
,, '

Inside the TC2000™ Computer

Part No. A370014G10
Document Rev: A

BBN Advanced Computers Inc.

Revision: First Release

Copyright © 1990 by BBN Advanced Computers Inc.
ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of
BBN Advanced Computers Inc. (BBN ACI).

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(l)(ii)
of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

BBN Advanced Computers Inc
10 Fawcett St.

Cambridge MA 02138

RELEASE LEVEL

This manual conforms to the February 1990 TC2000™ multiprocessor hardware ..

NOTICE

BBN ACI has prepared this manual for the exclusive use of BBN customers, personnel, and licensees. The
information in this manual is subject to change without notice, and should not be construed as a commitment by
BBN ACI. BBN ACI assumes no responsibility for any errors that appear in this document.

TRADEMARKS

Butterfly is a registered trademark of Bolt Beranek and Newman Inc.
Chrysalis, TC2000, nX, Uniform System, Xtra, Gist, and Total View are trademarks of Bolt Beranek and Newman

Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
DEC, VAX, and VT are registered trademarks of Digital Equipment Corporation.
VMS, VAXNMS, MicroVAX, Ultrix, and DECnet are trademarks of Digital Equipment Corporation.

IBM and IBM PC are registered trademarks of International Business Machines Corporation.
Multibus and Intel are registered trademarks of Intel Corporation.
The X Window System is a trademark of the Massachusetts Institute of Technology.
MC68000, MC68020, MC68881, MC68882, MC68851, MC88000, MC88100, MC88200, and VMEbus are

trademarks of Motorola Semiconductor Products, Inc.
QTC and Math Advantage are registered trademarks of Quantitative Technology Corporation.
pSOS, psos+, pSos+m, pRISM, pUCP, pREP/C, pROBE, and pHILE are trademarks of Software

Components Group, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.
TeleSoft and TeleGen2 are trademarks of Telesoft.
Sun Microsystems and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
OSN, ONC, NeWS, and NFS are trademarks of Sun Microsystems, Inc.
4.2BSD and 4.3BSD are trademarks of the Trustees of the University of California.
Ethernet is a registered trademark of Xerox Corporation.

ii February 14, 1990

(

,

BBN ACI thanks the following contributors for their efforts in developing this manual:

February 14, 1990

Author:
Michael Beeler

Designers and Reviewers:
Dave Barach
Tom Downey

Jim Gibson
John Goodhue

Phil Herman
Kent Hoult

Larry Kaplan
Becky Mercuri

Rich Schaaf
Julie Tiao

iii

Contents
; =--=~ ~;===::::;

- - - - -

Chapter Page

How to Use This Manual xiii

1 Structure of the TC2000 Computer . 1
1.1 Basic Characteristics . 1
1.2 Architecture . 2
1.3 System Components . 4

1.3.1 Physical Structure . 4
1.3.2 Logical Structure . 10

1.4 Machine Specifications . 24
1.4.1 Computational Specifications . 24
1.4.2 Environmental Specifications . 25

1.5 Equivalent but Distinct Function Boards . 26
1.5.1 The nX Master Function Board . 26
1.5.2 Clusters . 27
1.5.3 Physical Slots . 27
1.5.4 Slot Numbering . 28

2 The TC/FPV Function Board . 31
2.1 Organization . 31
2.2 Processor, CMMU and CPU Interface . 33

2.2.1 TC2000 Physical Address Space . 33
2.2.2 88000 Access to Global Memory . 34
2.2.3 Block Transfer and the CMR Intercept Access Bit . 36
2.2.4 The Local Bit in the CMR . 37
2.2.5 The Interleave Enable Bit in the CMR . 38
2.2.6 The Bypass Bit in the CMR . 39
2.2.7 The Fast Path Disable Bit in the CMR . 39
2.2.8 CMR Block Diagram . 40
2.2.9 CMR Power-up and Disabled State . 40
2.2.10 CMMU and CPU Interface Affect Address Use . 41

2.3 Memory . 42
2.4 Switch Interface . 42

2.4.1 References to Remote Function Boards . 43
2.4.2 References from Remote Function Boards . 43

February 14, 1990 v

Contents Inside the TC2000 Computer

2.4.3 More Switch Interface Features . 44
2.4.4 Interleaver . 44

2.5 VMEbus Interface . 45
2.5.1 VMEbus Master Mapper . 46
2.5.2 VMEbus Slave Mapper . 47
2.5.3 VMEbus Interrupt Handling and Generation . 48
2.5.4 VMEbus System Controller Functions . 49

2.6 TCS Slave . 49
2.7 Configuration and Control Registers . 50

2.7.1 User Registers . 50
2.7.2 Configuration Registers . 51
2.7.3 Interrupt System Registers . 51
2.7.4 (T-bus) Bus Error Register 52
2.7.5 Latency Control Registers... 52
2.7.6 VMEbus Interface Registers 53
2.7.7 SIGA Registers . 53
2.7.8 Interleaver Control Registers . 54
2.7.9 CPU and CMMU Registers . 54

2.8 Path and Speed of References . 55
2.8.1 What Path an Access Takes , 55
2.8.2 CPU Memory Access Timing . 59
2.8.3 Intercept Access and Timing , 63

2.9 Atomicity and Locking . 63
2.9.1 Race Conditions . 63
2.9.2 Two Sides of a Coin . 64
2.9.3 The xmem Instruction . 67
2.9.4 Atomic Functions Based on xmem . 68
2.9.5 Atomic System Calls 68
2.9.6 Atomicity of Memory Accesses . 70
2.9.7 TC2000 Locking Protocol . 71

2.10 Timers and Interrupts . 77
2.11 Bus Errors . 80

3 The Butterfly Switch . 81
3.1 Importance and Name . 81
3.2 Function and General Structure . 82

3.2.l Provide Access to Remote Boards . 82
3.2.2 Also Distribute Signals . 82
3.2.3 Structure of the Switch . 83

3.3 Theory of Operation . 93
3.3.l Switch Message Contents . 93
3.3.2 Routing a Message, Making a Path . 93
3.3.3 Route Format and Use . 96
3.3.4 Use of Alternate Paths . 98
3.3.5 Reject and Retry · ·. 99
3.3.6 Reply Messages - Bidirectional Path . 106
3.3.7 Multiple Messages per Connection . 106
3.3.8 Error Detection . 107

3.4 Features Important to the User . 108
3.4.l Locking . 109
3.4.2 Automatic Retry . 111
3.4.3 Latency Control , . 111

vi February 14, 1990

Inside the TC2000 Computer Contents

4 Memory 119
4.1 Structure . 119
4.2 Design . 122

4.2.1 Global Address Space . 122
4.2.2 Mapping : . 123
4.2.3 Demand Paging . 126
4.2.4 Interleaving . 126

4.3 Addressing . 127
4.3.l Address Formats . 129
4.3.2 Address Translation . 132
4.3.3 Banks . 133

4.4 Features Important to the User . 133
4.4.1 Locking . 133
4.4.2 Error Detection . 134
4.4.3 Synchronized Access to Memory . 135
4.4.4 Optimizing CMMU Use 137
4.4.5 Interleaving . 142

4.5 Interleaving . 142
4.5.l Overview of Interleaving . 142
4.5.2 Motivation for Interleaving . 143
4.5.3 Uniform Use of TC2000 Interleaving . 144
4.5.4 Implementation of TC2000 Interleaving . 145
4.5.5 Conceptual Operation of the Interleaver . 148
4.5.6 The Interleaver Loader . 157

5 1/0 and the VMEbus Interface . 159
5.1 The VMEbus . 159

5.1.l The VMEbus Specification . 159
5.1.2 VMEbus Card Cages . 160
5.1.3 The TC/FPV's VMEbus Interface . 160
5.1.4 The TC/VMP VMEbus Midplane..... 162
5.1.5 Multiple VMEbus Systems . 165

5.2 SCSI Adapter and SCSI Devices . 166
5.2.1 The SCSI Bus . 166
5.2.2 The VMEbus-to-SCSI Bus Adapter 167

5.3 VMEbus Bus Repeater 168
5.4 Multibus Adapter . 169
5.5 Device Naming and I/O Bus Specification . 170
5.6 TC2000 I/O Devices Summary . 171
5.7 Hard Disk . 172
5.8 Half-Inch Magnetic Tupe . 172
5.9 Terminal Concentrator/Controller . 174
5.10 Ethernet Interface . 176
5.11 Quarter-inch Streaming Tape . 177
5.12 Removable Disk Drive . 178
5.13 Special Site Peripherals . 178

6 The Supporting Modules . 179
6.1 TCS 179

6.1. l TCS Tasks . 179
6.1.2 TCS Hardware Components.. 180
6.1.3 TCS Bus ·... 183
6.1.4 Fault Recovery 187
6.1.5 TCS Slave Functions . 187

February 14, 1990 vii

Contents Inside the TC2000 Computer

6.2 Clock Card . 193
6.3 Midplane . 194
6.4 Power Supplies and Distribution , . . 197

6.4.1 Power Line . 198
6.4.2 Keyswitch .. 198
6.4.3 Power Distribution Unit (PDU) . 198
6.4.4 Power Control Daisy Chain . 200
6.4.5 Bulk Power . 201
6.4.6 Circuit Card Power . 201

A Floating Point Exception Handling . 203
A.l Introduction . 204
A.2 Floating Point Numbers . 204

A.2.1 Formats . 204
A.2.2 Operations . 204

A.3 Floating Point Exceptions . 205
A.3.1 Overflow Exception . 206
A.3.2 Underflow Exception . 206
A.3.3 Divide by Zero Exception . 206
A.3.4 Convert to Integer Exception : 206
A.3.5 Reserved Operand Exception . 206

Index 209

viii February 14, 1990

Inside the TC2000 Computer Contents

List of Figures
~ =-== ======~ - -
~-~----

Figure

Figure 1-1

Figure 1-2

Figure 1-3

Figure 1-4

Figure 1-5

Figure 1-6

Figure 1-7

Figure 1-8

Figure 1-9

Figure 1-10

Figure 1-11

Figure 1-12

Figure 1-13

Figure 1-14

Figure 1-15

Figure 1-16

Figure 1-17

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2:-8

Figure 2-9

Figure 2-10

Four-way balance of TC2000 architecture.

Main components of the architecture.

Components associated with one midplane.

Cabinets make the machine

Expansion cabinet side view

Utility cabinet side view.

Peripheral cabinet side view (typical)

TC/FPV function board.

Bidirectional switch concept.

Two-column, 64-slot switch

Resources used in a switch connection

A switch with alternate paths.

Front panel.

Back panel.

TCS bus fan-out and fan-in.

110 is VMEbus systems via function boards

Midplane numbering

TC/FPV block diagram

System Physical Address

Address transformation.

Physical Address to System Physical Address

CPU Mapping RAM block diagram

Power-up and Disabled CMR Operation

VMEbus interface components

Example of a looped-back reference

Memory access time (microseconds)

Timers in the TC/FPV.

February 14, 1990

Page

2

3

4

5

6

7

9

12

14

15

16

17

20

20

22

23

28

32

34

35

35

40

41

45

46

60

78

ix

Contents

Figure 2-11

Figure 2-12

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 3-8

Figure 3-9

Figure 3-10

Figure 3-11

Figure 3-12

Figure 3-13

Figure 3-14

Figure 3-15

Figure 3-16

Figure 4-1

Figure 4-2

Figure 4- 3

Figure 4- 4

Figure 4-5

Figure 4-6

Figure 4- 7

Figure 4-8

Figure 4-9

Figure 4-10

Figure 4-11

Figure 4-12

Figure 4-13

Figure 4-14

Inside the TC2000 Computer

TC/FPV interrupt derivation. 79

TC/FPV TONI mechanism. 80

Two-by-two crossbars. 81

Like a railroad switch, routes are made. 83

Switch ports in the TC2000 computer. 84

Switch port = requester port + server port. 85

Requester and server ports attach to switch "cylinder" . 87

Columns of crossbar units. 89

TC2000 switch crossbar unit. 90

The signals in one switch path. 90

Output ports are locally numbered. 94

Example path through switch. 95

A message traverses the switch. 98

Random strategy - telephone analogy. 103

Random pacing strategy. 104

Frame and reverse during example connection. 107

Switch latency without controls - conceptual. 112

Effect of express message facility - conceptual. 115

Address flow. 128

Addressing from CPU to T-bus and switch. 130

Process Logical Address format. 131

Physical Address format. 131

System Physical Address format. 132

Physical Address to System Physical Address. 132

Overview of the interleaver. 146

Interleaver internal processing. 147

Interleaving processing in the SIGA. 148

Mapping clumps to switch ports. 149

Modulus RAM use - example 1.

Modulus RAM use - example 2.

Modulus RAM use - example 3.

Modulus RAM use - one stripe.

150

150

151

152

Figure 4-15 Modulus RAM use - six stripes. 153

Figure 4-16 Using an offset to pack stripes. 154

Figure 4-17 · Multiple interleave pools. 155

Figure 5-1 Position of TC/VMP and related components. 163

Figure 5-2 TC/VMP connects function boards and VMEbus cards. 164

Figure 5-3 Hierarchy of the I/O system. 166

Figure 5- 4 Multibus adapter card. 170

Figure 5-5 Hard disk drive. 172

Figure 5-6

Figure 5-7

x

Rough estimate of tape reel data capacity. 174

Terminal concentrator system - example. 175

February 14, 1990

Inside the TC2000 Computer Contents

Figure 6-1

Figure 6-2

Figure 6- 3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8

TCS block diagram - overview. 182

TCS master and associated equipment block diagram. 183

Slave to master TCS bus fan-in. 185

Master to slave TCS bus fan-out. 186

Function board and switch card indicators. 191

Midplane interconnections. 195

Midplane connector layout. 196

Midplane block diagram. 197

February 14, 1990 xi

~ -= ==_:::::===:_
~ ~ ~ - ~

How to Use This Manual

Purpose of the Manual

This manual explains the hardware structure, components and capabilities of
the TC2000 computer, including how operating system and application soft­
ware may make use of those capabilities. This manual is intended to suffice
for understanding the concerns in programming the TC2000 computer, but
does not contain the details of system calls, register bit allocations and the like
necessary for actually writing the program. Other components of the TC2000
document set deal with those details.

Revision History

This edition is a revision and expansion of the earlier, "preliminary" edition
dated August 14, 1989. No major changes have been made, but rather areas
of less importance that were not fully covered in the earlier edition have been
filled in. An error in the August 14 edition has been corrected:

• The "VME" in "VMEbus" originally stood for Versa Module Europe,
(not Virtual Memory Extension).

Other Places to Find Answers

If you experience any problems with our product, or if you have questions or
suggestions, please do one of the following:

• Send electronic mail from anywhere on the Internet to:

aci-questions@bbn.com

• Send mail to:

February 14, 1990 xiii

How to Use This Manual

xiv

ACI Bugs
BBN Advanced Computers Inc.
10 Fawcett St.
Cambridge, MA 02138

Inside the TC2000 Computer

• If you are under warranty, or have a software maintenance contract, you
can also call our hotline number:

l-800-4AC-BFLY (1-800-422- 2359) in the United States
1-617-873-8660 from any other location

If you are reporting a problem, please include as much information as you can,
as follows:

• The operating system version and multiprocessor model name

• The size of your multiprocessor (number of function cards and amount
of memory)

• The number of nodes that were in the cluster when the problem occurred
(if relevant)

• The total number of people using the system when the problem occurred

• An example that illustrates the problem

• A record of the sequence of events that led to the problem; especially a
stack backtrace (see the system administration guide)

We are also interested in your evaluation of our documentation. We would ap­
preciate it if you would fill out the form at the back of this manual and return
it to us .

Audience Level

This manual is intended for any new TC2000 user with a basic knowledge of
computers. Sections that begin with a basic introduction are so noted, allowing
the more experienced reader to skip the introductory material.

Other References

References to other documentation, both within the TC2000 document set and
other hardware manuals, are placed with the related subject in the text.

Organization

Chapter 1 is both an introduction and a condensation of the other chapters
in the book; it may be read independently for a quick picture. Each following
chapter examines a different aspect of the machine in detail.

February 14, 1990

Inside the TC2000 Computer How to Use This Manual

February 14, 1990

Typographic Conventions

This manual uses the following conventions to present information:

bold

italics

bold italics

type

Text in bold indicates a key word or phrase.

Text in italics indicates a specific name, such as the name of a
bit in a register.

Text in bold italics indicates an emphasized word or phrase.

Text in typewriter font is used when monospacing (rather
than proportional spacing) is needed for a diagram or example.

xv

1.1

February 14, 1990

1

Structure of the
TC2000 Computer

This chapter names the major components of the TC2000 computer and de­
scribes their function and their relation to each other. You can read this chap­
ter by itself for a quick understanding of the whole machine. The following
chapters describe the same parts of the machine, in greater depth. Through­
out, the emphasis is on understanding the internal structure so that you can
use the TC2000 computer efficiently and effectively.

Basic Characteristics

The TC2000 computer is a powerful new multiprocessor. It builds upon
BBN's experience in the design of parallel processors - the Pluribus and But­
terfly computers - and extends and expands those concepts to a state of the
art machine.

The TC2000 computer is a multiprocessor machine because it employs a num­
ber of microprocessors, each executing individually on the users' tasks in a
controlled and coordinated way. The opposite is a uniprocessor, in which a
single processor executes all tasks. Only by employing exotic and costly tech­
nology can a uniprocessor offer performance even close to the TC2000 multi­
processor.

The TC2000 computer employs shared memory to store information. All main
memory of the machine is accessible to every processor. Access protection
mechanisms are used to restrict access as needed by the software. In a ma­
chine without shared memory, a processor wishing to read or write data stored
in another processor's memory must take extra steps. Usually these steps are
cumbersome to program and slow in execution. Shared memory avoids these
pitfalls .

The TC2000 processors access the shared memory through an interconnection
network called the Butterfly switch. The switch provides a fast, efficient and
effective access path. Multiprocessor machines without a switch rely on a bus.

1 : Structure of the Machirie Inside the TC2000 Computer

Figure 1- 1

1.2

2

A bus has a fixed limit on how much data it transfers per unit of time, and when
that bandwidth limit is reached, further demand for data transfer must wait,
and the bus-based machine runs no faster. The TC2000 switch avoids satura­
tion because its bandwidth, unlike that of a bus, increases as the machine is
expanded.

The TC2000 design is modular and scalable. Processors, memory and 1/0 ca­
pacity can be added board by board, as needed by the application. A small,
development system can be expanded as the user's requirements or budget
evolve. The design permits installation of any number of boards, each contain­
ing both a processor and memory, from one to 512. Without the scalability
offered by the TC2000 design, the user would be constrained to fit the applica­
tion to a small set of machine sizes. The compromise of contorting the pro­
gram into a too-small machine, or the high cost of a machine bigger than the
application needs, are not choices the TC2000 user has to make.

The TC2000 computer has a balanced architecture. The integer computation,
floating point computation, memory, and input/output capabilities are ap­
proximately equal in power. Each "processor" board can also contain memory
and/or 1/0 capacity, so this balance can be maintained as boards are added.
Further, the bandwidth of the switch expands to keep pace with the added pro­
cessing, memory and 110 capacity. This makes the TC2000 well suited for a
wide variety of applications . The architecture of some other machines is out
of balance, making them suitable only for applications that place heavy de­
mand on their strong points. The balanced architecture of the TC2000 avoids
this constraint.

Four-way balance of TC2000 architecture.

floating
computation point

computation
~~"'-=

'switch

Architecture

The TC2000 architecture consists of function boards interconnected by a high
performance Butterfly switch. In addition, the Test and Control System (TCS)
monitors the entire machine.

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Each function board contains some or all of the following: a processor, cache
and memory management unit, memory, a VMEbus interface, a switch inter­
face, TCS circuitry and power supplies.

The switch connects to two ports on each function board, one by which the
board accesses other boards, and one by which the board services access re­
quests from other boards. The switch also provides clock signals to each func­
tion board.

The TCS initializes, loads, starts, monitors and resets all function boards in
the machine. It also monitors and controls all other components - switch
cards, clock cards, and power supplies.

Support components include the midplane - like a backplane, but with con­
nections on both sides - that connects function boards and switch cards into
modules of eight function boards each; power supplies; and cabinetry. VME­
bus devices, typically for I/O, connect to function boards via another
midplane.

Figure 1-2 shows the main components of the TC2000 architecture. While the
design permits expansion to 512 function boards, the current implementation
is limited to at most 64 function boards. To avoid cluttering Figure 1-2, the
components typically interconnected by a single midplane are shown in a sepa­
rate illustration, Figure 1-3.

Figure 1-2 Main components of the architecture .

l VMEbus l J function l :. --- - ~ board ~ device J - - VMEbus

[VMEbus I.., ... J function l ""'
device J - ~ board ..,

J function [:. Butterfly J clock
J

.. - l9_ source ~ board ~
switch

l VMEbus l J function l :-.. - - L.. board .., device J - - VMEbus L":':

[VMEbus 1-

=~

d . J - - -ev1ce - (j) (j) ...
..,

(j) (j) (j) -l power J
su_QQ_lies <i>

up to 512
function
boards

TEST AND CONTROL SYSTEM
J

February 14, 1990 3

1 : Structure of the Machine Inside the TC2000 Computer

Figure 1-3

1.3

1.3.1

4

to/from
optional
VMEbus
system

Components associated with one midplane.

- requester
- _J function: switch

l board GI card

r
function - - server
board~ ~ ,,... switch

r
function .. I'"' card
board Gr - -- midplane --~ function """i: -;;::

board~ - ~

~

r
function .. -
board .QI - - ..

,,. ... -
I

function """i: -;;::

board~" - ~

r
function

. -
board ,J_- -- ..

~ ~ -;;:: --..

I function ... - ..
board G["

..
-"

System Components

Physical Structure

clock

switch
cables
to/from

m
other

id planes

to/from TCS
power

The TC2000 computer is assembled from three kinds of cabinet, placed side
to side, with a dress panel on each end. This is shown in Figure 1-4. A typical
machine has one peripheral cabinet, one utility cabinet, and from one to eight
expansion cabinets.

February 14, 1990

Inside the TC2000 Computer 1 : Structure of the Machine

Figure 1-4

wing
dress
panel

February 14, 1990

Cabinets make the machine.

•

•

•

•

expansion cabinets

utility
cabinet

peripheral
cabinet

wing
dress
panel

Each expansion cabinet holds up to eight function boards, plus the
switch cards, VMEbus cards (if any), and power supplies associated with
those function boards.

The utility cabinet houses the Test and Control System (TCS) master, its
associated disk, tape drive and power supply, and the clock card for the
entire machine.

The peripheral cabinet contains a VMEbus card cage, standard and op­
tional 1/0 devices, and power supplies.

The wing dress panels on either end provide space for cable routing, and
protect the stabilizer feet.

Each of the three kinds of cabinet is described below.

Expansion Cabinet

Figure 1-5 shows a side view oft he TC2000 expansion cabinet. Expansion cab­
inets are added as needed to house the required number of function boards;
hence the name "expansion" cabinet.

5

1 : Structure of the Machine Inside the TC2000 Computer

Figure 1-5 Expansion cabinet side view.

6

switch and -------...
clock cables

switch cards

power distribution unit
and bulk power supply

t-----1@1=

Function boards provide the processing, memory and VMEbus interface ca­
pabilities of the machine. Up to eight function boards can be installed in an
expansion cabinet. All electrical connection to the function boards is via the
midplane and the optional VMEbus midplane.

Switch cards interconnect the function boards in this and other expansion cab­
inets, and distribute the machine-wide clock and TCS communication signals.
There are two types of switch card, a requester card and a server card. Each
requester card is paired with a physically adjacent server card. An expansion
cabinet contains one pair of switch cards.

The midplane connects function boards, switch cards, and switch and clock
cables. The midplane serves a function similar to a backplane on more conven­
tional machines. It is called a midplane to emphasize that it has connectors
on both sides. A backplane typically contains a global communication bus.
Since the TC2000 computer uses a switch for global communication, not a bus,
the n;iidplane does not contain such a bus. The mid plane also distributes pow­
er to function boards and switch cards.

The switch cables connect switch cards in this expansion cabinet, and thereby
its function boards, to those in other expansion cabinets. The clock cables sup­
ply clock and other machine-wide signals to the switch cards in this expansion
cabinet, from where the signals are further distributed to this cabinet's func­
tion boards.

February 14, 1990

· Inside the TC2000 Computer 1 : Structure of the Machine

Figure 1-6

The power distribution unit (PDU) and bulk power supply receive AC power
from outside the machine, convert it to ±24 volts, and distribute it to the func­
tion boards and switch cards in the expansion cabinet. Various fans force air
in. through the front of the expansion cabinet and through the components as
shown in Figure 1-5.

Each expansion cabinet may contain a package of three optional VMEbus
components: a VMEbus midplane, card cage and power supply. The VMEbus
midplane connects function boards to VMEbus cards installed in the VMEbus
card cage (size "6U"). The VMEbus mid plane implements not one, but several
small VMEbuses, each connecting certain function board slots and certain
VMEbus card cage slots. VMEbus cards often have cables on their back edge,
leading to peripheral devices mounted in the utility or peripheral cabinets.
Power for the VMEbus card cage comes from the VMEbus power supply.

Utility Cabinet

The utility cabinet is shown in Figure 1-6. It houses assorted equipment spe­
cific to the TC2000 computer, and only one utility cabinet is required per ma­
chine. The equipment here generally serves to control the rest of the machine.

Utility cabinet side view.

main boot
hard disk drive

Test and Control
System (TCS)

master back panel

TCS floppy disk drive ---+~

front panel ---,..,,
==mi

clock card

TCS + 5 -~i--~
power supply

power supply for
streaming tape drive ·

streaming tape drive

power distribution unit

The front panel consists of four indicator lights (LEDs), a keyswitch, a reset
button, a tape drive, and a small amount of support circuitry behind the panel.

February 14, 1990 7

1: Structure of the Machine Inside the TC2000 Computer

8

The LEDs indicate main power, TCS enabled, TCS power, and attention re­
quired. The keyswitch controls machine power and has three positions: off,
on and secure. The TCS master can sense whether the keyswitch is in the "on"
or the "secure" position, and decide accordingly whether to act on commands
it receives. The reset button forces the TCS master processor to reset; the rest
of the TC2000 hardware is reset by the TCS master upon command. The
streaming tape drive is used to load and dump TC2000 system software. The
keyswitch, reset button and tape drive are accessed by opening a door above
the LEDs, which are always visible.

The TCS master controls power and operation of the machine as a whole.
Power, resetting, loading, execution startup, and monitoring are all under the
control of the TCS master. The TCS master is an IBM PC/ AT compatible mi­
crocomputer and associated hardware. In particular, the physical structure
houses a TCS floppy disk drive used to load TCS master processor software.
The TCS hard disk drive stores this software and other files pertaining to the
control, configuration and operation of the machine. The floppy disk drive
is hidden by a panel during normal operation.

The main boot hard disk drive stores the operating system and its associated
files . This drive is also available for user file storage.

The clock card supplies the master clock signals to the rest of the machine.
Certain other signals are also generated in the clock card. The frequency of
the clock signal is set by the TCS master.

The TCS + 5 power supply provides power for the TCS slave microcomputers
throughout the machine. These microcomputers appear on function boards,
switch cards, and the clock card. They respond to commands from the TCS
master, performing control actions and monitoring status on their respective
boards. Because they receive power separate from the main bulk power of the
machine, the slaves have control even when their boards' power is off. In fact,
turning on board power is one of the slaves' responsibilities .

The power distribution unit in the utility cabinet differs from the PDU in an
expansion cabinet in that it is controlled by the front panel keyswitch, while
expansion cabinet PDUs are controlled by the TCS master.

The back panel contains five jacks. One jack accepts an RS-232C cable to
the TCS console, typically a standard display terminal, used to communicate
with the TCS master. A second jack is for the PDU control line, by which the
TCS controls the PDUs in other cabinets. An optional telephone line, used
for remote diagnostic procedures, connects to a third jack. When such a line
is connected, an ordinary telephone can be connected to the fourth jack for
voice communication. A fifth jack is reserved for future use.

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Figure 1-7

Peripheral Cabinet

The peripheral cabinet houses whatever additional I/O equipment is needed
at a particular site. If the I/O capability of the expansion and utility cabinets
is sufficient, no peripheral cabinet is used. Usually, however, at least an addi­
tional VMEbus card cage is required, and often other gear as suggested by
Figure 1-7.

Peripheral cabinet side view (typical).

VM Eb us card cage

VMEbus power supply

hard disk drives
(two, side by side)

magnetic tape drive

February 14, 1990

power distribution unit

In the example configuration of Figure 1-7, three I/O devices are mounted in
the peripheral cabinet: two hard disk drives and a magnetic tape drive. The
VMEbus card cage is typically a larger (9U) size than the VMEbus card cage
in expansion cabinets (6U). VMEbus cards requiring a 9U cage must be
mounted in the peripheral cabinet. The 9U cage in the peripheral cabinet is
connected to a 6U cage in an expansion cabinet by a VMEbus repeater, making
the two cages into one VMEbus system.

The peripheral cabinet's VMEbus card cage typically holds controller cards
for the devices in the cabinet, such as the hard disk drives and magnetic tape
drive shown in Figure 1-7. It may also hold the controller for the hard disk
drive mounted in the utility cabinet. Further, it may hold communications in­
terfaces, such as an Ethernet interface and a multi-line terminal controller.

The TCS master controls the peripheral cabinet PDU.

9

1: Structure of the Machine Inside the TC2000 Computer

1.3.2

10

Logical Structure

Figure 1-2, above, shows the main components of the TC2000 architecture.
This section describes the logical function and structure of each kind of major
component, and its connections to other components.

The Function Board

The function board provides all processing and memory capacity used by
application programs. A function board may contain a processor and asso­
ciated circuitry; memory; a switch interface; a VMEbus I/O interface; and a
bus linking these components. Each component is described below. Then the
question of which components are required and which are optional is dis­
cussed. Only the TC/FPV function board contains all of them.

The processor is a Motorola 88000 chip group comprised of an 88100 CPU
chip and at least two 88200 cache/memory management unit (CMMU) chips.
One or two 88200 chip(s) handle instruction references, and one other 88200
handles data references. The processor chips connect with the rest of the func­
tion board through circuitry called the CPU interface. This interface provides
three major functions. It translates addresses from the 32-bit addresses used
in the Motorola chips to the 34-bit addresses used in the rest of the machine.
Secondly, it supports extensions to the operations natively available from the
88000, such as locking. And third, it implements several registers that control
the CPU's operation.

The 34-bit system physical address gives the machine a 16-gigabyte address
space. Any one function board may contain up to 32 megabytes of shared
memory, taking 25 of the address bits. The remaining nine address bits select
a given function board from up to 512 possible function board slots in the ma­
chine.

The memory is dynamic RAM, with parity, addressable as byte, halfword (2
bytes) or word (4 bytes), aligned on boundaries of the size being addressed.
The memory supports an important augmentation to the basic 88100 features :
locking. Locking is a means to synchronize access to memory among multiple
processors. During a sequence of locked accesses to a memory module - that
is, to the memory on a given function board - no other CPU or I/O interface
can access that memory module with a normal access request. Therefore, the
CPU or interface making the locked accesses can, for example, read the con­
tents of a location, compute a new value for the location, and write it back,
atomically. A typical use for locking is to access a shared datum. The software
can explicitly bypass locks, in which case the access is permitted despite the
lock. Atomicity, locking and bypassing locks are discussed further in chapter
2.

Almost all I/O to and from the machine is via one or more VMEbus interfaces.
A VMEbus interface is implemented on a function board, and permits high

February 14, 1990

Inside the TC2000 Computer 1 : Structure of the Machine

February 14, 1990

bandwidth access from the TC2000 machine to the VMEbus and vice versa.
The VMEbus interface contains two major sections. One section is a VMEbus
master, mapping references coming from the TC2000 hardware into refer­

·ences on the VMEbus. The other section is a VMEbus slave, responding to
references on the VMEbus and mapping them into the TC2000 address space.
The mapping capabilities in both directions are fully programmable and sup­
port several features of both the TC2000 and the VMEbus architecture, such
as locking (on the TC2000 side) and interrupt generation and handling (on the
VMEbus side).

Every function board connects to the rest of the TC2000 computer via the
switch. The only other connection is a low-speed line to the Test and Control
System master, so the switch is critical for access to resources on remote func­
tion boards. The switch interface is implemented with two custom gate array
chips. The Switch Interface Gate Array (SIGA) is a special purpose microma­
chine. Within the SIGA, one section transforms access requests arising on the
local function board into messages, sends these into the switch, receives the
reply message, and gives the reply data to the CPU or I/O interface that made
the request. This section of the SIGA is called the requester. Similarly, anoth­
er section of the SIGA, the server, accepts messages arriving through the
switch from remote function boards, services the request by reading or writing
the data in the local memory or I/O interface, and sending any reply data back
through the switch to the requester. The other special chip is the Level Conver­
ter (LCON), which converts and conditions the signals between the electrical
conventions used within the function board (TTL) and in the switch (ECL).

Connecting together all the logical modules on a function board is the transac­
tion bus, or T-bus. The T-bus is a high-bandwidth bus confined to the func­
tion board.

To be a TC2000 function board, what components must a board contain? The
simplest way to define a function board is that it connects to the TC2000 switch
(and TCS). Therefore, it has a switch interface consisting of an LCON and
a SIGA. The SIGA in turn communicates with a T-bus, which every function
board must have. Thus, a minimum requirement is: switch interface, T-bus
and TCS slave. To this skeleton can be added a processor, memory, and a
VMEbus interface. Doing so results in the first function board implemented,
and the only function board available in the original model of the machine, the
TC/FPV board. The TC/FPV therefore provides an example and the focus
for most discussion of function boards. The design permits, however, a func­
tion board with two processors, with memory and no processors, with special­
ized hardware such as an array processor, and so on. Whatever appears on
a function board, it must conform to the architectural requirements such as
support of locked accesses.

Figure 1-8 shows the block diagram of the TC/FPV In the original model of
the TC2000 machine, all function boards are TC/FPVs.

11

1 : Structure of the Machine Inside the TC2000 Computer

Figure 1-8

12

BUTIERFLY
SWITCH

TC/FPV function board.

VMEbus

TEST AND CONTROL SYSTEM

The Butterfly Switch

The switch interconnects all function boards, and provides signals such as
clock and the TCS communication line.

A connection through the switch from one function board to another is called
a switch path. When the requester SIGA on a function board injects a message
into the switch to set up a path, each switch element in turn along the path
examines the route contained in the message, and determines whether it can
complete the required link from itself to the next element on the path. If so,
the message is forwarded on that link, and proceeds step by step through the
switch, ultimately arriving at the end of the route, where it enters the destina­
tion function board. Memory or other resources accessed over the switch are

February 14, 1990

Inside the TC2000 Computer 1 : Structure of the Machine

February 14, 1990

called remote, because they are not local to the function board originating the
access. Of course, those same resources are local to the processor on that oth­
er function board. A "remote" access is any access made over the switch; a
"local" access is one that stays on the function board.

In the switching network of the TC2000 computer, the route a message takes
is the same as the address of its destination. A message addressed to function
board "C", injected by any function board in the machine, will arrive at board
"C". In practice, certain configurations of the TC2000 switch permit more
than one route to a destination slot. In such a configuration, the hardware au­
tomatically tries the alternate paths, resulting in improved performance when
the switch handles very heavy traffic.

The individual switching element is implemented in a custom gate array chip
called the Switch Gate Array (SGA). SGAs work in groups of four, and each
quartet accepts eight input lines coming from the requester direction, and pro­
vides eight output lines going in the direction of the server. Any of the input
lines can connect to any of the output lines, and up to eight connections can
be carrying data at once. While connected, only one input connects to a given
output, and only one output to any input; there is no fan-in or fan-out. In a
simple analogy, the SGA acts as a telephone switchboard for single-subscriber
Jines; it does not do party lines or conference calls .

Once set up, the requester's message is delivered to the server function board,
where it is acted upon. If a response is produced - namely, the data from
a read operation - the server sends it back over the same switch path. This
is possible because the switch path is bidirectional, as illustrated in
Figure 1-9. A control signal ("reverse") tells each SGA along the path to listen
on its server side, and transmit the data out its requester side. The switch path
is held open until the requester releases it by use of another control signal
(" frame"). This is like hanging up a telephone, because all switch components
that were dedicated to the path are freed for use by other traffic.

13

·1: Structure of the Machine Inside the TC2000 Computer

Figure 1-9

14

Bidirectional switch concept.

requester server

requester Butterfly server

0 switch 0
0 0
0 0

requester server

forward, downstream direction - requests

reverse, upstream direction - responses

The switch supports locking. During a locked transaction, the requester SIGA
keeps the switch path open until told to release it by the CPU or I/O interface
that made the request. This allows several requests and replies to flow on the
connection before it is released.

The switch hardware, in cooperation with the SIGAs on function boards, auto­
matically detects and deals appropriately with several conflict or error condi­
tions that can arise during operation. If an SGA finds a requested link is busy,
it indicates a "reject" condition to the previous SGA, causing the SGA switch­
ing resources along the partially acquired route to be released. That is, a mes­
sage encountering contention within the switch backs out, rather than holding
switch resources while it waits for completion of its path. The requester SIGA
holds a copy of the message, and retransmits a rejected message until it is serv­
iced. Retransmission is controlled by a backoff algorithm that pauses longer
and longer between retransmissions of the same message, easing congestion.
If the hardware is broken, the retransmission count reaches a limit and triggers
an error mechanism. Similarly, a connection that is held beyond a timeout lim­
it causes an error condition, and the switch resources it was using are released.

Further, the hardware supports an express message facility to limit switch la­
tency. In a switch with backoff and retransmission, there is a chance of very
heavy traffic causing a message to be rejected many times. This delay is unde­
sirable, and the express mechanism periodically promotes the priority of each
retransmitted message so it will get through the congestion and achieve its con­
nection. And finally, each message is protected from corruption by a check­
sum-like code.

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

Figure 1-10

requests
FROM
each

function
board

slot O

slot 7

slot 8

slot 16

slot 24

-+
slot 32

slot 40

slot 48

slot 56

slot 63

February 14, 1990

Conceptually, one quartet of SGAs could connect up to eight function cards
to each other. For a machine of more than eight function boards, a connection
must travel through additional layers of switching. Each such layer is called
a switch column. In practice, the minimum switch implemented is a 2-column
switch. Fully populated, a 2-column switch interconnects up to 64 function
boards ("slots"), as shown in Figure 1-10.

Two-column, 64-slot switch.

column one column two

TC/S

TC/S

slot O

slot 7

slot 8

slot 16

slot 24

_.,.
slot 32

slot 40

slot 48

slot 56

slot 63

requests
TO

each
function
board

15

1: Structure of the Machine Inside the TC2000 Computer

NOTE

Figure 1- 11

SIGA

r -- -- --
' server •

requester

T- bus

16

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .. . ,,,,,
63 OR 64 SLOTS - TECHNICAL AND HISTORICAL DETAIL
A 2- column switch supports 64 slots. An early version of the TC/FPV could
not be used in slot 0, because that was used as one way to address devices on
the local board. That led to the limit of 63 slots in the initial machine. The
TC/FPV does not have this restriction, so a 64- slot machine is possible. The
TC/FPV can be used in a backward-compatible, 63-slot mode.

•' ' ' ' ' ' ' '' ' '''''' ' ''''''''' ' '''''''''''''''''''
A quartet of SGAs is implemented on one switch card. Thus, each box in
Figure 1-10 represents one switch card. The switch cards on the requester side
and server side are very similar in function but differ slightly in implementa­
tion, leading to two kinds of switch card. The requester side switch card is
the TC/SR, and the server side switch card is the TC/SS. Each midplane, and
thus each expansion cabinet, contains one TC/SR and one TC/SS. This switch
card pair provides switch connections for the eight function boards on that
mid plane.

Figure 1-11 shows the various components that are involved in a connection
from one function board, through the switch, to a remote function board. If
the requesting function board addresses its own slot, the connection comes
back into the same function board via its switch server interface.

Resources used in a switch connection.

LCON

r- -- ---
I

server I

SGA
requester

requester
function ---::;.~-­

board

SGA

LCON

server

I

' requester,
I I ·-- - ---

server
function
board

SIGA

server

I

: requester,

-- - -----

T- bus

server
device

I

In a machine with only one expansion cabinet, there is just one switch card
pair, and each output of the TC/SR is connected to an input of the TC/SS.
This is an example of the multiple switch paths mentioned earlier. No matter

February 14, 1990

, '

Inside the TC2000 Computer 1: Structure of the Machine

Figure 1-12

February 14, 1990

which of its eight outputs the TC/SR selects, the TC/SS can connect it to which­
ever of the eight function board server ports a message addresses. Figure 1-12
shows as heavy lines the eight alternate paths between one function board and
another.

A switch with alternate paths.

to
requester
ports on
function
boards

The Clock

TC/SR
switch

card

TC/SS
switch

card

to
seNer
ports on
function
boards

The clock card (TC/CLK) provides the master clock signals for the switch and
the switch interfaces in function boards. Each function board (specifically,
the TC/FPV) has its own processor clock, and separate clocks are used in the
TCS master and slave processors . Each VMEbus system is asynchronous to
all of these.

Synchronous operation of the switch requires precision in distribution and use
of the clock signals. The signal generated by the clock card is sent to the switch
cards, where it controls the operation of the SGAs. From the switch cards,
clock signals are further distributed to the function boards on the associated
midplane. There, the clock signals are used in the LCON and SIGA.

In a large machine, the cables between the TC/SR cards in one expansion cabi­
net and the TC/SS cards in another cabinet may be relatively long - so long
that the data may not reliably traverse the cable in one clock period at the clock
rates used in the TC2000 switch. Therefore, the clock card generates two sepa­
rate clock signals, one for the requester side of the switch and one for the server
side. The TC/CLK can be configured to make these either matched or 180
degrees out of phase, providing more time for the data to traverse the switch
cables between cabinets. Thus, each LCON and SIGA receive and use two
clock signals - requester clock and server clock. This complexity is handled
completely by the hardware, and is of interest to the programmer only to un­
derstand the design and implementation.

The switch clock rate is programmable, and is set by the TCS master during
system startup.

17

1 : Structure of the Machine Inside the TC2000 Computer

18

In each SIGA is a register called the Real Time Clock (RTC). This register
is incremented at a constant rate of 1 megahertz, derived from the switch re­
quester clock. Because the switch clock frequency is programmable, the SIGA
contains a programmable prescaler that appropriately divides down the switch
clock to 1 megahertz. A machine-wide signal ("65 milliseconds", because it
is a pulse once every 65 .536 milliseconds) is produced by the TC/CLK and used
in the SIGA in maintaining and synchronizing the RTCs across the machine.
The RTC is used for timer-generated interrupts and general software pur­
poses. Its accuracy is determined by the oscillator on the TC/CLK. For a long­
term time and date clock, the operating system relies on a different source,
such as the TCS.

Besides the switch clock and 65-millisecond signals, the TC/CLK generates
a switch-wide signal ("hold") used in the implementation of express messages
described above. The TC/CLK also connects directly to the TCS master, fans
out the TCS communication line to all the switch card pairs, and fans in the
TCS communication from them.

Test and Control System

The Test and Control System (TCS) oversees operation of the TC2000 ma­
chine. It monitors and controls all aspects of the hardware. The TCS is best
thought of as connected only to the TC2000 hardware, and not to the software.
Only through conventions established in software is there any communication
between the TCS and the operating system or application program.

A master-slave design is used for the the TCS. A single microcomputer master
communicates with several microprocessor slaves distributed throughout the
machine, over a serial communication line. The TCS master is an IBM PC/ AT
compatible microcomputer with peripheral devices appropriate to its role in
controlling the rest of the machine. Each TCS slave is a microcomputer chip
well suited to monitoring and controlling a variety of signals. There is one TCS
slave on the clock card, on every function board, and on every pair of switch
cards. Through these, the TCS master has full access to the entire machine.

The TCS master contains a CPU, memory, hard disk and floppy.disk drives,
interface card, and optional modem. Connected to the TCS master proper are
the front and back panels of the TC2000 machine, and a terminal. The CPU
and memory are ordinary IBM PC/ AT compatible components; noteworthy,
however, is that it contains a real time clock with calendar and battery back­
up power. This provides a non-volatile and more accurate date and time
source than the real time clock feature of the SIGA chips in the switch.

