynamically
expanded to include new functions. The Intel 8086’s ESCAPE
mechanism is such a technique.

What we have seen so far is a packaging of clearly identi-
fiable functions. What is not clearly identifiable as a function,
notably high-level program and environment control, has
been left over for the general-purpose microprocessor and the
programmer. The next step is to identify hardware control,
program control, data control, operating system control, and
language interpretation as functional areas; hence potential
candidates for LSI modules. Research is needed to iron out
communication and high-level language/environment support
problems before functional module unification will be
achieved. '

4 National Computer Conference, 1981

TABLE I—Some architecture features employed
in prominent new LSI microprocessors

Processors
Features 18086 M68000 78000
Base relative addressing T T T
Memory management F New chip New chip
Memory segmentation Partial Partial Partial
(New chip, New chip)
Multiprocessor bus T T T
Dedicated coprocessors T F F
State marking (on stack) F T T
Unused opcode trap F T T
Opcode expansion F Via trap Via trap
Supervisor state F T T
Floating-point instructions F To come F
Floating-point processor New chip F F
Channel processor New chip F F
Instructions/data separate Optional Optional Optional

TOWARD A PHILOSOPHY FOR CHIP SET
SPECIALIZATION

Basic computer organization is often introduced in terms of
logical functional units for input, output, memory, arithmetic
-and logic, and control. In general we do not think of these
units as constituting a multiple-processor or distributed-
processor machine. Nor, for the most part, do we care. Enter
LSI technology. Now digital systems must be packaged as
functional units for cost effectiveness and design simplicity.

How should the logical functions be distributed? What
range of functions is relevant?

Since high-level-language (HLL) notation is the preferred
way to describe an application, one technique is to identify
separable activities that all or many HLLs require for run-
time support. These requirements may then influence the
resulting architecture,'® but only part of the architecture.
Since languages are simply tools, we should not look exclu-
sively at their requirements. Some applications have require-
ments that may not be adequately representable with known
HLLs. Text editing or word processing, for example, have
data structure and real-time interaction requirements that are
difficult to describe effectively with conventional HLL tech-
niques. Real-time operating system functions also form a spe-
cial class. We have heard it said that a semantic gap often
exists between machine architecture and programming lan-
guage features.” It is also clear that such a gap exists for
programming environments as well. It is the total pro-
gramming environment that should be considered when de-
signing a multiple-processor chip set—hence, computer archi-
tecture that is oriented to a high-level-programming environ-
ment rather than to an HLL.

Traditional logical partitioning remains essentially valid. It
is the degree of specialization, the sophistication of instruc-
tions, and the physical separation of units that is outdated. To
begin with, input and output belong to one (or more) separate
processor modules, as do other specialized operations. A pro-

gramming environment is also destitute without sophisticated
memory management. Finally, for control, the environment
should be managed by a small real-time control processor. To
illustrate, consider a specialized unit model (SUM.4) con-
sisting of four units: environment control unit (ECU), pro-
gram management unit (PMU), data management unit
(DMU), and arithmetic/logic processor unit (ALPU). They
represent an SFU system hierarchy, as depicted in Figure 1.
The following subsections describe some of the functions re-
quired for these units to support an HLL-oriented pro-
gramming environment. The main objectives are
1. To reduce the complexity of system software by provid-
ing a variety of high-level functions as software primi-
tives or built-in tasks
2. To promote structured machine design
3. To provide better single user run-time support for a
variety of high-level languages and real-time applica-
tions

ECU

The environment control unit provides operating system
functions and high-level I/O interpretation (see Table II).

A small real-time operating system runs in the ECU, the
application control system (ACS). ACS contains fixed tasks
for all devices that may be attached to SUM.4, e.g., for net-
work control, console graphics, or editing. Provision must be
made for transient or user support tasks that may be required
to augment the functional capabilities of ACS for different
applications—in particular, high-level-language I/O inter-
pretation tasks. Interface ‘“‘pipes” or tasks for PMU and DMU
communication are important parts of ACS. '

ECU architecture must be oriented toward variable interval
interrupt servicing and I/O translation needs. Many of the
existing microprocessors have appropriate features for an
ECU, but in terms of LSI rather than VLSI. A user micro-
grammable or custom VLSI ECU could contain firmware for
a complete operating system nucleus.

ECU user

PMU DMU

|

1 for
i ALPU
1

-]
=
<

Figure 1—Block diagram showing the SUM.4 hierarchy

Software Sympathetic Chip Design 5

PMU

The program management unit is unique in terms of current
microcomputer architecture in that it is the first of several
possible processors that may contribute to the interpretation
and execution of user code.

In an interpretive mode (e.g., for debugging or supporting
a language such as APL), some internal form of the source
code is fetched from segment memory (SM), checked for
syntax errors, and translated into formatted, directly executed
language (DEL) instructions for the DMU to execute. Oper-
ations modifying the execution environment, such as pro-
ure call, are partially handled by the PMU.

The value of a separate PMU is not so clear for compilable
languages. However, if we can get enough overlap between
interpretation and execution of a compilable language, there
is little reason to compile. Interpreters permit advantages,
such as interactive debugging, execution environment protec-
tion, and run-time recovery, that cannot reasonably be
matched by compilation. Microprocessors have been success-
fully used to interpret UCSD P-code machine instructions.*
This experiment gives confidence that two or more “simple”
processors with appropriate firmware can be very efficient at
interpreting a suitably chosen intermediate form of Pascal, an
easily compiled language. Greater benefits should result from
more complicated languages. The key phrase here is “suitably
chosen intermediate form.” As long as run-time errors can be
trapped and tied to the offending source statement expression
through “reverse compilation,” compilation per se is toler-
able. Thus, even for compilable langaages, the PMU can play
an important role.

PMU activities are language-oriented. For multilingual sup-
port a user microprogrammable processor is required. This
processor needs to manipulate code streams and communi-
cate effectively with segmented memory. Additional special
function support may be added to the PMU (see Figure 1),

DMU

A data management unit is mainly responsible for control-
ling operations on various data aggregates. Instructions or
instruction bursts are normally fetched from the PMU inter-
face. If the DMU is equipped to execute them directly, it does
s0; otherwise DMU action centers around providing operand
data for the ALPU or ECU to manipulate. Before operation
execution is permitted, operand validity must be checked.
Such verification is facilitated by the use of data tags.

DMU and PMU design requirements are similar: Both are
language dependent; both manipulate data aggregates (as-
suming that various forms of a program constitute data aggre-
gates). The same processor architecture may thus be used for
DMU and PMU units; only their microcode is different.

ALPU
Arithmetic and logical functions that the DMU cannot han-

dle efficiently are provided by one or more specially designed
units constituting the ALPU. This unit should operate only on

TABLE II—A possible partitioning of functions performed by
various specialized units

ECU)
-Task initiation (with PMU).
-Single-step control (with PMU).
-User command interpretation.
-Service special events (e.g., errors).
-HLL data formatting.
-Peripheral communication.
-Special device control (e.g. graphics).
-Text editing and command input.
-Real-time clock control.
-Execute I/O subtasks.
-Load microcode.
-Test other modules.
PMU .
-Interpret HLL programs (or a suitable intermediate form).
-Execute procedure CALLs.
-Establish environments, manage tasks.
-Help maintain segmented memory.
-Service exceptional conditions.
DMU
-Execute DEL instructions from the PMU or ECU interface.
-Verify data operations (e.g., bounds checking).
-Manipulate operand data for the ECU and ALPU.
-Perform some functional operations (e.g., data reatrangements).
-Help maintain segmented memory.
-Report conditions to PMU.
ALPU
-The usual scientific calculator functions.
-Logical functions on strings.
-Adjust automatically to data size change (necessaty for APL).

atomic or scalar items and need not have memory-accessing
skills if the DMU interface is properly designed. The Intel
8087 is a good example of functional sophistication in this
class, but it is too dependent on the Intel 8086.

SM

Segmented memory is not treated as a separate unit in this
scenario. Memory modeling is, however, an important con-
sideration in the quality of a programming environment.
Variable-length containers for procedures and data aggre-
gates greatly simplify run-time memory management firm-
ware. Beyond that, segments can be associated with property
lists for database content identification and protection. SM
interfacing functions are divided among the DMU and PMU
in SUM.4. Memory management is an integral part of inter-
pretation, whereas a separate system is required to be inter-
faced with compiled code.

The unit interface

A number of multimicroprocessor communication schemes
have been described in the literature.® '*”'° For system modu-

6 . National Computer Conference, 1981

program EXI1 (output);
const H=34;D=.0625;S=32.; L=32;
SEPARATOR = “eerremcimmammnnn ’

procedure PLOT (var XS, YS: real;
var XO, LIM: integer);
const TWOPI = 6.28318;
var X.,Y: real; I, N: integer;
begin for I: =0 to LIM do
begin X: = XS*I;
Y: = EXP (- X)*SIN (TWOPI*X);
N: = ROUND (YS*Y) + XO;
repeat WRITE (‘’); N:=N-1;
until N = 0;
WRITELN (‘*");

end;
end; {plot}

Figure 2—Pascal program example (see text)

larity and simplicity, I recommend using two or three port
memories with an asychronous wait when there is memory
contention. Semaphores can be implemented by having a
“hog” mode, permitting a processor to retain memory selec-
tion beyond one cycle. There are no bus contention problems
with this model. Memory port multiplexing can be combined
with refresh control and address translation in one cascadable
LSI module.

Messages are received indirectly by poling status word lo-
cations or directly through signal interrupts.

Example

To work with Pascal a user asks the ECU to load the Pascal
firmware/software assist package (or it may be loaded implic-
itly). Figure 2 shows a simple Pascal program adapted from
Jensen and Wirth.'” The program causes a damped sine wave
to be plotted along a vertical axis according to supplied scaling
parameters. A source operand recoverable, internal format is
used to store the program. Variable name literals are stored
in a master symbol table for run-time recovery.

The ECU conveys execution requests to the PMU, which
then sets up an execution environment, allocates variables,
initializes values, and begins sending code to the DMU. An
implementer would probably use individual segments for data
aggregates such as sets, arrays, and records, whereas scalars
would be kept in the variable-length program segment. Envi-
ronments for more complicated languages can easily be man-
aged.

Built-in procedures such as WRITE and WRITELN are
implemented through a task in the ECU. More interesting I/O
procedures, such as a plot package, might be entirely imple-
mented through the ECU. This facility permits a smooth in-
terface between language, environment, and hardware.

There are many interesting implementation problems to be
solved. For example, should I, the FOR loop variable in
Figure 2, be incremented and tested by the PMU or the
DMU? Control is simpler if the PMU performs decision-mak-
ing operations and maintains iteration counters. This means
that control variables, such as I, can only be modified by the

DMU with the PMU’s permission. We see an opportunity
here to improve program structure by distinguishing control
from action.

To implement time-shared multitasking, timekeeping
duties go to the ECU, which notifies the PMU to switch
environments. In this case task maintenance is a PMU re-
sponsibility.

Implementation

Once an instruction set has been chosen, implementation
details are irrelevant to most users. In a research environ-
ment, one favors microprogrammability because new primi-
tives can easily be added to upgrade a unit. With custom chip
fabrication nearing the grasp of lower-volume applications,
we can visualize chip sets designed specifically to support a
structured architecture.”® * As wafer-scale integration be-
comes economical, we will probably see the equivalent of
these chip sets laid out as individual modules on a single
wafer. Indeed, large hardware projects, like large software
projects, must be divided into a number of coherent pieces
with well-defined interfaces. In the VLSI era, multiple-pro-
cessor systems will be essential for design simplicity as well as
for greater throughput.

With modular hardware design, units can be developed by
teams of specialists without relying heavily upon each other.
Prototype modules can be implemented on a single PC board
with the intention of gradually combining them into a single
hybrid package and finally onto one chip.

CONCLUSION

The current proliferation of microcomputer hardware needs a
focus. As a greater variety of SFUs are produced, we will be
faced with organizational problems such as befell software in
the past decade. The remedy? Structured architecture. We
should think of hardware as a kind of petrified production
software system. Hardware design therefore qualifies for all
of our software engineering experience.

A structured model has been presented to help containerize
and control classes of software and hardware artifacts. I am
presently engaged in building a SUM.N (N = 4-6) prototype
to study performance, function distribution, communication
techniques, and language/environment support.

ACKNOWLEDGMENTS
Research support from NSERC of Canada and from a Simon

Fraser University President’s Research Grant is gratefully ac-
knowledged.

APPENDIX I—THE CASE FOR SPECIALIZATION

Specialized LSI processor chips have been available for sever-
al years. Only recently, however, have microprocessor ven-

Software Sympathetic Chip Design 7

dors begun to realize their potential. This section compares
the performance of an Intel 8080A microprocessor (MP) with
that of Advanced Micro Devices’ Arithmetic Processor Unit,
the AM9511.%> ! Floating-point addition is the benchmark
operation. This exercise demonstrates the desirability of LSI
special function units because they are much faster than
general-purpose processors of the same technology and be-
cause, with a well-designed interface, software problems can
be greatly reduced.

