Inside the TC2000™ Computer

Revision: First Release

Part No. A370014G10
Document Rev: A

BBN Advanced Computers Inc.

Copyright © 1990 by BBN Advanced Computers Inc.
ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of
BBN Advanced Computers Inc. (BBN ACI).

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(i)
of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

BBN Advanced Computers Inc
10 Fawcett St.
Cambridge MA (02138

RELEASE LEVEL

This manual conforms to the February 1990 TC2000™ multiprocessor hardware..

NOTICE

BBN ACI has prepared this manual for the exclusive use of BBN customers, personnel, and licensees. The
information in this manual is subject to change without notice, and should not be construed as a commitment by
BBN ACI. BBN ACI assumes no responsibility for any errors that appear in this document.

TRADEMARKS

Butterfly is a registered trademark ot Bolt Beranek and Newman Inc.

Chrysalis, TC2000, nX, Uniform System, Xtra, Gist, and TotalView are trademarks of Bolt Beranek and Newman
Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

DEC, VAX, and VT are registered trademarks of Digital Equipment Corporation.

VMS, VAX/VMS, MicroVAX, Ultrix, and DECnet are trademarks of Digital Equipment Corporation.

IBM and IBM PC are registered trademarks of International Business Machines Corporation.

Multibus and Intel are registered trademarks of Intel Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.

MC68000, MC68020, MC68881, MC68882, MC68851, MC88000, MC88100, MC88200, and VMEDus are
trademarks of Motorola Semiconductor Products, Inc.

QTC and Math Advantage are registered trademarks of Quantitative Technology Corporation.

pSOS, pSOS*, pSOS*m, pRISM, pUCP, pREP/C, pROBE, and pHILE are trademarks of Software
Components Group, Inc.

MS-DOS is a registered trademark of Microsoft Corporation.

TeleSoft and TeleGen?2 are trademarks of Telesoft.

Sun Microsystems and Sun Workstation are registered trademarks of Sun Microsystems, Inc.

OSN, ONC, NeWS, and NFS are trademarks of Sun Microsystems, Inc.

4.2BSD and 4.3BSD are trademarks of the Trustees of the University of California.

Ethernet is a registered trademark of Xerox Corporation.

i February 14, 1990

BBN ACI thanks the following contributors for their efforts in developing this manual:

Author:
Michael Beeler

Designers and Reviewers:
Dave Barach
Tom Downey

Jim Gibson
John Goodhue
Phil Herman
Kent Hoult
Larry Kaplan
Becky Mercuri
Rich Schaaf
Julie Tiao

February 14, 1990 iii

Contents

Chapter Page
Howto USS ThIS MANUAl .ccvsserasesss smssnns ows soume wan abhe s sse aassss o Xiii
1 Structure of the TC2000 COMPUIEE s sus sun nes ses s am nuas snn san saxsnes oo 1
1.1 BaSiC CHATACTEIISTICS 5 5o sz ss ma s ma s s s ois ss 05 e wis ois 308 18 w18 (8 3 10 46 S8 458 97a &8 8) 1o sio 408 194 90 8 14 1
1.2 ATCHTEECEUEE e s 655 5 5k 508 505 515 508 95 50509 okt 675 08 15555 695 500 L5308 30 6 08500 5 3 690 996 06 606 1611 16 5 06 BB o0 908 9 400 5 2
13 System COMPONEIILSttt ittt ittt et e et e e et e ee i aaeeeaeeeneens 4
131 PHYSICALSETUCHITE wicox s msrms i s m w15 50 s 1610 i s onm et #0021 0 50w min i i i a1 0 50 2 450l i o 0 1 4
132 Liogical StEUCULE: wesimsmsms s s o9 s smam o se 5858 05 15 € 519 418 57 5508 6 $6 0o W8 5w 3 10
1.4 Machine SPeCifiCatiOns . c.v s s s s o s oo m s mse o 55 98 @5 9 5 500 50 505 55 58 10 5 505 19908 008 919 1818 03 24
1.4.1 Computational Specificationsot 24
1.4.2 Environmental SPECHICATIONS: « « w s s s w e s sve sosmram s w pos 2% se son i s w1 ¢ s 01 0w i win men e o 25
1.5 Equivalent but Distinct Function Boards :.......ceuivevsuivisorenvmainesentoseonaioiens 26
1.51 ThenX Master Function Boardcccviiiiiiiiiiiiiiiniiiiiieeinineeeesss 26
1,52 ClUSEEIS « ottt ettt ettt et e ettt e 27
153 PHySICAL SLOTE i sis w5 m s m s 555 55 655 515 1516 (6 048 w0 4hm w0 6.0 1 31 00 10w im0 0 230 i a0 27
1.54 SlIot NUIMBDETING oo voiin s s s o o oo o 8 0515 505 550 500908 6 5 5603 16 o 5060 500 W06 08 18 00 8 50 G 13 W18 3 60 5 28
2 The TC/FPVFunction BOArdcssassves ows sous susamss ons axs vans 5am 31
2.1 AOEGATBARIONY + s o 50000 605508 5558 50 0 503 0 00 5005 5 09 0 00 B S 8 B M o 8 8 31
22 Processor, CMMU and CPU INterfaceooiinuuiiiiiiiiin i eaiiieannns 33
2.2.1 TC2000 Physical Address SPACEuuttiuttinet it i i aneens 33
222 88000 AccesS 10 GlOAL METTOTY. i ms a6 imsis aus v 08 55 01 570 54 510 008 478 img 01375 3 10w v e e 0 50 34
2.2.3 Block Transfer and the CMR Intercept Access Bitcooiii.., 36
224 TheLocal Bitin the CMR i it i 37
2.2.;5 The Interleave Enable Bit in the CMR: .« oo v revvvsvamms vnussewesonenessoremsane- 38
226 The Bypass Bitinthe CMR . .cosimsmsmumun: msaimsm s anme s g5 msmevasn cngasss 39
2.2.7 The Fast Path Disable Bitinthe CMR 39
2.2.8 CMR Block Diagramounnuiiiit ittt i et 40
2.29 CMR Power-up and Disabled Stateoouieiiiiiiiiniiiiieinnneennnn. 40
2.2.10 CMMU and CPU Interface Affect AddressUsecoiiviiiiiiiin... 41
2.3 1, 03 1370 o 2 R P R 42
2.4 SWItCh INEEITACE . . vttt e e 42
2.4.1 References to Remote FUnction BOATAS « c.c s oo s s s soss wrsm s m s siomn e wie e mom o 43
2.4.2 References from Remote Function Boards ..., 43

February 14, 1990 v

Contents Inside the TC2000 Computer

243 More Switch Interface FEatures s cwcuvomiwswsmsmsanmam smnsmsmsn o s siees ave w550 5 2 44
D4l TOEETICAVEL . v v e s i oo o o 1o & 6 558 6 5 518 68 505 96505 1906 61 B 50 164 06 5 5.0 BIW 500 00 0 P08 903 0 05 44
2.5 VMEDUS INEEIEACE .« . vt vttt ettt et ittt et it ce i ieeinoneeoanaecnnneeeeanan 45
2.5.1 VMEDUS MaSter MAaDPET w5 o« v e s vesiassoswsssmemsosnssnsssssn e s s ssenme 46
2.52 VMEDbus.Slave MapPer :«covussmassssvmensmensnsausseessssssansansaswssssesss 47
2.53 VMEDbus Interrupt Handling and Generationc.ceveeiiiencineeeeannnnn 48
2.54 VMEDbus System Controller FUnCtionsccoiiiiiiieionninaeecnaeaonnncns 49
2.6 TS SIAVE s 556056 505 508 505 518 108 5559 595 506 475 508 558 08 503 905 108 09 916 556 606 915 40619 0 416 0 6 w00 00 0 0w 1 49
2.7 Configuration and Control Registerscisisisiiinissnssssninisissfuimsssmsmimsmansngs 50
271 USEI REGISLELS -« vt ettt ettt tet it ettt ie e eieevnanananeanneannaaneeeans 50
2.7.2 Configuration REGISLETS oututntit ittt ia e aeianenennn 51
2.7.3 Interrupt System REGISTEIS . comswsmsmsmsns s o v ssas@am mems B @imews s msmssns 51
2.74 (T-bus)Bus Error BREEISIEE « .o emnmemsion s v oo 5 6§ 50500 w0k 9755088055505 5 8 6 5 518 0 5 52
2.77.5 Latency Control RegIStEerS vuutinnt ettt 52
276 VMEDUS INtErfACE REGISTEIS v oswsmswsime s i simss 58006 s ainsie o w2 aiman sin s wis i e 53
27T SIGATREZISTELS: . . - eve mce bre 05 515 55 515 555 53 50 650 106 508 05 5 4 8 908 805054 5 8 1 9058 908 0 008 50 e 53
2.7.8 Interleaver Control REGISIETS . .. vvuvnetnree it iiiieeiieianeanereeneaneennsns 54
2,79 CPU afid CMNMU REFISTETS 5v s s wsims s os s srs g aig ais w616 w7 avg st e m s asmwim w0 ais a0 o o 54
2.8 Path and Speed Of REFEren0as .. o5 o:wsumwmansms mom s we wase s s w v sn o5 ms 886 omae sgeswses s 55
2.8.1 What Path an Access Takes SR B S A RS B R R S 55
2.82 CPU Memory Access TImingovniitiiiieiiiiiieeennieeeeieoeennnns 59
2.8.3 Intercept Accessand Timingoooiiiiiieieniiianee.. e 63
29 AtomicCity and LOCKINEcvviinuiriiiuiteiororeiornueeennanetoonaonsnesennesasnseens 63
2.9.1 RACE CONAItIONS ..ottt ittt ettt et e et et 63
29.2 Two Sides 0f @ COIM . vnnntt it 64
293 The:xmem INStrUCHON s s s s s sre s s e msss e s 05 5 s w8 0 5 5 o5 #og s0e a0y we s e e i n oo 67
2.9.4 Atomic Functions Based on Xmemttt 68
2.9.5 Atomic System Callst e e 68
2.9.6 AtomicCity Of MEmOIrY ACCESSES ... vvtnuttinttentteineeaaeeaaneeaeeieennnennns 70
299 TC2000 Liocking Protocols:ussissmsssmimsessssainsessseasgisimisesssems s 71
210 Timers and INTEITUPLSottt ittt ee e cii e eoie e 77
2.11 Bus EIrors «.c.convveveinas S 5 Y S 4 L T R L 0 e T 4 4 o i o o o B 8B o B e 80
3 TheButterflySwitch it ittt ionraaarnans 81
31 THPOrtafice and NATTE o irsmamessumemsnsmewemem s o am we e m s ae oo oo m s s 08 mwid bk o8 8 81
32 Function and General SITUCTUIE : s ssmsmsmems mom o oo sgmsmsmsm soamsmeine s oo m o onao o 82
3.2.1 Provide Access to Remote Boards ... 82
3.2.2 Also Distribute SignalSouriiriii e 82
3.2.3 Structure of the SWItCh ...vivevirrrrmonviviarmivrmenseenaenenenen s oo N 83
33 Theory Of OPErationo uwusn o smssemsmsm s s s smamsss s semssmsssenmsesnsy sy ees s 93
3.3.1 Switch Message CONtENLSvuurenneeet et eeaeanaceenneeeieenteeneeanns 93
3.3.2 Routing a Message, Makinga Path i 93
3313 Route Format and TISE :ssw:wsmem s ssms memsms oom smms o s s s e yon gon sie i one ix oo e s o 0m 96
334 Useof Alternate Pathsoiiiniiiiiiiiiiiiiiiiiiiesnneeanaeenenneens 98
33,5 RejectandRetry ...l st e RS RS BT R R R 99
3.3.6 Reply Messages — Bidirectional Path............oo i 106
3.3.7 Multiple Messages per CONNECHIONvtuuttentteteeaiie e eaneaneeeennnn. 106
33.8 Error DeteCtion .o uure e rnnnsaassinionsissossnsnsassssessssssenssssnns 107
3.4 Features IMPOLATnt TOUHE TIIEE o sve e ws oo s mym s arn i m viw s s o o oo im0 65006 5 8 05 60 108
DAL TOCKUND o ov s ma o w5 0558 5 50m 5080805508 8 0 405 A0 1050803 € 109
342 AUOmMATIC RETLY . .vvvs o oo memsmamsnsmsemen ss sasmsmsien msenesssnsnmmee s 111
3.43 Latency CONIrOlottt et e 111

Vi

February 14, 1990

Inside the TC2000 Computer Contents

A MEMOTY v novisansni sans sind ims smed Loah bass bbs oo LaisBEs Sos Ll SUEE 6EE o 119
4.1 STTUCTITE o655 5im w0 w16 615 5055508 505 555 55 005 0 o o806 05 65 506 06 06 3 o0 16 00 05 3 0 08 00 6 00 06 00 0 .8 6.0 8.0 5 119
4.2 DIBSIEM ottt ettt e 122
4.2.1 'Global AQATESS SDATE wsuarmsmnimsm e vasw s sin s o625 bisais s 08 mswsssnsinsnss s 122
4.2.2 MADPING i cowsmsimimosmsmsmsmenssssssensmssssssessssssssssasssssinsssssoessss 123
423 Demand Paging ... i i e e 126
T2 S 113 o 72 T N 126
4.3 ACALCSRITD o 15 wm v or s 5 516105 5105 008 16 061506 136 06 0 4 50 6 0. 7)5 7 0 0 0 2 0 W9 0 0 308 0B B 60 800 9 6 99 127
4.3:1 AAAress FOTINALS .o s swimsms sm ems 6o 5565 @ oo bk 830516 5f 88505 79605550856 03505 129
4.3.2 Address Translation it i e e 132
433 BaAKS . .t e 133
4.4 Features Important 1o the USET - :.oin:i nimininisinmininiminsisnimissnssessisiosmisinsns 133
£ 0 O ' Tv/ o 17 PR OV S P S S P 133
442 Error DeteCtiOnottt i 134
44.3 Synichronized AcCess f0 METHOLY s o swws s o e s e msm s 5am 6 53 o 5in 55 508 58 91§ 88958555 135
444 Optimizing CNVIMU USE s me s 55 56 55 55 600 . 55 58 9 5. 85505 55 56 © 505 56 806 958 806 8106 w0 5 137
4.45 INTErleaVIZttt ittt et 142
4.5 INCETICAVITLE & 5 6505 6050 50s 5 6 008 5 8 05 50w 505 08 0 0 w0 S0 g 58 60 103 i 808 658 618 88 8 8 1 W56 W08 81 06 08 & o8 e s 03 142
451 Overview Of INTETIEAVING - o sis ssss s s s s oo 0655 5 005 518 858 5 9 sk 518 805 Gis 506 5.5 616 006 8.6 08 142
4.5.2 Motivation for Interleavingttt e 143
4.5.3 Uniform Use of TC2000 Interleavingc....ueeeiiiiiiiieeiiiioineneeanann 144
454 Implementation of TC2000 INtELICAVINE o cu s sis wis s e m w55 5 i wi i ans wps oy w16 w0e w3m w0s 8 145
4.5,5 Conceptual Operation Of the INTEICAVET o v vis ws e v 5s 8505 15915 500w w30 350 300 w00 936 sva w10 148
4.5.6 The Interleaver Loader i i e 157
5 l/Oandthe VMEbus iInterface i iiiiiiiirnnnnanacnns 159
5.1 The VMEDUS . ..ottt et e e e 159
5.1.1 The: VMEDUS SPECICALIONT . sve nrs sum s svi svm sos g0 505 815 15,8 50 8500w 608 s 8 18 950 a7 s s oo s s 0 159
5.1.2 VMEDUS Card CAZS s wie s ww 5o vs mans 516 5 06 000 o0 508 565 596 518 60 5 6055 #15 wie 355 575 568 516 570 9085 5 160
5.1.3 The TC/FPV’s VMEDUS TNEEITACE .« v 6.5 1.8 s0ionsitus 606 55 5 5.8 5555 15 5 555 508 5330 508 50 i 525 5.8 513 160
5.1.4 The TC/VMP VMEbus Midplane, 162
5.1.5 Multiple VMEBUS SYSEETIS av vos s w505 00w sie 70 55 55m 5 51603 %05 0810 w1858 3 4 40w w501 s50 050 500 876 8 00 500 165
5.2 SCST Adapter and SCSTDEVICES « « 5 s vis s 55 6o 5w 59 518 550 678 503 55 5550 567 80 ¥ 3§ 0158 518 ¥4 960 ¥ 5483 5 3 5 218 166
521 The SCSIBUS .. uvtt ittt e e e e e e 166
5.2.2 The VMEDbus-to-SCSI Bus Adapteruuiieiiiiiiiiiiiiiiiiieeenn. 167
5.3 VMEDBUS BUS REDEATET 5 15 s 5 505 5 515 515 058 00 5 5 5 58 516 5005 58 505 518 506 © 895 500 918 0 4381 » 58 048 0105 508 o s 3 5 0 1 168
5.4 MUHTDUS AGADEEE .- -« 0+ e e om e e o6 608 500 w585 oo b 608805 5% 55 306 08 05 570 50805 9 6.8 008 5.8 0548 169
5.5 Device Naming and I/O Bus Specification iiiiiiiiiiiiiieiiiieeen.. 170
5.6 TC2000 I/O DEVICES SUIMIMATY . . .« e vt ettt ettt ettt et e e et e e e et et e e e ans 171
5.7 HHACA THSK ¢.ccurcis 505555061505 505 518 505 50 0000 @ 800 5 05095 505 03 908 08,605 0 F 6 00 W 08 63 606 06 02 6 06 0 5 005 00 ¥ 172
5.8 Half-Inch Magnetic TAPE ...« .v ittt e e e 172
5.9 Terminal Concentrator/Controller i i 174
5100 Ethernet INTerface :susmmcasmememomsmms smsmsmsmsmsm o ss5amam s 585 s s 550550802003 00 00 176
511 Quarter—inch Streaming TAPEvusesiiniiiaiuiniosincssasmasmasintsssivsnsssasmssss 177
5.12 Removable Disk DIive 178
513 Special Sit€ PETIPHETALS s ossiemsmsmsmsw s ensmsms s nsmame cmems e sn s swsesmesesssswsmeess 178
6 The Suppariing MOtles .o sxs susn sone sunn sann one cus sun saEemen vomn rans s 179
6.1 8 179
6:1.1 . TCS TASKS soiswvrmmmms ks mrmsmsmeis o sms s msmss s ssmesns s messasngesassinemesss 179
6:1:2 TCS Hardware COmPOTIEIES i s i s a5 855 555 bisss s 56 66 55 8808550558555 0555878 180
B. 1.3 TIOS BUS o e oo i oo o oo s 1 1 i o ot 55 i 0 0 B0 5 555 506 6% 66 66 183
6.1.4 Fault RECOVEIYottt e i e 187
6:15 TES SIAVE FUNGHIONS i susmemsmoimsws s s sims s e ssm e se s sse @y messsiss @ ssnemems o 187

February 14, 1990 Vi

Contents Inside the TC2000 Computer

6.2 CLOCK CATH" w1555 55 00 s w6 v w1055 918 8358100 618 505,655 816 6 55 6 906 908 808 8 00 0 6 04 006 08 108 0 510 6w 0 50 80 3 00 193
6.3 MAAPIATIE: 6558 5 6 w15 558 w08 505 05 106 9 6155 9 48 008 506 515 06 60508376160 £ 006 606 55 @06 306 0 08 806 #1380 308 04 86 30 194
6.4 Power Supplies and Distributionoiviiiiiiii it 197
6.4.1 POWET LNE ..ttt ittt ettt e e et 198
042 KEYSWITCIL « ovvs s wvws 5o ms s s i s siasrs w55 s 69 678 w05 0058 60008 508 0618850 58 2 18 338 058 376 414 008 010 8 W04 198
6.4.3 Power Distribution Unit (PDU)uttitiiiiiiiiiiiiieiiatoeacneeceonnnnnn 198
6.44 Power Control Daisy Chaincvvutiiinie it oniiiiiieieaneeneeacneennns 200
6.4.5 BUIK POWET <00 v v vttt et eeeeoiotenennuneneeoeeeoioniocnennnenans 201
6:4:6 Circuit Card POWEE s s s ws s ssss s w55 5 5 €50 5508551835 50 $18 678 518 365 550 85 86 9 88 500 3 3 201
A Floating Point ExceptionHandling i ciiiiiiiiiiininacnonnns 203
Al INEEOQUCLION. 5o wrmmis ma e o6 s w6 600 08 968 48 60 905 605 8 600 0 5 508 06 806 05 1 506 5 sk 500 538 14 08 008 /6 0% i) 0 204
A2 Floating Point NUMDETSottt ittt eiaii e nnii e annnns 204
78 R) o 17X - 204
A2.2 OPETALIONS s wamsos s smemsismem s ass s siisss s s s avs s w ove sis 03 a3 ias8 3 wams 204
A3 Floating Point EXCEPIONS « s« s s sws v oo smimessssms s susnssssss sm o s ssas ss aissawssssnans 205
A3.1 Overflow EXCEPLION «vuvttntinitt ittt ittt ittt i e, 206
A3.2 Underflow EXCEPHION ..ottt i i 206
A33 Divide by ZEro EXCEPUION, « i sisws s sswsmnimniam s s s 5 s o 418 509 566 900 $4 504 0485 5 50 275 8 3 206
A.3.4 Convert to Integer EXCEPLION . .. oo oviininiiiii i eennninnceeioieenns 206
A.3.5 Reserved Operand EXCEptiono.viiiiniiiiiii it 206
BTCIEN o vws mms wim s 0 s mmm 50w wom o 5% s M SR S M e N E e NS M REY MR 209

viii

February 14, 1990

Inside the TC2000 Computer Contents

List of Figures

Figure Page
Figure 1-1 Four-way balance of TC2000 architecture.ouiiiiiiiiiieneennennanns 2
Figure 1-2 Main components of the architecture.oiiiiuiiiiiiiiiiiieeninann. 3
Figure 1-3 Components associated with one midplane. o i 4
Figure 1-4 Cabinets make the MaChine.ttt et 5
Figure 1-5 Expansion CAINEt SIS VEBMW: « s« o s s emss ¢ 005505 % v w00 10 8 5 5 5 51 £55 518 598 20 Wi 028 5% 3 % 6
Figure 1-6 Utility cabinet SIAE VIBWL v cov v iosmvie vin i b6 00650 @605 58 00k 5 8 51605 6 546 5.0 50w 06 w0 005 5080 50 5 7
Figure 1-7 Peripheral cabinet side view (typical). ... 9
Figure 1-8 TC/FPV function board.oouttttiint et n i 12
Figure 1-9 Biditectional SWItCH CONCEPE: s awsmumomm s wrs v s msm i s 818 s 304 0 438 o0n w1 wvg 10 970 38 0w 14
Figure 1-10 TWO-COLUMN; (64-SIOC SWITEN . w5 555 55 5 505 s w15 55 305 5 5 505 390 909 5 0 § 6 5 0B 160 895 Bl 64 S50 ik o0 6 0 & 0 3 15
Figure 1-11 Resources: used, in . SWItCh CONNECTION: «.ows oo wsm e eims e s m s s a5 5 i 515 55 5w 905 585 5.5 8 4 3 16
Figure 1-12 A switch with alternate paths. 17
Figure 1-13 Front panel.oii i e 20
Figure 1-14 BACK DATIEL: ¢ 5 650 srs 55 55 5 576 516 6050 5105 w50 w5 00400 010 5000 4100 470 e s 10 00 0 i i v e atr mn w i o 20
Figure 1-15 TCS bus fan-00t AN TAN=I: ws s s s amsimssesaens s s om sy sms s s o s es we e sgs oo 22
Figure 1-16 I/O is VMEDus systems via function boards.cooiiiiiiiiiiiiiiiiia ... 23
Figure 1-17 IEHAPIANE TONIDBTITR. - . - .« coe m n o aom s s ok 508 5085055088 308 900 8 03 3 56 s 8 0 3 08 30 28
Figure 2-1 TC/FPV block diagram.ttt 32
Figure 2-2 Systerm PRYSICAL ATAFEES, 5 e 5 ms s 1 sre win wo a0s w6 om0 o 4w aie 8 50 i i i 3. s a5 205 . 34
Figure 2-3 Address transformation.ottinutt i e 35
Figure 2-4 Physical Address to System Physical Address. ...t 35
Figure 2-5 CPU Mapping RAM block diagram. ..o, 40
Figure 2-6 Power-up and Disabled CMR Operation.ouiiiiiiiiiiiineanenonnn 41
Figure 2-7 VMEDbus interface COMpPONEnts.c.uuurenie i e 45
Figure 2-8 Exattiple-0f 4. |60DEd-Track TEIBTBIEDL 1o sve s w ns s wso wogm w00 s 0 5w s s wie i s waw wvms o 46
Figure 2-9 Memory access time (MICTOSECONAS). .« v vttt tirittt ettt enieneanns 60
Figure 2-10 Timers: in The TC/EPVL i oxus s s aim s a6 55 85505 6 75 508 55 55 506 5 505 515 62 sl 578 96 1% 5% 3 5 8 78
February 14, 1990 ix

Contents

Figure 2-11
Figure 2-12
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16

Figure 4-17

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7

Inside the TC2000 Computer

TC/FPV interrupt derivation.oouuuiii ittt iiiiiienaenianss
TC/FPV TONI MECRANISIIL. « .« e o ettt ettt et it i i
TWO-DY—tWO CLOSSDATS: w i e v v snsmommnmrusninsmsmsnsnsmsinivensnsaosasgesssssnss
Like a railroad switch, routes are made.oviinetneenrenereeeeaecnnenons
Switch ports in the TC2000 COMPULEr.t eeeerecncene,
Switch port = requester port + SEIVEI POIt.eviteenniuoeceeoaonnonannon
Requester and server ports attach to switch “cylinder”.l
Columns Of CrOSSDAr UMILS. . ..ot cttetttnt ettt et iieeeeeetenoeeeeeeennns
TC2000 sWitCh CTOSSDAT MITIIL: ¢ 5155 .0 5 w5 s 05 s 506 05 5500 wia s 6 05 3 0o 90 195 005 s 00 03 08
The signals in one switch path. i i e
Output ports are locally numbered. i
Example path through switch. i i

A message traverses the switch. o e :

Random strategy — telephone analogy.ciiiiiiiiiiiiiiiiiiiiienon..
Random pacing Strategy.oeuueinreiut ittt e e
Frame and reverse during example CONNECtiON.vuieirererrnneecnecnnes
Switch latency without controls — conceptual. i il
Effect of express message facility — conceptual.l
AAATESS TIOW: 540 s s ni0 s 05 515w m0e w5 w8 55 0 508 513 508 516 616 5859 3 6 @3 18 518 W05 105 6 578 00 0 4 00 0w o
Addressing from CPU to T-bus and switch. oiiiiiiiiiion..
Process Logical Address format. ...ttt
Physical Address format.t e
System Physical Address format. i
Physical Address to System Physical Address. ...
Overview of the INEErICaAVEr. « .. ciuiseimivsvansaivsoimscosnimensiossmenssswssssss
Interleaver internal ProCeSSING.oiuurt ittt iiiiicee e aaiacceenns
Interleaving processing in the SIGA. i e
Mapping clumps to SWitCh POTtS. o e
Modulus RAM use — example 1.o e
Modulus RAM use — example 2.ooiiiiiiiiiininiiiiiiiiiiiiranianans
Modulus RAM use — example 3. i e
Modulus RAM US€ — ONE StTIPE. ... ivi ittt ecreanecoees
Modulus RAM US€ — SIX SEIIPES. -« ¢ oot vttt eeeeees
Using an offser to Pack SHAPES: sweurmemiminsmrmssrspsnsmsmsmemscmsmommmnemswaws
Multiple interleave POOLS. .. .c.vvirirrie ittt eraaniiae e
Position of TC/VMP and related components.c.cooviiiiiinenenennan...
TC/VMP connects function boards and VMEbus cards.,
Hierarchy of the /O SyStem.ttt eanens
MUltibUS AAPLET CATU: « e w s vemsms s smswsmosomsss s emeeeomanme e annmem s
HALd diSK FIVE. © - - oo e e ettt
Rough estimate of tape reel data Capacity.ouiriiemennniieeeennnnnens

Terminal concentrator system — example.ottt

79
80
81
83
84
85
87
89
90
90
94
95
98

103
104
107
112
115
128
130
131
131
132
132
146
147
148
149
150
150
151
152
153
154
155
163
164
166
170
172
174
175

February 14, 1990

Inside the TC2000 Computer Contents

Figure 6-1
Figure 6-2
Figure 6-3
Figure 64
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8

TCS block diagram — OVEIVIEW.etnuuntettinit e ciianneeaananneeeeaenns 182
TCS master and associated equipment block diagram. 183
Slaveto:master TCS Bils FAN=AN. wovmemsoom s wm e ms s s ms e os g5 some@sw s msmsesns 185
Master to slave TCS bus fan-out. KR 5 4518 % B 6 R AU R L E 6 T 8 3 0 186
Function board and switch card indicators.cccoviiiiiniiieiiiiiinnnann. 191
Midplane INterCONMECLIONS. « .« .t vttt ettt ettt i aeeaeneieaaeeees 195
Midplanie CONTECIOT IAYOUE, +i0 oosoumeiss s oms v vrmsis s msioain sie siawwinim a0 nia arm i m e a0 196
Midplanie BIOCK @iATTATI: s i s sismsms s @ o simms ss s s wai0 s m w0 wom o5 10w 0 i w4 000w 197

February 14, 1990 Xi

How to Use This Manual

February 14, 1990

Purpose of the Manual

This manual explains the hardware structure, components and capabilities of
the TC2000 computer, including how operating system and application sott-
ware may make use of those capabilities. This manual is intended to suffice
for understanding the concerns in programming the TC2000 computer, but
does not contain the details of system calls, register bit allocations and the like
necessary for actually writing the program. Other components of the TC2000
document set deal with those details.

Revision History

This edition is a revision and expansion of the earlier, “preliminary” edition
dated August 14, 1989. No major changes have been made, but rather areas
of less importance that were not fully covered in the earlier edition have been
filled in. An error in the August 14 edition has been corrected:

e The “VME” in “VMEbus” originally stood for Versa Module Europe,
(not Virtual Memory Extension).

Other Places to Find Answers

If you experience any problems with our product, or if you have questions or
suggestions, please do one of the following:

e Send electronic mail from anywhere on the Internet to:
aci-questions@bbn.com

e Send malil to:

Xiii

How to Use This Manual

Xiv

Inside the TC2000 Computer

ACI Bugs

BBN Advanced Computers Inc.
10 Fawcett St.

Cambridge, MA 02138

e Ifyou are under warranty, or have a software maintenance contract, you
can also call our hotline number:

1-800-4AC-BFLY (1-800-422-2359) in the United States
1-617-873-8660 from any other location

If you are reporting a problem, please include as much information as you can,
as follows:

e The operating system version and multiprocessor model name

e The size of your multiprocessor (number of function cards and amount
of memory)

e The number of nodes that were in the cluster when the problem occurred
(if relevant)

e The total number of people using the system when the problem occurred
e An example that illustrates the problem

e A record of the sequence of events that led to the problem; especially a
stack backtrace (see the system administration guide)

We are also interested in your evaluation of our documentation. We would ap-
preciate it if you would fill out the form at the back of this manual and return
it to us.

Audience Level

This manual is intended for any new TC2000 user with a basic knowledge of
computers. Sections that begin with a basic introduction are so noted, allowing
the more experienced reader to skip the introductory material.

Other References

References to other documentation, both within the TC2000 document set and
other hardware manuals, are placed with the related subject in the text.

Organization

Chapter 1 is both an introduction and a condensation of the other chapters
in the book; it may be read independently for a quick picture. Each following
chapter examines a different aspect of the machine in detail.

February 14, 1990

Inside the TC2000 Computer How to Use This Manual

February 14, 1990

Typographic Conventions

This manual uses the following conventions to present information:

bold Text in bold indicates a key word or phrase.

italics Text in italics indicates a specific name, such as the name of a
bit in a register.

bold italics Text in bold italics indicates an emphasized word or phrase.

type Text in typewriter font is used when monospacing (rather

than proportional spacing) is needed for a diagram or example.

Structure of the
TC2000 Computer

1.1

February 14, 1990

This chapter names the major components of the TC2000 computer and de-
scribes their function and their relation to each other. You can read this chap-
ter by itself for a quick understanding of the whole machine. The following
chapters describe the same parts of the machine, in greater depth. Through-
out, the emphasis is on understanding the internal structure so that you can
use the TC2000 computer efficiently and effectively.

Basic Characteristics

The TC2000 computer is a powerful new multiprocessor. It builds upon
BBN’s experience in the design of parallel processors — the Pluribus and But-
terfly computers — and extends and expands those concepts to a state of the
art machine.