The TCS master's hard disk drive is used to store machine configuration and
operating parameters, TCS log data, TCS master software, and diagnostics.
Som.e of the diagnostic test and exerciser programs are for the TCS master to
test the Test and Control System itself; others are executed by the TCS master
and slaves to test the TC2000 hardware; and yet others are executed on the

February 14, 1990

('

Inside the TC2000 Computer 1: Structure of the Machine

February 14, 1990

function boards, under supervision of the TCS master, to test the TC2000
hardware. The TCS master's floppy disk drive is used primarily to load new
TCS software.

The interface card (TC/TCS) connects the TCS master to the rest of the ma­
chine. It contains not only the TCS communication line interface, but also
hardware to turn on and off the main power in all the expansion cabinets and
the I/O power in peripheral cabinets, and connection to the machine's front
and back panels. The interface card also houses read-only memory (ROM)
that contains TCS master startup and error routines, and a watchdog timer
that resets the TCS master if its software gets hung. The interface card is the
only custom equipment in the TCS master.

The modem connects to a telephone line for remote test and diagnosis of the
machine. This modem and line permit faster analysis of, and response to,
problems with the hardware. At a site with security requirements in conflict
with such facilities, no telephone line is hooked up.

Figure 1-13 shows the TC2000 front panel. Four light-emitting diodes (LEDs)
indicate overall machine status. The "main power" LED is controlled by the
TCS master, and is lit when the TCS master turns on main power to the rest
of the machine. ''TCS enabled" is lit when the TCS communication line be­
tween the master and slaves is ready for data transfer. "TCS power" is lit when
power for the TCS - both master and slaves - is on. The "attention re­
quired" LED is under control of TCS software to bring the operator's aware­
ness to conditions that need attention.

Above the front panel LEDs is a hinged door, behind which lie the keyswitch,
the reset button and the streaming tape drive. The keyswitch "off" position
turns off all power to the machine; the "on" position powers the TCS, which
can then turn on power to the remainder of the machine. The "secure" position
disables the reset button, and is otherwise the same as the "on" position. The
TCS master can read whether the keyswitch is in its "secure" or "on" position,
and can inhibit certain TCS commands, based on keyswitch position. The re­
set button forces a reset of the TCS master microcomputer. It does not directly
affect operation of the rest of the machine. The streaming tape drive is used
to load or dump TC2000 system software. A button at its upper right corner
opens the drive door, and an LED in its lower left corner indicates the drive
is in use (so the door should not be opened).

19

1: Structure of the Machine Inside the TC2000 Computer

Figure 1-13 Front panel.

push top -----)!---------------------------------,
of door I :
to open : 1

I
streaming __ .,..I~=
tape drive I

I
I
I
I
I
I
I

OFF
ON

@ SECURE • RESET

~--------------------------------~
MAIN POWER TCS ENABLED TCS POWER ATTN REQUIRED

Figure 1-14 shows the TC2000 back panel, located at the rear of the utility cab­
inet. The TCS console jack connects to the TCS master terminal. The stan­
-dard TCS master terminal is a DEC VT320. The "PDU control out" jack
supplies control from the TCS master to power distribution units (PDUs) in
other cabinets. The "UPS status in" jack is for a future, optional capability
whereby the entire machine is powered by an Uninterruptible Power Supply
(UPS), and the TCS senses its status. The two modular telephone jacks are
for the optional diagnostic line, and a telephone for voice communication on
that line.

Figure 1-14 Back panel.

20

POU
CONTROL

OUT

UPS
STATUS

IN

TCS CONSOLE

l•I TELco LINE

llj PHONE

The TCS slave processor is a microcomputer (68HC11) especially intended
for monitor and control applications. It contains the serial line interface neces-

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

February 14, 1990

sary to communicate with the TCS master, on-chip memory, outputs for digi­
tal control, and inputs for sensing status. The input capability includes both
digital and analog channels; the latter are used for monitoring temperature
and power supply voltages. The slave processor is responsible for the entire
environment of the board on which it is mounted. (Or, in the case of switch
card pairs, the board pair. The switch server card (TC/SS) contains a TCS slave
that controls both the TC/SS and the paired TC/SR requester card.)

Each TCS slave receives its own power from the "TCS + 5" power supply. This
supply is separate from the power for each cabinet, and the power for each
board, so the TCS can operate even when the rest of the board is powered off.
An expansion cabinet's main, or bulk, power is ±24 volts; once this is available,
the TCS slave can enable the power supplies on its own board. These convert
the bulk power into the voltages required on the board. Besides enabling
board power, the TCS slave can also modify ("margin") the voltages of board
power for testing purposes.

Besides temperature and power, the TCS slave monitors and controls digital
signals and parameters of various sorts dependent on the nature of the board.
On a TC/FPV function board, the TCS holds the 88000 processor reset while
it initializes the board hardware. It loads appropriate bootstrap code into the
memory and releases the reset condition, allowing the 88000 to begin executing.
It provides a low-level communication path between the operating system and
the TCS master software. On the TC/CLK clock card, the TCS slave sets pa­
rameters such as switch clock frequency. On the TC/SS and TC/SR switch
card pair, the TCS slave can enable and disable individual switch paths for
test and diagnostic purposes. These are merely examples; the full range of TCS
slave capabilities is significantly greater.

The TCS communication line connects the TCS master to all TCS slaves. The
protocol used is query-response, in which the slaves never volunteer informa­
tion but rather transmit only in response to a command from the master. All
slaves receive all commands, and recognize when the command applies to
them. Conversely, all data transmitted by slaves is funnelled to the master.
The simplest way to think of this is as a shared communication bus; so, al­
though its implementation is more complicated as we shall see, it is called the
TCS bus.

In implementation, the TCS bus is more of a tree, fanning data from the master
out along its branches to the slaves, and fanning in data from the slaves. The
master is attached directly only to the clock card, as shown in Figure 1-15.
Data from the master goes directly to the clock card slave, and is fanned out
(relayed, repeated, buffered) to the mid plane in each expansion cabinet, where
it goes to the TC/SS of each switch card pair and to the eight function boards.
The slave on each TC/SS serves the paired TC/SR, which has no slave.

21

1: Structure of the Machine Inside the TC2000 Computer

Figure 1-15

22

TCS bus fan-out and fan-in .

clock
card

switch
card
pairs

TC/SS

: TC/SR

TCS
MASTER 1-------1 TC/CLK t------i TC/SS

: TC/SR I

TC/SS

: TC/SR I

function
boards

In the other direction, data from function board slaves is fanned in (collected,
combined, multiplexed by OR'ing together) on its way to the master. Data
from the function boards on a midplane is combined, at their TC/SS card, with
data from the slave on the TC/SS. Data from every TC/SS is combined, at the
clock card, with data from the TC/CLK's slave, and sent to the master. This
fan-out and fan-in scheme achieves machine-wide communication with very
simple wiring.

On the other hand, such a communication tree can be vulnerable to data cor­
ruption if components fail. To protect against this, the TCS bus design buffers
each fan-out signal separately at the clock card, and contains programmable
gating of fan-in signals. The TCS master can use this gating to selectively dis­
able - amputate - any branch of the fan-in tree that is corrupting the TCS
bus. This fault isolation mechanism permits the machine to operate in a re­
duced configuration, consistent with the machine design philosophy of recon­
figurability to work around failed components.

1/0 Capabilities

The vast majority of TC2000 I/O is via one or more VMEbus systems.
Figure 1-16 presents the TC2000 architecture to emphasize the I/O. At the
core is the switch, TCS and power supplies. Connected to this core via switch
ports are function boards. Connected to some of the function boards are

February 14, 1990

' I

Inside the TC2000 Computer 1: Structure of the Machine

Figure 1-16

VMEbus systems. Each of these VMEbus systems can be configured as re­
quired for the particular site.

1/0 is VMEbus systems via function boards.

VMEbus
system

VMEbus
system

special
processor

The devices normally available include:

• Terminal multiplexor

• Hard disk drives

system

VMEbus
system

disk tape

• Magnetic tape drives (~-inch width tape, on reels)

function
boards

controllers

devices

• Streaming cartridge tape drive (X-inch width tape, in cartridges)

February 14, 1990 23

1 : Structure of the Machine Inside the TC2000 Computer

1.4

1.4.1

• Ethernet interface

• Controllers for Small Computer System Interface (SCSI) devices

A given installation may have site-specific requirements for other VMEbus
equipment. In general, adding or interfacing to other VMEbus equipment is
straightforward. The TC/FPV function board's interface to the VMEbus is
highly configurable under program control. This flexibility permits the
TC/FPV to perform various roles, depending on the requirements of the par­
ticular system. For further information on support of specific equipment,
please contact BBN ACI. The customer may need to provide device driver
software if unusual or non-standard devices are to be supported.

For completeness, we briefly name the other I/O capabilities of the machine.

• Primary of these is the TCS, which can read and write floppy disks, and
communicate via its terminal. The TCS terminal serves as the system
console for the nX operating system on the TC2000 machine, and may
be accessed from application programs if necessary. Access to the TCS
floppy disk is currently restricted to the TCS master, although the soft­
ware design includes, and the hardware permits, the TCS master to ser­
vice requests from the nX operating syste.m and application programs
to do MS-DOS file system I/O.

• Various LED indicators show machine state. Besides the front panel
LEDs described above, green LEDs on each switch card and each func­
tion board indicate the presence of power at various voltages . An amber
LED on each of these boards is under control of the TCS slave, and can
be used to identify a particular board during maintenance. The TC/FPV
function boards also have green LEDs indicating the transmission and
reception of switch messages. These can be useful as a rough indication
of the level and location of switch activity.

For further information on the TC2000 I/O system, please refer to chapter 5.

Machine Specifications

Computational Specifications

The following items describe the first model of the TC2000 computer. In par­
ticular, they reflect the original TC/FPV function board.

• CPU clock rate: 20 megahertz

• Memory

o Size: 4 megabytes per TC/FPV function board, expandable to 16
megabytes; TC/FP function board available with either 16 or 32 me­
gabytes per board; 64x16 = 1024 megabytes maximum per ma-

24 February 14, 1990

(

Inside the TC2000 Computer 1 : Structure of the Machine

1.4.2

CAUTION

February 14, 1990

chine, using any mix of the TC/FPV16 and the TC/FP16 (excluding
any peripheral memory on the VMEbus)

0 Parity: one parity bit per byte, on main memory only; special feature
for testing parity logic

0 Error rate: 3.17 years estimated mean time between detected soft
errors per 4-megabyte TC/FPV

0 Dynamic RAM refresh cycle: automatic

• The design nominal time to access local memory with no contention is
0.55 microseconds for a read, and 0.60 microseconds for a write. Access
times depend on several conditions: local or remote (over the switch);
read or write; single word or multiple word; cache hit, cache miss or cache
inhibited, and copyback or writethrough caching policy; use of fast path
from CPU to local memory; within machine or to VMEbus address
space; and amount of contention for the resource. Access times for many
combinations of these conditions are discussed in chapter 2.

• Switch clock rate: 38 megahertz

• Switch bandwidth: 38 megabytes per second per path, peak

• VMEbus throughput: 8 megabytes per second per VMEbus interface, to
a machine total of 320 megabytes per second (current architecture sup­
ports up to 40 VMEbuses)

Environmental Specifications

For the following and related information, please refer to the TC2000 Site Plan­
ning Guide.

• Physical dimensions, weight and servicing clearances

• Flooring recommendations, for both air flow and cables

• Power line requirements - voltage, amperage, phasing and grounding

• Power consumption, heat dissipation and cooling requirements

• Temperature and humidity specifications

Avoid placing objects on top of the cabinets, where they could impede the flow
of cooling air. It is good practice to maintain the machine's operating tempera­
ture margins by not blocking the air flow.

1111111111111111111111111111111111111 11111111111

25

1: Structure of the Machine Inside the TC2000 Computer

1.5

1.5.1

26

Equivalent but Distinct Function Boards

This section describes how software conventions, or the equipment connected
to function boards, or both, distinguish some function boards from others.

The nX Master Function Board

From a hardware viewpoint, all TC! FPV function boards are equivalent, any one
may be installed in any slot, and there perform all functions that any other
TC/FPV would perform.

From a software viewpoint, the nX operating system distinguishes one
TC/FPV function board as the master function board (or master "processor
node"). This distinction is based on three properties:

• The design of the nX operating system dictates that certain functions be
performed or coordinated by one specific processor, and that certain
data structures reside in the memory local to that processor.

• The TCS master must pick some TC/FPV function board on which to
load and start the nX bootstrap. For the sake of using a specific board
during booting, the TCS uses a particular function board named in a ma­
chine configuration file.

• Bootstrapping the nX operating system from the system hard disk is sim­
pler and faster when the nX boot disk is on the same VMEbus system
as the master node. Therefore, as a practical measure, the master node
must be a TC/FPV function card so connected.

When the machine is booted, the TCS master software (TEX) reads a configu­
ration file from the TCS hard disk. Among other parameters, this file specifies
the slot number of the master. In a normal system this is 7.7.7, in the format
"bay.midplane.slot" used to specify a particular function board. TEX loads
a bootstrap program from the TCS hard disk onto the function board in this
slot, via the TCS slave on that board, and starts the 88100 CPU executing it.

The bootstrap loads the nX system from the nX system disk, over the VMEbus
attached to the function board. Once loaded, the nX software starts up.

When the nX operating system is running, certain software functions reside
on the master. Data structures associated with those functions usually reside
there also, merely as a performance issue, because of the speed advantage in
accessing local memory. There is little or no absolute requirement about which
functions reside on the master. Requiring that only the master execute a given
function is a simple and easy way to achieve synchronization among the many
processes, executing on many processors, that might invoke the function.

However, when a function must be performed only by the master, there is po­
tential for the master becoming a bottleneck. The processing speed of the mas-

February 14, 1990

(

Inside the TC2000 Computer 1 : Structure of the Machine

1.5.2

1.5.3

February 14, 1990

ter, access to lock-controlled resources on the master, switch (interprocessor
communication) bandwidth to and from the master, or I/O capacity of the
master could limit overall machine performance. Considerable care has gone
into programming and configuring the nX system to make such bottleneck ef­
fects small and infrequent.

For example, the following functions were once executed only on the master,
but have been parallelized by recoding, and can now execute elsewhere:

• Most file system operations: read, write, lseek, etc.

• Most Ethernet I/O operations

• Process scheduling

Clusters

The nX operating system supports the concept of a cluster of function boards.
Loosely, a cluster is a collection of function boards viewed as a computing re­
source available for some particular purpose. The system cluster contains all
function boards in the machine. The public cluster contains one or more func­
tions boards that run your shell when you first log in. The 1/0 cluster contains
the nX master function board, and typically no others. Permission to run pro­
cesses in the I/O cluster is restricted to groups "wheel" and "root", to prevent
undue competition for its memory and CPU. The occasional nX system call
that is serialized traps to the master, and a parallelized call may trap to the
master to perform physical I/O to a device attached to the master. Certain
I/O intensive activities, such as dumping to tape, are usually run on the master.
Function boards in the free cluster are unallocated and may be allocated by
system calls or by nX commands. A user invokes such a command, or his pro­
gram makes such a system call, to allocate function boards into the user's own
private cluster, in which the user may execute programs. A cluster of bare
nodes is a resource set aside when the nX operating system starts up, from
which clusters may be allocated to run programs under the pSOS + m real-time
operating system.

Clusters are an important, powerful and flexible capability in the way the
TC2000 machine is used. Since clusters are an aspect of the software, not hard­
ware, they are not discussed further in this document. For further information
on clusters, please refer to nX documentation.

Physical Slots

When specific hardware - in particular, a VMEbus system - is connected
to a particular function board, the application software must be able to refer
to that function board specifically, and allocate it specifically. The system soft­
ware supports this capability.

27

1: Structure of the Machine Inside the TC2000 Computer

1.5.4

Figure 1- 17

28

Slot Numbering

The physical card slots in the TC2000 machine are normally numbered in
"dotted octal" format:

< bay> . < midplane > . < slot >
such as:

7.1.6

The first field in dotted octal format, here "7", specifies the bay in which
the slot appears. Each bay holds up to 64 function boards. In a machine
with 64 or fewer function boards, the entire machine is by convention bay
number 7.

The second field, here "1", specifies the midplane to which the slot con­
nects. Each midplane serves up to eight function boards.

The third field, here "6", specifies the particular slot on the midplane.

Figure 1-17 shows the standard midplane numbering in a 64- slot machine.
If the machine has fewer midplanes, midplanes are omitted in the order: 7.0,
7.1, 7.2, 7.3, 7.4, 7.5, 7.6. A one- midplane machine has only midplane 7.7.

Midplane numbering.

utility
cabinet

7.4 7.5 7.6 7.7 7.3 7.2 7.1 7.0

The above format applies in a clear way to all function boards in a machine.
The bay, midplane and slot fields can each be octal digits 0 through 7. The
TCS master, however, must refer to other cards as well - switch requester and
server cards, and the clock card. In a machine larger than 64 (function board)
slots, there are second-stage clock cards and middle-column switch cards.
The TCS uses a natural extension of the dotted octal format to refer to these
cards, by extending the "slot" field above the value 7. The TCS also provides

February 14, 1990

Inside the TC2000 Computer 1: Structure of the Machine

February 14, 1990

ways for the operator to refer to classes of cards, such as "all switch requester
cards". For details, please refer to the TCS documentation.

Aside from physical slot numbering, the operating system sometimes refers
to function boards by logical number. The logical number is normally in deci­
mal, and the mapping from logical number to physical slot varies depending
on the current configuration of the machine (which physical slots are occupied)
and how it is being used. Logical number may refer to a machine-wide set,
an operating-system-wide set, or a cluster-wide set, depending on the context.

29

, '

2

The TC/FPV Function Board
~-_:::::::::::::::::::::::::::
- -
~ ~ - -- - - - -

2.1 Organization

February 14, 1990

The TC/FPV function board is available in various configurations:

version memory number of
number (megabytes) CMMU chips

TC/FPV4 4 2
TC/FPV4-l 4 3
TC/FPV16 16 2
TC/FPV16-l 16 3

The TC/FPV function board is a bus-based subsystem of its own. The trans­
action bus (T-bus) interconnects the functional blocks shown in Figure 2-1
(also shown in chapter 1, and reproduced here for ease of reference).

31

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-1

32

BUTTERFLY
SWITCH

TC/FPV block diagram.

TEST AND CONTROL SYSTEM

The T-bus itself is a high-performance bus with a master-slave protocol. Any
given functional block may have a master interface, a slave interface, or both,
on the T-bus. The T-bus does not extend beyond the function board. Ad­
dresses on the T-bus are System Physical Addresses (34 bits), described fur­
ther below. Data transfer operations are read and write. AT-bus slave can
refuse an access, and force a pause during an access, or can promise to return
the requested data later. Data transfer size is byte, halfword (two bytes) , word
(four bytes), two words, three words or four words. (The current hardware
does not use 2- or 3-word transfers, but 4-word transfers occur often, to fill
and write back CMMU cache lines.) The T-bus has 32 data lines, and supports

the machine's locking mechanism.

The other functional blocks of the TC/FPV are discussed in sections below.

February 14, 1990

' '

,
I

Inside the TC2000 Computer 2: TC/FPV Function Board

2.2

2.2.1

February 14, 1990

Processor, CMMU and CPU Interface

The processor is a Motorola MC88100 chip. This microprocessor features a
Reduced Instruction Set Computer (RISC) architecture, pipelining, a separate
floating point execution module on the chip, and separate interfaces for data
and instructions. Two Motorola MC88200 Cache/Memory Management Unit
(CMMU) chips support the CPU; one CMMU services data transfers, while
the second services instruction fetches, often simultaneously. The TC/FPV
can be configured with a second, optional instruction CMMU chip. The
CMMUs, and the nX operating system, support demand paging. The TC2000
page size is 8 kilobytes. Since the CMMU implements a 4-kilobyte page size,
the operating system software allocates two adjacent CMMU pages whenever
a page is required.

The 88100 CPU has an instruction, xmem, that exchanges the contents of a
CPU register and a memory location. During this operation, the CPU and
CMMU assert a signal intended to hold the memory bus, and therefore make
the xmem an atomic operation. The TC2000 hardware preserves the atomicity
of xmem by holding the path between the CPU and the referenced memory,
even if that location is on another function board. This is a special case of the
TC2000 locking mechanism described in section 2.9.

For a full description of the 88100 CPU and the 88200 CMMU chips, please
refer to the Motorola literature:

MC88100 User 's Manual

MC88200 User's Manual

The CPU and CMMU are based on 32-bit data and address words . Since the
TC2000 address space is based on 34-bit addresses, address translation is nec­
essary between the Motorola M-bus and the TC2000 T-bus. The CPU inter­
face performs this translation, as well as generating other signals related to
accesses the CPU makes. This translation and the other signals are performed
by the CPU Mapping RAM, described in the following sections.

TC2000 Physical Address Space

The TC2000 architecture supports a global physical address space of 34 bits,
for a maximum capacity of 16 gigabytes. At the lowest level, every byte in a
TC2000 system has a unique System Physical Address with the format shown
in Figure 2-2.

33

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-2

2.2.2

34

System Physical Address.

(9) (25)

switch port memory offset

The size of the System Physical Address determines the maximum memory
capacity of the TC2000 system. The structure of the system physical address
determines the maximum number of function boards and the maximum
memory capacity of a single function board. The size and structure of the sys­
tem physical address were chosen to support the following system characteris­
tics:

maximum system capacity . 16 gigabytes
maximum number of switch ports (function boards) ... 512 ports
maximum function board capacity 32 megabytes

Increasing the maximum globally addressible memory of a function board be­
yond 32 megabytes requires changes to the T-bus specification and to the
Switch Interface Gate Array. Memory that is only locally accessible may be add­
ed to a function board design with only on-board changes.

88000 Access to Global Memory

The series of transformations that convert an 88000 virtual address (Process
Logical Address) to a System Physical Address is shown in Figure 2-3. The
purpose of the CPU interface address transformation is to convert the 32-bit
Physical Address generated by the 88200 CMMU to a 34-bit System Physical
Address. The TC/FPV uses a mapping RAM to implement this transforma­
tion. The CPU Mapping RAM (CMR) is shown in Figure 2-4.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

Figure 2-3

Figure 2-4

February 14, 1990

Address transformation.

CPU
Motorola 88100

Process Logical Address (32 bits)

CMMU
Motorola 88200

88000 Physical Address (32 bits)

v
CPU interface

address transformation

TC2000 System Physical Address (34 bits)

P-bus
(processor bus)

M-bus
("memory" bus)

T-bus
(transaction bus)

Physical Address to System Physical Address.

Physical Address

(9) (23)

CPU Mapping RAM

(23)

System Physical Address

35

2: TC/FPV Function Board Inside the TC2000 Computer

2.2.3

36

The CMR takes in the high nine bits of the Physical Address generated by the
CMMU and uses it to generate the high eleven bits of the System Physical Ad­
dress. These 11 bits select one of the 2048 8-megabyte "banks" of address
space within the machine.

Note that even with this flexible mapping scheme, it is possible to build systems
with more memory than the 88000 can address. A few observations should be
made about the memory that lies outside the 4-gigabyte range that is directly
accessible to all of the 88000s in the system.

1. There is no hardware restriction against setting the CPU Mapping RAM
differently on different function boards. Thus it can be used to set up
memory to store private copies of code and data. nX kernel code that
must be replicated on every processor function board is one example.
Programs with supervisor privileges can manipulate the mapping RAM
to access private memory on remote function boards for diagnostics, ini­
tialization, debugging, and other purposes. This flexibility could also be
used to allocate different subsets of physical memory to different clus­
ters.

2. Some function boards may not have the 32-bit limitation of the 88000.
For example, an array processor or high-throughput I/O function board
could be built to access a 16-gigabyte memory space.

3. The 88000 addressing limitation might be removed in future generations
of the part.

Block Transfer and the CMR Intercept Access Bit

A feature called Intercept Access is available in conjunction with the CPU
Mapping RAM. The intended use of this feature is to reduce the number of
switch accesses required when transferring blocks of data from one function
board to another. Such use may enhance performance and reduce the asym­
metrical nature of pushing versus pulling blocks of data around the TC2000
machine.

The MC88200 behaves asymmetrically around cache write misses when the
page is marked copyback cacheable. This behavior is as follows . When the
processor misses the cache on a cacheable write (in copy back mode), the 88200
selects a cache line. (If none are available, it selects one for replacement and
if necessary, copies it back into memory.) It then reads in the new line with
the intent-to-modify bit set. (This read is to force any snooping master with
dirty data to flush it, a non-issue in the case of the TC/FPV) Next, it writes
the datum to memory, and finally it writes the datum to the newly-read cache
line. See the MC88200 User's Manual for more detail.

The effect of the 88200's behavior in the TC2000 computer is as follows. For
simplicity, the description assumes that the data is quad-word aligned. In the
current model for copying blocks of data around the TC2000 machine, a block

February 14, 1990

,
I

Inside the TC2000 Computer 2: TC/FPV Function Board

2.2.4

February 14, 1990

of data is read into the cache, and then written to another cacheable location.
The process of cache line replacement, or explicit flushing, causes the data to
be written to memory. In the case of copying data from local memory to remote
memory (pushing), the behavior described above results in three switch trans­
actions for each line of data to be copied:

1. The initial read with intent-to-modify of the cache line

2. The write-once

3. The ultimate burst write when the line is replaced in the cache

On the other hand, when copying data from a remote function board to local
memory (pulling), the data is read into the cache across the switch, and the
burst read, write-once, and burst write are performed to local memory. Hence,
only one switch reference is required. In either case, the burst read and the
write-once are extraneous. New data is immediately copied over the data that
has been read in; further, the line is written to memory when it is selected for
replacement, or when it is explicitly flushed, so the write-once is redundant
also.

If the Intercept Access bit is set in a CMR entry, support circuitry in the CPU
interface causes any cycle mapped through the entry to get intercepted. The
processor is acknowledged as if the cycle had completed, but no T-bus cycle
is actually generated. (On an intercepted read, the data returned is undefined
and should not be used for computation.) The CMR has separate entries for
read and write cycles, so reads and writes can be intercepted independently
of each other.

Besides improving performance, the Intercept Access function can be used to
make block copy behave in a symmetrical fashion. The Intercept Access bit
should be set in the read entry for the destination function board. This reduces
the number of switch references from three to two for each line in the pushing
case, by intercepting the read-with-intent-to-modify cycle when the cached
write occurs. In addition, if the destination line is read in (intercepted locally)
before the data is copied to it, then a cache miss will not occur when the data
is written to the destination. This will prevent the write-once from occurring,
reducing the number of switch references to one per cache line, regardless of
whether the data is pushed or pulled through the switch.

The Local Bit in the CMR

When the location being addressed is on the same function board, we say it
is in local memory. It is possible to access local memory across the switch, but
almost always desirable to access it directly instead.

On the TC/FPY, bit 11 in each CMR entry indicates whether the memory refer­
enced through that entry is local or remote. When the CMR asserts local, the
T-bus T _PATH bits are set to specify a local access, so the value of the T-bus

37

2: TC/FPV Function Board Inside the TC2000 Computer

NOTE

2.2.5

38

address bits T _AD< 33 . .25 > is irrelevant, but they are driven from the CMR
onto the T-bus anyhow to supply valid electrical levels.

HISTORICAL NOTES
In the B2VME function board, a predecessor to the TC/FPV, the CPU inter­
face had no CPU Mapping RAM. There, the decision that an access was local
was based on Physical Address bits 28 . .23 being zero. This zero-detection is
not present in the TC/FPV, but can be emulated by appropriate setting of the
CMR registers.

Also in the B2VME was detection of locality by "switch shortcut" logic that
noticed when the switch port addressed was the same as the function board's
own. The logic then caused the access to be serviced locally instead of using
the switch. This logic could be disabled by a bit in the Machine Configuration
Register. This logic and this bit are replaced in the TC/FPV by the local bit
in CMR entries. The CMR can be set up for backwards compatibility.

,,~

The Interleave Enable Bit in the CMR

Bit 13 in each CMR entry indicates whether the memory referenced through
that entry can be interleaved.

The Interleave Decision RAM also controls interleaving. Physical Address
bits 31..26 and 22 .. 15, a total of 14 bits, select one of 16,384 1-bit Interleave
Decision RAM entries, each controlling interleaving in one 32-kilobyte quad­
page.

In the TC/FPV:
T-bus T _INTERLEAVED signal =
((Interleave Decision RAM register bit = = 1)
AND (CMR interleave enable bit = = 1))

The intent is that software use the CMR and the Interleave Decision RAM so
that references to any given System Physical Address are interleaved for both
read and write, or non-interleaved for both read and write. However, the hard­
ware does not enforce this, and it is possible (but confusing) to have reads in­
terleaved and writes not, or vice versa.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

NOTE

NOTE

2.2.6

NOTE

2.2.7

February 14, 1990

,,,

INTERLEAVE VERSUS LOCAL
Suppose an access has interleaving enabled in both the CMR and the Inter­
leave Decision RAM; the T-bus T _INTERLEAVED signal is asserted, and
the intent is that any interleaved access go over the switch. But the CMR local
bit might also be asserted, trying to force the access to be serviced locally. In
this case, the interleaving forces use of the switch.

,,,

,,,

HISTORICAL NOTE
On the B2VME predecessor to the TC/FPV, interleaving was restricted to

"bank zero", the low 8 megabytes of each function board. There is no such
restriction on the TC/FPV
,,,

The Bypass Bit in the CMR

The "bypass" bit, bit 12 in each CMR entry, tells the CPU interface that the
access should bypass the TC2000 locking protocol.

The granularity of bypassing is 8-megabyte blocks. The design permits soft­
ware control of how much of the virtual address space is given over to bypass­
mg.

,,,

HISTORICAL NOTE
In the B2VME predecessor to the TC/FPV, bypassing was controlled by Physi­
cal Address bit 31, both in a local reference and in a remote reference on a

machine with two switch columns (64 or less function boards). On the
TC/FPV, Physical Address bit 31 has no special meaning. The B2VME model
can be emulated with the CMR.

,,,

The Fast Path Disable Bit in the CMR

Normally, certain references from the CPU to local memory traverse a special

path that is faster than a normal T-bus access. This fast path is used for non­
interleaved reads to local memory, if enabled by a bit in the Machine Configu­
ration register and not disabled by this bit in the CMR. The fast path speeds

up local references, reduces T-bus contention, and is never detrimental, so
normally it is enabled, and is disabled only for testing and diagnostics.

39

2: TC/FPV Function Board Inside the TC2000 Computer

2.2.8

Figure 2-5

88000
A<31 .. 23>

88000read*

read/write CMR

T AD<33 .. 25>

T AD<14>

IDR<31 .. 16>

read/write CMR

enable CMR

NOTE

2.2.9

40

CMR Block Diagram

Figure 2-5 shows a block diagram of the CPU Mapping RAM.

CPU Mapping RAM block diagram.

CPU Mapping RAM
10 16

address data 1-.-..,...- [>
1024

16-bit registers

~ CPU MAP 0<15 .. 0> <J f--------_ ____,

T AD<33 .. 23>

bypass

local

interleave enable

intercept access*

fast path disable

(outputs driven
with default values
when CMR is not
enabled; see text)

Reads and writes of the CPU Mapping RAM are performed using the inter­
leaver loader mechanism.

~''''''''''''''''''''''''''''''''' ' ''''''''''''

Unless the Intercept Access mechanism is being used, the intended use of the
CMR is to map read and write accesses of a given Physical Address into the
same System Physical Address. To use the CMR this way, the software setting
up the CMR must load two CMR entries for each block of addresses to be
mapped, one for reading and one for writing.
~,,

CMR Power-up and Disabled State

Upon power up, the CMR is disabled. When it is disabled, the following trans­
formation is performed on the 88000 Physical Address bits to generate the bits
that the CMR drives when it is enabled.

February 14, 1990

' (

Inside the TC2000 Computer 2: TC/FPV Function Board

Figure 2-6

1 1 0

Power-up and Disabled CMR Operation.

31

88000 Physical Address

ignored when
CMR is disabled

1 1 1 1 1 1 1 1 1 1

I ~3 32 31 30 29 28 . 27 26 25

0

drive T AD< 22 .. 0 >
as usual

L?LJ
T AD<22 .. 0>

L T AD<33 .. 23>
local

bypass
interleave enable

intercept access*
fast path disable

2.2.10

February 14, 1990

This transformation is similar to the fixed mapping for small (under 64 slots)
machines used in the original B2VME design, in that bits 29 and 30 of the
88000 Physical Address are shifted to bits 23 and 24 of the System Physical
Address, and bit 31 indicates a bypassed reference. However, the TC/FPV
disabled CMR transformation causes all memory accesses from the 88000 to
go to local memory. This lets the processor access local bootstrap code that
can initialize and then enable the CMR. The CMR is enabled by setting the
CMR enable bit in the Machine Configuration Register.

CMMU and CPU Interface Affect Address Use

Note that the CMMU, and the CPU interface's control and configuration reg­
isters, place certain restrictions on address usage, regardless of how the CMR
is set up.

The 88200 CMMU has a fixed, one-to-one mapping for the top one megabyte
of supervisor address space, called the control memory address space. This area
is intended for memory-mapped peripherals and I/O devices. Within this top
one megabyte, four kilobytes are diverted to address the CMMU's internal reg-

41

2: TC/FPV Function Board Inside the TC2000 Computer

2.3

2.4

42

isters. Accesses to the remaining 1020 kilobytes are passed through the
CMMU as a Physical Address. Thus, the top one megabyte has a 4-kilobyte
"hole" that cannot be used to access locations elsewhere in the TC2000 ma­
chine in supervisor mode. When the machine is powered up, a hardwired cir­
cuit sets where this hole lies by initializing a register within the CMMU.
Because there are two (or three) CMMUs per CPU, there are actually two (or
three) 4-kilobyte holes in the top megabyte of supervisor mode Process Logical
Address space. For more information on the Physical Address and operation
of the CMMU, see the Motorola MC88200 User's Manual.

The configuration and control registers of the CPU interface on every TC/FPV
occupy the top one megabyte of the 32-megabyte System Physical Address
space associated with that function board.

Memory

The TC/FPV can be configured with either 4 megabytes or 16 megabytes of
memory.

The memory on each function board is accessible to all other function boards,
thus constituting the global memory of the machine. Memory management
is used to map pages of memory conveniently and to control access permis­
sions.

A parity bit with each memory byte protects against errors.

A function board can address its own address space over the switch instead
of locally, when various parameters are set up appropriately. (The parameters
affecting this are the mapping in the CMMU, the mapping in the CMR, the
local bit in the CMR, the interleave enable bit in the CMR, and the bit in the
selected Interleave Decision RAM entry.)

Locations accessed over the switch, typically memory, can be interleaved. In­
terleaving is a technique that distributes small chunks of address space that
are normally contiguous, to chunks on different function boards. This is useful
to avoid certain kinds of contention. The TC2000 interleaver is described in
section 2.4.4.

Switch Interface

The switch interface, implemented by the Switch Interface Gate Array (SIGA)
chip, automatically handles references to or from remote function boards.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.4.1

2.4.2

February 14, 1990

References to Remote Function Boards

When a request appears on the T-bus from either the CPU or the VMEbus
interface that references a remote location, the requester section reads the pa­
rameters of the request, packages them up into a small message, and sends
the message into the switch. If the message is rejected, the SIGA delays for
a short time according to the backoff algorithm (selected by system initializa­
tion code) and retries the message, repeatedly. Normally, the message quickly
succeeds in traversing the switch to the destination function board, where it
is serviced. If it is a read operation, the data read is returned over the same
switch path to the requester section of the SIGA. There, the T-bus is acquired
and the data is given to the CPU (or VMEbus interface). Ordinarily, the soft­
ware - both user and system - never takes any different action for a remote
reference than for a local reference. Only if an error, such as a timeout, occurs
is additional software activity invoked. ·

References from Remote Function Boards ·

When the address space on the given function board is referenced by a remote
function board, the server section of this board's SIGA serves the request. The
received message is checked for correctness, and then interpreted as a read
or write request. The server section acquires the local T-bus and makes the
request. The local memory, VMEbus interface or registers respond. If the
operation is a read, the data is packaged up by the server section and sent
through the switch to the requester. Ordinarily, the software on the local func­
tion board is never aware of references to it made by other function boards,
except for the following effects:

• If the reference writes a location, the new data is visible because memory
is shared. CPU interface registers may also be accessed remotely; in par­
ticular, a remote processor requests an interprocessor interrupt by writ­
ing into a register dedicated to that purpose.

• If the reference locks the local memory module or local VMEbus inter­
face, data references made by the local CPU are delayed until the lock
is freed, unless the local reference is made bypassed.

• Remote references use some of the bandwidth of the T-bus and the refer­
enced module. The remaining bandwidth, available to the local proces­
sor, is typically high but can be noticeably reduced by very heavy
referencing from remote function boards.

The first and second effects arise from the shared memory architecture of the
machine, and are important features. Memory management is used to limit
the access processes have, so a faulty process does not overwrite or lock arbi­
trary remote locations.

43

2: TC/FPV Function Board Inside the TC2000 Computer

2.4.3

2.4.4

44

The third effect, due to contention, is controlled by careful program design and
development. Tools are available to detect and identify hot spots of contention,
and they usually yield to known programming techniques.

More Switch Interface Features

The SIGA operating parameters are discussed in chapter 3.

Error conditions, including timeouts, arising from use of the switch are dis­
cussed in section 2.10.

Besides functioning as a switch interface, the SIGA provides three other func­
tions.

• The SIGA implements a clock and timer interrupt feature, described in
section 2.10.

• The SIGA provides a facility called the interleaver loader. This facility
is used by nX (and in the future, pSOS + m) system software to access reg­
isters in the memory interleaver (see section 2.4.4), in the CPU Mapping
RAM (see section 2.2), and also in the VMEbus Master Mapper (see sec­
tion 2.5).

• The SIGA is the avenue by which the function board TCS slave accesses
the T-bus, and thereby the rest of function board logic circuits .

The Level Converter (LCON) chip, while a vital part of the switch interface,
is invisible to operating system and and application software.

Interleaver

The interleaver applies a mapping to references made over the switch. It takes
in several bits of the System Physical Address, performs a programmable
translation on them, and presents the result to the switch interface as an alter­
nate switch port number (the high nine bits of the System Physical Address).
A separate signal related to the T-bus, T_INTERLEAVED, tells the switch
interface whether to use this alternate switch port or the port specified in the
address from the T-bus.

The interleaver is described in chapter 4, in conjunction with memory, because
its intended use is to modify the way memory is addressed, whether the refer­
ence comes from a CPU or from a VMEbus.

February 14, 1990

, '
I

Inside the TC2000 Computer 2: TC/FPV Function Board

2.5

Figure 2-7

VMEbus Interface

The VMEbus interface connects the T-bus to a VMEbus, in each direction.
Also, the VMEbus interface can be configured to perform certain duties ("sys­
tem controller") that some device on a VMEbus system must provide.

The VMEbus interface is made of three functional blocks.

• The VMEbus master mapper takes requests on the T-bus that refer to
address space mapped to the VMEbus, and translates them into VME­
bus transactions as a master device on the VMEbus.

• The VMEbus slave mapper takes requests on the VMEbus that refer to
address space in the TC2000 machine. Responding as a slave on the
VMEbus, this functional block translates such requests into transactions
on the T-bus.

• The VMEbus system controller permits the VMEbus interface to per­
form certain VMEbus control and management duties.

VMEbus interface components.

T-bus ..,,, CPU '
,

data interrupts)I\ interrupts) '

VMEbus
master

February 14, 1990

VMEbus
slave

ww data

VMEbus

VMEbus
system controller

controlw

v MEbus
terface in

When the VMEbus interface acts as a VMEbus master, it is simultaneously
acting as a T-bus slave. And conversely, when its VMEbus slave is active, it
is acting as a T-bus master. The interface can be set up so a transaction is
looped - from the T-bus, out onto the VMEbus, back in and onto the T-bus.
Such looping would only be used in testing, but it dramatically illustrates the
independence and flexibility of the interface's master and slave functions .
Looping the other direction - originating on the VMEbus, through the inter-

45

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-8

face onto the T-bus, back through the interface and onto the VMEbus again
- is supported by the VMEbus interface, but will get a timeout because the
VMEbus itself can't be doing both the original request and the looped reap­
pearance of the request at the same time.

Example of a looped-back reference.

T-bus .L... CPU '
,

data & interrupts I~ interrupts 1'

2.5.1

46

VMEbus VMEbus
master slave

'~
data

~ ,

VMEbus
system controller

control,
~

VMEbus

v MEbus
terface in

The sections below describe the three functional blocks in more detail. For
a description of the VMEbus itself, please refer to:

The VMEbus Specification, by Motorola (The TC/FPV conforms to revi­
sion C.1 of this specification.)

VMEbus Master Mapper

The VMEbus master mapper translates 1-, 2- or 4-byte read or write requests
on the T-bus into requests on the VMEbus. This translation occurs whenever
the request falls in any of the 2048 8-kilobyte pages in the upper 16 megabytes
of the TC/FPV's address space. (However, the topmost megabyte is not usable
for translation because the TC/FPV configuration and control registers reside
there.)

Put another way, any T-bus local access in the range OxlOOOOOO to OxlEFFFFF
becomes an access to the VMEbus. The resulting page number (address bits
.31through13 inclusive, denoted "31..13") placed on the VMEbus is given by
one of 2048 mapping registers and may be whatever the application wishes .
The offset within the page (address bits 12 .. 0) is copied directly from the T­
bus.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.5.2

February 14, 1990

Each mapping register in the VMEbus master mapper also supplies the six
address modifier bits used in the VMEbus transaction. These bits specify the
kind of access being made, such as "standard" or "extended" addressing.
Also, each mapping register supplies a interrupt acknowledge (IACK) bit.
This is used when the TC2000 software is acknowledging an interrupt request
made by some device on the VMEbus. The interrupt level acknowledged is
determined by the address accessed within that register's page. Reads and
writes cannot be made through a mapping register while it is set up to acknowl­
edge interrupts, so programs typically set aside one mapping register just to
acknowledge interrupts on the VMEbus. For details of both address modifiers
and the VMEbus interrupt system, please refer to The VMEbus Specification.

When the VMEbus master mapper becomes master of the VMEbus, it can
obey either of two mastership protocols: release on request or release when
done, defined in The VMEbus Specification. The protocol used depends on the
application. The TC/FPV can be configured by a jumper to employ either pro­
tocol.

The VMEbus master mapper registers are read and written through a special
mechanism called the interleaver loader.

VMEbus Slave Mapper

The VMEbus slave mapper translates 1-, 2- or 4-byte read or write requests
on the VMEbus into requests on the T-bus. Typically the requests address
local memory, but they may address local registers or resources on remote
function boards. This translation occurs whenever the request falls in any of
several contiguous 8-kilobyte pages of VMEbus address space. The location
and size of this window are determined by control registers in the VMEbus
interface. The window location - where the window begins in the VMEbus
address space - allows the TC2000 software to place the window conveniently
for the design of the VMEbus system, or even to move the window around dur­
ing execution.

The configurable size of the window is related to VMEbus address size. The
VMEbus Specification defines two addressing sizes: "standard" addressing is
24-bit addresses, and "extended" addressing is 32-bit addresses. The VME­
bus slave mapper is software configurable to respond to either standard or ex­
tended VMEbus addressing. Which kind of addressing is appropriate
depends on the application and the other devices on the VMEbus.

• If the VMEbus slave mapper is set to respond to standard VMEbus ad­
dressing, the window is 4 megabytes (512 8-kilobyte pages).

• If the VMEbus slave mapper is set to respond to extended VMEbus ad­
dressing,. the window is 16 megabytes (2048 8-kilobyte pages).

This flexibility in VMEbus slave mapper window size allows the window to be
matched to the application. For example, a graphical display memory or a

47

2: TC/FPV Function Board Inside the TC2000 Computer

2.5.3

48

memory dual-ported to another computer might benefit from a large window.
A small VMEbus system performing sensor data gathering, however, might
not be able to afford more than 4 megabytes out of its address space.

As with the VMEbus master mapper, any access in the slave mapper's window
becomes an access translated onto the T-bus. The new page number (address
bits 31..13) is given by one of 2048 mapping registers and may be whatever the
application software sets up. The offset within the page (address bits 12 .. 0)
is copied directly from the VMEbus.