Benchmark data have a 24-bit normalized (sign magnitude
form) binary mantissa and a 7-bit 2’s complement exponent.
FADD, our 8080A floating-point addition subroutine, con-
tains 263 instructions (loops were avoided for speed) and
assembles into 361 bytes of code. Operand pointers for the
expression Z=X+Y are passed in stream following the
CALL. The simplest cost formula for FADD, assuming two
positive numbers, can be represented as follows:

Entry overhead and setup 76 (8080A clock

Fetch X ;233 cycles)
Overhead : 32
Fetch Y ;233
Comparison of exponents and
overhead 113

Assuming exp X —exp Y =N,

adjust Y N bits 93N + 52 (align

mantissas)

Operation overhead : 102
Mantissa addition (no carry) 125 (no

" renormalization)
Mantissa addition (carry) 225 (1 bit

renormalization)

Store results 231
Exit overhead : 41

1286 (carry, but no
alignment shift)

typical add

“Fastest™ add (without
argument passing) 509 clock cycles

FADD is neither expressive nor conceptual, and it is certainly
not software-sympathetic. Fetching the operands requires
eight successive sequences of the form

LDAX B

STAX D

INX B

INX D,
consuming 24 clock cycles each. With a block move instruc-
tion the movement should only require 10 clock cycles per
byte, i.e., five cycles each direction (the 8080A does a two-
byte POP in 10 cycles and a two-byte PUSH in 11 cycles').
This leads to an improvement factor of 2.4 for operand han-
dling. Another awkward operation for the 8080A is the calcu-
lation of 2’s complement overflow, although most MPs do
include an overflow flag.

For a contrast to the above, consider Advanced Micro De-
vices’ Am9511 arithmetic processing unit (henceforth, the
APU). This chip is made from similar N-channel silicon gate
MOS technology and is rated at the same clock speed (2
MHz). The APU has an 8-by-16- or 4-by-32-level cascading

TABLE III—A summary of AM 9511 instructions

(Single, double, floating): ADD, SUB, MUL, DIV.
(floating): SQRT, SIN, COS, TAN, ASIN, ACOS, ATAN, LOG,
LN, EXP, PWR.
(other): NOP
FIXS (convert top of stack [TOS] to single precision
integer),
FIXD (convert TOS to integer double), FLTS, FLTD,
CHSS (change sign of integer single on TOS), CHSD,
CHSF,
PTOS (push integer single TOS to NOS etc.), PTOD,
PTOF,
POPS (pop integer single NOS to TOS etc.), POPD, POPF,
XCHS (exchange integer single NOS with TOS), XCHD,
XCHF,
PUPI (push floating point constant pi onto stack).

arithmetic stack in reverse Polish notation calculator tradi-
tion. As can be seen from Table III, an impressive list of fixed
or floating-point operations are available in comparison to an
MP instruction set. Floating-point addition for the APU has
a listed execution time range of 56-350 clock cycles (not
counting argument passing). The lower figure is comparable
to our above figure for the fastest add (not counting argument
passing), 509 clock cycles. At the other extreme, the APU can
do any addition within 350 clock cycles. Our benchmark re-
quires up to 2748 clock cycles to add two positive numbers,
including a 23-bit exponent equalization shift. If mixed signs
are permitted, renormalization requires an additional 126
cycles per bit. Not counting operand fetch and store (for
either unit), the APU is an order of magnitude faster than an
8080A at floating-point addition! The APU obtains this ad-
vantage through an optimized register level architecture and
because irrelevant instruction fetches are avoided. Because
more storage, stack operations, and instruction fetches are
involved, other APU operations should also be considerably
faster than equivalent 8080A operations. Operand passing is
equally bad for both benchmarks because the 8080A was not
equipped for block data transfer. Recently, the Intel 8087
arithmetic processor stretched this difference in performance
by another order of magnitude!*’

Chip Communication

The software interface for these units should be considered
as much a candidate for optimization as their operation logic.
A simple interface between an MP and our APU example
would be via 2 VO ports, as depicted in Figure 3. Binary
floating-point addition, using Zilog Z80 block move instruc-
tions, may be represented as follows:

LDI HL,X ;REG(HL) : = ADDR(X)
MVI C,PUSH# ;REG(C) :=push port #
MVI B4 ;REG(B) : = data precision
MOV D,B ;save precision, block move is

;destructive

8 National Computer Conference, 1981

data bus

READY ——(] PAUSE
INT pe————a——]END Am 9511
}——Q TACK cs c/D RD WR
%]

K ¥
TACK INT. VECTOR
(optional)
™
OoUT '
]_D‘ decode 2
- ports
Intel ENA
8080A
8

address bus

WR _ACTION
0 PUSH
1
0
1

POP
COMMAND
STATUS

Figure 3—A simple I/O interface for the Intel 8080/A and the Am 9511

OUTIR ;move value of X to APU stack
LDI HL,Y

MOV B,D

OUTIR ;move value of Y to APU stack

MVI APLUS
MVl C,CTL#

;REG(A) : = APU operation code
;REG(C) :=control port#

ouT (O),A ;perform operation
LDI HL.Z
IN A,(C) ;fetch status
;loop if busy
MVI C,POP# ;REG(C) : =pop port #
MOV B,D
INIR ;move results of X + Y to Z.

Although the above code will obtain floating-point addition
results faster than FADD, its appeal is lost because there is a
large semantic gap.™ It bears little resemblance to the fact that
we are fetching X and Y for floating-point addition. Sym-
pathetic software should provide a clean notational link be-
tween application and hardware. It is sometimes possible to
fake hardware operations by using low-level software macros
and subroutines, but these constructions occupy more space
and take time to develop, maintain, and standardize.

Direct-memory access (DMA) chips are occasionally used
for speed and software improvement, but even with DMA the
above example requires a messy communication routine. Un-
til very recently, support chips have not been designed to help
improve instruction notation or expressiveness. There are few
attempts to integrate their effects into the microprocessor’s
instruction set.

Symbolic code for the statement Z = X + Y might cause a
compiler or an interpreter to produce reverse Polish notation
code:

PUSH X

PUSHY

FADD

POP Z.

Or, for a three-address format, the statement is already di-
rectly executable. Leaving aside the virtues of direct HLL
execution, these forms are software-sympathetic. We expect
the MP to know who is responsible for executing such in-
structions. We also expect the MP to know how to commu-
nicate with the implied device. Intel’s coprocessor technique
is a partial solution to this problem.?'

A coprocessor monitors the system bus looking for a special
opcode called escape (ESC). Six bits within the two-byte ESC
sequence may contain a coprocessor opcode. ESC causes the
master processor to put an operand address on its address bus
and perform a memory read. The data so read can be used
immediately (e.g., PUSH) or may be ignored. Once selected,
the coprocessor drops its TEST line for synchronization with
the host. For continued coprocessor interaction, the main
processor must see a WAIT instruction following ESC. Once
activated, the coprocessor is free to access memory by putting
the main processor on HOLD through the bus request/bus
grant protocol.

Now consider the previous example using Intel 8086 assem-
bler-type code with an arithmetic coprocessor (the Intel
8087):

ESC PUSH,X ;send X to coprocessor.
WAIT ;synchronize.

ESC PUSH,Y

WAIT

ESC FADD,AL ;request floating-point operation.
WAIT
ESC POP,Z ;deposit results.
The coprocessor technique is a much needed improvement
over our previous example. But we do not see any advantage
in having the coprocessor understand a complicated instruc-
tion stream. Nor does it seem necessary for a coprocessor to
access memory itself. These irregularities can be removed
with an improved interface and an appropriate instruction set.
It is clear that SFUs will play a vital role in future micro-
computer design. Coprocessors, SFUs in general, are still
more of an exception than a rule.

APPENDIX II—WHITHER LANGUAGE-DIRECTED
COMPUTER DESIGN?

High-level language features have been influencing computer
designers for some time.**" Where are the results? In the
beginning, because there were no high-level languages, hard-
ware technology dictated architectural features. In any case,
technology was not capable enough. By the time an HLL
executing processor was considered feasible, register architec-
ture had a firm grip on both ends of the commercial market,
namely IBM 360 and PDP 8. Already the enormous in-
vestment in software exerted great pressure on IBM to remain
upward-compatible.

DEC had an opportunity to make revolutionary changes to
minicomputer architecture when they designed the PDP 11.
Indeed, software played a large role in that design, but not

Software Sympathetic Chip Design 9

HLL software. They were more interested in how easy it was
to write assembler code, how a compiler would produce ma-
chine code, how a loader would work, how relocatable code
would be, etc.?' The main uses of minis at that time were still
in laboratories. A register-oriented architecture was the dem-
onstrated choice for data acquisition and process control ap-
plications. So, while some improvements are visible, e.g.,
stack features and memory-to-memory operations, DEC soon
found themselves in the same hammerlock condition as IBM
and others. DEC’s new VAX does exhibit several features
that are convenient for arithmetic expression evaluation, en-
vironment control, and certain COBOL operations.

Microcomputers have repeated this history.* If it were not
for their simple architecture, the early microprocessors could
not have been produced on a single chip. The jobs they were
designed to fill were considered known a priori and suited a
simple register/stack environment. When the potential of a
microcomputer was finally realized, economic considerations
again prevailed. New products were simple extensions of pre-
vious best sellers. For example, the Intel 8080 evolved from
the Intel 8008. Interfacing remained the main application.

Stacks provide the most widespread connection between
HLLs and machine design.”>>® Notable in this area are the
Burroughs B5700, B6700, and B7700 series. More recent en-
tries include the Hewlett-Packard 3000 and 300, the Micro-
data 32/S, and the WD9000 by Western Digital. Micro-
processors in general are beginning to exploit stack tech-
niques, although not on the same scale as the above. Stacks
provide an efficient logical mechanism for run-time contro! of
block structured languages. Stacks also facilitate execution of
the Polish string representation of an arithmetic expression.
However, recent work shows that stack architectures are of-
ten more convenient than optimal.***!**

The SYMBOL computer is one of few HLL direct execu-
tion machines to have been built.”” Sevén autonomous SFUs
perform program translation, Polish string execution, virtual
memory management, I/O, etc. Programs tend to flow
through the machine in a pipelined fashion for greater
throughput. Results from this project firmly establish the fea-
sibility of direct HLL execution. But the popularity of an HLL
is a delicate marketing issue. Although old languages tend to
fall into disfavor (although not disuse), new languages require
several years to reach the hearts of programmers. Current
trends in LSI technology indicate that a general-purpose ma-
chine with fewer SFUs and a simpler architecture than SYM-
BOL could be very successful.

Burrough’s B1700 series was designed to interpret interme-
diate-level languages through microprogrammed inter-
preters.* Great effort was expended to abolish fixed-length
word sizes and data formats at the hardware level. Instead,
variable-length bit strings can be mapped into any desirable
data structure. HLLs are supported through dedicated S-lan-
guages, which rely upon the use of stacks and special storage-
to-storage instructions. The B1700 demonstrates that HLL-
oriented computers are commercially feasible. It also demon-
strates the flexibility of microprogramming for switching from
one high-level environment to another. But as a latecomer to
the industry, its popularity is hampered by well-established
competition. Cost effectiveness is difficult to establish for ma-
chines such as SYMBOL and B1700 because work units are

different. Benchmarks are hard to agree upon. Again, current
trends in LSI technology suggest that a combination of the
B1700 and SYMBOL architectures should be very effective
and practical.

Some microcomputers are dedicated to one HLL, for exam-
ple MCM 900 and IBM 5100 APL machines. What matters
when working on a dedicated machine—or any machine, for
that matter—are implementation details affecting the pro-
gramming environment anid response time. We are at a stage
now where specialized hardware units can be produced more
cheaply than ever. It seems inevitable that they will be used
to boost run-time efficiency in such machines.

What about new markets? If you consider ROM-controlled
microcomputers such as the Apple, Pet, and TRS-80 to be
HLL-oriented machines (many do), then HLL machines are
exploding into an as yet unlimited market. A chip set version
of SUM. 4 would compete in this lower-cost but highly person-
alized computer market.

SUM. 4’s underlying philosophy recognizes the need for en-
vironments that support application programming in a variety
of HLLs. Interpretation of an HLL is considered essential for
debugging. During this phase speed is not a major factor
because the system is generally I/O-bound. Hence direct exe-
cution should exist at least as a software option. Once a pro-
gram is ready for production use, it should become as much
an integral part of the environment as possible. This is difficult
to achieve even in a unilingual environment. Structured digi-
tal system design can benefit from many historical architec-
tural concepts, either globally or locally. What we need most
are more working models for quantitative comparison.

REFERENCES

—

. Posa, John G. “Peripheral Chips Shift Microprocessor Systems into High
Gear.” Electronics, 52 (1979), pp. 93-106.

2. Wakerly, John F. “Intel MCS-48 Microcomputer Family: A Critique.”
IEEE Computer, 12 (1979), pp. 22-31.

3. Morse, Stephen P., William B. Pohlman, and Bruce W. Ravenel. “The
Intel 8086 Microprocessor: A 16-bit Evolution of the 8080.”" IEEE Comput-
er, 11 (1978), pp. 18-27.

4. Stritter, Edward, and Tom Gunter. “A Microprocessor Architecture fora
Changing World: The Motorola 68000.” IEEE Computer, 12 (1979), pp.
43-52.

5. Peuto, Bernard L. ““Architecture of a New Microprocessor.” IEEE Com-
puter, 12(1979), pp. 10-21.

6. McKevitt, James, and John Bayliss. ‘‘New Options from Big Chips.” [EEE
Spectrum, 16 (1979), pp. 28-34.

7. Stritter, Skip, and Nick Tredennick. *‘Microprogrammed Implementation
of a Single Chip Microprocessor.” SIGMICRO Newsletter, 9 (1979), pp.
8-16.

8. Wakerly, John F. “Microprocessor Input/Output Architecture.” [EEE
Computer, 10 (1977), pp. 26-33.

9. El-Ayat, K. A. “The Intel 8089: An Integrated 1/O Processor.” IEEE
Computer, 12 (1979), pp. 67-78.

10. Allison, Dennis R. ““A Design Philosophy for Microcomputer Architec-
tures.” I[EEE Computer, 10 (1977), pp. 35-41.

11. Sites, Richard L. *“How to Use 1000 Registers.”" Proceedings of the Caltech
Conference on VLSI, January 1979, pp. 527-532.