The TC2000 computer is a multiprocessor machine because it employs a num-
ber of microprocessors, each executing individually on the users’ tasks in a
controlled and coordinated way. The opposite is a uniprocessor, in which a
single processor executes all tasks. Only by employing exotic and costly tech-
nology can a uniprocessor offer performance even close to the TC2000 multi-
Processor.

The TC2000 computer employs shared memory to store information. All main
memory of the machine is accessible to every processor. Access protection
mechanisms are used to restrict access as needed by the software. In a ma-
chine without shared memory, a processor wishing to read or write data stored
in another processor’s memory must take extra steps. Usually these steps are
cumbersome to program and slow in execution. Shared memory avoids these
pitfalls.

The TC2000 processors access the shared memory through an interconnection
network called the Butterfly switch. The switch provides a fast, efficient and
effective access path. Multiprocessor machines without a switch rely on a bus.

1: Structure of the Machine Inside the TC2000 Computer

Figure 1-1

1.2

A bus has a fixed limit on how much data it transfers per unit of time, and when
that bandwidth limit is reached, further demand for data transfer must wait,
and the bus-based machine runs no faster. The TC2000 switch avoids satura-
tion because its bandwidth, unlike that of a bus, increases as the machine is
expanded.

The TC2000 design is modular and scalable. Processors, memory and I/O ca-
pacity can be added board by board, as needed by the application. A small,
development system can be expanded as the user’s requirements or budget
evolve. The design permits installation of any number of boards, each contain-
ing both a processor and memory, from one to 512. Without the scalability
offered by the TC2000 design, the user would be constrained to fit the applica-
tion to a small set of machine sizes. The compromise of contorting the pro-
gram into a too-small machine, or the high cost of a machine bigger than the
application needs, are not choices the TC2000 user has to make.

The TC2000 computer has a balanced architecture. The integer computation,
floating point computation, memory, and input/output capabilities are ap-
proximately equal in power. Each “processor” board can also contain memory
and/or I/O capacity, so this balance can be maintained as boards are added.
Further, the bandwidth of the switch expands to keep pace with the added pro-
cessing, memory and I/O capacity. This makes the TC2000 well suited for a
wide variety of applications. The architecture of some other machines is out
of balance, making them suitable only for applications that place heavy de-
mand on their strong points. The balanced architecture of the TC2000 avoids
this constraint.

Four-way balance of TC2000 architecture.

integer floating input / output
computation point
computation

Architecture

The TC2000 architecture consists of function boards interconnected by a high
performance Butterfly switch. In addition, the Test and Control System (TCS)
monitors the entire machine.

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Each function board contains some or all of the following: a processor, cache
and memory management unit, memory, a VMEbus interface, a switch inter-
face, TCS circuitry and power supplies.

The switch connects to two ports on each function board, one by which the
board accesses other boards, and one by which the board services access re-
quests from other boards. The switch also provides clock signals to each func-
tion board.

The TCS initializes, loads, starts, monitors and resets all function boards in
the machine. It also monitors and controls all other components — switch
cards, clock cards, and power supplies.

Support components include the midplane — like a backplane, but with con-
nections on both sides — that connects function boards and switch cards into
modaules of eight function boards each; power supplies; and cabinetry. VME-
bus devices, typically for I/O, connect to function boards via another
midplane.

Figure 1-2 shows the main components of the TC2000 architecture. While the
design permits expansion to 512 function boards, the current implementation
is limited to at most 64 function boards. To avoid cluttering Figure 1-2, the
components typically interconnected by a single midplane are shown in a sepa-
rate illustration, Figure 1-3.

Figure 1-2 Main components of the architecture.
Vé\/lEpus > ﬂé)ncticc)jn >
evice [VMEbus o board |et—
VMEbus function —2>
device o board |e—
function 3 Butterfly |g—| clock
o board |ee— ; @_source
switch
VMEDbus < | function 3
device [VMEbuUs o board |jet—
VMEDUS |3 —>
device — -
3 o} o}
— -« 9 9 ©
power up to 512
supplies @ function
boards

TEST AND CONTROL SYSTEM

February 14, 1990

1: Structure of the Machine

Figure 1-3

to/from
optional
VMEbus
system

1.3

1.3.1

Inside the TC2000 Computer

Components associated with one midplane.

function
board o

function
board o

function
board &

function
board o

function
board o

function
board e

function
board o

v Ly Ly Ly Ly L L L

function
board o

midplane

v

requester
switch
card

—3 switc

server

h

card

>

clock

switch
cables
to/from
other
midplanes

<t—— > to/from TCS

—

System Components

Physical Structure

power

The TC2000 computer is assembled from three kinds of cabinet, placed side
to side, with a dress panel on each end. This is shown in Figure 1-4. A typical
machine has one peripheral cabinet, one utility cabinet, and from one to eight

expansion cabinets.

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Figure 1-4 Cabinets make the machine.

utility peripheral

, , cabinet cabinet
expansion cabinets /

. . ;
wing - wing
dress o dress
panel panel

e Each expansion cabinet holds up to eight function boards, plus the
switch cards, VMEDbus cards (if any), and power supplies associated with
those function boards.

e The utility cabinet houses the Test and Control System (TCS) master, its
associated disk, tape drive and power supply, and the clock card for the
entire machine.

e The peripheral cabinet contains a VMEbus card cage, standard and op-
tional I/O devices, and power supplies.

e The wing dress panels on either end provide space for cable routing, and
protect the stabilizer feet.

Each of the three kinds of cabinet is described below.

Expansion Cabinet

Figure 1-5 shows a side view of the TC2000 expansion cabinet. Expansion cab-
inets are added as needed to house the required number of function boards;
hence the name “expansion” cabinet.

February 14, 1990 5

1: Structure of the Machine Inside the TC2000 Computer

Figure 1-5

Expansion cabinet side view.

VMEbus
/ midplane
fan —\ i
x VMEbus >.
; power optional
midplane —\ supply
g N\ VMEbus
function boards T 657l 6506
¥ switch cards
switch and
clock cables power distribution unit

and bulk power supply

&

Function boards provide the processing, memory and VMEDbus interface ca-
pabilities of the machine. Up to eight function boards can be installed in an
expansion cabinet. All electrical connection to the function boards is via the
midplane and the optional VMEbus midplane.

Switch cards interconnect the function boards in this and other expansion cab-
inets, and distribute the machine-wide clock and TCS communication signals.
There are two types of switch card, a requester card and a server card. Each
requester card is paired with a physically adjacent server card. An expansion
cabinet contains one pair of switch cards.

The midplane connects function boards, switch cards, and switch and clock
cables. The midplane serves a function similar to a backplane on more conven-
tional machines. It is called a mudplane to emphasize that it has connectors
on both sides. A backplane typically contains a global communication bus.
Since the TC2000 computer uses a switch for global communication, not a bus,
the midplane does not contain such a bus. The midplane also distributes pow-
er to function boards and switch cards.

The switch cables connect switch cards in this expansion cabinet, and thereby
its function boards, to those in other expansion cabinets. The clock cables sup-
ply clock and other machine-wide signals to the switch cards in this expansion
cabinet, from where the signals are further distributed to this cabinet’s func-
tion boards.

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

The power distribution unit (PDU) and bulk power supply receive AC power
from outside the machine, convert it to £24 volts, and distribute it to the func-
tion boards and switch cards in the expansion cabinet. Various fans force air
in through the front of the expansion cabinet and through the components as
shown in Figure 1-5.

Each expansion cabinet may contain a package of three optional VMEDbus
components: a VMEbus midplane, card cage and power supply. The VMEbus
midplane connects function boards to VMEbus cards installed in the VMEbus
card cage (size “6U”). The VMEbus midplane implements not one, but several
small VMEbuses, each connecting certain function board slots and certain
VMEDbus card cage slots. VMEDbus cards often have cables on their back edge,
leading to peripheral devices mounted in the utility or peripheral cabinets.
Power for the VMEDbus card cage comes from the VMEbus power supply.

Utility Cabinet
The utility cabinet is shown in Figure 1-6. It houses assorted equipment spe-

cific to the TC2000 computer, and only one utility cabinet is required per ma-
chine. The equipment here generally serves to control the rest of the machine.

Figure 1-6 Utility cabinet side view.

main boot
hard disk drive j e

Test and Control v
System (TCS) S—
master \\

TCS hard disk drive

L~ back panel

TCS floppy disk drive

power supply for
streaming tape drive

front panel ——/ streaming tape drive

clock card

TCS +5
power supply

L— power distribution unit

The front panel consists of four indicator lights (LEDs), a keyswitch, a reset
button, a tape drive, and a small amount of support circuitry behind the panel.

February 14, 1990 7

1: Structure of the Machine Inside the TC2000 Computer

The LEDs indicate main power, TCS enabled, TCS power, and attention re-
quired. The keyswitch controls machine power and has three positions: off,
on and secure. The TCS master can sense whether the keyswitch is in the “on
or the “secure” position, and decide accordingly whether to act on commands
it receives. The reset button forces the TCS master processor to reset; the rest
of the TC2000 hardware is reset by the TCS master upon command. The
streaming tape drive is used to load and dump TC2000 system software. The
keyswitch, reset button and tape drive are accessed by opening a door above
the LEDs, which are always visible.

The TCS master controls power and operation of the machine as a whole.
Power, resetting, loading, execution startup, and monitoring are all under the
control of the TCS master. The TCS master is an IBM PC/AT compatible mi-
crocomputer and associated hardware. In particular, the physical structure
houses a TCS floppy disk drive used to load TCS master processor software.
The TCS hard disk drive stores this software and other files pertaining to the
control, configuration and operation of the machine. The floppy disk drive
is hidden by a panel during normal operation.

The main boot hard disk drive stores the operating system and its associated
files. This drive is also available for user file storage.

The clock card supplies the master clock signals to the rest of the machine.
Certain other signals are also generated in the clock card. The frequency of
the clock signal is set by the TCS master.

The TCS + 5 power supply provides power for the TCS slave microcomputers
throughout the machine. These microcomputers appear on function boards,
switch cards, and the clock card. They respond to commands from the TCS
master, performing control actions and monitoring status on their respective
boards. Because they receive power separate from the main bulk power of the
machine, the slaves have control even when their boards’ power is off. In fact,
turning on board power is one of the slaves’ responsibilities.

The power distribution unit in the utility cabinet differs from the PDU in an
expansion cabinet in that it is controlled by the front panel keyswitch, while
expansion cabinet PDUs are controlled by the TCS master.

The back panel contains five jacks. One jack accepts an RS-232C cable to
the TCS console, typically a standard display terminal, used to communicate
with the TCS master. A second jack is for the PDU control line, by which the
TCS controls the PDUs in other cabinets. An optional telephone line, used
for remote diagnostic procedures, connects to a third jack. When such a line
is connected, an ordinary telephone can be connected to the fourth jack for
voice communication. A fifth jack is reserved for future use.

8 February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Figure 1-7

VMEbus power supply N

hard disk drives
(two, side by side)

magnetic tape drive —\| T

February 14, 1990

Peripheral Cabinet

The peripheral cabinet houses whatever additional I/O equipment is needed
at a particular site. If the I/O capability of the expansion and utility cabinets
is sufficient, no peripheral cabinet is used. Usually, however, at least an addi-
tional VMEDbus card cage is required, and often other gear as suggested by
Figure 1-7.

Peripheral cabinet side view (typical).

|~ VMEbus card cage

Ps power distribution unit

In the example configuration of Figure 1-7, three I/O devices are mounted in
the peripheral cabinet: two hard disk drives and a magnetic tape drive. The
VMEDbus card cage is typically a larger (9U) size than the VMEbus card cage
in expansion cabinets (6U). VMEbus cards requiring a 9U cage must be
mounted in the peripheral cabinet. The 9U cage in the peripheral cabinet is
connected to a 6U cage in an expansion cabinet by a VMEbus repeater, making
the two cages into one VMEbus system.

The peripheral cabinet’s VMEbus card cage typically holds controller cards
for the devices in the cabinet, such as the hard disk drives and magnetic tape
drive shown in Figure 1-7. It may also hold the controller for the hard disk
drive mounted in the utility cabinet. Further, it may hold communications in-
terfaces, such as an Ethernet interface and a multi-line terminal controller.

The TCS master controls the peripheral cabinet PDU.

1: Structure of the Machine Inside the TC2000 Computer

1.3.2

10

Logical Structure

Figure 1-2, above, shows the main components of the TC2000 architecture.
This section describes the logical function and structure of each kind of major
component, and its connections to other components.

The Function Board

The function board provides all processing and memory capacity used by
application programs. A function board may contain a processor and asso-
ciated circuitry; memory; a switch interface; a VMEDbus I/0O interface; and a
bus linking these components. Each component is described below. Then the
question of which components are required and which are optional is dis-
cussed. Only the TC/FPV function board contains all of them.

The processor is a Motorola 88000 chip group comprised of an 88100 CPU
chip and at least two 88200 cache/memory management unit (CMMU) chips.
One or two 88200 chip(s) handle instruction references, and one other 88200
handles data references. The processor chips connect with the rest of the func-
tion board through circuitry called the CPU interface. This interface provides
three major functions. It translates addresses from the 32-bit addresses used
in the Motorola chips to the 34-bit addresses used in the rest of the machine.
Secondly, it supports extensions to the operations natively available from the
88000, such as locking. And third, it implements several registers that control
the CPU’s operation.

The 34-bit system physical address gives the machine a 16-gigabyte address
space. Any one function board may contain up to 32 megabytes of shared
memory, taking 25 of the address bits. The remaining nine address bits select
a given function board from up to 512 possible function board slots in the ma-
chine.

The memory is dynamic RAM, with parity, addressable as byte, halfword (2
bytes) or word (4 bytes), aligned on boundaries of the size being addressed.
The memory supports an important augmentation to the basic 88100 features:
locking. Locking is a means to synchronize access to memory among multiple
processors. During a sequence of locked accesses to a memory module — that
is, to the memory on a given function board — no other CPU or I/O interface
can access that memory module with a normal access request. Therefore, the
CPU or interface making the locked accesses can, for example, read the con-
tents of a location, compute a new value for the location, and write it back,
atomically. A typical use for lockingis to access a shared datum. The software
can explicitly bypass locks, in which case the access is permitted despite the
lock. Atomicity, locking and bypassing locks are discussed further in chapter
2.

Almost all I/O to and from the machine is via one or more VMEbus interfaces.
A VMEDbus interface is implemented on a function board, and permits high

February 14, 1990

Inside the TC2000 Computer ’ 1: Structure of the Machine

February 14, 1990

bandwidth access from the TC2000 machine to the VMEbus and vice versa.
The VMEDbus interface contains two major sections. One sectionis a VMEbus
master, mapping references coming from the TC2000 hardware into refer-
ences on the VMEbus. The other section is a VMEDbus slave, responding to
references on the VMEbus and mapping them into the TC2000 address space.
The mapping capabilities in both directions are fully programmable and sup-
port several features of both the TC2000 and the VMEDbus architecture, such
as locking (on the TC2000 side) and interrupt generation and handling (on the
VMEDbus side).

Every function board connects to the rest of the TC2000 computer via the
switch. The only other connection is a low-speed line to the Test and Control
System master, so the switch is critical for access to resources on remote func-
tion boards. The switch interface is implemented with two custom gate array
chips. The Switch Interface Gate Array (SIGA)is a special purpose microma-
chine. Within the SIGA, one section transforms access requests arising on the
local function board into messages, sends these into the switch, receives the
reply message, and gives the reply data to the CPU or I/O interface that made
the request. This section of the SIGA is called the requester. Similarly, anoth-
er section of the SIGA, the server, accepts messages arriving through the
switch from remote function boards, services the request by reading or writing
the data in the local memory or I/O interface, and sending any reply data back
through the switch to the requester. The other special chip is the Level Conver-
ter (LCON), which converts and conditions the signals between the electrical
conventions used within the function board (TTL) and in the switch (ECL).

Connecting together all the logical modules on a function board is the transac-
tion bus, or T-bus. The T-bus is a high-bandwidth bus confined to the func-
tion board.

To be a TC2000 function board, what components must a board contain? The
simplest way to define a function board is that it connects to the TC2000 switch
(and TCS). Therefore, it has a switch interface consisting of an LCON and
a SIGA. The SIGA in turn communicates with a T-bus, which every function
board must have. Thus, a minimum requirement is: switch interface, T-bus
and TCS slave. To this skeleton can be added a processor, memory, and a
VMEDbus interface. Doing so results in the first function board implemented,
and the only function board available in the original model of the machine, the
TC/FPV board. The TC/FPV therefore provides an example and the focus
for most discussion of function boards. The design permits, however, a func-
tion board with two processors, with memory and no processors, with special-
ized hardware such as an array processor, and so on. Whatever appears on
a function board, it must conform to the architectural requirements such as
support of locked accesses.

Figure 1-8 shows the block diagram of the TC/FPV. In the original model of
the TC2000 machine, all function boards are TC/FPVs.

11

1: Structure of the Machine Inside the TC2000 Computer

Figure 1-8 TC/FPV function board.

slave ,,master.' . I?Z,TEST'& CONTROL - sfave master
SWITCH ~ SYSTEM (TCS VMEbus

 INTERFACE [€ 7] INTERF | INTERFACE |

requester server | | slave processor : | master slave

==

BUTTERFLY
SWITCH

<TEST AND CONTROL SYSTEM >

The Butterfly Switch

The switch interconnects all function boards, and provides signals such as
clock and the TCS communication line.

A connection through the switch from one function board to another is called
a switch path. When the requester SIGA on a function board injects a message
into the switch to set up a path, each switch element in turn along the path
examines the route contained in the message, and determines whether it can
complete the required link from itself to the next element on the path. If so,
the message is forwarded on that link, and proceeds step by step through the
switch, ultimately arriving at the end of the route, where it 'enters the destina-
tion function board. Memory or other resources accessed over the switch are

12 February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

February 14, 1990

called remote, because they are not local to the function board originating the
access. Of course, those same resources are local to the processor on that oth-
er function board. A “remote” access is any access made over the switch; a
“local” access is one that stays on the function board.

In the switching network of the TC2000 computer, the route a message takes
is the same as the address of its destination. A message addressed to function
board “C”, injected by any function board in the machine, will arrive at board
“C”. In practice, certain configurations of the TC2000 switch permit more
than one route to a destination slot. In such a configuration, the hardware au-
tomatically tries the alternate paths, resulting in improved performance when
the switch handles very heavy traffic.

The individual switching element is implemented in a custom gate array chip
called the Switch Gate Array (SGA). SGAs work in groups of four, and each
quartet accepts eight input lines coming from the requester direction, and pro-
vides eight output lines going in the direction of the server. Any of the input
lines can connect to any of the output lines, and up to eight connections can
be carrying data at once. While connected, only one input connects to a given
output, and only one output to any input; there is no fan-in or fan-out. In a
simple analogy, the SGA acts as a telephone switchboard for single-subscriber
lines; it does not do party lines or conference calls.

Once set up, the requester’s message is delivered to the server function board,
where it is acted upon. If a response is produced — namely, the data from
a read operation — the server sends it back over the same switch path. This
is possible because the switch path is bidirectional, as illustrated in
Figure 1-9. A control signal (“reverse”) tells each SGA along the path tolisten
on its server side, and transmit the data out its requester side. The switch path
is held open until the requester releases it by use of another control signal
(“frame”). This is like hanging up a telephone, because all switch components
that were dedicated to the path are freed for use by other traffic.

13

1: Structure of the Machine Inside the TC2000 Computer

Figure 1-9

14

Bidirectional switch concept.

requester \ / server

requester Butterfly server
O //// switch E O

requester server

forward, downstream direction — requests

=

<<

reverse, upstream direction — responses

The switch supports locking. During a locked transaction, the requester SIGA
keeps the switch path open until told to release it by the CPU or I/O interface
that made the request. This allows several requests and replies to flow on the
connection before it is released.

The switch hardware, in cooperation with the SIGAs on function boards, auto-
matically detects and deals appropriately with several conflict or error condi-
tions that can arise during operation. If an SGA finds a requested link is busy,
it indicates a “reject” condition to the previous SGA, causing the SGA switch-
ing resources along the partially acquired route to be released. That is, a mes-
sage encountering contention within the switch backs out, rather than holding
switch resources while it waits for completion of its path. The requester SIGA
holds a copy of the message, and retransmits a rejected message until it is serv-
iced. Retransmission is controlled by a backoff algorithm that pauses longer
and longer between retransmissions of the same message, easing congestion.
If the hardware is broken, the retransmission count reaches a limit and triggers
an error mechanism. Similarly, a connection that is held beyond a timeout lim-
it causes an error condition, and the switch resources it was using are released.

Further, the hardware supports an express message facility to limit switch la-
tency. In a switch with backoff and retransmission, there is a chance of very
heavy traffic causing a message to be rejected many times. This delay is unde-
sirable, and the express mechanism periodically promotes the priority of each
retransmitted message so it will get through the congestion and achieve its con-
nection. And finally, each message is protected from corruption by a check-
sum-like code.

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Conceptually, one quartet of SGAs could connect up to eight function cards
to each other. For a machine of more than eight function boards, a connection
must travel through additional layers of switching. Each such layer is called
a switch column. In practice, the minimum switch implemented is a 2-column
switch. Fully populated, a 2-column switch interconnects up to 64 function
boards (“slots”), as shown in Figure 1-10.

Figure 1-10 Two-column, 64-slot switch.
column one column two
(slot 0 :TC/SH TC/SS: slot 0
— switch switchf—
— card card —
slot7 —1 — slot7
slot 8 :TC/SR TC/SS: slot 8
= switch switchf—
— card card [—
slot 16 — TC/SR TC/SS: slot 16
— switch \ N / / switchf—=
f— ’ v —
— card § / (card |—
§ Y% " 7 2535
slot 24 slot 24
requests — TC/SR| ‘ /A l TC/SS— requests
FROM —] switch ‘v \v‘v V N switchf— TO
i N\ ‘ L
feac'h —) —] cad ,%{ "\ " '. card = =) each
unction ‘ IDESS \‘ function
board siot32 — "'» ‘(“"v o Sots board
g '.. ' " SWitChE
— card —
slot 40 = TC/SS: slot 40
— switchi—
— card —
slot 48 — TC/SR TC/SS: slot 48
— switch switchi—
—] card card —
slot 56 :TC/SR TC/SS: slot 56
— switch switchf—
— card card —
\ slot 63 1 — slot 63 _)

February 14, 1990

15

1: Structure of the Machine Inside the TC2000 Computer

WM M e e M e e e e M e M e Mo My M e M e e M Mt ey e e m e e My e
NOTE B

63 OR 64 SLOTS — TECHNICAL AND HISTORICAL DETAIL

A 2-column switch supports 64 slots. An early version of the TC/FPV could
not be used in slot 0, because that was used as one way to address devices on
the local board. That led to the limit of 63 slots in the initial machine. The
TC/FPV does not have this restriction, so a 64-slot machine is possible. The

B hy e e My e e he e o ey hy e h
T

A quartet of SGAs is implemented on one switch card. Thus, each box in
Figure 1-10 represents one switch card. The switch cards on the requester side
and server side are very similar in function but differ slightly in implementa-
tion, leading to two kinds of switch card. The requester side switch card is
the TC/SR, and the server side switch card is the TC/SS. Each midplane, and
thus each expansion cabinet, contains one TC/SR and one TC/SS. This switch
card pair provides switch connections for the eight function boards on that
midplane.

Figure 1-11 shows the various components that are involved in a connection
from one function board, through the switch, to a remote function board. If
the requesting function board addresses its own slot, the connection comes
back into the same function board via its switch server interface.

Figure 1-11 Resources used in a switch connection.

16

SIGA LCON LCON SIGA

-
1
! requester:) requester:
!] !]
T-bus T-bus
requester server
device device
requester itch server
é——— function Syl dC function —————>
board GRS board

In a machine with only one expansion cabinet, there is just one switch card
pair, and each output of the TC/SR is connected to an input of the TC/SS.
This is an example of the multiple switch paths mentioned earlier. No matter

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Figure 1-12

February 14, 1990

which of its eight outputs the TC/SR selects, the TC/SS can connect it to which-
ever of the eight function board server ports a message addresses. Figure 1-12
shows as heavy lines the eight alternate paths between one function board and
another.

A switch with alternate paths.

TC/SR TC/SS
switch switch
card card
G I
to E— N to
requester — server
ports on] — ports on
function | I function
boards e boards
o i
The Clock

The clock card (TC/CLK) provides the master clock signals for the switch and
the switch interfaces in function boards. Each function board (specifically,
the TC/FPV) has its own processor clock, and separate clocks are used in the
TCS master and slave processors. Each VMEbus system is asynchronous to
all of these.

Synchronous operation of the switch requires precision in distribution and use
of the clock signals. The signal generated by the clock card is sent to the switch
cards, where it controls the operation of the SGAs. From the switch cards,
clock signals are further distributed to the function boards on the associated
midplane. There, the clock signals are used in the LCON and SIGA.

In a large machine, the cables between the TC/SR cards in one expansion cabi-
net and the TC/SS cards in another cabinet may be relatively long — so long
that the data may not reliably traverse the cable in one clock period at the clock
rates used in the TC2000 switch. Therefore, the clock card generates two sepa-
rate clock signals, one for the requester side of the switch and one for the server
side. The TC/CLK can be configured to make these either matched or 180
degrees out of phase, providing more time for the data to traverse the switch
cables between cabinets. Thus, each LCON and SIGA receive and use two
clock signals — requester clock and server clock. This complexity is handled
completely by the hardware, and is of interest to the programmer only to un-
derstand the design and implementation.

The switch clock rate is programmable, and is set by the TCS master during
system startup.

17

1: Structure of the Machine Inside the TC2000 Computer

18

In each SIGA is a register called the Real Time Clock (RTC). This register
is incremented at a constant rate of 1 megahertz, derived from the switch re-
quester clock. Because the switch clock frequency is programmable, the SIGA
contains a programmable prescaler that appropriately divides down the switch
clock to 1 megahertz. A machine-wide signal (“65 milliseconds”, because it
is a pulse once every 65.536 milliseconds) is produced by the TC/CLK and used
in the SIGA in maintaining and synchronizing the RTCs across the machine.
The RTC is used for timer-generated interrupts and general software pur-
poses. Its accuracy is determined by the oscillator on the TC/CLK. For along-
term time and date clock, the operating system relies on a different source,
such as the TCS.

Besides the switch clock and 65-millisecond signals, the TC/CLK generates
a switch-wide signal (“hold”) used in the implementation of express messages
described above. The TC/CLK also connects directly to the TCS master, fans
out the TCS communication line to all the switch card pairs, and fans in the
TCS communication from them.

Test and Control System

The Test and Control System (TCS) oversees operation of the TC2000 ma-
chine. It monitors and controls all aspects of the hardware. The TCS is best
thought of as connected only to the TC2000 hardware, and not to the software.
Only through conventions established in software is there any communication
between the TCS and the operating system or application program.

A master-slave design is used for the the TCS. A single microcomputer master
communicates with several microprocessor slaves distributed throughout the
machine, over a serial communication line. The TCS master is an IBM PC/AT
compatible microcomputer with peripheral devices appropriate to its role in
controlling the rest of the machine. Each TCS slave is a microcomputer chip
well suited to monitoring and controlling a variety of signals. There is one TCS
slave on the clock card, on every function board, and on every pair of switch
cards. Through these, the TCS master has full access to the entire machine.

The TCS master contains a CPU, memory, hard disk and floppy.disk drives,
interface card, and optional modem. Connected to the TCS master proper are
the front and back panels of the TC2000 machine, and a terminal. The CPU
and memory are ordinary IBM PC/AT compatible components; noteworthy,
however, is that it contains a real time clock with calendar and battery back-
up power. This provides a non-volatile and more accurate date and time
source than the real time clock feature of the SIGA chips in the switch.

The TCS master’s hard disk drive is used to store machine configuration and
operating parameters, TCS log data, TCS master software, and diagnostics.
Some of the diagnostic test and exerciser programs are for the TCS master to
test the Test and Control System itself; others are executed by the TCS master
and slaves to test the TC2000 hardware; and yet others are executed on the

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

February 14, 1990

function boards, under supervision of the TCS master, to test the TC2000
hardware. The TCS master’s floppy disk drive is used primarily to load new
TCS software.

The interface card (TC/TCS) connects the TCS master to the rest of the ma-
chine. It contains not only the TCS communication line interface, but also
hardware to turn on and off the main power in all the expansion cabinets and
the I/O power in peripheral cabinets, and connection to the machine’s front
and back panels. The interface card also houses read-only memory (ROM)
that contains TCS master startup and error routines, and a watchdog timer
that resets the TCS master if its software gets hung. The interface card is the
only custom equipment in the TCS master.

The modem connects to a telephone line for remote test and diagnosis of the
machine. This modem and line permit faster analysis of, and response to,
problems with the hardware. At a site with security requirements in conflict
with such facilities, no telephone line is hooked up.

Figure 1-13 shows the TC2000 front panel. Four light-emitting diodes (LEDs)
indicate overall machine status. The “main power” LED is controlled by the
TCS master, and is lit when the TCS master turns on main power to the rest
of the machine. “TCS enabled” is lit when the TCS communication line be-
tween the master and slaves is ready for data transfer. “TCS power” is lit when
power for the TCS — both master and slaves — is on. The “attention re-
quired” LED is under control of TCS software to bring the operator’s aware-
ness to conditions that need attention.

Above the front panel LEDs is a hinged door, behind which lie the keyswitch,
the reset button and the streaming tape drive. The keyswitch “off” position
turns off all power to the machine; the “on” position powers the TCS, which
can then turn on power to the remainder of the machine. The “secure” position
disables the reset button, and is otherwise the same as the “on” position. The
TCS master can read whether the keyswitch is in its “secure” or “on” position,
and can inhibit certain TCS commands, based on keyswitch position. The re-
set button forces a reset of the TCS master microcomputer. It does not directly
affect operation of the rest of the machine. The streaming tape drive is used
to load or dump TC2000 system software. A button at its upper right corner
opens the drive door, and an LED in its lower left corner indicates the drive
is in use (so the door should not be opened).

19

1: Structure of the Machine : Inside the TC2000 Computer

Figure 1-13

of door
to open

streaming
tape drive

Figure 1-14

20

Front panel.

I
|
|
I
I
|
I |
I |
I |
I OFF |
[ON {
I
| @ SECURE RESET :
I
I |
MAIN POWER TCS ENABLED TCS POWER ATTN REQUIRED

Figure 1-14 shows the TC2000 back panel, located at the rear of the utility cab-
inet. The TCS console jack connects to the TCS master terminal. The stan-
dard TCS master terminal is a DEC VT320. The “PDU control out” jack
supplies control from the TCS master to power distribution units (PDUs) in
other cabinets. The “UPS status in” jack is for a future, optional capability
whereby the entire machine is powered by an Uninterruptible Power Supply
(UPS), and the TCS senses its status. The two modular telephone jacks are
for the optional diagnostic line, and a telephone for voice communication on

that line.
Back panel.
PDU UPS
CONTROL STATUS
ouT IN

TELCO LINE

PHONE

The TCS slave processor is a microcomputer (68HC11) especially intended
for monitor and control applications. It contains the serial line interface neces-

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

February 14, 1990

sary to communicate with the TCS master, on-chip memory, outputs for digi-
tal control, and inputs for sensing status. The input capability includes both
digital and analog channels; the latter are used for monitoring temperature
and power supply voltages. The slave processor is responsible for the entire
environment of the board on which it is mounted. (Or, in the case of switch
card pairs, the board pair. The switch server card (TC/SS) contains a TCSslave
that controls both the TC/SS and the paired TC/SR requester card.)

Each TCS slave receives its own power from the “TCS + 5" power supply. This
supply is separate from the power for each cabinet, and the power for each
board, so the TCS can operate even when the rest of the board is powered off.
An expansion cabinet’s main, or bulk, power is =24 volts; once this is available,
the TCS slave can enable the power supplies on its own board. These convert
the bulk power into the voltages required on the board. Besides enabling
board power, the TCS slave can also modify (“margin”) the voltages of board
power for testing purposes.

Besides temperature and power, the TCS slave monitors and controls digital
signals and parameters of various sorts dependent on the nature of the board.
On a TC/FPV function board, the TCS holds the 88000 processor reset while
it initializes the board hardware. It loads appropriate bootstrap code into the
memory and releases the reset condition, allowing the 88000 to begin executing.
It provides a low-level communication path between the operating system and
the TCS master software. On the TC/CLK clock card, the TCS slave sets pa-
rameters such as switch clock frequency. On the TC/SS and TC/SR switch
card pair, the TCS slave can enable and disable individual switch paths for
test and diagnostic purposes. These are merely examples; the full range of TCS
slave capabilities is significantly greater.

The TCS communication line connects the TCS master to all TCS slaves. The
protocol used is query-response, in which the slaves never volunteer informa-
tion but rather transmit only in response to a command from the master. All
slaves receive all commands, and recognize when the command applies to
them. Conversely, all data transmitted by slaves is funnelled to the master.
The simplest way to think of this is as a shared communication bus; so, al-
though its implementation is more complicated as we shall see, it is called the
TCS bus.