Each mapping register in the VMEbus slave mapper also supplies several con­
trol signals. These specify the following:

• The path the request will take (local to the function board, or out over
the switch)

• If the request goes over the switch, whether it references interleaved
memory or non-interleaved memory

• Whether to lock the T-bus and the memory module, and the switch if
it is used, as long as the VMEbus transaction is in progress (thus permit­
ting atomicity of operations that originate on the VMEbus)

• If the referenced memory module is locked, whether the reference will
bypass the lock

(The slave mapping register also specifies, if the request goes over the switch,
its priority value. This capability should ordinarily not be used; priority should
be left to the switch latency control mechanism in the SIGA hardware.)

The VMEbus slave mapper registers are accessed directly from the T-bus;
they occupy specific locations in the global System Physical Address space.
The VMEbus slave mapper registers in any TC/FPV function board can be
loaded (and read) from any function board in the TC2000 machine, subject
to protection via memory management on the board making the access. This
global accessibility is an important part of parallel I/O functionality on the
TC2000 machine.

VMEbus Interrupt Handling and Generation

The VMEbus interface can both handle interrupts generated by VMEbus de­
vices and generate interrupts on the VMEbus. As mentioned in section 2.5.1,
one (any one) of the VMEbus master mapper's mapping registers is typically
set aside for generating the IACK cycle to acknowledge an interrupt.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.5.4

2.6

VMEbus System Controller Functions

When in slot 1 of a VMEbus system, and configured by jumper to be system
controller of the VMEbus system (as it normally is), the VMEbus interface will
perform the following functions:

• Arbiter, using single level arbitration - grants mastership of the VME­
bus to devices requesting it

• IACK daisy chain driver - repeats the interrupt acknowledge signal
back along a daisy chain, where a VMEbus device requesting an inter­
rupt will sense it

• System clock driver - provides a 16-megahertz clock

• Bus timer - provides two timeout functions :

o VMEbus Arbiter Timer - limits how long the VMEbus may be
granted without the device taking mastership by asserting the signal
bus busy

o VMEbus System Bus Timer - limits how long a VMEbus master
may assert the signal address strobe without any slave responding
with the signal DTACK (data acknowledge)

The two timer functions above are performed only as VMEbus system control­
ler, and do not affect the remainder of the VMEbus interface, TC/FPV or
TC2000 machine in any way unless it is making the VMEbus access that is
timed out. A third timer, the VMEbus TC/FPV Master Bus Timer, is different
from the above two timers and is discussed in section 2.10.

For further explanation of the system controller function, please refer to The
VMEbus Specification .

TCS Slave

The TCS slave on the TC/FPV connects directly with the SIGA, through which
it has access to the T-bus and thence to all memory and registers on the board.

This TCS slave performs the following functions :

• Monitor temperature

• Monitor + 5 and -5 volt power, from on-board supplies

• Control the on-board power supplies (on, off and margining)

• Reset the board (resets the 88100 CPU and other hardware)

• Report board type to TCS master upon request

• Access the T-bus, to perform the following actions:

February 14, 1990 49

2: TC/FPV Function Board Inside the TC2000 Computer

2.7

2.7.1

NOTE

50

o Initialize registers as necessary before operation

o Load bootstrap code into memory

o After the nX operating system is running, monitor certain locations
for data sent by the nX software to the TCS master, and return any
results from the TCS master to the nX software

For more information on the TC/FPV TCS slave capabilities, please refer to
the current documentation on TEX, the TCS master software, in the System
Administration Guide.

Configuration and Control Registers

The CPU interface contains several registers that configure and control the
TC/FPV These are described briefly below, organized into nine functional
groups.

User Registers

Registers in this group are intended to be accessible to the user's application
program. The address of each is on its own page, so the operating system can
easily permit or prohibit access to each independently, for any process, by mo­
difying the process 's memory map. Also. some fields in one of these registers,
the PCR, are protected by mask bits in another register. When a mask bit is
"1", attempting to set the masked field in the PCR results in a bus error. This
provides even finer control over access to PCR functions .

' ''
NO nX USER ACCESS
In the current release (2.0) of the nX operating system, none of these registers
are accessible to the user software.

·''''''''''''''' ''~'''''''''' '''''''''''''''''''

Interprocessor Interrupt Register
Setting the one defined bit in this register causes an interrupt request
to the local CPU. Since this register may be accessed over the switch, it
provides a way for one processor to interrupt another.

Process Configuration Register
This register has four fields . The synchronized access bit selects a par­
ticular switch access strategy in the SIGA, that can be set up to reduce
congestion when many CPUs are all referencing the same function
board. The path field contributes to the decision of whether a refer­
ence is local (to this board) or remote (goes out over the switch). The
default priority and priority scheme fields contribute to switch mes-

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.7.2

2.7.3

February 14, 1990

sage priority, and ordinarily should not be used; priority should be left
to the switch latency control mechanism in the SIGA hardware.

Augmentation Register Block
There is one register, called the Augmentation register (AR), and a
block of locations the user employs to modify its contents. In general,
the Augmentation register extends (augments) the instruction and ad­
dressing capabilities of the 88000 CPU. Augmentation applies only to
certain kinds of references. The lock bit controls whether references
made by the CPU will employ the TC2000 locking protocol (described
.in section 2.9. 7. The exception action field can be used by the operating
system to remember what action it should take after an exception dur­
ing an instruction sequence that uses the lock bit (continue, restart or
abort). The disable interrupts bit inhibits the presentation to the CPU
of interrupt requests from certain sources (illustrated in Figure 2-11).

Configuration Registers

These registers, in addition to the user-accessible registers in section 2.7.1, di­
rectly control the process execution environment. These, however, are in­
tended for access by privileged processes only. Privileged processes, in
referencing the Augmentation register, can access it directly as well as through
the Augmentation Register Block locations noted above.

PCR Disable Mask Register
Bits in this register mask (prohibit setting of) the path, default priority
and pn.ority scheme fields in the Process Configuration register.

Machine Configuration Register
This register controls certain basic operating characteristics of the
TC/FPV The cache selection scheme bit determines how the two code
CMMU chips are shared, in a TC/FPV configured with two. The code
CMMU to use is selected either by a bit in the Process Logical Ad­
dress, or by the supervisor/user mode bit. The fast path enable bit al­
lows certain references from the CPU to local memory to traverse a
special path that is faster than a normal T-bus access. The write wrong
parity bit causes incorrect parity to be written, and is used for diagnos­
tic purposes. The CMR enable bit enables the CPU Mapping RAM in
the CPU interface.

Interrupt System Registers

The TC/FPV's CPU interrupt facility extends the single-level interrupt capa­
bility of the 88100. These registers control that facility. Interrupts to and from
the VMEbus are described in section 2.7.6. The interrupt facility is described
in section 2.10.

51

2: TC/FPV Function Board Inside the TC2000 Computer

2.7.4

2.7.5

52

Interprocessor Interrupt Register
This register requests a CPU interrupt, as described in section 2.7.1.

Non-maskable Interprocessor Interrupt Register
Setting the one defined bit in this register causes an interrupt request
to the local CPU. This register is similar in function to the Interproces­
sor Interrupt register, except that this register's request cannot be sup­
pressed by the Interrupt Enable Mask register.

Interrupt Source Register
This register informs the CPU which of several possible events is re­
questing interrupt service. The sources are: the VMEbus (seven lev­
els), the non-maskable interprocessor interrupt, the maskable
interprocessor interrupt, the real-time clock interrupt(s), and the "in­
terrupts disabled too long" timeout.

Interrupt Enable Mask Register
This register allows the CPU to selectively enable interrupts from cer­
tain sources - namely, from the VMEbus (each level independently),
and from the Interprocessor Interrupt register.

(T -bus) Bus Error Register

Bus Error Vector Register
This register, the only one in this functional group, indicates the reason
that a bus error was generated. The error is reported on the T-bus, but
may have originated elsewhere, such as in handling a switch connec­
tion.

Latency Control Registers

The latency of interrupt servicing and of access to a memory module may be
controlled with these registers . Latency is also controlled by timer registers
in the VMEbus interface for VMEbus transactions, and in the SIGA for switch
transactions .

Interrupts Disabled Timer Register
This register limits how long the CPU may disable certain interrupts -
namely, those from the VMEbus, real time clock timer(s), and the
maskable interprocessor interrupt.

Interrupts Pending/Abort Retries Timer Register
This register limits how long the CPU will wait for the establishment of
a switch connection while an interrupt is pending.

CPU Lock Timer Register
This register limits how long the CPU may hold a memory module
locked.

February 14, 1990

(

Inside the TC2000 Computer 2: TC/FPV Function Board

2.7.6

2.7.7

February 14, 1990

VMEbus Interface Registers

The TC/FPV VMEbus interface contains three general types of registers.

VMEbus Configuration Register
VMEbus Master Map RAM Registers
VMEbus Slave Map RAM Registers

These registers (the RAM locations are loosely called registers)
control the role played by the TC/FPV as a device on the VME­
bus - the location, size and mapping of the window from
VMEbus address space into TC2000 address space, the map­
ping of the window in the reverse direction, whether the
TC/FPV is system controller, and related parameters.
Figure 2-7 shows these functions .

VMEbus Interrupt Request Register
VMEbus Interrupt Vector/Control Register

These registers control the generation of interrupts on the
VMEbus by the TC2000 software.

VMEbus Arbiter Timer Register
VMEbus System Bus Timer Register
VMEbus TC/FPV Master Bus Timer Register

These registers control timers that detect and abort conditions
that persist too long. The first two are described in section
2.5.4, and the third in section 2.10.

SIGA Registers

The SIGA contains several registers accessible from the T-bus. These are de­
scribed in four functional groups below. The SIGA also contains registers ac­
cessible only to the TCS slave, and registers not directly accessible from
outside the chip; these are not discussed here.

Message Classification Register
Protocol Timer Configuration Register
Transmit Time Configuration Register
Priority Time Configuration Register
Requester Configuration A and B Registers
Requester Test A Register

These registers control the transmission of switch messages by
the requester portion of the SIGA.

Server Configuration A and B Registers
Server Test A Register

These registers control the reception of switch messages by the
server portion of the SIGA.

Real Time Clock (RTC) Registers

53

2: TC/FPV Function Board Inside the TC2000 Computer

2.7.8

2.7.9

54

Time Of Next Interrupt (TONI) A and B Registers
TONI A and B Configuration Registers

These registers concern timekeeping. The RTC provides a
constantly incrementing, nearly real time counter. Based on
the RTC, two TONI registers provide programmable timer in­
terrupts. These are described further in section 2.10.

Interleave Address Register (IAR)
Interleave Data Register (IDR)

These registers implement an interface, called the interleaver
loader, between the T-bus and various high speed RAMs: the
Interleaver RAM (in the switch interface), the Interleave Deci­
sion RAM and the CPU Mapping RAM (both in the CPU in­
terface), and the VMEbus Master Map RAM (in the VMEbus
interface). Accessing the RAM locations works as follows. A
read access to certain locations (near that of the IAR) causes
the contents of the ID R to be stored into, or to be loaded from,
a location (selected by the IAR) in one of the special RAMs.

Interleaver Control Registers

The TC/FPV has two kinds of registers controlling interleaving - registers
that determine whether a given access is to interleaved memory, and registers
that produce modified bits of the interleaved address.

Interleave Decision RAM Registers
CPU Mapping RAM Registers

These registers determine whether a reference generated by
the CPU is to interleaved or non-interleaved memory. For in­
terleaving to occur, an enable bit must also be set in a SIGA
configuration register.

VMEbus Slave Map RAM Registers
These registers determine whether a reference generated by
the VMEbus interface slave mapper is to interleaved or non­
interleaved memory.

Interleaver RAM Registers
These registers produce the modified address bits used in an
interleaved access. The translation takes bits from the T-bus
and supplies modified bits to the SIGA, for inclusion in the
outgoing switch message.

CPU and CMMU Registers

The Motorola 88100 CPU and 88200 CMMU contain several internal registers
for control of data processing and of caching and memory management, re­
spectively. For example, the CPU Processor Status register permits disabling

February 14, 1990

' .

(

Inside the TC2000 Computer 2: TC/FPV Function Board

2.8

2.8.1

interrupts; disabling interrupts this way makes the CPU immune to all the
TC/FPV interrupts, including the "non-maskable" interprocessor interrupt
and the "interrupts disabled too long" timer. A more complete discussion of
CPU and CMMU registers is beyond the scope of this document. For such
a description, please refer to the 88100 User's Manual and the 88200 User 's
Manual.

Path and Speed of References

Since the TC2000 architecture contains a variety of mechanisms controlling
and accelerating the access to addressable resources, the discussion of what
path an access takes and how much time it takes are somewhat subtle.

What Path an Access Takes

This section describes the path taken by a memory access from the TC/FPV
CPU. This description is both to clarify operation of the hardware, and to set
context for memory access timing in section 2.8.2. More detailed information
about the 88000 chip set can be found in the MC88100 User 's Manual and the
MC88200 User's Manual.

The possible outcomes of an access are:
- a cache hit
- a fast path access to local memory
- a T-bus access to local memory
- a switch access to remote memory (including back to this function board)
- a bus error
- a transaction fault detected during address translation in the CMMU.

The CPU's normal processing can be disrupted by any of the following excep­
tions:

• Internally, the CPU can detect and assert various exception conditions
(see the 88100 User 's Manual) .

• Externally:

o Assertion of the reset pin resets the CPU.

o The CPU may be interrupted by assertion of its interrupt (INT) pin.

o A data transaction (read or write) may encounter an error, signalled
to the CPU by a code on its Data Reply pins (11 = transaction
fault) .

o A code transaction (instruction fetch) may encounter an error, sig­
nalled to the CPU by a code on its Code Reply pins (11 = transac­
tion fault) .

February 14, 1990 55

2: TC/FPV Function Board Inside the TC2000 Computer

The four external causes have different exception vectors assigned to them.
Reset is not of concern here, where we assume processing is in progress. Inter­
rupts are signalled only by the interrupt logic on the TC/FPV described in sec­
tion 2.10. The data and code transaction faults are signalled only by the
CMMUs.

START:

• The 88100 generates a reference. It supplies Process Logical Address
bits, supervisor/user mode bit, read/write bit, and instruction/data bit.

• One of the two (or three) CMMUs will respond, based on the instruction/
data bit and, if the reference is an instruction fetch and two code
CMMUs are present, the code cache selection logic, as follows :

o If the Machine Configuration register cache selection scheme bit is
zero, then Process Logical Address bit 12 selects the code cache.

o If the Machine Configuration register cache selection scheme bit is
one, then the CPU's supervisor/user mode bit selects the code
cache.

From here on, the CMMU that responds is called "the" CMMU.

• The CMMU attempts to locate a mapping for the Process Logical Ad­
dress. The possible outcomes of this process are:

o The CMMU may find a valid entry in its ATC with protection at­
tributes that match those of the process making the reference.

o The CMMU may have to search its translation tables to find the
mapping. This involves memory references initiated by the
CMMU. If a memory error occurs on one of these references, the
CMMU returns a transaction fault to the CPU. Otherwise, it loads
the appropriate translation information into its Address Transla­
tion Cache (ATC) and translates the address.

o The CMMU may find that the transaction violates the protection
specified in the selected translation register, either write protection
or supervisor mode protection. A transaction fault is returned to
the CPU.

o The CMMU may find that a segment descriptor or page descriptor
that it needs is invalid. A transaction fault is returned to the CPU.

• The CMMU attempts to make the requested access, using the Physical
Address generated in the translation step. The possible outcomes are:

o The page may be marked "cache inhibit", that is, non-cacheable.
The access is passed on through the CMMU to the memory bus.
If a bus error occurs on the memory bus, the CMMU passes the
error back to the CPU as a transaction fault.

o The CMMU may have the data cached (a cache hit). For a read,
the data is returned quickly to the CPU. For a write, the cached

56 February 14, 1990

I •

Inside the TC2000 Computer 2: TC/FPV Function Board

February 14, 1990

0

data is overwritten with the new data. If the page being referenced
is in copy back mode and the cache line (four 32-bi t words) had pre­
viously been modified, the transaction is done. If the page is in wri­
tethrough mode, or if it is in copyback mode and this is the first
write since the line was loaded into the cache, the CMMU writes
the cache line back to memory. If a bus error occurs on this write,
the CMMU returns a transaction fault to the CPU.

The CMMU may not have the data cached (a cache miss). The
CMMU will select a cache line to replace with the desired line. If
the selected line is modified and is in copyback mode, the CMMU
must write it back to memory before replacing it. If a bus error oc­
curs on this write, the CMMU returns a transaction fault to the
CPU. If the selected line is not modified, or is in writethrough
mode, it is simply discarded. The CMMU then reads the new cache
line from memory. If a bus error occurs on this read, the CMMU
returns a transaction fault to the CPU. Having filled the cache line,
the CMMU performs the requested access, as described above for
a cache hit.

Whenever the CMMU initiates a memory reference, the CPU interface on the
TC/FPV translates the CMMU address, data and control signals, which obey
the M-bus protocol defined by Motorola, into signals that obey the TC2000
T-bus protocol. In addition to accounting for various timing differences, the
CPU interface logic performs several operations:

• Decide whether the reference can be handled by the fast path, and issue
the necessary control signals if it can.

A reference from the CPU will use the fast path only if all of the following
conditions are met:

o The operation is a read (either code or data), not a write.

o The Machine Configuration register "fast path enable" bit is 1.

o The "fast path disable" bit of the CPU Mapping RAM entry se­
lected by the current reference is 0.

o The "local" bit of the CPU Mapping RAM entry selected by the cur­
rent reference is 1.

• Decide whether the reference should be intercepted. If the intercept ac­

cess* bit (the * is part of the name of the bit, indicating it is low true) in
the CMR entry selected by this reference is zero, the access is intercepted.
That is, the CPU is acknowledged as if the reference has completed, but
no T-bus cycle occurs. If the reference is a read, the data returned is
undefined.

The intercept access mechanism is used for speeding up certain block
transfer operations involving the cache. It is described further in section
2.2.3.

57

2: TC/FPV Function Board Inside the TC2000 Computer

• Generate the T-bus control signals needed to specify the path to be taken
by the address and data for this reference (if not the fast path). These
are:

o T _ INI'ERLEA VED - Generated by the Interleave Decision
RAM, subject to the CMR interleave enable bit. If this is a remote
reference, this signal indicates that the transformed address gener­
ated by the interleaver should be used by the SIGA. The CMR local
bit is ignored if the T_INTERLEAVED bit is asserted.

o T _PATH< 1..0 > - Generated by the Process Configuration regis­
ter, subject to the CPU Mapping RAM local bit and interleaving.
Indicates whether this reference should be handled by switch inter­
face A, switch interface B, or local memory.

• Generate T-bus control signals that specify other attributes of the refer­
ence:

o T _PRIORITY< 1..0 > - Generated by the priority scheme mech­
anism. Indicates the priority of this reference in the switch. (Nor­
mally, priority should be left to the automatic hardware mechanism
used to bound switch latency.)

o BYPASS - Derived from the CPU Mapping RAM bypass bit.
When this signal is asserted, the TC2000 locking protocol is inhib­
ited and T_LOCKOP is set to "bypass".

o T_LOCKOP < 1..0 > - Derived from the state of the Augmenta­
tion register lock bit, the DLOCK signal asserted by the 88200
CMMU during XMEM operations, and the BYPASS signal.
Opens, maintains and frees locked transactions, or bypasses locks,
according to the TC2000 locking protocol.

o T _SYNC - Generated by the synchronized access bit in the Process
Configuration register. If this is a remote reference, this signal in­
fluences the time at which the request message is allowed to enter
the switch.

o T _AD< 33 .. 23 > - Generated by the CPU Mapping RAM. These
bits select an 8- megabyte "bank" of memory within the System
Physical Address space global to the machine. As part of that selec­
tion, they specify the switch port that is addressed. The switch port,
however, is subject to possible further modification by the inter­
leaver. If the reference falls in a window to VMEbus memory, the
address is subject to further modification by the VMEbus master
mapper at the addressed switch port.

• If the request is not serviced by the fast path or by the intercept access
mechanism, the CPU interface issues a T-bus request, where it may be
serviced by any of several T-bus slaves, depending on the value of
T PATH<l..0> .

58 February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.8.2

February 14, 1990

o T _PATH = 11: The local memory, the VMEbus master, or the con­
figuration and control registers will respond.

o T_PATH = 10: The switch interface serving the "Pl..' switch will is­
sue a request message, retransmitting until the request reaches its
destination or is timed out.

o T_PATH = 01: The switch interface serving the "B" switch will is­
sue a request message, retransmitting until the request reaches its
destination or is timed out.

o T_PATH = 00: Illegal value.

• If the reference is non-local, the SIGA at the remote end makes a request
on its local T-bus. The parameters of this request are as follows:

o The T PATH< 1..0 > bits are always 11.

o The T AD< 33 . .25 > bits are driven to zero. For a local access
(T_PATH = 11), the T-bus Specification requires that
T _AD< 33 .. 25 > be driven to valid binary levels, but their value is
undefined.

o The remaining address and control bits are specified by the switch
request message.

The result of the T_PATH bits being 11 is that the the request cannot go
back out either SIGA on the remote function board, but must be served
(if at all) by a device local to that board. In the TC/FPV, this can be
memory, local configuration and control registers, or the VMEbus mas­
ter interface. In fact, the VMEbus interface can be set up so the request
goes out onto the VMEbus and comes back in the VMEbus slave inter­
face, so the request could proceed further. However, use of this facility
(for other than testing) is highly contrived and risks having timers (that
help control latency) go off, aborting the connection and returning a bus
error.

• When the switch reply message comes back, the SIGA acquires the T­
bus and places the requested data on it. The CPU interface takes the
data from the T-bus and hands it to the CMMU, which retains a copy
in its cache if it is a cacheable reference. The CMMU hands the data
on to the CPU, and execution resumes.

CPU Memory Access Timing

Figure 2-9 shows the memory access time from a TC/FPV CPU under a vari­
ety of conditions. The accompanying notes are essential. Each value shown
applies throughout its connected white space. These are generally best case
(minimum) times, as detailed further in the notes.

59

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-9 Memory access time (microseconds).

Cache Access Made by CPU

Mode

inhibited

writethrough

copyback

writethrough

copyback

Read Write Read Write
Activity from to from to

Local Local Remote Remote

none 0.550 0.600 1.913 1.889

hit
0.150

hit

miss
0.850 1.200 2.529 4.168

miss with
no writeback

miss with
writeback to local 1.500 1.850 3.179 4.818

miss with
writeback to remote 2.905 3.255 4.534 6.173

Notes for Figure 2-9.

1. The operating frequency of the TC/FPV characterized here is 20.0 MHz.

2. The timing shown is the full latency including the CPU's "execute" phase
(a Motorola term for instruction decoding) and "address" phase through
completion of the access. For example, a read with a cache hit takes three
cycles (execute, address, and successful reply), a total of 0.150 microsec­
onds. The bandwidth may be greater than the reciprocal of the timing
shown, since the execute and/or address phases may be pipelined with
the processing of other instructions, depending on the mix of instruc­
tions. The maximum bandwidth is one access per cycle. Pipeline stalls
caused by recent instructions that have not yet finished are possible dur­
ing the execute and/or address phases; the timing shown assumes such
stalls are absent. For further details, see the Motorola MC88100 User's
Manual.

3. The fast path is assumed used where possible, namely in reads (either a
burst or a single word) from non-interleaved local memory. Using the
fast path reduces the access time by 3 cycles (0.150 microseconds).

60 February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

4. The timing shown assumes that no page table walking is performed. If
the CMMU must load memory mapping information to service the ac­
cess, the time seen by the CPU is increased.

5. The intercept access mechanism is assumed not used. Its effect on timing
is discussed later.

6. If the access is augmented with the TC2000 locking protocol, the access
time in some cases may be reduced because, if a remote function board is
referenced, locking holds the switch path to it open. Therefore, if switch
transmissions were not immediate or if there was contention in the switch
or at the destination port, only the initial locked reference would be
delayed and not the subsequent references during the sequence. Howev­
er, the timing shown assumes immediate transmission and no contention,
so there is no effect due to locking on the timing shown. (The timing of
VMEbus accesses, not discussed here, is affected by locking.)

7. The chart is intended to show data access timing, although the entries
relevant to an instruction fetch are also valid for that. (In an instruction
fetch, the times shown include the 1-cycle "prefetch" phase rather than
the 1-cycle "execute" phase.) The M-bus ("memory" bus, the common
output of the CMMUs) is assumed not occupied by another CMMU.
(That is, occupied by one of the two instruction CMMUs when a data
access is made, or by the data CMMU when an instruction fetch is made.)
If the M-bus is occupied, the access time shown is increased by the time
needed for that access to release the M-bus. (Note that there are sepa­
rate instruction and data P-buses, so instruction and data accesses do
not contend for the P-bus.)

8. The T-bus is assumed not occupied. If the T-bus is occupied, the access
time shown is increased by the time needed for that access (and any other
accesses with higher T-bus priority than the CPU) to complete. In the
TC/FPV, the CPU has the lowest T-bus priority. Note that accesses to
the VMEbus master interface and to the switch interface split cycles on
the T-bus, releasing the T-bus for other use while the requested opera­
tion is performed.

9. Any memory module used in servicing the access is assumed not locked
and idle. If it is locked (via the TC2000 locking protocol), the access time
shown is increased by the time needed for the locked transaction to com­
plete and the access to be retried. The hardware performs the retry auto­
matically. (If it is a bypassed access, the timing is unaffected by the
locked status of the memory module.) If the memory module is busy -
with a refresh cycle or completing a write cycle - the access time shown
is increased by the time needed for a T-bus REFUSED reply and a new
T-bus arbitration. This is typically 2 cycles (0.100 microseconds).

10. When the access includes one or more references to a remote function
board, the timing shown assumes there is no contention for the T-bus
and memory on the remote function board.

February 14, 1 990 61

2: TC/FPV Function Board Inside the TC2000 Computer

11. The timing shown assumes the access is to non- interleaved memory. If
any reference involved in serving the access is to interleaved memory,
that reference is forced to go over the switch. If the reference would have
gone over the switch anyway, the access time is not changed. If the refer­
ence would have been serviced entirely on- board, the access time is in­
creased.

12. The Butterfly switch included in this characterization is a 2-column
switch and operates at a clock frequency of 38.0 MHz.

13. The TC/FPV contribution to access timing was calculated by accounting
for individual cycles of the board clock. The Butterfly switch contribu­
tion was calculated by a program that models the switch parameters set
to their fastest settings. In particular, immediate transmission strategy is
assumed. The timing shown would be increased, for example, by a strate­
gy that delays before the first transmission. Such a strategy may be used
to pace accesses made to a software spin lock.

14. The Butterfly switch timing assumes no switch contention. That is, there
is no contention for the local SIGA, for switch ports within the switch, or
for the switch port at the destination function board. If contention is
present, the access time shown is increased.

15. The times for specific switch transactions included in the access timing
chart are as follows :
transaction
1-word read
1-word write
4-word read
4-word write
synchronizer uncertainty

16. Synchronizer uncertainty:

microseconds
1.337
1.363
1.953
1.729
0.152 (see note)

The TC/FPV is clocked at a different frequency than the Butterfly switch.
Therefore, each time data enters or leaves the switch, it passes through a
synchronizer, a circuit that re-clocks it to the new environment. The
delay at a synchronizer varies from no delay up to one cycle at the new
clock frequency. Each normal switch access passes through four syn­
chronizers - the request goes into and out of the switch, and the reply
does likewise. The "synchronizer uncertainty" shown above is the maxi­
mum total delay for all four synchronizations. The computation of access
timing includes one half the maximum delay, assuming that the delay is
uniformly distributed and therefore is, on the average, half the maximum.
Each switch reference incurs this synchronizer delay. For example, if the
CPU's access requires three switch references, the access time shown in­
cludes three times half the synchronizer uncertainty.

62 February 14, 1990

l

Inside the TC2000 Computer 2: TC/FPV Function Board

2.8.3

2.9

2.9.1

February 14, 1990

Intercept Access and Timing

The intended use of the intercept access mechanism is to speed up the copying
of blocks of data. In this application, one typical case of its use is as follows:

• CPU access is a write to remote memory

• Cache mode is copyback

• Cache activity is a miss with writeback to remote memory

• CMR is set up to intercept the read (The data read in will be immediately
overwritten, so it can safely be intercepted.)

In this case, the intercept access mechanism reduces the access time seen by
the CPU from 6.173 microseconds to 4.294 microseconds, a savings of about
30 percent.

Atomicity and Locking

This section begins with general discussions of race conditions, and atomicity
and locking. Readers familiar with these topics may skip this general discus­
sion and proceed directly to section 2.9.3 without loss of continuity.

Race Conditions

The facilities described in the next section - atomicity, locking, exclusion and
synchronization - are necessary only because multiprocessing is inherently
susceptible to race conditions, also called multiprocessing hazards. A race
condition is competition between two or more processes, over access to re­
sources that each must use, but which use can corrupt each other's results.

For example, suppose processes A and Beach need to increment a counter
N that is accessible to them both. The steps each might take are:

1. Read the value of N from its location in memory into a register.

2. Add the increment to the value in the register.

3. Write the register's new value back into memory.

But suppose that the processes are executing on separate processors, or that
an operating system's preemptive scheduler switches between the two pro­
cesses in the following unfortunate way:

Process A reads N. Suppose the value it reads is 5.

Process B reads N, getting 5 just as A did.

Process B adds its increment, say 1, getting the new sum 6.

Process B writes 6 back into memory.

63

2: TC/FPV Function Board Inside the TC2000 Computer

2.9.2

64

Process A adds its increment (1), getting its new sum 6.

Process A writes its 6 back into memory.

We now have 5 + 1 + 1 = (erroneously) 6.

Many machines support the operation of incrementing a value in memory (as
in the above example) with a single instruction. Such an instruction is called
a "read-modify-write" operation. Such an instruction usually cannot be inter­
rupted (as B interrupted A above), or if it is aborted, it is later restarted at the
read. However, on a multiprocessor machine, this is insufficient defense
against the race condition. Also needed is a way to prevent B from accessing
memory between the read and write phases of P\.s instruction. Such prevention
is called locking. Locking the memory location guards against the race condi­
tion and guarantees a correct answer in this example.

Race conditions are typically a concern in multiprocessing, although they can
also arise in a single processor, single process system due to interactions with
I/O devices.

A characteristic of race conditions is that they may sometimes produce the
correct answer, and sometimes an incorrect answer, depending on vagaries
such as when an interrupt occurs, or the value of numerical data (which can
affect how many instructions are needed to compute functions of the data).
Therefore, race conditions are sometimes difficult to debug. It's important to
program with care to avoid race conditions, by using the facilities described
in the next section.

Two Sides of a Coin

Atomicity and locking are like the sides of a coin, because although they are
different, you can't have one without the other.

We use the terms "atomicity" and "locking" to mean the following:

atomicity

locking

The indivisibility of an operation. An operation is atomic if no
other operation that might interfere with the validity or accura­
cy of its results can occur while the atomic operation is in prog­
ress. This notion derives from the Roman philosopher
Lucretius, who described physical matter as made of atoms
that cannot be divided, and a Greek word for "uncut".

The act of acquiring rights to access a resource, such that no
other operation can access the resource in a way that might in­
terfere with the validity or accuracy of the locker's access. The
access may be to read, write, or modify in more complex ways.
The resource is usually an area of memory, but could also be an
I/O device or other data processing circuits.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

February 14, 1990

The notions of atomicity and locking are similar. Atomicity emphasizes that
the operation is not interrupted. Locking emphasizes the way that possible
interference is prevented. You can't have one without the other, in at least
some form.

For example, consider what might happen when you make an airplane reserva­
tion. The travel agent keys in the parameters of the desired operation: flight
number, date, your name, and so on. The reservations software obtains a lock
on the data base entries it will access in performing the atomic operation of
making your reservation. To obtain this lock, it may call a locking routine.
The locking routine appears atomic to the calling software, but inside it makes
repeated attempts to obtain the lock. Each attempt is an atomic reference to
a memory location. The reference is atomic because the computer's hardware
permits only one process to access the location at a time. This atomicity of
reference to a location is enforced by circuitry that locks the data path to the
location; only one requester circuit at a time is permitted to drive the request
signal wires. The hardware implements the locking of access to the signal wire
by the atomic decision to grant only one of possibly several access requests.
The atomicity of choosing one request among several works by the physics of
the electronic device - if a particular voltage is present, it locks out the effect
of competing forces that would produce a different voltage. We see that atom­
icity and locking support each other. An atomic operation is atomic because
it is protected by some form of lock, and it in turn may serve as a lock to secure
the atomicity of a larger operation.

A spin lock is a way to program the obtaining of a lock: try to get the lock, and
upon failure, try again right away, repeatedly until the lock is obtained. A spin
lock has two advantages and a disadvantage.

+ Simplicity - It's easy to program, and takes little space.

+ Speed, in simple cases - In the absence of complicating factors noted
below, a spin lock achieves the minimum delay between the lock be­
coming free and the requesting process obtaining it. This can be essen­
tial in some time critical applications.

Congestion (a disadvantage) - If several processes are contending for
the lock, many of the requests are either delayed, or aborted and must
be retried. This can tie up machine resources such as the access path
to the lock location, possibly slowing other processes that aren't even
concerned with the lock. Further, the process trying to free the lock can
experience this congestion, delaying the freeing.

The cure for congestion due to a spin lock is usually to include a small delay
in the program loop. This is like the interruption of highway traffic at an inter­
section, by a stop light. Or like the pulsing of blood through capillaries. Nei­
ther traffic, nor blood, nor spin locks work very well without pulsing when the
volume is high.

65

2: TC/FPV Function Board Inside the TC2000 Computer

66

The delay may be constant, or may increase each time the lock request fails.
The increasing delay is called backoff or pacing or throttling. To avoid repeated
bursts of lock attempts from several processes that are backing off with the
same schedule, the actual delay may be randomized. In fact, such a random­
ized, backoff strategy is one of the mechanisms used in the TC2000 switch
hardware to reduce congestion, regardless of whether locking is involved or
not.

A lock may prohibit all access, or only certain types of access. A common ex­
ample of the latter is a lock that permits only one process to write new data
into a location, but any number of processes to read data from the location.
Such a single writer, multiple reader lock is useful when one process is respon­
sible for computing the new value of the variable, and other processes can op­
erate successfully with either the old or the new value. This works well if the
writer can update the data all at once (atomically), so that no reader will see
a mixture of partly old and partly new data.

Two other terms that often appear in conjunction with atomicity and locking
are exclusion and synchronization. By these we mean:

exclusion Preventing another operation, typically performed by another
process executing on the same computer, from interfering with
an operation that the process at hand is going to perform. Ex­
clusion is like locking, but exclusion emphasizes keeping the
other processes away, while locking emphasizes obtaining one
resource (the lock) in order to gain rights to further resources .

synchronization
Ensuring that separate processes interact with each other in a
controlled manner, so that the overall computation is correct.

Mutual exclusion (or "mutex") is how any one of several competing processes
may exclude the others, thus obtaining exclusive rights to a resource. The term,
mutual exclusion lock is perhaps redundant but nevertheless commonly used.

As an example of synchronization, suppose the simulation of chemicals in a
mixing vat is divided up among several processes, each simulating fluid in a
different area of the vat. The processes interact, because the fluid moving out
of one area moves into another area. The processes need to keep in step, or
else one will start working on garbage data in memory locations that haven't
yet been filled by the result from the process supplying it. Locking can be used
to implement some forms of synchronization. In this example, the supplier
process can lock the memory locations that will hold the result, unlocking them
only after the result is placed there.

In the above example, processes synchronized in pairs. Each piece of data is
supplied by one specific process, and is used by another specific process. The
transfer of the data is controlled by synchronization between that pair. Anoth­
er form of synchronization, barrier synchronization, is used when several pro­
cesses must all reach a certain stage in their computations before any can

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.9.3

February 14, 1990

continue. This is like a roadblock in a race; all participants must check in at
the roadblock before the barrier is lifted and all are allowed to proceed. Exam­
ples of barrier synchronization often arise when each process's computation
depends - or may depend - on results of the others. For instance, a simula­
tion of particle motion in a hot, ionized gas may be programmed as discrete
steps in simulated time. At each time step, a particle's motion is affected by
the forces exerted on it by nearby particles. Perhaps only a fraction of all the
particles are near, but which those are varies from step to step as they all move.
Barrier synchronization is a convenient way to ensure that these forces are felt
in a controlled way. Otherwise, the simulation of some particles ' motion might
get ahead of other particles' motion, and the proper interactions would not be
computed.

The term semaphore is often used for a mechanism, such as a lock, employed
to synchronize processes.

The following section describes atomicity and locking on the TC2000 comput­
er. The emphasis is on the primitives available to the programmer. Lower level
details are provided when they clarify or motivate the basic programming faci­
lities . Higher level constructs are mainly the responsibility of the programmer,
who uses the basic functions to build execution control mechanisms appropri­
ate to the application.

The xmem Instruction

The MC88100 CPU has one read-modify-write instruction, xmem. xmem ex­
changes the contents of a CPU register with the contents of a memory location,
so calling it a "load-then-store" operation is more accurate than the more gen­
eral term "read-modify-write". The load and store memory accesses are indi­
visible; only an access error on the store access can prevent the two from
occurring as a unit. The MC88100 supports this by asserting a special signal
(DLOCK), and the MC88200 CMMU honors this signal by holding on to the
M bus. The Motorola design expects the M bus to lead directly to memory,
thus ensuring that no interruption is possible and thereby guaranteeing that
xmem is atomic.

In the TC2000 machine, however, the M bus does not lead directly to memory.
It leads to the CPU interface, which in turn connects to the T-bus, and thence
directly to local memory and indirectly over the switch to remote memory. The
TC2000 architecture is designed to honor the DLOCK signal throughout these
additional components. In particular, an xmem referencing remote memory
holds the switch path open, and holds the memory module on the remote func­
tion board locked, until the store has completed. This explicit support of xmem
in the TC2000 hardware ensures that xmem is atomic on the TC2000 computer.

67

2: TC/FPV Function Board Inside the TC2000 Computer

NOTE

2.9.4

2.9.5

68

,,,

Motorola's MC88100 RISC Microprocessor User 's Manual contains, in section
8.4, a discussion of xmem as the basis for synchronization operations on the
88100, including examples of locking. The reader may find this a useful addi­
tional description of the topic, but should be aware that one aspect of that dis­
cussion does not apply to the TC2000 machine. Namely, TC2000 memory is
not all on one bus. In fact, none is directly on the M bus. Therefore, the shared
snooping caches described there do not exist in the TC2000 machine, so that
method of alleviating the cost of a spin lock is not available.
,,,

Atomic Functions Based on xmem

The CPU atomic instruction xmem is available in C and Fortran via library
functions that compile straightforwardly into the 4-byte and 1-byte versions
of the assembly language instruction. For details of these calls, see the TC2000
Programming Handbook, or the manual pages in the nX Programmer 's Refer­
ence.

Among its various uses, xmem may be used to obtain a lock on other data, or
the lock and data may be combined in one word as follows. The programmer
may construct an application-specific operation that is protected by a lock to
ensure atomicity by setting aside one bit of a 32-bit value as a lock. Then the
xmem instruction can be used efficiently to implement a 31-bit atomic Opera­
tion. To obtain the lock, xmem is used to swap a value with its lock bit set,
with the location in memory. If the result obtained also has the lock bit set,
the location was locked and the code tries again (perhaps after a short delay).
This is repeated until the value obtained has its lock bit clear. The application­
specific operation is then performed, the flag bit is forced clear, and the result
is written back into memory. The bit chosen as a lock might be the high order
bit, the sign bit. If so, negative numbers could not appear in a location main­
tained with this mechanism. Normally, a location maintained with this mecha­
nism should not be referenced in other ways (load, store, or simple xmem)
because it is not atomic with respect to those. However, in some applications
it may be acceptable to read the location normally. For instance, if the pro­
gram is looking for a specific value of the (31- bit) counter, then the locked val­
ue is certain to not match because its high bit is set.

Atomic System Calls

The current nX operating system provides calls to perform certain frequently
used operations atomically. These are implemented with the TC2000 locking
protocol, described in section 2.9. 7. They are somewhat slower than the xmem
instruction because they trap td the operating system, whereas xmem is part
of the 88100 instruction set. Therefore, if a construct (such as mutual exclu-

February 14, 1990

(

Inside the TC2000 Computer 2: TC/FPV Function Board

February 14, 1990

sion) can be implemented either with xmem or with one of these calls, xmem
should be used.

These calls perform two consecutive references to the target location, just as
xmem does, so they do not load the memory or switch any more than xmem.
In this respect they are preferable to user-constructed "31-bit" atomic opera­
tions described in section 2.9.4, that load the memory and switch more and
are clumsier to use.

The atomic system calls (except atomcas) can be applied to 8-, 16- or 32-bit
target locations, and the full name of the call has "8'', "16" or "32" appended
to the basic name, respectively. (For example, atomadd32 or atomior8.) Also,
several are available in both a signed and an unsigned version. In these, a "u"
is inserted between the basic name and the size suffix, to specify the unsigned
version. For further information, please consult the corresponding manual
pages.

atomadd

atomand

a to meas

atom eta

atomffOandset

ADD a quantity into a memory location, returning the original
contents of the location. Signed and unsigned versions.

AND a mask into a memory location, returning the original
contents of the location.

compare the contents of a memory location against a compari­
son value: If the two are equal, store an update value into the
location. If the two are not equal, do not change the location.
In either case, return the original contents of the memory loca­
tion. The "cas" stands for "compare and swap". 32-bit opera­
tion only, not 16 or 8.

clear the bits in a memory location as specified by a mask. and
then add a specified value to the result, store the sum back in
memory, and return the original value of the memory location.
The "eta" stands for "clear then add" . Signed and unsigned
versions.

find the first (most significant) "O" bit in a memory location
and set that bit to " 1'', returning the bit number found, or 32 if
there was no "O" bit.

atomfflandclear

atomior

find the first (most significant) "1" bit in a memory location
and clear that bit to "O", returning the bit number found , or 32 if
there was no "1" bit.

inclusive OR a mask into a memory location, returning the
original contents of the location.

69

2: TC/FPV Function Board Inside the TC2000 Computer

2.9.6

70

atomload and atomstore
load a value from, or store a value into, a memory location.
These calls are provided for portability to architectures that do
not have hardware support for the other atomic operations.
On the TC2000 machine, these translate into simple loads and
stores. On a machine that emulated the atomic operations in
software, the implementation would be more complicated.
Signed and unsigned versions.

Atomicity of Memory Accesses

As one would expect, loading or storing a byte of data is atomic. If two pro­
cesses are trying to write the same byte in parallel (that is, at the same time),
the operations get serialized - one write is performed, then the other. The
byte never ends up with some bits from one write and some from the other.
Similarly, if one process is reading a byte while another is writing it, the reader
always obtains a consistent value, either the eight bits before the write or the
eight bits after the write. This may seem an obvious point, but the operations
on larger quantities of data discussed next can be understood as analogous to
this simple case.

A halfword is two bytes, aligned on a two- byte boundary (that is, at an even
byte address). Reading or writing a halfword is atomic on the TC2000 comput­
er.

A word is four bytes, aligned on a four- byte boundary. Reading or writing a
word is atomic on the TC2000 computer.

A cache line is sixteen bytes, aligned on a 16-byte boundary. Data is stored
in the instruction and data 88200 CMMU chips, in units whose size is one
cache line. If any data in a cache line is cached, all 16 bytes are cached. When
data is read into a CMMU to fill a cache line, or when it is written from the
CMMU out to memory to flush a cache line, the four words comprising the
cache line are read or written in a rapid burst. The TC2000 hardware supports
the burst read and burst write of a cache line, by locking out any other access
to the memory that is being accessed. Therefore ,filling or flushing a cache line

is atomic on the TC2000 computer. This is true whether the memory is local or
remote, or even on an attached VMEbus device (so long as the VMEbus device
is not dual ported and permitting simultaneous accesses).

Ordinarily, the CMMU hardware and the operating system software manage
the filling and flushing of cache lines, so the user is neither concerned with nor
able to control these operations. And indeed, the user never has complete con­
trol over them. But some system calls are available to permit sophisticated
programmers to implement their own caching policy.

vm _cache_ setup
Specifies how a specified region of the caller's memory is
cached.