2. Swan, R. J., S. H. Fuller, and D. P. Siewiorek. “Cm*—A Modular Multi-
microprocessor.” AFIPS NCC Conf. Proc., 46 (1977), pp. 637-644.

13. Adams, George, and Thomas Rolander. “Design Motivations for Multiple
Processor Microcomputer Systems.” Computer Design, 17 (1978), pp.
81-89.

14. Gonzalez, Mario J., Jr. “Future Directions in Computer Architecture.”

IEEE Computer, 11 (1978), pp. 54-62.

10 National Computer Conference, 1981
15. Brinch Hansen, P. “Multiprocessor Architectures for Concurrent Pro- 30. Battarel, G. J., and R. J. Chevance. “Design of a High-Level Language
grams.” ACM 78 Conf. Proc., Washington, D.C. December 1978, pp. Machine.”” AFIPS NCC Conf. Proc. (1979), pp. 649-655.
317-323. 31. Bell, C. Gordon, J. Craig Mudge, and John E. McNamara. Computer
16. Denning, Peter J. “Virtual Memory.” Computing Surveys, 2 (1970), pp. Engineering. Digital Press, 1978, p. 243.
153-189. 32. Peuto, Bernard L., and Leonard J. Shustek. “Current Issues in the Archi-
17. Jensen, Kathleen, and Niklaus Wirth. Pascal User Manual and Report. tecture of Microprocessors.” IEEE Computer, 10 (1977), pp. 20-25.
New York: Springer-Verlag, 1974, p..30. 33. Bullman, David M. “‘Stack Computers: An Introduction.” IEEE Comput-
18. Sutherland, Ivan E., and Carver A. Mead. “Microelectronics and Comput- er, 10 (1977), pp. 18-28.
er Science.” Scientific American, 237 (1977), pp. 210-228. 34, Blake, Russell P. “Exploring a Stack Architecture.” IEEE Computer
19. Mead, Carver, and Lynn Conway. Introduction to VLSI Systems. Addison- (1977), pp. 18-28.
Wesley, 1980. 35. The WD9000 Pascal MICROENGINE microcomputer chip set specifica-
20. Osborne, Adam. An Introduction to Microcomputers, Vol. 11. Berkeley, tion guide, Western Digital, 1978.
California: Adam Osborne and Associates, 1976. 36. Bowles, Kenneth L. “UCSD Pascal: A (Nearly) Machine Independent
21. Am 9511 Specification Sheet, Advanced Micro Devices, 1977. Software System.” Byte, May 1978, pp. 46, 170-173.
22. MCS-86 User's Handbook, Intel Corporation, October 1979. 37. Laliotis, Theodore A. “Architecture of the SYMBOL Computer System.”
23. McKeeman, W. M. “Language Directed Computer Design.” AFIPS FICC In High-Level Language Computer Architecture, Yaohan Chu, ed. New
Conf. Proc., 31 (1967), pp. 413-417. York: Academic Press, 1975, pp. 109-185.
24. Lawson, Harold W., Jr. “Programming Language-Oriented Instruction 38. Wilner, W. T. “Design of the Burroughs B1700.”” AFIPS FICC Conf.
Streams.” IEEE Trans. Comput., C-17 (1968), pp. 476-485. Proc., 41, pt. 1 (1972), pp. 489-497.
25. McFarland, Clay. “A Language-Oriented Computer Design.” AFIPS 39. Meyers, Glenford J. Advances in Computer Architecture. John Wiley and
FICC Conf. Proc., 37 (1970), pp. 629-640. Sons, 1978.
26. Chu, Yaohan, ed. High-Level Language Computer Architecture. New 40. Palmer, John, Rafi Nave, Charles Wymore, Robert Koehler, and Charles
York: Academic Press, 1975. McMinn. ‘“Making Mainframe Mathematics Accessible to Microcom-
27. Chu, Yaohan. “An LSI Modular Direct-Execution Computer Organi- puters.” Electronics, 53 (1980), pp. 114-121.
zation.” Computer, July 1978, pp. 69-76. 41. Hoevel, Lee W. “‘Ideal’ Directly Executed Languages: An Analytical Ar-
28. Tanenbaum, Andrew S. “‘Implications of Structured Programming For Ma- gument for Emulation.” IEEE Transactions on Computers, C-23 (1974),
chine Architecture.” CACM, 21 (1978), pp. 237-246. pp. 759-767.
29. Fadon, Emilio Luque, Lorenzo Moreno Ruiz, and Jose F. Tirado Fern- 42. Flynn, Michael J. “Directions and Issues in Architecture and Language.”

andez. “High-Level Languages Processor Architecture.” Proc. ACM An-
nual Conf., Seattle, Washington, October 1977, pp. 479-483.

IEEE Computer, 13 (1980), pp. 5-22.

A computer-aided VLSI layout system

by W.A. DEES, K.M. PARMAR, A. GOYAL, R.Y. TSUI, B.D. RATHI, and R.J. SMITH, II

University of Texas at Austin
Austin, Texas

ABSTRACT

The VLSI layout system is suggested as a practical approach
for solving large and complex problems introduced by today’s
VLSI technology. Computer-based design aids are introduced
which are utilized to effectively reduce design-time and to
increase product quality. A hierarchical description of VLSI
circuits is utilized to partition the problem into manageable
tasks. Each phase of the VLSI chip design cycle is discussed
with special emphasis on layout techniques. The hierarchical
VLSI layout system is applicable to the design of “semi-
custom” or master-slice VLSI circuits. The placement and
placement optimization portions of the proposed system have
been implemented. Routing and routing optimization tech-
niques are currently being developed.

INTRODUCTION

As VLSI chips become increasingly complex, reliability re-
quirements, costs, schedules, and a host of other factors dic-
tate that traditional chip design techniques cannot be ex-
pected to deal adequately with new requirements. It is pro-
posed that future chips be designed using tools that promote
the orderly management of design complexity, including com-
puter-based design aids that are substantially more capable
than those presently in use. This paper reports plans and
specifications for a computer-aided layout facility applicable
to the design of ‘“‘semicustom” or master-slice VLSI circuits
containing up to several hundred thousand gate equivalents.

We focus on layout-related aspects of the design problem,
treating in only a peripheral manner other services and capa-
bilities that would be required to reap maximum benefits from
such a design system. The reported VLSI design system is in
a preliminary stage. Software development has begun, and
relationships between requirements, needs, techniques, and
priorities are evolving rapidly. This plan defines what the
authors believe to be an effective approach to the layout of
VLSI chips. Though much remains to be resolved, the under-
lying approaches and design philosophies are likely to be re-
tained in a system that evolves from this early work.

We begin with an introduction to hierarchical VLSI design
methods, including a brief discussion of how these approaches

11

would be used prior to initial layout efforts. A model for VLSI
layout is then presented, based on specific computer-aided
layout capabilities. Preliminary specifications and designs for
each subsystem used in the layout procedures are then
developed.

PERSPECTIVES ON VLSI DESIGN

It is apparent that trends in IC fabrication technology are
leading to the capability of manufacturing chips that become
increasingly complex, at a rate that exceeds our ability to
design. Clearly, these advances can be exploited fully only if
substantial gains in design productivity can be realized. In-
deed, motivation for the facilities described in this plan is
derived from the need to rapidly decrease VLSI design costs.

One of the most effective methods for coping with a struc-
turally complex situation is to decompose it in a hierarchical
fashion into a sequence of more manageable subproblems.
Application of this approach to VLSI chip design is one prac-
tical way to deal with the rapidly growing complexity of most
chip design phases. VLSI design tasks can be partitioned into
manageable subtasks if the interrelationships between sub-
tasks can be managed efficiently.

Hierarchical approaches to chip design must begin during
early phases of top-down planning and architecture-level
design. This work results in a chip (system) that can be re-
presented as a collection of functionally distinct subsystems
along with appropriate interconnections between them. These
descriptions may at first be incomplete and extremely tenta-
tive; but they represent preliminary partitions for each sub-
tem, as well as interrelationships between subsystems. If no
standard design exists for a particular function, it can in turn
be considered a design subproblem. Functional decomposi-
tion can be continued through as many design levels as are
required to arrive at functional elements that are composed of
and expressed completely in terms of basic cells that realize
common standard functions. Note that the design level at
which this occurs has a substantial impact on overall design
costs: the use of relatively high-level, functionally complex
standard cells reduces the number of specially designed cus-
tom subfunction elements that must be developed for a single
project.

12 National Computer Conference, 1981

PRODUCT
DEFINITION

l

HIGH-LEVEL HIGH-LEVEL HIGH-LEVEL
P-PROGRAM AND ARCHITECTURAL DESIGN
PLA DESIGN DESIGN VERIFICATION

l

FUNCTIONAL FUNCTIONAL
DECOMPOSITION F—>{ bES1GN
VERIFICATION

PRELIMINARY
LAYOUT

|

LAYOUT AND
FABRICATION
RULE DEFN.

DETAILED DESIG|
OF p-PROGRAM
AND PLA

TEST LOGIC DETAILED

GENERATION DESIGN DESIGN
VERIFICATION

LATOUT DETAILED

ANALYSIS AND LAYOUT

TESTING

L

FABRICATION
AND
PACKAGING

TESTING

SHIPPING

Figure 1—The VLSI design cycle

VLSI DESIGN CYCLE

Consider the sequence of stages through which a new VLSI
chip design must pass. These stages are described as distinct,
idealized steps, even though we recognize that in practice
VLSI designs evolve through iterative repetition of closely
coupled sets of stages (shown in Figure 1).

1. Product objectives are defined in terms of capabilities,
marketing considerations, and processing technology.

2. Development of high-level structural organization. Pre-
liminary instruction sets, registers, data and control
paths, and other features that guide detailed design are
defined here. Subsequently, high-level design verifica-
tion is performed. Modern VLSI designs exploit micro-
programmed control and PLA replacements for random
logic. PLA and ROM contents are described here at an
abstract level.

3. Decomposition of the high-level design into functionally
distinct elements. Partitions are defined so that the
amount of information transferred between functional
elements is minimized, making each functional element
a distinct design subproblem that can be individually
verified for design correctness. Concurrently, the micro-
programmed control and PLA designs are detailed.

4. Preliminary layout of each functional element involves
allocation of areas and shapes on the chip, based on
detailed layout and fabrication rules dependent on tech-
nology.

5. Transformation of each functional element into large
collections of interconnected logic elements. Design ver-
ification at this stage may consist of development of a

physical simulator (hardware prototype) or extensive
analysis using high-resolution simulators, or both; the
objective here is to verify, at the greatest level of detail
practical, that the design satisfies all applicable criteria.
Generation of test patterns for fault detection is easily
adapted to this stage of the VLSI design cycle, as is the
verification of the microcode.

6. Placement and interconnection of functional elements.
Detailed layout analysis, verification, and testing are
performed to insure that the physical design (masks)
accurately portrays the logic designs previously subject
to careful scrutiny.

HIERARCHICAL DESIGN METHOD

Hierarchical decomposition may be applied to most large-chip
design tasks. However, in this paper we are most concerned
with providing layout-related design services, so let us focus
on those aspects of the overall problem. The proposed com-
puter-aided layout system is a collection of software tools that
aid the IC designer in dealing with the chip in a hierarchical
manner. The capabilities and services provided will allow
future VLSI chip designs to be achieved with short turn-
around time, in a cost-effective manner.

The hierarchical design method consists of top-down circuit
partitioning followed by a bottom-up circuit layout.' This top-
down design procedure insures that before a detailed layout of
bottom-level element is started, a good estimate of the size
and shape of the higher-level element is known. The hier-
archical approach proposed here can greatly simplify place-
ment and interconnection problems because of the relatively
small number of elements and interconnections to be consid-
ered at each level of the hierarchy.

MODELS FOR VLSI LAYOUT

The implementation of the hierarchical structure in the design
of an IC chip is accomplished with the use of a structure tree.
The highest level of the tree is the chip, and the branches are
its constituent cells. Different levels in the tree correspond to
different levels of the hierarchy. At each level of the hier-
archy, connecting constituent cells of a function requires the
internal descriptive information of the functional cell, which
is provided by an internal cell model. Placement and routing
are done for the constituent cells of a function whose external
cell model will be updated. The latter is required for inter-
connection with other constituent cells of a higher-level func-
tional cell.

External Cell Model'

The external cell model is used to. define the external be-
havior of a functional or generic cell. This is in turn a detailed
description of a set of placed and routed cells, viewed from
outside the boundary of the set of cells. At the lowest level of
the design hierarchy for an IC chip the generic cell or basic cell

A Computer-Aided VLSI Layout System 13

from the cell library can be defined by its external model,
which is all that need be known for use in the layout of higher
levels. An external cell model for use in the hierarchical lay-
out structure includes the following:

® External cell IDINAME . Cell part number, generic cell
type, dates of design and revision, designer’s name, ver-
sion number, technology and associated wiring rules,
pointers to data structures for the functional cell, and
boundary and I/O descriptions.

® Functional cell description. Functional behavior (such as
a flip-flop, RAM, or ALU) is recorded to aid in selection
of constituent cells for functional design during the de-
sign process.

® Cell specifications and wiring rules. Cell specifications
parameterize the cell in terms of impedance, propagation
delay, fanout, and total power. Wiring rules govern elec-
trical and physical parameters by controlling the physical
realization of cells.

® Cell boundary description . Defined in terms of area, size,
shape (form factor), and number of layers.