In implementation, the TCS bus is more of a tree, fanning data from the master
out along its branches to the slaves, and fanning in data from the slaves. The
master is attached directly only to the clock card, as shown in Figure 1-15.
Data from the master goes directly to the clock card slave, and is fanned out
(relayed, repeated, buffered) to the midplane in each expansion cabinet, where
it goes to the TC/SS of each switch card pair and to the eight function boards.
The slave on each TC/SS serves the paired TC/SR, which has no slave.

21

1: Structure of the Machine . Inside the TC2000 Computer

Figure 1-15

22

TCS bus fan-out and fan-in.

function

switch boards

card
pairs

, TC/SR !

clock
card

TCS
MASTER TC/CLK TC/SS

) TC/SR !

| TC/SR

In the other direction, data from function board slaves is fanned in (collected,
combined, multiplexed by OR’ing together) on its way to the master. Data
from the function boards on a midplane is combined, at their TC/SS card, with
data from the slave on the TC/SS. Data from every TC/SS is combined, at the
clock card, with data from the TC/CLK’s slave, and sent to the master. This
fan-out and fan-in scheme achieves machine-wide communication with very
simple wiring.

On the other hand, such a communication tree can be vulnerable to data cor-
ruption if components fail. To protect against this, the TCS bus design buffers
each fan-out signal separately at the clock card, and contains programmable
gating of fan-in signals. The TCS master can use this gating to selectively dis-
able — amputate — any branch of the fan-in tree that is corrupting the TCS
bus. This fault isolation mechanism permits the machine to operate in a re-
duced configuration, consistent with the machine design philosophy of recon-
figurability to work around failed components.

I/O Capabilities

The vast majority of TC2000 I/O is via one or more VMEbus systems.
Figure 1-16 presents the TC2000 architecture to emphasize the I/0. At the
core is the switch, TCS and power supplies. Connected to this core via switch
ports are function boards. Connected to some of the function boards are

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

VMEDbus systems. Each of these VMEbus systems can be configured as re-
quired for the particular site.

Figure 1-16 1/0 is VMEbus systems via function boards.

VMEbus VMEbus
system system

G CHEED
CEEED - D
GED D
GEED

function
boards

VMEbus VMEbus

system system

special / \

processor | [] controllers

devices

disk tape

The devices normally available include:
e Terminal multiplexor
¢ Hard disk drives
e Magnetic tape drives (}4-inch width tape, on reels)

e Streaming cartridge tape drive (J4-inch width tape, in cartridges)

February 14, 1990 23

1: Structure of the Machine Inside the TC2000 Computer

1.4

1.41

24

e FEthernet interface

e Controllers for Small Computer System Interface (SCSI) devices

A given installation may have site-specific requirements for other VMEbus
equipment. In general, adding or interfacing to other VMEbus equipment is
straightforward. The TC/FPV function board’s interface to the VMEbus is
highly configurable under program control. This flexibility permits the
TC/FPV to perform various roles, depending on the requirements of the par-
ticular system. For further information on support of specific equipment,
please contact BBN ACIL. The customer may need to provide device driver
software if unusual or non-standard devices are to be supported.

For completeness, we briefly name the other I/O capabilities of the machine.

e Primary of these is the TCS, which can read and write floppy disks, and
communicate via its terminal. The TCS terminal serves as the system
console for the nX operating system on the TC2000 machine, and may
be accessed from application programs if necessary. Access to the TCS
floppy disk is currently restricted to the TCS master, although the soft-
ware design includes, and the hardware permits, the TCS master to ser-
vice requests from the nX operating system and application programs
to do MS-DOS file system I/O.

e Various LED indicators show machine state. Besides the front panel
LEDs described above, green LEDs on each switch card and each func-
tion board indicate the presence of power at various voltages. An amber
LED on each of these boards is under control of the TCS slave, and can
be used to identify a particular board during maintenance. The TC/FPV
function boards also have green LEDs indicating the transmission and
reception of switch messages. These can be useful as a rough indication
of the level and location of switch activity.

For further information on the TC2000 I/O system, please refer to chapter 5.
Machine Specifications

Computational Specifications

The following items describe the first model of the TC2000 computer. In par-
ticular, they reflect the original TC/FPV function board.

e CPU clock rate: 20 megahertz

e Memory

o Size: 4 megabytes per TC/FPV function board, expandable to 16
megabytes; TC/FP function board available with either 16 or 32 me-
gabytes per board; 64x16 = 1024 megabytes maximum per ma-

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

chine, using any mix of the TC/FPV16 and the TC/FP16 (excluding
any peripheral memory on the VMEDbus)

o Parity: one parity bit per byte, on main memory only; special feature
for testing parity logic

o Error rate: 3.17 years estimated mean time between detected soft
errors per 4-megabyte TC/FPV

o Dynamic RAM refresh cycle: automatic

e The design nominal time to access local memory with no contention is
0.55 microseconds for a read, and 0.60 microseconds for a write. Access
times depend on several conditions: local or remote (over the switch);
read or write; single word or multiple word; cache hit, cache miss or cache
inhibited, and copyback or writethrough caching policy; use of fast path
from CPU to local memory; within machine or to VMEbus address
space; and amount of contention for the resource. Access times for many
combinations of these conditions are discussed in chapter 2.

e Switch clock rate: 38 megahertz
e Switch bandwidth: 38 megabytes per second per path, peak

e VMEDbus throughput: 8 megabytes per second per VMEDbus interface, to
a machine total of 320 megabytes per second (current architecture sup-
ports up to 40 VMEbuses)

1.4.2 Environmental Specifications

For the following and related information, please refer to the TC2000 Site Plan-
ning Guide.
e Physical dimensions, weight and servicing clearances
e Flooring recommendations, for both air flow and cables
e Power line requirements — voltage, amperage, phasing and grounding
e Power consumption, heat dissipation and cooling requirements

e Temperature and humidity specifications

CAUTION 1 11 11111111111 1 1

Avoid placing objects on top of the cabinets, where they could impede the flow
of cooling air. Itis good practice to maintain the machine’s operating tempera-
ture margins by not blocking the air flow.

1 1111111 111

February 14, 1990 25

1: Structure of the Machine Inside the TC2000 Computer

1.5

1.5.1

26

Equivalent but Distinct Function Boards

This section describes how software conventions, or the equipment connected
to function boards, or both, distinguish some function boards from others.

The nX Master Function Board

From a hardware viewpoint, all TC/FPV function boards are equivalent, any one
may be installed in any slot, and there perform all functions that any other
TC/FPV would perform.

From a software viewpoint, the nX operating system distinguishes one
TC/FPV function board as the master function board (or master “processor
node”). This distinction is based on three properties:

e The design of the nX operating system dictates that certain functions be
performed or coordinated by one specific processor, and that certain
data structures reside in the memory local to that processor.

e The TCS master must pick some TC/FPV function board on which to
load and start the nX bootstrap. For the sake of using a specific board
during booting, the TCS uses a particular function board named in a ma-
chine configuration file.

e Bootstrapping the nX operating system from the system hard disk is sim-
pler and faster when the nX boot disk is on the same VMEbus system
as the master node. Therefore, as a practical measure, the master node
must be a TC/FPV function card so connected.

When the machine is booted, the TCS master software (TEX) reads a configu-
ration file from the TCS hard disk. Amongother parameters, this file specifies
the slot number of the master. In a normal system this is 7.7.7, in the format
“bay.midplane.slot” used to specify a particular function board. TEX loads
a bootstrap program from the TCS hard disk onto the function board in this
slot, via the TCS slave on that board, and starts the 88100 CPU executing it.

The bootstrap loads the nX system from the nX system disk, over the VMEbus
attached to the function board. Once loaded, the nX software starts up.

When the nX operating system is running, certain software functions reside
on the master. Data structures associated with those functions usually reside
there also, merely as a performance issue, because of the speed advantage in
accessing local memory. There is little or no absolute requirement about which
functions reside on the master. Requiring that only the master execute a given
function is a simple and easy way to achieve synchronization among the many
processes, executing on many processors, that might invoke the function.

However, when a function must be performed only by the master, there is po-
tential for the master becoming a bottleneck. The processing speed of the mas-

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

1.5.2

1.5.3

February 14, 1990

ter, access to lock-controlled resources on the master, switch (interprocessor
communication) bandwidth to and from the master, or I/O capacity of the
master could limit overall machine performance. Considerable care has gone
into programming and configuring the nX system to make such bottleneck ef-
fects small and infrequent.

For example, the following functions were once executed only on the master,
but have been parallelized by recoding, and can now execute elsewhere:

e Most file system operations: read, write, Iseek, etc.
e Most Ethernet I/O operations

e Process scheduling

Clusters

The nX operating system supports the concept of a cluster of function boards.
Loosely, a cluster is a collection of function boards viewed as a computing re-
source available for some particular purpose. The system cluster contains all
function boards in the machine. The public cluster contains one or more func-
tions boards that run your shell when you first log in. The I/O cluster contains
the nX master function board, and typically no others. Permission to run pro-
cesses in the I/0O cluster is restricted to groups “wheel” and “root”, to prevent
undue competition for its memory and CPU. The occasional nX system call
that is serialized traps to the master, and a parallelized call may trap to the
master to perform physical I/O to a device attached to the master. Certain
I/0 intensive activities, such as dumping to tape, are usually run on the master.
Function boards in the free cluster are unallocated and may be allocated by
system calls or by nX commands. A user invokes such a command, or his pro-
gram makes such a system call, to allocate function boards into the user’s own
private cluster, in which the user may execute programs. A cluster of bare
nodes is a resource set aside when the nX operating system starts up, from
which clusters may be allocated to run programs under the pSOS * ™ real-time
operating system.

Clusters are an important, powerful and flexible capability in the way the
TC2000 machine is used. Since clusters are an aspect of the software, not hard-
ware, they are not discussed further in this document. For further information
on clusters, please refer to nX documentation.

Physical Slots

When specific hardware — in particular, a VMEbus system — is connected
to a particular function board, the application software must be able to refer
to that function board specifically, and allocate it specifically. The system soft-
ware supports this capability.

27

1: Structure of the Machine Inside the TC2000 Computer

1.5.4

Figure 1-17

28

Slot Numbering

The physical card slots in the TC2000 machine are normally numbered in
“dotted octal” format:

< bay > . < midplane >. < slot >
such as:

7.1.6

The first field in dotted octal format, here “7”, specifies the bay in which
the slot appears. Each bay holds up to 64 function boards. In a machine
with 64 or fewer function boards, the entire machine is by convention bay
number 7.

The second field, here “1”, specifies the midplane to which the slot con-
nects. Each midplane serves up to eight function boards.

The third field, here “6”, specifies the particular slot on the midplane.

Figure 1-17 shows the standard midplane numbering in a 64-slot machine.
If the machine has fewer midplanes, midplanes are omitted in the order: 7.0,
7.1,72,73,74,75,7.6. A one-midplane machine has only midplane 7.7.

Midplane numbering.

utility
cabinet

74 75 76 7.7 73 72 7.1 T.0
Y S Y Ve Ve

The above format applies in a clear way to all function boards in a machine.
The bay, midplane and slot fields can each be octal digits 0 through 7. The
TCS master, however, must refer to other cards as well — switch requester and
server cards, and the clock card. In a machine larger than 64 (function board)
slots, there are second-stage clock cards and middle-column switch cards.
The TCS uses a natural extension of the dotted octal format to refer to these
cards, by extending the “slot” field above the value 7. The TCS also provides

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

February 14, 1990

ways for the operator to refer to classes of cards, such as “all switch requester
cards”. For details, please refer to the TCS documentation.

Aside from physical slot numbering, the operating system sometimes refers
to function boards by logical number. The logical number is normally in deci-
mal, and the mapping from logical number to physical slot varies depending
on the current configuration of the machine (which physical slots are occupied)
and how it is being used. Logical number may refer to a machine-wide set,
an operating-system-wide set, or a cluster-wide set, depending on the context.

29

The TC/FPV Function Board

February 14, 1990

Organization

The TC/FPV function board is available in various configurations:
version memory number of

number (megabytes) CMMU chips

TC/FPV4 4 2

TC/FPV4-1 4 3

TC/FPV16 16 g

TC/FPV16-1 16 3

The TC/FPV function board is a bus-based subsystem of its own. The trans-
action bus (T-bus) interconnects the functional blocks shown in Figure 2-1
(also shown in chapter 1, and reproduced here for ease of reference).

31

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-1 TC/FPV block diagram.

32

L 'MA;N;_
. MEMORY
| (4or 16 MB)

slave

; sfave __master , | TEST 8 c NTR ol slave master
- SWITCH : | SYSTEM (ICS) VMEbus
| nterFace [€ 2| inNmERRACE | INTERFACE
| requester server | slave processor | | oster slave

______________,________Y_______________________

=

BUTTERFLY
SWITCH

<TEST AND CONTROL SYSTEI\O

The T-bus itself is a high-performance bus with a master-slave protocol. Any
given functional block may have a master interface, a slave interface, or both,
on the T-bus. The T-bus does not extend beyond the function board. Ad-
dresses on the T-bus are System Physical Addresses (34 bits), described fur-
ther below. Data transfer operations are read and write. A T-bus slave can
refuse an access, and force a pause during an access, Or can promise to return
the requested data later. Data transfer size is byte, halfword (two bytes) , word
(four bytes), two words, three words or four words. (The current hardware
does not use 2- or 3-word transfers, but 4-word transfers occur often, to fill
and write back CMMU cache lines.) The T-bus has 32 data lines, and supports
the machine’s locking mechanism.

The other functional blocks of the TC/FPV are discussed in sections below.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.2

2.2.1

February 14, 1990

Processor, CMMU and CPU Interface

The processor is a Motorola MC88100 chip. This microprocessor features a
Reduced Instruction Set Computer (RISC) architecture, pipelining, a separate
tloating point execution module on the chip, and separate interfaces for data
and instructions. Two Motorola MC88200 Cache/Memory Management Unit
(CMMU) chips support the CPU; one CMMU services data transfers, while
the second services instruction fetches, often simultaneously. The TC/FPV
can be configured with a second, optional instruction CMMU chip. The
CMMUs, and the nX operating system, support demand paging. The TC2000
page size is 8 kilobytes. Since the CMMU implements a 4-kilobyte page size,
the operating system software allocates two adjacent CMMU pages whenever
a page is required.

The 88100 CPU has an instruction, xmem, that exchanges the contents of a
CPU register and a memory location. During this operation, the CPU and
CMMU assert a signal intended to hold the memory bus, and therefore make
the xmem an atomic operation. The TC2000 hardware preserves the atomicity
of xmem by holding the path between the CPU and the referenced memory,
even if that location is on another function board. This is a special case of the
TC2000 locking mechanism described in section 2.9.

For a tull description of the 88100 CPU and the 88200 CMMU chips, please
refer to the Motorola literature:

MC88100 User’s Manual
MC88200 User’s Manual

The CPU and CMMU are based on 32-bit data and address words. Since the
TC2000 address space is based on 34-bit addresses, address translation is nec-
essary between the Motorola M-bus and the TC2000 T-bus. The CPU inter-
tace performs this translation, as well as generating other signals related to
accesses the CPU makes. This translation and the other signals are performed
by the CPU Mapping RAM, described in the following sections.

TC2000 Physical Address Space

The TC2000 architecture supports a global physical address space of 34 bits,
for a maximum capacity of 16 gigabytes. At the lowest level, every byte in a
TC2000 system has a unique System Physical Address with the format shown
in Figure 2-2.

33

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-2

2.2.2

34

System Physical Address.

(9) (25)

switch port memory offset

The size of the System Physical Address determines the maximum memory
capacity of the TC2000 system. The structure of the system physical address
determines the maximum number of function boards and the maximum
memory capacity of a single function board. The size and structure of the sys-
tem physical address were chosen to support the following system characteris-
tics:

MaXifun SYStem CAPACIHY : ssureessnsincminensninssonus 16 gigabytes
maximum number of switch ports (funct10n boards) ... 512 ports
maximum function board capacity..................... 32 megabytes

Increasing the maximum globally addressible memory of a function board be-
yond 32 megabytes requires changes to the T-bus specification and to the
Switch Interface Gate Array. Memory that is only locally accessible may be add-
ed to a function board design with only on-board changes.

88000 Access to Global Memory

The series of transformations that convert an 88000 virtual address (Process
Logical Address) to a System Physical Address is shown in Figure 2-3. The
purpose of the CPU interface address transformation is to convert the 32-bit
Physical Address generated by the 88200 CMMU to a 34-bit System Physical
Address. The TC/FPV uses a mapping RAM to implement this transforma-
tion. The CPU Mapping RAM (CMR) is shown in Figure 2-4.

February 14, 1990

Inside the TC2000 Computer

2: TC/FPV Function Board

Figure 2-3 Address transformation.

Motorola 88100

CPU

Y

Process Logical Address (32 bits)

P-bus
(processor bus)

Y

Motorola 88200

CMMU

!

88000 Physical Address (32 bits)

M-bus
(““memory’’ bus)

!

CPU interface
address transformation

!

TC2000 System Physical Address (34 bits)

T-bus
(transaction bus)

Figure 2-4 Physical Address to System Physical Address.

Physical Address

9) (23)
CPU Mapping RAM
©) 2 (23)

February 14, 1990

System Physical Address

35

2: TC/FPV Function Board Inside the TC2000 Computer

2.2.3

36

The CMR takes in the high nine bits of the Physical Address generated by the
CMMU and uses it to generate the high eleven bits of the System Physical Ad-
dress. These 11 bits select one of the 2048 8-megabyte “banks” of address
space within the machine.

Note that even with this flexible mapping scheme, it is possible to build systems
with more memory than the 88000 can address. A few observations should be
made about the memory that lies outside the 4-gigabyte range that is directly
accessible to all of the 88000s in the system.

1. Thereis no hardware restriction against setting the CPU Mapping RAM
differently on different function boards. Thus it can be used to set up
memory to store private copies of code and data. nX kernel code that
must be replicated on every processor function board is one example.
Programs with supervisor privileges can manipulate the mapping RAM
to access private memory on remote function boards for diagnostics, ini-
tialization, debugging, and other purposes. This flexibility could also be
used to allocate different subsets of physical memory to different clus-
ters.

2. Some function boards may not have the 32-bit limitation of the 88000.
For example, an array processor or high-throughput I/O function board
could be built to access a 16-gigabyte memory space.

3. The 88000 addressing limitation might be removed in future generations
of the part.

Block Transfer and the CMR Intercept Access Bit

A feature called Intercept Access is available in conjunction with the CPU
Mapping RAM. The intended use of this feature is to reduce the number of
switch accesses required when transferring blocks of data from one function
board to another. Such use may enhance performance and reduce the asym-
metrical nature of pushing versus pulling blocks of data around the TC2000
machine.

The MC88200 behaves asymmetrically around cache write misses when the
page is marked copyback cacheable. This behavior is as follows. When the
processor misses the cache on a cacheable write (in copyback mode), the 88200
selects a cache line. (If none are available, it selects one for replacement and
if necessary, copies it back into memory.) It then reads in the new line with
the intent-to-modify bit set. (This read is to force any snooping master with
dirty data to flush it, a non-issue in the case of the TC/FPV,) Next, it writes
the datum to memory, and finally it writes the datum to the newly-read cache
line. See the MC88200 User’s Manual for more detail.

The effect of the 88200’s behavior in the TC2000 computer is as follows. For
simplicity, the description assumes that the data is quad-word aligned. In the
current model for copying blocks of data around the TC2000 machine, a block

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.2.4

February 14, 1990

of data is read into the cache, and then written to another cacheable location.
The process of cache line replacement, or explicit flushing, causes the data to
be written to memory. In the case of copying data from local memory to remote
memory (pushing), the behavior described above results in three switch trans-
actions for each line of data to be copied:

1. The initial read with intent-to-modify of the cache line
2. The write-once

3. The ultimate burst write when the line is replaced in the cache

On the other hand, when copying data from a remote function board to local
memory (pulling), the data is read into the cache across the switch, and the
burstread, write-once, and burst write are performed to local memory. Hence,
only one switch reference is required. In either case, the burst read and the
write-once are extraneous. New data is immediately copied over the data that
has been read in; further, the line is written to memory when it is selected for
replacement, or when it is explicitly flushed, so the write-once is redundant
also.

If the Intercept Access bit is set in a CMR entry, support circuitry in the CPU
interface causes any cycle mapped through the entry to get intercepted. The
processor is acknowledged as if the cycle had completed, but no T-bus cycle
is actually generated. (On an intercepted read, the data returned is undefined
and should not be used for computation.) The CMR has separate entries for
read and write cycles, so reads and writes can be intercepted independently
of each other.

Besides improving performance, the Intercept Access function can be used to
make block copy behave in a symmetrical fashion. The Intercept Access bit
should be set in the read entry for the destination function board. This reduces
the number of switch references from three to two for each line in the pushing
case, by intercepting the read-with-intent-to-modify cycle when the cached
write occurs. In addition, if the destination line is read in (intercepted locally)
before the data is copied to it, then a cache miss will not occur when the data
is written to the destination. This will prevent the write-once from occurring,
reducing the number of switch references to one per cache line, regardless of
whether the data is pushed or pulled through the switch.

The Local Bit in the CMR

When the location being addressed is on the same function board, we say it
is in local memory. It is possible to access local memory across the switch, but
almost always desirable to access it directly instead.

On the TC/FPV, bit 11in each CMR entry indicates whether the memory refer-
enced through that entry is local or remote. When the CMR asserts local, the
T-bus T_PATH bits are set to specity a local access, so the value of the T-bus

37

2: TC/FPV Function Board Inside the TC2000 Computer

NOTE

2.2.5

38

address bits T_AD <33..25> is irrelevant, but they are driven from the CMR
onto the T-bus anyhow to supply valid electrical levels.

.................

HISTORICAL NOTES

In the B2VME function board, a predecessor to the TC/FPV, the CPU inter-
face had no CPU Mapping RAM. There, the decision that an access was local
was based on Physical Address bits 28..23 being zero. This zero-detection is
not present in the TC/FPV, but can be emulated by appropriate setting of the
CMR registers.

Also in the B2ZVME was detection of locality by “switch shortcut” logic that
noticed when the switch port addressed was the same as the function board’s
own. The logic then caused the access to be serviced locally instead of using
the switch. This logic could be disabled by a bit in the Machine Configuration
Register. This logic and this bit are replaced in the TC/FPV by the local bit

,,,

The Interleave Enable Bit in the CMR

Bit 13 in each CMR entry indicates whether the memory referenced through
that entry can be interleaved.

The Interleave Decision RAM also controls interleaving. Physical Address
bits 31..26 and 22..15, a total of 14 bits, select one of 16,384 1-bit Interleave
Decision RAM entries, each controlling interleaving in one 32-kilobyte quad-

page.

In the TC/FPV:
T-bus T INTERLEAVED signal =
((Interleave Decision RAM register bit = = 1)
AND (CMR interleave enable bit = = 1))

The intent is that software use the CMR and the Interleave Decision RAM so
that references to any given System Physical Address are interleaved for both
read and write, or non-interleaved for both read and write. However, the hard-
ware does not enforce this, and it is possible (but confusing) to have reads in-
terleaved and writes not, or vice versa.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

NOTE

NOTE

2.2.6

NOTE

2.2.7

February 14, 1990

INTERLEAVE VERSUS LOCAL

Suppose an access has interleaving enabled in both the CMR and the Inter-
leave Decision RAM; the T-bus T_INTERLEAVED signal is asserted, and
the intent is that any interleaved access go over the switch. But the CMR /local
bit might also be asserted, trying to force the access to be serviced locally. In
this case, the interleaving forces use of the switch.

...
M, i, M M, M, T T M M T T e M, M,

...
...

HISTORICAL NOTE

On the B2VME predecessor to the TC/FPV, interleaving was restricted to
“bank zero”, the low 8 megabytes of each function board. There is no such
restriction on the TC/FPV.

.....
“““““““

""
..

",
...............

The Bypass Bit in the CMR

The “bypass” bit, bit 12 in each CMR entry, tells the CPU interface that the
access should bypass the TC2000 locking protocol.

The granularity of bypassing is 8-megabyte blocks. The design permits soft-
ware control of how much of the virtual address space is given over to bypass-
ing.

HISTORICAL NOTE

In the B2VME predecessor to the TC/FPV, bypassing was controlled by Physi-
cal Address bit 31, both in a local reference and in a remote reference on a
machine with two switch columns (64 or less function boards). On the
TC/FPV, Physical Address bit 31 has no special meaning. The BZVME model
can be emulated with the CMR.

................
,,

The Fast Path Disable Bit in the CMR

Normally, certain references from the CPU to local memory traverse a special
path that is faster than a normal T-bus access. This fast path is used for non-
interleaved reads to local memory, if enabled by a bit in the Machine Configu-
ration register and not disabled by this bit in the CMR. The fast path speeds
up local references, reduces T-bus contention, and is never detrimental, so
normally it is enabled, and is disabled only for testing and diagnostics.

39

2: TC/FPV Function Board ’ Inside the TC2000 Computer

2.2.8 CMR Block Diagram
Figure 2-5 shows a block diagram of the CPU Mapping RAM.
Figure 2-5 CPU Mapping RAM block diagram.
88000
A<31.23> | T_AD<33.23>
* . bypass
88000 read CPU Mapping RAM | yp
SAATe OB 10 16 local
read/write CMR -
address data |/ D - .
T AD<33.25> / L IEreave enase
] _1 024_ |_intercept access*
T AD<14>_| 16-bit registers fast path disable
(outputs driven
IDR<81.16> | D CPU_MAP D<15.0> LRl
<] when CMR is not
enabled; see text)
read/write CMR
enable CMR
Reads and writes of the CPU Mapping RAM are performed using the inter-
leaver loader mechanism.
NOTE ..
Unless the Intercept Access mechanism is being used, the intended use of the
CMR is to map read and write accesses of a given Physical Address into the
same System Physical Address. To use the CMR this way, the software setting
up the CMR must load two CMR entries for each block of addresses to be
mapped, one for reading and one for writing.
2.2.9 CMR Power-up and Disabled State

40

Upon power up, the CMR is disabled. When itis disabled, the following trans-
formation is performed on the 88000 Physical Address bits to generate the bits
that the CMR drives when it is enabled.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

Figure 2-6

Power-up and Disabled CMR Operation.

88000 Physical Address
31 30 29 2827 26 25 24,23 22 0

L | | C

Y drive T AD<22..0>
ignored when as usual

CMR is disabled

N

\-

11,0,

7
11y &l

2.2.10

February 14, 1990

33 32 31 30 20 2827 26 25 24 23| 1-AD<22.0>

— T _AD<33..23>
local
— bypass

— interleave enable
— intercept access*
—— fast path disable

This transformation is similar to the fixed mapping for small (under 64 slots)
machines used in the original B2ZVME design, in that bits 29 and 30 of the
88000 Physical Address are shifted to bits 23 and 24 of the System Physical
Address, and bit 31 indicates a bypassed reference. However, the TC/FPV
disabled CMR transformation causes all memory accesses from the 88000 to
go to local memory. This lets the processor access local bootstrap code that
can initialize and then enable the CMR. The CMR is enabled by setting the
CMR enable bit in the Machine Configuration Register.

CMMU and CPU Interface Affect Address Use

Note that the CMMU, and the CPU interface’s control and configuration reg-
isters, place certain restrictions on address usage, regardless of how the CMR
is set up.

The 88200 CMMU has a fixed, one-to-one mapping for the top one megabyte
of supervisor address space, called the control memory address space. This area
is intended for memory-mapped peripherals and I/0 devices. Within this top
one megabyte, four kilobytes are diverted to address the CMMU’s internal reg-

41

2: TG/FPV Function Board : ’ Inside the TC2000 Computer

2.3

2.4

42

isters. Accesses to the remaining 1020 kilobytes are passed through the
CMMU as a Physical Address. Thus, the top one megabyte has a 4-kilobyte
“hole” that cannot be used to access locations elsewhere in the TC2000 ma-
chine in supervisor mode. When the machine is powered up, a hardwired cir-
cuit sets where this hole lies by initializing a register within the CMMU.
Because there are two (or three) CMMU s per CPU, there are actually two (or
three) 4-kilobyte holes in the top megabyte of supervisor mode Process Logical
Address space. For more information on the Physical Address and operation
of the CMMU, see the Motorola MC88200 User’s Manual.

The configuration and control registers of the CPU interface on every TC/FPV
occupy the top one megabyte of the 32-megabyte System Physical Address
space associated with that function board.

Memory

The TC/FPV can be configured with either 4 megabytes or 16 megabytes of
memory.

The memory on each function board is accessible to all other function boards,
thus constituting the global memory of the machine. Memory management
is used to map pages of memory conveniently and to control access permis-
sions.

A parity bit with each memory byte protects against errors.

A function board can address its own address space over the switch instead
of locally, when various parameters are set up appropriately. (The parameters
affecting this are the mapping in the CMMU, the mapping in the CMR, the
local bit in the CMR, the interleave enable bit in the CMR, and the bit in the
selected Interleave Decision RAM entry.)

Locations accessed over the switch, typically memory, can be interleaved. In-
terleaving is a technique that distributes small chunks of address space that
are normally contiguous, to chunks on different function boards. This is useful
to avoid certain kinds of contention. The TC2000 interleaver is described in
section 2.4.4.

Switch Interface

The switch interface, implemented by the Switch Interface Gate Array (SIGA)
chip, automatically handles references to or from remote function boards.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.4.1

2.4.2

February 14, 1990

References to Remote Function Boards'

When a request appears on the T-bus from either the CPU or the VMEbus
interface that references a remote location, the requester section reads the pa-
rameters of the request, packages them up into a small message, and sends
the message into the switch. If the message is rejected, the SIGA delays for
a short time according to the backoff algorithm (selected by system initializa-
tion code) and retries the message, repeatedly. Normally, the message quickly
succeeds in traversing the switch to the destination function board, where it
is serviced. If it is a read operation, the data read is returned over the same
switch path to the requester section of the SIGA. There, the T-bus is acquired
and the data is given to the CPU (or VMEDbus interface). Ordinarily, the soft-
ware — both user and system — never takes any different action for a remote
reference than for a local reference. Only if an error, such as a timeout, occurs
is additional software activity invoked.

References from Remote Function Boards

When the address space on the given function board is referenced by a remote
function board, the server section of this board’s SIGA serves the request. The
received message is checked for correctness, and then interpreted as a read
or write request. The server section acquires the local T-bus and makes the
request. The local memory, VMEDbus interface or registers respond. If the
operation is a read, the data is packaged up by the server section and sent
through the switch to the requester. Ordinarily, the software on the local func-
tion board is never aware of references to it made by other function boards,
except for the following effects:

e [fthe reference writes a location, the new data is visible because memory
is shared. CPU interface registers may also be accessed remotely; in par-
ticular, a remote processor requests an interprocessor interrupt by writ-
ing into a register dedicated to that purpose.

e If the reference locks the local memory module or local VMEbus inter-
face, data references made by the local CPU are delayed until the lock
is treed, unless the local reference is made bypassed.

e Remote references use some of the bandwidth of the T-bus and the refer-
enced module. The remaining bandwidth, available to the local proces-
sor, is typically high but can be noticeably reduced by very heavy
referencing from remote function boards.

The first and second effects arise from the shared memory architecture of the
machine, and are important features. Memory management is used to limit
the access processes have, so a faulty process does not overwrite or lock arbi-
trary remote locations.

43

2: TC/FPV Function Board Inside the TC2000 Computer

243

2.4.4

44

The third effect, due to contention, is controlled by careful program design and
development. Tools are available to detect and identify hot spots of contention,
and they usually yield to known programming techniques.

More Switch Interface Features

The SIGA operating parameters are discussed in chapter 3.

Error conditions, including timeouts, arising from use of the switch are dis-
cussed in section 2.10.

Besides functioning as a switch interface, the SIGA provides three other func-
tions.

e The SIGA implements a clock and timer interrupt feature, described in
section 2.10.

e The SIGA provides a facility called the interleaver loader. This facility
is used by nX (and in the future, pSOS* ™) system software to access reg-
isters in the memory interleaver (see section 2.4.4), in the CPU Mapping
RAM (see section 2.2), and also in the VMEbus Master Mapper (see sec-
tion 2.5).

e The SIGA is the avenue by which the function board TCS slave accesses
the T-bus, and thereby the rest of function board logic circuits.

The Level Converter (LCON) chip, while a vital part of the switch interface,
is invisible to operating system and and application software.

Interleaver

The interleaver applies a mapping to references made over the switch. It takes
in several bits of the System Physical Address, performs a programmable
translation on them, and presents the result to the switch interface as an alter-
nate switch port number (the high nine bits of the System Physical Address).
A separate signal related to the T-bus, T_INTERLEAVED, tells the switch
interface whether to use this alternate switch port or the port specified in the
address from the T-bus.