February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.9.7

NOTE

February 14, 1990

vm cache flush · - -
Forces data in a specified region ofthe caller's cached memory
to be marked invalid and/or written out into memory.

For example, by properly controlling the caching (and alignment) of a 4-word
data structure, the user could implement application-specific atomic opera­
tions on the data, that would execute quite efficiently. There are hazards and
pitfalls, however. For instance, in the middle of what is intended to work as
an atomic sequence of instructions modifying the 4-word structure, the
CMMU or the operating system might flush the cache line to memory. If
another process could access it before it was re-loaded and the "atomic" se­
quence completed, that other process would see an inconsistent state of the
data.

For further discussion of vm_cache_setup and vm_cache_flush, see the
TC2000 Programming Hand book.

TC2000 Locking Protocol

The TC2000 hardware supports a locking pr<?tocol that may be used to achieve
both speed and atomicity. The basic concept is the same as that used to sup­
port the 88100 instruction, xmem, described in section 2.9.3. The resource is
locked to prevent any other access to the resource until the lock is freed . On
a remote access, the switch path is locked also, both for efficiency of subse­
quent references and to support freeing the resource (it is freed when the
switch path is torn down).

Locking is implemented as a side effect of data references to locations with
a special bit set in the mapping register used by the reference. The data refer­
ence itself establishes (opens) the lock, so locking is sometimes described as
an "augmentation" to normal instructions that load or store data.

,,,,,,,,,,,,,,,,, ,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,

USE RESTRICTED TO SUPERVISOR MODE
The lock protocol is not accessible in user mode under the current nX operat­
ing system. The current pSOS + m operating system cannot prohibit use of the
lock protocol, since the user may enter supervisor mode, but pSOS + m does not
facilitate use of the lock protocol through any special features .
,,,,,,,,,,,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,,,,,,,,

Lockable Target Devices

There are two lockable resources in the TC2000 architecture: memory modules
and VMEbus interfaces. A memory module is all of the memory on a function
board. While a memory module is locked, no normal access to it is possible
except by the device holding the lock. (We say "normal" access because there

71

2: TC/FPV Function Board Inside the TC2000 Computer

is a special way to bypass locks, described later.) For example, a processor's
access to data in local memory is delayed if a remote processor has the memory
locked.

A VMEbus interface provides two windows, one in each direction, between
the T-bus of a function board and a VMEbus system. (It also provides control
and interrupt functions.) The TC2000 locking protocol is supported in both
directions. The window from the T-bus (where it acts as a slave device) to the
VMEbus system (where it acts as a master device) supports locking by holding
mastership of the VMEbus until the lock is freed. This provides atomicity of
operations arising in the TC2000 that access VMEbus address space, unless
the VMEbus device is dual ported to allow separate access via another path.

Lockable Switch Paths

The access paths that support locking are the T-bus and the TC2000 switch.
Each function board has a T-bus interconnecting the modules on the board;
these modules may include a CPU interface, memory, and a VMEbus inter­
face, and a switch interface is always included. The T-bus supports locking
by transporting signals that describe each access as normal, opening (estab­
lishing) a lock, maintaining an already existing lock, or (as discussed later) by­
passing a lock. The T-bus itself serves only one access at a time, but it does
not stay locked. The target device remembers whether and by whom it is
locked, and enforces any access restrictions while it is locked. For example,
a remote CPU may lock the memory of a function board, and while it is locked
may make several accesses to it. Between those accesses, the T-bus is inactive,
and the local CPU may use the T-bus to access remote memory or its VMEbus
interface.

The TC2000 switch, when involved in a locked access, supports locking by
holding the switch path open between the function board doing the locking and
the function board on which the locked target device resides. The switch path
is kept open until the lock is freed. A locked switch path entails the following
subtleties:

• All remote references made by the locker until the lock is freed must be
to the same remote function board. Only one outgoing switch interface
exists per function board, so to reference a different remote function
board that interface would have to abandon the locked, held switch path.
Doing so would violate the locking protocol, free the lock, and result in
an error. Note that if multiple addresses in interleaved memory are ac­
cessed, their physical locations may be on different function boards even
if their virtual addresses are contiguous and/or on the same page.

• No other function board in the machine can access the target function
board until the lock is freed . Only one incoming switch interface exists
per function board, so any attempt to access that board from another
function board will be rejected (and automatically retried, eventually
succeeding but suffering delay).

72 February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

NOTE

February 14, 1990

• In theory, the locker may hold multiple target devices on the target func­
tion board locked simultaneously, because the switch permits an "open
lock" message even though a locked transaction is already in progress.
When the locker terminates the locked sequence, all devices it had locked
on the remote function board are freed. In theory, multiple devices on
the local function board may be locked as well, but this is especially an
issue in remote locked accesses because the switch interface must explic­
itly permit it. However, no lock-generating interface (CPU interface and
VMEbus slave interface) is implemented to generate a second "open
lock" message when it already has a lock open. Therefore, in practice the

locker can hold only one target device locked at a time.

Generation of Locked Accesses

A locked access can arise from only two sources: the CPU and the VMEbus
interface. In the CPU interface, the lock bit in the Augmentation Register (AR)
controls locking. When the CPU makes an access (to a non-cached location)
while the lock bit of the AR is set to one, the access locks the resource ad­
dressed and, if it is a remote access, the switch path. Clearing the AR lock
bit to zero generates a special "free locks" cycle on the local T-bus, unlocking
any local locked resources . If remote resources were locked. they and the
switch path to them are also freed .

Locking is a side effect of a data reference; an instruction fetch never generates
a locked access.

,,,.

CACHING AND LOCKING
The xmem instruction never operates on cached data. Circuitry in the CMMU
recognizes the xmem, and if the location is cached and is dirty (has been modi­
fied in the cache), the cached value is written out to memory. In any case, the
xmem then operates directly on memory, not on data in the cache. However,
locking using the Augmentation Register does not receive this special treat­
ment. If the CPU loads or stores a cached location while the AR lock bit is set,
the reference is serviced from the cache and the memory module is not locked.
As a general principle, it is best to keep locations that will be locked non­
cacheable.
,,,

When the VMEbus interface responds as a slave to an access on the VMEbus
that falls within the slave map window, an access into TC2000 address space
results. The VMEbus slave mapper translates the VMEbus address into a
TC2000 System Physical Address. The VMEbus slave mapper also produces
various control signals that accompany the access, one of which specifies lock­
ing. The mapping, locking and other access control signals are selected by the
high 19 bits of the VMEbus address, while the low 13 bits are passed straight
to the System Physical Address. Therefore, mapping, locking and the other

73

2: TC/FPV Function Board Inside the TC2000 Computer

controls have a granularity of 8-kilobyte pages. If the access from the VMEbus
falls on a page set up for locking, the reference is a locked access; otherwise,
it is not. The lock is held until the VMEbus master device originating the ac­
cess drops mastership of the VMEbus; at that time, a "free locks" cycle is gen­
erated, freeing whatever local, remote and switch path resources were locked
by the access.

Bypassing Locks

A locked target device (memory module or VMEbus interface master mapper)
does not service normal access requests except from the locker. Instead, it re­
sponds with a "refused - locked" reply on the T-bus; the requester gets a bus
error and may try again. However, the access can be accompanied by a special
"bypass" signal that makes the locked device respond as if it were not locked.
In effect, the access bypasses the lock. Note that bypassing does not circumvent
a switch path that is being held by a locked sequence. The purpose of bypass­
ing is primarily so that the CPU can access instructions and page tables in its
local memory, even if some device has the local memory locked.

In the CPU interface, the bypass signal is generated by the CPU Mapping
RAM, and it controls 8-megabyte blocks of the address space. The software
may set the bit before the locked operation and clear it afterward. Or, the soft­
ware can maintain one or more 8-megabyte blocks as "bypass access win­
dows'', however is convenient.

In the VMEbus slave mapper, the bypass signal is generated independently
for each 8-kilobyte page, just as the lock signal is.

All instruction fetches, and page descriptor fetches made by the CMMU, auto­
matically bypass locks. These are the only references that automatically by­
pass locks.

Certain data references, such as those associated with exception processing
in the CPU, should bypass locks. System software is responsible for setting
up mapping so that the following data references are mapped bypassed:

• Memory management unit page table walks (namely, segment descriptor
fetches made by the CMMU; page descriptor fetches made by the
CMMU are automatically bypassed)

• Exception vector fetches

• Supervisor stack references

• Configuration and control register references (see note below)

7 4 February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

NOTE

NOTE

CAUTION

February 14, 1990

''''''''''''''''''''''''''''''''''''''' ''''''''
LOCK AND BYPASS - WHO WINS?
The most important effect of bypassing is to ignore locking held by someone
else. However, it can also affect your own locking, as follows . A reference
made by the CPU may be marked as locking by the Augmentation Register
lock bit. Independently, it may be marked bypass by a bit in the selected CPU
Mapping RAM register. If both bits are asserted, how does such a reference
operate? The bypass property overrides the locking property; such a reference
will not establish a lock and will circumvent a lock held by someone else.
,,,, , ,,

BYPASSED ACCESS TO CPU INTERFACE REGISTERS
The configuration and control registers in the CPU interface cannot be locked,
and therefore it is not strictly necessary that they be accessed bypassed (by
mapping them bypassed). However, an attempt to lock these registers will get
a bus error, and referencing them with the xmem instruction or inside portions
of lock-generating (AR lock bit set) code may be very convenient. One simple

. way to permit these references without getting an error is to map the registers
bypassed.
,,,

BYPASSING AND XMEM
The xmem instruction normally makes a locked, read-modify-write reference.
But if the target location of the xmem is mapped bypassed, bypass overrules the
xmem and the xmem reference becomes a read reference followed by a separate
write reference. An xmem reference to an address mapped bypassed is not
atomic.

11

75

2: TC/FPV Function Board Inside the TC2000 Computer

CAUTION
BYPASSING TC2000 LOCKING - USE CARE
When the application program references certain areas of memory bypassed,
the programmer should design the program with this in mind. Writing data
structures with a bypassed access into an area normally protected by TC2000
locking is questionable and potentially dangerous, because it can corrupt the
structure for all processes that access it. For instance, a bypassed write to clear
a lock that is normally accessed using xmem can leave the lock locked by no~

body. If such writing is necessary, the user should take great care, and protect
the consistency of the data through higher level flags or execution control.
Reading such data structures with a bypassed access may be less disastrous,
because its immediate effect is limited to the reader. For instance, it may catch
an inconsistent snapshot of the program's variables, if TC2000 locking is nor­
mally used to ensure consistency. If the data structure is updated all at once -
with a single write - then reading it obtains a consistent result, either the old
state or the new, which may be acceptable in some cases.

11

Considerations in Using the TC2000 Locking Mechanism

The points listed below should be considered when using the locking mecha­
nism on the TC2000 computer.

• Use of locking is currently restricted to supervisor mode, under both nX
and pSOS + m operating systems.

• As noted earlier, access to remote resources during a locked sequence
is restricted to one remote function board. Remember that interleaving
spreads contiguous chunks of virtual address space among several func­
tion boards.

• A locked sequence cannot be arbitrarily long. The CPU Lock Timer pre­
vents the CPU from holding a lock longer than its setting, with a maxi­
mum of 255 microseconds. Upon expiration, a "free locks" cycle is
automatically generated. If a remote resource is locked, the Connection
Timer tears down the switch path when it expires, also with a maximum
of 255 microseconds. All the timers are discussed in section 2.10.

• Keeping a resource locked for a long time can adversely affect the execu­
tion speed and latency of other processors, and increases the risk of time­
outs. For example, devices in an attached VMEbus system may be more
sensitive to access latency than TC2000 function boards are. Conse­
quently, it may be advisable to set up the VMEbus slave mapper so that
its accesses bypass locks.

• If an exception occurs during a locked sequence, the exception handler
needs to know what to do after processing the exception; should it contin­
ue normally, restart the sequence, or abort (the exception is fatal to the
process)? To aid the software, the Augmentation Register contains an

76 February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

2.10

February 14, 1990

exception action field. The code that uses locking can set this field to tell
the exception handler what to do.

The TC2000 lock protocol provides an efficient means to implement a great
variety of atomic operations. However, because of its current restriction to
supervisor mode, the nX application programmer must leave its use to the op­
erating system. The alternative to the hardware lock protocol is to implement
software locking using one or more of the atomic operations provided by the
system. Software locking gives the programmer a free rein to tailor the mecha­
nism and the operations it protects to suit the needs of the application, without
the time constraints of the hardware lock protocol.

Timers and Interrupts

Timers are one source of interrupts in the TC2000 computer. Figure 2-10 de­
scribes the timers in the TC/FPV function board, and is mostly self-explanato­
ry. Two timers deserve further discussion here. The Interrupts Disabled
Timer starts counting when interrupts to the CPU are disabled (by setting a
bit in the Augmentation Register). It is used to ensure that interrupts are not
disabled so long that the maximum interrupt latency desired cannot be guaran­
teed.

The Interrupts Pending I Abort Retries Timer helps limit the interrupt servic­
ing latency. Interrupts are serviced only after instructions complete. So, if an
interrupt arrives after an instruction begins a remote reference, and the setup
of the switch path encounters delay, the interrupt servicing could be delayed
undesirably. This timer starts counting when an interrupt request arrives . If
it expires, the switch interface is told to abort all connection retries until all
interrupt requests are gone.

77

2: TC/FPV Function Board

Figure 2-10 Timers in the TC/FPV.

Name and Range

CPU Lock Timer
1 - 255 microseconds

Interrupts Disabled Timer
1 - 255 microseconds

Interrupts Pending I
Abort Retries Timer
1 - 255 microseconds *

Reject Timer
1 microsecond -
0.49 seconds *

Connection Timer
1 - 255 microseconds *

Time Of Next Interrupt - A
(TONI-A)
1 microsecond - 1 hour *

Time Of Next Interrupt - B
(TONI-B)
1 microsecond - 1 hour *

VMEbus Arbiter Timer
4 - 1020 microseconds

VMEbus TC/FPV Master
Bus Timer
1 - 255 microseconds

VMEbus System Bus Timer
4 - 1020 microseconds

Purpose

LOCK AND INTERRUPT TIMERS

Limit how long the CPU
may hold a lock.

Help guarantee maximum
interrupt service latency.

Help guarantee maximum
interrupt service latency.

SWITCH PROTOCOL TIMERS

Prevent SIGA from trying
too long to establish a
connection.

Prevent switch connection
from being held open too
long.

REAL TIME CLOCK TIMERS

Allow software to ask for
an interrupt at a specified
time.

Allow software to ask for
an interrupt at a specified
time.

VMEbus INTERFACE TIMERS

Limit how long VMEbus bus
grant may be asserted without
bus busy.

Limit how long the TC/FPV
as VMEbus master may await
a response from a slave.

Limit how long any VMEbus
master may await a response
from a slave.

* Also, these timers can be disabled by software.

Inside the TC2000 Computer

Action on Expiration

Generate a FREE_ LOCKS cycle. CPU
will later get a "maintain present" error.

Interrupt.

Signal SIGA to abort retries in case
connection establishment is in progress.
CPU gets bus error if retries are
aborted.

Bus error.

Tear down connection. CPU
gets bus error - code and timing
depend on when timer expires.

Interrupt.

Interrupt.

Arbiter removes bus grant.

Assert VMEbus signal BERR.

Assert VMEbus signal BERR.

The 88100 CPU has only one interrupt line, so the TC/FPV function board cir­
cuitry combines various interrupt sources into one signal applied to the 88100.

78 February 14, 1990

Inside the TC2000 Computer 2: TC/FPV Function Board

Figure 2-11

ATC
register

3

Further, the TC/FPV interrupt system provides information to the CPU allow­
ing it to determine what interrupt source(s) are currently asserted, and means
to dismiss and/or disable certain interrupts. Figure 2-11 shows the logical der­
ivation of the interrupt signal presented to the 88100 CPU in the TC/FPV The
gating is conceptual and does not necessarily reflect the gate level implementa­
tion in hardware. Note that if the 88100 has internally disabled interrupts (by
setting a bit in its Processor Status Register), none of the interrupt sources
shown in Figure 2-11 will produce an interrupt until that PSR bit is cleared.

TC/FPV interrupt derivation.

TONI
register

3

Interprocessor
Interrupt register

VMEbus interrupt request lines

2 3 4 5 6 7

is ATC > TONI?
Interrupt

-Enable
Mask

yes set TONI_ Config
status register

bit

register

Interrupt
Source
register

is AR disable interrupts bit = O?

Non-maskable
Interprocessor
Interrupts register

KEY:

February 14, 1990

yes__ _ __,

interrupts disabled
too long timer expired?

yes

interrupt to CPU

Figure 2-11 shows the derivation of the real-time timer interrupt signal for one
of the two TONI registers in the switch interface. Figure 2-12 shows this pro-

79

2: TC/FPV Function Board Inside the TC2000 Computer

Figure 2-12

2.11

80

grammable timer mechanism in greater detail. Within the Switch Interface
Gate Array (SIGA) are two independent Time Of Next Interrupt (TONI) sys­
tems. Each system consists of a TONI register, a comparator, a configuration
register and an output signal. The SIGA compares the TONI register to its
Real Time Clock (RTC) every microsecond. The comparison sets the status
bit in the associated TONI configuration register, and also generates an inter­
rupt request if enabled. The TONI mechanism is implemented in the SIGA
for simplicity - the RTC is implemented there because it is driven by the
switch clock signal and is used in other switch message processing. ·

TC/FPV TONI mechanism.

TONIA
register

CPU

write
(tricky)

1 MHz

interrupt

SIGA

TONIB
register

is ATC > TONIB?

set status bit

enable bit

TONIA Config
register

Bus Errors

yes yes
set status bit

enable bit

TONIB _ Config
register

interrupt circuits

other interrupt sources

There are a variety of conditions in the TC2000 machine that terminate CPU
cycles with a bus error. Because the number of bus error conditions is rather
large, bus error causes are prioritized and encoded. The CPU can read the
encoded information from the Bus Error Vector register and use it as an offset
into a dispatch table in the bus error handler. This mechanism is included
to improve the bus error service latency.

February 14, 1990

g =-=_ ~===== - -- - - -- - - -= = = = - - -- - - -

3.1

Figure 3-1

February 14, 1990

3

The Butterfly Switch

Importance and Name

The Butterfly switch distinguishes the TC2000 computer from many other mul­
tiprocessor designs. Its importance is reflected in the fact that the custom
VLSI chips in the TC2000 implement and support the switch; other portions
of the machine are assembled using commonly available parts .

Two-by-two crossbars.

S>------­
S>-------

Figure 3-1 shows a two-by-two crossbar switch in two notations. The left dia­
gram shows two horizontal wires and two vertical wires. Each of the four inter­
sections of wires is a crosspoint. The wires at the crosspoint are normally
insulated from each other, and closing the crosspoint connects them. This dia­
gram resembles the physical construction of electromechanical crossbar
switches once used in telephone exchanges. The diagram on the right shows
two wires on the left side, each of which may be passed straight through to the
wire on the right, or may be switched over to the other wire on the right. This
diagram resembles railroad tracks, and the data flow in some Fast Fourier
Transform algorithms. Its resemblance to a butterfly is the origin of the name
"butterfly transform" in signal processing, and of the Butterfly switch.

81

3: Butterfly Switch

3.2

3.2.1

3.2.2

Inside the TC2000 Computer

Function and General Structure

Provide Access to Remote Boards

The primary function of the TC2000 switch is to interconnect the function
boards so they can access each other's address space. The main reason to ac­
cess a remote board is to access its memory. Also important, however, is ac­
cess to registers in the remote board's CPU interface (such as the
Interprocessor Interrupt register) and VMEbus Slave Map RAM. Access to
devices on the remote board's VMEbus system may also be important in some
applications.

A total of 20 signals to each function board support remote access. These are
described in section 3.3.

Also Distribute Signals

A secondary function of the switch hardware is to distribute machine-wide
signals. These fall into two categories, clock signals and TCS signals. They
are described briefly now; the rest of this chapter deals only with the signals
that support remote access .

• Requester clock - this signal runs at the switch clock frequency and is
used by the requester section of the LCON and the SIGA. In the SIGA,
it is divided down and runs the Real Time Clock.

• Server clock - this signal also runs at the switch clock frequency, but
is either in phase or 180° out of phase with the requester clock, as se­
lected on the machine's clock card, to adjust for switch data cable length.
It is used by the server section of the LCON and the SIGA. No direct
effects of the server clock are visible to the 88000. Both the requester
clock and the server clock signals can be used as a CPU clock or other
on-board functions, although they are not so used in the TC/FPV

• 65 milliseconds pulse - this signal is generated on the clock card and
fanned out via each switch requester (TC/SR) card to each function
board. It is asserted for one switch clock period every 65,536 microsec­
onds. It is used in the SIGA's Real Time Clock circuit and helps to keep
the RTC synchronized with those in other function boards.

• TCS master to slave - this signal originates in the TCS master and is
fanned out by the clock card to each midplane, where it is delivered to
the function boards and to the switch server (TC/SS) card. The TCS slave
processor in each of these cards receives messages from the TCS master
by receiving this signal.

• TCS slave to master - this signal carries response messages from the
function board's TCS slave processor. The signal goes first to the switch _

82 February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

3.2.3

Figure 3-2

server (TC/SS) card serving the function board, where it is combined with
the TCS slave to master signal from the other seven function boards, and
with the TC/SS's own slave to master signal. That combined signal goes
to the clock card for further fan-in, and then to the TCS master.

Structure of the Switch

The TC2000 switch is introduced in chapter 1, and its general structure is cov­
ered there. Here we examine it in more detail.

First, let's be sure we have the right image of "switch". The TC2000 switch
is like a railroad switch, not like a light switch. A switch in railroad track con­
trols where the train goes; similarly, the TC2000 switch determines where the
remote access message goes. The railroad switch and the TC2000 switch both
determine a route, a selection from alternatives. A light switch, on the other
hand, is on or off; the power is present or absent. The light switch determines
whether something happens (the lamp is lit), and the railroad and TC2000
switches determine how something happens (where the train or message goes).

Like a railroad switch , routes are made.

TC2000 railroad track switch light switch
switch

February 14, 1990

In chapter 1, we noted that the TC2000 switch (along with power and the TCS)
is a central facility to which each function board connects. Let's look more
closely now at that attachment. Figure 3-3(a) shows the TC2000 machine as
in chapter 1, but without showing I/O systems. Also, here we show that some
places where function boards could attach to the switch may not be filled.

Figure 3-3(b) shows a close-up of how one function board attaches to the
switch. The switch provides a connection point called a switch port, to which
the switch interface portion of a function board connects.

83

3: Butterfly Switch

Figure 3-3

(a)

(b)

Switch ports in the TC2000 computer.

-------VMEbus interface

:~---- CPU, memory, etc.

------- switch interface

switch port

--- TC2000 switch

Inside the TC2000 Computer

function
boards

TC/FPV
function
board

As we see in Figure 3-4, the switch port consists of two parts: a requester port
and a server port.

• The function board uses the requester port to issue requests for access
to remote function boards, and to receive replies to those requests .

• The function board supports the server port only for the benefit of other
function boards in the machine. Their requests for access to this function
board arrive on its server port, are serviced automatically by the function
board hardware, and replies are sent back out the server port.

84 February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch ·

Figu.re 3-4

NOTE

February 14, 1990

Switch port = requester port + server port.

function
board

switch
interface

requester server
port port

my requests It their requests ~

their replies \~ my replies '~

s11vitch
port

TC2000
switch

Note that a reply to a given request is returned over the same path as that request.
In fact, the very same wires carry the data; the TC2000 switch is bidirectional.
This provides an important performance benefit to the user. Instead of having
to establish a new path for the reply, the path is held open so the reply can
return immediately. Holding the path does have the cost that other switch traf­
fic can't use the individual switch elements in the path while the reply is being
prepared, but this cost is small compared to the advantage gained.

,,,

The GPlOOO computer, a predecessor to the TC2000, did not have a bidirec­
tional switch. In it, a new connection had to be established, over a new switch
path, to return the reply. Users familiar with that earlier architecture should
note this improvement in the TC2000 switch.
,,,,,,,,,,,,,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

The switch hardware establishes a path through the switch by allocating, incre­
mentally and locally, switch hardware resources to support the path. From the
time a path through the switch is established, to the time it is torn down by

85

3: Butterfly Switch

86

Inside the TC2000 Computer

freeing the resources, we say that a connection exists. The term "path" empha­
sizes the hardware resources and the physical route through the switch, and
the term "connection" emphasizes the ability to communicate and thus to ac­
cess a remote function board.

Normally, the requester port and server port on a function board are complete­
ly autonomous. They may, and often do, handle independent connections si­
multaneously. A function board may, if desired, access itself over the switch.
In this case, both its requester port and its server port are involved in the same
connection.

Figure 3-5 shows another way to think of the function boards and the switch.
In (a), we have moved the requester and server ports to opposite sides of the
function boards. Considering the switch as a piece of paper, we then lifted
it out of the plane of the page and curled its sides forward almost into a cylin­
der. The requester port of each function board connects along one edge of the
split cylinder, and the server port connects along the other edge, as in (b). This
image emphasizes the separateness of the requester ports from the server
ports; they are on opposite "sides" of the switch!

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-5 Requester and server ports attach to switch "cylinder".

(a)

(b)

February 14, 1990

requester
ports

requests

~

function
boards

TC2000
switch

TC2000
switch

replies

---7

server
ports

:JtC
requester function

ports boards
server
ports

87

3: Butterfly Switch

NOTE

88

Inside the TC2000 Computer

TERMINOLOGY: CROSSBAR UNIT = SWITCH NODE
In developing the conceptual description of the Butterfly switch in the follow­
ing text, the term crossbar unit is used. The term switch node is commonly
used to mean the same part of the machine.
,,,

Now we look inside the switch, to examine its internal structure. As Figure 3- 6
shows, the TC2000 switch is composed of several linked crossbar units, ar­
ranged in columns. The requester side of the crossbar units in the first column
connects to function board requester ports. The server side of the first column
connects to the requester side of the second column. In principle, there could
be several columns - the server side of each column connecting to the request­
er side of the next column. The server side of the final column connects to func­
tion board server ports. For machines with up to 64 function boards, only two
columns are required. A 3-column switch is needed for machines with 65 func­
tion boards or more, up to the TC2000 architecture limit of 512 function
boards.

The TC2000 switch is expanded by adding crossbar units, an equal number
in both columns. This increases the total bandwidth of the switch as a whole,
so that the bandwidth available per function board remains constant and does
not become a bottleneck.

The crossbar unit is implemented as a printed circuit card: the TC/SR switch
requester card (for the first column) and the TC/SS switch server card (for the
second column). On each card, four identical Switch Gate Array (SGA) chips
together implement the crossbar function; each SGA provides one quarter of
the switching circuitry.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-6

to
requester

ports
on

function
boards

February 14, 1990

Columns of crossbar units.

requester
side

first
column

crossbar
unit

crossbar
unit

crossbar
unit

crossbar
unit

server
side

requester
side

second
column

crossbar
unit

crossbar
unit

crossbar
unit

crossbar
unit

server
side

to
server
ports

on
function
boards

Figure 3-7 shows the insides of a crossbar unit. At each of the 64 circles, the
switch can connect the two paths. The actual signals involved in each path are
shown in Figure 3-8. The eight data signals are bidirectional, and the two con­
trol signals ("frame" and "reverse") always go in a single direction, as indi ­
cated.

89

3: Butterfly Switch

Figure 3-7

to
requester
ports on
function
boards

Figure 3-8

to
requester
ports on
function
boards

90

TC2000 switch crossbar unit.

Arrows show direction requests travel;
replies travel in the reverse direction .

The signals in one switch path.

o(
data bit o

>
o(

data bit 1 >
o(

data bit 2 >
o(

data bit 3
>

o(
data bit 4 >

o(
data bit 5 >

o(
data bit 6 >

o(
data bit 7 >

frame

reverse

Inside the TC2000 Computer

to
server

to
server
ports on
function
boards

ports on
function
boards

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

TC/SS and TC/SR Cards

A pair of switch cards - one TC/SR requester card and one TC/SS server card
- provide the actual switching and interconnection in the TC2000 machine.

The pair provides the switch connections for eight function boards . Those
function boards access remote boards by sending a message into the requester
side of the switch (TC/SR). Accesses coming from remote function boards are

delivered by the server side of the switch (TC/SS).

The differences between the TC/SR and TC/SS are different clocking (noted
above), different machine-wide signals (also noted above) and only a single

TCS slave processor (on the TC/SS, serving both cards of the pair). Since these
differences do not affect connections through the switch, we can ignore the TC/
SR-TC/SS distinction in describing the structure of the switch.

The heart of the switch card is four SGA chips. These chips handle the switch
connections. Other than the SGAs, the card contains a TCS slave and support
circuitry.

SGA Chip

The SGA performs a highly specialized function: it establishes connections be­
tween its input ports and its output ports . In attempting to establish a connec­
tion, it detects conflicts and resolves them by rejecting connection requests .

After a connecti.on is established, it handles the reversal of data flow when re­
plies come back from the server. The SGA detects the end of a connection,
due either to normal termination or an error condition, and returns the circuit­

ry that supported the connection to its idle state.

The SGA chip, like the LCON and SIGA described below, has a TCS interface.
Through this interface, the TCS slave can test, monitor, and set parameters

in the chip. This interface is important in testing and configuring the machine,
but is far from the user and is not discussed further here.

LCON and SIGA Chips

The switch includes not only the switch requester (TC/SR) and server (TC/SS)

cards, but also the LCON and SIGA chips on each function board. The LCON
reclocks the signals to restore proper timing and a crisp waveform, and con­
verts the signal voltage between TTL levels used in the SIGA (and the rest of

the function board) for cost, power consumption and noise immunity, and
ECL levels used in the rest of the switch for speed.

The SIGA performs many functions - indeed, it is essentially a dedicated,

packet switching microprocessor. Among its functions are:

• SIGA requester section

February 14, 1990 91

3: Butterfly Switch Inside the TC2000 Computer

92

o Receive requests from the T-bus, turn them into switch messages,
and transmit them into the switch

o Store the message and retransmit it repeatedly until it gets through

o Throttle the retransmissions of the message according to program­
mable parameters

o Address the message differently to use alternate paths through the
switch, if enabled to do so

o At a regular interval, promote the message (if any) awaiting retrans­
mission to be an express message, to bound switch latency

o Receive any switch message returned from the remote end of the
connection, extract the data, and send it on the T-bus to the module
that asked for it

o Detect error conditions and report them accordingly

• SIGA server section

o Receive switch messages, extract the operation and data parame­
ters, and perform a T- bus transaction as requested

o If the operation was a read, obtain data from the T- bus, turn it into
a switch message and send the reply back into the switch

o Detect error conditions and report them accordingly

• RTC and TONI - Provide a clock, and a timer interrupt facility, for soft­
ware

• Configuration and Status unit

o Provide read and write access to programmable parameters of the
SIGA

o Support loading of certain fast mapping RAMs, including the inter­
leaver RAM - the "interleaver loader" facility

• TCS interface unit

o Provide access from the function board's TCS slave to the function
board's T-bus, from where the TCS slave can access all modules
on the T-bus

o Provide the TCS slave direct access to certain functions in the SIGA

The only sections of the SIGA that are discussed in the rest of this chapter are
the requester and server sections.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

3.3

3.3.1

3.3.2

February 14, 1990

Theory of Operation

Switch Message Contents

Every switch message contains certain information, and the first message on
any connection also contains further information used to establish the connec­
tion. These components are:

• Header - contains the route. The header is present only in the initial
message on a connection, including any retransmissions thereof. The
rest of the message is called the body.

• Command - specifies function (read or write), address, size, and lock­
ing. Present in every request message, and never in a reply message.

• Data - contains information needed to perform the function specified
in the command component. The content of the data varies depending
on the purpose of the message.

o In a write request, the data component contains the data to be writ­
ten.

o In a reply to a successful write request, the data component con­
tains a byte of unspecified value.

o In a reply to an unsuccessful write request, the data component con­
tains an error code.

o In a read request, the data component is absent.

o In a reply to a successful read request, the data component contains
the data read .

o In a reply to an unsuccessful read request, the data component con­
tains an error code, and may contain some data read.

• Checksum - contains a "checksum" to detect corruption of the message
while it traverses the switch, and a separate error indication to say an er­
ror occurred on the remote function board. The checksum component
is present in every message.

Routing a Message, Making a Path

In the TC2000 switch, these actions are all the same thing:

Deliver the initial message to the switch port it addresses.

Deliver the initial message to the function board it addresses.

Find a route through the switch for the initial message to take.

Establish a connection on which a series of requests and replies may flow.

93

3: Butterfly Switch

Figure 3-9

94

Inside the TC2000 Computer

The equivalence of these actions is a very important point in understanding
the operation of the TC2000 switch .. Not all computer interconnection switches
have this equivalence, so ideas based on other architectures may not apply
here.

The initial message contains a header component, and part of that header is
the route. The route specifies a complete and exact path through the switch.
The route is prepared by the requester SIGA. It is complete before the mes­
sage leaves the SIGA, and is not changed. At each switching choice point
(crossbar unit, quartet of SGAs) along the route, the route is either granted
as specified, or is rejected. If the message is rejected, the SIGA will try again.
Different messages the SIGA receives from the T-bus may use different (but
specific) paths if there are alternate paths available in the machine, but once
a message is received by the requester SIGA, the route in that message is not
changed for retries.

The message header specifies the route by telling each crossbar unit along the
way what output port on that unit it should use. The unit's output port is speci­
fied in local, not global, terms. For example, "your output port number 5".
In Figure 3-9, we see that each output port has a number associated with it.
All crossbar units use the same numbering.

Output ports are locally numbered.

input ports crossbar
unit

output ports

For example, suppose the route said, "in the first column, use output port 3,
and in the second column, use output port 5". The message would travel a path
shown in heavy lines in Figure 3-10.

February 14, 1990

(

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-10

example
requester
function
board

February 14, 1990

Example path through switch.

crossbar
unit

crossbar
unit

crossbar
unit

crossbar
unit

crossbar
unit

crossbar
unit

crossbar
unit

crossbar
unit

The TC2000 switch routing has a very important property:
The message goes to the same destination,
regardless of where it entered the switch.

example
server

function
board

3, then 5

You may wish to convince yourself of this by trying a few other cases. Pick
any of the 32 requester side ports along the left; take the number 3 output in
the first column; and take the number 5 output in the second column. You
always arrive at the same port on the server side. We have emphasized this
by labeling that function board "3, then 5" in Figure 3-10. Similarly, a message
addressed to "4, then 2" would arrive at one particular server port, no matter
where it entered the switch; and so on for every address.

95

3: Butterfly Switch

NOTE

3.3.3

Inside the TC2000 Computer

It should now be clear why the four actions at the beginning of this section are
equivalent. The initial message contains a header, and in the header is the
complete route, so the switch itself does not have to do any searching to find
a route for the message. If the canned route works, then the message reaches
a unique switch server port. That server port connects to just one function
board, so the route identifies a unique function board as well. And as the ini­
tial message traverses the path defined by its route, it acquires the switch hard­
ware along that path, thus establishing a connection. These hardware
resources are allocated to the path as long as the connection exists, so requests
and replies may flow through them.

,,,.

You may wonder what would happen to a message with route "1, then 5" in
Figure 3-10. Nothing is connected to output port 1, so the illustration doesn't
tell us what would happen. In a real TC2000 machine, such auxiliary switch
ports would be jumpered to auxiliary input ports in the second column, provid­
ing alternate paths through the switch. Can you see how to wire the switch so
that route "1, then 5" will deliver any message to the same function board as "3,
then 5"?
,,,,,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Route Format and Use

One further aspect of routing bears discussion. It is an optimization in how
the route is located in the message, and how it is processed as it goes through
the switch. The port numbers appear at the beginning of the message, with
the first column's port choice sent into the switch first, followed by the second
column's port choice. For example, the SIGA sends a message with route "3,
then 5" into the switch by saying: "3", then "5'', then the rest of the message.
(If there were a third column in the switch, the port choice for it would be sent
between the "5" and the rest of the message.)

This route format allows each crossbar unit in turn to examine the first data
it receives, use that data internally, and forward the rest of the message onward
without the port choice data it used internally. This has several important
advantages:

• The data needed to select an output port arrives first, so switching activ­
ity can begin immediately.

o If the required output port is free, the resources needed can be allo­
cated quickly and the rest of the message can be forwarded without
delay.

o If the output port is already in use, the message can be rejected right
away, freeing up switch resources as soon as possible.

96 February 14, 1990

(

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

o If the output port is at high priority, possibly due to an express mes­
sage that is just now arriving, any normal (non-express) messages
arriving and addressed to the port can be immediately rejected.

o If the required output port is free but another message has arrived
simultaneously that also requires the same port, the switch hard­
ware performs an arbitration and immediately grants the port to
one message (chosen randomly) and rejects the other, without
delay.

• Because the routing data arrives first, and is either granted the output
port or rejected very quickly, there is essentially no buffering in the
switch. This simplifies the design and reduces delay.

• Each crossbar unit strips off the routing data it uses, leaving the next col­
umn's routing data at the head of the forwarded message. Therefore,
each crossbar unit simply uses the first data it receives, as its routing
data. This allows all crossbar units to be identical, regardless of which
column (or where within the column) they are installed. Thus, there is
only one kind of SGA chip, used in all switch cards. This reduces cost
and enhances maintainability.

Figure 3-11 illustrates this route format and switching technique. When the
message is delivered to the destination function board, it has no header.

97

3: Butterfly Switch

Figure 3-11

example
requester
function
board

message as
requester SIGA

sends it into
the switch

3.3.4

98

A message traverses the switch.

crossbar
unit

~
message as

first switch column
sends it to

second switch column

Inside the TC2000 Computer

crossbar
unit

example
server

function
board

3, then 5

message as
switch sends it

to server SIGA in
server function board

Using a railroad analogy, a series of switchmen would line up at the front of

the locomotive. As the train approaches each switch, the switchman at the
head of the line jumps off and throws the switch to route the train on the proper
track. The train proceeds on toward the next switch, with the switchman who

was previously second now at the head of the line. In a railroad, the switchman
who detrained might jump on the caboose as it passed; the analogy breaks
down here, because the TC2000 switch simply discards the used route data.

The message becomes slightly shorter as it travels through the switch.

Use of Alternate Paths

As discussed in chapter 1, the Butterfly switch in some sizes of TC2000 ma­
chine has multiple, or alternate, paths from each function board to each other
function board. In such a machine, the hardware can be set up to automatical­

ly use these paths, helping to reduce congestion within the switch. In the
TC2000, the SIGA selects a given route for an initial message before its first
transmission into the switch, and does not change that route during any retries

of the message. Different paths are used by separate initial messages, but not
by separate retries . The intent of this is to spread out switch traffic on the time
scale of connections, not on the scale of retries.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

3.3.5 Reject and Retry

This section describes a mechanism that the switch hardware performs auto­
matically. Under normal operation, the software is neither aware of nor af­
fected by this automatic reject and retry mechanism. However, understanding
the reject and retry mechanism is useful for these reasons:

1. Messages from the many function boards in the machine contend for
switch resources. Inappropriate programming can lead to congestion be­
yond the normal contention. There are tools (described in software docu­
mentation) for measuring the performance of your application and
detecting when that performance is degraded by congestion. Program­
ming techniques are available to then restructure the program or its data
to reduce the congestion.

2. In situations of hardware or software failure, or extreme congestion, the
automatic retry mechanism will give up and notify the software of an er­
ror condition. If this occurs, you need to understand the retry mechanism
to understand what the error report means.

3. The reject and retry mechanism is an interesting aspect of the machine
architecture, if you like that sort of thing.

An initial message may be rejected as it travels through the switch. It is re­
jected by a crossbar unit if the output port required there is already in use (or
is given to another initial message, by arbitration). Looking at Figure 3-10,
we see there are two places the message could be rejected - one in the first
switch column, and one in the second. If the message succeeds through these
two places, it has succeeded in setting up a connection.

• An initial message is rejected if an output port it requires is busy. This
is a natural occurrence, but when it happens a lot it is termed congestion.

• The rejection may occur at any switch column. Depending on where it
occurs, it is symptomatic of congestion arising from different kinds of
software activity.

o If it occurs at the final switch column, that is because the port to
the addressed function board is busy. Congestion of this kind hap­
pens when many function boards are accessing one particular func­
tion board (a "hot spot") at a high rate.

o If it occurs before the final switch column - that is, within the
switch - that is because other connections are using resources
within the switch. The addressed function board's port may or may
not be busy. Congestion of this nature happens when the software
is making extremely heavy, but spread out, use of remote access .
It can also arise as a secondary effect to hot spot congestion.

• Once an initial message makes it through the switch, the path is set up
and no rejection will occur (except for timeouts or protocol errors, which
do not occur in normal operation).

February 14, 1990 99

3: Butterfly Switch Inside the TC2000 Computer

100

• Reply messages and request messages after the initial one are not re­
jected (except for errors as noted above).

The rejection is conveyed using the control signal "reverse". This tells the
switch hardware in the requester direction to stop sending the message, free
up the circuitry it had allocated to the connection, and forward the reject back
along the path toward the requester. Thus a reject tears down the path, all
the way back to the requester SIGA.

When the requester SIGA receives the reject, it waits a while and then sends
the message into the switch again. The second attempt may also be rejected,
in which case the SIGA waits and retries again. The SIGA will retry the mes­
sage many times if necessary. The message is still considered an initial mes­
sage, because it is still attempting to establish a connection, no matter which
retry is going on.

Each retry is roughly like all others, but differs in these ways:

• The time interval for which the SIGA delays before making a retry will
change. This is called pacing and is described below.

• Starting when the first attempt is made, and lasting until the connection
is set up, a timer is counting. This timer limits how long the SIGA will
wait for a successful connection . . If the timer expires, an error condition
is signalled to the software.

• Periodically, the SIGA is permitted to promote the priority of an initial
message it retries. This causes the message to become an express mes­
sage, which contends more strongly for switch resources, assuring that
it will soon succeed in establishing a connection. This limits switch laten­
cy, and is described further later.

Selection of Pacing Strategy

The hardware implements four strategies for pacing the injection of initial
messages into the switch. Two "random" strategies share the same algorithm
and differ only in their parameters; and two "slotted" strategies use one algo­
rithm and differ only in the parameters. System software sets the parameters
for each strategy to be the same in all SIGAs throughout the machine.

Each T-bus request for a remote access contains information about the nature
of the access, such as read or write and locked or not locked. The SIGA uses
this to select one of the four pacing strategies to govern the initial transmission
and any retransmissions of the message. (This selection is overridden, and use
of the "slotted, number O" strategy is forced, when the CPU makes an access
with the synchronized access bit in the Process Control Register on.)

In each of the four strategies, one of its parameters can force the initial trans­
mission to be immediate rather than random or slotted. If transmission is im­
mediate, the remaining parameters are ignored for the initial transmission.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

On retransmissions, the immediate parameter is ignored, the pacing strategy
is either random or slotted, and the remaining parameters are used. The
meaning of the remaining parameters is different for a random strategy than
for a slotted strategy. Each is described below.

Slotted Strategy

The idea behind the slotted strategy is a sequence of periodic time slots. The
next time a slot arrives, the message is transmitted or retransmitted. In this
strategy, there is no dependence on which transmission is being made - ini­
tial, first retry, second retry, or whatever - except for the immediate mode
on the initial transmission.

The arrival of the slot is detected by comparing time to a given value. The time
used in the comparison is given by the Real Time Clock (RTC) and associated
prescaler circuitry in the SIGA. All RTCs in the machine are synchronized.

The slotted strategy has two parameters, the slot period and slot phase. The
slot period parameter selects~. 1, 2 or 4 microseconds as the interval between
slots. This governs how strongly the message contends against others for
switch resources. The slot phase parameter specifies what value the low bits
oftime have when the slot occurs. This permits staggering of message injection
among different SIGAs in the machine.

Two details of the slotted strategy may be of interest to some readers, and may
be skipped without loss of continuity.

1. The slot phase can be varied only within the first half microsecond of the
slot period. For example, if the slot period is two microseconds, the last
1~ microseconds of it cannot be selected by any SIGA.

2. The number of possible values for the slot phase parameter depends on
the switch clock frequency; it is one half the switch clock frequency in
megahertz. For example, a 38 megahertz switch clock permits 19 differ­
ent values of slot phase.