® Cell 110 description . Defines and locates all nodes on the
cell, including inputs, outputs, power, clocks, etc. Loca-
tions of these nodes may not be fixed in the generic cell
description, thus permitting both interlayer and intra-
layer node float. Such float permits flexibility in routing
and is finally reduced to zero by the router.

Internal Cell Model'

An internal cell model is required for the layout of its
constituent cells. During top-down design on an IC chip, the
sizes of the cells at each level in the hierarchy are not exact,
as their constituent cells are not precisely defined at the lower

levels. As the design proceeds to lower levels, more accurate -

estimates of sizes of cells at higher design levels can be made.
During bottom-up implementation, cell sizes at higher levels
in the hierarchy are known, as their constituent cells have
been completely designed. An internal cell model must in-
clude the following information:

® Cell block ID/name. A unique user-defined name or ID.

® Constituent cell list. All constituent cells at the next lower
level of the hierarchy. Each constituent is identified by its
unique ID/name. Note that a description of each cell can
be obtained from its external cell model.

® Net list. All nets needed to interconnect constituent cells
to form the new functional cell at the next higher level of
hierarchy. For each net, there is a list of nodes belonging
to that net.

® Wiring rules. Net routing is governed by a set of wiring
rules, such as maximum total length of the net, maximum
conductor width, and capacitance and parallelism limits.

® External physical and electrical characteristics . Describes
the completed design. Includes external boundary im-
posed by the wiring rules, such as the separation between
the constituent cell and the functional cell boundary and
the geometries of the actual cell within the functional
cell. External electrical information about the cell in-

s

H4

v ve key:

1 wormal cell
v7 vo
/7]

Open-Area Cell

L

v v3 vs v8 Hi Horizontal Channel "i"
vi Vertical Channel "i"

~

Figure 2—A typical placement of cells and the corresponding polar graphs

cludes total power dissipated within the cell, the strength
of cell external nodes, etc.)

Polar Graph Model" *°

To facilitate placement optimization and interconnection
routing, a layout is represented by a pair of mutually dual
graphs G.(V,, E,) and G,(V,, E,), where G, and G, are
planar, acyclic directed graphs containing one source and one
sink. Each pair of edges (e, e,) represents a rectangle with
X -dimension I(e,’) and Y-dimension I(e,’) where 1(e) denotes
the length associated with edge e. Since a cell is modeled as
a rectangular object and there exists a one-to-one correspon-
dence between the edges of G. and G,, a pair of edges
(e.', e,’) represents cell i. Parallel edges are allowed in the
dual graphs. Therefore, a vertex in the horizontal polar graph
represents a vertical channel between cells that are repre-
sented by edges incident to and departing that vertex. Edges
incident to a vertex on the horizontal polar graph represent
cells which lie to the left of the vertical channel, while those
edges departing a vertex on the same graph represent cells
lying to the right of the vertical channel (see Figure 2).

SYSTEM ORGANIZATION

The support system nucleus and design file are two of the
major components accessed by the user. To provide error
checking and an orderly supervision and management of re-
vision, these components are accessed only via database man-
agement utilities, as represented by the enclosing dashed
lines. All major components of the VLSI design system are
illustrated in Figure 3. Descriptions of each major component
are subsequently provided.

The system centers on a common database, which is needed
to tie all the elements of the design together. This is the nucle-
us of the system, which includes a cell reference library, de-
sign files of previous designs, and the support software neces-
sary to access, update, and manage these files conveniently.

14 National Computer Conference, 1981

| cELL
DESIGN CusToMIZATION [&”UsER
REVISTON
USER MANAGEMENT
| cELL
I DEFORMATION USER
INPUT
PROCESSOR e — || consTITUENT
PARTITIONING
DESIGN
FILE
|| consTITUENT
PLACEMENT
GRAPHICAL
CELL
REFERENCE I~ i;?ggﬁgg 2, USER
LIBRARY
PROBLEM CHANNEL
SPECIFIC I ey
\Effifi_iitfi ESTIMATION
e || inTERCONNECTTON
ROUTING
SUPPORT SYSTEM GRAPHICAL
NUCLEUS |— ROUTING I »USER
INTERFACE
PLACEMENT AND
||
ROUTING
EATABASENT OUTPUT OPTIMIZATION
Agg“cﬁ” GENERATION
MATINTENANCE] DESIGN RULE
L CHECKING AND
ANALYSIS
A
e " quaLiTy
coNTROL FPILES LASSESSMENT

Figure 3—Computer-aided layout system structures

The support system nucleus enables all design-related infor-
mation to be centralized in a common database that can be
conveniently accessed, updated, etc., by other subsystems
through the use of database access utilities.

Support System Nucleus'

A collection of data, utility, and file access modules used as
the foundation of the layout system provides the necessary
CAD database management support. An input processor is
defined to insure proper entry of data into the system database
and the correct specification of a layout problem. An electrical
and layout constraint file for each technology is provided in the
database. The cell reference library contains detailed descrip-
tions of the generic cells currently available, including standard
supported cells, as well as those used by specific chip designs.
Cells for a particular chip will be selected by their internal and
external characteristics. If a generic cell does not exactly match
the requirements, it is processed by the cell deformation and
cell customizer modules and brought up to required standards.
Of course, the designer has a great deal of control over this
process. Certain functional elements that are frequently used
in design with different shapes and characteristics are main-
tained as distinct cells in the cell library. As the number of
varieties of a given functional cell increases, the system be-
comes more flexible and powerful.

All cells are given a generic name and the layout problem

description consists of the various constraints to be placed on
the layout, the identification of the cells used, and their inter-
connection details. Should a cell in the design not be available
in the cell library, its description is input to the system as a
separate design subproblem and is appended to the cell library.
Each layout problem description is maintained in a separate
design problem file in the design library.

Input Processor

Verification of new cell descriptions being input to the cell
library and cross-checking of the design problem files is per-
formed by this module. Upon verification of an error-free de-
sign problem file, the required external and internal cell de-
scriptions are obtained from the cell library.

Identification of the cells required in the design is performed
during the top-down phase of design. As they become known, -
nets are identified and described in terms of interconnections
to be performed, and estimates of the sizes of cells in higher
levels of the hierarchy are refined.

Two modes of data entry are supported. In the interactive
mode the layout being specified is verified when requested by
the user. In batch mode, the user prepares a description in the
form of a batch file, which is subsequently checked for validity
and converted into a problem design file.

Design Decisions and Design Verification

Successful implementation of a complex VLSI circuit de-
pends on more than correctly placing and interconnecting the
cells making up the proposed circuit. The operational, func-
tional, and electrical parameters specified by the designers
must be satisfied by the final layout.

Many design decisions are related to the distribution of pow-
er, ground, and high-performance signals. Processing of the
necessary data to optimally distribute these signals and ac-
counting for the power dissipation is performed here. Clock
and other high-frequency signals are checked, and necessary
load and source impedances at critical nodes are calculated.
Other design parameters verified here include the character-
tics of the input and output circuits, voltages, and drive cur-
rents.

The final layout may also be processed here, and design con-
straint violations may be reported to the user. '

Output Generation

The output generation includes extraction of information
from database files and subsequent preparation of tabular re-
ports, graphs, manufacturing files, and plots. Facilities for in-
specting the layout at any stage of the design process are also
provided here. Although emphasis is placed on automatic de-
sign, interactive design facilities to improve or suggest alterna-
tives are nevertheless required. With these facilities, various
elements in the database or design problem are displayed indi-
vidually or in a specified combination.

A Computer-Aided VLSI Layout System 15

Constituent Cell Placement

The objective of placement is to assign positions and orien-
tations to cells and pads so that overall chip size is minimized.
The program supports arbitrary-size rectangular cells and a
mosaic layout, as opposed to the polycell approach, increasing
flexibility and improving silicon use. Placement is divided into
two parts, initial placement and placement optimization. Ini-
tial placement uses the mincut algorithm® to reduce cutline
crossings and wire length as much as possible; placement opti-
mization improves routability without changing relative posi-
tions of the placed cells.

This VLSI placement technique is based on an earlier paper
by Lauther.'” However, substantial alterations have been
made to achieve placements closer to manual ones for real-
world VLSI placement problems. The following subsections
briefly describe the improved placement strategies.

Initial Placement

Initial placement uses an envelope of specified shape whose
area equals the sum of areas of all cells being placed and parti-
tions it recursively until each partition contains exactly one
cell. The partitions are based on the area of cells; that is, each
final partition has an area equal to the area of the cell it con-
tains, but it may not have the same dimensions. Thus, when
partitions are converted into actual cells, dead area may be
generated. Various techniques are used to reduce this dead
area, as discussed. .

A strategy administrator supervises initial placement, select-
ing positions and the directions for each cutline. A major ad-
vantage of this approach s the ability to match the procedure to
the characteristics of the logic design. A partition imposed ear-
lier in the sequence will have fewer signals crossing it than one
imposed toward the end of the sequence. Clearly, then, the
sequence of partitions greatly influences wiring densities. The
quadrature placement with breadth first cuts® has currently
been implemented; each cutline divides the current block into
two partitions of approximately equal area. Options for per-
forming slice cuts are available.*'” However, they do not ap-
pear to be as effective, since peripheral cells may be placed on
all of the four sides of the chip. The strategy administrator may
optionally select cutlines manually, switch alternately between
horizontal and vertical cutlines, or use an automatic procedure
based on cell areas and shapes to select horizontal or vertical
cutlines for a particular partition.

The mincut algorithm implemented attempts to put max-
imally connected cells and the cells belonging to the same
affinity classes in the same partitions. An affinity class is rep-
resented as a set of cells belonging to a pseudonet with a large
weight associated with it for crossing partition boundaries.

Constructive initial placement selects cells one at a time for
placement in one of the two partitions created by a cutline.
This strategy guarantees a partition satisfying area and periph-
eral conditions, locally minimizing the number of nets cross-
ing the cutline.

Iterative improvement optimizes this placement by min-
imizing the cost on all nets cut by a cutline. Iterative improve-
ment involves the seven steps shown:

1. Determine the gain (the reduction in number of con-
nections cut by a cutline) for every single interchange of
a pair of cells across the cutline.

2. The pair of cells that produce the maximum gain when
interchanged are repositioned and marked non-
interchangeable for subsequent passes of the iteration. If
both area and peripheral conditions are satisfied after
the interchange, a value 1 is generated for COND; oth-
erwise it is 0.

3. Steps 1 and 2 are a pass. They are repeated until no
further interchanges are possible. A sequence of incre-
mental gains with COND is thus generated.

4. The total gain over the initial state is computed for the
progression of passes.

5. The sequence of interchanges that produce the maxi-
mum total gain is determined by noting the pass where
the maximum gain occurs with COND equal to 1.

6. All interchanges subsequent to the pass of maximum
total gain are restored to their initial positions.

7. Steps 1 through 6 are iteration. They are repeated until
no further gain occurs.

At the end of initial placement each partition contains ex-
actly one cell. To.introduce the actual cell dimensions, the arc
lengths in the dual polar graphs are replaced by the cell di-
mensions, using a simple algorithm.'® Then for each cell the
position of its lower left corner is calculated and recorded.

PLACEMENT OPTIMIZATION

The placement optimization subsystem can be used either
through automated or interactive modes at various levels of
the design hierarchy to reduce the silicon area of the problem.
Overall chip size is reduced by both removing excess area
introduced by the initial placement and reducing the es-
timated interconnection length of the problem. Inter-
connection length reductions result in saving silicon area and
in reduced impedance and capacitance of the interconnected
traces. A secondary goal of this subsystem is to modify the
shape factor. Shape factor improvement is allowed only after
area constraints have been met.
The techniques used for placement optimization are

Cell rotation

Channel squeezing

. Abutment class dead-area use

. Cell reflection

. Cell deformation (or reshaping)

N W N =

Cell rotation is an operation to reorient the cell with respect
to the problem origin. The relative position of the cell to its
neighboring cells remains the same. The operation is used
both to reduce overall problem dimensions and to reduce
interconnection length. Cells are classified into two sets, of
which one contains all cells that are located on critical sub-
graphs and the other contains all cells excluded from the first
set. Rotation candidates for area reduction are selected from
the critical cell set; candidates for decreasing interconnection
length are selected from the noncritical cell set. Cell rotation

16 National Computer Conference, 1981

is restricted to 90-degree counterclockwise increments, allow-
ing only orthogonal movements.

Channel squeezing is a localized placement adjustment that
modifies the incedence relationship for the modeled channels.
Neighborhood relationships between cells are modified, but
the general location of the cell within the problem envelope
remains the same. Squeezing trials can be done on the IC at
any hierarchical level for reducing problem dimensions. Only
channels that lie on critical-subgraphs are candidates for
squeezing optimization.

Cells which must be placed abutting one another are placed
in an abutment class having a nonrectangular shape. An en-
closing rectangle around the abutment class contains both the
cells making up the abutment and dead silicon area. This area
may be used if the abutment class neighboring relationship
does not change. Cells incident to the abutment class bound-
ary channel are candidates for area use. Selected cells are then
placed in the interior of the abutment class, consuming the
open area.

Cell reflection is a technique for reducing wire length that
has no impact on previously placed cells. Features internal to
the cell are reflected or mirrored either around their X -axis
center line, Y-axis center line, or both center lines. Optimal
reflection orientation is determined by evaluating changes in
the minimum spanning tree length calculations over all nodes
assigned to nets. The spanning tree calculation excludes nodes
within the same net that belong to the cell being reflected.