The interleaver is described in chapter 4, in conjunction with memory, because
its intended use is to modify the way memory is addressed, whether the refer-
ence comes from a CPU or from a VMEDbus.

February 14, 1990

Inside the TC2000 Computer : 2: TC/FPV Function Board

2.5

Figure 2-7

VMEDbus Interface

The VMEbus interface connects the T-bus to a VMEbus, in each direction.
Also, the VMEbus interface can be configured to perform certain duties (“sys-
tem controller”) that some device on a VMEbus system must provide.

The VMEDbus interface is made of three functional blocks.

e The VMEbus master mapper takes requests on the T-bus that refer to
address space mapped to the VMEbus, and translates them into VME-
bus transactions as a master device on the VMEDbus.

e The VMEbus slave mapper takes requests on the VMEbus that refer to
address space in the TC2000 machine. Responding as a slave on the
VMEvbus, this functional block translates such requests into transactions
on the T-bus.

e The VMEbus system controller permits the VMEDbus interface to per-
form certain VMEbus control and management duties.

VMEDbus interface components.

<

T-bus <>l cru

data interrupts A interrupts 2
VMEbus
VMEbus VMEbus VMEbus interface
master slave system controller
data control
YY Y

VMEbus >

February 14, 1990

When the VMEbus interface acts as a VMEbus master, it is simultaneously
acting as a T-bus slave. And conversely, when its VMEbus slave is active, it
is acting as a T-bus master. The interface can be set up so a transaction is
looped — from the T-bus, out onto the VMEDbus, back in and onto the T-bus.
Such looping would only be used in testing, but it dramatically illustrates the
independence and flexibility of the interface’s master and slave functions.
Looping the other direction — originating on the VMEDbus, through the inter-

45

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-8

2.5.1

46

face onto the T-bus, back through the interface and onto the VMEbus again
— is supported by the VMEDbus interface, but will get a timeout because the
VMEDbus itself can’t be doing both the original request and the looped reap-
pearance of the request at the same time.

Example of a looped-back reference.

<

T-bus <> cru

data & interrupts A in’terruptsA
VMEbus
VMEbus VMEbus VMEbus interface
master slave system controller
data control
Y

> VMEbus >

The sections below describe the three functional blocks in more detail. For
a description of the VMEDbus itself, please refer to:

The VMEbus Specification, by Motorola (The TC/FPV conforms to revi-
sion C.1 of this specification.)

VMEbus Master Mapper

The VMEbus master mapper translates 1-, 2- or 4-byte read or write requests
on the T-bus into requests on the VMEbus. This translation occurs whenever
the request falls in any of the 2048 8-kilobyte pages in the upper 16 megabytes
of the TC/FPV’s address space. (However, the topmost megabyte is not usable
for translation because the TC/FPV configuration and control registers reside
there.)

Put another way, any T-bus local access in the range 0x1000000 to OxX1IEFFFFF
becomes an access to the VMEbus. The resulting page number (address bits
31 through 13 inclusive, denoted “31..13”) placed on the VMEbus is given by
one of 2048 mapping registers and may be whatever the application wishes.
The offset within the page (address bits 12..0) is copied directly from the T-
bus.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.5.2

February 14, 1990

Each mapping register in the VMEbus master mapper also supplies the six
address modifier bits used in the VMEbus transaction. These bits specify the
kind of access being made, such as “standard” or “extended” addressing.
Also, each mapping register supplies a interrupt acknowledge (IACK) bit.
This is used when the TC2000 software is acknowledging an interrupt request
made by some device on the VMEbus. The interrupt level acknowledged is
determined by the address accessed within that register’s page. Reads and
writes cannot be made through a mapping register while it is set up to acknowl-
edge interrupts, so programs typically set aside one mapping register just to
acknowledge interrupts on the VMEbus. For details of both address modifiers
and the VMEbus interrupt system, please refer to The VMEbus Specification.

When the VMEbus master mapper becomes master of the VMEbus, it can
obey either of two mastership protocols: release on request or release when
done, defined in The VMEbus Specification. The protocol used depends on the
application. The TC/FPV can be configured by a jumper to employ either pro-
tocol.

The VMEDbus master mapper registers are read and written through a special
mechanism called the interleaver loader.

VMEDbus Slave Mapper

The VMEDbus slave mapper translates 1-, 2- or 4-byte read or write requests
on the VMEbus into requests on the T-bus. Typically the requests address
local memory, but they may address local registers or resources on remote
function boards. This translation occurs whenever the request falls in any of
several contiguous 8-kilobyte pages of VMEbus address space. The location
and size of this window are determined by control registers in the VMEbus
interface. The window /ocation — where the window begins in the VMEbus
address space — allows the TC2000 software to place the window conveniently
for the design of the VMEbus system, or even to move the window around dur-
ing execution.

The configurable size of the window is related to VMEbus address size. The
VMEbus Specification defines two addressing sizes: “standard” addressing is
24-bit addresses, and “extended” addressing is 32-bit addresses. The VME-
bus slave mapper is software configurable to respond to either standard or ex-
tended VMEbus addressing. Which kind of addressing is appropriate
depends on the application and the other devices on the VMEbus.

e If the VMEDbus slave mapper is set to respond to standard VMEbus ad-
dressing, the window is 4 megabytes (512 8-kilobyte pages).

e If the VMEDbus slave mapper is set to respond to extended VMEbus ad-
dressing, the window is 16 megabytes (2048 8-kilobyte pages).

This flexibility in VMEDbus slave mapper window size allows the window to be
matched to the application. For example, a graphical display memory or a

47

2: TC/FPV Function Board Inside the TC2000 Computer

2.5.3

48

memory dual-ported to another computer might benefit from a large window.
A small VMEDbus system performing sensor data gathering, however, might
not be able to afford more than 4 megabytes out of its address space.

As with the VMEbus master mapper, any access in the slave mapper’s window
becomes an access translated onto the T-bus. The new page number (address
bits 31..13) is given by one of 2048 mapping registers and may be whatever the
application software sets up. The offset within the page (address bits 12..0)
is copied directly from the VMEbus.

Each mapping register in the VMEbus slave mapper also supplies several con-
trol signals. These specify the following:

e The path the request will take (local to the function board, or out over
the switch)

e If the request goes over the switch, whether it references interleaved
memory or non-interleaved memory

e Whether to lock the T-bus and the memory module, and the switch if
it is used, as long as the VMEbus transaction is in progress (thus permit-
ting atomicity of operations that originate on the VMEbus)

e If the referenced memory module is locked, whether the reference will
bypass the lock

(The slave mapping register also specifies, if the request goes over the switch,
its priority value. This capability should ordinarily not be used; priority should
be left to the switch latency control mechanism in the SIGA hardware.)

The VMEbus slave mapper registers are accessed directly from the T-bus;
they occupy specific locations in the global System Physical Address space.
The VMEDbus slave mapper registers in any TC/FPV function board can be
loaded (and read) from any function board in the TC2000 machine, subject
to protection via memory management on the board making the access. This
global accessibility is an important part of parallel I/O functionality on the
TC2000 machine.

VMEDbus Interrupt Handling and Generation
The VMEDbus interface can both handle interrupts generated by VMEbus de-
vices and generate interrupts on the VMEbus. As mentioned in section 2.5.1,

one (any one) of the VMEbus master mapper’s mapping registers is typically
set aside for generating the IACK cycle to acknowledge an interrupt.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.5.4

2.6

February 14, 1990

VMEDbus System Controller Functions

When in slot 1 of a VMEbus system, and configured by jumper to be system
controller of the VMEDbus system (as it normally is), the VMEDbus interface will
perform the following functions:

e Arbiter, using single level arbitration — grants mastership of the VME-
bus to devices requesting it

e JACK daisy chain driver — repeats the interrupt acknowledge signal
back along a daisy chain, where a VMEDbus device requesting an inter-
rupt will sense it

e System clock driver — provides a 16-megahertz clock
e Bus timer — provides two timeout functions:

o VMEDbus Arbiter Timer — limits how long the VMEbus may be
granted without the device taking mastership by asserting the signal
bus busy

o VMEbus System Bus Timer — limits how long a VMEbus master
may assert the signal address strobe without any slave responding
with the signal DTACK (data acknowledge)

The two timer functions above are performed only as VMEbus system control-
ler, and do not affect the remainder of the VMEDbus interface, TC/FPV or
TC2000 machine in any way unless it is making the VMEDbus access that is
timed out. A third timer, the VMEbus TC/FPV Master Bus Timer, is different
from the above two timers and is discussed in section 2.10.

For further explanation of the system controller function, please refer to The
VMEbus Specification.

TCS Slave

The TCS slave on the TC/FPV connects directly with the SIGA, through which
it has access to the T-bus and thence to all memory and registers on the board.

This TCS slave performs the following functions:
e Monitor temperature
e Monitor +5 and -5 volt power, from on-board supplies
e Control the on-board power supplies (on, off and margining)
e Reset the board (resets the 88100 CPU and other hardware)
e Report board type to TCS master upon request

e Access the T-bus, to perform the following actions:

49

2: TC/FPV Function Board Inside the TC2000 Computer

2.7

2.7.1

NOTE

50

o Initialize registers as necessary before operation
o Load bootstrap code into memory

o After the nX operating system is running, monitor certain locations
for data sent by the nX software to the TCS master, and return any
results from the TCS master to the nX software

For more information on the TC/FPV TCS slave capabilities, please refer to
the current documentation on TEX, the TCS master software, in the System
Administration Guide.

Configuration and Control Registers

The CPU interface contains several registers that configure and control the
TC/FPV. These are described briefly below, organized into nine functional
groups.

User Registers

Registers in this group are intended to be accessible to the user’s application
program. The address of each is on its own page, so the operating system can
easily permit or prohibit access to each independently, for any process, by mo-
difying the process’s memory map. Also, some fields in one of these registers,
the PCR, are protected by mask bits in another register. When a mask bit is
“17, attempting to set the masked field in the PCR results in a bus error. This
provides even finer control over access to PCR functions.

‘‘
..

NO nX USER ACCESS
In the current release (2.0) of the nX operating system, none of these registers
are accessible to the user software.

Interprocessor Interrupt Register
Setting the one defined bit in this register causes an interrupt request
to the local CPU. Since this register may be accessed over the switch, it
provides a way for one processor to interrupt another.

Process Configuration Register
This register has four fields. The synchronized access bit selects a par-
ticular switch access strategy in the SIGA, that can be set up to reduce
congestion when many CPUs are all referencing the same function
board. The path field contributes to the decision of whether a refer-
ence is local (to this board) or remote (goes out over the switch). The
default priority and priority scheme fields contribute to switch mes-

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.7.2

2.7.3

February 14, 1990

sage priority, and ordinarily should not be used; priority should be left
to the switch latency control mechanism in the SIGA hardware.

Augmentation Register Block

There is one register, called the Augmentation register (AR), and a
block of locations the user employs to modify its contents. In general,
the Augmentation register extends (augments) the instruction and ad-
dressing capabilities of the 88000 CPU. Augmentation applies only to
certain kinds of references. The lock bit controls whether references
made by the CPU will employ the TC2000 locking protocol (described
in section 2.9.7. The exception action field can be used by the operating
system to remember what action it should take after an exception dur-
ing an instruction sequence that uses the lock bit (continue, restart or
abort). The disable interrupts bit inhibits the presentation to the CPU
of interrupt requests from certain sources (illustrated in Figure 2-11).

Configuration Registers

These registers, in addition to the user-accessible registers in section 2.7.1, di-
rectly control the process execution environment. These, however, are in-
tended for access by privileged processes only. Privileged processes, in
referencing the Augmentation register, can access it directly as well as through
the Augmentation Register Block locations noted above.

PCR Disable Mask Register :
Bits in this register mask (prohibit setting of) the path, default priority
and priority scheme fields in the Process Configuration register.

Machine Configuration Register

This register controls certain basic operating characteristics of the
TC/FPV. The cache selection scheme bit determines how the two code
CMMU chips are shared, in a TC/FPV configured with two. The code
CMMU to use is selected either by a bit in the Process Logical Ad-
dress, or by the supervisor/user mode bit. The fast path enable bit al-
lows certain references from the CPU to local memory to traverse a
special path thatis faster than a normal T-bus access. The write wrong
parity bit causes incorrect parity to be written, and is used for diagnos-
tic purposes. The CMR enable bit enables the CPU Mapping RAM in
the CPU interface.

Interrupt System Registers
The TC/FPV’s CPU interrupt facility extends the single-level interrupt capa-
bility of the 88100. These registers control that facility. Interrupts to and from

the VMEbus are described in section 2.7.6. The interrupt facility is described
in section 2.10.

51

2: TC/FPV Function Board Inside the TC2000 Computer

2.7.4

2.7.5

52

Interprocessor Interrupt Register
This register requests a CPU interrupt, as described in section 2.7.1.

Non-maskable Interprocessor Interrupt Register
Setting the one defined bit in this register causes an interrupt request
to the local CPU. This register is similar in function to the Interproces-
sor Interrupt register, except that this register’s request cannot be sup-
pressed by the Interrupt Enable Mask register.

Interrupt Source Register
This register informs the CPU which of several possible events is re-
questing interrupt service. The sources are: the VMEDbus (seven lev-
els), the non-maskable interprocessor interrupt, the maskable
interprocessor interrupt, the real-time clock interrupt(s), and the “in-
terrupts disabled too long” timeout.

Interrupt Enable Mask Register
This register allows the CPU to selectively enable interrupts from cer-
tain sources — namely, from the VMEbus (each level independently),
and from the Interprocessor Interrupt register.

(T-bus) Bus Error Register

Bus Error Vector Register 3
This register, the only one in this functional group, indicates the reason
that a bus error was generated. The error is reported on the T-bus, but
may have originated elsewhere, such as in handling a switch connec-
tion.

Latency Control Registers

The latency of interrupt servicing and of access to a memory module may be
controlled with these registers. Latency is also controlled by timer registers
in the VMEDbus interface for VM Ebus transactions, and in the SIGA for switch
transactions.

Interrupts Disabled Timer Register
This register limits how long the CPU may disable certain interrupts —
namely, those from the VMEDbus, real time clock timer(s), and the
maskable interprocessor interrupt.

Interrupts Pending/Abort Retries Timer Register
This register limits how long the CPU will wait for the establishment of
a switch connection while an interrupt is pending.

CPU Lock Timer Register
This register limits how long the CPU may hold a memory module
locked.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.7.6

2.7.7

February 14, 1990

VMEDbus Interface Registers

The TC/FPV VMEDbus interface contains three general types of registers.

VMEbus Configuration Register

VMEbus Master Map RAM Registers

VMEbus Slave Map RAM Registers
These registers (the RAM locations are loosely called registers)
control the role played by the TC/FPV as a device on the VME-
bus — the location, size and mapping of the window from
VMEbus address space into TC2000 address space, the map-
ping of the window in the reverse direction, whether the
TC/FPV is system controller, and related parameters.
Figure 2-7 shows these functions.

VMEDbus Interrupt Request Register

VMEDbus Interrupt Vector/Control Register
These registers control the generation of interrupts on the
VMEbus by the TC2000 software.

VMEbus Arbiter Timer Register
VMEbus System Bus Timer Register
VMEbus TC/FPV Master Bus Timer Register
These registers control timers that detect and abort conditions

that persist too long. The first two are described in section
2.5.4, and the third in section 2.10.

SIGA Registers

The SIGA contains several registers accessible from the T-bus. These are de-
scribed in four functional groups below. The SIGA also contains registers ac-
cessible only to the TCS slave, and registers not directly accessible from
outside the chip; these are not discussed here.

Message Classification Register

Protocol Timer Configuration Register

Transmit Time Configuration Register

Priority Time Configuration Register

Requester Configuration A and B Registers

Requester Test A Register
These registers control the transmission of switch messages by
the requester portion of the SIGA.

Server Configuration A and B Registers

Server Test A Register
These registers control the reception of switch messages by the
server portion of the SIGA.

Real Time Clock (RTC) Registers

53

2: TC/FPV Function Board Inside the TC2000 Computer

2.7.8

2.7.9

54

Time Of Next Interrupt (TONI) A and B Registers

TONI A and B Configuration Registers
These registers concern timekeeping. The RTC provides a
constantly incrementing, nearly real time counter. Based on
the RTC, two TONI registers provide programmable timer in-
terrupts. These are described further in section 2.10.

Interleave Address Register (IAR)

Interleave Data Register (IDR)
These registers implement an interface, called the interleaver
loader, between the T-bus and various high speed RAMs: the
Interleaver RAM (in the switch interface), the Interleave Deci-
sion RAM and the CPU Mapping RAM (both in the CPU in-
terface), and the VMEbus Master Map RAM (in the VMEbus
interface). Accessing the RAM locations works as follows. A
read access to certain locations (near that of the IAR) causes
the contents of the IDR to be stored into, or to be loaded from,
a location (selected by the IAR) in one of the special RAMs.

Interleaver Control Registers

The TC/FPV has two kinds of registers controlling interleaving — registers
that determine whether a given access is to interleaved memory, and registers
that produce modified bits of the interleaved address.

Interleave Decision RAM Registers

CPU Mapping RAM Registers
These registers determine whether a reference generated by
the CPU is to interleaved or non-interleaved memory. For in-
terleaving to occur, an enable bit must also be set in a SIGA
configuration register.

VMEbus Slave Map RAM Registers
These registers determine whether a reference generated by
the VMEbus interface slave mapper is to interleaved or non-
interleaved memory.

Interleaver RAM Registers
These registers produce the modified address bits used in an
interleaved access. The translation takes bits from the T-bus
and supplies modified bits to the SIGA, for inclusion in the
outgoing switch message.

CPU and CMMU Registers
The Motorola 88100 CPU and 88200 CMMU contain several internal registers

for control of data processing and of caching and memory management, re-
spectively. For example, the CPU Processor Status register permits disabling

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.8

2.8.1

February 14, 1990

interrupts; disabling interrupts this way makes the CPU immune to all the
TC/FPV interrupts, including the “non-maskable” interprocessor interrupt
and the “interrupts disabled too long” timer. A more complete discussion of
CPU and CMMU registers is beyond the scope of this document. For such
a description, please refer to the 88100 User’s Manual and the 88200 User’s
Manual.

Path and Speed of References

Since the TC2000 architecture contains a variety of mechanisms controlling
and accelerating the access to addressable resources, the discussion of what
path an access takes and how much time it takes are somewhat subtle.

What Path an Access Takes

This section describes the path taken by a memory access from the TC/FPV
CPU. This description is both to clarify operation of the hardware, and to set
context for memory access timing in section 2.8.2. More detailed information
about the 88000 chip set can be found in the MC88100 User’s Manual and the
MC88200 User’s Manual.

The possible outcomes of an access are:

— a cache hit

— a fast path access to local memory

— a T-bus access to local memory

— a switch access to remote memory (including back to this function board)
— a bus error

— a transaction fault detected during address translation in the CMMU.

The CPU’s normal processing can be disrupted by any of the following excep-
tions:

e Internally, the CPU can detect and assert various exception conditions
(see the 88100 User’s Manual).

e Externally:
o Assertion of the reset pin resets the CPU.
o The CPU may be interrupted by assertion of its interrupt (INT) pin.

o A datatransaction (read or write) may encounter an error, signalled
to the CPU by a code on its Data Reply pins (11 = transaction
fault).

o A code transaction (instruction fetch) may encounter an error, sig-
nalled to the CPU by a code on its Code Reply pins (11 = transac-
tion fault).

55

2: TC/FPV Function Board

56

Inside the TC2000 Computer

The four external causes have different exception vectors assigned to them.
Reset is not of concern here, where we assume processing is in progress. Inter-
rupts are signalled only by the interrupt logic on the TC/FPV described in sec-
tion 2.10. The data and code transaction faults are signalled only by the

CMMUs.

START:

e The 88100 generates a reference. It supplies Process Logical Address
bits, supervisor/user mode bit, read/write bit, and instruction/data bit.

e One of the two (or three) CMMUs will respond, based on the instruction/
data bit and, if the reference is an instruction fetch and two code
CMMU:s are present, the code cache selection logic, as follows:

O

If the Machine Configuration register cache selection scheme bit is
zero, then Process Logical Address bit 12 selects the code cache.

If the Machine Configuration register cache selection scheme bit is
one, then the CPU’s supervisor/user mode bit selects the code
cache.

From here on, the CMMU that responds is called “the” CMMU.

e The CMMU attempts to locate a mapping for the Process Logical Ad-
dress. The possible outcomes of this process are:

@)

The CMMU may find a valid entry in its ATC with protection at-
tributes that match those of the process making the reference.

The CMMU may have to search its translation tables to find the
mapping. This involves memory references initiated by the
CMMU. If a memory error occurs on one of these references, the
CMMU returns a transaction fault to the CPU. Otherwise, it loads
the appropriate translation information into its Address Transla-
tion Cache (ATC) and translates the address.

The CMMU may find that the transaction violates the protection
specified in the selected translation register, either write protection
or supervisor mode protection. A transaction fault is returned to
the CPU.

The CMMU may find that a segment descriptor or page descriptor
that it needs is invalid. A transaction fault is returned to the CPU.

e The CMMU attempts to make the requested access, using the Physical
Address generated in the translation step. The possible outcomes are:

O

The page may be marked “cache inhibit”, that is, non-cacheable.
The access is passed on through the CMMU to the memory bus.
If a bus error occurs on the memory bus, the CMMU passes the
error back to the CPU as a transaction fault.

The CMMU may have the data cached (a cache hit). For a read,
the data is returned quickly to the CPU. For a write, the cached

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

data is overwritten with the new data. If the page being referenced
is in copyback mode and the cache line (four 32-bit words) had pre-
viously been modified, the transaction is done. If the page is in wri-
tethrough mode, or if it is in copyback mode and this is the first
write since the line was loaded into the cache, the CMMU writes
the cache line back to memory. If a bus error occurs on this write,
the CMMU returns a transaction fault to the CPU.

o The CMMU may not have the data cached (a cache miss). The
CMMU will select a cache line to replace with the desired line. If
the selected line is modified and is in copyback mode, the CMMU
must write it back to memory before replacing it. If a bus error oc-
curs on this write, the CMMU returns a transaction fault to the
CPU. If the selected line is not modified, or is in writethrough
mode, it is simply discarded. The CMMU then reads the new cache
line from memory. If a bus error occurs on this read, the CMMU
returns a transaction fault to the CPU. Having filled the cache line,
the CMMU performs the requested access, as described above for
a cache hit.

Whenever the CMMU initiates a memory reference, the CPU interface on the
TC/FPV translates the CMMU address, data and control signals, which obey
the M-bus protocol defined by Motorola, into signals that obey the TC2000
T-bus protocol. In addition to accounting for various timing differences, the
CPU interface logic performs several operations:

e Decide whether the reference can be handled by the fast path, and issue
the necessary control signals if it can.

A reference from the CPU will use the tast path only if all of the following
conditions are met: '

o The operation is a read (either code or data), not a write.
o The Machine Configuration register “fast path enable” bit is 1.

o The “fast path disable” bit of the CPU Mapping RAM entry se-
lected by the current reference is 0.

o The “local” bit of the CPU Mapping RAM entry selected by the cur-
rent reference is 1.

e Decide whether the reference should be intercepted. If the infercept ac-

cess* bit (the * is part of the name of the bit, indicating it is low true) in

. the CMR entry selected by this reference is zero, the access is intercepted.

That is, the CPU is acknowledged as if the reference has completed, but

no T-bus cycle occurs. If the reference is a read, the data returned is
undefined.

The intercept access mechanism is used for speeding up certain block
transfer operations involving the cache. Itis described further in section
223,

February 14, 1990 57

2: TC/FPV Function Board Inside the TC2000 Computer

e Generate the T-bus control signals needed to specify the path to be taken
by the address and data for this reference (if not the fast path). These
are:

o T INTERLEAVED — Generated by the Interleave Decision
RAM, subject to the CMR interleave enable bit. If this is a remote
reference, this signal indicates that the transformed address gener-
ated by the interleaver should be used by the SIGA. The CMR local
bit is ignored if the T INTERLEAVED bit is asserted.

o T PATH<1..0> — Generated by the Process Configuration regis-
ter, subject to the CPU Mapping RAM local bit and interleaving.
Indicates whether this reference should be handled by switch inter-
face A, switch interface B, or local memory.

e Generate T-bus control signals that specify other attributes of the refer-
ence:

o T PRIORITY <1..0> — Generated by the priority scheme mech-
anism. Indicates the priority of this reference in the switch. (Nor-
mally, priority should be left to the automatic hardware mechanism
used to bound switch latency.)

o BYPASS — Derived from the CPU Mapping RAM bypass bit.
When this signal is asserted, the TC2000 locking protocol is inhib-
ited and T LOCKOP is set to “bypass”.

o T LOCKOP<1.0> — Derived from the state of the Augmenta-
tion register lock bit, the DLOCK signal asserted by the 88200
CMMU during XMEM operations, and the BYPASS signal.
Opens, maintains and frees locked transactions, or bypasses locks,
according to the TC2000 locking protocol.

o T _SYNC — Generated by the synchronized access bit in the Process
Configuration register. If this is a remote reference, this signal in-
fluences the time at which the request message is allowed to enter
the switch.

o T AD<33.23> — Generated by the CPU Mapping RAM. These
bits select an 8-megabyte “bank” of memory within the System
Physical Address space global to the machine. As part of that selec-
tion, they specify the switch port that is addressed. The switch port,
however, is subject to possible further modification by the inter-
leaver. If the reference falls in a window to VMEDbus memory, the
address is subject to further modification by the VMEbus master
mapper at the addressed switch port.

e If the request is not serviced by the fast path or by the intercept access
mechanism, the CPU interface issues a T-bus request, where it may be
serviced by any of several T-bus slaves, depending on the value of
T PATH<1.0>.

58 February 14, 1990

Inside the TC2000 Computer

2: TC/FPV Function Board

o T_PATH = 11: The local memory, the VMEbus master, or the con-
figuration and control registers will respond.

o T_PATH = 10: The switch interface serving the “A” switch will is-
sue a request message, retransmitting until the request reaches its
destination or is timed out.

o T PATH = 01: The switch interface serving the “B” switch will is-
sue a request message, retransmitting until the request reaches its
destination or is timed out.

o T_PATH = 00: Illegal value.

If the reference is non-local, the SIGA at the remote end makes a request
on its local T-bus. The parameters of this request are as follows:

o The T PATH<1.0> bits are always 11.

o The T_AD<33.25> bits are driven to zero. For a local access

(T PATH = 11), the T-bus Specification rtequires that
T _AD <33.25> be driven to valid binary levels, but their value is
undefined.

o The remaining address and control bits are specified by the switch
request message.

The result of the T _PATH bits being 11 is that the the request cannot go
back out either SIGA on the remote function board, but must be served
(if at all) by a device local to that board. In the TC/FPV, this can be
memory, local configuration and control registers, or the VMEbus mas-
ter interface. In fact, the VMEDbus interface can be set up so the request
goes out onto the VMEDbus and comes back in the VMEDbus slave inter-
face, so the request could proceed further. However, use of this facility
(for other than testing) is highly contrived and risks having timers (that
help control latency) go off, aborting the connection and returning a bus
error.

When the switch reply message comes back, the SIGA acquires the T-
bus and places the requested data on it. The CPU interface takes the
data from the T-bus and hands it to the CMMU, which retains a copy
in its cache if it is a cacheable reference. The CMMU hands the data
on to the CPU, and execution resumes.

2.8.2 CPU Memory Access Timing

Figure 2-9 shows the memory access time from a TC/FPV CPU under a vari-
ety of conditions. The accompanying notes are essential. Each value shown
applies throughout its connected white space. These are generally best case
(minimum) times, as detailed further in the notes.

February 14, 1990

59

2: TC/FPV Function Board

Inside the TC2000 Computer

Figure 2-9 Memory access time (microseconds).
Cache Access Made by CPU
Read Write Read Write
Mode Activity from to from to
Local Local Remote Remote
inhibited none 0.550 0.600 1.913 1.889
writethrough | hit
0.150
copyback hit
writethrough | miss
0.850 1.200 2.529 4.168
miss with
no writeback
miss with
copyback writeback to local 1.500 1.850 3.179 4.818
miss with
writeback to remote 2.905 3.255 4.534 6.173

Notes for Figure 2-9.

1. The operating frequency of the TC/FPV characterized here is 20.0 MHz.

2. The timing shown is the full latency including the CPU’s “execute” phase
(a Motorola term for instruction decoding) and “address” phase through
completion of the access. For example, a read with a cache hit takes three
cycles (execute, address, and successful reply), a total of 0.150 microsec-
onds. The bandwidth may be greater than the reciprocal of the timing
shown, since the execute and/or address phases may be pipelined with
the processing of other instructions, depending on the mix of instruc-
tions. The maximum bandwidth is one access per cycle. Pipeline stalls
caused by recent instructions that have not yet finished are possible dur-
ing the execute and/or address phases; the timing shown assumes such
stalls are absent. For further details, see the Motorola MC88100 User’s
Manual.

3. The fast path is assumed used where possible, namely in reads (either a
burst or a single word) from non-interleaved local memory. Using the
fast path reduces the access time by 3 cycles (0.150 microseconds).

60 February 14, 1990

Inside the TC2000 Computer

February 14, 1990

10.

2: TC/FPV Function Board

The timing shown assumes that no page table walking is performed. If
the CMMU must load memory mapping information to service the ac-
cess, the time seen by the CPU is increased.

The intercept access mechanism is assumed not used. Its effect on timing
is discussed later.

If the access is augmented with the TC2000 locking protocol, the access
time in some cases may be reduced because, if a remote function board is
referenced, locking holds the switch path to it open. Therefore, if switch
transmissions were not immediate or if there was contention in the switch
or at the destination port, only the initial locked reference would be
delayed and not the subsequent references during the sequence. Howev-
er, the timing shown assumes immediate transmission and no contention,
so there is no effect due to locking on the timing shown. (The timing of
VMEDbus accesses, not discussed here, is affected by locking.)

The chart is intended to show data access timing, although the entries
relevant to an instruction fetch are also valid for that. (In an instruction
fetch, the times shown include the 1-cycle “prefetch” phase rather than
the 1-cycle “execute” phase.) The M-bus (“memory” bus, the common
output of the CMMUs) is assumed not occupied by another CMMU.
(That is, occupied by one of the two instruction CMMUs when a data
access is made, or by the data CMMU when an instruction fetch is made.)
If the M-bus is occupied, the access time shown is increased by the time
needed for that access to release the M-bus. (Note that there are sepa-
rate instruction and data P-buses, so instruction and data accesses do
not contend for the P-bus.)

The T-bus is assumed not occupied. If the T-bus is occupied, the access
time shown is increased by the time needed for that access (and any other
accesses with higher T-bus priority than the CPU) to complete. In the
TC/FPV, the CPU has the lowest T-bus priority. Note that accesses to
the VMEDbus master interface and to the switch interface split cycles on
the T-bus, releasing the T-bus for other use while the requested opera-
tion is performed.

Any memory module used in servicing the access is assumed not locked
and idle. If it is locked (via the TC2000 locking protocol), the access time
shown is increased by the time needed for the locked transaction to com-
plete and the access to be retried. The hardware performs the retry auto-
matically. (If it is a bypassed access, the timing is unaffected by the
locked status of the memory module.) If the memory module is busy —
with a refresh cycle or completing a write cycle — the access time shown
is increased by the time needed for a T-bus REFUSED reply and a new
T-bus arbitration. This is typically 2 cycles (0.100 microseconds).

When the access includes one or more references to a remote function
board, the timing shown assumes there is no contention for the T-bus
and memory on the remote function board.

61

2: TC/FPV Function Board

62

11.

12.

15.

14.

15.

16.

Inside the TC2000 Computer

The timing shown assumes the access is to non-interleaved memory. If
any reference involved in serving the access is to interleaved memory,
that reference is forced to go over the switch. If the reference would have
gone over the switch anyway, the access time is not changed. If the refer-
ence would have been serviced entirely on-board, the access time is in-
creased.

The Butterfly switch included in this characterization is a 2-column
switch and operates at a clock frequency of 38.0 MHz.

The TC/FPV contribution to access timing was calculated by accounting
for individual cycles of the board clock. The Butterfly switch contribu-
tion was calculated by a program that models the switch parameters set
to their fastest settings. In particular, immediate transmission strategy is
assumed. The timing shown would be increased, for example, by a strate-
gy that delays before the first transmission. Such a strategy may be used
to pace accesses made to a software spin lock.

The Butterfly switch timing assumes no switch contention. That is, there
is no contention for the local SIGA, for switch ports within the switch, or
for the switch port at the destination function board. If contention is
present, the access time shown is increased.