Random Strategy

To understand the details of the random strategy, it helps to keep in mind the
general intent. The random strategy implements a modified version of"binary
exponential backofr' message transmission algorithm. The unmodified ver­
sion of this algorithm says that before each (re)transmission of a message, a
delay is imposed. The amount of this delay is doubled after each (re)transmis­
sion.

For example, suppose you are calling a friend on the telephone. You get a busy
signal, so you wait one minute and try again. You get a busy signal again, so
you wait twice as long - two minutes - and call again . Still busy! Wait four

101

3: Butterfly Switch

102

Inside the TC2000 Computer

minutes and try again. Your retries are getting less and less frequent (backing
off), at an exponential rate by doubling (base two; binary) each try.

Backoff is a common mechanism in communication networks, where it allevi­
ates congestion. Binary exponential backoff is a frequently used backoff algo­
rithm, because it behaves well and is easy to implement. The TC2000 switch
implements a modified form of this algorithm. The modification is to include
a randomization. Using the telephone analogy, the modification is to wait a
random amount of time: up to one minute before the first retry, up to two min­
utes after the first and before the second retry, up to four minutes between the
second and third, and so on.

The binary exponential backoff telephone example above has no random com­
ponent. The random strategy in the TC2000 switch employs randomness by
selecting a uniformly distributed, random delay between zero and the strict
binary exponential value. The random component helps to stagger retransmis­
sions that otherwise might continue to collide with retransmissions of other
traffic. Traffic that is coincidentally clumped gets desynchronized, so retrans­
missions from several function boards will seldom collide again and again with
each other.

If you time the telephone calls trying to reach your friend the way the TC2000
switch does, then you don't actually double the waiting time after each call.
Instead, you wait for a random time, with that doubling time as the upper limit.
So after the first try, you wait some time between none and one minute; after
the second try, a random time between none and two minutes; next, between
no wait and four minutes; and so on. After each try, the chances of waiting
any number of seconds, between zero and the current limit, is the same as wait­
ing any other number of seconds. Figure 3-12 shows the telephone analogy
graphically.

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-12 Random strategy - telephone analogy.

limit on delay
before calling

(minutes)

: for example -
' before making the
' seventh call, wait
· a random amount
, of time between
, zero and 32 minutes 8

4

2
1
o _::::::::i __ --==~=====---..-------..----.---L--~__,__ call

number
first

February 14, 1990

second third fourth fifth sixth seventh eighth

Figure 3-13 shows the TC2000 switch random pacing strategy graphically. To
better illustrate the wide range of possible delays, a logarithmic scale is used
in the figure. The random strategy algorithm has two parameters, set by sys­
tem software. The first parameter is where along the "transmission number"
axis the first transmission lies. The first transmission can be at any of the six
values labeled A through F Selecting a later value has the effect as if the mes­
sage had already been rejected and retried some number of times; the exponen­
tial backoff still occurs at the same rate, but operation begins further along
the curve.

103

3: Butterfly Switch Inside the TC2000 Computer

Figure 3-13 Random pacing strategy.

limit on delay
before transmission

(switch clock periods)

4096
2048
1024
512
256
128
64
32
16
8
4
2

A B C D E F

transmission
number

The second parameter is how fast the algorithm proceeds along the " transmis­

sion number" axis. The system software selects one of four values for this rate.

After the message has been rejected eight times, the algorithm will have

jumped to successive marks in Figure 3-13 no times, once, twice, or three

times, depending on the rate parameter.

Certain subtleties of the random strategy may be of interest, and are listed be­

low. These can safely be skipped without loss to understanding the operation

of the machine.

1. If the rate parameter is set to "no times", the delay limit never changes,

resulting in no backoff; the delay is randomly chosen from a constant

range.

2. The minimum delay limit is two, so - on the average - the random

strategy always has some effect on transmission timing. (Except for the

first transmission, if the "immediate" parameter is on as noted above.)

3. The minimum delay is actually one, but whether it is one or zero is unim­

portant for three reasons.

A. The unit of delay is a tick of the switch clock, and that is so short

that a tick more or less is negligible.

104 February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

B. There is a few-tick overhead in getting the message started out of
the SIGA anyhow.

C. The process is (pseudo-) random, so its behavior varies anyhow. A
tick more or less is swamped by the variation.

4. The choice of delay from within the current range is essentially uniformly
distributed, but not exactly so. Its deviation from uniformity is negligible
in practice.

5. There are only twelve operational points along the "transmission num­
ber" axis, indicating that the actual transmission number (first, second,
third .. .) is mapped onto twelve values used in the algorithm. As the mes­
sage is repeatedly rejected, operation jumps from point to point. If the
message is rejected many times, operation would reach and later jump
from the twelfth point back to the point labeled A That would make the
message retries suddenly become rapid, a peculiar but not damaging ef­
fect. It is also very unlikely, because after all the delays necessary to jump
off the twelfth point, the switch reject timer (discussed later) would prob­
ably expire, aborting the message.

Using the Pacing Strategies

The TC2000 software is supplied with default pacing parameters that study
and experience have shown provide good overall performance.

The application programmer has no control over the selection of pacing strate­
gy or the parameters of the strategies, since these are set up by system software.
Awareness of the retry mechanism, however, allows the application program­
mer to design his program and data structures to avoid severe contention, and
to spot and fix congestion when it does appear.

The system programmer has complete control over the strategy selection and
parameters. Simulation of the TC2000 switch, and experience with the actual
hardware, indicates that the programmability provides a useful range of oper­
ating behaviors. Production oriented sites may find applications that place
unusual stress on the switch, where a modification to the standard default pa­
rameters can improve performance. Academically oriented sites may study
the results of varying the pacing parameters under experimental loads.

The intent of the pacing strategy design is that all traffic use the random strate­
gies (to gain the statistical benefits of asynchrony), except that references to
locations where contention is expected (such as spin locks) should use the
slotted strategies (to reduce hot spot contention). The synchronized access fa­

cility helps make this intent easy to follow, by forcing use of the "slotted, num­
ber O" strategy based on a bit in the Process Configuration register.

105

3: Butterfly Switch

3.3.6

3.3.7

106

Inside the TC2000 Computer

Reply Messages - Bidirectional Path

A connection's path through the switch is held open until it is explicitly re­
leased (or until an error or timeout occurs, which are abnormal). While the
path is held, messages can flow on it in either direction; the TC2000 switch is
bidirectional. In the simplest case, the data obtained in servicing a read re­
quest is returned to the requester over the path. After a write request, a reply
is also returned, telling the requester that the write succeeded or, if it failed,
what error occurred. After receiving the reply, the requester releases the con­
nection and the switch path is torn down, freeing its switching resources for
other messages to use.

Multiple Messages per Connection

Beyond the simple request-reply scenario, the requester may send another re­
quest instead of releasing the connection. This second request may be either
a read or a write, independently of what the first request was. The server per­
forms the requested action and returns a reply to it. This request-reply inter­
change may be repeated several times. Finally, the requester releases the
connection· as in the simple case.

In any use of a switch connection, there is an alternation of requests and re­
plies. Each request elicits a reply, and each reply is the result of an explicit
request; the server does not "volunteer" messages.

The programmer causes a connection to be held open by using the locking fa­
cility. The lock bit in the Augmentation Register controls locking. Also, the
88000's xmem instruction, which exchanges the contents of a CPU register and
a memory location, automatically locks the switch path for the duration of the
instruction. Either form of locking achieves atomicity of the operations per­
formed while the switch path - and remote memory - are locked. (The by­
pass augmentation is available to explicitly permit an access in spite of
locking.)

The connection cannot be held open indefinitely, whether messages are being
exchanged on it or not. When an initial message is transmitted, the Connection
Timer begins running. A reject stops the timer, and it is started again (at zero)
when the message is retried. If the timer expires and the connection is still
established, the path is torn down and an error is returned to the requester
module on the T-bus. The Connection Timer's timeout value is set by system
software, and has a range of 1 to 255 microseconds.

The control signals frame and reverse establish a connection and delimit mes­
sages on it. The requester asserts frame during the connection, and releases
the connection by de-asserting frame. During the connection, the requester
marks the· start and end of each request message by de-asserting frame for
just one switch clock cycle. Reverse is asserted by the server during each re­
sponse message. A reject is the assertion of the reverse signal for just one

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-14

frame __J

switch clock cycle, and originates either at a crossbar unit during path setup,

or at the server SIGA if it is unable to accept the connection at this time. Reject

occurs only while a connection is being set up, never after it is established.

Figure 3-14 shows how frame and reverse function during a locked connec­

tion.

Frame and reverse during example connection.

L_

reverse --....------...-___.

3.3.8

request response request response

Error Detection

The switch hardware detects and reports errors of various sorts, as described

below. In each case, the software receives a bus error and can examine an error

code to determine what error occurred. The errors detected include data cor­

ruption, protocol violations and timeouts. In the list below, the errors are

grouped according to where along the connection's path they are detected.

1. If the T-bus request violates the protocol for making a remote access, the

requester SIGA detects the error and no switch access is made.

o Maintain present - the request asks to maintain a locked connec­

tion, but currently none exists .

o Maintain absent - a locked connection exists, but the request does

not ask for a locked transaction (as by opening, maintaining or by­

passing one).

o Lock address violation - a locked connection exists, and the re­

quest asks to access a switch port other than the one to which this

connection goes .

o Miscellaneous CSU error - the Configuration Status Unit (a part

of the SIGA) detected an error in a request either to open a lock,

or transfer multiple words .

2. The requester SIGA detects problems with the switch connection.

o Wait timeout - the Connection Timer expired while waiting for a

reply to a request message that had already been sent.

o Idle timeout - the Connection Timer expired while no reply was

being awaited; the requester SIGA was idle.

February 14, 1990 107

· 3: Butterfly Switch Inside the TC2000 Computer

3.4

108

o Reject abort - the Interrupts Disabled Too Long I Abort Retries
Timer in the CPU interface expired, forcing the SIGA to stop trying
to establish a connection. This is described further in the TC/FPV
chapter.

o Reject timeout - the Reject Timer expired, indicating that the at­
tempt to establish a connection was unsuccessful.

o Reverse - the "reverse" signal had incorrect polarity while a re­
sponse message was arriving. (The correct polarity for all cases is
somewhat complicated, and is not discussed here.) This error indi­
cates a hardware problem.

o Checksum - the checksum component of a response message was
incorrect. This error indicates a hardware problem.

3. Errors detected by the remote (server) SIGA are reported back over the
switch path to the local (requester)SIGA and thence to the T-bus module
that made the request.

o Downstream write - while the server was driving its T-bus, it de­
tected a write error from the T- bus slave. Because the SIGA was
driving the data lines, the slave's actual error code is not available.

o Downstream OTL - the server made a request on its T-bus, but
the T-bus slave did not respond. (The slave was Out To Lunch!)

o Downstream late - the remote T-bus slave detected a parity error.
(The name "late" is historical, and now means only parity.)

o Downstream refused - the server thought it had established a
locked connection, but the T-bus slave responded to its request
with a refusal, claiming to be locked (as by another module).

Note that if the server SIGA receives a request message with a bad check­
sum, no reply is sent, and therefore no error is sentby the server. Instead,
the connection timer is expected to eventually time out, and that will
cause an error condition. This behavior is chosen because the bad check­
sum probably means something is wrong with the switch path, and any
reply sent back over it is likely to be garbled and ignored, or possibly mis­
understood.

4. Errors signalled normally by the remote T-bus slave are received by the
server SIGA, and the error code is conveyed back over the switch path to
the requester SIGA and its T-bus to the originator of the request. These
errors are not switch specific, and are not described here.

Features Important to the User

The features described in this section are performed automatically by the
TC2000 switch hardware, and their programmable parameters are configured

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

3.4.1

NOTE

February 14, 1990

by the system software. The application programmer benefits from them but
does not have to do anything to invoke, adjust or service them.

Locking

The need for locking in multiprocessor software is discussed in the section on

atomicity in chapter 2, and the operation of the TC2000 switch in supporting
locked operations is covered in section 3.3. 7 above. The advantage to locking
is that it makes separate actions, performed together under a lock, atomic.

While a single read or write can be performed locked, there is no advantage
in doing so, because they are atomic anyway. The locking capability of the
TC2000 architecture is particularly powerful because any sequence of reads

and writes needed by the application can be performed locked. The restric­
tions on the use of locking are slight:

• The duration of the switch connection cannot exceed the Connection
Timer timeout, discussed in section 3.3.7.

• All locations referenced over a locked switch connection must be on the
same remote function board; the switch connection cannot disconnect
from one destination switch port and reconnect to another.

• The duration of the locked operation, whether or not it accesses remote
(over the switch) resources, cannot exceed the CPU Lock Timer timeout,
described in chapter 2.

• Considerations of latency and performance may make it preferable -
or necessary - to make certain references bypassed. This depends on
the application, and is described in chapter 4.

' ''
The above restrictions indicate that preventing interrupts during a locked
transaction is desirable (or writing the handler to not use the switch). A plausi­

ble implementation is to ensure that the pages to be accessed are mapped in
and resident, and then trap to the operating system kernel (that is, supervisor
mode) to perform the actual locked transaction.
,,,

For example, suppose a chemical processing system is being simulated by soft­
ware running on several TC2000 processors in parallel. One of the processors
is about to update the yield rate in a particular reaction tank. The calculation

requires a consistent set of values for the temperature, pressure, mixture of
reactants, and stirring rate. These parameters are stored in the memory of one
function board, but not the function board that is about to do the calculation.

The CPU makes a locked reference to the remote memory holding the parame­
ters, and reads their values. It now releases the connection and proceeds with
the calculation. If the calculation is quick, and the result is to be stored back

on the same function board, the connection can be held open and the updated
value written back. Writing back the results on the same locked connection

109

3: Butterfly Switch

110

Inside the TC2000 Computer

ensures that the yield rate is always consistent with the values driving it, so long
as the application software accesses them locked.

A second example shows the use of the 88000 xmem instruction to perform
locking. Sometimes the operations you wish to perform under a lock do not
fit the requirements listed above. In the chemical processing example above,
the calculation of yield rate may be long and involved, exceeding the time a
lock may be held or a connection kept open. Or, the data may be stored in
the memories of more than one function board. Here, a standard technique
is to designate a memory location as a lock on that part of the data. By conven­
tion, the application might use location "tank_lock" to lock all the data about
this reaction tank. To update the yield rate, the routine first obtains the lock,
then reads the temperature and so forth, computes the result and writes it to
memory, and then releases the lock. In the simplest form, the lock location
contains a particular value (such as zero) to mean "not locked'', and another
value (such as one) to mean "locked". A routine with steps such as these does
the job:

1. Use the xmem instruction to exchange the value "1" with the contents of
location tank_lock. If the result is a "1", some other processor already
had the data locked, so try again. Executing a small delay before trying
again can help avoid congestion that could arise from contention over
access to the lock location. This is analogous to the pacing strategy per­
formed automatically by the switch hardware during connection setup.

Note that the atomicity of the xmem instruction, as supported by the
TC2000 hardware and especially the switch, ensures that no other xmem
(or any locked reference) can read the location as containing "O" after we
have read it and before our "1" is written there. This is the heart and the
power of the xmem locking facility.

2. If the result is a "O", the lock was free and you now have it. Read the
variables, compute the result and write the result back to memory. Dur­
ing this time, any other processor trying to get the lock will see a "1" in the
lock location, so they will not read or modify the tank variables.

3. Having finished the locked portion of the program, release the lock by
using the xmem instruction to exchange the value "O" with the contents of
location tank_lock. The result you get back from the xmem is not impor­
tant, but can be checked for consistency (it should be a "1").

You do not have to write assembler language to use xmem; the higher level lan­
guages supported on the TC2000 computer have constructs to invoke it.

Often, there are more useful values to place in a lock location than just the
symbolic "locked" and "free" used in the example above. For example, the
identity of the processor or process can be used, and that aids debugging. In
general, locking mechanisms on multiprocessors is a rich topic. The interested
reader may turn to computer science literature for further information.

February 14, 1990

. ,

(

Inside the TC2000 Computer 3: Butterfly Switch

3.4.2

3.4.3

February 14, 1990

Automatic Retry

Because of the shared use of switch resources, connection attempts will some­
times temporarily fail. The hardware automatically remembers what connec­
tion is being requested, and retries the connection until it succeeds. This is
described in section 3.3.5. The user is therefore freed from handling any of
the reject and retry mechanism in the application program, nor is the operating
system burdened with any of this activity.

The user does need to be aware of two aspects of remote access. First, the time
required to make a remote access is longer than for a local access. Usually
this is a small cost, but occasionally a remote access may take a noticeable
time. This effect and how it is controlled are discussed in section 3.4.3.

Second, error conditions can arise during the automatic retry. These errors
exist not because of the complex and helpful automatic retry mechanism; they
are conditions that can arise in any interprocessor communication design.
They indicate that the expected behavior of the hardware did not occur, and
therefore the software should know that something is apparently broken. The
cause could be a hardware malfunction, or it could be a software problem.
Detecting these error conditions and informing the software allows appropri­
ate action to be taken as quickly as possible. Section 3.3.8 describes the errors
detected by the switch hardware.

Latency Control

Latency is how long it takes for a requested action to take place. In regard
to the TC2000 switch, latency is how long it takes to reference a remote function
board. The major component of switch latency is the rejection and retry of
the initial message setting up the connection. Other components are relatively
small. The one exception to this is latency of accessing the resource on the
remote function board; that also is usually negligible compared to connection
setup, but could be significant in certain cases. For example, if the reference
is to VMEbus devices on the remote function board, the latency of the VME­
bus system must be considered. However, because connection setup is nor­
mally the dominant component, and because the topic of this chapter is the
switch, we will not consider such effects further here.

Without a latency control mechanism, the switch latency would be unbounded.
That is, if congestion were extremely heavy, it is possible that occasionally a
remote access would be rejected indefinitely, and never get serviced. The level
of congestion required to cause this is unlikely to arise except in a poorly struc­
tured program or in a test program written specifically to cause it. However,
there is a more insidious effect than an access that never gets serviced: accesses
that are serviced, but only after a long time.

To understand this effect of long service time, consider how long each of a large
number of accesses take to be serviced. Suppose our program makes a billion

111

3: Butterfly Switch

Figure 3-15

Inside the TC2000 Computer

accesses. Perhaps 900 million of them are serviced immediately; the first trans­
mission of the initial message succeeds in setting up the connection. And sup­
pose that congestion is moderately heavy, and ten percent of the first

·transmissions are rejected and have to try again. That is, 100 million accesses
take at least two tries. Suppose that again 90 percent of these succeed. Ten
percent of the 100 million, or 10 million, nevertheless require at least a third
try. If the chance of success remains 90 percent on any transmission, we see
that probably one of our billion accesses will require ten transmissions before
it succeeds. This concept is shown in figure Figure 3-15. The tail of the curve
illustrates that needing many transmissions is very unlikely, but the chance
never actually goes to zero - in the absence of a latency control mechanism.

Switch latency without controls - conceptual.

chance that a remote access
will encounter the.latency shown

.99

.9

.1

.01

.001

.0001

etc.

112

tail

switch connection setup latency
(arbitrary units, either time

or number of retries)

And how long does it take to do, say, ten transmissions? That depends on the
pacing parameters. Depending on how these are set up, it could take from a

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

few microseconds (but such parameters could exacerbate congestion) to about
a millisecond. In some applications, the longer end of this range is not accept­

able. Some mechanism is needed to bound switch latency.

The TC2000 switch contains two mechanisms to bound switch latency: time­
outs, and an express message facility. The timeouts are simplest in concept,

operation and implementation. They provide a safety net, ensuring that bro­
ken hardware or unacceptable latency conditions will not go unnoticed. The
express message facility, on the other hand, clips the tail off the latency curve,

so that the timeouts should never occur unless something is really wrong. Each
is discussed below.

Timeouts

Timeouts release the resources controlled by the timer that expires, and signal

a bus error to the process that held those resources. Timeouts mainly benefit
other processes than the one that receives the error. Those other processes
- whether executing on the same function board. or on another - can now

use the freed resources for purposes of their own. Without the timeout, those
processes would be slowed or stalled whenever they needed those resources.

For example, a process holding a locked connection to memory on a remote

function board monopolizes several resources: the memory itself, the switch
port to that function board, the switch card switching circuitry allocated to the
path that is held open; and the switch interface on its own function board.

Each of these resources may be needed by another activity.

There is also a benefit to the process that receives the timeout error. The error
tells the process that a problem exists. The process can then make an informed

decision to try the action again, perform cleanup activities (specific to the
application), log or report the problem, or halt - or any combination of these.

The timeouts related to switch use are the Reject Timer and the Connection

Timer. These are described in section 3.3.8. Expiration of the Reject Timer
occurs when the connection was never established. Expiration of the Connec­
tion Timer occurs when the connection setup was successful, but the path is

being held open too long. In the latter case, different error codes inform the
process of the state of the connection when the timeout occurred: either a reply
was being awaited, or each request sent so far had received a reply.

The Interrupts Disabled Too Long I Abort Retries timeout, also listed in sec­
tion 3.3.8, is not strictly a switch timeout but does affect switch operation. This
timer is part of the CPU interface, and limits how long interrupts may be dis­

abled. This is to control the latency of interrupt servicing (as distinguished
from the latency of remote accesses). If this timer expires, it automatically tells
the SIGA in the local switch interface to abort any retry. That is, if the SIGA

prepares to retry the transmission of an initial message that has already been
rejected at least once but has not yet succeeded in setting up its connection,

113

3: Butterfly Switch

114

Inside the TC2000 Computer

the SIGA notices the timeout condition, stops retrying, and signals an error
condition.

Express Messages

The express message facility is a mechanism that helps the user by controlling
switch latency. It operates automatically and invisibly because it is implem­
ented in the switch hardware. Its parameters are initialized by system software
to values in configuration files, and normally never changed after startup. Nev­
ertheless, the facility is important to the user because it removes what would
otherwise be a subtle, nagging concern in accessing remote resources, the tail
of the latency curve (Figure 3-15).

The express message facility promotes the priority of a given message, to the
occasional slight detriment of other switch traffic, to ensure that it will pene­
trate congestion in the switch that otherwise could keep it retrying until timed
out.

To understand the motivation and benefit of express messages, imagine you
can watch all the connection setup activity in the TC2000 machine. Most of
the time everything is fine - connections are made quickly. Once in a while,
though, a remote access seems to have bad luck. Each time its initial message
enters the switch, it is rejected, again and again. "If only," you say to yourself,
"that message could be given a privileged status that would let it compete more
strongly with other traffic. Giving that status to just any message would be
unfair, but this message has already tried so long, it seems fair to give it an
advantage." That is exactly what the express message facility does.

The express message facility is, in effect, a virtual token passed among the
function boards. When a function board holds the token, any retry it sends
into the switch is marked as an express message. Other than this marking,
the contents of an express message is the same as a normal message. In the
switch cards, the express message contends for switch node ports as normal
messages do, but in addition, each port remembers that an express message
has asked to use the port. We say that the priority of the port has been in­
creased from normal to high. In the high priority state, the port will reject nor­
mal messages that try to set up connections through it. Only an express
message can set up a connection through a port that is at high priority. There­
fore, although the express message may get rejected on this try, the port will
eventually become free and the express message will succeed on a later retry.

The express message facility places a maximum bound on the switch latency.
This bound is the time required for the virtual token to come around to a
SIGA, plus the time for the SIGA to retry the message (possibly more than
once). The effect is shown in Figure 3-16, which shows the tail of the curve
in Figure 3-15 has been cut off. Beyond a particular bound, there is no chance
that a message will take longer than that amount of time to establish a connec­
tion. (Barring broken hardware, of course, which the Reject Timer catches.)

February 14, 1990

Inside the TC2000 Computer 3: Butterfly Switch

Figure 3-16

The numerical value of this bound on latency depends on how the parameters

of the express message facility are set up by the system software.

Effect of express message facility - conceptual.

chance that a remote access
will encounter the latency shown

.99

.9

.1

.01

.001

.0001

etc.

/
no tail

maximum latency switch connection setup latency
(arbitrary units, either time

or number of retries)

There are several subtleties to the express message facility. While we do not
discuss the hardware implementation and its use by software in detail here,

the interested reader may be left unsatisfied with the conceptual description
above, so we summarize the details here. This summary may be skipped with­

out sacrificing understanding of what the facility does for the user.

1. The virtual token is merely a concept; no actual token is passed. Rather,
the Real Time Clocks, which are synchronized throughout the machine,
are used in conjunction with a mask and a value in each SIGA. Using

these parameters in its registers, each SIGA detects when its priority
time slot arrives - that is, when it holds the virtual token.

February 14, 1990 115

3: Butterfly Switch Inside the TC2000 Computer

2. The mask and value parameters in each SIGA are independent of those
in other SIGAs, but the intent is that they be set consistently, to imple­
ment a regular progression of the virtual token from function board to
function board, round-robin fashion.

3. The mask and value parameters can be set so the time for the virtual to­
ken to circulate once is up to 65,536 microseconds. The duration that
each SIGA holds the virtual token can be from one microsecond to the
full token circulation time. Specifically, the mask and value are 16-bit
quantities, and the token is held whenever the low 16 bits of the RTC
equals the value parameter in all bit positions that are zero in the mask.

4. The virtual token need not be held by some SIGA at every instant; there
can be grace periods between one SIGA's priority time slot and that of the
next SIGA.

5. The hardware does not ensure that the switch contains at most one ex­
press message at a time. Rather, there are ways to set up the parameters
that ensure this, and others that do not. For example, it is possible to
circulate more than one virtual token.

6. Only retries are promoted from normal to express messages. The first
transmission of an initial message is never made an express message.

7. The express message facility concerns the priority of only the initial mes­
sage, the one that sets up a connection. Subsequent messages have no
priority value, which is marked in the message header that appears only
in the initial message.

8. The intent is that all remote accesses be submitted to the T-bus as nor­
mal priority. The hardware permits a remote access to be marked "ex­
press", but only diagnostic software should use this capability. It causes
the resulting initial message (including the first transmission) to be an
express message, so use of this by either system or application software
would compromise the latency bound for other traffic.

9. To be precise about which retries are promoted: After the header of an
initial message has been sent, that message is said to be awaiting retrans­
mission. If there is a message awaiting retransmission at any time during
the priority time slot, subsequent retries of that message are promoted.
This applies whether the message was already awaiting retransmission
when the slot began, or was first transmitted during the slot. It also ap­
plies whether the actual retry occurs within the slot or after the slot has
ended. Once promoted, the message retains its express priority.

10. A switch node output port is set to high priority by any express message
attempting to use it, whether the attempt is granted or not. If the port is
already in use, the existing connection is not affected in any way.

11. After becoming high priority, a switch node output port rejects all initial
messages of normal priority, until the port is reset to normal priority.

116 February 14, 1990

(

Inside the TC2000 Computer 3: Butterfly Switch

February 14, 1990

12. A switch node output port drops from high to normal priority by the
machine-wide signal hold being de-asserted twice (for one switch clock
cycle each time), but only if during the first de-assertion the port is idle
(no connection, of either priority, exists or is being set up), and between
the first and second de-assertions no express message arrives asking to
use the port.

13. The hold signal is generated by the clock card and distributed to all
switch cards. It is periodically de-asserted, with a period programmable
by the TCS. The appropriate period depends on SIGA retry rate and
other factors .

14. Just as there are two switch clock signals (one for the requester side and
one for the server side, either in phase or 180° out of phase), there are two
hold signals, each synchronized to one of the switch clock signals.

117

4.1

February 14, 1990

4

Memory

Every resource in the TC2000 machine has a unique address within a 16-giga­
byte global System Physical Address space. This address space is accessible
to every CPU and I/O device in the machine. Thus, shared memory is the basic
mechanism for communication among function boards in the TC2000 comput­
er. By controlling access to the System Physical Address space in various ways,
many different interprocessor communication paradigms can be built on top
of this basic mechanism, ranging from strict message passing environments
where no data is explicitly shared, to unrestricted sharing of global data.

Structure

The TC2000 memory is distributed among the function boards of the machine.
In the original model of the machine, the TC/FPV is the only function board
type, and each TC/FPY contains memory. The TC2000 design also permits
function boards without memory, and function boards with only memory. The
term memory module is often used for the memory and associated circuits on
one function board. The TC/FPV board is configurable to have either 4 or
16 megabytes of memory.

From the point of hardware, the memory is shared among all function boards.
Each function board can access memory on any other function board (and of
course its own memory). Memory on another function board is called remote
memory to emphasize that accessing it takes somewhat longer; memory on the
CPU's function board is called local memory to emphasize the speed advan­
tage in accessing it.

Memory is paged with a page size of 8 kilobytes in the nX operating system.
This page size is especially convenient because the VMEbus interface win­
dows, in both the master and the slave directions, have a granularity of 8 kilo­
bytes. The nX demand paging is relatively standard, and employs the
Motorola 88200 Cache I Memory Management Unit (CMMU) chip. Since the

119

4: Memory

NOTE

Inside the TC2000 Computer

CMMU's page size is 4 kilobytes, two adjacent CMMU pages are allocated
for each nX page.

The pSOS + rn operating system never performs demand paging, and the
pSOS + rn application is affected by page size only for memory allocation, par­
ticulary for memory to be shared with other pSOS + rn processes. A 4- kilobyte
page size is used here, mainly for the simplicity of using the CMMU's page
size.

,,,

PAGE SIZE AND INTERLEAVING
Memory interleaving (described later) has various granularities. The clump
size, within which all bytes map to the same function board, is 16 bytes. The
pattern of mapping clumps to switch ports repeats after each 8-kilobyte
boundary, but this is a minor effect. Within any 32-kilobyte quad-page, all
interleaved accesses map to the same pool of function boards. The decision of
whether a given access is interleaved or not has a 32-kilobyte (quad-page)
granularity in the CPU interface, and an 8- kilobyte (one page) granularity in
the VMEbus Slave Mapper. It is intended that the software interleave or not
interleave memory with a 32-kilobyte granularity; the VMEbus Slave Mapper
granularity is finer because its interleave decision bit is associated with its
8-kilobyte page mapping.
,,, ,,

Paging permits the following advantages:

• Allocation of memory in small units (pages), reducing waste

• Access control over individual pages, providing protection and privacy

• Demand paging of program code and data into memory from disk, re­
ducing the amount of memory required to execute programs (Under the
nX operating system only; the pSOS + rn operating system does not swap
pages to or from disk.)

TC2000 memory is mapped to achieve flexible allocation of available pages,
and to place memory windows conveniently in the address space. Mapping
occurs in the following places in the TC2000 architecture:

• References made by the CPU are mapped by one of the 88200 CMMU
chips, and by the CPU Mapping RAM.

• References made from a VMEbus system into TC2000 address space are
mapped by the VMEbus interface slave mapper.

• References made from the TC2000 address space into a VMEbus system
are mapped by the VMEbus interface master mapper.

• References made either by the CPU or from a VMEbus system, that tra­
verse the switch to access a remote function board, can be optionally
mapped by the interleaver.

120 February 14, 1990

Inside the TC2000 Computer 4: Memory

February 14, 1990

Access to the memory - and in general, the address space - of the TC2000
computer is protected by the CMMU. The CMMU provides both write pro­
tection and supervisor protection. Its operation is described in the MC88200
User's Manual. Briefly, the Processor Status Register in the CPU contains a
bit defining the current mode as user or supervisor. This bit, and a bit indicat­
ing whether an access is a read or a write, are presented to the CMMU with
every access. If the requested location is mapped read-only and this is a write
access, or if it is mapped supervisor-only and this is a user mode access, the
CMMU rejects the access and signals an error to the CPU. It is the responsi­
bility of the nX operating system to assign the appropriate permissions for
each page mapped. The nX system software further protects memory from
inappropriate access by checking privileges before mapping in pages or grant­
ing other system calls that could compromise protection and privacy.

The memory is addressable in byte, halfword (16-bit) and word (32-bit) units.
Halfword and word accesses must be aligned on halfword and word bound­
aries, respectively; an unaligned access causes a misaligned access exception
trap. (Some application execution environments may handle this trap invisi­
bly, or automatically but also tell the user.) Also, when the CMMU loads or
flushes a cache line, it makes a burst read or write of four consecutive words ,
aligned on a 4-word boundary. The memory responds to a burst read or write
efficiently. (In particular, the T-bus arbitration is performed only once for the
burst. Also, if the reference is to remote memory, the data is contained in one
switch message.)

The memory supports read and write operations. Further, the memory sup­
ports the TC2000 locking mechanism. A prime example of locking is the
CPU's xmem instruction, which first reads and then writes a memory location
while keeping the memory module locked.

Errors in memory are detected with a parity bit on each byte. A parity error
causes a bus error, with an error code indicating parity error. The machine
has a capability to intentionally write the wrong parity into memory, used in
diagnostic programs to test the memory and parity logic.

The memory employed is dynamic RAM, with refresh provided automatically
by the hardware. The impact of refresh cycles on memory latency is negligible,
as the concerned reader can see from the details below.

The memory subsystem performs a refresh cycle once every 12.8 microse­
conds. A refresh cycle requires five T-bus clock cycles (nominally 250
nanoseconds). During a refresh cycle, all T-bus requests to memory are
responded to with "REFUSED", and the requesting module tries again.
Refresh requests have the highest priority of any request to the memory.
Refresh still occurs when the memory interface is locked.

121

4: Memory

4.2

4.2.1

122

Inside the TC2000 Computer

Design

This section discusses how the memory structure, described in section 4.1, ap­
pears to the program and the programmer. These topics affect primarily the
operating system programmer and the sophisticated pSOS +muser, because the
nX operating system handles most of these issues for the nX user. The nX
programmer operates mainly in the virtual address space provided by the nX
operating system.

Global Address Space

The address space of the TC2000 machine is global. This means two things:
the address space is accessible to all CPUs and VMEbus interfaces, and the
address space uniquely addresses all resources in the machine. As we shall
see in section 4.3, we are talking here about the System Physical Address space.
The software uses mapping to restrict application programs to appropriate
portions of the global address space.

To the user, the importance of the address space being accessible to all is that
the user is not concerned with which function boards run the program. Any
function board is equally capable of executing the code and accessing the data.
Of course, 110 devices in a VMEbus system attached to a given function board
do make that function board more efficient for running programs that use the
devices. And, although code stored on one function board can be executed
over the switch by another ±'unction board, in practice code is stored locally
for speed of access . The considerations of I/O and code placement, however,
are much less restrictive than an architecture - unlike the TC2000 - in which
parts of the address space are inaccessible from some of the processors .

To the user, the importance of the address space uniquely addressing all re­
sources is twofold. The addressing of all resources means that there is no part
of memory or control register or window into VMEbus space that can't be ac­
cessed. The programmer does not have to work around peculiar or patchy ad­
dressing structure; using the TC2000 address space is straightforward. The
uniqueness of the address space means that there is one, machine-wide System
Physical Address for any given location. This frees the programmer from con­
cern about which CPU is making the access, or what mode a memory is in,
or what type of operation is being performed; the TC2000 address space does
not have such dependencies .

The system programmer receives the direct benefit of the System Physical Ad­
dress space being global. The application programmer usually deals with vir­
tual, not physical, addresses. But the application programmer does gain
substantial indirect benefit from the global quality of the TC2000 address
space. In particular, the simplicity of the system software design and opera­
tion, and the program execution efficiency and speed, are possible in part be­
cause of the global nature of the address space.

February 14, 1990

Inside the TC2000 Computer 4: Memory

4.2.2 Mapping

This section describes aspects of mapping (address translation). Mapping in
the CMMU, in the CPU interface, and in the VMEbus interface are discussed.

CMMU

Mapping is performed by the Motorola MC88200 Cache I Memory Manage­

ment Unit (CMMU) chips. Two or three of these chips are wired to each
MC88100 CPU; one CMMU services data references, while the other one or
two service instruction (code, text) references. For a thorough description of

the CMMU, please refer to Motorola's MC88200 User's Manual. Salient fea­
tures of the CMMU include:

• Memory management unit features:

o Two 4-gigabyte address spaces (one for user mode, one for supervi-
sor mode)

o Access protection (of supervisor memory from user mode access)

o Write protection

o Maintenance of " used" and "modified" page flags

o Probe capability (for testing the status of a virtual address without
actually referencing the location)

o Page (4 kilobytes) - TC2000 software allocates two adjacent
CMMU pages to make each system page

• Cache features (per chip)

o Separate cache chips for data and instructions

o 16-kilobyte, 4-way, set-associative physical cache

There are 16 kilobytes of storage for cached data/instructions

The unit cached (one line) is four 32-bit words

Four lines with the same offset in their pages can be cached
simultaneously

Each of 256 sets of four cache lines is associated with an offset
from the base of their pages; address bits 11..4 select the set

Entries are organized by physical address

o Concurrent address translation and cache access, gaining speed

o Writethrough I copyback with area (4 gigabytes), segment (4 mega­
bytes) or page (4 kilobytes, paired by system) granularity

o Cache inhibit with area, segment, page or block (512 kilobytes)
granularity

February 14, 1990 123

4: Memory Inside the TC2000 Computer

124

o Cache flush and invalidate initiated selectively by software or auto­
matically by hardware

• Multiprocessor support: locking during the xmem instruction is passed
on from the CPU, through the CMMU, to the rest of the CPU interface

Largely, the memory management and caching performed by the CMMU is
invisible to the application programmer. The nX operating system in particu­
lar handles all details of the CMMU ·operation. Programmers using the
pSOS + m operating system have greater ability to modify hardware parame­
ters, although direct access to the CMMU is discouraged.

Protecting Access to Registers

Under the nX operating system, memory management is used to limit access
to configuration and control registers in the TC/FPV, some on an individual
basis. The prime example of this is the Interprocessor Interrupt register.
Since the register resides on a page of its own, the nX system can control access
to it simply by controlling the access protection of the virtual page(s) mapping
the register. More explicitly, each TC/FPV contains an Interprocessor Inter­
rupt register, so the nX software can permit or prevent interrupting remote
processors by controlling the application program's mapping of those regis­
ters. (However, the implementation of nX does not permit direct user access
to any of the CPU interface registers .)

Mapping References Bypassed

The CPU interface translates the Physical Address produced by the CMMU
into the System Physical Address placed on the T-bus. As part of this transla­
tion, the CPU interface also produces certain auxiliary control signals that de­
scribe the access. One of these is the bypass signal. When the CPU interface
determines the access is to a part of memory that is mapped "bypassed", it
asserts the bypass signal, which in turn suppresses the TC2000 locking protocol.
Normally, the Augmentation Register (AR) determines whether an instruction
will be performed under the TC2000 locking protocol, described in section
4.4.1 and in chapters 2 and 3. Accessing certain locations and certain kinds
of data with locking would be undesirable. The hardware automatically sup­
presses locking on all instruction fetches , and on all page (but not segment)
descriptor fetches made by a CMMU. In addition, the system software maps
certain data references, especially those associated with exception processing,
in bypassed address space. For further details, see chapter 2.

While we have concentrated here on bypassed accesses made by the CPU, the
VMEbus slave also generates bypassed accesses, under control of a bit in each
of its mapping registers.

February 14, 1990

Inside the TC2000 Computer 4: Memory

February 14, 1990

Memory Mapping under the nX Operating System

The nX application programmer deals almost exclusively with the virtual ad­
dress space provided by the nX system. The following nX system calls allow
the user to manipulate that space, indirectly affecting the mapping to physical
memory.

getphysaddr return the physical address corresponding to a virtual address
if its page is resident in memory

getmmuinfo return the physical address and memory management unit
(MMU) bits corresponding to a virtual address

vm allocate allocate virtual memory

vm allocate and bind - - -
allocate virtual memory on a specific function board

vm cache flush
invalidate cached data or write it out to memory

vm_cache_setup
specify caching attributes for pages of virtual memory

vm _deallocate release access to an area of virtual memory

vm inherit specify how to pass pages of virtual memory to child processes

vm_mapmem allocate virtual memory, or map a file for shared access

vm_mapstat
vm _maps tat _pid

get status of process 's virtual memory

vm_protect change protection of virtual memory pages

vm statistics obtain status of system's use of virtual memory

vm_sync write modified virtual memory pages to buffer cache or to disk
(use only with memory allocated by vm_mapmem)

vm transfer copy virtual memory between processes

VMEbus Mapping

The VMEbus interface contains two address mapping RAMs. When a VME­
bus device accesses a location in the window into TC2000 address space, the
VMEbus Slave Map RAM translates the VMEbus address into an TC2000 ad­
dress. When an access within the TC2000 machine falls within the interface's
window into VMEbus address space, the VMEbus Master Map RAM trans­
lates the TC2000 System Physical Address into a VMEbus address.

The point above about bypassed access bears further discussion in the context
of the VMEbus interface. For example, accesses from VMEbus devices may

125

4: Memory

4.2.3

4.2.4

126

Inside the TC2000 Computer

have more stringent latency requirements than the TC2000 computer needs,
and mapping accesses from the VMEbus into TC2000 memory as bypassed
can accommodate such requirements of the VMEbus system.

Interleaver Mapping

The interleaver optionally maps addresses from the T- bus used by the SIGA
requester in accessing remote locations. Its use is described further in section
4.5. Interleaving is not supported in the current release of the nX operating
system.

Demand Paging

The nX operating system, supported by the TC2000 hardware, performs de­
mand paging. This is invisible to the process, except for delay while the page
is made available. A description of the process is beyond the scope of this
document, but the user should be aware of the following points .

• Under the nX operating system, when a user program references a re­
mote data page, that page is copied into local memory. (Text pages are
always allocated in local memory only.)

• The nX operating system has proper memory sharing semantics for
creating child processes, so vfork is identical to fork . Programs that rely
on the temporary vfork implementation on other systems, where execu­
tion of the parent was suspended until the child exited or executed an ex"

ecve, will not work under nX. See the nXfork(2) manual page for further
details.

• Under the nX operating system, a page is "cleaned" (old contents paged
out to disk if necessary) only when a user needs it; the system does not
do predictive page-outs.

• The nX operating system pre-zeros free pages in the idle process. so that
when a new page is needed, it is often available immediately and does
not have to be cleared while the user process waits.

• The nX operating system will retrieve a page from the disk buffer cache
if it still resides there, avoiding the time penalty of reading the page in
from disk.

Interleaving

Interleaving is not supported in the current release of the nX operating system.
However, it is a capability of the TC2000 hardware. The TC2000 interleaving
mechanism is described in section 4.5.

February 14, 1990

' '

Inside the TC2000 Computer 4: Memory

4.3

February 14, 1990

Addressing

Figure 4-1 shows components of the TC2000 machine that generate, transform
or respond to addresses. The figure uses the TC/FPV as an example. The prin­
cipal originator of addresses is the CPU. VMEbus master devices may also
generate addresses sent into the TC2000 machine, and the Test and Control
System generates addresses as part of its control and monitoring activity. The
component that responds to the most addresses is the memory. Registers, ex·
cept those internal to the CPU, are accessed by their address. VMEbus slave
devices may also occupy addresses and respond to TC2000 requests.

127

4: Memory Inside the TC2000 Computer

Figure 4-1 Address flow.

128

Motorola 88100
RISC CPU

v v
MMU and 16 or MMU and
32 KB CACHE 16 KB CACHE
_Qnstructionl _(_datal MAIN CONFIGURATION

v '~
MEMORY AND CONTROL

REGISTERS (4-16 MB)
CPU INTERFACE slave slave

master
,

)~)~

w
T-bus

)~)~

w '~ w
master slave ~ INTERLEAVER slave master '

SWITCH VMEbus
INTERFACE INTERFACE

server requester ~ TEST & CONTROL master slave
' SYSTEM iTCSl

)!'-

'~

H
TC2000
SWITCH

)~

'" VMEbus

Addresses are transformed in five places. Addresses generated by a CPU are
first mapped by either its instruction CMMU or its data CMMU, depending
on the type of reference the CPU is making. Then the address is transformed
by the CPU Mapping RAM in the CPU interface, and placed on the T-bus
or sent via the fast path to local memory. An address to which the requester
SIGA responds may be taken directly from the T-bus, or part of it may be
transformed by the Interleaver. The other two address transformations occur
in the VMEbus interface, where addresses on the T-bus are mapped to ad­
dresses on the VMEbus, and vice versa.

February 14, 1990

' .

Inside the TC2000 Computer 4: Memory

4.3.1

February 14, 1990

The remainder of this chapter discusses how the CPU accesses memory, and
how the memory system responds to accesses from any source.