Cell deformation allows the shape of a cell to be manipu-
ed to suit the topology in the locality of the cell. Reshaping
would allow the cell to be contracted or elongated along the
X or Y axis. The resulting shape of the cell must be rectan-
gular. The cell deformation technique is used both to reduce
problem envelope dimensions and to reduce wire length if two
adjacent cells have nodes connected to each other. Reshaping
can be manual or automated, depending on problem con-
straints. Manual deformation allows the designer using inter-
active graphic tools to appropriately reshape cells. Automatic
reshaping is the substitution of functional and electrical equiv-
alent cells that have different shape factors.

The reduction of area is an iterative process in which its
operations must have inverse functions. A minor placement
optimization iteration is the selection of a trial operation,
scoring the results, and either accepting or rejecting the trial.
When a trial optimization operation fails to decrease area,
then the inverse function is applied to restore the placement
model to its previous state. Placement optimization is parti-
tioned into two phases. The first phase attempts to reduce
problem envelope dimensions; the second phase modifies
placement, without increasing envelope dimensions, to re-
duce wire length of the problem.

Placement optimization is a major iteration within the de-
sign process. After the optimization system returns, the strat-
egy administrator evaluates the modified polar graph. The
new placement is scored against the best-known placement up
to that point. If the new placement is better, then the cell
locations and orientations are saved. The strategy adminis-
trator then has the option of reentering the placement opti-
mization system with the previous polar graph model, hoping
for more enhancements, or to reenter with the original place-
ment, but with different processing option values.

INTERCONNECTION ROUTING

The routing subsystem is used at all design levels during the
bottom-up phase. Its main task is to provide 100% inter-
connection, using the least amount of silicon area consistent
with design and wiring rules.

Various methods for interconnection routing have been
used in the past for chip layout. These may be conveniently
subdivided-into several classes, including serial approaches
similar to those proposed by Lee'' and Hightower.” The
major drawback of these approaches is the totally serial na-
ture in which they attack the interconnection problem, caus-
ing larger numbers of routing failures as problem complexity
increases. Hashimoto and Stevens® first introduced the idea
of channel routers to alleviate some of the drawbacks of a
totally serial approach, thus providing much greater flex-
ibility in the routing of large numbers of nets. These channel
routing methods have recently been applied to VLSI layout,
for example, in Hightower and Boyd."

Channel routing is a two-phase routing strategy consisting
of a channel Assignment phase and a track Assignment
phase. During channel assignment, nets are assigned to a
sequence of channels or to open wiring areas between
constituent elements, but not to tracks within the channels.
Track assignment assigns all nets in a channel to specific
tracks to permit 100% wiring. Routing is completed when
track assignment for all channels has been (successfully) com-
pleted.

Channel Definition and Assignment

During placement, cells are assigned to areas without re-
gard to channels required for completing the required inter-
connections, thus abutting cells one to another, as illustrated
in Figure 2. The boundary between two abutting cells repre-
sents a potential channel, represented by a vertex in the polar
graphs. When such a placement is performed, a great deal of
open silicon area is left unused. These areas are represented
as special cells in the polar graph and are used for inter-
connection routing at the current level in the hierarchy or for
placement and/or routing at higher levels.

The locations of channels are computed from the polar
graphs, and their dimensions are estimated by the routing
area estimator module prior to channel assignment. Nets at
the current level in the hierarchy are decomposed into point-
to-point interconnections, using a minimum spanning tree
algorithm, and the from-tos created are assigned to a se-
quence of channels to complete the interconnections. Capac-
itance and power loss estimates are verified against the wiring
rules imposed.

Track Assignment*
Once channel assignment is complete, the track assignment

phase begins, assigning all from-tos that use a channel to spe-

* This phase is currently being programmed by one of the authors.

A Computer-Aided VLSI Layout System 17

cific tracks within the channel. There is, however, an addi-
tional problem that must be dealt with.

When a from-to enters a channel at its periphery, the exact
location of the point of entry is unknown—or rather, the
permissible region of entry is known. These regions (end-
float regions) may overlap with end-floats of other from-tos
that use the channel, further complicating the task.

A channel, with its associated from-tos, may be represent-
ed as a graph, with a node on the graph representing the
end-float region and an edge representing a transition from
the from node to the fo node. It is obvious that in the case
of single-layer routing, this graph must be planar. Nonplan-
arities in the graph are very easily handled in multilayer
routing situations where the channel graph for each routing
layer must be planar.

Any of the techniques currently used for routing may be
used to perform track assignment. Careful evaluation has,
however, indicated that the Lee type algorithm, with mod-
ifications to allow parallel contention resolution, is best suit-
ed for this task.

ROUTING OPTIMIZATION

Connectivity improvement is introduced, since the channel
router might fail to route all the necessary point-to-point
connections. This module is invoked after the channel router
terminates, but before die dimensions are increased to sup-
port the necessary conditions. Connectivity improvement is a
two-phase process, where the first phase is the application of
a Lee type of interconnection algorithm. The second phase
consists of rip-up, reroute, and shove-aside techniques, which
rearrange the interconnection structure to enhance the routa-
bility of the unconnected nets. Both phases are invoked to
increase completion rates without increasing overall die di-
mensions.

After connectivity improvement, interconnections can still
be left unconnected as a result of conflicts with previously
routed features or failure to meet electrical or timing con-
straints. Problem dimensions are then increased to support
the unconnected nets. After die expansion all critical chan-
nels are evaluated for a final area reduction, using channel
compression. The channel compression operation attempts to
modify routed channel features to reduce as much unneces-
sary space as possible. If a channel is compressed, another
critical channel candidate list is generated. From this list
channels are selected for compression.

QUALITY ASSESSMENT

The quality of the placement and routing procedures is as-
sessed by evaluating metrics dealing with software behavior
and problem results. The evaluation of placement and rout-
ing is based on attributes reflecting the quality of the system.
These attributes include execution time, completion rates,
silicon area use, signal distribution, and channel use. The
software behavior quality assessment report is useful when
considering the system’s strengths and weaknesses, where
weaknesses are identified as areas for future enhancements.

The quality of chip design is assessed after placement and
routing by noting the difference between the design goal and
the actual results in such areas as physical, electrical, and
logical characteristics. The initial problem description, mod-
eled with a register transfer language, is simulated for logic
errors. Errors detected and corrected early will reduce the
number of automated design iterations. Detailed timing sim-
ulation is also necessary for evaluating signal propagation
delays. Register transfer and behavior simulation are nor-
mally deficient in such detailed and accurate timing simu-
lations. Physical characteristics such as total die size and
shape factor are calculated to verify that physical constraints
are not violated.

Electrical simulation and design checkers are used to guar-
antee that the problem results lie within the limits imposed by
the designer. Electrical simulation estimates voltage, current,
and power dissipation so that technological constraints are
not violated. Design checkers are also used throughout the
design process during and after human interaction. These
checkers verify that wiring and technological rules are not
violated during interactive sessions.

INTERACTIVE GRAPHICS

Until very recently the role of interactive graphics was limited
to the display and manipulation of digitized manual layouts.
As the complexity of new chips grows, this approach will no
longer be practical: graphics must be used in a more cost-
effective manner, and digitizing manual layouts will decline in
popularity. There will always be a demand for manual layout
of special-case designs. However, as design pressure in-
creases, it is likely that a substantial number of new designs
will be generated, using a combination of automated and
graphical methods.

At any point during or after the placement or routing of a
chip or constituent cell, graphical tools can be used to modify
the evolving layout. With both automated and interactive
tools available, it is practical to use each method under cir-
cumstances best suited to the situation at hand.

CONCLUSIONS

This paper has described a system for the automated layout of
semicustom and gate array VLSI. The software required is
substantial: more than 160,000 lines of programs, documen-
tation, and related materials. Portions of the system outlined
have already been programmed, and others are presently be-
ing developed. Until these and similar design tools come into
productive daily use, the development of VLSI layouts will
remain a time-consuming and costly task.

REFERENCES

1. “Computer-aided MOS VLSI Layout System.” Electrical Engineering De-
partment, The University of Texas at Austin, February 1980. (Prepared
under the direction of R. J. Smith, II, by D. LaPlante, R. Tsui, W. Dees,
W. Rogers, H. Bryce, B. D. Rathi, K. Parmar, T. Gunter, and C. Hobbs.)

18

National Computer Conference, 1981

. Breuer, Melvin A. “A Class of Min-Cut Placement Algorithms.” Proc.

14th Design Automation Conference, June 1977, pp. 284-290.

. Lynn, Conway, and Carver Mead. Introduction to VLSI Systems. Califor-

nia: Addison-Wesley, 1979.

. Corrigan, Lorretta I., ““A Placement Capability Based on Partitioning.”

Proc. 16th Design Automation Conference, June 1979, pp. 406-413.

. Deutsch, David N. “A ‘Dogleg’ Channel Router.” Proc. 13th Design Auto-

mation Conference, June 1976, pp. 425-433.

. Hashimoto, Akhiro, and James Stevens. “Wire Routing by Optimizing

Channel Assignment Within Large Apertures,” Proc. 8th Design Automa-
tion Workshop, June 1971, pp. 155-169.

. Hightower, David W. ““A Solution to Line-Routing Problems on the Con-

tinuous Plane.” Proc. 6th Design Automation Workshop, June 1969, pp.
1-24. .

. Klomp, J. G. M. “CAD for LSI—Production’s Interest Is in Its Econom-

ics,” ACM SIGDA Newsletter , 6 (1976), pp. 11-15.

. Koller, Konrad W., and Ulrich Lauther. “The Siemens-AVESTA-System

for Computer-Aided Design of MOS-Standard Cell Circuits.” Proc. 14th
Design Automation Conference, June 1977, pp. 153-157.

. Lauther, Ulrich. “A Min-Cut Placement Algorithm for General Cell As-

16.

17.

semblies Based on a Graph Representation.” Proc. 16th Design Automa-
tion Conference, June 1979, pp. 1-10.

. Lee, C. Y. “An Algorithm for Path Connections and its Applications.” IRE

Transactions on Electronic Computers , September 1961, pp. 346-365.

. Losleben, Paul, and Kathryn Thompson. “Topological Analysis for VLSI

Circuits.” Proc. 16th Design Automation Conference, June 1979, pp.
461-473.

. Oakes, M. F. “The Complete VLSI Design System.” Proc. 16th Design

Automation Conference, June 1979, pp. 452-460.

. Persky, G., Deutsch, D. N., and D. G. Schweikert. “LTX—A System for

the Directed Automatic Design of VLSI Circuits.” Proc. 13th Design Auto-
mation Conference, June 1976, pp. 399-407.

. Preas, B. T., and C. W. Gwyn. “Methods for Hierarchical Automated

Layout of Custom LSI Circuit Masks.” Proc. 15th Design Automation
Conference, June 1978, pp. 206-212.

Preas, B. T., and W. M. vanCleemput. “Placement Algorithms for Arbi-
trary Shaped Blocks.” Proc. 16th Design Automation Conference, June
1979, pp. 474-480.

Hightower, D. W., and R. L. Boyd. “A Generalized Channel Router.”
Proc. 17th Design Automation Conference , June 1980, pp. 12-21.

A multiprocessor description language

by WILLIAM T. OVERMAN,
STEPHEN D. CROCKER, and
VITTAL KINI

USClInformation Sciences Institute
Marina del Rey, California

ABSTRACT

A language for describing multiprocessor systems is
presented. The language, called MPDL, provides a flexible
and unambiguous model of concurrency and allows for hier-
archical construction of concurrent systems. MPDL encour-
ages the user to encapsulate interprocess synchronization and
communication in a special component called a connector.
This encapsulation helps facilitate multilevel modeling and
abstraction of communication protocols. A simulator for the
language has been implemented and is running at ISI. This
paper describes MPDL and evaluates the language in terms of
two examples.

INTRODUCTION

The language and simulation system reported on here were
developed as part of the Multimicroprocessor Emulation
project at USC/Information Sciences Institute.* The goal of
this project was to develop language and tools for exploring
multiprocessor architectures, with specific emphasis on the
support of closely coupled architectures and a wide variety of
processor interconnection schemes.

As a part of this effort we have designed a language for
describing the structure and behavior of networks of proces-
sors. Along with this we have implemented an Interlisp-based
simulator with extensive debugging facilities to aid in the de-
velopment of multiprocessor descriptions.

Our original intention was-to use an existing hardware de-
_scription language, such as ISPS' or SMITE?, with extensions,
to describe multiprocessor systems. However, we found that
these languages were not adequate for expressing the neces-
sary interconnections and interactions among processors.’
Therefore we developed a new language, called MPDL
(Multiprocessor Description Language), which embodies a
clean and flexible model of concurrency and provides a hier-
archical interconnection language, but otherwise uses ISPS

* This work was sponsored in part by the Rome Air Development Center and
in part by the Defense Mapping Agency. both under contract DAHCI15-
72-C-0308.

19

constructs for describing the sequential behavior of individual
processors.

The next section introduces MPDL by walking through an
example and then describing the major components of the
language. The section following that briefly indicates the ca-
pabilities of the simulation system we have built for MPDL.
The fourth section discusses two examples that have been
described in MPDL and run on the simulator and evaluates
the language with respect to these examples.

LANGUAGE DESIGN

The following are the key ideas in MPDL.:

e Communication and synchronization among processors
occur through shared variables. Wait and delay con-
structs are provided as abstractions.

® Shared variable access is restricted, and all shared vari-
ables and their accessing functions reside in special com-
ponents called connectors that link processors together.
This encapsulation of shared variables permits abstrac-
tion of communication protocols.

® The writer has control over the granularity of actions.
Mutual exclusion and sychronization must be made
explicit.