The times for specific switch transactions included in the access timing
chart are as follows:

transaction microseconds
1-word read 1.337

1-word write 1.363

4-word read 1.953

4-word write 1.729
synchronizer uncertainty 0.152 (see note)

Synchronizer uncertainty:

The TC/FPV is clocked at a different frequency than the Butterfly switch.
Therefore, each time data enters or leaves the switch, it passes through a
synchronizer, a circuit that re-clocks it to the new environment. The
delay at a synchronizer varies from no delay up to one cycle at the new
clock frequency. Each normal switch access passes through four syn-
chronizers — the request goes into and out of the switch, and the reply
does likewise. The “synchronizer uncertainty” shown above is the maxi-
mum total delay for all four synchronizations. The computation of access
timing includes one half the maximum delay, assuming that the delay is
uniformly distributed and therefore is, on the average, half the maximum.
Each switch reference incurs this synchronizer delay. For example, if the
CPU'’s access requires three switch references, the access time shown in-
cludes three times half the synchronizer uncertainty.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.8.3

2.9

2.9.1

February 14, 1990

Intercept Access and Timing

The intended use of the intercept access mechanism is to speed up the copying
of blocks of data. In this application, one typical case of its use is as follows:

e CPU access is a write to remote memory
e (Cache mode is copyback
e Cache activity is a miss with writeback to remote memory

e CMR issetup tointercept the read (The dataread in will be immediately
overwritten, so it can safely be intercepted.)

In this case, the intercept access mechanism reduces the access time seen by
the CPU from 6.173 microseconds to 4.294 microseconds, a savings of about
30 percent.

Atomicity and Locking

This section begins with general discussions of race conditions, and atomicity
and locking. Readers familiar with these topics may skip this general discus-
sion and proceed directly to section 2.9.3 without loss of continuity.

Race Conditions

The facilities described in the next section — atomicity, locking, exclusion and
synchronization — are necessary only because multiprocessing is inherently
susceptible to race conditions, also called multiprocessing hazards. A race
condition is competition between two Or MOIE€ Processes, OVET access to re-
sources that each must use, but which use can corrupt each other’s results.

For example, suppose processes A and B each need to increment a counter
N that is accessible to them both. The steps each might take are:

1. Read the value of N from its location in memory into a register.
2. Add the increment to the value in the register.

3. Wirite the register’s new value back into memory.

But suppose that the processes are executing on separate processors, or that
an operating system’s preemptive scheduler switches between the two pro-
cesses in the following unfortunate way:

Process A reads N. Suppose the value it reads is 5.
Process B reads N, getting 5 just as A did.
Process B adds its increment, say 1, getting the new sum 6.

Process B writes 6 back into memory.

63

2: TC/FPV Function Board Inside the TC2000 Computer

2.9.2

64

Process A adds its increment (1), getting its new sum 6.
Process A writes its 6 back into memory.

We now have 5 + 1 + 1 = (erroneously) 6.

Many machines support the operation of incrementing a value in memory (as
in the above example) with a single instruction. Such an instruction is called
a “read-modify-write” operation. Such an instruction usually cannot be inter-
rupted (as B interrupted A above), or if it is aborted, it is later restarted at the
read. However, on a multiprocessor machine, this is insufficient defense
against the race condition. Also needed is a way to prevent B from accessing
memory between the read and write phases of A's instruction. Such prevention
is called locking. Locking the memory location guards against the race condi-
tion and guarantees a correct answer in this example.

Race conditions are typically a concern in multiprocessing, although they can
also arise in a single processor, single process system due to interactions with
I/O devices.

A characteristic of race conditions is that they may sometimes produce the
correct answer, and sometimes an incorrect answer, depending on vagaries
such as when an interrupt occurs, or the value of numerical data (which can
affect how many instructions are needed to compute functions of the data).
Therefore, race conditions are sometimes difficult to debug. It’s important to
program with care to avoid race conditions, by using the facilities described
in the next section.

Two Sides of a Coin

Atomicity and locking are like the sides of a coin, because although they are
different, you can’t have one without the other.

We use the terms “atomicity” and “locking” to mean the following:

atomicity The indivisibility of an operation. An operation is atomic if no
other operation that might interfere with the validity or accura-
cy of its results can occur while the atomic operation is in prog-
ress. This notion derives from the Roman philosopher
Lucretius, who described physical matter as made of atoms
that cannot be divided, and a Greek word for “uncut”.

locking The act of acquiring rights to access a resource, such that no
other operation can access the resource in a way that might in-
terfere with the validity or accuracy of the locker’s access. The
access may be to read, write, or modify in more complex ways.
The resource is usually an area of memory, but could also be an
I/0 device or other data processing circuits.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

February 14, 1990

The notions of atomicity and locking are similar. Atomicity emphasizes that
the operation is not interrupted. Locking emphasizes the way that possible
interference is prevented. You can’t have one without the other, in at least
some form.

For example, consider what might happen when you make an airplane reserva-
tion. The travel agent keys in the parameters of the desired operation: flight
number, date, your name, and so on. The reservations software obtains a lock
on the data base entries it will access in performing the atomic operation of
making your reservation. To obtain this lock, it may call a locking routine.
The locking routine appears atomic to the calling software, but inside it makes
repeated attempts to obtain the lock. Each attempt is an atomic reference to
a memory location. The reference is atomic because the computer’s hardware
permits only one process to access the location at a time. This atomicity of
reference to a location is enforced by circuitry that locks the data path to the
location; only one requester circuit at a time is permitted to drive the request
signal wires. The hardware implements the locking of access to the signal wire
by the atomic decision to grant only one of possibly several access requests.
The atomicity of choosing one request among several works by the physics of
the electronic device — if a particular voltage is present, it locks out the effect
of competing forces that would produce a different voltage. We see that atom-
icity and locking support each other. An atomic operation is atomic because
it is protected by some form of lock, and it in turn may serve as a lock to secure
the atomicity of a larger operation.

A spin lock is a way to program the obtaining of a lock: try to get the lock, and
upon failure, try again right away, repeatedly until the lock is obtained. A spin
lock has two advantages and a disadvantage.

= Simplicity — It’s easy to program, and takes little space.

+ Speed, in simple cases — In the absence of complicating factors noted
below, a spin lock achieves the minimum delay between the lock be-
coming free and the requesting process obtaining it. This can be essen-
tial in some time critical applications.

— Congestion (a disadvantage) — If several processes are contending for
the lock, many of the requests are either delayed, or aborted and must
be retried. This can tie up machine resources such as the access path
to the lock location, possibly slowing other processes that aren’t even
concerned with the lock. Further, the process trying to free the lock can
experience this congestion, delaying the freeing.

The cure for congestion due to a spin lock is usually to include a small delay
in the program loop. This is like the interruption of highway traffic at an inter-
section, by a stop light. Or like the pulsing of blood through capillaries. Nei-
ther traffic, nor blood, nor spin locks work very well without pulsing when the
volume is high.

65

2: TC/FPV Function Board Inside the TC2000 Computer

66

The delay may be constant, or may increase each time the lock request fails.
The increasing delay is called backoff or pacing or throttling. To avoid repeated
bursts of lock attempts from several processes that are backing off with the
same schedule, the actual delay may be randomized. In fact, such a random-
ized, backoff strategy is one of the mechanisms used in the TC2000 switch
hardware to reduce congestion, regardless of whether locking is involved or
not.

A lock may prohibit all access, or only certain types of access. A common ex-
ample of the latter is a lock that permits only one process to write new data
into a location, but any number of processes to read data from the location.
Such a single writer, multiple reader lock is useful when one process is respon-
sible for computing the new value of the variable, and other processes can op-
erate successfully with either the old or the new value. This works well if the
writer can update the data all at once (atomically), so that no reader will see
a mixture of partly old and partly new data.

Two other terms that often appear in conjunction with atomicity and locking
are exclusion and synchronization. By these we mean:

exclusion Preventing another operation, typically performed by another
process executing on the same computer, from interfering with
an operation that the process at hand is going to perform. Ex-
clusion is like locking, but exclusion emphasizes keeping the
other processes away, while locking emphasizes obtaining one
resource (the lock) in order to gain rights to further resources.

synchronization
Ensuring that separate processes interact with each other in a
controlled manner, so that the overall computation is correct.

Mutual exclusion (or “mutex”) is how any one of several competing processes
may exclude the others, thus obtaining exclusive rights to a resource. The term,
mutual exclusion lock is perhaps redundant but nevertheless commonly used.

As an example of synchronization, suppose the simulation of chemicals in a
mixing vat is divided up among several processes, each simulating fluid in a
different area of the vat. The processes interact, because the fluid moving out
of one area moves into another area. The processes need to keep in step, or
else one will start working on garbage data in memory locations that haven’t
yet been filled by the result from the process supplying it. Locking can be used
to implement some forms of synchronization. In this example, the supplier
process can lock the memory locations that will hold the result, unlocking them
only after the result is placed there.

In the above example, processes synchronized in pairs. Each piece of data is
supplied by one specific process, and is used by another specific process. The
transfer of the data is controlled by synchronization between that pair. Anoth-
er form of synchronization, barrier synchronization, is used when several pro-
cesses must all reach a certain stage in their computations before any can

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

293

February 14, 1990

continue. This is like a roadblock in a race; all participants must check in at
the roadblock before the barrier is lifted and all are allowed to proceed. Exam-
ples of barrier synchronization often arise when each process’s computation
depends — or may depend — on results of the others. For instance, a simula-
tion of particle motion in a hot, ionized gas may be programmed as discrete
steps in simulated time. At each time step, a particle’s motion is affected by
the forces exerted on it by nearby particles. Perhaps only a fraction of all the
particles are near, but which those are varies from step to step as they all move.
Barrier synchronization is a convenient way to ensure that these forces are felt
in a controlled way. Otherwise, the simulation of some particles’ motion might
get ahead of other particles’ motion, and the proper interactions would not be
computed.

The term semaphore is often used for a mechanism, such as a lock, employed
to synchronize processes.

The following section describes atomicity and locking on the TC2000 comput-
er. The emphasis is on the primitives available to the programmer. Lower level
details are provided when they clarify or motivate the basic programming faci-
lities. Higher level constructs are mainly the responsibility of the programmer,
who uses the basic functions to build execution control mechanisms appropri-
ate to the application.

The xmem Instruction

The MC88100 CPU has one read-modify-write instruction, xmem. Xmem ex-
changes the contents of a CPU register with the contents of a memory location,
so callingit a “load-then-store” operation is more accurate than the more gen-
eral term “read-modify-write”. The load and store memory accesses are indi-
visible; only an access error on the store access can prevent the two from
occurring as a unit. The MC88100 supports this by asserting a special signal
(DLOCK), and the MC88200 CMMU honors this signal by holding on to the
M bus. The Motorola design expects the M bus to lead directly to memory,
thus ensuring that no interruption is possible and thereby guaranteeing that
Xmem is atomic.

In the TC2000 machine, however, the M bus does not lead directly to memory.
It leads to the CPU interface, which in turn connects to the T-bus, and thence
directly to local memory and indirectly over the switch to remote memory. The
TC2000 architecture is designed to honor the DLOCK signal throughout these
additional components. In particular, an xmem referencing remote memory
holds the switch path open, and holds the memory module on the remote func-
tion board locked, until the store has completed. This explicit support of xmem
in the TC2000 hardware ensures that xmem is atomic on the TC2000 computer.

67

2: TC/FPV Function Board Inside the TC2000 Computer

NOTE

2.9.4

2.9.5

68

..
...

Motorola’s MC88100 RISC Microprocessor User’s Manual contains, in section
8.4, a discussion of xmem as the basis for synchronization operations on the
88100, including examples of locking. The reader may find this a useful addi-
tional description of the topic, but should be aware that one aspect of that dis-
cussion does not apply to the TC2000 machine. Namely, TC2000 memory is
not all on one bus. In fact, none is directly on the M bus. Therefore, the shared
snooping caches described there do not exist in the TC2000 machine, so that
method of alleviating the cost of a spin lock is not available.

..
...

Atomic Functions Based on xmem

The CPU atomic instruction xmem is available in C and Fortran via library
functions that compile straightforwardly into the 4-byte and 1-byte versions
of the assembly language instruction. For details of these calls, see the TC2000
Programming Handbook, or the manual pages in the nX Programmer’s Refer-
ence.

Among its various uses, xmem may be used to obtain a lock on other data, or
the lock and data may be combined in one word as follows. The programmer
may construct an application-specific operation that is protected by a lock to
ensure atomicity by setting aside one bit of a 32-bit value as a lock. Then the
xmem instruction can be used efficiently to implement a 31-bit atomic opera-
tion. To obtain the lock, xmem is used to swap a value with its lock bit set,
with the location in memory. If the result obtained also has the lock bit set,
the location was locked and the code tries again (perhaps after a short delay).
This is repeated until the value obtained has its lock bit clear. The application-
specific operation is then performed, the flag bit is forced clear, and the result
is written back into memory. The bit chosen as a lock might be the high order
bit, the sign bit. If so, negative numbers could not appear in a location main-
tained with this mechanism. Normally, a location maintained with this mecha-
nism should not be referenced in other ways (load, store, or simple xmem)
because it is not atomic with respect to those. However, in some applications
it may be acceptable to read the location normally. For instance, if the pro-
gram is looking for a specific value of the (31-bit) counter, then the locked val-
ue is certain to not match because its high bit is set.

Atomic System Calls

The current nX operating system provides calls to perform certain frequently
used operations atomically. These are implemented with the TC2000 locking
protocol, described in section 2.9.7. They are somewhat slower than the xmem
instruction because they trap to the operating system, whereas xmem is part
of the 88100 instruction set. Therefore, if a construct (such as mutual exclu-

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

February 14, 1990

sion) can be implemented either with xmem or with one of these calls, xmem
should be used.

These calls perform two consecutive references to the target location, just as
xmem does, so they do not load the memory or switch any more than xmem.
In this respect they are preferable to user-constructed “31-bit” atomic opera-
tions described in section 2.9.4, that load the memory and switch more and
are clumsier to use.

The atomic system calls (except atomcas) can be applied to 8-, 16- or 32-bit
target locations, and the full name of the call has “8”, “16” or “32” appended
to the basic name, respectively. (For example, atomadd32 or atomior8.) Also,
several are available in both a signed and an unsigned version. In these, a “u”
is inserted between the basic name and the size suffix, to specify the unsigned
version. For further information, please consult the corresponding manual

pages.

atomadd ADD a quantity into a memory location, returning the original
contents of the location. Signed and unsigned versions.

atomand AND a mask into a memory location, returning the original
contents of the location.

atomcas compare the contents of a memory location against a compari-
son value. If the two are equal, store an update value into the
location. If the two are not equal, do not change the location.
In either case, return the original contents of the memory loca-
tion. The “cas” stands for “compare and swap”. 32-bit opera-
tion only, not 16 or 8.

atomcta clear the bits in a memory location as specified by a mask, and
then add a specified value to the result, store the sum back in
memory, and return the original value of the memory location.
The “cta” stands for “clear then add”. Signed and unsigned
Versions.

atomff0andset
find the first (most significant) “0” bit in a memory location
and set that bit to “1”, returning the bit number found, or 32 if
there was no “0” bit.

atomfflandclear
find the first (most significant) “1” bit in a memory location
and clear that bit to “0”, returning the bit number found, or 32if
there was no “1” bit.

atomior inclusive OR a mask into a memory location, returning the
original contents of the location.

69

2: TC/FPV Function Board Inside the TC2000 Computer

2.9.6

70

atomload and atomstore

load a value from, or store a value into, a memory location.
These calls are provided for portability to architectures that do
not have hardware support for the other atomic operations.
On the TC2000 machine, these translate into simple loads and
stores. On a machine that emulated the atomic operations in
software, the implementation would be more complicated.
Signed and unsigned versions.

Atomicity of Memory Accesses

As one would expect, loading or storing a byte of data is atomic. If two pro-
cesses are trying to write the same byte in parallel (that is, at the same time),
the operations get serialized — one write is performed, then the other. The
byte never ends up with some bits from one write and some from the other.
Similarly, if one process is reading a byte while another is writing it, the reader
always obtains a consistent value, either the eight bits before the write or the
eight bits after the write. This may seem an obvious point, but the operations
on larger quantities of data discussed next can be understood as analogous to
this simple case.

A halfword is two bytes, aligned on a two-byte boundary (that is, at an even
byte address). Reading or writing a halfword is atomic on the TC2000 comput-
er.

A word is four bytes, aligned on a four-byte boundary. Reading or writing a
word is atomic on the TC2000 computer.

A cache line is sixteen bytes, aligned on a 16-byte boundary. Data is stored
in the instruction and data 88200 CMMU chips, in units whose size is one
cache line. If any data in a cache line is cached, all 16 bytes are cached. When
data is read into a CMMU to fill a cache line, or when it is written from the
CMMU out to memory to flush a cache line, the four words comprising the
cache line are read or written in a rapid burst. The TC2000 hardware supports
the burst read and burst write of a cache line, by locking out any other access
to the memory that is being accessed. Therefore, filling or flushing a cache line
is atomic on the TC2000 computer. This is true whether the memory is local or
remote, or even on an attached VMEbus device (so long as the VMEbus device
is not dual ported and permitting simultaneous accesses).

Ordinarily, the CMMU hardware and the operating system software manage
the filling and flushing of cache lines, so the user is neither concerned with nor
able to control these operations. And indeed, the user never has complete con-
trol over them. But some system calls are available to permit sophisticated
programmers to implement their own caching policy.

vm_cache_setup
Specifies how a specified region of the caller’s memory is
cached.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.9.7

NOTE

February 14, 1990

vm_cache_flush
Forces data in a specified region of the caller’s cached memory
to be marked invalid and/or written out into memory.

For example, by properly controlling the caching (and alignment) of a 4-word
data structure, the user could implement application-specific atomic opera-
tions on the data, that would execute quite efficiently. There are hazards and
pitfalls, however. For instance, in the middle of what is intended to work as
an atomic sequence of instructions modifying the 4-word structure, the
CMMU or the operating system might flush the cache line to memory. If
another process could access it before it was re-loaded and the “atomic” se-
quence completed, that other process would see an inconsistent state of the
data.

For further discussion of vm_cache setup and vm_cache flush, see the
TC2000 Programming Handbook.

TC2000 Locking Protocol

The TC2000 hardware supports a locking protocol that may be used to achieve
both speed and atomicity. The basic concept is the same as that used to sup-
port the 88100 instruction, xmem, described in section 2.9.3. The resource is
locked to prevent any other access to the resource until the lock is freed. On
a remote access, the switch path is locked also, both for efficiency of subse-
quent references and to support freeing the resource (it is freed when the
switch path is torn down).

Locking is implemented as a side effect of data references to locations with
a special bit set in the mapping register used by the reference. The data refer-
ence itself establishes (opens) the lock, so locking is sometimes described as
an “augmentation” to normal instructions that load or store data.

,,
...

USE RESTRICTED TO SUPERVISOR MODE
The lock protocol is not accessible in user mode under the current nX operat-
ing system. The current pSOS* ™ operating system cannot prohibit use of the
lock protocol, since the user may enter supervisor mode, but pSOS ™™ does not
facilitate use of the lock protocol through any special features.

,,,,,,,,
................

Lockable Target Devices

There are two lockable resources in the TC2000 architecture: memory modules
and VMEbus interfaces. A memory module is all of the memory on a function
board. While a memory module is locked, no normal access to it is possible
except by the device holding the lock. (We say “normal” access because there

71

2: TC/FPV Function Board Inside the TC2000 Computer

72

is a special way to bypass locks, described later.) For example, a processor’s
access to data in local memory is delayed if a remote processor has the memory
locked.

A VMEDbus interface provides two windows, one in each direction, between
the T-bus of a function board and a VMEDbus system. (It also provides control
and interrupt functions.) The TC2000 locking protocol is supported in both
directions. The window from the T-bus (where it acts as a slave device) to the
VMEDbus system (where it acts as a master device) supports locking by holding
mastership of the VMEbus until the lock is freed. This provides atomicity of
operations arising in the. TC2000 that access VMEbus address space, unless
the VMEDbus device is dual ported to allow separate access via another path.

Lockable Switch Paths

The access paths that support locking are the T-bus and the TC2000 switch.
Each function board has a T-bus interconnecting the modules on the board;
these modules may include a CPU interface, memory, and a VMEDbus inter-
face, and a switch interface is always included. The T-bus supports locking
by transporting signals that describe each access as normal, opening (estab-
lishing) a lock, maintaining an already existing lock, or (as discussed later) by-
passing a lock. The T-bus itself serves only one access at a time, but it does
not stay locked. The target device remembers whether and by whom it is
locked, and enforces any access restrictions while it is locked. For example,
aremote CPU may lock the memory of a function board, and while it is locked
may make several accesses to it. Between those accesses, the T-bus is inactive,
and the local CPU may use the T-bus to access remote memory or its VMEbus
interface.

The TC2000 switch, when involved in a locked access, supports locking by
holding the switch path open between the function board doing the locking and
the function board on which the locked target device resides. The switch path
is kept open until the lock is freed. A locked switch path entails the following
subtleties:

e All remote references made by the locker until the lock is freed must be
to the same remote function board. Only one outgoing switch interface
exists per function board, so to reference a different remote function
board that interface would have to abandon the locked, held switch path.
Doing so would violate the locking protocol, free the lock, and result in
an error. Note that if multiple addresses in interleaved memory are ac-
cessed, their physical locations may be on different function boards even
if their virtual addresses are contiguous and/or on the same page.

e No other function board in the machine can access the target function
board until the lock is freed. Only one incoming switch interface exists
per function board, so any attempt to access that board from another
function board will be rejected (and automatically retried, eventually
succeeding but suffering delay).

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

NOTE

February 14, 1990

e In theory, the locker may hold multiple target devices on the target func-
tion board locked simultaneously, because the switch permits an “open
lock” message even though a locked transaction is already in progress.
When the locker terminates the locked sequence, all devices it had locked
on the remote function board are freed. In theory, multiple devices on
the local function board may be locked as well, but this is especially an
issue in remote locked accesses because the switch interface must explic-
itly permit it. However, no lock-generating interface (CPU interface and
VMEDbus slave interface) is implemented to generate a second “open
lock” message when it already has a lock open. Theretfore, in practice the
locker can hold only one target device locked at a time.

Generation of Locked Accesses

A locked access can arise from only two sources: the CPU and the VMEbus
interface. In the CPU interface, the lock bit in the Augmentation Register (AR)
controls locking. When the CPU makes an access (to a non-cached location)
while the lock bit of the AR is set to one, the access locks the resource ad-
dressed and, if it is a remote access, the switch path. Clearing the AR lock
bit to zero generates a special “free locks” cycle on the local T-bus, unlocking
any local locked resources. If remote resources were locked, they and the
switch path to them are also freed.

Locking is a side effect of a data reference; an instruction fetch never generates
a locked access.

--
..

CACHING AND LOCKING

The xmem instruction never operates on cached data. Circuitry in the CMMU
recognizes the xmem, and if the location is cached and is dirty (has been modi-
fied in the cache), the cached value is written out to memory. In any case, the
xmem then operates directly on memory, not on data in the cache. However,
locking using the Augmentation Register does not receive this special treat-
ment. If the CPU loads or stores a cached location while the AR lock bit is set,
the reference is serviced from the cache and the memory module is not locked.

~ As a general principle, it is best to keep locations that will be locked non-

cacheable.

...

When the VMEbus interface responds as a slave to an access on the VMEbus
that falls within the slave map window, an access into TC2000 address space
results. The VMEbus slave mapper translates the VMEbus address into a
TC2000 System Physical Address. The VMEbus slave mapper also produces
various control signals that accompany the access, one of which specifies lock-
ing. The mapping, locking and other access control signals are selected by the
high 19 bits of the VMEbus address, while the low 13 bits are passed straight
to the System Physical Address. Therefore, mapping, locking and the other

73

2: TC/FPV Function Board Inside the TC2000 Computer

74

controls have a granularity of 8-kilobyte pages. If the access from the VMEbus
falls on a page set up for locking, the reference is a locked access; otherwise,
itis not. The lock is held until the VMEbus master device originating the ac-
cess drops mastership of the VMEbus; at that time, a “free locks” cycle is gen-
erated, freeing whatever local, remote and switch path resources were locked
by the access.

Bypassing Locks

A locked target device (memory module or VMEDbus interface master mapper)
does not service normal access requests except from the locker. Instead, it re-
sponds with a “refused — locked” reply on the T-bus; the requester gets a bus
error and may try again. However, the access can be accompanied by a special
“bypass” signal that makes the locked device respond as if it were not locked.
In effect, the access bypasses the lock. Note that bypassing does not circumvent
a switch path that is being held by a locked sequence. The purpose of bypass-
ing is primarily so that the CPU can access instructions and page tables in its
local memory, even if some device has the local memory locked.

In the CPU interface, the bypass signal is generated by the CPU Mapping
RAM, and it controls 8-megabyte blocks of the address space. The software
may set the bit before the locked operation and clear it afterward. Or, the soft-
ware can maintain one or more 8-megabyte blocks as “bypass access win-
dows”, however is convenient.

In the VMEDbus slave mapper, the bypass signal is generated independently
for each 8-kilobyte page, just as the lock signal is.

Allinstruction fetches, and page descriptor fetches made by the CMMU, auto-
matically bypass locks. These are the only references that automatically by-
pass locks.

Certain data references, such as those associated with exception processing
in the CPU, should bypass locks. System software is responsible for setting
up mapping so that the following data references are mapped bypassed:

e Memory management unit page table walks (namely, segment descriptor
fetches made by the CMMU; page descriptor fetches made by the
CMMU are automatically bypassed)

e Exception vector fetches
e Supervisor stack references

e Configuration and control register references (see note below)

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

NOTE

NOTE

CAUTION

February 14, 1990

...
...

LOCK AND BYPASS — WHO WINS?

The most important effect of bypassing is to ignore locking held by someone
else. However, it can also affect your own locking, as follows. A reference
made by the CPU may be marked as locking by the Augmentation Register
lock bit. Independently, it may be marked bypass by a bit in the selected CPU
Mapping RAM register. If both bits are asserted, how does such a reference
operate? The bypass property overrides the locking property; such a reference
will not establish a lock and will circumvent a lock held by someone else.

...
..

...
..

BYPASSED ACCESS TO CPU INTERFACE REGISTERS

The configuration and control registers in the CPU interface cannot be locked,
and therefore it is not strictly necessary that they be accessed bypassed (by
mapping them bypassed). However, an attempt to lock these registers will get
a bus error, and referencing them with the xmem instruction or inside portions
of lock-generating (AR lock bit set) code may be very convenient. One simple

_way to permit these references without getting an error is to map the registers

bypassed.

L 1 11 1 11 1 111 1 1 11 1 111

BYPASSING AND XMEM

The xmem instruction normally makes a locked, read-modify-write reference.
But if the target location of the xmem is mapped bypassed, bypass overrules the
xmem and the xmem reference becomes a read reference followed by a separate
write reference. An xmem reference to an address mapped bypassed is not
atomic.

11 1 1111 1 11 11 1 1 1 111 1

75

2: TC/FPV Function Board ' Inside the TC2000 Computer

CAUTION

76

11 1 1

BYPASSING TC2000 LOCKING — USE CARE

When the application program references certain areas of memory bypassed,
the programmer should design the program with this in mind. Writing data
structures with a bypassed access into an area normally protected by TC2000
locking is questionable and potentially dangerous, because it can corrupt the
structure for all processes that access it. For instance, a bypassed write to clear
a lock that is normally accessed using xmem can leave the lock locked by no-
body. If such writing is necessary, the user should take great care, and protect
the consistency of the data through higher level flags or execution control.
Reading such data structures with a bypassed access may be less disastrous,
because its immediate effect is limited to the reader. For instance, it may catch
an inconsistent snapshot of the program’s variables, if TC2000 locking is nor-
mally used to ensure consistency. If the data structure is updated all at once —
with a single write — then reading it obtains a consistent result, either the old
state or the new, which may be acceptable in some cases.

11 1 1

Considerations in Using the TC2000 Locking Mechanism

The points listed below should be considered when using the locking mecha-
nism on the TC2000 computer.

e Use of locking is currently restricted to supervisor mode, under both nX
and pSOS* ™ operating systems.

e As noted earlier, access to remote resources during a locked sequence
is restricted to one remote function board. Remember that interleaving
spreads contiguous chunks of virtual address space among several func-
tion boards.

e Alocked sequence cannot be arbitrarily long. The CPU Lock Timer pre-
vents the CPU from holding a lock longer than its setting, with a maxi-
mum of 255 microseconds. Upon expiration, a “free locks™ cycle is
automatically generated. If a remote resource is locked, the Connection
Timer tears down the switch path when it expires, also with a maximum
of 255 microseconds. All the timers are discussed in section 2.10.

e Keeping a resource locked for a long time can adversely affect the execu-
tion speed and latency of other processors, and increases the risk of time-
outs. For example, devices in an attached VMEbus system may be more
sensitive to access latency than TC2000 function boards are. Conse-
quently, it may be advisable to set up the VMEbus slave mapper so that
its accesses bypass locks.

e If an exception occurs during a locked sequence, the exception handler
needs to know what to do after processing the exception; should it contin-
ue normally, restart the sequence, or abort (the exception is fatal to the
process)? To aid the software, the Augmentation Register contains an

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.10

February 14, 1990

exception action field. The code that uses locking can set this field to tell
the exception handler what to do.

The TC2000 lock protocol provides an efficient means to implement a great
variety of atomic operations. However, because of its current restriction to
supervisor mode, the nX application programmer must leave its use to the op-
erating system. The alternative to the hardware lock protocol is to implement
software locking using one or more of the atomic operations provided by the
system. Software locking gives the programmer a free rein to tailor the mecha-
nism and the operations it protects to suit the needs of the application, without
the time constraints of the hardware lock protocol.

Timers and Interrupts

Timers are one source of interrupts in the TC2000 computer. Figure 2-10 de-
scribes the timers in the TC/FPV function board, and is mostly self-explanato-
ry. Two timers deserve further discussion here. The Interrupts Disabled
Timer starts counting when interrupts to the CPU are disabled (by setting a
bit in the Augmentation Register). It is used to ensure that interrupts are not
disabled so long that the maximum interrupt latency desired cannot be guaran-
teed.

The Interrupts Pending / Abort Retries Timer helps limit the interrupt servic-
ing latency. Interrupts are serviced only after instructions complete. So, if an
interrupt arrives after an instruction begins a remote reference, and the setup
of the switch path encounters delay, the interrupt servicing could be delayed
undesirably. This timer starts counting when an interrupt request arrives. If
it expires, the switch interface is told to abort all connection retries until all
interrupt requests are gone.

77

2: TC/FPV Function Board

Figure 2-10

Timers in the TC/FPV.

Inside the TC2000 Computer

Name and Range

Purpose

Action on Expiration

CPU Lock Timer
1 - 255 microseconds

Interrupts Disabled Timer
1 - 255 microseconds

Interrupts Pending /
Abort Retries Timer

1 - 255 microseconds *

Reject Timer
1 microsecond -
0.49 seconds *

Connection Timer
1 - 255 microseconds *

Time Of Next Interrupt - A
(TONI-A)

1 microsecond - 1 hour *

Time Of Next Interrupt - B
(TONI-B)

1 microsecond - 1 hour *

VMEDbus Arbiter Timer
4 - 1020 microseconds

VMEbus TC/FPV Master
Bus Timer

1 - 255 microseconds

VMEDbus System Bus Timer
4 - 1020 microseconds

LOCK AND INTERRUPT TIMERS

Limit how long the CPU
may hold a lock.

Help guarantee maximum
interrupt service latency.

Help guarantee maximum
interrupt service latency.

SWITCH PROTOCOL TIMERS

Generate a FREE_LOCKS cycle. CPU

will later get a “maintain present” error.

Interrupt.

Signal SIGA to abort retries in case
connection establishment is in progress.
CPU gets bus error if retries are
aborted.

Prevent SIGA from trying
too long to establish a
connection.

Prevent switch connection
from being held open too
long.

REAL TIME CLOCK TIMERS

Bus error.

Tear down connection. CPU
gets bus error — code and timing
depend on when timer expires.

Allow software to ask for
an interrupt at a specified
time.

Allow software to ask for
an interrupt at a specified
time.

VMEbus INTERFACE TIMERS

Interrupt.

Interrupt.

Limit how long VMEbus bus
grant may be asserted without
bus busy.

Limit how long the TC/FPV
as VMEbus master may await
a response from a slave.

Limit how long any VMEbus
master may await a response
from a slave.

* Also, these timers can be disabled by software.

Arbiter removes bus grant.

Assert VMEDbus signal BERR.

Assert VMEDbus signal BERR.

The 88100 CPU has only one interrupt line, so the TC/FPV function board cir-
cuitry combines various interrupt sources into one signal applied to the 88100.

78 February 14, 1990

Inside the TC2000 Computer

2: TC/FPV Function Board

Further, the TC/FPV interrupt system provides information to the CPU allow-
ing it to determine what interrupt source(s) are currently asserted, and means
to dismiss and/or disable certain interrupts. Figure 2-11shows the logical der-
ivation of the interrupt signal presented to the 88100 CPU in the TC/FPV. The
gating is conceptual and does not necessarily reflect the gate level implementa-
tion in hardware. Note that if the 88100 has internally disabled interrupts (by
setting a bit in its Processor Status Register), none of the interrupt sources
shown in Figure 2-11 will produce an interrupt until that PSR bit is cleared.