Address Formats

The path from CPU to memory uses three address formats :
Process Logical Address
Physical Address
System Physical Address

Figure 4-2 summarizes the path of address transformation for every address
generated by the CPU.

129

4: Memory Inside the TC2000 Computer

Figure 4-2 Addressing from CPU to T -bus and switch.

130

P- bus
(processor bus)

M-bus
("memory" bus)

T-bus
(transaction bus)

CPU
Motorola 88100

Process Logical Address
l_ 32 bitsl

CMMU
Motorola 88200

Physical Address
_(_32 bitsl

,~

TC2000 CPU interface
address transformation

w
System Physical Address

on the T - bus 34 bits

9 bits

address interleaving
o tional

9 bits

System Physical Address
for switch access (34 bits)

....... ,.

25 bits

T - bus ccontrol
signals (such as
local, bypass)

The Motorola MC88100 CPU operates in the virtual address space of 32-bit
Process Logical Addresses. Examples of a Process Logical Address are an ad­
dress stored in a CPU register, or a pointer in the C language. The user's pro­
gram sees only Process Logical Addresses, and hence a 32-bit virtual address
space. The nX operating system's use of the page translation mechanisms in
the CMMU hides many of the details of the other two address formats and
address translation from the application-level programmer.

The Process Logical Address is a 32-bit field with no defined internal struc­
ture. See the Motorola MC88100 User's Manual for further discussion of the
CPU operation and its use of addresses .

February 14, 1990

, .

(.

Inside the TC2000 Computer 4: Memory

Figure 4-3

31

Figure 4-4

31

Process Logical Address format.

address

0

The 32-bit Process Logical Address generated by the CPU is transformed by
a Motorola MC88200 CMMU into a 32-bit Physical Address. One CMMU
transforms data addresses, and instruction addresses are transformed by
another CMMU (either a single one, or one of a pair). For more information
on the Physical Address and operation of the CMMU, see the Motorola
MC88200 User's Manual.

The CMMU places little constraint on how the Physical Address it produces
is interpreted. The CMMU is designed so the Physical Address could be pres­
ented directly to a memory system. The Physical Address (Figure 4-4) is 32
bits without any field definitions, because it is transformed by the CPU Map­
ping RAM.

Physical Address format.

address

0

The System Physical Address is unique to the TC2000 architecture, not a part
of the Motorola CPU or CMMU. It is 34 bits. The CPU interface transforms
the 32-bit Physical Address into the 34-bit System Physical Address, and in
the process also produces other address-related signals. The System Physical
Address from the CPU interface is placed on the T-bus. It is important not
to confuse the Physical Address with the System Physical Address.

• The Physical Address exists only going from a CMMU to the attached
CPU interface. "Physical Address" is a term employed by Motorola in
their CMMU literature. There it is sometimes called the M-bus address,
because the CMMU was designed to drive a memory bus. It is 32 bits .

• The System Physical Address exists on the T-bus and in the switch. It
is the common language by which all T-bus master devices address all
T-bus slave devices. "System Physical Address" is a term defined by
TC2000 designers. It is 34 bits.

February 14, 1990 131

4: Memory

Figure 4-5

switch routing

33
·g bits

512 slots

4.3.2

Figure 4-6

132

Inside the TC2000 Computer

Figure 4-5 shows the System Physical Address format and its fields . The
switch routing field specifies the path through the switch, and therefore one
of 512 slots. The address offset field addresses four 8-megabyte banks of
memory, for a total of 32 megabytes addressable per switch port. The address
space of the System Physical Address is 512 x 32 megabytes, or 16 gigabytes.
The top two bits of the address offset are a subfield called the bank bits .

System Physical Address format.

bank

II

I
address offset

25 24 0

25 bits
32 megabytes

Address Translation

The CPU interface receives a Physical Address from one of the CMMUs, and
produces a System Physical Address that is placed on the T-bus. Figure 4- 6
shows this transformation.

Physical Address to System Physical Address.

Physical Address

(9) (23)

CPU Mapping RAM

(23)

System Physical Address

Besides the transformation of Physical Address to System Physical Address,
the CPU interface indicates whether the access is local or remote, whether it
bypasses locks, whether it may access interleaved memory, whether it may use

February 14, 1990

. '

Inside the TC2000 Computer 4: Memory

4.3.3

4.4

4.4.1

February 14, 1990

the fast path to local memory, and whether it is intercepted without actually
accessing any resource. These are conveyed on separate signals and are not
strictly a part of the address.

Banks

Banks are the four 8-megabyte sections of the 32-megabyte address space at
each switch port (and therefore on each function board). The concept of banks
is necessary because the 88100 CPU and the 88200 CMMU deal only with
32-bit addresses, while the TC2000 architecture uses 34-bit System Physical
Addresses composed of 9 bits of switch port and 25 bits of address space at
each switch port. Going from 32 bits to 34 bits requires the insertion of two
bits . The design inserts these as the top two bits of the address space at each
switch port, thus identifying four 8-megabyte banks there.

Banks, being an aspect of physical addressing, are invisible to the nX applica­
tion programmer, whose code executes in virtual address space.

Features Important to the User

This section covers features of the TC2000 memory system that are of particu­
lar interest or use to the user. The previous sections present the memory more
from a design and hardware operation viewpoint, while this section is geared
more to the programmer.

Locking

The TC2000 locking protocol is supported by the memory hardware. The pro­
cessor support for TC2000 locking (and the overall concept of locking) is de­
scribed in chapter 2, the switch support in chapter 3, and the memory support
here. The memory's interface to the T-bus implements the locking mecha­
nism, so the entire memory on the function board is locked at once, and un­
locked at once.

When a T-bus reference to memory specifies locking, and the memory inter­
face is not already locked, the memory interface performs the reference and
remembers that the memory is locked by the module making the reference.
That module may be the CPU interface, the VMEbus slave interface, or the
switch interface (the server side). The switch interface makes references only
on behalf of a remote CPU or VMEbus slave, not on its own. During a locked
transaction from a remote function board, the memory is held locked because
the first memory access message on the connection locked the memory, not
because the switch path is held open. (Holding the switch path does, however,
prevent any other remote function board from accessing any locations on this
function board, for the duration of the locked connection.)

133

4: Memory

4.4.2

134

Inside the TC2000 Computer

While the memory is locked, only the following accesses are accepted:

• Accesses from the same module that has the lock

• Accesses from the CPU interface via the fast path

• Bypassed accesses, including all instruction fetches

All other references to memory are refused, and are retried by the requesting
module.

The memory is unlocked when the module holding it locked releases it. In the
CPU interface, this happens automatically at the end ofan xmem instruction,
and explicitly by clearing the lock bit of the AR at the end of a sequence locked
by using that bit. The memory interface itself contains no timeout on being
locked; the design depends on the requesting module timing out a locked con­
dition. The CPU interface has a lock timer, and the VMEbus has an implicit
timer described in the following detail note.

The VMEbus slave holds a lock only as long as the VMEbus signal "ad­
dress strobe" is asserted. The longest this signal is normally asserted is
during a read-modify-write operation, which is fast. If the signal were
asserted too long, such as by broken hardware in a VMEbus device, the
VMEbus system bus timer (optionally the one in the TC/FPV) will ex­
pire, aborting the operation.

Error Detection

Each byte is protected by its own parity bit. When an access (of any size) is
made that includes a byte with a parity error, the hardware responds to the
requesting module with a bus error. If the access was made by the CPU, the
Bus Error Vector register in the CPU interface can be read to determine that
the error was specifically a parity error. The return of a bus error occurs
whether the access is local or remote; in the latter case, the switch conveys the
error code back to the requesting function board.

The CPU interface can be set to write incorrect parity into memory. This is
used only by test and diagnostic programs, never in normal operation. Never­
theless, it is indirectly helpful to the user because it increases confidence that
the machine is detecting any errors that occur.

Detected Soft Error Rate

The estimated, detected soft error rate, is about once in three years per four
megabytes of memory. (This uses a chip error rate of 1000 errors per billion
hours of operation, an appropriate figure for the high (90%) confidence level
we use in design.) This is sufficient for the original model. Later models, espe­
cially ones with more than 64 function boards, may employ error correction

February 14, 1990

Inside the TC2000 Computer 4: Memory

4.4.3

NOTE

February 14, 1990

circuitry on their memory. There is no difficulty accommodating error correc­
tion in the TC2000 architecture.

Undetected Soft Error Rate

Using the above conservative, design chip error rate, and other plausible as­
sumptions about memory use, the undetected soft error rate is less often than
once in a billion years per four megabytes of memory. This is negligible com­
pared to other sources of error, including human error.

Hard Errors

After a soft error, the machine will reboot and all hardware can still be used.
After a hard error, the memory subsystem with the error must be replaced or
configured out of the system. The hard error rate is of importance in large
machines such as the TC2000 computer, but of less importance here than in
many other machines because of the ability to configure around failed function
boards. Experience with TC2000 machines indicates that the hard error rate
is low.

Synchronized Access to Memory

,,,,,,,,,,,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,,,,,,,,

NOT IN CURRENT nX OPERATING SYSTEM
User access to the synchronized access feature is not supported in the current
nX release. The reader may skip this section without sacrifice in understand­
ing of the features available to the nX user. The nX software does, however, use
synchronized access for kernel xmem instructions and locked sequences.
,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,

The topic of this section is implemented in the CPU interface and the switch
interface, and concerns congestion at a server switch port, but is discussed
here in the memory chapter because of its impact is on the user's access to
memory.

The synchronized access facility is a mechanism to help reduce contention for
access to remote memory. When many CPUs attempt to access the memory
module on one function board at a high rate, the switch port to that function
board is often busy. This contention results in frequent switch message rejects
and automatic retries, congestion in the switch, and slowed execution of pro­
grams. The memory module contended for is called a hot spot. The contention
may be over a single location (such as a lock or other shared variable), a partic­
ular area of memory (such as a shared page containing heavily referenced vari-

. ables), or a large portion of the memory on that function board (such as a large

135

4: Memory

136

Inside the TC2000 Computer

hash table). Accesses from VMEbus interfaces can also contribute to making
a hot spot, but CPU accesses are typically the cause.

Whatever the contended resource in the memory module (locations, pages, or
a large area), all remote references must pass through the one switch port,
making the switch port and T-bus and memory module interface a bottleneck
through which the accesses are serialized. Several approaches are available
for alleviating hot spots; one is the synchronized access mechanism. To see
this, consider a "spin lock". A spin lock is the heavily referenced, shared data
that processes repeatedly test, as rapidly as possible, until it takes on some
awaited value. A spin lock is one of the simplest forms of synchronization
among processes, and therefore is often used. While "spinning" on the lock,
the processes heavily load the switch port to the memory module containing
the lock, creating a hot spot. Under such heavy contention, the CPU on the
same function board tnay also be slowed.

Hot spots can arise either through straightforward heavy loading or through
fluctuation into a region of instability. As an analogy, consider the flow of logs
down a river. If the logs are a foot in diameter, and the river is 100 feet wide,
it can hold at most 100 logs side by side. Suppose a huge log holder dumps
200 logs into the river all at once; a jam is nearly inevitable. On the other hand,
consider a smooth flow of 20 or 30 logs side by side, smoothly flowing down
the river. Suppose there is some disturbance - a log catches on a rock, for
instance. This disturbs the flow, and some logs turn sideways across the river.
Other logs catch on these, and a jam builds up. Similarly, a hot spot can arise
in smoothly operating communications if the load is heavy and a pileup is trig­
gered by some event - such as momentary heavy traffic through a switch node.
This logjam effect can build a "warm spot" into a hot spot. And once the con­
tention is heavy, the hot spot may stay hot until operating conditions change.
Another reason that a spin lock hot spot stays hot is that the process holding
the lock and now ready to free the lock, also encounters heavy contention,
needlessly delaying the freeing of the lock.

The TC2000 software environment provides profiling and diagnostic tools the
user may employ to detect and diagnose hot spot behavior (the tool gist is an
example), and programming techniques to reduce or avoid it. Sometimes, even
the switch transmit and receive lights on function boards will show the user
an unintended switch traffic volume to a particular board or between particu­
lar boards.

The synchronized access facility operates by forcing the switch interface to use
a particular one of the four possible pacing strategies explained in the switch
chapter. (In particular, the "slotted, number O" strategy is used.) The facility
is enabled by a bit in the Process Control register in the CPU interface. When
the facility is enabled, any remote access the CPU makes will use that one pac­
ing strategy. The parameters of that strategy may be initialized by system soft­
ware to pace switch transmissions appropriately for references that are
expected to encounter (and therefore add to) contention. In this application,
the delay before initial transmission can be quite important, not just the pacing

February 14, 1990

f •

Inside the TC2000 Computer 4: Memory

CAUTION

4.4.4

February 14, 1990

of retries. Slightly delaying every access to a spin lock, for instance, reduces
or avoids the logjam behavior. This frees the programmer from putting explicit
pacing in his program. It is appropriate whenever the program accesses
shared data that is likely to be referenced concurrently by several processors.

A TREATMENT, NOT A CURE
Software backoff is much more important in reducing spin lock load than the
synchronized access facility is. Using synchronized access makes spinning
"not as bad", but it still isn't a good programming practice when several pro­
cessors may be contending for the lock.

11

In the current release, the nX operating system uses the synchronized access
feature for kernel xmem instructions and locked sequences. It is possible that
it may be used in the future in additional ways:

• The operating system can use it for its own references (besides xmem and
locked sequences) to remote, shared data for which contention is likely

• The operating system can grant explicit or implicit requests from appli­
cation code, surrounding references to heavily referenced, shared, re­
mote data

• The operating system can permit the application process to enable and
disable this facility itself, providing the above functionality but without
the overhead of a system call

The pSOS + m user is not prevented from using the synchronized access facil­
ity, since the pSOS + m user may enter kernel (supervisor) mode.

Optimizing CMMU Use

The nX philosophy is that memory management, caching and demand paging
are invisible to the application program and generally support the user's needs
well. For most applications this is entirely true. Occasionally, however, an
application has particular needs that can be better met by taking some cogni ­
zance of how these operations work in the hardware, and how the nX software
employs them.

For example, a program might be analyzing the different physical shapes (con­
formations) that a drug molecule can assume, looking for shapes that minimize
total energy (because those are most likely). Such a program might compute
intensely, with a relatively small number of data pages. If the data resides in
the cache, the calculation will proceed significantly faster than if each refer­
ence is to main memory.

There are different optimizations to consider. Some apply to one application,
others to another. The following discussions provide a bridge for the program-

137

4: Memory

138

Inside the TC2000 Computer

mer to cross the gap between the raw hardware design and the purely software
descriptions of system calls. The analysis of which optimizations could benefit
a given application is left to the programmer. The topics are:

• Distributing data structures

• Localizing data references

• Reducing page fault rate

• Wiring down data pages

• Reducing page table walks

• Increasing cache hit rate

The topics chosen for discussion below apply especially to the TC2000 ma­
chine. Other, more general optimization techniques are described adequately

in computer science literature and are not covered here. (That includes com­
piler options for optimizing space or run time, restructuring algorithms for
parallel execution, reducing subroutine calling, coding critical routines·in as­

sembly language, trading off memory use and execution speed, avoiding the
packing and unpacking of bit fields , and so on .)

Distributing Data Structures

If a data structure frequently referenced by several processors resides entirely
on one function board, then a hot spot can develop involving the switch path
to that function board, the switch server interface there, the T-bus, and the

memory module. This phenomenon is described in section 4.4.3. Besides mo­

difying the access strategy to that one function board (as the synchronized ac­
cess mechanism described there does), the data structure may be spread out
over several function boards. This can dramatically improve the program per­

formance. The Uniform System library, for example, provides the scatter ma­
trix facility for distributing the rows or columns of a matrix among a group
of function boards, for applications using the Uniform System. For further

information on scatter matrix, please refer to Uniform System documentation.
Distributing parts of a data structure that is conceptually one whole is an idea
that any application program may implement in its own way, even if not using

the Uniform System.

Localizing Data References

Access over the TC2000 switch to data stored on a remote function board is
slower than access to data stored locally. When the cost of remote access limits

program performance, performance improves when data resides in the
memory of the function board that most often references it. Another tech­
nique to localize data references is to make a local copy of data that will be

heavily referenced. The local copy may be only temporary, if the heavy refer­
ence is only temporary. For example, a program that multiplies matrices might

February 14, 1990

' .

Inside the TC2000 Computer 4: Memory

February 14, 1990

copy into local memory the row or column that is heavily used in each execution
of the inner loop.

Reducing Page Fault Rate

When the nX operating system removes a page from the working set of a pro­
cess, and the process later refers to a location in that page, the reference is
suspended while the page is made available. If this page-out activity is pre­
vented, program performance improves.

A simple way to reduce page-out is to reduce the demand on virtual memory
by restructuring the process and/or its data. The following programming prac­
tices work toward this end.

• Use compact data structures; don 't waste space

• Consider running fewer processes, or processes that use less memory, on
the affected function boards

• If memory on an affected function board is allocated to processes run­
ning on other function boards, redirect this allocation

One can imagine a process knowing that soon it will reference a page that is
not currently resident, and asking the nX system to page it into memory while
the process continues execution instead of being suspended. This is contrary
to the nX design philosophy, and no direct way to do this is provided. An indi­
rect means toward this end is to have another process (such as a child that
shares the given page with its parent) reference the page. This causes the nX
software to bring the page into memory, so that when the parent references
it, the delay will be substantially smaller. This is rather contrived, and is more
useful as a thought exercise than as a general technique in practice.

Wiring Down Data Pages

The nX operating system provides a means to insist that specified data pages
remain in memory. Data pages can be wired down to prevent the nX system
from paging them out. Application software can tell the nX system to wire
down pages of virtual memory by using the vm_mapmem system call. In the
current release of the nX operating system, text pages of user space cannot be
wired down.

Wiring down pages is more drastic than the good, general programming prac­
tices that simply reduce demand for memory. Wiring down pages has the pow­
er to cripple the operation of the nX system, and should be used only when
necessary and only with care. To wire down pages, user group "wheel" access
privilege is required.

139

4: Memory

140

Inside the TC2000 Computer

Reducing Page Table Walks

Even if the nX system removes no pages from the process's working set, per­
formance may be reduced by another aspect of memory management - page
table walks. Compared to page-out, page table walking is usually a minor ef­
fect. To the programmer needing a small improvement in performance, howev­
er, the effect could make the difference.

The memory management implemented by the CMMU includes on-chip Ad­
dress Translation Caches (ATCs). If the ATCs do not contain the information
needed to translate a virtual address, the CMMU automatically fetches that
information from memory and places it in the ATCs. Therefore, the program­
mer needs to understand the use of ATCs in order to know what restructuring
of the program would improve performance. Below are the basics of this use.

Each CMMU contains two ATCs: the Block Address Translation Cache
(BATC) and the Page Address Translation Cache (PATC). There are ten en­
tries in the BATC, each translating a 512-kilobyte block. Eight are program­
mable, and two are hard-wired to map control memory (the top megabyte of
supervisor space). The eight programmable BATC entries are maintained by
software. However, the nX operating system allocates user memory on the ba­
sis of pages, and has no provision for allocating such a large (half megabyte,
aligned on a half-megabyte boundary) block to users. The nX system uses all
the BATC entries for system purposes; no user process address space is mapped

through the BATC.

The PATC, on the other hand, is maintained entirely by the CMMU. Its 56
entries are dynamically shared between supervisor and user page mapping.
The PATC contains the 56 most recently used page translation entries. There­
fore, an application process may use all 56 entries. However, after the operat­
ing system (including interrupt routines) runs, some or all of those entries will
be replaced, and page table walks will occur as they are needed. Our interest
here is to minimize page table walks while our process is running - there is
nothing we can do in the application program to keep PATC entries from other
processes when they need them.

Each PATC entry maps one 4-kilobyte CMMU page (under the nX system,
pages are 8 kilobytes, two adjacent CMMU pages). So the 56 PATC entries
map 56 x 4 = 224 kilobytes. Therefore, as long as the process references at
most 224 kilobytes, it will suffer no additional page table walks. Those 224 kilo­
bytes need not be contiguous; they may be in any 56 different 4-kilobyte
CMMU pages (each 4-kilobyte aligned).

Note that the above discussion applies independently to each CMMU - the text
being executed may fall in up to 56 different 4-kilobyte CMMU pages, and the
data may reside in up to 56 different 4-kilobyte CMMU pages. (Under the
nX system, text and data are never stored in the same page.) If the function
board is configured with two code CMMUs, executed text may occupy up to
112 different 4-kilobyte CMMU pages without causing more page table walks.

February 14, 1990

Inside the TC2000 Computer 4:Memory

CAUTION

February 14, 1990

Increasing Cache Hit Rate

As with page table walks, some cache misses are unavoidable, but the rate can
be affected by the structure of the program and its data.

The CMMU's "data cache" (to distinguish it from the Address Translation
Caches), like the PATC, is managed entirely by the CMMU. Its entries cannot
be sequestered by the operating system or by user processes.

The cache in each CMMU is 16 kilobytes, organized as described in section
4.2.2. To incur no cache misses beyond those unavoidably resulting from ex­
ecution of nX system software and other user processes, our process must re­
strict its accesses to 16 kilobytes. This area may be 16 kilobytes of contiguous
memory, but other distributions are also possible. Specifically, the 16 kilo­
bytes referenced have to contain at most four 4-word lines at each offset within
their pages. For details, please refer to the MC88200 User's Manual, or to the
summary in section 4.2.2.

Thus, it may help to pack code and data tightly, so each fits into 16 kilobytes.
(Or into 32 kilobytes of code, if the function board has two code CMMUs.)
The nX system and C and Fortran provide limited means to control the conti­
guity of text routines or data structures. Some techniques that can help are:

• Routines that are combined into a single routine occupy contiguous loca­
tions. (However, if routines are called from more than one place, putting
them in-line requires multiple copies of them. This will expand the over­
all code size, working against a high cache hit rate.)

• Routines that appear next to each other in the source, and are in the same
module/file, are more likely to be next to each other in the executable
image than routines that are separated in the source. *

• Data structures that are combined into one structure, or stored in one
array, occupy contiguous locations.

• Data structures that appear next to each other in the source, and are in
the same module/file, are more likely to be next to each other in the ex­
ecutable image than data structures that are separate in the source. *

The techniques marked * are heuristic only and are not guaranteed.

141

4: Memory

NOTE

4.4.5

4.5

4.5.1

142

Inside the TC2000 Computer

,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,

MAPPING DATA NON-CACHEABLE
Occasionally, an application may benefit from inhibiting the caching of data
structures referenced in certain ways. For example, a large hash table or bit
array, referenced often but at random addresses, will place cache entries in the
CMMU that are rarely used again before they are dropped from the cache,
possibly displacing entries that will be used again soon. Another example is
rapid references to single locations on successive pages of a large array. In
such situations, the pages holding the data structure can be marked non­
cacheable by using the vm_cache_setup nX system call. This can reduce the
number of cache misses. (In contrast, vm_cache_setup is typically used to
mark shared data cacheable.)

There is no analogous way to inhibit the page table walks in such situations,
but page table walking is less of a problem because the PATC replaces the least
recently used of its 56 entries. The cache replaces the least recently used of
the four lines that match the within-page offset of the reference.
~,,, ,

Interleaving

Interleaving is not supported in the current release of the nX operating system.
When and if it is supported, it could aid the user by reducing the contention
for data stored in a given memory module and accessed by several function
boards. The TC2000 interleaving mechanism is described in section 4.5.

Interleaving

The discussion of interleaving begins with introductory discussion that the ad­
vanced reader may wish to skip.

Please note that the current release of the nX operating system does not sup­
port interleaving. The following discussion describes the general concept of
interleaving, how the TC2000 interleaving hardware works, and how it could
be used by software.

Overview of Interleaving

Interleaving is a form of address mapping. A range of addresses that the CPU,
and therefore the program, sees as contiguous is mapped into several sub­
ranges that lie in separate memory subsystems. The first several addresses go
to one memory subsystem, the next several addresses to a different memory
subsystem, the next several to yet another, and so on. Often there are more
sub-ranges than there are interleaved memory subsystems, so the mapping

February 14, 1990

' ' r

Inside the TC2000 Computer 4: Memory

4.5.2

February 14, 1990

eventually cycles back through the memory subsystems and maps many sub­
ranges to each memory subsystem.

Motivation for Interleaving

Why Interleave At All?

The programmer does not see any direct effect of interleaving. The purpose
of interleaving is to improve efficiency, thus speeding computation. This im­
provement depends on the pattern of memory references being somewhat se­
quential, a hypothesis which is very well met by the instruction fetches of
almost all programs, and is usually moderately well met by their data fetches
as well. This is called locality of memory access. Programs often refer to ele­
ments of a data structure that resides in contiguous locations of virtual address
space. For instance, indexing through array elements is a common operation.

As a counterexample, a program segment that fits entirely in the cache, making
memory references at random (such as to a hash table), derives no direct bene­
fit from interleaving. In a multiprocessor environment such as the TC2000 ma­
chine, however, even this program segment will probably execute faster due
to the indirect benefit of reduced switch and memory contention and conges­
tion.

Historically, an early use of interleaving was to improve the effective speed of
memory. Large memories, such as banks of magnetic core memory, were rela­
tively slow compared to the CPU speed achievable. Interleaving allowed the
next memory reference to begin while the previous reference, to a different
memory subsystem, was completing. This application used fine grain inter­
leaving; typically, each successive word address was mapped to a different
memory subsystem. This was often implemented by taking some of the low
bits of the virtual address and moving them to a high position in the physical
address.

Why Interleave This Way?

The TC2000 interleaving is motivated by other concerns and is implemented
in a different way. Several processes may be accessing data structures that
are stored near each other in a shared, virtual address space. Without inter­
leaving, these data structures would usually reside in nearby physical loca­
tions, usually in the same memory subsystem. When the memory subsystem
is servicing an access request from one process, other access requests to it will
be delayed. The memory subsystem becomes a bottleneck. Also, switch paths
converging on the memory subsystem's server port will become heavily loaded
as access requests are rejected and retried.

143

4:Memory

4.5.3

144

Inside the TC2000 Computer

The crux of this bottleneck is that several popular data structures all lie in one
memory subsystem. The solution is to spread out the data among several
memory subsystems. The access pattern is then spread out, and the perform­
ance approximates average behavior instead of "hot spot" behavior.

The amount of data mapped to each memory subsystem in turn - the inter­
leaving granularity - need bear no relation to the actual size of the data struc­
tures the processes are referencing. The TC2000 interleaver maps each clump
of 16 bytes to a different switch port, and therefore to a different memory sub­
system. This scatters the data across many memory subsystems.

The 16-byte clump size is well matched to the maximum switch message data
size, also 16 bytes. If a single switch message could access more than the inter­
leaving clump size, then such an access to interleaved memory would necessar­
ily refer to more than one switch port. Sixteen bytes is also the size of a cache
line, so filling or flushing a line accesses only one switch port.

In the historical interleaving, it was common for the entire virtual address
space to be interleaved. On the TC2000 machine, interleaving is performed
on a quad-page basis . Each quad-page (32 kilobytes) may be entirely inter­
leaved or entirely non-interleaved. The quad-page-based interleaving per­
mits flexibility in the use of interleaving. TC2000 interleaving is more like
memory mapping than the historical interleaving, both in implementation and
use.

In the TC2000 machine, some memory subsystems may be busy with other
tasks. Some may be physically not installed, or be configured out of service.
The number of memory subsystems may be different than when the system was
previously brought up, and may often not be a power of two. All of these varia­
tions are accommodated well by the quad-page-based, mapping style of inter­
leaving, and would be very difficult to accommodate with interleaving that
relied simply on a shuffling of bits within the address.

Uniform Use of TC2000 Interleaving

The TC2000 interleaving design permits considerable flexibility in use. Each
switch interface has associated with it its own copy of the interleaving hard­
ware, and each T-bus master has its own capacity for deciding whether a given
access is to an interleaved page.

The hardware was designed with machine-wide uniformity of interleaving in
mind. The idea is that all interleavers will be set up identically. Also, that all
hardware that decides whether a given page number is interleaved or non-in­
terleaved will be set up identically. We suggest that the reader approach
TC2000 interleaving with this model in mind, and that the programmer consid­
er using interleaving this way to avoid complexities in coding and debugging.

February 14, 1990

rnside the TC2000 Computer 4: Memory

4.5.4

Various deviations from this uniform model are possible. Some would pro­
duce very peculiar effects and should rarely if ever be used, while others may
be valuable in certain obscure applications. An example of very strange use
of interleaving is to access a given physical page sometimes as interleaved and
sometimes as non-interleaved. This has the effect of reordering and/or hiding
portions of the data. While one might imagine a sorting or hash-coding algo­
rithm based on this "use" of interleaving, it's more of a misuse.

A second example illustrates a potentially realistic deviation from uniform in­
terleaving. In an application where the TC2000 is serving several users, each
user is probably allocated a number of processors for the user's exclusive use.
The operating system might restrict the user's access to memory by preventing
access to physical pages outside the user's cluster of processors. If the machine
is thus partitioned, the operating system could set up a given quad-page as
interleaved within that cluster, but non-interleaved in the rest of the machine.

Again, we suggest that the standard use of TC2000 interleaving is uniform.
If a given quad-page is interleaved for any access, we suggest it be interleaved
for all accesses in the machine.

Implementation of TC2000 Interleaving

Overview as a "Black Box"

The interleaver input is most of the address bits on the T-bus, therefore a
34-bit System Physical Address. The interleaver output is nine bits, all of
which are inputs to the SIGA. For the switch route portion of the address, the
SIGA uses either T-bus bits T AD< 33 . .25 > or the nine bits from the inter­
leaver. A 1-bit control signal associated with the T-bus, T_INTERLEAVED,
tells the SIGA which source to use.

Figure 4-7 shows how the interleaver fits into the TC2000 design. Its only ac­
tion is to change the switch routing used by the SIGA, based only on the T-bus
address. Therefore, the following points are true.

• Interleaving applies to remote (over the switch) references only. Local
references are not interleaved. References to memory on the same func­
tion board may be interleaved only if they access that memory over the
switch.

• The effect of interleaving is to change the switch port to which an access
is directed. The 25 bits of address offset are unchanged; the access will
have the same address offset at the new switch port as it would have had
at the other switch port without interleaving.

• T-bus masters that originate accesses over the switch, such as the CPU
interface and the VMEbus interface in the TC/FPV, should drive the
T _INTERLEAVED signal consistently. Unusual - and probably unde-

February 14, 1990 145

4: Memory

Figure 4-7

,, i\

Inside the TC2000 Computer

sired - results would ensue if one T- bus master accessed a quad-page
as interleaved, and another T-bus master accessed the same quad-page
as non-interleaved.

Overview of the interleaver.

T-bus

T INTERLEAVED
(1 bit)

T AD<33 .. 0>
(interleaver uses

only 26 bits)
'~

slave master

146

SWITCH
INTERFACE MOD (9 bits) INTERLEAVER

requester server

i\

BUTTERFLY
SWITCH

Internal Workings of the Interleaver

The interleaver contains two RAMs and an adder. Its organization is shown
in Figure 4-8. T_AD < 33 .. 25 > and T_AD < 12 . .4 > provide the two 9-bit in­
puts to an adder. T _AD< 33 .. 28 > supply the high six address bits, and
T _AD< 22 .. 15 > the low eight address bits, to the pool RAM. The address
supplied to the pool RAM selects one of 16,384 3-bit locations. The three bits
from the selected location drive the high three address bits of the modulus
RAM, and the low ten bits of its address come from the adder. This selects
one of 8,192 9-bit locations in the modulus RAM. The nine bits from that loca­
tion are the output of the interleaver. They go to the SIGA.

February 14, 1990

Inside the TC2000 Computer 4: Memory

Figure 4-8 Interleaver internal processing.

T-bus ADDRESS BITS T AD< 33 .. 0 >

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HIGH

6

POOL RAM
(16Kx3)

8

ADDER

HIGH

MODULUS RAM
(8Kx9)

9

10

MOD BITS TO SIGA

9

Figure 4-9 illustrates how the SIGA uses the T-bus address bits, the MOD
bits from the interleaver, and the T_INTERLEAVED bit.

February 14, 1990 147

4: Memory Inside the TC2000 Computer

Figure 4-9 Interleaving processing in the SIGA.

T-bus ADDRESS BITS T AD< 33 .. 0 >

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

if T INTERLEAVED = 0

?

if T INTERLEAVED = 1

placed in command field of message,
delivered to remote switch port 's T -bus

placed in header field of message,
used to route message through switch

8 7 6 5 4 3 2 1 0

MOD BITS FROM INTERLEAVER

4.5.5

148

The CPU interface derives T INTERLEAVED from its Interleave Decision

RAM, gated with the CMR interleave enable bit; unless both RAMs say to in­
terleave, T _INTERLEAVED is not asserted.

The VMEbus interface derives the T INTERLEAVED bit from its selected

VMEbus Slave Map RAM register. The intended use is that software will set
up this RAM such that T_INTERLEAVED is asserted consistently with the
CPU interface's use, and that the individual page-by-page control available

in the VMEbus Slave Map RAM be used to support quad-page interleaving.

Conceptual Operation of the Interleaver

The interleaver hardware was designed with a particular model of interleaving
in mind, although the design is relatively general and could be used in various
ways. This section describes the intended use of the interleaver and motivates

the hardware design. We examine each task the interleaver performs, identify­
ing the hardware that implements that task.

February 14, 1990

Inside the TC2000 Computer 4:Memory

Figure 4-10

Mapping Clumps to Switch Ports

The primary task of the interleaver is to distribute different clumps of bytes
within a page (or quad-page; see note below) to different memory subsystems.
The switch port identifies the memory subsystem, so the interleaver maps each
successive clump to a different switch port.

The interleaver operates on the System Physical Address. For all addresses
within a page (eight kilobytes), the high 21 bits of the System Physical Address
are the same. Therefore, at this most basic level, the high 21 bits are not rele­
vant to the interleaving operation. Only the bottom 13 bits change, so only they
can contribute to the interleaver's mapping of address to new switch port.

Further, all 16 bytes of each clump should be mapped to the same memory
subsystem, so the low 4 bits of the System Physical Address do not contribute
to the interleaving. Only System Physical Address bits 12 . .4 drive the basic inter­
leaver mapping. These bits identify the clump within the given page, and there­
fore are called the clump number.

The basic task of mapping the clump number to a new switch port is performed
by the modulus RAM. The clump number supplies the address to this RAM,
and the contents in the selected location are the new switch port where that
clump of addresses in the interleaved page resides. Figure 4-10 shows this ba­
sic task.

Mapping clumps to switch ports.

T-bus ADDRESS BITS T AD< 33 .. 0 >

333231302928272625 242322212019181716151413 121110 9 8 7 6 5 4 3 2 1 0

original switch port page number

February 14, 1990

clump
number 9

MODULUS RAM

9

MOD BITS TO SIGA
(new switch port)

byte in
clump

149

4: Memory

Figure 4-11

clump 0 =
clump 1 =
c lump 2 =
clump 3 =
clump 4 =
clump 5 =

Figure 4-12

clump 0 =
clump 1 =
clump 2 =
clump 3 =
clump 4 =
clump 5 =

150

Inside the TC2000 Computer

The modulus RAM could be programmed to map each of the 512 clumps in
the page to any "random" switch port. Indeed, this flexibility is important,
because only certain of the possible 512 switch ports may be available when
interleaving is set up, typically during system initialization. The modulus
RAM is intended for use in a more structured way, however. When interleav­
ing is set up, the software should decide which switch ports are available to
supply clumps of memory in the interleaved page. These switch ports consti­
tute a pool of switch ports. The modulus RAM assigns clumps to each of the
switch ports in turn, round robin fashion, recycling through the pool as many
times as necessary.

Usually there will be fewer than 512 switch ports in the pool; suppose there
are six. The first six clumps are mapped to different switch ports. The seventh
clump is mapped to the same switch port as the first clump. The eighth clump
is mapped to the same as the second clump. And so on. Figure 4-11 shows
this use of the modulus RAM. In this example, the modulus RAM computes
the function, port = clump modulo 6. Hence the name, modulus RAM.

Modulus RAM use - example 1.

port 0 clump 6 = port 0 clump 12 = port 0

port 1 clump 7 = port 1 clump 13 = port 1
port 2 clump 8 = port 2 clump 14 = port 2

port 3 clump 9 = port 3 clump 15 = port 3

port 4 clump 10 = port 4 clump 16 = port 4

port 5 clump 11 = port 5 c lump 17 = port 5 etc.

In fact, the switch port numbers produced by the modulus RAM need not be
the numbers 0 through 5. Suppose that the switch ports with available memory
were every third port starting with port 10: 10, 13, 16, 19 and so on. Figure 4-12
shows how the modulus RAM would be set up.

Modulus RAM use - example 2.

port 10 clump 6 = port 10 clump 12 = port 10

port 13 clump 7 = port 13 clump 13 = port 13

port 16 clump 8 = port 16 clump 14 = port 16

port 19 clump 9 = port 19 clump 15 = port 19

port 22 c lump 10 = port 22 clump 16 = port 22

port 25 clump 11 = port 25 clump 17 = port 25 etc.

The available switch ports need not be in any particular order. Figure 4-13
shows the same switch ports as in Figure 4-12, but in a scrambled order. This
will work fine. In other words, any permutation of the switch ports in the pool
may be used in the round-robin assignment of clumps to ports.

February 14, 1990

Inside the TC2000 Computer 4: Memory

Figure 4-13

clump 0 =
clump 1 =
clump 2 =
clump 3 =
clump 4 =
clump 5 =

NOTE

February 14, 1990

Modulus RAM use - example 3.

port 19 clump 6 = port 19 c lump 12 = port 19
port 25 clump 7 = port 25 c lump 13 = port 25
port 16 clump 8 = port 16 clump 14 = port 16
port 13 clump 9 = port 13 clump 15 = port 13
port 22 clump 10 = port 22 c lump 16 = port 22
port 10 clump 11 = port 10 clump 17 = port 10 etc .

In the above examples we have seen considerable flexibility in use of the modu­
lus RAM. What is important is that all interleavers that will access the inter­
leaved page must use the same mapping. The software may restrict this access
to certain processors, such as one cluster of processors allocated to a particu­
lar user. This would mean the interleavers for other processors would not have
to contain the same mapping for this page. On the other hand, the software
implementation may take the far less complex route of mandating, by conven­
tion, that all interleavers in the entire machine hold the same mapping.

,,,

PAGES AND QUAD-PAGES
The above discussion of mapping clumps to switch ports describes 8-kilobyte
pages of interleaved memory, for two reasons: simplicity, and because the mo­
dulus RAM is in fact unaffected by System Physical Address bits 14 .. 13. How­
ever, in practice, software would use interleaving based on 32-kilobyte
quad-pages, because the granularity is 32 kilobytes in both the Interleave Deci­
sion RAM (in the CPU interface) and the pool RAM (in the interleaver). The
effect of using quad-pages but not having System Physical Address bits 14 .. 13
affect the modulus RAM, is that the mapping of clumps to switch p011s is exactly
repeated for each page in the quad-page.
,,,

Efficient Use of Interleaving

Figure 4-14 shows the same mapping as Figure 4-12, but in graphic form .
Each ''/\.' indicates that the clump number shown to the left is in the memory
subsystem at the switch port shown below. The bottom "/\ ' says clump 0 is
mapped to port 10, the next ''I\ ' maps clump 1 to port 13, etc.

This diagram pertains to one interleaved quad-page at each of the six ports .
Interleaving this quad-page has no effect on any other pages in the machine.
The software, however, may implement a convention that the same-numbered
quad-page at every port also be interleaved.

151

4: Memory

Figure 4-14

152

Inside the TC2000 Computer

Modulus RAM use - one stripe.

etc . I
etc .

.+ /
12 A
11 A
10 A

9 A
8 A

clump 7 A ONE INTERLEAVED
number 6 A QUAD-PAGE, "A"

5 A
4 A
3 A

2 A
1 A

0 A

10 13 16 19 22 25
new switch port

Figure 4-14 shows that successive clumps are mapped to higher and higher
areas in the interleaved quad-page on each function board. We call this pat­
tern of interleaved addresses a stripe, like stripes on a barber pole. This stripe
is a result of cycling through the switch ports in a repetitive fashion. Although
we allocated a quad-page of physical memory at each of the six ports in the
pool, we have achieved only one interleaved quad-page of System Physical Ad­
dress space. This would be a waste of system resources except for an addition­
al feature of the interleaver.

The unused clumps - blank in Figure 4-14 - can be used by other stripes,
each offset from the others . Figure 4-15 shows how six interleaved quad­
pages "Pt through "F" fill up the six physical quad-pages of the pool. Quad­
page "B" starts at the next switch port in the pool after where quad-page ''/_'
starts, and thereafter has the same cyclic striping obtained by the modulo func­
tion as ''/_ ' has. Quad-page "C" starts at the next available quad-page in the
pool, and so on. The number of stripes that this algorithm makes is the same
as the number of switch ports in the pool, in this example six. This uses all
the physical memory allocated to interleaved quad-pages very efficiently.

February 14, 1990

Inside the TC2000 Computer 4: Memory

Figure 4-15 Modulus RAM use - six stripes.

etc . • etc .

t :/r//////
12 A B c D E F
11 B c D E F A
10 c D E F A B

9 D E F A B c
8 E F A B c D

clump 7 F A B c D E SIX INTERLEAVED

number 6 A B c D E F QUAD-PAGES,

5 B c D E F A "A" THROUGH "F"

4 c D E F A B

3 D E F A B c
2 E F A B c D
1 F A B c D E
0 A B c D E F

10 13 16 19 22 25
new switch port

To map different interleaved quad-pages to different stripes, the address
supplied to the interleaver's modulus RAM is given an offset. In the example
of Figure 4-15, quad-page ''!\..' would have no offset, quad-page "B" an offset
of one, "C" an offset of two, and so on. The interleaver provides this capability
by adding T-bus address bits 33 . .25 to the clump number. In an address in
a non-interleaved page, bits 33 .. 25 specify the switch port; but in an interleaved
quad-page these bits are replaced by the MOD bits from the interleaver.
Therefore, these bits are available and provide a convenient place to specify
this offset. Figure 4-16 shows the interleaver hardware to implement this .

February 14, 1990 153

4: Memory Inside the TC2000 Computer

Figure 4-16 Using an offset to pack stripes.

154

T -bus ADDRESS BITS T AD< 33 .. 0 >

333231302928272625 242322212019181716151413 121110 9 8 7 6 5 4 3 2 1 0

original switch port,
now used to offset stripes

page number

9

ADDER

10

MODULUS RAM

9

MOD BITS TO SIGA
(new switch port)

Several Interleave Pools

clump
number

byte in
clump

The section above uses an example pool of six function boards (and thus six
switch ports). The suggested uniform use of interleaving requires that a quad­
page that is interleaved on one function board be interleaved on all function
boards. Nevertheless, that quad-page on various function boards could be in
different interleave pools, as illustrated in Figure 4-17. There, quad- page 17
on some function boards is in pool 1, on other boards it is in pool 2, and on
yet other boards it is unused.

February 14, 1990

Inside the TC2000 Computer 4:Memory

Figure 4-17

February 14, 1990

Multiple interleave pools.

quad-pages

quad-page 17

< >
switch ports

There are several reasons why it would be convenient to have several interleave
pools.

• Efficient use of resources

The suggested model for TC2000 interleaving is uniformity of mapping.
This implies that if a given quad-page number (a 32-kilobyte range of
System Physical Address space) is referenced as interleaved at one
switch port, it will be so at all switch ports. Therefore it is necessary to
allocate that physical quad-page, at every port in the machine, to inter­
leaving - even if only a few switch ports are actually used in the inter­
leave pool. A mechanism to relax this requirement, while still using the
uniform model, allows tailoring the allocation to the application.

• Independent, redundant copies for reliability

One way to achieve robustness against errors or component failures is to
store critical data structures in duplicate, in separate places. One way to
do this is to use separate stripe offsets for the two copies. This has the
disadvantage that failure of a switch port loses part of the data in each
copy. so neither copy is usable; the data must be reconstructed by culling
parts from each stripe. A simpler solution uses two interleave pools that
have no switch ports in common. One copy is stored in each pool. Now
one or the other copy is still intact after an error or failure.