® Hierarchical description capabilities are provided. Mod-
ules may be combined to form new modules.

The example in Figure 1 illustrates these ideas. The following
text describes the example.

Pipeline is a composite module composed of two proces-
sors, A and B, which communicate through the connector L.
Pipeline is described as being a composite with two ports
called pread and pwrite, the first returning an eight-bit value
and the second returning no value. It contains a connector,
which is to be called L, and its description is to be an instance
of the connector HandshakeLink, which can be found in the
library (HandshakeLink is described below). It also contains
two instances of the processor Handshake, which are to be
known as A and B within this composite. Processor A has two
ports, one linked to pread, the port which was passed into

20 National Computer Conference, 1981

Pipeline
A L B
read write Iread read write

pread Iwrite pwrite

composite Pipeline (pread <7:0> , pwrite)
connectors L = HandshakeLink;
processors A = Handshake (pread, L.lwrite).
B = Handshake (L.lread, pwrite)
cndcomp;
processor Handshake (read < 7:0 >, write)
repeat
call write(read())
endrep
endprocessor;

Iread data and pass them on
Ithe processor never terminates

connector HandshakeLink
declare data <7:0>, sig< > init 0;
proc Iread <7:0>
wait sig eq 1 endwait;
sige—);
return data
endproc;
proc lwrite (d <7:0>)
wait sig eq () endwait;
dataed;
sige—1
cndproc
cndconn

!buffer and handshake signal
!read entry

Iwait until data are ready
tsignal *‘buffer empty”

!write cntry
twait until buffer is cmpty

Isignal *“*data rcady”

Figure —A two-processor pipeline system using a handshake protocol

Pipeline, and the other to Iwrite, an entry in the connector L
(specified by the qualified name L.Iwrite). Processor B is
connected to the /read entry of L and to the pwrite port of
Pipeline. The port connections are actually access paths
through which procedures will be invoked (see below).

Processor Handshake, of which A and B are copies, is
described following the composite. The processor has two
ports named read and write. The action of the processor is
simply to loop forever, calling the procedure bound to the
read port and then calling the write port with the value re-
turned by read . By calling the port, the processor is executing
the procedure in the context of the connector. Variables can
be shared among processors by having the processors linked
to entries in the same connector.

The connector linking the processors is called Hand-
Link in the library and is described in the connector state-
ment. The connector has two variables declared in it, data and
sig, which can be accessed by each of the procedures in the
connector. The connector has no executable body of its own
but has procedure definitions which are exported to be bound
to the ports of processors. In this case we have the procedures
(also called entries of the connector) lread and Iwrite.

The behavior of the Pipeline module is to simply pass data
from its pread port to its pwrite port with some buffering in
the middle so that it can read and write data at differing rates.
The nature of the language is that all processors in the system

run in parallel. If we think of the locus of control as being a
token, then each processor starts out with one token, and the
connectors have no tokens. When a processor calls a port,
control passes to the entry in the connector to which that port
has been bound. Since many different processors may be
linked to a connector, it may turn out that a connector has
more than one token in it. However, we require that at most
one processor be connected to any one entry in the connector
so executions within the connector should be at unique loca-
tions.

When processor A4 is started up, it calls the pread port of
Pipeline (bound through A’s read port). We do not know
here what pread is bound to, but assume it returns with a
value. A then calls the write port, which is actually the Iwrite
entry in L. The action there is to wait for sig to be zero (it is
initially zero, so execution continues). Then the shared vari-
able data is set to the value passed to Iwrite (the value
returned from read); sig, which serves as a synchronization
variable, is then set to one, indicating that there are data
available to be read. The next time A enters [write, the wait
statement will cause it to suspend and allow B to run. B is
linked to the lread entry of L, so it checks that sig is one,
resets sig indicating that it has read the data and data can be
filled with a new value, and then returns data. Upon return
back into processor B, the pwrite port of Pipeline is called,
and we assume it is written out somewhere. Processor B then
calls read (bound to lread) again and will be suspended when
it encounters the wait statement.

All of the activity between wait statements is uninterrup-
tible; so in this example, each processor has only one inter-
action point—at the wait statements in the connector entries.

Language Definition

The MPDL User’s Manual® gives a complete definition of
the language. This section describes a very small number of
statements, namely those representing the major structural
components of a description (processors, connectors, and
composite modules) and that illustrating the model of concur-
rency embodied in MPDL (the combination wait/delay state-
ment).

Processor

Each processor in a system description is an independently
running machine. As we have seen, the processors communi-
cate with each other through shared variables housed in con-
nectors. The processor statement looks very much like a nor-
mal function or procedure definition, having internal declara-
tions and a statement list, but with one difference. The “for-
mal argument” list in a processor statement identifies a set of
ports that must be connected when the processor is actually
used. The formal names are used within the processor as
ordinary functions. However, when one of these ports is
called, control passes out of the processor and into the con-
nector to which the port is bound. Control returns to the
processor in what looks like the normal subroutine return
mechanism, and execution continues in the processor. (The

A Multiprocessor Description Language 21

description of the connector, below, describes what happens
within the connector). Ports are bound to connectors using
the composite statement (see below).

Connector

Connectors are similar to devices found in software engi-
neering such as Clusters’, Simula classes®, and| Parnas
modules’. They differ from Monitors® in that they impose no
synchronization. The connector encapsulates variables that
are shared among processors, along with the accessing func-
tions for those variables. One can think of portions of the
connector code as actually being part of the processor that is
bound to it, and can think that the connector simply provides
a mechanism to isolate that portion of a processor’s descrip-
tion responsible for communicating with other processors.
This tends to help identify the interprocess communication
protocol whose correct operation is essential to the operation
of the system as a whole.

Connectors also make it possible to do multilevel modeling
and abstraction of processor behavior and interprocess com-
munication. We can change the level of detail within a proces-
sor and change its communication interface simply by mod-
ifying the connector so that it handles the change in protocol;
we do not necessarily have to change other processors.

The connector statement specifies a set of declarations rep-
resenting variables internal to the connector and a set of pro-
cedures whose entry names are to be exported to be bound to
the ports of processors. These procedures have access to the
variables within the connector, and thus the variables are
shared among the processors.

Connectors are passive components and are activated only
when a processor calls one of the entry points in the con-
nector. Because multiple processors are connected to a con-
nector, and different processors may each call entries within
the connector at the same time, it may be the case that there
will be many statements within the connector executing at the
same time. Note, however, that if execution locations are
thought of as tokens, then the number of tokens in the system
is conserved, and there are always exactly as many tokens as
there are processors in the system.

Composite

The composite statement allows one to assemble collections
of processors, connectors, and other composite modules.
Connector entries are bound to processor ports to create a
complete system. The composite statement describes an en-
tity called a composite module. This can be treated exactly as
a processor in future composition steps, thus facilitating hier-
archical description.

The composite statement lists the connectors to be included
in a composite module and gives them local names, if neces-
sary, to distinguish multiple copies of the same connector.
Similarly, a set of processors (and/or composite modules) is
included and possibly renamed. The composite entity being
defined has a list of formal arguments identical to the formal
arguments in a processor statement in that they represent

ports to be bound to the composite module. The processors
and composite modules that are to compose the new com-
ite are bound to connectors by specifying a connector entry to
be bound to each port in the processor/composite. One excep-
tion is that the port of a processor/composite may be mapped
to one of the formal arguments of the composite module being
defined. These latter ports will be bound at a later time, when
the newly defined composite module is composed with other
modules.

WaitStmt

The writer uses the wait statement to specify the granularity
of the actions in each processor. This statement can be
thought of as a call to the scheduler that allows other proces-
sors to run, and all of the actions between wait statements are
considered to be uninterruptible. The wait statement com-
bines busy waiting on an expression, delay for a specified
time, and waiting with an associated timeout. The following
example illustrates the syntax and optional components of the
statement.

wait
agtl a<0; b0,
b gt 1: be1,
cgtl,
delay d+e: de0
endwait)

This statement waits until a, b, or ¢ becomes greater than 1
and then performs the statements following the true condi-
tion. If c becomes greater than 1 first, then no statements are
executed, but execution of the processor continues at the
statement following the wait statement. If none of the condi-
tions becomes true within d+e time from the time the wait
statement was encountered, then the timeout action list
(d<0) is executed.

More generally, if one or more wait conditions are present,
then the processor suspends until the expression in one of the
clauses is true (if one is true immediately, then the processor
does not suspend at all). If a delay clause is also present, then
the processor waits until a clause is true or until the specified
amount of time has elapsed. If this second condition occurs
(timeout), then the action list after the time expression is
executed. If no timeout action list is present (and timeout
occurs), then the wait statement is just released and execution
continues at the end of the wait statement.

If only a delay clause is present, then the processor merely
suspends for the specified amount of time. A fine grain of
granularity can be achieved by inserting delays of zero time
where zero is actually interpreted as a small (epsilon) amount
of time. A zero delay causes the processor to suspend and
allow any waiting processors to evaluate their wait conditions.

MPDL SIMULATION SYSTEM

A simulator for MPDL has been implemented in Interlisp and
now runs at ISI. The simulator allows the user to run system

22 National Computer Conference, 1981

in0 w0 w0 wl outd
inl — 1wl w2 wi outl
in2 — 1w wl \ wl out2
in3 w3 w3 w5 out3
ind4 wd wd w2 out4
in$ —_— WS w6 wé out§
in6 — w6 w5 / w3 out6
in7 w7 w7 w7 out?
straight exchange

Figure 2—Binary N-cube diagram

descriptions and provides extensive monitoring facilities,
which we have found to be useful in the development of
multiprocessor descriptions.

The user interface for the MPDL simulator consists of a set
of commands that allows the user to do the following types of
things:

® Parse an MPDL multiprocessor description, build an in-
terconnection structure to be simulated, and start the
simulation.

® Focus attention on any of the various control contexts
(processors, procedures, and connectors) in the simula-
tion, using tree traversal or search commands.

® Execute a list of MPDL actions within any context
(scope) of the simulation, e.g, examine the values of
simulation variables, assign new values to variables, etc.

® Display the declaration structure and current state of any
context and its subordinate contexts.

The simulator also provides a powerful break and trace
facility for use in debugging user simulations. The package
consists of a set of commands that allow setting of breaks and
traces on any construct in the description being simulated.
The kinds of things that may be done are as follows:

® Breaking and/or tracing any construct in the MPDL
language.

® Making these breaks and traces conditional. The condi-
tions are expressed in the MPDL description language

itself and can be evaluated in the context of any process
in the system.

® Specifying a set of actions to be executed once it is deter-
mined that the specified break or trace ought to occur
and before it is entered. These are, again, specified in
MPDL, and can be evaluated in any context.

The POPART system’ is used to generate a parser and a
grammar-based editor for MPDL. Given the MPDL gram-
mar, the POPART system produces the parser and an exten-
sive set of editing, printing, and program transformation com-
mands. Typical commands allow the user to search, delete,
replace, print, and prettyprint portions of the description.

The appendix gives a summary of the commands provided
by the MPDL development system.

composite cube8 (in0, inl, in2, in3, ind, in5, in6, in7,
out0, outl, out2, out3, out4, out5, out6, out7)
connectors wal =w, wal =w, wa2=w, wa3=w, wad =w, waS5=w,
wab =w, wa7 =w,
wb0=w, wbl=w, wb2=w, wb3 =w, wbd=w, wb5=w,
wb6 =w, wb7 = w;
processors
stagel = stage (in0, inl, in2, in3, in4, inS, in6, in7,
wa0.wr wal.wr, wa2.wr, wa3.wr, wad.wr,
waS.wr wab.wr, wa7.wr),
stage2 = stage (wa0.rd, wa2.rd, wal.rd, wa3.rd. wad.rd, wa6.rd,
waS.rd, wa7.rd, wb0.wr, wb2.wr, wbl.wr, wb3.wr,
wbd.wr, wb6.wr, wb5.wr, wb7.wr),
stage3 = stage (wb0.rd, wbd.rd, wbl.rd, wb5.rd. wb2.rd, wbé.rd,
wb3.rd, wb7.rd, out0, out4, outl, out5, out2, out6,
out3, out7)
endcomp;
composite stage (in0, inl, in2, in3, ind, in5, in6, in7,
out(, outl, out2, out3, outd, outS, out6, out7)
processors sl = switch (in0, inl, out(, outl),
s2 = switch (in2, in3, out2, out3).
s3 = switch (ind, in5, out4, out5),
s4 = switch (in6, in7, out6, out7)
endcomp;
processor switch (in0, inl, out0, outl)
declare upper <6:0>, tag0 <3:0>:=upper <6:3> ,data) <2:0>:
= upper <2:0 >, lower < 6:0>, tagl <3:0>:
= lower < 6:3> ,datal <2:0>:=lower<2:0>;
repeat
upper«in0();
lower—inl();
tagOetagO srr 1;
tagletagl srr I;
decode tag) < 3> @tagl <3>,
0O:call LISP (ERROR),
1:call outO(upper); call outl(lower). !straight
2:call outO(lower); call outl(upper). 'exchange
3:call LISP(ERROR)
endec;
delay 23
endrep
endprocessor;
connector w
declare buf <6:0>;
proc wr(d < 6:0>)
bufed
endproc;
proc rd < 6:0 >
return buf
endproc
endconn

Figure 3—Binary. N-cube MPDL description

A Multiprocessor Description Language 23

AlternatingBit
StoR
ready
write
read
Sender Receiver
Seq Outputseq
RtoS
ready
write
read

Figure 4—Alternating Bit Protocol diagram

EXAMPLES

We have performed two experiments that have pointed up
strengths and weaknesses in MPDL. The first experiment is
an interconnection network suitable for interconnection of an
array of single-instruction, multiple-data (SIMD) machines.
This example has been developed by researchers at Purdue
University in conjunction with the development of efficient
image-processing architectures'’. The interconnection net-
work consists of a series of stages of switching elements,
where each switch can send its inputs through straight or
exchanged. A diagram and the MPDL description of the in-
terconnection network appear in Figures 2 and 3. In our ex-
ample the switching elements are processors, and they com-
municate with each other through trivial connectors called
wires. We were able to successfully describe and run a
48-processor system.