Figure 2-11 TC/FPV interrupt derivation.

RTC TONI
register register

32+ 32r

is RTC > TONI?

yes set
status
bit

TONI_Config
register

enable
bit

from other
TONI

Interprocessor
Interrupt register

VMEDbus interrupt request lines

1123|4567
Interrupt

U

-Enable
Mask
register

Sobdols o,

is AR disable interrupts bit = 0?

yes

KEY:

Non-maskable
Interprocessor
Interrupts register

interrupts disabled
too long timer expired?

yes

interrupt to CPU

Figure 2-11 shows the derivation of the real-time timer interrupt signal for one
of the two TONI registers in the switch interface. Figure 2-12 shows this pro-

February 14, 1990

79

2: TC/FPV Function Board

Figure 2-12

2.11

80

Inside the TC2000 Computer

grammable timer mechanism in greater detail. Within the Switch Interface
Gate Array (SIGA) are two independent Time Of Next Interrupt (TONI) sys-
tems. Each system consists of a TONI register, a comparator, a configuration
register and an output signal. The SIGA compares the TONI register to its
Real Time Clock (RTC) every microsecond. The comparison sets the status
bit in the associated TONI configuration register, and also generates an inter-
rupt request if enabled. The TONI mechanism is implemented in the SIGA
for simplicity — the RTC is implemented there because it is driven by the
switch clock signal and is used in other switch message processing.

TC/FPV TONI mechanism.

interrupt
CPU
| write _ SIGA
read| | write read (tricky) read| | write
TONIA TONIB
register RTC [register
32t sofe TMHZ 451
VI
is RTC > TONIA? is RTC > TONIB?
yes yes
set status bit set status bit
._enable bit enable bit
TONIA_Config d'b [JJ TONIB_Config
register register
interrupt circuits
other interrupt sources
Bus Errors

There are a variety of conditions in the TC2000 machine that terminate CPU
cycles with a bus error. Because the number of bus error conditions is rather
large, bus error causes are prioritized and encoded. The CPU can read the
encoded information from the Bus Error Vector register and use it as an offset
into a dispatch table in the bus error handler. This mechanism is included
to improve the bus error service latency.

February 14, 1990

3

The Butterfly Switch

Figure 3-1

February 14, 1990

Importance and Name

The Butterfly switch distinguishes the TC2000 computer from many other mul-
tiprocessor designs. Its importance is reflected in the fact that the custom
VLSI chips in the TC2000 implement and support the switch; other portions
of the machine are assembled using commonly available parts.

Two-by-two crossbars.

*—O

A

Figure 3-1shows a two-by-two crossbar switch in two notations. The left dia-
gram shows two horizontal wires and two vertical wires. Each of the four inter-
sections of wires is a crosspoint. The wires at the crosspoint are normally
insulated from each other, and closing the crosspoint connects them. This dia-
gram resembles the physical construction of electromechanical crossbar
switches once used in telephone exchanges. The diagram on the right shows
two wires on the left side, each of which may be passed straight through to the
wire on the right, or may be switched over to the other wire on the right. This
diagram resembles railroad tracks, and the data flow in some Fast Fourier
Transform algorithms. Its resemblance to a butterfly is the origin of the name
“butterfly transform” in signal processing, and of the Butterfly switch.

> > S
= S =38

81

3: Butterfly Switch

3.2

3.2.1

3.2.2

82

Inside the TC2000 Computer

Function and General Structure

Provide Access to Remote Boards

The primary function of the TC2000 switch is to interconnect the function
boards so they can access each other’s address space. The main reason to ac-
cess a remote board is to access its memory. Also important, however, is ac-
cess to registers in the remote board’s CPU interface (such as the
Interprocessor Interrupt register) and VMEbus Slave Map RAM. Access to
devices on the remote board’s VMEbus system may also be important in some
applications.

A total of 20 signals to each function board support remote access. These are
described in section 3.3.

Also Distribute Signals

A secondary function of the switch hardware is to distribute machine-wide
signals. These fall into two categories, clock signals and TCS signals. They
are described briefly now; the rest of this chapter deals only with the signals
that support remote access.

e Requester clock — this signal runs at the switch clock frequency and is
used by the requester section of the LCON and the SIGA. In the SIGA,
it is divided down and runs the Real Time Clock.

e Server clock — this signal also runs at the switch clock frequency, but
is either in phase or 180° out of phase with the requester clock, as se-
lected on the machine’s clock card, to adjust for switch data cable length.
It is used by the server section of the LCON and the SIGA. No direct
effects of the server clock are visible to the 88000. Both the requester
clock and the server clock signals can be used as a CPU clock or other
on-board functions, although they are not so used in the TC/FPV.

e 65 milliseconds pulse — this signal is generated on the clock card and
fanned out via each switch requester (TC/SR) card to each function
board. It is asserted for one switch clock period every 65,536 microsec-
onds. Itis used in the SIGA’s Real Time Clock circuit and helps to keep
the RTC synchronized with those in other function boards.

e TCS master to slave — this signal originates in the TCS master and is
fanned out by the clock card to each midplane, where it is delivered to
the function boards and to the switch server (TC/SS) card. The TCSslave
processor in each of these cards receives messages from the TCS master
by receiving this signal.

e TCS slave to master — this signal carries response messages from the
function board’s TCS slave processor. The signal goes first to the switch .

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

3.2.3

Figure 3-2

server (TC/SS) card serving the function board, where it is combined with
the TCS slave to master signal from the other seven function boards, and
with the TC/SS’s own slave to master signal. That combined signal goes
to the clock card for further fan-in, and then to the TCS master.

Structure of the Switch

The TC2000 switch is introduced in chapter 1, and its general structure is cov-
ered there. Here we examine it in more detail.

First, let’s be sure we have the right image of “switch”. The TC2000 switch
is like a railroad switch, not like a light switch. A switch in railroad track con-
trols where the train goes; similarly, the TC2000 switch determines where the
remote access message goes. The railroad switch and the TC2000 switch both
determine a route, a selection from alternatives. A light switch, on the other
hand, is on or off; the power is present or absent. The light switch determines
whether something happens (the lamp is lit), and the railroad and TC2000
switches determine how something happens (where the train or message goes).

Like a railroad switch, routes are made.

% is like not like g

TC2000 railroad track switch light switch

switch

February 14, 1990

In chapter 1, we noted that the TC2000 switch (along with power and the TCS)
is a central facility to which each function board connects. Let’s look more
closely now at that attachment. Figure 3-3(a) shows the TC2000 machine as
in chapter 1, but without showing I/O systems. Also, here we show that some
places where function boards could attach to the switch may not be filled.

Figure 3-3(b) shows a close-up of how one function board attaches to the
switch. The switch provides a connection point called a switch port, to which
the switch interface portion of a function board connects.

83

3: Butterfly Switch Inside the TC2000 Computer

Figure 3-3 Switch ports in the TC2000 computer.

function
boards
()
VMEDbus interface TC/FPV
CPU, memory, etc. function
- switch interface baard
(b)
switch port

TC2000 switch

As we see in Figure 3-4, the switch port consists of two parts: a requester port
and a server port.

e The function board uses the requester port to issue requests for access
to remote function boards, and to receive replies to those requests.

e The function board supports the server port only for the benefit of other
function boards in the machine. Their requests for access to this function
board arrive on its server port, are serviced automatically by the function
board hardware, and replies are sent back out the server port.

84 February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch -

Figure 3-4

Switch port = requester port + server port.

function
board

switch
interface

req uester server
port port

my requests A their requests

their replies Y myreplies

switch
port

TC2000
switch

NOTE

February 14, 1990

Note that a reply to a given request is returned over the same path as that request.
In fact, the very same wires carry the data; the TC2000 switch is bidirectional.
This provides an important performance benefit to the user. Instead of having
to establish a new path for the reply, the path is held open so the reply can
return immediately. Holding the path does have the cost that other switch traf-
tic can’t use the individual switch elements in the path while the reply is being
prepared, but this cost is small compared to the advantage gained.

g, M M, M M, M M M M M T T g, e, T, T e, B, T,

The GP1000 computer, a predecessor to the TC2000, did not have a bidirec-
tional switch. In it, a new connection had to be established, over a new switch
path, to return the reply. Users familiar with that earlier architecture should
note this improvement in the TC2000 switch.

...
...

The switch hardware establishes a path through the switch by allocating, incre-
mentally and locally, switch hardware resources to support the path. From the
time a path through the switch is established, to the time it is torn down by

85

3. Butterfly Switch

86

Inside the TC2000 Computer

freeing the resources, we say that a connection exists. The term “path” empha-
sizes the hardware resources and the physical route through the switch, and
the term “connection” emphasizes the ability to communicate and thus to ac-
cess a remote function board.

Normally, the requester port and server port on a function board are complete-
ly autonomous. They may, and often do, handle independent connections si-
multaneously. A function board may, if desired, access itself over the switch.
In this case, both its requester port and its server port are involved in the same
connection.

Figure 3-5 shows another way to think of the function boards and the switch.
In (a), we have moved the requester and server ports to opposite sides of the
function boards. Considering the switch as a piece of paper, we then lifted
it out of the plane of the page and curled its sides forward almost into a cylin-
der. The requester port of each function board connects along one edge of the
split cylinder, and the server port connects along the other edge, as in (b). This
image emphasizes the separateness of the requester ports from the server
ports; they are on opposite “sides” of the switch!

February 14, 1990

Inside the TC2000 Computer

Figure 3-5

(a)

3: Butterfly Switch

Requester and server ports attach to switch “cylinder”.

requester function
ports boards

server
ports

TC2000

switch

February 14, 1990

TC2000

(b) switch

requests ———

\—G—

4 =T

replies

_/7
4

S~ =

requester function
ports boards

|

server
ports

87

3: Butterfly Switch

NOTE

88

Inside the TC2000 Computer

TERMINOLOGY: CROSSBAR UNIT = SWITCH NODE

In developing the conceptual description of the Butterfly switch in the follow-
ing text, the term crossbar unit is used. The term switch node is commonly
used to mean the same part of the machine.

...

Now we look inside the switch, to examine its internal structure. As Figure 3-6
shows, the TC2000 switch is composed of several linked crossbar units, ar-
ranged in columns. The requester side of the crossbar units in the first column
connects to function board requester ports. The server side of the first column
connects to the requester side of the second column. In principle, there could
be several columns — the server side of each column connecting to the request-
er side of the next column. The server side of the final column connects to func-
tion board server ports. For machines with up to 64 function boards, only two
columns are required. A 3-column switch is needed for machines with 65 func-
tion boards or more, up to the TC2000 architecture limit of 512 function
boards.

The TC2000 switch is expanded by adding crossbar units, an equal number
in both columns. This increases the total bandwidth of the switch as a whole,
so that the bandwidth available per function board remains constant and does
not become a bottleneck.

The crossbar unit is implemented as a printed circuit card: the TC/SR switch
requester card (for the first column) and the TC/SS switch server card (for the
second column). On each card, four identical Switch Gate Array (SGA) chips
together implement the crossbar function; each SGA provides one quarter of
the switching circuitry.

February 14, 1990

Inside the TC2000 Computer

3: Butterfly Switch

Figure 3-6 Columns of crossbar units.
first second
column column
/- req\SLiJée—z er Sseir(;/eer req\sl;ls—: er Sseirc\j/eer \
& Crosgbar % & crosgbar j&
? unit \ /_ unit %
% crossbar j "’ _ CrOSS_Ear %
/— unit uni \
| 7T RYY S
ports orts
on < > pon.
fboards & crossbar j {) & crossbar j_—é fboards
— unit unit
7T\ l‘\ 7T\
& crossbar j \X_ crossbar j&
— unit unit
T—\N—7 "\
Y,

Figure 3-7 shows the insides of a crossbar unit. At each of the 64 circles, the
switch can connect the two paths. The actual signals involved in each path are
shown in Figure 3-8. The eight data signals are bidirectional, and the two con-
trol signals (“frame” and “reverse”) always go in a single direction, as indi-
cated.

February 14, 1990 89

3: Butterfly Switch

Figure 3-7

to
requester

TC2000 switch crossbar unit.

ports on <

Inside the TC2000 Computer

\

to
server

function
boards

boards

Figure 3-8

to
requester
ports on
function
boards

90

Al
AAAAANAAA

Arrows show direction requests travel,
replies travel in the reverse direction.

The signals in one switch path.

~ data bit 0
data bit 1
data bit 2
data bit 3
data bit 4
data bit 5
data bit 6
data bit 7

frame

YYYYYYYYY

reverse

-
A

to
server
ports on
function
boards

February 14, 1990

ports on
function

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

TC/SS and TC/SR Cards

A pair of switch cards — one TC/SR requester card and one TC/SS server card
— provide the actual switching and interconnection in the TC2000 machine.
The pair provides the switch connections for eight function boards. Those
function boards access remote boards by sending a message into the requester
side of the switch (TC/SR). Accesses coming from remote function boards are
delivered by the server side of the switch (TC/SS).

The differences between the TC/SR and TC/SS are different clocking (noted
above), different machine-wide signals (also noted above) and only a single
TCS slave processor (on the TC/SS, serving both cards of the pair). Since these
differences do not affect connections through the switch, we canignore the TC/
SR-TC/SS distinction in describing the structure of the switch.

The heart of the switch card is four SGA chips. These chips handle the switch
connections. Other than the SGAs, the card contains a TCS slave and support
circuitry.

SGA Chip

The SGA performs a highly specialized function: it establishes connections be-
tween its input ports and its output ports. In attempting to establish a connec-
tion, it detects conflicts and resolves them by rejecting connection requests.
After a connection is established, it handles the reversal of data flow when re-
plies come back from the server. The SGA detects the end of a connection,
due either to normal termination or an error condition, and returns the circuit-
ry that supported the connection to its idle state.

The SGA chip, like the LCON and SIGA described below, has a TCS interface.
Through this interface, the TCS slave can test, monitor, and set parameters
in the chip. This interface is important in testing and configuring the machine,
but is far from the user and is not discussed further here.

LCON and SIGA Chips

The switch includes not only the switch requester (TC/SR) and server (TC/SS)
cards, but also the LCON and SIGA chips on each function board. The LCON
reclocks the signals to restore proper timing and a crisp waveform, and con-
verts the signal voltage between TTL levels used in the SIGA (and the rest of
the function board) for cost, power consumption and noise immunity, and
ECL levels used in the rest of the switch for speed.

The SIGA performs many functions — indeed, it is essentially a dedicated,
packet switching microprocessor. Among its functions are:

e SIGA requester section

91

3: Butterfly Switch

92

Inside the TC2000 Computer

o Receive requests from the T-bus, turn them into switch messages,
and transmit them into the switch

o Store the message and retransmit it repeatedly until it gets through

o Throttle the retransmissions of the message according to program-
mable parameters

o Address the message differently to use alternate paths through the
switch, if enabled to do so

o Ataregularinterval, promote the message (if any) awaiting retrans-
mission to be an express message, to bound switch latency

o Receive any switch message returned from the remote end of the
connection, extract the data, and send it on the T-bus to the module
that asked for it

o Detect error conditions and report them accordingly
e SIGA server section

o Receive switch messages, extract the operation and data parame-
ters, and perform a T-bus transaction as requested

o Ifthe operation was a read, obtain data from the T-bus, turn it into
a switch message and send the reply back into the switch

o Detect error conditions and report them accordingly

e RTC and TONI — Provide a clock, and a timer interrupt facility, for soft-
ware

e Configuration and Status unit

o Provide read and write access to programmable parameters of the
SIGA

o Support loading of certain fast mapping RAMs, including the inter-
leaver RAM — the “interleaver loader” facility

e TCS intertace unit

o Provide access from the function board’s TCS slave to the function
board’s T-bus, from where the TCS slave can access all modules
on the T-bus

o Provide the TCS slave direct access to certain functions in the SIGA

The only sections of the SIGA that are discussed in the rest of this chapter are
the requester and server sections.

February 14, 1990

Inside the TC2000 Computer

3.3

3.3.1

3.3.2

February 14, 1990

3: Butterfly Switch

Theory of Operation

Switch Message Contents

Every switch message contains certain information, and the first message on
any connection also contains further information used to establish the connec-
tion. These components are:

Header — contains the route. The header is present only in the initial
message on a connection, including any retransmissions thereof. The
rest of the message is called the body.

Command — specifies function (read or write), address, size, and lock-
ing. Present in every request message, and never in a reply message.

Data — contains information needed to perform the function specified
in the command component. The content of the data varies depending
on the purpose of the message.

o Inawrite request, the data component contains the data to be writ-
ten.

o In a reply to a successtul write request, the data component con-
tains a byte of unspecified value.

o Inareply to an unsuccesstul write request, the data component con-
tains an error code.

o In a read request, the data component is absent.

o Inareply to a successtul read request, the data component contains
the data read.

o Inareply to an unsuccesstul read request, the data component con-
tains an error code, and may contain some data read.

Checksum — contains a “checksum” to detect corruption of the message
while it traverses the switch, and a separate error indication to say an er-
ror occurred on the remote function board. The checksum component
is present in every message.

Routing a Message, Making a Path

In the TC2000 switch, these actions are all the same thing:

Deliver the initial message to the switch port it addresses.
Deliver the initial message to the function board it addresses.
Find a route through the switch for the initial message to take.

Establish a connection on which a series of requests and replies may flow.

93

3: Butterfly Switch

Figure 3-9

94

input ports

Inside the TC2000 Computer

The equivalence of these actions is a very important point in understanding
the operation of the TC2000 switch. Not all computer interconnection switches
have this equivalence, so ideas based on other architectures may not apply
here.

The initial message contains a header component, and part of that header is
the route. The route specifies a complete and exact path through the switch.
The route is prepared by the requester SIGA. It is complete before the mes-
sage leaves the SIGA, and is not changed. At each switching choice point
(crossbar unit, quartet of SGAs) along the route, the route is either granted
as specified, or is rejected. If the message is rejected, the SIGA will try again.
Different messages the SIGA receives from the T-bus may use different (but
specific) paths if there are alternate paths available in the machine, but once
a message is received by the requester SIGA, the route in that message is not
changed for retries.

The message header specifies the route by telling each crossbar unit along the
way what output port on that unit it should use. The unit’s output port is speci-
fied in local, not global, terms. For example, “your output port number 5”.
In Figure 3-9, we see that each output port has a number associated with it.
All crossbar units use the same numbering.

Output ports are locally numbered.

N

= I~
R

.
N
crossbar 3" output ports
] unit 4
5
6
7

For example, suppose the route said, “in the first column, use output port 3,
and in the second column, use output port 5”. The message would travel a path
shown in heavy lines in Figure 3-10.

February 14, 1990

Inside the TC2000 Computer

Example path through switch.

3: Butterfly Switch

Figure 3-10
§ crossbar
it
f uni
& crossbar
— unit
example /—
requester f
function
board
§ crossbar
] unit
7
% crossbar
— unit
7

crossbar %
unit
—\
example
j fser\t/_er
crossbar % %rzjzlrzn
unit =S
%\ 5)
3,then 5
crossbar %
unit
3
crossbar %
unit
3

The TC2000 switch routing has a very important property:
The message goes to the same destination,
regardless of where it entered the switch.

You may wish to convince yourself of this by trying a few other cases. Pick
any of the 32 requester side ports along the left; take the number 3 output in
the first column; and take the number 5 output in the second column. You
always arrive at the same port on the server side. We have emphasized this
by labeling that function board “3, then 5” in Figure 3-10. Similarly, a message
addressed to “4, then 2” would arrive at one particular server port, no matter
where it entered the switch; and so on for every address.

February 14, 1990

95

3: Butterfly Switch

NOTE

3.3.3

96

Inside the TC2000 Computer

It should now be clear why the four actions at the beginning of this section are
equivalent. The initial message contains a header, and in the header is the
complete route, so the switch itself does not have to do any searching to find
a route for the message. If the canned route works, then the message reaches
a unique switch server port. That server port connects to just one function
board, so the route identifies a unique function board as well. And as the ini-
tial message traverses the path defined by its route, it acquires the switch hard-
ware along that path, thus establishing a connection. These hardware
resources are allocated to the path as long as the connection exists, so requests
and replies may flow through them.

You may wonder what would happen to a message with route “1, then 5” in
Figure 3-10. Nothing is connected to output port 1, so the illustration doesn’t
tell us what would happen. In a real TC2000 machine, such auxiliary switch
ports would be jumpered to auxiliary input ports in the second column, provid-
ing alternate paths through the switch. Can you see how to wire the switch so
that route “1, then 5” will deliver any message to the same function board as “3,
then 577

T T A T

Route Format and Use

One further aspect of routing bears discussion. It is an optimization in how
the route is located in the message, and how it is processed as it goes through
the switch. The port numbers appear at the beginning of the message, with
the first column’s port choice sent into the switch first, followed by the second
column’s port choice. For example, the SIGA sends a message with route “3,
then 5” into the switch by saying: “3”, then ““5”, then the rest of the message.
(If there were a third column in the switch, the port choice for it would be sent
between the “5” and the rest of the message.)

This route format allows each crossbar unit in turn to examine the first data
it receives, use that data internally, and forward the rest of the message onward
without the port choice data it used internally. This has several important
advantages:

e The data needed to select an output port arrives first, so switching activ-
ity can begin immediately.

o Ifthe required output port is free, the resources needed can be allo-
cated quickly and the rest of the message can be forwarded without
delay.

o Ifthe output port is already in use, the message can be rejected right
away, freeing up switch resources as soon as possible.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

o Ifthe output port is at high priority, possibly due to an express mes-
sage that is just now arriving, any normal (non-express) messages
arriving and addressed to the port can be immediately rejected.

o If the required output port is free but another message has arrived
simultaneously that also requires the same port, the switch hard-
ware performs an arbitration and immediately grants the port to
one message (chosen randomly) and rejects the other, without
delay.

e Because the routing data arrives first, and is either granted the output
port or rejected very quickly, there is essentially no buffering in the
switch. This simplifies the design and reduces delay.

e FEach crossbar unit strips off the routing data it uses, leaving the next col-
umn’s routing data at the head of the forwarded message. Therefore,
each crossbar unit simply uses the first data it receives, as its routing
data. This allows all crossbar units to be identical, regardless of which
column (or where within the column) they are installed. Thus, there is
only one kind of SGA chip, used in all switch cards. This reduces cost
and enhances maintainability.

Figure 3-11 illustrates this route format and switching technique. When the
message is delivered to the destination function board, it has no header.

February 14, 1990 97

3: Butterfly Switch

Inside the TC2000 Computer

Figure 3-11 A message traverses the switch.
example
k ://(server
function
é crossbar % board
unit =
example f _\\ >
requester /— \ 5
function
board 3,then 5
A
% crossbar /3
f unit ?
f :% body —>
message as
switch sends it
body| 5 | 3 = body| 5 > to server SIGAin
server function boarc
message as message as
requester SIGA first switch column
sends it into sends it to
the switch second switch column
Using a railroad analogy, a series of switchmen would line up at the front of
the locomotive. As the train approaches each switch, the switchman at the
head of the line jumps off and throws the switch to route the train on the proper
track. The train proceeds on toward the next switch, with the switchman who
was previously second now at the head of the line. In a railroad, the switchman
who detrained might jump on the caboose as it passed; the analogy breaks
down here, because the TC2000 switch simply discards the used route data.
The message becomes slightly shorter as it travels through the switch.
3.34 Use of Alternate Paths

98

As discussed in chapter 1, the Butterfly switch in some sizes of TC2000 ma-
chine has multiple, or alternate, paths from each function board to each other
function board. In such a machine, the hardware can be set up to automatical-
ly use these paths, helping to reduce congestion within the switch. In the
TC2000, the SIGA selects a given route for an initial message before its first
transmission into the switch, and does not change that route during any retries
of the message. Different paths are used by separate initial messages, but not
by separate retries. The intent of this is to spread out switch traffic on the time
scale of connections, not on the scale of retries.

February 14, 1990

Inside the TC2000 Computer _ 3: Buitterfly Switch

3.3.5

February 14, 1990

Reject and Retry

This section describes a mechanism that the switch hardware performs auto-
matically. Under normal operation, the software is neither aware of nor af-
fected by this automatic reject and retry mechanism. However, understanding
the reject and retry mechanism is useful for these reasons:

1. Messages from the many function boards in the machine contend for
switch resources. Inappropriate programming can lead to congestion be-
yond the normal contention. There are tools (described in software docu-
mentation) for measuring the performance of your application and
detecting when that performance is degraded by congestion. Program-
ming techniques are available to then restructure the program or its data
to reduce the congestion.

2. Insituations of hardware or software failure, or extreme congestion, the
automatic retry mechanism will give up and notify the software of an er-
ror condition. If this occurs, you need to understand the retry mechanism
to understand what the error report means.

3. The reject and retry mechanism is an interesting aspect of the machine
architecture, if you like that sort of thing.

An initial message may be rejected as it travels through the switch. It is re-
jected by a crossbar unit if the output port required there is already in use (or
is given to another initial message, by arbitration). Looking at Figure 3-10,
we see there are two places the message could be rejected — one in the first
switch column, and one in the second. If the message succeeds through these
two places, it has succeeded in setting up a connection.

e An initial message is rejected it an output port it requires is busy. This
is a natural occurrence, but when it happens a lot it is termed congestion.

e The rejection may occur at any switch column. Depending on where it
occurs, it is symptomatic of congestion arising from different kinds of
software activity.

o [If it occurs at the final switch column, that is because the port to
the addressed function board is busy. Congestion of this kind hap-
pens when many function boards are accessing one particular func-
tion board (a “hot spot”) at a high rate.

o If it occurs before the final switch column — that is, within the
switch — that is because other connections are using resources
within the switch. The addressed function board’s port may or may
not be busy. Congestion of this nature happens when the software
is making extremely heavy, but spread out, use of remote access.
It can also arise as a secondary effect to hot spot congestion.

e Once an initial message makes it through the switch, the path is set up
and no rejection will occur (except for timeouts or protocol errors, which
do not occur in normal operation).

99

3: Butterfly Switch

100

Inside the TC2000 Computer

e Reply messages and request messages after the initial one are not re-
jected (except for errors as noted above).

The rejection is conveyed using the control signal “reverse”. This tells the
switch hardware in the requester direction to stop sending the message, free
up the circuitry it had allocated to the connection, and forward the reject back
along the path toward the requester. Thus a reject tears down the path, all
the way back to the requester SIGA.

When the requester SIGA receives the reject, it waits a while and then sends
the message into the switch again. The second attempt may also be rejected,
in which case the SIGA waits and retries again. The SIGA will retry the mes-
sage many times if necessary. The message is still considered an initial mes-
sage, because it is still attempting to establish a connection, no matter which
retry is going on.

Each retry is roughly like all others, but differs in these ways:

e The time interval for which the SIGA delays before making a retry will
change. This is called pacing and is described below.

e Starting when the first attempt is made, and lasting until the connection
is set up, a timer is counting. This timer limits how long the SIGA will
wait for a successful connection. If the timer expires, an error condition
is signalled to the software.

e Periodically, the SIGA is permitted to promote the priority of an initial
message it retries. This causes the message to become an express mes-
sage, which contends more strongly for switch resources, assuring that
it will soon succeed in establishing a connection. This limits switch laten-
cy, and is described further later.

Selection of Pacing Strategy

The hardware implements four strategies for pacing the injection of initial
messages into the switch. Two “random” strategies share the same algorithm
and differ only in their parameters; and two “slotted” strategies use one algo-
rithm and differ only in the parameters. System software sets the parameters
for each strategy to be the same in all SIGAs throughout the machine.

Each T-bus request for a remote access contains information about the nature
of the access, such as read or write and locked or not locked. The SIGA uses
this to select one of the four pacing strategies to govern the initial transmission
and any retransmissions of the message. (This selection is overridden, and use
of the “slotted, number 0 strategy is forced, when the CPU makes an access
with the synchronized access bit in the Process Control Register on.)

In each of the four strategies, one of its parameters can force the initial trans-
mission to be immediate rather than random or slotted. If transmission is im-
mediate, the remaining parameters are ignored for the initial transmission.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

On retransmissions, the immediate parameter is ignored, the pacing strategy
is either random or slotted, and the remaining parameters are used. The
meaning of the remaining parameters is different for a random strategy than
for a slotted strategy. Each is described below.

Slotted Strategy

The idea behind the slotted strategy is a sequence of periodic time slots. The
next time a slot arrives, the message is transmitted or retransmitted. In this
strategy, there is no dependence on which transmission is being made — ini-
tial, first retry, second retry, or whatever — except for the immediate mode
on the initial transmission.

The arrival of the slot is detected by comparing time to a given value. The time
used in the comparison is given by the Real Time Clock (RTC) and associated
prescaler circuitry in the SIGA. All RTCs in the machine are synchronized.

The slotted strategy has two parameters, the slot period and slot phase. The
slot period parameter selects)4, 1, 2 or 4 microseconds as the interval between
slots. This governs how strongly the message contends against others for
switch resources. The slot phase parameter specifies what value the low bits
of time have when the slot occurs. This permits staggering of message injection
among different SIGAs in the machine.

Two details of the slotted strategy may be of interest to some readers, and may
be skipped without loss of continuity.

1. The slot phase can be varied only within the first half microsecond of the
slot period. For example, if the slot period is two microseconds, the last
14 microseconds of it cannot be selected by any SIGA.

2. The number of possible values for the slot phase parameter depends on
the switch clock frequency; it is one half the switch clock frequency in
megahertz. For example, a 38 megahertz switch clock permits 19 differ-
ent values of slot phase.

Random Strategy

To understand the details of the random strategy, it helps to keep in mind the
general intent. The random strategy implements a modified version of “binary
exponential backoff” message transmission algorithm. The unmodified ver-
sion of this algorithm says that before each (re)transmission of a message, a
delay is imposed. The amount of this delay is doubled after each (re)transmis-
sion.

For example, suppose you are calling a friend on the telephone. You get a busy
signal, so you wait one minute and try again. You get a busy signal again, so
you wait twice as long — two minutes — and call again. Still busy! Wait four

101

3: Butterfly Switch

102

Inside the TC2000 Computer

minutes and try again. Your retries are getting less and less frequent (backing
off), at an exponential rate by doubling (base two; binary) each try.

Backoff is a common mechanism in communication networks, where it allevi-
ates congestion. Binary exponential backoff is a frequently used backoff algo-
rithm, because it behaves well and is easy to implement. The TC2000 switch
implements a modified form of this algorithm. The modification is to include
a randomization. Using the telephone analogy, the modification is to wait a
random amount of time: up to one minute before the first retry, up to two min-
utes after the first and before the second retry, up to four minutes between the
second and third, and so on.

The binary exponential backoff telephone example above has no random com-
ponent. The random strategy in the TC2000 switch employs randomness by
selecting a uniformly distributed, random delay between zero and the strict
binary exponential value. The random component helps to stagger retransmis-
sions that otherwise might continue to collide with retransmissions of other
traffic. Traffic that is coincidentally clumped gets desynchronized, so retrans-
missions from several function boards will seldom collide again and again with
each other.

If you time the telephone calls trying to reach your friend the way the TC2000
switch does, then you don’t actually double the waiting time after each call.
Instead, you wait for a random time, with that doubling time as the upper limit.
So after the first try, you wait some time between none and one minute; after
the second try, a random time between none and two minutes; next, between
no wait and four minutes; and so on. After each try, the chances of waiting
any number of seconds, between zero and the current limit, is the same as wait-
ing any other number of seconds. Figure 3-12 shows the telephone analogy
graphically.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-12 Random strategy — telephone analogy.
A limit on delay
—| before calling
64— (minutes)

of time between
zero and 32 minutes

32—f-"""""TTT Tt ot Tmmssm-ssscsso-css-ocose-e--
= for example —
= before making the
— seventh call, wait
16—5 a random amount

y > call
1 l [l I] I l number
first second third fourth fifth sixth seventh eighth

Figure 3-13 shows the TC2000 switch random pacing strategy graphically. To
better illustrate the wide range of possible delays, a logarithmic scale is used
in the figure. The random strategy algorithm has two parameters, set by sys-
tem software. The first parameter is where along the “transmission number”
axis the first transmission lies. The first transmission can be at any of the six
values labeled A through E Selecting a later value has the effect as it the mes-
sage had already been rejected and retried some number of times; the exponen-
tial backoff still occurs at the same rate, but operation begins further along
the curve.

February 14, 1990 103

3: Butterfly Switch

Figure 3-13

Inside the TC2000 Computer

Random pacing strategy.

limit on delay
before transmission
(switch clock periods)

4096 —
2048 —]
1024 —
512 —
256 —
128 —
64 —
32 —
16 —
8.—-—
4 —
o —

A

transmission

104

=
|||||| number

>_
o =
—_—
5 —
o
 —

The second parameter is how fast the algorithm proceeds along the “transmis-
sion number” axis. The system software selects one of four values for this rate.
After the message has been rejected eight times, the algorithm will have
jumped to successive marks in Figure 3-13 no times, once, twice, or three
times, depending on the rate parameter.