• Performance control by reducing interactions

The execution speed of any program is affected by contention for access
to memory. Usually this interaction is negligible. Benchmark programs
and some intensive applications, however, can be sensitive to the conten­
tion. For these, it can be useful to give the program its own interleaved
pool. This isolates its memory accesses from those of the other proces­
sors. The benchmark's results are then more repeatable and meaningful,
and the intensive application performs reliably. It could be that an exer­
ciser test or diagnostic program would make such heavy use of its

155

4: Memory

156

Inside the TC2000 Computer

memory that isolating it from the rest of the machine would avoid degrad­
ing the service other users receive.

• Matching pool size to contention reduction needs

With separate interleave pools, each pool can contain a different number
of switch ports. Data structures that would suffer only a moderate
amount of access contention at a single switch port can be placed in a
small interleave pool. Data structures that would engender significant
contention even in a small pool can be placed in a larger pool.

The TC2000 interleaver provides for eight interleave pools . (The hardware
supports eight pools per interleaver, but the uniform use of interleaving, as sec­
tion 4.5.3 recommends, limits this to eight pools per TC2000 machine.) Each
pool operates as described above, with clumps mapped to stripes distributed
among the memory subsystems of the pool. The multiple pool capability is
implemented by having eight times as much modulus RAM as would otherwise
be needed. By selecting a given pool, one of the eighths of the modulus RAM
is selected.

The three additional address bits driving the modulus RAM come from the
interleaver's pool RAM. The selection of a pool, that is, the address driving
the pool RAM, is based on two fields of T-bus address bits.

• The first component of pool selection is T _AD< 22 .. 15 > . These bi ts
specify a 32-kilobyte quad-page.

o Because T_AD < 14 .. 13 > are not included in pool selection, indi­
vidual pages cannot be independently assigned to interleave pools.
Rather, all interleaved pages in a quad-page belong to the same
pool. This is consistent with the CPU interface design - its Inter­
leave Decision RAM decides whether a page is interleaved or non­
interleaved based not on the entire page number, but on the
quad-page in which the page lies.

o Because T _AD< 24 . .23 > are not included in pool selection, the
given quad-page in each of the four 8-megabyte banks belongs to
the same interleave pool.

• The other component of pool selection is T _AD< 33 . .28 >. In an non-in­
terleaved remote access these bits are part of the switch routing; in an
interleaved access they are part of the stripe offset.

o Because T_AD < 27 . .25 > are not included in pool selection, indi­
vidual stripes cannot be independently assigned to pools. Rather,
groups of eight stripes all belong to the same pool.

This concludes the conceptual operation of the interleaver. Figure 4-8 (above)
shows the complete hardware implementation.

February 14, 1990

Inside the TC2000 Computer 4: Memory

4.5.6

February 14, 1990

The Interleaver Loader

The modulus RAM and pool RAM are not read or written from the T-bus,
but through the Switch Interface Gate Array (SIGA). The SIGA mechanism
that performs this is called the interleaver loader, and is described in chapter
2.

157

r
I

5.1

5.1.1

February 14, 1990

5

1/0 and the VMEbus Interface

The VMEbus

The VMEbus, designed mainly by Motorola, is now an industry standard.
Many kinds of VMEbus compatible equipment are available from a wide vari­
ety of vendors.

Originally, the "VME" in "VMEbus" stood for Versa Module Europe. Now
the name simply specifies a particular hardware architecture.

The VMEbus Specification

The definitive reference for VMEbus characteristics is The VMEbus Specifica­
tion, by Motorola. The reader is advised to consult it whenever more detail
is needed than is given here. The VMEbus Specification covers the following
topics:

• Terminology, mechanical structure and functional structure

• Data transfer bus signals, addressing, operation and timing

• Arbitration for use of the data transfer bus

• Priority interrupt signals, functional modules and operation

• VMEbus system utilities, such as the system clock

• Electrical specifications, including timing, driving and loading

• Mechanical specifications, including boards, backplanes and connectors

TC2000 VMEbus equipment conforms to revision C. 1 of The VMEbus Specifi­
cation.

159

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

5.1.2

5.1.3

160

VMEbus Card Cages

The user of TC20001/0 equipment needs some familiarity with basic VMEbus
terms and requirements. A few basic ones are summarized here.

Boards may be either of two heights: single height (100 millimeters) or double

height (233.35 millimeters). Each board typically occupies one slot of width,
but multiple-slot boards are permitted. Boards are 160 millimeters deep.

VMEbus board dimensions are a subset of dimensions permitted in another

standard, called Eurocard. A single-height VMEbus card is a "3U" Eurocard,
and a double-height VMEbus card is a "6U" Eurocard. This leaves an easy
path beyond the formal VMEbus specification. For example, the Sun Micro­

systems VMEbus-to-Multibus adapter card is a "9U" Eurocard, and is com­
monly described as a VMEbus card even though it is technically higher than

allowed in The VMEbus Specification.

The backplane interconnects boards within a cage ("subrack"). Single height
and double height boards may be mixed. All boards are required to contain
a "Pl" connector that mates with the backplane. Double height boards may

also contain a "P2" connector. Besides the signals used for signalling, the

backplane provides power and a system reset signal.

The slots of a VMEbus cage are numbered from the left side (when viewed

from the front), starting with number I . We emphasize this because function
board slot numbering on the TC2000 mid plane starts with slot 0, not 1. (Func­
tion board slots are numbered from the left, when viewed from the function

board side of the mid plane.) A VMEbus cage cannot have more than 21 slots .

The board in slot 1 of a VMEbus system must perform certain VMEbus sys­
tem functions. Collectively, these functions are called the system controller.

The system controller must provide:
system clock driver
data transfer bus arbiter
interrupt acknowledge (JACK) daisy chain driver
bus timer

The system controller may or may not also provide:
serial clock driver
power monitor

The TC/FPV's VMEbus Interface

Parameters of the TC/FPV VMEbus interface configuration and operation
are listed and described briefly below.

• Standard or extended addressing

The VMEbus Specification defines two kinds of addressing, standard and
extended. The TC/FPV VMEbus interface is software configurable to

February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

respond to either kind. Standard addressing uses 24-bit addresses, for a
VMEbus address space of 16 megabytes. Extended addressing employs
32-bit addresses, giving a VMEbus address space of 4 gigabytes.

• VMEbus master window

The window from the TC2000 address space into VMEbus space is 16
megabytes, at a fixed location (the high 16 megabytes) in the local address
space of the TC/FPV function board. References falling within the win­
dow are mapped onto the VMEbus at an address and with access param­
eters described by a VMEbus Master Map RAM register selected by the
reference.

• VMEbus slave window

The window from the VMEbus address space into TC2000 address space
is configurable in both size and position. When using standard VMEbus
addressing, the window is 4 megabytes. When using extended VMEbus
addressing, the window is 16 megabytes. The window is software confi­
gurable to fall at any position in the VMEbus address space that is 4- or
16-megabyte aligned, respectively. References falling within the window
are mapped onto the TC2000 global address space at an address and with
access parameters described by a VMEbus Slave Map RAM register se­
lected by the reference.

• Mapping granularity

The mapping in both the master and the slave direction has 8-kilobyte
page granularity. The bottom 13 address bits are passed through un­
mapped in each direction.

• Transfer size

The interface services 1-, 2- or 4-byte read or write requests in either
direction. Halfword (2-byte) and word (4-byte) requests must be half­
word and word aligned, respectively.

• Locking

The interface supports locking in each direction. A lock request on the
T-bus results in holding the VMEbus until the lock is freed. A VMEbus
transaction that falls in the slave window selects one of the slave mapping
registers, each of which has a lock bit. If the lock bit is set, the slave inter­
face opens and maintains a lock for the duration of the transaction.

• Auxiliary transaction control information

In each direction, the interface provides auxiliary information to control
the transaction. The VMEbus master mapper provides the six address
modifier bits and the interrupt acknowledge bit required by The VME­
bus Specification . The VMEbus slave mapper provides various T-bus
control signals such as bypass, priority, path, interleaved, and lock.

• VMEbus mastership protocol

February 14, 1990 161

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

5.1.4

162

The TC/FPV VMEbus master interface is software configurable to fol­
low either the release-when-done or the release-on-request bus master­
ship protocol defined in The VMEbus Specification.

• VMEbus system reset and system fail

The VMEbus interface can assert the VMEbus system reset signal under

software control. Both of the VMEbus signals system reset and system
fail are monitored by the interface, permitting software to determine
whether either has been asserted.

• VMEbus master request level

The level on which the VMEbus master interface requests the VMEbus
is selectable by jumpers on the TC/FPV board. (See the TC2000 Mainte­

nance Manual for jumper settings.)

• VMEbus system controller functions

The TC/FPV VMEbus interface can provide the system controller func­

tions required of any board in slot 1 of a VMEbus system. This capability
is enabled by jumpers on the TC/FPV board. (See the TC2000 Mainte­

nance Manual for jumper settings.) The system controller functions are

VMEbus arbitration, IACK daisy chain driving, and VMEbus system
clock driving. The TC/FPV implements only single level arbitration.

• Timers

The VMEbus interface contains three timers . The VMEbus Arbiter
Timer and the VMEbus System Bus Timer are part of the arbitration
function and operate only when the interface is VMEbus system control­

ler. The VMEbus TC/FPV Master Bus Timer limits latency of references
made by TC2000 software to VMEbus devices .

• Interrupts

The VMEbus interface generates interrupt requests to the VMEbus on
any of seven levels, and handles interrupt requests from the VMEbus on
any of seven levels.

The TCNMP VMEbus Midplane

TC/FPV boards may connect to a VMEbus via an additional midplane called

the TCNMP. One side of the TC/VMP has sockets for the VMEbus connec­
tors of TC/FPVs, and the other side has sockets for standard VMEbus cards.
In any given 8-slot module, a TC/VMP may be installed or absent. If absent,

a piece of sheet metal is put in its place. The TC2000 architecture permits vari­
ous TC/VMP designs, each connecting function boards and VMEbus slots in
a different combination. Figure 5-1 shows the physical position of the
TC/VMP and related components. Revision 1 of the TC/VMP, shown in

Figure 5-2, implements five small VMEbuses. Sockets for eight (double
height, "6U'') VMEbus cards are mounted on the VMEbus card cage side.

February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

Figure 5-1

February 14, 1990

On the function board side, only five of the eight slot positions are provided
with sockets.

Position of TC/VMP and related components .

..__---1,___ __ function boards

------- switch cards

~-+--__;TC2000 midplane

163

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

Figure 5-2 TC/VMP connects function boards and VMEbus cards.

164

five separate, small VMEbuses

connectors in standard
VMEbus card cage

------------1
3 2 1 I

LEFT I
I

VMEbus
card cage

I 1 I 1 I 1 I I
I 1 I 1 I 1 I I

I..____.

~ TC/VMP
TOP VIEW

I FBO I I FB 1 I : FB2 I : FB3 I ____ I ____ I ____ I ____ I FB4 FB5 FB6
I I
I FB7 I
l ___ _J

card cage
for TC/FPVs

LEFT

connectors for TC/FPV cards
(no connector for FB4, FB5, FB6)

RIGHT

The system controller function on a VMEbus is normally performed by the

board in slot 1 of the VMEbus card cage. Because of the novel 5-VMEbus,

2-sided structure of the TC/VMP, the system controller position is not identi­

cal with VMEbus card cage slot 1, and also is not identical with TC/FPV card

cage slot 1. Rather, on each small VMEbus, either the TC/FPV or the directly

opposite VMEbus card may be system controller. Typically, the TC/FPV is

system controller.

Any given TC/FPV may be connected to VMEbus devices or not connected

to VME bus devices. It can be not connected in any of three ways: in an 8-slot

module with no TC/VMP installed; in slot FB4, FBS or FB6 of a TC/VMP: or

in one of the other five slots of a TC/VMP but with no VMEbus device plugged

into its small VMEbus on the other side of the TC/VMP.

A given TC/FPV may be connected to VMEbus device(s) plugged into its small

VMEbus on the other side of the TC/VMP. In this case, the TC/FPV is often

used as VMEbus system controller. Alternatively, the TC/FPV jumpers per­

mit some modes of operation where a VMEbus device - plugged into the con­

nector directly opposite the TC/FPV across the TC/VMP - can be system

controller.

As in any VMEbus system, any card may assert the system reset signal. Also,

the TC/VMP contains a circuit that, during power-up of the VMEbus cage

February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

5.1.5

February 14, 1990

power supply, asserts the system reset signal on each of the five small VME­
buses.

Multiple VMEbus Systems

The TC2000 computer must connect to at least one VMEbus system, to access
the disk from which the nX operating system boots. Since each TC/FPV in
the TC2000 machine is capable of connecting to a VMEbus, there may be sev­
eral VMEbus systems connected to the machine as a whole.

The TC2000 nX operating system supports multiple VMEbus systems. A sep­
arate file system can be installed on the disks of each VMEbus system. The
current release of the nX system does not support "striping", the splitting of
files into "stripes" across different disks or different VMEbus systems. The
application program can - and when devices other than the default device
are referenced, must - specify the VMEbus system for operations such as
"open". Section 5.5 discusses device names and identification of their VME­
bus system.

A pSOS + m application program may directly access any VMEbus systems
on function boards in the pSOS + m cluster. Use of multiple VMEbus systems
is more expected and more visible under the pSOS + m system than under the
nX system, for two reasons . First, the user controls I/O more directly under
the pSOS + m system, compared with the nX file system interface that most nX
application programs use. Second, the time-critical application domain often
handles a variety of I/O from different sources, compared to the time sharing
(nX operating system) application domain.

Note that the TC2000 computer can connect to multiple VMEbus systems, and
each VMEbus system can have several devices on it. Further, in the case of
some VMEbus devices such as disk controllers and terminal controllers. sever­
al peripheral I/O devices (disk drives, terminal lines) can be connected to each
VMEbus device. Therefore, the overall system capacity is quite large. This
hierarchy is shown in Figure 5-3.

165

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

Figure 5-3

5.2

TC2000
computer

5.2.1

Hierarchy of the 1/0 system.

VMEbus
s stem

s stem

VMEbus
s stem

s stem

VM Ebus
device

VMEbus
device

VMEbus
device

VMEbus
device

VMEbus
device

controllers,
Ethernet interface,

memory,
special equipment,

etc.

SCSI Adapter and SCSI Devices

peripheral
1/0 device

peripheral
1/0 device

peripheral
1/0 device

peripheral
1/0 device

peripheral
1/0 device

disks,
terminals,

tape drives,
displays,

etc.

The SCSI bus is an industry standard for interconnecting data processing

equipment. "SCSI" originally stood for Small Computer Systems Interface,

and has become popular in a variety of applications beyond its original "small

computer" namesake. "SCSI" is pronounced to rhyme with "fuzzy".

For devices manufactured to operate on a SCSI bus, an adapter is used be­

tween these devices and the VMEbus in the TC2000 machine.

The SCSI Bus

The SCSI bus standard specifies the mechanical, electrical and functional re­

quirements for an I/O bus interface, and command sets for peripheral device

types - particularly storage devices - commonly used with small computers .

The standard was developed by the American National Standards Institute

(ANSI), originally based on a commercial small system parallel bus, the Shu­

gart Associates System Interface (SASI). Some characteristics of the SCSI in­

terface are:

• Physically, SCSI devices are cabled together, each device to the next. This

results in a physical daisy chain, while electrically the bus is continuous.

166 February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

5.2.2

All bus signals are common among all SCSI devices. Devices are
mounted where physically convenient, not in a card cage as with the
VMEbus. Because of the daisy-chaining, a SCSI bus is sometimes re­
ferred to as a chain.

• Electrically, the SCSI interface may be either single-ended (with a bus
length up to 6 meters) or differential (up to 25 meters). The cable and
devices on a bus must be all single-ended or all differential.

• Data transfer is 8-bit parallel and may be either asynchronous (up to 1.5
megabytes per second) or synchronous (up to 4 megabytes per second).

• The address space may be either the basic (2**21 blocks) or extended
(2**32 blocks).

• Command sets for a variety of generic types of device are specified, in­
cluding magnetic disks (fixed-medium, rigid removable-medium and
Bernoulli-effect flexible "floppy" disks), magnetic tape (both start/stop
and streaming), optical disks, printers and processors. The command
set for any one device type is device independent; it hides the internal
structure of the device, such as cylinders, heads and sectors of a disk.

For further information, please refer to the documents listed below.

• Small Computer System Interface (SCSI), by the American National Stan­
dards Institute, Inc. (American National Standard X3.131-1986).

• Common Command Set (CCS) of the Small Computer System Interface
(SCSI), · by the American National Standards Institute, Inc.
(X3.T9.2/85-52 Rev 4.B, Addendum 4.B to Revision Four), June 23, 1986.

• Standard for Electrical Characteristics of Generators and Receivers for use
in Balanced Digital Multipoint Systems, EIA RS-485-1983 (describes elec­
trical characteristics used on SCSI bus).

The VMEbus-to-SCSI Bus Adapter

In the TC2000 computer, SCSI devices are supported by a VMEbus-to-SCSI­
bus adapter, the Interphase V/SCSI 4210-BBN-SE Jaguar. The basic model
of this adapter provides a single SCSI bus, and a second SCSI bus is supported
by addition of a daughter board. In the TC2000 machine, each adapter has
a daughter board installed. Up to seven SCSI devices may be placed on each
bus. Jaguar features that enhance throughput are:

• The Jaguar can receive and queue multiple commands from the TC2000
computer.

• The Jaguar can overlap activity on the different SCSI devices, if the de­
vices support overlapping via SCSI bus Disconnect/Reconnect.

• The Jaguar supports scatter/gather: data in contiguous areas in a SCSI
device can be scattered into non-contiguous areas in TC2000 memory,

February 14, 1990 167

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

NOTE

5.3

168

and data in non-contiguous areas of TC2000 memory can be gathered
into a contiguous area in a SCSI device.

In operation, the SCSI bus adapter is invisible to the nX application program­
mer. In the current release of the TC2000 system, SCSI bus adapter(s) support
the hard disk(s), the half- inch magnetic tape drive(s), and the quarter- inch
streaming tape drive(s).

The following points describe varieties of SCSI bus adapters available:

• The 4210-BBN-SE card (standard in the TC2000 machine) is a mother
card with a single-ended SCSI bus used as bus number 0, and a daughter
card with a differential SCSI bus used as bus 1. The boot disk(s) are on
chain 1, since they are differential.

• The 4210-BBN-DE card (optional) is a mother card with a differential

SCSI bus and a daughter card also with a differential SCSI bus. This is
used in systems with hard disks in addition to the standard boot disk.
Each differential SCSI bus can support a maximum of two hard disks.

• The 4210-BBN-SC card (optional) is a mother card with a single- ended
SCSI bus and a daughter card also with a single-ended SCSI bus. This
is used in systems with the classified/removable disk, since it requires a
single-ended SCSI bus.

The current nX device drivers require that there be a maximum of one SCSI
bus adapter card per VMEbus system.

The following technical data may be of interest for interoperability with other
user equipment.

For further information, please consult the documents listed below.

• For details of the SCSI bus, see the Standard for Small Computer Systems

Interface, ANSI X9.3131 (1968).

• For details of the Jaguar SCSI adapter, see the V!SCSI 4210Jaguar User 's

Guide, by Interphase Corporation.

, , ,,,

Available for compatibility with older, release 1 systems is the Interphase
V/SCSI 4210-3-SE Jaguar VMEbus-to-SCSI-bus adapter. This is a mother
board with a single-ended SCSI bus and no daughter board.

,,,,,,,,,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,,,,,,,,,,

VMEbus Bus Repeater

A VMEbus bus repeater is not part of the current, standard TC2000 base sys­
tem. However, sometimes VMEbus devices that would logically be placed all

February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

5.4

February 14, 1990

in one card cage are instead placed in separate cages. For example, this situa­
tion may arise to connect a "9U" card to a "6U" card cage (such as on the
TC/VMP); or to accommodate cabinet limitations (such as placing the card
closer to hardware it controls); or to provide more VMEbus slots (such as for
the small VMEbuses on the TC/VMP). The solution is to use a VMEbus bus
repeater.

VMEbus bus repeaters are commercially available. When a bus repeater is
needed in the TC2000 computer, the "VMEbus Repeater 2000" manufactured
by HYE Engineering Inc. is normally used. The bus repeater consists of two
VMEbus cards connected by two cables called the "external bus". The cards
plug into separate VMEbus cages and couple the two VMEbuses. In the
TC2000 computer, a VMEbus bus repeater is typically used to couple one of
the small VMEbuses on a TC/VMP to a VMEbus card cage in the TC2000
peripheral cabinet, where there is room for a VMEbus cage with more and
higher ("9U") slots.

The VMEbus bus repeater adds a relatively small amount of delay to VMEbus
transactions, so its impact on transfer rate and latency is slight. The "external
bus" cables are made by HVE Engineering and are six feet long.

For further information, please consult the document listed below.

• Product Specification AS90172000A, VM Ebus Repeater 2000, VMEbus
High Speed Repeater System , by HYE Engineering, Inc.

Multibus Adapter

The Multibus is another industry standard for interconnecting computing
equipment. There are no Multibus-based devices in the current, standard
TC2000 machine. When the user 's application requires interfacing to Multi­
bus devices, a Multibus adapter card made by Sun Microsystems and modi­
fied by our factory is normally used in the TC2000 machine. This adapter,
illustrated in Figure 5-4, plugs into a "9U" VMEbus slot. A large cutout space
with connectors along one edge accepts the adapted Multibus card.

169

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

Figure 5-4

P1

P2

P3

5.5

170

Multibus adapter card.

cable
to

Multibus
device

For further information, please consult the documents listed below.

• For a description of the Multibus, see the Intel Multibus Specifications
Manual, by Intel Corporation.

• For details of the Multibus adapter. see the Sun VMEbus-Multibus
A dapter Board User 's Manual, by Sun Microsystems, Inc.

Device Naming and 1/0 Bus Specification

When an nX application program refers to a specific device, the operating sys­
tem must be able to identify which VMEbus system the device is on. This spec­
ification is given by a logical 1/0 bus number that identifies the slot containing
the TC/FPV function board connected to the VMEbus system. This logical
I/O bus number appears in the nX device special file major device number,
and by convention in the name of the device special file .

Entries in the system boot configuration file , maintained by the system admin­
istrator, define the correspondence between logical I/O bus numbers and the
physical slot numbers in the machine. Application programs use the logical
I/O bus numbers, which the nX software translates into physical slot numbers
when it services the program's calls. In the example entry below, the function
board (node) in slot 7.1.7 is declared to implement logical I/O bus number 1.

February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

5.6

February 14, 1990

node 7.1 . 7 iobus 1

An example device name is shown below and each of its fields is described.

/dev/rsdOa

/dev/ nX convention for the file name of devices

r Access mode: raw (r) for a device without a file system, nil (no
character) for a device holding a file system

sd SCSI device identifier - the VMEbus device is a VMEbus-to­
SCSI-bus interface (especially the Interphase Jaguar), and the
target device on that SCSI bus is a disk (sd) or tape (st)

0 Unit number - 0, 1, 2, 3 ... (No special significance, typically
assigned in the order the device names were created.)

a Partition (SCSI disk drive partitions are labeled a, b, c ...)

Another example is the format for a magnetic tape drive on a SCSI bus:

/ dev / rsmt<unit><rewind or nil><density (h or l) >

The tool program showdev (found in /etc/showdev) interprets device names,
telling what SCSI bus they are on, their unit number, etc. See the showdev man­
ual page for further details.

TC2000 1/0 Devices Summary

The nX operating system contains device drivers for a variety of standard de­
vices . These drivers take care of device-specific requirements, buffering, and
error handling. An application program running under the nX system has
standard, high-level system calls to access each such device. These calls pro­
vide, for example: read, write, open, close, and status manipulation depending
on the nature of the device. The general nature of nX device drivers, and the
system calls to access them, are essentially standard UNIX.

A program running under the pSOS + m system has access to the nX file system
for I/O. Also, pSOS + m programs may include device drivers to access I/O
devices on function boards in their pSOS + m cluster. The application pro­
grammer may have to supply such drivers, depending on the device and the
application requirements.

For the maximum numbers and combinations of various J/O devices sup­
ported, either as standard or as special order configurations, please consult
the sales literature or contact a sales representative. These sources should also
be consulted for constraints on mixing native VMEbus devices, native SCSI
bus devices, and native Multibus devices in a system.

171

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

5.7

Figure 5-5

NOTE

5.8

172

Hard Disk

The standard TC2000 hard disk controller and drive is the Northern Telecom
model NT 8514-SCSI. (Its SCSI interface is differential, not single-ended.)
The disk's capacity is shown in Figure 5-5. The capacity shown when for­
matted for nX is space usable for data, and does not include spare tracks or
spare sectors.

Hard disk drive.

capacity (megabytes)
drive model and
manufacturer

NT 8514-SCSI
Northern Telecom

unformatted

1066

formatted

940

This disk is used for the nX file system. It stores the nX system software from
which the machine is booted, as well as utility programs and user files . De­
mand paging is performed on this disk.

For further information, please consult the documents listed below.

• For discussion of formatting the disk, repartitioning the allocations of
disk space, and file system setup, see the.System Administration Guide.

• For details of the Northern Telecom hard disk drives, see the Product
Spec1fication and the Installation Guide, both by Northern Telecom Inc.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,, ,, ,

Available for compatibility with older, release 1 systems is the Multibus-based
Xylogics 451 controller and "SMD-E"-based disk interface and Northern
Telecom NT 8414 hard disk drive, with capacity 887 (unformatted) and 700
(formatted) megabytes.

· ' ' '' ' '"

Half-Inch Magnetic Tape

The standard TC2000 half-inch magnetic tape device is a Cipher M990 GCR
CacheTape drive with an integral Pertee interface. Physically attached to the
tape drive is an NCR/CSC-100 SCSI adapter that converts between the Pertee
interface and the SCSI bus.

February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

WARNING

The half-inch tape device is available for general purpose use by application
programs, for disk backup, for data transfer among systems, and so forth.

The Cipher tape drive is compatible with iBM and ANSI standard 9-track re­
el-to-reel tape drives. It holds the tape horizontally rather than the vertical
position used in many earlier magnetic tape drives. This saves rack space; it
occupies only 14 inches height in the standard 19-inch-wide TC2000 peripher­
al cabinet. It is self-threading and easy to use. In normal operation, the user
need only insert the tape and use the "load/rewind", "unload" and "on line"
front panel buttons.

REMOVING TAPE AFTER POWER CYCLING
If power is turned off while a tape is loaded, and later power is turned on, the
drive thinks that no tape is loaded. But fingers holding the tape reel are still en­
gaged. Forcefully removing the tape reel can break these fingers. To release the
tape, press the "unload" button.

The characteristics of the half-inch tape device are summarized below.

• The current release of nX software supports two writing densities, 1600
and 6250 bits per inch (BPI), although the Cipher drive is also capable
of 3200 BPI operation. The application software selects the density via
the device name - a final "l" or "h" for low or high density, respectively·.
This selection by software overrides the density selected by the front pan­
el "density select" button. On reading, all three densities are supported.

• The drive performs automatic error correction in all modes, and auto­
matic read and write retry.

• The drive accepts 7-, 8.5- and 10.5-inch reels (for 600-, 1200- and
2400-foot tape, respectively). If recording is to be at 6250 BPI density,
we recommend using tape certified for zero defects through 6250 BPI,
to reduce errors (both recoverable and unrecoverable) and to permit re­
cording as much data on the tape as possible.

• The drive contains an internal cache memory that serves as a tape buffer­
ing system for high performance. This allows read and write commands
to be serviced quickly. Data is spooled between the cache and the physi­
cal tape when the tape position and motion are correct. The intelligent
buffering achieves good tape utilization (streaming), even when signifi­
cant intervals separate the write commands.

• At 6250 BPI, Group Code Recording (GCR) recording technique is used,
and at 1600 BPI, Phase Encoding (PE) is used. Physical tape speed is
70 inches per second (IPS) at 6250 BPI, and 100 IPS at 1600 BPI.

• The drive has several diagnostic features; one that some users find help­
ful is an optional display of the approximate number of feet of tape re­
maining before the End Of Tape (EOT).

February 14, 1990 173

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

Figure 5-6

5.9

174

The capacity of a reel of tape is affected by many factors , but a rough estimate
is provided below. Some of the factors are: tape length (actual may vary slightly
from nominal); recording density; record size; number of faulty areas (writing
automatically passes over such areas); 15- foot leader and trailer at the begin­
ning and end of tape; number and size of inter-record gaps; number and size
of end-of-file marks; and variation of tape speed from nominal.

Figure 5-6 provides a rough estimate of reel capacity, assuming 64-kilobyte
records, all one file, no faulty areas, and nominal inter-record gaps (0.6 inches
at 1600 BPI, 0.3 inches at 6250 BPI).

Rough estimate of tape reel data capacity.

tape length (feet)

600

1200

2400

recording density (BPI)

1600

10.3

21 .1

42.7

6250

37.8

77.7

157.

Capacity estimate is in megabytes per reel.

For further information, please consult the documents listed below.

• For discussion of head cleaning and correct setting of the firmware con­
figuration parameters in the Cipher drive, see the Maintenance Manual .

• For details of the Cipher tape drive, see the Series M990 GCR Cache Tape

Tape Drive Product Description , the M990 GCR CacheTape Unit Mainte­
nance Manual, and the M990 GCR CacheTape Unit Engineering Draw­
ings, all by Cipher Data Products, Inc.

• For details of the NCR SCSI adapter, see the Functional Specification ,
NCR!CSC-100 SCSI Adapter, by NCR.

Terminal Concentrator/Controller

The standard TC2000 terminal concentrator device is a Systech model
HPS-6245 host adapter and one or more HPS-7080-030 cluster controllers .
The Systech unit is a VMEbus device. "HPS" stands for "high performance
serial".

The Systech terminal concentrator is comprised of a controller.board and one
or more cluster controllers. The controller board plugs into the VMEbus, and
is connected to the cluster controllers by a coaxial cable bus. The coax bus
may be up to 1000 feet long. Two models of cluster controller support 8 or 16

FE;lbruary 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

Figure 5-7

terminal lines each; the standard TC2000 equipment supports 16 lines .
Figure 5-7 shows the system schematically.

Terminal concentrator system - example.

to
VMEbus

backplane

controller
board

coax tee

cluster
controller

coax tee terminator

cluster
controller

to each I power supply ~ cluster
controller

February 14, 1990

RS-232C terminal lines

Each terminal line conforms to Electronic Industries Association (EIA) speci­
fication RS-232C, wired as Data Communication Equipment (DCE).

The lines supported by the terminal concentrator are available for user termi­
nals and as devices upon which nX application programs may perform I/O.

The default hardware line characteristics are summarized below. An nX user
program may change these characteristics of a line opened as a device, by mak­
ing ioctl system calls modifying the special file /dev/tty. Several other line char­
acteristics, relating to how the device driver software treats input and output,
are also modifiable with ioctl calls. This is essentially the same as the standard
UNIX tty device driver user interface.

• Data rate - 75 to 19200 baud; default is 9600 baud (use "external Pt rate
to get 19200 baud)

• Parity - odd, even, or none: default is none (the hardware also supports
mark and space parity, but these are not available through the nX soft­
ware)

• Character length - 7 or 8 bits; default is 7 bits

• Stop bits - 1 (the hardware also supports 2 stop bits, but this is not avail­
able through the nX software)

The detailed operation of the Systech terminal concentrator depends on mi­
crocode loaded into it by nX, but supplied by and proprietary to Systech. For
further information, please consult the documents listed below.

175

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

5.10

• For configuring the terminal lines (via the system file "hps.conf"), see the
System Administration Guide.

• For ioctl system calls, see the nX Programmer's Reference - section 2 for
system call ioctl and section 4 for special files hps and tty.

• For details of the Systech terminal concentrator, see the HPS-6200 Series

Application Installation User Manual, the HPS Terminal Control Software

User Manual, the HPS Cluster Controller Technical Manual, and the HPS

VMEbus Advanced Host Adapter (HPS- 6245) Technical Manual, all by

Systech Corporation.

Ethernet Interface

The standard TC2000 Ethernet interface device is the Excelan model 302. The
Excelan interface is a VMEbus device and therefore connects directly to the

VMEbus.

Application programs do not normally access the ethernet interface directly.
Rather, they execute nX system calls to perform various Ethernet activities

such as opening connections to remote hosts. The nX operating system sup­
ports the Network File System (NFS), permitting access to file systems on re­
mote machines. Remote login to and from the TC2000 machine are supported,

as is electronic mail. Some or all of these capabilities may be administratively
prohibited at high security sites .

The current nX device drivers require that there be a maximum of one Ether­

net interface card per YMEbus system.

For further information, please consult the documents listed below.

• For discussion of configuring the Ethernet parameters, see the System

Administration Guide.

• For a detailed description of the Ethernet, see:

o The Ethernet: A Local Area Network: Data Link Layer and Physical

Layer Specifications, by DEC, Intel and Xerox Corporations (1980).

o The Ethernet: A Local Area Network: Data Link Layer and Physical

Layer Specifications, Version 2. 0. by DEC, Intel and Xerox Corpora­

tions (1982).

o Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Access Method and Physical Layer Specifications (Standard

802.3-1985/lnternational Standard 8802/3), by The Institute of
Electrical and Electronics Engineers, Inc. (1985).

• For details of the Excelan interface, see the EXOS 302 Reference Manual ,

by Excelan, Inc.

176 February 14, 1990

Inside the TC2000 Computer 5: 1/0 & VMEbus Interface

NOTE

5.11

February 14, 1990

,,,

Available for compatibility with older, release 1 systems is the Multibus-based
Excelan 301 Ethernet interface.
~, ,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Quarter-inch Streaming Tape

The standard TC2000 quarter-inch streaming magnetic tape drive is the Tand­
berg TDC 3640. The Tandberg drive is a SCSI bus device and therefore con­
nects to the VMEbus via a SCSI controller, described in section 5.2.

Streaming is both an activity and a property of a device. The activity of
streaming is maintaining a constant stream of data to or from a device, so that
the maximum storage capacity or throughput is achieved. A streaming device
is one designed to be used with an uninterrupted stream of data. The Tandberg
drive uses a){-inch width tape in a cartridge. It writes data serially on a single
track, starting at the beginning of the tape and recording continuously to the
end. It then reverses the tape motion, and records data serially on a second
track back to the beginning. It continues this serial, end-to-end recording un­
til either the data stream terminates, or all 15 tracks have been written.

On a 600-foot (183-meter) cartridge, the TDC 3640 can record 125 megabytes
of data. This is a maximum capacity, and is decreased by any intervals during
which the data stream is interrupted. During short interruptions, the drive
continues tape motion and records a filler pattern that is not returned to the
user when read. A long interruption of data causes the drive to terminate the
write operation.

Unnecessary start and stop operations in the middle of the tape, or large filler
regions, will slow down the operation considerably. Therefore, to write the
most data per cartridge and take the least time to write it (and later to read
it), it is important that the data stream be interrupted as little as possible. This
impacts the user, for example, if an application program is spooling data to
the streaming tape drive. If the function board executing that program is also
executing several other programs, the stream may be interrupted because the
program may not get enough CPU time to keep up with the tape drive. Also,
the program itself should be designed to provide the data stream quickly.

The streaming tape drive is ideal for backing up hard disk file systems, archival
storage, and data interchange among machines. In some applications, the
drive may also be appropriate for data logging. (For backing up the entire disk
file system of a TC2000 machine, however, the larger capacity of the half-inch
tape medium may be appropriate.)

The tape used should be of high quality to avoid unrecoverable errors. Tand­
berg recommends use of only 3M DCGOOA or 3M DCGOOXTD tape cartridges,

177

5: 1/0 & VMEbus Interface Inside the TC2000 Computer

5.12

5.13

178

or their equivalent. For critical applications, the user may wish to test the en­
tire length of the tape before trusting it with real data.

For further information, please consult the document listed below.

• For details on the drive, see the TDC 3600 Series Streaming Tape Cartridge
Drives - TDC 3620 I 3640 I 3660 Reference Manual, by Tandberg Data
AIS, Data Storage Division.

Removable Disk Drive

The standard removable disk drive, intended for use where the TC2000 ma­
chine is used in a classified operation, is based on the Artecon RSU-304 re­
movable package. The removable package is designed for 10,000 insertions
and extractions. Into this package, BBN integrates the Hewlett-Packard
HP97548S 5)1,1-inch disk drive. This is a single-ended, synchronous SCSI de­
vice with capacity 795 (unformatted) and 663.8 (formatted) megabytes . The
standard configuration is two drives per controller. ·

For further information, please consult the document listed below.

• For details on the drive, see the HP9754XS!D SCSI Disk Drives OEM
Product Manual, by Hewlett-Packard (HP manual order number HP
19530).

Special Site Peripherals

The applications at a given TC2000 site may involve specialized peripheral de­
vices and controllers. Examples of this are graphics displays. array processors,
video disk memories, sensors and actuators, and additional TC2000 comput­
ers or other general-purpose computing equipment. The VMEbus interface
provides a flexible and powerful means to connect a limitless variety of such
equipment. The TC/FPV is highly configurable and will operate well in a wide
variety of VMEbus environments. This provides the capability to accommo­
date and interoperate with site-specific equipment. Normally, the site pro­
gramming staff supplies the appropriate device drivers for such equipment.

February 14, 1990

- -= = ·=

6.1

6.1.1

6

The Supporting Modules

This chapter describes modules that support the function boards, the main
computational elements of the TC2000 computer. These supporting modules
are the Test and Control System (TCS), the clock card, the mid plane, and the
power supply and distribution system.

TCS
This section provides a general description of the TC2000 Test and Control
System (TCS). For a further description of the TCS, and particularly the com­
mands to the TCS Executive (TEX), please refer to the TC2000 System Admin­
istration Guide.

TCS Tasks

The TCS performs several tasks either automatically or under the direction
of a person at the console terminal. In many cases, the automatic execution
of these tasks ensures their rapid completion, avoids error prone manual spec­
ification of steps and parameters , and frees the operator from the tedium in­
volved. The TCS is capable of the following categories of task:

• Testing - running both simple tests (called Power On Self Tests, or
POSTs) and more complex exercise and diagnostic programs, including
via remote telephone connection (installation is optional), isolating
boards for testing, changing voltage margins during maintenance

• Bootstrapping - loading sufficient bootstrap code into TC2000 function
boards so that the operating system(s) may be brought up

• Monitoring - machine temperatures and voltages can be monitored
during operation, and appropriate action taken if these exceed prede­
fined limits

February 14, 1990 179

6: Supporting Modules Inside the TC2000 Computer

6.1.2

• Control - powering on and off the Power Distribution Units (PDUs)
and thereby the bulk power to the machine, powering on and off individu­
al boards, enabling switch paths, setting the switch clock rate, and similar
machine hardware initialization and control functions

• Configuration management - configure the machine under direction
from TCS disk files and/or console terminal commands, using specifiec
function boards to run the nX operating system (including a designated
"king" or "master" function board), others to run the pSOS + m operating
system, others to be powered on but run neither system, and others to
be left off

• Operator interface - informing the operator about conditions in the ma­
chine, executing commands entered on the console, and providing a com­
munication link to the operating system(s) running on the function
boards

• System software interface - providing system configuration and status
information to the operating system(s), responding to system inquiries
and commands

TCS Hardware Components

The TCS consists of the following hardware components:

• TCS master

The TCS master controls and coordinates all TCS activity, and thereby
oversees the operation of the entire machine. The master is an IBM
PC/AT compatible microcomputer. In the master are the following:

o A CPU card, containing the CPU. a SCSI port, two RS-232 serial
ports, a real time clock I calendar with battery backup, and 512 kilo­
bytes of memory.

o A TCS interface card (TC/TCS), containing an interface to the TCS
bus (described below), an interface to the front panel switches and
indicators, control for the machine bulk power, a PC/AT bus inter­
face, a TCS master watchdog timer, and PROM for bootstrap code
specific to the TC2000 TCS master.

o A modem card that connects to a standard modular telephone jack
on the back panel, allowing optional connection to a telephone line
for remote diagnostic and testing by field service personnel.

o A hard disk, that holds TCS-related information such as the TCS
master operating system (MS-DOS or PC-DOS), the TCS master
executive (TEX), a TCS system diagnostic, machine configuration
file(s), function board Power-On Self Test (POST) code, diagnostic
code (runs in function boards and/or the TCS master), machine
bootstrap code, and may hold a machine log file.

180 February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

o A floppy disk, primarily used to load new versions of the TCS soft­
ware and to load special diagnostics during field servicing.

• TCS slaves

Each TCS slave controls and monitors the individual curcuit board of
which it is a part. Each TCS slave is a Motorola 68HC11 microcomputer
chip, with a small amount of support circuitry. Slave processors use a
common power supply and individual clocks that are independent of the
cards they monitor and control. Therefore, they can function even when
their board is powered off. Aspects of the slave's environment that it
monitors or controls depends on the type of board housing the slave.

• TCS bus

The TCS "bus" is the communication system between the TCS master
and the TCS slaves. Although it is basically a multi-drop, asynchronous,
serial bus, in implementation it also contains fan-in and fan-out (de­
scribed later).

• TCS front panel

The TCS front panel c_ontails a keyswitch, a button that resets the TCS
master, and four indicator LEDs. An illustration of the front panel ap­
pears in chapter 1.

• TCS back panel

The TCS back panel contains various connectors, including jacks for the
TCS console terminal, the control line to the Power Distribution Units
(PDUs), the (optional) telephone line, and a standard telephone (used
with the optional telephone line). Provision is made for an Uninterrupt­
ible Power Supply (UPS) status sense connector as a future, optional fea­
ture.

• TCS power supplies

One supply powers the TCS master, while another supply powers all TCS
slaves in the machine. (Additional TCS slave power supplies are re­
quired for machines with over 64 function boards.) The slave power is 5
volts, often called "TCS + 5" or simply "TCS 5".

• Machine bulk power control

The TC2000 bulk power, ±24 volts DC, is applied to each function board,
switch card and clock card. Each of these has its own, on-board power
supply that converts the bulk power to the voltages needed locally. The
bulk power supply system can be turned on and off by the TCS master.
The master controls the Power Distribution Unit (PDU) in each cabinet,
which then applies the external AC power to the bulk power supplies
within the PDU's cabinet. (The utility cabinet PDU, however, is con­
trolled by the front panel keyswitch.)

• TCS terminal

February 14, 1990 181

6: Supporting Modules Inside the TC2000 Computer

Figure 6-1

TCSS

TCSS TCSS

function function
board board

182

The standard TCS terminal is a DEC VT320. If hard copy is needed, a
VT320 with a printer connected can be used.

Figure 6- 1 shows the basic structure of the TCS, and Figure 6-2 shows the
TCS master.

TCS block diagram - overview.

machine
bulk power TCS master TCS terminal

clock card

TCSS

••• ••• function function function function
board board

•••

board board

~ = fan in I fan out

I rcss I = TCS slave

•••

switch
cards

TCSS

TCSS TCSS

function function
board board

February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

Figure 6-2 TCS master and associated equipment block diagram.

6.1.3

utility cabinet

TCS master
back panel

bus processor £A_ RS-232 TCS terminal J
W Telco .-------,

~ modem r t--- t--fE]------1 ·-1 --- optional phone connection
-------'

~ TC/TCS
, PDUs in rest of

t--1 card other cabinets machine
t--1 h front panel)\ H floppy disk TCS communication

....._ to/from TC/CLK I--' buttons

~

'--

hard disk & lights clock master card

.______
power for ~ keyswitch
TCS master

,----

POU

)\

TCS slave power bus TCS slave
~ power supply ,

· ~ other equipment
utility cabinet

·:::..
power plug ·.·:

TCS Bus

The TCS communication bus, or "TCS bus" for short, is a cable that originates
at the TCS interface card (TC/TCS) in the TCS master. The following four
wires comprise the cable:

TCS transmit-direction data (master to slave)
TCS receive-direction data (slave to master)
TCS master identity (signal named NB*)
ground

(The TCS master identity is provision for a future capability of dual TCS mas­
ters . This. and/or dual Butterfly switches, could be used to achieve a short
Mean Time To Repair (MTTR) for certain applications.)

February 14, 1990 183

6: Supporting Modules

184

Inside the TC2000 Computer

The TCS bus runs at 125 kilobits per second. With framing, start and stop
bits, the result is 11,363 bytes per second. The same rate is used for both the
master to slave direction and the slave to master direction.