One apparent and one definite language weakness are illus-
trated by this example. MPDL is explicitly geared to descrip-
tion of asynchronous systems, and thus it appears ill-suited to
describe synchronous systems. However, the delay construct
that MPDL provides and the fact that the user has control
over the granularity of the atomic actions makes it relatively
easy to describe such systems.

There is a definite weakness in the interconnection facili-
ties, however. In this example, there is a relatively succinct
mathematical description of the individual switch/wire bind-
ings. This mathematical description assigns wire bindings as a
function of the bits in the binary representation of the switch
number and stage number. However, our simple inter-
connection language does not provide any kind of parameter-
ization facilities and thus the description became a long te-
dious list of individual bindings. The binding occurs in Figure
3in the cube8 composite description where stagel, stage2 and
stage3 are defined. We would like to extend the inter-
connection language to include powerful features that would
allow concise description of such systems.

The second example is a simple data transfer protocol
called the alternating bit protocol'' which has two processors

transferring a stream of data across an unreliable medium. A
diagram and the MPDL description of the alternating bit pro-
tocol are shown in Figures 4 and 5. MPDL served very well for
describing the protocol, and the wait statement with timeout
condition was the perfect construct for this particular applica-
tion. The simulation system allowed us to investigate this
protocol and other (more complicated) versions very con-
veniently. The connector concept isolated the character-

composite AlternatingBit(InputSeq < 7:0 > ,OutputSeq)
connectors StoR = MsgBuf, RtoS = MsgBuf;
processors Sender(InputSeq,StoR.write RtoS. ready, RtoS. rcad),
Receiver(OutputSeq,RtoS. write,StoR.ready.StoR.read)
cndcomp;
processor Sender (InputSeq < 7:0 > SendToMedium,
MediumToSendReady < > ,MediumToSend < >)
declare SendSeqNo < > init 0,
Message <7:0>,
Timeout <7:0> init 2;
repeat
Message«<InputSeq();
label ResendLoop
repeat
call SendToMedium(SendSeqNo@Message);
wait MediumToSendReady(): if MediumToSend() eq
SendSeqNo
then SendSeqNo<«~ SendSeqNo;
leave ResendLoop
endif,
delay Timeout
endwait
endrep
endlab
endrep
cndprocessor;
processor Receiver (OutputSeq,RecToMedium,
MediumToRecReady < > ,MediumToRec < 8:0>)
declare ExpectedSeqNo < > init 0,
ReceivedSegNo < >,
Message < 7:0> ;
repeat
wait MediumToRecReady() endwait;
ReceivedSeqNo@Message —MediumToRec();
call RecToMedium(ReceivedSeqNo);
if ReceivedSeqNo eq ExpectedSeqNo
then call OutputSeq(Message);
ExpectedSeqNo«— ~ ExpectedSeqNo
endif
endrep
endprocessor;
connector MsgBuf
declare buffer < 8:0>,
readyflag < > init 0;
proc write(msg < 8:0>)
if LISP(RAND, 0.1)
then buffer<msg;
readyflag<«1
endif
endproc;
proc ready < >
return readyflag
endproc;
proc read < 8:0>
readyflag<0;
return buffer
endproc
endconn

Figure 5—Alternating Bit Protocol MPDL description

24 National Computer Conference, 1981

ization of the medium and allowed easy experimentation with
different types of media, such as loss-free, and free-running
(separate processor) media.

SUMMARY

We have designed a language, MPDL, which provides a flex-
ible and unambiguous model of concurrency and allows for
hierarchical construction of concurrent systems. Further-
more, we have introduced a construct called a connector
which encourages a designer to encapsulate interprocess syn-
chronization and communication in a single place.

Examples have been developed which have pointed out
relative strengths and weaknesses in MPDL. The inter-
nection network that was modeled pointed out the signifi-
cance of describing a synchronous system with an asyn-
nous language and demonstrated that there is a need for an
interconnection meta-language which allows concise descrip-
tion of regular, repetitive structures. Data transfer protocols
were conveniently modeled and relied on the abstraction and
timing capabilities of the language.

ACKNOWLEDGMENTS

We would like to thank Sarma Sastry for his help with the
design and implementation of the simulation system. Credit is
also due Victor Lesser, Alice Parker, Mike Lyle, Sarma
Sastry, Joel Goldberg, and Bill Landreth for the vision and
refinement of concepts embodied in the MPDL language. We

would also like to thank Jim Kuehn and H.J. Siegel for their
patience and understanding as the initial users of the MPDL
simulator.

REFERENCES

1. Barbacci, M.R., G.E. Barnes, R.G. Cattell. and D.P. Siewiorek, “The
ISPS Computer Description Language.” Tech. report CMU-CS-79-137,
Carnegie-Mellon University, Computer Science Department, August 1979,

2. TRW Defense and Space Systems Group, “SMITE Reference Manual.”
Tech. report RADC-TR-77-364, TRW, November 1977.

3. Parker, A.C., D.E. Thomas, S.D. Crocker, and R.G.G. Cattell, “ISPS: A
Retrospective View,” Proceedings of the Fourth International Symposium
on Computer Hardware Description Languages, 1EEE, Palo Alto, CA,
October 1979, pp. 21-27.

4. Overman, W.T., V. Kini, and S. Sastry, “Multiprocessor Description Lan-
guage (MPDL) User’s Manual,” Tech. report ISVWP-15.3, USC/Informa-
tion Sciences Institute, August 1980.

5. Liskov, B., A. Snyder, R. Atkinson, and C. Schaffert, ‘* Abstraction Mech-
anisms in CLU,” Comm. ACM, Vol. 20, No. 8, August 1977.

6. Dahl, O.J., B. Myhrhaug, and K. Nygaard, “The SIMULA 67 common
base language,” Tech. report S-22, Norwegian Computing Center, 1970.

7. Parnas, D.L, “Use of Abstract Interfaces in the Development of Software
for Embedded Computer Systems,” NRL Report 8047, Naval Research
Laboratory; June 1977.

8. Hoare, C.A.R., “Monitors: an opecrating systcm structuring concept.,”
Comm. ACM, Vol. 17, No. 10, October 1974.

9. Wile, D.S., “POPART: Producer of Parsers and Related Tools: System
Builders’ Manual,”” Unpublished. USC/Information Scicnces Institute

10. Siegel, H.J., et al., “‘Parallel Image Processing/Fcature Extraction Al-
gorithms and Architecture Emulation: Interim Report.” Tech. report TR-
EE 79-51, Purdue University, November 1979.

1. Bartiett, K.A., R.A. Scantlebury, and P.T. Wilkinson, *‘A Note on Reli-
able Full-Duplex Transmission over Half-Duplex Links,” Comm. ACM,
Vol. 12, No. 5, May 1969.

APPENDIX—MPDL SIMULATION SYSTEM COMMAND SUMMARY

Initialization Commands
parse: < filename >
build: < compositename > < parameterlist >

parse an MPDL Program from a file
build a simulatable structure

start: start the simulation

execute: < compositename > < parameterlist >
simulate: < compositename > < parameterlist >
< filename >

Context Commands

a combination build: and start: command
a combination parse:, build: and start: command

cn: display the root fully qualified name of the current context

pp: {1} { <qualifiedname >}
pp: {nx}

p:{ 1} { < qualifiedname >}

p: {nx}

ar: < arrayname > { <startindex > }{ < endindex >}

display the full current context tree

display the context trees at the same level as the current context
display one level of the context tree

show the tail of the current context

display the contents of an array

setar: <arrayname > < filename > { <startindex >} load an array with values from < filename >
1 go to the top context

dn: {<integer >}

out: { < nameorinteger > }

nx: { < nameorinteger >}
“bk: { < nameorinteger > }

go down a level in the context tree
go up a level in the context tree

go to a sibling context (to the right)
go to a sibling context (to the left)

Inx: go out: until a nx: is possible and then do the nx:

f: {1} <aualifiedname > {nx} find the partially qualified context, either below or to the right
setc: set the current context to be the break context

bn: print the name of the break context

ex: {1} {< qualifiedname > } < mpdlactionlist > ..

execute the actionlist in the specified context

A Multiprocessor Description Language 25

Tracing Processor Activations
trs: {1 } { < qualifiednamelist >}
utrs: {1 { < qualifiednamelist > }

ptrs: {1}

pstat: { 1 { < qualifiednamelist > }

Editing Commands
pp*
p’
pppt*
T *
out*
f* < pattern> ..
ref*
nx*
bk*
atf* { < nonterminal > }

stype*
r* < editorexpression > ..

rall* <pattern> = = > <editorexpression> ..

ib* <editorexpression > ..
ia* <editorexpression> ..

d*

val* { < metavariablename >}
ice® < pattern> ..

sgv* < metavariablename >
rgv* { < metavariablename >}

Break Commands
br: {ANY} {<tag>}
br: ASK
tr: {ANY} {<tag>}
tr: ASK
pbr: {ALL}
ptr: {ALL}
ubr: { <integer >}
utr: { < integer >}
warn: {off}

trace the scheduling of Processors

untrace the specified Processors

show which Processors are traced

display the status of the named Processors

pretty print the current expression

print an abstraction of the current expression

print the parse tree

go to the topmost expression in the current context

pop out a level

find pattern. Pattern may contain metavariables.

refind the previously searched for pattern

go to the next element in an iterated object

go to the previous element in an iterated object

go to the (possibly missing) nonterminal field (or print valid field
names)

show the syntax type of the current expression

replace the current expression. (use $$ and metavariables)

replace all occurrences of < pattern> with < editorexpression >

insert before

insert after

delete the current expression

show current metavariables or their values

instantiate current expression (like f*in setting metavariables)

make the metavariable global

remove the global variable assignment (or all of them)

break the current expression
enter full break dialogue

trace the current expression
enter full trace dialogue

print current break information
print current trace information
unbreak the numbered break
untrace the numbered trace

turn assertion warnings on or off

Fault tolerance by means of external

monitoring of computer systems

by ALGIRDAS AVIZIENIS

University of California at Los Angeles
Los Angeles, California

ABSTRACT

A frequently suggested solution to the problem of increasing
the reliability of an already existing computer system (to be
called the object machine [OM)]) is to employ a functionally
and physically separate monitor computer (to be called the
monitor machine [MM)) that probes the operation of the OM
in real time. The purpose of the monitoring is to assure that
the functional performance of the OM does not deviate from
the behavior specified by its design and by the programs being
executed.

This paper systematically assesses the architectural and
fault-tolerance issues that have to be resolved to effectively
implement the monitoring process. The goal of the implemen-
tation is to create an integrated and uniformly fault-tolerant
OM/MM complex, beginning with a given OM design.

Four principal problems are addressed in the subsequent
sections: (1) implementation of the monitor machine; (2) im-
plementation of the monitoring (OM/MM) interface; (3)
specification of the monitoring function; and (4) the cost and
effectiveness of monitoring.

The paper concludes with examples of model technical
specifications for the architectural properties needed by the
OM and the MM to attain a fault-tolerant implementation of
the monitoring process.

INTRODUCTION: SCOPE OF THE PROBLEM

A frequently suggested solution to the problem of increasing
the reliability of an already existing computer system (to be
~ called the object machine [OM]) is to employ a functionally
and physically separate monitor computer (to be called the
monitor machine [MM]) that probes the operation of the OM
in real time. The purpose of the monitoring is to assure that
the functional performance of the OM does not deviate from
the behavior specified by its design and by the programs being
executed. .

This paper presents a systematic assessment of the architec-
tural and fault-tolerance issues that have to be resolved in
order to accomplish an effective implementation of the mon-
- itoring process. The goal of the implementation is to create an
integrated and uniformly fault-tolerant OM/MM complex, be-
ginning with a given OM design.

27

Four principal problems are addressed in the subsequent
sections:

1. Monitor Machine implementation: Its functional design,
relative size, monitoring method, fault tolerance and/or
avoidance, assistance in OM recovery, constraints to
avoid interference with the OM, and other interfaces
(operator, remote master machine, etc.)

2. Implementation of the monitoring (OM/MM) interface:
The method by which the MM gains access to the OM,
factors that limit the access, and the effect that this ac-
cess has on OM design.

3. Specification of monitoring: Which functions of the OM
operation and which stored OM data are to be moni-
tored, and what are the symptoms of incorrect functional
performance by the OM?

4. Monitoring effectiveness and cost: how to predict and to
measure the effectiveness and the cost of a given ap-
proach to reliability monitoring.

The paper concludes with examples of model technical
specifications for the architectural properties needed by the
OM and the MM to attain a fault-tolerant implementation of
the monitoring process.

PROPERTIES OF THE MONITOR MACHINE (MM)

The complexity and other properties of the monitoring oper-
ation depend very strongly on the nature of the MM itself.
The main issues in the choice of the MM are

1. Design: s it general purpose, a custom design, or a copy
of the OM?

2. Fault tolerance: How is its own reliability assured?

3. Recovery function: Is it expected to participate in OM
recovery?

4. Constraints: How is the integrity, security, and privacy
of the OM assured in the case of a failure or a misuse of
the MM?