Certain subtleties of the random strategy may be of interest, and are listed be-
low. These can safely be skipped without loss to understanding the operation
of the machine.

1. If the rate parameter is set to “no times”, the delay limit never changes,
resulting in no backoff; the delay is randomly chosen from a constant
range.

2. The minimum delay limit is two, so — on the average — the random
strategy always has some effect on transmission timing. (Except for the
first transmission, if the “immediate” parameter is on as noted above.)

3. The minimum delay is actually one, but whether it is one or zero is unim-
portant for three reasons.

A. The unit of delay is a tick of the switch clock, and that is so short
that a tick more or less is negligible.

February 14, 1990

Inside the TC2000 Computer , 3: Butterfly Switch

February 14, 1990

B. There is a few-tick overhead in getting the message started out of
the SIGA anyhow.

C. Theprocessis (pseudo-) random, so its behavior varies anyhow. A
tick more or less is swamped by the variation.

4. The choice of delay from within the current range is essentially uniformly
distributed, but not exactly so. Its deviation from uniformity is negligible
in practice.

5. There are only twelve operational points along the “transmission num-
ber” axis, indicating that the actual transmission number (first, second,
third...) is mapped onto twelve values used in the algorithm. As the mes-
sage is repeatedly rejected, operation jumps from point to point. If the
message is rejected many times, operation would reach and later jump
from the twelfth point back to the point labeled A. That would make the
message retries suddenly become rapid, a peculiar but not damaging ef-
fect. Itis also very unlikely, because after all the delays necessary to jump
off the twelfth point, the switch reject timer (discussed later) would prob-
ably expire, aborting the message.

Using the Pacing Strategies

The TC2000 software is supplied with default pacing parameters that study
and experience have shown provide good overall performance.

The application programmer has no control over the selection of pacing strate-
gy or the parameters of the strategies, since these are set up by system software.
Awareness of the retry mechanism, however, allows the application program-
mer to design his program and data structures to avoid severe contention, and
to spot and fix congestion when it does appear.

The system programmer has complete control over the strategy selection and
parameters. Simulation of the TC2000 switch, and experience with the actual
hardware, indicates that the programmability provides a useful range of oper-
ating behaviors. Production oriented sites may find applications that place
unusual stress on the switch, where a modification to the standard default pa-
rameters can improve performance. Academically oriented sites may study
the results of varying the pacing parameters under experimental loads.

The intent of the pacing strategy design is that all traffic use the random strate-
gies (to gain the statistical benefits of asynchrony), except that references to
locations where contention is expected (such as spin locks) should use the
slotted strategies (to reduce hot spot contention). The synchronized access fa-
cility helps make this intent easy to follow, by forcing use of the “slotted, num-
ber 07 strategy based on a bit in the Process Configuration register.

105

3: Butterfly Switch

3.3.6

3.3.7

106

Inside the TC2000 Computer

Reply Messages — Bidirectional Path

A connection’s path through the switch is held open until it is explicitly re-
leased (or until an error or timeout occurs, which are abnormal). While the
path is held, messages can flow on it in either direction; the TC2000 switch is
bidirectional. In the simplest case, the data obtained in servicing a read re-
quest is returned to the requester over the path. After a write request, a reply
is also returned, telling the requester that the write succeeded or, if it failed,
what error occurred. After receiving the reply, the requester releases the con-
nection and the switch path is torn down, freeing its switching resources for
other messages to use.

Multiple Messages per Connection

Beyond the simple request-reply scenario, the requester may send another re-
quest instead of releasing the connection. This second request may be either
a read or a write, independently of what the first request was. The server per-
forms the requested action and returns a reply to it. This request-reply inter-
change may be repeated several times. Finally, the requester releases the
connection as in the simple case.

In any use of a switch connection, there is an alternation of requests and re-
plies. Each request elicits a reply, and each reply is the result of an explicit
request; the server does not “volunteer” messages.

The programmer causes a connection to be held open by using the locking fa-
cility. The lock bit in the Augmentation Register controls locking. Also, the
88000’s xmem instruction, which exchanges the contents of a CPU register and
a memory location, automatically locks the switch path for the duration of the
instruction. Either form of locking achieves atomicity of the operations per-
formed while the switch path — and remote memory — are locked. (The by-
pass augmentation is available to explicitly permit an access in spite of
locking.)

The connection cannot be held open indefinitely, whether messages are being
exchanged on it or not. When an initial message is transmitted, the Connection
Timer begins running. A reject stops the timer, and it is started again (at zero)
when the message is retried. If the timer expires and the connection is still
established, the path is torn down and an error is returned to the requester
module on the T-bus. The Connection Timer’s timeout value is set by system
software, and has a range of 1 to 255 microseconds.

The control signals frame and reverse establish a connection and delimit mes-
sages on it. The requester asserts frame during the connection, and releases
the connection by de-asserting frame. During the connection, the requester
marks the start and end of each request message by de-asserting frame for
just one switch clock cycle. Reverse is asserted by the server during each re-
sponse message. A reject is the assertion of the reverse signal for just one

February 14, 1990

Inside the TC2000 Computer

3: Butterfly Switch

switch clock cycle, and originates either at a crossbar unit during path setup,
or at the server SIGA if it is unable to accept the connection at this time. Reject
occurs only while a connection is being set up, never after it is established.
Figure 3-14 shows how frame and reverse function during a locked connec-

tion.
Figure 3-14 Frame and reverse during example connection.
frame | L] L] L]
reverse [|
data NN Pt 1 o NN
request response request response
3.3.8 Error Detection

The switch hardware detects and reports errors of various sorts, as described
below. Ineach case, the software receives a bus error and can examine an error
code to determine what error occurred. The errors detected include data cor-
ruption, protocol violations and timeouts. In the list below, the errors are
grouped according to where along the connection’s path they are detected.

1. Ifthe T-bus request violates the protocol for making a remote access, the
requester SIGA detects the error and no switch access is made.

O

Maintain present — the request asks to maintain a locked connec-
tion, but currently none exists.

Maintain absent — a locked connection exists, but the request does
not ask for a locked transaction (as by opening, maintaining or by-
passing one).

Lock address violation — a locked connection exists, and the re-
quest asks to access a switch port other than the one to which this
connection goes.

Miscellaneous CSU error — the Configuration Status Unit (a part
of the SIGA) detected an error in a request either to open a lock,
or transfer multiple words.

2. The requester SIGA detects problems with the switch connection.

O

February 14, 1990

Wait timeout — the Connection Timer expired while waiting for a
reply to a request message that had already been sent.

Idle timeout — the Connection Timer expired while no reply was
being awaited; the requester SIGA was idle.

107

3: Butterfly Switch

3.4

108

Inside the TC2000 Computer

o Reject abort — the Interrupts Disabled Too Long / Abort Retries
Timer in the CPU interface expired, forcing the SIGA to stop trying
to establish a connection. This is described further in the TC/FPV
chapter.

o Reject timeout — the Reject Timer expired, indicating that the at-
tempt to establish a connection was unsuccessful.

o Reverse — the “reverse” signal had incorrect polarity while a re-
sponse message was arriving. (The correct polarity for all cases is
somewhat complicated, and is not discussed here.) This error indi-
cates a hardware problem.

o Checksum — the checksum component of a response message was
incorrect. This error indicates a hardware problem.

Errors detected by the remote (server) SIGA are reported back over the
switch path to the local (requester) SIGA and thence to the T-bus module
that made the request.

o Downstream write — while the server was driving its T-bus, it de-
tected a write error from the T-bus slave. Because the SIGA was
driving the data lines, the slave’s actual error code is not available.

o Downstream OTL — the server made a request on its T-bus, but
the T-bus slave did not respond. (The slave was Out To Lunch!)

o Downstream late — the remote T-bus slave detected a parity error.
(The name “late” is historical, and now means only parity.)

o Downstream refused — the server thought it had established a
locked connection, but the T-bus slave responded to its request
with a refusal, claiming to be locked (as by another module).

Note that if the server SIGA receives a request message with a bad check-
sum, no reply is sent, and therefore no error is sent by the server. Instead,
the connection timer is expected to eventually time out, and that will
cause an error condition. This behavior is chosen because the bad check-
sum probably means something is wrong with the switch path, and any
reply sent back over it is likely to be garbled and ignored, or possibly mis-
understood. ’

Errors signalled normally by the remote T-bus slave are received by the
server SIGA, and the error code is conveyed back over the switch path to
the requester SIGA and its T-bus to the originator of the request. These
errors are not switch specific, and are not described here.

Features Important to the User

The features described in this section are performed automatically by the
TC2000 switch hardware, and their programmable parameters are configured

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

3.4.1

NOTE

February 14, 1990

by the system software. The application programmer benefits from them but
does not have to do anything to invoke, adjust or service them.

Locking

The need for locking in multiprocessor software is discussed in the section on
atomicity in chapter 2, and the operation of the TC2000 switch in supporting
locked operations is covered in section 3.3.7 above. The advantage to locking
is that it makes separate actions, performed together under a lock, atomic.
While a single read or write can be performed locked, there is no advantage
in doing so, because they are atomic anyway. The locking capability of the
TC2000 architecture is particularly powertul because any sequence of reads
and writes needed by the application can be performed locked. The restric-
tions on the use of locking are slight:

e The duration of the switch connection cannot exceed the Connection
Timer timeout, discussed in section 3.3.7.

e All locations referenced over a locked switch connection must be on the
same remote function board; the switch connection cannot disconnect
from one destination switch port and reconnect to another.

e The duration of the locked operation, whether or not it accesses remote
(over the switch) resources, cannot exceed the CPU Lock Timer timeout,
described in chapter 2.

e Considerations of latency and performance may make it preferable —
or necessary — to make certain references bypassed. This depends on
the application, and is described in chapter 4.

..
L T T A A

The above restrictions indicate that preventing interrupts during a locked
transaction is desirable (or writing the handler to not use the switch). A plausi-
ble implementation is to ensure that the pages to be accessed are mapped in
and resident, and then trap to the operating system kernel (that is, supervisor
mode) to perform the actual locked transaction.

''''''''''''''

For example, suppose a chemical processing system is being simulated by soft-
ware running on several TC2000 processors in parallel. One of the processors
is about to update the yield rate in a particular reaction tank. The calculation
requires a consistent set of values for the temperature, pressure, mixture of
reactants, and stirring rate. These parameters are stored in the memory of one
function board, but not the function board that is about to do the calculation.
The CPU makes a locked reference to the remote memory holding the parame-
ters, and reads their values. It now releases the connection and proceeds with
the calculation. If the calculation is quick, and the result is to be stored back
on the same function board, the connection can be held open and the updated
value written back. Writing back the results on the same locked connection

109

3: Butterfly Switch

110

Inside the TC2000 Computer

ensures that the yield rate is always consistent with the values drivingit, so long
as the application software accesses them locked.

A second example shows the use of the 88000 xmem instruction to perform
locking. Sometimes the operations you wish to perform under a lock do not
tit the requirements listed above. In the chemical processing example above,
the calculation of yield rate may be long and involved, exceeding the time a
lock may be held or a connection kept open. Or, the data may be stored in
the memories of more than one function board. Here, a standard technique
is to designate a memory location as a lock on that part of the data. By conven-
tion, the application might use location “tank_lock” to lock all the data about
this reaction tank. To update the yield rate, the routine first obtains the lock,
then reads the temperature and so forth, computes the result and writes it to
memory, and then releases the lock. In the simplest form, the lock location
contains a particular value (such as zero) to mean “not locked”, and another
value (such as one) to mean “locked”. A routine with steps such as these does
the job:

1. Use the xmem instruction to exchange the value “1” with the contents of
location tank lock. If the result is a “1”, some other processor already
had the data locked, so try again. Executing a small delay before trying
again can help avoid congestion that could arise from contention over
access to the lock location. This is analogous to the pacing strategy per-
formed automatically by the switch hardware during connection setup.

Note that the atomicity of the xmem instruction, as supported by the
TC2000 hardware and especially the switch, ensures that no other xmem
(or any locked reference) can read the location as containing “0” after we
have read it and before our “1” is written there. This is the heart and the
power of the xmem locking facility.

2. If the result is a “0”, the lock was free and you now have it. Read the
variables, compute the result and write the result back to memory. Dur-
ing this time, any other processor trying to get the lock will see a “1” in the
lock location, so they will not read or modity the tank variables.

3. Having finished the locked portion of the program, release the lock by
using the xmem instruction to exchange the value “0” with the contents of
location tank lock. The result you get back from the xmem is not impor-
tant, but can be checked for consistency (it should be a “1”).

You do not have to write assembler language to use xmem,; the higher level lan-
guages supported on the TC2000 computer have constructs to invoke it.

Often, there are more useful values to place in a lock location than just the
symbolic “locked” and “free” used in the example above. For example, the
identity of the processor or process can be used, and that aids debugging. In
general, locking mechanisms on multiprocessors is a rich topic. The interested
reader may turn to computer science literature for further information.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

3.4.2

3.4.3

February 14, 1990

Automatic Retry

Because of the shared use of switch resources, connection attempts will some-
times temporarily fail. The hardware automatically remembers what connec-
tion is being requested, and retries the connection until it succeeds. This is
described in section 3.3.5. The user is therefore freed from handling any of
the reject and retry mechanism in the application program, nor is the operating
system burdened with any of this activity.

The user does need to be aware of two aspects of remote access. First, the time
required to make a remote access is longer than for a local access. Usually
this is a small cost, but occasionally a remote access may take a noticeable
time. This effect and how it is controlled are discussed in section 3.4.3.

Second, error conditions can arise during the automatic retry. These errors
exist not because of the complex and helpful automatic retry mechanism; they
are conditions that can arise in any interprocessor communication design.
They indicate that the expected behavior of the hardware did not occur, and
therefore the software should know that something is apparently broken. The
cause could be a hardware malfunction, or it could be a software problem.
Detecting these error conditions and informing the software allows appropri-
ate action to be taken as quickly as possible. Section 3.3.8 describes the errors
detected by the switch hardware.

Latency Control

Latency is how long it takes for a requested action to take place. In regard
to the TC2000 switch, latency is how longit takes to reference a remote function
board. The major component of switch latency is the rejection and retry of
the initial message setting up the connection. Other components are relatively
small. The one exception to this is latency of accessing the resource on the
remote function board; that also is usually negligible compared to connection
setup, but could be significant in certain cases. For example, if the reference
is to VMEbus devices on the remote function board, the latency of the VME-
bus system must be considered. However, because connection setup is nor-
mally the dominant component, and because the topic of this chapter is the
switch, we will not consider such effects further here.

Without a latency control mechanism, the switch latency would be unbounded.
That is, if congestion were extremely heavy, it is possible that occasionally a
remote access would be rejected indefinitely, and never get serviced. The level
of congestion required to cause this is unlikely to arise except in a poorly struc-
tured program or in a test program written specifically to cause it. However,
there is a more insidious effect than an access that never gets serviced: accesses
that are serviced, but only after a long time.

To understand this effect of long service time, consider how long each of a large
number of accesses take to be serviced. Suppose our program makes a billion

111

3: Butterfly Switch

Inside the TC2000 Computer

accesses. Perhaps 900 million of them are serviced immediately; the first trans-
mission of the initial message succeeds in setting up the connection. And sup-
pose that congestion is moderately heavy, and ten percent of the first

‘transmissions are rejected and have to try again. That is, 100 million accesses

Figure 3-15

take at least two tries. Suppose that again 90 percent of these succeed. Ten
percent of the 100 million, or 10 million, nevertheless require at least a third
try. If the chance of success remains 90 percent on any transmission, we see
that probably one of our billion accesses will require ten transmissions before
it succeeds. This concept is shown in figure Figure 3-15. The tail of the curve
illustrates that needing many transmissions is very unlikely, but the chance
never actually goes to zero — in the absence of a latency control mechanism.

Switch latency without controls — conceptual.

chance that a remote access
will encounter the latency shown

A
99

.01
.001 —
.0001

etc.

tail

112

switch connection setup latency
(arbitrary units, either time
or number of retries)

And how long does it take to do, say, ten transmissions? That depends on the
pacing parameters. Depending on how these are set up, it could take from a

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

few microseconds (but such parameters could exacerbate congestion) to about
a millisecond. In some applications, the longer end of this range is not accept-
able. Some mechanism is needed to bound switch latency.

The TC2000 switch contains two mechanisms to bound switch latency: time-
outs, and an express message facility. The timeouts are simplest in concept,
operation and implementation. They provide a safety net, ensuring that bro-
ken hardware or unacceptable latency conditions will not go unnoticed. The
express message facility, on the other hand, clips the tail off the latency curve,
so that the timeouts should never occur unless something is really wrong. Each
is discussed below.

Timeouts

Timeouts release the resources controlled by the timer that expires, and signal
a bus error to the process that held those resources. Timeouts mainly benefit
other processes than the one that receives the error. Those other processes
— whether executing on the same function board or on another — can now
use the freed resources for purposes of their own. Without the timeout, those
processes would be slowed or stalled whenever they needed those resources.

For example, a process holding a locked connection to memory on a remote
function board monopolizes several resources: the memory itself, the switch
port to that function board, the switch card switching circuitry allocated to the
path that is held open; and the switch interface on its own function board.
Each of these resources may be needed by another activity.

There is also a benefit to the process that receives the timeout error. The error
tells the process that a problem exists. The process can then make an informed
decision to try the action again, perform cleanup activities (specific to the
application), log or report the problem, or halt — or any combination of these.

The timeouts related to switch use are the Reject Timer and the Connection
Timer. These are described in section 3.3.8. Expiration of the Reject Timer
occurs when the connection was never established. Expiration of the Connec-
tion Timer occurs when the connection setup was successtul, but the path is
being held open too long. In the latter case, different error codes inform the
process of the state of the connection when the timeout occurred: either a reply
was being awaited, or each request sent so far had received a reply.

The Interrupts Disabled Too Long / Abort Retries timeout, also listed in sec-
tion 3.3.8, is not strictly a switch timeout but does affect switch operation. This
timer is part of the CPU interface, and limits how long interrupts may be dis-
abled. This is to control the latency of interrupt servicing (as distinguished
from the latency of remote accesses). If this timer expires, it automatically tells
the SIGA in the local switch interface to abort any retry. That is, if the SIGA
prepares to refry the transmission of an initial message that has already been
rejected at least once but has not yet succeeded in setting up its connection,

113

3: Butterfly Switch

114

Inside the TC2000 Computer

the SIGA notices the timeout condition, stops retrying, and signals an error
condition.

Express Messages

The express message facility is a mechanism that helps the user by controlling
switch latency. It operates automatically and invisibly because it is implem-
ented in the switch hardware. Its parameters are initialized by system software
tovalues in configuration files, and normally never changed after startup. Nev-
ertheless, the facility is important to the user because it removes what would
otherwise be a subtle, nagging concern in accessing remote resources, the tail
of the latency curve (Figure 3-15).

The express message facility promotes the priority of a given message, to the
occasional slight detriment of other switch traffic, to ensure that it will pene-
trate congestion in the switch that otherwise could keep it retrying until timed
out.

To understand the motivation and benefit of express messages, imagine you
can watch all the connection setup activity in the TC2000 machine. Most of
the time everything is fine — connections are made quickly. Once in a while,
though, a remote access seems to have bad luck. Each time its initial message
enters the switch, it is rejected, again and again. “If only,” you say to yourself,
“that message could be given a privileged status that would let it compete more
strongly with other tratfic. Giving that status to just any message would be
unfair, but this message has already tried so long, it seems fair to give it an
advantage.” That is exactly what the express message facility does.

The express message facility is, in effect, a virtual token passed among the
function boards. When a function board holds the token, any retry it sends
into the switch is marked as an express message. Other than this marking,
the contents of an express message is the same as a normal message. In the
switch cards, the express message contends for switch node ports as normal
messages do, but in addition, each port remembers that an express message
has asked to use the port. We say that the priority of the port has been in-
creased from normal to high. In the high priority state, the port will reject nor-
mal messages that try to set up connections through it. Only an express
message can set up a connection through a port that is at high priority. There-
fore, although the express message may get rejected on this try, the port will
eventually become free and the express message will succeed on a later retry.

The express message facility places a maximum bound on the switch latency.
This bound is the time required for the virtual token to come around to a
SIGA, plus the time for the SIGA to retry the message (possibly more than
once). The effect is shown in Figure 3-16, which shows the tail of the curve
in Figure 3-15 has been cut off. Beyond a particular bound, there is no chance
that a message will take longer than that amount of time to establish a connec-
tion. (Barring broken hardware, of course, which the Reject Timer catches.)

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-16

The numerical value of this bound on latency depends on how the parameters
of the express message facility are set up by the system software.

Effect of express message facility — conceptual.

chance that a remote access
will encounter the latency shown

A
.99 —

.001 —
.0001 —

etc.

no tail

Pl
T T 11 T B B B

maximum latency switch connection setup latency

February 14, 1990

(arbitrary units, either time
or number of retries)

There are several subtleties to the express message facility. While we do not
discuss the hardware implementation and its use by software in detail here,
the interested reader may be left unsatisfied with the conceptual description
above, so we summarize the details here. This summary may be skipped with-
out sacrificing understanding of what the facility does for the user.

1. The virtual token is merely a concept; no actual token is passed. Rather,
the Real Time Clocks, which are synchronized throughout the machine,
are used in conjunction with a mask and a value in each SIGA. Using
these parameters in its registers, each SIGA detects when its priority
time slot arrives — that is, when it holds the virtual token.

115

3: Buitterfly Switch

116

10.

11.

Inside the TC2000 Computer

The mask and value parameters in each SIGA are independent of those
in other SIGAs, but the intent is that they be set consistently, to imple-
ment a regular progression of the virtual token from function board to
function board, round-robin fashion.

The mask and value parameters can be set so the time for the virtual to-
ken to circulate once is up to 65,536 microseconds. The duration that
each SIGA holds the virtual token can be from one microsecond to the
full token circulation time. Specifically, the mask and value are 16-bit
quantities, and the token is held whenever the low 16 bits of the RTC
equals the value parameter in all bit positions that are zero in the mask.

The virtual token need not be held by some SIGA at every instant; there
can be grace periods between one SIGA's priority time slot and that of the
next SIGA.

The hardware does not ensure that the switch contains at most one ex-
press message at a time. Rather, there are ways to set up the parameters
that ensure this, and others that do not. For example, it is possible to
circulate more than one virtual token.

Only retries are promoted from normal to express messages. The first
transmission of an initial message is never made an express message.

The express message facility concerns the priority of only the initial mes-
sage, the one that sets up a connection. Subsequent messages have no
priority value, which is marked in the message header that appears only
in the initial message.

The intent is that all remote accesses be submitted to the T-bus as nor-
mal priority. The hardware permits a remote access to be marked “ex
press”, but only diagnostic software should use this capability. It causes
the resulting initial message (including the first transmission) to be an
express message, so use of this by either system or application software
would compromise the latency bound for other traffic.

To be precise about which retries are promoted: After the header of an
initial message has been sent, that message is said to be awaiting retrans-
mission. If there is a message awaiting retransmission at any time during
the priority time slot, subsequent retries of that message are promoted.
This applies whether the message was already awaiting retransmission
when the slot began, or was first transmitted during the slot. It also ap-
plies whether the actual retry occurs within the slot or after the slot has
ended. Once promoted, the message retains its express priority.

A switch node output port is set to high priority by any express message
attempting to use it, whether the attempt is granted or not. If the port is
already in use, the existing connection is not affected in any way.

After becoming high priority, a switch node output port rejects all initial
messages of normal priority, until the port is reset to normal priority.

February 14, 1990

Inside the TC2000 Computer _ 3: Butterfly Switch

12. A switch node output port drops from high to normal priority by the
machine-wide signal hold being de-asserted twice (for one switch clock
cycle each time), but only if during the first de-assertion the port is idle
(no connection, of either priority, exists or is being set up), and between
the first and second de-assertions no express message arrives asking to
use the port.

13. The hold signal is generated by the clock card and distributed to all
switch cards. Itis periodically de-asserted, with a period programmable
by the TCS. The appropriate period depends on SIGA retry rate and
other factors.

14. Just as there are two switch clock signals (one for the requester side and
one for the server side, either in phase or 180° out of phase), there are two
hold signals, each synchronized to one of the switch clock signals.

February 14, 1990 117

Memory

4.1

February 14, 1990

Every resource in the TC2000 machine has a unique address within a 16-giga-
byte global System Physical Address space. This address space is accessible
to every CPU and [/O device in the machine. Thus, shared memory is the basic
mechanism for communication among function boards in the TC2000 comput-
er. By controlling access to the System Physical Address space in various ways,
many different interprocessor communication paradigms can be built on top
of this basic mechanism, ranging from strict message passing environments
where no data is explicitly shared, to unrestricted sharing of global data.

Structure

The TC2000 memory is distributed among the function boards of the machine.
In the original model of the machine, the TC/FPV is the only function board
type, and each TC/FPV contains memory. The TC2000 design also permits
function boards without memory, and function boards with only memory. The
term memory module is often used for the memory and associated circuits on
one function board. The TC/FPV board is configurable to have either 4 or
16 megabytes of memory.

From the point of hardware, the memory is shared among all function boards.
Each function board can access memory on any other function board (and of
course its own memory). Memory on another function board is called remote
memory to emphasize that accessing it takes somewhat longer; memory on the
CPU’s function board is called local memory to emphasize the speed advan-
tage in accessing it.

Memory is paged with a page size of 8 kilobytes in the nX operating system.
This page size is especially convenient because the VMEbus interface win-
dows, in both the master and the slave directions, have a granularity of 8 kilo-
bytes. The nX demand paging is relatively standard, and employs the
Motorola 88200 Cache / Memory Management Unit (CMMU) chip. Since the

119

4: Memory

NOTE

120

Inside the TC2000 Computer

CMMU'’s page size is 4 kilobytes, two adjacent CMMU pages are allocated
for each nX page.

The pSOS*™ operating system never performs demand paging, and the
pSOS* ™M application is affected by page size only for memory allocation, par-
ticulary for memory to be shared with other pSOS* ™ processes. A 4-kilobyte
page size is used here, mainly for the simplicity of using the CMMU'’s page
size.

--
...

PAGE SIZE AND INTERLEAVING

Memory interleaving (described later) has various granularities. The clump
size, within which all bytes map to the same function board, is 16 bytes. The
pattern of mapping clumps to switch ports repeats after each 8-kilobyte
boundary, but this is a minor effect. Within any 32-kilobyte quad-page, all
interleaved accesses map to the same pool of function boards. The decision of
whether a given access is interleaved or not has a 32-kilobyte (quad-page)
granularity in the CPU interface, and an 8-kilobyte (one page) granularity in
the VMEDbus Slave Mapper. It is intended that the software interleave or not
interleave memory with a 32-kilobyte granularity; the VMEbus Slave Mapper
granularity is finer because its interleave decision bit is associated with its

""

Paging permits the following advantages:
e Allocation of memory in small units (pages), reducing waste
e Access control over individual pages, providing protection and privacy

e Demand paging of program code and data into memory from disk, re-
ducing the amount of memory required to execute programs (Under the
nX operating system only; the pSOS ™™ operating system does not swap
pages to or from disk.)

TC2000 memory is mapped to achieve flexible allocation of available pages,
and to place memory windows conveniently in the address space. Mapping
occurs in the following places in the TC2000 architecture:

e References made by the CPU are mapped by one of the 88200 CMMU
chips, and by the CPU Mapping RAM.

e References made from a VMEbus system into TC2000 address space are
mapped by the VMEbus interface slave mapper.

e References made from the TC2000 address space into a VMEbus system
are mapped by the VMEbus interface master mapper.

e References made either by the CPU or from a VMEbus system, that tra-
verse the switch to access a remote function board, can be optionally
mapped by the interleaver.

February 14, 1990

Inside the TC2000 Computer 4: Memory

February 14, 1990

Access to the memory — and in general, the address space — of the TC2000
computer is protected by the CMMU. The CMMU provides both write pro-
tection and supervisor protection. Its operation is described in the MC88200
User’s Manual. Briefly, the Processor Status Register in the CPU contains a
bit defining the current mode as user or supervisor. This bit, and a bit indicat-
ing whether an access is a read or a write, are presented to the CMMU with
every access. If the requested location is mapped read-only and thisis a write
access, or if it is mapped supervisor-only and this is a user mode access, the
CMMU rejects the access and signals an error to the CPU. It is the responsi-
bility of the nX operating system to assign the appropriate permissions for
each page mapped. The nX system software further protects memory from
inappropriate access by checking privileges before mapping in pages or grant-
ing other system calls that could compromise protection and privacy.

The memory is addressable in byte, halfword (16-bit) and word (32-bit) units.
Halfword and word accesses must be aligned on halfword and word bound-
aries, respectively; an unaligned access causes a misaligned access exception
trap. (Some application execution environments may handle this trap invisi-
bly, or automatically but also tell the user.) Also, when the CMMU loads or
flushes a cache line, it makes a burst read or write of four consecutive words,
aligned on a 4-word boundary. The memory responds to a burst read or write
efficiently. (In particular, the T-bus arbitration is performed only once for the
burst. Also, if the reference is to remote memory, the data is contained in one
switch message.)

The memory supports read and write operations. Further, the memory sup-
ports the TC2000 locking mechanism. A prime example of locking is the
CPU’s xmem instruction, which first reads and then writes a memory location
while keeping the memory module locked.

Errors in memory are detected with a parity bit on each byte. A parity error
causes a bus error, with an error code indicating parity error. The machine
has a capability to intentionally write the wrong parity into memory, used in
diagnostic programs to test the memory and parity logic.

The memory employed is dynamic RAM, with refresh provided automatically
by the hardware. The impact of refresh cycles on memory latency is negligible,
as the concerned reader can see from the details below.

The memory subsystem performs a refresh cycle once every 12.8 microse-
conds. A refresh cycle requires five T-bus clock cycles (nominally 250
nanoseconds). During a refresh cycle, all T-bus requests to memory are
responded to with “REFUSED”, and the requesting module tries again.
Refresh requests have the highest priority of any request to the memory.
Refresh still occurs when the memory interface is locked.

121

4: Memory

4.2

4.2.1

122

Inside the TC2000 Computer

Design

This section discusses how the memory structure, described in section 4.1, ap-
pears to the program and the programmer. These topics affect primarily the
operating system programmer and the sophisticated pSOS * ™ user, because the
nX operating system handles most of these issues for the nX user. The nX
programmer operates mainly in the virtual address space provided by the nX
operating system.

Global Address Space

The address space of the TC2000 machine is global. This means two things:
the address space is accessible to all CPUs and VMEDbus interfaces, and the
address space uniquely addresses all resources in the machine. As we shall
see in section 4.3, we are talking here about the System Physical Address space.
The software uses mapping to restrict application programs to appropriate
portions of the global address space.

To the user, the importance of the address space being accessible to all is that
the user is not concerned with which function boards run the program. Any
function board is equally capable of executing the code and accessing the data.
Of course, I/0 devices in a VMEDbus system attached to a given function board
do make that function board more efficient for running programs that use the
devices. And, although code stored on one function board can be executed
over the switch by another function board, in practice code is stored locally
for speed of access. The considerations of I/O and code placement, however,
are much less restrictive than an architecture — unlike the TC2000 — in which
parts of the address space are inaccessible from some of the processors.

To the user, the importance of the address space uniquely addressing all re-
sources is twofold. The addressing of all resources means that there is no part
of memory or control register or window into VMEbus space that can’t be ac-
cessed. The programmer does not have to work around peculiar or patchy ad-
dressing structure; using the TC2000 address space is straightforward. The
uniqueness of the address space means that there is one, machine-wide System
Physical Address for any given location. This frees the programmer from con-
cern about which CPU is making the access, or what mode a memory is in,
or what type of operation is being performed; the TC2000 address space does
not have such dependencies.

The system programmer receives the direct benefit of the System Physical Ad-
dress space being global. The application programmer usually deals with vir-
tual, not physical, addresses. But the application programmer does gain
substantial indirect benefit from the global quality of the TC2000 address
space. In particular, the simplicity of the system software design and opera-
tion, and the program execution efficiency and speed, are possible in part be-
cause of the global nature of the address space.

February 14, 1990

Inside the TC2000 Computer

4.2.2

February 14, 1990

4: Memory

Mapping

This section describes aspects of mapping (address translation). Mapping in
the CMMU, in the CPU interface, and in the VMEDbus interface are discussed.