Receive (Slave to Master) Direction

In the slave to master direction, the TCS bus connects all the slaves to the mas­
ter. On each midplane, the slaves on the eight function boards are connected
to the TC/SS switch card. The wire from each function board is bused over
the midplane to the switch card, where it connects to a schmitt trigger input
AND gate. The other input to that AND gate comes from a register that is
used to amputate function board slaves from the slave-to-master bus. This
means that there are eight AND gates on each TC/SS switch card that receive
data from eight function boards. These gates, and the TC/SS card's own data
to the TCS master, are OR'ed together and drive a serial line connected to the
TC/CLK clock card. The register that controls the enabling of the function
board slaves is controlled by the slave on the TC/SS switch card. A TC/SS
slave can amputate any of the eight function boards from the slave- to- master
bus.

When the data from a TC/SS switch card arrives at the TC/CLK clock card,
it is AND'ed with a control bit and OR'ed with data from other TC/SS cards
before being sent on to the TCS master. The enable signals on these AND
gates are controlled by the TCS slave on the TC/CLK.

Figure 6-3 illustrates the AND and OR fan-in of the TCS bus in the receive
(slave to master) direction, using a TC/SS card as an example. At each stage
of TCS bus fan-in, such a circuit is used. In Figure 6-1 above, this fan-in goes
from the function boards at the bottom to the TCS master at the top.

February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

Figure 6-3 Slave to master TCS bus fan-in.

FB 0

FB 1

data FB 2
from FB 3

function
boards FB 4
to TCS

FB 5
master

FB 6

FB 7

8

data for TCS master
sent via
TC/CLK clock card

data from TCS slave
on this TC/SS switch card

to TCS master

register

February 14, 1990

In normal operation, each TCS slave sends data to the master only in response
to a command from the master, and the master is careful to let only one such
command be outstanding at a time. Therefore, data collected by the fan-in
circuitry is normally never garbled by other, interfering data. However, if a
part of the hardware malfunctions, the TCS master amputates it by disabling
data from the failed hardware. In this way the TCS amputates the failed com­
ponent and continues to use the remaining, enabled portions of the fan-in cir­
cuitry.

Transmit (Master to Slave} Direction

In the master to slave direction, eight copies of the TCS bus are driven by the
TC/CLK clock card and sent out over the clock cables to the TC2000 mid­
planes, where the signal is distributed to eight function boards and a switch
card pair. In each TC/SS-TC/SR pair, the TC/SS card holds the TCS slave
that services the pair.

Figure 6-4 shows the fan-out of the TCS bus data from the master to the
slaves. In a machine with more than eight midplanes, an additional layer of
clock cards (that are necessary to fan out the clock signals) is used to fan out
TCS bus data.

185

6: Supporting Modules Inside the TC2000 Computer

Figure 6-4 Master to slave TCS bus fan-out.

186

TC{fCS card
in TCS master

clock card (TC/CLK)
in switch

card's
1---~~ TCS

~slave

+~ '4<'t't't'4< if

to midplanes

typical midplane

.... + + + +
to TCS slaves

on function boards

....
to TCS slave
in TC/SS switch card

TCS Bus Transactions and Protocol

TCS communications refers to how the master and slave talk to each other,
and what commands are implemented. The protocol supports monitoring and
control functions of the general nature described here, but whose details are
presented in TCS software and operations documentation.

All transactions on the TCS are initiated by the TCS master. A TCS slave
never sends an unsolicited message. Each TCS message has an address and
a command in the message header. All the slaves receive all the messages that
pass over the TCS bus. Each slave examines each message to extract the ad­
dress information. If the address of a message matches the slave's address,
then the slave carries out whatever command the message indicates. If the
message's address does not match the slave's, the slave processor commands
its TCS bus receiver chip to ignore further characters until a new start of mes­
sage arrives. This way all slaves constantly resynchronize their reception on
the start of each message.

There are two types of address, one that address.es a particular slave, and an­
other that addresses multiple slaves. A message that addresses more than one
slave is called a broadcast message. Broadcast messages can be addressed to

February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

6.1.4

6.1.5

all circuit cards, or to all of the cards of a given type (such as all TC/FPV func­
tion boards). Broadcast messages are used during the power-up sequence for
loading power-up and bootstrap code into boards of the same type simultane­
ously.

During normal operation, the TCS master periodically polls the slaves for
status information. That status (one byte) indicates whether there are error
conditions.

Fault Recovery

Two kinds of fault are protected against in the TCS - the TCS master hanging,
and a TCS slave corrupting the TCS bus.

If the TCS master hangs, a watchdog timer will reset the TCS master proces­
sor, and it will subsequently reboot. TCS knowledge of the current dynamic
state of the TC2000 machine is lost, so it must be reconstructed from the TCS
master's configuration files , discovery through querying the TCS slaves,
and/or operator input. Even without a full reconstruction, the TCS can be used
for many of its control and monitoring functions .

If a TCS slave fails such that the TCS bus (in the slave-to-master direction)
is corrupted, the TCS master commands the TCS slave above it in the fan-in
tree to amputate the failed slave. This is described in section 6.1.3. Failure
in the master-to-slave direction is less serious, because of two effects - the
fan-out buffering limits (to one midplane) how much of the bus can be cor­
rupted; and the input circuitry is unlikely to fail in a way that corrupts the com­
mon signal bus (but rather, to corrupt the value received by that slave).

TCS Slave Functions

The functions described here, performed by TCS slave processors. support the
TCS tasks listed in section 6.1.1. The slave functions fall into two broad catego­
nes:

• Aspects of the slave's environment that it monitors or controls

0 Gate array chip interfaces

0 Card reset

0 Card temperature monitoring

0 Card voltage monitoring

0 Card voltage control

0 Card LED control

• The nature of the slave itself and its use of the TCS bus

February 14, 1990 187

6: Supporting Module.s

188

Inside the TC2000 Computer

o Addressing (identity)

o Configuration parameters

o Amputation from the bus

Gate Array Chip Interfaces

Each special gate array chip used to implement the Butterfly switch in the

TC2000 computer has a simple interface to the TCS slave on its circuit card.

The general nature of the interface is the same for the SIGA, LCON and SGA

chips, while the details of what is controlled within the chip vary according to

the chip's function.

The simple interface uses four signals: clock, data in, data out, and execute.

The TCS slave toggles the clock line to shift data from the data in line into a

shift register in the gate array chip, and to shift data from another register out

onto the data out line. When the input register has been loaded with a com­

mand or parameter that the gate array should act upon, the execute line causes

the action to be taken. A response is obtained by shifting out the contents of

the output register.

Actions specific to each gate array include the following:

• Switch Interface Gate Array (SIGA), on function boards - set switch

message transmission and reception parameters, set scaling of switch

clock to Real Time Clock (RTC), set SIGA address on T-bus, read or

write T-bus data, load special RAM registers (the "interleaver loader"

mechanism)

• Level CONverter (LCON), on function boards - enable the function

board's switch port and clock, amputate the function board from the But­

terfly switch by disabling the board's switch port and clock, assert or

sense any of the LCON pins connecting the board to the switch (for test­

ing and diagnostics)

• Switch Gate Array (SGA), on switch cards - enable or disable any of

the four input or output ports, set any bit on any output port (for testing),

read any bit on any input port (for testing), read whether any input or

output port is busy

Processor Reset Control

The TCS can reset a function board 's processor by writing a register desig­

nated as the processor reset register. (For example, in the TC/FPV, the TCS

slave can assert the 88100 CPU's reset line. It can also independently reset

each SIGA and the board as a whole, though these are usually asserted simul­

taneously.) For example, the reset function is used to stop the processor while

code is loaded into its memory.

February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

February 14, 1990

Temperature Monitoring

The function board's temperature is monitored using a temperature
transducer and support circuitry connected to one of the slave's on-chip ana­
log to digital converters.

Voltage Monitoring

The slave monitors board voltages by connecting them, scaled and offset, to
the slave's analog to digital converters. Each slave monitors + 5, -4.5 and -2
VDC, and other voltages appropriate to the particular card type. Bulk power
is not monitored directly, but is inferred from the other voltages.

Voltage Control

The slave controls the voltage converter block that converts bulk power to
board power. For example, on the TC/FPV board, the slave can control the
power block output voltage of the + 5 VDC and the -4.5 VDC supplies. Each
of these two supply voltages can be set to one of six levels:

Off
On (nominal voltage)
+ 5% nominal voltage
-5% nominal voltage
+ 10% nominal voltage
-10% nominal voltage

Circuit Card LED Control

An assortment of LEDs are visible on each circuit card while it is installed in
the card cage, typically indicating:

• TCS VCC present (green)
• Bulk 48 VDC (±24 VDC) present (green)
• Board VCC present (green)
• Board VEE present (green)
• TCS flag (amber)
• Board-specific data

Of these, two are directly controlled by the TCS. One indicates "card TCS
power on" and is connected with a resistor to the board's TCS VCC power.
The other is controlled by the TCS slave and can be set on, off, or blinking.
Blinking the LED on and off is one of the TCS slave's tasks, and does not re­
quire further intervention from the TCS master. Two blink rates are defined,
fast (about 3 Hz) and slow (about 1 Hz).

189

6: Supporting Modules

190

Inside the TC2000 Computer

The TCS flag amber LED is intended to point out boards that fail diagnostics,
and as an aid to a service person in locating a particular board in a large sys­
tem. The convention for use of this LED is as follows:

on
slow blink
off
fast blink

= not yet initialized or cannot be initialized
= diagnostic in progress, or failure
= operational
= board locater signal

A hardware reset causes the LED to turn on. The slave leaves the LED
on at startup, so that an uninitialized or totally broken board will have its
light on continuously.

The TCS master starts the LED blinking at the slow rate when it begins
testing or configuration discovery. This indicates that the TCS has dis­
covered the board, but has not yet approved it for use.

Once the TCS has completed diagnostics, the LEDs on boards that pass
are turned off. Boards that fail or become non-communicative will con­
tinue to blink at the slow rate.

The TCS master provides a command that causes the LEDs on one or
more slaves to blink at the fast rate to help a service person locate a par­
ticular board.

Note that the LEDs on each TC/SS-TC/SR pair of switch cards-are both
controlled by the same slave, on the TC/SS.

Figure 6-5 shows the LED indicators on the outside edge of TC/FPV function
boards, and TC/SR and TC/SS switch cards.

February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

Figure 6-5 Function board and switch card indicators.

TC/FPV

green, bulk power _ ____.,

green, board Vee-~

amber, TCS slave flag --

green, TCS + 5

green, Vee

green, A transmit _ ____,.,

green, B transmit ---; ...

green, A receive

green, B receive

solder side component side

viewed as installed in machine

green, bulk power

TC/SR or TC/SS

green, TCS + 5

green, Vee green, Vtt -----,•

amber, TCS slave flag -~

February 14, 1990

solder side component side

viewed as installed in machine

The transmit (TX) and receive (RX) indicators are driven from the outgoing
(into the switch) and incoming (from the switch) frame signals, and indicate
that a message is being sent to or received from the switch. These indicators.
therefore, give a crude measure of switch activity. For example, suppose none
of these lights throughout the machine were brightly lit, except transmit on slot
3 and receive on slot 5, and the machine was not responding normally. A good
guess is that something - either hardware or software - has gotten stuck
sending lots of switch traffic from the function board in slot 3 to the one in
slot 5. The A and B designations on these LEDs distinguish among two sepa­
rate Butterfly switches, a provision for possible future capability. In the origi­
nal model, only one switch is installed, so either all the A lights or all the B
lights should be dark.

191

6: Supporting Modules Inside the TC2000 Computer

Slave Address Sensing

When a TC2000 function board or switch card is installed, eleven wires in the
TCS slave interface stay high or are pulled low by the wiring on the card slot
connector. This encodes that slot's TCS slave address. The slave processor
compares this address to the address in TCS messages, in determining wheth­
er the message addresses this slave.

The TCS slave address is similar to the 9-bit processor node number that each
function board obtains from the midplane: three bits each of bay, midplane
and slot identity. For function boards, the bay, midplane and slot fields of its
TCS slave address have the same values as those fields of its processor node
number. The 9-bit scheme permits up to 512 function boards, the TC2000 de­
sign limit; but it leaves no addresses for switch or clock cards. Slot field values
above the 0-7 range are used to address these cards in the TCS slave address
format.

Slave Configuration Information

Several slave configuration values are written into the slave's EEPROM at the
factory during final assembly and test. These values are listed below. The list
below reflects the initial implementation. Because the definition of EEPROM
contents is tied to TCS firmware and software, not to hardware, this list should
be taken as highly suggestive but not definitive. For precise details, please refer
to TCS software and operation documentation.

• Board type - Describes what kind of board this slave is on. This value
is used to implement broadcast messages and to select board-specific
slave routines.

• Circuit card serial number

• Artwork revision level

• Electrical revision level

• TCS slave code (EEPROM) revision level

• Analog to digital converter calibration - This is AID converter calibra­
tion information for the 68HC11's analog to digital converters . This data
calibrates the transducer systems that read the board voltages and tem­
peratures. Having calibration values eliminates the need for precision
voltage references and components .

• Temperature alarm setpoint - Temperatures above this value will signal
an error condition in the slave status byte during polling.

• Voltage within specifications setpoint - Voltages deviating from nomi­
nal by more than this value, either above or below, will signal an error
condition in the slave status byte during polling.

192 February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

6.2

February 14, 1990

• Timers - Timeout values used by the slave program, including a T-bus
access timeout.

Amputating a Slave from the TCS Bus

The slave on each TC/SS switch card can individually turn off the TCS slave­
to-master serial signals from the eight function board slaves that are associ­
ated with that switch card. An 8-bit register accessible by the TC/SS slave has
a bit corresponding to each of the function card slaves. This is described fur­
ther in section 6.1.3.

Clock Card

The TC2000 machine contains one master clock card. Only if the machine is
larger than 64 slots are slave clock cards required, so the description here con­
cerns only the master clock card. It provides the following signals .

• Switch clock signals

The clock signals are used by the SGA chips on switch requester and
switch server cards, and also by the LCON and SIGA chips on function
boards. The user sees their effect because they drive the Real Time Clock
(RTC) in the SIGA. The clock signals may optionally be used as the
board clock on function boards, although the TC/FPV uses its own clock
instead.

The clock signal for the requester half of the switch is separate from that
for the server half; they are synchronized, but may be either in phase or
180 degrees our of phase, to adjust for switch data cable length.

The source of the clock signal can be provided either by a fixed crystal, or
by a programmable frequency synthesizer with a range of about 30 to 44
megahertz. The clock card's board impedance, routing and logic are
carefully designed to reduce skew. Clock signals are distributed differen­
tially.

• 65-millisecond pulse

The 65-millisecond pulse, so called because its period is 65,536 microsec­
onds, is used in synchronizing the RTCs throughout the machine. When
this pulse occurs, the low half of the RTC is cleared, and the high half is
incremented. This ensures that the low half of all RTCs is identical, so the
system software has the comparatively simple task of synchronizing the
high half.

• Hold

The ''hold" signal is used in the express message mechanism for bound­
ing switch latency. It is distributed to all SGA chips in the machine,
where it controls the SGA's returning of output ports from high priority

193

6: Supporting Modules

6.3

194

Inside the TC2000 Computer

status back to normal priority. This mechanism is described further in
chapter 3.

• TCS bus

The TCS bus provides communication between the TCS master and the
TCS slaves on circuit cards throughout the machine. The clock card is at
the head of the hierarchical tree that fans out data from the TCS master,
and fans in data from the TCS slaves - the clock card itself connects
directly to the TCS master. The TCS bus is described further in section
6.1.3.

The clock card TCS slave, besides normal temperature and power control/mo­
nitoring, can select the clock source, control and monitor the synthesizer, con­
trol and monitor the 65-millisecond and hold signals, and sense the position
of on-board jumpers that control clock phase and termination.

Midplane

The TC.2000 midplane interconnects the following components:

• Eight function boards, such as the TC/FPV function board.

• Four switch cards: one requester-server pair, plus a second pair for the
redundant switch.

• Two switch clock cables: the first cable for the primary switch clock, and
a second cable for a redundant switch.

• Sixteen switch-to-switch data cables for connection to the rest of the ma­
chine: eight cables to switch cards throughout the machine, and a second
set of eight for a redundant switch. In specific instances, some cables
might be absent or replaced with TC/LOOP loop-back connectors.

• Power: + 24 and -24 volts main power, + 5 volts TCS power, and ground.

• Three ground straps to ensure a low-impedance, system-wide ground:
one to the midplane to the left, another to the midplane to the right, and
a third to an I/O midplane above the midplane (if any, such as the
TC/VMP VMEbus midplane).

• Midplane ID DIP switch, uniquely identifying a particular midplane in
a machine.

Figure 6-6 shows these interconnections in an abstract graphical form, illus­
trating how the midplane fits into the machine architecture.

February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

Figure 6-6

function
board 0

function
board 1

function
board 2

function
board 3

function
board 4

function
board 5

function
board 6

function
board 7

Midplane interconnections.

ram cock cards and T c S master -

'It

midplane clock and TCS interconnect

switch A connector 0
switch A

requester switch A connector 1

I
card

I switch A connector 2 (RA)

N N switch A connector 3

M T M T switch A connector 4
switch A

I E server I E switch A connector 5
card

D R (SA) D R switch A connector 6

p c p c switch A connector 7

L 0 L 0 switch B connector 0
switch B

A N requester A N switch B connector 1

N N
card

N N switch B connector 2 (RB)

E E E E switch B connector 3

c c switch B connector 4
switch B

T server T switch B connector 5
card
(SB) switch B connector 6

switch B connector 7

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

cabling
to other
mid planes

midplane power distribution (+24, -24, TCS +5, signal ground)

February 14, 1990

)~

from power supplies -

The TC2000 midplane has connectors on both sides (hence the name
"midplane"), controlled impedance signal lines (50 ohms), and no active com­
ponents. Some of the complexity in the midplane wiring is because it supports
a second Butterfly switch that, although not configured in the current version
of the machine, may be provided as an option in the future. Figure 6-7 shows
the layout of connectors on the mid plane. The switch card connectors actually
overlap the function board connectors in places.

195

6: Supporting Modules Inside the TC2000 Computer

Figure 6-7 Midplane connector layout.

196

FBO

CBO
CB1
CB2
CB3
CB4
CB5
CB6
CB7

BCLK

SB RB SA RA

view from FUNCTION BOARD side

FB7

CAO
CA1
CA2
CA3
CA4
CA5
CA6
CA?

100
ACLK

And Figure 6-8 is a block diagram of the midplane wiring. In this diagram,
most of the connection lines represent several wires. Distribution of the ID
switch wires to all cards, and of mid plane slot ID wires to function boards, is
indicated with the label "ID". Distribution of power and ground is merely sug­
gested by the symbols at the bottom.

February 14, 1990

Inside the TC2000 Computer 6: Supporting Modules

Figure 6-8 Midplane block diagram.

6.4

~~~~~CLK 1--~~~ 

SWITCH 

RA 

A 
ID 

~-____, CLK ,______~ 

SWITCH 

RB 

B 
ID 

ID,....._._.............._.............._.._, 

~liili SWITCH ~ SA 
........,....,.............,_,...,.... 

~liili SWITCH ~ SB 
........,...~~ ....... 

connectors connectors 

0-0-0- 0- --a-
+24 -24 TCSS GND ID switch 

Power Supplies and Distribution 

Power for the TC2000 machine is turned on in the fo llowing steps. 

1. Assume that power cords are connected, circuit breakers are turned on, 
and the machine is configured for power control in the standard way. 
With the front panel keyswitch in the "off" position, power line power is 
going only so far as the Power Distribution Unit (PDU) in the each cabi­
net of the machine. (Low voltage power control signal is present on the 
power control wires, such as those to the keyswitch .) 

2. The front panel keyswitch is turned to the "on" position. This turns on 
the utility cabinet PDU, which sends power to the TCS master, the TCS 
slave power supply, and any other utility cabinet equipment (such as I/O 
devices). 

February 14, 1990 197 



6: Supporting Modules Inside the TC2000 Computer 

6.4.1 

6.4.2 

6.4.3 

198 

3. The TCS master turns on the PD Us in the other cabinets . In expansion 
cabinets, this applies power to the bulk power supply, which in turn ap­

plies ±24 volts bulk power to the midplane and thus to all cards in the 
cabinet. In peripheral cabinets, this applies power to I/O devices and to 
VMEbus card cage power supplies. 

4. The TCS master commands the TCS slaves on the various circuit cards to 
turn on their local card power supplies. This completes power- up of the 
machine. 

The following sections discuss these steps and the equipment involved. For 

further details and instructions on the exact physical and electrical require­

ments, please refer to the Site Installation Guide. 

Power Line 

Each TC2000 cabinet has its own power cord. In the domestic (United States) 

systems, this is 208 VAC, 3 phase, ..6.-wired, 30 amperes for the utility cabinet 

and for each expansion cabinet, and 20 amperes for each peripheral cabinet. 

International machines are wired differently (for example, they are Y-wired); 

consult the Site Installation Guide for such systems. 

Keyswitch 

The front panel keyswitch has positions "off", "on" and "secure". The "off" 

position disables all power to the entire machine when configured normally. 

(For servicing and diagnostic purposes, individual cabinets may be powered 

up separately.) The keyswitch "on" position allows the utility cabinet PDU 

to power up the utility cabinet equipment, including the TCS. The TCS can 

then power up the rest of the machine. 

The keyswitch "secure" position is, for the purpose of power control, identical 

to the "on" position. The TCS master can sense which of these positions the 

keyswitch is in, and take appropriate software action. For example. certain 

operational or administrative commands may be ignored when the keyswitch 

is in the "secure" position. 

Power Distribution Unit (POU) 

Each cabinet has one PDU. The purpose of the PDU is to accept the power 

cord and various power control signals (in the form of contact closures), and, 

based on the control signals, apply power line power to further equipment. 

Each PDU contains filters to reduce electromagnetic interference (EMI), cir­

cuit breakers, fuses, etc. The PDU's power control logic makes an all-on I all­

off decision regarding powering the rest of the equipment in the cabinet; either 

February 14, 1990 



Inside the TC2000 Computer 6: Supporting Modules 

no such power is applied, or (except if a branch circuit breaker is tripped or 
a branch fuse is blown) all such equipment is powered. 

There are two kinds of PDU. One kind is used in the utility cabinet and in 
expansion cabinets; the other kind is used in peripheral cabinets. (In fact, 
there are differently wired PDUs for international machines . Counting this 
difference there are four kinds of PDU.) 

Peripheral Cabinet POU 

In this kind of PD U, the power from the power cord first goes through an EMI 
filter and then a master circuit breaker, and then to three places. 

• To unswitched 220 VAC outlets, protected by 10 A fuses . 

• To the power supply for the power control logic, protected by a Ya A fuse . 

• To a contactor (a relay for large amounts of power), controlled by the 
power control logic. The contactor supplies power to switched 220 VAC 
outlets, protected by circuit breakers. 

The power control logic is driven by the following: 

• The PDU box thermal protection cutout sensor. 

• The local I off I remote toggle switch on the PDU. The "local" position 
tells the PDU to turn on, if the thermal protection sensor permits it. The 
"off" position keeps the PDU off. The "remote" position puts the PDU 
under control of the power control daisy chain, pending permission of 
the thermal protection sensor. 

• The power control daisy chain. 

The various eq uipment in the peripheral cabinet is plugged into the outlets on 
the PDU. This may include a VMEbus card cage power supply, tape drives, 
disk drives. etc. 

Utility or Expansion Cabinet POU 

In this kind of PDU, the power from the power cord first goes through an EMI 
filter and then a master circuit breaker, and then to two places: 

• To the power supply for the power control logic. protected by a Ya A fuse. 

• To a contactor, controlled by the power control logic. The contactor sup­
plies power to the following: 

o In expansion cabinets, the bulk power supply. 

o In expansion cabinets. the VMEbus card cage power supply (if in­
stalled). 

February 14, 1990 199 



6: Supporting Modules Inside the TC2000 Computer 

6.4.4 

200 

o In the utility cabinet, the X-inch tape drive. 

o Cabinet fans . 

The power control logic is driven by the following: 

• The cabinet thermal protection cutout sensors. 

• The power control daisy chain. 

• The drip screen interlock. The drip screen is a substance that, if the cabi­

net equipment were to catch fire and drip burning pieces, catches and 

extinguishes those pieces. If the drip screen is removed, an interlock de­

tects this and prevents the PDU from turning on. 

In this PDU, provision is also made to support a capacitor dump circuit in 

a future power supply system. 

Power Control Daisy Chain 

Each PDU has two power control connectors, so that it can not only receive 

a power control signal but also pass that signal on to another PDU. When a 

string of PDUs is thus connected, they are all controlled together. 

The TCS master provides relay contact closures that drive the power control 

daisy chains in the machine. There are three daisy chains in a 64-slot machine: 

• One chain controls peripheral cabinets. Many systems have only one pe­

ripheral cabinet, but if many I/O devices are required, additional periph­

eral cabinets are added to house the devices. 

• Another chain controls expansion cabinets to the left of the utility cabinet 

(as viewed from the front). The control wires go from the TCS out to the 

farthest expansion cabinet (midplane 7.4), then from it to the one on its 

right, and so on. (Slot and midplane numbering is described in chapter 

1.) 

The reason for this is so that the expansion cabinet at the end of the chain, 

namely mid plane 7.7, is the one where the nX ''master" or "king" function 

board resides. This function board is connected to the system boot disk, 

and the VMEbus system with that disk is in this expansion cabinet. Cab­

ling in this way is a fail-safe procedure, since any disconnection along the 

chain will disable the machine from booting. Further, any powering 

down will be sure to remove power from the disk interface, ensuring that 

no erroneous disk I/O commands are issued. 

If there are fewer than four expansion cabinets to the left of the utility 

cabinet, the chain goes from the TCS out to the farthest expansion cabi­

net on the left, whatever that may be. 

February 14, 1990 



Inside the TC2000 Computer 6: Supporting Modules 

6.4.5 

6.4.6 

February 14, 1990 

• The final chain controls expansion cabinets to the right of the utility cabi­
net. As with the second chain, this chain goes from the TCS out to the 
farthest expansion cabinet, and then back to the left, cabinet by cabinet. 

If there are four or less expansion cabinets in the machine, none are on 
the right of the utility cabinet, so there is no third power control chain in 
such a machine. 

Bulk Power 

Each expansion cabinet contains a bulk power supply. This supply obtains 
power from the cabinet's PDU and produces ±24 volts DC. Voltage regulation 
is not critical, since the bulk power is used only to power additional power sup­
plies on each circuit card. 

Bulk power from the supply is wired to the midplane, that distributes it to the 
switch cards and function boards in the cabinet. 

Circuit Card Power 

Each switch card and function board receives ±24 volts DC bulk power from 
the midplane. This is applied to on-board power supplies that produce the 
voltages required on the board. These board power supplies are under control 
of the TCS slave on the board, which can turn the power off, turn it on, and 
margin (adjust) it for testing. The margin voltages are + 10%, + 5%, -5% 
and -10% of nominal. (Certain supply voltages cannot be margined.) 

Besides automatic protection mechanisms in the board power supplies. the 
TCS monitors board voltages and temperatures. If these exceed limits. the 
TCS will turn off the board power supplies. 

Power for the TCS slave on each board is produced by a supply in the utility 
cabinet ( + 5 volts ). and di stributed to each midplane and thence to each TCS 
slave. 

Board power for the switch requester and switch server cards is slightly com­
plicated, since there is only one TCS slave for the card pair, and one of the 
voltages is supplied only on one of the cards and connected via the midplane 
to the other. However, this can be viewed as an implementation detail. 

201 





~ --_ ======= 
- -

- - -

February 14, 1990 

A 

Floating Point Exception 
Handling 

Floating point exception handling is of great interest to a few users - namely, 
those with programs that do intensive floating point computation with quanti­
ties that cause exceptions. Most users' programs either do not generate float­
ing point exceptions, or do so so rarely that the cost to handle them is 
negligible. In those cases where it is a concern, however, the discussion below 
can clarify what the cost is and when it is incurred, and thereby aid the user 
in restructuring his algorithms to minimize the cost. 

Probably the most common floating point exception relates to gradual under­
flow. As specified in the IEEE standard cited below, if the result of a floating 
point operation is too small to be represented by a normalized number with 
the smallest exponent value, then zero bits start filling the high end of the man­
tissa to create a denormalized number with less precision. 

Because floating point exceptions, particularly the IEEE gradual underflow 
mechanism, are handled not in hardware but in software, the execution per­
formance can be significantly affected. In most cases, most of the cost is trap­
ping into and exiting from the kernel, with a relatively small amount due to 
handling the floating point exception itself. However, once a denormalized 
number has been created, any further processing of it also goes through the 
exception handler. 

Floating point exception handling is more a software issue than most topics 
in this book, but is discussed here because it lies in the grey area between how 
the hardware works and what the software does. 

The pSOS + m floating point exception handler is the same as that under the 
nX operating system, and the pSOS +muser may optionally replace it with his 
own . 

203 



A: Floating Point Exception Handling Inside the TC2000 Computer 

A.1 

A.2 

A.2.1 

A.2.2 

204 

Introduction 

This document presents the design of the floating point exception handling 
routines for the TC2000 nX kernel. The Motorola 88100 requires special atten­
tion to floating point because it generates exceptions rather than completing 
all operations itself. 

The following documents contain detailed information relevant to this discus­
s10n: 

Motorola MC88100 RISC Microprocessor Unser's Manual 

IEEE Standard for Binary Floating- Point Arithmetic (ANSI I IEEE Stan­
dard 754-1985) 

nX operating system source code - files reg.h, locore.s, trap .c and fpe.s 

Motorola MC68881 Floating-Point Coprocessor User 's Manual, pages 
2-19 and following (for discussion of floating point number formats) 

Floating Point Numbers 

Formats 

There are two floating point number formats on the 88100, 32-bit single preci­
sion and 64-bit double precision. Each consists of a sign bit, a biased exponent 
and a mantissa. For "normalized" numbers, the mantissa is considered to 
have a hidden one bit which is not explicitly represented . 

The highest and lowest values of the biased exponent in each format represent 
special cases. The highest is either infinity, if the mantissa is zero, or Not-a­
Number otherwise. A zero exponent represents zero if the mantissa is zero, 
or else a denormalized number. These special cases cause most of the com­
plexity in handling floating point exceptions; the 88100 does not deal with them 
its elf. 

For complete details of both formats , see Motorola's 68881 manual, pages 2-19 
and following. 

Operations 

The floating point unit executes floating point FADD, FSUB, FMUL, FDIV, 
FCMP, FLT, INT, NINT and TRNC instructions, as well as integer MUL, DIV 
and DIVU instructions. All the floating instructions can result in exceptions 
for certain values of their operands. The integer instructions can generate sep­
arate exceptions, but we will ignore those here. 

February 14, 1990 



Inside the TC2000 Computer A: Floating Point Exception Handling 

A.3 

February 14, 1990 

The results of floating point operations can depend on the rounding mode spe­
cified in the floating point control register. 

The IEEE Standard requires implementation of four modes - round to near­
est, round to zero, round to plus infinity, and round to minus infinity. Round­
ing of normal operations is done by the 88100, but correct exception processing 
must also consider the rounding mode to produce the proper result. 

Floating Point Exceptions 

The floating point unit generates precise and imprecise exceptions. These are 
indicated by the Floating Point Exception Cause Register and the Operation 
Type Registers. 

Precise exceptions for the Floating Point Unit are: 

Unit Disabled 
Unimplemented Opcode 
Privilege Violation 
Integer Conversion Overflow 
Reserved Operand 
Divide by Zero 

Imprecise exceptions are: 

Underflow 
Overflow 
Inexact 

The first three, FPU disabled, unimplemented opcode and privilege violation, 
require no work, and result in a signal to the offending process. The inexact 
exception only occurs when a process has enabled it explicitly; it is handled 
by the process directly. The remaining five are the subject of what follows . 

For each exception, the handler saves the state of the processor. The exception 
frame contains, among other things: 

General Purpose Registers 1 - 31 
Floating Point Control Unit Registers 

Exception Cause Register 
Precise Operation Type Register 
Source 1 Operand Registers 
Source 2 Operand Registers 
Imprecise Operation Type Register 
Result Registers 
User Status Register 
User Control Register 

Each exception processing routine modifies the stored value(s) in the appro­
priate register(s) to reflect the result of the operation which caused the excep-

205 



A: Floating Point Exception Handling Inside the TC2000 Computer 

A.3.1 

A.3.2 

A.3.3 

A.3.4 

A.3.5 

206 

tion, and returns a bit mask to indicate the exception status. Not all events 
handled by these routines are "exceptions", according to the IEEE Standard. 

Overflow Exception 

Overflows produce a result of infinity or the largest non-infinite number, de­
pending on the rounding mode and the sign. The correct value is loaded from 
a table and stored into the saved image of the users registers. The overflow 
exception bit is always returned. 

Underflow Exception 

Underflows result in either zero or a denormalized number. The exception 
handler first needs to undo any rounding already done by the Floating Point 
Unit, right shift the mantissa to denormalize it, and round the result. Round­
ing depends on the sign, the rounding mode, the LSB of the mantissa and the 
bits shifted off the right end of the number. 

Divide by Zero Exception 

Dividing zero by zero results in a NaN ("not a number", defined as the expo­
nent field being zero) and returns the invalid operation bit. Dividing anything 
else by zero results either in infinity or the largest number (with the proper 
sign) and returns the divide by zero bit. 

Convert to Integer Exception 

The 88100 signals a Convert to Integer exception when one of the conversion 
instructions, INT, NINT or TRNC, encounters an operand with an unbiased 
exponent of 30 or greater. A positive number with an exponent of 30 will over­
flow only if it is equal to Ox7FFFFFFF (the largest positive number) and round­
ing adds one to it. All larger positive numbers overflow. No negative number 
with exponent of 30 will overflow, but an exponent of 31 or greater will overflow 
unless the number equals Ox80000000 and rounding doesn't add to it. Over­
flows result in the largest number of the proper sign, and return the invalid 
operation bit. 

Reserved Operand Exception 

All the reserved operand exceptions take significantly longer to process than 
the other Floating Point Unit exceptions. Some reserved operand exceptions 
get a second exception (typically underflow, rarely overflow) during process­
mg. 

February 14, 1990 



Inside the TC2000 Computer A: Floating Point Exception Handling 

February 14, 1990 

When the floating point unit attempts to execute any instruction whose source 
operands are infinity, NaN or denormalized, it causes a reserved operand ex­
ception. Each type of operand, and each different instruction, requires sepa­
rate handling. 

In general, except for INT, NINT and TRNC instructions, processing begins 
by checking for NaNs. FCMP results in the "nc" bit ("not comparable") being 
set; all other instructions propagate the NaN as their result. Signalling NaNs 
return the operand exception bit while other NaNs do not. (Signalling NaNs 
are defined as NaNs with the high bit of the mantissa zero. For these, the ex­
ception handler generates a UNIX-style signal to the process.) 

Once NaNs are processed, any single precision operands are converted to 
double precision. Finally, each instruction is handled separately. The general 
strategy is to modify the operands so that a reserved operand exception can 
no longer occur and then use the floating point unit to produce the proper re­
sult. 

INT, NINT and TRNC Instructions 

If the number is denormalized the result is usually zero. However, if the round­
ing mode is toward infinity and a denormalized number has the right sign, an 
INT instruction will round it to 1 (with the same sign). Therefore, for INT, we 
make a small normalized number and let the FPU do the rounding. NINT and 
TRNC always result in zero for denormalized numbers. No exception bit is 
returned . 

For NaN or infinity the result is the largest integer of the same sign (technically, 
the sign of a NaN is meaningless). The reserved operand exception bit is re­
turned. 

FCMP Instructions 

Since NaNs have been intercepted already, the FCMP must always produce 
the result of the comparison without returning an exception bit. This is done 
by modifying the operands. Infinities are changed to large finite numbers and 
denormalized numbers are converted to small normalized numbers. In each 
case the other operand may also be made smaller/larger to ensure that the 
sense of the compare remains the same. 

FADD and FSUB Instructions 

FADD and FSUB are handled together by inverting the sign of the second op­
erand for subtraction. If either operand is zero the other operand results . If 
either operand is infinity it is the result unless we are adding infinities of oppo­
site sign. In that case, the result is a NaN and the invalid operand bit is re­
turned. 

207 



A: Floating Point Exception Handling Inside the TC2000 Computer 

208 

For denormalized numbers, we make the (biased) exponent 64, giving us a 
(larger) normalized number. Unfortunately, this also gives us a hidden bit 
which we then subtract away. All this has the effect of multiplying the original 
number by 2**63. We compensate for this by multiplying the other operand 
by 2**63 also, unless it is greater than 1. If the other operand is already greater 
than 1 the addition of a very small number will only affect rounding, and we 
need to avoid the possibility that multiplying by 2**63 will cause an overflow. 

Once this has been done, we issue a FADD instruction. [NOTE: This could 
overflow, generating another exception which is processed transparently as far 
as the FADD routine is concerned.] Finally, we scale back down, if necessary, 
by multiplying by 2**-63. [This could underflow.] The result is stored in the 
copy of the users register(s), and the exception bits, set by any overflow or un­
derflow exception, are returned. 

FMUL Instructions 

FMUL first deals with zeros and infinities. Zero times infinity results in a NaN 
and returns the invalid operand bit. Infinity times anything else results in a 
properly signed infinity. 

Again, denormalized numbers are converted to normalized numbers, effec­
tively multiplying them by 2**63. The other operand is multiplied by 2* *-63 
unless it is already very small. Finally, we do the FMUL. store the result in 
the users register(s), and capture the exception bits which may have been set 
if the FMUL underflowed . 

FDIV Instructions 

FDIV is processed very much like FMUL. with minor differences . Infinity di­
vided by infinity results in a NaN. We need not check for zero divisor because 
that would have resulted in a different exception . We compensate for modify­
ing a denormalized number by multiplying the other operand by 2'' *63. Final­
ly, we do the FDIV, store the results, and capture any exception bits set by an 
underflow. 

February 14, 1990 



Symbols 
1/2-inch tapes, 172 

1/4-inch tapes, 177 

A 
addresses, 127 

banks, 133 
flow, 128 
formats, 129 
global, 122 
maps, 123 

= 
= = 

to/from VMEbus, 125 
transformation, 128 
translation, 132 

alternate paths, 16, 98 

atomic operations, 63 
functions based on xmem, 68 
memory accesses, 70 
system calls, 68 

B 
bulk power supply, 7 

Butterfly switch, 12 

bypassing the locking protocol, 39, 74, 124 

c 
cabinet 

expansion, 5 
peripheral. 9 
utility, 7 

February 14, 1990 

clock card, 17, 193 

clusters, discussion, 27 

CMMU, 123 
use of, 137 

CPU interface, 33 

CPU Mapping RAM, 34 

D 
devices, naming. 170 

disks, hard , 172 

E 
Ethernet interface, 176 

exceptions, noa ting point. 203 

exclusion, 66 

express message. 114 

F 
floating point, exception handling, 203 

front panel, 19 

fu nction board. 10 

H 
half- inch . See 112-inch 

hard disks, 172 

help, obtaining from BBN, xiii 

Index 

209 



Index 

110 devices, 171 

110 system, structure (figure), 23 

indicators, (figure), 191 

intercept access, 36 
and timing, 63 

interleaving, 38, 54, 142 
conceptual operation, 148 
effect (figure), 148 
implementation, 145 
motivation (basic), 143 
pools, 154 
process (figure), 147 
uniform use of, 144 

interrupts, TC/FPV function board, 77 

L 
latency, switch, 111 

LCON chip, 91 

local reference, 37 

locking, 63, 109, 133 
the machine 's protocol, 71 

M 
master function board, 26 

memory 
design, 122 
error, 134 
structure, 119 

midplane, 6, 194 
VMEbus, 162 

p 
page table walks, 140 

paging, 126 

path, of references, 55 

physical address, 131 

power, 197 

Power Distribution Unit, 7 

process logical address, 130 

210 

Inside the TC2000 Computer 

Q 
quarter-inch. See 114-inch 

R 
race condition, 63 

random pacing, 101 

Real Time Clock, 18 

registers 
Augmentation, 51 
Bus Error Vector, 52 
CPU and CMMU, 54 
CPU Lock Timer, 52 
CPU Mapping RAM, 54 
Interleave Decision RAM, 54 
Interleaver RAM, 54 
Interprocessor Interrupt, 50, 52 
Interrupt Mask, 52 
Interrupt Source, 52 
Interrupts Disabled Timer, 52 
Interrupts Pending/ Abort Retries Timer, 52 
Machine Configuration, 51 
Non-maskable Interprocessor Interrupt, 52 
PCR Disable Mask, 51 
Process Configuration, 50 
SIGA, 53 
TC/FPV configuration and control, 50 
VMEbus interface, 53 
VMEbus interleaving, 54 

remote reference, 42 

s 
scaleability, 2 

SCSI bus, 166 

semaphore, 67 

SGA chip, 91 

SIGA chip, 91 

slot numbering, 28 

slotted pacing, 101 

spin lock, 65, 136 

streaming, 177 

switch 
auxiliary signals, 82 
bidirectional, 85 

February 14. 1990 



Inside the TC2000 Computer 

Butterfly, 12, 81 
card, 16, 91 
column, 15, 88 
error, 107 
express message, 114 
interface, 42 
latency, 111 
message contents, 93 
multiple messages, 106 
node, -88 
pacing, 100 
path vs. connection, 85 
port, 84 
reject, 99 
reply messages, 106 
retry, 99, 111 
routing, 93 
structure (basic), 83 
theory of operation, 93 
timeout, 113 

synchronization, of processes, 66 

synchronized access, 135 

system physical address, 131 

T 
tapes 

1/2-inch, 172 
114-inch, 177 

TC/FPV function board, 31 

TC/SR switch card. 91 

TC/SS switch card. 91 

TCS, 18, 179 
amber flag LED. 189 
block diagram (t"igure), 182 
bus, 21, 183 
fault recovery, 187 
hardware. 180 
master (figure), 183 
slave, 187 

terminal controller, 174 

Test and Control System. See TCS 

timers, TC/FPV function board. 77 

timing, of references. 59 

u 
underflow, 203 

February 14, 1990 

v 
VMEbus 

bus repeater, 168 
card cage, 160 
description, 159 
interface in TC/FPV, 45, 160 
interface registers, 53 
interrupts, 48 
master mapper, 46 
midplane, 162 
Multibus adapter, 169 
multiple systems, 165 
SCSI bus adapter, 167 
slave mapper, 47 
system controller, 49 

w 
wiring down pages, 139 

x 
xmem operations, 67 

Index 

211 





Dear Customer: 

To do a better job of serving you by providing improved documentation, we are asking you to help us. Please take a 
few minutes to answer the following questions and return them to us by folding up and taping this questionnaire. 
We value your comments and suggestions and appreciate the time you take to send them to us. Thank you. 

1 . What is your position/function? D application user D system manager/administrator 

D programmer D service engineer D other 

2. How many years have you been working with computer systems? -------

D GP1000 D TC2000 3. What system are you currently working on? 
(please check both hardware and software) D Mach 1000 D pSOS 1000 D nx D psogt m 

4. What application are you using the product for? -----------------

5. How much of your time do you spend 
reading or referring to documents? D 10% D 20% D 30% D 40% D 50% 

Please answer the following questions about: Inside the TC2000 Computer 

6. Is the information accurate? D always D mostly D seldom D never 

7 . Is the material clear and logical? D always D mostly D seldom D never 

8 . Is it easy to find the information you need? D always D mostly D seldom D never 

9. Does the index contain the words you look up? D always D mostly D seldom D never 

10. Is the information located where you expect it in D always D mostly D seldom D never 
the book? 

11 . Are the illustrations and examples adequate? D always D mostly D seldom D never 

12. Did you need information not available in this D always D mostly D seldom D never 
book or set of books? 

13. What sections of the book did you use the most? 

14. What areas need more or better examples? (Please list page numbers.) 

May we contact you for more information? If so , please give your name, address, and telephone number. 

~ Do you have additional comments? If so , please write them on the reverse side. 

After completing the form , fold this end up to the dotted line, fold down and tape the top, stamp, and mail. 
Thank you . 



Additional Comments: 

Documentation Department 

BBN Advanced Computers Inc. 

1 O Fawcett St. 
Cambridge, MA 02138 

Tape here 