5. Other interfaces: Is it internally program-controlled,
operator-controlled, or connected to a remote MM mas-
ter facility?

28 National Computer Conference, 1981

Design of the MM

Three fundamental choices are available in the selection of
the MM:

(a)The MM consists of m exact copies (m=1) of the OM.
(b) The MM is a general-purpose digital computer (usually
much smaller than the OM).
(c)The MM is a custom-designed (special-purpose) digital
system.
All three approaches have been used in practice, depending
on application constraints and cost considerations.

The m-copy approach

The m-copy (m=1) approach is used in real-time appli-
cations in which reliability requirements are extremely high.
Monitoring is simplified, since it can be a direct comparison of
corresponding variables of the m copies. Recovery after fail-
ure is also facilitated.

With m=1 (the duplex case), the surviving copy is iden-
tified and becomes the OM, now without monitoring. The
identification requires built-in self-test features in each copy.
The use of duplexing for reliability is a very common solution.
Successful examples of this approach are the central proces-
sors of the ESS system of Bell Telephone Laboratories.” ' '*
The success of the application of duplexing beyond pure mon-
itoring, i.e., to attain recovery, differs widely as a function of
the quality of the self-test procedures. Some notoriously un-
successful cases have been reported.

With m =2, triple-modular redundancy (TMR) with major-
ity voters is used to monitor correct operation and to imple-
ment instant correction in the variables being voted upon. A
disagreement detector (DD) is used to determine when one
input to a voter differs from the other two. The DD serves as
an instant indicator of a potential failure and allows discarding
or replacing the failed member. TMR has been successfully
used in the U.S. space program—e.g., in the SATURN V
launch vehicle computer—and is currently being investigated
for application in microcomputer systems® and in aerospace
control computers. '

Values of m>2 are occasionally used when recovery from
two or more failures is needed. An example is the four-
computer (m=3) space shuttle computer complex, in which
each computer monitors output variables of the other three.”'
Interface restrictions severely limit the observable variables in
this design.

In general, the m-copy approach to monitoring has been
justified by the criticality of application, and it usually follows
fault detection by recovery actions that are implemented by
the surviving copies. Because of the identical design, any one
copy can serve as the OM. In TMR cases, the OM outputs are
produced through majority voters, thus using the MMs to
increase the probability of getting correct outputs.

The distinct general-purpose-MM (GP-MM) approach

This approach is found in some of the very recent large-
scale computer systems. A small general-purpose machine

(minicomputer) or a peripheral processor is employed as a
maintenance processor, which performs a certain set of mon-
itoring operations in real time on the large system (OM). In
addition, it also may act as a control console, peripheral pro-
cessor, communication processor, diagnostic processor (not in
real time), logout storage device, and interface unit to a re-
mote central diagnostic facility.

The use of a general-purpose minicomputer or a peripheral
processor as the MM for a large-scale OM offers a significant
cost advantage. First, the MM is an off-the-shelf product,
already operational and provided with software and mainte-
nance support. Second, in addition to being the MM, it usu-
ally performs several other services for the OM. An evident
disadvantage is the rather limited ability of the MM to per-
form real-time monitoring. This is due to the variety of tasks
it is expected to carry out and also to the rather limited num-
ber of interface points that can be established between the
MM and the OM. This problem is further discussed in the
section “The Monitoring Interface.”

State-of-the-art examples of the distinct GP-MM approach
are

1. The Data General Nova 1200 minicomputer used as a
console processor for the Amdahl 470 V/6 computer
system.'

2. The Data General Eclipse S-200 minicomputer used as
a maintenance control unit for the CRAY-1 computer
system.'®

3. The PDP-11 minicomputer used as a front-end processor
and diagnostic computer (with direct diagnostic
bus linkage) for the KL-20 central processor of
DECSYSTEM 20."

The custom-MM approach

This approach also is found in some large general-purpose
computer systems. Although custom-designed MMs also per-
form some other functions, such as diagnostics (non-real
time), initial loading, etc., they are much more closely tai-
lored to the monitoring function and cannot be readily satu-
rated by other real-time tasks supporting the OM.

Because the custom design of the MM occurs along with the
design of the OM, a more favorable monitoring interface can
be created than for the GP-MM. A significant disadvantage of
the custom-MM approach is the cost of designing, building,
and developing the software and maintaining the MM. High-
volume production cannot be expected to reduce the cost per
unit because the custom-MM is of very limited applicability.

Examples of the custom-MM approach are

1. The maintenance control unit (MCU) of the CDC
STAR-100 computer.'* The MCU has both an I/O chan-
nel connection and a special set of internally connected
interfaces that allow it to monitor CPU status and gather
event counter data.

2. The control and maintenance unit (CMU) of the Bur-
roughs BSP array processor'?, which has access to most
data paths and registers of BSP and itself runs under
control of maintenance software of a B 7800 computer
(the system manager for BSP).

Fault Tolerance by External Monitoring 29

3. The test-and-repair processor (TARP) of the JPL-
STAR computer.’ The TARP is an MM embedded with-
in the OM that carries out very extensive real-time mon-
itoring of the execution of every instruction and initiates
automatic recovery in case a fault is detected.

4. The maintenance and support processor of the IBM 4341
Processor'®, which has a high-speed parallel link to the
CPU. It can read out, analyze, and store machine status
information upon detection of an error.

Relative size of the MM

The word size is used here to designate the complexity and
cost of the MM when compared to the OM.

In the m-copy approach, the MM size is m times the size of
the OM. In addition, there are interface elements that per-
form comparisons and usually also implement recovery ac-
tion. The relatively high cost of this approach limits its use to
reliability-critical real-time applications, such as aircraft con-
trol, spacecraft control, air traffic control, telephone ex-
change control, etc.

In order to reduce the cost of m-copy monitoring, the
copies are sometimes assigned various background tasks while
also monitoring the OM. Two modes of operation—mon-
itored and simplex—are sometimes made available.”” Such
sharing of the MM, however, may easily lead to severe reduc-
tion in the effectiveness of the monitoring function. Latent
faults in the OM or the MM may accumulate more readily
when different tasks are carried out by the OM and MM for
significant time intervals.

In the distinct MM approaches (both general-purpose and
custom), the MM is usually much smaller than the OM, and
only a single copy of the MM is used. The relatively small size
of the MM is due to the usually very large size of the OM and
to the less critical reliability requirements compared to those
for which the m-copy approach was used. The emphasis here
is not on uninterrupted operation but on fast fault location
and recovery, usually by reconfiguration and manual repair.

An MM (GP or custom) larger than the OM is difficult to
justify economically, since it has to be compared to the simple
m-copy alternative. One potentially attractive exception can
be postulated here: a single central master-MM could serve as
the MM for a number of OMs, which could be located re-
motely or form a computer network. A step in this direction
has been taken by some manufacturers who provide a remote
central diagnostic system accessible via local MM’s.""”

Fault Tolerance of the MM

It is evident that the MM may itself malfunction. As a
consequence it may fail to execute properly its monitoring
function. Even more dangerous is the possibility of the faulty
MM actively interfering with the correct operation of the OM.
This issue is discussed separately in the section “Interface
Constraints on the MM.”

The extent of fault tolerance provided in the MM depends
on the criticality of the monitoring requirements. In the most
critical cases, the m-copy approach with m >1 provides very

complete fault tolerance at a relatively high cost. Standard
fault-tolerance techniques, such as TMR,” duplexing, ' etc.,
are applicable to the protection of the MM.

The GP-MM and custom-MM approaches do not offer a
clearcut solution to the MM fault tolerance problem. The
existing GP-MMs use the standard fault detection and recov-
ery techniques as’ provided by the manufacturers. The
Custom-MMs that have been discussed do not show system-
atic fault tolerarice. This is probably due to the fact that re-
source limitations did not allow designers of the Custom-MM
time to incorporate fault tolerance. The relatively small size of
the MM makes the probability of its failure much less than
that of the OM and thus relegates the MM fault tolerance
question to the background. An interesting and unique exam-
ple of MM fault tolerance is the Custom-MM called TARP
(test-and-repair processor) of the JPL-STAR computer,’
which uses hybrid redundancy for its own fault tolerance.

OM Recovery Assistance Functions in the MM

In addition to the OM monitoring, in most cases it is cost-
effective to include OM recovery assistance functions in the
MM. The functional and physical isolation of the MM assures
a high probability that the MM will remain operational during
an OM failure and will be able to execute the OM recovery
procedures.

In the m-copy MM implementation the OM recovery is
usually closely integrated with the monitoring function in or-
der to provide extensive fault tolerance. These recovery pro-
cedures have been discussed in the section ‘“The M-Copy
Approach.”

In both the GP-MM and custom-MM approaches the extent
of OM recovery assistance remains at the discretion of the
designer. The principal constraint that limits the introduction
of recovery assistance is the usually quite restrictive moni-
toring interface (see the section ‘“The Monitoring Interface”).
An initial program load for the OM is the most common
recovery assistance feature of the existing MMs.

Interface Constraints on the MM

The presence of effective reliability monitoring using an
MM implies the possibility that the MM has access to internal
points of the OM that are otherwise not accessible without
meeting strict authorization requirements. Such access raises
the possibility of two forms of interference with OM that can
originate in the MM:

1. An MM hardware fault (physical fault) or a design error
in the MM software (manmade fault) may cause the MM
to interfere with OM operation.

2. The path to the OM provided via the MM may be used
by individuals who have access to the MM as a means to
gain unauthorized access to the OM, bypassing the OM
security and privacy mechanisms.

Safeguards against both forms of interference need to be
introduced into the MM design.

30 National Computer Conference, 1981

Interference due to faults in the MM

One form of possible MM interference with OM operation
is the occurrence of MM faults that cause a false alarm about
the OM. The extent of interference with OM operation
caused by such a false alarm depends on how many automatic
OM recovery functions are provided in the MM. The funda-
mental solution to the false alarm problem is to provide the
MM with fault tolerance. If MM fault tolerance provisions do
not exist, an independent verification of the alarm is needed
when routine OM recovery does not succeed. This can be
carried out by an operator initiating an MM test procedure
either executed by the OM or as an MM self-test. An alterna-
tive is to involve the assistance of a remote diagnostic machine
to test the MM.

A second form of MM interference with the OM can be
physical interference through the MM/OM interface. Passive
MM data acquisition interfaces can be adequately protected
by physical isolators. A more difficult problem is presented by
active MM input lines to the OM. For an extreme example, a
‘“‘stuck-on-one’” master reset signal from the MM would com-
pletely paralyze the OM. In addition to physical isolators,
such active interface lines: need self-checking, which can
be implemented by duplexing or other fault tolerance
techniques.

MM software errors (design faults) can also cause both false
alarms and interference (in the form of incorrect commands)
through the MM/OM active interface. Recognition of soft-
ware fault conditions will be facilitated when the MM is pro-
vided with fault tolerance with respect to physical faults. This
will reduce the probability of misinterpretation of design fault
symptoms as being caused by physical faults.

The probability of detecting the occurrence of both design
and physical faults in the MM can be improved by providing
certain defensive measures in the OM software. Verification
of commands received from the MM by means of an exchange
of messages is one such measure. Another is the execution of
an MM test program from the OM, either periodically or upon
the occurrence of certain MM commands.

Unauthorized access via the MM

The introduction of an MM makes it necessary to review the
security and privacy protection mechanisms that are imple-
mented in the OM. The goal of this review is to insure that
there are no previously unforeseen paths that could be used
for unauthorized access, bypassing the existing safeguards of
the OM. -

The design of the hardware and software of the MM must
also take into account the existence of security and/or privacy
requirements for the entire system composed of the OM and
MM. ‘

A special condition is introduced by the provisions for re-
mote diagnosis of the OM from a master diagnostic MM. Such
provisions exist, for example, for the Amdahl 470V/6 and
DECSYSTEM 20 computers. In this case, procedures for
security must include the transfer of control of diagnosis of the
OM from the local MM to a remotely located MM.

Interfaces of the MM

The OM/MM interface is discussed separately in the section
immediately following. In addition to this interface, the MM
needs the definition of the MM interface with the operator
and linkages with other computers, especially a remote MM
facility.

Another interface consideration for the MM is the record-
ing, reduction, and presentation of reliability data collected
during real-time monitoring. This function can readily be
made a part of the functions of a general-purpose MM. An
example is the Data General Nova 1200 minicomputer, which
serves as the MM (Console Processor) for the Amdahl 470V/6
computer. In contrast to the IBM System/370, the machine
check extended logout information is stored in the Nova 1200
memory under MM control.

The use of a programmable MM makes it necessary to
provide an MM operator manual that defines the commands
and instructions available to the operator. Furthermore, the
manual needs to describe the procedures to be followed in
case of reported OM failures and in case of suspected or
indicated MM failures.

THE MONITORING INTERFACE

The guiding principle in design of this interface is thatthe OM
and the MM are physically and functionally separate com-
puter systems. A positive aspect of this constraint is that
strong isolation is provided, which reduces the probability of
related failures that simultaneously affect both the OM and
the MM. Furthermore, the OM/MM interdependence with
respect to design changes within each system is minimized. A
limitation is imposed by the necessity to interface the different
architectures, packaging, and physical layout of two separate
machines.

The main issues in the choiceé of interface techniques are

1. Methods of access: Standard I/O provisions, dedicated
I/O devices, custom links; OM vs. MM control.

2. Access-limiting factors: Architectural, physical.

3. Modification of the OM to accommodate the use of an
MM: Limited retrofitting or redesign (hardware, archi-
tecture, firmware, software features).

Methods of Access

‘The simplest method of supplying data about OM operation
to the MM is to employ the standard output procedures of the
OM to