CMMU

Mapping is performed by the Motorola MC88200 Cache / Memory Manage-
ment Unit (CMMU) chips. Two or three of these chips are wired to each
MC88100 CPU; one CMMU services data references, while the other one or
two service instruction (code, text) references. For a thorough description of
the CMMU, please refer to Motorola’s MC88200 User’s Manual. Salient fea-
tures of the CMMU include:

e Memory management unit features:

®

Two 4-gigabyte address spaces (one for user mode, one for supervi-
sor mode)

Access protection (of supervisor memory from user mode access)
Write protection
Maintenance of “used” and “moditied” page flags

Probe capability (for testing the status of a virtual address without
actually referencing the location)

Page (4 kilobytes) — TC2000 software allocates two adjacent
CMMU pages to make each system page

e Cache features (per chip)

O

O

Separate cache chips for data and instructions

16-kilobyte, 4-way, set-associative physical cache
— There are 16 kilobytes of storage for cached data/instructions
— The unit cached (one line) is four 32-bit words

— Four lines with the same offset in their pages can be cached
simultaneously

— Each of 256 sets of four cache lines is associated with an offset
from the base of their pages; address bits 11..4 select the set

— Entries are organized by physical address
Concurrent address translation and cache access, gaining speed

Writethrough / copyback with area (4 gigabytes), segment (4 mega-
bytes) or page (4 kilobytes, paired by system) granularity

Cache inhibit with area, segment, page or block (512 kilobytes)
granularity

123

4: Memory

124

Inside the TC2000 Computer

o Cache flush and invalidate initiated selectively by software or auto-
matically by hardware

e Multiprocessor support: locking during the xmem instruction is passed
on from the CPU, through the CMMU, to the rest of the CPU interface

Largely, the memory management and caching performed by the CMMU is
invisible to the application programmer. The nX operating system in particu-
lar handles all details of the CMMU operation. Programmers using the
pSOS*™M operating system have greater ability to modify hardware parame-
ters, although direct access to the CMMU is discouraged.

Protecting Access to Registers

Under the nX operating system, memory management is used to limit access
to configuration and control registers in the TC/FPV, some on an individual
basis. The prime example of this is the Interprocessor Interrupt register.
Since the register resides on a page of its own, the nX system can control access
to it simply by controlling the access protection of the virtual page(s) mapping
the register. More explicitly, each TC/FPV contains an Interprocessor Inter-
rupt register, so the nX software can permit or prevent interrupting remote
processors by controlling the application program’s mapping of those regis-
ters. (However, the implementation of nX does not permit direct user access
to any of the CPU interface registers.)

Mapping References Bypassed

The CPU interface translates the Physical Address produced by the CMMU
into the System Physical Address placed on the T-bus. As part of this transla-
tion, the CPU interface also produces certain auxiliary control signals that de-
scribe the access. One of these is the bypass signal. When the CPU interface
determines the access is to a part of memory that is mapped “bypassed”, it
asserts the bypass signal, which in turn suppresses the TC2000 locking protocol.
Normally, the Augmentation Register (AR) determines whether an instruction
will be performed under the TC2000 locking protocol, described in section
4.4.1 and in chapters 2 and 3. Accessing certain locations and certain kinds
of data with locking would be undesirable. The hardware automatically sup-
presses locking on all instruction fetches, and on all page (but not segment)
descriptor fetches made by a CMMU. In addition, the system software maps
certain data references, especially those associated with exception processing,
in bypassed address space. For further details, see chapter 2.

While we have concentrated here on bypassed accesses made by the CPU, the
VMEDbus slave also generates bypassed accesses, under control of a bit in each
of its mapping registers.

February 14, 1990

Inside the TC2000 Computer 4: Memory

February 14, 1990

Memory Mapping under the nX Operating System

The nX application programmer deals almost exclusively with the virtual ad-
dress space provided by the nX system. The following nX system calls allow
the user to manipulate that space, indirectly affecting the mapping to physical
memory.

getphysaddr return the physical address corresponding to a virtual address
if its page is resident in memory

getmmuinfo return the physical address and memory management unit
(MMU) bits corresponding to a virtual address

vm_allocate allocate virtual memory

vm_allocate_and_bind
allocate virtual memory on a specific function board

vm_cache_flush
invalidate cached data or write it out to memory

vm_cache_setup
specify caching attributes for pages of virtual memory

vm_deallocate release access to an area of virtual memory
vm_inherit specify how to pass pages of virtual memory to child processes
vm_mapmem allocate virtual memory, or map a file for shared access

vm_mapstat
vm_mapstat_pid
get status of process’s virtual memory

vm_protect change protection of virtual memory pages
vm_statistics obtain status of system’s use of virtual memory

viI_sync write modified virtual memory pages to bufter cache or to disk
(use only with memory allocated by vm_mapmem)

vin_transfer copy virtual memory between processes

VMEbus Mapping

The VMEDbus interface contains two address mapping RAMs. When a VME-
bus device accesses a location in the window into TC2000 address space, the
VMEDbus Slave Map RAM translates the VMEDbus address into an TC2000 ad-
dress. When an access within the TC2000 machine falls within the interface’s
window into VMEbus address space, the VMEbus Master Map RAM trans-
lates the TC2000 System Physical Address into a VMEbus address.

The point above about bypassed access bears further discussion in the context
of the VMEDbus interface. For example, accesses from VMEbus devices may

125

4: Memory

4.2.3

4.2.4

126

Inside the TC2000 Computer

have more stringent latency requirements than the TC2000 computer needs,
and mapping accesses from the VMEbus into TC2000 memory as bypassed
can accommodate such requirements of the VMEbus system.

Interleaver Mapping

The interleaver optionally maps addresses from the T-bus used by the SIGA
requester in accessing remote locations. Its use is described further in section
4.5. Interleaving is not supported in the current release of the nX operating
system.

Demand Paging

The nX operating system, supported by the TC2000 hardware, performs de-
mand paging. This is invisible to the process, except for delay while the page
is made available. A description of the process is beyond the scope of this
document, but the user should be aware of the following points.

e Under the nX operating system, when a user program references a re-
mote data page, that page is copied into local memory. (Text pages are
always allocated in local memory only.)

e The nX operating system has proper memory sharing semantics for
creating child processes, so vfork is identical to fork. Programs that rely
on the temporary vfork implementation on other systems, where execu-
tion of the parent was suspended until the child exited or executed an ex-
ecve, will not work under nX. See the nX fork(2) manual page for further
details.

e Under the nX operating system, a page is “cleaned” (old contents paged
out to disk if necessary) only when a user needs it; the system does not
do predictive page-outs.

e The nX operating system pre-zeros free pages in the idle process, so that
when a new page is needed, it is often available immediately and does
not have to be cleared while the user process waits.

e The nX operating system will retrieve a page from the disk buffer cache
if it still resides there, avoiding the time penalty of reading the page in
trom disk.

Interleaving
Interleaving is not supported in the current release of the nX operating system.

However, it is a capability of the TC2000 hardware. The TC2000 interleaving
mechanism is described in section 4.5.

February 14, 1990

Inside the TC2000 Computer 4: Memory

4.3

February 14, 1990

Addressing

Figure 4-1shows components of the TC2000 machine that generate, transform
or respond to addresses. The figure uses the TC/FPV as an example. The prin-
cipal originator of addresses is the CPU. VMEbus master devices may also
generate addresses sent into the TC2000 machine, and the Test and Control
System generates addresses as part of its control and monitoring activity. The
component that responds to the most addresses is the memory. Registers, ex-
cept those internal to the CPU, are accessed by their address. VMEbus slave
devices may also occupy addresses and respond to TC2000 requests.

127

4: Memory

Inside the TC2000 Computer

Figure 4-1 Address flow.
Motorola 88100

RISC GPU

MMU and 16 or] MMU and

32 KB CACHE | 16 KB CACHE

(instruction) (data) MAIN CONFIGURATION
i ¢ MEMORY AND CONTROL
(4-16 MB) REGISTERS
CPU INTERFACE | |
master) siave slave

v i i

T-bus

<
[

)
! v 1

master slave |[€— INTERLEAVER slave master
SWITCH VMEbus
INTERFACE INTERFACE
server requester TEST & CONTROL master slave
<—| SvysTEM (TCS) er sav

128

T

==

TC2000
SWITCH

Addresses are transformed in five places. Addresses generated by a CPU are
first mapped by either its instruction CMMU or its data CMMU, depending
on the type of reference the CPU is making. Then the address is transformed
by the CPU Mapping RAM in the CPU interface, and placed on the T-bus
or sent via the fast path to local memory. An address to which the requester
SIGA responds may be taken directly from the T-bus, or part of it may be
transformed by the Interleaver. The other two address transformations occur
in the VMEDbus interface, where addresses on the T-bus are mapped to ad-
dresses on the VMEDbus, and vice versa.

February 14, 1990

Inside the TC2000 Computer 4: Memory

The remainder of this chapter discusses how the CPU accesses memory, and
how the memory system responds to accesses from any source.

4.3.1 Address Formats

The path from CPU to memory uses three address formats:
Process Logical Address
Physical Address
System Physical Address

Figure 4-2 summarizes the path of address transformation for every address
generated by the CPU.

February 14, 1990 129

4: Memory Inside the TC2000 Computer

Figure 4-2 Addressing from CPU to T-bus and switch.

CPU
Motorola 88100

!

P-bus Process Logical Address
(processor bus) (32 bits)

y

CMMU
Motorola 88200

y

M-bus Physical Address
(“‘memory’’ bus) (32 bits)
Y

TC2000 CPU interface

address transformation > T-bus ccontrol

signals (such as
local, bypass)

Y
T-bus System Physical Address
(transaction bus) on the T-bus (34 bits)

i 9 bits

address interleaving 25 bits
(optional)

9 bits

\ 4

System Physical Address
for switch access (34 bits)

The Motorola MC88100 CPU operates in the virtual address space of 32-bit
Process Logical Addresses. Examples of a Process Logical Address are an ad-
dress stored in a CPU register, or a pointer in the C language. The user’s pro-
gram sees only Process Logical Addresses, and hence a 32-bit virtual address
space. The nX operating system’s use of the page translation mechanisms in
the CMMU hides many of the details of the other two address formats and
address translation from the application-level programmer.

The Process Logical Address is a 32-bit field with no defined internal struc-
ture. See the Motorola MC88100 User’s Manual for further discussion of the
CPU operation and its use of addresses.

130 February 14, 1990

Inside the TC2000 Computer

Figure 4-3

4: Memory

Process Logical Address format.

Figure 4-4

The 32-bit Process Logical Address generated by the CPU is transformed by
a Motorola MC88200 CMMU into a 32-bit Physical Address. One CMMU
transforms data addresses, and instruction addresses are transformed by
another CMMU (either a single one, or one of a pair). For more information
on the Physical Address and operation of the CMMU, see the Motorola
MC88200 User’s Manual.

The CMMU places little constraint on how the Physical Address it produces
is interpreted. The CMMU is designed so the Physical Address could be pres-
ented directly to a memory system. The Physical Address (Figure 4-4) is 32
bits without any field definitions, because it is transformed by the CPU Map-
ping RAM.

Physical Address format.

address

1 | 1 1 | 1 1 | 1 | | 1 | 1 | I | 1 1 ! Il Il

February 14, 1990

0

The System Physical Address is unique to the TC2000 architecture, not a part
of the Motorola CPU or CMMU. It is 34 bits. The CPU intertace transforms
the 32-bit Physical Address into the 34-bit System Physical Address, and in
the process also produces other address-related signals. The System Physical
Address from the CPU interface is placed on the T-bus. It is important not
to confuse the Physical Address with the Systern Physical Address.

The Physical Address exists only going from a CMMU to the attached
CPU interface. “Physical Address” is a term employed by Motorola in
their CMMU literature. There it is sometimes called the M-bus address,
because the CMMU was designed to drive a memory bus. It is 32 bits.

The System Physical Address exists on the T-bus and in the switch. It
is the common language by which all T-bus master devices address all
T-bus slave devices. “System Physical Address” is a term detined by
TC2000 designers. It is 34 bits.

131

4: Memory

Figure 4-5

Inside the TC2000 Computer

Figure 4-5 shows the System Physical Address format and its fields. The
switch routing field specifies the path through the switch, and therefore one
of 512 slots. The address offset field addresses four 8-megabyte banks of
memory, for a total of 32 megabytes addressable per switch port. The address
space of the System Physical Address is 512 x 32 megabytes, or 16 gigabytes.
The top two bits of the address offset are a subfield called the bank bits.

System Physical Address format.

bank
switch routing address offset
| 1 1 | | | | | | | 1 i 1 1 | | 1 | | | | | I 1 | | | | Il |
33 2524 0
9 bits 25 bits
512 slots 32 megabytes

4.3.2 Address Translation
The CPU interface receives a Physical Address from one of the CMMUs, and
produces a System Physical Address that is placed on the T-bus. Figure 4-6
shows this transformation.

Figure 4-6 Physical Address to System Physical Address.

Physical Address

) (23)

v

CPU Mapping RAM

v v

© | (23)

System Physical Address

Besides the transformation of Physical Address to System Physical Address,
the CPU interface indicates whether the access is local or remote, whether it
bypasses locks, whether it may access interleaved memory, whether it may use

132 February 14, 1990

Inside the TC2000 Computer 4: Memory

4.3.3

4.4

4.4.1

February 14, 1990

the fast path to local memory, and whether it is intercepted without actually
accessing any resource. These are conveyed on separate signals and are not
strictly a part of the address.

Banks

Banks are the four 8-megabyte sections of the 32-megabyte address space at
each switch port (and therefore on each function board). The concept of banks
is necessary because the 88100 CPU and the 88200 CMMU deal only with
32-bit addresses, while the TC2000 architecture uses 34-bit System Physical
Addresses composed of 9 bits of switch port and 25 bits of address space at
each switch port. Going from 32 bits to 34 bits requires the insertion of two
bits. The design inserts these as the top two bits of the address space at each
switch port, thus identifying four 8-megabyte banks there.

Banks, being an aspect of physical addressing, are invisible to the nX applica-
tion programmer, whose code executes in virtual address space.

Features Important to the User

This section covers features of the TC2000 memory system that are of particu-
lar interest or use to the user. The previous sections present the memory more
from a design and hardware operation viewpoint, while this section is geared
more to the programmer.

Locking

The TC2000 locking protocol is supported by the memory hardware. The pro-
cessor support for TC2000 locking (and the overall concept of locking) is de-
scribed in chapter 2, the switch support in chapter 3, and the memory support
here. The memory’s interface to the T-bus implements the locking mecha-
nism, so the entire memory on the function board is locked at once, and un-
locked at once.

When a T-bus reference to memory specifies locking, and the memory inter-
face is not already locked, the memory interface performs the reference and
remembers that the memory is locked by the module making the reference.
That module may be the CPU interface, the VMEDbus slave interface, or the
switch interface (the server side). The switch interface makes references only
on behalf of a remote CPU or VMEDbus slave, not on its own. During a locked
transaction from a remote function board, the memory is held locked because
the first memory access message on the connection locked the memory, not
because the switch path is held open. (Holding the switch path does, however,
prevent any other remote function board from accessing any locations on this
function board, for the duration of the locked connection.)

133

4: Memory Inside the TC2000 Computer

While the memory is locked, only the following accesses are accepted:
e Accesses from the same module that has the lock
e Accesses from the CPU interface via the fast path

e Bypassed accesses, including all instruction fetches

All other references to memory are refused, and are retried by the requesting
module.

The memory is unlocked when the module holding it locked releases it. In the
CPU interface, this happens automatically at the end of an xmem instruction,
and explicitly by clearing the lock bit of the AR at the end of a sequence locked
by using that bit. The memory interface itself contains no timeout on being
locked; the design depends on the requesting module timing out a locked con-
dition. The CPU interface has a lock timer, and the VMEbus has an implicit
timer described in the following detail note.

The VMEDbus slave holds a lock only as long as the VMEbus signal “ad-
dress strobe” is asserted. The longest this signal is normally asserted is
during a read-modify-write operation, which is fast. If the signal were
asserted too long, such as by broken hardware in a VMEDbus device, the
VMEDbus system bus timer (optionally the one in the TC/FPV) will ex-
pire, aborting the operation.

4.4.2 Error Detection

Each byte is protected by its own parity bit. When an access (of any size) is
made that includes a byte with a parity error, the hardware responds to the
requesting module with a bus error. If the access was made by the CPU, the
Bus Error Vector register in the CPU interface can be read to determine that
the error was specifically a parity error. The return of a bus error occurs
whether the access is local or remote; in the latter case, the switch conveys the
error code back to the requesting function board.

The CPU interface can be set to write incorrect parity into memory. This is
used only by test and diagnostic programs, never in normal operation. Never-
theless, it is indirectly helpful to the user because it increases confidence that
the machine is detecting any errors that occur.

Detected Soft Error Rate

The estimated, detected soft error rate, is about once in three years per four
megabytes of memory. (This uses a chip error rate of 1000 errors per billion
hours of operation, an appropriate figure for the high (90%) confidence level
we use in design.) This is sufficient for the original model. Later models, espe-
cially ones with more than 64 function boards, may employ error correction

134 February 14, 1990

Inside the TC2000 Computer 4: Memory

4.4.3

NOTE

February 14, 1990

circuitry on their memory. There is no difficulty accommodating error correc-
tion in the TC2000 architecture.

Undetected Soft Error Rate

Using the above conservative, design chip error rate, and other plausible as-
sumptions about memory use, the undetected soft error rate is less often than
once in a billion years per four megabytes of memory. This is negligible com-
pared to other sources of error, including human error.

Hard Errors

After a soft error, the machine will reboot and all hardware can still be used.
After a hard error, the memory subsystem with the error must be replaced or
configured out of the system. The hard error rate is of importance in large
machines such as the TC2000 computer, but of less importance here than in
many other machines because of the ability to configure around failed function
boards. Experience with TC2000 machines indicates that the hard error rate
is low.

Synchronized Access to Memory

NOT IN CURRENT nX OPERATING SYSTEM

User access to the synchronized access feature is not supported in the current
nX release. The reader may skip this section without sacrifice in understand-
ing of the features available to the nX user. The nX software does, however, use
synchronized access for kernel xmem instructions and locked sequences.

""

The topic of this section is implemented in the CPU interface and the switch
interface, and concerns congestion at a server switch port, but is discussed
here in the memory chapter because of its impact is on the user’s access to
memory.

The synchronized access facility is a mechanism to help reduce contention for
access to remote memory. When many CPUs attempt to access the memory
module on one function board at a high rate, the switch port to that function
board is often busy. This contention results in frequent switch message rejects
and automatic retries, congestion in the switch, and slowed execution of pro-
grams. The memory module contended for is called a hot spot. The contention
may be over a single location (such as a lock or other shared variable), a partic-
ular area of memory (such as a shared page containing heavily referenced vari-

‘ables), or a large portion of the memory on that function board (such as a large

135

4: Memory

136

Inside the TC2000 Computer

hash table). Accesses from VMEDbus interfaces can also contribute to making
a hot spot, but CPU accesses are typically the cause.

Whatever the contended resource in the memory module (locations, pages, or
a large area), all remote references must pass through the one switch port,
making the switch port and T-bus and memory module interface a bottleneck
through which the accesses are serialized. Several approaches are available
for alleviating hot spots; one is the synchronized access mechanism. To see
this, consider a “spin lock”. A spin lock is the heavily referenced, shared data
that processes repeatedly test, as rapidly as possible, until it takes on some
awaited value. A spin lock is one of the simplest forms of synchronization
among processes, and therefore is often used. While “spinning” on the lock,
the processes heavily load the switch port to the memory module containing
the lock, creating a hot spot. Under such heavy contention, the CPU on the
same function board may also be slowed.

Hot spots can arise either through straightforward heavy loading or through
fluctuation into a region of instability. As an analogy, consider the flow of logs
down a river. If the logs are a foot in diameter, and the river is 100 feet wide,
it can hold at most 100 logs side by side. Suppose a huge log holder dumps
200 logs into the river all at once; a jam is nearly inevitable. On the other hand,
consider a smooth flow of 20 or 30 logs side by side, smoothly flowing down
the river. Suppose there is some disturbance — a log catches on a rock, for
instance. This disturbs the flow, and some logs turn sideways across the river.
Other logs catch on these, and a jam builds up. Similarly, a hot spot can arise
in smoothly operating communications if the load is heavy and a pileup is trig-
gered by some event — such as momentary heavy traffic through a switch node.
This logjam etfect can build a “warm spot” into a hot spot. And once the con-
tention is heavy, the hot spot may stay hot until operating conditions change.
Another reason that a spin lock hot spot stays hot is that the process holding
the lock and now ready to free the lock, also encounters heavy contention,
needlessly delaying the freeing of the lock.

The TC2000 software environment provides profiling and diagnostic tools the
user may employ to detect and diagnose hot spot behavior (the tool gist is an
example), and programming techniques to reduce or avoid it. Sometimes, even
the switch transmit and receive lights on function boards will show the user
an unintended switch traffic volume to a particular board or between particu-
lar boards.

The synchronized access facility operates by forcing the switch interface to use
a particular one of the four possible pacing strategies explained in the switch
chapter. (In particular, the “slotted, number 0” strategy is used.) The facility
is enabled by a bit in the Process Control register in the CPU interface. When
the facility is enabled, any remote access the CPU makes will use that one pac-
ing strategy. The parameters of that strategy may be initialized by system soft-
ware to pace switch transmissions appropriately for references that are
expected to encounter (and therefore add to) contention. In this application,
the delay before initial transmission can be quite important, not just the pacing

February 14, 1990

Inside the TC2000 Computer 4: Memory

CAUTION

4.4.4

February 14, 1990

of retries. Slightly delaying every access to a spin lock, for instance, reduces
or avoids the logjam behavior. This frees the programmer from putting explicit
pacing in his program. It is appropriate whenever the program accesses
shared data that is likely to be referenced concurrently by several processors.

1 1 1 111 1

A TREATMENT NOT A CURE

Software backoff is much more important in reducing spin lock load than the
synchronized access facility is. Using synchronized access makes spinning
“not as bad”, but it still isn’t a good programming practice when several pro-
cessors may be contending for the lock.

1 1 1 1 1 1 1111 1 11111 111 1 1

In the current release, the nX operating system uses the synchronized access
feature for kernel xmem instructions and locked sequences. It is possible that
it may be used in the future in additional ways:

e The operating system can use it for its own references (besides xmem and
locked sequences) to remote, shared data for which contention is likely

e The operating system can grant explicit or implicit requests from appli-
cation code, surrounding references to heavily referenced, shared, re-
mote data

e The operating system can permit the application process to enable and
disable this facility itself, providing the above functionality but without
the overhead of a system call

The pSOS ™ ™ user is not prevented from using the synchronized access facil-
ity, since the pSOS*™ user may enter kernel (supervisor) mode.

Optimizing CMMU Use

The nX philosophy is that memory management, caching and demand paging
are invisible to the application program and generally support the user’s needs
well. For most applications this is entirely true. Occasionally, however, an
application has particular needs that can be better met by taking some cogni-
zance of how these operations work in the hardware, and how the nX software
employs them.

For example, a program might be analyzing the different physical shapes (con-
formations) that a drug molecule can assume, looking for shapes that minimize
total energy (because those are most likely). Such a program might compute
intensely, with a relatively small number of data pages. If the data resides in
the cache, the calculation will proceed significantly faster than if each refer-
ence is to main memory.

There are different optimizations to consider. Some apply to one application,
others to another. The following discussions provide a bridge for the program-

137

4: Memory

138

Inside the TC2000 Computer

mer to cross the gap between the raw hardware design and the purely software
descriptions of system calls. The analysis of which optimizations could benefit
a given application is left to the programmer. The topics are:

e Distributing data structures
e Localizing data references
e Reducing page fault rate

e Wiring down data pages

e Reducing page table walks

e Increasing cache hit rate

The topics chosen for discussion below apply especially to the TC2000 ma-
chine. Other, more general optimization techniques are described adequately
in computer science literature and are not covered here. (That includes com-
piler options for optimizing space or run time, restructuring algorithms for
parallel execution, reducing subroutine calling, coding critical routines-in as-
sembly language, trading off memory use and execution speed, avoiding the
packing and unpacking of bit fields, and so on.)

Distributing Data Structures

If a data structure frequently referenced by several processors resides entirely
on one function board, then a hot spot can develop involving the switch path
to that function board, the switch server interface there, the T-bus, and the
memory module. This phenomenon is described in section 4.4.3. Besides mo-
difying the access strategy to that one function board (as the synchronized ac-
cess mechanism described there does), the data structure may be spread out
over several function boards. This can dramatically improve the program per-
formance. The Uniform System library, for example, provides the scatter ma-
trix facility for distributing the rows or columns of a matrix among a group
of function boards, for applications using the Uniform System. For further
information on scatter matrix, please refer to Uniform System documentation.
Distributing parts of a data structure that is conceptually one whole is an idea
that any application program may implement in its own way, even if not using
the Uniform System.

Localizing Data References

Access over the TC2000 switch to data stored on a remote function board is
slower than access to data stored locally. When the cost of remote access limits
program performance, performance improves when data resides in the
memory of the function board that most often references it. Another tech-
nique to localize data references is to make a local copy of data that will be
heavily referenced. The local copy may be only temporary, if the heavy refer-
ence is only temporary. For example, a program that multiplies matrices might

February 14, 1990

Inside the TC2000 Computer 4: Memory

February 14, 1990

copy into local memory the row or column that is heavily used in each execution
of the inner loop.

Reducing Page Fault Rate

When the nX operating system removes a page from the working set of a pro-
cess, and the process later refers to a location in that page, the reference is
suspended while the page is made available. If this page-out activity is pre-
vented, program performance improves.

A simple way to reduce page-out is to reduce the demand on virtual memory
by restructuring the process and/or its data. The following programming prac-
tices work toward this end.

e Use compact data structures; don’t waste space

e Consider running fewer processes, or processes that use less memory, on
the affected function boards

e If memory on an affected function board is allocated to processes run-
ning on other function boards, redirect this allocation

One can imagine a process knowing that soon it will reference a page that is
not currently resident, and asking the nX system to page it into memory while
the process continues execution instead of being suspended. This is contrary
to the nX design philosophy, and no direct way to do this is provided. Anindi-
rect means toward this end is to have another process (such as a child that
shares the given page with its parent) reference the page. This causes the nX
software to bring the page into memory, so that when the parent references
it, the delay will be substantially smaller. This is rather contrived, and is more
useful as a thought exercise than as a general technique in practice.

Wiring Down Data Pages

The nX operating system provides a means to insist that specified data pages
remain in memory. Data pages can be wired down to prevent the nX system
from paging them out. Application software can tell the nX system to wire
down pages of virtual memory by using the vm_mapmem system call. In the
current release of the nX operating system, text pages of user space cannot be
wired down.

Wiring down pages is more drastic than the good, general programming prac-
tices that simply reduce demand for memory. Wiring down pages has the pow-
er to cripple the operation of the nX system, and should be used only when
necessary and only with care. To wire down pages, user group “wheel” access
privilege is required.

139

4: Memory

140

Inside the TC2000 Computer

Reducing Page Table Walks

Even if the nX system removes no pages from the process’s working set, per-
formance may be reduced by another aspect of memory management — page
table walks. Compared to page-out, page table walking is usually a minor ef-
fect. To the programmer needing a small improvement in performance, howev-
er, the effect could make the difference.

The memory management implemented by the CMMU includes on-chip Ad-
dress Translation Caches (ATCs). If the ATCs do not contain the information
needed to translate a virtual address, the CMMU automatically fetches that
information from memory and places it in the ATCs. Therefore, the program-
mer needs to understand the use of ATCs in order to know what restructuring
of the program would improve performance. Below are the basics of this use.

Each CMMU contains two ATCs: the Block Address Translation Cache
(BATC) and the Page Address Translation Cache (PATC). There are ten en-
tries in the BATC, each translating a 512-kilobyte block. Eight are program-
mable, and two are hard-wired to map control memory (the top megabyte of
supervisor space). The eight programmable BATC entries are maintained by
software. However, the nX operating system allocates user memory on the ba-
sis of pages, and has no provision for allocating such a large (halt megabyte,
aligned on a half-megabyte boundary) block to users. The nX system uses all
the BATC entries for system purposes; no user process address space is mapped
through the BATC.

The PATC, on the other hand, is maintained entirely by the CMMU. Its 56
entries are dynamically shared between supervisor and user page mapping.
The PATC contains the 56 most recently used page translation entries. There-
fore, an application process may use all 56 entries. However, after the operat-
ing system (including interrupt routines) runs, some or all of those entries will
be replaced, and page table walks will occur as they are needed. Our interest
here is to minimize page table walks while our process is running — there is
nothing we can do in the application program to keep PATC entries from other
processes when they need them.

Each PATC entry maps one 4-kilobyte CMMU page (under the nX system,
pages are 8 kilobytes, two adjacent CMMU pages). So the 56 PATC entries
map 56x4 = 224 kilobytes. Therefore, as long as the process references at
most 224 kilobytes, it will suffer no additional page table walks. Those 224 kilo-
bytes need not be contiguous; they may be in any 56 different 4-kilobyte
CMMU pages (each 4-kilobyte aligned).

Note that the above discussion applies independently to each CMMU — the text
being executed may fall in up to 56 different 4-kilobyte CMMU pages, and the
data may reside in up to 56 different 4-kilobyte CMMU pages. (Under the
nX system, text and data are never stored in the same page.) If the function
board is configured with two code CMMUs, executed text may occupy up to
112 different 4-kilobyte CMMU pages without causing more page table walks.

February 14, 1990

Inside the TC2000 Computer 4. Memory

CAUTION

February 14, 1990

Increasing Cache Hit Rate

As with page table walks, some cache misses are unavoidable, but the rate can
be affected by the structure of the program and its data.

The CMMU'’s “data cache” (to distinguish it from the Address Translation
Caches), like the PATC, is managed entirely by the CMMU. Its entries cannot
be sequestered by the operating system or by user processes.

The cache in each CMMU is 16 kilobytes, organized as described in section
4.2.2. 'To incur no cache misses beyond those unavoidably resulting from ex-
ecution of nX system software and other user processes, our process must re-
strict its accesses to 16 kilobytes. This area may be 16 kilobytes of contiguous
memory, but other distributions are also possible. Specifically, the 16 kilo-
bytes referenced have to contain at most four 4-word lines at each offset within
their pages. For details, please refer to the MC88200 User’s Manual, or to the
summary in section 4.2.2.

Thus, it may help to pack code and data tightly, so each fits into 16 kilobytes.
(Or into 32 kilobytes of code, if the function board has two code CMMUss.)
The nX system and C and Fortran provide limited means to control the conti-
guity of text routines or data structures. Some techniques that can help are:

e Routines that are combined into a single routine occupy contiguous loca-
tions. (However, if routines are called from more than one place, putting
them in-line requires multiple copies of them. This will expand the over-
all code size, working against a high cache hit rate.)

e Routines that appear next to each other in the source, and are in the same
module/file, are more likely to be next to each other in the executable
image than routines that are separated in the source.

e Data structures that are combined into one structure, or stored in one
array, occupy contiguous locations.

e Data structures that appear next to each other in the source, and are in
the same module/file, are more likely to be next to each other in the ex-
ecutable image than data structures that are separate in the source. K

1 1 11 1 11 111 11111 11 1 1 1

The techniques marked K are heuristic only and are not guaranteed.

L1 1 1 1 11 111111 111111 1

141

4: Memory

NOTE

4.4.5

4.5

4.5.1

142

Inside the TC2000 Computer

,,
..

MAPPING DATA NON-CACHEABLE

Occasionally, an application may benefit from inhibiting the caching of data
structures referenced in certain ways. For example, a large hash table or bit
array, referenced often but at random addresses, will place cache entries in the
CMMU that are rarely used again before they are dropped from the cache,
possibly displacing entries that will be used again soon. Another example is
rapid references to single locations on successive pages of a large array. In
such situations, the pages holding the data structure can be marked non-
cacheable by using the vin_cache_setup nX system call. This can reduce the
number of cache misses. (In contrast, vin_cache_setup is typically used to
mark shared data cacheable.)

There is no analogous way to inhibit the page table walks in such situations,
but page table walking is less of a problem because the PATC replaces the least
recently used of its 56 entries. The cache replaces the least recently used of
the four lines that match the within-page offset of the reference.

..
..

Interleaving

Interleaving is not supported in the current release of the nX operating system.
When and if it is supported, it could aid the user by reducing the contention
for data stored in a given memory module and accessed by several function
boards. The TC2000 interleaving mechanism is described in section 4.5.

Interleaving

The discussion of interleaving begins with introductory discussion that the ad-
vanced reader may wish to skip.

Please note that the current release of the nX operating system does not sup-
port interleaving. The following discussion describes the general concept of
interleaving, how the TC2000 interleaving hardware works, and how it could
be used by software.

Overview of Interleaving

Interleaving is a form of address mapping. A range of addresses that the CPU,
and therefore the program, sees as contiguous is mapped into several sub-
ranges that lie in separate memory subsystems. The first several addresses go
to one memory subsystem, the next several addresses to a different memory
subsystem, the next several to yet another, and so on. Often there are more
sub-ranges